71 |
72 |
73 | | Library |
74 | Algorithms |
75 | Language |
76 | License |
77 | Code |
78 | Dependency manager |
79 |
80 |
81 |
82 | | AIToolbox |
83 |
84 |
85 | - Graphs/Trees
86 |
87 | - Depth-first search
88 | - Breadth-first search
89 | - Hill-climb search
90 | - Beam Search
91 | - Optimal Path search
92 |
93 | - Alpha-Beta (game tree)
94 | - Genetic Algorithms
95 | - Constraint Propogation
96 | - Linear Regression
97 | - Non-Linear Regression
98 |
99 | - parameter-delta
100 | - Gradient-Descent
101 | - Gauss-Newton
102 |
103 | - Logistic Regression
104 | - Neural Networks
105 |
106 | - multiple layers, several non-linearity models
107 | - on-line and batch training
108 | - feed-forward or simple recurrent layers can be mixed in one network
109 | - LSTM network layer implemented - needs more testing
110 | - gradient check routines
111 |
112 | - Support Vector Machine
113 | - K-Means
114 | - Principal Component Analysis
115 | - Markov Decision Process
116 |
117 | - Monte-Carlo (every-visit, and first-visit)
118 | - SARSA
119 |
120 | - Single and Multivariate Gaussians
121 | - Mixture Of Gaussians
122 | - Model validation
123 | - Deep Network
124 |
125 | - Convolution layers
126 | - Pooling layers
127 | - Fully-connected NN layers
128 |
129 |
130 | |
131 | Swift |
132 | Apache 2.0 |
133 | GitHub |
134 | |
135 |
136 |
137 |
138 |
139 |
140 | dlib
141 | |
142 |
143 |
144 | - Deep Learning
145 | - Support Vector Machines
146 | - Reduced-rank methods for large-scale classification and regression
147 | - Relevance vector machines for classification and regression
148 | - A Multiclass SVM
149 | - Structural SVM
150 | - A large-scale SVM-Rank
151 | - An online kernel RLS regression
152 | - An online SVM classification algorithm
153 | - Semidefinite Metric Learning
154 | - An online kernelized centroid estimator/novelty detector and offline support vector one-class classification
155 | - Clustering algorithms: linear or kernel k-means, Chinese Whispers, and Newman clustering
156 | - Radial Basis Function Networks
157 | - Multi layer perceptrons
158 |
159 | |
160 | C++ |
161 | Boost |
162 | GitHub |
163 | |
164 |
165 |
166 | | FANN |
167 |
168 |
169 | - Multilayer Artificial Neural Network
170 | - Backpropagation (RPROP, Quickprop, Batch, Incremental)
171 | - Evolving topology training
172 |
173 | |
174 | C++ |
175 | GNU LGPL 2.1 |
176 | GitHub |
177 | Cocoa Pods |
178 |
179 |
180 | | lbimproved |
181 | k-nearest neighbors and Dynamic Time Warping |
182 | C++ |
183 | Apache 2.0 |
184 | GitHub |
185 | |
186 |
187 |
188 | | MAChineLearning |
189 |
190 |
191 | - Neural Networks
192 |
193 | - Activation functions: Linear, ReLU, Step, sigmoid, TanH
194 | - Cost functions: Squared error, Cross entropy
195 | - Backpropagation: Standard, Resilient (a.k.a. RPROP).
196 | - Training by sample or by batch.
197 |
198 | - Bag of Words
199 | - Word Vectors
200 |
201 | |
202 | Objective-C |
203 | BSD 3-clause |
204 | GitHub |
205 | |
206 |
207 |
208 |  MLKit |
209 |
210 |
211 | - Linear Regression: simple, ridge, polynomial
212 | - Multi-Layer Perceptron, & Adaline ANN Architectures
213 | - K-Means Clustering
214 | - Genetic Algorithms
215 |
216 | |
217 | Swift |
218 | MIT |
219 | GitHub |
220 | Cocoa Pods |
221 |
222 |
223 |  Mendel |
224 | Evolutionary/genetic algorithms |
225 | Swift |
226 | ? |
227 | GitHub |
228 | |
229 |
230 |
231 | | multilinear-math |
232 |
233 |
234 | - Linear algebra and tensors
235 | - Principal component analysis
236 | - Multilinear subspace learning algorithms for dimensionality reduction
237 | - Linear and logistic regression
238 | - Stochastic gradient descent
239 | - Feedforward neural networks
240 |
241 | - Sigmoid
242 | - ReLU
243 | - Softplus activation functions
244 |
245 |
246 | |
247 | Swift |
248 | Apache 2.0 |
249 | GitHub |
250 | Swift Package Manager |
251 |
252 |
253 | OpenCV |
254 |
255 |
256 | - Multi-Layer Perceptrons
257 | - Boosted tree classifier
258 | - decision tree
259 | - Expectation Maximization
260 | - K-Nearest Neighbors
261 | - Logistic Regression
262 | - Bayes classifier
263 | - Random forest
264 | - Support Vector Machines
265 | - Stochastic Gradient Descent SVM classifier
266 | - Grid search
267 | - Hierarchical k-means
268 | - Deep neural networks
269 |
270 | |
271 | C++ |
272 | 3-clause BSD |
273 | GitHub |
274 | Cocoa Pods |
275 |
276 |
277 |  Shark |
278 |
279 |
280 | - Supervised:
281 |
282 | - Linear discriminant analysis (LDA)
283 | - Fisher–LDA
284 | - Linear regression
285 | - SVMs
286 | - FF NN
287 | - RNN
288 | - Radial basis function networks
289 | - Regularization networks
290 | - Gaussian processes for regression
291 | - Iterative nearest neighbor classification and regression
292 | - Decision trees
293 | - Random forest
294 |
295 | - Unsupervised:
296 |
297 | - PCA
298 | - Restricted Boltzmann machines
299 | - Hierarchical clustering
300 | - Data structures for efficient distance-based clustering
301 |
302 | - Optimization:
303 |
304 | - Evolutionary algorithms
305 | - Single-objective optimization (e.g., CMA–ES)
306 | - Multi-objective optimization
307 | - Basic linear algebra and optimization algorithms
308 |
309 |
310 | |
311 | C++ |
312 | GNU LGPL |
313 | GitHub |
314 | Cocoa Pods |
315 |
316 |
317 |  YCML |
318 |
319 |
320 | - Gradient Descent Backpropagation
321 | - Resilient Backpropagation (RProp)
322 | - Extreme Learning Machines (ELM)
323 | - Forward Selection using Orthogonal Least Squares (for RBF Net), also with the PRESS statistic
324 | - Binary Restricted Boltzmann Machines (CD & PCD)
325 | - Optimization algorithms:
326 |
327 | - Gradient Descent (Single-Objective, Unconstrained)
328 | - RProp Gradient Descent (Single-Objective, Unconstrained)
329 | - NSGA-II (Multi-Objective, Constrained)
330 |
331 |
332 | |
333 | Objective-C |
334 | GNU GPL 3.0 |
335 | GitHub |
336 | |
337 |
338 |
339 |  Kalvar Lin's libraries |
340 |
341 |
350 | |
351 | Objective-C |
352 | MIT |
353 | GitHub |
354 | |
355 |
356 |
357 |
358 |
359 | **Multilayer perceptron implementations:**
360 |
361 | - [Brain.js](https://github.com/harthur/brain) - JS
362 | - [SNNeuralNet](https://github.com/devongovett/SNNeuralNet) - Objective-C port of brain.js
363 | - [MLPNeuralNet](https://github.com/nikolaypavlov/MLPNeuralNet) - Objective-C, Accelerate
364 | - [Swift-AI](https://github.com/Swift-AI/Swift-AI) - Swift
365 | - [SwiftSimpleNeuralNetwork](https://github.com/davecom/SwiftSimpleNeuralNetwork) - Swift
366 | -