├── READ ME - ABOUT THE MODELS.pdf ├── Frame Idealization and Element Notation.pdf ├── Models and Tcl Files ├── Spring_Zero.tcl ├── Spring_Rigid.tcl ├── Generate_lognrmrand.tcl ├── SDRlimitTester.tcl ├── Spring_Panel.tcl ├── ConstructPanel_Rectangle.tcl ├── DisplayModel3D.tcl ├── LibAnalysisStaticParameters.tcl ├── DisplayPlane.tcl ├── DynamicAnalysisCollapseSolverX.tcl ├── Spring_PZ.tcl ├── Spring_Pinching.tcl ├── SolutionAlgorithmSubFile.tcl ├── SolutionAlgorithm.tcl ├── Spring_IMK.tcl ├── SMF2B.tcl └── SMF2CG.tcl ├── README.md └── LICENSE /READ ME - ABOUT THE MODELS.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/amaelkady/OpenSEES_Models_SMF/HEAD/READ ME - ABOUT THE MODELS.pdf -------------------------------------------------------------------------------- /Frame Idealization and Element Notation.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/amaelkady/OpenSEES_Models_SMF/HEAD/Frame Idealization and Element Notation.pdf -------------------------------------------------------------------------------- /Models and Tcl Files/Spring_Zero.tcl: -------------------------------------------------------------------------------- 1 | ################################################################################################################## 2 | # Spring_Zero.tcl 3 | # 4 | # SubRoutine to construct a rotational spring with a very low stiffness 5 | # 6 | ################################################################################################################## 7 | # 8 | # Input Arguments: 9 | #------------------ 10 | # SpringID Spring ID 11 | # NodeI Node i ID 12 | # NodeJ Node j ID 13 | # 14 | # Written by: Dr. Ahmed Elkady, University of Southampton, UK 15 | # 16 | ################################################################################################################## 17 | 18 | proc Spring_Zero {SpringID NodeI NodeJ} { 19 | 20 | element zeroLength $SpringID $NodeI $NodeJ -mat 99 99 9 -dir 1 2 6; 21 | 22 | } -------------------------------------------------------------------------------- /Models and Tcl Files/Spring_Rigid.tcl: -------------------------------------------------------------------------------- 1 | ################################################################################################################## 2 | # Spring_Rigid.tcl 3 | # 4 | # SubRoutine to construct a rotational spring with a very large stiffness 5 | # 6 | ################################################################################################################## 7 | # 8 | # Input Arguments: 9 | #------------------ 10 | # SpringID Spring ID 11 | # NodeI Node i ID 12 | # NodeJ Node j ID 13 | # 14 | # Written by: Dr. Ahmed Elkady, University of Southampton, UK 15 | # 16 | ################################################################################################################## 17 | 18 | 19 | proc Spring_Rigid {SpringID NodeI NodeJ} { 20 | 21 | element zeroLength $SpringID $NodeI $NodeJ -mat 99 99 99 -dir 1 2 6 -doRayleigh 1;; 22 | 23 | 24 | } -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Description 2 | This folder contains ready-to-run 2-dimensional OpenSEES models of five archetype steel buildings designed with perimeter special moment frames (SMFs), with heights of 2, 4, 8, 12 and 20-story. 3 | 4 | # Important note 5 | These models were developed back in 2019. There has been several updates since then including new hysteretic models and modeling guidelines for steel members and connections. To generate frame models with these updated modeling specifications, you should use the FM-2D software (https://github.com/amaelkady/FM-2D). 6 | 7 | # References 8 | • Elkady, A., and Lignos, D. G. (2014). "Modeling of the composite action in fully restrained beam-to-column connections: implications in the seismic design and collapse capacity of steel special moment frames." Earthquake Engineering & Structural Dynamics, 43(13), 1935-1954, DOI: 10.1002/eqe.2430. 9 | 10 | • Elkady, A., and Lignos, D. G. (2015). "Effect of gravity framing on the overstrength and collapse capacity of steel frame buildings with perimeter special moment frames." Earthquake Engineering & Structural Dynamics, 44(8), 1289–1307, DOI: 10.1002/eqe.2519. 11 | -------------------------------------------------------------------------------- /Models and Tcl Files/Generate_lognrmrand.tcl: -------------------------------------------------------------------------------- 1 | ################################################################################################################## 2 | # Generate_lognrmrand.tcl 3 | # 4 | # SubRoutine to generate a log-normally distributed random variable for a specified mean and standard deviation. 5 | # 6 | ################################################################################################################## 7 | # 8 | # Input Arguments: 9 | #------------------ 10 | # meanX Mean value of the variable X 11 | # stdlnX Standard deviation of the logarithmic values of the variable X 12 | # xRandom The subroutine output --> random variable 13 | # 14 | # Written by: Dr. Ahmed Elkady, University of Southampton, UK 15 | # 16 | ################################################################################################################## 17 | 18 | proc Generate_lognrmrand {meanX stdlnX} { 19 | 20 | package require math::statistics 21 | global xRandom 22 | 23 | set meanlnX [expr log($meanX)]; 24 | set number 1; 25 | 26 | set y [::math::statistics::random-normal $meanlnX $stdlnX $number]; 27 | 28 | set xRandom [expr exp($y)]; 29 | 30 | } -------------------------------------------------------------------------------- /Models and Tcl Files/SDRlimitTester.tcl: -------------------------------------------------------------------------------- 1 | # SDRlimitTester ######################################################################## 2 | # 3 | # Procedure that checks if the Pre-Specified Collapse Drift Limit is reached and Generate 4 | # a Flag 5 | # 6 | # Developed by Dimitrios G. Lignos, Ph.D 7 | # Modified by Ahmed Elkady, Ph.D 8 | # 9 | # First Created: 04/20/2010 10 | # Last Modified: 05/05/2020 11 | # 12 | # ####################################################################################### 13 | 14 | proc SDRlimitTester {numStories SDRlimit MFFloorNodes EGFFloorNodes h1 htyp TraceGFDrift} { 15 | 16 | global CollapseFlag 17 | set CollapseFlag "NO" 18 | 19 | # set x [clock seconds]; 20 | # set RunTime [expr $x - $StartTime]; 21 | 22 | # Read the Floor Node Displacements and Deduce the Story Drift Ratio 23 | for {set i 0} {$i<=$numStories-1} {incr i} { 24 | if { $i==0 } { 25 | set Node [lindex $MFFloorNodes $i] 26 | set NodeDisplI [nodeDisp $Node 1] 27 | set SDR_MF [expr $NodeDisplI/$h1] 28 | lappend SMFDrift [list $SDR_MF] 29 | 30 | # Addition by Ahmed Elkady 14 Dec 2016 for Tracing Drifts in EGF 31 | if { $TraceGFDrift == 1} { 32 | set Node [lindex $EGFFloorNodes $i] 33 | set NodeDisplI [nodeDisp $Node 1] 34 | set SDR_EGF [expr $NodeDisplI/$h1] 35 | lappend GFDrift [list $SDR_EGF] 36 | } 37 | 38 | } elseif { $i > 0 } { 39 | set NodeI [lindex $MFFloorNodes $i] 40 | set NodeDisplI [nodeDisp $NodeI 1] 41 | set NodeJ [lindex $MFFloorNodes [expr $i-1]] 42 | set NodeDisplJ [nodeDisp $NodeJ 1] 43 | set SDR_MF [expr ($NodeDisplI - $NodeDisplJ)/$htyp] 44 | lappend SMFDrift [list $SDR_MF] 45 | 46 | # Addition by Ahmed Elkady 14 Dec 2016 for Tracing Drifts in EGF 47 | if { $TraceGFDrift == 1} { 48 | set NodeI [lindex $EGFFloorNodes $i] 49 | set NodeDisplI [nodeDisp $NodeI 1] 50 | set NodeJ [lindex $EGFFloorNodes [expr $i-1]] 51 | set NodeDisplJ [nodeDisp $NodeJ 1] 52 | set SDR_EGF [expr ($NodeDisplI - $NodeDisplJ)/$htyp] 53 | lappend GFDrift [list $SDR_EGF] 54 | } 55 | } 56 | } 57 | 58 | # Check if any Story Drift Ratio Exceeded the Drift Limit 59 | for {set i 0} {$i <= $numStories-1} {incr i} { 60 | set SMFTDrift [ lindex $SMFDrift [expr $i] ] 61 | set SMFTDrift [expr abs($SMFTDrift)] 62 | 63 | # Addition by Ahmed Elkady 14 Dec 2016 for Tracing Drifts in EGF 64 | if { $TraceGFDrift == 1} { 65 | set GFTDrift [ lindex $GFDrift [expr $i] ] 66 | set GFTDrift [expr abs($GFTDrift)] 67 | } 68 | 69 | #set filename "CollapsedFrame.txt" 70 | 71 | # IF the Story Drift Ratio at Current Story is Less than the Drift Limit then 72 | # Open a file named "CollapsedFrame.txt" and write a value of "0" for no collapse 73 | if {$SMFTDrift < $SDRlimit && $GFTDrift < $SDRlimit} { 74 | set fileID2 [open CollapsedFrame.txt w]; # Create/Open CollapsedFrame.txt file (writing permission) 75 | puts -nonewline $fileID2 0; # Write value of 0 in case of no collapse 76 | close $fileID2; 77 | } 78 | 79 | # If Drift Limit was exceeded in MF 80 | if {$SMFTDrift > $SDRlimit} { 81 | puts "MF Collapse" 82 | set fileID2 [open CollapsedFrame.txt w]; # Create/Open CollapsedFrame.txt file (writing permission) 83 | puts -nonewline $fileID2 1; # Write value of 1 in case of collapse in SMF 84 | close $fileID2; 85 | } 86 | 87 | # If Drift Limit was exceeded in EGF 88 | if {$GFTDrift > $SDRlimit} { 89 | puts "GF Collapse" 90 | set fileID2 [open CollapsedFrame.txt w]; # Create/Open CollapsedFrame.txt file (writing permission) 91 | puts -nonewline $fileID2 2; # Write value of 2 in case of collapse in GF 92 | close $fileID2; 93 | } 94 | 95 | # If Drift Limit was exceeded in both MF and EGF 96 | if { $SMFTDrift > $SDRlimit || $GFTDrift > $SDRlimit} { 97 | set CollapseFlag "YES" 98 | puts "Collapse" 99 | # Addition by Ahmed Elkady 25 July 2012 for Tracing the Collapse Point 100 | set fileID [open CollapseState.txt w]; # Create/Open CollapseState.txt file (writing permission) 101 | puts -nonewline $fileID 1; # Write value of 1 in case of collapse in CollapseState.txt file ( 102 | close $fileID; # Close CollapseState.txt file 103 | } 104 | } 105 | 106 | 107 | } -------------------------------------------------------------------------------- /Models and Tcl Files/Spring_Panel.tcl: -------------------------------------------------------------------------------- 1 | ######################################################################################################## 2 | # Spring_Panel.tcl 3 | # 4 | # SubRoutine to construct a rotational spring with a trilinear hysteretic beahviour (Panel Zone Spring) 5 | # 6 | # Input Arguments 7 | # P_Elm Element ID 8 | # iNode Node i ID 9 | # jNode Node j ID 10 | # E Young's Modulus 11 | # Fy Expected Yield Stress 12 | # tp Column Web + Doubler Plates Thickness 13 | # d_Col Column Depth 14 | # d_Beam Beam Depth 15 | # tf_Col Column Flange Thickness 16 | # bf_Col Beam Flange Thickness 17 | # SH_Panel Strain Hardeing (ratio of hardening-to-elastic slopes) 18 | # Response_ID ID for Panel Zone Response: 0 --> Interior Steel Panel Zone with Composite Action 19 | # 1 --> Exterior Steel Panel Zone with Composite Action 20 | # 2 --> Bare Steel Interior/Exterior Steel Panel Zone 21 | # transfTag Geometric Transformation ID 22 | # Units 1 --> mm 23 | # 2 --> inches 24 | # 25 | # Written by: Ahmed Elkady 26 | # Created: 02/07/2012 27 | # 28 | ######################################################################################################## 29 | 30 | 31 | proc Spring_Panel {P_Elm Node_i Node_j E Fy tp d_Col d_Beam tf_Col bf_Col SH_Panel Response_ID transfTag Units} { 32 | 33 | if {$Units == 1} { 34 | set ts 102.; #Slab Thickness Above Rib (mm) 35 | set trib 89.; #Steel Deck Rib Depth (mm) 36 | } else { 37 | set ts 4.00; #Slab Thickness Above Rib (in) 38 | set trib 3.5; #Steel Deck Rib Depth (in) 39 | } 40 | 41 | # Floor Deck Parameters for Composite Action Consideration 42 | set d_BeamP [expr $d_Beam + $trib + $ts - 0.5 * $ts]; # Effective Depth in Positive Moment 43 | set d_BeamN $d_Beam; # Effective Depth in Negative Moment 44 | 45 | set Vy [expr 0.55 * $Fy * $d_Col * $tp]; # Yield Shear Force 46 | set G [expr $E/(2.0 * (1.0 + 0.30))]; # Shear Modulus 47 | set Ke [expr 0.95 * $G * $tp * $d_Col]; # Elastic Shear Stiffness 48 | 49 | set gamma1_y [expr $Vy/$Ke]; 50 | set gamma2_y [expr 4.0 * $gamma1_y]; 51 | set gamma3_y [expr 100.0 * $gamma1_y]; 52 | 53 | set KpP [expr 0.95 * $G * $bf_Col * ($tf_Col * $tf_Col) / $d_BeamP]; # Plastic Stiffness 54 | set M1yP [expr $gamma1_y * ($Ke * $d_BeamP)]; 55 | set M2yP [expr $M1yP + ($KpP * $d_BeamP) * ($gamma2_y - $gamma1_y)]; 56 | set M3yP [expr $M2yP + ($SH_Panel * $Ke * $d_BeamP) * ($gamma3_y - $gamma2_y)]; 57 | 58 | set KpN [expr 0.95 * $G * $bf_Col * ($tf_Col * $tf_Col) / $d_BeamN]; # Plastic Stiffness 59 | set M1yN [expr $gamma1_y * ($Ke * $d_BeamN)]; 60 | set M2yN [expr $M1yN + ($KpN * $d_BeamN) * ($gamma2_y - $gamma1_y)]; 61 | set M3yN [expr $M2yN + ($SH_Panel * $Ke * $d_BeamN) * ($gamma3_y - $gamma2_y)]; 62 | 63 | set Th_U_P 0.3; 64 | set Th_U_N -0.3; 65 | 66 | set Dummy_ID [expr 12 * $P_Elm]; 67 | 68 | # Hysteretic Material without pinching and damage 69 | # uniaxialMaterial Hysteretic $matTag $s1p $e1p $s2p $e2p <$s3p $e3p> $s1n $e1n $s2n $e2n <$s3n $e3n> $pinchX $pinchY $damage1 $damage2 70 | 71 | # Composite Interior Steel Panel Zone 72 | if { $Response_ID == 0.0 } { 73 | uniaxialMaterial Hysteretic $Dummy_ID $M1yP $gamma1_y $M2yP $gamma2_y $M3yP $gamma3_y [expr -$M1yP] [expr -$gamma1_y] [expr -$M2yP] [expr -$gamma2_y] [expr -$M3yP] [expr -$gamma3_y] 0.25 0.75 0. 0. 0. 74 | uniaxialMaterial MinMax $P_Elm $Dummy_ID -min $Th_U_N -max $Th_U_P 75 | } 76 | 77 | # Composite Exterior Steel Panel Zone 78 | if { $Response_ID == 1.0 } { 79 | uniaxialMaterial Hysteretic $Dummy_ID $M1yP $gamma1_y $M2yP $gamma2_y $M3yP $gamma3_y [expr -$M1yN] [expr -$gamma1_y] [expr -$M2yN] [expr -$gamma2_y] [expr -$M3yN] [expr -$gamma3_y] 0.25 0.75 0. 0. 0. 80 | uniaxialMaterial MinMax $P_Elm $Dummy_ID -min $Th_U_N -max $Th_U_P 81 | } 82 | 83 | # Bare Steel Interior/Exterior Steel Panel Zone 84 | if { $Response_ID == 2.0 } { 85 | uniaxialMaterial Hysteretic $Dummy_ID $M1yN $gamma1_y $M2yN $gamma2_y $M3yN $gamma3_y [expr -$M1yN] [expr -$gamma1_y] [expr -$M2yN] [expr -$gamma2_y] [expr -$M3yN] [expr -$gamma3_y] 0.25 0.75 0. 0. 0. 86 | uniaxialMaterial MinMax $P_Elm $Dummy_ID -min $Th_U_N -max $Th_U_P 87 | } 88 | 89 | element zeroLength $P_Elm $Node_i $Node_j -mat $P_Elm -dir 6 90 | 91 | } -------------------------------------------------------------------------------- /Models and Tcl Files/ConstructPanel_Rectangle.tcl: -------------------------------------------------------------------------------- 1 | ######################################################################################################## 2 | # ConstructPanel_Rectangle.tcl 3 | # 4 | # SubRoutine to construct nodes and rigid elements for the panel zone parallelogram model 5 | # 6 | ################################################################################################################## 7 | # 8 | # Input Arguments: 9 | #------------------ 10 | # Axis Axis number ID 11 | # Floor Floor number ID 12 | # E Young's modulus 13 | # A_Panel Area of rigid link that creates the panel zone 14 | # I_Panel Moment of inertia of rigid link that creates the panel zone 15 | # d_Col Column section depth 16 | # d_Beam Beam section depth 17 | # transfTag Geometric transformation ID 18 | # 19 | # Written by: Dr. Ahmed Elkady, University of Southampton, UK 20 | # 21 | ################################################################################################################## 22 | 23 | 24 | proc ConstructPanel_Rectangle {Axis Floor X_Axis Y_Floor E A_Panel I_Panel d_Col d_Beam transfTag} { 25 | 26 | # Construct Panel Node Notation 27 | set NodeCL [expr 400000+$Floor*1000+$Axis*100]; # Grid Line Dummy Node 28 | set Node_XY01 [expr $NodeCL + 1]; 29 | set Node_XY02 [expr $NodeCL + 2]; 30 | set Node_XY03 [expr $NodeCL + 3]; 31 | set Node_XY04 [expr $NodeCL + 4]; 32 | set Node_XY05 [expr $NodeCL + 5]; 33 | set Node_XY06 [expr $NodeCL + 6]; 34 | set Node_XY07 [expr $NodeCL + 7]; 35 | set Node_XY08 [expr $NodeCL + 8]; 36 | set Node_XY09 [expr $NodeCL + 9]; 37 | set Node_XY10 [expr $NodeCL + 10]; 38 | set Node_XY11 [expr $NodeCL + 88]; 39 | set Node_XY12 [expr $NodeCL + 99]; 40 | 41 | # Construct Panel Element Notation 42 | set P_Elm_100XY00 [expr 7000000 + $Floor*1000 + $Axis*100]; # ID for ZeroLength Panel Element 43 | set P_Elm_100XY01 [expr $P_Elm_100XY00 + 1]; 44 | set P_Elm_100XY02 [expr $P_Elm_100XY00 + 2]; 45 | set P_Elm_100XY03 [expr $P_Elm_100XY00 + 3]; 46 | set P_Elm_100XY04 [expr $P_Elm_100XY00 + 4]; 47 | set P_Elm_100XY05 [expr $P_Elm_100XY00 + 5]; 48 | set P_Elm_100XY06 [expr $P_Elm_100XY00 + 6]; 49 | set P_Elm_100XY07 [expr $P_Elm_100XY00 + 7]; 50 | set P_Elm_100XY08 [expr $P_Elm_100XY00 + 8]; 51 | 52 | # Construct Panel Node Coordinates 53 | node $Node_XY01 [expr $X_Axis] [expr $Y_Floor - $d_Beam/2]; 54 | node $Node_XY02 [expr $X_Axis - $d_Col/2] [expr $Y_Floor]; 55 | node $Node_XY03 [expr $X_Axis] [expr $Y_Floor + $d_Beam/2]; 56 | node $Node_XY04 [expr $X_Axis + $d_Col/2] [expr $Y_Floor]; 57 | node $Node_XY05 [expr $X_Axis - $d_Col/2] [expr $Y_Floor - $d_Beam/2]; 58 | node $Node_XY06 [expr $X_Axis - $d_Col/2] [expr $Y_Floor - $d_Beam/2]; 59 | node $Node_XY07 [expr $X_Axis - $d_Col/2] [expr $Y_Floor + $d_Beam/2]; 60 | node $Node_XY08 [expr $X_Axis - $d_Col/2] [expr $Y_Floor + $d_Beam/2]; 61 | node $Node_XY09 [expr $X_Axis + $d_Col/2] [expr $Y_Floor + $d_Beam/2]; 62 | node $Node_XY10 [expr $X_Axis + $d_Col/2] [expr $Y_Floor + $d_Beam/2]; 63 | node $Node_XY11 [expr $X_Axis + $d_Col/2] [expr $Y_Floor - $d_Beam/2]; 64 | node $Node_XY12 [expr $X_Axis + $d_Col/2] [expr $Y_Floor - $d_Beam/2]; 65 | 66 | # Construct Panel Element Property 67 | element elasticBeamColumn $P_Elm_100XY01 $Node_XY01 $Node_XY05 $A_Panel $E $I_Panel $transfTag; 68 | element elasticBeamColumn $P_Elm_100XY02 $Node_XY06 $Node_XY02 $A_Panel $E $I_Panel $transfTag; 69 | element elasticBeamColumn $P_Elm_100XY03 $Node_XY02 $Node_XY07 $A_Panel $E $I_Panel $transfTag; 70 | element elasticBeamColumn $P_Elm_100XY04 $Node_XY08 $Node_XY03 $A_Panel $E $I_Panel $transfTag; 71 | element elasticBeamColumn $P_Elm_100XY05 $Node_XY03 $Node_XY09 $A_Panel $E $I_Panel $transfTag; 72 | element elasticBeamColumn $P_Elm_100XY06 $Node_XY10 $Node_XY04 $A_Panel $E $I_Panel $transfTag; 73 | element elasticBeamColumn $P_Elm_100XY07 $Node_XY04 $Node_XY11 $A_Panel $E $I_Panel $transfTag; 74 | element elasticBeamColumn $P_Elm_100XY08 $Node_XY12 $Node_XY01 $A_Panel $E $I_Panel $transfTag; 75 | 76 | # Restrain DOFs At Panel Corners 77 | equalDOF $Node_XY05 $Node_XY06 1 2; 78 | equalDOF $Node_XY07 $Node_XY08 1 2; 79 | equalDOF $Node_XY09 $Node_XY10 1 2; 80 | equalDOF $Node_XY11 $Node_XY12 1 2; 81 | 82 | } -------------------------------------------------------------------------------- /Models and Tcl Files/DisplayModel3D.tcl: -------------------------------------------------------------------------------- 1 | proc DisplayModel3D { {ShapeType nill} {dAmp 5} {xLoc 0} {yLoc 0} {xPixels 0} {yPixels 0} {nEigen 1} } { 2 | ###################################################################################### 3 | ## DisplayModel3D $ShapeType $dAmp $xLoc $yLoc $xPixels $yPixels $nEigen 4 | ###################################################################################### 5 | ## display Node Numbers, Deformed or Mode Shape in all 3 planes 6 | ## Silvia Mazzoni & Frank McKenna, 2006 7 | ## 8 | ## ShapeType : type of shape to display. # options: ModeShape , NodeNumbers , DeformedShape 9 | ## dAmp : relative amplification factor for deformations 10 | ## xLoc,yLoc : horizontal & vertical location in pixels of graphical window (0,0=upper left-most corner) 11 | ## xPixels,yPixels : width & height of graphical window in pixels 12 | ## nEigen : if nEigen not=0, show mode shape for nEigen eigenvalue 13 | ## 14 | ####################################################################################### 15 | source DisplayPlane.tcl; 16 | global TunitTXT ; # load global unit variable 17 | global ScreenResolutionX ScreenResolutionY; # read global values for screen resolution 18 | 19 | if { [info exists TunitTXT] != 1} {set TunitTXT ""}; # set blank if it has not been defined previously. 20 | 21 | if { [info exists ScreenResolutionX] != 1} {set ScreenResolutionX 1024}; # set default if it has not been defined previously. 22 | if { [info exists ScreenResolutionY] != 1} {set ScreenResolutionY 768}; # set default if it has not been defined previously. 23 | 24 | if {$xPixels == 0} { 25 | set xPixels [expr int($ScreenResolutionX/2)]; 26 | set yPixels [expr int($ScreenResolutionY/2)] 27 | set xLoc 10 28 | set yLoc 10 29 | } 30 | if {$ShapeType == "nill"} { 31 | puts ""; puts ""; puts "------------------" 32 | puts "View the Model? (N)odes, (D)eformedShape, anyMode(1),(2),(#). Press enter for NO." 33 | gets stdin answer 34 | if {[llength $answer]>0 } { 35 | if {$answer != "N" & $answer != "n"} { 36 | puts "Modify View Scaling Factor=$dAmp? Type factor, or press enter for NO." 37 | gets stdin answerdAmp 38 | if {[llength $answerdAmp]>0 } { 39 | set dAmp $answerdAmp 40 | } 41 | } 42 | if {[string index $answer 0] == "N" || [string index $answer 0] == "n"} { 43 | set ShapeType NodeNumbers 44 | } elseif {[string index $answer 0] == "D" ||[string index $answer 0] == "d" } { 45 | set ShapeType DeformedShape 46 | } else { 47 | set ShapeType ModeShape 48 | set nEigen $answer 49 | } 50 | } else { 51 | return 52 | } 53 | } 54 | 55 | if {$ShapeType == "ModeShape" } { 56 | set lambdaN [eigen $nEigen]; # perform eigenvalue analysis for ModeShape 57 | set lambda [lindex $lambdaN [expr $nEigen-1]]; 58 | set omega [expr pow($lambda,0.5)] 59 | set PI [expr 2*asin(1.0)]; # define constant 60 | set Tperiod [expr 2*$PI/$omega]; # period 61 | set fmt1 "Mode Shape, Mode=%.1i Period=%.3f %s " 62 | set windowTitle [format $fmt1 $nEigen $Tperiod $TunitTXT ] 63 | } elseif {$ShapeType == "NodeNumbers" } { 64 | set windowTitle "Node Numbers" 65 | } elseif {$ShapeType == "DeformedShape" } { 66 | set windowTitle0 "Deformed Shape " 67 | } 68 | 69 | if {$ShapeType == "DeformedShape" } { 70 | set xPixels [expr int($xPixels/2)] 71 | set yPixels [expr int($yPixels/2)] 72 | set xLoc1 [expr $xLoc] 73 | set yLoc1 [expr $yLoc] 74 | set planeTXT "-Plane" 75 | 76 | set viewPlane XY 77 | set windowTitle $windowTitle0$viewPlane$planeTXT 78 | recorder display $windowTitle $xLoc $yLoc $xPixels $yPixels -wipe ; # display recorder 79 | DisplayPlane $ShapeType $dAmp $viewPlane 80 | #set viewPlane ZY 81 | #set windowTitle $windowTitle0$viewPlane$planeTXT 82 | #recorder display $windowTitle $xLoc $yLoc $xPixels $yPixels -wipe ; # display recorder 83 | #DisplayPlane $ShapeType $dAmp $viewPlane 84 | #set viewPlane ZX 85 | #set windowTitle $windowTitle0$viewPlane$planeTXT 86 | #recorder display $windowTitle $xLoc $yLoc1 $xPixels $yPixels -wipe ; # display recorder 87 | #DisplayPlane $ShapeType $dAmp $viewPlane 88 | #set viewPlane 3D 89 | #set windowTitle $windowTitle0$viewPlane 90 | #recorder display $windowTitle $xLoc1 $yLoc1 $xPixels $yPixels -wipe ; # display recorder 91 | #DisplayPlane $ShapeType $dAmp $viewPlane 92 | } else { 93 | recorder display $windowTitle $xLoc $yLoc $xPixels $yPixels -nowipe; # display recorder 94 | set viewPlane XY 95 | DisplayPlane $ShapeType $dAmp $viewPlane $nEigen 1 96 | #set viewPlane XY 97 | #DisplayPlane $ShapeType $dAmp $viewPlane $nEigen 2 98 | #set viewPlane XY 99 | #DisplayPlane $ShapeType $dAmp $viewPlane $nEigen 3 100 | # set viewPlane 3D 101 | # DisplayPlane $ShapeType $dAmp $viewPlane $nEigen 4 102 | } 103 | } 104 | 105 | -------------------------------------------------------------------------------- /Models and Tcl Files/LibAnalysisStaticParameters.tcl: -------------------------------------------------------------------------------- 1 | # static analysis parameters 2 | # I am setting all these variables as global variables (using variable rather than set command) 3 | # so that these variables can be uploaded by a procedure 4 | # Constraints Handler -- Determines how the constraint equations are enforced in the analysis (http://opensees.berkeley.edu/OpenSees/manuals/usermanual/617.htm) 5 | # Plain Constraints -- Removes constrained degrees of freedom from the system of equations (only for homogeneous equations) 6 | # Lagrange Multipliers -- Uses the method of Lagrange multipliers to enforce constraints 7 | # Penalty Method -- Uses penalty numbers to enforce constraints --good for static analysis with non-homogeneous eqns (rigidDiaphragm) 8 | # Transformation Method -- Performs a condensation of constrained degrees of freedom 9 | variable constraintsTypeStatic Plain; # default 10 | if { [info exists RigidDiaphragm] == 1} { 11 | if {$RigidDiaphragm=="ON"} { 12 | variable constraintsTypeStatic Lagrange; # for large model, try Transformation 13 | }; # if rigid diaphragm is on 14 | }; # if rigid diaphragm exists 15 | constraints $constraintsTypeStatic 16 | # DOF NUMBERER (number the degrees of freedom in the domain): (http://opensees.berkeley.edu/OpenSees/manuals/usermanual/366.htm) 17 | # Determines the mapping between equation numbers and degrees-of-freedom 18 | # Plain -- Uses the numbering provided by the user 19 | # RCM -- Renumbers the DOF to minimize the matrix band-width using the Reverse Cuthill-McKee algorithm 20 | set numbererTypeStatic RCM 21 | numberer $numbererTypeStatic 22 | # System (http://opensees.berkeley.edu/OpenSees/manuals/usermanual/371.htm) 23 | # Linear Equation Solvers (how to store and solve the system of equations in the analysis) 24 | # provide the solution of the linear system of equations Ku = P. Each solver is tailored to a specific matrix topology. 25 | # ProfileSPD-Direct profile solver for symmetric positive definite matrices 26 | # BandGeneral-Direct solver for banded unsymmetric matrices 27 | # BandSPD-Direct solver for banded symmetric positive definite matrices 28 | # SparseGeneral-Direct solver for unsymmetric sparse matrices 29 | # SparseSPD-Direct solver for symmetric sparse matrices 30 | # UmfPack-Direct UmfPack solver for unsymmetric matrices 31 | set systemTypeStatic UmfPack; # try UmfPack for large model 32 | system $systemTypeStatic 33 | # Convergence Test 34 | # Accept the current state of the domain as being on the converged solution path 35 | # Determine if convergence has been achieved at the end of an iteration step 36 | # NormUnbalance-Specifies a tolerance on the norm of the unbalanced load at the current iteration 37 | # NormDispIncr-Specifies a tolerance on the norm of the displacement increments at the current iteration 38 | # EnergyIncr-Specifies a tolerance on the inner product of the unbalanced load and displacement increments at the current iteration 39 | # RelativeNormUnbalance 40 | # RelativeNormDispIncr 41 | # RelativeEnergyIncr 42 | variable counterItr 1; 43 | variable RDR 0.0; 44 | variable TolStatic 1.e-8; # Convergence Test: tolerance 45 | variable maxNumIterStatic 6; # Convergence Test: maximum number of iterations that will be performed before "failure to converge" is returned 46 | variable printFlagStatic 0; # Convergence Test: flag used to print information on convergence (optional) 1: print information on each step; 47 | variable testTypeStatic EnergyIncr ; # Convergence-test type 48 | test $testTypeStatic $TolStatic $maxNumIterStatic $printFlagStatic; 49 | # for improved-convergence procedure: 50 | variable maxNumIterConvergeStatic 2000; 51 | variable printFlagConvergeStatic 0; 52 | # Solution Algorithm: Iterate from the last time step to the current 53 | # Linear-Uses the solution at the first iteration and continues 54 | # Newton-Uses the tangent at the current iteration to iterate to convergence 55 | # ModifiedNewton-Uses the tangent at the first iteration to iterate to convergence 56 | # NewtonLineSearch 57 | # KrylovNewton 58 | # BFGS 59 | # Broyden 60 | variable algorithmTypeStatic Newton; 61 | algorithm $algorithmTypeStatic; 62 | # Static Integration: Determine the next time step for an analysis 63 | # LoadControl -- Specifies the incremental load factor to be applied to the loads in the domain 64 | # DisplacementControl -- Specifies the incremental displacement at a specified DOF in the domain 65 | # Minimum Unbalanced Displacement Norm -- Specifies the incremental load factor such that the residual displacement norm in minimized 66 | # Arc Length -- Specifies the incremental arc-length of the load-displacement path 67 | # Transient Integration: Determine the next time step for an analysis including inertial effects 68 | # Newmark-The two parameter time-stepping method developed by Newmark 69 | # HHT-The three parameter Hilbert-Hughes-Taylor time-stepping method 70 | # Central Difference-Approximates velocity and acceleration by centered finite differences of displacement 71 | integrator DisplacementControl $CtrlNode $CtrlDOF $Dincr 72 | # Analysis-defines what type of analysis is to be performed 73 | # Static Analysis -- solves the KU=R problem, without the mass or damping matrices. 74 | # Transient Analysis -- solves the time-dependent analysis. The time step in this type of analysis is constant. The time step in the output is also constant. 75 | # variableTransient Analysis -- performs the same analysis type as the Transient Analysis object. The time step, however, is variable. This method is used when 76 | # there are convergence problems with the Transient Analysis object at a peak or when the time step is too small. The time step in the output is also variable. 77 | set analysisTypeStatic Static 78 | analysis $analysisTypeStatic 79 | 80 | -------------------------------------------------------------------------------- /Models and Tcl Files/DisplayPlane.tcl: -------------------------------------------------------------------------------- 1 | proc DisplayPlane {ShapeType dAmp viewPlane {nEigen 0} {quadrant 0}} { 2 | ###################################################################################### 3 | ## DisplayPlane $ShapeType $dAmp $viewPlane $nEigen $quadrant 4 | ###################################################################################### 5 | ## setup display parameters for specified viewPlane and display 6 | ## Silvia Mazzoni & Frank McKenna, 2006 7 | ## 8 | ## ShapeType : type of shape to display. # options: ModeShape , NodeNumbers , DeformedShape 9 | ## dAmp : relative amplification factor for deformations 10 | ## viewPlane : set local xy axes in global coordinates (XY,YX,XZ,ZX,YZ,ZY) 11 | ## nEigen : if nEigen not=0, show mode shape for nEigen eigenvalue 12 | ## quadrant: quadrant where to show this figure (0=full figure) 13 | ## 14 | ###################################################################################### 15 | 16 | set Xmin [lindex [nodeBounds] 0]; # view bounds in global coords - will add padding on the sides 17 | set Ymin [lindex [nodeBounds] 1]; 18 | set Zmin [lindex [nodeBounds] 2]; 19 | set Xmax [lindex [nodeBounds] 3]; 20 | set Ymax [lindex [nodeBounds] 4]; 21 | set Zmax [lindex [nodeBounds] 5]; 22 | 23 | set Xo 0; # center of local viewing system 24 | set Yo 0; 25 | set Zo 0; 26 | 27 | set uLocal [string index $viewPlane 0]; # viewPlane local-x axis in global coordinates 28 | set vLocal [string index $viewPlane 1]; # viewPlane local-y axis in global coordinates 29 | 30 | 31 | if {$viewPlane =="3D" } { 32 | set uMin $Zmin+$Xmin 33 | set uMax $Zmax+$Xmax 34 | set vMin $Ymin 35 | set vMax $Ymax 36 | set wMin -10000 37 | set wMax 10000 38 | vup 0 1 0; # dirn defining up direction of view plane 39 | } else { 40 | set keyAxisMin "X $Xmin Y $Ymin Z $Zmin" 41 | set keyAxisMax "X $Xmax Y $Ymax Z $Zmax" 42 | set axisU [string index $viewPlane 0]; 43 | set axisV [string index $viewPlane 1]; 44 | set uMin [string map $keyAxisMin $axisU] 45 | set uMax [string map $keyAxisMax $axisU] 46 | set vMin [string map $keyAxisMin $axisV] 47 | set vMax [string map $keyAxisMax $axisV] 48 | if {$viewPlane =="YZ" || $viewPlane =="ZY" } { 49 | set wMin $Xmin 50 | set wMax $Xmax 51 | } elseif {$viewPlane =="XY" || $viewPlane =="YX" } { 52 | set wMin $Zmin 53 | set wMax $Zmax 54 | } elseif {$viewPlane =="XZ" || $viewPlane =="ZX" } { 55 | set wMin $Ymin 56 | set wMax $Ymax 57 | } else { 58 | return -1 59 | } 60 | } 61 | 62 | set epsilon 1e-3; # make windows width or height not zero when the Max and Min values of a coordinate are the same 63 | 64 | set uWide [expr $uMax - $uMin+$epsilon]; 65 | set vWide [expr $vMax - $vMin+$epsilon]; 66 | set uSide [expr 0.25*$uWide]; 67 | set vSide [expr 0.25*$vWide]; 68 | set uMin [expr $uMin - $uSide]; 69 | set uMax [expr $uMax + $uSide]; 70 | set vMin [expr $vMin - $vSide]; 71 | set vMax [expr $vMax + 2*$vSide]; # pad a little more on top, because of window title 72 | set uWide [expr $uMax - $uMin+$epsilon]; 73 | set vWide [expr $vMax - $vMin+$epsilon]; 74 | set uMid [expr ($uMin+$uMax)/2]; 75 | set vMid [expr ($vMin+$vMax)/2]; 76 | 77 | # keep the following general, as change the X and Y and Z for each view plane 78 | # next three commmands define viewing system, all values in global coords 79 | vrp $Xo $Yo $Zo; # point on the view plane in global coord, center of local viewing system 80 | if {$vLocal == "X"} { 81 | vup 1 0 0; # dirn defining up direction of view plane 82 | } elseif {$vLocal == "Y"} { 83 | vup 0 1 0; # dirn defining up direction of view plane 84 | } elseif {$vLocal == "Z"} { 85 | vup 0 0 1; # dirn defining up direction of view plane 86 | } 87 | if {$viewPlane =="YZ" } { 88 | vpn 1 0 0; # direction of outward normal to view plane 89 | prp 10000. $uMid $vMid ; # eye location in local coord sys defined by viewing system 90 | plane 10000 -10000; # distance to front and back clipping planes from eye 91 | } elseif {$viewPlane =="ZY" } { 92 | vpn -1 0 0; # direction of outward normal to view plane 93 | prp -10000. $vMid $uMid ; # eye location in local coord sys defined by viewing system 94 | plane 10000 -10000; # distance to front and back clipping planes from eye 95 | } elseif {$viewPlane =="XY" } { 96 | vpn 0 0 1; # direction of outward normal to view plane 97 | prp $uMid $vMid 10000; # eye location in local coord sys defined by viewing system 98 | plane 10000 -10000; # distance to front and back clipping planes from eye 99 | } elseif {$viewPlane =="YX" } { 100 | vpn 0 0 -1; # direction of outward normal to view plane 101 | prp $uMid $vMid -10000; # eye location in local coord sys defined by viewing system 102 | plane 10000 -10000; # distance to front and back clipping planes from eye 103 | } elseif {$viewPlane =="XZ" } { 104 | vpn 0 -1 0; # direction of outward normal to view plane 105 | prp $uMid -10000 $vMid ; # eye location in local coord sys defined by viewing system 106 | plane 10000 -10000; # distance to front and back clipping planes from eye 107 | } elseif {$viewPlane =="ZX" } { 108 | vpn 0 1 0; # direction of outward normal to view plane 109 | prp $uMid 10000 $vMid ; # eye location in local coord sys defined by viewing system 110 | plane 10000 -10000; # distance to front and back clipping planes from eye 111 | } elseif {$viewPlane =="3D" } { 112 | vpn 1 0.25 1.25; # direction of outward normal to view plane 113 | prp -100 $vMid 10000; # eye location in local coord sys defined by viewing system 114 | plane 10000 -10000; # distance to front and back clipping planes from eye 115 | } else { 116 | return -1 117 | } 118 | # next three commands define view, all values in local coord system 119 | if {$viewPlane =="3D" } { 120 | viewWindow [expr $uMin-$uWide/4] [expr $uMax/2] [expr $vMin-0.25*$vWide] [expr $vMax] 121 | } else { 122 | viewWindow $uMin $uMax $vMin $vMax 123 | } 124 | projection 1; # projection mode, 0:prespective, 1: parallel 125 | fill 1; # fill mode; needed only for solid elements 126 | 127 | if {$quadrant == 0} { 128 | port -1 1 -1 1 # area of window that will be drawn into (uMin,uMax,vMin,vMax); 129 | } elseif {$quadrant == 1} { 130 | port 0 1 0 1 # area of window that will be drawn into (uMin,uMax,vMin,vMax); 131 | } elseif {$quadrant == 2} { 132 | port -1 0 0 1 # area of window that will be drawn into (uMin,uMax,vMin,vMax); 133 | } elseif {$quadrant == 3} { 134 | port -1 0 -1 0 # area of window that will be drawn into (uMin,uMax,vMin,vMax); 135 | } elseif {$quadrant == 4} { 136 | port 0 1 -1 0 # area of window that will be drawn into (uMin,uMax,vMin,vMax); 137 | } 138 | 139 | if {$ShapeType == "ModeShape" } { 140 | display -$nEigen 0 [expr 5.*$dAmp]; # display mode shape for mode $nEigen 141 | } elseif {$ShapeType == "NodeNumbers" } { 142 | display 1 -1 0 ; # display node numbers 143 | } elseif {$ShapeType == "DeformedShape" } { 144 | display 1 2 $dAmp; # display deformed shape the 2 makes the nodes small 145 | } 146 | }; # 147 | ###################################################################################### 148 | 149 | -------------------------------------------------------------------------------- /Models and Tcl Files/DynamicAnalysisCollapseSolverX.tcl: -------------------------------------------------------------------------------- 1 | 2 | # DynamicAnalysisCollapseSolver ######################################################### 3 | # 4 | # This Solver is used for Collapse "hunting" 5 | # Time Controlled Algorithm that keeps original run 6 | # 7 | # Developed by Dimitrios G. Lignos, Ph.D 8 | # 9 | # First Created: 04/20/2010 10 | # Last Modified: 08/23/2011 11 | # 12 | # Uses: 13 | # 1. dt : Ground Motion step 14 | # 2. dt_anal_Step : Analysis time step 15 | # 3. GMtime : Ground Motion Total Time 16 | # 4. numStories : DriftLimit 17 | # 18 | # Subroutines called: 19 | # SDRlimitTester: Checks after loss of convergence the drifts 20 | # and guarantees convergence for collapse 21 | # 22 | # Integrator Used: Modified Implicit: Hilbert Hughes Taylor with Increment Reduction 23 | # ####################################################################################### 24 | 25 | proc DynamicAnalysisCollapseSolverX {dt dt_anal_Step GMtime numStories DriftLimit MFFloorNodes EGFFloorNodes h1 htyp TraceGFDrift StartTime MaxRunTime} { 26 | 27 | set x [clock seconds]; 28 | set RunTime [expr $x - $StartTime]; 29 | 30 | global CollapseFlag; # global variable to monitor collapse 31 | set CollapseFlag "NO" 32 | 33 | wipeAnalysis 34 | 35 | constraints Plain 36 | numberer RCM 37 | system UmfPack 38 | test EnergyIncr 1.0e-3 100 39 | algorithm KrylovNewton 40 | integrator Newmark 0.50 0.25 41 | analysis Transient 42 | 43 | set NumSteps [expr round(($GMtime + 0.0)/$dt_anal_Step)]; # number of steps in analysis 44 | set ok [analyze $NumSteps $dt_anal_Step]; 45 | 46 | # Check Max Drifts for Collapse by Monitoring the CollapseFlag Variable 47 | source SDRlimitTester.tcl; 48 | SDRlimitTester $numStories $DriftLimit $MFFloorNodes $EGFFloorNodes $h1 $htyp $TraceGFDrift 49 | 50 | 51 | if {$CollapseFlag == "YES" || $RunTime > $MaxRunTime} { 52 | set ok 0 53 | puts "----> Collapse Occured"; 54 | } 55 | 56 | # If analysis failed 57 | if {$ok != 0} { 58 | puts "Analysis did not converge..." 59 | # The analysis will be time-controlled and is done for the remaining time 60 | set ok 0; 61 | set controlTime [getTime]; 62 | 63 | # While the GM did not finish OR while analysis is failing 64 | while {$controlTime < $GMtime || $ok !=0 } { 65 | SDRlimitTester $numStories $DriftLimit $MFFloorNodes $EGFFloorNodes $h1 $htyp $TraceGFDrift 66 | if {$CollapseFlag == "YES" || $RunTime > $MaxRunTime} { 67 | set ok 0; break; 68 | } else { 69 | set ok 1 70 | } 71 | # Get Control Time inside the loop 72 | set controlTime [getTime] 73 | puts "----> Currently at time $controlTime out of $GMtime" 74 | 75 | if {$ok != 0} { 76 | puts "Run Newton 100 steps with 1/2 of step.." 77 | set controlTime [getTime] 78 | set remainTime [expr $GMtime - $controlTime] 79 | set NewRemainSteps [expr round(($remainTime)/($dt_anal_Step/2.0))] 80 | 81 | test EnergyIncr 1.0e-3 100 0 82 | algorithm KrylovNewton 83 | integrator Newmark 0.50 0.25 84 | set ok [analyze 10 [expr $dt_anal_Step/2.0]] 85 | SDRlimitTester $numStories $DriftLimit $MFFloorNodes $EGFFloorNodes $h1 $htyp $TraceGFDrift 86 | if {$CollapseFlag == "YES"} { 87 | set ok 0 88 | } 89 | } 90 | if {$ok != 0 } { 91 | puts "Go Back to KrylovNewton with tangent Tangent and original step.." 92 | set controlTime [getTime] 93 | set remainTime [expr $GMtime - $controlTime] 94 | set NewRemainSteps [expr round(($remainTime)/($dt_anal_Step))] 95 | 96 | test EnergyIncr 1.0e-2 100 0 97 | algorithm KrylovNewton 98 | integrator Newmark 0.50 0.25 99 | set ok [analyze $NewRemainSteps [expr $dt_anal_Step]] 100 | SDRlimitTester $numStories $DriftLimit $MFFloorNodes $EGFFloorNodes $h1 $htyp $TraceGFDrift 101 | if {$CollapseFlag == "YES"} { 102 | set ok 0 103 | } 104 | } 105 | if {$ok != 0 } { 106 | puts "Run 10 steps KrylovNewton with Initial Tangent with 1/2 of original step.." 107 | set controlTime [getTime] 108 | set remainTime [expr $GMtime - $controlTime] 109 | set NewRemainSteps [expr round(($remainTime)/($dt_anal_Step/2.0))] 110 | test EnergyIncr 1.0e-2 200 0 111 | algorithm KrylovNewton -initial 112 | set ok [analyze 10 [expr $dt_anal_Step/2.0]] 113 | SDRlimitTester $numStories $DriftLimit $MFFloorNodes $EGFFloorNodes $h1 $htyp $TraceGFDrift 114 | if {$CollapseFlag == "YES"} { 115 | set ok 0 116 | } 117 | } 118 | if {$ok != 0 } { 119 | puts "Go Back to KrylovNewton with tangent Tangent and original step.." 120 | set controlTime [getTime] 121 | set remainTime [expr $GMtime - $controlTime] 122 | set NewRemainSteps [expr round(($remainTime)/($dt_anal_Step))] 123 | test EnergyIncr 1.0e-2 100 0 124 | algorithm KrylovNewton 125 | integrator Newmark 0.50 0.25 126 | set ok [analyze $NewRemainSteps [expr $dt_anal_Step]] 127 | SDRlimitTester $numStories $DriftLimit $MFFloorNodes $EGFFloorNodes $h1 $htyp $TraceGFDrift 128 | if {$CollapseFlag == "YES"} { 129 | set ok 0 130 | } 131 | } 132 | 133 | if {$ok != 0 } { 134 | puts "Go Back to KrylovNewton with tangent Tangent and 0.001 step.." 135 | set controlTime [getTime] 136 | set remainTime [expr $GMtime - $controlTime] 137 | set NewRemainSteps [expr round(($remainTime)/(0.001))] 138 | test EnergyIncr 1.0e-2 200 0 139 | algorithm KrylovNewton 140 | integrator Newmark 0.50 0.25 141 | set ok [analyze $NewRemainSteps [expr 0.001]] 142 | SDRlimitTester $numStories $DriftLimit $MFFloorNodes $EGFFloorNodes $h1 $htyp $TraceGFDrift 143 | if {$CollapseFlag == "YES"} { 144 | set ok 0 145 | } 146 | } 147 | if {$ok != 0 } { 148 | puts "KrylovNewton Initial with 1/2 of step and Displacement Control Convergence.." 149 | test EnergyIncr 1.0e-2 100 0 150 | algorithm KrylovNewton -initial 151 | set ok [analyze 10 [expr $dt_anal_Step/2.0]] 152 | SDRlimitTester $numStories $DriftLimit $MFFloorNodes $EGFFloorNodes $h1 $htyp $TraceGFDrift 153 | if {$CollapseFlag == "YES"} { 154 | set ok 0 155 | } 156 | } 157 | if {$ok != 0 } { 158 | puts "Go Back to KrylovNewton with tangent Tangent and 0.0001 step.." 159 | set controlTime [getTime] 160 | set remainTime [expr $GMtime - $controlTime] 161 | set NewRemainSteps [expr round(($remainTime)/(0.0001))] 162 | test EnergyIncr 1.0e-2 100 0 163 | algorithm KrylovNewton 164 | integrator Newmark 0.50 0.25 165 | set ok [analyze 5 [expr 0.0001]] 166 | SDRlimitTester $numStories $DriftLimit $MFFloorNodes $EGFFloorNodes $h1 $htyp $TraceGFDrift 167 | if {$CollapseFlag == "YES"} { 168 | set ok 0 169 | } 170 | } 171 | 172 | if {$ok != 0 } { 173 | puts "Go Back to KrylovNewton with tangent Tangent and original step.." 174 | set controlTime [getTime] 175 | set remainTime [expr $GMtime - $controlTime] 176 | set NewRemainSteps [expr round(($remainTime)/($dt_anal_Step))] 177 | test EnergyIncr 1.0e-2 100 0 178 | algorithm KrylovNewton 179 | integrator Newmark 0.50 0.25 180 | set ok [analyze $NewRemainSteps [expr $dt_anal_Step]] 181 | SDRlimitTester $numStories $DriftLimit $MFFloorNodes $EGFFloorNodes $h1 $htyp $TraceGFDrift 182 | if {$CollapseFlag == "YES"} { 183 | set ok 0 184 | } 185 | } 186 | if {$ok != 0 } { 187 | puts "Newton with Fixed Number of Iterations else continue" 188 | set controlTime [getTime] 189 | set remainTime [expr $GMtime - $controlTime] 190 | set NewRemainSteps [expr round(($remainTime)/(0.0001))] 191 | puts $NewRemainSteps 192 | test FixedNumIter 50 193 | integrator NewmarkHSFixedNumIter 0.5 0.25 194 | 195 | algorithm Newton 196 | 197 | set ok [analyze 10 [expr 0.0001]] 198 | SDRlimitTester $numStories $DriftLimit $MFFloorNodes $EGFFloorNodes $h1 $htyp $TraceGFDrift 199 | if {$CollapseFlag == "YES"} { 200 | set ok 0 201 | } 202 | } 203 | 204 | set controlTime [getTime] 205 | } 206 | } 207 | } -------------------------------------------------------------------------------- /Models and Tcl Files/Spring_PZ.tcl: -------------------------------------------------------------------------------- 1 | ################################################################################################################## 2 | # Spring_PZ.tcl 3 | # 4 | # SubRoutine to construct a rotational spring with a trilinear hysteretic response representative of steel 5 | # panel zone response 6 | # 7 | # The subroutine also considers modeling uncertainty based on the logarithmic standard deviations specified by the user. 8 | # 9 | # References: 10 | #-------------- 11 | # Elkady, A. and D. G. Lignos (2014). "Modeling of the Composite Action in Fully Restrained Beam-to-Column 12 | # Connections: ‎Implications in the Seismic Design and Collapse Capacity of Steel Special Moment Frames." 13 | # Earthquake Eng. & Structural Dynamics 43(13). 14 | # 15 | # Skiadopoulos, A., Elkady, A. and D. G. Lignos (2020). "Proposed Panel Zone Model for Seismic Design of 16 | # Steel Moment-Resisting Frames." ASCE Journal of Structural Engineering (under review). 17 | # 18 | ################################################################################################################## 19 | # 20 | # Input Arguments: 21 | #------------------ 22 | # P_Elm Element ID 23 | # NodeI Node i ID 24 | # NodeJ Node j ID 25 | # E Young's Modulus 26 | # mu Poisson's Ratio 27 | # fy Expected Yield Stress 28 | # tdp Doubler Plate(s) Thickness 29 | # d_Col Column Depth 30 | # d_Beam Beam Depth 31 | # tf_Col Column Flange Thickness 32 | # bf_Col Column Flange Width 33 | # tw_Col Column Web Thickness 34 | # Ic Column second-moment-of-interia about the strong axis 35 | # trib Steel deck rib depth 36 | # ts Concrete slab depth above the rib 37 | # Response_ID ID for Panel Zone Response: 0 --> Interior Steel Panel Zone with Composite Action 38 | # 1 --> Exterior Steel Panel Zone with Composite Action 39 | # 2 --> Bare Steel Interior/Exterior Steel Panel Zone 40 | # transfTag Geometric Transformation ID 41 | # 42 | # Written by: Dr. Ahmed Elkady, University of Southampton, UK 43 | # 44 | ######################################################################################################## 45 | 46 | 47 | proc Spring_PZ {P_Elm NodeI NodeJ E mu fy tw_Col tdp d_Col d_Beam tf_Col bf_Col Ix_Col trib ts Response_ID transfTag} { 48 | 49 | set tpz [expr $tw_Col + $tdp]; # total PZ thickness 50 | 51 | set G [expr $E/(2.0 * (1.0 + $mu))]; # Shear Modulus 52 | 53 | # Beam's effective depth 54 | if {$Response_ID==2} { 55 | set d_BeamP $d_Beam; 56 | } else { 57 | set d_BeamP [expr $d_Beam + $trib + 0.5 * $ts]; # Effective Depth in Positive Moment 58 | } 59 | set d_BeamN $d_Beam; # Effective Depth in Negative Moment 60 | 61 | # Stiffness Calculation 62 | set Ks [expr $tpz * ($d_Col - $tf_Col) * $G]; # PZ Stiffness: Shear Contribution 63 | set Kb [expr 12 * $E * ($Ix_Col + $tdp * pow(($d_Col - 2*$tf_Col),3)/12.) /pow($d_Beam,3) * $d_Beam]; # PZ Stiffness: Bending Contribution 64 | set Ke [expr ($Ks * $Kb) / ($Ks + $Kb)]; # PZ Stiffness: Total 65 | 66 | set Ksf [expr 2 * ($bf_Col * $tf_Col) * $G]; # Flange Stiffness: Shear Contribution 67 | set Kbf [expr 2 * 12 * $E * $bf_Col * pow($tf_Col,3)/12. /pow($d_Beam,3) * $d_Beam]; # Flange Stiffness: Bending Contribution 68 | set Kef [expr ($Ksf * $Kbf) / ($Ksf + $Kbf)]; # Flange Stiffness: Total 69 | 70 | set ay [expr (0.58 * $Kef / $Ke + 0.88) / (1 - $Kef / $Ke)]; 71 | 72 | set aw_eff_4gamma 1.10; 73 | set aw_eff_6gamma 1.15; 74 | 75 | set af_eff_4gamma [expr 0.93 * $Kef / $Ke + 0.015]; 76 | set af_eff_6gamma [expr 1.05 * $Kef / $Ke + 0.020]; 77 | 78 | set Vy [expr 0.577 * $fy * $ay * ($d_Col - $tf_Col) * $tpz]; # Yield Shear Force 79 | set Vp_4gamma [expr 0.577 * $fy * ($aw_eff_4gamma * ($d_Col - $tf_Col) * $tpz + $af_eff_4gamma * ($bf_Col - $tw_Col) * 2*$tf_Col)]; # Plastic Shear Force @ 4 gammaY 80 | set Vp_6gamma [expr 0.577 * $fy * ($aw_eff_6gamma * ($d_Col - $tf_Col) * $tpz + $af_eff_6gamma * ($bf_Col - $tw_Col) * 2*$tf_Col)]; # Plastic Shear Force @ 6 gammaY 81 | 82 | ################################################################################################################## 83 | # Random generation of backbone parameters based on assigned uncertainty 84 | ################################################################################################################## 85 | global Sigma_PZ; global xRandom; 86 | set SigmaX [lindex $Sigma_PZ 0]; Generate_lognrmrand $Ke $SigmaX; set Ke $xRandom; 87 | set SigmaX [lindex $Sigma_PZ 1]; Generate_lognrmrand $Vy $SigmaX; set Vy $xRandom; 88 | set SigmaX [lindex $Sigma_PZ 2]; Generate_lognrmrand $Vp_4gamma $SigmaX; set Vp_4gamma [expr max(1.01*$Vy,$xRandom)]; 89 | set SigmaX [lindex $Sigma_PZ 3]; Generate_lognrmrand $Vp_6gamma $SigmaX; set Vp_6gamma [expr max(1.01*$Vp_4gamma,$xRandom)]; 90 | ################################################################################################################## 91 | ################################################################################################################## 92 | 93 | set gamma_y [expr $Vy/$Ke]; 94 | set gamma4_y [expr 4.0 * $gamma_y]; 95 | set gamma6_y [expr 6.0 * $gamma_y]; 96 | 97 | set My_P [expr $Vy * $d_BeamP]; 98 | set Mp_4gamma_P [expr $Vp_4gamma * $d_BeamP]; 99 | set Mp_6gamma_P [expr $Vp_6gamma * $d_BeamP]; 100 | 101 | set My_N [expr $Vy * $d_BeamN]; 102 | set Mp_4gamma_N [expr $Vp_4gamma * $d_BeamN]; 103 | set Mp_6gamma_N [expr $Vp_6gamma * $d_BeamN]; 104 | 105 | set Slope_4to6gamma_y_P [expr ($Mp_6gamma_P - $Mp_4gamma_P) / (2 * $gamma_y) ]; 106 | set Slope_4to6gamma_y_N [expr ($Mp_6gamma_N - $Mp_4gamma_N) / (2 * $gamma_y) ]; 107 | 108 | # Defining the 3 Points used to construct the trilinear backbone curve 109 | set gamma1 $gamma_y; 110 | set gamma2 $gamma4_y; 111 | set gamma3 [expr 100 * $gamma_y]; 112 | 113 | set M1_P [expr $My_P]; 114 | set M2_P [expr $Mp_4gamma_P]; 115 | set M3_P [expr $Mp_4gamma_P + $Slope_4to6gamma_y_P * (100 * $gamma_y - $gamma4_y)]; 116 | 117 | set M1_N [expr $My_N]; 118 | set M2_N [expr $Mp_4gamma_N]; 119 | set M3_N [expr $Mp_4gamma_N + $Slope_4to6gamma_y_N * (100 * $gamma_y - $gamma4_y)]; 120 | 121 | set gammaU_P 0.3; 122 | set gammaU_N -0.3; 123 | 124 | set Dummy_ID [expr 12 * $P_Elm]; 125 | 126 | # Hysteretic Material without pinching and damage 127 | # uniaxialMaterial Hysteretic $matTag $s1p $e1p $s2p $e2p <$s3p $e3p> $s1n $e1n $s2n $e2n <$s3n $e3n> $pinchX $pinchY $damage1 $damage2 128 | 129 | # Composite Interior Steel Panel Zone 130 | if { $Response_ID == 0.0 } { 131 | uniaxialMaterial Hysteretic $Dummy_ID $M1_P $gamma1 $M2_P $gamma2 $M3_P $gamma3 [expr -$M1_P] [expr -$gamma1] [expr -$M2_P] [expr -$gamma2] [expr -$M3_P] [expr -$gamma3] 0.25 0.75 0. 0. 0.; 132 | uniaxialMaterial MinMax $P_Elm $Dummy_ID -min $gammaU_N -max $gammaU_P; 133 | } 134 | 135 | # Composite Exterior Steel Panel Zone 136 | if { $Response_ID == 1.0 } { 137 | uniaxialMaterial Hysteretic $Dummy_ID $M1_P $gamma1 $M2_P $gamma2 $M3_P $gamma3 [expr -$M1_N] [expr -$gamma1] [expr -$M2_N] [expr -$gamma2] [expr -$M3_N] [expr -$gamma3] 0.25 0.75 0. 0. 0.; 138 | uniaxialMaterial MinMax $P_Elm $Dummy_ID -min $gammaU_N -max $gammaU_P; 139 | } 140 | 141 | # Bare Steel Interior/Exterior Steel Panel Zone 142 | if { $Response_ID == 2.0 } { 143 | uniaxialMaterial Hysteretic $Dummy_ID $M1_N $gamma1 $M2_N $gamma2 $M3_N $gamma3 [expr -$M1_N] [expr -$gamma1] [expr -$M2_N] [expr -$gamma2] [expr -$M3_N] [expr -$gamma3] 0.25 0.75 0. 0. 0.; 144 | uniaxialMaterial MinMax $P_Elm $Dummy_ID -min $gammaU_N -max $gammaU_P; 145 | } 146 | 147 | element zeroLength $P_Elm $NodeI $NodeJ -mat $P_Elm -dir 6; 148 | 149 | } -------------------------------------------------------------------------------- /Models and Tcl Files/Spring_Pinching.tcl: -------------------------------------------------------------------------------- 1 | ################################################################################################################## 2 | # Spring_Pinching.tcl 3 | # 4 | # SubRoutine to construct a rotational spring with deteriorating pinched response representing the moment-rotation 5 | # behaviour of beams that are part of conventional shear-tab connections. 6 | # 7 | # The subroutine also considers modeling uncertainty based on the logarithmic standard deviations specified by the user. 8 | # 9 | # References: 10 | #-------------- 11 | # Elkady, A. and D. G. Lignos (2015). "Effect of Gravity Framing on the Overstrength and Collapse Capacity of Steel 12 | # Frame Buildings with Perimeter Special Moment Frames." Earthquake Eng. & Structural Dynamics 44(8). 13 | # 14 | ################################################################################################################## 15 | # 16 | # Input Arguments: 17 | #------------------ 18 | # SpringID Spring ID 19 | # NodeI Node i ID 20 | # NodeJ Node j ID 21 | # Mp Effective plastic strength of the gravity beam 22 | # gap Gap distance between beam end and column flange 23 | # ResponseID 0 --> Bare Shear Connection 24 | # 1 --> Composite Shear Connection 25 | # 2 --> Composite Shear Connection with Stiffeneing due to Binding 26 | # 27 | # Written by: Dr. Ahmed Elkady, University of Southampton, UK 28 | # 29 | ################################################################################################################## 30 | 31 | 32 | proc Spring_Pinching {SpringID NodeI NodeJ M_p gap ResponseID} { 33 | 34 | if {$ResponseID == 0} { 35 | set M_max_pos [expr 0.121* $M_p]; 36 | set M_max_neg [expr 0.121* $M_p]; 37 | set M1_P [expr 0.521 * $M_max_pos]; set M1_N [expr -0.521 * $M_max_neg]; 38 | set M2_P [expr 0.967 * $M_max_pos]; set M2_N [expr -0.967 * $M_max_neg]; 39 | set M3_P [expr 1.000 * $M_max_pos]; set M3_N [expr -1.000 * $M_max_neg]; 40 | set M4_P [expr 0.901 * $M_max_pos]; set M4_N [expr -0.901 * $M_max_neg]; 41 | set Th_1_P 0.0045; set Th_1_N -0.0045; 42 | set Th_2_P 0.0465; set Th_2_N -0.0465; 43 | set Th_3_P 0.0750; set Th_3_N -0.0750; 44 | set Th_4_P 0.1000; set Th_4_N -0.1000; 45 | set rDispP 0.57; set rDispN 0.57; 46 | set rForceP 0.40; set rForceN 0.40; 47 | set uForceP 0.05; set uForceN 0.05; 48 | set gK1 0.0; set gD1 0.0; set gF1 0.0; 49 | set gK2 0.0; set gD2 0.0; set gF2 0.0; 50 | set gK3 0.0; set gD3 0.0; set gF3 0.0; 51 | set gK4 0.0; set gD4 0.0; set gF4 0.0; 52 | set gKLim 0.2; set gDLim 0.1; set gFLim 0.0; 53 | set gE 10; 54 | set dmgType "energy"; 55 | set Th_U_P [expr $gap + 0.000]; 56 | set Th_U_N [expr -$gap - 0.000]; 57 | } 58 | 59 | if {$ResponseID == 1} { 60 | set M_max_pos [expr 0.35* $M_p]; 61 | set M_max_neg [expr 0.64*0.35* $M_p]; 62 | set M1_P [expr 0.250 * $M_max_pos]; set M1_N [expr -0.250 * $M_max_pos]; 63 | set M2_P [expr 1.000 * $M_max_pos]; set M2_N [expr -1.000 * $M_max_neg]; 64 | set M3_P [expr 1.001 * $M_max_pos]; set M3_N [expr -1.001 * $M_max_neg]; 65 | set M4_P [expr 0.530 * $M_max_pos]; set M4_N [expr -0.540 * $M_max_neg]; 66 | set Th_1_P 0.0042; set Th_1_N -0.0042; 67 | set Th_2_P 0.0200; set Th_2_N -0.0110; 68 | set Th_3_P 0.0390; set Th_3_N -0.0300; 69 | set Th_4_P 0.0400; set Th_4_N -0.0550; 70 | set rDispP 0.40; set rDispN 0.50; 71 | set rForceP 0.13; set rForceN 0.53; 72 | set uForceP 0.01; set uForceN 0.05; 73 | set gK1 0.0; set gD1 0.0; set gF1 0.0; 74 | set gK2 0.0; set gD2 0.0; set gF2 0.0; 75 | set gK3 0.0; set gD3 0.0; set gF3 0.0; 76 | set gK4 0.0; set gD4 0.0; set gF4 0.0; 77 | set gKLim 0.30; set gDLim 0.05; set gFLim 0.05; 78 | set gE 10; 79 | set dmgType "energy"; 80 | set Th_U_P [expr $gap + 0.000]; 81 | set Th_U_N [expr -$gap - 0.000]; 82 | } 83 | 84 | if {$ResponseID == 2} { 85 | set M_max_pos [expr 0.35* $M_p]; 86 | set M_max_neg [expr 0.49*0.35* $M_p]; 87 | set M1_P [expr 0.250 * $M_max_pos]; set M1_N [expr -1.000 * $M_max_neg]; 88 | set M2_P [expr 1.000 * $M_max_pos]; set M2_N [expr -1.001 * $M_max_neg]; 89 | set M3_P [expr 1.001 * $M_max_pos]; set M3_N [expr -2.353 * $M_max_neg]; 90 | set M4_P [expr 0.530 * $M_max_pos]; set M4_N [expr -2.350 * $M_max_neg]; 91 | set Th_1_P 0.0042; set Th_1_N -0.0080; 92 | set Th_2_P 0.0200; set Th_2_N [expr -1.0 * $gap]; 93 | set Th_3_P 0.0390; set Th_3_N [expr -1.0 * $gap - 0.015]; 94 | set Th_4_P 0.0400; set Th_4_N [expr -1.0 * $gap - 0.040]; 95 | set rDispP 0.40; set rDispN 0.50; 96 | set rForceP 0.13; set rForceN 0.53; 97 | set uForceP 0.01; set uForceN 0.05; 98 | set gK1 0.0; set gD1 0.0; set gF1 0.0; 99 | set gK2 0.0; set gD2 0.0; set gF2 0.0; 100 | set gK3 0.0; set gD3 0.0; set gF3 0.0; 101 | set gK4 0.0; set gD4 0.0; set gF4 0.0; 102 | set gKLim 0.30; set gDLim 0.05; set gFLim 0.05; 103 | set gE 10; 104 | set dmgType "energy"; 105 | set Th_U_P [expr $gap + 0.040]; 106 | set Th_U_N [expr -$gap - 0.040]; 107 | } 108 | 109 | set Dummy_ID [expr 12 * $SpringID]; 110 | 111 | ################################################################################################################## 112 | # Random generation of backbone parameters based on assigned uncertainty 113 | ################################################################################################################## 114 | global Sigma_Pinching; global xRandom; 115 | if {$ResponseID == 0} { 116 | set SigmaX [lindex $Sigma_Pinching 0]; Get_lognrmrand $M1_P $SigmaX; set M1_P $xRandom; set M1_N [expr -1.0*$M1_P]; 117 | set SigmaX [lindex $Sigma_Pinching 1]; Get_lognrmrand $M2_P $SigmaX; set M2_P [expr max(1.01*$M1_P,$xRandom)]; set M2_N [expr -1.0*$M2_P]; 118 | set M3_P [expr 1.01*$M2_P]; set M3_N [expr 1.01*$M2_N]; 119 | set SigmaX [lindex $Sigma_Pinching 2]; Get_lognrmrand $M4_P $SigmaX; set M4_P [expr max(1.01*$Vy,$xRandom)]; 120 | set M4_N [expr -1.0*$M4_P]; 121 | set SigmaX [lindex $Sigma_Pinching 3]; Get_lognrmrand $Th_1_P $SigmaX; set Th_1_P $xRandom; set Th_1_N [expr -1.0*$Th_1_P]; 122 | set SigmaX [lindex $Sigma_Pinching 4]; Get_lognrmrand $Th_2_P $SigmaX; set Th_2_P [expr max(1.01*$Th_1_P,$xRandom)];; set Th_2_N [expr -1.0*$Th_2_P]; 123 | set SigmaX [lindex $Sigma_Pinching 5]; Get_lognrmrand $Th_3_P $SigmaX; set Th_3_P [expr max(1.01*$Th_2_P,$xRandom)];; set Th_3_N [expr -1.0*$Th_3_P]; 124 | set SigmaX [lindex $Sigma_Pinching 6]; Get_lognrmrand $Th_4_P $SigmaX; set Th_4_P [expr max(1.01*$Th_3_P,$xRandom)];; set Th_4_N [expr -1.0*$Th_4_P]; 125 | set SigmaX [lindex $Sigma_Pinching 7]; Get_lognrmrand $Th_U_P $SigmaX; set Th_U_P [expr max(1.01*$Th_4_P,$xRandom)];; set Th_U_N [expr -1.0*$Th_U_P]; 126 | } 127 | # if {$ResponseID == 1} { 128 | # set SigmaX [lindex $Sigma_Pinching 0]; Get_lognrmrand $M1_P $SigmaX; set M1_P $xRandom; 129 | # set SigmaX [lindex $Sigma_Pinching 1]; Get_lognrmrand $M2_P $SigmaX; set M2_P [expr max(1.01*$M1_P,$xRandom)]; 130 | # set SigmaX [lindex $Sigma_Pinching 1]; Get_lognrmrand $M2_N $SigmaX; set M2_N [expr max(1.01*$M1_N,$xRandom)]; 131 | # set M3_P [expr 1.01*$M2_P]; set M3_N [expr 1.01*$M2_N]; 132 | # set SigmaX [lindex $Sigma_Pinching 2]; Get_lognrmrand $M4_P $SigmaX; set M4_P [expr max(1.01*$Vy,$xRandom)]; 133 | # set M4_N [expr -1.0*$M4_P]; 134 | # set SigmaX [lindex $Sigma_Pinching 3]; Get_lognrmrand $Th_1_P $SigmaX; set Th_1_P $xRandom; set Th_1_N [expr -1.0*$Th_1_P]; 135 | # set SigmaX [lindex $Sigma_Pinching 4]; Get_lognrmrand $Th_2_P $SigmaX; set Th_2_P [expr max(1.01*$Th_1_P,$xRandom)];; set Th_2_N [expr -1.0*$Th_2_P]; 136 | # set SigmaX [lindex $Sigma_Pinching 5]; Get_lognrmrand $Th_3_P $SigmaX; set Th_3_P [expr max(1.01*$Th_2_P,$xRandom)];; set Th_3_N [expr -1.0*$Th_3_P]; 137 | # set SigmaX [lindex $Sigma_Pinching 6]; Get_lognrmrand $Th_4_P $SigmaX; set Th_4_P [expr max(1.01*$Th_3_P,$xRandom)];; set Th_4_N [expr -1.0*$Th_4_P]; 138 | # set SigmaX [lindex $Sigma_Pinching 7]; Get_lognrmrand $Th_U_P $SigmaX; set Th_U_P [expr max(1.01*$Th_4_P,$xRandom)];; set Th_U_N [expr -1.0*$Th_U_P]; 139 | # } 140 | ################################################################################################################## 141 | ################################################################################################################## 142 | 143 | 144 | uniaxialMaterial Pinching4 $Dummy_ID $M1_P $Th_1_P $M2_P $Th_2_P $M3_P $Th_3_P $M4_P $Th_4_P $M1_N $Th_1_N $M2_N $Th_2_N $M3_N $Th_3_N $M4_N $Th_4_N $rDispP $rForceP $uForceP $rDispN $rForceN $uForceN $gK1 $gK2 $gK3 $gK4 $gKLim $gD1 $gD2 $gD3 $gD4 $gDLim $gF1 $gF2 $gF3 $gF4 $gFLim $gE $dmgType; 145 | uniaxialMaterial MinMax $SpringID $Dummy_ID -min $Th_U_N -max $Th_U_P; 146 | 147 | element zeroLength $SpringID $NodeI $NodeJ -mat 99 99 $SpringID -dir 1 2 6; 148 | 149 | if {$ResponseID == 2} { 150 | # Stiffening Spring 151 | set Esc [expr $M_max_pos / $Th_2_P]; 152 | set My [expr 0.71 * $M_max_pos]; 153 | set eta 0.0001; 154 | set damage "damage" 155 | set SpringID2 [expr $SpringID+8]; 156 | set Dummy_ID2 [expr $SpringID2+1]; 157 | 158 | uniaxialMaterial ElasticPPGap $Dummy_ID2 $Esc $My $gap $eta $damage; 159 | uniaxialMaterial MinMax $SpringID2 $Dummy_ID2 -max [expr $gap + 0.040]; 160 | 161 | element zeroLength $SpringID2 $NodeI $NodeJ -mat 99 99 $SpringID2 -dir 1 2 6; 162 | } 163 | 164 | } -------------------------------------------------------------------------------- /Models and Tcl Files/SolutionAlgorithmSubFile.tcl: -------------------------------------------------------------------------------- 1 | # SolutionAlgorithmSubFile 2 | # Units: kips, in, sec 3 | # This file developed by: Seong-Hoon Hwang of McGill University 4 | # Updated: 20 January 2015 5 | # Date: January 2015 6 | # Other files used in developing this model: 7 | # Solution algorithm - this is called repetitively by another solution algorithm file. 8 | # If the initial step didn't work, then alter the time step and the tolerance, and try different solution algorithms 9 | 10 | set x [clock seconds]; 11 | set RunTime [expr $x - $StartTime]; 12 | set RoofDisp [nodeDisp $CtrlNode 1]; 13 | set RDR [expr round(($RoofDisp*100/$HBuilding)*10.)/10.]; 14 | 15 | # set counterItr [expr $counterItr +1]; 16 | # puts "Inr #$counterItr"; 17 | puts "RDR = $RDR % and RunTime = $RunTime sec" 18 | 19 | # I added these solution algorithm (date: 20/Jan/2015) 20 | if {$ok != 0 && $RunTime < $MaxRunTime & $RoofDisp < $Dmax} { 21 | #puts "That failed - Trying Krylov-Newton Algorithm .." 22 | test NormDispIncr $currentTolerance $testIterations 0 23 | # set controlDisp [nodeDisp $CtrlNode $CtrlDOF ] 24 | # set Dstep [expr $Dmax-$controlDisp] 25 | # set NewRemainSteps [expr round(($Dstep)/($currentDisp))] 26 | algorithm KrylovNewton 27 | integrator DisplacementControl $CtrlNode $CtrlDOF $currentDisp 28 | set ok [analyze 1] 29 | test NormDispIncr $testTolerance $testIterations 0 30 | algorithm $algorithmTypeStatic 31 | integrator DisplacementControl $CtrlNode $CtrlDOF $Dincr 32 | # Reset the tolerance output if it got in this loop and if it has gotten to a tolerance larger than it ever did previously 33 | if {$maxTolUsed < $currentTolerance} { 34 | set maxTolUsed $currentTolerance 35 | } 36 | # Reset the current tolerance used value if it was just increased 37 | if {$maxTolUsedInCurrentStep < $currentTolerance} { 38 | set maxTolUsedInCurrentStep $currentTolerance 39 | } 40 | } 41 | 42 | if {$ok != 0 && $RunTime < $MaxRunTime & $RoofDisp < $Dmax} { 43 | #puts "That failed - Trying some changes to disp. and the solution algorithm" 44 | test NormDispIncr $currentTolerance $testIterations 0 45 | algorithm NewtonLineSearch 0.8; 46 | integrator DisplacementControl $CtrlNode $CtrlDOF $currentDisp 47 | set ok [analyze 1] 48 | test NormDispIncr $testTolerance $testIterations 0 49 | algorithm $algorithmTypeStatic 50 | integrator DisplacementControl $CtrlNode $CtrlDOF $Dincr 51 | # Reset the current tolerance used value if it was just increased 52 | if {$maxTolUsedInCurrentStep < $currentTolerance} { 53 | set maxTolUsedInCurrentStep $currentTolerance 54 | } 55 | } 56 | # 57 | # I changed this to Line Search with Newton 58 | if {$ok != 0 && $RunTime < $MaxRunTime & $RoofDisp < $Dmax} { 59 | #puts "That failed - Trying some changes to disp. and the solution algorithm" 60 | test NormDispIncr $currentTolerance $testIterations 0 61 | algorithm NewtonLineSearch 0.6; 62 | integrator DisplacementControl $CtrlNode $CtrlDOF $currentDisp 63 | set ok [analyze 1] 64 | test NormDispIncr $testTolerance $testIterations 0 65 | algorithm $algorithmTypeStatic 66 | integrator DisplacementControl $CtrlNode $CtrlDOF $Dincr 67 | # Reset the current tolerance used value if it was just increased 68 | if {$maxTolUsedInCurrentStep < $currentTolerance} { 69 | set maxTolUsedInCurrentStep $currentTolerance 70 | } 71 | } 72 | 73 | # Try other algorithms 74 | if {$ok != 0 && $RunTime < $MaxRunTime & $RoofDisp < $Dmax} { 75 | #puts "That failed - Trying Newton ..." 76 | test NormDispIncr $currentTolerance $testIterations 0 77 | algorithm Newton 78 | integrator DisplacementControl $CtrlNode $CtrlDOF $currentDisp 79 | set ok [analyze 1] 80 | test NormDispIncr $testTolerance $testIterations 0 81 | algorithm $algorithmTypeStatic 82 | integrator DisplacementControl $CtrlNode $CtrlDOF $Dincr 83 | # Reset the current tolerance used value if it was just increased 84 | if {$maxTolUsedInCurrentStep < $currentTolerance} { 85 | set maxTolUsedInCurrentStep $currentTolerance 86 | } 87 | } 88 | 89 | if {$ok != 0 && $RunTime < $MaxRunTime & $RoofDisp < $Dmax} { 90 | #puts "That failed - Trying initial stiffness ..." 91 | test NormDispIncr $currentTolerance $testIterations 0 92 | algorithm ModifiedNewton -initial 93 | integrator DisplacementControl $CtrlNode $CtrlDOF $currentDisp 94 | set ok [analyze 1] 95 | test NormDispIncr $testTolerance [expr $testIterations*$ratioForInitialAlgo] 0 96 | algorithm $algorithmTypeStatic 97 | integrator DisplacementControl $CtrlNode $CtrlDOF $Dincr 98 | # Reset the current tolerance used value if it was just increased 99 | if {$maxTolUsedInCurrentStep < $currentTolerance} { 100 | set maxTolUsedInCurrentStep $currentTolerance 101 | } 102 | } 103 | 104 | # I added these solution algorithm (date: 21/Jan/2015) 105 | if {$ok != 0 && $RunTime < $MaxRunTime & $RoofDisp < $Dmax} { 106 | #puts "That failed - Run Newton 100 steps with 1/2 of step.." 107 | test EnergyIncr $currentTolerance $testIterations 0 108 | algorithm KrylovNewton 109 | integrator DisplacementControl $CtrlNode $CtrlDOF [expr $currentDisp/2.0] 110 | set ok [analyze 1] 111 | test NormDispIncr $testTolerance $testIterations 0 112 | algorithm $algorithmTypeStatic 113 | integrator DisplacementControl $CtrlNode $CtrlDOF $Dincr 114 | # Reset the current tolerance used value if it was just increased 115 | if {$maxTolUsedInCurrentStep < $currentTolerance} { 116 | set maxTolUsedInCurrentStep $currentTolerance 117 | } 118 | } 119 | 120 | if {$ok != 0 && $RunTime < $MaxRunTime & $RoofDisp < $Dmax} { 121 | #puts "Go Back to KrylovNewton with tangent Tangent and original step.." 122 | test EnergyIncr $currentTolerance $testIterations 0 123 | algorithm KrylovNewton 124 | integrator DisplacementControl $CtrlNode $CtrlDOF $currentDisp 125 | set ok [analyze 1] 126 | test NormDispIncr $testTolerance $testIterations 0 127 | algorithm $algorithmTypeStatic 128 | integrator DisplacementControl $CtrlNode $CtrlDOF $Dincr 129 | # Reset the current tolerance used value if it was just increased 130 | if {$maxTolUsedInCurrentStep < $currentTolerance} { 131 | set maxTolUsedInCurrentStep $currentTolerance 132 | } 133 | } 134 | 135 | if {$ok != 0 && $RunTime < $MaxRunTime & $RoofDisp < $Dmax} { 136 | #puts "Run 10 steps KrylovNewton with Initial Tangent with 1/2 of original step.." 137 | test EnergyIncr $currentTolerance $testIterations 0 138 | algorithm KrylovNewton -initial 139 | integrator DisplacementControl $CtrlNode $CtrlDOF [expr $currentDisp/2.0] 140 | set ok [analyze 1] 141 | test NormDispIncr $testTolerance $testIterations 0 142 | algorithm $algorithmTypeStatic 143 | integrator DisplacementControl $CtrlNode $CtrlDOF $Dincr 144 | # Reset the current tolerance used value if it was just increased 145 | if {$maxTolUsedInCurrentStep < $currentTolerance} { 146 | set maxTolUsedInCurrentStep $currentTolerance 147 | } 148 | } 149 | 150 | if {$ok != 0 && $RunTime < $MaxRunTime & $RoofDisp < $Dmax} { 151 | #puts "Go Back to KrylovNewton with tangent Tangent and original step.." 152 | test EnergyIncr $currentTolerance $testIterations 0 153 | algorithm KrylovNewton 154 | integrator DisplacementControl $CtrlNode $CtrlDOF $currentDisp 155 | set ok [analyze 1] 156 | test NormDispIncr $testTolerance $testIterations 0 157 | algorithm $algorithmTypeStatic 158 | integrator DisplacementControl $CtrlNode $CtrlDOF $Dincr 159 | # Reset the current tolerance used value if it was just increased 160 | if {$maxTolUsedInCurrentStep < $currentTolerance} { 161 | set maxTolUsedInCurrentStep $currentTolerance 162 | } 163 | } 164 | 165 | if {$ok != 0 && $RunTime < $MaxRunTime & $RoofDisp < $Dmax} { 166 | #puts "KrylovNewton Initial with 1/2 of step and Displacement Control Convergence.." 167 | test EnergyIncr $currentTolerance $testIterations 0 168 | algorithm KrylovNewton -initial 169 | integrator DisplacementControl $CtrlNode $CtrlDOF [expr $currentDisp/2.0] 170 | set ok [analyze 1] 171 | test NormDispIncr $testTolerance $testIterations 0 172 | algorithm $algorithmTypeStatic 173 | integrator DisplacementControl $CtrlNode $CtrlDOF $Dincr 174 | # Reset the current tolerance used value if it was just increased 175 | if {$maxTolUsedInCurrentStep < $currentTolerance} { 176 | set maxTolUsedInCurrentStep $currentTolerance 177 | } 178 | } 179 | 180 | if {$ok != 0 && $RunTime < $MaxRunTime & $RoofDisp < $Dmax} { 181 | #puts "Go Back to KrylovNewton with tangent Tangent and 0.0001 step.." 182 | test EnergyIncr 1.0e-1 50 0 183 | integrator DisplacementControl $CtrlNode $CtrlDOF 0.0001 184 | algorithm KrylovNewton 185 | set ok [analyze 1] 186 | test NormDispIncr $testTolerance $testIterations 0 187 | algorithm $algorithmTypeStatic 188 | integrator DisplacementControl $CtrlNode $CtrlDOF $Dincr 189 | # Reset the current tolerance used value if it was just increased 190 | if {$maxTolUsedInCurrentStep < $currentTolerance} { 191 | set maxTolUsedInCurrentStep $currentTolerance 192 | } 193 | } 194 | 195 | if {$ok != 0 && $RunTime < $MaxRunTime & $RoofDisp < $Dmax} { 196 | #puts "Go Back to KrylovNewton with tangent Tangent and 0.0001 step.." 197 | test EnergyIncr 1.0e-1 50 0 198 | integrator DisplacementControl $CtrlNode $CtrlDOF 0.000001 199 | algorithm KrylovNewton 200 | set ok [analyze 1] 201 | test NormDispIncr $testTolerance $testIterations 0 202 | algorithm $algorithmTypeStatic 203 | integrator DisplacementControl $CtrlNode $CtrlDOF $Dincr 204 | # Reset the current tolerance used value if it was just increased 205 | if {$maxTolUsedInCurrentStep < $currentTolerance} { 206 | set maxTolUsedInCurrentStep $currentTolerance 207 | } 208 | } 209 | 210 | if {$ok != 0 && $RunTime < $MaxRunTime & $RoofDisp < $Dmax} { 211 | #puts "Go Back to KrylovNewton with tangent Tangent and original step.." 212 | test EnergyIncr 1.0e-1 50 0 213 | algorithm KrylovNewton 214 | integrator DisplacementControl $CtrlNode $CtrlDOF $currentDisp 215 | set ok [analyze 1] 216 | test NormDispIncr $testTolerance $testIterations 0 217 | algorithm $algorithmTypeStatic 218 | integrator DisplacementControl $CtrlNode $CtrlDOF $Dincr 219 | # Reset the current tolerance used value if it was just increased 220 | if {$maxTolUsedInCurrentStep < $currentTolerance} { 221 | set maxTolUsedInCurrentStep $currentTolerance 222 | } 223 | } 224 | -------------------------------------------------------------------------------- /Models and Tcl Files/SolutionAlgorithm.tcl: -------------------------------------------------------------------------------- 1 | # run different analyses to find convergence for displacement-driven analysis 2 | # Set the variaous levels to try for the test tolerance 3 | set testTolerance 1.0e-6; 4 | set testMinTolerance1 1.0e-5; 5 | set testMinTolerance2 1.0e-4; 6 | set testMinTolerance3 1.0e-3; 7 | set testMinTolerance4 1.0e-2; 8 | set testMinTolerance5 1.0e-1; 9 | # Set initialize the maximum tolerance used - for output to know about convergence 10 | set maxTolUsed $testTolerance; 11 | # Set the iterations to use for the different types of solution algorithms 12 | set testIterations 50; # This is used, but for -initial, then the ratio for initial is used. 13 | set ratioForInitialAlgo 200; # This is the ratio of testIterations that is allowed for -initial test 14 | set testInitialIterations 1000; 15 | set testLowIter 10; # Used to try each test in the loop 16 | set testHighIter 1000; # Used to try to make it converge at the very end 17 | 18 | if {$RunTime > $MaxRunTime} { 19 | set ok 1; 20 | } 21 | 22 | # Analysis loop 23 | while {$controlDisp < $Dmax && $ok == 0} { 24 | # Do step with initial tolerance and input algorithm 25 | set ok [analyze $Nsteps]; # this will return zero if no convergence problems were encountered 26 | # Keep track of the maximum tolarance used in this step - for the convPlotFile. This is later increased it necessary. 27 | set maxTolUsedInCurrentStep [expr $testTolerance] 28 | # Change things for convergence 29 | # If it's not ok, try to decrease dT, but keep the toelrance the same call another file for this (just to keep this file clean). 30 | # The basic approach I am taking here is to try everything to make it converge. This way the analyst can look at the final 31 | # convergence tolerance and be sure that this is acceptable. 32 | set currentTolerance [expr $testTolerance] 33 | set currentNumIterations [expr $testLowIter] 34 | set currentDisp [expr $Dincr/10]; 35 | source SolutionAlgorithmSubFile.tcl 36 | 37 | # If it's not ok, try to decrease dT a bit more, but keep the toerance the samecall another file for this (just to keep this file clean) 38 | set currentTolerance [expr $testTolerance] 39 | set currentNumIterations [expr $testLowIter] 40 | set currentDisp [expr $Dincr/20]; 41 | source SolutionAlgorithmSubFile.tcl 42 | 43 | # If it's not ok, try to decrease dT a bit more, but keep the toerance the samecall another file for this (just to keep this file clean) 44 | set currentTolerance [expr $testTolerance] 45 | set currentNumIterations [expr $testLowIter] 46 | set currentDisp [expr $Dincr/40]; 47 | source SolutionAlgorithmSubFile.tcl 48 | 49 | # If it's not ok, try to decrease dT a bit more, but keep the toerance the samecall another file for this (just to keep this file clean) 50 | set currentTolerance [expr $testTolerance] 51 | set currentNumIterations [expr $testLowIter] 52 | set currentDisp [expr $Dincr/80]; 53 | source SolutionAlgorithmSubFile.tcl 54 | 55 | # If it's not ok, try to decrease dT a bit more, but keep the toerance the samecall another file for this (just to keep this file clean) 56 | set currentTolerance [expr $testTolerance] 57 | set currentNumIterations [expr $testLowIter] 58 | set currentDisp [expr $Dincr/100]; 59 | source SolutionAlgorithmSubFile.tcl 60 | 61 | # If it's not ok, go to a more relaxed tolerance1...call another file for this (just to keep this file clean) 62 | set currentTolerance [expr $testMinTolerance1] 63 | set currentNumIterations [expr $testLowIter] 64 | set currentDisp [expr $Dincr/10]; # This was /10, so maybe change back? 65 | source SolutionAlgorithmSubFile.tcl 66 | 67 | # If it's not ok, go to a more relaxed tolerance1...call another file for this (just to keep this file clean) 68 | set currentTolerance [expr $testMinTolerance1] 69 | set currentNumIterations [expr $testLowIter] 70 | set currentDisp [expr $Dincr/20]; # This was /20, so maybe change back? 71 | source SolutionAlgorithmSubFile.tcl 72 | 73 | # If it's not ok, go to a more relaxed tolerance1...call another file for this (just to keep this file clean) 74 | set currentTolerance [expr $testMinTolerance1] 75 | set currentNumIterations [expr $testLowIter] 76 | set currentDisp [expr $Dincr/40]; # This was /20, so maybe change back? 77 | source SolutionAlgorithmSubFile.tcl 78 | 79 | # If it's not ok, go to a more relaxed tolerance1...call another file for this (just to keep this file clean) 80 | set currentTolerance [expr $testMinTolerance1] 81 | set currentNumIterations [expr $testLowIter] 82 | set currentDisp [expr $Dincr/80]; # This was /20, so maybe change back? 83 | source SolutionAlgorithmSubFile.tcl 84 | 85 | # If it's not ok, go to a more relaxed tolerance1...call another file for this (just to keep this file clean) 86 | set currentTolerance [expr $testMinTolerance1] 87 | set currentNumIterations [expr $testLowIter] 88 | set currentDisp [expr $Dincr/100]; # This was /20, so maybe change back? 89 | source SolutionAlgorithmSubFile.tcl 90 | 91 | # If it's not ok, go to a more relaxed tolerance2...call another file for this (just to keep this file clean) 92 | set currentTolerance [expr $testMinTolerance2] 93 | set currentNumIterations [expr $testLowIter] 94 | set currentDisp [expr $Dincr/10]; 95 | source SolutionAlgorithmSubFile.tcl 96 | 97 | # If it's not ok, go to a more relaxed tolerance2...call another file for this (just to keep this file clean) 98 | # Decrease dT more 99 | set currentTolerance [expr $testMinTolerance2] 100 | set currentNumIterations [expr $testLowIter] 101 | set currentDisp [expr $Dincr/20]; 102 | source SolutionAlgorithmSubFile.tcl 103 | 104 | # If it's not ok, go to a more relaxed tolerance2...call another file for this (just to keep this file clean) 105 | # Increase the number of iterations 106 | set currentTolerance [expr $testMinTolerance2] 107 | set currentNumIterations [expr $testLowIter] 108 | set currentDisp [expr $Dincr/40]; 109 | source SolutionAlgorithmSubFile.tcl 110 | 111 | # If it's not ok, go to a more relaxed tolerance2...call another file for this (just to keep this file clean) 112 | set currentTolerance [expr $testMinTolerance2] 113 | set currentNumIterations [expr $testLowIter] 114 | set currentDisp [expr $Dincr/80]; 115 | source SolutionAlgorithmSubFile.tcl 116 | 117 | # If it's not ok, go to a more relaxed tolerance2...call another file for this (just to keep this file clean) 118 | set currentTolerance [expr $testMinTolerance2] 119 | set currentNumIterations [expr $testLowIter] 120 | set currentDisp [expr $Dincr/100]; 121 | source SolutionAlgorithmSubFile.tcl 122 | 123 | # If it's not ok, go to a more relaxed tolerance3...call another file for this (just to keep this file clean) 124 | set currentTolerance [expr $testMinTolerance3] 125 | set currentNumIterations [expr $testLowIter] 126 | set currentDisp [expr $Dincr/10]; 127 | source SolutionAlgorithmSubFile.tcl 128 | 129 | # If it's not ok, go to a more relaxed tolerance3...call another file for this (just to keep this file clean) 130 | set currentTolerance [expr $testMinTolerance3] 131 | set currentNumIterations [expr $testLowIter] 132 | set currentDisp [expr $Dincr/20]; 133 | source SolutionAlgorithmSubFile.tcl 134 | 135 | # If it's not ok, go to a more relaxed tolerance3...call another file for this (just to keep this file clean) 136 | set currentTolerance [expr $testMinTolerance3] 137 | set currentNumIterations [expr $testLowIter] 138 | set currentDisp [expr $Dincr/40]; 139 | source SolutionAlgorithmSubFile.tcl 140 | 141 | # If it's not ok, go to a more relaxed tolerance3...call another file for this (just to keep this file clean) 142 | set currentTolerance [expr $testMinTolerance3] 143 | set currentNumIterations [expr $testLowIter] 144 | set currentDisp [expr $Dincr/80]; 145 | source SolutionAlgorithmSubFile.tcl 146 | 147 | # If it's not ok, go to a more relaxed tolerance3...call another file for this (just to keep this file clean) 148 | set currentTolerance [expr $testMinTolerance3] 149 | set currentNumIterations [expr $testLowIter] 150 | set currentDisp [expr $Dincr/100]; 151 | source SolutionAlgorithmSubFile.tcl 152 | 153 | # If it's not ok, go to a more relaxed tolerance4...call another file for this (just to keep this file clean) 154 | set currentTolerance [expr $testMinTolerance4] 155 | set currentNumIterations [expr $testLowIter] 156 | set currentDisp [expr $Dincr/10]; 157 | source SolutionAlgorithmSubFile.tcl 158 | 159 | # If it's not ok, go to a more relaxed tolerance4...call another file for this (just to keep this file clean) 160 | set currentTolerance [expr $testMinTolerance4] 161 | set currentNumIterations [expr $testLowIter] 162 | set currentDisp [expr $Dincr/20]; 163 | source SolutionAlgorithmSubFile.tcl 164 | 165 | # If it's not ok, go to a more relaxed tolerance4...call another file for this (just to keep this file clean) 166 | set currentTolerance [expr $testMinTolerance4] 167 | set currentNumIterations [expr $testLowIter] 168 | set currentDisp [expr $Dincr/40]; 169 | source SolutionAlgorithmSubFile.tcl 170 | 171 | # If it's not ok, go to a more relaxed tolerance4...call another file for this (just to keep this file clean) 172 | set currentTolerance [expr $testMinTolerance4] 173 | set currentNumIterations [expr $testLowIter] 174 | set currentDisp [expr $Dincr/80]; 175 | source SolutionAlgorithmSubFile.tcl 176 | 177 | # If it's not ok, go to a more relaxed tolerance4...call another file for this (just to keep this file clean) 178 | set currentTolerance [expr $testMinTolerance4] 179 | set currentNumIterations [expr $testLowIter] 180 | set currentDisp [expr $Dincr/100]; 181 | source SolutionAlgorithmSubFile.tcl 182 | 183 | # If it's not ok, go to a more relaxed tolerance5...call another file for this (just to keep this file clean) 184 | set currentTolerance [expr $testMinTolerance5] 185 | set currentNumIterations [expr $testLowIter] 186 | set currentDisp [expr $Dincr/10]; 187 | source SolutionAlgorithmSubFile.tcl 188 | 189 | # If it's not ok, go to a more relaxed tolerance5...call another file for this (just to keep this file clean) 190 | set currentTolerance [expr $testMinTolerance5] 191 | set currentNumIterations [expr $testLowIter] 192 | set currentDisp [expr $Dincr/20]; 193 | source SolutionAlgorithmSubFile.tcl 194 | 195 | # If it's not ok, go to a more relaxed tolerance5...call another file for this (just to keep this file clean) 196 | set currentTolerance [expr $testMinTolerance5] 197 | set currentNumIterations [expr $testLowIter] 198 | set currentDisp [expr $Dincr/40]; 199 | source SolutionAlgorithmSubFile.tcl 200 | 201 | # If it's not ok, go to a more relaxed tolerance5...call another file for this (just to keep this file clean) 202 | set currentTolerance [expr $testMinTolerance5] 203 | set currentNumIterations [expr $testLowIter] 204 | set currentDisp [expr $Dincr/80]; 205 | source SolutionAlgorithmSubFile.tcl 206 | 207 | # If it's not ok, go to a more relaxed tolerance5...call another file for this (just to keep this file clean) 208 | set currentTolerance [expr $testMinTolerance5] 209 | set currentNumIterations [expr $testLowIter] 210 | set currentDisp [expr $Dincr/100]; 211 | source SolutionAlgorithmSubFile.tcl 212 | 213 | set currentTime [getTime] 214 | } -------------------------------------------------------------------------------- /Models and Tcl Files/Spring_IMK.tcl: -------------------------------------------------------------------------------- 1 | ################################################################################################################## 2 | # Spring_IMK.tcl 3 | # 4 | # SubRoutine to construct a rotational spring representing the moment-rotation behaviour of steel beam-columns 5 | # and beams that are part of fully-restrained beam-to-column connections. 6 | # 7 | # The subroutine also considers modeling uncertainty based on the logarithmic standard deviations specified by the user. 8 | # 9 | # References: 10 | #-------------- 11 | # Lignos, D. G. and H. Krawinkler (2011). "Deterioration Modeling of Steel Components in Support of Collapse 12 | # Prediction of Steel Moment Frames under Earthquake Loading." Journal of Structural Engineering 137(11). 13 | # 14 | # Elkady, A. and D. G. Lignos (2014). "Modeling of the Composite Action in Fully Restrained Beam-to-Column 15 | # Connections: ‎Implications in the Seismic Design and Collapse Capacity of Steel Special Moment Frames." 16 | # Earthquake Eng. & Structural Dynamics 43(13). 17 | # 18 | # Lignos, D. G., et al. (2019). "Proposed Updates to the ASCE 41 Nonlinear Modeling Parameters for Wide-Flange 19 | # Steel Columns in Support of Performance-based Seismic Engineering." Journal of Structural Engineering 145(9). 20 | # 21 | ################################################################################################################## 22 | # 23 | # Input Arguments: 24 | #------------------ 25 | # SpringID Spring ID 26 | # NodeI Node i ID 27 | # NodeJ Node j ID 28 | # E Young's modulus 29 | # Fy Yield stress 30 | # Ix Moment of inertia of section 31 | # d Section depth 32 | # htw Web slenderness ratio 33 | # bftf Flange slenderness ratio 34 | # L Member Length 35 | # Ls Shear Span 36 | # Lb Unbraced length 37 | # My Effective Yield Moment 38 | # PgPye Axial load ratio due to gravity 39 | # CompositeFlag FLAG for Composite Action Consideration: 0 --> Ignore Composite Effect 40 | # 1 --> Consider Composite Effect 41 | # ConnectionType Type of Connection: 0 --> Reduced Beam Section 42 | # 1 --> Non-Reduced Beam Section 43 | # 2 --> Column Section 44 | # Units Unsed Units: 1 --> millimeters and MPa 45 | # 2 --> inches and ksi 46 | # 47 | # Written by: Dr. Ahmed Elkady, University of Southampton, UK 48 | # 49 | ################################################################################################################## 50 | 51 | 52 | proc Spring_IMK {SpringID NodeI NodeJ E Fy Ix d htw bftf ry L Ls Lb My PgPye CompositeFlag ConnectionType Units} { 53 | 54 | set n 10.0; 55 | if {$Units == 1} { 56 | set c1 1.0; 57 | set c2 1.0; 58 | set c3 25.4; 59 | set c4 1000.0; 60 | } else { 61 | set c1 25.4; 62 | set c2 6.895; 63 | set c3 1.0; 64 | set c4 1.0; 65 | } 66 | 67 | 68 | set K [expr ($n+1.0) * 6 * $E * $Ix / $L]; 69 | 70 | ####################################################################################################### 71 | ####################################################################################################### 72 | ####################################################################################################### 73 | ####################################################################################################### 74 | 75 | if {$ConnectionType == 0} { 76 | 77 | # Rotational capacities calculated using Lignos and Krawinkler (2009) RBS equations 78 | set theta_p [expr 0.19 * pow(($htw),-0.314) * pow(($bftf),-0.100) * pow(($Lb/$ry),-0.185) * pow(($Ls/$d),0.113) * pow(($c1 * $d/533),-0.760) * pow(($c2 * $Fy* $c4/355),-0.070)]; 79 | set theta_pc [expr 9.52 * pow(($htw),-0.513) * pow(($bftf),-0.863) * pow(($Lb/$ry),-0.108) * pow(($c2 * $Fy* $c4/355),-0.360)]; 80 | set Lmda [expr 585 * pow(($htw),-1.140) * pow(($bftf),-0.632) * pow(($Lb/$ry),-0.205) * pow(($c2 * $Fy* $c4/355),-0.391)]; 81 | 82 | # FOR BARE STEEL BEAM 83 | if {$CompositeFlag == 0} { 84 | set MyPMy 1.0; 85 | set MyNMy 1.0; 86 | set McMyP 1.1; 87 | set McMyN 1.1; 88 | 89 | # Corrected rotations to account for elastic deformations 90 | set theta_y [expr $My/(6 * $E * $Ix / $L)]; 91 | set theta_p [expr $theta_p - ($McMyP-1.0)*$My/(6 * $E * $Ix / $L)]; 92 | set theta_pc [expr $theta_pc + $theta_y + ($McMyP-1.0)*$My/(6 * $E * $Ix / $L)]; 93 | 94 | set theta_p_P $theta_p; 95 | set theta_p_N $theta_p; 96 | set theta_pc_P $theta_pc; 97 | set theta_pc_N $theta_pc; 98 | set theta_u 0.2; 99 | 100 | set D_P 1.0; 101 | set D_N 1.0; 102 | 103 | set Res_P 0.4; 104 | set Res_N 0.4; 105 | 106 | set c 1.0; 107 | 108 | } 109 | 110 | # FOR COMPOSITE BEAM 111 | if {$CompositeFlag != 0} { 112 | set MyPMy 1.35; 113 | set MyNMy 1.25; 114 | set McMyP 1.30; 115 | set McMyN 1.05; 116 | 117 | # Corrected rotations to account for elastic deformations 118 | set theta_y [expr $My/(6 * $E * $Ix / $L)]; 119 | set theta_p_p [expr $theta_p - ($McMyP-1.0)*$My/(6 * $E * $Ix / $L)]; 120 | set theta_p_n [expr $theta_p - ($McMyN-1.0)*$My/(6 * $E * $Ix / $L)]; 121 | set theta_pc_p [expr $theta_pc + $theta_y + ($McMyP-1.0)*$My/(6 * $E * $Ix / $L)]; 122 | set theta_pc_n [expr $theta_pc + $theta_y + ($McMyN-1.0)*$My/(6 * $E * $Ix / $L)]; 123 | 124 | set theta_p_P [expr 1.80*$theta_p_p]; 125 | set theta_p_N [expr 0.95*$theta_p_n]; 126 | set theta_pc_P [expr 1.35*$theta_pc_p]; 127 | set theta_pc_N [expr 0.95*$theta_pc_n]; 128 | set theta_u 0.2; 129 | 130 | set D_P 1.15; 131 | set D_N 1.0; 132 | 133 | set Res_P 0.3; 134 | set Res_N 0.2; 135 | 136 | set c 1.0; 137 | 138 | } 139 | 140 | } 141 | 142 | ####################################################################################################### 143 | ####################################################################################################### 144 | ####################################################################################################### 145 | ####################################################################################################### 146 | 147 | if {$ConnectionType == 1} { 148 | 149 | # Rotational capacities calculated using Lignos and Krawinkler (2009) other-than-RBS equations 150 | if {$d > [expr $c3*21.0]} { 151 | set theta_p [expr 0.318 * pow(($htw),-0.550) * pow(($bftf),-0.345) * pow(($Lb/$ry),-0.023) * pow(($Ls/$d),0.090) * pow(($c1 * $d/533),-0.330) * pow(($c2 * $Fy* $c4/355),-0.130)]; 152 | set theta_pc [expr 7.500 * pow(($htw),-0.610) * pow(($bftf),-0.710) * pow(($Lb/$ry),-0.110) * pow(($c1 * $d/533),-0.161) * pow(($c2 * $Fy* $c4/355),-0.320)]; 153 | set Lmda [expr 536 * pow(($htw),-1.260) * pow(($bftf),-0.525) * pow(($Lb/$ry),-0.130) * pow(($c2 * $Fy* $c4/355),-0.291)]; 154 | } else { 155 | set theta_p [expr 0.0865 * pow(($htw),-0.360) * pow(($bftf),-0.140) * pow(($Ls/$d),0.340) * pow(($c1 * $d/533),-0.721) * pow(($c2 * $Fy* $c4/355),-0.230)]; 156 | set theta_pc [expr 5.6300 * pow(($htw),-0.565) * pow(($bftf),-0.800) * pow(($c1 * $d/533),-0.280) * pow(($c2 * $Fy* $c4/355),-0.430)]; 157 | set Lmda [expr 495 * pow(($htw),-1.340) * pow(($bftf),-0.595) * pow(($c2 * $Fy* $c4/355),-0.360)]; 158 | 159 | } 160 | 161 | # FOR BARE STEEL BEAM 162 | if {$CompositeFlag == 0} { 163 | set MyPMy 1.0; 164 | set MyNMy 1.0; 165 | set McMyP 1.1; 166 | set McMyN 1.1; 167 | 168 | # Corrected rotations to account for elastic deformations 169 | set theta_y [expr $My/(6 * $E * $Ix / $L)]; 170 | set theta_p [expr $theta_p - ($McMyP-1.0)*$My/(6 * $E * $Ix / $L)]; 171 | set theta_pc [expr $theta_pc + $theta_y + ($McMyP-1.0)*$My/(6 * $E * $Ix / $L)]; 172 | 173 | set theta_p_P $theta_p; 174 | set theta_p_N $theta_p; 175 | set theta_pc_P $theta_pc; 176 | set theta_pc_N $theta_pc; 177 | set theta_u 0.2; 178 | 179 | set D_P 1.0; 180 | set D_N 1.0; 181 | 182 | set Res_P 0.4; 183 | set Res_N 0.4; 184 | 185 | set c 1.0; 186 | 187 | } 188 | 189 | # FOR COMPOSITE BEAM 190 | if {$CompositeFlag != 0} { 191 | set MyPMy 1.35; 192 | set MyNMy 1.25; 193 | set McMyP 1.30; 194 | set McMyN 1.05; 195 | 196 | # Corrected rotations to account for elastic deformations 197 | set theta_y [expr $My/(6 * $E * $Ix / $L)]; 198 | set theta_p_p [expr $theta_p - ($McMyP-1.0)*$My/(6 * $E * $Ix / $L)]; 199 | set theta_p_n [expr $theta_p - ($McMyN-1.0)*$My/(6 * $E * $Ix / $L)]; 200 | set theta_pc_p [expr $theta_pc + $theta_y + ($McMyP-1.0)*$My/(6 * $E * $Ix / $L)]; 201 | set theta_pc_n [expr $theta_pc + $theta_y + ($McMyN-1.0)*$My/(6 * $E * $Ix / $L)]; 202 | 203 | set theta_p_P [expr 1.80*$theta_p_p]; 204 | set theta_p_N [expr 0.95*$theta_p_n]; 205 | set theta_pc_P [expr 1.35*$theta_pc_p]; 206 | set theta_pc_N [expr 0.95*$theta_pc_n]; 207 | set theta_u 0.2; 208 | 209 | set D_P 1.15; 210 | set D_N 1.00; 211 | 212 | set Res_P 0.3; 213 | set Res_N 0.2; 214 | 215 | set c 1.0; 216 | 217 | } 218 | } 219 | 220 | 221 | ####################################################################################################### 222 | ####################################################################################################### 223 | ####################################################################################################### 224 | ####################################################################################################### 225 | 226 | if {$ConnectionType == 2} { 227 | 228 | # Rotational capacities calculated using Lignos et al. (2019) column regression equations for monotonic 229 | set theta_p [expr 294 * pow(($htw),-1.700) * pow(($Lb/$ry),-0.700) * pow((1-$PgPye),1.600)]; 230 | set theta_pc [expr 90 * pow(($htw),-0.800) * pow(($Lb/$ry),-0.800) * pow((1-$PgPye),2.500)]; 231 | if {$theta_p > 0.20} {set theta_p 0.2} 232 | if {$theta_pc > 0.30} {set theta_pc 0.3} 233 | if {$PgPye <= 0.35} { 234 | set Lmda [expr 25500 * pow(($htw),-2.140) * pow(($Lb/$ry),-0.530) * pow((1-$PgPye),4.920)]; 235 | } else { 236 | set Lmda [expr 268000* pow(($htw),-2.300) * pow(($Lb/$ry),-1.300) * pow((1-$PgPye),1.190)]; 237 | } 238 | 239 | if {$PgPye <= 0.2} { 240 | set My [expr (1.15/1.1)*$My*(1-$PgPye/2)]; 241 | } else { 242 | set My [expr (1.15/1.1)*$My*(9/8)*(1-$PgPye)]; 243 | } 244 | 245 | set McMy [expr 12.5 * pow(($htw),-0.200) * pow(($Lb/$ry),-0.400) * pow((1-$PgPye),0.400)]; 246 | if {$McMy < 1.0} {set McMy 1.0} 247 | if {$McMy > 1.3} {set McMy 1.3} 248 | 249 | set MyPMy 1.0; 250 | set MyNMy 1.0; 251 | set McMyP $McMy; 252 | set McMyN $McMy; 253 | 254 | # Corrected rotations to account for elastic deformations 255 | set theta_y [expr $My/(6 * $E * $Ix / $L)]; 256 | set theta_p [expr $theta_p - ($McMyP-1.0)*$My/(6 * $E * $Ix / $L)]; 257 | set theta_pc [expr $theta_pc + $theta_y + ($McMyP-1.0)*$My/(6 * $E * $Ix / $L)]; 258 | 259 | set theta_p_P $theta_p; 260 | set theta_p_N $theta_p; 261 | set theta_pc_P $theta_pc; 262 | set theta_pc_N $theta_pc; 263 | set theta_u 0.15; 264 | 265 | set D_P 1.0; 266 | set D_N 1.0; 267 | 268 | set Res_P [expr 0.5-0.4*$PgPye]; 269 | set Res_N [expr 0.5-0.4*$PgPye]; 270 | 271 | set c 1.0; 272 | 273 | } 274 | 275 | ####################################################################################################### 276 | ####################################################################################################### 277 | ####################################################################################################### 278 | ####################################################################################################### 279 | 280 | set My_P [expr $MyPMy * $My]; 281 | set My_N [expr $MyNMy * $My]; 282 | 283 | 284 | # # Bilin material model 285 | #set My_P [expr $MyPMy * $My]; 286 | #set My_N [expr -$MyNMy * $My]; 287 | #set as_mem_p [expr ($McMyP-1.)*$My_P/($theta_p_P * 6.*$E * $Ix/$L)]; 288 | #set as_mem_n [expr -($McMyN-1.)*$My_N/($theta_p_N * 6.*$E * $Ix/$L)]; 289 | #set SH_mod_P [expr ($as_mem_p)/(1.0+$n*(1.0-$as_mem_p))]; 290 | #set SH_mod_N [expr ($as_mem_n)/(1.0+$n*(1.0-$as_mem_n))]; 291 | #uniaxialMaterial Bilin $SpringID $K $SH_mod_P $SH_mod_N $My_P $My_N $L_S $L_C $L_A $L_K $c_S $c_C $c_A $c_K $theta_p_P $theta_p_N $theta_pc_P $theta_pc_N $Res_P $Res_N $theta_u $theta_u $D_P $D_N 292 | 293 | 294 | ################################################################################################################## 295 | #Random generation of backbone parameters based on assigned uncertainty 296 | ################################################################################################################## 297 | global Sigma_IMKcol Sigma_IMKbeam; global xRandom; 298 | if {$ConnectionType == 2} { 299 | set SigmaX [lindex $Sigma_IMKcol 0]; Generate_lognrmrand $K $SigmaX; set K $xRandom; 300 | set SigmaX [lindex $Sigma_IMKcol 1]; Generate_lognrmrand $My_P $SigmaX; set My_P $xRandom; 301 | set My_N $xRandom; 302 | set SigmaX [lindex $Sigma_IMKcol 2]; Generate_lognrmrand $McMyP $SigmaX; set McMyP [expr max(1.01,$xRandom)]; 303 | set McMyN [expr max(1.01,$xRandom)]; 304 | set SigmaX [lindex $Sigma_IMKcol 3]; Generate_lognrmrand $Res_P $SigmaX; set Res_P $xRandom; 305 | set Res_N $xRandom; 306 | set SigmaX [lindex $Sigma_IMKcol 4]; Generate_lognrmrand $theta_p_P $SigmaX; set theta_p_P $xRandom; 307 | set theta_p_N $xRandom; 308 | set SigmaX [lindex $Sigma_IMKcol 5]; Generate_lognrmrand $theta_pc_P $SigmaX; set theta_pc_P $xRandom; 309 | set theta_pc_N $xRandom; 310 | set SigmaX [lindex $Sigma_IMKcol 6]; Generate_lognrmrand $theta_u $SigmaX; set theta_u $xRandom; 311 | set SigmaX [lindex $Sigma_IMKcol 7]; Generate_lognrmrand $Lmda $SigmaX; set Lmda $xRandom; 312 | #set SigmaX [lindex $Sigma_IMKcol 8]; Generate_lognrmrand $c $SigmaX; set c $xRandom; 313 | } 314 | if {$ConnectionType != 2 && $CompositeFlag == 0} { 315 | set SigmaX [lindex $Sigma_IMKbeam 0]; Generate_lognrmrand $K $SigmaX; set K $xRandom; 316 | set SigmaX [lindex $Sigma_IMKbeam 1]; Generate_lognrmrand $My_P $SigmaX; set My_P $xRandom; 317 | set My_N $xRandom; 318 | set SigmaX [lindex $Sigma_IMKbeam 2]; Generate_lognrmrand $McMyP $SigmaX; set McMyP [expr max(1.01,$xRandom)]; 319 | set McMyN [expr max(1.01,$xRandom)]; 320 | set SigmaX [lindex $Sigma_IMKbeam 3]; Generate_lognrmrand $Res_P $SigmaX; set Res_P $xRandom; 321 | set Res_N $xRandom; 322 | set SigmaX [lindex $Sigma_IMKbeam 4]; Generate_lognrmrand $theta_p_P $SigmaX; set theta_p_P $xRandom; 323 | set theta_p_N $xRandom; 324 | set SigmaX [lindex $Sigma_IMKbeam 5]; Generate_lognrmrand $theta_pc_P $SigmaX; set theta_pc_P $xRandom; 325 | set theta_pc_N $xRandom; 326 | set SigmaX [lindex $Sigma_IMKbeam 6]; Generate_lognrmrand $theta_u $SigmaX; set theta_u $xRandom; 327 | set SigmaX [lindex $Sigma_IMKbeam 7]; Generate_lognrmrand $Lmda $SigmaX; set Lmda $xRandom; 328 | #set SigmaX [lindex $Sigma_IMKbeam 8]; Generate_lognrmrand $c $SigmaX; set c $xRandom; 329 | 330 | } 331 | if {$ConnectionType != 2 && $CompositeFlag == 1} { 332 | set SigmaX [lindex $Sigma_IMKbeam 0]; Generate_lognrmrand $K $SigmaX; set K $xRandom; 333 | set SigmaX [lindex $Sigma_IMKbeam 1]; Generate_lognrmrand $My_P $SigmaX; set My_P $xRandom; 334 | set SigmaX [lindex $Sigma_IMKbeam 1]; Generate_lognrmrand $My_N $SigmaX; set My_N $xRandom; 335 | set SigmaX [lindex $Sigma_IMKbeam 2]; Generate_lognrmrand $McMyP $SigmaX; set McMyP [expr max(1.01,$xRandom)]; 336 | set SigmaX [lindex $Sigma_IMKbeam 2]; Generate_lognrmrand $McMyN $SigmaX; set McMyN [expr max(1.01,$xRandom)]; 337 | set SigmaX [lindex $Sigma_IMKbeam 3]; Generate_lognrmrand $Res_P $SigmaX; set Res_P $xRandom; 338 | set SigmaX [lindex $Sigma_IMKbeam 3]; Generate_lognrmrand $Res_N $SigmaX; set Res_N $xRandom; 339 | set SigmaX [lindex $Sigma_IMKbeam 4]; Generate_lognrmrand $theta_p_P $SigmaX; set theta_p_P $xRandom; 340 | set SigmaX [lindex $Sigma_IMKbeam 4]; Generate_lognrmrand $theta_p_N $SigmaX; set theta_p_N $xRandom; 341 | set SigmaX [lindex $Sigma_IMKbeam 5]; Generate_lognrmrand $theta_pc_P $SigmaX; set theta_pc_P $xRandom; 342 | set SigmaX [lindex $Sigma_IMKbeam 5]; Generate_lognrmrand $theta_pc_N $SigmaX; set theta_pc_N $xRandom; 343 | set SigmaX [lindex $Sigma_IMKbeam 6]; Generate_lognrmrand $theta_u $SigmaX; set theta_u $xRandom; 344 | set SigmaX [lindex $Sigma_IMKbeam 7]; Generate_lognrmrand $Lmda $SigmaX; set Lmda $xRandom; 345 | #set SigmaX [lindex $Sigma_IMKbeam 8]; Generate_lognrmrand $c $SigmaX; set c $xRandom; 346 | } 347 | ################################################################################################################## 348 | ################################################################################################################## 349 | ################################################################################################################## 350 | 351 | 352 | 353 | # Cyclic deterioration parameters 354 | if {$ConnectionType == 2} { 355 | set L_S $Lmda; set L_C [expr 0.9*$Lmda]; set L_A $Lmda; set L_K [expr 0.9*$Lmda]; 356 | } else { 357 | set L_S $Lmda; set L_C $Lmda; set L_A $Lmda; set L_K $Lmda; 358 | } 359 | set c_S $c; set c_C $c; set c_A $c; set c_K $c; 360 | 361 | # IMKBilin material model (This is the updated version of the Bilin model) 362 | uniaxialMaterial IMKBilin $SpringID $K $theta_p_P $theta_pc_P $theta_u $My_P $McMyP $Res_P $theta_p_N $theta_pc_N $theta_u $My_N $McMyN $Res_N $L_S $L_C $L_K $c_S $c_C $c_K $D_P $D_N; 363 | 364 | element zeroLength $SpringID $NodeI $NodeJ -mat 99 99 $SpringID -dir 1 2 6 -doRayleigh 1; 365 | 366 | 367 | } -------------------------------------------------------------------------------- /Models and Tcl Files/SMF2B.tcl: -------------------------------------------------------------------------------- 1 | #################################################################################################### 2 | #################################################################################################### 3 | # 2-story MRF Building 4 | #################################################################################################### 5 | #################################################################################################### 6 | 7 | # CLEAR ALL; 8 | wipe all; 9 | 10 | # BUILD MODEL (2D - 3 DOF/node) 11 | model basic -ndm 2 -ndf 3 12 | 13 | #################################################################################################### 14 | # BASIC MODEL VARIABLES # 15 | #################################################################################################### 16 | 17 | set global RunTime; 18 | set global StartTime; 19 | set global MaxRunTime; 20 | set MaxRunTime [expr 10.0000 * 60.]; 21 | set StartTime [clock seconds]; 22 | set RunTime 0.0; 23 | set EQ 1; 24 | set PO 0; 25 | set ELF 0; 26 | set Composite 0; 27 | set ShowAnimation 1; 28 | set ModePO 1; 29 | set DriftPO 0.100000; 30 | set DampModeI 1; 31 | set DampModeJ 3; 32 | set zeta 0.020000; 33 | 34 | #################################################################################################### 35 | # SOURCING SUBROUTINES # 36 | #################################################################################################### 37 | 38 | source DisplayModel3D.tcl; 39 | source DisplayPlane.tcl; 40 | source Spring_PZ.tcl; 41 | source Spring_IMK.tcl; 42 | source Spring_Zero.tcl; 43 | source Spring_Rigid.tcl; 44 | source Spring_Pinching.tcl; 45 | source ConstructPanel_Rectangle.tcl; 46 | source DynamicAnalysisCollapseSolverX.tcl; 47 | source Generate_lognrmrand.tcl; 48 | 49 | #################################################################################################### 50 | # Create Results Folders # 51 | #################################################################################################### 52 | 53 | # RESULT FOLDER 54 | set MainFolder "ResultsMainFolder"; 55 | set SubFolder "ResultsSubFolder"; 56 | file mkdir $MainFolder; 57 | cd $MainFolder 58 | file mkdir $SubFolder; 59 | cd .. 60 | 61 | #################################################################################################### 62 | # INPUT # 63 | #################################################################################################### 64 | 65 | # FRAME CENTERLINE DIMENSIONS 66 | set NStory 2; 67 | set NBay 3; 68 | 69 | # MATERIAL PROPERTIES 70 | set E 29000.0; 71 | set mu 0.3; 72 | set fy [expr 55.0 * 1.0]; 73 | 74 | # BASIC MATERIALS 75 | uniaxialMaterial Elastic 9 1.e-9; #Flexible Material 76 | uniaxialMaterial Elastic 99 1000000000.; #Rigid Material 77 | uniaxialMaterial UVCuniaxial 666 29000.0000 55.0000 18.0000 10.0000 0.0000 1.0000 2 3500.0000 180.0000 345.0000 10.0000; #Voce-Chaboche Material 78 | 79 | # GEOMETRIC TRANSFORMATIONS IDs 80 | geomTransf Linear 1; 81 | geomTransf PDelta 2; 82 | geomTransf Corotational 3; 83 | set trans_Linear 1; 84 | set trans_PDelta 2; 85 | set trans_Corot 3; 86 | set trans_selected 2; 87 | 88 | # STIFF ELEMENTS PROPERTY 89 | set A_Stiff 1000.0; 90 | set I_Stiff 100000.0; 91 | 92 | # COMPOSITE BEAM FACTOR 93 | set Composite 0; 94 | set Comp_I 1.400; 95 | set Comp_I_GC 1.400; 96 | 97 | # FIBER ELEMENT PROPERTIES 98 | set nSegments 8; 99 | set initialGI 0.00100; 100 | set nIntegration 5; 101 | 102 | # LOGARITHMIC STANDARD DEVIATIONS (FOR UNCERTAINTY CONSIDERATION) 103 | global Sigma_IMKcol Sigma_IMKbeam Sigma_Pinching4 Sigma_PZ; 104 | set Sigma_IMKcol [list 1.e-9 1.e-9 1.e-9 1.e-9 1.e-9 1.e-9 1.e-9 1.e-9 1.e-9 ]; 105 | set Sigma_IMKbeam [list 1.e-9 1.e-9 1.e-9 1.e-9 1.e-9 1.e-9 1.e-9 1.e-9 1.e-9 ]; 106 | set Sigma_Pinching4 [list 1.e-9 1.e-9 1.e-9 1.e-9 1.e-9 1.e-9 1.e-9 1.e-9 ]; 107 | set Sigma_PZ [list 1.e-9 1.e-9 1.e-9 1.e-9 ]; 108 | set Sigma_fy 1.e-9; 109 | set Sigma_zeta 1.e-9; 110 | global Sigma_fy Sigma_fyB Sigma_fyG Sigma_GI; global xRandom; 111 | set SigmaX $Sigma_fy; Generate_lognrmrand $fy $SigmaX; set fy $xRandom; 112 | 113 | #################################################################################################### 114 | # PRE-CALCULATIONS # 115 | #################################################################################################### 116 | 117 | # REDUCED BEAM SECTION CONNECTION DISTANCE FROM COLUMN 118 | set L_RBS3 [expr 0.625 * 5.53 + 0.750 * 15.90/2.]; 119 | set L_RBS2 [expr 0.625 * 10.50 + 0.750 * 30.30/2.]; 120 | 121 | # FRAME GRID LINES 122 | set Floor3 336.00; 123 | set Floor2 180.00; 124 | set Floor1 0.0; 125 | 126 | set Axis1 0.0; 127 | set Axis2 240.00; 128 | set Axis3 480.00; 129 | set Axis4 720.00; 130 | set Axis5 960.00; 131 | set Axis6 1200.00; 132 | 133 | set HBuilding 336.00; 134 | set WFrame 720.00; 135 | variable HBuilding 336.00; 136 | 137 | #################################################################################################### 138 | # NODES # 139 | #################################################################################################### 140 | 141 | # COMMAND SYNTAX 142 | # node $NodeID $X-Coordinate $Y-Coordinate; 143 | 144 | #SUPPORT NODES 145 | node 110 $Axis1 $Floor1; node 120 $Axis2 $Floor1; node 130 $Axis3 $Floor1; node 140 $Axis4 $Floor1; node 150 $Axis5 $Floor1; node 160 $Axis6 $Floor1; 146 | 147 | # EGF COLUMN GRID NODES 148 | node 350 $Axis5 $Floor3; node 360 $Axis6 $Floor3; 149 | node 250 $Axis5 $Floor2; node 260 $Axis6 $Floor2; 150 | 151 | # EGF COLUMN NODES 152 | node 351 $Axis5 $Floor3; node 361 $Axis6 $Floor3; 153 | node 253 $Axis5 $Floor2; node 263 $Axis6 $Floor2; 154 | node 251 $Axis5 $Floor2; node 261 $Axis6 $Floor2; 155 | node 153 $Axis5 $Floor1; node 163 $Axis6 $Floor1; 156 | 157 | # EGF BEAM NODES 158 | node 354 $Axis5 $Floor3; node 362 $Axis6 $Floor3; 159 | node 254 $Axis5 $Floor2; node 262 $Axis6 $Floor2; 160 | 161 | # MF COLUMN NODES 162 | node 311 $Axis1 [expr $Floor3 - 15.90/2]; node 321 $Axis2 [expr $Floor3 - 15.90/2]; node 331 $Axis3 [expr $Floor3 - 15.90/2]; node 341 $Axis4 [expr $Floor3 - 15.90/2]; 163 | node 213 $Axis1 [expr $Floor2 + 30.30/2]; node 223 $Axis2 [expr $Floor2 + 30.30/2]; node 233 $Axis3 [expr $Floor2 + 30.30/2]; node 243 $Axis4 [expr $Floor2 + 30.30/2]; 164 | node 211 $Axis1 [expr $Floor2 - 30.30/2]; node 221 $Axis2 [expr $Floor2 - 30.30/2]; node 231 $Axis3 [expr $Floor2 - 30.30/2]; node 241 $Axis4 [expr $Floor2 - 30.30/2]; 165 | node 113 $Axis1 $Floor1; node 123 $Axis2 $Floor1; node 133 $Axis3 $Floor1; node 143 $Axis4 $Floor1; 166 | 167 | # MF BEAM NODES 168 | node 314 [expr $Axis1 + $L_RBS3 + 24.50/2] $Floor3; node 322 [expr $Axis2 - $L_RBS3 - 25.00/2] $Floor3; node 324 [expr $Axis2 + $L_RBS3 + 25.00/2] $Floor3; node 332 [expr $Axis3 - $L_RBS3 - 25.00/2] $Floor3; node 334 [expr $Axis3 + $L_RBS3 + 25.00/2] $Floor3; node 342 [expr $Axis4 - $L_RBS3 - 24.50/2] $Floor3; 169 | node 214 [expr $Axis1 + $L_RBS2 + 24.50/2] $Floor2; node 222 [expr $Axis2 - $L_RBS2 - 25.00/2] $Floor2; node 224 [expr $Axis2 + $L_RBS2 + 25.00/2] $Floor2; node 232 [expr $Axis3 - $L_RBS2 - 25.00/2] $Floor2; node 234 [expr $Axis3 + $L_RBS2 + 25.00/2] $Floor2; node 242 [expr $Axis4 - $L_RBS2 - 24.50/2] $Floor2; 170 | 171 | # BEAM SPRING NODES 172 | node 3140 [expr $Axis1 + $L_RBS3 + 24.50/2] $Floor3; node 3220 [expr $Axis2 - $L_RBS3 - 25.00/2] $Floor3; node 3240 [expr $Axis2 + $L_RBS3 + 25.00/2] $Floor3; node 3320 [expr $Axis3 - $L_RBS3 - 25.00/2] $Floor3; node 3340 [expr $Axis3 + $L_RBS3 + 25.00/2] $Floor3; node 3420 [expr $Axis4 - $L_RBS3 - 24.50/2] $Floor3; 173 | node 2140 [expr $Axis1 + $L_RBS2 + 24.50/2] $Floor2; node 2220 [expr $Axis2 - $L_RBS2 - 25.00/2] $Floor2; node 2240 [expr $Axis2 + $L_RBS2 + 25.00/2] $Floor2; node 2320 [expr $Axis3 - $L_RBS2 - 25.00/2] $Floor2; node 2340 [expr $Axis3 + $L_RBS2 + 25.00/2] $Floor2; node 2420 [expr $Axis4 - $L_RBS2 - 24.50/2] $Floor2; 174 | 175 | # COLUMN SPLICE NODES 176 | 177 | ################################################################################################### 178 | # PANEL ZONE NODES & ELEMENTS # 179 | ################################################################################################### 180 | 181 | # PANEL ZONE NODES AND ELASTIC ELEMENTS 182 | # Command Syntax; 183 | # ConstructPanel_Rectangle Axis Floor X_Axis Y_Floor E A_Panel I_Panel d_Col d_Beam transfTag 184 | ConstructPanel_Rectangle 1 3 $Axis1 $Floor3 $E $A_Stiff $I_Stiff 24.50 15.90 $trans_selected; ConstructPanel_Rectangle 2 3 $Axis2 $Floor3 $E $A_Stiff $I_Stiff 25.00 15.90 $trans_selected; ConstructPanel_Rectangle 3 3 $Axis3 $Floor3 $E $A_Stiff $I_Stiff 25.00 15.90 $trans_selected; ConstructPanel_Rectangle 4 3 $Axis4 $Floor3 $E $A_Stiff $I_Stiff 24.50 15.90 $trans_selected; 185 | ConstructPanel_Rectangle 1 2 $Axis1 $Floor2 $E $A_Stiff $I_Stiff 24.50 30.30 $trans_selected; ConstructPanel_Rectangle 2 2 $Axis2 $Floor2 $E $A_Stiff $I_Stiff 25.00 30.30 $trans_selected; ConstructPanel_Rectangle 3 2 $Axis3 $Floor2 $E $A_Stiff $I_Stiff 25.00 30.30 $trans_selected; ConstructPanel_Rectangle 4 2 $Axis4 $Floor2 $E $A_Stiff $I_Stiff 24.50 30.30 $trans_selected; 186 | 187 | #################################################################################################### 188 | # PANEL ZONE SPRINGS # 189 | #################################################################################################### 190 | 191 | # COMMAND SYNTAX 192 | # Spring_PZ Element_ID Node_i Node_j E mu fy tw_Col tdp d_Col d_Beam tf_Col bf_Col Ic trib ts Response_ID transfTag 193 | Spring_PZ 903100 403109 403110 $E $mu [expr $fy * 1.0] 0.60 0.00 24.50 15.90 0.96 12.90 4020.00 3.500 4.000 2 1; Spring_PZ 903200 403209 403210 $E $mu [expr $fy * 1.0] 0.70 0.00 25.00 15.90 1.22 13.00 5170.00 3.500 4.000 2 1; Spring_PZ 903300 403309 403310 $E $mu [expr $fy * 1.0] 0.70 0.00 25.00 15.90 1.22 13.00 5170.00 3.500 4.000 2 1; Spring_PZ 903400 403409 403410 $E $mu [expr $fy * 1.0] 0.60 0.00 24.50 15.90 0.96 12.90 4020.00 3.500 4.000 2 1; 194 | Spring_PZ 902100 402109 402110 $E $mu [expr $fy * 1.0] 0.60 0.38 24.50 30.30 0.96 12.90 4020.00 3.500 4.000 2 1; Spring_PZ 902200 402209 402210 $E $mu [expr $fy * 1.0] 0.70 1.19 25.00 30.30 1.22 13.00 5170.00 3.500 4.000 2 1; Spring_PZ 902300 402309 402310 $E $mu [expr $fy * 1.0] 0.70 1.19 25.00 30.30 1.22 13.00 5170.00 3.500 4.000 2 1; Spring_PZ 902400 402409 402410 $E $mu [expr $fy * 1.0] 0.60 0.38 24.50 30.30 0.96 12.90 4020.00 3.500 4.000 2 1; 195 | 196 | #################################################################################################### 197 | # ELASTIC COLUMNS AND BEAMS # 198 | #################################################################################################### 199 | 200 | # COMMAND SYNTAX 201 | # element ModElasticBeam2d $ElementID $iNode $jNode $Area $E $Ix $K11 $K33 $K44 $transformation 202 | 203 | # STIFFNESS MODIFIERS 204 | set n 10.; 205 | set K44_2 [expr 6*(1+$n)/(2+3*$n)]; 206 | set K11_2 [expr (1+2*$n)*$K44_2/(1+$n)]; 207 | set K33_2 [expr (1+2*$n)*$K44_2/(1+$n)]; 208 | set K44_1 [expr 6*$n/(1+3*$n)]; 209 | set K11_1 [expr (1+2*$n)*$K44_1/(1+$n)]; 210 | set K33_1 [expr 2*$K44_1]; 211 | 212 | # COLUMNS 213 | element ModElasticBeam2d 602100 213 311 38.5000 $E [expr ($n+1)/$n*4020.0000] $K11_2 $K33_2 $K44_2 $trans_selected; element ModElasticBeam2d 602200 223 321 47.7000 $E [expr ($n+1)/$n*5170.0000] $K11_2 $K33_2 $K44_2 $trans_selected; element ModElasticBeam2d 602300 233 331 47.7000 $E [expr ($n+1)/$n*5170.0000] $K11_2 $K33_2 $K44_2 $trans_selected; element ModElasticBeam2d 602400 243 341 38.5000 $E [expr ($n+1)/$n*4020.0000] $K11_2 $K33_2 $K44_2 $trans_selected; 214 | element ModElasticBeam2d 601100 113 211 38.5000 $E [expr ($n+1)/$n*4020.0000] $K11_2 $K33_2 $K44_2 $trans_selected; element ModElasticBeam2d 601200 123 221 47.7000 $E [expr ($n+1)/$n*5170.0000] $K11_2 $K33_2 $K44_2 $trans_selected; element ModElasticBeam2d 601300 133 231 47.7000 $E [expr ($n+1)/$n*5170.0000] $K11_2 $K33_2 $K44_2 $trans_selected; element ModElasticBeam2d 601400 143 241 38.5000 $E [expr ($n+1)/$n*4020.0000] $K11_2 $K33_2 $K44_2 $trans_selected; 215 | 216 | # BEAMS 217 | element ModElasticBeam2d 503100 314 322 9.1300 $E [expr ($n+1)/$n*0.90*$Comp_I*375.0000] $K11_2 $K33_2 $K44_2 $trans_selected; element ModElasticBeam2d 503200 324 332 9.1300 $E [expr ($n+1)/$n*0.90*$Comp_I*375.0000] $K11_2 $K33_2 $K44_2 $trans_selected; element ModElasticBeam2d 503300 334 342 9.1300 $E [expr ($n+1)/$n*0.90*$Comp_I*375.0000] $K11_2 $K33_2 $K44_2 $trans_selected; 218 | element ModElasticBeam2d 502100 214 222 38.9000 $E [expr ($n+1)/$n*0.90*$Comp_I*5770.0000] $K11_2 $K33_2 $K44_2 $trans_selected; element ModElasticBeam2d 502200 224 232 38.9000 $E [expr ($n+1)/$n*0.90*$Comp_I*5770.0000] $K11_2 $K33_2 $K44_2 $trans_selected; element ModElasticBeam2d 502300 234 242 38.9000 $E [expr ($n+1)/$n*0.90*$Comp_I*5770.0000] $K11_2 $K33_2 $K44_2 $trans_selected; 219 | 220 | #################################################################################################### 221 | # ELASTIC RBS ELEMENTS # 222 | #################################################################################################### 223 | 224 | element elasticBeamColumn 503104 403104 3140 7.913 $E [expr $Comp_I*302.285] 1; element elasticBeamColumn 503202 403202 3220 7.913 $E [expr $Comp_I*302.285] 1; element elasticBeamColumn 503204 403204 3240 7.913 $E [expr $Comp_I*302.285] 1; element elasticBeamColumn 503302 403302 3320 7.913 $E [expr $Comp_I*302.285] 1; element elasticBeamColumn 503304 403304 3340 7.913 $E [expr $Comp_I*302.285] 1; element elasticBeamColumn 503402 403402 3420 7.913 $E [expr $Comp_I*302.285] 1; 225 | element elasticBeamColumn 502104 402104 2140 33.650 $E [expr $Comp_I*4642.794] 1; element elasticBeamColumn 502202 402202 2220 33.650 $E [expr $Comp_I*4642.794] 1; element elasticBeamColumn 502204 402204 2240 33.650 $E [expr $Comp_I*4642.794] 1; element elasticBeamColumn 502302 402302 2320 33.650 $E [expr $Comp_I*4642.794] 1; element elasticBeamColumn 502304 402304 2340 33.650 $E [expr $Comp_I*4642.794] 1; element elasticBeamColumn 502402 402402 2420 33.650 $E [expr $Comp_I*4642.794] 1; 226 | 227 | ################################################################################################### 228 | # MF BEAM SPRINGS # 229 | ################################################################################################### 230 | 231 | # Command Syntax 232 | # Spring_IMK SpringID iNode jNode E fy Ix d htw bftf ry L Ls Lb My PgPye CompositeFLAG MFconnection Units; 233 | 234 | Spring_IMK 903104 314 3140 $E $fy [expr $Comp_I*229.570] 15.900 51.600 6.280 1.170 196.412 98.206 107.625 2076.279 0.0 $Composite 0 2; Spring_IMK 903202 3220 322 $E $fy [expr $Comp_I*229.570] 15.900 51.600 6.280 1.170 196.412 98.206 107.625 2076.279 0.0 $Composite 0 2; Spring_IMK 903204 324 3240 $E $fy [expr $Comp_I*229.570] 15.900 51.600 6.280 1.170 196.412 98.206 107.625 2076.279 0.0 $Composite 0 2; Spring_IMK 903302 3320 332 $E $fy [expr $Comp_I*229.570] 15.900 51.600 6.280 1.170 196.162 98.081 107.500 2076.279 0.0 $Composite 0 2; Spring_IMK 903304 334 3340 $E $fy [expr $Comp_I*229.570] 15.900 51.600 6.280 1.170 196.162 98.081 107.500 2076.279 0.0 $Composite 0 2; Spring_IMK 903402 3420 342 $E $fy [expr $Comp_I*229.570] 15.900 51.600 6.280 1.170 196.412 98.206 107.625 2076.279 0.0 $Composite 0 2; 235 | Spring_IMK 902104 214 2140 $E $fy [expr $Comp_I*3515.589] 30.300 43.900 5.270 2.250 179.400 89.700 107.625 16756.191 0.0 $Composite 0 2; Spring_IMK 902202 2220 222 $E $fy [expr $Comp_I*3515.589] 30.300 43.900 5.270 2.250 179.400 89.700 107.625 16756.191 0.0 $Composite 0 2; Spring_IMK 902204 224 2240 $E $fy [expr $Comp_I*3515.589] 30.300 43.900 5.270 2.250 179.400 89.700 107.625 16756.191 0.0 $Composite 0 2; Spring_IMK 902302 2320 232 $E $fy [expr $Comp_I*3515.589] 30.300 43.900 5.270 2.250 179.150 89.575 107.500 16756.191 0.0 $Composite 0 2; Spring_IMK 902304 234 2340 $E $fy [expr $Comp_I*3515.589] 30.300 43.900 5.270 2.250 179.150 89.575 107.500 16756.191 0.0 $Composite 0 2; Spring_IMK 902402 2420 242 $E $fy [expr $Comp_I*3515.589] 30.300 43.900 5.270 2.250 179.400 89.700 107.625 16756.191 0.0 $Composite 0 2; 236 | 237 | ################################################################################################### 238 | # MF COLUMN SPRINGS # 239 | ################################################################################################### 240 | 241 | Spring_IMK 903101 403101 311 $E $fy 4020.0000 24.5000 35.6000 6.7000 2.9700 132.9000 66.4500 132.9000 22385.0000 0.0110 0 0 2; Spring_IMK 903201 403201 321 $E $fy 5170.0000 25.0000 30.6000 5.3100 3.0500 132.9000 66.4500 132.9000 28314.0000 0.0133 0 0 2; Spring_IMK 903301 403301 331 $E $fy 5170.0000 25.0000 30.6000 5.3100 3.0500 132.9000 66.4500 132.9000 28314.0000 0.0133 0 0 2; Spring_IMK 903401 403401 341 $E $fy 4020.0000 24.5000 35.6000 6.7000 2.9700 132.9000 66.4500 132.9000 22385.0000 0.0110 0 0 2; 242 | Spring_IMK 902103 402103 213 $E $fy 4020.0000 24.5000 35.6000 6.7000 2.9700 132.9000 66.4500 132.9000 22385.0000 0.0110 0 0 2; Spring_IMK 902203 402203 223 $E $fy 5170.0000 25.0000 30.6000 5.3100 3.0500 132.9000 66.4500 132.9000 28314.0000 0.0133 0 0 2; Spring_IMK 902303 402303 233 $E $fy 5170.0000 25.0000 30.6000 5.3100 3.0500 132.9000 66.4500 132.9000 28314.0000 0.0133 0 0 2; Spring_IMK 902403 402403 243 $E $fy 4020.0000 24.5000 35.6000 6.7000 2.9700 132.9000 66.4500 132.9000 22385.0000 0.0110 0 0 2; 243 | Spring_IMK 902101 402101 211 $E $fy 4020.0000 24.5000 35.6000 6.7000 2.9700 164.8500 82.4250 164.8500 22385.0000 0.0246 0 0 2; Spring_IMK 902201 402201 221 $E $fy 5170.0000 25.0000 30.6000 5.3100 3.0500 164.8500 82.4250 164.8500 28314.0000 0.0298 0 0 2; Spring_IMK 902301 402301 231 $E $fy 5170.0000 25.0000 30.6000 5.3100 3.0500 164.8500 82.4250 164.8500 28314.0000 0.0298 0 0 2; Spring_IMK 902401 402401 241 $E $fy 4020.0000 24.5000 35.6000 6.7000 2.9700 164.8500 82.4250 164.8500 22385.0000 0.0246 0 0 2; 244 | Spring_IMK 901103 110 113 $E $fy 4020.0000 24.5000 35.6000 6.7000 2.9700 164.8500 82.4250 164.8500 22385.0000 0.0246 0 0 2; Spring_IMK 901203 120 123 $E $fy 5170.0000 25.0000 30.6000 5.3100 3.0500 164.8500 82.4250 164.8500 28314.0000 0.0298 0 0 2; Spring_IMK 901303 130 133 $E $fy 5170.0000 25.0000 30.6000 5.3100 3.0500 164.8500 82.4250 164.8500 28314.0000 0.0298 0 0 2; Spring_IMK 901403 140 143 $E $fy 4020.0000 24.5000 35.6000 6.7000 2.9700 164.8500 82.4250 164.8500 22385.0000 0.0246 0 0 2; 245 | 246 | ################################################################################################### 247 | # COLUMN SPLICE SPRINGS # 248 | ################################################################################################### 249 | 250 | 251 | #################################################################################################### 252 | # FLOOR LINKS # 253 | #################################################################################################### 254 | 255 | # Command Syntax 256 | # element truss $ElementID $iNode $jNode $Area $matID 257 | element truss 1003 403404 350 $A_Stiff 99; 258 | element truss 1002 402404 250 $A_Stiff 99; 259 | 260 | #################################################################################################### 261 | # EGF COLUMNS AND BEAMS # 262 | #################################################################################################### 263 | 264 | # GRAVITY COLUMNS 265 | element elasticBeamColumn 602500 253 351 100000.0000 $E 100000000.0000 $trans_PDelta; element elasticBeamColumn 602600 263 361 100000.0000 $E 100000000.0000 $trans_PDelta; 266 | element elasticBeamColumn 601500 153 251 100000.0000 $E 100000000.0000 $trans_PDelta; element elasticBeamColumn 601600 163 261 100000.0000 $E 100000000.0000 $trans_PDelta; 267 | 268 | # GRAVITY BEAMS 269 | element elasticBeamColumn 503400 354 362 100000.0000 $E 100000000.0000 $trans_PDelta; 270 | element elasticBeamColumn 502400 254 262 100000.0000 $E 100000000.0000 $trans_PDelta; 271 | 272 | # GRAVITY COLUMNS SPRINGS 273 | Spring_Zero 903501 350 351; Spring_Zero 903601 360 361; 274 | Spring_Zero 902503 250 253; Spring_Zero 902603 260 263; 275 | Spring_Zero 902501 250 251; Spring_Zero 902601 260 261; 276 | Spring_Zero 901503 150 153; Spring_Zero 901603 160 163; 277 | 278 | # GRAVITY BEAMS SPRINGS 279 | Spring_Rigid 903504 350 354; Spring_Rigid 903602 360 362; 280 | Spring_Rigid 902504 250 254; Spring_Rigid 902602 260 262; 281 | 282 | ################################################################################################### 283 | # BOUNDARY CONDITIONS # 284 | ################################################################################################### 285 | 286 | # MF SUPPORTS 287 | fix 110 1 1 0; 288 | fix 120 1 1 0; 289 | fix 130 1 1 0; 290 | fix 140 1 1 0; 291 | 292 | # EGF SUPPORTS 293 | fix 150 1 1 0; fix 160 1 1 0; 294 | 295 | # MF FLOOR MOVEMENT 296 | equalDOF 403104 403204 1; equalDOF 403104 403304 1; equalDOF 403104 403404 1; 297 | equalDOF 402104 402204 1; equalDOF 402104 402304 1; equalDOF 402104 402404 1; 298 | 299 | # EGF FLOOR MOVEMENT 300 | equalDOF 350 360 1; 301 | equalDOF 250 260 1; 302 | 303 | 304 | ################################################################################################## 305 | ################################################################################################## 306 | puts "Model Built" 307 | ################################################################################################## 308 | ################################################################################################## 309 | 310 | ################################################################################################### 311 | # RECORDERS # 312 | ################################################################################################### 313 | 314 | # EIGEN VECTORS 315 | recorder Node -file $MainFolder/EigenAnalysis/EigenVectorsMode1.out -node 402104 403104 -dof 1 "eigen 1"; 316 | recorder Node -file $MainFolder/EigenAnalysis/EigenVectorsMode2.out -node 402104 403104 -dof 1 "eigen 2"; 317 | 318 | # TIME 319 | recorder Node -file $MainFolder/$SubFolder/Time.out -time -node 110 -dof 1 disp; 320 | 321 | # SUPPORT REACTIONS 322 | recorder Node -file $MainFolder/$SubFolder/Support1.out -node 110 -dof 1 2 6 reaction; recorder Node -file $MainFolder/$SubFolder/Support2.out -node 120 -dof 1 2 6 reaction; recorder Node -file $MainFolder/$SubFolder/Support3.out -node 130 -dof 1 2 6 reaction; recorder Node -file $MainFolder/$SubFolder/Support4.out -node 140 -dof 1 2 6 reaction; recorder Node -file $MainFolder/$SubFolder/Support5.out -node 150 -dof 1 2 6 reaction; recorder Node -file $MainFolder/$SubFolder/Support6.out -node 160 -dof 1 2 6 reaction; 323 | 324 | # STORY DRIFT RATIO 325 | recorder Drift -file $MainFolder/$SubFolder/SDR2_MF.out -iNode 402104 -jNode 403104 -dof 1 -perpDirn 2; 326 | recorder Drift -file $MainFolder/$SubFolder/SDR1_MF.out -iNode 110 -jNode 402104 -dof 1 -perpDirn 2; 327 | 328 | # COLUMN ELASTIC ELEMENT FORCES 329 | recorder Element -file $MainFolder/$SubFolder/Column21.out -ele 602100 force; recorder Element -file $MainFolder/$SubFolder/Column22.out -ele 602200 force; recorder Element -file $MainFolder/$SubFolder/Column23.out -ele 602300 force; recorder Element -file $MainFolder/$SubFolder/Column24.out -ele 602400 force; recorder Element -file $MainFolder/$SubFolder/Column25.out -ele 602500 force; recorder Element -file $MainFolder/$SubFolder/Column26.out -ele 602600 force; 330 | recorder Element -file $MainFolder/$SubFolder/Column11.out -ele 601100 force; recorder Element -file $MainFolder/$SubFolder/Column12.out -ele 601200 force; recorder Element -file $MainFolder/$SubFolder/Column13.out -ele 601300 force; recorder Element -file $MainFolder/$SubFolder/Column14.out -ele 601400 force; recorder Element -file $MainFolder/$SubFolder/Column15.out -ele 601500 force; recorder Element -file $MainFolder/$SubFolder/Column16.out -ele 601600 force; 331 | 332 | ################################################################################################### 333 | # NODAL MASS # 334 | ################################################################################################### 335 | 336 | set g 386.10; 337 | mass 403104 0.1476 1.e-9 1.e-9; mass 403204 0.1709 1.e-9 1.e-9; mass 403304 0.1709 1.e-9 1.e-9; mass 403404 0.1709 1.e-9 1.e-9; mass 350 0.5361 1.e-9 1.e-9; mass 360 0.5361 1.e-9 1.e-9; 338 | mass 402104 0.2797 1.e-9 1.e-9; mass 402204 0.3030 1.e-9 1.e-9; mass 402304 0.3030 1.e-9 1.e-9; mass 402404 0.3030 1.e-9 1.e-9; mass 250 0.3380 1.e-9 1.e-9; mass 260 0.3380 1.e-9 1.e-9; 339 | 340 | constraints Plain; 341 | 342 | ################################################################################################### 343 | # EIGEN VALUE ANALYSIS # 344 | ################################################################################################### 345 | 346 | set pi [expr 2.0*asin(1.0)]; 347 | set nEigen 2; 348 | set lambdaN [eigen [expr $nEigen]]; 349 | set lambda1 [lindex $lambdaN 0]; 350 | set lambda2 [lindex $lambdaN 1]; 351 | set w1 [expr pow($lambda1,0.5)]; 352 | set w2 [expr pow($lambda2,0.5)]; 353 | set T1 [expr round(2.0*$pi/$w1 *1000.)/1000.]; 354 | set T2 [expr round(2.0*$pi/$w2 *1000.)/1000.]; 355 | puts "T1 = $T1 s"; 356 | puts "T2 = $T2 s"; 357 | set fileX [open "EigenPeriod.out" w]; 358 | puts $fileX $T1;puts $fileX $T2;close $fileX; 359 | 360 | constraints Plain; 361 | algorithm Newton; 362 | integrator LoadControl 1; 363 | analysis Static; 364 | analyze 1; 365 | 366 | ################################################################################################### 367 | ################################################################################################### 368 | puts "Eigen Analysis Done" 369 | ################################################################################################### 370 | ################################################################################################### 371 | 372 | ################################################################################################### 373 | # STATIC GRAVITY ANALYSIS # 374 | ################################################################################################### 375 | 376 | pattern Plain 100 Linear { 377 | 378 | # MF COLUMNS LOADS 379 | load 403103 0. -23.313 0.; load 403203 0. -34.969 0.; load 403303 0. -34.969 0.; load 403403 0. -23.313 0.; 380 | load 402103 0. -28.750 0.; load 402203 0. -43.125 0.; load 402303 0. -43.125 0.; load 402403 0. -28.750 0.; 381 | 382 | # EGF COLUMN LOADS 383 | load 350 0. -310.443750 0.; load 360 0. -310.443750 0.; 384 | load 250 0. -346.725000 0.; load 260 0. -346.725000 0.; 385 | 386 | } 387 | 388 | # Conversion Parameters 389 | constraints Plain; 390 | numberer RCM; 391 | system BandGeneral; 392 | test NormDispIncr 1.0e-5 60 ; 393 | algorithm Newton; 394 | integrator LoadControl 0.1; 395 | analysis Static; 396 | analyze 10; 397 | 398 | loadConst -time 0.0; 399 | 400 | ################################################################################################### 401 | ################################################################################################### 402 | puts "Gravity Done" 403 | ################################################################################################### 404 | ################################################################################################### 405 | 406 | puts "Seismic Weight= 1574.650 kip"; 407 | puts "Seismic Mass= 3.598 kip.sec2/in"; 408 | 409 | if {$ShowAnimation == 1} { 410 | DisplayModel3D DeformedShape 5 50 50 2000 1500; 411 | } 412 | 413 | ################################################################################################### 414 | # Pushover Analysis # 415 | ################################################################################################### 416 | 417 | if {$PO==1} { 418 | 419 | # Create Load Pattern 420 | pattern Plain 222 Linear { 421 | load 403103 -0.61520 0.0 0.0 422 | load 402103 -0.42970 0.0 0.0 423 | } 424 | 425 | # Displacement Control Parameters 426 | set CtrlNode 403104; 427 | set CtrlDOF 1; 428 | set Dmax [expr 0.100*$Floor3]; 429 | set Dincr [expr 0.005]; 430 | 431 | set Nsteps [expr int($Dmax/$Dincr)]; 432 | set ok 0; 433 | set controlDisp 0.0; 434 | source LibAnalysisStaticParameters.tcl; 435 | source SolutionAlgorithm.tcl; 436 | 437 | ################################################################################################### 438 | puts "Pushover complete" 439 | ################################################################################################### 440 | 441 | } 442 | 443 | ################################################################################################### 444 | # DYNAMIC EARTHQUAKE ANALYSIS # 445 | ################################################################################################### 446 | 447 | if {$EQ==1} { 448 | 449 | set GMfile "NR94cnp.txt"; # ground motion filename 450 | set GMdt 0.01; # timestep of input GM file 451 | set EqSF 1.0; # ground motion scaling factor 452 | set GMpoints 2495; # number of steps in ground motion 453 | 454 | # Rayleigh Damping 455 | global Sigma_zeta; global xRandom; 456 | set zeta 0.020; 457 | set SigmaX $Sigma_zeta; Generate_lognrmrand $zeta $SigmaX; set zeta $xRandom; 458 | set a0 [expr $zeta*2.0*$w1*$w2/($w1 + $w2)]; 459 | set a1 [expr $zeta*2.0/($w1 + $w2)]; 460 | set a1_mod [expr $a1*(1.0+$n)/$n]; 461 | region 1 -ele 604100 604200 604300 604400 603102 603202 603302 603402 603101 603201 603301 603401 602100 602200 602300 602400 601100 601200 601300 601400 505100 505200 505300 504100 504200 504300 503100 503200 503300 502100 502200 502300 -rayleigh 0.0 0.0 $a1_mod 0.0; 462 | region 2 -node 402104 402204 402304 402404 250 260 403104 403204 403304 403404 350 360 -rayleigh $a0 0.0 0.0 0.0; 463 | region 3 -eleRange 900000 999999 -rayleigh 0.0 0.0 [expr $a1_mod/10] 0.0; 464 | 465 | # GROUND MOTION ACCELERATION FILE INPUT 466 | set AccelSeries "Series -dt $GMdt -filePath $GMfile -factor [expr $EqSF * $g]" 467 | pattern UniformExcitation 200 1 -accel $AccelSeries 468 | 469 | set MF_FloorNodes [list 402104 403104 ]; 470 | set EGF_FloorNodes [list 250 350 ]; 471 | set GMduration [expr $GMdt*$GMpoints]; 472 | set FVduration 10.000000; 473 | set NumSteps [expr round(($GMduration + $FVduration)/$GMdt)]; # number of steps in analysis 474 | set totTime [expr $GMdt*$NumSteps]; # Total time of analysis 475 | set dtAnalysis [expr 0.500000*$GMdt]; # dt of Analysis 476 | 477 | DynamicAnalysisCollapseSolverX $GMdt $dtAnalysis $totTime $NStory 0.15 $MF_FloorNodes $EGF_FloorNodes 180.00 156.00 1 $StartTime $MaxRunTime; 478 | 479 | ################################################################################################### 480 | ################################################################################################### 481 | puts "Ground Motion Done. End Time: [getTime]" 482 | ################################################################################################### 483 | ################################################################################################### 484 | } 485 | 486 | wipe all; 487 | -------------------------------------------------------------------------------- /Models and Tcl Files/SMF2CG.tcl: -------------------------------------------------------------------------------- 1 | #################################################################################################### 2 | #################################################################################################### 3 | # 2-story MRF Building 4 | #################################################################################################### 5 | #################################################################################################### 6 | 7 | # CLEAR ALL; 8 | wipe all; 9 | 10 | # BUILD MODEL (2D - 3 DOF/node) 11 | model basic -ndm 2 -ndf 3 12 | 13 | #################################################################################################### 14 | # BASIC MODEL VARIABLES # 15 | #################################################################################################### 16 | 17 | set global RunTime; 18 | set global StartTime; 19 | set global MaxRunTime; 20 | set MaxRunTime [expr 10.0000 * 60.]; 21 | set StartTime [clock seconds]; 22 | set RunTime 0.0; 23 | set EQ 1; 24 | set PO 0; 25 | set ELF 0; 26 | set Composite 1; 27 | set ShowAnimation 1; 28 | set ModePO 1; 29 | set DriftPO 0.100000; 30 | set DampModeI 1; 31 | set DampModeJ 3; 32 | set zeta 0.020000; 33 | 34 | #################################################################################################### 35 | # SOURCING SUBROUTINES # 36 | #################################################################################################### 37 | 38 | source DisplayModel3D.tcl; 39 | source DisplayPlane.tcl; 40 | source Spring_PZ.tcl; 41 | source Spring_IMK.tcl; 42 | source Spring_Zero.tcl; 43 | source Spring_Rigid.tcl; 44 | source Spring_Pinching.tcl; 45 | source ConstructPanel_Rectangle.tcl; 46 | source DynamicAnalysisCollapseSolverX.tcl; 47 | source Generate_lognrmrand.tcl; 48 | 49 | #################################################################################################### 50 | # Create Results Folders # 51 | #################################################################################################### 52 | 53 | # RESULT FOLDER 54 | set MainFolder "ResultsMainFolder"; 55 | set SubFolder "ResultsSubFolder"; 56 | file mkdir $MainFolder; 57 | cd $MainFolder 58 | file mkdir $SubFolder; 59 | cd .. 60 | 61 | #################################################################################################### 62 | # INPUT # 63 | #################################################################################################### 64 | 65 | # FRAME CENTERLINE DIMENSIONS 66 | set NStory 2; 67 | set NBay 3; 68 | 69 | # MATERIAL PROPERTIES 70 | set E 29000.0; 71 | set mu 0.3; 72 | set fy [expr 55.0 * 1.0]; 73 | 74 | # BASIC MATERIALS 75 | uniaxialMaterial Elastic 9 1.e-9; #Flexible Material 76 | uniaxialMaterial Elastic 99 1000000000.; #Rigid Material 77 | uniaxialMaterial UVCuniaxial 666 29000.0000 55.0000 18.0000 10.0000 0.0000 1.0000 2 3500.0000 180.0000 345.0000 10.0000; #Voce-Chaboche Material 78 | 79 | # GEOMETRIC TRANSFORMATIONS IDs 80 | geomTransf Linear 1; 81 | geomTransf PDelta 2; 82 | geomTransf Corotational 3; 83 | set trans_Linear 1; 84 | set trans_PDelta 2; 85 | set trans_Corot 3; 86 | set trans_selected 2; 87 | 88 | # STIFF ELEMENTS PROPERTY 89 | set A_Stiff 1000.0; 90 | set I_Stiff 100000.0; 91 | 92 | # COMPOSITE BEAM FACTOR 93 | puts "Composite Action is Considered" 94 | set Composite 1; 95 | set Comp_I 1.400; 96 | set Comp_I_GC 1.400; 97 | 98 | # FIBER ELEMENT PROPERTIES 99 | set nSegments 8; 100 | set initialGI 0.00100; 101 | set nIntegration 5; 102 | 103 | # LOGARITHMIC STANDARD DEVIATIONS (FOR UNCERTAINTY CONSIDERATION) 104 | global Sigma_IMKcol Sigma_IMKbeam Sigma_Pinching4 Sigma_PZ; 105 | set Sigma_IMKcol [list 1.e-9 1.e-9 1.e-9 1.e-9 1.e-9 1.e-9 1.e-9 1.e-9 1.e-9 ]; 106 | set Sigma_IMKbeam [list 1.e-9 1.e-9 1.e-9 1.e-9 1.e-9 1.e-9 1.e-9 1.e-9 1.e-9 ]; 107 | set Sigma_Pinching4 [list 1.e-9 1.e-9 1.e-9 1.e-9 1.e-9 1.e-9 1.e-9 1.e-9 ]; 108 | set Sigma_PZ [list 1.e-9 1.e-9 1.e-9 1.e-9 ]; 109 | set Sigma_fy 1.e-9; 110 | set Sigma_zeta 1.e-9; 111 | global Sigma_fy Sigma_fyB Sigma_fyG Sigma_GI; global xRandom; 112 | set SigmaX $Sigma_fy; Generate_lognrmrand $fy $SigmaX; set fy $xRandom; 113 | 114 | #################################################################################################### 115 | # PRE-CALCULATIONS # 116 | #################################################################################################### 117 | 118 | # REDUCED BEAM SECTION CONNECTION DISTANCE FROM COLUMN 119 | set L_RBS3 [expr 0.625 * 5.53 + 0.750 * 15.90/2.]; 120 | set L_RBS2 [expr 0.625 * 10.50 + 0.750 * 30.30/2.]; 121 | 122 | # FRAME GRID LINES 123 | set Floor3 336.00; 124 | set Floor2 180.00; 125 | set Floor1 0.0; 126 | 127 | set Axis1 0.0; 128 | set Axis2 240.00; 129 | set Axis3 480.00; 130 | set Axis4 720.00; 131 | set Axis5 960.00; 132 | set Axis6 1200.00; 133 | 134 | set HBuilding 336.00; 135 | set WFrame 720.00; 136 | variable HBuilding 336.00; 137 | 138 | #################################################################################################### 139 | # NODES # 140 | #################################################################################################### 141 | 142 | # COMMAND SYNTAX 143 | # node $NodeID $X-Coordinate $Y-Coordinate; 144 | 145 | #SUPPORT NODES 146 | node 110 $Axis1 $Floor1; node 120 $Axis2 $Floor1; node 130 $Axis3 $Floor1; node 140 $Axis4 $Floor1; node 150 $Axis5 $Floor1; node 160 $Axis6 $Floor1; 147 | 148 | # EGF COLUMN GRID NODES 149 | node 350 $Axis5 $Floor3; node 360 $Axis6 $Floor3; 150 | node 250 $Axis5 $Floor2; node 260 $Axis6 $Floor2; 151 | 152 | # EGF COLUMN NODES 153 | node 351 $Axis5 $Floor3; node 361 $Axis6 $Floor3; 154 | node 253 $Axis5 $Floor2; node 263 $Axis6 $Floor2; 155 | node 251 $Axis5 $Floor2; node 261 $Axis6 $Floor2; 156 | node 153 $Axis5 $Floor1; node 163 $Axis6 $Floor1; 157 | 158 | # EGF BEAM NODES 159 | node 354 $Axis5 $Floor3; node 362 $Axis6 $Floor3; 160 | node 254 $Axis5 $Floor2; node 262 $Axis6 $Floor2; 161 | 162 | # MF COLUMN NODES 163 | node 311 $Axis1 [expr $Floor3 - 15.90/2]; node 321 $Axis2 [expr $Floor3 - 15.90/2]; node 331 $Axis3 [expr $Floor3 - 15.90/2]; node 341 $Axis4 [expr $Floor3 - 15.90/2]; 164 | node 213 $Axis1 [expr $Floor2 + 30.30/2]; node 223 $Axis2 [expr $Floor2 + 30.30/2]; node 233 $Axis3 [expr $Floor2 + 30.30/2]; node 243 $Axis4 [expr $Floor2 + 30.30/2]; 165 | node 211 $Axis1 [expr $Floor2 - 30.30/2]; node 221 $Axis2 [expr $Floor2 - 30.30/2]; node 231 $Axis3 [expr $Floor2 - 30.30/2]; node 241 $Axis4 [expr $Floor2 - 30.30/2]; 166 | node 113 $Axis1 $Floor1; node 123 $Axis2 $Floor1; node 133 $Axis3 $Floor1; node 143 $Axis4 $Floor1; 167 | 168 | # MF BEAM NODES 169 | node 314 [expr $Axis1 + $L_RBS3 + 24.50/2] $Floor3; node 322 [expr $Axis2 - $L_RBS3 - 25.00/2] $Floor3; node 324 [expr $Axis2 + $L_RBS3 + 25.00/2] $Floor3; node 332 [expr $Axis3 - $L_RBS3 - 25.00/2] $Floor3; node 334 [expr $Axis3 + $L_RBS3 + 25.00/2] $Floor3; node 342 [expr $Axis4 - $L_RBS3 - 24.50/2] $Floor3; 170 | node 214 [expr $Axis1 + $L_RBS2 + 24.50/2] $Floor2; node 222 [expr $Axis2 - $L_RBS2 - 25.00/2] $Floor2; node 224 [expr $Axis2 + $L_RBS2 + 25.00/2] $Floor2; node 232 [expr $Axis3 - $L_RBS2 - 25.00/2] $Floor2; node 234 [expr $Axis3 + $L_RBS2 + 25.00/2] $Floor2; node 242 [expr $Axis4 - $L_RBS2 - 24.50/2] $Floor2; 171 | 172 | # BEAM SPRING NODES 173 | node 3140 [expr $Axis1 + $L_RBS3 + 24.50/2] $Floor3; node 3220 [expr $Axis2 - $L_RBS3 - 25.00/2] $Floor3; node 3240 [expr $Axis2 + $L_RBS3 + 25.00/2] $Floor3; node 3320 [expr $Axis3 - $L_RBS3 - 25.00/2] $Floor3; node 3340 [expr $Axis3 + $L_RBS3 + 25.00/2] $Floor3; node 3420 [expr $Axis4 - $L_RBS3 - 24.50/2] $Floor3; 174 | node 2140 [expr $Axis1 + $L_RBS2 + 24.50/2] $Floor2; node 2220 [expr $Axis2 - $L_RBS2 - 25.00/2] $Floor2; node 2240 [expr $Axis2 + $L_RBS2 + 25.00/2] $Floor2; node 2320 [expr $Axis3 - $L_RBS2 - 25.00/2] $Floor2; node 2340 [expr $Axis3 + $L_RBS2 + 25.00/2] $Floor2; node 2420 [expr $Axis4 - $L_RBS2 - 24.50/2] $Floor2; 175 | 176 | # COLUMN SPLICE NODES 177 | 178 | ################################################################################################### 179 | # PANEL ZONE NODES & ELEMENTS # 180 | ################################################################################################### 181 | 182 | # PANEL ZONE NODES AND ELASTIC ELEMENTS 183 | # Command Syntax; 184 | # ConstructPanel_Rectangle Axis Floor X_Axis Y_Floor E A_Panel I_Panel d_Col d_Beam transfTag 185 | ConstructPanel_Rectangle 1 3 $Axis1 $Floor3 $E $A_Stiff $I_Stiff 24.50 15.90 $trans_selected; ConstructPanel_Rectangle 2 3 $Axis2 $Floor3 $E $A_Stiff $I_Stiff 25.00 15.90 $trans_selected; ConstructPanel_Rectangle 3 3 $Axis3 $Floor3 $E $A_Stiff $I_Stiff 25.00 15.90 $trans_selected; ConstructPanel_Rectangle 4 3 $Axis4 $Floor3 $E $A_Stiff $I_Stiff 24.50 15.90 $trans_selected; 186 | ConstructPanel_Rectangle 1 2 $Axis1 $Floor2 $E $A_Stiff $I_Stiff 24.50 30.30 $trans_selected; ConstructPanel_Rectangle 2 2 $Axis2 $Floor2 $E $A_Stiff $I_Stiff 25.00 30.30 $trans_selected; ConstructPanel_Rectangle 3 2 $Axis3 $Floor2 $E $A_Stiff $I_Stiff 25.00 30.30 $trans_selected; ConstructPanel_Rectangle 4 2 $Axis4 $Floor2 $E $A_Stiff $I_Stiff 24.50 30.30 $trans_selected; 187 | 188 | #################################################################################################### 189 | # PANEL ZONE SPRINGS # 190 | #################################################################################################### 191 | 192 | # COMMAND SYNTAX 193 | # Spring_PZ Element_ID Node_i Node_j E mu fy tw_Col tdp d_Col d_Beam tf_Col bf_Col Ic trib ts Response_ID transfTag 194 | Spring_PZ 903100 403109 403110 $E $mu [expr $fy * 1.0] 0.60 0.00 24.50 15.90 0.96 12.90 4020.00 3.500 4.000 2 1; Spring_PZ 903200 403209 403210 $E $mu [expr $fy * 1.0] 0.70 0.00 25.00 15.90 1.22 13.00 5170.00 3.500 4.000 0 1; Spring_PZ 903300 403309 403310 $E $mu [expr $fy * 1.0] 0.70 0.00 25.00 15.90 1.22 13.00 5170.00 3.500 4.000 0 1; Spring_PZ 903400 403409 403410 $E $mu [expr $fy * 1.0] 0.60 0.00 24.50 15.90 0.96 12.90 4020.00 3.500 4.000 2 1; 195 | Spring_PZ 902100 402109 402110 $E $mu [expr $fy * 1.0] 0.60 0.38 24.50 30.30 0.96 12.90 4020.00 3.500 4.000 2 1; Spring_PZ 902200 402209 402210 $E $mu [expr $fy * 1.0] 0.70 1.19 25.00 30.30 1.22 13.00 5170.00 3.500 4.000 0 1; Spring_PZ 902300 402309 402310 $E $mu [expr $fy * 1.0] 0.70 1.19 25.00 30.30 1.22 13.00 5170.00 3.500 4.000 0 1; Spring_PZ 902400 402409 402410 $E $mu [expr $fy * 1.0] 0.60 0.38 24.50 30.30 0.96 12.90 4020.00 3.500 4.000 2 1; 196 | 197 | #################################################################################################### 198 | # ELASTIC COLUMNS AND BEAMS # 199 | #################################################################################################### 200 | 201 | # COMMAND SYNTAX 202 | # element ModElasticBeam2d $ElementID $iNode $jNode $Area $E $Ix $K11 $K33 $K44 $transformation 203 | 204 | # STIFFNESS MODIFIERS 205 | set n 10.; 206 | set K44_2 [expr 6*(1+$n)/(2+3*$n)]; 207 | set K11_2 [expr (1+2*$n)*$K44_2/(1+$n)]; 208 | set K33_2 [expr (1+2*$n)*$K44_2/(1+$n)]; 209 | set K44_1 [expr 6*$n/(1+3*$n)]; 210 | set K11_1 [expr (1+2*$n)*$K44_1/(1+$n)]; 211 | set K33_1 [expr 2*$K44_1]; 212 | 213 | # COLUMNS 214 | element ModElasticBeam2d 602100 213 311 38.5000 $E [expr ($n+1)/$n*4020.0000] $K11_2 $K33_2 $K44_2 $trans_selected; element ModElasticBeam2d 602200 223 321 47.7000 $E [expr ($n+1)/$n*5170.0000] $K11_2 $K33_2 $K44_2 $trans_selected; element ModElasticBeam2d 602300 233 331 47.7000 $E [expr ($n+1)/$n*5170.0000] $K11_2 $K33_2 $K44_2 $trans_selected; element ModElasticBeam2d 602400 243 341 38.5000 $E [expr ($n+1)/$n*4020.0000] $K11_2 $K33_2 $K44_2 $trans_selected; 215 | element ModElasticBeam2d 601100 113 211 38.5000 $E [expr ($n+1)/$n*4020.0000] $K11_2 $K33_2 $K44_2 $trans_selected; element ModElasticBeam2d 601200 123 221 47.7000 $E [expr ($n+1)/$n*5170.0000] $K11_2 $K33_2 $K44_2 $trans_selected; element ModElasticBeam2d 601300 133 231 47.7000 $E [expr ($n+1)/$n*5170.0000] $K11_2 $K33_2 $K44_2 $trans_selected; element ModElasticBeam2d 601400 143 241 38.5000 $E [expr ($n+1)/$n*4020.0000] $K11_2 $K33_2 $K44_2 $trans_selected; 216 | 217 | # BEAMS 218 | element ModElasticBeam2d 503100 314 322 9.1300 $E [expr ($n+1)/$n*0.90*$Comp_I*375.0000] $K11_2 $K33_2 $K44_2 $trans_selected; element ModElasticBeam2d 503200 324 332 9.1300 $E [expr ($n+1)/$n*0.90*$Comp_I*375.0000] $K11_2 $K33_2 $K44_2 $trans_selected; element ModElasticBeam2d 503300 334 342 9.1300 $E [expr ($n+1)/$n*0.90*$Comp_I*375.0000] $K11_2 $K33_2 $K44_2 $trans_selected; 219 | element ModElasticBeam2d 502100 214 222 38.9000 $E [expr ($n+1)/$n*0.90*$Comp_I*5770.0000] $K11_2 $K33_2 $K44_2 $trans_selected; element ModElasticBeam2d 502200 224 232 38.9000 $E [expr ($n+1)/$n*0.90*$Comp_I*5770.0000] $K11_2 $K33_2 $K44_2 $trans_selected; element ModElasticBeam2d 502300 234 242 38.9000 $E [expr ($n+1)/$n*0.90*$Comp_I*5770.0000] $K11_2 $K33_2 $K44_2 $trans_selected; 220 | 221 | #################################################################################################### 222 | # ELASTIC RBS ELEMENTS # 223 | #################################################################################################### 224 | 225 | element elasticBeamColumn 503104 403104 3140 7.913 $E [expr $Comp_I*302.285] 1; element elasticBeamColumn 503202 403202 3220 7.913 $E [expr $Comp_I*302.285] 1; element elasticBeamColumn 503204 403204 3240 7.913 $E [expr $Comp_I*302.285] 1; element elasticBeamColumn 503302 403302 3320 7.913 $E [expr $Comp_I*302.285] 1; element elasticBeamColumn 503304 403304 3340 7.913 $E [expr $Comp_I*302.285] 1; element elasticBeamColumn 503402 403402 3420 7.913 $E [expr $Comp_I*302.285] 1; 226 | element elasticBeamColumn 502104 402104 2140 33.650 $E [expr $Comp_I*4642.794] 1; element elasticBeamColumn 502202 402202 2220 33.650 $E [expr $Comp_I*4642.794] 1; element elasticBeamColumn 502204 402204 2240 33.650 $E [expr $Comp_I*4642.794] 1; element elasticBeamColumn 502302 402302 2320 33.650 $E [expr $Comp_I*4642.794] 1; element elasticBeamColumn 502304 402304 2340 33.650 $E [expr $Comp_I*4642.794] 1; element elasticBeamColumn 502402 402402 2420 33.650 $E [expr $Comp_I*4642.794] 1; 227 | 228 | ################################################################################################### 229 | # MF BEAM SPRINGS # 230 | ################################################################################################### 231 | 232 | # Command Syntax 233 | # Spring_IMK SpringID iNode jNode E fy Ix d htw bftf ry L Ls Lb My PgPye CompositeFLAG MFconnection Units; 234 | 235 | Spring_IMK 903104 314 3140 $E $fy [expr $Comp_I*229.570] 15.900 51.600 6.280 1.170 196.412 98.206 107.625 2076.279 0.0 $Composite 0 2; Spring_IMK 903202 3220 322 $E $fy [expr $Comp_I*229.570] 15.900 51.600 6.280 1.170 196.412 98.206 107.625 2076.279 0.0 $Composite 0 2; Spring_IMK 903204 324 3240 $E $fy [expr $Comp_I*229.570] 15.900 51.600 6.280 1.170 196.412 98.206 107.625 2076.279 0.0 $Composite 0 2; Spring_IMK 903302 3320 332 $E $fy [expr $Comp_I*229.570] 15.900 51.600 6.280 1.170 196.162 98.081 107.500 2076.279 0.0 $Composite 0 2; Spring_IMK 903304 334 3340 $E $fy [expr $Comp_I*229.570] 15.900 51.600 6.280 1.170 196.162 98.081 107.500 2076.279 0.0 $Composite 0 2; Spring_IMK 903402 3420 342 $E $fy [expr $Comp_I*229.570] 15.900 51.600 6.280 1.170 196.412 98.206 107.625 2076.279 0.0 $Composite 0 2; 236 | Spring_IMK 902104 214 2140 $E $fy [expr $Comp_I*3515.589] 30.300 43.900 5.270 2.250 179.400 89.700 107.625 16756.191 0.0 $Composite 0 2; Spring_IMK 902202 2220 222 $E $fy [expr $Comp_I*3515.589] 30.300 43.900 5.270 2.250 179.400 89.700 107.625 16756.191 0.0 $Composite 0 2; Spring_IMK 902204 224 2240 $E $fy [expr $Comp_I*3515.589] 30.300 43.900 5.270 2.250 179.400 89.700 107.625 16756.191 0.0 $Composite 0 2; Spring_IMK 902302 2320 232 $E $fy [expr $Comp_I*3515.589] 30.300 43.900 5.270 2.250 179.150 89.575 107.500 16756.191 0.0 $Composite 0 2; Spring_IMK 902304 234 2340 $E $fy [expr $Comp_I*3515.589] 30.300 43.900 5.270 2.250 179.150 89.575 107.500 16756.191 0.0 $Composite 0 2; Spring_IMK 902402 2420 242 $E $fy [expr $Comp_I*3515.589] 30.300 43.900 5.270 2.250 179.400 89.700 107.625 16756.191 0.0 $Composite 0 2; 237 | 238 | ################################################################################################### 239 | # MF COLUMN SPRINGS # 240 | ################################################################################################### 241 | 242 | Spring_IMK 903101 403101 311 $E $fy 4020.0000 24.5000 35.6000 6.7000 2.9700 132.9000 66.4500 132.9000 22385.0000 0.0110 0 0 2; Spring_IMK 903201 403201 321 $E $fy 5170.0000 25.0000 30.6000 5.3100 3.0500 132.9000 66.4500 132.9000 28314.0000 0.0133 0 0 2; Spring_IMK 903301 403301 331 $E $fy 5170.0000 25.0000 30.6000 5.3100 3.0500 132.9000 66.4500 132.9000 28314.0000 0.0133 0 0 2; Spring_IMK 903401 403401 341 $E $fy 4020.0000 24.5000 35.6000 6.7000 2.9700 132.9000 66.4500 132.9000 22385.0000 0.0110 0 0 2; 243 | Spring_IMK 902103 402103 213 $E $fy 4020.0000 24.5000 35.6000 6.7000 2.9700 132.9000 66.4500 132.9000 22385.0000 0.0110 0 0 2; Spring_IMK 902203 402203 223 $E $fy 5170.0000 25.0000 30.6000 5.3100 3.0500 132.9000 66.4500 132.9000 28314.0000 0.0133 0 0 2; Spring_IMK 902303 402303 233 $E $fy 5170.0000 25.0000 30.6000 5.3100 3.0500 132.9000 66.4500 132.9000 28314.0000 0.0133 0 0 2; Spring_IMK 902403 402403 243 $E $fy 4020.0000 24.5000 35.6000 6.7000 2.9700 132.9000 66.4500 132.9000 22385.0000 0.0110 0 0 2; 244 | Spring_IMK 902101 402101 211 $E $fy 4020.0000 24.5000 35.6000 6.7000 2.9700 164.8500 82.4250 164.8500 22385.0000 0.0246 0 0 2; Spring_IMK 902201 402201 221 $E $fy 5170.0000 25.0000 30.6000 5.3100 3.0500 164.8500 82.4250 164.8500 28314.0000 0.0298 0 0 2; Spring_IMK 902301 402301 231 $E $fy 5170.0000 25.0000 30.6000 5.3100 3.0500 164.8500 82.4250 164.8500 28314.0000 0.0298 0 0 2; Spring_IMK 902401 402401 241 $E $fy 4020.0000 24.5000 35.6000 6.7000 2.9700 164.8500 82.4250 164.8500 22385.0000 0.0246 0 0 2; 245 | Spring_IMK 901103 110 113 $E $fy 4020.0000 24.5000 35.6000 6.7000 2.9700 164.8500 82.4250 164.8500 22385.0000 0.0246 0 0 2; Spring_IMK 901203 120 123 $E $fy 5170.0000 25.0000 30.6000 5.3100 3.0500 164.8500 82.4250 164.8500 28314.0000 0.0298 0 0 2; Spring_IMK 901303 130 133 $E $fy 5170.0000 25.0000 30.6000 5.3100 3.0500 164.8500 82.4250 164.8500 28314.0000 0.0298 0 0 2; Spring_IMK 901403 140 143 $E $fy 4020.0000 24.5000 35.6000 6.7000 2.9700 164.8500 82.4250 164.8500 22385.0000 0.0246 0 0 2; 246 | 247 | ################################################################################################### 248 | # COLUMN SPLICE SPRINGS # 249 | ################################################################################################### 250 | 251 | 252 | #################################################################################################### 253 | # FLOOR LINKS # 254 | #################################################################################################### 255 | 256 | # Command Syntax 257 | # element truss $ElementID $iNode $jNode $Area $matID 258 | element truss 1003 403404 350 $A_Stiff 99; 259 | element truss 1002 402404 250 $A_Stiff 99; 260 | 261 | #################################################################################################### 262 | # EGF COLUMNS AND BEAMS # 263 | #################################################################################################### 264 | 265 | # GRAVITY COLUMNS 266 | element elasticBeamColumn 602500 253 351 66.2500 $E [expr (905.0000 + 1566.0000)] $trans_PDelta; element elasticBeamColumn 602600 263 361 66.2500 $E [expr (905.0000 + 1566.0000)] $trans_PDelta; 267 | element elasticBeamColumn 601500 153 251 66.2500 $E [expr (905.0000 + 1566.0000)] $trans_PDelta; element elasticBeamColumn 601600 163 261 66.2500 $E [expr (905.0000 + 1566.0000)] $trans_PDelta; 268 | 269 | # GRAVITY BEAMS 270 | element elasticBeamColumn 503400 354 362 97.8000 $E [expr $Comp_I_GC * 8160.0000] $trans_PDelta; 271 | element elasticBeamColumn 502400 254 262 97.8000 $E [expr $Comp_I_GC * 8160.0000] $trans_PDelta; 272 | 273 | # GRAVITY COLUMNS SPRINGS 274 | Spring_IMK 903501 350 351 $E $fy [expr (905.0000 + 1566.0000)] 14.0000 25.9000 10.2000 3.7000 156.0000 78.0000 156.0000 34001.0000 0 $Composite 0 2; Spring_IMK 903601 360 361 $E $fy [expr (905.0000 + 1566.0000)] 14.0000 25.9000 10.2000 3.7000 156.0000 78.0000 156.0000 34001.0000 0 $Composite 0 2; 275 | Spring_IMK 902503 250 253 $E $fy [expr (905.0000 + 1566.0000)] 14.0000 25.9000 10.2000 3.7000 156.0000 78.0000 156.0000 34001.0000 0 $Composite 0 2; Spring_IMK 902603 260 263 $E $fy [expr (905.0000 + 1566.0000)] 14.0000 25.9000 10.2000 3.7000 156.0000 78.0000 156.0000 34001.0000 0 $Composite 0 2; 276 | Spring_IMK 902501 250 251 $E $fy [expr (905.0000 + 1566.0000)] 14.0000 25.9000 10.2000 3.7000 156.0000 78.0000 156.0000 34001.0000 0 $Composite 0 2; Spring_IMK 902601 260 261 $E $fy [expr (905.0000 + 1566.0000)] 14.0000 25.9000 10.2000 3.7000 156.0000 78.0000 156.0000 34001.0000 0 $Composite 0 2; 277 | Spring_IMK 901503 150 153 $E $fy 1566.0000 14.0000 25.9000 10.2000 3.7000 180.0000 90.0000 180.0000 22566.5000 0 $Composite 0 2; Spring_IMK 901603 160 163 $E $fy 1566.0000 14.0000 25.9000 10.2000 3.7000 180.0000 90.0000 180.0000 22566.5000 0 $Composite 0 2; 278 | 279 | # GRAVITY BEAMS SPRINGS 280 | set gap 0.08; 281 | Spring_Pinching 903504 350 354 49005.0000 $gap 1; Spring_Pinching 903602 360 362 49005.0000 $gap 1; 282 | Spring_Pinching 902504 250 254 49005.0000 $gap 1; Spring_Pinching 902602 260 262 49005.0000 $gap 1; 283 | 284 | ################################################################################################### 285 | # BOUNDARY CONDITIONS # 286 | ################################################################################################### 287 | 288 | # MF SUPPORTS 289 | fix 110 1 1 0; 290 | fix 120 1 1 0; 291 | fix 130 1 1 0; 292 | fix 140 1 1 0; 293 | 294 | # EGF SUPPORTS 295 | fix 150 1 1 0; fix 160 1 1 0; 296 | 297 | # MF FLOOR MOVEMENT 298 | equalDOF 403104 403204 1; equalDOF 403104 403304 1; equalDOF 403104 403404 1; 299 | equalDOF 402104 402204 1; equalDOF 402104 402304 1; equalDOF 402104 402404 1; 300 | 301 | # EGF FLOOR MOVEMENT 302 | equalDOF 350 360 1; 303 | equalDOF 250 260 1; 304 | 305 | 306 | ################################################################################################## 307 | ################################################################################################## 308 | puts "Model Built" 309 | ################################################################################################## 310 | ################################################################################################## 311 | 312 | ################################################################################################### 313 | # RECORDERS # 314 | ################################################################################################### 315 | 316 | # EIGEN VECTORS 317 | recorder Node -file $MainFolder/EigenAnalysis/EigenVectorsMode1.out -node 402104 403104 -dof 1 "eigen 1"; 318 | recorder Node -file $MainFolder/EigenAnalysis/EigenVectorsMode2.out -node 402104 403104 -dof 1 "eigen 2"; 319 | 320 | # TIME 321 | recorder Node -file $MainFolder/$SubFolder/Time.out -time -node 110 -dof 1 disp; 322 | 323 | # SUPPORT REACTIONS 324 | recorder Node -file $MainFolder/$SubFolder/Support1.out -node 110 -dof 1 2 6 reaction; recorder Node -file $MainFolder/$SubFolder/Support2.out -node 120 -dof 1 2 6 reaction; recorder Node -file $MainFolder/$SubFolder/Support3.out -node 130 -dof 1 2 6 reaction; recorder Node -file $MainFolder/$SubFolder/Support4.out -node 140 -dof 1 2 6 reaction; recorder Node -file $MainFolder/$SubFolder/Support5.out -node 150 -dof 1 2 6 reaction; recorder Node -file $MainFolder/$SubFolder/Support6.out -node 160 -dof 1 2 6 reaction; 325 | 326 | # STORY DRIFT RATIO 327 | recorder Drift -file $MainFolder/$SubFolder/SDR2_MF.out -iNode 402104 -jNode 403104 -dof 1 -perpDirn 2; 328 | recorder Drift -file $MainFolder/$SubFolder/SDR1_MF.out -iNode 110 -jNode 402104 -dof 1 -perpDirn 2; 329 | 330 | # COLUMN ELASTIC ELEMENT FORCES 331 | recorder Element -file $MainFolder/$SubFolder/Column21.out -ele 602100 force; recorder Element -file $MainFolder/$SubFolder/Column22.out -ele 602200 force; recorder Element -file $MainFolder/$SubFolder/Column23.out -ele 602300 force; recorder Element -file $MainFolder/$SubFolder/Column24.out -ele 602400 force; recorder Element -file $MainFolder/$SubFolder/Column25.out -ele 602500 force; recorder Element -file $MainFolder/$SubFolder/Column26.out -ele 602600 force; 332 | recorder Element -file $MainFolder/$SubFolder/Column11.out -ele 601100 force; recorder Element -file $MainFolder/$SubFolder/Column12.out -ele 601200 force; recorder Element -file $MainFolder/$SubFolder/Column13.out -ele 601300 force; recorder Element -file $MainFolder/$SubFolder/Column14.out -ele 601400 force; recorder Element -file $MainFolder/$SubFolder/Column15.out -ele 601500 force; recorder Element -file $MainFolder/$SubFolder/Column16.out -ele 601600 force; 333 | 334 | ################################################################################################### 335 | # NODAL MASS # 336 | ################################################################################################### 337 | 338 | set g 386.10; 339 | mass 403104 0.1476 1.e-9 1.e-9; mass 403204 0.1709 1.e-9 1.e-9; mass 403304 0.1709 1.e-9 1.e-9; mass 403404 0.1709 1.e-9 1.e-9; mass 350 0.5361 1.e-9 1.e-9; mass 360 0.5361 1.e-9 1.e-9; 340 | mass 402104 0.2797 1.e-9 1.e-9; mass 402204 0.3030 1.e-9 1.e-9; mass 402304 0.3030 1.e-9 1.e-9; mass 402404 0.3030 1.e-9 1.e-9; mass 250 0.3380 1.e-9 1.e-9; mass 260 0.3380 1.e-9 1.e-9; 341 | 342 | constraints Plain; 343 | 344 | ################################################################################################### 345 | # EIGEN VALUE ANALYSIS # 346 | ################################################################################################### 347 | 348 | set pi [expr 2.0*asin(1.0)]; 349 | set nEigen 2; 350 | set lambdaN [eigen [expr $nEigen]]; 351 | set lambda1 [lindex $lambdaN 0]; 352 | set lambda2 [lindex $lambdaN 1]; 353 | set w1 [expr pow($lambda1,0.5)]; 354 | set w2 [expr pow($lambda2,0.5)]; 355 | set T1 [expr round(2.0*$pi/$w1 *1000.)/1000.]; 356 | set T2 [expr round(2.0*$pi/$w2 *1000.)/1000.]; 357 | puts "T1 = $T1 s"; 358 | puts "T2 = $T2 s"; 359 | set fileX [open "EigenPeriod.out" w]; 360 | puts $fileX $T1;puts $fileX $T2;close $fileX; 361 | 362 | 363 | constraints Plain; 364 | algorithm Newton; 365 | integrator LoadControl 1; 366 | analysis Static; 367 | analyze 1; 368 | 369 | ################################################################################################### 370 | ################################################################################################### 371 | puts "Eigen Analysis Done" 372 | ################################################################################################### 373 | ################################################################################################### 374 | 375 | ################################################################################################### 376 | # STATIC GRAVITY ANALYSIS # 377 | ################################################################################################### 378 | 379 | pattern Plain 100 Linear { 380 | 381 | # MF COLUMNS LOADS 382 | load 403103 0. -23.313 0.; load 403203 0. -34.969 0.; load 403303 0. -34.969 0.; load 403403 0. -23.313 0.; 383 | load 402103 0. -28.750 0.; load 402203 0. -43.125 0.; load 402303 0. -43.125 0.; load 402403 0. -28.750 0.; 384 | 385 | # EGF COLUMN LOADS 386 | load 350 0. -310.443750 0.; load 360 0. -310.443750 0.; 387 | load 250 0. -346.725000 0.; load 260 0. -346.725000 0.; 388 | 389 | } 390 | 391 | # Conversion Parameters 392 | constraints Plain; 393 | numberer RCM; 394 | system BandGeneral; 395 | test NormDispIncr 1.0e-5 60 ; 396 | algorithm Newton; 397 | integrator LoadControl 0.1; 398 | analysis Static; 399 | analyze 10; 400 | 401 | loadConst -time 0.0; 402 | 403 | ################################################################################################### 404 | ################################################################################################### 405 | puts "Gravity Done" 406 | ################################################################################################### 407 | ################################################################################################### 408 | 409 | puts "Seismic Weight= 1574.650 kip"; 410 | puts "Seismic Mass= 3.598 kip.sec2/in"; 411 | 412 | if {$ShowAnimation == 1} { 413 | DisplayModel3D DeformedShape 5.00 100 100 1000 750; 414 | } 415 | 416 | ################################################################################################### 417 | # Pushover Analysis # 418 | ################################################################################################### 419 | 420 | if {$PO==1} { 421 | 422 | # Create Load Pattern 423 | pattern Plain 222 Linear { 424 | load 403103 -0.61376 0.0 0.0 425 | load 402103 -0.43161 0.0 0.0 426 | } 427 | 428 | # Displacement Control Parameters 429 | set CtrlNode 403104; 430 | set CtrlDOF 1; 431 | set Dmax [expr 0.100*$Floor3]; 432 | set Dincr [expr 0.005]; 433 | 434 | set Nsteps [expr int($Dmax/$Dincr)]; 435 | set ok 0; 436 | set controlDisp 0.0; 437 | source LibAnalysisStaticParameters.tcl; 438 | source SolutionAlgorithm.tcl; 439 | 440 | ################################################################################################### 441 | puts "Pushover complete" 442 | ################################################################################################### 443 | 444 | } 445 | 446 | ################################################################################################### 447 | # DYNAMIC EARTHQUAKE ANALYSIS # 448 | ################################################################################################### 449 | 450 | if {$EQ==1} { 451 | 452 | set GMfile "NR94cnp.txt"; # ground motion filename 453 | set GMdt 0.01; # timestep of input GM file 454 | set EqSF 1.0; # ground motion scaling factor 455 | set GMpoints 2495; # number of steps in ground motion 456 | 457 | # Rayleigh Damping 458 | global Sigma_zeta; global xRandom; 459 | set zeta 0.020; 460 | set SigmaX $Sigma_zeta; Generate_lognrmrand $zeta $SigmaX; set zeta $xRandom; 461 | set a0 [expr $zeta*2.0*$w1*$w2/($w1 + $w2)]; 462 | set a1 [expr $zeta*2.0/($w1 + $w2)]; 463 | set a1_mod [expr $a1*(1.0+$n)/$n]; 464 | region 1 -ele 604100 604200 604300 604400 603102 603202 603302 603402 603101 603201 603301 603401 602100 602200 602300 602400 601100 601200 601300 601400 505100 505200 505300 504100 504200 504300 503100 503200 503300 502100 502200 502300 -rayleigh 0.0 0.0 $a1_mod 0.0; 465 | region 2 -node 402104 402204 402304 402404 250 260 403104 403204 403304 403404 350 360 -rayleigh $a0 0.0 0.0 0.0; 466 | region 3 -eleRange 900000 999999 -rayleigh 0.0 0.0 [expr $a1_mod/10] 0.0; 467 | 468 | # GROUND MOTION ACCELERATION FILE INPUT 469 | set AccelSeries "Series -dt $GMdt -filePath $GMfile -factor [expr $EqSF * $g]" 470 | pattern UniformExcitation 200 1 -accel $AccelSeries 471 | 472 | set MF_FloorNodes [list 402104 403104 ]; 473 | set EGF_FloorNodes [list 250 350 ]; 474 | set GMduration [expr $GMdt*$GMpoints]; 475 | set FVduration 10.000000; 476 | set NumSteps [expr round(($GMduration + $FVduration)/$GMdt)]; # number of steps in analysis 477 | set totTime [expr $GMdt*$NumSteps]; # Total time of analysis 478 | set dtAnalysis [expr 0.500000*$GMdt]; # dt of Analysis 479 | 480 | DynamicAnalysisCollapseSolverX $GMdt $dtAnalysis $totTime $NStory 0.15 $MF_FloorNodes $EGF_FloorNodes 180.00 156.00 1 $StartTime $MaxRunTime; 481 | 482 | ################################################################################################### 483 | ################################################################################################### 484 | puts "Ground Motion Done. End Time: [getTime]" 485 | ################################################################################################### 486 | ################################################################################################### 487 | } 488 | 489 | wipe all; 490 | -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | GNU GENERAL PUBLIC LICENSE 2 | Version 3, 29 June 2007 3 | 4 | Copyright (C) 2007 Free Software Foundation, Inc. 5 | Everyone is permitted to copy and distribute verbatim copies 6 | of this license document, but changing it is not allowed. 7 | 8 | Preamble 9 | 10 | The GNU General Public License is a free, copyleft license for 11 | software and other kinds of works. 12 | 13 | The licenses for most software and other practical works are designed 14 | to take away your freedom to share and change the works. By contrast, 15 | the GNU General Public License is intended to guarantee your freedom to 16 | share and change all versions of a program--to make sure it remains free 17 | software for all its users. We, the Free Software Foundation, use the 18 | GNU General Public License for most of our software; it applies also to 19 | any other work released this way by its authors. You can apply it to 20 | your programs, too. 21 | 22 | When we speak of free software, we are referring to freedom, not 23 | price. Our General Public Licenses are designed to make sure that you 24 | have the freedom to distribute copies of free software (and charge for 25 | them if you wish), that you receive source code or can get it if you 26 | want it, that you can change the software or use pieces of it in new 27 | free programs, and that you know you can do these things. 28 | 29 | To protect your rights, we need to prevent others from denying you 30 | these rights or asking you to surrender the rights. Therefore, you have 31 | certain responsibilities if you distribute copies of the software, or if 32 | you modify it: responsibilities to respect the freedom of others. 33 | 34 | For example, if you distribute copies of such a program, whether 35 | gratis or for a fee, you must pass on to the recipients the same 36 | freedoms that you received. You must make sure that they, too, receive 37 | or can get the source code. And you must show them these terms so they 38 | know their rights. 39 | 40 | Developers that use the GNU GPL protect your rights with two steps: 41 | (1) assert copyright on the software, and (2) offer you this License 42 | giving you legal permission to copy, distribute and/or modify it. 43 | 44 | For the developers' and authors' protection, the GPL clearly explains 45 | that there is no warranty for this free software. For both users' and 46 | authors' sake, the GPL requires that modified versions be marked as 47 | changed, so that their problems will not be attributed erroneously to 48 | authors of previous versions. 49 | 50 | Some devices are designed to deny users access to install or run 51 | modified versions of the software inside them, although the manufacturer 52 | can do so. This is fundamentally incompatible with the aim of 53 | protecting users' freedom to change the software. The systematic 54 | pattern of such abuse occurs in the area of products for individuals to 55 | use, which is precisely where it is most unacceptable. Therefore, we 56 | have designed this version of the GPL to prohibit the practice for those 57 | products. If such problems arise substantially in other domains, we 58 | stand ready to extend this provision to those domains in future versions 59 | of the GPL, as needed to protect the freedom of users. 60 | 61 | Finally, every program is threatened constantly by software patents. 62 | States should not allow patents to restrict development and use of 63 | software on general-purpose computers, but in those that do, we wish to 64 | avoid the special danger that patents applied to a free program could 65 | make it effectively proprietary. To prevent this, the GPL assures that 66 | patents cannot be used to render the program non-free. 67 | 68 | The precise terms and conditions for copying, distribution and 69 | modification follow. 70 | 71 | TERMS AND CONDITIONS 72 | 73 | 0. Definitions. 74 | 75 | "This License" refers to version 3 of the GNU General Public License. 76 | 77 | "Copyright" also means copyright-like laws that apply to other kinds of 78 | works, such as semiconductor masks. 79 | 80 | "The Program" refers to any copyrightable work licensed under this 81 | License. Each licensee is addressed as "you". "Licensees" and 82 | "recipients" may be individuals or organizations. 83 | 84 | To "modify" a work means to copy from or adapt all or part of the work 85 | in a fashion requiring copyright permission, other than the making of an 86 | exact copy. The resulting work is called a "modified version" of the 87 | earlier work or a work "based on" the earlier work. 88 | 89 | A "covered work" means either the unmodified Program or a work based 90 | on the Program. 91 | 92 | To "propagate" a work means to do anything with it that, without 93 | permission, would make you directly or secondarily liable for 94 | infringement under applicable copyright law, except executing it on a 95 | computer or modifying a private copy. Propagation includes copying, 96 | distribution (with or without modification), making available to the 97 | public, and in some countries other activities as well. 98 | 99 | To "convey" a work means any kind of propagation that enables other 100 | parties to make or receive copies. Mere interaction with a user through 101 | a computer network, with no transfer of a copy, is not conveying. 102 | 103 | An interactive user interface displays "Appropriate Legal Notices" 104 | to the extent that it includes a convenient and prominently visible 105 | feature that (1) displays an appropriate copyright notice, and (2) 106 | tells the user that there is no warranty for the work (except to the 107 | extent that warranties are provided), that licensees may convey the 108 | work under this License, and how to view a copy of this License. If 109 | the interface presents a list of user commands or options, such as a 110 | menu, a prominent item in the list meets this criterion. 111 | 112 | 1. Source Code. 113 | 114 | The "source code" for a work means the preferred form of the work 115 | for making modifications to it. "Object code" means any non-source 116 | form of a work. 117 | 118 | A "Standard Interface" means an interface that either is an official 119 | standard defined by a recognized standards body, or, in the case of 120 | interfaces specified for a particular programming language, one that 121 | is widely used among developers working in that language. 122 | 123 | The "System Libraries" of an executable work include anything, other 124 | than the work as a whole, that (a) is included in the normal form of 125 | packaging a Major Component, but which is not part of that Major 126 | Component, and (b) serves only to enable use of the work with that 127 | Major Component, or to implement a Standard Interface for which an 128 | implementation is available to the public in source code form. A 129 | "Major Component", in this context, means a major essential component 130 | (kernel, window system, and so on) of the specific operating system 131 | (if any) on which the executable work runs, or a compiler used to 132 | produce the work, or an object code interpreter used to run it. 133 | 134 | The "Corresponding Source" for a work in object code form means all 135 | the source code needed to generate, install, and (for an executable 136 | work) run the object code and to modify the work, including scripts to 137 | control those activities. However, it does not include the work's 138 | System Libraries, or general-purpose tools or generally available free 139 | programs which are used unmodified in performing those activities but 140 | which are not part of the work. For example, Corresponding Source 141 | includes interface definition files associated with source files for 142 | the work, and the source code for shared libraries and dynamically 143 | linked subprograms that the work is specifically designed to require, 144 | such as by intimate data communication or control flow between those 145 | subprograms and other parts of the work. 146 | 147 | The Corresponding Source need not include anything that users 148 | can regenerate automatically from other parts of the Corresponding 149 | Source. 150 | 151 | The Corresponding Source for a work in source code form is that 152 | same work. 153 | 154 | 2. Basic Permissions. 155 | 156 | All rights granted under this License are granted for the term of 157 | copyright on the Program, and are irrevocable provided the stated 158 | conditions are met. This License explicitly affirms your unlimited 159 | permission to run the unmodified Program. The output from running a 160 | covered work is covered by this License only if the output, given its 161 | content, constitutes a covered work. This License acknowledges your 162 | rights of fair use or other equivalent, as provided by copyright law. 163 | 164 | You may make, run and propagate covered works that you do not 165 | convey, without conditions so long as your license otherwise remains 166 | in force. You may convey covered works to others for the sole purpose 167 | of having them make modifications exclusively for you, or provide you 168 | with facilities for running those works, provided that you comply with 169 | the terms of this License in conveying all material for which you do 170 | not control copyright. Those thus making or running the covered works 171 | for you must do so exclusively on your behalf, under your direction 172 | and control, on terms that prohibit them from making any copies of 173 | your copyrighted material outside their relationship with you. 174 | 175 | Conveying under any other circumstances is permitted solely under 176 | the conditions stated below. Sublicensing is not allowed; section 10 177 | makes it unnecessary. 178 | 179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law. 180 | 181 | No covered work shall be deemed part of an effective technological 182 | measure under any applicable law fulfilling obligations under article 183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or 184 | similar laws prohibiting or restricting circumvention of such 185 | measures. 186 | 187 | When you convey a covered work, you waive any legal power to forbid 188 | circumvention of technological measures to the extent such circumvention 189 | is effected by exercising rights under this License with respect to 190 | the covered work, and you disclaim any intention to limit operation or 191 | modification of the work as a means of enforcing, against the work's 192 | users, your or third parties' legal rights to forbid circumvention of 193 | technological measures. 194 | 195 | 4. Conveying Verbatim Copies. 196 | 197 | You may convey verbatim copies of the Program's source code as you 198 | receive it, in any medium, provided that you conspicuously and 199 | appropriately publish on each copy an appropriate copyright notice; 200 | keep intact all notices stating that this License and any 201 | non-permissive terms added in accord with section 7 apply to the code; 202 | keep intact all notices of the absence of any warranty; and give all 203 | recipients a copy of this License along with the Program. 204 | 205 | You may charge any price or no price for each copy that you convey, 206 | and you may offer support or warranty protection for a fee. 207 | 208 | 5. Conveying Modified Source Versions. 209 | 210 | You may convey a work based on the Program, or the modifications to 211 | produce it from the Program, in the form of source code under the 212 | terms of section 4, provided that you also meet all of these conditions: 213 | 214 | a) The work must carry prominent notices stating that you modified 215 | it, and giving a relevant date. 216 | 217 | b) The work must carry prominent notices stating that it is 218 | released under this License and any conditions added under section 219 | 7. This requirement modifies the requirement in section 4 to 220 | "keep intact all notices". 221 | 222 | c) You must license the entire work, as a whole, under this 223 | License to anyone who comes into possession of a copy. This 224 | License will therefore apply, along with any applicable section 7 225 | additional terms, to the whole of the work, and all its parts, 226 | regardless of how they are packaged. This License gives no 227 | permission to license the work in any other way, but it does not 228 | invalidate such permission if you have separately received it. 229 | 230 | d) If the work has interactive user interfaces, each must display 231 | Appropriate Legal Notices; however, if the Program has interactive 232 | interfaces that do not display Appropriate Legal Notices, your 233 | work need not make them do so. 234 | 235 | A compilation of a covered work with other separate and independent 236 | works, which are not by their nature extensions of the covered work, 237 | and which are not combined with it such as to form a larger program, 238 | in or on a volume of a storage or distribution medium, is called an 239 | "aggregate" if the compilation and its resulting copyright are not 240 | used to limit the access or legal rights of the compilation's users 241 | beyond what the individual works permit. Inclusion of a covered work 242 | in an aggregate does not cause this License to apply to the other 243 | parts of the aggregate. 244 | 245 | 6. Conveying Non-Source Forms. 246 | 247 | You may convey a covered work in object code form under the terms 248 | of sections 4 and 5, provided that you also convey the 249 | machine-readable Corresponding Source under the terms of this License, 250 | in one of these ways: 251 | 252 | a) Convey the object code in, or embodied in, a physical product 253 | (including a physical distribution medium), accompanied by the 254 | Corresponding Source fixed on a durable physical medium 255 | customarily used for software interchange. 256 | 257 | b) Convey the object code in, or embodied in, a physical product 258 | (including a physical distribution medium), accompanied by a 259 | written offer, valid for at least three years and valid for as 260 | long as you offer spare parts or customer support for that product 261 | model, to give anyone who possesses the object code either (1) a 262 | copy of the Corresponding Source for all the software in the 263 | product that is covered by this License, on a durable physical 264 | medium customarily used for software interchange, for a price no 265 | more than your reasonable cost of physically performing this 266 | conveying of source, or (2) access to copy the 267 | Corresponding Source from a network server at no charge. 268 | 269 | c) Convey individual copies of the object code with a copy of the 270 | written offer to provide the Corresponding Source. This 271 | alternative is allowed only occasionally and noncommercially, and 272 | only if you received the object code with such an offer, in accord 273 | with subsection 6b. 274 | 275 | d) Convey the object code by offering access from a designated 276 | place (gratis or for a charge), and offer equivalent access to the 277 | Corresponding Source in the same way through the same place at no 278 | further charge. You need not require recipients to copy the 279 | Corresponding Source along with the object code. If the place to 280 | copy the object code is a network server, the Corresponding Source 281 | may be on a different server (operated by you or a third party) 282 | that supports equivalent copying facilities, provided you maintain 283 | clear directions next to the object code saying where to find the 284 | Corresponding Source. Regardless of what server hosts the 285 | Corresponding Source, you remain obligated to ensure that it is 286 | available for as long as needed to satisfy these requirements. 287 | 288 | e) Convey the object code using peer-to-peer transmission, provided 289 | you inform other peers where the object code and Corresponding 290 | Source of the work are being offered to the general public at no 291 | charge under subsection 6d. 292 | 293 | A separable portion of the object code, whose source code is excluded 294 | from the Corresponding Source as a System Library, need not be 295 | included in conveying the object code work. 296 | 297 | A "User Product" is either (1) a "consumer product", which means any 298 | tangible personal property which is normally used for personal, family, 299 | or household purposes, or (2) anything designed or sold for incorporation 300 | into a dwelling. In determining whether a product is a consumer product, 301 | doubtful cases shall be resolved in favor of coverage. For a particular 302 | product received by a particular user, "normally used" refers to a 303 | typical or common use of that class of product, regardless of the status 304 | of the particular user or of the way in which the particular user 305 | actually uses, or expects or is expected to use, the product. A product 306 | is a consumer product regardless of whether the product has substantial 307 | commercial, industrial or non-consumer uses, unless such uses represent 308 | the only significant mode of use of the product. 309 | 310 | "Installation Information" for a User Product means any methods, 311 | procedures, authorization keys, or other information required to install 312 | and execute modified versions of a covered work in that User Product from 313 | a modified version of its Corresponding Source. The information must 314 | suffice to ensure that the continued functioning of the modified object 315 | code is in no case prevented or interfered with solely because 316 | modification has been made. 317 | 318 | If you convey an object code work under this section in, or with, or 319 | specifically for use in, a User Product, and the conveying occurs as 320 | part of a transaction in which the right of possession and use of the 321 | User Product is transferred to the recipient in perpetuity or for a 322 | fixed term (regardless of how the transaction is characterized), the 323 | Corresponding Source conveyed under this section must be accompanied 324 | by the Installation Information. But this requirement does not apply 325 | if neither you nor any third party retains the ability to install 326 | modified object code on the User Product (for example, the work has 327 | been installed in ROM). 328 | 329 | The requirement to provide Installation Information does not include a 330 | requirement to continue to provide support service, warranty, or updates 331 | for a work that has been modified or installed by the recipient, or for 332 | the User Product in which it has been modified or installed. Access to a 333 | network may be denied when the modification itself materially and 334 | adversely affects the operation of the network or violates the rules and 335 | protocols for communication across the network. 336 | 337 | Corresponding Source conveyed, and Installation Information provided, 338 | in accord with this section must be in a format that is publicly 339 | documented (and with an implementation available to the public in 340 | source code form), and must require no special password or key for 341 | unpacking, reading or copying. 342 | 343 | 7. Additional Terms. 344 | 345 | "Additional permissions" are terms that supplement the terms of this 346 | License by making exceptions from one or more of its conditions. 347 | Additional permissions that are applicable to the entire Program shall 348 | be treated as though they were included in this License, to the extent 349 | that they are valid under applicable law. If additional permissions 350 | apply only to part of the Program, that part may be used separately 351 | under those permissions, but the entire Program remains governed by 352 | this License without regard to the additional permissions. 353 | 354 | When you convey a copy of a covered work, you may at your option 355 | remove any additional permissions from that copy, or from any part of 356 | it. (Additional permissions may be written to require their own 357 | removal in certain cases when you modify the work.) You may place 358 | additional permissions on material, added by you to a covered work, 359 | for which you have or can give appropriate copyright permission. 360 | 361 | Notwithstanding any other provision of this License, for material you 362 | add to a covered work, you may (if authorized by the copyright holders of 363 | that material) supplement the terms of this License with terms: 364 | 365 | a) Disclaiming warranty or limiting liability differently from the 366 | terms of sections 15 and 16 of this License; or 367 | 368 | b) Requiring preservation of specified reasonable legal notices or 369 | author attributions in that material or in the Appropriate Legal 370 | Notices displayed by works containing it; or 371 | 372 | c) Prohibiting misrepresentation of the origin of that material, or 373 | requiring that modified versions of such material be marked in 374 | reasonable ways as different from the original version; or 375 | 376 | d) Limiting the use for publicity purposes of names of licensors or 377 | authors of the material; or 378 | 379 | e) Declining to grant rights under trademark law for use of some 380 | trade names, trademarks, or service marks; or 381 | 382 | f) Requiring indemnification of licensors and authors of that 383 | material by anyone who conveys the material (or modified versions of 384 | it) with contractual assumptions of liability to the recipient, for 385 | any liability that these contractual assumptions directly impose on 386 | those licensors and authors. 387 | 388 | All other non-permissive additional terms are considered "further 389 | restrictions" within the meaning of section 10. If the Program as you 390 | received it, or any part of it, contains a notice stating that it is 391 | governed by this License along with a term that is a further 392 | restriction, you may remove that term. If a license document contains 393 | a further restriction but permits relicensing or conveying under this 394 | License, you may add to a covered work material governed by the terms 395 | of that license document, provided that the further restriction does 396 | not survive such relicensing or conveying. 397 | 398 | If you add terms to a covered work in accord with this section, you 399 | must place, in the relevant source files, a statement of the 400 | additional terms that apply to those files, or a notice indicating 401 | where to find the applicable terms. 402 | 403 | Additional terms, permissive or non-permissive, may be stated in the 404 | form of a separately written license, or stated as exceptions; 405 | the above requirements apply either way. 406 | 407 | 8. Termination. 408 | 409 | You may not propagate or modify a covered work except as expressly 410 | provided under this License. Any attempt otherwise to propagate or 411 | modify it is void, and will automatically terminate your rights under 412 | this License (including any patent licenses granted under the third 413 | paragraph of section 11). 414 | 415 | However, if you cease all violation of this License, then your 416 | license from a particular copyright holder is reinstated (a) 417 | provisionally, unless and until the copyright holder explicitly and 418 | finally terminates your license, and (b) permanently, if the copyright 419 | holder fails to notify you of the violation by some reasonable means 420 | prior to 60 days after the cessation. 421 | 422 | Moreover, your license from a particular copyright holder is 423 | reinstated permanently if the copyright holder notifies you of the 424 | violation by some reasonable means, this is the first time you have 425 | received notice of violation of this License (for any work) from that 426 | copyright holder, and you cure the violation prior to 30 days after 427 | your receipt of the notice. 428 | 429 | Termination of your rights under this section does not terminate the 430 | licenses of parties who have received copies or rights from you under 431 | this License. If your rights have been terminated and not permanently 432 | reinstated, you do not qualify to receive new licenses for the same 433 | material under section 10. 434 | 435 | 9. Acceptance Not Required for Having Copies. 436 | 437 | You are not required to accept this License in order to receive or 438 | run a copy of the Program. Ancillary propagation of a covered work 439 | occurring solely as a consequence of using peer-to-peer transmission 440 | to receive a copy likewise does not require acceptance. However, 441 | nothing other than this License grants you permission to propagate or 442 | modify any covered work. These actions infringe copyright if you do 443 | not accept this License. Therefore, by modifying or propagating a 444 | covered work, you indicate your acceptance of this License to do so. 445 | 446 | 10. Automatic Licensing of Downstream Recipients. 447 | 448 | Each time you convey a covered work, the recipient automatically 449 | receives a license from the original licensors, to run, modify and 450 | propagate that work, subject to this License. You are not responsible 451 | for enforcing compliance by third parties with this License. 452 | 453 | An "entity transaction" is a transaction transferring control of an 454 | organization, or substantially all assets of one, or subdividing an 455 | organization, or merging organizations. If propagation of a covered 456 | work results from an entity transaction, each party to that 457 | transaction who receives a copy of the work also receives whatever 458 | licenses to the work the party's predecessor in interest had or could 459 | give under the previous paragraph, plus a right to possession of the 460 | Corresponding Source of the work from the predecessor in interest, if 461 | the predecessor has it or can get it with reasonable efforts. 462 | 463 | You may not impose any further restrictions on the exercise of the 464 | rights granted or affirmed under this License. For example, you may 465 | not impose a license fee, royalty, or other charge for exercise of 466 | rights granted under this License, and you may not initiate litigation 467 | (including a cross-claim or counterclaim in a lawsuit) alleging that 468 | any patent claim is infringed by making, using, selling, offering for 469 | sale, or importing the Program or any portion of it. 470 | 471 | 11. Patents. 472 | 473 | A "contributor" is a copyright holder who authorizes use under this 474 | License of the Program or a work on which the Program is based. The 475 | work thus licensed is called the contributor's "contributor version". 476 | 477 | A contributor's "essential patent claims" are all patent claims 478 | owned or controlled by the contributor, whether already acquired or 479 | hereafter acquired, that would be infringed by some manner, permitted 480 | by this License, of making, using, or selling its contributor version, 481 | but do not include claims that would be infringed only as a 482 | consequence of further modification of the contributor version. For 483 | purposes of this definition, "control" includes the right to grant 484 | patent sublicenses in a manner consistent with the requirements of 485 | this License. 486 | 487 | Each contributor grants you a non-exclusive, worldwide, royalty-free 488 | patent license under the contributor's essential patent claims, to 489 | make, use, sell, offer for sale, import and otherwise run, modify and 490 | propagate the contents of its contributor version. 491 | 492 | In the following three paragraphs, a "patent license" is any express 493 | agreement or commitment, however denominated, not to enforce a patent 494 | (such as an express permission to practice a patent or covenant not to 495 | sue for patent infringement). To "grant" such a patent license to a 496 | party means to make such an agreement or commitment not to enforce a 497 | patent against the party. 498 | 499 | If you convey a covered work, knowingly relying on a patent license, 500 | and the Corresponding Source of the work is not available for anyone 501 | to copy, free of charge and under the terms of this License, through a 502 | publicly available network server or other readily accessible means, 503 | then you must either (1) cause the Corresponding Source to be so 504 | available, or (2) arrange to deprive yourself of the benefit of the 505 | patent license for this particular work, or (3) arrange, in a manner 506 | consistent with the requirements of this License, to extend the patent 507 | license to downstream recipients. "Knowingly relying" means you have 508 | actual knowledge that, but for the patent license, your conveying the 509 | covered work in a country, or your recipient's use of the covered work 510 | in a country, would infringe one or more identifiable patents in that 511 | country that you have reason to believe are valid. 512 | 513 | If, pursuant to or in connection with a single transaction or 514 | arrangement, you convey, or propagate by procuring conveyance of, a 515 | covered work, and grant a patent license to some of the parties 516 | receiving the covered work authorizing them to use, propagate, modify 517 | or convey a specific copy of the covered work, then the patent license 518 | you grant is automatically extended to all recipients of the covered 519 | work and works based on it. 520 | 521 | A patent license is "discriminatory" if it does not include within 522 | the scope of its coverage, prohibits the exercise of, or is 523 | conditioned on the non-exercise of one or more of the rights that are 524 | specifically granted under this License. You may not convey a covered 525 | work if you are a party to an arrangement with a third party that is 526 | in the business of distributing software, under which you make payment 527 | to the third party based on the extent of your activity of conveying 528 | the work, and under which the third party grants, to any of the 529 | parties who would receive the covered work from you, a discriminatory 530 | patent license (a) in connection with copies of the covered work 531 | conveyed by you (or copies made from those copies), or (b) primarily 532 | for and in connection with specific products or compilations that 533 | contain the covered work, unless you entered into that arrangement, 534 | or that patent license was granted, prior to 28 March 2007. 535 | 536 | Nothing in this License shall be construed as excluding or limiting 537 | any implied license or other defenses to infringement that may 538 | otherwise be available to you under applicable patent law. 539 | 540 | 12. No Surrender of Others' Freedom. 541 | 542 | If conditions are imposed on you (whether by court order, agreement or 543 | otherwise) that contradict the conditions of this License, they do not 544 | excuse you from the conditions of this License. If you cannot convey a 545 | covered work so as to satisfy simultaneously your obligations under this 546 | License and any other pertinent obligations, then as a consequence you may 547 | not convey it at all. For example, if you agree to terms that obligate you 548 | to collect a royalty for further conveying from those to whom you convey 549 | the Program, the only way you could satisfy both those terms and this 550 | License would be to refrain entirely from conveying the Program. 551 | 552 | 13. Use with the GNU Affero General Public License. 553 | 554 | Notwithstanding any other provision of this License, you have 555 | permission to link or combine any covered work with a work licensed 556 | under version 3 of the GNU Affero General Public License into a single 557 | combined work, and to convey the resulting work. The terms of this 558 | License will continue to apply to the part which is the covered work, 559 | but the special requirements of the GNU Affero General Public License, 560 | section 13, concerning interaction through a network will apply to the 561 | combination as such. 562 | 563 | 14. Revised Versions of this License. 564 | 565 | The Free Software Foundation may publish revised and/or new versions of 566 | the GNU General Public License from time to time. Such new versions will 567 | be similar in spirit to the present version, but may differ in detail to 568 | address new problems or concerns. 569 | 570 | Each version is given a distinguishing version number. If the 571 | Program specifies that a certain numbered version of the GNU General 572 | Public License "or any later version" applies to it, you have the 573 | option of following the terms and conditions either of that numbered 574 | version or of any later version published by the Free Software 575 | Foundation. If the Program does not specify a version number of the 576 | GNU General Public License, you may choose any version ever published 577 | by the Free Software Foundation. 578 | 579 | If the Program specifies that a proxy can decide which future 580 | versions of the GNU General Public License can be used, that proxy's 581 | public statement of acceptance of a version permanently authorizes you 582 | to choose that version for the Program. 583 | 584 | Later license versions may give you additional or different 585 | permissions. However, no additional obligations are imposed on any 586 | author or copyright holder as a result of your choosing to follow a 587 | later version. 588 | 589 | 15. Disclaimer of Warranty. 590 | 591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY 592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT 593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY 594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, 595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM 597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF 598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 599 | 600 | 16. Limitation of Liability. 601 | 602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING 603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS 604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY 605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE 606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF 607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD 608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), 609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF 610 | SUCH DAMAGES. 611 | 612 | 17. Interpretation of Sections 15 and 16. 613 | 614 | If the disclaimer of warranty and limitation of liability provided 615 | above cannot be given local legal effect according to their terms, 616 | reviewing courts shall apply local law that most closely approximates 617 | an absolute waiver of all civil liability in connection with the 618 | Program, unless a warranty or assumption of liability accompanies a 619 | copy of the Program in return for a fee. 620 | 621 | END OF TERMS AND CONDITIONS 622 | 623 | How to Apply These Terms to Your New Programs 624 | 625 | If you develop a new program, and you want it to be of the greatest 626 | possible use to the public, the best way to achieve this is to make it 627 | free software which everyone can redistribute and change under these terms. 628 | 629 | To do so, attach the following notices to the program. It is safest 630 | to attach them to the start of each source file to most effectively 631 | state the exclusion of warranty; and each file should have at least 632 | the "copyright" line and a pointer to where the full notice is found. 633 | 634 | 635 | Copyright (C) 636 | 637 | This program is free software: you can redistribute it and/or modify 638 | it under the terms of the GNU General Public License as published by 639 | the Free Software Foundation, either version 3 of the License, or 640 | (at your option) any later version. 641 | 642 | This program is distributed in the hope that it will be useful, 643 | but WITHOUT ANY WARRANTY; without even the implied warranty of 644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 645 | GNU General Public License for more details. 646 | 647 | You should have received a copy of the GNU General Public License 648 | along with this program. If not, see . 649 | 650 | Also add information on how to contact you by electronic and paper mail. 651 | 652 | If the program does terminal interaction, make it output a short 653 | notice like this when it starts in an interactive mode: 654 | 655 | Copyright (C) 656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. 657 | This is free software, and you are welcome to redistribute it 658 | under certain conditions; type `show c' for details. 659 | 660 | The hypothetical commands `show w' and `show c' should show the appropriate 661 | parts of the General Public License. Of course, your program's commands 662 | might be different; for a GUI interface, you would use an "about box". 663 | 664 | You should also get your employer (if you work as a programmer) or school, 665 | if any, to sign a "copyright disclaimer" for the program, if necessary. 666 | For more information on this, and how to apply and follow the GNU GPL, see 667 | . 668 | 669 | The GNU General Public License does not permit incorporating your program 670 | into proprietary programs. If your program is a subroutine library, you 671 | may consider it more useful to permit linking proprietary applications with 672 | the library. If this is what you want to do, use the GNU Lesser General 673 | Public License instead of this License. But first, please read 674 | . 675 | --------------------------------------------------------------------------------