├── requirements.txt
├── examples
├── active_sites.tsv
├── a3r.pse
├── logo.png
├── DU1_ideal.sdf
├── test.csv
└── valid_smiles.txt
├── vinagpu
├── __init__.py
├── containers.py
├── parallel.py
├── utils.py
├── base.py
├── cpu.py
└── gpu.py
├── .gitignore
├── setup.py
├── setup_nvidia_docker.sh
├── .vscode
└── settings.json
├── scripts
├── ccr.py
├── ccr_parallel.py
└── dock_df.py
├── dockerfiles
└── Dockerfile
└── README.md
/requirements.txt:
--------------------------------------------------------------------------------
1 | meeko
2 | scipy
3 | docker
4 | dimorphite-dl
5 | vina
--------------------------------------------------------------------------------
/examples/active_sites.tsv:
--------------------------------------------------------------------------------
1 | pid, x, y, z
2 | P0DMS8, 54.241, 57.935, 141.723
3 |
--------------------------------------------------------------------------------
/examples/a3r.pse:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/andriusbern/vinaGPU/HEAD/examples/a3r.pse
--------------------------------------------------------------------------------
/examples/logo.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/andriusbern/vinaGPU/HEAD/examples/logo.png
--------------------------------------------------------------------------------
/vinagpu/__init__.py:
--------------------------------------------------------------------------------
1 | from .gpu import VinaGPU
2 | from .cpu import VinaCPU
3 | from .parallel import parallel_dock
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | output/**
2 | !output/.gitkeep
3 |
4 | # Ignore all python cache files
5 | __pycache__/
6 | vinagpu.egg-info/
7 | tests/
8 |
9 | # exclude all .pyc files
10 | *.pyc
11 |
12 | # package egg info
13 | *.egg-info
14 |
15 | # exclude all folders with name 'output'
16 | output/
17 | **/output/
18 | out/
19 | test.ipynb
20 | scripts/
--------------------------------------------------------------------------------
/setup.py:
--------------------------------------------------------------------------------
1 | """
2 | setup.py
3 |
4 | Created by: Andrius Bernatavicius
5 | On: 08/02/2023, 16:33
6 | """
7 |
8 | from setuptools import setup
9 |
10 | requirements = [
11 | 'scipy',
12 | 'meeko',
13 | 'docker',
14 | 'dimorphite_dl',
15 | 'vina']
16 |
17 |
18 | setup(
19 | name='vinagpu',
20 | version='0.0.1',
21 | description='VinaGPU - AutoDock Vina on GPU, using Docker',
22 | requires=requirements,
23 | packages=['vinagpu'],
24 | )
--------------------------------------------------------------------------------
/setup_nvidia_docker.sh:
--------------------------------------------------------------------------------
1 | #!/bin/sh
2 |
3 | sudo apt -y update
4 | sudo apt -y install apt-transport-https ca-certificates curl gnupg-agent software-properties-common
5 | curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
6 | sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable"
7 |
8 | distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
9 | curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
10 | curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list
11 |
12 | sudo apt -y update
13 | sudo apt -y install docker-ce docker-ce-cli containerd.io
14 | sudo usermod -aG docker $USER
15 | sudo apt -y install nvidia-driver-515-server nvidia-cuda-toolkit nvidia-container-toolkit ocl-icd-libopencl1 clinfo
16 |
--------------------------------------------------------------------------------
/.vscode/settings.json:
--------------------------------------------------------------------------------
1 | {
2 | "workbench.colorCustomizations": {
3 | "activityBar.activeBackground": "#4886bd",
4 | "activityBar.background": "#4886bd",
5 | "activityBar.foreground": "#e7e7e7",
6 | "activityBar.inactiveForeground": "#e7e7e799",
7 | "activityBarBadge.background": "#e6b9d1",
8 | "activityBarBadge.foreground": "#15202b",
9 | "commandCenter.border": "#e7e7e799",
10 | "sash.hoverBorder": "#4886bd",
11 | "statusBar.background": "#386c9a",
12 | "statusBar.foreground": "#e7e7e7",
13 | "statusBarItem.hoverBackground": "#4886bd",
14 | "statusBarItem.remoteBackground": "#386c9a",
15 | "statusBarItem.remoteForeground": "#e7e7e7",
16 | "titleBar.activeBackground": "#386c9a",
17 | "titleBar.activeForeground": "#e7e7e7",
18 | "titleBar.inactiveBackground": "#386c9a99",
19 | "titleBar.inactiveForeground": "#e7e7e799"
20 | },
21 | "peacock.remoteColor": "#386c9a"
22 | }
--------------------------------------------------------------------------------
/scripts/ccr.py:
--------------------------------------------------------------------------------
1 | import os
2 | from vinagpu import VinaGPU
3 |
4 | # Docking example on P21918 (DRD5 - D(1B) dopamine receptor)
5 | target_pdb_path = os.path.join('examples', 'ccr.pdb')
6 | box_center = (5.1, 28, 187.6) # Active site coordinates of P21918
7 | box_size = (16.2, 17.8, 17.4)
8 | output_subfolder = 'ccr_ti' # results stored at: "./P21918_test"
9 |
10 | with open('examples/SL_5000_10.csv') as f:
11 | smiles = f.readlines()[:500]
12 | print(smiles)
13 | smiles = [x.strip('\n') for x in smiles]
14 | smiles = [x.strip('"') for x in smiles]
15 |
16 | print(len(smiles))
17 |
18 | metadata = [{'a': 1, 'b': 2} for _ in range(len(smiles))]
19 | print(smiles)
20 |
21 | vina_docker = VinaGPU()
22 |
23 | scores = vina_docker.dock(
24 | target_pdb_path=target_pdb_path,
25 | smiles=smiles,
26 | output_subfolder=output_subfolder,
27 | box_center=box_center,
28 | box_size=box_size,
29 | verbose=True,
30 | write_log=True,
31 | clean=True,
32 | metadata=metadata)
--------------------------------------------------------------------------------
/scripts/ccr_parallel.py:
--------------------------------------------------------------------------------
1 | import os
2 | from vinagpu import VinaGPU
3 | import time
4 | from vinagpu import parallel_dock
5 |
6 | # Docking example on P21918 (DRD5 - D(1B) dopamine receptor)
7 | target_pdb_path = os.path.join('examples', 'ccr.pdb')
8 | box_center = (5.1, 28, 187.6) # Active site coordinates of P21918
9 | box_size = (16.2, 17.8, 17.4)
10 | output_subfolder = 'ccr_parallel_3workers_optimal' # results stored at: "./P21918_test"
11 |
12 | with open('examples/SL_5000_10.csv') as f:
13 | smiles = f.readlines()
14 | print(smiles)
15 | smiles = [x.strip('\n') for x in smiles]
16 | smiles = [x.strip('"') for x in smiles]
17 |
18 | smiles = smiles
19 |
20 | # print(smiles)
21 | t0 = time.time()
22 |
23 | parallel_dock(target_pdb_path=target_pdb_path,
24 | smiles=smiles[1:150],
25 | box_center=box_center,
26 | box_size=box_size,
27 | output_subfolder=output_subfolder,
28 | num_cpu_workers=0, exhaustiveness=8, threads_per_cpu_worker=8, # CPU worker parameters
29 | gpu_ids=[1, 2, 3], workers_per_gpu=1, search_depth=9,
30 | threads=1024) # GPU Worker parameters
31 |
32 | t1 = time.time()
33 | print(f'Docked ligands per second: {len(smiles) / (t1 - t0)}')
34 | print(f'Total time: {t1 - t0}')
35 |
36 |
--------------------------------------------------------------------------------
/vinagpu/containers.py:
--------------------------------------------------------------------------------
1 | import docker
2 | import os
3 | import shutil
4 |
5 |
6 | class VinaContainer:
7 | def __init__(self, dir_to_mount):
8 |
9 | self.client = docker.from_env()
10 | self.dir_to_mount = dir_to_mount
11 |
12 | self.container = None
13 |
14 | ## Container paths
15 | self.container_name = 'vina-cl'
16 | self.working_dir = '/vina-gpu-dockerized/Vina-GPU-2.1/QuickVina2-GPU-2.1'
17 | self.docking_dir = self.working_dir + '/docking'
18 | self.executables = dict(
19 | vina='QuickVina2-GPU-2-1',
20 | adfr='/htd/ADFRsuite-1.0/adfr'
21 | )
22 |
23 | ## Device
24 | self.device = 'gpu'
25 | self.device_id = None
26 | self.docker_kwargs = dict(
27 | image=self.container_name,
28 | volumes = [f'{self.dir_to_mount}:{self.docking_dir}'],
29 | device_requests=[docker.types.DeviceRequest(device_ids=self) ]
30 |
31 | )
32 |
33 | def start(self):
34 | self.container = self.client.containers.run(
35 | command='sleep infinity', # Keeps the container running until it is killed
36 | detach=True, # Run container in background
37 | **self.docker_kwargs
38 | )
39 |
40 | def remove(self):
41 | self.container.remove(force=True)
42 | self.container = None
43 |
--------------------------------------------------------------------------------
/scripts/dock_df.py:
--------------------------------------------------------------------------------
1 | import os
2 | import time
3 | from vinagpu import VinaGPU
4 | import pandas as pd
5 | import argparse
6 |
7 | # Docking example on P21918 (DRD5 - D(1B) dopamine receptor)
8 |
9 | def main(gpu_id, output_folder, n_ligands):
10 | generated_path = 'examples/SL_5000_10.csv'
11 | generated_smiles = pd.read_csv(generated_path)
12 |
13 | target_pdb_path = os.path.join('examples', 'ccr.pdbqt')
14 | box_center = (5.1, 28, 187.6) # Active site coordinates of P21918
15 | box_size = (16.2, 17.8, 17.4)
16 |
17 | # Initialize VinaGPU with the specified GPU device
18 | vina_docker = VinaGPU(devices=[gpu_id])
19 | generated_smiles.head()
20 |
21 | t0 = time.time()
22 | df = vina_docker.dock_dataframe(
23 | dataframe=generated_smiles[:n_ligands],
24 | target_pdb_path=target_pdb_path,
25 | output_subfolder=output_folder,
26 | box_center=box_center,
27 | box_size=box_size,
28 | verbose=True,
29 | write_log=True,
30 | threads=1024,
31 | clean=True)
32 |
33 | t1 = time.time()
34 | print(f'Docked ligands: {len(df)} in {t1 - t0} seconds')
35 |
36 | print(df.columns)
37 | print(df.head())
38 | df.to_csv('scripts/docking_results.csv')
39 |
40 | if __name__ == '__main__':
41 | parser = argparse.ArgumentParser(description='Dock a list of ligands to a target protein using VinaGPU')
42 | parser.add_argument('--gpu_id', type=str, required=True, help='ID of the GPU to use for docking')
43 | parser.add_argument('--output_folder', type=str, required=True, help='Folder to store docking results')
44 | parser.add_argument('--n_ligands', type=int, required=True, help='Number of ligands to dock')
45 | args = parser.parse_args()
46 |
47 | main(args.gpu_id, args.output_folder, args.n_ligands)
48 |
49 |
--------------------------------------------------------------------------------
/dockerfiles/Dockerfile:
--------------------------------------------------------------------------------
1 | FROM ubuntu:20.04 as vina-gpu
2 |
3 | ARG DEBIAN_FRONTEND=noninteractive
4 | ARG WORKDIR="/vina-gpu-dockerized"
5 | ARG BOOST_DIR_NAME="boost_1_77_0"
6 |
7 |
8 | RUN --mount=type=cache,id=apt-cache,target=/var/cache/apt \
9 | apt-get update && apt-get -y upgrade && apt-get install -y \
10 | clinfo \
11 | cmake \
12 | ocl-icd-libopencl1 \
13 | opencl-headers \
14 | python3-pip \
15 | tar \
16 | wget \
17 | xz-utils
18 |
19 | RUN mkdir -p /etc/OpenCL/vendors && \
20 | echo "libnvidia-opencl.so.1" > /etc/OpenCL/vendors/nvidia.icd
21 | ENV NVIDIA_VISIBLE_DEVICES all
22 | ENV NVIDIA_DRIVER_CAPABILITIES compute,utility
23 |
24 | WORKDIR "${WORKDIR}"
25 | RUN wget https://boostorg.jfrog.io/artifactory/main/release/1.77.0/source/${BOOST_DIR_NAME}.tar.bz2 && tar --bzip2 -xf ${BOOST_DIR_NAME}.tar.bz2 && rm ${BOOST_DIR_NAME}.tar.bz2
26 |
27 | WORKDIR "${WORKDIR}/${BOOST_DIR_NAME}"
28 | RUN mkdir ${WORKDIR}/${BOOST_DIR_NAME}/build
29 | RUN cd tools/build && ./bootstrap.sh && ./b2 install --prefix=${WORKDIR}/${BOOST_DIR_NAME}/build
30 | # TODO: most likely here we can select only some parts of the library to be built
31 | RUN ${WORKDIR}/${BOOST_DIR_NAME}/build/bin/b2 --build-dir=${WORKDIR}/${BOOST_DIR_NAME}/build toolset=gcc stage
32 |
33 | RUN ln -s /usr/lib/x86_64-linux-gnu/libOpenCL.so.1 /usr/lib/libOpenCL.so
34 | ENV LD_LIBRARY_PATH="${LD_LIBRARY_PATH}:${WORKDIR}/${BOOST_DIR_NAME}/stage/lib"
35 | COPY . ${WORKDIR}/vina
36 | WORKDIR "${WORKDIR}/vina"
37 |
38 | RUN gcc -o Vina-GPU \
39 | -I${WORKDIR}/${BOOST_DIR_NAME} -I./lib -I./OpenCL/inc \
40 | ./main/main.cpp \
41 | -O3 ./lib/*.cpp ./OpenCL/src/wrapcl.cpp ${WORKDIR}/${BOOST_DIR_NAME}/libs/thread/src/pthread/thread.cpp ${WORKDIR}/${BOOST_DIR_NAME}/libs/thread/src/pthread/once.cpp \
42 | -lboost_program_options -lboost_system -lboost_filesystem -lOpenCL -lstdc++ -lm -lpthread \
43 | -L${WORKDIR}/${BOOST_DIR_NAME}/stage/lib -L/usr/lib/x86_64-linux-gnu \
44 | -DOPENCL_1_2 -DBUILD_KERNEL_FROM_SOURCE -DNVIDIA_PLATFORM
45 |
46 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 |
2 |
3 | # High throughput molecular docking using *Vina-GPU + Docker*
4 |
5 |
6 |
7 | This package contains a minimalistic python API for high throughput docking by using [VinaGPU](https://github.com/DeltaGroupNJUPT/Vina-GPU) via a Docker image.
8 |
9 | ## Features:
10 |
11 | 1. Can be used to dock on multiple GPUs, multiple workers per GPU.
12 | 2. CPU workers using AutoDock Vina python API can be run in parallel to the GPU workers
13 |
14 | # Installation
15 |
16 | ## 1. Pre-requisites:
17 | 1. Nvidia driver version>=515.43.04
18 | 2. Working [nvidia-docker](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html) GPU runtime.
19 | 3. Python3.8+ conda environment with Rdkit installed
20 |
21 | ---
22 |
23 | ## 2. Install the package, dependencies:
24 |
25 | ```bash
26 | git clone https://github.com/andriusbern/vinaGPU && cd vinaGPU
27 | pip install -e .
28 | pip install meeko docker scipy dimorphite-dl vina
29 | ```
30 |
31 | ## 3. Pull the docker image
32 |
33 | ```
34 | sudo docker pull andriusbern/vina-gpu:latest
35 | ```
36 | The docker image contains:
37 | - Cuda 11.7
38 | - [Vina-GPU](https://github.com/DeltaGroupNJUPT/Vina-GPU) (compiled with boost 1.77.0, cuda 11.7, proper OpenCL dependencies)
39 | - Protein preprocessing tools:
40 | - [ADFR Suite](https://ccsb.scripps.edu/adfr/downloads/)
41 | - [pdb_tools](https://wenmr.science.uu.nl/pdbtools/)
42 |
43 | ---
44 |
45 | ## Usage: 8 parallel GPU workers (on 4 GPUS) + 8 CPU workers (8 threads each)
46 | ```python
47 | import time
48 | from vinagpu import parallel_dock
49 |
50 | target_pdb_path = 'examples/P21918.pdb'
51 | output_subfolder = 'test_docking'
52 |
53 | with open('examples/valid_smiles.txt', 'r') as f:
54 | smiles = f.read().splitlines()
55 |
56 | t0 = time.time()
57 |
58 | parallel_dock(target_pdb_path=target_pdb_path,
59 | smiles=smiles,
60 | output_subfolder=output_subfolder,
61 | num_cpu_workers=8, exhaustiveness=8, threads_per_cpu_worker=8, # CPU worker parameters
62 | gpu_ids=[0,1,2,3], workers_per_gpu=2, search_depth=5) # GPU Worker parameters
63 |
64 | t1 = time.time()
65 | print(f'Docked ligands per second: {len(smiles) / (t1 - t0)}'
66 | print(f'Total time: {t1 - t0}')
67 | ```
68 |
69 | ## Usage, single GPU worker
70 |
71 | ```python
72 | import os
73 | from vinagpu import VinaGPU
74 |
75 | # Docking example on P21918 (DRD5 - D(1B) dopamine receptor)
76 | target_pdb_path = os.path.join('examples', 'P21918.pdb')
77 | active_site = (2.753, 0.994, -7.633) # Active site coordinates of P21918
78 | output_subfolder = 'P21918_test' # results stored at: "./P21918_test"
79 |
80 | smiles = [
81 | 'NC[C@@H](NC(=O)c1ccc(F)cc1)C1CCCC1',
82 | 'CCc1cccc(C(C)(C)NCCc2ccc(OC)c(OC)c2)c1',
83 | 'CCN1CCCC1CNS(=O)(=O)c1ccc(F)cc1',
84 | 'O=C(Cn1cccc1)Nc1ccc(Cl)cc1Cl']
85 |
86 | vina_docker = VinaGPU()
87 |
88 | scores = vina_docker.dock(
89 | target_pdb_path=target_pdb_path,
90 | smiles=smiles,
91 | output_subfolder=output_subfolder,
92 | active_site_coords=active_site,
93 | verbose=True)
94 | ```
95 |
--------------------------------------------------------------------------------
/vinagpu/parallel.py:
--------------------------------------------------------------------------------
1 | from multiprocessing import Pool, current_process, Queue
2 | from vinagpu import VinaCPU, VinaGPU
3 | import os
4 | import time
5 | from vinagpu.utils import read_log
6 |
7 | def docking_job(smiles: list):
8 | """
9 | This function is called by each process in the pool.
10 |
11 | Arguments:
12 | smiles (list) : list of SMILES
13 | """
14 | ident = current_process().ident
15 | device_id = queue.get()
16 | if device_id < 0:
17 | device_id = -device_id - 1
18 | runners = cpu_runners
19 | print('{}: starting process on CPU {}'.format(ident, device_id))
20 | else:
21 | runners = gpu_runners
22 | print(f'{ident}: starting process on GPU {device_id}, docking {len(smiles)} ligands.')
23 |
24 | try:
25 | # Run processing on GPU/CPU
26 | docking_kwargs['smiles'] = smiles
27 | scores = runners[device_id].dock(**docking_kwargs)
28 |
29 | print('{}: finished'.format(ident))
30 | except Exception as e:
31 | print(e)
32 | runners[device_id].remove_docker_container()
33 | # KeyboardsInterrupt is raised when the process is terminated by the user
34 | except KeyboardInterrupt:
35 | print('Process terminated by the user.')
36 | runners[device_id].remove_docker_container()
37 | finally:
38 | queue.put(device_id)
39 |
40 |
41 | def parallel_dock(target_pdb_path, smiles=[], ligand_pdbqt_paths=[], output_subfolder='',
42 | box_center=(0,0,0), box_size=(20,20,20), search_depth=3,
43 | threads=256, threads_per_call=256, clean=True, verbose=True,
44 | visualize_in_pymol=False, write_log=True,
45 | gpu_ids=[0,1,2,3], workers_per_gpu=1,
46 | num_cpu_workers=0, threads_per_cpu_worker=1, exhaustiveness=8):
47 | """
48 | Dock a list of SMILES using multiple GPUs or CPUs (using Autodock Vina).
49 |
50 | Arguments:
51 | target_pdb_path (str) : path to the target PDB file
52 | smiles (list) : list of SMILES
53 | ligand_pdbqt_paths (list) : list of paths to ligand PDBQT files (alternative to SMILES)
54 | output_subfolder (str) : path to the output folder
55 | active_site_coords (tuple) : coordinates of the active site (x,y,z)
56 | bbox_size (tuple) : size of the bounding box (x,y,z)
57 | clean (bool) : clean the output folder (remove ligand .pdbqt files)
58 | verbose (bool) : print details in the console
59 | visualize_in_pymol (bool) : visualize the results in PyMOL
60 | write_log (bool) : write the log file
61 |
62 | # GPU arguments
63 | gpu_ids (list) : list of GPU ids
64 | workers_per_gpu (int) : number of workers per GPU
65 | search_depth (int) : search depth
66 | threads (int) : number of threads to use (look up Vina-GPU documentation)
67 | threads_per_call (int) : number of threads per single call (look up Vina-GPU documentation)
68 |
69 | # CPU arguments
70 | num_cpus (int) : number of CPU workers
71 | threads_per_cpu_worker (int) : number of threads per CPU worker
72 | exhaustiveness (int) : Vina CPU exhaustiveness
73 |
74 | Returns:
75 | scores (list) : list of scores
76 |
77 | """
78 |
79 | ## Declare global variables to be used in the docking_job function
80 | global docking_kwargs
81 | global queue
82 | global gpu_runners
83 | global cpu_runners
84 | docking_kwargs = locals()
85 | queue = Queue()
86 | gpu_runners = [VinaGPU(devices=[str(gpu_id)]) for gpu_id in gpu_ids]
87 | cpu_runners = [VinaCPU(cpu=threads_per_cpu_worker, device_id=i) for i in range(num_cpu_workers)]
88 |
89 | # initialize the queue with the GPU ids
90 | num_gpus = len(gpu_ids)
91 | num_gpu_workers = workers_per_gpu * num_gpus
92 | for gpu_ids in range(num_gpus):
93 | for _ in range(workers_per_gpu):
94 | queue.put(gpu_ids)
95 |
96 | # initialize the queue with the CPU ids (negative values to distinguish from GPU ids)
97 | for cpu_id in range(num_cpu_workers):
98 | queue.put(-cpu_id - 1)
99 |
100 | ## Split the list of SMILES into parts
101 | n_smiles = len(smiles)
102 | splits = num_gpu_workers
103 | w = (n_smiles // splits) + 1
104 | smiles_splits = [smiles[i*w:(i+1)*w] for i in range(splits)]
105 |
106 | t0 = time.time()
107 | # Start the worker pool
108 | pool = Pool(processes=num_gpu_workers + num_cpu_workers)
109 | for _ in pool.imap_unordered(docking_job, smiles_splits):
110 | pass
111 | pool.close()
112 | pool.join()
113 | print(f'Docking finished. Time elapsed: {time.time() - t0} seconds.')
114 |
115 | ## Read generated scores from the log file
116 | log = read_log(os.path.join('output', output_subfolder, 'log.tsv'))
117 | scores = []
118 | processed_smiles = [entry[0] for entry in log]
119 | for ligand in smiles:
120 | if ligand in processed_smiles:
121 | idx = processed_smiles.index(ligand)
122 | best_score = log[idx][2][0]
123 | scores.append(best_score)
124 | else:
125 | scores.append(100.0)
126 |
127 | return scores
128 |
129 |
130 |
131 |
--------------------------------------------------------------------------------
/examples/DU1_ideal.sdf:
--------------------------------------------------------------------------------
1 | DU1
2 | -OEChem-09232216373D
3 |
4 | 66 69 0 0 0 0 0 0 0999 V2000
5 | 2.3940 -3.4550 -1.2070 O 0 0 0 0 0 0 0 0 0 0 0 0
6 | 3.0650 -2.5580 -0.7350 C 0 0 0 0 0 0 0 0 0 0 0 0
7 | 2.7700 -1.2820 -1.0500 N 0 0 0 0 0 0 0 0 0 0 0 0
8 | 3.5230 -0.2450 -0.5240 C 0 0 0 0 0 0 0 0 0 0 0 0
9 | 4.5780 -0.5470 0.3280 C 0 0 0 0 0 0 0 0 0 0 0 0
10 | 5.1380 0.6610 0.6920 N 0 0 0 0 0 0 0 0 0 0 0 0
11 | 4.4310 1.6260 0.0720 C 0 0 0 0 0 0 0 0 0 0 0 0
12 | 4.6970 3.1050 0.1870 C 0 0 0 0 0 0 0 0 0 0 0 0
13 | 5.7720 3.5100 -0.8240 C 0 0 0 0 0 0 0 0 0 0 0 0
14 | 6.0410 5.0120 -0.7080 C 0 0 0 0 0 0 0 0 0 0 0 0
15 | 6.5240 5.3350 0.7080 C 0 0 0 0 0 0 0 0 0 0 0 0
16 | 5.4490 4.9310 1.7180 C 0 0 0 0 0 0 0 0 0 0 0 0
17 | 5.1790 3.4290 1.6020 C 0 0 0 0 0 0 0 0 0 0 0 0
18 | 3.4790 1.0850 -0.6440 N 0 0 0 0 0 0 0 0 0 0 0 0
19 | 4.8520 -1.8980 0.6320 C 0 0 0 0 0 0 0 0 0 0 0 0
20 | 5.7680 -2.1880 1.3800 O 0 0 0 0 0 0 0 0 0 0 0 0
21 | 4.0800 -2.8640 0.0920 N 0 0 0 0 0 0 0 0 0 0 0 0
22 | 4.3580 -4.2680 0.4030 C 0 0 0 0 0 0 0 0 0 0 0 0
23 | 3.5670 -4.6810 1.6460 C 0 0 0 0 0 0 0 0 0 0 0 0
24 | 3.8570 -6.1480 1.9710 C 0 0 0 0 0 0 0 0 0 0 0 0
25 | 1.6530 -0.9910 -1.9520 C 0 0 0 0 0 0 0 0 0 0 0 0
26 | 0.3710 -0.8170 -1.1350 C 0 0 0 0 0 0 0 0 0 0 0 0
27 | -0.7960 -0.5120 -2.0760 C 0 0 0 0 0 0 0 0 0 0 0 0
28 | -2.0240 -0.3460 -1.2930 N 0 0 0 0 0 0 0 0 0 0 0 0
29 | -3.1870 -0.0700 -1.9160 C 0 0 0 0 0 0 0 0 0 0 0 0
30 | -3.2180 0.0410 -3.1260 O 0 0 0 0 0 0 0 0 0 0 0 0
31 | -4.4260 0.0990 -1.1260 C 0 0 0 0 0 0 0 0 0 0 0 0
32 | -4.3920 -0.0220 0.2640 C 0 0 0 0 0 0 0 0 0 0 0 0
33 | -5.5520 0.1370 0.9950 C 0 0 0 0 0 0 0 0 0 0 0 0
34 | -6.7460 0.4140 0.3530 C 0 0 0 0 0 0 0 0 0 0 0 0
35 | -8.2220 0.6150 1.2940 S 0 0 0 0 0 0 0 0 0 0 0 0
36 | -8.2160 -0.4140 2.2730 O 0 0 0 0 0 0 0 0 0 0 0 0
37 | -8.3060 1.9960 1.6170 O 0 0 0 0 0 0 0 0 0 0 0 0
38 | -6.7850 0.5350 -1.0250 C 0 0 0 0 0 0 0 0 0 0 0 0
39 | -5.6320 0.3840 -1.7670 C 0 0 0 0 0 0 0 0 0 0 0 0
40 | 5.8970 0.7910 1.2830 H 0 0 0 0 0 0 0 0 0 0 0 0
41 | 3.7790 3.6560 -0.0190 H 0 0 0 0 0 0 0 0 0 0 0 0
42 | 6.6900 2.9590 -0.6180 H 0 0 0 0 0 0 0 0 0 0 0 0
43 | 5.4280 3.2790 -1.8320 H 0 0 0 0 0 0 0 0 0 0 0 0
44 | 6.8070 5.3000 -1.4280 H 0 0 0 0 0 0 0 0 0 0 0 0
45 | 5.1230 5.5620 -0.9140 H 0 0 0 0 0 0 0 0 0 0 0 0
46 | 7.4420 4.7850 0.9140 H 0 0 0 0 0 0 0 0 0 0 0 0
47 | 6.7150 6.4050 0.7900 H 0 0 0 0 0 0 0 0 0 0 0 0
48 | 5.7920 5.1610 2.7260 H 0 0 0 0 0 0 0 0 0 0 0 0
49 | 4.5310 5.4810 1.5120 H 0 0 0 0 0 0 0 0 0 0 0 0
50 | 4.4130 3.1400 2.3220 H 0 0 0 0 0 0 0 0 0 0 0 0
51 | 6.0970 2.8780 1.8080 H 0 0 0 0 0 0 0 0 0 0 0 0
52 | 4.0630 -4.8930 -0.4400 H 0 0 0 0 0 0 0 0 0 0 0 0
53 | 5.4240 -4.3940 0.5930 H 0 0 0 0 0 0 0 0 0 0 0 0
54 | 3.8620 -4.0570 2.4890 H 0 0 0 0 0 0 0 0 0 0 0 0
55 | 2.5010 -4.5560 1.4560 H 0 0 0 0 0 0 0 0 0 0 0 0
56 | 3.2940 -6.4420 2.8560 H 0 0 0 0 0 0 0 0 0 0 0 0
57 | 3.5620 -6.7720 1.1280 H 0 0 0 0 0 0 0 0 0 0 0 0
58 | 4.9230 -6.2740 2.1600 H 0 0 0 0 0 0 0 0 0 0 0 0
59 | 1.8600 -0.0740 -2.5030 H 0 0 0 0 0 0 0 0 0 0 0 0
60 | 1.5270 -1.8160 -2.6530 H 0 0 0 0 0 0 0 0 0 0 0 0
61 | 0.1640 -1.7340 -0.5830 H 0 0 0 0 0 0 0 0 0 0 0 0
62 | 0.4970 0.0080 -0.4330 H 0 0 0 0 0 0 0 0 0 0 0 0
63 | -0.5890 0.4050 -2.6270 H 0 0 0 0 0 0 0 0 0 0 0 0
64 | -0.9220 -1.3370 -2.7770 H 0 0 0 0 0 0 0 0 0 0 0 0
65 | -1.9990 -0.4340 -0.3280 H 0 0 0 0 0 0 0 0 0 0 0 0
66 | -3.4610 -0.2390 0.7670 H 0 0 0 0 0 0 0 0 0 0 0 0
67 | -5.5280 0.0440 2.0710 H 0 0 0 0 0 0 0 0 0 0 0 0
68 | -7.7200 0.7520 -1.5200 H 0 0 0 0 0 0 0 0 0 0 0 0
69 | -5.6630 0.4830 -2.8420 H 0 0 0 0 0 0 0 0 0 0 0 0
70 | -9.4590 0.3020 0.3120 F 0 0 0 0 0 0 0 0 0 0 0 0
71 | 15 16 2 0 0 0 0
72 | 19 20 1 0 0 0 0
73 | 18 19 1 0 0 0 0
74 | 17 18 1 0 0 0 0
75 | 15 17 1 0 0 0 0
76 | 5 15 1 0 0 0 0
77 | 2 17 1 0 0 0 0
78 | 12 13 1 0 0 0 0
79 | 8 13 1 0 0 0 0
80 | 11 12 1 0 0 0 0
81 | 5 6 1 0 0 0 0
82 | 6 7 1 0 0 0 0
83 | 4 5 2 0 0 0 0
84 | 1 2 2 0 0 0 0
85 | 2 3 1 0 0 0 0
86 | 7 8 1 0 0 0 0
87 | 7 14 2 0 0 0 0
88 | 3 4 1 0 0 0 0
89 | 4 14 1 0 0 0 0
90 | 8 9 1 0 0 0 0
91 | 3 21 1 0 0 0 0
92 | 10 11 1 0 0 0 0
93 | 9 10 1 0 0 0 0
94 | 21 22 1 0 0 0 0
95 | 22 23 1 0 0 0 0
96 | 23 24 1 0 0 0 0
97 | 24 25 1 0 0 0 0
98 | 25 26 2 0 0 0 0
99 | 25 27 1 0 0 0 0
100 | 27 28 2 0 0 0 0
101 | 28 29 1 0 0 0 0
102 | 27 35 1 0 0 0 0
103 | 29 30 2 0 0 0 0
104 | 34 35 2 0 0 0 0
105 | 30 34 1 0 0 0 0
106 | 30 31 1 0 0 0 0
107 | 31 32 2 0 0 0 0
108 | 31 33 2 0 0 0 0
109 | 6 36 1 0 0 0 0
110 | 8 37 1 0 0 0 0
111 | 9 38 1 0 0 0 0
112 | 9 39 1 0 0 0 0
113 | 10 40 1 0 0 0 0
114 | 10 41 1 0 0 0 0
115 | 11 42 1 0 0 0 0
116 | 11 43 1 0 0 0 0
117 | 12 44 1 0 0 0 0
118 | 12 45 1 0 0 0 0
119 | 13 46 1 0 0 0 0
120 | 13 47 1 0 0 0 0
121 | 18 48 1 0 0 0 0
122 | 18 49 1 0 0 0 0
123 | 19 50 1 0 0 0 0
124 | 19 51 1 0 0 0 0
125 | 20 52 1 0 0 0 0
126 | 20 53 1 0 0 0 0
127 | 20 54 1 0 0 0 0
128 | 21 55 1 0 0 0 0
129 | 21 56 1 0 0 0 0
130 | 22 57 1 0 0 0 0
131 | 22 58 1 0 0 0 0
132 | 23 59 1 0 0 0 0
133 | 23 60 1 0 0 0 0
134 | 24 61 1 0 0 0 0
135 | 28 62 1 0 0 0 0
136 | 29 63 1 0 0 0 0
137 | 34 64 1 0 0 0 0
138 | 35 65 1 0 0 0 0
139 | 31 66 1 0 0 0 0
140 | M END
141 | >
142 | CCCn1c(=O)c2c(nc([nH]2)C3CCCCC3)n(c1=O)CCCNC(=O)c4ccc(cc4)S(=O)(=O)F
143 |
144 | >
145 | InChI=1S/C24H30FN5O5S/c1-2-14-30-23(32)19-21(28-20(27-19)16-7-4-3-5-8-16)29(24(30)33)15-6-13-26-22(31)17-9-11-18(12-10-17)36(25,34)35/h9-12,16H,2-8,13-15H2,1H3,(H,26,31)(H,27,28)
146 |
147 | >
148 | KAJVJPLKXGLLDA-UHFFFAOYSA-N
149 |
150 | >
151 | C24H30FN5O5S
152 |
153 | $$$$
154 |
--------------------------------------------------------------------------------
/vinagpu/utils.py:
--------------------------------------------------------------------------------
1 | from rdkit import Chem
2 | from rdkit.Chem.MolStandardize import rdMolStandardize
3 | import numpy as np
4 | import zlib
5 | import re
6 | import subprocess as sp
7 | import os
8 | from collections import OrderedDict
9 |
10 | def run_executable(cmd, shell=True, **kwargs):
11 | """ Run executable command and return output from stdout and stderr """
12 | proc = sp.Popen(cmd, stdout=sp.PIPE, stderr=sp.PIPE, shell=shell, **kwargs)
13 | stdout, stderr = proc.communicate()
14 | return (stdout, stderr)
15 |
16 |
17 | def process_stdout(stdout):
18 | """ Processes the stdout of Vina, returns the affinity of each docking orientation. """
19 | affinities, buffer = [], []
20 | return_dict = OrderedDict()
21 | is_int = re.compile(r'^\s*\d+\s*$')
22 | for line in stdout.splitlines():
23 |
24 | if bool(is_int.match(line.decode('utf-8')[:4])):
25 | orientation_id, affinity, dist1, dist2 = line.split()
26 | buffer += [float(affinity)]
27 |
28 | if line.startswith(b'Writing'):
29 | ligand_id = line.split()[-2].decode('utf-8').split('/')[-1]
30 | affinities += [buffer]
31 | return_dict[ligand_id] = buffer
32 | buffer = []
33 |
34 | return affinities, return_dict
35 |
36 |
37 | def partition_output(output_text):
38 | """
39 | Splits the docking output text into individual ligand result chunks.
40 |
41 | Parameters:
42 | output_text (str): The raw output text from the docking software.
43 |
44 | Returns:
45 | list of str: Each element is a chunk of text for one ligand.
46 | """
47 | ## Change from bytes to string
48 | output_text = output_text.decode('utf-8')
49 |
50 | # Split the output based on "Refining ligand" which indicates the start of a new ligand chunk
51 | ligand_chunks = re.split(r"\nRefining ligand", output_text)
52 |
53 | # The first chunk is often empty or irrelevant, so we remove it
54 | if not ligand_chunks[0].strip():
55 | ligand_chunks.pop(0)
56 |
57 | # Prepend the "Refining ligand" to each chunk for consistency
58 | ligand_chunks = ["Refining ligand" + chunk for chunk in ligand_chunks]
59 |
60 | return ligand_chunks
61 |
62 | def extract_energies_and_ids(ligand_chunks):
63 | """
64 | Extracts ligand IDs and free energy values from each ligand chunk.
65 |
66 | Parameters:
67 | ligand_chunks (list of str): Each element is a chunk of text for one ligand.
68 |
69 | Returns:
70 | list of dict: Each dictionary contains the ligand ID and a list of free energy values.
71 | """
72 | results = []
73 |
74 | for chunk in ligand_chunks:
75 | # Extract ligand ID (using regex to capture the filename part after './test_out/')
76 | ligand_id_match = re.search(r"Refining ligand \./test_out/([^ ]+)", chunk)
77 | if ligand_id_match:
78 | ligand_id = ligand_id_match.group(1)
79 | else:
80 | continue # Skip if no ID is found (unexpected case)
81 |
82 | # Find all affinity values (free energies in kcal/mol) in the chunk
83 | affinities = re.findall(r"^\s*\d+\s+(-?\d+\.\d+)", chunk, re.MULTILINE)
84 | affinities = [float(affinity) for affinity in affinities]
85 |
86 | # Store results in a dictionary format
87 | results.append({
88 | "ligand_id": ligand_id,
89 | "affinities": affinities
90 | })
91 |
92 | return results
93 |
94 |
95 | def standardize_mol(mol):
96 | """
97 | Standardizes SMILES and removes fragments
98 | Arguments:
99 | mols (lst) : list of rdkit-molecules
100 | Returns:
101 | smiles (set) : set of SMILES
102 | """
103 |
104 | charger = rdMolStandardize.Uncharger()
105 | chooser = rdMolStandardize.LargestFragmentChooser()
106 | disconnector = rdMolStandardize.MetalDisconnector()
107 | normalizer = rdMolStandardize.Normalizer()
108 | carbon = Chem.MolFromSmarts('[#6]')
109 | salts = Chem.MolFromSmarts('[Na,Zn]')
110 | try:
111 | mol = disconnector.Disconnect(mol)
112 | mol = normalizer.normalize(mol)
113 | mol = chooser.choose(mol)
114 | mol = charger.uncharge(mol)
115 | mol = disconnector.Disconnect(mol)
116 | mol = normalizer.normalize(mol)
117 | smileR = Chem.MolToSmiles(mol, 0)
118 | # remove SMILES that do not contain carbon
119 | if len(mol.GetSubstructMatches(carbon)) == 0:
120 | return None
121 | # remove SMILES that still contain salts
122 | if len(mol.GetSubstructMatches(salts)) > 0:
123 | return None
124 | return Chem.CanonSmiles(smileR)
125 | except:
126 | print('Parsing Error:', Chem.MolToSmiles(mol))
127 |
128 | return None
129 |
130 |
131 | def check_smiles(smiles, frags=None):
132 | shape = (len(smiles), 1) if frags is None else (len(smiles), 2)
133 | valids = np.zeros(shape)
134 | for j, smile in enumerate(smiles):
135 | # 1. Check if SMILES can be parsed by rdkit
136 | try:
137 | mol = Chem.MolFromSmiles(smile)
138 | valids[j, 0] = 0 if mol is None else 1
139 | except:
140 | valids[j, 0] = 0
141 | if frags is not None:
142 | # 2. Check if SMILES contain given fragments
143 | try:
144 | subs = frags[j].split('.')
145 | subs = [Chem.MolFromSmiles(sub) for sub in subs]
146 | valids[j, 1] = np.all([mol.HasSubstructMatch(sub) for sub in subs])
147 | except:
148 | valids[j, 1] = 0
149 | return valids
150 |
151 |
152 | def compress_string(string):
153 | """
154 | Compresses a string
155 | Arguments:
156 |
157 | string (str) : string to compress
158 | Returns:
159 | compressed (str) : compressed string
160 | """
161 | return zlib.compress(string.encode('utf-8')).hex()
162 |
163 |
164 | def decompress_string(compressed):
165 | """
166 | Decompresses a compressed string
167 | Arguments:
168 | compressed (str) : compressed string
169 | Returns:
170 | string (str) : decompressed string
171 | """
172 | return zlib.decompress(bytes.fromhex(compressed)).decode('utf-8')
173 |
174 |
175 | def write_to_log(log_path, smiles, target, scores, pdbqt_path=None, **kwargs):
176 | """
177 | Writes a log file
178 | Arguments:
179 | log_path (str) : path to log file
180 | smiles (str) : SMILES of ligand
181 | target (str) : target name
182 | scores (list) : list of scores
183 | pdbqt_path (str) : path to pdbqt file
184 | """
185 | kwargs = {k: str(v) for k, v in kwargs.items()}
186 |
187 | if not os.path.isfile(log_path):
188 | with open(os.path.join(log_path), 'w') as f:
189 | header = '\t'.join(['smiles', 'target', 'scores'] + list(kwargs.keys()) + ['pdbqt'])
190 | f.write(header + '\n')
191 |
192 | if pdbqt_path is not None:
193 | with open(pdbqt_path, 'r') as f:
194 | pdbqt = f.read()
195 | pdbqt = compress_string(pdbqt)
196 | else:
197 | pdbqt = ''
198 |
199 | if not isinstance(scores, list):
200 | scores = [scores]
201 |
202 | z = [str(score) for score in scores]
203 | if len(z) == 1:
204 | scores = z[0]
205 | else:
206 | scores = ';'.join(z)
207 |
208 | with open(log_path, 'a') as f:
209 |
210 | f.write('\t'.join([smiles, target, scores] + list(kwargs.values()) + [pdbqt]) + '\n')
211 |
212 |
213 | def read_log(log_path):
214 | """
215 | Reads a log file
216 | Arguments:
217 | log_path (str) : path to log file
218 | Returns:
219 | log (list) : list of log entries
220 | """
221 | log = []
222 | with open(log_path, 'r') as f:
223 | lines = f.readlines()[1:]
224 | for line in lines:
225 | smiles, target, scores, pdbqt = line.strip().split('\t')
226 | scores = [float(score) for score in scores.split(';')]
227 | pdbqt = decompress_string(pdbqt)
228 | log += [(smiles, target, scores, pdbqt)]
229 | return log
--------------------------------------------------------------------------------
/vinagpu/base.py:
--------------------------------------------------------------------------------
1 | import os
2 | import shutil
3 | import subprocess as sp
4 | from meeko import MoleculePreparation
5 | from rdkit import Chem
6 | from rdkit.Chem import AllChem
7 | import docker
8 | from vinagpu.utils import run_executable
9 |
10 |
11 | class BaseVinaRunner:
12 | """
13 | Class methods for running Vina-GPU docker container
14 | Also contains methods for preparing the ligand and target:
15 | - Ligand preparation via rdkit and meeko
16 | - Target preparation via ADFR Suite and pdb_tools
17 | """
18 | def __init__(self, device, adfr_suite_path=None, out_path=None):
19 | self.device = device
20 | self.device_id = None
21 |
22 | if out_path is None:
23 | path = os.getcwd()
24 | self.out_path = os.path.join(path, 'out')
25 | else:
26 | self.out_path = out_path
27 |
28 | self.adfr_suite_docker_path = '/htd/ADFRsuite-1.0'
29 | self.adfr_suite_path = adfr_suite_path # Local path to ADFR Suite (optional)
30 | self.vina_dir = '/vina-gpu-dockerized/Vina-GPU-2.1/QuickVina2-GPU-2.1'
31 | self.docking_dir = self.vina_dir + '/docking'
32 | self.molecule_preparation = MoleculePreparation(rigid_macrocycles=True)
33 | self.client = docker.from_env()
34 | self.container = None
35 | self.docker_kwargs = dict(
36 | image='vina',
37 | volumes = [f'{self.out_path}:{self.docking_dir}'])
38 |
39 |
40 | def start_docker_container(self):
41 | """
42 | Start Vina-GPU docker container (runs until it is killed)
43 | Returns:
44 | docker container object
45 | """
46 |
47 | container = self.client.containers.run(
48 | command='sleep infinity', # Keeps the container running until it is killed
49 | detach=True, # Run container in background
50 | **self.docker_kwargs)
51 |
52 | return container
53 |
54 |
55 | def remove_docker_container(self):
56 | """
57 | Stop Vina-GPU docker container
58 | """
59 | self.container.remove(force=True)
60 | self.container = None
61 |
62 |
63 | @staticmethod
64 | def dock(self, target_pdb_path, smiles, out_path=None):
65 | """
66 | Dock the ligand to the target, return the docking scores
67 |
68 | Arguments:
69 | target_pdb_path (str) : path to the target .pdb file
70 | smiles (list) : list of smiles strings
71 | out_path (str) : path to save the .pdbqt file (default: ./drugex/utils/docking/output)
72 | Returns:
73 | list of docking scores
74 | """
75 | scores = [0]
76 | return scores
77 |
78 |
79 | def prepare_ligand(self, smiles, out_path=None):
80 | """
81 | Prepare ligand for docking, return ligand .pdbqt file path
82 |
83 | Arguments:
84 | smiles (str) : smiles string
85 | out_path (str) : path to save the .pdbqt file (default: ./drugex/utils/docking/output)
86 | Returns:
87 | path to the ligand .pdbqt file
88 | """
89 | try:
90 | # Ligand preparation via rdkit and meeko
91 | mol = Chem.MolFromSmiles(smiles) # type: ignore
92 | protonated_ligand = Chem.AddHs(mol) # type: ignore
93 | AllChem.EmbedMolecule(protonated_ligand) # type: ignore
94 | self.molecule_preparation.prepare(protonated_ligand)
95 |
96 | # Write to .pdbqt file required by Vina
97 | if out_path is None:
98 | out_path = self.out_path
99 | self.molecule_preparation.write_pdbqt_file(out_path)
100 | except Exception as e:
101 | print(f'Error while preparing ligand: {e}')
102 | out_path = None
103 | return out_path
104 |
105 |
106 | def prepare_target(self, pdb_path, output_path=None, chain='A', use_docker=True):
107 | """
108 | TODO:
109 | 1. Move this to the Protein class (maybe?)
110 | 2. Would require a DockerContainer class to be created (to isolate Docker-related methods)
111 |
112 | To be used in the dock method if the target is not already prepared
113 |
114 | Prepare target for docking, return target pdbqt path
115 | Arguments:
116 | pdb_path (str) : path to target .pdb file
117 | out_path (str) : path to save the .pdbqt file
118 | chain (str) : chain to use for docking (if target is a multi-chain protein)
119 | use_docker (bool): use docker container to prepare the target
120 | Returns:
121 | path to the processed target .pdbqt file
122 | """
123 |
124 | ## Output filenames
125 |
126 | extension = pdb_path.split('.')[-1]
127 | assert os.path.isfile(pdb_path), f'Invalid file path: {pdb_path}'
128 | assert extension in ['pdb', 'pdbqt'], f'Invalid file type: {extension}'
129 |
130 | if pdb_path.endswith('.pdbqt'): # If target is already in .pdbqt format, just copy it to the results_path
131 | target_pdbqt_path = os.path.join(output_path, os.path.basename(pdb_path))
132 | if not os.path.exists(target_pdbqt_path):
133 | shutil.copyfile(pdb_path, target_pdbqt_path)
134 | return target_pdbqt_path
135 |
136 | # Prepare target (if target is a .pdb file, convert to .pdbqt)
137 | target_pdbqt_path = os.path.join(output_path, os.path.basename(pdb_path).replace('.pdb', '.pdbqt'))
138 | if not os.path.isfile(target_pdbqt_path):
139 | if output_path is None:
140 | output_path = self.out_path
141 | basename = os.path.basename(pdb_path)
142 | out_file_path = os.path.join(output_path, basename) # This is where the target .pdb file will be saved
143 | shutil.copyfile(pdb_path, out_file_path) # Copy target .pdb file to output folder
144 | chain_basename = basename.replace('.pdb', f'_chain_{chain}.pdb') # Name of the .pdb file with only the selected chain
145 | chain_pdb_path = os.path.join(output_path, chain_basename) # Full path to the .pdb file with only the selected chain
146 | pdbqt_basename = basename.replace('.pdb', '.pdbqt') # Name of the .pdbqt file
147 | target_pdbqt_path = os.path.join(output_path, pdbqt_basename) # Full path to the .pdbqt file
148 |
149 | print(f'Preparing {basename} for docking: selecting chain [{chain}] and creating {target_pdbqt_path} file...')
150 |
151 | if not use_docker: # Processing locally using ADFR Suite and pdb_tools
152 | cmd = f'pdb_selchain -{chain} {pdb_path} | pdb_delhetatm | \
153 | pdb_tidy > {chain_pdb_path}'
154 | run_executable(cmd, shell=True)
155 |
156 | adfr_binary = os.path.join(self.adfr_suite_path, 'bin', 'prepare_receptor')
157 | cmd = f'{adfr_binary} -r {chain_pdb_path} \
158 | -o {target_pdbqt_path} -A checkhydrogens'
159 | run_executable(cmd)
160 |
161 | else: # Processing within the docker container
162 |
163 | # Select a single chain in case the target is a multimer
164 | if self.container is None:
165 | self.container = self.start_docker_container()
166 | try:
167 | workdir = self.docking_dir + '/' + os.path.basename(output_path)
168 | print(workdir)
169 | cmd = f"bash -c 'pdb_selchain -{chain} {basename} | pdb_delhetatm | \
170 | pdb_tidy > {chain_basename}'"
171 | self.container.exec_run(
172 | cmd=cmd,
173 | workdir=workdir,
174 | demux=True)
175 |
176 | ## Prepare the target for docking using ADFR Suite 'prepare_receptor' binary
177 | adfr_binary = os.path.join(self.adfr_suite_path, 'bin', 'prepare_receptor')
178 | cmd = f'{adfr_binary} -r {chain_basename} -o {pdbqt_basename} -A checkhydrogens'
179 | self.container.exec_run(
180 | cmd=cmd,
181 | workdir=workdir,
182 | demux=True)
183 | except Exception as e:
184 | print(f'Error while preparing target: {e}')
185 | except KeyboardInterrupt:
186 | print('KeyboardInterrupt')
187 | finally:
188 | self.remove_docker_container()
189 |
190 | return target_pdbqt_path
191 |
--------------------------------------------------------------------------------
/vinagpu/cpu.py:
--------------------------------------------------------------------------------
1 | # Import necessary modules for the class
2 | import os
3 | import shutil
4 | import time
5 | import datetime
6 | import pandas as pd
7 |
8 | import rdkit.Chem.GraphDescriptors
9 | from vinagpu.base import BaseVinaRunner
10 |
11 | from vina import Vina
12 |
13 | from dimorphite_dl import DimorphiteDL
14 |
15 |
16 | class VinaCPU(BaseVinaRunner):
17 | """
18 | Class for running docking simulations with CPU.
19 | The ligands will be prepared but the receptor should already be prepared. It also predicts the protomers
20 | and return the one with the best affinity.
21 |
22 | Methods:
23 | get_protomers:
24 | Finds the protomers (different protonation states) of a molecule.
25 | dock:
26 | Docks the prepared ligands using AutoDock Vina.
27 | prepare_ligand:
28 | Prepares the protomers for docking
29 | """
30 |
31 | def __init__(self, box_center=[0, 0, 0],
32 | box_size=[0, 0, 0], exhaustiveness=8, n_poses=9, cpu=1, seed=0,
33 | min_rmsd=1.0, docking_output_dir='docking', device_id=None,
34 | mol_prepare_dir=None):
35 |
36 | super(VinaCPU, self).__init__(device='cpu')
37 |
38 | self.counter = 0
39 | self.device_id = device_id
40 | self.box_center = box_center
41 | self.box_size = box_size
42 | self.exhaustiveness = exhaustiveness
43 | self.n_poses = n_poses
44 | self.min_rmsd = min_rmsd
45 |
46 | self.v = Vina(sf_name='vina', seed=seed, cpu=cpu, verbosity=0)
47 | self.mol_prepare_dir = mol_prepare_dir
48 |
49 | """
50 | Initialize the Docking class.
51 | Parameters
52 | -----------
53 | receptor_pdbqt (str): Path to the receptor PDBQT file.
54 |
55 | box_center(list of floats):
56 | Coordinates of the center of the search space.
57 | box_size (list of floats):
58 | Dimensions of the search space.
59 | exhaustiveness (int):
60 | Exhaustiveness of the search, by default 8.
61 | n_poses (int):
62 | Maximum number of binding poses to output, by default 9.
63 | cpu (int):
64 | Number of CPUs to use, by default 1.
65 | seed (int):
66 | Seed for the random number generator, by default 0.
67 | min_rmsd (float):
68 | Minimum RMSD for pose clustering, by default 1.0.
69 | docking_output_dir(str):
70 | Output directory for docking results, by default 'docking'.
71 | mol_prepare_dir(str):
72 | Directory for molecule preparation, by default None.
73 | """
74 |
75 | def get_protomers(self, smiles, ph_range=(6, 7), max_variants=128, pka_precision=0.5):
76 | """
77 | Finds the protomers , which are different protonation states of the molecule
78 | Args:
79 | smiles(list): A list of SMILES strings.
80 | ph_range(tuple, optional): The pH range for protomer generation. Defaults to (6, 7).
81 | max_variants(int, optional): The maximum number of protomers to generate for each SMILES string. Defaults to 128.
82 | pka_precision(float, optional): The precision for pKa calculations. Defaults to 0.5.
83 | Returns:
84 | list: A list of protomers for each SMILES string.
85 | """
86 | dimorphite_dl = DimorphiteDL(
87 | min_ph=ph_range[0],
88 | max_ph=ph_range[1],
89 | max_variants=max_variants,
90 | label_states=False,
91 | pka_precision=pka_precision
92 | )
93 | protomers_list = []
94 | for smile in smiles:
95 | protomers = dimorphite_dl.protonate(smile)
96 | protomers_list.append(protomers)
97 | return protomers_list
98 |
99 |
100 | def dock(self, target_pdb_path, smiles=[], ligand_pdbqt_paths=[], output_subfolder='',
101 | box_center=(0,0,0), box_size=(20,20,20), exhaustiveness=5, **kwargs):
102 | """
103 | Dock a list of SMILES strings to the target protein using AutoDock Vina
104 |
105 | Args:
106 | smiles (list): A list of SMILES strings to be docked.
107 |
108 | Returns:
109 | list: A list of the best affinities (lowest energy) for each SMILES string.
110 |
111 | """
112 |
113 | results_path = os.path.join(self.out_path, output_subfolder)
114 | os.makedirs(results_path, exist_ok=True)
115 |
116 | protomers_list = self.get_protomers(smiles)
117 | scores = []
118 |
119 | # Prepare target
120 | if target_pdb_path.endswith('.pdb'): # If target is a .pdb file, convert to .pdbqt
121 | target_pdbqt_path = os.path.join(results_path, os.path.basename(target_pdb_path).replace('.pdb', '.pdbqt'))
122 | if not os.path.exists(target_pdbqt_path):
123 | target_pdbqt_path = self.prepare_target(target_pdb_path, out_path=results_path)
124 | else: # If target is already in .pdbqt format, just copy it to results_path
125 | target_pdbqt_path = os.path.join(results_path, os.path.basename(target_pdb_path))
126 | shutil.copyfile(target_pdb_path, target_pdbqt_path)
127 |
128 | self.v.set_receptor(target_pdbqt_path)
129 | self.v.compute_vina_maps(center=box_center, box_size=box_size)
130 |
131 | print('Docking ligands...')
132 | timing, dates = [], []
133 | for i, protomers in enumerate(protomers_list):
134 | t0 = time.time()
135 | best_affinity = None
136 |
137 |
138 | mol_id = f"docking_id_{self.counter}_ligand_{i}"
139 | out_prefix = f"{self.out_path}/pose_{mol_id}.best.out"
140 | for protomer in protomers:
141 | pdbqt_string = self.prepare_ligand(protomer)
142 | self.v.set_ligand_from_string(pdbqt_string)
143 | self.v.dock(exhaustiveness=exhaustiveness, n_poses=self.n_poses,
144 | min_rmsd=self.min_rmsd, )
145 | energies = self.v.energies(n_poses=self.n_poses)
146 | # calculates the energy of the first pose
147 | best_energy = energies[0][0]
148 | if not best_affinity or best_affinity > best_energy:
149 | # if best_affinity is greater than best_energy then the value of best_affinity is also best_energy
150 | best_affinity = best_energy
151 |
152 | self.v.write_poses(f"{out_prefix}.pdbqt",
153 | n_poses=self.n_poses, overwrite=True)
154 | pd.DataFrame(energies, columns=["Total", "Inter", "Intra", "Torsions", "Intra_best_pose"]).to_csv(
155 | f"{out_prefix}.tsv", sep="\t",
156 | header=True, index=False)
157 | with open(f"{out_prefix}.smi", "w", encoding="utf-8") as smi:
158 | smi.write(protomer)
159 | scores.append(best_affinity)
160 |
161 | dates += [datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")]
162 | timing += [round(time.time() - t0, 2)]
163 | print(f'+ {self.device}:{self.device_id} | [{dates[-1]} | t={timing[-1]}s] Docked ligand {i+1}/{len(protomers_list)} | Affinity values: {scores[i]}...')
164 | # returns the best_affinity which is the lowest energy of all the poses
165 | return scores
166 |
167 |
168 | def prepare_ligand(self, protomer):
169 | """
170 | Prepare the ligand for docking by converting its SMILES string representation
171 | to a molecule, adding hydrogen atoms, embedding it in 3D space, and writing
172 | its PDBQT string representation.
173 |
174 | Arguments:
175 | protomer(str): SMILES string representation of the protomer.
176 | Returns:
177 | str: PDBQT string representation of the prepared ligand.
178 |
179 | """
180 |
181 | lig = rdkit.Chem.MolFromSmiles(protomer)
182 | protonated_lig = rdkit.Chem.AddHs(lig)
183 | rdkit.Chem.AllChem.EmbedMolecule(protonated_lig)
184 | self.molecule_preparation.prepare(protonated_lig)
185 |
186 | return self.molecule_preparation.write_pdbqt_string()
187 |
188 |
189 |
190 | if __name__ == "__main__":
191 | # define the docking parameters
192 |
193 | receptor_pdbqt = "examples/P21918.pdb"
194 | box_center = [0, 0, 0]
195 | box_size = [10, 10, 10]
196 | exhaustiveness = 8
197 | n_poses = 9
198 | cpu = 1
199 | seed = 0
200 | min_rmsd = 1.0
201 | docking_output_dir = "docking"
202 |
203 | smiles = []
204 | targets = ['P21918', 'C3SWJ7', 'O14757']
205 | for target in targets[2:]:
206 | smiles_path = f'/home/andrius/datasets/data_smiles/{target}/smiles.txt'
207 | with open(smiles_path, 'r') as f:
208 | smiles += f.read().splitlines()
209 |
210 | # initialize the docking class
211 | docking = VinaCPU(box_center=box_center,
212 | box_size=box_size, exhaustiveness=exhaustiveness,
213 | n_poses=n_poses, cpu=cpu, seed=seed, min_rmsd=min_rmsd)
214 |
215 | docking.dock(
216 | target_pdb_path=receptor_pdbqt,
217 | smiles=smiles,
218 | output_subfolder=docking_output_dir,
219 | active_site_coords=box_center,
220 | bbox_size=box_size,
221 | exhaustiveness=exhaustiveness
222 | )
--------------------------------------------------------------------------------
/vinagpu/gpu.py:
--------------------------------------------------------------------------------
1 | import os, time, datetime
2 | import docker
3 | from vinagpu.base import BaseVinaRunner
4 | from vinagpu.utils import process_stdout, compress_string, decompress_string, extract_energies_and_ids
5 | import numpy as np
6 |
7 |
8 | class VinaGPU(BaseVinaRunner):
9 | """
10 | Class methods for running Vina-GPU docker container
11 | Also contains methods for preparing the ligand and target:
12 | - Ligand preparation via rdkit and meeko
13 | - Target preparation via ADFR Suite and pdb_tools
14 | """
15 | def __init__(self, docker_image_name='vina-cl', devices=['0'], visualize=False):
16 | super(VinaGPU, self).__init__(device='gpu')
17 |
18 |
19 | self.visualize = visualize
20 | self.device_id = devices
21 |
22 | ## Configuration for running the Vina-GPU docker container
23 | # (requires nvidia-docker runtime)
24 | self.container = None
25 | dev_req = docker.types.DeviceRequest # type: ignore
26 | self.docker_kwargs = dict(
27 | image=docker_image_name,
28 | # runtime='nvidia', # Use nvidia-docker runtime
29 | volumes = [f'{self.out_path}:{self.docking_dir}'],
30 | device_requests=[dev_req(device_ids=devices, capabilities=[['gpu']])])
31 |
32 |
33 | def dock(self, target_pdb_path, smiles=[], ligand_pdbqt_paths=[], ids=None, output_subfolder='',
34 | box_center=(0,0,0), box_size=(20,20,20), search_depth=3,
35 | threads=2048, threads_per_call=256, verbose=True,
36 | visualize_in_pymol=False, write_log=True, metadata={}, **kwargs):
37 | """
38 | Use Vina-GPU docker image to dock ligands (list of SMILES or .pdbqt files) to the target.
39 | Produces a .pdbqt file for each ligand (with multiple docked orientations).
40 |
41 | Arguments:
42 | target_pdb_path (str) : path to target pdb file
43 | smiles: (list(str)) : list of smiles strings
44 | ligand_pdbqt_paths (list(str)) : list of paths to ligand pdbqt files
45 | output_subfolder (str), opt : subfolder to save output files
46 | active_site_coords (tuple(float)), opt : coordinates of the active site of the target (x,y,z)=(0,0,0)
47 | bbox_size (tuple(float)), opt : size of the bounding box around the active site (x,y,z)=(20,20,20)
48 | threads (int), opt : number of threads to use for docking
49 | thread_per_call (int), opt : number of threads to use for each call to Vina
50 | clean (bool), opt : remove ligand .pdbqt files after docking
51 | verbose (bool), opt : print docking progress, scores, etc.
52 | visualize_in_pymol (bool), opt : visualize the docking results in pymol
53 | write_log (bool), opt : write log file with docking results
54 | Returns:
55 | all_scores (list(list((float))) : list of docking scores for each ligand
56 | """
57 |
58 | assert (len(ligand_pdbqt_paths) > 0) or (len(smiles) > 0), \
59 | "Either a list of ligand .pdbqt paths or a list of smiles strings must be provided"
60 |
61 | results_path = os.path.join(self.out_path, output_subfolder)
62 | os.makedirs(results_path, exist_ok=True)
63 | # Create additional subfolders
64 | docked_path = os.path.join(results_path, 'docked')
65 | os.makedirs(docked_path, exist_ok=True)
66 | ligands_path = os.path.join(results_path, 'ligands')
67 | os.makedirs(ligands_path, exist_ok=True)
68 | pdb_path = os.path.join(results_path, 'targets')
69 | os.makedirs(pdb_path, exist_ok=True)
70 |
71 | self.docker_kwargs['volumes'] = [f'{results_path}:{self.docking_dir}']
72 |
73 |
74 | # Prepare target .pdbqt file
75 | target_pdbqt_path = self.prepare_target(target_pdb_path, output_path=pdb_path)
76 |
77 | # Prepare ligand .pdbqt files
78 | print(f'Ligprepping {len(smiles)} ligands...') if verbose else None
79 | for i, mol in enumerate(smiles):
80 | if ids:
81 | uid = ids[i]
82 | ## Pad id with zeros
83 | # uid = str(uid).zfill(9)
84 |
85 | ligand_pdbqt_path = os.path.join(ligands_path, f'{uid}.pdbqt')
86 | out_path = self.prepare_ligand(mol, out_path=ligand_pdbqt_path)
87 | if out_path is not None:
88 | ligand_pdbqt_paths.append(ligand_pdbqt_path)
89 | else:
90 | print(f'Error processing ligand {i+1} with SMILES: {mol}')
91 | ligand_pdbqt_paths.append('')
92 |
93 |
94 | basenames = [os.path.basename(p) for p in ligand_pdbqt_paths] # Ligand basenames (format 'ligand_0.pdbqt')
95 | # basenames_docked = [lig.replace('.pdbqt', '_docked.pdbqt') for lig in basenames] # Docked ligand basenames (format 'ligand_0_docked.pdbqt')
96 | ligand_paths_docked = [os.path.join(docked_path, p) for p in basenames]
97 | ## Add '_out' to the ligand paths
98 | ligand_paths_docked = [p.replace('.pdbqt', '_out.pdbqt') for p in ligand_paths_docked]
99 |
100 | ### Start Vina-GPU docker container
101 | self.container = self.start_docker_container()
102 | try:
103 | timing, dates = [], []
104 | all_scores = [[0] for i in range(len(smiles))]
105 | target = os.path.basename(target_pdb_path).strip('.pdbqt')
106 | # for i, ligand_file in enumerate(basenames):
107 | t0 = time.time()
108 |
109 | # if ligand_pdbqt_paths[i] is None:
110 | # continue
111 | print(f'Docking {len(smiles)} ligands...') if verbose else None
112 | docking_args = dict(
113 | receptor = f'docking/targets/{os.path.basename(target_pdbqt_path)}',
114 | ligand_directory = f'docking/ligands/',
115 | output_directory = f'docking/docked/',
116 | center_x = box_center[0],
117 | center_y = box_center[1],
118 | center_z = box_center[2],
119 | size_x = box_size[0],
120 | size_y = box_size[1],
121 | size_z = box_size[2],
122 | thread = threads,
123 | search_depth = search_depth,
124 | opencl_binary_path = '/vina-gpu-dockerized/Vina-GPU-2.1/QuickVina2-GPU-2.1',
125 | )
126 |
127 | cmd = './QuickVina2-GPU-2-1 ' + ' '.join([f'--{k} {v}' for k, v in docking_args.items()])
128 |
129 | try:
130 | _, (stdout, stderr) = self.container.exec_run(
131 | cmd=cmd,
132 | workdir=self.vina_dir,
133 | demux=True)
134 | # print(stdout)
135 | print(stderr)
136 |
137 | scores, score_dict = process_stdout(stdout)
138 | # print(scores)
139 | # print(score_dict)
140 |
141 | ## Re-order scores based on the original ligand order
142 | # for k, v in score_dict.items():
143 | # all_scores[int(k)] = v
144 |
145 | timing += [round(time.time() - t0, 2)]
146 | dates += [datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")]
147 | if verbose:
148 | print(f'- {self.device}:{self.device_id} | [{dates[-1]} | t={timing[-1]}s] Docked ligand {i+1}/{len(basenames)} | Affinity values: {all_scores[i]}...')
149 |
150 | # if write_log:
151 | # log_path = os.path.join(results_path, 'log.tsv')
152 | # write_to_log(log_path, smiles[i], target, all_scores[i], ligand_paths_docked[i], **metadata[i])
153 |
154 | except Exception as d:
155 | print(d)
156 |
157 | except Exception as e:
158 | print(f'Error has occurred while docking ligand {i}: {e, stderr}')
159 | raise e
160 | except KeyboardInterrupt:
161 | print('Docking interrupted by user')
162 | finally:
163 | self.remove_docker_container()
164 |
165 | return score_dict, ligand_paths_docked
166 |
167 | def dock_dataframe(self, dataframe, target_pdb_path, smiles_col='SMILES', output_subfolder='',
168 | active_site_coords=(0,0,0), box_size=(20,20,20), search_depth=9,
169 | threads=1024, threads_per_call=1024, clean=True, verbose=True,
170 | visualize_in_pymol=False, write_log=True, **kwargs):
171 | """
172 | Dock ligands in a pandas dataframe
173 | """
174 | smiles = dataframe[smiles_col].tolist()
175 | ## Ids for each ligand (numeric or based on InChI)
176 | ids = dataframe['id'].tolist() if 'id' in dataframe.columns else range(len(smiles))
177 | metadata = dataframe.to_dict(orient='records') # Metadata for each ligand
178 | # remove SMILES column from metadata
179 | metadata = [{k: v for k, v in d.items() if k != smiles_col} for d in metadata]
180 |
181 | print(f'Docking {len(smiles)} ligands...') if verbose else None
182 |
183 | scores, paths = self.dock(target_pdb_path, smiles=smiles, ids=ids, output_subfolder=output_subfolder, ligand_pdbqt_paths=[],
184 | active_site_coords=active_site_coords, box_size=box_size, search_depth=search_depth,
185 | threads=threads, threads_per_call=threads_per_call, clean=False, verbose=verbose,
186 | visualize_in_pymol=visualize_in_pymol, write_log=write_log, metadata=metadata, **kwargs)
187 |
188 | print(scores)
189 | # Scores is a dictionary with keys as ligand indices and values as lists of docking scores
190 | # Match the scores with the dataframe
191 |
192 | for k, v in scores.items():
193 | cols = [f'dock_score_{i}' for i in range(9)]
194 | dataframe.loc[int(k), cols] = v
195 |
196 | dataframe['ligand_pdbqt'] = paths
197 |
198 | pdbqts = []
199 | for path in paths:
200 | if os.path.exists(path) and os.path.isfile(path):
201 | with open(path, 'r') as f:
202 | pdbqts.append(compress_string(f.read()))
203 | else:
204 | pdbqts.append('')
205 |
206 | dataframe['pdbqt'] = pdbqts
207 | dataframe['target_pdb'] = os.path.basename(target_pdb_path).strip('.pdb')
208 |
209 |
210 | return dataframe
211 |
212 |
213 | if __name__ == "__main__":
214 |
215 | ##### Example usage #####
216 | # import drugex
217 | # from drugex.utils.docking import DockingRunner
218 |
219 | # Docking on A3R receptor
220 | target_path = os.path.join('examples', 'P21918.pdb')
221 | active_site = (54.24, 57.93, 141.72) # Active site coordinates of P0DMS8.pdb
222 | output_subfolder = 'a3r_test' # Output stored at: .drugex/utils/docking/output/a3r_test
223 |
224 | smiles = [
225 | 'COCCN1CC(CF)C2C(=O)N(C)C(=O)C2C1c1ccccc1OC',
226 | 'CCc1ncc2c(n1)-c1ccc(C(O)CC3CCCN3)cc1OC2'
227 | 'CCN1CCN(c2ccc(-c3cc(C(=O)c4cc(Cl)cc(Cl)c4)c(N)s3)cc2)CC1',
228 | 'C=C(C(=O)c1cn(C(C)C)c(-c2ccc3c(c2)OCO3)n1)c1ccc2c(c1)OCO2',
229 | 'CCOC(=O)C1=C(C)NC(C)=C(C(=O)NCc2ccc([N+](=O)[O-])c(Cl)c2)C1c1ccccn1',
230 | 'Cc1nc(-c2nnc(SCC(=O)NCc3ccccc3)n2C)co1',
231 | 'CCCCC(=NNC(=O)CSCc1ccccc1Cl)NCC(=O)NC1CCCC1',
232 | 'Cc1ccc(C(=O)OCC(=O)c2ccc(O)c(F)c2)cn1',
233 | 'CCCCCCCOCC(O)(Cc1ccc(OC)c(OCC(C)(O)C(C)O)c1)C(F)(F)F',
234 | 'CCCSc1ncnc2c1ncn2C1OC(COC(S)=NC(C)C)C(O)C1O',
235 | 'CNC(=O)COc1ccc(CCCC(=O)N2CCN(c3ccccn3)CC2)cc1OC']
236 |
237 | vina_docker = VinaGPU()
238 |
239 | scores = vina_docker.dock(
240 | target_pdb_path=target_path,
241 | smiles=smiles,
242 | output_subfolder=output_subfolder,
243 | active_site_coords=active_site,
244 | verbose=True)
--------------------------------------------------------------------------------
/examples/test.csv:
--------------------------------------------------------------------------------
1 | SMILES,docking_scores,pdbqt,min_docking_score,target_pdb
2 | C#CCC(=O)NC#CC,[0],,0,ccr
3 | C=CCCC(=O)NCCC,[0],,0,ccr
4 | O=CN[C@H]1CC[C@H](O)CC1,[0],,0,ccr
5 | CNC(=O)C(C)(C)NC=O,[0],,0,ccr
6 | Cc1cc(NC(N)=O)ccn1,[0],,0,ccr
7 | CCCNC(=O)c1cocn1,[0],,0,ccr
8 | CNC(=O)CCN(C=O)OC,[0],,0,ccr
9 | CC(C)NS(=O)(=O)C1CC1,[0],,0,ccr
10 | O=CNc1cccc(C(=O)O)n1,[0],,0,ccr
11 | NC(=O)Nc1n[nH]c(C2CC2)n1,[0],,0,ccr
12 | CCCNC(=O)c1cc(C)on1,[0],,0,ccr
13 | C=CCNC(=O)[C@@H]1C[C@@H](F)CN1,[0],,0,ccr
14 | CNC(=O)C1(NC(N)=O)COC1,[0],,0,ccr
15 | CNC(=O)CCNC(=O)[C@H](C)N,[0],,0,ccr
16 | O=C(NCCCl)c1ccco1,[0],,0,ccr
17 | CNC(=O)CONC(=O)[C@H](C)N,[0],,0,ccr
18 | CS(=O)(=O)Nc1nncs1,[0],,0,ccr
19 | C=CCCC(=O)Nc1nc(C)n[nH]1,[0],,0,ccr
20 | C#CCC(=O)N[C@H]1CC[C@H](O)CC1,[0],,0,ccr
21 | CC#CC(=O)N[C@H]1CC[C@H](O)CC1,[0],,0,ccr
22 | CC(C)CCNC(=O)c1cocn1,[0],,0,ccr
23 | O=C(NCCCCO)c1ccco1,[0],,0,ccr
24 | COC[C@H](C)NC(=O)c1cn[nH]c1,[0],,0,ccr
25 | CCCNC(=O)c1cnc(C)s1,[0],,0,ccr
26 | CC(C)CCNC(=O)CCC(C)C,[0],,0,ccr
27 | CCS(=O)(=O)Nc1ccncn1,[0],,0,ccr
28 | CNC(=O)[C@@H](C)NC(=O)[C@@H](C)NC,[0],,0,ccr
29 | O=C(Nc1cc[nH]n1)c2cccnn2,[0],,0,ccr
30 | CNC(=O)C(C)(C)NC(=O)CON,[0],,0,ccr
31 | CC[C@H](N)C(=O)NOCC(=O)NC,[0],,0,ccr
32 | C=CCNC(=O)c1ccc(CC)cc1,[0],,0,ccr
33 | CNC(=O)[C@@H](C)NC(=O)CSC,[0],,0,ccr
34 | CCCNS(=O)(=O)C(F)(F)F,[0],,0,ccr
35 | CCCNS(=O)(=O)C1CCCC1,[0],,0,ccr
36 | O=C(NCc1ncc[nH]1)c2ccno2,[0],,0,ccr
37 | O=C(Nc1ncco1)C2CC32CCC3,[0],,0,ccr
38 | O=C(NCC(F)(F)F)c1cn[nH]c1,[0],,0,ccr
39 | COC[C@H](C)NS(=O)(=O)C1CC1,[0],,0,ccr
40 | O=C(NC1(C(=O)O)CC1)c2cn[nH]c2,[0],,0,ccr
41 | CNC(=O)CN(C)S(=O)(=O)NC,[0],,0,ccr
42 | Cc1cc(NC(=O)CCC(C)C)[nH]n1,[0],,0,ccr
43 | CC(C)CCC(=O)NCc1ncc[nH]1,[0],,0,ccr
44 | CNC(=O)CCNC(=O)c1cn[nH]c1,[0],,0,ccr
45 | C=CCCC(=O)NCCN1CCCC1,[0],,0,ccr
46 | CNC(=O)CONS(=O)(=O)NC,[0],,0,ccr
47 | CNC(=O)C1(NC(=O)C2CNC2)CC1,[0],,0,ccr
48 | O=CNc1nc(Cl)c2[nH]cnc2n1,[0],,0,ccr
49 | CNC(=O)CONC(=O)c1cc[nH]n1,[0],,0,ccr
50 | CNC(=O)C(NC=O)C1CCCCC1,[0],,0,ccr
51 | CNC(=O)CONC(=O)c1nc[nH]n1,[0],,0,ccr
52 | CC#CNC(=O)c1cnc2[nH]ccc2c1,[0],,0,ccr
53 | CNC(=O)[C@@H](C)NC(=O)CCC(C)C,[0],,0,ccr
54 | O=C(NCCCCO)C1CCCNC1,[0],,0,ccr
55 | COC(=O)/C=C/C(=O)NCCCCO,[0],,0,ccr
56 | CC(=O)N[C@@H](C)C(=O)N(C)CC(N)=O,[0],,0,ccr
57 | CC(=O)NCCC(=O)N(C)CC(N)=O,[0],,0,ccr
58 | C=CCNS(=O)(=O)c1ccnn1C,[0],,0,ccr
59 | CNC(=O)C(C)(C)NC(=O)[C@@H](C)NC,[0],,0,ccr
60 | CNC(=O)[C@H](C)NC(=O)[C@@H](N)C(C)C,[0],,0,ccr
61 | O=C(NCc1cccnc1)c2cc[nH]n2,[0],,0,ccr
62 | O=S(=O)(NCCCCO)C(F)F,[0],,0,ccr
63 | C=CC(=O)N[C@@H]1c2ccccc2C[C@H]1O,[0],,0,ccr
64 | CC[C@H](NC(=O)[C@H](N)CO)C(=O)NC,[0],,0,ccr
65 | CNC(=O)CN(C)C(=O)[C@H](N)[C@H](C)O,[0],,0,ccr
66 | CNCC(=O)N(CCC(=O)NC)OC,[0],,0,ccr
67 | C#CCC(=O)Nc1cc(C2CCC2)[nH]n1,[0],,0,ccr
68 | C=CCC(C)(C)C(=O)Nc1ccccc1,[0],,0,ccr
69 | O=C(Nc1ccc[nH]c1=O)c2c[nH]cn2,[0],,0,ccr
70 | CNC(=O)C(O)CNC(=O)C(O)CN,[0],,0,ccr
71 | Nc1ccc(N2CCN(C=O)CC2)cc1,[0],,0,ccr
72 | CNC(=O)CCNS(=O)(=O)C1CC1,[0],,0,ccr
73 | CC(C)NS(=O)(=O)C1CCOCC1,[0],,0,ccr
74 | CNC(=O)[C@H](C)NC(=O)c1cccnn1,[0],,0,ccr
75 | CNC(=O)CCNS(=O)(=O)C(C)C,[0],,0,ccr
76 | Cc1ncc(C(=O)Nc2ncco2)s1,[0],,0,ccr
77 | Cc1n[nH]c(NC(=O)C2CCCNC2)n1,[0],,0,ccr
78 | CC[C@H](NC(=O)c1cn[nH]c1)C(=O)NC,[0],,0,ccr
79 | C=CCCC(=O)NC1(C(=O)NC)CCC1,[0],,0,ccr
80 | CNC(=O)C(O)CNC(=O)c1cn[nH]c1,[0],,0,ccr
81 | C=CCC(C)(C)C(=O)N(C)CC(=O)NC,[0],,0,ccr
82 | C=CCC(C)(C)C(=O)N[C@H](C)C(=O)NC,[0],,0,ccr
83 | COC(=O)/C=C/C(=O)Nc1nncs1,[0],,0,ccr
84 | CNC(=O)CN(C)C(=O)[C@@H]1CCCNC1,[0],,0,ccr
85 | CC(C)(C)NS(=O)(=O)CCCCl,[0],,0,ccr
86 | CNC(=O)[C@@H](NC(=O)C=C(C)C)[C@@H](C)O,[0],,0,ccr
87 | Cc1ncc(C(=O)NCC(C)(C)O)s1,[0],,0,ccr
88 | Cc1ccc(C)c(NC(=O)c2ccco2)c1,[0],,0,ccr
89 | CC[C@H](NC(=O)CN(C)C(C)=O)C(N)=O,[0],,0,ccr
90 | CNC(=O)[C@@H](NC(=O)C1CNC1)[C@@H](C)O,[0],,0,ccr
91 | CC[C@H](NC(=O)[C@@H](N)C(C)C)C(=O)NC,[0],,0,ccr
92 | C=CCNS(=O)(=O)CCC(F)(F)F,[0],,0,ccr
93 | O=C(Nc1n[nH]c(C2CC2)n1)c3ccc[nH]3,[0],,0,ccr
94 | CNC(=O)C(C)(C)NC(=O)[C@@H](N)[C@@H](C)O,[0],,0,ccr
95 | CNC(=O)[C@H](NC(=O)C(O)CN)C(C)C,[0],,0,ccr
96 | CNC(=O)[C@H](C)N(C)C(=O)CCNOC,[0],,0,ccr
97 | CC(C)(C)NC(=O)c1cnc2[nH]ccc2c1,[0],,0,ccr
98 | C=CCCC(=O)Nc1cccc(C#N)c1F,[0],,0,ccr
99 | CC(C)(C)c1cc(NS(C)(=O)=O)no1,[0],,0,ccr
100 | CN(C)S(=O)(=O)NCCc1c[nH]cn1,[0],,0,ccr
101 | C=CCC(C)(C)C(=O)NCc1ccccn1,"[[-4.7, -4.6, -4.6, -4.5, -4.5, -4.5, -4.4, -4.4, -4.4], [-5.1, -5.1, -5.1, -5.1, -5.0, -4.9, -4.9, -4.9, -4.9], [-7.1, -7.0, -7.0, -6.9, -6.9, -6.9, -6.9, -6.9, -6.9], [-7.4, -7.4, -7.3, -7.3, -7.3, -7.3, -7.2, -7.2, -7.2], [-5.6, -5.5, -5.4, -5.4, -5.4, -5.4, -5.3, -5.3, -5.3], [-4.7, -4.6, -4.6, -4.6, -4.6, -4.6, -4.5, -4.5, -4.5], [-6.3, -6.1, -6.0, -6.0, -6.0, -6.0, -6.0, -5.9, -5.9], [-5.4, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0], [-5.9, -5.9, -5.9, -5.9, -5.8, -5.8, -5.8, -5.8, -5.7], [-6.0, -6.0, -5.8, -5.8, -5.8, -5.8, -5.8, -5.7, -5.7], [-7.1, -7.0, -7.0, -7.0, -6.9, -6.9, -6.8, -6.7, -6.7], [-6.9, -6.8, -6.8, -6.7, -6.7, -6.7, -6.7, -6.7, -6.7], [-6.0, -6.0, -5.9, -5.9, -5.8, -5.8, -5.8, -5.7, -5.7], [-7.0, -6.8, -6.8, -6.4, -6.3, -6.3, -6.2, -6.2, -6.2], [-5.9, -5.7, -5.5, -5.5, -5.5, -5.5, -5.4, -5.4, -5.4], [-4.6, -4.5, -4.5, -4.5, -4.5, -4.4, -4.4, -4.4, -4.4], [-5.3, -5.1, -5.1, -5.0, -5.0, -4.9, -4.9, -4.8, -4.8], [-5.5, -5.0, -5.0, -5.0, -5.0, -5.0, -4.9, -4.9, -4.9], [-6.3, -6.2, -6.2, -6.2, -6.2, -6.0, -5.9, -5.9, -5.9], [-6.4, -6.3, -6.2, -6.2, -6.2, -6.2, -6.1, -6.1, -6.1], [-4.6, -4.5, -4.5, -4.4, -4.4, -4.4, -4.3, -4.3, -4.3], [-5.1, -4.9, -4.9, -4.8, -4.8, -4.8, -4.7, -4.7, -4.7], [-7.4, -7.4, -7.2, -7.1, -7.1, -7.1, -7.0, -7.0, -6.7], [-5.9, -5.8, -5.7, -5.7, -5.7, -5.6, -5.6, -5.6, -5.5], [-5.6, -5.5, -5.5, -5.4, -5.4, -5.4, -5.3, -5.3, -5.3], [-4.8, -4.8, -4.8, -4.7, -4.6, -4.6, -4.6, -4.6, -4.5], [-5.1, -5.1, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -4.9], [-6.5, -6.4, -6.4, -6.4, -6.3, -6.3, -6.2, -6.1, -6.1], [-4.6, -4.5, -4.5, -4.5, -4.4, -4.4, -4.4, -4.4, -4.4], [-5.4, -5.0, -5.0, -5.0, -5.0, -4.9, -4.9, -4.9, -4.8], [-6.2, -6.2, -6.1, -6.1, -5.9, -5.9, -5.8, -5.8, -5.7], [-7.4, -7.3, -7.3, -7.3, -7.1, -7.1, -7.1, -7.0, -6.9], [-4.3, -4.3, -4.3, -4.3, -4.3, -4.2, -4.2, -4.2, -4.2], [-5.4, -5.2, -5.2, -5.2, -5.2, -5.1, -5.1, -5.0, -5.0], [-5.5, -5.4, -5.4, -5.4, -5.4, -5.4, -5.3, -5.3, -5.3], [-5.9, -5.9, -5.9, -5.9, -5.9, -5.9, -5.9, -5.9, -5.9], [-7.5, -7.3, -7.1, -7.1, -7.0, -7.0, -7.0, -6.9, -6.9], [-6.6, -6.5, -6.4, -6.4, -6.4, -6.3, -6.3, -6.3, -6.3], [-5.9, -5.8, -5.8, -5.8, -5.8, -5.7, -5.7, -5.7, -5.7], [-4.3, -4.3, -4.2, -4.2, -4.1, -4.1, -4.1, -4.1, -4.1], [-5.6, -5.5, -5.5, -5.4, -5.4, -5.3, -5.2, -5.2, -5.2], [-7.2, -7.2, -7.2, -7.1, -7.1, -7.0, -7.0, -7.0, -6.9], [-5.9, -5.7, -5.6, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5], [-5.2, -5.2, -5.1, -5.0, -5.0, -5.0, -5.0, -5.0, -4.9], [-6.1, -5.9, -5.7, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5], [-5.7, -5.7, -5.7, -5.7, -5.7, -5.7, -5.6, -5.5, -5.5], [-7.1, -7.0, -7.0, -6.9, -6.9, -6.9, -6.9, -6.8, -6.7], [-5.8, -5.8, -5.8, -5.7, -5.7, -5.7, -5.6, -5.6, -5.6], [-6.8, -6.6, -6.6, -6.6, -6.6, -6.6, -6.5, -6.5, -6.5], [-5.5, -5.4, -5.4, -5.4, -5.3, -5.3, -5.3, -5.3, -5.3], [-5.7, -5.6, -5.5, -5.4, -5.4, -5.4, -5.3, -5.3, -5.3], [-5.3, -5.3, -5.2, -5.2, -5.2, -5.2, -5.2, -5.2, -5.2], [-5.3, -5.2, -5.1, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0], [-6.3, -6.2, -6.1, -6.1, -6.1, -6.0, -6.0, -6.0, -6.0], [-5.0, -5.0, -4.9, -4.9, -4.8, -4.8, -4.7, -4.7, -4.7], [-6.3, -6.1, -6.1, -6.0, -6.0, -6.0, -5.9, -5.9, -5.9], [-6.3, -6.2, -6.2, -6.1, -6.1, -6.0, -6.0, -6.0, -6.0], [-4.6, -4.6, -4.6, -4.6, -4.6, -4.6, -4.5, -4.5, -4.5], [-5.9, -5.9, -5.8, -5.8, -5.8, -5.7, -5.7, -5.7, -5.6], [-7.4, -7.4, -7.2, -7.1, -7.1, -7.0, -6.9, -6.9, -6.7], [-6.9, -6.8, -6.7, -6.7, -6.6, -6.6, -6.6, -6.6, -6.5], [-7.3, -7.3, -7.3, -7.3, -7.2, -7.1, -7.1, -7.0, -7.0], [-6.2, -5.9, -5.8, -5.7, -5.7, -5.7, -5.7, -5.6, -5.6], [-7.2, -7.2, -7.2, -7.2, -7.1, -7.1, -7.0, -7.0, -6.9], [-6.4, -6.3, -6.2, -6.2, -6.2, -6.1, -6.1, -6.1, -6.0], [-5.9, -5.8, -5.7, -5.7, -5.7, -5.6, -5.6, -5.6, -5.6], [-5.8, -5.8, -5.8, -5.7, -5.7, -5.7, -5.7, -5.7, -5.7], [-5.0, -4.9, -4.9, -4.8, -4.8, -4.7, -4.7, -4.7, -4.7], [-5.9, -5.9, -5.9, -5.8, -5.7, -5.7, -5.7, -5.7, -5.6], [-5.7, -5.6, -5.5, -5.5, -5.4, -5.4, -5.4, -5.4, -5.4], [-5.6, -5.4, -5.4, -5.4, -5.4, -5.4, -5.4, -5.4, -5.4], [-7.3, -7.2, -7.2, -7.2, -7.1, -7.1, -7.0, -7.0, -7.0], [-6.6, -6.4, -6.3, -6.3, -6.3, -6.3, -6.3, -6.3, -6.3], [-4.5, -4.4, -4.4, -4.3, -4.3, -4.3, -4.3, -4.3, -4.3], [-5.9, -5.9, -5.7, -5.7, -5.7, -5.7, -5.6, -5.6, -5.6], [-6.3, -5.8, -5.8, -5.8, -5.8, -5.8, -5.8, -5.7, -5.7], [-7.0, -7.0, -6.9, -6.8, -6.8, -6.8, -6.7, -6.7, -6.6], [-5.1, -5.1, -5.1, -5.1, -5.0, -5.0, -5.0, -5.0, -5.0], [-5.3, -5.2, -5.0, -4.9, -4.9, -4.9, -4.9, -4.8, -4.8], [-6.9, -6.9, -6.8, -6.7, -6.7, -6.6, -6.6, -6.5, -6.5], [-6.0, -6.0, -5.9, -5.9, -5.9, -5.8, -5.8, -5.8, -5.8], [-8.4, -8.0, -7.8, -7.7, -7.7, -7.5, -7.4, -7.4, -7.4], [-6.2, -6.2, -6.1, -6.0, -6.0, -5.9, -5.8, -5.7, -5.6], [-5.7, -5.5, -5.5, -5.5, -5.5, -5.4, -5.4, -5.4, -5.4], [-6.8, -6.7, -6.7, -6.7, -6.6, -6.6, -6.6, -6.5, -6.5], [-5.3, -5.3, -5.3, -5.2, -5.2, -5.2, -5.2, -5.2, -5.1], [-5.9, -5.9, -5.8, -5.8, -5.7, -5.7, -5.7, -5.7, -5.7], [-7.1, -6.9, -6.8, -6.5, -6.5, -6.5, -6.3, -6.2, -6.1], [-5.4, -5.2, -5.2, -5.2, -5.2, -5.1, -5.1, -5.0, -5.0], [-5.0, -5.0, -4.9, -4.9, -4.9, -4.9, -4.8, -4.8, -4.7], [-4.7, -4.7, -4.6, -4.6, -4.6, -4.6, -4.5, -4.5, -4.5], [-6.0, -5.7, -5.6, -5.5, -5.5, -5.4, -5.3, -5.3, -5.3], [-4.4, -4.4, -4.3, -4.3, -4.3, -4.3, -4.3, -4.3, -4.3], [-5.4, -5.2, -5.1, -5.1, -5.0, -5.0, -5.0, -5.0, -4.9], [-6.0, -5.8, -5.8, -5.7, -5.6, -5.6, -5.6, -5.6, -5.6], [-5.0, -5.0, -4.9, -4.9, -4.9, -4.9, -4.9, -4.8, -4.8], [-5.7, -5.6, -5.5, -5.5, -5.5, -5.5, -5.4, -5.4, -5.4], [-4.9, -4.8, -4.8, -4.8, -4.8, -4.7, -4.7, -4.7, -4.6], [-5.9, -5.7, -5.5, -5.5, -5.5, -5.5, -5.5, -5.4, -5.4], [-8.4, -8.0, -7.8, -7.7, -7.7, -7.7, -7.6, -7.6, -7.5], [-6.1, -6.0, -6.0, -6.0, -5.9, -5.9, -5.9, -5.9, -5.9], [-7.3, -7.1, -6.8, -6.8, -6.8, -6.8, -6.8, -6.7, -6.7], [-5.7, -5.7, -5.6, -5.6, -5.5, -5.5, -5.5, -5.5, -5.5], [-6.9, -6.8, -6.7, -6.7, -6.7, -6.7, -6.6, -6.6, -6.6], [-7.1, -7.1, -7.1, -7.1, -7.0, -7.0, -6.9, -6.9, -6.8], [-6.1, -6.1, -6.0, -6.0, -6.0, -6.0, -5.9, -5.9, -5.9], [-5.1, -5.1, -5.0, -5.0, -4.9, -4.9, -4.9, -4.9, -4.9], [-6.9, -6.8, -6.8, -6.8, -6.8, -6.8, -6.7, -6.7, -6.6], [-6.0, -5.7, -5.7, -5.5, -5.4, -5.4, -5.4, -5.4, -5.4], [-6.3, -6.2, -6.1, -6.1, -6.1, -6.0, -6.0, -6.0, -6.0], [-5.9, -5.8, -5.8, -5.8, -5.8, -5.7, -5.7, -5.7, -5.7], [-5.6, -5.5, -5.5, -5.5, -5.4, -5.4, -5.3, -5.3, -5.3], [-5.6, -5.4, -5.4, -5.4, -5.3, -5.2, -5.2, -5.2, -5.2], [-7.2, -7.2, -7.2, -7.1, -7.1, -7.0, -7.0, -6.9, -6.9], [-5.9, -5.6, -5.5, -5.4, -5.4, -5.4, -5.3, -5.3, -5.3], [-5.1, -5.1, -5.0, -5.0, -4.9, -4.9, -4.9, -4.9, -4.9], [-5.8, -5.8, -5.7, -5.7, -5.6, -5.6, -5.5, -5.5, -5.5], [-7.2, -7.0, -7.0, -6.9, -6.9, -6.8, -6.8, -6.8, -6.7], [-4.6, -4.6, -4.6, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5], [-5.5, -5.4, -5.4, -5.3, -5.3, -5.3, -5.3, -5.2, -5.2], [-5.4, -5.4, -5.2, -5.2, -5.1, -5.1, -5.1, -5.0, -5.0], [-5.0, -4.9, -4.8, -4.7, -4.7, -4.6, -4.6, -4.6, -4.6], [-6.9, -6.9, -6.8, -6.8, -6.8, -6.7, -6.6, -6.6, -6.5], [-6.0, -5.9, -5.9, -5.9, -5.8, -5.8, -5.8, -5.8, -5.7], [-5.6, -5.2, -5.2, -5.1, -5.1, -5.0, -5.0, -5.0, -5.0], [-4.9, -4.6, -4.6, -4.6, -4.6, -4.6, -4.6, -4.5, -4.5], [-5.4, -5.0, -5.0, -5.0, -4.9, -4.9, -4.9, -4.9, -4.9], [-6.3, -6.2, -6.2, -6.2, -6.2, -6.1, -6.1, -6.0, -6.0], [-5.5, -5.4, -5.4, -5.4, -5.4, -5.4, -5.4, -5.4, -5.3], [-5.1, -5.0, -4.9, -4.9, -4.8, -4.8, -4.8, -4.7, -4.7], [-6.0, -5.8, -5.7, -5.7, -5.7, -5.6, -5.6, -5.6, -5.5], [-5.9, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.4, -5.4], [-6.0, -6.0, -5.9, -5.8, -5.7, -5.7, -5.6, -5.6, -5.6], [-5.3, -5.1, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -4.9], [-5.3, -5.3, -5.2, -5.1, -5.1, -5.1, -5.1, -5.1, -5.0], [-6.8, -6.8, -6.6, -6.6, -6.6, -6.6, -6.6, -6.5, -6.5], [-4.8, -4.8, -4.8, -4.7, -4.6, -4.6, -4.6, -4.6, -4.6], [-6.4, -6.3, -6.2, -6.2, -6.2, -6.1, -6.1, -6.1, -6.0], [-6.2, -6.1, -6.1, -6.0, -6.0, -5.9, -5.9, -5.9, -5.9], [-6.4, -6.3, -6.2, -6.2, -6.2, -6.2, -6.1, -6.0, -6.0], [-6.3, -6.1, -6.1, -6.1, -6.1, -6.1, -6.1, -6.0, -6.0], [-5.0, -4.8, -4.8, -4.8, -4.7, -4.7, -4.7, -4.7, -4.7], [-5.9, -5.8, -5.7, -5.6, -5.6, -5.6, -5.6, -5.5, -5.5], [-7.3, -6.9, -6.9, -6.8, -6.8, -6.7, -6.7, -6.7, -6.7], [-5.7, -5.6, -5.6, -5.5, -5.5, -5.5, -5.4, -5.4, -5.4], [-5.0, -4.9, -4.8, -4.8, -4.8, -4.7, -4.7, -4.7, -4.7], [-6.3, -6.1, -6.1, -6.1, -6.0, -6.0, -6.0, -6.0, -5.9], [-5.7, -5.3, -5.2, -5.1, -5.1, -5.1, -5.1, -5.0, -5.0], [-5.6, -5.5, -5.3, -5.3, -5.3, -5.3, -5.3, -5.2, -5.2], [-6.6, -6.4, -6.4, -6.4, -6.3, -6.3, -6.3, -6.3, -6.3], [-6.5, -6.4, -6.4, -6.4, -6.4, -6.3, -6.3, -6.3, -6.2], [-4.7, -4.7, -4.6, -4.6, -4.5, -4.5, -4.5, -4.5, -4.5], [-6.1, -6.1, -6.1, -6.1, -6.1, -6.0, -5.9, -5.9, -5.9], [-7.0, -6.9, -6.8, -6.8, -6.8, -6.7, -6.7, -6.7, -6.6], [-5.6, -5.4, -5.3, -5.3, -5.2, -5.2, -5.2, -5.1, -5.1], [-7.3, -7.1, -7.0, -7.0, -6.8, -6.6, -6.6, -6.6, -6.6], [-6.0, -5.9, -5.8, -5.8, -5.7, -5.7, -5.7, -5.7, -5.6], [-6.3, -6.2, -6.1, -6.1, -6.1, -6.1, -6.0, -6.0, -6.0], [-6.5, -6.3, -6.3, -6.2, -6.2, -6.1, -6.0, -6.0, -6.0], [-6.4, -6.3, -6.2, -6.2, -6.2, -6.1, -6.1, -6.1, -6.0], [-5.3, -5.2, -5.2, -5.2, -5.1, -5.1, -5.0, -5.0, -5.0], [-6.1, -6.0, -6.0, -6.0, -6.0, -5.9, -5.9, -5.8, -5.8], [-7.5, -7.3, -7.2, -7.2, -7.2, -7.2, -7.2, -7.1, -7.1], [-6.3, -6.1, -6.0, -6.0, -6.0, -6.0, -5.9, -5.9, -5.9], [-5.7, -5.6, -5.5, -5.5, -5.5, -5.4, -5.4, -5.4, -5.4], [-7.4, -7.4, -7.2, -7.1, -7.1, -7.0, -6.9, -6.9, -6.6], [-6.6, -6.2, -6.1, -6.1, -6.0, -6.0, -6.0, -6.0, -5.9], [-5.2, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0], [-7.1, -6.9, -6.9, -6.9, -6.8, -6.8, -6.7, -6.7, -6.7], [-4.3, -4.2, -4.2, -4.1, -4.1, -4.1, -4.1, -4.1, -4.0], [-5.0, -4.9, -4.6, -4.6, -4.6, -4.6, -4.6, -4.6, -4.5], [-5.0, -4.8, -4.7, -4.7, -4.6, -4.6, -4.6, -4.6, -4.6], [-4.7, -4.6, -4.6, -4.5, -4.5, -4.5, -4.4, -4.4, -4.4], [-5.3, -5.1, -5.0, -5.0, -5.0, -4.9, -4.9, -4.9, -4.9], [-7.0, -6.8, -6.8, -6.5, -6.3, -6.3, -6.2, -6.2, -6.2], [-6.1, -6.1, -6.0, -6.0, -5.9, -5.9, -5.9, -5.9, -5.9], [-5.7, -5.6, -5.5, -5.5, -5.5, -5.5, -5.5, -5.4, -5.4], [-7.3, -7.1, -7.0, -6.8, -6.8, -6.8, -6.7, -6.7, -6.6], [-5.3, -5.2, -5.1, -5.1, -5.1, -5.1, -5.1, -5.0, -5.0], [-7.0, -6.8, -6.8, -6.4, -6.3, -6.3, -6.2, -6.2, -6.2], [-4.9, -4.9, -4.9, -4.9, -4.8, -4.8, -4.7, -4.7, -4.7], [-5.3, -5.2, -5.2, -5.2, -5.1, -5.1, -5.1, -5.1, -5.1], [-5.7, -5.7, -5.6, -5.5, -5.5, -5.5, -5.4, -5.4, -5.4], [-4.7, -4.7, -4.7, -4.7, -4.6, -4.6, -4.6, -4.6, -4.6], [-7.3, -7.3, -7.3, -7.3, -7.2, -7.2, -7.2, -7.1, -7.1], [-6.6, -6.4, -6.3, -6.1, -6.1, -6.0, -6.0, -6.0, -6.0], [-4.9, -4.9, -4.9, -4.8, -4.8, -4.8, -4.8, -4.8, -4.7], [-5.7, -5.7, -5.5, -5.5, -5.5, -5.5, -5.5, -5.4, -5.4], [-4.7, -4.7, -4.6, -4.6, -4.5, -4.4, -4.4, -4.4, -4.4], [-5.3, -5.3, -5.2, -5.2, -5.2, -5.2, -5.2, -5.2, -5.2], [-7.1, -7.0, -6.9, -6.9, -6.8, -6.8, -6.8, -6.8, -6.7], [-5.2, -5.1, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -4.9], [-4.4, -4.4, -4.4, -4.4, -4.3, -4.3, -4.3, -4.3, -4.3], [-6.6, -6.5, -6.4, -6.4, -6.4, -6.4, -6.4, -6.3, -6.3], [-5.9, -5.8, -5.7, -5.7, -5.6, -5.6, -5.6, -5.6, -5.6], [-5.4, -5.4, -5.4, -5.3, -5.2, -5.2, -5.2, -5.1, -5.1], [-6.7, -6.4, -6.4, -6.4, -6.3, -6.2, -6.2, -6.2, -6.2], [-7.3, -7.1, -7.1, -7.0, -6.8, -6.8, -6.7, -6.6, -6.6], [-5.9, -5.8, -5.7, -5.7, -5.6, -5.6, -5.6, -5.6, -5.6], [-5.4, -5.3, -5.3, -5.2, -5.2, -5.2, -5.1, -5.1, -5.1], [-6.5, -6.3, -6.2, -6.2, -6.2, -6.1, -6.0, -6.0, -6.0], [-5.4, -5.4, -5.4, -5.4, -5.4, -5.3, -5.3, -5.3, -5.3], [-6.2, -6.1, -6.1, -6.1, -6.0, -6.0, -6.0, -5.9, -5.9], [-6.2, -6.1, -6.0, -6.0, -5.9, -5.9, -5.9, -5.9, -5.9], [-5.4, -5.4, -5.3, -5.3, -5.3, -5.3, -5.3, -5.2, -5.2], [-6.0, -5.9, -5.9, -5.8, -5.8, -5.7, -5.7, -5.7, -5.6], [-5.3, -5.2, -5.2, -5.2, -5.1, -5.1, -5.1, -5.1, -5.1], [-6.2, -6.1, -6.1, -6.0, -6.0, -6.0, -5.9, -5.9, -5.9], [-7.3, -7.2, -7.2, -7.2, -7.1, -7.1, -7.0, -6.9, -6.9], [-6.2, -6.2, -6.2, -6.1, -6.1, -6.0, -6.0, -5.9, -5.8], [-6.1, -6.0, -5.9, -5.8, -5.8, -5.8, -5.8, -5.8, -5.8], [-5.8, -5.4, -5.4, -5.4, -5.4, -5.4, -5.3, -5.3, -5.3], [-6.5, -6.3, -6.1, -6.0, -6.0, -5.9, -5.9, -5.9, -5.9], [-4.9, -4.8, -4.8, -4.6, -4.6, -4.6, -4.6, -4.6, -4.6], [-5.0, -4.9, -4.8, -4.7, -4.7, -4.7, -4.7, -4.7, -4.7], [-5.4, -5.3, -5.1, -5.1, -5.0, -5.0, -4.9, -4.8, -4.8], [-6.8, -6.8, -6.7, -6.7, -6.7, -6.6, -6.6, -6.6, -6.5], [-8.4, -8.0, -7.7, -7.7, -7.7, -7.7, -7.5, -7.4, -7.4], [-6.1, -5.9, -5.7, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5], [-6.0, -5.9, -5.8, -5.7, -5.7, -5.7, -5.7, -5.6, -5.6], [-5.7, -5.7, -5.6, -5.6, -5.6, -5.6, -5.6, -5.6, -5.6], [-7.1, -6.9, -6.6, -6.5, -6.5, -6.5, -6.5, -6.5, -6.4], [-5.1, -5.1, -5.0, -5.0, -4.9, -4.9, -4.9, -4.9, -4.9], [-5.4, -5.1, -5.0, -5.0, -4.9, -4.9, -4.8, -4.8, -4.8], [-6.1, -6.0, -5.9, -5.9, -5.9, -5.8, -5.8, -5.8, -5.8], [-4.9, -4.9, -4.8, -4.8, -4.8, -4.7, -4.7, -4.7, -4.7], [-7.2, -7.1, -7.1, -7.1, -7.1, -7.0, -6.9, -6.9, -6.9], [-6.0, -5.7, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.4], [-6.1, -6.1, -6.0, -6.0, -5.9, -5.9, -5.9, -5.9, -5.9], [-6.5, -6.2, -6.2, -6.1, -6.0, -6.0, -6.0, -6.0, -6.0], [-5.6, -5.5, -5.4, -5.4, -5.4, -5.4, -5.4, -5.4, -5.4], [-4.5, -4.5, -4.5, -4.5, -4.4, -4.4, -4.4, -4.3, -4.3], [-5.2, -5.1, -5.1, -5.0, -5.0, -5.0, -5.0, -5.0, -4.9], [-5.9, -5.9, -5.9, -5.9, -5.8, -5.8, -5.8, -5.7, -5.7], [-5.9, -5.9, -5.9, -5.8, -5.8, -5.8, -5.7, -5.7, -5.7], [-4.6, -4.5, -4.5, -4.4, -4.4, -4.4, -4.4, -4.3, -4.3], [-6.2, -6.2, -6.2, -6.1, -6.0, -5.9, -5.9, -5.8, -5.8], [-7.4, -7.4, -7.2, -7.1, -7.1, -7.0, -6.9, -6.9, -6.7], [-5.9, -5.8, -5.8, -5.7, -5.7, -5.7, -5.6, -5.6, -5.6], [-5.9, -5.9, -5.8, -5.6, -5.6, -5.6, -5.5, -5.5, -5.5], [-6.7, -6.4, -6.4, -6.3, -6.3, -6.3, -6.3, -6.2, -6.2], [-4.7, -4.7, -4.7, -4.6, -4.6, -4.6, -4.5, -4.5, -4.5], [-5.2, -5.1, -5.1, -5.1, -5.1, -5.1, -5.1, -5.0, -5.0], [-7.2, -7.0, -6.9, -6.9, -6.9, -6.8, -6.8, -6.8, -6.7], [-6.0, -6.0, -6.0, -6.0, -6.0, -5.9, -5.9, -5.9, -5.8], [-6.3, -6.1, -6.1, -6.1, -6.1, -6.0, -6.0, -6.0, -6.0], [-5.9, -5.7, -5.6, -5.5, -5.5, -5.5, -5.4, -5.4, -5.3], [-4.9, -4.8, -4.8, -4.7, -4.7, -4.7, -4.7, -4.6, -4.6], [-6.0, -6.0, -6.0, -5.9, -5.9, -5.9, -5.8, -5.8, -5.8], [-7.0, -6.8, -6.8, -6.4, -6.3, -6.3, -6.2, -6.2, -6.2], [-6.0, -5.9, -5.8, -5.8, -5.8, -5.8, -5.8, -5.8, -5.8], [-5.5, -5.5, -5.4, -5.3, -5.3, -5.3, -5.3, -5.3, -5.3], [-7.6, -7.3, -7.2, -7.1, -7.1, -7.0, -7.0, -7.0, -7.0], [-7.3, -7.1, -7.0, -7.0, -6.9, -6.8, -6.7, -6.7, -6.6], [-5.6, -5.5, -5.5, -5.5, -5.5, -5.4, -5.4, -5.4, -5.4], [-5.4, -5.3, -5.2, -5.2, -5.1, -5.1, -5.1, -5.0, -5.0], [-5.2, -4.8, -4.8, -4.8, -4.7, -4.7, -4.7, -4.6, -4.6], [-5.9, -5.9, -5.9, -5.8, -5.8, -5.7, -5.7, -5.7, -5.7], [-7.5, -7.3, -7.3, -7.3, -7.3, -7.2, -7.2, -7.2, -7.2], [-6.5, -6.2, -6.2, -6.1, -6.1, -6.1, -6.0, -6.0, -6.0], [-5.5, -5.4, -5.3, -5.3, -5.2, -5.2, -5.1, -5.1, -5.1], [-4.7, -4.7, -4.6, -4.6, -4.6, -4.5, -4.5, -4.5, -4.5], [-6.0, -5.9, -5.9, -5.9, -5.8, -5.8, -5.8, -5.8, -5.8], [-5.4, -5.1, -5.0, -5.0, -4.9, -4.9, -4.8, -4.8, -4.8], [-6.2, -6.2, -6.2, -6.2, -6.1, -6.0, -6.0, -6.0, -6.0], [-5.2, -5.2, -5.2, -5.2, -5.2, -5.2, -5.1, -5.1, -5.1], [-5.7, -5.5, -5.4, -5.4, -5.4, -5.4, -5.4, -5.4, -5.4], [-5.4, -5.4, -5.3, -5.3, -5.3, -5.3, -5.3, -5.2, -5.2], [-4.9, -4.9, -4.8, -4.8, -4.8, -4.8, -4.8, -4.7, -4.7], [-5.1, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -4.9], [-6.2, -6.2, -6.2, -6.2, -6.1, -6.1, -6.1, -6.1, -6.1], [-5.5, -5.4, -5.4, -5.4, -5.4, -5.3, -5.3, -5.3, -5.3], [-5.3, -5.2, -5.1, -5.1, -5.1, -5.1, -5.1, -5.1, -5.1], [-7.1, -6.9, -6.8, -6.5, -6.5, -6.5, -6.4, -6.3, -6.2], [-5.2, -5.1, -5.1, -5.1, -5.0, -5.0, -5.0, -5.0, -4.9], [-4.7, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.4, -4.4], [-6.1, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -5.9, -5.9], [-5.8, -5.7, -5.7, -5.7, -5.6, -5.6, -5.5, -5.5, -5.5], [-5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -4.9], [-5.9, -5.9, -5.8, -5.8, -5.8, -5.8, -5.8, -5.7, -5.7], [-5.3, -5.2, -5.1, -5.1, -5.1, -5.1, -5.1, -5.1, -5.1], [-6.2, -6.2, -6.2, -6.2, -6.0, -6.0, -6.0, -6.0, -6.0], [-6.2, -6.2, -6.2, -6.2, -6.1, -6.1, -6.0, -6.0, -6.0], [-6.4, -6.2, -6.2, -6.2, -6.0, -6.0, -6.0, -6.0, -6.0], [-7.1, -6.9, -6.6, -6.5, -6.5, -6.5, -6.5, -6.2, -6.1], [-5.8, -5.7, -5.7, -5.7, -5.7, -5.6, -5.6, -5.6, -5.6], [-5.7, -5.5, -5.5, -5.4, -5.4, -5.4, -5.3, -5.3, -5.3], [-6.1, -6.1, -6.1, -6.1, -6.0, -6.0, -6.0, -5.9, -5.9], [-5.7, -5.6, -5.6, -5.6, -5.6, -5.5, -5.5, -5.5, -5.4], [-5.4, -5.4, -5.4, -5.3, -5.3, -5.3, -5.3, -5.2, -5.2], [-5.4, -5.3, -5.2, -5.2, -5.2, -5.1, -5.1, -5.1, -5.1], [-5.2, -5.2, -5.2, -5.1, -5.1, -5.1, -5.1, -5.0, -5.0], [-5.3, -5.1, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -4.9], [-6.0, -6.0, -5.9, -5.9, -5.8, -5.8, -5.8, -5.8, -5.8], [-5.3, -5.1, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -4.9], [-4.4, -4.4, -4.3, -4.3, -4.3, -4.2, -4.2, -4.2, -4.1], [-5.9, -5.8, -5.8, -5.8, -5.8, -5.8, -5.7, -5.7, -5.7], [-6.5, -6.2, -6.2, -6.1, -6.0, -6.0, -6.0, -6.0, -6.0], [-6.9, -6.9, -6.8, -6.7, -6.7, -6.7, -6.7, -6.7, -6.6], [-5.4, -5.4, -5.3, -5.3, -5.3, -5.3, -5.3, -5.2, -5.2], [-5.7, -5.7, -5.7, -5.7, -5.6, -5.6, -5.5, -5.5, -5.4], [-5.0, -4.9, -4.8, -4.7, -4.7, -4.7, -4.6, -4.6, -4.6], [-5.3, -5.3, -5.2, -5.2, -5.2, -5.2, -5.2, -5.2, -5.2], [-6.6, -6.2, -6.2, -6.1, -6.1, -6.1, -6.1, -6.1, -6.0], [-7.5, -7.3, -7.3, -7.3, -7.2, -7.1, -7.1, -7.1, -7.1], [-5.3, -5.2, -5.2, -5.2, -5.1, -5.1, -5.1, -5.0, -5.0], [-4.8, -4.8, -4.7, -4.7, -4.7, -4.7, -4.7, -4.7, -4.6], [-5.8, -5.8, -5.7, -5.7, -5.7, -5.7, -5.7, -5.6, -5.6], [-5.0, -4.9, -4.9, -4.9, -4.8, -4.8, -4.8, -4.8, -4.8], [-6.9, -6.9, -6.8, -6.8, -6.8, -6.7, -6.7, -6.7, -6.7], [-7.6, -7.4, -7.3, -7.1, -7.1, -7.1, -7.1, -7.1, -7.0], [-5.3, -5.2, -5.2, -5.2, -5.2, -5.1, -5.1, -5.1, -5.0], [-5.4, -5.4, -5.3, -5.3, -5.3, -5.2, -5.2, -5.1, -5.1], [-5.1, -4.9, -4.9, -4.9, -4.9, -4.9, -4.9, -4.9, -4.9], [-5.1, -5.0, -5.0, -5.0, -5.0, -5.0, -4.9, -4.9, -4.9], [-6.0, -6.0, -6.0, -6.0, -5.9, -5.8, -5.8, -5.7, -5.7], [-5.6, -5.5, -5.5, -5.4, -5.4, -5.3, -5.3, -5.3, -5.3], [-4.9, -4.8, -4.8, -4.8, -4.7, -4.7, -4.7, -4.7, -4.7], [-5.3, -5.3, -5.2, -5.2, -5.1, -5.1, -5.1, -5.1, -5.1], [-6.0, -5.9, -5.9, -5.9, -5.8, -5.8, -5.8, -5.8, -5.8], [-6.1, -6.0, -6.0, -5.9, -5.9, -5.8, -5.8, -5.8, -5.8], [-6.9, -6.9, -6.7, -6.7, -6.7, -6.7, -6.7, -6.6, -6.6], [-5.5, -5.3, -5.3, -5.2, -5.1, -5.1, -5.1, -5.1, -5.0], [-5.3, -5.2, -5.2, -5.2, -5.2, -5.2, -5.1, -5.1, -5.0], [-5.8, -5.8, -5.7, -5.6, -5.6, -5.6, -5.5, -5.5, -5.5], [-7.0, -7.0, -7.0, -6.9, -6.9, -6.9, -6.9, -6.9, -6.8], [-6.1, -6.0, -5.9, -5.8, -5.8, -5.7, -5.7, -5.7, -5.7], [-6.0, -5.9, -5.9, -5.8, -5.8, -5.7, -5.7, -5.6, -5.6], [-6.1, -5.9, -5.7, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5], [-4.6, -4.5, -4.5, -4.4, -4.4, -4.3, -4.3, -4.3, -4.3], [-5.3, -5.2, -5.0, -5.0, -5.0, -5.0, -5.0, -4.9, -4.9], [-5.9, -5.7, -5.5, -5.5, -5.5, -5.5, -5.5, -5.4, -5.4], [-5.6, -5.5, -5.4, -5.4, -5.3, -5.3, -5.3, -5.1, -5.1], [-5.1, -4.9, -4.9, -4.9, -4.9, -4.9, -4.8, -4.7, -4.7], [-5.8, -5.8, -5.8, -5.7, -5.7, -5.7, -5.6, -5.6, -5.6], [-5.0, -4.8, -4.8, -4.8, -4.7, -4.7, -4.7, -4.7, -4.7], [-5.3, -5.2, -5.2, -5.1, -5.1, -5.1, -5.1, -5.0, -5.0], [-5.1, -5.0, -5.0, -4.9, -4.9, -4.9, -4.9, -4.9, -4.8], [-5.7, -5.6, -5.6, -5.5, -5.5, -5.5, -5.4, -5.4, -5.4], [-5.9, -5.9, -5.9, -5.8, -5.8, -5.7, -5.7, -5.7, -5.7], [-5.9, -5.8, -5.8, -5.8, -5.7, -5.7, -5.7, -5.7, -5.7], [-6.0, -5.9, -5.8, -5.7, -5.7, -5.7, -5.6, -5.6, -5.5], [-5.2, -5.1, -5.1, -5.1, -5.0, -5.0, -5.0, -5.0, -5.0], [-5.3, -5.2, -5.1, -5.1, -5.1, -5.1, -5.1, -5.1, -5.0], [-5.9, -5.8, -5.7, -5.7, -5.7, -5.7, -5.7, -5.7, -5.7], [-6.7, -6.4, -6.4, -6.3, -6.3, -6.3, -6.3, -6.2, -6.2], [-5.0, -5.0, -4.9, -4.9, -4.8, -4.8, -4.8, -4.8, -4.8], [-5.0, -4.9, -4.9, -4.9, -4.8, -4.8, -4.8, -4.7, -4.7], [-4.7, -4.7, -4.6, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5], [-5.9, -5.8, -5.7, -5.7, -5.7, -5.6, -5.6, -5.6, -5.5], [-5.1, -5.1, -5.1, -5.1, -5.0, -5.0, -5.0, -5.0, -4.9], [-8.4, -8.2, -8.0, -7.8, -7.7, -7.7, -7.6, -7.6, -7.5], [-7.2, -7.2, -7.2, -7.2, -7.1, -7.1, -7.0, -7.0, -6.9], [-5.6, -5.5, -5.4, -5.4, -5.4, -5.3, -5.3, -5.3, -5.3], [-6.6, -6.4, -6.3, -6.2, -6.2, -6.1, -6.1, -6.1, -6.1], [-6.7, -6.5, -6.4, -6.3, -6.3, -6.3, -6.3, -6.3, -6.3], [-5.7, -5.7, -5.6, -5.5, -5.5, -5.5, -5.5, -5.5, -5.4], [-6.1, -6.1, -6.1, -6.1, -6.1, -6.1, -6.0, -6.0, -5.9], [-5.5, -5.4, -5.4, -5.4, -5.4, -5.3, -5.3, -5.2, -5.2], [-6.4, -6.3, -6.2, -6.2, -6.2, -6.2, -6.2, -6.2, -6.2], [-5.5, -5.5, -5.4, -5.4, -5.4, -5.4, -5.3, -5.3, -5.3], [-5.6, -5.5, -5.4, -5.4, -5.4, -5.2, -5.2, -5.2, -5.2], [-5.8, -5.8, -5.6, -5.6, -5.6, -5.6, -5.6, -5.6, -5.6], [-6.2, -6.1, -6.0, -5.9, -5.9, -5.9, -5.9, -5.9, -5.8], [-4.8, -4.8, -4.8, -4.7, -4.7, -4.7, -4.7, -4.7, -4.7], [-5.2, -5.2, -5.2, -5.1, -5.1, -5.1, -5.1, -5.1, -5.1], [-5.1, -5.0, -5.0, -5.0, -5.0, -4.9, -4.9, -4.8, -4.8], [-7.1, -7.0, -7.0, -6.9, -6.9, -6.8, -6.8, -6.8, -6.8], [-5.1, -5.0, -5.0, -5.0, -4.9, -4.9, -4.9, -4.9, -4.9], [-5.5, -5.2, -5.0, -5.0, -5.0, -5.0, -4.9, -4.9, -4.9], [-6.0, -5.8, -5.7, -5.7, -5.6, -5.6, -5.6, -5.5, -5.5], [-5.7, -5.7, -5.6, -5.5, -5.5, -5.5, -5.4, -5.4, -5.4], [-5.2, -5.1, -5.1, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0], [-5.8, -5.7, -5.6, -5.6, -5.6, -5.6, -5.6, -5.6, -5.6], [-6.4, -6.4, -6.3, -6.3, -6.3, -6.3, -6.2, -6.2, -6.2], [-5.2, -5.1, -5.1, -5.1, -5.0, -5.0, -5.0, -5.0, -5.0], [-5.0, -5.0, -4.8, -4.7, -4.7, -4.7, -4.6, -4.6, -4.6], [-4.5, -4.4, -4.4, -4.3, -4.3, -4.3, -4.3, -4.3, -4.2], [-7.2, -7.1, -7.1, -7.0, -7.0, -6.9, -6.9, -6.9, -6.8], [-4.8, -4.7, -4.7, -4.7, -4.6, -4.6, -4.6, -4.5, -4.5], [-5.6, -5.5, -5.5, -5.5, -5.5, -5.4, -5.4, -5.4, -5.4], [-7.2, -7.1, -7.1, -7.1, -6.9, -6.9, -6.9, -6.9, -6.9], [-7.2, -7.0, -6.8, -6.8, -6.8, -6.8, -6.8, -6.8, -6.7], [-6.1, -6.1, -6.1, -6.1, -6.1, -6.1, -6.0, -6.0, -6.0], [-4.9, -4.8, -4.8, -4.7, -4.7, -4.7, -4.6, -4.6, -4.6], [-6.1, -5.8, -5.8, -5.8, -5.7, -5.6, -5.6, -5.5, -5.5], [-5.9, -5.9, -5.8, -5.7, -5.7, -5.7, -5.7, -5.7, -5.7], [-5.1, -5.1, -5.1, -5.0, -5.0, -5.0, -5.0, -5.0, -4.9], [-5.2, -5.1, -5.1, -5.0, -5.0, -5.0, -5.0, -4.9, -4.9], [-5.5, -5.4, -5.3, -5.3, -5.3, -5.2, -5.2, -5.2, -5.2], [-6.5, -6.3, -6.3, -6.2, -6.2, -6.2, -6.1, -6.0, -6.0], [-5.9, -5.8, -5.7, -5.7, -5.7, -5.7, -5.6, -5.6, -5.6], [-5.5, -5.4, -5.4, -5.3, -5.3, -5.2, -5.2, -5.2, -5.2], [-6.9, -6.8, -6.7, -6.7, -6.7, -6.6, -6.6, -6.6, -6.6], [-5.1, -5.1, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0], [-5.5, -5.5, -5.4, -5.3, -5.2, -5.2, -5.2, -5.2, -5.2], [-6.1, -5.9, -5.7, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5], [-5.0, -4.9, -4.8, -4.6, -4.6, -4.6, -4.6, -4.6, -4.6]]",,"[-8.4, -8.2, -8.0, -7.8, -7.7, -7.7, -7.6, -7.6, -7.5]",ccr
102 |
--------------------------------------------------------------------------------
/examples/valid_smiles.txt:
--------------------------------------------------------------------------------
1 | CCCN(CCNC(=O)N=Nc1cc(F)c(F)c(F)c1)C1Cc2ccccc2C1
2 | COc1cc2c(cc1O)C(c1c(Cl)cccc1Cl)CNCC2
3 | COc1ccccc1N1CCN(CCCNC(=O)NN(Cc2ccccc2)c2ccccc2)CC1
4 | Clc1cccc(N2CCN(Cc3cccs3)CC2)c1Cl
5 | CCCN(CCCCNC(=O)c1cc2ccccc2[nH]1)CC1CC1c1ccc(F)cc1
6 | CCCN(CCCCNC(=O)C=Cc1ccc(F)cc1)C1Cc2ccccc2C1
7 | CN1CCc2ccccc2Cc2c([nH]c3ccccc23)CC1
8 | CNC(=O)CN1CN(c2ccccc2)C2(CCN(C(=O)OCc3cc4c(cc3Cl)OCO4)CC2)C1=O
9 | CCCN(CCC)CCc1cccc2c1CC(=O)N2
10 | CC(C)(C)OC(=O)NCC#Cc1ccc2c(c1)C=C([N+](=O)[O-])C(C(F)(F)F)O2
11 | COc1cc2c3c(c1O)-c1cc(N)ccc1CC3N(C)CC2
12 | O=[N+]([O-])C1=Cc2cc(I)ccc2OC1C(F)(F)F
13 | c1ccc(Cc2ccccc2OCCCN2CCCC2)cc1
14 | Oc1cc2ccccc2n1CCCCN1CCN(c2ccc(Cl)cc2)CC1
15 | O=C(O)c1ccc(C#Cc2ccc3c(c2)C=C([N+](=O)[O-])C(C(F)(F)F)O3)cc1
16 | Cn1c2ccccc2c(=O)c2c(=O)n(-c3ccccc3)c(CC3CCCCC3)nc21
17 | O=C1Cc2ccccc2N1CCCCN1CCN(c2cccc(C(F)(F)F)c2)CC1
18 | COc1ccc2c(c1)CCN(C)CCCc1ccccc1C2
19 | CN1CCCc2ccccc2Cc2ccc(O)cc2CC1
20 | COc1ccc(N(CCCCN2CCC(O)(c3ccc(Cl)c(C(F)(F)F)c3)CC2)c2ccc(OC)cc2)cc1
21 | Cc1ccc(N2CCN(CCCCc3ccc(F)cc3)CC2)nc1
22 | CN(CCCSc1nnc(-c2ccccc2)n1C)CC1CC1c1cc(F)ccc1OCCF
23 | Fc1ccc(OCCCN2CCN(c3ccc(Cl)cc3)CC2)cc1
24 | CN1CCc2ccccc2Cc2c(O)cccc2CC1
25 | O=c1c2ccccc2ncn1CCCCN1CCN(c2ccc(Cl)cc2)CC1
26 | Oc1ccc2c(c1)OC(CN1CCN(c3ccc(OCCF)cc3)CC1)CC2
27 | Cn1c2ccccc2c(=O)c2c(=O)n(-c3ccc(Cl)cc3)c(CC3CCCCC3)nc21
28 | O=C1c2ccccc2CN1CCCCN1CCN(c2ccccc2)CC1
29 | Clc1ccc(N2CCN(Cc3cccs3)CC2)cc1Cl
30 | Oc1ccc2c(c1)CCCNCCc1ccccc1C2
31 | Oc1ccc2c(N3CCN(CCCCOc4ccn5nccc5c4)CC3)ccc(O)c2n1
32 | CN1CCc2ccccc2Cc2c[nH]c3cccc(c23)CC1
33 | COc1cc2c(cc1O)C(c1ccccc1Br)CNCC2
34 | Fc1ccc(SCCCN2CCN(c3ccccn3)CC2)cc1
35 | COc1c(Cl)cc2c(c1Cl)Cc1ccccc1CCN(C)CC2
36 | CN1CCN(C2=Nc3cc(Cl)ccc3N(NC(=O)c3c(F)cccc3C(F)(F)F)c3ccccc32)CC1
37 | Cc1ccc(-n2c(CC3CCCCC3)nc3c(c(=O)c4ccccc4n3C)c2=O)cc1
38 | Cn1c2ccccc2c(=O)c2c(=O)n(-c3cccc(Cl)c3)c(C3CCCCC3)nc21
39 | COc1ccccc1N1CCN(CCCCNC(=O)N=Nc2ccc(F)cc2)CC1
40 | CCN(CCCCNC(=O)c1ccc2ccccc2c1)CC1CC1c1cc(F)ccc1OC
41 | OC1(c2ccc(Cl)cc2)CCN(CCCSc2ccc(F)cc2)CC1
42 | CC1=CC(C)=[N+]2C1=C(c1ccc(OCCCN3CCCCC3)cc1)c1c(C)cc(C)n1[B-]2(F)F
43 | COc1c(OCCF)cccc1C(O)C1CCN(CCc2ccc(F)cc2)CC1
44 | COc1ccccc1N1CCN(CCCCNC(=O)c2ccc3ccccc3c2)CC1
45 | CN(C)CCC=C1c2ccccc2Sc2ccc(Cl)cc21
46 | CCCCCCCN1CCC(c2cccc(O)c2)C1
47 | CN1CCc2c(c3cccc4c3n2-c2ccccc2CC4)C1
48 | OC1(c2ccc(Cl)c(C(F)(F)F)c2)CCN(CCCN(c2ccc(F)cc2)c2ccc(F)cc2)CC1
49 | O=C1C(=Nc2cccc(C(F)(F)F)c2)c2ccccc2N1c1cccc(OCCN2CCCC2)c1
50 | O=C(CCc1ccc(F)cc1)N1CCN(CCCC(c2ccc(F)cc2)c2ccc(F)cc2)CC1
51 | Cc1ncc2nccn2c1-c1ccc(Oc2nccc3occc23)cc1C(F)(F)F
52 | COc1ccccc1N1CCN(CCCCN2Cc3ccccc3C2=O)CC1
53 | Oc1ccc2c(c1)OC(CNCc1ccc(OCCCCF)cc1)CC2
54 | COc1ccc2c(c1)c1c(n2C)Cc2ccccc2CCN(C)CC1
55 | CN1CCN(C2=Nc3cc(Cl)ccc3Nc3ccccc32)CC1
56 | CCCN(CCCCNC(=O)c1ccc(-c2ccccn2)cc1)CC1CC1c1ccc(C(F)(F)F)cc1
57 | CN1CCCc2c([nH]c3ccccc23)Cc2ccccc2CC1
58 | O=C1c2ccccc2C(=O)N1CC#Cc1ccc2c(c1)C=C([N+](=O)[O-])C(C(F)(F)F)O2
59 | COc1cc2c(cc1O)C(c1c(Cl)cccc1Cl)CN(C)CC2
60 | CN1CCc2ccccc2Cc2[nH]c3ccccc3c2CC1CO
61 | CN1CCc2cccc3c2C1Cc1ccc(O)c(O)c1-3
62 | Oc1ccc(N2CCN(CCCCOc3ccn4nccc4c3)CC2)c2cccnc12
63 | CN1CCc2cc(O)ccc2Cc2[nH]c3ccccc3c2CC1
64 | Cc1ccc(N2CCN(CCCSc3ccc(F)cc3)CC2)nc1
65 | Fc1ccc(CCCCN2CCN(c3ncccn3)CC2)cc1
66 | Oc1ccc2c(c1)OC(CNCCN1CCN(c3ccc(I)cc3)CC1)CC2
67 | CN1CCc2ccccc2Cc2c(ccc(O)c2Cl)CC1
68 | N#Cc1ccc(CCOC(=O)N2CCN(CCCC(c3ccc(F)cc3)c3ccc(F)cc3)CC2)cc1
69 | Cc1nc2n(c(=O)c1CCN1CCC(c3noc4cc(F)ccc34)CC1)CCCC2
70 | O=C1c2ccccc2CN1CCCCN1CCN(c2ccc(Cl)cc2)CC1
71 | COc1ccccc1N1CCN(CCCCNC(=O)c2cc3ccccn3n2)CC1
72 | CCCN(CCCCNC(=O)c1ccc2ccccc2c1)CC1CC1c1cccc(Cl)c1Cl
73 | CC(=O)N1CCC(c2ccc(-c3cc(C(=O)O)cc4cc(-c5ccc(C(F)(F)F)cc5)ccc34)cc2)CC1
74 | COc1cc2c(cc1O)CCN1Cc3c(ccc(OC)c3OC)CC21
75 | Oc1ccc2c(c1)OC(CNCc1ccc(I)cc1)CC2
76 | CN1CCc2ccccc2Cc2[nH]c3ccccc3c2CC1
77 | OC1(c2ccc(Cl)c(C(F)(F)F)c2)CCN(CCCC(c2ccccc2)c2ccccc2)CC1
78 | CCOc1ccc(F)cc1C1CC1CN(CC)CCCSc1nnc(-c2ccccc2)n1C
79 | CN1CCCc2ccccc2Cc2cc(O)ccc2CC1
80 | CNCCCC12CCC(c3ccccc31)c1ccccc12
81 | OC1(c2ccc(Cl)c(C(F)(F)F)c2)CCN(CCCCN(c2ccc(F)cc2)c2ccc(F)cc2)CC1
82 | Clc1ccc(CN2CCOC(CCc3ccccc3)C2)cc1
83 | C=CCN1CCc2cc(OC)c(O)cc2C(c2ccccc2Br)C1
84 | CN1CCc2ccccc2Cc2ccn(C)c2CC1
85 | CN1CCc2ccccc2Cc2cc(O)c(Cl)cc2CC1
86 | COc1c(O)ccc2c1CN1CCc3cc4c(cc3C1C2)OCO4
87 | Cn1c(SCCCNCC2CC2c2cc(F)ccc2OCCF)nnc1-c1ccccc1
88 | C=CCN1CCc2cc(OC)c(O)cc2C(c2c(Cl)cccc2Cl)C1
89 | CN1CCc2ccccc2Cc2[nH]c3ccc(O)cc3c2CC1
90 | COc1cc2c(cc1O)C(c1ccccc1Br)CN(C)CC2
91 | COc1ccc2c(c1)CCN(C)CCc1ccccc1C2
92 | Fc1ccc(OCCCN2CCN(c3ccccn3)CC2)cc1
93 | CCCCCCCCN1CCC(c2cccc(O)c2)C1
94 | CN(C)CCC=C1c2ccccc2CCc2ccccc21
95 | COc1ccc(-n2c(C3CCCCC3)nc3c(c(=O)c4ccccc4n3C)c2=O)cc1Cl
96 | O=C1CCc2ccc(OCCCCN3CCN(c4ccc(O)c5ncccc45)CC3)cc2N1
97 | O=C1c2ccccc2S(=O)(=O)N1CCCCN1CCN(c2ccccc2)CC1
98 | CN(C)CCCN1c2ccccc2Sc2ccc(Cl)cc21
99 | Cc1cc(Oc2ncccc2OC(F)F)ccc1-c1c(C)c(=O)[nH]c(=O)n1C
100 | Cn1c2ccccc2c(=O)c2c(=O)n(-c3cccc(Cl)c3)c(CC3CCCCC3)nc21
101 | Oc1cc2c(cc1O)C1c3ccccc3CNC1CO2
102 | CN1CCc2cc(O)ccc2Cc2ccc(O)cc2CC1
103 | OC1(c2ccc(Cl)c(C(F)(F)F)c2)CCN(CCCC(c2ccc(F)cc2)c2ccc(F)cc2)CC1
104 | CN1CCc2c([nH]c3ccccc23)CC(c2ccccc2)CC1
105 | Oc1ccc2c(c1)OC(CN1CCN(c3ccc(I)cc3)CC1)CC2
106 | O=c1c2ccccc2ncn1CCCCN1CCN(c2cccc(C(F)(F)F)c2)CC1
107 | CCCN(CCNC(=O)C=Cc1ccc(F)cc1)C1Cc2ccccc2C1
108 | O=C(CCCN1CCC(O)(c2ccc(Cl)cc2)CC1)c1ccc(F)cc1
109 | O=C1CCc2ccc(OCCCCN3CCN(c4ccc(O)c5c4OCCO5)CC3)cc2N1
110 | Cc1ccc(N2CCN(CCCOc3ccc(F)cc3)CC2)nc1
111 | CCN(CCCCNC(=O)c1ccc2ccccc2c1)CC1CC1c1cc(Cl)ccc1OC
112 | COc1ccc(-n2c(C3CCCC3)nc3c(c(=O)c4ccccc4n3C)c2=O)cc1
113 | CC(C)(C)c1nc(N2CCN(CCCCNC(=O)c3cc4ccccn4n3)CC2)cc(C(F)(F)F)n1
114 | CN1CCCc2cc(O)ccc2Cc2ccccc2CC1
115 | CN(C)C(=O)NC1CCC(CCN2CCN(c3cccc(Cl)c3Cl)CC2)CC1
116 | COc1ccccc1N1CCN(CCCNC(=O)NN(Cc2ccc(F)cc2)c2ccccc2)CC1
117 | O=C1CCc2ccc(OCCCCN3CCN(c4ccc(O)c5c4OCC(=O)N5)CC3)cc2N1
118 | CCCCn1cc(CCCOc2ccc(C(=O)NCCCCN(CCC)C3CCc4c(O)cccc4C3)cc2OC)nn1
119 | COc1ccc(F)cc1C1CC1CNCCCSc1nnc(-c2ccccc2)n1C
120 | CN1CCc2cc(Br)c(O)cc2C(c2ccccc2)C1
121 | CCCN(CCCCNC(=O)c1ccc2ccccc2c1)CC1CC1c1cc(F)ccc1OC
122 | CCN(CCCSc1nnc(-c2ccccc2)n1C)CC1CC1c1cc(F)ccc1OC
123 | O=C(NCCCCN1CCN(c2ccccc2OCCF)CC1)c1cc2ccccn2n1
124 | COc1ccc2c(c1)CCCN(C)CCCc1ccccc1C2
125 | CN1CCN(C2=Nc3cc(Cl)ccc3N(NC(=O)c3cccc4ccccc34)c3ccccc32)CC1
126 | Cn1c2ccccc2c(=O)c2c(=O)n(-c3ccccc3)c(C3CCCC3)nc21
127 | Oc1c2ccccc2cn1CCCCN1CCN(c2ccc(Cl)cc2)CC1
128 | CCCN(CCCCNC(=O)c1ccc2ccccc2c1)CC1CC1c1cccc(Cl)c1
129 | Oc1ccc2c(c1)OC(CNCc1ccccc1)CC2
130 | c1ccc(Cc2ccccc2OCCN2CCN(c3ccccc3)CC2)cc1
131 | Cc1cc(Oc2nccc3occc23)ccc1-c1c(C)ncc2nccn12
132 | CCCN(CCCCNC(=O)c1ccc(-c2ccccn2)cc1)CC1CC1c1cccc(Cl)c1
133 | CC(C)Cc1nc2c(c(=O)c3ccccc3n2C)c(=O)n1-c1ccccc1
134 | N#Cc1ccc(CCOC(=O)NC2CCN(CCCC(c3ccc(F)cc3)c3ccc(F)cc3)CC2)cc1
135 | Oc1ccc2c(c1)OC(CNCc1cccc(I)c1)CC2
136 | COc1ccc(F)cc1C1CC1CN(CCCSc1nnc(-c2ccccc2)n1C)CC1CC1
137 | COc1ccc2c(c1)CCN1Cc3ccccc3CC21
138 | CC(C)Cc1nc2c(c(=O)c3ccccc3n2C)c(=O)n1-c1ccc(Cl)cc1
139 | O=C1c2ccccc2S(=O)(=O)N1CCCCN1CCN(c2ccc(Cl)cc2)CC1
140 | O=C1Cc2ccccc2N1CCCCN1CCN(c2ccc(Cl)cc2)CC1
141 | COc1ccc(-n2c(CC(C)C)nc3c(c(=O)c4ccccc4n3C)c2=O)cc1Cl
142 | CN1CCc2ccccc2Cc2sc3ccccc3c2CC1
143 | Oc1cc2c(cc1O)C(c1ccccc1Br)CNCC2
144 | Cn1c2ccccc2c(=O)c2c(=O)n(-c3ccc(Cl)cc3)c(C3CCCCC3)nc21
145 | COc1cc2c3c(c1OC)-c1cc4c(cc1CC3N(C)CC2)OCO4
146 | CCCCN1CCC(COC(=O)c2cc(Cl)c(NC)c3c2OCCO3)CC1
147 | COc1ccc2c(c1OC)CN1CCc3cc4c(cc3C1C2)OCO4
148 | COc1ccccc1N1CCN(CCCCN2C(=O)Cc3ccccc32)CC1
149 | CCN(CC)CCCOc1cccc(N2C(=O)C(=Nc3cccc(C(F)(F)F)c3)c3ccccc32)c1
150 | Cn1c2ccccc2c(=O)c2c(=O)n(-c3ccccc3)c(C3CC3)nc21
151 | COc1ccc(-n2c(CC3CCCCC3)nc3c(c(=O)c4ccccc4n3C)c2=O)cc1Cl
152 | CN1CCOc2cc(O)ccc2Cc2ccccc2CC1
153 | O=C1CCc2ccc(OCCCCN3CCN(c4ccc(O)c5nc(O)ccc45)CC3)cc2N1
154 | Clc1ccc(N2CCCN(CCCc3cc4ccccc4o3)CC2)cc1
155 | Cn1c2ccccc2c(=O)c2c(=O)n(-c3cccc(Cl)c3)c(C3CCCC3)nc21
156 | Oc1cc2c(cc1O)C(c1ccccc1)CNCC2
157 | CC(C)(C)C#Cc1ccc2c(c1)C=C([N+](=O)[O-])C(C(F)(F)F)O2
158 | O=C1Cc2ccccc2N1CCCCN1CCN(c2ccccc2)CC1
159 | CN(C)CCOc1ccccc1Cc1ccccc1
160 | O=C1CCc2ccc(OCCCCN3CCN(c4cccc(Cl)c4Cl)CC3)cc2N1
161 | O=C1COc2c(N3CCN(CCCCOc4ccn5nccc5c4)CC3)ccc(O)c2N1
162 | CCCCN1CCC(c2cccc(O)c2)C1
163 | Fc1ccc(N2CCN(Cc3cccs3)CC2)cc1
164 | CN(CCCC12CCC(c3ccccc31)c1ccccc12)Cc1ccc(OCCCN2CCCCC2)cc1
165 | Oc1ccc2c(c1)CCN1Cc3ccccc3CC21
166 | OC1(c2ccc(Cl)cc2)CCN(CCCOc2ccc(F)cc2)CC1
167 | Cn1c2ccccc2c(=O)c2c(=O)n(-c3ccc(Cl)cc3)c(C3CCCC3)nc21
168 | COc1ccc(-n2c(CC(C)C)nc3c(c(=O)c4ccccc4n3C)c2=O)cc1
169 | Oc1ccc2c(c1)OC(CNCCN1CCN(c3ccc(OCCF)cc3)CC1)CC2
170 | CN1CCc2ccccc2Cc2cc(Cl)c(O)c(Cl)c2CC1
171 | COc1ccc2c(c1)OCCN(C)CCc1ccccc1C2
172 | C=CCN1CCc2cc(OC)c(O)cc2C(c2ccccc2Cl)C1
173 | CCCN(CCCCNC(=O)c1cc2ccccc2[nH]1)CC1CC1c1ccc(C(F)(F)F)cc1
174 | CN1CCc2ccccc2Cc2ccsc2CC1
175 | COc1cc2c(cc1O)C1Cc3ccc(O)c(OC)c3CN1CC2
176 | c1ccc2c(c1)CCN(CC1CC1)CCc1c([nH]c3ccccc13)C2
177 | CCCN(CCCCNC(=O)c1cc2ccccc2[nH]1)CC1CC1c1cc(Cl)ccc1OC
178 | CN1CCc2ccccc2Cc2ccc(O)cc2CC1
179 | COc1ccccc1N1CCN(CCCSc2nnc(-c3ccccc3)n2C)CC1
180 | CN1CCN(C2=Nc3cc(Cl)ccc3N(NC(=O)c3ccccc3Cl)c3ccccc32)CC1
181 | C=CCN1CCc2cc(O)c(O)cc2C(c2ccccc2Br)C1
182 | OC1(c2ccc(Cl)cc2)CCN(CCCCc2ccc(F)cc2)CC1
183 | FC(F)(F)c1cc(Oc2nccc3ccsc23)ccc1-c1cccc2nccn12
184 | c1ccc(Cc2ccccc2OCCN2CCCC2)cc1
185 | CCCCCCN1CCC(c2cccc(O)c2)C1
186 | COc1ccc2c(c1)CCN(C)CCc1cc(OC)ccc1C2
187 | COc1cc2c(cc1OC)C1Cc3ccc(O)c(OC)c3CN1CC2
188 | COc1cc2c(cc1O)C1Cc3ccc(OC)c(OC)c3CN1CC2
189 | CCCN(CCCCNC(=O)c1ccc2ccccc2c1)CC1CC1c1ccc(Cl)cc1
190 | Brc1ccc(NCCN2CCN(CCc3c[nH]c4ccccc34)CC2)cc1
191 | CCCN(CCCCNC(=O)c1cc2ccccc2[nH]1)CC1CC1c1cccc(Cl)c1Cl
192 | Fc1ccc(SCCCN2CCN(c3ncccn3)CC2)cc1
193 | CN1CCN(C2=Nc3cc(Cl)ccc3N(NC(=O)c3c(N)cccc3Cl)c3ccccc32)CC1
194 | COc1ccc2c(c1)Cc1ccccc1CCCN(C)CC2
195 | Oc1c2ccccc2cn1CCCCN1CCN(c2cccc(C(F)(F)F)c2)CC1
196 | Oc1ccc(N2CCN(CCCCOc3ccn4nccc4c3)CC2)c2c1OCCO2
197 | Oc1cc2ccccc2n1CCCCN1CCN(c2ccccc2)CC1
198 | c1ccc(Cc2ccccc2OCCN2CCOCC2)cc1
199 | CN1CCc2ccccc2Cc2ccc(O)c(Cl)c2CC1
200 | CCN(CCCSc1nnc(-c2ccccc2)n1C)CC1CC1c1cc(F)ccc1OCCF
201 | COc1cc2c(cc1O)C(c1ccccc1Cl)CN(C)CC2
202 | COc1ccc2c(c1)CCN(C)CCc1c([nH]c3ccccc13)C2
203 | COc1ccc(F)cc1C1CC1CN(C)CCCSc1nnc(-c2ccccc2)n1C
204 | COc1ccc2c(c1)CCCN(C)CCc1ccccc1C2
205 | CCCCCCCCCCN1CCC(c2cccc(O)c2)C1
206 | CCCN(CCN1CCN(CCc2c[nH]c3ccccc23)CC1)c1ccc(Br)cc1
207 | COc1c(OCCF)cccc1C(=O)C1CCN(CCc2ccc(F)cc2)CC1
208 | COc1cc2c(cc1OC)CN(Cc1ccccc1CNC(=O)c1ccc(C#N)cc1)CC2
209 | O=C1c2ccccc2CN1CCCCN1CCN(c2cccc(C(F)(F)F)c2)CC1
210 | CCCCCN1CCC(c2cccc(O)c2)C1
211 | CCOc1ccc(CCNC(=O)N2CCN(CCCC(c3ccc(F)cc3)c3ccc(F)cc3)CC2)cc1
212 | O=Cc1cnn2ccc(OCCCCN3CCN(c4ccc(O)c5c4OCC(=O)N5)CC3)cc12
213 | Fc1ccc(CCCCN2CCN(c3ccc(Cl)cc3)CC2)cc1
214 | C#CC1=CCC(N(CCC)CCCCNC(=O)c2ccc(OCCCc3cn(CCCC)nn3)c(OC)c2)CO1
215 | COc1ccc2[nH]c3c(c2c1)CCN(C)CCc1ccccc1C3
216 | CCCN(CCCCNC(=O)c1cc2ccccc2[nH]1)CC1CC1c1ccc(Cl)cc1
217 | COc1cc2c(cc1OC)Cc1ccccc1CCCN(C)CC2
218 | COc1cc2c(cc1OC)CN(Cc1ccccc1CNC(=O)c1cccc(C#N)c1)CC2
219 | COc1cc2c(cc1O)C(c1ccccc1)CNCC2
220 | CCCN(CCCCNC(=O)c1ccc2ccccc2c1)CC1CC1c1ccc(C(F)(F)F)cc1
221 | CN1CCc2ccccc2Cc2sccc2CC1
222 | COc1ccc(-n2c(C3CCCC3)nc3c(c(=O)c4ccccc4n3C)c2=O)cc1Cl
223 | Cc1ccc(-n2c(CC(C)C)nc3c(c(=O)c4ccccc4n3C)c2=O)cc1
224 | Cn1c2ccccc2c(=O)c2c(=O)n(-c3ccccc3)c(C3CCCCC3)nc21
225 | CN1CCCc2cc3c(cc2-c2ccccc2CC1)OCO3
226 | Clc1ccc2c(c1)N=C(N1CCN(Cc3ccc(OCCCN4CCCCC4)cc3)CC1)c1ccccc1N2
227 | CCN1CCc2ccccc2Cc2[nH]c3ccccc3c2CC1
228 | CCOc1ccc(F)cc1C1CC1CNCCCSc1nnc(-c2ccccc2)n1C
229 | CN1CCc2cc(Cl)c(O)cc2C(c2ccccc2)C1
230 | COc1cc2c(cc1OC)C1Cc3ccc(OC)c(OC)c3CN1CC2
231 | O=C(CCCN1CC[Si](O)(c2ccc(Cl)cc2)CC1)c1ccc(F)cc1
232 | COc1ccc2c(c1)Cc1ccccc1CCN(C)CC2
233 | CN(C)c1ccc(C(=O)NCCCCN2CCC(c3cccc(O)c3)C2)cc1
234 | CN1CCCc2cc(O)ccc2Cc2ccccc2C1
235 | COc1ccc(-n2c(C3CCCCC3)nc3c(c(=O)c4ccccc4n3C)c2=O)cc1
236 | CCCN(CCCCNC(=O)c1ccc(-c2ccccn2)cc1)CC1CC1c1ccc(Cl)cc1
237 | CC1Cc2c([nH]c3ccccc23)Cc2ccccc2CCN1C
238 | COc1cccc2c1Cc1ccccc1CCN(C)CC2
239 | FC(F)(F)c1cc(Oc2nccc3occc23)ccc1-c1cccc2nccn12
240 | CCCN(CCCCNC(=O)N=Nc1ccc(F)cc1)C1Cc2ccccc2C1
241 | COc1cc2c(cc1O)C(c1ccccc1Cl)CNCC2
242 | CCCCn1cc(CCCOc2ccc(C(=O)NCCCCN(CCC)CCc3ccc(O)c4nc(O)ccc34)cc2OC)nn1
243 | O=C1CCc2ccc(OCCCCN3CCCN(c4ccc(O)c5c4OCC(=O)N5)CC3)cc2N1
244 | O=C1CCc2ccc(OCCCCN3CCCN(c4cccc(Cl)c4Cl)CC3)cc2N1
245 | COc1ccc2c(c1)CCN(C)Cc1ccccc1CC2
246 | CN1CCCc2ccccc2Cc2[nH]c3ccccc3c2CC1
247 | CN1CCc2cc(O)c(O)cc2C(c2ccccc2Br)C1
248 | CN(CCC=C1c2ccccc2CCc2ccccc21)Cc1ccc(OCCCN2CCCCC2)cc1
249 | CN1CCc2ccccc2Cc2cc(O)c(O)cc2CC1
250 | CN1CCCc2ccccc2Cc2ccc(O)cc2CCC1
251 | Fc1ccc(OCCCN2CCC(c3ccc(Cl)cc3)CC2)cc1
252 | c1ccc(Cc2ccccc2OCCN2CCCCC2)cc1
253 | Cc1cc(Oc2nccc3occc23)ccc1-c1c(C)c(=O)[nH]c(=O)n1C
254 | O=C(OCc1cc2c(cc1Cl)OCO2)N1CCC(n2c(O)nc3ccccc32)CC1
255 | Cn1c2ccccc2c(=O)c2c(O)nc(C3CCCC3)nc21
256 | CCCN(CCCCNC(=O)c1cc2ccccc2[nH]1)CC1CC1c1cc(F)ccc1OC
257 | CN1CCc2ccccc2Cc2cc(N)c(O)cc2CC1
258 | Cc1ccc(-n2c(C3CCCCC3)nc3c(c(=O)c4ccccc4n3C)c2=O)cc1
259 | C[Si](C)(C)C#Cc1ccc2c(c1)C=C([N+](=O)[O-])C(C(F)(F)F)O2
260 | Cc1cc2c(s1)Nc1ccccc1N=C2N1CCN(C)CC1
261 | COc1ccccc1N1CCN(CCCCn2c(O)cc3ccccc32)CC1
262 | Fc1ccc(CCCCN2CCN(c3ccccn3)CC2)cc1
263 | CN1CCc2ccccc2Cc2[nH]c3ccccc3c2CC1C(=O)O
264 | COc1ccc(CN2CCOC(CCc3ccccc3)C2)cc1
265 | CC(=O)NCC#Cc1ccc2c(c1)C=C([N+](=O)[O-])C(C(F)(F)F)O2
266 | O=C1c2ccccc2S(=O)(=O)N1CCCCN1CCN(c2cccc(C(F)(F)F)c2)CC1
267 | CN1CCc2ccccc2Cc2cc(O)ccc2CC1
268 | Fc1ccc(SCCCN2CCN(c3ccc(Cl)cc3)CC2)cc1
269 | Oc1cc2ccccc2n1CCCCN1CCN(c2cccc(C(F)(F)F)c2)CC1
270 | Cc1ccc(-n2c(C3CCCC3)nc3c(c(=O)c4ccccc4n3C)c2=O)cc1
271 | c1ccc2c(c1)CCN1CCc3cccc4[nH]cc(c34)C21
272 | CCCN(CCCCNC(=O)c1ccc2ccccc2c1)CC1CC1c1cc(Cl)ccc1OC
273 | CN1CCC2C(C1)c1cccc3c1N2c1ccccc1CS3
274 | OC1(c2ccc(Cl)c(C(F)(F)F)c2)CCN(CCCCC(c2ccc(F)cc2)c2ccc(F)cc2)CC1
275 | O=C(OCCc1ccc(F)cc1)N1CCN(CCCC(c2ccc(F)cc2)c2ccc(F)cc2)CC1
276 | COc1cc2c(cc1OC)Cc1ccccc1CCN(C)CC2
277 | Oc1cc2c(c(Cl)c1O)CCNCC2c1ccccc1
278 | Clc1ccc(N2CCN(Cc3cccs3)CC2)cc1
279 | COc1ccccc1N1CCN(CCCCn2cc3ccccc3c2O)CC1
280 | CC(C)Cc1nc2c(c(=O)c3ccccc3n2C)c(=O)n1-c1cccc(Cl)c1
281 | COc1ccccc1N1CCN(CCCCN2C(=O)c3ccccc3S2(=O)=O)CC1
282 | O=C(CCCc1ccccc1)N1CCN(CCCC(c2ccc(F)cc2)c2ccc(F)cc2)CC1
283 | CCCCCCCCCN1CCC(c2cccc(O)c2)C1
284 | CCCCCCNCC1CCc2ccc(O)cc2O1
285 | CN1CCc2ccccc2Cc2ccccc2CC1
286 | Nc1nc(O)c2c(CCc3ccc(C(=O)NC(CCC(=O)O)C(=O)O)cc3)c[nH]c2n1
287 | Cc1cc2nc(N)nc(O)c2n1Cc1ccc([N+](=O)[O-])cc1
288 | C#CCN(Cc1ccc2c(c1)C(=O)NC(C)N2)c1ccc(C(=O)NC(CCC(=O)O)C(=O)O)cc1
289 | Cc1nc(N)nc2[nH]cc(CCc3ccc(C(=O)NC(CCC(=O)O)C(=O)O)cc3)c12
290 | COc1ccc2ccc3nc(N)nc(O)c3c2c1
291 | Nc1cc(N)c2c(ccc3nc(N)nc(O)c32)c1
292 | Nc1nc(O)c2c(n1)NCC(CCNc1ccc(C(=O)NC(CCC(=O)O)C(=O)O)cc1)N2
293 | Cc1[nH]c2nc(N)nc(O)c2c1Sc1ccc(Br)c([N+](=O)[O-])c1
294 | O=C1OC(c2ccc(O)c(F)c2)(c2ccc(O)c(F)c2)c2cccc3cccc1c23
295 | Nc1nc(O)c2c(ccc3ccc(I)cc32)n1
296 | Nc1nc(O)c2c(ccc3ccc(Br)c(N)c32)n1
297 | C#CCN(Cc1ccc2nc(C)nc(O)c2c1)c1ccc(S(=O)(=O)c2ccccc2)c(C(F)(F)F)c1
298 | Nc1nc(O)c2c(n1)CCc1ccc(Br)cc1-2
299 | CN(C)c1cccc2c(S(=O)(=O)Oc3ccc(CC(NS(=O)(=O)c4cccc5c(NC(=O)OCc6ccccc6)cccc45)C(=O)O)cc3)cccc12
300 | CN(Cc1ccncc1)c1ccc2c3c(cccc13)C(N)=N2
301 | Cc1cccc2c1CCc1nc(N)nc(O)c1-2
302 | O=C1OC(c2ccc(O)cc2)(c2ccc(O)cc2)c2c1ccc1ccccc21
303 | Nc1nc(O)c2c(ccc3cc([N+](=O)[O-])c(Br)cc32)n1
304 | O=S(=O)(c1ccc(CN2CCCc3cc4[nH]cnc4cc32)cc1)N1CCNCC1
305 | Cc1cc(Sc2c(C)ccc3nc(C)nc(O)c23)ccn1
306 | Nc1cc(N)c2nc(-c3ccccc3)c(Nc3ccc(F)cc3)nc2c1
307 | CCc1sc2nc(N)nc(O)c2c1Sc1ccc(Br)cc1
308 | Cc1ccc2c3c(ccc(N(C)Cc4ccncc4)c13)N=C2N
309 | Cc1[nH]c2nc(N)nc(O)c2c1Sc1ccc(C(=O)NC(CCC(=O)O)C(=O)O)cc1
310 | Cc1ccc2ccc3nc(N)nc(O)c3c2c1
311 | O=C1OC(c2ccc(O)c(F)c2)(c2ccc(O)c(F)c2)c2ccc(Cl)c3cccc1c23
312 | COc1ccc(S(=O)(=O)c2ccc(CN3CCCc4cc5c(cc43)nc(C)n5C)cc2)cc1
313 | CN(C)c1cccc2c(S(=O)(=O)Oc3ccc(CC(NS(=O)(=O)c4cccc5cc([N+](=O)[O-])ccc45)C(=O)O)cc3)cccc12
314 | Nc1nc(O)c2c(ccc3ccc(O)cc32)n1
315 | Nc1nc(O)c2c(ccc3c(Br)c(N)c(Br)cc32)n1
316 | O=C1OC(c2ccc(O)c(Br)c2)(c2ccc(O)c(Br)c2)c2cccc3cccc1c23
317 | Nc1nc(O)c2c(n1)CCc1cc([N+](=O)[O-])c(Br)cc1-2
318 | Cc1nc(O)c2c(Sc3ccc([N+](=O)[O-])cc3)c(C)ccc2n1
319 | CSc1ccc2c(c1)-c1c(O)nc(N)nc1CC2
320 | C#CCN(Cc1ccc2nc(N)nc(O)c2c1)c1ccc(C(=O)NC(CCC(=O)O)C(=O)O)cc1
321 | Cc1[nH]c2nc(N)nc(O)c2c1Sc1ccc(C(=O)NC(CCC(=O)O)C(=O)O)c(Cl)c1
322 | COc1ccc(Cn2c(C)cc3nc(N)nc(O)c32)cc1
323 | O=C1OC(c2ccc(O)cc2)(c2ccc(O)c(Br)c2)c2cccc3cccc1c23
324 | Cc1nc(O)c2c(n1)CCc1ccc(Br)cc1-2
325 | COc1ccc2nc(C)nc(O)c2c1Sc1ccncc1
326 | CN(Cc1ccnnc1)c1ccc2c3c(cccc13)C(N)=N2
327 | CCc1sc2nc(N)nc(O)c2c1Sc1cc(OC)cc(OC)c1
328 | O=C1OC(c2ccc(O)c(Cl)c2)(c2ccc(O)c(Cl)c2)c2ccc(Cl)c3cccc1c23
329 | CCc1sc2nc(N)nc(O)c2c1Sc1ccccc1
330 | Cc1[nH]c2nc(N)nc(O)c2c1Sc1ccc(Cl)c(Cl)c1
331 | Nc1nc(O)c2c(ccc3ccc(F)cc32)n1
332 | CN(Cc1ccc(S(=O)(=O)c2ccccc2)cc1)c1ccc2c3c(cccc13)C(N)=N2
333 | O=c1[nH]c(=O)n(C2OC(COP(=O)(O)O)C(O)C2O)cc1F
334 | Nc1nc(O)c2c(n1)CCc1ccc(O)cc1-2
335 | CNc1nc(O)c2c(n1)CCc1ccccc1-2
336 | CC(C)CC=NNC(=O)Nc1nnc(S)s1
337 | Cc1ccc2nc(N)nc(O)c2c1Sc1ccncc1
338 | Nc1nc(O)c2c(n1)CCc1ccccc1-2
339 | Cc1cc2nc(N)nc(O)c2n1Cc1ccc(Br)cc1
340 | O=C1OC(c2ccc(O)c(I)c2)(c2ccc(O)c(I)c2)c2c1ccc1ccccc21
341 | Cc1nc(O)c2c(Sc3cccnc3)c(C)ccc2n1
342 | Cc1nc(O)c2c(n1)CCc1ccc(F)cc1-2
343 | C#CCN(Cc1ccc2nc(C)nc(O)c2c1)c1ccccc1
344 | Cc1nc(O)c2c(ccc3ccccc32)n1
345 | CC(Cc1coc2nc(N)cc(N)c12)c1ccc(C(=O)NC(CCC(=O)O)C(=O)O)cc1
346 | Cc1nc(O)c2c(Sc3ccnnc3)c(C)ccc2n1
347 | Cc1sc2nc(N)nc(O)c2c1Sc1ccc(Cl)c(Cl)c1
348 | Nc1nc(O)c2c(ccc3ccc(Br)cc32)n1
349 | Nc1nc2cc3c(cc2[nH]1)N(Cc1ccc(S(=O)(=O)N2CCNCC2)cc1)CCC3
350 | Cc1nc(O)c2c(n1)CCc1ccc(Cl)cc1-2
351 | O=C1OC(c2cc(Br)c(O)c(Br)c2)(c2cc(Br)c(O)c(Br)c2)c2c1ccc1ccccc21
352 | COc1ccc(S(=O)(=O)c2ccc(CN3CCCc4cc5[nH]c(N)nc5cc43)cc2)cc1
353 | CCc1sc2nc(N)nc(O)c2c1Sc1ccccc1Cl
354 | Cc1sc2nc(N)nc(O)c2c1Sc1ccc2ccccc2c1
355 | CCc1[nH]c2nc(N)nc(O)c2c1Sc1ccc([N+](=O)[O-])cc1
356 | Nc1nc(O)c2c(n1)CCc1c(F)cccc1-2
357 | CCc1ccc2ccc3nc(N)nc(O)c3c2c1
358 | Nc1nc(O)c2c(ccc3ccc(Cl)cc32)n1
359 | Nc1nc2cc3c(cc2[nH]1)N(Cc1ccc2cc(CO)ccc2c1)CCC3
360 | Nc1nc(O)c2c(ccc3cc(F)cc(N)c32)n1
361 | CCSc1ccc2ccc3nc(N)nc(O)c3c2c1
362 | Cc1nc(O)c2c(Sc3ccnc(C(F)(F)F)c3)c(C)ccc2n1
363 | Nc1nc(O)c2c(n1)CCc1cc([N+](=O)[O-])ccc1-2
364 | Cc1sc2nc(N)nc(O)c2c1Sc1cc(Cl)cc(Cl)c1
365 | Nc1nc2cc3c(cc2[nH]1)N(Cc1ccc(S(=O)(=O)c2ccc(O)cc2)cc1)CCC3
366 | C#Cc1ccc2ccc3nc(N)nc(O)c3c2c1
367 | Cc1nc(O)c2c(Sc3ccncc3)c(O)ccc2n1
368 | CN(C)c1cccc2c(S(=O)(=O)Oc3ccc(CC(NS(=O)(=O)c4ccc(NC(=O)OCc5ccccc5)c5ccccc45)C(=O)O)cc3)cccc12
369 | CC1Cc2nc(N)nc(O)c2-c2ccccc21
370 | Nc1nc(O)c2c(ccc3cc(Cl)c(Cl)cc32)n1
371 | CCc1sc2nc(N)nc(O)c2c1Sc1ccc(Cl)cc1
372 | Nc1nc2cc3c(cc2[nH]1)N(Cc1ccc(S(=O)(=O)c2ccccc2)cc1)CCC3
373 | Nc1nc(O)c2c(ccc3c(N)cccc32)n1
374 | CCc1nc(N)nc2[nH]c(C)c(CCc3ccc(C(=O)NC(CCC(=O)O)C(=O)O)cc3)c12
375 | Cc1nc(O)c2c(n1)CCc1ccc(I)cc1-2
376 | CNc1nc2cc3c(cc2[nH]1)N(Cc1ccc(S(=O)(=O)c2ccccc2)cc1)CCC3
377 | O=C1OC(c2ccc(O)c(Br)c2)(c2ccc(O)c(Br)c2)c2c1ccc1ccccc21
378 | C#CCN(Cc1ccc2nc(C)nc(O)c2c1)c1ccc(S(=O)(=O)n2ccc3ccccc32)cc1
379 | CN(Cc1cnc2nc(N)nc(N)c2n1)c1ccc(C(=O)NC(CCC(=O)O)C(=O)O)cc1
380 | Cc1sc2nc(N)nc(O)c2c1Sc1ccc(Cl)cc1
381 | Cc1nc(O)c2c(Sc3ccncc3)cccc2n1
382 | Cc1sc2nc(N)nc(O)c2c1Sc1ccc([N+](=O)[O-])cc1
383 | Nc1nc(O)c2c(n1)CCc1c-2ccc2ccccc12
384 | O=c1[nH]c(=O)n(C2CC(O)C(COP(=O)(O)O)O2)cc1F
385 | Nc1ccc2c(c1)-c1c(O)nc(N)nc1CC2
386 | Cc1nc(N)nc2c1c(CCc1ccc(C(=O)NC(CCC(=O)O)C(=O)O)cc1)cn2Cc1ccccc1
387 | Nc1nc(O)c2c(n1)CCc1ccc(F)cc1-2
388 | Cc1nc(O)c2c(Sc3ccc(S(=O)(=O)c4ccccc4)cc3)c(C)ccc2n1
389 | Nc1ccc2c(c1)CCc1nc(N)nc(O)c1-2
390 | CCc1sc2nc(N)nc(O)c2c1Sc1cc(Cl)cc(Cl)c1
391 | Cc1cc2nc(N)nc(O)c2n1Cc1ccc(F)cc1
392 | Nc1nc(O)c2c(n1)CCc1cc(Cl)c(Cl)cc1-2
393 | Cc1cc2nc(N)nc(O)c2c2cc(Cl)ccc12
394 | Oc1nc(NCc2ccccc2)nc2ccc3c(Br)cccc3c12
395 | Cc1cc2nc(N)nc(O)c2n1Cc1ccc(Cl)c(Cl)c1
396 | Nc1nc(O)c2c(n1)CCc1ccc(Cl)cc1-2
397 | Cc1sc2nc(N)nc(O)c2c1Sc1ccccc1
398 | Nc1nc2cc3c(cc2[nH]1)CCCC3Sc1ccc(S(=O)(=O)c2ccccc2)cc1
399 | O=C1OC(c2ccc(O)c(Br)c2)(c2ccc(O)c(Br)c2)c2ccc(Cl)c3cccc1c23
400 | C#CCN(Cc1ccc2nc(C)nc(O)c2c1)c1ccc(C(=O)NC(CCC(=O)O)C(=O)O)cc1
401 | Nc1cc(N)c2nc(-c3ccccc3)c(Nc3ccc(Cl)c(Cl)c3)nc2c1
402 | COc1ccc(S(=O)(=O)c2ccc(CN3CCCc4cc5[nH]c(C)nc5cc43)cc2)cc1
403 | CN(C)c1cccc2c(S(=O)(=O)NC(Cc3ccc(OS(=O)(=O)c4cccc5c(N(C)C)cccc45)cc3)C(=O)O)cccc12
404 | O=[N+]([O-])c1cc([N+](=O)[O-])c2nc(-c3ccccc3)c(Nc3ccc(Cl)c(Cl)c3)nc2c1
405 | CCN(Cc1ccc(S(=O)(=O)N2CCNCC2)cc1)c1ccc2c3c(cccc13)C(=O)N2
406 | O=C1OC(c2ccc(O)c(Cl)c2)(c2ccc(O)c(Cl)c2)c2ccc3ccccc3c21
407 | COc1cc(Sc2c(C)ccc3nc(C)nc(O)c23)ccn1
408 | CSc1ccc2ccc3nc(N)nc(O)c3c2c1
409 | Cc1cc2nc(N)nc(O)c2c2ccccc12
410 | CCc1sc2nc(N)nc(O)c2c1Sc1ccc(F)cc1
411 | CCc1[nH]c2nc(N)nc(O)c2c1Sc1ccc(C(=O)NC(CCC(=O)O)C(=O)O)cc1
412 | Nc1nc2cc3c(cc2[nH]1)N(Cc1ccc(S(=O)(=O)N2CCOCC2)cc1)CCC3
413 | C#CCN(Cc1ccc2c(c1)C(=O)CC(C)N2)c1ccc(C(=O)NC(CCC(=O)O)C(=O)O)cc1
414 | CCc1sc2nc(N)nc(O)c2c1Sc1ccc(C(=O)NC(CCC(=O)O)C(=O)O)cc1
415 | Nc1nc(O)c2c(ccc3cccc([N+](=O)[O-])c32)n1
416 | Nc1nc(O)c2c(ccc3c(I)cccc32)n1
417 | COc1ccc2c(c1)-c1c(O)nc(N)nc1CC2
418 | CCc1sc2nc(N)nc(O)c2c1Sc1cccc(Cl)c1
419 | Cc1ccc2c(c1)-c1c(O)nc(N)nc1CC2
420 | CCOC(=O)CCC(NC(=O)c1ccc(Nc2nc3cc([N+](=O)[O-])cc([N+](=O)[O-])c3nc2-c2ccccc2)cc1)C(=O)OCC
421 | CCc1sc2nc(N)nc(O)c2c1Sc1ccc(Cl)c(Cl)c1
422 | CC1Cc2nc(N)nc(O)c2-c2cc(Cl)ccc21
423 | Cc1cc(CN(C)c2ccc3c4c(cccc24)C(N)=N3)ccn1
424 | Cc1ccc2nc(N)nc(O)c2c1Sc1ccnnc1
425 | CC1(C)Cc2nc(N)nc(O)c2-c2ccccc21
426 | Nc1nc(O)c2c(n1)CCc1ccc(I)cc1-2
427 | C#CCN(Cc1ccc2nc(C)nc(O)c2c1)c1cccc(C(F)(F)F)c1
428 | Cc1[nH]c2nc(N)nc(O)c2c1Sc1ccc(Cl)c([N+](=O)[O-])c1
429 | CCc1sc2nc(N)nc(O)c2c1Sc1ccc([N+](=O)[O-])cc1
430 | CCc1sc2nc(N)nc(O)c2c1Sc1ccncc1
431 | Cc1cc2nc(N)nc(O)c2n1Cc1ccc(Cl)cc1
432 | CN(C)c1cccc2c(S(=O)(=O)Oc3ccc(CC(NS(=O)(=O)c4cc5nnoc5c5ccccc45)C(=O)O)cc3)cccc12
433 | Cc1cc(C)c2c(c1)-c1c(O)nc(N)nc1CC2
434 | O=c1ccn(C2OC(COP(=O)(O)O)C(O)C2O)c(=O)[nH]1
435 | O=C1OC(c2ccc(O)c(Cl)c2)(c2ccc(O)c(Cl)c2)c2cccc3cccc1c23
436 | COc1ccc(Nc2nc3cc([N+](=O)[O-])cc([N+](=O)[O-])c3nc2-c2ccccc2)cc1OC
437 | CCSc1ccc2c(c1)-c1c(O)nc(N)nc1CC2
438 | Cc1[nH]c2nc(N)nc(O)c2c1Sc1ccc(C(=O)NC(CCC(=O)O)C(=O)O)c(F)c1
439 | Nc1ccc2ccc3nc(N)nc(O)c3c2c1
440 | Cc1cc2nc(N)nc(O)c2n1Cc1ccc(OC(F)(F)F)cc1
441 | Cc1nc(O)c2cc(CN(C)c3ccc(C(=O)NC(CCC(=O)O)C(=O)O)s3)ccc2n1
442 | Cc1sc2nc(N)nc(O)c2c1Sc1ccncc1
443 | CCc1sc2nc(N)nc(O)c2c1Sc1ccc2ccccc2c1
444 | Cc1cc2nc(N)nc(O)c2n1Cc1ccncc1
445 | Cc1cc(C)c2ccc3nc(N)nc(O)c3c2c1
446 | Cc1cc2nc(N)nc(O)c2n1Cc1ccc(C(=O)NC(CCC(=O)O)C(=O)O)cc1
447 | Cc1nc(O)c2c(Sc3ccncc3)c(C)ccc2n1
448 | Cc1nc(O)c2c(ccc3ccc(Br)cc32)n1
449 | Cc1sc2nc(N)nc(O)c2c1Sc1ccc(C(=O)N(CCC(=O)O)C(=O)O)cc1
450 | Nc1nc(O)c2c(n1)CCc1cc(N)c(Br)cc1-2
451 | O=C1OC(c2ccc(O)cc2)(c2ccc(O)cc2)c2ccc3ccccc3c21
452 | CC(Cc1coc2nc(N)nc(N)c12)c1ccc(C(=O)NC(CCC(=O)O)C(=O)O)cc1
453 | O=C1OC(c2ccc(O)c(F)c2)(c2ccc(O)c(F)c2)c2ccc3ccccc3c21
454 | Cc1sc2nc(N)nc(O)c2c1Sc1ccc(F)cc1
455 | Nc1nc(O)c2c(ccc3cc(N)c(Br)cc32)n1
456 | C#Cc1ccc2c(c1)-c1c(O)nc(N)nc1CC2
457 | Nc1nc2cc3c(cc2[nH]1)N(Cc1ccc(C(=O)NC(CCC(=O)O)C(=O)O)cc1)CCC3
458 | CN(Cc1ccc(S(=O)(=O)N2CCOCC2)cc1)c1ccc2c3c(cccc13)C(N)=N2
459 | C#CCN(Cc1ccc2nc(C)nc(O)c2c1)c1ccc(S(=O)(=O)c2ccccc2)cc1
460 | COc1ccc(S(=O)(=O)c2ccc(CN3CCCc4cc5c(cc43)nc(N)n5C)cc2)cc1
461 | Cc1[nH]c2nc(N)nc(O)c2c1Sc1ccc([N+](=O)[O-])cc1
462 | Nc1nc(O)c2c(ccc3cc(Br)c([N+](=O)[O-])cc32)n1
463 | CN(Cc1ccc(S(=O)(=O)N2CCNCC2)cc1)c1ccc2c3c(cccc13)C(=O)N2
464 | CCc1nc(N)nc2[nH]cc(CCc3ccc(C(=O)NC(CCC(=O)O)C(=O)O)cc3)c12
465 | C=Cc1ccc2ccc3nc(N)nc(O)c3c2c1
466 | Nc1nc(O)c2c(ccc3ccccc32)n1
467 | Cc1cccc2c1ccc1nc(N)nc(O)c12
468 | CN(C)c1cccc2c(S(=O)(=O)Oc3ccc(CC(NS(=O)(=O)c4cccc5cc(N)ccc45)C(=O)O)cc3)cccc12
469 | O=C1OC(c2cc(Cl)c(O)c(Cl)c2)(c2cc(Cl)c(O)c(Cl)c2)c2cccc3cccc1c23
470 | Cc1nc(O)c2c(ccc3ccc(F)cc32)n1
471 | COc1ccc(CC(=O)Nc2cc(OC)c(NC(=O)Nc3cnc(C#N)cn3)cc2Cl)cc1
472 | Cn1ncc2cc(-c3cnc(Nc4cnc(C#N)cn4)cc3NCC3CNCCO3)ccc21
473 | Cc1[nH]nc2cccc(-c3ccc(NC(=O)Nc4cccc(C(F)(F)F)c4)cc3)c12
474 | Cc1cccc(Nc2nc(NC3CCCCC3N)cnc2C(N)=O)c1
475 | O=C(NCc1ccc(Cl)cc1)Nc1cccc2[nH]ncc12
476 | Cc1cnc(-c2cnc(Nc3cnc(C#N)cn3)cc2NCC2CNCCO2)s1
477 | O=C(O)c1ccc(Nc2ncc3c(n2)-c2ccc(Cl)cc2C(c2c(F)cccc2F)=NC3)cc1
478 | Cc1cc(C)cc(NC(=O)Nc2ccc(-c3cccc4snc(N)c34)cc2)c1
479 | Nc1ncc(-c2ccncc2)c2scc(-c3ccc(NC(=O)Nc4cc(C(F)(F)F)ccc4F)cc3)c12
480 | Clc1csc2ncnc(Nc3ccccc3)c12
481 | CCCNC(=O)c1ccc(Nc2nc(CC)c3cc[nH]c3n2)cc1
482 | N#Cc1ccc2nc(N)n(-c3nccs3)c2c1
483 | COc1cc(-c2ccc3c(c2)Nc2ccc(CCOc4ccc(N5CCOCC5)cc4)cc2NC3=O)ccc1CC#N
484 | COCCOc1cc2c(cc1Cl)NC(=O)Nc1cnc(C#N)c(n1)OCCCCCO2
485 | COc1cc(-c2ccc3c(c2)NC(=O)C3=Cc2cc(C(=O)NCCN(C)C)c(C)[se]2)ccc1O
486 | OCCc1cc2ccnc(O)c2c2cc(Br)ccc12
487 | COc1cc(CCNCc2ccc(F)cc2)ccc1NC(=O)Nc1cnc(C#N)cn1
488 | N#Cc1ncc2nc1OCCCCOc1cc(NCc3cncs3)c(Cl)cc1NC(=O)N2
489 | N#Cc1c(-c2ccccc2)cc(-c2ccccc2)nc1NC(=S)Nc1ccccc1
490 | Cc1ccc(-c2cc3[nH]c4ccc(O)cc4c3c3c2C(=O)NC3=O)cc1
491 | COc1ccc(CNCc2ccc(NC(=O)Nc3cnc(C#N)cn3)c(OC)c2)cc1
492 | O=C(Nc1cccc(C(F)(F)F)n1)Nc1ccnc2cc(OC(F)F)ccc12
493 | CCN1CCc2sc(-c3cnc4[nH]c5cnc(C#N)cc5c4c3)cc2C1
494 | CC1Cn2ncc(C3CCN(S(C)(=O)=O)CC3)c2CN1c1cc(Cl)nc2[nH]ccc12
495 | COc1cc2c(cc1C(=O)NC1CCC(O)CC1)C(C)(C)c1c(C3C=CC(=C4C=CC(=O)C=C4)C=C3)n[nH]c1-2
496 | O=C1NC(=O)c2c1c1c3cccnc3[nH]c1c1cccn21
497 | COc1cccc(-c2ccc3c(c2)Nc2ccccc2NC3=O)c1
498 | Clc1ccc(CNc2ccc3nnc(-c4ccccc4)n3n2)cc1
499 | Nc1nccc(-c2cc3c([nH]2)C(CCF)CNC3=O)n1
500 | N#Cc1ncc2nc1OCCCCCOc1cc(OCc3cccnc3)c(Cl)cc1NC(=O)N2
501 | O=C(NCc1ccc(Cl)cc1)c1cc2c(-c3ccccc3)[nH]nc2s1
502 | NC(=O)c1cnc(NC2CCCNC2)c2cc(-n3ccnc3)sc12
503 | CNC(=O)c1cc(Oc2ccc(NC(=O)Nc3cccc(C(F)(F)F)c3)cc2)ccn1
504 | N#Cc1ncc(Nc2cc3ccccc3cn2)nc1OC1CCCNC1
505 | Cc1ccccc1-c1cc2[nH]c3ccc(O)cc3c2c2c1C(=O)NC2=O
506 | Cc1[nH]c(C=C2C(=O)Nc3ccc(F)cc32)c(C)c1C(=O)NCC(O)CN1CCOCC1
507 | N#Cc1cnc(Nc2ncc(C(F)(F)F)c(NCC3CNCCO3)n2)cn1
508 | COc1cc2ncn(-c3cc(OCc4ccccc4C(F)(F)F)c(C(=O)O)s3)c2cc1OC
509 | CNc1nccn2c(-c3ccnc(NCC(C)(C)CO)n3)c(-c3ccc(F)cc3)nc12
510 | Clc1cc(-c2c[nH]c3ncccc23)cc(NCc2ccccc2)n1
511 | Cc1[nH]c(-c2ccccc2)c(-c2ccccc2)c1-c1nnc(C)c2nn(-c3ccccc3)cc12
512 | CNc1nc(Nc2cnc(C#N)c(OC3CCCNC3)c2)ncc1-c1ccnn1C
513 | Cc1nc(N)sc1-c1ccnc(Nc2ccc(N3CCOCC3)cc2)n1
514 | Brc1cccc(Oc2ccc3c(C=Cc4ccccc4)[nH]nc3c2)c1
515 | CC1CCC(NCc2ccc3c(c2)Cc2c(-c4ccc(O)cc4)n[nH]c2-3)CC1
516 | Oc1ccc(Nc2ncnc3scc(Cl)c23)cc1
517 | CC(=O)c1nn(-c2ccccc2)c(=Nc2nc(-c3ccccc3)cc(-c3ccccc3)c2C#N)s1
518 | Cc1cccc(NC(=O)Nc2ccc(-c3csc4c(-c5cnn(CC(C)O)c5)cnc(N)c34)cc2)c1
519 | CC(C)NCc1ccc(Nc2cc(-c3ccc(-c4ccc(O)cc4O)cc3)[nH]n2)cc1
520 | OCc1ccc2c(c1)Cc1c(-c3ccc(-c4ccc(O)cc4)cc3)n[nH]c1-2
521 | Cn1cc(-c2cnn3c(N)c(-c4ccc(NC(=O)Nc5cccc(C(F)(F)F)c5)cc4)cnc23)cn1
522 | COc1cccc(C(C)NC(=O)c2cnc(-c3ccncc3)s2)c1
523 | C#Cc1cn(C2CCCC2)c2ncnc(N)c12
524 | Cc1[nH]c(-c2ccccc2)c(-c2ccccc2)c1C(=O)c1cn(-c2ccccc2)nc1C(=O)Nc1ccccc1
525 | c1ccc(CSc2n[nH]c(-c3ccncc3)n2)cc1
526 | CCCCn1c(NC(=O)c2ccc(C#N)cc2)nc2cc(N(C)C(=O)C3CCCCC3)ccc21
527 | COc1cc(-c2nn(C3CCC(N4CCN(C(C)=O)CC4)CC3)c3ncnc(N)c23)ccc1NC(=O)c1cc2ccccc2n1C
528 | CN(C)CCNC(=O)c1ccc2c(c1)Cc1c(-c3ccc(-c4ccc(O)cc4)cc3)n[nH]c1-2
529 | COc1ccccc1-c1cc2[nH]c3ccc(O)cc3c2c2c1C(=O)NC2=O
530 | CN(C)CC(=O)N1CCC(c2ccc(NC(=O)c3nc(C#N)c[nH]3)c(C3=CCCCC3)c2)CC1
531 | CC(=NN=C(N)N)c1cc(NC(=O)c2cccc(C(=O)Nc3cc(C(C)=NN=C(N)N)cc(C(C)=NN=C(N)N)c3)c2)cc(C(C)=NN=C(N)N)c1
532 | CCN(Cc1cc(Nc2nc(C)cn3c(-c4cn[nH]c4)cnc23)sn1)C(C)(C)CO
533 | Cn1nnc(-c2ccc3nc(O)c(-c4cc5cc(CN6CCCCC6)ccc5[nH]4)cc3c2)n1
534 | COc1cc(-c2ccc3c(c2)Nc2ccccc2NC3=O)ccc1C(C)=O
535 | CCCNC(=O)c1ccc(Nc2nc(CCC(F)(F)F)c3cc[nH]c3n2)cc1
536 | COc1c(-c2nc3ccccc3[nH]2)c(O)cc2oc(C)cc(=O)c12
537 | Nc1ncnc2onc(-c3ccc(NC(=O)Nc4cccc(C(F)(F)F)c4)cc3)c12
538 | CCCC(=O)Nc1nn(C(=O)CC)c2nc3ccccc3cc12
539 | Cc1[nH]nc2ccc(-c3cncc(OCC(N)Cc4ccccc4)c3)cc12
540 | Brc1ccc2[nH]nc(-c3ccccc3)c2c1
541 | N#Cc1ncc(Nc2ncc(-c3cccs3)cn2)cc1OC1CCCNC1
542 | CC1CSc2c(C(=O)O)c(=O)c3cc(F)c(N4CCC(N)C4)cc3n21
543 | O=C(O)c1ccc(-c2n[nH]c3c2Cc2cc(CNC4CCC(O)CC4)ccc2-3)cc1
544 | CC(C)CC(=O)Nc1[nH]nc2c1CN(C(=O)C1CCN(C)CC1)C2(C)C
545 | COc1cccc(C(C)NC(=O)c2cc(C)c(-c3ccc4[nH]nc(C)c4c3)s2)c1
546 | c1cc(-c2cc3c(cn2)[nH]c2ncc(-c4ccc(CN5CCCCC5)cc4)cc23)ccn1
547 | FC(F)(F)c1ccc(-c2nnc3ccc(NC4CC4)nn23)cc1
548 | N#Cc1cnc(NC(=O)Nc2ccc(CCNCc3ccccc3F)c(Cl)c2)cn1
549 | CC(C)c1nnc2ccc(-c3c(-c4ccc(F)cc4F)nc4n3CCC4)nn12
550 | CCCCC(Sc1nc2c(O)cccc2c(=O)n1-c1cccc(Cl)c1)C(=O)N1CCC(C(N)=O)CC1
551 | COc1cc(OC)c(Nc2ccc3nnc(-c4ccccc4)n3n2)cc1Cl
552 | COC(=O)c1ccc2[nH]c(O)c(C(=Nc3ccc(N(C)C(=O)CN4CCN(C)CC4)cc3)c3ccccc3)c2c1
553 | COc1ccc(-c2cc(N)n(-c3nc(C(=O)Nc4ccccc4N4CCNCC4)cs3)n2)cc1
554 | O=C(NOCc1ccccc1)c1ccc2c(-c3nc4ccccc4[nH]3)[nH]nc2c1
555 | COc1cc(-c2ccc3c(-c4cc5cc(CN6CCCCC6)ccc5[nH]4)[nH]nc3c2)ccc1O
556 | CNc1ccnc(Nc2cnc(C#N)c(OC(C)CN(C)C)n2)c1
557 | Cn1cc(-c2cc3nc(Br)cnc3[nH]2)c2ccccc21
558 | COCC(=O)N1CCN(Cc2ccc3[nH]c(-c4cc5cc(-c6cn[nH]c6)ccc5nc4O)cc3c2)CC1
559 | N#Cc1cc2c(cn1)[nH]c1ncc(-c3ccc(CN4CCC5(CC4)COC5)cc3)cc12
560 | NC(=O)c1cnc(N(CCc2ccccc2)C2CCCNC2)c2cc(-c3ccccc3)sc12
561 | N#Cc1cc2c(cn1)[nH]c1ncc(-c3cccnc3)cc12
562 | COc1cc(Nc2ncc(F)c(Nc3ccc4c(n3)NC(=O)C(C)(C)O4)n2)cc(OC)c1OC
563 | CSc1ccc(-c2nc(-c3ccc(F)cc3)c(-c3ccncc3)[nH]2)cc1
564 | Fc1ccc(-c2ncn(CCN3CCOCC3)c2-c2ccc3[nH]ncc3c2)cc1
565 | Oc1nc2ccc(Br)cc2cc1-c1cc2cc(CN3CCCCC3)ccc2[nH]1
566 | COc1cc(NC(=O)CCCOc2ccccc2)c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1
567 | Cn1cc(-c2ccc3c(CCCN)cc4ccnc(O)c4c3c2)cn1
568 | CS(=O)(=O)N(Cc1ccc2nc(O)c3cccn3c2c1)C1CC1
569 | COc1ccc(-c2ccc(NC(=O)Nc3ccc(F)c(C)c3)cc2)c2c(N)noc12
570 | O=C(Nc1ccccc1N1CCNCC1)c1csc(N2CCc3c(F)ccc(F)c3C2)n1
571 | Cc1ccccc1NC(=O)Nc1ccc(NC(=O)c2csc3ncnc(N)c23)cc1
572 | CCOc1ccc(NC(=O)Nc2ccc(-c3csc4c(-c5cnn(C)c5)cnc(N)c34)cc2)cc1
573 | COc1ccc(CNCCc2cc(OC)c(NC(=O)Nc3cnc(C#N)cn3)cc2Cl)cc1
574 | O=C1NC(=O)c2c1c(-c1ccccc1)cc1[nH]c3cc(O)ccc3c21
575 | N#Cc1ccc2cc(-c3cc4cc(CN5CCC(CN)CC5)ccc4[nH]3)c(O)nc2c1
576 | O=C1CCCN1Cc1ccc2c(c1)nc(O)c1cccn12
577 | Cc1cc2c(NC3CCCNC3)ncc(C(N)=O)c2s1
578 | CC=C(C=CC=C1C(=O)Nc2cc(-c3ccc(O)c(OC)c3)ccc21)C(=O)O
579 | CCCCC(Sc1nc2ccccc2c(=O)n1-c1cccc(C)c1)C(=O)N1CCCC2(CCCNC2)C1
580 | NCC1CCN(Cc2ccc3[nH]c(-c4cc5cc(C(N)=O)ccc5nc4O)cc3c2)CC1
581 | CN(C)CC1CCn2cc(c3ccccc32)C2=C(C(=O)NC2=O)c2cn(c3ccccc23)CCO1
582 | Cn1cc(-c2cc3c(NC4CCCNC4)ncc(C(N)=O)c3s2)cn1
583 | N#Cc1ccc(Nc2ncc(C(F)(F)F)c(NC3CCCNC3)n2)cn1
584 | Cc1ccccc1-c1c(-c2ccc3[nH]nc(N)c3c2)nnn1Cc1ccccc1
585 | NC1CCN(c2ncnc3[nH]c4cnccc4c23)CC1
586 | COc1cc(Nc2nccc(Nc3cc(C4CCCCC4)no3)n2)cc(OC)c1OC
587 | Cc1c(C(=O)N2CCOc3ccc(-c4ccc(N)nc4)cc3C2)ccc(S(C)(=O)=O)c1F
588 | CNc1nc(Nc2cnc(C#N)c(OCC3CCCNC3)c2)ncc1C(F)(F)F
589 | O=C1NC(=O)c2c1c1c(O)cccc1c1[nH]c3ccccc3c21
590 | Cc1nccn2c(-c3ccnc(NCC4(O)CC4)n3)c(-c3ccc(F)cc3F)nc12
591 | COc1cc(CCNC(C)c2ccc(N3CCNCC3)cc2)c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1
592 | [O][N+](=O)c1ccc(Nc2nccc(Nc3ccccc3C(=O)O)n2)cc1
593 | N#Cc1ncc(Nc2cc3cccc(Cl)c3cn2)nc1OC1CCCNC1
594 | COc1cc(-c2ccc3c(c2)Nc2ccc([N+]([O])=O)cc2NC3=O)ccc1O
595 | C=Cc1cnc(O)c2c1cc(CCCN)c1ccc(-c3cn[nH]c3)cc12
596 | COc1cccc(-c2cc3[nH]c4ccc(O)cc4c3c3c2C(=O)NC3=O)c1
597 | NCCCc1cc2c(-c3ccc(O)cc3)cnc(O)c2c2cc(-c3cn[nH]c3)ccc12
598 | N#Cc1cc2c(cn1)[nH]c1ncc(-c3ccccc3O)cc12
599 | COc1cc(C=C(C#N)c2nc3ccccc3[nH]2)c(Br)cc1O
600 | O=C(NCC(F)(F)F)c1cc(-c2cnn3cc(-c4ccc(OCCN5CCCCC5)cc4)cnc23)cs1
601 | COCCN1CC(C(N)=O)(N(C)Cc2cc3c(Nc4cccc(Cl)c4F)ncnc3cc2OC)C1
602 | CN(C)CCOc1cc2c(cc1Cl)NC(=O)Nc1cnc(C#N)c(n1)OCCCCCO2
603 | CC(C)(C)N=c1c(O)c(O)c1=Nc1ccnc(Nc2ccc(-c3ccncc3)cc2)n1
604 | O=C1C=C(O)C=CC1=C1C=CC(c2cc(Nc3ccc(CN4CCCCC4)nc3)[nH]n2)C=C1
605 | CCCCC(Sc1nc2ccccc2c(=O)n1-c1ccccc1)C(=O)N1CCC(C(N)=O)CC1
606 | NCCOc1cccc(Nc2ccnc(N)n2)c1
607 | COc1cc2c(cc1C(=O)NCc1ccccn1)Cc1c(-c3ccc(-c4ccc(O)c(C#N)c4)cc3)n[nH]c1-2
608 | Nc1nonc1-n1nnc(C(=O)NN=Cc2ccncc2)c1-c1ccccc1
609 | O=C1NC(=O)c2c1c(-c1cc(O)ccc1Cl)cc1[nH]c3ccc(O)cc3c21
610 | CNc1nc(Nc2cnc(C#N)c(OC(C)CN(C)C)c2)ncc1-c1cnn(C)c1
611 | COc1cc(-c2ccc3c(c2)NC(=O)C3=CC2CCCN2)ccc1O
612 | OC1CCC(Nc2cc(Cl)nc(-c3c[nH]c4ncccc34)n2)CC1
613 | O=C(O)c1ccc(-c2[nH]nc3c2Cc2cc(CN4CCOCC4)ccc2-3)cc1
614 | O=C(Cc1ccccc1)Nc1cccc(-c2nc3sccn3c2-c2ccnc(Nc3cccc(N4CCOCC4)c3)n2)c1
615 | c1cc(-c2cc3c(cn2)[nH]c2ncc(-c4ccc(CN5CCCCC5)cc4)cc23)cnn1
616 | N#Cc1c(-c2ccccc2)cc(-c2ccccc2)nc1N=c1scc(-c2ccccc2)n1-c1ccccc1
617 | CCCOc1nc(NC(C)=O)cc(N)c1C#N
618 | COc1cc(Nc2cnc(C#N)c(OC3CCN(C)C3)n2)ncc1-c1cnn(C)c1
619 | COc1ccc(NC(=O)Nc2ccc(-c3csc4c(-c5cnn(CCO)c5)cnc(N)c34)cc2)cc1
620 | Nc1c(-c2ccc(NC(=O)Nc3cccc(C(F)(F)F)c3)cc2)ccc2nccnc12
621 | CC(=O)c1nn(-c2ccc(C)cc2)c(=Nc2nc(-c3ccccc3)cc(-c3ccccc3)c2C#N)s1
622 | COc1cc(O)ccc1-c1ccc2c(c1)NC(=O)C2=Cc1cc[nH]c1
623 | N#Cc1cnc(Nc2cc(NCC3CNCCO3)c(C#N)cn2)cn1
624 | C(=Cc1[nH]nc2cc(-c3cccc4[nH]ccc34)ccc12)c1ccccc1
625 | CNc1cc(Nc2cnc(C#N)c(OC(C)CN(C)C)n2)ncc1-c1cnn(C)c1
626 | COCCNc1nccc(-c2c(-c3ccc(F)cc3)nc3cnccn23)n1
627 | CC(C)(C)OC(=O)n1ncc2cc(Nc3c(NCc4ccc(Cl)cc4Cl)c(=O)c3=O)ccc21
628 | NC(=O)c1ccc(-c2[nH]nc3c2Cc2cc(CN4CCC(O)CC4)ccc2-3)cc1
629 | O=C1NC(=O)c2c1c1c(O)ccc3c1c1c2c2ccccc2n1C1(O3)OC(CO)C(O)C(O)C1O
630 | CC(C)(C)n1nc(-c2ccc(Cl)cc2)c2c(N)ncnc21
631 | O=C(NNC(=S)Nc1ccc(F)cc1)C(O)(c1ccccc1)c1ccccc1
632 | CC(=O)Nc1ccc(-n2nc3ccc(N)nc3n2)cc1
633 | CC(=O)c1ccccc1-c1ccc2c(c1)Nc1ccccc1NC2=O
634 | COc1cc(-c2ccc3c(c2)NC(=O)C3=CC=CC=CC(=O)NCCCn2ccnc2)ccc1O
635 | OCCNc1cc2cc(-c3ccsc3)ccc2cn1
636 | NS(=O)(=O)c1cccc(Nc2ncc3ccn(Cc4ccccc4)c3n2)c1
637 | NC(COc1cncc(-c2ccc3c(c2)C(=Cc2ccco2)C(=O)N3)c1)Cc1c[nH]c2ccccc12
638 | Cc1ccc(-n2nc(C(C)(C)C)cc2NC(=O)Nc2ccc(OCCN3CCOCC3)c3ccccc23)cc1
639 | NC(=O)c1ncc(NC2CCCNC2)c2nc(-c3ccc(Cl)cc3)cn12
640 | Oc1nnc(-c2c[nH]c(-c3ccccc3)c2-c2ccccc2)c2cn(-c3ccc(Cl)cc3)nc12
641 | O=C(Nc1cnccc1N1CCNCC1)c1csc(N2Cc3ccccc3C2)n1
642 | COc1cccc(Nc2ncnn3ccc(CN4CCC(N)C(O)C4)c23)c1
643 | Cc1cccc(NC(=O)Nc2ccc3c(c2)CCc2sc4ncnc(N)c4c2-3)c1
644 | Nc1ccc(-c2cc3[nH]c4ccc(O)cc4c3c3c2C(=O)NC3=O)cc1
645 | Cc1sc(C(=O)NC2C(N)CCCC2(F)F)cc1-c1cnn2cc(Cl)cnc12
646 | Cc1cccc(NC(=O)Nc2ccc(-c3noc4ncnc(N)c34)cc2)c1
647 | CC1COCCN1c1nc(-c2c(F)ncc3[nH]ccc23)cc2c1ncn2C
648 | Clc1cc(-c2c[nH]c3ncccc23)nc(NC2CCCCC2)n1
649 | N#Cc1ncc2nc1OCCCCCOc1cc(OCCO)c(Cl)cc1NC(=O)N2
650 | O=C1Nc2cc(-c3ccc(O)cc3)ccc2C1=Cc1ccc(C(=O)NCCCn2ccnc2)[se]1
651 | COc1cc(-c2ccc3nc(O)c(-c4cc5cc(CN6CCCCC6)ccc5[nH]4)cc3c2)ccc1O
652 | O=C(Nc1cnc2[nH]cc(-c3ccccc3)c2c1)c1ccc(Cl)cc1
653 | Oc1cc(-c2ccncc2)nc(NC2CCCCC2)n1
654 | COc1ccc(C=C2C(=O)ON=C2c2ccc(Br)cc2)cc1OC
655 | NCCCc1cc2ccnc(O)c2c2cc(Br)ccc12
656 | CC1CCC(NCc2ccc3c(c2)Cc2c(-c4ccc(CC(=O)O)cc4)n[nH]c2-3)CC1
657 | O=C1NC(=O)c2c1c(-c1ccccc1I)cc1[nH]c3ccc(O)cc3c21
658 | NCCCc1cc2c(-c3ccc(Cl)cc3Cl)cnc(O)c2c2cc(-c3cn[nH]c3)ccc12
659 | CC1CCC(NCc2ccc3c(c2)Cc2c(-c4ccc(OC(F)(F)F)cc4)n[nH]c2-3)CC1
660 | CN(C(=O)C1CCCCC1)c1ccc2c(c1)nc(NC(=O)c1ccc(C#N)cc1)n2C
661 | CC(C)S(=O)(=O)n1c(N)nc2ccc(-c3c(-c4ccc(F)cc4)nc4sccn34)cc21
662 | N#Cc1cc2c(cn1)[nH]c1ncc(-c3ccc(CO)cc3)cc12
663 | Oc1ccc(-c2ccc(-c3cc(Nc4ccc(CNC5CC5)cc4)[nH]n3)cc2)c(O)c1
664 | NC(=O)c1cnc(SC2CCCNC2)c2cc(-c3ccccc3)sc12
665 | COc1cc2ncnc(Nc3cccc(Cl)c3F)c2cc1CNC(C)C(N)=O
666 | COc1cc(CN2CCCC2)ccc1NC(=O)Nc1cnc(C#N)cn1
667 | Sc1nnc2c3c4c(sc3n3c(S)nnc3n12)CCC4
668 | N#Cc1ccc(Nc2ncc(C(F)(F)F)c(NCCCNC3CC3)n2)cn1
669 | COc1cc(C=C(C#N)c2[nH]nc(N)c2C#N)ccc1O
670 | O=C(Nc1ccc2c[nH]nc2c1)c1ccc(Cl)cc1
671 | COc1cc(-c2ccc3c(c2)NC(=O)C3=Cc2ccc(C(=O)NCCN3CCOCC3)[se]2)ccc1O
672 | N#Cc1ncc2nc1OCCCCCOc1cc(CCCO)c(Cl)cc1NC(=O)N2
673 | Cc1c(C)n(Cc2ccccc2)c2ccc(C(=O)Nc3nc[nH]n3)cc12
674 | Cc1ncc2c(n1)CN(c1nc(C(=O)Nc3ccccc3N3CCNCC3)cs1)C2
675 | N#Cc1cnc(Nc2cc3[nH]cnc3cn2)cn1
676 | NC(=O)c1cccc2[nH]c(-c3ccncc3)nc12
677 | NC(=O)Nc1cc(-c2ccc(F)cc2)sc1C(=O)NC1CCCNC1
678 | CC(O)C#Cc1cc2c(cc1Cl)NC(=O)Nc1cnc(C#N)c(n1)OCCCCCO2
679 | COc1ccccc1CNCCc1ccc(NC(=O)Nc2cnc(C#N)cn2)cc1Cl
680 | O=C(Nc1ccccc1N1CCNCC1)c1csc(N2Cc3c[nH]nc3C2)n1
681 | Cc1cn2c(-c3ccnc(NCC(C)(C)CO)n3)c(-c3ccc(F)cc3F)nc2c(C)n1
682 | O=C(Nc1cccc(C(F)(F)F)n1)Nc1ccnc2cc(C(F)(F)F)ccc12
683 | NC(=O)C1CCCN(C(=O)c2cc(-c3ccc4[nH]ncc4c3)on2)C1
684 | O=c1c(NCc2ccc(Cl)cc2Cl)c(Nc2ccc3[nH]ncc3c2)c1=O
685 | COc1ccc(-c2cc3c([nH]2)C(=O)NCCC3=C2N=C(N)NC2=O)cc1
686 | CCOc1cc(-c2ccc3c(C=Cc4ccccc4)[nH]nc3c2)ccc1O
687 | CCCCCCCCCCCCCCCCn1cc[n+](Cc2ccccc2)c1C
688 | CC(C)(O)c1nnc2ccc(-c3c(-c4ccc(F)cc4F)nc4n3CCC4)nn12
689 | O=C(Nc1cccc(Cl)c1)Nc1ncc(CCNc2ncnc3ccsc23)s1
690 | COc1cccc(C(C)NC(=O)c2ccc(-c3ccncc3C)cc2)c1
691 | Cc1c[nH]c(-c2cnc(NCCNc3ccc(C#N)cn3)nc2-c2ccc(Cl)cc2Cl)n1
692 | NC(=O)c1cccc(Nc2nccc(Nc3cccc4[nH]ncc34)n2)c1
693 | CCOC(=O)c1nn(-c2ccc(C)cc2)cc1C(=O)c1c(C)[nH]c(-c2ccccc2)c1-c1ccccc1
694 | O=C1N=c2ccc(N3C=CNN3)cc2=CC1=C1C=c2cc(CN3CCCCC3)ccc2=N1
695 | CC1(C)CC2=Nc3cc(Cl)ccc3SC2=C(O)C1
696 | NCC1CCN(c2cc(Nc3cnccn3)ncn2)CC1
697 | Cc1ccc(-n2cc(C(=O)c3c(C)[nH]c(-c4ccccc4)c3-c3ccccc3)c(C(=O)Nc3ccccc3)n2)cc1
698 | NS(=O)(=O)c1ccc(N=Cc2c(O)[nH]c3ccc4ncsc4c23)cc1
699 | N#CC(=C1Nc2ccccc2S1)c1ccnc(NCCc2cccnc2)n1
700 | Cc1ccnc(Nc2cc(C)nc(-c3ccccc3)n2)c1
701 | Cc1[nH]c(C=C2C(=O)Nc3ccc(S(=O)(=O)Cc4c(Cl)cccc4Cl)cc32)c(C)c1C(=O)N1CCCC1CN1CCCC1
702 | CC1COCCN1c1nc(-c2cncc3[nH]ccc23)cc2c1ncn2C
703 | Cc1csc(NC(=O)c2sc3nc(-c4ccncc4)ccc3c2N)n1
704 | CC=C(C=CC=C1C(=O)Nc2cc(-c3cccc(O)c3)ccc21)C(=O)NCCN(C)C
705 | CCS(=O)(=O)c1ccc(-c2cncc3sc(C(N)=O)cc23)cc1
706 | CC1Cn2ncc(-c3ccc(S(C)(=O)=O)cc3)c2CN1c1ccnc2[nH]ccc12
707 | COc1ccc(OC)c(CNC(=O)c2cc(N)c(C#N)c(OC(C)C)n2)c1
708 | CC(C)Oc1[nH]nc(O)c1C=C1C=Nc2ccccc21
709 | Cc1cnc(Nc2ccc(OCCN3CCCC3)cc2)nc1Nc1cccc(S(=O)(=O)NC(C)(C)C)c1
710 | O=c1c2cc(F)c(NCc3ccccc3)c(F)c2n(C2CC2)c2snc(O)c12
711 | CN1CCN(c2nc(C3=C(c4c[nH]c5ccccc45)C(=O)NC3=O)c3ccccc3n2)CC1
712 | CNc1nc(Nc2cnc(C#N)c(OCC3CCNCC3)c2)ncc1-c1cnn(C)c1
713 | N#Cc1cnc(NC(=O)Nc2ccc(CCNCc3ccc(N4CCOCC4)cc3)c(Cl)c2)cn1
714 | N#Cc1ncc2nc1OCCCCOc1ccc(Cl)cc1NC(=O)N2
715 | CNC(=O)c1ccccc1Nc1nc(Nc2ccc(N3CCOCC3)cc2OC)ncc1Cl
716 | CCOc1nc(C(=O)NCc2ccccc2S(N)(=O)=O)cc(N)c1Cl
717 | CCN(CC)CC=Cc1nc(O)c2c(ccc3nc(Nc4c(Cl)cccc4Cl)n(C)c32)c1C
718 | N#Cc1cnc(NC(=O)Nc2ccc(CCNCCc3ccc(F)cc3)c(Cl)c2)cn1
719 | COc1cc(-c2ccc3c(c2)NC(=O)C3=Cc2c[nH]c3nc(C#N)ccc23)ccc1O
720 | CN1CCN(c2ccc(-c3cncc(-c4ccc(-c5nn[nH]n5)cc4)n3)cc2)CC1
721 | CCN(CC)C(=O)Nc1ccc2nc(-c3ccco3)c(-c3ccco3)nc2c1
722 | C(=Cc1[nH]nc2cc(-c3ccnc4[nH]ncc34)ccc12)c1ccccc1
723 | COc1cccc(C(C)NC(=O)c2cnc(-c3ccncc3)nc2)c1
724 | CN(C)S(=O)(=O)c1ccc(-c2cnn3c2CN(c2ccnc4[nH]ccc24)CC3)cc1
725 | CN1CCN(c2ccc(-c3cncc(-c4ccc5c(O)[nH]nc5c4)n3)cc2)CC1
726 | CCn1c(-c2nonc2N)nc2c(C#CC(C)(C)O)ncc(OCC3CCCNC3)c21
727 | O=C1NC(=O)c2c1c1c3ccc(OCc4ccccc4)cc3[nH]c1c1[nH]c3ccncc3c21
728 | Nc1nccc(-c2c(-c3ccc(F)cc3)ncn2C2CCNCC2)n1
729 | N#Cc1cccc(-c2c[nH]c3ncnc(N4CCOC(CN)C4)c23)c1
730 | O=C1NC(=O)c2c1cc(C(=O)NCc1ccccc1)c1[nH]c3ccccc3c21
731 | O=C(Nc1ccc([N+](=O)[O-])cc1)N1CCc2[nH]c3c(Cl)cc(Cl)cc3c2C1
732 | O=C(Cc1ccccc1Cl)Nc1ccc2c[nH]nc2c1
733 | COc1cc(NC(=O)Cc2cccnc2)c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1
734 | N#Cc1cnc(NC(=O)Nc2ccc3cc(C(=O)O)ccc3c2)cn1
735 | COc1cc(O)ccc1-c1ccc2c(-c3nc4ccccc4[nH]3)[nH]nc2c1
736 | NC(=O)c1cc2c(-c3ccc(Br)c(F)c3F)cncc2s1
737 | C[S+]([O-])c1ccc(-c2cc3[nH]c4ccc(O)cc4c3c3c2C(=O)NC3=O)cc1
738 | CCCc1ccc2nccc(NC(=O)Nc3cccc(C(F)(F)F)n3)c2c1
739 | Oc1nc2ccc(Cl)cc2c(NC2CN3CCC2CC3)c1-c1nc2ccccc2[nH]1
740 | CN(CCO)c1ncnc2oc(-c3ccccc3)c(-c3ccccc3)c12
741 | CS(=O)(=O)Nc1ccc(-c2ccc3[nH]nc(N)c3c2)cc1
742 | NCCc1cc2ccnc(O)c2c2cc(-c3cn[nH]c3)ccc12
743 | CC(O)Cn1cc(-c2cnc(N)c3c(-c4ccc(NC(=O)Nc5cccc(F)c5)cc4)csc23)cn1
744 | Cc1ccc(NC(=O)Nc2ccc(-c3csc4c(-c5cnn(C(C)C(=O)N(C)C)c5)cnc(N)c34)cc2)cc1
745 | Cn1cc(-c2cnc(N)c3c(-c4ccc(NC(=O)Nc5cccc(F)c5)cc4)csc23)cn1
746 | NCCCc1cc2c(c3cc(-c4cn[nH]c4)ccc13)C(=O)N=CC2c1cccc(O)c1
747 | O=C(NN=Cc1cc(Br)c(O)c(Br)c1)Nc1ccccc1
748 | Cc1cc(C)cc(NC(=O)Nc2ccc(-c3cccc4sncc34)cc2)c1
749 | CC(C)(C)NC(=O)c1ccc2nc3[nH]c4ccccc4c3nc2c1
750 | Cc1ccc(NC(=O)Nc2ccc(-c3cccc4c3CNC4=O)cc2)cc1C
751 | NC(=O)c1cnc(NCC2CCCNC2)n2cc(-c3ccc(Cl)cc3)nc12
752 | CC(C)(C)NCc1ccc2c(c1)-c1[nH]nc(-c3ccc(-c4ccc(O)cc4)cc3)c1C2
753 | CNCCNc1cc(Nc2ncc(C(F)(F)F)c(NC)n2)cnc1C#N
754 | Nc1ccc(-c2cc3[nH]c4ccc(O)cc4c3c3c2C(=O)NC3=O)c(Br)c1
755 | COC(C(=O)N1Cc2[nH]nc(NC(=O)c3ccc(N4CCN(C)CC4)cc3)c2C1)c1ccccc1
756 | CC1COCCN1c1nc(-c2cccc3[nH]ccc23)cc2c1ncn2CS(C)(=O)=O
757 | NC1CCC(Nc2nccc(-c3c[nH]c4ncccc34)n2)CC1
758 | Cc1[nH]nc2ccc(-c3cncc(OCC(N)Cc4cccc(OC(F)(F)F)c4)c3)cc12
759 | CCCOc1cccc(C(C)NC(=O)c2ccc(-c3ccncc3)cc2)c1
760 | CCOc1nc(NC(C)=O)cc(N)c1C#N
761 | Cc1[nH]c(C=C2C(=O)Nc3ccccc32)c(C)c1CCC(=O)O
762 | CC(=O)c1ccccc1-c1cc2[nH]c3ccc(O)cc3c2c2c1C(=O)NC2=O
763 | COc1cc(NC(=O)c2ccco2)c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1
764 | C[S+]([O-])c1ccc(-c2nc(-c3ccc(F)cc3)c(-c3ccncc3)[nH]2)cc1
765 | COc1ccc(-c2cc3nccn3c(Nc3ncccc3C(N)=O)n2)cc1OC
766 | COc1cc(-c2ccc3c(c2)NC(=O)C3=Cc2ncc[nH]2)ccc1O
767 | Oc1ccc(-c2ccc(-c3[nH]nc4c3Cc3ccccc3-4)cc2)cc1
768 | N#Cc1cnc(Nc2cc(NCC3CNCCO3)c(-c3ccc(F)cc3)cn2)cn1
769 | O=C(NCC1CCCCC1)c1cc2c(-c3ccccc3)[nH]nc2s1
770 | N#Cc1ncc2nc1OCCCCCOc1cc(O)c(Cl)cc1NC(=O)N2
771 | CCOc1nc(C(=O)NCc2cccnc2)cc(N)c1C#N
772 | Cc1cccc(NC(=O)Nc2ccc(NC(=O)c3csc4ncnc(N)c34)cc2)c1
773 | Cn1cc(-c2cnc(Nc3cnc(C#N)cn3)cc2NCC2CNCCO2)cn1
774 | Oc1ccc(-c2ccc(-c3[nH]nc4c3Cc3cccc(O)c3-4)cc2)cc1
775 | COc1ccc2cn(-c3nc(C(=O)Nc4ccccc4N4CCNCC4)cs3)c(O)c2c1
776 | CSc1nn(-c2ccccn2)c(N)c1C(N)=O
777 | Cn1cc(-c2cnc(N)c3c(-c4ccc(NC(=O)Nc5ccc(OC(F)F)cc5)cc4)csc23)cn1
778 | COCCC(C(N)=O)N(C)Cc1cc2c(Nc3cccc(Cl)c3F)ncnc2cc1OC
779 | COc1cccc(C(C)NC(=O)c2sc(-c3ccncc3)nc2C)c1
780 | Cc1cccc(NC(=O)Nc2ccc(-c3csc4c(C#CCN5CCCC5)cnc(N)c34)cc2)c1
781 | NCC1CN(c2ncnc3[nH]c4cnccc4c23)CCO1
782 | CNC(=O)C1CCCN1Cc1cc2c(Nc3cccc(Cl)c3F)ncnc2cc1OC
783 | COc1ccc2c(NC(=O)Nc3cccc(Br)n3)ccnc2c1
784 | Cn1cc(-c2ccc3nc(O)c(-c4cc5cc(CN6CCCCC6)ccc5[nH]4)cc3c2)cn1
785 | COc1cc2c(Nc3ccc(NC(=O)c4ccccc4)cc3)ncnc2cc1OCCCN1CCOCC1
786 | Cc1ccc(Cn2cc(-c3ccc4[nH]ncc4c3)nn2)c(C)c1
787 | Nc1ccc(-c2csc3c(C=Cc4nc5ccccc5[nH]4)cnc(N)c23)cc1
788 | CC(=O)N1CCN(Cc2ccc3[nH]c(-c4cc5cc(-c6cn[nH]c6)ccc5nc4O)cc3c2)CC1
789 | COC(=O)c1cnc(Nc2cnc(C#N)cn2)cc1NCC1CCCNC1
790 | COc1ccc(-c2ccc3c(C=Cc4ccccc4)[nH]nc3c2)cn1
791 | Cc1nnc(-c2cc3c(Oc4ccc(C(F)(F)F)cc4)cncc3s2)o1
792 | N#Cc1cnc(Nc2cc(NCC3CNCCO3)c(Cl)cn2)cn1
793 | COc1cc(OCCNCc2ccc(F)cc2)ccc1NC(=O)Nc1cnc(C#N)cn1
794 | NC(=O)C1CCN(C(=O)C(Sc2nc3ccccc3c(=O)n2-c2cccc(Cl)c2)c2ccccc2)CC1
795 | CCOC(=O)c1cn(-c2ccc(O)cc2C)c2cc(-c3ccncc3)ccc2c1=O
796 | Cc1nc(Nc2ncc(C(=O)Nc3c(C)cccc3Cl)s2)cc(N2CCN(CCO)CC2)n1
797 | Oc1nnc(O)c2c(N=Nc3c(-c4ccccc4)nn(-c4ccccc4)c3O)cccc12
798 | NCCCc1cc2c(-c3ccccc3Cl)cnc(O)c2c2cc(-c3cn[nH]c3)ccc12
799 | NC(COc1cncc(-c2ccc3c(c2)CC(=O)N3)c1)Cc1c[nH]c2ccccc12
800 | COCCNCCCNc1nc(Nc2ccc(C#N)nc2)ncc1C(F)(F)F
801 | Cc1ccc2c(c1)NC(=O)c1ccccc1N2
802 | C#Cc1nc(Nc2cccc(CC(N)=O)c2)nc2nc[nH]c12
803 | N#Cc1ncc2nc1OCCCCCOc1ccc(Cl)cc1NC(=O)N2
804 | NC(=O)c1cnc(NC2CCNCC2)c2nc(-c3ccc(Cl)cc3)cn12
805 | COCCOC1CCC(n2nc(-c3ccc(Nc4nc5cc(C)cc(Cl)c5o4)cc3)c3c(N)ncnc32)CC1
806 | NCCn1cc(-c2cc(-c3cc4ccccc4s3)c3[nH]ncc3c2)c2nc(N)ncc21
807 | NC(COc1cncc(-c2cc3cnccc3s2)c1)Cc1c[nH]c2ccccc12
808 | CCc1nc(Nc2ccc(N3CCOCC3)c(Cl)c2)nc2[nH]ccc12
809 | Fc1ccc(-c2nc3occn3c2-c2ccnc(NC3CCNCC3)n2)cc1
810 | COc1cc(OC)c(NC(=O)Nc2cnc(C#N)cn2)cc1Cl
811 | CSc1cccc(Nc2ncc3cc(-c4c(Cl)cccc4Cl)c(=O)n(C)c3n2)c1
812 | Oc1nc2sc(Cl)cc2c(NC2CCNC2)c1-c1nc2ccccc2[nH]1
813 | CNC1CCN(c2nc3ncc(C(=O)O)c(O)c3c(C)c2Br)C1
814 | Nc1nnc2ccc(-c3ccccc3)cn12
815 | N#Cc1cc2c(cn1)[nH]c1ncc(-c3ccc(CN4CCC(F)CC4)cc3)cc12
816 | Nc1ncnc2c1c(I)nn2C1OC(CO)C(O)C1O
817 | Cc1cc(C)c2c(n1)sc1c(N)ncnc12
818 | Cc1[se]c(C=C2C(=O)Nc3cc(-c4ccc(O)cc4)ccc32)cc1C(=O)NCCN1CCCC1
819 | O=C(Nc1cnccc1N1CCNCC1)c1csc(Nc2[nH]nc3ccccc23)n1
820 | CC(C)N1CCN(C(=O)c2ccc(NC(=O)Nc3ccc(-c4nc(C5CCOCC5)nc(N5C6CCC5COC6)n4)cc3)cc2)CC1
821 | Cc1ccc2c(c1)C(=NC1CCNCC1)C(c1nc3ccccc3[nH]1)C(=O)N2
822 | O=C1C=CC(=C2C=CC(c3[nH]nc4c3Cc3cc(C(=O)NCc5ccccn5)ccc3-4)C=C2)C=C1
823 | NCCNC(=O)c1cccc(CNC(=O)c2cc3c(c4c2[nH]c2ccc(O)cc24)C(=O)NC3=O)c1
824 | CC(C)Nc1cc2c(cc1Cl)NC(=O)Nc1cnc(C#N)c(n1)OCCCCCO2
825 | Cc1cc(-c2cnc(Nc3cc(Cl)cc(Cl)c3)nc2NC2CCC(N(C)C)CC2)on1
826 | O=C(Nc1ccc(O)cc1)c1ccc2c(-c3nc4cc5c(cc4[nH]3)OCO5)[nH]nc2c1
827 | CSc1ccccc1CNc1ncc([N+](=O)[O-])c(NCC2CCC(CN)CC2)n1
828 | Cc1cc(Nc2cc(N3CCN(C)CC3)nc(C=Cc3ccccc3)n2)n[nH]1
829 | Cc1[nH]c(-c2ccccc2)c(-c2ccccc2)c1C(=O)c1cn(-c2ccc(Cl)cc2)nc1C(=O)Nc1ccccc1
830 | COc1cc(-c2ccc3c(c2)Nc2ccc(N4CCCC4=O)cc2NC3=O)ccc1N
831 | COc1cc(-c2ccc3c(c2)NC(=O)C3=Cc2ccc(C(=O)NCCCn3ccnc3)[se]2)ccc1O
832 | NC(=O)Nc1sc(-c2ccc(F)cc2)cc1C(=O)NC1CCCNC1
833 | COc1cccc(NC(=O)c2cnn3c(-c4ccccc4)ccnc23)c1
834 | O=C(O)c1cc2c(-c3cccc(F)c3)cncc2s1
835 | CC(N)C1CCC(C(=O)Nc2ccnc3[nH]ccc23)CC1
836 | Cc1cccc(NC(=O)Nc2ccc(-c3csc4ncnc(N)c34)cc2)c1
837 | CN1CCC(CNc2nc(Nc3ccc(C#N)nc3)ncc2C(F)(F)F)CC1
838 | Oc1cc2c(cn1)[nH]c1ncc(-c3ccc(CN4CCCCC4)cc3)cc12
839 | Nc1ccc(-c2cncc(OCC(N)Cc3c[nH]c4ccccc34)c2)cc1C(=O)c1ccccc1F
840 | CC(C)(C)OC(=O)n1cc(-c2cncn2C2CCCCC2)c2ccccc21
841 | COc1cc2c(cc1CCC(=O)N(C)C)Nc1cc(-c3ccc([N+](=O)[O-])c(OC)c3)ccc1C(=O)N2
842 | O=C(Nc1cccc(Cl)c1)Nc1nc(CCNc2ncnc3ccsc23)cs1
843 | CNC(=O)c1nn(C)c2c1CCc1cnc(NC3CCN(C(=O)C4CCN(S(C)(=O)=O)CC4)CC3)nc1-2
844 | c1nnc(-c2cc3c(cn2)[nH]c2ncc(-c4ccc(CN5CCCCC5)cc4)cc23)o1
845 | Cc1cc(O)ccc1-n1cc(C(=O)NN)c(=O)c2ccc(-c3ccncc3)cc21
846 | Cc1[nH]c(-c2ccccc2)c(-c2ccccc2)c1C(=O)c1cn(-c2ccccc2)nc1-c1ccccc1
847 | Oc1nc2ccccc2c(NC2CN3CCC2CC3)c1-c1nc2ccccc2[nH]1
848 | O=C1Nc2cncc(n2)OCCCCCOc2ccc(Cl)cc2N1
849 | Cc1ccc(C(=O)Nc2c(C(N)=O)sc3ccc(Cl)c(Cl)c23)cc1
850 | CC(=O)c1nn(-c2ccccc2)cc1C(=O)c1c(C)[nH]c(-c2ccccc2)c1-c1ccccc1
851 | CCNc1nc(C)c(-c2ccnc(Nc3ccc(N4CCN(C(C)=O)CC4)cc3)n2)s1
852 | COc1cc2c(cc1CN1CCN(C)CC1)Cc1c(-c3ccc(-c4ccc(O)cc4)cc3)n[nH]c1-2
853 | O=C1NC(=O)c2c1c(-c1cccc(O)c1)cc1[nH]c3ccc(O)cc3c21
854 | COc1cc(-c2ccc3c(c2)NC(=O)C3=Cc2cc[nH]c2)ccc1O
855 | O=C(NN=Cc1ccc(Sc2nc3ccccc3[nH]2)o1)c1cccc([N+](=O)[O-])c1
856 | N#Cc1ccc(NC(=O)Nc2ccnc3cc(C(F)(F)F)ccc23)nc1
857 | COc1ccccc1-c1ccnc(Nc2cccc(S(C)(=O)=O)c2)n1
858 | Cc1ccc(CN=c2c(O)c(O)c2=Nc2ccncc2)cc1C
859 | CC(C)Oc1nccn2c(-c3ccnc(NCC(C)(C)O)n3)c(-c3ccc(F)cc3F)nc12
860 | COC(=O)c1cnc(Nc2cnc(C#N)c(OC3CCNC3)n2)cc1N(C)C
861 | N#Cc1cnc(Nc2cc(N3CCC(CN)CC3)ncn2)cn1
862 | CN(c1ncccc1CNc1nc(Nc2ccc3c(c2)CC(=O)N3)ncc1C(F)(F)F)S(C)(=O)=O
863 | O=C1NC(=O)c2c1c1[nH]cnc1c1[nH]c3ccccc3c21
864 | COC(=O)CCc1c(C)[nH]c(C=C2C(=O)Nc3cc(-c4ccc(O)c(OC)c4)ccc32)c1C
865 | Cc1c(Nc2c(C#N)cncc2C=Cc2cccc(S(=O)(=O)N3CCN(C)CC3)c2)ccc2[nH]ccc12
866 | O=C(Nc1ccccc1N1CCNCC1)c1csc(Nc2ccccc2)n1
867 | Oc1nc2sc(Br)cc2c(NC2CCCNC2)c1-c1nc2ccccc2[nH]1
868 | NS(=O)(=O)c1ccc(N=Nc2c(O)[nH]c3ccc4ncccc4c23)cc1
869 | Oc1nc(-c2ccccc2)cc(-c2ccc3[nH]ncc3c2)n1
870 | CCCn1cc(-c2cnc(N)c3c(-c4ccc(NC(=O)Nc5cccc(F)c5)cc4)csc23)cn1
871 | CCNC(=O)c1cnc(Nc2cnc(C#N)cn2)cc1NCC1CCNCC1
872 | CN1CCN(c2ccc(-c3cncc(-c4ccc(C(N)=O)cc4)n3)cc2)CC1
873 | COc1ccc(-c2ccc(NC(=O)Nc3cccc(Br)c3)cc2)c2c(N)noc12
874 | CC(Oc1cc(-n2cnc3ccc(CN4CCN(C)CC4)cc32)sc1C(N)=O)c1ccccc1C(F)(F)F
875 | CNc1nc(Nc2cnc(C#N)c(NCCN(C)C)c2)ncc1C(F)(F)F
876 | Nc1nonc1-n1nnc(C(=O)NN=Cc2cccs2)c1-c1ccccc1
877 | COC(=O)c1cnc(Nc2cnc(C#N)cn2)cc1NCC1CCNCC1
878 | O=C1Nc2ccc(Cl)cc2C(=NC2CCNCC2)C1c1nc2ccccc2[nH]1
879 | CNc1nc(Nc2cnc(C#N)c(OC3CCCNC3)c2)ncc1-c1cccc(F)c1
880 | Cc1c(-c2cccc(OCc3ccccc3)c2)c2c(N)ncnc2n1C1CC(CN2CCCC2)C1
881 | COC(=O)c1cnc(Nc2cnc(C#N)cn2)cc1NC1CC2CCC(C1)N2C
882 | COc1ccc(N2CCN(C)CC2)cc1Nc1ncc2c(n1)-c1c(c(C(N)=O)nn1C)CC2
883 | Oc1nc2sccc2c(NC2CCNC2)c1-c1nc2ccccc2[nH]1
884 | Oc1ccc(-c2ccc(-c3[nH]nc4c3Cc3cc(O)ccc3-4)cc2)cc1
885 | COC(=O)c1ccc(-c2ccc3c(c2)Nc2ccccc2NC3=O)cc1OC
886 | COc1cccc(C(C)NC(=O)c2ccc(-c3ccncn3)cc2)c1
887 | CCOC(=O)c1cnc2[nH]nc(-c3cccc(C#N)c3)c2c1N1CCOC(CN)C1
888 | N#Cc1ccc2c(c1)C(c1ccc3c(n1)CCCC3O)C(=O)N2
889 | Clc1cccc(Nc2nc(N3CCOCC3)c3[nH]cnc3n2)c1
890 | COc1cc(-c2ccc3c(c2)NC(=O)C3=Cc2[nH]c(C)cc2C)ccc1O
891 | CCS(=O)(=O)N1CCN(c2ccc(Nc3ncc(C(N)=O)c(NC4CC4)n3)cc2)CC1
892 | CCCC(=O)Nc1[nH]nc2ccc(-c3cn(Cc4ccccc4)nn3)cc12
893 | CN1CCN(c2cccc(-c3cnc4[nH]c5cnc(C#N)cc5c4c3)c2)CC1
894 | NC1CCCCC1Nc1nccc(-c2c[nH]c3ncccc23)n1
895 | COc1ccc(C(=O)Nc2ccccc2C(=O)O)cc1OC
896 | O=C(Nc1cnccn1)Nc1ccnc2ccc(C(F)(F)F)cc12
897 | C=CCC=CC1=c2ccc(-c3ccc(O)c(OC)c3)cc2=NC1=O
898 | O=C(Nc1ccc(O)cc1)c1ccc2c(-c3nc4ccccc4[nH]3)[nH]nc2c1
899 | CNc1nc(Nc2cnc(C#N)c(OCCN(C)C)c2)ncc1-c1cnn(C)c1
900 | CCc1c(-c2ccc(C(C)(C)O)cc2)[nH]c2nccnc12
901 | Oc1nc2ccsc2c(NC2CCCNC2)c1-c1nc2ccccc2[nH]1
902 | NCCNc1ncnc2[nH]c3cnccc3c12
903 | N#Cc1cnc(Nc2cc(NCC3CNCCO3)c(-c3ccc(F)c(F)c3)cn2)cn1
904 | c1cnc(-c2cc3c(cn2)[nH]c2ncc(-c4ccc(CN5CCCCC5)cc4)cc23)cn1
905 | NC(=O)Nc1sc(-c2cc(F)cc(F)c2)cc1C(=O)NC1CCCNC1
906 | N#Cc1cc2c(cn1)[nH]c1ncc(-c3ccoc3)cc12
907 | CNc1cc(Nc2cnc(C#N)c(OC(C)CN(C)C)n2)ncc1C1CC1
908 | COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1
909 | Cc1cc(OCc2ccc(Cl)c(Cl)c2)ccc1CN1CC(C(=O)O)C1
910 | CCC1C(=O)N(C)c2cnc(Nc3ccc(C(=O)NC4CCCCC4)cc3OC)nc2N1C1CCCC1
911 | O=C1NC(=S)SC1=C1C(=O)Nc2ccc(Br)cc21
912 | c1cc2cc(-c3ccc4c[nH]nc4c3)cnc2[nH]1
913 | N#Cc1ccccc1-c1cc2[nH]c3ccc(O)cc3c2c2c1C(=O)NC2=O
914 | Cc1ccc(F)c(NC(=O)Nc2ccc(-c3cncc4c3c(N)nn4C)cc2)c1
915 | N#Cc1ncc2nc1OCCCCCOc1cc(OCc3ccncc3)c(Cl)cc1NC(=O)N2
916 | NC(=O)c1ccc(NC2CCCNC2)c2cc(-c3ccc(Cl)cc3)[nH]c12
917 | Clc1ccc(-c2[nH]ncc2-c2ccncn2)cc1Cl
918 | COc1cccc(CNC(=O)c2ccc(-c3ccncc3)cc2)c1
919 | COc1cc2ncnc(Nc3cccc(Cl)c3F)c2cc1CN(C(C)C)C(C)C(N)=O
920 | Cc1nc(COc2ccccc2Cl)sc1-c1ccnc(N)n1
921 | COc1cccc(OC)c1-c1cc2[nH]c3ccc(O)cc3c2c2c1C(=O)NC2=O
922 | CN1CCN(c2ccc(-c3cnc4[nH]c5cnc(C#N)cc5c4c3)cc2)CC1
923 | COc1cc(-c2ccc3c(c2)Nc2ccccc2NC3=O)ccc1C#N
924 | O=C(Nc1cc(C(F)(F)F)cc(C(F)(F)F)c1)c1cc(Cl)ccc1O
925 | Cc1ccc2c(c1)C(=NC1CN3CCC1CC3)C(c1nc3ccccc3[nH]1)C(=O)N2
926 | COCOc1cccc(OCOC)c1-c1ccc(NS(C)(=O)=O)cc1C(=O)OC
927 | Oc1nnc(-c2c[nH]c(-c3ccccc3)c2-c2ccccc2)c2cn(-c3ccccc3)nc12
928 | Clc1ccc2c(c1)nnc1nnnn12
929 | CN(C)c1ccc(-c2cc(-c3ccc([N+](=O)[O-])cc3)nc(NS(=O)(=O)c3ccc(N)cc3)n2)cc1
930 | NC(=O)Nc1sc(-c2ccc(Cl)c(Cl)c2)cc1C(=O)NC1CCCNC1
931 | CNCCCNc1nc(Nc2ccc(C#N)nc2)ncc1C(F)(F)F
932 | COc1ccc2c(NC(=O)Nc3cccc(C(F)(F)F)n3)ccnc2c1
933 | COc1cc2c(cc1CCO)Nc1cc(-c3ccc([N+](=O)[O-])c(OC)c3)ccc1C(=O)N2
934 | Nc1nnc(-c2cc3c(Oc4ccc(Cl)cc4)cncc3s2)o1
935 | Oc1ccc(-c2ccc(-c3cc(Nc4ccccc4)[nH]n3)cc2)c(O)c1
936 | Cc1cc2cc(-c3csc4c(-c5cccc(S(C)(=O)=O)c5)cnc(N)c34)ccc2[nH]1
937 | COc1cc2c(cc1CNC1CCC(O)CC1)Cc1c(-c3ccc(-c4ccc(O)cc4)cc3)n[nH]c1-2
938 | CNc1nc(Nc2cnc(C#N)c(OC3CCCNC3)c2)ncc1C(F)(F)F
939 | COc1cncc(C=Cc2ccncc2)c1
940 | COC(=O)Nc1ccc(-c2nc(N3CCOCC3)c3cnn(C4CCN(C(=O)OC)CC4)c3n2)cc1
941 | COc1cc(CNCc2ccc(F)cc2)ccc1NC(=O)Nc1cnc(C#N)cn1
942 | N#Cc1c(-c2ccccc2)cc(-c2ccccc2)nc1N=c1sc(C(=O)Nc2ccccc2)nn1-c1ccccc1
943 | CC1CCC(NCc2ccc3c(c2)Cc2c(-c4ccc(S(=O)(=O)NCCO)cc4)n[nH]c2-3)CC1
944 | COc1cc(-c2ccc3c(c2)NC(=O)C3=Cc2cc(C(=O)O)c(C)[se]2)ccc1O
945 | O=c1ncn2nc(Sc3ccc(F)cc3F)ccc2c1-c1c(Cl)cccc1Cl
946 | N#Cc1ccc2c(CCCN)cc3ccnc(O)c3c2c1
947 | Nc1[nH]nc2cccc(-c3ccc(NC(=O)Nc4ccccc4)cc3)c12
948 | CN1CCN(c2ccc(-c3cncc(-c4ccc(C(=O)O)cc4)c3)cc2)CC1
949 | O=C(c1ccccc1)c1ccc2c(C=Cc3ccccc3)[nH]nc2c1
950 | COc1cccc(C(C)NC(=O)c2ccc(-c3ccncc3)cc2NCCCN)c1
951 | CNC(=O)C=Cc1cnc(N)c2c(-c3ccc4sc(C)nc4c3)csc12
952 | COc1cc(CCNCc2ccc(N3CCN(C)CC3)cc2)ccc1NC(=O)Nc1cnc(C#N)cn1
953 | N#Cc1cnc(Nc2cc(NCC3CCOCC3)ncn2)cn1
954 | NC(COc1cncc(-c2ccc3cnccc3c2)c1)Cc1c[nH]c2ccccc12
955 | CN(C)CCCNc1nc(Nc2ccc(C#N)nc2)ncc1C(F)(F)F
956 | CS(=O)(=O)CCNCCCNc1nc(Nc2ccc(C#N)nc2)ncc1C(F)(F)F
957 | N#Cc1ncc2nc1OCCCCCOc1cc(OCCCO)c(Cl)cc1NC(=O)N2
958 | Nc1nc(N)c2nc(-c3cccc(O)c3)c(-c3cccc(O)c3)nc2n1
959 | Oc1ccc(-c2[nH]nc(Nc3cccc(Cl)c3)c2-c2ccc(O)cc2)cc1
960 | N#Cc1cnc(Nc2cc(NCCCN)ncn2)cn1
961 | O=C1NC(=O)c2c1c(-c1cccnc1)cc1[nH]c3ccc(O)cc3c21
962 | COc1cc(N2CCC(N3CCN(C)CC3)CC2)ccc1Nc1ncc(Cl)c(Nc2ccccc2S(=O)(=O)C(C)C)n1
963 | OCCOc1cc(-c2ccc3c(C=Cc4ccccc4)[nH]nc3c2)ccc1O
964 | Cn1c(=O)c(Oc2ccc(F)cc2F)cc2cnc(NC3CCOCC3)nc21
965 | CNC(=O)C(C)N(C)Cc1cc2c(Nc3cccc(Cl)c3F)ncnc2cc1OC
966 | CC1(C)CNc2cc(NC(=O)c3cccnc3NCc3ccncc3)ccc21
967 | CCCS(=O)(=O)Nc1ccc(F)c(C(=O)c2c[nH]c3ncc(Cl)cc23)c1F
968 | CC(C)(O)c1cn(-c2ccc3[nH]ncc3c2)nn1
969 | NC(=O)c1ccc2nc(-c3ccc([N+]([O])=O)o3)cn2c1
970 | CN1CCN(c2ccc(Nc3ncc(Cl)c(Nc4ccc5[nH]ncc5c4)n3)cc2)CC1
971 | CN1CCN(c2ccc(CNCCc3ccc(NC(=O)Nc4cnc(C#N)cn4)cc3Cl)cc2)CC1
972 | NCC1CN(c2ncnc3[nH]cc(-c4cccc(CO)c4)c23)CCO1
973 | CCCC(=O)Nc1[nH]nc2ccc(-c3nnn(Cc4ccccc4)c3-c3ccccc3)cc12
974 | Nc1cccc(-c2cc3[nH]c4ccc(O)cc4c3c3c2C(=O)NC3=O)c1
975 | COc1cc(CCNCc2ccc(F)cc2)c(Br)cc1NC(=O)Nc1cnc(C#N)cn1
976 | Cn1cc(-c2ccncn2)c(-c2ccc(F)cc2)n1
977 | N#Cc1ccc2nc(N)n(-c3nc(-c4ccccc4)cs3)c2c1
978 | NC(=O)Nc1sc(-c2cccc(F)c2)cc1C(=O)NC1CCCNC1
979 | CCOC(=O)c1nn(-c2ccccc2)cc1C(=O)c1c(C)[nH]c(-c2ccccc2)c1-c1ccccc1
980 | O=C1C=C(O)C=CC1=C1C=CC(c2cc(Nc3ccc(CNCC4CC4)nc3)[nH]n2)C=C1
981 | CC(C)Cn1c(N)nc2ccc(-c3c(-c4ccc(F)cc4)nc4sccn34)cc21
982 | Oc1[nH]nc2cccc(-c3ccccc3)c12
983 | COc1cc(-c2ccc3c(c2)NC(=O)C3=Cc2[nH]c(C)c(CN(C)C)c2C(C)C)ccc1O
984 | COCC(C)(C)CNc1nccc(-c2c(-c3ccc(F)cc3)nc3c(C)nccn23)n1
985 | Cc1ccccc1NC(=O)Nc1ccc(-c2coc3ncnc(N)c23)cc1
986 | CC(=O)c1nn(-c2ccc(Cl)cc2)cc1C(=O)c1c(C)[nH]c(-c2ccccc2)c1-c1ccccc1
987 | Cc1[nH]nc2ccc(-c3cncc(OCC(N)Cc4cccc(Cl)c4)c3)cc12
988 | COc1ccc2c(c1)NC(=O)c1ccc(-c3ccc(N)c(OC)c3)cc1N2
989 | CC(C)c1nnc2ccc(-c3ocnc3-c3ccccc3)cn12
990 | CNC(=O)c1c(F)cccc1Nc1nc(Nc2cc3c(cc2OC)CCN3C(=O)CN(C)C)nc2[nH]ccc12
991 | CC1CCC(Nc2ncc(C(N)=O)c3sc(-c4ccccc4)cc23)C(C)N1
992 | Cc1ccc(-n2cc3c(-c4c(C)[nH]c(-c5ccccc5)c4-c4ccccc4)nnc(C)c3n2)cc1
993 | N#Cc1ccc2c(-c3cc4cc(CN5CCOCC5)ccc4[nH]3)[nH]nc2c1
994 | NC(=O)c1cnc(NC2CCCNC2)c2cc(-c3ccccc3)oc12
995 | C(=Cc1[nH]nc2cc(-c3ccncc3)ccc12)c1ccccc1
996 | Nc1ncnc2sc3c(c12)-c1ccc(NC(=O)Nc2ccccc2)cc1CC3
997 | COc1cc(NC(=O)CCc2ccccc2)c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1
998 | Oc1ccc(-c2ccc(-c3[nH]nc4c3Cc3ccc(CNCCN5CCCC5)cc3-4)cc2)cc1
999 | CCN1CCN(Cc2ccc(NC(=O)Nc3ccc(Oc4cc(NC)ncn4)cc3)cc2C(F)(F)F)CC1
1000 | Cc1ccnc2nc3cc(C(C)C)ccc3c(O)c12
1001 | [O][N+](=O)c1ccc2[nH]c3c(c2c1)CC(=O)Nc1ccccc1-3
1002 | NCCCNc1ncc(C(N)=O)n2cc(-c3ccc(Cl)cc3)nc12
1003 | O=C1NC(=O)c2c1c(-c1ccccc1O)cc1[nH]c3ccc(O)cc3c21
1004 | CNC(=O)c1cc2c(-c3ccccc3F)[nH]nc2s1
1005 | CCCCn1c(NC(=O)c2cccc(C#N)c2)nc2cc(N(C)C(=O)C3CCCCC3)ccc21
1006 | COc1cccc(NC(=O)N2CCC(c3nc4c(C(N)=O)cccc4[nH]3)CC2)c1
1007 | COc1cc2ncn(-c3cc(OCc4ccccc4S(C)(=O)=O)c(C#N)s3)c2cc1OC
1008 | CCN(CCO)Cc1cc(Nc2nc(C)cn3c(-c4cn[nH]c4)cnc23)sn1
1009 | NCCCc1cc2ccnc(O)c2c2cc(-c3ccc[nH]3)ccc12
1010 | CC(C)N(C(=O)Nc1ccc2nc(-c3ccco3)c(-c3ccco3)nc2c1)C(C)C
1011 | NC(=O)c1cnc(NC2CCCNC2CCO)c2cc(-c3ccccc3)sc12
1012 | COc1cc2c(cc1C(=O)N1CCN(C)CC1)Cc1c(-c3ccc(-c4ccc(O)cc4)cc3)n[nH]c1-2
1013 | NCCCNC(=O)c1cccc(CNC(=O)c2cc3c(c4c2[nH]c2ccccc24)C(=O)NC3=O)c1
1014 | COc1cc(-c2ccc3c(c2)Nc2ccccc2NC3=O)ccc1Cl
1015 | Cc1cccc(NC(=O)Nc2ccc(-c3cncc4c3c(N)nn4C)cc2)c1
1016 | Cc1ccc(CN=c2c(O)c(O)c2=Nc2ccncc2)cc1
1017 | Cc1cc(=O)n2ccc(CN(C)C)c(O)c2n1
1018 | COc1cc(-c2ccc3c(c2)NC(=O)C3=Cc2[nH]c(C)c(CCO)c2C)ccc1O
1019 | CNc1nc(Nc2cnc(C#N)c(OC3CCCNC3)c2)ncc1-c1ccccc1
1020 | CN(C(=O)C1CCCCC1)c1ccc2c(c1)nc(NC(=O)c1ccc(C#N)cc1)n2CCC(N)=O
1021 | O=C1Nc2ccccc2Nc2nnc(I)cc21
1022 | Cn1c(=O)n(-c2ccc(C(C)(C)C#N)cc2)c2c3cc(-c4cnc5ccccc5c4)ccc3ncc21
1023 | CNc1cc(Nc2cnc(C#N)c(OC(C)CN(C)C)n2)ncc1Cl
1024 | NCC(NC(=O)c1ccc(-c2ccncc2)cc1)c1ccccc1
1025 | N#Cc1cc2c(cn1)[nH]c1ncc(-c3cccs3)cc12
1026 | CNC(=O)c1cc(Oc2ccc(NC(=O)Nc3ccc(Cl)c(C(F)(F)F)c3)cc2)ccn1
1027 | OCCNc1ncnc2oc(-c3ccccc3)c(-c3ccccc3)c12
1028 | COc1cc(OCCNCc2ccc(F)cc2)c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1
1029 | CC(C)CCn1c2ccc(O)cc2c2c3c(c(-c4ccccc4Cl)cc21)C(=O)NC3=O
1030 | Nc1c(O)nc2ccc(Cl)cc2c1-c1ccccc1
1031 | Oc1nccc2c3[nH]c(-c4cccnc4)nc3c3ccc(F)cc3c12
1032 | Cc1c[nH]c2nccc(Oc3c(F)cc(Nc4cc(Cl)nc(N)n4)cc3F)c12
1033 | Nc1cc2nc(-c3ccccc3)cn2cn1
1034 | O=C(NCCCCCCNC(=O)Nc1cccnc1)Nc1cccnc1
1035 | O=C1Nc2cc(-c3ccc(O)cc3)ccc2C1=Cc1ccc(C(=O)NCCN2CCCC2)[se]1
1036 | c1cncc(Nc2nc(N3CCOCC3)c3nc[nH]c3n2)c1
1037 | NC(=O)Nc1cc(-c2ccccc2F)sc1C(=O)NC1CCCNC1
1038 | CC(=O)Nc1cccc(-c2cnc3[nH]c4cnc(C#N)cc4c3c2)c1
1039 | CNc1cc(Nc2cnc(C#N)c(OC3CCNC3)n2)ncc1C(=O)OC
1040 | COc1cc(-c2ccc3c(c2)Nc2ccccc2NC3=O)ccc1O
1041 | N#Cc1ccc(Nc2ncc(C(F)(F)F)c(NCCN)n2)cn1
1042 | O=C1Nc2cc(-c3ccc(O)cc3)ccc2C1=Cc1ccc(C(=O)NCCN2CCCCO2)[se]1
1043 | CN(C)S(=O)(=O)c1ccc(-c2cnc3ccc(-c4ccnc5[nH]ccc45)nn23)cc1
1044 | Cc1c(C(=O)c2coc3c2cc(O)c2ccccc23)[nH]c(-c2ccccc2)c1-c1ccccc1
1045 | CCN(CC)CCOc1ccc(-c2nc3c(C(N)=O)cccc3[nH]2)cc1
1046 | COc1cc2ncnc(Nc3cccc(Cl)c3F)c2cc1CN1CCCC1CC(N)=O
1047 | C#Cc1cnc(Nc2cnc(C#N)cn2)cc1NCC1CNCCO1
1048 | CNc1nc(Nc2cnc(C#N)c(OC3CCCNC3)c2)ncc1-c1cnn(C)c1
1049 | Cc1cc(C)c(C=C2C(=O)Nc3ccccc32)[nH]1
1050 | CC(C)COc1nccn2c(-c3ccnc(NCC(C)(C)CO)n3)c(-c3ccc(F)cc3)nc12
1051 | NCCOc1cncc(C=Cc2ccncc2)c1
1052 | COc1cc2c(cc1CCCO)Nc1cc(-c3ccc([N+](=O)[O-])c(OC)c3)ccc1C(=O)N2
1053 | C=CCOc1cc(-c2ccc3c(C=Cc4ccc(OC)c(OC)c4)[nH]nc3c2)ccc1O
1054 | C(=Cc1[nH]nc2cc(-c3ccncc3)ccc12)c1cccc(-c2ccccc2)c1
1055 | COc1cc(-c2ccc3c(c2)NC(=O)C3=Cc2[nH]c(C)cc2C(C)C)ccc1O
1056 | CNc1ncnc2c1N=C(c1ccc(NC(=O)Nc3cccc(C(F)(F)F)c3)cc1)CCN2
1057 | COc1ccc(C(=O)Nc2nc3ccc(Cl)cc3s2)c(OC)c1
1058 | C(=Cc1[nH]nc2cc(-c3ccncc3)ccc12)c1ccccn1
1059 | O=C(Cc1ccc2ccccc2c1)Nc1cc(C2CC2)[nH]n1
1060 | Nc1[nH]nc2ccc(-c3nnn(Cc4ccccc4)c3-c3ccccc3)cc12
1061 | COc1cccc(Nc2nc(N3CCOCC3)c3[nH]cnc3n2)c1
1062 | Cc1[nH]nc2ccc(-c3cncc(OCCN)c3)cc12
1063 | COc1cc(OCCNCc2ccc(F)cc2F)ccc1NC(=O)Nc1cnc(C#N)cn1
1064 | Nc1ncnc2scc(C(=O)Nc3ccc(NC(=O)Nc4ccccc4)cc3)c12
1065 | Nc1ncc(-c2cnn(CCO)c2)c2scc(-c3ccc(NC(=O)Nc4ccc(OC(F)F)cc4)cc3)c12
1066 | N#Cc1cc2ccnc(O)c2c2cc(Cl)ccc12
1067 | COc1cc2c(cc1C(=O)NC1CCC(O)CC1)Cc1c(-c3ccc(-c4ccc(O)cc4)cc3)n[nH]c1-2
1068 | N=C(N)NCCCNC(=O)c1cccc(CNC(=O)c2cc3c(c4c2[nH]c2ccc(O)cc24)C(=O)NC3=O)c1
1069 | c1cnn(-c2ccc3c(-c4cc5cc(CN6CCCCC6)ccc5[nH]4)[nH]nc3c2)c1
1070 | Cc1ccc(-c2cc3c(NCCN)ccc(C(N)=O)c3[nH]2)cc1
1071 | NN1C(=O)c2c(-c3ccccc3)cc3[nH]c4ccc(O)cc4c3c2C1=O
1072 | COc1ccc(C(=O)Nc2[nH]nc3ccc(-c4cn(Cc5ccccc5)nn4)cc23)cc1OC
1073 | OCc1cc2c(cn1)[nH]c1ncc(-c3ccc(CN4CCCCC4)cc3)cc12
1074 | CCOc1cc2ncc(C#N)c(Nc3ccc(F)c(Cl)c3)c2cc1NC(=O)C=CCN(C)C
1075 | N#Cc1cc2c(cn1)[nH]c1ncc(-c3ccc(CN4CCC(O)CC4)cc3)cc12
1076 | c1cc2[nH]ncc2cc1-c1cn(CC2CCOCC2)nn1
1077 | COC(=O)CCCCCCC(=O)Nc1cc(OC)c(NC(=O)Nc2cnc(C#N)cn2)cc1Cl
1078 | Brc1ccc2c(c1)-c1n[nH]cc1C2
1079 | Oc1nc2ccc(Cl)cc2c(NC2CCNCC2)c1-c1nc2ccccc2[nH]1
1080 | O=C1NC(=O)c2c1c(-c1ccccc1)cc1sc3ccc(O)cc3c21
1081 | O=C(Nc1[nH]nc2ccc(-c3cn(Cc4ccccc4)nn3)cc12)c1cccc(F)c1
1082 | COc1cc2c(cc1CNCCN1CCCC1)Cc1c(-c3ccc(-c4ccc(O)cc4)cc3)n[nH]c1-2
1083 | NC(=O)c1ccccc1-c1cc2[nH]c3ccc(O)cc3c2c2c1C(=O)NC2=O
1084 | C(=Cc1[nH]nc2cc(-c3ccncc3)ccc12)c1ccc2c(c1)OCO2
1085 | O=C(NCc1ccc(Cl)c(Cl)c1)Nc1ccc2[nH]ncc2c1
1086 | O=C(Nc1n[nH]c2cc(C(=O)NC(CN3CCCC3)c3ccccc3)sc12)c1ccc(N2CCOCC2)cc1
1087 | Oc1ccc(-c2ccc3c(C=Cc4ccccc4)[nH]nc3c2)cc1O
1088 | O=C(Nc1cccc(-c2nc3sccn3c2-c2ccnc(Nc3cccc(N4CCCC4=O)c3)n2)c1)c1c(F)cccc1F
1089 | CCOC(=O)c1cccc2[nH]c(-c3ccc(N4CCC(N)C4)cc3)nc12
1090 | Oc1nc2ccc(-n3ccnn3)cc2cc1-c1cc2cc(CN3CCCCC3)ccc2[nH]1
1091 | O=C1C=CC(=C2C=CC(c3[nH]nc4c3Cc3cc(C(=O)NCc5ccncc5)ccc3-4)C=C2)C=C1
1092 | Cc1cccc(NC(=O)Nc2ccc(-c3coc4ncnc(N)c34)cc2)c1
1093 | CCOC(=O)c1nn(-c2ccc(Cl)cc2)cc1C(=O)c1c(C)[nH]c(-c2ccccc2)c1-c1ccccc1
1094 | COCCN(C)C(=O)c1c(-c2ccc3[nH]ncc3c2)nnn1Cc1ccccc1
1095 | CC(Oc1cc(-c2cnn(C3CCNCC3)c2)cnc1N)c1c(Cl)ccc(F)c1Cl
1096 | CNc1cncc(-c2cnc(O)c(NC(=O)c3ccc(N4CCCC4CN4CCCC4)cc3)c2)n1
1097 | CN1CCCC(Nc2ncc(C(N)=O)c3sc(-c4ccccc4)cc23)C1
1098 | CC=C(C=CC=C1C(=O)Nc2cc(-c3ccc(O)c(OC)c3)ccc21)C(=O)NCCN(C)C
1099 | CC(=O)Nc1cc(N)c(C#N)c(-c2ccccc2)n1
1100 | Cc1c(O)ccc2c1CCCC2=NNC(=O)Cc1cccc2ccccc12
1101 | CNC(=O)C=Cc1cnc(N)c2c(-c3cc(F)c4[nH]c(C)cc4c3)csc12
1102 | CCNC(=O)c1cnc(N)c2c(-c3ccc(NC(=O)Nc4cccc(F)c4)cc3)csc12
1103 | CCN(CC)CCNC(=O)c1ccc(C=C2C(=O)Nc3cc(-c4ccc(O)c(OC)c4)ccc32)[se]1
1104 | CC(=O)N1CCN(Cc2ccc3[nH]c(-c4[nH]nc5cc(C#N)ccc45)cc3c2)CC1
1105 | CN(C)c1ccc(-c2cc(-c3ccc([N+]([O])=O)cc3)nc(NS(=O)(=O)c3ccc(N)cc3)n2)cc1
1106 | COc1ccc2c(c1)C(=O)N(c1nc(C(=O)Nc3ccnnc3N3CCNCC3)cs1)C2
1107 | CNc1nc(Nc2cnc(C#N)c(NCC3CCCCN3)c2)ncc1C(F)(F)F
1108 | Cc1ccc2nc(O)c(-c3nc4ccccc4[nH]3)c(NC3CCCNC3)c2c1
1109 | COc1cc2ncnc(Nc3cccc(Cl)c3F)c2cc1CN1CCCC1C(=O)N(C)C
1110 | O=C1NC(=O)c2c1c1c3cnccc3[nH]c1c1[nH]c3ccc(OCc4ccccc4)cc3c21
1111 | O=C(Nc1ccc(-c2ccc(O)nn2)cc1)Nc1cccc(C(F)(F)F)c1
1112 | NCCCc1cc2c(-c3cccc(O)c3)cnc(O)c2c2cc(-c3cn[nH]c3)ccc12
1113 | CC(=O)N1CCN(Cc2ccc3[nH]c(-c4[nH]nc5ccccc45)cc3c2)CC1
1114 | O=C1NC(=O)c2c1c(-c1cccc(O)c1Cl)cc1[nH]c3ccc(O)cc3c21
1115 | CNc1nc(Nc2cnc(C#N)c(OC3CCCNC3)c2)ncc1-c1cnn(C(F)(F)F)c1
1116 | c1ccc(CNc2nc(-c3ccc4[nH]ncc4c3)cs2)cc1
1117 | CCOCCC(=O)Nc1cc(OC)c(NC(=O)Nc2cnc(C#N)cn2)cc1Cl
1118 | O=C1NC(=O)c2c1c(-c1cccc(CO)c1)cc1[nH]c3ccc(O)cc3c21
1119 | C(=Cc1[nH]nc2cc(-c3ccnc4[nH]ccc34)ccc12)c1ccccc1
1120 | COc1cc(CCNCc2cccc(F)c2)c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1
1121 | O=C(Nc1ccc2[nH]ncc2c1)c1cccc(F)c1
1122 | O=C(NC(CO)c1ccccc1)c1ccc(-c2ccncc2)cc1
1123 | N#Cc1c(Oc2ccc(F)c(NC(=O)Cc3cccc(C(F)(F)F)c3)c2)ccc2nc(NC(=O)C3CC3)sc12
1124 | O=C1NC(=O)C(Nc2ccccc2)=C1Cl
1125 | O=C1C=CC(c2ccc(-c3[nH]nc4c3Cc3ccccc3-4)cc2)C=C1
1126 | O=C(Nc1nc2ccccc2n1CCCO)c1cccc([N+](=O)[O-])c1
1127 | CC1CCC(NCc2ccc3c(c2)Cc2c(-c4ccccc4)n[nH]c2-3)CC1
1128 | O=C1NCCc2[nH]c(-c3ccnc(C=Cc4ccccc4)c3)cc21
1129 | CC(=O)N1CCN(C2CCC(n3nc(-c4ccc(NC(=O)c5cc6ccccc6n5C)cc4)c4c(N)ncnc43)CC2)CC1
1130 | Cc1nccn2c(-c3ccnc(NCC(C)(C)C(=O)O)n3)c(-c3ccc(F)cc3F)nc12
1131 | O=c1c(NCc2cccc(C(F)(F)F)c2)c(Nc2ccncc2)c1=O
1132 | COc1cc2c(cc1CCc1ccncc1)Nc1cc(-c3ccc([N+](=O)[O-])c(OC)c3)ccc1C(=O)N2
1133 | CCC(CO)Nc1nc(NCc2ccccc2)c2ncn(C(C)C)c2n1
1134 | Cc1[nH]nc2c1C(c1ccccc1I)C(C#N)=C(N)O2
1135 | N#Cc1cnc(Nc2cc3c(cn2)ncn3CC2CCNCC2)cn1
1136 | Cc1cc(Nc2nc(Cl)cc(NCc3ccccc3)n2)[nH]n1
1137 | CC(C)c1nnc2ccc(-c3c[nH]nc3-c3cc(F)ccc3F)cn12
1138 | N#Cc1ncc2nc1OCCCCCOc1cc(NCc3ccsc3)c(Cl)cc1NC(=O)N2
1139 | CC(=O)Nc1c(C(N)=O)sc2ccc(Cl)c(Cl)c12
1140 | COc1nccc(-c2c(-c3ccc(F)cc3)ncn2C2CCC(O)CC2)n1
1141 | NC(=O)c1cccc2[nH]c(-c3ccc(C4CCCNC4)cc3F)nc12
1142 | N=C1c2ccccc2NC(=O)C1c1nc2ccccc2[nH]1
1143 | NC(=O)c1cnc(NC2CCCNC2)c2cc(-c3cccs3)sc12
1144 | COc1ccc(C=NNc2ncnc3c2[nH]c2ccccc23)cc1OC
1145 | Oc1nc2ccc(Cl)cc2c2ncnn12
1146 | Cc1c(-c2cccc(OCc3ccccc3)c2)c2c(N)ncnc2n1C1CCC(N2CCCC2)CC1
1147 | O=C(Nc1ccccc1N1CCNCC1)c1csc(-c2ccc3[nH]ccc3c2)n1
1148 | CC(C)(C)OC(=O)N1CCC(n2ncc3c(N4CCOCC4)nc(-c4ccc(N)cc4)nc32)CC1
1149 | Cc1ccc(-c2cc3nc(Br)cnc3[nH]2)cc1
1150 | O=c1c(NCc2ccc(Cl)cc2)c(Nc2ccncc2)c1=O
1151 | CCS(=O)(=O)Nc1ccc(-c2ccc3[nH]nc(N)c3c2)cc1
1152 | O=C1Nc2ccccc2Nc2nnc(Cl)cc21
1153 | OCc1cc(-c2ccc3[nH]ncc3c2)on1
1154 | Cc1cccc(NC(=O)Nc2ccc(-c3csc4c(C#CC(C)(C)N)cnc(N)c34)cc2)c1
1155 | C(=Cc1[nH]nc2cc(-c3ccncc3)ccc12)c1nc2ccccc2[nH]1
1156 | NC1=NC(=O)C(C2CCNC(=O)c3[nH]c4ccccc4c32)=N1
1157 | N#Cc1c(-c2ccccc2)cc(-c2ccccc2)nc1N=C1SCC(=O)N1c1ccccc1
1158 | COc1ccc(-n2nc(C(C)=O)sc2=Nc2nc(-c3ccccc3)cc(-c3ccccc3)c2C#N)cc1
1159 | CC1CCC(NCc2ccc3c(c2)Cc2c(-c4ccc(CO)cc4)n[nH]c2-3)CC1
1160 | COc1cc(-c2ccc3c(c2)Nc2ccc(CCC(=O)Nc4ccc(N5CCOCC5)cc4)cc2NC3=O)ccc1N
1161 | Cc1cc(C)cc(NC(=O)Nc2ccc(-c3c(C)sc4ncnc(N)c34)cc2)c1
1162 | Cc1[se]c(C=C2C(=O)Nc3cc(-c4ccc(O)cc4)ccc32)cc1C(=O)NCCN1CCCCO1
1163 | NC(=O)c1ccccc1Nc1ccnc(Nc2cccc(O)c2)n1
1164 | CC(C)Oc1ccc(-c2noc(-c3ccc(NC4CCC(C(=O)O)C4)cc3)n2)cc1Cl
1165 | N#Cc1ccc2nc(O)c(-c3cc4cc(CN5CCCCC5)ccc4[nH]3)cc2c1
1166 | O=C(NOCC1CC1)c1ccc(F)c(F)c1Nc1ccc(I)cc1Cl
1167 | N#Cc1cnc(Nc2cc3cccc(Cl)c3cn2)cn1
1168 | Cc1[nH]c(-c2ccccc2)c(-c2ccccc2)c1-c1nnc(C)c2nn(-c3ccc(Cl)cc3)cc12
1169 | NCc1cc(Nc2ncnc(-c3ccccc3)n2)ccc1O
1170 | O=C1NC(=O)c2c1ccc1[nH]c3ccc(O)cc3c21
1171 | Cc1ccc(F)c(NC(=O)Nc2ccc(-c3nsc4ncnc(N)c34)cc2)c1
1172 | NC1C2CN(c3nc4c(cc3F)c(=O)c(C(=O)O)cn4-c3ccc(F)cc3F)CC12
1173 | COc1ccccc1CNc1ncc(C(=O)NCCCN2CCCC2=O)c(NC2CCCC2)n1
1174 | CN1CCC(c2c(O)cc(O)c3c(=O)cc(-c4ccccc4Cl)oc23)C(O)C1
1175 | O=C1NC(=O)c2c1c(-c1ccc(CO)cc1)cc1[nH]c3ccc(O)cc3c21
1176 | O=C(Nc1ccc(O)cc1O)c1ccc2c(-c3nc4ccccc4[nH]3)[nH]nc2c1
1177 | N#Cc1cc2c(cn1)[nH]c1ncc(-c3cccc(CO)c3)cc12
1178 | CCOc1ccc(C=C2SC(N)=NC2=O)c(O)c1
1179 | COc1cc(-c2ccc3c(c2)Nc2cc(C(C)(C)C(=O)Nc4ccc(N5CCOCC5)cc4)ccc2NC3=O)ccc1N
1180 | Cc1[nH]nc2c1C(c1ccccc1Cl)C(C#N)=C(N)O2
1181 | N#Cc1ncc(Nc2cc3ccccc3cn2)nc1OCC1CCNCC1
1182 | CN1CCN(c2ccc(Nc3ncc(Cl)c(NCC4CCCO4)n3)cc2)CC1
1183 | O=C(O)c1csc2c1NCCNC2=O
1184 | COc1cc(C=C(C#N)c2nc3cc(C)ccc3[nH]2)c(Br)cc1O
1185 | Cc1cnc(CNCc2ccc3c(c2)Cc2c(-c4ccc(-c5ccc(O)cc5)cc4)n[nH]c2-3)cn1
1186 | CC(N)CCNc1nc(Nc2ccc(C#N)nc2)ncc1C(F)(F)F
1187 | N#CCC(C1CCCC1)n1cc(-c2ncnc3[nH]ccc23)cn1
1188 | C#Cc1nc(Nc2ccc(S(N)(=O)=O)cc2)nc2nc[nH]c12
1189 | COc1ccc(-c2cnc(Nc3cnc(C#N)c(OC4CCCNC4)c3)nc2)cc1
1190 | NCC1CCN(c2ncnc3[nH]c4cnccc4c23)CC1
1191 | CN(C)c1cc2sncc2cc1NC(=O)C(=O)O
1192 | N#Cc1cccc(-c2ccc3c(c2)Nc2ccccc2NC3=O)c1
1193 | CC(CN(C)C)Oc1nc(Nc2cc3ccccc3cn2)cnc1C#N
1194 | CC(N=c1c(O)c(O)c1=Nc1ccncc1)c1ccccc1
1195 | N#Cc1ccc(N2CCC(Nc3c(C(N)=O)cnc4[nH]ccc34)C(F)C2)nc1
1196 | O=C1NC(=O)c2c1c1c3ccc(O)cc3[nH]c1c1[nH]c3ccncc3c21
1197 | O=S(=O)(O)c1ccc(NCc2ccc3c(c2)OCO3)c2c(O)cccc12
1198 | Fc1cccc(Nc2nc(N3CCOCC3)c3[nH]cnc3n2)c1
1199 | OCc1ccc2c(c1)-c1[nH]nc(-c3ccc(-c4ccc(O)cc4)cc3)c1C2
1200 | CNc1nc(Nc2cnc(C#N)c(NC3CN4CCC3CC4)c2)ncc1C(F)(F)F
1201 | CC(=O)Nc1ccc(-c2n[nH]c3c2Cc2cc(CNC4CCC(C)CC4)ccc2-3)cc1
1202 | Nc1ncnc2c1c(-c1ccc(Oc3ccc(CO)cc3)cc1)cn2C1CCOC1
1203 | O=C1NC(=O)c2c1c(-c1ccccc1F)cc1[nH]c3ccc(O)cc3c21
1204 | O=C(c1cc(-c2ccc3[nH]ncc3c2)on1)N1CCCCC1
1205 | Nc1ccc(-c2cccn3c(O)nnc23)cc1
1206 | COC(=O)c1cnc(Nc2cnc(C#N)cn2)cc1NC1CCN(C)CC1
1207 | Cc1cccc(NC(=O)Nc2ccc(-c3cccc4c3CNC4=O)cc2)c1
1208 | N#Cc1cnc(Nc2cc(NCC3CCNCC3)c(-c3cccc(F)c3)cn2)cn1
1209 | CC1CCN(C(=O)CC#N)CC1N(C)c1ncnc2[nH]ccc12
1210 | O=C1CC(c2ccc(Cl)cc2Cl)Cc2nc3cc(Cl)ccc3c(O)c21
1211 | NCC1CCN(Cc2ccc3[nH]c(-c4cc5ccccc5nc4O)cc3c2)CC1
1212 | Cc1ccc(F)c(-c2ccc3nnc(N)n3c2)c1
1213 | c1ccc(Cn2nnc(-c3ccc4[nH]ncc4c3)c2C2CC2)cc1
1214 | CC(C)Cc1nc(Nc2ccc(N3CCOCC3)c(Cl)c2)nc2[nH]ccc12
1215 | Cc1ccc(NC(=O)Nc2ccc(-c3csc4ncnc(N)c34)cc2)cc1C
1216 | Cc1cccc(NC(=O)Nc2ccc(-c3cccc4c3CNC4=O)cc2C)c1
1217 | CN(C)S(=O)(=O)c1ccc(Nc2cc(NC3CCC(N)CC3)nc3ncnn23)cc1
1218 | Oc1nc2ccc(Cl)cc2c(NC2CCNC2)c1-c1nc2ccccc2[nH]1
1219 | CS(=O)(=O)CCNCc1ccc(-c2ccc3ncnc(Nc4ccc(OCc5cccc(F)c5)c(Cl)c4)c3c2)o1
1220 | Nc1ncnc2c1N=C(c1ccccc1)CCN2
1221 | CNS(=O)(=O)c1ccccc1Nc1nc(Nc2cc(N3CCN(C(C)=O)CC3)ccc2OC)ncc1Br
1222 | CCOc1nc(C(=O)NCc2ccc(S(C)(=O)=O)cc2)cc(N)c1C#N
1223 | CNc1nc(Nc2cnc(C#N)c(OC3CCNCC3)c2)ncc1-c1cnn(C)c1
1224 | O=C1Nc2ccccc2C1=Cc1ccc[nH]1
1225 | Cc1[nH]c(C=C2C(=O)Nc3ccc(F)cc32)c(C)c1NC(=O)CCN1CCN(C)CC1
1226 | Cc1[nH]nc2c1C(c1ccccc1F)C1=C(O)CC(C)(C)CC1=N2
1227 | N#Cc1ncc(Nc2ncc(-c3ccccc3)cn2)cc1OC1CCCNC1
1228 | N#Cc1ccc(Nc2ncc(C(F)(F)F)c(NCC3CCCCN3)n2)cn1
1229 | Cn1cc(-c2cncc(-c3ccc(C(=O)O)cc3)n2)cn1
1230 | COc1cc2c(cc1OCCCN)Nc1cc(-c3ccc([N+](=O)[O-])c(OC)c3)ccc1C(=O)N2
1231 | CC(C)(C)c1cc(NC(=O)Nc2cccc3ccccc23)n(-c2cccc(C(=O)NCC#N)c2)n1
1232 | N#Cc1ccc(-c2ccncc2)cc1NCc1ccccc1
1233 | N#Cc1ccc2nc(O)c(-c3cc4cc(CN5CCC(CN)CC5)ccc4[nH]3)cc2c1
1234 | OCCC(Nc1nc2ccc(-c3ccncc3)cc2s1)c1ccccc1
1235 | COc1cc2ncnc(Oc3cccc(NC(=O)Nc4cc(C(C)(C)C(F)(F)F)on4)c3)c2cc1OC
1236 | [O][N+](=O)c1cnc(NC(=O)NCc2ccccc2)s1
1237 | O=C(Nc1ccc(O)cc1)c1ccc2c(-c3nc4c(ccc5ccccc54)[nH]3)[nH]nc2c1
1238 | COc1ccc(C(=O)Nc2cnc3[nH]cc(-c4ccccc4)c3c2)cc1
1239 | Cc1nc2c(sc3c(Br)ccc(Cl)c32)c(=O)o1
1240 | Cn1nc(C(F)(F)F)c2c(=O)c3cc(Cl)ccc3n(O)c21
1241 | Cc1ccc(-n2nc(C)c3c(=O)c4cc(Cl)ccc4n(O)c32)cc1
1242 | CNc1nc(Nc2cnc(C#N)c(OCCCN)c2)ncc1C(F)(F)F
1243 | O=C1Cc2c([nH]c3ccc(Br)cc23)-c2ncccc2N1
1244 | COc1cc2c(cc1OCCO)Nc1cc(-c3ccc([N+](=O)[O-])c(OC)c3)ccc1C(=O)N2
1245 | CNc1nc(C2=CCNC(=O)c3[nH]c(-c4ccccc4)cc32)c(O)[nH]1
1246 | COc1cc(-c2ccc3c(C=Cc4ccc(OC)c(OC)c4)[nH]nc3c2)ccc1O
1247 | N#Cc1ccc(-c2cc(NC(N)=O)c(C(=O)NC3CCCNC3)s2)cc1
1248 | CNc1cc(Nc2cnc(C#N)c(OC3CCN(C)C3)n2)ncc1-c1cnn(C)c1
1249 | Cc1[nH]nc2cnc(-c3cncc(OCC(N)Cc4cccc(C(F)(F)F)c4)c3)cc12
1250 | Cc1nn(-c2ccccc2)c(O)c1C=c1c(C)c(C#N)c2nc3ccccc3n2c1=O
1251 | CCOC(=O)c1cc2c(c3c1[nH]c1ccccc13)C(=O)N(CO)C2=O
1252 | COC(=O)C1(O)CC2OC1(C)n1c3ccccc3c3c4c(c5c6ccccc6n2c5c31)C(=O)NC4
1253 | COc1cc2c(cc1OCCN1CCOCC1)Nc1cc(-c3ccc([N+](=O)[O-])c(OC)c3)ccc1C(=O)N2
1254 | CC(C)(C)c1cc(NC(=O)C(=O)c2cccc3ccccc23)n(-c2ccc(OCC(=O)O)cc2)n1
1255 | COC(=O)c1ccccc1-c1ccc2c(c1)Nc1ccccc1NC2=O
1256 | CCc1cc2c(cc1OC)Nc1cc(-c3ccc([N+](=O)[O-])c(OC)c3)ccc1C(=O)N2
1257 | O=C1NCc2c1c1c(c3c2[nH]c2ccccc23)C(=O)NC1=O
1258 | CCc1nccn2c(-c3ccnc(NCC(C)(C)O)n3)c(-c3ccc(F)cc3F)nc12
1259 | CNC(=O)C=Cc1cnc(N)c2c(-c3ccc4c(c3)OCO4)csc12
1260 | CCC(C)NCc1ccc(Nc2cc(-c3ccc(-c4ccc(O)cc4O)cc3)[nH]n2)cn1
1261 | Cc1cc(NC(=O)c2ccc3c(-c4nc5ccccc5[nH]4)[nH]nc3c2)ccc1O
1262 | Cc1ccc(NCc2ccc(-c3ccc(F)cc3)nc2)cc1
1263 | CN1CCN(c2ccc(C(=O)Nc3[nH]nc4ccc(Cc5cc(F)cc(F)c5)cc34)c(NC3CCOCC3)c2)CC1
1264 | N#Cc1ccc(-c2cc(C(=O)NC3CCCNC3)c(NC(N)=O)s2)cc1
1265 | COc1cc2ncnc(Nc3cccc(Cl)c3F)c2cc1CN1CC(C(N)=O)C1
1266 | OCCNc1cc2cc(-c3ccccc3)ccc2cn1
1267 | C(=NNc1nc2ccccc2[nH]1)c1c[nH]c2ccccc12
1268 | COc1cc(-c2ccc3c(c2)Nc2cccc(O)c2NC3=O)ccc1N
1269 | Cc1cccc(NC(=O)Nc2ccc(-c3csc4c(-c5cn[nH]c5)cnc(N)c34)cc2)c1
1270 | COc1cc2ncnc(Nc3cccc(Cl)c3F)c2cc1CN(C)C1(C(N)=O)CN(C(C)C)C1
1271 | CNc1nc(Nc2cnc(C#N)c(OC3CCCNC3)c2)ncc1-c1cccs1
1272 | CCOC(=O)c1cnc2[nH]ncc2c1N1CCOC(CN)C1
1273 | NC(=O)c1cnc(NC2CCCNC2)c2cc(-c3ccsc3)sc12
1274 | O=C1NCc2c1cccc2-c1ccc(Nc2nc3ccccc3[nH]2)cc1
1275 | O=C1Cc2cc(-c3ccccc3)cnc2N1
1276 | OCc1cccc2c1Cc1c(-c3ccc(-c4ccc(O)cc4)cc3)n[nH]c1-2
1277 | Cc1c(O)cccc1NC(=O)c1cnn2c(-c3ccccc3)ccnc12
1278 | O=c1c(NCc2ccccc2F)c(Nc2ccncc2)c1=O
1279 | CCn1c(C)c(-c2ccnc(Nc3cccc(OC)c3)n2)sc1=O
1280 | c1nc(N2CCC3(CCCNC3)CC2)c2nc[nH]c2n1
1281 | COc1cc(CNCc2ccccc2)ccc1NC(=O)Nc1cnc(C#N)cn1
1282 | Nc1ncc(C=CC(=O)NCCCn2ccnc2)c2scc(-c3ccc(Br)cc3)c12
1283 | Cn1nc(-c2ccccc2)cc1Nc1nc(C(=O)Nc2ccccc2N2CCNCC2)cs1
1284 | CCC1(O)C(=O)OCc2c1cc1n(c2=O)Cc2cc3ccccc3nc2-1
1285 | FC(F)(F)Oc1cccc(C=Cc2[nH]nc3cc(-c4ccncc4)ccc23)c1
1286 | Nc1cccc(Oc2ccc3c(C=Cc4ccccc4)[nH]nc3c2)c1
1287 | N#Cc1cnc(NC(=O)Nc2ccc(OCCNCc3ccc(F)cc3F)c(Cl)c2)cn1
1288 | NCCCc1cc2ccnc(O)c2c2cc(C(N)=O)ccc12
1289 | NC(=O)c1cnc(NC2CCNC2)n2cc(-c3ccc(Cl)cc3)nc12
1290 | N=C(N)NCCNC(=O)c1cccc(CNC(=O)c2cc3c(c4c2[nH]c2ccc(O)cc24)C(=O)NC3=O)c1
1291 | Cc1cc(O)nnc1-c1ccc(NC(=O)Nc2cc(C(F)(F)F)ccc2F)cc1
1292 | CC(C)(C)CNC(=O)c1ccc2c(c1)Cc1c(-c3ccc(C(=O)O)cc3)n[nH]c1-2
1293 | O=C1NC(=O)c2c1c(-c1cccc(Cl)c1Cl)cc1[nH]c3ccc(O)cc3c21
1294 | NC(=O)Nc1sc(-c2ccc(F)cc2F)cc1C(=O)NC1CCCNC1
1295 | Cc1ccc(-c2cnc(N)c3c(-c4ccc(NC(=O)Nc5cccc(F)c5)cc4)csc23)cn1
1296 | C1=NNN(c2ccc3c(c2)N=NC3=C2C=c3cc(CN4CCCCC4)ccc3=N2)C1
1297 | c1ccc(Cc2cc(-c3ccc4[nH]ncc4c3)on2)cc1
1298 | CC1(C)C(=O)N(C2CCc3c(O)cccc32)c2nc(Nc3ccccc3)ncc21
1299 | Cc1cccc(NC(=O)Nc2ccc(-c3cnc4c(-c5cnn(C)c5)cnn4c3N)cc2)c1
1300 | COc1ccc(NC(=O)Nc2ccc(-c3cccc4onc(N)c34)cc2)cc1Cl
1301 | C=CCn1c(=O)c2cnc(Nc3ccc(N4CCN(C)CC4)cc3)nc2n1-c1cccc(C(C)(C)O)n1
1302 | N#Cc1ccc2[nH]c(O)c(-c3ccc(CN4CCOCC4)cn3)c2c1
1303 | O=C(Nc1ncccc1N1CCNCC1)c1csc(-c2ccc3c(c2)CCO3)n1
1304 | COc1cc(-c2csc3c(C=CC(=O)NCCN(C)C)cnc(N)c23)ccc1NC(=O)c1cc2ccccc2n1C
1305 | NC(=O)c1ccc2nc(O)c(-c3cc4cc(CN5CCCCC5)ccc4[nH]3)cc2c1
1306 | COc1cc2c(cc1F)C(c1ccccc1Cl)=Nc1c(C)n[nH]c1N2
1307 | CCNc1cc2c(cc1Cl)NC(=O)Nc1cnc(C#N)c(n1)OCCCCCO2
1308 | CCN(CC)CC#Cc1ccc2c(c1)-c1[nH]nc(-c3ccc(C#N)nc3)c1C2
1309 | NC(=O)c1ccc(-c2[nH]nc3c2Cc2cc(CN4CCOCC4)ccc2-3)cc1
1310 | O=C1NC(=O)c2c1c(-c1cccc(F)c1)cc1[nH]c3ccc(O)cc3c21
1311 | Cc1nn(C)c(C)c1-c1cccc2c(CCCOc3cccc4ccccc34)c(C(=O)O)[nH]c12
1312 | COc1cc2ncnc(Nc3cccc(Cl)c3F)c2cc1CN1CC(OC)CC1C(N)=O
1313 | Clc1ccc(C=Cc2[nH]nc3cc(-c4ccncc4)ccc23)cc1
1314 | Oc1cnc2ccc(-c3ccncc3)cc2c1
1315 | O=C(NC(CO)c1cc(Cl)cc(Cl)c1)c1ccc(-c2ccncc2)cc1
1316 | COC(=O)c1cnc(Nc2cnc(C#N)c(OC3CCNC3)n2)cc1SC
1317 | CCN(CC)CCNC(=O)C=Cc1cnc(N)c2c(-c3ccc(NC(=O)Nc4cccc(C)c4)cc3)csc12
1318 | Nc1[nH]nc2nnc(-c3ccccc3)c(-c3ccccc3)c12
1319 | CCOC(=O)c1nn(-c2ccc(Cl)cc2)c(=Nc2nc(-c3ccccc3)cc(-c3ccccc3)c2C#N)s1
1320 | COc1cc2c(cc1C(=O)NCCN1CCCC1)Cc1c(-c3ccc(-c4ccc(O)cc4)cc3)n[nH]c1-2
1321 | O=C1NC(=O)c2c1c(-c1c(Br)cccc1Br)cc1[nH]c3ccc(O)cc3c21
1322 | CN(C)C(=O)c1c(-c2ccc3[nH]ncc3c2)nnn1Cc1ccccc1
1323 | COc1cc(CNCc2ccc(F)cc2)c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1
1324 | Oc1ncc(I)c2nc(-c3ccccc3)cn12
1325 | N#Cc1ncc(Nc2cc3cccc(Cl)c3cn2)nc1OCC1CCNCC1
1326 | COc1cc(CCNCc2ccc(N3CCN(C)CC3)cc2)c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1
1327 | Cc1[nH]nc2ccc(-c3cncc(OCC(N)Cc4c[nH]c5ccccc45)c3)cc12
1328 | Fc1ccc(F)c(C=Cc2[nH]nc3cc(-c4ccncc4)ccc23)c1
1329 | O=C(Nc1cnccc1N1CCNCC1)c1csc(-n2ncc3ccccc32)n1
1330 | O=C(O)c1ccc(-c2n[nH]c3c2Cc2cc(C(=O)NC4CCC(O)CC4)ccc2-3)cc1
1331 | CNS(=O)(=O)c1ccccc1Nc1nc(Nc2cc(OC)c(OC)c(OC)c2)ncc1Cl
1332 | Fc1ccccc1C=Cc1[nH]nc2cc(-c3ccncc3)ccc12
1333 | c1cnc2nc(-c3ccc4[nH]ncc4c3)cn2c1
1334 | N#Cc1cc2c(cn1)[nH]c1ncc(-c3ccc(CN4CCC(C#N)CC4)cc3)cc12
1335 | COc1cc2c(cc1CNCCO)Cc1c(-c3ccc(-c4ccc(O)cc4)cc3)n[nH]c1-2
1336 | NCCc1cc2ccnc(O)c2c2cc(-c3ccc[nH]3)ccc12
1337 | N#Cc1cnc(Nc2cc(NCCCO)ncn2)cn1
1338 | N#Cc1ccc(Nc2ncc(C(F)(F)F)c(NCCCNC=O)n2)cn1
1339 | O=C1Cc2c([nH]c3ccc(Br)cc23)-c2ccccc2N1
1340 | N=C(N)NCCCNC(=O)c1cccc(CNC(=O)c2cc3c(c4c2[nH]c2ccccc24)C(=O)NC3=O)c1
1341 | NC(=O)Nc1cc(-c2ccccc2)sc1C(=O)NC1CCCNC1
1342 | CCc1nc(-c2cccc(C)c2)c(-c2ccnc(NC(=O)c3ccccc3)c2)s1
1343 | O=C1NC(=O)c2c1c(-c1ccncc1)cc1[nH]c3ccc(O)cc3c21
1344 | Oc1nc(-c2cc3c(Oc4ccc(I)cc4)cncc3s2)no1
1345 | C#Cc1nc(Nc2ccccc2)nc2[nH]cnc12
1346 | Cc1cc(O)ccc1-c1ccc2c(-c3nc4ccccc4[nH]3)[nH]nc2c1
1347 | CC(C)Oc1cc(CCNCc2ccc(F)cc2)c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1
1348 | Cc1cccc(NC(=O)Nc2ccc(-c3cccc(C(N)=O)c3)cc2)c1
1349 | O=C1NC(=O)c2c1c(-c1cccs1)cc1[nH]c3ccc(O)cc3c21
1350 | c1ccc(CNc2cc(-c3c[nH]c4ncccc34)ncn2)cc1
1351 | COc1cc(-c2ccc3c(c2)Nc2c(O)cccc2NC3=O)ccc1O
1352 | CC(C)(CO)CNc1nccc(-c2c(-c3ccc(F)cc3)nc3c(Cl)nccn23)n1
1353 | Cc1cc(-c2ccccc2)n(-c2cc(NN=Cc3ccco3)ncn2)n1
1354 | COc1cc(-c2ccc3c(c2)Nc2ccccc2NC3=O)ccc1C(N)=O
1355 | Nc1nccc2scc(-c3ccc(NC(=O)Nc4cccc(Br)c4)cc3)c12
1356 | N#Cc1ccc(Nc2ncc(-c3ccccc3OC3CCCNC3)cn2)cn1
1357 | COc1cc2ncnc(Nc3cccc(Cl)c3F)c2cc1CN(C)C(C)C(N)=O
1358 | Cn1cc(-c2cc3nc(Br)cnc3[nH]2)c2cc(F)ccc21
1359 | N#Cc1ccc(Nc2ncc(C(F)(F)F)c(NC3CCNCC3)n2)cn1
1360 | COCCn1cc(-c2ccncn2)c(-c2ccc(Cl)cc2)n1
1361 | CN(C)CC(=O)Nc1cc2c(cc1Cl)NC(=O)Nc1cnc(C#N)c(n1)OCCCCCO2
1362 | Fc1ccc(-c2nc3cnccn3c2-c2ccnc(NCC3CC3)n2)cc1
1363 | O=C(O)c1cc2c(-c3ccccc3)cncc2s1
1364 | COC(=O)Cc1ccc2c(c1)NC(=O)c1ccc(-c3ccc(N)c(OC)c3)cc1N2
1365 | COc1cc(CCNCc2ccc3c(c2)OCO3)c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1
1366 | NCCCNc1ncnc2[nH]c3cnccc3c12
1367 | COc1cc(CCNCCc2ccc(F)cc2)ccc1NC(=O)Nc1cnc(C#N)cn1
1368 | C=CCc1cccc2c(=NO)cc(-c3ccccc3)oc12
1369 | NC(=O)c1cnc(NC2CNCCC2O)c2cc(-c3ccccc3)sc12
1370 | CNC1=NC(=C2CCNC(=O)c3[nH]c(-c4ccccc4)cc32)C(=O)N1
1371 | COc1cc(-c2ccc3c(c2)NC(=O)C3=Cc2ccc(C(=O)NCCN(C)C)[se]2)ccc1O
1372 | NCCCOc1cc2c(c(-c3ccc(Nc4nc5ccc(Cl)cc5o4)cc3)c1)CNC2=O
1373 | Cc1ccccc1-c1c(C(=O)O)n(CCCOc2cccc3ccccc23)c2ccccc12
1374 | CNc1nc(Nc2cnc(C#N)c(OC3CCCNC3)c2)ncc1-c1nc(C)cs1
1375 | Cc1[nH]nc2sc(C(=O)NCCc3ccc(Cl)cc3)cc12
1376 | COc1ccc2c(NC(=O)Nc3cc(C(F)(F)F)ccn3)ccnc2c1
1377 | Cc1ccc(C(=O)Nc2ccon2)cc1Nc1ncnc2c1cnn2-c1ccccc1
1378 | CC(=O)c1c(C)c2cnc(Nc3ccc(N4CCNCC4)cn3)nc2n(C2CCCC2)c1=O
1379 | Nc1cc(S(=O)(=O)NC(=O)c2ccc(-c3ccc(F)cc3)cc2)ccc1NC1CCCCC1
1380 | Cc1ccc(F)c(NC(=O)Nc2ccc(-c3ccc4nccnc4c3N)cc2)c1
1381 | COC(=O)c1cc2ccnc(O)c2c2cc(Br)ccc12
1382 | CC(C)(C)NCc1ccc2c(c1)-c1[nH]nc(-c3ccc(C4C=CC(=O)C=C4)cc3)c1C2
1383 | NC(=O)c1cnc(NC2CCCNC2)c2nc(-c3ccc(F)cc3)cn12
1384 | COc1cc2ncnc(Nc3cccc(Cl)c3F)c2cc1CN1CCC(C(N)=O)C1
1385 | NC(=O)c1ccc(NC2CCCNC2)c2cc(-c3ccc(F)cc3)[nH]c12
1386 | CN(C)CCOc1cc(N2CCN(C)CC2)c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1
1387 | N#Cc1cnc(NC(=O)Nc2ccc(CCNCc3ccc(C(F)(F)F)cc3)c(Cl)c2)cn1
1388 | Nc1[nH]nc2cc(-c3ccc(NC(=O)Nc4cccc(C(F)(F)F)c4)cc3)ccc12
1389 | CCCCCn1c2ccc(O)cc2c2c3c(c(-c4ccccc4Cl)cc21)C(=O)NC3=O
1390 | Cc1c(C=O)c(O)n2c(nc3ccccc32)c1C#N
1391 | COc1ccccc1CN=C(N)Nc1nccc(-c2cccs2)n1
1392 | Cc1ccc(NC(=O)c2ccc(CN3CCN(C)CC3)cc2)cc1Nc1nccc(-c2cccnc2)n1
1393 | Cc1ccc2nc(O)c(-c3nc4ccccc4[nH]3)c(NC3CN4CCC3CC4)c2c1
1394 | Oc1nc2ccc(-c3cnsc3)cc2cc1-c1cc2cc(CN3CCCCC3)ccc2[nH]1
1395 | CC=C(C=CC=C1C(=O)Nc2cc(-c3ccc(O)cc3)ccc21)C(=O)NCCN1CCCCO1
1396 | COc1cccc(C(C)NCCc2cc(OC)c(NC(=O)Nc3cnc(C#N)cn3)cc2Cl)c1
1397 | COCCOCC#Cc1cc(-c2[nH]nc3c2C(=O)c2cc(CN4CCN(C)CC4)ccc2-3)cs1
1398 | N#Cc1ccc(Nc2ncc(-c3ccccc3)cn2)cn1
1399 | Cc1ccc(C)c(NC(=O)c2cc(-c3ccco3)nc3ccccc23)c1
1400 | O=C(Nc1ccc(O)cc1)c1ccc2c(-c3nc4cc(Cl)ccc4[nH]3)[nH]nc2c1
1401 | COc1ccc(NC(=O)Nc2ccc(-c3csc4c(-c5cnn(CC(C)(C)O)c5)cnc(N)c34)cc2)cc1
1402 | O=C1N=c2ccc(N3NC=CN3)cc2=CC1=C1C=c2cc(CN3CCCCC3)ccc2=N1
1403 | NC(COc1cc(C=Cc2ccncc2)cnc1Cl)Cc1c[nH]c2ccccc12
1404 | Cc1cccc2c(NC3CN4CCC3CC4)c(-c3nc4ccccc4[nH]3)c(O)nc12
1405 | Oc1ccc(-c2ccc3c(C=Cc4ccccc4)[nH]nc3c2)cc1OCc1ccccc1
1406 | O=C(Nc1ccccc1N1CCNCC1)c1csc(NCc2ccccc2)n1
1407 | CC(C)(C)CNCc1cccc2c1Cc1c(-c3ccc(-c4ccc(O)cc4)cc3)n[nH]c1-2
1408 | Oc1nc2cnc(-n3cnc4ccc(F)cc43)nc2n1C1CCOc2c(F)cccc21
1409 | CN1C(=O)c2c(c3c4cnccc4[nH]c3c3[nH]c4cc(O)ccc4c23)C1=O
1410 | Cc1c2c(c3c([nH]c4ccc(O)cc43)c1-c1ccccc1)C(=O)NC2=O
1411 | CC(C)Cn1c(N)nc2c(F)cc(-c3c(-c4ccc(F)cc4)nc4sccn34)cc21
1412 | Oc1cccc(-c2ccc3nc(O)c(-c4cc5cc(CN6CCCCC6)ccc5[nH]4)cc3c2)c1
1413 | O=S(=O)(Nc1ccc2ccccc2c1O)c1ccc(F)cc1
1414 | CNC(=O)c1ccc2c(c1)-c1[nH]nc(-c3ccc(-c4ccc(O)cc4)cc3)c1C2
1415 | CCOC(=O)c1nn(-c2ccc(C)cc2)c(=Nc2nc(-c3ccccc3)cc(-c3ccccc3)c2C#N)s1
1416 | COCC(=O)NCC=Cc1ccc2ncnc(Nc3ccc(Oc4ccc(C)nc4)c(C)c3)c2c1
1417 | N#Cc1cnc(NC(=O)Nc2ccc(CCNCc3ccc(OC(F)(F)F)cc3)c(Cl)c2)cn1
1418 | COc1ccc2[nH]c3cc(-c4ccccc4Cl)c4c(c3c2c1)C(=O)NC4=O
1419 | CN(C)CC(=O)NC(COc1cncc(-c2ccc3cnccc3c2)c1)Cc1c[nH]c2ccccc12
1420 | Nc1nccn2c(C3CC(CN4CCCC4)C3)nc(-c3cccc(OCc4ccccc4)c3)c12
1421 | Cc1cc2c(NC3CCNC3)c(-c3nc4ccccc4[nH]3)c(O)nc2s1
1422 | CN(C)c1ccc(Nc2cc(-c3csc(Br)c3)[nH]n2)cc1
1423 | COc1nccn2c(-c3ccnc(NCC(C)(C)CO)n3)c(-c3ccc(F)cc3)nc12
1424 | NC1=NC(c2ccnc(O)c3nccc2-3)C(O)N1
1425 | O=C1CCCc2oc3cc(C(F)(F)F)ccc3c(=O)c21
1426 | NC(=O)c1cc(-c2ccnc(N)n2)[nH]c1-c1ccc(Cl)cc1F
1427 | Cc1[se]c(C=C2C(=O)Nc3cc(-c4ccc(O)cc4)ccc32)cc1C(=O)NCCN(C)C
1428 | NC(=O)c1ccc(NC2CCCNC2)c2cc(-c3ccccc3)[nH]c12
1429 | N#Cc1ccc(Nc2ncc(C(F)(F)F)c(NCC3CCCNC3)n2)cn1
1430 | c1ncc(-c2cc3c(cn2)[nH]c2ncc(-c4ccc(CN5CCCCC5)cc4)cc23)o1
1431 | CC(=O)c1nn(-c2ccc(Cl)cc2)c(=Nc2nc(-c3ccccc3)cc(-c3ccccc3)c2C#N)s1
1432 | CNc1nc(Nc2cnc(C#N)c(OC3CCCNC3)c2)ncc1-c1ccc(C(=O)OC)s1
1433 | CN1CCC(NC(=O)c2cnc(Nc3cc(Cl)cc(Cl)c3)nc2NC2CCC(N(C)C)CC2)CC1
1434 | COc1ccc(CNCCc2ccc(NC(=O)Nc3cnc(C#N)cn3)cc2Cl)cc1
1435 | c1cc2c(cn1)[nH]c1ncc(-c3ccc(CN4CCCCC4)cc3)cc12
1436 | CC1CCCC(C)N1Cc1ccc(-c2cnc3[nH]c4cnc(C#N)cc4c3c2)cc1
1437 | O=C(Nc1ccc(O)c(F)c1)c1ccc2c(-c3nc4ccccc4[nH]3)[nH]nc2c1
1438 | Cc1cc(NC(=O)Cc2ccc(-c3cccc4[nH]nc(N)c34)cc2)ccc1F
1439 | Cc1cc2nnc(SCc3cn4ccccc4n3)n2c2ccccc12
1440 | O=C(NC1CC1)c1ccc2c(-c3nc4ccccc4[nH]3)[nH]nc2c1
1441 | CN(C)C(=O)c1ccc2c(-c3cc4cc(CN5CCOCC5)ccc4[nH]3)[nH]nc2c1
1442 | O=C(CNCCO)Nc1ccc2c(c1)Cc1c(-c3ccc(-c4ccc(O)cc4)cc3)n[nH]c1-2
1443 | O=C1Nc2ccc(Cl)c(Cl)c2C(=NC2CN3CCC2CC3)C1c1nc2ccccc2[nH]1
1444 | [O][N+](=O)c1cccc(C(=O)Nc2nc3ccccc3n2CCCO)c1
1445 | Oc1nc2ccc(Cl)cc2c(-c2ccccc2)c1C1=NNC(c2ccccc2)C1
1446 | [O][N+](=O)c1ccc(NC(=O)N2CCc3[nH]c4c(Cl)cc(Cl)cc4c3C2)cc1
1447 | Cc1nn(-c2cccc(Br)c2)c(O)c1C=c1c(C)c(C#N)c2nc3ccccc3n2c1=O
1448 | COc1cc2ncnc(Nc3cccc(Cl)c3F)c2cc1CN1CCCC1
1449 | O=C1NC(=O)c2c1c(-c1cccc(-c3ccccc3)c1)cc1[nH]c3ccc(O)cc3c21
1450 | O=C(NCCCN1CCOC1=O)c1cnc(NCc2cc(Cl)ccc2Cl)nc1NC1CCCC1
1451 | CCC(=O)Nc1ccc(C(=O)N2CCNCC2)c(O)c1
1452 | NC(=O)c1cccc2[nH]c(-c3ccc(NC(=O)c4cccc(S(=O)(=O)N5CCOCC5)c4)cc3)nc12
1453 | COc1cc(C=NNc2ncnc3[nH]ncc23)ccc1O
1454 | N#CCCc1cc2ccnc(O)c2c2cc(Br)ccc12
1455 | O=C1C=C(O)C=CC1=C1C=CC(c2cc(Nc3ccc(CN4CCCC4)cc3)[nH]n2)C=C1
1456 | COc1cc(CN2CCCCC2)ccc1NC(=O)Nc1cnc(C#N)cn1
1457 | Nc1[nH]nc2cccc(-c3ccc(NC(=O)Nc4cc(C(=O)O)ccc4F)cc3)c12
1458 | CCN(CC)CCNC(=O)c1c(C)[nH]c(C=C2C(=O)Nc3ccc(F)cc32)c1C
1459 | COc1ccc2c(c1)C(=O)N(c1nc(C(=O)Nc3cnc4ccccc4c3N3CCNCC3)cs1)C2
1460 | COC(=O)c1cnc(Nc2cnc(C#N)cn2)cc1NC1CC2CCC(C1)N2
1461 | CC(C)Oc1nccn2c(-c3ccnc(NCC(C)(C)CO)n3)c(-c3ccc(F)cc3F)nc12
1462 | COc1cc(NC(=O)c2ccncc2)c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1
1463 | O=C1NC(NCc2ccccc2)=NC1=C1CCNC(=O)c2[nH]c(-c3ccccc3)cc21
1464 | CNC(=O)c1ccc2c(-c3cc4cc(CN5CCOCC5)ccc4[nH]3)[nH]nc2c1
1465 | N#Cc1cnc(Nc2cc(NCC3CNCCO3)c(C(F)(F)F)cn2)cn1
1466 | NC(=O)Nc1cc(-c2cc(F)cc(F)c2)sc1C(=O)NC1CCCNC1
1467 | COc1cc(NC(=O)Cc2ccc(S(C)(=O)=O)cc2)c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1
1468 | O=C(Nc1cnccc1N1CCNCC1)c1csc(-c2ccc(Oc3ccccc3)cc2)n1
1469 | NC(=O)Nc1sc(-c2cccc(Cl)c2)cc1C(=O)NC1CCCNC1
1470 | CC(C)(O)C#Cc1cc2c(cc1Cl)NC(=O)Nc1cnc(C#N)c(n1)OCCCCCO2
1471 | NCCCOc1cc2c(c(-c3ccc(Nc4nc5ccccc5o4)cc3)c1)CNC2=O
1472 | O=C1NC(=O)c2c1c(-c1ccc(F)cc1)cc1[nH]c3ccc(O)cc3c21
1473 | NC(=O)c1ccc(NC2CCCNC2)c2cc(-c3cccc(F)c3)[nH]c12
1474 | N=C(N)NCCNC(=O)c1cccc(CNC(=O)c2cc3c(c4c2[nH]c2ccccc24)C(=O)NC3=O)c1
1475 | O=C(NCc1ccccc1)c1ccc(-c2ccncc2)cc1
1476 | O=C(Nc1ccc(O)cc1)c1ccc2c(-c3nc4cc(F)ccc4[nH]3)[nH]nc2c1
1477 | CC(C)N(C)C(=O)c1c(-c2ccc3[nH]ncc3c2)nnn1Cc1ccccc1
1478 | CC(C)(C)c1cc(NC(=O)C(=O)c2cccc3ccccc23)n(-c2ccc(OCCC(=O)O)cc2)n1
1479 | O=C(O)c1ccc(N2C(=O)c3ccccc3C2=O)cc1O
1480 | COc1cc(-c2ccc3c(c2)Nc2ccc(C(=O)NCCNC(C)=O)cc2NC3=O)ccc1O
1481 | NC(=O)c1cc(-c2ccnc(N)n2)[nH]c1-c1ccccc1
1482 | Fc1cnc(Nc2ccccc2)nc1Nc1ccccc1
1483 | CN(c1ccccc1)c1nc(C(=O)Nc2ccccc2N2CCNCC2)cs1
1484 | COc1ccc2[nH]c3c4[nH]c5ccc(OC)cc5c4c4c(c3c2c1)C(=O)NC4=O
1485 | O=C(NC(CO)c1ccccc1)N1CC=C(c2c[nH]c3ncccc23)CC1
1486 | Cc1cccc(NC(=O)Nc2ccc(-c3csc4nc(N)nc(N)c34)cc2)c1
1487 | COc1cc2ncnc(Nc3cccc(Cl)c3F)c2cc1CN1CCN(C)CC1C(N)=O
1488 | CCCC(=O)Nc1[nH]nc2ccc(-c3cccc(F)c3F)cc12
1489 | CCN1CCc2cc(-c3cnc4[nH]c5cnc(C#N)cc5c4c3)ccc2C1
1490 | CC(C)c1nnc2ccc(-c3ocnc3-c3cc(F)c(F)cc3F)cn12
1491 | CNc1nc(Nc2cnc(C#N)c(OC3CCN(C)CC3)c2)ncc1C(F)(F)F
1492 | CC=C(C=CC=C1C(=O)Nc2cc(-c3ccc(O)cc3)ccc21)C(=O)NCCN(CC)CC
1493 | C(=Cc1[nH]nc2cc(-c3cccnc3)ccc12)c1ccccc1
1494 | OCc1cc2ccnc(O)c2c2cc(Br)ccc12
1495 | NCC(O)C(O)Cn1cc(I)c2c(N)ncnc21
1496 | c1ccc(Nc2nc(N3CCOCC3)c3nc[nH]c3n2)cc1
1497 | CC=C(CC=CC1=c2ccc(-c3cccc(O)c3)cc2=NC1=O)C(=O)NCCN1CCCC1
1498 | O=C1NC(=O)C(c2cnc3ccccn23)=C1c1cn2c3c(cccc13)CN(C(=O)N1CCOCC1)CC2
1499 | CC=C(C=CC=C1C(=O)Nc2cc(-c3ccc(O)cc3)ccc21)C(=O)O
1500 | Oc1ccc(Oc2ccc3c(C=Cc4ccccc4)[nH]nc3c2)cc1
1501 | O=C(Cc1ccccc1)Nc1cccc(-c2nc3sccn3c2-c2ccnc(Nc3ccc(N4CCOCC4)cc3)n2)c1
1502 | NCCCc1cc2c(-c3ccccc3O)cnc(O)c2c2cc(-c3cn[nH]c3)ccc12
1503 | CN1CCN(CC(=O)N(C)c2ccc(N=C(c3ccccc3)c3c(O)[nH]c4ccc(C(=O)O)cc34)cc2)CC1
1504 | COc1cc(NC(=O)CCCc2ccccc2)c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1
1505 | Cn1cc(C2=C(c3cn(C4CCN(Cc5ccccn5)CC4)c4ccccc34)C(=O)NC2=O)c2ccccc21
1506 | COc1cc(CN2CCCCC2)c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1
1507 | Clc1ccc(Nc2nnc(Cc3ccncc3)c3ccccc23)cc1
1508 | COc1cc2ncnc(Nc3cccc(Cl)c3F)c2cc1CN(C)C(CO)C(N)=O
1509 | CC(=O)N1CCN(Cc2ccc3[nH]c(-c4cc5cc(-c6cnn(C)c6)ccc5nc4O)cc3c2)CC1
1510 | CC(CCC(=O)O)(c1ccc(O)c(N)c1)c1ccc(O)c(N)c1
1511 | Nc1ncc(-c2cccc([N+](=O)[O-])c2F)cc1-c1ccc2c(c1)CCNC2=O
1512 | COc1cc2c(cc1CN1CCN(C)CC1)Cc1c(-c3ccc(-c4ccc(O)c(F)c4)cc3)n[nH]c1-2
1513 | CCOc1nc(NC(=O)Cc2cc(OC)c(S(C)(=O)=O)cc2OC)cc(N)c1C#N
1514 | CC(C)CNc1cc2c(cc1Cl)NC(=O)Nc1cnc(C#N)c(n1)OCCCCCO2
1515 | CN1CCN(c2ccc(-c3cncc(-c4ccc(C(=O)NS(C)(=O)=O)cc4)n3)cc2)CC1
1516 | O=C1NC(O)c2c(-c3ccccc3)cc3[nH]c4ccc(O)cc4c3c21
1517 | NNc1cc(N2CCOCC2)nc(OCCc2ccccn2)n1
1518 | N#Cc1ccc(Nc2ncc(C(F)(F)F)c(NC3CCNC3)n2)cn1
1519 | N#Cc1ccc(-c2cc3[nH]c4ccc(O)cc4c3c3c2C(=O)NC3=O)cc1
1520 | COc1cc(S(C)(=O)=O)c(OC)cc1CC(=O)Nc1cc(N)c(C#N)c(OC(C)C)n1
1521 | COc1cc(CCNC(C)c2ccc(F)cc2)ccc1NC(=O)Nc1cnc(C#N)cn1
1522 | Nc1ncnc2c1c(I)nn2C1CCC(O)CC1
1523 | NC(=O)c1ccc2nc(-c3ccc([N+](=O)[O-])o3)cn2c1
1524 | N#Cc1ccc2c(-c3cc4cc(CN5CCC(CN)CC5)ccc4[nH]3)[nH]nc2c1
1525 | CCCNC(=O)c1ccc(Nc2nc(NCC(F)(F)F)c3cc[nH]c3n2)cc1
1526 | CNC1CC2OC(C)(C1OC)n1c3ccccc3c3c4c(c5c6ccccc6n2c5c31)C(=O)NC4
1527 | Nc1[nH]nc2ccc(-c3cn(Cc4ccccc4)nn3)cc12
1528 | CC(N=c1c(O)c(O)c1=Nc1ccncc1)C1CCCCC1
1529 | CC(C)NC(=O)COc1cccc(-c2nc(Nc3ccc4[nH]ncc4c3)c3ccccc3n2)c1
1530 | Cc1ccc(CNc2ccc3nnc(-c4ccccc4)n3n2)cc1
1531 | Oc1nc2cc(-c3ccccc3)cnc2[nH]1
1532 | CC1CCC(NCc2ccc3c(c2)Cc2c(-c4ccc(F)cc4)n[nH]c2-3)CC1
1533 | O=C1NCc2c1cccc2-c1cccs1
1534 | Nc1ncnc2c1N=C(c1ccc(NC(=O)Nc3cccc(C(F)(F)F)c3)cc1)CCN2
1535 | CCN(CC)CCNC(=O)c1cc(C=C2C(=O)Nc3cc(-c4ccc(O)cc4)ccc32)[se]c1C
1536 | CC(C)CCOc1cc2c(cc1Cl)NC(=O)Nc1cnc(C#N)c(n1)OCCCCCO2
1537 | Cc1ccccc1NC(=O)Nc1ccc2c(c1)CCc1sc3ncnc(N)c3c1-2
1538 | OCCCNc1ncnc2[nH]cc(-c3ccccc3)c12
1539 | COc1cc2c(cc1OCCCCO)Nc1cc(-c3ccc([N+](=O)[O-])c(OC)c3)ccc1C(=O)N2
1540 | O=C(Nc1cnccc1N1CCNCC1)c1csc(-c2cc3ccccc3s2)n1
1541 | N#Cc1c(-c2ccccc2)cc(-c2ccccc2)nc1N=C1SC(=C2SC(C(=O)Nc3ccccc3)=NN2c2ccccc2)C(=O)N1c1ccccc1
1542 | COc1cc(-c2ccc3c(-c4ccccc4)[nH]nc3c2)ccc1O
1543 | Cc1cccc(NC(=O)Cc2ccc(-c3cccc4[nH]nc(N)c34)cc2)c1
1544 | O=C(O)c1cc(-c2cccs2)n2nccc2n1
1545 | COc1cc(NC(=O)c2cccnc2)c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1
1546 | Oc1nc2sccc2c(NC2CCNCC2)c1-c1nc2ccccc2[nH]1
1547 | CCCCNc1nc(N)c(C(=O)c2ccccc2)s1
1548 | Oc1nc2sc3c(c2c2nc(-c4cccnc4)nn12)CCCC3
1549 | O=C1N=C(NCc2ccccc2)N=C1C1CCNC(=O)c2[nH]c(-c3ccccc3)cc21
1550 | CCOC(=O)C1=c2sc(=Cc3ccco3)c(=O)n2C(N)=C(C#N)C1c1ccco1
1551 | CNc1nc(Nc2cnc(C#N)c(NC3CCCNC3)c2)ncc1C(F)(F)F
1552 | COc1cc2c(cc1OCc1ccncc1)Nc1cc(-c3ccc([N+](=O)[O-])c(OC)c3)ccc1C(=O)N2
1553 | O=C1NC(=O)c2c1c1c(O)ccc(O)c1c1[nH]c3ccccc3c21
1554 | CN1CCN(CC(=O)N(C)c2ccc(N=C(c3ccccc3)c3c(O)[nH]c4ccccc34)cc2)CC1
1555 | NC(=O)c1sc2c(Br)ccc(Cl)c2c1N
1556 | N#Cc1ccc(Nc2ncc(C(F)(F)F)c(NCCCNCCC(N)=O)n2)cn1
1557 | CSc1cnc2c(ccc3cnccc32)c1O
1558 | CN1CCN(CCCNc2cccc(-c3nc4c(C(N)=O)cccc4[nH]3)n2)CC1
1559 | COc1cc2ncnc(Nc3cccc(Cl)c3F)c2cc1CN1CCCC1C(N)=O
1560 | Cc1c(-c2ccc3[nH]nc(N)c3c2)nnn1Cc1ccccc1
1561 | O=C1NC(=O)c2c1c(-c1ccccc1)c(-c1ccccc1)c1[nH]c3ccc(O)cc3c21
1562 | O=C(O)c1ccc(-c2n[nH]c3c2Cc2cc(CN4CCC(O)CC4)ccc2-3)cc1
1563 | O=C(Nc1ccccc1N1CCNCC1)c1csc(-c2cc3ccccc3s2)n1
1564 | O=C1Nc2ccc(Cl)cc2C(=NC2CCCNC2)C1c1nc2ccccc2[nH]1
1565 | COC(=O)c1ccc2c(-c3cc4cc(CN5CCOCC5)ccc4[nH]3)[nH]nc2c1
1566 | COc1cccc(C(C)NC(=O)c2ccc(-c3ccncc3)s2)c1
1567 | Cc1[nH]nc2ccc(-c3cncc(OCC(CN)Cc4ccccc4)c3)cc12
1568 | Oc1nc2ccc(Cl)c(Cl)c2c(NC2CN3CCC2CC3)c1-c1nc2ccccc2[nH]1
1569 | Cc1nccn2c(-c3ccnc(NCC(C)(C)CO)n3)c(-c3ccc(F)cc3F)nc12
1570 | Cc1ccc2nccc(NC(=O)Nc3cccc(C(F)(F)F)n3)c2c1
1571 | CNCC#Cc1cnc(N)c2c(-c3ccc(NC(=O)Nc4cccc(C)c4)cc3)csc12
1572 | CN(C)S(=O)(=O)c1ccccc1-c1ccc2c(c1)Nc1ccccc1NC2=O
1573 | CCc1cccc(NC(=O)Nc2ccc3c(c2)CCc2sc4ncnc(N)c4c2-3)c1
1574 | NC(=O)c1ccc(Nc2nc(N3CCOCC3)c3[nH]cnc3n2)cn1
1575 | N#Cc1cnc(NC(=O)Nc2ccc(CCNCc3cccc(F)c3)c(Cl)c2)cn1
1576 | COc1cc(-c2ccc3c(c2)NC(=O)C3=Cc2ccc[nH]2)ccc1O
1577 | COc1ccc(-c2cnc3c(Br)cnn3c2)cc1
1578 | O=C1NC(=O)C(c2cnc3ccccn23)=C1c1cn2c3c(cc(F)cc13)CN(C(=O)N1CCCCC1)CC2
1579 | CC(=O)Nc1cc2c(cc1Cl)NC(=O)Nc1cnc(C#N)c(n1)OCCCCCO2
1580 | O=C1NC(=O)c2c1c1c3ccccc3[nH]c1n1cncc21
1581 | COc1cc(Nc2cnc(C#N)c(OC3CCNC3)n2)ncc1-c1cnn(C)c1
1582 | CC(C)NCc1ccc(Nc2cc(C3C=CC(=C4C=CC(O)=CC4=O)C=C3)[nH]n2)cc1
1583 | Cc1cccc(NC(=O)Nc2ccc(-c3csc4c(C#Cc5cccnc5)cnc(N)c34)cc2)c1
1584 | COc1cc2c(cc1Nc1nc(Nc3cccc(F)c3C(N)=O)c3cc[nH]c3n1)N(C(=O)CN(C)C)CC2
1585 | COc1cc(-c2ccc3c(c2)Nc2c(cccc2OC)NC3=O)ccc1N
1586 | Cc1c(Nc2c(C#N)cnc3sc(C=CC(=O)N4CCCC4)cc23)ccc2[nH]ccc12
1587 | Cc1cc(Nc2cc(N3CCN(C)CC3)nc(Sc3ccc(NC(=O)C4CC4)cc3)n2)n[nH]1
1588 | [O][N+](=O)c1ccc2[nH]c(-c3ccco3)nc2c1
1589 | COc1ccc2c(c1)C(=O)N(c1nc(C(=O)Nc3cncnc3N3CCNCC3)cs1)C2
1590 | COC(=O)c1cc2c(-c3cccc(F)c3)cncc2s1
1591 | OCC(CO)Nc1ncnc2[nH]cc(-c3ccccc3)c12
1592 | Cc1cn(-c2cc(NC(=O)c3ccc(C)c(Nc4nccc(-c5cccnc5)n4)c3)cc(C(F)(F)F)c2)cn1
1593 | O=C1NC(=O)c2c1c1c(O)ccc(OS(=O)(=O)O)c1c1[nH]c3ccccc3c21
1594 | Oc1nc2sccc2c(NC2CN3CCC2CC3)c1-c1nc2ccccc2[nH]1
1595 | CC1CCC(Nc2ncc(C(N)=O)c3sc(-c4ccccc4)cc23)CN1
1596 | COc1cc2ncnc(Nc3cccc(Cl)c3F)c2cc1CN(C)C1(C(N)=O)CCN(C(C)C)CC1
1597 | O=C1NC(=O)c2c1c(-c1ccc[nH]1)cc1[nH]c3ccc(O)cc3c21
1598 | CN(C)c1cccc2c(S(=O)(=O)N(CCN)c3cncc(-c4ccc5cnccc5c4)c3)cccc12
1599 | N#Cc1ccc(Nc2ncc(C(F)(F)F)c(NCCCN)n2)cn1
1600 | Nc1ccc(-c2cncc(OCC(N)Cc3c[nH]c4ccccc34)c2)cc1C(=O)c1cccc(Cl)c1
1601 | COCC#Cc1cccc2c1Cc1c(-c3cccs3)n[nH]c1-2
1602 | Cc1[nH]c(-c2ccccc2)c(-c2ccccc2)c1-c1ccc(NC(=O)c2ccccc2)c(=O)o1
1603 | Oc1cccc(-c2nc(N3CCOCC3)c3oc4ncccc4c3n2)c1
1604 | CN1CCN(c2cc(OCc3cccnc3)c(NC(=O)Nc3cnc(C#N)cn3)cc2Cl)CC1
1605 | N#Cc1ccc(-c2[nH]nc3c2Cc2ccc(OCCN4CCOCC4)cc2-3)cn1
1606 | CC(=O)Cc1ccc(-c2n[nH]c3c2Cc2cc(CNC4CCC(C)CC4)ccc2-3)cc1
1607 | O=C1NC(=O)c2c1c1c3cnccc3[nH]c1c1[nH]c3ccc(O)cc3c21
1608 | N#Cc1ncc2nc1OCCCCCOc1cc(OCCCN)c(Cl)cc1NC(=O)N2
1609 | CCNc1nc2cc(Cl)c(OC)cc2nc1NCC
1610 | NC(COc1cncc(-c2ccc3c(c2)C(=Cc2ccc[nH]2)C(=O)N3)c1)Cc1ccccc1
1611 | Oc1nc2sc(Cl)cc2c(NC2CCCNC2)c1-c1nc2ccccc2[nH]1
1612 | O=C1C=CC(=C2C=CC(c3[nH]nc4c3Cc3cc(NC(=O)CNCc5ccncc5)ccc3-4)C=C2)C=C1
1613 | NC(COc1cncc(-c2ccc(F)cc2)c1)Cc1c[nH]c2ccccc12
1614 | O=C1NCCc2[nH]c(-c3ccnc(-c4ccccc4F)c3)cc21
1615 | Cn1nc(N)c2c(-c3ccc(NC(=O)Nc4cccc(C(F)(F)F)c4)cc3)cncc21
1616 | COc1cc(-c2ccc3c(c2)Nc2ccc(C(=O)NCCCN(C)C)cc2NC3=O)ccc1O
1617 | CCOc1nc(C(=O)NCc2ccc(S(N)(=O)=O)cc2)cc(N)c1C#N
1618 | CCCCNc1cc2c(cc1Cl)NC(=O)Nc1cnc(C#N)c(n1)OCCCCCO2
1619 | COCc1nnn(-c2nonc2N)c1C(=O)NN=C(C)c1ccc(O)cc1O
1620 | Fc1ccc(-c2nc(-c3ccc(F)cc3)c(-c3ccncc3)[nH]2)cc1
1621 | Nc1ccc(-c2ccc3c(c2)NC(=O)C3=Cc2cc[nH]c2)cc1
1622 | Cc1[se]c(C=C2C(=O)Nc3cc(-c4cccc(O)c4)ccc32)cc1C(=O)NCCN1CCCC1
1623 | CCOc1ccc(-c2[nH]nc3c2Cc2cc(CNC4CCC(C)CC4)ccc2-3)cc1
1624 | O=C1C=C(O)C=CC1=C1C=CC(c2cc(Nc3ccccc3)[nH]n2)C=C1
1625 | C(=Cc1[nH]nc2cc(-c3ccncc3)ccc12)c1ccc(-c2ccccc2)cc1
1626 | N#Cc1cc2c(cn1)[nH]c1ncc(-c3ccc(CN4CCCC(O)C4)cc3)cc12
1627 | COc1cc(-c2ccc3c(c2)Nc2c(cccc2OCc2ccncc2)NC3=O)ccc1N
1628 | CN1CCN(Cc2ccc3c(c2)Cc2c(-c4csc(C#CCOCC5CC5)c4)n[nH]c2-3)CC1
1629 | N#CC(=Cc1ccc(O)c(O)c1)C(=O)NCc1ccccc1
1630 | O=C1Nc2cc(Cl)ccc2Nc2ccccc21
1631 | Cc1ccc(-c2ccc3occ(-c4ccc([S+](C)[O-])cc4)c3c2)o1
1632 | Cc1cccc(NC(=O)Nc2ccc(-c3csc4c(C#CCN(C)C)cnc(N)c34)cc2)c1
1633 | OCCn1cc(-c2cnc3nnn(Cc4ccc5ncccc5c4)c3n2)cn1
1634 | C=CCC=CC1=c2ccc(-c3ccc(O)cc3)cc2=NC1=O
1635 | Cc1cccc(C2(c3cccc(C)c3)CC2C(=O)Nc2ccncc2)c1
1636 | NC(=O)c1cc2c(Oc3ccc(Br)cc3)cncc2s1
1637 | CCCCC(Sc1nc2ccccc2c(=O)n1-c1ccccc1)C(=O)N1CCCC2(CCCNC2)C1
1638 | CNc1nc(Nc2cnc(C#N)c(NCC3CCNC3)c2)ncc1C(F)(F)F
1639 | O=C1C=CC(c2ccc(-c3[nH]nc4c3Cc3ccc(CNCCN5CCCC5)cc3-4)cc2)C=C1
1640 | CNC1CC2OC(C)(C1OC)n1c3ccccc3c3c4c(c5c6ccccc6n2c5c31)C(=O)NC4O
1641 | CC(C)Cc1cc(-c2ccc3[nH]nc(N)c3c2)on1
1642 | Cc1ccc2nc(NCCN)c3ncc(C)n3c2c1
1643 | N#Cc1cnc(NC(=O)Nc2ccc(CCNCc3ccc(Cl)cc3)c(Cl)c2)cn1
1644 | CN1CCC(Nc2ncc(C(N)=O)c3nc(-c4ccc(Cl)cc4)cn23)CC1
1645 | Oc1ccc(-c2ccc(-c3cc(Nc4ccc(CNCC5CC5)nc4)[nH]n3)cc2)c(O)c1
1646 | CC(C)(CN)CNc1nc(Nc2ccc(C#N)nc2)ncc1C(F)(F)F
1647 | c1cc(-c2ccc3c(-c4cc5cc(CN6CCOCC6)ccc5[nH]4)[nH]nc3c2)n[nH]1
1648 | CCOc1nc(C(=O)NCc2ccccc2S(N)(=O)=O)cc(N)c1C#N
1649 | OCCNCc1ccc2c(c1)Cc1c(-c3ccc(-c4ccc(O)cc4)cc3)n[nH]c1-2
1650 | COCCOCCOc1cc2c(cc1OC)NC(=O)c1ccc(-c3ccc([N+](=O)[O-])c(OC)c3)cc1N2
1651 | Cc1ccc(NC(=O)Nc2ccc(-c3coc4ncnc(N)c34)cc2)cc1
1652 | COc1cc2cnc3c(c2cc1OC)C(=O)NC3=O
1653 | COC(=O)c1cc2ccnc(O)c2c2cc(Cl)ccc12
1654 | O=C(Nc1cnccc1N1CCNCC1)c1csc(-c2ccc3c(c2)CCO3)n1
1655 | CCOC(=O)c1c(C)n(-c2ccc(I)cc2)c2c1cc(O)c1ccccc12
1656 | O=CC1=C(c2ccc3c(-c4cc5cc(CN6CCCCC6)ccc5[nH]4)[nH]nc3c2)NNN1
1657 | CN(C)CCNC(=O)c1ccc2c(CCCN)cc3ccnc(O)c3c2c1
1658 | CNc1nc(Nc2cnc(C#N)c(OC3CCCNC3)c2)ncc1-c1cccnc1
1659 | NC(=O)c1sc(-n2cnc3ccccc32)cc1OCc1ccccc1C(F)(F)F
1660 | CN1CCN(c2cccc(CNCCc3ccc(NC(=O)Nc4cnc(C#N)cn4)cc3Cl)c2)CC1
1661 | CC(=O)c1cccc(-c2ccc3c(c2)Nc2ccccc2NC3=O)c1
1662 | CC(C)(O)C#Cc1cnc(Nc2cnc(C#N)cn2)cc1NCC1CNCCO1
1663 | Oc1nc2sc3c(c2c2nc(-c4ccncc4)nn12)CCCC3
1664 | COc1cc2ncnc(Nc3cccc(Cl)c3F)c2cc1CN1CCC1C(N)=O
1665 | Cc1cccc(NC(=O)Nc2ccc(-c3csc4ccnc(N)c34)cc2)c1
1666 | COc1cc(-c2ccc3c(c2)Nc2cc(CC(=O)N(C)C)ccc2NC3=O)ccc1N
1667 | Cc1cc(N2CCOCC2)cc2[nH]c(-c3c(NCC(O)c4cccc(Cl)c4)ccnc3O)nc12
1668 | N#Cc1cc2c(cn1)[nH]c1ncc(-c3ccccn3)cc12
1669 | Nc1[nH]nc2cccc(-c3ccc(Br)cc3)c12
1670 | Oc1ccc(-c2ccc(-c3n[nH]c4c3Cc3cc(CN5CCC(O)CC5)ccc3-4)cc2)cc1
1671 | Oc1nc2ccc(-c3cn[nH]c3)cc2cc1-c1cc2cc(CN3CCC(F)CC3)ccc2[nH]1
1672 | CCOc1cc2ncc(C#N)c(Nc3ccc(OCc4ccccn4)c(Cl)c3)c2cc1NC(=O)C=CCN(C)C
1673 | Nc1ncnc2c1c(-c1cnc3[nH]ccc3c1)nn2C1CCCC1
1674 | NC(=O)c1cc(-c2ccnc(N)n2)[nH]c1-c1ccc(Cl)cc1Cl
1675 | N#Cc1cnc(Nc2cc(NCC3CNCCO3)c(-c3cccc(Cl)c3)cn2)cn1
1676 | CSc1cc(Nc2cnc(C#N)c(OC(C)CN(C)C)n2)ncc1-c1cnn(C)c1
1677 | COc1cc(-c2ccc3c(c2)NC(=O)C3=Cc2ccc[se]2)ccc1O
1678 | CC(C)(C)C(=O)Oc1ccc(O)c2c3c(c4c5ccccc5[nH]c4c12)C(=O)NC3=O
1679 | O=C(Nc1ccncc1N1CCNCC1)c1csc(-c2ccc3c(c2)CCO3)n1
1680 | N#Cc1cnc(Nc2cc(NCC3CNCCO3)c(F)cn2)cn1
1681 | NC(=O)Nc1cc(-c2ccc(Cl)c(Cl)c2)sc1C(=O)NC1CCCNC1
1682 | O=C1Nc2cc(-c3ccc(O)cc3)ccc2C1=Cc1cc[nH]c1
1683 | CN1CCC(NC(=O)c2cc3c(-c4ccccc4)[nH]nc3s2)CC1
1684 | CC(C)(O)C#Cc1cnc(Nc2cnc(C#N)cn2)cc1NCC1CCNCC1
1685 | COc1nc(Nc2cnc(C#N)c(OC3CCCNC3)c2)ncc1-c1cnn(C)c1
1686 | CC(C)(C)c1cnc(CSc2cnc(NC(=O)C3CCNCC3)s2)o1
1687 | CC(C)(CO)CNc1nccc(-c2c(-c3ccc(F)cc3)nc3c(CCN)nccn23)n1
1688 | CCCNC(=O)c1ccc(Nc2nc(NCC(F)(F)F)c3sccc3n2)cc1
1689 | COc1cc(-c2ccc3c(c2)NC(=O)C3=Cc2ccc(C(=O)O)[se]2)ccc1O
1690 | N#Cc1ncc2nc1OCCCCCCOc1ccc(Cl)cc1NC(=O)N2
1691 | COc1cccc(Cl)c1-c1cc2[nH]c3ccc(O)cc3c2c2c1C(=O)NC2=O
1692 | NC1=NC(=C2CCNC(=O)c3[nH]ccc32)C(=O)N1
1693 | O=C(NCCO)c1ccc2c(c1)-c1[nH]nc(-c3ccc(-c4ccc(O)cc4)cc3)c1C2
1694 | CN1CCN(c2ccc3[nH]c(C4C(=N)c5c(F)cccc5NC4=O)nc3c2)CC1
1695 | c1cn(-c2ccc3c(-c4cc5cc(CN6CCCCC6)ccc5[nH]4)[nH]nc3c2)nn1
1696 | c1ccc(CNc2nc3ccc(-c4ccncc4)cc3s2)cc1
1697 | COc1cc(-c2ccc3c(c2)NC(=O)c2ccc(-c4ccccc4NS(C)(=O)=O)cc2N3)cc(OC)c1OC
1698 | COc1cc(CN(C)CCN(C)C)ccc1NC(=O)Nc1cnc(C#N)cn1
1699 | CC(=O)N1CCC(Nc2nccc(-c3c(-c4ccc(F)cc4)nc4occn34)n2)CC1
1700 | CN1CCN(c2ccc(OC(F)(F)F)c(Nc3nccc(-c4cc5c(n4C)CCNC5=O)n3)c2)CC1
1701 | N#Cc1ncc(Nc2ncc(-c3cccnc3)cn2)cc1OC1CCCNC1
1702 | CCNc1nnc2ccc(-c3ocnc3-c3ccc(F)cc3)cn12
1703 | CC(C)(C)C(=O)Oc1ccc2c(c1)nc(NC(=O)c1cccc([N+]([O])=O)c1)n2CCCO
1704 | NC(=O)c1ccc2c(-c3nc4ccccc4[nH]3)[nH]nc2c1
1705 | N#Cc1ncc2nc1OCCCCCOc1cc(OCc3ccccn3)c(Cl)cc1NC(=O)N2
1706 | CC1CC2CN1CCn1nc3c(cccc3c1O)-c1nc3c(cccc3nc1O)O2
1707 | O=C(Nc1ccccc1N1CCNCC1)c1csc(-n2ncc3ccccc32)n1
1708 | OCc1[nH]nnc1-c1ccc2c(-c3cc4cc(CN5CCC(F)CC5)ccc4[nH]3)[nH]nc2c1
1709 | CN1CCN(c2ccc3[nH]c(-c4c(O)nc5cccc(F)c5c4N)nc3c2)CC1
1710 | CC(Nc1nccc(-c2c(-c3ccc(F)cc3)nc3occn23)n1)c1ccccc1
1711 | O=C(Nc1ccccc1N1CCNCC1)c1csc(Nc2[nH]nc3ccccc23)n1
1712 | O=C(Nc1nc2ccccc2s1)c1cccc2c1CN(c1nc(C(=O)O)c(-c3ccc(CO)cc3)s1)CC2
1713 | CCCn1c2ccc(O)cc2c2c3c(c(-c4ccccc4Cl)cc21)C(=O)NC3=O
1714 | CCn1c(=O)c2cc(C(N)=O)c(N)nc2n(C2CC2)c1=O
1715 | NC(COc1cncc(C=Cc2ccncc2)c1)Cc1ccccc1
1716 | N#Cc1ccc(Nc2ncc(C(F)(F)F)c(NCCCNC3CCCC3)n2)cn1
1717 | c1ccc(Nc2nc(-c3ccc4[nH]ncc4c3)cs2)cc1
1718 | Oc1cccc(Oc2ccc3c(C=Cc4ccccc4)[nH]nc3c2)c1
1719 | O=C1Nc2cc(CCOc3ccc(N4CCOCC4)cc3)ccc2Nc2cc(-c3cn(Cc4cc(F)c(F)c(F)c4)c4cnccc34)ccc21
1720 | COc1cc2ncnc(Nc3cccc(Cl)c3F)c2cc1CN1CCCCC1C(N)=O
1721 | CC(C)(C)CNCc1cccc2c1Cc1c(-c3ccc(C4C=CC(=O)C=C4)cc3)n[nH]c1-2
1722 | CNc1nc(Nc2cnc(C#N)c(NC3CCNCC3)c2)ncc1C(F)(F)F
1723 | N#Cc1cc2c(cn1)[nH]c1ncc(-c3ccc(CN4CCCCC4)nc3)cc12
1724 | CCOc1nc(C(=O)NCc2ccncc2)cc(N)c1C#N
1725 | CC(C)(C)c1cc(NC(=O)C(=O)c2cccc3ccccc23)n(-c2cccc(OCC(=O)O)c2)n1
1726 | COc1cc(-c2ccc3c(c2)NC(=O)C3=Cc2c[nH]c3c(C)cccc23)ccc1O
1727 | CCN1CCN(CCCC(=O)Nc2[nH]nc3nnc(-c4cccc(F)c4F)cc23)CC1
1728 | Nc1cccc(-c2cc3[nH]c4ccc(O)cc4c3c3c2C(=O)NC3=O)c1Cl
1729 | Cc1cc(C)cc(NC(=O)Nc2ccc3c(c2)CCc2sc4ncnc(N)c4c2-3)c1
1730 | NCCCc1cc2c(-c3cccc(F)c3)cnc(O)c2c2cc(-c3cn[nH]c3)ccc12
1731 | CN(C)CCNCc1ccc2c(c1)-c1[nH]nc(-c3ccc(-c4ccc(O)cc4)cc3)c1C2
1732 | O=S(=O)(Nc1ccccn1)c1ccc(N=Cc2c(O)[nH]c3ccc4ncsc4c23)cc1
1733 | CC(C)(O)Cc1nnc2ccc(-c3c(-c4ccc(F)cc4F)nc4occn34)nn12
1734 | Cc1c(Nc2c(C#N)cncc2C=CCCN2CCCC(N)C2)ccc2[nH]ccc12
1735 | N#Cc1cnc(NC(=O)Nc2ccc(CCNCc3ccc(F)cc3)cc2)cn1
1736 | COc1cc(-c2ccc3c(c2)Nc2ccc(CC(=O)N(C)C)cc2NC3=O)ccc1N
1737 | Cc1ccc2[nH]c3c4c(=O)ccc(=O)c4c4c(=O)[nH]c(=O)c4c3c2c1
1738 | COC1C(CN)OC2C(C1O)n1c3ccccc3c3c4c(c5c6ccccc6n2c5c31)C(=O)NC4=O
1739 | NCCCc1cc2c(-c3ccccc3F)cnc(O)c2c2cc(-c3cn[nH]c3)ccc12
1740 | CC(C)(C)c1ccc2[nH]c(-c3[nH]nc4cc(C(=O)Nc5ccc(O)cc5)ccc34)nc2c1
1741 | COc1cc(-c2ccc3c(c2)NC(=O)C3=Cc2ccc(C)[se]2)ccc1O
1742 | N#Cc1cc2ccnc(O)c2c2cc(Br)ccc12
1743 | NS(=O)(=O)c1ccc(Nc2nc(OCC3CCCCC3)c3[nH]cnc3n2)cc1
1744 | NC(=O)c1ccc(-c2nc(-c3ccc4c(c3)OCO4)c(-c3ccccn3)[nH]2)cc1
1745 | COC(=O)c1cnc(Nc2cnc(C#N)cn2)cc1NCC1CNCCO1
1746 | O=C1NC(=O)c2c1c(-c1ccccc1-c1ccccc1)cc1[nH]c3ccc(O)cc3c21
1747 | Oc1ccc(-c2ccc(-c3cc(Nc4ccc(CN5CCCC5)cc4)[nH]n3)cc2)c(O)c1
1748 | CC(C)(C)C(=O)Oc1ccc2c(c1)nc(NC(=O)c1cccc([N+](=O)[O-])c1)n2CCCO
1749 | Nc1nc2ccc(-c3c(-c4ccc(F)cc4)nc4sccn34)cc2n1CC1CC1
1750 | O=C1Nc2ccccc2Nc2nnccc21
1751 | CCCOn1c2ccc(Cl)cc2c(=O)c2c(C)nn(C)c21
1752 | Oc1cccc(Nc2ncnc3scc(Cl)c23)c1
1753 | COc1cccc2c1Nc1cc(Nc3ccncc3)ccc1C(=O)N2
1754 | COc1cccc(CNC(=O)c2cnc(-c3ccncc3)nc2)c1
1755 | CC(=O)C1=NN(c2ccccc2)C(=C2SC(=Nc3nc(-c4ccccc4)cc(-c4ccccc4)c3C#N)N(c3ccccc3)C2=O)S1
1756 | COc1cc(-c2ccc3c(c2)Nc2ccc([N+](=O)[O-])cc2NC3=O)ccc1O
1757 | N#Cc1cnc(NC(=O)Nc2cccc(CCNCc3ccc(F)cc3)c2)cn1
1758 | Cc1[nH]nc2ccc(-c3cncc(OCC(N)Cc4ccc(Cl)c(Cl)c4)c3)cc12
1759 | CNc1nc(Nc2cnc(C#N)c(OC3CCCNC3)c2)ncc1-c1ccncc1
1760 | Cc1[se]c(C=C2C(=O)Nc3cc(-c4ccc(O)cc4)ccc32)cc1C(=O)O
1761 | COc1cc(C=C2SC(=O)NC2=O)ccc1O
1762 | CCN1CCN(c2ccc(Nc3nccc(-c4c(-c5cccc(C(=O)Nc6ccccc6F)c5)nc5ccccn45)n3)cc2)CC1
1763 | OC(COc1cncc(C=Cc2ccncc2)c1)Cc1c[nH]c2ccccc12
1764 | CNc1cc(Nc2cnc(C#N)c(OC3CCNC3)n2)ncc1-c1cnn(C)c1
1765 | CCCc1cc(-c2ccc3[nH]ncc3c2)on1
1766 | CC(N)C1CCC(C(=O)Nc2ccncc2)CC1
1767 | O=C(NS(=O)(=O)c1ccccc1)c1ccc(-c2n[nH]c3c2Cc2cc(CNC4CCC(O)CC4)ccc2-3)cc1
1768 | COc1cc(-c2ccc3c(c2)=NC(=O)C=3C=CCC=CC(=O)NCCN2CCOCC2)ccc1O
1769 | O=C(NCc1ccncc1)c1ccc2c(c1)Cc1c-2n[nH]c1-c1ccc(-c2ccc(O)cc2)cc1
1770 | Cc1nn(-c2ccc(C(=O)O)cc2)c(O)c1C=c1c(C)c(C#N)c2nc3ccccc3n2c1=O
1771 | COc1ccc(COc2ccc(Cc3cnc(N)nc3N)cc2OC)cc1
1772 | O=C(CCC(=O)Nc1cc(C(F)(F)F)ccc1Cl)NN=Cc1c[nH]c2ccccc12
1773 | CCOc1cc2c(cc1Cl)NC(=O)Nc1cnc(C#N)c(n1)OCCCCCO2
1774 | O=C(Cc1cccs1)Nc1nc2ccccc2s1
1775 | O=C(Nc1cnc2[nH]cc(-c3ccccc3)c2c1)c1c(F)cccc1F
1776 | COc1cccc(C=C2SC(Nc3ccccc3)=NC2=O)c1
1777 | COc1cc(C=O)ccc1NC(=O)Nc1cnc(C#N)cn1
1778 | COC1C(N(C)C(=O)c2ccccc2)CC2OC1(C)n1c3ccccc3c3c4c(c5c6ccccc6n2c5c31)C(=O)NC4O
1779 | Cc1c(C(=O)c2coc3ccc(O)cc23)[nH]c(-c2ccccc2)c1-c1ccccc1
1780 | COc1cc(NC(=O)COC(C)=O)c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1
1781 | CN(C)CCc1cc2ccnc(O)c2c2cc(Br)ccc12
1782 | N#Cc1ccc(Nc2ncc(C(F)(F)F)c(NC3CN4CCC3CC4)n2)cn1
1783 | CN(CCc1ccc(NC(=O)Nc2cnc(C#N)cn2)cc1Cl)Cc1ccc(F)cc1
1784 | CC1Cn2ncc(-c3ccc(S(=O)(=O)N(C)C)cc3)c2CN1c1ccnc2[nH]ccc12
1785 | CS(=O)(=O)c1ccc(-c2cncc3sc(C(N)=O)cc23)cc1
1786 | N#Cc1cnc(NC(=O)Nc2ccc(CCNCc3ccccc3Cl)c(Cl)c2)cn1
1787 | COc1cccc(-c2cnc(Nc3cnc(C#N)c(OC4CCCNC4)c3)nc2)c1
1788 | COc1cc(-c2ccc3[nH]nc(C(=O)Nc4ccccc4)c3c2)ccc1O
1789 | Cc1cn2c(-c3cn[nH]c3)cnc2c(Nc2cc(C(C)N3CC(C)OC(C)C3)ns2)n1
1790 | O=C1NC(=O)c2c1c(-c1cccc(Cl)c1)cc1[nH]c3ccc(O)cc3c21
1791 | CN(C)CCn1cc(-c2ccn3c(-c4ccc(C(N)=O)c(OCc5cccc(F)c5)c4)cnc3c2)cn1
1792 | CN(C)c1ccc2[nH]c(O)c(C=Nc3ccc(S(N)(=O)=O)cc3)c2c1
1793 | O=C(Nc1ccccc1N1CCNCC1)c1csc(-c2ccc3c(c2)CCO3)n1
1794 | N#Cc1cnc(NC(=O)Nc2ccc(CCNCc3ccc(F)c(F)c3)c(Cl)c2)cn1
1795 | CNCCc1cc2ccnc(O)c2c2cc(Br)ccc12
1796 | COc1cc(-c2ccc3c(c2)NC(=O)C3=Cc2cc(C(=O)NCCCn3ccnc3)c(C)[se]2)ccc1O
1797 | Oc1nc2sccc2c(NC2CCCNC2)c1-c1nc2ccccc2[nH]1
1798 | COc1cc(-c2ccc3c(c2)C(=Cc2c[nH]c4c(C)cccc24)C(=O)N3)ccc1O
1799 | CC1CCC(NCc2ccc3c(c2)Cc2c(-c4ccc(N)cc4)n[nH]c2-3)CC1
1800 | Cc1ccc(-c2cc(-c3cc(Br)ccc3O)nc(O)c2C#N)s1
1801 | NC(=O)c1cc2c(-c3ccc(Br)cc3)cncc2s1
1802 | Cc1cc(NC(=O)CCNC(=O)Nc2nc(C)c(-c3ccc(-n4cccn4)cc3)s2)no1
1803 | Cn1cc(C=C2C(=O)Nc3cccnc32)c2ccccc21
1804 | COc1cc2ncnc(Nc3cccc(Cl)c3F)c2cc1CN(C)C1(C(N)=O)CN(C)C1
1805 | COc1cc2c(cn1)[nH]c1ncc(-c3ccc(CN4CCCCC4)cc3)cc12
1806 | NCCCc1cc2ccnc(O)c2c2cc(-c3cn[nH]c3)ccc12
1807 | COC(=O)Cc1ccc2c(c1)NC(=O)c1ccc(-c3ccc(N)c(OC)c3)cc1O2
1808 | Cc1cccc(Cl)c1-c1cccc2c(CCCOc3cccc4ccccc34)c(C(=O)NCCOCCOCCN)[nH]c12
1809 | Fc1ccc(Nc2nc(N3CCOCC3)c3[nH]cnc3n2)cc1
1810 | Nc1nc(C2=C3C(=Nc4ccccc43)C(=O)NCC2)c(O)[nH]1
1811 | Cc1nn(C)c2sc(C(N)=O)c(N)c12
1812 | NCCCc1cc2c(-c3cccc(Cl)c3)cnc(O)c2c2cc(-c3cn[nH]c3)ccc12
1813 | O=C1C=CC(=C2C=CC(c3[nH]nc4c3Cc3cc(NC(=O)CNCCO)ccc3-4)C=C2)C=C1
1814 | FC(F)(F)c1ccc(Cn2cc(-c3ccc4[nH]ncc4c3)nn2)c(C(F)(F)F)c1
1815 | O=C1NC(=O)c2c1c(-c1ccccc1CO)cc1[nH]c3ccc(O)cc3c21
1816 | NCCCOc1cncc(C=Cc2ccncc2)c1
1817 | N#Cc1cccc(-c2cc3[nH]c4ccc(O)cc4c3c3c2C(=O)NC3=O)c1
1818 | Oc1ccc2[nH]c(-c3ccc(Sc4ccc(-c5nc6cc(O)ccc6[nH]5)cc4)cc3)nc2c1
1819 | COc1ccc2cn(-c3nc(C(=O)Nc4cnc5ccccc5c4N4CCNCC4)cs3)c(O)c2c1
1820 | COc1cc2c(cc1CCC(C)(C)O)Nc1cc(-c3ccc([N+](=O)[O-])c(OC)c3)ccc1C(=O)N2
1821 | Oc1nccc2c3[nH]cnc3c3ccc(F)cc3c12
1822 | CCN(CC)CCNC(=O)c1cc(C=C2C(=O)Nc3cc(-c4cccc(O)c4)ccc32)[se]c1C
1823 | Nc1ccc(Cl)c(-c2cc3[nH]c4ccc(O)cc4c3c3c2C(=O)NC3=O)c1
1824 | N#Cc1ncc(Nc2ncc(-c3ccco3)cn2)cc1OC1CCCNC1
1825 | O=C(Nc1ccc(O)cc1)c1ccc2c(-c3nc4cc(F)c(F)cc4[nH]3)[nH]nc2c1
1826 | NC(=O)c1cnc(NC2CCCNC2)c2cc(-c3cn[nH]c3)sc12
1827 | O=C(Cc1ccc(-c2cccnc2)cc1)Nc1ccc(SC(F)F)cc1
1828 | c1cncc(-c2cc3c(cn2)[nH]c2ncc(-c4ccc(CN5CCCCC5)cc4)cc23)c1
1829 | CCOc1nc(NC(=O)Cc2cc(OC)c(S(C)(=O)=O)cc2OC)cc(N)c1Cl
1830 | Cc1ccc(-c2nn(C(C)(C)C)c3ncnc(N)c23)cc1
1831 | O=C(NCCCCCCNC(=O)NCc1cccnc1)NCc1cccnc1
1832 | Cc1nc2ccccn2c1-c1csc(Nc2ccc(O)cc2)n1
1833 | CN1CCN(c2ccc(-c3cncc(-c4ccc(C(=O)O)cc4)n3)cc2)CC1
1834 | CN(C)CC=CC(=O)Nc1cc2c(Nc3ccc(F)c(Cl)c3)ncnc2cc1OC1CCOC1
1835 | COc1ccc(CN=c2c(O)c(O)c2=Nc2ccc3[nH]ncc3c2)cc1
1836 | CN(C)CCOc1nc(Nc2cc3cccc(Cl)c3cn2)cnc1C#N
1837 | CN1CCC(Nc2ccc(C(=O)Nc3cc(-c4cc(C#N)cs4)[nH]n3)cc2)CC1
1838 | O=C(NC(CCO)c1ccccc1)c1ccc(-c2ccncc2)cc1
1839 | COc1ccc(CN=c2c(O)c(O)c2=Nc2ccncc2)c(OC)c1
1840 | O=C(O)c1ccccc1Nc1ccnc(Nc2ccc3[nH]ncc3c2)n1
1841 | COc1ccc(F)c(F)c1C(=O)c1cnc(NC2CCN(S(C)(=O)=O)CC2)nc1N
1842 | COc1cc(C=C2SC(Nc3ccccc3)=NC2=O)ccc1O
1843 | N#Cc1ccc(Nc2ncc(C(F)(F)F)c(NCC3CNCCO3)n2)cn1
1844 | N#Cc1cnc(Nc2cc(NCCN)ncn2)cn1
1845 | CNc1nc(Nc2cnc(C#N)c(OC3CCCNC3)c2)ncc1-c1ccccc1F
1846 | NCCc1cc2ccnc(O)c2c2cc(-c3ccc(CN4CCOCC4)cc3)ccc12
1847 | Nc1[nH]nc2c(OCCCn3cccc3)ccc(-c3ccc(NC(=O)Nc4cccc(Cl)c4)cc3)c12
1848 | O=C(Nc1ccccc1N1CCNCC1)c1csc(-c2ccc3sccc3c2)n1
1849 | COc1cccc(CNCCc2ccc(NC(=O)Nc3cnc(C#N)cn3)cc2Cl)c1
1850 | N#Cc1ncc2nc1OCCCCCOc1cc(N(CCO)CCO)c(Cl)cc1NC(=O)N2
1851 | COc1cc(-c2ccc3c(c2)Nc2ccc(N4CCCS4(=O)=O)cc2NC3=O)ccc1N
1852 | NC(=O)c1cnc(NC2CCCNC2)c2cc(-c3cccc(F)c3)sc12
1853 | COC(=O)c1csc2ccc(O)nc12
1854 | O=C(NC(CO)Cc1ccccc1)c1ccc(-c2ccncc2)cc1F
1855 | O=C(O)CNc1ncnc2oc(-c3ccccc3)c(-c3ccccc3)c12
1856 | CC1CCC(N2CCC3(CN(C(=O)c4cc5ccc(F)cc5[nH]4)c4ccccc43)C2)CN1
1857 | CNc1nc(C)c(-c2ccnc(Nc3ccc(N4CCNCC4)cc3)n2)s1
1858 | CCN(CC)CCNC(=O)c1cc(C=C2C(=O)Nc3cc(-c4ccc(O)c(OC)c4)ccc32)[se]c1C
1859 | COc1ccc2c(c1)C(=O)N(c1nc(C(=O)Nc3cnc(C)cc3N3CCNCC3)cs1)C2
1860 | Nc1ncnc2c1sc1ncnc(N)c12
1861 | Cn1cnc2c(F)c(Nc3ccc(Br)cc3Cl)c(C(=O)NOCCO)cc21
1862 | CS(=O)(=O)N1CCN(Cc2cc3nc(-c4cccc5[nH]ncc45)nc(N4CCOCC4)c3s2)CC1
1863 | N#Cc1ncc2nc1OCCCCCOc1cc(N)c(Cl)cc1NC(=O)N2
1864 | NCc1[nH]nnc1-c1ccc2c(-c3cc4cc(CN5CCC(F)CC5)ccc4[nH]3)[nH]nc2c1
1865 | CCN(CC)CC#Cc1cc2c(cc1Cl)NC(=O)Nc1cnc(C#N)c(n1)OCCCCCO2
1866 | CC1CCC(NCc2ccc3c(c2)Cc2c(-c4ccc(S(N)(=O)=O)cc4)n[nH]c2-3)CC1
1867 | N#CC1N=CC2N=C1OCCCCCOC1=CC(=O)C(Cl)=CC1=NC(=O)N2
1868 | Nc1ncnc(Nc2cc(CNC(=O)C(F)(F)F)c(O)c(-c3ccc(Cl)cc3)c2)n1
1869 | CC(O)CNc1ncnc2[nH]c(-c3ccccc3)c(-c3ccccc3)c12
1870 | CNc1cc(Nc2cnc(C#N)c(OC(C)CN(C)C)n2)ncc1C#CC(C)(C)O
1871 | COc1ccc(-c2ccc(N)cc2)c2cnoc12
1872 | NC(=O)Nc1sc(-c2cccc(F)c2F)cc1C(=O)NC1CCCNC1
1873 | COc1ccc(-c2ccc(NC(=O)Nc3cc(F)cc(F)c3)cc2)c2c(N)noc12
1874 | N#Cc1c(-c2ccccc2)cc(-c2ccccc2)nc1N=C1SC(=C2SC(c3ccccc3)=NN2c2ccccc2)C(=O)N1c1ccccc1
1875 | NCCCc1cc2c(-c3ccc(Cl)cc3)cnc(O)c2c2cc(-c3cn[nH]c3)ccc12
1876 | c1ncc(-c2cc3c(cn2)[nH]c2ncc(-c4ccc(CN5CCCCC5)cc4)cc23)cn1
1877 | N#Cc1cnc(NC(=O)Nc2ccc(CCNCc3ccc(F)cc3)c(Cl)c2)cn1
1878 | N#Cc1cnc(NC(=O)Nc2cc(Cl)c(OCc3cccnc3)cc2N2CCCC2)cn1
1879 | Cn1cc2cc(-c3cnc(Nc4cnc(C#N)cn4)cc3NCC3CNCCO3)ccc2n1
1880 | CC(N=c1c(O)c(O)c1=Nc1ccncc1)C(C)(C)C
1881 | COc1cccc(C(=O)Nc2cnc3[nH]cc(-c4ccccc4)c3c2)c1
1882 | CC(C)(C)c1nnc2ccc(-c3ocnc3-c3ccc(F)cc3F)cn12
1883 | Cc1nn(C)c2c1c(=O)c1cc(Cl)ccc1n2OCC(C)C
1884 | CCCCC(Sc1nc2ccccc2c(=O)n1-c1ccccc1)C(=O)N1CCC(c2ccccc2)(c2ccccc2)CC1
1885 | c1csc(-c2ccc3c(-c4cc5cc(CN6CCCCC6)ccc5[nH]4)[nH]nc3c2)n1
1886 | O=C1NS(=O)(=O)c2ccc(Cl)cc21
1887 | COc1ccc(-c2cnc(Nc3cnc(C#N)cn3)cc2NCC2CNCCO2)cc1
1888 | CN1CC2CC1CN2c1ccc(-c2ccnc3c(-c4cccc(O)c4)c(-c4ccncc4)nn23)cc1
1889 | O=C(CNCc1ccncc1)Nc1ccc2c(c1)Cc1c-2n[nH]c1-c1ccc(-c2ccc(O)cc2)cc1
1890 | Oc1ncc(I)c2nc(-c3cccc(Cl)c3)cn12
1891 | O=C1NCCc2[nH]c(-c3ccncc3)cc21
1892 | CCOC(=O)c1nc2c(O)nc3cc([N+]([O])=O)c(NC(C)=O)cc3n2c1C
1893 | COc1cc(Nc2c(C#N)cnc3cc(OCCCN4CCN(C)CC4)c(OC)cc23)c(Cl)cc1Cl
1894 | COc1ccc(CNC(=O)Nc2ncc([N+]([O])=O)s2)cc1
1895 | CC(Nc1cncc(-n2cnc3ccc(C#N)cc32)n1)c1ccccc1F
1896 | CC(C)NCCCNc1nc(Nc2ccc(C#N)nc2)ncc1C(F)(F)F
1897 | O=C1NC(=O)c2c1c(-c1c(Cl)cccc1Cl)cc1[nH]c3ccc(O)cc3c21
1898 | NC(=O)Nc1cc(-c2cccc(Cl)c2)sc1C(=O)NC1CCCNC1
1899 | CC=C(C=CC=C1C(=O)Nc2cc(-c3ccc(O)c(OC)c3)ccc21)C(=O)NCCN(CC)CC
1900 | COc1ccc(NC(=O)Nc2ccc(-c3csc4c(-c5cnn(CC(O)CO)c5)cnc(N)c34)cc2)cc1
1901 | COc1cc(Nc2ncc([N+](=O)[O-])c(Nc3ccccc3C(N)=O)n2)cc(OC)c1OC
1902 | NC(=O)c1cnc(NC2CCCNC2)c2sc(-c3ccccc3)cc12
1903 | NC(=O)c1cc2c(-c3ccc(F)cc3F)cncc2s1
1904 | O=C(c1cc(Cc2nnc(O)c3c2CCCC3)ccc1F)N1CCN(c2ncccn2)CC1
1905 | C(=Cc1[nH]nc2cc(-c3ccncc3)ccc12)c1ccc2ccccc2c1
1906 | NC(=O)c1cc2c(-c3ccc(Nc4nc5ccccc5o4)cc3)cnc(N)c2s1
1907 | Cc1cncc2cccc(S(=O)(=O)N3CCCNCC3C)c12
1908 | O=c1c(NCCc2ccc(Oc3ccccc3)cc2)c(Nc2ccncc2)c1=O
1909 | CC1CCC(NCc2ccc3c(c2)Cc2c(-c4ccc(CN)cc4)n[nH]c2-3)CC1
1910 | CC(C)(C)c1ccc2[nH]c(-c3[nH]nc4ccccc34)nc2c1
1911 | NC(=O)c1cc2c(-c3ccc(F)cc3)cncc2s1
1912 | COc1cc(NC(=O)CN(C)C)c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1
1913 | CCCCN(CCC#N)C(=O)c1ccc2[nH]c(-c3[nH]nc4ccccc34)nc2c1
1914 | CC(C)c1nnc2ccc(-c3c(-c4ccc(F)cc4F)nc4occn34)nn12
1915 | COc1ccccc1CNCCc1cc(OC)c(NC(=O)Nc2cnc(C#N)cn2)cc1Cl
1916 | NC(COc1cncc(-c2cc3ccncc3s2)c1)Cc1c[nH]c2ccccc12
1917 | CN1CCC1COc1cncc(CCc2ccncc2)c1
1918 | N#Cc1cnc(Nc2cc(N3CCC(N)CC3)ncn2)cn1
1919 | O=C1C=C(O)C=CC1=C1C=CC(c2cc(Nc3ccc(CNC4CC4)cc3)[nH]n2)C=C1
1920 | CCCCC(Sc1nc2cc(C)ccc2c(=O)n1-c1cccc(Cl)c1)C(=O)N1CCC(C(N)=O)CC1
1921 | Cn1cc(-c2ccc3nnc(Sc4ccc5ncccc5c4)n3n2)cn1
1922 | CCn1c2cc(Cl)c(F)cc2c(=O)c2c(O)onc21
1923 | N#Cc1ccc(-c2[nH]nc3c2Cc2ccc(OCCCCN4CCOCC4)cc2-3)cn1
1924 | COc1cc2ncnc(Nc3cccc(Cl)c3F)c2cc1CN(CCN(C)C)C(C)C(N)=O
1925 | CNC(=O)COc1ccc(Nc2nc(Nc3ccc(C)c(S(N)(=O)=O)c3)ncc2F)cc1
1926 | COc1cc2c(cc1CN1CCC(O)CC1)Cc1c(-c3ccc(-c4ccc(O)cc4)cc3)n[nH]c1-2
1927 | COc1ccc2c(c1)c(-c1cc3nc(Br)cnc3[nH]1)cn2C
1928 | COc1ccc2c(c1)C(=Cc1c[nH]cn1)C(=O)N2
1929 | COc1ccc2[nH]c(-c3c(O)nc4sc(Cl)cc4c3NC3CN4CCC3CC4)nc2c1
1930 | CC1C=NNN1c1ccc2c(c1)N=NC2=C1C=c2cc(CN3CCCCC3)ccc2=N1
1931 | O=C1NC(=O)c2c1c(-c1cc[nH]c1)cc1[nH]c3ccc(O)cc3c21
1932 | O=C1NC(=O)c2c1c(-c1ccc(O)cc1)cc1[nH]c3ccc(O)cc3c21
1933 | CC(=O)N1CCN(Cc2ccc3[nH]c(-c4[nH]nc5cc(-c6nn[nH]n6)ccc45)cc3c2)CC1
1934 | Fc1cc(F)cc(C=Cc2[nH]nc3cc(-c4ccncc4)ccc23)c1
1935 | N#Cc1cc2c(cn1)[nH]c1ncc(-c3ccncc3)cc12
1936 | NCCCc1cc2ccnc(O)c2c2cc(Cl)ccc12
1937 | COc1cccc(C(C)NC(=O)N2CC=C(c3c[nH]c4ncccc34)CC2)c1
1938 | COc1cc(NC(=O)CCCc2cccs2)c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1
1939 | COc1cc(NC(=O)c2cccs2)c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1
1940 | CC[S+]([O-])c1ccc(-c2coc3ccc(-c4ccc(C)o4)cc23)cc1
1941 | Oc1ncnc2ccc(Br)cc12
1942 | CN1CCCC1COc1cncc(CCc2ccccc2)c1
1943 | Cc1ccc(NC(=O)c2ccc(CN3CCN(C)CC3)cc2)cc1Nc1nc(-c2cccnc2)cs1
1944 | Cn1cc(-c2cnc3c(-c4csc(C(=O)NCC(F)(F)F)c4)cnn3c2)cn1
1945 | Cn1c2ccc(O)cc2c2c3c(c(-c4ccccc4)cc21)C(=O)NC3=O
1946 | COc1cc(N2CCN(C)CC2)ccc1C(=O)Nc1[nH]nc2ccc(Cc3cc(F)cc(F)c3)cc12
1947 | Oc1ncnc2c1oc1ccc(Cl)cc12
1948 | O=C(O)c1ccc(-c2cncc(-c3cccc(O)c3)n2)cc1
1949 | O=C(CNC1CCC(O)CC1)Nc1ccc2c(c1)Cc1c(-c3ccc(-c4ccc(O)cc4)cc3)n[nH]c1-2
1950 | CNc1nc(Nc2cnc(C#N)c(NCCN)c2)ncc1C(F)(F)F
1951 | COC(=O)c1cnc(Nc2cnc(C#N)cn2)cc1NCC1CCN(C)CC1
1952 | COc1ccc2cc(-c3[nH]nc4cccnc34)[nH]c2c1
1953 | COC(=O)c1ccc2c(C(=Nc3ccc(N(C)C(=O)CN4CCN(C)CC4)cc3)c3ccccc3)c(O)[nH]c2c1
1954 | CCOC(=O)C1=C(N)n2c(sc(=Cc3cccs3)c2=O)=C(C(N)=O)C1c1cccs1
1955 | COc1cc(CCNCc2ccc(F)cc2)ccc1NC(=O)Nc1cnc(C)cn1
1956 | c1ccc(-c2[nH]ncc2-c2ccncc2)cc1
1957 | O=C(c1cc(-c2ccc3[nH]ncc3c2)on1)N1CCCC(O)C1
1958 | CCCCC(Sc1nc2ccccc2c(=O)n1-c1cccc(Cl)c1)C(=O)N1CCCC2(CCCNC2)C1
1959 | Cc1cnc(Nc2nc(NC(C)C)ncc2Br)s1
1960 | Nc1ncc(-c2cnn(CCO)c2)c2scc(-c3ccc(NC(=O)Nc4cccc(F)c4)cc3)c12
1961 | CC(C)n1c2ccc(O)cc2c2c3c(c(-c4ccccc4Cl)cc21)C(=O)NC3=O
1962 | N#Cc1cnc(Nc2cc(NCC3CNCCO3)c(C3CC3)cn2)cn1
1963 | COc1cc(-c2ccc(=O)n(Cc3cccc(C)c3)n2)cc(OC)c1OC
1964 | CCOc1ccccc1C=NNC(=O)c1nnn(-c2nonc2N)c1N1CCCC1
1965 | COc1cc2c(cc1OC)CN(CC(=O)Nc1ccc3c(c1)C(=Cc1c[nH]cn1)C(=O)N3)CC2
1966 | CC1CCC(NCc2ccc3c(c2)Cc2c(-c4ccc(CC#N)cc4)n[nH]c2-3)CC1
1967 | CNc1nc(Nc2cnc(C#N)c(NC3CCNC3)c2)ncc1C(F)(F)F
1968 | COc1ccc(-c2cc(Nc3nc(C(=O)Nc4ccccc4N4CCNCC4)cs3)[nH]n2)cc1
1969 | COC1=CC(c2ccc3c(-c4cc5cc(CN6CCCCC6)ccc5[nH]4)[nH]nc3c2)C=CC1=O
1970 | COc1cc2c(cc1CCCO)NC(=O)c1ccc(-c3ccc([N+](=O)[O-])c(OC)c3)cc1N2
1971 | Nc1ccc(-c2cc3[nH]c4ccc(O)cc4c3c3c2C(=O)NC3=O)c(Cl)c1
1972 | CN1CCN(c2ccc(Nc3nc(N)c(C(=O)c4c(Cl)cccc4Cl)s3)cc2)CC1
1973 | COC1=CC(c2ccc3c(c2)NC(=O)C3=Cc2ncc[nH]2)C=CC1=O
1974 | NC(=O)c1cnc(NC2CCC(N)CC2)c2nc(-c3ccc(Cl)cc3)cn12
1975 | O=C1NC(=O)c2c1c1c3cc(Cl)ccc3[nH]c1c1cccn21
1976 | N#Cc1cc2c(cn1)[nH]c1ncc(O)cc12
1977 | c1ccc(Cc2cn(-c3ccc4[nH]ncc4c3)nn2)cc1
1978 | CNc1nc(Nc2cnc(C#N)c(NCCCN)c2)ncc1C(F)(F)F
1979 | O=C(Nc1cnccc1N1CCNCC1)c1csc(-c2ccc3sccc3c2)n1
1980 | Cn1nc(C(N)=O)c2c1-c1nc(NC3CCN(C(=O)c4ccccc4)CC3)ncc1CC2
1981 | Brc1ccc2cnc(Nc3ccncn3)cc2c1
1982 | CCc1cnn2c(NCc3ccc[n+]([O])c3)cc(N3CCCCC3CCO)nc12
1983 | Nc1ncc(-c2ccoc2)c2scc(-c3ccc(NC(=O)Nc4cccc(F)c4)cc3)c12
1984 | COc1cc(-c2ccc3c(c2)Nc2ccc(C(C)(C)C(=O)Nc4ccc(N5CCOCC5)cc4)cc2NC3=O)ccc1N
1985 | CC(NCCc1ccc(NC(=O)Nc2cnc(C#N)cn2)cc1Cl)c1ccc(F)cc1
1986 | Cc1ccc2c(c1)C(=NC1CCCNC1)C(c1nc3ccccc3[nH]1)C(=O)N2
1987 | CN1CCN(c2cc(OC3CCOC3)c(NC(=O)Nc3cnc(C#N)cn3)cc2Cl)CC1
1988 | O=C(Nc1ccccc1N1CCNCC1)c1csc(-n2ccnc2)n1
1989 | COc1cccc(CNCc2ccc(NC(=O)Nc3cnc(C#N)cn3)c(OC)c2)c1
1990 | COc1cccc(F)c1-c1cc2[nH]c3ccc(O)cc3c2c2c1C(=O)NC2=O
1991 | c1cc2[nH]c(-c3[nH]nc4cc(-c5cnsc5)ccc34)cc2cc1CN1CCCCC1
1992 | CCOC(=O)C1=NN(c2ccccc2)C(=C2SC(=Nc3nc(-c4ccccc4)cc(-c4ccccc4)c3C#N)N(c3ccccc3)C2=O)S1
1993 | CN(C)C(=O)Nc1ccc2nc(-c3ccco3)c(-c3ccco3)nc2c1
1994 | O=c1ccc(=O)c2c1c1[nH]c3ccccc3c1c1c(=O)[nH]c(=O)c21
1995 | N#Cc1cnc(Nc2cc(NCC3CCNCC3)c(C=CCCO)cn2)cn1
1996 | COc1ccccc1CNc1ncc(C(=O)NC2CCN(C)CC2)c(NC2CCCC2)n1
1997 | Oc1cccc(-c2ccc3c(C=Cc4ccccc4)[nH]nc3c2)c1
1998 | N#Cc1ncc2nc1OCCCCCOc1cc(CC(O)CO)c(Cl)cc1NC(=O)N2
1999 | Cc1c(-c2ccccc2)c2c(c3c1[nH]c1ccc(O)cc13)C(=O)NC2=O
2000 | COCCN(Cc1cc2c(Nc3cccc(Cl)c3F)ncnc2cc1OC)C(C)C(N)=O
2001 | Cc1nc2c(F)cc(-c3nc(Nc4ccc5c(n4)CCN(CCN(C)C)C5)ncc3F)cc2n1C(C)C
2002 | CC=C(C=CC=C1C(=O)Nc2cc(-c3ccc(O)cc3)ccc21)C(=O)NCCN(C)C
2003 | Nc1ncc(-c2ccoc2)c2scc(-c3ccc(NC(=O)Nc4ccccc4F)cc3)c12
2004 | OCc1[nH]nnc1-c1ccc2c(-c3cc4cc(CN5CCCCC5)ccc4[nH]3)[nH]nc2c1
2005 | O=C(c1ccc2c(c1)-c1n[nH]c(-c3ccc(-c4ccc(O)cc4)cc3)c1C2)N1CCOCC1
2006 | Cc1ccc(Nc2nccc(N(C)c3ccc4c(C)n(C)nc4c3)n2)cc1S(N)(=O)=O
2007 | CC(C)(CO)c1nnc2ccc(-c3c(-c4ccc(F)cc4F)nc4occn34)nn12
2008 | O=C(O)c1ccccc1Nc1ccnc(Nc2ccc([N+](=O)[O-])cc2)n1
2009 | O=C(Cc1ccc(OC(F)(F)F)cc1)N1CCC2(CC1)NCCc1c2[nH]c2ccccc12
2010 | O=C(NN=Cc1ccc(O)cc1O)Nc1cccc2nsnc12
2011 | CC(N)COc1cnc(Cl)c(C=Cc2ccncc2)c1
2012 | COc1cc(-c2ccc3c(-c4nc5ccccc5[nH]4)[nH]nc3c2)c(C)cc1O
2013 | O=C1C=CC(=C2C=CC(c3[nH]nc4c3Cc3cc(NC(=O)CNC5CCC(O)CC5)ccc3-4)C=C2)C=C1
2014 | CSc1cn2c(-c3cn[nH]c3)cnc2c(Nc2cc(C)ns2)n1
2015 | N#Cc1ccc(Nc2ncc(C(F)(F)F)c(NCCCNCCO)n2)cn1
2016 | CC(=O)N(c1ccncc1)c1c(O)c(=O)c1=NC(C)C(C)(C)C
2017 | [O][N+](=O)c1cccc(C(=O)NN=Cc2ccc(Sc3nc4ccccc4[nH]3)o2)c1
2018 | CCCC(=O)Nc1[nH]nc2nnc(-c3cccc(F)c3F)cc12
2019 | COc1cc(CN2CCOCC2)ccc1NC(=O)Nc1cnc(C#N)cn1
2020 | COc1cccc(OCCCN)c1-c1cc(Nc2cnc(C#N)cn2)[nH]n1
2021 | COC(=O)c1ccc(-c2[nH]nc3c2Cc2cc(CNC4CCC(C)CC4)ccc2-3)cc1
2022 | O=C1CCc2c1c1c(c3c2[nH]c2ccccc23)C(=O)NC1=O
2023 | Cc1ccc(Nc2nc3cc([N+](=O)[O-])ccc3[nH]2)nc1
2024 | CC(=O)c1cccc(-c2cnc3[nH]ccc3c2)c1
2025 | Cn1cc(-c2[nH]c3cc(NC(=O)C(N)C4CCCCC4)cc4c3c2C=NNC4=O)cn1
2026 | CC(C)(CO)CNc1nccc(-c2c(-c3ccc(F)cc3)nc3cnccn23)n1
2027 | CCNc1cnc2[nH]c3cnc(C#N)cc3c2c1
2028 | Oc1nc2sc(Br)cc2c(NC2CCNC2)c1-c1nc2ccccc2[nH]1
2029 | NC(=O)Nc1sc(-c2ccccc2F)cc1C(=O)NC1CCCNC1
2030 | Cc1noc(-c2cnc(Nc3cnc(C#N)cn3)cc2NCC2CCNCC2)n1
2031 | O=C1C=C(O)C=CC1=NC(=O)c1ccc2c(c1)NNC2c1nc2ccccc2[nH]1
2032 | O=C(Nc1[nH]nc2nc3ccccc3cc12)c1ccncc1
2033 | N#Cc1cnc(NC(=O)Nc2ccc(CCNCc3cccc(Cl)c3)c(Cl)c2)cn1
2034 | N#Cc1ncc2nc1OCCCCCOc1cc(NCCO)c(Cl)cc1NC(=O)N2
2035 | CC1CCN(C(=O)CO)CC1N(C)c1ncnc2[nH]ccc12
2036 | Oc1nc2ccc(-c3cc[nH]n3)cc2cc1-c1cc2cc(CN3CCCCC3)ccc2[nH]1
2037 | NC(=O)c1ccc2c(-c3cc4cc(CN5CCOCC5)ccc4[nH]3)[nH]nc2c1
2038 | Oc1nccc2c3[nH]c(-c4ccccc4)nc3c3ccc(F)cc3c12
2039 | CCNC(=O)c1cc2c(cn1)[nH]c1ncc(-c3ccc(CN4CCCCC4)cc3)cc12
2040 | O=C1Nc2ccccc2C1=Cc1c[nH]c2ccccc12
2041 | Cc1cc(NC(=O)Nc2cnc(C#N)cn2)ccc1CCNCc1ccc(F)cc1
2042 | N#Cc1cnc(NC(=O)Nc2ccc(CCNCCc3ccc(F)cc3F)c(Cl)c2)cn1
2043 | CNC(=O)c1cnc(N)c2c(-c3ccc(NC(=O)Nc4cc(C)ccc4F)cc3)csc12
2044 | CCN(CC)CCNc1ccc(O)c2ccccc12
2045 | N#Cc1ncc(Nc2ncc(-c3ccncc3)cn2)cc1OC1CCCNC1
2046 | CN1CCN(c2ccc(OC(F)(F)F)c(Nc3nccc(-c4cc(C(N)=O)cn4C)n3)c2)CC1
2047 | O=C1C=Cc2c1c1c(O)[nH]c(O)c1c1c2[nH]c2ccccc21
2048 | Cc1ccc2[nH]c3c4c(O)ccc(O)c4c4c(c3c2c1)C(=O)NC4=O
2049 | Cc1cnc(Nc2cccc(S(N)(=O)=O)c2)nc1Nc1ccc(OCC(N)=O)cc1
2050 | O=C1NC(=O)c2c1c(-c1ccsc1)cc1[nH]c3ccc(O)cc3c21
2051 | NCC1CCC(CNc2nc(NCc3ccccc3Cl)ncc2[N+](=O)[O-])CC1
2052 | CNC(=O)c1ccccc1Sc1ccc2c(C=Cc3ccccn3)[nH]nc2c1
2053 | COc1ccc2[nH]c(-c3[nH]nc4cc(C(=O)Nc5ccc(O)cc5)ccc34)nc2c1
2054 | CN(C)CC(=O)Nc1[nH]nc2ccc(-c3cn(Cc4ccccc4)nn3)cc12
2055 | O=C(Nc1nc2c(O)cccc2s1)Nc1ccccc1-c1ccccc1
2056 | COc1cc(CNCc2cccc(F)c2)ccc1NC(=O)Nc1cnc(C#N)cn1
2057 | Cc1ccc2[nH]c3c4c(OS(=O)(=O)O)ccc(O)c4c4c(c3c2c1)C(=O)NC4=O
2058 | Nc1nonc1-n1nnc(C(=O)NN=Cc2cccs2)c1-c1cccs1
2059 | O=C(Nc1cccc(C2Nc3ccc4ccccc4c3C3C=CCC32)c1)c1ccc(F)cc1
2060 | COc1cc2c(N3CCN(C(=O)Nc4ccc(OC(C)C)cc4)CC3)ncnc2cc1OCCCN1CCCCC1
2061 | O=C(c1ccc2c(c1)Cc1c(-c3ccc(-c4ccc(O)cc4)cc3)n[nH]c1-2)N1CCC(O)CC1
2062 | O=C(Nc1ccccc1N1CCNCC1)c1csc(N2CCc3[nH]cnc3C2)n1
2063 | CCCC(=O)Nc1cccc(-c2nc(Nc3ccc4[nH]ncc4c3)c3cc(OCCN4CCCC4)ccc3n2)c1
2064 | CNCc1ccc(-c2[nH]c3cc(F)cc4c3c2CCNC4=O)cc1
2065 | CC1COCCN1c1nc(-c2cncc3[nH]ccc23)cc2c1ncn2C(C)S(C)(=O)=O
2066 | CCN(CCO)CCCOc1ccc2c(Nc3cc(CC(=O)Nc4cccc(F)c4)[nH]n3)ncnc2c1
2067 | CCOc1nc(NC(=O)Cc2cc(OC)ccc2OC)cc(N)c1C#N
2068 | CCCCC(Sc1nc2ccccc2c(=O)n1-c1ccccc1Cl)C(=O)N1CCC(C(N)=O)CC1
2069 | Cc1[nH]nc2ncc(C#N)c(-c3ccccc3)c12
2070 | Clc1cc(NC2CCCCC2)nc(-c2c[nH]c3ncccc23)n1
2071 | COc1cc(N)c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1
2072 | Cn1c(NCC(N)Cc2ccccc2)nc(-c2ccncc2)c(-c2ccc3ccccc3c2)c1=O
2073 | CCCCNC(=O)c1cn(C(CC)CC)c(=O)c2cc(OC)c(OC)cc12
2074 | COc1ccc2c(c1)C(=O)N(c1nc(C(=O)Nc3cnccc3N3CCNCC3)cs1)C2
2075 | O=C(Cc1ccc(Cl)cc1)Nc1[nH]nc2c1CCC2
2076 | NC(=O)c1cccc(-c2cnc3[nH]cc(-c4ccccc4)c3c2)c1
2077 | NC(=O)c1cccc(CNC(=O)c2cc3c(c4c2[nH]c2ccccc24)C(=O)NC3=O)c1
2078 | COc1cc(C=C2SC(=S)NC2=O)ccc1O
2079 | CC(C)NC1=NNC(=O)C1=Cc1cc2ccccc2[nH]1
2080 | O=C(Nc1ccccc1N1CCNCC1)c1csc(N2Cc3ccncc3C2)n1
2081 | OCCCn1cnc(-c2ccc(F)cc2)c1-c1ccncc1
2082 | Cc1nc(Nc2[nH]nc3c2CN(C(=O)NC(CN(C)C)c2ccccc2)C3(C)C)c2sccc2n1
2083 | Nc1[nH]nc2cccc(-c3ccc(NC(=O)Nc4cc(CO)ccc4F)cc3)c12
2084 | CCCS(=O)(=O)Nc1ccc(-c2ccc3[nH]nc(NC(=O)CC)c3c2)cc1
2085 | N#Cc1ncc(Nc2ncc(C(F)(F)F)cn2)cc1OC1CCCNC1
2086 | NS(=O)(=O)c1cccc(Nc2ncc3ccn(-c4ccccc4)c3n2)c1
2087 | COc1ccc(Nc2nccc(N=c3c(O)c(O)c3=NC(C)C(C)(C)C)n2)cc1OC
2088 | N#Cc1cc2c(cn1)[nH]c1ncc(-c3ncc[nH]3)cc12
2089 | COc1cc(-c2ccc3c(c2)Nc2ccc(C(=O)NCc4cccc(F)c4)cc2NC3=O)ccc1O
2090 | COc1cc2c(cc1O)Nc1cc(-c3ccc([N+](=O)[O-])c(OC)c3)ccc1C(=O)N2
2091 | CN1CCN(Cc2ccc3c(c2)Cc2c(-c4ccc(-c5ccc(O)cc5)cc4)n[nH]c2-3)CC1
2092 | COc1cc2c(cc1C(=O)N(C)C)NC(=O)c1ccc(-c3ccc([N+](=O)[O-])c(OC)c3)cc1N2
2093 | CNc1nc(Nc2cnc(C#N)c(OC3CCCNC3)c2)ncc1-c1ccc(F)cc1
2094 | CN(C)CCOc1cc(N2CCCC2)c(NC(=O)Nc2cnc(C#N)cn2)cc1Cl
2095 | CN(C)C(=O)c1cnc(Nc2cnc(C#N)cn2)cc1NCC1CCNCC1
2096 | c1cc2[nH]ncc2cc1-c1cc(CN2CCCCC2)no1
2097 | O=C(NC(CO)Cc1ccccc1)c1ccc(-c2ccncc2)cc1
2098 | CN(C)Cc1ccc(Nc2cc(-c3ccc(-c4ccc(O)cc4O)cc3)[nH]n2)cc1
2099 | CCN(CC)c1cc2c(cc1Cl)NC(=O)Nc1cnc(C#N)c(n1)OCCCCCO2
2100 | CC1CCC(NCc2ccc3c(c2)Cc2c(-c4ccc(C(=O)O)cc4)n[nH]c2-3)CC1
2101 | NC(=O)c1cc2c(Oc3cccc(F)c3)cncc2s1
2102 | CNc1cc(Nc2cnc(C#N)c(OC(C)CN(C)C)n2)ncc1C(F)(F)F
2103 | Cc1ccc2nc(O)c(-c3nc4ccccc4[nH]3)c(NC3CCNCC3)c2c1
2104 | COc1cccc(-c2cc3c(O)nc4ccccc4n3c2)c1
2105 | COc1cc2c(cc1C(=O)NCc1ccccn1)Cc1c-2n[nH]c1C1C=CC(=C2C=CC(=O)C(F)=C2)C=C1
2106 | COc1cc(-c2ccc3c(c2)Nc2ccc(CC(=O)Nc4ccc(N5CCOCC5)cc4)cc2NC3=O)ccc1N
2107 | NC(=O)c1cc(-c2cccc(N)c2)cc2cccnc12
2108 | O=C(NCc1ccccc1)Nc1ncc([N+](=O)[O-])s1
2109 | Cc1cccc(NC(=O)Nc2ccc(-c3csc4c(C#CCNS(C)(=O)=O)cnc(N)c34)cc2)c1
2110 | O=C(NC1CCC(O)CC1)c1ccc2c(c1)Cc1c(-c3ccc(-c4ccc(O)cc4)cc3)n[nH]c1-2
2111 | N#Cc1ncc2nc1OCCCCCOc1cc(NCc3ccncc3)c(Cl)cc1NC(=O)N2
2112 | COc1cc(-c2ccc3c(c2)Nc2cc(N)ccc2NC3=O)ccc1N
2113 | CCCCC(Sc1nc2ccccc2c(=O)n1-c1ccccc1)C(=O)N1CCN(c2ccccc2)CC1
2114 | OC1CCC(Nc2nc(Cl)cc(-c3c[nH]c4ncccc34)n2)CC1
2115 | CCCCC#Cc1ccc(CN2CC(C(=O)O)C2)cc1
2116 | CC(C)(C)c1nc2c3ccc(F)cc3c3c(O)nccc3c2[nH]1
2117 | COc1ccc(OC)c(Nc2ccc3nnc(-c4ccccc4)n3n2)c1
2118 | Oc1nc2sc(Cl)cc2c(NC2CN3CCC2CC3)c1-c1nc2ccccc2[nH]1
2119 | Oc1nccc2ccc3ccc(Cl)cc3c12
2120 | N#Cc1ncc(Nc2ncc(-c3cccc(F)c3)cn2)cc1OC1CCCNC1
2121 | CC(C)(N)CCNc1nc(Nc2ccc(C#N)nc2)ncc1C(F)(F)F
2122 | Cc1c(NC(=O)c2ccc(C(C)(C)C)cc2)cccc1-c1cc(Nc2ccc(C(=O)N3CCOCC3)cn2)c(=O)n(C)c1
2123 | CN(C)CCOCCOc1cc(N2CCCC2)c(NC(=O)Nc2cnc(C#N)cn2)cc1Cl
2124 | N#Cc1cc2c(cn1)[nH]c1ncc(-c3nc(CN4CCCCC4)cs3)cc12
2125 | CCN1c2cc(N)ccc2-c2ccc(N)cc2C1(O)c1ccccc1
2126 | NC(=O)c1cnc(NC2CCCNC2)c2nc(-c3ccc(Cl)cc3)cn12
2127 | CS(=O)(=O)Nc1cc2c(cc1Cl)NC(=O)Nc1cnc(C#N)c(n1)OCCCCCO2
2128 | c1ccc(-c2ccc3c(-c4cc5cc(CN6CCCCC6)ccc5[nH]4)[nH]nc3c2)cc1
2129 | CCn1c2ccc(O)cc2c2c3c(c(-c4ccccc4Cl)cc21)C(=O)NC3=O
2130 | CNc1nc(Nc2cnc(C#N)c(OC3CCCNC3)c2)ncc1-c1ccc(OC)cc1OC
2131 | C(=Cc1[nH]nc2cc(-c3ccncc3)ccc12)c1ccc[nH]1
2132 | Nc1ncnc2sc(Br)c(-c3ccc(NC(=O)Cc4cccc(Cl)c4)cc3)c12
2133 | N#Cc1cnc(Nc2cc(NCC3CNCCO3)c(-c3cc(F)cc(F)c3)cn2)cn1
2134 | Nc1ccc2c(C(=O)O)n(-c3ccccc3)nc2c1
2135 | O=C(O)C1CN(Cc2ccc(OCc3ccccc3)cc2Cl)C1
2136 | NCCNC(=O)c1cccc(CNC(=O)c2cc3c(c4c2[nH]c2ccccc24)C(=O)NC3=O)c1
2137 | CN1CCN(c2ccc(-c3cnc(N)c(-c4ccc(C(=O)O)cc4)n3)cc2)CC1
2138 | N#Cc1cnc(NC(=O)Nc2ccc(CCNCc3cccc(N4CCOCC4)c3)c(Cl)c2)cn1
2139 | Cc1cccc(NC(=O)Nc2ccc(-c3cccc4[nH]ncc34)cc2)c1
2140 | C(=Nn1cccc1)c1[nH]nc2cc(-c3ccncc3)ccc12
2141 | c1cnc2[nH]cc(-c3ccnc(NC4CCCCC4)n3)c2c1
2142 | Cc1cccc(NC(=O)Nc2ccc(-c3csc4c(C#CCCCCCCCCN)cnc(N)c34)cc2)c1
2143 | N#Cc1cnc(Nc2cc(NCC3CCNCC3)c(-c3ccccc3)cn2)cn1
2144 | CC(=O)c1nn(-c2ccc(C)cc2)cc1C(=O)c1c(C)[nH]c(-c2ccccc2)c1-c1ccccc1
2145 | COc1ccc(CNC(=O)Nc2ncc([N+](=O)[O-])s2)cc1
2146 | COc1cccc(C(C)NC(=O)c2ccc(-c3ccncc3F)cc2OC)c1
2147 | NCCCc1cc2c(-c3ccc(F)cc3)cnc(O)c2c2cc(-c3cn[nH]c3)ccc12
2148 | O=C(Nc1ccccc1N1CCNCC1)c1csc(Nc2cc(-c3ccccc3)[nH]n2)n1
2149 | CC(C)(C)OC(=O)n1ncc2cc(Nc3c(NCc4ccc(S(N)(=O)=O)cc4)c(=O)c3=O)ccc21
2150 | NC(=O)c1cn(-c2ccc(O)cc2Cl)c2cc(-c3ccncc3)ccc2c1=O
2151 | NC(=O)c1cnc(NC2CCCNC2)c2nc(-c3ccc4ccccc4c3)cn12
2152 | N#Cc1ncc2nc1OCCCCCOc1cc(C#CCO)c(Cl)cc1NC(=O)N2
2153 | N#Cc1cnc(Nc2cc3ccccc3cn2)cn1
2154 | CC(NC(=O)c1ccc(-c2ccncc2)cc1)c1ccccc1
2155 | Cc1cccc(-c2cc3[nH]c4ccc(O)cc4c3c3c2C(=O)NC3=O)c1
2156 | CN(C)c1cc2c(cc1Cl)NC(=O)Nc1cnc(C#N)c(n1)OCCCCCO2
2157 | O=C(NCCc1cccs1)N1CC=C(c2c[nH]c3ncccc23)CC1
2158 | CC1NCCCC1Nc1ncc(C(N)=O)c2sc(-c3ccccc3)cc12
2159 | c1ccc(Cn2cc(-c3ccc4[nH]ncc4c3)nn2)cc1
2160 | Nc1nccc2cnc(-c3ccccc3)n12
2161 | N#Cc1ccc(Nc2ncc(C(F)(F)F)c(NCCCNC3CCCCC3)n2)cn1
2162 | CCN(CCCOc1ccc2c(Nc3cc(CC(=O)Nc4cccc(F)c4)[nH]n3)ncnc2c1)CCOP(=O)(O)O
2163 | CCOc1ccccc1-c1cc2[nH]c3ccc(O)cc3c2c2c1C(=O)NC2=O
2164 | CC(C)(C)c1nnc2ccc(-c3ocnc3-c3cc(F)c(F)cc3F)cn12
2165 | CN(C)c1ccc(CNC(=O)c2cc3c(-c4ccccc4)[nH]nc3s2)cc1
2166 | COc1cccc(C(C)NC(=O)c2ccc(-c3ccncc3)c(F)c2)c1
2167 | O=C(Nc1ccccc1N1CCNCC1)c1csc(N2CCc3sccc3C2)n1
2168 | [O][N+](=O)c1cc(S(=O)(=O)NC(=O)c2ccc(-c3ccc(F)cc3)cc2)ccc1NCCSc1ccc(O)cc1
2169 | NC(=O)c1cc2c(-c3cc(C(F)(F)F)cc(C(F)(F)F)c3)cncc2s1
2170 | O=C1NC(=O)c2c1c1c(c3c2[nH]c2ccccc23)C(=O)NC1
2171 | CNc1nc(Nc2cnc(C#N)c(NC3CCC(N)CC3)c2)ncc1C(F)(F)F
2172 | Cc1cc(C)cc(NC(=O)Nc2ccc(-c3cccc4c3CNC4=O)c(C(F)(F)F)c2)c1
2173 | COC(=O)c1cnc(Nc2cnc(C#N)cn2)cc1NCCC1CCNCC1
2174 | NC(=O)c1ccc(-c2c[nH]c3nccc(Cl)c23)cc1
2175 | NCCCc1cc2ccnc(O)c2c2cc(-c3ccc(CN)cc3)ccc12
2176 | NC(=O)c1cc(Cl)cc2[nH]c(-c3ccc(C4CCCNC4)cc3F)nc12
2177 | Cc1cc(C)c2oc(Nc3ccc(-c4cccc(C(N)=O)c4N)cc3F)nc2c1
2178 | N#Cc1cnc(Nc2cc(NCC3CCNCC3)c(CCCO)cn2)cn1
2179 | NC1=NC(=C2CCNC(=O)c3[nH]c(Br)cc32)C(=O)N1
2180 | CN1CCN(c2cccc(Nc3nccc(-c4c(C(N)=O)nc5ccccn45)n3)c2)CC1
2181 | Oc1[nH]nc2ccc(Br)cc12
2182 | CN(c1ccccc1CNc1nc(N)nc2[nH]ccc12)S(C)(=O)=O
2183 | CN1CCN(c2ccc(-c3cnc4[nH]c5cnc(C(N)=O)cc5c4c3)cc2)CC1
2184 | CC1CCC(NCc2ccc3c(c2)Cc2c(-c4ccc(N(C)C)cc4)n[nH]c2-3)CC1
2185 | O=C1c2ccccc2-c2[nH]nc3cccc1c23
2186 | NC(=O)Nc1sc(-c2ccccc2)cc1C(=O)NC1CCCNC1
2187 | [O][N+](=O)c1ccc2c(c1)C(=O)c1nc3cccc(Br)c3c(=O)n1-2
2188 | COc1ccc2cn(-c3nc(C(=O)Nc4ccnnc4N4CCNCC4)cs3)c(O)c2c1
2189 | CC(C)(c1ccc(-c2cnc3[nH]c4cnc(C#N)cc4c3c2)cc1)N1CCCCC1
2190 | COc1cc(F)c(F)c(Nc2ccc(I)cc2F)c1NS(=O)(=O)C1(CC(O)CO)CC1
2191 | N#Cc1ncc(Nc2cc3[nH]cnc3cn2)nc1OCC1CCNCC1
2192 | NC(=O)Nc1cc(-c2cccc(F)c2)sc1C(=O)NC1CCCNC1
2193 | Cc1cn2c(-c3cn[nH]c3)cnc2c(Nc2cc(Cc3ccccn3)ns2)n1
2194 | COc1cc(-c2ccc3c(c2)NC(=O)C3=Cc2cc(C(=O)NCCN3CCCC3)c(C)[se]2)ccc1O
2195 | Nc1ncnc2scc(-c3ccc(NC(=O)Nc4ccccc4)cc3)c12
2196 | CCC(C)NCc1ccc(Nc2cc(C3C=CC(=C4C=CC(O)=CC4=O)C=C3)[nH]n2)cn1
2197 | Cc1nn(C)c2sc3c(O)ncnc3c12
2198 | O=C(c1cccc(-c2cnc3[nH]ccc3c2)c1)N1CCOCC1
2199 | Nc1noc2cccc(-c3cccc(O)c3)c12
2200 | Cc1nn(-c2ccccc2)c2c1c(=O)c1cc(Cl)ccc1n2O
2201 | Nc1nccc2scc(-c3ccc(NC(=O)Nc4cccc(F)c4)cc3)c12
2202 | Cc1nccn2c(-c3ccnc(NCC(C)(C)CO)n3)c(-c3ccc(F)cc3)nc12
2203 | Cc1cccc(C=NNc2cc(N3CCOCC3)nc(OCCc3ccccn3)n2)c1
2204 | N#Cc1c(O)nc(O)c2c(=N)oc3ccc(Cl)cc3c12
2205 | N#Cc1ncc2nc1OCCCCCOc1cc(OCC(O)CO)c(Cl)cc1NC(=O)N2
2206 | N#Cc1cnc(Nc2cc(NCC3CNCCO3)c(-c3cccc(F)c3)cn2)cn1
2207 | CC(=O)N1CCN(Cc2ccc3[nH]c(-c4[nH]nc5cc(Cl)ccc45)cc3c2)CC1
2208 | CCCC(=O)Nc1[nH]nc2nc3ccccc3cc12
2209 | Cn1cncc1C(OCc1c(-c2ccc(OC(F)(F)F)cc2)cc(C#N)c(=O)n1C)c1ccc(C#N)cc1
2210 | Cc1cnc(NC(=O)Nc2cc(Br)c(C)cc2OCC2CNCCO2)cn1
2211 | Clc1ccc2c(c1)NC1(CCCCC1)N2
2212 | O=C1Nc2cc(-c3ccc(O)cc3)ccc2C1=Cc1ccc[nH]1
2213 | NC(=O)c1cnc(N(CCO)C2CCCNC2)c2cc(-c3ccccc3)sc12
2214 | O=C(Nc1cccc(-c2ccnc3cc(-c4ccncc4)nn23)c1)c1cccc(C(F)(F)F)c1
2215 | O=c1ccc(=O)c2c1c1[nH]c3ccc(O)cc3c1c1c(=O)[nH]c(=O)c21
2216 | Cc1cccc(NC(=O)Nc2ccc(-c3csc4c(C#CCN)cnc(N)c34)cc2)c1
2217 | O=C1Nc2ccc(Cl)cc2C(=NC2CCNC2)C1c1nc2ccccc2[nH]1
2218 | CC(=O)Nc1cccc2c1Cc1c(-c3ccc(-c4ccc(O)cc4)cc3)n[nH]c1-2
2219 | Cn1cc(-c2cnn3c(N)c(Br)c(C4CCCNC4)nc23)cn1
2220 | CNc1nc(Nc2cnc(C#N)c(NC3CCN(C)C3)c2)ncc1C(F)(F)F
2221 | NC(=O)c1cc2c(-c3cccc(F)c3)cncc2s1
2222 | CC(C)(CO)CNc1nccc(-c2c(-c3ccc(F)cc3)nc3c(OCC(F)(F)F)nccn23)n1
2223 | CC(=O)NCC(=O)N1C2CCC1c1cc(Nc3ncc(C(F)(F)F)c(NC4CCC4)n3)ccc12
2224 | CNc1cc2c(cc1Cl)NC(=O)Nc1cnc(C#N)c(n1)OCCCCCO2
2225 | CCCCOc1ncnc2[nH]cc(-c3ccccc3)c12
2226 | NCCCc1cc2c(c3cc(-c4cn[nH]c4)ccc13)C(=O)N=CC2c1ccc(O)cc1
2227 | O=c1c(NCc2ccc(Cl)c(Cl)c2)c(Nc2ccncc2)c1=O
2228 | CN1CCC(C(=O)n2nc(N)c3cc(-c4cn(Cc5ccccc5)nn4)ccc32)CC1
2229 | COc1ccc(-c2cncc(-c3ccc(C(=O)O)cc3)n2)cc1
2230 | COc1cc2c(cc1CC(C)(C)O)Nc1cc(-c3ccc([N+](=O)[O-])c(OC)c3)ccc1C(=O)N2
2231 | Cc1ccc(NC(=O)Nc2ccc(NC(=O)c3csc4ncnc(N)c34)cc2)cc1
2232 | CCc1nc2c(c3cc(OC)c(OC)cc13)C(=O)NC2=O
2233 | CS(=O)(=O)Nc1ccc(Nc2ccc3[nH]nc(N)c3c2)cc1
2234 | CC1(C)CCCN(Cc2ccc(-c3cnc4[nH]c5cnc(C#N)cc5c4c3)cc2)C1
2235 | O=C(Nc1ccccc1N1CCNCC1)c1csc(-n2cccn2)n1
2236 | O=C1NC(=O)c2c1c1c3ccccc3[nH]c1c1cccn21
2237 | Fc1cccc(F)c1C=Cc1[nH]nc2cc(-c3ccncc3)ccc12
2238 | COc1cc2c(cc1C(=O)NCc1ccccn1)Cc1c(C3C=CC(=C4C=CC(=O)C(C#N)=C4)C=C3)n[nH]c1-2
2239 | CC(C)(C)c1cc(NC(=O)Nc2ccc(-c3cn4c(n3)sc3cc(OCCN5CCOCC5)ccc34)cc2)no1
2240 | O=c1[nH]c(=O)c2c1c1[nH]c3ccccc3c1c1c(=O)[nH]c(=O)c21
2241 | COc1cc(Nc2ncc3c(n2)-c2ccc(Cl)cc2C(c2c(F)cccc2OC)=NC3)ccc1C(=O)O
2242 | Cc1cccc(C=Cc2[nH]nc3cc(-c4ccncc4)ccc23)c1
2243 | CCN1C(=O)N(C)c2cnc(Nc3ccc(C(=O)NC4CCN(C)CC4)cc3OC)nc2N1C1CCCC1
2244 | CN1CCN(c2ccc(-c3cnc4[nH]c5cnc(C(=O)O)cc5c4c3)cc2)CC1
2245 | O=C(Nc1cnccc1N1CCNCC1)c1csc(-c2ccc3[nH]ccc3c2)n1
2246 | N#Cc1ncc2nc1OCC(O)C(O)COc1ccc(Cl)cc1NC(=O)N2
2247 | CNc1nc(Nc2cnc(C#N)c(OC3CCNC3)c2)ncc1-c1cnn(C)c1
2248 | CNc1cc(Nc2cnc(C#N)c(OC(C)CN(C)C)n2)ncc1-c1cccc(F)c1
2249 | CCCCC(Sc1nc2c(OC)cccc2c(=O)n1-c1cccc(Cl)c1)C(=O)N1CCC(C(N)=O)CC1
2250 | CC(C)(c1cc(Br)c(O)c(I)c1)c1cc(Br)c(O)c(I)c1
2251 | O=C1NC(=O)c2c1c1c3cc(Br)ccc3[nH]c1c1cccn21
2252 | OCCCn1cnc(-c2ccccc2)c1-c1ccncc1
2253 | CNC(C)CCNc1nc(Nc2ccc(C#N)nc2)ncc1C(F)(F)F
2254 | CN1CCN(c2ccc(-c3cnc4[nH]c5ccc(C#N)nc5c4c3)cc2)CC1
2255 | COc1cc(-c2ccc3c(c2)Nc2ccc(CCC(=O)N(C)C)cc2NC3=O)ccc1N
2256 | CCCCNCC(=O)Nc1ccc2c(c1)Cc1c(-c3ccc(-c4ccc(O)cc4)cc3)n[nH]c1-2
2257 | N#Cc1ccc(Nc2ncc(C(F)(F)F)c(NCCCCN)n2)cn1
2258 | CCCCC(Sc1nc2ccccc2c(=O)n1-c1ccccc1)C(=O)N1CC=S(O)(O)=CC1
2259 | Cc1cc(C)cc(NC(=O)Nc2ccc(NC(=O)c3csc4ncnc(N)c34)cc2)c1
2260 | Cn1c(Nc2ccc(C(F)(F)F)cc2)nc2cc(Oc3ccnc(-c4nc(C(F)(F)F)c[nH]4)c3)ccc21
2261 | O=C1NC(=O)c2c1c(-c1c(O)cccc1Cl)cc1[nH]c3ccc(O)cc3c21
2262 | COc1ccc(OC)c(NC(=O)c2cnn3c(-c4ccccc4)ccnc23)c1
2263 | COc1cc2c(cc1C(=O)N1CCC(O)CC1)Cc1c(-c3ccc(-c4ccc(O)cc4)cc3)n[nH]c1-2
2264 | COc1ccc(C=C2SC(Nc3ccccc3)=NC2=O)cc1O
2265 | CC(C)(C)CNCc1ccc2c(c1)Cc1c(-c3ccc(C(=O)O)cc3)n[nH]c1-2
2266 | Cn1cc(-c2ccc3c(-c4cc5cc(CN6CCOCC6)ccc5[nH]4)[nH]nc3c2)cn1
2267 | COc1cc2ncnc(Nc3cccc(Cl)c3F)c2cc1CN(C)C(CN(C)C)C(N)=O
2268 | NC(=O)c1cnc(NC2CCC(N)CC2)c2nc(-c3ccc(Cl)c(Cl)c3)cn12
2269 | CN(C)CC(C)(C)CNc1nccc(-c2c(-c3ccc(F)cc3)nc3occn23)n1
2270 | O=C1NC(=O)c2c1c(I)cc1[nH]c3ccc(O)cc3c21
2271 | Oc1ccc(Nc2[nH]nc(-c3ccc(O)cc3)c2-c2ccc(O)cc2)cc1
2272 | CC(C)(C)c1cc(NC(=O)C(=O)c2cccc3ccccc23)n(-c2cccc(OCC(=O)NCCO)c2)n1
2273 | N#Cc1ccc(Nc2ncc(C(F)(F)F)c(NCC3CCNC3)n2)cn1
2274 | N#Cc1ncc(Nc2ncc(-c3ccc(F)cc3)cn2)cc1OC1CCCNC1
2275 | CCC(N)(C#Cc1cnc(N)c2c(-c3ccc(NC(=O)Nc4cccc(C)c4)cc3)csc12)CC
2276 | O=C1NC(=O)c2c1c(-c1ccccc1C(F)(F)F)cc1[nH]c3ccc(O)cc3c21
2277 | COc1cc2c(cc1OC)Nc1cc(-c3ccc([N+](=O)[O-])c(OC)c3)ccc1C(=O)N2
2278 | CC(C)(CO)c1nnc2ccc(-c3c(-c4ccc(F)cc4F)nc4n3CCC4)nn12
2279 | O=C(Nc1ccccc1N1CCNCC1)c1csc(N2CCCc3ccccc32)n1
2280 | COc1ccc(-c2cc3nccn3c(Nc3ccccc3C(N)=O)n2)cc1OC
2281 | NC1CCC(Nc2cc(Nc3ccc(S(N)(=O)=O)cc3)n3ncnc3n2)CC1
2282 | Nc1[nH]nc2ccc(-c3nnn(Cc4ccccc4)c3I)cc12
2283 | CN(C)CCOCCN(C)CCOc1cc(N2CCCC2)c(NC(=O)Nc2cnc(C#N)cn2)cc1Cl
2284 | COc1ccccc1CNCc1ccc(NC(=O)Nc2cnc(C#N)cn2)c(OC)c1
2285 | COc1nccn2c(-c3ccnc(NCC(C)(C)CO)n3)c(-c3ccc(F)cc3F)nc12
2286 | Cc1cccc(Nc2nc(N3CCOCC3)c3[nH]cnc3n2)c1
2287 | N#Cc1cc2c(cn1)[nH]c1ncc(Br)cc12
2288 | Cc1[nH]nc2ccc(-c3cccnc3)cc12
2289 | O=C1NCc2c(Br)cccc21
2290 | COc1ccc(CCC(=O)Nc2cc(OC)c(NC(=O)Nc3cnc(C#N)cn3)cc2Cl)cc1
2291 | COc1cc(CNCc2ccccc2F)ccc1NC(=O)Nc1cnc(C#N)cn1
2292 | O=C1OC(=O)c2c1c(-c1ccccc1)cc1[nH]c3ccc(O)cc3c21
2293 | N#Cc1ccc(Nc2ncc(C(F)(F)F)c(NCCCNC3CCC3)n2)cn1
2294 | COC(=O)CCC(=O)Nc1cc(OC)c(NC(=O)Nc2cnc(C#N)cn2)cc1Cl
2295 | FC(F)(F)Oc1ccc(-c2ccc3[nH]cc(C4=CCNCC4)c3c2)cc1
2296 | Oc1nc2ccc(Cl)cc2c(NC2CCCNC2)c1-c1nc2ccccc2[nH]1
2297 | COc1cc2ncnc(Nc3cccc(Cl)c3F)c2cc1CN(C)C(C)C(=O)N(C)C
2298 | O=C(Cc1ccccc1)Nc1cccc(-c2nc3sccn3c2-c2ccnc(Nc3cccc(N4CCCC4=O)c3)n2)c1
2299 | COc1cc2ncnc(Nc3cccc(Cl)c3F)c2cc1CN(C)C1(C(N)=O)CCN(C)CC1
2300 | CNc1nc(Nc2cnc(C#N)c(OC3CCN(C)CC3)c2)ncc1-c1cnn(C)c1
2301 | NCCCc1cc2c(Br)cnc(O)c2c2cc(-c3cn[nH]c3)ccc12
2302 | COC(=O)c1cnc(Nc2cnc(C#N)cn2)cc1NCC1CC2CCC(C1)N2C
2303 | COc1cc(N2CCN(C(C)C)CC2)ccc1Nc1nc(Nc2ccc(F)cc2C(N)=O)c2cc[nH]c2n1
2304 | N#Cc1cnc(Nc2cc(NCC3CCNCC3)ncn2)cn1
2305 | COc1cc(CNCc2ccccc2)c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1
2306 | N#Cc1ncc2nc1OCCCCCOc1cc(NCc3cnco3)c(Cl)cc1NC(=O)N2
2307 | O=C(NCCCN1CCCC1=O)c1cnc(NCc2cc(Cl)ccc2Cl)nc1NC1CCCC1
2308 | Cc1cnnn1-c1ccc2c(-c3cc4cc(CN5CCCCC5)ccc4[nH]3)[nH]nc2c1
2309 | COc1cc2c(Oc3ccc4[nH]c(C)cc4c3F)ncnc2cc1OCCCN1CCCC1
2310 | NC(=O)c1cnc(NC2CCCNC2)c2cc(-c3ccccc3)sc12
2311 | CN(c1ncc(C(N)=O)c2sc(-c3ccccc3)cc12)C1CCCNC1
2312 | CS(=O)(=O)NCCOc1cncc(-c2ccc3cnccc3c2)c1
2313 | OCCNc1cc2cc(-c3ccncc3)ccc2cn1
2314 | Cc1ncc(C#N)c(Nc2ccc3[nH]ccc3c2C)c1C=Cc1cccc(S(=O)(=O)N2CCN(C)CC2)c1
2315 | CCCCC(Sc1nc2c(C)cccc2c(=O)n1-c1cccc(Cl)c1)C(=O)N1CCC(C(N)=O)CC1
2316 | CN(C)CC(C)(C)CNc1nccc(-c2c(-c3ccc(F)cc3)nc3cnccn23)n1
2317 | NC1=NC(=C2CCNC(=O)c3[nH]c(-c4ccccc4)cc32)C(=O)N1
2318 | O=C(Nc1ccccc1N1CCNCC1)c1csc(N2Cc3ccccc3C2)n1
2319 | CC(C)n1nc(-c2cc3cc(O)ccc3[nH]2)c2c(N)ncnc21
2320 | Brc1cnc2[nH]cc(-c3ccccc3)c2c1
2321 | NC(=O)c1cnc(NC2CCC(N)CC2)n2cc(-c3ccc(Cl)cc3)nc12
2322 | O=C(NCc1ccc(Br)cc1)Nc1ccc2[nH]ncc2c1
2323 | NC(=O)c1cnc(OC2CCCNC2)c2cc(-c3ccccc3)sc12
2324 | Cc1cn2c(-c3cn[nH]c3)cnc2c(Nc2cc(CN3CCC(F)(F)C3)ns2)n1
2325 | COc1cc2c(cc1C(=O)N1CCOCC1)Cc1c(-c3ccc(-c4ccc(O)cc4)cc3)n[nH]c1-2
2326 | NCCc1cc2ccnc(O)c2c2cc(Cl)ccc12
2327 | Nc1ncnc2c1N=C(c1ccc(NC(=O)Nc3cc(C(F)(F)F)ccc3F)cc1)CCN2
2328 | O=C(Nc1cccnc1N1CCNCC1)c1csc(-c2ccc3c(c2)CCO3)n1
2329 | Nc1ccccc1-c1cc2[nH]c3ccc(O)cc3c2c2c1C(=O)NC2=O
2330 | Cc1cccc(-c2cc3[nH]c4ccc(O)cc4c3c3c2C(=O)NC3=O)c1C
2331 | O=C(O)c1ccc2c(c1)nc(Nc1cccc(Cl)c1)c1ccncc12
2332 | COc1cc2ncnc(Nc3cccc(Cl)c3F)c2cc1CN(C)CC(N)=O
2333 | NCC1CN(c2ncnc3[nH]c4ccccc4c23)CCO1
2334 | N#Cc1cccc(-c2cc(C(=O)NC3CCCNC3)c(NC(N)=O)s2)c1
2335 | OCC(O)CNc1ncnc2[nH]c(-c3ccccc3)c(-c3ccccc3)c12
2336 | CN1CCN(C2CCC(n3cc(-c4ccc(Oc5ccccc5)cc4)c4c(N)ncnc43)CC2)CC1
2337 | COc1cc(CCNCc2ccccc2)ccc1NC(=O)Nc1cnc(C)cn1
2338 | c1cnn(-c2ccc3c(-c4cc5cc(CN6CCCCC6)ccc5[nH]4)[nH]nc3c2)n1
2339 | Oc1nc2ccc(-c3cn[nH]c3)cc2cc1-c1cc2cc(CN3CCCCC3)ccc2[nH]1
2340 | Cn1cc(-c2cc3c(cn2)[nH]c2ncc(-c4ccc(CN5CCCCC5)cc4)cc23)cn1
2341 | CCN(CC)CCCNc1cccc(-c2nc3c(C(N)=O)cccc3[nH]2)n1
2342 | CC(=NNC(=O)c1nnn(-c2nonc2N)c1-c1ccccc1)c1ccco1
2343 | O=C(Nc1cnccn1)Nc1ccnc2cc(C(F)(F)F)ccc12
2344 | NC(COc1cncc(C=Cc2ccncc2)c1)Cc1c[nH]c2ccccc12
2345 | Cc1c(Cl)c(N2CCC(CN)C2)nc2ncc(C(=O)O)c(O)c12
2346 | Cc1cc2c(NC3CCCNC3)c(-c3nc4ccccc4[nH]3)c(O)nc2s1
2347 | CNc1cc(Nc2cnc(C#N)c(OC(C)CN(C)C)n2)ncc1C(=O)OC
2348 | O=C(Nc1ccc(Oc2ncnc3[nH]ncc23)cc1)Nc1ccc(Cl)c(C(F)(F)F)c1
2349 | O=C(Nc1ccc2[nH]ncc2c1)c1ccc(Cl)cc1
2350 | Oc1nc2ccc(-n3ccnc3)cc2cc1-c1cc2cc(CN3CCCCC3)ccc2[nH]1
2351 | Cc1ccc(F)c(NC(=O)Nc2ccc(-c3ccc(OCCCn4cccc4)c4[nH]nc(N)c34)cc2)c1
2352 | COc1cc(-c2ccc3c(c2)NC(=O)C3=Cc2cc(C(=O)NCCN3CCOCC3)c(C)[se]2)ccc1O
2353 | O=C1Cc2c([nH]c3ccc([N+](=O)[O-])cc23)-c2ccccc2N1
2354 | ON=C(c1nc2ccccc2[nH]1)c1nc2ccccc2[nH]1
2355 | O=C1NC(=O)c2c1cc(-c1ccccc1)c1[nH]c3ccc(O)cc3c21
2356 | CC(C)(O)CNc1nccc(-c2c(-c3ccc(F)cc3F)nc3c(CC4CC4)nccn23)n1
2357 | O=C(O)c1ccccc1Nc1ccnc(Nc2ccc3c[nH]nc3c2)n1
2358 | O=C(Nc1cccc(F)c1)Nc1cccc(-c2ccc3c[nH]nc3c2)c1
2359 | CC(=O)Nc1cc(N)c(C#N)c(-c2ccc3ccccc3c2)n1
2360 | Cc1[se]c(C=C2C(=O)Nc3cc(-c4cccc(O)c4)ccc32)cc1C(=O)NCCN(C)C
2361 | CN(C)Cc1ccc(Nc2cc(C3C=CC(=C4C=CC(O)=CC4=O)C=C3)[nH]n2)cc1
2362 | NC(=O)c1cnc(NC2CCCNC2)c2sc(-c3cccc(F)c3)cc12
2363 | N#Cc1cnc(NC(=O)Nc2ccc(CCNCc3ccccc3)cc2)cn1
2364 | Oc1nc2sccc2c(NCC2CCNCC2)c1-c1nc2ccccc2[nH]1
2365 | Clc1cc(Nc2nc(NC3CC3)c3sccc3n2)ccc1N1CCOCC1
2366 | CCOC(=O)c1ccc2[nH]c3c(c2c1)CCNC3=O
2367 | NCCc1cc2ccnc(O)c2c2cc(-c3cc[nH]n3)ccc12
2368 | NC(=O)Nc1cc(-c2ccc(F)cc2F)sc1C(=O)NC1CCCNC1
2369 | CN(c1ccc(F)c(NC(=O)c2cccc(OC(C)(C)C#N)c2Cl)c1)c1ccc2nc(NC(=O)C3CC3)sc2n1
2370 | CC1(C)C(=O)c2c3c(c4c([nH]c5ccccc54)c2C1=O)C(=O)NC3=O
2371 | COc1ccc(CCNc2ncc(C(=O)NCCCN3CCCC3=O)c(NC3CCCC3)n2)cc1OC
2372 | CNC(=O)c1nn(C)c2c1C(C)(C)Cc1cnc(Nc3ccc(N4CCN(C)CC4)cc3)nc1-2
2373 | Nc1[nH]nc2ncc(Br)cc12
2374 | Nc1nccc2scc(-c3ccc(NC(=O)Nc4cccc(Cl)c4)cc3)c12
2375 | Cc1[se]c(C=C2C(=O)Nc3cc(-c4ccc(O)cc4)ccc32)cc1C(=O)NCCCn1ccnc1
2376 | c1cc(-c2cnc3[nH]c4cnc(-c5cnoc5)cc4c3c2)ccc1CN1CCCCC1
2377 | O=C1c2cc([N+](=O)[O-])ccc2-n2c1nc1cccc(Br)c1c2=O
2378 | CN(C)CCN1CCN(C(=O)c2cc(C(C)(C)C)sc2NC(=O)Nc2cccc(Cl)c2Cl)CCC1=O
2379 | COCCOCC(=O)Nc1cc(OC)c(NC(=O)Nc2cnc(C#N)cn2)cc1Cl
2380 | CC(=NN=C(N)N)c1cc(NC(=O)NCCCN(C)CCCNC(=O)Nc2cc(C(C)=NN=C(N)N)cc(C(C)=NN=C(N)N)c2)cc(C(C)=NN=C(N)N)c1
2381 | O=C(O)c1ccccc1Nc1ccnc(Nc2cccc(O)c2)n1
2382 | COc1cc(-c2ccc3c(c2)C(=Cc2ccc[nH]2)C(=O)N3)ccc1O
2383 | O=CN(O)C(CS(=O)(=O)c1ccc(-c2ccc(C(F)(F)F)cc2)cc1)c1ccc(O)cc1
2384 | COc1cc(NC(=O)Cc2ccsc2)c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1
2385 | CC=C(C=CC=C1C(=O)Nc2cc(-c3ccc(O)c(OC)c3)ccc21)C(=O)NCCCn1ccnc1
2386 | c1ccc2[nH]c(-c3[nH]nc4cc(-c5ccncc5)ccc34)nc2c1
2387 | CC(C)(C)c1[nH]nc2c1C(c1ccccc1F)C(C#N)=C(N)O2
2388 | NCc1cccc(-c2cc3[nH]c4ccc(O)cc4c3c3c2C(=O)NC3=O)c1
2389 | N#Cc1cc2c(cn1)[nH]c1ncc(-c3ccc(CN4CCOCC4)cc3)cc12
2390 | COc1cccc(CNC(=O)c2cc3c(-c4ccccc4)[nH]nc3s2)c1
2391 | Cc1cc(C)cc(NC(=O)Nc2ccc(-c3cccc4c3CNC4=O)c(C)c2)c1
2392 | Oc1nc2sccc2c2nc(-c3ccncc3)nn12
2393 | CN(C)CCOc1cc(OCC2(C)COC2)c(NC(=O)Nc2cnc(C#N)cn2)cc1Cl
2394 | O=C1NC(=O)c2c1c1c3cc(OCc4ccccc4)ccc3[nH]c1c1cccn21
2395 | Cc1cccc(-c2cccc3onc(N)c23)c1
2396 | NCCCc1cc2ccnc(O)c2c2ccccc12
2397 | Nc1ccc(-c2cncc(OCC(N)Cc3c[nH]c4ccccc34)c2)cc1C(=O)c1ccccc1
2398 | CC1CC(C)CN(Cc2ccc(-c3cnc4[nH]c5cnc(C#N)cc5c4c3)cc2)C1
2399 | O=C1NC(=O)c2c1c1c(O)ccc(O)c1c1[nH]c3ccc(O)cc3c21
2400 | Cc1ccc2[nH]c(-c3[nH]nc4cc(C(=O)Nc5ccc(O)cc5)ccc34)nc2c1C
2401 | COc1cc2ncnc(Nc3cccc(Cl)c3F)c2cc1CN(C)C1CCNC1=O
2402 | CSc1ccccc1CNc1ncc([N+]([O])=O)c(NCC2CCC(CN)CC2)n1
2403 | CNC(=O)c1cc(-c2ccccc2)[nH]n1
2404 | COc1cccc(C(C)NC(=O)c2ccc(-c3ccncc3)cc2)c1
2405 | Nc1ncnc2c1c(-c1cccc(OCc3ccccc3)c1)cn2C1CCC(N2CCCC2)CC1
2406 | COc1cc([N+](=O)[O-])c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1
2407 | CN1CCN(c2ccc(-c3cnc4c(c3)N(Cc3cc(Cl)ccc3C(F)(F)F)CCN4)cn2)CC1
2408 | CNc1nc(Nc2cnc(C#N)c(OC3CCNC3)c2)ncc1C(F)(F)F
2409 | COc1nccc(-c2c(-c3ccc(F)cc3)ncn2C2CCNCC2)n1
2410 | COc1cc(-c2ccc3c(C=C4CCCN4)c(O)[nH]c3c2)ccc1O
2411 | N#Cc1ncc2nc1OCCCCCOc1cc(NCc3ccccc3)c(Cl)cc1NC(=O)N2
2412 | COc1cc(-c2ccc3c(C=Cc4ccc(NC(=O)CN)cc4)[nH]nc3c2)ccc1O
2413 | COC(=O)c1c(-c2ccc(NC(=O)Nc3ccccc3)cc2)c2c(N)ncnn2c1C
2414 | O=C(Nc1ccccc1N1CCNCC1)c1csc(NC2Cc3ccccc3C2)n1
2415 | COCCOCCOc1cc2c(cc1Cl)NC(=O)Nc1cnc(C#N)c(n1)OCCCCCO2
2416 | C(=Cc1[nH]nc2cc(Oc3ccccc3)ccc12)c1ccccc1
2417 | N#CCOc1ccc(Nc2nc(Nc3cccc(S(N)(=O)=O)c3)ncc2Br)cc1
2418 | Cc1cc(Cl)ccc1NC(=S)NNC(=O)C(O)(c1ccccc1)c1ccccc1
2419 | CS(=O)(=O)c1cccc(C(=O)Nc2nc3ccccc3n2CCCO)c1
2420 | Nc1[nH]nc2ccc(-c3nnn(Cc4ccccc4)c3-c3ccc(F)cc3)cc12
2421 | O=C(Nc1ccccc1)Nc1ccccc1
2422 | Cc1cccc(NC(=O)Nc2ccc(-c3cccc4[nH]nc(N)c34)cc2)c1
2423 | CC1(C)CCN(Cc2ccc(-c3cnc4[nH]c5cnc(C#N)cc5c4c3)cc2)CC1
2424 | COc1ccc(-c2cc3[nH]c4ccc(O)cc4c3c3c2C(=O)NC3=O)cc1
2425 | CN(C1CC1)S(=O)(=O)c1ccc(-c2cnc(N)c(-c3ccc4c(c3)CCNC4=O)c2)c(F)c1
2426 | Nc1ncnc2c1c(-c1cccc(OCc3ccccc3)c1)cn2C1CC(CN2CCCC2)C1
2427 | C(=Cc1[nH]nc2cc(-c3ccccc3)ccc12)c1ccccc1
2428 | Oc1ccc(-c2ccc3c(C=Cc4ccccc4)[nH]nc3c2)cn1
2429 | CC(C)(C)c1cc(NC(=O)C(=O)c2cccc3ccccc23)n(-c2ccc(OCC(N)=O)cc2)n1
2430 | Cc1ccc(-c2n[nH]c3c2Cc2cc(CNC4CCC(C)CC4)ccc2-3)cc1
2431 | CCOc1nc(C(=O)NCc2ccc(S(C)(=O)=O)cc2)cc(N)c1Cl
2432 | CC(=NN=C(N)N)c1cc(NC(=O)NCCCCCCNC(=O)Nc2cc(C(C)=NN=C(N)N)cc(C(C)=NN=C(N)N)c2)cc(C(C)=NN=C(N)N)c1
2433 | CCn1c(-c2nonc2N)nc2c(C#CC(C)(C)O)nc(OC(CN)c3ccccc3)cc21
2434 | O=C1Nc2ccc(Cl)cc2C(=NC2CN3CCC2CC3)C1c1nc2ccccc2[nH]1
2435 | Cc1ccc(F)c(NC(=O)Nc2ccc(-c3cccc4[nH]nc(N)c34)cc2)c1
2436 | NCCCc1cc2ccnc(O)c2c2cc(-c3cc[nH]n3)ccc12
2437 | Oc1ccc(-c2ccc(-c3n[nH]c4c3Cc3cc(CNC5CCC(O)CC5)ccc3-4)cc2)cc1
2438 | O=C(Nc1ccc(-c2cccc3sncc23)cc1)Nc1ccc(F)c(C(F)(F)F)c1
2439 | Cc1nn(C)c2cc(N(C)c3ccnc(Nc4cccc(S(N)(=O)=O)c4)n3)ccc12
2440 | COc1cc2c(cc1OCC1CCCCO1)Nc1cc(-c3ccc([N+](=O)[O-])c(OC)c3)ccc1C(=O)N2
2441 | N#CC1=C(c2ccccc2)CC(c2ccc(Cl)cc2)C(C(=O)c2ccccc2)C1=O
2442 | CCCn1c(C2CCNCC2)nc(-c2ccc(Cl)c(Cl)c2)c1-c1ccnc(NC2CCCCC2)n1
2443 | Cc1cccc(NC(=O)Nc2ccc(-c3csc4c(C#CCN5CCOCC5)cnc(N)c34)cc2)c1
2444 | COC(=O)c1cnc(Nc2cnc(C#N)c(OC3CCNC3)n2)cc1OC
2445 | Cc1ccc(NC(=O)Nc2ccc(-c3csc4c(-c5cnn(C)c5)cnc(N)c34)cc2)cc1
2446 | CC1CCC(NCc2ccc3c(c2)Cc2c(-c4ccc(Cl)cc4)n[nH]c2-3)CC1
2447 | C#Cc1cc2c(cc1OC)-c1[nH]nc(-c3ccc(C#N)nc3)c1C2
2448 | CCOc1cc(CCNCc2ccc(F)cc2)c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1
2449 | COc1cc(-c2ccc3c(c2)Nc2ccc(CCOc4ccc(N5CCOCC5)cc4)cc2NC3=O)ccc1OCC(O)CO
2450 | O=C1Nc2ccccc2C(=NC2CN3CCC2CC3)C1c1nc2ccccc2[nH]1
2451 | CC(C)CC(Sc1nc2ccccc2c(=O)n1-c1cccc(Cl)c1)C(=O)N1CCC(C(N)=O)CC1
2452 | Cc1nccn2c(-c3ccnc(NCC(C)(C)O)n3)c(-c3ccc(F)cc3F)nc12
2453 | COc1cc(CCNCc2ccc(F)cc2F)ccc1NC(=O)Nc1cnc(C#N)cn1
2454 | CCCCNc1ccc2c3c(cccc13)C(=O)N(CCNCCO)C2=O
2455 | COc1cc(-c2ccc3c(c2)NC(=O)C3=Cc2c[nH]c3ncccc23)ccc1O
2456 | CN(C)CCNc1c(-c2nc3ccccc3[nH]2)c(O)nc2sccc12
2457 | OCCn1cc(-c2ccc3c(c2)CCC3=NO)c(-c2ccncc2)n1
2458 | C(=Cc1cncc(OC2CCNC2)c1)c1ccncc1
2459 | CCCCNc1n[s+]([O-])nc1Nc1ccc(F)cc1
2460 | N#Cc1ncc2nc1OCCCCCOc1cc(NCc3cccnc3)c(Cl)cc1NC(=O)N2
2461 | O=C1NC(=O)c2c1c1c3ccccc3[nH]c1c1[nH]c3ccncc3c21
2462 | O=C(CO)N1CCC(c2[nH]nc(-c3ccc(Cl)cc3F)c2-c2ccncn2)CC1
2463 | O=C(Nc1ccccc1)Nc1ccccn1
2464 | CC=C(C=CC=C1C(=O)Nc2cc(-c3ccc(O)c(OC)c3)ccc21)C(=O)NCCN1CCCC1
2465 | NC(=O)c1cc2c(cn1)[nH]c1ncc(-c3ccc(CN4CCCCC4)cc3)cc12
2466 | N#Cc1ccc(Nc2ncc(C(F)(F)F)c(NCCCNCCN3CCOCC3)n2)cn1
2467 | N#Cc1cnc(NC(=O)Nc2ccc(CCNCc3ccc(F)cc3F)cc2)cn1
2468 | Nc1nccc2scc(-c3ccc(NC(=O)Nc4ccccc4C(F)(F)F)cc3)c12
2469 | O=C1NC(=O)c2c1c(-c1ccc(O)cc1Cl)cc1[nH]c3ccc(O)cc3c21
2470 | O=C1NC(=O)c2c1c(-c1ccccc1Cl)cc1[nH]c3ccc(O)cc3c21
2471 | Oc1nn2ccccc2c1Br
2472 | CC(=O)Nc1cc(N)c(C#N)c(-c2ccsc2)n1
2473 | COc1cccc(CCC(=O)Nc2cc(OC)c(NC(=O)Nc3cnc(C#N)cn3)cc2Cl)c1
2474 | CC(C)(C(N)=O)n1cc(-c2cnc(N)c3c(-c4ccc(NC(=O)Nc5cccc(F)c5)cc4)csc23)cn1
2475 | COc1cc2c(cc1C(=O)NC1CCC(O)CC1)C(C)(C)c1c(-c3ccc(-c4ccc(O)cc4)cc3)n[nH]c1-2
2476 | N#Cc1cnc(NC(=O)Nc2cc(Cl)c(OCC3CCCO3)cc2N2CCCC2)cn1
2477 | O=C(NCc1ccccc1)c1cccc(-c2cnc3[nH]ccc3c2)c1
2478 | Cc1ccc(C=C2C(=O)Nc3cc(-c4ccc(O)cc4)ccc32)[se]1
2479 | N#Cc1cnc(Nc2cc(NCC3CNCCO3)c(C#CC3(O)CCCC3)cn2)cn1
2480 | OCCNc1cc2cc(-c3cccnc3)ccc2cn1
2481 | Cc1nn(C)c(C)c2cc([N+]([O])=O)cc1-2
2482 | CCCCCCCCCCCCOc1ccc(NC(=N)N)cc1N=C(N)N
2483 | O=C1NC(=O)c2c1c1c3cc(O)ccc3[nH]c1c1cccn21
2484 | CNC1CCC(Nc2ncc(C(N)=O)n3cc(-c4ccc(Cl)cc4)nc23)CC1
2485 | OCCNCc1ccc2c(c1)-c1[nH]nc(-c3ccc(-c4ccc(O)cc4)cc3)c1C2
2486 | COc1cc2c(cc1C(=O)NCc1ccccn1)Cc1c(-c3ccc(-c4ccc(O)c(F)c4)cc3)n[nH]c1-2
2487 | COc1ccc(C(C)NCCc2cc(OC)c(NC(=O)Nc3cnc(C#N)cn3)cc2Cl)cc1
2488 | O=C1NC(=O)c2c1c(C1CCNC1)cc1[nH]c3ccc(O)cc3c21
2489 | N#Cc1ccc(Nc2ncc(C(F)(F)F)c(NC3CCC(N)CC3)n2)cn1
2490 | COC(=O)N1CCC(n2ncc3c(N4CCOCC4)nc(-c4ccc(N)cc4)nc32)CC1
2491 | N#Cc1cc2c(cn1)[nH]c1ncc(-c3ccc(CN4CCCCC4)cc3)cc12
2492 | CC(=O)Nc1cccc(-c2cnc3[nH]nc(C)c3c2)c1
2493 | O=C(O)C1CN(Cc2ccc(OCc3cccc(C(F)(F)F)c3)cc2Cl)C1
2494 | COc1cc(-c2ccc3c(c2)NC(=O)C3=Cc2c[nH]c3ccccc23)ccc1O
2495 | O=C(Nc1cnccc1N1CCNCC1)c1csc(N2Cc3ccccc3C2=O)n1
2496 | CN1CCN(c2ccc(OC(F)(F)F)c(Nc3ncc4c(n3)-c3c(c(C(N)=O)nn3CCO)CC4)c2)CC1
2497 | O=C(Nc1ccc(O)cc1)c1ccc2c(-c3nc4cc5ccccc5cc4[nH]3)[nH]nc2c1
2498 | N#Cc1ccc2c(c1)[nH]c1ncnc(N3CCOC(CN)C3)c12
2499 | Cc1ccc(-n2cc3c(-c4c[nH]c(-c5ccccc5)c4-c4ccccc4)nnc(O)c3n2)cc1
2500 | CCc1cnn2c(NCc3ccc[n+]([O-])c3)cc(N3CCCCC3CCO)nc12
2501 | COc1cc(CCNCc2ccc(N3CCNCC3)cc2)c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1
2502 | NCCc1cc2ccnc(O)c2c2cc(Br)ccc12
2503 | COc1cc(N)ccc1-c1cc2[nH]c3ccc(O)cc3c2c2c1C(=O)NC2=O
2504 | CC(=O)N1CCC(Nc2ncc3c(n2)-c2c(c(C(N)=O)nn2C)CC3)CC1
2505 | COc1ccc2[nH]c(-c3c(O)nc4sc(Cl)cc4c3NC3CCCNC3)nc2c1
2506 | CC(C)(CO)CNc1nccc(-c2c(-c3ccc(F)cc3)nc3c(CC4CC4)nccn23)n1
2507 | COc1cccc(CNCCc2cc(OC)c(NC(=O)Nc3cnc(C#N)cn3)cc2Cl)c1
2508 | C=CC(=O)Nc1cc2c(Nc3ccc(F)c(Cl)c3)ncnc2cc1OCCCN1CCOCC1
2509 | Cc1ccc(Nc2nc3cc([N+]([O])=O)ccc3[nH]2)nc1
2510 | O=C(NS(=O)(=O)c1ccc(NCCSc2ccc(O)cc2)c([N+](=O)[O-])c1)c1ccc(-c2ccc(F)cc2)cc1
2511 | Oc1ncnc2c1sc1c(Cl)ccc(Cl)c12
2512 | OCCNc1ncnc2[nH]c(-c3ccccc3)c(-c3ccccc3)c12
2513 | Cc1ccc(C(=O)Nc2c(C#N)sc3ccc(Cl)c(Cl)c23)cc1
2514 | CC(C)n1nnc2ccc(-c3c(-c4ccc(F)cc4F)nc4occn34)cc21
2515 | O=C(C=CC=CC=C1C(=O)Nc2cc(-c3ccc(O)cc3)ccc21)NCCN1CCCCO1
2516 | COc1ccc(C2=NNc3cccc4c(OC)ccc2c34)cc1OC
2517 | N#Cc1cnc(Nc2cc(NCC3CCNCC3)c(C(=O)Nc3ccccc3)cn2)cn1
2518 | CCN(CC)CCNC(=O)c1ccc(C=C2C(=O)Nc3cc(-c4ccc(O)cc4)ccc32)[se]1
2519 | NCCCc1cc2c(-c3ccccc3)cnc(O)c2c2cc(-c3cn[nH]c3)ccc12
2520 | COCC(C(N)=O)N(C)Cc1cc2c(Nc3cccc(Cl)c3F)ncnc2cc1OC
2521 | N#Cc1cc2c(cn1)[nH]c1ncc(-c3ccc(N4CCOCC4)cc3)cc12
2522 | O=C1C=CC(=C2C=CC(c3[nH]nc4c3Cc3ccc(C(=O)NCCO)cc3-4)C=C2)C=C1
2523 | Nc1ncnc2scc(-c3ccc(NC(=O)Nc4cc(C(F)(F)F)ccc4F)cc3)c12
2524 | COc1ccccc1-c1ccc2c(c1)Nc1ccccc1NC2=O
2525 | Oc1nc2sc3c(c2c2nc(-c4ccccc4)nn12)CCCC3
2526 | O=C(Nc1ccc(O)cc1)c1ccc2c(-c3nc4cc(Cl)c(Cl)cc4[nH]3)[nH]nc2c1
2527 | COc1cc(Nc2cnc(C#N)c(OC(C)CN(C)C)n2)ncc1-c1cnn(C)c1
2528 | Oc1nc2ccc(-c3cn[nH]c3)cc2cc1-c1cc2cc(CN3CCOCC3)ccc2[nH]1
2529 | O=C1Nc2ccccc2Nc2ccccc21
2530 | CC1Cn2ncc(C3CCN(S(C)(=O)=O)CC3)c2CN1c1ccnc2[nH]ccc12
2531 | O=C1NCCc2[nH]c(-c3ccnc(-c4cnc5ccccc5c4)c3)cc21
2532 | O=C(O)c1c2c(nc3ccccc13)C(=C1CCCC1)CC2
2533 | [O-][n+]1ccc2c(-c3ccc(F)cc3Cl)ccnc2c1-c1c(Cl)cccc1Cl
2534 | CC(=O)Nc1cccc2c1Cc1c-2n[nH]c1C1C=CC(=C2C=CC(=O)C=C2)C=C1
2535 | CN1CCC(NC(=O)c2cnc(Nc3cc(Cl)cc(Cl)c3)nc2NC2COCC2O)CC1
2536 | O=C(Nc1[nH]nc2ccc(-c3cn(Cc4ccccc4)nn3)cc12)c1cc(F)ccc1F
2537 | Fc1cccc(C=Cc2[nH]nc3cc(-c4ccncc4)ccc23)c1F
2538 | NC(=O)c1c(OCc2c(F)cc(Br)cc2F)nsc1NC(=O)NCCCCN1CCCC1
2539 | CNC(=O)c1cnc(N)c2c(-c3ccc(NC(=O)Nc4cccc(Cl)c4)cc3)csc12
2540 | CC(C)Nc1c(-c2ccc3[nH]ncc3c2)nc2ncccn12
2541 | N#Cc1ccc(Nc2ncc(C(F)(F)F)c(NCC3CCNCC3)n2)cn1
2542 | Cc1cccc2c1NC(=O)C(c1nc3ccccc3[nH]1)C2=NC1CN2CCC1CC2
2543 | N#CC1=C(N)n2c(sc(=Cc3ccco3)c2=O)=C(C(N)=O)C1c1ccco1
2544 | C#Cc1cnc(Nc2cnc(C#N)c(OC(C)CN(C)C)n2)cc1NC
2545 | NC(=O)c1cnc(NC2CCCNC2)c2cc(-c3cnn(Cc4ccccc4)c3)sc12
2546 | Cn1cncc1CNc1cc2c(cc1Cl)NC(=O)Nc1cnc(C#N)c(n1)OCCCCCO2
2547 | CS(=O)(=O)Cn1cnc2c(N3CCOCC3)nc(-c3cccc4[nH]ccc34)cc21
2548 | NC(=O)c1cc2c(-c3ccccc3)cncc2s1
2549 | CN(C)CCCOc1cc2c(c(-c3ccc(Nc4nc5ccccc5o4)cc3)c1)CNC2=O
2550 | CC(C)=C(C)c1cccc2c(CCCOc3cccc(Cl)c3Cl)c(C(=O)O)[nH]c12
2551 | CCCCNCC(=O)Nc1ccc2c(c1)Cc1c-2n[nH]c1C1C=CC(=C2C=CC(=O)C=C2)C=C1
2552 | Cc1[se]c(C=C2C(=O)Nc3cc(-c4cccc(O)c4)ccc32)cc1C(=O)NCCCn1ccnc1
2553 | CC(C)C(C)Nc1ncc(Cl)c(Nc2nccs2)n1
2554 | CN(C)CCNC(=O)c1ccc(C=C2C(=O)Nc3cc(-c4ccc(O)cc4)ccc32)[se]1
2555 | Cc1cc(Nc2ncc(F)c(NC3C4C=CC(C4)C3C(N)=O)n2)ccc1N1CCN(C)CC1
2556 | CC(C)c1nnc2ccc(-c3ocnc3-c3ccc(F)cc3Cl)cn12
2557 | Oc1nc2ccsc2c(NC2CCNC2)c1-c1nc2ccccc2[nH]1
2558 | COc1cc(CN2CCN(C)CC2)ccc1NC(=O)Nc1cnc(C#N)cn1
2559 | Oc1ccc(-c2nc(-c3ccc(F)cc3)c(-c3ccncc3)[nH]2)cc1
2560 | Cn1ccc(-c2cnc3[nH]c4cnc(C#N)cc4c3c2)n1
2561 | Cn1cc(-c2cnc3c(-c4csc(C(=O)NC5CCCCC5N)c4)cnn3c2)cn1
2562 | N#Cc1cccc2nc(O)c(-c3cc4cc(CN5CCC(CN)CC5)ccc4[nH]3)cc12
2563 | COc1cc(C(=O)O)c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1
2564 | Cn1cc(-c2cnc(Nc3cnc(C#N)c(OC4CCCNC4)c3)nc2)cn1
2565 | COc1cc(-c2ccc3c(c2)Nc2ccc(N)cc2NC3=O)ccc1N
2566 | CN(C)CCNC(=O)C=CC=CC=C1C(=O)Nc2cc(-c3ccc(O)cc3)ccc21
2567 | O=C1NC(=O)c2c1c(-c1c(Cl)ccc(O)c1Cl)cc1[nH]c3ccc(O)cc3c21
2568 | O=C1Nc2cc(-c3ccc(O)cc3)ccc2C1=Cc1ccc[se]1
2569 | c1ccc(Nc2ccnc(Nc3ccccc3)n2)cc1
2570 | C=C(c1ccccc1)c1ccc2c(C=Cc3ccccc3)[nH]nc2c1
2571 | CCN(CC)CC#Cc1cnc(N)c2c(-c3ccc(NC(=O)Nc4cccc(C)c4)cc3)csc12
2572 | CC(=O)NC1CCN(c2nc3ncc(C(=O)O)c(O)c3c(C)c2F)C1
2573 | O=C(c1ccc(C=Cc2[nH]nc3ccccc23)cc1)N1CCNCC1
2574 | N#Cc1cnc(NC(=O)Nc2ccc(CCNCc3ccc(F)cc3F)c(Cl)c2)cn1
2575 | Oc1nc2ccccc2c(O)c1-c1nc2ccccc2[nH]1
2576 | N#CCCc1cc2ccnc(O)c2c2cc(Cl)ccc12
2577 | COc1cc(-c2ccc3c(c2)=NC(=O)C=3C=CCC=CC(=O)O)ccc1O
2578 | c1cc2[nH]c(-c3[nH]nc4cc(-c5cn[nH]c5)ccc34)cc2cc1CN1CCOCC1
2579 | O=C1NC(=O)c2c1c(-c1ccccc1Br)cc1[nH]c3ccc(O)cc3c21
2580 | NC(COCc1ccccc1)COc1cncc(C=Cc2ccncc2)c1
2581 | Oc1nc2ccc(-n3nccn3)cc2cc1-c1cc2cc(CN3CCCCC3)ccc2[nH]1
2582 | Cc1nnc(-c2cccc(-c3cnn4ccc(NCCN)nc34)c2)o1
2583 | Oc1c2c(nc3cc(-c4ccco4)nn13)CSC2
2584 | NC(=O)Cn1cc(-c2cc(-c3cc4ccccc4s3)c3[nH]ncc3c2)c2nc(N)ncc21
2585 | O=C(NCc1ccccn1)c1ccc2c(c1)Cc1c-2n[nH]c1-c1ccc(-c2ccc(O)cc2)cc1
2586 | NCCC(C(=O)Nc1ccc2[nH]ncc2c1)c1ccc(Cl)c(Cl)c1
2587 | N#Cc1c(-c2ccccc2)cc(-c2ccccc2)nc1N=c1sc(-c2ccccc2)nn1-c1ccccc1
2588 | CNC(=O)c1cccc(C=Cc2[nH]nc3cc(-c4ccncc4)ccc23)c1
2589 | O=C(Nc1ccccc1N1CCNCC1)c1csc(-n2nnc3ccccc32)n1
2590 | COc1cc(-c2ccc3c(c2)NC(=O)C3=Cc2ccc(C(=O)NCCN3CCCC3)[se]2)ccc1O
2591 | NC(=O)c1sc2ccc(Cl)c(Cl)c2c1NC(=O)c1ccc(Cl)cc1
2592 | COCCOC1CCC(n2nc(-c3ccc(Nc4nc5cc(C)cc(C)c5o4)cc3)c3c(N)ncnc32)CC1
2593 | CNc1nc(Nc2cnc(C#N)c(OCC3CCNCC3)c2)ncc1C(F)(F)F
2594 | COc1cccc(C=Cc2[nH]nc3cc(-c4ccncc4)ccc23)c1
2595 | N#Cc1cnc(NC(=O)Nc2ccc(CNCc3ccccc3)cc2)cn1
2596 | O=C1NC(=O)c2c1c(-c1ccccc1)cc1[nH]c3ccc(O)cc3c21
2597 | Fc1cccc(C=Cc2[nH]nc3cc(-c4ccncc4)ccc23)c1
2598 | COc1cc2c(cc1OC)CN(c1nc(C(=O)Nc3ccccc3N3CCNCC3)cs1)CC2
2599 | CCn1c(-c2nonc2N)nc2cnc(Oc3cccc(NC(=O)c4ccc(OCCN5CCOCC5)cc4)c3)cc21
2600 | CCN(c1ncc(C(N)=O)c2sc(-c3ccccc3)cc12)C1CCCNC1
2601 | Cc1nccn2c(-c3ccnc(NCCC(C)(C)O)n3)c(-c3ccc(F)cc3F)nc12
2602 | Cc1cccc(NC(=O)Nc2ccc(-c3csc4c(-c5cnn(C)c5)cnc(N)c34)cc2)c1
2603 | CC(C)Oc1cc2c(cc1Cl)NC(=O)Nc1cnc(C#N)c(n1)OCCCCCO2
2604 | Cc1cc(O)ccc1-n1cc(C(N)=O)c(=O)c2ccc(-c3ccncc3)cc21
2605 | COc1ccc(Nc2ncc(-c3ccccc3)o2)cc1OC
2606 | CCOC(=O)c1nc2c(O)nc3cc([N+](=O)[O-])c(NC(C)=O)cc3n2c1C
2607 | N#Cc1cnc(NC(=O)Nc2ccc(CCNCc3ccc(F)cc3)c(Br)c2)cn1
2608 | Cc1nn(-c2ccc(Cl)c(Cl)c2)c(O)c1C=c1c(C)c(C#N)c2nc3ccccc3n2c1=O
2609 | O=C(Nc1ccccc1N1CCNCC1)c1csc(N2CCc3ccccc3C2)n1
2610 | O=C(Nc1[nH]nc2ccc(-c3cn(Cc4ccccc4)nn3)cc12)c1ccccc1
2611 | N#Cc1ccc(Nc2ncc(C(F)(F)F)c(NCCCNCC(O)CO)n2)cn1
2612 | Cc1ccc(-c2ccc(NC(=O)Nc3cccc(Br)c3)cc2)c2c(N)[nH]nc12
2613 | NC(=O)c1cccc2c1Nc1nnc(Cl)cc1C(=O)N2
2614 | COc1cccc(C(C)NC(=O)c2ccc(-c3ccncc3)c(C)c2)c1
2615 | CN(C)Cc1ccc2c(c1)NC(=O)C1CCCN21
2616 | Cn1cc(-c2nc(NC3CCCCC3N)c(F)c3c2C(=O)NC3)cn1
2617 | N#Cc1ncc2nc1OCCCCCOc1cc(NCc3cncs3)c(Cl)cc1NC(=O)N2
2618 | O=C1NCc2c1cccc2-c1ccc(Nc2nc3ccccc3o2)cc1
2619 | Cc1cn2c(-c3cn[nH]c3)cnc2c(Nc2cc(C(NC(C)(C)C)c3ccccn3)ns2)n1
2620 | NCCCn1cc(-c2cc(-c3cc4ccccc4s3)c3[nH]ncc3c2)c2nc(N)ncc21
2621 | CCc1ccccc1-c1cc2[nH]c3ccc(O)cc3c2c2c1C(=O)NC2=O
2622 | c1cnc2nc(-c3ccc4[nH]ncc4c3)c(NC3CCCCC3)n2c1
2623 | N#Cc1ncc2nc1OCCCCCOc1cc(NCc3c[nH]cn3)c(Cl)cc1NC(=O)N2
2624 | Oc1ccc(-c2ccc(-c3cc(Nc4ccc(CN5CCCCC5)nc4)[nH]n3)cc2)c(O)c1
2625 | Oc1ccc(-c2ccc3c(C=Cc4ccccc4)[nH]nc3c2)cc1
2626 | CCOC(=O)c1nn(-c2ccccc2)c(=Nc2nc(-c3ccccc3)cc(-c3ccccc3)c2C#N)s1
2627 | Cc1nsc2ncc(C(=O)O)c(O)c12
2628 | CN1c2ccc(N)cc2C(c2ccccc2)c2cc(N)ccc21
2629 | O=C(Nc1ccccc1N1CCNCC1)c1csc(-c2ccc3occc3c2)n1
2630 | O=C(Nc1cnc2[nH]cc(-c3ccccc3)c2c1)c1cccc(F)c1F
2631 | CNc1nc(Nc2cnc(C#N)c(OC3CCCNC3)c2)ncc1-c1cccc(OC)c1
2632 | COc1cc(-c2ccc3c(c2)Nc2ccc(O)cc2NC3=O)ccc1N
2633 | Cc1nc2ccc(NS(=O)(=O)c3ccc(N)cc3)cc2nc1C
2634 | CSc1c[nH]c2ncnc(NCCCO)c12
2635 | CC(CN(C)C)Oc1nc(Nc2cc3cccc(Cl)c3cn2)cnc1C#N
2636 | CCC1C(=O)N(C)c2cnc(Nc3ccc(C(=O)NC4CCN(C)CC4)cc3OC)nc2N1C1CCCC1
2637 | Cc1nc2c(s1)CN(c1nc(C(=O)Nc3ccccc3N3CCNCC3)cs1)C2
2638 | c1ncc(-c2cc3c(cn2)[nH]c2ncc(-c4ccc(CN5CCCCC5)cc4)cc23)s1
2639 | N#Cc1ncc2nc1OCCCCCOc1cc(OCCn3ccnc3)c(Cl)cc1NC(=O)N2
2640 | COc1cc(OC)nc(N2Cc3ccccc3CC2C(=O)O)n1
2641 | COc1cccc(C(CN)NC(=O)c2ccc(-c3ccncc3)cc2)c1
2642 | CCOC(=O)Cc1nc2c(N)cccc2[nH]1
2643 | NCCCNC(=O)c1cccc(CNC(=O)c2cc3c(c4c2[nH]c2ccc(O)cc24)C(=O)NC3=O)c1
2644 | Cc1ccc(F)c(NC(=O)Nc2ccc(-c3coc4c(C#CCN5CCOCC5)cnc(N)c34)cc2)c1
2645 | CN1CCC(NC(=O)c2cnc(NCc3cc(Cl)ccc3Cl)nc2NC2CCCC2)CC1
2646 | COc1cc(CCNCc2ccc(F)cc2)c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1
2647 | COc1c(Cl)cc2c([nH]c3cnccc32)c1NC(=O)c1cccnc1C
2648 | COc1cc(Nc2ncc([N+]([O])=O)c(Nc3ccccc3C(N)=O)n2)cc(OC)c1OC
2649 | Cc1cc2c(F)c(Oc3ncnn4cc(OCC(C)O)c(C)c34)ccc2[nH]1
2650 | N#Cc1ccc2nc(N)n(-c3nc4c(s3)CCCC4)c2c1
2651 | O=C(Nc1ccc(O)cc1)c1ccc2c(-c3nc4cc(C(F)(F)F)ccc4[nH]3)[nH]nc2c1
2652 | Cc1cccc(-c2c(-c3ccncc3)nc(NCC(N)Cc3ccccc3)n(C)c2=O)c1
2653 | O=C(NC(CO)Cc1ccc(Cl)cc1)c1ccc(-c2ccncc2)cc1
2654 | Cc1cc(C)c(C)c(OCCCc2c(C(=O)O)[nH]c3c(-c4ccccc4C)cccc23)c1
2655 | CCC(C)C(C(=O)Nc1cc(OC)c(NC(=O)Nc2cnc(C#N)cn2)cc1Cl)c1ccccc1
2656 | Nc1nc(Nc2ccc(S(N)(=O)=O)cc2)nn1C(=O)c1c(F)cccc1F
2657 | CCn1c2cc(Cl)c(O)cc2c(=O)c2c(O)onc21
2658 | Oc1nc2ccccc2cc1-c1cc2ccccc2[nH]1
2659 | Nc1c(-c2ccc(NC(=O)Nc3cccc(C(F)(F)F)c3)cc2)cnc2c(-c3ccc4c(c3)OCO4)cnn12
2660 | OC1CCN(c2ncnc3[nH]cc(-c4ccccc4)c23)CC1
2661 | Nc1ncnn2ccc(C(=O)Nc3ccc(NC(=O)Nc4cccc(F)c4)cc3)c12
2662 | O=C1NC(=O)c2c1c(-c1ccccc1[N+](=O)[O-])cc1[nH]c3ccc(O)cc3c21
2663 | Fc1ccc(-c2nc3sccn3c2-c2ccncc2)cc1
2664 | CC=C(C=CC=C1C(=O)Nc2cc(-c3cccc(O)c3)ccc21)C(=O)NCCN(CC)CC
2665 | c1nc(-c2ccc3c(c2)OCO3)c2cc[nH]c2n1
2666 | Cc1cc(O)c(Cl)cc1-c1ccc2c(-c3nc4ccccc4[nH]3)[nH]nc2c1
2667 | NCC1CCC(CNc2nc(NCc3ccccc3Cl)ncc2[N+]([O])=O)CC1
2668 | CCc1c(-c2ccccc2)c2c(c3c1[nH]c1ccc(O)cc13)C(=O)NC2=O
2669 | COc1cc(C=O)c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1
2670 | CNc1nc(Nc2cnc(C#N)c(OC3CCCNC3)c2)ncc1-c1ccco1
2671 | Cn1cc(-c2cccc(NC(=O)c3ccc(C(C)(C)C)cc3)c2CO)cc(Nc2ccc(C(=O)N3CCOCC3)cn2)c1=O
2672 | O=C1NC(=O)c2c1c1c(c3c2[nH]c2ccccc23)CNC1=O
2673 | O=C(Nc1cnccc1N1CCNCC1)c1csc(-c2ccc3occc3c2)n1
2674 | CCS(=O)(=O)c1cccc(-c2cc(C(=O)NC3CCN(C)CC3)c(C)c3[nH]c4ncc(C)cc4c23)c1
2675 | N#Cc1ccc(Nc2ncc(C(F)(F)F)c(NC3CC4CCC(C3)N4)n2)cn1
2676 | COc1cc2ncnc(Nc3ccc(F)c(Cl)c3)c2cc1CN1CCCC1C(N)=O
2677 | NC(Cc1c[nH]c2ccccc12)C(=O)Nc1cncc(C=Cc2ccncc2)c1
2678 | COc1ccc2c(c1)C(=O)N(c1nc(C(=O)Nc3cc(F)ccc3N3CCNCC3)cs1)C2
2679 | CC(=O)Nc1cccc(CN=c2c(O)c(O)c2=Nc2ccc3[nH]ncc3c2)c1
2680 | COc1cc(C)c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1
2681 | CN(C)CCCC(=O)Nc1[nH]nc2nnc(-c3cccc(F)c3F)cc12
2682 | CCCCC(Sc1nc2ccccc2c(=O)n1-c1ccccc1)C(=O)N1CCS(=O)(=O)CC1
2683 | c1ccc2c(c1)nnn2Cc1cn(-c2ccc3[nH]ncc3c2)nn1
2684 | CCCS(=O)(=O)Nc1ccc(-c2ccc3[nH]nc(N)c3c2)cc1
2685 | NC(=O)Nc1cc(-c2cccc(F)c2F)sc1C(=O)NC1CCCNC1
2686 | O=S(=O)(Nc1ccc2c(c1)C(=NO)c1ccccc1-2)c1cccc(Br)c1
2687 | O=C(NNC(=S)Nc1ccc(Cl)cc1)C(O)(c1ccccc1)c1ccccc1
2688 | CC1(O)CC(c2nc(-c3ccc4ccc(-c5ccccc5)nc4c3)c3c(N)nccn23)C1
2689 | N#Cc1cnc(NC(=O)Nc2ccc(OCCNCc3ccc(F)cc3)c(Cl)c2)cn1
2690 | CCNNc1cc(C)c(C#N)c2nc3ccccc3n12
2691 | CCc1c(-c2ccc(C(C)=O)cc2)[nH]c2nccnc12
2692 | Cn1cc(C(CN)c2cncc(C=Cc3ccncc3)c2)c2ccccc21
2693 | COC1C(N(C)C(=O)c2ccccc2)CC2OC1(C)n1c3ccccc3c3c4c(c5c6ccccc6n2c5c31)C(=O)NC4
2694 | Oc1ccc(-c2ccc3c(-c4nc5ccccc5[nH]4)[nH]nc3c2)c(Oc2ccccc2)c1
2695 | O=C1NC(=O)c2c1c(-c1c(Cl)cc(O)cc1Cl)cc1[nH]c3ccc(O)cc3c21
2696 | CNc1nc(Nc2cnc(C#N)c(OC3CCNCC3)c2)ncc1C(F)(F)F
2697 | COc1ccc(-c2cc3c([nH]2)C(=O)NCCC3=C2N=C(N)NC2=O)cc1OC
2698 | CCCS(=O)(=O)Nc1ccc(-c2ccc3[nH]nc(NC(C)=O)c3c2)cc1
2699 | O=C(NC1CCNCC1)c1n[nH]cc1NC(=O)c1c(Cl)cccc1Cl
2700 | Cc1cc(OCC2CCC(C(=O)O)C2)c(NC(=O)Nc2cnc(C#N)cn2)cc1Cl
2701 | COc1cc(-c2ccc3c(c2)N(C)c2ccccc2NC3=O)ccc1N
2702 | c1ccc2[nH]c(-c3[nH]nc4cc(-c5nn[nH]n5)ccc34)cc2c1
2703 | N#Cc1ncc2nc1OCCCCCOc1cc(N3CCCCC3)c(Cl)cc1NC(=O)N2
2704 | N#Cc1ncc2nc1OCCCCCOc1cc(NC(=O)CCNC3CCCC3)c(Cl)cc1NC(=O)N2
2705 | COc1cc2ncnc(Nc3cccc(Cl)c3F)c2cc1CN1CCOCC1C(N)=O
2706 | CC=C(C=CC=C1C(=O)Nc2cc(-c3ccc(O)cc3)ccc21)C(=O)NCCCn1ccnc1
2707 | Cc1cccc(-c2[nH]c(-c3ccnc(N)n3)cc2C(N)=O)c1C
2708 | Cc1cc(O)nnc1-c1ccc(NC(=O)Nc2cc(C(F)(F)F)ccc2F)c(Cl)c1
2709 | COc1cc(-c2ccc3c(-c4cc5ccccc5[nH]4)[nH]nc3c2)ccc1O
2710 | CN1CCN(Cc2ccc3c(c2)Cc2c(-c4ccc(C5C=CC(=O)C=C5)cc4)n[nH]c2-3)CC1
2711 | CC(C)(C)C(=O)N1Cc2c(n[nH]c2NC(=O)c2cc(F)cc(F)c2)C1(C)C
2712 | CN1CCN(c2ccc(-c3cncc(-c4ccc(C#N)cc4)n3)cc2)CC1
2713 | N#Cc1cccc(-c2cc(NC(N)=O)c(C(=O)NC3CCCNC3)s2)c1
2714 | COc1cc(-c2ccc3c(c2)Nc2cc(N4CCOCC4)ccc2NC3=O)ccc1N
2715 | CN(C)CC(O)COc1ccc(Nc2nccc(Nc3cc(Cl)ccc3Cl)n2)cc1
2716 | O=C(Nc1ccc(-c2ccc3c[nH]nc3c2)cc1)Nc1cccc(F)c1
2717 | CNC(=O)C(C)n1cc(-c2cnc(N)c3c(-c4ccc(NC(=O)Nc5ccc(C)cc5)cc4)csc23)cn1
2718 | O=C(Nc1c[nH]nc1-c1nc2cc(CN3CCOCC3)ccc2[nH]1)NC1CC1
2719 | c1nc(N2CCC3(CCCCN3)CC2)c2nc[nH]c2n1
2720 | Nc1c(-c2nc3ccccc3[nH]2)c(O)nc2ccccc12
2721 | CNc1nc(Nc2cnc(C#N)c(NCC3CCCNC3)c2)ncc1C(F)(F)F
2722 | COc1cc2ncnc(Nc3ccc(F)c(Cl)c3)c2cc1OCCCN1CCOCC1
2723 | NC(COc1cncc(-c2ccc3nc(O)oc3c2)c1)Cc1c[nH]c2ccccc12
2724 | Cc1cc(OC2CCCC2)c(NC(=O)Nc2cnc(C#N)cn2)cc1Cl
2725 | CSc1ccc2nc3c(c(Cl)c2c1)CCNC3=O
2726 | COc1ccc2c(c1)C(=O)N(c1nc(C(=O)Nc3ccccc3N3CCNCC3)cs1)C2
2727 | Cc1cccc(Nc2nccc(N=c3c(O)c(O)c3=NC(C)C(C)(C)C)n2)c1
2728 | Cn1cc(-c2cc3nc(Br)cnc3[nH]2)c2cc(C#N)ccc21
2729 | CNc1nc(Nc2cnc(C#N)c(OC3CCCNC3)c2)ncc1-c1ccc(OC)cc1
--------------------------------------------------------------------------------