├── Date.md └── README.md /Date.md: -------------------------------------------------------------------------------- 1 | 2019-10-11 Update 1 Project 2 | 3 | **Detectron2** 4 | 5 | - intro: Detectron2 is FAIR's next-generation research platform for object detection and segmentation. 6 | - [blog](https://ai.facebook.com/blog/-detectron2-a-pytorch-based-modular-object-detection-library-/) 7 | - code: 8 | 9 | 2019-09-06 Update 1 paper 10 | 11 | **Imbalance Problems in Object Detection: A Review** 12 | 13 | - intro: under review at TPAMI 14 | - arXiv: 15 | 16 | 2019-08-14 Update 1 paper 17 | 18 | **Recent Advances in Deep Learning for Object Detection** 19 | 20 | - intro: From 2013 (OverFeat) to 2019 (DetNAS) 21 | - arXiv: 22 | 23 | 2019-07-24 Update 1 paper 24 | 25 | **A Survey of Deep Learning-based Object Detection** 26 | 27 | - intro:From Fast R-CNN to NAS-FPN 28 | 29 | - arXiv: 30 | 31 | 2019-05-17 Update 1 paper 32 | 33 | **Object Detection in 20 Years: A Survey** 34 | 35 | - intro:This work has been submitted to the IEEE TPAMI for possible publication 36 | - arXiv: 37 | 38 | 2019-04-05 Update 1 paper 39 | 40 | **Comparison Network for One-Shot Conditional Object Detection** 41 | 42 | - arXiv: https://arxiv.org/abs/1904.02317 43 | 44 | 2019-03-05 Update 1 paper 45 | 46 | **Feature Selective Anchor-Free Module for Single-Shot Object Detection** 47 | 48 | - intro: CVPR 2019 49 | - arXiv: https://arxiv.org/abs/1903.00621 50 | 51 | 2019-02-15 Update 3 detection toolbox 52 | 53 | - [Detectron(FAIR)](https://github.com/facebookresearch/Detectron): Detectron is Facebook AI Research's software system that implements state-of-the-art object detection algorithms, including [Mask R-CNN](https://arxiv.org/abs/1703.06870). It is written in Python and powered by the [Caffe2](https://github.com/caffe2/caffe2) deep learning framework. 54 | 55 | - [maskrcnn-benchmark(FAIR)](https://github.com/facebookresearch/maskrcnn-benchmark): Fast, modular reference implementation of Instance Segmentation and Object Detection algorithms in PyTorch. 56 | 57 | - [mmdetection(SenseTime&CUHK)](https://github.com/open-mmlab/mmdetection): mmdetection is an open source object detection toolbox based on PyTorch. It is a part of the open-mmlab project developed by [Multimedia Laboratory, CUHK](http://mmlab.ie.cuhk.edu.hk/). 58 | 59 | 2019-01-25 Update 5 papers 60 | 61 | **3D Backbone Network for 3D Object Detection** 62 | 63 | - arXiv: https://arxiv.org/abs/1901.08373 64 | 65 | **Object Detection based on Region Decomposition and Assembly** 66 | 67 | - intro: AAAI 2019 68 | 69 | - arXiv: https://arxiv.org/abs/1901.08225 70 | 71 | **Bottom-up Object Detection by Grouping Extreme and Center Points** 72 | 73 | - intro: one stage 43.2% on COCO test-dev 74 | - arXiv: https://arxiv.org/abs/1901.08043 75 | - github: https://github.com/xingyizhou/ExtremeNet 76 | 77 | **ORSIm Detector: A Novel Object Detection Framework in Optical Remote Sensing Imagery Using Spatial-Frequency Channel Features** 78 | 79 | - intro: IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 80 | 81 | - arXiv: https://arxiv.org/abs/1901.07925 82 | 83 | **Consistent Optimization for Single-Shot Object Detection** 84 | 85 | - intro: improves RetinaNet from 39.1 AP to 40.1 AP on COCO datase 86 | 87 | - arXiv: https://arxiv.org/abs/1901.06563 88 | 89 | 2019-01-15 Update 1 paper 90 | 91 | **Learning Pairwise Relationship for Multi-object Detection in Crowded Scenes** 92 | 93 | - arXiv: https://arxiv.org/abs/1901.03796 94 | 95 | 2019-01-14 Update 1 paper 96 | 97 | **RetinaMask: Learning to predict masks improves state-of-the-art single-shot detection for free** 98 | 99 | - arXiv: https://arxiv.org/abs/1901.03353 100 | - github: https://github.com/chengyangfu/retinamask 101 | 102 | 2019-01-12 Update 1 paper 103 | 104 | **Region Proposal by Guided Anchoring** 105 | 106 | - intro: CUHK - SenseTime Joint Lab 107 | - arXiv: https://arxiv.org/abs/1901.03278 108 | 109 | 2019-01-08 Update 1 paper 110 | 111 | **Scale-Aware Trident Networks for Object Detection** 112 | 113 | - intro: mAP of **48.4** on the COCO dataset 114 | - arXiv: https://arxiv.org/abs/1901.01892 115 | 116 | 2019-01-04 Update 1 paper 117 | 118 | **Large-Scale Object Detection of Images from Network Cameras in Variable Ambient Lighting Conditions** 119 | 120 | - arXiv: https://arxiv.org/abs/1812.11901 121 | 122 | 2018-12-13 Update 1 paper 123 | 124 | **Strong-Weak Distribution Alignment for Adaptive Object Detection** 125 | 126 | - arXiv: https://arxiv.org/abs/1812.04798 127 | 128 | 2018-12-05 Update 3 papers 129 | 130 | **AutoFocus: Efficient Multi-Scale Inference** 131 | 132 | - intro: AutoFocus obtains an **mAP of 47.9%** (68.3% at 50% overlap) on the **COCO test-dev** set while processing **6.4 images per second on a Titan X (Pascal) GPU** 133 | - arXiv: https://arxiv.org/abs/1812.01600 134 | 135 | **NOTE-RCNN: NOise Tolerant Ensemble RCNN for Semi-Supervised Object Detection** 136 | 137 | - intro: Google Could 138 | - arXiv: https://arxiv.org/abs/1812.00124 139 | 140 | **SPLAT: Semantic Pixel-Level Adaptation Transforms for Detection** 141 | 142 | - intro: UC Berkeley 143 | - arXiv: https://arxiv.org/abs/1812.00929 144 | 145 | 2018-12-04 Update 10 papers 146 | 147 | **Grid R-CNN** 148 | 149 | - intro: SenseTime 150 | - arXiv: https://arxiv.org/abs/1811.12030 151 | 152 | **Deformable ConvNets v2: More Deformable, Better Results** 153 | 154 | - intro: Microsoft Research Asia 155 | 156 | - arXiv: https://arxiv.org/abs/1811.11168 157 | 158 | **Anchor Box Optimization for Object Detection** 159 | 160 | - intro: Microsoft Research 161 | - arXiv: https://arxiv.org/abs/1812.00469 162 | 163 | **Efficient Coarse-to-Fine Non-Local Module for the Detection of Small Objects** 164 | 165 | - intro: https://arxiv.org/abs/1811.12152 166 | 167 | **NOTE-RCNN: NOise Tolerant Ensemble RCNN for Semi-Supervised Object Detection** 168 | 169 | - arXiv: https://arxiv.org/abs/1812.00124 170 | 171 | **Learning RoI Transformer for Detecting Oriented Objects in Aerial Images** 172 | 173 | - arXiv: https://arxiv.org/abs/1812.00155 174 | 175 | **Integrated Object Detection and Tracking with Tracklet-Conditioned Detection** 176 | 177 | - intro: Microsoft Research Asia 178 | - arXiv: https://arxiv.org/abs/1811.11167 179 | 180 | **Deep Regionlets: Blended Representation and Deep Learning for Generic Object Detection** 181 | 182 | - arXiv: https://arxiv.org/abs/1811.11318 183 | 184 | **Gradient Harmonized Single-stage Detector** 185 | 186 | - intro: AAAI 2019 187 | - arXiv: https://arxiv.org/abs/1811.05181 188 | 189 | **CFENet: Object Detection with Comprehensive Feature Enhancement Module** 190 | 191 | - intro: ACCV 2018 192 | - github: https://github.com/qijiezhao/CFENet 193 | 194 | 2018-11-19 195 | 196 | **DeRPN: Taking a further step toward more general object detection** 197 | 198 | - intro: AAAI 2019 199 | - arXiv: https://arxiv.org/abs/1811.06700 200 | - github: https://github.com/HCIILAB/DeRPN 201 | 202 | 2018-11-14 203 | 204 | **M2Det: A Single-Shot Object Detector based on Multi-Level Feature Pyramid Network** 205 | 206 | - intro: AAAI 2019 207 | - arXiv: https://arxiv.org/abs/1811.04533 208 | - github: https://github.com/qijiezhao/M2Det 209 | 210 | 2018-10-31 211 | 212 | **Hybrid Knowledge Routed Modules for Large-scale Object Detection** 213 | 214 | - intro: Sun Yat-Sen University & Huawei Noah’s Ark Lab 215 | - arXiv: https://arxiv.org/abs/1810.12681 216 | - github: https://github.com/chanyn/HKRM 217 | 218 | 2018-10-08 219 | 220 | **Weakly Supervised Object Detection in Artworks** 221 | 222 | - intro: ECCV 2018 Workshop Computer Vision for Art Analysis 223 | - arXiv: https://arxiv.org/abs/1810.02569 224 | - Datasets: https://wsoda.telecom-paristech.fr/downloads/dataset/IconArt_v1.zip 225 | 226 | **Cross-Domain Weakly-Supervised Object Detection through Progressive Domain Adaptation** 227 | 228 | - intro: CVPR 2018 229 | - arXiv: https://arxiv.org/abs/1803.11365 230 | - homepage: https://naoto0804.github.io/cross_domain_detection/ 231 | - paper: http://openaccess.thecvf.com/content_cvpr_2018/html/Inoue_Cross-Domain_Weakly-Supervised_Object_CVPR_2018_paper.html 232 | - github: https://github.com/naoto0804/cross-domain-detection 233 | 234 | 2018-09-26 235 | 236 | **Object Detection from Scratch with Deep Supervision** 237 | 238 | - intro: This is an extended version of DSOD 239 | - arXiv: https://arxiv.org/abs/1809.09294 240 | 241 | 2018-09-25 242 | 243 | **《Softer-NMS: Rethinking Bounding Box Regression for Accurate Object Detection》** 244 | 245 | - intro: CMU & Face++ 246 | - arXiv: https://arxiv.org/abs/1809.08545 247 | - github: https://github.com/yihui-he/softer-NMS 248 | 249 | 2018-09-21 250 | 251 | **《Receptive Field Block Net for Accurate and Fast Object Detection》** 252 | 253 | - intro: ECCV 2018 254 | - arXiv: [https://arxiv.org/abs/1711.07767](https://arxiv.org/abs/1711.07767) 255 | - github: [https://github.com/ruinmessi/RFBNet](https://github.com/ruinmessi/RFBNet) 256 | 257 | 2018-09-11 258 | 259 | **《Recent Advances in Object Detection in the Age of Deep Convolutional Neural Networks》** 260 | 261 | - intro: awesome 262 | 263 | 264 | - arXiv: https://arxiv.org/abs/1809.03193 265 | 266 | 2018-09-10 267 | 268 | **《Deep Learning for Generic Object Detection: A Survey》** 269 | 270 | - intro: Submitted to IJCV 2018 271 | - arXiv: https://arxiv.org/abs/1809.02165 272 | 273 | 2018-08-27 274 | 275 | **Deep Feature Pyramid Reconfiguration for Object Detection** 276 | 277 | - intro: ECCV 2018 278 | - arXiv: https://arxiv.org/abs/1808.07993 279 | 280 | 2018-08-17 281 | 282 | **R3-Net: A Deep Network for Multi-oriented Vehicle Detection in Aerial Images and Videos** 283 | 284 | - arxiv: https://arxiv.org/abs/1808.05560 285 | - youtube: https://youtu.be/xCYD-tYudN0 286 | 287 | 2018-08-14 288 | 289 | **《Unsupervised Hard Example Mining from Videos for Improved Object Detection》** 290 | 291 | - intro: ECCV 2018 292 | - arXiv: https://arxiv.org/abs/1808.04285 293 | 294 | 2018-08-10 295 | 296 | **CornerNet: Detecting Objects as Paired Keypoints** 297 | 298 | - intro: ECCV 2018 299 | - arXiv: https://arxiv.org/abs/1808.01244 300 | 301 | 2018-07-30 302 | 303 | **Acquisition of Localization Confidence for Accurate Object Detection** 304 | 305 | - intro: ECCV 2018 306 | - arXiv: https://arxiv.org/abs/1807.11590 307 | - github: https://github.com/vacancy/PreciseRoIPooling -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # object-detection 2 | 3 | [TOC] 4 | 5 | This is a list of awesome articles about object detection. If you want to read the paper according to time, you can refer to [Date](Date.md). 6 | 7 | - R-CNN 8 | - Fast R-CNN 9 | - Faster R-CNN 10 | - Mask R-CNN 11 | - Light-Head R-CNN 12 | - Cascade R-CNN 13 | - SPP-Net 14 | - YOLO 15 | - YOLOv2 16 | - YOLOv3 17 | - YOLT 18 | - SSD 19 | - DSSD 20 | - FSSD 21 | - ESSD 22 | - MDSSD 23 | - Pelee 24 | - Fire SSD 25 | - R-FCN 26 | - FPN 27 | - DSOD 28 | - RetinaNet 29 | - MegDet 30 | - RefineNet 31 | - DetNet 32 | - SSOD 33 | - CornerNet 34 | - M2Det 35 | - 3D Object Detection 36 | - ZSD(Zero-Shot Object Detection) 37 | - OSD(One-Shot object Detection) 38 | - Weakly Supervised Object Detection 39 | - Softer-NMS 40 | - 2018 41 | - 2019 42 | - Other 43 | 44 | Based on handong1587's github: https://handong1587.github.io/deep_learning/2015/10/09/object-detection.html 45 | 46 | # Survey 47 | 48 | **Imbalance Problems in Object Detection: A Review** 49 | 50 | - intro: under review at TPAMI 51 | - arXiv: 52 | 53 | **Recent Advances in Deep Learning for Object Detection** 54 | 55 | - intro: From 2013 (OverFeat) to 2019 (DetNAS) 56 | - arXiv: 57 | 58 | **A Survey of Deep Learning-based Object Detection** 59 | 60 | - intro:From Fast R-CNN to NAS-FPN 61 | 62 | - arXiv: 63 | 64 | **Object Detection in 20 Years: A Survey** 65 | 66 | - intro:This work has been submitted to the IEEE TPAMI for possible publication 67 | - arXiv: 68 | 69 | **《Recent Advances in Object Detection in the Age of Deep Convolutional Neural Networks》** 70 | 71 | - intro: awesome 72 | 73 | 74 | - arXiv: https://arxiv.org/abs/1809.03193 75 | 76 | **《Deep Learning for Generic Object Detection: A Survey》** 77 | 78 | - intro: Submitted to IJCV 2018 79 | - arXiv: https://arxiv.org/abs/1809.02165 80 | 81 | # Papers&Codes 82 | 83 | ## R-CNN 84 | 85 | **Rich feature hierarchies for accurate object detection and semantic segmentation** 86 | 87 | - intro: R-CNN 88 | - arxiv: 89 | - supp: 90 | - slides: 91 | - slides: 92 | - github: 93 | - notes: 94 | - caffe-pr("Make R-CNN the Caffe detection example"): 95 | 96 | ## Fast R-CNN 97 | 98 | **Fast R-CNN** 99 | 100 | - arxiv: 101 | - slides: 102 | - github: 103 | - github(COCO-branch): 104 | - webcam demo: 105 | - notes: 106 | - notes: 107 | - github("Fast R-CNN in MXNet"): 108 | - github: 109 | - github: 110 | - github: 111 | 112 | **A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection** 113 | 114 | - intro: CVPR 2017 115 | - arxiv: 116 | - paper: 117 | - github(Caffe): 118 | 119 | ## Faster R-CNN 120 | 121 | **Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks** 122 | 123 | - intro: NIPS 2015 124 | - arxiv: 125 | - gitxiv: 126 | - slides: 127 | - github(official, Matlab): 128 | - github(Caffe): 129 | - github(MXNet): 130 | - github(PyTorch--recommend): 131 | - github: 132 | - github(Torch):: 133 | - github(Torch):: 134 | - github(TensorFlow): 135 | - github(TensorFlow): 136 | - github(C++ demo): 137 | - github(Keras): 138 | - github: 139 | - github(C++): 140 | 141 | **R-CNN minus R** 142 | 143 | - intro: BMVC 2015 144 | - arxiv: 145 | 146 | **Faster R-CNN in MXNet with distributed implementation and data parallelization** 147 | 148 | - github: 149 | 150 | **Contextual Priming and Feedback for Faster R-CNN** 151 | 152 | - intro: ECCV 2016. Carnegie Mellon University 153 | - paper: 154 | - poster: 155 | 156 | **An Implementation of Faster RCNN with Study for Region Sampling** 157 | 158 | - intro: Technical Report, 3 pages. CMU 159 | - arxiv: 160 | - github: 161 | - github: https://github.com/ruotianluo/pytorch-faster-rcnn 162 | 163 | **Interpretable R-CNN** 164 | 165 | - intro: North Carolina State University & Alibaba 166 | - keywords: AND-OR Graph (AOG) 167 | - arxiv: 168 | 169 | **Domain Adaptive Faster R-CNN for Object Detection in the Wild** 170 | 171 | - intro: CVPR 2018. ETH Zurich & ESAT/PSI 172 | - arxiv: 173 | 174 | ## Mask R-CNN 175 | 176 | - arxiv: 177 | - github(Keras): https://github.com/matterport/Mask_RCNN 178 | - github(Caffe2): https://github.com/facebookresearch/Detectron 179 | - github(Pytorch): 180 | - github(MXNet): https://github.com/TuSimple/mx-maskrcnn 181 | - github(Chainer): https://github.com/DeNA/Chainer_Mask_R-CNN 182 | 183 | ## Light-Head R-CNN 184 | 185 | **Light-Head R-CNN: In Defense of Two-Stage Object Detector** 186 | 187 | - intro: Tsinghua University & Megvii Inc 188 | - arxiv: 189 | - github(offical): https://github.com/zengarden/light_head_rcnn 190 | - github: 191 | 192 | ## Cascade R-CNN 193 | 194 | **Cascade R-CNN: Delving into High Quality Object Detection** 195 | 196 | - arxiv: 197 | - github: 198 | 199 | ## SPP-Net 200 | 201 | **Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition** 202 | 203 | - intro: ECCV 2014 / TPAMI 2015 204 | - arxiv: 205 | - github: 206 | - notes: 207 | 208 | **DeepID-Net: Deformable Deep Convolutional Neural Networks for Object Detection** 209 | 210 | - intro: PAMI 2016 211 | - intro: an extension of R-CNN. box pre-training, cascade on region proposals, deformation layers and context representations 212 | - project page: 213 | - arxiv: 214 | 215 | **Object Detectors Emerge in Deep Scene CNNs** 216 | 217 | - intro: ICLR 2015 218 | - arxiv: 219 | - paper: 220 | - paper: 221 | - slides: 222 | 223 | **segDeepM: Exploiting Segmentation and Context in Deep Neural Networks for Object Detection** 224 | 225 | - intro: CVPR 2015 226 | - project(code+data): 227 | - arxiv: 228 | - github: 229 | 230 | **Object Detection Networks on Convolutional Feature Maps** 231 | 232 | - intro: TPAMI 2015 233 | - keywords: NoC 234 | - arxiv: 235 | 236 | **Improving Object Detection with Deep Convolutional Networks via Bayesian Optimization and Structured Prediction** 237 | 238 | - arxiv: 239 | - slides: 240 | - github: 241 | 242 | **DeepBox: Learning Objectness with Convolutional Networks** 243 | 244 | - keywords: DeepBox 245 | - arxiv: 246 | - github: 247 | 248 | ## YOLO 249 | 250 | **You Only Look Once: Unified, Real-Time Object Detection** 251 | 252 | [![img](https://camo.githubusercontent.com/e69d4118b20a42de4e23b9549f9a6ec6dbbb0814/687474703a2f2f706a7265646469652e636f6d2f6d656469612f66696c65732f6461726b6e65742d626c61636b2d736d616c6c2e706e67)](https://camo.githubusercontent.com/e69d4118b20a42de4e23b9549f9a6ec6dbbb0814/687474703a2f2f706a7265646469652e636f6d2f6d656469612f66696c65732f6461726b6e65742d626c61636b2d736d616c6c2e706e67) 253 | 254 | - arxiv: 255 | - code: 256 | - github: 257 | - blog: 258 | - slides: 259 | - reddit: 260 | - github: 261 | - github: 262 | - github: 263 | - github: 264 | - github: 265 | - github: 266 | - github: 267 | - github: 268 | 269 | **darkflow - translate darknet to tensorflow. Load trained weights, retrain/fine-tune them using tensorflow, export constant graph def to C++** 270 | 271 | - blog: 272 | - github: 273 | 274 | **Start Training YOLO with Our Own Data** 275 | 276 | [![img](https://camo.githubusercontent.com/2f99b692dd7ce47d7832385f3e8a6654e680d92a/687474703a2f2f6775616e6768616e2e696e666f2f626c6f672f656e2f77702d636f6e74656e742f75706c6f6164732f323031352f31322f696d616765732d34302e6a7067)](https://camo.githubusercontent.com/2f99b692dd7ce47d7832385f3e8a6654e680d92a/687474703a2f2f6775616e6768616e2e696e666f2f626c6f672f656e2f77702d636f6e74656e742f75706c6f6164732f323031352f31322f696d616765732d34302e6a7067) 277 | 278 | - intro: train with customized data and class numbers/labels. Linux / Windows version for darknet. 279 | - blog: 280 | - github: 281 | 282 | **YOLO: Core ML versus MPSNNGraph** 283 | 284 | - intro: Tiny YOLO for iOS implemented using CoreML but also using the new MPS graph API. 285 | - blog: 286 | - github: 287 | 288 | **TensorFlow YOLO object detection on Android** 289 | 290 | - intro: Real-time object detection on Android using the YOLO network with TensorFlow 291 | - github: 292 | 293 | **Computer Vision in iOS – Object Detection** 294 | 295 | - blog: 296 | - github: 297 | 298 | ## YOLOv2 299 | 300 | **YOLO9000: Better, Faster, Stronger** 301 | 302 | - arxiv: 303 | - code: https://pjreddie.com/darknet/yolov2/ 304 | - github(Chainer): 305 | - github(Keras): 306 | - github(PyTorch): 307 | - github(Tensorflow): 308 | - github(Windows): 309 | - github: 310 | - github: 311 | - github(TensorFlow): 312 | - github(Keras): 313 | - github(Keras): 314 | - github(TensorFlow): 315 | 316 | **darknet_scripts** 317 | 318 | - intro: Auxilary scripts to work with (YOLO) darknet deep learning famework. AKA -> How to generate YOLO anchors? 319 | - github: 320 | 321 | **Yolo_mark: GUI for marking bounded boxes of objects in images for training Yolo v2** 322 | 323 | - github: 324 | 325 | **LightNet: Bringing pjreddie's DarkNet out of the shadows** 326 | 327 | 328 | 329 | **YOLO v2 Bounding Box Tool** 330 | 331 | - intro: Bounding box labeler tool to generate the training data in the format YOLO v2 requires. 332 | - github: 333 | 334 | **Loss Rank Mining: A General Hard Example Mining Method for Real-time Detectors** 335 | 336 | - intro: **LRM** is the first hard example mining strategy which could fit YOLOv2 perfectly and make it better applied in series of real scenarios where both real-time rates and accurate detection are strongly demanded. 337 | - arxiv: https://arxiv.org/abs/1804.04606 338 | 339 | **Object detection at 200 Frames Per Second** 340 | 341 | - intro: faster than Tiny-Yolo-v2 342 | - arxiv: https://arxiv.org/abs/1805.06361 343 | 344 | **Event-based Convolutional Networks for Object Detection in Neuromorphic Cameras** 345 | 346 | - intro: YOLE--Object Detection in Neuromorphic Cameras 347 | - arxiv:https://arxiv.org/abs/1805.07931 348 | 349 | **OmniDetector: With Neural Networks to Bounding Boxes** 350 | 351 | - intro: a person detector on n fish-eye images of indoor scenes(NIPS 2018) 352 | - arxiv:https://arxiv.org/abs/1805.08503 353 | - datasets:https://gitlab.com/omnidetector/omnidetector 354 | 355 | ## YOLOv3 356 | 357 | **YOLOv3: An Incremental Improvement** 358 | 359 | - arxiv:https://arxiv.org/abs/1804.02767 360 | - paper:https://pjreddie.com/media/files/papers/YOLOv3.pdf 361 | - code: 362 | - github(Official):https://github.com/pjreddie/darknet 363 | - github:https://github.com/mystic123/tensorflow-yolo-v3 364 | - github:https://github.com/experiencor/keras-yolo3 365 | - github:https://github.com/qqwweee/keras-yolo3 366 | - github:https://github.com/marvis/pytorch-yolo3 367 | - github:https://github.com/ayooshkathuria/pytorch-yolo-v3 368 | - github:https://github.com/ayooshkathuria/YOLO_v3_tutorial_from_scratch 369 | - github:https://github.com/eriklindernoren/PyTorch-YOLOv3 370 | - github:https://github.com/ultralytics/yolov3 371 | - github:https://github.com/BobLiu20/YOLOv3_PyTorch 372 | - github:https://github.com/andy-yun/pytorch-0.4-yolov3 373 | - github:https://github.com/DeNA/PyTorch_YOLOv3 374 | 375 | ## YOLT 376 | 377 | **You Only Look Twice: Rapid Multi-Scale Object Detection In Satellite Imagery** 378 | 379 | - intro: Small Object Detection 380 | 381 | 382 | - arxiv:https://arxiv.org/abs/1805.09512 383 | - github:https://github.com/avanetten/yolt 384 | 385 | ## SSD 386 | 387 | **SSD: Single Shot MultiBox Detector** 388 | 389 | [![img](https://camo.githubusercontent.com/ad9b147ed3a5f48ffb7c3540711c15aa04ce49c6/687474703a2f2f7777772e63732e756e632e6564752f7e776c69752f7061706572732f7373642e706e67)](https://camo.githubusercontent.com/ad9b147ed3a5f48ffb7c3540711c15aa04ce49c6/687474703a2f2f7777772e63732e756e632e6564752f7e776c69752f7061706572732f7373642e706e67) 390 | 391 | - intro: ECCV 2016 Oral 392 | - arxiv: 393 | - paper: 394 | - slides: [http://www.cs.unc.edu/%7Ewliu/papers/ssd_eccv2016_slide.pdf](http://www.cs.unc.edu/~wliu/papers/ssd_eccv2016_slide.pdf) 395 | - github(Official): 396 | - video: 397 | - github: 398 | - github: 399 | - github: 400 | - github: 401 | - github: 402 | - github(Caffe): 403 | 404 | **What's the diffience in performance between this new code you pushed and the previous code? #327** 405 | 406 | 407 | 408 | ## DSSD 409 | 410 | **DSSD : Deconvolutional Single Shot Detector** 411 | 412 | - intro: UNC Chapel Hill & Amazon Inc 413 | - arxiv: 414 | - github: 415 | - github: 416 | - demo: 417 | 418 | **Enhancement of SSD by concatenating feature maps for object detection** 419 | 420 | - intro: rainbow SSD (R-SSD) 421 | - arxiv: 422 | 423 | **Context-aware Single-Shot Detector** 424 | 425 | - keywords: CSSD, DiCSSD, DeCSSD, effective receptive fields (ERFs), theoretical receptive fields (TRFs) 426 | - arxiv: 427 | 428 | **Feature-Fused SSD: Fast Detection for Small Objects** 429 | 430 | 431 | 432 | ## FSSD 433 | 434 | **FSSD: Feature Fusion Single Shot Multibox Detector** 435 | 436 | 437 | 438 | **Weaving Multi-scale Context for Single Shot Detector** 439 | 440 | - intro: WeaveNet 441 | - keywords: fuse multi-scale information 442 | - arxiv: 443 | 444 | ## ESSD 445 | 446 | **Extend the shallow part of Single Shot MultiBox Detector via Convolutional Neural Network** 447 | 448 | 449 | 450 | **Tiny SSD: A Tiny Single-shot Detection Deep Convolutional Neural Network for Real-time Embedded Object Detection** 451 | 452 | 453 | 454 | ## MDSSD 455 | 456 | **MDSSD: Multi-scale Deconvolutional Single Shot Detector for small objects** 457 | 458 | - arxiv: https://arxiv.org/abs/1805.07009 459 | 460 | ## Pelee 461 | 462 | **Pelee: A Real-Time Object Detection System on Mobile Devices** 463 | 464 | https://github.com/Robert-JunWang/Pelee 465 | 466 | - intro: (ICLR 2018 workshop track) 467 | 468 | 469 | - arxiv: https://arxiv.org/abs/1804.06882 470 | - github: https://github.com/Robert-JunWang/Pelee 471 | 472 | ## Fire SSD 473 | 474 | **Fire SSD: Wide Fire Modules based Single Shot Detector on Edge Device** 475 | 476 | - intro:low cost, fast speed and high mAP on factor edge computing devices 477 | 478 | 479 | - arxiv:https://arxiv.org/abs/1806.05363 480 | 481 | ## R-FCN 482 | 483 | **R-FCN: Object Detection via Region-based Fully Convolutional Networks** 484 | 485 | - arxiv: 486 | - github: 487 | - github(MXNet): 488 | - github: 489 | - github: 490 | - github: 491 | - github: 492 | 493 | **R-FCN-3000 at 30fps: Decoupling Detection and Classification** 494 | 495 | 496 | 497 | **Recycle deep features for better object detection** 498 | 499 | - arxiv: 500 | 501 | ## FPN 502 | 503 | **Feature Pyramid Networks for Object Detection** 504 | 505 | - intro: Facebook AI Research 506 | - arxiv: 507 | 508 | **Action-Driven Object Detection with Top-Down Visual Attentions** 509 | 510 | - arxiv: 511 | 512 | **Beyond Skip Connections: Top-Down Modulation for Object Detection** 513 | 514 | - intro: CMU & UC Berkeley & Google Research 515 | - arxiv: 516 | 517 | **Wide-Residual-Inception Networks for Real-time Object Detection** 518 | 519 | - intro: Inha University 520 | - arxiv: 521 | 522 | **Attentional Network for Visual Object Detection** 523 | 524 | - intro: University of Maryland & Mitsubishi Electric Research Laboratories 525 | - arxiv: 526 | 527 | **Learning Chained Deep Features and Classifiers for Cascade in Object Detection** 528 | 529 | - keykwords: CC-Net 530 | - intro: chained cascade network (CC-Net). 81.1% mAP on PASCAL VOC 2007 531 | - arxiv: 532 | 533 | **DeNet: Scalable Real-time Object Detection with Directed Sparse Sampling** 534 | 535 | - intro: ICCV 2017 (poster) 536 | - arxiv: 537 | 538 | **Discriminative Bimodal Networks for Visual Localization and Detection with Natural Language Queries** 539 | 540 | - intro: CVPR 2017 541 | - arxiv: 542 | 543 | **Spatial Memory for Context Reasoning in Object Detection** 544 | 545 | - arxiv: 546 | 547 | **Accurate Single Stage Detector Using Recurrent Rolling Convolution** 548 | 549 | - intro: CVPR 2017. SenseTime 550 | - keywords: Recurrent Rolling Convolution (RRC) 551 | - arxiv: 552 | - github: 553 | 554 | **Deep Occlusion Reasoning for Multi-Camera Multi-Target Detection** 555 | 556 | 557 | 558 | **LCDet: Low-Complexity Fully-Convolutional Neural Networks for Object Detection in Embedded Systems** 559 | 560 | - intro: Embedded Vision Workshop in CVPR. UC San Diego & Qualcomm Inc 561 | - arxiv: 562 | 563 | **Point Linking Network for Object Detection** 564 | 565 | - intro: Point Linking Network (PLN) 566 | - arxiv: 567 | 568 | **Perceptual Generative Adversarial Networks for Small Object Detection** 569 | 570 | 571 | 572 | **Few-shot Object Detection** 573 | 574 | 575 | 576 | **Yes-Net: An effective Detector Based on Global Information** 577 | 578 | 579 | 580 | **SMC Faster R-CNN: Toward a scene-specialized multi-object detector** 581 | 582 | 583 | 584 | **Towards lightweight convolutional neural networks for object detection** 585 | 586 | 587 | 588 | **RON: Reverse Connection with Objectness Prior Networks for Object Detection** 589 | 590 | - intro: CVPR 2017 591 | - arxiv: 592 | - github: 593 | 594 | **Mimicking Very Efficient Network for Object Detection** 595 | 596 | - intro: CVPR 2017. SenseTime & Beihang University 597 | - paper: 598 | 599 | **Residual Features and Unified Prediction Network for Single Stage Detection** 600 | 601 | 602 | 603 | **Deformable Part-based Fully Convolutional Network for Object Detection** 604 | 605 | - intro: BMVC 2017 (oral). Sorbonne Universités & CEDRIC 606 | - arxiv: 607 | 608 | **Adaptive Feeding: Achieving Fast and Accurate Detections by Adaptively Combining Object Detectors** 609 | 610 | - intro: ICCV 2017 611 | - arxiv: 612 | 613 | **Recurrent Scale Approximation for Object Detection in CNN** 614 | 615 | - intro: ICCV 2017 616 | - keywords: Recurrent Scale Approximation (RSA) 617 | - arxiv: 618 | - github: 619 | 620 | ## DSOD 621 | 622 | **DSOD: Learning Deeply Supervised Object Detectors from Scratch** 623 | 624 | ![img](https://user-images.githubusercontent.com/3794909/28934967-718c9302-78b5-11e7-89ee-8b514e53e23c.png) 625 | 626 | - intro: ICCV 2017. Fudan University & Tsinghua University & Intel Labs China 627 | - arxiv: 628 | - github: 629 | - github:https://github.com/Windaway/DSOD-Tensorflow 630 | - github:https://github.com/chenyuntc/dsod.pytorch 631 | 632 | **Learning Object Detectors from Scratch with Gated Recurrent Feature Pyramids** 633 | 634 | - arxiv:https://arxiv.org/abs/1712.00886 635 | - github:https://github.com/szq0214/GRP-DSOD 636 | 637 | **Tiny-DSOD: Lightweight Object Detection for Resource-Restricted Usages** 638 | 639 | - intro: BMVC 2018 640 | - arXiv: https://arxiv.org/abs/1807.11013 641 | 642 | **Object Detection from Scratch with Deep Supervision** 643 | 644 | - intro: This is an extended version of DSOD 645 | - arXiv: https://arxiv.org/abs/1809.09294 646 | 647 | ## RetinaNet 648 | 649 | **Focal Loss for Dense Object Detection** 650 | 651 | - intro: ICCV 2017 Best student paper award. Facebook AI Research 652 | - keywords: RetinaNet 653 | - arxiv: 654 | 655 | **CoupleNet: Coupling Global Structure with Local Parts for Object Detection** 656 | 657 | - intro: ICCV 2017 658 | - arxiv: 659 | 660 | **Incremental Learning of Object Detectors without Catastrophic Forgetting** 661 | 662 | - intro: ICCV 2017. Inria 663 | - arxiv: 664 | 665 | **Zoom Out-and-In Network with Map Attention Decision for Region Proposal and Object Detection** 666 | 667 | 668 | 669 | **StairNet: Top-Down Semantic Aggregation for Accurate One Shot Detection** 670 | 671 | 672 | 673 | **Dynamic Zoom-in Network for Fast Object Detection in Large Images** 674 | 675 | 676 | 677 | **Zero-Annotation Object Detection with Web Knowledge Transfer** 678 | 679 | - intro: NTU, Singapore & Amazon 680 | - keywords: multi-instance multi-label domain adaption learning framework 681 | - arxiv: 682 | 683 | ## MegDet 684 | 685 | **MegDet: A Large Mini-Batch Object Detector** 686 | 687 | - intro: Peking University & Tsinghua University & Megvii Inc 688 | - arxiv: 689 | 690 | **Receptive Field Block Net for Accurate and Fast Object Detection** 691 | 692 | - intro: RFBNet 693 | - arxiv: 694 | - github: 695 | 696 | **An Analysis of Scale Invariance in Object Detection - SNIP** 697 | 698 | - arxiv: 699 | - github: 700 | 701 | **Feature Selective Networks for Object Detection** 702 | 703 | 704 | 705 | **Learning a Rotation Invariant Detector with Rotatable Bounding Box** 706 | 707 | - arxiv: 708 | - github: 709 | 710 | **Scalable Object Detection for Stylized Objects** 711 | 712 | - intro: Microsoft AI & Research Munich 713 | - arxiv: 714 | 715 | **Learning Object Detectors from Scratch with Gated Recurrent Feature Pyramids** 716 | 717 | - arxiv: 718 | - github: 719 | 720 | **Deep Regionlets for Object Detection** 721 | 722 | - keywords: region selection network, gating network 723 | - arxiv: 724 | 725 | **Training and Testing Object Detectors with Virtual Images** 726 | 727 | - intro: IEEE/CAA Journal of Automatica Sinica 728 | - arxiv: 729 | 730 | **Large-Scale Object Discovery and Detector Adaptation from Unlabeled Video** 731 | 732 | - keywords: object mining, object tracking, unsupervised object discovery by appearance-based clustering, self-supervised detector adaptation 733 | - arxiv: 734 | 735 | **Spot the Difference by Object Detection** 736 | 737 | - intro: Tsinghua University & JD Group 738 | - arxiv: 739 | 740 | **Localization-Aware Active Learning for Object Detection** 741 | 742 | - arxiv: 743 | 744 | **Object Detection with Mask-based Feature Encoding** 745 | 746 | - arxiv: 747 | 748 | **LSTD: A Low-Shot Transfer Detector for Object Detection** 749 | 750 | - intro: AAAI 2018 751 | - arxiv: 752 | 753 | **Pseudo Mask Augmented Object Detection** 754 | 755 | 756 | 757 | **Revisiting RCNN: On Awakening the Classification Power of Faster RCNN** 758 | 759 | 760 | 761 | **Learning Region Features for Object Detection** 762 | 763 | - intro: Peking University & MSRA 764 | - arxiv: 765 | 766 | **Single-Shot Bidirectional Pyramid Networks for High-Quality Object Detection** 767 | 768 | - intro: Singapore Management University & Zhejiang University 769 | - arxiv: 770 | 771 | **Object Detection for Comics using Manga109 Annotations** 772 | 773 | - intro: University of Tokyo & National Institute of Informatics, Japan 774 | - arxiv: 775 | 776 | **Task-Driven Super Resolution: Object Detection in Low-resolution Images** 777 | 778 | - arxiv: 779 | 780 | **Transferring Common-Sense Knowledge for Object Detection** 781 | 782 | - arxiv: 783 | 784 | **Multi-scale Location-aware Kernel Representation for Object Detection** 785 | 786 | - intro: CVPR 2018 787 | - arxiv: 788 | - github: 789 | 790 | 791 | **Loss Rank Mining: A General Hard Example Mining Method for Real-time Detectors** 792 | 793 | - intro: National University of Defense Technology 794 | - arxiv: https://arxiv.org/abs/1804.04606 795 | 796 | **Robust Physical Adversarial Attack on Faster R-CNN Object Detector** 797 | 798 | - arxiv: https://arxiv.org/abs/1804.05810 799 | 800 | ## RefineNet 801 | 802 | **Single-Shot Refinement Neural Network for Object Detection** 803 | 804 | - intro: CVPR 2018 805 | 806 | - arxiv: 807 | - github: 808 | - github: https://github.com/lzx1413/PytorchSSD 809 | - github: https://github.com/ddlee96/RefineDet_mxnet 810 | - github: https://github.com/MTCloudVision/RefineDet-Mxnet 811 | 812 | ## DetNet 813 | 814 | **DetNet: A Backbone network for Object Detection** 815 | 816 | - intro: Tsinghua University & Face++ 817 | - arxiv: https://arxiv.org/abs/1804.06215 818 | 819 | 820 | ## SSOD 821 | 822 | **Self-supervisory Signals for Object Discovery and Detection** 823 | 824 | - Google Brain 825 | - arxiv:https://arxiv.org/abs/1806.03370 826 | 827 | ## CornerNet 828 | 829 | **CornerNet: Detecting Objects as Paired Keypoints** 830 | 831 | - intro: ECCV 2018 832 | - arXiv: https://arxiv.org/abs/1808.01244 833 | - github: 834 | 835 | ## M2Det 836 | 837 | **M2Det: A Single-Shot Object Detector based on Multi-Level Feature Pyramid Network** 838 | 839 | - intro: AAAI 2019 840 | - arXiv: https://arxiv.org/abs/1811.04533 841 | - github: https://github.com/qijiezhao/M2Det 842 | 843 | ## 3D Object Detection 844 | 845 | **3D Backbone Network for 3D Object Detection** 846 | 847 | - arXiv: https://arxiv.org/abs/1901.08373 848 | 849 | **LMNet: Real-time Multiclass Object Detection on CPU using 3D LiDARs** 850 | 851 | - arxiv: https://arxiv.org/abs/1805.04902 852 | - github: https://github.com/CPFL/Autoware/tree/feature/cnn_lidar_detection 853 | 854 | 855 | ## ZSD(Zero-Shot Object Detection) 856 | 857 | **Zero-Shot Detection** 858 | 859 | - intro: Australian National University 860 | - keywords: YOLO 861 | - arxiv: 862 | 863 | **Zero-Shot Object Detection** 864 | 865 | - arxiv: https://arxiv.org/abs/1804.04340 866 | 867 | **Zero-Shot Object Detection: Learning to Simultaneously Recognize and Localize Novel Concepts** 868 | 869 | - arxiv: https://arxiv.org/abs/1803.06049 870 | 871 | **Zero-Shot Object Detection by Hybrid Region Embedding** 872 | 873 | - arxiv: https://arxiv.org/abs/1805.06157 874 | 875 | ## OSD(One-Shot Object Detection) 876 | 877 | **Comparison Network for One-Shot Conditional Object Detection** 878 | 879 | - arXiv: https://arxiv.org/abs/1904.02317 880 | 881 | **One-Shot Object Detection** 882 | 883 | RepMet: Representative-based metric learning for classification and one-shot object detection 884 | 885 | - intro: IBM Research AI 886 | - arxiv:https://arxiv.org/abs/1806.04728 887 | - github: TODO 888 | 889 | ## Weakly Supervised Object Detection 890 | 891 | **Weakly Supervised Object Detection in Artworks** 892 | 893 | - intro: ECCV 2018 Workshop Computer Vision for Art Analysis 894 | - arXiv: https://arxiv.org/abs/1810.02569 895 | - Datasets: https://wsoda.telecom-paristech.fr/downloads/dataset/IconArt_v1.zip 896 | 897 | **Cross-Domain Weakly-Supervised Object Detection through Progressive Domain Adaptation** 898 | 899 | - intro: CVPR 2018 900 | - arXiv: https://arxiv.org/abs/1803.11365 901 | - homepage: https://naoto0804.github.io/cross_domain_detection/ 902 | - paper: http://openaccess.thecvf.com/content_cvpr_2018/html/Inoue_Cross-Domain_Weakly-Supervised_Object_CVPR_2018_paper.html 903 | - github: https://github.com/naoto0804/cross-domain-detection 904 | 905 | ## Softer-NMS 906 | 907 | **《Softer-NMS: Rethinking Bounding Box Regression for Accurate Object Detection》** 908 | 909 | - intro: CMU & Face++ 910 | - arXiv: https://arxiv.org/abs/1809.08545 911 | - github: https://github.com/yihui-he/softer-NMS 912 | 913 | ## 2019 914 | 915 | **Feature Selective Anchor-Free Module for Single-Shot Object Detection** 916 | 917 | - intro: CVPR 2019 918 | 919 | - arXiv: https://arxiv.org/abs/1903.00621 920 | 921 | **Object Detection based on Region Decomposition and Assembly** 922 | 923 | - intro: AAAI 2019 924 | 925 | - arXiv: https://arxiv.org/abs/1901.08225 926 | 927 | **Bottom-up Object Detection by Grouping Extreme and Center Points** 928 | 929 | - intro: one stage 43.2% on COCO test-dev 930 | - arXiv: https://arxiv.org/abs/1901.08043 931 | - github: https://github.com/xingyizhou/ExtremeNet 932 | 933 | **ORSIm Detector: A Novel Object Detection Framework in Optical Remote Sensing Imagery Using Spatial-Frequency Channel Features** 934 | 935 | - intro: IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 936 | 937 | - arXiv: https://arxiv.org/abs/1901.07925 938 | 939 | **Consistent Optimization for Single-Shot Object Detection** 940 | 941 | - intro: improves RetinaNet from 39.1 AP to 40.1 AP on COCO datase 942 | 943 | - arXiv: https://arxiv.org/abs/1901.06563 944 | 945 | **Learning Pairwise Relationship for Multi-object Detection in Crowded Scenes** 946 | 947 | - arXiv: https://arxiv.org/abs/1901.03796 948 | 949 | **RetinaMask: Learning to predict masks improves state-of-the-art single-shot detection for free** 950 | 951 | - arXiv: https://arxiv.org/abs/1901.03353 952 | - github: https://github.com/chengyangfu/retinamask 953 | 954 | **Region Proposal by Guided Anchoring** 955 | 956 | - intro: CUHK - SenseTime Joint Lab 957 | - arXiv: https://arxiv.org/abs/1901.03278 958 | 959 | **Scale-Aware Trident Networks for Object Detection** 960 | 961 | - intro: mAP of **48.4** on the COCO dataset 962 | - arXiv: https://arxiv.org/abs/1901.01892 963 | 964 | ## 2018 965 | 966 | **Large-Scale Object Detection of Images from Network Cameras in Variable Ambient Lighting Conditions** 967 | 968 | - arXiv: https://arxiv.org/abs/1812.11901 969 | 970 | **Strong-Weak Distribution Alignment for Adaptive Object Detection** 971 | 972 | - arXiv: https://arxiv.org/abs/1812.04798 973 | 974 | **AutoFocus: Efficient Multi-Scale Inference** 975 | 976 | - intro: AutoFocus obtains an **mAP of 47.9%** (68.3% at 50% overlap) on the **COCO test-dev** set while processing **6.4 images per second on a Titan X (Pascal) GPU** 977 | - arXiv: https://arxiv.org/abs/1812.01600 978 | 979 | **NOTE-RCNN: NOise Tolerant Ensemble RCNN for Semi-Supervised Object Detection** 980 | 981 | - intro: Google Could 982 | - arXiv: https://arxiv.org/abs/1812.00124 983 | 984 | **SPLAT: Semantic Pixel-Level Adaptation Transforms for Detection** 985 | 986 | - intro: UC Berkeley 987 | - arXiv: https://arxiv.org/abs/1812.00929 988 | 989 | **Grid R-CNN** 990 | 991 | - intro: SenseTime 992 | - arXiv: https://arxiv.org/abs/1811.12030 993 | 994 | **Deformable ConvNets v2: More Deformable, Better Results** 995 | 996 | - intro: Microsoft Research Asia 997 | 998 | - arXiv: https://arxiv.org/abs/1811.11168 999 | 1000 | **Anchor Box Optimization for Object Detection** 1001 | 1002 | - intro: Microsoft Research 1003 | - arXiv: https://arxiv.org/abs/1812.00469 1004 | 1005 | **Efficient Coarse-to-Fine Non-Local Module for the Detection of Small Objects** 1006 | 1007 | - intro: https://arxiv.org/abs/1811.12152 1008 | 1009 | **NOTE-RCNN: NOise Tolerant Ensemble RCNN for Semi-Supervised Object Detection** 1010 | 1011 | - arXiv: https://arxiv.org/abs/1812.00124 1012 | 1013 | **Learning RoI Transformer for Detecting Oriented Objects in Aerial Images** 1014 | 1015 | - arXiv: https://arxiv.org/abs/1812.00155 1016 | 1017 | **Integrated Object Detection and Tracking with Tracklet-Conditioned Detection** 1018 | 1019 | - intro: Microsoft Research Asia 1020 | - arXiv: https://arxiv.org/abs/1811.11167 1021 | 1022 | **Deep Regionlets: Blended Representation and Deep Learning for Generic Object Detection** 1023 | 1024 | - arXiv: https://arxiv.org/abs/1811.11318 1025 | 1026 | **Gradient Harmonized Single-stage Detector** 1027 | 1028 | - intro: AAAI 2019 1029 | - arXiv: https://arxiv.org/abs/1811.05181 1030 | 1031 | **CFENet: Object Detection with Comprehensive Feature Enhancement Module** 1032 | 1033 | - intro: ACCV 2018 1034 | - github: https://github.com/qijiezhao/CFENet 1035 | 1036 | **DeRPN: Taking a further step toward more general object detection** 1037 | 1038 | - intro: AAAI 2019 1039 | - arXiv: https://arxiv.org/abs/1811.06700 1040 | - github: https://github.com/HCIILAB/DeRPN 1041 | 1042 | **Hybrid Knowledge Routed Modules for Large-scale Object Detection** 1043 | 1044 | - intro: Sun Yat-Sen University & Huawei Noah’s Ark Lab 1045 | - arXiv: https://arxiv.org/abs/1810.12681 1046 | - github: https://github.com/chanyn/HKRM 1047 | 1048 | **《Receptive Field Block Net for Accurate and Fast Object Detection》** 1049 | 1050 | - intro: ECCV 2018 1051 | - arXiv: [https://arxiv.org/abs/1711.07767](https://arxiv.org/abs/1711.07767) 1052 | - github: [https://github.com/ruinmessi/RFBNet](https://github.com/ruinmessi/RFBNet) 1053 | 1054 | **Deep Feature Pyramid Reconfiguration for Object Detection** 1055 | 1056 | - intro: ECCV 2018 1057 | - arXiv: https://arxiv.org/abs/1808.07993 1058 | 1059 | **Unsupervised Hard Example Mining from Videos for Improved Object Detection** 1060 | 1061 | - intro: ECCV 2018 1062 | - arXiv: https://arxiv.org/abs/1808.04285 1063 | 1064 | **Acquisition of Localization Confidence for Accurate Object Detection** 1065 | 1066 | - intro: ECCV 2018 1067 | - arXiv: https://arxiv.org/abs/1807.11590 1068 | - github: https://github.com/vacancy/PreciseRoIPooling 1069 | 1070 | **Toward Scale-Invariance and Position-Sensitive Region Proposal Networks** 1071 | 1072 | - intro: ECCV 2018 1073 | - arXiv: https://arxiv.org/abs/1807.09528 1074 | 1075 | **MetaAnchor: Learning to Detect Objects with Customized Anchors** 1076 | 1077 | - arxiv: https://arxiv.org/abs/1807.00980 1078 | 1079 | **Relation Network for Object Detection** 1080 | 1081 | - intro: CVPR 2018 1082 | - arxiv: https://arxiv.org/abs/1711.11575 1083 | - github:https://github.com/msracver/Relation-Networks-for-Object-Detection 1084 | 1085 | **Quantization Mimic: Towards Very Tiny CNN for Object Detection** 1086 | 1087 | - Tsinghua University1 & The Chinese University of Hong Kong2 &SenseTime3 1088 | - arxiv: https://arxiv.org/abs/1805.02152 1089 | 1090 | **Learning Rich Features for Image Manipulation Detection** 1091 | 1092 | - intro: CVPR 2018 Camera Ready 1093 | - arxiv: https://arxiv.org/abs/1805.04953 1094 | 1095 | **SNIPER: Efficient Multi-Scale Training** 1096 | 1097 | - arxiv:https://arxiv.org/abs/1805.09300 1098 | - github:https://github.com/mahyarnajibi/SNIPER 1099 | 1100 | **Soft Sampling for Robust Object Detection** 1101 | 1102 | - intro: the robustness of object detection under the presence of missing annotations 1103 | - arxiv:https://arxiv.org/abs/1806.06986 1104 | 1105 | **Cost-effective Object Detection: Active Sample Mining with Switchable Selection Criteria** 1106 | 1107 | - intro: TNNLS 2018 1108 | - arxiv:https://arxiv.org/abs/1807.00147 1109 | - code: http://kezewang.com/codes/ASM_ver1.zip 1110 | 1111 | ## Other 1112 | 1113 | **R3-Net: A Deep Network for Multi-oriented Vehicle Detection in Aerial Images and Videos** 1114 | 1115 | - arxiv: https://arxiv.org/abs/1808.05560 1116 | - youtube: https://youtu.be/xCYD-tYudN0 1117 | 1118 | # Detection Toolbox 1119 | 1120 | - [Detectron(FAIR)](https://github.com/facebookresearch/Detectron): Detectron is Facebook AI Research's software system that implements state-of-the-art object detection algorithms, including [Mask R-CNN](https://arxiv.org/abs/1703.06870). It is written in Python and powered by the [Caffe2](https://github.com/caffe2/caffe2) deep learning framework. 1121 | - [Detectron2](https://github.com/facebookresearch/detectron2): Detectron2 is FAIR's next-generation research platform for object detection and segmentation. 1122 | - [maskrcnn-benchmark(FAIR)](https://github.com/facebookresearch/maskrcnn-benchmark): Fast, modular reference implementation of Instance Segmentation and Object Detection algorithms in PyTorch. 1123 | - [mmdetection(SenseTime&CUHK)](https://github.com/open-mmlab/mmdetection): mmdetection is an open source object detection toolbox based on PyTorch. It is a part of the open-mmlab project developed by [Multimedia Laboratory, CUHK](http://mmlab.ie.cuhk.edu.hk/). 1124 | --------------------------------------------------------------------------------