├── .gitignore
├── HKUST.jpg
├── LICENCE
├── PPCM.png
├── README.md
├── dialogGPT_discr.py
├── dm.png
├── download_data.sh
├── evaluate.py
├── experiment_runner
├── run_classifier.sh
├── run_evaluate.sh
└── run_evaluate_WD.sh
├── get_example.py
├── interact.py
├── interact_adapter.py
├── main.py
├── metric
├── bleu.py
├── dist_score.py
├── lm_score.py
├── multi-bleu.perl
├── sentiment_classifiers.py
├── text_classifier.py
└── torchMoji
│ ├── .gitignore
│ ├── .travis.yml
│ ├── LICENSE
│ ├── README.md
│ ├── data
│ ├── .gitkeep
│ ├── Olympic
│ │ └── raw.pickle
│ ├── PsychExp
│ │ └── raw.pickle
│ ├── SCv1
│ │ └── raw.pickle
│ ├── SCv2-GEN
│ │ └── raw.pickle
│ ├── SE0714
│ │ └── raw.pickle
│ ├── SS-Twitter
│ │ └── raw.pickle
│ ├── SS-Youtube
│ │ └── raw.pickle
│ ├── emoji_codes.json
│ └── kaggle-insults
│ │ └── raw.pickle
│ ├── emoji_overview.png
│ ├── examples
│ ├── .gitkeep
│ ├── README.md
│ ├── __init__.py
│ ├── create_twitter_vocab.py
│ ├── dataset_split.py
│ ├── encode_texts.py
│ ├── example_helper.py
│ ├── finetune_insults_chain-thaw.py
│ ├── finetune_semeval_class-avg_f1.py
│ ├── finetune_youtube_last.py
│ ├── score_texts_emojis.py
│ ├── text_emojize.py
│ ├── tokenize_dataset.py
│ └── vocab_extension.py
│ ├── model
│ ├── .gitkeep
│ └── vocabulary.json
│ ├── scripts
│ ├── analyze_all_results.py
│ ├── analyze_results.py
│ ├── calculate_coverages.py
│ ├── convert_all_datasets.py
│ ├── download_weights.py
│ ├── finetune_dataset.py
│ └── results
│ │ └── .gitkeep
│ ├── setup.py
│ ├── tests
│ ├── test_finetuning.py
│ ├── test_helper.py
│ ├── test_sentence_tokenizer.py
│ ├── test_tokenizer.py
│ └── test_word_generator.py
│ └── torchmoji
│ ├── .gitkeep
│ ├── __init__.py
│ ├── attlayer.py
│ ├── class_avg_finetuning.py
│ ├── create_vocab.py
│ ├── filter_input.py
│ ├── filter_utils.py
│ ├── finetuning.py
│ ├── global_variables.py
│ ├── lstm.py
│ ├── model_def.py
│ ├── sentence_tokenizer.py
│ ├── tokenizer.py
│ └── word_generator.py
├── models
├── heads.py
├── pplm.py
├── pytorch_pretrained_bert
│ ├── __init__.py
│ ├── __main__.py
│ ├── convert_gpt2_checkpoint_to_pytorch.py
│ ├── convert_openai_checkpoint_to_pytorch.py
│ ├── convert_tf_checkpoint_to_pytorch.py
│ ├── convert_transfo_xl_checkpoint_to_pytorch.py
│ ├── file_utils.py
│ ├── modeling.py
│ ├── modeling_adapter.py
│ ├── modeling_gpt2.py
│ ├── modeling_openai.py
│ ├── modeling_transfo_xl.py
│ ├── modeling_transfo_xl_utilities.py
│ ├── optimization.py
│ ├── optimization_openai.py
│ ├── tokenization.py
│ ├── tokenization_gpt2.py
│ ├── tokenization_openai.py
│ └── tokenization_transfo_xl.py
└── wd.py
├── pytorch-logo-dark.png
├── requirements.txt
├── scorer.py
├── train_score.py
├── train_supervised_adapter.py
└── utils
├── helper.py
├── torchtext_text_classification.py
└── utils_sample.py
/.gitignore:
--------------------------------------------------------------------------------
1 | .idea
2 | venv
3 | **/__pycache__/
4 |
5 | data
6 | human_evaluation
7 | models/dialoGPT
8 | models/discriminators
9 | results
10 |
--------------------------------------------------------------------------------
/HKUST.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/andreamad8/PPCM/e5bef1bbb70907a3d65de3225a00e4af9104d4a8/HKUST.jpg
--------------------------------------------------------------------------------
/LICENCE:
--------------------------------------------------------------------------------
1 |
2 | MIT License
3 |
4 | Copyright (c) 2020 Zhaojiang Lin
5 |
6 | Permission is hereby granted, free of charge, to any person obtaining a copy
7 | of this software and associated documentation files (the "Software"), to deal
8 | in the Software without restriction, including without limitation the rights
9 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 | copies of the Software, and to permit persons to whom the Software is
11 | furnished to do so, subject to the following conditions:
12 |
13 | The above copyright notice and this permission notice shall be included in all
14 | copies or substantial portions of the Software.
15 |
16 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 | SOFTWARE.
--------------------------------------------------------------------------------
/PPCM.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/andreamad8/PPCM/e5bef1bbb70907a3d65de3225a00e4af9104d4a8/PPCM.png
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Plug-and-Play Conversational Models
2 |
[](https://opensource.org/licenses/MIT)
3 |
4 |
5 |
6 |
7 | This is the implementation of the paper:
8 |
9 | **Plug-and-Play Conversational Models**. [**Andrea Madotto**](https://andreamad8.github.io), Etzuko Ishii, [**Zhaojiang Lin**](https://zlinao.github.io/), [**Sumanth Dathathri**](https://dathath.github.io/), Pascale Fung [[PDF]](https://www.aclweb.org/anthology/2020.findings-emnlp.219/) **EMNLP2020** (findings)
10 |
11 | If you use any source codes or datasets included in this toolkit in your work, please cite the following paper. The bibtex is listed below:
12 |
13 | @inproceedings{madotto2020plug,
14 | title={Plug-and-Play Conversational Models},
15 | author={Madotto, Andrea and Ishii, Etsuko and Lin, Zhaojiang and Dathathri, Sumanth and Fung, Pascale},
16 | booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings},
17 | pages={2422--2433},
18 | year={2020}
19 | }
20 |
21 |
22 | ## Abstract
23 | There has been considerable progress made towards conversational models that generate coherent
24 | and fluent responses; however, this often involves training large language models on large dialogue datasets, such as Reddit.
25 | These large conversational models provide little control over the generated responses, and this control is further limited in the absence of annotated conversational datasets for attribute specific generation
26 | that can be used for fine-tuning the model. In this paper, we first propose and evaluate plug-and-play methods
27 | for controllable response generation, which does not require
28 | dialogue specific datasets and does not rely on fine-tuning a large model.
29 | While effective, the decoding procedure induces considerable computational overhead,
30 | rendering the conversational model unsuitable for interactive usage.
31 | To overcome this, we introduce an approach that does not require
32 | further computation at decoding time, while also does not require any fine-tuning of a large language model. We demonstrate, through extensive automatic and human evaluation, a high degree of
33 | control over the generated conversational responses with regard to multiple
34 | desired attributes, while being fluent.
35 |
36 | ## Plug-and-Play Conversational Models (PPCM)
37 |
38 |
39 |
40 |
41 | ## Basic Usage
42 |
43 | ### Dependencies
44 | Create a `python3.6` virtual environment and run `pip install -r requirements.txt`.
45 |
46 | ### Discriminator Training
47 | ```
48 | python dialogGPT_discr.py --save_model --dataset sentiment --cached --epochs 100
49 | python dialogGPT_discr.py --save_model --dataset daily_dialogue_act --cached --epochs 100
50 | python dialogGPT_discr.py --save_model --dataset TC_AG_NEWS --cached --epochs 50
51 | python dialogGPT_discr.py --save_model --dataset TC_SogouNews --cached --epochs 50
52 | python dialogGPT_discr.py --save_model --dataset TC_DBpedia --cached --epochs 10
53 | python dialogGPT_discr.py --save_model --dataset TC_YahooAnswers --cached --epochs 10
54 | ```
55 | ### Run PPLM
56 | By omitting the `--evaluate` flag, you can run PPLM in an interactive mode.
57 | ```
58 | python main.py -D AG_NEWS --label_class 0 --length 30 --num_samples 10 --evaluate --verbose --all_starter --wd
59 | python main.py -D AG_NEWS --label_class 1 --length 30 --num_samples 10 --evaluate --verbose --all_starter --wd
60 | python main.py -D AG_NEWS --label_class 2 --length 30 --num_samples 10 --evaluate --verbose --all_starter --wd
61 | python main.py -D AG_NEWS --label_class 3 --length 30 --num_samples 10 --evaluate --verbose --all_starter --wd
62 | python main.py -D sentiment --label_class 3 --length 30 --num_samples 10 --evaluate --verbose --all_starter
63 | python main.py -D sentiment --label_class 2 --length 30 --num_samples 10 --evaluate --verbose --all_starter
64 | python main.py -D daily_dialogue_act --label_class 1 --length 30 --num_samples 10 --evaluate --verbose --all_starter
65 | ```
66 |
67 | ### Run Adapter
68 | ```
69 | python train_supervised_adapter.py --dataset SENT --label very_negative --iter 75 --lr 6.25e-4
70 | python train_supervised_adapter.py --dataset SENT --label very_positive --iter 25
71 | python train_supervised_adapter.py --dataset QUEST --label question --iter 25
72 | python train_supervised_adapter.py --dataset TOPI --label Business --iter 25
73 | python train_supervised_adapter.py --dataset TOPI --label SciTech --iter 25
74 | python train_supervised_adapter.py --dataset TOPI --label Sports --iter 25
75 | ```
76 |
77 |
78 |
79 | ## Reproducibility
80 |
81 | You can **simply run** `./download_data.sh` to download and extract all required files, or you can perform the required actions manually, by following the steps outlined bellow:
82 |
83 | ### Manual setup
84 |
85 | ***Dataset***
86 |
87 | Download the [**datasets**](https://drive.google.com/file/d/1LvAsTzJWIEZsb5orG4vvJz0376mH27l2/)
88 | ```console
89 | ❱❱❱ unzip data.zip
90 | ```
91 |
92 | ***DialoGPT***
93 |
94 | Download [**dialoGPT**](https://drive.google.com/file/d/1V8juN486jpeqPhKrGeuJ8WcpaCAy4D3-/view?usp=sharing)
95 | ```console
96 | ❱❱❱ unzip dialoGPT.zip
97 | ❱❱❱ mv dialiGPT models
98 | ```
99 | ***Discriminators***
100 |
101 | Download the [**discriminators**](https://drive.google.com/file/d/1IzbfGOKkbbEXaoyVxBI0kD_bWODKjVpn/view?usp=sharing)
102 | ```console
103 | ❱❱❱ unzip discriminators.zip
104 | ❱❱❱ mv discriminators models
105 | ```
106 |
107 | ***Scorers***
108 |
109 | Download the [**scorers**](https://drive.google.com/file/d/1rxgYyYEpWVH0qd2uxJQxC5uVIaApJMMf/view?usp=sharing)
110 | ```console
111 | ❱❱❱ unzip scorers.zip
112 | ❱❱❱ mv scorers models
113 | ```
114 |
115 | ***Reproducibility***
116 |
117 | Download the [**generated responses**](https://drive.google.com/file/d/1gZmaQ94kQmf1-N04LmW7rN-gOrt-Sa46/view?usp=sharing)
118 | ```console
119 | ❱❱❱ unzip evaluate.zip
120 | ❱❱❱ mv evaluate results
121 | ❱❱❱ python evaluate.py
122 | ```
123 | In each folder you can find response generated by PPLM using multple styles. This are use to train each of the adapter using ```train_supervised_adapter.py```.
124 |
125 | Download the [**Human Evaluation Score**](https://drive.google.com/file/d/1BEtFR694-8x61_-iANr2TMVck8QRqkA4/view?usp=sharing)
126 | ```console
127 | ❱❱❱ unzip human_evaluation.zip
128 | ```
129 | here you can find the jupiter notebook to replicate the human evaluation results and the human judgment scores.
130 |
131 | ***Run***
132 | Check the experiment_runner folder to see how to run the generation.
133 |
134 | ## Toxicity
135 | For researcher working on abusive language, we have also responses generated using a toxic classifer. We can release it upon request exclusively for research purposes.
136 |
137 |
138 |
139 | ## Acknowledgement
140 | We would like to thanks the [**MLC**](http://mlcollective.org/) for the feedback on the earlystage of the work, and expecially [Jason Yosinski](http://yosinski.com/). This repository is implemented base on [**Huggingface**](https://github.com/huggingface/transfer-learning-conv-ai)
141 |
142 |
143 |
144 |
145 |
146 |
--------------------------------------------------------------------------------
/dm.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/andreamad8/PPCM/e5bef1bbb70907a3d65de3225a00e4af9104d4a8/dm.png
--------------------------------------------------------------------------------
/download_data.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | wget --load-cookies /tmp/cookies.txt "https://docs.google.com/uc?export=download&confirm=$(wget --quiet --save-cookies /tmp/cookies.txt --keep-session-cookies --no-check-certificate 'https://docs.google.com/uc?export=download&id=1LvAsTzJWIEZsb5orG4vvJz0376mH27l2' -O- | sed -rn 's/.*confirm=([0-9A-Za-z_]+).*/\1\n/p')&id=1LvAsTzJWIEZsb5orG4vvJz0376mH27l2" -O data.zip && rm -rf /tmp/cookies.txt
4 | unzip data.zip
5 | rm data.zip
6 |
7 | wget --load-cookies /tmp/cookies.txt "https://docs.google.com/uc?export=download&confirm=$(wget --quiet --save-cookies /tmp/cookies.txt --keep-session-cookies --no-check-certificate 'https://docs.google.com/uc?export=download&id=1V8juN486jpeqPhKrGeuJ8WcpaCAy4D3-' -O- | sed -rn 's/.*confirm=([0-9A-Za-z_]+).*/\1\n/p')&id=1V8juN486jpeqPhKrGeuJ8WcpaCAy4D3-" -O dialoGPT.zip && rm -rf /tmp/cookies.txt
8 | unzip dialoGPT.zip
9 | mv dialoGPT models
10 | rm dialoGPT.zip
11 |
12 | wget --load-cookies /tmp/cookies.txt "https://docs.google.com/uc?export=download&confirm=$(wget --quiet --save-cookies /tmp/cookies.txt --keep-session-cookies --no-check-certificate 'https://docs.google.com/uc?export=download&id=1IzbfGOKkbbEXaoyVxBI0kD_bWODKjVpn ' -O- | sed -rn 's/.*confirm=([0-9A-Za-z_]+).*/\1\n/p')&id=1IzbfGOKkbbEXaoyVxBI0kD_bWODKjVpn" -O discriminators.zip && rm -rf /tmp/cookies.txt
13 | unzip discriminators.zip
14 | mv discriminators models
15 | rm discriminators.zip
16 |
17 | wget --load-cookies /tmp/cookies.txt "https://docs.google.com/uc?export=download&confirm=$(wget --quiet --save-cookies /tmp/cookies.txt --keep-session-cookies --no-check-certificate 'https://docs.google.com/uc?export=download&id=1rxgYyYEpWVH0qd2uxJQxC5uVIaApJMMf ' -O- | sed -rn 's/.*confirm=([0-9A-Za-z_]+).*/\1\n/p')&id=1rxgYyYEpWVH0qd2uxJQxC5uVIaApJMMf" -O scorers.zip && rm -rf /tmp/cookies.txt
18 | unzip scorers.zip
19 | mv scorers models
20 | rm scorers.zip
21 |
22 | wget --load-cookies /tmp/cookies.txt "https://docs.google.com/uc?export=download&confirm=$(wget --quiet --save-cookies /tmp/cookies.txt --keep-session-cookies --no-check-certificate 'https://docs.google.com/uc?export=download&id=1gZmaQ94kQmf1-N04LmW7rN-gOrt-Sa46 ' -O- | sed -rn 's/.*confirm=([0-9A-Za-z_]+).*/\1\n/p')&id=1gZmaQ94kQmf1-N04LmW7rN-gOrt-Sa46" -O evaluate.zip && rm -rf /tmp/cookies.txt
23 | unzip evaluate.zip
24 | mv evaluate results
25 | rm evaluate.zip
26 | python evaluate.py
27 |
28 | wget --load-cookies /tmp/cookies.txt "https://docs.google.com/uc?export=download&confirm=$(wget --quiet --save-cookies /tmp/cookies.txt --keep-session-cookies --no-check-certificate 'https://docs.google.com/uc?export=download&id=1BEtFR694-8x61_-iANr2TMVck8QRqkA4 ' -O- | sed -rn 's/.*confirm=([0-9A-Za-z_]+).*/\1\n/p')&id=1BEtFR694-8x61_-iANr2TMVck8QRqkA4" -O human_evaluation.zip && rm -rf /tmp/cookies.txt
29 | unzip human_evaluation.zip
30 | rm human_evaluation.zip
--------------------------------------------------------------------------------
/evaluate.py:
--------------------------------------------------------------------------------
1 | from tabulate import tabulate
2 | tabulate.PRESERVE_WHITESPACE = True
3 | from utils.helper import cut_seq_to_eos, parse_prefixes, get_name
4 | from utils.helper import EOS_ID, print_loss_matplotlib
5 | from utils.utils_sample import scorer
6 | from sklearn.model_selection import ParameterGrid
7 | from models.pplm import latent_perturb
8 | from models.wd import weight_decoder
9 | import os
10 | import numpy as np
11 | import jsonlines
12 |
13 | def make_header(args,id_starter,knowledge):
14 | str_title = ""
15 | str_title += "===================================================\n"
16 | str_title += f"Model={args.model_size} Window={args.window_length} Iteration={args.num_iterations} Step_size={args.stepsize}\n"
17 | str_title += "===================================================\n"
18 | name_experiment = f"Iter={args.num_iterations}_Step={args.stepsize}_Start={id_starter}_W={args.window_length}"
19 | if(knowledge):
20 | str_title += f"Knowledge={knowledge}\n"
21 | str_title += "===================================================\n"
22 | knol = knowledge.replace(" ","_")
23 | name_experiment = f"Iter={args.num_iterations}_Know={knol}_Step={args.stepsize}_Start={id_starter}_W={args.window_length}"
24 | return str_title, name_experiment
25 |
26 | def logger_conv_ent(args,conv,enc,id_starter,logger,class2idx,classifier,knowledge=None,gold=None):
27 | str_title, name_experiment = make_header(args,id_starter,knowledge)
28 | acc_original = []
29 | acc_pplm = []
30 | for turn in conv:
31 | if(turn['speaker']=="PPLM"):
32 | str_title += "===================================================\n"
33 | str_title += "PPLM\n"
34 | str_title += "===================================================\n"
35 | hypotesis, acc_pplm, plots_array = scorer(args,turn,classifier,enc,class2idx,knowledge,plot=False,gold=gold)
36 | str_title += tabulate(hypotesis, headers=['Id', 'Loss','Dist','Label', 'BLEU/F1','Text'], tablefmt='simple',floatfmt=".2f",colalign=("center","center","center","center","left"))
37 | str_title += "\n"
38 | if(args.verbose):
39 | print(str_title)
40 | else:
41 | print_loss_matplotlib(plots_array,loss_original,str_title,logger,name=name_experiment)
42 | elif(turn['speaker']=="DGPT"):
43 | str_title += "===================================================\n"
44 | str_title += "DGPT\n"
45 | str_title += "===================================================\n"
46 | if(not args.bag_of_words):
47 | hypotesis_original, acc_original, _ = scorer(args,turn,classifier,enc,class2idx,knowledge,gold=gold)
48 | str_title += tabulate(hypotesis_original, headers=['Id','Loss','Dist','Label', 'BLEU/F1','Text'], tablefmt='simple',floatfmt=".2f",colalign=("center","center","center","center","left"))
49 | str_title += "\n"
50 | loss_original = hypotesis_original[0][1]
51 | else:
52 | hypotesis_original = [[i, enc.decode(cut_seq_to_eos(t))] for i, t in enumerate(turn['text'])]
53 | str_title += tabulate(hypotesis_original, headers=['Id','Text'], tablefmt='orgtbl')
54 | loss_original = 0
55 | str_title += "===================================================\n"
56 | else: ## human case
57 | str_title += f"{turn['speaker']} >>> {turn['text']}\n"
58 | loss_original = 0
59 |
60 | return acc_pplm, acc_original, hypotesis, hypotesis_original
61 |
62 |
63 | def evaluate(args,model,enc,classifier,entailment,task_ent,class2idx,param_grid,device,logger):
64 | if(entailment):
65 | list_starters = parse_prefixes(args,entailment=True,task=task_ent)
66 | else:
67 | list_starters = parse_prefixes(args,tokenizer=enc,seed=args.seed)
68 | for param in list(ParameterGrid(param_grid)):
69 | args.stepsize = param["steps"]
70 | args.num_iterations = param["iter"]
71 | args.window_length = param["window"]
72 | print("===================================================")
73 | print(f"Model={args.model_size} Discrim={args.discrim} Window={args.window_length} Iteration={args.num_iterations} Step_size={args.stepsize}")
74 | print("===================================================")
75 | global_acc_original, global_acc_PPLM = [], []
76 | lab = class2idx[args.label_class].replace(" ","_").replace("/","")
77 | base_path = f"results/evaluate/{args.discrim}_class_{lab}/"
78 | name = get_name(args,base_path,class2idx)
79 | mode = 'w'
80 | if os.path.exists(name):
81 | num_lines = sum(1 for line in open(name,'r'))
82 | list_starters = list_starters[num_lines:]
83 | mode = 'a'
84 | with jsonlines.open(get_name(args,base_path,class2idx), mode=mode) as writer:
85 | for id_starter, starter in enumerate(list_starters):
86 | conversation = []
87 | for t in starter["conversation"]:
88 | conversation.append({"speaker":"human", "text":t})
89 |
90 | history = starter["conversation"]
91 | context_tokens = sum([enc.encode(h) + [EOS_ID] for h in history],[])
92 |
93 | if(args.wd):
94 | context_tokens = [context_tokens]
95 | original_sentence, perturb_sentence, _, loss, _ = weight_decoder(model=model, enc=enc,
96 | args=args, context=context_tokens,
97 | device=device,repetition_penalty=args.repetition_penalty,
98 | classifier=classifier.classifier_head,knowledge=starter["knowledge"])
99 | else:
100 | context_tokens = [context_tokens for _ in range(args.num_samples)]
101 | original_sentence, perturb_sentence, _, loss, _ = latent_perturb(model=model, enc=enc,
102 | args=args, context=context_tokens,
103 | device=device,repetition_penalty=args.repetition_penalty,
104 | classifier=classifier.classifier_head,knowledge=starter["knowledge"])
105 | conversation.append({"speaker":"DGPT","text":original_sentence.tolist()})
106 | conversation.append({"speaker":"PPLM","text":perturb_sentence.tolist(),"loss":loss})
107 | acc_pplm, acc_original, hypotesis, hypotesis_original = logger_conv_ent(args,conversation,enc,id_starter,logger,class2idx=class2idx,classifier=classifier,knowledge=starter["knowledge"],gold=starter["gold"])
108 | global_acc_PPLM.append(acc_pplm)
109 | global_acc_original.append(acc_original)
110 | writer.write({"acc":{"DGPT":acc_original,"PPLM":acc_pplm}, "hyp":{"DGPT":hypotesis_original,"PPLM":hypotesis},"conversation":starter})
111 |
112 |
113 | print(f"Global Acc original:{np.mean(global_acc_original)} Acc PPLM:{np.mean(global_acc_PPLM)}")
114 | print()
115 | print()
--------------------------------------------------------------------------------
/experiment_runner/run_classifier.sh:
--------------------------------------------------------------------------------
1 | ## TRAIN the head
2 | CUDA_VISIBLE_DEVICES=4 python dialogGPT_discr.py --save_model --dataset sentiment --cached --epochs 100 > results/discriminator_training/sentiment_new.txt
3 | CUDA_VISIBLE_DEVICES=4 python dialogGPT_discr.py --save_model --dataset daily_dialogue_act --cached --epochs 100 > results/discriminator_training/daily_dialogue_act_new.txt
4 | CUDA_VISIBLE_DEVICES=4 python dialogGPT_discr.py --save_model --dataset empathetic_dialogue --cached --epochs 100 > results/discriminator_training/empathetic_dialogue_new.txt# CUDA_VISIBLE_DEVICES=4 python dialogGPT_discr.py --save_model --dataset TC_AG_NEWS --cached --epochs 50 > results/discriminator_training/TC_AG_NEWS_new.txt
5 |
6 | ## TRAIN the scorer
7 | CUDA_VISIBLE_DEVICES=0 python train_score.py --dataset AmazonReviewFull > results/discriminator_training/Amazon5.txt
8 | CUDA_VISIBLE_DEVICES=3 python train_score.py --dataset TC_AG_NEWS > results/discriminator_training/BERT_TEST_AG_NEWS.txt
9 |
10 |
--------------------------------------------------------------------------------
/experiment_runner/run_evaluate.sh:
--------------------------------------------------------------------------------
1 | # ## very negative
2 | # # DialGPT + PPLM
3 | CUDA_VISIBLE_DEVICES=1 python main.py -D sentiment --label_class 3 --length 30 --num_samples 10 --evaluate --verbose --sample_starter 10
4 |
5 | # ## very positive
6 | # # DialGPT
7 | # # DialGPT + PPLM
8 | CUDA_VISIBLE_DEVICES=1 python main.py -D sentiment --label_class 2 --length 30 --num_samples 10 --evaluate --verbose --sample_starter 10
9 |
10 | # ## Daily Dialogue ACT class=1 Question
11 | # # DialGPT
12 | # # DialGPT + PPLM
13 | CUDA_VISIBLE_DEVICES=1 python main.py -D daily_dialogue_act --label_class 1 --length 30 --num_samples 10 --evaluate --verbose --sample_starter 10
14 |
15 | # ## Text Classficiation
16 | # # DialGPT
17 | # # DialGPT + PPLM
18 | CUDA_VISIBLE_DEVICES=1 python main.py -D AG_NEWS --label_class 0 --length 30 --num_samples 10 --evaluate --verbose --sample_starter 10
19 | CUDA_VISIBLE_DEVICES=1 python main.py -D AG_NEWS --label_class 1 --length 30 --num_samples 10 --evaluate --verbose --sample_starter 10
20 | CUDA_VISIBLE_DEVICES=1 python main.py -D AG_NEWS --label_class 2 --length 30 --num_samples 10 --evaluate --verbose --sample_starter 10
21 | CUDA_VISIBLE_DEVICES=1 python main.py -D AG_NEWS --label_class 3 --length 30 --num_samples 10 --evaluate --verbose --sample_starter 10
22 |
23 |
--------------------------------------------------------------------------------
/experiment_runner/run_evaluate_WD.sh:
--------------------------------------------------------------------------------
1 | ## very negative
2 | # DialGPT + WD
3 | CUDA_VISIBLE_DEVICES=1 python main.py -D sentiment --label_class 3 --length 30 --num_samples 10 --evaluate --verbose --sample_starter 10 --wd
4 |
5 | ## very positive
6 | # DialGPT
7 | # DialGPT + WD
8 | CUDA_VISIBLE_DEVICES=1 python main.py -D sentiment --label_class 2 --length 30 --num_samples 10 --evaluate --verbose --sample_starter 10 --wd
9 |
10 | ## Daily Dialogue ACT class=1 Question
11 | # DialGPT
12 | # DialGPT + WD
13 | CUDA_VISIBLE_DEVICES=1 python main.py -D daily_dialogue_act --label_class 1 --length 30 --num_samples 10 --evaluate --verbose --sample_starter 10 --wd
14 |
15 | ## Text Classficiation
16 | # DialGPT
17 | # DialGPT + WD
18 | CUDA_VISIBLE_DEVICES=1 python main.py -D AG_NEWS --label_class 0 --length 30 --num_samples 10 --evaluate --verbose --sample_starter 10 --wd
19 | CUDA_VISIBLE_DEVICES=1 python main.py -D AG_NEWS --label_class 1 --length 30 --num_samples 10 --evaluate --verbose --sample_starter 10 --wd
20 | CUDA_VISIBLE_DEVICES=1 python main.py -D AG_NEWS --label_class 2 --length 30 --num_samples 10 --evaluate --verbose --sample_starter 10 --wd
21 | CUDA_VISIBLE_DEVICES=1 python main.py -D AG_NEWS --label_class 3 --length 30 --num_samples 10 --evaluate --verbose --sample_starter 10 --wd
--------------------------------------------------------------------------------
/interact.py:
--------------------------------------------------------------------------------
1 | from tabulate import tabulate
2 | tabulate.PRESERVE_WHITESPACE = True
3 | from utils.helper import EOS_ID
4 | from models.pplm import latent_perturb
5 | from utils.utils_sample import scorer
6 | import torch.nn.functional as F
7 | import torch
8 |
9 |
10 | def top_k_logits(logits, k, probs=False):
11 | """
12 | Masks everything but the k top entries as -infinity (1e10).
13 | Used to mask logits such that e^-infinity -> 0 won't contribute to the
14 | sum of the denominator.
15 | """
16 | if k == 0:
17 | return logits
18 | else:
19 | values = torch.topk(logits, k)[0]
20 | batch_mins = values[:, -1].view(-1, 1).expand_as(logits)
21 | if probs:
22 | return torch.where(logits < batch_mins, torch.ones_like(logits) * 0.0, logits)
23 | return torch.where(logits < batch_mins, torch.ones_like(logits) * -1e10, logits)
24 |
25 | def sample(model, args, classifier, context=None, past=None, device='cuda',
26 | sample=True, repetition_penalty=1.0):
27 | output = torch.tensor(context, device=device, dtype=torch.long) if context else None
28 | output_response = output.new_zeros([output.size(0),0])
29 | stopped = [0 for _ in range(output.size(0))]
30 | for i in range(args.length):
31 |
32 | if past is None and output is not None:
33 | prev = output[:, -1:]
34 | _, past = model(output[:, :-1])
35 |
36 | logits, past = model(prev, past=past)
37 |
38 | logits = logits[:, -1, :] / args.temperature # + SmallConst
39 | for i_o, o_ in enumerate(output):
40 | for token_idx in set(o_.tolist()):
41 | if logits[i_o, token_idx] < 0:
42 | logits[i_o, token_idx] *= repetition_penalty
43 | else:
44 | logits[i_o, token_idx] /= repetition_penalty
45 |
46 | logits = top_k_logits(logits, k=args.top_k) # + SmallConst
47 | log_probs = F.softmax(logits, dim=-1)
48 |
49 | if sample:
50 | prev = torch.multinomial(log_probs, num_samples=1)
51 | else:
52 | _, prev = torch.topk(log_probs, k=1, dim=-1)
53 |
54 | output = prev if output is None else torch.cat((output, prev), dim=1) # update output
55 | output_response = torch.cat((output_response, prev), dim=1)
56 |
57 | for i_p, p in enumerate(prev.tolist()):
58 | if(p[0]) == EOS_ID:
59 | stopped[i_p] = 1
60 |
61 | if(all(x == 1 for x in stopped)): break
62 |
63 | return output_response
64 |
65 |
66 |
67 | def interact(args,model,enc,classifier,class2idx,speaker,device,logger):
68 | history = []
69 | while True:
70 | raw_text = input("USR >>> ")
71 | while not raw_text:
72 | print('Prompt should not be empty!')
73 | raw_text = input("USR >>>")
74 | history.append(raw_text)
75 |
76 | context_tokens = sum([enc.encode(h) + [EOS_ID] for h in history],[])
77 | context_tokens = [context_tokens for _ in range(args.num_samples)]
78 |
79 |
80 | if(speaker=="PPLM"):
81 | original_sentence, perturb_sentence, _, loss, _ = latent_perturb(model=model, enc=enc,
82 | args=args, context=context_tokens,
83 | device=device,repetition_penalty=args.repetition_penalty,
84 | classifier=classifier.classifier_head)
85 | spk_turn = {"text":perturb_sentence.tolist()}
86 | else:
87 | original_sentence = sample(model=model,args=args, context=context_tokens, device=device,
88 | classifier=classifier.classifier_head, repetition_penalty=args.repetition_penalty,
89 | )
90 | spk_turn = {"text":original_sentence.tolist()}
91 | hypotesis, _, _ = scorer(args,spk_turn,classifier,enc,class2idx,knowledge=None,plot=False)
92 | text = hypotesis[0][-1]
93 |
94 | print(f"SYS >>> {text}")
95 | history.append(text)
96 | history = history[-(2*args.max_history+1):]
--------------------------------------------------------------------------------
/interact_adapter.py:
--------------------------------------------------------------------------------
1 | from tabulate import tabulate
2 | tabulate.PRESERVE_WHITESPACE = True
3 | from utils.helper import load_classifier
4 | from utils.helper import EOS_ID
5 | from utils.utils_sample import scorer
6 | import torch.nn.functional as F
7 | import torch
8 | from nltk import tokenize
9 |
10 | #CUDA_VISIBLE_DEVICES=2 python main.py -D sentiment --label_class 3 --length 30 --num_samples 1 --interact --verbose --speaker DGPT --load_check_point_adapter runs/SENT_very_negative_Mar30_13-59-53/pytorch_model.bin
11 |
12 | def top_k_logits(logits, k, probs=False):
13 | """
14 | Masks everything but the k top entries as -infinity (1e10).
15 | Used to mask logits such that e^-infinity -> 0 won't contribute to the
16 | sum of the denominator.
17 | """
18 | if k == 0:
19 | return logits
20 | else:
21 | values = torch.topk(logits, k)[0]
22 | batch_mins = values[:, -1].view(-1, 1).expand_as(logits)
23 | if probs:
24 | return torch.where(logits < batch_mins, torch.ones_like(logits) * 0.0, logits)
25 | return torch.where(logits < batch_mins, torch.ones_like(logits) * -1e10, logits)
26 |
27 | def sample(model, args, context=None, past=None, device='cuda',
28 | sample=True, repetition_penalty=1.0):
29 | output = torch.tensor(context, device=device, dtype=torch.long) if context else None
30 | output_response = output.new_zeros([output.size(0),0])
31 | stopped = [0 for _ in range(output.size(0))]
32 | for i in range(args.length):
33 |
34 | if past is None and output is not None:
35 | prev = output[:, -1:]
36 | _, past = model(output[:, :-1])
37 |
38 | logits, past = model(prev, past=past)
39 |
40 | logits = logits[:, -1, :] / args.temperature # + SmallConst
41 | for i_o, o_ in enumerate(output):
42 | for token_idx in set(o_.tolist()):
43 | if logits[i_o, token_idx] < 0:
44 | logits[i_o, token_idx] *= repetition_penalty
45 | else:
46 | logits[i_o, token_idx] /= repetition_penalty
47 |
48 | logits = top_k_logits(logits, k=args.top_k) # + SmallConst
49 | log_probs = F.softmax(logits, dim=-1)
50 |
51 | if sample:
52 | prev = torch.multinomial(log_probs, num_samples=1)
53 | else:
54 | _, prev = torch.topk(log_probs, k=1, dim=-1)
55 |
56 | output = prev if output is None else torch.cat((output, prev), dim=1) # update output
57 | output_response = torch.cat((output_response, prev), dim=1)
58 |
59 | for i_p, p in enumerate(prev.tolist()):
60 | if(p[0]) == EOS_ID:
61 | stopped[i_p] = 1
62 |
63 | if(all(x == 1 for x in stopped)): break
64 |
65 | return output_response
66 |
67 | def get_rankers(args,model):
68 | classifiers = {}
69 |
70 | args.discrim = 'sentiment'
71 | args.label_class = 2
72 | classifier, class2idx = load_classifier(args, model)
73 | classifiers['a'] = [classifier, class2idx]
74 |
75 | args.discrim = 'sentiment'
76 | args.label_class = 3
77 | classifier, class2idx = load_classifier(args, model)
78 | classifiers['b'] = [classifier, class2idx]
79 |
80 | args.discrim = 'daily_dialogue_act'
81 | args.label_class = 1
82 | classifier, class2idx = load_classifier(args, model)
83 | classifiers['c'] = [classifier, class2idx]
84 |
85 | args.discrim = 'toxicity'
86 | args.label_class = 1
87 | classifier, class2idx = load_classifier(args, model)
88 | classifiers['d'] = [classifier, class2idx]
89 |
90 | args.discrim = 'AG_NEWS'
91 | args.label_class = 0
92 | classifier, class2idx = load_classifier(args, model)
93 | classifiers['e'] = [classifier, class2idx]
94 |
95 | args.discrim = 'AG_NEWS'
96 | args.label_class = 1
97 | classifier, class2idx = load_classifier(args, model)
98 | classifiers['f'] = [classifier, class2idx]
99 |
100 | args.discrim = 'AG_NEWS'
101 | args.label_class = 2
102 | classifier, class2idx = load_classifier(args, model)
103 | classifiers['g'] = [classifier, class2idx]
104 |
105 | args.discrim = 'AG_NEWS'
106 | args.label_class = 3
107 | classifier, class2idx = load_classifier(args, model)
108 | classifiers['h'] = [classifier, class2idx]
109 |
110 | return classifiers
111 |
112 | def interact(args,model,enc,classifier,class2idx,device):
113 | classifiers = get_rankers(args,model)
114 | history = []
115 | while True:
116 | raw_text = input("USR >>> ")
117 | while not raw_text:
118 | print('Prompt should not be empty!')
119 | raw_text = input("USR >>>")
120 |
121 | style = input("Choose a style \n (a) Positive (b) Negative (c) Question (d) Toxic (e) World (f) Sports (g) Business (h) Sci/Tech (i) DGPT \n >>> ")
122 | if(style == "a"):
123 | classifier,class2idx = classifiers["a"]
124 | args.num_samples = 10
125 | task_id = 1
126 | args.label_class = 2
127 | elif(style == "b"):
128 | classifier,class2idx = classifiers["b"]
129 | args.num_samples = 10
130 | task_id = 0
131 | args.label_class = 3
132 | elif(style == "c"):
133 | classifier,class2idx = classifiers["c"]
134 | args.num_samples = 10
135 | task_id = 3
136 | args.label_class = 1
137 | elif(style == "d"):
138 | classifier,class2idx = classifiers["d"]
139 | args.num_samples = 10
140 | task_id = 2
141 | args.label_class = 1
142 | elif(style == "e"):
143 | classifier,class2idx = classifiers["e"]
144 | args.num_samples = 10
145 | task_id = 7
146 | args.label_class = 0
147 | elif(style == "f"):
148 | classifier,class2idx = classifiers["f"]
149 | args.num_samples = 10
150 | task_id = 6
151 | args.label_class = 1
152 |
153 | elif(style == "g"):
154 | classifier,class2idx = classifiers["g"]
155 | args.num_samples = 10
156 | task_id = 4
157 | args.label_class = 2
158 |
159 | elif(style == "h"):
160 | classifier,class2idx = classifiers["h"]
161 | args.num_samples = 10
162 | task_id = 5
163 | args.label_class = 3
164 | else:
165 | args.num_samples = 1
166 | args.label_class = 0
167 | task_id = -1
168 |
169 |
170 | history.append(raw_text)
171 |
172 | context_tokens = sum([enc.encode(h) + [EOS_ID] for h in history],[])
173 | context_tokens = [context_tokens for _ in range(args.num_samples)]
174 |
175 | original_sentence = sample(model=model,args=args, context=context_tokens, device=device,
176 | repetition_penalty=args.repetition_penalty)
177 | spk_turn = {"text":original_sentence.tolist()}
178 | hypotesis, _, _ = scorer(args,spk_turn,classifier,enc,class2idx,knowledge=None,plot=False)
179 | text = hypotesis[0][-1]
180 | text = " ".join(tokenize.sent_tokenize(text)[:2])
181 | # print(text_sent)
182 | # print(text_sent[0])
183 | print(f"SYS >>> {text}")
184 | history.append(text)
185 | history = history[-(2*args.max_history+1):]
--------------------------------------------------------------------------------
/main.py:
--------------------------------------------------------------------------------
1 | import os
2 | import argparse
3 | import torch
4 | import numpy as np
5 | from transformers import GPT2Tokenizer
6 |
7 | from interact_adapter import interact
8 | from utils.helper import load_classifier, load_model, load_model_recursive
9 | from evaluate import evaluate
10 |
11 | def run_model():
12 | parser = argparse.ArgumentParser()
13 | parser.add_argument('--model_size', type=str, default="medium", help='Size of dialoGPT')
14 | parser.add_argument('--model_path', '-M', type=str, default='gpt-2_pt_models/dialoGPT/',
15 | help='pretrained model name or path to local checkpoint')
16 | parser.add_argument('--discrim', '-D', type=str, default=None,
17 | choices=('sentiment',"daily_dialogue_act",
18 | "AG_NEWS"),
19 | help='Discriminator to use for loss-type 2')
20 | parser.add_argument('--label_class', type=int, default=-1, help='Class label used for the discriminator')
21 | parser.add_argument('--stepsize', type=float, default=0.03)
22 | parser.add_argument('--num_iterations', type=int, default=2)
23 | parser.add_argument("--length", type=int, default=100)
24 | parser.add_argument("--seed", type=int, default=5555)
25 | parser.add_argument("--temperature", type=float, default=1)
26 | parser.add_argument('--repetition_penalty', type=float, default=1.1) #1.1
27 | parser.add_argument("--top_k", type=int, default=10)
28 | parser.add_argument("--gm_scale", type=float, default=0.95)
29 | parser.add_argument("--kl_scale", type=float, default=0.01)
30 | parser.add_argument('--nocuda', action='store_true', help='no cuda')
31 | parser.add_argument('--grad_length', type=int, default=10000)
32 | parser.add_argument('--num_samples', type=int, default=1,
33 | help='Number of samples to generate from the modified latents')
34 | parser.add_argument('--horizon_length', type=int, default=1, help='Length of future to optimize over')
35 | # parser.add_argument('--force-token', action='store_true', help='no cuda')
36 | parser.add_argument('--window_length', type=int, default=0,
37 | help='Length of past which is being optimizer; 0 corresponds to infinite window length')
38 | parser.add_argument('--decay', action='store_true', help='whether to decay or not')
39 | parser.add_argument('--gamma', type=float, default=1.0)
40 | parser.add_argument("--max_history", type=int, default=-1)
41 | parser.add_argument('--evaluate', action='store_true', help='evaluate')
42 | parser.add_argument('--wd', action='store_true', help='greedy based on rev comments')
43 | parser.add_argument('--verbose', action='store_true', help='verbose mode, no comet print in the terminal')
44 | parser.add_argument('--bow_scale_weight', type=float, default=20)
45 | parser.add_argument('--sample_starter', type=int, default=0)
46 | parser.add_argument('--all_starter', action='store_true', help='selfchat')
47 | parser.add_argument("--speaker", type=str, default="PPLM")
48 | parser.add_argument("--task_ent", type=str, default="data/simple_QA/QA.json")
49 | parser.add_argument("--load_check_point_adapter", type=str, default="None")
50 | parser.add_argument("--task_id", type=int, default=0)
51 | parser.add_argument("--trial_id", type=int, default=1)
52 | parser.add_argument("--entailment", type=bool, default=False)
53 | parser.add_argument("--BCE", type=bool, default=False)
54 | parser.add_argument("--bag_of_words", type=str, default=None)
55 | args = parser.parse_args()
56 | torch.manual_seed(args.seed)
57 | torch.cuda.manual_seed(args.seed)
58 | np.random.seed(args.seed)
59 | torch.backends.cudnn.deterministic = True
60 | torch.backends.cudnn.benchmark = False
61 | if(args.load_check_point_adapter != "None"):
62 | print("LOADING ADAPTER CONFIG FILE AND INTERACTIVE SCRIPT")
63 | from models.pytorch_pretrained_bert.modeling_adapter import GPT2LMHeadModel, GPT2Config
64 | else:
65 | from models.pytorch_pretrained_bert import GPT2LMHeadModel, GPT2Config
66 |
67 | device = 'cpu' if args.nocuda else 'cuda'
68 | args.model_path = f'models/dialoGPT/{args.model_size}/'
69 | config = GPT2Config.from_json_file(os.path.join(args.model_path, 'config.json'))
70 | tokenizer = GPT2Tokenizer.from_pretrained(args.model_path)
71 |
72 | if(args.load_check_point_adapter != "None"):
73 | print("Loading ADAPTERS")
74 | model = load_model_recursive(GPT2LMHeadModel(config,default_task_id=args.task_id), args.load_check_point_adapter, args, verbose=True)
75 | else:
76 | model = load_model(GPT2LMHeadModel(config), args.model_path+f"{args.model_size}_ft.pkl", args, verbose=True)
77 | model.to(device).eval()
78 |
79 | # Freeze Models weights
80 | for param in model.parameters():
81 | param.requires_grad = False
82 |
83 | classifier, class2idx = load_classifier(args, model)
84 |
85 | logger = None
86 |
87 | ## set iter to 0 to run the adapter
88 | ## set iter to 50 to run WD
89 | param_grid = {'iter': [75], 'window': [0], 'steps': [0.02]}
90 |
91 | if(args.evaluate):
92 | evaluate(args,model,tokenizer,classifier,args.entailment,args.task_ent,class2idx,param_grid,device,logger)
93 | else:
94 | interact(args, model, tokenizer, classifier, class2idx, device)
95 |
96 | if __name__ == '__main__':
97 | run_model()
98 |
--------------------------------------------------------------------------------
/metric/bleu.py:
--------------------------------------------------------------------------------
1 | """ROUGE metric implementation.
2 | Copy from tf_seq2seq/seq2seq/metrics/rouge.py.
3 | This is a modified and slightly extended verison of
4 | https://github.com/miso-belica/sumy/blob/dev/sumy/evaluation/rouge.py.
5 | """
6 |
7 | from __future__ import absolute_import
8 | from __future__ import division
9 | from __future__ import print_function
10 | from __future__ import unicode_literals
11 |
12 | import itertools
13 | import numpy as np
14 |
15 | import numpy
16 | import os
17 | import re
18 | import subprocess
19 | import tempfile
20 | import numpy as np
21 | from collections import Counter
22 |
23 |
24 | # -*- coding: utf-8 -*-
25 | # Copyright 2017 Google Inc.
26 | #
27 | # Licensed under the Apache License, Version 2.0 (the "License");
28 | # you may not use this file except in compliance with the License.
29 | # You may obtain a copy of the License at
30 | #
31 | # http://www.apache.org/licenses/LICENSE-2.0
32 | #
33 | # Unless required by applicable law or agreed to in writing, software
34 | # distributed under the License is distributed on an "AS IS" BASIS,
35 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
36 | # See the License for the specific language governing permissions and
37 | # limitations under the License.
38 | """BLEU metric implementation.
39 | """
40 |
41 |
42 | def moses_multi_bleu(hypotheses, references, lowercase=False):
43 | """Calculate the bleu score for hypotheses and references
44 | using the MOSES multi-bleu.perl script.
45 | Args:
46 | hypotheses: A numpy array of strings where each string is a single example.
47 | references: A numpy array of strings where each string is a single example.
48 | lowercase: If true, pass the "-lc" flag to the multi-bleu script
49 | Returns:
50 | The BLEU score as a float32 value.
51 | """
52 |
53 | if np.size(hypotheses) == 0:
54 | return np.float32(0.0)
55 |
56 | multi_bleu_path = "metric/multi-bleu.perl"
57 | os.chmod(multi_bleu_path, 0o755)
58 |
59 |
60 | # Dump hypotheses and references to tempfiles
61 | hypothesis_file = tempfile.NamedTemporaryFile()
62 | hypothesis_file.write("\n".join(hypotheses).encode("utf-8"))
63 | hypothesis_file.write(b"\n")
64 | hypothesis_file.flush()
65 | reference_file = tempfile.NamedTemporaryFile()
66 | reference_file.write("\n".join(references).encode("utf-8"))
67 | reference_file.write(b"\n")
68 | reference_file.flush()
69 |
70 |
71 | # Calculate BLEU using multi-bleu script
72 | with open(hypothesis_file.name, "r") as read_pred:
73 | bleu_cmd = [multi_bleu_path]
74 | if lowercase:
75 | bleu_cmd += ["-lc"]
76 | bleu_cmd += [reference_file.name]
77 | try:
78 | bleu_out = subprocess.check_output(bleu_cmd, stdin=read_pred, stderr=subprocess.STDOUT)
79 | bleu_out = bleu_out.decode("utf-8")
80 | bleu_score = re.search(r"BLEU = (.+?),", bleu_out).group(1)
81 | bleu_score = float(bleu_score)
82 | except subprocess.CalledProcessError as error:
83 | if error.output is not None:
84 | print("multi-bleu.perl script returned non-zero exit code")
85 | print(error.output)
86 | bleu_score = np.float32(0.0)
87 |
88 | # Close temp files
89 | hypothesis_file.close()
90 | reference_file.close()
91 | return bleu_score
--------------------------------------------------------------------------------
/metric/dist_score.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python3
2 | # coding:utf-8
3 |
4 | # Copyright (c) Tsinghua university conversational AI group (THU-coai).
5 | # This source code is licensed under the MIT license.
6 | """Script for the Evaluation of Chinese Human-Computer Dialogue Technology (SMP2019-ECDT) Task2.
7 | This script evaluates the distinct[1] of the submitted model.
8 | This uses a the version of the dataset which does not contain the "Golden Response" .
9 | Leaderboard scores will be run in the same form but on a hidden test set.
10 |
11 | reference:
12 |
13 | [1] Li, Jiwei, et al. "A diversity-promoting objective function for neural conversation models."
14 | arXiv preprint arXiv:1510.03055 (2015).
15 |
16 | This requires each team to implement the following function:
17 | def gen_response(self, contexts):
18 | return a list of responses for each context
19 | Arguments:
20 | contexts -- a list of context, each context contains dialogue histories and personal profiles of every speaker
21 | Returns a list, where each element is the response of the corresponding context
22 | """
23 | # from main import Model
24 | import json
25 | import sys
26 | from transformers import GPT2Tokenizer,GPT2LMHeadModel
27 | tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
28 | from utils.helper import truncate
29 |
30 | def read_dialog(file):
31 | """
32 | Read dialogs from file
33 | :param file: str, file path to the dataset
34 | :return: list, a list of dialogue (context) contained in file
35 | """
36 | with open(file) as f:
37 | contents = [i.strip() for i in f.readlines() if len(i.strip()) != 0]
38 | return [json.loads(i) for i in contents]
39 |
40 |
41 | def count_ngram(hyps_resp, n):
42 | """
43 | Count the number of unique n-grams
44 | :param hyps_resp: list, a list of responses
45 | :param n: int, n-gram
46 | :return: the number of unique n-grams in hyps_resp
47 | """
48 | if len(hyps_resp) == 0:
49 | print("ERROR, eval_distinct get empty input")
50 | return
51 |
52 | if type(hyps_resp[0]) != list:
53 | print("ERROR, eval_distinct takes in a list of , get a list of {} instead".format(
54 | type(hyps_resp[0])))
55 | return
56 |
57 | ngram = set()
58 | for resp in hyps_resp:
59 | if len(resp) < n:
60 | continue
61 | for i in range(len(resp) - n + 1):
62 | ngram.add(' '.join(resp[i: i + n]))
63 | return len(ngram)
64 |
65 |
66 | def eval_distinct(hyps_resp):
67 | """
68 | compute distinct score for the hyps_resp
69 | :param hyps_resp: list, a list of hyps responses
70 | :return: average distinct score for 1, 2-gram
71 | """
72 |
73 | hyps_resp = [list(map(str, tokenizer.encode(h))) for h in hyps_resp]
74 |
75 | if len(hyps_resp) == 0:
76 | print("ERROR, eval_distinct get empty input")
77 | return
78 |
79 | if type(hyps_resp[0]) != list:
80 | print("ERROR, eval_distinct takes in a list of , get a list of {} instead".format(
81 | type(hyps_resp[0])))
82 | return
83 |
84 | hyps_resp = [(' '.join(i)).split() for i in hyps_resp]
85 | num_tokens = sum([len(i) for i in hyps_resp])
86 | dist1 = count_ngram(hyps_resp, 1) / float(num_tokens)
87 | dist2 = count_ngram(hyps_resp, 2) / float(num_tokens)
88 | dist3 = count_ngram(hyps_resp, 3) / float(num_tokens)
89 |
90 | return truncate(dist1,2), truncate(dist2,2), truncate(dist3,2)
91 |
92 |
--------------------------------------------------------------------------------
/metric/lm_score.py:
--------------------------------------------------------------------------------
1 | from transformers import GPT2Tokenizer,GPT2LMHeadModel
2 | import torch
3 | import numpy as np
4 | import math
5 |
6 | tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
7 | model = GPT2LMHeadModel.from_pretrained('gpt2')
8 | model.to('cuda')
9 | model.eval()
10 |
11 | def get_ppl(text, starter):
12 | lls = []
13 | for idx, t in enumerate(text):
14 | input_ids = torch.tensor(tokenizer.encode(" ".join(starter[idx]['conversation'])+ " "+t)).unsqueeze(0) # Batch size 1
15 | input_ids = input_ids.to('cuda')
16 | if input_ids.size(1)>1:
17 | with torch.no_grad():
18 | outputs = model(input_ids, labels=input_ids)
19 | loss, _ = outputs[:2]
20 | lls.append(loss.item())
21 |
22 | return math.exp(np.mean(lls))
23 |
24 | def get_ppl_simplified(text, starter):
25 | lls = []
26 | for idx, t in enumerate(text):
27 | input_ids = torch.tensor(tokenizer.encode(" ".join(starter[idx])+ " "+t)).unsqueeze(0) # Batch size 1
28 | input_ids = input_ids.to('cuda')
29 | if input_ids.size(1)>1:
30 | with torch.no_grad():
31 | outputs = model(input_ids, labels=input_ids)
32 | loss, _ = outputs[:2]
33 | lls.append(loss.item())
34 |
35 | return math.exp(np.mean(lls))
--------------------------------------------------------------------------------
/metric/multi-bleu.perl:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env perl
2 | #
3 | # This file is part of moses. Its use is licensed under the GNU Lesser General
4 | # Public License version 2.1 or, at your option, any later version.
5 |
6 | # $Id$
7 | use warnings;
8 | use strict;
9 |
10 | my $lowercase = 0;
11 | if ($ARGV[0] eq "-lc") {
12 | $lowercase = 1;
13 | shift;
14 | }
15 |
16 | my $stem = $ARGV[0];
17 | if (!defined $stem) {
18 | print STDERR "usage: multi-bleu.pl [-lc] reference < hypothesis\n";
19 | print STDERR "Reads the references from reference or reference0, reference1, ...\n";
20 | exit(1);
21 | }
22 |
23 | $stem .= ".ref" if !-e $stem && !-e $stem."0" && -e $stem.".ref0";
24 |
25 | my @REF;
26 | my $ref=0;
27 | while(-e "$stem$ref") {
28 | &add_to_ref("$stem$ref",\@REF);
29 | $ref++;
30 | }
31 | &add_to_ref($stem,\@REF) if -e $stem;
32 | die("ERROR: could not find reference file $stem") unless scalar @REF;
33 |
34 | # add additional references explicitly specified on the command line
35 | shift;
36 | foreach my $stem (@ARGV) {
37 | &add_to_ref($stem,\@REF) if -e $stem;
38 | }
39 |
40 |
41 |
42 | sub add_to_ref {
43 | my ($file,$REF) = @_;
44 | my $s=0;
45 | if ($file =~ /.gz$/) {
46 | open(REF,"gzip -dc $file|") or die "Can't read $file";
47 | } else {
48 | open(REF,$file) or die "Can't read $file";
49 | }
50 | while([) {
51 | chop;
52 | push @{$$REF[$s++]}, $_;
53 | }
54 | close(REF);
55 | }
56 |
57 | my(@CORRECT,@TOTAL,$length_translation,$length_reference);
58 | my $s=0;
59 | while() {
60 | chop;
61 | $_ = lc if $lowercase;
62 | my @WORD = split;
63 | my %REF_NGRAM = ();
64 | my $length_translation_this_sentence = scalar(@WORD);
65 | my ($closest_diff,$closest_length) = (9999,9999);
66 | foreach my $reference (@{$REF[$s]}) {
67 | # print "$s $_ <=> $reference\n";
68 | $reference = lc($reference) if $lowercase;
69 | my @WORD = split(' ',$reference);
70 | my $length = scalar(@WORD);
71 | my $diff = abs($length_translation_this_sentence-$length);
72 | if ($diff < $closest_diff) {
73 | $closest_diff = $diff;
74 | $closest_length = $length;
75 | # print STDERR "$s: closest diff ".abs($length_translation_this_sentence-$length)." = abs($length_translation_this_sentence-$length), setting len: $closest_length\n";
76 | } elsif ($diff == $closest_diff) {
77 | $closest_length = $length if $length < $closest_length;
78 | # from two references with the same closeness to me
79 | # take the *shorter* into account, not the "first" one.
80 | }
81 | for(my $n=1;$n<=4;$n++) {
82 | my %REF_NGRAM_N = ();
83 | for(my $start=0;$start<=$#WORD-($n-1);$start++) {
84 | my $ngram = "$n";
85 | for(my $w=0;$w<$n;$w++) {
86 | $ngram .= " ".$WORD[$start+$w];
87 | }
88 | $REF_NGRAM_N{$ngram}++;
89 | }
90 | foreach my $ngram (keys %REF_NGRAM_N) {
91 | if (!defined($REF_NGRAM{$ngram}) ||
92 | $REF_NGRAM{$ngram} < $REF_NGRAM_N{$ngram}) {
93 | $REF_NGRAM{$ngram} = $REF_NGRAM_N{$ngram};
94 | # print "$i: REF_NGRAM{$ngram} = $REF_NGRAM{$ngram}]
\n";
95 | }
96 | }
97 | }
98 | }
99 | $length_translation += $length_translation_this_sentence;
100 | $length_reference += $closest_length;
101 | for(my $n=1;$n<=4;$n++) {
102 | my %T_NGRAM = ();
103 | for(my $start=0;$start<=$#WORD-($n-1);$start++) {
104 | my $ngram = "$n";
105 | for(my $w=0;$w<$n;$w++) {
106 | $ngram .= " ".$WORD[$start+$w];
107 | }
108 | $T_NGRAM{$ngram}++;
109 | }
110 | foreach my $ngram (keys %T_NGRAM) {
111 | $ngram =~ /^(\d+) /;
112 | my $n = $1;
113 | # my $corr = 0;
114 | # print "$i e $ngram $T_NGRAM{$ngram}
\n";
115 | $TOTAL[$n] += $T_NGRAM{$ngram};
116 | if (defined($REF_NGRAM{$ngram})) {
117 | if ($REF_NGRAM{$ngram} >= $T_NGRAM{$ngram}) {
118 | $CORRECT[$n] += $T_NGRAM{$ngram};
119 | # $corr = $T_NGRAM{$ngram};
120 | # print "$i e correct1 $T_NGRAM{$ngram}
\n";
121 | }
122 | else {
123 | $CORRECT[$n] += $REF_NGRAM{$ngram};
124 | # $corr = $REF_NGRAM{$ngram};
125 | # print "$i e correct2 $REF_NGRAM{$ngram}
\n";
126 | }
127 | }
128 | # $REF_NGRAM{$ngram} = 0 if !defined $REF_NGRAM{$ngram};
129 | # print STDERR "$ngram: {$s, $REF_NGRAM{$ngram}, $T_NGRAM{$ngram}, $corr}\n"
130 | }
131 | }
132 | $s++;
133 | }
134 | my $brevity_penalty = 1;
135 | my $bleu = 0;
136 |
137 | my @bleu=();
138 |
139 | for(my $n=1;$n<=4;$n++) {
140 | if (defined ($TOTAL[$n])){
141 | $bleu[$n]=($TOTAL[$n])?$CORRECT[$n]/$TOTAL[$n]:0;
142 | # print STDERR "CORRECT[$n]:$CORRECT[$n] TOTAL[$n]:$TOTAL[$n]\n";
143 | }else{
144 | $bleu[$n]=0;
145 | }
146 | }
147 |
148 | if ($length_reference==0){
149 | printf "BLEU = 0, 0/0/0/0 (BP=0, ratio=0, hyp_len=0, ref_len=0)\n";
150 | exit(1);
151 | }
152 |
153 | if ($length_translation<$length_reference) {
154 | $brevity_penalty = exp(1-$length_reference/$length_translation);
155 | }
156 | $bleu = $brevity_penalty * exp((my_log( $bleu[1] ) +
157 | my_log( $bleu[2] ) +
158 | my_log( $bleu[3] ) +
159 | my_log( $bleu[4] ) ) / 4) ;
160 | printf "BLEU = %.2f, %.1f/%.1f/%.1f/%.1f (BP=%.3f, ratio=%.3f, hyp_len=%d, ref_len=%d)\n",
161 | 100*$bleu,
162 | 100*$bleu[1],
163 | 100*$bleu[2],
164 | 100*$bleu[3],
165 | 100*$bleu[4],
166 | $brevity_penalty,
167 | $length_translation / $length_reference,
168 | $length_translation,
169 | $length_reference;
170 |
171 |
172 | print STDERR "It is in-advisable to publish scores from multi-bleu.perl. The scores depend on your tokenizer, which is unlikely to be reproducible from your paper or consistent across research groups. Instead you should detokenize then use mteval-v14.pl, which has a standard tokenization. Scores from multi-bleu.perl can still be used for internal purposes when you have a consistent tokenizer.\n";
173 |
174 | sub my_log {
175 | return -9999999999 unless $_[0];
176 | return log($_[0]);
177 | }
--------------------------------------------------------------------------------
/metric/sentiment_classifiers.py:
--------------------------------------------------------------------------------
1 | from models.heads import Scorer
2 | import numpy as np
3 | import torch
4 | from transformers import BertTokenizer
5 | import torch.nn.functional as F
6 | from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
7 | analyser = SentimentIntensityAnalyzer()
8 |
9 | device = "cuda" if torch.cuda.is_available() else "cpu"
10 | model = Scorer(hidden_dim=256,
11 | output_dim=5,
12 | n_layers=2,
13 | bidirectional=True,
14 | dropout=0.25).to(device)
15 | model.load_state_dict(torch.load('models/scorers/AmazonReviewFull.pt'))
16 | tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
17 | max_input_length = tokenizer.max_model_input_sizes['bert-base-uncased']
18 | init_token_idx = tokenizer.cls_token_id
19 | eos_token_idx = tokenizer.sep_token_id
20 | pad_token_idx = tokenizer.pad_token_id
21 | unk_token_idx = tokenizer.unk_token_id
22 |
23 | def predict_sentiment(model, tokenizer, sentence):
24 | model.eval()
25 | tokens = tokenizer.tokenize(sentence)
26 | tokens = tokens[:max_input_length-2]
27 | indexed = [init_token_idx] + tokenizer.convert_tokens_to_ids(tokens) + [eos_token_idx]
28 | tensor = torch.LongTensor(indexed).to(device)
29 | tensor = tensor.unsqueeze(0)
30 | prediction = F.softmax(model(tensor),1)
31 | pred_t = prediction.argmax(dim=1, keepdim=True)
32 |
33 | return pred_t.item()
34 |
35 | def get_loss(model, tokenizer, sentence, label):
36 | model.eval()
37 | ce_loss_logging = torch.nn.CrossEntropyLoss()
38 | tokens = tokenizer.tokenize(sentence)
39 | tokens = tokens[:max_input_length-2]
40 | indexed = [init_token_idx] + tokenizer.convert_tokens_to_ids(tokens) + [eos_token_idx]
41 | tensor = torch.LongTensor(indexed).to(device)
42 | tensor = tensor.unsqueeze(0)
43 | label = torch.tensor([label], device='cuda', dtype=torch.long)
44 | output_t = model(tensor)
45 | loss = ce_loss_logging(output_t, label).item()
46 | return loss
47 |
48 | # def predict_sentiment(model, tokenizer, sentence):
49 | # model.eval()
50 | # tokens = tokenizer.tokenize(sentence)
51 | # tokens = tokens[:max_input_length-2]
52 | # indexed = [init_token_idx] + tokenizer.convert_tokens_to_ids(tokens) + [eos_token_idx]
53 | # tensor = torch.LongTensor(indexed).to(device)
54 | # tensor = tensor.unsqueeze(0)
55 | # prediction = torch.round(torch.sigmoid(model(tensor)))
56 |
57 | # return prediction.item()
58 |
59 | def sentiment_analyzer_scores(sentence):
60 | score = analyser.polarity_scores(sentence)
61 | if(score["compound"] >= 0.05): return 2
62 | elif(score["compound"] > -0.05 and (score["compound"] < 0.05)): return 1
63 | elif(score["compound"] <= -0.05): return 0
64 |
65 | def get_vater_score(sentences, l):
66 | lable = {"very negative":0,"very positive":2}
67 | acc = []
68 | for s in sentences:
69 | prediciton = sentiment_analyzer_scores(s)
70 | if(int(prediciton)==int(lable[l])):acc.append(1)
71 | else: acc.append(0)
72 |
73 | return np.mean(acc)
74 |
75 |
76 | def get_sentiment_score(sentences, l):
77 | lable = {"very negative":0,"very positive":4}
78 | acc = []
79 | for s in sentences:
80 | prediciton = predict_sentiment(model, tokenizer, s)
81 | if(int(prediciton)==int(lable[l])):acc.append(1)
82 | else: acc.append(0)
83 |
84 | return np.mean(acc)
85 |
--------------------------------------------------------------------------------
/metric/text_classifier.py:
--------------------------------------------------------------------------------
1 | from models.heads import Scorer
2 | import numpy as np
3 | import torch
4 | from transformers import BertTokenizer
5 | import torch.nn.functional as F
6 | from collections import Counter
7 |
8 | device = "cuda" if torch.cuda.is_available() else "cpu"
9 |
10 | model_AGNEWS = Scorer(hidden_dim=256,
11 | output_dim=4,
12 | n_layers=2,
13 | bidirectional=True,
14 | dropout=0.25).to(device)
15 | model_AGNEWS.load_state_dict(torch.load('models/scorers/TC_AG_NEWS.pt'))
16 |
17 | tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
18 | max_input_length = tokenizer.max_model_input_sizes['bert-base-uncased']
19 | init_token_idx = tokenizer.cls_token_id
20 | eos_token_idx = tokenizer.sep_token_id
21 | pad_token_idx = tokenizer.pad_token_id
22 | unk_token_idx = tokenizer.unk_token_id
23 |
24 | def predict_class(model, tokenizer, sentence):
25 | model.eval()
26 | tokens = tokenizer.tokenize(sentence)
27 | tokens = tokens[:max_input_length-2]
28 | indexed = [init_token_idx] + tokenizer.convert_tokens_to_ids(tokens) + [eos_token_idx]
29 | tensor = torch.LongTensor(indexed).to(device)
30 | tensor = tensor.unsqueeze(0)
31 | prediction = F.softmax(model(tensor),1)
32 | pred_t = prediction.argmax(dim=1, keepdim=True)
33 | return pred_t.item()
34 |
35 |
36 | def get_text_score_AGNEWS(sentences,l):
37 | idx2class = ["World","Sports","Business","SciTech"]
38 | class2idx = {c:i for i, c in enumerate(idx2class)}
39 | idx2class = {i: c for i, c in enumerate(idx2class)}
40 | pred = []
41 | acc = []
42 | for s in sentences:
43 | prediciton = predict_class(model_AGNEWS, tokenizer, s)
44 | pred.append(idx2class[prediciton])
45 | if(int(prediciton)==int(class2idx[l])):
46 | acc.append(1)
47 | else: acc.append(0)
48 |
49 | counter = Counter(pred)
50 | return np.mean(acc) #"".join([ f"({freq/len(sentences)}){w}" for w, freq in counter.most_common(1)])
51 |
--------------------------------------------------------------------------------
/metric/torchMoji/.gitignore:
--------------------------------------------------------------------------------
1 | # Byte-compiled / optimized / DLL files
2 | __pycache__/
3 | *.py[cod]
4 | *$py.class
5 |
6 | # C extensions
7 | *.so
8 |
9 | # Distribution / packaging
10 | .Python
11 | env/
12 | build/
13 | develop-eggs/
14 | dist/
15 | downloads/
16 | eggs/
17 | .eggs/
18 | lib/
19 | lib64/
20 | parts/
21 | sdist/
22 | var/
23 | *.egg-info/
24 | .installed.cfg
25 | *.egg
26 |
27 | # PyInstaller
28 | # Usually these files are written by a python script from a template
29 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
30 | *.manifest
31 | *.spec
32 |
33 | # Installer logs
34 | pip-log.txt
35 | pip-delete-this-directory.txt
36 |
37 | # Unit test / coverage reports
38 | htmlcov/
39 | .tox/
40 | .coverage
41 | .coverage.*
42 | .cache
43 | nosetests.xml
44 | coverage.xml
45 | *,cover
46 | .hypothesis/
47 |
48 | # Translations
49 | *.mo
50 | *.pot
51 |
52 | # Django stuff:
53 | *.log
54 | local_settings.py
55 |
56 | # Flask stuff:
57 | instance/
58 | .webassets-cache
59 |
60 | # Scrapy stuff:
61 | .scrapy
62 |
63 | # Sphinx documentation
64 | docs/_build/
65 |
66 | # PyBuilder
67 | target/
68 |
69 | # IPython Notebook
70 | .ipynb_checkpoints
71 |
72 | # pyenv
73 | .python-version
74 |
75 | # celery beat schedule file
76 | celerybeat-schedule
77 |
78 | # dotenv
79 | .env
80 |
81 | # virtualenv
82 | venv/
83 | ENV/
84 |
85 | # Spyder project settings
86 | .spyderproject
87 |
88 | # Rope project settings
89 | .ropeproject
90 |
91 | # Local data
92 | /data/local
93 |
94 | # Vim swapfiles
95 | *.swp
96 | *.swo
97 |
98 | # nosetests
99 | .noseids
100 |
101 | # pyTorch model
102 | pytorch_model.bin
103 |
104 | # VSCODE
105 | .vscode/*
106 |
107 | # data
108 | *.csv
109 |
--------------------------------------------------------------------------------
/metric/torchMoji/.travis.yml:
--------------------------------------------------------------------------------
1 | group: travis_latest
2 | language: python
3 | cache: pip
4 | python:
5 | - 2.7
6 | - 3.6
7 | #- nightly
8 | #- pypy
9 | #- pypy3
10 | matrix:
11 | allow_failures:
12 | - python: nightly
13 | - python: pypy
14 | - python: pypy3
15 | install:
16 | #- pip install -r requirements.txt
17 | - pip install flake8 # pytest # add another testing frameworks later
18 | before_script:
19 | # stop the build if there are Python syntax errors or undefined names
20 | - flake8 . --count --select=E901,E999,F821,F822,F823 --show-source --statistics
21 | # exit-zero treats all errors as warnings. The GitHub editor is 127 chars wide
22 | - flake8 . --count --exit-zero --max-complexity=10 --max-line-length=127 --statistics
23 | script:
24 | - true # pytest --capture=sys # add other tests here
25 | notifications:
26 | on_success: change
27 | on_failure: change # `always` will be the setting once code changes slow down
28 |
--------------------------------------------------------------------------------
/metric/torchMoji/LICENSE:
--------------------------------------------------------------------------------
1 | MIT License
2 |
3 | Copyright (c) 2017 Bjarke Felbo, Han Thi Nguyen, Thomas Wolf
4 |
5 | Permission is hereby granted, free of charge, to any person obtaining a copy
6 | of this software and associated documentation files (the "Software"), to deal
7 | in the Software without restriction, including without limitation the rights
8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 | copies of the Software, and to permit persons to whom the Software is
10 | furnished to do so, subject to the following conditions:
11 |
12 | The above copyright notice and this permission notice shall be included in all
13 | copies or substantial portions of the Software.
14 |
15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 | SOFTWARE.
22 |
--------------------------------------------------------------------------------
/metric/torchMoji/README.md:
--------------------------------------------------------------------------------
1 | ### ------ Update September 2018 ------
2 | It's been a year since TorchMoji and DeepMoji were released. We're trying to understand how it's being used such that we can make improvements and design better models in the future.
3 |
4 | You can help us achieve this by answering this [4-question Google Form](https://docs.google.com/forms/d/e/1FAIpQLSe1h4NSQD30YM8dsbJQEnki-02_9KVQD34qgP9to0bwAHBvBA/viewform "DeepMoji Google Form"). Thanks for your support!
5 |
6 | # 😇 TorchMoji
7 |
8 | > **Read our blog post about the implementation process [here](https://medium.com/huggingface/understanding-emotions-from-keras-to-pytorch-3ccb61d5a983).**
9 |
10 | TorchMoji is a [pyTorch](http://pytorch.org/) implementation of the [DeepMoji](https://github.com/bfelbo/DeepMoji) model developped by Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad Rahwan and Sune Lehmann.
11 |
12 | This model trained on 1.2 billion tweets with emojis to understand how language is used to express emotions. Through transfer learning the model can obtain state-of-the-art performance on many emotion-related text modeling tasks.
13 |
14 | Try the online demo of DeepMoji [http://deepmoji.mit.edu](http://deepmoji.mit.edu/)! See the [paper](https://arxiv.org/abs/1708.00524), [blog post](https://medium.com/@bjarkefelbo/what-can-we-learn-from-emojis-6beb165a5ea0) or [FAQ](https://www.media.mit.edu/projects/deepmoji/overview/) for more details.
15 |
16 | ## Overview
17 | * [torchmoji/](torchmoji) contains all the underlying code needed to convert a dataset to the vocabulary and use the model.
18 | * [examples/](examples) contains short code snippets showing how to convert a dataset to the vocabulary, load up the model and run it on that dataset.
19 | * [scripts/](scripts) contains code for processing and analysing datasets to reproduce results in the paper.
20 | * [model/](model) contains the pretrained model and vocabulary.
21 | * [data/](data) contains raw and processed datasets that we include in this repository for testing.
22 | * [tests/](tests) contains unit tests for the codebase.
23 |
24 | To start out with, have a look inside the [examples/](examples) directory. See [score_texts_emojis.py](examples/score_texts_emojis.py) for how to use DeepMoji to extract emoji predictions, [encode_texts.py](examples/encode_texts.py) for how to convert text into 2304-dimensional emotional feature vectors or [finetune_youtube_last.py](examples/finetune_youtube_last.py) for how to use the model for transfer learning on a new dataset.
25 |
26 | Please consider citing the [paper](https://arxiv.org/abs/1708.00524) of DeepMoji if you use the model or code (see below for citation).
27 |
28 | ## Installation
29 |
30 | We assume that you're using [Python 2.7-3.5](https://www.python.org/downloads/) with [pip](https://pip.pypa.io/en/stable/installing/) installed.
31 |
32 | First you need to install [pyTorch (version 0.2+)](http://pytorch.org/), currently by:
33 | ```bash
34 | conda install pytorch -c pytorch
35 | ```
36 | At the present stage the model can't make efficient use of CUDA. See details in the [Hugging Face blog post](https://medium.com/huggingface/understanding-emotions-from-keras-to-pytorch-3ccb61d5a983).
37 |
38 | When pyTorch is installed, run the following in the root directory to install the remaining dependencies:
39 |
40 | ```bash
41 | pip install -e .
42 | ```
43 | This will install the following dependencies:
44 | * [scikit-learn](https://github.com/scikit-learn/scikit-learn)
45 | * [text-unidecode](https://github.com/kmike/text-unidecode)
46 | * [emoji](https://github.com/carpedm20/emoji)
47 |
48 | Then, run the download script to downloads the pretrained torchMoji weights (~85MB) from [here](https://www.dropbox.com/s/q8lax9ary32c7t9/pytorch_model.bin?dl=0) and put them in the model/ directory:
49 |
50 | ```bash
51 | python scripts/download_weights.py
52 | ```
53 |
54 | ## Testing
55 | To run the tests, install [nose](http://nose.readthedocs.io/en/latest/). After installing, navigate to the [tests/](tests) directory and run:
56 |
57 | ```bash
58 | cd tests
59 | nosetests -v
60 | ```
61 |
62 | By default, this will also run finetuning tests. These tests train the model for one epoch and then check the resulting accuracy, which may take several minutes to finish. If you'd prefer to exclude those, run the following instead:
63 |
64 | ```bash
65 | cd tests
66 | nosetests -v -a '!slow'
67 | ```
68 |
69 | ## Disclaimer
70 | This code has been tested to work with Python 2.7 and 3.5 on Ubuntu 16.04 and macOS Sierra machines. It has not been optimized for efficiency, but should be fast enough for most purposes. We do not give any guarantees that there are no bugs - use the code on your own responsibility!
71 |
72 | ## Contributions
73 | We welcome pull requests if you feel like something could be improved. You can also greatly help us by telling us how you felt when writing your most recent tweets. Just click [here](http://deepmoji.mit.edu/contribute/) to contribute.
74 |
75 | ## License
76 | This code and the pretrained model is licensed under the MIT license.
77 |
78 | ## Benchmark datasets
79 | The benchmark datasets are uploaded to this repository for convenience purposes only. They were not released by us and we do not claim any rights on them. Use the datasets at your responsibility and make sure you fulfill the licenses that they were released with. If you use any of the benchmark datasets please consider citing the original authors.
80 |
81 | ## Citation
82 | ```
83 | @inproceedings{felbo2017,
84 | title={Using millions of emoji occurrences to learn any-domain representations for detecting sentiment, emotion and sarcasm},
85 | author={Felbo, Bjarke and Mislove, Alan and S{\o}gaard, Anders and Rahwan, Iyad and Lehmann, Sune},
86 | booktitle={Conference on Empirical Methods in Natural Language Processing (EMNLP)},
87 | year={2017}
88 | }
89 | ```
90 |
--------------------------------------------------------------------------------
/metric/torchMoji/data/.gitkeep:
--------------------------------------------------------------------------------
1 |
2 |
--------------------------------------------------------------------------------
/metric/torchMoji/data/Olympic/raw.pickle:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/andreamad8/PPCM/e5bef1bbb70907a3d65de3225a00e4af9104d4a8/metric/torchMoji/data/Olympic/raw.pickle
--------------------------------------------------------------------------------
/metric/torchMoji/data/PsychExp/raw.pickle:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/andreamad8/PPCM/e5bef1bbb70907a3d65de3225a00e4af9104d4a8/metric/torchMoji/data/PsychExp/raw.pickle
--------------------------------------------------------------------------------
/metric/torchMoji/data/emoji_codes.json:
--------------------------------------------------------------------------------
1 | {
2 | "0": ":joy:",
3 | "1": ":unamused:",
4 | "2": ":weary:",
5 | "3": ":sob:",
6 | "4": ":heart_eyes:",
7 | "5": ":pensive:",
8 | "6": ":ok_hand:",
9 | "7": ":blush:",
10 | "8": ":heart:",
11 | "9": ":smirk:",
12 | "10":":grin:",
13 | "11":":notes:",
14 | "12":":flushed:",
15 | "13":":100:",
16 | "14":":sleeping:",
17 | "15":":relieved:",
18 | "16":":relaxed:",
19 | "17":":raised_hands:",
20 | "18":":two_hearts:",
21 | "19":":expressionless:",
22 | "20":":sweat_smile:",
23 | "21":":pray:",
24 | "22":":confused:",
25 | "23":":kissing_heart:",
26 | "24":":hearts:",
27 | "25":":neutral_face:",
28 | "26":":information_desk_person:",
29 | "27":":disappointed:",
30 | "28":":see_no_evil:",
31 | "29":":tired_face:",
32 | "30":":v:",
33 | "31":":sunglasses:",
34 | "32":":rage:",
35 | "33":":thumbsup:",
36 | "34":":cry:",
37 | "35":":sleepy:",
38 | "36":":stuck_out_tongue_winking_eye:",
39 | "37":":triumph:",
40 | "38":":raised_hand:",
41 | "39":":mask:",
42 | "40":":clap:",
43 | "41":":eyes:",
44 | "42":":gun:",
45 | "43":":persevere:",
46 | "44":":imp:",
47 | "45":":sweat:",
48 | "46":":broken_heart:",
49 | "47":":blue_heart:",
50 | "48":":headphones:",
51 | "49":":speak_no_evil:",
52 | "50":":wink:",
53 | "51":":skull:",
54 | "52":":confounded:",
55 | "53":":smile:",
56 | "54":":stuck_out_tongue_winking_eye:",
57 | "55":":angry:",
58 | "56":":no_good:",
59 | "57":":muscle:",
60 | "58":":punch:",
61 | "59":":purple_heart:",
62 | "60":":sparkling_heart:",
63 | "61":":blue_heart:",
64 | "62":":grimacing:",
65 | "63":":sparkles:"
66 | }
67 |
68 |
--------------------------------------------------------------------------------
/metric/torchMoji/emoji_overview.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/andreamad8/PPCM/e5bef1bbb70907a3d65de3225a00e4af9104d4a8/metric/torchMoji/emoji_overview.png
--------------------------------------------------------------------------------
/metric/torchMoji/examples/.gitkeep:
--------------------------------------------------------------------------------
1 |
2 |
--------------------------------------------------------------------------------
/metric/torchMoji/examples/README.md:
--------------------------------------------------------------------------------
1 | # torchMoji examples
2 |
3 | ## Initialization
4 | [create_twitter_vocab.py](create_twitter_vocab.py)
5 | Create a new vocabulary from a tsv file.
6 |
7 | [tokenize_dataset.py](tokenize_dataset.py)
8 | Tokenize a given dataset using the prebuilt vocabulary.
9 |
10 | [vocab_extension.py](vocab_extension.py)
11 | Extend the given vocabulary using dataset-specific words.
12 |
13 | [dataset_split.py](dataset_split.py)
14 | Split a given dataset into training, validation and testing.
15 |
16 | ## Use pretrained model/architecture
17 | [score_texts_emojis.py](score_texts_emojis.py)
18 | Use torchMoji to score texts for emoji distribution.
19 |
20 | [text_emojize.py](text_emojize.py)
21 | Use torchMoji to output emoji visualization from a single text input (mapped from `emoji_overview.png`)
22 |
23 | ```sh
24 | python examples/text_emojize.py --text "I love mom's cooking\!"
25 | # => I love mom's cooking! 😋 😍 💓 💛 ❤
26 | ```
27 |
28 | [encode_texts.py](encode_texts.py)
29 | Use torchMoji to encode the text into 2304-dimensional feature vectors for further modeling/analysis.
30 |
31 | ## Transfer learning
32 | [finetune_youtube_last.py](finetune_youtube_last.py)
33 | Finetune the model on the SS-Youtube dataset using the 'last' method.
34 |
35 | [finetune_insults_chain-thaw.py](finetune_insults_chain-thaw.py)
36 | Finetune the model on the Kaggle insults dataset (from blog post) using the 'chain-thaw' method.
37 |
38 | [finetune_semeval_class-avg_f1.py](finetune_semeval_class-avg_f1.py)
39 | Finetune the model on the SemeEval emotion dataset using the 'full' method and evaluate using the class average F1 metric.
40 |
--------------------------------------------------------------------------------
/metric/torchMoji/examples/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/andreamad8/PPCM/e5bef1bbb70907a3d65de3225a00e4af9104d4a8/metric/torchMoji/examples/__init__.py
--------------------------------------------------------------------------------
/metric/torchMoji/examples/create_twitter_vocab.py:
--------------------------------------------------------------------------------
1 | """ Creates a vocabulary from a tsv file.
2 | """
3 |
4 | import codecs
5 | import example_helper
6 | from torchmoji.create_vocab import VocabBuilder
7 | from torchmoji.word_generator import TweetWordGenerator
8 |
9 | with codecs.open('../../twitterdata/tweets.2016-09-01', 'rU', 'utf-8') as stream:
10 | wg = TweetWordGenerator(stream)
11 | vb = VocabBuilder(wg)
12 | vb.count_all_words()
13 | vb.save_vocab()
14 |
--------------------------------------------------------------------------------
/metric/torchMoji/examples/dataset_split.py:
--------------------------------------------------------------------------------
1 | '''
2 | Split a given dataset into three different datasets: training, validation and
3 | testing.
4 |
5 | This is achieved by splitting the given list of sentences into three separate
6 | lists according to either a given ratio (e.g. [0.7, 0.1, 0.2]) or by an
7 | explicit enumeration. The sentences are also tokenised using the given
8 | vocabulary.
9 |
10 | Also splits a given list of dictionaries containing information about
11 | each sentence.
12 |
13 | An additional parameter can be set 'extend_with', which will extend the given
14 | vocabulary with up to 'extend_with' tokens, taken from the training dataset.
15 | '''
16 | from __future__ import print_function, unicode_literals
17 | import example_helper
18 | import json
19 |
20 | from torchmoji.sentence_tokenizer import SentenceTokenizer
21 |
22 | DATASET = [
23 | 'I am sentence 0',
24 | 'I am sentence 1',
25 | 'I am sentence 2',
26 | 'I am sentence 3',
27 | 'I am sentence 4',
28 | 'I am sentence 5',
29 | 'I am sentence 6',
30 | 'I am sentence 7',
31 | 'I am sentence 8',
32 | 'I am sentence 9 newword',
33 | ]
34 |
35 | INFO_DICTS = [
36 | {'label': 'sentence 0'},
37 | {'label': 'sentence 1'},
38 | {'label': 'sentence 2'},
39 | {'label': 'sentence 3'},
40 | {'label': 'sentence 4'},
41 | {'label': 'sentence 5'},
42 | {'label': 'sentence 6'},
43 | {'label': 'sentence 7'},
44 | {'label': 'sentence 8'},
45 | {'label': 'sentence 9'},
46 | ]
47 |
48 | with open('../model/vocabulary.json', 'r') as f:
49 | vocab = json.load(f)
50 | st = SentenceTokenizer(vocab, 30)
51 |
52 | # Split using the default split ratio
53 | print(st.split_train_val_test(DATASET, INFO_DICTS))
54 |
55 | # Split explicitly
56 | print(st.split_train_val_test(DATASET,
57 | INFO_DICTS,
58 | [[0, 1, 2, 4, 9], [5, 6], [7, 8, 3]],
59 | extend_with=1))
60 |
--------------------------------------------------------------------------------
/metric/torchMoji/examples/encode_texts.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 |
3 | """ Use torchMoji to encode texts into emotional feature vectors.
4 | """
5 | from __future__ import print_function, division, unicode_literals
6 | import json
7 |
8 | from torchmoji.sentence_tokenizer import SentenceTokenizer
9 | from torchmoji.model_def import torchmoji_feature_encoding
10 | from torchmoji.global_variables import PRETRAINED_PATH, VOCAB_PATH
11 |
12 | TEST_SENTENCES = ['I love mom\'s cooking',
13 | 'I love how you never reply back..',
14 | 'I love cruising with my homies',
15 | 'I love messing with yo mind!!',
16 | 'I love you and now you\'re just gone..',
17 | 'This is shit',
18 | 'This is the shit']
19 |
20 | maxlen = 30
21 | batch_size = 32
22 |
23 | print('Tokenizing using dictionary from {}'.format(VOCAB_PATH))
24 | with open(VOCAB_PATH, 'r') as f:
25 | vocabulary = json.load(f)
26 | st = SentenceTokenizer(vocabulary, maxlen)
27 | tokenized, _, _ = st.tokenize_sentences(TEST_SENTENCES)
28 |
29 | print('Loading model from {}.'.format(PRETRAINED_PATH))
30 | model = torchmoji_feature_encoding(PRETRAINED_PATH)
31 | print(model)
32 |
33 | print('Encoding texts..')
34 | encoding = model(tokenized)
35 |
36 | print('First 5 dimensions for sentence: {}'.format(TEST_SENTENCES[0]))
37 | print(encoding[0,:5])
38 |
39 | # Now you could visualize the encodings to see differences,
40 | # run a logistic regression classifier on top,
41 | # or basically anything you'd like to do.
--------------------------------------------------------------------------------
/metric/torchMoji/examples/example_helper.py:
--------------------------------------------------------------------------------
1 | """ Module import helper.
2 | Modifies PATH in order to allow us to import the torchmoji directory.
3 | """
4 | import sys
5 | from os.path import abspath, dirname
6 | sys.path.insert(0, dirname(dirname(abspath(__file__))))
7 |
--------------------------------------------------------------------------------
/metric/torchMoji/examples/finetune_insults_chain-thaw.py:
--------------------------------------------------------------------------------
1 | """Finetuning example.
2 |
3 | Trains the torchMoji model on the kaggle insults dataset, using the 'chain-thaw'
4 | finetuning method and the accuracy metric. See the blog post at
5 | https://medium.com/@bjarkefelbo/what-can-we-learn-from-emojis-6beb165a5ea0
6 | for more information. Note that results may differ a bit due to slight
7 | changes in preprocessing and train/val/test split.
8 |
9 | The 'chain-thaw' method does the following:
10 | 0) Load all weights except for the softmax layer. Extend the embedding layer if
11 | necessary, initialising the new weights with random values.
12 | 1) Freeze every layer except the last (softmax) layer and train it.
13 | 2) Freeze every layer except the first layer and train it.
14 | 3) Freeze every layer except the second etc., until the second last layer.
15 | 4) Unfreeze all layers and train entire model.
16 | """
17 |
18 | from __future__ import print_function
19 | import example_helper
20 | import json
21 | from torchmoji.model_def import torchmoji_transfer
22 | from torchmoji.global_variables import PRETRAINED_PATH
23 | from torchmoji.finetuning import (
24 | load_benchmark,
25 | finetune)
26 |
27 |
28 | DATASET_PATH = '../data/kaggle-insults/raw.pickle'
29 | nb_classes = 2
30 |
31 | with open('../model/vocabulary.json', 'r') as f:
32 | vocab = json.load(f)
33 |
34 | # Load dataset. Extend the existing vocabulary with up to 10000 tokens from
35 | # the training dataset.
36 | data = load_benchmark(DATASET_PATH, vocab, extend_with=10000)
37 |
38 | # Set up model and finetune. Note that we have to extend the embedding layer
39 | # with the number of tokens added to the vocabulary.
40 | model = torchmoji_transfer(nb_classes, PRETRAINED_PATH, extend_embedding=data['added'])
41 | print(model)
42 | model, acc = finetune(model, data['texts'], data['labels'], nb_classes,
43 | data['batch_size'], method='chain-thaw')
44 | print('Acc: {}'.format(acc))
45 |
--------------------------------------------------------------------------------
/metric/torchMoji/examples/finetune_semeval_class-avg_f1.py:
--------------------------------------------------------------------------------
1 | """Finetuning example.
2 |
3 | Trains the torchMoji model on the SemEval emotion dataset, using the 'last'
4 | finetuning method and the class average F1 metric.
5 |
6 | The 'last' method does the following:
7 | 0) Load all weights except for the softmax layer. Do not add tokens to the
8 | vocabulary and do not extend the embedding layer.
9 | 1) Freeze all layers except for the softmax layer.
10 | 2) Train.
11 |
12 | The class average F1 metric does the following:
13 | 1) For each class, relabel the dataset into binary classification
14 | (belongs to/does not belong to this class).
15 | 2) Calculate F1 score for each class.
16 | 3) Compute the average of all F1 scores.
17 | """
18 |
19 | from __future__ import print_function
20 | import example_helper
21 | import json
22 | from torchmoji.finetuning import load_benchmark
23 | from torchmoji.class_avg_finetuning import class_avg_finetune
24 | from torchmoji.model_def import torchmoji_transfer
25 | from torchmoji.global_variables import PRETRAINED_PATH
26 |
27 | DATASET_PATH = '../data/SE0714/raw.pickle'
28 | nb_classes = 3
29 |
30 | with open('../model/vocabulary.json', 'r') as f:
31 | vocab = json.load(f)
32 |
33 |
34 | # Load dataset. Extend the existing vocabulary with up to 10000 tokens from
35 | # the training dataset.
36 | data = load_benchmark(DATASET_PATH, vocab, extend_with=10000)
37 |
38 | # Set up model and finetune. Note that we have to extend the embedding layer
39 | # with the number of tokens added to the vocabulary.
40 | #
41 | # Also note that when using class average F1 to evaluate, the model has to be
42 | # defined with two classes, since the model will be trained for each class
43 | # separately.
44 | model = torchmoji_transfer(2, PRETRAINED_PATH, extend_embedding=data['added'])
45 | print(model)
46 |
47 | # For finetuning however, pass in the actual number of classes.
48 | model, f1 = class_avg_finetune(model, data['texts'], data['labels'],
49 | nb_classes, data['batch_size'], method='last')
50 | print('F1: {}'.format(f1))
51 |
--------------------------------------------------------------------------------
/metric/torchMoji/examples/finetune_youtube_last.py:
--------------------------------------------------------------------------------
1 | """Finetuning example.
2 |
3 | Trains the torchMoji model on the SS-Youtube dataset, using the 'last'
4 | finetuning method and the accuracy metric.
5 |
6 | The 'last' method does the following:
7 | 0) Load all weights except for the softmax layer. Do not add tokens to the
8 | vocabulary and do not extend the embedding layer.
9 | 1) Freeze all layers except for the softmax layer.
10 | 2) Train.
11 | """
12 |
13 | from __future__ import print_function
14 | import example_helper
15 | import json
16 | from torchmoji.model_def import torchmoji_transfer
17 | from torchmoji.global_variables import PRETRAINED_PATH, VOCAB_PATH, ROOT_PATH
18 | from torchmoji.finetuning import (
19 | load_benchmark,
20 | finetune)
21 |
22 | DATASET_PATH = '{}/data/SS-Youtube/raw.pickle'.format(ROOT_PATH)
23 | nb_classes = 2
24 |
25 | with open(VOCAB_PATH, 'r') as f:
26 | vocab = json.load(f)
27 |
28 | # Load dataset.
29 | data = load_benchmark(DATASET_PATH, vocab)
30 |
31 | # Set up model and finetune
32 | model = torchmoji_transfer(nb_classes, PRETRAINED_PATH)
33 | print(model)
34 | model, acc = finetune(model, data['texts'], data['labels'], nb_classes, data['batch_size'], method='last')
35 | print('Acc: {}'.format(acc))
36 |
--------------------------------------------------------------------------------
/metric/torchMoji/examples/score_texts_emojis.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 |
3 | """ Use torchMoji to score texts for emoji distribution.
4 |
5 | The resulting emoji ids (0-63) correspond to the mapping
6 | in emoji_overview.png file at the root of the torchMoji repo.
7 |
8 | Writes the result to a csv file.
9 | """
10 | from __future__ import print_function, division, unicode_literals
11 | # import example_helper
12 | import json
13 | import csv
14 | import numpy as np
15 | from collections import Counter
16 |
17 | from torchmoji.sentence_tokenizer import SentenceTokenizer
18 | from torchmoji.model_def import torchmoji_emojis
19 | from torchmoji.global_variables import PRETRAINED_PATH, VOCAB_PATH
20 |
21 | # OUTPUT_PATH = 'test_sentences.csv'
22 |
23 | # TEST_SENTENCES = ['I love mom\'s cooking',
24 | # 'I love how you never reply back..',
25 | # 'I love cruising with my homies',
26 | # 'I love messing with yo mind!!',
27 | # 'I love you and now you\'re just gone..',
28 | # 'This is shit',
29 | # 'This is the shit']
30 |
31 |
32 | def top_elements(array, k):
33 | ind = np.argpartition(array, -k)[-k:]
34 | return ind[np.argsort(array[ind])][::-1]
35 |
36 | def most_frequent(List):
37 | return max(set(List), key = List.count)
38 |
39 | with open(VOCAB_PATH, 'r') as f:
40 | vocabulary = json.load(f)
41 |
42 | maxlen = 30
43 | st = SentenceTokenizer(vocabulary, maxlen)
44 |
45 | model = torchmoji_emojis(PRETRAINED_PATH)
46 |
47 | def get_emoji_score(sentence, label):
48 | mapper = {"angry":anger, "disgusted":disgust, "terrified":fear, "joyful":joy, "sad":sad, "surprised":surprise}
49 | tokenized, _, _ = st.tokenize_sentences(sentence)
50 | prob = model(tokenized)
51 | scores = []
52 | acc = []
53 | for i, t in enumerate(sentence):
54 | t_prob = prob[i]
55 | ind_top = top_elements(t_prob, 2)
56 | if(emoji_list[ind_top[0]][1] in mapper[label] or emoji_list[ind_top[1]][1] in mapper[label]):
57 | acc.append(1)
58 | else:
59 | acc.append(0)
60 |
61 | scores.append([emoji_list[i][1].upper() for i in ind_top])
62 |
63 | counter = Counter(sum(scores,[]))
64 |
65 | return "".join([ f'({c})' + r'{\NotoEmoji\symbol{"' +str(w)+'}}' for w, c in counter.most_common(4)]),np.mean(acc)
66 |
67 |
68 | joy = ["1f602", "1f604","1f60a","1f60b", "1f60c", "1f60d", "1f60e", "1f60f", "263a", "1f618",
69 | "1f61c","2764", "1f496", "1f495", "1f601","2665","270c","2661","1f3a7","1f49c","1f496","1f499"]
70 | sad = ["1f614", "1f615", "1f62b", "1f629", "1f622",
71 | "1f62a", "1f62d", "1f494"]
72 | anger= ["1f62c", "1f620", "1f610","1f611", "1f621", "1f616", "1f624"]
73 | disgust = ["1f637"]
74 | fear = ["1f605"]
75 | surprise = ["1f633"]
76 |
77 |
78 | emoji_list = [["\U0001f602","1f602"],
79 | ["\U0001f612","1f612"],
80 | ["\U0001f629","1f629"],
81 | ["\U0001f62d","1f62d"],
82 | ["\U0001f60d","1f60d"],
83 | ["\U0001f614","1f614"],
84 | ["\U0001f44c","1f44c"],
85 | ["\U0001f60a","1f60a"],
86 | ["\u2764","2764"],
87 | ["\U0001f60f","1f60f"],
88 | ["\U0001f601","1f601"],
89 | ["\U0001f3b6","1f3b6"],
90 | ["\U0001f633","1f633"],
91 | ["\U0001f4af","1f4af"],
92 | ["\U0001f634","1f634"],
93 | ["\U0001f60c","1f60c"],
94 | ["\u263a","263a"],
95 | ["\U0001f64c","1f64c"],
96 | ["\U0001f495","1f495"],
97 | ["\U0001f611","1f611"],
98 | ["\U0001f605","1f605"],
99 | ["\U0001f64f","1f64f"],
100 | ["\U0001f615","1f615"],
101 | ["\U0001f618","1f618"],
102 | ["\u2665","2665"],
103 | ["\U0001f610","1f610"],
104 | ["\U0001f481","1f481"],
105 | ["\U0001f61e","1f61e"],
106 | ["\U0001f648","1f648"],
107 | ["\U0001f62b","1f62b"],
108 | ["\u270c","270c"],
109 | ["\U0001f60e","1f60e"],
110 | ["\U0001f621","1f621"],
111 | ["\U0001f44d","1f44d"],
112 | ["\U0001f622","1f622"],
113 | ["\U0001f62a","1f62a"],
114 | ["\U0001f60b","1f60b"],
115 | ["\U0001f624","1f624"],
116 | ["\u270b","270b"],
117 | ["\U0001f637","1f637"],
118 | ["\U0001f44f","1f44f"],
119 | ["\U0001f440","1f440"],
120 | ["\U0001f52b","1f52b"],
121 | ["\U0001f623","1f623"],
122 | ["\U0001f608","1f608"],
123 | ["\U0001f613","1f613"],
124 | ["\U0001f494","1f494"],
125 | ["\u2661","2661"],
126 | ["\U0001f3a7","1f3a7"],
127 | ["\U0001f64a","1f64a"],
128 | ["\U0001f609","1f609"],
129 | ["\U0001f480","1f480"],
130 | ["\U0001f616","1f616"],
131 | ["\U0001f604","1f604"],
132 | ["\U0001f61c","1f61c"],
133 | ["\U0001f620","1f620"],
134 | ["\U0001f645","1f645"],
135 | ["\U0001f4aa","1f4aa"],
136 | ["\U0001f44a","1f44a"],
137 | ["\U0001f49c","1f49c"],
138 | ["\U0001f496","1f496"],
139 | ["\U0001f499","1f499"],
140 | ["\U0001f62c","1f62c"],
141 | ["\u2728","2728"]]
--------------------------------------------------------------------------------
/metric/torchMoji/examples/text_emojize.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 |
3 | """ Use torchMoji to predict emojis from a single text input
4 | """
5 |
6 | from __future__ import print_function, division, unicode_literals
7 | import example_helper
8 | import json
9 | import csv
10 | import argparse
11 |
12 | import numpy as np
13 | import emoji
14 |
15 | from torchmoji.sentence_tokenizer import SentenceTokenizer
16 | from torchmoji.model_def import torchmoji_emojis
17 | from torchmoji.global_variables import PRETRAINED_PATH, VOCAB_PATH
18 |
19 | # Emoji map in emoji_overview.png
20 | EMOJIS = ":joy: :unamused: :weary: :sob: :heart_eyes: \
21 | :pensive: :ok_hand: :blush: :heart: :smirk: \
22 | :grin: :notes: :flushed: :100: :sleeping: \
23 | :relieved: :relaxed: :raised_hands: :two_hearts: :expressionless: \
24 | :sweat_smile: :pray: :confused: :kissing_heart: :heartbeat: \
25 | :neutral_face: :information_desk_person: :disappointed: :see_no_evil: :tired_face: \
26 | :v: :sunglasses: :rage: :thumbsup: :cry: \
27 | :sleepy: :yum: :triumph: :hand: :mask: \
28 | :clap: :eyes: :gun: :persevere: :smiling_imp: \
29 | :sweat: :broken_heart: :yellow_heart: :musical_note: :speak_no_evil: \
30 | :wink: :skull: :confounded: :smile: :stuck_out_tongue_winking_eye: \
31 | :angry: :no_good: :muscle: :facepunch: :purple_heart: \
32 | :sparkling_heart: :blue_heart: :grimacing: :sparkles:".split(' ')
33 |
34 | def top_elements(array, k):
35 | ind = np.argpartition(array, -k)[-k:]
36 | return ind[np.argsort(array[ind])][::-1]
37 |
38 | if __name__ == "__main__":
39 | argparser = argparse.ArgumentParser()
40 | argparser.add_argument('--text', type=str, required=True, help="Input text to emojize")
41 | argparser.add_argument('--maxlen', type=int, default=30, help="Max length of input text")
42 | args = argparser.parse_args()
43 |
44 | # Tokenizing using dictionary
45 | with open(VOCAB_PATH, 'r') as f:
46 | vocabulary = json.load(f)
47 |
48 | st = SentenceTokenizer(vocabulary, args.maxlen)
49 |
50 | # Loading model
51 | model = torchmoji_emojis(PRETRAINED_PATH)
52 | # Running predictions
53 | tokenized, _, _ = st.tokenize_sentences([args.text])
54 | # Get sentence probability
55 | prob = model(tokenized)[0]
56 |
57 | # Top emoji id
58 | emoji_ids = top_elements(prob, 5)
59 |
60 | # map to emojis
61 | emojis = map(lambda x: EMOJIS[x], emoji_ids)
62 |
63 | print(emoji.emojize("{} {}".format(args.text,' '.join(emojis)), use_aliases=True))
64 |
--------------------------------------------------------------------------------
/metric/torchMoji/examples/tokenize_dataset.py:
--------------------------------------------------------------------------------
1 | """
2 | Take a given list of sentences and turn it into a numpy array, where each
3 | number corresponds to a word. Padding is used (number 0) to ensure fixed length
4 | of sentences.
5 | """
6 |
7 | from __future__ import print_function, unicode_literals
8 | import example_helper
9 | import json
10 | from torchmoji.sentence_tokenizer import SentenceTokenizer
11 |
12 | with open('../model/vocabulary.json', 'r') as f:
13 | vocabulary = json.load(f)
14 |
15 | st = SentenceTokenizer(vocabulary, 30)
16 | test_sentences = [
17 | '\u2014 -- \u203c !!\U0001F602',
18 | 'Hello world!',
19 | 'This is a sample tweet #example',
20 | ]
21 |
22 | tokens, infos, stats = st.tokenize_sentences(test_sentences)
23 |
24 | print(tokens)
25 | print(infos)
26 | print(stats)
27 |
--------------------------------------------------------------------------------
/metric/torchMoji/examples/vocab_extension.py:
--------------------------------------------------------------------------------
1 | """
2 | Extend the given vocabulary using dataset-specific words.
3 |
4 | 1. First create a vocabulary for the specific dataset.
5 | 2. Find all words not in our vocabulary, but in the dataset vocabulary.
6 | 3. Take top X (default=1000) of these words and add them to the vocabulary.
7 | 4. Save this combined vocabulary and embedding matrix, which can now be used.
8 | """
9 |
10 | from __future__ import print_function, unicode_literals
11 | import example_helper
12 | import json
13 | from torchmoji.create_vocab import extend_vocab, VocabBuilder
14 | from torchmoji.word_generator import WordGenerator
15 |
16 | new_words = ['#zzzzaaazzz', 'newword', 'newword']
17 | word_gen = WordGenerator(new_words)
18 | vb = VocabBuilder(word_gen)
19 | vb.count_all_words()
20 |
21 | with open('../model/vocabulary.json') as f:
22 | vocab = json.load(f)
23 |
24 | print(len(vocab))
25 | print(vb.word_counts)
26 | extend_vocab(vocab, vb, max_tokens=1)
27 |
28 | # 'newword' should be added because it's more frequent in the given vocab
29 | print(vocab['newword'])
30 | print(len(vocab))
31 |
--------------------------------------------------------------------------------
/metric/torchMoji/model/.gitkeep:
--------------------------------------------------------------------------------
1 |
2 |
--------------------------------------------------------------------------------
/metric/torchMoji/scripts/analyze_all_results.py:
--------------------------------------------------------------------------------
1 | from __future__ import print_function
2 |
3 | # allow us to import the codebase directory
4 | import sys
5 | import glob
6 | import numpy as np
7 | from os.path import dirname, abspath
8 | sys.path.insert(0, dirname(dirname(abspath(__file__))))
9 |
10 | DATASETS = ['SE0714', 'Olympic', 'PsychExp', 'SS-Twitter', 'SS-Youtube',
11 | 'SCv1', 'SV2-GEN'] # 'SE1604' excluded due to Twitter's ToS
12 |
13 | def get_results(dset):
14 | METHOD = 'last'
15 | RESULTS_DIR = 'results/'
16 | RESULT_PATHS = glob.glob('{}/{}_{}_*_results.txt'.format(RESULTS_DIR, dset, METHOD))
17 | assert len(RESULT_PATHS)
18 |
19 | scores = []
20 | for path in RESULT_PATHS:
21 | with open(path) as f:
22 | score = f.readline().split(':')[1]
23 | scores.append(float(score))
24 |
25 | average = np.mean(scores)
26 | maximum = max(scores)
27 | minimum = min(scores)
28 | std = np.std(scores)
29 |
30 | print('Dataset: {}'.format(dset))
31 | print('Method: {}'.format(METHOD))
32 | print('Number of results: {}'.format(len(scores)))
33 | print('--------------------------')
34 | print('Average: {}'.format(average))
35 | print('Maximum: {}'.format(maximum))
36 | print('Minimum: {}'.format(minimum))
37 | print('Standard deviaton: {}'.format(std))
38 |
39 | for dset in DATASETS:
40 | get_results(dset)
41 |
--------------------------------------------------------------------------------
/metric/torchMoji/scripts/analyze_results.py:
--------------------------------------------------------------------------------
1 | from __future__ import print_function
2 |
3 | import sys
4 | import glob
5 | import numpy as np
6 |
7 | DATASET = 'SS-Twitter' # 'SE1604' excluded due to Twitter's ToS
8 | METHOD = 'new'
9 |
10 | # Optional usage: analyze_results.py
11 | if len(sys.argv) == 3:
12 | DATASET = sys.argv[1]
13 | METHOD = sys.argv[2]
14 |
15 | RESULTS_DIR = 'results/'
16 | RESULT_PATHS = glob.glob('{}/{}_{}_*_results.txt'.format(RESULTS_DIR, DATASET, METHOD))
17 |
18 | if not RESULT_PATHS:
19 | print('Could not find results for \'{}\' using \'{}\' in directory \'{}\'.'.format(DATASET, METHOD, RESULTS_DIR))
20 | else:
21 | scores = []
22 | for path in RESULT_PATHS:
23 | with open(path) as f:
24 | score = f.readline().split(':')[1]
25 | scores.append(float(score))
26 |
27 | average = np.mean(scores)
28 | maximum = max(scores)
29 | minimum = min(scores)
30 | std = np.std(scores)
31 |
32 | print('Dataset: {}'.format(DATASET))
33 | print('Method: {}'.format(METHOD))
34 | print('Number of results: {}'.format(len(scores)))
35 | print('--------------------------')
36 | print('Average: {}'.format(average))
37 | print('Maximum: {}'.format(maximum))
38 | print('Minimum: {}'.format(minimum))
39 | print('Standard deviaton: {}'.format(std))
40 |
--------------------------------------------------------------------------------
/metric/torchMoji/scripts/calculate_coverages.py:
--------------------------------------------------------------------------------
1 | from __future__ import print_function
2 | import pickle
3 | import json
4 | import csv
5 | import sys
6 | from io import open
7 |
8 | # Allow us to import the torchmoji directory
9 | from os.path import dirname, abspath
10 | sys.path.insert(0, dirname(dirname(abspath(__file__))))
11 |
12 | from torchmoji.sentence_tokenizer import SentenceTokenizer, coverage
13 |
14 | try:
15 | unicode # Python 2
16 | except NameError:
17 | unicode = str # Python 3
18 |
19 | IS_PYTHON2 = int(sys.version[0]) == 2
20 |
21 | OUTPUT_PATH = 'coverage.csv'
22 | DATASET_PATHS = [
23 | '../data/Olympic/raw.pickle',
24 | '../data/PsychExp/raw.pickle',
25 | '../data/SCv1/raw.pickle',
26 | '../data/SCv2-GEN/raw.pickle',
27 | '../data/SE0714/raw.pickle',
28 | #'../data/SE1604/raw.pickle', # Excluded due to Twitter's ToS
29 | '../data/SS-Twitter/raw.pickle',
30 | '../data/SS-Youtube/raw.pickle',
31 | ]
32 |
33 | with open('../model/vocabulary.json', 'r') as f:
34 | vocab = json.load(f)
35 |
36 | results = []
37 | for p in DATASET_PATHS:
38 | coverage_result = [p]
39 | print('Calculating coverage for {}'.format(p))
40 | with open(p, 'rb') as f:
41 | if IS_PYTHON2:
42 | s = pickle.load(f)
43 | else:
44 | s = pickle.load(f, fix_imports=True)
45 |
46 | # Decode data
47 | try:
48 | s['texts'] = [unicode(x) for x in s['texts']]
49 | except UnicodeDecodeError:
50 | s['texts'] = [x.decode('utf-8') for x in s['texts']]
51 |
52 | # Own
53 | st = SentenceTokenizer({}, 30)
54 | tests, dicts, _ = st.split_train_val_test(s['texts'], s['info'],
55 | [s['train_ind'],
56 | s['val_ind'],
57 | s['test_ind']],
58 | extend_with=10000)
59 | coverage_result.append(coverage(tests[2]))
60 |
61 | # Last
62 | st = SentenceTokenizer(vocab, 30)
63 | tests, dicts, _ = st.split_train_val_test(s['texts'], s['info'],
64 | [s['train_ind'],
65 | s['val_ind'],
66 | s['test_ind']],
67 | extend_with=0)
68 | coverage_result.append(coverage(tests[2]))
69 |
70 | # Full
71 | st = SentenceTokenizer(vocab, 30)
72 | tests, dicts, _ = st.split_train_val_test(s['texts'], s['info'],
73 | [s['train_ind'],
74 | s['val_ind'],
75 | s['test_ind']],
76 | extend_with=10000)
77 | coverage_result.append(coverage(tests[2]))
78 |
79 | results.append(coverage_result)
80 |
81 | with open(OUTPUT_PATH, 'wb') as csvfile:
82 | writer = csv.writer(csvfile, delimiter='\t', lineterminator='\n')
83 | writer.writerow(['Dataset', 'Own', 'Last', 'Full'])
84 | for i, row in enumerate(results):
85 | try:
86 | writer.writerow(row)
87 | except:
88 | print("Exception at row {}!".format(i))
89 |
90 | print('Saved to {}'.format(OUTPUT_PATH))
91 |
--------------------------------------------------------------------------------
/metric/torchMoji/scripts/convert_all_datasets.py:
--------------------------------------------------------------------------------
1 | from __future__ import print_function
2 |
3 | import json
4 | import math
5 | import pickle
6 | import sys
7 | from io import open
8 | import numpy as np
9 | from os.path import abspath, dirname
10 | sys.path.insert(0, dirname(dirname(abspath(__file__))))
11 |
12 | from torchmoji.word_generator import WordGenerator
13 | from torchmoji.create_vocab import VocabBuilder
14 | from torchmoji.sentence_tokenizer import SentenceTokenizer, extend_vocab, coverage
15 | from torchmoji.tokenizer import tokenize
16 |
17 | try:
18 | unicode # Python 2
19 | except NameError:
20 | unicode = str # Python 3
21 |
22 | IS_PYTHON2 = int(sys.version[0]) == 2
23 |
24 | DATASETS = [
25 | 'Olympic',
26 | 'PsychExp',
27 | 'SCv1',
28 | 'SCv2-GEN',
29 | 'SE0714',
30 | #'SE1604', # Excluded due to Twitter's ToS
31 | 'SS-Twitter',
32 | 'SS-Youtube',
33 | ]
34 |
35 | DIR = '../data'
36 | FILENAME_RAW = 'raw.pickle'
37 | FILENAME_OWN = 'own_vocab.pickle'
38 | FILENAME_OUR = 'twitter_vocab.pickle'
39 | FILENAME_COMBINED = 'combined_vocab.pickle'
40 |
41 |
42 | def roundup(x):
43 | return int(math.ceil(x / 10.0)) * 10
44 |
45 |
46 | def format_pickle(dset, train_texts, val_texts, test_texts, train_labels, val_labels, test_labels):
47 | return {'dataset': dset,
48 | 'train_texts': train_texts,
49 | 'val_texts': val_texts,
50 | 'test_texts': test_texts,
51 | 'train_labels': train_labels,
52 | 'val_labels': val_labels,
53 | 'test_labels': test_labels}
54 |
55 | def convert_dataset(filepath, extend_with, vocab):
56 | print('-- Generating {} '.format(filepath))
57 | sys.stdout.flush()
58 | st = SentenceTokenizer(vocab, maxlen)
59 | tokenized, dicts, _ = st.split_train_val_test(texts,
60 | labels,
61 | [data['train_ind'],
62 | data['val_ind'],
63 | data['test_ind']],
64 | extend_with=extend_with)
65 | pick = format_pickle(dset, tokenized[0], tokenized[1], tokenized[2],
66 | dicts[0], dicts[1], dicts[2])
67 | with open(filepath, 'w') as f:
68 | pickle.dump(pick, f)
69 | cover = coverage(tokenized[2])
70 |
71 | print(' done. Coverage: {}'.format(cover))
72 |
73 | with open('../model/vocabulary.json', 'r') as f:
74 | vocab = json.load(f)
75 |
76 | for dset in DATASETS:
77 | print('Converting {}'.format(dset))
78 |
79 | PATH_RAW = '{}/{}/{}'.format(DIR, dset, FILENAME_RAW)
80 | PATH_OWN = '{}/{}/{}'.format(DIR, dset, FILENAME_OWN)
81 | PATH_OUR = '{}/{}/{}'.format(DIR, dset, FILENAME_OUR)
82 | PATH_COMBINED = '{}/{}/{}'.format(DIR, dset, FILENAME_COMBINED)
83 |
84 | with open(PATH_RAW, 'rb') as dataset:
85 | if IS_PYTHON2:
86 | data = pickle.load(dataset)
87 | else:
88 | data = pickle.load(dataset, fix_imports=True)
89 |
90 | # Decode data
91 | try:
92 | texts = [unicode(x) for x in data['texts']]
93 | except UnicodeDecodeError:
94 | texts = [x.decode('utf-8') for x in data['texts']]
95 |
96 | wg = WordGenerator(texts)
97 | vb = VocabBuilder(wg)
98 | vb.count_all_words()
99 |
100 | # Calculate max length of sequences considered
101 | # Adjust batch_size accordingly to prevent GPU overflow
102 | lengths = [len(tokenize(t)) for t in texts]
103 | maxlen = roundup(np.percentile(lengths, 80.0))
104 |
105 | # Extract labels
106 | labels = [x['label'] for x in data['info']]
107 |
108 | convert_dataset(PATH_OWN, 50000, {})
109 | convert_dataset(PATH_OUR, 0, vocab)
110 | convert_dataset(PATH_COMBINED, 10000, vocab)
111 |
--------------------------------------------------------------------------------
/metric/torchMoji/scripts/download_weights.py:
--------------------------------------------------------------------------------
1 | from __future__ import print_function
2 | import os
3 | from subprocess import call
4 | from builtins import input
5 |
6 | curr_folder = os.path.basename(os.path.normpath(os.getcwd()))
7 |
8 | weights_filename = 'pytorch_model.bin'
9 | weights_folder = 'model'
10 | weights_path = '{}/{}'.format(weights_folder, weights_filename)
11 | if curr_folder == 'scripts':
12 | weights_path = '../' + weights_path
13 | weights_download_link = 'https://www.dropbox.com/s/q8lax9ary32c7t9/pytorch_model.bin?dl=0#'
14 |
15 |
16 | MB_FACTOR = float(1<<20)
17 |
18 | def prompt():
19 | while True:
20 | valid = {
21 | 'y': True,
22 | 'ye': True,
23 | 'yes': True,
24 | 'n': False,
25 | 'no': False,
26 | }
27 | choice = input().lower()
28 | if choice in valid:
29 | return valid[choice]
30 | else:
31 | print('Please respond with \'y\' or \'n\' (or \'yes\' or \'no\')')
32 |
33 | download = True
34 | if os.path.exists(weights_path):
35 | print('Weight file already exists at {}. Would you like to redownload it anyway? [y/n]'.format(weights_path))
36 | download = prompt()
37 | already_exists = True
38 | else:
39 | already_exists = False
40 |
41 | if download:
42 | print('About to download the pretrained weights file from {}'.format(weights_download_link))
43 | if already_exists == False:
44 | print('The size of the file is roughly 85MB. Continue? [y/n]')
45 | else:
46 | os.unlink(weights_path)
47 |
48 | if already_exists or prompt():
49 | print('Downloading...')
50 |
51 | #urllib.urlretrieve(weights_download_link, weights_path)
52 | #with open(weights_path,'wb') as f:
53 | # f.write(requests.get(weights_download_link).content)
54 |
55 | # downloading using wget due to issues with urlretrieve and requests
56 | sys_call = 'wget {} -O {}'.format(weights_download_link, os.path.abspath(weights_path))
57 | print("Running system call: {}".format(sys_call))
58 | call(sys_call, shell=True)
59 |
60 | if os.path.getsize(weights_path) / MB_FACTOR < 80:
61 | raise ValueError("Download finished, but the resulting file is too small! " +
62 | "It\'s only {} bytes.".format(os.path.getsize(weights_path)))
63 | print('Downloaded weights to {}'.format(weights_path))
64 | else:
65 | print('Exiting.')
66 |
--------------------------------------------------------------------------------
/metric/torchMoji/scripts/finetune_dataset.py:
--------------------------------------------------------------------------------
1 | """ Finetuning example.
2 | """
3 | from __future__ import print_function
4 | import sys
5 | import numpy as np
6 | from os.path import abspath, dirname
7 | sys.path.insert(0, dirname(dirname(abspath(__file__))))
8 |
9 | import json
10 | import math
11 | from torchmoji.model_def import torchmoji_transfer
12 | from torchmoji.global_variables import PRETRAINED_PATH, VOCAB_PATH
13 | from torchmoji.finetuning import (
14 | load_benchmark,
15 | finetune)
16 | from torchmoji.class_avg_finetuning import class_avg_finetune
17 |
18 | def roundup(x):
19 | return int(math.ceil(x / 10.0)) * 10
20 |
21 |
22 | # Format: (dataset_name,
23 | # path_to_dataset,
24 | # nb_classes,
25 | # use_f1_score)
26 | DATASETS = [
27 | #('SE0714', '../data/SE0714/raw.pickle', 3, True),
28 | #('Olympic', '../data/Olympic/raw.pickle', 4, True),
29 | #('PsychExp', '../data/PsychExp/raw.pickle', 7, True),
30 | #('SS-Twitter', '../data/SS-Twitter/raw.pickle', 2, False),
31 | ('SS-Youtube', '../data/SS-Youtube/raw.pickle', 2, False),
32 | #('SE1604', '../data/SE1604/raw.pickle', 3, False), # Excluded due to Twitter's ToS
33 | #('SCv1', '../data/SCv1/raw.pickle', 2, True),
34 | #('SCv2-GEN', '../data/SCv2-GEN/raw.pickle', 2, True)
35 | ]
36 |
37 | RESULTS_DIR = 'results'
38 |
39 | # 'new' | 'last' | 'full' | 'chain-thaw'
40 | FINETUNE_METHOD = 'last'
41 | VERBOSE = 1
42 |
43 | nb_tokens = 50000
44 | nb_epochs = 1000
45 | epoch_size = 1000
46 |
47 | with open(VOCAB_PATH, 'r') as f:
48 | vocab = json.load(f)
49 |
50 | for rerun_iter in range(5):
51 | for p in DATASETS:
52 |
53 | # debugging
54 | assert len(vocab) == nb_tokens
55 |
56 | dset = p[0]
57 | path = p[1]
58 | nb_classes = p[2]
59 | use_f1_score = p[3]
60 |
61 | if FINETUNE_METHOD == 'last':
62 | extend_with = 0
63 | elif FINETUNE_METHOD in ['new', 'full', 'chain-thaw']:
64 | extend_with = 10000
65 | else:
66 | raise ValueError('Finetuning method not recognised!')
67 |
68 | # Load dataset.
69 | data = load_benchmark(path, vocab, extend_with=extend_with)
70 |
71 | (X_train, y_train) = (data['texts'][0], data['labels'][0])
72 | (X_val, y_val) = (data['texts'][1], data['labels'][1])
73 | (X_test, y_test) = (data['texts'][2], data['labels'][2])
74 |
75 | weight_path = PRETRAINED_PATH if FINETUNE_METHOD != 'new' else None
76 | nb_model_classes = 2 if use_f1_score else nb_classes
77 | model = torchmoji_transfer(
78 | nb_model_classes,
79 | weight_path,
80 | extend_embedding=data['added'])
81 | print(model)
82 |
83 | # Training
84 | print('Training: {}'.format(path))
85 | if use_f1_score:
86 | model, result = class_avg_finetune(model, data['texts'],
87 | data['labels'],
88 | nb_classes, data['batch_size'],
89 | FINETUNE_METHOD,
90 | verbose=VERBOSE)
91 | else:
92 | model, result = finetune(model, data['texts'], data['labels'],
93 | nb_classes, data['batch_size'],
94 | FINETUNE_METHOD, metric='acc',
95 | verbose=VERBOSE)
96 |
97 | # Write results
98 | if use_f1_score:
99 | print('Overall F1 score (dset = {}): {}'.format(dset, result))
100 | with open('{}/{}_{}_{}_results.txt'.
101 | format(RESULTS_DIR, dset, FINETUNE_METHOD, rerun_iter),
102 | "w") as f:
103 | f.write("F1: {}\n".format(result))
104 | else:
105 | print('Test accuracy (dset = {}): {}'.format(dset, result))
106 | with open('{}/{}_{}_{}_results.txt'.
107 | format(RESULTS_DIR, dset, FINETUNE_METHOD, rerun_iter),
108 | "w") as f:
109 | f.write("Acc: {}\n".format(result))
110 |
--------------------------------------------------------------------------------
/metric/torchMoji/scripts/results/.gitkeep:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/metric/torchMoji/setup.py:
--------------------------------------------------------------------------------
1 | from setuptools import setup
2 |
3 | setup(
4 | name='torchmoji',
5 | version='1.0',
6 | packages=['torchmoji'],
7 | description='torchMoji',
8 | include_package_data=True,
9 | install_requires=[
10 | 'emoji==0.4.5',
11 | 'numpy==1.13.1',
12 | 'scipy==0.19.1',
13 | 'scikit-learn==0.19.0',
14 | 'text-unidecode==1.0',
15 | ],
16 | )
17 |
--------------------------------------------------------------------------------
/metric/torchMoji/tests/test_finetuning.py:
--------------------------------------------------------------------------------
1 | from __future__ import absolute_import, print_function, division, unicode_literals
2 |
3 | import test_helper
4 |
5 | from nose.plugins.attrib import attr
6 | import json
7 | import numpy as np
8 |
9 | from torchmoji.class_avg_finetuning import relabel
10 | from torchmoji.sentence_tokenizer import SentenceTokenizer
11 |
12 | from torchmoji.finetuning import (
13 | calculate_batchsize_maxlen,
14 | freeze_layers,
15 | change_trainable,
16 | finetune,
17 | load_benchmark
18 | )
19 | from torchmoji.model_def import (
20 | torchmoji_transfer,
21 | torchmoji_feature_encoding,
22 | torchmoji_emojis
23 | )
24 | from torchmoji.global_variables import (
25 | PRETRAINED_PATH,
26 | NB_TOKENS,
27 | VOCAB_PATH,
28 | ROOT_PATH
29 | )
30 |
31 |
32 | def test_calculate_batchsize_maxlen():
33 | """ Batch size and max length are calculated properly.
34 | """
35 | texts = ['a b c d',
36 | 'e f g h i']
37 | batch_size, maxlen = calculate_batchsize_maxlen(texts)
38 |
39 | assert batch_size == 250
40 | assert maxlen == 10, maxlen
41 |
42 |
43 | def test_freeze_layers():
44 | """ Correct layers are frozen.
45 | """
46 | model = torchmoji_transfer(5)
47 | keyword = 'output_layer'
48 |
49 | model = freeze_layers(model, unfrozen_keyword=keyword)
50 |
51 | for name, module in model.named_children():
52 | trainable = keyword.lower() in name.lower()
53 | assert all(p.requires_grad == trainable for p in module.parameters())
54 |
55 |
56 | def test_change_trainable():
57 | """ change_trainable() changes trainability of layers.
58 | """
59 | model = torchmoji_transfer(5)
60 | change_trainable(model.embed, False)
61 | assert not any(p.requires_grad for p in model.embed.parameters())
62 | change_trainable(model.embed, True)
63 | assert all(p.requires_grad for p in model.embed.parameters())
64 |
65 |
66 | def test_torchmoji_transfer_extend_embedding():
67 | """ Defining torchmoji with extension.
68 | """
69 | extend_with = 50
70 | model = torchmoji_transfer(5, weight_path=PRETRAINED_PATH,
71 | extend_embedding=extend_with)
72 | embedding_layer = model.embed
73 | assert embedding_layer.weight.size()[0] == NB_TOKENS + extend_with
74 |
75 |
76 | def test_torchmoji_return_attention():
77 | seq_tensor = np.array([[1]])
78 | # test the output of the normal model
79 | model = torchmoji_emojis(weight_path=PRETRAINED_PATH)
80 | # check correct number of outputs
81 | assert len(model(seq_tensor)) == 1
82 | # repeat above described tests when returning attention weights
83 | model = torchmoji_emojis(weight_path=PRETRAINED_PATH, return_attention=True)
84 | assert len(model(seq_tensor)) == 2
85 |
86 |
87 | def test_relabel():
88 | """ relabel() works with multi-class labels.
89 | """
90 | nb_classes = 3
91 | inputs = np.array([
92 | [True, False, False],
93 | [False, True, False],
94 | [True, False, True],
95 | ])
96 | expected_0 = np.array([True, False, True])
97 | expected_1 = np.array([False, True, False])
98 | expected_2 = np.array([False, False, True])
99 |
100 | assert np.array_equal(relabel(inputs, 0, nb_classes), expected_0)
101 | assert np.array_equal(relabel(inputs, 1, nb_classes), expected_1)
102 | assert np.array_equal(relabel(inputs, 2, nb_classes), expected_2)
103 |
104 |
105 | def test_relabel_binary():
106 | """ relabel() works with binary classification (no changes to labels)
107 | """
108 | nb_classes = 2
109 | inputs = np.array([True, False, False])
110 |
111 | assert np.array_equal(relabel(inputs, 0, nb_classes), inputs)
112 |
113 |
114 | @attr('slow')
115 | def test_finetune_full():
116 | """ finetuning using 'full'.
117 | """
118 | DATASET_PATH = ROOT_PATH+'/data/SS-Youtube/raw.pickle'
119 | nb_classes = 2
120 | # Keras and pyTorch implementation of the Adam optimizer are slightly different and change a bit the results
121 | # We reduce the min accuracy needed here to pass the test
122 | # See e.g. https://discuss.pytorch.org/t/suboptimal-convergence-when-compared-with-tensorflow-model/5099/11
123 | min_acc = 0.68
124 |
125 | with open(VOCAB_PATH, 'r') as f:
126 | vocab = json.load(f)
127 |
128 | data = load_benchmark(DATASET_PATH, vocab, extend_with=10000)
129 | print('Loading pyTorch model from {}.'.format(PRETRAINED_PATH))
130 | model = torchmoji_transfer(nb_classes, PRETRAINED_PATH, extend_embedding=data['added'])
131 | print(model)
132 | model, acc = finetune(model, data['texts'], data['labels'], nb_classes,
133 | data['batch_size'], method='full', nb_epochs=1)
134 |
135 | print("Finetune full SS-Youtube 1 epoch acc: {}".format(acc))
136 | assert acc >= min_acc
137 |
138 |
139 | @attr('slow')
140 | def test_finetune_last():
141 | """ finetuning using 'last'.
142 | """
143 | dataset_path = ROOT_PATH + '/data/SS-Youtube/raw.pickle'
144 | nb_classes = 2
145 | min_acc = 0.68
146 |
147 | with open(VOCAB_PATH, 'r') as f:
148 | vocab = json.load(f)
149 |
150 | data = load_benchmark(dataset_path, vocab)
151 | print('Loading model from {}.'.format(PRETRAINED_PATH))
152 | model = torchmoji_transfer(nb_classes, PRETRAINED_PATH)
153 | print(model)
154 | model, acc = finetune(model, data['texts'], data['labels'], nb_classes,
155 | data['batch_size'], method='last', nb_epochs=1)
156 |
157 | print("Finetune last SS-Youtube 1 epoch acc: {}".format(acc))
158 |
159 | assert acc >= min_acc
160 |
161 |
162 | def test_score_emoji():
163 | """ Emoji predictions make sense.
164 | """
165 | test_sentences = [
166 | 'I love mom\'s cooking',
167 | 'I love how you never reply back..',
168 | 'I love cruising with my homies',
169 | 'I love messing with yo mind!!',
170 | 'I love you and now you\'re just gone..',
171 | 'This is shit',
172 | 'This is the shit'
173 | ]
174 |
175 | expected = [
176 | np.array([36, 4, 8, 16, 47]),
177 | np.array([1, 19, 55, 25, 46]),
178 | np.array([31, 6, 30, 15, 13]),
179 | np.array([54, 44, 9, 50, 49]),
180 | np.array([46, 5, 27, 35, 34]),
181 | np.array([55, 32, 27, 1, 37]),
182 | np.array([48, 11, 6, 31, 9])
183 | ]
184 |
185 | def top_elements(array, k):
186 | ind = np.argpartition(array, -k)[-k:]
187 | return ind[np.argsort(array[ind])][::-1]
188 |
189 | # Initialize by loading dictionary and tokenize texts
190 | with open(VOCAB_PATH, 'r') as f:
191 | vocabulary = json.load(f)
192 |
193 | st = SentenceTokenizer(vocabulary, 30)
194 | tokens, _, _ = st.tokenize_sentences(test_sentences)
195 |
196 | # Load model and run
197 | model = torchmoji_emojis(weight_path=PRETRAINED_PATH)
198 | prob = model(tokens)
199 |
200 | # Find top emojis for each sentence
201 | for i, t_prob in enumerate(list(prob)):
202 | assert np.array_equal(top_elements(t_prob, 5), expected[i])
203 |
204 |
205 | def test_encode_texts():
206 | """ Text encoding is stable.
207 | """
208 |
209 | TEST_SENTENCES = ['I love mom\'s cooking',
210 | 'I love how you never reply back..',
211 | 'I love cruising with my homies',
212 | 'I love messing with yo mind!!',
213 | 'I love you and now you\'re just gone..',
214 | 'This is shit',
215 | 'This is the shit']
216 |
217 |
218 | maxlen = 30
219 | batch_size = 32
220 |
221 | with open(VOCAB_PATH, 'r') as f:
222 | vocabulary = json.load(f)
223 |
224 | st = SentenceTokenizer(vocabulary, maxlen)
225 |
226 | print('Loading model from {}.'.format(PRETRAINED_PATH))
227 | model = torchmoji_feature_encoding(PRETRAINED_PATH)
228 | print(model)
229 | tokenized, _, _ = st.tokenize_sentences(TEST_SENTENCES)
230 | encoding = model(tokenized)
231 |
232 | avg_across_sentences = np.around(np.mean(encoding, axis=0)[:5], 3)
233 | assert np.allclose(avg_across_sentences, np.array([-0.023, 0.021, -0.037, -0.001, -0.005]))
234 |
235 | test_encode_texts()
--------------------------------------------------------------------------------
/metric/torchMoji/tests/test_helper.py:
--------------------------------------------------------------------------------
1 | """ Module import helper.
2 | Modifies PATH in order to allow us to import the torchmoji directory.
3 | """
4 | import sys
5 | from os.path import abspath, dirname
6 | sys.path.insert(0, dirname(dirname(abspath(__file__))))
7 |
--------------------------------------------------------------------------------
/metric/torchMoji/tests/test_sentence_tokenizer.py:
--------------------------------------------------------------------------------
1 | from __future__ import absolute_import, print_function, division, unicode_literals
2 | import test_helper
3 | import json
4 |
5 | from torchmoji.sentence_tokenizer import SentenceTokenizer
6 |
7 | sentences = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J']
8 |
9 | dicts = [
10 | {'label': 0},
11 | {'label': 1},
12 | {'label': 2},
13 | {'label': 3},
14 | {'label': 4},
15 | {'label': 5},
16 | {'label': 6},
17 | {'label': 7},
18 | {'label': 8},
19 | {'label': 9},
20 | ]
21 |
22 | train_ind = [0, 5, 3, 6, 8]
23 | val_ind = [9, 2, 1]
24 | test_ind = [4, 7]
25 |
26 | with open('../model/vocabulary.json', 'r') as f:
27 | vocab = json.load(f)
28 |
29 | def test_dataset_split_parameter():
30 | """ Dataset is split in the desired ratios
31 | """
32 | split_parameter = [0.7, 0.1, 0.2]
33 | st = SentenceTokenizer(vocab, 30)
34 |
35 | result, result_dicts, _ = st.split_train_val_test(sentences, dicts,
36 | split_parameter, extend_with=0)
37 | train = result[0]
38 | val = result[1]
39 | test = result[2]
40 |
41 | train_dicts = result_dicts[0]
42 | val_dicts = result_dicts[1]
43 | test_dicts = result_dicts[2]
44 |
45 | assert len(train) == len(sentences) * split_parameter[0]
46 | assert len(val) == len(sentences) * split_parameter[1]
47 | assert len(test) == len(sentences) * split_parameter[2]
48 |
49 | assert len(train_dicts) == len(dicts) * split_parameter[0]
50 | assert len(val_dicts) == len(dicts) * split_parameter[1]
51 | assert len(test_dicts) == len(dicts) * split_parameter[2]
52 |
53 | def test_dataset_split_explicit():
54 | """ Dataset is split according to given indices
55 | """
56 | split_parameter = [train_ind, val_ind, test_ind]
57 | st = SentenceTokenizer(vocab, 30)
58 | tokenized, _, _ = st.tokenize_sentences(sentences)
59 |
60 | result, result_dicts, added = st.split_train_val_test(sentences, dicts, split_parameter, extend_with=0)
61 | train = result[0]
62 | val = result[1]
63 | test = result[2]
64 |
65 | train_dicts = result_dicts[0]
66 | val_dicts = result_dicts[1]
67 | test_dicts = result_dicts[2]
68 |
69 | tokenized = tokenized
70 |
71 | for i, sentence in enumerate(sentences):
72 | if i in train_ind:
73 | assert tokenized[i] in train
74 | assert dicts[i] in train_dicts
75 | elif i in val_ind:
76 | assert tokenized[i] in val
77 | assert dicts[i] in val_dicts
78 | elif i in test_ind:
79 | assert tokenized[i] in test
80 | assert dicts[i] in test_dicts
81 |
82 | assert len(train) == len(train_ind)
83 | assert len(val) == len(val_ind)
84 | assert len(test) == len(test_ind)
85 | assert len(train_dicts) == len(train_ind)
86 | assert len(val_dicts) == len(val_ind)
87 | assert len(test_dicts) == len(test_ind)
88 |
89 | def test_id_to_sentence():
90 | """Tokenizing and converting back preserves the input.
91 | """
92 | vb = {'CUSTOM_MASK': 0,
93 | 'aasdf': 1000,
94 | 'basdf': 2000}
95 |
96 | sentence = 'aasdf basdf basdf basdf'
97 | st = SentenceTokenizer(vb, 30)
98 | token, _, _ = st.tokenize_sentences([sentence])
99 | assert st.to_sentence(token[0]) == sentence
100 |
101 | def test_id_to_sentence_with_unknown():
102 | """Tokenizing and converting back preserves the input, except for unknowns.
103 | """
104 | vb = {'CUSTOM_MASK': 0,
105 | 'CUSTOM_UNKNOWN': 1,
106 | 'aasdf': 1000,
107 | 'basdf': 2000}
108 |
109 | sentence = 'aasdf basdf ccc'
110 | expected = 'aasdf basdf CUSTOM_UNKNOWN'
111 | st = SentenceTokenizer(vb, 30)
112 | token, _, _ = st.tokenize_sentences([sentence])
113 | assert st.to_sentence(token[0]) == expected
114 |
--------------------------------------------------------------------------------
/metric/torchMoji/tests/test_tokenizer.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | """ Tokenization tests.
3 | """
4 | from __future__ import absolute_import, print_function, division, unicode_literals
5 |
6 | import sys
7 | from nose.tools import nottest
8 | from os.path import dirname, abspath
9 | sys.path.append(dirname(dirname(abspath(__file__))))
10 | from torchmoji.tokenizer import tokenize
11 |
12 | TESTS_NORMAL = [
13 | ('200K words!', ['200', 'K', 'words', '!']),
14 | ]
15 |
16 | TESTS_EMOJIS = [
17 | ('i \U0001f496 you to the moon and back',
18 | ['i', '\U0001f496', 'you', 'to', 'the', 'moon', 'and', 'back']),
19 | ("i\U0001f496you to the \u2605's and back",
20 | ['i', '\U0001f496', 'you', 'to', 'the',
21 | '\u2605', "'", 's', 'and', 'back']),
22 | ('~<3~', ['~', '<3', '~']),
23 | ('<333', ['<333']),
24 | (':-)', [':-)']),
25 | ('>:-(', ['>:-(']),
26 | ('\u266b\u266a\u2605\u2606\u2665\u2764\u2661',
27 | ['\u266b', '\u266a', '\u2605', '\u2606',
28 | '\u2665', '\u2764', '\u2661']),
29 | ]
30 |
31 | TESTS_URLS = [
32 | ('www.sample.com', ['www.sample.com']),
33 | ('http://endless.horse', ['http://endless.horse']),
34 | ('https://github.mit.ed', ['https://github.mit.ed']),
35 | ]
36 |
37 | TESTS_TWITTER = [
38 | ('#blacklivesmatter', ['#blacklivesmatter']),
39 | ('#99_percent.', ['#99_percent', '.']),
40 | ('the#99%', ['the', '#99', '%']),
41 | ('@golden_zenith', ['@golden_zenith']),
42 | ('@99_percent', ['@99_percent']),
43 | ('latte-express@mit.ed', ['latte-express@mit.ed']),
44 | ]
45 |
46 | TESTS_PHONE_NUMS = [
47 | ('518)528-0252', ['518', ')', '528', '-', '0252']),
48 | ('1200-0221-0234', ['1200', '-', '0221', '-', '0234']),
49 | ('1200.0221.0234', ['1200', '.', '0221', '.', '0234']),
50 | ]
51 |
52 | TESTS_DATETIME = [
53 | ('15:00', ['15', ':', '00']),
54 | ('2:00pm', ['2', ':', '00', 'pm']),
55 | ('9/14/16', ['9', '/', '14', '/', '16']),
56 | ]
57 |
58 | TESTS_CURRENCIES = [
59 | ('517.933\xa3', ['517', '.', '933', '\xa3']),
60 | ('$517.87', ['$', '517', '.', '87']),
61 | ('1201.6598', ['1201', '.', '6598']),
62 | ('120,6', ['120', ',', '6']),
63 | ('10,00\u20ac', ['10', ',', '00', '\u20ac']),
64 | ('1,000', ['1', ',', '000']),
65 | ('1200pesos', ['1200', 'pesos']),
66 | ]
67 |
68 | TESTS_NUM_SYM = [
69 | ('5162f', ['5162', 'f']),
70 | ('f5162', ['f', '5162']),
71 | ('1203(', ['1203', '(']),
72 | ('(1203)', ['(', '1203', ')']),
73 | ('1200/', ['1200', '/']),
74 | ('1200+', ['1200', '+']),
75 | ('1202o-east', ['1202', 'o-east']),
76 | ('1200r', ['1200', 'r']),
77 | ('1200-1400', ['1200', '-', '1400']),
78 | ('120/today', ['120', '/', 'today']),
79 | ('today/120', ['today', '/', '120']),
80 | ('120/5', ['120', '/', '5']),
81 | ("120'/5", ['120', "'", '/', '5']),
82 | ('120/5pro', ['120', '/', '5', 'pro']),
83 | ("1200's,)", ['1200', "'", 's', ',', ')']),
84 | ('120.76.218.207', ['120', '.', '76', '.', '218', '.', '207']),
85 | ]
86 |
87 | TESTS_PUNCTUATION = [
88 | ("don''t", ['don', "''", 't']),
89 | ("don'tcha", ["don'tcha"]),
90 | ('no?!?!;', ['no', '?', '!', '?', '!', ';']),
91 | ('no??!!..', ['no', '??', '!!', '..']),
92 | ('a.m.', ['a.m.']),
93 | ('.s.u', ['.', 's', '.', 'u']),
94 | ('!!i..n__', ['!!', 'i', '..', 'n', '__']),
95 | ('lv(<3)w(3>)u Mr.!', ['lv', '(', '<3', ')', 'w', '(', '3',
96 | '>', ')', 'u', 'Mr.', '!']),
97 | ('-->', ['--', '>']),
98 | ('->', ['-', '>']),
99 | ('<-', ['<', '-']),
100 | ('<--', ['<', '--']),
101 | ('hello (@person)', ['hello', '(', '@person', ')']),
102 | ]
103 |
104 |
105 | def test_normal():
106 | """ Normal/combined usage.
107 | """
108 | test_base(TESTS_NORMAL)
109 |
110 |
111 | def test_emojis():
112 | """ Tokenizing emojis/emoticons/decorations.
113 | """
114 | test_base(TESTS_EMOJIS)
115 |
116 |
117 | def test_urls():
118 | """ Tokenizing URLs.
119 | """
120 | test_base(TESTS_URLS)
121 |
122 |
123 | def test_twitter():
124 | """ Tokenizing hashtags, mentions and emails.
125 | """
126 | test_base(TESTS_TWITTER)
127 |
128 |
129 | def test_phone_nums():
130 | """ Tokenizing phone numbers.
131 | """
132 | test_base(TESTS_PHONE_NUMS)
133 |
134 |
135 | def test_datetime():
136 | """ Tokenizing dates and times.
137 | """
138 | test_base(TESTS_DATETIME)
139 |
140 |
141 | def test_currencies():
142 | """ Tokenizing currencies.
143 | """
144 | test_base(TESTS_CURRENCIES)
145 |
146 |
147 | def test_num_sym():
148 | """ Tokenizing combinations of numbers and symbols.
149 | """
150 | test_base(TESTS_NUM_SYM)
151 |
152 |
153 | def test_punctuation():
154 | """ Tokenizing punctuation and contractions.
155 | """
156 | test_base(TESTS_PUNCTUATION)
157 |
158 |
159 | @nottest
160 | def test_base(tests):
161 | """ Base function for running tests.
162 | """
163 | for (test, expected) in tests:
164 | actual = tokenize(test)
165 | assert actual == expected, \
166 | "Tokenization of \'{}\' failed, expected: {}, actual: {}"\
167 | .format(test, expected, actual)
168 |
--------------------------------------------------------------------------------
/metric/torchMoji/tests/test_word_generator.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | import sys
3 | from os.path import dirname, abspath
4 | sys.path.append(dirname(dirname(abspath(__file__))))
5 | from nose.tools import raises
6 | from torchmoji.word_generator import WordGenerator
7 |
8 | IS_PYTHON2 = int(sys.version[0]) == 2
9 |
10 | @raises(ValueError)
11 | def test_only_unicode_accepted():
12 | """ Non-Unicode strings raise a ValueError.
13 | In Python 3 all string are Unicode
14 | """
15 | if not IS_PYTHON2:
16 | raise ValueError("You are using python 3 so this test should always pass")
17 |
18 | sentences = [
19 | u'Hello world',
20 | u'I am unicode',
21 | 'I am not unicode',
22 | ]
23 |
24 | wg = WordGenerator(sentences)
25 | for w in wg:
26 | pass
27 |
28 |
29 | def test_unicode_sentences_ignored_if_set():
30 | """ Strings with Unicode characters tokenize to empty array if they're not allowed.
31 | """
32 | sentence = [u'Dobrý den, jak se máš?']
33 | wg = WordGenerator(sentence, allow_unicode_text=False)
34 | assert wg.get_words(sentence[0]) == []
35 |
36 |
37 | def test_check_ascii():
38 | """ check_ascii recognises ASCII words properly.
39 | In Python 3 all string are Unicode
40 | """
41 | if not IS_PYTHON2:
42 | return
43 |
44 | wg = WordGenerator([])
45 | assert wg.check_ascii('ASCII')
46 | assert not wg.check_ascii('ščřžýá')
47 | assert not wg.check_ascii('❤ ☀ ☆ ☂ ☻ ♞ ☯ ☭ ☢')
48 |
49 |
50 | def test_convert_unicode_word():
51 | """ convert_unicode_word converts Unicode words correctly.
52 | """
53 | wg = WordGenerator([], allow_unicode_text=True)
54 |
55 | result = wg.convert_unicode_word(u'č')
56 | assert result == (True, u'\u010d'), '{}'.format(result)
57 |
58 |
59 | def test_convert_unicode_word_ignores_if_set():
60 | """ convert_unicode_word ignores Unicode words if set.
61 | """
62 | wg = WordGenerator([], allow_unicode_text=False)
63 |
64 | result = wg.convert_unicode_word(u'č')
65 | assert result == (False, ''), '{}'.format(result)
66 |
67 |
68 | def test_convert_unicode_chars():
69 | """ convert_unicode_word correctly converts accented characters.
70 | """
71 | wg = WordGenerator([], allow_unicode_text=True)
72 | result = wg.convert_unicode_word(u'ěščřžýáíé')
73 | assert result == (True, u'\u011b\u0161\u010d\u0159\u017e\xfd\xe1\xed\xe9'), '{}'.format(result)
74 |
--------------------------------------------------------------------------------
/metric/torchMoji/torchmoji/.gitkeep:
--------------------------------------------------------------------------------
1 |
2 |
--------------------------------------------------------------------------------
/metric/torchMoji/torchmoji/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/andreamad8/PPCM/e5bef1bbb70907a3d65de3225a00e4af9104d4a8/metric/torchMoji/torchmoji/__init__.py
--------------------------------------------------------------------------------
/metric/torchMoji/torchmoji/attlayer.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | """ Define the Attention Layer of the model.
3 | """
4 |
5 | from __future__ import print_function, division
6 |
7 | import torch
8 |
9 | from torch.autograd import Variable
10 | from torch.nn import Module
11 | from torch.nn.parameter import Parameter
12 |
13 | class Attention(Module):
14 | """
15 | Computes a weighted average of the different channels across timesteps.
16 | Uses 1 parameter pr. channel to compute the attention value for a single timestep.
17 | """
18 |
19 | def __init__(self, attention_size, return_attention=False):
20 | """ Initialize the attention layer
21 |
22 | # Arguments:
23 | attention_size: Size of the attention vector.
24 | return_attention: If true, output will include the weight for each input token
25 | used for the prediction
26 |
27 | """
28 | super(Attention, self).__init__()
29 | self.return_attention = return_attention
30 | self.attention_size = attention_size
31 | self.attention_vector = Parameter(torch.FloatTensor(attention_size))
32 | self.attention_vector.data.normal_(std=0.05) # Initialize attention vector
33 |
34 | def __repr__(self):
35 | s = '{name}({attention_size}, return attention={return_attention})'
36 | return s.format(name=self.__class__.__name__, **self.__dict__)
37 |
38 | def forward(self, inputs, input_lengths):
39 | """ Forward pass.
40 |
41 | # Arguments:
42 | inputs (Torch.Variable): Tensor of input sequences
43 | input_lengths (torch.LongTensor): Lengths of the sequences
44 |
45 | # Return:
46 | Tuple with (representations and attentions if self.return_attention else None).
47 | """
48 | logits = inputs.matmul(self.attention_vector)
49 | unnorm_ai = (logits - logits.max()).exp()
50 |
51 | # Compute a mask for the attention on the padded sequences
52 | # See e.g. https://discuss.pytorch.org/t/self-attention-on-words-and-masking/5671/5
53 | max_len = unnorm_ai.size(1)
54 | idxes = torch.arange(0, max_len, out=torch.LongTensor(max_len)).unsqueeze(0)
55 | mask = Variable((idxes < input_lengths.unsqueeze(1)).float())
56 |
57 | # apply mask and renormalize attention scores (weights)
58 | masked_weights = unnorm_ai * mask
59 | att_sums = masked_weights.sum(dim=1, keepdim=True) # sums per sequence
60 | attentions = masked_weights.div(att_sums)
61 |
62 | # apply attention weights
63 | weighted = torch.mul(inputs, attentions.unsqueeze(-1).expand_as(inputs))
64 |
65 | # get the final fixed vector representations of the sentences
66 | representations = weighted.sum(dim=1)
67 |
68 | return (representations, attentions if self.return_attention else None)
69 |
--------------------------------------------------------------------------------
/metric/torchMoji/torchmoji/create_vocab.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | from __future__ import print_function, division
3 |
4 | import glob
5 | import json
6 | import uuid
7 | from copy import deepcopy
8 | from collections import defaultdict, OrderedDict
9 | import numpy as np
10 |
11 | from torchmoji.filter_utils import is_special_token
12 | from torchmoji.word_generator import WordGenerator
13 | from torchmoji.global_variables import SPECIAL_TOKENS, VOCAB_PATH
14 |
15 | class VocabBuilder():
16 | """ Create vocabulary with words extracted from sentences as fed from a
17 | word generator.
18 | """
19 | def __init__(self, word_gen):
20 | # initialize any new key with value of 0
21 | self.word_counts = defaultdict(lambda: 0, {})
22 | self.word_length_limit=30
23 |
24 | for token in SPECIAL_TOKENS:
25 | assert len(token) < self.word_length_limit
26 | self.word_counts[token] = 0
27 | self.word_gen = word_gen
28 |
29 | def count_words_in_sentence(self, words):
30 | """ Generates word counts for all tokens in the given sentence.
31 |
32 | # Arguments:
33 | words: Tokenized sentence whose words should be counted.
34 | """
35 | for word in words:
36 | if 0 < len(word) and len(word) <= self.word_length_limit:
37 | try:
38 | self.word_counts[word] += 1
39 | except KeyError:
40 | self.word_counts[word] = 1
41 |
42 | def save_vocab(self, path=None):
43 | """ Saves the vocabulary into a file.
44 |
45 | # Arguments:
46 | path: Where the vocabulary should be saved. If not specified, a
47 | randomly generated filename is used instead.
48 | """
49 | dtype = ([('word','|S{}'.format(self.word_length_limit)),('count','int')])
50 | np_dict = np.array(self.word_counts.items(), dtype=dtype)
51 |
52 | # sort from highest to lowest frequency
53 | np_dict[::-1].sort(order='count')
54 | data = np_dict
55 |
56 | if path is None:
57 | path = str(uuid.uuid4())
58 |
59 | np.savez_compressed(path, data=data)
60 | print("Saved dict to {}".format(path))
61 |
62 | def get_next_word(self):
63 | """ Returns next tokenized sentence from the word geneerator.
64 |
65 | # Returns:
66 | List of strings, representing the next tokenized sentence.
67 | """
68 | return self.word_gen.__iter__().next()
69 |
70 | def count_all_words(self):
71 | """ Generates word counts for all words in all sentences of the word
72 | generator.
73 | """
74 | for words, _ in self.word_gen:
75 | self.count_words_in_sentence(words)
76 |
77 | class MasterVocab():
78 | """ Combines vocabularies.
79 | """
80 | def __init__(self):
81 |
82 | # initialize custom tokens
83 | self.master_vocab = {}
84 |
85 | def populate_master_vocab(self, vocab_path, min_words=1, force_appearance=None):
86 | """ Populates the master vocabulary using all vocabularies found in the
87 | given path. Vocabularies should be named *.npz. Expects the
88 | vocabularies to be numpy arrays with counts. Normalizes the counts
89 | and combines them.
90 |
91 | # Arguments:
92 | vocab_path: Path containing vocabularies to be combined.
93 | min_words: Minimum amount of occurences a word must have in order
94 | to be included in the master vocabulary.
95 | force_appearance: Optional vocabulary filename that will be added
96 | to the master vocabulary no matter what. This vocabulary must
97 | be present in vocab_path.
98 | """
99 |
100 | paths = glob.glob(vocab_path + '*.npz')
101 | sizes = {path: 0 for path in paths}
102 | dicts = {path: {} for path in paths}
103 |
104 | # set up and get sizes of individual dictionaries
105 | for path in paths:
106 | np_data = np.load(path)['data']
107 |
108 | for entry in np_data:
109 | word, count = entry
110 | if count < min_words:
111 | continue
112 | if is_special_token(word):
113 | continue
114 | dicts[path][word] = count
115 |
116 | sizes[path] = sum(dicts[path].values())
117 | print('Overall word count for {} -> {}'.format(path, sizes[path]))
118 | print('Overall word number for {} -> {}'.format(path, len(dicts[path])))
119 |
120 | vocab_of_max_size = max(sizes, key=sizes.get)
121 | max_size = sizes[vocab_of_max_size]
122 | print('Min: {}, {}, {}'.format(sizes, vocab_of_max_size, max_size))
123 |
124 | # can force one vocabulary to always be present
125 | if force_appearance is not None:
126 | force_appearance_path = [p for p in paths if force_appearance in p][0]
127 | force_appearance_vocab = deepcopy(dicts[force_appearance_path])
128 | print(force_appearance_path)
129 | else:
130 | force_appearance_path, force_appearance_vocab = None, None
131 |
132 | # normalize word counts before inserting into master dict
133 | for path in paths:
134 | normalization_factor = max_size / sizes[path]
135 | print('Norm factor for path {} -> {}'.format(path, normalization_factor))
136 |
137 | for word in dicts[path]:
138 | if is_special_token(word):
139 | print("SPECIAL - ", word)
140 | continue
141 | normalized_count = dicts[path][word] * normalization_factor
142 |
143 | # can force one vocabulary to always be present
144 | if force_appearance_vocab is not None:
145 | try:
146 | force_word_count = force_appearance_vocab[word]
147 | except KeyError:
148 | continue
149 | #if force_word_count < 5:
150 | #continue
151 |
152 | if word in self.master_vocab:
153 | self.master_vocab[word] += normalized_count
154 | else:
155 | self.master_vocab[word] = normalized_count
156 |
157 | print('Size of master_dict {}'.format(len(self.master_vocab)))
158 | print("Hashes for master dict: {}".format(
159 | len([w for w in self.master_vocab if '#' in w[0]])))
160 |
161 | def save_vocab(self, path_count, path_vocab, word_limit=100000):
162 | """ Saves the master vocabulary into a file.
163 | """
164 |
165 | # reserve space for 10 special tokens
166 | words = OrderedDict()
167 | for token in SPECIAL_TOKENS:
168 | # store -1 instead of np.inf, which can overflow
169 | words[token] = -1
170 |
171 | # sort words by frequency
172 | desc_order = OrderedDict(sorted(self.master_vocab.items(),
173 | key=lambda kv: kv[1], reverse=True))
174 | words.update(desc_order)
175 |
176 | # use encoding of up to 30 characters (no token conversions)
177 | # use float to store large numbers (we don't care about precision loss)
178 | np_vocab = np.array(words.items(),
179 | dtype=([('word','|S30'),('count','float')]))
180 |
181 | # output count for debugging
182 | counts = np_vocab[:word_limit]
183 | np.savez_compressed(path_count, counts=counts)
184 |
185 | # output the index of each word for easy lookup
186 | final_words = OrderedDict()
187 | for i, w in enumerate(words.keys()[:word_limit]):
188 | final_words.update({w:i})
189 | with open(path_vocab, 'w') as f:
190 | f.write(json.dumps(final_words, indent=4, separators=(',', ': ')))
191 |
192 |
193 | def all_words_in_sentences(sentences):
194 | """ Extracts all unique words from a given list of sentences.
195 |
196 | # Arguments:
197 | sentences: List or word generator of sentences to be processed.
198 |
199 | # Returns:
200 | List of all unique words contained in the given sentences.
201 | """
202 | vocab = []
203 | if isinstance(sentences, WordGenerator):
204 | sentences = [s for s, _ in sentences]
205 |
206 | for sentence in sentences:
207 | for word in sentence:
208 | if word not in vocab:
209 | vocab.append(word)
210 |
211 | return vocab
212 |
213 |
214 | def extend_vocab_in_file(vocab, max_tokens=10000, vocab_path=VOCAB_PATH):
215 | """ Extends JSON-formatted vocabulary with words from vocab that are not
216 | present in the current vocabulary. Adds up to max_tokens words.
217 | Overwrites file in vocab_path.
218 |
219 | # Arguments:
220 | new_vocab: Vocabulary to be added. MUST have word_counts populated, i.e.
221 | must have run count_all_words() previously.
222 | max_tokens: Maximum number of words to be added.
223 | vocab_path: Path to the vocabulary json which is to be extended.
224 | """
225 | try:
226 | with open(vocab_path, 'r') as f:
227 | current_vocab = json.load(f)
228 | except IOError:
229 | print('Vocabulary file not found, expected at ' + vocab_path)
230 | return
231 |
232 | extend_vocab(current_vocab, vocab, max_tokens)
233 |
234 | # Save back to file
235 | with open(vocab_path, 'w') as f:
236 | json.dump(current_vocab, f, sort_keys=True, indent=4, separators=(',',': '))
237 |
238 |
239 | def extend_vocab(current_vocab, new_vocab, max_tokens=10000):
240 | """ Extends current vocabulary with words from vocab that are not
241 | present in the current vocabulary. Adds up to max_tokens words.
242 |
243 | # Arguments:
244 | current_vocab: Current dictionary of tokens.
245 | new_vocab: Vocabulary to be added. MUST have word_counts populated, i.e.
246 | must have run count_all_words() previously.
247 | max_tokens: Maximum number of words to be added.
248 |
249 | # Returns:
250 | How many new tokens have been added.
251 | """
252 | if max_tokens < 0:
253 | max_tokens = 10000
254 |
255 | words = OrderedDict()
256 |
257 | # sort words by frequency
258 | desc_order = OrderedDict(sorted(new_vocab.word_counts.items(),
259 | key=lambda kv: kv[1], reverse=True))
260 | words.update(desc_order)
261 |
262 | base_index = len(current_vocab.keys())
263 | added = 0
264 | for word in words:
265 | if added >= max_tokens:
266 | break
267 | if word not in current_vocab.keys():
268 | current_vocab[word] = base_index + added
269 | added += 1
270 |
271 | return added
272 |
--------------------------------------------------------------------------------
/metric/torchMoji/torchmoji/filter_input.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | from __future__ import print_function, division
3 | import codecs
4 | import csv
5 | import numpy as np
6 | from emoji import UNICODE_EMOJI
7 |
8 | def read_english(path="english_words.txt", add_emojis=True):
9 | # read english words for filtering (includes emojis as part of set)
10 | english = set()
11 | with codecs.open(path, "r", "utf-8") as f:
12 | for line in f:
13 | line = line.strip().lower().replace('\n', '')
14 | if len(line):
15 | english.add(line)
16 | if add_emojis:
17 | for e in UNICODE_EMOJI:
18 | english.add(e)
19 | return english
20 |
21 | def read_wanted_emojis(path="wanted_emojis.csv"):
22 | emojis = []
23 | with open(path, 'rb') as f:
24 | reader = csv.reader(f)
25 | for line in reader:
26 | line = line[0].strip().replace('\n', '')
27 | line = line.decode('unicode-escape')
28 | emojis.append(line)
29 | return emojis
30 |
31 | def read_non_english_users(path="unwanted_users.npz"):
32 | try:
33 | neu_set = set(np.load(path)['userids'])
34 | except IOError:
35 | neu_set = set()
36 | return neu_set
37 |
--------------------------------------------------------------------------------
/metric/torchMoji/torchmoji/filter_utils.py:
--------------------------------------------------------------------------------
1 |
2 | # -*- coding: utf-8 -*-
3 | from __future__ import print_function, division, unicode_literals
4 | import sys
5 | import re
6 | import string
7 | import emoji
8 | from itertools import groupby
9 |
10 | import numpy as np
11 | from torchmoji.tokenizer import RE_MENTION, RE_URL
12 | from torchmoji.global_variables import SPECIAL_TOKENS
13 |
14 | try:
15 | unichr # Python 2
16 | except NameError:
17 | unichr = chr # Python 3
18 |
19 |
20 | AtMentionRegex = re.compile(RE_MENTION)
21 | urlRegex = re.compile(RE_URL)
22 |
23 | # from http://bit.ly/2rdjgjE (UTF-8 encodings and Unicode chars)
24 | VARIATION_SELECTORS = [ '\ufe00',
25 | '\ufe01',
26 | '\ufe02',
27 | '\ufe03',
28 | '\ufe04',
29 | '\ufe05',
30 | '\ufe06',
31 | '\ufe07',
32 | '\ufe08',
33 | '\ufe09',
34 | '\ufe0a',
35 | '\ufe0b',
36 | '\ufe0c',
37 | '\ufe0d',
38 | '\ufe0e',
39 | '\ufe0f']
40 |
41 | # from https://stackoverflow.com/questions/92438/stripping-non-printable-characters-from-a-string-in-python
42 | ALL_CHARS = (unichr(i) for i in range(sys.maxunicode))
43 | CONTROL_CHARS = ''.join(map(unichr, list(range(0,32)) + list(range(127,160))))
44 | CONTROL_CHAR_REGEX = re.compile('[%s]' % re.escape(CONTROL_CHARS))
45 |
46 | def is_special_token(word):
47 | equal = False
48 | for spec in SPECIAL_TOKENS:
49 | if word == spec:
50 | equal = True
51 | break
52 | return equal
53 |
54 | def mostly_english(words, english, pct_eng_short=0.5, pct_eng_long=0.6, ignore_special_tokens=True, min_length=2):
55 | """ Ensure text meets threshold for containing English words """
56 |
57 | n_words = 0
58 | n_english = 0
59 |
60 | if english is None:
61 | return True, 0, 0
62 |
63 | for w in words:
64 | if len(w) < min_length:
65 | continue
66 | if punct_word(w):
67 | continue
68 | if ignore_special_tokens and is_special_token(w):
69 | continue
70 | n_words += 1
71 | if w in english:
72 | n_english += 1
73 |
74 | if n_words < 2:
75 | return True, n_words, n_english
76 | if n_words < 5:
77 | valid_english = n_english >= n_words * pct_eng_short
78 | else:
79 | valid_english = n_english >= n_words * pct_eng_long
80 | return valid_english, n_words, n_english
81 |
82 | def correct_length(words, min_words, max_words, ignore_special_tokens=True):
83 | """ Ensure text meets threshold for containing English words
84 | and that it's within the min and max words limits. """
85 |
86 | if min_words is None:
87 | min_words = 0
88 |
89 | if max_words is None:
90 | max_words = 99999
91 |
92 | n_words = 0
93 | for w in words:
94 | if punct_word(w):
95 | continue
96 | if ignore_special_tokens and is_special_token(w):
97 | continue
98 | n_words += 1
99 | valid = min_words <= n_words and n_words <= max_words
100 | return valid
101 |
102 | def punct_word(word, punctuation=string.punctuation):
103 | return all([True if c in punctuation else False for c in word])
104 |
105 | def load_non_english_user_set():
106 | non_english_user_set = set(np.load('uids.npz')['data'])
107 | return non_english_user_set
108 |
109 | def non_english_user(userid, non_english_user_set):
110 | neu_found = int(userid) in non_english_user_set
111 | return neu_found
112 |
113 | def separate_emojis_and_text(text):
114 | emoji_chars = []
115 | non_emoji_chars = []
116 | for c in text:
117 | if c in emoji.UNICODE_EMOJI:
118 | emoji_chars.append(c)
119 | else:
120 | non_emoji_chars.append(c)
121 | return ''.join(emoji_chars), ''.join(non_emoji_chars)
122 |
123 | def extract_emojis(text, wanted_emojis):
124 | text = remove_variation_selectors(text)
125 | return [c for c in text if c in wanted_emojis]
126 |
127 | def remove_variation_selectors(text):
128 | """ Remove styling glyph variants for Unicode characters.
129 | For instance, remove skin color from emojis.
130 | """
131 | for var in VARIATION_SELECTORS:
132 | text = text.replace(var, '')
133 | return text
134 |
135 | def shorten_word(word):
136 | """ Shorten groupings of 3+ identical consecutive chars to 2, e.g. '!!!!' --> '!!'
137 | """
138 |
139 | # only shorten ASCII words
140 | try:
141 | word.decode('ascii')
142 | except (UnicodeDecodeError, UnicodeEncodeError, AttributeError) as e:
143 | return word
144 |
145 | # must have at least 3 char to be shortened
146 | if len(word) < 3:
147 | return word
148 |
149 | # find groups of 3+ consecutive letters
150 | letter_groups = [list(g) for k, g in groupby(word)]
151 | triple_or_more = [''.join(g) for g in letter_groups if len(g) >= 3]
152 | if len(triple_or_more) == 0:
153 | return word
154 |
155 | # replace letters to find the short word
156 | short_word = word
157 | for trip in triple_or_more:
158 | short_word = short_word.replace(trip, trip[0]*2)
159 |
160 | return short_word
161 |
162 | def detect_special_tokens(word):
163 | try:
164 | int(word)
165 | word = SPECIAL_TOKENS[4]
166 | except ValueError:
167 | if AtMentionRegex.findall(word):
168 | word = SPECIAL_TOKENS[2]
169 | elif urlRegex.findall(word):
170 | word = SPECIAL_TOKENS[3]
171 | return word
172 |
173 | def process_word(word):
174 | """ Shortening and converting the word to a special token if relevant.
175 | """
176 | word = shorten_word(word)
177 | word = detect_special_tokens(word)
178 | return word
179 |
180 | def remove_control_chars(text):
181 | return CONTROL_CHAR_REGEX.sub('', text)
182 |
183 | def convert_nonbreaking_space(text):
184 | # ugly hack handling non-breaking space no matter how badly it's been encoded in the input
185 | for r in ['\\\\xc2', '\\xc2', '\xc2', '\\\\xa0', '\\xa0', '\xa0']:
186 | text = text.replace(r, ' ')
187 | return text
188 |
189 | def convert_linebreaks(text):
190 | # ugly hack handling non-breaking space no matter how badly it's been encoded in the input
191 | # space around to ensure proper tokenization
192 | for r in ['\\\\n', '\\n', '\n', '\\\\r', '\\r', '\r', '
']:
193 | text = text.replace(r, ' ' + SPECIAL_TOKENS[5] + ' ')
194 | return text
195 |
--------------------------------------------------------------------------------
/metric/torchMoji/torchmoji/global_variables.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | """ Global variables.
3 | """
4 | import tempfile
5 | from os.path import abspath, dirname
6 |
7 | # The ordering of these special tokens matter
8 | # blank tokens can be used for new purposes
9 | # Tokenizer should be updated if special token prefix is changed
10 | SPECIAL_PREFIX = 'CUSTOM_'
11 | SPECIAL_TOKENS = ['CUSTOM_MASK',
12 | 'CUSTOM_UNKNOWN',
13 | 'CUSTOM_AT',
14 | 'CUSTOM_URL',
15 | 'CUSTOM_NUMBER',
16 | 'CUSTOM_BREAK']
17 | SPECIAL_TOKENS.extend(['{}BLANK_{}'.format(SPECIAL_PREFIX, i) for i in range(6, 10)])
18 |
19 | ROOT_PATH = dirname(dirname(abspath(__file__)))
20 | VOCAB_PATH = '{}/model/vocabulary.json'.format(ROOT_PATH)
21 | PRETRAINED_PATH = '{}/model/pytorch_model.bin'.format(ROOT_PATH)
22 |
23 | WEIGHTS_DIR = tempfile.mkdtemp()
24 |
25 | NB_TOKENS = 50000
26 | NB_EMOJI_CLASSES = 64
27 | FINETUNING_METHODS = ['last', 'full', 'new', 'chain-thaw']
28 | FINETUNING_METRICS = ['acc', 'weighted']
29 |
--------------------------------------------------------------------------------
/metric/torchMoji/torchmoji/tokenizer.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | '''
3 | Splits up a Unicode string into a list of tokens.
4 | Recognises:
5 | - Abbreviations
6 | - URLs
7 | - Emails
8 | - #hashtags
9 | - @mentions
10 | - emojis
11 | - emoticons (limited support)
12 |
13 | Multiple consecutive symbols are also treated as a single token.
14 | '''
15 | from __future__ import absolute_import, division, print_function, unicode_literals
16 |
17 | import re
18 |
19 | # Basic patterns.
20 | RE_NUM = r'[0-9]+'
21 | RE_WORD = r'[a-zA-Z]+'
22 | RE_WHITESPACE = r'\s+'
23 | RE_ANY = r'.'
24 |
25 | # Combined words such as 'red-haired' or 'CUSTOM_TOKEN'
26 | RE_COMB = r'[a-zA-Z]+[-_][a-zA-Z]+'
27 |
28 | # English-specific patterns
29 | RE_CONTRACTIONS = RE_WORD + r'\'' + RE_WORD
30 |
31 | TITLES = [
32 | r'Mr\.',
33 | r'Ms\.',
34 | r'Mrs\.',
35 | r'Dr\.',
36 | r'Prof\.',
37 | ]
38 | # Ensure case insensitivity
39 | RE_TITLES = r'|'.join([r'(?i)' + t for t in TITLES])
40 |
41 | # Symbols have to be created as separate patterns in order to match consecutive
42 | # identical symbols.
43 | SYMBOLS = r'(){}~$^&*;:%+\xa3€`'
44 | RE_SYMBOL = r'|'.join([re.escape(s) + r'+' for s in SYMBOLS])
45 |
46 | # Hash symbols and at symbols have to be defined separately in order to not
47 | # clash with hashtags and mentions if there are multiple - i.e.
48 | # ##hello -> ['#', '#hello'] instead of ['##', 'hello']
49 | SPECIAL_SYMBOLS = r'|#+(?=#[a-zA-Z0-9_]+)|@+(?=@[a-zA-Z0-9_]+)|#+|@+'
50 | RE_SYMBOL += SPECIAL_SYMBOLS
51 |
52 | RE_ABBREVIATIONS = r'\b(?:',
65 | r':',
66 | r'=',
67 | r';',
68 | ]
69 | EMOTICONS_MID = [
70 | r'-',
71 | r',',
72 | r'^',
73 | '\'',
74 | '\"',
75 | ]
76 | EMOTICONS_END = [
77 | r'D',
78 | r'd',
79 | r'p',
80 | r'P',
81 | r'v',
82 | r')',
83 | r'o',
84 | r'O',
85 | r'(',
86 | r'3',
87 | r'/',
88 | r'|',
89 | '\\',
90 | ]
91 | EMOTICONS_EXTRA = [
92 | r'-_-',
93 | r'x_x',
94 | r'^_^',
95 | r'o.o',
96 | r'o_o',
97 | r'(:',
98 | r'):',
99 | r');',
100 | r'(;',
101 | ]
102 |
103 | RE_EMOTICON = r'|'.join([re.escape(s) for s in EMOTICONS_EXTRA])
104 | for s in EMOTICONS_START:
105 | for m in EMOTICONS_MID:
106 | for e in EMOTICONS_END:
107 | RE_EMOTICON += '|{0}{1}?{2}+'.format(re.escape(s), re.escape(m), re.escape(e))
108 |
109 | # requires ucs4 in python2.7 or python3+
110 | # RE_EMOJI = r"""[\U0001F300-\U0001F64F\U0001F680-\U0001F6FF\u2600-\u26FF\u2700-\u27BF]"""
111 | # safe for all python
112 | RE_EMOJI = r"""\ud83c[\udf00-\udfff]|\ud83d[\udc00-\ude4f\ude80-\udeff]|[\u2600-\u26FF\u2700-\u27BF]"""
113 |
114 | # List of matched token patterns, ordered from most specific to least specific.
115 | TOKENS = [
116 | RE_URL,
117 | RE_EMAIL,
118 | RE_COMB,
119 | RE_HASHTAG,
120 | RE_MENTION,
121 | RE_HEART,
122 | RE_EMOTICON,
123 | RE_CONTRACTIONS,
124 | RE_TITLES,
125 | RE_ABBREVIATIONS,
126 | RE_NUM,
127 | RE_WORD,
128 | RE_SYMBOL,
129 | RE_EMOJI,
130 | RE_ANY
131 | ]
132 |
133 | # List of ignored token patterns
134 | IGNORED = [
135 | RE_WHITESPACE
136 | ]
137 |
138 | # Final pattern
139 | RE_PATTERN = re.compile(r'|'.join(IGNORED) + r'|(' + r'|'.join(TOKENS) + r')',
140 | re.UNICODE)
141 |
142 |
143 | def tokenize(text):
144 | '''Splits given input string into a list of tokens.
145 |
146 | # Arguments:
147 | text: Input string to be tokenized.
148 |
149 | # Returns:
150 | List of strings (tokens).
151 | '''
152 | result = RE_PATTERN.findall(text)
153 |
154 | # Remove empty strings
155 | result = [t for t in result if t.strip()]
156 | return result
157 |
--------------------------------------------------------------------------------
/models/heads.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn as nn
3 | import torch.nn.functional as F
4 | from models.pytorch_pretrained_bert import GPT2LMHeadModel, GPT2Tokenizer, GPT2Config
5 | import os
6 | from transformers import BertTokenizer,BertModel,AutoConfig
7 |
8 | EPSILON = 1e-10
9 |
10 | class Discriminator(torch.nn.Module):
11 | """Transformer encoder followed by a Classification Head"""
12 |
13 | def __init__(
14 | self,
15 | class_size,
16 | pretrained_model="medium",
17 | cached_mode=False,
18 | load_weight=None,
19 | model_pretrained=None,
20 | entailment=False,
21 | device='cuda'
22 | ):
23 | super(Discriminator, self).__init__()
24 |
25 | self.entailment = entailment
26 | model_path = f'models/dialoGPT/{pretrained_model}/'
27 | config = GPT2Config.from_json_file(os.path.join(model_path, 'config.json'))
28 | self.tokenizer = GPT2Tokenizer.from_pretrained(model_path)
29 | if model_pretrained != None:
30 | self.encoder = model_pretrained
31 | else:
32 | self.encoder = load_model(GPT2LMHeadModel(config), model_path+f"{pretrained_model}_ft.pkl", None, verbose=True)
33 | self.embed_size = config.n_embd
34 |
35 | if(self.entailment):
36 | self.classifier_head = AttentionHead(class_size=class_size, embed_size=self.embed_size)
37 | else:
38 | self.classifier_head = ClassificationHead(
39 | class_size=class_size,
40 | embed_size=self.embed_size
41 | )
42 | self.cached_mode = cached_mode
43 | if(load_weight != None):
44 | self.classifier_head.load_state_dict(torch.load(load_weight))
45 | self.device = device
46 | self.class_size = class_size
47 |
48 | def get_classifier(self):
49 | return self.classifier_head
50 |
51 | def train_custom(self):
52 | for param in self.encoder.parameters():
53 | param.requires_grad = False
54 | self.classifier_head.train()
55 |
56 | def avg_representation(self, x, entailment=False):
57 | mask = x.ne(0).unsqueeze(2).repeat(
58 | 1, 1, self.embed_size
59 | ).float().to(self.device).detach()
60 | hidden, _ = self.encoder.transformer(x)
61 | masked_hidden = hidden * mask
62 | if(entailment):
63 | return masked_hidden
64 | else:
65 | avg_hidden = torch.sum(masked_hidden, dim=1) / (
66 | torch.sum(mask, dim=1).detach() + EPSILON
67 | )
68 | return avg_hidden
69 |
70 | def forward(self, x):
71 | if(self.entailment):
72 | P = self.avg_representation(x[0].to(self.device),entailment=True)
73 | H = self.avg_representation(x[1].to(self.device),entailment=True)
74 | logits = self.classifier_head(P,H)
75 | return logits
76 | else:
77 | if self.cached_mode:
78 | avg_hidden = x.to(self.device)
79 | else:
80 | avg_hidden = self.avg_representation(x.to(self.device))
81 |
82 | logits = self.classifier_head(avg_hidden)
83 | return logits
84 |
85 |
86 | class Scorer(torch.nn.Module):
87 | """Transformer encoder followed by a Classification Head"""
88 |
89 | def __init__(
90 | self,
91 | hidden_dim,
92 | output_dim,
93 | n_layers,
94 | bidirectional,
95 | dropout
96 | ):
97 | super(Scorer, self).__init__()
98 |
99 | # self.entailment = entailment
100 | # self.class_size = class_size
101 | self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
102 | self.bert = BertModel.from_pretrained('bert-base-uncased')
103 | embedding_dim = self.bert.config.to_dict()['hidden_size']
104 |
105 |
106 | self.rnn = nn.GRU(embedding_dim,
107 | hidden_dim,
108 | num_layers = n_layers,
109 | bidirectional = bidirectional,
110 | batch_first = True,
111 | dropout = 0 if n_layers < 2 else dropout)
112 |
113 | self.out = nn.Linear(hidden_dim * 2 if bidirectional else hidden_dim, output_dim)
114 |
115 | self.dropout = nn.Dropout(dropout)
116 |
117 | def forward(self, text):
118 |
119 | #text = [batch size, sent len]
120 |
121 | with torch.no_grad():
122 | embedded = self.bert(text)[0]
123 |
124 | #embedded = [batch size, sent len, emb dim]
125 |
126 | _, hidden = self.rnn(embedded)
127 |
128 | #hidden = [n layers * n directions, batch size, emb dim]
129 |
130 | if self.rnn.bidirectional:
131 | hidden = self.dropout(torch.cat((hidden[-2,:,:], hidden[-1,:,:]), dim = 1))
132 | else:
133 | hidden = self.dropout(hidden[-1,:,:])
134 |
135 | #hidden = [batch size, hid dim]
136 |
137 | output = self.out(hidden)
138 |
139 | #output = [batch size, out dim]
140 |
141 | return output
142 |
143 |
144 | class AttentionHead(nn.Module):
145 | '''
146 | https://github.com/libowen2121/SNLI-decomposable-attention/blob/master/models/baseline_snli.py
147 | intra sentence attention
148 | '''
149 |
150 | def __init__(self, embed_size, class_size):
151 | super(AttentionHead, self).__init__()
152 |
153 | self.embed_size = embed_size
154 | self.class_size = class_size
155 |
156 | self.mlp_f = self._mlp_layers(self.embed_size, self.embed_size)
157 | self.mlp_g = self._mlp_layers(2 * self.embed_size, self.embed_size)
158 | self.mlp_h = self._mlp_layers(2 * self.embed_size, self.embed_size)
159 |
160 | self.final_linear = nn.Linear(self.embed_size, self.class_size)
161 |
162 | def _mlp_layers(self, input_dim, output_dim):
163 | mlp_layers = []
164 | mlp_layers.append(nn.Dropout(p=0.2))
165 | mlp_layers.append(nn.Linear(input_dim, output_dim))
166 | mlp_layers.append(nn.ReLU())
167 | mlp_layers.append(nn.Dropout(p=0.2))
168 | mlp_layers.append(nn.Linear(output_dim, output_dim))
169 | mlp_layers.append(nn.ReLU())
170 | return nn.Sequential(*mlp_layers) # * used to unpack list
171 |
172 | def forward(self, sent1_linear, sent2_linear):
173 | '''
174 | sent_linear: batch_size x length x hidden_size
175 | '''
176 | len1 = sent1_linear.size(1)
177 | len2 = sent2_linear.size(1)
178 |
179 | '''attend'''
180 | f1 = self.mlp_f(sent1_linear.view(-1, self.embed_size))
181 | f2 = self.mlp_f(sent2_linear.view(-1, self.embed_size))
182 |
183 | f1 = f1.view(-1, len1, self.embed_size)
184 | # batch_size x len1 x hidden_size
185 | f2 = f2.view(-1, len2, self.embed_size)
186 | # batch_size x len2 x hidden_size
187 |
188 | score1 = torch.bmm(f1, torch.transpose(f2, 1, 2))
189 | # e_{ij} batch_size x len1 x len2
190 | prob1 = F.softmax(score1.view(-1, len2),dim=1).view(-1, len1, len2)
191 | # batch_size x len1 x len2
192 |
193 | score2 = torch.transpose(score1.contiguous(), 1, 2)
194 | score2 = score2.contiguous()
195 | # e_{ji} batch_size x len2 x len1
196 | prob2 = F.softmax(score2.view(-1, len1),dim=1).view(-1, len2, len1)
197 | # batch_size x len2 x len1
198 |
199 | sent1_combine = torch.cat(
200 | (sent1_linear, torch.bmm(prob1, sent2_linear)), 2)
201 | # batch_size x len1 x (hidden_size x 2)
202 | sent2_combine = torch.cat(
203 | (sent2_linear, torch.bmm(prob2, sent1_linear)), 2)
204 | # batch_size x len2 x (hidden_size x 2)
205 |
206 | '''sum'''
207 | g1 = self.mlp_g(sent1_combine.view(-1, 2 * self.embed_size))
208 | g2 = self.mlp_g(sent2_combine.view(-1, 2 * self.embed_size))
209 | g1 = g1.view(-1, len1, self.embed_size)
210 | # batch_size x len1 x hidden_size
211 | g2 = g2.view(-1, len2, self.embed_size)
212 | # batch_size x len2 x hidden_size
213 |
214 | sent1_output = torch.sum(g1, 1) # batch_size x 1 x hidden_size
215 | sent1_output = torch.squeeze(sent1_output, 1)
216 | sent2_output = torch.sum(g2, 1) # batch_size x 1 x hidden_size
217 | sent2_output = torch.squeeze(sent2_output, 1)
218 |
219 | input_combine = torch.cat((sent1_output, sent2_output), 1)
220 | # batch_size x (2 * hidden_size)
221 | h = self.mlp_h(input_combine)
222 | # batch_size * hidden_size
223 |
224 | h = self.final_linear(h)
225 |
226 |
227 | return h
228 |
229 | class ClassificationHead(torch.nn.Module):
230 | """Classification Head for transformer encoders"""
231 |
232 | def __init__(self, class_size, embed_size):
233 | super(ClassificationHead, self).__init__()
234 | self.class_size = class_size
235 | self.embed_size = embed_size
236 | self.mlp = torch.nn.Linear(embed_size, class_size)
237 |
238 | def forward(self, hidden_state):
239 | logits = self.mlp(hidden_state)
240 | return logits
241 |
242 |
243 | def load_model(model, checkpoint, args, verbose=False):
244 | if checkpoint is None or checkpoint == "None":
245 | if verbose:
246 | print('No checkpoint provided for %s!' % model._get_name())
247 | else:
248 | if not os.path.exists(checkpoint):
249 | raise ValueError('checkpoint %s not exist' % checkpoint)
250 | if verbose:
251 | print('Loading finetuned model from %s' % checkpoint)
252 | model_state_dict = torch.load(checkpoint)
253 |
254 | model_state_dict = fix_state_dict_namespace(model_state_dict)
255 |
256 | start_model = model
257 | if (hasattr(model, "transformer")
258 | and all(not s.startswith('transformer.')
259 | for s in model_state_dict.keys())):
260 | print('Loading transfomer only')
261 | start_model = model.transformer
262 | start_model.load_state_dict(model_state_dict)
263 |
264 | return model
265 |
266 |
267 | def fix_state_dict_namespace(model_state_dict):
268 | old_keys = []
269 | new_keys = []
270 | for t in model_state_dict:
271 | new_key = t
272 | if t.startswith('module.'):
273 | new_key = t.replace('module.', '')
274 | old_keys.append(t)
275 | new_keys.append(new_key)
276 |
277 | for old_key, new_key in zip(old_keys, new_keys):
278 | model_state_dict[new_key] = model_state_dict.pop(old_key)
279 |
280 | return model_state_dict
281 |
--------------------------------------------------------------------------------
/models/pytorch_pretrained_bert/__init__.py:
--------------------------------------------------------------------------------
1 | __version__ = "0.6.1"
2 | from .tokenization import BertTokenizer, BasicTokenizer, WordpieceTokenizer
3 | from .tokenization_openai import OpenAIGPTTokenizer
4 | from .tokenization_transfo_xl import (TransfoXLTokenizer, TransfoXLCorpus)
5 | from .tokenization_gpt2 import GPT2Tokenizer
6 |
7 | from .modeling import (BertConfig, BertModel, BertForPreTraining,
8 | BertForMaskedLM, BertForNextSentencePrediction,
9 | BertForSequenceClassification, BertForMultipleChoice,
10 | BertForTokenClassification, BertForQuestionAnswering,
11 | load_tf_weights_in_bert)
12 | from .modeling_openai import (OpenAIGPTConfig, OpenAIGPTModel,
13 | OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel,
14 | load_tf_weights_in_openai_gpt)
15 | from .modeling_transfo_xl import (TransfoXLConfig, TransfoXLModel, TransfoXLLMHeadModel,
16 | load_tf_weights_in_transfo_xl)
17 | from .modeling_gpt2 import (GPT2Config, GPT2Model,
18 | GPT2LMHeadModel, GPT2DoubleHeadsModel,
19 | load_tf_weights_in_gpt2)
20 |
21 | from .optimization import BertAdam
22 | from .optimization_openai import OpenAIAdam
23 |
24 | from .file_utils import PYTORCH_PRETRAINED_BERT_CACHE, cached_path, WEIGHTS_NAME, CONFIG_NAME
25 |
--------------------------------------------------------------------------------
/models/pytorch_pretrained_bert/__main__.py:
--------------------------------------------------------------------------------
1 | # coding: utf8
2 | def main():
3 | import sys
4 | if (len(sys.argv) != 4 and len(sys.argv) != 5) or sys.argv[1] not in [
5 | "convert_tf_checkpoint_to_pytorch",
6 | "convert_openai_checkpoint",
7 | "convert_transfo_xl_checkpoint",
8 | "convert_gpt2_checkpoint",
9 | ]:
10 | print(
11 | "Should be used as one of: \n"
12 | ">> `pytorch_pretrained_bert convert_tf_checkpoint_to_pytorch TF_CHECKPOINT TF_CONFIG PYTORCH_DUMP_OUTPUT`, \n"
13 | ">> `pytorch_pretrained_bert convert_openai_checkpoint OPENAI_GPT_CHECKPOINT_FOLDER_PATH PYTORCH_DUMP_OUTPUT [OPENAI_GPT_CONFIG]`, \n"
14 | ">> `pytorch_pretrained_bert convert_transfo_xl_checkpoint TF_CHECKPOINT_OR_DATASET PYTORCH_DUMP_OUTPUT [TF_CONFIG]` or \n"
15 | ">> `pytorch_pretrained_bert convert_gpt2_checkpoint TF_CHECKPOINT PYTORCH_DUMP_OUTPUT [GPT2_CONFIG]`")
16 | else:
17 | if sys.argv[1] == "convert_tf_checkpoint_to_pytorch":
18 | try:
19 | from .convert_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch
20 | except ImportError:
21 | print("pytorch_pretrained_bert can only be used from the commandline to convert TensorFlow models in PyTorch, "
22 | "In that case, it requires TensorFlow to be installed. Please see "
23 | "https://www.tensorflow.org/install/ for installation instructions.")
24 | raise
25 |
26 | if len(sys.argv) != 5:
27 | # pylint: disable=line-too-long
28 | print("Should be used as `pytorch_pretrained_bert convert_tf_checkpoint_to_pytorch TF_CHECKPOINT TF_CONFIG PYTORCH_DUMP_OUTPUT`")
29 | else:
30 | PYTORCH_DUMP_OUTPUT = sys.argv.pop()
31 | TF_CONFIG = sys.argv.pop()
32 | TF_CHECKPOINT = sys.argv.pop()
33 | convert_tf_checkpoint_to_pytorch(TF_CHECKPOINT, TF_CONFIG, PYTORCH_DUMP_OUTPUT)
34 | elif sys.argv[1] == "convert_openai_checkpoint":
35 | from .convert_openai_checkpoint_to_pytorch import convert_openai_checkpoint_to_pytorch
36 | OPENAI_GPT_CHECKPOINT_FOLDER_PATH = sys.argv[2]
37 | PYTORCH_DUMP_OUTPUT = sys.argv[3]
38 | if len(sys.argv) == 5:
39 | OPENAI_GPT_CONFIG = sys.argv[4]
40 | else:
41 | OPENAI_GPT_CONFIG = ""
42 | convert_openai_checkpoint_to_pytorch(OPENAI_GPT_CHECKPOINT_FOLDER_PATH,
43 | OPENAI_GPT_CONFIG,
44 | PYTORCH_DUMP_OUTPUT)
45 | elif sys.argv[1] == "convert_transfo_xl_checkpoint":
46 | try:
47 | from .convert_transfo_xl_checkpoint_to_pytorch import convert_transfo_xl_checkpoint_to_pytorch
48 | except ImportError:
49 | print("pytorch_pretrained_bert can only be used from the commandline to convert TensorFlow models in PyTorch, "
50 | "In that case, it requires TensorFlow to be installed. Please see "
51 | "https://www.tensorflow.org/install/ for installation instructions.")
52 | raise
53 |
54 | if 'ckpt' in sys.argv[2].lower():
55 | TF_CHECKPOINT = sys.argv[2]
56 | TF_DATASET_FILE = ""
57 | else:
58 | TF_DATASET_FILE = sys.argv[2]
59 | TF_CHECKPOINT = ""
60 | PYTORCH_DUMP_OUTPUT = sys.argv[3]
61 | if len(sys.argv) == 5:
62 | TF_CONFIG = sys.argv[4]
63 | else:
64 | TF_CONFIG = ""
65 | convert_transfo_xl_checkpoint_to_pytorch(TF_CHECKPOINT, TF_CONFIG, PYTORCH_DUMP_OUTPUT, TF_DATASET_FILE)
66 | else:
67 | try:
68 | from .convert_gpt2_checkpoint_to_pytorch import convert_gpt2_checkpoint_to_pytorch
69 | except ImportError:
70 | print("pytorch_pretrained_bert can only be used from the commandline to convert TensorFlow models in PyTorch, "
71 | "In that case, it requires TensorFlow to be installed. Please see "
72 | "https://www.tensorflow.org/install/ for installation instructions.")
73 | raise
74 |
75 | TF_CHECKPOINT = sys.argv[2]
76 | PYTORCH_DUMP_OUTPUT = sys.argv[3]
77 | if len(sys.argv) == 5:
78 | TF_CONFIG = sys.argv[4]
79 | else:
80 | TF_CONFIG = ""
81 | convert_gpt2_checkpoint_to_pytorch(TF_CHECKPOINT, TF_CONFIG, PYTORCH_DUMP_OUTPUT)
82 | if __name__ == '__main__':
83 | main()
84 |
--------------------------------------------------------------------------------
/models/pytorch_pretrained_bert/convert_gpt2_checkpoint_to_pytorch.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 | # Copyright 2018 The HuggingFace Inc. team.
3 | #
4 | # Licensed under the Apache License, Version 2.0 (the "License");
5 | # you may not use this file except in compliance with the License.
6 | # You may obtain a copy of the License at
7 | #
8 | # http://www.apache.org/licenses/LICENSE-2.0
9 | #
10 | # Unless required by applicable law or agreed to in writing, software
11 | # distributed under the License is distributed on an "AS IS" BASIS,
12 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 | # See the License for the specific language governing permissions and
14 | # limitations under the License.
15 | """Convert OpenAI GPT checkpoint."""
16 |
17 | from __future__ import absolute_import, division, print_function
18 |
19 | import argparse
20 | from io import open
21 |
22 | import torch
23 |
24 | from pytorch_pretrained_bert.modeling_gpt2 import (CONFIG_NAME, WEIGHTS_NAME,
25 | GPT2Config,
26 | GPT2Model,
27 | load_tf_weights_in_gpt2)
28 |
29 |
30 | def convert_gpt2_checkpoint_to_pytorch(gpt2_checkpoint_path, gpt2_config_file, pytorch_dump_folder_path):
31 | # Construct model
32 | if gpt2_config_file == "":
33 | config = GPT2Config()
34 | else:
35 | config = GPT2Config(gpt2_config_file)
36 | model = GPT2Model(config)
37 |
38 | # Load weights from numpy
39 | load_tf_weights_in_gpt2(model, gpt2_checkpoint_path)
40 |
41 | # Save pytorch-model
42 | pytorch_weights_dump_path = pytorch_dump_folder_path + '/' + WEIGHTS_NAME
43 | pytorch_config_dump_path = pytorch_dump_folder_path + '/' + CONFIG_NAME
44 | print("Save PyTorch model to {}".format(pytorch_weights_dump_path))
45 | torch.save(model.state_dict(), pytorch_weights_dump_path)
46 | print("Save configuration file to {}".format(pytorch_config_dump_path))
47 | with open(pytorch_config_dump_path, "w", encoding="utf-8") as f:
48 | f.write(config.to_json_string())
49 |
50 |
51 | if __name__ == "__main__":
52 | parser = argparse.ArgumentParser()
53 | ## Required parameters
54 | parser.add_argument("--gpt2_checkpoint_path",
55 | default = None,
56 | type = str,
57 | required = True,
58 | help = "Path the TensorFlow checkpoint path.")
59 | parser.add_argument("--pytorch_dump_folder_path",
60 | default = None,
61 | type = str,
62 | required = True,
63 | help = "Path to the output PyTorch model.")
64 | parser.add_argument("--gpt2_config_file",
65 | default = "",
66 | type = str,
67 | help = "An optional config json file corresponding to the pre-trained OpenAI model. \n"
68 | "This specifies the model architecture.")
69 | args = parser.parse_args()
70 | convert_gpt2_checkpoint_to_pytorch(args.gpt2_checkpoint_path,
71 | args.gpt2_config_file,
72 | args.pytorch_dump_folder_path)
73 |
--------------------------------------------------------------------------------
/models/pytorch_pretrained_bert/convert_openai_checkpoint_to_pytorch.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 | # Copyright 2018 The HuggingFace Inc. team.
3 | #
4 | # Licensed under the Apache License, Version 2.0 (the "License");
5 | # you may not use this file except in compliance with the License.
6 | # You may obtain a copy of the License at
7 | #
8 | # http://www.apache.org/licenses/LICENSE-2.0
9 | #
10 | # Unless required by applicable law or agreed to in writing, software
11 | # distributed under the License is distributed on an "AS IS" BASIS,
12 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 | # See the License for the specific language governing permissions and
14 | # limitations under the License.
15 | """Convert OpenAI GPT checkpoint."""
16 |
17 | from __future__ import absolute_import, division, print_function
18 |
19 | import argparse
20 | from io import open
21 |
22 | import torch
23 |
24 | from pytorch_pretrained_bert.modeling_openai import (CONFIG_NAME, WEIGHTS_NAME,
25 | OpenAIGPTConfig,
26 | OpenAIGPTModel,
27 | load_tf_weights_in_openai_gpt)
28 |
29 |
30 | def convert_openai_checkpoint_to_pytorch(openai_checkpoint_folder_path, openai_config_file, pytorch_dump_folder_path):
31 | # Construct model
32 | if openai_config_file == "":
33 | config = OpenAIGPTConfig()
34 | else:
35 | config = OpenAIGPTConfig(openai_config_file)
36 | model = OpenAIGPTModel(config)
37 |
38 | # Load weights from numpy
39 | load_tf_weights_in_openai_gpt(model, openai_checkpoint_folder_path)
40 |
41 | # Save pytorch-model
42 | pytorch_weights_dump_path = pytorch_dump_folder_path + '/' + WEIGHTS_NAME
43 | pytorch_config_dump_path = pytorch_dump_folder_path + '/' + CONFIG_NAME
44 | print("Save PyTorch model to {}".format(pytorch_weights_dump_path))
45 | torch.save(model.state_dict(), pytorch_weights_dump_path)
46 | print("Save configuration file to {}".format(pytorch_config_dump_path))
47 | with open(pytorch_config_dump_path, "w", encoding="utf-8") as f:
48 | f.write(config.to_json_string())
49 |
50 |
51 | if __name__ == "__main__":
52 | parser = argparse.ArgumentParser()
53 | ## Required parameters
54 | parser.add_argument("--openai_checkpoint_folder_path",
55 | default = None,
56 | type = str,
57 | required = True,
58 | help = "Path the TensorFlow checkpoint path.")
59 | parser.add_argument("--pytorch_dump_folder_path",
60 | default = None,
61 | type = str,
62 | required = True,
63 | help = "Path to the output PyTorch model.")
64 | parser.add_argument("--openai_config_file",
65 | default = "",
66 | type = str,
67 | help = "An optional config json file corresponding to the pre-trained OpenAI model. \n"
68 | "This specifies the model architecture.")
69 | args = parser.parse_args()
70 | convert_openai_checkpoint_to_pytorch(args.openai_checkpoint_folder_path,
71 | args.openai_config_file,
72 | args.pytorch_dump_folder_path)
73 |
--------------------------------------------------------------------------------
/models/pytorch_pretrained_bert/convert_tf_checkpoint_to_pytorch.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 | # Copyright 2018 The HuggingFace Inc. team.
3 | #
4 | # Licensed under the Apache License, Version 2.0 (the "License");
5 | # you may not use this file except in compliance with the License.
6 | # You may obtain a copy of the License at
7 | #
8 | # http://www.apache.org/licenses/LICENSE-2.0
9 | #
10 | # Unless required by applicable law or agreed to in writing, software
11 | # distributed under the License is distributed on an "AS IS" BASIS,
12 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 | # See the License for the specific language governing permissions and
14 | # limitations under the License.
15 | """Convert BERT checkpoint."""
16 |
17 | from __future__ import absolute_import
18 | from __future__ import division
19 | from __future__ import print_function
20 |
21 | import os
22 | import re
23 | import argparse
24 | import tensorflow as tf
25 | import torch
26 | import numpy as np
27 |
28 | from pytorch_pretrained_bert.modeling import BertConfig, BertForPreTraining, load_tf_weights_in_bert
29 |
30 | def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, bert_config_file, pytorch_dump_path):
31 | # Initialise PyTorch model
32 | config = BertConfig.from_json_file(bert_config_file)
33 | print("Building PyTorch model from configuration: {}".format(str(config)))
34 | model = BertForPreTraining(config)
35 |
36 | # Load weights from tf checkpoint
37 | load_tf_weights_in_bert(model, tf_checkpoint_path)
38 |
39 | # Save pytorch-model
40 | print("Save PyTorch model to {}".format(pytorch_dump_path))
41 | torch.save(model.state_dict(), pytorch_dump_path)
42 |
43 |
44 | if __name__ == "__main__":
45 | parser = argparse.ArgumentParser()
46 | ## Required parameters
47 | parser.add_argument("--tf_checkpoint_path",
48 | default = None,
49 | type = str,
50 | required = True,
51 | help = "Path the TensorFlow checkpoint path.")
52 | parser.add_argument("--bert_config_file",
53 | default = None,
54 | type = str,
55 | required = True,
56 | help = "The config json file corresponding to the pre-trained BERT model. \n"
57 | "This specifies the model architecture.")
58 | parser.add_argument("--pytorch_dump_path",
59 | default = None,
60 | type = str,
61 | required = True,
62 | help = "Path to the output PyTorch model.")
63 | args = parser.parse_args()
64 | convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path,
65 | args.bert_config_file,
66 | args.pytorch_dump_path)
67 |
--------------------------------------------------------------------------------
/models/pytorch_pretrained_bert/convert_transfo_xl_checkpoint_to_pytorch.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 | # Copyright 2018 The HuggingFace Inc. team.
3 | #
4 | # Licensed under the Apache License, Version 2.0 (the "License");
5 | # you may not use this file except in compliance with the License.
6 | # You may obtain a copy of the License at
7 | #
8 | # http://www.apache.org/licenses/LICENSE-2.0
9 | #
10 | # Unless required by applicable law or agreed to in writing, software
11 | # distributed under the License is distributed on an "AS IS" BASIS,
12 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 | # See the License for the specific language governing permissions and
14 | # limitations under the License.
15 | """Convert Transformer XL checkpoint and datasets."""
16 |
17 | from __future__ import absolute_import, division, print_function
18 |
19 | import argparse
20 | import os
21 | import sys
22 | from io import open
23 |
24 | import torch
25 |
26 | import pytorch_pretrained_bert.tokenization_transfo_xl as data_utils
27 | from pytorch_pretrained_bert.modeling_transfo_xl import (CONFIG_NAME,
28 | WEIGHTS_NAME,
29 | TransfoXLConfig,
30 | TransfoXLLMHeadModel,
31 | load_tf_weights_in_transfo_xl)
32 | from pytorch_pretrained_bert.tokenization_transfo_xl import (CORPUS_NAME,
33 | VOCAB_NAME)
34 |
35 | if sys.version_info[0] == 2:
36 | import cPickle as pickle
37 | else:
38 | import pickle
39 |
40 | # We do this to be able to load python 2 datasets pickles
41 | # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918
42 | data_utils.Vocab = data_utils.TransfoXLTokenizer
43 | data_utils.Corpus = data_utils.TransfoXLCorpus
44 | sys.modules['data_utils'] = data_utils
45 | sys.modules['vocabulary'] = data_utils
46 |
47 | def convert_transfo_xl_checkpoint_to_pytorch(tf_checkpoint_path,
48 | transfo_xl_config_file,
49 | pytorch_dump_folder_path,
50 | transfo_xl_dataset_file):
51 | if transfo_xl_dataset_file:
52 | # Convert a pre-processed corpus (see original TensorFlow repo)
53 | with open(transfo_xl_dataset_file, "rb") as fp:
54 | corpus = pickle.load(fp, encoding="latin1")
55 | # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term)
56 | pytorch_vocab_dump_path = pytorch_dump_folder_path + '/' + VOCAB_NAME
57 | print("Save vocabulary to {}".format(pytorch_vocab_dump_path))
58 | corpus_vocab_dict = corpus.vocab.__dict__
59 | torch.save(corpus_vocab_dict, pytorch_vocab_dump_path)
60 |
61 | corpus_dict_no_vocab = corpus.__dict__
62 | corpus_dict_no_vocab.pop('vocab', None)
63 | pytorch_dataset_dump_path = pytorch_dump_folder_path + '/' + CORPUS_NAME
64 | print("Save dataset to {}".format(pytorch_dataset_dump_path))
65 | torch.save(corpus_dict_no_vocab, pytorch_dataset_dump_path)
66 |
67 | if tf_checkpoint_path:
68 | # Convert a pre-trained TensorFlow model
69 | config_path = os.path.abspath(transfo_xl_config_file)
70 | tf_path = os.path.abspath(tf_checkpoint_path)
71 |
72 | print("Converting Transformer XL checkpoint from {} with config at {}".format(tf_path, config_path))
73 | # Initialise PyTorch model
74 | if transfo_xl_config_file == "":
75 | config = TransfoXLConfig()
76 | else:
77 | config = TransfoXLConfig(transfo_xl_config_file)
78 | print("Building PyTorch model from configuration: {}".format(str(config)))
79 | model = TransfoXLLMHeadModel(config)
80 |
81 | model = load_tf_weights_in_transfo_xl(model, config, tf_path)
82 | # Save pytorch-model
83 | pytorch_weights_dump_path = os.path.join(pytorch_dump_folder_path, WEIGHTS_NAME)
84 | pytorch_config_dump_path = os.path.join(pytorch_dump_folder_path, CONFIG_NAME)
85 | print("Save PyTorch model to {}".format(os.path.abspath(pytorch_weights_dump_path)))
86 | torch.save(model.state_dict(), pytorch_weights_dump_path)
87 | print("Save configuration file to {}".format(os.path.abspath(pytorch_config_dump_path)))
88 | with open(pytorch_config_dump_path, "w", encoding="utf-8") as f:
89 | f.write(config.to_json_string())
90 |
91 |
92 | if __name__ == "__main__":
93 | parser = argparse.ArgumentParser()
94 | parser.add_argument("--pytorch_dump_folder_path",
95 | default = None,
96 | type = str,
97 | required = True,
98 | help = "Path to the folder to store the PyTorch model or dataset/vocab.")
99 | parser.add_argument("--tf_checkpoint_path",
100 | default = "",
101 | type = str,
102 | help = "An optional path to a TensorFlow checkpoint path to be converted.")
103 | parser.add_argument("--transfo_xl_config_file",
104 | default = "",
105 | type = str,
106 | help = "An optional config json file corresponding to the pre-trained BERT model. \n"
107 | "This specifies the model architecture.")
108 | parser.add_argument("--transfo_xl_dataset_file",
109 | default = "",
110 | type = str,
111 | help = "An optional dataset file to be converted in a vocabulary.")
112 | args = parser.parse_args()
113 | convert_transfo_xl_checkpoint_to_pytorch(args.tf_checkpoint_path,
114 | args.transfo_xl_config_file,
115 | args.pytorch_dump_folder_path,
116 | args.transfo_xl_dataset_file)
117 |
--------------------------------------------------------------------------------
/models/pytorch_pretrained_bert/file_utils.py:
--------------------------------------------------------------------------------
1 | """
2 | Utilities for working with the local dataset cache.
3 | This file is adapted from the AllenNLP library at https://github.com/allenai/allennlp
4 | Copyright by the AllenNLP authors.
5 | """
6 | from __future__ import (absolute_import, division, print_function, unicode_literals)
7 |
8 | import sys
9 | import json
10 | import logging
11 | import os
12 | import shutil
13 | import tempfile
14 | import fnmatch
15 | from functools import wraps
16 | from hashlib import sha256
17 | import sys
18 | from io import open
19 |
20 | import boto3
21 | import requests
22 | from botocore.exceptions import ClientError
23 | from tqdm import tqdm
24 |
25 | try:
26 | from urllib.parse import urlparse
27 | except ImportError:
28 | from urlparse import urlparse
29 |
30 | try:
31 | from pathlib import Path
32 | PYTORCH_PRETRAINED_BERT_CACHE = Path(os.getenv('PYTORCH_PRETRAINED_BERT_CACHE',
33 | Path.home() / '.pytorch_pretrained_bert'))
34 | except (AttributeError, ImportError):
35 | PYTORCH_PRETRAINED_BERT_CACHE = os.getenv('PYTORCH_PRETRAINED_BERT_CACHE',
36 | os.path.join(os.path.expanduser("~"), '.pytorch_pretrained_bert'))
37 |
38 | CONFIG_NAME = "config.json"
39 | WEIGHTS_NAME = "pytorch_model.bin"
40 |
41 | logger = logging.getLogger(__name__) # pylint: disable=invalid-name
42 |
43 |
44 | def url_to_filename(url, etag=None):
45 | """
46 | Convert `url` into a hashed filename in a repeatable way.
47 | If `etag` is specified, append its hash to the url's, delimited
48 | by a period.
49 | """
50 | url_bytes = url.encode('utf-8')
51 | url_hash = sha256(url_bytes)
52 | filename = url_hash.hexdigest()
53 |
54 | if etag:
55 | etag_bytes = etag.encode('utf-8')
56 | etag_hash = sha256(etag_bytes)
57 | filename += '.' + etag_hash.hexdigest()
58 |
59 | return filename
60 |
61 |
62 | def filename_to_url(filename, cache_dir=None):
63 | """
64 | Return the url and etag (which may be ``None``) stored for `filename`.
65 | Raise ``EnvironmentError`` if `filename` or its stored metadata do not exist.
66 | """
67 | if cache_dir is None:
68 | cache_dir = PYTORCH_PRETRAINED_BERT_CACHE
69 | if sys.version_info[0] == 3 and isinstance(cache_dir, Path):
70 | cache_dir = str(cache_dir)
71 |
72 | cache_path = os.path.join(cache_dir, filename)
73 | if not os.path.exists(cache_path):
74 | raise EnvironmentError("file {} not found".format(cache_path))
75 |
76 | meta_path = cache_path + '.json'
77 | if not os.path.exists(meta_path):
78 | raise EnvironmentError("file {} not found".format(meta_path))
79 |
80 | with open(meta_path, encoding="utf-8") as meta_file:
81 | metadata = json.load(meta_file)
82 | url = metadata['url']
83 | etag = metadata['etag']
84 |
85 | return url, etag
86 |
87 |
88 | def cached_path(url_or_filename, cache_dir=None):
89 | """
90 | Given something that might be a URL (or might be a local path),
91 | determine which. If it's a URL, download the file and cache it, and
92 | return the path to the cached file. If it's already a local path,
93 | make sure the file exists and then return the path.
94 | """
95 | if cache_dir is None:
96 | cache_dir = PYTORCH_PRETRAINED_BERT_CACHE
97 | if sys.version_info[0] == 3 and isinstance(url_or_filename, Path):
98 | url_or_filename = str(url_or_filename)
99 | if sys.version_info[0] == 3 and isinstance(cache_dir, Path):
100 | cache_dir = str(cache_dir)
101 |
102 | parsed = urlparse(url_or_filename)
103 |
104 | if parsed.scheme in ('http', 'https', 's3'):
105 | # URL, so get it from the cache (downloading if necessary)
106 | return get_from_cache(url_or_filename, cache_dir)
107 | elif os.path.exists(url_or_filename):
108 | # File, and it exists.
109 | return url_or_filename
110 | elif parsed.scheme == '':
111 | # File, but it doesn't exist.
112 | raise EnvironmentError("file {} not found".format(url_or_filename))
113 | else:
114 | # Something unknown
115 | raise ValueError("unable to parse {} as a URL or as a local path".format(url_or_filename))
116 |
117 |
118 | def split_s3_path(url):
119 | """Split a full s3 path into the bucket name and path."""
120 | parsed = urlparse(url)
121 | if not parsed.netloc or not parsed.path:
122 | raise ValueError("bad s3 path {}".format(url))
123 | bucket_name = parsed.netloc
124 | s3_path = parsed.path
125 | # Remove '/' at beginning of path.
126 | if s3_path.startswith("/"):
127 | s3_path = s3_path[1:]
128 | return bucket_name, s3_path
129 |
130 |
131 | def s3_request(func):
132 | """
133 | Wrapper function for s3 requests in order to create more helpful error
134 | messages.
135 | """
136 |
137 | @wraps(func)
138 | def wrapper(url, *args, **kwargs):
139 | try:
140 | return func(url, *args, **kwargs)
141 | except ClientError as exc:
142 | if int(exc.response["Error"]["Code"]) == 404:
143 | raise EnvironmentError("file {} not found".format(url))
144 | else:
145 | raise
146 |
147 | return wrapper
148 |
149 |
150 | @s3_request
151 | def s3_etag(url):
152 | """Check ETag on S3 object."""
153 | s3_resource = boto3.resource("s3")
154 | bucket_name, s3_path = split_s3_path(url)
155 | s3_object = s3_resource.Object(bucket_name, s3_path)
156 | return s3_object.e_tag
157 |
158 |
159 | @s3_request
160 | def s3_get(url, temp_file):
161 | """Pull a file directly from S3."""
162 | s3_resource = boto3.resource("s3")
163 | bucket_name, s3_path = split_s3_path(url)
164 | s3_resource.Bucket(bucket_name).download_fileobj(s3_path, temp_file)
165 |
166 |
167 | def http_get(url, temp_file):
168 | req = requests.get(url, stream=True)
169 | content_length = req.headers.get('Content-Length')
170 | total = int(content_length) if content_length is not None else None
171 | progress = tqdm(unit="B", total=total)
172 | for chunk in req.iter_content(chunk_size=1024):
173 | if chunk: # filter out keep-alive new chunks
174 | progress.update(len(chunk))
175 | temp_file.write(chunk)
176 | progress.close()
177 |
178 |
179 | def get_from_cache(url, cache_dir=None):
180 | """
181 | Given a URL, look for the corresponding dataset in the local cache.
182 | If it's not there, download it. Then return the path to the cached file.
183 | """
184 | if cache_dir is None:
185 | cache_dir = PYTORCH_PRETRAINED_BERT_CACHE
186 | if sys.version_info[0] == 3 and isinstance(cache_dir, Path):
187 | cache_dir = str(cache_dir)
188 |
189 | if not os.path.exists(cache_dir):
190 | os.makedirs(cache_dir)
191 |
192 | # Get eTag to add to filename, if it exists.
193 | if url.startswith("s3://"):
194 | etag = s3_etag(url)
195 | else:
196 | try:
197 | response = requests.head(url, allow_redirects=True)
198 | if response.status_code != 200:
199 | etag = None
200 | else:
201 | etag = response.headers.get("ETag")
202 | except EnvironmentError:
203 | etag = None
204 |
205 | if sys.version_info[0] == 2 and etag is not None:
206 | etag = etag.decode('utf-8')
207 | filename = url_to_filename(url, etag)
208 |
209 | # get cache path to put the file
210 | cache_path = os.path.join(cache_dir, filename)
211 |
212 | # If we don't have a connection (etag is None) and can't identify the file
213 | # try to get the last downloaded one
214 | if not os.path.exists(cache_path) and etag is None:
215 | matching_files = fnmatch.filter(os.listdir(cache_dir), filename + '.*')
216 | matching_files = list(filter(lambda s: not s.endswith('.json'), matching_files))
217 | if matching_files:
218 | cache_path = os.path.join(cache_dir, matching_files[-1])
219 |
220 | if not os.path.exists(cache_path):
221 | # Download to temporary file, then copy to cache dir once finished.
222 | # Otherwise you get corrupt cache entries if the download gets interrupted.
223 | with tempfile.NamedTemporaryFile() as temp_file:
224 | logger.info("%s not found in cache, downloading to %s", url, temp_file.name)
225 |
226 | # GET file object
227 | if url.startswith("s3://"):
228 | s3_get(url, temp_file)
229 | else:
230 | http_get(url, temp_file)
231 |
232 | # we are copying the file before closing it, so flush to avoid truncation
233 | temp_file.flush()
234 | # shutil.copyfileobj() starts at the current position, so go to the start
235 | temp_file.seek(0)
236 |
237 | logger.info("copying %s to cache at %s", temp_file.name, cache_path)
238 | with open(cache_path, 'wb') as cache_file:
239 | shutil.copyfileobj(temp_file, cache_file)
240 |
241 | logger.info("creating metadata file for %s", cache_path)
242 | meta = {'url': url, 'etag': etag}
243 | meta_path = cache_path + '.json'
244 | with open(meta_path, 'w') as meta_file:
245 | output_string = json.dumps(meta)
246 | if sys.version_info[0] == 2 and isinstance(output_string, str):
247 | output_string = unicode(output_string, 'utf-8') # The beauty of python 2
248 | meta_file.write(output_string)
249 |
250 | logger.info("removing temp file %s", temp_file.name)
251 |
252 | return cache_path
253 |
254 |
255 | def read_set_from_file(filename):
256 | '''
257 | Extract a de-duped collection (set) of text from a file.
258 | Expected file format is one item per line.
259 | '''
260 | collection = set()
261 | with open(filename, 'r', encoding='utf-8') as file_:
262 | for line in file_:
263 | collection.add(line.rstrip())
264 | return collection
265 |
266 |
267 | def get_file_extension(path, dot=True, lower=True):
268 | ext = os.path.splitext(path)[1]
269 | ext = ext if dot else ext[1:]
270 | return ext.lower() if lower else ext
271 |
--------------------------------------------------------------------------------
/models/pytorch_pretrained_bert/optimization.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 | # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
3 | #
4 | # Licensed under the Apache License, Version 2.0 (the "License");
5 | # you may not use this file except in compliance with the License.
6 | # You may obtain a copy of the License at
7 | #
8 | # http://www.apache.org/licenses/LICENSE-2.0
9 | #
10 | # Unless required by applicable law or agreed to in writing, software
11 | # distributed under the License is distributed on an "AS IS" BASIS,
12 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 | # See the License for the specific language governing permissions and
14 | # limitations under the License.
15 | """PyTorch optimization for BERT model."""
16 |
17 | import math
18 | import torch
19 | from torch.optim import Optimizer
20 | from torch.optim.optimizer import required
21 | from torch.nn.utils import clip_grad_norm_
22 | import logging
23 |
24 | logger = logging.getLogger(__name__)
25 |
26 | def warmup_cosine(x, warmup=0.002):
27 | if x < warmup:
28 | return x/warmup
29 | x_ = (x - warmup) / (1 - warmup) # progress after warmup -
30 | return 0.5 * (1. + math.cos(math.pi * x_))
31 |
32 | def warmup_constant(x, warmup=0.002):
33 | """ Linearly increases learning rate over `warmup`*`t_total` (as provided to BertAdam) training steps.
34 | Learning rate is 1. afterwards. """
35 | if x < warmup:
36 | return x/warmup
37 | return 1.0
38 |
39 | def warmup_linear(x, warmup=0.002):
40 | """ Specifies a triangular learning rate schedule where peak is reached at `warmup`*`t_total`-th (as provided to BertAdam) training step.
41 | After `t_total`-th training step, learning rate is zero. """
42 | if x < warmup:
43 | return x/warmup
44 | return max((x-1.)/(warmup-1.), 0)
45 |
46 | SCHEDULES = {
47 | 'warmup_cosine': warmup_cosine,
48 | 'warmup_constant': warmup_constant,
49 | 'warmup_linear': warmup_linear,
50 | }
51 |
52 |
53 | class BertAdam(Optimizer):
54 | """Implements BERT version of Adam algorithm with weight decay fix.
55 | Params:
56 | lr: learning rate
57 | warmup: portion of t_total for the warmup, -1 means no warmup. Default: -1
58 | t_total: total number of training steps for the learning
59 | rate schedule, -1 means constant learning rate. Default: -1
60 | schedule: schedule to use for the warmup (see above). Default: 'warmup_linear'
61 | b1: Adams b1. Default: 0.9
62 | b2: Adams b2. Default: 0.999
63 | e: Adams epsilon. Default: 1e-6
64 | weight_decay: Weight decay. Default: 0.01
65 | max_grad_norm: Maximum norm for the gradients (-1 means no clipping). Default: 1.0
66 | """
67 | def __init__(self, params, lr=required, warmup=-1, t_total=-1, schedule='warmup_linear',
68 | b1=0.9, b2=0.999, e=1e-6, weight_decay=0.01,
69 | max_grad_norm=1.0):
70 | if lr is not required and lr < 0.0:
71 | raise ValueError("Invalid learning rate: {} - should be >= 0.0".format(lr))
72 | if schedule not in SCHEDULES:
73 | raise ValueError("Invalid schedule parameter: {}".format(schedule))
74 | if not 0.0 <= warmup < 1.0 and not warmup == -1:
75 | raise ValueError("Invalid warmup: {} - should be in [0.0, 1.0[ or -1".format(warmup))
76 | if not 0.0 <= b1 < 1.0:
77 | raise ValueError("Invalid b1 parameter: {} - should be in [0.0, 1.0[".format(b1))
78 | if not 0.0 <= b2 < 1.0:
79 | raise ValueError("Invalid b2 parameter: {} - should be in [0.0, 1.0[".format(b2))
80 | if not e >= 0.0:
81 | raise ValueError("Invalid epsilon value: {} - should be >= 0.0".format(e))
82 | defaults = dict(lr=lr, schedule=schedule, warmup=warmup, t_total=t_total,
83 | b1=b1, b2=b2, e=e, weight_decay=weight_decay,
84 | max_grad_norm=max_grad_norm)
85 | super(BertAdam, self).__init__(params, defaults)
86 |
87 | def get_lr(self):
88 | lr = []
89 | for group in self.param_groups:
90 | for p in group['params']:
91 | state = self.state[p]
92 | if len(state) == 0:
93 | return [0]
94 | if group['t_total'] != -1:
95 | schedule_fct = SCHEDULES[group['schedule']]
96 | lr_scheduled = group['lr'] * schedule_fct(state['step']/group['t_total'], group['warmup'])
97 | else:
98 | lr_scheduled = group['lr']
99 | lr.append(lr_scheduled)
100 | return lr
101 |
102 | def step(self, closure=None):
103 | """Performs a single optimization step.
104 |
105 | Arguments:
106 | closure (callable, optional): A closure that reevaluates the model
107 | and returns the loss.
108 | """
109 | loss = None
110 | if closure is not None:
111 | loss = closure()
112 |
113 | warned_for_t_total = False
114 |
115 | for group in self.param_groups:
116 | for p in group['params']:
117 | if p.grad is None:
118 | continue
119 | grad = p.grad.data
120 | if grad.is_sparse:
121 | raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead')
122 |
123 | state = self.state[p]
124 |
125 | # State initialization
126 | if len(state) == 0:
127 | state['step'] = 0
128 | # Exponential moving average of gradient values
129 | state['next_m'] = torch.zeros_like(p.data)
130 | # Exponential moving average of squared gradient values
131 | state['next_v'] = torch.zeros_like(p.data)
132 |
133 | next_m, next_v = state['next_m'], state['next_v']
134 | beta1, beta2 = group['b1'], group['b2']
135 |
136 | # Add grad clipping
137 | if group['max_grad_norm'] > 0:
138 | clip_grad_norm_(p, group['max_grad_norm'])
139 |
140 | # Decay the first and second moment running average coefficient
141 | # In-place operations to update the averages at the same time
142 | next_m.mul_(beta1).add_(1 - beta1, grad)
143 | next_v.mul_(beta2).addcmul_(1 - beta2, grad, grad)
144 | update = next_m / (next_v.sqrt() + group['e'])
145 |
146 | # Just adding the square of the weights to the loss function is *not*
147 | # the correct way of using L2 regularization/weight decay with Adam,
148 | # since that will interact with the m and v parameters in strange ways.
149 | #
150 | # Instead we want to decay the weights in a manner that doesn't interact
151 | # with the m/v parameters. This is equivalent to adding the square
152 | # of the weights to the loss with plain (non-momentum) SGD.
153 | if group['weight_decay'] > 0.0:
154 | update += group['weight_decay'] * p.data
155 |
156 | if group['t_total'] != -1:
157 | schedule_fct = SCHEDULES[group['schedule']]
158 | progress = state['step']/group['t_total']
159 | lr_scheduled = group['lr'] * schedule_fct(progress, group['warmup'])
160 | # warning for exceeding t_total (only active with warmup_linear
161 | if group['schedule'] == "warmup_linear" and progress > 1. and not warned_for_t_total:
162 | logger.warning(
163 | "Training beyond specified 't_total' steps with schedule '{}'. Learning rate set to {}. "
164 | "Please set 't_total' of {} correctly.".format(group['schedule'], lr_scheduled, self.__class__.__name__))
165 | warned_for_t_total = True
166 | # end warning
167 | else:
168 | lr_scheduled = group['lr']
169 |
170 | update_with_lr = lr_scheduled * update
171 | p.data.add_(-update_with_lr)
172 |
173 | state['step'] += 1
174 |
175 | # step_size = lr_scheduled * math.sqrt(bias_correction2) / bias_correction1
176 | # No bias correction
177 | # bias_correction1 = 1 - beta1 ** state['step']
178 | # bias_correction2 = 1 - beta2 ** state['step']
179 |
180 | return loss
181 |
--------------------------------------------------------------------------------
/models/pytorch_pretrained_bert/optimization_openai.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 | # Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
3 | #
4 | # Licensed under the Apache License, Version 2.0 (the "License");
5 | # you may not use this file except in compliance with the License.
6 | # You may obtain a copy of the License at
7 | #
8 | # http://www.apache.org/licenses/LICENSE-2.0
9 | #
10 | # Unless required by applicable law or agreed to in writing, software
11 | # distributed under the License is distributed on an "AS IS" BASIS,
12 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 | # See the License for the specific language governing permissions and
14 | # limitations under the License.
15 | """PyTorch optimization for OpenAI GPT model."""
16 |
17 | import math
18 | import torch
19 | from torch.optim import Optimizer
20 | from torch.optim.optimizer import required
21 | from torch.nn.utils import clip_grad_norm_
22 | import logging
23 |
24 | logger = logging.getLogger(__name__)
25 |
26 | def warmup_cosine(x, warmup=0.002):
27 | if x < warmup:
28 | return x/warmup
29 | x_ = (x - warmup) / (1 - warmup) # progress after warmup
30 | return 0.5 * (1. + math.cos(math.pi * x_))
31 |
32 | def warmup_constant(x, warmup=0.002):
33 | """ Linearly increases learning rate over `warmup`*`t_total` (as provided to OpenAIAdam) training steps.
34 | Learning rate is 1. afterwards. """
35 | if x < warmup:
36 | return x/warmup
37 | return 1.0
38 |
39 | def warmup_linear(x, warmup=0.002):
40 | """ Specifies a triangular learning rate schedule where peak is reached at `warmup`*`t_total`-th (as provided to OpenAIAdam) training step.
41 | After `t_total`-th training step, learning rate is zero. """
42 | if x < warmup:
43 | return x/warmup
44 | return max((x-1.)/(warmup-1.), 0)
45 |
46 | SCHEDULES = {
47 | 'warmup_cosine':warmup_cosine,
48 | 'warmup_constant':warmup_constant,
49 | 'warmup_linear':warmup_linear,
50 | }
51 |
52 |
53 | class OpenAIAdam(Optimizer):
54 | """Implements Open AI version of Adam algorithm with weight decay fix.
55 | """
56 | def __init__(self, params, lr=required, schedule='warmup_linear', warmup=-1, t_total=-1,
57 | b1=0.9, b2=0.999, e=1e-8, weight_decay=0,
58 | vector_l2=False, max_grad_norm=-1, **kwargs):
59 | if lr is not required and lr < 0.0:
60 | raise ValueError("Invalid learning rate: {} - should be >= 0.0".format(lr))
61 | if schedule not in SCHEDULES:
62 | raise ValueError("Invalid schedule parameter: {}".format(schedule))
63 | if not 0.0 <= warmup < 1.0 and not warmup == -1:
64 | raise ValueError("Invalid warmup: {} - should be in [0.0, 1.0[ or -1".format(warmup))
65 | if not 0.0 <= b1 < 1.0:
66 | raise ValueError("Invalid b1 parameter: {}".format(b1))
67 | if not 0.0 <= b2 < 1.0:
68 | raise ValueError("Invalid b2 parameter: {}".format(b2))
69 | if not e >= 0.0:
70 | raise ValueError("Invalid epsilon value: {}".format(e))
71 | defaults = dict(lr=lr, schedule=schedule, warmup=warmup, t_total=t_total,
72 | b1=b1, b2=b2, e=e, weight_decay=weight_decay, vector_l2=vector_l2,
73 | max_grad_norm=max_grad_norm)
74 | super(OpenAIAdam, self).__init__(params, defaults)
75 |
76 | def get_lr(self):
77 | lr = []
78 | for group in self.param_groups:
79 | for p in group['params']:
80 | state = self.state[p]
81 | if len(state) == 0:
82 | return [0]
83 | if group['t_total'] != -1:
84 | schedule_fct = SCHEDULES[group['schedule']]
85 | lr_scheduled = group['lr'] * schedule_fct(state['step']/group['t_total'], group['warmup'])
86 | else:
87 | lr_scheduled = group['lr']
88 | lr.append(lr_scheduled)
89 | return lr
90 |
91 | def step(self, closure=None):
92 | """Performs a single optimization step.
93 |
94 | Arguments:
95 | closure (callable, optional): A closure that reevaluates the model
96 | and returns the loss.
97 | """
98 | loss = None
99 | if closure is not None:
100 | loss = closure()
101 |
102 | warned_for_t_total = False
103 |
104 | for group in self.param_groups:
105 | for p in group['params']:
106 | if p.grad is None:
107 | continue
108 | grad = p.grad.data
109 | if grad.is_sparse:
110 | raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead')
111 |
112 | state = self.state[p]
113 |
114 | # State initialization
115 | if len(state) == 0:
116 | state['step'] = 0
117 | # Exponential moving average of gradient values
118 | state['exp_avg'] = torch.zeros_like(p.data)
119 | # Exponential moving average of squared gradient values
120 | state['exp_avg_sq'] = torch.zeros_like(p.data)
121 |
122 | exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
123 | beta1, beta2 = group['b1'], group['b2']
124 |
125 | state['step'] += 1
126 |
127 | # Add grad clipping
128 | if group['max_grad_norm'] > 0:
129 | clip_grad_norm_(p, group['max_grad_norm'])
130 |
131 | # Decay the first and second moment running average coefficient
132 | exp_avg.mul_(beta1).add_(1 - beta1, grad)
133 | exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
134 | denom = exp_avg_sq.sqrt().add_(group['e'])
135 |
136 | bias_correction1 = 1 - beta1 ** state['step']
137 | bias_correction2 = 1 - beta2 ** state['step']
138 |
139 | if group['t_total'] != -1:
140 | schedule_fct = SCHEDULES[group['schedule']]
141 | progress = state['step']/group['t_total']
142 | lr_scheduled = group['lr'] * schedule_fct(progress, group['warmup'])
143 | # warning for exceeding t_total (only active with warmup_linear
144 | if group['schedule'] == "warmup_linear" and progress > 1. and not warned_for_t_total:
145 | logger.warning(
146 | "Training beyond specified 't_total' steps with schedule '{}'. Learning rate set to {}. "
147 | "Please set 't_total' of {} correctly.".format(group['schedule'], lr_scheduled, self.__class__.__name__))
148 | warned_for_t_total = True
149 | # end warning
150 | else:
151 | lr_scheduled = group['lr']
152 |
153 | step_size = lr_scheduled * math.sqrt(bias_correction2) / bias_correction1
154 |
155 | p.data.addcdiv_(-step_size, exp_avg, denom)
156 |
157 | # Add weight decay at the end (fixed version)
158 | if (len(p.size()) > 1 or group['vector_l2']) and group['weight_decay'] > 0:
159 | p.data.add_(-lr_scheduled * group['weight_decay'], p.data)
160 |
161 | return loss
162 |
--------------------------------------------------------------------------------
/pytorch-logo-dark.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/andreamad8/PPCM/e5bef1bbb70907a3d65de3225a00e4af9104d4a8/pytorch-logo-dark.png
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | transformers~=4.18.0
2 | matplotlib~=3.3.4
3 | boto3~=1.21.40
4 | IPython~=7.16.3
5 | Tabulate~=0.8.9
6 | sklearn~=0.0
7 | colorama~=0.4.4
8 | jsonlines~=3.0.0
9 | nltk~=3.6.7
10 | numpy~=1.19.5
11 | tqdm~=4.64.0
12 | setuptools~=59.6.0
13 | scikit-learn~=0.24.2
14 | requests~=2.27.1
15 | botocore~=1.24.40
16 | regex~=2022.3.15
17 | --extra-index-url https://download.pytorch.org/whl/cu113
18 | torch~=1.10.1
19 | torchvision
20 | torchaudio
--------------------------------------------------------------------------------
/utils/utils_sample.py:
--------------------------------------------------------------------------------
1 | from utils.helper import cut_seq_to_eos
2 | from utils.helper import dist_score, truncate, pad_sequences
3 | from metric.bleu import moses_multi_bleu
4 | from collections import Counter
5 | import torch
6 | import numpy as np
7 |
8 |
9 | def _prec_recall_f1_score(pred_items, gold_items):
10 | """
11 | Compute precision, recall and f1 given a set of gold and prediction items.
12 | :param pred_items: iterable of predicted values
13 | :param gold_items: iterable of gold values
14 | :return: tuple (p, r, f1) for precision, recall, f1
15 | """
16 | common = Counter(gold_items) & Counter(pred_items)
17 | num_same = sum(common.values())
18 | if num_same == 0:
19 | return 0
20 | precision = 1.0 * num_same / len(pred_items)
21 | recall = 1.0 * num_same / len(gold_items)
22 | f1 = (2 * precision * recall) / (precision + recall)
23 | return f1
24 |
25 | def scorer(args,turn,classifier,enc,class2idx,knowledge,plot=False,gold=None):
26 | hypotesis = []
27 | plots_array = []
28 | if(plot):
29 | loss = np.transpose(np.array(turn['loss']), (2, 0, 1)) # batch * sequence_len * iteration
30 | for i,t in enumerate(turn['text']):
31 | ind_eos = len(cut_seq_to_eos(t))-1
32 |
33 | text = enc.decode(cut_seq_to_eos(t))
34 | dist = dist_score(text,enc)
35 | bleu = None
36 | f1 = None
37 | if(gold):
38 | bleu = truncate(moses_multi_bleu(np.array([text]),np.array([gold]))*100,2)
39 | f1 = truncate(_prec_recall_f1_score(enc.encode(text), enc.encode(gold))*100,2)
40 | hypotesis.append([i,1-dist,text, f"{bleu}/{f1}"])
41 | ## plotting
42 | if(plot): plots_array.append(loss[i][:ind_eos,-1])
43 |
44 | x = [h[2] for h in hypotesis]
45 | if(knowledge):
46 | sent_p = [knowledge for i in range(args.num_samples)]
47 | x = (sent_p,x)
48 |
49 | for j, (loss,correct,predition) in enumerate(zip(*predict(args,classifier,x,class2idx))):
50 | hypotesis[j] = [hypotesis[j][0],loss,hypotesis[j][1],correct,predition,hypotesis[j][3],hypotesis[j][2]]
51 |
52 | hypotesis = sorted(hypotesis, key = lambda x: x[1]) ## sort by loss
53 | acc = hypotesis[0][3] ## if it is correctly classifed the sample with the lowest loss
54 | hypotesis = [[h[0],truncate(h[1],4),truncate(h[2],4),h[4],h[5],h[6]] for h in hypotesis]
55 | return hypotesis, acc, plots_array
56 |
57 | def predict(args, classifier, X, class2idx):
58 | if(type(X) is tuple):
59 | input_p = pad_sequences([torch.tensor(classifier.tokenizer.encode(s)) for s in X[0]])
60 | input_h = pad_sequences([torch.tensor(classifier.tokenizer.encode(s)) for s in X[1]])
61 | X = [input_p,input_h]
62 | else:
63 | X = pad_sequences([torch.tensor(classifier.tokenizer.encode(s)) for s in X])
64 |
65 | output_t = classifier(X)
66 |
67 | target_t = torch.tensor([args.label_class], device='cuda', dtype=torch.long).repeat(args.num_samples)
68 | ce_loss_logging = torch.nn.CrossEntropyLoss(reduction='none')
69 | loss = ce_loss_logging(output_t, target_t).detach().tolist()
70 | pred_t = output_t.argmax(dim=1, keepdim=True)
71 | correct = pred_t.eq(target_t.view_as(pred_t)).detach().tolist()
72 | return loss, sum(correct, []), [class2idx[int(pred[0])] for pred in pred_t.detach().tolist()]
73 |
--------------------------------------------------------------------------------