├── READ ME - ABOUT THE MODELS.pdf
├── Frame Idealization and Element Notation.pdf
├── Models and Tcl Files
├── Spring_Zero.tcl
├── Spring_Rigid.tcl
├── Generate_lognrmrand.tcl
├── SDRlimitTester.tcl
├── Spring_Panel.tcl
├── ConstructPanel_Rectangle.tcl
├── DisplayModel3D.tcl
├── LibAnalysisStaticParameters.tcl
├── DisplayPlane.tcl
├── DynamicAnalysisCollapseSolverX.tcl
├── Spring_PZ.tcl
├── Spring_Pinching.tcl
├── SolutionAlgorithmSubFile.tcl
├── SolutionAlgorithm.tcl
├── Spring_IMK.tcl
├── SMF2B.tcl
└── SMF2CG.tcl
├── README.md
└── LICENSE
/READ ME - ABOUT THE MODELS.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/amaelkady/OpenSEES_Models_SMF/HEAD/READ ME - ABOUT THE MODELS.pdf
--------------------------------------------------------------------------------
/Frame Idealization and Element Notation.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/amaelkady/OpenSEES_Models_SMF/HEAD/Frame Idealization and Element Notation.pdf
--------------------------------------------------------------------------------
/Models and Tcl Files/Spring_Zero.tcl:
--------------------------------------------------------------------------------
1 | ##################################################################################################################
2 | # Spring_Zero.tcl
3 | #
4 | # SubRoutine to construct a rotational spring with a very low stiffness
5 | #
6 | ##################################################################################################################
7 | #
8 | # Input Arguments:
9 | #------------------
10 | # SpringID Spring ID
11 | # NodeI Node i ID
12 | # NodeJ Node j ID
13 | #
14 | # Written by: Dr. Ahmed Elkady, University of Southampton, UK
15 | #
16 | ##################################################################################################################
17 |
18 | proc Spring_Zero {SpringID NodeI NodeJ} {
19 |
20 | element zeroLength $SpringID $NodeI $NodeJ -mat 99 99 9 -dir 1 2 6;
21 |
22 | }
--------------------------------------------------------------------------------
/Models and Tcl Files/Spring_Rigid.tcl:
--------------------------------------------------------------------------------
1 | ##################################################################################################################
2 | # Spring_Rigid.tcl
3 | #
4 | # SubRoutine to construct a rotational spring with a very large stiffness
5 | #
6 | ##################################################################################################################
7 | #
8 | # Input Arguments:
9 | #------------------
10 | # SpringID Spring ID
11 | # NodeI Node i ID
12 | # NodeJ Node j ID
13 | #
14 | # Written by: Dr. Ahmed Elkady, University of Southampton, UK
15 | #
16 | ##################################################################################################################
17 |
18 |
19 | proc Spring_Rigid {SpringID NodeI NodeJ} {
20 |
21 | element zeroLength $SpringID $NodeI $NodeJ -mat 99 99 99 -dir 1 2 6 -doRayleigh 1;;
22 |
23 |
24 | }
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Description
2 | This folder contains ready-to-run 2-dimensional OpenSEES models of five archetype steel buildings designed with perimeter special moment frames (SMFs), with heights of 2, 4, 8, 12 and 20-story.
3 |
4 | # Important note
5 | These models were developed back in 2019. There has been several updates since then including new hysteretic models and modeling guidelines for steel members and connections. To generate frame models with these updated modeling specifications, you should use the FM-2D software (https://github.com/amaelkady/FM-2D).
6 |
7 | # References
8 | • Elkady, A., and Lignos, D. G. (2014). "Modeling of the composite action in fully restrained beam-to-column connections: implications in the seismic design and collapse capacity of steel special moment frames." Earthquake Engineering & Structural Dynamics, 43(13), 1935-1954, DOI: 10.1002/eqe.2430.
9 |
10 | • Elkady, A., and Lignos, D. G. (2015). "Effect of gravity framing on the overstrength and collapse capacity of steel frame buildings with perimeter special moment frames." Earthquake Engineering & Structural Dynamics, 44(8), 1289–1307, DOI: 10.1002/eqe.2519.
11 |
--------------------------------------------------------------------------------
/Models and Tcl Files/Generate_lognrmrand.tcl:
--------------------------------------------------------------------------------
1 | ##################################################################################################################
2 | # Generate_lognrmrand.tcl
3 | #
4 | # SubRoutine to generate a log-normally distributed random variable for a specified mean and standard deviation.
5 | #
6 | ##################################################################################################################
7 | #
8 | # Input Arguments:
9 | #------------------
10 | # meanX Mean value of the variable X
11 | # stdlnX Standard deviation of the logarithmic values of the variable X
12 | # xRandom The subroutine output --> random variable
13 | #
14 | # Written by: Dr. Ahmed Elkady, University of Southampton, UK
15 | #
16 | ##################################################################################################################
17 |
18 | proc Generate_lognrmrand {meanX stdlnX} {
19 |
20 | package require math::statistics
21 | global xRandom
22 |
23 | set meanlnX [expr log($meanX)];
24 | set number 1;
25 |
26 | set y [::math::statistics::random-normal $meanlnX $stdlnX $number];
27 |
28 | set xRandom [expr exp($y)];
29 |
30 | }
--------------------------------------------------------------------------------
/Models and Tcl Files/SDRlimitTester.tcl:
--------------------------------------------------------------------------------
1 | # SDRlimitTester ########################################################################
2 | #
3 | # Procedure that checks if the Pre-Specified Collapse Drift Limit is reached and Generate
4 | # a Flag
5 | #
6 | # Developed by Dimitrios G. Lignos, Ph.D
7 | # Modified by Ahmed Elkady, Ph.D
8 | #
9 | # First Created: 04/20/2010
10 | # Last Modified: 05/05/2020
11 | #
12 | # #######################################################################################
13 |
14 | proc SDRlimitTester {numStories SDRlimit MFFloorNodes EGFFloorNodes h1 htyp TraceGFDrift} {
15 |
16 | global CollapseFlag
17 | set CollapseFlag "NO"
18 |
19 | # set x [clock seconds];
20 | # set RunTime [expr $x - $StartTime];
21 |
22 | # Read the Floor Node Displacements and Deduce the Story Drift Ratio
23 | for {set i 0} {$i<=$numStories-1} {incr i} {
24 | if { $i==0 } {
25 | set Node [lindex $MFFloorNodes $i]
26 | set NodeDisplI [nodeDisp $Node 1]
27 | set SDR_MF [expr $NodeDisplI/$h1]
28 | lappend SMFDrift [list $SDR_MF]
29 |
30 | # Addition by Ahmed Elkady 14 Dec 2016 for Tracing Drifts in EGF
31 | if { $TraceGFDrift == 1} {
32 | set Node [lindex $EGFFloorNodes $i]
33 | set NodeDisplI [nodeDisp $Node 1]
34 | set SDR_EGF [expr $NodeDisplI/$h1]
35 | lappend GFDrift [list $SDR_EGF]
36 | }
37 |
38 | } elseif { $i > 0 } {
39 | set NodeI [lindex $MFFloorNodes $i]
40 | set NodeDisplI [nodeDisp $NodeI 1]
41 | set NodeJ [lindex $MFFloorNodes [expr $i-1]]
42 | set NodeDisplJ [nodeDisp $NodeJ 1]
43 | set SDR_MF [expr ($NodeDisplI - $NodeDisplJ)/$htyp]
44 | lappend SMFDrift [list $SDR_MF]
45 |
46 | # Addition by Ahmed Elkady 14 Dec 2016 for Tracing Drifts in EGF
47 | if { $TraceGFDrift == 1} {
48 | set NodeI [lindex $EGFFloorNodes $i]
49 | set NodeDisplI [nodeDisp $NodeI 1]
50 | set NodeJ [lindex $EGFFloorNodes [expr $i-1]]
51 | set NodeDisplJ [nodeDisp $NodeJ 1]
52 | set SDR_EGF [expr ($NodeDisplI - $NodeDisplJ)/$htyp]
53 | lappend GFDrift [list $SDR_EGF]
54 | }
55 | }
56 | }
57 |
58 | # Check if any Story Drift Ratio Exceeded the Drift Limit
59 | for {set i 0} {$i <= $numStories-1} {incr i} {
60 | set SMFTDrift [ lindex $SMFDrift [expr $i] ]
61 | set SMFTDrift [expr abs($SMFTDrift)]
62 |
63 | # Addition by Ahmed Elkady 14 Dec 2016 for Tracing Drifts in EGF
64 | if { $TraceGFDrift == 1} {
65 | set GFTDrift [ lindex $GFDrift [expr $i] ]
66 | set GFTDrift [expr abs($GFTDrift)]
67 | }
68 |
69 | #set filename "CollapsedFrame.txt"
70 |
71 | # IF the Story Drift Ratio at Current Story is Less than the Drift Limit then
72 | # Open a file named "CollapsedFrame.txt" and write a value of "0" for no collapse
73 | if {$SMFTDrift < $SDRlimit && $GFTDrift < $SDRlimit} {
74 | set fileID2 [open CollapsedFrame.txt w]; # Create/Open CollapsedFrame.txt file (writing permission)
75 | puts -nonewline $fileID2 0; # Write value of 0 in case of no collapse
76 | close $fileID2;
77 | }
78 |
79 | # If Drift Limit was exceeded in MF
80 | if {$SMFTDrift > $SDRlimit} {
81 | puts "MF Collapse"
82 | set fileID2 [open CollapsedFrame.txt w]; # Create/Open CollapsedFrame.txt file (writing permission)
83 | puts -nonewline $fileID2 1; # Write value of 1 in case of collapse in SMF
84 | close $fileID2;
85 | }
86 |
87 | # If Drift Limit was exceeded in EGF
88 | if {$GFTDrift > $SDRlimit} {
89 | puts "GF Collapse"
90 | set fileID2 [open CollapsedFrame.txt w]; # Create/Open CollapsedFrame.txt file (writing permission)
91 | puts -nonewline $fileID2 2; # Write value of 2 in case of collapse in GF
92 | close $fileID2;
93 | }
94 |
95 | # If Drift Limit was exceeded in both MF and EGF
96 | if { $SMFTDrift > $SDRlimit || $GFTDrift > $SDRlimit} {
97 | set CollapseFlag "YES"
98 | puts "Collapse"
99 | # Addition by Ahmed Elkady 25 July 2012 for Tracing the Collapse Point
100 | set fileID [open CollapseState.txt w]; # Create/Open CollapseState.txt file (writing permission)
101 | puts -nonewline $fileID 1; # Write value of 1 in case of collapse in CollapseState.txt file (
102 | close $fileID; # Close CollapseState.txt file
103 | }
104 | }
105 |
106 |
107 | }
--------------------------------------------------------------------------------
/Models and Tcl Files/Spring_Panel.tcl:
--------------------------------------------------------------------------------
1 | ########################################################################################################
2 | # Spring_Panel.tcl
3 | #
4 | # SubRoutine to construct a rotational spring with a trilinear hysteretic beahviour (Panel Zone Spring)
5 | #
6 | # Input Arguments
7 | # P_Elm Element ID
8 | # iNode Node i ID
9 | # jNode Node j ID
10 | # E Young's Modulus
11 | # Fy Expected Yield Stress
12 | # tp Column Web + Doubler Plates Thickness
13 | # d_Col Column Depth
14 | # d_Beam Beam Depth
15 | # tf_Col Column Flange Thickness
16 | # bf_Col Beam Flange Thickness
17 | # SH_Panel Strain Hardeing (ratio of hardening-to-elastic slopes)
18 | # Response_ID ID for Panel Zone Response: 0 --> Interior Steel Panel Zone with Composite Action
19 | # 1 --> Exterior Steel Panel Zone with Composite Action
20 | # 2 --> Bare Steel Interior/Exterior Steel Panel Zone
21 | # transfTag Geometric Transformation ID
22 | # Units 1 --> mm
23 | # 2 --> inches
24 | #
25 | # Written by: Ahmed Elkady
26 | # Created: 02/07/2012
27 | #
28 | ########################################################################################################
29 |
30 |
31 | proc Spring_Panel {P_Elm Node_i Node_j E Fy tp d_Col d_Beam tf_Col bf_Col SH_Panel Response_ID transfTag Units} {
32 |
33 | if {$Units == 1} {
34 | set ts 102.; #Slab Thickness Above Rib (mm)
35 | set trib 89.; #Steel Deck Rib Depth (mm)
36 | } else {
37 | set ts 4.00; #Slab Thickness Above Rib (in)
38 | set trib 3.5; #Steel Deck Rib Depth (in)
39 | }
40 |
41 | # Floor Deck Parameters for Composite Action Consideration
42 | set d_BeamP [expr $d_Beam + $trib + $ts - 0.5 * $ts]; # Effective Depth in Positive Moment
43 | set d_BeamN $d_Beam; # Effective Depth in Negative Moment
44 |
45 | set Vy [expr 0.55 * $Fy * $d_Col * $tp]; # Yield Shear Force
46 | set G [expr $E/(2.0 * (1.0 + 0.30))]; # Shear Modulus
47 | set Ke [expr 0.95 * $G * $tp * $d_Col]; # Elastic Shear Stiffness
48 |
49 | set gamma1_y [expr $Vy/$Ke];
50 | set gamma2_y [expr 4.0 * $gamma1_y];
51 | set gamma3_y [expr 100.0 * $gamma1_y];
52 |
53 | set KpP [expr 0.95 * $G * $bf_Col * ($tf_Col * $tf_Col) / $d_BeamP]; # Plastic Stiffness
54 | set M1yP [expr $gamma1_y * ($Ke * $d_BeamP)];
55 | set M2yP [expr $M1yP + ($KpP * $d_BeamP) * ($gamma2_y - $gamma1_y)];
56 | set M3yP [expr $M2yP + ($SH_Panel * $Ke * $d_BeamP) * ($gamma3_y - $gamma2_y)];
57 |
58 | set KpN [expr 0.95 * $G * $bf_Col * ($tf_Col * $tf_Col) / $d_BeamN]; # Plastic Stiffness
59 | set M1yN [expr $gamma1_y * ($Ke * $d_BeamN)];
60 | set M2yN [expr $M1yN + ($KpN * $d_BeamN) * ($gamma2_y - $gamma1_y)];
61 | set M3yN [expr $M2yN + ($SH_Panel * $Ke * $d_BeamN) * ($gamma3_y - $gamma2_y)];
62 |
63 | set Th_U_P 0.3;
64 | set Th_U_N -0.3;
65 |
66 | set Dummy_ID [expr 12 * $P_Elm];
67 |
68 | # Hysteretic Material without pinching and damage
69 | # uniaxialMaterial Hysteretic $matTag $s1p $e1p $s2p $e2p <$s3p $e3p> $s1n $e1n $s2n $e2n <$s3n $e3n> $pinchX $pinchY $damage1 $damage2
70 |
71 | # Composite Interior Steel Panel Zone
72 | if { $Response_ID == 0.0 } {
73 | uniaxialMaterial Hysteretic $Dummy_ID $M1yP $gamma1_y $M2yP $gamma2_y $M3yP $gamma3_y [expr -$M1yP] [expr -$gamma1_y] [expr -$M2yP] [expr -$gamma2_y] [expr -$M3yP] [expr -$gamma3_y] 0.25 0.75 0. 0. 0.
74 | uniaxialMaterial MinMax $P_Elm $Dummy_ID -min $Th_U_N -max $Th_U_P
75 | }
76 |
77 | # Composite Exterior Steel Panel Zone
78 | if { $Response_ID == 1.0 } {
79 | uniaxialMaterial Hysteretic $Dummy_ID $M1yP $gamma1_y $M2yP $gamma2_y $M3yP $gamma3_y [expr -$M1yN] [expr -$gamma1_y] [expr -$M2yN] [expr -$gamma2_y] [expr -$M3yN] [expr -$gamma3_y] 0.25 0.75 0. 0. 0.
80 | uniaxialMaterial MinMax $P_Elm $Dummy_ID -min $Th_U_N -max $Th_U_P
81 | }
82 |
83 | # Bare Steel Interior/Exterior Steel Panel Zone
84 | if { $Response_ID == 2.0 } {
85 | uniaxialMaterial Hysteretic $Dummy_ID $M1yN $gamma1_y $M2yN $gamma2_y $M3yN $gamma3_y [expr -$M1yN] [expr -$gamma1_y] [expr -$M2yN] [expr -$gamma2_y] [expr -$M3yN] [expr -$gamma3_y] 0.25 0.75 0. 0. 0.
86 | uniaxialMaterial MinMax $P_Elm $Dummy_ID -min $Th_U_N -max $Th_U_P
87 | }
88 |
89 | element zeroLength $P_Elm $Node_i $Node_j -mat $P_Elm -dir 6
90 |
91 | }
--------------------------------------------------------------------------------
/Models and Tcl Files/ConstructPanel_Rectangle.tcl:
--------------------------------------------------------------------------------
1 | ########################################################################################################
2 | # ConstructPanel_Rectangle.tcl
3 | #
4 | # SubRoutine to construct nodes and rigid elements for the panel zone parallelogram model
5 | #
6 | ##################################################################################################################
7 | #
8 | # Input Arguments:
9 | #------------------
10 | # Axis Axis number ID
11 | # Floor Floor number ID
12 | # E Young's modulus
13 | # A_Panel Area of rigid link that creates the panel zone
14 | # I_Panel Moment of inertia of rigid link that creates the panel zone
15 | # d_Col Column section depth
16 | # d_Beam Beam section depth
17 | # transfTag Geometric transformation ID
18 | #
19 | # Written by: Dr. Ahmed Elkady, University of Southampton, UK
20 | #
21 | ##################################################################################################################
22 |
23 |
24 | proc ConstructPanel_Rectangle {Axis Floor X_Axis Y_Floor E A_Panel I_Panel d_Col d_Beam transfTag} {
25 |
26 | # Construct Panel Node Notation
27 | set NodeCL [expr 400000+$Floor*1000+$Axis*100]; # Grid Line Dummy Node
28 | set Node_XY01 [expr $NodeCL + 1];
29 | set Node_XY02 [expr $NodeCL + 2];
30 | set Node_XY03 [expr $NodeCL + 3];
31 | set Node_XY04 [expr $NodeCL + 4];
32 | set Node_XY05 [expr $NodeCL + 5];
33 | set Node_XY06 [expr $NodeCL + 6];
34 | set Node_XY07 [expr $NodeCL + 7];
35 | set Node_XY08 [expr $NodeCL + 8];
36 | set Node_XY09 [expr $NodeCL + 9];
37 | set Node_XY10 [expr $NodeCL + 10];
38 | set Node_XY11 [expr $NodeCL + 88];
39 | set Node_XY12 [expr $NodeCL + 99];
40 |
41 | # Construct Panel Element Notation
42 | set P_Elm_100XY00 [expr 7000000 + $Floor*1000 + $Axis*100]; # ID for ZeroLength Panel Element
43 | set P_Elm_100XY01 [expr $P_Elm_100XY00 + 1];
44 | set P_Elm_100XY02 [expr $P_Elm_100XY00 + 2];
45 | set P_Elm_100XY03 [expr $P_Elm_100XY00 + 3];
46 | set P_Elm_100XY04 [expr $P_Elm_100XY00 + 4];
47 | set P_Elm_100XY05 [expr $P_Elm_100XY00 + 5];
48 | set P_Elm_100XY06 [expr $P_Elm_100XY00 + 6];
49 | set P_Elm_100XY07 [expr $P_Elm_100XY00 + 7];
50 | set P_Elm_100XY08 [expr $P_Elm_100XY00 + 8];
51 |
52 | # Construct Panel Node Coordinates
53 | node $Node_XY01 [expr $X_Axis] [expr $Y_Floor - $d_Beam/2];
54 | node $Node_XY02 [expr $X_Axis - $d_Col/2] [expr $Y_Floor];
55 | node $Node_XY03 [expr $X_Axis] [expr $Y_Floor + $d_Beam/2];
56 | node $Node_XY04 [expr $X_Axis + $d_Col/2] [expr $Y_Floor];
57 | node $Node_XY05 [expr $X_Axis - $d_Col/2] [expr $Y_Floor - $d_Beam/2];
58 | node $Node_XY06 [expr $X_Axis - $d_Col/2] [expr $Y_Floor - $d_Beam/2];
59 | node $Node_XY07 [expr $X_Axis - $d_Col/2] [expr $Y_Floor + $d_Beam/2];
60 | node $Node_XY08 [expr $X_Axis - $d_Col/2] [expr $Y_Floor + $d_Beam/2];
61 | node $Node_XY09 [expr $X_Axis + $d_Col/2] [expr $Y_Floor + $d_Beam/2];
62 | node $Node_XY10 [expr $X_Axis + $d_Col/2] [expr $Y_Floor + $d_Beam/2];
63 | node $Node_XY11 [expr $X_Axis + $d_Col/2] [expr $Y_Floor - $d_Beam/2];
64 | node $Node_XY12 [expr $X_Axis + $d_Col/2] [expr $Y_Floor - $d_Beam/2];
65 |
66 | # Construct Panel Element Property
67 | element elasticBeamColumn $P_Elm_100XY01 $Node_XY01 $Node_XY05 $A_Panel $E $I_Panel $transfTag;
68 | element elasticBeamColumn $P_Elm_100XY02 $Node_XY06 $Node_XY02 $A_Panel $E $I_Panel $transfTag;
69 | element elasticBeamColumn $P_Elm_100XY03 $Node_XY02 $Node_XY07 $A_Panel $E $I_Panel $transfTag;
70 | element elasticBeamColumn $P_Elm_100XY04 $Node_XY08 $Node_XY03 $A_Panel $E $I_Panel $transfTag;
71 | element elasticBeamColumn $P_Elm_100XY05 $Node_XY03 $Node_XY09 $A_Panel $E $I_Panel $transfTag;
72 | element elasticBeamColumn $P_Elm_100XY06 $Node_XY10 $Node_XY04 $A_Panel $E $I_Panel $transfTag;
73 | element elasticBeamColumn $P_Elm_100XY07 $Node_XY04 $Node_XY11 $A_Panel $E $I_Panel $transfTag;
74 | element elasticBeamColumn $P_Elm_100XY08 $Node_XY12 $Node_XY01 $A_Panel $E $I_Panel $transfTag;
75 |
76 | # Restrain DOFs At Panel Corners
77 | equalDOF $Node_XY05 $Node_XY06 1 2;
78 | equalDOF $Node_XY07 $Node_XY08 1 2;
79 | equalDOF $Node_XY09 $Node_XY10 1 2;
80 | equalDOF $Node_XY11 $Node_XY12 1 2;
81 |
82 | }
--------------------------------------------------------------------------------
/Models and Tcl Files/DisplayModel3D.tcl:
--------------------------------------------------------------------------------
1 | proc DisplayModel3D { {ShapeType nill} {dAmp 5} {xLoc 0} {yLoc 0} {xPixels 0} {yPixels 0} {nEigen 1} } {
2 | ######################################################################################
3 | ## DisplayModel3D $ShapeType $dAmp $xLoc $yLoc $xPixels $yPixels $nEigen
4 | ######################################################################################
5 | ## display Node Numbers, Deformed or Mode Shape in all 3 planes
6 | ## Silvia Mazzoni & Frank McKenna, 2006
7 | ##
8 | ## ShapeType : type of shape to display. # options: ModeShape , NodeNumbers , DeformedShape
9 | ## dAmp : relative amplification factor for deformations
10 | ## xLoc,yLoc : horizontal & vertical location in pixels of graphical window (0,0=upper left-most corner)
11 | ## xPixels,yPixels : width & height of graphical window in pixels
12 | ## nEigen : if nEigen not=0, show mode shape for nEigen eigenvalue
13 | ##
14 | #######################################################################################
15 | source DisplayPlane.tcl;
16 | global TunitTXT ; # load global unit variable
17 | global ScreenResolutionX ScreenResolutionY; # read global values for screen resolution
18 |
19 | if { [info exists TunitTXT] != 1} {set TunitTXT ""}; # set blank if it has not been defined previously.
20 |
21 | if { [info exists ScreenResolutionX] != 1} {set ScreenResolutionX 1024}; # set default if it has not been defined previously.
22 | if { [info exists ScreenResolutionY] != 1} {set ScreenResolutionY 768}; # set default if it has not been defined previously.
23 |
24 | if {$xPixels == 0} {
25 | set xPixels [expr int($ScreenResolutionX/2)];
26 | set yPixels [expr int($ScreenResolutionY/2)]
27 | set xLoc 10
28 | set yLoc 10
29 | }
30 | if {$ShapeType == "nill"} {
31 | puts ""; puts ""; puts "------------------"
32 | puts "View the Model? (N)odes, (D)eformedShape, anyMode(1),(2),(#). Press enter for NO."
33 | gets stdin answer
34 | if {[llength $answer]>0 } {
35 | if {$answer != "N" & $answer != "n"} {
36 | puts "Modify View Scaling Factor=$dAmp? Type factor, or press enter for NO."
37 | gets stdin answerdAmp
38 | if {[llength $answerdAmp]>0 } {
39 | set dAmp $answerdAmp
40 | }
41 | }
42 | if {[string index $answer 0] == "N" || [string index $answer 0] == "n"} {
43 | set ShapeType NodeNumbers
44 | } elseif {[string index $answer 0] == "D" ||[string index $answer 0] == "d" } {
45 | set ShapeType DeformedShape
46 | } else {
47 | set ShapeType ModeShape
48 | set nEigen $answer
49 | }
50 | } else {
51 | return
52 | }
53 | }
54 |
55 | if {$ShapeType == "ModeShape" } {
56 | set lambdaN [eigen $nEigen]; # perform eigenvalue analysis for ModeShape
57 | set lambda [lindex $lambdaN [expr $nEigen-1]];
58 | set omega [expr pow($lambda,0.5)]
59 | set PI [expr 2*asin(1.0)]; # define constant
60 | set Tperiod [expr 2*$PI/$omega]; # period
61 | set fmt1 "Mode Shape, Mode=%.1i Period=%.3f %s "
62 | set windowTitle [format $fmt1 $nEigen $Tperiod $TunitTXT ]
63 | } elseif {$ShapeType == "NodeNumbers" } {
64 | set windowTitle "Node Numbers"
65 | } elseif {$ShapeType == "DeformedShape" } {
66 | set windowTitle0 "Deformed Shape "
67 | }
68 |
69 | if {$ShapeType == "DeformedShape" } {
70 | set xPixels [expr int($xPixels/2)]
71 | set yPixels [expr int($yPixels/2)]
72 | set xLoc1 [expr $xLoc]
73 | set yLoc1 [expr $yLoc]
74 | set planeTXT "-Plane"
75 |
76 | set viewPlane XY
77 | set windowTitle $windowTitle0$viewPlane$planeTXT
78 | recorder display $windowTitle $xLoc $yLoc $xPixels $yPixels -wipe ; # display recorder
79 | DisplayPlane $ShapeType $dAmp $viewPlane
80 | #set viewPlane ZY
81 | #set windowTitle $windowTitle0$viewPlane$planeTXT
82 | #recorder display $windowTitle $xLoc $yLoc $xPixels $yPixels -wipe ; # display recorder
83 | #DisplayPlane $ShapeType $dAmp $viewPlane
84 | #set viewPlane ZX
85 | #set windowTitle $windowTitle0$viewPlane$planeTXT
86 | #recorder display $windowTitle $xLoc $yLoc1 $xPixels $yPixels -wipe ; # display recorder
87 | #DisplayPlane $ShapeType $dAmp $viewPlane
88 | #set viewPlane 3D
89 | #set windowTitle $windowTitle0$viewPlane
90 | #recorder display $windowTitle $xLoc1 $yLoc1 $xPixels $yPixels -wipe ; # display recorder
91 | #DisplayPlane $ShapeType $dAmp $viewPlane
92 | } else {
93 | recorder display $windowTitle $xLoc $yLoc $xPixels $yPixels -nowipe; # display recorder
94 | set viewPlane XY
95 | DisplayPlane $ShapeType $dAmp $viewPlane $nEigen 1
96 | #set viewPlane XY
97 | #DisplayPlane $ShapeType $dAmp $viewPlane $nEigen 2
98 | #set viewPlane XY
99 | #DisplayPlane $ShapeType $dAmp $viewPlane $nEigen 3
100 | # set viewPlane 3D
101 | # DisplayPlane $ShapeType $dAmp $viewPlane $nEigen 4
102 | }
103 | }
104 |
105 |
--------------------------------------------------------------------------------
/Models and Tcl Files/LibAnalysisStaticParameters.tcl:
--------------------------------------------------------------------------------
1 | # static analysis parameters
2 | # I am setting all these variables as global variables (using variable rather than set command)
3 | # so that these variables can be uploaded by a procedure
4 | # Constraints Handler -- Determines how the constraint equations are enforced in the analysis (http://opensees.berkeley.edu/OpenSees/manuals/usermanual/617.htm)
5 | # Plain Constraints -- Removes constrained degrees of freedom from the system of equations (only for homogeneous equations)
6 | # Lagrange Multipliers -- Uses the method of Lagrange multipliers to enforce constraints
7 | # Penalty Method -- Uses penalty numbers to enforce constraints --good for static analysis with non-homogeneous eqns (rigidDiaphragm)
8 | # Transformation Method -- Performs a condensation of constrained degrees of freedom
9 | variable constraintsTypeStatic Plain; # default
10 | if { [info exists RigidDiaphragm] == 1} {
11 | if {$RigidDiaphragm=="ON"} {
12 | variable constraintsTypeStatic Lagrange; # for large model, try Transformation
13 | }; # if rigid diaphragm is on
14 | }; # if rigid diaphragm exists
15 | constraints $constraintsTypeStatic
16 | # DOF NUMBERER (number the degrees of freedom in the domain): (http://opensees.berkeley.edu/OpenSees/manuals/usermanual/366.htm)
17 | # Determines the mapping between equation numbers and degrees-of-freedom
18 | # Plain -- Uses the numbering provided by the user
19 | # RCM -- Renumbers the DOF to minimize the matrix band-width using the Reverse Cuthill-McKee algorithm
20 | set numbererTypeStatic RCM
21 | numberer $numbererTypeStatic
22 | # System (http://opensees.berkeley.edu/OpenSees/manuals/usermanual/371.htm)
23 | # Linear Equation Solvers (how to store and solve the system of equations in the analysis)
24 | # provide the solution of the linear system of equations Ku = P. Each solver is tailored to a specific matrix topology.
25 | # ProfileSPD-Direct profile solver for symmetric positive definite matrices
26 | # BandGeneral-Direct solver for banded unsymmetric matrices
27 | # BandSPD-Direct solver for banded symmetric positive definite matrices
28 | # SparseGeneral-Direct solver for unsymmetric sparse matrices
29 | # SparseSPD-Direct solver for symmetric sparse matrices
30 | # UmfPack-Direct UmfPack solver for unsymmetric matrices
31 | set systemTypeStatic UmfPack; # try UmfPack for large model
32 | system $systemTypeStatic
33 | # Convergence Test
34 | # Accept the current state of the domain as being on the converged solution path
35 | # Determine if convergence has been achieved at the end of an iteration step
36 | # NormUnbalance-Specifies a tolerance on the norm of the unbalanced load at the current iteration
37 | # NormDispIncr-Specifies a tolerance on the norm of the displacement increments at the current iteration
38 | # EnergyIncr-Specifies a tolerance on the inner product of the unbalanced load and displacement increments at the current iteration
39 | # RelativeNormUnbalance
40 | # RelativeNormDispIncr
41 | # RelativeEnergyIncr
42 | variable counterItr 1;
43 | variable RDR 0.0;
44 | variable TolStatic 1.e-8; # Convergence Test: tolerance
45 | variable maxNumIterStatic 6; # Convergence Test: maximum number of iterations that will be performed before "failure to converge" is returned
46 | variable printFlagStatic 0; # Convergence Test: flag used to print information on convergence (optional) 1: print information on each step;
47 | variable testTypeStatic EnergyIncr ; # Convergence-test type
48 | test $testTypeStatic $TolStatic $maxNumIterStatic $printFlagStatic;
49 | # for improved-convergence procedure:
50 | variable maxNumIterConvergeStatic 2000;
51 | variable printFlagConvergeStatic 0;
52 | # Solution Algorithm: Iterate from the last time step to the current
53 | # Linear-Uses the solution at the first iteration and continues
54 | # Newton-Uses the tangent at the current iteration to iterate to convergence
55 | # ModifiedNewton-Uses the tangent at the first iteration to iterate to convergence
56 | # NewtonLineSearch
57 | # KrylovNewton
58 | # BFGS
59 | # Broyden
60 | variable algorithmTypeStatic Newton;
61 | algorithm $algorithmTypeStatic;
62 | # Static Integration: Determine the next time step for an analysis
63 | # LoadControl -- Specifies the incremental load factor to be applied to the loads in the domain
64 | # DisplacementControl -- Specifies the incremental displacement at a specified DOF in the domain
65 | # Minimum Unbalanced Displacement Norm -- Specifies the incremental load factor such that the residual displacement norm in minimized
66 | # Arc Length -- Specifies the incremental arc-length of the load-displacement path
67 | # Transient Integration: Determine the next time step for an analysis including inertial effects
68 | # Newmark-The two parameter time-stepping method developed by Newmark
69 | # HHT-The three parameter Hilbert-Hughes-Taylor time-stepping method
70 | # Central Difference-Approximates velocity and acceleration by centered finite differences of displacement
71 | integrator DisplacementControl $CtrlNode $CtrlDOF $Dincr
72 | # Analysis-defines what type of analysis is to be performed
73 | # Static Analysis -- solves the KU=R problem, without the mass or damping matrices.
74 | # Transient Analysis -- solves the time-dependent analysis. The time step in this type of analysis is constant. The time step in the output is also constant.
75 | # variableTransient Analysis -- performs the same analysis type as the Transient Analysis object. The time step, however, is variable. This method is used when
76 | # there are convergence problems with the Transient Analysis object at a peak or when the time step is too small. The time step in the output is also variable.
77 | set analysisTypeStatic Static
78 | analysis $analysisTypeStatic
79 |
80 |
--------------------------------------------------------------------------------
/Models and Tcl Files/DisplayPlane.tcl:
--------------------------------------------------------------------------------
1 | proc DisplayPlane {ShapeType dAmp viewPlane {nEigen 0} {quadrant 0}} {
2 | ######################################################################################
3 | ## DisplayPlane $ShapeType $dAmp $viewPlane $nEigen $quadrant
4 | ######################################################################################
5 | ## setup display parameters for specified viewPlane and display
6 | ## Silvia Mazzoni & Frank McKenna, 2006
7 | ##
8 | ## ShapeType : type of shape to display. # options: ModeShape , NodeNumbers , DeformedShape
9 | ## dAmp : relative amplification factor for deformations
10 | ## viewPlane : set local xy axes in global coordinates (XY,YX,XZ,ZX,YZ,ZY)
11 | ## nEigen : if nEigen not=0, show mode shape for nEigen eigenvalue
12 | ## quadrant: quadrant where to show this figure (0=full figure)
13 | ##
14 | ######################################################################################
15 |
16 | set Xmin [lindex [nodeBounds] 0]; # view bounds in global coords - will add padding on the sides
17 | set Ymin [lindex [nodeBounds] 1];
18 | set Zmin [lindex [nodeBounds] 2];
19 | set Xmax [lindex [nodeBounds] 3];
20 | set Ymax [lindex [nodeBounds] 4];
21 | set Zmax [lindex [nodeBounds] 5];
22 |
23 | set Xo 0; # center of local viewing system
24 | set Yo 0;
25 | set Zo 0;
26 |
27 | set uLocal [string index $viewPlane 0]; # viewPlane local-x axis in global coordinates
28 | set vLocal [string index $viewPlane 1]; # viewPlane local-y axis in global coordinates
29 |
30 |
31 | if {$viewPlane =="3D" } {
32 | set uMin $Zmin+$Xmin
33 | set uMax $Zmax+$Xmax
34 | set vMin $Ymin
35 | set vMax $Ymax
36 | set wMin -10000
37 | set wMax 10000
38 | vup 0 1 0; # dirn defining up direction of view plane
39 | } else {
40 | set keyAxisMin "X $Xmin Y $Ymin Z $Zmin"
41 | set keyAxisMax "X $Xmax Y $Ymax Z $Zmax"
42 | set axisU [string index $viewPlane 0];
43 | set axisV [string index $viewPlane 1];
44 | set uMin [string map $keyAxisMin $axisU]
45 | set uMax [string map $keyAxisMax $axisU]
46 | set vMin [string map $keyAxisMin $axisV]
47 | set vMax [string map $keyAxisMax $axisV]
48 | if {$viewPlane =="YZ" || $viewPlane =="ZY" } {
49 | set wMin $Xmin
50 | set wMax $Xmax
51 | } elseif {$viewPlane =="XY" || $viewPlane =="YX" } {
52 | set wMin $Zmin
53 | set wMax $Zmax
54 | } elseif {$viewPlane =="XZ" || $viewPlane =="ZX" } {
55 | set wMin $Ymin
56 | set wMax $Ymax
57 | } else {
58 | return -1
59 | }
60 | }
61 |
62 | set epsilon 1e-3; # make windows width or height not zero when the Max and Min values of a coordinate are the same
63 |
64 | set uWide [expr $uMax - $uMin+$epsilon];
65 | set vWide [expr $vMax - $vMin+$epsilon];
66 | set uSide [expr 0.25*$uWide];
67 | set vSide [expr 0.25*$vWide];
68 | set uMin [expr $uMin - $uSide];
69 | set uMax [expr $uMax + $uSide];
70 | set vMin [expr $vMin - $vSide];
71 | set vMax [expr $vMax + 2*$vSide]; # pad a little more on top, because of window title
72 | set uWide [expr $uMax - $uMin+$epsilon];
73 | set vWide [expr $vMax - $vMin+$epsilon];
74 | set uMid [expr ($uMin+$uMax)/2];
75 | set vMid [expr ($vMin+$vMax)/2];
76 |
77 | # keep the following general, as change the X and Y and Z for each view plane
78 | # next three commmands define viewing system, all values in global coords
79 | vrp $Xo $Yo $Zo; # point on the view plane in global coord, center of local viewing system
80 | if {$vLocal == "X"} {
81 | vup 1 0 0; # dirn defining up direction of view plane
82 | } elseif {$vLocal == "Y"} {
83 | vup 0 1 0; # dirn defining up direction of view plane
84 | } elseif {$vLocal == "Z"} {
85 | vup 0 0 1; # dirn defining up direction of view plane
86 | }
87 | if {$viewPlane =="YZ" } {
88 | vpn 1 0 0; # direction of outward normal to view plane
89 | prp 10000. $uMid $vMid ; # eye location in local coord sys defined by viewing system
90 | plane 10000 -10000; # distance to front and back clipping planes from eye
91 | } elseif {$viewPlane =="ZY" } {
92 | vpn -1 0 0; # direction of outward normal to view plane
93 | prp -10000. $vMid $uMid ; # eye location in local coord sys defined by viewing system
94 | plane 10000 -10000; # distance to front and back clipping planes from eye
95 | } elseif {$viewPlane =="XY" } {
96 | vpn 0 0 1; # direction of outward normal to view plane
97 | prp $uMid $vMid 10000; # eye location in local coord sys defined by viewing system
98 | plane 10000 -10000; # distance to front and back clipping planes from eye
99 | } elseif {$viewPlane =="YX" } {
100 | vpn 0 0 -1; # direction of outward normal to view plane
101 | prp $uMid $vMid -10000; # eye location in local coord sys defined by viewing system
102 | plane 10000 -10000; # distance to front and back clipping planes from eye
103 | } elseif {$viewPlane =="XZ" } {
104 | vpn 0 -1 0; # direction of outward normal to view plane
105 | prp $uMid -10000 $vMid ; # eye location in local coord sys defined by viewing system
106 | plane 10000 -10000; # distance to front and back clipping planes from eye
107 | } elseif {$viewPlane =="ZX" } {
108 | vpn 0 1 0; # direction of outward normal to view plane
109 | prp $uMid 10000 $vMid ; # eye location in local coord sys defined by viewing system
110 | plane 10000 -10000; # distance to front and back clipping planes from eye
111 | } elseif {$viewPlane =="3D" } {
112 | vpn 1 0.25 1.25; # direction of outward normal to view plane
113 | prp -100 $vMid 10000; # eye location in local coord sys defined by viewing system
114 | plane 10000 -10000; # distance to front and back clipping planes from eye
115 | } else {
116 | return -1
117 | }
118 | # next three commands define view, all values in local coord system
119 | if {$viewPlane =="3D" } {
120 | viewWindow [expr $uMin-$uWide/4] [expr $uMax/2] [expr $vMin-0.25*$vWide] [expr $vMax]
121 | } else {
122 | viewWindow $uMin $uMax $vMin $vMax
123 | }
124 | projection 1; # projection mode, 0:prespective, 1: parallel
125 | fill 1; # fill mode; needed only for solid elements
126 |
127 | if {$quadrant == 0} {
128 | port -1 1 -1 1 # area of window that will be drawn into (uMin,uMax,vMin,vMax);
129 | } elseif {$quadrant == 1} {
130 | port 0 1 0 1 # area of window that will be drawn into (uMin,uMax,vMin,vMax);
131 | } elseif {$quadrant == 2} {
132 | port -1 0 0 1 # area of window that will be drawn into (uMin,uMax,vMin,vMax);
133 | } elseif {$quadrant == 3} {
134 | port -1 0 -1 0 # area of window that will be drawn into (uMin,uMax,vMin,vMax);
135 | } elseif {$quadrant == 4} {
136 | port 0 1 -1 0 # area of window that will be drawn into (uMin,uMax,vMin,vMax);
137 | }
138 |
139 | if {$ShapeType == "ModeShape" } {
140 | display -$nEigen 0 [expr 5.*$dAmp]; # display mode shape for mode $nEigen
141 | } elseif {$ShapeType == "NodeNumbers" } {
142 | display 1 -1 0 ; # display node numbers
143 | } elseif {$ShapeType == "DeformedShape" } {
144 | display 1 2 $dAmp; # display deformed shape the 2 makes the nodes small
145 | }
146 | }; #
147 | ######################################################################################
148 |
149 |
--------------------------------------------------------------------------------
/Models and Tcl Files/DynamicAnalysisCollapseSolverX.tcl:
--------------------------------------------------------------------------------
1 |
2 | # DynamicAnalysisCollapseSolver #########################################################
3 | #
4 | # This Solver is used for Collapse "hunting"
5 | # Time Controlled Algorithm that keeps original run
6 | #
7 | # Developed by Dimitrios G. Lignos, Ph.D
8 | #
9 | # First Created: 04/20/2010
10 | # Last Modified: 08/23/2011
11 | #
12 | # Uses:
13 | # 1. dt : Ground Motion step
14 | # 2. dt_anal_Step : Analysis time step
15 | # 3. GMtime : Ground Motion Total Time
16 | # 4. numStories : DriftLimit
17 | #
18 | # Subroutines called:
19 | # SDRlimitTester: Checks after loss of convergence the drifts
20 | # and guarantees convergence for collapse
21 | #
22 | # Integrator Used: Modified Implicit: Hilbert Hughes Taylor with Increment Reduction
23 | # #######################################################################################
24 |
25 | proc DynamicAnalysisCollapseSolverX {dt dt_anal_Step GMtime numStories DriftLimit MFFloorNodes EGFFloorNodes h1 htyp TraceGFDrift StartTime MaxRunTime} {
26 |
27 | set x [clock seconds];
28 | set RunTime [expr $x - $StartTime];
29 |
30 | global CollapseFlag; # global variable to monitor collapse
31 | set CollapseFlag "NO"
32 |
33 | wipeAnalysis
34 |
35 | constraints Plain
36 | numberer RCM
37 | system UmfPack
38 | test EnergyIncr 1.0e-3 100
39 | algorithm KrylovNewton
40 | integrator Newmark 0.50 0.25
41 | analysis Transient
42 |
43 | set NumSteps [expr round(($GMtime + 0.0)/$dt_anal_Step)]; # number of steps in analysis
44 | set ok [analyze $NumSteps $dt_anal_Step];
45 |
46 | # Check Max Drifts for Collapse by Monitoring the CollapseFlag Variable
47 | source SDRlimitTester.tcl;
48 | SDRlimitTester $numStories $DriftLimit $MFFloorNodes $EGFFloorNodes $h1 $htyp $TraceGFDrift
49 |
50 |
51 | if {$CollapseFlag == "YES" || $RunTime > $MaxRunTime} {
52 | set ok 0
53 | puts "----> Collapse Occured";
54 | }
55 |
56 | # If analysis failed
57 | if {$ok != 0} {
58 | puts "Analysis did not converge..."
59 | # The analysis will be time-controlled and is done for the remaining time
60 | set ok 0;
61 | set controlTime [getTime];
62 |
63 | # While the GM did not finish OR while analysis is failing
64 | while {$controlTime < $GMtime || $ok !=0 } {
65 | SDRlimitTester $numStories $DriftLimit $MFFloorNodes $EGFFloorNodes $h1 $htyp $TraceGFDrift
66 | if {$CollapseFlag == "YES" || $RunTime > $MaxRunTime} {
67 | set ok 0; break;
68 | } else {
69 | set ok 1
70 | }
71 | # Get Control Time inside the loop
72 | set controlTime [getTime]
73 | puts "----> Currently at time $controlTime out of $GMtime"
74 |
75 | if {$ok != 0} {
76 | puts "Run Newton 100 steps with 1/2 of step.."
77 | set controlTime [getTime]
78 | set remainTime [expr $GMtime - $controlTime]
79 | set NewRemainSteps [expr round(($remainTime)/($dt_anal_Step/2.0))]
80 |
81 | test EnergyIncr 1.0e-3 100 0
82 | algorithm KrylovNewton
83 | integrator Newmark 0.50 0.25
84 | set ok [analyze 10 [expr $dt_anal_Step/2.0]]
85 | SDRlimitTester $numStories $DriftLimit $MFFloorNodes $EGFFloorNodes $h1 $htyp $TraceGFDrift
86 | if {$CollapseFlag == "YES"} {
87 | set ok 0
88 | }
89 | }
90 | if {$ok != 0 } {
91 | puts "Go Back to KrylovNewton with tangent Tangent and original step.."
92 | set controlTime [getTime]
93 | set remainTime [expr $GMtime - $controlTime]
94 | set NewRemainSteps [expr round(($remainTime)/($dt_anal_Step))]
95 |
96 | test EnergyIncr 1.0e-2 100 0
97 | algorithm KrylovNewton
98 | integrator Newmark 0.50 0.25
99 | set ok [analyze $NewRemainSteps [expr $dt_anal_Step]]
100 | SDRlimitTester $numStories $DriftLimit $MFFloorNodes $EGFFloorNodes $h1 $htyp $TraceGFDrift
101 | if {$CollapseFlag == "YES"} {
102 | set ok 0
103 | }
104 | }
105 | if {$ok != 0 } {
106 | puts "Run 10 steps KrylovNewton with Initial Tangent with 1/2 of original step.."
107 | set controlTime [getTime]
108 | set remainTime [expr $GMtime - $controlTime]
109 | set NewRemainSteps [expr round(($remainTime)/($dt_anal_Step/2.0))]
110 | test EnergyIncr 1.0e-2 200 0
111 | algorithm KrylovNewton -initial
112 | set ok [analyze 10 [expr $dt_anal_Step/2.0]]
113 | SDRlimitTester $numStories $DriftLimit $MFFloorNodes $EGFFloorNodes $h1 $htyp $TraceGFDrift
114 | if {$CollapseFlag == "YES"} {
115 | set ok 0
116 | }
117 | }
118 | if {$ok != 0 } {
119 | puts "Go Back to KrylovNewton with tangent Tangent and original step.."
120 | set controlTime [getTime]
121 | set remainTime [expr $GMtime - $controlTime]
122 | set NewRemainSteps [expr round(($remainTime)/($dt_anal_Step))]
123 | test EnergyIncr 1.0e-2 100 0
124 | algorithm KrylovNewton
125 | integrator Newmark 0.50 0.25
126 | set ok [analyze $NewRemainSteps [expr $dt_anal_Step]]
127 | SDRlimitTester $numStories $DriftLimit $MFFloorNodes $EGFFloorNodes $h1 $htyp $TraceGFDrift
128 | if {$CollapseFlag == "YES"} {
129 | set ok 0
130 | }
131 | }
132 |
133 | if {$ok != 0 } {
134 | puts "Go Back to KrylovNewton with tangent Tangent and 0.001 step.."
135 | set controlTime [getTime]
136 | set remainTime [expr $GMtime - $controlTime]
137 | set NewRemainSteps [expr round(($remainTime)/(0.001))]
138 | test EnergyIncr 1.0e-2 200 0
139 | algorithm KrylovNewton
140 | integrator Newmark 0.50 0.25
141 | set ok [analyze $NewRemainSteps [expr 0.001]]
142 | SDRlimitTester $numStories $DriftLimit $MFFloorNodes $EGFFloorNodes $h1 $htyp $TraceGFDrift
143 | if {$CollapseFlag == "YES"} {
144 | set ok 0
145 | }
146 | }
147 | if {$ok != 0 } {
148 | puts "KrylovNewton Initial with 1/2 of step and Displacement Control Convergence.."
149 | test EnergyIncr 1.0e-2 100 0
150 | algorithm KrylovNewton -initial
151 | set ok [analyze 10 [expr $dt_anal_Step/2.0]]
152 | SDRlimitTester $numStories $DriftLimit $MFFloorNodes $EGFFloorNodes $h1 $htyp $TraceGFDrift
153 | if {$CollapseFlag == "YES"} {
154 | set ok 0
155 | }
156 | }
157 | if {$ok != 0 } {
158 | puts "Go Back to KrylovNewton with tangent Tangent and 0.0001 step.."
159 | set controlTime [getTime]
160 | set remainTime [expr $GMtime - $controlTime]
161 | set NewRemainSteps [expr round(($remainTime)/(0.0001))]
162 | test EnergyIncr 1.0e-2 100 0
163 | algorithm KrylovNewton
164 | integrator Newmark 0.50 0.25
165 | set ok [analyze 5 [expr 0.0001]]
166 | SDRlimitTester $numStories $DriftLimit $MFFloorNodes $EGFFloorNodes $h1 $htyp $TraceGFDrift
167 | if {$CollapseFlag == "YES"} {
168 | set ok 0
169 | }
170 | }
171 |
172 | if {$ok != 0 } {
173 | puts "Go Back to KrylovNewton with tangent Tangent and original step.."
174 | set controlTime [getTime]
175 | set remainTime [expr $GMtime - $controlTime]
176 | set NewRemainSteps [expr round(($remainTime)/($dt_anal_Step))]
177 | test EnergyIncr 1.0e-2 100 0
178 | algorithm KrylovNewton
179 | integrator Newmark 0.50 0.25
180 | set ok [analyze $NewRemainSteps [expr $dt_anal_Step]]
181 | SDRlimitTester $numStories $DriftLimit $MFFloorNodes $EGFFloorNodes $h1 $htyp $TraceGFDrift
182 | if {$CollapseFlag == "YES"} {
183 | set ok 0
184 | }
185 | }
186 | if {$ok != 0 } {
187 | puts "Newton with Fixed Number of Iterations else continue"
188 | set controlTime [getTime]
189 | set remainTime [expr $GMtime - $controlTime]
190 | set NewRemainSteps [expr round(($remainTime)/(0.0001))]
191 | puts $NewRemainSteps
192 | test FixedNumIter 50
193 | integrator NewmarkHSFixedNumIter 0.5 0.25
194 |
195 | algorithm Newton
196 |
197 | set ok [analyze 10 [expr 0.0001]]
198 | SDRlimitTester $numStories $DriftLimit $MFFloorNodes $EGFFloorNodes $h1 $htyp $TraceGFDrift
199 | if {$CollapseFlag == "YES"} {
200 | set ok 0
201 | }
202 | }
203 |
204 | set controlTime [getTime]
205 | }
206 | }
207 | }
--------------------------------------------------------------------------------
/Models and Tcl Files/Spring_PZ.tcl:
--------------------------------------------------------------------------------
1 | ##################################################################################################################
2 | # Spring_PZ.tcl
3 | #
4 | # SubRoutine to construct a rotational spring with a trilinear hysteretic response representative of steel
5 | # panel zone response
6 | #
7 | # The subroutine also considers modeling uncertainty based on the logarithmic standard deviations specified by the user.
8 | #
9 | # References:
10 | #--------------
11 | # Elkady, A. and D. G. Lignos (2014). "Modeling of the Composite Action in Fully Restrained Beam-to-Column
12 | # Connections: Implications in the Seismic Design and Collapse Capacity of Steel Special Moment Frames."
13 | # Earthquake Eng. & Structural Dynamics 43(13).
14 | #
15 | # Skiadopoulos, A., Elkady, A. and D. G. Lignos (2020). "Proposed Panel Zone Model for Seismic Design of
16 | # Steel Moment-Resisting Frames." ASCE Journal of Structural Engineering (under review).
17 | #
18 | ##################################################################################################################
19 | #
20 | # Input Arguments:
21 | #------------------
22 | # P_Elm Element ID
23 | # NodeI Node i ID
24 | # NodeJ Node j ID
25 | # E Young's Modulus
26 | # mu Poisson's Ratio
27 | # fy Expected Yield Stress
28 | # tdp Doubler Plate(s) Thickness
29 | # d_Col Column Depth
30 | # d_Beam Beam Depth
31 | # tf_Col Column Flange Thickness
32 | # bf_Col Column Flange Width
33 | # tw_Col Column Web Thickness
34 | # Ic Column second-moment-of-interia about the strong axis
35 | # trib Steel deck rib depth
36 | # ts Concrete slab depth above the rib
37 | # Response_ID ID for Panel Zone Response: 0 --> Interior Steel Panel Zone with Composite Action
38 | # 1 --> Exterior Steel Panel Zone with Composite Action
39 | # 2 --> Bare Steel Interior/Exterior Steel Panel Zone
40 | # transfTag Geometric Transformation ID
41 | #
42 | # Written by: Dr. Ahmed Elkady, University of Southampton, UK
43 | #
44 | ########################################################################################################
45 |
46 |
47 | proc Spring_PZ {P_Elm NodeI NodeJ E mu fy tw_Col tdp d_Col d_Beam tf_Col bf_Col Ix_Col trib ts Response_ID transfTag} {
48 |
49 | set tpz [expr $tw_Col + $tdp]; # total PZ thickness
50 |
51 | set G [expr $E/(2.0 * (1.0 + $mu))]; # Shear Modulus
52 |
53 | # Beam's effective depth
54 | if {$Response_ID==2} {
55 | set d_BeamP $d_Beam;
56 | } else {
57 | set d_BeamP [expr $d_Beam + $trib + 0.5 * $ts]; # Effective Depth in Positive Moment
58 | }
59 | set d_BeamN $d_Beam; # Effective Depth in Negative Moment
60 |
61 | # Stiffness Calculation
62 | set Ks [expr $tpz * ($d_Col - $tf_Col) * $G]; # PZ Stiffness: Shear Contribution
63 | set Kb [expr 12 * $E * ($Ix_Col + $tdp * pow(($d_Col - 2*$tf_Col),3)/12.) /pow($d_Beam,3) * $d_Beam]; # PZ Stiffness: Bending Contribution
64 | set Ke [expr ($Ks * $Kb) / ($Ks + $Kb)]; # PZ Stiffness: Total
65 |
66 | set Ksf [expr 2 * ($bf_Col * $tf_Col) * $G]; # Flange Stiffness: Shear Contribution
67 | set Kbf [expr 2 * 12 * $E * $bf_Col * pow($tf_Col,3)/12. /pow($d_Beam,3) * $d_Beam]; # Flange Stiffness: Bending Contribution
68 | set Kef [expr ($Ksf * $Kbf) / ($Ksf + $Kbf)]; # Flange Stiffness: Total
69 |
70 | set ay [expr (0.58 * $Kef / $Ke + 0.88) / (1 - $Kef / $Ke)];
71 |
72 | set aw_eff_4gamma 1.10;
73 | set aw_eff_6gamma 1.15;
74 |
75 | set af_eff_4gamma [expr 0.93 * $Kef / $Ke + 0.015];
76 | set af_eff_6gamma [expr 1.05 * $Kef / $Ke + 0.020];
77 |
78 | set Vy [expr 0.577 * $fy * $ay * ($d_Col - $tf_Col) * $tpz]; # Yield Shear Force
79 | set Vp_4gamma [expr 0.577 * $fy * ($aw_eff_4gamma * ($d_Col - $tf_Col) * $tpz + $af_eff_4gamma * ($bf_Col - $tw_Col) * 2*$tf_Col)]; # Plastic Shear Force @ 4 gammaY
80 | set Vp_6gamma [expr 0.577 * $fy * ($aw_eff_6gamma * ($d_Col - $tf_Col) * $tpz + $af_eff_6gamma * ($bf_Col - $tw_Col) * 2*$tf_Col)]; # Plastic Shear Force @ 6 gammaY
81 |
82 | ##################################################################################################################
83 | # Random generation of backbone parameters based on assigned uncertainty
84 | ##################################################################################################################
85 | global Sigma_PZ; global xRandom;
86 | set SigmaX [lindex $Sigma_PZ 0]; Generate_lognrmrand $Ke $SigmaX; set Ke $xRandom;
87 | set SigmaX [lindex $Sigma_PZ 1]; Generate_lognrmrand $Vy $SigmaX; set Vy $xRandom;
88 | set SigmaX [lindex $Sigma_PZ 2]; Generate_lognrmrand $Vp_4gamma $SigmaX; set Vp_4gamma [expr max(1.01*$Vy,$xRandom)];
89 | set SigmaX [lindex $Sigma_PZ 3]; Generate_lognrmrand $Vp_6gamma $SigmaX; set Vp_6gamma [expr max(1.01*$Vp_4gamma,$xRandom)];
90 | ##################################################################################################################
91 | ##################################################################################################################
92 |
93 | set gamma_y [expr $Vy/$Ke];
94 | set gamma4_y [expr 4.0 * $gamma_y];
95 | set gamma6_y [expr 6.0 * $gamma_y];
96 |
97 | set My_P [expr $Vy * $d_BeamP];
98 | set Mp_4gamma_P [expr $Vp_4gamma * $d_BeamP];
99 | set Mp_6gamma_P [expr $Vp_6gamma * $d_BeamP];
100 |
101 | set My_N [expr $Vy * $d_BeamN];
102 | set Mp_4gamma_N [expr $Vp_4gamma * $d_BeamN];
103 | set Mp_6gamma_N [expr $Vp_6gamma * $d_BeamN];
104 |
105 | set Slope_4to6gamma_y_P [expr ($Mp_6gamma_P - $Mp_4gamma_P) / (2 * $gamma_y) ];
106 | set Slope_4to6gamma_y_N [expr ($Mp_6gamma_N - $Mp_4gamma_N) / (2 * $gamma_y) ];
107 |
108 | # Defining the 3 Points used to construct the trilinear backbone curve
109 | set gamma1 $gamma_y;
110 | set gamma2 $gamma4_y;
111 | set gamma3 [expr 100 * $gamma_y];
112 |
113 | set M1_P [expr $My_P];
114 | set M2_P [expr $Mp_4gamma_P];
115 | set M3_P [expr $Mp_4gamma_P + $Slope_4to6gamma_y_P * (100 * $gamma_y - $gamma4_y)];
116 |
117 | set M1_N [expr $My_N];
118 | set M2_N [expr $Mp_4gamma_N];
119 | set M3_N [expr $Mp_4gamma_N + $Slope_4to6gamma_y_N * (100 * $gamma_y - $gamma4_y)];
120 |
121 | set gammaU_P 0.3;
122 | set gammaU_N -0.3;
123 |
124 | set Dummy_ID [expr 12 * $P_Elm];
125 |
126 | # Hysteretic Material without pinching and damage
127 | # uniaxialMaterial Hysteretic $matTag $s1p $e1p $s2p $e2p <$s3p $e3p> $s1n $e1n $s2n $e2n <$s3n $e3n> $pinchX $pinchY $damage1 $damage2
128 |
129 | # Composite Interior Steel Panel Zone
130 | if { $Response_ID == 0.0 } {
131 | uniaxialMaterial Hysteretic $Dummy_ID $M1_P $gamma1 $M2_P $gamma2 $M3_P $gamma3 [expr -$M1_P] [expr -$gamma1] [expr -$M2_P] [expr -$gamma2] [expr -$M3_P] [expr -$gamma3] 0.25 0.75 0. 0. 0.;
132 | uniaxialMaterial MinMax $P_Elm $Dummy_ID -min $gammaU_N -max $gammaU_P;
133 | }
134 |
135 | # Composite Exterior Steel Panel Zone
136 | if { $Response_ID == 1.0 } {
137 | uniaxialMaterial Hysteretic $Dummy_ID $M1_P $gamma1 $M2_P $gamma2 $M3_P $gamma3 [expr -$M1_N] [expr -$gamma1] [expr -$M2_N] [expr -$gamma2] [expr -$M3_N] [expr -$gamma3] 0.25 0.75 0. 0. 0.;
138 | uniaxialMaterial MinMax $P_Elm $Dummy_ID -min $gammaU_N -max $gammaU_P;
139 | }
140 |
141 | # Bare Steel Interior/Exterior Steel Panel Zone
142 | if { $Response_ID == 2.0 } {
143 | uniaxialMaterial Hysteretic $Dummy_ID $M1_N $gamma1 $M2_N $gamma2 $M3_N $gamma3 [expr -$M1_N] [expr -$gamma1] [expr -$M2_N] [expr -$gamma2] [expr -$M3_N] [expr -$gamma3] 0.25 0.75 0. 0. 0.;
144 | uniaxialMaterial MinMax $P_Elm $Dummy_ID -min $gammaU_N -max $gammaU_P;
145 | }
146 |
147 | element zeroLength $P_Elm $NodeI $NodeJ -mat $P_Elm -dir 6;
148 |
149 | }
--------------------------------------------------------------------------------
/Models and Tcl Files/Spring_Pinching.tcl:
--------------------------------------------------------------------------------
1 | ##################################################################################################################
2 | # Spring_Pinching.tcl
3 | #
4 | # SubRoutine to construct a rotational spring with deteriorating pinched response representing the moment-rotation
5 | # behaviour of beams that are part of conventional shear-tab connections.
6 | #
7 | # The subroutine also considers modeling uncertainty based on the logarithmic standard deviations specified by the user.
8 | #
9 | # References:
10 | #--------------
11 | # Elkady, A. and D. G. Lignos (2015). "Effect of Gravity Framing on the Overstrength and Collapse Capacity of Steel
12 | # Frame Buildings with Perimeter Special Moment Frames." Earthquake Eng. & Structural Dynamics 44(8).
13 | #
14 | ##################################################################################################################
15 | #
16 | # Input Arguments:
17 | #------------------
18 | # SpringID Spring ID
19 | # NodeI Node i ID
20 | # NodeJ Node j ID
21 | # Mp Effective plastic strength of the gravity beam
22 | # gap Gap distance between beam end and column flange
23 | # ResponseID 0 --> Bare Shear Connection
24 | # 1 --> Composite Shear Connection
25 | # 2 --> Composite Shear Connection with Stiffeneing due to Binding
26 | #
27 | # Written by: Dr. Ahmed Elkady, University of Southampton, UK
28 | #
29 | ##################################################################################################################
30 |
31 |
32 | proc Spring_Pinching {SpringID NodeI NodeJ M_p gap ResponseID} {
33 |
34 | if {$ResponseID == 0} {
35 | set M_max_pos [expr 0.121* $M_p];
36 | set M_max_neg [expr 0.121* $M_p];
37 | set M1_P [expr 0.521 * $M_max_pos]; set M1_N [expr -0.521 * $M_max_neg];
38 | set M2_P [expr 0.967 * $M_max_pos]; set M2_N [expr -0.967 * $M_max_neg];
39 | set M3_P [expr 1.000 * $M_max_pos]; set M3_N [expr -1.000 * $M_max_neg];
40 | set M4_P [expr 0.901 * $M_max_pos]; set M4_N [expr -0.901 * $M_max_neg];
41 | set Th_1_P 0.0045; set Th_1_N -0.0045;
42 | set Th_2_P 0.0465; set Th_2_N -0.0465;
43 | set Th_3_P 0.0750; set Th_3_N -0.0750;
44 | set Th_4_P 0.1000; set Th_4_N -0.1000;
45 | set rDispP 0.57; set rDispN 0.57;
46 | set rForceP 0.40; set rForceN 0.40;
47 | set uForceP 0.05; set uForceN 0.05;
48 | set gK1 0.0; set gD1 0.0; set gF1 0.0;
49 | set gK2 0.0; set gD2 0.0; set gF2 0.0;
50 | set gK3 0.0; set gD3 0.0; set gF3 0.0;
51 | set gK4 0.0; set gD4 0.0; set gF4 0.0;
52 | set gKLim 0.2; set gDLim 0.1; set gFLim 0.0;
53 | set gE 10;
54 | set dmgType "energy";
55 | set Th_U_P [expr $gap + 0.000];
56 | set Th_U_N [expr -$gap - 0.000];
57 | }
58 |
59 | if {$ResponseID == 1} {
60 | set M_max_pos [expr 0.35* $M_p];
61 | set M_max_neg [expr 0.64*0.35* $M_p];
62 | set M1_P [expr 0.250 * $M_max_pos]; set M1_N [expr -0.250 * $M_max_pos];
63 | set M2_P [expr 1.000 * $M_max_pos]; set M2_N [expr -1.000 * $M_max_neg];
64 | set M3_P [expr 1.001 * $M_max_pos]; set M3_N [expr -1.001 * $M_max_neg];
65 | set M4_P [expr 0.530 * $M_max_pos]; set M4_N [expr -0.540 * $M_max_neg];
66 | set Th_1_P 0.0042; set Th_1_N -0.0042;
67 | set Th_2_P 0.0200; set Th_2_N -0.0110;
68 | set Th_3_P 0.0390; set Th_3_N -0.0300;
69 | set Th_4_P 0.0400; set Th_4_N -0.0550;
70 | set rDispP 0.40; set rDispN 0.50;
71 | set rForceP 0.13; set rForceN 0.53;
72 | set uForceP 0.01; set uForceN 0.05;
73 | set gK1 0.0; set gD1 0.0; set gF1 0.0;
74 | set gK2 0.0; set gD2 0.0; set gF2 0.0;
75 | set gK3 0.0; set gD3 0.0; set gF3 0.0;
76 | set gK4 0.0; set gD4 0.0; set gF4 0.0;
77 | set gKLim 0.30; set gDLim 0.05; set gFLim 0.05;
78 | set gE 10;
79 | set dmgType "energy";
80 | set Th_U_P [expr $gap + 0.000];
81 | set Th_U_N [expr -$gap - 0.000];
82 | }
83 |
84 | if {$ResponseID == 2} {
85 | set M_max_pos [expr 0.35* $M_p];
86 | set M_max_neg [expr 0.49*0.35* $M_p];
87 | set M1_P [expr 0.250 * $M_max_pos]; set M1_N [expr -1.000 * $M_max_neg];
88 | set M2_P [expr 1.000 * $M_max_pos]; set M2_N [expr -1.001 * $M_max_neg];
89 | set M3_P [expr 1.001 * $M_max_pos]; set M3_N [expr -2.353 * $M_max_neg];
90 | set M4_P [expr 0.530 * $M_max_pos]; set M4_N [expr -2.350 * $M_max_neg];
91 | set Th_1_P 0.0042; set Th_1_N -0.0080;
92 | set Th_2_P 0.0200; set Th_2_N [expr -1.0 * $gap];
93 | set Th_3_P 0.0390; set Th_3_N [expr -1.0 * $gap - 0.015];
94 | set Th_4_P 0.0400; set Th_4_N [expr -1.0 * $gap - 0.040];
95 | set rDispP 0.40; set rDispN 0.50;
96 | set rForceP 0.13; set rForceN 0.53;
97 | set uForceP 0.01; set uForceN 0.05;
98 | set gK1 0.0; set gD1 0.0; set gF1 0.0;
99 | set gK2 0.0; set gD2 0.0; set gF2 0.0;
100 | set gK3 0.0; set gD3 0.0; set gF3 0.0;
101 | set gK4 0.0; set gD4 0.0; set gF4 0.0;
102 | set gKLim 0.30; set gDLim 0.05; set gFLim 0.05;
103 | set gE 10;
104 | set dmgType "energy";
105 | set Th_U_P [expr $gap + 0.040];
106 | set Th_U_N [expr -$gap - 0.040];
107 | }
108 |
109 | set Dummy_ID [expr 12 * $SpringID];
110 |
111 | ##################################################################################################################
112 | # Random generation of backbone parameters based on assigned uncertainty
113 | ##################################################################################################################
114 | global Sigma_Pinching; global xRandom;
115 | if {$ResponseID == 0} {
116 | set SigmaX [lindex $Sigma_Pinching 0]; Get_lognrmrand $M1_P $SigmaX; set M1_P $xRandom; set M1_N [expr -1.0*$M1_P];
117 | set SigmaX [lindex $Sigma_Pinching 1]; Get_lognrmrand $M2_P $SigmaX; set M2_P [expr max(1.01*$M1_P,$xRandom)]; set M2_N [expr -1.0*$M2_P];
118 | set M3_P [expr 1.01*$M2_P]; set M3_N [expr 1.01*$M2_N];
119 | set SigmaX [lindex $Sigma_Pinching 2]; Get_lognrmrand $M4_P $SigmaX; set M4_P [expr max(1.01*$Vy,$xRandom)];
120 | set M4_N [expr -1.0*$M4_P];
121 | set SigmaX [lindex $Sigma_Pinching 3]; Get_lognrmrand $Th_1_P $SigmaX; set Th_1_P $xRandom; set Th_1_N [expr -1.0*$Th_1_P];
122 | set SigmaX [lindex $Sigma_Pinching 4]; Get_lognrmrand $Th_2_P $SigmaX; set Th_2_P [expr max(1.01*$Th_1_P,$xRandom)];; set Th_2_N [expr -1.0*$Th_2_P];
123 | set SigmaX [lindex $Sigma_Pinching 5]; Get_lognrmrand $Th_3_P $SigmaX; set Th_3_P [expr max(1.01*$Th_2_P,$xRandom)];; set Th_3_N [expr -1.0*$Th_3_P];
124 | set SigmaX [lindex $Sigma_Pinching 6]; Get_lognrmrand $Th_4_P $SigmaX; set Th_4_P [expr max(1.01*$Th_3_P,$xRandom)];; set Th_4_N [expr -1.0*$Th_4_P];
125 | set SigmaX [lindex $Sigma_Pinching 7]; Get_lognrmrand $Th_U_P $SigmaX; set Th_U_P [expr max(1.01*$Th_4_P,$xRandom)];; set Th_U_N [expr -1.0*$Th_U_P];
126 | }
127 | # if {$ResponseID == 1} {
128 | # set SigmaX [lindex $Sigma_Pinching 0]; Get_lognrmrand $M1_P $SigmaX; set M1_P $xRandom;
129 | # set SigmaX [lindex $Sigma_Pinching 1]; Get_lognrmrand $M2_P $SigmaX; set M2_P [expr max(1.01*$M1_P,$xRandom)];
130 | # set SigmaX [lindex $Sigma_Pinching 1]; Get_lognrmrand $M2_N $SigmaX; set M2_N [expr max(1.01*$M1_N,$xRandom)];
131 | # set M3_P [expr 1.01*$M2_P]; set M3_N [expr 1.01*$M2_N];
132 | # set SigmaX [lindex $Sigma_Pinching 2]; Get_lognrmrand $M4_P $SigmaX; set M4_P [expr max(1.01*$Vy,$xRandom)];
133 | # set M4_N [expr -1.0*$M4_P];
134 | # set SigmaX [lindex $Sigma_Pinching 3]; Get_lognrmrand $Th_1_P $SigmaX; set Th_1_P $xRandom; set Th_1_N [expr -1.0*$Th_1_P];
135 | # set SigmaX [lindex $Sigma_Pinching 4]; Get_lognrmrand $Th_2_P $SigmaX; set Th_2_P [expr max(1.01*$Th_1_P,$xRandom)];; set Th_2_N [expr -1.0*$Th_2_P];
136 | # set SigmaX [lindex $Sigma_Pinching 5]; Get_lognrmrand $Th_3_P $SigmaX; set Th_3_P [expr max(1.01*$Th_2_P,$xRandom)];; set Th_3_N [expr -1.0*$Th_3_P];
137 | # set SigmaX [lindex $Sigma_Pinching 6]; Get_lognrmrand $Th_4_P $SigmaX; set Th_4_P [expr max(1.01*$Th_3_P,$xRandom)];; set Th_4_N [expr -1.0*$Th_4_P];
138 | # set SigmaX [lindex $Sigma_Pinching 7]; Get_lognrmrand $Th_U_P $SigmaX; set Th_U_P [expr max(1.01*$Th_4_P,$xRandom)];; set Th_U_N [expr -1.0*$Th_U_P];
139 | # }
140 | ##################################################################################################################
141 | ##################################################################################################################
142 |
143 |
144 | uniaxialMaterial Pinching4 $Dummy_ID $M1_P $Th_1_P $M2_P $Th_2_P $M3_P $Th_3_P $M4_P $Th_4_P $M1_N $Th_1_N $M2_N $Th_2_N $M3_N $Th_3_N $M4_N $Th_4_N $rDispP $rForceP $uForceP $rDispN $rForceN $uForceN $gK1 $gK2 $gK3 $gK4 $gKLim $gD1 $gD2 $gD3 $gD4 $gDLim $gF1 $gF2 $gF3 $gF4 $gFLim $gE $dmgType;
145 | uniaxialMaterial MinMax $SpringID $Dummy_ID -min $Th_U_N -max $Th_U_P;
146 |
147 | element zeroLength $SpringID $NodeI $NodeJ -mat 99 99 $SpringID -dir 1 2 6;
148 |
149 | if {$ResponseID == 2} {
150 | # Stiffening Spring
151 | set Esc [expr $M_max_pos / $Th_2_P];
152 | set My [expr 0.71 * $M_max_pos];
153 | set eta 0.0001;
154 | set damage "damage"
155 | set SpringID2 [expr $SpringID+8];
156 | set Dummy_ID2 [expr $SpringID2+1];
157 |
158 | uniaxialMaterial ElasticPPGap $Dummy_ID2 $Esc $My $gap $eta $damage;
159 | uniaxialMaterial MinMax $SpringID2 $Dummy_ID2 -max [expr $gap + 0.040];
160 |
161 | element zeroLength $SpringID2 $NodeI $NodeJ -mat 99 99 $SpringID2 -dir 1 2 6;
162 | }
163 |
164 | }
--------------------------------------------------------------------------------
/Models and Tcl Files/SolutionAlgorithmSubFile.tcl:
--------------------------------------------------------------------------------
1 | # SolutionAlgorithmSubFile
2 | # Units: kips, in, sec
3 | # This file developed by: Seong-Hoon Hwang of McGill University
4 | # Updated: 20 January 2015
5 | # Date: January 2015
6 | # Other files used in developing this model:
7 | # Solution algorithm - this is called repetitively by another solution algorithm file.
8 | # If the initial step didn't work, then alter the time step and the tolerance, and try different solution algorithms
9 |
10 | set x [clock seconds];
11 | set RunTime [expr $x - $StartTime];
12 | set RoofDisp [nodeDisp $CtrlNode 1];
13 | set RDR [expr round(($RoofDisp*100/$HBuilding)*10.)/10.];
14 |
15 | # set counterItr [expr $counterItr +1];
16 | # puts "Inr #$counterItr";
17 | puts "RDR = $RDR % and RunTime = $RunTime sec"
18 |
19 | # I added these solution algorithm (date: 20/Jan/2015)
20 | if {$ok != 0 && $RunTime < $MaxRunTime & $RoofDisp < $Dmax} {
21 | #puts "That failed - Trying Krylov-Newton Algorithm .."
22 | test NormDispIncr $currentTolerance $testIterations 0
23 | # set controlDisp [nodeDisp $CtrlNode $CtrlDOF ]
24 | # set Dstep [expr $Dmax-$controlDisp]
25 | # set NewRemainSteps [expr round(($Dstep)/($currentDisp))]
26 | algorithm KrylovNewton
27 | integrator DisplacementControl $CtrlNode $CtrlDOF $currentDisp
28 | set ok [analyze 1]
29 | test NormDispIncr $testTolerance $testIterations 0
30 | algorithm $algorithmTypeStatic
31 | integrator DisplacementControl $CtrlNode $CtrlDOF $Dincr
32 | # Reset the tolerance output if it got in this loop and if it has gotten to a tolerance larger than it ever did previously
33 | if {$maxTolUsed < $currentTolerance} {
34 | set maxTolUsed $currentTolerance
35 | }
36 | # Reset the current tolerance used value if it was just increased
37 | if {$maxTolUsedInCurrentStep < $currentTolerance} {
38 | set maxTolUsedInCurrentStep $currentTolerance
39 | }
40 | }
41 |
42 | if {$ok != 0 && $RunTime < $MaxRunTime & $RoofDisp < $Dmax} {
43 | #puts "That failed - Trying some changes to disp. and the solution algorithm"
44 | test NormDispIncr $currentTolerance $testIterations 0
45 | algorithm NewtonLineSearch 0.8;
46 | integrator DisplacementControl $CtrlNode $CtrlDOF $currentDisp
47 | set ok [analyze 1]
48 | test NormDispIncr $testTolerance $testIterations 0
49 | algorithm $algorithmTypeStatic
50 | integrator DisplacementControl $CtrlNode $CtrlDOF $Dincr
51 | # Reset the current tolerance used value if it was just increased
52 | if {$maxTolUsedInCurrentStep < $currentTolerance} {
53 | set maxTolUsedInCurrentStep $currentTolerance
54 | }
55 | }
56 | #
57 | # I changed this to Line Search with Newton
58 | if {$ok != 0 && $RunTime < $MaxRunTime & $RoofDisp < $Dmax} {
59 | #puts "That failed - Trying some changes to disp. and the solution algorithm"
60 | test NormDispIncr $currentTolerance $testIterations 0
61 | algorithm NewtonLineSearch 0.6;
62 | integrator DisplacementControl $CtrlNode $CtrlDOF $currentDisp
63 | set ok [analyze 1]
64 | test NormDispIncr $testTolerance $testIterations 0
65 | algorithm $algorithmTypeStatic
66 | integrator DisplacementControl $CtrlNode $CtrlDOF $Dincr
67 | # Reset the current tolerance used value if it was just increased
68 | if {$maxTolUsedInCurrentStep < $currentTolerance} {
69 | set maxTolUsedInCurrentStep $currentTolerance
70 | }
71 | }
72 |
73 | # Try other algorithms
74 | if {$ok != 0 && $RunTime < $MaxRunTime & $RoofDisp < $Dmax} {
75 | #puts "That failed - Trying Newton ..."
76 | test NormDispIncr $currentTolerance $testIterations 0
77 | algorithm Newton
78 | integrator DisplacementControl $CtrlNode $CtrlDOF $currentDisp
79 | set ok [analyze 1]
80 | test NormDispIncr $testTolerance $testIterations 0
81 | algorithm $algorithmTypeStatic
82 | integrator DisplacementControl $CtrlNode $CtrlDOF $Dincr
83 | # Reset the current tolerance used value if it was just increased
84 | if {$maxTolUsedInCurrentStep < $currentTolerance} {
85 | set maxTolUsedInCurrentStep $currentTolerance
86 | }
87 | }
88 |
89 | if {$ok != 0 && $RunTime < $MaxRunTime & $RoofDisp < $Dmax} {
90 | #puts "That failed - Trying initial stiffness ..."
91 | test NormDispIncr $currentTolerance $testIterations 0
92 | algorithm ModifiedNewton -initial
93 | integrator DisplacementControl $CtrlNode $CtrlDOF $currentDisp
94 | set ok [analyze 1]
95 | test NormDispIncr $testTolerance [expr $testIterations*$ratioForInitialAlgo] 0
96 | algorithm $algorithmTypeStatic
97 | integrator DisplacementControl $CtrlNode $CtrlDOF $Dincr
98 | # Reset the current tolerance used value if it was just increased
99 | if {$maxTolUsedInCurrentStep < $currentTolerance} {
100 | set maxTolUsedInCurrentStep $currentTolerance
101 | }
102 | }
103 |
104 | # I added these solution algorithm (date: 21/Jan/2015)
105 | if {$ok != 0 && $RunTime < $MaxRunTime & $RoofDisp < $Dmax} {
106 | #puts "That failed - Run Newton 100 steps with 1/2 of step.."
107 | test EnergyIncr $currentTolerance $testIterations 0
108 | algorithm KrylovNewton
109 | integrator DisplacementControl $CtrlNode $CtrlDOF [expr $currentDisp/2.0]
110 | set ok [analyze 1]
111 | test NormDispIncr $testTolerance $testIterations 0
112 | algorithm $algorithmTypeStatic
113 | integrator DisplacementControl $CtrlNode $CtrlDOF $Dincr
114 | # Reset the current tolerance used value if it was just increased
115 | if {$maxTolUsedInCurrentStep < $currentTolerance} {
116 | set maxTolUsedInCurrentStep $currentTolerance
117 | }
118 | }
119 |
120 | if {$ok != 0 && $RunTime < $MaxRunTime & $RoofDisp < $Dmax} {
121 | #puts "Go Back to KrylovNewton with tangent Tangent and original step.."
122 | test EnergyIncr $currentTolerance $testIterations 0
123 | algorithm KrylovNewton
124 | integrator DisplacementControl $CtrlNode $CtrlDOF $currentDisp
125 | set ok [analyze 1]
126 | test NormDispIncr $testTolerance $testIterations 0
127 | algorithm $algorithmTypeStatic
128 | integrator DisplacementControl $CtrlNode $CtrlDOF $Dincr
129 | # Reset the current tolerance used value if it was just increased
130 | if {$maxTolUsedInCurrentStep < $currentTolerance} {
131 | set maxTolUsedInCurrentStep $currentTolerance
132 | }
133 | }
134 |
135 | if {$ok != 0 && $RunTime < $MaxRunTime & $RoofDisp < $Dmax} {
136 | #puts "Run 10 steps KrylovNewton with Initial Tangent with 1/2 of original step.."
137 | test EnergyIncr $currentTolerance $testIterations 0
138 | algorithm KrylovNewton -initial
139 | integrator DisplacementControl $CtrlNode $CtrlDOF [expr $currentDisp/2.0]
140 | set ok [analyze 1]
141 | test NormDispIncr $testTolerance $testIterations 0
142 | algorithm $algorithmTypeStatic
143 | integrator DisplacementControl $CtrlNode $CtrlDOF $Dincr
144 | # Reset the current tolerance used value if it was just increased
145 | if {$maxTolUsedInCurrentStep < $currentTolerance} {
146 | set maxTolUsedInCurrentStep $currentTolerance
147 | }
148 | }
149 |
150 | if {$ok != 0 && $RunTime < $MaxRunTime & $RoofDisp < $Dmax} {
151 | #puts "Go Back to KrylovNewton with tangent Tangent and original step.."
152 | test EnergyIncr $currentTolerance $testIterations 0
153 | algorithm KrylovNewton
154 | integrator DisplacementControl $CtrlNode $CtrlDOF $currentDisp
155 | set ok [analyze 1]
156 | test NormDispIncr $testTolerance $testIterations 0
157 | algorithm $algorithmTypeStatic
158 | integrator DisplacementControl $CtrlNode $CtrlDOF $Dincr
159 | # Reset the current tolerance used value if it was just increased
160 | if {$maxTolUsedInCurrentStep < $currentTolerance} {
161 | set maxTolUsedInCurrentStep $currentTolerance
162 | }
163 | }
164 |
165 | if {$ok != 0 && $RunTime < $MaxRunTime & $RoofDisp < $Dmax} {
166 | #puts "KrylovNewton Initial with 1/2 of step and Displacement Control Convergence.."
167 | test EnergyIncr $currentTolerance $testIterations 0
168 | algorithm KrylovNewton -initial
169 | integrator DisplacementControl $CtrlNode $CtrlDOF [expr $currentDisp/2.0]
170 | set ok [analyze 1]
171 | test NormDispIncr $testTolerance $testIterations 0
172 | algorithm $algorithmTypeStatic
173 | integrator DisplacementControl $CtrlNode $CtrlDOF $Dincr
174 | # Reset the current tolerance used value if it was just increased
175 | if {$maxTolUsedInCurrentStep < $currentTolerance} {
176 | set maxTolUsedInCurrentStep $currentTolerance
177 | }
178 | }
179 |
180 | if {$ok != 0 && $RunTime < $MaxRunTime & $RoofDisp < $Dmax} {
181 | #puts "Go Back to KrylovNewton with tangent Tangent and 0.0001 step.."
182 | test EnergyIncr 1.0e-1 50 0
183 | integrator DisplacementControl $CtrlNode $CtrlDOF 0.0001
184 | algorithm KrylovNewton
185 | set ok [analyze 1]
186 | test NormDispIncr $testTolerance $testIterations 0
187 | algorithm $algorithmTypeStatic
188 | integrator DisplacementControl $CtrlNode $CtrlDOF $Dincr
189 | # Reset the current tolerance used value if it was just increased
190 | if {$maxTolUsedInCurrentStep < $currentTolerance} {
191 | set maxTolUsedInCurrentStep $currentTolerance
192 | }
193 | }
194 |
195 | if {$ok != 0 && $RunTime < $MaxRunTime & $RoofDisp < $Dmax} {
196 | #puts "Go Back to KrylovNewton with tangent Tangent and 0.0001 step.."
197 | test EnergyIncr 1.0e-1 50 0
198 | integrator DisplacementControl $CtrlNode $CtrlDOF 0.000001
199 | algorithm KrylovNewton
200 | set ok [analyze 1]
201 | test NormDispIncr $testTolerance $testIterations 0
202 | algorithm $algorithmTypeStatic
203 | integrator DisplacementControl $CtrlNode $CtrlDOF $Dincr
204 | # Reset the current tolerance used value if it was just increased
205 | if {$maxTolUsedInCurrentStep < $currentTolerance} {
206 | set maxTolUsedInCurrentStep $currentTolerance
207 | }
208 | }
209 |
210 | if {$ok != 0 && $RunTime < $MaxRunTime & $RoofDisp < $Dmax} {
211 | #puts "Go Back to KrylovNewton with tangent Tangent and original step.."
212 | test EnergyIncr 1.0e-1 50 0
213 | algorithm KrylovNewton
214 | integrator DisplacementControl $CtrlNode $CtrlDOF $currentDisp
215 | set ok [analyze 1]
216 | test NormDispIncr $testTolerance $testIterations 0
217 | algorithm $algorithmTypeStatic
218 | integrator DisplacementControl $CtrlNode $CtrlDOF $Dincr
219 | # Reset the current tolerance used value if it was just increased
220 | if {$maxTolUsedInCurrentStep < $currentTolerance} {
221 | set maxTolUsedInCurrentStep $currentTolerance
222 | }
223 | }
224 |
--------------------------------------------------------------------------------
/Models and Tcl Files/SolutionAlgorithm.tcl:
--------------------------------------------------------------------------------
1 | # run different analyses to find convergence for displacement-driven analysis
2 | # Set the variaous levels to try for the test tolerance
3 | set testTolerance 1.0e-6;
4 | set testMinTolerance1 1.0e-5;
5 | set testMinTolerance2 1.0e-4;
6 | set testMinTolerance3 1.0e-3;
7 | set testMinTolerance4 1.0e-2;
8 | set testMinTolerance5 1.0e-1;
9 | # Set initialize the maximum tolerance used - for output to know about convergence
10 | set maxTolUsed $testTolerance;
11 | # Set the iterations to use for the different types of solution algorithms
12 | set testIterations 50; # This is used, but for -initial, then the ratio for initial is used.
13 | set ratioForInitialAlgo 200; # This is the ratio of testIterations that is allowed for -initial test
14 | set testInitialIterations 1000;
15 | set testLowIter 10; # Used to try each test in the loop
16 | set testHighIter 1000; # Used to try to make it converge at the very end
17 |
18 | if {$RunTime > $MaxRunTime} {
19 | set ok 1;
20 | }
21 |
22 | # Analysis loop
23 | while {$controlDisp < $Dmax && $ok == 0} {
24 | # Do step with initial tolerance and input algorithm
25 | set ok [analyze $Nsteps]; # this will return zero if no convergence problems were encountered
26 | # Keep track of the maximum tolarance used in this step - for the convPlotFile. This is later increased it necessary.
27 | set maxTolUsedInCurrentStep [expr $testTolerance]
28 | # Change things for convergence
29 | # If it's not ok, try to decrease dT, but keep the toelrance the same call another file for this (just to keep this file clean).
30 | # The basic approach I am taking here is to try everything to make it converge. This way the analyst can look at the final
31 | # convergence tolerance and be sure that this is acceptable.
32 | set currentTolerance [expr $testTolerance]
33 | set currentNumIterations [expr $testLowIter]
34 | set currentDisp [expr $Dincr/10];
35 | source SolutionAlgorithmSubFile.tcl
36 |
37 | # If it's not ok, try to decrease dT a bit more, but keep the toerance the samecall another file for this (just to keep this file clean)
38 | set currentTolerance [expr $testTolerance]
39 | set currentNumIterations [expr $testLowIter]
40 | set currentDisp [expr $Dincr/20];
41 | source SolutionAlgorithmSubFile.tcl
42 |
43 | # If it's not ok, try to decrease dT a bit more, but keep the toerance the samecall another file for this (just to keep this file clean)
44 | set currentTolerance [expr $testTolerance]
45 | set currentNumIterations [expr $testLowIter]
46 | set currentDisp [expr $Dincr/40];
47 | source SolutionAlgorithmSubFile.tcl
48 |
49 | # If it's not ok, try to decrease dT a bit more, but keep the toerance the samecall another file for this (just to keep this file clean)
50 | set currentTolerance [expr $testTolerance]
51 | set currentNumIterations [expr $testLowIter]
52 | set currentDisp [expr $Dincr/80];
53 | source SolutionAlgorithmSubFile.tcl
54 |
55 | # If it's not ok, try to decrease dT a bit more, but keep the toerance the samecall another file for this (just to keep this file clean)
56 | set currentTolerance [expr $testTolerance]
57 | set currentNumIterations [expr $testLowIter]
58 | set currentDisp [expr $Dincr/100];
59 | source SolutionAlgorithmSubFile.tcl
60 |
61 | # If it's not ok, go to a more relaxed tolerance1...call another file for this (just to keep this file clean)
62 | set currentTolerance [expr $testMinTolerance1]
63 | set currentNumIterations [expr $testLowIter]
64 | set currentDisp [expr $Dincr/10]; # This was /10, so maybe change back?
65 | source SolutionAlgorithmSubFile.tcl
66 |
67 | # If it's not ok, go to a more relaxed tolerance1...call another file for this (just to keep this file clean)
68 | set currentTolerance [expr $testMinTolerance1]
69 | set currentNumIterations [expr $testLowIter]
70 | set currentDisp [expr $Dincr/20]; # This was /20, so maybe change back?
71 | source SolutionAlgorithmSubFile.tcl
72 |
73 | # If it's not ok, go to a more relaxed tolerance1...call another file for this (just to keep this file clean)
74 | set currentTolerance [expr $testMinTolerance1]
75 | set currentNumIterations [expr $testLowIter]
76 | set currentDisp [expr $Dincr/40]; # This was /20, so maybe change back?
77 | source SolutionAlgorithmSubFile.tcl
78 |
79 | # If it's not ok, go to a more relaxed tolerance1...call another file for this (just to keep this file clean)
80 | set currentTolerance [expr $testMinTolerance1]
81 | set currentNumIterations [expr $testLowIter]
82 | set currentDisp [expr $Dincr/80]; # This was /20, so maybe change back?
83 | source SolutionAlgorithmSubFile.tcl
84 |
85 | # If it's not ok, go to a more relaxed tolerance1...call another file for this (just to keep this file clean)
86 | set currentTolerance [expr $testMinTolerance1]
87 | set currentNumIterations [expr $testLowIter]
88 | set currentDisp [expr $Dincr/100]; # This was /20, so maybe change back?
89 | source SolutionAlgorithmSubFile.tcl
90 |
91 | # If it's not ok, go to a more relaxed tolerance2...call another file for this (just to keep this file clean)
92 | set currentTolerance [expr $testMinTolerance2]
93 | set currentNumIterations [expr $testLowIter]
94 | set currentDisp [expr $Dincr/10];
95 | source SolutionAlgorithmSubFile.tcl
96 |
97 | # If it's not ok, go to a more relaxed tolerance2...call another file for this (just to keep this file clean)
98 | # Decrease dT more
99 | set currentTolerance [expr $testMinTolerance2]
100 | set currentNumIterations [expr $testLowIter]
101 | set currentDisp [expr $Dincr/20];
102 | source SolutionAlgorithmSubFile.tcl
103 |
104 | # If it's not ok, go to a more relaxed tolerance2...call another file for this (just to keep this file clean)
105 | # Increase the number of iterations
106 | set currentTolerance [expr $testMinTolerance2]
107 | set currentNumIterations [expr $testLowIter]
108 | set currentDisp [expr $Dincr/40];
109 | source SolutionAlgorithmSubFile.tcl
110 |
111 | # If it's not ok, go to a more relaxed tolerance2...call another file for this (just to keep this file clean)
112 | set currentTolerance [expr $testMinTolerance2]
113 | set currentNumIterations [expr $testLowIter]
114 | set currentDisp [expr $Dincr/80];
115 | source SolutionAlgorithmSubFile.tcl
116 |
117 | # If it's not ok, go to a more relaxed tolerance2...call another file for this (just to keep this file clean)
118 | set currentTolerance [expr $testMinTolerance2]
119 | set currentNumIterations [expr $testLowIter]
120 | set currentDisp [expr $Dincr/100];
121 | source SolutionAlgorithmSubFile.tcl
122 |
123 | # If it's not ok, go to a more relaxed tolerance3...call another file for this (just to keep this file clean)
124 | set currentTolerance [expr $testMinTolerance3]
125 | set currentNumIterations [expr $testLowIter]
126 | set currentDisp [expr $Dincr/10];
127 | source SolutionAlgorithmSubFile.tcl
128 |
129 | # If it's not ok, go to a more relaxed tolerance3...call another file for this (just to keep this file clean)
130 | set currentTolerance [expr $testMinTolerance3]
131 | set currentNumIterations [expr $testLowIter]
132 | set currentDisp [expr $Dincr/20];
133 | source SolutionAlgorithmSubFile.tcl
134 |
135 | # If it's not ok, go to a more relaxed tolerance3...call another file for this (just to keep this file clean)
136 | set currentTolerance [expr $testMinTolerance3]
137 | set currentNumIterations [expr $testLowIter]
138 | set currentDisp [expr $Dincr/40];
139 | source SolutionAlgorithmSubFile.tcl
140 |
141 | # If it's not ok, go to a more relaxed tolerance3...call another file for this (just to keep this file clean)
142 | set currentTolerance [expr $testMinTolerance3]
143 | set currentNumIterations [expr $testLowIter]
144 | set currentDisp [expr $Dincr/80];
145 | source SolutionAlgorithmSubFile.tcl
146 |
147 | # If it's not ok, go to a more relaxed tolerance3...call another file for this (just to keep this file clean)
148 | set currentTolerance [expr $testMinTolerance3]
149 | set currentNumIterations [expr $testLowIter]
150 | set currentDisp [expr $Dincr/100];
151 | source SolutionAlgorithmSubFile.tcl
152 |
153 | # If it's not ok, go to a more relaxed tolerance4...call another file for this (just to keep this file clean)
154 | set currentTolerance [expr $testMinTolerance4]
155 | set currentNumIterations [expr $testLowIter]
156 | set currentDisp [expr $Dincr/10];
157 | source SolutionAlgorithmSubFile.tcl
158 |
159 | # If it's not ok, go to a more relaxed tolerance4...call another file for this (just to keep this file clean)
160 | set currentTolerance [expr $testMinTolerance4]
161 | set currentNumIterations [expr $testLowIter]
162 | set currentDisp [expr $Dincr/20];
163 | source SolutionAlgorithmSubFile.tcl
164 |
165 | # If it's not ok, go to a more relaxed tolerance4...call another file for this (just to keep this file clean)
166 | set currentTolerance [expr $testMinTolerance4]
167 | set currentNumIterations [expr $testLowIter]
168 | set currentDisp [expr $Dincr/40];
169 | source SolutionAlgorithmSubFile.tcl
170 |
171 | # If it's not ok, go to a more relaxed tolerance4...call another file for this (just to keep this file clean)
172 | set currentTolerance [expr $testMinTolerance4]
173 | set currentNumIterations [expr $testLowIter]
174 | set currentDisp [expr $Dincr/80];
175 | source SolutionAlgorithmSubFile.tcl
176 |
177 | # If it's not ok, go to a more relaxed tolerance4...call another file for this (just to keep this file clean)
178 | set currentTolerance [expr $testMinTolerance4]
179 | set currentNumIterations [expr $testLowIter]
180 | set currentDisp [expr $Dincr/100];
181 | source SolutionAlgorithmSubFile.tcl
182 |
183 | # If it's not ok, go to a more relaxed tolerance5...call another file for this (just to keep this file clean)
184 | set currentTolerance [expr $testMinTolerance5]
185 | set currentNumIterations [expr $testLowIter]
186 | set currentDisp [expr $Dincr/10];
187 | source SolutionAlgorithmSubFile.tcl
188 |
189 | # If it's not ok, go to a more relaxed tolerance5...call another file for this (just to keep this file clean)
190 | set currentTolerance [expr $testMinTolerance5]
191 | set currentNumIterations [expr $testLowIter]
192 | set currentDisp [expr $Dincr/20];
193 | source SolutionAlgorithmSubFile.tcl
194 |
195 | # If it's not ok, go to a more relaxed tolerance5...call another file for this (just to keep this file clean)
196 | set currentTolerance [expr $testMinTolerance5]
197 | set currentNumIterations [expr $testLowIter]
198 | set currentDisp [expr $Dincr/40];
199 | source SolutionAlgorithmSubFile.tcl
200 |
201 | # If it's not ok, go to a more relaxed tolerance5...call another file for this (just to keep this file clean)
202 | set currentTolerance [expr $testMinTolerance5]
203 | set currentNumIterations [expr $testLowIter]
204 | set currentDisp [expr $Dincr/80];
205 | source SolutionAlgorithmSubFile.tcl
206 |
207 | # If it's not ok, go to a more relaxed tolerance5...call another file for this (just to keep this file clean)
208 | set currentTolerance [expr $testMinTolerance5]
209 | set currentNumIterations [expr $testLowIter]
210 | set currentDisp [expr $Dincr/100];
211 | source SolutionAlgorithmSubFile.tcl
212 |
213 | set currentTime [getTime]
214 | }
--------------------------------------------------------------------------------
/Models and Tcl Files/Spring_IMK.tcl:
--------------------------------------------------------------------------------
1 | ##################################################################################################################
2 | # Spring_IMK.tcl
3 | #
4 | # SubRoutine to construct a rotational spring representing the moment-rotation behaviour of steel beam-columns
5 | # and beams that are part of fully-restrained beam-to-column connections.
6 | #
7 | # The subroutine also considers modeling uncertainty based on the logarithmic standard deviations specified by the user.
8 | #
9 | # References:
10 | #--------------
11 | # Lignos, D. G. and H. Krawinkler (2011). "Deterioration Modeling of Steel Components in Support of Collapse
12 | # Prediction of Steel Moment Frames under Earthquake Loading." Journal of Structural Engineering 137(11).
13 | #
14 | # Elkady, A. and D. G. Lignos (2014). "Modeling of the Composite Action in Fully Restrained Beam-to-Column
15 | # Connections: Implications in the Seismic Design and Collapse Capacity of Steel Special Moment Frames."
16 | # Earthquake Eng. & Structural Dynamics 43(13).
17 | #
18 | # Lignos, D. G., et al. (2019). "Proposed Updates to the ASCE 41 Nonlinear Modeling Parameters for Wide-Flange
19 | # Steel Columns in Support of Performance-based Seismic Engineering." Journal of Structural Engineering 145(9).
20 | #
21 | ##################################################################################################################
22 | #
23 | # Input Arguments:
24 | #------------------
25 | # SpringID Spring ID
26 | # NodeI Node i ID
27 | # NodeJ Node j ID
28 | # E Young's modulus
29 | # Fy Yield stress
30 | # Ix Moment of inertia of section
31 | # d Section depth
32 | # htw Web slenderness ratio
33 | # bftf Flange slenderness ratio
34 | # L Member Length
35 | # Ls Shear Span
36 | # Lb Unbraced length
37 | # My Effective Yield Moment
38 | # PgPye Axial load ratio due to gravity
39 | # CompositeFlag FLAG for Composite Action Consideration: 0 --> Ignore Composite Effect
40 | # 1 --> Consider Composite Effect
41 | # ConnectionType Type of Connection: 0 --> Reduced Beam Section
42 | # 1 --> Non-Reduced Beam Section
43 | # 2 --> Column Section
44 | # Units Unsed Units: 1 --> millimeters and MPa
45 | # 2 --> inches and ksi
46 | #
47 | # Written by: Dr. Ahmed Elkady, University of Southampton, UK
48 | #
49 | ##################################################################################################################
50 |
51 |
52 | proc Spring_IMK {SpringID NodeI NodeJ E Fy Ix d htw bftf ry L Ls Lb My PgPye CompositeFlag ConnectionType Units} {
53 |
54 | set n 10.0;
55 | if {$Units == 1} {
56 | set c1 1.0;
57 | set c2 1.0;
58 | set c3 25.4;
59 | set c4 1000.0;
60 | } else {
61 | set c1 25.4;
62 | set c2 6.895;
63 | set c3 1.0;
64 | set c4 1.0;
65 | }
66 |
67 |
68 | set K [expr ($n+1.0) * 6 * $E * $Ix / $L];
69 |
70 | #######################################################################################################
71 | #######################################################################################################
72 | #######################################################################################################
73 | #######################################################################################################
74 |
75 | if {$ConnectionType == 0} {
76 |
77 | # Rotational capacities calculated using Lignos and Krawinkler (2009) RBS equations
78 | set theta_p [expr 0.19 * pow(($htw),-0.314) * pow(($bftf),-0.100) * pow(($Lb/$ry),-0.185) * pow(($Ls/$d),0.113) * pow(($c1 * $d/533),-0.760) * pow(($c2 * $Fy* $c4/355),-0.070)];
79 | set theta_pc [expr 9.52 * pow(($htw),-0.513) * pow(($bftf),-0.863) * pow(($Lb/$ry),-0.108) * pow(($c2 * $Fy* $c4/355),-0.360)];
80 | set Lmda [expr 585 * pow(($htw),-1.140) * pow(($bftf),-0.632) * pow(($Lb/$ry),-0.205) * pow(($c2 * $Fy* $c4/355),-0.391)];
81 |
82 | # FOR BARE STEEL BEAM
83 | if {$CompositeFlag == 0} {
84 | set MyPMy 1.0;
85 | set MyNMy 1.0;
86 | set McMyP 1.1;
87 | set McMyN 1.1;
88 |
89 | # Corrected rotations to account for elastic deformations
90 | set theta_y [expr $My/(6 * $E * $Ix / $L)];
91 | set theta_p [expr $theta_p - ($McMyP-1.0)*$My/(6 * $E * $Ix / $L)];
92 | set theta_pc [expr $theta_pc + $theta_y + ($McMyP-1.0)*$My/(6 * $E * $Ix / $L)];
93 |
94 | set theta_p_P $theta_p;
95 | set theta_p_N $theta_p;
96 | set theta_pc_P $theta_pc;
97 | set theta_pc_N $theta_pc;
98 | set theta_u 0.2;
99 |
100 | set D_P 1.0;
101 | set D_N 1.0;
102 |
103 | set Res_P 0.4;
104 | set Res_N 0.4;
105 |
106 | set c 1.0;
107 |
108 | }
109 |
110 | # FOR COMPOSITE BEAM
111 | if {$CompositeFlag != 0} {
112 | set MyPMy 1.35;
113 | set MyNMy 1.25;
114 | set McMyP 1.30;
115 | set McMyN 1.05;
116 |
117 | # Corrected rotations to account for elastic deformations
118 | set theta_y [expr $My/(6 * $E * $Ix / $L)];
119 | set theta_p_p [expr $theta_p - ($McMyP-1.0)*$My/(6 * $E * $Ix / $L)];
120 | set theta_p_n [expr $theta_p - ($McMyN-1.0)*$My/(6 * $E * $Ix / $L)];
121 | set theta_pc_p [expr $theta_pc + $theta_y + ($McMyP-1.0)*$My/(6 * $E * $Ix / $L)];
122 | set theta_pc_n [expr $theta_pc + $theta_y + ($McMyN-1.0)*$My/(6 * $E * $Ix / $L)];
123 |
124 | set theta_p_P [expr 1.80*$theta_p_p];
125 | set theta_p_N [expr 0.95*$theta_p_n];
126 | set theta_pc_P [expr 1.35*$theta_pc_p];
127 | set theta_pc_N [expr 0.95*$theta_pc_n];
128 | set theta_u 0.2;
129 |
130 | set D_P 1.15;
131 | set D_N 1.0;
132 |
133 | set Res_P 0.3;
134 | set Res_N 0.2;
135 |
136 | set c 1.0;
137 |
138 | }
139 |
140 | }
141 |
142 | #######################################################################################################
143 | #######################################################################################################
144 | #######################################################################################################
145 | #######################################################################################################
146 |
147 | if {$ConnectionType == 1} {
148 |
149 | # Rotational capacities calculated using Lignos and Krawinkler (2009) other-than-RBS equations
150 | if {$d > [expr $c3*21.0]} {
151 | set theta_p [expr 0.318 * pow(($htw),-0.550) * pow(($bftf),-0.345) * pow(($Lb/$ry),-0.023) * pow(($Ls/$d),0.090) * pow(($c1 * $d/533),-0.330) * pow(($c2 * $Fy* $c4/355),-0.130)];
152 | set theta_pc [expr 7.500 * pow(($htw),-0.610) * pow(($bftf),-0.710) * pow(($Lb/$ry),-0.110) * pow(($c1 * $d/533),-0.161) * pow(($c2 * $Fy* $c4/355),-0.320)];
153 | set Lmda [expr 536 * pow(($htw),-1.260) * pow(($bftf),-0.525) * pow(($Lb/$ry),-0.130) * pow(($c2 * $Fy* $c4/355),-0.291)];
154 | } else {
155 | set theta_p [expr 0.0865 * pow(($htw),-0.360) * pow(($bftf),-0.140) * pow(($Ls/$d),0.340) * pow(($c1 * $d/533),-0.721) * pow(($c2 * $Fy* $c4/355),-0.230)];
156 | set theta_pc [expr 5.6300 * pow(($htw),-0.565) * pow(($bftf),-0.800) * pow(($c1 * $d/533),-0.280) * pow(($c2 * $Fy* $c4/355),-0.430)];
157 | set Lmda [expr 495 * pow(($htw),-1.340) * pow(($bftf),-0.595) * pow(($c2 * $Fy* $c4/355),-0.360)];
158 |
159 | }
160 |
161 | # FOR BARE STEEL BEAM
162 | if {$CompositeFlag == 0} {
163 | set MyPMy 1.0;
164 | set MyNMy 1.0;
165 | set McMyP 1.1;
166 | set McMyN 1.1;
167 |
168 | # Corrected rotations to account for elastic deformations
169 | set theta_y [expr $My/(6 * $E * $Ix / $L)];
170 | set theta_p [expr $theta_p - ($McMyP-1.0)*$My/(6 * $E * $Ix / $L)];
171 | set theta_pc [expr $theta_pc + $theta_y + ($McMyP-1.0)*$My/(6 * $E * $Ix / $L)];
172 |
173 | set theta_p_P $theta_p;
174 | set theta_p_N $theta_p;
175 | set theta_pc_P $theta_pc;
176 | set theta_pc_N $theta_pc;
177 | set theta_u 0.2;
178 |
179 | set D_P 1.0;
180 | set D_N 1.0;
181 |
182 | set Res_P 0.4;
183 | set Res_N 0.4;
184 |
185 | set c 1.0;
186 |
187 | }
188 |
189 | # FOR COMPOSITE BEAM
190 | if {$CompositeFlag != 0} {
191 | set MyPMy 1.35;
192 | set MyNMy 1.25;
193 | set McMyP 1.30;
194 | set McMyN 1.05;
195 |
196 | # Corrected rotations to account for elastic deformations
197 | set theta_y [expr $My/(6 * $E * $Ix / $L)];
198 | set theta_p_p [expr $theta_p - ($McMyP-1.0)*$My/(6 * $E * $Ix / $L)];
199 | set theta_p_n [expr $theta_p - ($McMyN-1.0)*$My/(6 * $E * $Ix / $L)];
200 | set theta_pc_p [expr $theta_pc + $theta_y + ($McMyP-1.0)*$My/(6 * $E * $Ix / $L)];
201 | set theta_pc_n [expr $theta_pc + $theta_y + ($McMyN-1.0)*$My/(6 * $E * $Ix / $L)];
202 |
203 | set theta_p_P [expr 1.80*$theta_p_p];
204 | set theta_p_N [expr 0.95*$theta_p_n];
205 | set theta_pc_P [expr 1.35*$theta_pc_p];
206 | set theta_pc_N [expr 0.95*$theta_pc_n];
207 | set theta_u 0.2;
208 |
209 | set D_P 1.15;
210 | set D_N 1.00;
211 |
212 | set Res_P 0.3;
213 | set Res_N 0.2;
214 |
215 | set c 1.0;
216 |
217 | }
218 | }
219 |
220 |
221 | #######################################################################################################
222 | #######################################################################################################
223 | #######################################################################################################
224 | #######################################################################################################
225 |
226 | if {$ConnectionType == 2} {
227 |
228 | # Rotational capacities calculated using Lignos et al. (2019) column regression equations for monotonic
229 | set theta_p [expr 294 * pow(($htw),-1.700) * pow(($Lb/$ry),-0.700) * pow((1-$PgPye),1.600)];
230 | set theta_pc [expr 90 * pow(($htw),-0.800) * pow(($Lb/$ry),-0.800) * pow((1-$PgPye),2.500)];
231 | if {$theta_p > 0.20} {set theta_p 0.2}
232 | if {$theta_pc > 0.30} {set theta_pc 0.3}
233 | if {$PgPye <= 0.35} {
234 | set Lmda [expr 25500 * pow(($htw),-2.140) * pow(($Lb/$ry),-0.530) * pow((1-$PgPye),4.920)];
235 | } else {
236 | set Lmda [expr 268000* pow(($htw),-2.300) * pow(($Lb/$ry),-1.300) * pow((1-$PgPye),1.190)];
237 | }
238 |
239 | if {$PgPye <= 0.2} {
240 | set My [expr (1.15/1.1)*$My*(1-$PgPye/2)];
241 | } else {
242 | set My [expr (1.15/1.1)*$My*(9/8)*(1-$PgPye)];
243 | }
244 |
245 | set McMy [expr 12.5 * pow(($htw),-0.200) * pow(($Lb/$ry),-0.400) * pow((1-$PgPye),0.400)];
246 | if {$McMy < 1.0} {set McMy 1.0}
247 | if {$McMy > 1.3} {set McMy 1.3}
248 |
249 | set MyPMy 1.0;
250 | set MyNMy 1.0;
251 | set McMyP $McMy;
252 | set McMyN $McMy;
253 |
254 | # Corrected rotations to account for elastic deformations
255 | set theta_y [expr $My/(6 * $E * $Ix / $L)];
256 | set theta_p [expr $theta_p - ($McMyP-1.0)*$My/(6 * $E * $Ix / $L)];
257 | set theta_pc [expr $theta_pc + $theta_y + ($McMyP-1.0)*$My/(6 * $E * $Ix / $L)];
258 |
259 | set theta_p_P $theta_p;
260 | set theta_p_N $theta_p;
261 | set theta_pc_P $theta_pc;
262 | set theta_pc_N $theta_pc;
263 | set theta_u 0.15;
264 |
265 | set D_P 1.0;
266 | set D_N 1.0;
267 |
268 | set Res_P [expr 0.5-0.4*$PgPye];
269 | set Res_N [expr 0.5-0.4*$PgPye];
270 |
271 | set c 1.0;
272 |
273 | }
274 |
275 | #######################################################################################################
276 | #######################################################################################################
277 | #######################################################################################################
278 | #######################################################################################################
279 |
280 | set My_P [expr $MyPMy * $My];
281 | set My_N [expr $MyNMy * $My];
282 |
283 |
284 | # # Bilin material model
285 | #set My_P [expr $MyPMy * $My];
286 | #set My_N [expr -$MyNMy * $My];
287 | #set as_mem_p [expr ($McMyP-1.)*$My_P/($theta_p_P * 6.*$E * $Ix/$L)];
288 | #set as_mem_n [expr -($McMyN-1.)*$My_N/($theta_p_N * 6.*$E * $Ix/$L)];
289 | #set SH_mod_P [expr ($as_mem_p)/(1.0+$n*(1.0-$as_mem_p))];
290 | #set SH_mod_N [expr ($as_mem_n)/(1.0+$n*(1.0-$as_mem_n))];
291 | #uniaxialMaterial Bilin $SpringID $K $SH_mod_P $SH_mod_N $My_P $My_N $L_S $L_C $L_A $L_K $c_S $c_C $c_A $c_K $theta_p_P $theta_p_N $theta_pc_P $theta_pc_N $Res_P $Res_N $theta_u $theta_u $D_P $D_N
292 |
293 |
294 | ##################################################################################################################
295 | #Random generation of backbone parameters based on assigned uncertainty
296 | ##################################################################################################################
297 | global Sigma_IMKcol Sigma_IMKbeam; global xRandom;
298 | if {$ConnectionType == 2} {
299 | set SigmaX [lindex $Sigma_IMKcol 0]; Generate_lognrmrand $K $SigmaX; set K $xRandom;
300 | set SigmaX [lindex $Sigma_IMKcol 1]; Generate_lognrmrand $My_P $SigmaX; set My_P $xRandom;
301 | set My_N $xRandom;
302 | set SigmaX [lindex $Sigma_IMKcol 2]; Generate_lognrmrand $McMyP $SigmaX; set McMyP [expr max(1.01,$xRandom)];
303 | set McMyN [expr max(1.01,$xRandom)];
304 | set SigmaX [lindex $Sigma_IMKcol 3]; Generate_lognrmrand $Res_P $SigmaX; set Res_P $xRandom;
305 | set Res_N $xRandom;
306 | set SigmaX [lindex $Sigma_IMKcol 4]; Generate_lognrmrand $theta_p_P $SigmaX; set theta_p_P $xRandom;
307 | set theta_p_N $xRandom;
308 | set SigmaX [lindex $Sigma_IMKcol 5]; Generate_lognrmrand $theta_pc_P $SigmaX; set theta_pc_P $xRandom;
309 | set theta_pc_N $xRandom;
310 | set SigmaX [lindex $Sigma_IMKcol 6]; Generate_lognrmrand $theta_u $SigmaX; set theta_u $xRandom;
311 | set SigmaX [lindex $Sigma_IMKcol 7]; Generate_lognrmrand $Lmda $SigmaX; set Lmda $xRandom;
312 | #set SigmaX [lindex $Sigma_IMKcol 8]; Generate_lognrmrand $c $SigmaX; set c $xRandom;
313 | }
314 | if {$ConnectionType != 2 && $CompositeFlag == 0} {
315 | set SigmaX [lindex $Sigma_IMKbeam 0]; Generate_lognrmrand $K $SigmaX; set K $xRandom;
316 | set SigmaX [lindex $Sigma_IMKbeam 1]; Generate_lognrmrand $My_P $SigmaX; set My_P $xRandom;
317 | set My_N $xRandom;
318 | set SigmaX [lindex $Sigma_IMKbeam 2]; Generate_lognrmrand $McMyP $SigmaX; set McMyP [expr max(1.01,$xRandom)];
319 | set McMyN [expr max(1.01,$xRandom)];
320 | set SigmaX [lindex $Sigma_IMKbeam 3]; Generate_lognrmrand $Res_P $SigmaX; set Res_P $xRandom;
321 | set Res_N $xRandom;
322 | set SigmaX [lindex $Sigma_IMKbeam 4]; Generate_lognrmrand $theta_p_P $SigmaX; set theta_p_P $xRandom;
323 | set theta_p_N $xRandom;
324 | set SigmaX [lindex $Sigma_IMKbeam 5]; Generate_lognrmrand $theta_pc_P $SigmaX; set theta_pc_P $xRandom;
325 | set theta_pc_N $xRandom;
326 | set SigmaX [lindex $Sigma_IMKbeam 6]; Generate_lognrmrand $theta_u $SigmaX; set theta_u $xRandom;
327 | set SigmaX [lindex $Sigma_IMKbeam 7]; Generate_lognrmrand $Lmda $SigmaX; set Lmda $xRandom;
328 | #set SigmaX [lindex $Sigma_IMKbeam 8]; Generate_lognrmrand $c $SigmaX; set c $xRandom;
329 |
330 | }
331 | if {$ConnectionType != 2 && $CompositeFlag == 1} {
332 | set SigmaX [lindex $Sigma_IMKbeam 0]; Generate_lognrmrand $K $SigmaX; set K $xRandom;
333 | set SigmaX [lindex $Sigma_IMKbeam 1]; Generate_lognrmrand $My_P $SigmaX; set My_P $xRandom;
334 | set SigmaX [lindex $Sigma_IMKbeam 1]; Generate_lognrmrand $My_N $SigmaX; set My_N $xRandom;
335 | set SigmaX [lindex $Sigma_IMKbeam 2]; Generate_lognrmrand $McMyP $SigmaX; set McMyP [expr max(1.01,$xRandom)];
336 | set SigmaX [lindex $Sigma_IMKbeam 2]; Generate_lognrmrand $McMyN $SigmaX; set McMyN [expr max(1.01,$xRandom)];
337 | set SigmaX [lindex $Sigma_IMKbeam 3]; Generate_lognrmrand $Res_P $SigmaX; set Res_P $xRandom;
338 | set SigmaX [lindex $Sigma_IMKbeam 3]; Generate_lognrmrand $Res_N $SigmaX; set Res_N $xRandom;
339 | set SigmaX [lindex $Sigma_IMKbeam 4]; Generate_lognrmrand $theta_p_P $SigmaX; set theta_p_P $xRandom;
340 | set SigmaX [lindex $Sigma_IMKbeam 4]; Generate_lognrmrand $theta_p_N $SigmaX; set theta_p_N $xRandom;
341 | set SigmaX [lindex $Sigma_IMKbeam 5]; Generate_lognrmrand $theta_pc_P $SigmaX; set theta_pc_P $xRandom;
342 | set SigmaX [lindex $Sigma_IMKbeam 5]; Generate_lognrmrand $theta_pc_N $SigmaX; set theta_pc_N $xRandom;
343 | set SigmaX [lindex $Sigma_IMKbeam 6]; Generate_lognrmrand $theta_u $SigmaX; set theta_u $xRandom;
344 | set SigmaX [lindex $Sigma_IMKbeam 7]; Generate_lognrmrand $Lmda $SigmaX; set Lmda $xRandom;
345 | #set SigmaX [lindex $Sigma_IMKbeam 8]; Generate_lognrmrand $c $SigmaX; set c $xRandom;
346 | }
347 | ##################################################################################################################
348 | ##################################################################################################################
349 | ##################################################################################################################
350 |
351 |
352 |
353 | # Cyclic deterioration parameters
354 | if {$ConnectionType == 2} {
355 | set L_S $Lmda; set L_C [expr 0.9*$Lmda]; set L_A $Lmda; set L_K [expr 0.9*$Lmda];
356 | } else {
357 | set L_S $Lmda; set L_C $Lmda; set L_A $Lmda; set L_K $Lmda;
358 | }
359 | set c_S $c; set c_C $c; set c_A $c; set c_K $c;
360 |
361 | # IMKBilin material model (This is the updated version of the Bilin model)
362 | uniaxialMaterial IMKBilin $SpringID $K $theta_p_P $theta_pc_P $theta_u $My_P $McMyP $Res_P $theta_p_N $theta_pc_N $theta_u $My_N $McMyN $Res_N $L_S $L_C $L_K $c_S $c_C $c_K $D_P $D_N;
363 |
364 | element zeroLength $SpringID $NodeI $NodeJ -mat 99 99 $SpringID -dir 1 2 6 -doRayleigh 1;
365 |
366 |
367 | }
--------------------------------------------------------------------------------
/Models and Tcl Files/SMF2B.tcl:
--------------------------------------------------------------------------------
1 | ####################################################################################################
2 | ####################################################################################################
3 | # 2-story MRF Building
4 | ####################################################################################################
5 | ####################################################################################################
6 |
7 | # CLEAR ALL;
8 | wipe all;
9 |
10 | # BUILD MODEL (2D - 3 DOF/node)
11 | model basic -ndm 2 -ndf 3
12 |
13 | ####################################################################################################
14 | # BASIC MODEL VARIABLES #
15 | ####################################################################################################
16 |
17 | set global RunTime;
18 | set global StartTime;
19 | set global MaxRunTime;
20 | set MaxRunTime [expr 10.0000 * 60.];
21 | set StartTime [clock seconds];
22 | set RunTime 0.0;
23 | set EQ 1;
24 | set PO 0;
25 | set ELF 0;
26 | set Composite 0;
27 | set ShowAnimation 1;
28 | set ModePO 1;
29 | set DriftPO 0.100000;
30 | set DampModeI 1;
31 | set DampModeJ 3;
32 | set zeta 0.020000;
33 |
34 | ####################################################################################################
35 | # SOURCING SUBROUTINES #
36 | ####################################################################################################
37 |
38 | source DisplayModel3D.tcl;
39 | source DisplayPlane.tcl;
40 | source Spring_PZ.tcl;
41 | source Spring_IMK.tcl;
42 | source Spring_Zero.tcl;
43 | source Spring_Rigid.tcl;
44 | source Spring_Pinching.tcl;
45 | source ConstructPanel_Rectangle.tcl;
46 | source DynamicAnalysisCollapseSolverX.tcl;
47 | source Generate_lognrmrand.tcl;
48 |
49 | ####################################################################################################
50 | # Create Results Folders #
51 | ####################################################################################################
52 |
53 | # RESULT FOLDER
54 | set MainFolder "ResultsMainFolder";
55 | set SubFolder "ResultsSubFolder";
56 | file mkdir $MainFolder;
57 | cd $MainFolder
58 | file mkdir $SubFolder;
59 | cd ..
60 |
61 | ####################################################################################################
62 | # INPUT #
63 | ####################################################################################################
64 |
65 | # FRAME CENTERLINE DIMENSIONS
66 | set NStory 2;
67 | set NBay 3;
68 |
69 | # MATERIAL PROPERTIES
70 | set E 29000.0;
71 | set mu 0.3;
72 | set fy [expr 55.0 * 1.0];
73 |
74 | # BASIC MATERIALS
75 | uniaxialMaterial Elastic 9 1.e-9; #Flexible Material
76 | uniaxialMaterial Elastic 99 1000000000.; #Rigid Material
77 | uniaxialMaterial UVCuniaxial 666 29000.0000 55.0000 18.0000 10.0000 0.0000 1.0000 2 3500.0000 180.0000 345.0000 10.0000; #Voce-Chaboche Material
78 |
79 | # GEOMETRIC TRANSFORMATIONS IDs
80 | geomTransf Linear 1;
81 | geomTransf PDelta 2;
82 | geomTransf Corotational 3;
83 | set trans_Linear 1;
84 | set trans_PDelta 2;
85 | set trans_Corot 3;
86 | set trans_selected 2;
87 |
88 | # STIFF ELEMENTS PROPERTY
89 | set A_Stiff 1000.0;
90 | set I_Stiff 100000.0;
91 |
92 | # COMPOSITE BEAM FACTOR
93 | set Composite 0;
94 | set Comp_I 1.400;
95 | set Comp_I_GC 1.400;
96 |
97 | # FIBER ELEMENT PROPERTIES
98 | set nSegments 8;
99 | set initialGI 0.00100;
100 | set nIntegration 5;
101 |
102 | # LOGARITHMIC STANDARD DEVIATIONS (FOR UNCERTAINTY CONSIDERATION)
103 | global Sigma_IMKcol Sigma_IMKbeam Sigma_Pinching4 Sigma_PZ;
104 | set Sigma_IMKcol [list 1.e-9 1.e-9 1.e-9 1.e-9 1.e-9 1.e-9 1.e-9 1.e-9 1.e-9 ];
105 | set Sigma_IMKbeam [list 1.e-9 1.e-9 1.e-9 1.e-9 1.e-9 1.e-9 1.e-9 1.e-9 1.e-9 ];
106 | set Sigma_Pinching4 [list 1.e-9 1.e-9 1.e-9 1.e-9 1.e-9 1.e-9 1.e-9 1.e-9 ];
107 | set Sigma_PZ [list 1.e-9 1.e-9 1.e-9 1.e-9 ];
108 | set Sigma_fy 1.e-9;
109 | set Sigma_zeta 1.e-9;
110 | global Sigma_fy Sigma_fyB Sigma_fyG Sigma_GI; global xRandom;
111 | set SigmaX $Sigma_fy; Generate_lognrmrand $fy $SigmaX; set fy $xRandom;
112 |
113 | ####################################################################################################
114 | # PRE-CALCULATIONS #
115 | ####################################################################################################
116 |
117 | # REDUCED BEAM SECTION CONNECTION DISTANCE FROM COLUMN
118 | set L_RBS3 [expr 0.625 * 5.53 + 0.750 * 15.90/2.];
119 | set L_RBS2 [expr 0.625 * 10.50 + 0.750 * 30.30/2.];
120 |
121 | # FRAME GRID LINES
122 | set Floor3 336.00;
123 | set Floor2 180.00;
124 | set Floor1 0.0;
125 |
126 | set Axis1 0.0;
127 | set Axis2 240.00;
128 | set Axis3 480.00;
129 | set Axis4 720.00;
130 | set Axis5 960.00;
131 | set Axis6 1200.00;
132 |
133 | set HBuilding 336.00;
134 | set WFrame 720.00;
135 | variable HBuilding 336.00;
136 |
137 | ####################################################################################################
138 | # NODES #
139 | ####################################################################################################
140 |
141 | # COMMAND SYNTAX
142 | # node $NodeID $X-Coordinate $Y-Coordinate;
143 |
144 | #SUPPORT NODES
145 | node 110 $Axis1 $Floor1; node 120 $Axis2 $Floor1; node 130 $Axis3 $Floor1; node 140 $Axis4 $Floor1; node 150 $Axis5 $Floor1; node 160 $Axis6 $Floor1;
146 |
147 | # EGF COLUMN GRID NODES
148 | node 350 $Axis5 $Floor3; node 360 $Axis6 $Floor3;
149 | node 250 $Axis5 $Floor2; node 260 $Axis6 $Floor2;
150 |
151 | # EGF COLUMN NODES
152 | node 351 $Axis5 $Floor3; node 361 $Axis6 $Floor3;
153 | node 253 $Axis5 $Floor2; node 263 $Axis6 $Floor2;
154 | node 251 $Axis5 $Floor2; node 261 $Axis6 $Floor2;
155 | node 153 $Axis5 $Floor1; node 163 $Axis6 $Floor1;
156 |
157 | # EGF BEAM NODES
158 | node 354 $Axis5 $Floor3; node 362 $Axis6 $Floor3;
159 | node 254 $Axis5 $Floor2; node 262 $Axis6 $Floor2;
160 |
161 | # MF COLUMN NODES
162 | node 311 $Axis1 [expr $Floor3 - 15.90/2]; node 321 $Axis2 [expr $Floor3 - 15.90/2]; node 331 $Axis3 [expr $Floor3 - 15.90/2]; node 341 $Axis4 [expr $Floor3 - 15.90/2];
163 | node 213 $Axis1 [expr $Floor2 + 30.30/2]; node 223 $Axis2 [expr $Floor2 + 30.30/2]; node 233 $Axis3 [expr $Floor2 + 30.30/2]; node 243 $Axis4 [expr $Floor2 + 30.30/2];
164 | node 211 $Axis1 [expr $Floor2 - 30.30/2]; node 221 $Axis2 [expr $Floor2 - 30.30/2]; node 231 $Axis3 [expr $Floor2 - 30.30/2]; node 241 $Axis4 [expr $Floor2 - 30.30/2];
165 | node 113 $Axis1 $Floor1; node 123 $Axis2 $Floor1; node 133 $Axis3 $Floor1; node 143 $Axis4 $Floor1;
166 |
167 | # MF BEAM NODES
168 | node 314 [expr $Axis1 + $L_RBS3 + 24.50/2] $Floor3; node 322 [expr $Axis2 - $L_RBS3 - 25.00/2] $Floor3; node 324 [expr $Axis2 + $L_RBS3 + 25.00/2] $Floor3; node 332 [expr $Axis3 - $L_RBS3 - 25.00/2] $Floor3; node 334 [expr $Axis3 + $L_RBS3 + 25.00/2] $Floor3; node 342 [expr $Axis4 - $L_RBS3 - 24.50/2] $Floor3;
169 | node 214 [expr $Axis1 + $L_RBS2 + 24.50/2] $Floor2; node 222 [expr $Axis2 - $L_RBS2 - 25.00/2] $Floor2; node 224 [expr $Axis2 + $L_RBS2 + 25.00/2] $Floor2; node 232 [expr $Axis3 - $L_RBS2 - 25.00/2] $Floor2; node 234 [expr $Axis3 + $L_RBS2 + 25.00/2] $Floor2; node 242 [expr $Axis4 - $L_RBS2 - 24.50/2] $Floor2;
170 |
171 | # BEAM SPRING NODES
172 | node 3140 [expr $Axis1 + $L_RBS3 + 24.50/2] $Floor3; node 3220 [expr $Axis2 - $L_RBS3 - 25.00/2] $Floor3; node 3240 [expr $Axis2 + $L_RBS3 + 25.00/2] $Floor3; node 3320 [expr $Axis3 - $L_RBS3 - 25.00/2] $Floor3; node 3340 [expr $Axis3 + $L_RBS3 + 25.00/2] $Floor3; node 3420 [expr $Axis4 - $L_RBS3 - 24.50/2] $Floor3;
173 | node 2140 [expr $Axis1 + $L_RBS2 + 24.50/2] $Floor2; node 2220 [expr $Axis2 - $L_RBS2 - 25.00/2] $Floor2; node 2240 [expr $Axis2 + $L_RBS2 + 25.00/2] $Floor2; node 2320 [expr $Axis3 - $L_RBS2 - 25.00/2] $Floor2; node 2340 [expr $Axis3 + $L_RBS2 + 25.00/2] $Floor2; node 2420 [expr $Axis4 - $L_RBS2 - 24.50/2] $Floor2;
174 |
175 | # COLUMN SPLICE NODES
176 |
177 | ###################################################################################################
178 | # PANEL ZONE NODES & ELEMENTS #
179 | ###################################################################################################
180 |
181 | # PANEL ZONE NODES AND ELASTIC ELEMENTS
182 | # Command Syntax;
183 | # ConstructPanel_Rectangle Axis Floor X_Axis Y_Floor E A_Panel I_Panel d_Col d_Beam transfTag
184 | ConstructPanel_Rectangle 1 3 $Axis1 $Floor3 $E $A_Stiff $I_Stiff 24.50 15.90 $trans_selected; ConstructPanel_Rectangle 2 3 $Axis2 $Floor3 $E $A_Stiff $I_Stiff 25.00 15.90 $trans_selected; ConstructPanel_Rectangle 3 3 $Axis3 $Floor3 $E $A_Stiff $I_Stiff 25.00 15.90 $trans_selected; ConstructPanel_Rectangle 4 3 $Axis4 $Floor3 $E $A_Stiff $I_Stiff 24.50 15.90 $trans_selected;
185 | ConstructPanel_Rectangle 1 2 $Axis1 $Floor2 $E $A_Stiff $I_Stiff 24.50 30.30 $trans_selected; ConstructPanel_Rectangle 2 2 $Axis2 $Floor2 $E $A_Stiff $I_Stiff 25.00 30.30 $trans_selected; ConstructPanel_Rectangle 3 2 $Axis3 $Floor2 $E $A_Stiff $I_Stiff 25.00 30.30 $trans_selected; ConstructPanel_Rectangle 4 2 $Axis4 $Floor2 $E $A_Stiff $I_Stiff 24.50 30.30 $trans_selected;
186 |
187 | ####################################################################################################
188 | # PANEL ZONE SPRINGS #
189 | ####################################################################################################
190 |
191 | # COMMAND SYNTAX
192 | # Spring_PZ Element_ID Node_i Node_j E mu fy tw_Col tdp d_Col d_Beam tf_Col bf_Col Ic trib ts Response_ID transfTag
193 | Spring_PZ 903100 403109 403110 $E $mu [expr $fy * 1.0] 0.60 0.00 24.50 15.90 0.96 12.90 4020.00 3.500 4.000 2 1; Spring_PZ 903200 403209 403210 $E $mu [expr $fy * 1.0] 0.70 0.00 25.00 15.90 1.22 13.00 5170.00 3.500 4.000 2 1; Spring_PZ 903300 403309 403310 $E $mu [expr $fy * 1.0] 0.70 0.00 25.00 15.90 1.22 13.00 5170.00 3.500 4.000 2 1; Spring_PZ 903400 403409 403410 $E $mu [expr $fy * 1.0] 0.60 0.00 24.50 15.90 0.96 12.90 4020.00 3.500 4.000 2 1;
194 | Spring_PZ 902100 402109 402110 $E $mu [expr $fy * 1.0] 0.60 0.38 24.50 30.30 0.96 12.90 4020.00 3.500 4.000 2 1; Spring_PZ 902200 402209 402210 $E $mu [expr $fy * 1.0] 0.70 1.19 25.00 30.30 1.22 13.00 5170.00 3.500 4.000 2 1; Spring_PZ 902300 402309 402310 $E $mu [expr $fy * 1.0] 0.70 1.19 25.00 30.30 1.22 13.00 5170.00 3.500 4.000 2 1; Spring_PZ 902400 402409 402410 $E $mu [expr $fy * 1.0] 0.60 0.38 24.50 30.30 0.96 12.90 4020.00 3.500 4.000 2 1;
195 |
196 | ####################################################################################################
197 | # ELASTIC COLUMNS AND BEAMS #
198 | ####################################################################################################
199 |
200 | # COMMAND SYNTAX
201 | # element ModElasticBeam2d $ElementID $iNode $jNode $Area $E $Ix $K11 $K33 $K44 $transformation
202 |
203 | # STIFFNESS MODIFIERS
204 | set n 10.;
205 | set K44_2 [expr 6*(1+$n)/(2+3*$n)];
206 | set K11_2 [expr (1+2*$n)*$K44_2/(1+$n)];
207 | set K33_2 [expr (1+2*$n)*$K44_2/(1+$n)];
208 | set K44_1 [expr 6*$n/(1+3*$n)];
209 | set K11_1 [expr (1+2*$n)*$K44_1/(1+$n)];
210 | set K33_1 [expr 2*$K44_1];
211 |
212 | # COLUMNS
213 | element ModElasticBeam2d 602100 213 311 38.5000 $E [expr ($n+1)/$n*4020.0000] $K11_2 $K33_2 $K44_2 $trans_selected; element ModElasticBeam2d 602200 223 321 47.7000 $E [expr ($n+1)/$n*5170.0000] $K11_2 $K33_2 $K44_2 $trans_selected; element ModElasticBeam2d 602300 233 331 47.7000 $E [expr ($n+1)/$n*5170.0000] $K11_2 $K33_2 $K44_2 $trans_selected; element ModElasticBeam2d 602400 243 341 38.5000 $E [expr ($n+1)/$n*4020.0000] $K11_2 $K33_2 $K44_2 $trans_selected;
214 | element ModElasticBeam2d 601100 113 211 38.5000 $E [expr ($n+1)/$n*4020.0000] $K11_2 $K33_2 $K44_2 $trans_selected; element ModElasticBeam2d 601200 123 221 47.7000 $E [expr ($n+1)/$n*5170.0000] $K11_2 $K33_2 $K44_2 $trans_selected; element ModElasticBeam2d 601300 133 231 47.7000 $E [expr ($n+1)/$n*5170.0000] $K11_2 $K33_2 $K44_2 $trans_selected; element ModElasticBeam2d 601400 143 241 38.5000 $E [expr ($n+1)/$n*4020.0000] $K11_2 $K33_2 $K44_2 $trans_selected;
215 |
216 | # BEAMS
217 | element ModElasticBeam2d 503100 314 322 9.1300 $E [expr ($n+1)/$n*0.90*$Comp_I*375.0000] $K11_2 $K33_2 $K44_2 $trans_selected; element ModElasticBeam2d 503200 324 332 9.1300 $E [expr ($n+1)/$n*0.90*$Comp_I*375.0000] $K11_2 $K33_2 $K44_2 $trans_selected; element ModElasticBeam2d 503300 334 342 9.1300 $E [expr ($n+1)/$n*0.90*$Comp_I*375.0000] $K11_2 $K33_2 $K44_2 $trans_selected;
218 | element ModElasticBeam2d 502100 214 222 38.9000 $E [expr ($n+1)/$n*0.90*$Comp_I*5770.0000] $K11_2 $K33_2 $K44_2 $trans_selected; element ModElasticBeam2d 502200 224 232 38.9000 $E [expr ($n+1)/$n*0.90*$Comp_I*5770.0000] $K11_2 $K33_2 $K44_2 $trans_selected; element ModElasticBeam2d 502300 234 242 38.9000 $E [expr ($n+1)/$n*0.90*$Comp_I*5770.0000] $K11_2 $K33_2 $K44_2 $trans_selected;
219 |
220 | ####################################################################################################
221 | # ELASTIC RBS ELEMENTS #
222 | ####################################################################################################
223 |
224 | element elasticBeamColumn 503104 403104 3140 7.913 $E [expr $Comp_I*302.285] 1; element elasticBeamColumn 503202 403202 3220 7.913 $E [expr $Comp_I*302.285] 1; element elasticBeamColumn 503204 403204 3240 7.913 $E [expr $Comp_I*302.285] 1; element elasticBeamColumn 503302 403302 3320 7.913 $E [expr $Comp_I*302.285] 1; element elasticBeamColumn 503304 403304 3340 7.913 $E [expr $Comp_I*302.285] 1; element elasticBeamColumn 503402 403402 3420 7.913 $E [expr $Comp_I*302.285] 1;
225 | element elasticBeamColumn 502104 402104 2140 33.650 $E [expr $Comp_I*4642.794] 1; element elasticBeamColumn 502202 402202 2220 33.650 $E [expr $Comp_I*4642.794] 1; element elasticBeamColumn 502204 402204 2240 33.650 $E [expr $Comp_I*4642.794] 1; element elasticBeamColumn 502302 402302 2320 33.650 $E [expr $Comp_I*4642.794] 1; element elasticBeamColumn 502304 402304 2340 33.650 $E [expr $Comp_I*4642.794] 1; element elasticBeamColumn 502402 402402 2420 33.650 $E [expr $Comp_I*4642.794] 1;
226 |
227 | ###################################################################################################
228 | # MF BEAM SPRINGS #
229 | ###################################################################################################
230 |
231 | # Command Syntax
232 | # Spring_IMK SpringID iNode jNode E fy Ix d htw bftf ry L Ls Lb My PgPye CompositeFLAG MFconnection Units;
233 |
234 | Spring_IMK 903104 314 3140 $E $fy [expr $Comp_I*229.570] 15.900 51.600 6.280 1.170 196.412 98.206 107.625 2076.279 0.0 $Composite 0 2; Spring_IMK 903202 3220 322 $E $fy [expr $Comp_I*229.570] 15.900 51.600 6.280 1.170 196.412 98.206 107.625 2076.279 0.0 $Composite 0 2; Spring_IMK 903204 324 3240 $E $fy [expr $Comp_I*229.570] 15.900 51.600 6.280 1.170 196.412 98.206 107.625 2076.279 0.0 $Composite 0 2; Spring_IMK 903302 3320 332 $E $fy [expr $Comp_I*229.570] 15.900 51.600 6.280 1.170 196.162 98.081 107.500 2076.279 0.0 $Composite 0 2; Spring_IMK 903304 334 3340 $E $fy [expr $Comp_I*229.570] 15.900 51.600 6.280 1.170 196.162 98.081 107.500 2076.279 0.0 $Composite 0 2; Spring_IMK 903402 3420 342 $E $fy [expr $Comp_I*229.570] 15.900 51.600 6.280 1.170 196.412 98.206 107.625 2076.279 0.0 $Composite 0 2;
235 | Spring_IMK 902104 214 2140 $E $fy [expr $Comp_I*3515.589] 30.300 43.900 5.270 2.250 179.400 89.700 107.625 16756.191 0.0 $Composite 0 2; Spring_IMK 902202 2220 222 $E $fy [expr $Comp_I*3515.589] 30.300 43.900 5.270 2.250 179.400 89.700 107.625 16756.191 0.0 $Composite 0 2; Spring_IMK 902204 224 2240 $E $fy [expr $Comp_I*3515.589] 30.300 43.900 5.270 2.250 179.400 89.700 107.625 16756.191 0.0 $Composite 0 2; Spring_IMK 902302 2320 232 $E $fy [expr $Comp_I*3515.589] 30.300 43.900 5.270 2.250 179.150 89.575 107.500 16756.191 0.0 $Composite 0 2; Spring_IMK 902304 234 2340 $E $fy [expr $Comp_I*3515.589] 30.300 43.900 5.270 2.250 179.150 89.575 107.500 16756.191 0.0 $Composite 0 2; Spring_IMK 902402 2420 242 $E $fy [expr $Comp_I*3515.589] 30.300 43.900 5.270 2.250 179.400 89.700 107.625 16756.191 0.0 $Composite 0 2;
236 |
237 | ###################################################################################################
238 | # MF COLUMN SPRINGS #
239 | ###################################################################################################
240 |
241 | Spring_IMK 903101 403101 311 $E $fy 4020.0000 24.5000 35.6000 6.7000 2.9700 132.9000 66.4500 132.9000 22385.0000 0.0110 0 0 2; Spring_IMK 903201 403201 321 $E $fy 5170.0000 25.0000 30.6000 5.3100 3.0500 132.9000 66.4500 132.9000 28314.0000 0.0133 0 0 2; Spring_IMK 903301 403301 331 $E $fy 5170.0000 25.0000 30.6000 5.3100 3.0500 132.9000 66.4500 132.9000 28314.0000 0.0133 0 0 2; Spring_IMK 903401 403401 341 $E $fy 4020.0000 24.5000 35.6000 6.7000 2.9700 132.9000 66.4500 132.9000 22385.0000 0.0110 0 0 2;
242 | Spring_IMK 902103 402103 213 $E $fy 4020.0000 24.5000 35.6000 6.7000 2.9700 132.9000 66.4500 132.9000 22385.0000 0.0110 0 0 2; Spring_IMK 902203 402203 223 $E $fy 5170.0000 25.0000 30.6000 5.3100 3.0500 132.9000 66.4500 132.9000 28314.0000 0.0133 0 0 2; Spring_IMK 902303 402303 233 $E $fy 5170.0000 25.0000 30.6000 5.3100 3.0500 132.9000 66.4500 132.9000 28314.0000 0.0133 0 0 2; Spring_IMK 902403 402403 243 $E $fy 4020.0000 24.5000 35.6000 6.7000 2.9700 132.9000 66.4500 132.9000 22385.0000 0.0110 0 0 2;
243 | Spring_IMK 902101 402101 211 $E $fy 4020.0000 24.5000 35.6000 6.7000 2.9700 164.8500 82.4250 164.8500 22385.0000 0.0246 0 0 2; Spring_IMK 902201 402201 221 $E $fy 5170.0000 25.0000 30.6000 5.3100 3.0500 164.8500 82.4250 164.8500 28314.0000 0.0298 0 0 2; Spring_IMK 902301 402301 231 $E $fy 5170.0000 25.0000 30.6000 5.3100 3.0500 164.8500 82.4250 164.8500 28314.0000 0.0298 0 0 2; Spring_IMK 902401 402401 241 $E $fy 4020.0000 24.5000 35.6000 6.7000 2.9700 164.8500 82.4250 164.8500 22385.0000 0.0246 0 0 2;
244 | Spring_IMK 901103 110 113 $E $fy 4020.0000 24.5000 35.6000 6.7000 2.9700 164.8500 82.4250 164.8500 22385.0000 0.0246 0 0 2; Spring_IMK 901203 120 123 $E $fy 5170.0000 25.0000 30.6000 5.3100 3.0500 164.8500 82.4250 164.8500 28314.0000 0.0298 0 0 2; Spring_IMK 901303 130 133 $E $fy 5170.0000 25.0000 30.6000 5.3100 3.0500 164.8500 82.4250 164.8500 28314.0000 0.0298 0 0 2; Spring_IMK 901403 140 143 $E $fy 4020.0000 24.5000 35.6000 6.7000 2.9700 164.8500 82.4250 164.8500 22385.0000 0.0246 0 0 2;
245 |
246 | ###################################################################################################
247 | # COLUMN SPLICE SPRINGS #
248 | ###################################################################################################
249 |
250 |
251 | ####################################################################################################
252 | # FLOOR LINKS #
253 | ####################################################################################################
254 |
255 | # Command Syntax
256 | # element truss $ElementID $iNode $jNode $Area $matID
257 | element truss 1003 403404 350 $A_Stiff 99;
258 | element truss 1002 402404 250 $A_Stiff 99;
259 |
260 | ####################################################################################################
261 | # EGF COLUMNS AND BEAMS #
262 | ####################################################################################################
263 |
264 | # GRAVITY COLUMNS
265 | element elasticBeamColumn 602500 253 351 100000.0000 $E 100000000.0000 $trans_PDelta; element elasticBeamColumn 602600 263 361 100000.0000 $E 100000000.0000 $trans_PDelta;
266 | element elasticBeamColumn 601500 153 251 100000.0000 $E 100000000.0000 $trans_PDelta; element elasticBeamColumn 601600 163 261 100000.0000 $E 100000000.0000 $trans_PDelta;
267 |
268 | # GRAVITY BEAMS
269 | element elasticBeamColumn 503400 354 362 100000.0000 $E 100000000.0000 $trans_PDelta;
270 | element elasticBeamColumn 502400 254 262 100000.0000 $E 100000000.0000 $trans_PDelta;
271 |
272 | # GRAVITY COLUMNS SPRINGS
273 | Spring_Zero 903501 350 351; Spring_Zero 903601 360 361;
274 | Spring_Zero 902503 250 253; Spring_Zero 902603 260 263;
275 | Spring_Zero 902501 250 251; Spring_Zero 902601 260 261;
276 | Spring_Zero 901503 150 153; Spring_Zero 901603 160 163;
277 |
278 | # GRAVITY BEAMS SPRINGS
279 | Spring_Rigid 903504 350 354; Spring_Rigid 903602 360 362;
280 | Spring_Rigid 902504 250 254; Spring_Rigid 902602 260 262;
281 |
282 | ###################################################################################################
283 | # BOUNDARY CONDITIONS #
284 | ###################################################################################################
285 |
286 | # MF SUPPORTS
287 | fix 110 1 1 0;
288 | fix 120 1 1 0;
289 | fix 130 1 1 0;
290 | fix 140 1 1 0;
291 |
292 | # EGF SUPPORTS
293 | fix 150 1 1 0; fix 160 1 1 0;
294 |
295 | # MF FLOOR MOVEMENT
296 | equalDOF 403104 403204 1; equalDOF 403104 403304 1; equalDOF 403104 403404 1;
297 | equalDOF 402104 402204 1; equalDOF 402104 402304 1; equalDOF 402104 402404 1;
298 |
299 | # EGF FLOOR MOVEMENT
300 | equalDOF 350 360 1;
301 | equalDOF 250 260 1;
302 |
303 |
304 | ##################################################################################################
305 | ##################################################################################################
306 | puts "Model Built"
307 | ##################################################################################################
308 | ##################################################################################################
309 |
310 | ###################################################################################################
311 | # RECORDERS #
312 | ###################################################################################################
313 |
314 | # EIGEN VECTORS
315 | recorder Node -file $MainFolder/EigenAnalysis/EigenVectorsMode1.out -node 402104 403104 -dof 1 "eigen 1";
316 | recorder Node -file $MainFolder/EigenAnalysis/EigenVectorsMode2.out -node 402104 403104 -dof 1 "eigen 2";
317 |
318 | # TIME
319 | recorder Node -file $MainFolder/$SubFolder/Time.out -time -node 110 -dof 1 disp;
320 |
321 | # SUPPORT REACTIONS
322 | recorder Node -file $MainFolder/$SubFolder/Support1.out -node 110 -dof 1 2 6 reaction; recorder Node -file $MainFolder/$SubFolder/Support2.out -node 120 -dof 1 2 6 reaction; recorder Node -file $MainFolder/$SubFolder/Support3.out -node 130 -dof 1 2 6 reaction; recorder Node -file $MainFolder/$SubFolder/Support4.out -node 140 -dof 1 2 6 reaction; recorder Node -file $MainFolder/$SubFolder/Support5.out -node 150 -dof 1 2 6 reaction; recorder Node -file $MainFolder/$SubFolder/Support6.out -node 160 -dof 1 2 6 reaction;
323 |
324 | # STORY DRIFT RATIO
325 | recorder Drift -file $MainFolder/$SubFolder/SDR2_MF.out -iNode 402104 -jNode 403104 -dof 1 -perpDirn 2;
326 | recorder Drift -file $MainFolder/$SubFolder/SDR1_MF.out -iNode 110 -jNode 402104 -dof 1 -perpDirn 2;
327 |
328 | # COLUMN ELASTIC ELEMENT FORCES
329 | recorder Element -file $MainFolder/$SubFolder/Column21.out -ele 602100 force; recorder Element -file $MainFolder/$SubFolder/Column22.out -ele 602200 force; recorder Element -file $MainFolder/$SubFolder/Column23.out -ele 602300 force; recorder Element -file $MainFolder/$SubFolder/Column24.out -ele 602400 force; recorder Element -file $MainFolder/$SubFolder/Column25.out -ele 602500 force; recorder Element -file $MainFolder/$SubFolder/Column26.out -ele 602600 force;
330 | recorder Element -file $MainFolder/$SubFolder/Column11.out -ele 601100 force; recorder Element -file $MainFolder/$SubFolder/Column12.out -ele 601200 force; recorder Element -file $MainFolder/$SubFolder/Column13.out -ele 601300 force; recorder Element -file $MainFolder/$SubFolder/Column14.out -ele 601400 force; recorder Element -file $MainFolder/$SubFolder/Column15.out -ele 601500 force; recorder Element -file $MainFolder/$SubFolder/Column16.out -ele 601600 force;
331 |
332 | ###################################################################################################
333 | # NODAL MASS #
334 | ###################################################################################################
335 |
336 | set g 386.10;
337 | mass 403104 0.1476 1.e-9 1.e-9; mass 403204 0.1709 1.e-9 1.e-9; mass 403304 0.1709 1.e-9 1.e-9; mass 403404 0.1709 1.e-9 1.e-9; mass 350 0.5361 1.e-9 1.e-9; mass 360 0.5361 1.e-9 1.e-9;
338 | mass 402104 0.2797 1.e-9 1.e-9; mass 402204 0.3030 1.e-9 1.e-9; mass 402304 0.3030 1.e-9 1.e-9; mass 402404 0.3030 1.e-9 1.e-9; mass 250 0.3380 1.e-9 1.e-9; mass 260 0.3380 1.e-9 1.e-9;
339 |
340 | constraints Plain;
341 |
342 | ###################################################################################################
343 | # EIGEN VALUE ANALYSIS #
344 | ###################################################################################################
345 |
346 | set pi [expr 2.0*asin(1.0)];
347 | set nEigen 2;
348 | set lambdaN [eigen [expr $nEigen]];
349 | set lambda1 [lindex $lambdaN 0];
350 | set lambda2 [lindex $lambdaN 1];
351 | set w1 [expr pow($lambda1,0.5)];
352 | set w2 [expr pow($lambda2,0.5)];
353 | set T1 [expr round(2.0*$pi/$w1 *1000.)/1000.];
354 | set T2 [expr round(2.0*$pi/$w2 *1000.)/1000.];
355 | puts "T1 = $T1 s";
356 | puts "T2 = $T2 s";
357 | set fileX [open "EigenPeriod.out" w];
358 | puts $fileX $T1;puts $fileX $T2;close $fileX;
359 |
360 | constraints Plain;
361 | algorithm Newton;
362 | integrator LoadControl 1;
363 | analysis Static;
364 | analyze 1;
365 |
366 | ###################################################################################################
367 | ###################################################################################################
368 | puts "Eigen Analysis Done"
369 | ###################################################################################################
370 | ###################################################################################################
371 |
372 | ###################################################################################################
373 | # STATIC GRAVITY ANALYSIS #
374 | ###################################################################################################
375 |
376 | pattern Plain 100 Linear {
377 |
378 | # MF COLUMNS LOADS
379 | load 403103 0. -23.313 0.; load 403203 0. -34.969 0.; load 403303 0. -34.969 0.; load 403403 0. -23.313 0.;
380 | load 402103 0. -28.750 0.; load 402203 0. -43.125 0.; load 402303 0. -43.125 0.; load 402403 0. -28.750 0.;
381 |
382 | # EGF COLUMN LOADS
383 | load 350 0. -310.443750 0.; load 360 0. -310.443750 0.;
384 | load 250 0. -346.725000 0.; load 260 0. -346.725000 0.;
385 |
386 | }
387 |
388 | # Conversion Parameters
389 | constraints Plain;
390 | numberer RCM;
391 | system BandGeneral;
392 | test NormDispIncr 1.0e-5 60 ;
393 | algorithm Newton;
394 | integrator LoadControl 0.1;
395 | analysis Static;
396 | analyze 10;
397 |
398 | loadConst -time 0.0;
399 |
400 | ###################################################################################################
401 | ###################################################################################################
402 | puts "Gravity Done"
403 | ###################################################################################################
404 | ###################################################################################################
405 |
406 | puts "Seismic Weight= 1574.650 kip";
407 | puts "Seismic Mass= 3.598 kip.sec2/in";
408 |
409 | if {$ShowAnimation == 1} {
410 | DisplayModel3D DeformedShape 5 50 50 2000 1500;
411 | }
412 |
413 | ###################################################################################################
414 | # Pushover Analysis #
415 | ###################################################################################################
416 |
417 | if {$PO==1} {
418 |
419 | # Create Load Pattern
420 | pattern Plain 222 Linear {
421 | load 403103 -0.61520 0.0 0.0
422 | load 402103 -0.42970 0.0 0.0
423 | }
424 |
425 | # Displacement Control Parameters
426 | set CtrlNode 403104;
427 | set CtrlDOF 1;
428 | set Dmax [expr 0.100*$Floor3];
429 | set Dincr [expr 0.005];
430 |
431 | set Nsteps [expr int($Dmax/$Dincr)];
432 | set ok 0;
433 | set controlDisp 0.0;
434 | source LibAnalysisStaticParameters.tcl;
435 | source SolutionAlgorithm.tcl;
436 |
437 | ###################################################################################################
438 | puts "Pushover complete"
439 | ###################################################################################################
440 |
441 | }
442 |
443 | ###################################################################################################
444 | # DYNAMIC EARTHQUAKE ANALYSIS #
445 | ###################################################################################################
446 |
447 | if {$EQ==1} {
448 |
449 | set GMfile "NR94cnp.txt"; # ground motion filename
450 | set GMdt 0.01; # timestep of input GM file
451 | set EqSF 1.0; # ground motion scaling factor
452 | set GMpoints 2495; # number of steps in ground motion
453 |
454 | # Rayleigh Damping
455 | global Sigma_zeta; global xRandom;
456 | set zeta 0.020;
457 | set SigmaX $Sigma_zeta; Generate_lognrmrand $zeta $SigmaX; set zeta $xRandom;
458 | set a0 [expr $zeta*2.0*$w1*$w2/($w1 + $w2)];
459 | set a1 [expr $zeta*2.0/($w1 + $w2)];
460 | set a1_mod [expr $a1*(1.0+$n)/$n];
461 | region 1 -ele 604100 604200 604300 604400 603102 603202 603302 603402 603101 603201 603301 603401 602100 602200 602300 602400 601100 601200 601300 601400 505100 505200 505300 504100 504200 504300 503100 503200 503300 502100 502200 502300 -rayleigh 0.0 0.0 $a1_mod 0.0;
462 | region 2 -node 402104 402204 402304 402404 250 260 403104 403204 403304 403404 350 360 -rayleigh $a0 0.0 0.0 0.0;
463 | region 3 -eleRange 900000 999999 -rayleigh 0.0 0.0 [expr $a1_mod/10] 0.0;
464 |
465 | # GROUND MOTION ACCELERATION FILE INPUT
466 | set AccelSeries "Series -dt $GMdt -filePath $GMfile -factor [expr $EqSF * $g]"
467 | pattern UniformExcitation 200 1 -accel $AccelSeries
468 |
469 | set MF_FloorNodes [list 402104 403104 ];
470 | set EGF_FloorNodes [list 250 350 ];
471 | set GMduration [expr $GMdt*$GMpoints];
472 | set FVduration 10.000000;
473 | set NumSteps [expr round(($GMduration + $FVduration)/$GMdt)]; # number of steps in analysis
474 | set totTime [expr $GMdt*$NumSteps]; # Total time of analysis
475 | set dtAnalysis [expr 0.500000*$GMdt]; # dt of Analysis
476 |
477 | DynamicAnalysisCollapseSolverX $GMdt $dtAnalysis $totTime $NStory 0.15 $MF_FloorNodes $EGF_FloorNodes 180.00 156.00 1 $StartTime $MaxRunTime;
478 |
479 | ###################################################################################################
480 | ###################################################################################################
481 | puts "Ground Motion Done. End Time: [getTime]"
482 | ###################################################################################################
483 | ###################################################################################################
484 | }
485 |
486 | wipe all;
487 |
--------------------------------------------------------------------------------
/Models and Tcl Files/SMF2CG.tcl:
--------------------------------------------------------------------------------
1 | ####################################################################################################
2 | ####################################################################################################
3 | # 2-story MRF Building
4 | ####################################################################################################
5 | ####################################################################################################
6 |
7 | # CLEAR ALL;
8 | wipe all;
9 |
10 | # BUILD MODEL (2D - 3 DOF/node)
11 | model basic -ndm 2 -ndf 3
12 |
13 | ####################################################################################################
14 | # BASIC MODEL VARIABLES #
15 | ####################################################################################################
16 |
17 | set global RunTime;
18 | set global StartTime;
19 | set global MaxRunTime;
20 | set MaxRunTime [expr 10.0000 * 60.];
21 | set StartTime [clock seconds];
22 | set RunTime 0.0;
23 | set EQ 1;
24 | set PO 0;
25 | set ELF 0;
26 | set Composite 1;
27 | set ShowAnimation 1;
28 | set ModePO 1;
29 | set DriftPO 0.100000;
30 | set DampModeI 1;
31 | set DampModeJ 3;
32 | set zeta 0.020000;
33 |
34 | ####################################################################################################
35 | # SOURCING SUBROUTINES #
36 | ####################################################################################################
37 |
38 | source DisplayModel3D.tcl;
39 | source DisplayPlane.tcl;
40 | source Spring_PZ.tcl;
41 | source Spring_IMK.tcl;
42 | source Spring_Zero.tcl;
43 | source Spring_Rigid.tcl;
44 | source Spring_Pinching.tcl;
45 | source ConstructPanel_Rectangle.tcl;
46 | source DynamicAnalysisCollapseSolverX.tcl;
47 | source Generate_lognrmrand.tcl;
48 |
49 | ####################################################################################################
50 | # Create Results Folders #
51 | ####################################################################################################
52 |
53 | # RESULT FOLDER
54 | set MainFolder "ResultsMainFolder";
55 | set SubFolder "ResultsSubFolder";
56 | file mkdir $MainFolder;
57 | cd $MainFolder
58 | file mkdir $SubFolder;
59 | cd ..
60 |
61 | ####################################################################################################
62 | # INPUT #
63 | ####################################################################################################
64 |
65 | # FRAME CENTERLINE DIMENSIONS
66 | set NStory 2;
67 | set NBay 3;
68 |
69 | # MATERIAL PROPERTIES
70 | set E 29000.0;
71 | set mu 0.3;
72 | set fy [expr 55.0 * 1.0];
73 |
74 | # BASIC MATERIALS
75 | uniaxialMaterial Elastic 9 1.e-9; #Flexible Material
76 | uniaxialMaterial Elastic 99 1000000000.; #Rigid Material
77 | uniaxialMaterial UVCuniaxial 666 29000.0000 55.0000 18.0000 10.0000 0.0000 1.0000 2 3500.0000 180.0000 345.0000 10.0000; #Voce-Chaboche Material
78 |
79 | # GEOMETRIC TRANSFORMATIONS IDs
80 | geomTransf Linear 1;
81 | geomTransf PDelta 2;
82 | geomTransf Corotational 3;
83 | set trans_Linear 1;
84 | set trans_PDelta 2;
85 | set trans_Corot 3;
86 | set trans_selected 2;
87 |
88 | # STIFF ELEMENTS PROPERTY
89 | set A_Stiff 1000.0;
90 | set I_Stiff 100000.0;
91 |
92 | # COMPOSITE BEAM FACTOR
93 | puts "Composite Action is Considered"
94 | set Composite 1;
95 | set Comp_I 1.400;
96 | set Comp_I_GC 1.400;
97 |
98 | # FIBER ELEMENT PROPERTIES
99 | set nSegments 8;
100 | set initialGI 0.00100;
101 | set nIntegration 5;
102 |
103 | # LOGARITHMIC STANDARD DEVIATIONS (FOR UNCERTAINTY CONSIDERATION)
104 | global Sigma_IMKcol Sigma_IMKbeam Sigma_Pinching4 Sigma_PZ;
105 | set Sigma_IMKcol [list 1.e-9 1.e-9 1.e-9 1.e-9 1.e-9 1.e-9 1.e-9 1.e-9 1.e-9 ];
106 | set Sigma_IMKbeam [list 1.e-9 1.e-9 1.e-9 1.e-9 1.e-9 1.e-9 1.e-9 1.e-9 1.e-9 ];
107 | set Sigma_Pinching4 [list 1.e-9 1.e-9 1.e-9 1.e-9 1.e-9 1.e-9 1.e-9 1.e-9 ];
108 | set Sigma_PZ [list 1.e-9 1.e-9 1.e-9 1.e-9 ];
109 | set Sigma_fy 1.e-9;
110 | set Sigma_zeta 1.e-9;
111 | global Sigma_fy Sigma_fyB Sigma_fyG Sigma_GI; global xRandom;
112 | set SigmaX $Sigma_fy; Generate_lognrmrand $fy $SigmaX; set fy $xRandom;
113 |
114 | ####################################################################################################
115 | # PRE-CALCULATIONS #
116 | ####################################################################################################
117 |
118 | # REDUCED BEAM SECTION CONNECTION DISTANCE FROM COLUMN
119 | set L_RBS3 [expr 0.625 * 5.53 + 0.750 * 15.90/2.];
120 | set L_RBS2 [expr 0.625 * 10.50 + 0.750 * 30.30/2.];
121 |
122 | # FRAME GRID LINES
123 | set Floor3 336.00;
124 | set Floor2 180.00;
125 | set Floor1 0.0;
126 |
127 | set Axis1 0.0;
128 | set Axis2 240.00;
129 | set Axis3 480.00;
130 | set Axis4 720.00;
131 | set Axis5 960.00;
132 | set Axis6 1200.00;
133 |
134 | set HBuilding 336.00;
135 | set WFrame 720.00;
136 | variable HBuilding 336.00;
137 |
138 | ####################################################################################################
139 | # NODES #
140 | ####################################################################################################
141 |
142 | # COMMAND SYNTAX
143 | # node $NodeID $X-Coordinate $Y-Coordinate;
144 |
145 | #SUPPORT NODES
146 | node 110 $Axis1 $Floor1; node 120 $Axis2 $Floor1; node 130 $Axis3 $Floor1; node 140 $Axis4 $Floor1; node 150 $Axis5 $Floor1; node 160 $Axis6 $Floor1;
147 |
148 | # EGF COLUMN GRID NODES
149 | node 350 $Axis5 $Floor3; node 360 $Axis6 $Floor3;
150 | node 250 $Axis5 $Floor2; node 260 $Axis6 $Floor2;
151 |
152 | # EGF COLUMN NODES
153 | node 351 $Axis5 $Floor3; node 361 $Axis6 $Floor3;
154 | node 253 $Axis5 $Floor2; node 263 $Axis6 $Floor2;
155 | node 251 $Axis5 $Floor2; node 261 $Axis6 $Floor2;
156 | node 153 $Axis5 $Floor1; node 163 $Axis6 $Floor1;
157 |
158 | # EGF BEAM NODES
159 | node 354 $Axis5 $Floor3; node 362 $Axis6 $Floor3;
160 | node 254 $Axis5 $Floor2; node 262 $Axis6 $Floor2;
161 |
162 | # MF COLUMN NODES
163 | node 311 $Axis1 [expr $Floor3 - 15.90/2]; node 321 $Axis2 [expr $Floor3 - 15.90/2]; node 331 $Axis3 [expr $Floor3 - 15.90/2]; node 341 $Axis4 [expr $Floor3 - 15.90/2];
164 | node 213 $Axis1 [expr $Floor2 + 30.30/2]; node 223 $Axis2 [expr $Floor2 + 30.30/2]; node 233 $Axis3 [expr $Floor2 + 30.30/2]; node 243 $Axis4 [expr $Floor2 + 30.30/2];
165 | node 211 $Axis1 [expr $Floor2 - 30.30/2]; node 221 $Axis2 [expr $Floor2 - 30.30/2]; node 231 $Axis3 [expr $Floor2 - 30.30/2]; node 241 $Axis4 [expr $Floor2 - 30.30/2];
166 | node 113 $Axis1 $Floor1; node 123 $Axis2 $Floor1; node 133 $Axis3 $Floor1; node 143 $Axis4 $Floor1;
167 |
168 | # MF BEAM NODES
169 | node 314 [expr $Axis1 + $L_RBS3 + 24.50/2] $Floor3; node 322 [expr $Axis2 - $L_RBS3 - 25.00/2] $Floor3; node 324 [expr $Axis2 + $L_RBS3 + 25.00/2] $Floor3; node 332 [expr $Axis3 - $L_RBS3 - 25.00/2] $Floor3; node 334 [expr $Axis3 + $L_RBS3 + 25.00/2] $Floor3; node 342 [expr $Axis4 - $L_RBS3 - 24.50/2] $Floor3;
170 | node 214 [expr $Axis1 + $L_RBS2 + 24.50/2] $Floor2; node 222 [expr $Axis2 - $L_RBS2 - 25.00/2] $Floor2; node 224 [expr $Axis2 + $L_RBS2 + 25.00/2] $Floor2; node 232 [expr $Axis3 - $L_RBS2 - 25.00/2] $Floor2; node 234 [expr $Axis3 + $L_RBS2 + 25.00/2] $Floor2; node 242 [expr $Axis4 - $L_RBS2 - 24.50/2] $Floor2;
171 |
172 | # BEAM SPRING NODES
173 | node 3140 [expr $Axis1 + $L_RBS3 + 24.50/2] $Floor3; node 3220 [expr $Axis2 - $L_RBS3 - 25.00/2] $Floor3; node 3240 [expr $Axis2 + $L_RBS3 + 25.00/2] $Floor3; node 3320 [expr $Axis3 - $L_RBS3 - 25.00/2] $Floor3; node 3340 [expr $Axis3 + $L_RBS3 + 25.00/2] $Floor3; node 3420 [expr $Axis4 - $L_RBS3 - 24.50/2] $Floor3;
174 | node 2140 [expr $Axis1 + $L_RBS2 + 24.50/2] $Floor2; node 2220 [expr $Axis2 - $L_RBS2 - 25.00/2] $Floor2; node 2240 [expr $Axis2 + $L_RBS2 + 25.00/2] $Floor2; node 2320 [expr $Axis3 - $L_RBS2 - 25.00/2] $Floor2; node 2340 [expr $Axis3 + $L_RBS2 + 25.00/2] $Floor2; node 2420 [expr $Axis4 - $L_RBS2 - 24.50/2] $Floor2;
175 |
176 | # COLUMN SPLICE NODES
177 |
178 | ###################################################################################################
179 | # PANEL ZONE NODES & ELEMENTS #
180 | ###################################################################################################
181 |
182 | # PANEL ZONE NODES AND ELASTIC ELEMENTS
183 | # Command Syntax;
184 | # ConstructPanel_Rectangle Axis Floor X_Axis Y_Floor E A_Panel I_Panel d_Col d_Beam transfTag
185 | ConstructPanel_Rectangle 1 3 $Axis1 $Floor3 $E $A_Stiff $I_Stiff 24.50 15.90 $trans_selected; ConstructPanel_Rectangle 2 3 $Axis2 $Floor3 $E $A_Stiff $I_Stiff 25.00 15.90 $trans_selected; ConstructPanel_Rectangle 3 3 $Axis3 $Floor3 $E $A_Stiff $I_Stiff 25.00 15.90 $trans_selected; ConstructPanel_Rectangle 4 3 $Axis4 $Floor3 $E $A_Stiff $I_Stiff 24.50 15.90 $trans_selected;
186 | ConstructPanel_Rectangle 1 2 $Axis1 $Floor2 $E $A_Stiff $I_Stiff 24.50 30.30 $trans_selected; ConstructPanel_Rectangle 2 2 $Axis2 $Floor2 $E $A_Stiff $I_Stiff 25.00 30.30 $trans_selected; ConstructPanel_Rectangle 3 2 $Axis3 $Floor2 $E $A_Stiff $I_Stiff 25.00 30.30 $trans_selected; ConstructPanel_Rectangle 4 2 $Axis4 $Floor2 $E $A_Stiff $I_Stiff 24.50 30.30 $trans_selected;
187 |
188 | ####################################################################################################
189 | # PANEL ZONE SPRINGS #
190 | ####################################################################################################
191 |
192 | # COMMAND SYNTAX
193 | # Spring_PZ Element_ID Node_i Node_j E mu fy tw_Col tdp d_Col d_Beam tf_Col bf_Col Ic trib ts Response_ID transfTag
194 | Spring_PZ 903100 403109 403110 $E $mu [expr $fy * 1.0] 0.60 0.00 24.50 15.90 0.96 12.90 4020.00 3.500 4.000 2 1; Spring_PZ 903200 403209 403210 $E $mu [expr $fy * 1.0] 0.70 0.00 25.00 15.90 1.22 13.00 5170.00 3.500 4.000 0 1; Spring_PZ 903300 403309 403310 $E $mu [expr $fy * 1.0] 0.70 0.00 25.00 15.90 1.22 13.00 5170.00 3.500 4.000 0 1; Spring_PZ 903400 403409 403410 $E $mu [expr $fy * 1.0] 0.60 0.00 24.50 15.90 0.96 12.90 4020.00 3.500 4.000 2 1;
195 | Spring_PZ 902100 402109 402110 $E $mu [expr $fy * 1.0] 0.60 0.38 24.50 30.30 0.96 12.90 4020.00 3.500 4.000 2 1; Spring_PZ 902200 402209 402210 $E $mu [expr $fy * 1.0] 0.70 1.19 25.00 30.30 1.22 13.00 5170.00 3.500 4.000 0 1; Spring_PZ 902300 402309 402310 $E $mu [expr $fy * 1.0] 0.70 1.19 25.00 30.30 1.22 13.00 5170.00 3.500 4.000 0 1; Spring_PZ 902400 402409 402410 $E $mu [expr $fy * 1.0] 0.60 0.38 24.50 30.30 0.96 12.90 4020.00 3.500 4.000 2 1;
196 |
197 | ####################################################################################################
198 | # ELASTIC COLUMNS AND BEAMS #
199 | ####################################################################################################
200 |
201 | # COMMAND SYNTAX
202 | # element ModElasticBeam2d $ElementID $iNode $jNode $Area $E $Ix $K11 $K33 $K44 $transformation
203 |
204 | # STIFFNESS MODIFIERS
205 | set n 10.;
206 | set K44_2 [expr 6*(1+$n)/(2+3*$n)];
207 | set K11_2 [expr (1+2*$n)*$K44_2/(1+$n)];
208 | set K33_2 [expr (1+2*$n)*$K44_2/(1+$n)];
209 | set K44_1 [expr 6*$n/(1+3*$n)];
210 | set K11_1 [expr (1+2*$n)*$K44_1/(1+$n)];
211 | set K33_1 [expr 2*$K44_1];
212 |
213 | # COLUMNS
214 | element ModElasticBeam2d 602100 213 311 38.5000 $E [expr ($n+1)/$n*4020.0000] $K11_2 $K33_2 $K44_2 $trans_selected; element ModElasticBeam2d 602200 223 321 47.7000 $E [expr ($n+1)/$n*5170.0000] $K11_2 $K33_2 $K44_2 $trans_selected; element ModElasticBeam2d 602300 233 331 47.7000 $E [expr ($n+1)/$n*5170.0000] $K11_2 $K33_2 $K44_2 $trans_selected; element ModElasticBeam2d 602400 243 341 38.5000 $E [expr ($n+1)/$n*4020.0000] $K11_2 $K33_2 $K44_2 $trans_selected;
215 | element ModElasticBeam2d 601100 113 211 38.5000 $E [expr ($n+1)/$n*4020.0000] $K11_2 $K33_2 $K44_2 $trans_selected; element ModElasticBeam2d 601200 123 221 47.7000 $E [expr ($n+1)/$n*5170.0000] $K11_2 $K33_2 $K44_2 $trans_selected; element ModElasticBeam2d 601300 133 231 47.7000 $E [expr ($n+1)/$n*5170.0000] $K11_2 $K33_2 $K44_2 $trans_selected; element ModElasticBeam2d 601400 143 241 38.5000 $E [expr ($n+1)/$n*4020.0000] $K11_2 $K33_2 $K44_2 $trans_selected;
216 |
217 | # BEAMS
218 | element ModElasticBeam2d 503100 314 322 9.1300 $E [expr ($n+1)/$n*0.90*$Comp_I*375.0000] $K11_2 $K33_2 $K44_2 $trans_selected; element ModElasticBeam2d 503200 324 332 9.1300 $E [expr ($n+1)/$n*0.90*$Comp_I*375.0000] $K11_2 $K33_2 $K44_2 $trans_selected; element ModElasticBeam2d 503300 334 342 9.1300 $E [expr ($n+1)/$n*0.90*$Comp_I*375.0000] $K11_2 $K33_2 $K44_2 $trans_selected;
219 | element ModElasticBeam2d 502100 214 222 38.9000 $E [expr ($n+1)/$n*0.90*$Comp_I*5770.0000] $K11_2 $K33_2 $K44_2 $trans_selected; element ModElasticBeam2d 502200 224 232 38.9000 $E [expr ($n+1)/$n*0.90*$Comp_I*5770.0000] $K11_2 $K33_2 $K44_2 $trans_selected; element ModElasticBeam2d 502300 234 242 38.9000 $E [expr ($n+1)/$n*0.90*$Comp_I*5770.0000] $K11_2 $K33_2 $K44_2 $trans_selected;
220 |
221 | ####################################################################################################
222 | # ELASTIC RBS ELEMENTS #
223 | ####################################################################################################
224 |
225 | element elasticBeamColumn 503104 403104 3140 7.913 $E [expr $Comp_I*302.285] 1; element elasticBeamColumn 503202 403202 3220 7.913 $E [expr $Comp_I*302.285] 1; element elasticBeamColumn 503204 403204 3240 7.913 $E [expr $Comp_I*302.285] 1; element elasticBeamColumn 503302 403302 3320 7.913 $E [expr $Comp_I*302.285] 1; element elasticBeamColumn 503304 403304 3340 7.913 $E [expr $Comp_I*302.285] 1; element elasticBeamColumn 503402 403402 3420 7.913 $E [expr $Comp_I*302.285] 1;
226 | element elasticBeamColumn 502104 402104 2140 33.650 $E [expr $Comp_I*4642.794] 1; element elasticBeamColumn 502202 402202 2220 33.650 $E [expr $Comp_I*4642.794] 1; element elasticBeamColumn 502204 402204 2240 33.650 $E [expr $Comp_I*4642.794] 1; element elasticBeamColumn 502302 402302 2320 33.650 $E [expr $Comp_I*4642.794] 1; element elasticBeamColumn 502304 402304 2340 33.650 $E [expr $Comp_I*4642.794] 1; element elasticBeamColumn 502402 402402 2420 33.650 $E [expr $Comp_I*4642.794] 1;
227 |
228 | ###################################################################################################
229 | # MF BEAM SPRINGS #
230 | ###################################################################################################
231 |
232 | # Command Syntax
233 | # Spring_IMK SpringID iNode jNode E fy Ix d htw bftf ry L Ls Lb My PgPye CompositeFLAG MFconnection Units;
234 |
235 | Spring_IMK 903104 314 3140 $E $fy [expr $Comp_I*229.570] 15.900 51.600 6.280 1.170 196.412 98.206 107.625 2076.279 0.0 $Composite 0 2; Spring_IMK 903202 3220 322 $E $fy [expr $Comp_I*229.570] 15.900 51.600 6.280 1.170 196.412 98.206 107.625 2076.279 0.0 $Composite 0 2; Spring_IMK 903204 324 3240 $E $fy [expr $Comp_I*229.570] 15.900 51.600 6.280 1.170 196.412 98.206 107.625 2076.279 0.0 $Composite 0 2; Spring_IMK 903302 3320 332 $E $fy [expr $Comp_I*229.570] 15.900 51.600 6.280 1.170 196.162 98.081 107.500 2076.279 0.0 $Composite 0 2; Spring_IMK 903304 334 3340 $E $fy [expr $Comp_I*229.570] 15.900 51.600 6.280 1.170 196.162 98.081 107.500 2076.279 0.0 $Composite 0 2; Spring_IMK 903402 3420 342 $E $fy [expr $Comp_I*229.570] 15.900 51.600 6.280 1.170 196.412 98.206 107.625 2076.279 0.0 $Composite 0 2;
236 | Spring_IMK 902104 214 2140 $E $fy [expr $Comp_I*3515.589] 30.300 43.900 5.270 2.250 179.400 89.700 107.625 16756.191 0.0 $Composite 0 2; Spring_IMK 902202 2220 222 $E $fy [expr $Comp_I*3515.589] 30.300 43.900 5.270 2.250 179.400 89.700 107.625 16756.191 0.0 $Composite 0 2; Spring_IMK 902204 224 2240 $E $fy [expr $Comp_I*3515.589] 30.300 43.900 5.270 2.250 179.400 89.700 107.625 16756.191 0.0 $Composite 0 2; Spring_IMK 902302 2320 232 $E $fy [expr $Comp_I*3515.589] 30.300 43.900 5.270 2.250 179.150 89.575 107.500 16756.191 0.0 $Composite 0 2; Spring_IMK 902304 234 2340 $E $fy [expr $Comp_I*3515.589] 30.300 43.900 5.270 2.250 179.150 89.575 107.500 16756.191 0.0 $Composite 0 2; Spring_IMK 902402 2420 242 $E $fy [expr $Comp_I*3515.589] 30.300 43.900 5.270 2.250 179.400 89.700 107.625 16756.191 0.0 $Composite 0 2;
237 |
238 | ###################################################################################################
239 | # MF COLUMN SPRINGS #
240 | ###################################################################################################
241 |
242 | Spring_IMK 903101 403101 311 $E $fy 4020.0000 24.5000 35.6000 6.7000 2.9700 132.9000 66.4500 132.9000 22385.0000 0.0110 0 0 2; Spring_IMK 903201 403201 321 $E $fy 5170.0000 25.0000 30.6000 5.3100 3.0500 132.9000 66.4500 132.9000 28314.0000 0.0133 0 0 2; Spring_IMK 903301 403301 331 $E $fy 5170.0000 25.0000 30.6000 5.3100 3.0500 132.9000 66.4500 132.9000 28314.0000 0.0133 0 0 2; Spring_IMK 903401 403401 341 $E $fy 4020.0000 24.5000 35.6000 6.7000 2.9700 132.9000 66.4500 132.9000 22385.0000 0.0110 0 0 2;
243 | Spring_IMK 902103 402103 213 $E $fy 4020.0000 24.5000 35.6000 6.7000 2.9700 132.9000 66.4500 132.9000 22385.0000 0.0110 0 0 2; Spring_IMK 902203 402203 223 $E $fy 5170.0000 25.0000 30.6000 5.3100 3.0500 132.9000 66.4500 132.9000 28314.0000 0.0133 0 0 2; Spring_IMK 902303 402303 233 $E $fy 5170.0000 25.0000 30.6000 5.3100 3.0500 132.9000 66.4500 132.9000 28314.0000 0.0133 0 0 2; Spring_IMK 902403 402403 243 $E $fy 4020.0000 24.5000 35.6000 6.7000 2.9700 132.9000 66.4500 132.9000 22385.0000 0.0110 0 0 2;
244 | Spring_IMK 902101 402101 211 $E $fy 4020.0000 24.5000 35.6000 6.7000 2.9700 164.8500 82.4250 164.8500 22385.0000 0.0246 0 0 2; Spring_IMK 902201 402201 221 $E $fy 5170.0000 25.0000 30.6000 5.3100 3.0500 164.8500 82.4250 164.8500 28314.0000 0.0298 0 0 2; Spring_IMK 902301 402301 231 $E $fy 5170.0000 25.0000 30.6000 5.3100 3.0500 164.8500 82.4250 164.8500 28314.0000 0.0298 0 0 2; Spring_IMK 902401 402401 241 $E $fy 4020.0000 24.5000 35.6000 6.7000 2.9700 164.8500 82.4250 164.8500 22385.0000 0.0246 0 0 2;
245 | Spring_IMK 901103 110 113 $E $fy 4020.0000 24.5000 35.6000 6.7000 2.9700 164.8500 82.4250 164.8500 22385.0000 0.0246 0 0 2; Spring_IMK 901203 120 123 $E $fy 5170.0000 25.0000 30.6000 5.3100 3.0500 164.8500 82.4250 164.8500 28314.0000 0.0298 0 0 2; Spring_IMK 901303 130 133 $E $fy 5170.0000 25.0000 30.6000 5.3100 3.0500 164.8500 82.4250 164.8500 28314.0000 0.0298 0 0 2; Spring_IMK 901403 140 143 $E $fy 4020.0000 24.5000 35.6000 6.7000 2.9700 164.8500 82.4250 164.8500 22385.0000 0.0246 0 0 2;
246 |
247 | ###################################################################################################
248 | # COLUMN SPLICE SPRINGS #
249 | ###################################################################################################
250 |
251 |
252 | ####################################################################################################
253 | # FLOOR LINKS #
254 | ####################################################################################################
255 |
256 | # Command Syntax
257 | # element truss $ElementID $iNode $jNode $Area $matID
258 | element truss 1003 403404 350 $A_Stiff 99;
259 | element truss 1002 402404 250 $A_Stiff 99;
260 |
261 | ####################################################################################################
262 | # EGF COLUMNS AND BEAMS #
263 | ####################################################################################################
264 |
265 | # GRAVITY COLUMNS
266 | element elasticBeamColumn 602500 253 351 66.2500 $E [expr (905.0000 + 1566.0000)] $trans_PDelta; element elasticBeamColumn 602600 263 361 66.2500 $E [expr (905.0000 + 1566.0000)] $trans_PDelta;
267 | element elasticBeamColumn 601500 153 251 66.2500 $E [expr (905.0000 + 1566.0000)] $trans_PDelta; element elasticBeamColumn 601600 163 261 66.2500 $E [expr (905.0000 + 1566.0000)] $trans_PDelta;
268 |
269 | # GRAVITY BEAMS
270 | element elasticBeamColumn 503400 354 362 97.8000 $E [expr $Comp_I_GC * 8160.0000] $trans_PDelta;
271 | element elasticBeamColumn 502400 254 262 97.8000 $E [expr $Comp_I_GC * 8160.0000] $trans_PDelta;
272 |
273 | # GRAVITY COLUMNS SPRINGS
274 | Spring_IMK 903501 350 351 $E $fy [expr (905.0000 + 1566.0000)] 14.0000 25.9000 10.2000 3.7000 156.0000 78.0000 156.0000 34001.0000 0 $Composite 0 2; Spring_IMK 903601 360 361 $E $fy [expr (905.0000 + 1566.0000)] 14.0000 25.9000 10.2000 3.7000 156.0000 78.0000 156.0000 34001.0000 0 $Composite 0 2;
275 | Spring_IMK 902503 250 253 $E $fy [expr (905.0000 + 1566.0000)] 14.0000 25.9000 10.2000 3.7000 156.0000 78.0000 156.0000 34001.0000 0 $Composite 0 2; Spring_IMK 902603 260 263 $E $fy [expr (905.0000 + 1566.0000)] 14.0000 25.9000 10.2000 3.7000 156.0000 78.0000 156.0000 34001.0000 0 $Composite 0 2;
276 | Spring_IMK 902501 250 251 $E $fy [expr (905.0000 + 1566.0000)] 14.0000 25.9000 10.2000 3.7000 156.0000 78.0000 156.0000 34001.0000 0 $Composite 0 2; Spring_IMK 902601 260 261 $E $fy [expr (905.0000 + 1566.0000)] 14.0000 25.9000 10.2000 3.7000 156.0000 78.0000 156.0000 34001.0000 0 $Composite 0 2;
277 | Spring_IMK 901503 150 153 $E $fy 1566.0000 14.0000 25.9000 10.2000 3.7000 180.0000 90.0000 180.0000 22566.5000 0 $Composite 0 2; Spring_IMK 901603 160 163 $E $fy 1566.0000 14.0000 25.9000 10.2000 3.7000 180.0000 90.0000 180.0000 22566.5000 0 $Composite 0 2;
278 |
279 | # GRAVITY BEAMS SPRINGS
280 | set gap 0.08;
281 | Spring_Pinching 903504 350 354 49005.0000 $gap 1; Spring_Pinching 903602 360 362 49005.0000 $gap 1;
282 | Spring_Pinching 902504 250 254 49005.0000 $gap 1; Spring_Pinching 902602 260 262 49005.0000 $gap 1;
283 |
284 | ###################################################################################################
285 | # BOUNDARY CONDITIONS #
286 | ###################################################################################################
287 |
288 | # MF SUPPORTS
289 | fix 110 1 1 0;
290 | fix 120 1 1 0;
291 | fix 130 1 1 0;
292 | fix 140 1 1 0;
293 |
294 | # EGF SUPPORTS
295 | fix 150 1 1 0; fix 160 1 1 0;
296 |
297 | # MF FLOOR MOVEMENT
298 | equalDOF 403104 403204 1; equalDOF 403104 403304 1; equalDOF 403104 403404 1;
299 | equalDOF 402104 402204 1; equalDOF 402104 402304 1; equalDOF 402104 402404 1;
300 |
301 | # EGF FLOOR MOVEMENT
302 | equalDOF 350 360 1;
303 | equalDOF 250 260 1;
304 |
305 |
306 | ##################################################################################################
307 | ##################################################################################################
308 | puts "Model Built"
309 | ##################################################################################################
310 | ##################################################################################################
311 |
312 | ###################################################################################################
313 | # RECORDERS #
314 | ###################################################################################################
315 |
316 | # EIGEN VECTORS
317 | recorder Node -file $MainFolder/EigenAnalysis/EigenVectorsMode1.out -node 402104 403104 -dof 1 "eigen 1";
318 | recorder Node -file $MainFolder/EigenAnalysis/EigenVectorsMode2.out -node 402104 403104 -dof 1 "eigen 2";
319 |
320 | # TIME
321 | recorder Node -file $MainFolder/$SubFolder/Time.out -time -node 110 -dof 1 disp;
322 |
323 | # SUPPORT REACTIONS
324 | recorder Node -file $MainFolder/$SubFolder/Support1.out -node 110 -dof 1 2 6 reaction; recorder Node -file $MainFolder/$SubFolder/Support2.out -node 120 -dof 1 2 6 reaction; recorder Node -file $MainFolder/$SubFolder/Support3.out -node 130 -dof 1 2 6 reaction; recorder Node -file $MainFolder/$SubFolder/Support4.out -node 140 -dof 1 2 6 reaction; recorder Node -file $MainFolder/$SubFolder/Support5.out -node 150 -dof 1 2 6 reaction; recorder Node -file $MainFolder/$SubFolder/Support6.out -node 160 -dof 1 2 6 reaction;
325 |
326 | # STORY DRIFT RATIO
327 | recorder Drift -file $MainFolder/$SubFolder/SDR2_MF.out -iNode 402104 -jNode 403104 -dof 1 -perpDirn 2;
328 | recorder Drift -file $MainFolder/$SubFolder/SDR1_MF.out -iNode 110 -jNode 402104 -dof 1 -perpDirn 2;
329 |
330 | # COLUMN ELASTIC ELEMENT FORCES
331 | recorder Element -file $MainFolder/$SubFolder/Column21.out -ele 602100 force; recorder Element -file $MainFolder/$SubFolder/Column22.out -ele 602200 force; recorder Element -file $MainFolder/$SubFolder/Column23.out -ele 602300 force; recorder Element -file $MainFolder/$SubFolder/Column24.out -ele 602400 force; recorder Element -file $MainFolder/$SubFolder/Column25.out -ele 602500 force; recorder Element -file $MainFolder/$SubFolder/Column26.out -ele 602600 force;
332 | recorder Element -file $MainFolder/$SubFolder/Column11.out -ele 601100 force; recorder Element -file $MainFolder/$SubFolder/Column12.out -ele 601200 force; recorder Element -file $MainFolder/$SubFolder/Column13.out -ele 601300 force; recorder Element -file $MainFolder/$SubFolder/Column14.out -ele 601400 force; recorder Element -file $MainFolder/$SubFolder/Column15.out -ele 601500 force; recorder Element -file $MainFolder/$SubFolder/Column16.out -ele 601600 force;
333 |
334 | ###################################################################################################
335 | # NODAL MASS #
336 | ###################################################################################################
337 |
338 | set g 386.10;
339 | mass 403104 0.1476 1.e-9 1.e-9; mass 403204 0.1709 1.e-9 1.e-9; mass 403304 0.1709 1.e-9 1.e-9; mass 403404 0.1709 1.e-9 1.e-9; mass 350 0.5361 1.e-9 1.e-9; mass 360 0.5361 1.e-9 1.e-9;
340 | mass 402104 0.2797 1.e-9 1.e-9; mass 402204 0.3030 1.e-9 1.e-9; mass 402304 0.3030 1.e-9 1.e-9; mass 402404 0.3030 1.e-9 1.e-9; mass 250 0.3380 1.e-9 1.e-9; mass 260 0.3380 1.e-9 1.e-9;
341 |
342 | constraints Plain;
343 |
344 | ###################################################################################################
345 | # EIGEN VALUE ANALYSIS #
346 | ###################################################################################################
347 |
348 | set pi [expr 2.0*asin(1.0)];
349 | set nEigen 2;
350 | set lambdaN [eigen [expr $nEigen]];
351 | set lambda1 [lindex $lambdaN 0];
352 | set lambda2 [lindex $lambdaN 1];
353 | set w1 [expr pow($lambda1,0.5)];
354 | set w2 [expr pow($lambda2,0.5)];
355 | set T1 [expr round(2.0*$pi/$w1 *1000.)/1000.];
356 | set T2 [expr round(2.0*$pi/$w2 *1000.)/1000.];
357 | puts "T1 = $T1 s";
358 | puts "T2 = $T2 s";
359 | set fileX [open "EigenPeriod.out" w];
360 | puts $fileX $T1;puts $fileX $T2;close $fileX;
361 |
362 |
363 | constraints Plain;
364 | algorithm Newton;
365 | integrator LoadControl 1;
366 | analysis Static;
367 | analyze 1;
368 |
369 | ###################################################################################################
370 | ###################################################################################################
371 | puts "Eigen Analysis Done"
372 | ###################################################################################################
373 | ###################################################################################################
374 |
375 | ###################################################################################################
376 | # STATIC GRAVITY ANALYSIS #
377 | ###################################################################################################
378 |
379 | pattern Plain 100 Linear {
380 |
381 | # MF COLUMNS LOADS
382 | load 403103 0. -23.313 0.; load 403203 0. -34.969 0.; load 403303 0. -34.969 0.; load 403403 0. -23.313 0.;
383 | load 402103 0. -28.750 0.; load 402203 0. -43.125 0.; load 402303 0. -43.125 0.; load 402403 0. -28.750 0.;
384 |
385 | # EGF COLUMN LOADS
386 | load 350 0. -310.443750 0.; load 360 0. -310.443750 0.;
387 | load 250 0. -346.725000 0.; load 260 0. -346.725000 0.;
388 |
389 | }
390 |
391 | # Conversion Parameters
392 | constraints Plain;
393 | numberer RCM;
394 | system BandGeneral;
395 | test NormDispIncr 1.0e-5 60 ;
396 | algorithm Newton;
397 | integrator LoadControl 0.1;
398 | analysis Static;
399 | analyze 10;
400 |
401 | loadConst -time 0.0;
402 |
403 | ###################################################################################################
404 | ###################################################################################################
405 | puts "Gravity Done"
406 | ###################################################################################################
407 | ###################################################################################################
408 |
409 | puts "Seismic Weight= 1574.650 kip";
410 | puts "Seismic Mass= 3.598 kip.sec2/in";
411 |
412 | if {$ShowAnimation == 1} {
413 | DisplayModel3D DeformedShape 5.00 100 100 1000 750;
414 | }
415 |
416 | ###################################################################################################
417 | # Pushover Analysis #
418 | ###################################################################################################
419 |
420 | if {$PO==1} {
421 |
422 | # Create Load Pattern
423 | pattern Plain 222 Linear {
424 | load 403103 -0.61376 0.0 0.0
425 | load 402103 -0.43161 0.0 0.0
426 | }
427 |
428 | # Displacement Control Parameters
429 | set CtrlNode 403104;
430 | set CtrlDOF 1;
431 | set Dmax [expr 0.100*$Floor3];
432 | set Dincr [expr 0.005];
433 |
434 | set Nsteps [expr int($Dmax/$Dincr)];
435 | set ok 0;
436 | set controlDisp 0.0;
437 | source LibAnalysisStaticParameters.tcl;
438 | source SolutionAlgorithm.tcl;
439 |
440 | ###################################################################################################
441 | puts "Pushover complete"
442 | ###################################################################################################
443 |
444 | }
445 |
446 | ###################################################################################################
447 | # DYNAMIC EARTHQUAKE ANALYSIS #
448 | ###################################################################################################
449 |
450 | if {$EQ==1} {
451 |
452 | set GMfile "NR94cnp.txt"; # ground motion filename
453 | set GMdt 0.01; # timestep of input GM file
454 | set EqSF 1.0; # ground motion scaling factor
455 | set GMpoints 2495; # number of steps in ground motion
456 |
457 | # Rayleigh Damping
458 | global Sigma_zeta; global xRandom;
459 | set zeta 0.020;
460 | set SigmaX $Sigma_zeta; Generate_lognrmrand $zeta $SigmaX; set zeta $xRandom;
461 | set a0 [expr $zeta*2.0*$w1*$w2/($w1 + $w2)];
462 | set a1 [expr $zeta*2.0/($w1 + $w2)];
463 | set a1_mod [expr $a1*(1.0+$n)/$n];
464 | region 1 -ele 604100 604200 604300 604400 603102 603202 603302 603402 603101 603201 603301 603401 602100 602200 602300 602400 601100 601200 601300 601400 505100 505200 505300 504100 504200 504300 503100 503200 503300 502100 502200 502300 -rayleigh 0.0 0.0 $a1_mod 0.0;
465 | region 2 -node 402104 402204 402304 402404 250 260 403104 403204 403304 403404 350 360 -rayleigh $a0 0.0 0.0 0.0;
466 | region 3 -eleRange 900000 999999 -rayleigh 0.0 0.0 [expr $a1_mod/10] 0.0;
467 |
468 | # GROUND MOTION ACCELERATION FILE INPUT
469 | set AccelSeries "Series -dt $GMdt -filePath $GMfile -factor [expr $EqSF * $g]"
470 | pattern UniformExcitation 200 1 -accel $AccelSeries
471 |
472 | set MF_FloorNodes [list 402104 403104 ];
473 | set EGF_FloorNodes [list 250 350 ];
474 | set GMduration [expr $GMdt*$GMpoints];
475 | set FVduration 10.000000;
476 | set NumSteps [expr round(($GMduration + $FVduration)/$GMdt)]; # number of steps in analysis
477 | set totTime [expr $GMdt*$NumSteps]; # Total time of analysis
478 | set dtAnalysis [expr 0.500000*$GMdt]; # dt of Analysis
479 |
480 | DynamicAnalysisCollapseSolverX $GMdt $dtAnalysis $totTime $NStory 0.15 $MF_FloorNodes $EGF_FloorNodes 180.00 156.00 1 $StartTime $MaxRunTime;
481 |
482 | ###################################################################################################
483 | ###################################################################################################
484 | puts "Ground Motion Done. End Time: [getTime]"
485 | ###################################################################################################
486 | ###################################################################################################
487 | }
488 |
489 | wipe all;
490 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------