├── Calculando a expectativa de retorno com CAPM.ipynb ├── Calculando o Beta de um Ação .ipynb ├── Calculando o Índice de Sharpe.ipynb ├── Calculo de Covariancias entre ativos.ipynb ├── Calculo de Risco de ativos.ipynb ├── Coletado dados do yahoo finance.ipynb ├── Exportando dados da Bolsa.ipynb ├── Machine learnig - Prevendo o preço das ações com Python.ipynb ├── Monte Carlo Simulação de preços de ações.ipynb ├── Obtendo a Fronteira Eficiente de Markowitz.ipynb ├── Ocr - concluido.ipynb ├── Prevendo_preço_de_ações_o_Facebook_Prophet_em_Python.ipynb ├── README.md ├── Retorno logaritimo de uma ação.ipynb ├── Retorno simples de uma ação.ipynb ├── Taxa de Retorno de uma Carteria de Açoes.ipynb └── detecção de anomalias outliers.ipynb /Calculando a expectativa de retorno com CAPM.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 4, 6 | "metadata": {}, 7 | "outputs": [], 8 | "source": [ 9 | "#vamos caregar o modulo pandas\n", 10 | "import pandas as pd\n", 11 | "#importar biblioteca do pandas datareader\n", 12 | "from pandas_datareader import data as pdr\n", 13 | "#importar a bliblioteca Numpy\n", 14 | "import numpy as np\n", 15 | "import matplotlib.pyplot as plt\n", 16 | "%matplotlib inline" 17 | ] 18 | }, 19 | { 20 | "cell_type": "code", 21 | "execution_count": 5, 22 | "metadata": {}, 23 | "outputs": [ 24 | { 25 | "name": "stdout", 26 | "output_type": "stream", 27 | "text": [ 28 | " VVAR3.SA ^BVSP\n", 29 | "Date \n", 30 | "2015-01-02 NaN NaN\n", 31 | "2015-01-05 0.000000 -0.020724\n", 32 | "2015-01-06 0.000000 0.010134\n", 33 | "2015-01-07 0.079137 0.030003\n", 34 | "2015-01-08 0.000000 0.009657\n" 35 | ] 36 | }, 37 | { 38 | "data": { 39 | "text/plain": [ 40 | "0.07148356738680711" 41 | ] 42 | }, 43 | "execution_count": 5, 44 | "metadata": {}, 45 | "output_type": "execute_result" 46 | } 47 | ], 48 | "source": [ 49 | "# tempo ideal para calc um beta é de 5 anos por isso eu coloquei (data atual - 1) - menos 5 anos\n", 50 | "carteira = ['VVAR3.SA','^BVSP']\n", 51 | "mdata = pd.DataFrame()\n", 52 | "for t in carteira:\n", 53 | " mdata[t] = pdr.DataReader(t,data_source='yahoo',start='2015-1-1', end = '2020-03-19')['Adj Close']\n", 54 | "\n", 55 | "#vamos criar um data frame novo com os dados de retorno em log... sabemos que em log é o melhor jeito se for ativos individuais\n", 56 | "df_log= np.log(mdata / mdata.shift(1))\n", 57 | "print(df_log.head())\n", 58 | " \n", 59 | "#vamos cria uma matriz de covariancai com o metodo (.cov)\n", 60 | "cov = df_log.cov()*250\n", 61 | "cov\n", 62 | "\n", 63 | "#vamos obter a covariancia com o mercador, dando o numero floot\n", 64 | "cov_com_mercado = cov.iloc[0,1]\n", 65 | "cov_com_mercado\n", 66 | "\n", 67 | "# vamos obter a variancia anualizado o nosso indice Ibov( Nossa carteria de Mercado)\n", 68 | "var_mercado = df_log['^BVSP'].var() * 250\n", 69 | "var_mercado" 70 | ] 71 | }, 72 | { 73 | "cell_type": "markdown", 74 | "metadata": {}, 75 | "source": [ 76 | "# Formula:\n", 77 | "** Beta: **\n", 78 | "### $$ \n", 79 | "\\beta_{Ação} = \\frac{\\sigma_{Ação,m}}{\\sigma_{m}^2}\n", 80 | "$$" 81 | ] 82 | }, 83 | { 84 | "cell_type": "code", 85 | "execution_count": 7, 86 | "metadata": {}, 87 | "outputs": [ 88 | { 89 | "data": { 90 | "text/plain": [ 91 | "1.107204057750166" 92 | ] 93 | }, 94 | "execution_count": 7, 95 | "metadata": {}, 96 | "output_type": "execute_result" 97 | } 98 | ], 99 | "source": [ 100 | "beta_acao = cov_com_mercado / var_mercado\n", 101 | "beta_acao" 102 | ] 103 | }, 104 | { 105 | "cell_type": "markdown", 106 | "metadata": {}, 107 | "source": [ 108 | "**Calculando a expectativa de retorno de uma Ação (CAPM):**\n", 109 | "\n", 110 | "**No Brasil eu considero como taxa livre a Selic**\n", 111 | "\n", 112 | "**Premio de risco 2(Valor da Inflação)**\n", 113 | "\n", 114 | "### $$\n", 115 | "\\overline{r_{ação}} = r_f + \\beta_{ação}(\\overline{r_{m}} - r_f) \n", 116 | "$$" 117 | ] 118 | }, 119 | { 120 | "cell_type": "code", 121 | "execution_count": 8, 122 | "metadata": {}, 123 | "outputs": [ 124 | { 125 | "name": "stdout", 126 | "output_type": "stream", 127 | "text": [ 128 | "12.608%\n" 129 | ] 130 | } 131 | ], 132 | "source": [ 133 | "retorno_esp_min = 0.0375 + beta_acao * 0.08\n", 134 | "#agora vou tranformar em porcetagem\n", 135 | "print (str(round(retorno_esp_min ,5)*100) + '%')" 136 | ] 137 | }, 138 | { 139 | "cell_type": "code", 140 | "execution_count": null, 141 | "metadata": {}, 142 | "outputs": [], 143 | "source": [] 144 | }, 145 | { 146 | "cell_type": "code", 147 | "execution_count": null, 148 | "metadata": {}, 149 | "outputs": [], 150 | "source": [] 151 | }, 152 | { 153 | "cell_type": "code", 154 | "execution_count": null, 155 | "metadata": {}, 156 | "outputs": [], 157 | "source": [] 158 | }, 159 | { 160 | "cell_type": "code", 161 | "execution_count": null, 162 | "metadata": {}, 163 | "outputs": [], 164 | "source": [] 165 | }, 166 | { 167 | "cell_type": "code", 168 | "execution_count": null, 169 | "metadata": {}, 170 | "outputs": [], 171 | "source": [] 172 | } 173 | ], 174 | "metadata": { 175 | "kernelspec": { 176 | "display_name": "Python 3", 177 | "language": "python", 178 | "name": "python3" 179 | }, 180 | "language_info": { 181 | "codemirror_mode": { 182 | "name": "ipython", 183 | "version": 3 184 | }, 185 | "file_extension": ".py", 186 | "mimetype": "text/x-python", 187 | "name": "python", 188 | "nbconvert_exporter": "python", 189 | "pygments_lexer": "ipython3", 190 | "version": "3.6.5" 191 | } 192 | }, 193 | "nbformat": 4, 194 | "nbformat_minor": 2 195 | } 196 | -------------------------------------------------------------------------------- /Calculando o Beta de um Ação .ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 1, 6 | "metadata": {}, 7 | "outputs": [], 8 | "source": [ 9 | "#vamos caregar o modulo pandas\n", 10 | "import pandas as pd\n", 11 | "#importar biblioteca do pandas datareader\n", 12 | "from pandas_datareader import data as pdr\n", 13 | "#importar a bliblioteca Numpy\n", 14 | "import numpy as np\n", 15 | "import matplotlib.pyplot as plt\n", 16 | "%matplotlib inline" 17 | ] 18 | }, 19 | { 20 | "cell_type": "code", 21 | "execution_count": 10, 22 | "metadata": {}, 23 | "outputs": [], 24 | "source": [ 25 | "# tempo ideal para calc um beta é de 5 anos por isso eu coloquei (data atual - 1) - menos 5 anos\n", 26 | "carteira = ['VVAR3.SA','^BVSP']\n", 27 | "mdata = pd.DataFrame()\n", 28 | "for t in carteira:\n", 29 | " mdata[t] = pdr.DataReader(t,data_source='yahoo',start='2015-1-1', end = '2020-03-19')['Adj Close']" 30 | ] 31 | }, 32 | { 33 | "cell_type": "code", 34 | "execution_count": 11, 35 | "metadata": {}, 36 | "outputs": [ 37 | { 38 | "name": "stdout", 39 | "output_type": "stream", 40 | "text": [ 41 | " VVAR3.SA ^BVSP\n", 42 | "Date \n", 43 | "2015-01-02 NaN NaN\n", 44 | "2015-01-05 0.000000 -0.020724\n", 45 | "2015-01-06 0.000000 0.010134\n", 46 | "2015-01-07 0.079137 0.030003\n", 47 | "2015-01-08 0.000000 0.009657\n" 48 | ] 49 | } 50 | ], 51 | "source": [ 52 | "#vamos criar um data frame novo com os dados de retorno em log... sabemos que em log é o melhor jeito se for ativos individuais\n", 53 | "df_log= np.log(mdata / mdata.shift(1))\n", 54 | "print(df_log.head())" 55 | ] 56 | }, 57 | { 58 | "cell_type": "code", 59 | "execution_count": 12, 60 | "metadata": {}, 61 | "outputs": [ 62 | { 63 | "data": { 64 | "text/html": [ 65 | "
\n", 66 | "\n", 79 | "\n", 80 | " \n", 81 | " \n", 82 | " \n", 83 | " \n", 84 | " \n", 85 | " \n", 86 | " \n", 87 | " \n", 88 | " \n", 89 | " \n", 90 | " \n", 91 | " \n", 92 | " \n", 93 | " \n", 94 | " \n", 95 | " \n", 96 | " \n", 97 | " \n", 98 | " \n", 99 | "
VVAR3.SA^BVSP
VVAR3.SA0.5889190.079147
^BVSP0.0791470.071484
\n", 100 | "
" 101 | ], 102 | "text/plain": [ 103 | " VVAR3.SA ^BVSP\n", 104 | "VVAR3.SA 0.588919 0.079147\n", 105 | "^BVSP 0.079147 0.071484" 106 | ] 107 | }, 108 | "execution_count": 12, 109 | "metadata": {}, 110 | "output_type": "execute_result" 111 | } 112 | ], 113 | "source": [ 114 | "#vamos cria uma matriz de covariancai com o metodo (.cov)\n", 115 | "cov = df_log.cov()*250\n", 116 | "cov" 117 | ] 118 | }, 119 | { 120 | "cell_type": "code", 121 | "execution_count": 13, 122 | "metadata": {}, 123 | "outputs": [ 124 | { 125 | "data": { 126 | "text/plain": [ 127 | "0.07914689587313027" 128 | ] 129 | }, 130 | "execution_count": 13, 131 | "metadata": {}, 132 | "output_type": "execute_result" 133 | } 134 | ], 135 | "source": [ 136 | "#vamos obter a covariancia com o mercador, dando o numero floot\n", 137 | "cov_com_mercado = cov.iloc[0,1]\n", 138 | "cov_com_mercado" 139 | ] 140 | }, 141 | { 142 | "cell_type": "code", 143 | "execution_count": 14, 144 | "metadata": {}, 145 | "outputs": [ 146 | { 147 | "data": { 148 | "text/plain": [ 149 | "0.07148356738680711" 150 | ] 151 | }, 152 | "execution_count": 14, 153 | "metadata": {}, 154 | "output_type": "execute_result" 155 | } 156 | ], 157 | "source": [ 158 | "# vamos obter a variancia anualizado o nosso indice Ibov( Nossa carteria de Mercado)\n", 159 | "var_mercado = df_log['^BVSP'].var() * 250\n", 160 | "var_mercado" 161 | ] 162 | }, 163 | { 164 | "cell_type": "markdown", 165 | "metadata": {}, 166 | "source": [ 167 | "# Vamos fazer o Beta\n", 168 | "** Beta: **\n", 169 | "### $$ \n", 170 | "\\beta_{Acão} = \\frac{\\sigma_{Ação,m}}{\\sigma_{m}^2}\n", 171 | "$$" 172 | ] 173 | }, 174 | { 175 | "cell_type": "code", 176 | "execution_count": 15, 177 | "metadata": {}, 178 | "outputs": [ 179 | { 180 | "data": { 181 | "text/plain": [ 182 | "1.107204057750166" 183 | ] 184 | }, 185 | "execution_count": 15, 186 | "metadata": {}, 187 | "output_type": "execute_result" 188 | } 189 | ], 190 | "source": [ 191 | "beta_acao = cov_com_mercado / var_mercado\n", 192 | "beta_acao" 193 | ] 194 | }, 195 | { 196 | "cell_type": "code", 197 | "execution_count": null, 198 | "metadata": {}, 199 | "outputs": [], 200 | "source": [] 201 | } 202 | ], 203 | "metadata": { 204 | "kernelspec": { 205 | "display_name": "Python 3", 206 | "language": "python", 207 | "name": "python3" 208 | }, 209 | "language_info": { 210 | "codemirror_mode": { 211 | "name": "ipython", 212 | "version": 3 213 | }, 214 | "file_extension": ".py", 215 | "mimetype": "text/x-python", 216 | "name": "python", 217 | "nbconvert_exporter": "python", 218 | "pygments_lexer": "ipython3", 219 | "version": "3.6.5" 220 | } 221 | }, 222 | "nbformat": 4, 223 | "nbformat_minor": 2 224 | } 225 | -------------------------------------------------------------------------------- /Calculando o Índice de Sharpe.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "# Calculando o Índice de Sharpe" 8 | ] 9 | }, 10 | { 11 | "cell_type": "code", 12 | "execution_count": 22, 13 | "metadata": {}, 14 | "outputs": [], 15 | "source": [ 16 | "#vamos caregar o modulo pandas\n", 17 | "import pandas as pd\n", 18 | "#importar biblioteca do pandas datareader\n", 19 | "from pandas_datareader import data as pdr\n", 20 | "#importar a bliblioteca Numpy\n", 21 | "import numpy as np\n", 22 | "import matplotlib.pyplot as plt\n", 23 | "%matplotlib inline\n", 24 | "\n", 25 | "# tempo ideal para calc um beta é de 5 anos por isso eu coloquei (data atual - 1) - menos 5 anos\n", 26 | "carteira = ['VVAR3.SA','^BVSP']\n", 27 | "mdata = pd.DataFrame()\n", 28 | "for t in carteira:\n", 29 | " mdata[t] = pdr.DataReader(t,data_source='yahoo',start='2015-1-1', end = '2020-03-19')['Adj Close']\n", 30 | "\n", 31 | "#vamos criar um data frame novo com os dados de retorno em log... sabemos que em log é o melhor jeito se for ativos individuais\n", 32 | "df_log= np.log(mdata / mdata.shift(1))\n", 33 | " \n", 34 | "#vamos cria uma matriz de covariancai com o metodo (.cov)\n", 35 | "cov = df_log.cov()*250\n", 36 | "\n", 37 | "#vamos obter a covariancia com o mercador, dando o numero floot\n", 38 | "cov_com_mercado = cov.iloc[0,1]\n", 39 | "\n", 40 | "# vamos obter a variancia anualizado o nosso indice Ibov( Nossa carteria de Mercado)\n", 41 | "var_mercado = df_log['^BVSP'].var() * 250\n" 42 | ] 43 | }, 44 | { 45 | "cell_type": "markdown", 46 | "metadata": {}, 47 | "source": [ 48 | "# Formula:\n", 49 | "** Beta: **\n", 50 | "### $$ \n", 51 | "\\beta_{Ação} = \\frac{\\sigma_{Ação,m}}{\\sigma_{m}^2}\n", 52 | "$$" 53 | ] 54 | }, 55 | { 56 | "cell_type": "code", 57 | "execution_count": 23, 58 | "metadata": {}, 59 | "outputs": [ 60 | { 61 | "data": { 62 | "text/plain": [ 63 | "1.107204057750166" 64 | ] 65 | }, 66 | "execution_count": 23, 67 | "metadata": {}, 68 | "output_type": "execute_result" 69 | } 70 | ], 71 | "source": [ 72 | "beta_acao = cov_com_mercado / var_mercado\n", 73 | "beta_acao" 74 | ] 75 | }, 76 | { 77 | "cell_type": "markdown", 78 | "metadata": {}, 79 | "source": [ 80 | "**Calculando a expectativa de retorno de uma Ação (CAPM):**\n", 81 | "\n", 82 | "**No Brasil eu considero como taxa livre a Selic**\n", 83 | "\n", 84 | "**Premio de risco 2(Valor da Inflação) inflação considerei como 4% **\n", 85 | "\n", 86 | "### $$\n", 87 | "\\overline{r_{ação}} = r_f + \\beta_{ação}(\\overline{r_{m}} - r_f) \n", 88 | "$$" 89 | ] 90 | }, 91 | { 92 | "cell_type": "code", 93 | "execution_count": 24, 94 | "metadata": {}, 95 | "outputs": [ 96 | { 97 | "name": "stdout", 98 | "output_type": "stream", 99 | "text": [ 100 | "12.6076%\n" 101 | ] 102 | } 103 | ], 104 | "source": [ 105 | "retorno_esp_min = 0.0375 + beta_acao * 0.08\n", 106 | "#agora vou tranformar em porcetagem\n", 107 | "print (str(round(retorno_esp_min ,6)*100) + '%')" 108 | ] 109 | }, 110 | { 111 | "cell_type": "markdown", 112 | "metadata": {}, 113 | "source": [ 114 | "**Indice Sharpe :**\n", 115 | "### $$\n", 116 | "Sharpe = \\frac{\\overline{r_{ação}} - r_f}{\\sigma_{ação}}\n", 117 | "$$" 118 | ] 119 | }, 120 | { 121 | "cell_type": "code", 122 | "execution_count": 25, 123 | "metadata": {}, 124 | "outputs": [ 125 | { 126 | "data": { 127 | "text/plain": [ 128 | "0.11542238295617592" 129 | ] 130 | }, 131 | "execution_count": 25, 132 | "metadata": {}, 133 | "output_type": "execute_result" 134 | } 135 | ], 136 | "source": [ 137 | "sharpe = (retorno_esp_min - 0.0375)/(df_log['VVAR3.SA'].std() * 250 ** 0.5)\n", 138 | "sharpe" 139 | ] 140 | }, 141 | { 142 | "cell_type": "code", 143 | "execution_count": null, 144 | "metadata": {}, 145 | "outputs": [], 146 | "source": [] 147 | } 148 | ], 149 | "metadata": { 150 | "kernelspec": { 151 | "display_name": "Python 3", 152 | "language": "python", 153 | "name": "python3" 154 | }, 155 | "language_info": { 156 | "codemirror_mode": { 157 | "name": "ipython", 158 | "version": 3 159 | }, 160 | "file_extension": ".py", 161 | "mimetype": "text/x-python", 162 | "name": "python", 163 | "nbconvert_exporter": "python", 164 | "pygments_lexer": "ipython3", 165 | "version": "3.6.5" 166 | } 167 | }, 168 | "nbformat": 4, 169 | "nbformat_minor": 2 170 | } 171 | -------------------------------------------------------------------------------- /Calculo de Risco de ativos.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "# Calculo de Risco de ativos" 8 | ] 9 | }, 10 | { 11 | "cell_type": "code", 12 | "execution_count": 1, 13 | "metadata": {}, 14 | "outputs": [], 15 | "source": [ 16 | "#vamos caregar o modulo pandas\n", 17 | "import pandas as pd\n", 18 | "#importar biblioteca do pandas datareader\n", 19 | "from pandas_datareader import data as pdr\n", 20 | "#importar a bliblioteca Numpy\n", 21 | "import numpy as np\n", 22 | "import matplotlib.pyplot as plt" 23 | ] 24 | }, 25 | { 26 | "cell_type": "code", 27 | "execution_count": 4, 28 | "metadata": {}, 29 | "outputs": [], 30 | "source": [ 31 | "carteira = ['FB','MSFT']\n", 32 | "mdata = pd.DataFrame()\n", 33 | "for t in carteira:\n", 34 | " mdata[t] = pdr.DataReader(t,data_source='yahoo',start='2013-1-1')['Adj Close']" 35 | ] 36 | }, 37 | { 38 | "cell_type": "code", 39 | "execution_count": 6, 40 | "metadata": {}, 41 | "outputs": [ 42 | { 43 | "data": { 44 | "text/html": [ 45 | "
\n", 46 | "\n", 59 | "\n", 60 | " \n", 61 | " \n", 62 | " \n", 63 | " \n", 64 | " \n", 65 | " \n", 66 | " \n", 67 | " \n", 68 | " \n", 69 | " \n", 70 | " \n", 71 | " \n", 72 | " \n", 73 | " \n", 74 | " \n", 75 | " \n", 76 | " \n", 77 | " \n", 78 | " \n", 79 | " \n", 80 | " \n", 81 | " \n", 82 | " \n", 83 | " \n", 84 | " \n", 85 | " \n", 86 | " \n", 87 | " \n", 88 | " \n", 89 | " \n", 90 | " \n", 91 | " \n", 92 | " \n", 93 | " \n", 94 | " \n", 95 | " \n", 96 | " \n", 97 | " \n", 98 | " \n", 99 | "
FBMSFT
Date
2013-01-0228.00000023.362539
2013-01-0327.77000023.049566
2013-01-0428.76000022.618179
2013-01-0729.42000022.575893
2013-01-0829.05999922.457466
\n", 100 | "
" 101 | ], 102 | "text/plain": [ 103 | " FB MSFT\n", 104 | "Date \n", 105 | "2013-01-02 28.000000 23.362539\n", 106 | "2013-01-03 27.770000 23.049566\n", 107 | "2013-01-04 28.760000 22.618179\n", 108 | "2013-01-07 29.420000 22.575893\n", 109 | "2013-01-08 29.059999 22.457466" 110 | ] 111 | }, 112 | "execution_count": 6, 113 | "metadata": {}, 114 | "output_type": "execute_result" 115 | } 116 | ], 117 | "source": [ 118 | "mdata.head()" 119 | ] 120 | }, 121 | { 122 | "cell_type": "markdown", 123 | "metadata": {}, 124 | "source": [ 125 | "# vamos normalizar os dados para que quando plotados em um grafico todos saiam do msm ponto (Pt/p0)*100" 126 | ] 127 | }, 128 | { 129 | "cell_type": "code", 130 | "execution_count": 27, 131 | "metadata": {}, 132 | "outputs": [ 133 | { 134 | "data": { 135 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6gAAAHDCAYAAAAp7TeYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3XecXHW9//HXmb59N5tN25RNTyghIYmh94AgP8QrCnhVVFAvcvVivfZyryhW1GtBgauIiHppIr1K6JAQ0gikbpJN3WzfnZ1+fn+cM21nNjtbZ3bzfj4eecxpc+a72Uke85nP5/v5GqZpIiIiIiIiIpJvjnwPQERERERERAQUoIqIiIiIiEiBUIAqIiIiIiIiBUEBqoiIiIiIiBQEBagiIiIiIiJSEBSgioiIiIiISEFQgCoiIiIiIiIFQQGqiIiIiIiIFAQFqCIiIiIiIlIQXPkeAMD48ePNurq6fA9DREREREREhsGaNWsOm6ZZ09d1BRGg1tXVsXr16nwPQ0RERERERIaBYRi7crlOJb4iIiIiIiJSEBSgioiIiIiISEFQgCoiIiIiIiIFoSDmoGYTDodpaGggEAjkeygjyufzMXXqVNxud76HIiIiIiIiMqIKNkBtaGigrKyMuro6DMPI93BGhGmaNDU10dDQwMyZM/M9HBERERERkRFVsCW+gUCA6urqoyY4BTAMg+rq6qMuaywiIiIiIgIFHKACR1VwGnc0/swiIiIiIiJQ4AGqiIiIiIiIHD0Kdg5qIXA6nRx//PGJ/fvvv5/6+nre/e53M3PmTGKxGBMmTODPf/4zEyZMyONIRURERERERj9lUI+gqKiIN954I/Gnrq4OgNNPP5033niD9evXs3z5cn71q1/ld6AiIiIiIiJjwKjIoH7nH5t4c1/7kN7zmCnlfOv/HTuoe5imSUdHB3PmzBmiUYmIiIiIiBy9RkWAmi/d3d0sXrwYgJkzZ3LfffcB8Nxzz7F48WKampooKSnhe9/7Xj6HKSIiIiIiMiaMigB1sJnOgYqX+PZ0+umn8+CDDwLwgx/8gC996UvcfPPNIz08ERERERGRMUVzUAfpkksuYdWqVfkehoiIiIiIyKinAHWQnn/+eWbPnp3vYYiIiIiIyFgR6oJIKN+jyIucSnwNw/gscA1gAhuAjwKTgb8A44DXgQ+ZphkyDMML/BFYCjQBl5umWT/0Q8+f+BxU0zSpqKjg1ltvzfeQRERERERkrPjeFJi2Aq5+PN8jGXF9BqiGYdQCnwGOMU2z2zCMvwFXABcBN5mm+RfDMG4GrgZ+Yz+2mKY5xzCMK4AfAJcP208wjDo7OzOOnXXWWbS1teVhNCIiIiIiMuaZpvW45xXrsXkHVEwDpzt/YxpBuZb4uoAiwzBcQDGwHzgHuNs+fztwqb39bnsf+/y5hmEYQzNcERERERGRMSyUkiRrqYdfLoeN9+ZtOCOtzwDVNM29wI+B3ViBaRuwBmg1TTNiX9YA1NrbtcAe+7kR+/rqnvc1DOMThmGsNgxjdWNj42B/DhERERERkVHJNE2iMTtz2nkoeeLtRyAWgY79+RlYHvQZoBqGUYWVFZ0JTAFKgAuzXGrGn3KEc8kDpvk70zSXmaa5rKamJvcRi4iIiIiIjCGfvmsts7/6sLXTlZK8e/sR6zGUOfVwrMqlxPc8YKdpmo2maYaBe4FTgEq75BdgKrDP3m4ApgHY5yuA5iEdtYiIiIiIyCjW1BlMbD+4PiVD2nkwub3rBesxqAA11W7gJMMwiu25pOcCbwLPAJfZ11wF/N3efsDexz7/tGmaGRlUERERERGRo82rO5tZ8b0nWfrdJ/new5vJCJVSS3xj9ozKUMfIDTDP+uzia5rmK4Zh3I21lEwEWAv8DngI+IthGN+1j91mP+U24A7DMLZhZU6vGI6Bi4iIiIiIjDbv/+1Lie3frdqBz9UjZ5gaoPoqoWT8UZVBzWkdVNM0vwV8q8fhHcA7slwbAN43+KHln2EYfPCDH+SOO+4AIBKJMHnyZFasWMGDDz7IwYMHufrqq9mzZw/hcJi6ujoefvhh6uvrWbhwIfPnz0/c69prr+U3v/kNAG+++Sbz58/H6XTyzne+kxtvvDEvP5+IiIiIiOTHWfNrCEdjPLrpQPqJrpQA1Vtu/TmK5qDmFKAerUpKSti4cSPd3d0UFRXxxBNPUFtbmzj/zW9+k5UrV/If//EfAKxfvz5xbvbs2bzxxhtp9/vkJz8JQF1dHc888wzjx48fgZ9CREREREQKTbHHSU1pMRsa2tJPpGZQ23ZDRS1EQyM7uDwaHQHqI1+GAxuG9p6TjocL+85cXnjhhTz00ENcdtll3HXXXVx55ZU899xzAOzfv5/zzz8/ce2iRYuGdowiIiIiIjJmRKKxxLbb6WBCuY/2QCRxLBaN4Wh8GyYtggN28svpgUiw563GrFyaJB3VrrjiCv7yl78QCARYv349K1asSJy77rrruPrqqzn77LO54YYb2LdvX+Lc9u3bWbx4MYsXL+a6667Lx9BFRERERKSA7GsNJLaLPU4mlfvSzkfb90Lzdlj0fljxb/Cvd1sBqjKoBSaHTOdwWbRoEfX19dx1111cdNFFaecuuOACduzYwaOPPsojjzzCkiVL2LhxI5C9xFdERERERI5ej9nzTedOKOUL589n8/707ryxYJe1UTYZTvm0tb3mD0dVgKoMag4uueQSvvCFL3DllVdmnBs3bhwf+MAHuOOOO1i+fDmrVq3KwwhFRERERKTQ3fDwZgDuuHoF1aVeJlV4087Hgn5rw10EwKH2ADuaQ5gKUCXVxz72Mb75zW9y/PHHpx1/+umn8futN1FHRwfbt29n+vTp+RiiiIiIiPTQ0hWi7ssPcc+ahnwPRQSAyRVWSe8k+3FqVTGGkTwfC6cHqL/+53bW7vfj93eP6DjzSQFqDqZOnZro1JtqzZo1LFu2jEWLFnHyySdzzTXXsHz58jyMUERERER62nLQKp+869XdeR6JiMXlNLh08ZTEvs/tpK66JLGfzKAWA7C9sZOw6cKMHj1NkkbHHNQ86ezMXG/orLPO4qyzzgLgi1/8Il/84hczrqmrq0vMRc2mvr5+qIYoIiIiIr3wh6IAlHj1kVcKQ2cgQqkv/f04a3wJOw9bc0/NHhnUnYe7COHGEQ2P6DjzSRlUERERERmTOoPW8h0lXmeeRyICpmnSEYhQ5nOnHZ9cmdLJt9teE9VdTJs/TENLN2FcOGKagyoiIiIiMqr5Q3aA6lEGVfIvEI4RiZmU9sjoT64oSmyXP/YZa8NdzKb9VrAaxoXDVAa1IJimme8hjLij8WcWERERGQ6dQZX4SuFo8VtZ0HElnrTj5x8zMbFtOuzsaukENu1tB8Dj9eEyw3CUxAkFG6D6fD6ampqOqoDNNE2amprw+Xx9XywiIiIiR9SlEl8pIM1d2QPUuRPL+Mn7TgAgOHExzDoLnG7e3N/OpHIfxUVFODAhFhnhEedHwX6dNHXqVBoaGmhsbMz3UEaUz+dj6tSp+R6GiIiIyKjXFS/xVQZVCkA8QK3uEaACOB32WjPREDirONQRYO3uFuZPKiPabnf5DXVBUeVIDTdvCvZfq9vtZubMmfkehoiIiIiMUn67xNfrUgZV8i/eqXdCWWa1ZDxANSJBumMu3nHDUwCcvWACkW47QA22HxUBasGW+IqIiIiIDEY8g3o0TRmTwvXc1sPMHF/CtHFFGecSGdRYmI0HuxPHK4s8RN1l1k6wYySGmXcKUEVERERkTIrPQRUpBLubu5g7oRTDMDLOOexjRjREoz/5hUqZz4XpLbd2FKCKiIiIiIxe/pBV4qsEquSbaZrsbvYzfVxx1vOulDmo7eFkAFvmc4FXGVQRERERkVHNH4rw+q4WAEwUoUp+NXYGCYRjTK/OHqDGS3zNcJCgmWwTVOZzg7fU2gm0Dfs4C4ECVBEREREZUx7deIBjvvkYXcqgSoH422t7AJjWSwbVYQeosUiIcEof23KfC4evAoBId/swj7IwKEAVERERkTHl2jvXpO0rPpV8+/HjWwD6LPF1xkKUFCevKfO5cRVbAWqoSxlUEREREZFRZ2pVepdUZVAln2Kx5Buw53szzgpQTTxGBI83uQxNmc+Fr7iMmGkQ7j46AtSCXQdVRERERGQgKos87CG5VIfmoEq+vLyjifbucGK/tzV53S4HXqzrTKcncbzM56LU56aTIqJ+BagiIiIiIqOKPxShxR8C4LPnzeOmJ7cogyp5EYxEueJ3Lyf2b7r8hF6v9TgdjMcKQP3u6sTxMp+bEq+LdorxBTQHVURERERk1DBNk/fd/BINLd28Z0kt/3bWrHwPSY5ie5r9aftVxZ5ergS308FEw+o63eWtSXT19bgclPpcdJpFmIF2aN4B/7geomN3jV9lUEVERERkTDjQHmDTvnYWTi7nU2fNxmHYS3cohSojbN2eVh7ddCDt2LiS3gNUb6SdOzzfB6DbN4HHrj+Dtw5YGdNSr4t2iqgOtsPdH4N9a+HED0Ht0uH7AfJIAaqIiIiIjAldQWtZmWvPms3ciWVEojEAYopPZQTtb+vmsptfJBxNf+MdKYNatf5WSowgAAHfJOZMKGXOBGv901Kvi31mEY5QJxj2PZ2932u0U4mviIiIiIwJ3fa6p0VuqxGNkcig5m1IchTa1eTPCE7hyBlUpyMZlsW8FWnnSrwuOijCGe6EqDW/God7aAZbgBSgioiIiMioZ5omP3vSWmsyEaDGz6mL76jx2KYDfOrONUTttPfq+ma2N3bmeVT94w9lnx9a7MnewRfA4UwWtnp7XFfqddFhFuGKpASoZmzwAy1QClBFREREZNRb19DGU28dAqDIY33EtROoyqCOIr98ehsPbzjA31bvAeCym1/i3J88m+dR9Y/fzuQ/8O+nsv7b5yeOxzP62ThcyYxoz6VonA6DgKOE0tBhCHZYB//3giEccWHRHFQRERERGfUeeGNfYrvIbX3ETZT45mVEMhBzJpSyYW8b37h/I2fOq8n3cAbEb8+FHlfiodzn5u/XnUqJ98hhl9OZDErHl3ozzodcJRADuputA8Gxu+SMAlQRERERGfUe3bg/sV3Us5RSKdRRoytolcdGYiZbD42u0t64LrvEt8RjhVonTKvs8znOqNUg6Z7oaSydUZVxPuYqgdAQDrKAKUAVERERkVHNNE0OtAcS+y5HspTSMJRBHS32NPt5/M2Dif01u1ryOJr+a+sOE47GEiW+xd7e55z25Ij4iZgOvhD+N7bb3XtTeV0oQBURERERKUTfe3gzncEIN1x6HIZhEI6axEz4lyW1FHudTKksSlxroATqaLGtRzOk21+sz89AcvS5v77BGfNquHRJLQArvvckgXCM686ejdNh4HH2o91PyE8nRZg4cDgy56oWOY+eN7ECVBEREREZVX63agcA7z1xKktnVBGIWBmrY6aUc83ps9KuNQxDXXxHidSAzuN00NYdBmBKhS9fQ+pVIBzl3rV7uXftXpbPHMf+1m4CYauzblcwSrHHecSmSBnC3eAu4Rf/siTraZd77C4r05O6+IqIiIjIqLS/rRuAgF1S6XNnllQqgzp6dNrzTxdMKmN2Splrl/37LSQdgeRSMne+vIvLbn4pse8PRRLzT3MW7qKyooJLTpiS9fRr498zoHGORgpQRURERGTUMFOizUPtVmOZeOYqW4DqMAzlT0eJeIOkmz+4lBnjihPH2wNhugssSO0IhBPbd7y0K+2cPxTt1/xTAEJ+8BT3etpTVEYDE/t3z1FKAaqIiIiIjBrBSCyxfajDDlDtEt+iLAEqBsSUQh0V4gFqiddFsd2J+ZjJ5ZgmbDnYkc+hJZimSSxm8uPH3wasUuQOe9zvWVJLicdpBag9O0n31LYX/vReOLDR2g/7wd17gFrqdRE2e5QMRyPZLx7lFKCKiIiIyKgRCCczabc+t4ND7YFEds3nzvxoa4Da+I4Snfb6oaVeVyLoO2fBBAB2Hu7K27hS/eqZbcz66sM8vOEAACtmjUucm1ThIxiJ0RWMUNxXie/OVbDtSbj5VPh2BXQ19hmgRs0e7+9I94B/jkKmAFVERERERo3Dncm1NiIxk4//cXUiaM06B1XLzIwaXcEIDsP6oiFeQrt4WiWGAfVNhRGg3vLczrT9eFOuBZPKKHI7icRMOgIRSvrKoB7eAo6UIPbw1iOW+JZ4XUR7hm7hQPaLRzl18RURERGRUeOa219L29/bGsBvB6hFWYICAyNt3qoUrs5ghBKvC8MwuGzpNF7e0cwJ0yqZXO5jd5M/38MDIHUFmPob3wXA7R97B7WVPp7afAiArYc6OL624sg36mqEkhro2G/tm1Fwl/R6eanXRcZs6qM1g2oYxnzDMN5I+dNuGMb1hmGMMwzjCcMwttqPVfb1hmEYvzAMY5thGOsNwzhx+H8MERERETka1PcIVKKxGF+/z5rHV1GUuRSHYaiLb6ELR2O8uO0wXcEIpV4rf3bZ0qns/P5F1JR5mV5dzM4CyaDG30rL66oSx86cV8OcCWWJDH44anLGvJoj3yjUCZ5SOPdbyWPuol4vL/W58NBjzmn4KA1QTdN82zTNxaZpLgaWAn7gPuDLwFOmac4FnrL3AS4E5tp/PgH8ZjgGLiIiIiJHl3+s25fYPq62HIAWf5i9rdYH9TJfZnGggUp8C929rzfwgVtf4f/WNFDiTf4O4+uITq0qZu3uVn76xJZ8DRGwGiS57BTqbz+0LOO815UMrWbV9J4NBSDUBZ4SOPHDyWOe3p/jMMBjhNMPHq0Bag/nAttN09wFvBu43T5+O3Cpvf1u4I+m5WWg0jCMyUMyWhERERE5an36rrUA/PyKxcwcX5pxvtyXLYNqKINa4FLXFHU7M8MTpx2o/uaf20ZsTNk0tHRzuDPEf196HONKPBnnU0vMp4/rfT4pAMFO8JZBcTX4Kq1jR2iSdOKMqkQG9anoEutgZGzOQe1vgHoFcJe9PdE0zf0A9uME+3gtsCflOQ32sTSGYXzCMIzVhmGsbmxs7OcwRERERORotWhqJf/97mMzjmdtkgSYyqEOizf2tBKNDf7vtr07mRnc05w513Th5DIAJpT5Bv1ag7F6VzMAy2ZUZT1fnlJinpoJzirUYZX4GgZUTreOHaFJ0oQyHz7DClDrzUnWwXBhzMsdajkHqIZheIBLgP/r69IsxzLeuaZp/s40zWWmaS6rqemjRltEREREjnrVdtZq5vgSKos9fPqcOX0/SXNQh8W2Q51c+qsX+Pr9Gwd9r8NdIapLPNz4L8dz0+WLM85/+OQ6gL4bDw2zNbtaKPO6mDexLOv5bHOgs6p/AQ5sSJb0VkyzHo+QQQVwYwXyzab9+mO0i29/MqgXAq+bpnnQ3j8YL921Hw/ZxxuAaSnPmwrsQ0RERERkEHxuJ5ctnZrYP3vBhCNcbcmWOZHB+dtrezjvp88CcNeruwd9v+bOEONKPFzxjumsPGZixnmHw2B5XRXtgXCWZw+fQx0BVnzvSR5av5+Ne9v408u7mTuxFKcj+7sqHqC6ejmf8IeLejzRfk/3MafUaweordjl7Ud7BhW4kmR5L8ADwFX29lXA31OOf9ju5nsS0BYvBRYRERERydVfX9vNH15IrjvZHY5SlFLGO6Wi966ncQ6HlpkZane+sitt/2D74DJ5zV0hqksz53Smqihy0+of2QD1tud2crA9yM+e3MLF//M8ADVl3l6vj8+BXji5vPebdh1Objvs93KlndvrOJDTuFpMO0A9muegGoZRDKwE7k05fCOw0jCMrfa5G+3jDwM7gG3ALcCnhmy0IiIiIjIsQpEYoUgs38NI85/3bODb/3iTV3dac/+6Q1GKUxrRTKrw8fo3Vh7xHgYwBNMkxdbQ4mddQ1vasQ099vvrcFeQ6pLeAz+AieU+DgwyEO6PaMzkzles7HDqe87jypznHFdT5uUH7z2e2z6S2eE34Uezk9vH2D1ml3wI5l8EJ1+X09haiJf4HsVdfE3T9JumWW2aZlvKsSbTNM81TXOu/dhsHzdN07zONM3Zpmkeb5rm6uEavIiIiIgMjWXffYJl330i38NIE++U+uV71xOLmXSHoxmNkLJ1U01lGIaaJA2hC25alXHMH44O6F7bDnXwodteYUdjF+P7yKBOqSyiuStEd2hgr9VfTV1BOoNWU6L2QAS30yrbnTchs3t0qsuXT8+tmdNV/4AFdqlvUSVceVcyk9qHxBzUp/4bdjyb03NGk/528RURERGRMag9EKE9ZbmPQhC0A58djV08udlqg5KazYqbN7GUq0+bmfUeBmqSNJS6sgSI3aH+v2/W7WnlvJ+u4rmtVsnrR0/N/vuLm2CX1jZ2BPv9WgNxuCMEWI252rrDLJ1RxfhSD584c9bAbtjdmt7UaPrJAx5bSzxADbbBHy8Z8H0KVR/9j0VERERERl4gHKUrFGXBpDLeOtDB3WsaALjg2EkZ1z7+2TN7vY9hZFlOQgbtM+fOZXldFR+67VX8A8hq3vN6Q2L746fPpG58yRGvL7WXbekaQDA8EIc7rUB4Vk0Ja3e3EgjHWDi5HO8RSnyP6AczYPop4K2AE64AZ44df7PopIgILlwU1hdKQ0UZVBEREREpOPHyyviSHk9sPsiCSWV9BjKZDGVQh1A8g332/BqW140D6HeAapomj286mNjvc81QoNi+xp9DgNoeCGddT7U/Wu21WedMKCUSM6lv6sq6zm5OYvbfz+4XraxnUeWgxtaNB7858AC30ClAFREREZGEQul4G59rOLnCms9nmrB4Wv8/2BsGKIc6dM6cV8OUCh9LplfhdTlwGPR7XmiLP5zW8Kg0hwC1xA6Mu4J9v9alv3yB03/4TL/GtK+1m037ks2eOu1y93hH3lZ/eOABaldj+r5vcOu5mjgIkNJUKtgxqPsVGgWoIiIiIkex57ce5rfPbk/sB8KF0ck3npVLXdbjhIEEqGgO6lAKR00qiq2GRoZhUOR29juDeqgjvRtvsSeHDKp9zYa9bdR9+SHe2NPa67U7Dnel7W9v7OTUG5/mpe1NvT7nlBuf5l2/eJ4tB61gr8vO4J86Z3zimsMDmf+65nZY9aP0Y77BZVABAqkZ1D9fPuj7FRIFqCIiIiJHqZ2Hu/jgba/w/UfeShzrCIzsWpO9iZdyTixPdkRdNLX/mSfDUIA6lKKxGC6HkdivKfPyWn1zv+7Rs9FRibfvzGT8msc2WWuF3rOm4UiXAxCOWl+2bNzbxt7Wbn742FtZr4ulrEN0/k2r2N7YyQ0PbwagrrqEl79yLgCRWD+/vAl2wD8+A6/dmn58kCW+AAFSuh7vemHQ9yskClBFREREjlKX/PL5jGOF0sk3XjY6vjSZQY3PR+0PAy0zM5QiMROXMxmgXrqklg1722jP8YuN+sNdfOi2V9OOVRUfeYkZSGZQY/a3DblkbX/9zHZM06S5y+rI22I/9rS9sTNt/86Xdye2nQ6DSRU+7rxmBT+7Ykmfr5mm4bXsxz39nUdtCX7yZd5ceQcA4THc61YBqoiIiMhRoDsU5Wv3bUhrHtORJRgtnAyqFYCkZtfczv5/dFUGdWhFY2ZaBjXeKOmJlKZHR/Lyjswy2wnl3ixXpisvsgKyUMTKYt7zekPWL1hS3fTkFmZ+5WE27m0HrMxttjnW+9vSS45TOwzHnTpnPLWVRX2OM2H7M/DqLenH5qy0Hgf4hvROXoh7ztkAhBngfNhRYOyG3iIiIiKS8MC6vdz5ym7ufGU3L33lHCZXZP+wnS1ozQe/vQZqscfJidMrWTGrekD3cRiG8qdDKBIzcaYEqKfMrqbY42TD3jbeu3Rqn893GEbGsQllvixXpvO6nBR7nIlsKMD6hrYjPCPp2S1Wk6KuUJT9bQGm9Ag0g5H00t227jB11cWcu3BiTvfP6p6rwd8E01bA0o+AwwUzz4QXfwF1pw/4tvG/+7GcQR27P5mIiIiIJNy/dl9i++0DHb0GqLmWag4V0zR5/M2DnDy7mnKfm+5QlKauIO32Mh9lPjf3furUQb1GTCnUIROJxtKaGhmGwfhSLy3+EE++eZBT54ynyNN7dq+1Oxlg3vLhZfzhxZ1UFuW2ZEplkZt9PbKduTjcGWTZjCpW72phy8GOLAFqZrnwje9dxEkD/FKEcMAKTk+9Hs7+GrhSSpgvuGFg97QlAlRz7IZxKvEVERERGePausO8tKOJs+fXABCJ9h6wjXQG9bX6Fj55xxoWfftx2rrDfPavb3DaD57hgB2IjCvpe37ikRgGWmVmCEV7ZFABqko8PLrxANf8cTU/f2rrEZ/fZn/xsO5b57PymIncec1JOByZWdVsKnOYqwrW0kSza9LneZ4+13rvb2/syrg+mKVzdb/KeXvqOmQ9jpuVHpwOgXg/p7GcQVWAKiIiIjLGNXVaXVPnTbKaDMW7m/b8EA8jPwd1V1MyYNi8v50Xth0G4NX6ZqqK3QOad5rKMJLxqWmaieVDZGAiMRO3Mz2gHFfsTpTJNncdeSmWVn+YcSUeKnLMmqaqLM58zrt/+Tzf+ccmwPr9hiIxusPRxPqlcdPGWQFntt9/zxJfSO8e3S+xWHJZmbJJA7vHEUTtTsIhBagiIiIiMlq12lmrGrsjbthOw3hcTs5bOJEb3nMcnz5nDoYBf3p5dyKA7c2h9gBbDnZgmmbaEh0Dsbe1OzlOf4jaKiuQWLOrJaMUcyAMjERjnN+/UM+x33qMrfZal9J/vWVQ47qCUf762m6ivbwv2rrDOZf09pSt2++6hjZ+/0I9AF+7fyNLv/sErf4wtVVF/OoDJ/La187jlg8v4/+dMAWXw8haztvzWInHicc1wDBp/V/h9T9a26WDmMPai3hpfmQMN0lSgCoiIiIyxm3eb3UxjS/ZErED0JauEBVFbv51xQw+f/58TBN2N/v53aodac8PR2N8+q61vL67BYCv37+R829axdk//iezvvpw1s6ouWr1JzO2Lf4wNWXWGB0GfPPiYwZ837jUDOoD66x5uCtvWjXo+x6tIjETlyM9hBiXEjg+tGE//3nPBl7cfjjr89u6w5QPMECtsDOoPnf2EObPr+xOlKgXuZ28a9FkasoAGh6mAAAgAElEQVS8rDxmIm6nA6/LkbWcN55B/fPHV9j3H0Tw9/rtye1hyKCWeF385zsXqMRXREREREavr923EUgGqOFojGAkysGOQKL0MVVjR3qZ5vPbDvOPdfv4yeNvA3DQPl/fZC1ZE8jyoT9XHYFIYp7ppn1tPLfVCmx+9YETB9y5N5VBclWPAWfFJCESjR0xgxq37VAn335gU0aGva07nLVUNxdV9vOWTKvimtNmJo577DLwiSnL1RRnadTkdTszynn3t3Xzt9V7ACj1WkHfgMvKu5pg90vJ/ZKagd2nD0VuhwJUERERERm94vP9ZtlzTsNRk70t3ZgmTKsqzri+51IgT2221ricU1NKZzDCuj2taef9oYHP6+wKRhhfagU4f3p5d+L4+ccOTfbJ0DIzQ6atO0x9k58WfyjteLbS2+/8403+8GI9+9q60463+sMDmn8KUFlkvc64Eg+u1CDSgEA4mpbZLcqSBfW6HBnlvD95fAs77MZJ8cypy5lb06YM7Xutx4tvgqv+AY7hKcMt9roIqYuviIiIiBSKVn+Iv722J+eGRlMqi1h5zMTEh/ZINMaeFitwmDYuM0DtmUB68k2rK2kkZnLHS7syru8OZ87ry1VnMJLIXMX98WPvGPD9erIyqFaIGp+DKwPz4HqrRDqe5Y4bV9J7wPn67vQvMwYzBzWeeY2Z6Y2aQpEYL2w7nPZFSbYyXa/LkZHtT33vxb+Y8Qw0g9pxwHqceDzMPGNg98hBscepDKqIiIiIjJxAOMpHfv8qW7I08wlGolzws1V86Z71ieYwfekMhinzuhKZoXDUZE+zVZ6brcQ3ddmPWMzkQHvAvk8k6/y/7tDgAtQSr4svXjAfgFnjSzhj3hCWRqbMQU1d4zXSRyMoyZQtKwnZM6hxn7lrbWI7GjNpDww8g1piB5PRmEn8HfovJ9YC0NDSTVfK+zC+nE2q+iY/D6zbl/bFTrwh2I8uW0TE7pA74Axqh73WcPnkgT0/RyUelwJUERERERk5r9U388+3G/nW3zdlnPvra3s42G7NAe1ZatubzoAVBMbn1oVjMfa0+PE4HUwsy1xOI7XEN5BSEtkVjGSd2+cfZIBa5nPxqbNm87mV8/jDR4cuewpWBjUeoaY2ZGof4fVex4JOe4mW7//L8WnHU9eq/d570s+l6giEMU2oyHE9057i78uYmfz9HTO5HI/TwZ5mP6FIjNPnjgdgvr2kUjZNnckS5e5QlNrKIt63bFoi0D5vYQ7dd2NReOAzsDOl4Vb7futxGLr3piryOAmri6+IiIiIjJRI1Iqo3Fma+nzTDlorU9aePBLTNK0yWl9KgBoxaWjupraqKC1bGpd6JDU72hGIJPY/t3Je8ppBlPh22SW+hmHwmXPnMr06s+R4MByGgWlHqKlZteau4KC6Dx+NWrqsv7/Llk5NO57aJCme0Yw7JmU90vjf/0AzqFPtJYiWTK9MvA9LvC7GlXjYtM/qVH3ewols+s4FnD639yx8Z8paqN3haOJLl4nlPl7+yrl8/vz5fQ9mxzNWx957PwmRIKz6MexfZzVGcg7s58uVMqgiIiIiMqJCdtmhu0fwmNrgZe6E0sR1qV7a3sT9a/cm9lv9YcJRk+oSD06HgWFAJBajobWb2h7rjF75jmkARFMCt9TsaGcwkiij/MQZs7j/ulOBQZb42tnd4WIYYFdu0tYdZoYdAJ/301V89b4Nw/a6Y9H2xk4mlfsyutymLjPjTflS5cx5NWlzRdu7rcCw3Dew3/dxtRU88h+nc+2ZsxNfihS5nRR5nLy0oynxmn29n1JLvf2haFpVwKQKX0aX4qz22qXLHftgx7Pw9H/DlkfANfi1e/tS5HESVpMkERERERkp8bUc97UF+PmTWwnYH8bjx8u8LnxuZ2L+3Or6ZtoDYd460M6Vt7zM9X99I3Gv+iarQ+mMaquDr9vhIBw1OdwRZEJ5etOgGy49niK3M7FWZDRmJl7b6TDoCkb40WPWUjNelyMxJ3GgGVTTNOkMRSgbzgAVK4Mas+c/Tk9pCnXXq3uG7XXHorV7WlgyvTLjuMNhMG9iKe+oG4dhGLz3xKn89P0n4HM70rL8XXYTo8F8IbFwcjkOh5F4z/nczsT7sLrEk/gCIpsHP30aYP07uvnZ7Xz4f1+lIxAe2LqnDa8lt99+KLl9zCX9v1c/lXid7DXHD/vr5MvYDb1FRERERqnntzYCsHl/O5v3tzN7Qgknz6rm8U3Wci/fvuRYHtqwn3A0RiAc5bKbX2LpjCqOm5Isp+wORSnyONllr1U6c7z1wd3tNAhFYjR2BKkpSw9QHQ6DUp+LYCTK/zy1lZ88sYW/ffJkwOqAmzpv0zCMROZpoHNQ/aEopgmlA8yo5cIwrHVQO4IRTBMWT6tk7e7WtDJPObI1u1rY19rNnuZuPnxSXdZrHrv+DAx7juhP3n8CAP98uzEtQI1n2rPNY+6v1HsV2fc7trYiMYZs4qXF7d1hbnzkrcTxd/Z3SaNICOqfh0VXwIb/gzcfsI5/4lmYsLB/9xqAYreLe2Kn8xNuHvbXygdlUEVEREQKSDRm8tRbh9KO/fW1PXz+/9YlSlLLfC48TgfhiEmXHWit2dXCP7c0Jp4TX3+yvqkLw4Cp9nqnXreTN/e3EYrGmJClQZLbYRCOmvzkiS0AiW6/NWVemrus5jLx0uB45ql7gOugxsc+nCW+YPVIarfnP04bV8zab67k+NqKjBJnyfTS9ibe+5sX+bTdjffEGZkZVCBrYOh1OQimZNeHIoMa9+ULF3DCtEqWzqgiXpF7fG35EZ9TZn8R0h6IJJasAThnwYTcX3jT/XDHpRDugoUXw+RF0N1snZt4LLiGfykjKyA32F591rC/Vj4oQBUREREpIBv2tiVKecFqOvPc1sP88+1k8Fnmc+N2OQhFY2nZy11N/sQcwL32Oqe7mvxMqShKBJNXLJ/GyzusD9Q9M6hgNWYKp8xt3WWXCE+qSAazP7psEZDMhA20xLfZbwW85b7haypjGAammd6gx+10cMK0ikE1dzpa/PnV3Wn7x06pyPm5PrczLYPqDybnjQ7WcbUV/P26UynxuhJVAsfXHnls8TVP27vDiS8sAGqrcvyi4tVb4P+ugl0vWPt1p8O0Fdb2lBOHvTlSnMflwO00yKFH2qikAFVERESkgLyw7TAAj15/Os984SwuXzYt7fxXL1rAsrqqRKluz1LVU2ZXA7C3tZvdTX7uW7s3bV7eZ1O679aUZgaoLoeR6CIM8PpuaymbE6YmP/zPGG/NZ40HGgMt8X37gLXO69yJpQN6fi6s5JqZ0UHW53IOqrnT0cA0TZ7efJBlM6oSx/ozX9PrSs5BDUaifOme9cDQZ8wPdVjLLvUVPLucDkq9Ln7+1FZiKQ2cU7OpR7T5AZhwDJzxRbjkl1BUCUs+BC4fnPuNgQ5/QIrcTnYc7hrR1xwpmoMqIiIiUkDe3NdOXXUxCyZZ5Yozx5fw9nffyUd//xqnzK7mE2fMBsDjdHCgPYC/R3ntx0+fxas7m3l1ZzNfudcqCU5tDOR2OjhjXg2rtjRSVZL5wdztTM+grm9opabMy5SUcthJ5VY21eEw8LocA85EPv3WIcp8LmbXDGOAas9BbbGztfFgxOd2EohEMU0TwzC4ZdUObnh4M9+4+BiuPm3msI1nNLnzld10haIc7gzyzy+clVt32xRetyPReXrj3rbE8aGYg5pq0dQK1je0JZahOZJsc4+rS3Isy/U3Q9VMOOfryWOTjoOv7gfHyOb9SrwuTH//fh+jhQJUERERkQISjEQzMkxel5M/f/yktGNbDnYQjZn86eX0Esz5k8q48h3TufX5nYljRT0Cgp9fvpj739jL/IllGa/vchpEYiYVRW7ausO0ByIcV11MVcpSIqmBSrFnYJnINn+YRzYe4Irl0zKWLRlKhmHNQY2XPE+usIKYIo8T07SW9DFNuOHhzQD894NvKkC1vXXAWlv0hvccT52dNe8Pn8tJOGoS6bEckjfL+r6D8adrVtDmDx+xQVI237nkWE6ZXZ1Wvn5E/maYsjjz+AgHp2D/m/aP+MuOCJX4ioiIiOTZwfZAYq5nKGrmFLBtb7Suf3TjAQB+dvlirj9vLuNKPFy/ch4TUuaX9pxrWlXi4aOnzsz6gd7lcPD0W4cSJbEA40u9icxjzyRakds5oBLfu17bTSgS47KlU/v93P4wMDBNk72t3ZT7XIkS33iQFAjH2HKwY1jHMBq1dYdp645QV13MqXMGtqRJUcoc5VAkWVPb30CyL+U+N9PG9b68TKoH/v3UxBcspV4Xc7N8SZOVaYK/CYqrBzrMIVXicWH2fdmopABVREREJM8+defrnPmjf9IVjBCOxPDkEKC67A/Z8fLaE6dXcf158zAMg1Kvi/985wLAKn/82Km5ZwTf2NOa2J5VU0KR28mUyqJEYNez42mRx9nvEt9INJZY5mPWMJb3gpXh7QhEaPGHqU6ZcxufSxkMR3lzX/uwjmG06QxGOOE7j/OPdfsSv/eB8KWsk1soy/osmlqZaKbUs7LgiNr2QDQIFdP6vnYEFHmcmKQE+g2r8zeYIaYSXxEREZE8W7OrBYC1u1sJRWM5dTkN9AgKi73pz/mXE2sZX+blpFnj8LoGNuev3Ofm19edyPhSL+NLvfz8isWct3Bi+ut6XP0u8W3xJ7OzJUM8H7Gn6eOKeXZLI5XFnrQGP0UpwdOmlAB1YvnwLxNS6A61BxLbB1K2+yv+dxwIxRJLChWC3qoBjmjLY9Zj7YlDP6AByCiTvvVc+HZb9otHGWVQRURERPIoltJO9IO3vUI4GsPt7PuT84/ed0LafoknPe9gGAZnzqsZcHAKEIrEWDCpnPF25vHdi2sz5sdaJb79Cz6auoJp4xxO08cVc6gjSKs/hM+d/Oibmt17c387y+uq+PzKeRxsD/b75xlrWlPKu4/rx7IyPaWW+B7utH7ns2v6P5d1qE2255w2dgT7uDLF1iegeo61nEwBsKYBjM0mSQpQRURERPLortfSmxyFIrGc5qBedPxkzltolds6DNKCr6ESiva90KJV4pv7gozffmAT33ngzcEMq1+m20vsbD3UmZaZnlJpBSn1h/3sbvYza3xpotx4R+PYXL4jV1+1uz//9kNL+dkVWZoC5Sg1S/34mweZXVPCk587c0jGOBifOXcup86p5uJFU3J7QsMa2LcWJh5rdd0qALl8iTVaKUAVERERGWKH2gP86pltPLR+/xGvi8ZMbnzkLXv5mFl4nNa6ke4cu5zWVSfXIx2OTGQ4hwDV6uKbe8bxDy/W89KOJoCMcuHhMMP+O2rrDqeV+C6cXI7bafDV+zbQ2BGkssTNLDu7N1bXl+zppe1NbDvUmXH8LXt92tk1JZT5Bj4HNZ5B3Xaok1d3NnPp4tphz5jnYnJFEXdecxJVJZ6+Lwa49xoId8Ox7xnegfWDx+Ucs02SNAdVREREZAgdbA+w4ntPJfZPmHY2U6uydxh9fXcLHYEIl5wwBRMrY7m72c/iaZU5vVZ86Y+uAXTRzcUxk8v7vKbI3f8mSXE/ft+iAT2vP1LXgE3NoPrcTi44dhIP2l8itPnDzBxfgmHAjsbMoG0suvKWlwGov/FdacenVPjY1xZg5vjBNbCK/32/sO0wAOcdM/xfSAyLjgOw7GMFFaCO5QyqAlQRERGRI/jFU1tp7w7z9YuP6fPajkCY7T0yUres2sFfXtvDE589M1FuapomP3l8C798ZhtgdbKNxKxsZTRm5vzhc+YA1qbM1b2fOiXrOqk9FfVzHdRSr4vOYASXwxhUh9hcVRUnX2NdQ2vauQ+smJ4IUD955mx8bie1lUWJJXzGonA0xoJvPMo3j/B+rin3MWdiWdp6twMRz6A2dYUARuT3PWQOboK2vRDugrAfSga21M5w8bocxMZoMawCVBEREZEj+OkTWwD4+sXH8Pm/rePV+iae+9I5GddtO9TBhT9/jsri9LLB21/aBcDfVu/hCxfMB2DTvvZEcAqwbEZVWrfUXOagQjKDOhxOnF6V03X9XQe12OOkMxhhYrlvRMo9U1+joaU77dzJs6r54WWLeEfduMTf5aya0jGdQd3b0k00ZvKtBzb1ek0wHMVXNvhuxvEMaqvfClB9OXSnLgjBTvjNKenHSmryM5ZeuJ2OMVviOzbDbhEREZEh1hEIc8/rDexp7mbdnlZW1zcTSZmjue1QJ+Go2Wtn0H1tVnAUisTYvD+5rMmli6fgcBhMKvcljuWauZpsP+eEqQPvtNrTWfP790G82F4H1TRz+7gcM03OXTCB335o6UCGNyj/dubstH3DMHj/smlpgf7smhJ2NHaldVceTf708q6091dPu5r9afvzJmaW8YYiMbxDEEzGA9LmrniAOkpCj1d/m77v9EDdafkZSy9y/RJrNFIGVURERKQXqUHX6vqWxPbH/7iaQx1Bbrr8BN6zZCoAjZ2hI97r9V0tvLqzmff/9iXOnGcFgZu+c0HiQ7zDYbBgUhlvHehIlET2xeEwePJzZ1BT5uv74hzddtXyRLlxLoo8LkwTgpFYThmyaMyktqqI42qHLqjuyzWnzeTW53fy5QsX9HltbWUR3eEoHcHI6CpJBSLRGF+/fyOQOa80rqXHeyuaJRAPRmKZ62wOQLzEt9Ve93YwSx6NqEDKeqLnfgtO+TQ4C+u9YGVQx+Y8VAWoIiIiIr1Ibf7zXw8ml0Y5ZGdJ3z6QLAU9bB/71QdOpLEjwHuWTKU7HOWk71sNk+qb/IlmMc9uaQTIWFP0lg8v49o713DZ0qk5j3HOhL7nifaH02HgdOQeSBTZWTF/KJpTgBqJmThGuJPr1y8+Jqc5xJAMqgLh6KgLUJtz+GKjq0fH5Wzl2cFIdEgCVJ99j85gBLfTGPSc1hETTikFL8DgFMAzBL+fQjV2fzIRERGRQUpt/rPTXnoktUxxT4ufc378T+59vYHDnUGqit28a9FkPnLqTCqK3Uyq8PHvZ8+h0m7Uc7gze/lv3LRxxTz46dM5e/6EYfhphkexxwqytx7syOn6WMws6EAlPm+yP/NqC0VjH+8vAH8w+XMtr6uiK5i5RFAgHBuSbKfL6cBjl6L6Rkv2FKCtwXq85qmCDE4BPE5jzGZQcwpQDcOoNAzjbsMw3jIMY7NhGCcbhjHOMIwnDMPYaj9W2dcahmH8wjCMbYZhrDcM48Th/RFEREREhkcgklnqWpqS9dzd5GfH4S4+97d1HO4MMr40s7HMFy6Yzw/fay2nsnMMrq/pdlkfki//3cu9XtMdiiYa5UTNwg5Qi+0MarbOxB2BMHe+sivn+bYj7WBKo63epAbeJ06vwh/KnD8cjETxDtF80XhGeijmtA4rf3Nyu3U3zLsQpi7L33j68MGTZmQ2SepHaX4hy/Wd93PgUdM0FwAnAJuBLwNPmaY5F3jK3ge4EJhr//kE8JshHbGIiIjICAnYJb7fsMtDJ5Z7OZwy1zS122tTZyhrgAokOvtuOdhBbWXRcA03L5r6mHsL8J5fv8Di/3qCUCRGLMaIl/j2R7xMuTucmVn82n0b+dp9G1m7pzXjXCGoP+zv8xq/XeL74KdPo7zITSRmEkz5IqY9ECYcNdO+iBmMeEY67w2Swt29n9v+DPxwJmx/GkwTWnZB5fSRG9sAVBZ7mDGuRxfvWDg/gxlifb5TDMMoB84AbgMwTTNkmmYr8G7gdvuy24FL7e13A380LS8DlYZhTB7ykYuIiIgMs3iAWltZxIOfPo37rzs1cW7R1Aq6UrJRDS3d1PSyNEd8LuPhzhCzJ5Ty8ysW86sPjI0is2OmlANW8N6btw5Y5b9fvme9nUEdkaENSLxkuTuUmY2qbyrsDPiOw8kvTEJZsv9gZVDHlXg4rrYikS2OZ1Vf2t7En162lkVaOiO3ZYb6Ytp5vuMH2hQr2AH/uB4aVg98ENufgRsmwe5Xsp/f97p93dPQ3QKhDqiaMfDXy5dobs3VCl0u/z3MAhqB3xuGsdYwjFsNwygBJpqmuR/AfoxPlqgF9qQ8v8E+lsYwjE8YhrHaMIzVjY2Ng/ohRERERIZDPEAt8jg5rraCyRXJ7GfPAOBAeyARrPUUn4MKUFddzLsX1/KuRWPj+/tTZo9nfKmXZTPG9XntvWv3Eo2ZOAs4g1qUyKBmlvh22vM1C7XEN7WE/NFNB7Je0xWMJH7GeJOu+DzUK295mR8++jY+t4Ml0yuHZEwH2615se9fPm1gN3jxf2DN7+HWc6F558DusXOV/fhs9vNuOxMZaIem7dZ21cyBvdYISnsXTl4M3qFtmJYvuQSoLuBE4DemaS4BukiW82aT7X+cjH/Fpmn+zjTNZaZpLqupKayFb0VERETAahYDyW6kAA995jTu+9QpTLDXIL35g8n1PM9ZkL25UWo32DLf2FtEYUKZNxHMpzJNk3A0M5PnKOA5qEWJrGJmiW88kCvEBkprdrXwwramxP5n7lqb9brDXSHGl1ol5yV2ttgfihKMpDZPGjfkS8JMHOhSSM/+ILkdDzT78vR34ScpSwq57NeOZJmjGwnBgQ3WdscBOGhvTzqu/2MdcSn/jsyxMf8UcgtQG4AG0zTjOfG7sQLWg/HSXfvxUMr1qV+RTAX2Dc1wRUREREbOXa/uBkhbPuXYKRUsmV7FL65YzGPXn8HiaVamafG0SuZNzJ7BSH1+z6VlxgKf20Egkhm0/eixt5n7tUcyjhd0BtUOUDuDER7ZsB/TNNl5uIu71zTQZXfAzdZAKd8++vtXM441Zenqe6g9kPhypdhr/axvHWjnk3esSVyzZPrQlPemGtAXM6mZasNhNS/KxaofQcd+CNkZ5Xgn3m1Pwa9WwO6Uhl4v/wre+JO13bQN2vcDBlQMMOM7gh6e8An2m/HKhcLM6g9EnwGqaZoHgD2GYcy3D50LvAk8AFxlH7sK+Lu9/QDwYbub70lAW7wUWERERGS02NfazYPrrY8w2db3rCz2MH9SGZMqfPz5mhXc9fGTjng/l501HKrmM4XE53Ymss2pfv1Pq1yyxA764kuOOJ0FHKDav+ufPL6Fa+98nac2H+KSXz7PF/5vXaLEN1v5b75VlVhZ0S9eMJ9fXLkEgKfeOpRx3YH2QGK+cLkdNP7HX97gn28np9xNrRr6Rl4D+mLGb2eEz/4auIqyZ0BNE+qfz97BtvFt6zFiB+r734DGt+B/L4A3/mwd2/WiPcAa6G6GYDt4y6GAv0SJ6/CM55rQ562dsROf5tzF99PAnYZhrAcWA98DbgRWGoaxFVhp7wM8DOwAtgG3AJ8a0hGLiIiIjICHNyS/X68bX3zEa0+ZMz6ReeuNyw7K4mWVY4nP7UwrEe2pKxTlyndMY8FkK8NcyBnUeOOg5i6r4Yw/HKUjkF7um62cOd8uOHYSAJ84YxYXHz+ZMp+LdSndhkORGJ3BCK3+MJPsDGpNaWbZ7XuW1HLewolDPr4Sb44lww1r4L5rYc0foNVq2MSEheD2WZ14IyF49ocQsjsWP/wF+MO74LVbkveoqrMe4yXBwfbkPNO4+6+1gtt9a2Hxv8LSj1gNkl65GbylA/wpR14sHs6NoRLfnP6HNE3zDSDbQkDnZrnWBK4b5LhERERE8qb+cBfffWgztZVFPPSZ04ZkPp7L4QBiuX9QH0V8bkfWDGqqY6ZUJLr5FvI6qF6XA8NIVpemzj+Oi5f6FpJYzKTY48RtZ6mPr61gfUNb4vw7f76Kwx1WJjFe4tuz63SR28lNly8elvHl/G/ouZ/A2w/B1sdh5X9Zx2oWgrvYClA33g3P3GD9mbQIDqy3rtn7Ojz2NWipTwaj25+C066H9n1QNhGad6S/1i+XQ1ejdZ/UJVq6C3MZoWxiiXmoYyeFWsBNvkVERETy4961ewH4ykULEmuYDpVyn7vvi0YZn8t5xKzi8bUVfHDF9ESZcyGvg2oYRqLMF9LLeSuL3Ywr8bBpX3s+hnZEMTM9M71keiUb9rbx9oEOwtEYOxq7aLczwfEMapHHSVlK6e2frnnHkI/rtDnjez956C0rIxoXCSU77Xa3QMNr4CmDcTOhbQ+s+zNEUwLJeHAKEOmGl34Jbz0IhzZZx3augvs/ZZX1ZuvK27TVeiytSV+iJZbZIKtQmfEAdQxlUBWgioiIiPSwo7GTGdXFXLxoypDdMz5/cdq4I5cLj0beXuag1lZacxlvu2oZhmEkMqeFnEGF9C69qQ2R5tSUcvKsal7cfrjglpqJmWbatMlLF1urPK7Z1cL2xs60ayeWJ0t7a+z5qJecMIWlOSwV1F//+5HlrPvW+Zkntj4Jv14Br98OXYfhqf+Cvash1AlT3wFmFN5+GKavAEdK9nX/G9lfyOWzsqxx42ZZj2/caQWo42bCRLszb93p6c/1VsDMs5L7oyRANc3UALWw3o+DoQBVREREpIc9Ld1MH+JAcu4Ea17b5IoBLrdRwHxuB8FeMqjvPXFqoqQ0Xn5ayMvM9BT/YgHg/GMncsqcava3BXh+2+E8jipTNGamBf6zakpxOQxe2tHEV+/dkHbtpNQAtdQKUIer9NzjcqQtswSAvxnu/pi1HWyHDXdbpb2/v9A6Vmsv3dR5EGacmv7c9l4WB4mGwJMyd3TyCenny2vh2hfg223WnNZU3jKYuhSufcnaLxr6LsbDRSW+IiIiIkeBVn+I6pKhLe298+NWp1+Xc+x9/PK5nVmXmQlFY3hcyaApkUEt4BJfsJYMOn2uVZr63Yc2A7BgUhkfP30WK2ZaWcYP3fZqQWVRo2Z6gOp0GMyfVMY/1u3j9d3pcyrLi5JlvYklZ0ayedfbj0AwPj/WgJad6eenp3TErjst/dzhLen71XNh0vEQDljBblxJTfp18YwqgK8y/ZyvPP05yz7W549QCAwD/Kb9ZUP1nPwOZgiNvTZyIiIiIoPUGYhQOpB1G49gQpmPCWVjL3sK1ksY3SIAACAASURBVBzUcNTMyOKFo7HE0jKQXGqn0GP0+687FdM0mfmVhxPHzpo/AcMwGF+abCwUCMf67N48UkzTzJjb+7dPnswPH32L21/alXbcSLlufKn1RUzxSP4cbQ3J7UgADm2GKSfC8mvgxf+B2Wdb59zF1vFULfXp+1V1EGiFLfZ6u8e917pmxb9ZpcMzTrH+TDgm+RxHj3/bDjvDW1oDX9iaGdwWsP1Uc1XoP7n9Pf+e76EMGQWoIiIiIj10BCOUesdeM6Ph4nNbEWcgHE1b7zIciSXKeiGZQS3kJklxhmFwyuxqXtxurcUZzzqm/nydwUjBBKjRWGaAWuJ1cfny6YkA9byFE1k0tSLtmngSeEDrlA5U6y4onWQ1Qgp3W3NEZ58LS/7V+gNw9ZNQMw+c9rg+txl+ujCzGZCnOH191BOvgllnWtvv+33214/PMT3hA1A5DapnJ8+VThj8zzfCno2dkMwCjwEF/v2ViIiIyMgKRqKEIjHKhjiDOpb57K637YFw2vFQNIbblZpBtbYLvUlS3B1Xr+DiRZPTjqUG3P5Q4TTTicay/71WFltftHicDm69ahmfOXdu1ufXlHqzHh8Wu16EKUustU0b37Lmmk5dmn7NtOXgSwmmy6fA1OXWttMDiy5PbrvssacGp0cSD1DHzYKzvwqj4AuTo4kCVBERERFbIBzlnB9by1woQM1dPIN68vef5hdPbcU0TUzTJBw100p84wHUaIkHnA6Dz66cR21lESfNqs44n9pAKd9ipokjyyf7eIB64ozKzJPAf5w7l0+eMYuLT5ic9fyQi8WsDOrEY8FVZK13CjAzh8CydKL1OGlRerDavt/anrostzGcfB0suBiWX92/scuIUIAqIiIiYlu7u5W9rd0AHDuloo+rJc6ZEhn99IktrN7VwiW/fAGwurjGxRsPTasaPUvtzK4p5YUvn8OJ0zM7u3YFrcZQ2w51Uvflh3gzj+ujxkwza/OpYo+Luz5+Er/9UPbgrarEw1cuWojXNUKlyqFOq0y3qNIq743LpclPPEAdPy+5pEwsklz3tHZp9uf1VDIerrgTiod+WR0ZPAWoIiIiIrYH1u2l2ONkw7fPZ+mM0bPURL6tXDiRBZPKEvvX/+UNNuy1urS6ncmg6X3LprHthgtZVje6A4OPnFIHQGfQKmn+w4tWF9pntzTma0hZ56DGnTy7OnOpl3wJ2B2FfZXJTr7Hvy+3tHo8QHUXwbGXwvx3wTs+ARXTrOM1C4Z+vDLiFKCKiIiI2A62B5ldU0qZr0A+zI8SFcVurj0r2WgmnoUG0kp8gTGxzM7Vp80E4K0DHexp9tPWbZX61pSN4DzOHqwS31FQOx2wg9LU+aXv/lVuzy2xMvBEguApgSv/bJX1fuxRuPoJcBRGwyoZHE2uEBEREbF1BiMju9zGGOLuJfAcN5LNd0bIpAofhgE/fPRtfvjo21xywhQAusOZa8GOlGgse4lvwfA3w7anrIZIYJXXfn4LON3JJkd98ZRYj6ldewEqplp/ZExQgCoiIiJi84ciTByja5UOt94C1IuOmzTCIxl+bqeDuuoSdh7uAiCeuAyE8hmgUtgZ1Ls/Cjv+aW3PPgemrbCC0/5w2f82ewaogmmaaevbjmajv8ZCREREZIh0BaMUj+R6kGNI6lzTuLXfWDkmSnqzufvfTqa2sohijzMRGPjzGKCapknBxqfRcDI4Bbjyr/0PTgHmroQ5K2Hlfw3Z0MaKaMzM9xCGzNj8H0NERERkALqCEUpU4jsgPeeagtUhdqyqLvVyzoIJeF0OwtEYkOcSX9Ms3PVl659LbrtLwDXA94WnBD54N1TP7vvao4CZEpOGo2MnQNVXhCIiInLUaQ+E2dvSzcLJ5WnHu4IRSpRBHZCxmik9Eo/LQSgSIxC2AtRAnueg9tbFN+/a91mPVz0I4+fmdyxjVDgWo4ix8eXa0fc/iYiIiBxVQpEY3/r7Rg62J+etffme9Vz48+do6gwmjgUjUbpC0cJZjmOUyVbiO9Z5XA5C0RjBiBWY/uHFem546M28jCU20hnUQ29BOMe5oPH1TmsWQNnYm5OcL6nfR4QjsfwNZIgpQBUREZEx7anNB7n9pV384JG3Esce3nDAftyfONbYYQWrE/K4VMholtokacf3LmLn9y/K42hGhsfpIBw16U6Ze3rLczvZl7LMzkiJxRi5Lr7t++DXK+CJb+Z2fchqJoWnePjGdBQ6eVZ1YjuiOagiIiIihc00TT7/t3Vce+frAPjsuaW7mroS19y9poGY/cHuUDxALVeAOhAeV/JjpcNhjJmOokcS/5lX72pJO94eCI/4WKKmyYj8lbfUw08XWtsHN+b2nHgG1VU0LEM6Wr136VS+9M75gFUpMlYoQBUREZFRpz0QZuvBjiNe4w9Fuef1hsR+VbFVuvvoxgOJY+sa2vjG360P2VsOWPebPq5kqId7VHAVaoOeYRRvjgTw7f93DL/70FIAInloWBOLjVCJ79uPJrdTmxWFA/DnK+BAlqA13GUFpw6FHkNtSoUV9Ke+F0c7vUtERERk1LngplWsvGlVr0srvLmvna/dtyHtWLHHan70fbvU95wFEwC485XdALy4vYmaMi+zaxSgDkS8xPcoSJwmtPqtTOnX37WQj5w6E7edUQ3lIVgYsS6+jZuhaJz15/U/JgPSQ2/Clkfgnmv+P3v3Hd5WdT5w/HstWZb3jp3YGXb2huyQRUJYIcxSWsoqe5fRUmYLpYxSKGW17B+FUvYMK6wkQEjIHmTvxI7jvW3J1ri/P87VsuXYjuUR+/08Tx7de+7R1REPtvXqPec9jZ/jsEG4ZE/bg9lY+y1TfIUQQgghOond4eJQhSrO4j9d12Px9kLmPfUDH61XlUOfN7JadQ4XFbW+qZdpcVbvsa7rLN9TwtTs5B4xNbU9xBjVj2+ZO6STR9JxquxOAOKsKjsfbmQInS6dTzfm8fH6gzhdbpwdELC6dTqmim99DVjjwVaqzp+bphbAevY8Kd8PVQWBz3HY1BYxIuQ8Xwx1pym+UkddCCGEEEeVdQfKvcc/7CzGGm6iT4IvO7Nyr/rgPCQthh0F1WQkRGIND6PO6WZtjlor+Nplk1i0rdD7nL3FNRRV1TF1oK/oiGidxGgLG+87idgetE2PJx5MMvZ79WSzHC43N7yxDoDHv95BTZ2T1fec2K5jcbt1OmSWdbBs6L4fACNAddTCP4bA5V9D30mqra5SAtR24tl/uDtlUHvObxAhhBBCdAur9pV6j+9dsJlHFm5jy/2neNuKq+pIi4vg2QvHszG3nBG947CGm1i+p4T31+ZiCtOYMCCRb7f6sjyeoHdAsnyIbgtPJrGnuGvecDITI5ltTBf3ZLMueGmFt8/+ktoOGYuro9agOu1gtga2VRc2DlpLdvkC1NoyNSVYhJz/lyLdhUzxFUIIIcRRZfX+Moalx3orqNbWuxhwx2fc+cFGdF2nuLqOlJgIBqbGcPaxmYSFaVjNJjbmVlBcXU9iVDhRFjPzx/bx3vP3724AICGqZwVYom2Soi3cPHeINzDsyL1gD5bbAgp+uXW9Y6b4OuwqGPUPUj+4Aj75XWC/3NW+6r22UoiSALU9eL4UkQBVCCGEEKKTHCyrJTs1mv/8diJ/mj+C2UNTAXhzZQ6b8yoprq4nJSZwq5iIcN9HnpF94gGYOCCJnQ+eGlB9Nj5SAlRx5Pz3gm1vN7yxlmteX0NhlVqPXe90B2z1026cNhWcmhtsx1RbEni++mX4ezbYyqG2FCIT239sPZDnS5GdBdWdPJLQkQBVCCGEEEeVCpuT+EgLxw1K4fLpWbxy6SQ+vO44AIqq6iiqqiM1NvDD89C0WECtGXz8vLHe9nBTGJHhJu+5BKiiLQ6XQdX10K0RPFRh805Lf3d1Lvct2Eyl3dkxAapnDergk4Nfv24FnP82TLneWI86FOzlEqC2E8+XIvcu2NzJIwkdCVCFEEIIcdTQdZ0KW32jQNJqBJl7i2vIr7Q3yqBePj0LgMQoC8kNrkX7FfWJspgQ4kiZG+zz6T/j1uZwhex1bn5rvff40S+3859l+yiuriOivQNUZ73aTsbtgjOehut+CrwemQS9hsHQU2D4fOM5dvUvIq59x9ZDNfx/rjvofu9ICCGEEN2WzeHC4dIbrRX1BKj3f7oFgMQG1ydlJXHx1P48fM7oRvd89sJxzBudzua/nCxbzIg2CW8QIN5/5ihOHZUOQHWdM2Sv01Swa2nvKca7vlGPO76AcCv0Gg7Tb/Vdj071Hfca3mBwUoCsPVjM3e93lgSoQgghhDhqFFfVA5AUZQlot/qtMb173nB+NbFvwHVN07j/zFGcPDK90T2P7ZfIvy8YH5BJFeJIhDeoohsTYfL+P1dtD12A6plB0OFT0h1GReIT/uxrm3svzHtMHWt+oUVkIoy72HceEdP+4+uBJIMqhBBCCNGJ1ueqdXdZqYHZGKvZNzX3ypnZJDQIYIXoCA2LJEWGm4gxvvgIZQa1T7za0uXZC8YFtNfUh24acVA1xepx/KWB7fHGF0KuusB2/3WnFglQ24PZb92zPYTTyDuTfFUohBBCiKPGB2tzMYdpDDGKHnlEytpR0QU03OYlItzk/fIklAFqTb2T7NToRl/E1DvbcauR0j2w4U1VwdeaEHgtPkM9uhyB7TF+MxYkQG0X7u6zu4yXZFCFEEIIcdTYnFfJaWN6N5ra2O7FYYRogYZflFjNJmKtRgY1hFN8a+qcRFvM3nt7tOtemJ/eooLUs56FhtNK4zPV45CTg7eDTPFtJ0kx6kuKe08f4V2Lf7STDKoQQgghjgo5pbUUVdVxTN+ERtekuJHoCizmMB44axT3fLQJUGujWzPF98ddxewpquaiqQMO2y+3zEbvhEjvvT3aNYNatk8FoKPOaXwtMhFu2ghxfQLbPZlVkAxqO4mJMLPvb6d19jBCSr5uFEIIIcRRYfH2QgCOH9qryT5njO3T5DUhOsKAZN/6aGu4yZvh2ldSS05p7WGfe8FLK/jTx5txNpEJdbt13lmdw87Cao4fktqosFd9e2VQdR2qCyG66Z89EvuDqUHRpni/YmVSxVe0kASoQgghhOjyHC43f/54MxkJkWSlBP+gu/uheTzxq2M6eGRCBBqc5ssURoabiLOGkxJj4alvdzLj74spq6kP+jxd173Hi7YVBs2G/ri7mD++txGAU0enYzGmts8eqrZ3mdA/KWTvI0BdlargG3OYADWYqBTfcURs0/2E8CNTfIUQQgjR5X2/owhQ+5k2xRQm03xF5+sVG+E99qwJzE6Nobi6FFDrqKcPTmn0PLvDF5Be9d81XDSlP389a1RAn/0lKgM7KSuJ3kYlX8/0zn3FNfRNigrhO/EMrAK+N7aRSezfuuf6r1WVKb6ihSSDKoQQQogu493VORwstzVqzy1TbbefMqyjhyREq/ivh/bszzvQb1skWxNbgZTVBmZWV+0rbdSnsNJOmAZvXDG50bUBKdHt8yXNwrtg2VPqOGngkd8nPDI04xHdnmRQhRBCCNEl5JXbuM2Yvjh7aCovXDzBu69kblktEeYw0uIiDncLIboUTwZ1YKove9hUgFraYOpvsIqsRdV1JEVHYDaFOMdUugeW/xtOfQTCTGrvkqo8cNhg6yeQPgaGnAJpo5q/V1OkkJloIcmgCiGEEKJL2JxX6T1evL2I297dAKi1ee+tyaVPQqRU6xVHhQfOGkWfeKt3+yPPdFwAW33war6LthUGnAfbOqm23kV0RDtsJfL+lbDqRchXXxCx/Bn450h4ZgLUVcDsu2HO3Y23l2mJq5bAGc+EcrSim2tRBlXTtH1AFeACnLquT9A0LQl4GxgA7APO03W9TFN/OZ4E5gG1wG91XV8b+qELIYQQojvZX1IDwMq7T2DSg9/y0fo84iPDmTYohbJaB2W1jk4eoRAtc+GU/lw4xbde87iByWQmRpJbZsNW78ugut06Ty/ahcUcxs7CavolRVFYZcfucAfNoNrqXUS2x16XrjrjwPgCaPMHgdcHTDvye/c5Vv0TooVa8zXIbF3Xj9F1fYJxfgfwra7rg4FvjXOAU4HBxr+rgGdDNVghhBBCdE8HSmr559c7iLKYSI2J4JnfqA+0ry7fz8NfbANk/ak4eiVGW/jm1lkA2PyKIT33/W7++c0OHlm4jbxyGxkJkaQaRZYsQTKoNocraODaZp4Kwi6H2k6mYLM6P+81mHW7VOAVHaota1DPBI43jl8FlgC3G+2v6apW9k+apiVomtZb1/VDbRmoEEIIIbqX4uo6bn9vIzX1Tn7aowrCTM1ORtM0Thvdm8hLTFz+6mr2FtdwzrEZXHt8Gwq0CNHJIsxhaFrgFN+1+8sAiI0ws6OgipNHpjOyTxwvLd0bNBC1O9opg6obQXN9Nax9DVz1cMNqSBkMI84M/esJcRgtDVB14CtN03TgeV3XXwDSPEGnruuHNE3zbIyUAeT4PTfXaAsIUDVNuwqVYaVfv35H/g6EEEIIcdTJLatl+iOLA9omDkjkdaM6qaZpzB7q23Px9GP6dOj4hAg1TdOIDDdR6zfFt6hKTa2tqlNBa5+ESG46YTAvLd1L73hro3vYHC56xYaHdmC6DoVb1PF/z1KPWTNVcCpEJ2jpFN9puq6PQ03fvV7TtJmH6RuseoHeqEHXX9B1fYKu6xNSU1NbOAwhhBBCdAf3LVBTCE8b09vbds2sgQHbZISFaXx8/TSunpnN9EGN940U4mgTazVTZfdlUD0BqkdmQiSmMI3YCDNOV6OPz+2zBnXbp43bsmeH9jWEaIUWZVB1Xc8zHgs1TfsQmAQUeKbuaprWG/CUHssF+vo9PRPIC+GYhRBCCHEUy6+w883WQm46YTC3nDiEMG0dn2zIY8bgxl9Yj+2bwNi+CZ0wSiFCLz4ynAqbKval6zpF1YEBap8EVe3XZNJwut0B1w6W29hdVMMxfRNDO6gdCxu3Jct0etF5ms2gapoWrWlarOcYOAnYBCwALjG6XQJ8bBwvAC7WlClAhaw/FUIIIURhlZ29xTXe7OmZxrTdR88dw/I75wQtCiNEd+IfoFbYHDhcOsnRFu/1jEQVoJrDwnC6AzOo1/x3DQADkqNCNyBdh91LYPjpcNlXMP8JyBgP2ceH7jWEaKWWZFDTgA+NfcfMwBu6ri/UNG0V8I6maZcDB4BfGv0/R20xswu1zcylIR+1EEIIIY46sx9dQo2x/m5MZjzZqTEAWMNNAftECtFdxVnDOVRhB3zTe/80fwQLN+WzcHO+d92pOUzD1WCKb4XNwZTsJG6YMyh0AyrdA5W5MONW6DdZ/ZsgH91F52o2QNV1fQ8wNkh7CXBCkHYduD4koxNCCCFEt1Bpd3iD0yumZ3HZ9KxOHpEQHS8+Mpxt+VUALNigVsClx1v51wXjqK13eiv3msI0HA2m+NY5XfRPisZIGoVG4Vb1mDEudPcUoo3ass2MEEIIIUSzTnnie++HcoB75o/oxNEIEQLOOjBHtPppcZHhVBpTfJ9etAuA1NgIVRjJ6qvOG27ScPlN8a13uimorAv9NPjKg8bAMkN7XyHaQBZ7CCGEEKJd+QenYzPjO3EkQoRA6V54oBf89FyrnxofGU5VnRO7w7fVTGps40DXFKYFrEG968OfAXC43I36tsn2z8EcCdFSJVt0HRKgCiGEEKLdqJU/yuPnjeXFiyd04miEaCNbOfz8rjpeeLsqMtQK8ZEqS3ruc8u8bbERjSc0msPCcBrBaE5pLV9uzgfAEWTrmSPmcsD+ZTDqFxDKacNCtJFM8RVCCCFEyDhcbh74dAtOt85pY3ozNlNtEXP7KcM4Z5xMIxRHKV2HL++Gn/4V2F5fDRGxLb6NJ0DddLASgJtOGBx0TanZmOL77JLdPLJwm7fd5Q5hBrV4B7jqpWKv6HIkQBVCCCG6EV3XQ1tEpZV2FFTx6vL9APxvxQFve2JUeFNPEaLrO/BTYHA6aC7s+gbsFUcUoHrMH9M7aD+XW2dnYTUFlYH7pDbceqZN8tW0YdJHhe6eQoSATPEVQgghuoldhVVk3fk5y3YVd+jrltbUsz6nnAF3fMaWPJUZeu5CX1XQmUNSmTEktUPHJERI2Cth/ZsqGAU45W9wwr1w7EXG9YpW3S6+wRc1vROCb6+0Lb+K/SW1jQJadyunFAeoLYWv74UFN0L5ARWgmiIgefCR31OIdiAZVCGEEKKbePH7vQAs3JzPcYM6pujJvuIajn9siffcs3VGVkoMG+49iZgIM6YwWd8mjlJf3QNrX/WdT7lWPe5erB5bG6A2CDhjgqw/BThpRBpfbSmgvkFRpDatQV3yN1j5vDretQiSsyFtBJgkHBBdi2RQhRBCiG7A7nDx6UYVHHq2segIOwurA85/2Kmyt4lR4cRHhktwKo4uVQWqSq9Hya7g/aKS1WPZPqirCt4niDhrkKnuS59QwaOf6YPVF0zVdmdAu+tIp/jqOuStU8cDZkBlLuz9HtJkeq/oeiRAFUIIIboYp8sdsA1FSxRU2qmpV8/5aH0ei7cXBlTQbS+5ZbVB25OiLe3+2kKEVE0J/GMIPHWMqm4LUF0QvG/qMDBb4aNr4eFmin/t/R62fgJAgt8U38zESHDY4Jt7YcnDAU8xh6mP6NV1gQHqSSPSWvGG/Gx8B3JXwty/wG/e8bWnjzmy+wnRjiRAFUIIIbqYK19bzbA/LWzVc0pq6gHISokG4NJXVvHu6tyQj62hwqq6Rm0b7j0Js0k+YoijzJ7FvuM3z1eZ0fIcGH1e475mC2TNatl9Xz8X3r4Q7BVYw028ePEEfrxjDt9eMxIeTA/6FLNJzTyosjsYmqaKMF08tT+/mti3VW/Ja91/VVB93I1gifK1S4Ek0QXJXw8hhBCii1m8vQhQxYdAVeZdsr2QigZTdzcdrOCvn25B13WW7y4BYGBqtPf6mv1l7T7Wkuo60uIivOcvXDS+0To7IY4KNernjuPvBHs57PgSXHVqn9ArF8ENawL7j/6l77h4J/z0XPB9UV3GlzjVhQCcOCKNjIRIIrZ95OvjmTJssJh8GdSBvaL59vezuPu04Udeobu2BJIHQZgpcOySQRVdkASoQgghRBd1sMwGwHc7ivjtK6t4dsnugOvzn17Ky0v3UlBZxxvGli4De8V4r+dV2Np9jKU19SRFR/DO1VP5+7ljOGlk8IyQEJ1m/3Jw2JvvV1MMmgniMtR58U71mDoEMsZDyqDA/kNP9R1/fS8svB1yVzV9f1uDL4xi/KbrNhifJ4PqcOlEmE0MTI0hwmxq/j00pbYkMAg+/Sm4Ox8iYpp+jhCdRAJUIYQQogsprPJ9UK2qc/DWygM89tV2ANbnlDHnsSVszqvwbucC8M7qHCLCw5g0IIkbZg/inHEZTMpK4lBFCz6Ut1FumY2UGAuTspI4b8IRTj8Uor2U58Arp8CnNzfftyofolN8+5qWG/v4NshuekXEqExkeBS41GyHgAJLDdnKA8/dxvrS5EHgqFXZ16p8yN/kXYMKYA1v48d1XW8coFqiIDz4FjdCdDapKy2EEEJ0IesP+D7E/ubFFQHXftpTCsBpTy0NaH912T7sDhezhqQSaw3n8fOO4c4PfmZPUX67jHHl3lJG9omjus7JtvwqTh/bp11eR4g2cxhFvPYsab5v3lpV1dZiZBXL90NYOETENf2c2HT1Gru+VucrnlWB7azbGvdtmEF1Gl8gDZihqgUv/Sd8+xcALL/e4e3WpswpqLW0bidEJbXtPkJ0EAlQhRBCiC5kXU55o7Y5w3qxaFtho/Y7Th3Gd9uLWL5HrT/tn+QrfpIYFU5ZrQNd14983VoQOwuqOO/55aTGRpBsVOqdO/wIK4sK0d7qa9RjbYmv7cen1N6mQ0+F7Nkw6AQ1nbdwC4w9HyzGOu5DG1QAerifH1NE4HneOvXPP0ANj1JBbEVOYF+HLXCMRnAKNMigtjFA9bz3pjLBQnQxMsVXCCGE6ELWHSgjIyFw6t2zF47j5rmDveevXz6ZVy6dyFUzspk32rfmc2i6L9OTFG3B5dapbLCPYlvlGutii6rq2JZfhcUUxpA0WccmuihP8OeZggvw9Z9UxnLZ0/D6Oapt/Rtq/emY83xVbuurYfjph7+/qYntlNx+20RpRoBZtB2eHAs/PqnOPQFqkNfwrEGFNk7x/ewPatsckABVHDUkQBVCCCG6ALdb52C5jY25FcwckuptH9knjgiziRtmD+KUkencMHsQ0wenMHtoL8LCNC6aOoAf75jDg2ePYnKWbwpfnFFJt7JB5d+2KqhU0xLfuGIyANMGJYc0QytESHkCVI/KvOD9tnwMA2erjGmc376mx154+PubmqhY/ZjvCyXvNOOcFVC2D77+s9FuBKjDToOh8wKeHoHvi6UmM6j7lsKntwavHAyqff0bvnNZcyqOEjLFVwghhOgC/vH1dv61WFXpnZKdxGXTBtA3KQpzmAr+zKYwnrtofNDnZiREcsHk/gFtEWb1HXSd0x3ScW4vUFnTCQOSePPKKQzvHRvS+wsRUvt+8B3XlMCC36njlCFQbKzzPLQBSnfD2F+r8+hkta3M3h8gbeTh798wg3ru/8F7l/mm1drKQTeyqeX7A/s6ber5YSYwWwMuWXTf/sJWcxP5pA+uhspclYHdsxjm/EkFzF/dA4NPgvTR4KiBEWdC/ibZUkYcNSRAFUIIIbqA57/b4z0+aUQ6kZa2rTvz7KPocIU2QF25t5RJWUlYzGFMHShTBkUXt/wZ3/HKF2DXNzDuYjj5YXjrfBWEPj9TXe99jK9vxnj1rzlmvzWoJ94fuCbV7YYNb6njcRfD2tcCn1ueA9G91HGD7Ga4y7dFVJMZ1PgMFaD+9yx13neKWk+77Gn1r99xqn30eXDea8HvIUQXJFN8hRBCiHZU73Tz9qoDuNw6T3yzg6kPf8vv39ngnSoLXAB4QQAAIABJREFUcLDchtOt0zcpkjX3zG1zcAoQ3g4Bar3Tzea8Svr6FWMSosuqKQ48//ldSB0GZzyttoi55JPAwG3A9Na/hmeK76hfwLSbAgPWZyaovVF7jYQJlwU+z1mvqgZnjFPnngyqUTE4Qvf9fmgyQNUatL91Prx4gu/84Gr1OOSU1rwjITqdBKhCCCFEO3p12T5uf/9nHvhsC88u2Y3LrfP+2lzmPfkDn/98iCq7g78s2AzAK7+dSHJMRDN3bBmL3xRfu8PVTO+WuXfBJgAq7aFd1ypEu9j7nXo8w8iilu6GhH6BffwLFFmO4IuXMM8aVGMdtv+a1FI1ZZ+RZwVmZ0FN9y0/ACnGWlVPBtXI2saH+dbORjQ1xbdsX+O2gp99x656mHYzmGTCpDi6SIAqhBBCtKOaelXs5JUf91HndPOHk4by9PnHUlJTz3X/W8vo+77iqy0FAGSlhK4arieD+qePNjHsTwtxuZsopNJCuq7z0TpVYGbW4NRmegvRyWpLYeWLEBGvKvN6xGcG9vMU+LIc4Vrq5IHq0RP4Ntx2BmD0LxtvVXNgudqbNHGAOvdkXgefBECSPY9JA5KMIQYpQlZxEKry1NThXiPVXqrByN6n4igkAaoQQgjRjhrGhb0TrJw+tk/Qvqaw0FXDtZjVvbblVwGQU1rbpvttPVSFzeHintOG88sJmc0/QYjOUpELz05TQWBCv8Bpt6POadz/j3vhlk1H9lr9psBvP4fpN6tzc4OiScPmQ1KWOvbP3u41ijclGMXNzEYGdcjJ6rF0Dy9eMoGrZ2Vz3KAga713fKEep94I1y3zPc+j91joPx0Gzjmy9yVEJ5KcvxBCCNGOiqvrSIq2UFqj9mFMjVUflv99wThueGMtD549mgqbI2CLmFCwmALXp+0trmFASvQR3297QSUAc4b1km1lRNf2yqkquwhgK1OPGRPUmsy+kxv3b2uWccA033HDqr79j/MdX7lYTct96QQVPIMvgzp8PjjtkJSttrkp3U18ZDh3njo88H62cvjhMQgzPsInZatHT7ElgPh+cPX3bXtPQnQiCVCFEEKIduA2UqdFVXWkxkQwJjOeJduLSI9TxVDmje7NnodPa7fXDzcHBpFF1XVN9GyZilq17jQhytJMTyE6WfkB33Flrnq88H2oLmh639JQaTjF1+I3bT86Rf0zW6EiRwWZcRnqWq/hcMKf1HFsOmx8G/ocC1OuDbzfiudVhV7NpLKunvWlFr8vn2RarzjKyRRfIYQQoh2c/MT3zPj7Yr7eUoA1PIznLhzP+9dO7bAAz7MG1cOTwf1uRxHXv7GW+lbuj1ppV2tpY63y3bbowuwq08/4S9WjZ21mZAKkDm3/1284xdcSZNaCp2JvfGbwAka68bO58I7G18KMmRG6S1Ui9t7TLzCOTGz5eIXoguSvjBBCCNEOdhZWe49zy2xYw02M799xmQ1LgwC1xMig/mvRLlbuK+XUUekc0zeBXrFWb8Xfw6m0OYiymBoFvkJ0KTVF6rHfFJh6PcT0Onz/UPOf4psxHtLHNO5jL1ePnvWnDVnjm76/vcJ37J+d9T+OTGh+nEJ0YfJXRgghRI+2Zn8Zr/y4t81Vbv3VOX3bugzqFcOLl0wI2b1byj/o7BNvpcTIoEZHqAzMw59vY/oji3lm8S5vv/wKO1e8upo9RdU0VGFzEGdt5+mRQrSVzQj+IhPVFi6HC/bagydAjUyEKxdB6pCm+5717+DtZzylHmPSG18r8f28UrbXd9xvitpSJjwaZvyhdWMWoouRAFUIIUSP9otnl/GXT7Zw94c/N9+5hXLLbAAkRVtYeNMMxvXr+Cl3/hWBU2IjKKlWAWphlcqkHqpQYzxQovZbrK5zcs3ra/hmawFPfbuz0f1Ka+pJipb1p6KTFO8CvQVfInmKIlk7K4vYigJiDbe88UjoB1NvgLoqX5vLCV/eDTu+hMFGxV5P5V9Q29ic+Be4Ow/SR7V+2EJ0IRKgCiGE6LEe/nyr9/itVTnezOfbqw5w5wcbvYWBWutAidrS5cWLx2PupCmxSVEWzpuQyac3TifZr4rwoQo7v5ncj3V/PglreBhxkeG43Dqj7v2S9Tkq+7Rwcz5r9pcG3K+ous5bgViIDrX+TXhmPOz6pvm+nj6dNc01KkntTXrh+033SR0WGFwGY00ARw046+HAT/BoNix/BtJGwrxH4ZqlKkMrRDcka1CFEEL0SAWVdp7/fk9A28fr8zhvQl9eXrqXHQXVfLrhEP2So5g3uje/GJdJery1RffeXqAyH9kpMc30bD9hYRp/P3csAEnREWzLr8LucFFaU0/vOCvxkeGkxkZQZXcGTOmdMTiFPUU1/Or5n1h480wG9VLvoaiqjsG9YjvlvYgebtVL6nHlizBorsoWvnQiZM30Vb4FqC6EFc+q4+jUjh8nqLGd8fTh+1zzI9BMNjjC+Fn76d/wzb2+9tShkNjE2lUhugnJoAohhOhx1uwvY/JD3wLwh5OGsOeheQxMjeaTDWrvxEqbkwHJUVTVOdmcV8mjX25nysPfUmZkIQ/H5dbZkFNO/+QoErvIlNiMBCsFlXZyy1Rm1xNox1nDqbQ52JjrK7wSFxnOg2ePwunW2ZZfSW5ZLbquUywZVNEZynPU/qUAO7+EvyTAv4+D3JVqP1B/X92jHs99pWtvtWIyN7/djaf675aPAttdzf8OEuJoJwGqEEKIHufxr7d7j3vFWgkL08hOjeGHncVsPVRJfqWdM8b2YdeDp3L7KcO8fQ+W2w5734e/2MrAuz7ni035jMnsOpU0+yVH49bh6v+uAaBPgppeGGs1U2V38s3WAm/foqo679hveGMdxz+6hL3FNThcOikxXSPgFj3Ij09AWINgrnCz79hp7O/rdsGm92HilTDqnI4bX3uxRKlHt9reiaHGnsl667aHEuJoJAGqEEKIHqWg0s6Pu0q85yeOSAPApKniJqc++YPRno7ZFMY1s7KZlKWyMcXGVi3BLN5eyPPf+aYMj83s4Oqhh9EvSX3Y3V2kCiL5Z1BX7ivli035jOgdx3XHD+SBs0aRGOULCJxunR93FQNIBlV0vINrIGsG/PoNuOq7xtcPbVSPxTtVMNdrWOM+RyPPtjHVRZA+Gkafq85bUihKiKOcBKhCCCF6lJ+N6az/+s041twz1zsN98GzAytfDk5THxA1TeMxYy1nUVXwALXe6ebSV1YFtHWpDKoRoHpkGBnUuEhfIHrfGSP54ynDGJIWi6ZpvHbZJO6apz7sf7xeTX1Oj2vZGlwhQqa2RK0nHXYa9DkGzv0/1X7JJ+rx4Go4sAL+PVmdx2V0zjhDLdz4ma0pVMGqZ0qwZFBFDyABqhBCiG7jhe93M+COz3hmUeNtUjwq7aoy76iMOJJjfBnB5JgIPr1xuvfcGm7yHqfHWwk3ad4MZEMFlXbv8bvXTOWliyd4s65dQS+/zOfVs7K97y3WqmolDkuPbTTemUNSuWrmQIakxbB6fxkpMRbG9e/47XJED1dbBlHJvvNRv4A/FasCSbF9YPOHsP513/VeIzp+jO3BswZVd6tgVTM+sksGVfQAUsVXCCFEl+B0udu8JctDn28D4LGvdnDDnMFB+zhcKgMRHuS1RmXE89ezRgVUtQWwmMMYmh7LpoO+YkK6rqMZ04IrbL7taCYO6DqBqUeY356ofzzZNwXSYlb/DaZkJzd6jkdClMownzMuM+h/MyFCrqYESveA2wH1Vb6Kth6ebGLyQNj3A+SsUOfWhO5T4dbiVwHcEu0XoEoGVXR/8pdGCCFEp8sprWXQ3V/w6ca8kN2zvDZ4tUuHS2Ugmgq2LprSn3tPH9mofXRGPEt3FfN/S/dSXltP1p2f8+bKA4AvQH37qimhGHq7MvkFq5FGJnXOsF5N9o83pgGfNyGzfQcmhMeCG+HlubDgd+p86Lzg/WLSfMfTboKb1rf/2DpKrN97s8RIgCp6FMmgCiGE6HRr9pcB8OyS3cwf0yck99xTXMO4fo2rzvoyqFqja4czonccAPd/uoX31+YC8NaqHAor6/j5YDngyzZ2Rd/fNpvqOmdA2xUzspmclczUgU1nUB88exTnTejLINkDVbQntxuq8iA+Ew4ZgWbJTkjKVmtPgzn5Idj0njo+4T4I60Z5l4g4FZjWV6sMavpo1X7shZ07LiE6gASoQgghOt32girAtybySLjcOsnRFkqMvUqvem01//rNOCYb01edLjfVdc7DTvE9HP8AbXNeJQB7iqrZkKOC097xVvokdN0iQv2Soxq1xUSYDxucgtqG58QRXfd9iW5g7Wsqawow9z6oPAh9xsFpj4Fmavp5/lnG7hScAmgaxPWB4h0qQI3rA/dVNP88IbqBFv80a5pm0jRtnaZpnxrnWZqmrdA0baemaW9rmmYx2iOM813G9QHtM3QhhBDdxbZDKuCrtDmb6Rmcy63zuzfXUVJTz52nqjWWxdX1XPe/td4+f3h3A8fc/zX1ziMLUKcOTObZC8YFtNUZ9/r+ttksv/MEYq3hwZ4qhDictf/1HX9zn3o8+SHIGN909tTjxrVw/arD9zlaRRtT7/3XowrRA7Tmr/NNwFa/80eAf+q6PhgoAy432i8HynRdHwT80+gnhBBCNGnrIZVBLa0Jvm60OV9tzueznw9x28lDuXrWQG97bb3Le/yRsVVKea1aL9raKb4Ap47uzbh+CYzvn0hMhJl6pxtN8+0rKkSPUVcNPz4JWxa0/V5uB2TP9p0PPhn6T23Zc5MHQuqQto+hK4o0tqryVPQVoodoUYCqaVomcBrwknGuAXMAY+I/rwJnGcdnGucY10/QPGUOhRBCiAYqah3kV9oJ06Ckpg69FdsoPP7Vdk554nteXrqXvkmRXGMEp9mp6gNdXKSaMlxc7du/tKSmHnOYxpH+afrgumm8f+1xZKWo14iNMHur4QrRY3z7F/j6z/DVPS3rf2AF/HOUqs7rryIX8tapQNOzx+nEyxs/vyeyGgGqOeLw/YToZlr6F/UJ4I+Ap3RYMlCu67pnLlYu4NkZOQPIATCuVxj9A2iadpWmaas1TVtdVFR0hMMXQghxtCupUcHj8N5xOFw6lfaWT/N9atEutuVXsXp/GVfOyPZWqP3w2mnEWs3eabw5pbV+r1cfku1SPFnT6Agp5yB6oGJjr+GWftGz/GmoyIF1/1PB6hJjgt3LJxv3McGIs+H3O2DIyaEf79HIGq8e64PvvyxEd9XsX2hN0+YDhbqur/FvDtJVb8E1X4Ouv6Dr+gRd1yekpqa2aLBCCCG6H09l2QHJKiNZ4pftbKlfTejLRVN8+x/GR4VzzrEZVNmdvL3qAC/+4MvalNbUHdH03oaGpKl1YbI3qOgRHHZ45TTYs0Sd21TlbewtLNzjNH6uf3gM/u8kWPIQFG6DSlURm0lXqUJH/oWPejpPgNrS/8ZCdBMt+dp3GnCGpmnzACsQh8qoJmiaZjaypJmAZ/O6XKAvkKtpmhmIB0pDPnIhhBDdQpWRMe1vVJktraknu4nvLT3TfzVNw+XW0TTQdbj/rJGNpuwmRluosDm4/f2fA9o3HawkObrt28EMSVNVfQsq7W2+lxBdQp2xpUmwrOjub2H/UvimBq5a4gtQbWVQmaeqzB5OTXHjtn9PVo/Xr4KUQW0Zefc08QrIWaGCdyF6kGa/9tV1/U5d1zN1XR8A/BpYpOv6BcBi4Fyj2yXAx8bxAuMc4/oivTULioQQQvQongA1LU5NmfUvbOSvpLqOKQ9/y2NfbQfgi02H0HV4/LyxRJgbb0UxfVBKwPnIPnHeLGvJERZj8ucJUD2VfIU4qtVVw8MZsOiB4Ne3GB/z4jLUt0K1frmHx4er5x9ObQn0Pgaig3z7lCzBaVDRyXDRB5JVFj1OW+Yl3Q7cqmnaLtQa05eN9peBZKP9VuCOtg1RCCFEZ6q0O1i+u6Td7l9lV1V1k2NUVrO+iYBvy6FKCirr+Nfi3RRW2bn5rfWMzYzn5JHpQfuP65foPU6JieCJXx3D5dOzQjZuTyEmIY56Dhsc2qCOf3gseJ8dC9Vj/s+wbynUV8HQeb7r+5epoNV/yxiPilyVZc0+Hoac0vh6d9vDVAjRJq2q7KDr+hJgiXG8B5gUpI8d+GUIxiaEEKITbcgp58x//ciw9Fi25Vex5p65JMeEvpqk3aEypvGRag/RelfwANV/j9RNBytwunVuOXFIk0WKwsI0ThyRxqJthay+Z666dwiznZ6s7aQBSSG7pxCdYtEDsPyZpq877GodZFwGlO+HV+er9rn3qbWlu7+F9a+re+z9Dvofp6ryApTtgyfHquMx58GGNwPvHRP8CyYhRM8lpQeFEEIE9d4aVbxkW77ao3R7fhX9U9xkJESG9HVcbrUKJMqiAr5gQeSbKw/w3He7vecr9qrphcnRhw+Yn7twvPf+ABZzGC9ePCFk72Hr/adgDkHBJSE6Vcmu4O0uh8p8Fm5R5/2nwc/vqOPMiZA6VE1BfSDNNwW4oSV/8x2njYSIOHU8bL4KeKffHJr3IIToNiRAFUIIEVRCVHjA+XPf7+H7HUXcfsowrj1eZUfcbp2wsKYDtKKqOmz1LvoZBZCCcRnxozU8eIBa53Rx5weBhY6e/05V5fVMC26KKUzzbj3jceKI0K3nirQ0XvsqxFEnWAEjUJnVH5/wnWfNhOp8mH4rDJztaz/9Sfjwat+5sw72L4fNH/gyphe+rx6jjJ0HrfEw7++hew9CiG5DJv0LIYQIyjPl1uMnYx3qIwu38e8lu1i+u4Tsuz5n00HfFghbD1WybJfvw+6cfyxh5qOLD/s6biPDGWkEqHUNpvjOffy7gPMkvwq8Ke0w5ViIHqemEKJSGrcf+CnwPLY3XPJJYHAKMPbXvsATwGmDD66ElS/42nofox6HnaayqBMuC83YhRDdjmRQhRBCBNWw/rr/zhMfr8vDZlTbveClFVTZHfzviimc/6L6QLvzwVMJN4V5K/TW1juJsgT/k+MyXigyyBRfXdfJKbUBMG90On3iI9lRWM33O4q4eGp/LGb5nlWINln/BpQfgNn3ADosfhBcTjCZIaEf5PykAsq6ysNvJRMRqyr1AuxeBLbywOuRxlrt2HS4M6dd3ooQonuQv+xCCCGC8hQvuv/MkYBvO5WUGAvbC6q8/SpsDtw6/GfZXm/b6n1l7CnybTuxv6S2yddxNcig+geoBZV13uNfT+zHPfNHMNContsrVrKnQrSJrsN3j6jjMedBlBFEfnydKopUWwwZ4+HCD+CURyBtRNP38qwtBTU1uN73O4IT7pVKvUKIFpPfFkIIIQLouk51nRObw4U5TOPiqQOIMDKVcVYzD509GoCnFwUWVvlyc4H3+PwXf2LOP3xTcw9V2Jp8Pc8U34ZrUKvrnJz+zFJvv8xEVdjo7GMzmJqdzC/GZx7xexRCACW7VZXdeY9BYn+I76vaN74Nix+G6kKI7gV9J8KUaw5/L/8AtaHEAaEasRCiB5AAVQghRIA/f7yZUfd+SXWd05vV9FTYTY2N4MQRadwwe1CL7nXz3MEAHCy3N9nHaQSoFlMYYRrUu1Tm9q2VByiqUhnU96+dSnZqDABjMhN486op9I4PbTVhIXoUt8u3tcwgtQ2TN0AFNV23uhBierXsftYmAtReI2DEWUc+TiFEjyMBqhBCCC9d1/nvT/sBKKysI8IIUM0m9ediUK8YNE3jDycPDXhew4JKALOGpHLD7EEkRVtYu7+sydd06zqapvYttZjDvBnUCL/1peP7y16jQoRMfQ1s/hDWvALmSEjKUu3xfrMS6qvVFN+YFla9joht3DbqF3DNUpneK4RoFSmSJIQQwuvNlb7iJQs359Pf2B5mSnYyy3YVM3+Mr0jKd7cdz86CaiYOSOKbrQX8/t0NAJwyMp1fT+rL8UNV5mXm4BS+21HU5JY0LreOyajAlBBpobTGAfim/AohQuz5mb69T89/w9funwUt2AS6WxVKagktSBDaZxyEyc+xEKJ1JEAVQgjh9dH6gwHnnuJGT59/bKO+/ZOj6Z+sChZFR6g/J2lxETx30fiAfrOH9eKj9XlMefhbPrjuODITA/dEdem+wDUjMZKD5eo1PUWaHj5ndFvflhDCw1nvC04BBs4J3q/8gHrMnNiy+7rVzytnPA3FO2HZU2BqPLNCCCGaI3MuhBBCAFBYaWfVvlKmDfLtZzgsPci0vSA8idGBxjpRfzMGp6r7V9WxJshUX7dfBjUjIZKD5Tbcbp2qOrVFzVnHZLTqfQghmpC7BpY81PL+fSdD6tDm+wHoRoBqtsKM38P4S9X+qEII0UqSQRVCCAHA6v1l6DqceUwGP+4qITMxktevmNyi5/ZJUAWLzpvQt9G1pGgLWSnR7C2u8W4p48/lBpNfBnXBhjymP7KIvApVWMkaLt+lCtFmNcXw0gmA8TPYdzJkTGjcL8wMbvXlEMf9LnAD5MPxZFC1MIhMgNOfaPOQhRA9kwSoQgghACirrQdUcaOnzz+WE0ektXgd6KiMeFbfM5eUmOB7k75x5WSmPrwIu8Pd6Jpb170Z2Awj0PUEp4ONokxCiDYq3gnokD0bbKVw0UdgiWrc79rl8C9jWm9yy6p1A76tZKJT2zpSIUQPJwGqEEIIAMprVXGi+MhwTh/bp5nejTUVnAJYzSrQ9awr9edy694MqmevU4Dld86RrWSEaK2i7ZCzAo69KDD76Vl3eto/IHlg089PHeI7jmg8Zb9Js+9W61WzZ7VuvEII0YAEqEIIIQCosDmwhoe1S/Vczz3tziABqh48QE2LtYZ8HEJ0e0seVlvIVOTC7Lt87fkbITzal+lsCUt0y/uaLTB8fsv7CyFEE2RhjxBCCAAqah0kRFra5d6ePU0rbU4+2ZCHrvvWorrdOmHeIkm+KYfBtqQRQjTH+Ln58Ulw2KGmBHJXw46F0Hdi67Z9CW9FgCqEECEiGVQhhBAAlNvqiY9sn20hwsI0LOYwnvtuNwDp8VYmDkgCAqf4RlpM/PWsUQEBrBCihTa9D5s/UMdOOzw7FUr3qHOzFU5/snX3M7fPF1ZCCHE4kkEVQogu6GC5jVveXk+NsdVKe3tr5QG+3FxAfFT77VtoNfv+5Ly9Ksd77NJ9GVSAi6b05+KpA9ptHEJ0G3u/V1vHALjd8MHVvmszb4OYNIjuBYPmwrXLmt7zVAghuhDJoAohRBd069vrWbG3lDPG9mH2sF7t+lpFVXXc8cHPAO2y/tQj0mKi0q4C7vfW5HLTCYP59Qs/YTZp3gyqEKIVXj1dPd5xAHJWgVsVOiOhP8y558jve+kXkL+p7eMTQogjIAGqEEJ0QTmltQBszqtgeO84rOFhJES1z3S799bkeo9t9e2XsR2aHkdBZZH3fHNeBQfLbe32ekIc9Rw2+PpeWPk8nPwwTL1OtdvKweT3++DLu6C+RmVLL1kAUSlte93+x6l/QgjRCSRAFUKILkbXdSpsKhPy2Fc7eOyrHSRGhfP1rbOwO1xkJgbZu7ANDpbXeo9nDWm/PQx/f+IQYiPMfPbzIQAcLllnKkRQB9fC2ldhzX98bV/eCcueVutI3/hlYP8Nb0PaSOg9BnoN79ChCiFEqMkaVCGE6GIKq+qoqQ/cjqWs1sG0vy1i+iOLQ/96lXUMTYtlzT1zuX72oJDf32Ns3wTume/78FzbjtlaIY5qPz7hC04nXA6//RxShkJVXuPgFFQ29dB6teZUCCGOchKgCiFEF7P1UGXQ9jqnG8Bb4dbucLF6X2mz9yuvrefmt9ZxqCL4dNqCqjp6xUWQHBOBprXvWtBIvzWu63PK2/W1hDhqOfx+VjMnwoBpcMNKSMr2tQ8+Ce4ugBPvB0eNais/0LHjFEKIdiABqhBCdDHb8qsAOH9S36DX8yvtAFz08grOfW45ec2s4/zzx5v5aH0eX20uCHq9sNJOWpy1DSNuuZgI38qSN1fmHKanED2Ysw4yxsPl38Bov4zpJZ+qdab9joOznoNwKyT7zXo47ncdP1YhhAgxCVCFEKKLya+wExth5uFzxmAxNf41/fIPe7n0lZWs2lcGQKXd0eS9DlXYWLAhD4B7F2ymojaw7/qccg5V2EmLiwjhO2ia2RTG17fMZP6Y3h3yekIclZx1YImBvhPB5FcuJD4DbtsJl30B0cmqLWmg7/qQkzp2nEII0Q6kSJIQQnQxtnoXkRY1FfbyGVk8u2R3wPWXlu5t1L8pb6wInPL3/c4iTh/bhwkPfM3sob1416jgG+rCS4czOC2WZ34zjs15SyirrecfvxyLzdH0exCix3HawRrfsr6JA9p1KEII0dEkQBVCiC6m1uEiyghQbztpKNfMHMi32wqIjjAzJSuZsfd/FdD/cMHd+pxyhqXHeqcNV9od5JbVUlxd7w1Ob547mLOPzWind9O0r2+ZSXWds922zxHiqOWqB3MLZzWEW2HufdBvanuOSAghOowEqEII0cXY6p1EWtSv57AwjfiocM4Zl+m9vu2vp/DZxkP0T47i3OeWY28iQK2uc7JiTykXTe3vDVDzK+ws3Vns7TOyTxw3zx3Sju+maWZT++3tKsRRzWkHcyvWhU+/pf3GIoQQHUzWoAohRBdTW+/LoAZjDTfxi/GZxFrDAbA73I36HCip5arXVlPvcnPiiDSW3TGHOKuZA6W1/LDLF6DOHtor9G9ACNE2zjowy5c3QoieSTKoQgjRxdTWu4i1Nv/r2RquvmMMtgb12e92sWZ/GfecNpzJWUlomsbYvgnsLa6htKae+WN6c82sgQxLjw35+IUQbdTaDKoQQnQjkkEVQoguxlbvCtgvtCmePjaHi2+2FPDQ51u913LLbAzrHccVM7K9e5tmp0SzOa+S3DIbQ9JiGZURjzlIlWAhRCfJWwfLnoHaEglQhRA9lmRQhRCiC6mpc3Kw3MbYvs1X8LQa04DtDhdXvLYagAsn96dfchTyfbiLAAAgAElEQVQHy20MTQvMjmalRONy6wAM6hUT4pELIdrsvcuh1KjaHZXcuWMRQohOIl+dCyFEFzL9kUVU1zkZmNp8AGk1+wLUOGNK8MxHF/PTnhIOlNSSlRId0D/L754SoArRxdTXQOkemHoDnPUcTL6ms0ckhBCdQjKoQgjRRdTUOSmrdQAwa2hqs/3DTRqmMA2bw4UpTPO2//qFnwAYnRGYhc1K9gWs6fEyfVCILkHX4bNbYfX/qfNBc2Hg7M4dkxBCdCLJoAohRCd48LMtzH/6h4C2NfvLAHjtskkMS49r9h6aphEZbqK23kWFzRFwLTMxkjnDAyv09knwBaUxFvl+UoguIXeVCk4HzIB5j0H28Z09IiGE6FTyCUUIITrBiz/sBWBXYbV3uu3KvaWYwjTG909s8X2s4SaKq+sxlpZ6/fGUYUSYAwst+RdECvPLuAohOonbDev+q47Pew2ikjp3PEII0QVIgCqEEJ3oteX7mDe6Nx+vP8i7q3MZmhZLdETLfzVbw8MoqLAHtI3tm8D80b1DPFIhREgV7YAPr1KVe/sdJ8GpEEIYJEAVQogO5vJLd762fD+vLd/vPW/t2tDIcBP5lSpAHdwrhp2F1Tx41ijJkArRVVTlQ956KN4OU2+EMGMmw6b3VHB62uNwzAWdO0YhhOhCJEAVQogOVlPvBCDaYqKm3gXA+ZP68ubKHBKjLK26V6TFRF65DYB75o8gJsLEqIzmt6gRQrSTyjyI66OOd30Lr5/ju9ZnHGTNUMflORCXARMv7/gxCiFEFyZFkoQQooNV2VWAOmd4mrfNs62M1srEpzXcF+TGWs2M73/4aYI/3XkCS2+XCqFCtItd38Ljw2HHl7B7cWBwCvDlnWArh3cugQ1vgCU6+H2EEKIHazZA1TTNqmnaSk3TNmiatlnTtL8Y7Vmapq3QNG2npmlva5pmMdojjPNdxvUB7fsWhBCibXRd596PN3mr6La3aiNAnTUkldEZ8fxuziBG9lFZz5NHprfqXulxvinBURbTYXoa/eOtZCZGteo1hOix8tZBXRXUlras/wG1xROrXoL/nqWOx10Md+aq4/yf4a0LYMtH6jxrZmjHK4QQ3UBLMqh1wBxd18cCxwCnaJo2BXgE+Keu64OBMsAzR+VyoEzX9UHAP41+QgjRZeWW2Xh1+X6u/9/aJvvous7rP+2noNLeZJ+WqrKrLWFSYyP45Mbp3HrSUKYOTGbzX07mxBFpzTw7UL8kX7AZFS6rNoQImV3fwAvHw8OZ8PcsqClp3OfV02H5v33n1fnqcedX6jFjApzxNETEwm8/V237l0JUClz9PZz0YLu+BSGEOBo1G6DqSrVxGm7804E5wHtG+6uA8VUhZxrnGNdP0LTWTloTQoiO88bKAwAkRTe9/nNbfhX3fLSJuz/8uc2vt7NQ/UrtmxgZ0N6a6r0e/gGq1SKrNoQICZcD3vltYFtegy+wVr0Me79X03afnwUL74Sd30DfyTD5WrDEwIXv+foPmAbDz1DHpz4CvcdCeOuKogkhRE/Qok9DmqaZgDXAIOBfwG6gXNd1p9ElF8gwjjOAHABd152aplUAyUBxg3teBVwF0K9fv7a9CyGEOEKb8yp4dsluQFXXLaqqIzU2wnt9S14lK/eWEGVRvy4b7jd6JFbtLSUlxkJWStvXn/X1z6BaJIMqREgsvBPqq2Dk2ZB9PHxyE3z/KKQMAVM45KyEpf/09T+0Xv0DmPY7mHItnPyQr2Kvx+lPqoq9g0/sqHcihBBHnRZ9mtF13QUco2laAvAhMDxYN+MxWLa00Uc6XddfAF4AmDBhQgg+8gkhROttzK0AVEXd7QVVTHzwG16/fDLTB6cAMO+pHwC8U28TIsPb9Hq5ZbV8sO4gp4xMJxSTS/ol+wLUyPDm16AK0eO43fDZLeB2qem2zf3c1ZTAqhdhwuUw/3HVZomBBTfCk2MC+2ZOgtyV6njMr+C430H6KHXeMDgFtdfp0FPa9n6EEKKba9XX7bqul2uatgSYAiRommY2sqiZQJ7RLRfoC+RqmmYG4oEWVhcQQoiOtaeomghzGNfNHsRH6w6ys7CaH3cX8/WWfCpsDm+/r7cUAFBWW9/ieztdbu768GfOHd+X/slRJEZZuPWdDQBkp4ameqd/kSST7H0qRGM/PAZr/qOOx/8WMiccvn/xDvU4xC+QHH0uxPaG/8wL7PvbT6EiF7Z/obKmYfIlkRBCtFVLqvimGplTNE2LBOYCW4HFwLlGt0uAj43jBcY5xvVFuq5LhlQI0SUVVNaRHm/l+tmD+PrWWQzuFcOzS3bz6vL9fLQ+D3ODoG/x9iLuW7C5RffeV1LDO6tzOe/55Ux+6FvOeGap936XTc8KyfglKBXiMFwO+O7vkDlRnedv9F1z2FVw2VCh8fOdOiSwfcA0uGYp/GGXr80cAckD4bgbJDgVQogQaUlFjd7AYk3TNgKrgK91Xf8UuB24VdO0Xag1pi8b/V8Gko32W4E7Qj9sIUR3tmR7IVMf/paKWkfznVvps42H2Jhb7j0vqqojNca35vTU0b0BuGpmNv+7YjLvXXuc99rMIakA/GfZvoCxFVTaueClnyisCqzwW1IdmG3dll/Fst0lnDG2Dyl+r9lWX98yU/Y2FSKYmmJwO2D0eeq8Kh+cdWq/0v87Gf45Egq3BT7nwAqISYeE/o3vlz4aYlLV+tLZd7f/+IUQogdqdoqvrusbgWODtO8BJgVptwO/DMnohBBHlc15Fby58gD5FXU8ff6xRLZgX85g/vDuRoqr6xh7/1d8fP00xvZNaPPYauqclNscXP/GWlJjI1h191wACqvsDE2P9fb73ZxBzBicwrh+iY2yk0/+6hieWbyLl5fuZWdhFRMGJAHw9qocftxVwqQHv+Xy6VlcOKU/e4urqalzBR3LlOzkNr8ff4PTYpvvJERP47CrCrsAcX0gKhm+e0T98/fpLXDZF77z0t3Qa9jh16pOvT704xVCCAG0cg2qEEIczoOfbWXZbrVX4M7CKsZktj6wrK13Ulxd5z2/8c11fHHTjCPaggUgv8KO2aQx4YFvGN47DlBZU1B7m+aV25k9tJe3v9kUxkQj8PR448rJbMmrJDHawtUzs3l12T4WbMjzBqj+2dCXl+7l5aV7vedhGtx+yjDeXZPLTScM5qstBZx5TJ8jei9CiBaqq4JX5vmm9MakQepwtQdpQweWQXWRyowWboWDa9RaVSGEEJ1CNs0TQoTMjoJq77HzCPdjWbFX1VR7/fLJvH75ZA6U1vLN1oIjupfT5WbKw98y6cFvANh6qNJ77Y0VByitqcfmcJHRYD/Sho4bmMIVM7IB6BVnZWh6LDmltd7rNofKlP7wx9n89axRAc+9bFoWV88ayDe3zuL0sX14+vxjjzjYFkIchsMOix8Ghw02vq2C014jIX2M2nP0zKd9fQfOURV4p92szv9zGtgr4PVfQEScqsgrhBCiU8inJCFEi+i6zsJN+Xy5OZ/fTO7PpKzALGO9001xdR3HDUxm2e4S7I7g01ubk1+h1nFmp0bTKzaCyHAT6w6Uc+YxGc08s7HtBVVA4N6lI/vEEWUxcdeHP3sr8mYmRgV7epPcuiqW9PnPh5g3ujdVdrUetXe8lYum9OelH/awv0QFsNccP7DV4xZCtMDnf4TIRJh5G/zwD6gthpUvgCUKDm1UWdPrlvn6J2XDXYfAbPVtAbPpA/VYvB0eGwpOG1z4PvQ/rvHrCSGE6BASoAohmqXrOvOfXsrmPJWBTIiyNApQ//aFKjTime56pAGqZ/ptcowFsymM/slR/GfZPs46NoPkaAuZiZEt3j+0vEGRpfMn9eOhs0fx6JfbWbWvjEe/3A5ARsLhM6gNje+fwNZDlVz3v7X0jrcSaTERbTFhNqkPvV/ePJNV+0oxaVpIiyEJIQz7l8PK59Xxd38LvJa3HjZ/AMPPaPw8S4Mvo0aeDe9dqo6dNvXoqfgrhBCiU0iAKoRo5KUf9vDq8n3cOHswE7OSuPmtdd7gFKC8tp7SmnoSo8K9weL2AnV97og0FmzIw+5wN3l/p8vN9zuLyEqJIStF7Qe69kAZP+4sJr/STkJUOBFmVWDJMx32V88vp87p5qqZ2dw1bzgA6w6UsXhbIZV2JwWVdp69cHzA61Qa+5heMT2LSIuJ3580FIDU2MCgMTOpdQHqPaeNYNaQXlz52moOVdgbXbeGm5gxOLVV9xRCtJDbDYv+CtZ4FUyGmWHHQt/1zR9AZBLMe6z5e2kanPcavHOxOp9+q7qvEEKITiMBqhAiwIfrcnngs60A/PH9jVwytT8bciu811NiIvhofR4frc8DYM9D8wgL04iymBmWHsuYDPXh7nAZ1I/X5/H7dzcwJjOeBTdMB+CWt9d7p8UO6hXj7fvAWaO44/2N3jG88P0efn/SECLMJm57byO7Cqsbv4ChwghQL52eFZAl7R3vO/7Xb8YRZw1vwX8ZH2u4iYkDEgEY3z+RNfvLiJV1pUJ0jAU3wv4fVQA66UrVtvVTWPsa7PxSnZ/0V4hNa9n9RpwJdx6EvHWQNeP/2bvv8Kiq/I/j7zPpJIEQEnpvoUrvIEUQBUXE3gv23tf9qavu2lZdy1pQWRUVe0NFFBQR6b33XgOkkEJ6ub8/zkwmgQDpBT6v55nn3jm3zLm5mWS+c875nvKps4iIFJk+UYlInhW7D3P/l6sKlHmSFgEE+rkKZNgFiE3JICI4gG2HjtAkvEbe1DInakHdc9gGomv3JZKdk8v0dQfzglOgwLyk7RvU5OPxfejy9Iy8sk8W7OKK3k3ZFlMwOM3NdXC5DPEpmaRkZJPkHhtaK6hgADqsXV3eu6YH/VrVIbSYwalHWA1/ptw5gHb1Q5m7JZZmdYo3jlVESiAtAVZOtutdr/KWtz/PPmY8DgG1Cm4rioAQBaciIlWEAlQRYX9CGsbAhW/bhCK1gvxISs/CcWDjgWT6tgynS+Mw/nZOO+7+YgU/r47OO/ZAYjqLd8SzPTaFu4a1JtDXE6AevwX1kHucaa4Dt3+6nN/WF8zSGxJY8E9T/gCzdd0QXvltM7mOg+PA6M4N+HmNrU9SehZhNfy589PlLNgex7hujQjys+ND8/P3dXF2x/rF/TEdo6t7ftbhHYrYUiMipbP6K7u85c9jx5MCnP1MRdZGRETKgaaZETmNHcnIJisnl/4v/EG/5//IK7+qT1PWPT0y7/nDI9vx91HtcbkMb1zejU3PnMN9w9sAcDApg6+W7qVZnRpc0LURgf72z8quuBSaP/oz57z2F/sS0gq87qGkDPx87NjV39YfpE3dEEZ0qMc1fZsBNoA82iPnRDEkKpLHRrUnNTOH56ZtpF39UIa1885hesvHy3hiyloW7rBzsU5ZuY9WdYOLnFRJRKq4ZZOgYTf7EBGRU5ICVJFT2JM/rGXYy3/y1+aYY7bl5jp0enI6176/OK/MZeDVy7pw3/C21PD3tmK2jvSOCXW5DAG+Pox1T/uSlJZFYmomzeoE4+PeBvDRgl2AbYG9auJCPl+8m0R3Vt2Y5HT6tKiTd86WkcFMvLYnUfVDAQjxP7Zzxx1DWjPpht40Cfe2mrx8SRfGdG3I8+M6A7B4ZzyfLNyF455W5sy2kVzZu1kxfmIiUun2LoPvboUpd8LiiZASa8vTE+HQOmh/fuXWT0REypUCVJFT2OeL97A9NoVrP1jMl0t255UnpmXxzl/bAFiwPS6vvF+rOlzYrfExLZg1g44NGEPd3XCT07M4kpF9wiRBO+NS+ft3a+jyzxlsPpjMoeQM6tUM5Lp+Nni8rl9zACJC/AFo3yD0uOeqE+yft96pUS38fFxc0bspH9/Yu8B+z4/rzKQbenNln6bHPZeIlJHZL8GKyaU7R24uxO+Azy+D1V/YsabTHoKX28DPD8EL7vdy3Q6lr6+IiFRZGoMqcorKyXXIzPEmKvpyyR4u62U/4N3x6TLmbbWB6aU9GxPk58NHC3YR5FdwrObP9wxkW0xKoV1kPcmF4lIyOZiUQY9mPsfsA7DkseFc/b9FbDqYDMDZr/6Fj8tQt2YAfzunHU+N6Zh3/pEd6/PRjb0Z1DriuNflGY9au0bB5EZnto1k9VNnc8fk5aRkZhfo+isi5WyWe+xn3fbQKN90T8kHbAto7eZweAfsnAeJe+x+P9wJbUZCzEZIOwwZ7qms/EPhmikQvcru99fLsGSi95xN+1XYZYmISMVTgCpyikrNzAZs99ntMSks351A1OO/MKZLw7zg9LbBrXj03HYkp2exPTaFR85pV+AcHRvWomPDwucE9Pd1EeDr4o0/tgJ26hWPWQ8NYdbGQ6zam0BEiD+/3jeIhNQsRrw6m9gjmXRoUJMr3MFy/uDXGMPgtieeP9TlMrx7TQ86Nqx5zLaagX5MvqnPyX40IlKWcrK863Negcs/teurvoTvbznxsZ5pYTzanQfDn4KINtBqqC2LbGeTI3W8EI4chKCwsqq5iIhUQQpQRU5RqZk2i+6NA1rw8oxNJKRmkZGdy9fL9gLQuHYQfzsnCrCtoZ+ML35gF+TvQ0a2baVdu887V2qLiGBaDGxRYN/awf68dEkXZqw7wL8u6ISvT8lHGIwsgwy8IlJGkg9413fOtctdC2xwGlIPznwYDqyG/Svt0uOCtyEgFPYuBpcfzH0FLvkIfI76aFK7GQx+2K5HtC7faxERkUqnAFWkBFbusS2DjWtX3bkvUzJsC2pIgC8NawWR4E5Q1K5+KMPb1+OSno1Lnd325Yu7sPFAEi/P2Mx1/ZufdP+hUXUZGqWutyJV3s65trWy1TAIqn3iffcsssv258OGn2DKHbDS3Yp63U8QGeXdd+EESI2HIY+Cy93rosMYcBwY9gS4lBpDROR0pwBVpBj2J6Tx/Yp9vDR9E+HB/ix/YkRlV+m4UjJsC2oNfx8+uL4Xi3bE0blRLSJCA6gZ6HeSo4tmeId6DO9Qj7uGtSmT84lIJctMgYwjMGm0fW5c0PYcGDcRAtzZvDdMBb8gaH2WfT7/v1CzMXS92gaonuC05/iCwSlA39sLf11j7ENERE57ClBFimBPfCqNawfxr6nr+WWt7c4Wn5KJ4zhVdo7NI+4W1OAAX+rXCuQC97QwIiLH9dEY2LfUrjcbCCkxsGmazaZbpzWs+gLittjt574IG6faZEbDn7atrU37QaeLbNKjXjdV3nWIiEi1pQBV5CSW7ozn4ncW8J9LuhSYGxRg+roDnNOpQSXV7MQOp2YCEJ5vWhYRkeM6vMsbnILtnutyweSLYdXnx+7/yyN22eMG6HMb+PrDjb9WTF1FROSUpQBV5ARych1+WrUfgL+2xBAWVLBrrKcbbVUUdyQDgDohClBF5CRyc+GDkeDytZl0O1/iHQ/a7Wo4vBNqNoCo0dD3NlsevRo2/AiDHgS/wEqruoiInFoUoIqcwOu/b+ajBbsA2BmXSsuIYAA6N6rFmn2JRCemMWPdAc6ugllln/hhHQDhNRSgikg+2Zmw+gvofCnsmgeNusOc/0ByNIx6GXrfXHD/jmPt42gNzrAPERGRMqQAVeQEfl3nnT5h1Z4EYpMz6NiwJj/cOYDWj03j5RmbAZjzyFCahFedjL5ztsQA0CgsqFTTuYhINeM4ds7QRt3tXKJH2zUfvr8NEnbBisk2A2+ni2HtN3Z7gy4VW18REZGj6JOryAmEuVsf/35uO/x9XOxLSKNOSAAulykQ+G09dKSyqsifmw4Rn5KZ9zwxNYu3Z22jUVgQfzw0uNLqJSKVYMdfdv7RyRd5yw7vsoEpwIfn2uAUvNPDHNpglz7+0KR3xdVVRESkEApQRQqRnZNLUnoWR9Kz6d0inFsHt+Lino0B8HWZvH08tsVUfIC6aHscV05cyPUfLuHhr1cBNjjt8s8ZLNgeR9emYQT4+lR4vUSkEq352i4TdsHSDyE9CSYOtYFp7Fa7zTcQrp8G1/8MLQbDITscgPrqrisiIpVPAapIIV6cvokznprB+ugkBrSKAOCOIa0A6N0iHIDJN/Xh+XGdAXjm5w0FAtaKcNl7C5m/LQ6A6MR0AGas93ZJTkzNqtD6iEgly8mySYuaDwLfIJh6H7zeBVLt3wk2/mSXI5+D5gOg+UBvl97aLeDKLyun3iIiIvkoQBUpxKId8QA8PDKKWwe3BKBx7Rosf2IENw+yz/u3iuCK3k3xd3f13RWfWmH1OzoYruFvW0qnro7OK0vJzK6w+ohIFXDkIKQnQueL4a4l0O8uSIv3bv/9KbuMbOctaz/GBrRXfgXBERVaXRERkcIoQBUpRHgNPzo3qsWdQ1sT6OftJhse7I+Pu4uvxze39wNgy8HkcqtPTHIGny/eTXpWDulZOcQesWNOnxnbiVsHt2TprsP8siaaBdvjuLRnYyJDA3hgRNtyq4+IVEHpiXYZGAZhTWD404XvFxnlXW/SC66fCpH6eyEiIlWDsviKFCIpPZvQwKK9PVrXDQFg88EjnNOpfOrz+szNTF64m0A/F/d/uYqm7ozBTcNrcFmvJizYFsftny4HoFOjWrx4sTJxilRZOVmwdSY07mlbLR0HZr9oExzV7wRnPQn+hWQFTzts9102CXqNh4CasG2mnaO0102QlmD3CwqzSx9fuOobMAYOroPf/mHL1VIqIiJVmAJUkaMkpmaxbNdh2tUPLdL+Nfzt2+iV3zZzea8m1K1Z9hPWJ6fb7ro/rNwPwO74VLo0rsXA1hG4XIanxnRk3Ns2S2ejsKAyf30RKSPzXoc5r0B6grcsvCXEb7fru+bConegYXeo1xHGvGEDzH3LbbIjj5lP25ZSz3l8AuDHu+x6YC3vfm1G2GXr4RAcCSkx5XdtIiIiZUABqkg+C7fHcfl7CwHYXIIuuzM3HuKK3k3Lulp5/tzk/XD5j/M74HJ3N25c2xuU9m+l1hGRKik7A/78NwTWLBighjWFrlfBwAfg04ttsHp4J+xfbtf3LrGtpUdLT4Cm/WD3Am9wChAUXvjrd72yTC9HRESkPChAFcnnlzXeJEM/3jWwyMed36UhP63aT233vKmlNX3dAf727Wom3dCb1nVD8lpQo+qFkpCWyWOjO9CjmfdDaK0gv7z1IH9NLSNSZWSlw56FUKOObQXNSoFLP/K2bGZngm++vxtXf2tbTPevhPcGw655tjw11k4Pk50OLc6Ecf+zXYI7XACfXQLb/4RBD0Gd1lC7WYVfpoiISFlRgCri5jgOGdk2O+4ZjWvRsWEhLRbHcf/wNvy0aj8Z2TnH3WflngR2xqYwtlujE54rJ9fhoa9WkZyRzdi35uWV929Vh89u7lvoMZrvVKQKSo2HCQMgeb+3LLQBtMzXVdf3qC+1jDsJW9hRPTHuWAQ+fhBaH4wP+AXCGZfYbdf+YFtnfQPK/hpEREQqmAJUEWzL6eNT1hKXYrPjFqf1FLytlolpWfR69nfO7lCP6/s350BSOoPaRALkBZsnC1CX7IwnOSObK3o34c9NMXlznHoSI51IaIDe0lLFJOy2yX0aVHLirlVfwPTH4JrvocEZFfOa0x+zwalnjGnnS2wyI58ivE9rhMPYCVC3A6TEQt12J95fwamIiJwi9GlWBHj4m9UcybDdaFtGBBf7+CD3VDTbDh0hJjmDTxft5tNFuwHY+cLoAvumZ+UUmLrmaNPWRBPo5+Lx0R14dqwPE2Zv42BSOg+PjDruMQAzHxxcoKuvSIVwHBtA1agDLhfsWWzn42x/vt3+yTiI2wIPb4fgOhVTp9R4mwwooq1tkUxLgGkPQ0YSvDsInkqsmHpsm2mXN063P5P6nYt3vMaMiojIaUgBqgg2ydDGAzYp0rvX9Cj28Z6Ac7+7tfNEDiSm4+MyxKdkkpGdS+8W3rGkubkOv649wJC2dQl2t4beObR1kerQKjKk2PUWKbXN0+HzyyCgFlz9DbzvHlt53msw9X7Asc/3LYW2I8u/Prm58MWVNnFQzcZwz3L45ELIyJf0LCe7aK2YpRUYBk37Qkhd+xAREZGTclV2BUSqgoTULBqFBfHWld1pU69o08vkF+Br30q/rT94zLbcXIfk9Ky854t2xDHoxVlc8NY8Ln13QYF9NxxI4lByBme114dZqQYO77TBKUBGojc4BZh6H+DYxD0A0x6CVV8Wfh7HgflvQuyW4tchMxWWf2IDU4A1X9ngFCBpL3x/q82G2+kiOPNhW56dVvzXKYmMZAgo/t8TERGR05kCVBEgPTuH4e3rMvqMBiU63ngSmxQiJTObvzbH5j3fFpNy3H3fmLkVgB7NapeoHiJlbtUXNhAtzNbfT3zssCfgrCfgkkl2LOr3txRsyfRI2gczHoM3e0LctuLV76d77RQryz6A72+HZR9BzUYw+FG7fd33dnnmwzbBEEBWOQeo8Tu840+N/s2KiIgUh7r4igBZ2bn4+ZTug+RVfZrmjTvNb/bmGO76bAW1gvwwxo5Tze/7FXv5v+/W8v51PYlLyaBJeBAt1V1XKktuLiTusVOVbPrFtkBi4B9x4PKB+W/Aik/teE7/fOO1x06AKbfbDLOOO5t1zxvtsuOFsGs+LH4PYjdDo6O60acnedd3zYc6rYpe351z7PLnB71lLYfC4EegYVfYMQeCwmySof3L7fbM439JVGo52fDl1XBwrX0eu7X8XktEROQUpK92RYCsHAc/39K9HZ4Z24nF/3cWj49uX6D8rs9WANAkPIhaQX5sjbEB6nB3N95vlu0lLSuHl2dsYsnOwzSoGVSqeoiUyux/w+tnwOwX4de/uwsdWPU5LJsEMx6HmA221TN2M/S6GS58D1oNg8h2MH4GdLoYrv3RZqL16HG9XRbWGpuZ70ubI8d2ky8gI9kGgY4Da76BI4e82/rcDgE1oV5HG0xHnQvnPGeDVQA/93urqC2ouxfCa2fA2m+Ltj/Ajj9tcDrgXvs8ok3RjxURERG1oMrpIz0rh+xchz5M4OoAACAASURBVBB38qHf1x8kPiWTS3o2JjOn9C2oxhjq1gwkNLDwt9U9w9rw+swtrNtvW4ta1Q3h9w2HWLAtDoDluxMA2B5bjq07Iiez+F27nPWsXZ79jA1Kf7jTu89DW2HJRGg/Bup38pbfucguL37/2PMGu8dVp8TB6q8gJxO6XW3LMvK1oOYPOMEGk3uXQFY6tBgEzze2wW7MZtg9H0LqwQVvQdN+EBBig1H/42Ti9qvhPefJbPkdvroWslJg+uM2I3BE2xNP5xK/A355FHwDYfDfoOM4e4yIiIgUmQJUOSVtPXSEd2Zv45YzW9LWnfRo4L9nEXskg09v6kNU/VCe+Xk9yenZefOS+vscfxxpcYQGFpzq5ekxHbmmbzNcLsP7c3fklXduVAuAXKfg8e9e071M6iFSbPE77Jyl+TXsBkP+Dn8+b5/7BEBIJAz9v+Kd29Oa+svD3rJuV9sW0Yx8LagJu7zrB9fDhH7e52e7g+Zlk7xlV39bcPqW/K22R/O0oC6aAA3eOX4m39R4+PQiuz7gXpj3OrwzEFoMhut+tOXZmfDNDTDoQWjkfs8u/xgO74CrvrZBcsOux6+LiIiIFOqkAaoxpgnwMVAfyAXecxzndWNMOPAl0BzYCVzqOM5hY7PFvA6MAlKB6x3HWV4+1Rcp3Gu/b2bq6mi2xxzhuzsGcCgpndgjGQBc9b9FBfbdn2BbU0rbguqRvwX1sVHtua5/87zn4cH+gJ2asXdz7wfpK/s0ZU98Kv+5tAt1QwPLpB4ixRa90i7HvAE/3g3NB0GzAdB8IESvgvCWMPLZkp3bVcjcv9Gr4N0zvc+b9rPdajNTbIB3YHXB/Wc8duw5wosxXtXP3bK65mub1TfqXO+2fctgxj+gSS9o1NOWnXG57cK8cy44ubBjNqybAh3H2nNsnGq7Op/7EhxcA3Nfgcj2truziIiIlEhRPpFnAw86jtMe6AvcaYzpADwKzHQcpw0w0/0c4FygjftxCzChzGstchKr9yYCEO2el3SV+3lhVu21XWvLLkD1tqA2q1OjwLYz20YCdvhcZKi3q+B9w9vwyfg+Ck6lcmW55/FtPtCOIb36W/ttCsAVn5c8OPUY+4532hk4dlqZHtdDegLs8kwTs88uw5od/3z+NQrfVpgGXWDAfXZ971Jv+Z4lMHEY7JoLc1+Ftd/Y8pHPQVgTuPkPGP8b1G4OiyfabT/cYZc1ImDyRXbOV+OC3jcXvT4iIiJyjJN+InccJ9rTAuo4TjKwAWgEXAB85N7tI2Cse/0C4GPHWgiEGWNKNneHSAkkpmaxOz4VgMOpmQCs2pOAj8tw44AWx+y/3j0mtLRJkjxaRATTsWFNLu3ZmCFRBeczHdmxft66MYZHzoniyj5NFZhK1eCZH9Q3CFoOPvF4y5LoegUMe9yOGwVvBl6Pxr3sMiXGzm+64lOo0xou/wzqdvDud96rdlnclkofXxjxNNQ/A/Ysgjmv2Glt5r5ScD/P1DT5uwv7+NkuybvmwisdveXZ6XYO2OFPwSM7oNf44tVJRERECijWGFRjTHOgG7AIqOc4TjTYINYY4/kk3gjYk++wve6y6KPOdQu2hZWmTZuWoOoix8rNdXjiBzu9Q/9WdZi/LY60zBxW7U2gbb1QhrWrywfzdhAS4MuEq7tz46QlHEiyrUZlNQa1VpAfP98zqNBt4cH+DImKpHFtOxbujiGty+Q1RcpEtu0GX+aBaX7GwGWT4cNR3rGkdyyC3GwI8SRSioHZL0D8NtuSW78T3LEAkg/aLMBN+0C3a2zQWBKNe8LSD2yAPPNpW9bqLLjofzBxqDfT8NHzG3e5Av54BpL2ess8QXbT/nY6GxERESmVIgeoxpgQ4FvgPsdxkszR/7jz7VpImXNMgeO8B7wH0LNnz2O2i5TEwh1x/LhqPwBDo+oyf1scu+NTWb03kVGd6zOwTQSTx/ehd4tw/H1dhAf7M22N/e6krLr4nsykG3pXyOuIFFu2u4uvXzlPddSkN9w6GyYMgCZ97BylYPu++wZBzCbbitnuPNuS6xFazz6g5MEpQJO+NkDNr/MltsX03lWQFA1p8cceV6uxndt12ywY+zYseMuOQwXvNYiIiEipFClANcb4YYPTTx3H+c5dfNAY08DdetoA8MwNsBdoku/wxsD+sqqwnJoysnPw93Fxgi8+imRjdDIAw9rVZfQZDXh22gZGvvYXAGc0tq0bA9tE5O1fu4Y/B5Nsq1F2jr4nkdOcZwyqTzm2oHrU6whPJRQsMwa6XA7LPrTPm/Ytn9fudBEE1YbcLMjNgfbnF2wtrdnAPgrj6V4MNuOxJ0ANrFU+dRURETnNnLTJyJ2V931gg+M4+Qfq/Ahc516/DvghX/m1xuoLJHq6AosUxnEchrz0J4NenMWh5PRSnWvtvkQiQwP44PpeNAzztgK1jAhmRId6x+zfxj0FDUBsSkapXluk2stOt8Gpq2J6ExRq+FMQFA7+IdDjhvJ5DR9faHs2tBsNHcYc25W3qFqd5V4pm+EBIiIiUrQsvgOAa4BhxpiV7sco4AVghDFmCzDC/RxgGrAd2ApMBO4o+2rLqeRwahbRiensPZzG5IW7S3yemRsO8tPq/fRtWSevbFx3O8fplLsGEBFybKvQ/cPb5K07akCVokqKPjV/YbLTwbeSE3YFhcEDG+DBjRAQUrl1ORm/QLj2B7h9XmXXRERE5JRx0i6+juPM5fhfD591dIHjOA5wZynrJacRzzykABujk0p8nolzttMoLIhnL+yUV/bvi87gvrPaUjOw8PFqLSNDeOfqHkxdvZ/xA4/N8CtlZP9KmP6YneZj6N8hIPTkx1RVhzbA231tBtmrv7Otb7nuOTJbDil5a1xVkJ1ug67K5hcIVIF6FEXLIZVdAxERkVNKJfbjErE8c5UG+rmYsf4gv68/WKLz7EtIo0uTsALBqJ+Pi6Z1TjxP4jmd6vPmld0J9PMp0evKCTgOHFxnM7bumgsL34LnG9uxewCbfoUXmsLCQqZLTtxrA7+qJnq1XW77A366x17j2m/hk7Ew5z+VW7fiyki2YzBzsmH1VzarblbaSQ8TERERKS8KUKXSHUi0H4h7NrNzDv7r5/XFPkdursOBxHQa1Crn7KNSPLNfhAn9ISvFZk71WPEpHFwPn18G6Ynw66OQmi9rauI+eLUj/HhX1epKu2+Zd1qSLlfA8o9h6n2wy93F849/wccXwP4V8ME5sG+5d+qWkkjI1+XdceCn++zPdO9SyM60gf2s50p27twc+2XBe0Psz/m7m215Rsl7MYiIiIiUVrHmQRUpjTlbYnjjj628eUU3fli5n8t7NyE00I/9ien4ugxvXtmN89+cy8GkdNKzcorVopmcnk1WjkNkaAVkH5Wi88wRecciO8flgTXw8RiY8dix+353C1z5JcRuhs8vt2UrPwUffxj9H8DAvNeg29Xe+TIr2o6/IGkfXPwhNB8Eqz73zuUZFA69boK/XoSvb4DDO+ycmvU7w40zwN/dkp+bC5lHILDm8V/HceD3J2He63DHQqgRAWu+8ma3nfVswf0HPQS+/sW7lvlv2OWB1fbRqAdEtoOoc4t3HhEREZEypBZUqTDvzt7O4h3x9H5uJs9O28DZr/5Fjrvls17NQMJq+PPchZ1Jz8pl9uYYnGK0nMUcsd2Ew4JKMTeiFO7AWnj/bNsaWBybZ8Cu+dD/HjtHZI1wO6fl7QsgvBXUagI3zYSnEmHoY7D1N/j8Cpj7GiTth+um2mOXfWjnxDy41rZefjjK+xpzX4OPzoc135TtNR+PZxqWDmMhJNJbHtkezn8dhj0GUaNscOpxYI2dL3PSefDnC7aV9YUmEL3q+K/z8QU2OAVI2GNbaaf/37H7BdW2y0PF7HWQuBdm/tO2at86B6JGw7kv2rk9259fvHOJiIiIlCG1oEqFSUrPKvA8OjGdHbEp7E9Io2GYTYjSp0UdQgJ8ufWTZbStZzN4/nDnQIL8T9yaOu7t+QCE1VCAWiaSD9pun5HtYM3XkBxtWwNbD4erv7X7JO6DfUuhwwXHHr9hKnx1jW09HPRAwW31OsCdiyE325uQp8cNtlVwy3T7vFEPaDEImg2AhW/Dt+Ohhjs7c9wWWP21PffvT9qyA2uh88Vl/3M4WnZa4dOw3PKn91ou/QTWT7HXd8ZlNoCe95ptNfW0KAO8eyZc8JZtEc4vK90mXPL47BIIqQd+wXDdT7B/uQ38c7Nh6P/ZhE0xG6Fh16Jfh2fM70UTIawpXPFZ0Y8VERERKUdqQZUKkZWTy8boZK7o3bRA+S9rolm0I5767rGj/r4uGte265sPHmHzwSOsj0486fmT0rMBcFXnDKpVRU62HY+4ZQbM/68NTj22/g5v9rZjL1/tAF9dC2kJ3u3pSbDsI/jyKnBy4dofva18+fn4FswWGxIJ96+HXu5xkJ4svy6X7b4KkBpnl+Gt4Lub4O0+3uOzUkt/3UWRlQZ++cY5n/9fGPVywWvx8bXBcpfLbUbfsRMgvGXB8wRHQkQU/HCnHYub34932eXFH3rLjhyEgfdD4x7Q+2a45EO47BOo7c48nbSveNexaRq0OdsGpyIiIiJViAJUqRC74lLIzMmlV/PadGkSllf+n9820ygsiKv7eD8od29WMKDZHpPCi79upPezvxN7pGDCmbTMHLYeSs573qN5IcGQFM+sZ20L3uhXoOtVtuzeVRBYy67HboIf7/buf2iDd/3PF2xmW48g770+qVqNbMsp2AQ+HkMehSfzBcHnvVLwuIbd7fQoFZHx9+gAtcd1NmA8kbAmMP43uGaKXfa5He5fB+Pes9tnv+Ddd+9S22Ld7y7oeKEde3veq7Y7dItBx57bL9C26KafILFRbg7k5Ou9kJkKh3faKX9EREREqhh18ZUKsS0mBYBWkSF8eUtflu48zNXvLwJg+v1nEhLg/VV8YnQHmobX4IVfNgJ2+pi3/9wGwOq9CQxrVy9v3zdnbeGtWXbbsxd2Ou58p3Ic34yH6JU2EN34sw2+ds6BNiOh13j7GPu23ffeVRC3HZL32+lU9q+w5Yl7gH52/YB7Cpaz/gEdxxW/Pp6W08Y9vWWeVvFrfwQcaH4mtD0Xul4B7cfYsZr7l9sg1f/EUwqVWnY6+JZgfk6/QGg11K436W2XDbvasbeznoWnatmkSzvn2IRIQ/5ur7vXTXbfnjce/9yBtWwm5ANrbcbgxu4gP3oV1OsMn11mswy3Gw1N+9ouxE4uNOtX/OsQERERKWcKUKXcJaZm8Zt7btOWkcEE+vnkdeMFCgSnAEH+Ptw2uBVxRzKYOGcHszYeytu25eCRAgHq3sN2ihpj4LKeTcrzMqqX7EybnCdhp03o4ypkDO/qr2GtO7mQZ+oUj8LGlQbVdgc/PWwinejV8O4gOOK+P+u+twFWp4tg0IMlq3fUuXDB29D5kmO3tRzsXb/yC++6nzsozUorPEBNioYFb9pWxLZnQ9N+4B9csvod3YJaWv3vhrmv2i7KKbG2NfTi9yEgpOjn8ASok8fZrsBRo2wX4uUf2W7EsZvsfmu+tg8Al58N9EVERESqGAWoUu5emrGRb5btBSDU3cIZHHDyX73HRndg5Z4Eluw8nFe25dCRvPWfVu3nh5X7Afjr4aH4+qjHOmCDqPeGQoy76229V+HW2QWD1OjVdhxncKQdR1m7Oaz7DrpeCTGb7fjEk6nf2U4Bc8R++cDX19tlnTYlr7vLB7pdVbxjPOM/s1IBdyIlx7GZcxP3wqIJ3n0Xv2tbX/MHuMWRnV62AapfEDywwV53QKj9YqG408UE1rSt2J77sGmad5snOAUY8S/bcvr7k7b19OhETyIiIiJVgAJUKXcbou0Y0Wcv7JRXFh5ctA/hL1/ShcEv/Zn3/Jtle9kRm8J1/Ztzz+e2i6nLQJPwcu7aWZ1smWGD0+FP2+6vB9fA97fZZD0+7rf83FdtcHnHIgh2B3X1Otjl0Ql9jscY20I3/7/eaV5cvjDwvrK9npPxtKBmp3vLEvfYuVZ9/G2dLv8c6rSy86tu/sXWt9UwO/WN48DOuZCRbMd5eroZHy1xH2yfDc36l23984/TLW5wCvYerCokC29wXVvX3Gy48F1vq2zzQRDRumR1FRERESlnClCl3MUdyeC8MxpwVZ9meWU+LsPUuweeNOtuszrBNKgVSHRiOm3rhbD54BGW7TrMsl2HaRUZzBPndSCsRgk+1J/KYjfbZZ/bbLD4+1M2IA2pa8dP1mllW0t73+INTkvq8snwehc7LjW0Idy9rGxbGIvC83r5M/lu/d0ux/9mkwF5fs+u/Ar+29VOWxPWFO5bAz8/AEs/sNuHPgaDHzn2NbIz4fUzbLDXcWz5XUtJdBrnDVD9giErBep2sPOb+hTyJ94zRlVERESkClKAKuUqOT2L3fGpjOna6JhtnRrVKtI5vrq1H7viUtmfmMYj36zOKx/eoR5DouqWWV1PGckH7HhRT9fXYf+ATb/acZgexgXdry39a9VuDrfNg3cGQGTb8k9SVBhPC2pGMqz/EWb+086VClCvozc4BQhvAWc+An+9CAm7Ye8yb3Baow7E7yh47pxs2PqbbXn16HJl+V1LSbQc4l3vdrXtxnzZ5MKDUxEREZEqTp9gpFzM3xrLHZ8t57wzGpDrwIBWJW+paxJegybhNXAch7FdG3HrJ0uZtSmGxrVP82696Ymw9js752ZAqJ1m5cgB2101tIF3P5cLzn0BFk+0Y08b94CznrTBWlmo1xHOfx1anVU25ysuz7VOGg2th3uD0143g08hWZ0HP2KTQL0zAP43zJb1vsVmJU7cY5/n5tipdDZMhYx88/A+uKngnKdVQf5rHPSAnZanRnjl1UdERESkFBSgSplLy8zh9ZlbSEjNYvLC3dQK8qNPy1J2JQWMMfj7Gp4e04nEL1cwon29kx90KsjJBhwbiKQdhkXvwcafbJZegKn3QVgzSNjlPebMo7qpthxiH45TsEWxLBgDPa4v23MWR618rfNbf4czH4Zhjx9/fx8/qO8dD03HC23A/se/bBD/3S026F35qd3e907AsYF4aP1yuYQyE1QbfAMquxYiIiIiJaYAVcrc6DfmsN097ylAnSImRCqqpnVq8N0dA8r0nGXGcWDDj9Cwmx3jWBo52Xb58QVwaB20HmFbR5P3F9yvRoT7tRxIS4DzXrVTvRSmrIPTqiB/UqPgujDg3qIdd+F7kBoL/e60z4c8CjGbYPWX9nl4S7hrWfXIdnv9NPt7p+BUREREqjkFqFKmjmRkFwhOAfYmpFVSbSrB7gXw1bU2aHx4a+EBYfQqm1m2XkdvWWZKwbk5Hcd2QY3Z6C1b85VdXvguNO5lkx0dLTen8DlPT3Vj34Ept8FZTxw/C+/RulxW8HlQbbh2CiycAL8+Cmc/Uz2CU4DmA+xDREREpJpTgCplalecDU7furI7fVqG0/OZ38nMzq3kWpWzfctg2STIyYLdC21Zaiys+sIm7mk70iba6TneBqLvnmn3eWiLzaybuBde7QiDH4XsNFj9FfiHeMdSAlz7I3x7k52ntMvlx1Qhz+kYnAJ0GGO77nYcV/pz9b3dJhsqaqArIiIiImVGAaqUqQ/n7QSgTb0QIkICGBIVSd8yGH9apX042gaWHn1ug0XuFj2wXS93zrFjR2M3efeb/SKMfBZWfu5+/oJ3m2+gbYUd9ZJtRW0+EB7caLPvyrH8g22yqLKi4FRERESkUihAlVJLTs/iyyV72Hs4jW+W7SXY34dWkSEATLqhdyXXrpxtnmGD09AGkBxtywY9CJunw2H3lCU759hlaqxd9rzRzqe5ZKJ9eIQ1s91++95hA9Ls9IqfU1REREREpBIpQJVSu+SdBWw8kAzAqM71eXx0B3xcFZSMJzMV4rcXzMpakTZOtcvRr9gpXg5ttN12711pE+68e6YNNM97FXrcYDPt1m5uu/pmHIF130HdjnDzH8dOX6LgVEREREROMwpQpVTW7U/MC04B3r6qR8W9eE4WPOeeA7NBVzt28ETjM0vzOj5+MPslO42JccGFE2D115CRBCH1oN2oY4+LjIIHNkBKDNRpbRMm1W5ut/kH22RHncZB1KjTd+yoiIiIiEg+ClClVHbHpZbvC2ydCc0GQPw2CKkPwe7xrJkp8GG+oDB6Jcx7veQBatphSI0/NjPu3mXw0XnQqIe3qy7A6128681OkD21Rrh9FMbXH9qfX7L6ioiIiIicghSgSpFNmrcDP18XV/VpllcWm5IJgMvAPy8o4262cdtg8lFZWa//GX5/GvYuts8H3Atrv7Pzjm740WbErdXYbtv6O8RsBicXOl4ItRod/7W+uBp2zYXHDtiutbOeg0XvQnqCTVa0b5ndL2oUBEfYrsW7F9r5R89/vWyvW0RERETkNKUAVYpkf0IaT/20HoBth1J45JwoAv18mLpqPwCbnzkXX58yzjCbtP/Yskmj7dL4QJ9bYcQ/7SNumw1QPzgXhj8JsVsKZsWd/wbcscC2ZqbGw8pPbbKiw7sAxwanABt/tsmKZv8bWpwJLYdAp4vA5WeD1fxzl4qIiIiISJlSgCpF8uG8HXnrH8zbwaaDSTwwIopFO+JpFBZU9sEpeAPUiz+0AWdEa/jmRjj7GehzO/jk+/Wt0wqa9IU9C+Hb8bbM5QvX/WQD0q+uhRdbwM2zYMUnsPQDm8RoxScFX9NzbI0IuPRjCKrt3XaiFlgRERERESk1TaooBTkObPoFkg/kFf37141MnLODER3qsfOF0VzfvzmLd8Tz1qytAHx6U5/yqcuh9bblMupcGPI325L50Fbod1fB4NTjsk/gUnfAWbs5XD8NmvWH9udB/7ts+cShNjiFY4PTEf/0rt8+v2BwKiIiIiIi5U4tqKe6+O2QEgdBYRDR5sT7psTCL3+Dtd9A1Gi44jMAJvy5DYC+LW2Cog4NapKV4/DHxkM8Pro9zSOCy66+U++34z2DwmHnXGjWr+B0KyGRxz82pC50GAOPx9isuPkz4571FKz8zGbUBeh+rZ32ZcUn0LQ/RLaFiCg7f+mA+yC0Xtldk4iIiIiIFIkC1FNJUrTNRluvg00WtOAtWPi2d/vYCdB+jF0PCDn2+Pn/tcEpwJbpNmANjsjbPLqzndJlYBtbFhkawI0DWkBagg2ASyorDRa9Y+u/9APwD4XMVbbL7riJxT+fr/+xZS4X3L0cptxu5y4NawaNuttHfjdMK9k1iIiIiIhIqSlAPVVs+Q0+u8zOtTnwfvjrpWP3mXK7fYS3hDsW2fGaGcnQeoQN6g6shdotYMTTdsxm0n4IjqBJeBA9mtamfq1AABqGBTHtnkH4+Rhch9bBOwNg2ONw5sPFr/fhXfDTvbB9lresx3Uw+G/gH2IDy7ISWBMum2yTKbUeUXbnFRERERGRMqEA9VSx9lvbipmd4Q1OO10MzQdA/A6o0xp+useWx2+HTdPg6+sBx5a1ORu2zYTet4K/u8tuVioZ2TnEJGdQJySgwMt1aFjTrmxwJ0/64xnofIkd+3m0zFTwDfB2uV3wts2I22EsvD/CTgMz6mXY/qdt3QyOsMFkeTAGOlxQPucWEREREZFSUYBaXeVk22AuMgoCasL6H6HdKGg+EDb9Che8BcF1Ch7TsCukJ8JH58PX19myzpfCmq/suM/+d8Ogh+DQBrstM4WP5u8kPSuXwW2PM/Yz7bB3/fUucNtcqN/ZW5aVBs81sIHvmQ/Dkol2ChfwLu9cbK8jN8deU2FBroiIiIiInPIUoFZHyQdg8kVwcC1EtIUul0NWCgx9DMJbQI/rCz+uQRfIzQXfIMhOs4mQxk6AQQ9AnTbezLj+NQA4GH+Y56alAzCgtXss6sH1kBoHNRvaqV3yB6gAfzwLV35hp3Z5sxekxtryxe/apEeH1kFkO5ukaPr/2bGgkVF2nz63QpsRtpuxiIiIiIicdhSgVkf/cQd0NRtB7GaY+U+o28EGpyfjcsHNf9hsti0H27K67Qvu42e7+KanJANBDI2KxMdl7BQ0E/p597v+ZxuIunzhxukw4wnY/CvEbYNF73qDU5cv5Gbb4LTTRTDuf7arbUAoNMk3RY0xNugVEREREZHTkgLU6sRxYNmH3ue3zoFPL7aB3Zg3i36eeh1OvN3dgtps9n087zuUth0fhG/GH9v1dtJou4yIgsY94ZJJ8FonWPwebJkBrYbB1d/Z+h2JgVWf2ZZTT+Kj7tcWvc4iIiIiInLKU4BaSvEpmVz/4WL+fm57+rWqc/IDSmPZJDtPaGgDuGcl+AXCLbNOelix5Zt39ArfWTDtqNe4cwnsWQQ/3mWftxpql6H1oOUQO2UMwKAHbXAKdv7SAfeWfV1FREREROSUoQC1GBJSM/lq6R6u7tuMGv72R/fKb5tYvTeRH1buK/8AddUXdnntDzY4LS8BtSBqFFtDepC85HOatulEnbb97XjRjCSIbGsfLQfD3qXQ8ULvsT1vtFPHdBwL3a4uvzqKiIiIiMgpRwFqMbw1aysT5+xgR2wqz4/rTExyBl8s3gPAF0v28NSYjgT6+ZTdCx45BH41ICDEJhjasxBqRHiTCpUXlwuu+JxdGw4yfl57fhw6gDqNw47dL6ypfeQXda59iIiIiIiIFJOrsitQnczfFgfA54t3syc+lTs/W06u4+Rtn77uQNm+4MttvOM8PVOyjHmjbF/jBLJycgHw89GviYiIiIiIlD9FHkWUm+uw+WAy/d3deAe9OIvFO+L519hOTB5vM9Fui0kpuxdMdge70SshYQ/s+AvOetLOdVpBMnNs8O3nYyrsNUVERERE5PSlLr5FNG9bLFk5DsPb18trSe3ZrDZX9WkGQOPaQWw9lFy6F0k+YMd07pgNifu85a91ssvmA0t3/mLKVguqiIiIiIhUoJNGHsaYD4wxh4wxa/OVhRtjfjPGbHEva7vLjTHmv8aYrcaYxHZMLwAAEvFJREFU1caY7uVZ+YpyMCmda95fDEDdmgGse3okj49uz/+u65m3z8DWEUxbc4ARr8xmT3wqAJv2xfPWlz+RnJZpd0rYA9/fjvP7vyAzFdZNgSX/g7f6wE/3wZu94cur7DQtm362x/i6kyEF14V6NlDNzsnloa9XsfFAUrlet7r4ioiIiIhIRSpKC+ok4E3g43xljwIzHcd5wRjzqPv534BzgTbuRx9ggntZrb3+4wICyWBUt5YMb1+PQD8fbhrU0j0v6STYvZAndi/lgGssfx7qyitvvsqlznTa5O7gTpMEG4CoUbBpGgAGYO7LBV8kZiPUbAwX/Q9yMqFmA3J9g8mp0xq/nDQICM3bdWdcCt8s28ufm2JY+vjwcrtuTxdfX3XxFRERERGRCnDSANVxnL+MMc2PKr4AGOJe/wj4ExugXgB87DiOAyw0xoQZYxo4jhNdVhWuaDs3reKpLReR43Mj/75snC3cPhtiN8Oqz2HfMgCCgUn+L9ntuZDgBDM3txOjXItxGQc2TSM6oAXXJN1OB7ObDq5ddGlRn35jboaQehBQE3DA5c0C/I8pa5iyYiarnzy7QFP3Jwt2ARB7JIMN0Um0b1CzXK49K9u2oPqrBVVERERERCpASceg1vMEnY7jRBtj6rrLGwF78u231112TIBqjLkFuAWgadOmR2+uMpq16UxMUFMe9ZkJ399mWzr3r/Du0LQ/XPkF/HQvmXG78Duwgl9Dx3FXzFim3juE66YsJX73evq6NvB1+mCSCGar05gZPgMJ2ufD0jpt8XEVbKGctiaaF3/dyM4421V4+roDjOxYH5fLkJGdw0fuABXg3Nfn8MeDg9ly6Ahnd6iHMWXX2pmdqy6+IiIiIiJScco6SVJh0ZFTSBmO47wHvAfQs2fPQvepCozLRd2zH4Af74ZV221hrSZwzvO25TOyHQTWhEsm4e8+pltiOs9vjqFd/VDG9W3Lvw87vJ/UAoCpdw/Ex2VYsC2Of05dz42TljB+YAvObBuZ95pv/LE1LzgFuP3T5VzXrxlPjenIua/NAaBL41rUrxXI9HUHGfaf2QB8c1s/ejYPL/U1/7r2APsS0sjKy+KrAFVERERERMpfSQPUg56uu8aYBsAhd/leoEm+/RoD+0tTwSqh+7XQ6SJY+RnUbgFtTjzus36tQC7tZX8MF3ZrzIXdGrNmbyIhgb60iAgGoH2Dmmw8kMRXS/fy15YYVv7jbP7960ZuH9yKbYeOMLB1BHEpmYzuXJ+XZ2zmowW7yM512B6bwp1DW3HvWW1JSs+iQa0gdsal8OemGC5+Z0GpgtTk9Cw+nLeTV37bDECLiGBCA301zYyIiIiIiFQIY4eLnmQnOwZ1quM4ndzPXwLi8iVJCncc5xFjzGjgLmAUNjnSfx3H6X2y8/fs2dNZunRpya+iGvt+xV7u/3LVMeVvX9WdUZ0bADDhz238+9eNAPRuEc6Eq7pTJySgwP6fLNzFE1PW4u/j4se7B9CufvHGpWbl5DLy1b/YHptC96ZhLN+dQJ1gf/4+qj0X92hcwqsTEREREREBY8wyx3F6nmy/k7agGmM+xyZEijDG7AWeBF4AvjLGjAd2A5e4d5+GDU63AqnADSWq/WlkbNdGJKdn848f1gHQqVFN0jJz6NPC2wp6ea8mBPm5OKt9PZqE1yj0PNf0bca5nerT/4U/eGbqBibfdPLkyVsOJvP9in0MbB1BgJ+L7bEp/O2cdtw+pBUJqZmEBPjiq+69IiIiIiJSQYrUglreTucWVI95W2PxcRn6tqxTqvM8/dM6Ppy3k4u6N+avLTFMHt+HNnVD+GDeDkZ0qIevj4uRr/5Fo7AgNh1MLnCsv4+L+X8fRsRRrbMiIiIiIiKlUdQWVAWop5ith45w0YT5JKZlAVC7hh83DWrJS9M3AeAykJvvlj9yThSLd8ST68AdQ1qVOkAWERERERE5mgLU01hGdg5Rj/8KgK/LkO2OSAP9XDSvE0zXJmE0Ca9B/ZqBjOveqEynphERERERETlamY1BleonwNeHt67sjq+P4dtle5mx/iDvXdODoe3q4usyCkhFRERERKRKUoB6ihp9hs0A3KVxGNf3b07/1hGVXCMREREREZETU4B6iqtfK5D6tQIruxoiIiIiIiInpTlEREREREREpEpQgCoiIiIiIiJVggJUERERERERqRIUoIqIiIiIiEiVoABVREREREREqgQFqCIiIiIiIlIlKEAVERERERGRKkEBqoiIiIiIiFQJClBFRERERESkSlCAKiIiIiIiIlWCAlQRERERERGpEhSgioiIiIiISJWgAFVERERERESqBAWoIiIiIiIiUiUoQBUREREREZEqwTiOU9l1wBgTA+yq7HqcQAQQW9mVkFLRPazedP+qP93D6k/3sHrT/av+dA+rv9P9HjZzHCfyZDtViQC1qjPGLHUcp2dl10NKTvewetP9q/50D6s/3cPqTfev+tM9rP50D4tGXXxFRERERESkSlCAKiIiIiIiIlWCAtSiea+yKyClpntYven+VX+6h9Wf7mH1pvtX/ekeVn+6h0WgMagiIiIiIiJSJagFVURERERERKoEBagiIiIiIiJSJShAFRERETkFGGNMZddBRKS0FKC6GWN8KrsOUjrGmFrupX6vqyFjTH33Uh+wqiljTEdjTGBl10NKzhgzwBjTqrLrISUWVNkVkNLxfB7V/8LqSfevbJz2H+SNMT2NMZ8A/9A/5erHGOMyxtQ0xkwF/gvgOE5uJVdLisEY080YMxP4F4CjzG3VjjHmDGPMXOAZoE5l10eKzxjT3RgzA/gDqFXZ9ZHiMcb0NcZ8C7xljDlbX7pXP8aYfsaYicD9xpia+l9Yvbi/3PsIeNwYE677VzqnbYDqDmzeBN4FZgINgKeMMTUqt2ZSHO5gNBnwAxoZYy4DtaJWB8Z6FfgY+MhxnJsru05SYo8D3ziOc6HjOPtA3x5XF8YYP2PMu9ipD/4LTAeGuLfp72g1YIwZArwNfAdsAq4GaldmnaR4jDFnAm9ivyBqCPzdGDOycmslRWWMaYl9D84CmgH/MsaMrtxaVW+n7T8fd2DzB3CW4ziTgBcBB8iuzHpJibQDYoHXgKuMMaGO4+TqA3LV5v52MQRY4TjOxwDGmFb6UFx9uL/oawUccRznNXfZCGNMGKBuTtVDADAbGOQ4zlTgW6C9McZXvVGqjc7AEsdxPgU+wX5he6RyqyTF1AOY5zjO59jeRPWAyz1DX6TK6wVscMcTDwIrgfOMMU0qtVbV2Gn1QdDdBaat57njON85jpNgjBkBLMW2oj5njGlfaZWUE8p/D/N98N0KZAI73I/rjDFN1b2i6jn6PYj9Q97HGPOEMWYe8BIwyRjTo3JqKCeT/x66A5hDwCBjzGhjzBTgIWxL3MPuffQ+rGKOeh+mOI7zmeM4ae7nvkCO4zjZ+rKoairk7+gc4BJjzD+A5djPMm8bYy6plArKSRVyDzcDtYwxDRzHOYz9giEAuKBSKignZIw53xhzlzGmr7toCdDEGNPEff/mAQnAhZVWyWrutPjnY4wJM8b8DPwGXGqMCXaXewKcw8CVjuOMAFKxAU69yqmtFKawe5jvg29PIMlxnHXAOuBJYIK769pp8Tte1R3vPeg4ThLwFnAR8HfgCiAauMgYE1lZ9ZVjneAeJgMfYr/1/8BxnJHA/4C++f55SxVwvL+j7u72nr+Vs4ELjTG11YJatRRy/0IAHMdZCZwDNAfucBxnCPYD8jn6wr1qOd49xAaoScBH7rHETYAVQKj7OPVEqQKMMQ2MMT9hv4CtDXxojBnpOM52YAFwqXvXTcB6oI5R4sASOV0+vAdjx9Xc7V4/E7zf7DuOs9RxnGnufacB3bCBqlQdhd5Dt91AqDHmS+ARYBmw2XGcLH3AqjKOe/8cx/kvMNRxnL8cx8kApmC/dNB7sGo50XtwKvbDsWfc21LgIJBRgfWTkzvu/0L3sAgXsNO9z+DKqqQc19H3b5Bng+M4i4FI7P0DO4QpFEip2CrKSRzvPbgF26Poedzj+YG1uMeDqydKldETmOs4zpmO4/wLeB3w5M+YC3Q2xvR2HCcH2AcMcBwnvZLqWq2dsgGqMeZaY8xgdya0fdgEEF8B6dguhQ2Pc2gPbAuOxqJWsmLcw9rYf8wHsF8u3A5E6ZvjylWc96C7S4xHD2AvkFOhFZZjFOEeNgJwHGc19hvlu4wxEdgkLZ2AuEqqurgV9X1ojDHuL/Q83/ane8oro95iFeP+BQDzgTvdh56FzaitD8eV7CT3sLfnHjqOk+k4ziz3OFSw/wt/rZxai4f7/g1xv8dmYhM7esQBW9zrC7Gt3q+5W8Y7AruNkq+WiDmVvpRx/yOtD3wG5ALbsN9Q3es4Tqx7nwHYJvgljuNMdpfVBPoAz2GDnAcdx9lc8VcgxbyHSx3H+cRdFpFvewjg7zhOfCVcwmmtFO/BAKAf8DL2CyK9BytJSd+D7vIHgJZAG+B+x3HWV3D1hVK9D30cx8kxduq1bY7jPFUZ9T/dleL/YEfsEJf6QBZwl+M4Gyr+CqSk70F3+UBsy1wscKvjODsrtvZysvtnjPFzHCfLGHMP0MFxnNvyHfsK0Bibzfdax3E2VfwVVH+nTAuq+x+rg+3Sss9xnLOAO4B47LdVADiOMw/bBaadMaaWMSbQPQ7OAZ5xHOd8fTCuHCW4h1Huexjs/oPhY4xxOY5zRMFpxSvFezDI3bU3E70HK1Up3oOh7vJXsIHpSAWnlaMU78Ma7m5pADcqOK0cJXwPhrn/jq4DrgOudxznLAWnlaMU78Fg96btwBPuv6M7K7TyUtT75xk+NgL4xn1cXXfZI8B4x3H6KDgtuWofoBpjfI0xz2Gz7w4GonB3DXQcJxu4B+jn3uYxETu9xe/ALmNMQ8dxfncc54cKrr5Q6nv4G7DdfQ9zNOa04pXBe3Cn+/7NdxxnSgVXXyiT9+DWfN3Usiq08gKUyT3coXtYecrg/u00xjRyHCfNsQlb5P/bu5fQuOoojuPfQxqr1NKND5CgUWixiLWiiMsK1oW6cGE3QkU3gmA34krwiYILKSj1tRArCgVBRHFTXAhiiygtqeBGhLioFe3CRXykmOS4+F/tKFQZMpm5J34/EMKdmRv+w28eOff+/+eO2Yj+l5nJzFN5ti+KxmSY/LqZJucBp4GvI+JZ4KNozeWWsjUP1CqULlC7F9Ax2hrEb2hdJH8HbomIm+CvheVPA08O7HoH7WjIHHBtZp4a47A1YAQZnsAMJ8b3YH2+B+szw9pG+Dn63RiHrQEjfA+eHOOw1Rkyv6e63c4H7qOtS90M3Jp/76ehVdgw6QGs0grw/MD6i+uBK4HHgVeAG6J1JXyP9iKb7aZLLNJeSJ9MZtgaYIa1mV99ZlifGdZmfvWZYW3D5jcDXAa8DezPdqknjVDpM6i0ox3vRMRUt30EuDwzDwJTEbGvm/I5Q7vw+LcAmfm+Hwa9YYa1mV99ZlifGdZmfvWZYW3D5LeSmScz8/PMvNfidG2ULlAz89fMPJNnGzvsps0HB7gf2B4RHwKHgONgy/y+McPazK8+M6zPDGszv/rMsLYh8zsG5rfWqk/xBVrHLVoX3kuBD7qbF4BHadfim/9zbUY3h1w9Y4a1mV99ZlifGdZmfvWZYW3m1x+lz6AOWAGmadeM2tEd5XiMdhr+UxsHlGCGtZlffWZYnxnWZn71mWFt5tcTsV4OAETEzcDR7ueNzHx9wkPSkMywNvOrzwzrM8PazK8+M6zN/PphPRWoM8BeWjetM5Mej4ZnhrWZX31mWJ8Z1mZ+9ZlhbebXD+umQJUkSZIk1bZe1qBKkiRJkoqzQJUkSZIk9YIFqiRJkiSpFyxQJUmSJEm9YIEqSZIkSeoFC1RJkkYkIpYjYi4ivoqIExHxcET863dtRMxGxD3jGqMkSX1mgSpJ0uj8lpk7M/MaYDdwO/DEf+wzC1igSpKE10GVJGlkIuLnzLxwYPsq4AvgIuAK4C1gU3f3Q5l5NCI+A7YD88CbwIvAc8AuYCPwUma+NrYnIUnSBFmgSpI0Iv8sULvbfgKuBhaAlcxcjIitwKHMvDEidgGPZOad3eMfAC7JzGciYiNwBNiTmfNjfTKSJE3AhkkPQJKkdS6639PAgYjYCSwD287x+NuAHRFxd7e9BdhKO8MqSdK6ZoEqSdIa6ab4LgM/0tai/gBcR+sBsXiu3YB9mXl4LIOUJKlHbJIkSdIaiIiLgVeBA9nW02wBvs/MFWAvMNU9dAHYPLDrYeDBiJju/s62iNiEJEn/A55BlSRpdC6IiDnadN4lWlOk/d19LwPvRsQe4GPgl+72L4GliDgBHAReoHX2PR4RAZwG7hrXE5AkaZJskiRJkiRJ6gWn+EqSJEmSesECVZIkSZLUCxaokiRJkqResECVJEmSJPWCBaokSZIkqRcsUCVJkiRJvWCBKkmSJEnqhT8APZOw7l+846wAAAAASUVORK5CYII=\n", 136 | "text/plain": [ 137 | "
" 138 | ] 139 | }, 140 | "metadata": {}, 141 | "output_type": "display_data" 142 | } 143 | ], 144 | "source": [ 145 | "#normalizar valores pegos os valores da primeira possição e transformo na base 100 ai todos vao sair da msm origem\n", 146 | "#va\n", 147 | "(mdata / mdata.iloc[0] * 100).plot(figsize = (16,8));" 148 | ] 149 | }, 150 | { 151 | "cell_type": "code", 152 | "execution_count": 23, 153 | "metadata": {}, 154 | "outputs": [ 155 | { 156 | "name": "stdout", 157 | "output_type": "stream", 158 | "text": [ 159 | " FB MSFT\n", 160 | "Date \n", 161 | "2013-01-02 NaN NaN\n", 162 | "2013-01-03 -0.008248 -0.013487\n", 163 | "2013-01-04 0.035029 -0.018893\n", 164 | "2013-01-07 0.022689 -0.001871\n", 165 | "2013-01-08 -0.012312 -0.005260\n" 166 | ] 167 | } 168 | ], 169 | "source": [ 170 | "#vamos criar um data frame novo com os dados de retorno em log... sabemos que em log é o melhor jeito se for ativos individuais\n", 171 | "df_log= np.log(mdata / mdata.shift(1))\n", 172 | "print(df_log.head())" 173 | ] 174 | }, 175 | { 176 | "cell_type": "markdown", 177 | "metadata": {}, 178 | "source": [ 179 | "# Facebook" 180 | ] 181 | }, 182 | { 183 | "cell_type": "code", 184 | "execution_count": 9, 185 | "metadata": {}, 186 | "outputs": [ 187 | { 188 | "data": { 189 | "text/plain": [ 190 | "0.0009139779362826145" 191 | ] 192 | }, 193 | "execution_count": 9, 194 | "metadata": {}, 195 | "output_type": "execute_result" 196 | } 197 | ], 198 | "source": [ 199 | "#media diaria de variação \n", 200 | "df_log['FB'].mean()" 201 | ] 202 | }, 203 | { 204 | "cell_type": "code", 205 | "execution_count": 10, 206 | "metadata": {}, 207 | "outputs": [ 208 | { 209 | "data": { 210 | "text/plain": [ 211 | "0.22849448407065365" 212 | ] 213 | }, 214 | "execution_count": 10, 215 | "metadata": {}, 216 | "output_type": "execute_result" 217 | } 218 | ], 219 | "source": [ 220 | "#media anual de variação \n", 221 | "df_log['FB'].mean() * 250" 222 | ] 223 | }, 224 | { 225 | "cell_type": "code", 226 | "execution_count": 12, 227 | "metadata": {}, 228 | "outputs": [ 229 | { 230 | "data": { 231 | "text/plain": [ 232 | "0.02093348306141575" 233 | ] 234 | }, 235 | "execution_count": 12, 236 | "metadata": {}, 237 | "output_type": "execute_result" 238 | } 239 | ], 240 | "source": [ 241 | "#desvio padrao\n", 242 | "df_log['FB'].std()" 243 | ] 244 | }, 245 | { 246 | "cell_type": "code", 247 | "execution_count": 13, 248 | "metadata": {}, 249 | "outputs": [ 250 | { 251 | "data": { 252 | "text/plain": [ 253 | "0.330987429173141" 254 | ] 255 | }, 256 | "execution_count": 13, 257 | "metadata": {}, 258 | "output_type": "execute_result" 259 | } 260 | ], 261 | "source": [ 262 | "#volatilidade\n", 263 | "df_log['FB'].std() *250 **0.5" 264 | ] 265 | }, 266 | { 267 | "cell_type": "markdown", 268 | "metadata": {}, 269 | "source": [ 270 | "# Microsoft" 271 | ] 272 | }, 273 | { 274 | "cell_type": "code", 275 | "execution_count": 17, 276 | "metadata": {}, 277 | "outputs": [ 278 | { 279 | "data": { 280 | "text/plain": [ 281 | "0.000988622708668693" 282 | ] 283 | }, 284 | "execution_count": 17, 285 | "metadata": {}, 286 | "output_type": "execute_result" 287 | } 288 | ], 289 | "source": [ 290 | "#media diaria de variação \n", 291 | "df_log['MSFT'].mean()\n" 292 | ] 293 | }, 294 | { 295 | "cell_type": "code", 296 | "execution_count": 18, 297 | "metadata": {}, 298 | "outputs": [ 299 | { 300 | "data": { 301 | "text/plain": [ 302 | "0.01603944822004159" 303 | ] 304 | }, 305 | "execution_count": 18, 306 | "metadata": {}, 307 | "output_type": "execute_result" 308 | } 309 | ], 310 | "source": [ 311 | "#desvio pasrao\n", 312 | "df_log['MSFT'].std()\n" 313 | ] 314 | }, 315 | { 316 | "cell_type": "code", 317 | "execution_count": 19, 318 | "metadata": {}, 319 | "outputs": [ 320 | { 321 | "data": { 322 | "text/plain": [ 323 | "0.253605943938325" 324 | ] 325 | }, 326 | "execution_count": 19, 327 | "metadata": {}, 328 | "output_type": "execute_result" 329 | } 330 | ], 331 | "source": [ 332 | "#volatilidade\n", 333 | "df_log['MSFT'].std() *250 **0.5" 334 | ] 335 | }, 336 | { 337 | "cell_type": "code", 338 | "execution_count": 21, 339 | "metadata": {}, 340 | "outputs": [ 341 | { 342 | "data": { 343 | "text/plain": [ 344 | "0.24715567716717324" 345 | ] 346 | }, 347 | "execution_count": 21, 348 | "metadata": {}, 349 | "output_type": "execute_result" 350 | } 351 | ], 352 | "source": [ 353 | "#media anual \n", 354 | "df_log['MSFT'].mean() * 250\n" 355 | ] 356 | }, 357 | { 358 | "cell_type": "code", 359 | "execution_count": 26, 360 | "metadata": {}, 361 | "outputs": [ 362 | { 363 | "data": { 364 | "text/plain": [ 365 | "MSFT 0.253606\n", 366 | "FB 0.330987\n", 367 | "dtype: float64" 368 | ] 369 | }, 370 | "execution_count": 26, 371 | "metadata": {}, 372 | "output_type": "execute_result" 373 | } 374 | ], 375 | "source": [ 376 | "#volatilidade dos dois no msm codigo\n", 377 | "#Obs: Cuidado isso so deu certo pq coloquei dois cochetes falando para o numpy qye se trata de duas matrizes,\n", 378 | "#Obs: se fosse apenas um cochetes daria erro pq nao tem como ter dois espaço vetorial em um espaço \n", 379 | "df_log[['MSFT','FB']].std() *250 **0.5" 380 | ] 381 | }, 382 | { 383 | "cell_type": "code", 384 | "execution_count": null, 385 | "metadata": {}, 386 | "outputs": [], 387 | "source": [] 388 | } 389 | ], 390 | "metadata": { 391 | "kernelspec": { 392 | "display_name": "Python 3", 393 | "language": "python", 394 | "name": "python3" 395 | }, 396 | "language_info": { 397 | "codemirror_mode": { 398 | "name": "ipython", 399 | "version": 3 400 | }, 401 | "file_extension": ".py", 402 | "mimetype": "text/x-python", 403 | "name": "python", 404 | "nbconvert_exporter": "python", 405 | "pygments_lexer": "ipython3", 406 | "version": "3.6.5" 407 | } 408 | }, 409 | "nbformat": 4, 410 | "nbformat_minor": 2 411 | } 412 | -------------------------------------------------------------------------------- /Exportando dados da Bolsa.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 1, 6 | "id": "9b169460", 7 | "metadata": {}, 8 | "outputs": [], 9 | "source": [ 10 | "import yfinance as yf\n", 11 | "import pandas as pd" 12 | ] 13 | }, 14 | { 15 | "cell_type": "code", 16 | "execution_count": 2, 17 | "id": "837a39ec", 18 | "metadata": {}, 19 | "outputs": [ 20 | { 21 | "name": "stdout", 22 | "output_type": "stream", 23 | "text": [ 24 | "[*********************100%***********************] 1 of 1 completed\n" 25 | ] 26 | } 27 | ], 28 | "source": [ 29 | "tick = ['mglu3.SA']\n", 30 | "ativo = yf.download(tickers=tick, start=\"2021-01-24\", end=\"2022-01-23\", interval= \"1d\")" 31 | ] 32 | }, 33 | { 34 | "cell_type": "code", 35 | "execution_count": null, 36 | "id": "f5cb2603", 37 | "metadata": {}, 38 | "outputs": [], 39 | "source": [ 40 | "ativo['Adj Close'].to_excel('dados1y-Magalu.xlsx')" 41 | ] 42 | }, 43 | { 44 | "cell_type": "code", 45 | "execution_count": null, 46 | "id": "5a8aef1e", 47 | "metadata": {}, 48 | "outputs": [], 49 | "source": [ 50 | "ativo" 51 | ] 52 | } 53 | ], 54 | "metadata": { 55 | "kernelspec": { 56 | "display_name": "Python 3 (ipykernel)", 57 | "language": "python", 58 | "name": "python3" 59 | }, 60 | "language_info": { 61 | "codemirror_mode": { 62 | "name": "ipython", 63 | "version": 3 64 | }, 65 | "file_extension": ".py", 66 | "mimetype": "text/x-python", 67 | "name": "python", 68 | "nbconvert_exporter": "python", 69 | "pygments_lexer": "ipython3", 70 | "version": "3.9.7" 71 | } 72 | }, 73 | "nbformat": 4, 74 | "nbformat_minor": 5 75 | } 76 | -------------------------------------------------------------------------------- /Ocr - concluido.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 3, 6 | "metadata": {}, 7 | "outputs": [], 8 | "source": [ 9 | "from pdf2image import convert_from_path\n", 10 | "import pandas as pd\n", 11 | "import glob as gb\n", 12 | "import requests\n", 13 | "import json\n", 14 | "import os\n", 15 | "import time\n", 16 | " \n", 17 | "def ocr_space_file(filename, overlay=False, api_key='8b1d9d74aa88957', language='por'):\n", 18 | "\n", 19 | " payload = {'isOverlayRequired': overlay,\n", 20 | " 'apikey': api_key,\n", 21 | " 'language': language,\n", 22 | " }\n", 23 | " with open(filename, 'rb') as f:\n", 24 | " r = requests.post('https://api.ocr.space/parse/image',\n", 25 | " files={filename: f},\n", 26 | " data=payload,\n", 27 | " )\n", 28 | " return r.content.decode()" 29 | ] 30 | }, 31 | { 32 | "cell_type": "code", 33 | "execution_count": 2, 34 | "metadata": {}, 35 | "outputs": [ 36 | { 37 | "name": "stdout", 38 | "output_type": "stream", 39 | "text": [ 40 | "(0) - relatorio_follow.PDF --> relatorio_follow.PNG\n" 41 | ] 42 | } 43 | ], 44 | "source": [ 45 | "count = 0\n", 46 | "df = pd.DataFrame(columns=['caminho'])\n", 47 | "\n", 48 | "for imFilename in gb.glob(r\"C:\\Users\\alisson.oliveira\\Documents\\pdf_converte\\*.pdf\"):\n", 49 | " imFilename = imFilename\n", 50 | " \n", 51 | " images = convert_from_path(imFilename, dpi = 300)\n", 52 | " imFilename = imFilename[:len(imFilename)-4]\n", 53 | " ultimo = imFilename.split(\"\\\\\")\n", 54 | " print(\"(\" + str(count) + \") - \" + ultimo[-1] + \".PDF --> \" + ultimo[-1] +\".PNG\")\n", 55 | "\n", 56 | " \n", 57 | " im = \"C:\\\\Users\\\\alisson.oliveira\\\\Documents\\\\pdf_converte\\\\convertidos\\\\\" + ultimo[-1]\n", 58 | " for i, image in enumerate(images):\n", 59 | " fname = im + \"_\" + \"(\" + str(i + 1) + '-' + str(len(images)) + ')' '.png'\n", 60 | " image.save(fname,\"PNG\")\n", 61 | " df.loc[len(df)] = fname\n", 62 | " \n", 63 | " \n", 64 | " " 65 | ] 66 | }, 67 | { 68 | "cell_type": "code", 69 | "execution_count": 4, 70 | "metadata": {}, 71 | "outputs": [], 72 | "source": [ 73 | "for fname in df['caminho']:\n", 74 | " test_file = ocr_space_file(filename=fname, language='por')\n", 75 | " resultado = json.loads(test_file)\n", 76 | " detectar_text = resultado.get(\"ParsedResults\")[0].get(\"ParsedText\")\n", 77 | " nome_area = detectar_text.splitlines() \n", 78 | " os.rename(fname, 'C:\\\\Users\\\\alisson.oliveira\\\\Documents\\\\pdf_converte\\\\convertidos\\\\'+nome_area[0]+'.png')\n", 79 | " time.sleep(5)\n" 80 | ] 81 | }, 82 | { 83 | "cell_type": "code", 84 | "execution_count": null, 85 | "metadata": {}, 86 | "outputs": [], 87 | "source": [ 88 | "fname" 89 | ] 90 | }, 91 | { 92 | "cell_type": "code", 93 | "execution_count": null, 94 | "metadata": {}, 95 | "outputs": [], 96 | "source": [] 97 | } 98 | ], 99 | "metadata": { 100 | "kernelspec": { 101 | "display_name": "Python 3", 102 | "language": "python", 103 | "name": "python3" 104 | }, 105 | "language_info": { 106 | "codemirror_mode": { 107 | "name": "ipython", 108 | "version": 3 109 | }, 110 | "file_extension": ".py", 111 | "mimetype": "text/x-python", 112 | "name": "python", 113 | "nbconvert_exporter": "python", 114 | "pygments_lexer": "ipython3", 115 | "version": "3.8.3" 116 | } 117 | }, 118 | "nbformat": 4, 119 | "nbformat_minor": 4 120 | } 121 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Finanças Quantitativas: Com Python 2 | Finanças Quantitativas: Com Python 3 | 4 | # Sobre o projeto. 5 | A iniciativa desse projeto veio pelo simples fato que toda vez que eu abria meu youtube, tinha inumeras propagandas de pessoas prometendo milagres com seus dinheiro através de vendas de cursos de como operar na bolsa, com compra de ações ou de indices e opções. Como forma de ajudar essas pessoas venho através desse repositorio compartilhar diversos algoritimos para iniciar no mundo de finanças quantitativas. 6 | 7 | Algoritimos que, SIM, lhe ajudaram a criar uma carteria que lhe dê retornos. 8 | 9 | # O que é Finanças Quantitadivas ? 10 | 11 | Finanças quantitativas e engenharia financeira são as áreas de finanças que envolvem 12 | a aplicação de ferramentas e métodos de finanças tradicionais, matemática, física, 13 | computação, economia e econometria à solução de problemas de interesse em áreas 14 | como gestão de investimentos, finanças corporativas, gestão de riscos, apreçamento 15 | e hedging de instrumentos derivativos, trading, finanças econômicas, produtos 16 | estruturados e asset allocation. 17 | 18 | # Oque temos nesse repositorio ? 19 | **Todos os Cods são comentados linha a linha, apenas os muitos obvios que não** 20 | 21 | *Calculando a expectativa de retorno com CAPM* 22 | 23 | *Calculando o Beta de um Ação* 24 | 25 | *Calculando o Índice de Sharpe* 26 | 27 | *Calculo de Covariancias entre ativos* 28 | 29 | *Calculo de Risco de ativos* 30 | 31 | *Monte Carlo Simulação de preços de ações* 32 | 33 | *Obtendo a Fronteira Eficiente de Markowitz* 34 | 35 | *Retorno logaritimo de uma ação* 36 | 37 | *Retorno simples de uma ação* 38 | 39 | *Taxa de Retorno de uma Carteria de Açoes* 40 | 41 | *Machine learnig - Prevendo o preço das ações com Python* 42 | 43 | *Detecção de anomalias outliers* 44 | 45 | *Prevendo preços de ações com o algoritmo do facebook Prophet* 46 | 47 | 48 | # OBS: 49 | **Esse repositorio sempre será atualizado, para trazer novidades e novos jeitos de otimizar seus ganhos** 50 | 51 | 52 | -------------------------------------------------------------------------------- /Retorno logaritimo de uma ação.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 1, 6 | "metadata": {}, 7 | "outputs": [], 8 | "source": [ 9 | "#vamos caregar o modulo pandas\n", 10 | "import pandas as pd\n", 11 | "#importar biblioteca do pandas datareader\n", 12 | "from pandas_datareader import data as pdr\n", 13 | "#importar a bliblioteca Numpy\n", 14 | "import numpy as np\n", 15 | "import matplotlib.pyplot as plt" 16 | ] 17 | }, 18 | { 19 | "cell_type": "code", 20 | "execution_count": 2, 21 | "metadata": {}, 22 | "outputs": [], 23 | "source": [ 24 | "df_PG = pdr.DataReader('PG',data_source='yahoo',start='1995-1-1')" 25 | ] 26 | }, 27 | { 28 | "cell_type": "code", 29 | "execution_count": 3, 30 | "metadata": {}, 31 | "outputs": [ 32 | { 33 | "data": { 34 | "text/html": [ 35 | "
\n", 36 | "\n", 49 | "\n", 50 | " \n", 51 | " \n", 52 | " \n", 53 | " \n", 54 | " \n", 55 | " \n", 56 | " \n", 57 | " \n", 58 | " \n", 59 | " \n", 60 | " \n", 61 | " \n", 62 | " \n", 63 | " \n", 64 | " \n", 65 | " \n", 66 | " \n", 67 | " \n", 68 | " \n", 69 | " \n", 70 | " \n", 71 | " \n", 72 | " \n", 73 | " \n", 74 | " \n", 75 | " \n", 76 | " \n", 77 | " \n", 78 | " \n", 79 | " \n", 80 | " \n", 81 | " \n", 82 | " \n", 83 | " \n", 84 | " \n", 85 | " \n", 86 | " \n", 87 | " \n", 88 | " \n", 89 | " \n", 90 | " \n", 91 | " \n", 92 | " \n", 93 | " \n", 94 | " \n", 95 | " \n", 96 | " \n", 97 | " \n", 98 | " \n", 99 | " \n", 100 | " \n", 101 | " \n", 102 | " \n", 103 | " \n", 104 | " \n", 105 | " \n", 106 | " \n", 107 | " \n", 108 | " \n", 109 | " \n", 110 | " \n", 111 | " \n", 112 | " \n", 113 | " \n", 114 | " \n", 115 | " \n", 116 | " \n", 117 | "
HighLowOpenCloseVolumeAdj Close
Date
1995-01-0315.6250015.4375015.4687515.593753318400.06.362402
1995-01-0415.6562515.3125015.5312515.468752218800.06.311406
1995-01-0515.4375015.2187515.3750015.250002319600.06.222151
1995-01-0615.4062515.1562515.1562515.281253438000.06.234900
1995-01-0915.4062515.1875015.3437515.218751795200.06.209402
\n", 118 | "
" 119 | ], 120 | "text/plain": [ 121 | " High Low Open Close Volume Adj Close\n", 122 | "Date \n", 123 | "1995-01-03 15.62500 15.43750 15.46875 15.59375 3318400.0 6.362402\n", 124 | "1995-01-04 15.65625 15.31250 15.53125 15.46875 2218800.0 6.311406\n", 125 | "1995-01-05 15.43750 15.21875 15.37500 15.25000 2319600.0 6.222151\n", 126 | "1995-01-06 15.40625 15.15625 15.15625 15.28125 3438000.0 6.234900\n", 127 | "1995-01-09 15.40625 15.18750 15.34375 15.21875 1795200.0 6.209402" 128 | ] 129 | }, 130 | "execution_count": 3, 131 | "metadata": {}, 132 | "output_type": "execute_result" 133 | } 134 | ], 135 | "source": [ 136 | "df_PG.head()" 137 | ] 138 | }, 139 | { 140 | "cell_type": "code", 141 | "execution_count": 4, 142 | "metadata": {}, 143 | "outputs": [ 144 | { 145 | "data": { 146 | "text/html": [ 147 | "
\n", 148 | "\n", 161 | "\n", 162 | " \n", 163 | " \n", 164 | " \n", 165 | " \n", 166 | " \n", 167 | " \n", 168 | " \n", 169 | " \n", 170 | " \n", 171 | " \n", 172 | " \n", 173 | " \n", 174 | " \n", 175 | " \n", 176 | " \n", 177 | " \n", 178 | " \n", 179 | " \n", 180 | " \n", 181 | " \n", 182 | " \n", 183 | " \n", 184 | " \n", 185 | " \n", 186 | " \n", 187 | " \n", 188 | " \n", 189 | " \n", 190 | " \n", 191 | " \n", 192 | " \n", 193 | " \n", 194 | " \n", 195 | " \n", 196 | " \n", 197 | " \n", 198 | " \n", 199 | " \n", 200 | " \n", 201 | " \n", 202 | " \n", 203 | " \n", 204 | " \n", 205 | " \n", 206 | " \n", 207 | " \n", 208 | " \n", 209 | " \n", 210 | " \n", 211 | " \n", 212 | " \n", 213 | " \n", 214 | " \n", 215 | " \n", 216 | " \n", 217 | " \n", 218 | " \n", 219 | " \n", 220 | " \n", 221 | " \n", 222 | " \n", 223 | " \n", 224 | " \n", 225 | " \n", 226 | " \n", 227 | " \n", 228 | " \n", 229 | "
HighLowOpenCloseVolumeAdj Close
Date
2020-03-12111.580002101.000000103.000000101.83999620988000.0101.839996
2020-03-13114.629997105.410004106.500000114.07000017378700.0114.070000
2020-03-16115.949997101.000000101.750000108.50000017367400.0108.500000
2020-03-17119.699997110.769997111.449997118.23999819431100.0118.239998
2020-03-18121.480003112.150002113.019997112.18499813538597.0112.184998
\n", 230 | "
" 231 | ], 232 | "text/plain": [ 233 | " High Low Open Close Volume \\\n", 234 | "Date \n", 235 | "2020-03-12 111.580002 101.000000 103.000000 101.839996 20988000.0 \n", 236 | "2020-03-13 114.629997 105.410004 106.500000 114.070000 17378700.0 \n", 237 | "2020-03-16 115.949997 101.000000 101.750000 108.500000 17367400.0 \n", 238 | "2020-03-17 119.699997 110.769997 111.449997 118.239998 19431100.0 \n", 239 | "2020-03-18 121.480003 112.150002 113.019997 112.184998 13538597.0 \n", 240 | "\n", 241 | " Adj Close \n", 242 | "Date \n", 243 | "2020-03-12 101.839996 \n", 244 | "2020-03-13 114.070000 \n", 245 | "2020-03-16 108.500000 \n", 246 | "2020-03-17 118.239998 \n", 247 | "2020-03-18 112.184998 " 248 | ] 249 | }, 250 | "execution_count": 4, 251 | "metadata": {}, 252 | "output_type": "execute_result" 253 | } 254 | ], 255 | "source": [ 256 | "df_PG.tail()" 257 | ] 258 | }, 259 | { 260 | "cell_type": "markdown", 261 | "metadata": {}, 262 | "source": [ 263 | "# taxa logaritima de terono é dado por : lnPt/P t -1" 264 | ] 265 | }, 266 | { 267 | "cell_type": "code", 268 | "execution_count": 7, 269 | "metadata": {}, 270 | "outputs": [ 271 | { 272 | "name": "stdout", 273 | "output_type": "stream", 274 | "text": [ 275 | "Date\n", 276 | "1995-01-03 NaN\n", 277 | "1995-01-04 -0.008047\n", 278 | "1995-01-05 -0.014243\n", 279 | "1995-01-06 0.002047\n", 280 | "1995-01-09 -0.004098\n", 281 | "1995-01-10 0.012245\n", 282 | "1995-01-11 -0.002030\n", 283 | "1995-01-12 0.010111\n", 284 | "1995-01-13 0.028811\n", 285 | "1995-01-16 0.007969\n", 286 | "1995-01-17 0.003960\n", 287 | "1995-01-18 -0.021979\n", 288 | "1995-01-19 -0.004049\n", 289 | "1995-01-20 -0.004065\n", 290 | "1995-01-23 0.010132\n", 291 | "1995-01-24 -0.002018\n", 292 | "1995-01-25 0.014042\n", 293 | "1995-01-26 0.003976\n", 294 | "1995-01-27 0.027398\n", 295 | "1995-01-30 0.015327\n", 296 | "1995-01-31 -0.009551\n", 297 | "1995-02-01 -0.019381\n", 298 | "1995-02-02 0.007797\n", 299 | "1995-02-03 0.009662\n", 300 | "1995-02-06 0.022815\n", 301 | "1995-02-07 -0.001881\n", 302 | "1995-02-08 -0.011365\n", 303 | "1995-02-09 -0.001906\n", 304 | "1995-02-10 -0.001910\n", 305 | "1995-02-13 0.007619\n", 306 | " ... \n", 307 | "2020-02-05 0.009110\n", 308 | "2020-02-06 0.002599\n", 309 | "2020-02-07 -0.008372\n", 310 | "2020-02-10 0.000714\n", 311 | "2020-02-11 -0.016059\n", 312 | "2020-02-12 -0.005735\n", 313 | "2020-02-13 0.012157\n", 314 | "2020-02-14 0.009399\n", 315 | "2020-02-18 -0.010119\n", 316 | "2020-02-19 0.004554\n", 317 | "2020-02-20 0.009047\n", 318 | "2020-02-21 0.000948\n", 319 | "2020-02-24 -0.027202\n", 320 | "2020-02-25 -0.015282\n", 321 | "2020-02-26 -0.010514\n", 322 | "2020-02-27 -0.057021\n", 323 | "2020-02-28 -0.002382\n", 324 | "2020-03-02 0.054397\n", 325 | "2020-03-03 -0.011694\n", 326 | "2020-03-04 0.052181\n", 327 | "2020-03-05 -0.023322\n", 328 | "2020-03-06 0.000247\n", 329 | "2020-03-09 -0.047123\n", 330 | "2020-03-10 0.037957\n", 331 | "2020-03-11 -0.077233\n", 332 | "2020-03-12 -0.091428\n", 333 | "2020-03-13 0.113409\n", 334 | "2020-03-16 -0.050062\n", 335 | "2020-03-17 0.085966\n", 336 | "2020-03-18 -0.052567\n", 337 | "Name: Retorno Logaritimo, Length: 6347, dtype: float64\n" 338 | ] 339 | } 340 | ], 341 | "source": [ 342 | "df_PG['Retorno Logaritimo'] =np.log(df_PG['Adj Close'] / df_PG['Adj Close'].shift(1))\n", 343 | "print(df_PG['Retorno Logaritimo'])" 344 | ] 345 | }, 346 | { 347 | "cell_type": "code", 348 | "execution_count": 9, 349 | "metadata": {}, 350 | "outputs": [ 351 | { 352 | "data": { 353 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAA60AAAHDCAYAAADPxPzcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsnWdgFNXax/+zqRBCDb2FEnqR3nsVVBQsWF8RRWxgvxFpggjXei1YEEQFQbGBGHrvobfQS0hoIQVCSEjdeT/szuz0sjub3SzP7wvs7mTmTDvn6Q/DsiwIgiAIgiAIgiAIwh+x+XoABEEQBEEQBEEQBKEGKa0EQRAEQRAEQRCE30JKK0EQBEEQBEEQBOG3kNJKEARBEARBEARB+C2ktBIEQRAEQRAEQRB+CymtBEEQBEEQBEEQhN9CSitBEARBEARBEATht5DSShAEQRAEQRAEQfgtpLQSBEEQBEEQBEEQfkuwrwegRlRUFBsdHe3rYRAEQRAEQRAEQRBeYN++fWksy1bW285vldbo6Gjs3bvX18MgCIIgCIIgCIIgvADDMBeMbEfhwQRBEARBEARBEITfQkorQRAEQRAEQRAE4beQ0koQBEEQBEEQBEH4LaS0EgRBEARBEARBEH4LKa0EQRAEQRAEQRCE30JKK0EQBEEQBEEQBOG3kNJKEARBEARBEARB+C2ktBIEQRAEQRAEQRB+CymtBEEQBEEQBEEQhN9CSitBEARBEARBEATht5DSShAEQRAEQRAEQfgtpLQSBEEQBEEQBEEQfgsprQRBEARBEARBEITfQkorQRAEQRAEQRAE4beQ0koQBEEQBEEQBBFAFBbZkZ1X6OthWAYprQRBEARBEARBEAHEa0sOofmU1b4ehmWQ0koQBEEQBEEQBBFALD902ddDsBRSWgmCIAiCIAiCIAi/hZRWgiAIgiAIgiAIwm8hpZUgCIIgCIIgCILwW0hpJQiCIAiCIAiCIPwWUloJgiAIgiAIgiAIv4WUVoIgCIIgCIIgCMJvsURpZRhmMMMwJxmGOcMwTKzC7z0ZhtnPMEwhwzAPWnFMgiAIgiAIgiAIIvDxWGllGCYIwGwAdwNoBuBRhmGaSTZLAvA0gEWeHo8gCIIgCIIgCIK4cwi2YB8dAZxhWfYcADAM8yuAYQCOcRuwLJvo/M1uwfEIgiAIgiAIgiCIOwQrwoNrAkgWfL7o/M40DMOMYRhmL8Mwe1NTUy0YGkEQBEEQBEEQBFGSsUJpZRS+Y93ZEcuyc1iWbc+ybPvKlSt7OCyCIAiCIKyg3yeb8OS8eF8PgyAIgrhDsSI8+CKA2oLPtQBctmC/BEEQBEH4AWdTs3E2NdvXwyAIgiBMwrIsGEbJx1iysMLTugdADMMw9RiGCQUwEsA/FuyXIAiCIAiCIAiCuMPxWGllWbYQwMsAVgM4DmAJy7IJDMNMYxjmPgBgGKYDwzAXATwE4DuGYRI8PS5BEARBEARBEAShDutW0qb/YUV4MFiWXQFgheS7yYL/74EjbJggiGIkO68QGdn5qF2xtK+HQhAEQRAEQRQzAaKzWhIeTBCEn/LY3Hj0+HCjr4dBEARBEARBEG5DSitBBDCHkm/4eggEQRAEQRCEj2ADJD6YlFaCIAiCIAiCIAjCbyGllSAIgiAIgiAIIgC5XVDk6yFYAimtBEEQBEEQBEEQKmTlFiA5I8fXw3CLmStP+HoIlkBKK0EQBEEQBEEQhArDZm8vsYUtM27l+3oIlkBKK0EQBEEQBEEQhArnUrN9PYQ7HlJaCYJQZMneZGRkB4Z1jiAIgiAI4k6EDZBOraS0EgQhIzEtG2//cRgvL9rv66EQBEEQBEEQbhIgHW9IaSUIQk5+kR0AkJqV5+OREARBEARBEHc6pLQSRAnldEoWZq44HjBNowmCIAiCIAhrCRQpkZRWgiihPDlvN77bcg7XyBtKEARBEARBBDCktBJECcVOHlaCIAiCIAhCg0ARF0lpJYgSTqBMRgRBEARBEAShBCmtBFFCYRhfj4AgCIIgCILwbwLDu0FKK0EQBEEQBEEQBOG3kNJKECWcQGkaTRAEQRAEQVhLoKSRkdJKECUUBhQfTBAEQRAEQagTIDorKa0EUdLxhgXNyn1m5Rag/fvrsPt8hnU7JQiCIAiCIHRhA8TVSkor4dfcyitEdGwcFu664Ouh+B16hZh+3plYHMPQ5cilTKTdysOna0/6eigEQRAEQRBECYSUVsKvSbmZCwD4Ydt5H4/Ef5Haz65n5yM5IweTlyW4vU9LKxMHhoGPIAiCIAiC8BHBvh4AQRDuwemV0rCPnh9uRFZeYbGO5fKN26heLhwM9eEhCIIgCILwGwLFd0CeVqJEECgvnJWoKYjFrbCeSslC11kbMI+84QQRcLAsiwWC9Ixhs7cj5t0VPhwRQRAEcSdCSivh15Dfzv9JSs8BAOw8m+7jkRAEYTWHL2Zi0tKj/OdDyTdQUERmRIIgiJJCgNRhIqWV8G8C5D3zKv4yGakOgywPBFFiyS0o8vUQCIIgCIKUVqJkQHqP9Ww8cQ3pt/L4z9GxcZgRd0y23fYzadh34XpxDo0gCD/BT2xiBEEQhJsEyjxOSitRIgiUF85fyC0owqgf9+CJebtF33+/1ZGXKvTePj43HiO+2VGcwyMIwk/wl0gOgiAIwj2oTytBeIlTKVk4l3oLAHlYtfCkUC83f51Pu2XZOFQnxcCYKwmCIAiCuMMpKQpg/LnAqzNCSivhdwz8bAv6frIZgG/1nZx896vwZmTn45ZFVXwPJt/ALosnH07RtKtcYOpcQxAEALBkdSIIguApITorRn6/y9dDsBxSWglCQFZuAT5efRJHL2Wi2eTV+OfQZbf203b6WvT+aKMlY7p/9naMnKM++XhjAi0pkzJBEARBEERxUVLEo0CU44J9PQCC0KK4HX4frz6Jn3ZewP4kR+GhTSeu4b7WNdzaV9qtfCuHJoMPy/VkCrVgUiOvLEEEMAEo+BAEQbiLIzy4ZAk+gaLAkqeVIATcdrZ3KHLGzfrze844J013JiNLFF4J/nytCIIgCIIgPKUkyjqBkuZBSitRIvBm4vuZa1noMnM9UrPy+BzP+PMZXj+uVbgzQu60SsDpEQThQ2iKIAiCcKFac5JlMWfLWVErQcJaSGkl7njmbj2PK5m5WHc8BXbJbOSpwGa3sxj42WasOHLFwz3J0a3aawC1v6SQX4IgAM8MW+uPp+B8WrZ1gyEIgvAxal7Lwxcz8cGKE3h9yaFiHtGdAymthFc5fPEGDibf8Hg/jBe1KKFQtulkqqX7vl1QhFMpt/CGFycxTxRrNYXXjKDqSZiyP5BXWIRcZ1g4QRDWMfqnvejz8SZfD4MgCMIy1GSdQrsdgKOgp79RUuUzKaS0El7lvq+24/7Z2z3eT3GE6TJwtKoRH9eifXtB5+Z26ckYA2QeM8X5tGxEx8bhdEoWAKDLzA1oMmmVj0dFEP4Hy7I4cfWmr4dBEARRAnAa8H08ikCGlFbCr+E8rInpObLfNp68hujYONzI8V6VXk8nH29NXmsSrgquif5RLl6XXz9AXeH1jpLtPW/57I1nsP54iqFt4w472hgtPXgJgNxQQRCEg2UHL+P9uOM+OXaRnYVdrZE0QRCEjyiJXsuSOGYlSGktIcT+eRhrEq76ehjFjpaH9ZuNZwEAJ65meXYMDaVvuZt9WqVYra6NWbCP/z/LOnJnW05djcW7kxS3jztsLqdWa4K7mpmLvw9cdH1RzPmvW0+nIjo2DgmXM/nvPlp9EqN/2lu8AyECim6zNuDTtad8PQy/wtO51RMaTFiB4d/s8NnxCYIglNCrxOuPCiJVDyaKlV/3JIsUFcL1ElqlM3nDu1gcYc0sgAK7HVm5hZiyLEFxm0KJx0I6LLVxnr52S/bdE/Pi8dpvh4otbyOvsAhDv9iKnWfTAQDrjjk8qrudFZ7N4o8LCuF7Lt24jS/Wn/b1MPwKXxdkE9ZDOJWShQW7LvhwNIQef+2/iFt5hbrb7TqXjiV7k4thRARhPcUZoUaIIaWVKLFwE4c3izRJefGXfWj07kr8c+gyzqXKFTop6bccoadaY9x1Lh3RsXE4o6AgSpn6TwLG/3pA9J0RJaygyK6/kUFSbuYCAOzW7VKT5IwcJFy+iYlLjwAo3vtNEHcyNj961Qb9bwsmLT3q62EQKhy+eAOvLzmECX8d0d125JxdePuPw8UwKoKwHj2Ryx/t4oFirCellfCYY5dvIvN2AS7fuM0Xudlwwlh+oR5aCgrLbyP/7XRKFt5YcghFFudErThyFflFdoxbfAD9P92su/3T83cDgKb1mQtB3nkuXXd/P+5IxLKD4pBlYZuefBXltLBI/To8PncXCjR+l6J2R7w9J/pyzu04Yx0W7Ez04QgIovixacy/C3ZdQHRsHAotNIhpEShClz9y+cZt/HvYs1SYnHxHBfarmblWDIkoweQVFuFCeuC2ulKLTLPCxjdv23l0m7XBgj2JCZTpk5RWPye3oEhVKNh8KhVPzov3ebGKIV9sRev31qDrrA2Yu/UcAMgUKyWmLDuKTSev8Z/tdhYdZ6wzfFxu4hBOFH/tv4h5287jlcUH8Of+iziVop+TpScMRcfGIa9Q3hLFyGVPylAugGQlhjytEreoML9h+5l0JEsKNRlxZl7LysW05cdkz9+yg5dw+KJnbY4SLmciOjYOx6/chNVJs7yxQ7JfrbY317LyMEkl9JoghGw/k4ZuszYERBslrTdv5gpHgabcQnNK61M/7Maqo3defQZ/5qFvd+LlRQc8kiU4A4e01znhHj9sO19iK3fH/nkEvT7a5JetX6xA9wn34B2Y/u8xXLpx2+2/D3RIafVzmkxahZFzdin+9vyCvdh6Og25CgqVr/gl3lEIKCu3EC/9sl9z2592XsDT8/fwn/OL7LiWlWf6mEIF6/UlhzD932P8ZzMLqFZ124vX1SeRLadSVQs2FYc9odBu1/SkAtqeVgAyj7TWZeO83+8uPYoftp/HllPi3rbjfz2I+76StznaeS4dy5wVe/VY7RRq1ySoe+ytlo3eMRDWRhB6cELHWQPpA/6OVqQLN2cYMSldSM/mPXBbTqVi7ELf1Gc4lHwDH60+4ZNj+zOXMx3rmydTapBTmiSl1Rqm/XsMQz7f6uthiGBZ1lBkxdbTDpkgt6CYcoiKGfWcVj/KpwhQSGktAey9cN3XQzDNhhPXEHfEuoq1itvz/5NPFJzVtzjWz6d+2I1XFh/Q3xCOUGqjihsAQ5bv+77ajuZTVmtuo5fTakq55xvEOv7hQpLVQmaE347/9aCpg2iNy+pbe8hD7zBBAC7Bxezcc+zyTTwxN14xqsNXaMlgZuaMXh9tQueZ64ulMJ0Ww2Zvx2xn1Xl/ZdvptGL30nO32ROFk+HnbAsGRADwv2v53ZZzaPjuSmTmBKYH1TA698XPbpsDvxyUeUhpLUa+33KOD5+1AqlnMCk9B3/uu6iytf+jt2ByAs9Li/Zj3OIDgkJM8m2574yswUbeZavsZ0O+2KqquB2/clPmnXnXosIjejmr0qJKWsIq91NwEGNo3+6geHiN+82xJzED0bFxuJKpH14j3U9BkR35JkMdCUKKu3PFhL+PYNuZNBy95JuQwNMpWYiOjROtIVrRJ7yn1cQJuyOEX76DQuVOXL2JJ+bF473lxzS343qUW3VtrAjt5W2Z5GkNWH53VnxOvaWctxz752G8/ceh4hyST1BrH0N+Vu9DSmsxMmPFccsatRcU2XFbYo194OvteOP3Q5YvGlcyb2PJHu+Xp9dXWh3/xh2+gn8OXeanjcS0bJl3gldanVvtT7qO6Ng4R9GonAKk31IIQ9aYcfSECE/gzmNRfBL6feIq7pSTX6jad9Us0pAe6aX+bN0pzd8BYOGuC7DbWd6iHuyMB7OyMrEUs0/ynC0Oo9AuA0WtpCRn3EajiStN/x1BCDFjMNP6++KGe2fe+N0ldGpVD3ZHAU3PNp/+cSeF7XMerLM6leR/da4Lh5KVo0OWH7qMeBNzIPfMvf3HYUTHxhn+OyG2APC0siyLVDdSlO4U9KJIft2TjCV7S67jxCjS85+87Chi3l2h+rs/QH1aCaxJuOqzvKUHv93J/5+zhqdnO9qrWF0x9/G58Xj7z8O4mVuAzNsF2HjiGnacSbP0GID+YidTap2fX19yCI0nruL7eALy8GAuR3LL6VS0nrYG7d5fZ6pP3GZJ3qZZ3BFEm00Wh/wqKtoGkfZplbL2mH6154lLj2LpwUu8bh9i4zytDqX15FVx0atlBy+5XVnUpiD5n0sTVyNUMs5w51Fc7Xi8wYJdFzBlmfse9vxCO+75cit2nLX+HTVLwuXMYqsu6y/wc08JExKUpggj85aWN1ZKxxnrTYzIgTeuor96AxmTz47a/Xll8QE8olILQ3E/znuoVUCxsMiOH7efVzVSBtnc89buu5BhucziLt9vPYcOM9YhMc0/K9/uu5Dh07FJMoPuWKTn//POCygoYmXOEn/CT6c805DS6gFjFuxDv08240BS8eecKllYOau4noJilnOpjkmSZR3e3FE/7sFjc+Mt2//Z1Fuw21n8o5PrKT2rQxczRZ8Xxrsaz0tzdLh/hWt87J+OPnFGX2ZPLLBaYl2KwRYBRy+7HzZolTc083YBPzFvPZ3m3LfjAkqLaI3/9SC+26IfDr/jbBp+3Z2EIxczecMDdww7KxfMjAjJWrfU3yfvSUuP4qedF/Q3VCEpIwdHL93ExL9929PyzLUsDP1iGz5afdLyfV+8noNJS4+6Lez+uP08FsVbE8UgxV1Pq68fSyVlw0hhETUBTU8x9GV1ZX+dAzz10nt6XC1+iU/C1OXH8MO285r7MPNK7ruQgRHf7MQX608b/yMvwhmnpdX0/YUR3+xE74838Z/3XbjuE4XfX9+f4kK95U3x1VK5UyGl1QIe+HpHsR3rkzUnkXlbnAS/90IGRv+4hxcwmkxahQW73Bd6RftOzOD/b2NcCiyHWYt12q08PPLdTlzLcilqJ65kYfGeJFlLkRs5+aIcQ6M5r4BL2Hrg6x34cv1pzfxXo3Qw0Y5HilT4E4Yzrz9xTbq5IkEeDF6qtLo7pwoXSK4Ak5ZCfPnGbUz9R71VTG5BER77Ph6xfx3BvV9tw6PfO7wDnkZI3s4vxO18/ylo4xN8nGDDGTEOqoQwesKbvx/Cgl0XsEcwP5lh6vJjmPC3d8NO3X3HfHXbftjuUkYuOoV2rT6tUm7mitMu9JaGu6atMTdAC/FXmdJXniwjt/mmU+7IylXuOe6KbjI++ms3Hc+LNErHV/hLiLORa3gg6TpGfLMDnxejwk/FcR0IU/OEzoziuD6pWXluRYr465xnFlJavURuQZGhKpBDPt9quPIsAHy54Qw+kOTFjpq/B+tPXBMpFNMtysEUtnpRsrpnG1QMlh28hLOpt7AoPgnx5zOwQOBJKmJZpN/Kl/3NXdPW4sl5Lo+u3nsq/F2Yi/XJ2lOKvTlliqSHlv/1x1OQk6+8oEuvXOOJq0z3xFtqouqwlNUJKXj9N4OVezVYefQq0iT3SqudzoojV3BaIz+ryaRVmsdzN8xm0rIENJ2sve8vN5wxvV+jhU/iz6Vj22nfh+daBcuy6DZrAx9Sb7ezugtncVTw9sf2GowbwrvzD7wwGuMkZ7ie7d3nHcYAI0IYN+z2769Du/ddhr33lmv3NdZqh+Ht8F2WZbHx5DVcvJ6D3IIir6S7eAJ3/hnZ+X5VTVoLd4o5ubyz/vEeM26cgzcwcnjOKOjoZe5g6+lUjPl5r9+Gv/szF6/n8IWm9BDWOFFyZmhd/v1J1/n2X2ZJTMtGhxnrMHercrSDFoHyTJDS6iWaTFqFTh+sx8HkG9io4Uk7duWmao9PNaQFmJTCgbWEjf/8cRifrj2l+ntuQRFu5DgUEz2lwehiP/7Xg6IiQ0KFgWVZVe+CMORU752zK3hapX8r/LrIzmLi0iO4leewIEs9vWYZ/dNe1aIhSvfDbD70Hx5Whv7rwCWkeZAXCzjCkaTka3ha3a0sbLO5FB5PjJfNJ6/CgE83q/6uJBDeyMlHdp7L+CCc7KWRBhxnrt3CTUEj9Ufm7MIT86wLodfj552J+JgPw7V+cWJZ4NKN23j7D0dIff0JK/DCQnkfZrudxeLdScgvtPP3bbeb3lAteAHZD9NlPfWW+UOvv9eXOIoxmRmJtPK2kRB3tWrdWsZQrcgNM4yavweDPtuCKcsS8NjceJy55ntvnysnzkHb6Wsx+se9su2slj+lKRdKBlW9Q9p4BdTEcf3Es8lh03l5C4vspo3N7mDkCEqe7Sfn7caaYymWVvQXeRK58NeA8du5ePjbnXjrj8OGjESXrrtftXv41zvQ66ONsu9v5OTrpkwkZTgiYLac9qzGSkmGlFaLeOqH3bLvbuQU4P7ZjhxQoxxKvoGZK7QrDBuZLrTknt/2JmvmkAz/egfumrbWcSyL56b1x+UFf4rsLK+kaNF08irUe0e9sqFwopbuLsupUEgFwoW7krA6Qb8IkVG4SUWKkiA64LMt+HCVvNG9uyGPRmj//jrEn0u31OrGeWWUkBpYzOJucRiO7PwiTU/vOIUoh7umrUWPD+WLipAle5IRHRuH687iZ/0/3YyR3xkvfGI1k5cl4KuNYs+xGYUjKT0Hg/+3RbXYVxGXE86AT09YlXBVtt2yQ5fwzl9HMHujeS+2Ep+vO42NJ+VGP3eLvkjJLSiyvFCUWl7inC1ncV6hiMrVzFwcSLpuuRj4+17HM5qRLY9iMcI3m84iz0ALKE/G3WjiSny+Tr4WFWkI3T/uSPTgiA64vWfnF+GM03h4wy96T8qjE7ZpGoatMXBI18sihfdKK8Um4XImP1ebeSfdCSnmKCyyq1ZPdhduPGp5og3fXYk3i6Gli5Hrwd0zbqyXBFFAf+23poLv3sQMdJixDv84HStmc65LknIrjSDTQu+s9H5XmlfvmrYWj32vLUOUnKvpPUhptYgtzgR+ltUPm9Ni2Ozt+G7LOU1Bysj+jSTnqxWQOiYINxEeSnrc0ylZGLNgn+5xhEiLJwGOsRpVRLROXRi6KSs07PzXah+G9DofSLphqmXA15vkje5z8ouQrKL8WoGRgk5WOXvcLRLBHT/uyGVcvakcSmOF3q1msBAK+krH+cVZ9KvN9LX8eyR8b0oa3289hxNXszD9X+W0AmEhswe/Uc/hv3nb4aHOyM63xGP42bpTGDVfbvTj9q0kXJuhyaRVeOanvbI6AZ6g1K/yZm4BPlhxQlEo6fnRRjzw9Q4cds6N11Sed8DxPhldX95yesWPXJLPuUb476oTmhE5WpjpH/rZulPYfT6Dj+4BgEIvu9CFlzBIR1EpTrhX5mDyDSSlu9YAb7dhkeYua10L6Vt95GImhn6xjTdUmXklOcXLnSv/+frTGDZ7O44oyBTuGmq48SRorJF/7TeeppOZU4DZG8/oemfdCVGX5t8KQ06tWouOOueOvRJDur9Hml6+cRv3frnNrffGyLnpzcFXDfSJV2J/krYRxhPdws9vmWFIabWYx+fGo947K/Q31EHLwm3k4SsoYvkwh0s3bmPV0SuybeZsOYfo2DhRUSStY0mP604vTCXsLGuqbYIaQiFZGjLNhV0oeTo8wUxlVKPhvdl5hYqe++LCbmc9DkX2FO55SM64jce+j5f85mDL6VTY7awpBf9K5m1ZT1o1DibfwPhfD8g8B9GxcSLjy5ZT/pYP58bfON/upSotL4T71PJcC0v+C+Xg624KkWoEcaGIFigaW06lovV71hUFUlLWubzvK5m5eH6BONxTGiI7ZsE+RWEr/VYeGkxYYdrTqJerr6UkG0FJkNLKc1fi4e/EVVG9rUAKPUCc194vlFbB/5/92WWseWGh2Di8xkCLMlPHlXpaFcODla8PV7Qr4bJjTlTztJ5LvYVTKeIQbHfyYDmOX3Hs64pEQUi4nIm209cazk8Uwr27RtcIPSYsPYKPVp/EjrPastLkZUdFIerCqxEdG6dYH0GaDyx8D63KyeX2YqYgmxAr5Dp3+HFHIo5cyjTncbZgqPd8uQ0AcD2nwNC8mp1XiNUKEUt6+EMKia8gpdVi1CYnvRA0qZCSV2hXtbwZtbZ0mbkBAPDQNzswduF+sCyLvw+4XuKVzt6lauGdSek5+GOfa+KXHtaTthxCVh29iv8qhMmaRRjiJLXU/3vYobRbVVWZY9sZY7kF+YV2vPm7sbCiF3/Zb7lyLUXrCXrou52YY6BVjbtcy8rVtITP3XoO59OUFaPf9yZjrrPlwtbTafhiw2ndUF4hr/5qvBjV/bO3Y9nBy7pWe2lonfRdf295gqb3/bHvd+FLL1SAtHJhc7WO0jmm819pLnJGjvo1LCiym7Yg+5OiIUUpLU44TiPpCOnZcqX18g2HEPTe8mPINBHKqmUA/efQZXT8YL3lKQm5bhQPEobneupB10PkaXU+S1a3inMH4TsrNGakZ+cj5WauKG/eSqTpOZrXX+qVdW6rp4D2/WQzBn62RfE3o5deaPwKdo55zbEU0fzBKcZcWPXB5Bt8/Yj3lido5kRbrQpwFZf1nuclex1y2U1nZWbp5k/MixedY1J6Dh8OzD0nwmto1aPs6X58HR7MHf1K5m3F6I8dZ9IQHRtnuq4Mh1a7S601j2PC30fw/IJ9hqpnrzxyhffyu/Oc+rt33CiktFqIluDV8N2Vmn/7pKRoS6HdjlkqipzRhy8jOx8FRXZcdoaNpGbl4bXf5IrTy4sceX3rjqWIFsqeH23ErnMCYUZy3DMaHhczbDxpTVK5cC01a+l3l6OXSl5IqJ6CoFRsyUo6zliPttPXYp5Kv7/3447zi7gUaXn/HWeMefv/3HcRJ69muSWY6hYgkQh8Uk/k/O2JAIBNCrmZgMPQ9YmbYZhGiTt8BXO2yEPROfQs4ic0FtXCIjtWHLnieK64HDWoh5j/d9UJtJy6GgBwK68QMe+uxLebzRpJXMcRcju/CIP/t8Wy3tmFRXY+RM7wyBS8wGaVa5YFUjQs9WclRp30W3mYv/08Ji49gr6fbBL9xs3pE5ceweRl4t69XNjfMQ96QEvPbPbGM6rKiVGxii+TAAAgAElEQVQWemBc/GztKb7KtRH0Ktim38pDt1kbcFrgJZy//TyiY+NwK0+5Wry7CD2RQgXWxgCdPliPvh+Li8pZZZeStlPTyikGHB4i7vnmnm1O+U+5aTwkk1NquDXpZm4BzqkUKIyOjUOb6Wvx6dpTuJqZiyBnuMUf+y6KDEHSquX3z97OF4Gcvz1RM1LBjEdx7IJ9mnMq4HqmDJTsEKGk7Alz+3t+tBHvOvtwx5/PwKqjV0Tr+qL4JF7Bf+23g7qV7Id+sVWxvgO3z+1n0vDDtvP8Mznki62aEXq+7rcmNbp3mbkBXWdtkG33g3NtfmXxAX6ezMkvwqHkG1h28JKqs4m71J60u9xxJg2JzhQApa4Tabfy8N3ms7yh6oVf9styi80QIDorKa3uoiT4e2LJkHrW7HYgPCRIcVszoR8xAmV58W71hXzHmTQ8+/NejJyzU3UbX1vN9BAqkFpCNuEfqOVPauGukPbG74cw6H9bTAsPALBWJxRPOiY1z9ZLv8ir7XoDpbf0pUX78cEKlxFMKmxrvdt2O4vhGovzN5vO4sVf9mPV0asiT6tQcBH2zP1m01m+1yNnYV5xRJ6+IGTu1nMiJYG75ik3c7H5VCoysvPx254kHLmUiRNXs/CBTjE7o3y85hTu+XKbqT6SjIJCbdZzuPt8Bjp9sJ4XUgDxcyZdf15bcgjvLT+GhbuSZBWuufy2hbuS8LMzOmZ1wlX8vDORv0OeFCEav/gADl905WKZSZlQY/ZGbWVAK3Lp8/Wn+SrXapi5HetPXMOlG7dFhpWfnIqPFbmmHWes49NBhOMW3m+u9Zy0+rsnMsfF6znYdS4daxKuIl0STaL0vHJCfV5hEZpPWY36ExxpUJzSyil80nD382nZokgTpXvHHe7hb3ei7yebZb8L+WL9aYz4ZgfvaQWAVAUFyp0QWZsJiXhVwlV8sOIE/y6mZuVhv8RYxl0bpWJjgCN1S+g9Fs+fYm7nqz/zf+2/JLtn324+i+jYOPx94JJuJfuEyzdFc42U09duYdq/x0Sq6F/7L+FGTj4fHi7G/Qdz08lrmr3f9RCuNe68H68s3o9hs7dj/K8HMW/beWRk5yM6Ng5bBRV7T6ZkiToMKJFyM0+ztc1jc13ec6WoqPbvr8PMlScw2kQh1zsBUlrdROll8CSkSeoBunozVzVs193DaOVp7El0TLZaieAPfquu0BIlC2mOlFW8tMi7ipnUI2jWkOJOjs3EpS7vlNLxpPu8lau8mGXnF6HrzPWYtPSootHrga+3mwr75MhSCRk8c+0WJi4Vt2BadvASomPj0GLKalErrt9VPNsA8J1OqPhlZ05ZRk4+f60ysvMwQlCw6Z4vt2HjyWuy8EZuUa9RPhyAo+fgvguOeU8YzsWF9UuVhMnLEvB/P+zGuMUH8J8/j/Bemuy8IktCKTllzJRy4nwcMm8XYLszRNFs7i2XH7hPELYrDFOX7i5TEoomVBLmbTsvi554fsE+TF6WwCu0nuTwbTyZivu+2u723+uh9K40fHelqEXNscs3ER0bZ7gInvA95tpX5BXaMeizLbJQae7eC1NOpKGw/x6+jD/3XcSahKvo9dFGmeKWW1DE516evJol8rxfy8rjCzkKEc4qaoYwo2H1152C96qjrvy5Xh9twsg5uxSLKRbZWVzLyhUpYVzRwCzJ/MbJLmoK3zqJ0e99QZ95bvjcdZQam7NyCxQLLV26cVvmHeZgGLnRSA+WZXEzt8BwSoXQ617vnRVYfzwF9365TWbc4x6ZvSrRS91mbUD3/8o9gEpoDY2FXC7864C4YNQj35mX37QUfzvLovfHm9D9v8bTc/TYcTYNT8/fg/95MB8JDTtK6/Vve5IQHRuH9Ft5ikbsAwIZOO1WHh9pI/XevqVTRfr/ftiNzjPXa27DV+TW2GZP4nVZe8R9F66DZVnMXHlc9CwaOlgJh5RWN1G6/WYte0KLozR87P7Z6kKAN1JvjAgtVoUDE75nu8GwWrPEHdb2mHmKkR5qWnijfoF04dOyal/OzMWCXRcwZsE+WbGtA0k38PEal5fqenY+79HR4q3fxV4l4d8s3JUk+m3xbtfnnYJCakpCMcuyWH7osuF8c6HyrpS3GXf4ClpNFRc8upDh8AoGBzmWors/34oR3+zEjLhjonAuV4VXu/NYYjjFgjuPY1duio6VmJat6zEXkltQxCucZuHG9vyCfXh8brwjlNLk2qAUHi98Xr7fck6ksOgJ28J2GB8LPKGetqSyGjO5zcLIGrO1Cr4WeHLPOaOcTl7NwsmULLwviQDhPMeifpXOy93vk81Yk3AVLy86gDd+P4Q3fj+EC+k5MoPJsz/tRZeZG3Ds8k0M+t8WQy2hjChQZ1NvYY2BQi5bnc/yWIGxUitkvcjOYsjnciUMAAokcwVnkFFSIovsLNIk+dlK4bk7zqbLWv3Z7SxaTl2De7/apmj0CVIJm+G+vp1fpNrCS8q3m8+h1dQ1msYpoQdvqLPgDseve5IVq9wXGKiCLexJrHXPtZ4GBnL5U3ou8Rqt6dTQeh1ZVhyhobg2m5RVuYjDC4LK2bkFRabmBXFEivi3xbuT8OseR8Th2mMpqs8Qh41h+Agp6fVV69muRmZOgSxthZuX9TzLV26In62s3EKkZuXhu83nMOCzLYauT2CorKS0uo20Ch4AkedCi1Hzd+PopUxMcyM80kGgPH6EL/CHgiPuIp3bzZ6Kp0qr1IMCiKtoD/xMO7SNY+2xFEXvitCz0Wb6Wkz5JwGTnN7L3IIixSq8wuqZOfmF+CU+SbYNR4KJHOwtp9PwikKek7tIK1Lvu3AdH65yKATSufP7reJ8Z1fhJcdns9Use3+8Cc/9vFd/Qzh6SU/4+wgenxuvWlhvyd5k9PhwAzaeuIZvN5/FpwJjg3RoLOTv3MJdFzBqvn6FcDUhds2xFHy85iSiY+OQnJGj+1yHBrmWemE/X38zvs/eeEb2jm09nabrQY0/b84IJ+1pDAg9hsoXk6tAv+NsGs4KBFZh2zKhF5JlWTy/YC++23yWLwo0c6VDMft07Sn0+HCDpuKoJohO+NsVPfHxmlMiT2narTxMW+6SK7jrabbQWZGd5T1WwrBIQG7g0rpu05Yn4DuNfPXRP7neSWlEx0FByPkKhe4HwUGC4zEMiuwshn+9HZucNTI2nLiGdu+vUzwuF83BsdK5fzWl9dM1J9F08ir+s9I6wFHkQS77huMpOJWShecVvN9axc1sDGOJM0M4XpZlZb24tVIUckXhy+a93QD4PF1u3ruamYsmk1bJjLd5hUVYFJ+EvYkZ+HzdaVFUjpbi//f+S3xYeexfR/g2Y6owQFaecnEsoyloL/6yD38fuIgn5sXLcmC56Bm9KEYlQ7jQqLtTsk5l5xXK5kx/m+vdJdjXAyipKBWrGbvQWGjkxpOpOH3tFp+nYpYSrHMQfsCslZ5XavYXzBaN8rQEv1DI4hAWEjuVIo5GMCssKnm+Fuy6gOn3t8BT83Zjd2IGEmcNxZ7EDKTczEWpkCBR+51mk1fL/v5gskv4y8oTC9VaGGlTszrhKp8rv9NkC6yzgsiNnHxtjx9X3Oq95QmoVCYMieliK/dJScVQNaJj47Dxzd6a24z+aS+aVS8r+m7SsqP45dlOqFG+FFiW5XMPxyzYiwJn0ZonutRFlchwxWdM6ikShpxr8eOOREy9r7nib1ze59bTabpPdWiw8hZ61724+XjNKXy8xlho4D+HLuPDVSew9T99Fb0e28+koVypELAs0LJWOd39cV45tbDT/Uk30GXmelyR5KkpvUVFdhZnU7OxOiFFFHWwVVAQJznjtqaHJSRI2aewSMMoNeWfBFG0y0erTyIs2IaoMmGqf6OEUHl5ct5urHmtJ/85VzJHcR6oa4ICTNGxcXigTU3R+ZpFeBypEQuQeFpZFn0/2YQL6TmqKU4x77paEY74ZicSZw2VbSO99XY7C5uNwRcbtD3jwiiOsQv3oV3dChjbqwGSFNqxHUi6jge+3oFvn2gn++2LDWew6VSqojKlVESTY1XCVTzSsbbmGDlGztmJBpXLYMYDLWW/vbc8AVPvbQ6bjcHmU6miUFkpomrFdlakVKvle568moU/91/EO3c34ZXLSUuPokXNsnikQx1+uxTnO8Z5XqcuP4b729REZHgI8gqLZOvcZ+tOIXHWUHScsQ6lQl21YJYfuiwyJBXY7SID3iWdftLCudzdNkIrjlzFiiPm29roITSE3swtQHJGDnp8uBGju9fDU13qWn48f4GUVjfxpMkvAEWFdayCdc0bxyaIkotnz75ZxcpTDulYcqXWULWQI+F2v8Rf4C3SRtBKNVBi48lr6NO4iqI3SorQI+Bu2wAOI/OaXr9DIyHAfQT9QNXgcj05zqdlo+usDfjzha5oUdOl0BYIqqyOW3wAXz3WVlYsx86yqvUOjPQY/u+qE/jP4CaqvxexrK7nWa3vsrdba3mTDU7vvFrKwOfrTmO3Mz81cdZQ3NBpQcFFKFzIyEFSeg7qVCot20aqsAJQdGEU2VmP12l3emNKQ3cBh2dUmNuXmJaNA8naxj5pZIDQAyk1rHEKrlQB+PvAJVSMCDU2cKUxCN6t41fkESKHkl1z66Rl6m1sOAo0KiJzSqLwmi/Zm4y3/ziMe1vXMDRejrXHUrD2WApqVSglK3C27OAljHe2XVOrcO1u54M5Biuw7zqXgV3nMhQjcn7eeQG/7k7GawMaoWpZuaEj87brfD4VVLw/kHxdZBjhnhGl1j2pWXkY07M+vz0X2v9we5fSvTsxAyzLiownLy86gG1n0vD5yLtUz+2axFN+4mqWyCNaZGcRFKL9XuWIwrVd32t5132NnQUOOSMT5m07j/KlQnw8Iu9B4cFu4g1vpzQUQw2tYkkEEcik3dL3/vkTZhVGI5hRWLXYk3hdsQftqPl70GHGumLPYVfyEnuK1X2ZR3yzQ7EwDOAQBtu/v07W8ujopUysUMn1Hjlnl+4xv9l0VlNgsttZ3fBgb1j6/QW1yqx5Ei+mWqiolNSsPPT8aCNyC4pw31fbdLdXkgWK7KyhnFQtj7vUcKI5BjuL7LxCrFdIUQqyMRCmVvb+eJOm1w4ArksUfKHykFfg2tnsjWc0Q2D1elxrIZSHlJ7/C+nWGFyELXaEzlsumsJdYxzXSpAj/ly6yHOp5rlzt/e0EYOsdpsaB/lFdszdeo6vNC5ELTowKSNHMUpo3fEUtJm2hveaCyNOsnIL8IygMq70tP/af0mUE8xF0XytUllcrSChkMMXM02lCAnH689yd9zhK6ICkN5uoedLSGl1E3dDBaxAaO0iCIJwh4PJN/DY98pKkxWtPHSRCA/eKAo0yWAYrhmenm+uBcFj38erhhcqFW9RQksgm7vtHF/9/U5Erbr1oWRhG54TppWBX3cn6ee8ATii0MfXzrKG2msJPeBq/UmNMGbBPjSfslrxHINtjGl5RfreCCsnCz3bH60+KaoGbBUsy2qGQQPWhbZn57n244532yiPzNmF0GCXyJ2Tpzx+T7pQ6NFxhnY1W45COytKK9HjQnoO7vtSbqCduPQorucUIDE9G3Y7y+dD2+0slh+6wkdLAECDCStEf/vzrguKkQMnVarltpQU+VPDTBFKvcr5/kLckSuI/euI5jb+3rLSKBQe7CaUV0oQREnnxNUs/KkSOhooeFpxWoq0x60nGFWktLyEyRnu1Ua4k9Dr+6rE1OXuFkp09Nl9S6dXrBSlitFGWXdcPSz+281nTUeoSIvMPPOjK5ffm0oVh7TfqRKeFhTceOIaGEZshDLa8sZd1gvu0+5E5Wq+/tClwaxj5H8q0Q4ct3ILEfvXYX7uLLCzfPErNQ4l3yAHjYUESlYh46/5ke3bt2f37jVW7dEXzN16zisWRoIgiDuB8f1i8Pl6bWGHIAiCKNlUighFuiBU/LNHWuuGqBPW0rxGWcSN6+HrYajCMMw+lmXb621nSXgwwzCDGYY5yTDMGYZhYhV+D2MY5jfn7/EMw0RbcVxfkmqw/xdBEAQhhxRWgiCIwCddktv8+hJSWIsbP/VPmsZjpZVhmCAAswHcDaAZgEcZhmkm2Ww0gOssyzYE8BmA/3p6XF+j1XuMIAiCIAiCIAgxgaJAEcWPFZ7WjgDOsCx7jmXZfAC/Ahgm2WYYgJ+c//8DQD/G28kDBEEQBEEQBEEQdzCBYiewQmmtCUDYcOqi8zvFbViWLQSQCaCSdEcMw4xhGGYvwzB7U1NTLRgaQRAEQRAEQRDEnYm/1i8yixVKq5LHVHp1jGwDlmXnsCzbnmXZ9pUrV7ZgaARBEARBEARBEERJxgql9SKA2oLPtQBIuzHz2zAMEwygHADlet8EQRAEQRAEQRAE4cQKpXUPgBiGYeoxDBMKYCSAfyTb/APg/5z/fxDABraE+6rvv6uGV/a77vWeGNKymlf2TRBEyaRR1TK+HgLhJiFBDDrVq+jrYRAe0FHl/g1qXtWS/c8a3tKS/VhFzfKlcGTqQPz5QheEBBkvP1KtbLgXR1W87J80wNdDIAKMiUOb+noIJR6PlVZnjurLAFYDOA5gCcuyCQzDTGMY5j7nZvMAVGIY5gyA1wHI2uKUNCLCgr2y34ZVIjGgmTULIUHcyZRkRa9OxdKizxUjQn00kuLhtzGdfT0Er8EwjNvVMlvWLGftYAi3CA8JUvz+vtbS8h3uUbWc+8re+/e3sGQMPWKi+P9vj+2LyPAQtKtbEU93jTa8jwfb1bJkLBwj2lqzv1f6NkTcuO4IDRaLvK8PaKT6NxUjQvH24MaWHN9fCRNcjwaVI9CtoazUjMfUrxyBne/0lX2fOGuo4vavD2iEg5MHIHHWUKx9rafouVTjmW71PB4nx8LRnSzbl5Typa1fxz96sJWh7Uq2m9CFJX1aWZZdwbJsI5ZlG7AsO8P53WSWZf9x/j+XZdmHWJZtyLJsR5ZlS3y/mF/ik7y27yCbJbeFIIgSysY3e2OFoBF4RKh3jGT+Qru6FYr9mAM1jINPdakr+rzq1R4Y07M+qpYN47/bEdsX97Sqrnscm8RR1d7EuS5/pTveubuJ4e0JB1YoG2UEhukQ6U10wilB/ZpU8fh47mLXkEY7RlfEomeNCeELVIR1m0qjhyDJNZl0TzPZs26GqDJhsu/+3H9RcdvJ90i7KmoTZGPQvEY5HJ4ykP/u3SFNMa5fDP/5F4Xr9GLvhqaO46/Ui4rAMIXowM8euYv/f43ypUT3uk9ja+rKVIkMQ/VypfDnC11kv0kfrX9f6Y5x/WJ45S6maiR6NdIfR3iIdTJzRJjLQPVI+9oaW/oHgW7QlkLakR8yuHk1jOoWXWzHi65UWn8jgiC8TuOqkfhtTGcE2Rg0q1GW/37mCP3wwUkGBbk1r/XEV4+1cXuM3kAqAPuSiUObokb5UgAcaSBH3xuEJtXKYsKQpoif0J/frkb5UnhzoEM5Cg1SX0oZMHhSoAS/MVCsUA1tqa34+tO18SZhwfJrOO//2ru1rxd7N8QnD7X2aDxH3xvE/1/tHtSvHAEA6NJA30O1cnwP3W3cocguV1of7egQtlvULIeuDaNwSKCsKcF59GuWL4Um1SLFPyqceniIDWc/GCL6bnT3eqI5yyyLn3MojW3rlNfd1qygHuTUjsJDgvDvK91RrWw4/s/pQeaMSN0a6nv0vI3UE2wFo7pFY+ObvTFruNwjN6Rldbzcx6GYMwwjUlqHttJPgRvqNNoFC96Pcf1i8NVjbfDPy90wqHlVzHjAsXa1q1tR9mxJH60WCpElRjyEIRrzrxpq4d9Nq7ue4eY13Xueq5YNQ0+Jsj31XnOGFqNI5yY1gx0bIE1vSGn1Q0KDbZhyb3NL9sVZoCqUDlHdhlrmEr6gfuUIzHjAmtA2f6Vz/Yo4MlVbYBSy+rWe6FTfJQB/OKIV5o/qgCqR4UicNRRvDhSHs/VsVBlrX+uJ7bF9Mbp7PbSqpR1O2iMmCo2qRuIeAwKJEuVKqc8jeih5UjiMzkGNqpbB4akDsfzl7oq/m/HAFBTZZd+1qlUOz/aoz3+uUjZc5HGTEh0VgXMfDMHBKQOwcHQnmSAPAGN7NcC9rV3XW6rgDFTJi+TC2/s1Vf5994R+6G5A0H6yc13dbfwBJeFUTRk08hyO8CBU9dsn2gIA/hjr8A6NUgk/bFC5DHZP6IfR3dXDEztEV8CItrXQqGokfh/bBXOebIexvRqgdsVShsejFbJYLyoCw9u4wpQZxjEu7v+A+HrVi4qQ7WOW0yi25e0++PcV8bv1XI/66C3xunH36qU+DUTfD25RHete74kGleXH0COmaiQSZw3FN0+047+rpKKcKnkNtbAJBPsWNcth14R+vIL48+iO2B7rCF91xz5kJNpCyta3+/D/F84vPTTeZ7VrocekoY45UW2KbV3bYSRgAEwb1hy1KpTC72O7GAr17lyvIoa3qSny0r8+oBHuaVUDrWqVx3dPtuefRQDo2kB8fk2quacU/j62Cybf0wxlwx3Xzh1lX+1vhKkAT3Sqi0XPmQ8XvrtFdfz8TEd8OKIVNrzRC7Mfa4unJXOIVbVrpCHHnqzRJQFSWv0YK4ozGJkUSGclfEEQwygKUEZpWMWxGNb140gBOwtEhoegc31XIZe5Txn3Hj3coTb6NHaFHr7QuyGWvtSNj8ToGROFmKqRqFleWQD+UJLv8tOojiZGL0fPY6OFkpJolAecQjnLAmXDQ/iQyFa1yvFCY6d6FU1FqGTeLhB9frprNL581OGB5qZEpXqBnzzUGk90rsN/ttkYlA4NRveYKJnV+40BjTC+f4x0FyKCbTaREAsA04c1x5rXegFwKBlK+V9VyoajUdVI2fdC3hrUGNMtynn0NkUK15pR7JYHvNY/RtdAI2Td6z1NjWVwC8cz1T66IhJnDUWXBpWw+LnOit6SKmXDwTCMqre9XlQEPnm4NYJsDDpEV8TA5tUQe3cTTBxq3MAizXEX0rtxFXwqCPMM1tG8lH4OdqYkBdkYBEvOI6pMGH6UzBvcnYqpIn/+GlaJ5PfH8Upf7TDbWhVc81dVQTEntdBnhmHwz8vdNPcpRC3EGQBKhwbz8+fK8fLnJG5cd8QKQvSbVHMo19ycbuQ+NqxShj9HhgFqC+7ngtGOa9ta53kuWyoEZ2bcbToKj1PY1S4B9zXDAHUrRWDbf/qiQ7SxwnE2G4NPH7kLXRpUwpwn2+E/g42lMnDewIXPdlIMyxai5CGsVjYcz3Svh1KhDgXTTLEwDiN/YbMxMkVbj0oRoXjVOec/3KE26lcuw3ukhfRXMEZ+KzDYGKVx1UhMH+Zycj3cvrbivaacVkLE8z3r628EYIzB7QBgZMc6+hvpwE36Qk+G1EvhK531xd4N9Dciig29CqdRZbQtvW9oFLUQ8nB7hwXXxjDoUr8SZj/W1tgAJfxncBNsfqs3rwRGSjxiagJvccIpPb+O6YJvHm+LD0e0Qv9mVfHFo+6F5wbZGNxVuzzszpBAvdDRh9vXRnVBkRehx2HuU+1Vr/2mN3vz/y8lKULDzWEVI0JlHhglvn68LRpVLYPPRzoE68c7iec1PSEbcIXQlnFa1osE89pXj7XF1rf74OfRHRU9tm3qlMe+if1l39+QKK1T72uOupUinPtVH8uIdrXw/v3WVXsNDmJEQiwAPNklWvNvKkc6vNZKwtrzvepj5vCWODJ1IF7qYywnr5kgJM5X4chdFbyqavfBZmMQHux4LoUGITUaKihXQjjFQYsuDSrJvCVC1K6bmq3GzFVWug6ta5WTeUUBoKCI1RRQg202vDukKfo1qcJ778warrl5Tc0QJTPeCELi+zetIps3xvZSlgWK7CzaSMKFubBOYZGy6jqFrPo1NZZz3LhaJP56sSvWv9GL/655jXKi8f3wdAcAwDePt8Psx9qimoEiWute74U/xnYF4FIe5o/qgKUvdeMjUJrrFF17pW9DBAfZ8FA7R+h3g8oROKAQ4jrfOT4peuuhlmKvhtBYOrB5NbxgUKbjDDwVI0LdCsvmni/OG1wpQj2KRw2t093yVh/seVe+ZnBoGRg+GN7SUMElqXEIEM/DRmEY4L67HEbdyLBghATZ8JJCLnaA6KyktLqLNGQsLCQIHQ1YpyYMMVfy2tMS2cJ8lypOQUdquZIKeq/2j7G8CqAS0R542e5ElKx1ZpDmWEiprxPSpZW3BwC1DIa7cd4hhnE8e3rn1VjBm2RjgAHNqqJupQje2uqPCNPN7m5ZHQ93cAgc97WWh7fpXV+l/RoRNBY6LdlSj3T/ZlUVr/2qV3vw1zQ0yIbj0weLfq/sFLKGt6kp88BIh7Pq1R4Y0rI61rzWC70bV0HirKGY8UBLkefwZwMKQ8MqZfDukKa8JZoTmjmdrXbF0ggLVn4OFo7uhEoKocm1K3jfQ29EDryrtn4On5C6lUojbpxDWVHK5QoLDsKjHesgMlweJiY0RghZIci3VMqRLA4+eViegyq8ftKwN06ZmfFAS+yd2N/jqI0Ig/OIWsVZNV2/yK6s2AnX3RY19L3G30siNKqVC1fMAQTAhx4Lr8kPTzv+3mZj8FzP+pj3dAeUd6YNmVVXOMWroMjxHy6HlmN4W4cQ3adxZd44zSmqzaqXRds64mJk0ieOuzRRZcL4+YajIq9ou0ZdQUNJSJw1VDciQUjbOhVEIa1SuHz3ChGhovlTmK85a3hLTBsmTvGS5uH2aVwFd9Uuj9oVS2P5y90x5d5mqopF4qyhGO6spMw5IkKDg1BBIWTYpvIgSucirqhcvtPwYGb94ejd2FwBMnfyKpUMMJyh840BjXF82mDc27oGHmlfW5SGoYeWEl+nUmneMCjluR718MtznbF/0gDsndhfFuZv9F1SKu5Wx82osXKlQrBiXA/s1lC0AwVSWt1EGs4F6Bdj4DwNZni2R330bVIFzd0scMAJIAyATW/1xqEpA9Jka+wAACAASURBVGWTgPTVGd8vBjMlocl/vtBVsfobYNzLLMUdy96djBHBRoufn+mouTCpyFY8Vuc+G73/QsGMM6YoeQila5swNLZKZJhqiX0rWPycuGXLeGdVSqP5hCffH4xTM+42fDzO06gmoAhpULkMEmcNxea35HOWlIjQIDSpVpa/N0rhecFOTVHJyyJ8vja/1VszPYHz8gjDrx7vVAfr3+glM1QEOQVtLnSwcbWyqFA6RFbUSMq0Yc1l7ckSZw3F4uc644uR+t5uT0Kq6kdF4GGV6pOJs4ZixbgeOD9ziCgc0ghfP94WVSIdf2PUg8QRHRWhmVvsS5TayggFS6E3rW+TKnhrUGOserUHGlQug6gyYdiooJBvj+3LV+FWCscTHsforZZWluZQm8/aqxizufN5tX8MKkeGYf4ol4esQ7S8wrS0FZ6WbWFQ82r4bUxnUVQDd32FSwC3CyNT8UMCQzb3d1zNDKlCNrp7PZyYPhjzR3XE286QUd44wzAyBV8aht/baWB9c1BjhDnH3b9pVdUw7x+e7qAYBq8XcmuW8iq1QVa/2hO/Pe+Sj0KDbXw0DIfWVN2yVjmR0U0r35nlDZbKv5cWGF+EXmrh5t8+0ZaPuMsvdMzjYQoVeDlDztH3BiFx1lD8PtZ1jlq5/np4KktwnlabjUGp0CCEBtvw3wdboVpZY3Pbutd7up0WV7dSBMqEBaNiRCiiyoTJjKVGz83q3NNmNcryxuZALt5HSqubVIgIFVU7ZODKxVBLsG6uo3RIw+Y4fni6A+LGySsPGiliIxQ6S4cGK74o0sWWYRiEBImrA7arW0FkuRfmeLwzpCn+T2Uh18KTHDejuBt6agQrdDgz1k0rjidVQoSLulJOmfAZ1+vEpKf0SjE6sQrPu2XNckicNRR3Cyquqi0SrWuX58PnlDxt7sDl0XLseqcfDk0eKDJYjesXg9cGNELirKG4v42xPo5qXkI1+PBghXeXQyu8SUg1gdLEFeXgbo2SXMx59woUpGbh88yF2qrx77juogIznBe2QeUysmddKiyWCQvGgckDdUPLpGG3HF0aVEI5wT6lYZacsuSJzzFuXA9U0VBIm9Uo65bwJlxH2tSpgBjJM6lXBGfvxP6KIdn3tKpuuiprVYNCohGUlD7hV9zctfrVnqhVoTSCg2y6NRtqli/FV7T9+vG2st+4/TMM8KxGMSUh5UuH8gVghHCh68Lqt9tj+6qu6y1qlkPcuO54pa/DwCXMXbez+nl6SvnWgOOeMAyDTvUriZ4v7pkWzRms61c9pt/fgld0OK/isLtqYvI9zfhz4PfGMDIjhHC4UmOb9FS4ZyE0yMavQQObV1UN865WLlzRQLhMpWCbO/z1YleseVVZaW5cLVIkW/VvVlVmVLDKSM+tm1Lv8ucj78KKcT14ZbJJtUj8/aIr71f4LHSpH8XPTXmFRQCMySLCXFe1588dtrzVB0tfUs5RVjqKNGfaNSb5d1UUPKZ66QJmkN5VI4aS4W1rWqJYvto/RtHYN6ZnfX4t57DyfvkSUlotgmGAkR1q45vH2+KrR9sqtpRQy92a82Q7XmAzw+Od9BXF2wVFutuozaVqL1VMlTJ8jgcnxLd1o89inoGxeYqRfBN3sWIOMFN50Ejunx7SIVeMCOX7oGn1+wPkCpLevqVwwrWSpfjtwY1VIxGERzVbdIkbsnTC/vvFrqb2w8GFZXJUjAgVKT+AdsN6JdwJy+Lyn6QhkV892gZ3t6iG+An9VMObpHCe7Jf6NMB3TzrCbzkBS2mh44TpQqfRaXBzl5FOKVxNjerlSqG7SuP4zvXFUSulvdynVhpm6csgEOkzpofwvV30XCfF0HMpSu/qV4+1xf5JA/jnxkj9BQaMJRXAuzaopKg2CQV9Tglw995Iq4Vuj+2LtwY5PPVlw0Mw1kSNhbhxPfiiXRyRTqV12rAW+OjBVlg5vodTMVYfcPMa5RTXWZZlsf713oLP8r9Vm66XvaT8/HDDECqMZjyt4SFBaFmrHH4d05k3NgXZGDzTvZ6i4KwGA7kCJ117OONJWIhLac0rNGcVtbp9TNs6FTSNUELKhoeohjxrvZ/cfKsVutq0eiQm3dMM/5Osl8Puquk0hDk+S6+pmvjAeVqVrteMB1qiatkwUV2D8f20C8u5Q51KpVXTJJSe8yAVg47SK1G/coTimuzuPKJ2XwGH4VXrGeE3ZV0RSwBE1b+FaIl8keHBeLW/sqwRERYsKxoXGCorKa0eIXwI2tSpAJuNwd0tq8NmYxQnHWmYmicoWY+EcCEiyRm3ATgmNA75S2fs7ZVOHrve6YdlTuvYva1qYPr9LWS5LVpwi5BeDzxP4BQ9M5UmjXB3C2vKlQsFiOd7qQuJz/WohycsaF0hXchYCLxqSoKR4P96lmI9Sx5nGRYW0eF4sXdD0TMqhNusafWypnNo6kVFoFRIEN9P07VP5XPRyi+MKhOGEImF1xNr6cLRnbD5rd6mwoI5nuhUB6tf7SlLSahdsTS+eaKdqZDT9+9vgUfa18b4fo34aApXeLB8e86jwM1nQg+WUUVZj3eHNhWFAgZyuJMUvYgcKcJb1LZOBUPzuVa6CWdEUSqMJIVhjBlP9ahdobSiECn8iptfrHwUXuzdEImzhprOi69dsbRq/lxIkA0Pta8t6vdoFjvrEOS1wkSlc/nvY7tgwpAmuoZaofHTpSQZp3P9SqaMU0pI76F0nplyX3O8d19zdG8YxStTRozci5/rjIlDm2L3hH7YM8G3+X3ctXVVDWawf9IAxdxtKVqvMMMwGN29nmqYPx8lIk0DU9kpJ4cpRfvc36Ym4if0F82/XPVid5Qgdwz9j3eWRyqoGfCVDO8MGEPrx4LRHVUrGe98py8GNlNOLzBT8JE3ogMIEsgSHz/UGqfed8gBwoKX52ZqpDQFihZqElJaPcH50Ox6px/vreLo3biyqIfeXy92lQl0ZgtwCNGTS6YK+rwemToQ72oUdDIrA3DHrlYunBdcbTYGT3aua8prlFvgmCylhRZ4WEfukhZ31S6PzvUryooecHCTVWERK8rB6NekCuY8qV9e/GlnA3IpzaqXRQ8VL9GHI1oZKsoFiBfvahqKxrtDm5myZqshndPtLGT5i0NbVsf9Sn3wdB4UowuS3aTwyS0KapX1Sjuvi9L7VDo0GMenD0Z/lQVHitY7ybIsb2QY3rYmTr1/t2gxnD+qA++pNEL3mCjdEFo1GIZB42rWhDhVKxeO/z7YSmRpZzRe44HNqmHKvc14L5XNxvDhu3rGNKOEBNnQsEok6ntarM3Nhb2SU3Dw5HyKy1vrjiD48zMd0Uel8nNHZxVxIzlXVp0iC1ZkFBvXtyG6Nawkuoau81Q/6qv9YwzN60pYVW3cnWIzsn3IjIuOz5GCsGSpotchuiLG9FT3FrvmXSVPq/cfVi0DqPR8y4QF4/+6RoNhGF45C1PxnArbAXVpUAnP9qiPKmXDZREwxQ1XT0Ro4K4YEapYPM1KOA9eaYNOkjwNT6sSakqxGcw8bWXDQ3B82mAcfW8Q/50RJZR7XqRzixLPdKuH7g2jVNNNqpcr5ZLfLQqzFcqjNhvDX3+uuCGXgnDugyGK9WT0RiH7PUCUXFJaPeAxZ66KUiuQiLBgvmonAFm1POHfubNgSBesHjFRol5NIcGufUaGhxSbp8LMueQUFAJQV160QkYARzXcpS91w69juvBl4IXUj4rgz7vIzmLNaz15JdRmY3jBVIup9ykrwwAwoq1yheX77qqB6ChjYazC+8Itcv1NFlfxBKEi1q1BFOpHReCVfg35XExhfpbeXK2UEyuCC1uyy4Uno2NVokJEKJa/3B2fCXoVutPc/rCOcYcT+hLeG4SPHmwtW+T7NK6CQc2t8cD7Gq1QcJuNwahu9UQhu4ue7Yw3BzbijVjS/rDu8ucLXflCOsXJ/XfVxJePtsFog3mOvkQvrF+J8qVDVQsEzRzeEmte62nIa26VsjO0ldhI9vrAxvjl2c78/oNtrkJJWkvZq/0bYaCb76Cnp2KF0tvPaaSN4SqsSxSESfe4Qv7M3neu5oCSLFCccQxc1XghWqfyXI/6mDi0KR5VaAF4YvpgrDXZg7e4MFPhXQs9w72U+lERiL27Cb59wlg9D63wYEV8EPRSKjRIpOSpeVqFz1HrWi7ZRctOEBpkw+R7m+nOZUIvqdL3ZpHWx+DgCrTxaVQ2Bu3qyudqvfc/QFJYZZDS6gGT72mGE9MHK/ZbMoInD5W0Mt2C0Z1Evf3UEtUdx1U+sNkiHGZY9FwnWfXDaL4novytH9y8Gj4f2UZzfhSeR6nQIEwWLOid61fEivE9+Mmt0G5HjfKl+HBKlgXa1a2In57Rb7chRJiPola508YweOfuphjUXN+7V6tCaQxvWxPj+8XwgsojHeoYDrN0t98nB8u6FJTI8GBseNNR8bV34yo4NHmgaP+FOpWW9FplMPx2jn+NLuZqi4WQlrXKoXJkGKYNa46vHmuD38eaz1ktGx6iaQXnTi8iLDjgw1XNClrNapTFy31j+FYRqtETJqkQEcoX0jGKFakADMPg3tY13J7bleDyHNX49ol2WPuaeQFcOJ2buW1q72t4SBAaVY3UXEOsZNObvdGrUWXVsb89uDGWv9Jdsee4WYYpRZBYjCfrOpfjzQno0oJowsgDs8fhjIpBovBg98bpFoKDycOD1QcSGmzDsz3qK76L4SFBpovYFRf1nIbrGBPtdjiEl2fWCHO1ThiGwdheDVC9nDy0nHNslA5zXTMuVUDaD1cN1zPp/sPj6WNnZA4QGtGVotS4+e0Zg4ZJNaOUJ/MR13dd+h0gfyf+94g4h9nsuxsoOqx3q1sEODYbg3Cb5xOmO498TFX1PmKAttAZUzUSpUODkJMvzhGZ+3/tUU8Srti9YZRqBU4l1A7btUEU8gvtWHssBT1iojBtWAvNwkL9mlZBuVIhpoSwwS2qYdq/xwA4FJDwkCDBBOAcH7+14wtpWLcSo7pFY/72REy+pxnSs/P479Umq2AbgwoRoZhyb3OsTkhR3e/cp9qjT5MqIiFi5zt9Ub1cKRy5eANfbDijOzazulPdSqVxIT2H/2xnWb4qsNRTWq50CIrsrikiqkwYnyOthNH+jq6cVvlvz/eqj93nM3Ag6YbsNyOehacEhht3+c/gJqhQOgSxfx0B4IioWBSfpBhREai4uw6P6VkfLWqWRY8Y/ffKWyx5vgsembMLh5Llz5ASXM6Zt3lIpf0Nx2A38+SNetzCJS0t9N7XYJ3qtYD556Ra2XAMblENP+5IRJ2KpVExIpTve6m2Zr3YuyEA/VYfRvh8ZBssO3jZ/R1oYGWELStR0Ll73D66ImYOb4l3/joiu596KEW4cIpHcRYeY8CIqtA6xhF4DG5RHcte6uaWEU0kW1h4cZ7sEi1ybgDAwObVsD22L2qWNzYPcmNzx+Dh7edMOBcWCZ73RzrUxqXrt/HdlnP870E2xpI2eJ6ckrBDB4dUZuW4v01NhIfYkHIzD1P+STAdaREo1YNJafUhT3Spi/UnrqGlyUlt0XOdNIt1NBdUkFMqGFQmLBjHpg1G5u0CJGfk4O0/DgNwhElICywsVElMV0PJGnXO+WIKJ+J6URFIcipPWgZ9JcXwvfuaY8o/CZrj4F58zprGeQm5AjVmmo2rtb+QjqxeVISoV6B2MQUo5lly1lFvTS8LR3dCjw838p/tLKtZdEcoIIYE2bD2tZ4Y8NkWxX1rCcHzR3XAd5vPOo6jER78zt2O8Nzo2Dj+O1cFYNXdG2b1qz1x7Eqm5kLzQu8GSEzL5j8/2sGhtFqRU1xScDekLcjG+FRhBRxW9QoG89mOTRtU4vtFC6Nu1LwB/77SXRa9oSf0GKlWbvTaRVcqjcT0HLw+sBEvPHWuXxEfPugqSqO3p/Z1KyApI8ej/pCAo9/oxpPXPNpHcaF0TR5pXxspN3NNF+bj5udgBU+rVfm8WgifNmlopDsh7iUBadsRPfgcY+e/ZcKCLStup4VRhRXwTEkb3y8Gt3ILTRXsNIPwMWpbpwLuql0eY3rWR1hwEN4Z0lSktFqF1cuHmqcVcBhCUrMcSmuAvjK6kNLqQ/o0ruKWpadrA/XehIemDERYsA0bTjgWZa0Hu1ypEJSraVxhNhIOovQCczmT3E/cmJQKQwxoVhVrjyl7J79/qj2W7E3GA21r4utNZ1TLfQOuKqZcafSiIsexWtcujz9f6CLKdzB6TmYtVVqCgN6uuGvTIyYKU+5Vz6s1i7TiICssxKSgdIr7/Gk3tNcSPGyMq6I2f98NOwrUJ3GzNK4WicbVInW9cKKiIc5xGnQkBwRSfSWmShlcvK7uZfdX9OYsb7fSKQ6Ez6WaACVt6QM4cuW+1IjmMBIabVRgWzK2CzYcv4YH29bC7/uSFbfRU4A/GN4Sz/dq4HHP5Y8eUq7eapXw6Q1hUtrjVGvtU6OQMxYqKa3FYLfROtadKoCr4rxGr/aPMRR+OrgYaykYSddRo3zpUNX3zwqE8z0LVrMmidvH8OBZ5bzuWqljNh1PttHw7GiT7QFLCpTTWgxIc0XXv9ELa9zIXVJC2uS8XClHWCxXZdAbVjotZUz4y/RhzbEjti//mX8ZnS9bRWe45cgOdQTbSPYn+DygWVV8/1R7lA0PQfyE/mgn6Q1bqUwogm0MOkRX4D12XL5moUCya1e3oqJApuZZeKJzXUSVCcPQVtVFXle9tUQ4qaj1IFX9W+efdq5fSTVhX7idu7DQtuwJYRjtiVLJ01pdof1CkYKxQovR3eshJIgxnHtiNVo9SwMVac7umtd64ti0QSpb+x/+4DstturBbsZltKlTAY000kzM9IXePaGfqpA0cWhTVIkMx8iOdUQKkxS96xUeEmRZxWzF4zufGl863mOqOM6Pj6Tix+L53MPN73r9tr2N0tHvpLnVCDYFuUWNMzPuFrUd8zY2T7RWLyN8jIymKxlF7bUx8zo1rBKJsx8MweAW1VW34dbeMuHKBlW18GEpUuOeH94utyj5ZmY/Z9lL3ficHQ6uWIlZtr7dR1YoZuc7/RQntu4No/DRg61wTyvvF54Qwr3AE4Y0keVOcPIKV8+nbHgIzn4wBDYG+O+qE85txKG43Gcj4SRhwUE4I8kREFYP1qNd3QqIP58h+75eVAT2TpT3fNMLqRIe02yyvpH5dkjLaqYnIukwWJblvzNyjTihSgml5/DZHvUx/d9jqFPR1YeR83obUVrjJ/RD1bLhOD1DnvvhCXqH5kIQq5YNk7UEuhOQPq/F0RKDcA9PZLPlr3RHYZHyDsyEB1cpG84XxPl9bBc89O1Ofhujr42/PGPujmLi0Gb4z5+HPeov3j0mCute78nLCGN7NsDbfx5GNYWiOmbh5nehQeqdIU3w1u+HiyUEVWhckT5bd9DUqgl3Hbh2LVxlXy2sLBZX0hHOhUYUfiswm16iV8QxJMiGqfc2Q0+Veiuc4c+soSdQ3jFSWr2M2ZwGLZQKIkWo5PcwDKNb+MMbcA3V60fJFfM6Tkv8QEFohPQFllriuU+R4e71XHNVD9Z/Y41UhOULVxg4tieThJECGWo9xTgiQoOQna/dkF3Yp1W/Y412k26l8OJnukXj/rtqoFKZMP5cXK0AtI/nOKZvqBwZhpXje6BeVASSMxy511ZbbgnCCjjh5c2BjUz3gAwLDoJaiqiR+VC4BTdnldTC2tz85K7y3D0mCtsFkUXu0lBgGHy4Q2083MGaddyVluE6v3ta1Sh2wzbgULTOzxyClJt5ePbnPXjEonMMFLj6CXmF2uu3L/AT25IiHaIrYPHuJAAu47hVqCmn3rgcT3dTjyqTOnbuNMhEQ2DWiJbo1rCS4eJEWuFoD7SpiVWv9lAsMlSrQmkcfW8Q3ytViUinBCVtJO5u+FCpUMfkL223o4S0oqESwt5ZXF+z4c6eptLJS+iZMzuxvdirIYa3rSmrhjv/6Q58D1IGjOi6CPv0AsBLfRvqHodlWZcH3EB4MOBos/PjqA6y35X6tDIMIwtTUcplVj+o/ibeomn1sggPCeKFPNJZSw6v9ItBhdIhaFdH/E5HeljExwzFUdwGAD5+qDVa1SqHsb0aWLpfQ8qbYBO+Qrs/S7UauIoSBSZKhZh8CcMwqFYuHP++0gNVysrTSO5kOPknr0Df0+orPGl54y2Gt62FNwY48r2t9rS+2j8GIzvUxsNSZ1Axz3dBBp0MUvzxfrkDeVoJtKpVHr8821l3OyNCGMMwaFJNva+iXuXH2LuboGb5Urz119PKseEhQdg9oZ+sKrISw+6qgc/Xn+Y/bxJUAuYQzoNcyfTr2fn468AlWVN7rQIpeh74cqVD8OnD8jzYPk2qoH7lCIxduB93t6iGLadT+d9qVRB74pWUQulXdtZ4jgSHsFetED1P5BsDGyMx7QBfjMCIcOttwb9x1UicTMnS3IarOD2qW7RXx+KPDG2pnnvjz7StUwEHJg8UfffLs51QL8r90E1/pXfjKujdWLlntKcMaVkNK45cNbStv+RMuosv2r8UJ3whJl/ntAbo9bUCbgXlPK25/uhphXtKU3FR09nCrEihr/zi5zq7fU3Llw7FrBGtPBqbFdzp7w8prYRhisNSUyYsGK/0i+E/WxEKYdSKK1Wi6ioUFnGFwLm2rRARiv2TBqBcKXEIs9Q7/M/L3bA38Tp6NqqMqmXdzyGqWykCK8f3UBi/5LOBfY1oVwvHr9wEoOwp1do/xxePtsG4xQfQuX4lzWqkbetUwPbYvjh6KdPxua51ofPepExYsCX93EoaR98bhPDgwAnG0QunJ+R8/Xg7UfspKaKen6z8u5JEaJANz/Woh3tVjHIlHTuf0+qb4/urkmMlT3eN5sNTPYHrweuPnlbOU/9Cb2sjO6wiSCMlrEuDSpYfr7hnOyNpG0oEyvtHSithmLoVIxARGoS3BzXx2jHUBJ7ieOGMzAVqZfulFaIBiPLLGDBoVas8WplotWMW6bVT9LQKplhOEZu09CgA5ZxUtb8VMrBZVZyYPthwH9MWNcth3es9FfOeZccsmfJvQOBpP8w7nUB5dsuVCkHm7QIAQM9GlbHllCu6Q3iKnKdVeN5Vy4aVGCWQYRi8O7SZr4fhNbhoo5rlfdMKg1tdSmr4uBGm3tfckjYrXFGzPAOFmIobmzPCzF8JdvaoK64aFMUdbe9uJAsprcQdR6nQICRMG+zVY6i9j8Xh5ZUqeUqLK8vnY+rvT1g4y1vrtKh/n+QgVRXazSjxWKc6WBh/Af2aaocYapV85xZZozTUqEIs2repvRqnuPINCSKQGNmhtlhpFeW0yqvTxk+QV13nUiP6N9WvM0BYx8BmVfH1420x0EB9B8I3cPJFNefaXb085foKWf5yd96ApgbnpTZblM5ditsIE8A2H0OQ0kr4FWqtNorDSmRkMuCLjRhUegb/f3v3HmXZVdcJ/PvrTqfzDnl0JyHvYF5AYoAmgAgJJIEAOiBK8AEJxExQhDgCAhpnUBCNMkZgAWqAGSKiAqID4oMJ0RFEEQIGXFEwYtRAYhIiCAgESe/5457qFEV1d3Xfuveee+rzWatXVd17us6uOrvuPd+z9/6d+x2eP75hZWvCxrV0uu13nn5ELvutv/6Gx5b7GU894oDc9PO7f+V0ktMBh3xVHubd4tfBhSVkO3s9OOXwA/IPL3+cW3VMWVXl8TNcoz6UkZ5peOgJh+TM4w62pGGJ07p6GDty9smbc9k5J+aZOyj4uZqmfYaycE605diDprznfvCuQa9Nc+rFwrSSHTm6W+S/0iugd+9KpdzdsHgEep8998hbL72noNZygW8SrRAr4ZtN4u9iaVX1aVsaPBa/xCyehbKzKs0C69rlOuT2Ldwy8JB998yjTtm87Q4FrNz6dZXnnXfSiopvrob7H3ngtv1OyzU/9si86eIzp7a/PjHSSq8tvAzs7HYsq2ElLzoXPuy4HL9pvzzyxJVdAW3LTJlbTdO8er29Uc+JjrRO6vs6cWLO/NGPPiKH7DedE7Hdse3+y+sq73rut+ev/vHO2TaIXhnKLTcm6ccfe3Iec9/DtgUh+u/yJ5yaJz3gyJyxkztCrKYTV3h7ysV297aRfSO00mvTnB66kl2tW1c566RNK/6ed29d+RrYaZjE73O5b7lahRomffiFV+bFwihMnyx+PVlcWf34Q/cd5O2FGJ96Atu3Yf26bFnB/eLpjw3r1001sK515h4wF6aypnUC3/PuRaMPkzDVkdbtPT7RkVYnOMynIa7HXjpa9vNPPm3b59tGWof3YwPMtWGMswqt9NzCed80phZN4iRz2/TgnpzAjtOKnvwI0GtD+zvZ0bSyxSMMbcLr95lzQzlrBmbG9GB6bSFITuOWWxMZad066UJMu2Z3mvHdDzwq7/jop2cz5un8F+bC1lWYVfKq7z2jl9OgWT2uacD0DWRJq5FW+m2a72+L30yfcPrq3BpgoYDUCgoT99bjTzs8yWymO05ql/fZtF82778xL37cKZPZAQzUQ09Yfs3d1l24h/X2PPGMI3PSbhQZof8Gcs4Mc2kohdDm+FSatWQ6a1pXPyH9l289Mkl6U5Rkd4LnLK/QTSom773n+nzo8nPzyBNXXlQLVmLoA0m/fenDln1864RnlTDfFqaP6x0wfaccPowZLKYH02v3nP9Md37war2xft+ZR+eCLUdN7L6ES9ebTfK3tPR38u7nfnv+4lOfneAeYf685ZKH5u3X3TzIgkQ7uoDVthViGuAPzqrRPWD6zj1186ybsCqEVnpt4QRokqN9jzxpU9bXN76ZrtZU2KrKHuvn+116e7/6+x954MTvJzfECqwM28Puc0gedp9DZt2MqVt4nRhiWGd8Q1lTB8yO0EqvLZz/bJ3gO96vX3xmWmv50l1f/6b99t00zwNWkh8fedKm7LNh/ertc9W+03a+/7wcaOi5raoH9IVnoAAAG2hJREFUswJuYwbTt7BUbd4JrfTatM5/qsqo3nbcMwV557+fX7/4zFXdt0MC8+GeonP+aAH65MB9Nsy6CatCaKUXXn/hlnzs5s9v9/lpTC2ay3Ot7vey54TWzCb33MpiiAHShQpYuR29DG+75Y0/KZZhdjAwLtWD6YXz7ntYXvDYk7/p8YVQMY03vMXTluYtyzzxjHsnmWy4n8WvxFQymA/N9GBWQPeA6Xjbs5av9D7PhFZ6bRprWne0375buPfWZE8EZneN3AkOzIeFkdb1hlpZhkJMMF1nHr/8PbXnmdBKr01z+uYQAtIkf4Yh/H6AXbM4ayy9xVaWec7rBMtZOIE+bcIV54HhsqaV+eAq7bIWziEnOY3WFXJgqaMP3vsbvt7qPq3swPn3Pzwf+alzc8h+G2fdFGBOCa302sJMs2nnpnkp0DPVW97MYNL0nBwGWBPOv//hSZIbX/647b4arPdHy3YIrMA4hFZ6beH8ZxprWhefa83badckzxO33fBmBr8UhZigPzbuMboH84YdVCuXWQGYBGta6bWF0DKNKarfEJDm5MSrLbkdzSR+T1utVQN24lEnb0oyP7NUAJgvRlrptWme/+yh6uUOmR4MbM+vPO1BufM/vjbrZgAwUEZamQvTWLu5bl3lF7/79CnsafW0eybvTm4fMyzEJLPCfNhrw/ocea+9d74hAOwGoZVeW5hqNrX7tNbCB3Hpm8xiTauhVuiFd/zwt826CQCsYUIrvbYtskxrtG/JGlHcbQhIvmXzfrNuAgBrmNBKr20rMDTl6DQvmXV7A9D777V6y9XbQiGmVfuOKzcvxwEAgMlRiIleO+eUw3LefQ/LTzzu1Fk3pdeWhvv7HnHAdrd91lkn5OyTNq/4ez/mvoePjsHjp38MjHjDjJlqAUAPCK302t57rs/rL9wytf1Ne0R3XLvT2l29ADDtY7CYNa0AAJgeDIssve/pvKhtH+es4T1xdnePSQAA+sdIKyxyzw1k5iT8zfJ+NAPxocvPyQF7bZh1M6DX5u1CHgDDIrTCMubtBG3e2tsnm/ffa9ZNAABgB0wPhkXmbeBy7kaGAQBgFwmtsIx5GblcGrLnrZAU0G/HHbpvkmT9vLwoAjBIQissMq+hb+n55LyfXz75gUfOuglAkjc988H5X8/Ykn03Wk0EwOwIrbCs+Uh9bd7mM6/QK77nW/N3Lz1/1s2ANe+Q/Tbm0accNutmALDGCa2wyLxmwPmI2Cu3fl1l7z3Xz7oZAAD0gNAKi2wrbDQnKXBOMzYAAKyY0ArLmJPMuk3NS8oGAIBdJLTCYnM2P/ibmjtfzQcAgJ0SWmEZ8zJwuWF9fcNHAADYe8OwaoOoYQ+LzNtA5QUPPjo3f+4rueycE0cPyK4AAGve+174qHzuy1+bdTNWjdAKiyxMt605SX8b91ifn3z8qTvd7v0vfNQUWgMAQB9s2n9jNu2/cdbNWDWmB8My5mV68EodffA+s24CAADslrFCa1UdXFXXVNWN3ceDtrPdH1fV56vq3ePsD9iJeZvfDAAAOzHuSOuLk1zbWjsxybXd18t5RZKnj7kvmLg2Z9WDt2depjcDAMDOjLum9YlJzu4+vzrJ/0vyoqUbtdauraqzlz4OfbMQWYcS+X7/Od+evfccVvU4AADWlnFD62GttVuTpLV2a1VtHuebVdWlSS5NkmOOOWbMpsGu21aIaSCLWk876sBZNwEAAMay09BaVe9NcvgyT12+2o1prV2V5Kok2bJlyzDmaTJXNm4YzZjfa2D3tgIAgHm109DaWjt3e89V1W1VdUQ3ynpEkttXtXUwZRdsOTq3f+GuPOusE2bdFAAAIOMXYnpXkou6zy9K8s4xvx/M1Ib16/Jj552Uffacz1sYm54AAMDQjBtar0hyXlXdmOS87utU1ZaqesPCRlX1/iRvT3JOVX26qh475n4BAABYA8YaTmqt3ZnknGUevy7JJYu+fsQ4+wFWZhjlowAA4B7jjrQCAADAxAitAAAA9JbQCgAAQG8JrTAgqgcDADA0QisMUKnIBADAQAitAAAA9JbQCgAAQG8JrQAAAPSW0AoAAEBvCa0wIE35YAAABkZoBQAAoLeEVhgQt7oBAGBohFYAAAB6S2gFAACgt4RWAAAAektohQFRPRgAgKERWmGAFGQCAGAohFYAAAB6S2gFAACgt4RWAAAAektohQFpUYkJAIBhEVphgCoqMQEAMAxCKwyQEVcAAIZCaIUBMcIKAMDQCK0AAAD0ltAKAABAbwmtMCDWsgIAMDRCKwyQta0AAAyF0AoAAEBvCa0AAAD0ltAKAABAbwmtAAAA9JbQCgPSFA8GAGBghFYYoFI8GACAgRBaYYCMuAIAMBRCKwyIEVYAAIZGaAUAAKC3hFYAAAB6S2iFAbGWFQCAoRFaYYCsbQUAYCiEVgAAAHpLaAUAAKC3hFYAAAB6S2gFAACgt4RWGBDFgwEAGBqhFQAAgN4SWgEAAOgtoRUGxO1ZAQAYGqEVAACA3hJaAQAA6C2hFQZE9WAAAIZGaAUAAKC3hFYAAAB6S2gFAACgt4RWAAAAektohQFpTSkmAACGRWiFAaqqWTcBAABWhdAKAABAbwmtMECmCQMAMBRCKwyIacEAAAyN0AoAAEBvCa0wIKYFAwAwNEIrDJBpwgAADIXQCgAAQG8JrQAAAPSW0AoAAEBvjRVaq+rgqrqmqm7sPh60zDZnVNVfVtUNVfXxqnrqOPsEAABg7Rh3pPXFSa5trZ2Y5Nru66W+nOTC1tr9kpyf5JVVda8x9wssQ+1gAACGZtzQ+sQkV3efX53kSUs3aK39fWvtxu7zW5LcnmTTmPsFdkDtYAAAhmLc0HpYa+3WJOk+bt7RxlV1ZpI9k3xqO89fWlXXVdV1d9xxx5hNAwAAYN7tsbMNquq9SQ5f5qnLd2VHVXVEkjcnuai1tnW5bVprVyW5Kkm2bNlipiPsJn88AAAMxU5Da2vt3O09V1W3VdURrbVbu1B6+3a2OyDJHyT5qdbaB3e7tcAOmRYMAMDQjDs9+F1JLuo+vyjJO5duUFV7Jvm9JL/eWnv7mPsDAABgDRk3tF6R5LyqujHJed3XqaotVfWGbpsLkjwyyTOq6vru3xlj7hdYhmnBAAAMzU6nB+9Ia+3OJOcs8/h1SS7pPv+NJL8xzn6AXWOaMAAAQzHuSCsAAABMjNAKAABAbwmtAAAA9JbQCgAAQG8JrTAkygcDADAwQisMUCkfDADAQAitAAAA9JbQCgPUTBMGAGAghFYYEtOCAQAYGKEVhsQIKwAAAyO0wgApxAQAwFAIrQAAAPSW0AoAAEBvCa0AAAD0ltAKAABAbwmtMCBN+WAAAAZGaIUBUjwYAIChEFoBAADoLaEVAACA3hJaYYCsbAUAYCiEVhiQspoVAICBEVphQFQPBgBgaIRWGCDjrQAADIXQCgAAQG8JrQAAAPSW0AoAAEBvCa0AAAD0ltAKA9IUDwYAYGCEVhigKvWDAQAYBqEVAACA3hJaAQAA6C2hFQaoWdwKAMBACK0wIJayAgAwNEIrDIgBVgAAhkZohQFSPRgAgKEQWgEAAOgtoRUAAIDeEloBAADoLaEVAACA3hJaYUBUDwYAYGiEVhggtYMBABgKoRUAAIDeEloBAADoLaEVBsjSVgAAhkJoBQAAoLeEVhgghZgAABgKoRUAAIDeEloBAADoLaEVAACA3hJaAQAA6C2hFQbErW4AABgaoRUGqJQPBgBgIIRWAAAAektoBQAAoLeEVgAAAHpLaIUBaioyAQAwEEIrAAAAvSW0wgCpHgwAwFAIrQAAAPSW0AoAAEBvCa0AAAD0ltAKAABAbwmtMCDNvW4AABgYoRUGSflgAACGQWgFAACgt4RWAAAAemus0FpVB1fVNVV1Y/fxoGW2ObaqPlJV11fVDVX1Q+PsE1gJa1sBABiGcUdaX5zk2tbaiUmu7b5e6tYk39ZaOyPJQ5K8uKruPeZ+gWVUWcsKAMCwjBtan5jk6u7zq5M8aekGrbWvtdbu6r7cuAr7BLZD9WAAAIZm3AB5WGvt1iTpPm5ebqOqOrqqPp7k5iS/0Fq7ZTvbXVpV11XVdXfccceYTYO1zIgrAADDsMfONqiq9yY5fJmnLl/pTlprNyc5vZsW/H+q6ndaa7cts91VSa5Kki1bthgyAgAAWON2Glpba+du77mquq2qjmit3VpVRyS5fSff65aquiHJI5L8zi63FgAAgDVl3OnB70pyUff5RUneuXSDqjqqqvbuPj8oycOTfHLM/QIAALAGjBtar0hyXlXdmOS87utU1ZaqekO3zalJ/qqqPpbkz5L8z9ba34y5X2AZ5tQDADA0O50evCOttTuTnLPM49cluaT7/Jokp4+zH2DXuPMNAABD4fYzAAAA9JbQCgAAQG8JrQAAAPSW0AoD1FRkAgBgIIRWAAAAektohQFSPRgAgKEQWgEAAOgtoRUAAIDeEloBAADoLaEVAACA3hJaYUDc6gYAgKERWmGAFA8GAGAohFYAAAB6S2gFAACgt4RWAAAAektohQFSjwkAgKEQWgEAAOgtoRUGSPVgAACGQmgFAACgt4RWAAAAektoBQAAoLeEVgAAAHpLaIVBcbMbAACGRWiFASrlgwEAGAihFQAAgN4SWgEAAOgtoRUAAIDeElphgJp6TAAADITQCgAAQG8JrTBAqgcDADAUQisAAAC9JbQCAADQW0IrAAAAvSW0woCoGgwAwNAIrTBAFZWYAAAYBqEVAACA3hJaAQAA6C2hFQAAgN4SWgEAAOgtoRUG5ND9NyZJTti074xbAgAAq2OPWTcAWD0PPu7g/OYlD8mZxx8866YAAMCqEFphYL7tWw6ddRMAAGDVmB4MAABAbwmtAAAA9JbQCgAAQG8JrQAAAPSW0AoAAEBvCa0AAAD0ltAKAABAbwmtAAAA9JbQCgAAQG8JrQAAAPSW0AoAAEBvCa0AAAD0ltAKAABAbwmtAAAA9JbQCgAAQG9Va23WbVhWVd2R5J93stmhST47hebQT44/+gD6APoA+gD6wPw6trW2aWcb9Ta0rkRVXdda2zLrdjAbjj/6APoA+gD6APrA8JkeDAAAQG8JrQAAAPTWvIfWq2bdAGbK8UcfQB9AH0AfQB8YuLle0woAAMCwzftIKwAAAAMmtAIAANBbQisAANBbVVWzbgOzNRehtarmop3A5HjDWruq6j6zbgOzVVXru49eB9aoqjqw++iccG3ae9YNYLZ6+4dfVadV1fOTpLW2ddbtYfqq6oyq+q9Vdfis28L0VdWZVfXKqrqkqtY1VePWnKp6YFW9L8kVVXXArNvD9FXVw6vq6iQ/VVUHex1YW6pqXVUdUFXvTvLqxDnhWlNVD62qdyR5bVU9ZuECFmtPb0Nrkpcn+bmqOju55yorw1dVG6rq15K8MclZSV5eVQ+ZcbOYku74X5nk15J8IsnTkvxS95xRljWiqvZM8rNJ3tpae0pr7Qvd4/rAGlFVJyR5XZI/TXJskpdV1RNm2yqmqQuoX0yyIcmRVfXUxGjrWtFlgNcl+d0kn8zofOCgWbaJ2endH/2icPq+JK/K6KQlrbW7vUitGfdPcmBr7UGttadl1E8/O+M2MT37J7klyRNaa7+a5JlJvsMoy5rzwCR3ttZemyRV9bCq2qgPrCkPSvJ3rbU3JXl+kuszei04eqatYtpOyegc4JVJfqCq9m+tbXUBa004LcmHW2tvSfLmjC5efGm2TWJWehECq+r4qtrYfbnwQvTYJK9PcntVXZKMrrh5kRqmrg/stfBlkguq6sCqenKShyY5p6oe0G2rDwxMVV1QVc+vqjNba/+W5C2ttVu6kHJTkhuS7OfYD1fXB55XVQ/rHvrnJCdX1XdW1TVJXpLk9VX1fbNrJZPUTQM8adFDH05yVFUd3Vr7XJIPJPl8ku+aSQOZuMV9YNHr/T8k+VqSm7p/F1XVMS5gDc8yrwHvT/KUqvofST6a5Igkr6uqp8ykgczUTENrVR1XVX+U5A1JfrOqTk6S7oXo40luzmik9cer6u1VdZQXqWFZ0gfeUlX3ba19NKPp4b/a/fu5JEcneWlVnaQPDEdVre/ejF6UpCV5Y1U9qbV2a5K01u6qqnsnuU+SLzj2w7OkDyTJVVX13UnuSPL7SZ6X5IrW2vkZTRN9dFWdMpvWMglVda+q+oMk12R0wXK/7qmvJvnzJBd0X38yyd8mOWTRRU4GYJk+sO+i1/stGb3+35DRBcyXJPmVbilJLwZfGM/2XgNaa9cnOT/JcUme3Vo7O6OLV+dX1akzai4zMvU/9iUjJS9I8lettXMyOhl5WZKTulHXzUmOT/IDSQ5Lsrm19mlrW+ffzvpAF0z/e0ZvTt/TWntzRtOCbkry8Kk3mIlprd2d5OQkz2+tXZnRychlS96MHpVRH/l8Ve1bVYfOoq1MxjJ94KeT/HBGUwI/luR+SRYCyp9kNH38P6bfUiZo3yTvSfLc7vNHdo/fkeSDSU7rZmHcneQzSR7eWvvqTFrKpGyvDyTJvyTZv6remuSFST6S5O9ba/+pKNNgLD3+j1h4orX2oSSbkvxT95D3gTVqFleo9kqSqtqj+/qGJGmtvSbJmUmekVFg/XqSDyXZL8mjkxxTVad3b1rMtx31gQclubi7evrVdFfYW2t3Jjkyo6vszLGqurCqzqqqe3UP3ZbkoKrao7X2uxkd4wuqakP3/P5JPlpVFyf564yuujPHdtIH3pHk75N8Z0ZTw34xyY92rwnnJTk4o9cG5tiiPnBAa+0zSa5K8raMju2ZVXVk937/wYz+7n+5G325X5J/qap9ZtZ4VsVO+sBDulk2yajwzqYk/5rkARld1DrZSNt8W+nx7way/iLJj3T/9Zwkh8T7wJpT05ptV1XnZXSF7JNJ3tdae1tVvTTJHkne2m32c0nuzOgk5Zgkn2qtfbL7/09P8mettX+ZSoNZdSvsAy9P8u8ZjbqvS/LuJO/IaF3rZ5I8t7V2x7Tbzni60fXDk/xmkq1JPpXR1dRnJbksoz7w6m409eSM3rjOb63dWlV/ktEI+28n+aXW2sdn8TMwnl3sA6dk9Jqw0AeuSHLvJEcl+ZHW2t/N4mdgPDvoAz/aWvtst83DM7pYeV03y2bh/16Z0fE/NsmFC+cGzJfd7QNVdeii5/dLsmdX/4A5Msbxv19GM7EOT/KfSZ7jfWDtmcpIa1V9S0ZrU1+T0W1Mvquqnp3kFUm+klFQeW1GHXLPJI9orf1ha+2TNbpH17rW2psF1vm1C33gpzPql+e21v42yZMzKsJwZWvtewXW+VNV67u1Sfsn+Uw3FfzZGV2ceFVG5ewfnuT0qtqnOxn9RJKndt/i95M8tbV2kcA6n3ajD3wioz6wUHTpJzJaz/RoJyrzaQd94N8yGmFJkrTWPpDRNMCTa1SMb//uqR9P8oOttYcIrPNpjD6wb2vts93693WttS8JrPNnN4//vapq724980VJntFaO8f7wNq0x8432T0Li+O79QYPSfKR1to7u+fem9F9F9/eWntZVZ3QWvvH7rn3Z3QVJVVV1ivMrzH6wAfSTfvoFuFfP4v2M55u+vdLk6yvqj9MckCSu5Oktfb1qnpORtO9rszoquv3ZlQZ8K0ZLQ/4y27bX55+61kNq9AHPtBt2+I2B3NpBX3gsiS3VNVZrbU/6/7b6zO6yHlNkmOr6gGttVsyul8nc2aV+wBzZhWO/zFV9cBuCvE/Tv8noC8mMtJaVc9M8umMpngmyd8k+b6qOq77eo+MpgQsnIze1P2/S5P8YEZlrRdOVJhDY/aBi9P1AeZTVZ2VUbGMgzIaKX9ZRhejHlVVZybbLmb8TJJXtNauTvJ/k1xYVX+dUf/4m1m0ndWhD7DCPtAyOqH96UX/9QkZjcB8LMlpwsr80gfWtlU4/tdndPw/M8Vm01Orvqa1W2vwGxlVgr0oyfe31j5RVa/MqArwMRkFlF9IckWSi1trt1XVf8uoUvCzW2sfXtVGMVX6AFX1iCTHLVqP8rqMAshXMlqX/KBuJH5zRlPGf6y1dnNVHZ5kn4VRd+aXPsAu9oFXJ3lha+2fquqJST7XWnvfrNrO6tAH1jbHn9W06iOtrbUvJbmstfaqjK6a/0z31PMzqvz1otba0zK6Qfgd3cckuaq19mBhZf7pA2R0ZfVtdc8tqj6Q5JjW2psymiL03G6U7agk/9lauzlJWmv/KqwMhj7ArvSBu1tr/5QkrbV3OlkdDH1gbXP8WTUTmR7c7imY9Mokx1fVY9uodP2/t9b+vHvuh5J8OaN1S2mtfXkSbWE29IG1rbX25dbaXe2eW1Sdl9EFiiR5ZpJTq+rdSX4rpoIPkj7A7vSBrrooA6EPrG2OP6tpYoWYktEV86p6Y5KfTPKe1trd3Rz2y5NsyGhaqPuuDpg+sLZ1V1dbRtPC39U9/MWM+sP9k9xkrcqw6QPsSh9Qy2KY9IG1zfFnNUz0Pq1dafKtVfU7SW5NcleS9ya5sbX2qYntmN7QB9a27orpnknekOT3MiqydWdGa1m+MMu2MR36APoA+sDa5vizGiY90rq1qvbJaIH12Ule2lr740nuk37RB9a21lqrqgdkVGDr+CT/u7X2xhk3iynSB9AH0AfWNsef1TDRkdYkqaoXZLTA+kWttbsmujN6SR9Y26rqqCRPT3Kl47826QPoA+gDa5vjz7imEVrXdZXBWKP0AQAAYHdNPLQCAADA7prILW8AAABgNQitAAAA9JbQCgAAQG8JrQAAAPSW0AoAE1RVd1fV9VV1Q1V9rKqeV1U7fP+tquOq6vun1UYA6DOhFQAm6yuttTNaa/dLcl6Sxyd5yU7+z3FJhFYAiFveAMBEVdWXWmv7Lfr6hCQfTnJokmOTvDnJvt3Tz2mt/UVVfTDJqUluSnJ1klcnuSLJ2Uk2Jnlta+3XpvZDAMAMCa0AMEFLQ2v32OeSnJLki0m2tta+WlUnJvmt1tqWqjo7yQtaa9/RbX9pks2ttZ+tqo1JPpDkKa21m6b6wwDADOwx6wYAwBpU3ccNSV5TVWckuTvJSdvZ/jFJTq+q7+m+PjDJiRmNxALAoAmtADBF3fTgu5PcntHa1tuSfGtGdSa+ur3/luS5rbX3TKWRANAjCjEBwJRU1aYkv5rkNW20PufAJLe21rYmeXqS9d2mX0yy/6L/+p4kP1xVG7rvc1JV7RsAWAOMtALAZO1dVddnNBX46xkVXrqye+51Sd5RVU9J8qdJ/qN7/ONJvl5VH0vypiSvyqii8EerqpLckeRJ0/oBAGCWFGICAACgt0wPBgAAoLeEVgAAAHpLaAUAAKC3hFYAAAB6S2gFAACgt4RWAAAAektoBQAAoLf+P4QYAbc3bQt/AAAAAElFTkSuQmCC\n", 354 | "text/plain": [ 355 | "
" 356 | ] 357 | }, 358 | "metadata": {}, 359 | "output_type": "display_data" 360 | } 361 | ], 362 | "source": [ 363 | "df_PG['Retorno Logaritimo'].plot(figsize=(16,8))\n", 364 | "plt.show()" 365 | ] 366 | }, 367 | { 368 | "cell_type": "code", 369 | "execution_count": 13, 370 | "metadata": { 371 | "scrolled": true 372 | }, 373 | "outputs": [ 374 | { 375 | "name": "stdout", 376 | "output_type": "stream", 377 | "text": [ 378 | "0.00045221293719987615\n" 379 | ] 380 | } 381 | ], 382 | "source": [ 383 | "#media no tempo toodo\n", 384 | "log_medio = df_PG['Retorno Logaritimo'].mean()\n", 385 | "print (log_medio)" 386 | ] 387 | }, 388 | { 389 | "cell_type": "code", 390 | "execution_count": 15, 391 | "metadata": {}, 392 | "outputs": [ 393 | { 394 | "name": "stdout", 395 | "output_type": "stream", 396 | "text": [ 397 | "0.11305323429996904\n" 398 | ] 399 | } 400 | ], 401 | "source": [ 402 | "#media no tempo toodo\n", 403 | "log_medio = df_PG['Retorno Logaritimo'].mean()*250\n", 404 | "print (log_medio)" 405 | ] 406 | }, 407 | { 408 | "cell_type": "code", 409 | "execution_count": 16, 410 | "metadata": {}, 411 | "outputs": [ 412 | { 413 | "name": "stdout", 414 | "output_type": "stream", 415 | "text": [ 416 | "11.305%\n" 417 | ] 418 | } 419 | ], 420 | "source": [ 421 | "#agora vou tranformar em porcetagem\n", 422 | "print (str(round(log_medio ,5)*100) + '%')" 423 | ] 424 | }, 425 | { 426 | "cell_type": "code", 427 | "execution_count": null, 428 | "metadata": {}, 429 | "outputs": [], 430 | "source": [] 431 | } 432 | ], 433 | "metadata": { 434 | "kernelspec": { 435 | "display_name": "Python 3", 436 | "language": "python", 437 | "name": "python3" 438 | }, 439 | "language_info": { 440 | "codemirror_mode": { 441 | "name": "ipython", 442 | "version": 3 443 | }, 444 | "file_extension": ".py", 445 | "mimetype": "text/x-python", 446 | "name": "python", 447 | "nbconvert_exporter": "python", 448 | "pygments_lexer": "ipython3", 449 | "version": "3.6.5" 450 | } 451 | }, 452 | "nbformat": 4, 453 | "nbformat_minor": 2 454 | } 455 | -------------------------------------------------------------------------------- /Retorno simples de uma ação.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 1, 6 | "metadata": {}, 7 | "outputs": [], 8 | "source": [ 9 | "#vamos caregar o modulo pandas\n", 10 | "import pandas as pd\n", 11 | "#importar biblioteca do pandas datareader\n", 12 | "from pandas_datareader import data as pdr\n", 13 | "#importar a bliblioteca Numpy\n", 14 | "import numpy as np\n", 15 | "import matplotlib.pyplot as plt" 16 | ] 17 | }, 18 | { 19 | "cell_type": "code", 20 | "execution_count": 3, 21 | "metadata": {}, 22 | "outputs": [], 23 | "source": [ 24 | "df_PG = pdr.DataReader('PG',data_source='yahoo',start='1995-1-1')" 25 | ] 26 | }, 27 | { 28 | "cell_type": "code", 29 | "execution_count": 6, 30 | "metadata": {}, 31 | "outputs": [ 32 | { 33 | "data": { 34 | "text/html": [ 35 | "
\n", 36 | "\n", 49 | "\n", 50 | " \n", 51 | " \n", 52 | " \n", 53 | " \n", 54 | " \n", 55 | " \n", 56 | " \n", 57 | " \n", 58 | " \n", 59 | " \n", 60 | " \n", 61 | " \n", 62 | " \n", 63 | " \n", 64 | " \n", 65 | " \n", 66 | " \n", 67 | " \n", 68 | " \n", 69 | " \n", 70 | " \n", 71 | " \n", 72 | " \n", 73 | " \n", 74 | " \n", 75 | " \n", 76 | " \n", 77 | " \n", 78 | " \n", 79 | " \n", 80 | " \n", 81 | " \n", 82 | " \n", 83 | " \n", 84 | " \n", 85 | " \n", 86 | " \n", 87 | " \n", 88 | " \n", 89 | " \n", 90 | " \n", 91 | " \n", 92 | " \n", 93 | " \n", 94 | " \n", 95 | " \n", 96 | " \n", 97 | " \n", 98 | " \n", 99 | " \n", 100 | " \n", 101 | " \n", 102 | " \n", 103 | " \n", 104 | " \n", 105 | " \n", 106 | " \n", 107 | " \n", 108 | " \n", 109 | " \n", 110 | " \n", 111 | " \n", 112 | " \n", 113 | " \n", 114 | " \n", 115 | " \n", 116 | " \n", 117 | "
HighLowOpenCloseVolumeAdj Close
Date
1995-01-0315.6250015.4375015.4687515.593753318400.06.362402
1995-01-0415.6562515.3125015.5312515.468752218800.06.311406
1995-01-0515.4375015.2187515.3750015.250002319600.06.222151
1995-01-0615.4062515.1562515.1562515.281253438000.06.234900
1995-01-0915.4062515.1875015.3437515.218751795200.06.209402
\n", 118 | "
" 119 | ], 120 | "text/plain": [ 121 | " High Low Open Close Volume Adj Close\n", 122 | "Date \n", 123 | "1995-01-03 15.62500 15.43750 15.46875 15.59375 3318400.0 6.362402\n", 124 | "1995-01-04 15.65625 15.31250 15.53125 15.46875 2218800.0 6.311406\n", 125 | "1995-01-05 15.43750 15.21875 15.37500 15.25000 2319600.0 6.222151\n", 126 | "1995-01-06 15.40625 15.15625 15.15625 15.28125 3438000.0 6.234900\n", 127 | "1995-01-09 15.40625 15.18750 15.34375 15.21875 1795200.0 6.209402" 128 | ] 129 | }, 130 | "execution_count": 6, 131 | "metadata": {}, 132 | "output_type": "execute_result" 133 | } 134 | ], 135 | "source": [ 136 | "df_PG.head()" 137 | ] 138 | }, 139 | { 140 | "cell_type": "code", 141 | "execution_count": 7, 142 | "metadata": {}, 143 | "outputs": [ 144 | { 145 | "data": { 146 | "text/html": [ 147 | "
\n", 148 | "\n", 161 | "\n", 162 | " \n", 163 | " \n", 164 | " \n", 165 | " \n", 166 | " \n", 167 | " \n", 168 | " \n", 169 | " \n", 170 | " \n", 171 | " \n", 172 | " \n", 173 | " \n", 174 | " \n", 175 | " \n", 176 | " \n", 177 | " \n", 178 | " \n", 179 | " \n", 180 | " \n", 181 | " \n", 182 | " \n", 183 | " \n", 184 | " \n", 185 | " \n", 186 | " \n", 187 | " \n", 188 | " \n", 189 | " \n", 190 | " \n", 191 | " \n", 192 | " \n", 193 | " \n", 194 | " \n", 195 | " \n", 196 | " \n", 197 | " \n", 198 | " \n", 199 | " \n", 200 | " \n", 201 | " \n", 202 | " \n", 203 | " \n", 204 | " \n", 205 | " \n", 206 | " \n", 207 | " \n", 208 | " \n", 209 | " \n", 210 | " \n", 211 | " \n", 212 | " \n", 213 | " \n", 214 | " \n", 215 | " \n", 216 | " \n", 217 | " \n", 218 | " \n", 219 | " \n", 220 | " \n", 221 | " \n", 222 | " \n", 223 | " \n", 224 | " \n", 225 | " \n", 226 | " \n", 227 | " \n", 228 | " \n", 229 | "
HighLowOpenCloseVolumeAdj Close
Date
2020-03-12111.580002101.000000103.000000101.83999620988000.0101.839996
2020-03-13114.629997105.410004106.500000114.07000017378700.0114.070000
2020-03-16115.949997101.000000101.750000108.50000017367400.0108.500000
2020-03-17119.699997110.769997111.449997118.23999819431100.0118.239998
2020-03-18121.480003113.010002113.019997115.15499912285921.0115.154999
\n", 230 | "
" 231 | ], 232 | "text/plain": [ 233 | " High Low Open Close Volume \\\n", 234 | "Date \n", 235 | "2020-03-12 111.580002 101.000000 103.000000 101.839996 20988000.0 \n", 236 | "2020-03-13 114.629997 105.410004 106.500000 114.070000 17378700.0 \n", 237 | "2020-03-16 115.949997 101.000000 101.750000 108.500000 17367400.0 \n", 238 | "2020-03-17 119.699997 110.769997 111.449997 118.239998 19431100.0 \n", 239 | "2020-03-18 121.480003 113.010002 113.019997 115.154999 12285921.0 \n", 240 | "\n", 241 | " Adj Close \n", 242 | "Date \n", 243 | "2020-03-12 101.839996 \n", 244 | "2020-03-13 114.070000 \n", 245 | "2020-03-16 108.500000 \n", 246 | "2020-03-17 118.239998 \n", 247 | "2020-03-18 115.154999 " 248 | ] 249 | }, 250 | "execution_count": 7, 251 | "metadata": {}, 252 | "output_type": "execute_result" 253 | } 254 | ], 255 | "source": [ 256 | "df_PG.tail()" 257 | ] 258 | }, 259 | { 260 | "cell_type": "markdown", 261 | "metadata": {}, 262 | "source": [ 263 | "# taxa simples de terono é dado por : (p1 -p0)/p0 == (p1/p0)- 1" 264 | ] 265 | }, 266 | { 267 | "cell_type": "code", 268 | "execution_count": 11, 269 | "metadata": {}, 270 | "outputs": [ 271 | { 272 | "name": "stdout", 273 | "output_type": "stream", 274 | "text": [ 275 | "Date\n", 276 | "1995-01-03 NaN\n", 277 | "1995-01-04 -0.008015\n", 278 | "1995-01-05 -0.014142\n", 279 | "1995-01-06 0.002049\n", 280 | "1995-01-09 -0.004090\n", 281 | "1995-01-10 0.012320\n", 282 | "1995-01-11 -0.002028\n", 283 | "1995-01-12 0.010163\n", 284 | "1995-01-13 0.029230\n", 285 | "1995-01-16 0.008000\n", 286 | "1995-01-17 0.003968\n", 287 | "1995-01-18 -0.021739\n", 288 | "1995-01-19 -0.004041\n", 289 | "1995-01-20 -0.004057\n", 290 | "1995-01-23 0.010183\n", 291 | "1995-01-24 -0.002015\n", 292 | "1995-01-25 0.014141\n", 293 | "1995-01-26 0.003984\n", 294 | "1995-01-27 0.027777\n", 295 | "1995-01-30 0.015445\n", 296 | "1995-01-31 -0.009506\n", 297 | "1995-02-01 -0.019194\n", 298 | "1995-02-02 0.007828\n", 299 | "1995-02-03 0.009709\n", 300 | "1995-02-06 0.023077\n", 301 | "1995-02-07 -0.001879\n", 302 | "1995-02-08 -0.011300\n", 303 | "1995-02-09 -0.001904\n", 304 | "1995-02-10 -0.001908\n", 305 | "1995-02-13 0.007648\n", 306 | " ... \n", 307 | "2020-02-05 0.009152\n", 308 | "2020-02-06 0.002602\n", 309 | "2020-02-07 -0.008337\n", 310 | "2020-02-10 0.000714\n", 311 | "2020-02-11 -0.015931\n", 312 | "2020-02-12 -0.005718\n", 313 | "2020-02-13 0.012232\n", 314 | "2020-02-14 0.009443\n", 315 | "2020-02-18 -0.010068\n", 316 | "2020-02-19 0.004565\n", 317 | "2020-02-20 0.009088\n", 318 | "2020-02-21 0.000948\n", 319 | "2020-02-24 -0.026835\n", 320 | "2020-02-25 -0.015166\n", 321 | "2020-02-26 -0.010459\n", 322 | "2020-02-27 -0.055426\n", 323 | "2020-02-28 -0.002379\n", 324 | "2020-03-02 0.055904\n", 325 | "2020-03-03 -0.011626\n", 326 | "2020-03-04 0.053567\n", 327 | "2020-03-05 -0.023052\n", 328 | "2020-03-06 0.000247\n", 329 | "2020-03-09 -0.046030\n", 330 | "2020-03-10 0.038687\n", 331 | "2020-03-11 -0.074326\n", 332 | "2020-03-12 -0.087373\n", 333 | "2020-03-13 0.120090\n", 334 | "2020-03-16 -0.048830\n", 335 | "2020-03-17 0.089770\n", 336 | "2020-03-18 -0.026091\n", 337 | "Name: Retorno Simple, Length: 6347, dtype: float64\n" 338 | ] 339 | } 340 | ], 341 | "source": [ 342 | "df_PG['Retorno Simple'] =(df_PG['Adj Close'] / df_PG['Adj Close'].shift(1)) - 1\n", 343 | "print(df_PG['Retorno Simple'])" 344 | ] 345 | }, 346 | { 347 | "cell_type": "markdown", 348 | "metadata": {}, 349 | "source": [ 350 | "# Vamos plotar um Grafico" 351 | ] 352 | }, 353 | { 354 | "cell_type": "code", 355 | "execution_count": 13, 356 | "metadata": {}, 357 | "outputs": [ 358 | { 359 | "data": { 360 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAA60AAAHDCAYAAADPxPzcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsnWVgFFfXx/8TIbi7Bpfi7l6gUC/1p270rTt1SmmhblBvaQstbam3geDuCZbgAYK7hJAQ2533w+6dHbmjO5vdLOf3BbI7cnfmzp3jRxBFEQRBEARBEARBEAQRicSEewAEQRAEQRAEQRAEoQcprQRBEARBEARBEETEQkorQRAEQRAEQRAEEbGQ0koQBEEQBEEQBEFELKS0EgRBEARBEARBEBELKa0EQRAEQRAEQRBExEJKK0EQBEEQBEEQBBGxkNJKEARBEARBEARBRCyktBIEQRAEQRAEQRARS1y4B6BH9erVxcTExHAPgyAIgiAIgiAIgggBqampJ0VRrGG2XcQqrYmJiUhJSQn3MAiCIAiCIAiCIIgQIAjCPivbUXgwQRAEQRAEQRAEEbGQ0koQBEEQBEEQBEFELKS0EgRBEARBEARBEBELKa0EQRAEQRAEQRBExEJKK0EQBEEQBEEQBBGxkNJKEARBEARBEARBRCyktBIEQRAEQRAEQRARCymtBEEQBEEQBEEQRMRCSitBEARBEARBEAQRsZDSShAEQRAEQRAEQUQspLQSBEEQBEEQBEEQEQsprQRBEARBEARBEETEQkorQRAEQRAEQRAEEbGQ0koQBEEQBEEQBEFELKS0EgRBEARBEARBRBFFHi9y8ovCPQzXIKWVIAiCIAiCIAgiinji10245NU54R6Ga5DSShAEQRAEQRAEEUX8u+lwuIfgKqS0EgRBEARBEARBEBELKa0EQRAEQRAEQRBExEJKK0EQBEEQBEEQBBGxkNJKEARBEARBEARBRCyktBIEQRAEQRAEQRARCymtBEEQBEEQBEEQRMRCSitBEARBEARBEAQRsZDSShAEQRAEQRAEQUQspLQSBEEQBEEQBEEQEQsprQRBEARBEARBEETEQkorQRAEQRAEQRAEEbGQ0koQBEEQBEEQBEFELK4orYIgjBAEYYcgCBmCIIzlfN9fEIT1giAUCYIw2o1zEgRBEARBEARBENFP0EqrIAixAKYAuAxAGwA3C4LQRrXZfgB3Avgp2PMRBEEQBFG89H1rIW74YlW4h0EQBEHYRBTFcA/BFeJcOEZ3ABmiKO4BAEEQfgZwFYCtbANRFDP933ldOB9BEARBEMXIwTMXcPDMhXAPgyAIgrhIcSM8uB6AA7K/D/o/IwiCIAiCIAiCIMJElDhaXVFaBc5nji6PIAj3C4KQIghCyokTJ4IcFkEQBEEQBEEQBFHScUNpPQiggezv+gAOOzmQKIpfiqLYVRTFrjVq1HBhaARBEARBEARBEBcnUeJodUVpXQeguSAIjQVBKAXgJgD/uHBcgiCCJL/Ig9M5BeEeBkEQBEEQBEE4JmilVRTFIgAPA5gDYBuAX0VR3CIIwnhBEK4EAEEQugmCcBDA9QC+EARhS7DnJQjCnHu/T0Hn1+eFexgEQRAEQRBEGKDqwTJEUZwFYJbqs1dk/18HX9gwQRDFyLJdJ8M9BIIgCIIgCIIICjfCgwmCIAiCIAiCIIgIIzr8rKS0EgRBEARBEARBEBEMKa0EQRAEQRAEQRBRSHZeUbiH4AqktBIEQRAEQRAEQeggiiI83pIZaDvhv63hHoIrkNJKEARBEARBEAShw4PT16PpC7PMN4xAcgrI00oQBEEQBEEQBBHVJG85Gu4hXPSQ0koQBEEQBEEQBBGFREmbVlJaCYLQ4vGKeP6Pzcg4nh3uoRAEQRAEQRAOiRKdlZRWgiC07D5xHjPWHsCD09eHeygEQRAEQRDERQ4prQRBEARBEARBEETEQkorQZRQ8go92Hr4XLiHQRAEQRAEQRAhhZRWgiihPPHLRoz8eBmyLhSGeygEQRAEQRBEBEKFmAiCCCsp+84A8HlcCYIgCIIgCEJLdGitpLQSRAlFCPcACIIgCIIgCKIYIKWVIEo40RL2QRAEQRAEQRA8SGkliBKKQK5WgiAIgiAIwoBocW6Q0koQBEEQBEEQBBGFRInOSkorQZR0xKhZjgiCIAiCIAg3EaPE1UpKK0GUUAQqxUQQBEEQBEFcBJDSShAlnCgxoBEEQRAEQRAEF1JaCaKEUlIKMZ3LK0S7V+dg5e6T4R4KQRAEQRDERUW0+DZIaSUimvwiDwa+swhLdp4I91AiFr3FaM2eU8U6Dj3SD2UhO78IHy/YFe6hEARBEARBXFRES0QeKa1ERHPwzAVknsrFa/9sCfdQIg4zR+uNX64ulnEQBEEQBEEQRCiJC/cACIJwl5/W7EfaoaxwD4MgCIIgCIIIM1HiaCWllSCijRf+TCvW84miiJ/XHcCVHeqiXAItKQQRzRzNykNeoQeJ1cuFeygEQRDERQSFBxMlgmixEoWCcPffWrX7FJ7/Iw3j9EK46eYRRInF4xXx8l/p0t89Jy7AwHcXh29ABEEQhC3CLSe6BSmtBFFCEUJYPtjO+pZb4AEAnM4pCNFoCIIIF6n7zmDa6n3hHgZBEARxkUNKK1EiKCHdXcJCpBjQImQYBEG4SLRY6AmCIIiSDSmtBEEAAD6cvxOp+04DUPaAzSv0IK/QE6ZREQRBEARBEE6JFtsjKa1EiSBKnreIocjjReLYJHwwb6f02Yfzd+G6z1YBUC5wrV5ORu9JC52fjNzkBFFiobWXIAgiAEWfhA9SWomIhvSd0FDg8QIAvli629L2Rvmqpqm1tL4TBEEQBEEQQUBKKxFxzNlyFIt3HAdA+o4RwdRhEvzmAD2DoZNjk/WRIKIPeqwJgiAClJQ18Z0528M9BNchpZWIOB6Yloo7p64L9zCQX+Q8j/NMTgFy8otcGceaPackJZ6HkwWUKaV6u5aURZkgiNAikumQIAhCoqSsiJ8uDkTSRcs6TkorEdEUd3hwXqEH01fvw7Yj59DypWQkbT7i6DidXp+HAe8sdmVMN365mqvEh7DjTUgQKNibIAiCIIgSTEmJKpMPs4QM2ZS4cA+AICKJjxbswmeLd2NgyxoAgAXbjmFU+zqOjnXyfL6bQ9MlKAuaC+HBVreNFksfQVxU0GNLEAQhQUti+CBPK0HIOOVXNHPzI7/Fi1lequG+Ungwf2cnx6SFnCAIgiAIgggFpLQSJYJQhmOIooiM4+f9//d9djLHp7yWBEXMyRjZ74yWkBGCIEIDLREEQRABSqLcVBLHzIOUVuKi56e1+zH0/SVYvecUvP4He8+JHADuKMtFHm9IlG7JWxrEsfX2LGn5sgRBhIZoEXYIgiDcQC9CLetCIRLHJmHh9mPFPCJzoiU9i5RWokQghFCLSjuYBQDYezJH82AH+5gXebxo9uJsTJodutLjwYxRT+G1I6haLbBEhZgI4uLim+V7kZJ5OtzDIAiCcA09+WjXsWwAwOSFGcU4GmtEi/GRlFYipKQfypKUwkhF/jAv3XnC1WPnF3kBAD+s2ufqcYFAZeVgFqMoWccIgggRwVjoX/9vK0Z/vsrF0RAEQUQmFKEWekhpJULK5Z8sxxWTlwd9nOIoMS4AOHm+QHVel44d0sUsdKHH0ciJ7HxcOXk5jmblAQCGvLcY7V6dE+ZREQRBEAQR6ZjJheQMCB2ktBIRDQsLzjyVq/nu2Lk8TJy9DV5v6JaIYI8cqpGdOp+P3AJfhWMrinWB3+OrRm9fR9WDw7hSbzxwFgfPaOcIj1/W7cfmg1mYtjoTALD7RA6y84tCODqCKJms3Xsat32zNtzDIAiCKAE47+gQaiJwSI4gpbWEsPvEeZzLKwz3MIodIw/rU79uwhdL9iBl35ngzmHwOLOqwo6P7R+/247LLhPm43i2ssLxvK3HcDw7j7v9jLX7XR6BjGL2yp7PL8LEWduQXxRoS3T1lBXo+9YiS/tH4guFCD+LdxzHvlM54R5GRLFw+/GwnfuXdftdT9cgCIIIlhJZ1KgEDpkHKa0lhCHvLcF1n64M9zAiCqa0hDJ0eNuRc64cJ5SFpEQRKPR4cd8PKbjlqzXcbZhXVr6PEWy4uzhK+xdLdiNxbBIKPXzvbSg4mpWHIv/5Ppq/E18s3YNfUw4W2/mJ6OfOqesw4J3F4R5GRBHONIHnfk/D7d+Sl5cgiMiCDN/hg5TWEgRPgYh2rCh7oVQI1ZzLK5RyId1CFEXsOWHt3nq9IjyccGivfxXdzwmjBgCP11jBVCv+Rosyq4ynVoRDxcnz+eg5cYFUgZmFOnuKUWkmiIuRSEpt/3LpblzySnK4h0HokFfowY1frLJk6H1m5ib0fHNBMYyKINynJLYKLJHeYQ6ktBKuk1dYPMqMW9YudhwrC87gd5eg58QF+GTBLqTuM2/lsE9HiZQzM+UgBr+3BCt3nzTdduC7i9FaJbjJF6NCHeW00GN8sWxdS6lsseoYNg5hh7O5vuJYi3YoQxWjYwkmiMglkoSwN2dtR04xGcoI+2zYfxZr9p7GuH+2mG47M/Ugjp5z1/hLEMWFWXQfySahg5RWImh2nziP8/lFOJdXiJ3HstHq5WT8u+lwyM/LFgaeYLX18Dk8OD1VCil1i5PnfXmk783bies+M2/lcMtXqwH48jD12HTwLABfQSAz9p/O1RRVkq+femtpkYGn9fJPlqHAxnUKlxwbuN/FP4LEsUn4dHHk9V4jiFASY/Csfba4+NMEiNBwNCsPyelHgjoGmyoUOkkUebw44a+5EY3oelpdOPaH83ei+YuzXDiSkmh5LklpLcHsOJqN9+fuCPcwMOS9JWj76hy0HzcXP63xFfyZv+2Y6X7TVu/DlsOBHq6iKGLMtFTL5+UVOVqRcRLJ6UfxxC8bMTv9qCsh1T3enO+4QrGRsuoWVhajItX45d7Z9EPncOjsBcX3VvTC7PxCTF+t7T+buu8MDpy2VslXj/2nctFx/Fz/cUKjpAqq45rd47eTw/+sEZHPrmPZePznDa4bzMKB0ZP3ycJdAAK9qK3ywbyd2Ow31BGRwfVfrMSY6euDqsTPDBzeaJGOw8zC7cdwJOuC+YYRyCv/bEG3N+Yj52Ktyh/EM/Dh/F2mkXEXM6S0Rjg3fbkKnyzYxf1u9Ocr8fHCjIhaGH5f7yuO4/GK2HvS2HP48l/pGPVxoIdrfpEXyVuO2j6nXMG69es1GDM91ZHVV63EMI6dy8deg6qix8/l6SppVk4ffFsd8yMUmSyCamHF6LoxT+e4f7bgpb/SsXr3KcX31322Ev3e1lbyTT+cZbka88zUAzibW4g/1h/S3cZt2egjneeMIOzwyIwN+GvjYew4lh3uoQSPgfXK67Ay+kcLduHKySuCGJRzTp3Px+o9p8w3vMg4eManHAWzpMb4JwIpre5w93cpuHpKeJ6TYJnrl+OKq+5FcaM3xcMRBWaVaHkqSWmNcFbvOY335u3kfscUkUh6TrLzfAr0f5uPYNC7i23ta/ddF9hcewHY4uFW8rnRJe7+5gKukgZof5PXK7rugUlOPyp5uPXgFW+SY8fAzubb2VxfCybW41Qvz4N9mp1XhKHvL7F2Dmlf95davSMmpQUXHkcQgGztsTl184s8SA2yfZfbxBgsfCa13RRc/skyjJmWGtJK71a48cvVuOnL1WEdQyQirbdB3J/AO5dwi2PnIivENvNkDt6ctS3sz3HYMfn5F/nVCSmktBYjFwo8uOCi5SlaqoExrP6eQ2cv4PDZC4YFlAIvYSvnLT7GTE9FsxdnKz4zUoj1qgHL+WRhBl77d6vhNkY5rYDWOm5kCGFfxfol2pCEQTq0xHi8oqWCVnr7EkSwOLUhjv93K677bCV2W6wk7jaiKOKvDYcUOap60SeAPY9a+qFzSN5yNOx5VcH23Q415/OL0OPN+Vi717jIX36RB3McRCXpIUihvc6PEfC0ujAgIiJ5YFoqvly6R/c5On4uD8cvggJberJqBPmPNESLoYGU1mKk9SvJaDdujuvHZYLFjLX7S3QZebOXHXvo+kxaiN6TFhoqmzExbJ/AvvL8WS4GK45bOQZzt+rn+n67fC9+XXdA8dnVn7oTHqQOD9Z4gG20vGECTlwsU1rdXwy5RgcL1YqnLMrALV+twcoM+4rrvlM52HrYnb68xMWL08iXLf65l3Wh0MXRWCcp7Qge/2WjIiTR6Ld4HAhBTkJHf005YL5RlJB+KAvHzuXj3TnG+fPvJO/AA9NSHRvo1LDbfDa3ADuOOgtrD0QYRIdwTGgxe+a7v7kA3WUyaLQ5Vhjqy5CdV6ioC0KPQOggpbWYURfEcUpWbiHyCpUeruf/SMPRc3muvzQ2HTiL5//YHPKXkdnx9S7dsp0nNYIeU+SZkPTnhkMY9fFyzNlyFPtO5WCXzXyz4R8utbW9E/aezMGzv2+W/j509gJO5xS4cmyzeWcld+aFP9MU7Yzi/JaBwhCY1gM5ydpjGwnSi/1tcZy0U/CKwMiPl9nejyDklNQqqmf84f5bZIYbo/BgO63CGJsOmhgOOfy3+eIJ27eaFsFyULNy+QaOF/5Mw9fL9lg/r//EV01Z4fhdFw05rYUeLzYeoCJhhDHqGX7NpyvRZ9LCwNofgcp65I3IGaS0BsG/mw5jZ5iKbQx5f7Hud26HOf7vmzWYsfYAzl0oQlZuIeZuOSopB25i1dMq+wAA8MH8nejw2lxFyf7A4uGDWY/3nMjBgHcW49IPlmLKouJrYWIk2On97D6TFir+DqaSoNmcUHuSeeP9ac1+zEw5IAlWcX4pxeMPPU47pBRIf005gEKP11HIDC8scY+qsBdPoV2//6z/OwcnjRDenbMDd3y71vH+Fwo8aP7iLMyKgBzd9ENZUVFF1w5qg5lVInHKul1Y5LrPVrp6PKdEqjfQ6vU2E4p/WrMfE5K2WT+vf84eydI39hV6vPhs8W7kF/FTnGIc5nKvyzwdMakZ78zZgaunrMC2I5EZcbN6z6mwpQ/IsXq3jNILogkWLn2x/N5wQkprEDwyYwOGfbAU+wwqy4aKk+e1Hjhm6XTLm8tgxZUgANd8ugL3T0vFnVPXuXb8zJM5EEUR602KkKh/ltpq/6/MIq8uLMF2lXsO3vO3C7L6klX3R7WD0VJ2Ps9a9WenYVsANL0UzX6yfr9XUVJomRLJFN6zKqv/s79txmeLd5ueK+1gFpLTfR5w9hvlRge1HGflxWCkMDjxEBUnkxdlYMnOE473P3T2Ago9ommIYajJOJ6Nyz9ZjrdDMI4T2fn4cP5Ox8rHP5sOB92XUo9g51WETkvbuKUYhuJ6RKjOKmF1fK6tYRaO88OqfXgreTu+XrbXcCx2xI/Ufadx/eerIqZyO0shYv3YI42bvlyNIe8Fihkez3Y/ss4IO7VCgMj0OLqB2TWPxPUlEsfkBFJaXWDAO4uL7VwrMk5qrJJHsi5g2up9UmGcl/9Kx4b97lSh3H40YHEUBGveLiMKinzWWrkCuOXwOfyz6TDu+k6rCMvfpWYLoHwszGJ9z/cpWLj9mNTSRf6SV1u1zd7bHcfPNdlCnxgD6eKfTYctHSPWKFbPBLfyTuVzj7U0MvKknTqfj6W7jBWwKyYvx5jpqRjwzmIpNM3uy1FNlKzPJZrj/ubym0IQbvf0zE34cP4ux9V2H52xAWOmr3d5VEpsz8EwSxXyVjCsv3QwSpHZz7n16/BV8Y3U9UEdIVRs57WwTa5/TuQW8I2sMQ5yWo/7q+PuDMIg6yZOvcVuY+Ua7jiaje5vLOD2Sg8VkWroLW707k4kX59IXfPsQkprmEnafMRWMYVbv16DyQuVYa13fbcOL/+VLnm8ZqYexI0ulfWXe/d4ipfVxZ0JQT+syvRZa5cH8m08oojMk9oquaM/W4nvVmZaPpf8ezbU0zkFuPu7FJmn1fmqEkzPMfVpr/hkOX9DA44ahG6ZkXkqB2ts9CfUu0xHs/I0Xn4jz/6yXSfxxRL93KoX/kwzHIdTS+3EWdsw7p8thtukZNpXeKx62/MKPYr832jgzw0HdfsR82Ae8VC8LNm1jcQm7MEWpAlXr78kWaTKvK2+yrRWohrYz3z+j8245avAe2e9ieF0RYa19Sjy7nDosNp6xm2lys6U05sTAU+r9cE52SeUBKooh3c8Vk7PjMbLdgXkx9M5BVjhoAihXay+l0tSuKzHKyIn31rU27fLA9EGt32zRvN9qKZPdl4hek1cgNR9xtXFoxlSWkPEXxsOWSpJ/9BP63HLV9pJb8Sek8qchn2ctihGS8W+UzmWFSCFIsj5fl2mtYen7atzcNs3a5CT7xM2V+0OCCyiKHILfqTsO+NYaVUrp3r7nssrlBbgRUHm6SaOTcLfGw9Z2jbtUBZO2QxBeua3zeYb6bD9aLYtQ4be9fpatlgz1KHHck5kG/9Gvf6yRsVsrAhYZ3IL8d3KTCzYdkwx1+SssqjEywVIq/O92xvz0erlZEvbusGZnAJtqwEX5QVRFPHEL5uknMTfUg8i/ZBxUR12n8zadzjBiVenuAgU07FHJP2SZTt9gq+d4I4Zaw9gpexZG/35Ksfn18ubBHzpJMEiiiISxybhud82Y+6Wo0gcmxS2qs1y1Gvbu3N26K5f/j3cOS/U70vtbDSbnzGSwmfjvBHW2zXG4L1TnFg5Pa/F0G3frMGtX68JWR0Bu0poSQoPfvnvdFzy6hxL127RjkD0mNxoYIV2r87Ba/8aG9T12LD/LI5k5eGDeZERTh8OSGl1CbUH4vFfNuKBaakYMy0Vfd9aqLOXM6wsqEaC/YB3FqPnRP3WOGkHs/CvP2RVvujwTmvnRS9/uOX/94qiJUVky+Esw6q/cuuo+nC8PqUer4j24+ZiqT9/cFZa8H3vpq7I5H7O8558u2KvFLYs52yuOxWDeXy2eDeKPF5Xhf3Ve9xXStwSZu75PgU3f6WvrPP6zc1OO2KqnOYWFGGZLOz5g3k7kSLbJ9tinrJbdHp9nqLVgBOM5h2bpizk9+mZm3A5J1rgwOlcJI5NQvqhrJDa2FlLKydtV4qLcA+t0OPF5oPOQrP/2OAzvllZl4P5mb+mHOAW4ck3iGgY+O7iIM7og53xl5QD+HTxbgCR1cOVjW/yogzD9cst1PfZqDCS3pyw6iUOdp9Qwsaj52ldvOM4Dp91XhDRTdSGO19bP186l1vvnyKPF58uzsAFVZRZhNwuV/kt5SAAazVhTCMhDL7Lzi/iyol/bThkueWeo2CcKLlppLS6RL+3F3E/T95yVCpPb4W3krcjcWyS4UNhZepZC+viH+mKycvxyIwN/m2Mt1fnuJrxwfydms+8XmshcaM/X4VLP9Avxy9XoNWHYx5eXngwr6iVU3ILinDMYruVKYt2c/v2bghhyf23krfjV//ibIRbEYrZFsNt9BBFfV+CG2vwNZxWPw/+uB7X63iJ2Dlf/DMdt32zFsnpPkPHRwt2BeVZchf7F2Z22hF0HD9PN0eUCXGCYFwQbME2Xx/iX1MOuBLmmjg2Cf/3Y6rmcydeHR5bDme5XnQl8LMDgyvyeNH65WRuz9G1e0/j2+V7XVfy75y6FldOXqGoS2CHXhMXYMN+Z2uRUfSFnGd/24xOnFoBPGOem8jXjkAV9EgQ6qxWDw7tWe0Yg0RRxDfL90opQHbW5WBySLNyC/H5kt2uKryCyXjunLoOl30U+rZoVn4TM9yxtTn9UOA5/2ShO50R/lh/CG8n75AKZdld0ktSeLAbBPPKe/yXjaYt94KZ6ZGwurkBKa0uk1/ksRwXz+Mzv9XXKFfLSr7FBQv5dHO3HrM+MA4rM05i0uztQR0DsO5pNUOutKrlD+YxdjtdTB3GtvPYefSw4fHK4eTJxgpCSHMWrMyNcBvl2H36fMluRd9IwN1qolaUavW1yCv0SK2uxkxPxewIaC3Dw851WuHPq9erOCwprTDuWSwX+tx61ngREAGlNbiJOurj5Rj2wVJXQk4ZvCJiOfkeXCj0YMJ/WzXb3/DFKoz/b6tUDX27QbuNs7kFlhU6ljNq1MbEiCNZeZidbh59whOw7XijzuUV4dd1B3BIto/bFfCNiIkgpZU9Mxv2n1XUINirMz/desbUxlxOYFKg6rrq86W7TuL1/7ZivH9uF1dO66v/pGPS7O3c8MyM49mOlFkWcrtgu36qkJ3osgOnc/HojA2G4e7smHKDlnzk2Xn88wkqw12BJ3AOXmSZE1jRLXXxrUivHrxh/xkkjk1yZLAL5plicnuoWiZFSkRCOCGl1WWumrwCl7yq9Z7ZpcDIUm1x3jLh5vDZC5JHSM6MtfuRODbJUMBQeFpV37nVL8wriq5Y5OSeHbXQwwSSA6fdDe0Z949WCOUiAr+nmns4AZ+V+8EwVjb1ekX8vt7aWEOFfD4wr7+axTuPw+sVtbmcBhw6e4Hr7eexavcp3PbNGo3XodXLyQpFeuexyAkrDBa9PF+7LTjUwopZbrNdArlnwb/ET+cUuBJyyuCFtrM5dC6vCKNNepWO/SON25P5+Lk8dBw/z7YXpdCkeNg5HaE4GOyu58/+vlnRlzrUCqR8fsZGSPEdQKkQPvt7oIbBvd8rK+vP8xuc3RqyJjyYm9MqcjdmRnoWkqp36zJP5mhCsIOplnzeHz2lNsKm7juDoe8vVdTDsAp7dmes5ddasMtLf6Xjn02HsdKk6NgzMzfh2d82Sy135LQbNxdzOfVR1IY7+XV36/lhRylp/lJmbFuyw37rOCvPlN42V8sit6wY7nILiqRn2Q7hKtYXCZDS6jLbHZZuV3tnC4q8uvHtVq1XTBC77rOVGDM9FaIoKnL1FvsfaL0QsLxCD9bslRdMUn5vNwFdj/RD5/BWcvAeW/lj7FFZGv/e6MvR/XaFtpBQMKQdshY+V+Dx4qmZmyxte9fUdVLuYDh4euYmfLlUv+JvqEnafATHs/mK6JwtR6ViUCsyTuHzpbtt5XI+8ctGy9ve/NVqLNt1EmdyjMPH1e8PtSL1yYJd6Pz6PN39X/orDTM5YaNOCYXszROMeMi9jPLL4rZixAS2ENUbCQqep1UuRKZYaNNz7oI2AuCYvz3IB/N32ormMTImOAPXAAAgAElEQVSAJqcfRftxc00r/RoRClUv5Eqr7PCxEeVpDTw18ufHK/rWlVB5WmJUFbfsXAu2rVk+6MB3F2Po+0sUnzHjhpNLz8K61cbz/ad9XumN/jSbQ2cvSEUPv1uxF1MNZAC3VQF2LdTXVw2LemO53OpLOCFpm+Lv7LxCXChQhmPL93FrKgd6mju7MuEKD1YXw9Or5p+67zRavTzblxbjYKhGiqmVd94Lf6Thvh9SDFNuGKv3nAqqf3u0QEprMdHhNeMen2OmK/O2irxePPs7X8mx+t7a7y8OxcLDTucUcHP13pzlWxDVD3Wrl5OV+Y+q8wYbXsyY5lKfMfm66lZfUjPkeSTRAivCEioSxyYZevgf+mm9bkGr11XhlYu3W1vEd584j3N5hSERTNXyyC6VN+G9eTtxOqdAt13M9NX7g6oMrYdc0NhxNFvRh9MuZq1lpBA2udCtIwQs3nFcSisoKPJiwDuLsHC7vbVEr62MKIqYsijD9TxVOwQqXwfGZteLZ2aY3KEqSFfo8WL70XOYs+UoPl2s9MSyNk1ztxzFfNWazdqtbXYxjz7tYBb6v8Ov8WAVp7m0ALBs1wmkHTSubC3HLES10OPFO3O2K8I0V+4+iasmL7fcAssq8jBMQfUsNX5+Fm792l6nAavEasKDrc9XSTFzkJ/K5rkVZfzFP9OQODYJGw+cRUGRVzI2vJ2srLAstdryH7LPpIXoMmE+AGDcv1vx2r/60VF2WuL9nnrQNI0ncG0sHxaA9vnffzpX8RvbjZsr9ZlennES6YeyFPN3xtr9UhXcvzceMm1V9tXSPdzOB+yYB8/kIiXztDQnP16wy9LcD1d48PxtykiEjuPnoi0nAvLLpXuQV+jFdZ+t1MgGRsZq9rt6T3JeZPXU+Xzs9Xf+yNHpfZx+KEt6Fm/6crUkF13EdZhIaXUTo4XXLA9CXa1UFIGypeK429oRgORCPitGpObQ2QvIOH4erV5OxtfLwudhCxZlyGZkNCuPRCIlL8LJgu80KmbIe0tw9ZQVtoUHQGm15r2E1VZovf6sN7nUO9kJwz9canh+M4u4kdFtVtoRtBs3F5sOnFVZuPleozunrsPnS3y5+7tPnMe+U7mYOMs40iLjeDZe+3eLRphmf4miiPwiD9bvP4t35uzA0xajGsxITve1Q7ET3sy7lnaV1mPn8tHtjfmKcEr5NFM/w28kbcOID5fhgWmpeDtZmZfMhMv7p6Xi3h9SAADHs/Ow71SO4/Y8cvaeyFF4fq+YbL8HtZqHfnKeHnHbN2ttjcHMi5S0+QimLNqtqN/w/B9p2HQwS5GH65RfUw5I7dbk7e/ko2JK5UpN+5vg1/Lj5/JwSiWgc8ODJY+er10QS9tQexPV16SgyIsPdVIy1F7CSbN9hSh5/Ohvj3b1lBV47OcNCu9lxgntc+LkysTYkIifmrkJ131mXHyPBXxZ8aTJ4S0XZwyqu3+2eLdmn6S0I3hnznY89vNGXPOpcUrCG7O24bGf9aOQ5m87jtGfr5LmZPKWo/hpjTvOBrcRRRG7TyhzwPMKvdw8eXkQClNaP1+yG4ljk9Dp9XmYu+UoRFHEl0t3Iys3IMO7IUJ1mTBfOhBvBeo9cQEu/2Q5Ji/SpoM4kYNKUvshI0hpdQhP8A/Gi6Pe10jIsXOab2R9NY2s3yxxXB2GImejw/YJ4SACIr0imo1BeDKMCHWIXTDhRntO5Dja36g9FKB9gehZoA9nXcDOY9m6PZLt9u01Y/+pXOxX9XDOyi3EF0t247V/t0jVPgF9RRuAaRl+liaQfjhLarEiisr+rNd+tlJTzAMADvkrq9erUsbwHPd+n4KpKzKl6BF2zd+ctQ2JY5PwxdI9aPlSsqRcBlMMT84PqzIBODOCKXJabT4Xs9OO4ER2Pqb5z69GfbgNqvBeeQjk2D/SNKFq3d9YgAHvLJYqp/+wyrkAetWUFbiC0/7ILXjv2vfn7VT0U/R4RSzYdsyycqD3et104KymaA67d7myonnqPNgLBR7kFhQhJ7/IpK+qlmd/24y7pq7TfiFbV9TRGww7wvOaPacU1+z5PzYjcWwSN72C52md7o+IOusX3llbPHZIPYPgLykH8OH8QF9Jed4mGz+7jsyYZcbs9KOI1TmfXhSGFay+H+TH/nRxBnLyi/DBvJ0abx5T/vXkqmdmblLIaE7fbvlF2jZ2byfvwJRFvut58ny+aV9tHkaX8EKhF9+t2IvHfubXnHDCsXN5SBybFFRUkNxowlPUTp3Px7fL90IURe6cladGrcs8jTV7T+PNWdvxwp9p0ue7jp/HXyYRaW/O2m7aj1XKGeZooYf9csL783Zq3s8skjAr13r0WIT4KoKGlFaH8OZJMPK62gr036YjCqFPTigm36MWFp47vl3r/omJsHB7iO5l0xdmheS4eti1HgZbv4An1KhDyrTeEB+iCAz7YCl6TlyAg2dyNeHRXSbMxywHlYgX7+BXuizweDWGqrF/bMbE2dsxdUUmpsgsuDMNioSN/cMsdDlwD1g6wdwtRxV56mdzC/F28g5N0Ylc/8u4fIIvquT5P9Jw59S1yMkvwhcyAZa91D0qy/Q+v1L+53qfAMFyoddlntGEwgaDnTWXTYeF24/j6ikr4PGK3GqsRvBqIyySVTTVjEc1B9UhkKwVkRpmBNCrTmsVu63PguXjBbuQLCtO88XS3bjn+xTDytZysvMDSjzr033gdC6umrJCc+2+X5UJQB266/s37WAWCoq86DJhHtq8MgcP/bQeN3+1WhNauPXwOXyzfC+KPF68+ne6peJxVpYqq9Ny7d7TuPHL1Wgra7E2Y61+Hr1HFPHXhkN4YFqK9Bnzxqor0zIFVy+0NldlQLr/B20LqyNZeVzD2dq9p/HSX2lcBVQvTzRQpI37NZczOQWYvnqf5ffDuH8CysjbyTswIWkrPlqwS2EIBMyNVTNTD2pSXvQwGpogaOeCui4Er6+2GUbOExEixv27VaoXojR0OHN3r/HLvMGkjBnd95z8Ijw9cxPG/7cV6YfOceesfH9BEKQWhupoSdbpQ4+lO0/opjmpz2U27dSt6JZnnEROfhE6jJ+LCUkWi4FGCaS0OoS3iNoNAZO/2NS7vjFL3+MZitIX0WKFIaIbdfl/u/PWTs4SD254sOz/uQVFeH+eeXXivm8t4oZHJ8mU1tR9vrL9RSbVhtTnM+plLA8xMztuXqEHj8zYgM0W8wPlCr063BDwVRe974eAECyKolSAil3VGWv3Y/GOE7jk1TmYKAvHZIIoE4zUt1HgCKr3ys7198ZDulWoeRw8k4s3krY6WhfZWL5cugcbD5xFTkGRrb6XQKCIjJz3ZPf5hi9W4UKBR8rdNZvV8bGBV708/DLSQsZ4iotXFLmtK+R1C9QRBWaM+lgrwLM5q26xxeb/mZzA2sPWkcd/2Yg3krZKXlhmsFJf1ZEfL8Pr/23Fsl0n8f2qfXjhz3TD6AbAWvGb31IP4sHpWiVQDatGnVdozXri8Yp4/JeNmLNFa+woKFL+Oja3eUrk2dwCLFS1j5F7wlgu396TOWj1crJiu6zcQtzwxSpMX72fG9oZp6O0snVo78kcLLdYLPLJXzfipb/SdT31Hq+Ij2Te4u9VkQmnzstlucBY7bZuMusTq0eMoJU/zeoQWMHINqYeo7KKs7NzszZP8ju7es8p02dFjtFj8+KfaZLy+fnS3abh4AIghU2rr69ZcS01246c09QbSPN7v/eb5BzzvmfRRFNXZHKvj1kec0mFlFaHrOB4U+RhHkYkjk3C76kH8YCFlw0PUjCJYMjl9IYtKcSq3jJ2C+7YyVnicfCMNodNXpG6zSvBtbvaK8vFuc7fGmWY33t0NrcAuzhhqvJXp9n1WL3Hev/fOVuOSiGARlhdj9RtlJLTj0qhxUmbjT3MTPZjQqDa4202hsd+3oh/Nx3W7Xko5/25O/DIjA34atle3RZAr/27BYljk/Dh/J0Y/dlKTVVUObGCoPG43PbNGt3cPTlGisvoz1ei64T52HjgrGmutlxpleNSO0fXuO+HFEXuGOCrEj7iw2WG+9lt0cXLUWb3SC/slFVhnrIoQxGuu0lm1GGpAR6viIIiLxLHJuGaTwNtMJjRZv62Y2j1cjIKHZS/loegLtx+XNFLN/1QlqJ10EM/rbfVV5QhnxfqfFS98Gn5HMy6UIj8Ig/un5Yqec94GOVR7jweWOs+WbBL831sjFKDYtf7k4W+bbceOYf/fcMvXKWuIMwMFnqe0es/X2nYKq1AFarO0CtoxUuVAIBJs7chafMRtH4lWfOdUf60AMGVlCi58uPxiopoHECpEKp/Gy8txu6QWN4yW/d2HcvGTV+u1hQqzLpQiHH/bMFvqQdxwxerpJBzTc0D1QAOnrkgzZukzUe4PcAVS66Bkm61F2vi2CTc8e1aXPHJck29AYaZQfX5P9I0n8nD+lm0FXvWT57PR7+3lVFW0aI3kNLqEJ7l4505/AnJ4725O3TDf82IkrlHhAkrnsCSQqZND0uwJfh5Lw/WioSH3bwqdc9BwJeLC/gK3DAv6oqMk/gt9SD+3nhIITR39VfJlKPXB87Mk2Nl6L+lHsTP63zeUr0wZT3stMFh4av3fp+CqyYvx56Tyhw/Vk13wXbjMbQbNxcZx43zHj9emIF8lUfqvh9SpNYaXq8ohX1NXpiBlH1nkHH8vOTN0ijU0FrprbYLM+o1yTyCWw+fM72XpeL4r3o7HoziYNmuk+gw3rjSPmPqykwpEoHnVUrafAQbD5zVhNbpcdqvuMTqWAA2HjiLxLFJmve8XtQVm7PySsh6/cN56HkS1SGocj5esEuh3CRtPoIfVmbajgKTRwZ8OH+XlKsOaL217Nj7ZGtxh9fm4s5v10lrlxPkCv0SzvMiv08igBYvzQag33ZQbiRSh4AHWrvwx7LepAbEYlk/0Csnr5ByGXm58Gv3nkabV+Zwe8Gu3nNaN6/XqN5I8pajlu9x1wnzcddUfnrQE79slOZzcvpRqfcuD/nZvF4ReTJjBjOMq4e0fv8ZPP7zBoVyeds3azRGiX2nfPOG5dz/u+mwZGjKulCIDq/NxXcrM/H0zE1Yu/e0FDnR5IVZCmXtu5WZeFGWi+oRRVvRVvK13G60jJwlO0/Y9rrbZdexbHR4bS4enbEBuZyiq9GiN/DL0xKmBFuB9TCnGMujFsPXIqEJOkGEh+Dm/vIMd3oLW2WDSSsRtbdNL7dQvl1y+lFNiywj5CG5cvTWsDV7TqFHk2qW8orkVXqDbYFlZU09dPaCocdhqYU+dkPfN8973Kqyol8o9GDIe0uw/LlBqFEhQfpcLog89vNG/HB3d01fVK8o6ionVnIbJy/chYcHN9f93iOKpqaY2Tq50sWdi+omm/zPll4f2u9XZmKtvyp/5qRRpgo68/KczinA6ZwCVC1XytI4eHfW4+UXebFDnJ7L1yYxMYJCeTialYdtnHBrOer5Klde9Dytp1UpAav2nEL18glwinwMmZx5Kg+hf+Vv44I3ZrAwTbnx5/fUg3hq5ibc1K2BrWNtPXIOW4+cw6CWNaW+q4y/Nx6SvMt69QucFjP8xSBHWc7J8/lYtOOE9E4pJYvCmJ1+FO1fm4tHBzdHtfLa+X9BFqUlN35vOHBW8bzoRXPd+30KTucU4KXL20hzY9muk1i26yQeHtxM2m77EZ+yL78W787ZgV9SDuDjmzsZ/j75XD+RnS8914BPuY6Nt6G0yjZ1EhVRXIhiwHD7z6bD6NigcphHFDrI0+qQUOiN/1gIxQOMPTsEEc2cPK9f9j8SefhH56079LCjsBpxPt/DVRRv/HI1HvpxvWUPlVPUHsmxv2u92MHC+pC6Rd+3FmHXMX4l17V7T6P7G/M11+1Edr5u9WErfTffnbvTsG+mKIqmBWQU/bajjEU6vZrVxt2RHxmHGDN2n8hB59fnwesVLVWz5ckCHq9oKSeV521j2OkBLooivF4Rxzlhz7EqpbXnxAX8asUy1KGecuVBrogt3H7MUMkKpl+yPIqGF+K8z2aUjR7y3D+5oeEpv0GORZLYRV3sMOtCodLrrpNz6tQpIS9MpgcvLFlt9MnOK8JnS3ZjCccAqG4lw9h/OodrFNp5LBsv/JnGnSNFHq8i/Fi+SYHHi4Xbj6FQFqf+i7/+wfJd1nqz88eZqxtJwZAr3PItg+kdHWryi7yK6zeeU9wrUlodBgt5Wh0SzglgNZaeIIjwwouoiBRmrN2P/EIP3r+xo+a7JAdVjIOFCSVucstXa5A5aZSrxzRShM9xwumGvKef72q1au9Zg7zEtINZ2HsyOotuWEGvp2uKzHiQcfy8ba/yXxsPKXqz6pHGaSXiFUVT4RhQhqkGE6qdnH4UD+oYyHhFesx4b64yBFqudMgV2ru/40dxuMHLf6Ubfq+Xp20XuUIcbKE+Izq8Nhf39Wss/a2uwswIZdu4G74w7isrHwOrCmwFrxf4mWOAYYr7nb0T0aJWBelzUQT+3XxYEWr/hir8eeH24xjYoqbmmHoGuBEWKoefyS20nJoBAH+atLWJFB7/RT83PNogT6tDqA8oQRAlnT82HIq4vMZI581Z5oqMVazmOU2arZ/PNjP1YFAerYsBo0JZegSTj+kVfYXM7PCbQdspM/QUVjYWqxXAGerc8A9lOYeh7sUNWHMKqMORnVDo8Sra11jxjgeDPB95XSY/kiWU19eq995u8a6nZm7SVFSWk1fowYb9Z6R7VuT14kKBUmn/VlUca/rq/bZCcvVymYPhSAQbnS9WyNPqENJZCYKIBtStJqINsybwJYFoDu+NVCarKqfaYdC7i23v86ZhmzvnWPEWm7FJlj/KKxbnNkbRCW6RODYJNSskKEKqeVWl3cSoNy6jJOeZ67HpYJbCc55b4MELf5qngzwlq5lAEAB5Wh0TLfHhBEEQ4cBKvqAbXEyhU0TJpaS0Iss4zs/pdpPiUtzUOcAUsRAa1KHeP67Wz+WWU1KeiZJAtKgsriitgiCMEARhhyAIGYIgjOV8nyAIwi/+79cIgpDoxnnDySab4TYEQRBEgGj0KBAEQRDGqEOBidAjRkl8aNBKqyAIsQCmALgMQBsANwuC0Ea12T0Azoii2AzABwDeCva84eZfi5V+CYIgCIIgCIIgCOe44WntDiBDFMU9oigWAPgZwFWqba4C8L3//78BGCKEOuOdIAiCIAiCIAiCKPG4obTWAyDPLj/o/4y7jSiKRQCyAFRTH0gQhPsFQUgRBCHlxAnnvZgIgiAIgiAIgiCI6MANpZXnMVUHT1vZBqIofimKYldRFLvWqFHDhaERBEEQBEEQBEFcnFAhpgAHATSQ/V0fgDrhU9pGEIQ4AJUAnHbh3ARBEARBEARBEASHKNFZXVFa1wFoLghCY0EQSgG4CcA/qm3+AXCH//+jASwUS3jPmA4NKofkuG9f1z4kxyUIouRSuWx8uIdAOCQ+VkCPxlXDPQwiCKqXL8X93K3KHFd2qOvOgVxk4VMD8MzwluEeRtj46d4e4R4CEWX8r2fDcA+hxBO00urPUX0YwBwA2wD8KoriFkEQxguCcKV/s28AVBMEIQPAkwA0bXFKGu3qVQzJcW/o1gAf3NghJMcmiIuJFrXKh3sIrtGiVoVwDyGk3Nw9el/mAoSosXJfrLSuw3/fv3e9O+/qazqry4BYZ8LVbV0Zg5y0ccPQpEZ5PDSoGe7r19jyfv83sKmr42jrkpz1v54NcW9f678DAHo00ZRdiXo6NSw+Z8zvD/bW3f7DGzsibdwwPGhxPt3Rq5Hjsal5aVRr146lpkN996/vzd0bmG8URbjSp1UUxVmiKLYQRbGpKIpv+D97RRTFf/z/zxNF8XpRFJuJothdFMU9bpw3nOylHoMEQYSI5c8Nwqj2daS/Y6K81vrTw1oU+zmHtalleduWHKPB9V3qW9pXEKCIzSoTH2v5vLMe7Ycbulo7DxE64nQewLKlfPdyQIvganAE83ibGUSsRmlsHT9c+n+F0oF97DR6iHV5oapchu/hvqtPoq3jVC+fgJcub4Nv7+wqfXZP38bInDRK+lv9XMbGCIrvo5FHhzSX/t+veXWUKxUn/T2kVU1XztEtsQqu7VwPrWor19AujapoIhUGtayBzEmjcHWneqhQOh7PjWhlSYlMsLGmmtGpYRXp/+VKuXfcUDGklbX3WAkPbpVwRWm9GFmRcSpkx65fpWzIjk0QFwtCUKJgeKlfpSym3NJZ+rtro+gOL61cli+chovnRrSS/j9mQFMkP94PeyeOxK8P9JI+f+f6Dvj01s683RUIglKYH9LaujDYpm5FNK8Z3V52RlkXBcRNrw4L+hjye6unjMXH+kQoK3rdU5fqG2aCESe9Xv297+7TGCkvDkW/5tVNj1NWprDI0ftpH97YUfF3yktDbSm4ah6TKVCM5RknudvWq1zG1rFj/OMaLBPw1ddk46uX2jpmSeK3Mb2Q9GhfzeejOysNYjGyee6xoeTEx2rvOzP0NKtZHnGxMUh+vL9mG/VeU+/qrtnGyjAS4uyrMnf34XveyycEnoMburnrxQxFp0/12tRRJ3UxOlRWUlojkm6JVfHPw31cPWYVA2tr4+rlXD0XQVgh1PNOjIBlOkYAKpbmC4M8fhvTCxlvXKb5/IlLW+CZ4S1RIYF/rNgYAbMf64emNcyv6Y4JI7DpleCFejex66DpUL8S9/NuiVW4n/PQmx3Jj/eTlJD7+zfB2MtaQRAECIKA7qrc1MGtamJUuzq4s3ciAKBrI+35YwQB790QCCN94+p2iu9fvryN4Tj1FKY+zaIrfNHLkU6XPTvI0bEqlYnHlteGm29owMh2gUgHvXvQNbEqqpdPwCODtQqXGnnkhF2M1hAPR2ll3ilBAOJiYzDtnkB+ZqNqWqM4UxifG9FKE8pZsYxWdigdH4OrOylDmquXT8Cods5/44MDm+LRIc2lZ8kIPcFcD/nt2zZ+BP56qA8GtvQZj566tAXKlopFQlzxedV4kRsA/94Ey8wxvdA1sSqa1tCmyzSsVhZf3e7zPguCoMjdfvWKS0yP/cRQnyGmZoXS0meLnx6IzeOGYcv44fjmjq6K44QqaiQuxr4q86ROdE9LmUd4aGvr0Thyru5YFwueGqD47O+H3JXpGeq1STc/PvzikCuQ0hqhtHcp9r2zhRyFkuuPIkoyMQLw+f+6hHsYIaV746rYPM668Nw1sSriYgPL8r8P98WipwciNkbAQ4OaYdyVPgGAFYJ7cWRrZE4ahd1vjkTrOhVRTkepZTw8qBkS4mJRyWFhp4cGOc9Z0ytmA1i3QLeoVR6Zk0Zhgl/xq6AS5q3mQAFAfpFX81mfZtXQqnZFy2ti6fhYTLm1M169og22vz4Cv3HytKbc0hl1ZZ4h9bXXuy4vjvQpHjd0a4ArOILI9Ht6WFKEvrytZDxjXu3tQDWda9M90TzywOxZMIIpyxtfuRRdG1XBa1fy80YrlYlHyktDuaGOjMva1sZ713dAkxrlsfaFIVj6zCD8cHd3vHlNO/4OHH4d00v3u26JVRV1MMw81rGcgTIF/cGBTTXepfv6NcGrVygNK8y+8MnNnRSft6xdAZmTRqFZTfv1BErHx+LJS1tg7GWBKIdq5fj3v6uF+y9Hvr6UKRWrUHofGdIcW8ePAAA04RhS1WMoEx+ryP0cd4Wx0YnHjPt7Sv8f2a42AF+4bHOD69awallHhb94hjQeAoDxV7XF2MtaIW3cMEtG5arlS+HDGzsq5mdi9XKoWDoeCXGxGNK6FkrLQnflYecAMMSCUsgzPi9+eiDmPtEfNSokAADiOJ5eM6zs0adZdUch4nUrl0HTGuUx/8kB2P76CKS+NFRTvNWt3NlaFUsr/q6q88xEC6S0RjBuVK9jRlj5oq2x5pHWSoSBGEHQFUqtwHJk7HjXihsmiMuLmfz5f/oFKNS0q19JITxc16U+0l8bLhmjYkxclP8+rAwJezrIaqDPDG9lvpEOhR7npt4H+jcBEBCWmVeucfVyUj7szd0bKsL/5PDCCc9dKFT8/crlbfDRTUohnJcHNOO+nhh/ldILIQiCQjhjPHVpCwwyyQ2Lj43BzglK7/rUu7rhPv9vLp8Qp1EO2DlLxRq/wj+5uROGXVLbcJtIgReOqBfif3mHOhqvtxHbXx9haywNqvrekZXLlsJvD/ZG7UqlMefx/oYGgHgdb0+F0nG4zp//XLNiaTSsVhb9W9QwNOKoKRuvr4C3q18J13QKeLAKPRztXwZvzTBShkrFxeAuVSglu1M8Ly+gVYzfv8G4YFXfZoFQXflzZBSiumLsYMNjyomxqO1N48hcfz/cRxEq3qxmefz5f30wsKUvj3mkBe/ylR3qKryrcsXivn6+57zI4zUMhY2NEbB34ii8M9pehwkm++ldAkHazrfWjBnQVKNc6hEjAFd3qod6lcvg9wd746ObOprvhIDC9snNnRxFU8TGCGhRq4LkQeeFJwdLJU6EgRW6NKoi5Qo3q1kepeNjUa18gmY7nuwz/R77Mn/DqmXxo2zeXtWxLtdoFCWOVlJa3eJRTj4Gj0cGN7N8zN7NzPNQzOCFXE2+WZmHFS6d9WIupx+JmOU9MaumHlYth2MG+LxhMYKAbolV8f3d2jwWKzw9rCVSXxqKt0f7BCJ16Gwk5LSy5+/FUW3w9e1d8eGNHdGpYRWuEmKV8glxknBjFlbbrn4lXcvr93d3x9e3d+V+t+r5gEBYXfXCZWtYg6plJMHNiM//1wXt61fCx/7frK4UrFfkRg7zrLAcQibMCoKAhwc3x8ZXLsXrV/HD2bonVkXy4/00n6uV1rv7NpZ+q5GM26tpNdzeK9F0zFaJjRFQSpWTNailsaLLwkXLcLxqDw9qho9v7oSt44dzPbQ8ejYJKIBuF9OxCs/4ZKhr+J+B/haKIPEMCnJ+kXm+9GhZu4KhAUDvupnokBOQ+ZoAACAASURBVJbgXYduiVUw/8kBms8LPaKx8iMIGH/VJbi2Uz3TNV0X//ELdH6c+lpcK8udHNW+jiZCYERb/nX1eEVNuyhmgKgj8zDVqaT0NqkZajGPvF7lMpj9WD+FIlW/SlmFYvrNHb418+ObO+G7u7qhZkXjc7Ntf7pPqZDMuK8nkh7ti2rlfPegZW3j3PVHh/jW3Uvq+lIjWtaqwE0lmXpnN+7+Zu9Dq4q9nNqy396lURVc1dG4CrZ6XpaOj5UMRHZgnlVmrKlazv48Nvq5614cimXP6SvTetXEAV9Kidl6AwCxHCNXg6r2crUB3+9o658TFUrHQRAEjCghhkonkNLqIlbKsz81zJ6idnuQpbx5llB1uIU6NG90l/qWQ0qCwfEL8yLFSjENI2qbvFzrVzFeMONNhFmrXlMWbsWmnVnlzYY6L7WhbWqhWvkEycoaiZZE+ZiGtqkl5YFZVSb0YM+1FUGDWWHVmw5oUQNDORV0/36oj+QpKRUbg5SXhiq+ZyG5w9vUxnecwhnqY41oWxv/PNwXA1r4KkNOvLadIuTqQwvW+eY1y+PhQc3whd/TxTygbEpWLltKEVYt5+s7u3I9B2UTzAWLYAsuWpEDW9e219ajZoUEqagJr7plTIyAKzvU5RbWmfeEthgKAPx8fyC8T897FmrUXm416t/a0B8xNHZEKyw3EDCt0KhaOcuVQvXauugtjx5e3DOU712jsFCG2otVtVwp3TBcFoIuN1gxA1VMjIDbeyXi/Rs7SsYPu+oKM8YV+aMnblKFFDNDQr3KZaS1rpe/hUzT6uXQSpXTqTfjSsXGaDxeTCGwqmNlThqF5jZahrWuU9FQkWJKasXS8VJeLKCsG/LmNe000RjqNahX02q4pG4lNKxWFr+N6YXxV7XVvQ6Zk0ZJChq79rExAnfN04u+0btezDPvxFtpJbxXjpM6E7w1mL2fnh3eEumvDcdlbWuje+OqtioeGynxNSokoKKOt/nO3on45YGeWPfiUKx5YQhqquRYq1eRZ6xtVM1ZnY9KZePx10N9sPr5IbrbUPXgi5wlzwxU/C3AvPQ0y1Gyw/ir2pqGgBkhF0DWvjhEM25A+7J9Z3R7TFeFyXx0U0f8oOMRc2Id8p03/J6wkkTvpsEpratfGGI4l3RkKwmzUFS7a6LV+99Nlr/ErO5PGlTiZDwwoInib3lLB7d56zplfhrzQPZuaq1YzpoXhmD3myMtn48JLmb3BPAJYVvHD8fW18xDJMuVikWHBpUlgZoXqcG8nUUc5UYu+Pzxf701eTw8Lm8fUODb16+E7+/urikoFRsj4OnhLSVhsoG/wvo1nYwt+w8NaqoRPjInjcJb17XDl7fxvcyAe176gToe050TLsPHN3fC9tdHSMqXVV6/uq2UI9uxgT3joh3hvbjheY3la4RckehQvzJev6otvrmjK9rUrYj6Vcpyc8/+e6Qvpt7l8zwZGeUEwbrRS6+nsF5edi0dLyBrsXJt53qoX6UsHh8aiNbieZ3VXiwj28LozvXx1nXtcH//wBrIjDTyVwA7hJWlWJ5HzPYr8r801DmFzwxviWXPDsKKsYOlqJIezJsvCJp1Sy1QM6X3pctbS1EIzWqWx88yj7j8ek+9qxv+1zN8vZ6/u6sbZj0WiOZIiIvRVHU2Wqq7JlZVeOfMDMiA/j3TUz7ln74wshXmP+kzYDFveSlOISpWSXfhUwOQ8cZlitzp8kHkjNuposub5syTHxMjoHxCHMolxOHXB3qhiYVChIAvDNep+NmsZnlULB2PGhUSUKtiac26ZfW36SnFTunYoLKUxx8JRShDBSmtDmlUrZymzDabJqXj+ZfVLLeJVwQA8JVi51VCtGKdZUKnAF+Ft0bVymmUC7WAxvKz5sqs8ld1rIfaspev3Pq57NnBjppSG5Xqdwu5IOA2xa1zu3E+9WImtw7zFBT5XDZTMq0qrewwVgv+yU97WdvaSBs3DA8PMg+zv7Zzffz3iC+ns02dirotHYJhxn09MevRfrixm1Jg+u6u7lj+3CA8PtRa/9FaFUvbCstkj47RLvJwtLKl4rhKgRr2wmXH5d1SZt3n5c7FyyTizg2NFarfxvRSPJ9rXhiCn+/viQEtaiiOA2iL6tSsWBoZb1yG23oaR6LoFWy5sVtDRXGkiddaL4pjlW3jR6BtPX6V41JxMbiyQ11LYWRqhstCv3iFmMwiIra/PoI7b5x4Woyq0tuFd3b5s8/Wl78e6oMODSqjTKlYU09P23qVpFDrv0yqd7bTuVdq9LxwTHGTP8dTbumMpy7lR1f1aVYNr115CcZf5SvyJF8rrKylRtvExAi4sVtDxXPE3vNOjcWTb+2EV/yVrpmSeWWHuuiWWAUPDlSux7ExguY6ycerHoL6tzAvVIWEeElpfaB/E/RswjcCtqpdUSrOJsdNQ+W4K9ro1iMY2LIm6lQKrCft61fSrJ1WlBkrd0YyWKqON7JdbTwzvKXU27Ze5TKK1k/y89/QtQGa+VtpFRTpe1rZfa5RIQFxsTGK3Gk3PXfT7umOCVfzi53x0KsWbHVIfYOMWpOjvmpGoeps22s71XMtDYPniOBFckWLGktKaxDIJ4EgAHf0aoS+zapj2bODuWXb9ebo29e1x+8P9sZMnQqBZUvFcSshzuPks6ixEuqlt5a2UIfwyA618RVlT7Pru9jvZ5XvRrKPCcGG1Brhxpp9mU4uT6hQj7ljg8qSVdtsqriV6hbIx1QeUM9ooz5thdLxljyMinOq/n7jGusvSDkLVWXsuzSqgjZ1leGdzONTv0rZEOYH8gWXa/2ex7dHt7fsmR/sN6bVqVRa6kPKjssTTJhAyVtb7PTa7JpYVSGo16pYWjIsqH8Xz6ofFxtjLghafEb1vGfheNFbrY/AkHulb+rWAPfIin7xKB0fy1VcVj3vi8Rhxlgr3p6EuFhL3nQr8MYk/4QJ62UcKPqANjd74yuXoos/DSY+Ngaf3GI9z/yNa9pqChrW8B//2zu7oUx8LB4c2BSj2tfR5CszBEHAHb0TuXNbBDDJxJCipzToVWRnl1exJkmHMF+nalYojbv6JOLm7g2kcPLKZUth5pjetvqmCtDea7XBlH0rItCDUy9/1gg3DZV39mmMTiaGOEbzWhU071N22Y08lFbWG1aY72FVfZRPb+2ChwY1k4zB5RPiFM4FvTvMriuv1ykzEsiNH3X9Spmba2O/5jXwPx0DJG+a6xm8eWPq2aQqbunhnhfeyBgx+7F+uoZKNfLoBD1HlxEVS8chc9IorizUqnZFjYElSqKDSWl1CwECqpVPwPR7e6BGhQR05YT36AmwlcvGo0ujKtwKY8Gy+0QOAGclwfVoUas8BEHAS6NaS+E6LAzykrrW87MKOC0n5OgpMXZgL0e9/pbhRu79MuvR1sWFPGO1cCACYFOD52mVY6YgmK2JLOSNeXvlR9s2fgS3+bia67tqjSOCgYLF8i8bV1de2zY6hRSMBPAaFRI0+bXBhOE0rFoWQ1vXkhRFOzwzvBVu7NpAEx57R+9E7H5zJG7gXCc9+vgLvk29q5ukgLPnhmfIYEorqwa8+OmB0ndqxcApn97aWeFFDUV1SCPCmblgJfRdjnzaj7vyEkuCOm/WVi+fgEbVykn30EqfRkGAonKlU27oWp97zeVrDhuzW3agymVL4avbu+Lz/3VG1XKlbIU73tqjEZY8w8+jrV2xNLa9PgLPjXBeadvjFXFT94ZS6g1vbVZ/xopp6RU1YsRyrqnV+S4IAiZe295W5WYe6nuo/nlMyWhbr6LkSTKTF4BAi783rmkr9R8NF+r3kSAIeOXyNvjrIfPq8Ub3o0LpeGROGqWIuFDsC35qh94x2XXleewm39IZcx7vr4gI+cXB+yoYWtXRpjTY9bTW4dTzUF+PazvXQ6KODPb6VZfoKpbywxgVaFIj1wfmPN4fkzlGM6PoEDMlNEp0VA2ktAaDf1Zc27mexrpdQyW8VS1XShFeGyxm1fLkYXcPD2qmECychK3wuLdfIFwnsXo5ZE4aZauAU16hB4B5gSAr6C0obHFrVF27GAXTJ+vpYS0cl0SXI7c4361qKyBny2vDFbmdTlHfe1HUetX0WsiYTRNTpRdKRUjdO0/fI+H7d3SX+tyIA6NhNapWDlPv6oZ3RitbLujNeaNjiaKoeNG8OLJ1UA3plz47CF/f0dWRAFi1XCm8Nbq9JrxUEATb3t27+yRixdjBaCUrCCQYvBmYYs88tInVy0lCqFvF1RKrl8PrsnAxp2tUsARjnS6uITsZ4ssW1j4r1n8BweW2KY9lzdNqdl3tePurliuFEW3r6J7fDm7eb0mZNBiT+r7/cHcPRTioHmYe7VAhH6+Zp3VI61rInDQKdSqVkd4LVpTWGff3xKZXhuHWHo1wKafIXHHCfpM8iuPuvo2lsFwegQJzzu8I29WqnCcprZz3b5lSsZqqxure2KFmUMuaeHZES0Xkgd47jmdEFqDNoWafy3n+stZYrGOIuq1XIq5jFbAtGgPMkBuPGlUrJ9V2uKGr7zylYmPQsUFl3TZb0aqUmkFKqwtMvLad5sXdo0k1TLsnULho/cuXagRcVobdiUBmFvZbv0pASXt6eEvDhdLu2Y0EOTu/hSmtRruoi+nIqV4+AVPv6oZp93THf49oW1oAgTCSIo+IUbKy9cPa1NKtSiuH5USqEUXoKhtp44aZFohhyBcuo3vKU9acoL53XlGU7hmbn81rVZAqZCrykEyObTVHOVD51tLmupZjBquQ+YhOWOWgljUtXb9R7evgQZ3KoL7z++b3DV3r48d7e0h9NBlp44Zh8zhzoTHSEARBE95nJDS1qFUBOyaMUORTsmehSlnfvbick2vpBKPnP5SwXNj+LUKXXuAWTnLL7uzTWLfl2LMjfJ9bMSa6aUyQH2ruE/3x472qYikcY5ea+U8OwFIHfR8jDXVgAbvFd/VJlD5TL7el4rSVduWw9VnupBIlQ0DxGYUEwd752LPYiuPFenxoc0URvIS4WKlycrhh98eJkhfM3ajsnwNWjdxGSiuPQGSTg8E55P8GNsNNMuVfV2mVjYkZV0WIpobcOY/3NzW46va5dfjs1NUJqWe91BP8RsNhl9TmFpmzu+5HS3GmyIyZLCF8cksnfL5kt25F1n7NzfvHOUX9wppyS2c0r1Uewz5YCsA4nC5SSl9LSqvO94Nb1UR5g1C3NnUrSkU28os8mu8fHNhUWqy8oohPbu6Eke3q4KGf1kMEdNsFyDHKT3hsSHPM23pM83l8bAzqVrbmPZYLEKwS4529E/HdykxL+3dLrIJ1mWcsbas7Bv8NGNSqBlrWroAbuzXAiex8/LhmP67pVE8ai5lOaqqzsjBk/4a28z11jl86PhaZk0bhQoEHk2ZvBwBc3dF+S5kpt3Q2/J4pzW+rvLYMqw3ZSwJmt0ZtgPvy9q7YfypXmiv9XVr7nr+sNZ6/zHlEhFM6NqiMnRMusyzIWcVMEbSTG8hwWs9O7z1wVcd6uKpjPRw6e8HZgW3SqnYFPHlpS4VQ2KJWBUVNhSbVy+kWoJFjZU3Xwy29LRjh8OFBzTB5UYZUFErtNZOHH9p9j7PexvJ1V4p6cTZce8jGaxYeLGf4JbWxcuxgrpBvtdBdOLAaGWDG+zfw3zd61KxYGvOf7I+GVbXpVRVLx+FcXpHis0DLG6tKq+/fcCpBVkSHUjIZOJZzE9j442MF0x65Rji9vXpKMosONHu87a77ESL2Bw15WoNg+CW18ef/9QlL6Jr6hTWqfR3FS14v5t8IeYN5I5z83KXPDMIj/sIBTMlnOZq86/fsiJZ43kaLoIS4WEVu4NDWNfHciFaKojExMUKgp6cookmN8kiz4RlrXrM87pD1zdXLQY0RBDw2pAWev8w8p6ljg8r48MaOmHZPd6lwztWd6qFvM2sentt7JVraTg95eLBX9IUvlUuIQ2L1ctj06jCMlf2GIpOeOB6Lq2JAULI2kfTCndSUKRWLP/+vN1JeGor3bjDv/WmX4qh2HSnYDU+rWDoebetVkjyuTWsGn4/ulNFd6ptvZAG3Fdb/HumLpEf5kRuALzd41qP8iBEj5MKjndtmVteG10dQjRuvvs/+1wW1K5XWXQ+m3dMdvzzQyxUF693r7SkAdmDjD0Y4NOt13SmIole83s5SfYFiEGHkIc/q9cVMAdLzSkUyXfxFm/QqHvMI5BgHro+TSrfNalbgrl/f3tkNl7evo2i3MtCf5jHYYo/TMKb7S+jJ3HK5WB65VpnjfY+PiUGTGuVsrwnasGtbuyuOMfySWppoolghIKPKUb8bzJ6ZaFFS1ZCnNYwEM6na1zeuUMYeJN4D1aZuRfRqUg0bD5zFhcKAh/KlUW00nsUnL21hrzIg53y1K5ZGw2plJSW1R5Oq+OHu7jh4Rt+SX6N8AmJjBMMFQf1Qy6tdspci+5ctYOrFzop37K4+iZi6IhM3dW+IMzkFvnNzjgUA1cuXQlyML4fiig51MdHv+eOx8KkBaFy9nOI4LAykU8PKWJ5x0nRsdhfMlrUqYMexbOlvryxPkxd+K48iqF2xNCqWjseWw+e4x/aYSMFsqB4DC/SEq9tiy+FzmLF2f2A/5qG18MBYre5oxIc3dkTp+BiMmb4eAPDI4Gb4ZGGGoqVBtONUiL2+S330blpNkZ5Q3Lx7fQecPJ+PxTtOWNq+g8la6hZmVSUTHRaek9uSjAxB1VUKkdnzZCUSwu48GdyqJno3rYYJSdvQpVEVtKtXCY38aRp6x2IRS24oWKO71MfTMzc5P4ABoVD81PUGmteqgJ/v74mbvlyNcjYr47LbzbuvbvUltopaEYtGe2CPJtWQNm5YREXgdE2sqmkD1rlhFW74qR7BhAcH5DL7+1pB5Pw/PjYG13Wuj/wiL176Kz0wlhgBC58aaPnYes+IHQOvetMvOL3Cmb9J/Uy0qVsRM8f0wvFz+Xjop/VR+cxYgZTWMHJbr0ZYsP24baHpn4f7oEkN/TCoVrJQhxGcCnMJcbGYcX9P5OQX4Xh2Ph76cb3usey2X+A92KtfGOL7TvbECoIQaH1i4NDgKYYTr22H5/9IMxwHezEzjzNTlJjg1tTg+mnGAKXgEPhcSWK1sopEfqO1LDZGMLyHVl8Idl8c393dDb0mLpT+9uW0sv9rt5f/BkEQ8OGNHXGpPwRdjdEi+t1d3fD5kt2+7TgWfwYrey9XWhluWA4XPjUAO49lG4poV3eqh8yTOdLfw9rUxicLM1ytwB3pOC0EIghCWBVWu+ydODLcQwgaK2GiC54aIOUbM8yUVkueVovKTr3KZXDo7AVc2qaWJLA2rVEO464MVCg2O1KnBlVw4PSFoPP7b+haH4ssGjTCDbsm8jvVo3FVvDCyle02c8xwq6geHCbBV20It2KQLIkEq7BWL18KNSu4V8DTDYJ5Cz46pDnyizy6LcaCRT6NOjesgu6Nq+LuPo0REyPgfz0bKZTWSMXIidAtsSpOZOf7/ojOR8YUCg8OIwNb1kTmpFGoabN6bvv6lXUrNm585VLTJuqMcglxUs8vK1jJYTCSdZmwwp5FKedDtgwaVfx7e3R7tKxVQSr1fl8//SItrJcfU4g9/vYcnRpWwU/39ZCS3a3AbcXA3U5QbaN/McwKabFr3b1xVSQ/bj9kUA/WeFw6jzw8mDMmhaEBxuukkeAhCIJ0PZgBwXoEu3EhJjs0qVFeqhZq+ewGSn20olZa3aiUHQ7M1ixBEEKW3lFcWSPyeal3zqY1yksFyxhmYYtxFnLcrP7Gn+/viVcub2PYisnMUPL26Pb475G+QbdVent0B6x7cajmc6PoJDuEQv9SFMQTBNzfvymqlDMOJVZTJBVi0iqtxZnh5CvEpPwsSnVWx7DLM2aAfmFAOXa6NgRLMHOlUpl4TLi6nabqvVvI13uvKOL5y1qjlgvdKRTnCGKushS+XgZrrxRdofu9fxwm7za1YUivzV9JgzytYeD3B3tJPQ7dprLfmh7j0guYh5EyJv/m2s71FIqlugosq6rXu2k17D+dC0AbNiIf/w1dG0hCDy+cRS5Yv3JFGwABq5U835Lljlpl+CW18c3yvejdtDpmpR0BwMKDjfeTLyof3dQRj/280fI52XD7N6+uaEWiPUdwiAhcc/M+rcYLNk8Rj48VNHPdSkEVOVe0r4MZa/djZDt3KtJaQT5idYjexYD6OVz9/JAS5Q25eHzizgui9DHJm7fiaWXMe6I/bv92LY5k5Wm+e2lUazSoWhZ3921seAyz5aB0fKxpiHUwFHeILA9mWJCKtEhDCv7ZY+sXryhNcSBfPtRLycW0tlrBTkrMhpcvVfR7DzVmSlU4kV8uM8eAXfQeGztRSW3rVcK6F4dqUjV4x9N7JphMazY11C02OxejYSOUkNIaYt4e3R6X1FUqHV0aOeu3+dO9PTSL09JnBiG3sEiz7eBWtXBLj4Z43GZ4rxWsCEkvjGyF+/srrYRSQR3/7tXKJ2DhUwNQv0pZ/LzuAADtgsgECV6Ys5pyCXHYOeEyxMcGvCexskJMZvRoXBVr9p7WfN69cVVJSZ6dfsT0OAylB8SeoMAryKCmQuk42y97rYVbVBRiMsOoKjKvENN1nevj53UHUD4hTnP/rVyTZc8OQoOqZbF34siQtdfgIRfsjMJ1ohX1tS5OoYiwRzDTcu0LQzTVRBlWclrZ2tG8VgVUKhOPI1l5tg10jHD14lXjdBRXdqyL7ck7ULOic0/wlR3qQhQDLaN6N62GPSdyUNGFSAdehMtlbWvj6+V7XTm+GVJOMrSC/kW0tBrCrkMpf3V2K71p7XrcXSMC75l8SG4rrdI5guzTatZaJz5WQNdGVTQt9QLnc2Y0iJZnjJTWEGMUDmWX3hzLeEOdCral4mLw5jXtuN85xYolmlWs41mfWNN3+UOrzutU78b+1vudeudnsJzWIgsLmBUhTdm31Hj7YKrNWgnbcqMViCgGFkFTTysEwxwd3u999YpL0Ld5dakIF2CvTyvrVVbcAm3DamXx4sjWuLxDHZz3C/UXU3gwUXJg87JSmXjbXrSaFUujpk4gh5Vjybdg64eTtj2RQCA82Nla8+CAprizdyLK2iyQpByDgKtlPb5fveIS3N2nsSt5jbzqwc+PbI3/G9Ss2MP/S8XF4J+H++DgmQv4vx/XR40XyC0S/HKMFaW1uIkQ2xIXedqc655Wvc9dvh6CIOC3B3vrfn8xGtHlUE4rgX4tfMqwWa6QFQ/rQ4Oa4d6+jaWCOnI6NayCt0e3xxvXtNXdX5sX6j+3wwdUXZDJCCstLhTWYv/men16lQquPXr42w91VlXDNcpLUJesf3hQM9PzyMODza4xuzV9mlXjtkfiFQ8uUyoWl7evq9jfbnhwuLivfxPUqVTGslJPRA4sjDScRUyKK9y0n78S6/LnBinyFYPF7rGYjOjmGMKB09ELghCUwsojPjbGsGCfHdj6JTfOxsYImlzn4qJ9/coY2a4ONr06zDRU/WKDKa35Eai0MsLZp1WPJ4a2kOq0uK209m/hq2LeUSWTFXdagbo2zMUGKa0Enh3eCivGDtbEwOth9JCWS4jDS5e30U20v6FrA0Nv3Uh/kZyO/n506pBSu1QsHYcnhrbAz/f3MN32yUuVjcof4IRniDLBLCEuFt/e2RXT7/UdW31VnPZPBIBBLWti87hhmmIpsx7rh5cv9+Xr1qui9GjcpjIUWKmyKW95Y9a3kfHjvT0x476ems/N+rQ2r+krQsCs+lYuSahfCHoFzeQwAaJyCS1GdDHy+NAW+PfhvoocyNoVS+MZGwXYSgqTrmuHxU8PDE9rDdnjKeoYo0qKcBWOokTFCVvfw53Tqj59SS3yFgrYo5Lgl58iUWmNhNxvPcqUisVDfmM9T2ltWqOcVEvFLkNa18K28SMk2ZRR3Da6SDf2hxoKDyYQGyNETEjXsEtqKfIXpXYzDo8nCAIeG2otr/f/27vzMMnOul7g398smWyTjSyTfYFkEkIgkJBA2EIWCCIXBAFRIIARlVXZEa4gCMbrNQIXECM814jgRUQF0Ss3IIqiKAEDPCCLCIIQISDIviXv/aOqZzqd7umeqa6qU6c+n+eZZ7qrTtd5u87bp873vNvSi75n3efUm21z45IP3gtOPSI33tjyqPNOyCPufNPQuPSkeccTDs57P/2VnHfLW6yp2/gBK1yEPvq8E3LmsQfmrOMPyZuv/dyOx5eey5Y7md58m1p79+Ba/PXOb/bZvDHf/v4Nq3aH/oUfOi33uvUR+fp3f3Cz11jLPsfh6IP2ucm6tcs59pB986Ifuc0uZ7buo6ffe3vuOqMtIBs3VM5YspTYwtJbfbNl08Y9XuN1NW9/yt1z0RXLL3GV3PTG044bejN6TbVQ7tVmVZ5VNy4ze/A0dGXscpct9N7qZGgdHr4tm7o5z8GmZSbfXPCO3ViXdTnLzu0w4fq8p6G1iy3je0JoZc0WTgZ7eqdqLRaHqGT0ltbd2/fq2yy0Jiy+27hhQ91kvcEFSzPc7z7m3Hz9O9/f7SWOblbODbVjMq+lSyEstvxSPTsf/Km7nZhLzzshv/lXnxy+1p69ye96xj3z4j//5/zU3U/Ky9/5Lytut9emDTnvVofmK9/8XrbuvSmPu+fq0/mP6+Ngd+8W/8S5N+/u3nePX0P3clbWh2vzWx2+dZfPLz7nLJw9ll5Ujbqu6qRs2rghb/u5u+eYg7txA3e9LVzET62ldSp7nay3PvGu+fgqN0HXYmEuhy6Oad28cUOeccn2XHxaN2/iLtyUWcs8Juth0n9Ns3pTcL3MxqcJnXDLw/bPc+97Wv7b7Y4a2z5W+nucxF2ipUFmuTvCO2f1Xf31Fnd7qlT22WvjWGdhXVqk1e7IPee+g27GaxnLu6vX27r3pvzGQ89c02skg9kOP/T8e695e2B6Dtp3c776re8nSZ56pdAH7wAAIABJREFU8Sn59as/vuO55SZiWnya+MUfvnUeesf1m4xw3LZv23VIn2UL8yEszGHB+rvN0Qeuy7JMO8e03jDya43D486fzg3NvTZtWDXI72hpHdOykktN+h7QWiYM7TOhlTWrqlx2t+Wn4V6/fdx8n8lkWlrXcvLZOW5r9W0P27oltz7ygHzkuq+NWLJdlGdRmF+6ruKtj7r5pE3L/Y4/f/EpaS158B7OdD3OMRbj7krWh9YwGKfF595bHr7ybO/LTbC23NqsF5x6RA7b+vH85F3H+1nCTd3u2IPygefdyxjSGXDKEYObJ+ecuGfLI/bVe3/honz3hl0H+VsMJxZb6xwto5r0GNN5714vtNIpK80ePJl9r77NjjGtayzZsYfsk49c97WJhKNzT7pFzjz2oFz72a8mSc675druqB+w9+Zluzev1Th/t/k+PTPL5qHuLj4P3rgw0c8qd/QO27ol733OReMsFiuYZmCdlQm5pmnhpvip27bmPc++MEeMsOZvHx247+Yku67D5550i7zq4XfI+dsP3+V262Va5/n7nnHkbm3fl78/swfTaTvHtI7/L27zCkvXLHbSYYMJT9a6buyOZSDGlOwWvy0bN1SevczkUYuNUoqV7vDNw8U5dMHB+063lWzpaXjxKWFxL5Rpl5PumvOGol1amJl224F7Z9uBe899q9qeuuQ2R664gsV6O/uEQWv48Wu8JlwP1/7ixXnJj619SFafaGml0yZ5yl5LsPzxc47L9iO27jhRraYtszZe34y3e/BsvS6Myzufdn6nl13aOd6/8ubH3zXv+8x/TrU8dEtfZi8dp5+76JT80BlH5tRtK6/HTrc87V6n5EF3ODonHzG58fAH7TudtZW7QGhlJkzi424tQaaq1hxYk53L3nQls45y53aln1zuJT99+X33eD833WdH3jjYTevdSnLimJa1GcXi33HxmNbjbrHvmnujMCd2c2jNPNq4oXLakQLrLNm0ccNEA+u80z2YTluYvnwiEzGN4TV3dA8eU2pd+r6M821a6RpcFyaYD0tby5584c5ZRHcOhZhkiQCYF0IrnbZw/XPjBFLrOMLXcjNqTlM3SrEbZq7AzLuO/Kmvm13NJ3DJbY682XZdOdcB0C+6B9NtC0veTGJXY3jNG3djiZw9sbvvy55cT27de1O+/p0fTCU/uv6F2bAevUouOX1bLr71EetUIrrIOR0mbxKTmU6CllY6bVpL3tz3trs3nfhKdiwDMcOf1C95aP9mqTt0/8FSAne91dqWBYJ5tdYeKLuzhvVKXvWIs/Kgs47Z8xegs/pxyQxMk9DKTJjMmNZa9PX6OGT/wSxv++w1nunXd/fu2Z50gV7YxTTGro5rj9sO3Dt/+8x75hmX7HqJINhds3t7anlLzzF/96wLlt1u3Mt7MdsW6pHaAZPXl7lHhFY6beff2WzOxPQrDzwjv/LAM3asv7belr4r4wz3S9+e+5951Ph2trDPMZ5ojzl432wyawzr7MLTBt1b+1qzjjpon2UfXxgK0ZNrI8ZE/YDJe/RdTph2EdaFMa102sJd+4m0tI7hw/SAvTfnYecct/4vPEErvfVXPOTM/OqDbjvRskDX/a+H3T5f/ub3xjZj+DTt8jyspRWgk/bdqx9xrx+/Bb01idmDr3zEWTlwn803aRmZ1a4U4yh2W6EFZeOGysYN4+n2vGDcR2FGDzMdtvfmjTl6hdbIWbers3DXZkqnW3oyDwwwRUIrnTaJ6597nb4tSfKN7/5g537Hv9sZtPq78rrLzl3XLreuf2E2LIxpneVJ5xi/8ukK7CGhlZkwmYmYZtAE3pfd2cVdZmw23lltUYeu2TGm1UwZLENDKzAqoZVO+KunnZ/Pf/XbN3t84a7sRNZpreW/7rI2fGduf9x4JnpabBrvibvyMBuaMa2sgeoB7Cn3ROmEEw7dL+ct10o3/IAzHmbXTj58/yTjeZ+m+d67wIHZsHADrYfzTwHMnGuee9G0i7DuhFY6beH6p02grXUWW/V2rKE61rK7GIV5tdYzr3Va2RU3nmGyDt1/y7SLsO6EVjptx5jDCS9547Jrp8kEY6Dr2i6Sh3Va2ZXztx+WJLnjCYdMuSTArDKmlU7b2dI64f3OyJXXwvsyzuJO8wb5jBwGmCtbNm3IsYfse5PHmtmD2YW7n3JY/uVF98mmjdpKgD0jtNJpOxpaJ9y3yGXXzZmICebbJbcZLA/20RdesuI2ugezEoEVGIXQSqdNsHdwL1r1xjH211gkIEm2bNqYZNc9UfpwHgWge9z2otN2LHkzkXVaZ29Q6yTel4UgPJWW1hk5DjDvTj/qgCSzM7QCgNmipZVOm+T1z8YZnh534X0aZ3faaXTVnd0jAvPl9ZfdKf/6pW9MuxgA9JSWVmbCJHqobtxQefKFJyeZnbGUO7sDj6+8ugcDqzlw3825/XEHT7sYAPSU0EqnLXQ1u3FCyenog/eZyH5m0lS6B8/GzQPou8sfeMa0iwDAHBNa6bQdkWVSrX0La5LOSFZqEyjvVJe8meK+gZ3uc8aR0y4CAHNMaKXTds4ebMmb5Sx9V8Yze/BwIqZ1f2UAAFid0EqnbT9ia5Lk/O2HT7kks+VOJx2yy+fvd7uj1vxap24bzAp6wamTPwaz0uINvWVMOwAdYPZgOu3kI7bmQ8+/V7buvXki+5t0i+40fOyXL8nmDWu/X7V922SPwWLGtAIAILTSeZMMS5MYIzoOu1PcLZs27vbrTyOwAgBAIrTCTexcQGZGUuvCeNMZKW4XPeXiU3L+9sOmXQzoNOcYAKZJaIVlzMoF2s06M/e/d/O6e9JwbV5gZdZrBmCaTMQEPbC0ZXhmWooBAGAVQissMmutCSuVdx4mlAImZ1Z6nwDQT0IrLLIQ9mbtAm1HeWes3EC3PeLOxydJ9t6DCdwAYL0Y0wrLkv6m6Xcfc07+5NrPTbsYMPeefu/tedq9tmfDBudEAKZHaIVFZq178M3MevmH7n7KYbn7KWb0hWmrqpnreQJA/+geDIvsWPJmRi7S2sKSN0seNxETAAB9IbTCDOtJwyoAAKxIaIUeqFlpGgYAgN0ktMJiK3S37aqZH4MLAACrEFphkVkb03rwfpuTJIdt3TLlkgAA0BW3PebAaRdhXZk9GJYxKxMZPeDMo9Nacr/bHZVk5TGuW/f2pw4AMC/e+DN3zvdv6E+XPFeysMisdbetqjzwDscs8/hNv3/3sy6YUIkAAJi2LZs2ZkuPkp7uwbCMWekevJKl4fuAvTdPpyAAADAioRUWabPW1LrEjGdtAAC4GaEVliH8AQBAN/SopzOMbrbbWW9e/nc+7fxs2eTeFAAAs0tohUUWegfXjA9qXSj+iYfuN92CAADAiEZqgqmqQ6rq6qr6xPD/g1fY7i+q6qtV9dZR9gfjtu9eG5Mk+/dpujUAAJhho/YbfFaSd7TWTk7yjuH3y/m1JI8YcV8wdj961jF59n1OzRMuuNW0iwIAAGT00Hr/JFcNv74qyQOW26i19o4kXx9xXzB2mzZuyE/f45bZe/PGaRcFAADI6KH1iNbadUky/P/wUV6sqh5bVddU1TXXX3/9iEUDAABg1q06cK+q3p5k2zJPPWe9C9NauzLJlUly9tlnz/pErjBxM77MLAAA3MyqobW1dtFKz1XVF6rqyNbadVV1ZJIvrmvpgD0y45MfAwDADqN2D35LkkuHX1+a5M0jvh6wDrS4AgDQF6OG1suTXFxVn0hy8fD7VNXZVfXqhY2q6m+SvDHJhVX171V17xH3CyxDCysAAH0z0mKUrbUvJ7lwmcevSXLZou/vNsp+AAAAmE+jtrQCHaJbMAAAfSO0Qg/pJgwAQF8IrQAAAHSW0AoAAEBnCa0AAAB0ltAKAABAZwmt0CMtpg8GAKBfhFbooYrpgwEA6AehFXpIiysAAH0htEKPaGEFAKBvhFYAAAA6S2iFHtEtGACAvhFaoYd0EwYAoC+EVgAAADpLaAUAAKCzhFYAAAA6S2gFAACgs4RW6JFm8mAAAHpGaIUeKpMHAwDQE0Ir9JAWVwAA+kJohR7RwgoAQN8IrQAAAHSW0Ao9olswAAB9I7RCD+kmDABAXwitAAAAdJbQCgAAQGcJrQAAAHSW0AoAAEBnCa3QIyYPBgCgb4RWAAAAOktoBQAAoLOEVugRy7MCANA3QisAAACdJbRCj5iICQCAvhFaAQAA6CyhFQAAgM4SWgEAAOgsoRUAAIDOEloBAADoLKEVeqQ18wcDANAvQiv0UFVNuwgAALAuhFboIS2uAAD0hdAKPaKFFQCAvhFaAQAA6CyhFXpEt2AAAPpGaIUe0k0YAIC+EFoBAADoLKEVAACAzhJaAQAA6CyhFXrENEwAAPSN0Ao9ZBomAAD6QmgFAACgs4RWAAAAOktohR4ythUAgL4QWqFHjGUFAKBvhFboES2sAAD0jdAKPaTFFQCAvhBaAQAA6CyhFQAAgM4SWgEAAOgsoRX6xExMAAD0jNAKPVRmYgIAoCeEVgAAADpLaAUAAKCzhFbooWZsKwAAPSG0Qp8YywoAQM8IrdAnWlgBAOgZoRV6yOzBAAD0hdAKAABAZwmtAAAAdJbQCgAAQGcJrdAjzUxMAAD0jNAKPWQeJgAA+kJoBQAAoLOEVgAAADprpNBaVYdU1dVV9Ynh/wcvs82ZVfX3VfXhqvpgVT10lH0CqzOyFQCAvhi1pfVZSd7RWjs5yTuG3y/1rSSPbK2dnuSSJC+pqoNG3C+wjDKaFQCAnhk1tN4/yVXDr69K8oClG7TWPt5a+8Tw688n+WKSw0bcL7AMswcDANA3o4bWI1pr1yXJ8P/Dd7VxVZ2TZK8kn1zh+cdW1TVVdc31118/YtFgfmlvBQCgLzattkFVvT3JtmWees7u7Kiqjkzy2iSXttZuXG6b1tqVSa5MkrPPPluTEQAAwJxbNbS21i5a6bmq+kJVHdlau24YSr+4wnYHJPmzJM9trb1nj0sLAADAXBm1e/Bbklw6/PrSJG9eukFV7ZXkj5P8bmvtjSPuDwAAgDkyami9PMnFVfWJJBcPv09VnV1Vrx5u85Akd0/yqKq6dvjvzBH3Cyyj6VQPAEDPrNo9eFdaa19OcuEyj1+T5LLh17+X5PdG2Q+we6pMxQQAQD+M2tIKAAAAYyO0AgAA0FlCK/RQM7gVAICeEFqhRwxlBQCgb4RW6BENrAAA9I3QCj1k9mAAAPpCaAUAAKCzhFYAAAA6S2gFAACgs4RW6BETMQEA0DdCK/SQaZgAAOgLoRUAAIDOEloBAADoLKEVesjQVgAA+kJohR4pg1kBAOgZoRV6xOzBAAD0jdAKPaTBFQCAvhBaAQAA6CyhFQAAgM4SWgEAAOgsoRV6xDxMAAD0jdAKPWTpGwAA+kJoBQAAoLOEVgAAADpLaIUeaga3AgDQE0Ir9IihrAAA9I3QCj2igRUAgL4RWqGHzB4MAEBfCK0AAAB0ltAKAABAZwmtAAAAdJbQCj3SrHUDAEDPCK3QS2ZiAgCgH4RWAAAAOktoBQAAoLOEVgAAADpLaAUAAKCzhFYAAAA6S2gFAACgs4RWAAAAOktoBQAAoLOEVgAAADpLaIUeadMuAAAArDOhFXqoatolAACA9SG0AgAA0FlCKwAAAJ0ltAIAANBZQisAAACdJbQCAADQWUIrAAAAnSW0AgAA0FlCKwAAAJ0ltAIAANBZQiv0SGvTLgEAAKwvoRV6qKZdAAAAWCdCKwAAAJ0ltAIAANBZQisAAACdJbQCAADQWUIrAAAAnSW0AgAA0FlCKwAAAJ0ltAIAANBZQisAAACdJbRCr7RpFwAAANaV0Ao9VDXtEgAAwPoQWgEAAOgsoRUAAIDOEloBAADoLKEVAACAzhJaAQAA6CyhFQAAgM4SWgEAAOgsoRUAAIDOEloBAADoLKEVeqS1aZcAAADW10ihtaoOqaqrq+oTw/8PXmab46vqfVV1bVV9uKp+ZpR9Aqur1LSLAAAA62LUltZnJXlHa+3kJO8Yfr/UdUnOa62dmeTcJM+qqqNG3C8AAABzYNTQev8kVw2/virJA5Zu0Fr7Xmvtu8Nvt6zDPgEAAJgTowbII1pr1yXJ8P/Dl9uoqo6tqg8m+WySX22tfX6F7R5bVddU1TXXX3/9iEUDAABg1m1abYOqenuSbcs89Zy17qS19tkktx12C/6TqvrD1toXltnuyiRXJsnZZ59tShnYTYdu3ZIkOemw/aZcEgAAWB+rhtbW2kUrPVdVX6iqI1tr11XVkUm+uMprfb6qPpzkbkn+cLdLC+zSHU84JK+/7Nycc+Ih0y4KAACsi1G7B78lyaXDry9N8ualG1TVMVW1z/Drg5PcJcnHRtwvsILzbnVoNm00dBwAgH4Y9cr28iQXV9Unklw8/D5VdXZVvXq4zWlJ/qGqPpDkr5P8z9bah0bcLwAAAHNg1e7Bu9Ja+3KSC5d5/Joklw2/vjrJbUfZDwAAAPNJH0IAAAA6S2gFAACgs4RWAAAAOktoBQAAoLOEVgAAADpLaAUAAKCzhFYAAAA6S2gFAACgs4RWAAAAOktoBQAAoLOEVgAAADpLaAUAAKCzhFYAAAA6q1pr0y7Dsqrq+iT/tspmhyb50gSKQzc5/qgDqAOoA6gDqAOz6/jW2mGrbdTZ0LoWVXVNa+3saZeD6XD8UQdQB1AHUAdQB/pP92AAAAA6S2gFAACgs2Y9tF457QIwVY4/6gDqAOoA6gDqQM/N9JhWAAAA+m3WW1oBAADoMaEVAACAzhJaAQCAzqqqmnYZmK6ZCK1VNRPlBMbHB9b8qqpbTrsMTFdVbRz+7zwwp6rqwOH/rgnn0z7TLgDT1dk//Ko6o6qemiSttRunXR4mr6rOrKqfqqpt0y4Lk1dV51TVS6rqsqra0MwaN3eq6g5V9a4kl1fVAdMuD5NXVXepqquSPLeqDnEemC9VtaGqDqiqtyZ5WeKacN5U1Z2q6k1JXlFV91q4gcX86WxoTfKiJC+uqvOTnXdZ6b+q2lxVv5XkNUnukeRFVXXulIvFhAyP/xVJfivJR5M8PMmvD5/TyjInqmqvJL+c5A2ttQe31r42fFwdmBNVdVKSVyZ5Z5Ljk7ywqu473VIxScOA+vUkm5McXVUPTbS2zothBnhlkj9K8rEMrgcOnmaZmJ7O/dEvCqfvSvLSDC5a0lq7wUlqbtwmyYGttbNaaw/PoJ5+acplYnK2Jvl8kvu21l6V5NFJflgry9y5Q5Ivt9ZekSRVdeeq2qIOzJWzkvxza+13kjw1ybUZnAuOnWqpmLRTM7gGeEmSn6iqra21G93AmgtnJHlva+11SV6bwc2Lb0y3SExLJ0JgVZ1YVVuG3y6ciO6d5LeTfLGqLksGd9ycpPppWAf2Xvg2yUOq6sCqemCSOyW5sKpuP9xWHeiZqnpIVT21qs5prf1nkte11j4/DCmfSvLhJPs79v01rANPqao7Dx/6tyTbq+p+VXV1kucl+e2qetj0Ssk4DbsBnrLoofcmOaaqjm2tfSXJu5N8NcmPTKWAjN3iOrDofP8vSb6X5FPDf5dW1XFuYPXPMueAv0ny4Kr6xSTvT3JkkldW1YOnUkCmaqqhtapOqKr/m+TVSV5fVduTZHgi+mCSz2bQ0vr0qnpjVR3jJNUvS+rA66rq1q2192fQPfxVw38vTnJskhdU1SnqQH9U1cbhh9Ezk7Qkr6mqB7TWrkuS1tp3q+qoJLdM8jXHvn+W1IEkubKqHpTk+iR/muQpSS5vrV2SQTfRC6rq1OmUlnGoqoOq6s+SXJ3BDcv9h099J8nfJnnI8PuPJflIklssuslJDyxTB/ZbdL4/O4Pz/4czuIH5vCS/ORxK0onGF0az0jmgtXZtkkuSnJDkca218zO4eXVJVZ02peIyJRP/Y1/SUvK0JP/QWrswg4uRFyY5ZdjqeniSE5P8RJIjkhzeWvt3Y1tn32p1YBhM/3sGH04/2lp7bQbdgj6V5C4TLzBj01q7Icn2JE9trV2RwcXIk5Z8GN0zgzry1arar6oOnUZZGY9l6sDzk/xsBl0CP5Dk9CQLAeUvM+g+/s3Jl5Qx2i/J25I8cfj13YePX5/kPUnOGPbCuCHJ55LcpbX2namUlHFZqQ4kyWeSbK2qNyR5RpL3Jfl4a+37JmXqjaXH/24LT7TW/jHJYUk+PXzI58CcmsYdqr2TpKo2Db//cJK01l6e5Jwkj8ogsP4gyT8m2T/JBUmOq6rbDj+0mG27qgNnJXnM8O7pdzK8w95a+3KSozO4y84Mq6pHVtU9quqg4UNfSHJwVW1qrf1RBsf4IVW1efj81iTvr6rHJPmnDO66M8NWqQNvSvLxJPfLoGvY/0jy5OE54eIkh2RwbmCGLaoDB7TWPpfkyiR/kMGxPaeqjh5+3r8ng7/73xi2vpye5DNVte/UCs+6WKUOnDvsZZMMJt45LMl/JLl9Bje1tmtpm21rPf7Dhqy/S/L44Y9emOQW8Tkwd2pSve2q6uIM7pB9LMm7Wmt/UFUvSLIpyRuGm704yZczuEg5LsknW2sfG/78I5L8dWvtMxMpMOtujXXgRUn+K4NW9w1J3prkTRmMa/1ckie21q6fdNkZzbB1fVuS1ye5McknM7ib+tNJnpRBHXjZsDV1ewYfXJe01q6rqr/MoIX9/yT59dbaB6fxOzCa3awDp2ZwTlioA5cnOSrJMUke31r752n8DoxmF3Xgya21Lw23uUsGNyuvGfayWfjZKzI4/scneeTCtQGzZU/rQFUduuj5/ZPsNZz/gBkywvE/PYOeWNuSfD/JE3wOzJ+JtLRW1a0yGJv68gyWMfmRqnpckl9L8u0MgsorMqiQeyW5W2vtz1trH6vBGl0bWmuvFVhn127UgednUC8vaq19JMkDM5iE4YrW2o8JrLOnqjYOxyZtTfK5YVfwx2Vwc+KlGUxnf5ckt62qfYcXox9N8tDhS/xpkoe21i4VWGfTHtSBj2ZQBxYmXXp2BuOZLnChMpt2UQf+M4MWliRJa+3dGXQD3F6Dyfi2Dp96epKfbK2dK7DOphHqwH6ttS8Nx79vaK19Q2CdPXt4/A+qqn2G45kvTfKo1tqFPgfm06bVN9kzC4Pjh+MNzk3yvtbam4fPvT2DdRff2Fp7YVWd1Fr71+Fzf5PBXZRUVRmvMLtGqAPvzrDbx3AQ/rXTKD+jGXb/fkGSjVX150kOSHJDkrTWflBVT8igu9cVGdx1/bEMZgZ8QwbDA/5+uO1vTL70rId1qAPvHm7bYpmDmbSGOvCkJJ+vqnu01v56+GO/ncFNzquTHF9Vt2+tfT6D9TqZMetcB5gx63D8j6uqOwy7EP/r5H8DumIsLa1V9egk/55BF88k+VCSh1XVCcPvN2XQJWDhYvRTw597bJKfzGBa64ULFWbQiHXgMRnWAWZTVd0jg8kyDs6gpfyFGdyMumdVnZPsuJnxS0l+rbV2VZL/l+SRVfVPGdSPD02j7KwPdYA11oGWwQXt8xf96H0zaIH5QJIzhJXZpQ7Mt3U4/tdmcPw/N8Fi01HrPqZ1ONbg9zKYCfbSJD/eWvtoVb0kg1mAj8sgoPxqksuTPKa19oWq+rkMZgp+XGvtvetaKCZKHaCq7pbkhEXjUV6ZQQD5dgbjks8atsQfnkGX8Z9vrX22qrYl2Xeh1Z3ZpQ6wm3XgZUme0Vr7dFXdP8lXWmvvmlbZWR/qwHxz/FlP697S2lr7RpIntdZemsFd818aPvXUDGb+emZr7eEZLBB+/fD/JLmytXZHYWX2qQNkcGf1D2rnElXvTnJca+13Mugi9MRhK9sxSb7fWvtskrTW/kNY6Q11gN2pAze01j6dJK21N7tY7Q11YL45/qybsXQPbjsnTHpJkhOr6t5tMHX9f7XW/nb43M8k+VYG45bSWvvWOMrCdKgD86219q3W2nfbziWqLs7gBkWSPDrJaVX11iS/H13Be0kdYE/qwHB2UXpCHZhvjj/raWwTMSWDO+ZV9Zokv5Dkba21G4Z92J+TZHMG3UKtu9pj6sB8G95dbRl0C3/L8OGvZ1AfbpPkU8aq9Js6wO7UAXNZ9JM6MN8cf9bDWNdpHU5NfmNV/WGS65J8N8nbk3yitfbJse2YzlAH5tvwjuleSV6d5I8zmGTryxmMZfnaNMvGZKgDqAOoA/PN8Wc9jLul9caq2jeDAdbnJ3lBa+0vxrlPukUdmG+ttVZVt89ggq0Tk/zv1tprplwsJkgdQB1AHZhvjj/rYawtrUlSVU/LYID1M1tr3x3rzugkdWC+VdUxSR6R5ArHfz6pA6gDqAPzzfFnVJMIrRuGM4Mxp9QBAABgT409tAIAAMCeGsuSNwAAALAehFYAAAA6S2gFAACgs4RWAAAAOktoBYAxqqobquraqvpwVX2gqp5SVbv8/K2qE6rqxydVRgDoMqEVAMbr2621M1trpye5OMkPJXneKj9zQhKhFQBiyRsAGKuq+kZrbf9F35+U5L1JDk1yfJLXJtlv+PQTWmt/V1XvSXJakk8luSrJy5JcnuT8JFuSvKK19lsT+yUAYIqEVgAYo6WhdfjYV5KcmuTrSW5srX2nqk5O8vuttbOr6vwkT2ut/fBw+8cmOby19stVtSXJu5M8uLX2qYn+MgAwBZumXQAAmEM1/H9zkpdX1ZlJbkhyygrb3yvJbavqR4ffH5jk5AxaYgGg14RWAJigYffgG5J8MYOxrV9IcrsM5pn4zko/luSJrbW3TaSQANAhJmICgAmpqsOSvCrJy9tgfM6BSa5rrd2Y5BFJNg43/XqSrYt+9G1JfraqNg9f55Sq2i8AMAe0tALAeO1TVddm0BX4BxlMvHTF8LlXJnlTVT04yTuTfHP4+AeT/KCqPpDkd5K8NIMZhd9fVZXk+iQPmNQvAADTZCImAAAAOkv3YAAAADpLaAUAAKCzhFYAAAA6S2gFAACgs4RWAABCOl+2AAAAFklEQVQAOktoBQAAoLOEVgAAADrr/wOTJufRQsuvugAAAABJRU5ErkJggg==\n", 361 | "text/plain": [ 362 | "
" 363 | ] 364 | }, 365 | "metadata": {}, 366 | "output_type": "display_data" 367 | } 368 | ], 369 | "source": [ 370 | "df_PG['Retorno Simple'].plot(figsize= (16,8))\n", 371 | "plt.show()" 372 | ] 373 | }, 374 | { 375 | "cell_type": "code", 376 | "execution_count": 15, 377 | "metadata": {}, 378 | "outputs": [ 379 | { 380 | "name": "stdout", 381 | "output_type": "stream", 382 | "text": [ 383 | "0.0005582445686653267\n" 384 | ] 385 | } 386 | ], 387 | "source": [ 388 | "#vamos ver qual a media de retorno em todo a existencia \n", 389 | "media_retorno = df_PG['Retorno Simple'].mean()\n", 390 | "print (media_retorno)" 391 | ] 392 | }, 393 | { 394 | "cell_type": "code", 395 | "execution_count": 20, 396 | "metadata": {}, 397 | "outputs": [ 398 | { 399 | "name": "stdout", 400 | "output_type": "stream", 401 | "text": [ 402 | "0.13956114216633167\n" 403 | ] 404 | } 405 | ], 406 | "source": [ 407 | "#vamos ver qual a media de retorno em todo a existencia \n", 408 | "media_retorno = df_PG['Retorno Simple'].mean()* 250 #o valor de 250 é valro de de dias para o ano\n", 409 | "print (media_retorno)" 410 | ] 411 | }, 412 | { 413 | "cell_type": "code", 414 | "execution_count": 21, 415 | "metadata": {}, 416 | "outputs": [ 417 | { 418 | "name": "stdout", 419 | "output_type": "stream", 420 | "text": [ 421 | "13.956%\n" 422 | ] 423 | } 424 | ], 425 | "source": [ 426 | "#agora vou tranformar em porcetagem\n", 427 | "print (str(round(media_retorno ,5)*100) + '%')" 428 | ] 429 | }, 430 | { 431 | "cell_type": "code", 432 | "execution_count": null, 433 | "metadata": {}, 434 | "outputs": [], 435 | "source": [] 436 | } 437 | ], 438 | "metadata": { 439 | "kernelspec": { 440 | "display_name": "Python 3", 441 | "language": "python", 442 | "name": "python3" 443 | }, 444 | "language_info": { 445 | "codemirror_mode": { 446 | "name": "ipython", 447 | "version": 3 448 | }, 449 | "file_extension": ".py", 450 | "mimetype": "text/x-python", 451 | "name": "python", 452 | "nbconvert_exporter": "python", 453 | "pygments_lexer": "ipython3", 454 | "version": "3.6.5" 455 | } 456 | }, 457 | "nbformat": 4, 458 | "nbformat_minor": 2 459 | } 460 | --------------------------------------------------------------------------------