└── README.md /README.md: -------------------------------------------------------------------------------- 1 | # Must-read papers on KG/KG4Rec 2 | Knowledge-aware recommendation papers. 3 | 4 | ### Survey papers: 5 | 1. **Personalized Entity Recommendation: A Heterogeneous Information Network Approach.** 6 | *Xiao Yu, et al.* WSDM, 2014. [paper](http://hanj.cs.illinois.edu/pdf/wsdm14_xyu.pdf) 7 | 8 | 1. **Collaborative Knowledge Base Embedding for Recommender Systems.** 9 | *Fuzheng Zhang, et al.* KDD, 2016. [paper](https://www.kdd.org/kdd2016/papers/files/adf0066-zhangA.pdf) 10 | 11 | 1. **RippleNet: Propagating User Preferences on the Knowledge Graph for Recommender Systems.** 12 | *Wang Hongwei, et al.* CIKM, 2018. [paper](https://arxiv.org/pdf/1803.03467.pdf) 13 | 14 | 1. **DKN: Deep knowledge-aware network for news recommendation.** 15 | *Wang Hongwei, et al.* WWW, 2018. [paper](https://arxiv.org/abs/1801.08284) 16 | 17 | 1. **Improving sequential recommendation with knowledge-enhanced memory networks.** 18 | *Huang Jin, et al.* SIGIR, 2018. [paper](https://dl.acm.org/citation.cfm?doid=3209978.3210017) 19 | 20 | 1. **Learning over Knowledge-Base Embeddings for Recommendation.** 21 | *Zhang Yongfeng, et al.* SIGIR, 2018. [paper](https://arxiv.org/abs/1803.06540) 22 | 23 | 1. **Explainable Reasoning over Knowledge Graphs for Recommendation.** 24 | *Wang Xiang, et al.* AAAI, 2019. [paper](https://arxiv.org/abs/1811.04540) 25 | 26 | 1. **Explainable Recommendation Through Attentive Multi-View Learning.** 27 | *Gao Jingyue, et al.* AAAI, 2019. [paper](https://www.microsoft.com/en-us/research/uploads/prod/2018/10/exrec-aaai-camera-ready.pdf) 28 | 29 | 1. **Taxonomy-aware multi-hop reasoning networks for sequential recommendation.** 30 | *Huang Jin, et al.* WSDM, 2019. [paper](https://dl.acm.org/citation.cfm?id=3290972) 31 | 32 | 1. **Unifying Knowledge Graph Learning and Recommendation: Towards a Better Understanding of User Preferences.** 33 | *Cao Yixin, et al.* WWW, 2019. [paper](https://www.comp.nus.edu.sg/~xiangnan/papers/www19-KGRec.pdf) 34 | 35 | 1. **Multi-Task Feature Learning for Knowledge Graph Enhanced Recommendation.** 36 | *Wang Hongwei, et al.* WWW, 2019 [paper](https://arxiv.org/abs/1901.08907) [code](https://github.com/hwwang55/MKR) 37 | 38 | 1. **Adversarial Distillation for Efficient Recommendation with External Knowledge.** 39 | *Chen Xu, et al.* TOIS, 2018 [paper](https://dl.acm.org/citation.cfm?id=3281659) 40 | 41 | 1. **Knowledge Graph Convolutional Networks for Recommender Systems.** 42 | *Wang Hongwei, et al.* WWWW, 2019 [paper](https://arxiv.org/abs/1904.12575) 43 | 44 | 1. **Dynamic Explainable Recommendation based on Neural Attentive Models.** 45 | *Chen Xu, et al.* AAAI, 2019 [paper](http://yongfeng.me/attach/dynamic-explainable-recommendation.pdf) 46 | 47 | 1. **Knowledge Graph Convolutional Networks for Recommender Systems with Label Smoothness Regularization.** 48 | *Wang Hongwei, et al.* KDD, 2019 [paper](https://arxiv.org/abs/1905.04413) 49 | 50 | 1. **KGAT: Knowledge Graph Attention Network for Recommendation.** 51 | *Wang Xiang, et al.* KDD, 2019 [paper](https://arxiv.org/abs/1905.07854) [code](https://github.com/xiangwang1223/knowledge_graph_attention_network) 52 | 53 | 1. **Reinforcement Knowledge Graph Reasoning for Explainable Recommendation.** 54 | *Xian Yikun and Fu, Zuohui, et al.* SIGIR, 2019 [paper](https://arxiv.org/pdf/1906.05237.pdf) 55 | 56 | 1. **Conceptualize and Infer User Needs in E-commerce.** 57 | *Luo Xusheng, et al.* CIKM, 2019 [paper](https://arxiv.org/abs/1910.03295) 58 | 59 | 1. **Attentive Knowledge Graph Embedding for Personalized Recommendation.** 60 | *Xiao Sha* arXiv, 2019 [paper](https://arxiv.org/abs/1910.08288) 61 | 62 | 1. **Towards Knowledge-Based Recommender Dialog System.** 63 | *Qibin Chen, Jie Tang, et al.* EMNLP, 2019 [paper](https://arxiv.org/pdf/1908.05391.pdf) [code](https://github.com/THUDM/KBRD) 64 | 65 | 1. **KERL: A Knowledge-Guided Reinforcement Learning Model for Sequential Recommendation.** *Pengfei Wang, Yu Fan, Long Xia, Wayne Xin Zhao, et al.* SIGIR, 2020 66 | 67 | 1. **ATBRG: Adaptive Target-Behavior Relational Graph Network for Effective Recommendation** *Yufei Feng, Binbin Hu, Fuyu Lv, et al.* SIGIR, 2020 68 | 69 | ### Tutorials: 70 | 1. **Challenges and Innovations in Building a Product Knowledge Graph.** [slides](http://lunadong.com/talks/PG.pdf) 71 | 72 | 1. **基于知识的推荐与可解释推荐.** [slides](https://www.researchgate.net/profile/Yongfeng_Zhang/publication/310575130_Explainable_Recommendation_-_Theory_and_Applications/links/59dc32fe0f7e9b1460fc37c7/Explainable-Recommendation-Theory-and-Applications.pdf) 73 | 74 | ### Open Sources: 75 | 1. [**KGEebedding**](https://github.com/thunlp/OpenKE) 76 | 77 | ### Datasets: 78 | 1. [**KB4REC**](https://github.com/RUCDM/KB4Rec) 79 | 80 | ### Personal sites: 81 | 1. [Hongwei Wang](https://hwwang55.github.io/) 82 | 83 | 1. [Xing Xie](https://www.microsoft.com/en-us/research/people/xingx/) 84 | 85 | 1. [Yongfeng Zhang](http://yongfeng.me/) 86 | 87 | 1. [Xiangnan He](https://www.comp.nus.edu.sg/~xiangnan/) 88 | 89 | 1. [Unknown](http://shomy.top/2019/03/19/kg-ns-recsys/) 90 | --------------------------------------------------------------------------------