--------------------------------------------------------------------------------
/data/data_tau.csv:
--------------------------------------------------------------------------------
1 | title,date
2 | "An Exploration of R, Yelp, and the Search for Good Indian Food",5 points by Rogerh91 6 hours ago | discuss
3 | Deep Advances in Generative Modeling,7 points by gwulfs 15 hours ago | 1 comment
4 | Spark Pipelines: Elegant Yet Powerful,3 points by aouyang1 9 hours ago | discuss
5 | Shit VCs Say,3 points by Argentum01 10 hours ago | discuss
6 | "Python, Machine Learning, and Language Wars",4 points by pmigdal 17 hours ago | discuss
7 | A Neural Network in 11 lines of Python ,3 points by dekhtiar 14 hours ago | discuss
8 | Markov Chains Explained Visually,13 points by zeroviscosity 1 day ago | 1 comment
9 | Dplython: Dplyr for Python,13 points by thenaturalist 1 day ago | 3 comments
10 | Inferring causal impact using Bayesian structural time-series models,8 points by Homunculiheaded 1 day ago | 1 comment
11 | A Billion Taxi Rides on Amazon EMR running Spark,5 points by marklit 1 day ago | 1 comment
12 | Tutorial: Web scraping and mapping breweries with import.io and R,4 points by jasdumas 1 day ago | discuss
13 | The rise of greedy robots,4 points by yanir 2 days ago | discuss
14 | "Python for Data Structures, Algorithms, and Interviews",18 points by kokoubaby 4 days ago | discuss
15 | Extracting image metadata at scale,2 points by zachwill 1 day ago | discuss
16 | Lift charts - A data scientist's secret weapon,14 points by datenheini 4 days ago | 2 comments
17 | Data Science Side Project,7 points by yashpatel5400 2 days ago | 9 comments
18 | How To Become A Machine Learning Expert In One Simple Step,4 points by swanint 2 days ago | discuss
19 | Engineers Shouldn’t Write ETL: High Functioning Data Science Departments,10 points by legel 4 days ago | 3 comments
20 | Simple estimation of hierarchical events with petersburg,3 points by wdm0006 2 days ago | discuss
21 | Unsupervised Computer Vision: The Current State of the Art,6 points by carlosfaham 3 days ago | discuss
22 | Data Engineering at Slack: Twelve Mistakes I've Made In My First Three Months,14 points by gwulfs 6 days ago | 2 comments
23 | What data visualization tools do /r/DataIsBeautiful OC creators use?,3 points by pmigdal 2 days ago | discuss
24 | Reshaping in Pandas,6 points by carlosgg 4 days ago | discuss
25 | An unusual interactive machine learning challenge,4 points by gglumov 3 days ago | discuss
26 | Datumbox Machine Learning Framework 0.7.0 Released,4 points by datumbox 3 days ago | discuss
27 | Data science intro for math/phys background,14 points by pmigdal 7 days ago | discuss
28 | Neural Networks demystified,16 points by elyase 8 days ago | discuss
29 | What machines can learn from Apple Watch: detecting undiagnosed heart condition,9 points by koukouhappy 6 days ago | discuss
30 | Data Science Tools: The Biggest Winners and Losers,12 points by AnnaOnTheWeb 7 days ago | discuss
31 | 10 Years of Open Source Machine Learning,9 points by tstonez 6 days ago | 1 comment
32 | Has your conversion rate changed? Bayesian timeseries analysis with Python,12 points by yummyfajitas 8 days ago | discuss
33 | Do jobs run in families?,5 points by Anon84 5 days ago | 1 comment
34 | Introduction to Scikit Flow - Simplified Interface to TensorFlow,8 points by lefish 7 days ago | discuss
35 | "XGBoost4J: Portable Distributed XGboost in Spark, Flink and Dataflow",8 points by crowwork 8 days ago | discuss
36 | How to learn machine learning?,8 points by kiechu 8 days ago | 1 comment
37 | The Deep Roots of Javascript Fatigue,5 points by nikkielizdemere 6 days ago | 1 comment
38 | How do we make Data Tau work?,27 points by hal8 9 days ago | 18 comments
39 | "Machine Learning: An In-Depth, Non-Technical Guide — Part 4",7 points by innoarchitech 8 days ago | discuss
40 | Data Science Slack channel - Click for invite,7 points by jyotsna 8 days ago | discuss
41 | [Ask DT] What are some rookie mistakes in R?,3 points by HKtemp 3 days ago | discuss
42 | "Playing ""Moneyball"" on EA FIFA 16",16 points by aabb13 13 days ago | 3 comments
43 | Intellexer - Natural Language Processing and Text Mining REST API,16 points by j_downer 13 days ago | discuss
44 | Descriptive Statistics in SQL,5 points by nickhould 7 days ago | discuss
45 | Genomic Data Visualization using Python,2 points by RadhouaneAniba 4 days ago | discuss
46 | How to Use Cohort Data to Analyze User Behavior,2 points by clevertap 4 days ago | discuss
47 | Making transparent how variations in analytical choices affect results,4 points by rahmaniacc 7 days ago | discuss
48 | Show DT: Datasets.co - An easy way to share and discover ml datasets,2 points by mrborgen86 4 days ago | discuss
49 | Is Scala a better choice than Python for Apache Spark?,7 points by srinify 10 days ago | 1 comment
50 | Julia: A Fast Language for Numerical Computing,7 points by srinify 10 days ago | 1 comment
51 | "An Ode To The Rice Cooker, The Smartest Kitchen Appliance I’ve Ever Owned",2 points by tfturing 4 days ago | discuss
52 | Computing Classification Evaluation Metrics in R,4 points by lefish 7 days ago | discuss
53 | Analyzing Golden State Warriors' passing network using GraphFrames in Spark,3 points by yukiegosapporo 6 days ago | discuss
54 | Megaman: Manifold Learning with Millions of points,4 points by dperry 8 days ago | 3 comments
55 | How to Detect Outliers on Parametric and Non Parametric Methods,2 points by clevertap 5 days ago | discuss
56 | BallR: Interactive NBA Shot Charts with R and Shiny,12 points by carlosgg 14 days ago | discuss
57 | A Billion Taxi Rides on Amazon EMR Running Presto,4 points by marklit 8 days ago | discuss
58 | Minecraft to run artificial intelligence experiments,4 points by bsadeghi 8 days ago | discuss
59 | Deep Q-Learning (Space Invaders),4 points by pmigdal 8 days ago | discuss
60 | Theano Tutorial,2 points by pmigdal 5 days ago | discuss
61 | The Personality Space of Cartoon Characters,3 points by lefish 7 days ago | discuss
62 | Announcing Apache Flink 1.0.0,11 points by mxm 14 days ago | discuss
63 | "Telemetry with Collectd, Logstash, Elasticsearch and Grafana (ELG)",3 points by helloanand 7 days ago | discuss
64 | Statisticians Agree: It’s Time To Stop Misusing P-Value,10 points by jpiburn 15 days ago | 5 comments
65 | Bayesian Reasoning in The Twilight Zone!,2 points by Homunculiheaded 6 days ago | discuss
66 | Bayesian Estimation of G Train Wait Times,7 points by jamesdreiss 12 days ago | discuss
67 | XGBoost: A Scalable Tree Boosting System article,6 points by tfturing 12 days ago | discuss
68 | Some experiments into explaining complex black box ensemble predictions,2 points by lefish 6 days ago | discuss
69 | Creating a Hadoop Pseudo-Distributed Environment,2 points by lefish 6 days ago | discuss
70 | "Data Science Pop-Up in Austin, TX",2 points by AnnaOnTheWeb 6 days ago | discuss
71 | Train your own image classifier with Inception in TensorFlow,7 points by elyase 13 days ago | discuss
72 | Shiny app for running a Tensorflow demo,3 points by shinyman 9 days ago | discuss
73 | File details and owners with gitnoc and git-pandas,3 points by wdm0006 9 days ago | discuss
74 | 7 Big Data Technologies and When to Use Them that All Data Engineers Should Know,2 points by galvanize 7 days ago | discuss
75 | Topic clusters with TF-IDF vectorization with Spark and Scala,2 points by lefish 7 days ago | discuss
76 | Neural Doodles: Workflows for the Next Generation of Artists,5 points by pmigdal 12 days ago | discuss
77 | Graph Databases 101,5 points by carlosgg 12 days ago | discuss
78 | DataRadar.IO - Data Science RSS Feed - Do you have enough data about your data,2 points by dekhtiar 8 days ago | 3 comments
79 | International Women's Day: What #PledgeForParity Means To Us,5 points by ddrum001 14 days ago | discuss
80 | Top 50 Data Science thought leaders on Twitter,3 points by datawerq 11 days ago | 3 comments
81 | Ask DT: Who Is Hiring? (March 2016),27 points by whoishiring 21 days ago | 15 comments
82 | Deriving Better Insights From Time Series Data With Cycle Plots,3 points by clevertap 11 days ago | discuss
83 | Introducing GraphFrames,7 points by falaki 19 days ago | discuss
84 | SQL for Data Analysis,4 points by nickhould 14 days ago | 6 comments
85 | Stream processing and messaging systems for the IoT age,3 points by gradientflow 12 days ago | discuss
86 | Announcing R Tools for Visual Studio,3 points by brakmic 13 days ago | discuss
87 | A simpler way to merge data streams,3 points by apoverton 13 days ago | discuss
88 | Optimizing Notification Timing for One Signal,9 points by megandias 26 days ago | discuss
89 | Skizze - A high throughput probabilistic data structure service and storage,3 points by seiflotfy 14 days ago | discuss
90 | Question: What do you want to say about working with data?,2 points by emiller425 8 days ago | discuss
91 | Genomic Ranges - an Introduction to Working with Genomic Data,3 points by AnnaOnTheWeb 13 days ago | discuss
92 | TensorFlow for Poets,9 points by ebellm 21 days ago | 1 comment
93 | Unsupervised Learning with Even Less Supervision Using Bayesian Optimization,2 points by idewanck 11 days ago | discuss
94 | How to work with large JSON datasets using Python and Pandas,9 points by brian_spiering 21 days ago | discuss
95 | DrivenData Competition: Model/Visualize Fog Patterns in Morocco,4 points by bull 15 days ago | discuss
96 | Deep Learning: Nine Lectures at Collège de France by Yan LeCun,5 points by Anon84 17 days ago | discuss
97 | Optimizing Facebook Campaigns with R,2 points by AnnaOnTheWeb 12 days ago | 1 comment
98 | "Trump Tweets on a Globe (aka Fun with d3, socket.io, and the Twitter API)",8 points by joelgrus 21 days ago | discuss
99 | Why pandas users should be excited about Apache Arrow,17 points by pmigdal 29 days ago | discuss
100 | Histogram intersection for change detection,8 points by datadive 22 days ago | discuss
101 | Distributed TensorFlow just open-sourced,10 points by elyase 25 days ago | discuss
102 | D3.js Screencasts (1 in 3 are free),4 points by Veerle 18 days ago | discuss
103 | Regression and Classification with Examples in R,5 points by soates 20 days ago | discuss
104 | Free online course on statistical shape modelling,8 points by shapemean 25 days ago | discuss
105 | "Don't worry about deep learning, deepen your understanding of causality instead",22 points by yanir 37 days ago | discuss
106 | Work with private repositories and other updates of the FlyElephant platform,2 points by m31 15 days ago | discuss
107 | How to import XML to almost anywhere,4 points by Jammink 20 days ago | discuss
108 | Survival Analysis of Cricket Player Careers,8 points by keshav92 26 days ago | 6 comments
109 | Generate image analogies using neural matching and blending,2 points by pmigdal 15 days ago | discuss
110 | "Analyzing 1.8M tweets from Super Bowl 50 (Twython, Twitter API, AYLIEN)",4 points by mikewally 20 days ago | discuss
111 | Newly released sklearn compatible library of categorical encoders,7 points by wdm0006 25 days ago | discuss
112 | Watch Tiny Neural Nets Learn,4 points by swanint 21 days ago | discuss
113 | Four pitfalls of hill climbing: An animated look,5 points by csaid81 23 days ago | discuss
114 | "Decision Forests, Convolutional Networks and the Models in-Between",2 points by ebellm 16 days ago | discuss
115 | How a Math Genius Hacked OkCupid to Find True Love,15 points by roh_codeur 34 days ago | discuss
116 | No developers for PyLearn2,3 points by tfturing 19 days ago | discuss
117 | Density Estimation with Dirichlet Process Mixtures using PyMC3,6 points by MidsizeBlowfish 25 days ago | discuss
118 | Using survival analysis and git-pandas to estimate code quality,3 points by wdm0006 20 days ago | discuss
119 | An Analysis of the Flint Michigan Water Crisis: Part 1 Initial Corrosivity,3 points by JHorn 20 days ago | discuss
120 | An Analysis of Republican Twitter Follower Interests,6 points by michelangelo 26 days ago | discuss
121 | Introduction to ML talk,8 points by cjbayesian 29 days ago | discuss
122 | GloVe vs word2vec revisited,3 points by pmigdal 20 days ago | discuss
123 | Overoptimizing: a story about kaggle,4 points by wdm0006 30 days ago | discuss
124 | Undergrad Data Analysis/Science internships SF Bay?,3 points by tctctc 15 days ago | 5 comments
125 | The Role of Statistical Significance in Growth Hacking,6 points by rawls234 27 days ago | discuss
126 | Data Science Course @ Harvard,7 points by rahmaniacc 29 days ago | 2 comments
127 | Principal Component Projection Without Principal Component Analysis,6 points by genofon 27 days ago | discuss
128 | "Machine Learning: An In-Depth, Non-Technical Guide - Part 3",7 points by innoarchitech 29 days ago | discuss
129 | Stochastic Dummy Boosting,2 points by mikeskim 18 days ago | discuss
130 | Interactive Map: Hong-Kong through The Lense of Instagram,2 points by BrianN 19 days ago | discuss
131 | Data Science at Monsanto,3 points by doctorcroc 22 days ago | discuss
132 | Data Science at Instacart,11 points by jeremystan 34 days ago | 3 comments
133 | Building a Streaming Search Platform,6 points by ddrum001 28 days ago | discuss
134 | Kafka Producer Latency with Large Topic Counts,3 points by marklit 26 days ago | discuss
135 | A Sneak Peak of the Cloud: the 2 Minute Intro for Beginners,2 points by andymaheshw 20 days ago | discuss
136 | Win-Vector video courses: price/status changes,2 points by jmount 20 days ago | discuss
137 | 50+ Data Science and Machine Learning Cheat Sheets,20 points by elyase 42 days ago | 1 comment
138 | One More Reason Not To Be Scared of Deep Learning,2 points by amplifier_khan 21 days ago | discuss
139 | Visual Logic Authoring vs Code,2 points by AnnaOnTheWeb 21 days ago | discuss
140 | Data Science in Python online training with hands-on experience,2 points by Puneet 21 days ago | discuss
141 | Viewing the US Presidential Primary Through the Lens of Twitter,8 points by michelangelo 33 days ago | discuss
142 | Caffe on Spark open sourced,4 points by rahmaniacc 27 days ago | discuss
143 | The Ethical Data Scientist,5 points by tfturing 29 days ago | discuss
144 | Answers to Frequently Asked Questions in Machine Learning,3 points by rasbt 21 days ago | discuss
145 | Intro to A/B Testing and P-Values,2 points by randyzwitch 22 days ago | discuss
146 | Visualizing State Level Data With R and Statebins,2 points by usujason 22 days ago | discuss
147 | "Probabilistic Graphical Models slides & video lectures (Eric Xing, CMU)",4 points by ororm 28 days ago | discuss
148 | Sense2vec with spaCy and Gensim,9 points by elyase 36 days ago | 2 comments
149 | A Billion NYC Taxi and Uber Rides in AWS Redshift,3 points by marklit 31 days ago | discuss
150 | How to Code and Understand DeepMind's Neural Stack Machine (in Python),2 points by genofon 23 days ago | discuss
151 | How to make polished Jupyter presentations with optional code visibility,9 points by csaid81 36 days ago | discuss
152 | How to become a Bayesian in eight easy steps,17 points by EtzA 44 days ago | 1 comment
153 | Optimizing .*: Details of Vectorization and Metaprogramming in Julia,4 points by randyzwitch 29 days ago | discuss
154 | IBM certified Apache Spark Online Training,8 points by divya_jain 36 days ago | discuss
155 | Geographic Data Science course,2 points by rk 25 days ago | discuss
156 | "The Daily Mail Stole My Visualization, Twice",5 points by thehoff 32 days ago | 1 comment
157 | Ensemble Methods: Improved Machine Learning Results,9 points by PyBloggers 38 days ago | discuss
158 | Apache Spark and unsupervised learning in security,2 points by gradientflow 26 days ago | discuss
159 | MachineJS: Automated machine learning- just give it a data file!,2 points by dsernst 26 days ago | discuss
160 | The NSA’s SKYNET program may be killing thousands of innocent people,6 points by zlipp 35 days ago | discuss
161 | "Big Dimensions, and What You Can Do About It",2 points by ramsey 27 days ago | discuss
162 | Automate Your Oscars Pool with R,2 points by jamesdreiss 27 days ago | discuss
163 | Signal Processing with LIGO GW150914 data,9 points by tfturing 39 days ago | discuss
164 | Overview of DeZyre and Coursera Data Science Course,5 points by ann928 34 days ago | discuss
165 | Upcoming Datathon in NYC,2 points by VicTrey 28 days ago | discuss
166 | Summarizing Data in SQL,15 points by elisebreda 46 days ago | discuss
167 | A/B Testing for Scammers,2 points by sameermanek 28 days ago | discuss
168 | Highly interpretable classifiers for scikit learn using Bayesian decision rules,2 points by mcnulty 28 days ago | discuss
169 | Auto-scaling scikit-learn with Spark,11 points by falaki 43 days ago | discuss
170 | Where the f*** can I park?,2 points by manugarri 29 days ago | discuss
171 | "Machine Learning: An In-Depth, Non-Technical Guide - Part 2",5 points by innoarchitech 36 days ago | discuss
172 | Webhose.io now offers a historical data archive,7 points by databuffer 40 days ago | discuss
173 | Meetup: Introduction to Machine Learning Algorithms for Data Science.,4 points by ann928 36 days ago | discuss
174 | Exploring the Limits of Language Modeling,8 points by soates 42 days ago | discuss
175 | Text Mining South Park,7 points by pmigdal 41 days ago | discuss
176 | Finding the K in K-means by Parametric Bootstrap,7 points by jmount 42 days ago | 1 comment
177 | Getting Started with Statistics for Data Science,3 points by nickhould 35 days ago | discuss
178 | Rodeo 1.3 - Tab-completion for docstrings,3 points by glamp 35 days ago | discuss
179 | Teaching D3.js - links,3 points by pmigdal 35 days ago | discuss
180 | Parallel scikit-learn on YARN,5 points by stijntonk 39 days ago | discuss
181 | Meetup: Free Live Webinar on Prescriptive Analytics for Fun and Profit,2 points by ann928 32 days ago | discuss
182 |
--------------------------------------------------------------------------------
/data/data_tau_days.csv:
--------------------------------------------------------------------------------
1 | title,date,days
2 | "An Exploration of R, Yelp, and the Search for Good Indian Food",5 points by Rogerh91 6 hours ago | discuss,1
3 | Deep Advances in Generative Modeling,7 points by gwulfs 15 hours ago | 1 comment,1
4 | Spark Pipelines: Elegant Yet Powerful,3 points by aouyang1 9 hours ago | discuss,1
5 | Shit VCs Say,3 points by Argentum01 10 hours ago | discuss,1
6 | "Python, Machine Learning, and Language Wars",4 points by pmigdal 17 hours ago | discuss,1
7 | A Neural Network in 11 lines of Python ,3 points by dekhtiar 14 hours ago | discuss,1
8 | Markov Chains Explained Visually,13 points by zeroviscosity 1 day ago | 1 comment,1
9 | Dplython: Dplyr for Python,13 points by thenaturalist 1 day ago | 3 comments,1
10 | Inferring causal impact using Bayesian structural time-series models,8 points by Homunculiheaded 1 day ago | 1 comment,1
11 | A Billion Taxi Rides on Amazon EMR running Spark,5 points by marklit 1 day ago | 1 comment,1
12 | Tutorial: Web scraping and mapping breweries with import.io and R,4 points by jasdumas 1 day ago | discuss,1
13 | The rise of greedy robots,4 points by yanir 2 days ago | discuss,2
14 | "Python for Data Structures, Algorithms, and Interviews",18 points by kokoubaby 4 days ago | discuss,4
15 | Extracting image metadata at scale,2 points by zachwill 1 day ago | discuss,1
16 | Lift charts - A data scientist's secret weapon,14 points by datenheini 4 days ago | 2 comments,4
17 | Data Science Side Project,7 points by yashpatel5400 2 days ago | 9 comments,2
18 | How To Become A Machine Learning Expert In One Simple Step,4 points by swanint 2 days ago | discuss,2
19 | Engineers Shouldn?t Write ETL: High Functioning Data Science Departments,10 points by legel 4 days ago | 3 comments,4
20 | Simple estimation of hierarchical events with petersburg,3 points by wdm0006 2 days ago | discuss,2
21 | Unsupervised Computer Vision: The Current State of the Art,6 points by carlosfaham 3 days ago | discuss,3
22 | Data Engineering at Slack: Twelve Mistakes I've Made In My First Three Months,14 points by gwulfs 6 days ago | 2 comments,6
23 | What data visualization tools do /r/DataIsBeautiful OC creators use?,3 points by pmigdal 2 days ago | discuss,2
24 | Reshaping in Pandas,6 points by carlosgg 4 days ago | discuss,4
25 | An unusual interactive machine learning challenge,4 points by gglumov 3 days ago | discuss,3
26 | Datumbox Machine Learning Framework 0.7.0 Released,4 points by datumbox 3 days ago | discuss,3
27 | Data science intro for math/phys background,14 points by pmigdal 7 days ago | discuss,7
28 | Neural Networks demystified,16 points by elyase 8 days ago | discuss,8
29 | What machines can learn from Apple Watch: detecting undiagnosed heart condition,9 points by koukouhappy 6 days ago | discuss,6
30 | Data Science Tools: The Biggest Winners and Losers,12 points by AnnaOnTheWeb 7 days ago | discuss,7
31 | 10 Years of Open Source Machine Learning,9 points by tstonez 6 days ago | 1 comment,6
32 | Has your conversion rate changed? Bayesian timeseries analysis with Python,12 points by yummyfajitas 8 days ago | discuss,8
33 | Do jobs run in families?,5 points by Anon84 5 days ago | 1 comment,5
34 | Introduction to Scikit Flow - Simplified Interface to TensorFlow,8 points by lefish 7 days ago | discuss,7
35 | "XGBoost4J: Portable Distributed XGboost in Spark, Flink and Dataflow",8 points by crowwork 8 days ago | discuss,8
36 | How to learn machine learning?,8 points by kiechu 8 days ago | 1 comment,8
37 | The Deep Roots of Javascript Fatigue,5 points by nikkielizdemere 6 days ago | 1 comment,6
38 | How do we make Data Tau work?,27 points by hal8 9 days ago | 18 comments,9
39 | "Machine Learning: An In-Depth, Non-Technical Guide???Part 4",7 points by innoarchitech 8 days ago | discuss,8
40 | Data Science Slack channel - Click for invite,7 points by jyotsna 8 days ago | discuss,8
41 | [Ask DT] What are some rookie mistakes in R?,3 points by HKtemp 3 days ago | discuss,3
42 | "Playing ""Moneyball"" on EA FIFA 16",16 points by aabb13 13 days ago | 3 comments,13
43 | Intellexer - Natural Language Processing and Text Mining REST API,16 points by j_downer 13 days ago | discuss,13
44 | Descriptive Statistics in SQL,5 points by nickhould 7 days ago | discuss,7
45 | Genomic Data Visualization using Python,2 points by RadhouaneAniba 4 days ago | discuss,4
46 | How to Use Cohort Data to Analyze User Behavior,2 points by clevertap 4 days ago | discuss,4
47 | Making transparent how variations in analytical choices affect results,4 points by rahmaniacc 7 days ago | discuss,7
48 | Show DT: Datasets.co - An easy way to share and discover ml datasets,2 points by mrborgen86 4 days ago | discuss,4
49 | Is Scala a better choice than Python for Apache Spark?,7 points by srinify 10 days ago | 1 comment,10
50 | Julia: A Fast Language for Numerical Computing,7 points by srinify 10 days ago | 1 comment,10
51 | "An Ode To The Rice Cooker, The Smartest Kitchen Appliance I?ve Ever Owned",2 points by tfturing 4 days ago | discuss,4
52 | Computing Classification Evaluation Metrics in R,4 points by lefish 7 days ago | discuss,7
53 | Analyzing Golden State Warriors' passing network using GraphFrames in Spark,3 points by yukiegosapporo 6 days ago | discuss,6
54 | Megaman: Manifold Learning with Millions of points,4 points by dperry 8 days ago | 3 comments,8
55 | How to Detect Outliers on Parametric and Non Parametric Methods,2 points by clevertap 5 days ago | discuss,5
56 | BallR: Interactive NBA Shot Charts with R and Shiny,12 points by carlosgg 14 days ago | discuss,14
57 | A Billion Taxi Rides on Amazon EMR Running Presto,4 points by marklit 8 days ago | discuss,8
58 | Minecraft to run artificial intelligence experiments,4 points by bsadeghi 8 days ago | discuss,8
59 | Deep Q-Learning (Space Invaders),4 points by pmigdal 8 days ago | discuss,8
60 | Theano Tutorial,2 points by pmigdal 5 days ago | discuss,5
61 | The Personality Space of Cartoon Characters,3 points by lefish 7 days ago | discuss,7
62 | Announcing Apache Flink 1.0.0,11 points by mxm 14 days ago | discuss,14
63 | "Telemetry with Collectd, Logstash, Elasticsearch and Grafana (ELG)",3 points by helloanand 7 days ago | discuss,7
64 | Statisticians Agree: It?s Time To Stop Misusing P-Value,10 points by jpiburn 15 days ago | 5 comments,15
65 | Bayesian Reasoning in The Twilight Zone!,2 points by Homunculiheaded 6 days ago | discuss,6
66 | Bayesian Estimation of G Train Wait Times,7 points by jamesdreiss 12 days ago | discuss,12
67 | XGBoost: A Scalable Tree Boosting System article,6 points by tfturing 12 days ago | discuss,12
68 | Some experiments into explaining complex black box ensemble predictions,2 points by lefish 6 days ago | discuss,6
69 | Creating a Hadoop Pseudo-Distributed Environment,2 points by lefish 6 days ago | discuss,6
70 | "Data Science Pop-Up in Austin, TX",2 points by AnnaOnTheWeb 6 days ago | discuss,6
71 | Train your own image classifier with Inception in TensorFlow,7 points by elyase 13 days ago | discuss,13
72 | Shiny app for running a Tensorflow demo,3 points by shinyman 9 days ago | discuss,9
73 | File details and owners with gitnoc and git-pandas,3 points by wdm0006 9 days ago | discuss,9
74 | 7 Big Data Technologies and When to Use Them that All Data Engineers Should Know,2 points by galvanize 7 days ago | discuss,7
75 | Topic clusters with TF-IDF vectorization with Spark and Scala,2 points by lefish 7 days ago | discuss,7
76 | Neural Doodles: Workflows for the Next Generation of Artists,5 points by pmigdal 12 days ago | discuss,12
77 | Graph Databases 101,5 points by carlosgg 12 days ago | discuss,12
78 | DataRadar.IO - Data Science RSS Feed - Do you have enough data about your data,2 points by dekhtiar 8 days ago | 3 comments,8
79 | International Women's Day: What #PledgeForParity Means To Us,5 points by ddrum001 14 days ago | discuss,14
80 | Top 50 Data Science thought leaders on Twitter,3 points by datawerq 11 days ago | 3 comments,11
81 | Ask DT: Who Is Hiring? (March 2016),27 points by whoishiring 21 days ago | 15 comments,21
82 | Deriving Better Insights From Time Series Data With Cycle Plots,3 points by clevertap 11 days ago | discuss,11
83 | Introducing GraphFrames,7 points by falaki 19 days ago | discuss,19
84 | SQL for Data Analysis,4 points by nickhould 14 days ago | 6 comments,14
85 | Stream processing and messaging systems for the IoT age,3 points by gradientflow 12 days ago | discuss,12
86 | Announcing R Tools for Visual Studio,3 points by brakmic 13 days ago | discuss,13
87 | A simpler way to merge data streams,3 points by apoverton 13 days ago | discuss,13
88 | Optimizing Notification Timing for One Signal,9 points by megandias 26 days ago | discuss,26
89 | Skizze - A high throughput probabilistic data structure service and storage,3 points by seiflotfy 14 days ago | discuss,14
90 | Question: What do you want to say about working with data?,2 points by emiller425 8 days ago | discuss,8
91 | Genomic Ranges - an Introduction to Working with Genomic Data,3 points by AnnaOnTheWeb 13 days ago | discuss,13
92 | TensorFlow for Poets,9 points by ebellm 21 days ago | 1 comment,21
93 | Unsupervised Learning with Even Less Supervision Using Bayesian Optimization,2 points by idewanck 11 days ago | discuss,11
94 | How to work with large JSON datasets using Python and Pandas,9 points by brian_spiering 21 days ago | discuss,21
95 | DrivenData Competition: Model/Visualize Fog Patterns in Morocco,4 points by bull 15 days ago | discuss,15
96 | Deep Learning: Nine Lectures at Coll?ge de France by Yan LeCun,5 points by Anon84 17 days ago | discuss,17
97 | Optimizing Facebook Campaigns with R,2 points by AnnaOnTheWeb 12 days ago | 1 comment,12
98 | "Trump Tweets on a Globe (aka Fun with d3, socket.io, and the Twitter API)",8 points by joelgrus 21 days ago | discuss,21
99 | Why pandas users should be excited about Apache Arrow,17 points by pmigdal 29 days ago | discuss,29
100 | Histogram intersection for change detection,8 points by datadive 22 days ago | discuss,22
101 | Distributed TensorFlow just open-sourced,10 points by elyase 25 days ago | discuss,25
102 | D3.js Screencasts (1 in 3 are free),4 points by Veerle 18 days ago | discuss,18
103 | Regression and Classification with Examples in R,5 points by soates 20 days ago | discuss,20
104 | Free online course on statistical shape modelling,8 points by shapemean 25 days ago | discuss,25
105 | "Don't worry about deep learning, deepen your understanding of causality instead",22 points by yanir 37 days ago | discuss,37
106 | Work with private repositories and other updates of the FlyElephant platform,2 points by m31 15 days ago | discuss,15
107 | How to import XML to almost anywhere,4 points by Jammink 20 days ago | discuss,20
108 | Survival Analysis of Cricket Player Careers,8 points by keshav92 26 days ago | 6 comments,26
109 | Generate image analogies using neural matching and blending,2 points by pmigdal 15 days ago | discuss,15
110 | "Analyzing 1.8M tweets from Super Bowl 50 (Twython, Twitter API, AYLIEN)",4 points by mikewally 20 days ago | discuss,20
111 | Newly released sklearn compatible library of categorical encoders,7 points by wdm0006 25 days ago | discuss,25
112 | Watch Tiny Neural Nets Learn,4 points by swanint 21 days ago | discuss,21
113 | Four pitfalls of hill climbing: An animated look,5 points by csaid81 23 days ago | discuss,23
114 | "Decision Forests, Convolutional Networks and the Models in-Between",2 points by ebellm 16 days ago | discuss,16
115 | How a Math Genius Hacked OkCupid to Find True Love,15 points by roh_codeur 34 days ago | discuss,34
116 | No developers for PyLearn2,3 points by tfturing 19 days ago | discuss,19
117 | Density Estimation with Dirichlet Process Mixtures using PyMC3,6 points by MidsizeBlowfish 25 days ago | discuss,25
118 | Using survival analysis and git-pandas to estimate code quality,3 points by wdm0006 20 days ago | discuss,20
119 | An Analysis of the Flint Michigan Water Crisis: Part 1 Initial Corrosivity,3 points by JHorn 20 days ago | discuss,20
120 | An Analysis of Republican Twitter Follower Interests,6 points by michelangelo 26 days ago | discuss,26
121 | Introduction to ML talk,8 points by cjbayesian 29 days ago | discuss,29
122 | GloVe vs word2vec revisited,3 points by pmigdal 20 days ago | discuss,20
123 | Overoptimizing: a story about kaggle,4 points by wdm0006 30 days ago | discuss,30
124 | Undergrad Data Analysis/Science internships SF Bay?,3 points by tctctc 15 days ago | 5 comments,15
125 | The Role of Statistical Significance in Growth Hacking,6 points by rawls234 27 days ago | discuss,27
126 | Data Science Course @ Harvard,7 points by rahmaniacc 29 days ago | 2 comments,29
127 | Principal Component Projection Without Principal Component Analysis,6 points by genofon 27 days ago | discuss,27
128 | "Machine Learning: An In-Depth, Non-Technical Guide - Part 3",7 points by innoarchitech 29 days ago | discuss,29
129 | Stochastic Dummy Boosting,2 points by mikeskim 18 days ago | discuss,18
130 | Interactive Map: Hong-Kong through The Lense of Instagram,2 points by BrianN 19 days ago | discuss,19
131 | Data Science at Monsanto,3 points by doctorcroc 22 days ago | discuss,22
132 | Data Science at Instacart,11 points by jeremystan 34 days ago | 3 comments,34
133 | Building a Streaming Search Platform,6 points by ddrum001 28 days ago | discuss,28
134 | Kafka Producer Latency with Large Topic Counts,3 points by marklit 26 days ago | discuss,26
135 | A Sneak Peak of the Cloud: the 2 Minute Intro for Beginners,2 points by andymaheshw 20 days ago | discuss,20
136 | Win-Vector video courses: price/status changes,2 points by jmount 20 days ago | discuss,20
137 | 50+ Data Science and Machine Learning Cheat Sheets,20 points by elyase 42 days ago | 1 comment,42
138 | One More Reason Not To Be Scared of Deep Learning,2 points by amplifier_khan 21 days ago | discuss,21
139 | Visual Logic Authoring vs Code,2 points by AnnaOnTheWeb 21 days ago | discuss,21
140 | Data Science in Python online training with hands-on experience,2 points by Puneet 21 days ago | discuss,21
141 | Viewing the US Presidential Primary Through the Lens of Twitter,8 points by michelangelo 33 days ago | discuss,33
142 | Caffe on Spark open sourced,4 points by rahmaniacc 27 days ago | discuss,27
143 | The Ethical Data Scientist,5 points by tfturing 29 days ago | discuss,29
144 | Answers to Frequently Asked Questions in Machine Learning,3 points by rasbt 21 days ago | discuss,21
145 | Intro to A/B Testing and P-Values,2 points by randyzwitch 22 days ago | discuss,22
146 | Visualizing State Level Data With R and Statebins,2 points by usujason 22 days ago | discuss,22
147 | "Probabilistic Graphical Models slides & video lectures (Eric Xing, CMU)",4 points by ororm 28 days ago | discuss,28
148 | Sense2vec with spaCy and Gensim,9 points by elyase 36 days ago | 2 comments,36
149 | A Billion NYC Taxi and Uber Rides in AWS Redshift,3 points by marklit 31 days ago | discuss,31
150 | How to Code and Understand DeepMind's Neural Stack Machine (in Python),2 points by genofon 23 days ago | discuss,23
151 | How to make polished Jupyter presentations with optional code visibility,9 points by csaid81 36 days ago | discuss,36
152 | How to become a Bayesian in eight easy steps,17 points by EtzA 44 days ago | 1 comment,44
153 | Optimizing .*: Details of Vectorization and Metaprogramming in Julia,4 points by randyzwitch 29 days ago | discuss,29
154 | IBM certified Apache Spark Online Training,8 points by divya_jain 36 days ago | discuss,36
155 | Geographic Data Science course,2 points by rk 25 days ago | discuss,25
156 | "The Daily Mail Stole My Visualization, Twice",5 points by thehoff 32 days ago | 1 comment,32
157 | Ensemble Methods: Improved Machine Learning Results,9 points by PyBloggers 38 days ago | discuss,38
158 | Apache Spark and unsupervised learning in security,2 points by gradientflow 26 days ago | discuss,26
159 | MachineJS: Automated machine learning- just give it a data file!,2 points by dsernst 26 days ago | discuss,26
160 | The NSA?s SKYNET program may be killing thousands of innocent people,6 points by zlipp 35 days ago | discuss,35
161 | "Big Dimensions, and What You Can Do About It",2 points by ramsey 27 days ago | discuss,27
162 | Automate Your Oscars Pool with R,2 points by jamesdreiss 27 days ago | discuss,27
163 | Signal Processing with LIGO GW150914 data,9 points by tfturing 39 days ago | discuss,39
164 | Overview of DeZyre and Coursera Data Science Course,5 points by ann928 34 days ago | discuss,34
165 | Upcoming Datathon in NYC,2 points by VicTrey 28 days ago | discuss,28
166 | Summarizing Data in SQL,15 points by elisebreda 46 days ago | discuss,46
167 | A/B Testing for Scammers,2 points by sameermanek 28 days ago | discuss,28
168 | Highly interpretable classifiers for scikit learn using Bayesian decision rules,2 points by mcnulty 28 days ago | discuss,28
169 | Auto-scaling scikit-learn with Spark,11 points by falaki 43 days ago | discuss,43
170 | Where the f*** can I park?,2 points by manugarri 29 days ago | discuss,29
171 | "Machine Learning: An In-Depth, Non-Technical Guide - Part 2",5 points by innoarchitech 36 days ago | discuss,36
172 | Webhose.io now offers a historical data archive,7 points by databuffer 40 days ago | discuss,40
173 | Meetup: Introduction to Machine Learning Algorithms for Data Science.,4 points by ann928 36 days ago | discuss,36
174 | Exploring the Limits of Language Modeling,8 points by soates 42 days ago | discuss,42
175 | Text Mining South Park,7 points by pmigdal 41 days ago | discuss,41
176 | Finding the K in K-means by Parametric Bootstrap,7 points by jmount 42 days ago | 1 comment,42
177 | Getting Started with Statistics for Data Science,3 points by nickhould 35 days ago | discuss,35
178 | Rodeo 1.3 - Tab-completion for docstrings,3 points by glamp 35 days ago | discuss,35
179 | Teaching D3.js - links,3 points by pmigdal 35 days ago | discuss,35
180 | Parallel scikit-learn on YARN,5 points by stijntonk 39 days ago | discuss,39
181 | Meetup: Free Live Webinar on Prescriptive Analytics for Fun and Profit,2 points by ann928 32 days ago | discuss,32
182 |
--------------------------------------------------------------------------------
/data/data_tau_ta.csv:
--------------------------------------------------------------------------------
1 | title,date,days,tokens,stem,lemma,pos_tags,named_entities
2 | Deep Advances in Generative Modeling,6 points by gwulfs 5 hours ago | discuss,1,"deep,advances,generative,modeling",Deep Advances in Generative Model,Deep Advances in Generative Modeling,"[('Deep', 'JJ'), ('Advances', 'NNS'), ('in', 'IN'), ('Generative', 'NNP'), ('Modeling', 'NNP')]",['Generative Modeling']
3 | A Neural Network in 11 lines of Python ,2 points by dekhtiar 5 hours ago | discuss,1,"neural,network,11,lines,python",A Neural Network in 11 lines of Python ,A Neural Network in 11 lines of Python ,"[('A', 'DT'), ('Neural', 'NNP'), ('Network', 'NNP'), ('in', 'IN'), ('11', 'CD'), ('lines', 'NNS'), ('of', 'IN'), ('Python', 'NNP')]",['Python']
4 | "Python, Machine Learning, and Language Wars",3 points by pmigdal 7 hours ago | discuss,1,"python,machine,learning,language,wars","Python, Machine Learning, and Language War","Python, Machine Learning, and Language Wars","[('Python', 'NNP'), (',', ','), ('Machine', 'NNP'), ('Learning', 'NNP'), (',', ','), ('and', 'CC'), ('Language', 'NNP'), ('Wars', 'NNP')]","['Python', 'Machine Learning', 'Language Wars']"
5 | Markov Chains Explained Visually,11 points by zeroviscosity 1 day ago | 1 comment,1,"markov,chains,explained,visually",Markov Chains Explained Visu,Markov Chains Explained Visually,"[('Markov', 'NNP'), ('Chains', 'NNP'), ('Explained', 'VBD'), ('Visually', 'NNP')]","['Markov Chains', 'Visually']"
6 | Dplython: Dplyr for Python,10 points by thenaturalist 1 day ago | 3 comments,1,"dplython,dplyr,python",Dplython: Dplyr for Python,Dplython: Dplyr for Python,"[('Dplython', 'NN'), (':', ':'), ('Dplyr', 'NNP'), ('for', 'IN'), ('Python', 'NNP')]","['Dplython', 'Python']"
7 | Inferring causal impact using Bayesian structural time-series models,7 points by Homunculiheaded 1 day ago | 1 comment,1,"inferring,causal,impact,using,bayesian,structural,time,series,models",Inferring causal impact using Bayesian structural time-series model,Inferring causal impact using Bayesian structural time-series models,"[('Inferring', 'VBG'), ('causal', 'JJ'), ('impact', 'NN'), ('using', 'VBG'), ('Bayesian', 'JJ'), ('structural', 'JJ'), ('time', 'NN'), ('-', ':'), ('series', 'NN'), ('models', 'NNS')]",['Bayesian']
8 | Tutorial: Web scraping and mapping breweries with import.io and R,4 points by jasdumas 1 day ago | discuss,1,"tutorial,web,scraping,mapping,breweries,import,io,r",Tutorial: Web scraping and mapping breweries with import.io and R,Tutorial: Web scraping and mapping breweries with import.io and R,"[('Tutorial', 'JJ'), (':', ':'), ('Web', 'JJ'), ('scraping', 'NN'), ('and', 'CC'), ('mapping', 'NN'), ('breweries', 'NNS'), ('with', 'IN'), ('import', 'NN'), ('.', '.'), ('io', 'NN'), ('and', 'CC'), ('R', 'NN')]",[]
9 | A Billion Taxi Rides on Amazon EMR running Spark,3 points by marklit 1 day ago | 1 comment,1,"billion,taxi,rides,amazon,emr,running,spark",A Billion Taxi Rides on Amazon EMR running Spark,A Billion Taxi Rides on Amazon EMR running Spark,"[('A', 'DT'), ('Billion', 'NNP'), ('Taxi', 'NNP'), ('Rides', 'NNP'), ('on', 'IN'), ('Amazon', 'NNP'), ('EMR', 'NNP'), ('running', 'VBG'), ('Spark', 'NNP')]","['Amazon', 'Spark']"
10 | The rise of greedy robots,4 points by yanir 1 day ago | discuss,1,"rise,greedy,robots",The rise of greedy robot,The rise of greedy robots,"[('The', 'DT'), ('rise', 'NN'), ('of', 'IN'), ('greedy', 'NN'), ('robots', 'NNS')]",[]
11 | Extracting image metadata at scale,2 points by zachwill 1 day ago | discuss,1,"extracting,image,metadata,scale",Extracting image metadata at scal,Extracting image metadata at scale,"[('Extracting', 'VBG'), ('image', 'NN'), ('metadata', 'NN'), ('at', 'IN'), ('scale', 'NN')]",[]
12 | "Python for Data Structures, Algorithms, and Interviews",17 points by kokoubaby 4 days ago | discuss,4,"python,data,structures,algorithms,interviews","Python for Data Structures, Algorithms, and Interview","Python for Data Structures, Algorithms, and Interviews","[('Python', 'NNP'), ('for', 'IN'), ('Data', 'NNP'), ('Structures', 'NNP'), (',', ','), ('Algorithms', 'NNP'), (',', ','), ('and', 'CC'), ('Interviews', 'NNS')]","['Python', 'Data Structures', 'Algorithms']"
13 | Lift charts - A data scientist's secret weapon,14 points by datenheini 4 days ago | 2 comments,4,"lift,charts,data,scientist,secret,weapon",Lift charts - A data scientist's secret weapon,Lift charts - A data scientist's secret weapon,"[('Lift', 'NNP'), ('charts', 'VBZ'), ('-', ':'), ('A', 'DT'), ('data', 'JJ'), ('scientist', 'NN'), (""'"", 'POS'), ('s', 'NN'), ('secret', 'VBZ'), ('weapon', 'NN')]",['Lift']
14 | How To Become A Machine Learning Expert In One Simple Step,4 points by swanint 2 days ago | discuss,2,"become,machine,learning,expert,one,simple,step",How To Become A Machine Learning Expert In One Simple Step,How To Become A Machine Learning Expert In One Simple Step,"[('How', 'WRB'), ('To', 'TO'), ('Become', 'VB'), ('A', 'NNP'), ('Machine', 'NNP'), ('Learning', 'NNP'), ('Expert', 'NNP'), ('In', 'IN'), ('One', 'CD'), ('Simple', 'JJ'), ('Step', 'NN')]",[]
15 | Data Science Side Project,6 points by yashpatel5400 1 day ago | 8 comments,1,"data,science,side,project",Data Science Side Project,Data Science Side Project,"[('Data', 'NNP'), ('Science', 'NNP'), ('Side', 'NNP'), ('Project', 'NNP')]",['Data Science Side']
16 | Simple estimation of hierarchical events with petersburg,3 points by wdm0006 1 day ago | discuss,1,"simple,estimation,hierarchical,events,petersburg",Simple estimation of hierarchical events with petersburg,Simple estimation of hierarchical events with petersburg,"[('Simple', 'JJ'), ('estimation', 'NN'), ('of', 'IN'), ('hierarchical', 'JJ'), ('events', 'NNS'), ('with', 'IN'), ('petersburg', 'NN')]",['Simple']
17 | Engineers Shouldn?t Write ETL: High Functioning Data Science Departments,9 points by legel 4 days ago | 3 comments,4,"engineers,write,etl,high,functioning,data,science,departments",Engineers Shouldn?t Write ETL: High Functioning Data Science Depart,Engineers Shouldn?t Write ETL: High Functioning Data Science Departments,"[('Engineers', 'NNS'), ('Shouldn', 'NNP'), ('?', '.'), ('t', 'NN'), ('Write', 'NNP'), ('ETL', 'NNP'), (':', ':'), ('High', 'JJ'), ('Functioning', 'NNP'), ('Data', 'NNP'), ('Science', 'NNP'), ('Departments', 'NNP')]",['Write']
18 | Unsupervised Computer Vision: The Current State of the Art,6 points by carlosfaham 3 days ago | discuss,3,"unsupervised,computer,vision,current,state,art",Unsupervised Computer Vision: The Current State of the Art,Unsupervised Computer Vision: The Current State of the Art,"[('Unsupervised', 'VBN'), ('Computer', 'NNP'), ('Vision', 'NNP'), (':', ':'), ('The', 'DT'), ('Current', 'NNP'), ('State', 'NNP'), ('of', 'IN'), ('the', 'DT'), ('Art', 'NN')]",['Computer Vision']
19 | What data visualization tools do /r/DataIsBeautiful OC creators use?,3 points by pmigdal 2 days ago | discuss,2,"data,visualization,tools,r,dataisbeautiful,oc,creators,use",What data visualization tools do /r/DataIsBeautiful OC creators use?,What data visualization tools do /r/DataIsBeautiful OC creators use?,"[('What', 'WP'), ('data', 'VBZ'), ('visualization', 'NN'), ('tools', 'NNS'), ('do', 'VBP'), ('/', 'RB'), ('r', 'VB'), ('/', 'NNP'), ('DataIsBeautiful', 'NNP'), ('OC', 'NNP'), ('creators', 'NNS'), ('use', 'VBP'), ('?', '.')]",[]
20 | Data Engineering at Slack: Twelve Mistakes I've Made In My First Three Months,13 points by gwulfs 5 days ago | 2 comments,5,"data,engineering,slack,twelve,mistakes,made,first,three,months",Data Engineering at Slack: Twelve Mistakes I've Made In My First Three Month,Data Engineering at Slack: Twelve Mistakes I've Made In My First Three Months,"[('Data', 'NNP'), ('Engineering', 'NNP'), ('at', 'IN'), ('Slack', 'NNP'), (':', ':'), ('Twelve', 'NNP'), ('Mistakes', 'NNP'), ('I', 'PRP'), (""'"", ""''""), ('ve', 'NN'), ('Made', 'VBN'), ('In', 'IN'), ('My', 'NNP'), ('First', 'NNP'), ('Three', 'CD'), ('Months', 'NNP')]","['Data Engineering', 'Slack']"
21 | An unusual interactive machine learning challenge,4 points by gglumov 3 days ago | discuss,3,"unusual,interactive,machine,learning,challenge",An unusual interactive machine learning challeng,An unusual interactive machine learning challenge,"[('An', 'DT'), ('unusual', 'JJ'), ('interactive', 'JJ'), ('machine', 'NN'), ('learning', 'NN'), ('challenge', 'NN')]",[]
22 | Datumbox Machine Learning Framework 0.7.0 Released,4 points by datumbox 3 days ago | discuss,3,"datumbox,machine,learning,framework,0,7,0,released",Datumbox Machine Learning Framework 0.7.0 Releas,Datumbox Machine Learning Framework 0.7.0 Released,"[('Datumbox', 'NNP'), ('Machine', 'NNP'), ('Learning', 'NNP'), ('Framework', 'NNP'), ('0', 'CD'), ('.', '.'), ('7', 'CD'), ('.', '.'), ('0', 'CD'), ('Released', 'VBD')]",['Datumbox Machine']
23 | Reshaping in Pandas,5 points by carlosgg 3 days ago | discuss,3,"reshaping,pandas",Reshaping in Panda,Reshaping in Pandas,"[('Reshaping', 'VBG'), ('in', 'IN'), ('Pandas', 'NNP')]",['Pandas']
24 | Data science intro for math/phys background,14 points by pmigdal 6 days ago | discuss,6,"data,science,intro,math,phys,background",Data science intro for math/phys background,Data science intro for math/phys background,"[('Data', 'NNP'), ('science', 'NN'), ('intro', 'NN'), ('for', 'IN'), ('math', 'NN'), ('/', 'NNP'), ('phys', 'NN'), ('background', 'NN')]",['Data']
25 | Neural Networks demystified,16 points by elyase 7 days ago | discuss,7,"neural,networks,demystified",Neural Networks demystifi,Neural Networks demystified,"[('Neural', 'JJ'), ('Networks', 'NNP'), ('demystified', 'VBD')]",['Neural Networks']
26 | What machines can learn from Apple Watch: detecting undiagnosed heart condition,9 points by koukouhappy 5 days ago | discuss,5,"machines,learn,apple,watch,detecting,undiagnosed,heart,condition",What machines can learn from Apple Watch: detecting undiagnosed heart condit,What machines can learn from Apple Watch: detecting undiagnosed heart condition,"[('What', 'WP'), ('machines', 'NNS'), ('can', 'MD'), ('learn', 'VB'), ('from', 'IN'), ('Apple', 'NNP'), ('Watch', 'NNP'), (':', ':'), ('detecting', 'NN'), ('undiagnosed', 'JJ'), ('heart', 'NN'), ('condition', 'NN')]",['Apple Watch']
27 | Data Science Tools: The Biggest Winners and Losers,12 points by AnnaOnTheWeb 7 days ago | discuss,7,"data,science,tools,biggest,winners,losers",Data Science Tools: The Biggest Winners and Los,Data Science Tools: The Biggest Winners and Losers,"[('Data', 'NNP'), ('Science', 'NNP'), ('Tools', 'NNP'), (':', ':'), ('The', 'DT'), ('Biggest', 'NNP'), ('Winners', 'NNPS'), ('and', 'CC'), ('Losers', 'NNS')]","['Data Science Tools', 'Biggest Winners']"
28 | 10 Years of Open Source Machine Learning,9 points by tstonez 6 days ago | 1 comment,6,"10,years,open,source,machine,learning",10 Years of Open Source Machine Learn,10 Years of Open Source Machine Learning,"[('10', 'CD'), ('Years', 'NNS'), ('of', 'IN'), ('Open', 'NNP'), ('Source', 'NNP'), ('Machine', 'NNP'), ('Learning', 'NNP')]",['Open Source Machine']
29 | Do jobs run in families?,5 points by Anon84 5 days ago | 1 comment,5,"jobs,run,families",Do jobs run in families?,Do jobs run in families?,"[('Do', 'NNP'), ('jobs', 'NNS'), ('run', 'VB'), ('in', 'IN'), ('families', 'NNS'), ('?', '.')]",[]
30 | Has your conversion rate changed? Bayesian timeseries analysis with Python,12 points by yummyfajitas 8 days ago | discuss,8,"conversion,rate,changed,bayesian,timeseries,analysis,python",Has your conversion rate changed? Bayesian timeseries analysis with Python,Has your conversion rate changed? Bayesian timeseries analysis with Python,"[('Has', 'NNP'), ('your', 'PRP$'), ('conversion', 'NN'), ('rate', 'NN'), ('changed', 'VBN'), ('?', '.'), ('Bayesian', 'JJ'), ('timeseries', 'NNS'), ('analysis', 'NN'), ('with', 'IN'), ('Python', 'NNP')]",['Python']
31 | "XGBoost4J: Portable Distributed XGboost in Spark, Flink and Dataflow",8 points by crowwork 7 days ago | discuss,7,"xgboost4j,portable,distributed,xgboost,spark,flink,dataflow","XGBoost4J: Portable Distributed XGboost in Spark, Flink and Dataflow","XGBoost4J: Portable Distributed XGboost in Spark, Flink and Dataflow","[('XGBoost4J', 'NN'), (':', ':'), ('Portable', 'JJ'), ('Distributed', 'NNP'), ('XGboost', 'NN'), ('in', 'IN'), ('Spark', 'NNP'), (',', ','), ('Flink', 'NNP'), ('and', 'CC'), ('Dataflow', 'NNP')]","['XGBoost4J', 'Spark', 'Flink', 'Dataflow']"
32 | Introduction to Scikit Flow - Simplified Interface to TensorFlow,7 points by lefish 7 days ago | discuss,7,"introduction,scikit,flow,simplified,interface,tensorflow",Introduction to Scikit Flow - Simplified Interface to TensorFlow,Introduction to Scikit Flow - Simplified Interface to TensorFlow,"[('Introduction', 'NN'), ('to', 'TO'), ('Scikit', 'NNP'), ('Flow', 'NNP'), ('-', ':'), ('Simplified', 'VBD'), ('Interface', 'NNP'), ('to', 'TO'), ('TensorFlow', 'VB')]",['Scikit Flow']
33 | How to learn machine learning?,8 points by kiechu 7 days ago | 1 comment,7,"learn,machine,learning",How to learn machine learning?,How to learn machine learning?,"[('How', 'WRB'), ('to', 'TO'), ('learn', 'VB'), ('machine', 'NN'), ('learning', 'NN'), ('?', '.')]",[]
34 | The Deep Roots of Javascript Fatigue,5 points by nikkielizdemere 6 days ago | 1 comment,6,"deep,roots,javascript,fatigue",The Deep Roots of Javascript Fatigu,The Deep Roots of Javascript Fatigue,"[('The', 'DT'), ('Deep', 'NNP'), ('Roots', 'NNP'), ('of', 'IN'), ('Javascript', 'NNP'), ('Fatigue', 'NNP')]","['Deep Roots', 'Javascript Fatigue']"
35 | How do we make Data Tau work?,27 points by hal8 8 days ago | 18 comments,8,"make,data,tau,work",How do we make Data Tau work?,How do we make Data Tau work?,"[('How', 'WRB'), ('do', 'VBP'), ('we', 'PRP'), ('make', 'VB'), ('Data', 'NNP'), ('Tau', 'NNP'), ('work', 'NN'), ('?', '.')]",['Data Tau']
36 | "Machine Learning: An In-Depth, Non-Technical Guide???Part 4",7 points by innoarchitech 8 days ago | discuss,8,"machine,learning,depth,non,technical,guide,???,part,4","Machine Learning: An In-Depth, Non-Technical Guide???Part 4","Machine Learning: An In-Depth, Non-Technical Guide???Part 4","[('Machine', 'NN'), ('Learning', 'NNP'), (':', ':'), ('An', 'DT'), ('In', 'IN'), ('-', ':'), ('Depth', 'NN'), (',', ','), ('Non', 'NNP'), ('-', ':'), ('Technical', 'NNP'), ('Guide', 'NNP'), ('???', 'NNP'), ('Part', 'NNP'), ('4', 'CD')]","['Machine Learning', 'Non', 'Technical Guide']"
37 | Data Science Slack channel - Click for invite,7 points by jyotsna 8 days ago | discuss,8,"data,science,slack,channel,click,invite",Data Science Slack channel - Click for invit,Data Science Slack channel - Click for invite,"[('Data', 'NNP'), ('Science', 'NNP'), ('Slack', 'NNP'), ('channel', 'NN'), ('-', ':'), ('Click', 'NN'), ('for', 'IN'), ('invite', 'NN')]","['Data Science Slack', 'Click']"
38 | Genomic Data Visualization using Python,2 points by RadhouaneAniba 3 days ago | discuss,3,"genomic,data,visualization,using,python",Genomic Data Visualization using Python,Genomic Data Visualization using Python,"[('Genomic', 'NNP'), ('Data', 'NNP'), ('Visualization', 'NNP'), ('using', 'VBG'), ('Python', 'NNP')]","['Genomic Data', 'Python']"
39 | Descriptive Statistics in SQL,5 points by nickhould 7 days ago | discuss,7,"descriptive,statistics,sql",Descriptive Statistics in SQL,Descriptive Statistics in SQL,"[('Descriptive', 'JJ'), ('Statistics', 'NNS'), ('in', 'IN'), ('SQL', 'NNP')]",['SQL']
40 | "Playing ""Moneyball"" on EA FIFA 16",16 points by aabb13 13 days ago | 3 comments,13,"playing,moneyball,ea,fifa,16","Playing ""Moneyball"" on EA FIFA 16","Playing ""Moneyball"" on EA FIFA 16","[('Playing', 'VBG'), ('""', 'NNP'), ('Moneyball', 'NNP'), ('""', 'NNP'), ('on', 'IN'), ('EA', 'NNP'), ('FIFA', 'NNP'), ('16', 'CD')]",[]
41 | Intellexer - Natural Language Processing and Text Mining REST API,16 points by j_downer 13 days ago | discuss,13,"intellexer,natural,language,processing,text,mining,rest,api",Intellexer - Natural Language Processing and Text Mining REST API,Intellexer - Natural Language Processing and Text Mining REST API,"[('Intellexer', 'NNP'), ('-', ':'), ('Natural', 'JJ'), ('Language', 'NNP'), ('Processing', 'NNP'), ('and', 'CC'), ('Text', 'NNP'), ('Mining', 'NNP'), ('REST', 'NNP'), ('API', 'NNP')]","['Intellexer', 'Natural Language', 'Text Mining']"
42 | How to Use Cohort Data to Analyze User Behavior,2 points by clevertap 3 days ago | discuss,3,"use,cohort,data,analyze,user,behavior",How to Use Cohort Data to Analyze User Behavior,How to Use Cohort Data to Analyze User Behavior,"[('How', 'WRB'), ('to', 'TO'), ('Use', 'VB'), ('Cohort', 'NNP'), ('Data', 'NNP'), ('to', 'TO'), ('Analyze', 'NNP'), ('User', 'NNP'), ('Behavior', 'NNP')]","['Cohort Data', 'Analyze User Behavior']"
43 | Show DT: Datasets.co - An easy way to share and discover ml datasets,2 points by mrborgen86 4 days ago | discuss,4,"show,dt,datasets,co,easy,way,share,discover,ml,datasets",Show DT: Datasets.co - An easy way to share and discover ml dataset,Show DT: Datasets.co - An easy way to share and discover ml datasets,"[('Show', 'NNP'), ('DT', 'NNP'), (':', ':'), ('Datasets', 'NNS'), ('.', '.'), ('co', 'SYM'), ('-', ':'), ('An', 'DT'), ('easy', 'JJ'), ('way', 'NN'), ('to', 'TO'), ('share', 'NN'), ('and', 'CC'), ('discover', 'NN'), ('ml', 'NN'), ('datasets', 'NNS')]",['Show']
44 | "An Ode To The Rice Cooker, The Smartest Kitchen Appliance I?ve Ever Owned",2 points by tfturing 4 days ago | discuss,4,"ode,rice,cooker,smartest,kitchen,appliance,ever,owned","An Ode To The Rice Cooker, The Smartest Kitchen Appliance I?ve Ever Own","An Ode To The Rice Cooker, The Smartest Kitchen Appliance I?ve Ever Owned","[('An', 'DT'), ('Ode', 'NNP'), ('To', 'TO'), ('The', 'DT'), ('Rice', 'NNP'), ('Cooker', 'NNP'), (',', ','), ('The', 'DT'), ('Smartest', 'NNP'), ('Kitchen', 'NNP'), ('Appliance', 'NNP'), ('I', 'PRP'), ('?', '.'), ('ve', ""''""), ('Ever', 'RB'), ('Owned', 'VBD')]","['Rice Cooker', 'Smartest Kitchen']"
45 | Making transparent how variations in analytical choices affect results,4 points by rahmaniacc 6 days ago | discuss,6,"making,transparent,variations,analytical,choices,affect,results",Making transparent how variations in analytical choices affect result,Making transparent how variations in analytical choices affect results,"[('Making', 'VBG'), ('transparent', 'JJ'), ('how', 'WRB'), ('variations', 'NNS'), ('in', 'IN'), ('analytical', 'JJ'), ('choices', 'NNS'), ('affect', 'VBP'), ('results', 'NNS')]",[]
46 | [Ask DT] What are some rookie mistakes in R?,2 points by HKtemp 2 days ago | discuss,2,"ask,dt,rookie,mistakes,r",[Ask DT] What are some rookie mistakes in R?,[Ask DT] What are some rookie mistakes in R?,"[('[', 'JJ'), ('Ask', 'NNP'), ('DT', 'NNP'), (']', 'NNP'), ('What', 'WP'), ('are', 'VBP'), ('some', 'DT'), ('rookie', 'NN'), ('mistakes', 'NNS'), ('in', 'IN'), ('R', 'NNP'), ('?', '.')]",[]
47 | Is Scala a better choice than Python for Apache Spark?,6 points by srinify 9 days ago | 1 comment,9,"scala,better,choice,python,apache,spark",Is Scala a better choice than Python for Apache Spark?,Is Scala a better choice than Python for Apache Spark?,"[('Is', 'VBZ'), ('Scala', 'NNP'), ('a', 'DT'), ('better', 'JJR'), ('choice', 'NN'), ('than', 'IN'), ('Python', 'NNP'), ('for', 'IN'), ('Apache', 'NNP'), ('Spark', 'NNP'), ('?', '.')]","['Python', 'Apache Spark']"
48 | Julia: A Fast Language for Numerical Computing,6 points by srinify 9 days ago | 1 comment,9,"julia,fast,language,numerical,computing",Julia: A Fast Language for Numerical Comput,Julia: A Fast Language for Numerical Computing,"[('Julia', 'NNS'), (':', ':'), ('A', 'DT'), ('Fast', 'NNP'), ('Language', 'NNP'), ('for', 'IN'), ('Numerical', 'NNP'), ('Computing', 'NNP')]",['Numerical Computing']
49 | Analyzing Golden State Warriors' passing network using GraphFrames in Spark,3 points by yukiegosapporo 6 days ago | discuss,6,"analyzing,golden,state,warriors,passing,network,using,graphframes,spark",Analyzing Golden State Warriors' passing network using GraphFrames in Spark,Analyzing Golden State Warriors' passing network using GraphFrames in Spark,"[('Analyzing', 'VBG'), ('Golden', 'NNP'), ('State', 'NNP'), ('Warriors', 'NNP'), (""'"", 'POS'), ('passing', 'NN'), ('network', 'NN'), ('using', 'VBG'), ('GraphFrames', 'NNP'), ('in', 'IN'), ('Spark', 'NNP')]","['Golden State Warriors', 'GraphFrames', 'Spark']"
50 | Megaman: Manifold Learning with Millions of points,4 points by dperry 7 days ago | 3 comments,7,"megaman,manifold,learning,millions,points",Megaman: Manifold Learning with Millions of point,Megaman: Manifold Learning with Millions of points,"[('Megaman', 'NN'), (':', ':'), ('Manifold', 'NNP'), ('Learning', 'VBG'), ('with', 'IN'), ('Millions', 'NNP'), ('of', 'IN'), ('points', 'NNS')]","['Megaman', 'Millions']"
51 | How to Detect Outliers on Parametric and Non Parametric Methods,2 points by clevertap 4 days ago | discuss,4,"detect,outliers,parametric,non,parametric,methods",How to Detect Outliers on Parametric and Non Parametric Method,How to Detect Outliers on Parametric and Non Parametric Methods,"[('How', 'WRB'), ('to', 'TO'), ('Detect', 'VB'), ('Outliers', 'NNP'), ('on', 'IN'), ('Parametric', 'NNP'), ('and', 'CC'), ('Non', 'NNP'), ('Parametric', 'NNP'), ('Methods', 'NNP')]","['Outliers', 'Parametric', 'Non Parametric Methods']"
52 | BallR: Interactive NBA Shot Charts with R and Shiny,12 points by carlosgg 14 days ago | discuss,14,"ballr,interactive,nba,shot,charts,r,shiny",BallR: Interactive NBA Shot Charts with R and Shini,BallR: Interactive NBA Shot Charts with R and Shiny,"[('BallR', 'NN'), (':', ':'), ('Interactive', 'JJ'), ('NBA', 'NNP'), ('Shot', 'NNP'), ('Charts', 'NNP'), ('with', 'IN'), ('R', 'NNP'), ('and', 'CC'), ('Shiny', 'NNP')]","['BallR', 'NBA Shot', 'Shiny']"
53 | Minecraft to run artificial intelligence experiments,4 points by bsadeghi 8 days ago | discuss,8,"minecraft,run,artificial,intelligence,experiments",Minecraft to run artificial intelligence experi,Minecraft to run artificial intelligence experiments,"[('Minecraft', 'NN'), ('to', 'TO'), ('run', 'VB'), ('artificial', 'JJ'), ('intelligence', 'NN'), ('experiments', 'NNS')]",['Minecraft']
54 | Deep Q-Learning (Space Invaders),4 points by pmigdal 8 days ago | discuss,8,"deep,q,learning,space,invaders",Deep Q-Learning (Space Invaders),Deep Q-Learning (Space Invaders),"[('Deep', 'NNP'), ('Q', 'NNP'), ('-', ':'), ('Learning', 'NNP'), ('(', '('), ('Space', 'NNP'), ('Invaders', 'NNP'), (')', ')')]","['Deep', 'Space Invaders']"
55 | Theano Tutorial,2 points by pmigdal 5 days ago | discuss,5,"theano,tutorial",Theano Tutori,Theano Tutorial,"[('Theano', 'NNP'), ('Tutorial', 'NNP')]",['Theano Tutorial']
56 | Computing Classification Evaluation Metrics in R,3 points by lefish 7 days ago | discuss,7,"computing,classification,evaluation,metrics,r",Computing Classification Evaluation Metrics in R,Computing Classification Evaluation Metrics in R,"[('Computing', 'VBG'), ('Classification', 'NNP'), ('Evaluation', 'NNP'), ('Metrics', 'NNP'), ('in', 'IN'), ('R', 'NNP')]",[]
57 | The Personality Space of Cartoon Characters,3 points by lefish 7 days ago | discuss,7,"personality,space,cartoon,characters",The Personality Space of Cartoon Charact,The Personality Space of Cartoon Characters,"[('The', 'DT'), ('Personality', 'NNP'), ('Space', 'NNP'), ('of', 'IN'), ('Cartoon', 'NNP'), ('Characters', 'NNS')]","['Personality Space', 'Cartoon']"
58 | Announcing Apache Flink 1.0.0,11 points by mxm 14 days ago | discuss,14,"announcing,apache,flink,1,0,0",Announcing Apache Flink 1.0.0,Announcing Apache Flink 1.0.0,"[('Announcing', 'VBG'), ('Apache', 'NNP'), ('Flink', 'NNP'), ('1', 'CD'), ('.', '.'), ('0', 'CD'), ('.', '.'), ('0', 'CD')]",['Apache']
59 | Bayesian Reasoning in The Twilight Zone!,2 points by Homunculiheaded 5 days ago | discuss,5,"bayesian,reasoning,twilight,zone",Bayesian Reasoning in The Twilight Zone!,Bayesian Reasoning in The Twilight Zone!,"[('Bayesian', 'JJ'), ('Reasoning', 'NNP'), ('in', 'IN'), ('The', 'DT'), ('Twilight', 'NNP'), ('Zone', 'NN'), ('!', '.')]","['Bayesian Reasoning', 'Twilight Zone']"
60 | Bayesian Estimation of G Train Wait Times,7 points by jamesdreiss 12 days ago | discuss,12,"bayesian,estimation,g,train,wait,times",Bayesian Estimation of G Train Wait Tim,Bayesian Estimation of G Train Wait Times,"[('Bayesian', 'JJ'), ('Estimation', 'NNP'), ('of', 'IN'), ('G', 'NNP'), ('Train', 'NNP'), ('Wait', 'NNP'), ('Times', 'NNP')]",['Bayesian Estimation']
61 | Some experiments into explaining complex black box ensemble predictions,2 points by lefish 6 days ago | discuss,6,"experiments,explaining,complex,black,box,ensemble,predictions",Some experiments into explaining complex black box ensemble predict,Some experiments into explaining complex black box ensemble predictions,"[('Some', 'DT'), ('experiments', 'NNS'), ('into', 'IN'), ('explaining', 'VBG'), ('complex', 'JJ'), ('black', 'JJ'), ('box', 'NN'), ('ensemble', 'JJ'), ('predictions', 'NNS')]",[]
62 | Creating a Hadoop Pseudo-Distributed Environment,2 points by lefish 6 days ago | discuss,6,"creating,hadoop,pseudo,distributed,environment",Creating a Hadoop Pseudo-Distributed Environ,Creating a Hadoop Pseudo-Distributed Environment,"[('Creating', 'VBG'), ('a', 'DT'), ('Hadoop', 'NNP'), ('Pseudo', 'NNP'), ('-', ':'), ('Distributed', 'VBD'), ('Environment', 'JJ')]",['Hadoop Pseudo']
63 | "Data Science Pop-Up in Austin, TX",2 points by AnnaOnTheWeb 6 days ago | discuss,6,"data,science,pop,austin,tx","Data Science Pop-Up in Austin, TX","Data Science Pop-Up in Austin, TX","[('Data', 'NNP'), ('Science', 'NNP'), ('Pop', 'NNP'), ('-', ':'), ('Up', 'NN'), ('in', 'IN'), ('Austin', 'NNP'), (',', ','), ('TX', 'NNP')]","['Data Science Pop', 'Austin']"
64 | A Billion Taxi Rides on Amazon EMR Running Presto,3 points by marklit 8 days ago | discuss,8,"billion,taxi,rides,amazon,emr,running,presto",A Billion Taxi Rides on Amazon EMR Running Presto,A Billion Taxi Rides on Amazon EMR Running Presto,"[('A', 'DT'), ('Billion', 'NNP'), ('Taxi', 'NNP'), ('Rides', 'NNP'), ('on', 'IN'), ('Amazon', 'NNP'), ('EMR', 'NNP'), ('Running', 'NNP'), ('Presto', 'NNP')]",['Amazon']
65 | Train your own image classifier with Inception in TensorFlow,7 points by elyase 12 days ago | discuss,12,"train,image,classifier,inception,tensorflow",Train your own image classifier with Inception in TensorFlow,Train your own image classifier with Inception in TensorFlow,"[('Train', 'VB'), ('your', 'PRP$'), ('own', 'JJ'), ('image', 'NN'), ('classifier', 'NN'), ('with', 'IN'), ('Inception', 'NNP'), ('in', 'IN'), ('TensorFlow', 'NNP')]",['TensorFlow']
66 | Statisticians Agree: It?s Time To Stop Misusing P-Value,9 points by jpiburn 15 days ago | 5 comments,15,"statisticians,agree,time,stop,misusing,p,value",Statisticians Agree: It?s Time To Stop Misusing P-Valu,Statisticians Agree: It?s Time To Stop Misusing P-Value,"[('Statisticians', 'NNS'), ('Agree', 'VBP'), (':', ':'), ('It', 'PRP'), ('?', '.'), ('s', 'JJ'), ('Time', 'NNP'), ('To', 'TO'), ('Stop', 'VB'), ('Misusing', 'NNP'), ('P', 'NNP'), ('-', ':'), ('Value', 'NN')]",[]
67 | Shiny app for running a Tensorflow demo,3 points by shinyman 8 days ago | discuss,8,"shiny,app,running,tensorflow,demo",Shiny app for running a Tensorflow demo,Shiny app for running a Tensorflow demo,"[('Shiny', 'NNP'), ('app', 'NN'), ('for', 'IN'), ('running', 'VBG'), ('a', 'DT'), ('Tensorflow', 'NNP'), ('demo', 'NN')]","['Shiny', 'Tensorflow']"
68 | File details and owners with gitnoc and git-pandas,3 points by wdm0006 9 days ago | discuss,9,"file,details,owners,gitnoc,git,pandas",File details and owners with gitnoc and git-panda,File details and owners with gitnoc and git-pandas,"[('File', 'NN'), ('details', 'NNS'), ('and', 'CC'), ('owners', 'NNS'), ('with', 'IN'), ('gitnoc', 'NN'), ('and', 'CC'), ('git', 'JJ'), ('-', ':'), ('pandas', 'NN')]",['File']
69 | 7 Big Data Technologies and When to Use Them that All Data Engineers Should Know,2 points by galvanize 7 days ago | discuss,7,"7,big,data,technologies,use,data,engineers,know",7 Big Data Technologies and When to Use Them that All Data Engineers Should Know,7 Big Data Technologies and When to Use Them that All Data Engineers Should Know,"[('7', 'CD'), ('Big', 'NNP'), ('Data', 'NNP'), ('Technologies', 'NNPS'), ('and', 'CC'), ('When', 'WRB'), ('to', 'TO'), ('Use', 'VB'), ('Them', 'NNP'), ('that', 'IN'), ('All', 'NNP'), ('Data', 'NNP'), ('Engineers', 'NNP'), ('Should', 'NNP'), ('Know', 'NNP')]",['All Data Engineers Should Know']
70 | Topic clusters with TF-IDF vectorization with Spark and Scala,2 points by lefish 7 days ago | discuss,7,"topic,clusters,tf,idf,vectorization,spark,scala",Topic clusters with TF-IDF vectorization with Spark and Scala,Topic clusters with TF-IDF vectorization with Spark and Scala,"[('Topic', 'NN'), ('clusters', 'NNS'), ('with', 'IN'), ('TF', 'NNP'), ('-', ':'), ('IDF', 'NNP'), ('vectorization', 'NN'), ('with', 'IN'), ('Spark', 'NNP'), ('and', 'CC'), ('Scala', 'NNP')]","['Topic', 'TF', 'IDF', 'Spark', 'Scala']"
71 | Neural Doodles: Workflows for the Next Generation of Artists,5 points by pmigdal 12 days ago | discuss,12,"neural,doodles,workflows,next,generation,artists",Neural Doodles: Workflows for the Next Generation of Artist,Neural Doodles: Workflows for the Next Generation of Artists,"[('Neural', 'JJ'), ('Doodles', 'NNS'), (':', ':'), ('Workflows', 'NNS'), ('for', 'IN'), ('the', 'DT'), ('Next', 'JJ'), ('Generation', 'NNP'), ('of', 'IN'), ('Artists', 'NNS')]",['Next Generation']
72 | Graph Databases 101,5 points by carlosgg 12 days ago | discuss,12,"graph,databases,101",Graph Databases 101,Graph Databases 101,"[('Graph', 'NNP'), ('Databases', 'VBZ'), ('101', 'CD')]",['Graph']
73 | "Telemetry with Collectd, Logstash, Elasticsearch and Grafana (ELG)",2 points by helloanand 7 days ago | discuss,7,"telemetry,collectd,logstash,elasticsearch,grafana,elg","Telemetry with Collectd, Logstash, Elasticsearch and Grafana (ELG)","Telemetry with Collectd, Logstash, Elasticsearch and Grafana (ELG)","[('Telemetry', 'NN'), ('with', 'IN'), ('Collectd', 'NNP'), (',', ','), ('Logstash', 'NNP'), (',', ','), ('Elasticsearch', 'NNP'), ('and', 'CC'), ('Grafana', 'NNP'), ('(', '('), ('ELG', 'NNP'), (')', ')')]","['Telemetry', 'Collectd', 'Logstash', 'Elasticsearch', 'Grafana', 'ELG']"
74 | XGBoost: A Scalable Tree Boosting System article,5 points by tfturing 12 days ago | discuss,12,"xgboost,scalable,tree,boosting,system,article",XGBoost: A Scalable Tree Boosting System articl,XGBoost: A Scalable Tree Boosting System article,"[('XGBoost', 'NN'), (':', ':'), ('A', 'DT'), ('Scalable', 'JJ'), ('Tree', 'NNP'), ('Boosting', 'NNP'), ('System', 'NNP'), ('article', 'NN')]",['XGBoost']
75 | DataRadar.IO - Data Science RSS Feed - Do you have enough data about your data,2 points by dekhtiar 8 days ago | 3 comments,8,"dataradar,io,data,science,rss,feed,enough,data,data",DataRadar.IO - Data Science RSS Feed - Do you have enough data about your data,DataRadar.IO - Data Science RSS Feed - Do you have enough data about your data,"[('DataRadar', 'NNP'), ('.', '.'), ('IO', 'NNP'), ('-', ':'), ('Data', 'NNP'), ('Science', 'NNP'), ('RSS', 'NNP'), ('Feed', 'NNP'), ('-', ':'), ('Do', 'VBP'), ('you', 'PRP'), ('have', 'VBP'), ('enough', 'VBN'), ('data', 'NNS'), ('about', 'IN'), ('your', 'PRP$'), ('data', 'NNS')]","['DataRadar', 'IO', 'Data Science']"
76 | International Women's Day: What #PledgeForParity Means To Us,5 points by ddrum001 13 days ago | discuss,13,"international,women,day,#,pledgeforparity,means,us",International Women's Day: What #PledgeForParity Means To U,International Women's Day: What #PledgeForParity Means To Us,"[('International', 'NNP'), ('Women', 'NNP'), (""'"", 'POS'), ('s', 'JJ'), ('Day', 'NNP'), (':', ':'), ('What', 'WP'), ('#', '#'), ('PledgeForParity', 'NN'), ('Means', 'NNPS'), ('To', 'TO'), ('Us', 'VB')]","['International Women', 'PledgeForParity Means']"
77 | Top 50 Data Science thought leaders on Twitter,3 points by datawerq 11 days ago | 3 comments,11,"top,50,data,science,thought,leaders,twitter",Top 50 Data Science thought leaders on Twitt,Top 50 Data Science thought leaders on Twitter,"[('Top', 'JJ'), ('50', 'CD'), ('Data', 'NNP'), ('Science', 'NNP'), ('thought', 'VBD'), ('leaders', 'NNS'), ('on', 'IN'), ('Twitter', 'NN')]",[]
78 | Ask DT: Who Is Hiring? (March 2016),27 points by whoishiring 21 days ago | 15 comments,21,"ask,dt,hiring,march,2016",Ask DT: Who Is Hiring? (March 2016),Ask DT: Who Is Hiring? (March 2016),"[('Ask', 'NNP'), ('DT', 'NNP'), (':', ':'), ('Who', 'WP'), ('Is', 'VBZ'), ('Hiring', 'VBG'), ('?', '.'), ('(', '('), ('March', 'NNP'), ('2016', 'CD'), (')', ')')]",['Ask']
79 | Introducing GraphFrames,7 points by falaki 18 days ago | discuss,18,"introducing,graphframes",Introducing GraphFram,Introducing GraphFrames,"[('Introducing', 'VBG'), ('GraphFrames', 'NNS')]",[]
80 | Announcing R Tools for Visual Studio,3 points by brakmic 13 days ago | discuss,13,"announcing,r,tools,visual,studio",Announcing R Tools for Visual Studio,Announcing R Tools for Visual Studio,"[('Announcing', 'VBG'), ('R', 'NNP'), ('Tools', 'NNP'), ('for', 'IN'), ('Visual', 'NNP'), ('Studio', 'NNP')]",['Visual Studio']
81 | Question: What do you want to say about working with data?,2 points by emiller425 7 days ago | discuss,7,"question,want,say,working,data",Question: What do you want to say about working with data?,Question: What do you want to say about working with data?,"[('Question', 'NN'), (':', ':'), ('What', 'WP'), ('do', 'VBP'), ('you', 'PRP'), ('want', 'VB'), ('to', 'TO'), ('say', 'VB'), ('about', 'IN'), ('working', 'VBG'), ('with', 'IN'), ('data', 'NNS'), ('?', '.')]",[]
82 | Genomic Ranges - an Introduction to Working with Genomic Data,3 points by AnnaOnTheWeb 13 days ago | discuss,13,"genomic,ranges,introduction,working,genomic,data",Genomic Ranges - an Introduction to Working with Genomic Data,Genomic Ranges - an Introduction to Working with Genomic Data,"[('Genomic', 'NNP'), ('Ranges', 'NNP'), ('-', ':'), ('an', 'DT'), ('Introduction', 'NN'), ('to', 'TO'), ('Working', 'VBG'), ('with', 'IN'), ('Genomic', 'NNP'), ('Data', 'NNP')]","['Genomic Ranges', 'Genomic Data']"
83 | TensorFlow for Poets,9 points by ebellm 21 days ago | 1 comment,21,"tensorflow,poets",TensorFlow for Poet,TensorFlow for Poets,"[('TensorFlow', 'NNP'), ('for', 'IN'), ('Poets', 'NNS')]",['TensorFlow']
84 | Unsupervised Learning with Even Less Supervision Using Bayesian Optimization,2 points by idewanck 10 days ago | discuss,10,"unsupervised,learning,even,less,supervision,using,bayesian,optimization",Unsupervised Learning with Even Less Supervision Using Bayesian Optim,Unsupervised Learning with Even Less Supervision Using Bayesian Optimization,"[('Unsupervised', 'VBN'), ('Learning', 'VBG'), ('with', 'IN'), ('Even', 'NNP'), ('Less', 'NNP'), ('Supervision', 'NNP'), ('Using', 'NNP'), ('Bayesian', 'NNP'), ('Optimization', 'NNP')]",['Even Less Supervision Using Bayesian']
85 | How to work with large JSON datasets using Python and Pandas,9 points by brian_spiering 21 days ago | discuss,21,"work,large,json,datasets,using,python,pandas",How to work with large JSON datasets using Python and Panda,How to work with large JSON datasets using Python and Pandas,"[('How', 'WRB'), ('to', 'TO'), ('work', 'VB'), ('with', 'IN'), ('large', 'JJ'), ('JSON', 'NNP'), ('datasets', 'NNS'), ('using', 'VBG'), ('Python', 'NNP'), ('and', 'CC'), ('Pandas', 'NNP')]","['JSON', 'Python', 'Pandas']"
86 | DrivenData Competition: Model/Visualize Fog Patterns in Morocco,4 points by bull 15 days ago | discuss,15,"drivendata,competition,model,visualize,fog,patterns,morocco",DrivenData Competition: Model/Visualize Fog Patterns in Morocco,DrivenData Competition: Model/Visualize Fog Patterns in Morocco,"[('DrivenData', 'NNP'), ('Competition', 'NN'), (':', ':'), ('Model', 'NNP'), ('/', 'NNP'), ('Visualize', 'NNP'), ('Fog', 'NNP'), ('Patterns', 'NNP'), ('in', 'IN'), ('Morocco', 'NNP')]","['DrivenData', 'Morocco']"
87 | Deriving Better Insights From Time Series Data With Cycle Plots,2 points by clevertap 11 days ago | discuss,11,"deriving,better,insights,time,series,data,cycle,plots",Deriving Better Insights From Time Series Data With Cycle Plot,Deriving Better Insights From Time Series Data With Cycle Plots,"[('Deriving', 'VBG'), ('Better', 'NNP'), ('Insights', 'NNPS'), ('From', 'NNP'), ('Time', 'NNP'), ('Series', 'NNP'), ('Data', 'NNP'), ('With', 'IN'), ('Cycle', 'NNP'), ('Plots', 'NNP')]","['Better Insights From Time Series Data', 'Cycle Plots']"
88 | Deep Learning: Nine Lectures at Coll?ge de France by Yan LeCun,5 points by Anon84 16 days ago | discuss,16,"deep,learning,nine,lectures,coll,ge,de,france,yan,lecun",Deep Learning: Nine Lectures at Coll?ge de France by Yan LeCun,Deep Learning: Nine Lectures at Coll?ge de France by Yan LeCun,"[('Deep', 'JJ'), ('Learning', 'NNP'), (':', ':'), ('Nine', 'JJ'), ('Lectures', 'NNS'), ('at', 'IN'), ('Coll', 'NNP'), ('?', '.'), ('ge', 'NN'), ('de', 'IN'), ('France', 'NNP'), ('by', 'IN'), ('Yan', 'NNP'), ('LeCun', 'NNP')]","['Deep', 'Coll', 'France', 'Yan']"
89 | SQL for Data Analysis,3 points by nickhould 14 days ago | 6 comments,14,"sql,data,analysis",SQL for Data Analysi,SQL for Data Analysis,"[('SQL', 'NNP'), ('for', 'IN'), ('Data', 'NNP'), ('Analysis', 'NNP')]","['SQL', 'Data Analysis']"
90 | Stream processing and messaging systems for the IoT age,2 points by gradientflow 12 days ago | discuss,12,"stream,processing,messaging,systems,iot,age",Stream processing and messaging systems for the IoT ag,Stream processing and messaging systems for the IoT age,"[('Stream', 'NN'), ('processing', 'NN'), ('and', 'CC'), ('messaging', 'VBG'), ('systems', 'NNS'), ('for', 'IN'), ('the', 'DT'), ('IoT', 'NNP'), ('age', 'NN')]","['Stream', 'IoT']"
91 | Optimizing Facebook Campaigns with R,2 points by AnnaOnTheWeb 12 days ago | 1 comment,12,"optimizing,facebook,campaigns,r",Optimizing Facebook Campaigns with R,Optimizing Facebook Campaigns with R,"[('Optimizing', 'VBG'), ('Facebook', 'NNP'), ('Campaigns', 'NNP'), ('with', 'IN'), ('R', 'NNP')]",['Facebook Campaigns']
92 | "Trump Tweets on a Globe (aka Fun with d3, socket.io, and the Twitter API)",8 points by joelgrus 21 days ago | discuss,21,"trump,tweets,globe,aka,fun,d3,socket,io,twitter,api","Trump Tweets on a Globe (aka Fun with d3, socket.io, and the Twitter API)","Trump Tweets on a Globe (aka Fun with d3, socket.io, and the Twitter API)","[('Trump', 'NNP'), ('Tweets', 'NNP'), ('on', 'IN'), ('a', 'DT'), ('Globe', 'NNP'), ('(', '('), ('aka', 'JJ'), ('Fun', 'NNP'), ('with', 'IN'), ('d3', 'NN'), (',', ','), ('socket', 'NN'), ('.', '.'), ('io', 'NN'), (',', ','), ('and', 'CC'), ('the', 'DT'), ('Twitter', 'NNP'), ('API', 'NNP'), (')', ')')]","['Trump Tweets', 'Twitter']"
93 | Why pandas users should be excited about Apache Arrow,17 points by pmigdal 28 days ago | discuss,28,"pandas,users,excited,apache,arrow",Why pandas users should be excited about Apache Arrow,Why pandas users should be excited about Apache Arrow,"[('Why', 'WRB'), ('pandas', 'JJ'), ('users', 'NNS'), ('should', 'MD'), ('be', 'VB'), ('excited', 'VBN'), ('about', 'IN'), ('Apache', 'NNP'), ('Arrow', 'NNP')]",['Apache Arrow']
94 | Histogram intersection for change detection,8 points by datadive 22 days ago | discuss,22,"histogram,intersection,change,detection",Histogram intersection for change detect,Histogram intersection for change detection,"[('Histogram', 'NNP'), ('intersection', 'NN'), ('for', 'IN'), ('change', 'NN'), ('detection', 'NN')]",['Histogram']
95 | A simpler way to merge data streams,2 points by apoverton 13 days ago | discuss,13,"simpler,way,merge,data,streams",A simpler way to merge data stream,A simpler way to merge data streams,"[('A', 'DT'), ('simpler', 'JJ'), ('way', 'NN'), ('to', 'TO'), ('merge', 'VB'), ('data', 'NNS'), ('streams', 'NNS')]",[]
96 | Distributed TensorFlow just open-sourced,10 points by elyase 25 days ago | discuss,25,"distributed,tensorflow,open,sourced",Distributed TensorFlow just open-sourc,Distributed TensorFlow just open-sourced,"[('Distributed', 'VBN'), ('TensorFlow', 'NNP'), ('just', 'RB'), ('open', 'VB'), ('-', ':'), ('sourced', 'VBN')]",['TensorFlow']
97 | D3.js Screencasts (1 in 3 are free),4 points by Veerle 18 days ago | discuss,18,"d3,js,screencasts,1,3,free",D3.js Screencasts (1 in 3 are free),D3.js Screencasts (1 in 3 are free),"[('D3', 'NNP'), ('.', '.'), ('js', 'NN'), ('Screencasts', 'NNS'), ('(', '('), ('1', 'CD'), ('in', 'IN'), ('3', 'CD'), ('are', 'VBP'), ('free', 'JJ'), (')', ')')]",[]
98 | Regression and Classification with Examples in R,5 points by soates 19 days ago | discuss,19,"regression,classification,examples,r",Regression and Classification with Examples in R,Regression and Classification with Examples in R,"[('Regression', 'NN'), ('and', 'CC'), ('Classification', 'NN'), ('with', 'IN'), ('Examples', 'NNP'), ('in', 'IN'), ('R', 'NNP')]","['Regression', 'Examples']"
99 | Free online course on statistical shape modelling,8 points by shapemean 25 days ago | discuss,25,"free,online,course,statistical,shape,modelling",Free online course on statistical shape model,Free online course on statistical shape modelling,"[('Free', 'JJ'), ('online', 'NN'), ('course', 'NN'), ('on', 'IN'), ('statistical', 'JJ'), ('shape', 'NN'), ('modelling', 'NN')]",['Free']
100 | "Don't worry about deep learning, deepen your understanding of causality instead",22 points by yanir 36 days ago | discuss,36,"worry,deep,learning,deepen,understanding,causality,instead","Don't worry about deep learning, deepen your understanding of causality instead","Don't worry about deep learning, deepen your understanding of causality instead","[('Don', 'NNP'), (""'"", 'POS'), ('t', 'NN'), ('worry', 'VBP'), ('about', 'IN'), ('deep', 'JJ'), ('learning', 'NN'), (',', ','), ('deepen', 'VB'), ('your', 'PRP$'), ('understanding', 'NN'), ('of', 'IN'), ('causality', 'NN'), ('instead', 'RB')]",['Don']
101 | Skizze - A high throughput probabilistic data structure service and storage,2 points by seiflotfy 14 days ago | discuss,14,"skizze,high,throughput,probabilistic,data,structure,service,storage",Skizze - A high throughput probabilistic data structure service and storag,Skizze - A high throughput probabilistic data structure service and storage,"[('Skizze', 'NNP'), ('-', ':'), ('A', 'DT'), ('high', 'JJ'), ('throughput', 'NN'), ('probabilistic', 'JJ'), ('data', 'NNS'), ('structure', 'NN'), ('service', 'NN'), ('and', 'CC'), ('storage', 'NN')]",['Skizze']
102 | Work with private repositories and other updates of the FlyElephant platform,2 points by m31 14 days ago | discuss,14,"work,private,repositories,updates,flyelephant,platform",Work with private repositories and other updates of the FlyElephant platform,Work with private repositories and other updates of the FlyElephant platform,"[('Work', 'NN'), ('with', 'IN'), ('private', 'JJ'), ('repositories', 'NNS'), ('and', 'CC'), ('other', 'JJ'), ('updates', 'NNS'), ('of', 'IN'), ('the', 'DT'), ('FlyElephant', 'NNP'), ('platform', 'NN')]","['Work', 'FlyElephant']"
103 | How to import XML to almost anywhere,4 points by Jammink 19 days ago | discuss,19,"import,xml,almost,anywhere",How to import XML to almost anywher,How to import XML to almost anywhere,"[('How', 'WRB'), ('to', 'TO'), ('import', 'VB'), ('XML', 'NN'), ('to', 'TO'), ('almost', 'RB'), ('anywhere', 'VB')]",['XML']
104 | Optimizing Notification Timing for One Signal,8 points by megandias 25 days ago | discuss,25,"optimizing,notification,timing,one,signal",Optimizing Notification Timing for One Sign,Optimizing Notification Timing for One Signal,"[('Optimizing', 'VBG'), ('Notification', 'NNP'), ('Timing', 'NNP'), ('for', 'IN'), ('One', 'CD'), ('Signal', 'NNP')]",[]
105 | Survival Analysis of Cricket Player Careers,8 points by keshav92 25 days ago | 6 comments,25,"survival,analysis,cricket,player,careers",Survival Analysis of Cricket Player Car,Survival Analysis of Cricket Player Careers,"[('Survival', 'JJ'), ('Analysis', 'NN'), ('of', 'IN'), ('Cricket', 'NNP'), ('Player', 'NNP'), ('Careers', 'NNP')]",['Cricket Player Careers']
106 | Generate image analogies using neural matching and blending,2 points by pmigdal 15 days ago | discuss,15,"generate,image,analogies,using,neural,matching,blending",Generate image analogies using neural matching and blend,Generate image analogies using neural matching and blending,"[('Generate', 'NNP'), ('image', 'NN'), ('analogies', 'NNS'), ('using', 'VBG'), ('neural', 'JJ'), ('matching', 'NN'), ('and', 'CC'), ('blending', 'NN')]",['Generate']
107 | "Analyzing 1.8M tweets from Super Bowl 50 (Twython, Twitter API, AYLIEN)",4 points by mikewally 20 days ago | discuss,20,"analyzing,1,8m,tweets,super,bowl,50,twython,twitter,api,aylien","Analyzing 1.8M tweets from Super Bowl 50 (Twython, Twitter API, AYLIEN)","Analyzing 1.8M tweets from Super Bowl 50 (Twython, Twitter API, AYLIEN)","[('Analyzing', 'VBG'), ('1', 'CD'), ('.', '.'), ('8M', 'CD'), ('tweets', 'NNS'), ('from', 'IN'), ('Super', 'NNP'), ('Bowl', 'NNP'), ('50', 'CD'), ('(', '('), ('Twython', 'NNP'), (',', ','), ('Twitter', 'NNP'), ('API', 'NNP'), (',', ','), ('AYLIEN', 'NNP'), (')', ')')]","['Super Bowl', 'Twython', 'Twitter API', 'AYLIEN']"
108 | Newly released sklearn compatible library of categorical encoders,7 points by wdm0006 25 days ago | discuss,25,"newly,released,sklearn,compatible,library,categorical,encoders",Newly released sklearn compatible library of categorical encod,Newly released sklearn compatible library of categorical encoders,"[('Newly', 'RB'), ('released', 'VBN'), ('sklearn', 'NN'), ('compatible', 'JJ'), ('library', 'NN'), ('of', 'IN'), ('categorical', 'JJ'), ('encoders', 'NNS')]",[]
109 | Watch Tiny Neural Nets Learn,4 points by swanint 20 days ago | discuss,20,"watch,tiny,neural,nets,learn",Watch Tiny Neural Nets Learn,Watch Tiny Neural Nets Learn,"[('Watch', 'NNP'), ('Tiny', 'NNP'), ('Neural', 'NNP'), ('Nets', 'NNP'), ('Learn', 'NNP')]",['Watch Tiny Neural Nets Learn']
110 | Four pitfalls of hill climbing: An animated look,5 points by csaid81 22 days ago | discuss,22,"four,pitfalls,hill,climbing,animated,look",Four pitfalls of hill climbing: An animated look,Four pitfalls of hill climbing: An animated look,"[('Four', 'CD'), ('pitfalls', 'NNS'), ('of', 'IN'), ('hill', 'NN'), ('climbing', 'VBG'), (':', ':'), ('An', 'DT'), ('animated', 'JJ'), ('look', 'NN')]",[]
111 | "Decision Forests, Convolutional Networks and the Models in-Between",2 points by ebellm 15 days ago | discuss,15,"decision,forests,convolutional,networks,models","Decision Forests, Convolutional Networks and the Models in-Between","Decision Forests, Convolutional Networks and the Models in-Between","[('Decision', 'NN'), ('Forests', 'NNS'), (',', ','), ('Convolutional', 'NNP'), ('Networks', 'NNP'), ('and', 'CC'), ('the', 'DT'), ('Models', 'NNP'), ('in', 'IN'), ('-', ':'), ('Between', 'NN')]","['Convolutional Networks', 'Models']"
112 | How a Math Genius Hacked OkCupid to Find True Love,15 points by roh_codeur 34 days ago | discuss,34,"math,genius,hacked,okcupid,find,true,love",How a Math Genius Hacked OkCupid to Find True Lov,How a Math Genius Hacked OkCupid to Find True Love,"[('How', 'WRB'), ('a', 'DT'), ('Math', 'NNP'), ('Genius', 'NNP'), ('Hacked', 'NNP'), ('OkCupid', 'NNP'), ('to', 'TO'), ('Find', 'VB'), ('True', 'JJ'), ('Love', 'NNP')]",['True Love']
113 | No developers for PyLearn2,3 points by tfturing 18 days ago | discuss,18,"developers,pylearn2",No developers for PyLearn2,No developers for PyLearn2,"[('No', 'DT'), ('developers', 'NNS'), ('for', 'IN'), ('PyLearn2', 'NN')]",['PyLearn2']
114 | Density Estimation with Dirichlet Process Mixtures using PyMC3,6 points by MidsizeBlowfish 25 days ago | discuss,25,"density,estimation,dirichlet,process,mixtures,using,pymc3",Density Estimation with Dirichlet Process Mixtures using PyMC3,Density Estimation with Dirichlet Process Mixtures using PyMC3,"[('Density', 'NNP'), ('Estimation', 'NNP'), ('with', 'IN'), ('Dirichlet', 'NNP'), ('Process', 'NNP'), ('Mixtures', 'NNP'), ('using', 'VBG'), ('PyMC3', 'NNP')]","['Density Estimation', 'Dirichlet Process Mixtures', 'PyMC3']"
115 | Using survival analysis and git-pandas to estimate code quality,3 points by wdm0006 19 days ago | discuss,19,"using,survival,analysis,git,pandas,estimate,code,quality",Using survival analysis and git-pandas to estimate code qu,Using survival analysis and git-pandas to estimate code quality,"[('Using', 'VBG'), ('survival', 'JJ'), ('analysis', 'NN'), ('and', 'CC'), ('git', 'JJ'), ('-', ':'), ('pandas', 'NN'), ('to', 'TO'), ('estimate', 'VB'), ('code', 'NN'), ('quality', 'NN')]",[]
116 | An Analysis of the Flint Michigan Water Crisis: Part 1 Initial Corrosivity,3 points by JHorn 19 days ago | discuss,19,"analysis,flint,michigan,water,crisis,part,1,initial,corrosivity",An Analysis of the Flint Michigan Water Crisis: Part 1 Initial Corros,An Analysis of the Flint Michigan Water Crisis: Part 1 Initial Corrosivity,"[('An', 'DT'), ('Analysis', 'NN'), ('of', 'IN'), ('the', 'DT'), ('Flint', 'NNP'), ('Michigan', 'NNP'), ('Water', 'NNP'), ('Crisis', 'NNP'), (':', ':'), ('Part', 'NN'), ('1', 'CD'), ('Initial', 'NNP'), ('Corrosivity', 'NNP')]",['Flint Michigan Water']
117 | An Analysis of Republican Twitter Follower Interests,6 points by michelangelo 25 days ago | discuss,25,"analysis,republican,twitter,follower,interests",An Analysis of Republican Twitter Follower Interest,An Analysis of Republican Twitter Follower Interests,"[('An', 'DT'), ('Analysis', 'NN'), ('of', 'IN'), ('Republican', 'JJ'), ('Twitter', 'NNP'), ('Follower', 'NNP'), ('Interests', 'NNS')]",['Republican Twitter Follower']
118 | Introduction to ML talk,8 points by cjbayesian 29 days ago | discuss,29,"introduction,ml,talk",Introduction to ML talk,Introduction to ML talk,"[('Introduction', 'NN'), ('to', 'TO'), ('ML', 'NNP'), ('talk', 'NN')]",[]
119 | GloVe vs word2vec revisited,3 points by pmigdal 20 days ago | discuss,20,"glove,vs,word2vec,revisited",GloVe vs word2vec revisit,GloVe vs word2vec revisited,"[('GloVe', 'NNP'), ('vs', 'NN'), ('word2vec', 'NN'), ('revisited', 'VBD')]",['GloVe']
120 | Undergrad Data Analysis/Science internships SF Bay?,3 points by tctctc 15 days ago | 5 comments,15,"undergrad,data,analysis,science,internships,sf,bay",Undergrad Data Analysis/Science internships SF Bay?,Undergrad Data Analysis/Science internships SF Bay?,"[('Undergrad', 'NNP'), ('Data', 'NNP'), ('Analysis', 'NNP'), ('/', 'NNP'), ('Science', 'NNP'), ('internships', 'NNS'), ('SF', 'NNP'), ('Bay', 'NNP'), ('?', '.')]",['Undergrad Data Analysis']
121 | The Role of Statistical Significance in Growth Hacking,6 points by rawls234 26 days ago | discuss,26,"role,statistical,significance,growth,hacking",The Role of Statistical Significance in Growth Hack,The Role of Statistical Significance in Growth Hacking,"[('The', 'DT'), ('Role', 'NNP'), ('of', 'IN'), ('Statistical', 'NNP'), ('Significance', 'NNP'), ('in', 'IN'), ('Growth', 'NNP'), ('Hacking', 'NNP')]","['Statistical Significance', 'Growth Hacking']"
122 | Data Science Course @ Harvard,7 points by rahmaniacc 28 days ago | 2 comments,28,"data,science,course,@,harvard",Data Science Course @ Harvard,Data Science Course @ Harvard,"[('Data', 'NNP'), ('Science', 'NNP'), ('Course', 'NNP'), ('@', 'NNP'), ('Harvard', 'NNP')]",['Data Science Course']
123 | Principal Component Projection Without Principal Component Analysis,6 points by genofon 27 days ago | discuss,27,"principal,component,projection,without,principal,component,analysis",Principal Component Projection Without Principal Component Analysi,Principal Component Projection Without Principal Component Analysis,"[('Principal', 'JJ'), ('Component', 'NNP'), ('Projection', 'NNP'), ('Without', 'IN'), ('Principal', 'NNP'), ('Component', 'NNP'), ('Analysis', 'NN')]",['Principal']
124 | "Machine Learning: An In-Depth, Non-Technical Guide - Part 3",7 points by innoarchitech 29 days ago | discuss,29,"machine,learning,depth,non,technical,guide,part,3","Machine Learning: An In-Depth, Non-Technical Guide - Part 3","Machine Learning: An In-Depth, Non-Technical Guide - Part 3","[('Machine', 'NN'), ('Learning', 'NNP'), (':', ':'), ('An', 'DT'), ('In', 'IN'), ('-', ':'), ('Depth', 'NN'), (',', ','), ('Non', 'NNP'), ('-', ':'), ('Technical', 'NNP'), ('Guide', 'NNP'), ('-', ':'), ('Part', 'NN'), ('3', 'CD')]","['Machine Learning', 'Non', 'Technical Guide']"
125 | Stochastic Dummy Boosting,2 points by mikeskim 17 days ago | discuss,17,"stochastic,dummy,boosting",Stochastic Dummy Boost,Stochastic Dummy Boosting,"[('Stochastic', 'JJ'), ('Dummy', 'NNP'), ('Boosting', 'NNP')]",['Stochastic Dummy']
126 | Interactive Map: Hong-Kong through The Lense of Instagram,2 points by BrianN 18 days ago | discuss,18,"interactive,map,hong,kong,lense,instagram",Interactive Map: Hong-Kong through The Lense of Instagram,Interactive Map: Hong-Kong through The Lense of Instagram,"[('Interactive', 'JJ'), ('Map', 'NN'), (':', ':'), ('Hong', 'NNP'), ('-', ':'), ('Kong', 'NNP'), ('through', 'IN'), ('The', 'DT'), ('Lense', 'NNP'), ('of', 'IN'), ('Instagram', 'NNP')]","['Hong', 'Kong']"
127 | Data Science at Monsanto,3 points by doctorcroc 22 days ago | discuss,22,"data,science,monsanto",Data Science at Monsanto,Data Science at Monsanto,"[('Data', 'NNP'), ('Science', 'NNP'), ('at', 'IN'), ('Monsanto', 'NNP')]","['Data Science', 'Monsanto']"
128 | Data Science at Instacart,11 points by jeremystan 34 days ago | 3 comments,34,"data,science,instacart",Data Science at Instacart,Data Science at Instacart,"[('Data', 'NNP'), ('Science', 'NNP'), ('at', 'IN'), ('Instacart', 'NNP')]","['Data Science', 'Instacart']"
129 | Building a Streaming Search Platform,6 points by ddrum001 27 days ago | discuss,27,"building,streaming,search,platform",Building a Streaming Search Platform,Building a Streaming Search Platform,"[('Building', 'VBG'), ('a', 'DT'), ('Streaming', 'NNP'), ('Search', 'NNP'), ('Platform', 'NNP')]",[]
130 | A Sneak Peak of the Cloud: the 2 Minute Intro for Beginners,2 points by andymaheshw 19 days ago | discuss,19,"sneak,peak,cloud,2,minute,intro,beginners",A Sneak Peak of the Cloud: the 2 Minute Intro for Beginn,A Sneak Peak of the Cloud: the 2 Minute Intro for Beginners,"[('A', 'DT'), ('Sneak', 'NNP'), ('Peak', 'NNP'), ('of', 'IN'), ('the', 'DT'), ('Cloud', 'NNP'), (':', ':'), ('the', 'DT'), ('2', 'CD'), ('Minute', 'NNP'), ('Intro', 'NNP'), ('for', 'IN'), ('Beginners', 'NNP')]",['Sneak Peak']
131 | Win-Vector video courses: price/status changes,2 points by jmount 19 days ago | discuss,19,"win,vector,video,courses,price,status,changes",Win-Vector video courses: price/status chang,Win-Vector video courses: price/status changes,"[('Win', 'NNP'), ('-', ':'), ('Vector', 'NNP'), ('video', 'NN'), ('courses', 'NNS'), (':', ':'), ('price', 'NN'), ('/', 'NN'), ('status', 'NN'), ('changes', 'NNS')]","['Win', 'Vector']"
132 | 50+ Data Science and Machine Learning Cheat Sheets,20 points by elyase 42 days ago | 1 comment,42,"50,+,data,science,machine,learning,cheat,sheets",50+ Data Science and Machine Learning Cheat Sheet,50+ Data Science and Machine Learning Cheat Sheets,"[('50', 'CD'), ('+', 'JJ'), ('Data', 'NNP'), ('Science', 'NNP'), ('and', 'CC'), ('Machine', 'NNP'), ('Learning', 'NNP'), ('Cheat', 'NNP'), ('Sheets', 'NNS')]","['Data Science', 'Machine Learning Cheat']"
133 | One More Reason Not To Be Scared of Deep Learning,2 points by amplifier_khan 21 days ago | discuss,21,"one,reason,scared,deep,learning",One More Reason Not To Be Scared of Deep Learn,One More Reason Not To Be Scared of Deep Learning,"[('One', 'CD'), ('More', 'JJR'), ('Reason', 'NNP'), ('Not', 'RB'), ('To', 'TO'), ('Be', 'VB'), ('Scared', 'NNP'), ('of', 'IN'), ('Deep', 'NNP'), ('Learning', 'NNP')]","['Reason', 'Deep Learning']"
134 | Visual Logic Authoring vs Code,2 points by AnnaOnTheWeb 21 days ago | discuss,21,"visual,logic,authoring,vs,code",Visual Logic Authoring vs Cod,Visual Logic Authoring vs Code,"[('Visual', 'JJ'), ('Logic', 'NNP'), ('Authoring', 'NNP'), ('vs', 'NN'), ('Code', 'NNP')]",['Visual Logic']
135 | Data Science in Python online training with hands-on experience,2 points by Puneet 21 days ago | discuss,21,"data,science,python,online,training,hands,experience",Data Science in Python online training with hands-on experi,Data Science in Python online training with hands-on experience,"[('Data', 'NNP'), ('Science', 'NNP'), ('in', 'IN'), ('Python', 'NNP'), ('online', 'JJ'), ('training', 'NN'), ('with', 'IN'), ('hands', 'NNS'), ('-', ':'), ('on', 'IN'), ('experience', 'NN')]","['Data Science', 'Python']"
136 | Viewing the US Presidential Primary Through the Lens of Twitter,8 points by michelangelo 32 days ago | discuss,32,"viewing,us,presidential,primary,lens,twitter",Viewing the US Presidential Primary Through the Lens of Twitt,Viewing the US Presidential Primary Through the Lens of Twitter,"[('Viewing', 'VBG'), ('the', 'DT'), ('US', 'NNP'), ('Presidential', 'NNP'), ('Primary', 'NNP'), ('Through', 'IN'), ('the', 'DT'), ('Lens', 'NNP'), ('of', 'IN'), ('Twitter', 'NNP')]",['US']
137 | Caffe on Spark open sourced,4 points by rahmaniacc 26 days ago | discuss,26,"caffe,spark,open,sourced",Caffe on Spark open sourc,Caffe on Spark open sourced,"[('Caffe', 'NNP'), ('on', 'IN'), ('Spark', 'NNP'), ('open', 'JJ'), ('sourced', 'VBD')]","['Caffe', 'Spark']"
138 | The Ethical Data Scientist,5 points by tfturing 28 days ago | discuss,28,"ethical,data,scientist",The Ethical Data Scientist,The Ethical Data Scientist,"[('The', 'DT'), ('Ethical', 'NNP'), ('Data', 'NNP'), ('Scientist', 'NN')]",['Ethical Data']
139 | Answers to Frequently Asked Questions in Machine Learning,3 points by rasbt 21 days ago | discuss,21,"answers,frequently,asked,questions,machine,learning",Answers to Frequently Asked Questions in Machine Learn,Answers to Frequently Asked Questions in Machine Learning,"[('Answers', 'NNS'), ('to', 'TO'), ('Frequently', 'NNP'), ('Asked', 'NNP'), ('Questions', 'NNS'), ('in', 'IN'), ('Machine', 'NNP'), ('Learning', 'NNP')]","['Frequently Asked', 'Machine Learning']"
140 | Intro to A/B Testing and P-Values,2 points by randyzwitch 22 days ago | discuss,22,"intro,b,testing,p,values",Intro to A/B Testing and P-Valu,Intro to A/B Testing and P-Values,"[('Intro', 'NNP'), ('to', 'TO'), ('A', 'NNP'), ('/', 'NNP'), ('B', 'NNP'), ('Testing', 'NNP'), ('and', 'CC'), ('P', 'NNP'), ('-', ':'), ('Values', 'NNS')]",['Intro']
141 | Visualizing State Level Data With R and Statebins,2 points by usujason 22 days ago | discuss,22,"visualizing,state,level,data,r,statebins",Visualizing State Level Data With R and Statebin,Visualizing State Level Data With R and Statebins,"[('Visualizing', 'VBG'), ('State', 'NNP'), ('Level', 'NNP'), ('Data', 'NNP'), ('With', 'IN'), ('R', 'NNP'), ('and', 'CC'), ('Statebins', 'NNP')]",[]
142 | "Probabilistic Graphical Models slides & video lectures (Eric Xing, CMU)",4 points by ororm 27 days ago | discuss,27,"probabilistic,graphical,models,slides,&,video,lectures,eric,xing,cmu","Probabilistic Graphical Models slides & video lectures (Eric Xing, CMU)","Probabilistic Graphical Models slides & video lectures (Eric Xing, CMU)","[('Probabilistic', 'JJ'), ('Graphical', 'NNP'), ('Models', 'NNP'), ('slides', 'VBZ'), ('&', 'CC'), ('video', 'NN'), ('lectures', 'NNS'), ('(', '('), ('Eric', 'NNP'), ('Xing', 'NNP'), (',', ','), ('CMU', 'NNP'), (')', ')')]","['Eric Xing', 'CMU']"
143 | Sense2vec with spaCy and Gensim,9 points by elyase 35 days ago | 2 comments,35,"sense2vec,spacy,gensim",Sense2vec with spaCy and Gensim,Sense2vec with spaCy and Gensim,"[('Sense2vec', 'NN'), ('with', 'IN'), ('spaCy', 'NN'), ('and', 'CC'), ('Gensim', 'NNP')]","['Sense2vec', 'spaCy', 'Gensim']"
144 | How to Code and Understand DeepMind's Neural Stack Machine (in Python),2 points by genofon 23 days ago | discuss,23,"code,understand,deepmind,neural,stack,machine,python",How to Code and Understand DeepMind's Neural Stack Machine (in Python),How to Code and Understand DeepMind's Neural Stack Machine (in Python),"[('How', 'WRB'), ('to', 'TO'), ('Code', 'NNP'), ('and', 'CC'), ('Understand', 'NNP'), ('DeepMind', 'NNP'), (""'"", 'POS'), ('s', 'JJ'), ('Neural', 'NNP'), ('Stack', 'NNP'), ('Machine', 'NNP'), ('(', '('), ('in', 'IN'), ('Python', 'NNP'), (')', ')')]","['Code', 'Understand DeepMind', 'Python']"
145 | How to make polished Jupyter presentations with optional code visibility,9 points by csaid81 36 days ago | discuss,36,"make,polished,jupyter,presentations,optional,code,visibility",How to make polished Jupyter presentations with optional code vis,How to make polished Jupyter presentations with optional code visibility,"[('How', 'WRB'), ('to', 'TO'), ('make', 'VB'), ('polished', 'JJ'), ('Jupyter', 'NNP'), ('presentations', 'NNS'), ('with', 'IN'), ('optional', 'JJ'), ('code', 'NN'), ('visibility', 'NN')]",[]
146 | How to become a Bayesian in eight easy steps,17 points by EtzA 43 days ago | 1 comment,43,"become,bayesian,eight,easy,steps",How to become a Bayesian in eight easy step,How to become a Bayesian in eight easy steps,"[('How', 'WRB'), ('to', 'TO'), ('become', 'VB'), ('a', 'DT'), ('Bayesian', 'JJ'), ('in', 'IN'), ('eight', 'CD'), ('easy', 'JJ'), ('steps', 'NNS')]",['Bayesian']
147 | Optimizing .*: Details of Vectorization and Metaprogramming in Julia,4 points by randyzwitch 29 days ago | discuss,29,"optimizing,.*:,details,vectorization,metaprogramming,julia",Optimizing .*: Details of Vectorization and Metaprogramming in Julia,Optimizing .*: Details of Vectorization and Metaprogramming in Julia,"[('Optimizing', 'VBG'), ('.*:', 'NNP'), ('Details', 'NNP'), ('of', 'IN'), ('Vectorization', 'NNP'), ('and', 'CC'), ('Metaprogramming', 'NNP'), ('in', 'IN'), ('Julia', 'NNP')]",['Julia']
148 | IBM certified Apache Spark Online Training,8 points by divya_jain 35 days ago | discuss,35,"ibm,certified,apache,spark,online,training",IBM certified Apache Spark Online Train,IBM certified Apache Spark Online Training,"[('IBM', 'NNP'), ('certified', 'VBD'), ('Apache', 'NNP'), ('Spark', 'NNP'), ('Online', 'NNP'), ('Training', 'NN')]","['IBM', 'Apache Spark Online']"
149 | Geographic Data Science course,2 points by rk 24 days ago | discuss,24,"geographic,data,science,course",Geographic Data Science cours,Geographic Data Science course,"[('Geographic', 'NNP'), ('Data', 'NNP'), ('Science', 'NNP'), ('course', 'NN')]",['Geographic Data Science']
150 | "The Daily Mail Stole My Visualization, Twice",5 points by thehoff 32 days ago | 1 comment,32,"daily,mail,stole,visualization,twice","The Daily Mail Stole My Visualization, Twic","The Daily Mail Stole My Visualization, Twice","[('The', 'DT'), ('Daily', 'NNP'), ('Mail', 'NNP'), ('Stole', 'NNP'), ('My', 'NNP'), ('Visualization', 'NNP'), (',', ','), ('Twice', 'NNP')]",['Daily Mail Stole My Visualization']
151 | Ensemble Methods: Improved Machine Learning Results,9 points by PyBloggers 37 days ago | discuss,37,"ensemble,methods,improved,machine,learning,results",Ensemble Methods: Improved Machine Learning Result,Ensemble Methods: Improved Machine Learning Results,"[('Ensemble', 'JJ'), ('Methods', 'NNS'), (':', ':'), ('Improved', 'VBN'), ('Machine', 'NNP'), ('Learning', 'NNP'), ('Results', 'NNP')]",['Machine Learning Results']
152 | Apache Spark and unsupervised learning in security,2 points by gradientflow 26 days ago | discuss,26,"apache,spark,unsupervised,learning,security",Apache Spark and unsupervised learning in secur,Apache Spark and unsupervised learning in security,"[('Apache', 'NNP'), ('Spark', 'NNP'), ('and', 'CC'), ('unsupervised', 'JJ'), ('learning', 'NN'), ('in', 'IN'), ('security', 'NN')]",['Apache Spark']
153 | MachineJS: Automated machine learning- just give it a data file!,2 points by dsernst 26 days ago | discuss,26,"machinejs,automated,machine,learning,give,data,file",MachineJS: Automated machine learning- just give it a data file!,MachineJS: Automated machine learning- just give it a data file!,"[('MachineJS', 'NN'), (':', ':'), ('Automated', 'VBN'), ('machine', 'NN'), ('learning', 'VBG'), ('-', ':'), ('just', 'RB'), ('give', 'VB'), ('it', 'PRP'), ('a', 'DT'), ('data', 'NN'), ('file', 'NN'), ('!', '.')]",['MachineJS']
154 | Kafka Producer Latency with Large Topic Counts,2 points by marklit 26 days ago | discuss,26,"kafka,producer,latency,large,topic,counts",Kafka Producer Latency with Large Topic Count,Kafka Producer Latency with Large Topic Counts,"[('Kafka', 'NNP'), ('Producer', 'NNP'), ('Latency', 'NNP'), ('with', 'IN'), ('Large', 'NNP'), ('Topic', 'NNP'), ('Counts', 'NNP')]","['Kafka Producer Latency', 'Large Topic Counts']"
155 | The NSA?s SKYNET program may be killing thousands of innocent people,6 points by zlipp 35 days ago | discuss,35,"nsa,skynet,program,may,killing,thousands,innocent,people",The NSA?s SKYNET program may be killing thousands of innocent peopl,The NSA?s SKYNET program may be killing thousands of innocent people,"[('The', 'DT'), ('NSA', 'NNP'), ('?', '.'), ('s', 'JJ'), ('SKYNET', 'NNP'), ('program', 'NN'), ('may', 'MD'), ('be', 'VB'), ('killing', 'VBG'), ('thousands', 'NNS'), ('of', 'IN'), ('innocent', 'JJ'), ('people', 'NNS')]",['NSA']
156 | Overoptimizing: a story about kaggle,3 points by wdm0006 29 days ago | discuss,29,"overoptimizing,story,kaggle",Overoptimizing: a story about kaggl,Overoptimizing: a story about kaggle,"[('Overoptimizing', 'NN'), (':', ':'), ('a', 'DT'), ('story', 'NN'), ('about', 'IN'), ('kaggle', 'NN')]",[]
157 | "Big Dimensions, and What You Can Do About It",2 points by ramsey 26 days ago | discuss,26,"big,dimensions","Big Dimensions, and What You Can Do About It","Big Dimensions, and What You Can Do About It","[('Big', 'JJ'), ('Dimensions', 'NNS'), (',', ','), ('and', 'CC'), ('What', 'WP'), ('You', 'PRP'), ('Can', 'MD'), ('Do', 'VB'), ('About', 'IN'), ('It', 'PRP')]",[]
158 | Automate Your Oscars Pool with R,2 points by jamesdreiss 27 days ago | discuss,27,"automate,oscars,pool,r",Automate Your Oscars Pool with R,Automate Your Oscars Pool with R,"[('Automate', 'VB'), ('Your', 'PRP$'), ('Oscars', 'NNP'), ('Pool', 'NNP'), ('with', 'IN'), ('R', 'NNP')]",['Oscars Pool']
159 | Signal Processing with LIGO GW150914 data,9 points by tfturing 39 days ago | discuss,39,"signal,processing,ligo,gw150914,data",Signal Processing with LIGO GW150914 data,Signal Processing with LIGO GW150914 data,"[('Signal', 'JJ'), ('Processing', 'VBG'), ('with', 'IN'), ('LIGO', 'NNP'), ('GW150914', 'NNP'), ('data', 'NNS')]",['LIGO']
160 | Overview of DeZyre and Coursera Data Science Course,5 points by ann928 34 days ago | discuss,34,"overview,dezyre,coursera,data,science,course",Overview of DeZyre and Coursera Data Science Cours,Overview of DeZyre and Coursera Data Science Course,"[('Overview', 'NN'), ('of', 'IN'), ('DeZyre', 'NNP'), ('and', 'CC'), ('Coursera', 'NNP'), ('Data', 'NNP'), ('Science', 'NNP'), ('Course', 'NNP')]","['Overview', 'DeZyre', 'Coursera Data Science Course']"
161 | Upcoming Datathon in NYC,2 points by VicTrey 27 days ago | discuss,27,"upcoming,datathon,nyc",Upcoming Datathon in NYC,Upcoming Datathon in NYC,"[('Upcoming', 'VBG'), ('Datathon', 'NNP'), ('in', 'IN'), ('NYC', 'NNP')]","['Datathon', 'NYC']"
162 | Summarizing Data in SQL,15 points by elisebreda 46 days ago | discuss,46,"summarizing,data,sql",Summarizing Data in SQL,Summarizing Data in SQL,"[('Summarizing', 'VBG'), ('Data', 'NNP'), ('in', 'IN'), ('SQL', 'NNP')]",['SQL']
163 | A/B Testing for Scammers,2 points by sameermanek 28 days ago | discuss,28,"b,testing,scammers",A/B Testing for Scamm,A/B Testing for Scammers,"[('A', 'DT'), ('/', 'NN'), ('B', 'NNP'), ('Testing', 'NNP'), ('for', 'IN'), ('Scammers', 'NNP')]",[]
164 | Highly interpretable classifiers for scikit learn using Bayesian decision rules,2 points by mcnulty 28 days ago | discuss,28,"highly,interpretable,classifiers,scikit,learn,using,bayesian,decision,rules",Highly interpretable classifiers for scikit learn using Bayesian decision rul,Highly interpretable classifiers for scikit learn using Bayesian decision rules,"[('Highly', 'NNP'), ('interpretable', 'JJ'), ('classifiers', 'NNS'), ('for', 'IN'), ('scikit', 'NN'), ('learn', 'NN'), ('using', 'VBG'), ('Bayesian', 'JJ'), ('decision', 'NN'), ('rules', 'NNS')]","['Highly', 'Bayesian']"
165 | Auto-scaling scikit-learn with Spark,11 points by falaki 42 days ago | discuss,42,"auto,scaling,scikit,learn,spark",Auto-scaling scikit-learn with Spark,Auto-scaling scikit-learn with Spark,"[('Auto', 'NNP'), ('-', ':'), ('scaling', 'VBG'), ('scikit', 'JJ'), ('-', ':'), ('learn', 'NN'), ('with', 'IN'), ('Spark', 'NNP')]","['Auto', 'Spark']"
166 | Where the f*** can I park?,2 points by manugarri 29 days ago | discuss,29,"f,***,park",Where the f*** can I park?,Where the f*** can I park?,"[('Where', 'WRB'), ('the', 'DT'), ('f', 'NN'), ('***', 'NN'), ('can', 'MD'), ('I', 'PRP'), ('park', 'VB'), ('?', '.')]",[]
167 | "Machine Learning: An In-Depth, Non-Technical Guide - Part 2",5 points by innoarchitech 36 days ago | discuss,36,"machine,learning,depth,non,technical,guide,part,2","Machine Learning: An In-Depth, Non-Technical Guide - Part 2","Machine Learning: An In-Depth, Non-Technical Guide - Part 2","[('Machine', 'NN'), ('Learning', 'NNP'), (':', ':'), ('An', 'DT'), ('In', 'IN'), ('-', ':'), ('Depth', 'NN'), (',', ','), ('Non', 'NNP'), ('-', ':'), ('Technical', 'NNP'), ('Guide', 'NNP'), ('-', ':'), ('Part', 'NN'), ('2', 'CD')]","['Machine Learning', 'Non', 'Technical Guide']"
168 | Webhose.io now offers a historical data archive,7 points by databuffer 40 days ago | discuss,40,"webhose,io,offers,historical,data,archive",Webhose.io now offers a historical data arch,Webhose.io now offers a historical data archive,"[('Webhose', 'NNP'), ('.', '.'), ('io', 'NN'), ('now', 'RB'), ('offers', 'VBZ'), ('a', 'DT'), ('historical', 'JJ'), ('data', 'NN'), ('archive', 'NN')]",['Webhose']
169 | Meetup: Introduction to Machine Learning Algorithms for Data Science.,4 points by ann928 35 days ago | discuss,35,"meetup,introduction,machine,learning,algorithms,data,science",Meetup: Introduction to Machine Learning Algorithms for Data Science.,Meetup: Introduction to Machine Learning Algorithms for Data Science.,"[('Meetup', 'NN'), (':', ':'), ('Introduction', 'NN'), ('to', 'TO'), ('Machine', 'NNP'), ('Learning', 'NNP'), ('Algorithms', 'NNP'), ('for', 'IN'), ('Data', 'NNP'), ('Science', 'NNP'), ('.', '.')]","['Meetup', 'Machine Learning Algorithms', 'Data Science']"
170 | Exploring the Limits of Language Modeling,8 points by soates 42 days ago | discuss,42,"exploring,limits,language,modeling",Exploring the Limits of Language Model,Exploring the Limits of Language Modeling,"[('Exploring', 'VBG'), ('the', 'DT'), ('Limits', 'NNS'), ('of', 'IN'), ('Language', 'NNP'), ('Modeling', 'NNP')]",['Language Modeling']
171 | Text Mining South Park,7 points by pmigdal 41 days ago | discuss,41,"text,mining,south,park",Text Mining South Park,Text Mining South Park,"[('Text', 'NNP'), ('Mining', 'NNP'), ('South', 'NNP'), ('Park', 'NNP')]",['Text Mining South Park']
172 | Finding the K in K-means by Parametric Bootstrap,7 points by jmount 41 days ago | 1 comment,41,"finding,k,k,means,parametric,bootstrap",Finding the K in K-means by Parametric Bootstrap,Finding the K in K-means by Parametric Bootstrap,"[('Finding', 'VBG'), ('the', 'DT'), ('K', 'NNP'), ('in', 'IN'), ('K', 'NNP'), ('-', ':'), ('means', 'NNS'), ('by', 'IN'), ('Parametric', 'NNP'), ('Bootstrap', 'NNP')]",['Parametric Bootstrap']
173 | A Billion NYC Taxi and Uber Rides in AWS Redshift,2 points by marklit 31 days ago | discuss,31,"billion,nyc,taxi,uber,rides,aws,redshift",A Billion NYC Taxi and Uber Rides in AWS Redshift,A Billion NYC Taxi and Uber Rides in AWS Redshift,"[('A', 'DT'), ('Billion', 'NNP'), ('NYC', 'NNP'), ('Taxi', 'NNP'), ('and', 'CC'), ('Uber', 'NNP'), ('Rides', 'NNP'), ('in', 'IN'), ('AWS', 'NNP'), ('Redshift', 'NNP')]",['AWS Redshift']
174 | Getting Started with Statistics for Data Science,3 points by nickhould 34 days ago | discuss,34,"getting,started,statistics,data,science",Getting Started with Statistics for Data Sci,Getting Started with Statistics for Data Science,"[('Getting', 'VBG'), ('Started', 'VBN'), ('with', 'IN'), ('Statistics', 'NNS'), ('for', 'IN'), ('Data', 'NNP'), ('Science', 'NNP')]",['Data Science']
175 | Rodeo 1.3 - Tab-completion for docstrings,3 points by glamp 35 days ago | discuss,35,"rodeo,1,3,tab,completion,docstrings",Rodeo 1.3 - Tab-completion for docstr,Rodeo 1.3 - Tab-completion for docstrings,"[('Rodeo', 'NN'), ('1', 'CD'), ('.', '.'), ('3', 'CD'), ('-', ':'), ('Tab', 'NNP'), ('-', ':'), ('completion', 'NN'), ('for', 'IN'), ('docstrings', 'NNS')]",['Tab']
176 | Teaching D3.js - links,3 points by pmigdal 35 days ago | discuss,35,"teaching,d3,js,links",Teaching D3.js - link,Teaching D3.js - links,"[('Teaching', 'VBG'), ('D3', 'NNP'), ('.', '.'), ('js', 'NN'), ('-', ':'), ('links', 'NNS')]",[]
177 | Parallel scikit-learn on YARN,5 points by stijntonk 39 days ago | discuss,39,"parallel,scikit,learn,yarn",Parallel scikit-learn on YARN,Parallel scikit-learn on YARN,"[('Parallel', 'NNP'), ('scikit', 'SYM'), ('-', ':'), ('learn', 'NN'), ('on', 'IN'), ('YARN', 'NN')]","['Parallel', 'YARN']"
178 | Meetup: Free Live Webinar on Prescriptive Analytics for Fun and Profit,2 points by ann928 32 days ago | discuss,32,"meetup,free,live,webinar,prescriptive,analytics,fun,profit",Meetup: Free Live Webinar on Prescriptive Analytics for Fun and Profit,Meetup: Free Live Webinar on Prescriptive Analytics for Fun and Profit,"[('Meetup', 'NN'), (':', ':'), ('Free', 'JJ'), ('Live', 'NNP'), ('Webinar', 'NNP'), ('on', 'IN'), ('Prescriptive', 'NNP'), ('Analytics', 'NNP'), ('for', 'IN'), ('Fun', 'NNP'), ('and', 'CC'), ('Profit', 'NN')]","['Meetup', 'Fun']"
179 | Access to VK.com (Vkontakte) API via R,2 points by dementiy 32 days ago | discuss,32,"access,vk,com,vkontakte,api,via,r",Access to VK.com (Vkontakte) API via R,Access to VK.com (Vkontakte) API via R,"[('Access', 'NN'), ('to', 'TO'), ('VK', 'NNP'), ('.', '.'), ('com', 'NN'), ('(', '('), ('Vkontakte', 'NNP'), (')', ')'), ('API', 'NNP'), ('via', 'IN'), ('R', 'NNP')]",['Access']
180 | Deep Learning Tutorial by Y. LeCun and Y. Bengio,15 points by Anon84 50 days ago | 1 comment,50,"deep,learning,tutorial,lecun,bengio", Deep Learning Tutorial by Y. LeCun and Y. Bengio, Deep Learning Tutorial by Y. LeCun and Y. Bengio,"[('Deep', 'NNP'), ('Learning', 'NNP'), ('Tutorial', 'NNP'), ('by', 'IN'), ('Y', 'NNP'), ('.', '.'), ('LeCun', 'NNP'), ('and', 'CC'), ('Y', 'NNP'), ('.', '.'), ('Bengio', 'NNP')]","['Deep Learning Tutorial', 'LeCun']"
181 | Machine Learning Meets Economics,20 points by nicolaskruchten 55 days ago | discuss,55,"machine,learning,meets,economics",Machine Learning Meets Econom,Machine Learning Meets Economics,"[('Machine', 'NN'), ('Learning', 'NNP'), ('Meets', 'NNP'), ('Economics', 'NNP')]",['Machine Learning Meets Economics']
182 |
--------------------------------------------------------------------------------
/img/chunk-segmentation.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/amitkaps/text-mining/HEAD/img/chunk-segmentation.png
--------------------------------------------------------------------------------
/img/datatau.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/amitkaps/text-mining/HEAD/img/datatau.png
--------------------------------------------------------------------------------
/img/date.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/amitkaps/text-mining/HEAD/img/date.png
--------------------------------------------------------------------------------
/img/entity_extraction.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/amitkaps/text-mining/HEAD/img/entity_extraction.png
--------------------------------------------------------------------------------
/img/gutenberg.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/amitkaps/text-mining/HEAD/img/gutenberg.png
--------------------------------------------------------------------------------
/img/ldaformula.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/amitkaps/text-mining/HEAD/img/ldaformula.png
--------------------------------------------------------------------------------
/img/nb.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/amitkaps/text-mining/HEAD/img/nb.png
--------------------------------------------------------------------------------
/img/punkt.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/amitkaps/text-mining/HEAD/img/punkt.png
--------------------------------------------------------------------------------
/img/title.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/amitkaps/text-mining/HEAD/img/title.png
--------------------------------------------------------------------------------
/notebook/data-tau/Refine.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# Refine the Data"
8 | ]
9 | },
10 | {
11 | "cell_type": "code",
12 | "execution_count": 32,
13 | "metadata": {
14 | "collapsed": true
15 | },
16 | "outputs": [],
17 | "source": [
18 | "import pandas as pd"
19 | ]
20 | },
21 | {
22 | "cell_type": "code",
23 | "execution_count": 33,
24 | "metadata": {
25 | "collapsed": true
26 | },
27 | "outputs": [],
28 | "source": [
29 | "df = pd.read_csv('data_tau.csv')"
30 | ]
31 | },
32 | {
33 | "cell_type": "code",
34 | "execution_count": 34,
35 | "metadata": {
36 | "collapsed": false
37 | },
38 | "outputs": [
39 | {
40 | "data": {
41 | "text/html": [
42 | "
\n",
43 | "
\n",
44 | " \n",
45 | "
\n",
46 | "
\n",
47 | "
title
\n",
48 | "
date
\n",
49 | "
\n",
50 | " \n",
51 | " \n",
52 | "
\n",
53 | "
0
\n",
54 | "
An Exploration of R, Yelp, and the Search for ...
\n",
55 | "
5 points by Rogerh91 6 hours ago | discuss
\n",
56 | "
\n",
57 | "
\n",
58 | "
1
\n",
59 | "
Deep Advances in Generative Modeling
\n",
60 | "
7 points by gwulfs 15 hours ago | 1 comment
\n",
61 | "
\n",
62 | "
\n",
63 | "
2
\n",
64 | "
Spark Pipelines: Elegant Yet Powerful
\n",
65 | "
3 points by aouyang1 9 hours ago | discuss
\n",
66 | "
\n",
67 | "
\n",
68 | "
3
\n",
69 | "
Shit VCs Say
\n",
70 | "
3 points by Argentum01 10 hours ago | discuss
\n",
71 | "
\n",
72 | "
\n",
73 | "
4
\n",
74 | "
Python, Machine Learning, and Language Wars
\n",
75 | "
4 points by pmigdal 17 hours ago | discuss
\n",
76 | "
\n",
77 | " \n",
78 | "
\n",
79 | "
"
80 | ],
81 | "text/plain": [
82 | " title \\\n",
83 | "0 An Exploration of R, Yelp, and the Search for ... \n",
84 | "1 Deep Advances in Generative Modeling \n",
85 | "2 Spark Pipelines: Elegant Yet Powerful \n",
86 | "3 Shit VCs Say \n",
87 | "4 Python, Machine Learning, and Language Wars \n",
88 | "\n",
89 | " date \n",
90 | "0 5 points by Rogerh91 6 hours ago | discuss \n",
91 | "1 7 points by gwulfs 15 hours ago | 1 comment \n",
92 | "2 3 points by aouyang1 9 hours ago | discuss \n",
93 | "3 3 points by Argentum01 10 hours ago | discuss \n",
94 | "4 4 points by pmigdal 17 hours ago | discuss "
95 | ]
96 | },
97 | "execution_count": 34,
98 | "metadata": {},
99 | "output_type": "execute_result"
100 | }
101 | ],
102 | "source": [
103 | "df.head()"
104 | ]
105 | },
106 | {
107 | "cell_type": "markdown",
108 | "metadata": {},
109 | "source": [
110 | "To get the date of the title - we will need the following algorithm\n",
111 | "- If the string contains **hours** we can consider it **1 day**\n",
112 | "- And if the string has **day**, we pick the number preceding the **day**\n",
113 | "\n",
114 | "To apply this algorithm, we need to be able to pick these words and digits from a string. For that we will use Regular Expression."
115 | ]
116 | },
117 | {
118 | "cell_type": "markdown",
119 | "metadata": {},
120 | "source": [
121 | "## Introduction to Regular Expression (Regex)\n",
122 | "\n",
123 | "Regular expression is a way of selecting text using symbols in a string.\n",
124 | "\n",
125 | "Refer to the following links for an interactive playground\n",
126 | "- [http://regexr.com](http://regexr.com/)\n",
127 | "- [http://regex101.com/](http://regex101.com/)"
128 | ]
129 | },
130 | {
131 | "cell_type": "code",
132 | "execution_count": 35,
133 | "metadata": {
134 | "collapsed": true
135 | },
136 | "outputs": [],
137 | "source": [
138 | "import re"
139 | ]
140 | },
141 | {
142 | "cell_type": "code",
143 | "execution_count": 36,
144 | "metadata": {
145 | "collapsed": true
146 | },
147 | "outputs": [],
148 | "source": [
149 | "test_string = \"Hello world, welcome to 2016.\""
150 | ]
151 | },
152 | {
153 | "cell_type": "code",
154 | "execution_count": 37,
155 | "metadata": {
156 | "collapsed": false
157 | },
158 | "outputs": [],
159 | "source": [
160 | "# We can pass the whole string and re.search will give the first occurence of the value\n",
161 | "# re.search - This function searches for first occurrence of RE pattern within string.\n",
162 | "a = re.search('Hello world, welcome to 2016',test_string)"
163 | ]
164 | },
165 | {
166 | "cell_type": "code",
167 | "execution_count": 38,
168 | "metadata": {
169 | "collapsed": false
170 | },
171 | "outputs": [
172 | {
173 | "data": {
174 | "text/plain": [
175 | "<_sre.SRE_Match object; span=(0, 28), match='Hello world, welcome to 2016'>"
176 | ]
177 | },
178 | "execution_count": 38,
179 | "metadata": {},
180 | "output_type": "execute_result"
181 | }
182 | ],
183 | "source": [
184 | "a"
185 | ]
186 | },
187 | {
188 | "cell_type": "code",
189 | "execution_count": 39,
190 | "metadata": {
191 | "collapsed": false
192 | },
193 | "outputs": [
194 | {
195 | "data": {
196 | "text/plain": [
197 | "'Hello world, welcome to 2016'"
198 | ]
199 | },
200 | "execution_count": 39,
201 | "metadata": {},
202 | "output_type": "execute_result"
203 | }
204 | ],
205 | "source": [
206 | "a.group()"
207 | ]
208 | },
209 | {
210 | "cell_type": "code",
211 | "execution_count": 40,
212 | "metadata": {
213 | "collapsed": false
214 | },
215 | "outputs": [
216 | {
217 | "data": {
218 | "text/plain": [
219 | "'H'"
220 | ]
221 | },
222 | "execution_count": 40,
223 | "metadata": {},
224 | "output_type": "execute_result"
225 | }
226 | ],
227 | "source": [
228 | "# Match the first letters in the string\n",
229 | "a = re.search('.',test_string)\n",
230 | "a.group()"
231 | ]
232 | },
233 | {
234 | "cell_type": "code",
235 | "execution_count": 41,
236 | "metadata": {
237 | "collapsed": false
238 | },
239 | "outputs": [
240 | {
241 | "data": {
242 | "text/plain": [
243 | "'Hello world, welcome to 2016.'"
244 | ]
245 | },
246 | "execution_count": 41,
247 | "metadata": {},
248 | "output_type": "execute_result"
249 | }
250 | ],
251 | "source": [
252 | "# Match all the letters in the string\n",
253 | "a = re.search('.*',test_string)\n",
254 | "a.group()"
255 | ]
256 | },
257 | {
258 | "cell_type": "code",
259 | "execution_count": 42,
260 | "metadata": {
261 | "collapsed": false
262 | },
263 | "outputs": [
264 | {
265 | "name": "stdout",
266 | "output_type": "stream",
267 | "text": [
268 | "<_sre.SRE_Match object; span=(0, 5), match='Hello'>\n"
269 | ]
270 | }
271 | ],
272 | "source": [
273 | "a = re.search('Hello',test_string)\n",
274 | "print(a)"
275 | ]
276 | },
277 | {
278 | "cell_type": "markdown",
279 | "metadata": {},
280 | "source": [
281 | "** Some basic symbols**\n",
282 | "\n",
283 | "**`?`** \n",
284 | "\n",
285 | "The question mark indicates zero or one occurrences of the preceding element. For example, colou?r matches both \"color\" and \"colour\".\n",
286 | "\n",
287 | "**`\\*`**\n",
288 | "\n",
289 | "The asterisk indicates zero or more occurrences of the preceding element. For example, ab*c matches \"ac\", \"abc\", \"abbc\", \"abbbc\", and so on.\n",
290 | "\n",
291 | "**`\\+`**\t\n",
292 | "The plus sign indicates one or more occurrences of the preceding element. For example, ab+c matches \"abc\", \"abbc\", \"abbbc\", and so on, but not \"ac\".\n"
293 | ]
294 | },
295 | {
296 | "cell_type": "code",
297 | "execution_count": 43,
298 | "metadata": {
299 | "collapsed": false
300 | },
301 | "outputs": [
302 | {
303 | "name": "stdout",
304 | "output_type": "stream",
305 | "text": [
306 | "<_sre.SRE_Match object; span=(0, 2), match='He'>\n"
307 | ]
308 | }
309 | ],
310 | "source": [
311 | "a = re.search('\\w.',test_string)\n",
312 | "print(a)"
313 | ]
314 | },
315 | {
316 | "cell_type": "code",
317 | "execution_count": 44,
318 | "metadata": {
319 | "collapsed": false
320 | },
321 | "outputs": [
322 | {
323 | "name": "stdout",
324 | "output_type": "stream",
325 | "text": [
326 | "<_sre.SRE_Match object; span=(0, 5), match='Hello'>\n"
327 | ]
328 | }
329 | ],
330 | "source": [
331 | "a = re.search('\\w*',test_string)\n",
332 | "print(a)"
333 | ]
334 | },
335 | {
336 | "cell_type": "markdown",
337 | "metadata": {},
338 | "source": [
339 | "### Exercises"
340 | ]
341 | },
342 | {
343 | "cell_type": "code",
344 | "execution_count": 45,
345 | "metadata": {
346 | "collapsed": true
347 | },
348 | "outputs": [],
349 | "source": [
350 | "string = '''In 2016, we are learning Text Analytics in Data Science 101\n",
351 | " by scraping http://datatau.com'''"
352 | ]
353 | },
354 | {
355 | "cell_type": "code",
356 | "execution_count": 46,
357 | "metadata": {
358 | "collapsed": false
359 | },
360 | "outputs": [],
361 | "source": [
362 | "string = \"In 2016, we are learning Text Analytics in Data Science 101 by scraping http://datatau.com\""
363 | ]
364 | },
365 | {
366 | "cell_type": "markdown",
367 | "metadata": {},
368 | "source": [
369 | "Write a regex to pick the numbers 2016 from string above."
370 | ]
371 | },
372 | {
373 | "cell_type": "code",
374 | "execution_count": null,
375 | "metadata": {
376 | "collapsed": true
377 | },
378 | "outputs": [],
379 | "source": []
380 | },
381 | {
382 | "cell_type": "markdown",
383 | "metadata": {},
384 | "source": [
385 | "Write a regex to pick the url link (http://xyz.com) from the string above "
386 | ]
387 | },
388 | {
389 | "cell_type": "code",
390 | "execution_count": null,
391 | "metadata": {
392 | "collapsed": true
393 | },
394 | "outputs": [],
395 | "source": []
396 | },
397 | {
398 | "cell_type": "markdown",
399 | "metadata": {},
400 | "source": [
401 | "## Lets get the date from our string"
402 | ]
403 | },
404 | {
405 | "cell_type": "code",
406 | "execution_count": 47,
407 | "metadata": {
408 | "collapsed": false
409 | },
410 | "outputs": [
411 | {
412 | "data": {
413 | "text/html": [
414 | "
\n",
415 | "
\n",
416 | " \n",
417 | "
\n",
418 | "
\n",
419 | "
title
\n",
420 | "
date
\n",
421 | "
\n",
422 | " \n",
423 | " \n",
424 | "
\n",
425 | "
0
\n",
426 | "
An Exploration of R, Yelp, and the Search for ...
\n",
427 | "
5 points by Rogerh91 6 hours ago | discuss
\n",
428 | "
\n",
429 | "
\n",
430 | "
1
\n",
431 | "
Deep Advances in Generative Modeling
\n",
432 | "
7 points by gwulfs 15 hours ago | 1 comment
\n",
433 | "
\n",
434 | "
\n",
435 | "
2
\n",
436 | "
Spark Pipelines: Elegant Yet Powerful
\n",
437 | "
3 points by aouyang1 9 hours ago | discuss
\n",
438 | "
\n",
439 | "
\n",
440 | "
3
\n",
441 | "
Shit VCs Say
\n",
442 | "
3 points by Argentum01 10 hours ago | discuss
\n",
443 | "
\n",
444 | "
\n",
445 | "
4
\n",
446 | "
Python, Machine Learning, and Language Wars
\n",
447 | "
4 points by pmigdal 17 hours ago | discuss
\n",
448 | "
\n",
449 | " \n",
450 | "
\n",
451 | "
"
452 | ],
453 | "text/plain": [
454 | " title \\\n",
455 | "0 An Exploration of R, Yelp, and the Search for ... \n",
456 | "1 Deep Advances in Generative Modeling \n",
457 | "2 Spark Pipelines: Elegant Yet Powerful \n",
458 | "3 Shit VCs Say \n",
459 | "4 Python, Machine Learning, and Language Wars \n",
460 | "\n",
461 | " date \n",
462 | "0 5 points by Rogerh91 6 hours ago | discuss \n",
463 | "1 7 points by gwulfs 15 hours ago | 1 comment \n",
464 | "2 3 points by aouyang1 9 hours ago | discuss \n",
465 | "3 3 points by Argentum01 10 hours ago | discuss \n",
466 | "4 4 points by pmigdal 17 hours ago | discuss "
467 | ]
468 | },
469 | "execution_count": 47,
470 | "metadata": {},
471 | "output_type": "execute_result"
472 | }
473 | ],
474 | "source": [
475 | "df.head()"
476 | ]
477 | },
478 | {
479 | "cell_type": "code",
480 | "execution_count": 48,
481 | "metadata": {
482 | "collapsed": false
483 | },
484 | "outputs": [
485 | {
486 | "data": {
487 | "text/html": [
488 | "