├── requirements.txt ├── examples ├── active_sites.tsv ├── a3r.pse ├── logo.png ├── DU1_ideal.sdf ├── test.csv └── valid_smiles.txt ├── vinagpu ├── __init__.py ├── containers.py ├── parallel.py ├── utils.py ├── base.py ├── cpu.py └── gpu.py ├── .gitignore ├── setup.py ├── setup_nvidia_docker.sh ├── .vscode └── settings.json ├── scripts ├── ccr.py ├── ccr_parallel.py └── dock_df.py ├── dockerfiles └── Dockerfile └── README.md /requirements.txt: -------------------------------------------------------------------------------- 1 | meeko 2 | scipy 3 | docker 4 | dimorphite-dl 5 | vina -------------------------------------------------------------------------------- /examples/active_sites.tsv: -------------------------------------------------------------------------------- 1 | pid, x, y, z 2 | P0DMS8, 54.241, 57.935, 141.723 3 | -------------------------------------------------------------------------------- /examples/a3r.pse: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/andriusbern/vinaGPU/HEAD/examples/a3r.pse -------------------------------------------------------------------------------- /examples/logo.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/andriusbern/vinaGPU/HEAD/examples/logo.png -------------------------------------------------------------------------------- /vinagpu/__init__.py: -------------------------------------------------------------------------------- 1 | from .gpu import VinaGPU 2 | from .cpu import VinaCPU 3 | from .parallel import parallel_dock -------------------------------------------------------------------------------- /.gitignore: -------------------------------------------------------------------------------- 1 | output/** 2 | !output/.gitkeep 3 | 4 | # Ignore all python cache files 5 | __pycache__/ 6 | vinagpu.egg-info/ 7 | tests/ 8 | 9 | # exclude all .pyc files 10 | *.pyc 11 | 12 | # package egg info 13 | *.egg-info 14 | 15 | # exclude all folders with name 'output' 16 | output/ 17 | **/output/ 18 | out/ 19 | test.ipynb 20 | scripts/ -------------------------------------------------------------------------------- /setup.py: -------------------------------------------------------------------------------- 1 | """ 2 | setup.py 3 | 4 | Created by: Andrius Bernatavicius 5 | On: 08/02/2023, 16:33 6 | """ 7 | 8 | from setuptools import setup 9 | 10 | requirements = [ 11 | 'scipy', 12 | 'meeko', 13 | 'docker', 14 | 'dimorphite_dl', 15 | 'vina'] 16 | 17 | 18 | setup( 19 | name='vinagpu', 20 | version='0.0.1', 21 | description='VinaGPU - AutoDock Vina on GPU, using Docker', 22 | requires=requirements, 23 | packages=['vinagpu'], 24 | ) -------------------------------------------------------------------------------- /setup_nvidia_docker.sh: -------------------------------------------------------------------------------- 1 | #!/bin/sh 2 | 3 | sudo apt -y update 4 | sudo apt -y install apt-transport-https ca-certificates curl gnupg-agent software-properties-common 5 | curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add - 6 | sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable" 7 | 8 | distribution=$(. /etc/os-release;echo $ID$VERSION_ID) 9 | curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add - 10 | curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list 11 | 12 | sudo apt -y update 13 | sudo apt -y install docker-ce docker-ce-cli containerd.io 14 | sudo usermod -aG docker $USER 15 | sudo apt -y install nvidia-driver-515-server nvidia-cuda-toolkit nvidia-container-toolkit ocl-icd-libopencl1 clinfo 16 | -------------------------------------------------------------------------------- /.vscode/settings.json: -------------------------------------------------------------------------------- 1 | { 2 | "workbench.colorCustomizations": { 3 | "activityBar.activeBackground": "#4886bd", 4 | "activityBar.background": "#4886bd", 5 | "activityBar.foreground": "#e7e7e7", 6 | "activityBar.inactiveForeground": "#e7e7e799", 7 | "activityBarBadge.background": "#e6b9d1", 8 | "activityBarBadge.foreground": "#15202b", 9 | "commandCenter.border": "#e7e7e799", 10 | "sash.hoverBorder": "#4886bd", 11 | "statusBar.background": "#386c9a", 12 | "statusBar.foreground": "#e7e7e7", 13 | "statusBarItem.hoverBackground": "#4886bd", 14 | "statusBarItem.remoteBackground": "#386c9a", 15 | "statusBarItem.remoteForeground": "#e7e7e7", 16 | "titleBar.activeBackground": "#386c9a", 17 | "titleBar.activeForeground": "#e7e7e7", 18 | "titleBar.inactiveBackground": "#386c9a99", 19 | "titleBar.inactiveForeground": "#e7e7e799" 20 | }, 21 | "peacock.remoteColor": "#386c9a" 22 | } -------------------------------------------------------------------------------- /scripts/ccr.py: -------------------------------------------------------------------------------- 1 | import os 2 | from vinagpu import VinaGPU 3 | 4 | # Docking example on P21918 (DRD5 - D(1B) dopamine receptor) 5 | target_pdb_path = os.path.join('examples', 'ccr.pdb') 6 | box_center = (5.1, 28, 187.6) # Active site coordinates of P21918 7 | box_size = (16.2, 17.8, 17.4) 8 | output_subfolder = 'ccr_ti' # results stored at: "./P21918_test" 9 | 10 | with open('examples/SL_5000_10.csv') as f: 11 | smiles = f.readlines()[:500] 12 | print(smiles) 13 | smiles = [x.strip('\n') for x in smiles] 14 | smiles = [x.strip('"') for x in smiles] 15 | 16 | print(len(smiles)) 17 | 18 | metadata = [{'a': 1, 'b': 2} for _ in range(len(smiles))] 19 | print(smiles) 20 | 21 | vina_docker = VinaGPU() 22 | 23 | scores = vina_docker.dock( 24 | target_pdb_path=target_pdb_path, 25 | smiles=smiles, 26 | output_subfolder=output_subfolder, 27 | box_center=box_center, 28 | box_size=box_size, 29 | verbose=True, 30 | write_log=True, 31 | clean=True, 32 | metadata=metadata) -------------------------------------------------------------------------------- /scripts/ccr_parallel.py: -------------------------------------------------------------------------------- 1 | import os 2 | from vinagpu import VinaGPU 3 | import time 4 | from vinagpu import parallel_dock 5 | 6 | # Docking example on P21918 (DRD5 - D(1B) dopamine receptor) 7 | target_pdb_path = os.path.join('examples', 'ccr.pdb') 8 | box_center = (5.1, 28, 187.6) # Active site coordinates of P21918 9 | box_size = (16.2, 17.8, 17.4) 10 | output_subfolder = 'ccr_parallel_3workers_optimal' # results stored at: "./P21918_test" 11 | 12 | with open('examples/SL_5000_10.csv') as f: 13 | smiles = f.readlines() 14 | print(smiles) 15 | smiles = [x.strip('\n') for x in smiles] 16 | smiles = [x.strip('"') for x in smiles] 17 | 18 | smiles = smiles 19 | 20 | # print(smiles) 21 | t0 = time.time() 22 | 23 | parallel_dock(target_pdb_path=target_pdb_path, 24 | smiles=smiles[1:150], 25 | box_center=box_center, 26 | box_size=box_size, 27 | output_subfolder=output_subfolder, 28 | num_cpu_workers=0, exhaustiveness=8, threads_per_cpu_worker=8, # CPU worker parameters 29 | gpu_ids=[1, 2, 3], workers_per_gpu=1, search_depth=9, 30 | threads=1024) # GPU Worker parameters 31 | 32 | t1 = time.time() 33 | print(f'Docked ligands per second: {len(smiles) / (t1 - t0)}') 34 | print(f'Total time: {t1 - t0}') 35 | 36 | -------------------------------------------------------------------------------- /vinagpu/containers.py: -------------------------------------------------------------------------------- 1 | import docker 2 | import os 3 | import shutil 4 | 5 | 6 | class VinaContainer: 7 | def __init__(self, dir_to_mount): 8 | 9 | self.client = docker.from_env() 10 | self.dir_to_mount = dir_to_mount 11 | 12 | self.container = None 13 | 14 | ## Container paths 15 | self.container_name = 'vina-cl' 16 | self.working_dir = '/vina-gpu-dockerized/Vina-GPU-2.1/QuickVina2-GPU-2.1' 17 | self.docking_dir = self.working_dir + '/docking' 18 | self.executables = dict( 19 | vina='QuickVina2-GPU-2-1', 20 | adfr='/htd/ADFRsuite-1.0/adfr' 21 | ) 22 | 23 | ## Device 24 | self.device = 'gpu' 25 | self.device_id = None 26 | self.docker_kwargs = dict( 27 | image=self.container_name, 28 | volumes = [f'{self.dir_to_mount}:{self.docking_dir}'], 29 | device_requests=[docker.types.DeviceRequest(device_ids=self) ] 30 | 31 | ) 32 | 33 | def start(self): 34 | self.container = self.client.containers.run( 35 | command='sleep infinity', # Keeps the container running until it is killed 36 | detach=True, # Run container in background 37 | **self.docker_kwargs 38 | ) 39 | 40 | def remove(self): 41 | self.container.remove(force=True) 42 | self.container = None 43 | -------------------------------------------------------------------------------- /scripts/dock_df.py: -------------------------------------------------------------------------------- 1 | import os 2 | import time 3 | from vinagpu import VinaGPU 4 | import pandas as pd 5 | import argparse 6 | 7 | # Docking example on P21918 (DRD5 - D(1B) dopamine receptor) 8 | 9 | def main(gpu_id, output_folder, n_ligands): 10 | generated_path = 'examples/SL_5000_10.csv' 11 | generated_smiles = pd.read_csv(generated_path) 12 | 13 | target_pdb_path = os.path.join('examples', 'ccr.pdbqt') 14 | box_center = (5.1, 28, 187.6) # Active site coordinates of P21918 15 | box_size = (16.2, 17.8, 17.4) 16 | 17 | # Initialize VinaGPU with the specified GPU device 18 | vina_docker = VinaGPU(devices=[gpu_id]) 19 | generated_smiles.head() 20 | 21 | t0 = time.time() 22 | df = vina_docker.dock_dataframe( 23 | dataframe=generated_smiles[:n_ligands], 24 | target_pdb_path=target_pdb_path, 25 | output_subfolder=output_folder, 26 | box_center=box_center, 27 | box_size=box_size, 28 | verbose=True, 29 | write_log=True, 30 | threads=1024, 31 | clean=True) 32 | 33 | t1 = time.time() 34 | print(f'Docked ligands: {len(df)} in {t1 - t0} seconds') 35 | 36 | print(df.columns) 37 | print(df.head()) 38 | df.to_csv('scripts/docking_results.csv') 39 | 40 | if __name__ == '__main__': 41 | parser = argparse.ArgumentParser(description='Dock a list of ligands to a target protein using VinaGPU') 42 | parser.add_argument('--gpu_id', type=str, required=True, help='ID of the GPU to use for docking') 43 | parser.add_argument('--output_folder', type=str, required=True, help='Folder to store docking results') 44 | parser.add_argument('--n_ligands', type=int, required=True, help='Number of ligands to dock') 45 | args = parser.parse_args() 46 | 47 | main(args.gpu_id, args.output_folder, args.n_ligands) 48 | 49 | -------------------------------------------------------------------------------- /dockerfiles/Dockerfile: -------------------------------------------------------------------------------- 1 | FROM ubuntu:20.04 as vina-gpu 2 | 3 | ARG DEBIAN_FRONTEND=noninteractive 4 | ARG WORKDIR="/vina-gpu-dockerized" 5 | ARG BOOST_DIR_NAME="boost_1_77_0" 6 | 7 | 8 | RUN --mount=type=cache,id=apt-cache,target=/var/cache/apt \ 9 | apt-get update && apt-get -y upgrade && apt-get install -y \ 10 | clinfo \ 11 | cmake \ 12 | ocl-icd-libopencl1 \ 13 | opencl-headers \ 14 | python3-pip \ 15 | tar \ 16 | wget \ 17 | xz-utils 18 | 19 | RUN mkdir -p /etc/OpenCL/vendors && \ 20 | echo "libnvidia-opencl.so.1" > /etc/OpenCL/vendors/nvidia.icd 21 | ENV NVIDIA_VISIBLE_DEVICES all 22 | ENV NVIDIA_DRIVER_CAPABILITIES compute,utility 23 | 24 | WORKDIR "${WORKDIR}" 25 | RUN wget https://boostorg.jfrog.io/artifactory/main/release/1.77.0/source/${BOOST_DIR_NAME}.tar.bz2 && tar --bzip2 -xf ${BOOST_DIR_NAME}.tar.bz2 && rm ${BOOST_DIR_NAME}.tar.bz2 26 | 27 | WORKDIR "${WORKDIR}/${BOOST_DIR_NAME}" 28 | RUN mkdir ${WORKDIR}/${BOOST_DIR_NAME}/build 29 | RUN cd tools/build && ./bootstrap.sh && ./b2 install --prefix=${WORKDIR}/${BOOST_DIR_NAME}/build 30 | # TODO: most likely here we can select only some parts of the library to be built 31 | RUN ${WORKDIR}/${BOOST_DIR_NAME}/build/bin/b2 --build-dir=${WORKDIR}/${BOOST_DIR_NAME}/build toolset=gcc stage 32 | 33 | RUN ln -s /usr/lib/x86_64-linux-gnu/libOpenCL.so.1 /usr/lib/libOpenCL.so 34 | ENV LD_LIBRARY_PATH="${LD_LIBRARY_PATH}:${WORKDIR}/${BOOST_DIR_NAME}/stage/lib" 35 | COPY . ${WORKDIR}/vina 36 | WORKDIR "${WORKDIR}/vina" 37 | 38 | RUN gcc -o Vina-GPU \ 39 | -I${WORKDIR}/${BOOST_DIR_NAME} -I./lib -I./OpenCL/inc \ 40 | ./main/main.cpp \ 41 | -O3 ./lib/*.cpp ./OpenCL/src/wrapcl.cpp ${WORKDIR}/${BOOST_DIR_NAME}/libs/thread/src/pthread/thread.cpp ${WORKDIR}/${BOOST_DIR_NAME}/libs/thread/src/pthread/once.cpp \ 42 | -lboost_program_options -lboost_system -lboost_filesystem -lOpenCL -lstdc++ -lm -lpthread \ 43 | -L${WORKDIR}/${BOOST_DIR_NAME}/stage/lib -L/usr/lib/x86_64-linux-gnu \ 44 | -DOPENCL_1_2 -DBUILD_KERNEL_FROM_SOURCE -DNVIDIA_PLATFORM 45 | 46 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | 2 | 3 | # High throughput molecular docking using *Vina-GPU + Docker* 4 | 5 | 6 | 7 | This package contains a minimalistic python API for high throughput docking by using [VinaGPU](https://github.com/DeltaGroupNJUPT/Vina-GPU) via a Docker image. 8 | 9 | ## Features: 10 | 11 | 1. Can be used to dock on multiple GPUs, multiple workers per GPU. 12 | 2. CPU workers using AutoDock Vina python API can be run in parallel to the GPU workers 13 | 14 | # Installation 15 | 16 | ## 1. Pre-requisites: 17 | 1. Nvidia driver version>=515.43.04 18 | 2. Working [nvidia-docker](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html) GPU runtime. 19 | 3. Python3.8+ conda environment with Rdkit installed 20 | 21 | --- 22 | 23 | ## 2. Install the package, dependencies: 24 | 25 | ```bash 26 | git clone https://github.com/andriusbern/vinaGPU && cd vinaGPU 27 | pip install -e . 28 | pip install meeko docker scipy dimorphite-dl vina 29 | ``` 30 | 31 | ## 3. Pull the docker image 32 | 33 | ``` 34 | sudo docker pull andriusbern/vina-gpu:latest 35 | ``` 36 | The docker image contains: 37 | - Cuda 11.7 38 | - [Vina-GPU](https://github.com/DeltaGroupNJUPT/Vina-GPU) (compiled with boost 1.77.0, cuda 11.7, proper OpenCL dependencies) 39 | - Protein preprocessing tools: 40 | - [ADFR Suite](https://ccsb.scripps.edu/adfr/downloads/) 41 | - [pdb_tools](https://wenmr.science.uu.nl/pdbtools/) 42 | 43 | --- 44 | 45 | ## Usage: 8 parallel GPU workers (on 4 GPUS) + 8 CPU workers (8 threads each) 46 | ```python 47 | import time 48 | from vinagpu import parallel_dock 49 | 50 | target_pdb_path = 'examples/P21918.pdb' 51 | output_subfolder = 'test_docking' 52 | 53 | with open('examples/valid_smiles.txt', 'r') as f: 54 | smiles = f.read().splitlines() 55 | 56 | t0 = time.time() 57 | 58 | parallel_dock(target_pdb_path=target_pdb_path, 59 | smiles=smiles, 60 | output_subfolder=output_subfolder, 61 | num_cpu_workers=8, exhaustiveness=8, threads_per_cpu_worker=8, # CPU worker parameters 62 | gpu_ids=[0,1,2,3], workers_per_gpu=2, search_depth=5) # GPU Worker parameters 63 | 64 | t1 = time.time() 65 | print(f'Docked ligands per second: {len(smiles) / (t1 - t0)}' 66 | print(f'Total time: {t1 - t0}') 67 | ``` 68 | 69 | ## Usage, single GPU worker 70 | 71 | ```python 72 | import os 73 | from vinagpu import VinaGPU 74 | 75 | # Docking example on P21918 (DRD5 - D(1B) dopamine receptor) 76 | target_pdb_path = os.path.join('examples', 'P21918.pdb') 77 | active_site = (2.753, 0.994, -7.633) # Active site coordinates of P21918 78 | output_subfolder = 'P21918_test' # results stored at: "./P21918_test" 79 | 80 | smiles = [ 81 | 'NC[C@@H](NC(=O)c1ccc(F)cc1)C1CCCC1', 82 | 'CCc1cccc(C(C)(C)NCCc2ccc(OC)c(OC)c2)c1', 83 | 'CCN1CCCC1CNS(=O)(=O)c1ccc(F)cc1', 84 | 'O=C(Cn1cccc1)Nc1ccc(Cl)cc1Cl'] 85 | 86 | vina_docker = VinaGPU() 87 | 88 | scores = vina_docker.dock( 89 | target_pdb_path=target_pdb_path, 90 | smiles=smiles, 91 | output_subfolder=output_subfolder, 92 | active_site_coords=active_site, 93 | verbose=True) 94 | ``` 95 | -------------------------------------------------------------------------------- /vinagpu/parallel.py: -------------------------------------------------------------------------------- 1 | from multiprocessing import Pool, current_process, Queue 2 | from vinagpu import VinaCPU, VinaGPU 3 | import os 4 | import time 5 | from vinagpu.utils import read_log 6 | 7 | def docking_job(smiles: list): 8 | """ 9 | This function is called by each process in the pool. 10 | 11 | Arguments: 12 | smiles (list) : list of SMILES 13 | """ 14 | ident = current_process().ident 15 | device_id = queue.get() 16 | if device_id < 0: 17 | device_id = -device_id - 1 18 | runners = cpu_runners 19 | print('{}: starting process on CPU {}'.format(ident, device_id)) 20 | else: 21 | runners = gpu_runners 22 | print(f'{ident}: starting process on GPU {device_id}, docking {len(smiles)} ligands.') 23 | 24 | try: 25 | # Run processing on GPU/CPU 26 | docking_kwargs['smiles'] = smiles 27 | scores = runners[device_id].dock(**docking_kwargs) 28 | 29 | print('{}: finished'.format(ident)) 30 | except Exception as e: 31 | print(e) 32 | runners[device_id].remove_docker_container() 33 | # KeyboardsInterrupt is raised when the process is terminated by the user 34 | except KeyboardInterrupt: 35 | print('Process terminated by the user.') 36 | runners[device_id].remove_docker_container() 37 | finally: 38 | queue.put(device_id) 39 | 40 | 41 | def parallel_dock(target_pdb_path, smiles=[], ligand_pdbqt_paths=[], output_subfolder='', 42 | box_center=(0,0,0), box_size=(20,20,20), search_depth=3, 43 | threads=256, threads_per_call=256, clean=True, verbose=True, 44 | visualize_in_pymol=False, write_log=True, 45 | gpu_ids=[0,1,2,3], workers_per_gpu=1, 46 | num_cpu_workers=0, threads_per_cpu_worker=1, exhaustiveness=8): 47 | """ 48 | Dock a list of SMILES using multiple GPUs or CPUs (using Autodock Vina). 49 | 50 | Arguments: 51 | target_pdb_path (str) : path to the target PDB file 52 | smiles (list) : list of SMILES 53 | ligand_pdbqt_paths (list) : list of paths to ligand PDBQT files (alternative to SMILES) 54 | output_subfolder (str) : path to the output folder 55 | active_site_coords (tuple) : coordinates of the active site (x,y,z) 56 | bbox_size (tuple) : size of the bounding box (x,y,z) 57 | clean (bool) : clean the output folder (remove ligand .pdbqt files) 58 | verbose (bool) : print details in the console 59 | visualize_in_pymol (bool) : visualize the results in PyMOL 60 | write_log (bool) : write the log file 61 | 62 | # GPU arguments 63 | gpu_ids (list) : list of GPU ids 64 | workers_per_gpu (int) : number of workers per GPU 65 | search_depth (int) : search depth 66 | threads (int) : number of threads to use (look up Vina-GPU documentation) 67 | threads_per_call (int) : number of threads per single call (look up Vina-GPU documentation) 68 | 69 | # CPU arguments 70 | num_cpus (int) : number of CPU workers 71 | threads_per_cpu_worker (int) : number of threads per CPU worker 72 | exhaustiveness (int) : Vina CPU exhaustiveness 73 | 74 | Returns: 75 | scores (list) : list of scores 76 | 77 | """ 78 | 79 | ## Declare global variables to be used in the docking_job function 80 | global docking_kwargs 81 | global queue 82 | global gpu_runners 83 | global cpu_runners 84 | docking_kwargs = locals() 85 | queue = Queue() 86 | gpu_runners = [VinaGPU(devices=[str(gpu_id)]) for gpu_id in gpu_ids] 87 | cpu_runners = [VinaCPU(cpu=threads_per_cpu_worker, device_id=i) for i in range(num_cpu_workers)] 88 | 89 | # initialize the queue with the GPU ids 90 | num_gpus = len(gpu_ids) 91 | num_gpu_workers = workers_per_gpu * num_gpus 92 | for gpu_ids in range(num_gpus): 93 | for _ in range(workers_per_gpu): 94 | queue.put(gpu_ids) 95 | 96 | # initialize the queue with the CPU ids (negative values to distinguish from GPU ids) 97 | for cpu_id in range(num_cpu_workers): 98 | queue.put(-cpu_id - 1) 99 | 100 | ## Split the list of SMILES into parts 101 | n_smiles = len(smiles) 102 | splits = num_gpu_workers 103 | w = (n_smiles // splits) + 1 104 | smiles_splits = [smiles[i*w:(i+1)*w] for i in range(splits)] 105 | 106 | t0 = time.time() 107 | # Start the worker pool 108 | pool = Pool(processes=num_gpu_workers + num_cpu_workers) 109 | for _ in pool.imap_unordered(docking_job, smiles_splits): 110 | pass 111 | pool.close() 112 | pool.join() 113 | print(f'Docking finished. Time elapsed: {time.time() - t0} seconds.') 114 | 115 | ## Read generated scores from the log file 116 | log = read_log(os.path.join('output', output_subfolder, 'log.tsv')) 117 | scores = [] 118 | processed_smiles = [entry[0] for entry in log] 119 | for ligand in smiles: 120 | if ligand in processed_smiles: 121 | idx = processed_smiles.index(ligand) 122 | best_score = log[idx][2][0] 123 | scores.append(best_score) 124 | else: 125 | scores.append(100.0) 126 | 127 | return scores 128 | 129 | 130 | 131 | -------------------------------------------------------------------------------- /examples/DU1_ideal.sdf: -------------------------------------------------------------------------------- 1 | DU1 2 | -OEChem-09232216373D 3 | 4 | 66 69 0 0 0 0 0 0 0999 V2000 5 | 2.3940 -3.4550 -1.2070 O 0 0 0 0 0 0 0 0 0 0 0 0 6 | 3.0650 -2.5580 -0.7350 C 0 0 0 0 0 0 0 0 0 0 0 0 7 | 2.7700 -1.2820 -1.0500 N 0 0 0 0 0 0 0 0 0 0 0 0 8 | 3.5230 -0.2450 -0.5240 C 0 0 0 0 0 0 0 0 0 0 0 0 9 | 4.5780 -0.5470 0.3280 C 0 0 0 0 0 0 0 0 0 0 0 0 10 | 5.1380 0.6610 0.6920 N 0 0 0 0 0 0 0 0 0 0 0 0 11 | 4.4310 1.6260 0.0720 C 0 0 0 0 0 0 0 0 0 0 0 0 12 | 4.6970 3.1050 0.1870 C 0 0 0 0 0 0 0 0 0 0 0 0 13 | 5.7720 3.5100 -0.8240 C 0 0 0 0 0 0 0 0 0 0 0 0 14 | 6.0410 5.0120 -0.7080 C 0 0 0 0 0 0 0 0 0 0 0 0 15 | 6.5240 5.3350 0.7080 C 0 0 0 0 0 0 0 0 0 0 0 0 16 | 5.4490 4.9310 1.7180 C 0 0 0 0 0 0 0 0 0 0 0 0 17 | 5.1790 3.4290 1.6020 C 0 0 0 0 0 0 0 0 0 0 0 0 18 | 3.4790 1.0850 -0.6440 N 0 0 0 0 0 0 0 0 0 0 0 0 19 | 4.8520 -1.8980 0.6320 C 0 0 0 0 0 0 0 0 0 0 0 0 20 | 5.7680 -2.1880 1.3800 O 0 0 0 0 0 0 0 0 0 0 0 0 21 | 4.0800 -2.8640 0.0920 N 0 0 0 0 0 0 0 0 0 0 0 0 22 | 4.3580 -4.2680 0.4030 C 0 0 0 0 0 0 0 0 0 0 0 0 23 | 3.5670 -4.6810 1.6460 C 0 0 0 0 0 0 0 0 0 0 0 0 24 | 3.8570 -6.1480 1.9710 C 0 0 0 0 0 0 0 0 0 0 0 0 25 | 1.6530 -0.9910 -1.9520 C 0 0 0 0 0 0 0 0 0 0 0 0 26 | 0.3710 -0.8170 -1.1350 C 0 0 0 0 0 0 0 0 0 0 0 0 27 | -0.7960 -0.5120 -2.0760 C 0 0 0 0 0 0 0 0 0 0 0 0 28 | -2.0240 -0.3460 -1.2930 N 0 0 0 0 0 0 0 0 0 0 0 0 29 | -3.1870 -0.0700 -1.9160 C 0 0 0 0 0 0 0 0 0 0 0 0 30 | -3.2180 0.0410 -3.1260 O 0 0 0 0 0 0 0 0 0 0 0 0 31 | -4.4260 0.0990 -1.1260 C 0 0 0 0 0 0 0 0 0 0 0 0 32 | -4.3920 -0.0220 0.2640 C 0 0 0 0 0 0 0 0 0 0 0 0 33 | -5.5520 0.1370 0.9950 C 0 0 0 0 0 0 0 0 0 0 0 0 34 | -6.7460 0.4140 0.3530 C 0 0 0 0 0 0 0 0 0 0 0 0 35 | -8.2220 0.6150 1.2940 S 0 0 0 0 0 0 0 0 0 0 0 0 36 | -8.2160 -0.4140 2.2730 O 0 0 0 0 0 0 0 0 0 0 0 0 37 | -8.3060 1.9960 1.6170 O 0 0 0 0 0 0 0 0 0 0 0 0 38 | -6.7850 0.5350 -1.0250 C 0 0 0 0 0 0 0 0 0 0 0 0 39 | -5.6320 0.3840 -1.7670 C 0 0 0 0 0 0 0 0 0 0 0 0 40 | 5.8970 0.7910 1.2830 H 0 0 0 0 0 0 0 0 0 0 0 0 41 | 3.7790 3.6560 -0.0190 H 0 0 0 0 0 0 0 0 0 0 0 0 42 | 6.6900 2.9590 -0.6180 H 0 0 0 0 0 0 0 0 0 0 0 0 43 | 5.4280 3.2790 -1.8320 H 0 0 0 0 0 0 0 0 0 0 0 0 44 | 6.8070 5.3000 -1.4280 H 0 0 0 0 0 0 0 0 0 0 0 0 45 | 5.1230 5.5620 -0.9140 H 0 0 0 0 0 0 0 0 0 0 0 0 46 | 7.4420 4.7850 0.9140 H 0 0 0 0 0 0 0 0 0 0 0 0 47 | 6.7150 6.4050 0.7900 H 0 0 0 0 0 0 0 0 0 0 0 0 48 | 5.7920 5.1610 2.7260 H 0 0 0 0 0 0 0 0 0 0 0 0 49 | 4.5310 5.4810 1.5120 H 0 0 0 0 0 0 0 0 0 0 0 0 50 | 4.4130 3.1400 2.3220 H 0 0 0 0 0 0 0 0 0 0 0 0 51 | 6.0970 2.8780 1.8080 H 0 0 0 0 0 0 0 0 0 0 0 0 52 | 4.0630 -4.8930 -0.4400 H 0 0 0 0 0 0 0 0 0 0 0 0 53 | 5.4240 -4.3940 0.5930 H 0 0 0 0 0 0 0 0 0 0 0 0 54 | 3.8620 -4.0570 2.4890 H 0 0 0 0 0 0 0 0 0 0 0 0 55 | 2.5010 -4.5560 1.4560 H 0 0 0 0 0 0 0 0 0 0 0 0 56 | 3.2940 -6.4420 2.8560 H 0 0 0 0 0 0 0 0 0 0 0 0 57 | 3.5620 -6.7720 1.1280 H 0 0 0 0 0 0 0 0 0 0 0 0 58 | 4.9230 -6.2740 2.1600 H 0 0 0 0 0 0 0 0 0 0 0 0 59 | 1.8600 -0.0740 -2.5030 H 0 0 0 0 0 0 0 0 0 0 0 0 60 | 1.5270 -1.8160 -2.6530 H 0 0 0 0 0 0 0 0 0 0 0 0 61 | 0.1640 -1.7340 -0.5830 H 0 0 0 0 0 0 0 0 0 0 0 0 62 | 0.4970 0.0080 -0.4330 H 0 0 0 0 0 0 0 0 0 0 0 0 63 | -0.5890 0.4050 -2.6270 H 0 0 0 0 0 0 0 0 0 0 0 0 64 | -0.9220 -1.3370 -2.7770 H 0 0 0 0 0 0 0 0 0 0 0 0 65 | -1.9990 -0.4340 -0.3280 H 0 0 0 0 0 0 0 0 0 0 0 0 66 | -3.4610 -0.2390 0.7670 H 0 0 0 0 0 0 0 0 0 0 0 0 67 | -5.5280 0.0440 2.0710 H 0 0 0 0 0 0 0 0 0 0 0 0 68 | -7.7200 0.7520 -1.5200 H 0 0 0 0 0 0 0 0 0 0 0 0 69 | -5.6630 0.4830 -2.8420 H 0 0 0 0 0 0 0 0 0 0 0 0 70 | -9.4590 0.3020 0.3120 F 0 0 0 0 0 0 0 0 0 0 0 0 71 | 15 16 2 0 0 0 0 72 | 19 20 1 0 0 0 0 73 | 18 19 1 0 0 0 0 74 | 17 18 1 0 0 0 0 75 | 15 17 1 0 0 0 0 76 | 5 15 1 0 0 0 0 77 | 2 17 1 0 0 0 0 78 | 12 13 1 0 0 0 0 79 | 8 13 1 0 0 0 0 80 | 11 12 1 0 0 0 0 81 | 5 6 1 0 0 0 0 82 | 6 7 1 0 0 0 0 83 | 4 5 2 0 0 0 0 84 | 1 2 2 0 0 0 0 85 | 2 3 1 0 0 0 0 86 | 7 8 1 0 0 0 0 87 | 7 14 2 0 0 0 0 88 | 3 4 1 0 0 0 0 89 | 4 14 1 0 0 0 0 90 | 8 9 1 0 0 0 0 91 | 3 21 1 0 0 0 0 92 | 10 11 1 0 0 0 0 93 | 9 10 1 0 0 0 0 94 | 21 22 1 0 0 0 0 95 | 22 23 1 0 0 0 0 96 | 23 24 1 0 0 0 0 97 | 24 25 1 0 0 0 0 98 | 25 26 2 0 0 0 0 99 | 25 27 1 0 0 0 0 100 | 27 28 2 0 0 0 0 101 | 28 29 1 0 0 0 0 102 | 27 35 1 0 0 0 0 103 | 29 30 2 0 0 0 0 104 | 34 35 2 0 0 0 0 105 | 30 34 1 0 0 0 0 106 | 30 31 1 0 0 0 0 107 | 31 32 2 0 0 0 0 108 | 31 33 2 0 0 0 0 109 | 6 36 1 0 0 0 0 110 | 8 37 1 0 0 0 0 111 | 9 38 1 0 0 0 0 112 | 9 39 1 0 0 0 0 113 | 10 40 1 0 0 0 0 114 | 10 41 1 0 0 0 0 115 | 11 42 1 0 0 0 0 116 | 11 43 1 0 0 0 0 117 | 12 44 1 0 0 0 0 118 | 12 45 1 0 0 0 0 119 | 13 46 1 0 0 0 0 120 | 13 47 1 0 0 0 0 121 | 18 48 1 0 0 0 0 122 | 18 49 1 0 0 0 0 123 | 19 50 1 0 0 0 0 124 | 19 51 1 0 0 0 0 125 | 20 52 1 0 0 0 0 126 | 20 53 1 0 0 0 0 127 | 20 54 1 0 0 0 0 128 | 21 55 1 0 0 0 0 129 | 21 56 1 0 0 0 0 130 | 22 57 1 0 0 0 0 131 | 22 58 1 0 0 0 0 132 | 23 59 1 0 0 0 0 133 | 23 60 1 0 0 0 0 134 | 24 61 1 0 0 0 0 135 | 28 62 1 0 0 0 0 136 | 29 63 1 0 0 0 0 137 | 34 64 1 0 0 0 0 138 | 35 65 1 0 0 0 0 139 | 31 66 1 0 0 0 0 140 | M END 141 | > 142 | CCCn1c(=O)c2c(nc([nH]2)C3CCCCC3)n(c1=O)CCCNC(=O)c4ccc(cc4)S(=O)(=O)F 143 | 144 | > 145 | InChI=1S/C24H30FN5O5S/c1-2-14-30-23(32)19-21(28-20(27-19)16-7-4-3-5-8-16)29(24(30)33)15-6-13-26-22(31)17-9-11-18(12-10-17)36(25,34)35/h9-12,16H,2-8,13-15H2,1H3,(H,26,31)(H,27,28) 146 | 147 | > 148 | KAJVJPLKXGLLDA-UHFFFAOYSA-N 149 | 150 | > 151 | C24H30FN5O5S 152 | 153 | $$$$ 154 | -------------------------------------------------------------------------------- /vinagpu/utils.py: -------------------------------------------------------------------------------- 1 | from rdkit import Chem 2 | from rdkit.Chem.MolStandardize import rdMolStandardize 3 | import numpy as np 4 | import zlib 5 | import re 6 | import subprocess as sp 7 | import os 8 | from collections import OrderedDict 9 | 10 | def run_executable(cmd, shell=True, **kwargs): 11 | """ Run executable command and return output from stdout and stderr """ 12 | proc = sp.Popen(cmd, stdout=sp.PIPE, stderr=sp.PIPE, shell=shell, **kwargs) 13 | stdout, stderr = proc.communicate() 14 | return (stdout, stderr) 15 | 16 | 17 | def process_stdout(stdout): 18 | """ Processes the stdout of Vina, returns the affinity of each docking orientation. """ 19 | affinities, buffer = [], [] 20 | return_dict = OrderedDict() 21 | is_int = re.compile(r'^\s*\d+\s*$') 22 | for line in stdout.splitlines(): 23 | 24 | if bool(is_int.match(line.decode('utf-8')[:4])): 25 | orientation_id, affinity, dist1, dist2 = line.split() 26 | buffer += [float(affinity)] 27 | 28 | if line.startswith(b'Writing'): 29 | ligand_id = line.split()[-2].decode('utf-8').split('/')[-1] 30 | affinities += [buffer] 31 | return_dict[ligand_id] = buffer 32 | buffer = [] 33 | 34 | return affinities, return_dict 35 | 36 | 37 | def partition_output(output_text): 38 | """ 39 | Splits the docking output text into individual ligand result chunks. 40 | 41 | Parameters: 42 | output_text (str): The raw output text from the docking software. 43 | 44 | Returns: 45 | list of str: Each element is a chunk of text for one ligand. 46 | """ 47 | ## Change from bytes to string 48 | output_text = output_text.decode('utf-8') 49 | 50 | # Split the output based on "Refining ligand" which indicates the start of a new ligand chunk 51 | ligand_chunks = re.split(r"\nRefining ligand", output_text) 52 | 53 | # The first chunk is often empty or irrelevant, so we remove it 54 | if not ligand_chunks[0].strip(): 55 | ligand_chunks.pop(0) 56 | 57 | # Prepend the "Refining ligand" to each chunk for consistency 58 | ligand_chunks = ["Refining ligand" + chunk for chunk in ligand_chunks] 59 | 60 | return ligand_chunks 61 | 62 | def extract_energies_and_ids(ligand_chunks): 63 | """ 64 | Extracts ligand IDs and free energy values from each ligand chunk. 65 | 66 | Parameters: 67 | ligand_chunks (list of str): Each element is a chunk of text for one ligand. 68 | 69 | Returns: 70 | list of dict: Each dictionary contains the ligand ID and a list of free energy values. 71 | """ 72 | results = [] 73 | 74 | for chunk in ligand_chunks: 75 | # Extract ligand ID (using regex to capture the filename part after './test_out/') 76 | ligand_id_match = re.search(r"Refining ligand \./test_out/([^ ]+)", chunk) 77 | if ligand_id_match: 78 | ligand_id = ligand_id_match.group(1) 79 | else: 80 | continue # Skip if no ID is found (unexpected case) 81 | 82 | # Find all affinity values (free energies in kcal/mol) in the chunk 83 | affinities = re.findall(r"^\s*\d+\s+(-?\d+\.\d+)", chunk, re.MULTILINE) 84 | affinities = [float(affinity) for affinity in affinities] 85 | 86 | # Store results in a dictionary format 87 | results.append({ 88 | "ligand_id": ligand_id, 89 | "affinities": affinities 90 | }) 91 | 92 | return results 93 | 94 | 95 | def standardize_mol(mol): 96 | """ 97 | Standardizes SMILES and removes fragments 98 | Arguments: 99 | mols (lst) : list of rdkit-molecules 100 | Returns: 101 | smiles (set) : set of SMILES 102 | """ 103 | 104 | charger = rdMolStandardize.Uncharger() 105 | chooser = rdMolStandardize.LargestFragmentChooser() 106 | disconnector = rdMolStandardize.MetalDisconnector() 107 | normalizer = rdMolStandardize.Normalizer() 108 | carbon = Chem.MolFromSmarts('[#6]') 109 | salts = Chem.MolFromSmarts('[Na,Zn]') 110 | try: 111 | mol = disconnector.Disconnect(mol) 112 | mol = normalizer.normalize(mol) 113 | mol = chooser.choose(mol) 114 | mol = charger.uncharge(mol) 115 | mol = disconnector.Disconnect(mol) 116 | mol = normalizer.normalize(mol) 117 | smileR = Chem.MolToSmiles(mol, 0) 118 | # remove SMILES that do not contain carbon 119 | if len(mol.GetSubstructMatches(carbon)) == 0: 120 | return None 121 | # remove SMILES that still contain salts 122 | if len(mol.GetSubstructMatches(salts)) > 0: 123 | return None 124 | return Chem.CanonSmiles(smileR) 125 | except: 126 | print('Parsing Error:', Chem.MolToSmiles(mol)) 127 | 128 | return None 129 | 130 | 131 | def check_smiles(smiles, frags=None): 132 | shape = (len(smiles), 1) if frags is None else (len(smiles), 2) 133 | valids = np.zeros(shape) 134 | for j, smile in enumerate(smiles): 135 | # 1. Check if SMILES can be parsed by rdkit 136 | try: 137 | mol = Chem.MolFromSmiles(smile) 138 | valids[j, 0] = 0 if mol is None else 1 139 | except: 140 | valids[j, 0] = 0 141 | if frags is not None: 142 | # 2. Check if SMILES contain given fragments 143 | try: 144 | subs = frags[j].split('.') 145 | subs = [Chem.MolFromSmiles(sub) for sub in subs] 146 | valids[j, 1] = np.all([mol.HasSubstructMatch(sub) for sub in subs]) 147 | except: 148 | valids[j, 1] = 0 149 | return valids 150 | 151 | 152 | def compress_string(string): 153 | """ 154 | Compresses a string 155 | Arguments: 156 | 157 | string (str) : string to compress 158 | Returns: 159 | compressed (str) : compressed string 160 | """ 161 | return zlib.compress(string.encode('utf-8')).hex() 162 | 163 | 164 | def decompress_string(compressed): 165 | """ 166 | Decompresses a compressed string 167 | Arguments: 168 | compressed (str) : compressed string 169 | Returns: 170 | string (str) : decompressed string 171 | """ 172 | return zlib.decompress(bytes.fromhex(compressed)).decode('utf-8') 173 | 174 | 175 | def write_to_log(log_path, smiles, target, scores, pdbqt_path=None, **kwargs): 176 | """ 177 | Writes a log file 178 | Arguments: 179 | log_path (str) : path to log file 180 | smiles (str) : SMILES of ligand 181 | target (str) : target name 182 | scores (list) : list of scores 183 | pdbqt_path (str) : path to pdbqt file 184 | """ 185 | kwargs = {k: str(v) for k, v in kwargs.items()} 186 | 187 | if not os.path.isfile(log_path): 188 | with open(os.path.join(log_path), 'w') as f: 189 | header = '\t'.join(['smiles', 'target', 'scores'] + list(kwargs.keys()) + ['pdbqt']) 190 | f.write(header + '\n') 191 | 192 | if pdbqt_path is not None: 193 | with open(pdbqt_path, 'r') as f: 194 | pdbqt = f.read() 195 | pdbqt = compress_string(pdbqt) 196 | else: 197 | pdbqt = '' 198 | 199 | if not isinstance(scores, list): 200 | scores = [scores] 201 | 202 | z = [str(score) for score in scores] 203 | if len(z) == 1: 204 | scores = z[0] 205 | else: 206 | scores = ';'.join(z) 207 | 208 | with open(log_path, 'a') as f: 209 | 210 | f.write('\t'.join([smiles, target, scores] + list(kwargs.values()) + [pdbqt]) + '\n') 211 | 212 | 213 | def read_log(log_path): 214 | """ 215 | Reads a log file 216 | Arguments: 217 | log_path (str) : path to log file 218 | Returns: 219 | log (list) : list of log entries 220 | """ 221 | log = [] 222 | with open(log_path, 'r') as f: 223 | lines = f.readlines()[1:] 224 | for line in lines: 225 | smiles, target, scores, pdbqt = line.strip().split('\t') 226 | scores = [float(score) for score in scores.split(';')] 227 | pdbqt = decompress_string(pdbqt) 228 | log += [(smiles, target, scores, pdbqt)] 229 | return log -------------------------------------------------------------------------------- /vinagpu/base.py: -------------------------------------------------------------------------------- 1 | import os 2 | import shutil 3 | import subprocess as sp 4 | from meeko import MoleculePreparation 5 | from rdkit import Chem 6 | from rdkit.Chem import AllChem 7 | import docker 8 | from vinagpu.utils import run_executable 9 | 10 | 11 | class BaseVinaRunner: 12 | """ 13 | Class methods for running Vina-GPU docker container 14 | Also contains methods for preparing the ligand and target: 15 | - Ligand preparation via rdkit and meeko 16 | - Target preparation via ADFR Suite and pdb_tools 17 | """ 18 | def __init__(self, device, adfr_suite_path=None, out_path=None): 19 | self.device = device 20 | self.device_id = None 21 | 22 | if out_path is None: 23 | path = os.getcwd() 24 | self.out_path = os.path.join(path, 'out') 25 | else: 26 | self.out_path = out_path 27 | 28 | self.adfr_suite_docker_path = '/htd/ADFRsuite-1.0' 29 | self.adfr_suite_path = adfr_suite_path # Local path to ADFR Suite (optional) 30 | self.vina_dir = '/vina-gpu-dockerized/Vina-GPU-2.1/QuickVina2-GPU-2.1' 31 | self.docking_dir = self.vina_dir + '/docking' 32 | self.molecule_preparation = MoleculePreparation(rigid_macrocycles=True) 33 | self.client = docker.from_env() 34 | self.container = None 35 | self.docker_kwargs = dict( 36 | image='vina', 37 | volumes = [f'{self.out_path}:{self.docking_dir}']) 38 | 39 | 40 | def start_docker_container(self): 41 | """ 42 | Start Vina-GPU docker container (runs until it is killed) 43 | Returns: 44 | docker container object 45 | """ 46 | 47 | container = self.client.containers.run( 48 | command='sleep infinity', # Keeps the container running until it is killed 49 | detach=True, # Run container in background 50 | **self.docker_kwargs) 51 | 52 | return container 53 | 54 | 55 | def remove_docker_container(self): 56 | """ 57 | Stop Vina-GPU docker container 58 | """ 59 | self.container.remove(force=True) 60 | self.container = None 61 | 62 | 63 | @staticmethod 64 | def dock(self, target_pdb_path, smiles, out_path=None): 65 | """ 66 | Dock the ligand to the target, return the docking scores 67 | 68 | Arguments: 69 | target_pdb_path (str) : path to the target .pdb file 70 | smiles (list) : list of smiles strings 71 | out_path (str) : path to save the .pdbqt file (default: ./drugex/utils/docking/output) 72 | Returns: 73 | list of docking scores 74 | """ 75 | scores = [0] 76 | return scores 77 | 78 | 79 | def prepare_ligand(self, smiles, out_path=None): 80 | """ 81 | Prepare ligand for docking, return ligand .pdbqt file path 82 | 83 | Arguments: 84 | smiles (str) : smiles string 85 | out_path (str) : path to save the .pdbqt file (default: ./drugex/utils/docking/output) 86 | Returns: 87 | path to the ligand .pdbqt file 88 | """ 89 | try: 90 | # Ligand preparation via rdkit and meeko 91 | mol = Chem.MolFromSmiles(smiles) # type: ignore 92 | protonated_ligand = Chem.AddHs(mol) # type: ignore 93 | AllChem.EmbedMolecule(protonated_ligand) # type: ignore 94 | self.molecule_preparation.prepare(protonated_ligand) 95 | 96 | # Write to .pdbqt file required by Vina 97 | if out_path is None: 98 | out_path = self.out_path 99 | self.molecule_preparation.write_pdbqt_file(out_path) 100 | except Exception as e: 101 | print(f'Error while preparing ligand: {e}') 102 | out_path = None 103 | return out_path 104 | 105 | 106 | def prepare_target(self, pdb_path, output_path=None, chain='A', use_docker=True): 107 | """ 108 | TODO: 109 | 1. Move this to the Protein class (maybe?) 110 | 2. Would require a DockerContainer class to be created (to isolate Docker-related methods) 111 | 112 | To be used in the dock method if the target is not already prepared 113 | 114 | Prepare target for docking, return target pdbqt path 115 | Arguments: 116 | pdb_path (str) : path to target .pdb file 117 | out_path (str) : path to save the .pdbqt file 118 | chain (str) : chain to use for docking (if target is a multi-chain protein) 119 | use_docker (bool): use docker container to prepare the target 120 | Returns: 121 | path to the processed target .pdbqt file 122 | """ 123 | 124 | ## Output filenames 125 | 126 | extension = pdb_path.split('.')[-1] 127 | assert os.path.isfile(pdb_path), f'Invalid file path: {pdb_path}' 128 | assert extension in ['pdb', 'pdbqt'], f'Invalid file type: {extension}' 129 | 130 | if pdb_path.endswith('.pdbqt'): # If target is already in .pdbqt format, just copy it to the results_path 131 | target_pdbqt_path = os.path.join(output_path, os.path.basename(pdb_path)) 132 | if not os.path.exists(target_pdbqt_path): 133 | shutil.copyfile(pdb_path, target_pdbqt_path) 134 | return target_pdbqt_path 135 | 136 | # Prepare target (if target is a .pdb file, convert to .pdbqt) 137 | target_pdbqt_path = os.path.join(output_path, os.path.basename(pdb_path).replace('.pdb', '.pdbqt')) 138 | if not os.path.isfile(target_pdbqt_path): 139 | if output_path is None: 140 | output_path = self.out_path 141 | basename = os.path.basename(pdb_path) 142 | out_file_path = os.path.join(output_path, basename) # This is where the target .pdb file will be saved 143 | shutil.copyfile(pdb_path, out_file_path) # Copy target .pdb file to output folder 144 | chain_basename = basename.replace('.pdb', f'_chain_{chain}.pdb') # Name of the .pdb file with only the selected chain 145 | chain_pdb_path = os.path.join(output_path, chain_basename) # Full path to the .pdb file with only the selected chain 146 | pdbqt_basename = basename.replace('.pdb', '.pdbqt') # Name of the .pdbqt file 147 | target_pdbqt_path = os.path.join(output_path, pdbqt_basename) # Full path to the .pdbqt file 148 | 149 | print(f'Preparing {basename} for docking: selecting chain [{chain}] and creating {target_pdbqt_path} file...') 150 | 151 | if not use_docker: # Processing locally using ADFR Suite and pdb_tools 152 | cmd = f'pdb_selchain -{chain} {pdb_path} | pdb_delhetatm | \ 153 | pdb_tidy > {chain_pdb_path}' 154 | run_executable(cmd, shell=True) 155 | 156 | adfr_binary = os.path.join(self.adfr_suite_path, 'bin', 'prepare_receptor') 157 | cmd = f'{adfr_binary} -r {chain_pdb_path} \ 158 | -o {target_pdbqt_path} -A checkhydrogens' 159 | run_executable(cmd) 160 | 161 | else: # Processing within the docker container 162 | 163 | # Select a single chain in case the target is a multimer 164 | if self.container is None: 165 | self.container = self.start_docker_container() 166 | try: 167 | workdir = self.docking_dir + '/' + os.path.basename(output_path) 168 | print(workdir) 169 | cmd = f"bash -c 'pdb_selchain -{chain} {basename} | pdb_delhetatm | \ 170 | pdb_tidy > {chain_basename}'" 171 | self.container.exec_run( 172 | cmd=cmd, 173 | workdir=workdir, 174 | demux=True) 175 | 176 | ## Prepare the target for docking using ADFR Suite 'prepare_receptor' binary 177 | adfr_binary = os.path.join(self.adfr_suite_path, 'bin', 'prepare_receptor') 178 | cmd = f'{adfr_binary} -r {chain_basename} -o {pdbqt_basename} -A checkhydrogens' 179 | self.container.exec_run( 180 | cmd=cmd, 181 | workdir=workdir, 182 | demux=True) 183 | except Exception as e: 184 | print(f'Error while preparing target: {e}') 185 | except KeyboardInterrupt: 186 | print('KeyboardInterrupt') 187 | finally: 188 | self.remove_docker_container() 189 | 190 | return target_pdbqt_path 191 | -------------------------------------------------------------------------------- /vinagpu/cpu.py: -------------------------------------------------------------------------------- 1 | # Import necessary modules for the class 2 | import os 3 | import shutil 4 | import time 5 | import datetime 6 | import pandas as pd 7 | 8 | import rdkit.Chem.GraphDescriptors 9 | from vinagpu.base import BaseVinaRunner 10 | 11 | from vina import Vina 12 | 13 | from dimorphite_dl import DimorphiteDL 14 | 15 | 16 | class VinaCPU(BaseVinaRunner): 17 | """ 18 | Class for running docking simulations with CPU. 19 | The ligands will be prepared but the receptor should already be prepared. It also predicts the protomers 20 | and return the one with the best affinity. 21 | 22 | Methods: 23 | get_protomers: 24 | Finds the protomers (different protonation states) of a molecule. 25 | dock: 26 | Docks the prepared ligands using AutoDock Vina. 27 | prepare_ligand: 28 | Prepares the protomers for docking 29 | """ 30 | 31 | def __init__(self, box_center=[0, 0, 0], 32 | box_size=[0, 0, 0], exhaustiveness=8, n_poses=9, cpu=1, seed=0, 33 | min_rmsd=1.0, docking_output_dir='docking', device_id=None, 34 | mol_prepare_dir=None): 35 | 36 | super(VinaCPU, self).__init__(device='cpu') 37 | 38 | self.counter = 0 39 | self.device_id = device_id 40 | self.box_center = box_center 41 | self.box_size = box_size 42 | self.exhaustiveness = exhaustiveness 43 | self.n_poses = n_poses 44 | self.min_rmsd = min_rmsd 45 | 46 | self.v = Vina(sf_name='vina', seed=seed, cpu=cpu, verbosity=0) 47 | self.mol_prepare_dir = mol_prepare_dir 48 | 49 | """ 50 | Initialize the Docking class. 51 | Parameters 52 | ----------- 53 | receptor_pdbqt (str): Path to the receptor PDBQT file. 54 | 55 | box_center(list of floats): 56 | Coordinates of the center of the search space. 57 | box_size (list of floats): 58 | Dimensions of the search space. 59 | exhaustiveness (int): 60 | Exhaustiveness of the search, by default 8. 61 | n_poses (int): 62 | Maximum number of binding poses to output, by default 9. 63 | cpu (int): 64 | Number of CPUs to use, by default 1. 65 | seed (int): 66 | Seed for the random number generator, by default 0. 67 | min_rmsd (float): 68 | Minimum RMSD for pose clustering, by default 1.0. 69 | docking_output_dir(str): 70 | Output directory for docking results, by default 'docking'. 71 | mol_prepare_dir(str): 72 | Directory for molecule preparation, by default None. 73 | """ 74 | 75 | def get_protomers(self, smiles, ph_range=(6, 7), max_variants=128, pka_precision=0.5): 76 | """ 77 | Finds the protomers , which are different protonation states of the molecule 78 | Args: 79 | smiles(list): A list of SMILES strings. 80 | ph_range(tuple, optional): The pH range for protomer generation. Defaults to (6, 7). 81 | max_variants(int, optional): The maximum number of protomers to generate for each SMILES string. Defaults to 128. 82 | pka_precision(float, optional): The precision for pKa calculations. Defaults to 0.5. 83 | Returns: 84 | list: A list of protomers for each SMILES string. 85 | """ 86 | dimorphite_dl = DimorphiteDL( 87 | min_ph=ph_range[0], 88 | max_ph=ph_range[1], 89 | max_variants=max_variants, 90 | label_states=False, 91 | pka_precision=pka_precision 92 | ) 93 | protomers_list = [] 94 | for smile in smiles: 95 | protomers = dimorphite_dl.protonate(smile) 96 | protomers_list.append(protomers) 97 | return protomers_list 98 | 99 | 100 | def dock(self, target_pdb_path, smiles=[], ligand_pdbqt_paths=[], output_subfolder='', 101 | box_center=(0,0,0), box_size=(20,20,20), exhaustiveness=5, **kwargs): 102 | """ 103 | Dock a list of SMILES strings to the target protein using AutoDock Vina 104 | 105 | Args: 106 | smiles (list): A list of SMILES strings to be docked. 107 | 108 | Returns: 109 | list: A list of the best affinities (lowest energy) for each SMILES string. 110 | 111 | """ 112 | 113 | results_path = os.path.join(self.out_path, output_subfolder) 114 | os.makedirs(results_path, exist_ok=True) 115 | 116 | protomers_list = self.get_protomers(smiles) 117 | scores = [] 118 | 119 | # Prepare target 120 | if target_pdb_path.endswith('.pdb'): # If target is a .pdb file, convert to .pdbqt 121 | target_pdbqt_path = os.path.join(results_path, os.path.basename(target_pdb_path).replace('.pdb', '.pdbqt')) 122 | if not os.path.exists(target_pdbqt_path): 123 | target_pdbqt_path = self.prepare_target(target_pdb_path, out_path=results_path) 124 | else: # If target is already in .pdbqt format, just copy it to results_path 125 | target_pdbqt_path = os.path.join(results_path, os.path.basename(target_pdb_path)) 126 | shutil.copyfile(target_pdb_path, target_pdbqt_path) 127 | 128 | self.v.set_receptor(target_pdbqt_path) 129 | self.v.compute_vina_maps(center=box_center, box_size=box_size) 130 | 131 | print('Docking ligands...') 132 | timing, dates = [], [] 133 | for i, protomers in enumerate(protomers_list): 134 | t0 = time.time() 135 | best_affinity = None 136 | 137 | 138 | mol_id = f"docking_id_{self.counter}_ligand_{i}" 139 | out_prefix = f"{self.out_path}/pose_{mol_id}.best.out" 140 | for protomer in protomers: 141 | pdbqt_string = self.prepare_ligand(protomer) 142 | self.v.set_ligand_from_string(pdbqt_string) 143 | self.v.dock(exhaustiveness=exhaustiveness, n_poses=self.n_poses, 144 | min_rmsd=self.min_rmsd, ) 145 | energies = self.v.energies(n_poses=self.n_poses) 146 | # calculates the energy of the first pose 147 | best_energy = energies[0][0] 148 | if not best_affinity or best_affinity > best_energy: 149 | # if best_affinity is greater than best_energy then the value of best_affinity is also best_energy 150 | best_affinity = best_energy 151 | 152 | self.v.write_poses(f"{out_prefix}.pdbqt", 153 | n_poses=self.n_poses, overwrite=True) 154 | pd.DataFrame(energies, columns=["Total", "Inter", "Intra", "Torsions", "Intra_best_pose"]).to_csv( 155 | f"{out_prefix}.tsv", sep="\t", 156 | header=True, index=False) 157 | with open(f"{out_prefix}.smi", "w", encoding="utf-8") as smi: 158 | smi.write(protomer) 159 | scores.append(best_affinity) 160 | 161 | dates += [datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")] 162 | timing += [round(time.time() - t0, 2)] 163 | print(f'+ {self.device}:{self.device_id} | [{dates[-1]} | t={timing[-1]}s] Docked ligand {i+1}/{len(protomers_list)} | Affinity values: {scores[i]}...') 164 | # returns the best_affinity which is the lowest energy of all the poses 165 | return scores 166 | 167 | 168 | def prepare_ligand(self, protomer): 169 | """ 170 | Prepare the ligand for docking by converting its SMILES string representation 171 | to a molecule, adding hydrogen atoms, embedding it in 3D space, and writing 172 | its PDBQT string representation. 173 | 174 | Arguments: 175 | protomer(str): SMILES string representation of the protomer. 176 | Returns: 177 | str: PDBQT string representation of the prepared ligand. 178 | 179 | """ 180 | 181 | lig = rdkit.Chem.MolFromSmiles(protomer) 182 | protonated_lig = rdkit.Chem.AddHs(lig) 183 | rdkit.Chem.AllChem.EmbedMolecule(protonated_lig) 184 | self.molecule_preparation.prepare(protonated_lig) 185 | 186 | return self.molecule_preparation.write_pdbqt_string() 187 | 188 | 189 | 190 | if __name__ == "__main__": 191 | # define the docking parameters 192 | 193 | receptor_pdbqt = "examples/P21918.pdb" 194 | box_center = [0, 0, 0] 195 | box_size = [10, 10, 10] 196 | exhaustiveness = 8 197 | n_poses = 9 198 | cpu = 1 199 | seed = 0 200 | min_rmsd = 1.0 201 | docking_output_dir = "docking" 202 | 203 | smiles = [] 204 | targets = ['P21918', 'C3SWJ7', 'O14757'] 205 | for target in targets[2:]: 206 | smiles_path = f'/home/andrius/datasets/data_smiles/{target}/smiles.txt' 207 | with open(smiles_path, 'r') as f: 208 | smiles += f.read().splitlines() 209 | 210 | # initialize the docking class 211 | docking = VinaCPU(box_center=box_center, 212 | box_size=box_size, exhaustiveness=exhaustiveness, 213 | n_poses=n_poses, cpu=cpu, seed=seed, min_rmsd=min_rmsd) 214 | 215 | docking.dock( 216 | target_pdb_path=receptor_pdbqt, 217 | smiles=smiles, 218 | output_subfolder=docking_output_dir, 219 | active_site_coords=box_center, 220 | bbox_size=box_size, 221 | exhaustiveness=exhaustiveness 222 | ) -------------------------------------------------------------------------------- /vinagpu/gpu.py: -------------------------------------------------------------------------------- 1 | import os, time, datetime 2 | import docker 3 | from vinagpu.base import BaseVinaRunner 4 | from vinagpu.utils import process_stdout, compress_string, decompress_string, extract_energies_and_ids 5 | import numpy as np 6 | 7 | 8 | class VinaGPU(BaseVinaRunner): 9 | """ 10 | Class methods for running Vina-GPU docker container 11 | Also contains methods for preparing the ligand and target: 12 | - Ligand preparation via rdkit and meeko 13 | - Target preparation via ADFR Suite and pdb_tools 14 | """ 15 | def __init__(self, docker_image_name='vina-cl', devices=['0'], visualize=False): 16 | super(VinaGPU, self).__init__(device='gpu') 17 | 18 | 19 | self.visualize = visualize 20 | self.device_id = devices 21 | 22 | ## Configuration for running the Vina-GPU docker container 23 | # (requires nvidia-docker runtime) 24 | self.container = None 25 | dev_req = docker.types.DeviceRequest # type: ignore 26 | self.docker_kwargs = dict( 27 | image=docker_image_name, 28 | # runtime='nvidia', # Use nvidia-docker runtime 29 | volumes = [f'{self.out_path}:{self.docking_dir}'], 30 | device_requests=[dev_req(device_ids=devices, capabilities=[['gpu']])]) 31 | 32 | 33 | def dock(self, target_pdb_path, smiles=[], ligand_pdbqt_paths=[], ids=None, output_subfolder='', 34 | box_center=(0,0,0), box_size=(20,20,20), search_depth=3, 35 | threads=2048, threads_per_call=256, verbose=True, 36 | visualize_in_pymol=False, write_log=True, metadata={}, **kwargs): 37 | """ 38 | Use Vina-GPU docker image to dock ligands (list of SMILES or .pdbqt files) to the target. 39 | Produces a .pdbqt file for each ligand (with multiple docked orientations). 40 | 41 | Arguments: 42 | target_pdb_path (str) : path to target pdb file 43 | smiles: (list(str)) : list of smiles strings 44 | ligand_pdbqt_paths (list(str)) : list of paths to ligand pdbqt files 45 | output_subfolder (str), opt : subfolder to save output files 46 | active_site_coords (tuple(float)), opt : coordinates of the active site of the target (x,y,z)=(0,0,0) 47 | bbox_size (tuple(float)), opt : size of the bounding box around the active site (x,y,z)=(20,20,20) 48 | threads (int), opt : number of threads to use for docking 49 | thread_per_call (int), opt : number of threads to use for each call to Vina 50 | clean (bool), opt : remove ligand .pdbqt files after docking 51 | verbose (bool), opt : print docking progress, scores, etc. 52 | visualize_in_pymol (bool), opt : visualize the docking results in pymol 53 | write_log (bool), opt : write log file with docking results 54 | Returns: 55 | all_scores (list(list((float))) : list of docking scores for each ligand 56 | """ 57 | 58 | assert (len(ligand_pdbqt_paths) > 0) or (len(smiles) > 0), \ 59 | "Either a list of ligand .pdbqt paths or a list of smiles strings must be provided" 60 | 61 | results_path = os.path.join(self.out_path, output_subfolder) 62 | os.makedirs(results_path, exist_ok=True) 63 | # Create additional subfolders 64 | docked_path = os.path.join(results_path, 'docked') 65 | os.makedirs(docked_path, exist_ok=True) 66 | ligands_path = os.path.join(results_path, 'ligands') 67 | os.makedirs(ligands_path, exist_ok=True) 68 | pdb_path = os.path.join(results_path, 'targets') 69 | os.makedirs(pdb_path, exist_ok=True) 70 | 71 | self.docker_kwargs['volumes'] = [f'{results_path}:{self.docking_dir}'] 72 | 73 | 74 | # Prepare target .pdbqt file 75 | target_pdbqt_path = self.prepare_target(target_pdb_path, output_path=pdb_path) 76 | 77 | # Prepare ligand .pdbqt files 78 | print(f'Ligprepping {len(smiles)} ligands...') if verbose else None 79 | for i, mol in enumerate(smiles): 80 | if ids: 81 | uid = ids[i] 82 | ## Pad id with zeros 83 | # uid = str(uid).zfill(9) 84 | 85 | ligand_pdbqt_path = os.path.join(ligands_path, f'{uid}.pdbqt') 86 | out_path = self.prepare_ligand(mol, out_path=ligand_pdbqt_path) 87 | if out_path is not None: 88 | ligand_pdbqt_paths.append(ligand_pdbqt_path) 89 | else: 90 | print(f'Error processing ligand {i+1} with SMILES: {mol}') 91 | ligand_pdbqt_paths.append('') 92 | 93 | 94 | basenames = [os.path.basename(p) for p in ligand_pdbqt_paths] # Ligand basenames (format 'ligand_0.pdbqt') 95 | # basenames_docked = [lig.replace('.pdbqt', '_docked.pdbqt') for lig in basenames] # Docked ligand basenames (format 'ligand_0_docked.pdbqt') 96 | ligand_paths_docked = [os.path.join(docked_path, p) for p in basenames] 97 | ## Add '_out' to the ligand paths 98 | ligand_paths_docked = [p.replace('.pdbqt', '_out.pdbqt') for p in ligand_paths_docked] 99 | 100 | ### Start Vina-GPU docker container 101 | self.container = self.start_docker_container() 102 | try: 103 | timing, dates = [], [] 104 | all_scores = [[0] for i in range(len(smiles))] 105 | target = os.path.basename(target_pdb_path).strip('.pdbqt') 106 | # for i, ligand_file in enumerate(basenames): 107 | t0 = time.time() 108 | 109 | # if ligand_pdbqt_paths[i] is None: 110 | # continue 111 | print(f'Docking {len(smiles)} ligands...') if verbose else None 112 | docking_args = dict( 113 | receptor = f'docking/targets/{os.path.basename(target_pdbqt_path)}', 114 | ligand_directory = f'docking/ligands/', 115 | output_directory = f'docking/docked/', 116 | center_x = box_center[0], 117 | center_y = box_center[1], 118 | center_z = box_center[2], 119 | size_x = box_size[0], 120 | size_y = box_size[1], 121 | size_z = box_size[2], 122 | thread = threads, 123 | search_depth = search_depth, 124 | opencl_binary_path = '/vina-gpu-dockerized/Vina-GPU-2.1/QuickVina2-GPU-2.1', 125 | ) 126 | 127 | cmd = './QuickVina2-GPU-2-1 ' + ' '.join([f'--{k} {v}' for k, v in docking_args.items()]) 128 | 129 | try: 130 | _, (stdout, stderr) = self.container.exec_run( 131 | cmd=cmd, 132 | workdir=self.vina_dir, 133 | demux=True) 134 | # print(stdout) 135 | print(stderr) 136 | 137 | scores, score_dict = process_stdout(stdout) 138 | # print(scores) 139 | # print(score_dict) 140 | 141 | ## Re-order scores based on the original ligand order 142 | # for k, v in score_dict.items(): 143 | # all_scores[int(k)] = v 144 | 145 | timing += [round(time.time() - t0, 2)] 146 | dates += [datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")] 147 | if verbose: 148 | print(f'- {self.device}:{self.device_id} | [{dates[-1]} | t={timing[-1]}s] Docked ligand {i+1}/{len(basenames)} | Affinity values: {all_scores[i]}...') 149 | 150 | # if write_log: 151 | # log_path = os.path.join(results_path, 'log.tsv') 152 | # write_to_log(log_path, smiles[i], target, all_scores[i], ligand_paths_docked[i], **metadata[i]) 153 | 154 | except Exception as d: 155 | print(d) 156 | 157 | except Exception as e: 158 | print(f'Error has occurred while docking ligand {i}: {e, stderr}') 159 | raise e 160 | except KeyboardInterrupt: 161 | print('Docking interrupted by user') 162 | finally: 163 | self.remove_docker_container() 164 | 165 | return score_dict, ligand_paths_docked 166 | 167 | def dock_dataframe(self, dataframe, target_pdb_path, smiles_col='SMILES', output_subfolder='', 168 | active_site_coords=(0,0,0), box_size=(20,20,20), search_depth=9, 169 | threads=1024, threads_per_call=1024, clean=True, verbose=True, 170 | visualize_in_pymol=False, write_log=True, **kwargs): 171 | """ 172 | Dock ligands in a pandas dataframe 173 | """ 174 | smiles = dataframe[smiles_col].tolist() 175 | ## Ids for each ligand (numeric or based on InChI) 176 | ids = dataframe['id'].tolist() if 'id' in dataframe.columns else range(len(smiles)) 177 | metadata = dataframe.to_dict(orient='records') # Metadata for each ligand 178 | # remove SMILES column from metadata 179 | metadata = [{k: v for k, v in d.items() if k != smiles_col} for d in metadata] 180 | 181 | print(f'Docking {len(smiles)} ligands...') if verbose else None 182 | 183 | scores, paths = self.dock(target_pdb_path, smiles=smiles, ids=ids, output_subfolder=output_subfolder, ligand_pdbqt_paths=[], 184 | active_site_coords=active_site_coords, box_size=box_size, search_depth=search_depth, 185 | threads=threads, threads_per_call=threads_per_call, clean=False, verbose=verbose, 186 | visualize_in_pymol=visualize_in_pymol, write_log=write_log, metadata=metadata, **kwargs) 187 | 188 | print(scores) 189 | # Scores is a dictionary with keys as ligand indices and values as lists of docking scores 190 | # Match the scores with the dataframe 191 | 192 | for k, v in scores.items(): 193 | cols = [f'dock_score_{i}' for i in range(9)] 194 | dataframe.loc[int(k), cols] = v 195 | 196 | dataframe['ligand_pdbqt'] = paths 197 | 198 | pdbqts = [] 199 | for path in paths: 200 | if os.path.exists(path) and os.path.isfile(path): 201 | with open(path, 'r') as f: 202 | pdbqts.append(compress_string(f.read())) 203 | else: 204 | pdbqts.append('') 205 | 206 | dataframe['pdbqt'] = pdbqts 207 | dataframe['target_pdb'] = os.path.basename(target_pdb_path).strip('.pdb') 208 | 209 | 210 | return dataframe 211 | 212 | 213 | if __name__ == "__main__": 214 | 215 | ##### Example usage ##### 216 | # import drugex 217 | # from drugex.utils.docking import DockingRunner 218 | 219 | # Docking on A3R receptor 220 | target_path = os.path.join('examples', 'P21918.pdb') 221 | active_site = (54.24, 57.93, 141.72) # Active site coordinates of P0DMS8.pdb 222 | output_subfolder = 'a3r_test' # Output stored at: .drugex/utils/docking/output/a3r_test 223 | 224 | smiles = [ 225 | 'COCCN1CC(CF)C2C(=O)N(C)C(=O)C2C1c1ccccc1OC', 226 | 'CCc1ncc2c(n1)-c1ccc(C(O)CC3CCCN3)cc1OC2' 227 | 'CCN1CCN(c2ccc(-c3cc(C(=O)c4cc(Cl)cc(Cl)c4)c(N)s3)cc2)CC1', 228 | 'C=C(C(=O)c1cn(C(C)C)c(-c2ccc3c(c2)OCO3)n1)c1ccc2c(c1)OCO2', 229 | 'CCOC(=O)C1=C(C)NC(C)=C(C(=O)NCc2ccc([N+](=O)[O-])c(Cl)c2)C1c1ccccn1', 230 | 'Cc1nc(-c2nnc(SCC(=O)NCc3ccccc3)n2C)co1', 231 | 'CCCCC(=NNC(=O)CSCc1ccccc1Cl)NCC(=O)NC1CCCC1', 232 | 'Cc1ccc(C(=O)OCC(=O)c2ccc(O)c(F)c2)cn1', 233 | 'CCCCCCCOCC(O)(Cc1ccc(OC)c(OCC(C)(O)C(C)O)c1)C(F)(F)F', 234 | 'CCCSc1ncnc2c1ncn2C1OC(COC(S)=NC(C)C)C(O)C1O', 235 | 'CNC(=O)COc1ccc(CCCC(=O)N2CCN(c3ccccn3)CC2)cc1OC'] 236 | 237 | vina_docker = VinaGPU() 238 | 239 | scores = vina_docker.dock( 240 | target_pdb_path=target_path, 241 | smiles=smiles, 242 | output_subfolder=output_subfolder, 243 | active_site_coords=active_site, 244 | verbose=True) -------------------------------------------------------------------------------- /examples/test.csv: -------------------------------------------------------------------------------- 1 | SMILES,docking_scores,pdbqt,min_docking_score,target_pdb 2 | C#CCC(=O)NC#CC,[0],,0,ccr 3 | C=CCCC(=O)NCCC,[0],,0,ccr 4 | O=CN[C@H]1CC[C@H](O)CC1,[0],,0,ccr 5 | CNC(=O)C(C)(C)NC=O,[0],,0,ccr 6 | Cc1cc(NC(N)=O)ccn1,[0],,0,ccr 7 | CCCNC(=O)c1cocn1,[0],,0,ccr 8 | CNC(=O)CCN(C=O)OC,[0],,0,ccr 9 | CC(C)NS(=O)(=O)C1CC1,[0],,0,ccr 10 | O=CNc1cccc(C(=O)O)n1,[0],,0,ccr 11 | NC(=O)Nc1n[nH]c(C2CC2)n1,[0],,0,ccr 12 | CCCNC(=O)c1cc(C)on1,[0],,0,ccr 13 | C=CCNC(=O)[C@@H]1C[C@@H](F)CN1,[0],,0,ccr 14 | CNC(=O)C1(NC(N)=O)COC1,[0],,0,ccr 15 | CNC(=O)CCNC(=O)[C@H](C)N,[0],,0,ccr 16 | O=C(NCCCl)c1ccco1,[0],,0,ccr 17 | CNC(=O)CONC(=O)[C@H](C)N,[0],,0,ccr 18 | CS(=O)(=O)Nc1nncs1,[0],,0,ccr 19 | C=CCCC(=O)Nc1nc(C)n[nH]1,[0],,0,ccr 20 | C#CCC(=O)N[C@H]1CC[C@H](O)CC1,[0],,0,ccr 21 | CC#CC(=O)N[C@H]1CC[C@H](O)CC1,[0],,0,ccr 22 | CC(C)CCNC(=O)c1cocn1,[0],,0,ccr 23 | O=C(NCCCCO)c1ccco1,[0],,0,ccr 24 | COC[C@H](C)NC(=O)c1cn[nH]c1,[0],,0,ccr 25 | CCCNC(=O)c1cnc(C)s1,[0],,0,ccr 26 | CC(C)CCNC(=O)CCC(C)C,[0],,0,ccr 27 | CCS(=O)(=O)Nc1ccncn1,[0],,0,ccr 28 | CNC(=O)[C@@H](C)NC(=O)[C@@H](C)NC,[0],,0,ccr 29 | O=C(Nc1cc[nH]n1)c2cccnn2,[0],,0,ccr 30 | CNC(=O)C(C)(C)NC(=O)CON,[0],,0,ccr 31 | CC[C@H](N)C(=O)NOCC(=O)NC,[0],,0,ccr 32 | C=CCNC(=O)c1ccc(CC)cc1,[0],,0,ccr 33 | CNC(=O)[C@@H](C)NC(=O)CSC,[0],,0,ccr 34 | CCCNS(=O)(=O)C(F)(F)F,[0],,0,ccr 35 | CCCNS(=O)(=O)C1CCCC1,[0],,0,ccr 36 | O=C(NCc1ncc[nH]1)c2ccno2,[0],,0,ccr 37 | O=C(Nc1ncco1)C2CC32CCC3,[0],,0,ccr 38 | O=C(NCC(F)(F)F)c1cn[nH]c1,[0],,0,ccr 39 | COC[C@H](C)NS(=O)(=O)C1CC1,[0],,0,ccr 40 | O=C(NC1(C(=O)O)CC1)c2cn[nH]c2,[0],,0,ccr 41 | CNC(=O)CN(C)S(=O)(=O)NC,[0],,0,ccr 42 | Cc1cc(NC(=O)CCC(C)C)[nH]n1,[0],,0,ccr 43 | CC(C)CCC(=O)NCc1ncc[nH]1,[0],,0,ccr 44 | CNC(=O)CCNC(=O)c1cn[nH]c1,[0],,0,ccr 45 | C=CCCC(=O)NCCN1CCCC1,[0],,0,ccr 46 | CNC(=O)CONS(=O)(=O)NC,[0],,0,ccr 47 | CNC(=O)C1(NC(=O)C2CNC2)CC1,[0],,0,ccr 48 | O=CNc1nc(Cl)c2[nH]cnc2n1,[0],,0,ccr 49 | CNC(=O)CONC(=O)c1cc[nH]n1,[0],,0,ccr 50 | CNC(=O)C(NC=O)C1CCCCC1,[0],,0,ccr 51 | CNC(=O)CONC(=O)c1nc[nH]n1,[0],,0,ccr 52 | CC#CNC(=O)c1cnc2[nH]ccc2c1,[0],,0,ccr 53 | CNC(=O)[C@@H](C)NC(=O)CCC(C)C,[0],,0,ccr 54 | O=C(NCCCCO)C1CCCNC1,[0],,0,ccr 55 | COC(=O)/C=C/C(=O)NCCCCO,[0],,0,ccr 56 | CC(=O)N[C@@H](C)C(=O)N(C)CC(N)=O,[0],,0,ccr 57 | CC(=O)NCCC(=O)N(C)CC(N)=O,[0],,0,ccr 58 | C=CCNS(=O)(=O)c1ccnn1C,[0],,0,ccr 59 | CNC(=O)C(C)(C)NC(=O)[C@@H](C)NC,[0],,0,ccr 60 | CNC(=O)[C@H](C)NC(=O)[C@@H](N)C(C)C,[0],,0,ccr 61 | O=C(NCc1cccnc1)c2cc[nH]n2,[0],,0,ccr 62 | O=S(=O)(NCCCCO)C(F)F,[0],,0,ccr 63 | C=CC(=O)N[C@@H]1c2ccccc2C[C@H]1O,[0],,0,ccr 64 | CC[C@H](NC(=O)[C@H](N)CO)C(=O)NC,[0],,0,ccr 65 | CNC(=O)CN(C)C(=O)[C@H](N)[C@H](C)O,[0],,0,ccr 66 | CNCC(=O)N(CCC(=O)NC)OC,[0],,0,ccr 67 | C#CCC(=O)Nc1cc(C2CCC2)[nH]n1,[0],,0,ccr 68 | C=CCC(C)(C)C(=O)Nc1ccccc1,[0],,0,ccr 69 | O=C(Nc1ccc[nH]c1=O)c2c[nH]cn2,[0],,0,ccr 70 | CNC(=O)C(O)CNC(=O)C(O)CN,[0],,0,ccr 71 | Nc1ccc(N2CCN(C=O)CC2)cc1,[0],,0,ccr 72 | CNC(=O)CCNS(=O)(=O)C1CC1,[0],,0,ccr 73 | CC(C)NS(=O)(=O)C1CCOCC1,[0],,0,ccr 74 | CNC(=O)[C@H](C)NC(=O)c1cccnn1,[0],,0,ccr 75 | CNC(=O)CCNS(=O)(=O)C(C)C,[0],,0,ccr 76 | Cc1ncc(C(=O)Nc2ncco2)s1,[0],,0,ccr 77 | Cc1n[nH]c(NC(=O)C2CCCNC2)n1,[0],,0,ccr 78 | CC[C@H](NC(=O)c1cn[nH]c1)C(=O)NC,[0],,0,ccr 79 | C=CCCC(=O)NC1(C(=O)NC)CCC1,[0],,0,ccr 80 | CNC(=O)C(O)CNC(=O)c1cn[nH]c1,[0],,0,ccr 81 | C=CCC(C)(C)C(=O)N(C)CC(=O)NC,[0],,0,ccr 82 | C=CCC(C)(C)C(=O)N[C@H](C)C(=O)NC,[0],,0,ccr 83 | COC(=O)/C=C/C(=O)Nc1nncs1,[0],,0,ccr 84 | CNC(=O)CN(C)C(=O)[C@@H]1CCCNC1,[0],,0,ccr 85 | CC(C)(C)NS(=O)(=O)CCCCl,[0],,0,ccr 86 | CNC(=O)[C@@H](NC(=O)C=C(C)C)[C@@H](C)O,[0],,0,ccr 87 | Cc1ncc(C(=O)NCC(C)(C)O)s1,[0],,0,ccr 88 | Cc1ccc(C)c(NC(=O)c2ccco2)c1,[0],,0,ccr 89 | CC[C@H](NC(=O)CN(C)C(C)=O)C(N)=O,[0],,0,ccr 90 | CNC(=O)[C@@H](NC(=O)C1CNC1)[C@@H](C)O,[0],,0,ccr 91 | CC[C@H](NC(=O)[C@@H](N)C(C)C)C(=O)NC,[0],,0,ccr 92 | C=CCNS(=O)(=O)CCC(F)(F)F,[0],,0,ccr 93 | O=C(Nc1n[nH]c(C2CC2)n1)c3ccc[nH]3,[0],,0,ccr 94 | CNC(=O)C(C)(C)NC(=O)[C@@H](N)[C@@H](C)O,[0],,0,ccr 95 | CNC(=O)[C@H](NC(=O)C(O)CN)C(C)C,[0],,0,ccr 96 | CNC(=O)[C@H](C)N(C)C(=O)CCNOC,[0],,0,ccr 97 | CC(C)(C)NC(=O)c1cnc2[nH]ccc2c1,[0],,0,ccr 98 | C=CCCC(=O)Nc1cccc(C#N)c1F,[0],,0,ccr 99 | CC(C)(C)c1cc(NS(C)(=O)=O)no1,[0],,0,ccr 100 | CN(C)S(=O)(=O)NCCc1c[nH]cn1,[0],,0,ccr 101 | C=CCC(C)(C)C(=O)NCc1ccccn1,"[[-4.7, -4.6, -4.6, -4.5, -4.5, -4.5, -4.4, -4.4, -4.4], [-5.1, -5.1, -5.1, -5.1, -5.0, -4.9, -4.9, -4.9, -4.9], [-7.1, -7.0, -7.0, -6.9, -6.9, -6.9, -6.9, -6.9, -6.9], [-7.4, -7.4, -7.3, -7.3, -7.3, -7.3, -7.2, -7.2, -7.2], [-5.6, -5.5, -5.4, -5.4, -5.4, -5.4, -5.3, -5.3, -5.3], [-4.7, -4.6, -4.6, -4.6, -4.6, -4.6, -4.5, -4.5, -4.5], [-6.3, -6.1, -6.0, -6.0, -6.0, -6.0, -6.0, -5.9, -5.9], [-5.4, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0], [-5.9, -5.9, -5.9, -5.9, -5.8, -5.8, -5.8, -5.8, -5.7], [-6.0, -6.0, -5.8, -5.8, -5.8, -5.8, -5.8, -5.7, -5.7], [-7.1, -7.0, -7.0, -7.0, -6.9, -6.9, -6.8, -6.7, -6.7], [-6.9, -6.8, -6.8, -6.7, -6.7, -6.7, -6.7, -6.7, -6.7], [-6.0, -6.0, -5.9, -5.9, -5.8, -5.8, -5.8, -5.7, -5.7], [-7.0, -6.8, -6.8, -6.4, -6.3, -6.3, -6.2, -6.2, -6.2], [-5.9, -5.7, -5.5, -5.5, -5.5, -5.5, -5.4, -5.4, -5.4], [-4.6, -4.5, -4.5, -4.5, -4.5, -4.4, -4.4, -4.4, -4.4], [-5.3, -5.1, -5.1, -5.0, -5.0, -4.9, -4.9, -4.8, -4.8], [-5.5, -5.0, -5.0, -5.0, -5.0, -5.0, -4.9, -4.9, -4.9], [-6.3, -6.2, -6.2, -6.2, -6.2, -6.0, -5.9, -5.9, -5.9], [-6.4, -6.3, -6.2, -6.2, -6.2, -6.2, -6.1, -6.1, -6.1], [-4.6, -4.5, -4.5, -4.4, -4.4, -4.4, -4.3, -4.3, -4.3], [-5.1, -4.9, -4.9, -4.8, -4.8, -4.8, -4.7, -4.7, -4.7], [-7.4, -7.4, -7.2, -7.1, -7.1, -7.1, -7.0, -7.0, -6.7], [-5.9, -5.8, -5.7, -5.7, -5.7, -5.6, -5.6, -5.6, -5.5], [-5.6, -5.5, -5.5, -5.4, -5.4, -5.4, -5.3, -5.3, -5.3], [-4.8, -4.8, -4.8, -4.7, -4.6, -4.6, -4.6, -4.6, -4.5], [-5.1, -5.1, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -4.9], [-6.5, -6.4, -6.4, -6.4, -6.3, -6.3, -6.2, -6.1, -6.1], [-4.6, -4.5, -4.5, -4.5, -4.4, -4.4, -4.4, -4.4, -4.4], [-5.4, -5.0, -5.0, -5.0, -5.0, -4.9, -4.9, -4.9, -4.8], [-6.2, -6.2, -6.1, -6.1, -5.9, -5.9, -5.8, -5.8, -5.7], [-7.4, -7.3, -7.3, -7.3, -7.1, -7.1, -7.1, -7.0, -6.9], [-4.3, -4.3, -4.3, -4.3, -4.3, -4.2, -4.2, -4.2, -4.2], [-5.4, -5.2, -5.2, -5.2, -5.2, -5.1, -5.1, -5.0, -5.0], [-5.5, -5.4, -5.4, -5.4, -5.4, -5.4, -5.3, -5.3, -5.3], [-5.9, -5.9, -5.9, -5.9, -5.9, -5.9, -5.9, -5.9, -5.9], [-7.5, -7.3, -7.1, -7.1, -7.0, -7.0, -7.0, -6.9, -6.9], [-6.6, -6.5, -6.4, -6.4, -6.4, -6.3, -6.3, -6.3, -6.3], [-5.9, -5.8, -5.8, -5.8, -5.8, -5.7, -5.7, -5.7, -5.7], [-4.3, -4.3, -4.2, -4.2, -4.1, -4.1, -4.1, -4.1, -4.1], [-5.6, -5.5, -5.5, -5.4, -5.4, -5.3, -5.2, -5.2, -5.2], [-7.2, -7.2, -7.2, -7.1, -7.1, -7.0, -7.0, -7.0, -6.9], [-5.9, -5.7, -5.6, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5], [-5.2, -5.2, -5.1, -5.0, -5.0, -5.0, -5.0, -5.0, -4.9], [-6.1, -5.9, -5.7, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5], [-5.7, -5.7, -5.7, -5.7, -5.7, -5.7, -5.6, -5.5, -5.5], [-7.1, -7.0, -7.0, -6.9, -6.9, -6.9, -6.9, -6.8, -6.7], [-5.8, -5.8, -5.8, -5.7, -5.7, -5.7, -5.6, -5.6, -5.6], [-6.8, -6.6, -6.6, -6.6, -6.6, -6.6, -6.5, -6.5, -6.5], [-5.5, -5.4, -5.4, -5.4, -5.3, -5.3, -5.3, -5.3, -5.3], [-5.7, -5.6, -5.5, -5.4, -5.4, -5.4, -5.3, -5.3, -5.3], [-5.3, -5.3, -5.2, -5.2, -5.2, -5.2, -5.2, -5.2, -5.2], [-5.3, -5.2, -5.1, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0], [-6.3, -6.2, -6.1, -6.1, -6.1, -6.0, -6.0, -6.0, -6.0], [-5.0, -5.0, -4.9, -4.9, -4.8, -4.8, -4.7, -4.7, -4.7], [-6.3, -6.1, -6.1, -6.0, -6.0, -6.0, -5.9, -5.9, -5.9], [-6.3, -6.2, -6.2, -6.1, -6.1, -6.0, -6.0, -6.0, -6.0], [-4.6, -4.6, -4.6, -4.6, -4.6, -4.6, -4.5, -4.5, -4.5], [-5.9, -5.9, -5.8, -5.8, -5.8, -5.7, -5.7, -5.7, -5.6], [-7.4, -7.4, -7.2, -7.1, -7.1, -7.0, -6.9, -6.9, -6.7], [-6.9, -6.8, -6.7, -6.7, -6.6, -6.6, -6.6, -6.6, -6.5], [-7.3, -7.3, -7.3, -7.3, -7.2, -7.1, -7.1, -7.0, -7.0], [-6.2, -5.9, -5.8, -5.7, -5.7, -5.7, -5.7, -5.6, -5.6], [-7.2, -7.2, -7.2, -7.2, -7.1, -7.1, -7.0, -7.0, -6.9], [-6.4, -6.3, -6.2, -6.2, -6.2, -6.1, -6.1, -6.1, -6.0], [-5.9, -5.8, -5.7, -5.7, -5.7, -5.6, -5.6, -5.6, -5.6], [-5.8, -5.8, -5.8, -5.7, -5.7, -5.7, -5.7, -5.7, -5.7], [-5.0, -4.9, -4.9, -4.8, -4.8, -4.7, -4.7, -4.7, -4.7], [-5.9, -5.9, -5.9, -5.8, -5.7, -5.7, -5.7, -5.7, -5.6], [-5.7, -5.6, -5.5, -5.5, -5.4, -5.4, -5.4, -5.4, -5.4], [-5.6, -5.4, -5.4, -5.4, -5.4, -5.4, -5.4, -5.4, -5.4], [-7.3, -7.2, -7.2, -7.2, -7.1, -7.1, -7.0, -7.0, -7.0], [-6.6, -6.4, -6.3, -6.3, -6.3, -6.3, -6.3, -6.3, -6.3], [-4.5, -4.4, -4.4, -4.3, -4.3, -4.3, -4.3, -4.3, -4.3], [-5.9, -5.9, -5.7, -5.7, -5.7, -5.7, -5.6, -5.6, -5.6], [-6.3, -5.8, -5.8, -5.8, -5.8, -5.8, -5.8, -5.7, -5.7], [-7.0, -7.0, -6.9, -6.8, -6.8, -6.8, -6.7, -6.7, -6.6], [-5.1, -5.1, -5.1, -5.1, -5.0, -5.0, -5.0, -5.0, -5.0], [-5.3, -5.2, -5.0, -4.9, -4.9, -4.9, -4.9, -4.8, -4.8], [-6.9, -6.9, -6.8, -6.7, -6.7, -6.6, -6.6, -6.5, -6.5], [-6.0, -6.0, -5.9, -5.9, -5.9, -5.8, -5.8, -5.8, -5.8], [-8.4, -8.0, -7.8, -7.7, -7.7, -7.5, -7.4, -7.4, -7.4], [-6.2, -6.2, -6.1, -6.0, -6.0, -5.9, -5.8, -5.7, -5.6], [-5.7, -5.5, -5.5, -5.5, -5.5, -5.4, -5.4, -5.4, -5.4], [-6.8, -6.7, -6.7, -6.7, -6.6, -6.6, -6.6, -6.5, -6.5], [-5.3, -5.3, -5.3, -5.2, -5.2, -5.2, -5.2, -5.2, -5.1], [-5.9, -5.9, -5.8, -5.8, -5.7, -5.7, -5.7, -5.7, -5.7], [-7.1, -6.9, -6.8, -6.5, -6.5, -6.5, -6.3, -6.2, -6.1], [-5.4, -5.2, -5.2, -5.2, -5.2, -5.1, -5.1, -5.0, -5.0], [-5.0, -5.0, -4.9, -4.9, -4.9, -4.9, -4.8, -4.8, -4.7], [-4.7, -4.7, -4.6, -4.6, -4.6, -4.6, -4.5, -4.5, -4.5], [-6.0, -5.7, -5.6, -5.5, -5.5, -5.4, -5.3, -5.3, -5.3], [-4.4, -4.4, -4.3, -4.3, -4.3, -4.3, -4.3, -4.3, -4.3], [-5.4, -5.2, -5.1, -5.1, -5.0, -5.0, -5.0, -5.0, -4.9], [-6.0, -5.8, -5.8, -5.7, -5.6, -5.6, -5.6, -5.6, -5.6], [-5.0, -5.0, -4.9, -4.9, -4.9, -4.9, -4.9, -4.8, -4.8], [-5.7, -5.6, -5.5, -5.5, -5.5, -5.5, -5.4, -5.4, -5.4], [-4.9, -4.8, -4.8, -4.8, -4.8, -4.7, -4.7, -4.7, -4.6], [-5.9, -5.7, -5.5, -5.5, -5.5, -5.5, -5.5, -5.4, -5.4], [-8.4, -8.0, -7.8, -7.7, -7.7, -7.7, -7.6, -7.6, -7.5], [-6.1, -6.0, -6.0, -6.0, -5.9, -5.9, -5.9, -5.9, -5.9], [-7.3, -7.1, -6.8, -6.8, -6.8, -6.8, -6.8, -6.7, -6.7], [-5.7, -5.7, -5.6, -5.6, -5.5, -5.5, -5.5, -5.5, -5.5], [-6.9, -6.8, -6.7, -6.7, -6.7, -6.7, -6.6, -6.6, -6.6], [-7.1, -7.1, -7.1, -7.1, -7.0, -7.0, -6.9, -6.9, -6.8], [-6.1, -6.1, -6.0, -6.0, -6.0, -6.0, -5.9, -5.9, -5.9], [-5.1, -5.1, -5.0, -5.0, -4.9, -4.9, -4.9, -4.9, -4.9], [-6.9, -6.8, -6.8, -6.8, -6.8, -6.8, -6.7, -6.7, -6.6], [-6.0, -5.7, -5.7, -5.5, -5.4, -5.4, -5.4, -5.4, -5.4], [-6.3, -6.2, -6.1, -6.1, -6.1, -6.0, -6.0, -6.0, -6.0], [-5.9, -5.8, -5.8, -5.8, -5.8, -5.7, -5.7, -5.7, -5.7], [-5.6, -5.5, -5.5, -5.5, -5.4, -5.4, -5.3, -5.3, -5.3], [-5.6, -5.4, -5.4, -5.4, -5.3, -5.2, -5.2, -5.2, -5.2], [-7.2, -7.2, -7.2, -7.1, -7.1, -7.0, -7.0, -6.9, -6.9], [-5.9, -5.6, -5.5, -5.4, -5.4, -5.4, -5.3, -5.3, -5.3], [-5.1, -5.1, -5.0, -5.0, -4.9, -4.9, -4.9, -4.9, -4.9], [-5.8, -5.8, -5.7, -5.7, -5.6, -5.6, -5.5, -5.5, -5.5], [-7.2, -7.0, -7.0, -6.9, -6.9, -6.8, -6.8, -6.8, -6.7], [-4.6, -4.6, -4.6, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5], [-5.5, -5.4, -5.4, -5.3, -5.3, -5.3, -5.3, -5.2, -5.2], [-5.4, -5.4, -5.2, -5.2, -5.1, -5.1, -5.1, -5.0, -5.0], [-5.0, -4.9, -4.8, -4.7, -4.7, -4.6, -4.6, -4.6, -4.6], [-6.9, -6.9, -6.8, -6.8, -6.8, -6.7, -6.6, -6.6, -6.5], [-6.0, -5.9, -5.9, -5.9, -5.8, -5.8, -5.8, -5.8, -5.7], [-5.6, -5.2, -5.2, -5.1, -5.1, -5.0, -5.0, -5.0, -5.0], [-4.9, -4.6, -4.6, -4.6, -4.6, -4.6, -4.6, -4.5, -4.5], [-5.4, -5.0, -5.0, -5.0, -4.9, -4.9, -4.9, -4.9, -4.9], [-6.3, -6.2, -6.2, -6.2, -6.2, -6.1, -6.1, -6.0, -6.0], [-5.5, -5.4, -5.4, -5.4, -5.4, -5.4, -5.4, -5.4, -5.3], [-5.1, -5.0, -4.9, -4.9, -4.8, -4.8, -4.8, -4.7, -4.7], [-6.0, -5.8, -5.7, -5.7, -5.7, -5.6, -5.6, -5.6, -5.5], [-5.9, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.4, -5.4], [-6.0, -6.0, -5.9, -5.8, -5.7, -5.7, -5.6, -5.6, -5.6], [-5.3, -5.1, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -4.9], [-5.3, -5.3, -5.2, -5.1, -5.1, -5.1, -5.1, -5.1, -5.0], [-6.8, -6.8, -6.6, -6.6, -6.6, -6.6, -6.6, -6.5, -6.5], [-4.8, -4.8, -4.8, -4.7, -4.6, -4.6, -4.6, -4.6, -4.6], [-6.4, -6.3, -6.2, -6.2, -6.2, -6.1, -6.1, -6.1, -6.0], [-6.2, -6.1, -6.1, -6.0, -6.0, -5.9, -5.9, -5.9, -5.9], [-6.4, -6.3, -6.2, -6.2, -6.2, -6.2, -6.1, -6.0, -6.0], [-6.3, -6.1, -6.1, -6.1, -6.1, -6.1, -6.1, -6.0, -6.0], [-5.0, -4.8, -4.8, -4.8, -4.7, -4.7, -4.7, -4.7, -4.7], [-5.9, -5.8, -5.7, -5.6, -5.6, -5.6, -5.6, -5.5, -5.5], [-7.3, -6.9, -6.9, -6.8, -6.8, -6.7, -6.7, -6.7, -6.7], [-5.7, -5.6, -5.6, -5.5, -5.5, -5.5, -5.4, -5.4, -5.4], [-5.0, -4.9, -4.8, -4.8, -4.8, -4.7, -4.7, -4.7, -4.7], [-6.3, -6.1, -6.1, -6.1, -6.0, -6.0, -6.0, -6.0, -5.9], [-5.7, -5.3, -5.2, -5.1, -5.1, -5.1, -5.1, -5.0, -5.0], [-5.6, -5.5, -5.3, -5.3, -5.3, -5.3, -5.3, -5.2, -5.2], [-6.6, -6.4, -6.4, -6.4, -6.3, -6.3, -6.3, -6.3, -6.3], [-6.5, -6.4, -6.4, -6.4, -6.4, -6.3, -6.3, -6.3, -6.2], [-4.7, -4.7, -4.6, -4.6, -4.5, -4.5, -4.5, -4.5, -4.5], [-6.1, -6.1, -6.1, -6.1, -6.1, -6.0, -5.9, -5.9, -5.9], [-7.0, -6.9, -6.8, -6.8, -6.8, -6.7, -6.7, -6.7, -6.6], [-5.6, -5.4, -5.3, -5.3, -5.2, -5.2, -5.2, -5.1, -5.1], [-7.3, -7.1, -7.0, -7.0, -6.8, -6.6, -6.6, -6.6, -6.6], [-6.0, -5.9, -5.8, -5.8, -5.7, -5.7, -5.7, -5.7, -5.6], [-6.3, -6.2, -6.1, -6.1, -6.1, -6.1, -6.0, -6.0, -6.0], [-6.5, -6.3, -6.3, -6.2, -6.2, -6.1, -6.0, -6.0, -6.0], [-6.4, -6.3, -6.2, -6.2, -6.2, -6.1, -6.1, -6.1, -6.0], [-5.3, -5.2, -5.2, -5.2, -5.1, -5.1, -5.0, -5.0, -5.0], [-6.1, -6.0, -6.0, -6.0, -6.0, -5.9, -5.9, -5.8, -5.8], [-7.5, -7.3, -7.2, -7.2, -7.2, -7.2, -7.2, -7.1, -7.1], [-6.3, -6.1, -6.0, -6.0, -6.0, -6.0, -5.9, -5.9, -5.9], [-5.7, -5.6, -5.5, -5.5, -5.5, -5.4, -5.4, -5.4, -5.4], [-7.4, -7.4, -7.2, -7.1, -7.1, -7.0, -6.9, -6.9, -6.6], [-6.6, -6.2, -6.1, -6.1, -6.0, -6.0, -6.0, -6.0, -5.9], [-5.2, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0], [-7.1, -6.9, -6.9, -6.9, -6.8, -6.8, -6.7, -6.7, -6.7], [-4.3, -4.2, -4.2, -4.1, -4.1, -4.1, -4.1, -4.1, -4.0], [-5.0, -4.9, -4.6, -4.6, -4.6, -4.6, -4.6, -4.6, -4.5], [-5.0, -4.8, -4.7, -4.7, -4.6, -4.6, -4.6, -4.6, -4.6], [-4.7, -4.6, -4.6, -4.5, -4.5, -4.5, -4.4, -4.4, -4.4], [-5.3, -5.1, -5.0, -5.0, -5.0, -4.9, -4.9, -4.9, -4.9], [-7.0, -6.8, -6.8, -6.5, -6.3, -6.3, -6.2, -6.2, -6.2], [-6.1, -6.1, -6.0, -6.0, -5.9, -5.9, -5.9, -5.9, -5.9], [-5.7, -5.6, -5.5, -5.5, -5.5, -5.5, -5.5, -5.4, -5.4], [-7.3, -7.1, -7.0, -6.8, -6.8, -6.8, -6.7, -6.7, -6.6], [-5.3, -5.2, -5.1, -5.1, -5.1, -5.1, -5.1, -5.0, -5.0], [-7.0, -6.8, -6.8, -6.4, -6.3, -6.3, -6.2, -6.2, -6.2], [-4.9, -4.9, -4.9, -4.9, -4.8, -4.8, -4.7, -4.7, -4.7], [-5.3, -5.2, -5.2, -5.2, -5.1, -5.1, -5.1, -5.1, -5.1], [-5.7, -5.7, -5.6, -5.5, -5.5, -5.5, -5.4, -5.4, -5.4], [-4.7, -4.7, -4.7, -4.7, -4.6, -4.6, -4.6, -4.6, -4.6], [-7.3, -7.3, -7.3, -7.3, -7.2, -7.2, -7.2, -7.1, -7.1], [-6.6, -6.4, -6.3, -6.1, -6.1, -6.0, -6.0, -6.0, -6.0], [-4.9, -4.9, -4.9, -4.8, -4.8, -4.8, -4.8, -4.8, -4.7], [-5.7, -5.7, -5.5, -5.5, -5.5, -5.5, -5.5, -5.4, -5.4], [-4.7, -4.7, -4.6, -4.6, -4.5, -4.4, -4.4, -4.4, -4.4], [-5.3, -5.3, -5.2, -5.2, -5.2, -5.2, -5.2, -5.2, -5.2], [-7.1, -7.0, -6.9, -6.9, -6.8, -6.8, -6.8, -6.8, -6.7], [-5.2, -5.1, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -4.9], [-4.4, -4.4, -4.4, -4.4, -4.3, -4.3, -4.3, -4.3, -4.3], [-6.6, -6.5, -6.4, -6.4, -6.4, -6.4, -6.4, -6.3, -6.3], [-5.9, -5.8, -5.7, -5.7, -5.6, -5.6, -5.6, -5.6, -5.6], [-5.4, -5.4, -5.4, -5.3, -5.2, -5.2, -5.2, -5.1, -5.1], [-6.7, -6.4, -6.4, -6.4, -6.3, -6.2, -6.2, -6.2, -6.2], [-7.3, -7.1, -7.1, -7.0, -6.8, -6.8, -6.7, -6.6, -6.6], [-5.9, -5.8, -5.7, -5.7, -5.6, -5.6, -5.6, -5.6, -5.6], [-5.4, -5.3, -5.3, -5.2, -5.2, -5.2, -5.1, -5.1, -5.1], [-6.5, -6.3, -6.2, -6.2, -6.2, -6.1, -6.0, -6.0, -6.0], [-5.4, -5.4, -5.4, -5.4, -5.4, -5.3, -5.3, -5.3, -5.3], [-6.2, -6.1, -6.1, -6.1, -6.0, -6.0, -6.0, -5.9, -5.9], [-6.2, -6.1, -6.0, -6.0, -5.9, -5.9, -5.9, -5.9, -5.9], [-5.4, -5.4, -5.3, -5.3, -5.3, -5.3, -5.3, -5.2, -5.2], [-6.0, -5.9, -5.9, -5.8, -5.8, -5.7, -5.7, -5.7, -5.6], [-5.3, -5.2, -5.2, -5.2, -5.1, -5.1, -5.1, -5.1, -5.1], [-6.2, -6.1, -6.1, -6.0, -6.0, -6.0, -5.9, -5.9, -5.9], [-7.3, -7.2, -7.2, -7.2, -7.1, -7.1, -7.0, -6.9, -6.9], [-6.2, -6.2, -6.2, -6.1, -6.1, -6.0, -6.0, -5.9, -5.8], [-6.1, -6.0, -5.9, -5.8, -5.8, -5.8, -5.8, -5.8, -5.8], [-5.8, -5.4, -5.4, -5.4, -5.4, -5.4, -5.3, -5.3, -5.3], [-6.5, -6.3, -6.1, -6.0, -6.0, -5.9, -5.9, -5.9, -5.9], [-4.9, -4.8, -4.8, -4.6, -4.6, -4.6, -4.6, -4.6, -4.6], [-5.0, -4.9, -4.8, -4.7, -4.7, -4.7, -4.7, -4.7, -4.7], [-5.4, -5.3, -5.1, -5.1, -5.0, -5.0, -4.9, -4.8, -4.8], [-6.8, -6.8, -6.7, -6.7, -6.7, -6.6, -6.6, -6.6, -6.5], [-8.4, -8.0, -7.7, -7.7, -7.7, -7.7, -7.5, -7.4, -7.4], [-6.1, -5.9, -5.7, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5], [-6.0, -5.9, -5.8, -5.7, -5.7, -5.7, -5.7, -5.6, -5.6], [-5.7, -5.7, -5.6, -5.6, -5.6, -5.6, -5.6, -5.6, -5.6], [-7.1, -6.9, -6.6, -6.5, -6.5, -6.5, -6.5, -6.5, -6.4], [-5.1, -5.1, -5.0, -5.0, -4.9, -4.9, -4.9, -4.9, -4.9], [-5.4, -5.1, -5.0, -5.0, -4.9, -4.9, -4.8, -4.8, -4.8], [-6.1, -6.0, -5.9, -5.9, -5.9, -5.8, -5.8, -5.8, -5.8], [-4.9, -4.9, -4.8, -4.8, -4.8, -4.7, -4.7, -4.7, -4.7], [-7.2, -7.1, -7.1, -7.1, -7.1, -7.0, -6.9, -6.9, -6.9], [-6.0, -5.7, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5, -5.4], [-6.1, -6.1, -6.0, -6.0, -5.9, -5.9, -5.9, -5.9, -5.9], [-6.5, -6.2, -6.2, -6.1, -6.0, -6.0, -6.0, -6.0, -6.0], [-5.6, -5.5, -5.4, -5.4, -5.4, -5.4, -5.4, -5.4, -5.4], [-4.5, -4.5, -4.5, -4.5, -4.4, -4.4, -4.4, -4.3, -4.3], [-5.2, -5.1, -5.1, -5.0, -5.0, -5.0, -5.0, -5.0, -4.9], [-5.9, -5.9, -5.9, -5.9, -5.8, -5.8, -5.8, -5.7, -5.7], [-5.9, -5.9, -5.9, -5.8, -5.8, -5.8, -5.7, -5.7, -5.7], [-4.6, -4.5, -4.5, -4.4, -4.4, -4.4, -4.4, -4.3, -4.3], [-6.2, -6.2, -6.2, -6.1, -6.0, -5.9, -5.9, -5.8, -5.8], [-7.4, -7.4, -7.2, -7.1, -7.1, -7.0, -6.9, -6.9, -6.7], [-5.9, -5.8, -5.8, -5.7, -5.7, -5.7, -5.6, -5.6, -5.6], [-5.9, -5.9, -5.8, -5.6, -5.6, -5.6, -5.5, -5.5, -5.5], [-6.7, -6.4, -6.4, -6.3, -6.3, -6.3, -6.3, -6.2, -6.2], [-4.7, -4.7, -4.7, -4.6, -4.6, -4.6, -4.5, -4.5, -4.5], [-5.2, -5.1, -5.1, -5.1, -5.1, -5.1, -5.1, -5.0, -5.0], [-7.2, -7.0, -6.9, -6.9, -6.9, -6.8, -6.8, -6.8, -6.7], [-6.0, -6.0, -6.0, -6.0, -6.0, -5.9, -5.9, -5.9, -5.8], [-6.3, -6.1, -6.1, -6.1, -6.1, -6.0, -6.0, -6.0, -6.0], [-5.9, -5.7, -5.6, -5.5, -5.5, -5.5, -5.4, -5.4, -5.3], [-4.9, -4.8, -4.8, -4.7, -4.7, -4.7, -4.7, -4.6, -4.6], [-6.0, -6.0, -6.0, -5.9, -5.9, -5.9, -5.8, -5.8, -5.8], [-7.0, -6.8, -6.8, -6.4, -6.3, -6.3, -6.2, -6.2, -6.2], [-6.0, -5.9, -5.8, -5.8, -5.8, -5.8, -5.8, -5.8, -5.8], [-5.5, -5.5, -5.4, -5.3, -5.3, -5.3, -5.3, -5.3, -5.3], [-7.6, -7.3, -7.2, -7.1, -7.1, -7.0, -7.0, -7.0, -7.0], [-7.3, -7.1, -7.0, -7.0, -6.9, -6.8, -6.7, -6.7, -6.6], [-5.6, -5.5, -5.5, -5.5, -5.5, -5.4, -5.4, -5.4, -5.4], [-5.4, -5.3, -5.2, -5.2, -5.1, -5.1, -5.1, -5.0, -5.0], [-5.2, -4.8, -4.8, -4.8, -4.7, -4.7, -4.7, -4.6, -4.6], [-5.9, -5.9, -5.9, -5.8, -5.8, -5.7, -5.7, -5.7, -5.7], [-7.5, -7.3, -7.3, -7.3, -7.3, -7.2, -7.2, -7.2, -7.2], [-6.5, -6.2, -6.2, -6.1, -6.1, -6.1, -6.0, -6.0, -6.0], [-5.5, -5.4, -5.3, -5.3, -5.2, -5.2, -5.1, -5.1, -5.1], [-4.7, -4.7, -4.6, -4.6, -4.6, -4.5, -4.5, -4.5, -4.5], [-6.0, -5.9, -5.9, -5.9, -5.8, -5.8, -5.8, -5.8, -5.8], [-5.4, -5.1, -5.0, -5.0, -4.9, -4.9, -4.8, -4.8, -4.8], [-6.2, -6.2, -6.2, -6.2, -6.1, -6.0, -6.0, -6.0, -6.0], [-5.2, -5.2, -5.2, -5.2, -5.2, -5.2, -5.1, -5.1, -5.1], [-5.7, -5.5, -5.4, -5.4, -5.4, -5.4, -5.4, -5.4, -5.4], [-5.4, -5.4, -5.3, -5.3, -5.3, -5.3, -5.3, -5.2, -5.2], [-4.9, -4.9, -4.8, -4.8, -4.8, -4.8, -4.8, -4.7, -4.7], [-5.1, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -4.9], [-6.2, -6.2, -6.2, -6.2, -6.1, -6.1, -6.1, -6.1, -6.1], [-5.5, -5.4, -5.4, -5.4, -5.4, -5.3, -5.3, -5.3, -5.3], [-5.3, -5.2, -5.1, -5.1, -5.1, -5.1, -5.1, -5.1, -5.1], [-7.1, -6.9, -6.8, -6.5, -6.5, -6.5, -6.4, -6.3, -6.2], [-5.2, -5.1, -5.1, -5.1, -5.0, -5.0, -5.0, -5.0, -4.9], [-4.7, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5, -4.4, -4.4], [-6.1, -6.0, -6.0, -6.0, -6.0, -6.0, -6.0, -5.9, -5.9], [-5.8, -5.7, -5.7, -5.7, -5.6, -5.6, -5.5, -5.5, -5.5], [-5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -4.9], [-5.9, -5.9, -5.8, -5.8, -5.8, -5.8, -5.8, -5.7, -5.7], [-5.3, -5.2, -5.1, -5.1, -5.1, -5.1, -5.1, -5.1, -5.1], [-6.2, -6.2, -6.2, -6.2, -6.0, -6.0, -6.0, -6.0, -6.0], [-6.2, -6.2, -6.2, -6.2, -6.1, -6.1, -6.0, -6.0, -6.0], [-6.4, -6.2, -6.2, -6.2, -6.0, -6.0, -6.0, -6.0, -6.0], [-7.1, -6.9, -6.6, -6.5, -6.5, -6.5, -6.5, -6.2, -6.1], [-5.8, -5.7, -5.7, -5.7, -5.7, -5.6, -5.6, -5.6, -5.6], [-5.7, -5.5, -5.5, -5.4, -5.4, -5.4, -5.3, -5.3, -5.3], [-6.1, -6.1, -6.1, -6.1, -6.0, -6.0, -6.0, -5.9, -5.9], [-5.7, -5.6, -5.6, -5.6, -5.6, -5.5, -5.5, -5.5, -5.4], [-5.4, -5.4, -5.4, -5.3, -5.3, -5.3, -5.3, -5.2, -5.2], [-5.4, -5.3, -5.2, -5.2, -5.2, -5.1, -5.1, -5.1, -5.1], [-5.2, -5.2, -5.2, -5.1, -5.1, -5.1, -5.1, -5.0, -5.0], [-5.3, -5.1, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -4.9], [-6.0, -6.0, -5.9, -5.9, -5.8, -5.8, -5.8, -5.8, -5.8], [-5.3, -5.1, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -4.9], [-4.4, -4.4, -4.3, -4.3, -4.3, -4.2, -4.2, -4.2, -4.1], [-5.9, -5.8, -5.8, -5.8, -5.8, -5.8, -5.7, -5.7, -5.7], [-6.5, -6.2, -6.2, -6.1, -6.0, -6.0, -6.0, -6.0, -6.0], [-6.9, -6.9, -6.8, -6.7, -6.7, -6.7, -6.7, -6.7, -6.6], [-5.4, -5.4, -5.3, -5.3, -5.3, -5.3, -5.3, -5.2, -5.2], [-5.7, -5.7, -5.7, -5.7, -5.6, -5.6, -5.5, -5.5, -5.4], [-5.0, -4.9, -4.8, -4.7, -4.7, -4.7, -4.6, -4.6, -4.6], [-5.3, -5.3, -5.2, -5.2, -5.2, -5.2, -5.2, -5.2, -5.2], [-6.6, -6.2, -6.2, -6.1, -6.1, -6.1, -6.1, -6.1, -6.0], [-7.5, -7.3, -7.3, -7.3, -7.2, -7.1, -7.1, -7.1, -7.1], [-5.3, -5.2, -5.2, -5.2, -5.1, -5.1, -5.1, -5.0, -5.0], [-4.8, -4.8, -4.7, -4.7, -4.7, -4.7, -4.7, -4.7, -4.6], [-5.8, -5.8, -5.7, -5.7, -5.7, -5.7, -5.7, -5.6, -5.6], [-5.0, -4.9, -4.9, -4.9, -4.8, -4.8, -4.8, -4.8, -4.8], [-6.9, -6.9, -6.8, -6.8, -6.8, -6.7, -6.7, -6.7, -6.7], [-7.6, -7.4, -7.3, -7.1, -7.1, -7.1, -7.1, -7.1, -7.0], [-5.3, -5.2, -5.2, -5.2, -5.2, -5.1, -5.1, -5.1, -5.0], [-5.4, -5.4, -5.3, -5.3, -5.3, -5.2, -5.2, -5.1, -5.1], [-5.1, -4.9, -4.9, -4.9, -4.9, -4.9, -4.9, -4.9, -4.9], [-5.1, -5.0, -5.0, -5.0, -5.0, -5.0, -4.9, -4.9, -4.9], [-6.0, -6.0, -6.0, -6.0, -5.9, -5.8, -5.8, -5.7, -5.7], [-5.6, -5.5, -5.5, -5.4, -5.4, -5.3, -5.3, -5.3, -5.3], [-4.9, -4.8, -4.8, -4.8, -4.7, -4.7, -4.7, -4.7, -4.7], [-5.3, -5.3, -5.2, -5.2, -5.1, -5.1, -5.1, -5.1, -5.1], [-6.0, -5.9, -5.9, -5.9, -5.8, -5.8, -5.8, -5.8, -5.8], [-6.1, -6.0, -6.0, -5.9, -5.9, -5.8, -5.8, -5.8, -5.8], [-6.9, -6.9, -6.7, -6.7, -6.7, -6.7, -6.7, -6.6, -6.6], [-5.5, -5.3, -5.3, -5.2, -5.1, -5.1, -5.1, -5.1, -5.0], [-5.3, -5.2, -5.2, -5.2, -5.2, -5.2, -5.1, -5.1, -5.0], [-5.8, -5.8, -5.7, -5.6, -5.6, -5.6, -5.5, -5.5, -5.5], [-7.0, -7.0, -7.0, -6.9, -6.9, -6.9, -6.9, -6.9, -6.8], [-6.1, -6.0, -5.9, -5.8, -5.8, -5.7, -5.7, -5.7, -5.7], [-6.0, -5.9, -5.9, -5.8, -5.8, -5.7, -5.7, -5.6, -5.6], [-6.1, -5.9, -5.7, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5], [-4.6, -4.5, -4.5, -4.4, -4.4, -4.3, -4.3, -4.3, -4.3], [-5.3, -5.2, -5.0, -5.0, -5.0, -5.0, -5.0, -4.9, -4.9], [-5.9, -5.7, -5.5, -5.5, -5.5, -5.5, -5.5, -5.4, -5.4], [-5.6, -5.5, -5.4, -5.4, -5.3, -5.3, -5.3, -5.1, -5.1], [-5.1, -4.9, -4.9, -4.9, -4.9, -4.9, -4.8, -4.7, -4.7], [-5.8, -5.8, -5.8, -5.7, -5.7, -5.7, -5.6, -5.6, -5.6], [-5.0, -4.8, -4.8, -4.8, -4.7, -4.7, -4.7, -4.7, -4.7], [-5.3, -5.2, -5.2, -5.1, -5.1, -5.1, -5.1, -5.0, -5.0], [-5.1, -5.0, -5.0, -4.9, -4.9, -4.9, -4.9, -4.9, -4.8], [-5.7, -5.6, -5.6, -5.5, -5.5, -5.5, -5.4, -5.4, -5.4], [-5.9, -5.9, -5.9, -5.8, -5.8, -5.7, -5.7, -5.7, -5.7], [-5.9, -5.8, -5.8, -5.8, -5.7, -5.7, -5.7, -5.7, -5.7], [-6.0, -5.9, -5.8, -5.7, -5.7, -5.7, -5.6, -5.6, -5.5], [-5.2, -5.1, -5.1, -5.1, -5.0, -5.0, -5.0, -5.0, -5.0], [-5.3, -5.2, -5.1, -5.1, -5.1, -5.1, -5.1, -5.1, -5.0], [-5.9, -5.8, -5.7, -5.7, -5.7, -5.7, -5.7, -5.7, -5.7], [-6.7, -6.4, -6.4, -6.3, -6.3, -6.3, -6.3, -6.2, -6.2], [-5.0, -5.0, -4.9, -4.9, -4.8, -4.8, -4.8, -4.8, -4.8], [-5.0, -4.9, -4.9, -4.9, -4.8, -4.8, -4.8, -4.7, -4.7], [-4.7, -4.7, -4.6, -4.5, -4.5, -4.5, -4.5, -4.5, -4.5], [-5.9, -5.8, -5.7, -5.7, -5.7, -5.6, -5.6, -5.6, -5.5], [-5.1, -5.1, -5.1, -5.1, -5.0, -5.0, -5.0, -5.0, -4.9], [-8.4, -8.2, -8.0, -7.8, -7.7, -7.7, -7.6, -7.6, -7.5], [-7.2, -7.2, -7.2, -7.2, -7.1, -7.1, -7.0, -7.0, -6.9], [-5.6, -5.5, -5.4, -5.4, -5.4, -5.3, -5.3, -5.3, -5.3], [-6.6, -6.4, -6.3, -6.2, -6.2, -6.1, -6.1, -6.1, -6.1], [-6.7, -6.5, -6.4, -6.3, -6.3, -6.3, -6.3, -6.3, -6.3], [-5.7, -5.7, -5.6, -5.5, -5.5, -5.5, -5.5, -5.5, -5.4], [-6.1, -6.1, -6.1, -6.1, -6.1, -6.1, -6.0, -6.0, -5.9], [-5.5, -5.4, -5.4, -5.4, -5.4, -5.3, -5.3, -5.2, -5.2], [-6.4, -6.3, -6.2, -6.2, -6.2, -6.2, -6.2, -6.2, -6.2], [-5.5, -5.5, -5.4, -5.4, -5.4, -5.4, -5.3, -5.3, -5.3], [-5.6, -5.5, -5.4, -5.4, -5.4, -5.2, -5.2, -5.2, -5.2], [-5.8, -5.8, -5.6, -5.6, -5.6, -5.6, -5.6, -5.6, -5.6], [-6.2, -6.1, -6.0, -5.9, -5.9, -5.9, -5.9, -5.9, -5.8], [-4.8, -4.8, -4.8, -4.7, -4.7, -4.7, -4.7, -4.7, -4.7], [-5.2, -5.2, -5.2, -5.1, -5.1, -5.1, -5.1, -5.1, -5.1], [-5.1, -5.0, -5.0, -5.0, -5.0, -4.9, -4.9, -4.8, -4.8], [-7.1, -7.0, -7.0, -6.9, -6.9, -6.8, -6.8, -6.8, -6.8], [-5.1, -5.0, -5.0, -5.0, -4.9, -4.9, -4.9, -4.9, -4.9], [-5.5, -5.2, -5.0, -5.0, -5.0, -5.0, -4.9, -4.9, -4.9], [-6.0, -5.8, -5.7, -5.7, -5.6, -5.6, -5.6, -5.5, -5.5], [-5.7, -5.7, -5.6, -5.5, -5.5, -5.5, -5.4, -5.4, -5.4], [-5.2, -5.1, -5.1, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0], [-5.8, -5.7, -5.6, -5.6, -5.6, -5.6, -5.6, -5.6, -5.6], [-6.4, -6.4, -6.3, -6.3, -6.3, -6.3, -6.2, -6.2, -6.2], [-5.2, -5.1, -5.1, -5.1, -5.0, -5.0, -5.0, -5.0, -5.0], [-5.0, -5.0, -4.8, -4.7, -4.7, -4.7, -4.6, -4.6, -4.6], [-4.5, -4.4, -4.4, -4.3, -4.3, -4.3, -4.3, -4.3, -4.2], [-7.2, -7.1, -7.1, -7.0, -7.0, -6.9, -6.9, -6.9, -6.8], [-4.8, -4.7, -4.7, -4.7, -4.6, -4.6, -4.6, -4.5, -4.5], [-5.6, -5.5, -5.5, -5.5, -5.5, -5.4, -5.4, -5.4, -5.4], [-7.2, -7.1, -7.1, -7.1, -6.9, -6.9, -6.9, -6.9, -6.9], [-7.2, -7.0, -6.8, -6.8, -6.8, -6.8, -6.8, -6.8, -6.7], [-6.1, -6.1, -6.1, -6.1, -6.1, -6.1, -6.0, -6.0, -6.0], [-4.9, -4.8, -4.8, -4.7, -4.7, -4.7, -4.6, -4.6, -4.6], [-6.1, -5.8, -5.8, -5.8, -5.7, -5.6, -5.6, -5.5, -5.5], [-5.9, -5.9, -5.8, -5.7, -5.7, -5.7, -5.7, -5.7, -5.7], [-5.1, -5.1, -5.1, -5.0, -5.0, -5.0, -5.0, -5.0, -4.9], [-5.2, -5.1, -5.1, -5.0, -5.0, -5.0, -5.0, -4.9, -4.9], [-5.5, -5.4, -5.3, -5.3, -5.3, -5.2, -5.2, -5.2, -5.2], [-6.5, -6.3, -6.3, -6.2, -6.2, -6.2, -6.1, -6.0, -6.0], [-5.9, -5.8, -5.7, -5.7, -5.7, -5.7, -5.6, -5.6, -5.6], [-5.5, -5.4, -5.4, -5.3, -5.3, -5.2, -5.2, -5.2, -5.2], [-6.9, -6.8, -6.7, -6.7, -6.7, -6.6, -6.6, -6.6, -6.6], [-5.1, -5.1, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0], [-5.5, -5.5, -5.4, -5.3, -5.2, -5.2, -5.2, -5.2, -5.2], [-6.1, -5.9, -5.7, -5.5, -5.5, -5.5, -5.5, -5.5, -5.5], [-5.0, -4.9, -4.8, -4.6, -4.6, -4.6, -4.6, -4.6, -4.6]]",,"[-8.4, -8.2, -8.0, -7.8, -7.7, -7.7, -7.6, -7.6, -7.5]",ccr 102 | -------------------------------------------------------------------------------- /examples/valid_smiles.txt: -------------------------------------------------------------------------------- 1 | CCCN(CCNC(=O)N=Nc1cc(F)c(F)c(F)c1)C1Cc2ccccc2C1 2 | COc1cc2c(cc1O)C(c1c(Cl)cccc1Cl)CNCC2 3 | COc1ccccc1N1CCN(CCCNC(=O)NN(Cc2ccccc2)c2ccccc2)CC1 4 | Clc1cccc(N2CCN(Cc3cccs3)CC2)c1Cl 5 | CCCN(CCCCNC(=O)c1cc2ccccc2[nH]1)CC1CC1c1ccc(F)cc1 6 | CCCN(CCCCNC(=O)C=Cc1ccc(F)cc1)C1Cc2ccccc2C1 7 | CN1CCc2ccccc2Cc2c([nH]c3ccccc23)CC1 8 | CNC(=O)CN1CN(c2ccccc2)C2(CCN(C(=O)OCc3cc4c(cc3Cl)OCO4)CC2)C1=O 9 | CCCN(CCC)CCc1cccc2c1CC(=O)N2 10 | CC(C)(C)OC(=O)NCC#Cc1ccc2c(c1)C=C([N+](=O)[O-])C(C(F)(F)F)O2 11 | COc1cc2c3c(c1O)-c1cc(N)ccc1CC3N(C)CC2 12 | O=[N+]([O-])C1=Cc2cc(I)ccc2OC1C(F)(F)F 13 | c1ccc(Cc2ccccc2OCCCN2CCCC2)cc1 14 | Oc1cc2ccccc2n1CCCCN1CCN(c2ccc(Cl)cc2)CC1 15 | O=C(O)c1ccc(C#Cc2ccc3c(c2)C=C([N+](=O)[O-])C(C(F)(F)F)O3)cc1 16 | Cn1c2ccccc2c(=O)c2c(=O)n(-c3ccccc3)c(CC3CCCCC3)nc21 17 | O=C1Cc2ccccc2N1CCCCN1CCN(c2cccc(C(F)(F)F)c2)CC1 18 | COc1ccc2c(c1)CCN(C)CCCc1ccccc1C2 19 | CN1CCCc2ccccc2Cc2ccc(O)cc2CC1 20 | COc1ccc(N(CCCCN2CCC(O)(c3ccc(Cl)c(C(F)(F)F)c3)CC2)c2ccc(OC)cc2)cc1 21 | Cc1ccc(N2CCN(CCCCc3ccc(F)cc3)CC2)nc1 22 | CN(CCCSc1nnc(-c2ccccc2)n1C)CC1CC1c1cc(F)ccc1OCCF 23 | Fc1ccc(OCCCN2CCN(c3ccc(Cl)cc3)CC2)cc1 24 | CN1CCc2ccccc2Cc2c(O)cccc2CC1 25 | O=c1c2ccccc2ncn1CCCCN1CCN(c2ccc(Cl)cc2)CC1 26 | Oc1ccc2c(c1)OC(CN1CCN(c3ccc(OCCF)cc3)CC1)CC2 27 | Cn1c2ccccc2c(=O)c2c(=O)n(-c3ccc(Cl)cc3)c(CC3CCCCC3)nc21 28 | O=C1c2ccccc2CN1CCCCN1CCN(c2ccccc2)CC1 29 | Clc1ccc(N2CCN(Cc3cccs3)CC2)cc1Cl 30 | Oc1ccc2c(c1)CCCNCCc1ccccc1C2 31 | Oc1ccc2c(N3CCN(CCCCOc4ccn5nccc5c4)CC3)ccc(O)c2n1 32 | CN1CCc2ccccc2Cc2c[nH]c3cccc(c23)CC1 33 | COc1cc2c(cc1O)C(c1ccccc1Br)CNCC2 34 | Fc1ccc(SCCCN2CCN(c3ccccn3)CC2)cc1 35 | COc1c(Cl)cc2c(c1Cl)Cc1ccccc1CCN(C)CC2 36 | CN1CCN(C2=Nc3cc(Cl)ccc3N(NC(=O)c3c(F)cccc3C(F)(F)F)c3ccccc32)CC1 37 | Cc1ccc(-n2c(CC3CCCCC3)nc3c(c(=O)c4ccccc4n3C)c2=O)cc1 38 | Cn1c2ccccc2c(=O)c2c(=O)n(-c3cccc(Cl)c3)c(C3CCCCC3)nc21 39 | COc1ccccc1N1CCN(CCCCNC(=O)N=Nc2ccc(F)cc2)CC1 40 | CCN(CCCCNC(=O)c1ccc2ccccc2c1)CC1CC1c1cc(F)ccc1OC 41 | OC1(c2ccc(Cl)cc2)CCN(CCCSc2ccc(F)cc2)CC1 42 | CC1=CC(C)=[N+]2C1=C(c1ccc(OCCCN3CCCCC3)cc1)c1c(C)cc(C)n1[B-]2(F)F 43 | COc1c(OCCF)cccc1C(O)C1CCN(CCc2ccc(F)cc2)CC1 44 | COc1ccccc1N1CCN(CCCCNC(=O)c2ccc3ccccc3c2)CC1 45 | CN(C)CCC=C1c2ccccc2Sc2ccc(Cl)cc21 46 | CCCCCCCN1CCC(c2cccc(O)c2)C1 47 | CN1CCc2c(c3cccc4c3n2-c2ccccc2CC4)C1 48 | OC1(c2ccc(Cl)c(C(F)(F)F)c2)CCN(CCCN(c2ccc(F)cc2)c2ccc(F)cc2)CC1 49 | O=C1C(=Nc2cccc(C(F)(F)F)c2)c2ccccc2N1c1cccc(OCCN2CCCC2)c1 50 | O=C(CCc1ccc(F)cc1)N1CCN(CCCC(c2ccc(F)cc2)c2ccc(F)cc2)CC1 51 | Cc1ncc2nccn2c1-c1ccc(Oc2nccc3occc23)cc1C(F)(F)F 52 | COc1ccccc1N1CCN(CCCCN2Cc3ccccc3C2=O)CC1 53 | Oc1ccc2c(c1)OC(CNCc1ccc(OCCCCF)cc1)CC2 54 | COc1ccc2c(c1)c1c(n2C)Cc2ccccc2CCN(C)CC1 55 | CN1CCN(C2=Nc3cc(Cl)ccc3Nc3ccccc32)CC1 56 | CCCN(CCCCNC(=O)c1ccc(-c2ccccn2)cc1)CC1CC1c1ccc(C(F)(F)F)cc1 57 | CN1CCCc2c([nH]c3ccccc23)Cc2ccccc2CC1 58 | O=C1c2ccccc2C(=O)N1CC#Cc1ccc2c(c1)C=C([N+](=O)[O-])C(C(F)(F)F)O2 59 | COc1cc2c(cc1O)C(c1c(Cl)cccc1Cl)CN(C)CC2 60 | CN1CCc2ccccc2Cc2[nH]c3ccccc3c2CC1CO 61 | CN1CCc2cccc3c2C1Cc1ccc(O)c(O)c1-3 62 | Oc1ccc(N2CCN(CCCCOc3ccn4nccc4c3)CC2)c2cccnc12 63 | CN1CCc2cc(O)ccc2Cc2[nH]c3ccccc3c2CC1 64 | Cc1ccc(N2CCN(CCCSc3ccc(F)cc3)CC2)nc1 65 | Fc1ccc(CCCCN2CCN(c3ncccn3)CC2)cc1 66 | Oc1ccc2c(c1)OC(CNCCN1CCN(c3ccc(I)cc3)CC1)CC2 67 | CN1CCc2ccccc2Cc2c(ccc(O)c2Cl)CC1 68 | N#Cc1ccc(CCOC(=O)N2CCN(CCCC(c3ccc(F)cc3)c3ccc(F)cc3)CC2)cc1 69 | Cc1nc2n(c(=O)c1CCN1CCC(c3noc4cc(F)ccc34)CC1)CCCC2 70 | O=C1c2ccccc2CN1CCCCN1CCN(c2ccc(Cl)cc2)CC1 71 | COc1ccccc1N1CCN(CCCCNC(=O)c2cc3ccccn3n2)CC1 72 | CCCN(CCCCNC(=O)c1ccc2ccccc2c1)CC1CC1c1cccc(Cl)c1Cl 73 | CC(=O)N1CCC(c2ccc(-c3cc(C(=O)O)cc4cc(-c5ccc(C(F)(F)F)cc5)ccc34)cc2)CC1 74 | COc1cc2c(cc1O)CCN1Cc3c(ccc(OC)c3OC)CC21 75 | Oc1ccc2c(c1)OC(CNCc1ccc(I)cc1)CC2 76 | CN1CCc2ccccc2Cc2[nH]c3ccccc3c2CC1 77 | OC1(c2ccc(Cl)c(C(F)(F)F)c2)CCN(CCCC(c2ccccc2)c2ccccc2)CC1 78 | CCOc1ccc(F)cc1C1CC1CN(CC)CCCSc1nnc(-c2ccccc2)n1C 79 | CN1CCCc2ccccc2Cc2cc(O)ccc2CC1 80 | CNCCCC12CCC(c3ccccc31)c1ccccc12 81 | OC1(c2ccc(Cl)c(C(F)(F)F)c2)CCN(CCCCN(c2ccc(F)cc2)c2ccc(F)cc2)CC1 82 | Clc1ccc(CN2CCOC(CCc3ccccc3)C2)cc1 83 | C=CCN1CCc2cc(OC)c(O)cc2C(c2ccccc2Br)C1 84 | CN1CCc2ccccc2Cc2ccn(C)c2CC1 85 | CN1CCc2ccccc2Cc2cc(O)c(Cl)cc2CC1 86 | COc1c(O)ccc2c1CN1CCc3cc4c(cc3C1C2)OCO4 87 | Cn1c(SCCCNCC2CC2c2cc(F)ccc2OCCF)nnc1-c1ccccc1 88 | C=CCN1CCc2cc(OC)c(O)cc2C(c2c(Cl)cccc2Cl)C1 89 | CN1CCc2ccccc2Cc2[nH]c3ccc(O)cc3c2CC1 90 | COc1cc2c(cc1O)C(c1ccccc1Br)CN(C)CC2 91 | COc1ccc2c(c1)CCN(C)CCc1ccccc1C2 92 | Fc1ccc(OCCCN2CCN(c3ccccn3)CC2)cc1 93 | CCCCCCCCN1CCC(c2cccc(O)c2)C1 94 | CN(C)CCC=C1c2ccccc2CCc2ccccc21 95 | COc1ccc(-n2c(C3CCCCC3)nc3c(c(=O)c4ccccc4n3C)c2=O)cc1Cl 96 | O=C1CCc2ccc(OCCCCN3CCN(c4ccc(O)c5ncccc45)CC3)cc2N1 97 | O=C1c2ccccc2S(=O)(=O)N1CCCCN1CCN(c2ccccc2)CC1 98 | CN(C)CCCN1c2ccccc2Sc2ccc(Cl)cc21 99 | Cc1cc(Oc2ncccc2OC(F)F)ccc1-c1c(C)c(=O)[nH]c(=O)n1C 100 | Cn1c2ccccc2c(=O)c2c(=O)n(-c3cccc(Cl)c3)c(CC3CCCCC3)nc21 101 | Oc1cc2c(cc1O)C1c3ccccc3CNC1CO2 102 | CN1CCc2cc(O)ccc2Cc2ccc(O)cc2CC1 103 | OC1(c2ccc(Cl)c(C(F)(F)F)c2)CCN(CCCC(c2ccc(F)cc2)c2ccc(F)cc2)CC1 104 | CN1CCc2c([nH]c3ccccc23)CC(c2ccccc2)CC1 105 | Oc1ccc2c(c1)OC(CN1CCN(c3ccc(I)cc3)CC1)CC2 106 | O=c1c2ccccc2ncn1CCCCN1CCN(c2cccc(C(F)(F)F)c2)CC1 107 | CCCN(CCNC(=O)C=Cc1ccc(F)cc1)C1Cc2ccccc2C1 108 | O=C(CCCN1CCC(O)(c2ccc(Cl)cc2)CC1)c1ccc(F)cc1 109 | O=C1CCc2ccc(OCCCCN3CCN(c4ccc(O)c5c4OCCO5)CC3)cc2N1 110 | Cc1ccc(N2CCN(CCCOc3ccc(F)cc3)CC2)nc1 111 | CCN(CCCCNC(=O)c1ccc2ccccc2c1)CC1CC1c1cc(Cl)ccc1OC 112 | COc1ccc(-n2c(C3CCCC3)nc3c(c(=O)c4ccccc4n3C)c2=O)cc1 113 | CC(C)(C)c1nc(N2CCN(CCCCNC(=O)c3cc4ccccn4n3)CC2)cc(C(F)(F)F)n1 114 | CN1CCCc2cc(O)ccc2Cc2ccccc2CC1 115 | CN(C)C(=O)NC1CCC(CCN2CCN(c3cccc(Cl)c3Cl)CC2)CC1 116 | COc1ccccc1N1CCN(CCCNC(=O)NN(Cc2ccc(F)cc2)c2ccccc2)CC1 117 | O=C1CCc2ccc(OCCCCN3CCN(c4ccc(O)c5c4OCC(=O)N5)CC3)cc2N1 118 | CCCCn1cc(CCCOc2ccc(C(=O)NCCCCN(CCC)C3CCc4c(O)cccc4C3)cc2OC)nn1 119 | COc1ccc(F)cc1C1CC1CNCCCSc1nnc(-c2ccccc2)n1C 120 | CN1CCc2cc(Br)c(O)cc2C(c2ccccc2)C1 121 | CCCN(CCCCNC(=O)c1ccc2ccccc2c1)CC1CC1c1cc(F)ccc1OC 122 | CCN(CCCSc1nnc(-c2ccccc2)n1C)CC1CC1c1cc(F)ccc1OC 123 | O=C(NCCCCN1CCN(c2ccccc2OCCF)CC1)c1cc2ccccn2n1 124 | COc1ccc2c(c1)CCCN(C)CCCc1ccccc1C2 125 | CN1CCN(C2=Nc3cc(Cl)ccc3N(NC(=O)c3cccc4ccccc34)c3ccccc32)CC1 126 | Cn1c2ccccc2c(=O)c2c(=O)n(-c3ccccc3)c(C3CCCC3)nc21 127 | Oc1c2ccccc2cn1CCCCN1CCN(c2ccc(Cl)cc2)CC1 128 | CCCN(CCCCNC(=O)c1ccc2ccccc2c1)CC1CC1c1cccc(Cl)c1 129 | Oc1ccc2c(c1)OC(CNCc1ccccc1)CC2 130 | c1ccc(Cc2ccccc2OCCN2CCN(c3ccccc3)CC2)cc1 131 | Cc1cc(Oc2nccc3occc23)ccc1-c1c(C)ncc2nccn12 132 | CCCN(CCCCNC(=O)c1ccc(-c2ccccn2)cc1)CC1CC1c1cccc(Cl)c1 133 | CC(C)Cc1nc2c(c(=O)c3ccccc3n2C)c(=O)n1-c1ccccc1 134 | N#Cc1ccc(CCOC(=O)NC2CCN(CCCC(c3ccc(F)cc3)c3ccc(F)cc3)CC2)cc1 135 | Oc1ccc2c(c1)OC(CNCc1cccc(I)c1)CC2 136 | COc1ccc(F)cc1C1CC1CN(CCCSc1nnc(-c2ccccc2)n1C)CC1CC1 137 | COc1ccc2c(c1)CCN1Cc3ccccc3CC21 138 | CC(C)Cc1nc2c(c(=O)c3ccccc3n2C)c(=O)n1-c1ccc(Cl)cc1 139 | O=C1c2ccccc2S(=O)(=O)N1CCCCN1CCN(c2ccc(Cl)cc2)CC1 140 | O=C1Cc2ccccc2N1CCCCN1CCN(c2ccc(Cl)cc2)CC1 141 | COc1ccc(-n2c(CC(C)C)nc3c(c(=O)c4ccccc4n3C)c2=O)cc1Cl 142 | CN1CCc2ccccc2Cc2sc3ccccc3c2CC1 143 | Oc1cc2c(cc1O)C(c1ccccc1Br)CNCC2 144 | Cn1c2ccccc2c(=O)c2c(=O)n(-c3ccc(Cl)cc3)c(C3CCCCC3)nc21 145 | COc1cc2c3c(c1OC)-c1cc4c(cc1CC3N(C)CC2)OCO4 146 | CCCCN1CCC(COC(=O)c2cc(Cl)c(NC)c3c2OCCO3)CC1 147 | COc1ccc2c(c1OC)CN1CCc3cc4c(cc3C1C2)OCO4 148 | COc1ccccc1N1CCN(CCCCN2C(=O)Cc3ccccc32)CC1 149 | CCN(CC)CCCOc1cccc(N2C(=O)C(=Nc3cccc(C(F)(F)F)c3)c3ccccc32)c1 150 | Cn1c2ccccc2c(=O)c2c(=O)n(-c3ccccc3)c(C3CC3)nc21 151 | COc1ccc(-n2c(CC3CCCCC3)nc3c(c(=O)c4ccccc4n3C)c2=O)cc1Cl 152 | CN1CCOc2cc(O)ccc2Cc2ccccc2CC1 153 | O=C1CCc2ccc(OCCCCN3CCN(c4ccc(O)c5nc(O)ccc45)CC3)cc2N1 154 | Clc1ccc(N2CCCN(CCCc3cc4ccccc4o3)CC2)cc1 155 | Cn1c2ccccc2c(=O)c2c(=O)n(-c3cccc(Cl)c3)c(C3CCCC3)nc21 156 | Oc1cc2c(cc1O)C(c1ccccc1)CNCC2 157 | CC(C)(C)C#Cc1ccc2c(c1)C=C([N+](=O)[O-])C(C(F)(F)F)O2 158 | O=C1Cc2ccccc2N1CCCCN1CCN(c2ccccc2)CC1 159 | CN(C)CCOc1ccccc1Cc1ccccc1 160 | O=C1CCc2ccc(OCCCCN3CCN(c4cccc(Cl)c4Cl)CC3)cc2N1 161 | O=C1COc2c(N3CCN(CCCCOc4ccn5nccc5c4)CC3)ccc(O)c2N1 162 | CCCCN1CCC(c2cccc(O)c2)C1 163 | Fc1ccc(N2CCN(Cc3cccs3)CC2)cc1 164 | CN(CCCC12CCC(c3ccccc31)c1ccccc12)Cc1ccc(OCCCN2CCCCC2)cc1 165 | Oc1ccc2c(c1)CCN1Cc3ccccc3CC21 166 | OC1(c2ccc(Cl)cc2)CCN(CCCOc2ccc(F)cc2)CC1 167 | Cn1c2ccccc2c(=O)c2c(=O)n(-c3ccc(Cl)cc3)c(C3CCCC3)nc21 168 | COc1ccc(-n2c(CC(C)C)nc3c(c(=O)c4ccccc4n3C)c2=O)cc1 169 | Oc1ccc2c(c1)OC(CNCCN1CCN(c3ccc(OCCF)cc3)CC1)CC2 170 | CN1CCc2ccccc2Cc2cc(Cl)c(O)c(Cl)c2CC1 171 | COc1ccc2c(c1)OCCN(C)CCc1ccccc1C2 172 | C=CCN1CCc2cc(OC)c(O)cc2C(c2ccccc2Cl)C1 173 | CCCN(CCCCNC(=O)c1cc2ccccc2[nH]1)CC1CC1c1ccc(C(F)(F)F)cc1 174 | CN1CCc2ccccc2Cc2ccsc2CC1 175 | COc1cc2c(cc1O)C1Cc3ccc(O)c(OC)c3CN1CC2 176 | c1ccc2c(c1)CCN(CC1CC1)CCc1c([nH]c3ccccc13)C2 177 | CCCN(CCCCNC(=O)c1cc2ccccc2[nH]1)CC1CC1c1cc(Cl)ccc1OC 178 | CN1CCc2ccccc2Cc2ccc(O)cc2CC1 179 | COc1ccccc1N1CCN(CCCSc2nnc(-c3ccccc3)n2C)CC1 180 | CN1CCN(C2=Nc3cc(Cl)ccc3N(NC(=O)c3ccccc3Cl)c3ccccc32)CC1 181 | C=CCN1CCc2cc(O)c(O)cc2C(c2ccccc2Br)C1 182 | OC1(c2ccc(Cl)cc2)CCN(CCCCc2ccc(F)cc2)CC1 183 | FC(F)(F)c1cc(Oc2nccc3ccsc23)ccc1-c1cccc2nccn12 184 | c1ccc(Cc2ccccc2OCCN2CCCC2)cc1 185 | CCCCCCN1CCC(c2cccc(O)c2)C1 186 | COc1ccc2c(c1)CCN(C)CCc1cc(OC)ccc1C2 187 | COc1cc2c(cc1OC)C1Cc3ccc(O)c(OC)c3CN1CC2 188 | COc1cc2c(cc1O)C1Cc3ccc(OC)c(OC)c3CN1CC2 189 | CCCN(CCCCNC(=O)c1ccc2ccccc2c1)CC1CC1c1ccc(Cl)cc1 190 | Brc1ccc(NCCN2CCN(CCc3c[nH]c4ccccc34)CC2)cc1 191 | CCCN(CCCCNC(=O)c1cc2ccccc2[nH]1)CC1CC1c1cccc(Cl)c1Cl 192 | Fc1ccc(SCCCN2CCN(c3ncccn3)CC2)cc1 193 | CN1CCN(C2=Nc3cc(Cl)ccc3N(NC(=O)c3c(N)cccc3Cl)c3ccccc32)CC1 194 | COc1ccc2c(c1)Cc1ccccc1CCCN(C)CC2 195 | Oc1c2ccccc2cn1CCCCN1CCN(c2cccc(C(F)(F)F)c2)CC1 196 | Oc1ccc(N2CCN(CCCCOc3ccn4nccc4c3)CC2)c2c1OCCO2 197 | Oc1cc2ccccc2n1CCCCN1CCN(c2ccccc2)CC1 198 | c1ccc(Cc2ccccc2OCCN2CCOCC2)cc1 199 | CN1CCc2ccccc2Cc2ccc(O)c(Cl)c2CC1 200 | CCN(CCCSc1nnc(-c2ccccc2)n1C)CC1CC1c1cc(F)ccc1OCCF 201 | COc1cc2c(cc1O)C(c1ccccc1Cl)CN(C)CC2 202 | COc1ccc2c(c1)CCN(C)CCc1c([nH]c3ccccc13)C2 203 | COc1ccc(F)cc1C1CC1CN(C)CCCSc1nnc(-c2ccccc2)n1C 204 | COc1ccc2c(c1)CCCN(C)CCc1ccccc1C2 205 | CCCCCCCCCCN1CCC(c2cccc(O)c2)C1 206 | CCCN(CCN1CCN(CCc2c[nH]c3ccccc23)CC1)c1ccc(Br)cc1 207 | COc1c(OCCF)cccc1C(=O)C1CCN(CCc2ccc(F)cc2)CC1 208 | COc1cc2c(cc1OC)CN(Cc1ccccc1CNC(=O)c1ccc(C#N)cc1)CC2 209 | O=C1c2ccccc2CN1CCCCN1CCN(c2cccc(C(F)(F)F)c2)CC1 210 | CCCCCN1CCC(c2cccc(O)c2)C1 211 | CCOc1ccc(CCNC(=O)N2CCN(CCCC(c3ccc(F)cc3)c3ccc(F)cc3)CC2)cc1 212 | O=Cc1cnn2ccc(OCCCCN3CCN(c4ccc(O)c5c4OCC(=O)N5)CC3)cc12 213 | Fc1ccc(CCCCN2CCN(c3ccc(Cl)cc3)CC2)cc1 214 | C#CC1=CCC(N(CCC)CCCCNC(=O)c2ccc(OCCCc3cn(CCCC)nn3)c(OC)c2)CO1 215 | COc1ccc2[nH]c3c(c2c1)CCN(C)CCc1ccccc1C3 216 | CCCN(CCCCNC(=O)c1cc2ccccc2[nH]1)CC1CC1c1ccc(Cl)cc1 217 | COc1cc2c(cc1OC)Cc1ccccc1CCCN(C)CC2 218 | COc1cc2c(cc1OC)CN(Cc1ccccc1CNC(=O)c1cccc(C#N)c1)CC2 219 | COc1cc2c(cc1O)C(c1ccccc1)CNCC2 220 | CCCN(CCCCNC(=O)c1ccc2ccccc2c1)CC1CC1c1ccc(C(F)(F)F)cc1 221 | CN1CCc2ccccc2Cc2sccc2CC1 222 | COc1ccc(-n2c(C3CCCC3)nc3c(c(=O)c4ccccc4n3C)c2=O)cc1Cl 223 | Cc1ccc(-n2c(CC(C)C)nc3c(c(=O)c4ccccc4n3C)c2=O)cc1 224 | Cn1c2ccccc2c(=O)c2c(=O)n(-c3ccccc3)c(C3CCCCC3)nc21 225 | CN1CCCc2cc3c(cc2-c2ccccc2CC1)OCO3 226 | Clc1ccc2c(c1)N=C(N1CCN(Cc3ccc(OCCCN4CCCCC4)cc3)CC1)c1ccccc1N2 227 | CCN1CCc2ccccc2Cc2[nH]c3ccccc3c2CC1 228 | CCOc1ccc(F)cc1C1CC1CNCCCSc1nnc(-c2ccccc2)n1C 229 | CN1CCc2cc(Cl)c(O)cc2C(c2ccccc2)C1 230 | COc1cc2c(cc1OC)C1Cc3ccc(OC)c(OC)c3CN1CC2 231 | O=C(CCCN1CC[Si](O)(c2ccc(Cl)cc2)CC1)c1ccc(F)cc1 232 | COc1ccc2c(c1)Cc1ccccc1CCN(C)CC2 233 | CN(C)c1ccc(C(=O)NCCCCN2CCC(c3cccc(O)c3)C2)cc1 234 | CN1CCCc2cc(O)ccc2Cc2ccccc2C1 235 | COc1ccc(-n2c(C3CCCCC3)nc3c(c(=O)c4ccccc4n3C)c2=O)cc1 236 | CCCN(CCCCNC(=O)c1ccc(-c2ccccn2)cc1)CC1CC1c1ccc(Cl)cc1 237 | CC1Cc2c([nH]c3ccccc23)Cc2ccccc2CCN1C 238 | COc1cccc2c1Cc1ccccc1CCN(C)CC2 239 | FC(F)(F)c1cc(Oc2nccc3occc23)ccc1-c1cccc2nccn12 240 | CCCN(CCCCNC(=O)N=Nc1ccc(F)cc1)C1Cc2ccccc2C1 241 | COc1cc2c(cc1O)C(c1ccccc1Cl)CNCC2 242 | CCCCn1cc(CCCOc2ccc(C(=O)NCCCCN(CCC)CCc3ccc(O)c4nc(O)ccc34)cc2OC)nn1 243 | O=C1CCc2ccc(OCCCCN3CCCN(c4ccc(O)c5c4OCC(=O)N5)CC3)cc2N1 244 | O=C1CCc2ccc(OCCCCN3CCCN(c4cccc(Cl)c4Cl)CC3)cc2N1 245 | COc1ccc2c(c1)CCN(C)Cc1ccccc1CC2 246 | CN1CCCc2ccccc2Cc2[nH]c3ccccc3c2CC1 247 | CN1CCc2cc(O)c(O)cc2C(c2ccccc2Br)C1 248 | CN(CCC=C1c2ccccc2CCc2ccccc21)Cc1ccc(OCCCN2CCCCC2)cc1 249 | CN1CCc2ccccc2Cc2cc(O)c(O)cc2CC1 250 | CN1CCCc2ccccc2Cc2ccc(O)cc2CCC1 251 | Fc1ccc(OCCCN2CCC(c3ccc(Cl)cc3)CC2)cc1 252 | c1ccc(Cc2ccccc2OCCN2CCCCC2)cc1 253 | Cc1cc(Oc2nccc3occc23)ccc1-c1c(C)c(=O)[nH]c(=O)n1C 254 | O=C(OCc1cc2c(cc1Cl)OCO2)N1CCC(n2c(O)nc3ccccc32)CC1 255 | Cn1c2ccccc2c(=O)c2c(O)nc(C3CCCC3)nc21 256 | CCCN(CCCCNC(=O)c1cc2ccccc2[nH]1)CC1CC1c1cc(F)ccc1OC 257 | CN1CCc2ccccc2Cc2cc(N)c(O)cc2CC1 258 | Cc1ccc(-n2c(C3CCCCC3)nc3c(c(=O)c4ccccc4n3C)c2=O)cc1 259 | C[Si](C)(C)C#Cc1ccc2c(c1)C=C([N+](=O)[O-])C(C(F)(F)F)O2 260 | Cc1cc2c(s1)Nc1ccccc1N=C2N1CCN(C)CC1 261 | COc1ccccc1N1CCN(CCCCn2c(O)cc3ccccc32)CC1 262 | Fc1ccc(CCCCN2CCN(c3ccccn3)CC2)cc1 263 | CN1CCc2ccccc2Cc2[nH]c3ccccc3c2CC1C(=O)O 264 | COc1ccc(CN2CCOC(CCc3ccccc3)C2)cc1 265 | CC(=O)NCC#Cc1ccc2c(c1)C=C([N+](=O)[O-])C(C(F)(F)F)O2 266 | O=C1c2ccccc2S(=O)(=O)N1CCCCN1CCN(c2cccc(C(F)(F)F)c2)CC1 267 | CN1CCc2ccccc2Cc2cc(O)ccc2CC1 268 | Fc1ccc(SCCCN2CCN(c3ccc(Cl)cc3)CC2)cc1 269 | Oc1cc2ccccc2n1CCCCN1CCN(c2cccc(C(F)(F)F)c2)CC1 270 | Cc1ccc(-n2c(C3CCCC3)nc3c(c(=O)c4ccccc4n3C)c2=O)cc1 271 | c1ccc2c(c1)CCN1CCc3cccc4[nH]cc(c34)C21 272 | CCCN(CCCCNC(=O)c1ccc2ccccc2c1)CC1CC1c1cc(Cl)ccc1OC 273 | CN1CCC2C(C1)c1cccc3c1N2c1ccccc1CS3 274 | OC1(c2ccc(Cl)c(C(F)(F)F)c2)CCN(CCCCC(c2ccc(F)cc2)c2ccc(F)cc2)CC1 275 | O=C(OCCc1ccc(F)cc1)N1CCN(CCCC(c2ccc(F)cc2)c2ccc(F)cc2)CC1 276 | COc1cc2c(cc1OC)Cc1ccccc1CCN(C)CC2 277 | Oc1cc2c(c(Cl)c1O)CCNCC2c1ccccc1 278 | Clc1ccc(N2CCN(Cc3cccs3)CC2)cc1 279 | COc1ccccc1N1CCN(CCCCn2cc3ccccc3c2O)CC1 280 | CC(C)Cc1nc2c(c(=O)c3ccccc3n2C)c(=O)n1-c1cccc(Cl)c1 281 | COc1ccccc1N1CCN(CCCCN2C(=O)c3ccccc3S2(=O)=O)CC1 282 | O=C(CCCc1ccccc1)N1CCN(CCCC(c2ccc(F)cc2)c2ccc(F)cc2)CC1 283 | CCCCCCCCCN1CCC(c2cccc(O)c2)C1 284 | CCCCCCNCC1CCc2ccc(O)cc2O1 285 | CN1CCc2ccccc2Cc2ccccc2CC1 286 | Nc1nc(O)c2c(CCc3ccc(C(=O)NC(CCC(=O)O)C(=O)O)cc3)c[nH]c2n1 287 | Cc1cc2nc(N)nc(O)c2n1Cc1ccc([N+](=O)[O-])cc1 288 | C#CCN(Cc1ccc2c(c1)C(=O)NC(C)N2)c1ccc(C(=O)NC(CCC(=O)O)C(=O)O)cc1 289 | Cc1nc(N)nc2[nH]cc(CCc3ccc(C(=O)NC(CCC(=O)O)C(=O)O)cc3)c12 290 | COc1ccc2ccc3nc(N)nc(O)c3c2c1 291 | Nc1cc(N)c2c(ccc3nc(N)nc(O)c32)c1 292 | Nc1nc(O)c2c(n1)NCC(CCNc1ccc(C(=O)NC(CCC(=O)O)C(=O)O)cc1)N2 293 | Cc1[nH]c2nc(N)nc(O)c2c1Sc1ccc(Br)c([N+](=O)[O-])c1 294 | O=C1OC(c2ccc(O)c(F)c2)(c2ccc(O)c(F)c2)c2cccc3cccc1c23 295 | Nc1nc(O)c2c(ccc3ccc(I)cc32)n1 296 | Nc1nc(O)c2c(ccc3ccc(Br)c(N)c32)n1 297 | C#CCN(Cc1ccc2nc(C)nc(O)c2c1)c1ccc(S(=O)(=O)c2ccccc2)c(C(F)(F)F)c1 298 | Nc1nc(O)c2c(n1)CCc1ccc(Br)cc1-2 299 | CN(C)c1cccc2c(S(=O)(=O)Oc3ccc(CC(NS(=O)(=O)c4cccc5c(NC(=O)OCc6ccccc6)cccc45)C(=O)O)cc3)cccc12 300 | CN(Cc1ccncc1)c1ccc2c3c(cccc13)C(N)=N2 301 | Cc1cccc2c1CCc1nc(N)nc(O)c1-2 302 | O=C1OC(c2ccc(O)cc2)(c2ccc(O)cc2)c2c1ccc1ccccc21 303 | Nc1nc(O)c2c(ccc3cc([N+](=O)[O-])c(Br)cc32)n1 304 | O=S(=O)(c1ccc(CN2CCCc3cc4[nH]cnc4cc32)cc1)N1CCNCC1 305 | Cc1cc(Sc2c(C)ccc3nc(C)nc(O)c23)ccn1 306 | Nc1cc(N)c2nc(-c3ccccc3)c(Nc3ccc(F)cc3)nc2c1 307 | CCc1sc2nc(N)nc(O)c2c1Sc1ccc(Br)cc1 308 | Cc1ccc2c3c(ccc(N(C)Cc4ccncc4)c13)N=C2N 309 | Cc1[nH]c2nc(N)nc(O)c2c1Sc1ccc(C(=O)NC(CCC(=O)O)C(=O)O)cc1 310 | Cc1ccc2ccc3nc(N)nc(O)c3c2c1 311 | O=C1OC(c2ccc(O)c(F)c2)(c2ccc(O)c(F)c2)c2ccc(Cl)c3cccc1c23 312 | COc1ccc(S(=O)(=O)c2ccc(CN3CCCc4cc5c(cc43)nc(C)n5C)cc2)cc1 313 | CN(C)c1cccc2c(S(=O)(=O)Oc3ccc(CC(NS(=O)(=O)c4cccc5cc([N+](=O)[O-])ccc45)C(=O)O)cc3)cccc12 314 | Nc1nc(O)c2c(ccc3ccc(O)cc32)n1 315 | Nc1nc(O)c2c(ccc3c(Br)c(N)c(Br)cc32)n1 316 | O=C1OC(c2ccc(O)c(Br)c2)(c2ccc(O)c(Br)c2)c2cccc3cccc1c23 317 | Nc1nc(O)c2c(n1)CCc1cc([N+](=O)[O-])c(Br)cc1-2 318 | Cc1nc(O)c2c(Sc3ccc([N+](=O)[O-])cc3)c(C)ccc2n1 319 | CSc1ccc2c(c1)-c1c(O)nc(N)nc1CC2 320 | C#CCN(Cc1ccc2nc(N)nc(O)c2c1)c1ccc(C(=O)NC(CCC(=O)O)C(=O)O)cc1 321 | Cc1[nH]c2nc(N)nc(O)c2c1Sc1ccc(C(=O)NC(CCC(=O)O)C(=O)O)c(Cl)c1 322 | COc1ccc(Cn2c(C)cc3nc(N)nc(O)c32)cc1 323 | O=C1OC(c2ccc(O)cc2)(c2ccc(O)c(Br)c2)c2cccc3cccc1c23 324 | Cc1nc(O)c2c(n1)CCc1ccc(Br)cc1-2 325 | COc1ccc2nc(C)nc(O)c2c1Sc1ccncc1 326 | CN(Cc1ccnnc1)c1ccc2c3c(cccc13)C(N)=N2 327 | CCc1sc2nc(N)nc(O)c2c1Sc1cc(OC)cc(OC)c1 328 | O=C1OC(c2ccc(O)c(Cl)c2)(c2ccc(O)c(Cl)c2)c2ccc(Cl)c3cccc1c23 329 | CCc1sc2nc(N)nc(O)c2c1Sc1ccccc1 330 | Cc1[nH]c2nc(N)nc(O)c2c1Sc1ccc(Cl)c(Cl)c1 331 | Nc1nc(O)c2c(ccc3ccc(F)cc32)n1 332 | CN(Cc1ccc(S(=O)(=O)c2ccccc2)cc1)c1ccc2c3c(cccc13)C(N)=N2 333 | O=c1[nH]c(=O)n(C2OC(COP(=O)(O)O)C(O)C2O)cc1F 334 | Nc1nc(O)c2c(n1)CCc1ccc(O)cc1-2 335 | CNc1nc(O)c2c(n1)CCc1ccccc1-2 336 | CC(C)CC=NNC(=O)Nc1nnc(S)s1 337 | Cc1ccc2nc(N)nc(O)c2c1Sc1ccncc1 338 | Nc1nc(O)c2c(n1)CCc1ccccc1-2 339 | Cc1cc2nc(N)nc(O)c2n1Cc1ccc(Br)cc1 340 | O=C1OC(c2ccc(O)c(I)c2)(c2ccc(O)c(I)c2)c2c1ccc1ccccc21 341 | Cc1nc(O)c2c(Sc3cccnc3)c(C)ccc2n1 342 | Cc1nc(O)c2c(n1)CCc1ccc(F)cc1-2 343 | C#CCN(Cc1ccc2nc(C)nc(O)c2c1)c1ccccc1 344 | Cc1nc(O)c2c(ccc3ccccc32)n1 345 | CC(Cc1coc2nc(N)cc(N)c12)c1ccc(C(=O)NC(CCC(=O)O)C(=O)O)cc1 346 | Cc1nc(O)c2c(Sc3ccnnc3)c(C)ccc2n1 347 | Cc1sc2nc(N)nc(O)c2c1Sc1ccc(Cl)c(Cl)c1 348 | Nc1nc(O)c2c(ccc3ccc(Br)cc32)n1 349 | Nc1nc2cc3c(cc2[nH]1)N(Cc1ccc(S(=O)(=O)N2CCNCC2)cc1)CCC3 350 | Cc1nc(O)c2c(n1)CCc1ccc(Cl)cc1-2 351 | O=C1OC(c2cc(Br)c(O)c(Br)c2)(c2cc(Br)c(O)c(Br)c2)c2c1ccc1ccccc21 352 | COc1ccc(S(=O)(=O)c2ccc(CN3CCCc4cc5[nH]c(N)nc5cc43)cc2)cc1 353 | CCc1sc2nc(N)nc(O)c2c1Sc1ccccc1Cl 354 | Cc1sc2nc(N)nc(O)c2c1Sc1ccc2ccccc2c1 355 | CCc1[nH]c2nc(N)nc(O)c2c1Sc1ccc([N+](=O)[O-])cc1 356 | Nc1nc(O)c2c(n1)CCc1c(F)cccc1-2 357 | CCc1ccc2ccc3nc(N)nc(O)c3c2c1 358 | Nc1nc(O)c2c(ccc3ccc(Cl)cc32)n1 359 | Nc1nc2cc3c(cc2[nH]1)N(Cc1ccc2cc(CO)ccc2c1)CCC3 360 | Nc1nc(O)c2c(ccc3cc(F)cc(N)c32)n1 361 | CCSc1ccc2ccc3nc(N)nc(O)c3c2c1 362 | Cc1nc(O)c2c(Sc3ccnc(C(F)(F)F)c3)c(C)ccc2n1 363 | Nc1nc(O)c2c(n1)CCc1cc([N+](=O)[O-])ccc1-2 364 | Cc1sc2nc(N)nc(O)c2c1Sc1cc(Cl)cc(Cl)c1 365 | Nc1nc2cc3c(cc2[nH]1)N(Cc1ccc(S(=O)(=O)c2ccc(O)cc2)cc1)CCC3 366 | C#Cc1ccc2ccc3nc(N)nc(O)c3c2c1 367 | Cc1nc(O)c2c(Sc3ccncc3)c(O)ccc2n1 368 | CN(C)c1cccc2c(S(=O)(=O)Oc3ccc(CC(NS(=O)(=O)c4ccc(NC(=O)OCc5ccccc5)c5ccccc45)C(=O)O)cc3)cccc12 369 | CC1Cc2nc(N)nc(O)c2-c2ccccc21 370 | Nc1nc(O)c2c(ccc3cc(Cl)c(Cl)cc32)n1 371 | CCc1sc2nc(N)nc(O)c2c1Sc1ccc(Cl)cc1 372 | Nc1nc2cc3c(cc2[nH]1)N(Cc1ccc(S(=O)(=O)c2ccccc2)cc1)CCC3 373 | Nc1nc(O)c2c(ccc3c(N)cccc32)n1 374 | CCc1nc(N)nc2[nH]c(C)c(CCc3ccc(C(=O)NC(CCC(=O)O)C(=O)O)cc3)c12 375 | Cc1nc(O)c2c(n1)CCc1ccc(I)cc1-2 376 | CNc1nc2cc3c(cc2[nH]1)N(Cc1ccc(S(=O)(=O)c2ccccc2)cc1)CCC3 377 | O=C1OC(c2ccc(O)c(Br)c2)(c2ccc(O)c(Br)c2)c2c1ccc1ccccc21 378 | C#CCN(Cc1ccc2nc(C)nc(O)c2c1)c1ccc(S(=O)(=O)n2ccc3ccccc32)cc1 379 | CN(Cc1cnc2nc(N)nc(N)c2n1)c1ccc(C(=O)NC(CCC(=O)O)C(=O)O)cc1 380 | Cc1sc2nc(N)nc(O)c2c1Sc1ccc(Cl)cc1 381 | Cc1nc(O)c2c(Sc3ccncc3)cccc2n1 382 | Cc1sc2nc(N)nc(O)c2c1Sc1ccc([N+](=O)[O-])cc1 383 | Nc1nc(O)c2c(n1)CCc1c-2ccc2ccccc12 384 | O=c1[nH]c(=O)n(C2CC(O)C(COP(=O)(O)O)O2)cc1F 385 | Nc1ccc2c(c1)-c1c(O)nc(N)nc1CC2 386 | Cc1nc(N)nc2c1c(CCc1ccc(C(=O)NC(CCC(=O)O)C(=O)O)cc1)cn2Cc1ccccc1 387 | Nc1nc(O)c2c(n1)CCc1ccc(F)cc1-2 388 | Cc1nc(O)c2c(Sc3ccc(S(=O)(=O)c4ccccc4)cc3)c(C)ccc2n1 389 | Nc1ccc2c(c1)CCc1nc(N)nc(O)c1-2 390 | CCc1sc2nc(N)nc(O)c2c1Sc1cc(Cl)cc(Cl)c1 391 | Cc1cc2nc(N)nc(O)c2n1Cc1ccc(F)cc1 392 | Nc1nc(O)c2c(n1)CCc1cc(Cl)c(Cl)cc1-2 393 | Cc1cc2nc(N)nc(O)c2c2cc(Cl)ccc12 394 | Oc1nc(NCc2ccccc2)nc2ccc3c(Br)cccc3c12 395 | Cc1cc2nc(N)nc(O)c2n1Cc1ccc(Cl)c(Cl)c1 396 | Nc1nc(O)c2c(n1)CCc1ccc(Cl)cc1-2 397 | Cc1sc2nc(N)nc(O)c2c1Sc1ccccc1 398 | Nc1nc2cc3c(cc2[nH]1)CCCC3Sc1ccc(S(=O)(=O)c2ccccc2)cc1 399 | O=C1OC(c2ccc(O)c(Br)c2)(c2ccc(O)c(Br)c2)c2ccc(Cl)c3cccc1c23 400 | C#CCN(Cc1ccc2nc(C)nc(O)c2c1)c1ccc(C(=O)NC(CCC(=O)O)C(=O)O)cc1 401 | Nc1cc(N)c2nc(-c3ccccc3)c(Nc3ccc(Cl)c(Cl)c3)nc2c1 402 | COc1ccc(S(=O)(=O)c2ccc(CN3CCCc4cc5[nH]c(C)nc5cc43)cc2)cc1 403 | CN(C)c1cccc2c(S(=O)(=O)NC(Cc3ccc(OS(=O)(=O)c4cccc5c(N(C)C)cccc45)cc3)C(=O)O)cccc12 404 | O=[N+]([O-])c1cc([N+](=O)[O-])c2nc(-c3ccccc3)c(Nc3ccc(Cl)c(Cl)c3)nc2c1 405 | CCN(Cc1ccc(S(=O)(=O)N2CCNCC2)cc1)c1ccc2c3c(cccc13)C(=O)N2 406 | O=C1OC(c2ccc(O)c(Cl)c2)(c2ccc(O)c(Cl)c2)c2ccc3ccccc3c21 407 | COc1cc(Sc2c(C)ccc3nc(C)nc(O)c23)ccn1 408 | CSc1ccc2ccc3nc(N)nc(O)c3c2c1 409 | Cc1cc2nc(N)nc(O)c2c2ccccc12 410 | CCc1sc2nc(N)nc(O)c2c1Sc1ccc(F)cc1 411 | CCc1[nH]c2nc(N)nc(O)c2c1Sc1ccc(C(=O)NC(CCC(=O)O)C(=O)O)cc1 412 | Nc1nc2cc3c(cc2[nH]1)N(Cc1ccc(S(=O)(=O)N2CCOCC2)cc1)CCC3 413 | C#CCN(Cc1ccc2c(c1)C(=O)CC(C)N2)c1ccc(C(=O)NC(CCC(=O)O)C(=O)O)cc1 414 | CCc1sc2nc(N)nc(O)c2c1Sc1ccc(C(=O)NC(CCC(=O)O)C(=O)O)cc1 415 | Nc1nc(O)c2c(ccc3cccc([N+](=O)[O-])c32)n1 416 | Nc1nc(O)c2c(ccc3c(I)cccc32)n1 417 | COc1ccc2c(c1)-c1c(O)nc(N)nc1CC2 418 | CCc1sc2nc(N)nc(O)c2c1Sc1cccc(Cl)c1 419 | Cc1ccc2c(c1)-c1c(O)nc(N)nc1CC2 420 | CCOC(=O)CCC(NC(=O)c1ccc(Nc2nc3cc([N+](=O)[O-])cc([N+](=O)[O-])c3nc2-c2ccccc2)cc1)C(=O)OCC 421 | CCc1sc2nc(N)nc(O)c2c1Sc1ccc(Cl)c(Cl)c1 422 | CC1Cc2nc(N)nc(O)c2-c2cc(Cl)ccc21 423 | Cc1cc(CN(C)c2ccc3c4c(cccc24)C(N)=N3)ccn1 424 | Cc1ccc2nc(N)nc(O)c2c1Sc1ccnnc1 425 | CC1(C)Cc2nc(N)nc(O)c2-c2ccccc21 426 | Nc1nc(O)c2c(n1)CCc1ccc(I)cc1-2 427 | C#CCN(Cc1ccc2nc(C)nc(O)c2c1)c1cccc(C(F)(F)F)c1 428 | Cc1[nH]c2nc(N)nc(O)c2c1Sc1ccc(Cl)c([N+](=O)[O-])c1 429 | CCc1sc2nc(N)nc(O)c2c1Sc1ccc([N+](=O)[O-])cc1 430 | CCc1sc2nc(N)nc(O)c2c1Sc1ccncc1 431 | Cc1cc2nc(N)nc(O)c2n1Cc1ccc(Cl)cc1 432 | CN(C)c1cccc2c(S(=O)(=O)Oc3ccc(CC(NS(=O)(=O)c4cc5nnoc5c5ccccc45)C(=O)O)cc3)cccc12 433 | Cc1cc(C)c2c(c1)-c1c(O)nc(N)nc1CC2 434 | O=c1ccn(C2OC(COP(=O)(O)O)C(O)C2O)c(=O)[nH]1 435 | O=C1OC(c2ccc(O)c(Cl)c2)(c2ccc(O)c(Cl)c2)c2cccc3cccc1c23 436 | COc1ccc(Nc2nc3cc([N+](=O)[O-])cc([N+](=O)[O-])c3nc2-c2ccccc2)cc1OC 437 | CCSc1ccc2c(c1)-c1c(O)nc(N)nc1CC2 438 | Cc1[nH]c2nc(N)nc(O)c2c1Sc1ccc(C(=O)NC(CCC(=O)O)C(=O)O)c(F)c1 439 | Nc1ccc2ccc3nc(N)nc(O)c3c2c1 440 | Cc1cc2nc(N)nc(O)c2n1Cc1ccc(OC(F)(F)F)cc1 441 | Cc1nc(O)c2cc(CN(C)c3ccc(C(=O)NC(CCC(=O)O)C(=O)O)s3)ccc2n1 442 | Cc1sc2nc(N)nc(O)c2c1Sc1ccncc1 443 | CCc1sc2nc(N)nc(O)c2c1Sc1ccc2ccccc2c1 444 | Cc1cc2nc(N)nc(O)c2n1Cc1ccncc1 445 | Cc1cc(C)c2ccc3nc(N)nc(O)c3c2c1 446 | Cc1cc2nc(N)nc(O)c2n1Cc1ccc(C(=O)NC(CCC(=O)O)C(=O)O)cc1 447 | Cc1nc(O)c2c(Sc3ccncc3)c(C)ccc2n1 448 | Cc1nc(O)c2c(ccc3ccc(Br)cc32)n1 449 | Cc1sc2nc(N)nc(O)c2c1Sc1ccc(C(=O)N(CCC(=O)O)C(=O)O)cc1 450 | Nc1nc(O)c2c(n1)CCc1cc(N)c(Br)cc1-2 451 | O=C1OC(c2ccc(O)cc2)(c2ccc(O)cc2)c2ccc3ccccc3c21 452 | CC(Cc1coc2nc(N)nc(N)c12)c1ccc(C(=O)NC(CCC(=O)O)C(=O)O)cc1 453 | O=C1OC(c2ccc(O)c(F)c2)(c2ccc(O)c(F)c2)c2ccc3ccccc3c21 454 | Cc1sc2nc(N)nc(O)c2c1Sc1ccc(F)cc1 455 | Nc1nc(O)c2c(ccc3cc(N)c(Br)cc32)n1 456 | C#Cc1ccc2c(c1)-c1c(O)nc(N)nc1CC2 457 | Nc1nc2cc3c(cc2[nH]1)N(Cc1ccc(C(=O)NC(CCC(=O)O)C(=O)O)cc1)CCC3 458 | CN(Cc1ccc(S(=O)(=O)N2CCOCC2)cc1)c1ccc2c3c(cccc13)C(N)=N2 459 | C#CCN(Cc1ccc2nc(C)nc(O)c2c1)c1ccc(S(=O)(=O)c2ccccc2)cc1 460 | COc1ccc(S(=O)(=O)c2ccc(CN3CCCc4cc5c(cc43)nc(N)n5C)cc2)cc1 461 | Cc1[nH]c2nc(N)nc(O)c2c1Sc1ccc([N+](=O)[O-])cc1 462 | Nc1nc(O)c2c(ccc3cc(Br)c([N+](=O)[O-])cc32)n1 463 | CN(Cc1ccc(S(=O)(=O)N2CCNCC2)cc1)c1ccc2c3c(cccc13)C(=O)N2 464 | CCc1nc(N)nc2[nH]cc(CCc3ccc(C(=O)NC(CCC(=O)O)C(=O)O)cc3)c12 465 | C=Cc1ccc2ccc3nc(N)nc(O)c3c2c1 466 | Nc1nc(O)c2c(ccc3ccccc32)n1 467 | Cc1cccc2c1ccc1nc(N)nc(O)c12 468 | CN(C)c1cccc2c(S(=O)(=O)Oc3ccc(CC(NS(=O)(=O)c4cccc5cc(N)ccc45)C(=O)O)cc3)cccc12 469 | O=C1OC(c2cc(Cl)c(O)c(Cl)c2)(c2cc(Cl)c(O)c(Cl)c2)c2cccc3cccc1c23 470 | Cc1nc(O)c2c(ccc3ccc(F)cc32)n1 471 | COc1ccc(CC(=O)Nc2cc(OC)c(NC(=O)Nc3cnc(C#N)cn3)cc2Cl)cc1 472 | Cn1ncc2cc(-c3cnc(Nc4cnc(C#N)cn4)cc3NCC3CNCCO3)ccc21 473 | Cc1[nH]nc2cccc(-c3ccc(NC(=O)Nc4cccc(C(F)(F)F)c4)cc3)c12 474 | Cc1cccc(Nc2nc(NC3CCCCC3N)cnc2C(N)=O)c1 475 | O=C(NCc1ccc(Cl)cc1)Nc1cccc2[nH]ncc12 476 | Cc1cnc(-c2cnc(Nc3cnc(C#N)cn3)cc2NCC2CNCCO2)s1 477 | O=C(O)c1ccc(Nc2ncc3c(n2)-c2ccc(Cl)cc2C(c2c(F)cccc2F)=NC3)cc1 478 | Cc1cc(C)cc(NC(=O)Nc2ccc(-c3cccc4snc(N)c34)cc2)c1 479 | Nc1ncc(-c2ccncc2)c2scc(-c3ccc(NC(=O)Nc4cc(C(F)(F)F)ccc4F)cc3)c12 480 | Clc1csc2ncnc(Nc3ccccc3)c12 481 | CCCNC(=O)c1ccc(Nc2nc(CC)c3cc[nH]c3n2)cc1 482 | N#Cc1ccc2nc(N)n(-c3nccs3)c2c1 483 | COc1cc(-c2ccc3c(c2)Nc2ccc(CCOc4ccc(N5CCOCC5)cc4)cc2NC3=O)ccc1CC#N 484 | COCCOc1cc2c(cc1Cl)NC(=O)Nc1cnc(C#N)c(n1)OCCCCCO2 485 | COc1cc(-c2ccc3c(c2)NC(=O)C3=Cc2cc(C(=O)NCCN(C)C)c(C)[se]2)ccc1O 486 | OCCc1cc2ccnc(O)c2c2cc(Br)ccc12 487 | COc1cc(CCNCc2ccc(F)cc2)ccc1NC(=O)Nc1cnc(C#N)cn1 488 | N#Cc1ncc2nc1OCCCCOc1cc(NCc3cncs3)c(Cl)cc1NC(=O)N2 489 | N#Cc1c(-c2ccccc2)cc(-c2ccccc2)nc1NC(=S)Nc1ccccc1 490 | Cc1ccc(-c2cc3[nH]c4ccc(O)cc4c3c3c2C(=O)NC3=O)cc1 491 | COc1ccc(CNCc2ccc(NC(=O)Nc3cnc(C#N)cn3)c(OC)c2)cc1 492 | O=C(Nc1cccc(C(F)(F)F)n1)Nc1ccnc2cc(OC(F)F)ccc12 493 | CCN1CCc2sc(-c3cnc4[nH]c5cnc(C#N)cc5c4c3)cc2C1 494 | CC1Cn2ncc(C3CCN(S(C)(=O)=O)CC3)c2CN1c1cc(Cl)nc2[nH]ccc12 495 | COc1cc2c(cc1C(=O)NC1CCC(O)CC1)C(C)(C)c1c(C3C=CC(=C4C=CC(=O)C=C4)C=C3)n[nH]c1-2 496 | O=C1NC(=O)c2c1c1c3cccnc3[nH]c1c1cccn21 497 | COc1cccc(-c2ccc3c(c2)Nc2ccccc2NC3=O)c1 498 | Clc1ccc(CNc2ccc3nnc(-c4ccccc4)n3n2)cc1 499 | Nc1nccc(-c2cc3c([nH]2)C(CCF)CNC3=O)n1 500 | N#Cc1ncc2nc1OCCCCCOc1cc(OCc3cccnc3)c(Cl)cc1NC(=O)N2 501 | O=C(NCc1ccc(Cl)cc1)c1cc2c(-c3ccccc3)[nH]nc2s1 502 | NC(=O)c1cnc(NC2CCCNC2)c2cc(-n3ccnc3)sc12 503 | CNC(=O)c1cc(Oc2ccc(NC(=O)Nc3cccc(C(F)(F)F)c3)cc2)ccn1 504 | N#Cc1ncc(Nc2cc3ccccc3cn2)nc1OC1CCCNC1 505 | Cc1ccccc1-c1cc2[nH]c3ccc(O)cc3c2c2c1C(=O)NC2=O 506 | Cc1[nH]c(C=C2C(=O)Nc3ccc(F)cc32)c(C)c1C(=O)NCC(O)CN1CCOCC1 507 | N#Cc1cnc(Nc2ncc(C(F)(F)F)c(NCC3CNCCO3)n2)cn1 508 | COc1cc2ncn(-c3cc(OCc4ccccc4C(F)(F)F)c(C(=O)O)s3)c2cc1OC 509 | CNc1nccn2c(-c3ccnc(NCC(C)(C)CO)n3)c(-c3ccc(F)cc3)nc12 510 | Clc1cc(-c2c[nH]c3ncccc23)cc(NCc2ccccc2)n1 511 | Cc1[nH]c(-c2ccccc2)c(-c2ccccc2)c1-c1nnc(C)c2nn(-c3ccccc3)cc12 512 | CNc1nc(Nc2cnc(C#N)c(OC3CCCNC3)c2)ncc1-c1ccnn1C 513 | Cc1nc(N)sc1-c1ccnc(Nc2ccc(N3CCOCC3)cc2)n1 514 | Brc1cccc(Oc2ccc3c(C=Cc4ccccc4)[nH]nc3c2)c1 515 | CC1CCC(NCc2ccc3c(c2)Cc2c(-c4ccc(O)cc4)n[nH]c2-3)CC1 516 | Oc1ccc(Nc2ncnc3scc(Cl)c23)cc1 517 | CC(=O)c1nn(-c2ccccc2)c(=Nc2nc(-c3ccccc3)cc(-c3ccccc3)c2C#N)s1 518 | Cc1cccc(NC(=O)Nc2ccc(-c3csc4c(-c5cnn(CC(C)O)c5)cnc(N)c34)cc2)c1 519 | CC(C)NCc1ccc(Nc2cc(-c3ccc(-c4ccc(O)cc4O)cc3)[nH]n2)cc1 520 | OCc1ccc2c(c1)Cc1c(-c3ccc(-c4ccc(O)cc4)cc3)n[nH]c1-2 521 | Cn1cc(-c2cnn3c(N)c(-c4ccc(NC(=O)Nc5cccc(C(F)(F)F)c5)cc4)cnc23)cn1 522 | COc1cccc(C(C)NC(=O)c2cnc(-c3ccncc3)s2)c1 523 | C#Cc1cn(C2CCCC2)c2ncnc(N)c12 524 | Cc1[nH]c(-c2ccccc2)c(-c2ccccc2)c1C(=O)c1cn(-c2ccccc2)nc1C(=O)Nc1ccccc1 525 | c1ccc(CSc2n[nH]c(-c3ccncc3)n2)cc1 526 | CCCCn1c(NC(=O)c2ccc(C#N)cc2)nc2cc(N(C)C(=O)C3CCCCC3)ccc21 527 | COc1cc(-c2nn(C3CCC(N4CCN(C(C)=O)CC4)CC3)c3ncnc(N)c23)ccc1NC(=O)c1cc2ccccc2n1C 528 | CN(C)CCNC(=O)c1ccc2c(c1)Cc1c(-c3ccc(-c4ccc(O)cc4)cc3)n[nH]c1-2 529 | COc1ccccc1-c1cc2[nH]c3ccc(O)cc3c2c2c1C(=O)NC2=O 530 | CN(C)CC(=O)N1CCC(c2ccc(NC(=O)c3nc(C#N)c[nH]3)c(C3=CCCCC3)c2)CC1 531 | CC(=NN=C(N)N)c1cc(NC(=O)c2cccc(C(=O)Nc3cc(C(C)=NN=C(N)N)cc(C(C)=NN=C(N)N)c3)c2)cc(C(C)=NN=C(N)N)c1 532 | CCN(Cc1cc(Nc2nc(C)cn3c(-c4cn[nH]c4)cnc23)sn1)C(C)(C)CO 533 | Cn1nnc(-c2ccc3nc(O)c(-c4cc5cc(CN6CCCCC6)ccc5[nH]4)cc3c2)n1 534 | COc1cc(-c2ccc3c(c2)Nc2ccccc2NC3=O)ccc1C(C)=O 535 | CCCNC(=O)c1ccc(Nc2nc(CCC(F)(F)F)c3cc[nH]c3n2)cc1 536 | COc1c(-c2nc3ccccc3[nH]2)c(O)cc2oc(C)cc(=O)c12 537 | Nc1ncnc2onc(-c3ccc(NC(=O)Nc4cccc(C(F)(F)F)c4)cc3)c12 538 | CCCC(=O)Nc1nn(C(=O)CC)c2nc3ccccc3cc12 539 | Cc1[nH]nc2ccc(-c3cncc(OCC(N)Cc4ccccc4)c3)cc12 540 | Brc1ccc2[nH]nc(-c3ccccc3)c2c1 541 | N#Cc1ncc(Nc2ncc(-c3cccs3)cn2)cc1OC1CCCNC1 542 | CC1CSc2c(C(=O)O)c(=O)c3cc(F)c(N4CCC(N)C4)cc3n21 543 | O=C(O)c1ccc(-c2n[nH]c3c2Cc2cc(CNC4CCC(O)CC4)ccc2-3)cc1 544 | CC(C)CC(=O)Nc1[nH]nc2c1CN(C(=O)C1CCN(C)CC1)C2(C)C 545 | COc1cccc(C(C)NC(=O)c2cc(C)c(-c3ccc4[nH]nc(C)c4c3)s2)c1 546 | c1cc(-c2cc3c(cn2)[nH]c2ncc(-c4ccc(CN5CCCCC5)cc4)cc23)ccn1 547 | FC(F)(F)c1ccc(-c2nnc3ccc(NC4CC4)nn23)cc1 548 | N#Cc1cnc(NC(=O)Nc2ccc(CCNCc3ccccc3F)c(Cl)c2)cn1 549 | CC(C)c1nnc2ccc(-c3c(-c4ccc(F)cc4F)nc4n3CCC4)nn12 550 | CCCCC(Sc1nc2c(O)cccc2c(=O)n1-c1cccc(Cl)c1)C(=O)N1CCC(C(N)=O)CC1 551 | COc1cc(OC)c(Nc2ccc3nnc(-c4ccccc4)n3n2)cc1Cl 552 | COC(=O)c1ccc2[nH]c(O)c(C(=Nc3ccc(N(C)C(=O)CN4CCN(C)CC4)cc3)c3ccccc3)c2c1 553 | COc1ccc(-c2cc(N)n(-c3nc(C(=O)Nc4ccccc4N4CCNCC4)cs3)n2)cc1 554 | O=C(NOCc1ccccc1)c1ccc2c(-c3nc4ccccc4[nH]3)[nH]nc2c1 555 | COc1cc(-c2ccc3c(-c4cc5cc(CN6CCCCC6)ccc5[nH]4)[nH]nc3c2)ccc1O 556 | CNc1ccnc(Nc2cnc(C#N)c(OC(C)CN(C)C)n2)c1 557 | Cn1cc(-c2cc3nc(Br)cnc3[nH]2)c2ccccc21 558 | COCC(=O)N1CCN(Cc2ccc3[nH]c(-c4cc5cc(-c6cn[nH]c6)ccc5nc4O)cc3c2)CC1 559 | N#Cc1cc2c(cn1)[nH]c1ncc(-c3ccc(CN4CCC5(CC4)COC5)cc3)cc12 560 | NC(=O)c1cnc(N(CCc2ccccc2)C2CCCNC2)c2cc(-c3ccccc3)sc12 561 | N#Cc1cc2c(cn1)[nH]c1ncc(-c3cccnc3)cc12 562 | COc1cc(Nc2ncc(F)c(Nc3ccc4c(n3)NC(=O)C(C)(C)O4)n2)cc(OC)c1OC 563 | CSc1ccc(-c2nc(-c3ccc(F)cc3)c(-c3ccncc3)[nH]2)cc1 564 | Fc1ccc(-c2ncn(CCN3CCOCC3)c2-c2ccc3[nH]ncc3c2)cc1 565 | Oc1nc2ccc(Br)cc2cc1-c1cc2cc(CN3CCCCC3)ccc2[nH]1 566 | COc1cc(NC(=O)CCCOc2ccccc2)c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1 567 | Cn1cc(-c2ccc3c(CCCN)cc4ccnc(O)c4c3c2)cn1 568 | CS(=O)(=O)N(Cc1ccc2nc(O)c3cccn3c2c1)C1CC1 569 | COc1ccc(-c2ccc(NC(=O)Nc3ccc(F)c(C)c3)cc2)c2c(N)noc12 570 | O=C(Nc1ccccc1N1CCNCC1)c1csc(N2CCc3c(F)ccc(F)c3C2)n1 571 | Cc1ccccc1NC(=O)Nc1ccc(NC(=O)c2csc3ncnc(N)c23)cc1 572 | CCOc1ccc(NC(=O)Nc2ccc(-c3csc4c(-c5cnn(C)c5)cnc(N)c34)cc2)cc1 573 | COc1ccc(CNCCc2cc(OC)c(NC(=O)Nc3cnc(C#N)cn3)cc2Cl)cc1 574 | O=C1NC(=O)c2c1c(-c1ccccc1)cc1[nH]c3cc(O)ccc3c21 575 | N#Cc1ccc2cc(-c3cc4cc(CN5CCC(CN)CC5)ccc4[nH]3)c(O)nc2c1 576 | O=C1CCCN1Cc1ccc2c(c1)nc(O)c1cccn12 577 | Cc1cc2c(NC3CCCNC3)ncc(C(N)=O)c2s1 578 | CC=C(C=CC=C1C(=O)Nc2cc(-c3ccc(O)c(OC)c3)ccc21)C(=O)O 579 | CCCCC(Sc1nc2ccccc2c(=O)n1-c1cccc(C)c1)C(=O)N1CCCC2(CCCNC2)C1 580 | NCC1CCN(Cc2ccc3[nH]c(-c4cc5cc(C(N)=O)ccc5nc4O)cc3c2)CC1 581 | CN(C)CC1CCn2cc(c3ccccc32)C2=C(C(=O)NC2=O)c2cn(c3ccccc23)CCO1 582 | Cn1cc(-c2cc3c(NC4CCCNC4)ncc(C(N)=O)c3s2)cn1 583 | N#Cc1ccc(Nc2ncc(C(F)(F)F)c(NC3CCCNC3)n2)cn1 584 | Cc1ccccc1-c1c(-c2ccc3[nH]nc(N)c3c2)nnn1Cc1ccccc1 585 | NC1CCN(c2ncnc3[nH]c4cnccc4c23)CC1 586 | COc1cc(Nc2nccc(Nc3cc(C4CCCCC4)no3)n2)cc(OC)c1OC 587 | Cc1c(C(=O)N2CCOc3ccc(-c4ccc(N)nc4)cc3C2)ccc(S(C)(=O)=O)c1F 588 | CNc1nc(Nc2cnc(C#N)c(OCC3CCCNC3)c2)ncc1C(F)(F)F 589 | O=C1NC(=O)c2c1c1c(O)cccc1c1[nH]c3ccccc3c21 590 | Cc1nccn2c(-c3ccnc(NCC4(O)CC4)n3)c(-c3ccc(F)cc3F)nc12 591 | COc1cc(CCNC(C)c2ccc(N3CCNCC3)cc2)c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1 592 | [O][N+](=O)c1ccc(Nc2nccc(Nc3ccccc3C(=O)O)n2)cc1 593 | N#Cc1ncc(Nc2cc3cccc(Cl)c3cn2)nc1OC1CCCNC1 594 | COc1cc(-c2ccc3c(c2)Nc2ccc([N+]([O])=O)cc2NC3=O)ccc1O 595 | C=Cc1cnc(O)c2c1cc(CCCN)c1ccc(-c3cn[nH]c3)cc12 596 | COc1cccc(-c2cc3[nH]c4ccc(O)cc4c3c3c2C(=O)NC3=O)c1 597 | NCCCc1cc2c(-c3ccc(O)cc3)cnc(O)c2c2cc(-c3cn[nH]c3)ccc12 598 | N#Cc1cc2c(cn1)[nH]c1ncc(-c3ccccc3O)cc12 599 | COc1cc(C=C(C#N)c2nc3ccccc3[nH]2)c(Br)cc1O 600 | O=C(NCC(F)(F)F)c1cc(-c2cnn3cc(-c4ccc(OCCN5CCCCC5)cc4)cnc23)cs1 601 | COCCN1CC(C(N)=O)(N(C)Cc2cc3c(Nc4cccc(Cl)c4F)ncnc3cc2OC)C1 602 | CN(C)CCOc1cc2c(cc1Cl)NC(=O)Nc1cnc(C#N)c(n1)OCCCCCO2 603 | CC(C)(C)N=c1c(O)c(O)c1=Nc1ccnc(Nc2ccc(-c3ccncc3)cc2)n1 604 | O=C1C=C(O)C=CC1=C1C=CC(c2cc(Nc3ccc(CN4CCCCC4)nc3)[nH]n2)C=C1 605 | CCCCC(Sc1nc2ccccc2c(=O)n1-c1ccccc1)C(=O)N1CCC(C(N)=O)CC1 606 | NCCOc1cccc(Nc2ccnc(N)n2)c1 607 | COc1cc2c(cc1C(=O)NCc1ccccn1)Cc1c(-c3ccc(-c4ccc(O)c(C#N)c4)cc3)n[nH]c1-2 608 | Nc1nonc1-n1nnc(C(=O)NN=Cc2ccncc2)c1-c1ccccc1 609 | O=C1NC(=O)c2c1c(-c1cc(O)ccc1Cl)cc1[nH]c3ccc(O)cc3c21 610 | CNc1nc(Nc2cnc(C#N)c(OC(C)CN(C)C)c2)ncc1-c1cnn(C)c1 611 | COc1cc(-c2ccc3c(c2)NC(=O)C3=CC2CCCN2)ccc1O 612 | OC1CCC(Nc2cc(Cl)nc(-c3c[nH]c4ncccc34)n2)CC1 613 | O=C(O)c1ccc(-c2[nH]nc3c2Cc2cc(CN4CCOCC4)ccc2-3)cc1 614 | O=C(Cc1ccccc1)Nc1cccc(-c2nc3sccn3c2-c2ccnc(Nc3cccc(N4CCOCC4)c3)n2)c1 615 | c1cc(-c2cc3c(cn2)[nH]c2ncc(-c4ccc(CN5CCCCC5)cc4)cc23)cnn1 616 | N#Cc1c(-c2ccccc2)cc(-c2ccccc2)nc1N=c1scc(-c2ccccc2)n1-c1ccccc1 617 | CCCOc1nc(NC(C)=O)cc(N)c1C#N 618 | COc1cc(Nc2cnc(C#N)c(OC3CCN(C)C3)n2)ncc1-c1cnn(C)c1 619 | COc1ccc(NC(=O)Nc2ccc(-c3csc4c(-c5cnn(CCO)c5)cnc(N)c34)cc2)cc1 620 | Nc1c(-c2ccc(NC(=O)Nc3cccc(C(F)(F)F)c3)cc2)ccc2nccnc12 621 | CC(=O)c1nn(-c2ccc(C)cc2)c(=Nc2nc(-c3ccccc3)cc(-c3ccccc3)c2C#N)s1 622 | COc1cc(O)ccc1-c1ccc2c(c1)NC(=O)C2=Cc1cc[nH]c1 623 | N#Cc1cnc(Nc2cc(NCC3CNCCO3)c(C#N)cn2)cn1 624 | C(=Cc1[nH]nc2cc(-c3cccc4[nH]ccc34)ccc12)c1ccccc1 625 | CNc1cc(Nc2cnc(C#N)c(OC(C)CN(C)C)n2)ncc1-c1cnn(C)c1 626 | COCCNc1nccc(-c2c(-c3ccc(F)cc3)nc3cnccn23)n1 627 | CC(C)(C)OC(=O)n1ncc2cc(Nc3c(NCc4ccc(Cl)cc4Cl)c(=O)c3=O)ccc21 628 | NC(=O)c1ccc(-c2[nH]nc3c2Cc2cc(CN4CCC(O)CC4)ccc2-3)cc1 629 | O=C1NC(=O)c2c1c1c(O)ccc3c1c1c2c2ccccc2n1C1(O3)OC(CO)C(O)C(O)C1O 630 | CC(C)(C)n1nc(-c2ccc(Cl)cc2)c2c(N)ncnc21 631 | O=C(NNC(=S)Nc1ccc(F)cc1)C(O)(c1ccccc1)c1ccccc1 632 | CC(=O)Nc1ccc(-n2nc3ccc(N)nc3n2)cc1 633 | CC(=O)c1ccccc1-c1ccc2c(c1)Nc1ccccc1NC2=O 634 | COc1cc(-c2ccc3c(c2)NC(=O)C3=CC=CC=CC(=O)NCCCn2ccnc2)ccc1O 635 | OCCNc1cc2cc(-c3ccsc3)ccc2cn1 636 | NS(=O)(=O)c1cccc(Nc2ncc3ccn(Cc4ccccc4)c3n2)c1 637 | NC(COc1cncc(-c2ccc3c(c2)C(=Cc2ccco2)C(=O)N3)c1)Cc1c[nH]c2ccccc12 638 | Cc1ccc(-n2nc(C(C)(C)C)cc2NC(=O)Nc2ccc(OCCN3CCOCC3)c3ccccc23)cc1 639 | NC(=O)c1ncc(NC2CCCNC2)c2nc(-c3ccc(Cl)cc3)cn12 640 | Oc1nnc(-c2c[nH]c(-c3ccccc3)c2-c2ccccc2)c2cn(-c3ccc(Cl)cc3)nc12 641 | O=C(Nc1cnccc1N1CCNCC1)c1csc(N2Cc3ccccc3C2)n1 642 | COc1cccc(Nc2ncnn3ccc(CN4CCC(N)C(O)C4)c23)c1 643 | Cc1cccc(NC(=O)Nc2ccc3c(c2)CCc2sc4ncnc(N)c4c2-3)c1 644 | Nc1ccc(-c2cc3[nH]c4ccc(O)cc4c3c3c2C(=O)NC3=O)cc1 645 | Cc1sc(C(=O)NC2C(N)CCCC2(F)F)cc1-c1cnn2cc(Cl)cnc12 646 | Cc1cccc(NC(=O)Nc2ccc(-c3noc4ncnc(N)c34)cc2)c1 647 | CC1COCCN1c1nc(-c2c(F)ncc3[nH]ccc23)cc2c1ncn2C 648 | Clc1cc(-c2c[nH]c3ncccc23)nc(NC2CCCCC2)n1 649 | N#Cc1ncc2nc1OCCCCCOc1cc(OCCO)c(Cl)cc1NC(=O)N2 650 | O=C1Nc2cc(-c3ccc(O)cc3)ccc2C1=Cc1ccc(C(=O)NCCCn2ccnc2)[se]1 651 | COc1cc(-c2ccc3nc(O)c(-c4cc5cc(CN6CCCCC6)ccc5[nH]4)cc3c2)ccc1O 652 | O=C(Nc1cnc2[nH]cc(-c3ccccc3)c2c1)c1ccc(Cl)cc1 653 | Oc1cc(-c2ccncc2)nc(NC2CCCCC2)n1 654 | COc1ccc(C=C2C(=O)ON=C2c2ccc(Br)cc2)cc1OC 655 | NCCCc1cc2ccnc(O)c2c2cc(Br)ccc12 656 | CC1CCC(NCc2ccc3c(c2)Cc2c(-c4ccc(CC(=O)O)cc4)n[nH]c2-3)CC1 657 | O=C1NC(=O)c2c1c(-c1ccccc1I)cc1[nH]c3ccc(O)cc3c21 658 | NCCCc1cc2c(-c3ccc(Cl)cc3Cl)cnc(O)c2c2cc(-c3cn[nH]c3)ccc12 659 | CC1CCC(NCc2ccc3c(c2)Cc2c(-c4ccc(OC(F)(F)F)cc4)n[nH]c2-3)CC1 660 | CN(C(=O)C1CCCCC1)c1ccc2c(c1)nc(NC(=O)c1ccc(C#N)cc1)n2C 661 | CC(C)S(=O)(=O)n1c(N)nc2ccc(-c3c(-c4ccc(F)cc4)nc4sccn34)cc21 662 | N#Cc1cc2c(cn1)[nH]c1ncc(-c3ccc(CO)cc3)cc12 663 | Oc1ccc(-c2ccc(-c3cc(Nc4ccc(CNC5CC5)cc4)[nH]n3)cc2)c(O)c1 664 | NC(=O)c1cnc(SC2CCCNC2)c2cc(-c3ccccc3)sc12 665 | COc1cc2ncnc(Nc3cccc(Cl)c3F)c2cc1CNC(C)C(N)=O 666 | COc1cc(CN2CCCC2)ccc1NC(=O)Nc1cnc(C#N)cn1 667 | Sc1nnc2c3c4c(sc3n3c(S)nnc3n12)CCC4 668 | N#Cc1ccc(Nc2ncc(C(F)(F)F)c(NCCCNC3CC3)n2)cn1 669 | COc1cc(C=C(C#N)c2[nH]nc(N)c2C#N)ccc1O 670 | O=C(Nc1ccc2c[nH]nc2c1)c1ccc(Cl)cc1 671 | COc1cc(-c2ccc3c(c2)NC(=O)C3=Cc2ccc(C(=O)NCCN3CCOCC3)[se]2)ccc1O 672 | N#Cc1ncc2nc1OCCCCCOc1cc(CCCO)c(Cl)cc1NC(=O)N2 673 | Cc1c(C)n(Cc2ccccc2)c2ccc(C(=O)Nc3nc[nH]n3)cc12 674 | Cc1ncc2c(n1)CN(c1nc(C(=O)Nc3ccccc3N3CCNCC3)cs1)C2 675 | N#Cc1cnc(Nc2cc3[nH]cnc3cn2)cn1 676 | NC(=O)c1cccc2[nH]c(-c3ccncc3)nc12 677 | NC(=O)Nc1cc(-c2ccc(F)cc2)sc1C(=O)NC1CCCNC1 678 | CC(O)C#Cc1cc2c(cc1Cl)NC(=O)Nc1cnc(C#N)c(n1)OCCCCCO2 679 | COc1ccccc1CNCCc1ccc(NC(=O)Nc2cnc(C#N)cn2)cc1Cl 680 | O=C(Nc1ccccc1N1CCNCC1)c1csc(N2Cc3c[nH]nc3C2)n1 681 | Cc1cn2c(-c3ccnc(NCC(C)(C)CO)n3)c(-c3ccc(F)cc3F)nc2c(C)n1 682 | O=C(Nc1cccc(C(F)(F)F)n1)Nc1ccnc2cc(C(F)(F)F)ccc12 683 | NC(=O)C1CCCN(C(=O)c2cc(-c3ccc4[nH]ncc4c3)on2)C1 684 | O=c1c(NCc2ccc(Cl)cc2Cl)c(Nc2ccc3[nH]ncc3c2)c1=O 685 | COc1ccc(-c2cc3c([nH]2)C(=O)NCCC3=C2N=C(N)NC2=O)cc1 686 | CCOc1cc(-c2ccc3c(C=Cc4ccccc4)[nH]nc3c2)ccc1O 687 | CCCCCCCCCCCCCCCCn1cc[n+](Cc2ccccc2)c1C 688 | CC(C)(O)c1nnc2ccc(-c3c(-c4ccc(F)cc4F)nc4n3CCC4)nn12 689 | O=C(Nc1cccc(Cl)c1)Nc1ncc(CCNc2ncnc3ccsc23)s1 690 | COc1cccc(C(C)NC(=O)c2ccc(-c3ccncc3C)cc2)c1 691 | Cc1c[nH]c(-c2cnc(NCCNc3ccc(C#N)cn3)nc2-c2ccc(Cl)cc2Cl)n1 692 | NC(=O)c1cccc(Nc2nccc(Nc3cccc4[nH]ncc34)n2)c1 693 | CCOC(=O)c1nn(-c2ccc(C)cc2)cc1C(=O)c1c(C)[nH]c(-c2ccccc2)c1-c1ccccc1 694 | O=C1N=c2ccc(N3C=CNN3)cc2=CC1=C1C=c2cc(CN3CCCCC3)ccc2=N1 695 | CC1(C)CC2=Nc3cc(Cl)ccc3SC2=C(O)C1 696 | NCC1CCN(c2cc(Nc3cnccn3)ncn2)CC1 697 | Cc1ccc(-n2cc(C(=O)c3c(C)[nH]c(-c4ccccc4)c3-c3ccccc3)c(C(=O)Nc3ccccc3)n2)cc1 698 | NS(=O)(=O)c1ccc(N=Cc2c(O)[nH]c3ccc4ncsc4c23)cc1 699 | N#CC(=C1Nc2ccccc2S1)c1ccnc(NCCc2cccnc2)n1 700 | Cc1ccnc(Nc2cc(C)nc(-c3ccccc3)n2)c1 701 | Cc1[nH]c(C=C2C(=O)Nc3ccc(S(=O)(=O)Cc4c(Cl)cccc4Cl)cc32)c(C)c1C(=O)N1CCCC1CN1CCCC1 702 | CC1COCCN1c1nc(-c2cncc3[nH]ccc23)cc2c1ncn2C 703 | Cc1csc(NC(=O)c2sc3nc(-c4ccncc4)ccc3c2N)n1 704 | CC=C(C=CC=C1C(=O)Nc2cc(-c3cccc(O)c3)ccc21)C(=O)NCCN(C)C 705 | CCS(=O)(=O)c1ccc(-c2cncc3sc(C(N)=O)cc23)cc1 706 | CC1Cn2ncc(-c3ccc(S(C)(=O)=O)cc3)c2CN1c1ccnc2[nH]ccc12 707 | COc1ccc(OC)c(CNC(=O)c2cc(N)c(C#N)c(OC(C)C)n2)c1 708 | CC(C)Oc1[nH]nc(O)c1C=C1C=Nc2ccccc21 709 | Cc1cnc(Nc2ccc(OCCN3CCCC3)cc2)nc1Nc1cccc(S(=O)(=O)NC(C)(C)C)c1 710 | O=c1c2cc(F)c(NCc3ccccc3)c(F)c2n(C2CC2)c2snc(O)c12 711 | CN1CCN(c2nc(C3=C(c4c[nH]c5ccccc45)C(=O)NC3=O)c3ccccc3n2)CC1 712 | CNc1nc(Nc2cnc(C#N)c(OCC3CCNCC3)c2)ncc1-c1cnn(C)c1 713 | N#Cc1cnc(NC(=O)Nc2ccc(CCNCc3ccc(N4CCOCC4)cc3)c(Cl)c2)cn1 714 | N#Cc1ncc2nc1OCCCCOc1ccc(Cl)cc1NC(=O)N2 715 | CNC(=O)c1ccccc1Nc1nc(Nc2ccc(N3CCOCC3)cc2OC)ncc1Cl 716 | CCOc1nc(C(=O)NCc2ccccc2S(N)(=O)=O)cc(N)c1Cl 717 | CCN(CC)CC=Cc1nc(O)c2c(ccc3nc(Nc4c(Cl)cccc4Cl)n(C)c32)c1C 718 | N#Cc1cnc(NC(=O)Nc2ccc(CCNCCc3ccc(F)cc3)c(Cl)c2)cn1 719 | COc1cc(-c2ccc3c(c2)NC(=O)C3=Cc2c[nH]c3nc(C#N)ccc23)ccc1O 720 | CN1CCN(c2ccc(-c3cncc(-c4ccc(-c5nn[nH]n5)cc4)n3)cc2)CC1 721 | CCN(CC)C(=O)Nc1ccc2nc(-c3ccco3)c(-c3ccco3)nc2c1 722 | C(=Cc1[nH]nc2cc(-c3ccnc4[nH]ncc34)ccc12)c1ccccc1 723 | COc1cccc(C(C)NC(=O)c2cnc(-c3ccncc3)nc2)c1 724 | CN(C)S(=O)(=O)c1ccc(-c2cnn3c2CN(c2ccnc4[nH]ccc24)CC3)cc1 725 | CN1CCN(c2ccc(-c3cncc(-c4ccc5c(O)[nH]nc5c4)n3)cc2)CC1 726 | CCn1c(-c2nonc2N)nc2c(C#CC(C)(C)O)ncc(OCC3CCCNC3)c21 727 | O=C1NC(=O)c2c1c1c3ccc(OCc4ccccc4)cc3[nH]c1c1[nH]c3ccncc3c21 728 | Nc1nccc(-c2c(-c3ccc(F)cc3)ncn2C2CCNCC2)n1 729 | N#Cc1cccc(-c2c[nH]c3ncnc(N4CCOC(CN)C4)c23)c1 730 | O=C1NC(=O)c2c1cc(C(=O)NCc1ccccc1)c1[nH]c3ccccc3c21 731 | O=C(Nc1ccc([N+](=O)[O-])cc1)N1CCc2[nH]c3c(Cl)cc(Cl)cc3c2C1 732 | O=C(Cc1ccccc1Cl)Nc1ccc2c[nH]nc2c1 733 | COc1cc(NC(=O)Cc2cccnc2)c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1 734 | N#Cc1cnc(NC(=O)Nc2ccc3cc(C(=O)O)ccc3c2)cn1 735 | COc1cc(O)ccc1-c1ccc2c(-c3nc4ccccc4[nH]3)[nH]nc2c1 736 | NC(=O)c1cc2c(-c3ccc(Br)c(F)c3F)cncc2s1 737 | C[S+]([O-])c1ccc(-c2cc3[nH]c4ccc(O)cc4c3c3c2C(=O)NC3=O)cc1 738 | CCCc1ccc2nccc(NC(=O)Nc3cccc(C(F)(F)F)n3)c2c1 739 | Oc1nc2ccc(Cl)cc2c(NC2CN3CCC2CC3)c1-c1nc2ccccc2[nH]1 740 | CN(CCO)c1ncnc2oc(-c3ccccc3)c(-c3ccccc3)c12 741 | CS(=O)(=O)Nc1ccc(-c2ccc3[nH]nc(N)c3c2)cc1 742 | NCCc1cc2ccnc(O)c2c2cc(-c3cn[nH]c3)ccc12 743 | CC(O)Cn1cc(-c2cnc(N)c3c(-c4ccc(NC(=O)Nc5cccc(F)c5)cc4)csc23)cn1 744 | Cc1ccc(NC(=O)Nc2ccc(-c3csc4c(-c5cnn(C(C)C(=O)N(C)C)c5)cnc(N)c34)cc2)cc1 745 | Cn1cc(-c2cnc(N)c3c(-c4ccc(NC(=O)Nc5cccc(F)c5)cc4)csc23)cn1 746 | NCCCc1cc2c(c3cc(-c4cn[nH]c4)ccc13)C(=O)N=CC2c1cccc(O)c1 747 | O=C(NN=Cc1cc(Br)c(O)c(Br)c1)Nc1ccccc1 748 | Cc1cc(C)cc(NC(=O)Nc2ccc(-c3cccc4sncc34)cc2)c1 749 | CC(C)(C)NC(=O)c1ccc2nc3[nH]c4ccccc4c3nc2c1 750 | Cc1ccc(NC(=O)Nc2ccc(-c3cccc4c3CNC4=O)cc2)cc1C 751 | NC(=O)c1cnc(NCC2CCCNC2)n2cc(-c3ccc(Cl)cc3)nc12 752 | CC(C)(C)NCc1ccc2c(c1)-c1[nH]nc(-c3ccc(-c4ccc(O)cc4)cc3)c1C2 753 | CNCCNc1cc(Nc2ncc(C(F)(F)F)c(NC)n2)cnc1C#N 754 | Nc1ccc(-c2cc3[nH]c4ccc(O)cc4c3c3c2C(=O)NC3=O)c(Br)c1 755 | COC(C(=O)N1Cc2[nH]nc(NC(=O)c3ccc(N4CCN(C)CC4)cc3)c2C1)c1ccccc1 756 | CC1COCCN1c1nc(-c2cccc3[nH]ccc23)cc2c1ncn2CS(C)(=O)=O 757 | NC1CCC(Nc2nccc(-c3c[nH]c4ncccc34)n2)CC1 758 | Cc1[nH]nc2ccc(-c3cncc(OCC(N)Cc4cccc(OC(F)(F)F)c4)c3)cc12 759 | CCCOc1cccc(C(C)NC(=O)c2ccc(-c3ccncc3)cc2)c1 760 | CCOc1nc(NC(C)=O)cc(N)c1C#N 761 | Cc1[nH]c(C=C2C(=O)Nc3ccccc32)c(C)c1CCC(=O)O 762 | CC(=O)c1ccccc1-c1cc2[nH]c3ccc(O)cc3c2c2c1C(=O)NC2=O 763 | COc1cc(NC(=O)c2ccco2)c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1 764 | C[S+]([O-])c1ccc(-c2nc(-c3ccc(F)cc3)c(-c3ccncc3)[nH]2)cc1 765 | COc1ccc(-c2cc3nccn3c(Nc3ncccc3C(N)=O)n2)cc1OC 766 | COc1cc(-c2ccc3c(c2)NC(=O)C3=Cc2ncc[nH]2)ccc1O 767 | Oc1ccc(-c2ccc(-c3[nH]nc4c3Cc3ccccc3-4)cc2)cc1 768 | N#Cc1cnc(Nc2cc(NCC3CNCCO3)c(-c3ccc(F)cc3)cn2)cn1 769 | O=C(NCC1CCCCC1)c1cc2c(-c3ccccc3)[nH]nc2s1 770 | N#Cc1ncc2nc1OCCCCCOc1cc(O)c(Cl)cc1NC(=O)N2 771 | CCOc1nc(C(=O)NCc2cccnc2)cc(N)c1C#N 772 | Cc1cccc(NC(=O)Nc2ccc(NC(=O)c3csc4ncnc(N)c34)cc2)c1 773 | Cn1cc(-c2cnc(Nc3cnc(C#N)cn3)cc2NCC2CNCCO2)cn1 774 | Oc1ccc(-c2ccc(-c3[nH]nc4c3Cc3cccc(O)c3-4)cc2)cc1 775 | COc1ccc2cn(-c3nc(C(=O)Nc4ccccc4N4CCNCC4)cs3)c(O)c2c1 776 | CSc1nn(-c2ccccn2)c(N)c1C(N)=O 777 | Cn1cc(-c2cnc(N)c3c(-c4ccc(NC(=O)Nc5ccc(OC(F)F)cc5)cc4)csc23)cn1 778 | COCCC(C(N)=O)N(C)Cc1cc2c(Nc3cccc(Cl)c3F)ncnc2cc1OC 779 | COc1cccc(C(C)NC(=O)c2sc(-c3ccncc3)nc2C)c1 780 | Cc1cccc(NC(=O)Nc2ccc(-c3csc4c(C#CCN5CCCC5)cnc(N)c34)cc2)c1 781 | NCC1CN(c2ncnc3[nH]c4cnccc4c23)CCO1 782 | CNC(=O)C1CCCN1Cc1cc2c(Nc3cccc(Cl)c3F)ncnc2cc1OC 783 | COc1ccc2c(NC(=O)Nc3cccc(Br)n3)ccnc2c1 784 | Cn1cc(-c2ccc3nc(O)c(-c4cc5cc(CN6CCCCC6)ccc5[nH]4)cc3c2)cn1 785 | COc1cc2c(Nc3ccc(NC(=O)c4ccccc4)cc3)ncnc2cc1OCCCN1CCOCC1 786 | Cc1ccc(Cn2cc(-c3ccc4[nH]ncc4c3)nn2)c(C)c1 787 | Nc1ccc(-c2csc3c(C=Cc4nc5ccccc5[nH]4)cnc(N)c23)cc1 788 | CC(=O)N1CCN(Cc2ccc3[nH]c(-c4cc5cc(-c6cn[nH]c6)ccc5nc4O)cc3c2)CC1 789 | COC(=O)c1cnc(Nc2cnc(C#N)cn2)cc1NCC1CCCNC1 790 | COc1ccc(-c2ccc3c(C=Cc4ccccc4)[nH]nc3c2)cn1 791 | Cc1nnc(-c2cc3c(Oc4ccc(C(F)(F)F)cc4)cncc3s2)o1 792 | N#Cc1cnc(Nc2cc(NCC3CNCCO3)c(Cl)cn2)cn1 793 | COc1cc(OCCNCc2ccc(F)cc2)ccc1NC(=O)Nc1cnc(C#N)cn1 794 | NC(=O)C1CCN(C(=O)C(Sc2nc3ccccc3c(=O)n2-c2cccc(Cl)c2)c2ccccc2)CC1 795 | CCOC(=O)c1cn(-c2ccc(O)cc2C)c2cc(-c3ccncc3)ccc2c1=O 796 | Cc1nc(Nc2ncc(C(=O)Nc3c(C)cccc3Cl)s2)cc(N2CCN(CCO)CC2)n1 797 | Oc1nnc(O)c2c(N=Nc3c(-c4ccccc4)nn(-c4ccccc4)c3O)cccc12 798 | NCCCc1cc2c(-c3ccccc3Cl)cnc(O)c2c2cc(-c3cn[nH]c3)ccc12 799 | NC(COc1cncc(-c2ccc3c(c2)CC(=O)N3)c1)Cc1c[nH]c2ccccc12 800 | COCCNCCCNc1nc(Nc2ccc(C#N)nc2)ncc1C(F)(F)F 801 | Cc1ccc2c(c1)NC(=O)c1ccccc1N2 802 | C#Cc1nc(Nc2cccc(CC(N)=O)c2)nc2nc[nH]c12 803 | N#Cc1ncc2nc1OCCCCCOc1ccc(Cl)cc1NC(=O)N2 804 | NC(=O)c1cnc(NC2CCNCC2)c2nc(-c3ccc(Cl)cc3)cn12 805 | COCCOC1CCC(n2nc(-c3ccc(Nc4nc5cc(C)cc(Cl)c5o4)cc3)c3c(N)ncnc32)CC1 806 | NCCn1cc(-c2cc(-c3cc4ccccc4s3)c3[nH]ncc3c2)c2nc(N)ncc21 807 | NC(COc1cncc(-c2cc3cnccc3s2)c1)Cc1c[nH]c2ccccc12 808 | CCc1nc(Nc2ccc(N3CCOCC3)c(Cl)c2)nc2[nH]ccc12 809 | Fc1ccc(-c2nc3occn3c2-c2ccnc(NC3CCNCC3)n2)cc1 810 | COc1cc(OC)c(NC(=O)Nc2cnc(C#N)cn2)cc1Cl 811 | CSc1cccc(Nc2ncc3cc(-c4c(Cl)cccc4Cl)c(=O)n(C)c3n2)c1 812 | Oc1nc2sc(Cl)cc2c(NC2CCNC2)c1-c1nc2ccccc2[nH]1 813 | CNC1CCN(c2nc3ncc(C(=O)O)c(O)c3c(C)c2Br)C1 814 | Nc1nnc2ccc(-c3ccccc3)cn12 815 | N#Cc1cc2c(cn1)[nH]c1ncc(-c3ccc(CN4CCC(F)CC4)cc3)cc12 816 | Nc1ncnc2c1c(I)nn2C1OC(CO)C(O)C1O 817 | Cc1cc(C)c2c(n1)sc1c(N)ncnc12 818 | Cc1[se]c(C=C2C(=O)Nc3cc(-c4ccc(O)cc4)ccc32)cc1C(=O)NCCN1CCCC1 819 | O=C(Nc1cnccc1N1CCNCC1)c1csc(Nc2[nH]nc3ccccc23)n1 820 | CC(C)N1CCN(C(=O)c2ccc(NC(=O)Nc3ccc(-c4nc(C5CCOCC5)nc(N5C6CCC5COC6)n4)cc3)cc2)CC1 821 | Cc1ccc2c(c1)C(=NC1CCNCC1)C(c1nc3ccccc3[nH]1)C(=O)N2 822 | O=C1C=CC(=C2C=CC(c3[nH]nc4c3Cc3cc(C(=O)NCc5ccccn5)ccc3-4)C=C2)C=C1 823 | NCCNC(=O)c1cccc(CNC(=O)c2cc3c(c4c2[nH]c2ccc(O)cc24)C(=O)NC3=O)c1 824 | CC(C)Nc1cc2c(cc1Cl)NC(=O)Nc1cnc(C#N)c(n1)OCCCCCO2 825 | Cc1cc(-c2cnc(Nc3cc(Cl)cc(Cl)c3)nc2NC2CCC(N(C)C)CC2)on1 826 | O=C(Nc1ccc(O)cc1)c1ccc2c(-c3nc4cc5c(cc4[nH]3)OCO5)[nH]nc2c1 827 | CSc1ccccc1CNc1ncc([N+](=O)[O-])c(NCC2CCC(CN)CC2)n1 828 | Cc1cc(Nc2cc(N3CCN(C)CC3)nc(C=Cc3ccccc3)n2)n[nH]1 829 | Cc1[nH]c(-c2ccccc2)c(-c2ccccc2)c1C(=O)c1cn(-c2ccc(Cl)cc2)nc1C(=O)Nc1ccccc1 830 | COc1cc(-c2ccc3c(c2)Nc2ccc(N4CCCC4=O)cc2NC3=O)ccc1N 831 | COc1cc(-c2ccc3c(c2)NC(=O)C3=Cc2ccc(C(=O)NCCCn3ccnc3)[se]2)ccc1O 832 | NC(=O)Nc1sc(-c2ccc(F)cc2)cc1C(=O)NC1CCCNC1 833 | COc1cccc(NC(=O)c2cnn3c(-c4ccccc4)ccnc23)c1 834 | O=C(O)c1cc2c(-c3cccc(F)c3)cncc2s1 835 | CC(N)C1CCC(C(=O)Nc2ccnc3[nH]ccc23)CC1 836 | Cc1cccc(NC(=O)Nc2ccc(-c3csc4ncnc(N)c34)cc2)c1 837 | CN1CCC(CNc2nc(Nc3ccc(C#N)nc3)ncc2C(F)(F)F)CC1 838 | Oc1cc2c(cn1)[nH]c1ncc(-c3ccc(CN4CCCCC4)cc3)cc12 839 | Nc1ccc(-c2cncc(OCC(N)Cc3c[nH]c4ccccc34)c2)cc1C(=O)c1ccccc1F 840 | CC(C)(C)OC(=O)n1cc(-c2cncn2C2CCCCC2)c2ccccc21 841 | COc1cc2c(cc1CCC(=O)N(C)C)Nc1cc(-c3ccc([N+](=O)[O-])c(OC)c3)ccc1C(=O)N2 842 | O=C(Nc1cccc(Cl)c1)Nc1nc(CCNc2ncnc3ccsc23)cs1 843 | CNC(=O)c1nn(C)c2c1CCc1cnc(NC3CCN(C(=O)C4CCN(S(C)(=O)=O)CC4)CC3)nc1-2 844 | c1nnc(-c2cc3c(cn2)[nH]c2ncc(-c4ccc(CN5CCCCC5)cc4)cc23)o1 845 | Cc1cc(O)ccc1-n1cc(C(=O)NN)c(=O)c2ccc(-c3ccncc3)cc21 846 | Cc1[nH]c(-c2ccccc2)c(-c2ccccc2)c1C(=O)c1cn(-c2ccccc2)nc1-c1ccccc1 847 | Oc1nc2ccccc2c(NC2CN3CCC2CC3)c1-c1nc2ccccc2[nH]1 848 | O=C1Nc2cncc(n2)OCCCCCOc2ccc(Cl)cc2N1 849 | Cc1ccc(C(=O)Nc2c(C(N)=O)sc3ccc(Cl)c(Cl)c23)cc1 850 | CC(=O)c1nn(-c2ccccc2)cc1C(=O)c1c(C)[nH]c(-c2ccccc2)c1-c1ccccc1 851 | CCNc1nc(C)c(-c2ccnc(Nc3ccc(N4CCN(C(C)=O)CC4)cc3)n2)s1 852 | COc1cc2c(cc1CN1CCN(C)CC1)Cc1c(-c3ccc(-c4ccc(O)cc4)cc3)n[nH]c1-2 853 | O=C1NC(=O)c2c1c(-c1cccc(O)c1)cc1[nH]c3ccc(O)cc3c21 854 | COc1cc(-c2ccc3c(c2)NC(=O)C3=Cc2cc[nH]c2)ccc1O 855 | O=C(NN=Cc1ccc(Sc2nc3ccccc3[nH]2)o1)c1cccc([N+](=O)[O-])c1 856 | N#Cc1ccc(NC(=O)Nc2ccnc3cc(C(F)(F)F)ccc23)nc1 857 | COc1ccccc1-c1ccnc(Nc2cccc(S(C)(=O)=O)c2)n1 858 | Cc1ccc(CN=c2c(O)c(O)c2=Nc2ccncc2)cc1C 859 | CC(C)Oc1nccn2c(-c3ccnc(NCC(C)(C)O)n3)c(-c3ccc(F)cc3F)nc12 860 | COC(=O)c1cnc(Nc2cnc(C#N)c(OC3CCNC3)n2)cc1N(C)C 861 | N#Cc1cnc(Nc2cc(N3CCC(CN)CC3)ncn2)cn1 862 | CN(c1ncccc1CNc1nc(Nc2ccc3c(c2)CC(=O)N3)ncc1C(F)(F)F)S(C)(=O)=O 863 | O=C1NC(=O)c2c1c1[nH]cnc1c1[nH]c3ccccc3c21 864 | COC(=O)CCc1c(C)[nH]c(C=C2C(=O)Nc3cc(-c4ccc(O)c(OC)c4)ccc32)c1C 865 | Cc1c(Nc2c(C#N)cncc2C=Cc2cccc(S(=O)(=O)N3CCN(C)CC3)c2)ccc2[nH]ccc12 866 | O=C(Nc1ccccc1N1CCNCC1)c1csc(Nc2ccccc2)n1 867 | Oc1nc2sc(Br)cc2c(NC2CCCNC2)c1-c1nc2ccccc2[nH]1 868 | NS(=O)(=O)c1ccc(N=Nc2c(O)[nH]c3ccc4ncccc4c23)cc1 869 | Oc1nc(-c2ccccc2)cc(-c2ccc3[nH]ncc3c2)n1 870 | CCCn1cc(-c2cnc(N)c3c(-c4ccc(NC(=O)Nc5cccc(F)c5)cc4)csc23)cn1 871 | CCNC(=O)c1cnc(Nc2cnc(C#N)cn2)cc1NCC1CCNCC1 872 | CN1CCN(c2ccc(-c3cncc(-c4ccc(C(N)=O)cc4)n3)cc2)CC1 873 | COc1ccc(-c2ccc(NC(=O)Nc3cccc(Br)c3)cc2)c2c(N)noc12 874 | CC(Oc1cc(-n2cnc3ccc(CN4CCN(C)CC4)cc32)sc1C(N)=O)c1ccccc1C(F)(F)F 875 | CNc1nc(Nc2cnc(C#N)c(NCCN(C)C)c2)ncc1C(F)(F)F 876 | Nc1nonc1-n1nnc(C(=O)NN=Cc2cccs2)c1-c1ccccc1 877 | COC(=O)c1cnc(Nc2cnc(C#N)cn2)cc1NCC1CCNCC1 878 | O=C1Nc2ccc(Cl)cc2C(=NC2CCNCC2)C1c1nc2ccccc2[nH]1 879 | CNc1nc(Nc2cnc(C#N)c(OC3CCCNC3)c2)ncc1-c1cccc(F)c1 880 | Cc1c(-c2cccc(OCc3ccccc3)c2)c2c(N)ncnc2n1C1CC(CN2CCCC2)C1 881 | COC(=O)c1cnc(Nc2cnc(C#N)cn2)cc1NC1CC2CCC(C1)N2C 882 | COc1ccc(N2CCN(C)CC2)cc1Nc1ncc2c(n1)-c1c(c(C(N)=O)nn1C)CC2 883 | Oc1nc2sccc2c(NC2CCNC2)c1-c1nc2ccccc2[nH]1 884 | Oc1ccc(-c2ccc(-c3[nH]nc4c3Cc3cc(O)ccc3-4)cc2)cc1 885 | COC(=O)c1ccc(-c2ccc3c(c2)Nc2ccccc2NC3=O)cc1OC 886 | COc1cccc(C(C)NC(=O)c2ccc(-c3ccncn3)cc2)c1 887 | CCOC(=O)c1cnc2[nH]nc(-c3cccc(C#N)c3)c2c1N1CCOC(CN)C1 888 | N#Cc1ccc2c(c1)C(c1ccc3c(n1)CCCC3O)C(=O)N2 889 | Clc1cccc(Nc2nc(N3CCOCC3)c3[nH]cnc3n2)c1 890 | COc1cc(-c2ccc3c(c2)NC(=O)C3=Cc2[nH]c(C)cc2C)ccc1O 891 | CCS(=O)(=O)N1CCN(c2ccc(Nc3ncc(C(N)=O)c(NC4CC4)n3)cc2)CC1 892 | CCCC(=O)Nc1[nH]nc2ccc(-c3cn(Cc4ccccc4)nn3)cc12 893 | CN1CCN(c2cccc(-c3cnc4[nH]c5cnc(C#N)cc5c4c3)c2)CC1 894 | NC1CCCCC1Nc1nccc(-c2c[nH]c3ncccc23)n1 895 | COc1ccc(C(=O)Nc2ccccc2C(=O)O)cc1OC 896 | O=C(Nc1cnccn1)Nc1ccnc2ccc(C(F)(F)F)cc12 897 | C=CCC=CC1=c2ccc(-c3ccc(O)c(OC)c3)cc2=NC1=O 898 | O=C(Nc1ccc(O)cc1)c1ccc2c(-c3nc4ccccc4[nH]3)[nH]nc2c1 899 | CNc1nc(Nc2cnc(C#N)c(OCCN(C)C)c2)ncc1-c1cnn(C)c1 900 | CCc1c(-c2ccc(C(C)(C)O)cc2)[nH]c2nccnc12 901 | Oc1nc2ccsc2c(NC2CCCNC2)c1-c1nc2ccccc2[nH]1 902 | NCCNc1ncnc2[nH]c3cnccc3c12 903 | N#Cc1cnc(Nc2cc(NCC3CNCCO3)c(-c3ccc(F)c(F)c3)cn2)cn1 904 | c1cnc(-c2cc3c(cn2)[nH]c2ncc(-c4ccc(CN5CCCCC5)cc4)cc23)cn1 905 | NC(=O)Nc1sc(-c2cc(F)cc(F)c2)cc1C(=O)NC1CCCNC1 906 | N#Cc1cc2c(cn1)[nH]c1ncc(-c3ccoc3)cc12 907 | CNc1cc(Nc2cnc(C#N)c(OC(C)CN(C)C)n2)ncc1C1CC1 908 | COc1cc2c(Nc3ccc(Br)cc3F)ncnc2cc1OCC1CCN(C)CC1 909 | Cc1cc(OCc2ccc(Cl)c(Cl)c2)ccc1CN1CC(C(=O)O)C1 910 | CCC1C(=O)N(C)c2cnc(Nc3ccc(C(=O)NC4CCCCC4)cc3OC)nc2N1C1CCCC1 911 | O=C1NC(=S)SC1=C1C(=O)Nc2ccc(Br)cc21 912 | c1cc2cc(-c3ccc4c[nH]nc4c3)cnc2[nH]1 913 | N#Cc1ccccc1-c1cc2[nH]c3ccc(O)cc3c2c2c1C(=O)NC2=O 914 | Cc1ccc(F)c(NC(=O)Nc2ccc(-c3cncc4c3c(N)nn4C)cc2)c1 915 | N#Cc1ncc2nc1OCCCCCOc1cc(OCc3ccncc3)c(Cl)cc1NC(=O)N2 916 | NC(=O)c1ccc(NC2CCCNC2)c2cc(-c3ccc(Cl)cc3)[nH]c12 917 | Clc1ccc(-c2[nH]ncc2-c2ccncn2)cc1Cl 918 | COc1cccc(CNC(=O)c2ccc(-c3ccncc3)cc2)c1 919 | COc1cc2ncnc(Nc3cccc(Cl)c3F)c2cc1CN(C(C)C)C(C)C(N)=O 920 | Cc1nc(COc2ccccc2Cl)sc1-c1ccnc(N)n1 921 | COc1cccc(OC)c1-c1cc2[nH]c3ccc(O)cc3c2c2c1C(=O)NC2=O 922 | CN1CCN(c2ccc(-c3cnc4[nH]c5cnc(C#N)cc5c4c3)cc2)CC1 923 | COc1cc(-c2ccc3c(c2)Nc2ccccc2NC3=O)ccc1C#N 924 | O=C(Nc1cc(C(F)(F)F)cc(C(F)(F)F)c1)c1cc(Cl)ccc1O 925 | Cc1ccc2c(c1)C(=NC1CN3CCC1CC3)C(c1nc3ccccc3[nH]1)C(=O)N2 926 | COCOc1cccc(OCOC)c1-c1ccc(NS(C)(=O)=O)cc1C(=O)OC 927 | Oc1nnc(-c2c[nH]c(-c3ccccc3)c2-c2ccccc2)c2cn(-c3ccccc3)nc12 928 | Clc1ccc2c(c1)nnc1nnnn12 929 | CN(C)c1ccc(-c2cc(-c3ccc([N+](=O)[O-])cc3)nc(NS(=O)(=O)c3ccc(N)cc3)n2)cc1 930 | NC(=O)Nc1sc(-c2ccc(Cl)c(Cl)c2)cc1C(=O)NC1CCCNC1 931 | CNCCCNc1nc(Nc2ccc(C#N)nc2)ncc1C(F)(F)F 932 | COc1ccc2c(NC(=O)Nc3cccc(C(F)(F)F)n3)ccnc2c1 933 | COc1cc2c(cc1CCO)Nc1cc(-c3ccc([N+](=O)[O-])c(OC)c3)ccc1C(=O)N2 934 | Nc1nnc(-c2cc3c(Oc4ccc(Cl)cc4)cncc3s2)o1 935 | Oc1ccc(-c2ccc(-c3cc(Nc4ccccc4)[nH]n3)cc2)c(O)c1 936 | Cc1cc2cc(-c3csc4c(-c5cccc(S(C)(=O)=O)c5)cnc(N)c34)ccc2[nH]1 937 | COc1cc2c(cc1CNC1CCC(O)CC1)Cc1c(-c3ccc(-c4ccc(O)cc4)cc3)n[nH]c1-2 938 | CNc1nc(Nc2cnc(C#N)c(OC3CCCNC3)c2)ncc1C(F)(F)F 939 | COc1cncc(C=Cc2ccncc2)c1 940 | COC(=O)Nc1ccc(-c2nc(N3CCOCC3)c3cnn(C4CCN(C(=O)OC)CC4)c3n2)cc1 941 | COc1cc(CNCc2ccc(F)cc2)ccc1NC(=O)Nc1cnc(C#N)cn1 942 | N#Cc1c(-c2ccccc2)cc(-c2ccccc2)nc1N=c1sc(C(=O)Nc2ccccc2)nn1-c1ccccc1 943 | CC1CCC(NCc2ccc3c(c2)Cc2c(-c4ccc(S(=O)(=O)NCCO)cc4)n[nH]c2-3)CC1 944 | COc1cc(-c2ccc3c(c2)NC(=O)C3=Cc2cc(C(=O)O)c(C)[se]2)ccc1O 945 | O=c1ncn2nc(Sc3ccc(F)cc3F)ccc2c1-c1c(Cl)cccc1Cl 946 | N#Cc1ccc2c(CCCN)cc3ccnc(O)c3c2c1 947 | Nc1[nH]nc2cccc(-c3ccc(NC(=O)Nc4ccccc4)cc3)c12 948 | CN1CCN(c2ccc(-c3cncc(-c4ccc(C(=O)O)cc4)c3)cc2)CC1 949 | O=C(c1ccccc1)c1ccc2c(C=Cc3ccccc3)[nH]nc2c1 950 | COc1cccc(C(C)NC(=O)c2ccc(-c3ccncc3)cc2NCCCN)c1 951 | CNC(=O)C=Cc1cnc(N)c2c(-c3ccc4sc(C)nc4c3)csc12 952 | COc1cc(CCNCc2ccc(N3CCN(C)CC3)cc2)ccc1NC(=O)Nc1cnc(C#N)cn1 953 | N#Cc1cnc(Nc2cc(NCC3CCOCC3)ncn2)cn1 954 | NC(COc1cncc(-c2ccc3cnccc3c2)c1)Cc1c[nH]c2ccccc12 955 | CN(C)CCCNc1nc(Nc2ccc(C#N)nc2)ncc1C(F)(F)F 956 | CS(=O)(=O)CCNCCCNc1nc(Nc2ccc(C#N)nc2)ncc1C(F)(F)F 957 | N#Cc1ncc2nc1OCCCCCOc1cc(OCCCO)c(Cl)cc1NC(=O)N2 958 | Nc1nc(N)c2nc(-c3cccc(O)c3)c(-c3cccc(O)c3)nc2n1 959 | Oc1ccc(-c2[nH]nc(Nc3cccc(Cl)c3)c2-c2ccc(O)cc2)cc1 960 | N#Cc1cnc(Nc2cc(NCCCN)ncn2)cn1 961 | O=C1NC(=O)c2c1c(-c1cccnc1)cc1[nH]c3ccc(O)cc3c21 962 | COc1cc(N2CCC(N3CCN(C)CC3)CC2)ccc1Nc1ncc(Cl)c(Nc2ccccc2S(=O)(=O)C(C)C)n1 963 | OCCOc1cc(-c2ccc3c(C=Cc4ccccc4)[nH]nc3c2)ccc1O 964 | Cn1c(=O)c(Oc2ccc(F)cc2F)cc2cnc(NC3CCOCC3)nc21 965 | CNC(=O)C(C)N(C)Cc1cc2c(Nc3cccc(Cl)c3F)ncnc2cc1OC 966 | CC1(C)CNc2cc(NC(=O)c3cccnc3NCc3ccncc3)ccc21 967 | CCCS(=O)(=O)Nc1ccc(F)c(C(=O)c2c[nH]c3ncc(Cl)cc23)c1F 968 | CC(C)(O)c1cn(-c2ccc3[nH]ncc3c2)nn1 969 | NC(=O)c1ccc2nc(-c3ccc([N+]([O])=O)o3)cn2c1 970 | CN1CCN(c2ccc(Nc3ncc(Cl)c(Nc4ccc5[nH]ncc5c4)n3)cc2)CC1 971 | CN1CCN(c2ccc(CNCCc3ccc(NC(=O)Nc4cnc(C#N)cn4)cc3Cl)cc2)CC1 972 | NCC1CN(c2ncnc3[nH]cc(-c4cccc(CO)c4)c23)CCO1 973 | CCCC(=O)Nc1[nH]nc2ccc(-c3nnn(Cc4ccccc4)c3-c3ccccc3)cc12 974 | Nc1cccc(-c2cc3[nH]c4ccc(O)cc4c3c3c2C(=O)NC3=O)c1 975 | COc1cc(CCNCc2ccc(F)cc2)c(Br)cc1NC(=O)Nc1cnc(C#N)cn1 976 | Cn1cc(-c2ccncn2)c(-c2ccc(F)cc2)n1 977 | N#Cc1ccc2nc(N)n(-c3nc(-c4ccccc4)cs3)c2c1 978 | NC(=O)Nc1sc(-c2cccc(F)c2)cc1C(=O)NC1CCCNC1 979 | CCOC(=O)c1nn(-c2ccccc2)cc1C(=O)c1c(C)[nH]c(-c2ccccc2)c1-c1ccccc1 980 | O=C1C=C(O)C=CC1=C1C=CC(c2cc(Nc3ccc(CNCC4CC4)nc3)[nH]n2)C=C1 981 | CC(C)Cn1c(N)nc2ccc(-c3c(-c4ccc(F)cc4)nc4sccn34)cc21 982 | Oc1[nH]nc2cccc(-c3ccccc3)c12 983 | COc1cc(-c2ccc3c(c2)NC(=O)C3=Cc2[nH]c(C)c(CN(C)C)c2C(C)C)ccc1O 984 | COCC(C)(C)CNc1nccc(-c2c(-c3ccc(F)cc3)nc3c(C)nccn23)n1 985 | Cc1ccccc1NC(=O)Nc1ccc(-c2coc3ncnc(N)c23)cc1 986 | CC(=O)c1nn(-c2ccc(Cl)cc2)cc1C(=O)c1c(C)[nH]c(-c2ccccc2)c1-c1ccccc1 987 | Cc1[nH]nc2ccc(-c3cncc(OCC(N)Cc4cccc(Cl)c4)c3)cc12 988 | COc1ccc2c(c1)NC(=O)c1ccc(-c3ccc(N)c(OC)c3)cc1N2 989 | CC(C)c1nnc2ccc(-c3ocnc3-c3ccccc3)cn12 990 | CNC(=O)c1c(F)cccc1Nc1nc(Nc2cc3c(cc2OC)CCN3C(=O)CN(C)C)nc2[nH]ccc12 991 | CC1CCC(Nc2ncc(C(N)=O)c3sc(-c4ccccc4)cc23)C(C)N1 992 | Cc1ccc(-n2cc3c(-c4c(C)[nH]c(-c5ccccc5)c4-c4ccccc4)nnc(C)c3n2)cc1 993 | N#Cc1ccc2c(-c3cc4cc(CN5CCOCC5)ccc4[nH]3)[nH]nc2c1 994 | NC(=O)c1cnc(NC2CCCNC2)c2cc(-c3ccccc3)oc12 995 | C(=Cc1[nH]nc2cc(-c3ccncc3)ccc12)c1ccccc1 996 | Nc1ncnc2sc3c(c12)-c1ccc(NC(=O)Nc2ccccc2)cc1CC3 997 | COc1cc(NC(=O)CCc2ccccc2)c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1 998 | Oc1ccc(-c2ccc(-c3[nH]nc4c3Cc3ccc(CNCCN5CCCC5)cc3-4)cc2)cc1 999 | CCN1CCN(Cc2ccc(NC(=O)Nc3ccc(Oc4cc(NC)ncn4)cc3)cc2C(F)(F)F)CC1 1000 | Cc1ccnc2nc3cc(C(C)C)ccc3c(O)c12 1001 | [O][N+](=O)c1ccc2[nH]c3c(c2c1)CC(=O)Nc1ccccc1-3 1002 | NCCCNc1ncc(C(N)=O)n2cc(-c3ccc(Cl)cc3)nc12 1003 | O=C1NC(=O)c2c1c(-c1ccccc1O)cc1[nH]c3ccc(O)cc3c21 1004 | CNC(=O)c1cc2c(-c3ccccc3F)[nH]nc2s1 1005 | CCCCn1c(NC(=O)c2cccc(C#N)c2)nc2cc(N(C)C(=O)C3CCCCC3)ccc21 1006 | COc1cccc(NC(=O)N2CCC(c3nc4c(C(N)=O)cccc4[nH]3)CC2)c1 1007 | COc1cc2ncn(-c3cc(OCc4ccccc4S(C)(=O)=O)c(C#N)s3)c2cc1OC 1008 | CCN(CCO)Cc1cc(Nc2nc(C)cn3c(-c4cn[nH]c4)cnc23)sn1 1009 | NCCCc1cc2ccnc(O)c2c2cc(-c3ccc[nH]3)ccc12 1010 | CC(C)N(C(=O)Nc1ccc2nc(-c3ccco3)c(-c3ccco3)nc2c1)C(C)C 1011 | NC(=O)c1cnc(NC2CCCNC2CCO)c2cc(-c3ccccc3)sc12 1012 | COc1cc2c(cc1C(=O)N1CCN(C)CC1)Cc1c(-c3ccc(-c4ccc(O)cc4)cc3)n[nH]c1-2 1013 | NCCCNC(=O)c1cccc(CNC(=O)c2cc3c(c4c2[nH]c2ccccc24)C(=O)NC3=O)c1 1014 | COc1cc(-c2ccc3c(c2)Nc2ccccc2NC3=O)ccc1Cl 1015 | Cc1cccc(NC(=O)Nc2ccc(-c3cncc4c3c(N)nn4C)cc2)c1 1016 | Cc1ccc(CN=c2c(O)c(O)c2=Nc2ccncc2)cc1 1017 | Cc1cc(=O)n2ccc(CN(C)C)c(O)c2n1 1018 | COc1cc(-c2ccc3c(c2)NC(=O)C3=Cc2[nH]c(C)c(CCO)c2C)ccc1O 1019 | CNc1nc(Nc2cnc(C#N)c(OC3CCCNC3)c2)ncc1-c1ccccc1 1020 | CN(C(=O)C1CCCCC1)c1ccc2c(c1)nc(NC(=O)c1ccc(C#N)cc1)n2CCC(N)=O 1021 | O=C1Nc2ccccc2Nc2nnc(I)cc21 1022 | Cn1c(=O)n(-c2ccc(C(C)(C)C#N)cc2)c2c3cc(-c4cnc5ccccc5c4)ccc3ncc21 1023 | CNc1cc(Nc2cnc(C#N)c(OC(C)CN(C)C)n2)ncc1Cl 1024 | NCC(NC(=O)c1ccc(-c2ccncc2)cc1)c1ccccc1 1025 | N#Cc1cc2c(cn1)[nH]c1ncc(-c3cccs3)cc12 1026 | CNC(=O)c1cc(Oc2ccc(NC(=O)Nc3ccc(Cl)c(C(F)(F)F)c3)cc2)ccn1 1027 | OCCNc1ncnc2oc(-c3ccccc3)c(-c3ccccc3)c12 1028 | COc1cc(OCCNCc2ccc(F)cc2)c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1 1029 | CC(C)CCn1c2ccc(O)cc2c2c3c(c(-c4ccccc4Cl)cc21)C(=O)NC3=O 1030 | Nc1c(O)nc2ccc(Cl)cc2c1-c1ccccc1 1031 | Oc1nccc2c3[nH]c(-c4cccnc4)nc3c3ccc(F)cc3c12 1032 | Cc1c[nH]c2nccc(Oc3c(F)cc(Nc4cc(Cl)nc(N)n4)cc3F)c12 1033 | Nc1cc2nc(-c3ccccc3)cn2cn1 1034 | O=C(NCCCCCCNC(=O)Nc1cccnc1)Nc1cccnc1 1035 | O=C1Nc2cc(-c3ccc(O)cc3)ccc2C1=Cc1ccc(C(=O)NCCN2CCCC2)[se]1 1036 | c1cncc(Nc2nc(N3CCOCC3)c3nc[nH]c3n2)c1 1037 | NC(=O)Nc1cc(-c2ccccc2F)sc1C(=O)NC1CCCNC1 1038 | CC(=O)Nc1cccc(-c2cnc3[nH]c4cnc(C#N)cc4c3c2)c1 1039 | CNc1cc(Nc2cnc(C#N)c(OC3CCNC3)n2)ncc1C(=O)OC 1040 | COc1cc(-c2ccc3c(c2)Nc2ccccc2NC3=O)ccc1O 1041 | N#Cc1ccc(Nc2ncc(C(F)(F)F)c(NCCN)n2)cn1 1042 | O=C1Nc2cc(-c3ccc(O)cc3)ccc2C1=Cc1ccc(C(=O)NCCN2CCCCO2)[se]1 1043 | CN(C)S(=O)(=O)c1ccc(-c2cnc3ccc(-c4ccnc5[nH]ccc45)nn23)cc1 1044 | Cc1c(C(=O)c2coc3c2cc(O)c2ccccc23)[nH]c(-c2ccccc2)c1-c1ccccc1 1045 | CCN(CC)CCOc1ccc(-c2nc3c(C(N)=O)cccc3[nH]2)cc1 1046 | COc1cc2ncnc(Nc3cccc(Cl)c3F)c2cc1CN1CCCC1CC(N)=O 1047 | C#Cc1cnc(Nc2cnc(C#N)cn2)cc1NCC1CNCCO1 1048 | CNc1nc(Nc2cnc(C#N)c(OC3CCCNC3)c2)ncc1-c1cnn(C)c1 1049 | Cc1cc(C)c(C=C2C(=O)Nc3ccccc32)[nH]1 1050 | CC(C)COc1nccn2c(-c3ccnc(NCC(C)(C)CO)n3)c(-c3ccc(F)cc3)nc12 1051 | NCCOc1cncc(C=Cc2ccncc2)c1 1052 | COc1cc2c(cc1CCCO)Nc1cc(-c3ccc([N+](=O)[O-])c(OC)c3)ccc1C(=O)N2 1053 | C=CCOc1cc(-c2ccc3c(C=Cc4ccc(OC)c(OC)c4)[nH]nc3c2)ccc1O 1054 | C(=Cc1[nH]nc2cc(-c3ccncc3)ccc12)c1cccc(-c2ccccc2)c1 1055 | COc1cc(-c2ccc3c(c2)NC(=O)C3=Cc2[nH]c(C)cc2C(C)C)ccc1O 1056 | CNc1ncnc2c1N=C(c1ccc(NC(=O)Nc3cccc(C(F)(F)F)c3)cc1)CCN2 1057 | COc1ccc(C(=O)Nc2nc3ccc(Cl)cc3s2)c(OC)c1 1058 | C(=Cc1[nH]nc2cc(-c3ccncc3)ccc12)c1ccccn1 1059 | O=C(Cc1ccc2ccccc2c1)Nc1cc(C2CC2)[nH]n1 1060 | Nc1[nH]nc2ccc(-c3nnn(Cc4ccccc4)c3-c3ccccc3)cc12 1061 | COc1cccc(Nc2nc(N3CCOCC3)c3[nH]cnc3n2)c1 1062 | Cc1[nH]nc2ccc(-c3cncc(OCCN)c3)cc12 1063 | COc1cc(OCCNCc2ccc(F)cc2F)ccc1NC(=O)Nc1cnc(C#N)cn1 1064 | Nc1ncnc2scc(C(=O)Nc3ccc(NC(=O)Nc4ccccc4)cc3)c12 1065 | Nc1ncc(-c2cnn(CCO)c2)c2scc(-c3ccc(NC(=O)Nc4ccc(OC(F)F)cc4)cc3)c12 1066 | N#Cc1cc2ccnc(O)c2c2cc(Cl)ccc12 1067 | COc1cc2c(cc1C(=O)NC1CCC(O)CC1)Cc1c(-c3ccc(-c4ccc(O)cc4)cc3)n[nH]c1-2 1068 | N=C(N)NCCCNC(=O)c1cccc(CNC(=O)c2cc3c(c4c2[nH]c2ccc(O)cc24)C(=O)NC3=O)c1 1069 | c1cnn(-c2ccc3c(-c4cc5cc(CN6CCCCC6)ccc5[nH]4)[nH]nc3c2)c1 1070 | Cc1ccc(-c2cc3c(NCCN)ccc(C(N)=O)c3[nH]2)cc1 1071 | NN1C(=O)c2c(-c3ccccc3)cc3[nH]c4ccc(O)cc4c3c2C1=O 1072 | COc1ccc(C(=O)Nc2[nH]nc3ccc(-c4cn(Cc5ccccc5)nn4)cc23)cc1OC 1073 | OCc1cc2c(cn1)[nH]c1ncc(-c3ccc(CN4CCCCC4)cc3)cc12 1074 | CCOc1cc2ncc(C#N)c(Nc3ccc(F)c(Cl)c3)c2cc1NC(=O)C=CCN(C)C 1075 | N#Cc1cc2c(cn1)[nH]c1ncc(-c3ccc(CN4CCC(O)CC4)cc3)cc12 1076 | c1cc2[nH]ncc2cc1-c1cn(CC2CCOCC2)nn1 1077 | COC(=O)CCCCCCC(=O)Nc1cc(OC)c(NC(=O)Nc2cnc(C#N)cn2)cc1Cl 1078 | Brc1ccc2c(c1)-c1n[nH]cc1C2 1079 | Oc1nc2ccc(Cl)cc2c(NC2CCNCC2)c1-c1nc2ccccc2[nH]1 1080 | O=C1NC(=O)c2c1c(-c1ccccc1)cc1sc3ccc(O)cc3c21 1081 | O=C(Nc1[nH]nc2ccc(-c3cn(Cc4ccccc4)nn3)cc12)c1cccc(F)c1 1082 | COc1cc2c(cc1CNCCN1CCCC1)Cc1c(-c3ccc(-c4ccc(O)cc4)cc3)n[nH]c1-2 1083 | NC(=O)c1ccccc1-c1cc2[nH]c3ccc(O)cc3c2c2c1C(=O)NC2=O 1084 | C(=Cc1[nH]nc2cc(-c3ccncc3)ccc12)c1ccc2c(c1)OCO2 1085 | O=C(NCc1ccc(Cl)c(Cl)c1)Nc1ccc2[nH]ncc2c1 1086 | O=C(Nc1n[nH]c2cc(C(=O)NC(CN3CCCC3)c3ccccc3)sc12)c1ccc(N2CCOCC2)cc1 1087 | Oc1ccc(-c2ccc3c(C=Cc4ccccc4)[nH]nc3c2)cc1O 1088 | O=C(Nc1cccc(-c2nc3sccn3c2-c2ccnc(Nc3cccc(N4CCCC4=O)c3)n2)c1)c1c(F)cccc1F 1089 | CCOC(=O)c1cccc2[nH]c(-c3ccc(N4CCC(N)C4)cc3)nc12 1090 | Oc1nc2ccc(-n3ccnn3)cc2cc1-c1cc2cc(CN3CCCCC3)ccc2[nH]1 1091 | O=C1C=CC(=C2C=CC(c3[nH]nc4c3Cc3cc(C(=O)NCc5ccncc5)ccc3-4)C=C2)C=C1 1092 | Cc1cccc(NC(=O)Nc2ccc(-c3coc4ncnc(N)c34)cc2)c1 1093 | CCOC(=O)c1nn(-c2ccc(Cl)cc2)cc1C(=O)c1c(C)[nH]c(-c2ccccc2)c1-c1ccccc1 1094 | COCCN(C)C(=O)c1c(-c2ccc3[nH]ncc3c2)nnn1Cc1ccccc1 1095 | CC(Oc1cc(-c2cnn(C3CCNCC3)c2)cnc1N)c1c(Cl)ccc(F)c1Cl 1096 | CNc1cncc(-c2cnc(O)c(NC(=O)c3ccc(N4CCCC4CN4CCCC4)cc3)c2)n1 1097 | CN1CCCC(Nc2ncc(C(N)=O)c3sc(-c4ccccc4)cc23)C1 1098 | CC=C(C=CC=C1C(=O)Nc2cc(-c3ccc(O)c(OC)c3)ccc21)C(=O)NCCN(C)C 1099 | CC(=O)Nc1cc(N)c(C#N)c(-c2ccccc2)n1 1100 | Cc1c(O)ccc2c1CCCC2=NNC(=O)Cc1cccc2ccccc12 1101 | CNC(=O)C=Cc1cnc(N)c2c(-c3cc(F)c4[nH]c(C)cc4c3)csc12 1102 | CCNC(=O)c1cnc(N)c2c(-c3ccc(NC(=O)Nc4cccc(F)c4)cc3)csc12 1103 | CCN(CC)CCNC(=O)c1ccc(C=C2C(=O)Nc3cc(-c4ccc(O)c(OC)c4)ccc32)[se]1 1104 | CC(=O)N1CCN(Cc2ccc3[nH]c(-c4[nH]nc5cc(C#N)ccc45)cc3c2)CC1 1105 | CN(C)c1ccc(-c2cc(-c3ccc([N+]([O])=O)cc3)nc(NS(=O)(=O)c3ccc(N)cc3)n2)cc1 1106 | COc1ccc2c(c1)C(=O)N(c1nc(C(=O)Nc3ccnnc3N3CCNCC3)cs1)C2 1107 | CNc1nc(Nc2cnc(C#N)c(NCC3CCCCN3)c2)ncc1C(F)(F)F 1108 | Cc1ccc2nc(O)c(-c3nc4ccccc4[nH]3)c(NC3CCCNC3)c2c1 1109 | COc1cc2ncnc(Nc3cccc(Cl)c3F)c2cc1CN1CCCC1C(=O)N(C)C 1110 | O=C1NC(=O)c2c1c1c3cnccc3[nH]c1c1[nH]c3ccc(OCc4ccccc4)cc3c21 1111 | O=C(Nc1ccc(-c2ccc(O)nn2)cc1)Nc1cccc(C(F)(F)F)c1 1112 | NCCCc1cc2c(-c3cccc(O)c3)cnc(O)c2c2cc(-c3cn[nH]c3)ccc12 1113 | CC(=O)N1CCN(Cc2ccc3[nH]c(-c4[nH]nc5ccccc45)cc3c2)CC1 1114 | O=C1NC(=O)c2c1c(-c1cccc(O)c1Cl)cc1[nH]c3ccc(O)cc3c21 1115 | CNc1nc(Nc2cnc(C#N)c(OC3CCCNC3)c2)ncc1-c1cnn(C(F)(F)F)c1 1116 | c1ccc(CNc2nc(-c3ccc4[nH]ncc4c3)cs2)cc1 1117 | CCOCCC(=O)Nc1cc(OC)c(NC(=O)Nc2cnc(C#N)cn2)cc1Cl 1118 | O=C1NC(=O)c2c1c(-c1cccc(CO)c1)cc1[nH]c3ccc(O)cc3c21 1119 | C(=Cc1[nH]nc2cc(-c3ccnc4[nH]ccc34)ccc12)c1ccccc1 1120 | COc1cc(CCNCc2cccc(F)c2)c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1 1121 | O=C(Nc1ccc2[nH]ncc2c1)c1cccc(F)c1 1122 | O=C(NC(CO)c1ccccc1)c1ccc(-c2ccncc2)cc1 1123 | N#Cc1c(Oc2ccc(F)c(NC(=O)Cc3cccc(C(F)(F)F)c3)c2)ccc2nc(NC(=O)C3CC3)sc12 1124 | O=C1NC(=O)C(Nc2ccccc2)=C1Cl 1125 | O=C1C=CC(c2ccc(-c3[nH]nc4c3Cc3ccccc3-4)cc2)C=C1 1126 | O=C(Nc1nc2ccccc2n1CCCO)c1cccc([N+](=O)[O-])c1 1127 | CC1CCC(NCc2ccc3c(c2)Cc2c(-c4ccccc4)n[nH]c2-3)CC1 1128 | O=C1NCCc2[nH]c(-c3ccnc(C=Cc4ccccc4)c3)cc21 1129 | CC(=O)N1CCN(C2CCC(n3nc(-c4ccc(NC(=O)c5cc6ccccc6n5C)cc4)c4c(N)ncnc43)CC2)CC1 1130 | Cc1nccn2c(-c3ccnc(NCC(C)(C)C(=O)O)n3)c(-c3ccc(F)cc3F)nc12 1131 | O=c1c(NCc2cccc(C(F)(F)F)c2)c(Nc2ccncc2)c1=O 1132 | COc1cc2c(cc1CCc1ccncc1)Nc1cc(-c3ccc([N+](=O)[O-])c(OC)c3)ccc1C(=O)N2 1133 | CCC(CO)Nc1nc(NCc2ccccc2)c2ncn(C(C)C)c2n1 1134 | Cc1[nH]nc2c1C(c1ccccc1I)C(C#N)=C(N)O2 1135 | N#Cc1cnc(Nc2cc3c(cn2)ncn3CC2CCNCC2)cn1 1136 | Cc1cc(Nc2nc(Cl)cc(NCc3ccccc3)n2)[nH]n1 1137 | CC(C)c1nnc2ccc(-c3c[nH]nc3-c3cc(F)ccc3F)cn12 1138 | N#Cc1ncc2nc1OCCCCCOc1cc(NCc3ccsc3)c(Cl)cc1NC(=O)N2 1139 | CC(=O)Nc1c(C(N)=O)sc2ccc(Cl)c(Cl)c12 1140 | COc1nccc(-c2c(-c3ccc(F)cc3)ncn2C2CCC(O)CC2)n1 1141 | NC(=O)c1cccc2[nH]c(-c3ccc(C4CCCNC4)cc3F)nc12 1142 | N=C1c2ccccc2NC(=O)C1c1nc2ccccc2[nH]1 1143 | NC(=O)c1cnc(NC2CCCNC2)c2cc(-c3cccs3)sc12 1144 | COc1ccc(C=NNc2ncnc3c2[nH]c2ccccc23)cc1OC 1145 | Oc1nc2ccc(Cl)cc2c2ncnn12 1146 | Cc1c(-c2cccc(OCc3ccccc3)c2)c2c(N)ncnc2n1C1CCC(N2CCCC2)CC1 1147 | O=C(Nc1ccccc1N1CCNCC1)c1csc(-c2ccc3[nH]ccc3c2)n1 1148 | CC(C)(C)OC(=O)N1CCC(n2ncc3c(N4CCOCC4)nc(-c4ccc(N)cc4)nc32)CC1 1149 | Cc1ccc(-c2cc3nc(Br)cnc3[nH]2)cc1 1150 | O=c1c(NCc2ccc(Cl)cc2)c(Nc2ccncc2)c1=O 1151 | CCS(=O)(=O)Nc1ccc(-c2ccc3[nH]nc(N)c3c2)cc1 1152 | O=C1Nc2ccccc2Nc2nnc(Cl)cc21 1153 | OCc1cc(-c2ccc3[nH]ncc3c2)on1 1154 | Cc1cccc(NC(=O)Nc2ccc(-c3csc4c(C#CC(C)(C)N)cnc(N)c34)cc2)c1 1155 | C(=Cc1[nH]nc2cc(-c3ccncc3)ccc12)c1nc2ccccc2[nH]1 1156 | NC1=NC(=O)C(C2CCNC(=O)c3[nH]c4ccccc4c32)=N1 1157 | N#Cc1c(-c2ccccc2)cc(-c2ccccc2)nc1N=C1SCC(=O)N1c1ccccc1 1158 | COc1ccc(-n2nc(C(C)=O)sc2=Nc2nc(-c3ccccc3)cc(-c3ccccc3)c2C#N)cc1 1159 | CC1CCC(NCc2ccc3c(c2)Cc2c(-c4ccc(CO)cc4)n[nH]c2-3)CC1 1160 | COc1cc(-c2ccc3c(c2)Nc2ccc(CCC(=O)Nc4ccc(N5CCOCC5)cc4)cc2NC3=O)ccc1N 1161 | Cc1cc(C)cc(NC(=O)Nc2ccc(-c3c(C)sc4ncnc(N)c34)cc2)c1 1162 | Cc1[se]c(C=C2C(=O)Nc3cc(-c4ccc(O)cc4)ccc32)cc1C(=O)NCCN1CCCCO1 1163 | NC(=O)c1ccccc1Nc1ccnc(Nc2cccc(O)c2)n1 1164 | CC(C)Oc1ccc(-c2noc(-c3ccc(NC4CCC(C(=O)O)C4)cc3)n2)cc1Cl 1165 | N#Cc1ccc2nc(O)c(-c3cc4cc(CN5CCCCC5)ccc4[nH]3)cc2c1 1166 | O=C(NOCC1CC1)c1ccc(F)c(F)c1Nc1ccc(I)cc1Cl 1167 | N#Cc1cnc(Nc2cc3cccc(Cl)c3cn2)cn1 1168 | Cc1[nH]c(-c2ccccc2)c(-c2ccccc2)c1-c1nnc(C)c2nn(-c3ccc(Cl)cc3)cc12 1169 | NCc1cc(Nc2ncnc(-c3ccccc3)n2)ccc1O 1170 | O=C1NC(=O)c2c1ccc1[nH]c3ccc(O)cc3c21 1171 | Cc1ccc(F)c(NC(=O)Nc2ccc(-c3nsc4ncnc(N)c34)cc2)c1 1172 | NC1C2CN(c3nc4c(cc3F)c(=O)c(C(=O)O)cn4-c3ccc(F)cc3F)CC12 1173 | COc1ccccc1CNc1ncc(C(=O)NCCCN2CCCC2=O)c(NC2CCCC2)n1 1174 | CN1CCC(c2c(O)cc(O)c3c(=O)cc(-c4ccccc4Cl)oc23)C(O)C1 1175 | O=C1NC(=O)c2c1c(-c1ccc(CO)cc1)cc1[nH]c3ccc(O)cc3c21 1176 | O=C(Nc1ccc(O)cc1O)c1ccc2c(-c3nc4ccccc4[nH]3)[nH]nc2c1 1177 | N#Cc1cc2c(cn1)[nH]c1ncc(-c3cccc(CO)c3)cc12 1178 | CCOc1ccc(C=C2SC(N)=NC2=O)c(O)c1 1179 | COc1cc(-c2ccc3c(c2)Nc2cc(C(C)(C)C(=O)Nc4ccc(N5CCOCC5)cc4)ccc2NC3=O)ccc1N 1180 | Cc1[nH]nc2c1C(c1ccccc1Cl)C(C#N)=C(N)O2 1181 | N#Cc1ncc(Nc2cc3ccccc3cn2)nc1OCC1CCNCC1 1182 | CN1CCN(c2ccc(Nc3ncc(Cl)c(NCC4CCCO4)n3)cc2)CC1 1183 | O=C(O)c1csc2c1NCCNC2=O 1184 | COc1cc(C=C(C#N)c2nc3cc(C)ccc3[nH]2)c(Br)cc1O 1185 | Cc1cnc(CNCc2ccc3c(c2)Cc2c(-c4ccc(-c5ccc(O)cc5)cc4)n[nH]c2-3)cn1 1186 | CC(N)CCNc1nc(Nc2ccc(C#N)nc2)ncc1C(F)(F)F 1187 | N#CCC(C1CCCC1)n1cc(-c2ncnc3[nH]ccc23)cn1 1188 | C#Cc1nc(Nc2ccc(S(N)(=O)=O)cc2)nc2nc[nH]c12 1189 | COc1ccc(-c2cnc(Nc3cnc(C#N)c(OC4CCCNC4)c3)nc2)cc1 1190 | NCC1CCN(c2ncnc3[nH]c4cnccc4c23)CC1 1191 | CN(C)c1cc2sncc2cc1NC(=O)C(=O)O 1192 | N#Cc1cccc(-c2ccc3c(c2)Nc2ccccc2NC3=O)c1 1193 | CC(CN(C)C)Oc1nc(Nc2cc3ccccc3cn2)cnc1C#N 1194 | CC(N=c1c(O)c(O)c1=Nc1ccncc1)c1ccccc1 1195 | N#Cc1ccc(N2CCC(Nc3c(C(N)=O)cnc4[nH]ccc34)C(F)C2)nc1 1196 | O=C1NC(=O)c2c1c1c3ccc(O)cc3[nH]c1c1[nH]c3ccncc3c21 1197 | O=S(=O)(O)c1ccc(NCc2ccc3c(c2)OCO3)c2c(O)cccc12 1198 | Fc1cccc(Nc2nc(N3CCOCC3)c3[nH]cnc3n2)c1 1199 | OCc1ccc2c(c1)-c1[nH]nc(-c3ccc(-c4ccc(O)cc4)cc3)c1C2 1200 | CNc1nc(Nc2cnc(C#N)c(NC3CN4CCC3CC4)c2)ncc1C(F)(F)F 1201 | CC(=O)Nc1ccc(-c2n[nH]c3c2Cc2cc(CNC4CCC(C)CC4)ccc2-3)cc1 1202 | Nc1ncnc2c1c(-c1ccc(Oc3ccc(CO)cc3)cc1)cn2C1CCOC1 1203 | O=C1NC(=O)c2c1c(-c1ccccc1F)cc1[nH]c3ccc(O)cc3c21 1204 | O=C(c1cc(-c2ccc3[nH]ncc3c2)on1)N1CCCCC1 1205 | Nc1ccc(-c2cccn3c(O)nnc23)cc1 1206 | COC(=O)c1cnc(Nc2cnc(C#N)cn2)cc1NC1CCN(C)CC1 1207 | Cc1cccc(NC(=O)Nc2ccc(-c3cccc4c3CNC4=O)cc2)c1 1208 | N#Cc1cnc(Nc2cc(NCC3CCNCC3)c(-c3cccc(F)c3)cn2)cn1 1209 | CC1CCN(C(=O)CC#N)CC1N(C)c1ncnc2[nH]ccc12 1210 | O=C1CC(c2ccc(Cl)cc2Cl)Cc2nc3cc(Cl)ccc3c(O)c21 1211 | NCC1CCN(Cc2ccc3[nH]c(-c4cc5ccccc5nc4O)cc3c2)CC1 1212 | Cc1ccc(F)c(-c2ccc3nnc(N)n3c2)c1 1213 | c1ccc(Cn2nnc(-c3ccc4[nH]ncc4c3)c2C2CC2)cc1 1214 | CC(C)Cc1nc(Nc2ccc(N3CCOCC3)c(Cl)c2)nc2[nH]ccc12 1215 | Cc1ccc(NC(=O)Nc2ccc(-c3csc4ncnc(N)c34)cc2)cc1C 1216 | Cc1cccc(NC(=O)Nc2ccc(-c3cccc4c3CNC4=O)cc2C)c1 1217 | CN(C)S(=O)(=O)c1ccc(Nc2cc(NC3CCC(N)CC3)nc3ncnn23)cc1 1218 | Oc1nc2ccc(Cl)cc2c(NC2CCNC2)c1-c1nc2ccccc2[nH]1 1219 | CS(=O)(=O)CCNCc1ccc(-c2ccc3ncnc(Nc4ccc(OCc5cccc(F)c5)c(Cl)c4)c3c2)o1 1220 | Nc1ncnc2c1N=C(c1ccccc1)CCN2 1221 | CNS(=O)(=O)c1ccccc1Nc1nc(Nc2cc(N3CCN(C(C)=O)CC3)ccc2OC)ncc1Br 1222 | CCOc1nc(C(=O)NCc2ccc(S(C)(=O)=O)cc2)cc(N)c1C#N 1223 | CNc1nc(Nc2cnc(C#N)c(OC3CCNCC3)c2)ncc1-c1cnn(C)c1 1224 | O=C1Nc2ccccc2C1=Cc1ccc[nH]1 1225 | Cc1[nH]c(C=C2C(=O)Nc3ccc(F)cc32)c(C)c1NC(=O)CCN1CCN(C)CC1 1226 | Cc1[nH]nc2c1C(c1ccccc1F)C1=C(O)CC(C)(C)CC1=N2 1227 | N#Cc1ncc(Nc2ncc(-c3ccccc3)cn2)cc1OC1CCCNC1 1228 | N#Cc1ccc(Nc2ncc(C(F)(F)F)c(NCC3CCCCN3)n2)cn1 1229 | Cn1cc(-c2cncc(-c3ccc(C(=O)O)cc3)n2)cn1 1230 | COc1cc2c(cc1OCCCN)Nc1cc(-c3ccc([N+](=O)[O-])c(OC)c3)ccc1C(=O)N2 1231 | CC(C)(C)c1cc(NC(=O)Nc2cccc3ccccc23)n(-c2cccc(C(=O)NCC#N)c2)n1 1232 | N#Cc1ccc(-c2ccncc2)cc1NCc1ccccc1 1233 | N#Cc1ccc2nc(O)c(-c3cc4cc(CN5CCC(CN)CC5)ccc4[nH]3)cc2c1 1234 | OCCC(Nc1nc2ccc(-c3ccncc3)cc2s1)c1ccccc1 1235 | COc1cc2ncnc(Oc3cccc(NC(=O)Nc4cc(C(C)(C)C(F)(F)F)on4)c3)c2cc1OC 1236 | [O][N+](=O)c1cnc(NC(=O)NCc2ccccc2)s1 1237 | O=C(Nc1ccc(O)cc1)c1ccc2c(-c3nc4c(ccc5ccccc54)[nH]3)[nH]nc2c1 1238 | COc1ccc(C(=O)Nc2cnc3[nH]cc(-c4ccccc4)c3c2)cc1 1239 | Cc1nc2c(sc3c(Br)ccc(Cl)c32)c(=O)o1 1240 | Cn1nc(C(F)(F)F)c2c(=O)c3cc(Cl)ccc3n(O)c21 1241 | Cc1ccc(-n2nc(C)c3c(=O)c4cc(Cl)ccc4n(O)c32)cc1 1242 | CNc1nc(Nc2cnc(C#N)c(OCCCN)c2)ncc1C(F)(F)F 1243 | O=C1Cc2c([nH]c3ccc(Br)cc23)-c2ncccc2N1 1244 | COc1cc2c(cc1OCCO)Nc1cc(-c3ccc([N+](=O)[O-])c(OC)c3)ccc1C(=O)N2 1245 | CNc1nc(C2=CCNC(=O)c3[nH]c(-c4ccccc4)cc32)c(O)[nH]1 1246 | COc1cc(-c2ccc3c(C=Cc4ccc(OC)c(OC)c4)[nH]nc3c2)ccc1O 1247 | N#Cc1ccc(-c2cc(NC(N)=O)c(C(=O)NC3CCCNC3)s2)cc1 1248 | CNc1cc(Nc2cnc(C#N)c(OC3CCN(C)C3)n2)ncc1-c1cnn(C)c1 1249 | Cc1[nH]nc2cnc(-c3cncc(OCC(N)Cc4cccc(C(F)(F)F)c4)c3)cc12 1250 | Cc1nn(-c2ccccc2)c(O)c1C=c1c(C)c(C#N)c2nc3ccccc3n2c1=O 1251 | CCOC(=O)c1cc2c(c3c1[nH]c1ccccc13)C(=O)N(CO)C2=O 1252 | COC(=O)C1(O)CC2OC1(C)n1c3ccccc3c3c4c(c5c6ccccc6n2c5c31)C(=O)NC4 1253 | COc1cc2c(cc1OCCN1CCOCC1)Nc1cc(-c3ccc([N+](=O)[O-])c(OC)c3)ccc1C(=O)N2 1254 | CC(C)(C)c1cc(NC(=O)C(=O)c2cccc3ccccc23)n(-c2ccc(OCC(=O)O)cc2)n1 1255 | COC(=O)c1ccccc1-c1ccc2c(c1)Nc1ccccc1NC2=O 1256 | CCc1cc2c(cc1OC)Nc1cc(-c3ccc([N+](=O)[O-])c(OC)c3)ccc1C(=O)N2 1257 | O=C1NCc2c1c1c(c3c2[nH]c2ccccc23)C(=O)NC1=O 1258 | CCc1nccn2c(-c3ccnc(NCC(C)(C)O)n3)c(-c3ccc(F)cc3F)nc12 1259 | CNC(=O)C=Cc1cnc(N)c2c(-c3ccc4c(c3)OCO4)csc12 1260 | CCC(C)NCc1ccc(Nc2cc(-c3ccc(-c4ccc(O)cc4O)cc3)[nH]n2)cn1 1261 | Cc1cc(NC(=O)c2ccc3c(-c4nc5ccccc5[nH]4)[nH]nc3c2)ccc1O 1262 | Cc1ccc(NCc2ccc(-c3ccc(F)cc3)nc2)cc1 1263 | CN1CCN(c2ccc(C(=O)Nc3[nH]nc4ccc(Cc5cc(F)cc(F)c5)cc34)c(NC3CCOCC3)c2)CC1 1264 | N#Cc1ccc(-c2cc(C(=O)NC3CCCNC3)c(NC(N)=O)s2)cc1 1265 | COc1cc2ncnc(Nc3cccc(Cl)c3F)c2cc1CN1CC(C(N)=O)C1 1266 | OCCNc1cc2cc(-c3ccccc3)ccc2cn1 1267 | C(=NNc1nc2ccccc2[nH]1)c1c[nH]c2ccccc12 1268 | COc1cc(-c2ccc3c(c2)Nc2cccc(O)c2NC3=O)ccc1N 1269 | Cc1cccc(NC(=O)Nc2ccc(-c3csc4c(-c5cn[nH]c5)cnc(N)c34)cc2)c1 1270 | COc1cc2ncnc(Nc3cccc(Cl)c3F)c2cc1CN(C)C1(C(N)=O)CN(C(C)C)C1 1271 | CNc1nc(Nc2cnc(C#N)c(OC3CCCNC3)c2)ncc1-c1cccs1 1272 | CCOC(=O)c1cnc2[nH]ncc2c1N1CCOC(CN)C1 1273 | NC(=O)c1cnc(NC2CCCNC2)c2cc(-c3ccsc3)sc12 1274 | O=C1NCc2c1cccc2-c1ccc(Nc2nc3ccccc3[nH]2)cc1 1275 | O=C1Cc2cc(-c3ccccc3)cnc2N1 1276 | OCc1cccc2c1Cc1c(-c3ccc(-c4ccc(O)cc4)cc3)n[nH]c1-2 1277 | Cc1c(O)cccc1NC(=O)c1cnn2c(-c3ccccc3)ccnc12 1278 | O=c1c(NCc2ccccc2F)c(Nc2ccncc2)c1=O 1279 | CCn1c(C)c(-c2ccnc(Nc3cccc(OC)c3)n2)sc1=O 1280 | c1nc(N2CCC3(CCCNC3)CC2)c2nc[nH]c2n1 1281 | COc1cc(CNCc2ccccc2)ccc1NC(=O)Nc1cnc(C#N)cn1 1282 | Nc1ncc(C=CC(=O)NCCCn2ccnc2)c2scc(-c3ccc(Br)cc3)c12 1283 | Cn1nc(-c2ccccc2)cc1Nc1nc(C(=O)Nc2ccccc2N2CCNCC2)cs1 1284 | CCC1(O)C(=O)OCc2c1cc1n(c2=O)Cc2cc3ccccc3nc2-1 1285 | FC(F)(F)Oc1cccc(C=Cc2[nH]nc3cc(-c4ccncc4)ccc23)c1 1286 | Nc1cccc(Oc2ccc3c(C=Cc4ccccc4)[nH]nc3c2)c1 1287 | N#Cc1cnc(NC(=O)Nc2ccc(OCCNCc3ccc(F)cc3F)c(Cl)c2)cn1 1288 | NCCCc1cc2ccnc(O)c2c2cc(C(N)=O)ccc12 1289 | NC(=O)c1cnc(NC2CCNC2)n2cc(-c3ccc(Cl)cc3)nc12 1290 | N=C(N)NCCNC(=O)c1cccc(CNC(=O)c2cc3c(c4c2[nH]c2ccc(O)cc24)C(=O)NC3=O)c1 1291 | Cc1cc(O)nnc1-c1ccc(NC(=O)Nc2cc(C(F)(F)F)ccc2F)cc1 1292 | CC(C)(C)CNC(=O)c1ccc2c(c1)Cc1c(-c3ccc(C(=O)O)cc3)n[nH]c1-2 1293 | O=C1NC(=O)c2c1c(-c1cccc(Cl)c1Cl)cc1[nH]c3ccc(O)cc3c21 1294 | NC(=O)Nc1sc(-c2ccc(F)cc2F)cc1C(=O)NC1CCCNC1 1295 | Cc1ccc(-c2cnc(N)c3c(-c4ccc(NC(=O)Nc5cccc(F)c5)cc4)csc23)cn1 1296 | C1=NNN(c2ccc3c(c2)N=NC3=C2C=c3cc(CN4CCCCC4)ccc3=N2)C1 1297 | c1ccc(Cc2cc(-c3ccc4[nH]ncc4c3)on2)cc1 1298 | CC1(C)C(=O)N(C2CCc3c(O)cccc32)c2nc(Nc3ccccc3)ncc21 1299 | Cc1cccc(NC(=O)Nc2ccc(-c3cnc4c(-c5cnn(C)c5)cnn4c3N)cc2)c1 1300 | COc1ccc(NC(=O)Nc2ccc(-c3cccc4onc(N)c34)cc2)cc1Cl 1301 | C=CCn1c(=O)c2cnc(Nc3ccc(N4CCN(C)CC4)cc3)nc2n1-c1cccc(C(C)(C)O)n1 1302 | N#Cc1ccc2[nH]c(O)c(-c3ccc(CN4CCOCC4)cn3)c2c1 1303 | O=C(Nc1ncccc1N1CCNCC1)c1csc(-c2ccc3c(c2)CCO3)n1 1304 | COc1cc(-c2csc3c(C=CC(=O)NCCN(C)C)cnc(N)c23)ccc1NC(=O)c1cc2ccccc2n1C 1305 | NC(=O)c1ccc2nc(O)c(-c3cc4cc(CN5CCCCC5)ccc4[nH]3)cc2c1 1306 | COc1cc2c(cc1F)C(c1ccccc1Cl)=Nc1c(C)n[nH]c1N2 1307 | CCNc1cc2c(cc1Cl)NC(=O)Nc1cnc(C#N)c(n1)OCCCCCO2 1308 | CCN(CC)CC#Cc1ccc2c(c1)-c1[nH]nc(-c3ccc(C#N)nc3)c1C2 1309 | NC(=O)c1ccc(-c2[nH]nc3c2Cc2cc(CN4CCOCC4)ccc2-3)cc1 1310 | O=C1NC(=O)c2c1c(-c1cccc(F)c1)cc1[nH]c3ccc(O)cc3c21 1311 | Cc1nn(C)c(C)c1-c1cccc2c(CCCOc3cccc4ccccc34)c(C(=O)O)[nH]c12 1312 | COc1cc2ncnc(Nc3cccc(Cl)c3F)c2cc1CN1CC(OC)CC1C(N)=O 1313 | Clc1ccc(C=Cc2[nH]nc3cc(-c4ccncc4)ccc23)cc1 1314 | Oc1cnc2ccc(-c3ccncc3)cc2c1 1315 | O=C(NC(CO)c1cc(Cl)cc(Cl)c1)c1ccc(-c2ccncc2)cc1 1316 | COC(=O)c1cnc(Nc2cnc(C#N)c(OC3CCNC3)n2)cc1SC 1317 | CCN(CC)CCNC(=O)C=Cc1cnc(N)c2c(-c3ccc(NC(=O)Nc4cccc(C)c4)cc3)csc12 1318 | Nc1[nH]nc2nnc(-c3ccccc3)c(-c3ccccc3)c12 1319 | CCOC(=O)c1nn(-c2ccc(Cl)cc2)c(=Nc2nc(-c3ccccc3)cc(-c3ccccc3)c2C#N)s1 1320 | COc1cc2c(cc1C(=O)NCCN1CCCC1)Cc1c(-c3ccc(-c4ccc(O)cc4)cc3)n[nH]c1-2 1321 | O=C1NC(=O)c2c1c(-c1c(Br)cccc1Br)cc1[nH]c3ccc(O)cc3c21 1322 | CN(C)C(=O)c1c(-c2ccc3[nH]ncc3c2)nnn1Cc1ccccc1 1323 | COc1cc(CNCc2ccc(F)cc2)c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1 1324 | Oc1ncc(I)c2nc(-c3ccccc3)cn12 1325 | N#Cc1ncc(Nc2cc3cccc(Cl)c3cn2)nc1OCC1CCNCC1 1326 | COc1cc(CCNCc2ccc(N3CCN(C)CC3)cc2)c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1 1327 | Cc1[nH]nc2ccc(-c3cncc(OCC(N)Cc4c[nH]c5ccccc45)c3)cc12 1328 | Fc1ccc(F)c(C=Cc2[nH]nc3cc(-c4ccncc4)ccc23)c1 1329 | O=C(Nc1cnccc1N1CCNCC1)c1csc(-n2ncc3ccccc32)n1 1330 | O=C(O)c1ccc(-c2n[nH]c3c2Cc2cc(C(=O)NC4CCC(O)CC4)ccc2-3)cc1 1331 | CNS(=O)(=O)c1ccccc1Nc1nc(Nc2cc(OC)c(OC)c(OC)c2)ncc1Cl 1332 | Fc1ccccc1C=Cc1[nH]nc2cc(-c3ccncc3)ccc12 1333 | c1cnc2nc(-c3ccc4[nH]ncc4c3)cn2c1 1334 | N#Cc1cc2c(cn1)[nH]c1ncc(-c3ccc(CN4CCC(C#N)CC4)cc3)cc12 1335 | COc1cc2c(cc1CNCCO)Cc1c(-c3ccc(-c4ccc(O)cc4)cc3)n[nH]c1-2 1336 | NCCc1cc2ccnc(O)c2c2cc(-c3ccc[nH]3)ccc12 1337 | N#Cc1cnc(Nc2cc(NCCCO)ncn2)cn1 1338 | N#Cc1ccc(Nc2ncc(C(F)(F)F)c(NCCCNC=O)n2)cn1 1339 | O=C1Cc2c([nH]c3ccc(Br)cc23)-c2ccccc2N1 1340 | N=C(N)NCCCNC(=O)c1cccc(CNC(=O)c2cc3c(c4c2[nH]c2ccccc24)C(=O)NC3=O)c1 1341 | NC(=O)Nc1cc(-c2ccccc2)sc1C(=O)NC1CCCNC1 1342 | CCc1nc(-c2cccc(C)c2)c(-c2ccnc(NC(=O)c3ccccc3)c2)s1 1343 | O=C1NC(=O)c2c1c(-c1ccncc1)cc1[nH]c3ccc(O)cc3c21 1344 | Oc1nc(-c2cc3c(Oc4ccc(I)cc4)cncc3s2)no1 1345 | C#Cc1nc(Nc2ccccc2)nc2[nH]cnc12 1346 | Cc1cc(O)ccc1-c1ccc2c(-c3nc4ccccc4[nH]3)[nH]nc2c1 1347 | CC(C)Oc1cc(CCNCc2ccc(F)cc2)c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1 1348 | Cc1cccc(NC(=O)Nc2ccc(-c3cccc(C(N)=O)c3)cc2)c1 1349 | O=C1NC(=O)c2c1c(-c1cccs1)cc1[nH]c3ccc(O)cc3c21 1350 | c1ccc(CNc2cc(-c3c[nH]c4ncccc34)ncn2)cc1 1351 | COc1cc(-c2ccc3c(c2)Nc2c(O)cccc2NC3=O)ccc1O 1352 | CC(C)(CO)CNc1nccc(-c2c(-c3ccc(F)cc3)nc3c(Cl)nccn23)n1 1353 | Cc1cc(-c2ccccc2)n(-c2cc(NN=Cc3ccco3)ncn2)n1 1354 | COc1cc(-c2ccc3c(c2)Nc2ccccc2NC3=O)ccc1C(N)=O 1355 | Nc1nccc2scc(-c3ccc(NC(=O)Nc4cccc(Br)c4)cc3)c12 1356 | N#Cc1ccc(Nc2ncc(-c3ccccc3OC3CCCNC3)cn2)cn1 1357 | COc1cc2ncnc(Nc3cccc(Cl)c3F)c2cc1CN(C)C(C)C(N)=O 1358 | Cn1cc(-c2cc3nc(Br)cnc3[nH]2)c2cc(F)ccc21 1359 | N#Cc1ccc(Nc2ncc(C(F)(F)F)c(NC3CCNCC3)n2)cn1 1360 | COCCn1cc(-c2ccncn2)c(-c2ccc(Cl)cc2)n1 1361 | CN(C)CC(=O)Nc1cc2c(cc1Cl)NC(=O)Nc1cnc(C#N)c(n1)OCCCCCO2 1362 | Fc1ccc(-c2nc3cnccn3c2-c2ccnc(NCC3CC3)n2)cc1 1363 | O=C(O)c1cc2c(-c3ccccc3)cncc2s1 1364 | COC(=O)Cc1ccc2c(c1)NC(=O)c1ccc(-c3ccc(N)c(OC)c3)cc1N2 1365 | COc1cc(CCNCc2ccc3c(c2)OCO3)c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1 1366 | NCCCNc1ncnc2[nH]c3cnccc3c12 1367 | COc1cc(CCNCCc2ccc(F)cc2)ccc1NC(=O)Nc1cnc(C#N)cn1 1368 | C=CCc1cccc2c(=NO)cc(-c3ccccc3)oc12 1369 | NC(=O)c1cnc(NC2CNCCC2O)c2cc(-c3ccccc3)sc12 1370 | CNC1=NC(=C2CCNC(=O)c3[nH]c(-c4ccccc4)cc32)C(=O)N1 1371 | COc1cc(-c2ccc3c(c2)NC(=O)C3=Cc2ccc(C(=O)NCCN(C)C)[se]2)ccc1O 1372 | NCCCOc1cc2c(c(-c3ccc(Nc4nc5ccc(Cl)cc5o4)cc3)c1)CNC2=O 1373 | Cc1ccccc1-c1c(C(=O)O)n(CCCOc2cccc3ccccc23)c2ccccc12 1374 | CNc1nc(Nc2cnc(C#N)c(OC3CCCNC3)c2)ncc1-c1nc(C)cs1 1375 | Cc1[nH]nc2sc(C(=O)NCCc3ccc(Cl)cc3)cc12 1376 | COc1ccc2c(NC(=O)Nc3cc(C(F)(F)F)ccn3)ccnc2c1 1377 | Cc1ccc(C(=O)Nc2ccon2)cc1Nc1ncnc2c1cnn2-c1ccccc1 1378 | CC(=O)c1c(C)c2cnc(Nc3ccc(N4CCNCC4)cn3)nc2n(C2CCCC2)c1=O 1379 | Nc1cc(S(=O)(=O)NC(=O)c2ccc(-c3ccc(F)cc3)cc2)ccc1NC1CCCCC1 1380 | Cc1ccc(F)c(NC(=O)Nc2ccc(-c3ccc4nccnc4c3N)cc2)c1 1381 | COC(=O)c1cc2ccnc(O)c2c2cc(Br)ccc12 1382 | CC(C)(C)NCc1ccc2c(c1)-c1[nH]nc(-c3ccc(C4C=CC(=O)C=C4)cc3)c1C2 1383 | NC(=O)c1cnc(NC2CCCNC2)c2nc(-c3ccc(F)cc3)cn12 1384 | COc1cc2ncnc(Nc3cccc(Cl)c3F)c2cc1CN1CCC(C(N)=O)C1 1385 | NC(=O)c1ccc(NC2CCCNC2)c2cc(-c3ccc(F)cc3)[nH]c12 1386 | CN(C)CCOc1cc(N2CCN(C)CC2)c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1 1387 | N#Cc1cnc(NC(=O)Nc2ccc(CCNCc3ccc(C(F)(F)F)cc3)c(Cl)c2)cn1 1388 | Nc1[nH]nc2cc(-c3ccc(NC(=O)Nc4cccc(C(F)(F)F)c4)cc3)ccc12 1389 | CCCCCn1c2ccc(O)cc2c2c3c(c(-c4ccccc4Cl)cc21)C(=O)NC3=O 1390 | Cc1c(C=O)c(O)n2c(nc3ccccc32)c1C#N 1391 | COc1ccccc1CN=C(N)Nc1nccc(-c2cccs2)n1 1392 | Cc1ccc(NC(=O)c2ccc(CN3CCN(C)CC3)cc2)cc1Nc1nccc(-c2cccnc2)n1 1393 | Cc1ccc2nc(O)c(-c3nc4ccccc4[nH]3)c(NC3CN4CCC3CC4)c2c1 1394 | Oc1nc2ccc(-c3cnsc3)cc2cc1-c1cc2cc(CN3CCCCC3)ccc2[nH]1 1395 | CC=C(C=CC=C1C(=O)Nc2cc(-c3ccc(O)cc3)ccc21)C(=O)NCCN1CCCCO1 1396 | COc1cccc(C(C)NCCc2cc(OC)c(NC(=O)Nc3cnc(C#N)cn3)cc2Cl)c1 1397 | COCCOCC#Cc1cc(-c2[nH]nc3c2C(=O)c2cc(CN4CCN(C)CC4)ccc2-3)cs1 1398 | N#Cc1ccc(Nc2ncc(-c3ccccc3)cn2)cn1 1399 | Cc1ccc(C)c(NC(=O)c2cc(-c3ccco3)nc3ccccc23)c1 1400 | O=C(Nc1ccc(O)cc1)c1ccc2c(-c3nc4cc(Cl)ccc4[nH]3)[nH]nc2c1 1401 | COc1ccc(NC(=O)Nc2ccc(-c3csc4c(-c5cnn(CC(C)(C)O)c5)cnc(N)c34)cc2)cc1 1402 | O=C1N=c2ccc(N3NC=CN3)cc2=CC1=C1C=c2cc(CN3CCCCC3)ccc2=N1 1403 | NC(COc1cc(C=Cc2ccncc2)cnc1Cl)Cc1c[nH]c2ccccc12 1404 | Cc1cccc2c(NC3CN4CCC3CC4)c(-c3nc4ccccc4[nH]3)c(O)nc12 1405 | Oc1ccc(-c2ccc3c(C=Cc4ccccc4)[nH]nc3c2)cc1OCc1ccccc1 1406 | O=C(Nc1ccccc1N1CCNCC1)c1csc(NCc2ccccc2)n1 1407 | CC(C)(C)CNCc1cccc2c1Cc1c(-c3ccc(-c4ccc(O)cc4)cc3)n[nH]c1-2 1408 | Oc1nc2cnc(-n3cnc4ccc(F)cc43)nc2n1C1CCOc2c(F)cccc21 1409 | CN1C(=O)c2c(c3c4cnccc4[nH]c3c3[nH]c4cc(O)ccc4c23)C1=O 1410 | Cc1c2c(c3c([nH]c4ccc(O)cc43)c1-c1ccccc1)C(=O)NC2=O 1411 | CC(C)Cn1c(N)nc2c(F)cc(-c3c(-c4ccc(F)cc4)nc4sccn34)cc21 1412 | Oc1cccc(-c2ccc3nc(O)c(-c4cc5cc(CN6CCCCC6)ccc5[nH]4)cc3c2)c1 1413 | O=S(=O)(Nc1ccc2ccccc2c1O)c1ccc(F)cc1 1414 | CNC(=O)c1ccc2c(c1)-c1[nH]nc(-c3ccc(-c4ccc(O)cc4)cc3)c1C2 1415 | CCOC(=O)c1nn(-c2ccc(C)cc2)c(=Nc2nc(-c3ccccc3)cc(-c3ccccc3)c2C#N)s1 1416 | COCC(=O)NCC=Cc1ccc2ncnc(Nc3ccc(Oc4ccc(C)nc4)c(C)c3)c2c1 1417 | N#Cc1cnc(NC(=O)Nc2ccc(CCNCc3ccc(OC(F)(F)F)cc3)c(Cl)c2)cn1 1418 | COc1ccc2[nH]c3cc(-c4ccccc4Cl)c4c(c3c2c1)C(=O)NC4=O 1419 | CN(C)CC(=O)NC(COc1cncc(-c2ccc3cnccc3c2)c1)Cc1c[nH]c2ccccc12 1420 | Nc1nccn2c(C3CC(CN4CCCC4)C3)nc(-c3cccc(OCc4ccccc4)c3)c12 1421 | Cc1cc2c(NC3CCNC3)c(-c3nc4ccccc4[nH]3)c(O)nc2s1 1422 | CN(C)c1ccc(Nc2cc(-c3csc(Br)c3)[nH]n2)cc1 1423 | COc1nccn2c(-c3ccnc(NCC(C)(C)CO)n3)c(-c3ccc(F)cc3)nc12 1424 | NC1=NC(c2ccnc(O)c3nccc2-3)C(O)N1 1425 | O=C1CCCc2oc3cc(C(F)(F)F)ccc3c(=O)c21 1426 | NC(=O)c1cc(-c2ccnc(N)n2)[nH]c1-c1ccc(Cl)cc1F 1427 | Cc1[se]c(C=C2C(=O)Nc3cc(-c4ccc(O)cc4)ccc32)cc1C(=O)NCCN(C)C 1428 | NC(=O)c1ccc(NC2CCCNC2)c2cc(-c3ccccc3)[nH]c12 1429 | N#Cc1ccc(Nc2ncc(C(F)(F)F)c(NCC3CCCNC3)n2)cn1 1430 | c1ncc(-c2cc3c(cn2)[nH]c2ncc(-c4ccc(CN5CCCCC5)cc4)cc23)o1 1431 | CC(=O)c1nn(-c2ccc(Cl)cc2)c(=Nc2nc(-c3ccccc3)cc(-c3ccccc3)c2C#N)s1 1432 | CNc1nc(Nc2cnc(C#N)c(OC3CCCNC3)c2)ncc1-c1ccc(C(=O)OC)s1 1433 | CN1CCC(NC(=O)c2cnc(Nc3cc(Cl)cc(Cl)c3)nc2NC2CCC(N(C)C)CC2)CC1 1434 | COc1ccc(CNCCc2ccc(NC(=O)Nc3cnc(C#N)cn3)cc2Cl)cc1 1435 | c1cc2c(cn1)[nH]c1ncc(-c3ccc(CN4CCCCC4)cc3)cc12 1436 | CC1CCCC(C)N1Cc1ccc(-c2cnc3[nH]c4cnc(C#N)cc4c3c2)cc1 1437 | O=C(Nc1ccc(O)c(F)c1)c1ccc2c(-c3nc4ccccc4[nH]3)[nH]nc2c1 1438 | Cc1cc(NC(=O)Cc2ccc(-c3cccc4[nH]nc(N)c34)cc2)ccc1F 1439 | Cc1cc2nnc(SCc3cn4ccccc4n3)n2c2ccccc12 1440 | O=C(NC1CC1)c1ccc2c(-c3nc4ccccc4[nH]3)[nH]nc2c1 1441 | CN(C)C(=O)c1ccc2c(-c3cc4cc(CN5CCOCC5)ccc4[nH]3)[nH]nc2c1 1442 | O=C(CNCCO)Nc1ccc2c(c1)Cc1c(-c3ccc(-c4ccc(O)cc4)cc3)n[nH]c1-2 1443 | O=C1Nc2ccc(Cl)c(Cl)c2C(=NC2CN3CCC2CC3)C1c1nc2ccccc2[nH]1 1444 | [O][N+](=O)c1cccc(C(=O)Nc2nc3ccccc3n2CCCO)c1 1445 | Oc1nc2ccc(Cl)cc2c(-c2ccccc2)c1C1=NNC(c2ccccc2)C1 1446 | [O][N+](=O)c1ccc(NC(=O)N2CCc3[nH]c4c(Cl)cc(Cl)cc4c3C2)cc1 1447 | Cc1nn(-c2cccc(Br)c2)c(O)c1C=c1c(C)c(C#N)c2nc3ccccc3n2c1=O 1448 | COc1cc2ncnc(Nc3cccc(Cl)c3F)c2cc1CN1CCCC1 1449 | O=C1NC(=O)c2c1c(-c1cccc(-c3ccccc3)c1)cc1[nH]c3ccc(O)cc3c21 1450 | O=C(NCCCN1CCOC1=O)c1cnc(NCc2cc(Cl)ccc2Cl)nc1NC1CCCC1 1451 | CCC(=O)Nc1ccc(C(=O)N2CCNCC2)c(O)c1 1452 | NC(=O)c1cccc2[nH]c(-c3ccc(NC(=O)c4cccc(S(=O)(=O)N5CCOCC5)c4)cc3)nc12 1453 | COc1cc(C=NNc2ncnc3[nH]ncc23)ccc1O 1454 | N#CCCc1cc2ccnc(O)c2c2cc(Br)ccc12 1455 | O=C1C=C(O)C=CC1=C1C=CC(c2cc(Nc3ccc(CN4CCCC4)cc3)[nH]n2)C=C1 1456 | COc1cc(CN2CCCCC2)ccc1NC(=O)Nc1cnc(C#N)cn1 1457 | Nc1[nH]nc2cccc(-c3ccc(NC(=O)Nc4cc(C(=O)O)ccc4F)cc3)c12 1458 | CCN(CC)CCNC(=O)c1c(C)[nH]c(C=C2C(=O)Nc3ccc(F)cc32)c1C 1459 | COc1ccc2c(c1)C(=O)N(c1nc(C(=O)Nc3cnc4ccccc4c3N3CCNCC3)cs1)C2 1460 | COC(=O)c1cnc(Nc2cnc(C#N)cn2)cc1NC1CC2CCC(C1)N2 1461 | CC(C)Oc1nccn2c(-c3ccnc(NCC(C)(C)CO)n3)c(-c3ccc(F)cc3F)nc12 1462 | COc1cc(NC(=O)c2ccncc2)c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1 1463 | O=C1NC(NCc2ccccc2)=NC1=C1CCNC(=O)c2[nH]c(-c3ccccc3)cc21 1464 | CNC(=O)c1ccc2c(-c3cc4cc(CN5CCOCC5)ccc4[nH]3)[nH]nc2c1 1465 | N#Cc1cnc(Nc2cc(NCC3CNCCO3)c(C(F)(F)F)cn2)cn1 1466 | NC(=O)Nc1cc(-c2cc(F)cc(F)c2)sc1C(=O)NC1CCCNC1 1467 | COc1cc(NC(=O)Cc2ccc(S(C)(=O)=O)cc2)c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1 1468 | O=C(Nc1cnccc1N1CCNCC1)c1csc(-c2ccc(Oc3ccccc3)cc2)n1 1469 | NC(=O)Nc1sc(-c2cccc(Cl)c2)cc1C(=O)NC1CCCNC1 1470 | CC(C)(O)C#Cc1cc2c(cc1Cl)NC(=O)Nc1cnc(C#N)c(n1)OCCCCCO2 1471 | NCCCOc1cc2c(c(-c3ccc(Nc4nc5ccccc5o4)cc3)c1)CNC2=O 1472 | O=C1NC(=O)c2c1c(-c1ccc(F)cc1)cc1[nH]c3ccc(O)cc3c21 1473 | NC(=O)c1ccc(NC2CCCNC2)c2cc(-c3cccc(F)c3)[nH]c12 1474 | N=C(N)NCCNC(=O)c1cccc(CNC(=O)c2cc3c(c4c2[nH]c2ccccc24)C(=O)NC3=O)c1 1475 | O=C(NCc1ccccc1)c1ccc(-c2ccncc2)cc1 1476 | O=C(Nc1ccc(O)cc1)c1ccc2c(-c3nc4cc(F)ccc4[nH]3)[nH]nc2c1 1477 | CC(C)N(C)C(=O)c1c(-c2ccc3[nH]ncc3c2)nnn1Cc1ccccc1 1478 | CC(C)(C)c1cc(NC(=O)C(=O)c2cccc3ccccc23)n(-c2ccc(OCCC(=O)O)cc2)n1 1479 | O=C(O)c1ccc(N2C(=O)c3ccccc3C2=O)cc1O 1480 | COc1cc(-c2ccc3c(c2)Nc2ccc(C(=O)NCCNC(C)=O)cc2NC3=O)ccc1O 1481 | NC(=O)c1cc(-c2ccnc(N)n2)[nH]c1-c1ccccc1 1482 | Fc1cnc(Nc2ccccc2)nc1Nc1ccccc1 1483 | CN(c1ccccc1)c1nc(C(=O)Nc2ccccc2N2CCNCC2)cs1 1484 | COc1ccc2[nH]c3c4[nH]c5ccc(OC)cc5c4c4c(c3c2c1)C(=O)NC4=O 1485 | O=C(NC(CO)c1ccccc1)N1CC=C(c2c[nH]c3ncccc23)CC1 1486 | Cc1cccc(NC(=O)Nc2ccc(-c3csc4nc(N)nc(N)c34)cc2)c1 1487 | COc1cc2ncnc(Nc3cccc(Cl)c3F)c2cc1CN1CCN(C)CC1C(N)=O 1488 | CCCC(=O)Nc1[nH]nc2ccc(-c3cccc(F)c3F)cc12 1489 | CCN1CCc2cc(-c3cnc4[nH]c5cnc(C#N)cc5c4c3)ccc2C1 1490 | CC(C)c1nnc2ccc(-c3ocnc3-c3cc(F)c(F)cc3F)cn12 1491 | CNc1nc(Nc2cnc(C#N)c(OC3CCN(C)CC3)c2)ncc1C(F)(F)F 1492 | CC=C(C=CC=C1C(=O)Nc2cc(-c3ccc(O)cc3)ccc21)C(=O)NCCN(CC)CC 1493 | C(=Cc1[nH]nc2cc(-c3cccnc3)ccc12)c1ccccc1 1494 | OCc1cc2ccnc(O)c2c2cc(Br)ccc12 1495 | NCC(O)C(O)Cn1cc(I)c2c(N)ncnc21 1496 | c1ccc(Nc2nc(N3CCOCC3)c3nc[nH]c3n2)cc1 1497 | CC=C(CC=CC1=c2ccc(-c3cccc(O)c3)cc2=NC1=O)C(=O)NCCN1CCCC1 1498 | O=C1NC(=O)C(c2cnc3ccccn23)=C1c1cn2c3c(cccc13)CN(C(=O)N1CCOCC1)CC2 1499 | CC=C(C=CC=C1C(=O)Nc2cc(-c3ccc(O)cc3)ccc21)C(=O)O 1500 | Oc1ccc(Oc2ccc3c(C=Cc4ccccc4)[nH]nc3c2)cc1 1501 | O=C(Cc1ccccc1)Nc1cccc(-c2nc3sccn3c2-c2ccnc(Nc3ccc(N4CCOCC4)cc3)n2)c1 1502 | NCCCc1cc2c(-c3ccccc3O)cnc(O)c2c2cc(-c3cn[nH]c3)ccc12 1503 | CN1CCN(CC(=O)N(C)c2ccc(N=C(c3ccccc3)c3c(O)[nH]c4ccc(C(=O)O)cc34)cc2)CC1 1504 | COc1cc(NC(=O)CCCc2ccccc2)c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1 1505 | Cn1cc(C2=C(c3cn(C4CCN(Cc5ccccn5)CC4)c4ccccc34)C(=O)NC2=O)c2ccccc21 1506 | COc1cc(CN2CCCCC2)c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1 1507 | Clc1ccc(Nc2nnc(Cc3ccncc3)c3ccccc23)cc1 1508 | COc1cc2ncnc(Nc3cccc(Cl)c3F)c2cc1CN(C)C(CO)C(N)=O 1509 | CC(=O)N1CCN(Cc2ccc3[nH]c(-c4cc5cc(-c6cnn(C)c6)ccc5nc4O)cc3c2)CC1 1510 | CC(CCC(=O)O)(c1ccc(O)c(N)c1)c1ccc(O)c(N)c1 1511 | Nc1ncc(-c2cccc([N+](=O)[O-])c2F)cc1-c1ccc2c(c1)CCNC2=O 1512 | COc1cc2c(cc1CN1CCN(C)CC1)Cc1c(-c3ccc(-c4ccc(O)c(F)c4)cc3)n[nH]c1-2 1513 | CCOc1nc(NC(=O)Cc2cc(OC)c(S(C)(=O)=O)cc2OC)cc(N)c1C#N 1514 | CC(C)CNc1cc2c(cc1Cl)NC(=O)Nc1cnc(C#N)c(n1)OCCCCCO2 1515 | CN1CCN(c2ccc(-c3cncc(-c4ccc(C(=O)NS(C)(=O)=O)cc4)n3)cc2)CC1 1516 | O=C1NC(O)c2c(-c3ccccc3)cc3[nH]c4ccc(O)cc4c3c21 1517 | NNc1cc(N2CCOCC2)nc(OCCc2ccccn2)n1 1518 | N#Cc1ccc(Nc2ncc(C(F)(F)F)c(NC3CCNC3)n2)cn1 1519 | N#Cc1ccc(-c2cc3[nH]c4ccc(O)cc4c3c3c2C(=O)NC3=O)cc1 1520 | COc1cc(S(C)(=O)=O)c(OC)cc1CC(=O)Nc1cc(N)c(C#N)c(OC(C)C)n1 1521 | COc1cc(CCNC(C)c2ccc(F)cc2)ccc1NC(=O)Nc1cnc(C#N)cn1 1522 | Nc1ncnc2c1c(I)nn2C1CCC(O)CC1 1523 | NC(=O)c1ccc2nc(-c3ccc([N+](=O)[O-])o3)cn2c1 1524 | N#Cc1ccc2c(-c3cc4cc(CN5CCC(CN)CC5)ccc4[nH]3)[nH]nc2c1 1525 | CCCNC(=O)c1ccc(Nc2nc(NCC(F)(F)F)c3cc[nH]c3n2)cc1 1526 | CNC1CC2OC(C)(C1OC)n1c3ccccc3c3c4c(c5c6ccccc6n2c5c31)C(=O)NC4 1527 | Nc1[nH]nc2ccc(-c3cn(Cc4ccccc4)nn3)cc12 1528 | CC(N=c1c(O)c(O)c1=Nc1ccncc1)C1CCCCC1 1529 | CC(C)NC(=O)COc1cccc(-c2nc(Nc3ccc4[nH]ncc4c3)c3ccccc3n2)c1 1530 | Cc1ccc(CNc2ccc3nnc(-c4ccccc4)n3n2)cc1 1531 | Oc1nc2cc(-c3ccccc3)cnc2[nH]1 1532 | CC1CCC(NCc2ccc3c(c2)Cc2c(-c4ccc(F)cc4)n[nH]c2-3)CC1 1533 | O=C1NCc2c1cccc2-c1cccs1 1534 | Nc1ncnc2c1N=C(c1ccc(NC(=O)Nc3cccc(C(F)(F)F)c3)cc1)CCN2 1535 | CCN(CC)CCNC(=O)c1cc(C=C2C(=O)Nc3cc(-c4ccc(O)cc4)ccc32)[se]c1C 1536 | CC(C)CCOc1cc2c(cc1Cl)NC(=O)Nc1cnc(C#N)c(n1)OCCCCCO2 1537 | Cc1ccccc1NC(=O)Nc1ccc2c(c1)CCc1sc3ncnc(N)c3c1-2 1538 | OCCCNc1ncnc2[nH]cc(-c3ccccc3)c12 1539 | COc1cc2c(cc1OCCCCO)Nc1cc(-c3ccc([N+](=O)[O-])c(OC)c3)ccc1C(=O)N2 1540 | O=C(Nc1cnccc1N1CCNCC1)c1csc(-c2cc3ccccc3s2)n1 1541 | N#Cc1c(-c2ccccc2)cc(-c2ccccc2)nc1N=C1SC(=C2SC(C(=O)Nc3ccccc3)=NN2c2ccccc2)C(=O)N1c1ccccc1 1542 | COc1cc(-c2ccc3c(-c4ccccc4)[nH]nc3c2)ccc1O 1543 | Cc1cccc(NC(=O)Cc2ccc(-c3cccc4[nH]nc(N)c34)cc2)c1 1544 | O=C(O)c1cc(-c2cccs2)n2nccc2n1 1545 | COc1cc(NC(=O)c2cccnc2)c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1 1546 | Oc1nc2sccc2c(NC2CCNCC2)c1-c1nc2ccccc2[nH]1 1547 | CCCCNc1nc(N)c(C(=O)c2ccccc2)s1 1548 | Oc1nc2sc3c(c2c2nc(-c4cccnc4)nn12)CCCC3 1549 | O=C1N=C(NCc2ccccc2)N=C1C1CCNC(=O)c2[nH]c(-c3ccccc3)cc21 1550 | CCOC(=O)C1=c2sc(=Cc3ccco3)c(=O)n2C(N)=C(C#N)C1c1ccco1 1551 | CNc1nc(Nc2cnc(C#N)c(NC3CCCNC3)c2)ncc1C(F)(F)F 1552 | COc1cc2c(cc1OCc1ccncc1)Nc1cc(-c3ccc([N+](=O)[O-])c(OC)c3)ccc1C(=O)N2 1553 | O=C1NC(=O)c2c1c1c(O)ccc(O)c1c1[nH]c3ccccc3c21 1554 | CN1CCN(CC(=O)N(C)c2ccc(N=C(c3ccccc3)c3c(O)[nH]c4ccccc34)cc2)CC1 1555 | NC(=O)c1sc2c(Br)ccc(Cl)c2c1N 1556 | N#Cc1ccc(Nc2ncc(C(F)(F)F)c(NCCCNCCC(N)=O)n2)cn1 1557 | CSc1cnc2c(ccc3cnccc32)c1O 1558 | CN1CCN(CCCNc2cccc(-c3nc4c(C(N)=O)cccc4[nH]3)n2)CC1 1559 | COc1cc2ncnc(Nc3cccc(Cl)c3F)c2cc1CN1CCCC1C(N)=O 1560 | Cc1c(-c2ccc3[nH]nc(N)c3c2)nnn1Cc1ccccc1 1561 | O=C1NC(=O)c2c1c(-c1ccccc1)c(-c1ccccc1)c1[nH]c3ccc(O)cc3c21 1562 | O=C(O)c1ccc(-c2n[nH]c3c2Cc2cc(CN4CCC(O)CC4)ccc2-3)cc1 1563 | O=C(Nc1ccccc1N1CCNCC1)c1csc(-c2cc3ccccc3s2)n1 1564 | O=C1Nc2ccc(Cl)cc2C(=NC2CCCNC2)C1c1nc2ccccc2[nH]1 1565 | COC(=O)c1ccc2c(-c3cc4cc(CN5CCOCC5)ccc4[nH]3)[nH]nc2c1 1566 | COc1cccc(C(C)NC(=O)c2ccc(-c3ccncc3)s2)c1 1567 | Cc1[nH]nc2ccc(-c3cncc(OCC(CN)Cc4ccccc4)c3)cc12 1568 | Oc1nc2ccc(Cl)c(Cl)c2c(NC2CN3CCC2CC3)c1-c1nc2ccccc2[nH]1 1569 | Cc1nccn2c(-c3ccnc(NCC(C)(C)CO)n3)c(-c3ccc(F)cc3F)nc12 1570 | Cc1ccc2nccc(NC(=O)Nc3cccc(C(F)(F)F)n3)c2c1 1571 | CNCC#Cc1cnc(N)c2c(-c3ccc(NC(=O)Nc4cccc(C)c4)cc3)csc12 1572 | CN(C)S(=O)(=O)c1ccccc1-c1ccc2c(c1)Nc1ccccc1NC2=O 1573 | CCc1cccc(NC(=O)Nc2ccc3c(c2)CCc2sc4ncnc(N)c4c2-3)c1 1574 | NC(=O)c1ccc(Nc2nc(N3CCOCC3)c3[nH]cnc3n2)cn1 1575 | N#Cc1cnc(NC(=O)Nc2ccc(CCNCc3cccc(F)c3)c(Cl)c2)cn1 1576 | COc1cc(-c2ccc3c(c2)NC(=O)C3=Cc2ccc[nH]2)ccc1O 1577 | COc1ccc(-c2cnc3c(Br)cnn3c2)cc1 1578 | O=C1NC(=O)C(c2cnc3ccccn23)=C1c1cn2c3c(cc(F)cc13)CN(C(=O)N1CCCCC1)CC2 1579 | CC(=O)Nc1cc2c(cc1Cl)NC(=O)Nc1cnc(C#N)c(n1)OCCCCCO2 1580 | O=C1NC(=O)c2c1c1c3ccccc3[nH]c1n1cncc21 1581 | COc1cc(Nc2cnc(C#N)c(OC3CCNC3)n2)ncc1-c1cnn(C)c1 1582 | CC(C)NCc1ccc(Nc2cc(C3C=CC(=C4C=CC(O)=CC4=O)C=C3)[nH]n2)cc1 1583 | Cc1cccc(NC(=O)Nc2ccc(-c3csc4c(C#Cc5cccnc5)cnc(N)c34)cc2)c1 1584 | COc1cc2c(cc1Nc1nc(Nc3cccc(F)c3C(N)=O)c3cc[nH]c3n1)N(C(=O)CN(C)C)CC2 1585 | COc1cc(-c2ccc3c(c2)Nc2c(cccc2OC)NC3=O)ccc1N 1586 | Cc1c(Nc2c(C#N)cnc3sc(C=CC(=O)N4CCCC4)cc23)ccc2[nH]ccc12 1587 | Cc1cc(Nc2cc(N3CCN(C)CC3)nc(Sc3ccc(NC(=O)C4CC4)cc3)n2)n[nH]1 1588 | [O][N+](=O)c1ccc2[nH]c(-c3ccco3)nc2c1 1589 | COc1ccc2c(c1)C(=O)N(c1nc(C(=O)Nc3cncnc3N3CCNCC3)cs1)C2 1590 | COC(=O)c1cc2c(-c3cccc(F)c3)cncc2s1 1591 | OCC(CO)Nc1ncnc2[nH]cc(-c3ccccc3)c12 1592 | Cc1cn(-c2cc(NC(=O)c3ccc(C)c(Nc4nccc(-c5cccnc5)n4)c3)cc(C(F)(F)F)c2)cn1 1593 | O=C1NC(=O)c2c1c1c(O)ccc(OS(=O)(=O)O)c1c1[nH]c3ccccc3c21 1594 | Oc1nc2sccc2c(NC2CN3CCC2CC3)c1-c1nc2ccccc2[nH]1 1595 | CC1CCC(Nc2ncc(C(N)=O)c3sc(-c4ccccc4)cc23)CN1 1596 | COc1cc2ncnc(Nc3cccc(Cl)c3F)c2cc1CN(C)C1(C(N)=O)CCN(C(C)C)CC1 1597 | O=C1NC(=O)c2c1c(-c1ccc[nH]1)cc1[nH]c3ccc(O)cc3c21 1598 | CN(C)c1cccc2c(S(=O)(=O)N(CCN)c3cncc(-c4ccc5cnccc5c4)c3)cccc12 1599 | N#Cc1ccc(Nc2ncc(C(F)(F)F)c(NCCCN)n2)cn1 1600 | Nc1ccc(-c2cncc(OCC(N)Cc3c[nH]c4ccccc34)c2)cc1C(=O)c1cccc(Cl)c1 1601 | COCC#Cc1cccc2c1Cc1c(-c3cccs3)n[nH]c1-2 1602 | Cc1[nH]c(-c2ccccc2)c(-c2ccccc2)c1-c1ccc(NC(=O)c2ccccc2)c(=O)o1 1603 | Oc1cccc(-c2nc(N3CCOCC3)c3oc4ncccc4c3n2)c1 1604 | CN1CCN(c2cc(OCc3cccnc3)c(NC(=O)Nc3cnc(C#N)cn3)cc2Cl)CC1 1605 | N#Cc1ccc(-c2[nH]nc3c2Cc2ccc(OCCN4CCOCC4)cc2-3)cn1 1606 | CC(=O)Cc1ccc(-c2n[nH]c3c2Cc2cc(CNC4CCC(C)CC4)ccc2-3)cc1 1607 | O=C1NC(=O)c2c1c1c3cnccc3[nH]c1c1[nH]c3ccc(O)cc3c21 1608 | N#Cc1ncc2nc1OCCCCCOc1cc(OCCCN)c(Cl)cc1NC(=O)N2 1609 | CCNc1nc2cc(Cl)c(OC)cc2nc1NCC 1610 | NC(COc1cncc(-c2ccc3c(c2)C(=Cc2ccc[nH]2)C(=O)N3)c1)Cc1ccccc1 1611 | Oc1nc2sc(Cl)cc2c(NC2CCCNC2)c1-c1nc2ccccc2[nH]1 1612 | O=C1C=CC(=C2C=CC(c3[nH]nc4c3Cc3cc(NC(=O)CNCc5ccncc5)ccc3-4)C=C2)C=C1 1613 | NC(COc1cncc(-c2ccc(F)cc2)c1)Cc1c[nH]c2ccccc12 1614 | O=C1NCCc2[nH]c(-c3ccnc(-c4ccccc4F)c3)cc21 1615 | Cn1nc(N)c2c(-c3ccc(NC(=O)Nc4cccc(C(F)(F)F)c4)cc3)cncc21 1616 | COc1cc(-c2ccc3c(c2)Nc2ccc(C(=O)NCCCN(C)C)cc2NC3=O)ccc1O 1617 | CCOc1nc(C(=O)NCc2ccc(S(N)(=O)=O)cc2)cc(N)c1C#N 1618 | CCCCNc1cc2c(cc1Cl)NC(=O)Nc1cnc(C#N)c(n1)OCCCCCO2 1619 | COCc1nnn(-c2nonc2N)c1C(=O)NN=C(C)c1ccc(O)cc1O 1620 | Fc1ccc(-c2nc(-c3ccc(F)cc3)c(-c3ccncc3)[nH]2)cc1 1621 | Nc1ccc(-c2ccc3c(c2)NC(=O)C3=Cc2cc[nH]c2)cc1 1622 | Cc1[se]c(C=C2C(=O)Nc3cc(-c4cccc(O)c4)ccc32)cc1C(=O)NCCN1CCCC1 1623 | CCOc1ccc(-c2[nH]nc3c2Cc2cc(CNC4CCC(C)CC4)ccc2-3)cc1 1624 | O=C1C=C(O)C=CC1=C1C=CC(c2cc(Nc3ccccc3)[nH]n2)C=C1 1625 | C(=Cc1[nH]nc2cc(-c3ccncc3)ccc12)c1ccc(-c2ccccc2)cc1 1626 | N#Cc1cc2c(cn1)[nH]c1ncc(-c3ccc(CN4CCCC(O)C4)cc3)cc12 1627 | COc1cc(-c2ccc3c(c2)Nc2c(cccc2OCc2ccncc2)NC3=O)ccc1N 1628 | CN1CCN(Cc2ccc3c(c2)Cc2c(-c4csc(C#CCOCC5CC5)c4)n[nH]c2-3)CC1 1629 | N#CC(=Cc1ccc(O)c(O)c1)C(=O)NCc1ccccc1 1630 | O=C1Nc2cc(Cl)ccc2Nc2ccccc21 1631 | Cc1ccc(-c2ccc3occ(-c4ccc([S+](C)[O-])cc4)c3c2)o1 1632 | Cc1cccc(NC(=O)Nc2ccc(-c3csc4c(C#CCN(C)C)cnc(N)c34)cc2)c1 1633 | OCCn1cc(-c2cnc3nnn(Cc4ccc5ncccc5c4)c3n2)cn1 1634 | C=CCC=CC1=c2ccc(-c3ccc(O)cc3)cc2=NC1=O 1635 | Cc1cccc(C2(c3cccc(C)c3)CC2C(=O)Nc2ccncc2)c1 1636 | NC(=O)c1cc2c(Oc3ccc(Br)cc3)cncc2s1 1637 | CCCCC(Sc1nc2ccccc2c(=O)n1-c1ccccc1)C(=O)N1CCCC2(CCCNC2)C1 1638 | CNc1nc(Nc2cnc(C#N)c(NCC3CCNC3)c2)ncc1C(F)(F)F 1639 | O=C1C=CC(c2ccc(-c3[nH]nc4c3Cc3ccc(CNCCN5CCCC5)cc3-4)cc2)C=C1 1640 | CNC1CC2OC(C)(C1OC)n1c3ccccc3c3c4c(c5c6ccccc6n2c5c31)C(=O)NC4O 1641 | CC(C)Cc1cc(-c2ccc3[nH]nc(N)c3c2)on1 1642 | Cc1ccc2nc(NCCN)c3ncc(C)n3c2c1 1643 | N#Cc1cnc(NC(=O)Nc2ccc(CCNCc3ccc(Cl)cc3)c(Cl)c2)cn1 1644 | CN1CCC(Nc2ncc(C(N)=O)c3nc(-c4ccc(Cl)cc4)cn23)CC1 1645 | Oc1ccc(-c2ccc(-c3cc(Nc4ccc(CNCC5CC5)nc4)[nH]n3)cc2)c(O)c1 1646 | CC(C)(CN)CNc1nc(Nc2ccc(C#N)nc2)ncc1C(F)(F)F 1647 | c1cc(-c2ccc3c(-c4cc5cc(CN6CCOCC6)ccc5[nH]4)[nH]nc3c2)n[nH]1 1648 | CCOc1nc(C(=O)NCc2ccccc2S(N)(=O)=O)cc(N)c1C#N 1649 | OCCNCc1ccc2c(c1)Cc1c(-c3ccc(-c4ccc(O)cc4)cc3)n[nH]c1-2 1650 | COCCOCCOc1cc2c(cc1OC)NC(=O)c1ccc(-c3ccc([N+](=O)[O-])c(OC)c3)cc1N2 1651 | Cc1ccc(NC(=O)Nc2ccc(-c3coc4ncnc(N)c34)cc2)cc1 1652 | COc1cc2cnc3c(c2cc1OC)C(=O)NC3=O 1653 | COC(=O)c1cc2ccnc(O)c2c2cc(Cl)ccc12 1654 | O=C(Nc1cnccc1N1CCNCC1)c1csc(-c2ccc3c(c2)CCO3)n1 1655 | CCOC(=O)c1c(C)n(-c2ccc(I)cc2)c2c1cc(O)c1ccccc12 1656 | O=CC1=C(c2ccc3c(-c4cc5cc(CN6CCCCC6)ccc5[nH]4)[nH]nc3c2)NNN1 1657 | CN(C)CCNC(=O)c1ccc2c(CCCN)cc3ccnc(O)c3c2c1 1658 | CNc1nc(Nc2cnc(C#N)c(OC3CCCNC3)c2)ncc1-c1cccnc1 1659 | NC(=O)c1sc(-n2cnc3ccccc32)cc1OCc1ccccc1C(F)(F)F 1660 | CN1CCN(c2cccc(CNCCc3ccc(NC(=O)Nc4cnc(C#N)cn4)cc3Cl)c2)CC1 1661 | CC(=O)c1cccc(-c2ccc3c(c2)Nc2ccccc2NC3=O)c1 1662 | CC(C)(O)C#Cc1cnc(Nc2cnc(C#N)cn2)cc1NCC1CNCCO1 1663 | Oc1nc2sc3c(c2c2nc(-c4ccncc4)nn12)CCCC3 1664 | COc1cc2ncnc(Nc3cccc(Cl)c3F)c2cc1CN1CCC1C(N)=O 1665 | Cc1cccc(NC(=O)Nc2ccc(-c3csc4ccnc(N)c34)cc2)c1 1666 | COc1cc(-c2ccc3c(c2)Nc2cc(CC(=O)N(C)C)ccc2NC3=O)ccc1N 1667 | Cc1cc(N2CCOCC2)cc2[nH]c(-c3c(NCC(O)c4cccc(Cl)c4)ccnc3O)nc12 1668 | N#Cc1cc2c(cn1)[nH]c1ncc(-c3ccccn3)cc12 1669 | Nc1[nH]nc2cccc(-c3ccc(Br)cc3)c12 1670 | Oc1ccc(-c2ccc(-c3n[nH]c4c3Cc3cc(CN5CCC(O)CC5)ccc3-4)cc2)cc1 1671 | Oc1nc2ccc(-c3cn[nH]c3)cc2cc1-c1cc2cc(CN3CCC(F)CC3)ccc2[nH]1 1672 | CCOc1cc2ncc(C#N)c(Nc3ccc(OCc4ccccn4)c(Cl)c3)c2cc1NC(=O)C=CCN(C)C 1673 | Nc1ncnc2c1c(-c1cnc3[nH]ccc3c1)nn2C1CCCC1 1674 | NC(=O)c1cc(-c2ccnc(N)n2)[nH]c1-c1ccc(Cl)cc1Cl 1675 | N#Cc1cnc(Nc2cc(NCC3CNCCO3)c(-c3cccc(Cl)c3)cn2)cn1 1676 | CSc1cc(Nc2cnc(C#N)c(OC(C)CN(C)C)n2)ncc1-c1cnn(C)c1 1677 | COc1cc(-c2ccc3c(c2)NC(=O)C3=Cc2ccc[se]2)ccc1O 1678 | CC(C)(C)C(=O)Oc1ccc(O)c2c3c(c4c5ccccc5[nH]c4c12)C(=O)NC3=O 1679 | O=C(Nc1ccncc1N1CCNCC1)c1csc(-c2ccc3c(c2)CCO3)n1 1680 | N#Cc1cnc(Nc2cc(NCC3CNCCO3)c(F)cn2)cn1 1681 | NC(=O)Nc1cc(-c2ccc(Cl)c(Cl)c2)sc1C(=O)NC1CCCNC1 1682 | O=C1Nc2cc(-c3ccc(O)cc3)ccc2C1=Cc1cc[nH]c1 1683 | CN1CCC(NC(=O)c2cc3c(-c4ccccc4)[nH]nc3s2)CC1 1684 | CC(C)(O)C#Cc1cnc(Nc2cnc(C#N)cn2)cc1NCC1CCNCC1 1685 | COc1nc(Nc2cnc(C#N)c(OC3CCCNC3)c2)ncc1-c1cnn(C)c1 1686 | CC(C)(C)c1cnc(CSc2cnc(NC(=O)C3CCNCC3)s2)o1 1687 | CC(C)(CO)CNc1nccc(-c2c(-c3ccc(F)cc3)nc3c(CCN)nccn23)n1 1688 | CCCNC(=O)c1ccc(Nc2nc(NCC(F)(F)F)c3sccc3n2)cc1 1689 | COc1cc(-c2ccc3c(c2)NC(=O)C3=Cc2ccc(C(=O)O)[se]2)ccc1O 1690 | N#Cc1ncc2nc1OCCCCCCOc1ccc(Cl)cc1NC(=O)N2 1691 | COc1cccc(Cl)c1-c1cc2[nH]c3ccc(O)cc3c2c2c1C(=O)NC2=O 1692 | NC1=NC(=C2CCNC(=O)c3[nH]ccc32)C(=O)N1 1693 | O=C(NCCO)c1ccc2c(c1)-c1[nH]nc(-c3ccc(-c4ccc(O)cc4)cc3)c1C2 1694 | CN1CCN(c2ccc3[nH]c(C4C(=N)c5c(F)cccc5NC4=O)nc3c2)CC1 1695 | c1cn(-c2ccc3c(-c4cc5cc(CN6CCCCC6)ccc5[nH]4)[nH]nc3c2)nn1 1696 | c1ccc(CNc2nc3ccc(-c4ccncc4)cc3s2)cc1 1697 | COc1cc(-c2ccc3c(c2)NC(=O)c2ccc(-c4ccccc4NS(C)(=O)=O)cc2N3)cc(OC)c1OC 1698 | COc1cc(CN(C)CCN(C)C)ccc1NC(=O)Nc1cnc(C#N)cn1 1699 | CC(=O)N1CCC(Nc2nccc(-c3c(-c4ccc(F)cc4)nc4occn34)n2)CC1 1700 | CN1CCN(c2ccc(OC(F)(F)F)c(Nc3nccc(-c4cc5c(n4C)CCNC5=O)n3)c2)CC1 1701 | N#Cc1ncc(Nc2ncc(-c3cccnc3)cn2)cc1OC1CCCNC1 1702 | CCNc1nnc2ccc(-c3ocnc3-c3ccc(F)cc3)cn12 1703 | CC(C)(C)C(=O)Oc1ccc2c(c1)nc(NC(=O)c1cccc([N+]([O])=O)c1)n2CCCO 1704 | NC(=O)c1ccc2c(-c3nc4ccccc4[nH]3)[nH]nc2c1 1705 | N#Cc1ncc2nc1OCCCCCOc1cc(OCc3ccccn3)c(Cl)cc1NC(=O)N2 1706 | CC1CC2CN1CCn1nc3c(cccc3c1O)-c1nc3c(cccc3nc1O)O2 1707 | O=C(Nc1ccccc1N1CCNCC1)c1csc(-n2ncc3ccccc32)n1 1708 | OCc1[nH]nnc1-c1ccc2c(-c3cc4cc(CN5CCC(F)CC5)ccc4[nH]3)[nH]nc2c1 1709 | CN1CCN(c2ccc3[nH]c(-c4c(O)nc5cccc(F)c5c4N)nc3c2)CC1 1710 | CC(Nc1nccc(-c2c(-c3ccc(F)cc3)nc3occn23)n1)c1ccccc1 1711 | O=C(Nc1ccccc1N1CCNCC1)c1csc(Nc2[nH]nc3ccccc23)n1 1712 | O=C(Nc1nc2ccccc2s1)c1cccc2c1CN(c1nc(C(=O)O)c(-c3ccc(CO)cc3)s1)CC2 1713 | CCCn1c2ccc(O)cc2c2c3c(c(-c4ccccc4Cl)cc21)C(=O)NC3=O 1714 | CCn1c(=O)c2cc(C(N)=O)c(N)nc2n(C2CC2)c1=O 1715 | NC(COc1cncc(C=Cc2ccncc2)c1)Cc1ccccc1 1716 | N#Cc1ccc(Nc2ncc(C(F)(F)F)c(NCCCNC3CCCC3)n2)cn1 1717 | c1ccc(Nc2nc(-c3ccc4[nH]ncc4c3)cs2)cc1 1718 | Oc1cccc(Oc2ccc3c(C=Cc4ccccc4)[nH]nc3c2)c1 1719 | O=C1Nc2cc(CCOc3ccc(N4CCOCC4)cc3)ccc2Nc2cc(-c3cn(Cc4cc(F)c(F)c(F)c4)c4cnccc34)ccc21 1720 | COc1cc2ncnc(Nc3cccc(Cl)c3F)c2cc1CN1CCCCC1C(N)=O 1721 | CC(C)(C)CNCc1cccc2c1Cc1c(-c3ccc(C4C=CC(=O)C=C4)cc3)n[nH]c1-2 1722 | CNc1nc(Nc2cnc(C#N)c(NC3CCNCC3)c2)ncc1C(F)(F)F 1723 | N#Cc1cc2c(cn1)[nH]c1ncc(-c3ccc(CN4CCCCC4)nc3)cc12 1724 | CCOc1nc(C(=O)NCc2ccncc2)cc(N)c1C#N 1725 | CC(C)(C)c1cc(NC(=O)C(=O)c2cccc3ccccc23)n(-c2cccc(OCC(=O)O)c2)n1 1726 | COc1cc(-c2ccc3c(c2)NC(=O)C3=Cc2c[nH]c3c(C)cccc23)ccc1O 1727 | CCN1CCN(CCCC(=O)Nc2[nH]nc3nnc(-c4cccc(F)c4F)cc23)CC1 1728 | Nc1cccc(-c2cc3[nH]c4ccc(O)cc4c3c3c2C(=O)NC3=O)c1Cl 1729 | Cc1cc(C)cc(NC(=O)Nc2ccc3c(c2)CCc2sc4ncnc(N)c4c2-3)c1 1730 | NCCCc1cc2c(-c3cccc(F)c3)cnc(O)c2c2cc(-c3cn[nH]c3)ccc12 1731 | CN(C)CCNCc1ccc2c(c1)-c1[nH]nc(-c3ccc(-c4ccc(O)cc4)cc3)c1C2 1732 | O=S(=O)(Nc1ccccn1)c1ccc(N=Cc2c(O)[nH]c3ccc4ncsc4c23)cc1 1733 | CC(C)(O)Cc1nnc2ccc(-c3c(-c4ccc(F)cc4F)nc4occn34)nn12 1734 | Cc1c(Nc2c(C#N)cncc2C=CCCN2CCCC(N)C2)ccc2[nH]ccc12 1735 | N#Cc1cnc(NC(=O)Nc2ccc(CCNCc3ccc(F)cc3)cc2)cn1 1736 | COc1cc(-c2ccc3c(c2)Nc2ccc(CC(=O)N(C)C)cc2NC3=O)ccc1N 1737 | Cc1ccc2[nH]c3c4c(=O)ccc(=O)c4c4c(=O)[nH]c(=O)c4c3c2c1 1738 | COC1C(CN)OC2C(C1O)n1c3ccccc3c3c4c(c5c6ccccc6n2c5c31)C(=O)NC4=O 1739 | NCCCc1cc2c(-c3ccccc3F)cnc(O)c2c2cc(-c3cn[nH]c3)ccc12 1740 | CC(C)(C)c1ccc2[nH]c(-c3[nH]nc4cc(C(=O)Nc5ccc(O)cc5)ccc34)nc2c1 1741 | COc1cc(-c2ccc3c(c2)NC(=O)C3=Cc2ccc(C)[se]2)ccc1O 1742 | N#Cc1cc2ccnc(O)c2c2cc(Br)ccc12 1743 | NS(=O)(=O)c1ccc(Nc2nc(OCC3CCCCC3)c3[nH]cnc3n2)cc1 1744 | NC(=O)c1ccc(-c2nc(-c3ccc4c(c3)OCO4)c(-c3ccccn3)[nH]2)cc1 1745 | COC(=O)c1cnc(Nc2cnc(C#N)cn2)cc1NCC1CNCCO1 1746 | O=C1NC(=O)c2c1c(-c1ccccc1-c1ccccc1)cc1[nH]c3ccc(O)cc3c21 1747 | Oc1ccc(-c2ccc(-c3cc(Nc4ccc(CN5CCCC5)cc4)[nH]n3)cc2)c(O)c1 1748 | CC(C)(C)C(=O)Oc1ccc2c(c1)nc(NC(=O)c1cccc([N+](=O)[O-])c1)n2CCCO 1749 | Nc1nc2ccc(-c3c(-c4ccc(F)cc4)nc4sccn34)cc2n1CC1CC1 1750 | O=C1Nc2ccccc2Nc2nnccc21 1751 | CCCOn1c2ccc(Cl)cc2c(=O)c2c(C)nn(C)c21 1752 | Oc1cccc(Nc2ncnc3scc(Cl)c23)c1 1753 | COc1cccc2c1Nc1cc(Nc3ccncc3)ccc1C(=O)N2 1754 | COc1cccc(CNC(=O)c2cnc(-c3ccncc3)nc2)c1 1755 | CC(=O)C1=NN(c2ccccc2)C(=C2SC(=Nc3nc(-c4ccccc4)cc(-c4ccccc4)c3C#N)N(c3ccccc3)C2=O)S1 1756 | COc1cc(-c2ccc3c(c2)Nc2ccc([N+](=O)[O-])cc2NC3=O)ccc1O 1757 | N#Cc1cnc(NC(=O)Nc2cccc(CCNCc3ccc(F)cc3)c2)cn1 1758 | Cc1[nH]nc2ccc(-c3cncc(OCC(N)Cc4ccc(Cl)c(Cl)c4)c3)cc12 1759 | CNc1nc(Nc2cnc(C#N)c(OC3CCCNC3)c2)ncc1-c1ccncc1 1760 | Cc1[se]c(C=C2C(=O)Nc3cc(-c4ccc(O)cc4)ccc32)cc1C(=O)O 1761 | COc1cc(C=C2SC(=O)NC2=O)ccc1O 1762 | CCN1CCN(c2ccc(Nc3nccc(-c4c(-c5cccc(C(=O)Nc6ccccc6F)c5)nc5ccccn45)n3)cc2)CC1 1763 | OC(COc1cncc(C=Cc2ccncc2)c1)Cc1c[nH]c2ccccc12 1764 | CNc1cc(Nc2cnc(C#N)c(OC3CCNC3)n2)ncc1-c1cnn(C)c1 1765 | CCCc1cc(-c2ccc3[nH]ncc3c2)on1 1766 | CC(N)C1CCC(C(=O)Nc2ccncc2)CC1 1767 | O=C(NS(=O)(=O)c1ccccc1)c1ccc(-c2n[nH]c3c2Cc2cc(CNC4CCC(O)CC4)ccc2-3)cc1 1768 | COc1cc(-c2ccc3c(c2)=NC(=O)C=3C=CCC=CC(=O)NCCN2CCOCC2)ccc1O 1769 | O=C(NCc1ccncc1)c1ccc2c(c1)Cc1c-2n[nH]c1-c1ccc(-c2ccc(O)cc2)cc1 1770 | Cc1nn(-c2ccc(C(=O)O)cc2)c(O)c1C=c1c(C)c(C#N)c2nc3ccccc3n2c1=O 1771 | COc1ccc(COc2ccc(Cc3cnc(N)nc3N)cc2OC)cc1 1772 | O=C(CCC(=O)Nc1cc(C(F)(F)F)ccc1Cl)NN=Cc1c[nH]c2ccccc12 1773 | CCOc1cc2c(cc1Cl)NC(=O)Nc1cnc(C#N)c(n1)OCCCCCO2 1774 | O=C(Cc1cccs1)Nc1nc2ccccc2s1 1775 | O=C(Nc1cnc2[nH]cc(-c3ccccc3)c2c1)c1c(F)cccc1F 1776 | COc1cccc(C=C2SC(Nc3ccccc3)=NC2=O)c1 1777 | COc1cc(C=O)ccc1NC(=O)Nc1cnc(C#N)cn1 1778 | COC1C(N(C)C(=O)c2ccccc2)CC2OC1(C)n1c3ccccc3c3c4c(c5c6ccccc6n2c5c31)C(=O)NC4O 1779 | Cc1c(C(=O)c2coc3ccc(O)cc23)[nH]c(-c2ccccc2)c1-c1ccccc1 1780 | COc1cc(NC(=O)COC(C)=O)c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1 1781 | CN(C)CCc1cc2ccnc(O)c2c2cc(Br)ccc12 1782 | N#Cc1ccc(Nc2ncc(C(F)(F)F)c(NC3CN4CCC3CC4)n2)cn1 1783 | CN(CCc1ccc(NC(=O)Nc2cnc(C#N)cn2)cc1Cl)Cc1ccc(F)cc1 1784 | CC1Cn2ncc(-c3ccc(S(=O)(=O)N(C)C)cc3)c2CN1c1ccnc2[nH]ccc12 1785 | CS(=O)(=O)c1ccc(-c2cncc3sc(C(N)=O)cc23)cc1 1786 | N#Cc1cnc(NC(=O)Nc2ccc(CCNCc3ccccc3Cl)c(Cl)c2)cn1 1787 | COc1cccc(-c2cnc(Nc3cnc(C#N)c(OC4CCCNC4)c3)nc2)c1 1788 | COc1cc(-c2ccc3[nH]nc(C(=O)Nc4ccccc4)c3c2)ccc1O 1789 | Cc1cn2c(-c3cn[nH]c3)cnc2c(Nc2cc(C(C)N3CC(C)OC(C)C3)ns2)n1 1790 | O=C1NC(=O)c2c1c(-c1cccc(Cl)c1)cc1[nH]c3ccc(O)cc3c21 1791 | CN(C)CCn1cc(-c2ccn3c(-c4ccc(C(N)=O)c(OCc5cccc(F)c5)c4)cnc3c2)cn1 1792 | CN(C)c1ccc2[nH]c(O)c(C=Nc3ccc(S(N)(=O)=O)cc3)c2c1 1793 | O=C(Nc1ccccc1N1CCNCC1)c1csc(-c2ccc3c(c2)CCO3)n1 1794 | N#Cc1cnc(NC(=O)Nc2ccc(CCNCc3ccc(F)c(F)c3)c(Cl)c2)cn1 1795 | CNCCc1cc2ccnc(O)c2c2cc(Br)ccc12 1796 | COc1cc(-c2ccc3c(c2)NC(=O)C3=Cc2cc(C(=O)NCCCn3ccnc3)c(C)[se]2)ccc1O 1797 | Oc1nc2sccc2c(NC2CCCNC2)c1-c1nc2ccccc2[nH]1 1798 | COc1cc(-c2ccc3c(c2)C(=Cc2c[nH]c4c(C)cccc24)C(=O)N3)ccc1O 1799 | CC1CCC(NCc2ccc3c(c2)Cc2c(-c4ccc(N)cc4)n[nH]c2-3)CC1 1800 | Cc1ccc(-c2cc(-c3cc(Br)ccc3O)nc(O)c2C#N)s1 1801 | NC(=O)c1cc2c(-c3ccc(Br)cc3)cncc2s1 1802 | Cc1cc(NC(=O)CCNC(=O)Nc2nc(C)c(-c3ccc(-n4cccn4)cc3)s2)no1 1803 | Cn1cc(C=C2C(=O)Nc3cccnc32)c2ccccc21 1804 | COc1cc2ncnc(Nc3cccc(Cl)c3F)c2cc1CN(C)C1(C(N)=O)CN(C)C1 1805 | COc1cc2c(cn1)[nH]c1ncc(-c3ccc(CN4CCCCC4)cc3)cc12 1806 | NCCCc1cc2ccnc(O)c2c2cc(-c3cn[nH]c3)ccc12 1807 | COC(=O)Cc1ccc2c(c1)NC(=O)c1ccc(-c3ccc(N)c(OC)c3)cc1O2 1808 | Cc1cccc(Cl)c1-c1cccc2c(CCCOc3cccc4ccccc34)c(C(=O)NCCOCCOCCN)[nH]c12 1809 | Fc1ccc(Nc2nc(N3CCOCC3)c3[nH]cnc3n2)cc1 1810 | Nc1nc(C2=C3C(=Nc4ccccc43)C(=O)NCC2)c(O)[nH]1 1811 | Cc1nn(C)c2sc(C(N)=O)c(N)c12 1812 | NCCCc1cc2c(-c3cccc(Cl)c3)cnc(O)c2c2cc(-c3cn[nH]c3)ccc12 1813 | O=C1C=CC(=C2C=CC(c3[nH]nc4c3Cc3cc(NC(=O)CNCCO)ccc3-4)C=C2)C=C1 1814 | FC(F)(F)c1ccc(Cn2cc(-c3ccc4[nH]ncc4c3)nn2)c(C(F)(F)F)c1 1815 | O=C1NC(=O)c2c1c(-c1ccccc1CO)cc1[nH]c3ccc(O)cc3c21 1816 | NCCCOc1cncc(C=Cc2ccncc2)c1 1817 | N#Cc1cccc(-c2cc3[nH]c4ccc(O)cc4c3c3c2C(=O)NC3=O)c1 1818 | Oc1ccc2[nH]c(-c3ccc(Sc4ccc(-c5nc6cc(O)ccc6[nH]5)cc4)cc3)nc2c1 1819 | COc1ccc2cn(-c3nc(C(=O)Nc4cnc5ccccc5c4N4CCNCC4)cs3)c(O)c2c1 1820 | COc1cc2c(cc1CCC(C)(C)O)Nc1cc(-c3ccc([N+](=O)[O-])c(OC)c3)ccc1C(=O)N2 1821 | Oc1nccc2c3[nH]cnc3c3ccc(F)cc3c12 1822 | CCN(CC)CCNC(=O)c1cc(C=C2C(=O)Nc3cc(-c4cccc(O)c4)ccc32)[se]c1C 1823 | Nc1ccc(Cl)c(-c2cc3[nH]c4ccc(O)cc4c3c3c2C(=O)NC3=O)c1 1824 | N#Cc1ncc(Nc2ncc(-c3ccco3)cn2)cc1OC1CCCNC1 1825 | O=C(Nc1ccc(O)cc1)c1ccc2c(-c3nc4cc(F)c(F)cc4[nH]3)[nH]nc2c1 1826 | NC(=O)c1cnc(NC2CCCNC2)c2cc(-c3cn[nH]c3)sc12 1827 | O=C(Cc1ccc(-c2cccnc2)cc1)Nc1ccc(SC(F)F)cc1 1828 | c1cncc(-c2cc3c(cn2)[nH]c2ncc(-c4ccc(CN5CCCCC5)cc4)cc23)c1 1829 | CCOc1nc(NC(=O)Cc2cc(OC)c(S(C)(=O)=O)cc2OC)cc(N)c1Cl 1830 | Cc1ccc(-c2nn(C(C)(C)C)c3ncnc(N)c23)cc1 1831 | O=C(NCCCCCCNC(=O)NCc1cccnc1)NCc1cccnc1 1832 | Cc1nc2ccccn2c1-c1csc(Nc2ccc(O)cc2)n1 1833 | CN1CCN(c2ccc(-c3cncc(-c4ccc(C(=O)O)cc4)n3)cc2)CC1 1834 | CN(C)CC=CC(=O)Nc1cc2c(Nc3ccc(F)c(Cl)c3)ncnc2cc1OC1CCOC1 1835 | COc1ccc(CN=c2c(O)c(O)c2=Nc2ccc3[nH]ncc3c2)cc1 1836 | CN(C)CCOc1nc(Nc2cc3cccc(Cl)c3cn2)cnc1C#N 1837 | CN1CCC(Nc2ccc(C(=O)Nc3cc(-c4cc(C#N)cs4)[nH]n3)cc2)CC1 1838 | O=C(NC(CCO)c1ccccc1)c1ccc(-c2ccncc2)cc1 1839 | COc1ccc(CN=c2c(O)c(O)c2=Nc2ccncc2)c(OC)c1 1840 | O=C(O)c1ccccc1Nc1ccnc(Nc2ccc3[nH]ncc3c2)n1 1841 | COc1ccc(F)c(F)c1C(=O)c1cnc(NC2CCN(S(C)(=O)=O)CC2)nc1N 1842 | COc1cc(C=C2SC(Nc3ccccc3)=NC2=O)ccc1O 1843 | N#Cc1ccc(Nc2ncc(C(F)(F)F)c(NCC3CNCCO3)n2)cn1 1844 | N#Cc1cnc(Nc2cc(NCCN)ncn2)cn1 1845 | CNc1nc(Nc2cnc(C#N)c(OC3CCCNC3)c2)ncc1-c1ccccc1F 1846 | NCCc1cc2ccnc(O)c2c2cc(-c3ccc(CN4CCOCC4)cc3)ccc12 1847 | Nc1[nH]nc2c(OCCCn3cccc3)ccc(-c3ccc(NC(=O)Nc4cccc(Cl)c4)cc3)c12 1848 | O=C(Nc1ccccc1N1CCNCC1)c1csc(-c2ccc3sccc3c2)n1 1849 | COc1cccc(CNCCc2ccc(NC(=O)Nc3cnc(C#N)cn3)cc2Cl)c1 1850 | N#Cc1ncc2nc1OCCCCCOc1cc(N(CCO)CCO)c(Cl)cc1NC(=O)N2 1851 | COc1cc(-c2ccc3c(c2)Nc2ccc(N4CCCS4(=O)=O)cc2NC3=O)ccc1N 1852 | NC(=O)c1cnc(NC2CCCNC2)c2cc(-c3cccc(F)c3)sc12 1853 | COC(=O)c1csc2ccc(O)nc12 1854 | O=C(NC(CO)Cc1ccccc1)c1ccc(-c2ccncc2)cc1F 1855 | O=C(O)CNc1ncnc2oc(-c3ccccc3)c(-c3ccccc3)c12 1856 | CC1CCC(N2CCC3(CN(C(=O)c4cc5ccc(F)cc5[nH]4)c4ccccc43)C2)CN1 1857 | CNc1nc(C)c(-c2ccnc(Nc3ccc(N4CCNCC4)cc3)n2)s1 1858 | CCN(CC)CCNC(=O)c1cc(C=C2C(=O)Nc3cc(-c4ccc(O)c(OC)c4)ccc32)[se]c1C 1859 | COc1ccc2c(c1)C(=O)N(c1nc(C(=O)Nc3cnc(C)cc3N3CCNCC3)cs1)C2 1860 | Nc1ncnc2c1sc1ncnc(N)c12 1861 | Cn1cnc2c(F)c(Nc3ccc(Br)cc3Cl)c(C(=O)NOCCO)cc21 1862 | CS(=O)(=O)N1CCN(Cc2cc3nc(-c4cccc5[nH]ncc45)nc(N4CCOCC4)c3s2)CC1 1863 | N#Cc1ncc2nc1OCCCCCOc1cc(N)c(Cl)cc1NC(=O)N2 1864 | NCc1[nH]nnc1-c1ccc2c(-c3cc4cc(CN5CCC(F)CC5)ccc4[nH]3)[nH]nc2c1 1865 | CCN(CC)CC#Cc1cc2c(cc1Cl)NC(=O)Nc1cnc(C#N)c(n1)OCCCCCO2 1866 | CC1CCC(NCc2ccc3c(c2)Cc2c(-c4ccc(S(N)(=O)=O)cc4)n[nH]c2-3)CC1 1867 | N#CC1N=CC2N=C1OCCCCCOC1=CC(=O)C(Cl)=CC1=NC(=O)N2 1868 | Nc1ncnc(Nc2cc(CNC(=O)C(F)(F)F)c(O)c(-c3ccc(Cl)cc3)c2)n1 1869 | CC(O)CNc1ncnc2[nH]c(-c3ccccc3)c(-c3ccccc3)c12 1870 | CNc1cc(Nc2cnc(C#N)c(OC(C)CN(C)C)n2)ncc1C#CC(C)(C)O 1871 | COc1ccc(-c2ccc(N)cc2)c2cnoc12 1872 | NC(=O)Nc1sc(-c2cccc(F)c2F)cc1C(=O)NC1CCCNC1 1873 | COc1ccc(-c2ccc(NC(=O)Nc3cc(F)cc(F)c3)cc2)c2c(N)noc12 1874 | N#Cc1c(-c2ccccc2)cc(-c2ccccc2)nc1N=C1SC(=C2SC(c3ccccc3)=NN2c2ccccc2)C(=O)N1c1ccccc1 1875 | NCCCc1cc2c(-c3ccc(Cl)cc3)cnc(O)c2c2cc(-c3cn[nH]c3)ccc12 1876 | c1ncc(-c2cc3c(cn2)[nH]c2ncc(-c4ccc(CN5CCCCC5)cc4)cc23)cn1 1877 | N#Cc1cnc(NC(=O)Nc2ccc(CCNCc3ccc(F)cc3)c(Cl)c2)cn1 1878 | N#Cc1cnc(NC(=O)Nc2cc(Cl)c(OCc3cccnc3)cc2N2CCCC2)cn1 1879 | Cn1cc2cc(-c3cnc(Nc4cnc(C#N)cn4)cc3NCC3CNCCO3)ccc2n1 1880 | CC(N=c1c(O)c(O)c1=Nc1ccncc1)C(C)(C)C 1881 | COc1cccc(C(=O)Nc2cnc3[nH]cc(-c4ccccc4)c3c2)c1 1882 | CC(C)(C)c1nnc2ccc(-c3ocnc3-c3ccc(F)cc3F)cn12 1883 | Cc1nn(C)c2c1c(=O)c1cc(Cl)ccc1n2OCC(C)C 1884 | CCCCC(Sc1nc2ccccc2c(=O)n1-c1ccccc1)C(=O)N1CCC(c2ccccc2)(c2ccccc2)CC1 1885 | c1csc(-c2ccc3c(-c4cc5cc(CN6CCCCC6)ccc5[nH]4)[nH]nc3c2)n1 1886 | O=C1NS(=O)(=O)c2ccc(Cl)cc21 1887 | COc1ccc(-c2cnc(Nc3cnc(C#N)cn3)cc2NCC2CNCCO2)cc1 1888 | CN1CC2CC1CN2c1ccc(-c2ccnc3c(-c4cccc(O)c4)c(-c4ccncc4)nn23)cc1 1889 | O=C(CNCc1ccncc1)Nc1ccc2c(c1)Cc1c-2n[nH]c1-c1ccc(-c2ccc(O)cc2)cc1 1890 | Oc1ncc(I)c2nc(-c3cccc(Cl)c3)cn12 1891 | O=C1NCCc2[nH]c(-c3ccncc3)cc21 1892 | CCOC(=O)c1nc2c(O)nc3cc([N+]([O])=O)c(NC(C)=O)cc3n2c1C 1893 | COc1cc(Nc2c(C#N)cnc3cc(OCCCN4CCN(C)CC4)c(OC)cc23)c(Cl)cc1Cl 1894 | COc1ccc(CNC(=O)Nc2ncc([N+]([O])=O)s2)cc1 1895 | CC(Nc1cncc(-n2cnc3ccc(C#N)cc32)n1)c1ccccc1F 1896 | CC(C)NCCCNc1nc(Nc2ccc(C#N)nc2)ncc1C(F)(F)F 1897 | O=C1NC(=O)c2c1c(-c1c(Cl)cccc1Cl)cc1[nH]c3ccc(O)cc3c21 1898 | NC(=O)Nc1cc(-c2cccc(Cl)c2)sc1C(=O)NC1CCCNC1 1899 | CC=C(C=CC=C1C(=O)Nc2cc(-c3ccc(O)c(OC)c3)ccc21)C(=O)NCCN(CC)CC 1900 | COc1ccc(NC(=O)Nc2ccc(-c3csc4c(-c5cnn(CC(O)CO)c5)cnc(N)c34)cc2)cc1 1901 | COc1cc(Nc2ncc([N+](=O)[O-])c(Nc3ccccc3C(N)=O)n2)cc(OC)c1OC 1902 | NC(=O)c1cnc(NC2CCCNC2)c2sc(-c3ccccc3)cc12 1903 | NC(=O)c1cc2c(-c3ccc(F)cc3F)cncc2s1 1904 | O=C(c1cc(Cc2nnc(O)c3c2CCCC3)ccc1F)N1CCN(c2ncccn2)CC1 1905 | C(=Cc1[nH]nc2cc(-c3ccncc3)ccc12)c1ccc2ccccc2c1 1906 | NC(=O)c1cc2c(-c3ccc(Nc4nc5ccccc5o4)cc3)cnc(N)c2s1 1907 | Cc1cncc2cccc(S(=O)(=O)N3CCCNCC3C)c12 1908 | O=c1c(NCCc2ccc(Oc3ccccc3)cc2)c(Nc2ccncc2)c1=O 1909 | CC1CCC(NCc2ccc3c(c2)Cc2c(-c4ccc(CN)cc4)n[nH]c2-3)CC1 1910 | CC(C)(C)c1ccc2[nH]c(-c3[nH]nc4ccccc34)nc2c1 1911 | NC(=O)c1cc2c(-c3ccc(F)cc3)cncc2s1 1912 | COc1cc(NC(=O)CN(C)C)c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1 1913 | CCCCN(CCC#N)C(=O)c1ccc2[nH]c(-c3[nH]nc4ccccc34)nc2c1 1914 | CC(C)c1nnc2ccc(-c3c(-c4ccc(F)cc4F)nc4occn34)nn12 1915 | COc1ccccc1CNCCc1cc(OC)c(NC(=O)Nc2cnc(C#N)cn2)cc1Cl 1916 | NC(COc1cncc(-c2cc3ccncc3s2)c1)Cc1c[nH]c2ccccc12 1917 | CN1CCC1COc1cncc(CCc2ccncc2)c1 1918 | N#Cc1cnc(Nc2cc(N3CCC(N)CC3)ncn2)cn1 1919 | O=C1C=C(O)C=CC1=C1C=CC(c2cc(Nc3ccc(CNC4CC4)cc3)[nH]n2)C=C1 1920 | CCCCC(Sc1nc2cc(C)ccc2c(=O)n1-c1cccc(Cl)c1)C(=O)N1CCC(C(N)=O)CC1 1921 | Cn1cc(-c2ccc3nnc(Sc4ccc5ncccc5c4)n3n2)cn1 1922 | CCn1c2cc(Cl)c(F)cc2c(=O)c2c(O)onc21 1923 | N#Cc1ccc(-c2[nH]nc3c2Cc2ccc(OCCCCN4CCOCC4)cc2-3)cn1 1924 | COc1cc2ncnc(Nc3cccc(Cl)c3F)c2cc1CN(CCN(C)C)C(C)C(N)=O 1925 | CNC(=O)COc1ccc(Nc2nc(Nc3ccc(C)c(S(N)(=O)=O)c3)ncc2F)cc1 1926 | COc1cc2c(cc1CN1CCC(O)CC1)Cc1c(-c3ccc(-c4ccc(O)cc4)cc3)n[nH]c1-2 1927 | COc1ccc2c(c1)c(-c1cc3nc(Br)cnc3[nH]1)cn2C 1928 | COc1ccc2c(c1)C(=Cc1c[nH]cn1)C(=O)N2 1929 | COc1ccc2[nH]c(-c3c(O)nc4sc(Cl)cc4c3NC3CN4CCC3CC4)nc2c1 1930 | CC1C=NNN1c1ccc2c(c1)N=NC2=C1C=c2cc(CN3CCCCC3)ccc2=N1 1931 | O=C1NC(=O)c2c1c(-c1cc[nH]c1)cc1[nH]c3ccc(O)cc3c21 1932 | O=C1NC(=O)c2c1c(-c1ccc(O)cc1)cc1[nH]c3ccc(O)cc3c21 1933 | CC(=O)N1CCN(Cc2ccc3[nH]c(-c4[nH]nc5cc(-c6nn[nH]n6)ccc45)cc3c2)CC1 1934 | Fc1cc(F)cc(C=Cc2[nH]nc3cc(-c4ccncc4)ccc23)c1 1935 | N#Cc1cc2c(cn1)[nH]c1ncc(-c3ccncc3)cc12 1936 | NCCCc1cc2ccnc(O)c2c2cc(Cl)ccc12 1937 | COc1cccc(C(C)NC(=O)N2CC=C(c3c[nH]c4ncccc34)CC2)c1 1938 | COc1cc(NC(=O)CCCc2cccs2)c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1 1939 | COc1cc(NC(=O)c2cccs2)c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1 1940 | CC[S+]([O-])c1ccc(-c2coc3ccc(-c4ccc(C)o4)cc23)cc1 1941 | Oc1ncnc2ccc(Br)cc12 1942 | CN1CCCC1COc1cncc(CCc2ccccc2)c1 1943 | Cc1ccc(NC(=O)c2ccc(CN3CCN(C)CC3)cc2)cc1Nc1nc(-c2cccnc2)cs1 1944 | Cn1cc(-c2cnc3c(-c4csc(C(=O)NCC(F)(F)F)c4)cnn3c2)cn1 1945 | Cn1c2ccc(O)cc2c2c3c(c(-c4ccccc4)cc21)C(=O)NC3=O 1946 | COc1cc(N2CCN(C)CC2)ccc1C(=O)Nc1[nH]nc2ccc(Cc3cc(F)cc(F)c3)cc12 1947 | Oc1ncnc2c1oc1ccc(Cl)cc12 1948 | O=C(O)c1ccc(-c2cncc(-c3cccc(O)c3)n2)cc1 1949 | O=C(CNC1CCC(O)CC1)Nc1ccc2c(c1)Cc1c(-c3ccc(-c4ccc(O)cc4)cc3)n[nH]c1-2 1950 | CNc1nc(Nc2cnc(C#N)c(NCCN)c2)ncc1C(F)(F)F 1951 | COC(=O)c1cnc(Nc2cnc(C#N)cn2)cc1NCC1CCN(C)CC1 1952 | COc1ccc2cc(-c3[nH]nc4cccnc34)[nH]c2c1 1953 | COC(=O)c1ccc2c(C(=Nc3ccc(N(C)C(=O)CN4CCN(C)CC4)cc3)c3ccccc3)c(O)[nH]c2c1 1954 | CCOC(=O)C1=C(N)n2c(sc(=Cc3cccs3)c2=O)=C(C(N)=O)C1c1cccs1 1955 | COc1cc(CCNCc2ccc(F)cc2)ccc1NC(=O)Nc1cnc(C)cn1 1956 | c1ccc(-c2[nH]ncc2-c2ccncc2)cc1 1957 | O=C(c1cc(-c2ccc3[nH]ncc3c2)on1)N1CCCC(O)C1 1958 | CCCCC(Sc1nc2ccccc2c(=O)n1-c1cccc(Cl)c1)C(=O)N1CCCC2(CCCNC2)C1 1959 | Cc1cnc(Nc2nc(NC(C)C)ncc2Br)s1 1960 | Nc1ncc(-c2cnn(CCO)c2)c2scc(-c3ccc(NC(=O)Nc4cccc(F)c4)cc3)c12 1961 | CC(C)n1c2ccc(O)cc2c2c3c(c(-c4ccccc4Cl)cc21)C(=O)NC3=O 1962 | N#Cc1cnc(Nc2cc(NCC3CNCCO3)c(C3CC3)cn2)cn1 1963 | COc1cc(-c2ccc(=O)n(Cc3cccc(C)c3)n2)cc(OC)c1OC 1964 | CCOc1ccccc1C=NNC(=O)c1nnn(-c2nonc2N)c1N1CCCC1 1965 | COc1cc2c(cc1OC)CN(CC(=O)Nc1ccc3c(c1)C(=Cc1c[nH]cn1)C(=O)N3)CC2 1966 | CC1CCC(NCc2ccc3c(c2)Cc2c(-c4ccc(CC#N)cc4)n[nH]c2-3)CC1 1967 | CNc1nc(Nc2cnc(C#N)c(NC3CCNC3)c2)ncc1C(F)(F)F 1968 | COc1ccc(-c2cc(Nc3nc(C(=O)Nc4ccccc4N4CCNCC4)cs3)[nH]n2)cc1 1969 | COC1=CC(c2ccc3c(-c4cc5cc(CN6CCCCC6)ccc5[nH]4)[nH]nc3c2)C=CC1=O 1970 | COc1cc2c(cc1CCCO)NC(=O)c1ccc(-c3ccc([N+](=O)[O-])c(OC)c3)cc1N2 1971 | Nc1ccc(-c2cc3[nH]c4ccc(O)cc4c3c3c2C(=O)NC3=O)c(Cl)c1 1972 | CN1CCN(c2ccc(Nc3nc(N)c(C(=O)c4c(Cl)cccc4Cl)s3)cc2)CC1 1973 | COC1=CC(c2ccc3c(c2)NC(=O)C3=Cc2ncc[nH]2)C=CC1=O 1974 | NC(=O)c1cnc(NC2CCC(N)CC2)c2nc(-c3ccc(Cl)cc3)cn12 1975 | O=C1NC(=O)c2c1c1c3cc(Cl)ccc3[nH]c1c1cccn21 1976 | N#Cc1cc2c(cn1)[nH]c1ncc(O)cc12 1977 | c1ccc(Cc2cn(-c3ccc4[nH]ncc4c3)nn2)cc1 1978 | CNc1nc(Nc2cnc(C#N)c(NCCCN)c2)ncc1C(F)(F)F 1979 | O=C(Nc1cnccc1N1CCNCC1)c1csc(-c2ccc3sccc3c2)n1 1980 | Cn1nc(C(N)=O)c2c1-c1nc(NC3CCN(C(=O)c4ccccc4)CC3)ncc1CC2 1981 | Brc1ccc2cnc(Nc3ccncn3)cc2c1 1982 | CCc1cnn2c(NCc3ccc[n+]([O])c3)cc(N3CCCCC3CCO)nc12 1983 | Nc1ncc(-c2ccoc2)c2scc(-c3ccc(NC(=O)Nc4cccc(F)c4)cc3)c12 1984 | COc1cc(-c2ccc3c(c2)Nc2ccc(C(C)(C)C(=O)Nc4ccc(N5CCOCC5)cc4)cc2NC3=O)ccc1N 1985 | CC(NCCc1ccc(NC(=O)Nc2cnc(C#N)cn2)cc1Cl)c1ccc(F)cc1 1986 | Cc1ccc2c(c1)C(=NC1CCCNC1)C(c1nc3ccccc3[nH]1)C(=O)N2 1987 | CN1CCN(c2cc(OC3CCOC3)c(NC(=O)Nc3cnc(C#N)cn3)cc2Cl)CC1 1988 | O=C(Nc1ccccc1N1CCNCC1)c1csc(-n2ccnc2)n1 1989 | COc1cccc(CNCc2ccc(NC(=O)Nc3cnc(C#N)cn3)c(OC)c2)c1 1990 | COc1cccc(F)c1-c1cc2[nH]c3ccc(O)cc3c2c2c1C(=O)NC2=O 1991 | c1cc2[nH]c(-c3[nH]nc4cc(-c5cnsc5)ccc34)cc2cc1CN1CCCCC1 1992 | CCOC(=O)C1=NN(c2ccccc2)C(=C2SC(=Nc3nc(-c4ccccc4)cc(-c4ccccc4)c3C#N)N(c3ccccc3)C2=O)S1 1993 | CN(C)C(=O)Nc1ccc2nc(-c3ccco3)c(-c3ccco3)nc2c1 1994 | O=c1ccc(=O)c2c1c1[nH]c3ccccc3c1c1c(=O)[nH]c(=O)c21 1995 | N#Cc1cnc(Nc2cc(NCC3CCNCC3)c(C=CCCO)cn2)cn1 1996 | COc1ccccc1CNc1ncc(C(=O)NC2CCN(C)CC2)c(NC2CCCC2)n1 1997 | Oc1cccc(-c2ccc3c(C=Cc4ccccc4)[nH]nc3c2)c1 1998 | N#Cc1ncc2nc1OCCCCCOc1cc(CC(O)CO)c(Cl)cc1NC(=O)N2 1999 | Cc1c(-c2ccccc2)c2c(c3c1[nH]c1ccc(O)cc13)C(=O)NC2=O 2000 | COCCN(Cc1cc2c(Nc3cccc(Cl)c3F)ncnc2cc1OC)C(C)C(N)=O 2001 | Cc1nc2c(F)cc(-c3nc(Nc4ccc5c(n4)CCN(CCN(C)C)C5)ncc3F)cc2n1C(C)C 2002 | CC=C(C=CC=C1C(=O)Nc2cc(-c3ccc(O)cc3)ccc21)C(=O)NCCN(C)C 2003 | Nc1ncc(-c2ccoc2)c2scc(-c3ccc(NC(=O)Nc4ccccc4F)cc3)c12 2004 | OCc1[nH]nnc1-c1ccc2c(-c3cc4cc(CN5CCCCC5)ccc4[nH]3)[nH]nc2c1 2005 | O=C(c1ccc2c(c1)-c1n[nH]c(-c3ccc(-c4ccc(O)cc4)cc3)c1C2)N1CCOCC1 2006 | Cc1ccc(Nc2nccc(N(C)c3ccc4c(C)n(C)nc4c3)n2)cc1S(N)(=O)=O 2007 | CC(C)(CO)c1nnc2ccc(-c3c(-c4ccc(F)cc4F)nc4occn34)nn12 2008 | O=C(O)c1ccccc1Nc1ccnc(Nc2ccc([N+](=O)[O-])cc2)n1 2009 | O=C(Cc1ccc(OC(F)(F)F)cc1)N1CCC2(CC1)NCCc1c2[nH]c2ccccc12 2010 | O=C(NN=Cc1ccc(O)cc1O)Nc1cccc2nsnc12 2011 | CC(N)COc1cnc(Cl)c(C=Cc2ccncc2)c1 2012 | COc1cc(-c2ccc3c(-c4nc5ccccc5[nH]4)[nH]nc3c2)c(C)cc1O 2013 | O=C1C=CC(=C2C=CC(c3[nH]nc4c3Cc3cc(NC(=O)CNC5CCC(O)CC5)ccc3-4)C=C2)C=C1 2014 | CSc1cn2c(-c3cn[nH]c3)cnc2c(Nc2cc(C)ns2)n1 2015 | N#Cc1ccc(Nc2ncc(C(F)(F)F)c(NCCCNCCO)n2)cn1 2016 | CC(=O)N(c1ccncc1)c1c(O)c(=O)c1=NC(C)C(C)(C)C 2017 | [O][N+](=O)c1cccc(C(=O)NN=Cc2ccc(Sc3nc4ccccc4[nH]3)o2)c1 2018 | CCCC(=O)Nc1[nH]nc2nnc(-c3cccc(F)c3F)cc12 2019 | COc1cc(CN2CCOCC2)ccc1NC(=O)Nc1cnc(C#N)cn1 2020 | COc1cccc(OCCCN)c1-c1cc(Nc2cnc(C#N)cn2)[nH]n1 2021 | COC(=O)c1ccc(-c2[nH]nc3c2Cc2cc(CNC4CCC(C)CC4)ccc2-3)cc1 2022 | O=C1CCc2c1c1c(c3c2[nH]c2ccccc23)C(=O)NC1=O 2023 | Cc1ccc(Nc2nc3cc([N+](=O)[O-])ccc3[nH]2)nc1 2024 | CC(=O)c1cccc(-c2cnc3[nH]ccc3c2)c1 2025 | Cn1cc(-c2[nH]c3cc(NC(=O)C(N)C4CCCCC4)cc4c3c2C=NNC4=O)cn1 2026 | CC(C)(CO)CNc1nccc(-c2c(-c3ccc(F)cc3)nc3cnccn23)n1 2027 | CCNc1cnc2[nH]c3cnc(C#N)cc3c2c1 2028 | Oc1nc2sc(Br)cc2c(NC2CCNC2)c1-c1nc2ccccc2[nH]1 2029 | NC(=O)Nc1sc(-c2ccccc2F)cc1C(=O)NC1CCCNC1 2030 | Cc1noc(-c2cnc(Nc3cnc(C#N)cn3)cc2NCC2CCNCC2)n1 2031 | O=C1C=C(O)C=CC1=NC(=O)c1ccc2c(c1)NNC2c1nc2ccccc2[nH]1 2032 | O=C(Nc1[nH]nc2nc3ccccc3cc12)c1ccncc1 2033 | N#Cc1cnc(NC(=O)Nc2ccc(CCNCc3cccc(Cl)c3)c(Cl)c2)cn1 2034 | N#Cc1ncc2nc1OCCCCCOc1cc(NCCO)c(Cl)cc1NC(=O)N2 2035 | CC1CCN(C(=O)CO)CC1N(C)c1ncnc2[nH]ccc12 2036 | Oc1nc2ccc(-c3cc[nH]n3)cc2cc1-c1cc2cc(CN3CCCCC3)ccc2[nH]1 2037 | NC(=O)c1ccc2c(-c3cc4cc(CN5CCOCC5)ccc4[nH]3)[nH]nc2c1 2038 | Oc1nccc2c3[nH]c(-c4ccccc4)nc3c3ccc(F)cc3c12 2039 | CCNC(=O)c1cc2c(cn1)[nH]c1ncc(-c3ccc(CN4CCCCC4)cc3)cc12 2040 | O=C1Nc2ccccc2C1=Cc1c[nH]c2ccccc12 2041 | Cc1cc(NC(=O)Nc2cnc(C#N)cn2)ccc1CCNCc1ccc(F)cc1 2042 | N#Cc1cnc(NC(=O)Nc2ccc(CCNCCc3ccc(F)cc3F)c(Cl)c2)cn1 2043 | CNC(=O)c1cnc(N)c2c(-c3ccc(NC(=O)Nc4cc(C)ccc4F)cc3)csc12 2044 | CCN(CC)CCNc1ccc(O)c2ccccc12 2045 | N#Cc1ncc(Nc2ncc(-c3ccncc3)cn2)cc1OC1CCCNC1 2046 | CN1CCN(c2ccc(OC(F)(F)F)c(Nc3nccc(-c4cc(C(N)=O)cn4C)n3)c2)CC1 2047 | O=C1C=Cc2c1c1c(O)[nH]c(O)c1c1c2[nH]c2ccccc21 2048 | Cc1ccc2[nH]c3c4c(O)ccc(O)c4c4c(c3c2c1)C(=O)NC4=O 2049 | Cc1cnc(Nc2cccc(S(N)(=O)=O)c2)nc1Nc1ccc(OCC(N)=O)cc1 2050 | O=C1NC(=O)c2c1c(-c1ccsc1)cc1[nH]c3ccc(O)cc3c21 2051 | NCC1CCC(CNc2nc(NCc3ccccc3Cl)ncc2[N+](=O)[O-])CC1 2052 | CNC(=O)c1ccccc1Sc1ccc2c(C=Cc3ccccn3)[nH]nc2c1 2053 | COc1ccc2[nH]c(-c3[nH]nc4cc(C(=O)Nc5ccc(O)cc5)ccc34)nc2c1 2054 | CN(C)CC(=O)Nc1[nH]nc2ccc(-c3cn(Cc4ccccc4)nn3)cc12 2055 | O=C(Nc1nc2c(O)cccc2s1)Nc1ccccc1-c1ccccc1 2056 | COc1cc(CNCc2cccc(F)c2)ccc1NC(=O)Nc1cnc(C#N)cn1 2057 | Cc1ccc2[nH]c3c4c(OS(=O)(=O)O)ccc(O)c4c4c(c3c2c1)C(=O)NC4=O 2058 | Nc1nonc1-n1nnc(C(=O)NN=Cc2cccs2)c1-c1cccs1 2059 | O=C(Nc1cccc(C2Nc3ccc4ccccc4c3C3C=CCC32)c1)c1ccc(F)cc1 2060 | COc1cc2c(N3CCN(C(=O)Nc4ccc(OC(C)C)cc4)CC3)ncnc2cc1OCCCN1CCCCC1 2061 | O=C(c1ccc2c(c1)Cc1c(-c3ccc(-c4ccc(O)cc4)cc3)n[nH]c1-2)N1CCC(O)CC1 2062 | O=C(Nc1ccccc1N1CCNCC1)c1csc(N2CCc3[nH]cnc3C2)n1 2063 | CCCC(=O)Nc1cccc(-c2nc(Nc3ccc4[nH]ncc4c3)c3cc(OCCN4CCCC4)ccc3n2)c1 2064 | CNCc1ccc(-c2[nH]c3cc(F)cc4c3c2CCNC4=O)cc1 2065 | CC1COCCN1c1nc(-c2cncc3[nH]ccc23)cc2c1ncn2C(C)S(C)(=O)=O 2066 | CCN(CCO)CCCOc1ccc2c(Nc3cc(CC(=O)Nc4cccc(F)c4)[nH]n3)ncnc2c1 2067 | CCOc1nc(NC(=O)Cc2cc(OC)ccc2OC)cc(N)c1C#N 2068 | CCCCC(Sc1nc2ccccc2c(=O)n1-c1ccccc1Cl)C(=O)N1CCC(C(N)=O)CC1 2069 | Cc1[nH]nc2ncc(C#N)c(-c3ccccc3)c12 2070 | Clc1cc(NC2CCCCC2)nc(-c2c[nH]c3ncccc23)n1 2071 | COc1cc(N)c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1 2072 | Cn1c(NCC(N)Cc2ccccc2)nc(-c2ccncc2)c(-c2ccc3ccccc3c2)c1=O 2073 | CCCCNC(=O)c1cn(C(CC)CC)c(=O)c2cc(OC)c(OC)cc12 2074 | COc1ccc2c(c1)C(=O)N(c1nc(C(=O)Nc3cnccc3N3CCNCC3)cs1)C2 2075 | O=C(Cc1ccc(Cl)cc1)Nc1[nH]nc2c1CCC2 2076 | NC(=O)c1cccc(-c2cnc3[nH]cc(-c4ccccc4)c3c2)c1 2077 | NC(=O)c1cccc(CNC(=O)c2cc3c(c4c2[nH]c2ccccc24)C(=O)NC3=O)c1 2078 | COc1cc(C=C2SC(=S)NC2=O)ccc1O 2079 | CC(C)NC1=NNC(=O)C1=Cc1cc2ccccc2[nH]1 2080 | O=C(Nc1ccccc1N1CCNCC1)c1csc(N2Cc3ccncc3C2)n1 2081 | OCCCn1cnc(-c2ccc(F)cc2)c1-c1ccncc1 2082 | Cc1nc(Nc2[nH]nc3c2CN(C(=O)NC(CN(C)C)c2ccccc2)C3(C)C)c2sccc2n1 2083 | Nc1[nH]nc2cccc(-c3ccc(NC(=O)Nc4cc(CO)ccc4F)cc3)c12 2084 | CCCS(=O)(=O)Nc1ccc(-c2ccc3[nH]nc(NC(=O)CC)c3c2)cc1 2085 | N#Cc1ncc(Nc2ncc(C(F)(F)F)cn2)cc1OC1CCCNC1 2086 | NS(=O)(=O)c1cccc(Nc2ncc3ccn(-c4ccccc4)c3n2)c1 2087 | COc1ccc(Nc2nccc(N=c3c(O)c(O)c3=NC(C)C(C)(C)C)n2)cc1OC 2088 | N#Cc1cc2c(cn1)[nH]c1ncc(-c3ncc[nH]3)cc12 2089 | COc1cc(-c2ccc3c(c2)Nc2ccc(C(=O)NCc4cccc(F)c4)cc2NC3=O)ccc1O 2090 | COc1cc2c(cc1O)Nc1cc(-c3ccc([N+](=O)[O-])c(OC)c3)ccc1C(=O)N2 2091 | CN1CCN(Cc2ccc3c(c2)Cc2c(-c4ccc(-c5ccc(O)cc5)cc4)n[nH]c2-3)CC1 2092 | COc1cc2c(cc1C(=O)N(C)C)NC(=O)c1ccc(-c3ccc([N+](=O)[O-])c(OC)c3)cc1N2 2093 | CNc1nc(Nc2cnc(C#N)c(OC3CCCNC3)c2)ncc1-c1ccc(F)cc1 2094 | CN(C)CCOc1cc(N2CCCC2)c(NC(=O)Nc2cnc(C#N)cn2)cc1Cl 2095 | CN(C)C(=O)c1cnc(Nc2cnc(C#N)cn2)cc1NCC1CCNCC1 2096 | c1cc2[nH]ncc2cc1-c1cc(CN2CCCCC2)no1 2097 | O=C(NC(CO)Cc1ccccc1)c1ccc(-c2ccncc2)cc1 2098 | CN(C)Cc1ccc(Nc2cc(-c3ccc(-c4ccc(O)cc4O)cc3)[nH]n2)cc1 2099 | CCN(CC)c1cc2c(cc1Cl)NC(=O)Nc1cnc(C#N)c(n1)OCCCCCO2 2100 | CC1CCC(NCc2ccc3c(c2)Cc2c(-c4ccc(C(=O)O)cc4)n[nH]c2-3)CC1 2101 | NC(=O)c1cc2c(Oc3cccc(F)c3)cncc2s1 2102 | CNc1cc(Nc2cnc(C#N)c(OC(C)CN(C)C)n2)ncc1C(F)(F)F 2103 | Cc1ccc2nc(O)c(-c3nc4ccccc4[nH]3)c(NC3CCNCC3)c2c1 2104 | COc1cccc(-c2cc3c(O)nc4ccccc4n3c2)c1 2105 | COc1cc2c(cc1C(=O)NCc1ccccn1)Cc1c-2n[nH]c1C1C=CC(=C2C=CC(=O)C(F)=C2)C=C1 2106 | COc1cc(-c2ccc3c(c2)Nc2ccc(CC(=O)Nc4ccc(N5CCOCC5)cc4)cc2NC3=O)ccc1N 2107 | NC(=O)c1cc(-c2cccc(N)c2)cc2cccnc12 2108 | O=C(NCc1ccccc1)Nc1ncc([N+](=O)[O-])s1 2109 | Cc1cccc(NC(=O)Nc2ccc(-c3csc4c(C#CCNS(C)(=O)=O)cnc(N)c34)cc2)c1 2110 | O=C(NC1CCC(O)CC1)c1ccc2c(c1)Cc1c(-c3ccc(-c4ccc(O)cc4)cc3)n[nH]c1-2 2111 | N#Cc1ncc2nc1OCCCCCOc1cc(NCc3ccncc3)c(Cl)cc1NC(=O)N2 2112 | COc1cc(-c2ccc3c(c2)Nc2cc(N)ccc2NC3=O)ccc1N 2113 | CCCCC(Sc1nc2ccccc2c(=O)n1-c1ccccc1)C(=O)N1CCN(c2ccccc2)CC1 2114 | OC1CCC(Nc2nc(Cl)cc(-c3c[nH]c4ncccc34)n2)CC1 2115 | CCCCC#Cc1ccc(CN2CC(C(=O)O)C2)cc1 2116 | CC(C)(C)c1nc2c3ccc(F)cc3c3c(O)nccc3c2[nH]1 2117 | COc1ccc(OC)c(Nc2ccc3nnc(-c4ccccc4)n3n2)c1 2118 | Oc1nc2sc(Cl)cc2c(NC2CN3CCC2CC3)c1-c1nc2ccccc2[nH]1 2119 | Oc1nccc2ccc3ccc(Cl)cc3c12 2120 | N#Cc1ncc(Nc2ncc(-c3cccc(F)c3)cn2)cc1OC1CCCNC1 2121 | CC(C)(N)CCNc1nc(Nc2ccc(C#N)nc2)ncc1C(F)(F)F 2122 | Cc1c(NC(=O)c2ccc(C(C)(C)C)cc2)cccc1-c1cc(Nc2ccc(C(=O)N3CCOCC3)cn2)c(=O)n(C)c1 2123 | CN(C)CCOCCOc1cc(N2CCCC2)c(NC(=O)Nc2cnc(C#N)cn2)cc1Cl 2124 | N#Cc1cc2c(cn1)[nH]c1ncc(-c3nc(CN4CCCCC4)cs3)cc12 2125 | CCN1c2cc(N)ccc2-c2ccc(N)cc2C1(O)c1ccccc1 2126 | NC(=O)c1cnc(NC2CCCNC2)c2nc(-c3ccc(Cl)cc3)cn12 2127 | CS(=O)(=O)Nc1cc2c(cc1Cl)NC(=O)Nc1cnc(C#N)c(n1)OCCCCCO2 2128 | c1ccc(-c2ccc3c(-c4cc5cc(CN6CCCCC6)ccc5[nH]4)[nH]nc3c2)cc1 2129 | CCn1c2ccc(O)cc2c2c3c(c(-c4ccccc4Cl)cc21)C(=O)NC3=O 2130 | CNc1nc(Nc2cnc(C#N)c(OC3CCCNC3)c2)ncc1-c1ccc(OC)cc1OC 2131 | C(=Cc1[nH]nc2cc(-c3ccncc3)ccc12)c1ccc[nH]1 2132 | Nc1ncnc2sc(Br)c(-c3ccc(NC(=O)Cc4cccc(Cl)c4)cc3)c12 2133 | N#Cc1cnc(Nc2cc(NCC3CNCCO3)c(-c3cc(F)cc(F)c3)cn2)cn1 2134 | Nc1ccc2c(C(=O)O)n(-c3ccccc3)nc2c1 2135 | O=C(O)C1CN(Cc2ccc(OCc3ccccc3)cc2Cl)C1 2136 | NCCNC(=O)c1cccc(CNC(=O)c2cc3c(c4c2[nH]c2ccccc24)C(=O)NC3=O)c1 2137 | CN1CCN(c2ccc(-c3cnc(N)c(-c4ccc(C(=O)O)cc4)n3)cc2)CC1 2138 | N#Cc1cnc(NC(=O)Nc2ccc(CCNCc3cccc(N4CCOCC4)c3)c(Cl)c2)cn1 2139 | Cc1cccc(NC(=O)Nc2ccc(-c3cccc4[nH]ncc34)cc2)c1 2140 | C(=Nn1cccc1)c1[nH]nc2cc(-c3ccncc3)ccc12 2141 | c1cnc2[nH]cc(-c3ccnc(NC4CCCCC4)n3)c2c1 2142 | Cc1cccc(NC(=O)Nc2ccc(-c3csc4c(C#CCCCCCCCCN)cnc(N)c34)cc2)c1 2143 | N#Cc1cnc(Nc2cc(NCC3CCNCC3)c(-c3ccccc3)cn2)cn1 2144 | CC(=O)c1nn(-c2ccc(C)cc2)cc1C(=O)c1c(C)[nH]c(-c2ccccc2)c1-c1ccccc1 2145 | COc1ccc(CNC(=O)Nc2ncc([N+](=O)[O-])s2)cc1 2146 | COc1cccc(C(C)NC(=O)c2ccc(-c3ccncc3F)cc2OC)c1 2147 | NCCCc1cc2c(-c3ccc(F)cc3)cnc(O)c2c2cc(-c3cn[nH]c3)ccc12 2148 | O=C(Nc1ccccc1N1CCNCC1)c1csc(Nc2cc(-c3ccccc3)[nH]n2)n1 2149 | CC(C)(C)OC(=O)n1ncc2cc(Nc3c(NCc4ccc(S(N)(=O)=O)cc4)c(=O)c3=O)ccc21 2150 | NC(=O)c1cn(-c2ccc(O)cc2Cl)c2cc(-c3ccncc3)ccc2c1=O 2151 | NC(=O)c1cnc(NC2CCCNC2)c2nc(-c3ccc4ccccc4c3)cn12 2152 | N#Cc1ncc2nc1OCCCCCOc1cc(C#CCO)c(Cl)cc1NC(=O)N2 2153 | N#Cc1cnc(Nc2cc3ccccc3cn2)cn1 2154 | CC(NC(=O)c1ccc(-c2ccncc2)cc1)c1ccccc1 2155 | Cc1cccc(-c2cc3[nH]c4ccc(O)cc4c3c3c2C(=O)NC3=O)c1 2156 | CN(C)c1cc2c(cc1Cl)NC(=O)Nc1cnc(C#N)c(n1)OCCCCCO2 2157 | O=C(NCCc1cccs1)N1CC=C(c2c[nH]c3ncccc23)CC1 2158 | CC1NCCCC1Nc1ncc(C(N)=O)c2sc(-c3ccccc3)cc12 2159 | c1ccc(Cn2cc(-c3ccc4[nH]ncc4c3)nn2)cc1 2160 | Nc1nccc2cnc(-c3ccccc3)n12 2161 | N#Cc1ccc(Nc2ncc(C(F)(F)F)c(NCCCNC3CCCCC3)n2)cn1 2162 | CCN(CCCOc1ccc2c(Nc3cc(CC(=O)Nc4cccc(F)c4)[nH]n3)ncnc2c1)CCOP(=O)(O)O 2163 | CCOc1ccccc1-c1cc2[nH]c3ccc(O)cc3c2c2c1C(=O)NC2=O 2164 | CC(C)(C)c1nnc2ccc(-c3ocnc3-c3cc(F)c(F)cc3F)cn12 2165 | CN(C)c1ccc(CNC(=O)c2cc3c(-c4ccccc4)[nH]nc3s2)cc1 2166 | COc1cccc(C(C)NC(=O)c2ccc(-c3ccncc3)c(F)c2)c1 2167 | O=C(Nc1ccccc1N1CCNCC1)c1csc(N2CCc3sccc3C2)n1 2168 | [O][N+](=O)c1cc(S(=O)(=O)NC(=O)c2ccc(-c3ccc(F)cc3)cc2)ccc1NCCSc1ccc(O)cc1 2169 | NC(=O)c1cc2c(-c3cc(C(F)(F)F)cc(C(F)(F)F)c3)cncc2s1 2170 | O=C1NC(=O)c2c1c1c(c3c2[nH]c2ccccc23)C(=O)NC1 2171 | CNc1nc(Nc2cnc(C#N)c(NC3CCC(N)CC3)c2)ncc1C(F)(F)F 2172 | Cc1cc(C)cc(NC(=O)Nc2ccc(-c3cccc4c3CNC4=O)c(C(F)(F)F)c2)c1 2173 | COC(=O)c1cnc(Nc2cnc(C#N)cn2)cc1NCCC1CCNCC1 2174 | NC(=O)c1ccc(-c2c[nH]c3nccc(Cl)c23)cc1 2175 | NCCCc1cc2ccnc(O)c2c2cc(-c3ccc(CN)cc3)ccc12 2176 | NC(=O)c1cc(Cl)cc2[nH]c(-c3ccc(C4CCCNC4)cc3F)nc12 2177 | Cc1cc(C)c2oc(Nc3ccc(-c4cccc(C(N)=O)c4N)cc3F)nc2c1 2178 | N#Cc1cnc(Nc2cc(NCC3CCNCC3)c(CCCO)cn2)cn1 2179 | NC1=NC(=C2CCNC(=O)c3[nH]c(Br)cc32)C(=O)N1 2180 | CN1CCN(c2cccc(Nc3nccc(-c4c(C(N)=O)nc5ccccn45)n3)c2)CC1 2181 | Oc1[nH]nc2ccc(Br)cc12 2182 | CN(c1ccccc1CNc1nc(N)nc2[nH]ccc12)S(C)(=O)=O 2183 | CN1CCN(c2ccc(-c3cnc4[nH]c5cnc(C(N)=O)cc5c4c3)cc2)CC1 2184 | CC1CCC(NCc2ccc3c(c2)Cc2c(-c4ccc(N(C)C)cc4)n[nH]c2-3)CC1 2185 | O=C1c2ccccc2-c2[nH]nc3cccc1c23 2186 | NC(=O)Nc1sc(-c2ccccc2)cc1C(=O)NC1CCCNC1 2187 | [O][N+](=O)c1ccc2c(c1)C(=O)c1nc3cccc(Br)c3c(=O)n1-2 2188 | COc1ccc2cn(-c3nc(C(=O)Nc4ccnnc4N4CCNCC4)cs3)c(O)c2c1 2189 | CC(C)(c1ccc(-c2cnc3[nH]c4cnc(C#N)cc4c3c2)cc1)N1CCCCC1 2190 | COc1cc(F)c(F)c(Nc2ccc(I)cc2F)c1NS(=O)(=O)C1(CC(O)CO)CC1 2191 | N#Cc1ncc(Nc2cc3[nH]cnc3cn2)nc1OCC1CCNCC1 2192 | NC(=O)Nc1cc(-c2cccc(F)c2)sc1C(=O)NC1CCCNC1 2193 | Cc1cn2c(-c3cn[nH]c3)cnc2c(Nc2cc(Cc3ccccn3)ns2)n1 2194 | COc1cc(-c2ccc3c(c2)NC(=O)C3=Cc2cc(C(=O)NCCN3CCCC3)c(C)[se]2)ccc1O 2195 | Nc1ncnc2scc(-c3ccc(NC(=O)Nc4ccccc4)cc3)c12 2196 | CCC(C)NCc1ccc(Nc2cc(C3C=CC(=C4C=CC(O)=CC4=O)C=C3)[nH]n2)cn1 2197 | Cc1nn(C)c2sc3c(O)ncnc3c12 2198 | O=C(c1cccc(-c2cnc3[nH]ccc3c2)c1)N1CCOCC1 2199 | Nc1noc2cccc(-c3cccc(O)c3)c12 2200 | Cc1nn(-c2ccccc2)c2c1c(=O)c1cc(Cl)ccc1n2O 2201 | Nc1nccc2scc(-c3ccc(NC(=O)Nc4cccc(F)c4)cc3)c12 2202 | Cc1nccn2c(-c3ccnc(NCC(C)(C)CO)n3)c(-c3ccc(F)cc3)nc12 2203 | Cc1cccc(C=NNc2cc(N3CCOCC3)nc(OCCc3ccccn3)n2)c1 2204 | N#Cc1c(O)nc(O)c2c(=N)oc3ccc(Cl)cc3c12 2205 | N#Cc1ncc2nc1OCCCCCOc1cc(OCC(O)CO)c(Cl)cc1NC(=O)N2 2206 | N#Cc1cnc(Nc2cc(NCC3CNCCO3)c(-c3cccc(F)c3)cn2)cn1 2207 | CC(=O)N1CCN(Cc2ccc3[nH]c(-c4[nH]nc5cc(Cl)ccc45)cc3c2)CC1 2208 | CCCC(=O)Nc1[nH]nc2nc3ccccc3cc12 2209 | Cn1cncc1C(OCc1c(-c2ccc(OC(F)(F)F)cc2)cc(C#N)c(=O)n1C)c1ccc(C#N)cc1 2210 | Cc1cnc(NC(=O)Nc2cc(Br)c(C)cc2OCC2CNCCO2)cn1 2211 | Clc1ccc2c(c1)NC1(CCCCC1)N2 2212 | O=C1Nc2cc(-c3ccc(O)cc3)ccc2C1=Cc1ccc[nH]1 2213 | NC(=O)c1cnc(N(CCO)C2CCCNC2)c2cc(-c3ccccc3)sc12 2214 | O=C(Nc1cccc(-c2ccnc3cc(-c4ccncc4)nn23)c1)c1cccc(C(F)(F)F)c1 2215 | O=c1ccc(=O)c2c1c1[nH]c3ccc(O)cc3c1c1c(=O)[nH]c(=O)c21 2216 | Cc1cccc(NC(=O)Nc2ccc(-c3csc4c(C#CCN)cnc(N)c34)cc2)c1 2217 | O=C1Nc2ccc(Cl)cc2C(=NC2CCNC2)C1c1nc2ccccc2[nH]1 2218 | CC(=O)Nc1cccc2c1Cc1c(-c3ccc(-c4ccc(O)cc4)cc3)n[nH]c1-2 2219 | Cn1cc(-c2cnn3c(N)c(Br)c(C4CCCNC4)nc23)cn1 2220 | CNc1nc(Nc2cnc(C#N)c(NC3CCN(C)C3)c2)ncc1C(F)(F)F 2221 | NC(=O)c1cc2c(-c3cccc(F)c3)cncc2s1 2222 | CC(C)(CO)CNc1nccc(-c2c(-c3ccc(F)cc3)nc3c(OCC(F)(F)F)nccn23)n1 2223 | CC(=O)NCC(=O)N1C2CCC1c1cc(Nc3ncc(C(F)(F)F)c(NC4CCC4)n3)ccc12 2224 | CNc1cc2c(cc1Cl)NC(=O)Nc1cnc(C#N)c(n1)OCCCCCO2 2225 | CCCCOc1ncnc2[nH]cc(-c3ccccc3)c12 2226 | NCCCc1cc2c(c3cc(-c4cn[nH]c4)ccc13)C(=O)N=CC2c1ccc(O)cc1 2227 | O=c1c(NCc2ccc(Cl)c(Cl)c2)c(Nc2ccncc2)c1=O 2228 | CN1CCC(C(=O)n2nc(N)c3cc(-c4cn(Cc5ccccc5)nn4)ccc32)CC1 2229 | COc1ccc(-c2cncc(-c3ccc(C(=O)O)cc3)n2)cc1 2230 | COc1cc2c(cc1CC(C)(C)O)Nc1cc(-c3ccc([N+](=O)[O-])c(OC)c3)ccc1C(=O)N2 2231 | Cc1ccc(NC(=O)Nc2ccc(NC(=O)c3csc4ncnc(N)c34)cc2)cc1 2232 | CCc1nc2c(c3cc(OC)c(OC)cc13)C(=O)NC2=O 2233 | CS(=O)(=O)Nc1ccc(Nc2ccc3[nH]nc(N)c3c2)cc1 2234 | CC1(C)CCCN(Cc2ccc(-c3cnc4[nH]c5cnc(C#N)cc5c4c3)cc2)C1 2235 | O=C(Nc1ccccc1N1CCNCC1)c1csc(-n2cccn2)n1 2236 | O=C1NC(=O)c2c1c1c3ccccc3[nH]c1c1cccn21 2237 | Fc1cccc(F)c1C=Cc1[nH]nc2cc(-c3ccncc3)ccc12 2238 | COc1cc2c(cc1C(=O)NCc1ccccn1)Cc1c(C3C=CC(=C4C=CC(=O)C(C#N)=C4)C=C3)n[nH]c1-2 2239 | CC(C)(C)c1cc(NC(=O)Nc2ccc(-c3cn4c(n3)sc3cc(OCCN5CCOCC5)ccc34)cc2)no1 2240 | O=c1[nH]c(=O)c2c1c1[nH]c3ccccc3c1c1c(=O)[nH]c(=O)c21 2241 | COc1cc(Nc2ncc3c(n2)-c2ccc(Cl)cc2C(c2c(F)cccc2OC)=NC3)ccc1C(=O)O 2242 | Cc1cccc(C=Cc2[nH]nc3cc(-c4ccncc4)ccc23)c1 2243 | CCN1C(=O)N(C)c2cnc(Nc3ccc(C(=O)NC4CCN(C)CC4)cc3OC)nc2N1C1CCCC1 2244 | CN1CCN(c2ccc(-c3cnc4[nH]c5cnc(C(=O)O)cc5c4c3)cc2)CC1 2245 | O=C(Nc1cnccc1N1CCNCC1)c1csc(-c2ccc3[nH]ccc3c2)n1 2246 | N#Cc1ncc2nc1OCC(O)C(O)COc1ccc(Cl)cc1NC(=O)N2 2247 | CNc1nc(Nc2cnc(C#N)c(OC3CCNC3)c2)ncc1-c1cnn(C)c1 2248 | CNc1cc(Nc2cnc(C#N)c(OC(C)CN(C)C)n2)ncc1-c1cccc(F)c1 2249 | CCCCC(Sc1nc2c(OC)cccc2c(=O)n1-c1cccc(Cl)c1)C(=O)N1CCC(C(N)=O)CC1 2250 | CC(C)(c1cc(Br)c(O)c(I)c1)c1cc(Br)c(O)c(I)c1 2251 | O=C1NC(=O)c2c1c1c3cc(Br)ccc3[nH]c1c1cccn21 2252 | OCCCn1cnc(-c2ccccc2)c1-c1ccncc1 2253 | CNC(C)CCNc1nc(Nc2ccc(C#N)nc2)ncc1C(F)(F)F 2254 | CN1CCN(c2ccc(-c3cnc4[nH]c5ccc(C#N)nc5c4c3)cc2)CC1 2255 | COc1cc(-c2ccc3c(c2)Nc2ccc(CCC(=O)N(C)C)cc2NC3=O)ccc1N 2256 | CCCCNCC(=O)Nc1ccc2c(c1)Cc1c(-c3ccc(-c4ccc(O)cc4)cc3)n[nH]c1-2 2257 | N#Cc1ccc(Nc2ncc(C(F)(F)F)c(NCCCCN)n2)cn1 2258 | CCCCC(Sc1nc2ccccc2c(=O)n1-c1ccccc1)C(=O)N1CC=S(O)(O)=CC1 2259 | Cc1cc(C)cc(NC(=O)Nc2ccc(NC(=O)c3csc4ncnc(N)c34)cc2)c1 2260 | Cn1c(Nc2ccc(C(F)(F)F)cc2)nc2cc(Oc3ccnc(-c4nc(C(F)(F)F)c[nH]4)c3)ccc21 2261 | O=C1NC(=O)c2c1c(-c1c(O)cccc1Cl)cc1[nH]c3ccc(O)cc3c21 2262 | COc1ccc(OC)c(NC(=O)c2cnn3c(-c4ccccc4)ccnc23)c1 2263 | COc1cc2c(cc1C(=O)N1CCC(O)CC1)Cc1c(-c3ccc(-c4ccc(O)cc4)cc3)n[nH]c1-2 2264 | COc1ccc(C=C2SC(Nc3ccccc3)=NC2=O)cc1O 2265 | CC(C)(C)CNCc1ccc2c(c1)Cc1c(-c3ccc(C(=O)O)cc3)n[nH]c1-2 2266 | Cn1cc(-c2ccc3c(-c4cc5cc(CN6CCOCC6)ccc5[nH]4)[nH]nc3c2)cn1 2267 | COc1cc2ncnc(Nc3cccc(Cl)c3F)c2cc1CN(C)C(CN(C)C)C(N)=O 2268 | NC(=O)c1cnc(NC2CCC(N)CC2)c2nc(-c3ccc(Cl)c(Cl)c3)cn12 2269 | CN(C)CC(C)(C)CNc1nccc(-c2c(-c3ccc(F)cc3)nc3occn23)n1 2270 | O=C1NC(=O)c2c1c(I)cc1[nH]c3ccc(O)cc3c21 2271 | Oc1ccc(Nc2[nH]nc(-c3ccc(O)cc3)c2-c2ccc(O)cc2)cc1 2272 | CC(C)(C)c1cc(NC(=O)C(=O)c2cccc3ccccc23)n(-c2cccc(OCC(=O)NCCO)c2)n1 2273 | N#Cc1ccc(Nc2ncc(C(F)(F)F)c(NCC3CCNC3)n2)cn1 2274 | N#Cc1ncc(Nc2ncc(-c3ccc(F)cc3)cn2)cc1OC1CCCNC1 2275 | CCC(N)(C#Cc1cnc(N)c2c(-c3ccc(NC(=O)Nc4cccc(C)c4)cc3)csc12)CC 2276 | O=C1NC(=O)c2c1c(-c1ccccc1C(F)(F)F)cc1[nH]c3ccc(O)cc3c21 2277 | COc1cc2c(cc1OC)Nc1cc(-c3ccc([N+](=O)[O-])c(OC)c3)ccc1C(=O)N2 2278 | CC(C)(CO)c1nnc2ccc(-c3c(-c4ccc(F)cc4F)nc4n3CCC4)nn12 2279 | O=C(Nc1ccccc1N1CCNCC1)c1csc(N2CCCc3ccccc32)n1 2280 | COc1ccc(-c2cc3nccn3c(Nc3ccccc3C(N)=O)n2)cc1OC 2281 | NC1CCC(Nc2cc(Nc3ccc(S(N)(=O)=O)cc3)n3ncnc3n2)CC1 2282 | Nc1[nH]nc2ccc(-c3nnn(Cc4ccccc4)c3I)cc12 2283 | CN(C)CCOCCN(C)CCOc1cc(N2CCCC2)c(NC(=O)Nc2cnc(C#N)cn2)cc1Cl 2284 | COc1ccccc1CNCc1ccc(NC(=O)Nc2cnc(C#N)cn2)c(OC)c1 2285 | COc1nccn2c(-c3ccnc(NCC(C)(C)CO)n3)c(-c3ccc(F)cc3F)nc12 2286 | Cc1cccc(Nc2nc(N3CCOCC3)c3[nH]cnc3n2)c1 2287 | N#Cc1cc2c(cn1)[nH]c1ncc(Br)cc12 2288 | Cc1[nH]nc2ccc(-c3cccnc3)cc12 2289 | O=C1NCc2c(Br)cccc21 2290 | COc1ccc(CCC(=O)Nc2cc(OC)c(NC(=O)Nc3cnc(C#N)cn3)cc2Cl)cc1 2291 | COc1cc(CNCc2ccccc2F)ccc1NC(=O)Nc1cnc(C#N)cn1 2292 | O=C1OC(=O)c2c1c(-c1ccccc1)cc1[nH]c3ccc(O)cc3c21 2293 | N#Cc1ccc(Nc2ncc(C(F)(F)F)c(NCCCNC3CCC3)n2)cn1 2294 | COC(=O)CCC(=O)Nc1cc(OC)c(NC(=O)Nc2cnc(C#N)cn2)cc1Cl 2295 | FC(F)(F)Oc1ccc(-c2ccc3[nH]cc(C4=CCNCC4)c3c2)cc1 2296 | Oc1nc2ccc(Cl)cc2c(NC2CCCNC2)c1-c1nc2ccccc2[nH]1 2297 | COc1cc2ncnc(Nc3cccc(Cl)c3F)c2cc1CN(C)C(C)C(=O)N(C)C 2298 | O=C(Cc1ccccc1)Nc1cccc(-c2nc3sccn3c2-c2ccnc(Nc3cccc(N4CCCC4=O)c3)n2)c1 2299 | COc1cc2ncnc(Nc3cccc(Cl)c3F)c2cc1CN(C)C1(C(N)=O)CCN(C)CC1 2300 | CNc1nc(Nc2cnc(C#N)c(OC3CCN(C)CC3)c2)ncc1-c1cnn(C)c1 2301 | NCCCc1cc2c(Br)cnc(O)c2c2cc(-c3cn[nH]c3)ccc12 2302 | COC(=O)c1cnc(Nc2cnc(C#N)cn2)cc1NCC1CC2CCC(C1)N2C 2303 | COc1cc(N2CCN(C(C)C)CC2)ccc1Nc1nc(Nc2ccc(F)cc2C(N)=O)c2cc[nH]c2n1 2304 | N#Cc1cnc(Nc2cc(NCC3CCNCC3)ncn2)cn1 2305 | COc1cc(CNCc2ccccc2)c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1 2306 | N#Cc1ncc2nc1OCCCCCOc1cc(NCc3cnco3)c(Cl)cc1NC(=O)N2 2307 | O=C(NCCCN1CCCC1=O)c1cnc(NCc2cc(Cl)ccc2Cl)nc1NC1CCCC1 2308 | Cc1cnnn1-c1ccc2c(-c3cc4cc(CN5CCCCC5)ccc4[nH]3)[nH]nc2c1 2309 | COc1cc2c(Oc3ccc4[nH]c(C)cc4c3F)ncnc2cc1OCCCN1CCCC1 2310 | NC(=O)c1cnc(NC2CCCNC2)c2cc(-c3ccccc3)sc12 2311 | CN(c1ncc(C(N)=O)c2sc(-c3ccccc3)cc12)C1CCCNC1 2312 | CS(=O)(=O)NCCOc1cncc(-c2ccc3cnccc3c2)c1 2313 | OCCNc1cc2cc(-c3ccncc3)ccc2cn1 2314 | Cc1ncc(C#N)c(Nc2ccc3[nH]ccc3c2C)c1C=Cc1cccc(S(=O)(=O)N2CCN(C)CC2)c1 2315 | CCCCC(Sc1nc2c(C)cccc2c(=O)n1-c1cccc(Cl)c1)C(=O)N1CCC(C(N)=O)CC1 2316 | CN(C)CC(C)(C)CNc1nccc(-c2c(-c3ccc(F)cc3)nc3cnccn23)n1 2317 | NC1=NC(=C2CCNC(=O)c3[nH]c(-c4ccccc4)cc32)C(=O)N1 2318 | O=C(Nc1ccccc1N1CCNCC1)c1csc(N2Cc3ccccc3C2)n1 2319 | CC(C)n1nc(-c2cc3cc(O)ccc3[nH]2)c2c(N)ncnc21 2320 | Brc1cnc2[nH]cc(-c3ccccc3)c2c1 2321 | NC(=O)c1cnc(NC2CCC(N)CC2)n2cc(-c3ccc(Cl)cc3)nc12 2322 | O=C(NCc1ccc(Br)cc1)Nc1ccc2[nH]ncc2c1 2323 | NC(=O)c1cnc(OC2CCCNC2)c2cc(-c3ccccc3)sc12 2324 | Cc1cn2c(-c3cn[nH]c3)cnc2c(Nc2cc(CN3CCC(F)(F)C3)ns2)n1 2325 | COc1cc2c(cc1C(=O)N1CCOCC1)Cc1c(-c3ccc(-c4ccc(O)cc4)cc3)n[nH]c1-2 2326 | NCCc1cc2ccnc(O)c2c2cc(Cl)ccc12 2327 | Nc1ncnc2c1N=C(c1ccc(NC(=O)Nc3cc(C(F)(F)F)ccc3F)cc1)CCN2 2328 | O=C(Nc1cccnc1N1CCNCC1)c1csc(-c2ccc3c(c2)CCO3)n1 2329 | Nc1ccccc1-c1cc2[nH]c3ccc(O)cc3c2c2c1C(=O)NC2=O 2330 | Cc1cccc(-c2cc3[nH]c4ccc(O)cc4c3c3c2C(=O)NC3=O)c1C 2331 | O=C(O)c1ccc2c(c1)nc(Nc1cccc(Cl)c1)c1ccncc12 2332 | COc1cc2ncnc(Nc3cccc(Cl)c3F)c2cc1CN(C)CC(N)=O 2333 | NCC1CN(c2ncnc3[nH]c4ccccc4c23)CCO1 2334 | N#Cc1cccc(-c2cc(C(=O)NC3CCCNC3)c(NC(N)=O)s2)c1 2335 | OCC(O)CNc1ncnc2[nH]c(-c3ccccc3)c(-c3ccccc3)c12 2336 | CN1CCN(C2CCC(n3cc(-c4ccc(Oc5ccccc5)cc4)c4c(N)ncnc43)CC2)CC1 2337 | COc1cc(CCNCc2ccccc2)ccc1NC(=O)Nc1cnc(C)cn1 2338 | c1cnn(-c2ccc3c(-c4cc5cc(CN6CCCCC6)ccc5[nH]4)[nH]nc3c2)n1 2339 | Oc1nc2ccc(-c3cn[nH]c3)cc2cc1-c1cc2cc(CN3CCCCC3)ccc2[nH]1 2340 | Cn1cc(-c2cc3c(cn2)[nH]c2ncc(-c4ccc(CN5CCCCC5)cc4)cc23)cn1 2341 | CCN(CC)CCCNc1cccc(-c2nc3c(C(N)=O)cccc3[nH]2)n1 2342 | CC(=NNC(=O)c1nnn(-c2nonc2N)c1-c1ccccc1)c1ccco1 2343 | O=C(Nc1cnccn1)Nc1ccnc2cc(C(F)(F)F)ccc12 2344 | NC(COc1cncc(C=Cc2ccncc2)c1)Cc1c[nH]c2ccccc12 2345 | Cc1c(Cl)c(N2CCC(CN)C2)nc2ncc(C(=O)O)c(O)c12 2346 | Cc1cc2c(NC3CCCNC3)c(-c3nc4ccccc4[nH]3)c(O)nc2s1 2347 | CNc1cc(Nc2cnc(C#N)c(OC(C)CN(C)C)n2)ncc1C(=O)OC 2348 | O=C(Nc1ccc(Oc2ncnc3[nH]ncc23)cc1)Nc1ccc(Cl)c(C(F)(F)F)c1 2349 | O=C(Nc1ccc2[nH]ncc2c1)c1ccc(Cl)cc1 2350 | Oc1nc2ccc(-n3ccnc3)cc2cc1-c1cc2cc(CN3CCCCC3)ccc2[nH]1 2351 | Cc1ccc(F)c(NC(=O)Nc2ccc(-c3ccc(OCCCn4cccc4)c4[nH]nc(N)c34)cc2)c1 2352 | COc1cc(-c2ccc3c(c2)NC(=O)C3=Cc2cc(C(=O)NCCN3CCOCC3)c(C)[se]2)ccc1O 2353 | O=C1Cc2c([nH]c3ccc([N+](=O)[O-])cc23)-c2ccccc2N1 2354 | ON=C(c1nc2ccccc2[nH]1)c1nc2ccccc2[nH]1 2355 | O=C1NC(=O)c2c1cc(-c1ccccc1)c1[nH]c3ccc(O)cc3c21 2356 | CC(C)(O)CNc1nccc(-c2c(-c3ccc(F)cc3F)nc3c(CC4CC4)nccn23)n1 2357 | O=C(O)c1ccccc1Nc1ccnc(Nc2ccc3c[nH]nc3c2)n1 2358 | O=C(Nc1cccc(F)c1)Nc1cccc(-c2ccc3c[nH]nc3c2)c1 2359 | CC(=O)Nc1cc(N)c(C#N)c(-c2ccc3ccccc3c2)n1 2360 | Cc1[se]c(C=C2C(=O)Nc3cc(-c4cccc(O)c4)ccc32)cc1C(=O)NCCN(C)C 2361 | CN(C)Cc1ccc(Nc2cc(C3C=CC(=C4C=CC(O)=CC4=O)C=C3)[nH]n2)cc1 2362 | NC(=O)c1cnc(NC2CCCNC2)c2sc(-c3cccc(F)c3)cc12 2363 | N#Cc1cnc(NC(=O)Nc2ccc(CCNCc3ccccc3)cc2)cn1 2364 | Oc1nc2sccc2c(NCC2CCNCC2)c1-c1nc2ccccc2[nH]1 2365 | Clc1cc(Nc2nc(NC3CC3)c3sccc3n2)ccc1N1CCOCC1 2366 | CCOC(=O)c1ccc2[nH]c3c(c2c1)CCNC3=O 2367 | NCCc1cc2ccnc(O)c2c2cc(-c3cc[nH]n3)ccc12 2368 | NC(=O)Nc1cc(-c2ccc(F)cc2F)sc1C(=O)NC1CCCNC1 2369 | CN(c1ccc(F)c(NC(=O)c2cccc(OC(C)(C)C#N)c2Cl)c1)c1ccc2nc(NC(=O)C3CC3)sc2n1 2370 | CC1(C)C(=O)c2c3c(c4c([nH]c5ccccc54)c2C1=O)C(=O)NC3=O 2371 | COc1ccc(CCNc2ncc(C(=O)NCCCN3CCCC3=O)c(NC3CCCC3)n2)cc1OC 2372 | CNC(=O)c1nn(C)c2c1C(C)(C)Cc1cnc(Nc3ccc(N4CCN(C)CC4)cc3)nc1-2 2373 | Nc1[nH]nc2ncc(Br)cc12 2374 | Nc1nccc2scc(-c3ccc(NC(=O)Nc4cccc(Cl)c4)cc3)c12 2375 | Cc1[se]c(C=C2C(=O)Nc3cc(-c4ccc(O)cc4)ccc32)cc1C(=O)NCCCn1ccnc1 2376 | c1cc(-c2cnc3[nH]c4cnc(-c5cnoc5)cc4c3c2)ccc1CN1CCCCC1 2377 | O=C1c2cc([N+](=O)[O-])ccc2-n2c1nc1cccc(Br)c1c2=O 2378 | CN(C)CCN1CCN(C(=O)c2cc(C(C)(C)C)sc2NC(=O)Nc2cccc(Cl)c2Cl)CCC1=O 2379 | COCCOCC(=O)Nc1cc(OC)c(NC(=O)Nc2cnc(C#N)cn2)cc1Cl 2380 | CC(=NN=C(N)N)c1cc(NC(=O)NCCCN(C)CCCNC(=O)Nc2cc(C(C)=NN=C(N)N)cc(C(C)=NN=C(N)N)c2)cc(C(C)=NN=C(N)N)c1 2381 | O=C(O)c1ccccc1Nc1ccnc(Nc2cccc(O)c2)n1 2382 | COc1cc(-c2ccc3c(c2)C(=Cc2ccc[nH]2)C(=O)N3)ccc1O 2383 | O=CN(O)C(CS(=O)(=O)c1ccc(-c2ccc(C(F)(F)F)cc2)cc1)c1ccc(O)cc1 2384 | COc1cc(NC(=O)Cc2ccsc2)c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1 2385 | CC=C(C=CC=C1C(=O)Nc2cc(-c3ccc(O)c(OC)c3)ccc21)C(=O)NCCCn1ccnc1 2386 | c1ccc2[nH]c(-c3[nH]nc4cc(-c5ccncc5)ccc34)nc2c1 2387 | CC(C)(C)c1[nH]nc2c1C(c1ccccc1F)C(C#N)=C(N)O2 2388 | NCc1cccc(-c2cc3[nH]c4ccc(O)cc4c3c3c2C(=O)NC3=O)c1 2389 | N#Cc1cc2c(cn1)[nH]c1ncc(-c3ccc(CN4CCOCC4)cc3)cc12 2390 | COc1cccc(CNC(=O)c2cc3c(-c4ccccc4)[nH]nc3s2)c1 2391 | Cc1cc(C)cc(NC(=O)Nc2ccc(-c3cccc4c3CNC4=O)c(C)c2)c1 2392 | Oc1nc2sccc2c2nc(-c3ccncc3)nn12 2393 | CN(C)CCOc1cc(OCC2(C)COC2)c(NC(=O)Nc2cnc(C#N)cn2)cc1Cl 2394 | O=C1NC(=O)c2c1c1c3cc(OCc4ccccc4)ccc3[nH]c1c1cccn21 2395 | Cc1cccc(-c2cccc3onc(N)c23)c1 2396 | NCCCc1cc2ccnc(O)c2c2ccccc12 2397 | Nc1ccc(-c2cncc(OCC(N)Cc3c[nH]c4ccccc34)c2)cc1C(=O)c1ccccc1 2398 | CC1CC(C)CN(Cc2ccc(-c3cnc4[nH]c5cnc(C#N)cc5c4c3)cc2)C1 2399 | O=C1NC(=O)c2c1c1c(O)ccc(O)c1c1[nH]c3ccc(O)cc3c21 2400 | Cc1ccc2[nH]c(-c3[nH]nc4cc(C(=O)Nc5ccc(O)cc5)ccc34)nc2c1C 2401 | COc1cc2ncnc(Nc3cccc(Cl)c3F)c2cc1CN(C)C1CCNC1=O 2402 | CSc1ccccc1CNc1ncc([N+]([O])=O)c(NCC2CCC(CN)CC2)n1 2403 | CNC(=O)c1cc(-c2ccccc2)[nH]n1 2404 | COc1cccc(C(C)NC(=O)c2ccc(-c3ccncc3)cc2)c1 2405 | Nc1ncnc2c1c(-c1cccc(OCc3ccccc3)c1)cn2C1CCC(N2CCCC2)CC1 2406 | COc1cc([N+](=O)[O-])c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1 2407 | CN1CCN(c2ccc(-c3cnc4c(c3)N(Cc3cc(Cl)ccc3C(F)(F)F)CCN4)cn2)CC1 2408 | CNc1nc(Nc2cnc(C#N)c(OC3CCNC3)c2)ncc1C(F)(F)F 2409 | COc1nccc(-c2c(-c3ccc(F)cc3)ncn2C2CCNCC2)n1 2410 | COc1cc(-c2ccc3c(C=C4CCCN4)c(O)[nH]c3c2)ccc1O 2411 | N#Cc1ncc2nc1OCCCCCOc1cc(NCc3ccccc3)c(Cl)cc1NC(=O)N2 2412 | COc1cc(-c2ccc3c(C=Cc4ccc(NC(=O)CN)cc4)[nH]nc3c2)ccc1O 2413 | COC(=O)c1c(-c2ccc(NC(=O)Nc3ccccc3)cc2)c2c(N)ncnn2c1C 2414 | O=C(Nc1ccccc1N1CCNCC1)c1csc(NC2Cc3ccccc3C2)n1 2415 | COCCOCCOc1cc2c(cc1Cl)NC(=O)Nc1cnc(C#N)c(n1)OCCCCCO2 2416 | C(=Cc1[nH]nc2cc(Oc3ccccc3)ccc12)c1ccccc1 2417 | N#CCOc1ccc(Nc2nc(Nc3cccc(S(N)(=O)=O)c3)ncc2Br)cc1 2418 | Cc1cc(Cl)ccc1NC(=S)NNC(=O)C(O)(c1ccccc1)c1ccccc1 2419 | CS(=O)(=O)c1cccc(C(=O)Nc2nc3ccccc3n2CCCO)c1 2420 | Nc1[nH]nc2ccc(-c3nnn(Cc4ccccc4)c3-c3ccc(F)cc3)cc12 2421 | O=C(Nc1ccccc1)Nc1ccccc1 2422 | Cc1cccc(NC(=O)Nc2ccc(-c3cccc4[nH]nc(N)c34)cc2)c1 2423 | CC1(C)CCN(Cc2ccc(-c3cnc4[nH]c5cnc(C#N)cc5c4c3)cc2)CC1 2424 | COc1ccc(-c2cc3[nH]c4ccc(O)cc4c3c3c2C(=O)NC3=O)cc1 2425 | CN(C1CC1)S(=O)(=O)c1ccc(-c2cnc(N)c(-c3ccc4c(c3)CCNC4=O)c2)c(F)c1 2426 | Nc1ncnc2c1c(-c1cccc(OCc3ccccc3)c1)cn2C1CC(CN2CCCC2)C1 2427 | C(=Cc1[nH]nc2cc(-c3ccccc3)ccc12)c1ccccc1 2428 | Oc1ccc(-c2ccc3c(C=Cc4ccccc4)[nH]nc3c2)cn1 2429 | CC(C)(C)c1cc(NC(=O)C(=O)c2cccc3ccccc23)n(-c2ccc(OCC(N)=O)cc2)n1 2430 | Cc1ccc(-c2n[nH]c3c2Cc2cc(CNC4CCC(C)CC4)ccc2-3)cc1 2431 | CCOc1nc(C(=O)NCc2ccc(S(C)(=O)=O)cc2)cc(N)c1Cl 2432 | CC(=NN=C(N)N)c1cc(NC(=O)NCCCCCCNC(=O)Nc2cc(C(C)=NN=C(N)N)cc(C(C)=NN=C(N)N)c2)cc(C(C)=NN=C(N)N)c1 2433 | CCn1c(-c2nonc2N)nc2c(C#CC(C)(C)O)nc(OC(CN)c3ccccc3)cc21 2434 | O=C1Nc2ccc(Cl)cc2C(=NC2CN3CCC2CC3)C1c1nc2ccccc2[nH]1 2435 | Cc1ccc(F)c(NC(=O)Nc2ccc(-c3cccc4[nH]nc(N)c34)cc2)c1 2436 | NCCCc1cc2ccnc(O)c2c2cc(-c3cc[nH]n3)ccc12 2437 | Oc1ccc(-c2ccc(-c3n[nH]c4c3Cc3cc(CNC5CCC(O)CC5)ccc3-4)cc2)cc1 2438 | O=C(Nc1ccc(-c2cccc3sncc23)cc1)Nc1ccc(F)c(C(F)(F)F)c1 2439 | Cc1nn(C)c2cc(N(C)c3ccnc(Nc4cccc(S(N)(=O)=O)c4)n3)ccc12 2440 | COc1cc2c(cc1OCC1CCCCO1)Nc1cc(-c3ccc([N+](=O)[O-])c(OC)c3)ccc1C(=O)N2 2441 | N#CC1=C(c2ccccc2)CC(c2ccc(Cl)cc2)C(C(=O)c2ccccc2)C1=O 2442 | CCCn1c(C2CCNCC2)nc(-c2ccc(Cl)c(Cl)c2)c1-c1ccnc(NC2CCCCC2)n1 2443 | Cc1cccc(NC(=O)Nc2ccc(-c3csc4c(C#CCN5CCOCC5)cnc(N)c34)cc2)c1 2444 | COC(=O)c1cnc(Nc2cnc(C#N)c(OC3CCNC3)n2)cc1OC 2445 | Cc1ccc(NC(=O)Nc2ccc(-c3csc4c(-c5cnn(C)c5)cnc(N)c34)cc2)cc1 2446 | CC1CCC(NCc2ccc3c(c2)Cc2c(-c4ccc(Cl)cc4)n[nH]c2-3)CC1 2447 | C#Cc1cc2c(cc1OC)-c1[nH]nc(-c3ccc(C#N)nc3)c1C2 2448 | CCOc1cc(CCNCc2ccc(F)cc2)c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1 2449 | COc1cc(-c2ccc3c(c2)Nc2ccc(CCOc4ccc(N5CCOCC5)cc4)cc2NC3=O)ccc1OCC(O)CO 2450 | O=C1Nc2ccccc2C(=NC2CN3CCC2CC3)C1c1nc2ccccc2[nH]1 2451 | CC(C)CC(Sc1nc2ccccc2c(=O)n1-c1cccc(Cl)c1)C(=O)N1CCC(C(N)=O)CC1 2452 | Cc1nccn2c(-c3ccnc(NCC(C)(C)O)n3)c(-c3ccc(F)cc3F)nc12 2453 | COc1cc(CCNCc2ccc(F)cc2F)ccc1NC(=O)Nc1cnc(C#N)cn1 2454 | CCCCNc1ccc2c3c(cccc13)C(=O)N(CCNCCO)C2=O 2455 | COc1cc(-c2ccc3c(c2)NC(=O)C3=Cc2c[nH]c3ncccc23)ccc1O 2456 | CN(C)CCNc1c(-c2nc3ccccc3[nH]2)c(O)nc2sccc12 2457 | OCCn1cc(-c2ccc3c(c2)CCC3=NO)c(-c2ccncc2)n1 2458 | C(=Cc1cncc(OC2CCNC2)c1)c1ccncc1 2459 | CCCCNc1n[s+]([O-])nc1Nc1ccc(F)cc1 2460 | N#Cc1ncc2nc1OCCCCCOc1cc(NCc3cccnc3)c(Cl)cc1NC(=O)N2 2461 | O=C1NC(=O)c2c1c1c3ccccc3[nH]c1c1[nH]c3ccncc3c21 2462 | O=C(CO)N1CCC(c2[nH]nc(-c3ccc(Cl)cc3F)c2-c2ccncn2)CC1 2463 | O=C(Nc1ccccc1)Nc1ccccn1 2464 | CC=C(C=CC=C1C(=O)Nc2cc(-c3ccc(O)c(OC)c3)ccc21)C(=O)NCCN1CCCC1 2465 | NC(=O)c1cc2c(cn1)[nH]c1ncc(-c3ccc(CN4CCCCC4)cc3)cc12 2466 | N#Cc1ccc(Nc2ncc(C(F)(F)F)c(NCCCNCCN3CCOCC3)n2)cn1 2467 | N#Cc1cnc(NC(=O)Nc2ccc(CCNCc3ccc(F)cc3F)cc2)cn1 2468 | Nc1nccc2scc(-c3ccc(NC(=O)Nc4ccccc4C(F)(F)F)cc3)c12 2469 | O=C1NC(=O)c2c1c(-c1ccc(O)cc1Cl)cc1[nH]c3ccc(O)cc3c21 2470 | O=C1NC(=O)c2c1c(-c1ccccc1Cl)cc1[nH]c3ccc(O)cc3c21 2471 | Oc1nn2ccccc2c1Br 2472 | CC(=O)Nc1cc(N)c(C#N)c(-c2ccsc2)n1 2473 | COc1cccc(CCC(=O)Nc2cc(OC)c(NC(=O)Nc3cnc(C#N)cn3)cc2Cl)c1 2474 | CC(C)(C(N)=O)n1cc(-c2cnc(N)c3c(-c4ccc(NC(=O)Nc5cccc(F)c5)cc4)csc23)cn1 2475 | COc1cc2c(cc1C(=O)NC1CCC(O)CC1)C(C)(C)c1c(-c3ccc(-c4ccc(O)cc4)cc3)n[nH]c1-2 2476 | N#Cc1cnc(NC(=O)Nc2cc(Cl)c(OCC3CCCO3)cc2N2CCCC2)cn1 2477 | O=C(NCc1ccccc1)c1cccc(-c2cnc3[nH]ccc3c2)c1 2478 | Cc1ccc(C=C2C(=O)Nc3cc(-c4ccc(O)cc4)ccc32)[se]1 2479 | N#Cc1cnc(Nc2cc(NCC3CNCCO3)c(C#CC3(O)CCCC3)cn2)cn1 2480 | OCCNc1cc2cc(-c3cccnc3)ccc2cn1 2481 | Cc1nn(C)c(C)c2cc([N+]([O])=O)cc1-2 2482 | CCCCCCCCCCCCOc1ccc(NC(=N)N)cc1N=C(N)N 2483 | O=C1NC(=O)c2c1c1c3cc(O)ccc3[nH]c1c1cccn21 2484 | CNC1CCC(Nc2ncc(C(N)=O)n3cc(-c4ccc(Cl)cc4)nc23)CC1 2485 | OCCNCc1ccc2c(c1)-c1[nH]nc(-c3ccc(-c4ccc(O)cc4)cc3)c1C2 2486 | COc1cc2c(cc1C(=O)NCc1ccccn1)Cc1c(-c3ccc(-c4ccc(O)c(F)c4)cc3)n[nH]c1-2 2487 | COc1ccc(C(C)NCCc2cc(OC)c(NC(=O)Nc3cnc(C#N)cn3)cc2Cl)cc1 2488 | O=C1NC(=O)c2c1c(C1CCNC1)cc1[nH]c3ccc(O)cc3c21 2489 | N#Cc1ccc(Nc2ncc(C(F)(F)F)c(NC3CCC(N)CC3)n2)cn1 2490 | COC(=O)N1CCC(n2ncc3c(N4CCOCC4)nc(-c4ccc(N)cc4)nc32)CC1 2491 | N#Cc1cc2c(cn1)[nH]c1ncc(-c3ccc(CN4CCCCC4)cc3)cc12 2492 | CC(=O)Nc1cccc(-c2cnc3[nH]nc(C)c3c2)c1 2493 | O=C(O)C1CN(Cc2ccc(OCc3cccc(C(F)(F)F)c3)cc2Cl)C1 2494 | COc1cc(-c2ccc3c(c2)NC(=O)C3=Cc2c[nH]c3ccccc23)ccc1O 2495 | O=C(Nc1cnccc1N1CCNCC1)c1csc(N2Cc3ccccc3C2=O)n1 2496 | CN1CCN(c2ccc(OC(F)(F)F)c(Nc3ncc4c(n3)-c3c(c(C(N)=O)nn3CCO)CC4)c2)CC1 2497 | O=C(Nc1ccc(O)cc1)c1ccc2c(-c3nc4cc5ccccc5cc4[nH]3)[nH]nc2c1 2498 | N#Cc1ccc2c(c1)[nH]c1ncnc(N3CCOC(CN)C3)c12 2499 | Cc1ccc(-n2cc3c(-c4c[nH]c(-c5ccccc5)c4-c4ccccc4)nnc(O)c3n2)cc1 2500 | CCc1cnn2c(NCc3ccc[n+]([O-])c3)cc(N3CCCCC3CCO)nc12 2501 | COc1cc(CCNCc2ccc(N3CCNCC3)cc2)c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1 2502 | NCCc1cc2ccnc(O)c2c2cc(Br)ccc12 2503 | COc1cc(N)ccc1-c1cc2[nH]c3ccc(O)cc3c2c2c1C(=O)NC2=O 2504 | CC(=O)N1CCC(Nc2ncc3c(n2)-c2c(c(C(N)=O)nn2C)CC3)CC1 2505 | COc1ccc2[nH]c(-c3c(O)nc4sc(Cl)cc4c3NC3CCCNC3)nc2c1 2506 | CC(C)(CO)CNc1nccc(-c2c(-c3ccc(F)cc3)nc3c(CC4CC4)nccn23)n1 2507 | COc1cccc(CNCCc2cc(OC)c(NC(=O)Nc3cnc(C#N)cn3)cc2Cl)c1 2508 | C=CC(=O)Nc1cc2c(Nc3ccc(F)c(Cl)c3)ncnc2cc1OCCCN1CCOCC1 2509 | Cc1ccc(Nc2nc3cc([N+]([O])=O)ccc3[nH]2)nc1 2510 | O=C(NS(=O)(=O)c1ccc(NCCSc2ccc(O)cc2)c([N+](=O)[O-])c1)c1ccc(-c2ccc(F)cc2)cc1 2511 | Oc1ncnc2c1sc1c(Cl)ccc(Cl)c12 2512 | OCCNc1ncnc2[nH]c(-c3ccccc3)c(-c3ccccc3)c12 2513 | Cc1ccc(C(=O)Nc2c(C#N)sc3ccc(Cl)c(Cl)c23)cc1 2514 | CC(C)n1nnc2ccc(-c3c(-c4ccc(F)cc4F)nc4occn34)cc21 2515 | O=C(C=CC=CC=C1C(=O)Nc2cc(-c3ccc(O)cc3)ccc21)NCCN1CCCCO1 2516 | COc1ccc(C2=NNc3cccc4c(OC)ccc2c34)cc1OC 2517 | N#Cc1cnc(Nc2cc(NCC3CCNCC3)c(C(=O)Nc3ccccc3)cn2)cn1 2518 | CCN(CC)CCNC(=O)c1ccc(C=C2C(=O)Nc3cc(-c4ccc(O)cc4)ccc32)[se]1 2519 | NCCCc1cc2c(-c3ccccc3)cnc(O)c2c2cc(-c3cn[nH]c3)ccc12 2520 | COCC(C(N)=O)N(C)Cc1cc2c(Nc3cccc(Cl)c3F)ncnc2cc1OC 2521 | N#Cc1cc2c(cn1)[nH]c1ncc(-c3ccc(N4CCOCC4)cc3)cc12 2522 | O=C1C=CC(=C2C=CC(c3[nH]nc4c3Cc3ccc(C(=O)NCCO)cc3-4)C=C2)C=C1 2523 | Nc1ncnc2scc(-c3ccc(NC(=O)Nc4cc(C(F)(F)F)ccc4F)cc3)c12 2524 | COc1ccccc1-c1ccc2c(c1)Nc1ccccc1NC2=O 2525 | Oc1nc2sc3c(c2c2nc(-c4ccccc4)nn12)CCCC3 2526 | O=C(Nc1ccc(O)cc1)c1ccc2c(-c3nc4cc(Cl)c(Cl)cc4[nH]3)[nH]nc2c1 2527 | COc1cc(Nc2cnc(C#N)c(OC(C)CN(C)C)n2)ncc1-c1cnn(C)c1 2528 | Oc1nc2ccc(-c3cn[nH]c3)cc2cc1-c1cc2cc(CN3CCOCC3)ccc2[nH]1 2529 | O=C1Nc2ccccc2Nc2ccccc21 2530 | CC1Cn2ncc(C3CCN(S(C)(=O)=O)CC3)c2CN1c1ccnc2[nH]ccc12 2531 | O=C1NCCc2[nH]c(-c3ccnc(-c4cnc5ccccc5c4)c3)cc21 2532 | O=C(O)c1c2c(nc3ccccc13)C(=C1CCCC1)CC2 2533 | [O-][n+]1ccc2c(-c3ccc(F)cc3Cl)ccnc2c1-c1c(Cl)cccc1Cl 2534 | CC(=O)Nc1cccc2c1Cc1c-2n[nH]c1C1C=CC(=C2C=CC(=O)C=C2)C=C1 2535 | CN1CCC(NC(=O)c2cnc(Nc3cc(Cl)cc(Cl)c3)nc2NC2COCC2O)CC1 2536 | O=C(Nc1[nH]nc2ccc(-c3cn(Cc4ccccc4)nn3)cc12)c1cc(F)ccc1F 2537 | Fc1cccc(C=Cc2[nH]nc3cc(-c4ccncc4)ccc23)c1F 2538 | NC(=O)c1c(OCc2c(F)cc(Br)cc2F)nsc1NC(=O)NCCCCN1CCCC1 2539 | CNC(=O)c1cnc(N)c2c(-c3ccc(NC(=O)Nc4cccc(Cl)c4)cc3)csc12 2540 | CC(C)Nc1c(-c2ccc3[nH]ncc3c2)nc2ncccn12 2541 | N#Cc1ccc(Nc2ncc(C(F)(F)F)c(NCC3CCNCC3)n2)cn1 2542 | Cc1cccc2c1NC(=O)C(c1nc3ccccc3[nH]1)C2=NC1CN2CCC1CC2 2543 | N#CC1=C(N)n2c(sc(=Cc3ccco3)c2=O)=C(C(N)=O)C1c1ccco1 2544 | C#Cc1cnc(Nc2cnc(C#N)c(OC(C)CN(C)C)n2)cc1NC 2545 | NC(=O)c1cnc(NC2CCCNC2)c2cc(-c3cnn(Cc4ccccc4)c3)sc12 2546 | Cn1cncc1CNc1cc2c(cc1Cl)NC(=O)Nc1cnc(C#N)c(n1)OCCCCCO2 2547 | CS(=O)(=O)Cn1cnc2c(N3CCOCC3)nc(-c3cccc4[nH]ccc34)cc21 2548 | NC(=O)c1cc2c(-c3ccccc3)cncc2s1 2549 | CN(C)CCCOc1cc2c(c(-c3ccc(Nc4nc5ccccc5o4)cc3)c1)CNC2=O 2550 | CC(C)=C(C)c1cccc2c(CCCOc3cccc(Cl)c3Cl)c(C(=O)O)[nH]c12 2551 | CCCCNCC(=O)Nc1ccc2c(c1)Cc1c-2n[nH]c1C1C=CC(=C2C=CC(=O)C=C2)C=C1 2552 | Cc1[se]c(C=C2C(=O)Nc3cc(-c4cccc(O)c4)ccc32)cc1C(=O)NCCCn1ccnc1 2553 | CC(C)C(C)Nc1ncc(Cl)c(Nc2nccs2)n1 2554 | CN(C)CCNC(=O)c1ccc(C=C2C(=O)Nc3cc(-c4ccc(O)cc4)ccc32)[se]1 2555 | Cc1cc(Nc2ncc(F)c(NC3C4C=CC(C4)C3C(N)=O)n2)ccc1N1CCN(C)CC1 2556 | CC(C)c1nnc2ccc(-c3ocnc3-c3ccc(F)cc3Cl)cn12 2557 | Oc1nc2ccsc2c(NC2CCNC2)c1-c1nc2ccccc2[nH]1 2558 | COc1cc(CN2CCN(C)CC2)ccc1NC(=O)Nc1cnc(C#N)cn1 2559 | Oc1ccc(-c2nc(-c3ccc(F)cc3)c(-c3ccncc3)[nH]2)cc1 2560 | Cn1ccc(-c2cnc3[nH]c4cnc(C#N)cc4c3c2)n1 2561 | Cn1cc(-c2cnc3c(-c4csc(C(=O)NC5CCCCC5N)c4)cnn3c2)cn1 2562 | N#Cc1cccc2nc(O)c(-c3cc4cc(CN5CCC(CN)CC5)ccc4[nH]3)cc12 2563 | COc1cc(C(=O)O)c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1 2564 | Cn1cc(-c2cnc(Nc3cnc(C#N)c(OC4CCCNC4)c3)nc2)cn1 2565 | COc1cc(-c2ccc3c(c2)Nc2ccc(N)cc2NC3=O)ccc1N 2566 | CN(C)CCNC(=O)C=CC=CC=C1C(=O)Nc2cc(-c3ccc(O)cc3)ccc21 2567 | O=C1NC(=O)c2c1c(-c1c(Cl)ccc(O)c1Cl)cc1[nH]c3ccc(O)cc3c21 2568 | O=C1Nc2cc(-c3ccc(O)cc3)ccc2C1=Cc1ccc[se]1 2569 | c1ccc(Nc2ccnc(Nc3ccccc3)n2)cc1 2570 | C=C(c1ccccc1)c1ccc2c(C=Cc3ccccc3)[nH]nc2c1 2571 | CCN(CC)CC#Cc1cnc(N)c2c(-c3ccc(NC(=O)Nc4cccc(C)c4)cc3)csc12 2572 | CC(=O)NC1CCN(c2nc3ncc(C(=O)O)c(O)c3c(C)c2F)C1 2573 | O=C(c1ccc(C=Cc2[nH]nc3ccccc23)cc1)N1CCNCC1 2574 | N#Cc1cnc(NC(=O)Nc2ccc(CCNCc3ccc(F)cc3F)c(Cl)c2)cn1 2575 | Oc1nc2ccccc2c(O)c1-c1nc2ccccc2[nH]1 2576 | N#CCCc1cc2ccnc(O)c2c2cc(Cl)ccc12 2577 | COc1cc(-c2ccc3c(c2)=NC(=O)C=3C=CCC=CC(=O)O)ccc1O 2578 | c1cc2[nH]c(-c3[nH]nc4cc(-c5cn[nH]c5)ccc34)cc2cc1CN1CCOCC1 2579 | O=C1NC(=O)c2c1c(-c1ccccc1Br)cc1[nH]c3ccc(O)cc3c21 2580 | NC(COCc1ccccc1)COc1cncc(C=Cc2ccncc2)c1 2581 | Oc1nc2ccc(-n3nccn3)cc2cc1-c1cc2cc(CN3CCCCC3)ccc2[nH]1 2582 | Cc1nnc(-c2cccc(-c3cnn4ccc(NCCN)nc34)c2)o1 2583 | Oc1c2c(nc3cc(-c4ccco4)nn13)CSC2 2584 | NC(=O)Cn1cc(-c2cc(-c3cc4ccccc4s3)c3[nH]ncc3c2)c2nc(N)ncc21 2585 | O=C(NCc1ccccn1)c1ccc2c(c1)Cc1c-2n[nH]c1-c1ccc(-c2ccc(O)cc2)cc1 2586 | NCCC(C(=O)Nc1ccc2[nH]ncc2c1)c1ccc(Cl)c(Cl)c1 2587 | N#Cc1c(-c2ccccc2)cc(-c2ccccc2)nc1N=c1sc(-c2ccccc2)nn1-c1ccccc1 2588 | CNC(=O)c1cccc(C=Cc2[nH]nc3cc(-c4ccncc4)ccc23)c1 2589 | O=C(Nc1ccccc1N1CCNCC1)c1csc(-n2nnc3ccccc32)n1 2590 | COc1cc(-c2ccc3c(c2)NC(=O)C3=Cc2ccc(C(=O)NCCN3CCCC3)[se]2)ccc1O 2591 | NC(=O)c1sc2ccc(Cl)c(Cl)c2c1NC(=O)c1ccc(Cl)cc1 2592 | COCCOC1CCC(n2nc(-c3ccc(Nc4nc5cc(C)cc(C)c5o4)cc3)c3c(N)ncnc32)CC1 2593 | CNc1nc(Nc2cnc(C#N)c(OCC3CCNCC3)c2)ncc1C(F)(F)F 2594 | COc1cccc(C=Cc2[nH]nc3cc(-c4ccncc4)ccc23)c1 2595 | N#Cc1cnc(NC(=O)Nc2ccc(CNCc3ccccc3)cc2)cn1 2596 | O=C1NC(=O)c2c1c(-c1ccccc1)cc1[nH]c3ccc(O)cc3c21 2597 | Fc1cccc(C=Cc2[nH]nc3cc(-c4ccncc4)ccc23)c1 2598 | COc1cc2c(cc1OC)CN(c1nc(C(=O)Nc3ccccc3N3CCNCC3)cs1)CC2 2599 | CCn1c(-c2nonc2N)nc2cnc(Oc3cccc(NC(=O)c4ccc(OCCN5CCOCC5)cc4)c3)cc21 2600 | CCN(c1ncc(C(N)=O)c2sc(-c3ccccc3)cc12)C1CCCNC1 2601 | Cc1nccn2c(-c3ccnc(NCCC(C)(C)O)n3)c(-c3ccc(F)cc3F)nc12 2602 | Cc1cccc(NC(=O)Nc2ccc(-c3csc4c(-c5cnn(C)c5)cnc(N)c34)cc2)c1 2603 | CC(C)Oc1cc2c(cc1Cl)NC(=O)Nc1cnc(C#N)c(n1)OCCCCCO2 2604 | Cc1cc(O)ccc1-n1cc(C(N)=O)c(=O)c2ccc(-c3ccncc3)cc21 2605 | COc1ccc(Nc2ncc(-c3ccccc3)o2)cc1OC 2606 | CCOC(=O)c1nc2c(O)nc3cc([N+](=O)[O-])c(NC(C)=O)cc3n2c1C 2607 | N#Cc1cnc(NC(=O)Nc2ccc(CCNCc3ccc(F)cc3)c(Br)c2)cn1 2608 | Cc1nn(-c2ccc(Cl)c(Cl)c2)c(O)c1C=c1c(C)c(C#N)c2nc3ccccc3n2c1=O 2609 | O=C(Nc1ccccc1N1CCNCC1)c1csc(N2CCc3ccccc3C2)n1 2610 | O=C(Nc1[nH]nc2ccc(-c3cn(Cc4ccccc4)nn3)cc12)c1ccccc1 2611 | N#Cc1ccc(Nc2ncc(C(F)(F)F)c(NCCCNCC(O)CO)n2)cn1 2612 | Cc1ccc(-c2ccc(NC(=O)Nc3cccc(Br)c3)cc2)c2c(N)[nH]nc12 2613 | NC(=O)c1cccc2c1Nc1nnc(Cl)cc1C(=O)N2 2614 | COc1cccc(C(C)NC(=O)c2ccc(-c3ccncc3)c(C)c2)c1 2615 | CN(C)Cc1ccc2c(c1)NC(=O)C1CCCN21 2616 | Cn1cc(-c2nc(NC3CCCCC3N)c(F)c3c2C(=O)NC3)cn1 2617 | N#Cc1ncc2nc1OCCCCCOc1cc(NCc3cncs3)c(Cl)cc1NC(=O)N2 2618 | O=C1NCc2c1cccc2-c1ccc(Nc2nc3ccccc3o2)cc1 2619 | Cc1cn2c(-c3cn[nH]c3)cnc2c(Nc2cc(C(NC(C)(C)C)c3ccccn3)ns2)n1 2620 | NCCCn1cc(-c2cc(-c3cc4ccccc4s3)c3[nH]ncc3c2)c2nc(N)ncc21 2621 | CCc1ccccc1-c1cc2[nH]c3ccc(O)cc3c2c2c1C(=O)NC2=O 2622 | c1cnc2nc(-c3ccc4[nH]ncc4c3)c(NC3CCCCC3)n2c1 2623 | N#Cc1ncc2nc1OCCCCCOc1cc(NCc3c[nH]cn3)c(Cl)cc1NC(=O)N2 2624 | Oc1ccc(-c2ccc(-c3cc(Nc4ccc(CN5CCCCC5)nc4)[nH]n3)cc2)c(O)c1 2625 | Oc1ccc(-c2ccc3c(C=Cc4ccccc4)[nH]nc3c2)cc1 2626 | CCOC(=O)c1nn(-c2ccccc2)c(=Nc2nc(-c3ccccc3)cc(-c3ccccc3)c2C#N)s1 2627 | Cc1nsc2ncc(C(=O)O)c(O)c12 2628 | CN1c2ccc(N)cc2C(c2ccccc2)c2cc(N)ccc21 2629 | O=C(Nc1ccccc1N1CCNCC1)c1csc(-c2ccc3occc3c2)n1 2630 | O=C(Nc1cnc2[nH]cc(-c3ccccc3)c2c1)c1cccc(F)c1F 2631 | CNc1nc(Nc2cnc(C#N)c(OC3CCCNC3)c2)ncc1-c1cccc(OC)c1 2632 | COc1cc(-c2ccc3c(c2)Nc2ccc(O)cc2NC3=O)ccc1N 2633 | Cc1nc2ccc(NS(=O)(=O)c3ccc(N)cc3)cc2nc1C 2634 | CSc1c[nH]c2ncnc(NCCCO)c12 2635 | CC(CN(C)C)Oc1nc(Nc2cc3cccc(Cl)c3cn2)cnc1C#N 2636 | CCC1C(=O)N(C)c2cnc(Nc3ccc(C(=O)NC4CCN(C)CC4)cc3OC)nc2N1C1CCCC1 2637 | Cc1nc2c(s1)CN(c1nc(C(=O)Nc3ccccc3N3CCNCC3)cs1)C2 2638 | c1ncc(-c2cc3c(cn2)[nH]c2ncc(-c4ccc(CN5CCCCC5)cc4)cc23)s1 2639 | N#Cc1ncc2nc1OCCCCCOc1cc(OCCn3ccnc3)c(Cl)cc1NC(=O)N2 2640 | COc1cc(OC)nc(N2Cc3ccccc3CC2C(=O)O)n1 2641 | COc1cccc(C(CN)NC(=O)c2ccc(-c3ccncc3)cc2)c1 2642 | CCOC(=O)Cc1nc2c(N)cccc2[nH]1 2643 | NCCCNC(=O)c1cccc(CNC(=O)c2cc3c(c4c2[nH]c2ccc(O)cc24)C(=O)NC3=O)c1 2644 | Cc1ccc(F)c(NC(=O)Nc2ccc(-c3coc4c(C#CCN5CCOCC5)cnc(N)c34)cc2)c1 2645 | CN1CCC(NC(=O)c2cnc(NCc3cc(Cl)ccc3Cl)nc2NC2CCCC2)CC1 2646 | COc1cc(CCNCc2ccc(F)cc2)c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1 2647 | COc1c(Cl)cc2c([nH]c3cnccc32)c1NC(=O)c1cccnc1C 2648 | COc1cc(Nc2ncc([N+]([O])=O)c(Nc3ccccc3C(N)=O)n2)cc(OC)c1OC 2649 | Cc1cc2c(F)c(Oc3ncnn4cc(OCC(C)O)c(C)c34)ccc2[nH]1 2650 | N#Cc1ccc2nc(N)n(-c3nc4c(s3)CCCC4)c2c1 2651 | O=C(Nc1ccc(O)cc1)c1ccc2c(-c3nc4cc(C(F)(F)F)ccc4[nH]3)[nH]nc2c1 2652 | Cc1cccc(-c2c(-c3ccncc3)nc(NCC(N)Cc3ccccc3)n(C)c2=O)c1 2653 | O=C(NC(CO)Cc1ccc(Cl)cc1)c1ccc(-c2ccncc2)cc1 2654 | Cc1cc(C)c(C)c(OCCCc2c(C(=O)O)[nH]c3c(-c4ccccc4C)cccc23)c1 2655 | CCC(C)C(C(=O)Nc1cc(OC)c(NC(=O)Nc2cnc(C#N)cn2)cc1Cl)c1ccccc1 2656 | Nc1nc(Nc2ccc(S(N)(=O)=O)cc2)nn1C(=O)c1c(F)cccc1F 2657 | CCn1c2cc(Cl)c(O)cc2c(=O)c2c(O)onc21 2658 | Oc1nc2ccccc2cc1-c1cc2ccccc2[nH]1 2659 | Nc1c(-c2ccc(NC(=O)Nc3cccc(C(F)(F)F)c3)cc2)cnc2c(-c3ccc4c(c3)OCO4)cnn12 2660 | OC1CCN(c2ncnc3[nH]cc(-c4ccccc4)c23)CC1 2661 | Nc1ncnn2ccc(C(=O)Nc3ccc(NC(=O)Nc4cccc(F)c4)cc3)c12 2662 | O=C1NC(=O)c2c1c(-c1ccccc1[N+](=O)[O-])cc1[nH]c3ccc(O)cc3c21 2663 | Fc1ccc(-c2nc3sccn3c2-c2ccncc2)cc1 2664 | CC=C(C=CC=C1C(=O)Nc2cc(-c3cccc(O)c3)ccc21)C(=O)NCCN(CC)CC 2665 | c1nc(-c2ccc3c(c2)OCO3)c2cc[nH]c2n1 2666 | Cc1cc(O)c(Cl)cc1-c1ccc2c(-c3nc4ccccc4[nH]3)[nH]nc2c1 2667 | NCC1CCC(CNc2nc(NCc3ccccc3Cl)ncc2[N+]([O])=O)CC1 2668 | CCc1c(-c2ccccc2)c2c(c3c1[nH]c1ccc(O)cc13)C(=O)NC2=O 2669 | COc1cc(C=O)c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1 2670 | CNc1nc(Nc2cnc(C#N)c(OC3CCCNC3)c2)ncc1-c1ccco1 2671 | Cn1cc(-c2cccc(NC(=O)c3ccc(C(C)(C)C)cc3)c2CO)cc(Nc2ccc(C(=O)N3CCOCC3)cn2)c1=O 2672 | O=C1NC(=O)c2c1c1c(c3c2[nH]c2ccccc23)CNC1=O 2673 | O=C(Nc1cnccc1N1CCNCC1)c1csc(-c2ccc3occc3c2)n1 2674 | CCS(=O)(=O)c1cccc(-c2cc(C(=O)NC3CCN(C)CC3)c(C)c3[nH]c4ncc(C)cc4c23)c1 2675 | N#Cc1ccc(Nc2ncc(C(F)(F)F)c(NC3CC4CCC(C3)N4)n2)cn1 2676 | COc1cc2ncnc(Nc3ccc(F)c(Cl)c3)c2cc1CN1CCCC1C(N)=O 2677 | NC(Cc1c[nH]c2ccccc12)C(=O)Nc1cncc(C=Cc2ccncc2)c1 2678 | COc1ccc2c(c1)C(=O)N(c1nc(C(=O)Nc3cc(F)ccc3N3CCNCC3)cs1)C2 2679 | CC(=O)Nc1cccc(CN=c2c(O)c(O)c2=Nc2ccc3[nH]ncc3c2)c1 2680 | COc1cc(C)c(Cl)cc1NC(=O)Nc1cnc(C#N)cn1 2681 | CN(C)CCCC(=O)Nc1[nH]nc2nnc(-c3cccc(F)c3F)cc12 2682 | CCCCC(Sc1nc2ccccc2c(=O)n1-c1ccccc1)C(=O)N1CCS(=O)(=O)CC1 2683 | c1ccc2c(c1)nnn2Cc1cn(-c2ccc3[nH]ncc3c2)nn1 2684 | CCCS(=O)(=O)Nc1ccc(-c2ccc3[nH]nc(N)c3c2)cc1 2685 | NC(=O)Nc1cc(-c2cccc(F)c2F)sc1C(=O)NC1CCCNC1 2686 | O=S(=O)(Nc1ccc2c(c1)C(=NO)c1ccccc1-2)c1cccc(Br)c1 2687 | O=C(NNC(=S)Nc1ccc(Cl)cc1)C(O)(c1ccccc1)c1ccccc1 2688 | CC1(O)CC(c2nc(-c3ccc4ccc(-c5ccccc5)nc4c3)c3c(N)nccn23)C1 2689 | N#Cc1cnc(NC(=O)Nc2ccc(OCCNCc3ccc(F)cc3)c(Cl)c2)cn1 2690 | CCNNc1cc(C)c(C#N)c2nc3ccccc3n12 2691 | CCc1c(-c2ccc(C(C)=O)cc2)[nH]c2nccnc12 2692 | Cn1cc(C(CN)c2cncc(C=Cc3ccncc3)c2)c2ccccc21 2693 | COC1C(N(C)C(=O)c2ccccc2)CC2OC1(C)n1c3ccccc3c3c4c(c5c6ccccc6n2c5c31)C(=O)NC4 2694 | Oc1ccc(-c2ccc3c(-c4nc5ccccc5[nH]4)[nH]nc3c2)c(Oc2ccccc2)c1 2695 | O=C1NC(=O)c2c1c(-c1c(Cl)cc(O)cc1Cl)cc1[nH]c3ccc(O)cc3c21 2696 | CNc1nc(Nc2cnc(C#N)c(OC3CCNCC3)c2)ncc1C(F)(F)F 2697 | COc1ccc(-c2cc3c([nH]2)C(=O)NCCC3=C2N=C(N)NC2=O)cc1OC 2698 | CCCS(=O)(=O)Nc1ccc(-c2ccc3[nH]nc(NC(C)=O)c3c2)cc1 2699 | O=C(NC1CCNCC1)c1n[nH]cc1NC(=O)c1c(Cl)cccc1Cl 2700 | Cc1cc(OCC2CCC(C(=O)O)C2)c(NC(=O)Nc2cnc(C#N)cn2)cc1Cl 2701 | COc1cc(-c2ccc3c(c2)N(C)c2ccccc2NC3=O)ccc1N 2702 | c1ccc2[nH]c(-c3[nH]nc4cc(-c5nn[nH]n5)ccc34)cc2c1 2703 | N#Cc1ncc2nc1OCCCCCOc1cc(N3CCCCC3)c(Cl)cc1NC(=O)N2 2704 | N#Cc1ncc2nc1OCCCCCOc1cc(NC(=O)CCNC3CCCC3)c(Cl)cc1NC(=O)N2 2705 | COc1cc2ncnc(Nc3cccc(Cl)c3F)c2cc1CN1CCOCC1C(N)=O 2706 | CC=C(C=CC=C1C(=O)Nc2cc(-c3ccc(O)cc3)ccc21)C(=O)NCCCn1ccnc1 2707 | Cc1cccc(-c2[nH]c(-c3ccnc(N)n3)cc2C(N)=O)c1C 2708 | Cc1cc(O)nnc1-c1ccc(NC(=O)Nc2cc(C(F)(F)F)ccc2F)c(Cl)c1 2709 | COc1cc(-c2ccc3c(-c4cc5ccccc5[nH]4)[nH]nc3c2)ccc1O 2710 | CN1CCN(Cc2ccc3c(c2)Cc2c(-c4ccc(C5C=CC(=O)C=C5)cc4)n[nH]c2-3)CC1 2711 | CC(C)(C)C(=O)N1Cc2c(n[nH]c2NC(=O)c2cc(F)cc(F)c2)C1(C)C 2712 | CN1CCN(c2ccc(-c3cncc(-c4ccc(C#N)cc4)n3)cc2)CC1 2713 | N#Cc1cccc(-c2cc(NC(N)=O)c(C(=O)NC3CCCNC3)s2)c1 2714 | COc1cc(-c2ccc3c(c2)Nc2cc(N4CCOCC4)ccc2NC3=O)ccc1N 2715 | CN(C)CC(O)COc1ccc(Nc2nccc(Nc3cc(Cl)ccc3Cl)n2)cc1 2716 | O=C(Nc1ccc(-c2ccc3c[nH]nc3c2)cc1)Nc1cccc(F)c1 2717 | CNC(=O)C(C)n1cc(-c2cnc(N)c3c(-c4ccc(NC(=O)Nc5ccc(C)cc5)cc4)csc23)cn1 2718 | O=C(Nc1c[nH]nc1-c1nc2cc(CN3CCOCC3)ccc2[nH]1)NC1CC1 2719 | c1nc(N2CCC3(CCCCN3)CC2)c2nc[nH]c2n1 2720 | Nc1c(-c2nc3ccccc3[nH]2)c(O)nc2ccccc12 2721 | CNc1nc(Nc2cnc(C#N)c(NCC3CCCNC3)c2)ncc1C(F)(F)F 2722 | COc1cc2ncnc(Nc3ccc(F)c(Cl)c3)c2cc1OCCCN1CCOCC1 2723 | NC(COc1cncc(-c2ccc3nc(O)oc3c2)c1)Cc1c[nH]c2ccccc12 2724 | Cc1cc(OC2CCCC2)c(NC(=O)Nc2cnc(C#N)cn2)cc1Cl 2725 | CSc1ccc2nc3c(c(Cl)c2c1)CCNC3=O 2726 | COc1ccc2c(c1)C(=O)N(c1nc(C(=O)Nc3ccccc3N3CCNCC3)cs1)C2 2727 | Cc1cccc(Nc2nccc(N=c3c(O)c(O)c3=NC(C)C(C)(C)C)n2)c1 2728 | Cn1cc(-c2cc3nc(Br)cnc3[nH]2)c2cc(C#N)ccc21 2729 | CNc1nc(Nc2cnc(C#N)c(OC3CCCNC3)c2)ncc1-c1ccc(OC)cc1 --------------------------------------------------------------------------------