├── .github
└── ISSUE_TEMPLATE
│ ├── bug_report.md
│ └── feature_request.md
├── AVCDecisionTreeForest.m
├── Applications
└── QuantileRegressionForLocalExtrema.m
├── AprioriAlgorithm.m
├── AprioriAlgorithmV10.1.m
├── AprioriAlgorithmV9.m
├── BiSectionalKMeans.m
├── ChernoffFaces.m
├── ClassifierEnsembles.m
├── CrossTabulate.m
├── Data
└── Big-Data-in-Healthcare
│ └── HHA-551-Questions-for-Anton.txt
├── DataReshape.m
├── DocumentTermMatrixConstruction.m
├── Documentation
├── A-monad-for-Latent-Semantic-Analysis-workflows.pdf
├── A-monad-for-Quantile-Regression-workflows.pdf
├── A-monad-for-classification-workflows.pdf
├── Adaptive-Numerical-Lebesgue-integration-by-set-measure-estimates.pdf
├── Antonov WTC-2011 - A fast and agile IIR.pdf
├── Basic theory and construction of naive Bayesian classifiers.pdf
├── Classification of genome data with n-gram models.pdf
├── Classification-of-geometric-data.pdf
├── Fast-and-agile-item-item-recommender.pdf
├── Finding local extrema in noisy data using Quantile Regression.pdf
├── Finding-all-structural-breaks-in-time-series.pdf
├── Functional parsers for an integration requests language grammar.pdf
├── Implementation-of-Object-Oriented-Programming-Design-Patterns-in-Mathematica.pdf
├── Importance-of-variables-investigation-guide.pdf
├── Independent-component-analysis-for-multidimensional-signals.pdf
├── Making-Chernoff-faces-for-data-visualization.pdf
├── MappingSMRtoSBR
│ ├── Mapping-Sparse-Matrix-Recommender-to-Streams-Blending-Recommender.lyx
│ └── Mapping-Sparse-Matrix-Recommender-to-Streams-Blending-Recommender.pdf
├── Misc
│ ├── AI-misconceptions-reasons.pdf
│ ├── Application-AI-and-ML.pdf
│ ├── Making-competitions-classifiers-mind-map.pdf
│ ├── Object-oriented-approaches-in-Mathematica-mind-map.pdf
│ └── Time-series-framework-for-prediction-simulation-and-recommendations.pdf
├── Monad-code-generation-and-extension.pdf
├── Morphological analysis of algorithms vs data.pdf
├── Morphological analysis of algorithms vs problems.pdf
├── Mosaic plots for data visualization.pdf
├── MovieLens genre associations.pdf
├── Outlier detection in a list of numbers.pdf
├── Parametrized-event-records-data-transformations.pdf
├── Quantile regression robustness.pdf
├── Quantile regression through linear programming.pdf
├── ROCFunctions-example-usage.pdf
├── RSparseMatrix.pdf
├── SSparseMatrix.pdf
├── Simple-monadic-programming.pdf
├── Topic and thesaurus extraction from a document collection.pdf
├── Tries.pdf
└── Waveform recognition with decision trees.pdf
├── EBNF
├── TimeSeriesConversationalEngineGrammar.ebnf
└── TimeSpecificationsGrammar.ebnf
├── EclatAlgorithm.m
├── Examples
└── SimpleTimeSeriesConversationalEngine.m
├── FunctionalParsers.m
├── IndependentComponentAnalysis.m
├── Java
└── TriesWithFrequencies
│ ├── README.md
│ └── src
│ ├── Experiments.java
│ ├── Trie.java
│ └── TrieFunctions.java
├── JavaTriesWithFrequencies.m
├── LICENSE
├── Lua
├── FunctionalParsers
│ ├── FunctionalParsers.lua
│ └── FunctionalParsersTests.lua
├── MathematicaFunctions.lua
└── MathematicaFunctionsTests.lua
├── MarkdownDocuments
├── A-monad-for-Latent-Semantic-Analysis-workflows.md
├── A-monad-for-Quantile-Regression-workflows.md
├── A-monad-for-classification-workflows.md
├── AI-vision-via-WL.md
├── Adaptive-Numerical-Lebesgue-integration-by-set-measure-estimates.md
├── Applying-AI-and-ML-to-finance-and-technology.md
├── Call-graph-generation-for-context-functions.md
├── Classification-and-Association-Rules-for-Census-Income-Data.md
├── Comparison-of-dimension-reduction-algorithms-over-mandala-images-generation.md
├── Diagrams
│ ├── A-monad-for-Latent-Semantic-Analysis-workflows
│ │ ├── LSA-workflows.jpg
│ │ ├── LSAMon-Data-Load-Hamlet-echo.png
│ │ ├── LSAMon-Data-Load-StateOfUnionSpeeches-echo.png
│ │ ├── LSAMon-Extracting-statistical-thesauri-echo.png
│ │ ├── LSAMon-Extracting-topics-Hamlet-topics-table.png
│ │ ├── LSAMon-Extracting-topics-StateOfUnionSpeeches-topics-table.png
│ │ ├── LSAMon-Find-most-important-documents-table.png
│ │ ├── LSAMon-Future-directions-parsed-LSA-commands-table.png
│ │ ├── LSAMon-Introduction-pipeline-echos.png
│ │ ├── LSAMon-Introduction-pipeline.png
│ │ ├── LSAMon-LSI-weight-functions-combinations-application-table.png
│ │ ├── LSAMon-LSI-weight-functions-table.png
│ │ ├── LSAMon-Making-of-the-document-term-matrix-CrossTabulate.png
│ │ ├── LSAMon-Making-of-the-document-term-matrix-echoes.png
│ │ ├── LSAMon-Mapping-queries-and-documents-to-terms-query-matrix.png
│ │ ├── LSAMon-Mapping-queries-and-documents-to-topics-context-sub-matrix.png
│ │ ├── LSAMon-Mapping-queries-and-documents-to-topics-query-matrix.png
│ │ ├── LSAMon-Monad-Design-formula-1.png
│ │ ├── LSAMon-Monad-Design-formula-2.png
│ │ ├── LSAMon-Overview-StMon-usage-descriptions-table.png
│ │ ├── LSAMon-Overview-operations-context-interactions-table.png
│ │ ├── LSAMon-Overview-operations-usage-descriptions-table.png
│ │ ├── LSAMon-Overview-setters-droppers-takers-context-interactions-table.png
│ │ ├── LSAMon-Tags-representation-heatmap.png
│ │ ├── LSAMon-The-monad-head-echo.png
│ │ ├── LSAMon-The-utilization-of-SSparseMatrix-lsaHamlet-queries-to-terms-matrix.png
│ │ ├── LSAMon-The-utilization-of-SSparseMatrix-lsaSpeeces-docTermMat-plot.png
│ │ ├── LSAMon-The-utilization-of-SSparseMatrix-lsaSpeeches-terms-similarities-matrix.png
│ │ ├── LSAMon-The-utilization-of-SSparseMatrix-lsaSpeeches-topics-similarities-matrix.png
│ │ ├── LSAMon-The-utilization-of-SSparseMatrix-random-matrix.png
│ │ ├── LSAMon-Unit-tests-random-pipelines-sample-table.png
│ │ └── LSAMon-pipeline.jpg
│ ├── A-monad-for-Quantile-Regression-workflows
│ │ ├── Default-basis-to-fit-output-1-and-2.png
│ │ ├── Default-basis-to-fit-output-3.png
│ │ ├── Dependent-variable-simulation-output-1.png
│ │ ├── Errors-and-error-plots-output-1.png
│ │ ├── Estimating-conditional-distributions-output-1.png
│ │ ├── Finding-local-extrema-in-noisy-data-output-1.png
│ │ ├── Finding-outliers-output-1.png
│ │ ├── Finding-outliers-output-2.png
│ │ ├── Future-plans-conversational-agent-output-1.png
│ │ ├── Lifting-data-to-the-monad-output.png
│ │ ├── Moving-average-moving-median-and-moving-map-output-1.png
│ │ ├── Plotting-outliers-output-2.png
│ │ ├── QRMon-StMon-functions-overview-table.png
│ │ ├── QRMon-distData.png
│ │ ├── QRMon-finData.png
│ │ ├── QRMon-formula-1.png
│ │ ├── QRMon-formula-2.png
│ │ ├── QRMon-introduction-monad-pipeline-example-echo.png
│ │ ├── QRMon-introduction-monad-pipeline-example-table.png
│ │ ├── QRMon-monad-functions-overview-table.png
│ │ ├── QRMon-monad-functions-shortcuts-table.png
│ │ ├── QRMon-pipeline.jpg
│ │ ├── QRMon-tsData.png
│ │ ├── Quantile-regression-fit-and-Least-squares-fit-basis.png
│ │ ├── Quantile-regression-fit-and-Least-squares-fit-output-1.png
│ │ ├── Quantile-regression-fit-and-Least-squares-fit-output-2.png
│ │ ├── Quantile-regression-with-B-splines-output-1.png
│ │ ├── Quantile-regression-with-B-splines-output-2.png
│ │ ├── Quantile-regression-with-B-splines-output-3.png
│ │ ├── Quantile-regression-workflow-extended-small.jpg
│ │ ├── Quantile-regression-workflow-extended.jpg
│ │ ├── The-monad-head-output.png
│ │ ├── Unit-tests-TestReportObject-open-icon.png
│ │ ├── Unit-tests-output-1.png
│ │ └── Unit-tests-random-pipelines-sample.png
│ ├── A-monad-for-classification-workflows
│ │ ├── ClCon-MNIST-example-full.png
│ │ ├── ClCon-MNIST-example-output.png
│ │ ├── ClCon-State-monad-formula.png
│ │ ├── ClCon-StateMonad-functions-table.png
│ │ ├── ClCon-best-thresholds-example-output.png
│ │ ├── ClCon-classifier-testing-ConfusionMatrixPlot-echo.png
│ │ ├── ClCon-classifier-testing-ROCListLinePlot-echo.png
│ │ ├── ClCon-classifier-testing-ROCListLinePlot-survived-echo.png
│ │ ├── ClCon-classifier-testing-ROCPlot-echo.png
│ │ ├── ClCon-components-interaction.jpg
│ │ ├── ClCon-conditional-continuation-example-output.png
│ │ ├── ClCon-datasets-dimensions.png
│ │ ├── ClCon-development-cycle.jpg
│ │ ├── ClCon-dimension-reduction-example-echo.png
│ │ ├── ClCon-direct-unit-tests-TestReport-icon.png
│ │ ├── ClCon-dsMushroom-summary.png
│ │ ├── ClCon-dsTitanic-summary.png
│ │ ├── ClCon-dsWineQuality-summary.png
│ │ ├── ClCon-ensemble-classifier-example-1.png
│ │ ├── ClCon-ensemble-classifier-example-2.png
│ │ ├── ClCon-generic-monad-formula.png
│ │ ├── ClCon-lifting-data-example-1.png
│ │ ├── ClCon-lifting-data-example-2.png
│ │ ├── ClCon-monad-head-example.png
│ │ ├── ClCon-pipeline-TraceMonad-Echo-output.png
│ │ ├── ClCon-pipeline-TraceMonad-table.png
│ │ ├── ClCon-pipeline.jpg
│ │ ├── ClCon-quick-data-sample.png
│ │ ├── ClCon-quick-data-summary-ds.png
│ │ ├── ClCon-quick-data-summary-mlr.png
│ │ ├── ClCon-random-pipelines-TestReport-icon.png
│ │ ├── ClCon-random-pipelines-tests-sample-table.png
│ │ ├── ClCon-simple-dsTitanic-pipeline.png
│ │ ├── ClCon-table-of-operations-setters-takers.png
│ │ ├── Classification-workflow-extended.jpg
│ │ ├── Classification-workflow-horizontal-layout.jpg
│ │ └── Making-competitions-classifiers-mind-map.png
│ ├── AI-vision-via-WL
│ │ ├── 032vcq74auyv9.png
│ │ ├── 08ijuwuchj31q.png
│ │ ├── 0cmyq0lep1q7f.png
│ │ ├── 0f0fuo9nexxl8.png
│ │ ├── 0iyello2xfyfo.png
│ │ ├── 0nmz56wwuboz3.png
│ │ ├── 0rt43fezbbp4b.png
│ │ ├── 0scq7lbpp7xfs.png
│ │ ├── 0wmip47gloav0.png
│ │ ├── 13qqfe3pzqfn9.png
│ │ ├── 175o8ba3cxgoh.png
│ │ ├── 1lpfhko7c2g6e.png
│ │ ├── 1n90yjgjx3mkf.png
│ │ ├── 1qni2g4n8vywf.png
│ │ ├── 1u02ytqvf7xi9.png
│ │ ├── 1ukmn97ui4o98.png
│ │ └── 1xg1w9gct6yca.png
│ ├── Doomsday-clock-parsing-and-plotting
│ │ ├── DoomsdayClock-LLM-table-with-Date-sample.png
│ │ ├── DoomsdayClock-data-table-with-Date-sample.png
│ │ ├── DoomsdayClock-time-series-tooltip.png
│ │ ├── DoomsdayClock-time-series.png
│ │ ├── DoomsdayClockGauge-definition.png
│ │ ├── DoomsdayClockGauge-examples.png
│ │ ├── DoomsdayClockGauge-first.png
│ │ ├── GetDoomsdayClockButton.png
│ │ ├── Gramar-random-sentences.png
│ │ ├── Parsing-LLM-example-function.png
│ │ ├── Parsing-verification-table-doomsdat.png
│ │ ├── Parsing-verification-table-integer-names-1.png
│ │ ├── Parsing-verification-table-integer-names-2.png
│ │ ├── Parsing-verification-table-integer-names-3.png
│ │ └── Parsing-verification-table-robust-parser.png
│ ├── Finding-all-structural-breaks-in-time-series
│ │ ├── Application-of-Chow-Test-SP500.png
│ │ ├── Application-of-Chow-Test-chowStats.png
│ │ ├── Application-of-Chow-Test-chowStats2.png
│ │ ├── Computation-local-maxima.png
│ │ ├── Computation-structural-breaks-plots.png
│ │ ├── Data-used-SP500.png
│ │ ├── Data-used-Wk2.png
│ │ ├── Future-plans-time-series-states.png
│ │ └── Introductions-example.png
│ ├── OpenAIMode-demo
│ │ ├── 06wybw0d8ntd6.png
│ │ ├── 0wyc32bgh7gso.png
│ │ ├── 11og8fps5xhgk.png
│ │ └── 1iqsuwy5jkmit.png
│ ├── Parametrized-event-records-data-transformations
│ │ ├── ERTMon-DateListPlot-USA-Temperature.png
│ │ ├── ERTMon-RecordsSummary-entityAttributes.png
│ │ ├── ERTMon-RecordsSummary-eventRecords.png
│ │ ├── ERTMon-compute-variable-statistic-1.png
│ │ ├── ERTMon-compute-variable-statistic-2.png
│ │ ├── ERTMon-contingency-matrices.png
│ │ ├── ERTMon-contingency-matrix.png
│ │ ├── ERTMon-echo-data-summary.png
│ │ ├── ERTMon-entityAttributes-sample.png
│ │ ├── ERTMon-eventRecords-sample.png
│ │ ├── ERTMon-large-pipeline-example-output.png
│ │ ├── ERTMon-large-pipeline-example.png
│ │ ├── ERTMon-moving-average-application.png
│ │ ├── ERTMon-normalization.png
│ │ ├── ERTMon-records-groups-maxTime.png
│ │ ├── ERTMon-records-groups-minTime.png
│ │ ├── ERTMon-repeated-execution-workflow.jpg
│ │ ├── ERTMon-repeated-execution-workflow.pdf
│ │ ├── ERTMon-restriction-and-aggregation.png
│ │ ├── ERTMon-small-pipeline-example.png
│ │ ├── ERTMon-wCompSpec.png
│ │ ├── ERTMon-workflows.jpg
│ │ └── ERTMon-workflows.pdf
│ ├── Primitive-root-generation-trails
│ │ ├── 03q03q9hobjx5.png
│ │ ├── 05fw4gbxvzil3.png
│ │ ├── 0ajyn6ixlitgd.png
│ │ ├── 0i5ilivzw0nl5.png
│ │ ├── 0ir0c5f83rko2.png
│ │ ├── 0ja9nttj7gvy9.png
│ │ ├── 0vmbr8ahsrf68.png
│ │ ├── 0w93mw9n87rvn.png
│ │ ├── 19gvpmjp7dx8d.png
│ │ ├── 1aa33rtlvkbnh.png
│ │ ├── 1qeiu9fz57as7.png
│ │ ├── 1s2uag61bl0wu.png
│ │ ├── 1tavxw8a8s8c7.png
│ │ ├── 1wjcl3g3a3wd5.png
│ │ ├── Animation-snapshot-1.png
│ │ └── Blog-post-featured-image.png
│ └── Trie-based-classifiers-evaluation
│ │ ├── 08tac97m1v31b.png
│ │ ├── 0aczl0mnjpi4x.png
│ │ ├── 0e2tg6vw1ssh1.png
│ │ ├── 0jlvgunwaouqi.png
│ │ ├── 0m4somgwuj73s.png
│ │ ├── 0n9qun2v81o7r.png
│ │ ├── 0yvrxcu8fjfuv.png
│ │ ├── 157jxydgclea9.png
│ │ ├── 192nfe8h97k9k.png
│ │ ├── 1hdocpn5z00u2.png
│ │ ├── 1jqv1g8o5a2uw.png
│ │ └── 1xlmbkphhwhsf.png
├── Doomsday-clock-parsing-and-plotting.md
├── Fast-and-agile-item-item-recommender.md
├── Finding-all-structural-breaks-in-time-series.md
├── Implementation-of-Object_Oriented-Programming-Design-Patterns-in-Mathematica.md
├── Importance-of-variables-investigation-guide.md
├── Independent-component-analysis-for-multidimensional-signals.md
├── Making-Chernoff-faces-for-data-visualization.md
├── Monad-code-generation-and-extension.md
├── OpenAIMode-demo.md
├── Parametrized-event-records-data-transformations.md
├── ParetoPrincipleAdherenceExamples.md
├── Primitive-root-generation-trails.md
├── ROC-for-Classifier-Ensembles-Bootstrapping-Damaging-and-Interpolation.md
├── ROCFunctions-Example-Usage.md
├── RandomTabularDataset-proclaim.md
├── Rapid-specification-of-random-tabular-datasets-generation.md
├── The-Great-conversation-in-USA-presidential-speeches.md
├── Trie-based-classifiers-evaluation.md
└── Tries-with-frequencies-in-Java.md
├── MathematicaForPredictionUtilities.m
├── Misc
├── AdaptiveNumericalLebesgueIntegration.m
├── AprioriAlgorithmViaTries.m
├── ArrayOfFunctionsRule.m
├── AssociationTriesWithFrequencies.m
├── CallGraph.m
├── ChowTestStatistic.m
├── ComputationalSpecCompletion.m
├── ComputationalWorkflowTypeClassifier.m
├── GitHubDataObjects.m
├── GitHubPlots.m
├── HeatmapPlot.m
├── HextileBins.m
├── HextileGraph.m
├── LLMVision.m
├── LSAMonForImageCollections.m
├── LeftAlignedPresentationReStyling.m
├── MDQuantileRegression.m
├── NeuralNetworkGraph.m
├── OpenAIRequest.m
├── ParallelCoordinatesPlot.m
├── RSparseMatrix.m
├── RandomTabularDataset.m
├── Soundex.m
├── SymbolicRegressionByQRMon.m
├── TileBins.m
├── TileGraph.m
├── TilingUtilizationFunctions.m
├── UMLDiagramGeneration.m
└── WeatherEventRecords.m
├── MonadicProgramming
├── MaybeMonadCodeGenerator.m
├── MonadicAnomaliesFinder.m
├── MonadicAnomalyzer.m
├── MonadicContextualClassification.m
├── MonadicEventRecordsTransformations.m
├── MonadicGeometricNearestNeighbors.m
├── MonadicLatentSemanticAnalysis.m
├── MonadicLatentSemanticAnalysisV11.3.m
├── MonadicNeuralNetworks.m
├── MonadicPhraseCompletion-JavaTrie.m
├── MonadicPhraseCompletion.m
├── MonadicQuantileRegression.m
├── MonadicSparseMatrixRecommender.m
├── MonadicStructuralBreaksFinder.m
├── MonadicTextAnalyzer-JavaTrie.m
├── MonadicTextAnalyzer.m
├── MonadicTracing.m
├── Package-structure-and-development-workflow.md
├── README.md
└── StateMonadCodeGenerator.m
├── MosaicPlot.m
├── MosaicPlotV9.m
├── NGramMarkovChains.m
├── NGramMarkovChainsV9.m
├── NaiveBayesianClassifier.m
├── NonNegativeMatrixFactorization.m
├── Notebooks
└── Finding-all-structural-breaks-in-time-series.nb
├── OPL
└── Quantile regression.mod
├── OutlierIdentifiers.m
├── ParetoPrincipleAdherence.m
├── QuantileRegression.m
├── R
├── DataConversionFunctions.R
├── DocumentTermWeightFunctions.R
├── FunctionalParsers
│ └── FunctionalParsers.R
├── HubItemDynamicRanks.R
├── JavaTriesWithFrequencies.R
├── NonNegativeMatrixFactorization.R
├── OutlierIdentifiers.R
├── ParetoLawFunctions.R
├── RecommenderTestFunctions.R
├── SMRExtraFunctions.R
├── SMRInterfaceGeneral
│ ├── server.R
│ └── ui.R
├── SparseMatrixRecommender.R
├── TimeSeriesRecommender.R
├── TimeSeriesSMRInterfaceGeneral
│ ├── server.R
│ └── ui.R
├── TriesWithFrequencies.R
└── VariableImportanceByClassifiers.R
├── README
├── README.md
├── ROCFunctions.m
├── SSparseMatrix.m
├── SparseMatrixRecommenderFramework.m
├── TriesWithFrequencies.m
├── TriesWithFrequenciesV9.m
├── UnitTests
├── BiSectionalKMeans-Unit-Tests.mt
├── ChernoffFaces-Unit-Tests.wlt
├── DataReshape-Unit-Tests.wlt
├── GeneratedStateMonadTests.m
├── HextileBins-Unit-Tests.mt
├── JavaTriesWithFrequencies-Unit-Tests.wlt
├── KMeans-Unit-Tests.mt
├── MonadicContextualClassification-Unit-Tests.wlt
├── MonadicContextualClassificationRandomPipelinesUnitTests.m
├── MonadicLatentSemanticAnalysis-Unit-Tests.wlt
├── MonadicLatentSemanticAnalysis-Unit-TestsV11.3.wlt
├── MonadicLatentSemanticAnalysisRandomPipelinesUnitTests.m
├── MonadicQuantileRegression-Unit-Tests.wlt
├── MonadicQuantileRegressionRandomPipelinesUnitTests.m
├── MonadicSparseMatrixRecommender-Unit-Tests.mt
├── MonadicSparseMatrixRecommenderRandomPipelinesUnitTests.m
├── ParallelCoordinatesPlot-Unit-Tests.wlt
├── QuantileRegression-Unit-Tests.mt
├── RandomTabularDataset-Unit-Tests.wlt
├── RecordsSummary-Unit-Tests.wlt
├── SSparseMatrix-tests.wlt
├── TileBins-Unit-Tests.mt
└── TriesWithFrequencies-Unit-Tests.wlt
└── VariableImportanceByClassifiers.m
/.github/ISSUE_TEMPLATE/bug_report.md:
--------------------------------------------------------------------------------
1 | ---
2 | name: Bug report
3 | about: Create a report to help us improve
4 | title: ''
5 | labels: ''
6 | assignees: ''
7 |
8 | ---
9 |
10 | **Describe the bug**
11 | A clear and concise description of what the bug is.
12 |
13 | **To Reproduce**
14 | Steps to reproduce the behavior:
15 | 1. Go to '...'
16 | 2. Click on '....'
17 | 3. Scroll down to '....'
18 | 4. See error
19 |
20 | **Expected behavior**
21 | A clear and concise description of what you expected to happen.
22 |
23 | **Screenshots**
24 | If applicable, add screenshots to help explain your problem.
25 |
26 | **Desktop (please complete the following information):**
27 | - OS: [e.g. iOS]
28 | - Browser [e.g. chrome, safari]
29 | - Version [e.g. 22]
30 |
31 | **Smartphone (please complete the following information):**
32 | - Device: [e.g. iPhone6]
33 | - OS: [e.g. iOS8.1]
34 | - Browser [e.g. stock browser, safari]
35 | - Version [e.g. 22]
36 |
37 | **Additional context**
38 | Add any other context about the problem here.
39 |
--------------------------------------------------------------------------------
/.github/ISSUE_TEMPLATE/feature_request.md:
--------------------------------------------------------------------------------
1 | ---
2 | name: Feature request
3 | about: Suggest an idea for this project
4 | title: ''
5 | labels: ''
6 | assignees: ''
7 |
8 | ---
9 |
10 | **Is your feature request related to a problem? Please describe.**
11 | A clear and concise description of what the problem is. Ex. I'm always frustrated when [...]
12 |
13 | **Describe the solution you'd like**
14 | A clear and concise description of what you want to happen.
15 |
16 | **Describe alternatives you've considered**
17 | A clear and concise description of any alternative solutions or features you've considered.
18 |
19 | **Additional context**
20 | Add any other context or screenshots about the feature request here.
21 |
--------------------------------------------------------------------------------
/Documentation/A-monad-for-Latent-Semantic-Analysis-workflows.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/Documentation/A-monad-for-Latent-Semantic-Analysis-workflows.pdf
--------------------------------------------------------------------------------
/Documentation/A-monad-for-Quantile-Regression-workflows.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/Documentation/A-monad-for-Quantile-Regression-workflows.pdf
--------------------------------------------------------------------------------
/Documentation/A-monad-for-classification-workflows.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/Documentation/A-monad-for-classification-workflows.pdf
--------------------------------------------------------------------------------
/Documentation/Adaptive-Numerical-Lebesgue-integration-by-set-measure-estimates.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/Documentation/Adaptive-Numerical-Lebesgue-integration-by-set-measure-estimates.pdf
--------------------------------------------------------------------------------
/Documentation/Antonov WTC-2011 - A fast and agile IIR.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/Documentation/Antonov WTC-2011 - A fast and agile IIR.pdf
--------------------------------------------------------------------------------
/Documentation/Basic theory and construction of naive Bayesian classifiers.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/Documentation/Basic theory and construction of naive Bayesian classifiers.pdf
--------------------------------------------------------------------------------
/Documentation/Classification of genome data with n-gram models.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/Documentation/Classification of genome data with n-gram models.pdf
--------------------------------------------------------------------------------
/Documentation/Classification-of-geometric-data.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/Documentation/Classification-of-geometric-data.pdf
--------------------------------------------------------------------------------
/Documentation/Fast-and-agile-item-item-recommender.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/Documentation/Fast-and-agile-item-item-recommender.pdf
--------------------------------------------------------------------------------
/Documentation/Finding local extrema in noisy data using Quantile Regression.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/Documentation/Finding local extrema in noisy data using Quantile Regression.pdf
--------------------------------------------------------------------------------
/Documentation/Finding-all-structural-breaks-in-time-series.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/Documentation/Finding-all-structural-breaks-in-time-series.pdf
--------------------------------------------------------------------------------
/Documentation/Functional parsers for an integration requests language grammar.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/Documentation/Functional parsers for an integration requests language grammar.pdf
--------------------------------------------------------------------------------
/Documentation/Implementation-of-Object-Oriented-Programming-Design-Patterns-in-Mathematica.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/Documentation/Implementation-of-Object-Oriented-Programming-Design-Patterns-in-Mathematica.pdf
--------------------------------------------------------------------------------
/Documentation/Importance-of-variables-investigation-guide.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/Documentation/Importance-of-variables-investigation-guide.pdf
--------------------------------------------------------------------------------
/Documentation/Independent-component-analysis-for-multidimensional-signals.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/Documentation/Independent-component-analysis-for-multidimensional-signals.pdf
--------------------------------------------------------------------------------
/Documentation/Making-Chernoff-faces-for-data-visualization.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/Documentation/Making-Chernoff-faces-for-data-visualization.pdf
--------------------------------------------------------------------------------
/Documentation/MappingSMRtoSBR/Mapping-Sparse-Matrix-Recommender-to-Streams-Blending-Recommender.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/Documentation/MappingSMRtoSBR/Mapping-Sparse-Matrix-Recommender-to-Streams-Blending-Recommender.pdf
--------------------------------------------------------------------------------
/Documentation/Misc/AI-misconceptions-reasons.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/Documentation/Misc/AI-misconceptions-reasons.pdf
--------------------------------------------------------------------------------
/Documentation/Misc/Application-AI-and-ML.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/Documentation/Misc/Application-AI-and-ML.pdf
--------------------------------------------------------------------------------
/Documentation/Misc/Making-competitions-classifiers-mind-map.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/Documentation/Misc/Making-competitions-classifiers-mind-map.pdf
--------------------------------------------------------------------------------
/Documentation/Misc/Object-oriented-approaches-in-Mathematica-mind-map.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/Documentation/Misc/Object-oriented-approaches-in-Mathematica-mind-map.pdf
--------------------------------------------------------------------------------
/Documentation/Misc/Time-series-framework-for-prediction-simulation-and-recommendations.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/Documentation/Misc/Time-series-framework-for-prediction-simulation-and-recommendations.pdf
--------------------------------------------------------------------------------
/Documentation/Monad-code-generation-and-extension.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/Documentation/Monad-code-generation-and-extension.pdf
--------------------------------------------------------------------------------
/Documentation/Morphological analysis of algorithms vs data.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/Documentation/Morphological analysis of algorithms vs data.pdf
--------------------------------------------------------------------------------
/Documentation/Morphological analysis of algorithms vs problems.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/Documentation/Morphological analysis of algorithms vs problems.pdf
--------------------------------------------------------------------------------
/Documentation/Mosaic plots for data visualization.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/Documentation/Mosaic plots for data visualization.pdf
--------------------------------------------------------------------------------
/Documentation/MovieLens genre associations.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/Documentation/MovieLens genre associations.pdf
--------------------------------------------------------------------------------
/Documentation/Outlier detection in a list of numbers.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/Documentation/Outlier detection in a list of numbers.pdf
--------------------------------------------------------------------------------
/Documentation/Parametrized-event-records-data-transformations.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/Documentation/Parametrized-event-records-data-transformations.pdf
--------------------------------------------------------------------------------
/Documentation/Quantile regression robustness.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/Documentation/Quantile regression robustness.pdf
--------------------------------------------------------------------------------
/Documentation/Quantile regression through linear programming.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/Documentation/Quantile regression through linear programming.pdf
--------------------------------------------------------------------------------
/Documentation/ROCFunctions-example-usage.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/Documentation/ROCFunctions-example-usage.pdf
--------------------------------------------------------------------------------
/Documentation/RSparseMatrix.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/Documentation/RSparseMatrix.pdf
--------------------------------------------------------------------------------
/Documentation/SSparseMatrix.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/Documentation/SSparseMatrix.pdf
--------------------------------------------------------------------------------
/Documentation/Simple-monadic-programming.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/Documentation/Simple-monadic-programming.pdf
--------------------------------------------------------------------------------
/Documentation/Topic and thesaurus extraction from a document collection.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/Documentation/Topic and thesaurus extraction from a document collection.pdf
--------------------------------------------------------------------------------
/Documentation/Tries.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/Documentation/Tries.pdf
--------------------------------------------------------------------------------
/Documentation/Waveform recognition with decision trees.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/Documentation/Waveform recognition with decision trees.pdf
--------------------------------------------------------------------------------
/EBNF/TimeSeriesConversationalEngineGrammar.ebnf:
--------------------------------------------------------------------------------
1 | (*
2 | Time series conversational engine grammar in EBNF
3 | Copyright (C) 2014 Anton Antonov
4 |
5 | This program is free software: you can redistribute it and/or modify
6 | it under the terms of the GNU General Public License as published by
7 | the Free Software Foundation, either version 3 of the License, or
8 | (at your option) any later version.
9 |
10 | This program is distributed in the hope that it will be useful,
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 | GNU General Public License for more details.
14 |
15 | You should have received a copy of the GNU General Public License
16 | along with this program. If not, see .
17 |
18 | Written by Anton Antonov,
19 | antononcube @ gmail . com,
20 | Windermere, Florida, USA.
21 | *)
22 |
23 | (* Version 1.0 *)
24 | (* This grammar is intended to be parsed by the functions in the Mathematica package FunctionalParses.m at GitHub,
25 | see https://github.com/antononcube/MathematicaForPrediction/blob/master/FunctionalParsers.m .
26 | In order to parse this grammar specification either:
27 | - copy all of the grammar rule lines and paste them within a pair of string quotes, or
28 | - use Get in Mathematica.
29 | *)
30 |
31 | "
32 | = 'find' | 'compute' | 'calculate' | 'show' ;
33 | = ( ( 'temperature' | 'pressure' | 'wind' , 'speed' ) <& ( 'of' | 'for' ) ) , <@ TSWeatherSpec[#]& ;
34 | = [ 'the' ] &> , ( 'temperature' | 'pressure' | 'wind' , 'speed' ) <@ TSWeatherSpec[Reverse[#]]& ;
35 | = | ;
36 | = '_LetterString' | '_LetterString' , [ ',' ] , '_LetterString' , [ [ ',' ] , '_LetterString' ] <@ TSCitySpec[Flatten[{#}]]& ;
37 | = '_String' <@ TSCompanySpec ;
38 | = ( [ 'the' ] &> ( [ 'stock' ] &> 'price' | 'trade' &> 'volume' ) <& [ 'of' | 'for' ] ) , <@ TSFinancialData ;
39 | = [ 'the' ] &> , ( [ 'stock' ] &> 'price' | 'trade' &> 'volume' ) <@ TSFinancialData[Reverse[#]]& ;
40 | = | ;
41 | = [ 'the' ] &> 'last' , [ 'loaded' ] , ( 'data' | 'file' ) <@ TSPastData[Flatten[{#}]]& ;
42 | = | | ;
43 | = [ ( '1' | 'one' | 'a' ) ] , 'regression' , 'quantile' | 'quantile' , 'regression' <@ TSBSplineQRegression[1]& ;
44 | = [ 'Range[1,40]' ] <& ( 'regression' , 'quantiles' ) <@ TSBSplineQRegression[#]& ;
45 | = | ;
46 | = [ 'the' ] &> [ ( 'top' | 'bottom' | 'largest' | 'smallest' | 'all' ) ] , 'outliers' <@ TSOutliers[Flatten[#]]& ;
47 | = ( 'least' , 'squares' , [ 'fit' ] , [ 'with' | 'of' ] ) &> '_String' <@ TSLeastSquaresFit[#]& ;
48 | = | | ;
49 | = [ ] &> <@ TSOperateCommand[#]& ;
50 | = , ( 'for' | 'on' | 'in' | 'over' | 'of' ) &> <@ TSOperateOnDataCommand[#]& ;
51 | = ( 'load' , [ 'data' ] , 'file' ) &> ( '_String' ) <@ TSLoadFile[#]& ;
52 | = ( 'load' , [ 'the' ] , [ 'data' ] ) &> <@ TSLoadData[#]& ;
53 | = 'start' , 'over' | 'clear' <@ TSStartOver[Flatten[{#}]]& ;
54 | = 'clear' , ( 'plots' | 'plots' | 'graphics' ) <@ TSClearGraphics ;
55 | = 'what' , ( ( 'operations' , 'are' | [ 'are' ] , [ 'the' ] , 'operations' ) , [ 'implemented' | 'in' ] ) | [ 'what' ] , ( 'operation' | 'operations' ) , ( 'I' , 'can' | 'to' ) , ( 'use' | 'do' ) <@ TSWhatOperations[Flatten[{#}]]& ;
56 | = 'help' | [ 'all' ] , 'commands' <@ TSHelp[Flatten[{#}]]& ;
57 | = | ;
58 | = [ 'plot' | 'plots' ] , 'joined' | 'Joined' , '->' , 'True' | 'Joined->True' <@ TSPlotJoined ;
59 | = [ 'plot' | 'plots' ] , ( 'not' | 'non' ) , 'joined' | 'Joined' , '->' , 'False' | 'Joined->False' <@ TSPlotNotJoined ;
60 | = 'plot' , 'data' <@ TSPlotData ;
61 | = | | ;
62 | = | | | | | | | ;
63 | "
--------------------------------------------------------------------------------
/EBNF/TimeSpecificationsGrammar.ebnf:
--------------------------------------------------------------------------------
1 |
2 | (*
3 | Time specifications grammar in EBNF
4 | Copyright (C) 2016 Anton Antonov
5 |
6 | This program is free software: you can redistribute it and/or modify
7 | it under the terms of the GNU General Public License as published by
8 | the Free Software Foundation, either version 3 of the License, or
9 | (at your option) any later version.
10 |
11 | This program is distributed in the hope that it will be useful,
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 | GNU General Public License for more details.
15 |
16 | You should have received a copy of the GNU General Public License
17 | along with this program. If not, see .
18 |
19 | Written by Anton Antonov,
20 | antononcube @ gmail . com,
21 | Windermere, Florida, USA.
22 | *)
23 |
24 | (* Version 0.7 *)
25 |
26 | (* This grammar is intended to be parsed by the functions in the Mathematica package FunctionalParses.m at GitHub,
27 | see https://github.com/antononcube/MathematicaForPrediction/blob/master/FunctionalParsers.m .
28 | In order to parse this grammar specification either:
29 | - copy all of the grammar rule lines and paste them within a pair of string quotes, or
30 | - use Get in Mathematica.
31 | *)
32 |
33 | "
34 | = | | | ;
35 | = 'hour' | 'day' | 'week' | 'month' | 'year' | 'lifetime' ;
36 | = 'hours' | 'days' | 'weeks' | 'months' | 'years' | 'lifetimes' ;
37 | = , | ( 'a' | 'one' ) , ;
38 | = | | ;
39 | = [ 'the' ] &> ( 'next' | 'last' ) , ( | ( 'few' | ) , ) ;
40 | = 'between' , , 'and' , \
41 | | 'from' , , 'to' , | [ 'in' | 'during' ] &> \
42 | | 'between' , , 'and' , \
43 | ;
44 | = | | | \
45 | | | | | \
46 | | <@ TimeSpec[If[ListQ[#],Flatten[#],#]]& ;
47 | = 'now' | 'right' , 'now' | 'just' , 'now' ;
48 | = 'today' | 'yesterday' | 'tomorrow' | 'the' , 'day' , 'before' , 'yesterday' ;
49 | = 'monday' | 'tuesday' | 'wednesday' | 'thursday' | 'friday' | 'saturday' | 'sunday' ;
50 | = 'mondays' | 'tuesdays' | 'wednesdays' | 'thursdays' | 'fridays' | 'saturdays' | 'sundays' ;
51 | = 'mon' | 'tue' | 'wed' | 'thu' | 'fri' | 'sat' | 'sun' ;
52 | = | | ;
53 | = 'week' , ;
54 | = 'Range[1,52]' ;
55 | = [ 'the' ] , 'week' , , 'of' , ;
56 | = 'january' | 'february' | 'march' | 'april' | \
57 | 'may' | 'june' | 'july' | 'august' | 'september' | 'october' | \
58 | 'november' | 'december' ;
59 | = 'jan' | 'feb' | 'mar' | 'apr' | 'may' | 'jun' | 'jul' | 'aug' | 'sep' | 'oct' | 'nov' | 'dec' ;
60 | = | ;
61 | = , [ 'of' ] , [ ] ;
62 | = 'year' , | ;
63 | = 'Range[1900,2100]' ;
64 | = 'ramadan' | 'christmas' | 'thanksgiving' | \
65 | 'memorial' , 'day' | 'lincoln' , 'day' | 'new' , 'year' | 'mother' , 'day' ;
66 | = , ( 'before' | 'after' ) , ;
67 | = '_?NumberQ' ;
68 | = 'Range[0,23]' , [ ( 'am' | 'pm' ) ] ;
69 | = ( , | , ) , , [ , ( 'am' | 'pm' ) ] ;
70 | "
--------------------------------------------------------------------------------
/Java/TriesWithFrequencies/README.md:
--------------------------------------------------------------------------------
1 | # Tries with frequencies in Java
2 |
3 | Anton Antonov
4 | [MathematicaForPrediction at GitHub](https://github.com/antononcube/MathematicaForPrediction)
5 | [MathematicaVsR at GitHub](https://github.com/antononcube/MathematicaVsR)
6 | January 2017
7 |
8 | ## Structure
9 |
10 | The file ["src/Trie.java"](https://github.com/antononcube/MathematicaForPrediction/blob/master/Java/TriesWithFrequencies/src/Trie.java)
11 | contains the definition of the class `Trie`.
12 |
13 | The file ["src/TrieFunctions.java"](https://github.com/antononcube/MathematicaForPrediction/blob/master/Java/TriesWithFrequencies/src/TrieFunctions.java)
14 | has implementations of a variety of functions that can used over tries.
15 |
16 | The file ["src/Experiments.java"](https://github.com/antononcube/MathematicaForPrediction/blob/master/Java/TriesWithFrequencies/src/Experiments.java)
17 | is only used to do sanity check tests over the implementations.
18 |
19 | We call a trie "word" a list of strings.
20 |
21 | ## Use through a Mathematica package
22 |
23 | The Mathematica package
24 | [JavaTriesWithFrequencies.m](https://github.com/antononcube/MathematicaForPrediction/blob/master/JavaTriesWithFrequencies.m)
25 | provides functions for utilizing the implemented Java Trie functionalities.
26 |
27 | The test file
28 | [JavaTriesWithFrequencies-Unit-Tests.wlt](https://github.com/antononcube/MathematicaForPrediction/blob/master/UnitTests/JavaTriesWithFrequencies-Unit-Tests.wlt)
29 | provides unit tests for
30 | [JavaTriesWithFrequencies.m](https://github.com/antononcube/MathematicaForPrediction/blob/master/JavaTriesWithFrequencies.m).
31 |
32 | In order to use the package the corresponding .jar file must be made -- see the next section.
33 |
34 | ## How to use in Mathematica directly
35 |
36 | In order to use the defined Java functions in Mathematica the following steps have to be taken.
37 |
38 | ### Making a jar file
39 |
40 | In the local directory "src" execute the following commands:
41 |
42 | src> mkdir build
43 | src> javac -d ./build *.java; cd build; jar cvf ../../TriesWithFrequencies.jar *; cd ../
44 |
45 | (Skip the first line if you have the directory "src/build" already.)
46 |
47 | ### Mathematica JLink set-up
48 |
49 | $JavaTriesWithFrequenciesPath = "<>/MathematicaForPrediction/Java/TriesWithFrequencies";
50 |
51 | Needs["JLink`"];
52 | AddToClassPath[$JavaTriesWithFrequenciesPath];
53 | ReinstallJava[JVMArguments->"-Xmx2g"]
54 |
55 | LoadJavaClass["java.util.Collections"];
56 | LoadJavaClass["java.util.Arrays"];
57 |
58 | LoadJavaClass["Trie"];
59 | LoadJavaClass["TrieFunctions"];
60 |
61 | ### Basic trie creation and retrieval
62 |
63 | Get dictionary words starting with "b":
64 |
65 | dWords = DictionaryLookup["b*"];
66 | Length[dWords]
67 | (* 4724 *)
68 |
69 | Create a trie with the words:
70 |
71 | Block[{},
72 | (* Make a list of words. *)
73 | jWords = MakeJavaObject[dWords];
74 | jWords = Arrays`asList[jWords];
75 |
76 | (* Make a string object (that represents a spliting regexp pattern). *)
77 | jSp = MakeJavaObject[""];
78 |
79 | (* Create the trie specifying the words to be split into characters. *)
80 | jTr = TrieFunctions`createBySplit[jWords, jSp];
81 |
82 | (* Optionally convert the node frequencies into probabilties. *)
83 | (*jTr=TrieFunctions`nodeProbabilities[jTr]*)
84 | ];
85 |
86 | Get the sub-trie that corresponds to "bark":
87 |
88 | jSubTr = TrieFunctions`retrieve[jTr, Arrays`asList[MakeJavaObject[Characters["bark"]]]]
89 | (* JLink`Objects`vm4`JavaObject17330643155288065 *)
90 |
91 |
92 | Get JSON form of the sub-trie:
93 |
94 | ImportString[jSubTr@toJSON[], "JSON"]
95 |
96 | (* {"value" -> 10., "key" -> "k",
97 | "children" -> {{"value" -> 1., "key" -> "s",
98 | "children" -> {}}, {"value" -> 7., "key" -> "e",
99 | "children" -> {{"value" -> 2., "key" -> "r",
100 | "children" -> {{"value" -> 1., "key" -> "s",
101 | "children" -> {}}}}, {"value" -> 1., "key" -> "d",
102 | "children" -> {}}, {"value" -> 4., "key" -> "e",
103 | "children" -> {{"value" -> 4., "key" -> "p",
104 | "children" -> {{"value" -> 1., "key" -> "s",
105 | "children" -> {}}, {"value" -> 2., "key" -> "e",
106 | "children" -> {{"value" -> 2., "key" -> "r",
107 | "children" -> {{"value" -> 1., "key" -> "s",
108 | "children" -> {}}}}}}}}}}}}, {"value" -> 1.,
109 | "key" -> "i",
110 | "children" -> {{"value" -> 1., "key" -> "n",
111 | "children" -> {{"value" -> 1., "key" -> "g",
112 | "children" -> {}}}}}}}} *)
113 |
114 | If we load the package [TriesWithFrequencies.m](https://github.com/antononcube/MathematicaForPrediction/blob/master/TriesWithFrequencies.m) :
115 |
116 | Import["https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/master/TriesWithFrequencies.m"]
117 |
118 | we can visualize the obtained sub-trie (Java object) using the function `ToTrieFromJSON` and `TrieForm`:
119 |
120 | TrieForm@ToTrieFromJSON@ImportString[jSubTr@toJSON[], "JSON"]
121 |
122 | 
123 |
124 |
125 | ## How to use in R
126 |
127 | TBD...
128 |
129 | ## References
130 |
131 |
--------------------------------------------------------------------------------
/Java/TriesWithFrequencies/src/Trie.java:
--------------------------------------------------------------------------------
1 | //# Tries with frequencies Java implementation
2 | //# Copyright (C) 2016 Anton Antonov
3 | //#
4 | //# This program is free software: you can redistribute it and/or modify
5 | //# it under the terms of the GNU General Public License as published by
6 | //# the Free Software Foundation, either version 3 of the License, or
7 | //# (at your option) any later version.
8 | //#
9 | //# This program is distributed in the hope that it will be useful,
10 | //# but WITHOUT ANY WARRANTY; without even the implied warranty of
11 | //# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 | //# GNU General Public License for more details.
13 | //#
14 | //# You should have received a copy of the GNU General Public License
15 | //# along with this program. If not, see .
16 | //#
17 | //# Written by Anton Antonov,
18 | //# antononcube @ gmail. com ,
19 | //# Windermere, Florida, USA.
20 | //#
21 | //# Version 1.0
22 | //# The Java code in this file corresponds to the Mathematica package
23 | //# "Tries with frequencies" also written by Anton Antonov:
24 | //# https://github.com/antononcube/MathematicaForPrediction/blob/master/TriesWithFrequencies.m .
25 | //# There is also an R package with implementing that functionality:
26 | //# https://github.com/antononcube/MathematicaForPrediction/blob/master/R/TriesWithFrequencies.R .
27 | //# Both packages are part of the MathematicaForPrediction project at GitHub.
28 | //#
29 | //# For detailed explanations see the blog post:
30 | //# "Tries with frequencies for data mining",
31 | //# https://mathematicaforprediction.wordpress.com/2013/12/06/tries-with-frequencies-for-data-mining/ .
32 |
33 | package TriesWithFrequencies;
34 |
35 | import java.util.HashMap;
36 | import java.util.List;
37 | import java.util.Map;
38 |
39 | public class Trie {
40 |
41 | protected String key;
42 | protected Double value;
43 | protected Map children;
44 |
45 | public String getKey() {
46 | return key;
47 | }
48 | public void setKey(String key) {
49 | this.key = key;
50 | }
51 | public Double getValue() {
52 | return value;
53 | }
54 | public void setValue(Double value) {
55 | this.value = value;
56 | }
57 | public Map getChildren() {
58 | return children;
59 | }
60 | public void setChildren( Map children ) {
61 | this.children = children;
62 | }
63 |
64 | public Trie( ) { }
65 |
66 | public Trie( String key, Double value ) {
67 | this.setKey( key );
68 | this.setValue( value );
69 | }
70 |
71 | public Trie( String key, Double value, Map children ) {
72 | this.setKey( key );
73 | this.setValue( value );
74 | this.setChildren(children);
75 | }
76 |
77 | protected String toStringRec( int n ) {
78 | String offset = "";
79 | String childStr = "";
80 | int k=0;
81 | for ( int i = 0; i < n; i++ ){
82 | offset = offset + " ";
83 | }
84 | if ( this.getChildren() != null && !this.getChildren().isEmpty() ) {
85 | for ( Trie elem : this.getChildren().values() ) {
86 | if ( k == 0 ) {
87 | childStr = "\n" + offset + elem.toStringRec( n+1 );
88 | } else {
89 | childStr = childStr + ",\n" + offset + elem.toStringRec( n+1 );
90 | }
91 | k++;
92 | }
93 | } else {
94 | childStr = "";
95 | }
96 | return "[ key=" + this.getKey() + ", value=" + this.getValue() + ", children=" + childStr + "]";
97 | }
98 |
99 | public String toString( ) {
100 | return this.toStringRec( 1 );
101 | }
102 |
103 |
104 | protected String toJSONRec( int maxLevel, int n ) {
105 | String childStr = "";
106 | int k = 0;
107 | if ( this.getChildren() != null && ( maxLevel < 0 || n <= maxLevel ) ) {
108 | for ( Trie elem : this.getChildren().values() ) {
109 | if ( k == 0 ) {
110 | childStr = elem.toJSONRec( maxLevel,n+1 );
111 | } else {
112 | childStr = childStr + ", " + elem.toJSONRec( maxLevel,n+1 );
113 | }
114 | k++;
115 | }
116 | childStr = "[" + childStr + "]";
117 | } else {
118 | childStr = "[]";
119 | }
120 | return "{ \"key\":" + "\"" + this.getKey() + "\"" + ", \"value\":" + this.getValue() + ", \"children\":" + childStr + "}";
121 | }
122 |
123 | public String toJSON( int maxLevel ) {
124 | return this.toJSONRec( maxLevel, 1 );
125 | }
126 |
127 | public String toJSON( ) {
128 | return this.toJSONRec( -1, 1 );
129 | }
130 |
131 | //! @description Deep copy of a trie.
132 | public Trie clone() {
133 |
134 | Trie res = new Trie();
135 |
136 | res.setKey( this.getKey() );
137 | res.setValue( this.getValue() );
138 |
139 | if ( !(this.getChildren() == null || this.getChildren().isEmpty() ) ) {
140 |
141 | Map resChildren = new HashMap<>();
142 |
143 | for ( Trie elem : this.getChildren().values() ) {
144 | resChildren.put( elem.getKey(), elem.clone() );
145 | }
146 |
147 | res.setChildren( resChildren );
148 | }
149 |
150 | return res;
151 | }
152 |
153 | //! @description Deep comparison of a trie.
154 | public Boolean equals( Trie tr ) {
155 |
156 | if ( !this.getKey().equals( tr.getKey() ) || !this.getValue().equals( tr.getValue() ) ) {
157 | return false;
158 | }
159 |
160 | Boolean b = !(this.getChildren() == null || this.getChildren().isEmpty() );
161 | Boolean bTr = !(tr.getChildren() == null || tr.getChildren().isEmpty() );
162 |
163 | if ( b && bTr ) {
164 |
165 | if ( this.getChildren().size() != tr.getChildren().size() ) {
166 | return false;
167 | }
168 |
169 | for ( Trie elem : this.getChildren().values() ) {
170 |
171 | if ( !tr.getChildren().containsKey( elem.getKey() ) ) {
172 | return false;
173 | }
174 |
175 | if ( ! elem.equals( tr.getChildren().get( elem.getKey() ) ) ) {
176 | return false;
177 | }
178 | }
179 |
180 | return true;
181 |
182 | } else if ( b != bTr ) {
183 |
184 | return false;
185 |
186 | }
187 |
188 | return true;
189 | }
190 | }
191 |
192 |
--------------------------------------------------------------------------------
/Lua/FunctionalParsers/FunctionalParsersTests.lua:
--------------------------------------------------------------------------------
1 | --[[
2 | Tests for Functional Parsers in Lua
3 | Copyright (C) 2013-2016 Anton Antonov
4 |
5 | This program is free software: you can redistribute it and/or modify
6 | it under the terms of the GNU General Public License as published by
7 | the Free Software Foundation, either version 3 of the License, or
8 | (at your option) any later version.
9 |
10 | This program is distributed in the hope that it will be useful,
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 | GNU General Public License for more details.
14 |
15 | You should have received a copy of the GNU General Public License
16 | along with this program. If not, see .
17 |
18 | Written by Anton Antonov,
19 | antononcube @ gmail . com,
20 | Windermere, Florida, USA.
21 | --]]
22 |
23 | --[[
24 |
25 | Lua is free software distributed under the terms of the MIT license reproduced here: http://www.lua.org/license.html. .
26 | Lua may be used for any purpose, including commercial purposes, at absolutely no cost.
27 | No paperwork, no royalties, no GNU-like "copyleft" restrictions, either.
28 | Just download it and use it (http://www.lua.org) .
29 |
30 | See the full Lua licence at : http://www.lua.org/license.html .
31 |
32 | --]]
33 |
34 | require("FunctionalParsers")
35 |
36 |
37 |
38 | function dPredQ(d)
39 | if mf.MemberQ({"0","1","2","3","4","5","6","7","8","9"}, d) then
40 | return true
41 | else
42 | return false
43 | end
44 | end
45 |
46 | pDigit = parse.satisfy( dPredQ )
47 | -- pNumber = fp.ParsePredicate( dPredQ )
48 |
49 | res = pDigit( { "2", "t" } )
50 | print( table.unpack( res[1][1] ) )
51 | print( res[1][2] )
52 |
53 | print("-----------------------")
54 | print("parse.alt")
55 | pAorB = parse.alt( parse.symbol("a"), parse.symbol("b") )
56 |
57 | res = pAorB( { "a", "b" } )
58 | print( "#res = ", #res, res )
59 | mf.Print(res)
60 | print()
61 |
62 |
63 | res = pAorB( { "k", "b" } )
64 | print( "#res = ", #res, res )
65 | mf.Print(res)
66 | print()
67 |
68 | res = parse.symbol("a")({"a","b"})
69 | mf.Print("parse.symbol(\"a\")({\"a\",\"b\"})", res)
70 |
71 |
72 | res1 = mf.ParseComposeWithResults( parse.symbol("b"), res )
73 | mf.Print("res1= ", res1)
74 |
75 | print("-----------------------")
76 | print("parse.seq")
77 | pAB = parse.seq( pAorB, pAorB )
78 | res = mf.Map( pAB, { {"a","b"}, {"b","b"}, {"b","a"}} )
79 | mf.Print( "#res = ", #res, " ", res )
80 |
81 |
82 | print("-----------------------")
83 | print("parse.seqr")
84 | pBar = parse.seqr( parse.alt( parse.symbol("a"), parse.symbol("the") ), parse.symbol("bar") )
85 | res = mf.Map( pBar, { {"a","bar"}, {"the","bar"} } )
86 | mf.Print( "#res = ", #res, " ", res )
87 |
88 |
89 | print("-----------------------")
90 | print("parse.parenthesized")
91 | pPAB = parse.parenthesized( pAorB )
92 | res = mf.Map( pPAB, { {"(","b",")"}, {"(","a",")"}, {"(","b",")"} } )
93 | mf.Print( "#res = ", #res, " ", res )
94 |
95 |
96 | print("-----------------------")
97 | print("parse.seql")
98 | pPAB = parse.parenthesized( parse.seql( parse.symbol("a"), parse.option1( parse.symbol("b") ) ) )
99 | res = mf.Map( pPAB, { {"(","a","b",")"}, {"(","a",")"} } )
100 | mf.Print( "#res = ", #res, " ", res )
101 |
102 |
103 | print("-----------------------")
104 | print("parse.many1")
105 | res = parse.many1( pAorB )( { "a", "b", "a", "a" } )
106 | mf.Print( "#res = ", #res, " ", res )
107 |
108 | print("-----------------------")
109 | print("parse.many")
110 | res = parse.many( pAorB )( { "a", "b", "a", "a" } )
111 | mf.Print( "#res = ", #res, " ", res )
112 |
113 | print("-----------------------")
114 | print("parse.listof")
115 | pLAorB = parse.listof( pAorB, parse.symbol("*") )
116 | res = pLAorB( { "a", "*", "b", "*", "a", "*", "a" } )
117 | mf.Print( "#res = ", #res, " ", res )
118 |
119 | print("-----------------------")
120 | print("parse.chainleft")
121 | pCLAorB = parse.chainleft( pAorB, parse.symbol("*"), function (s1, s2) return s1..s2 end )
122 | res = pCLAorB( { "a", "*", "b", "*", "a", "*", "a" } )
123 | mf.Print( "#res = ", #res, " ", res )
124 |
125 |
126 | print("-----------------------")
127 | print("parse.chainright")
128 | pCRAorB = parse.chainright( pAorB, parse.symbol("*"), function (s1, s2) return s1..s2 end )
129 | res = pCLAorB( { "a", "*", "b", "*", "a", "*", "a" } )
130 | mf.Print( "#res = ", #res, " ", res )
131 |
132 |
133 | print("-----------------------")
134 | print("parsing a number")
135 | --pNumber = parse.listof( pDigit, parse.epsilon )
136 | pNumber = parse.apply( function (parsed)
137 | return mf.Fold( function (acc, s) return 10*acc + s-"0" end, 0, parsed)
138 | end,
139 | parse.many1( pDigit ) )
140 | res = pNumber( { "1", "6", "7", "0"} )
141 | mf.Print( "#res = ", #res, " ", res )
142 | print( type(res[1][2]))
--------------------------------------------------------------------------------
/MarkdownDocuments/Call-graph-generation-for-context-functions.md:
--------------------------------------------------------------------------------
1 | # Call graph generation for context functions
2 |
3 | Anton Antonov
4 | [MathematicaForPrediction at WordPress](https://mathematicaforprediction.wordpress.com)
5 | [MathematicaForPrediction at GitHub](https://github.com/antononcube/MathematicaForPrediction)
6 | [MathematicaVsR at GitHub](https://github.com/antononcube/MathematicaVsR)
7 | January 2019
8 |
9 | ## In brief
10 |
11 | This document describes the package
12 | [CallGraph.m](https://github.com/antononcube/MathematicaForPrediction/blob/master/Misc/CallGraph.m)
13 | for making call graphs between the functions that belong to specified contexts.
14 |
15 | The main function is `CallGraph` that gives a graph with vertices that are functions names and edges that show
16 | which functions call which other functions. With the default option values the graph vertices are labeled and
17 | have tooltips with function usage messages.
18 |
19 | ## General design
20 |
21 | The call graphs produced by the main package function `CallGraph` are assumed to be used for studying or refactoring
22 | of large code bases written with Mathematica / Wolfram Language.
23 |
24 | The argument of `CallGraph` is a context string or a list of context strings.
25 |
26 | With the default values of its options `CallGraph` produces a graph with labeled nodes and the labels have tooltips
27 | that show the usage messages of the functions from the specified contexts.
28 | It is assumed that this would be the most useful call graph type for studying the codes of different sets of packages.
29 |
30 | We can make simple, non-label, non-tooltip call graph using `CallGraph[ ... , "UsageTooltips" -> False ]`.
31 |
32 | The simple call graph can be modified with the functions:
33 |
34 | CallGraphAddUsageMessages, CallGraphAddPrintDefinitionsButtons, CallGraphBiColorCircularEmbedding
35 |
36 | Each of those functions is decorating the simple graph in a particular way.
37 |
38 | ## Package load
39 |
40 | This loads the package [CallGraph.m](https://github.com/antononcube/MathematicaForPrediction/blob/master/Misc/CallGraph.m) :
41 |
42 | Import["https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/master/Misc/CallGraph.m"]
43 |
44 | The following packages are used in the examples below.
45 |
46 | Import["https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/master/MonadicProgramming/MonadicQuantileRegression.m"]
47 |
48 | Get["https://raw.githubusercontent.com/szhorvat/IGraphM/master/IGInstaller.m"];
49 | Needs["IGraphM`"]
50 |
51 | ## Usage examples
52 |
53 | ### Generate a call graph with usage tooltips
54 |
55 | CallGraph["IGraphM`", GraphLayout -> "SpringElectricalEmbedding", ImageSize -> Large]
56 |
57 | [](https://i.imgur.com/ShOVJMV.png)
58 |
59 | ### Generate a call graph by excluding symbols
60 |
61 | gr = CallGraph["IGraphM`", Exclusions -> Map[ToExpression, Names["IG*Q"]], ImageSize -> 900]
62 |
63 |
64 | [](https://i.imgur.com/n2y0KrK.png)
65 |
66 | ### Generate call graph with buttons to print definitions
67 |
68 | gr0 = CallGraph["IGraphM`", "UsageTooltips" -> False];
69 | gr1 = CallGraphAddPrintDefinitionsButtons[gr0, GraphLayout -> "StarEmbedding", ImageSize -> 900]
70 |
71 | [](https://i.imgur.com/wbRcNoE.png)
72 |
73 | ### Generate circular embedding graph color
74 |
75 | cols = RandomSample[ ColorData["Rainbow"] /@ Rescale[Range[VertexCount[gr1]]]];
76 |
77 | CallGraphBiColorCircularEmbedding[ gr1, "VertexColors" -> cols, ImageSize -> 900 ]
78 |
79 | [](https://i.imgur.com/BMgO1rE.png)
80 |
81 | (The core functions used for the implementation of `CallGraphBiColorCircularEmbedding` were taken from kglr's Mathematica Stack Exchange answer: https://mathematica.stackexchange.com/a/188390/34008 . Those functions were modified to take additional arguments.)
82 |
83 | ## Options
84 |
85 | The package functions "CallGraph*" take all of the options of the function Graph.
86 | Below are described the additional options of CallGraph.
87 |
88 | - "PrivateContexts"
89 | Should the functions of the private contexts be included in the call graph.
90 |
91 | - "SelfReferencing"
92 | Should the self referencing edges be excluded or not.
93 |
94 | - "AtomicSymbols"
95 | Should atomic symbols be included in the call graph.
96 |
97 | - Exclusions
98 | Symbols to be excluded from the call graph.
99 |
100 | - "UsageTooltips"
101 | Should vertex labels with the usage tooltips be added.
102 |
103 | - "UsageTooltipsStyle"
104 | The style of the usage tooltips.
105 |
106 | ## Possible issues
107 |
108 | - With large context (e.g. "System`") the call graph generation might take long time. (See the TODOs below.)
109 |
110 | - With "PrivateContexts"->False the call graph will be empty if the public functions do not depend on each other.
111 |
112 | - For certain packages the scanning of the down values would produce (multiple) error messages or warnings.
113 |
114 | ## Future plans
115 |
116 | The following is my TODO list for this project.
117 |
118 | 1. Special handling for the "System`" context.
119 |
120 | 2. Use the symbols up-values to make the call graph.
121 |
122 | 3. Consider/implement call graph making with specified patterns and list of symbols.
123 |
124 | - Instead of just using contexts and exclusions. (The current approach/implementation.)
125 |
126 | 4. Provide special functions for "call sequence" tracing for a specified symbol.
127 |
128 |
129 |
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSA-workflows.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSA-workflows.jpg
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-Data-Load-Hamlet-echo.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-Data-Load-Hamlet-echo.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-Data-Load-StateOfUnionSpeeches-echo.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-Data-Load-StateOfUnionSpeeches-echo.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-Extracting-statistical-thesauri-echo.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-Extracting-statistical-thesauri-echo.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-Extracting-topics-Hamlet-topics-table.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-Extracting-topics-Hamlet-topics-table.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-Extracting-topics-StateOfUnionSpeeches-topics-table.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-Extracting-topics-StateOfUnionSpeeches-topics-table.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-Find-most-important-documents-table.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-Find-most-important-documents-table.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-Future-directions-parsed-LSA-commands-table.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-Future-directions-parsed-LSA-commands-table.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-Introduction-pipeline-echos.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-Introduction-pipeline-echos.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-Introduction-pipeline.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-Introduction-pipeline.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-LSI-weight-functions-combinations-application-table.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-LSI-weight-functions-combinations-application-table.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-LSI-weight-functions-table.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-LSI-weight-functions-table.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-Making-of-the-document-term-matrix-CrossTabulate.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-Making-of-the-document-term-matrix-CrossTabulate.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-Making-of-the-document-term-matrix-echoes.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-Making-of-the-document-term-matrix-echoes.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-Mapping-queries-and-documents-to-terms-query-matrix.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-Mapping-queries-and-documents-to-terms-query-matrix.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-Mapping-queries-and-documents-to-topics-context-sub-matrix.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-Mapping-queries-and-documents-to-topics-context-sub-matrix.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-Mapping-queries-and-documents-to-topics-query-matrix.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-Mapping-queries-and-documents-to-topics-query-matrix.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-Monad-Design-formula-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-Monad-Design-formula-1.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-Monad-Design-formula-2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-Monad-Design-formula-2.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-Overview-StMon-usage-descriptions-table.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-Overview-StMon-usage-descriptions-table.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-Overview-operations-context-interactions-table.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-Overview-operations-context-interactions-table.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-Overview-operations-usage-descriptions-table.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-Overview-operations-usage-descriptions-table.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-Overview-setters-droppers-takers-context-interactions-table.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-Overview-setters-droppers-takers-context-interactions-table.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-Tags-representation-heatmap.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-Tags-representation-heatmap.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-The-monad-head-echo.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-The-monad-head-echo.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-The-utilization-of-SSparseMatrix-lsaHamlet-queries-to-terms-matrix.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-The-utilization-of-SSparseMatrix-lsaHamlet-queries-to-terms-matrix.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-The-utilization-of-SSparseMatrix-lsaSpeeces-docTermMat-plot.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-The-utilization-of-SSparseMatrix-lsaSpeeces-docTermMat-plot.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-The-utilization-of-SSparseMatrix-lsaSpeeches-terms-similarities-matrix.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-The-utilization-of-SSparseMatrix-lsaSpeeches-terms-similarities-matrix.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-The-utilization-of-SSparseMatrix-lsaSpeeches-topics-similarities-matrix.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-The-utilization-of-SSparseMatrix-lsaSpeeches-topics-similarities-matrix.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-The-utilization-of-SSparseMatrix-random-matrix.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-The-utilization-of-SSparseMatrix-random-matrix.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-Unit-tests-random-pipelines-sample-table.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-Unit-tests-random-pipelines-sample-table.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-pipeline.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Latent-Semantic-Analysis-workflows/LSAMon-pipeline.jpg
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/Default-basis-to-fit-output-1-and-2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/Default-basis-to-fit-output-1-and-2.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/Default-basis-to-fit-output-3.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/Default-basis-to-fit-output-3.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/Dependent-variable-simulation-output-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/Dependent-variable-simulation-output-1.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/Errors-and-error-plots-output-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/Errors-and-error-plots-output-1.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/Estimating-conditional-distributions-output-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/Estimating-conditional-distributions-output-1.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/Finding-local-extrema-in-noisy-data-output-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/Finding-local-extrema-in-noisy-data-output-1.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/Finding-outliers-output-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/Finding-outliers-output-1.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/Finding-outliers-output-2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/Finding-outliers-output-2.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/Future-plans-conversational-agent-output-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/Future-plans-conversational-agent-output-1.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/Lifting-data-to-the-monad-output.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/Lifting-data-to-the-monad-output.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/Moving-average-moving-median-and-moving-map-output-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/Moving-average-moving-median-and-moving-map-output-1.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/Plotting-outliers-output-2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/Plotting-outliers-output-2.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/QRMon-StMon-functions-overview-table.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/QRMon-StMon-functions-overview-table.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/QRMon-distData.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/QRMon-distData.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/QRMon-finData.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/QRMon-finData.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/QRMon-formula-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/QRMon-formula-1.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/QRMon-formula-2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/QRMon-formula-2.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/QRMon-introduction-monad-pipeline-example-echo.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/QRMon-introduction-monad-pipeline-example-echo.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/QRMon-introduction-monad-pipeline-example-table.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/QRMon-introduction-monad-pipeline-example-table.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/QRMon-monad-functions-overview-table.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/QRMon-monad-functions-overview-table.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/QRMon-monad-functions-shortcuts-table.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/QRMon-monad-functions-shortcuts-table.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/QRMon-pipeline.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/QRMon-pipeline.jpg
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/QRMon-tsData.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/QRMon-tsData.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/Quantile-regression-fit-and-Least-squares-fit-basis.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/Quantile-regression-fit-and-Least-squares-fit-basis.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/Quantile-regression-fit-and-Least-squares-fit-output-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/Quantile-regression-fit-and-Least-squares-fit-output-1.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/Quantile-regression-fit-and-Least-squares-fit-output-2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/Quantile-regression-fit-and-Least-squares-fit-output-2.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/Quantile-regression-with-B-splines-output-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/Quantile-regression-with-B-splines-output-1.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/Quantile-regression-with-B-splines-output-2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/Quantile-regression-with-B-splines-output-2.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/Quantile-regression-with-B-splines-output-3.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/Quantile-regression-with-B-splines-output-3.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/Quantile-regression-workflow-extended-small.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/Quantile-regression-workflow-extended-small.jpg
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/Quantile-regression-workflow-extended.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/Quantile-regression-workflow-extended.jpg
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/The-monad-head-output.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/The-monad-head-output.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/Unit-tests-TestReportObject-open-icon.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/Unit-tests-TestReportObject-open-icon.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/Unit-tests-output-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/Unit-tests-output-1.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/Unit-tests-random-pipelines-sample.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-Quantile-Regression-workflows/Unit-tests-random-pipelines-sample.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-MNIST-example-full.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-MNIST-example-full.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-MNIST-example-output.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-MNIST-example-output.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-State-monad-formula.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-State-monad-formula.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-StateMonad-functions-table.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-StateMonad-functions-table.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-best-thresholds-example-output.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-best-thresholds-example-output.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-classifier-testing-ConfusionMatrixPlot-echo.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-classifier-testing-ConfusionMatrixPlot-echo.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-classifier-testing-ROCListLinePlot-echo.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-classifier-testing-ROCListLinePlot-echo.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-classifier-testing-ROCListLinePlot-survived-echo.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-classifier-testing-ROCListLinePlot-survived-echo.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-classifier-testing-ROCPlot-echo.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-classifier-testing-ROCPlot-echo.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-components-interaction.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-components-interaction.jpg
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-conditional-continuation-example-output.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-conditional-continuation-example-output.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-datasets-dimensions.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-datasets-dimensions.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-development-cycle.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-development-cycle.jpg
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-dimension-reduction-example-echo.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-dimension-reduction-example-echo.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-direct-unit-tests-TestReport-icon.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-direct-unit-tests-TestReport-icon.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-dsMushroom-summary.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-dsMushroom-summary.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-dsTitanic-summary.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-dsTitanic-summary.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-dsWineQuality-summary.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-dsWineQuality-summary.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-ensemble-classifier-example-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-ensemble-classifier-example-1.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-ensemble-classifier-example-2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-ensemble-classifier-example-2.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-generic-monad-formula.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-generic-monad-formula.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-lifting-data-example-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-lifting-data-example-1.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-lifting-data-example-2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-lifting-data-example-2.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-monad-head-example.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-monad-head-example.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-pipeline-TraceMonad-Echo-output.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-pipeline-TraceMonad-Echo-output.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-pipeline-TraceMonad-table.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-pipeline-TraceMonad-table.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-pipeline.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-pipeline.jpg
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-quick-data-sample.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-quick-data-sample.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-quick-data-summary-ds.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-quick-data-summary-ds.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-quick-data-summary-mlr.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-quick-data-summary-mlr.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-random-pipelines-TestReport-icon.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-random-pipelines-TestReport-icon.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-random-pipelines-tests-sample-table.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-random-pipelines-tests-sample-table.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-simple-dsTitanic-pipeline.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-simple-dsTitanic-pipeline.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-table-of-operations-setters-takers.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/ClCon-table-of-operations-setters-takers.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/Classification-workflow-extended.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/Classification-workflow-extended.jpg
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/Classification-workflow-horizontal-layout.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/Classification-workflow-horizontal-layout.jpg
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/Making-competitions-classifiers-mind-map.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/A-monad-for-classification-workflows/Making-competitions-classifiers-mind-map.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/AI-vision-via-WL/032vcq74auyv9.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/AI-vision-via-WL/032vcq74auyv9.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/AI-vision-via-WL/08ijuwuchj31q.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/AI-vision-via-WL/08ijuwuchj31q.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/AI-vision-via-WL/0cmyq0lep1q7f.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/AI-vision-via-WL/0cmyq0lep1q7f.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/AI-vision-via-WL/0f0fuo9nexxl8.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/AI-vision-via-WL/0f0fuo9nexxl8.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/AI-vision-via-WL/0iyello2xfyfo.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/AI-vision-via-WL/0iyello2xfyfo.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/AI-vision-via-WL/0nmz56wwuboz3.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/AI-vision-via-WL/0nmz56wwuboz3.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/AI-vision-via-WL/0rt43fezbbp4b.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/AI-vision-via-WL/0rt43fezbbp4b.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/AI-vision-via-WL/0scq7lbpp7xfs.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/AI-vision-via-WL/0scq7lbpp7xfs.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/AI-vision-via-WL/0wmip47gloav0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/AI-vision-via-WL/0wmip47gloav0.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/AI-vision-via-WL/13qqfe3pzqfn9.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/AI-vision-via-WL/13qqfe3pzqfn9.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/AI-vision-via-WL/175o8ba3cxgoh.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/AI-vision-via-WL/175o8ba3cxgoh.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/AI-vision-via-WL/1lpfhko7c2g6e.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/AI-vision-via-WL/1lpfhko7c2g6e.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/AI-vision-via-WL/1n90yjgjx3mkf.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/AI-vision-via-WL/1n90yjgjx3mkf.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/AI-vision-via-WL/1qni2g4n8vywf.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/AI-vision-via-WL/1qni2g4n8vywf.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/AI-vision-via-WL/1u02ytqvf7xi9.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/AI-vision-via-WL/1u02ytqvf7xi9.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/AI-vision-via-WL/1ukmn97ui4o98.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/AI-vision-via-WL/1ukmn97ui4o98.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/AI-vision-via-WL/1xg1w9gct6yca.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/AI-vision-via-WL/1xg1w9gct6yca.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Doomsday-clock-parsing-and-plotting/DoomsdayClock-LLM-table-with-Date-sample.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Doomsday-clock-parsing-and-plotting/DoomsdayClock-LLM-table-with-Date-sample.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Doomsday-clock-parsing-and-plotting/DoomsdayClock-data-table-with-Date-sample.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Doomsday-clock-parsing-and-plotting/DoomsdayClock-data-table-with-Date-sample.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Doomsday-clock-parsing-and-plotting/DoomsdayClock-time-series-tooltip.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Doomsday-clock-parsing-and-plotting/DoomsdayClock-time-series-tooltip.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Doomsday-clock-parsing-and-plotting/DoomsdayClock-time-series.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Doomsday-clock-parsing-and-plotting/DoomsdayClock-time-series.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Doomsday-clock-parsing-and-plotting/DoomsdayClockGauge-definition.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Doomsday-clock-parsing-and-plotting/DoomsdayClockGauge-definition.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Doomsday-clock-parsing-and-plotting/DoomsdayClockGauge-examples.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Doomsday-clock-parsing-and-plotting/DoomsdayClockGauge-examples.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Doomsday-clock-parsing-and-plotting/DoomsdayClockGauge-first.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Doomsday-clock-parsing-and-plotting/DoomsdayClockGauge-first.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Doomsday-clock-parsing-and-plotting/GetDoomsdayClockButton.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Doomsday-clock-parsing-and-plotting/GetDoomsdayClockButton.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Doomsday-clock-parsing-and-plotting/Gramar-random-sentences.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Doomsday-clock-parsing-and-plotting/Gramar-random-sentences.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Doomsday-clock-parsing-and-plotting/Parsing-LLM-example-function.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Doomsday-clock-parsing-and-plotting/Parsing-LLM-example-function.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Doomsday-clock-parsing-and-plotting/Parsing-verification-table-doomsdat.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Doomsday-clock-parsing-and-plotting/Parsing-verification-table-doomsdat.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Doomsday-clock-parsing-and-plotting/Parsing-verification-table-integer-names-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Doomsday-clock-parsing-and-plotting/Parsing-verification-table-integer-names-1.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Doomsday-clock-parsing-and-plotting/Parsing-verification-table-integer-names-2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Doomsday-clock-parsing-and-plotting/Parsing-verification-table-integer-names-2.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Doomsday-clock-parsing-and-plotting/Parsing-verification-table-integer-names-3.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Doomsday-clock-parsing-and-plotting/Parsing-verification-table-integer-names-3.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Doomsday-clock-parsing-and-plotting/Parsing-verification-table-robust-parser.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Doomsday-clock-parsing-and-plotting/Parsing-verification-table-robust-parser.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Finding-all-structural-breaks-in-time-series/Application-of-Chow-Test-SP500.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Finding-all-structural-breaks-in-time-series/Application-of-Chow-Test-SP500.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Finding-all-structural-breaks-in-time-series/Application-of-Chow-Test-chowStats.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Finding-all-structural-breaks-in-time-series/Application-of-Chow-Test-chowStats.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Finding-all-structural-breaks-in-time-series/Application-of-Chow-Test-chowStats2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Finding-all-structural-breaks-in-time-series/Application-of-Chow-Test-chowStats2.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Finding-all-structural-breaks-in-time-series/Computation-local-maxima.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Finding-all-structural-breaks-in-time-series/Computation-local-maxima.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Finding-all-structural-breaks-in-time-series/Computation-structural-breaks-plots.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Finding-all-structural-breaks-in-time-series/Computation-structural-breaks-plots.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Finding-all-structural-breaks-in-time-series/Data-used-SP500.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Finding-all-structural-breaks-in-time-series/Data-used-SP500.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Finding-all-structural-breaks-in-time-series/Data-used-Wk2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Finding-all-structural-breaks-in-time-series/Data-used-Wk2.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Finding-all-structural-breaks-in-time-series/Future-plans-time-series-states.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Finding-all-structural-breaks-in-time-series/Future-plans-time-series-states.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Finding-all-structural-breaks-in-time-series/Introductions-example.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Finding-all-structural-breaks-in-time-series/Introductions-example.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/OpenAIMode-demo/06wybw0d8ntd6.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/OpenAIMode-demo/06wybw0d8ntd6.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/OpenAIMode-demo/0wyc32bgh7gso.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/OpenAIMode-demo/0wyc32bgh7gso.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/OpenAIMode-demo/11og8fps5xhgk.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/OpenAIMode-demo/11og8fps5xhgk.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/OpenAIMode-demo/1iqsuwy5jkmit.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/OpenAIMode-demo/1iqsuwy5jkmit.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Parametrized-event-records-data-transformations/ERTMon-DateListPlot-USA-Temperature.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Parametrized-event-records-data-transformations/ERTMon-DateListPlot-USA-Temperature.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Parametrized-event-records-data-transformations/ERTMon-RecordsSummary-entityAttributes.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Parametrized-event-records-data-transformations/ERTMon-RecordsSummary-entityAttributes.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Parametrized-event-records-data-transformations/ERTMon-RecordsSummary-eventRecords.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Parametrized-event-records-data-transformations/ERTMon-RecordsSummary-eventRecords.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Parametrized-event-records-data-transformations/ERTMon-compute-variable-statistic-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Parametrized-event-records-data-transformations/ERTMon-compute-variable-statistic-1.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Parametrized-event-records-data-transformations/ERTMon-compute-variable-statistic-2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Parametrized-event-records-data-transformations/ERTMon-compute-variable-statistic-2.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Parametrized-event-records-data-transformations/ERTMon-contingency-matrices.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Parametrized-event-records-data-transformations/ERTMon-contingency-matrices.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Parametrized-event-records-data-transformations/ERTMon-contingency-matrix.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Parametrized-event-records-data-transformations/ERTMon-contingency-matrix.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Parametrized-event-records-data-transformations/ERTMon-echo-data-summary.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Parametrized-event-records-data-transformations/ERTMon-echo-data-summary.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Parametrized-event-records-data-transformations/ERTMon-entityAttributes-sample.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Parametrized-event-records-data-transformations/ERTMon-entityAttributes-sample.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Parametrized-event-records-data-transformations/ERTMon-eventRecords-sample.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Parametrized-event-records-data-transformations/ERTMon-eventRecords-sample.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Parametrized-event-records-data-transformations/ERTMon-large-pipeline-example-output.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Parametrized-event-records-data-transformations/ERTMon-large-pipeline-example-output.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Parametrized-event-records-data-transformations/ERTMon-large-pipeline-example.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Parametrized-event-records-data-transformations/ERTMon-large-pipeline-example.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Parametrized-event-records-data-transformations/ERTMon-moving-average-application.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Parametrized-event-records-data-transformations/ERTMon-moving-average-application.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Parametrized-event-records-data-transformations/ERTMon-normalization.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Parametrized-event-records-data-transformations/ERTMon-normalization.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Parametrized-event-records-data-transformations/ERTMon-records-groups-maxTime.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Parametrized-event-records-data-transformations/ERTMon-records-groups-maxTime.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Parametrized-event-records-data-transformations/ERTMon-records-groups-minTime.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Parametrized-event-records-data-transformations/ERTMon-records-groups-minTime.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Parametrized-event-records-data-transformations/ERTMon-repeated-execution-workflow.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Parametrized-event-records-data-transformations/ERTMon-repeated-execution-workflow.jpg
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Parametrized-event-records-data-transformations/ERTMon-repeated-execution-workflow.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Parametrized-event-records-data-transformations/ERTMon-repeated-execution-workflow.pdf
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Parametrized-event-records-data-transformations/ERTMon-restriction-and-aggregation.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Parametrized-event-records-data-transformations/ERTMon-restriction-and-aggregation.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Parametrized-event-records-data-transformations/ERTMon-small-pipeline-example.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Parametrized-event-records-data-transformations/ERTMon-small-pipeline-example.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Parametrized-event-records-data-transformations/ERTMon-wCompSpec.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Parametrized-event-records-data-transformations/ERTMon-wCompSpec.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Parametrized-event-records-data-transformations/ERTMon-workflows.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Parametrized-event-records-data-transformations/ERTMon-workflows.jpg
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Parametrized-event-records-data-transformations/ERTMon-workflows.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Parametrized-event-records-data-transformations/ERTMon-workflows.pdf
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Primitive-root-generation-trails/03q03q9hobjx5.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Primitive-root-generation-trails/03q03q9hobjx5.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Primitive-root-generation-trails/05fw4gbxvzil3.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Primitive-root-generation-trails/05fw4gbxvzil3.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Primitive-root-generation-trails/0ajyn6ixlitgd.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Primitive-root-generation-trails/0ajyn6ixlitgd.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Primitive-root-generation-trails/0i5ilivzw0nl5.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Primitive-root-generation-trails/0i5ilivzw0nl5.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Primitive-root-generation-trails/0ir0c5f83rko2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Primitive-root-generation-trails/0ir0c5f83rko2.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Primitive-root-generation-trails/0ja9nttj7gvy9.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Primitive-root-generation-trails/0ja9nttj7gvy9.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Primitive-root-generation-trails/0vmbr8ahsrf68.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Primitive-root-generation-trails/0vmbr8ahsrf68.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Primitive-root-generation-trails/0w93mw9n87rvn.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Primitive-root-generation-trails/0w93mw9n87rvn.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Primitive-root-generation-trails/19gvpmjp7dx8d.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Primitive-root-generation-trails/19gvpmjp7dx8d.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Primitive-root-generation-trails/1aa33rtlvkbnh.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Primitive-root-generation-trails/1aa33rtlvkbnh.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Primitive-root-generation-trails/1qeiu9fz57as7.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Primitive-root-generation-trails/1qeiu9fz57as7.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Primitive-root-generation-trails/1s2uag61bl0wu.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Primitive-root-generation-trails/1s2uag61bl0wu.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Primitive-root-generation-trails/1tavxw8a8s8c7.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Primitive-root-generation-trails/1tavxw8a8s8c7.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Primitive-root-generation-trails/1wjcl3g3a3wd5.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Primitive-root-generation-trails/1wjcl3g3a3wd5.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Primitive-root-generation-trails/Animation-snapshot-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Primitive-root-generation-trails/Animation-snapshot-1.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Primitive-root-generation-trails/Blog-post-featured-image.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Primitive-root-generation-trails/Blog-post-featured-image.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Trie-based-classifiers-evaluation/08tac97m1v31b.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Trie-based-classifiers-evaluation/08tac97m1v31b.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Trie-based-classifiers-evaluation/0aczl0mnjpi4x.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Trie-based-classifiers-evaluation/0aczl0mnjpi4x.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Trie-based-classifiers-evaluation/0e2tg6vw1ssh1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Trie-based-classifiers-evaluation/0e2tg6vw1ssh1.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Trie-based-classifiers-evaluation/0jlvgunwaouqi.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Trie-based-classifiers-evaluation/0jlvgunwaouqi.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Trie-based-classifiers-evaluation/0m4somgwuj73s.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Trie-based-classifiers-evaluation/0m4somgwuj73s.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Trie-based-classifiers-evaluation/0n9qun2v81o7r.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Trie-based-classifiers-evaluation/0n9qun2v81o7r.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Trie-based-classifiers-evaluation/0yvrxcu8fjfuv.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Trie-based-classifiers-evaluation/0yvrxcu8fjfuv.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Trie-based-classifiers-evaluation/157jxydgclea9.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Trie-based-classifiers-evaluation/157jxydgclea9.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Trie-based-classifiers-evaluation/192nfe8h97k9k.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Trie-based-classifiers-evaluation/192nfe8h97k9k.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Trie-based-classifiers-evaluation/1hdocpn5z00u2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Trie-based-classifiers-evaluation/1hdocpn5z00u2.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Trie-based-classifiers-evaluation/1jqv1g8o5a2uw.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Trie-based-classifiers-evaluation/1jqv1g8o5a2uw.png
--------------------------------------------------------------------------------
/MarkdownDocuments/Diagrams/Trie-based-classifiers-evaluation/1xlmbkphhwhsf.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/c825e21097b90f9329ce9fc8b3b0f317fdd6d5e4/MarkdownDocuments/Diagrams/Trie-based-classifiers-evaluation/1xlmbkphhwhsf.png
--------------------------------------------------------------------------------
/MarkdownDocuments/OpenAIMode-demo.md:
--------------------------------------------------------------------------------
1 | # OpenAIMode demo
2 |
3 | **...for Mathematica notebooks**
4 |
5 | Anton Antonov
6 | [MathematicaForPrediction at WordPress](https://mathematicaforprediction.wordpress.com)
7 | [MathematicaForPrediction at GitHub](https://github.com/antononcube/MathematicaForPrediction)
8 | April 2023
9 |
10 | ***[Video recording](https://youtu.be/htUIOqcS9uA)***
11 |
12 | -----
13 |
14 | ## Setup
15 |
16 | - It is assumed that the paclet [OpenAILink](https://resources.wolframcloud.com/PacletRepository/resources/ChristopherWolfram/OpenAILink/) is installed
17 |
18 | - ... and the required setup steps are completed.
19 |
20 | - Install the paclet [OpenAIMode](https://resources.wolframcloud.com/PacletRepository/resources/AntonAntonov/OpenAIMode/)
21 |
22 | ```mathematica
23 | PacletInstall["AntonAntonov/OpenAIMode"]
24 | ```
25 |
26 | 
27 |
28 | ```mathematica
29 | Needs["AntonAntonov`OpenAIMode`"]
30 | ```
31 |
32 | ---
33 |
34 | ## Demo
35 |
36 | Let us show how the notebook style works:
37 |
38 | - Needs
39 |
40 | - OpenAIMode
41 |
42 | - Text completion cell (shortcut: "Shift-|")
43 |
44 | - Tweak invocation parameters with SetOptions
45 |
46 | - Image generation cell (shortcuts: "Tab")
47 |
48 | ### Screenshots
49 |
50 | 
51 |
52 | 
53 |
54 | ---
55 |
56 | ## How does it work?
57 |
58 | Consider the following flowchart:
59 |
60 | ```mathematica
61 | ResourceFunction["MermaidJS"]["flowchart TDOpenAI{{OpenAI}}OpenAILink[[\"OpenAILink\"]]TCC[\"Text completion cell\"]IGC[\"Image generation cell\"] OC[\"Output cell\"]UI[/\"User input\"/]UI --> TCCUI --> IGCTCC -.-> OpenAIInputExecuteToText -.-> OpenAILinkIGC -.-> OpenAIInputExecuteToImage -.-> OpenAILinkOpenAILink <-.-> OpenAIOpenAILink -.-> OCTCC --> OCIGC --> OCsubgraph NotebookTCC OpenAIInputExecuteToTextIGC OpenAIInputExecuteToImageOCend ", "PDF", ImageSize -> 1000]
62 | ```
63 |
64 | 
65 |
66 | ---
67 |
68 | ## Concluding remarks
69 |
70 | ### Similar work
71 |
72 | - DSLMode and [RakuMode](https://community.wolfram.com/groups/-/m/t/2434981)
73 |
74 | - [DarkMode](https://resources.wolframcloud.com/FunctionRepository/resources/DarkMode/) and [DraculaTheme](https://resources.wolframcloud.com/FunctionRepository/resources/DraculaTheme/)
75 |
76 | ### Future plans (...maybe)
77 |
78 | More documentation
79 |
80 | Should this notebook style functions be part of [OpenAILink](https://resources.wolframcloud.com/PacletRepository/resources/ChristopherWolfram/OpenAILink/)?
81 |
82 | Based on feedback:
83 |
84 | - Better default options
85 |
86 | - Additional OpenAI cells
--------------------------------------------------------------------------------
/MarkdownDocuments/RandomTabularDataset-proclaim.md:
--------------------------------------------------------------------------------
1 |
2 | *(Comment to https://community.wolfram.com/groups/-/m/t/2109909)*
3 |
4 | ## Implementations
5 |
6 | I find this to be a great discussion topic!
7 |
8 | Of course, it is best to have a
9 | [Wolfram Function Repository (WFR)](https://resources.wolframcloud.com/FunctionRepository/) function that generates random datasets.
10 | I implemented such function and submitted it to WFR -- see
11 | [`RandomTabularDataset`](https://www.wolframcloud.com/obj/antononcube/DeployedResources/Function/RandomTabularDataset).
12 |
13 | Another, closely related WFR function is
14 | [`ExampleDataset`](https://resources.wolframcloud.com/FunctionRepository/resources/ExampleDataset).
15 |
16 | **Remark:** Note that I prefer the name `RandomTabularDataset` instead of `RandomDataset`. In Mathematica / WL
17 | datasets can be (deeply) hierarchical objects. Tabular datasets are simpler than the general WL datasets,
18 | but tabular data is very common, easier to explain and to reason with.
19 |
20 | ## Motivations
21 |
22 | My motivations are very similar to those of OP: rapid prototyping (of proof of concepts),
23 | thorough testing of algorithms, making unit tests.
24 |
25 | More specifically I want to:
26 |
27 | - Be able to quickly produce example datasets for my
28 | [Data Wrangling classes](https://community.wolfram.com/groups/-/m/t/2112820)
29 |
30 | - Have a large corpus of datasets to test the
31 | [Data Transformations Workflows Conversational Agent](https://github.com/antononcube/Raku-DSL-English-DataQueryWorkflows)
32 | I develop
33 |
34 | - Have a large corpus of datasets to illustrate data quality verification algorithms or frameworks, like this
35 | [Data Quality Monitoring Module](https://github.com/antononcube/HowToBeADataScientistImpostor-book/blob/master/Part-5-Software-engineering-skills/Data-Quality-Monitoring-Module.md)
36 |
37 | ## Demonstration
38 |
39 | The resource function
40 | [`ExampleDataset`](https://resources.wolframcloud.com/FunctionRepository/resources/ExampleDataset)
41 | makes datasets from
42 | [`ExampleData`](https://reference.wolfram.com/language/ref/ExampleData.html).
43 | Here is an example dataset:
44 |
45 |
46 | ```mathematica
47 | dsAW = ResourceFunction["ExampleDataset"][{"Statistics", "AnimalWeights"}]
48 | ```
49 |
50 | Here is a similar random dataset:
51 |
52 | ```mathematica
53 | SeedRandom[23];
54 | dsCW = ResourceFunction["https://www.wolframcloud.com/obj/antononcube/DeployedResources/Function/RandomTabularDataset"][
55 | {60, {"Creature", "BodyWeight", "BrainWeight"}},
56 | "Generators" -> <|
57 | 1 -> (Table[StringJoin[RandomChoice[CharacterRange["a", "z"], 5]], #] &),
58 | 2 -> FindDistribution[Normal@dsAW[All, "BodyWeight"]],
59 | 3 -> FindDistribution[Normal@dsAW[All, "BrainWeight"]]|>];
60 | IQB = Interval[Quartiles[N@Normal[dsAW[All, #BrainWeight/#BodyWeight &]]][[{1, 3}]]];
61 | dsCW[Select[IntervalMemberQ[IQB, #BrainWeight/ #BodyWeight] &]]
62 | ```
63 |
64 | **Remark:** Instead of quartile boundaries filtering we can filter with
65 | `AnomalyDetection[Normal[dsAW[All, #BrainWeight/#BodyWeight &]]]`,
66 | but the latter is prone to produce results that are "too far off."
67 |
68 | ## Neat example
69 |
70 | A random dataset with values produced by resource functions that generate random objects:
71 |
72 | ```mathematica
73 | SeedRandom[3];
74 | ResourceFunction[
75 | "https://www.wolframcloud.com/obj/antononcube/DeployedResources/\
76 | Function/RandomTabularDataset"][{5, {"Mondrian", "Mandala", "Haiku", "Scribble", "Maze", "Fortune"}},
77 | "Generators" ->
78 | <|
79 | 1 -> (ResourceFunction["RandomMondrian"][] &),
80 | 2 -> (ResourceFunction["RandomMandala"][] &),
81 | 3 -> (ResourceFunction["RandomEnglishHaiku"][] &),
82 | 4 -> (ResourceFunction["RandomScribble"][] &),
83 | 5 -> (ResourceFunction["RandomMaze"][12] &),
84 | 6 -> (ResourceFunction["RandomFortune"][] &)|>,
85 | "PointwiseGeneration" -> True]
86 | ```
87 |
--------------------------------------------------------------------------------
/Misc/AprioriAlgorithmViaTries.m:
--------------------------------------------------------------------------------
1 | (*
2 | Implementation of the Apriori algorithm via Tries in Mathematica
3 | Copyright (C) 2022 Anton Antonov
4 |
5 | This program is free software: you can redistribute it and/or modify
6 | it under the terms of the GNU General Public License as published by
7 | the Free Software Foundation, either version 3 of the License, or
8 | (at your option) any later version.
9 |
10 | This program is distributed in the hope that it will be useful,
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 | GNU General Public License for more details.
14 |
15 | You should have received a copy of the GNU General Public License
16 | along with this program. If not, see .
17 |
18 | Written by Anton Antonov,
19 | ʇǝu˙oǝʇsod@ǝqnɔuouoʇuɐ,
20 | Windermere, Florida, USA.
21 | *)
22 |
23 | (*
24 | Mathematica is (C) Copyright 1988-2022 Wolfram Research, Inc.
25 |
26 | Protected by copyright law and international treaties.
27 |
28 | Unauthorized reproduction or distribution subject to severe civil
29 | and criminal penalties.
30 |
31 | Mathematica is a registered trademark of Wolfram Research, Inc.
32 | *)
33 |
34 |
35 | If[Length[DownValues[TriesWithFrequencies`TriesCreate]] == 0,
36 | Echo["TriesWithFrequencies.m", "Importing from GitHub:"];
37 | Import["https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/master/TriesWithFrequencies.m"]
38 | ];
39 |
40 | (***********************************************************)
41 | (* Package definition *)
42 | (***********************************************************)
43 |
44 | BeginPackage["AprioriAlgorithmViaTries`"];
45 |
46 | Apriori::usage = "Apriori[baskets : {_List ..}, minSupport_?NumericQ, minItemsNumber_Integer, maxItemsNumberArg : (_Integer | Infinity)]";
47 |
48 | Begin["`Private`"];
49 |
50 | Needs["TriesWithFrequencies`"];
51 |
52 | Clear[ScanBasket];
53 | ScanBasket[basket_List, k_Integer, aFreqSets_?AssociationQ] :=
54 | Block[{candidates},
55 | candidates = Subsets[basket, {k, k}];
56 | Select[candidates, Lookup[aFreqSets, Key@Most[#], False] && Lookup[aFreqSets, Key@{Last[#]}, False] &]
57 | ] /; k > 1;
58 |
59 | Clear[Apriori];
60 | Options[Apriori] = {Counts -> False};
61 | Apriori[
62 | lsBasketsArg : {_List ..},
63 | minSupportArg_?NumericQ,
64 | minItemsNumber_Integer : 1,
65 | maxItemsNumberArg : (_Integer | Infinity) : Infinity,
66 | opts :OptionsPattern[]] :=
67 | Block[{lsBaskets = lsBasketsArg, minSupport = minSupportArg, maxItemsNumber, countsQ,
68 | aFreqSets, lsFreqSets,
69 | trBase, trSets, trSets2, aAllTries, k = 1, contQ = True,
70 | res},
71 |
72 | (*Max number of items processing*)
73 | minSupport = If[ 0 <= minSupport <= 1, minSupport * Length[lsBaskets], minSupport];
74 |
75 | (*Max number of items processing*)
76 | maxItemsNumber = Min[maxItemsNumberArg, Max[Length /@ lsBaskets]];
77 |
78 | (*To use counts or not*)
79 | countsQ = TrueQ @ OptionValue[Apriori, Counts];
80 |
81 | (*Make sure all baskets unique items*)
82 | lsBaskets = Union /@ lsBaskets;
83 |
84 | (*Make single items baskets trie*)
85 | trBase = TrieCreate[List /@ Flatten[lsBaskets]];
86 |
87 | (*Remove the items that are not frequent enough*)
88 | trBase = TrieThresholdRemove[trBase, minSupport, "Postfix" -> None];
89 |
90 | (*Verify early stop*)
91 | If[TrieDepth[trBase] == 1,
92 | Echo[Row[{"All items have support smaller than", Spacer[3], minSupport}]];
93 | Return[{}]
94 | ];
95 |
96 | (*Initial set of frequent sets*)
97 | aFreqSets =
98 | AssociationThread[List /@ Select[Tally[Flatten[lsBaskets]], #[[2]] >= minSupport &][[All, 1]], True];
99 |
100 | (*First gathered trie*)
101 | aAllTries = <|k -> trBase|>;
102 |
103 | (*Main loop*)
104 | While[contQ && k < maxItemsNumber,
105 |
106 | k++;
107 |
108 | (*Scan the baskets and make trie with viable candidates*)
109 | trSets = TrieCreate[Join @@ Map[ScanBasket[#, k, aFreqSets] &, lsBaskets]];
110 |
111 | (*Remove baskets that are not frequent enough*)
112 | trSets2 = TrieThresholdRemove[trSets, minSupport, "Postfix" -> None];
113 |
114 | (*Get frequent sets from the trie*)
115 | lsNew = Select[Rest /@ TrieGetWords[trSets2], Length[#] == k &];
116 |
117 | (*Update frequent sets*)
118 | If[Length[lsNew] == 0,
119 | contQ = False,
120 | (*ELSE*)
121 | aFreqSets = Join[aFreqSets, AssociationThread[lsNew, True]];
122 | (*Add to gathered tries*)
123 | AppendTo[aAllTries, k -> trSets2]
124 | ];
125 |
126 | ];
127 |
128 | lsFreqSets = Select[Keys[aFreqSets], Length[#] >= minItemsNumber &];
129 | res = Association@Map[# -> N[TrieRetrieve[aAllTries[Length[#]], #][$TrieValue]] &, lsFreqSets];
130 | If[countsQ, res, res / Length[lsBaskets]]
131 | ];
132 |
133 | End[];
134 |
135 | EndPackage[];
--------------------------------------------------------------------------------
/Misc/ArrayOfFunctionsRule.m:
--------------------------------------------------------------------------------
1 | (*
2 | Array of functions numerical integration rule Mathematica Package
3 | Copyright (C) 2016 Anton Antonov
4 |
5 | This program is free software: you can redistribute it and/or modify
6 | it under the terms of the GNU General Public License as published by
7 | the Free Software Foundation, either version 3 of the License, or
8 | (at your option) any later version.
9 |
10 | This program is distributed in the hope that it will be useful,
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 | GNU General Public License for more details.
14 |
15 | You should have received a copy of the GNU General Public License
16 | along with this program. If not, see .
17 |
18 | Written by Anton Antonov,
19 | antononcube @ gmail . com,
20 | Windermere, Florida, USA.
21 | *)
22 |
23 | (* :Title: ArrayOfFunctionsRule *)
24 | (* :Context: ArrayOfFunctionsRule` *)
25 | (* :Author: Anton Antonov *)
26 | (* :Date: 2016-09-10 *)
27 |
28 | (* :Package Version: 0.1 *)
29 | (* :Mathematica Version: *)
30 | (* :Copyright: (c) 2016 antonov *)
31 | (* :Keywords: *)
32 | (* :Discussion: *)
33 | (*
34 |
35 | When given an array of integrands NIntegrate is run separately over each array element. That is not
36 | necessary though -- the core NIntegrate integration strategies can work with any integrands as long as
37 | the error estimates are real numbers.
38 |
39 | The motivation for implementing ArrayOfFunctionsRule is to provide a significant speed-up for integrands
40 | that are arrays of functions. That is achived by evaluating all functions with the same integration rule
41 | abscissas and weights.
42 |
43 | -------
44 | Example
45 | -------
46 |
47 | Create a matrix of functions:
48 |
49 | funcsExpr = {Sqrt[x], Sin[x], 1/(1 + x), x^3};
50 | funcsExpr = Table[i*funcsExpr, {i, 3}];
51 | funcs = Map[Function[{fx}, Function[Evaluate[fx /. x -> #]]], funcsExpr, {2}]
52 |
53 |
54 | Numerically integrate with ArrayOfFunctionsRule:
55 |
56 | res =
57 | NIntegrate[1, {x, 0, 2},
58 | Method -> {"GlobalAdaptive", "SingularityHandler" -> None,
59 | Method -> {ArrayOfFunctionsRule, "Functions" -> funcs}}]
60 |
61 | (* {{1.88562, 1.41615, 1.09861, 4.}, {3.77124, 2.83229, 2.19722, 8.}, {5.65685, 4.24844, 3.29584, 12.}} *)
62 |
63 |
64 | Compare with the standard NIntegrate
65 |
66 | res0 = NIntegrate[funcsExpr, {x, 0, 2}]
67 |
68 | (* {{1.88562, 1.41615, 1.09861, 4.}, {3.77124, 2.83229, 2.19722, 8.}, {5.65685, 4.24844, 3.29584, 12.}} *)
69 |
70 | Norm[res - res0, 2]
71 |
72 | (* 7.17894*10^-7 *)
73 |
74 | Note that the rule has to be used with a strategy specification that has the option
75 |
76 | "SingularityHandler" -> None
77 |
78 | and that the rule does not perform correctly over ranges with infinity.
79 |
80 | TODO:
81 |
82 | 1. Re-design signatures.
83 | 2. Implement multi-dimensional integration.
84 | 3. Better error or wrong specifications handling.
85 |
86 | This file was created using Mathematica Plugin for IntelliJ IDEA.
87 |
88 | Anton Antonov
89 | 2016-09-10
90 |
91 | *)
92 |
93 | BeginPackage["ArrayOfFunctionsRule`"]
94 |
95 | ArrayOfFunctionsRule::usage = "An NIntegrate numerical integration rule for integrands that are arrays of functions."
96 |
97 | Begin["`Private`"]
98 |
99 | Clear[ArrayOfFunctionsRule];
100 | Options[ArrayOfFunctionsRule] = {"Method" -> "GaussKronrodRule",
101 | "Functions" -> {},
102 | "ErrorsNormFunction" -> (Norm[#, Infinity] &)};
103 |
104 | ArrayOfFunctionsRuleProperties = Part[Options[ArrayOfFunctionsRule], All, 1];
105 |
106 | ArrayOfFunctionsRule::narr = "Array of functions is expected as a value of the option \"Functions\".";
107 |
108 | ArrayOfFunctionsRule /:
109 | NIntegrate`InitializeIntegrationRule[ArrayOfFunctionsRule, nfs_, ranges_, ruleOpts_, allOpts_] :=
110 |
111 | Module[{t, methodSpec, funcsArr, errNormFunc, pos, absc, weights,
112 | errweights, x, vars, funcsExpr, nf},
113 |
114 | t = NIntegrate`GetMethodOptionValues[ArrayOfFunctionsRule,
115 | ArrayOfFunctionsRuleProperties, ruleOpts];
116 | If[t === $Failed, Return[$Failed]];
117 | {methodSpec, funcsArr, errNormFunc} = t;
118 |
119 | If[ !ArrayQ[funcsArr],
120 | Message[ArrayOfFunctionsRule::narr];
121 | Return[$Failed];
122 | ];
123 |
124 | t = NIntegrate`MOptionValue[methodSpec, nfs, ranges, allOpts];
125 |
126 | If[t === $Failed, Return[$Failed]];
127 |
128 | If[ ArrayQ[funcsArr, _, Head[#] === Function &],
129 | vars = {x};
130 | funcsExpr = Map[#[x] &, funcsArr, {Length@Dimensions[funcsArr]}],
131 | (* ELSE *)
132 | vars = nfs[[1]]["ArgumentNames"];
133 | funcsExpr = funcsArr;
134 | ];
135 | nf = Experimental`CreateNumericalFunction[{#, {}} & /@ vars, funcsExpr, Dimensions[funcsExpr], _Real & /@ vars];
136 |
137 | ArrayOfFunctionsRule[t, funcsArr, errNormFunc, nf]
138 | ];
139 |
140 |
141 | ArrayOfFunctionsRule[methodRule_, funcsVec_, errNormFunc_, nf_]["ApproximateIntegral"[region_]] :=
142 | Block[{a, b, currentRule, integrals, errors, absc, weights, errweights, res},
143 |
144 | {absc, weights, errweights} = methodRule[[1]];
145 |
146 | {a, b} = region["Boundaries"][[1]];
147 | currentRule = region["GetRule"[]];
148 | region["SetRule"[methodRule]];
149 | region["SetIntegrand"[nf]];
150 | res = region["ApplyRule"];
151 | region["SetRule"[currentRule]];
152 | {integrals, errors} = res[[1 ;; 2]];
153 | (*If[k < 3,*)
154 | (*k++;*)
155 | (*Print[region["Properties"]];*)
156 | (*Print[region["GetSamplingPoints"[]]];*)
157 | (*Print[region["EvaluateTransformedIntegrand"[#]] & /@ absc];*)
158 | (*Print[region["Integrand"]];*)
159 | (*Print[region["Boundaries"]];*)
160 | (*Print[region["OriginalBoundaries"]];*)
161 | (*];*)
162 | {integrals, errNormFunc[errors], 1}
163 | ];
164 | End[] (* `Private` *)
165 |
166 | EndPackage[]
--------------------------------------------------------------------------------
/Misc/LeftAlignedPresentationReStyling.m:
--------------------------------------------------------------------------------
1 | (*
2 | Left Aligned Presentation Re-styling Mode Mathematica package
3 |
4 | BSD 3-Clause License
5 |
6 | Copyright (c) 2022, Anton Antonov
7 | All rights reserved.
8 |
9 | Redistribution and use in source and binary forms, with or without
10 | modification, are permitted provided that the following conditions are met:
11 |
12 | * Redistributions of source code must retain the above copyright notice, this
13 | list of conditions and the following disclaimer.
14 |
15 | * Redistributions in binary form must reproduce the above copyright notice,
16 | this list of conditions and the following disclaimer in the documentation
17 | and/or other materials provided with the distribution.
18 |
19 | * Neither the name of the copyright holder nor the names of its
20 | contributors may be used to endorse or promote products derived from
21 | this software without specific prior written permission.
22 |
23 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
24 | AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 | IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
26 | DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
27 | FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 | DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29 | SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
30 | CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31 | OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 | OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 |
34 | Written by Anton Antonov,
35 | ʇǝu˙oǝʇsod@ǝqnɔuouoʇuɐ,
36 | Windermere, Florida, USA.
37 | *)
38 | (* Created by the Wolfram Language Plugin for IntelliJ, see http://wlplugin.halirutan.de/ *)
39 |
40 | (* :Title: LeftAlignedPresentationReStyling *)
41 | (* :Context: LeftAlignedPresentationReStyling` *)
42 | (* :Author: Anton Antonov *)
43 | (* :Date: 2022-02-21 *)
44 |
45 | (* :Package Version: 0.1 *)
46 | (* :Mathematica Version: 12.1 *)
47 | (* :Copyright: (c) 2022 Anton Antonov *)
48 | (* :Keywords: *)
49 | (* :Discussion: *)
50 |
51 | BeginPackage["LeftAlignedPresentationReStyling`"];
52 | (* Exported symbols added here with SymbolName::usage *)
53 | LeftAlignedPresentationMode::usage = "Restyle the notebook to use the left border aligned presentation cell styles.";
54 |
55 | Begin["`Private`"];
56 |
57 | nbReStyle =
58 | Notebook[{
59 | Cell[StyleData[StyleDefinitions -> "Default.nb"]],
60 |
61 | (* Original *)
62 | (* Cell[StyleData["Input", "SlideShow"],*)
63 | (* CellMargins->{{*)
64 | (* 0.135 FrontEnd`AbsoluteCurrentValue[{WindowSize, 1}], 0.01*)
65 | (* FrontEnd`AbsoluteCurrentValue[{WindowSize, 1}]}, {8, 15}},*)
66 | (* LinebreakAdjustments->{1, 2., 12., 1., 1.},*)
67 | (* FontSize->20],*)
68 | Cell[StyleData["Text", "SlideShow"], CellMargins->{{66, 10}, {5, 8}}],
69 | Cell[StyleData["Item", "SlideShow"], CellMargins->{{81, 10}, {4, 8}}],
70 | Cell[StyleData["ItemParagraph", "SlideShow"], CellMargins->{{81, 10}, {4, 1}}],
71 | Cell[StyleData["Subitem", "SlideShow"], CellMargins->{{105, 12}, {4, 4}}],
72 | Cell[StyleData["Subsubitem", "SlideShow"], CellMargins->{{129, 12}, {4, 4}}],
73 | Cell[StyleData["SubsubitemParagraph", "SlideShow"], CellMargins->{{129, 12}, {4, 4}}],
74 |
75 | Cell[StyleData["ItemNumbered", "SlideShow"], CellMargins->{{81, 10}, {4, 8}}],
76 | Cell[StyleData["SubitemNumbered", "SlideShow"], CellMargins->{{105, 12}, {4, 4}}],
77 | Cell[StyleData["SubsubitemNumbered", "SlideShow"], CellMargins->{{129, 12}, {4, 4}}],
78 |
79 | Cell[StyleData["Section", "SlideShow"], CellMargins->{{27, Inherited}, {8, 18}}],
80 | Cell[StyleData["Subsection", "SlideShow"], CellMargins->{{50.34765625, 3.}, {8., 20.}}],
81 | Cell[StyleData["Subsubsection", "SlideShow"], CellMargins->{{66, Inherited}, {8, 12}}],
82 |
83 | Cell[StyleData["Input", "SlideShow"], CellMargins->{{66, 10}, {5, 8}}],
84 |
85 | Cell[StyleData["Output", "SlideShow"], CellMargins->{{66, 10}, {5, 8}}],
86 |
87 | Cell[StyleData["Echo", "SlideShow"], CellMargins->{{66, 10}, {5, 8}}],
88 |
89 | Cell[StyleData["ExternalLanguage", "SlideShow"], CellMargins->{{66, 10}, {5, 8}}],
90 |
91 | Cell[StyleData["Code", "SlideShow"], CellMargins->{{66, 10}, {5, 8}}]
92 | },
93 | WindowSize -> {857, 887},
94 | WindowMargins -> {{373, Automatic}, {Automatic, 219}},
95 | FrontEndVersion -> "12.1 for Mac OS X x86 (64-bit) (June 19, 2020)",
96 | StyleDefinitions -> "PrivateStylesheetFormatting.nb"
97 | ];
98 |
99 | Clear[LeftAlignedPresentationMode] ;
100 | LeftAlignedPresentationMode[True] = LeftAlignedPresentationMode[];
101 |
102 | LeftAlignedPresentationMode[] := LeftAlignedPresentationMode[EvaluationNotebook[]];
103 |
104 | LeftAlignedPresentationMode[nb_NotebookObject, True] := LeftAlignedPresentationMode[nb];
105 |
106 | LeftAlignedPresentationMode[nb_NotebookObject] :=
107 | Block[{},
108 | SetOptions[nb, StyleDefinitions -> BinaryDeserialize[BinarySerialize[nbReStyle]]]
109 | ];
110 |
111 | LeftAlignedPresentationMode[ False] := SetOptions[EvaluationNotebook[], StyleDefinitions -> "Default.nb"];
112 |
113 | LeftAlignedPresentationMode[nb_NotebookObject, False] := SetOptions[nb, StyleDefinitions -> "Default.nb"];
114 |
115 | End[]; (* `Private` *)
116 |
117 | EndPackage[]
--------------------------------------------------------------------------------
/Misc/NeuralNetworkGraph.m:
--------------------------------------------------------------------------------
1 | (*
2 | Neural network graph Mathematica package
3 | Copyright (C) 2018-2022 Anton Antonov
4 |
5 | This program is free software: you can redistribute it and/or modify
6 | it under the terms of the GNU General Public License as published by
7 | the Free Software Foundation, either version 3 of the License, or
8 | (at your option) any later version.
9 |
10 | This program is distributed in the hope that it will be useful,
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 | GNU General Public License for more details.
14 |
15 | You should have received a copy of the GNU General Public License
16 | along with this program. If not, see .
17 |
18 | Written by Anton Antonov,
19 | ʇǝu˙oǝʇsod@ǝqnɔuouoʇuɐ
20 | Windermere, Florida, USA.
21 | *)
22 |
23 | (*
24 | Mathematica is (C) Copyright 1988-2022 Wolfram Research, Inc.
25 |
26 | Protected by copyright law and international treaties.
27 |
28 | Unauthorized reproduction or distribution subject to severe civil
29 | and criminal penalties.
30 |
31 | Mathematica is a registered trademark of Wolfram Research, Inc.
32 | *)
33 |
34 | (* Mathematica Package *)
35 | (* Created by the Wolfram Language Plugin for IntelliJ, see http://wlplugin.halirutan.de/ *)
36 |
37 | (* :Title: NeuralNetworkGraph *)
38 | (* :Context: NeuralNetworkGraph` *)
39 | (* :Author: Anton Antonov *)
40 | (* :Date: 2022-09-16 *)
41 |
42 | (* :Package Version: 0.1 *)
43 | (* :Mathematica Version: 13.1 *)
44 | (* :Copyright: (c) 2022 Anton Antonov *)
45 | (* :Keywords: *)
46 | (* :Discussion:
47 |
48 | Based on codes in the discussions:
49 |
50 | - ["Neural network illustrations"](https://mathematica.stackexchange.com/q/175686/34008)
51 | - ["Please share neural network illustrations"](https://community.wolfram.com/groups/-/m/t/1360660)
52 |
53 | *)
54 |
55 | BeginPackage["NeuralNetworkGraph`"];
56 |
57 | NeuralNetworkGraph::usage = "NeuralNetworkGraph[layerCounts : ( {_Integer...} | _Association )] \
58 | produces a graph that illustrates a neural network.";
59 |
60 | Begin["`Private`"];
61 |
62 | Clear[NeuralNetworkGraph];
63 |
64 | Options[NeuralNetworkGraph] = Options[Graph];
65 |
66 | NeuralNetworkGraph[layerCounts : {_Integer ..}, opts:OptionsPattern[]] :=
67 | NeuralNetworkGraph[AssociationThread[Row[{"layer ", #}] & /@ Range@Length[layerCounts], layerCounts], opts];
68 |
69 | NeuralNetworkGraph[namedLayerCounts_Association, opts:OptionsPattern[]] :=
70 | Block[{graphUnion, graph, vstyle,
71 | layerCounts = Values[namedLayerCounts],
72 | layerCountsNames = Keys[namedLayerCounts]},
73 | graphUnion[g_?GraphQ] := g;
74 | graphUnion[g__?GraphQ] := GraphUnion[g];
75 | graph =
76 | graphUnion @@
77 | MapThread[
78 | IndexGraph, {CompleteGraph /@ Partition[layerCounts, 2, 1],
79 | FoldList[Plus, 0, layerCounts[[;; -3]]]}];
80 | vstyle =
81 | Catenate[
82 | Thread /@
83 | Thread[TakeList[VertexList[graph], layerCounts] ->
84 | ColorData[97] /@ Range@Length[layerCounts]]];
85 | graph =
86 | Graph[graph, opts,
87 | GraphLayout -> {"MultipartiteEmbedding",
88 | "VertexPartition" -> layerCounts}, GraphStyle -> "BasicBlack",
89 | VertexSize -> 0.5, VertexStyle -> vstyle];
90 | Legended[graph,
91 | Placed[PointLegend[ColorData[97] /@ Range@Length[layerCounts],
92 | layerCountsNames, LegendMarkerSize -> 30, LegendLayout -> "Row"], Below]]
93 | ];
94 |
95 | End[]; (* `Private` *)
96 |
97 | EndPackage[]
--------------------------------------------------------------------------------
/Misc/Soundex.m:
--------------------------------------------------------------------------------
1 | (*
2 | Soundex Mathematica package
3 | Copyright (C) 2017 Anton Antonov
4 |
5 | This program is free software: you can redistribute it and/or modify
6 | it under the terms of the GNU General Public License as published by
7 | the Free Software Foundation, either version 3 of the License, or
8 | (at your option) any later version.
9 |
10 | This program is distributed in the hope that it will be useful,
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 | GNU General Public License for more details.
14 |
15 | You should have received a copy of the GNU General Public License
16 | along with this program. If not, see .
17 |
18 | Written by Anton Antonov,
19 | ʇǝu˙oǝʇsod@ǝqnɔuouoʇuɐ
20 | Windermere, Florida, USA.
21 | *)
22 |
23 | (*
24 | Mathematica is (C) Copyright 1988-2022 Wolfram Research, Inc.
25 |
26 | Protected by copyright law and international treaties.
27 |
28 | Unauthorized reproduction or distribution subject to severe civil
29 | and criminal penalties.
30 |
31 | Mathematica is a registered trademark of Wolfram Research, Inc.
32 | *)
33 |
34 | (* :Title: Soundex *)
35 | (* :Context: Soundex` *)
36 | (* :Author: Anton Antonov *)
37 | (* :Date: 2017-11-11 *)
38 |
39 | (* :Package Version: 1.0 *)
40 | (* :Mathematica Version: *)
41 | (* :Copyright: (c) 2017 Anton Antonov *)
42 | (* :Keywords: *)
43 | (* :Discussion:
44 |
45 | # Introduction
46 |
47 | For the Soundex general idea and algorithm see [1]. Here is the opening paragraph of [1]:
48 |
49 | "Soundex is a phonetic algorithm for indexing names by sound, as pronounced in English.
50 | The goal is for homophones to be encoded to the same representation so that they can be matched
51 | despite minor differences in spelling. The algorithm mainly encodes consonants;
52 | a vowel will not be encoded unless it is the first letter. Soundex is the most widely known
53 | of all phonetic algorithms (in part because it is a standard feature of popular database
54 | software such as DB2, PostgreSQL, MySQL, SQLite, Ingres, MS SQL Server and Oracle).
55 | Improvements to Soundex are the basis for many modern phonetic algorithms."
56 |
57 |
58 | # Algorithm steps
59 |
60 | The code below is based on the second variant in [1].
61 |
62 | 1. Save the first letter. Remove all occurrences of 'h' and 'w' except first letter.
63 |
64 | 2. Replace all consonants (including the first letter) with digits as follows:
65 |
66 | b, f, p, v → 1
67 | c, g, j, k, q, s, x, z → 2
68 | d, t → 3
69 | l → 4
70 | m, n → 5
71 | r → 6
72 |
73 | 3. Replace all adjacent same digits with one digit.
74 |
75 | 4. Remove all occurrences of a, e, i, o, u, y except the first letter.
76 |
77 | 5. If the first symbol is a digit replace it with the letter saved on step 1.
78 |
79 | 6. Append 3 zeros if the result contains less than 3 digits.
80 | Remove all characters except the first letter and 3 digits after it.
81 |
82 |
83 | # References
84 |
85 | [1] Wikipedia entry, Soundex, https://en.wikipedia.org/wiki/Soundex .
86 |
87 | *)
88 |
89 | BeginPackage["Soundex`"];
90 |
91 | Soundex::usage = "Soundex[word] finds the Soundex phonetic index of a given string.";
92 |
93 |
94 | Begin["`Private`"];
95 |
96 | Clear[Soundex];
97 | Soundex[word_String] :=
98 | Block[{sword = ToLowerCase[word], f, res},
99 | (*1*)
100 | f = StringTake[sword, {1, 1}];
101 | res = StringDelete[StringTake[sword, {2, -1}], RegularExpression["[hw]"]];
102 | (*2*)
103 | res =
104 | StringReplace[
105 | f <> res,
106 | {RegularExpression["[bfpv]"] -> "1",
107 | RegularExpression["[cgjkqsxz]"] -> "2",
108 | RegularExpression["[dt]"] -> "3",
109 | "l" -> "4",
110 | RegularExpression["[mn]"] -> "5",
111 | "r" -> "6"}];
112 | (*3*)
113 | res = StringReplace[res, (x_ ~~ x_) :> x];
114 | (*4*)
115 | res = StringDelete[res, RegularExpression["[aeiouy]"]];
116 | (*5*)
117 | If[StringLength[res] == 0, res = f];
118 | res = StringReplace[res, StartOfString ~~ DigitCharacter :> f];
119 | (*6*)
120 | If[StringLength[res] < 4,
121 | res = res <> "000";
122 | ];
123 | res = StringTake[res, 4];
124 | res
125 | ];
126 |
127 | End[]; (* `Private` *)
128 |
129 | EndPackage[]
--------------------------------------------------------------------------------
/Misc/TileGraph.m:
--------------------------------------------------------------------------------
1 | (*
2 | Tile graph Mathematica package
3 | Copyright (C) 2022 Anton Antonov
4 |
5 | This program is free software: you can redistribute it and/or modify
6 | it under the terms of the GNU General Public License as published by
7 | the Free Software Foundation, either version 3 of the License, or
8 | (at your option) any later version.
9 |
10 | This program is distributed in the hope that it will be useful,
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 | GNU General Public License for more details.
14 |
15 | You should have received a copy of the GNU General Public License
16 | along with this program. If not, see .
17 |
18 | Written by Anton Antonov,
19 | ʇǝu˙oǝʇsod@ǝqnɔuouoʇuɐ,
20 | Windermere, Florida, USA.
21 | *)
22 |
23 | (*
24 | Mathematica is (C) Copyright 1988-2022 Wolfram Research, Inc.
25 |
26 | Protected by copyright law and international treaties.
27 |
28 | Unauthorized reproduction or distribution subject to severe civil
29 | and criminal penalties.
30 |
31 | Mathematica is a registered trademark of Wolfram Research, Inc.
32 | *)
33 |
34 | (* :Title: TileGraph *)
35 | (* :Context: TileGraph` *)
36 | (* :Author: Anton Antonov *)
37 | (* :Date: 2022-05-01 *)
38 |
39 | (* :Package Version: 0.8 *)
40 | (* :Mathematica Version: 13.0 *)
41 | (* :Copyright: (c) 2022 Anton Antonov *)
42 | (* :Keywords: Tile, Rectangle, Binning, Histogram, Graph, Mathematica, Wolfram Language, WL *)
43 | (* :Discussion:
44 |
45 | # In brief
46 |
47 | This package has a function that makes graphs that correspond to rectangular tile binning.
48 |
49 | It is a modified version of the package HextileGraph.m :
50 | https://github.com/antononcube/MathematicaForPrediction/blob/master/Misc/HextileGraph.m
51 | *)
52 |
53 | (**************************************************************)
54 | (* Importing packages (if needed) *)
55 | (**************************************************************)
56 |
57 | If[Length[DownValues[TileBins`TileBins]] == 0,
58 | Echo["TileBins.m", "Importing from GitHub:"];
59 | Import["https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/master/Misc/TileBins.m"]
60 | ];
61 |
62 |
63 | (**************************************************************)
64 | (* Package definition *)
65 | (**************************************************************)
66 |
67 | BeginPackage["TileGraph`"];
68 |
69 | TileGraph::usage = "TileGraph[aLonLatValue, cellRadius, opts] \
70 | makes a rectangular tiling graph for specified data.";
71 |
72 | Begin["`Private`"];
73 |
74 | Needs["TileBins`"];
75 |
76 | (***********************************************************)
77 | (* TileGraph *)
78 | (***********************************************************)
79 |
80 | Clear[TileGraph];
81 |
82 | TileGraph::"nbm" = "The value of the option \"BinMethod\" is expected to be one of \"TileGraph\" or \"GeoHistogram\".";
83 |
84 | TileGraph::"mr" = "If the value of the option \"BinMethod\" is `1` then the second argument is expected to be `2`.";
85 |
86 | Options[TileGraph] :=
87 | Join[
88 | {"BinMethod" -> "TileGraph", "RemoveLoneCells" -> False},
89 | Options[TileBins],
90 | Options[GeoHistogram],
91 | Options[NearestNeighborGraph]
92 | ];
93 |
94 | TileGraph[
95 | aLonLatValue : Association[({_?NumberQ, _?NumberQ} -> _?NumberQ) ..],
96 | cellRadius : (_?NumberQ | _Quantity),
97 | opts : OptionsPattern[] ] :=
98 |
99 | Block[{binMethod, removeLoneCellsQ, aPolygonValues, lsCells, aCells,
100 | nc, lsDistances, pos, grSquareCellsNetwork, grSquareCells},
101 |
102 | binMethod = OptionValue[TileGraph, "BinMethod"];
103 | removeLoneCellsQ = TrueQ[OptionValue[TileGraph, "RemoveLoneCells"]];
104 |
105 | Which[
106 | ToLowerCase["TileGraph"] == ToLowerCase[binMethod] && NumberQ[cellRadius],
107 | aPolygonValues = TileBins[aLonLatValue, cellRadius, FilterRules[{opts}, Options[TileBins]]],
108 |
109 | ToLowerCase["TileGraph"] == ToLowerCase[binMethod] && !NumberQ[cellRadius],
110 | Message[TileGraph::"mr", "\"TileGraph\"", "a number"];
111 | Return[$Failed],
112 |
113 | True,
114 | Message[TileGraph::"nbm"];
115 | Return[$Failed]
116 | ];
117 |
118 | (* Make cell objects *)
119 |
120 | lsCells = KeyValueMap[<|"Value" -> #2, "Cell" -> #1, "Center" -> Mean[PolygonCoordinates[#1]]|> &, aPolygonValues];
121 | lsCells = SortBy[lsCells, #["Center"] &];
122 | aCells = AssociationThread[Range[Length[lsCells]], lsCells];
123 | aCells = Association@KeyValueMap[#1 -> Prepend[#2, "ID" -> #1] &, aCells];
124 |
125 | (* Create a function to find the nearest cell to a given position *)
126 | nc = Nearest[Values[aCells] -> Keys[aCells], DistanceFunction -> (EuclideanDistance[#1["Center"], #2["Center"]] &)];
127 |
128 | lsDistances = Select[Flatten@DistanceMatrix[Values[#["Center"] & /@ aCells]], # > 0 &];
129 |
130 | (* Identify outlier(s) and drop them *)
131 | If[removeLoneCellsQ,
132 | pos = Select[nc[#, {8, 1.1 * Min[lsDistances] * Sqrt[2]}] & /@ aCells, Length[#] == 1 &];
133 | aCells = KeyDrop[aCells, Keys[pos]];
134 | ];
135 |
136 | (* Reassign cell ID's *)
137 | aCells = AssociationThread[Range[Length[aCells]], Values[aCells]];
138 | aCells = Association@KeyValueMap[#1 -> Prepend[#2, "ID" -> #1] &, aCells];
139 |
140 | (* Make neighbors graph *)
141 | grSquareCellsNetwork =
142 | NearestNeighborGraph[
143 | Keys[aCells], {9, Min[lsDistances] * Sqrt[2]},
144 | DistanceFunction -> (EuclideanDistance[aCells[#1]["Center"], aCells[#2]["Center"]] &),
145 | VertexCoordinates -> KeyValueMap[#1 -> #2["Center"] &, aCells],
146 | FilterRules[{opts}, Options[NearestNeighborGraph]]
147 | ];
148 |
149 | (* Make final graph *)
150 | grSquareCells =
151 | Graph[
152 | DirectedEdge @@@
153 | Join[
154 | EdgeList[grSquareCellsNetwork],
155 | Reverse /@ EdgeList[grSquareCellsNetwork]
156 | ],
157 | DirectedEdges -> True,
158 | VertexCoordinates -> KeyValueMap[#1 -> #2["Center"] &, aCells],
159 | FilterRules[{opts}, Options[Graph]]
160 | ]
161 | ];
162 |
163 |
164 | End[]; (* `Private` *)
165 |
166 | EndPackage[]
--------------------------------------------------------------------------------
/Misc/TilingUtilizationFunctions.m:
--------------------------------------------------------------------------------
1 | (*
2 | Tiling utilization functions Mathematica package
3 | Copyright (C) 2020 Anton Antonov
4 |
5 | This program is free software: you can redistribute it and/or modify
6 | it under the terms of the GNU General Public License as published by
7 | the Free Software Foundation, either version 3 of the License, or
8 | (at your option) any later version.
9 |
10 | This program is distributed in the hope that it will be useful,
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 | GNU General Public License for more details.
14 |
15 | You should have received a copy of the GNU General Public License
16 | along with this program. If not, see .
17 |
18 | Written by Anton Antonov,
19 | ʇǝu˙oǝʇsod@ǝqnɔuouoʇuɐ,
20 | Windermere, Florida, USA.
21 | *)
22 |
23 | (*
24 | Mathematica is (C) Copyright 1988-2022 Wolfram Research, Inc.
25 |
26 | Protected by copyright law and international treaties.
27 |
28 | Unauthorized reproduction or distribution subject to severe civil
29 | and criminal penalties.
30 |
31 | Mathematica is a registered trademark of Wolfram Research, Inc.
32 | *)
33 |
34 | (* :Title: TilingUtilizationFunctions *)
35 | (* :Context: TilingUtilizationFunctions` *)
36 | (* :Author: Anton Antonov *)
37 | (* :Date: 2020-05-04 *)
38 |
39 | (* :Package Version: 0.1 *)
40 | (* :Mathematica Version: 12.1 *)
41 | (* :Copyright: (c) 2020 Anton Antonov *)
42 | (* :Keywords: Hextile, Hexagon, Tile, Rectangle, Binning, Histogram, Polygon, Mathematica, Wolfram Language, WL *)
43 | (* :Discussion: *)
44 |
45 | (*********************************************************)
46 | (* Load needed packages *)
47 | (*********************************************************)
48 |
49 | If[Length[DownValues[HextileBins`HextileBins]] == 0,
50 | Echo["HextileBins.m", "Importing from GitHub:"];
51 | Import["https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/master/Misc/HextileBins.m"]
52 | ];
53 |
54 | If[Length[DownValues[TileBins`TileBins]] == 0,
55 | Echo["TileBins.m", "Importing from GitHub:"];
56 | Import["https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/master/Misc/TileBins.m"]
57 | ];
58 |
59 |
60 | (*********************************************************)
61 | (* Package definition *)
62 | (*********************************************************)
63 |
64 | BeginPackage["TilingUtilizationFunctions`"];
65 | (* Exported symbols added here with SymbolName::usage *)
66 |
67 | TileTagging::usage = "TileTagging[ aPoints : Association[ ( _ -> { _?NumericQ, _?NumericQ} ).. ], cellSize_?NumericQ, ___] \
68 | produces a tile tagging system for specified 2D points with ID's.";
69 |
70 | Begin["`Private`"];
71 |
72 | Needs["HextileBins`"];
73 | Needs["TileBins`"];
74 |
75 | (*********************************************************)
76 | (* TileTagging *)
77 | (*********************************************************)
78 |
79 | Clear[TileTagging];
80 |
81 | SyntaxInformation[TileTagging] = { "ArgumentsPattern" -> { _, _, OptionsPattern[] } };
82 |
83 | Options[TileTagging] = { "TilingFunction" -> HextileBins };
84 |
85 | TileTagging[ aPoints : Association[ ( _ -> { _?NumericQ, _?NumericQ } ).. ], cellSize_?NumericQ, opts : OptionsPattern[] ] :=
86 | Block[{tilingFunc, aTileBins, aTileBinCenters, nf, aCellIDs},
87 |
88 | tilingFunc = OptionValue[TileTagging, "TilingFunction"];
89 |
90 | aTileBins = KeySortBy[tilingFunc[Values@aPoints, cellSize], Mean@*PolygonCoordinates];
91 |
92 | aTileBinCenters = KeyMap[Mean@*PolygonCoordinates, aTileBins];
93 |
94 | nf = Nearest[Keys[aTileBinCenters] -> "Index"];
95 |
96 | aCellIDs = Map[First[nf[#]] &, aPoints];
97 |
98 | <| "TileTagging" -> aCellIDs, "TileBins" -> aTileBins, "NearestTileCenterFunction" -> nf |>
99 |
100 | ] /; NumberQ[cellSize] && cellSize > 0;
101 |
102 | TileTagging[___] :=
103 | Block[{},
104 | $Failed
105 | ];
106 |
107 | End[]; (* `Private` *)
108 |
109 | EndPackage[]
--------------------------------------------------------------------------------
/Misc/WeatherEventRecords.m:
--------------------------------------------------------------------------------
1 | (*
2 | Weather event records data Mathematica package
3 | Copyright (C) 2018 Anton Antonov
4 |
5 | This program is free software: you can redistribute it and/or modify
6 | it under the terms of the GNU General Public License as published by
7 | the Free Software Foundation, either version 3 of the License, or
8 | (at your option) any later version.
9 |
10 | This program is distributed in the hope that it will be useful,
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 | GNU General Public License for more details.
14 |
15 | You should have received a copy of the GNU General Public License
16 | along with this program. If not, see .
17 |
18 | Written by Anton Antonov,
19 | antononcube @ gmail . com,
20 | Windermere, Florida, USA.
21 | *)
22 |
23 | (*
24 | Mathematica is (C) Copyright 1988-2018 Wolfram Research, Inc.
25 |
26 | Protected by copyright law and international treaties.
27 |
28 | Unauthorized reproduction or distribution subject to severe civil
29 | and criminal penalties.
30 |
31 | Mathematica is a registered trademark of Wolfram Research, Inc.
32 | *)
33 |
34 | (* :Title: WeatherEventRecords *)
35 | (* :Context: WeatherEventRecords` *)
36 | (* :Author: Anton Antonov *)
37 | (* :Date: 2018-09-20 *)
38 |
39 | (* :Package Version: 0.1 *)
40 | (* :Mathematica Version: 11.3 *)
41 | (* :Copyright: (c) 2018 Anton Antonov *)
42 | (* :Keywords: weather data, long form, database, star schema, even data, time series *)
43 | (* :Discussion:
44 |
45 |
46 | # In brief
47 |
48 | This package provides a function that extracts weather data using specifications for:
49 | cities, date range, weather data variables, and number of stations.
50 |
51 | The main inspiration to make this package is need for example data in order to document
52 | the ERTMon package [1]; see [2].
53 |
54 |
55 | # Usage example
56 |
57 | citiesSpec = {{"Miami", "USA"}, {"Chicago", "USA"}, {"London", "UK"}, {"Melbourne", "Australia"}};
58 | wProps = {"Temperature", "Pressure", "Humidity", "WindSpeed"};
59 |
60 | res = WeatherEventRecords[citiesSpec, {{2018, 5, 1}, {2018, 8, 31}}, wProps, 2]
61 |
62 | RecordsSummary[res]
63 |
64 | DateListPlot[res["eventRecords"][Select[#EntityID == "KMFL" && #Variable == "Pressure" &], {"ObservationTime", "Value"}]]
65 |
66 |
67 | # References
68 |
69 | [1] Anton Antonov, Monadic Event Records Transformations Mathematica package, (2018), MathematicaForPrediction at GitHub.
70 | URL: https://github.com/antononcube/MathematicaForPrediction/blob/master/MonadicProgramming/MonadicEventRecordsTransformations.m .
71 |
72 | [2] Anton Antonov, Parametrized event records data transformations, (2018), MathematicaForPrediction at GitHub.
73 | URL: https://github.com/antononcube/MathematicaForPrediction/blob/master/MarkdownDocuments/Parametrized-event-records-data-transformations.md
74 |
75 |
76 | Anton Antonov
77 | 2018-09-20
78 | Windermere, FL, USA
79 |
80 | *)
81 |
82 | (**************************************************************)
83 | (* Importing packages (if needed) *)
84 | (**************************************************************)
85 |
86 | If[Length[DownValues[MathematicaForPredictionUtilities`RecordsSummary]] == 0,
87 | Echo["MathematicaForPredictionUtilities.m", "Importing from GitHub:"];
88 | Import["https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/master/MathematicaForPredictionUtilities.m"]
89 | ];
90 |
91 | If[Length[DownValues[DataReshape`ToLongForm]] == 0,
92 | Echo["DataReshape.m", "Importing from GitHub:"];
93 | Import["https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/master/DataReshape.m"]
94 | ];
95 |
96 |
97 | (**************************************************************)
98 | (* Package definition *)
99 | (**************************************************************)
100 |
101 | BeginPackage["WeatherEventRecords`"];
102 | (* Exported symbols added here with SymbolName::usage *)
103 |
104 | WeatherEventRecords::usage = "\
105 | WeatherEventRecords[ \
106 | citiesSpec_: {{_String, _String}..}, \
107 | dateRange:{{_Integer, _Integer, _Integer}, {_Integer, _Integer, _Integer}}, \
108 | wProps:{_String..} : {\"Temperature\"}, \
109 | nStations_Integer : 1 ] \
110 | gives an association with event records data."
111 |
112 | Begin["`Private`"];
113 |
114 | Needs["DataReshape`"];
115 |
116 | Clear[WeatherEventRecords];
117 |
118 | WeatherEventRecords[
119 | citiesSpec_: {{_String, _String}..},
120 | dateRange:{{_Integer, _Integer, _Integer}, {_Integer, _Integer, _Integer}},
121 | wProps:{_String..} : {"Temperature"},
122 | nStations_Integer : 1 ] :=
123 |
124 | Block[{wStations, aWStations, tsData, XXX, eventRecords, entityAttributes},
125 |
126 | wStations = WeatherData[{#, nStations}] & /@ citiesSpec;
127 | wStations = Map[#[[2]] &, wStations, {2}];
128 |
129 | aWStations =
130 | Join @@ MapThread[
131 | AssociationThread[#1, XXX] /. XXX -> #2 &, {wStations, citiesSpec}];
132 |
133 | tsData =
134 | Association@
135 | Flatten@Outer[{#1, #2} ->
136 | WeatherData[#1, #2, {dateRange[[1]], dateRange[[2]], "Day"}] &,
137 | Keys[aWStations], wProps, 1];
138 |
139 | If[ !AssociationQ[tsData], Return[$Failed]];
140 |
141 | tsData = Select[tsData, MatchQ[#, _TemporalData] &];
142 |
143 | If[ Length[tsData] == 0, Return[$Failed]];
144 |
145 | eventRecords =
146 | Dataset[ Flatten[#, 1] &@ KeyValueMap[Thread[List[Sequence @@ #1, #2["Times"], #2["Values"]]] &, tsData] ];
147 |
148 | eventRecords =
149 | eventRecords[All, AssociationThread[{"EntityID", "Variable", "ObservationTime", "Value"} -> #] &];
150 |
151 | eventRecords =
152 | eventRecords[All, Join[#, <|"LocationID" -> aWStations[#EntityID][[1]]|>] &];
153 |
154 | eventRecords =
155 | eventRecords[All, {"EntityID", "LocationID", "ObservationTime", "Variable", "Value"}];
156 |
157 | eventRecords = DeleteMissing[eventRecords, 1, 2];
158 | eventRecords = eventRecords[Select[NumberQ[#Value] &]];
159 |
160 | entityAttributes =
161 | Dataset[KeyValueMap[Flatten[{#1, #2[[1]], #2[[-1]]}] &, aWStations]][All, AssociationThread[{"Station", "City", "Country"} -> #] &];
162 |
163 | entityAttributes =
164 | ToLongForm[entityAttributes, "Station", {"City", "Country"}];
165 |
166 | entityAttributes =
167 | entityAttributes[All, Association[{"EntityID" -> #Station, "Attribute" -> #Variable, "Value" -> #Value}] &];
168 |
169 | <| "eventRecords"->eventRecords, "entityAttributes"->entityAttributes |>
170 | ];
171 |
172 | End[]; (* `Private` *)
173 |
174 | EndPackage[]
--------------------------------------------------------------------------------
/MonadicProgramming/MonadicNeuralNetworks.m:
--------------------------------------------------------------------------------
1 | (*
2 | Monadic Neural Networks Mathematica package
3 | Copyright (C) 2018 Anton Antonov
4 |
5 | This program is free software: you can redistribute it and/or modify
6 | it under the terms of the GNU General Public License as published by
7 | the Free Software Foundation, either version 3 of the License, or
8 | (at your option) any later version.
9 |
10 | This program is distributed in the hope that it will be useful,
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 | GNU General Public License for more details.
14 |
15 | You should have received a copy of the GNU General Public License
16 | along with this program. If not, see .
17 |
18 | Written by Anton Antonov,
19 | antononcube @ gmail . com,
20 | Windermere, Florida, USA.
21 | *)
22 |
23 | (*
24 | Mathematica is (C) Copyright 1988-2018 Wolfram Research, Inc.
25 |
26 | Protected by copyright law and international treaties.
27 |
28 | Unauthorized reproduction or distribution subject to severe civil
29 | and criminal penalties.
30 |
31 | Mathematica is a registered trademark of Wolfram Research, Inc.
32 | *)
33 |
34 | (* :Title: MonadicNeuralNetworks *)
35 | (* :Context: MonadicNeuralNetworks` *)
36 | (* :Author: Anton Antonov *)
37 | (* :Date: 2018-08-18 *)
38 |
39 | (* :Package Version: 0.1 *)
40 | (* :Mathematica Version: 11.3 *)
41 | (* :Copyright: (c) 2018 Anton Antonov *)
42 | (* :Keywords: neural net, monad *)
43 | (* :Discussion:
44 | *
45 | *
46 | * *)
47 |
48 | (**************************************************************)
49 | (* Importing packages (if needed) *)
50 | (**************************************************************)
51 |
52 | If[Length[DownValues[MathematicaForPredictionUtilities`RecordsSummary]] == 0,
53 | Echo["MathematicaForPredictionUtilities.m", "Importing from GitHub:"];
54 | Import["https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/master/MathematicaForPredictionUtilities.m"]
55 | ];
56 |
57 | If[Length[DownValues[StateMonadCodeGenerator`GenerateStateMonadCode]] == 0,
58 | Import["https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/master/MonadicProgramming/StateMonadCodeGenerator.m"]
59 | ];
60 |
61 |
62 | (**************************************************************)
63 | (* Package definition *)
64 | (**************************************************************)
65 |
66 | BeginPackage["MonadicNeuralNetworks`"];
67 |
68 | $NetMonFailure::usage = "Failure symbol for the monad NetMon."
69 |
70 | NetMonSetNet::usage = "Assigns the argument to the key \"net\" in the monad context."
71 |
72 | NetMonTakeNet::usage = "Gives the value of the key \"net\" from the monad context."
73 |
74 | NetMonSetEncoder::usage = "Assigns the argument to the key \"encoder\" in the monad context."
75 |
76 | NetMonTakeEncoder::usage = "Gives the value of the key \"encoder\" from the monad context."
77 |
78 | NetMonSetDecoder::usage = "Assigns the argument to the key \"decoder\" in the monad context."
79 |
80 | NetMonTakeDecoder::usage = "Gives the value of the key \"decoder\" from the monad context."
81 |
82 | NetMonSetTrainedNet::usage = "Assigns the argument to the key \"trainedNet\" in the monad context."
83 |
84 | NetMonTakeTrainedNet::usage = "Gives the value of the key \"trainedNet\" from the monad context."
85 |
86 | NetMonTakeNetTrainResultsObject::usage = "Gives the value of the key \"netTrainResultsObject\" from the monad context."
87 |
88 | NetMonTrain::usage = "Train the network. If no data is given the pipeline value is used."
89 |
90 | Begin["`Private`"];
91 |
92 | Needs["MathematicaForPredictionUtilities`"]
93 | Needs["StateMonadCodeGenerator`"]
94 |
95 |
96 | (**************************************************************)
97 | (* Generation *)
98 | (**************************************************************)
99 |
100 | (* Generate base functions of NetMon monad (through StMon.) *)
101 |
102 | GenerateStateMonadCode[ "MonadicNeuralNetworks`NetMon", "FailureSymbol" -> $NetMonFailure, "StringContextNames" -> False ]
103 |
104 | (**************************************************************)
105 | (* Setters / getters *)
106 | (**************************************************************)
107 |
108 |
109 | ClearAll[NetMonSetNet]
110 | NetMonSetNet[$NetMonFailure] := $NetMonFailure;
111 | NetMonSetNet[xs_, context_] := NetMonSetNet[][xs, context];
112 | NetMonSetNet[][xs_, context_] := $NetMonFailure;
113 | NetMonSetNet[net:(_NetChain|_NetGraph)][xs_, context_] := NetMonUnit[ xs, Join[ context, <|"net"->net|> ] ];
114 | NetMonSetNet[__][___] := $NetMonFailure;
115 |
116 |
117 | ClearAll[NetMonTakeNet]
118 | NetMonTakeNet[$NetMonFailure] := $NetMonFailure;
119 | NetMonTakeNet[][$NetMonFailure] := $NetMonFailure;
120 | NetMonTakeNet[xs_, context_] := NetMonTakeNet[][xs, context];
121 | NetMonTakeNet[][xs_, context_] := Lookup[context, "net", $NetMonFailure];
122 | NetMonTakeNet[__][___] := $NetMonFailure;
123 |
124 |
125 |
126 | (**************************************************************)
127 | (* Training *)
128 | (**************************************************************)
129 |
130 | ClearAll[NetMonTrain];
131 |
132 | NetMonTrain[$NetMonFailure] := $NetMonFailure;
133 |
134 | NetMonTrain[xs_, context_] := NetMonTrain[][xs, context];
135 |
136 | NetMonTrain[opts:OptionsPattern[]][xs_, context_] :=
137 | Block[{},
138 | If[DataRulesForClassifyQ[xs],
139 | NetMonTrain[xs, opts][xs, context],
140 | $NetMonFailure
141 | ]
142 | ];
143 |
144 | NetMonTrain[trainingData_?DataRulesForClassifyQ, opts:OptionsPattern[]][xs_, context_] :=
145 | Block[{res},
146 | res = NetTrain[context["netChain"], trainingData, All, opts];
147 | NetMonUnit[res, <||>]
148 | ];
149 |
150 | NetMonTrain[___][__] := $NetMonFailure;
151 |
152 | (**************************************************************)
153 | (* Setters / getters *)
154 | (**************************************************************)
155 |
156 |
157 | End[]; (* `Private` *)
158 |
159 | EndPackage[]
--------------------------------------------------------------------------------
/MonadicProgramming/Package-structure-and-development-workflow.md:
--------------------------------------------------------------------------------
1 | # Package structure and develoment workflow
2 |
3 | ## Introduction
4 |
5 | Because the development of some the monad packages can be large and complex,
6 | a more flexible and powerful structure documented Mathematica/WL is required.
7 |
8 | For the monad package implementation we take a minimalistic approach.
9 | The basic idea is to have:
10 |
11 | - **different modules of project-independent full-fledged packages**,
12 |
13 | - a **custom loader**, and
14 |
15 | - an **interface section.**
16 |
17 | Below is (briefly) described the multi-package dependency, loading, and code generation of the package
18 | ["MonadicContextualClassification.m"](https://github.com/antononcube/MathematicaForPrediction/blob/master/MonadicProgramming/MonadicContextualClassification.m), \[1\].
19 |
20 | The goal of the package \[1\] is to provide a Domain Specific Language (DSL) for rapid specification of machine learning classification workflows.
21 |
22 | ## Package file structure
23 |
24 | 1. Packages import code section.
25 |
26 | - Here packages are imported from GitHub with `Import`.
27 |
28 | + (If the corresponding definitions are not already in the context.)
29 |
30 | - These are the mentioned above **"project-independent full-fledged packages"**.
31 |
32 | + (They were developed before the package \[1\].)
33 |
34 | + (The package \[1\] provides a DSL that combines those "full-fledged packages.")
35 |
36 | 2. Package interface definitions code section.
37 |
38 | - Here after `BeginPackage` the `::usage` definitions are given.
39 |
40 | - This is the **"interface section"** mentioned above.
41 |
42 | 3. The private context declaration.
43 |
44 | 4. The declaration of the package contexts with `Needs` code section.
45 |
46 | - (For the contexts of the packages in the imports code section 1.)
47 |
48 | 5. Code generation section.
49 |
50 | - In this case with
51 | `` GenerateStateMonadCode["MonadicContextualClassification`ClCon",...]``
52 |
53 | - This code generation code section together with the imports code section 1,
54 | correspond to the **"custom loader"** mentioned above.
55 |
56 | + (The package \[2\] generates the definitions of some of the functions of the package \[1\].)
57 |
58 | 6. Function implementations code section.
59 |
60 | ## Testing
61 |
62 | The development of the package \[1\] was/is done with two unit test files.
63 | (One with [hand-written unit tests](https://github.com/antononcube/MathematicaForPrediction/blob/master/UnitTests/MonadicContextualClassification-Unit-Tests.wlt), the other with [randomly generated tests](https://github.com/antononcube/MathematicaForPrediction/blob/master/UnitTests/MonadicContextualClassificationRandomPipelinesUnitTests.m). The latter is specific to the methodology behind the package functionality.)
64 |
65 | The point is that unit tests are crucial when dealing with this kind of complex package dependencies.
66 | (And packages that deal with complex subjects.)
67 |
68 |
69 | ## Summary diagram
70 |
71 | Below is given a diagram that summarizes the development of ["MonadicContextualClassification.m"](https://github.com/antononcube/MathematicaForPrediction/blob/master/MonadicProgramming/MonadicContextualClassification.m). For more details see the end sections of the document ["A monad for classification workflows"](https://github.com/antononcube/MathematicaForPrediction/blob/master/MarkdownDocuments/A-monad-for-classification-workflows.md).
72 |
73 | [](https://i.imgur.com/hmMPfCr.png)
74 |
75 | ## Example run
76 |
77 | The following screenshot is of an example run that demonstrates the package import prompts and the utilization of
78 | the loaded packages in a classification pipeline.
79 | (The packages have functionalities for training classifier ensembles, making ROC plots,
80 | and finding importance of variables.)
81 |
82 | [](https://imgur.com/X2Nephg.png)
83 |
84 | ## References
85 |
86 | \[1\] Anton Antonov, [Monadic contextual classification Mathematica package](https://github.com/antononcube/MathematicaForPrediction/blob/master/MonadicProgramming/MonadicContextualClassification.m), (2017), [MathematicaForPrediction at GitHub](https://github.com/antononcube/MathematicaForPrediction/).
87 |
88 | \[2\] Anton Antonov, [State monad code generator Mathematica package](https://github.com/antononcube/MathematicaForPrediction/blob/master/MonadicProgramming/StateMonadCodeGenerator.m), (2017), [MathematicaForPrediction at GitHub](https://github.com/antononcube/MathematicaForPrediction/).
89 |
--------------------------------------------------------------------------------
/MonadicProgramming/README.md:
--------------------------------------------------------------------------------
1 | # Monadic programming
2 |
3 |
4 | This folder has two kinds of packages:
5 |
6 | 1. for implementing, code generation of monads,
7 |
8 | 2. utilization of the monad pipeline design pattern for different tasks.
9 |
10 |
11 | ## Monad code generation
12 |
13 | The approach taken here treats the Monadic programming pipeline as a [Software design pattern](https://en.wikipedia.org/wiki/Software_design_pattern).
14 |
15 | The monads are obtained through code generation -- see the packages:
16 | [MaybeMonadCodeGenerator](https://github.com/antononcube/MathematicaForPrediction/blob/master/MonadicProgramming/MaybeMonadCodeGenerator.m),
17 | [StateMonadCodeGenerator](https://github.com/antononcube/MathematicaForPrediction/blob/master/MonadicProgramming/StateMonadCodeGenerator.m),
18 | and the article \[[1](https://github.com/antononcube/MathematicaForPrediction/blob/master/MarkdownDocuments/Monad-code-generation-and-extension.md)\].
19 |
20 |
21 | ## Applications
22 |
23 | Using the [State Monad package](https://github.com/antononcube/MathematicaForPrediction/blob/master/MonadicProgramming/StateMonadCodeGenerator.m)
24 | several packages are developed for different tasks in Machine Learning and Natural Language Processing.
25 |
26 | - Classifier creation and testing, [MonadicContextualClassification.m](https://github.com/antononcube/MathematicaForPrediction/blob/master/MonadicProgramming/MonadicContextualClassification.m).
27 |
28 | - Text analysis, [MonadicTextAnalyzer.m](https://github.com/antononcube/MathematicaForPrediction/blob/master/MonadicProgramming/MonadicTextAnalyzer.m).
29 |
30 | - Latent semantic analysis, [MonadicLatentSemanticAnalysis.m](https://github.com/antononcube/MathematicaForPrediction/blob/master/MonadicProgramming/MonadicLatentSemanticAnalysis.m).
31 |
32 | - Phrase completion, [MonadicPhraseCompletion.m](https://github.com/antononcube/MathematicaForPrediction/blob/master/MonadicProgramming/MonadicPhraseCompletion.m).
33 |
34 | - Quantile regression, [MonadicQuantileRegression.m](https://github.com/antononcube/MathematicaForPrediction/blob/master/MonadicProgramming/MonadicQuantileRegression.m).
35 |
36 | The monad tracing package [MonadicTracing.m](https://github.com/antononcube/MathematicaForPrediction/blob/master/MonadicProgramming/MonadicTracing.m)
37 | demonstrates how a monad can act as Decorator in the [Decorator design pattern](https://en.wikipedia.org/wiki/Decorator_pattern).
38 |
39 | ## Package structure and development workflow
40 |
41 | The document
42 | ["Package structure and develoment workflow"](https://github.com/antononcube/MathematicaForPrediction/blob/master/MonadicProgramming/Package-structure-and-development-workflow.md)
43 | gives details of the structure and typical development workflow of the packages in this folder.
44 |
45 |
46 | ## Presentations
47 |
48 | The WTC 2017 presentation
49 | ["Monadic Programming: With Application to Data Analysis, Machine Learning and Language Processing"](https://www.wolfram.com/broadcast/video.php?v=2050),
50 | \[2\], gives a good introduction and overview of the approach taken.
51 |
52 | ## References
53 |
54 | \[1\] Anton Antonov,
55 | ["Monad code generation and extension"](https://github.com/antononcube/MathematicaForPrediction/blob/master/MarkdownDocuments/Monad-code-generation-and-extension.md),
56 | (2017),
57 | [MathematicaForPrediction at GitHub](https://github.com/antononcube/).
58 |
59 | \[2\] Anton Antonov,
60 | ["Monadic Programming: With Application to Data Analysis, Machine Learning and Language Processing"](http://wac.36f4.edgecastcdn.net/0036F4/pub/www.wolfram.com/technology-conference/2017/Antonov.zip),
61 | [Wolfram Technology Conference 2017](https://www.wolfram.com/events/technology-conference/2017/presentations/#wednesday).
62 | ([YouTube video](https://m.youtube.com/watch?v=_cIFA5GHF58).)
63 |
64 | \[3\] Anton Antonov,
65 | ["A monad for classification workflows"](https://github.com/antononcube/MathematicaForPrediction/blob/master/MarkdownDocuments/A-monad-for-classification-workflows.md),
66 | (2018),
67 | [MathematicaForPrediction at GitHub](https://github.com/antononcube/).
68 |
--------------------------------------------------------------------------------
/OPL/Quantile regression.mod:
--------------------------------------------------------------------------------
1 | /*
2 | Quantile regression using B-splines OPL model
3 | Copyright (C) 2014 Anton Antonov
4 |
5 | This program is free software: you can redistribute it and/or modify
6 | it under the terms of the GNU General Public License as published by
7 | the Free Software Foundation, either version 3 of the License, or
8 | (at your option) any later version.
9 |
10 | This program is distributed in the hope that it will be useful,
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 | GNU General Public License for more details.
14 |
15 | You should have received a copy of the GNU General Public License
16 | along with this program. If not, see .
17 |
18 | Written by Anton Antonov,
19 | antononcube@gmail.com,
20 | Windermere, Florida, USA.
21 | */
22 |
23 | /*
24 | The full IBM ILOG CPLEX Optimization Studio consists of the CPLEX Optimizer for mathematical programming, the IBM ILOG CPLEX CP Optimizer for constraint programming, the Optimization Programming Language (OPL), and a tightly integrated IDE.
25 |
26 | IBM and ILOG are trademarks or registered trademarks of International Business Machines Corp., in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at Copyright and trademark information.
27 |
28 | */
29 |
30 | /* Version 1.0 */
31 | /*
32 | OPL code for the calculation of a regression quantile given with the parameter q with first order B-spline basis using k equaly spaced knots.
33 | The knots are spaced between [ min(d in data) d.x, max(d in data) d.x] . The first and last end points of the interval are B-spline knots.
34 | The data is supplied by an external file with extension .dat, e.g.
35 | data = {<10 12.2> <10.2 13.3> ...}
36 |
37 | A good possible extension is to give the user the possibility to specify the B-spline basis knots.
38 | I am not sure how easy is to program using higher order B-spline basis. The only piecewise functions supported by OPL are piecewise linear.
39 | */
40 |
41 | tuple Point {
42 | float x;
43 | float y;
44 | };
45 |
46 | // Data points provided by an external file
47 | {Point} data = ...;
48 |
49 | // Number of knots parameter
50 | int k = 7;
51 |
52 | // Quantile parameter
53 | float q = 0.75;
54 |
55 | float dataMin = min(d in data) d.x;
56 | float dataMax = max(d in data) d.x;
57 | float cLen = ( dataMax - dataMin ) / (k-1);
58 |
59 | dvar float+ u[data];
60 | dvar float+ v[data];
61 | dvar float+ bs[1..k];
62 |
63 |
64 | minimize sum(d in data) q*u[d] + sum(d in data) (1-q)*v[d];
65 |
66 | subject to {
67 |
68 | forall ( d in data ) {
69 | (sum ( i in 1..k ) bs[i] * (piecewise{ 0-> dataMin + (i-2)*cLen; 1/cLen -> dataMin + (i-1)*cLen; -1/cLen -> dataMin + i*cLen; 0}( dataMin + (i-2)*cLen, 0) d.x) ) + u[d] - v[d] == d.y;
70 | }
71 | }
72 |
73 | execute postProcess{
74 | writeln("\n=== Regression quantile display ===");
75 | writeln("Quantile = " + q);
76 | writeln("B-Spline functions and weights:");
77 |
78 | for( var i =1; i <= k; i ++ ) {
79 | var v1 = dataMin + (i-2)*cLen;
80 | var v2 = dataMin + (i-1)*cLen;
81 | var v3 = dataMin + i*cLen;
82 | var v4 = 1/cLen;
83 | var v5 = -1/cLen;
84 | writeln(bs[i] + " piecewise{ 0 -> " + v1 + "; " + v4 + " -> " + v2 + "; " + v5 + " -> " + v3 + "; 0 } ( " + v1 + ", 0 )" );
85 | }
86 | }
87 |
--------------------------------------------------------------------------------
/R/OutlierIdentifiers.R:
--------------------------------------------------------------------------------
1 | ##=======================================================================================
2 | ## Implementation of one dimensional outlier identifying algorithms in R
3 | ##
4 | ## BSD 3-Clause License
5 | ##
6 | ## Copyright (c) 2013, Anton Antonov
7 | ## All rights reserved.
8 | ##
9 | ## Redistribution and use in source and binary forms, with or without
10 | ## modification, are permitted provided that the following conditions are met:
11 | ##
12 | ## * Redistributions of source code must retain the above copyright notice, this
13 | ## list of conditions and the following disclaimer.
14 | ##
15 | ## * Redistributions in binary form must reproduce the above copyright notice,
16 | ## this list of conditions and the following disclaimer in the documentation
17 | ## and/or other materials provided with the distribution.
18 | ##
19 | ## * Neither the name of the copyright holder nor the names of its
20 | ## contributors may be used to endorse or promote products derived from
21 | ## this software without specific prior written permission.
22 | ##
23 | ## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
24 | ## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 | ## IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
26 | ## DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
27 | ## FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 | ## DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29 | ## SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
30 | ## CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
31 | ## OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 | ## OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 | ##
34 | ## Written by Anton Antonov,
35 | ## antononcube@gmail.com,
36 | ## Windermere, Florida, USA.
37 | ##
38 | ##=======================================================================================
39 | ##
40 | ## This script of R functions re-implements this Mathematica package:
41 | ##
42 | ## [1] Anton Antonov, Implementation of one dimensional outlier identifying algorithms in Mathematica,
43 | ## Mathematica package OutlierIdentifiers.m, (2013), MathematicaForPrediction project at GitHub,
44 | ## https://github.com/antononcube/MathematicaForPrediction/blob/master/OutlierIdentifiers.m .
45 | ##
46 | ## It was easier for me to implement in R the one-dimensional outlier detection functions
47 | ## in [1] than to comprehend the signatures of the R different libraries.
48 | ##=======================================================================================
49 |
50 | #' @description Find an Hampel outlier threshold for a data vector
51 | #' @param dataVec data vector
52 | HampelIdentifierParameters <- function( dataVec ) {
53 | x0 <- median(dataVec)
54 | md <- 1.4826 * median(abs(dataVec - x0));
55 | c(x0 - md, x0 + md)
56 | }
57 |
58 | #' @description Find an Quartile outlier for a data vector
59 | #' @param dataVec dataVec vector
60 | QuartileIdentifierParameters <- function( dataVec ) {
61 | res <- quantile( dataVec, c( 1/4, 1/2, 3/4 ) )
62 | xL <- res[[1]]
63 | x0 <- res[[2]]
64 | xU <- res[[3]]
65 | c( x0 - (xU - xL), x0 + (xU - xL) )
66 | }
67 |
68 |
69 | #' @description Find an SPLUS Quartile outlier for a data vector
70 | #' @param dataVec dataVec vector
71 | SPLUSQuartileIdentifierParameters <- function( dataVec ) {
72 | if ( length(dataVec) <=4 ) {
73 | xL <- min(dataVec)
74 | xU <- max(dataVec)
75 | } else {
76 | res <- quantile( dataVec, c( 1/4, 3/4 ) )
77 | xL <- res[[1]]
78 | xU <- res[[2]]
79 | }
80 | c( xL - 1.5*(xU-xL), xU + 1.5*(xU-xL) )
81 | }
82 |
83 |
84 | #' @description Find an outlier threshold for a data vector
85 | #' @param dataVec data vector
86 | #' @param lowerAndUpperThresholds outlier identifier parameters
87 | OutlierIdentifier <- function( dataVec, lowerAndUpperThresholds ) {
88 | dataVec[ dataVec <= lowerAndUpperThresholds[[1]] | dataVec >= lowerAndUpperThresholds[[2]] ]
89 | }
90 |
91 | #' @description Find the top outliers for a data vector
92 | #' @param dataVec data vector
93 | #' @param lowerAndUpperThresholds outlier identifier parameters
94 | TopOutlierIdentifier <- function( dataVec, lowerAndUpperThresholds ) {
95 | dataVec[dataVec >= lowerAndUpperThresholds[[2]] ]
96 | }
97 |
98 | #' @description Find the bottom outliers for a data vector
99 | #' @param dataVec data vector
100 | #' @param lowerAndUpperThresholds outlier identifier parameters
101 | BottomOutlierIdentifier <- function( dataVec, lowerAndUpperThresholds ) {
102 | dataVec[dataVec <= lowerAndUpperThresholds[[1]] ]
103 | }
104 |
105 | #' @description Find the outlier positions in a data vector
106 | #' @param dataVec data vector
107 | #' @param outlierIdentifier outlier identifier function
108 | OutlierPosition <- function( dataVec, outlierIdentifier = HampelIdentifierParameters ) {
109 | cls <- outlierIdentifier(dataVec)
110 | which( dataVec <= cls[[1]] | dataVec >= cls[[2]] )
111 | }
112 |
113 | #' @description Find the top outlier positions in a data vector
114 | #' @param dataVec data vector
115 | #' @param outlierIdentifier outlier identifier function
116 | TopOutlierPosition <- function( dataVec, outlierIdentifier = HampelIdentifierParameters ) {
117 | cls <- outlierIdentifier(dataVec)
118 | which( dataVec >= cls[[2]] )
119 | }
120 |
121 | #' @description Find the bottom outlier positions in a data vector
122 | #' @param dataVec data vector
123 | #' @param outlierIdentifier outlier identifier function
124 | BottomOutlierPosition <- function( dataVec, outlierIdentifier = HampelIdentifierParameters ) {
125 | cls <- outlierIdentifier(dataVec)
126 | which( dataVec <= cls[[1]] )
127 | }
128 |
129 |
130 |
131 |
--------------------------------------------------------------------------------
/R/SMRInterfaceGeneral/ui.R:
--------------------------------------------------------------------------------
1 | ##=======================================================================================
2 | ## General Sparse Matrix Recommender Interface, ui side
3 | ## Copyright (C) 2017 Anton Antonov
4 | ##
5 | ## This program is free software: you can redistribute it and/or modify
6 | ## it under the terms of the GNU General Public License as published by
7 | ## the Free Software Foundation, either version 3 of the License, or
8 | ## (at your option) any later version.
9 | ##
10 | ## This program is distributed in the hope that it will be useful,
11 | ## but WITHOUT ANY WARRANTY; without even the implied warranty of
12 | ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 | ## GNU General Public License for more details.
14 | ##
15 | ## You should have received a copy of the GNU General Public License
16 | ## along with this program. If not, see .
17 | ##
18 | ## Written by Anton Antonov,
19 | ## antononcube @ gmail . com,
20 | ## Windermere, Florida, USA.
21 | ##
22 | ##=======================================================================================
23 | ##
24 | ## This Shiny interface is made to be used with the recommender system implemented in:
25 | ## https://github.com/antononcube/MathematicaForPrediction/blob/master/R/SparseMatrixRecommender.R
26 | ##
27 | ##=======================================================================================
28 |
29 | library(shiny)
30 |
31 | shinyUI(
32 | fluidPage(
33 |
34 | titlePanel("Item recommendations interface"),
35 |
36 | fluidRow(
37 |
38 | column( 3,
39 | submitButton( "Update", icon = icon("refresh") ),
40 |
41 | textInput("search", "Search items with:", "A.*"),
42 |
43 | textInput("itemList", "Item list:", rownames(itemSMR$M)[1] ),
44 |
45 | textInput("itemRatings", "Item star ratings:", "3"),
46 |
47 | numericInput("nrecs", "Number of recommendations:", 20)
48 |
49 | ),
50 |
51 | column( 6,
52 | tabsetPanel(
53 | tabPanel( "Search results",
54 | h4("Search results"),
55 | DT::dataTableOutput("view")
56 | ),
57 |
58 | tabPanel( "Consumed items list",
59 | h4("Consumed items list"),
60 | tabsetPanel(
61 | tabPanel( "short", DT::dataTableOutput("itemList") ),
62 | tabPanel( "extended", DT::dataTableOutput("itemListData") )
63 | )
64 | )
65 | )
66 | ),
67 |
68 | column( 3,
69 | textInput("tagTypeSFactors", "Tag type significance factors:",
70 | paste( "c(", paste( SMRCurrentTagTypeSignificanceFactors( itemSMR ), collapse = ", " ), ")" ) ),
71 | DT::dataTableOutput("significanceFactors")
72 | )
73 | ),
74 |
75 | fluidRow(
76 | column( 9,
77 | h4("Recommendations"),
78 | tabsetPanel(
79 | tabPanel( "main", DT::dataTableOutput("recs") ),
80 | tabPanel( "proofs", DT::dataTableOutput("recsProofs") ),
81 | tabPanel( "scores plot", plotOutput("recsScoresPlot") )
82 | )
83 | ),
84 | column( 3,
85 | tabsetPanel(
86 | tabPanel( "Profile",
87 | textInput("selectedProfileTags", "Selected tags:", ""),
88 | h4("Profile"),
89 | DT::dataTableOutput("uprofile") ),
90 | tabPanel( "Detailed proof",
91 | h4("Detailed proof"),
92 | DT::dataTableOutput("uproof") )
93 | )
94 | )
95 | )
96 | )
97 | )
98 |
99 |
--------------------------------------------------------------------------------
/R/TimeSeriesSMRInterfaceGeneral/ui.R:
--------------------------------------------------------------------------------
1 | ##=======================================================================================
2 | ## Time series recommender interface, ui side
3 | ## Copyright (C) 2017 Anton Antonov
4 | ##
5 | ## This program is free software: you can redistribute it and/or modify
6 | ## it under the terms of the GNU General Public License as published by
7 | ## the Free Software Foundation, either version 3 of the License, or
8 | ## (at your option) any later version.
9 | ##
10 | ## This program is distributed in the hope that it will be useful,
11 | ## but WITHOUT ANY WARRANTY; without even the implied warranty of
12 | ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 | ## GNU General Public License for more details.
14 | ##
15 | ## You should have received a copy of the GNU General Public License
16 | ## along with this program. If not, see .
17 | ##
18 | ## Written by Anton Antonov,
19 | ## antononcube @ gmail . com,
20 | ## Windermere, Florida, USA.
21 | ##
22 | ##=======================================================================================
23 | ##
24 | ## The code in this interface is to be used with [1].
25 | ##
26 | ##=======================================================================================
27 | ## References
28 | ##=======================================================================================
29 | ## [1] Anton Antonov, Time series recommender framework in R, (2017), GitHub,
30 | ## URL: https://github.com/antononcube/MathematicaForPrediction/blob/master/R/TimeSeriesRecommender.R .
31 | ##=======================================================================================
32 |
33 | library(shinydashboard)
34 | library(DT)
35 | library(arules)
36 |
37 | dashboardPage(
38 | dashboardHeader(title = "Time series dashboard"),
39 | dashboardSidebar(
40 | sidebarMenu(
41 | menuItem("Nearest neighbors", tabName = "NNs"),
42 | menuItem("Trend finding", tabName = "TrendFinding")
43 | )
44 | ),
45 |
46 | dashboardBody(
47 |
48 | tabItems(
49 |
50 | tabItem( tabName = "NNs",
51 |
52 | selectInput( "searchID", "Entety:", rownames(tsSMR$M) ),
53 |
54 | numericInput( "numberOfNNs", "Number of NNs:", 12 ),
55 |
56 | selectInput( "nnsValueColName", "Value plotting:", c( "Raw" = "Value", "Smoothed" = "Value.ma" ) ),
57 |
58 | hr(),
59 |
60 | plotOutput( "entetyNNsPlot", height = "1000px" )
61 |
62 | ),
63 |
64 | tabItem( tabName = "TrendFinding",
65 |
66 | selectInput( "searchVectorName", "Search vector type:", names(tsSearchVectors) ),
67 |
68 | numericInput( "numberOfSearchResults", "Number of search results:", 12 ),
69 |
70 | selectInput( "svecValueColName", "Value plotting:", c( "Raw" = "Value", "Smoothed" = "Value.ma" ) ),
71 |
72 | selectInput( "searchVectorColor", "Search vector color:", c("blue", "lightblue", "black", "gray10", "gray25", "gray50", "gray75", "gray90" ), selected = "gray75" ),
73 |
74 | hr(),
75 |
76 | plotOutput( "searchVectorPlot", height = "150px", width = "550px" ),
77 |
78 | plotOutput( "searchVectorNNsPlot", width = "1200px", height = "800px" )
79 |
80 |
81 | )
82 | )
83 | )
84 | )
--------------------------------------------------------------------------------
/README:
--------------------------------------------------------------------------------
1 |
2 | (This README is OBSOLETE; see the Markdown one: https://github.com/antononcube/MathematicaForPrediction/blob/master/README.md . )
3 |
4 | This open source project is for Mathematica implementations of machine learning algorithms that are used or can be used for prediction and personalization systems.
5 | (For prediction and facilitation of the behaviour of users, customers, clients, etc.)
6 |
7 | The algorithms implementations are given in Mathematica package files ("*.m").
8 | Explanations or presentations about the algorithms are given in Mathematica notebook files ("*.nb").
9 |
10 | The original set of algorithms is:
11 | 1. k-means and bisecting k-means;
12 | 2. associative rules finding;
13 | 3. decision trees and random forests;
14 | 4. non-negative matrix factorization;
15 | 5. prefix trees;
16 | 6. naive Bayesian classifiers generator;
17 | 7. a framework for linear vector space representations of document collections;
18 | 8. an item-item recommender framework based on sparse linear algebra.
19 |
20 | In the future are going to be added algorithms for
21 | 9. quantile regression,
22 | 10. self-organizing maps,
23 | 11. hierarchical clustering,
24 | 12. n-gram language models.
25 |
26 | Also in this repository are going to be placed example or demonstrations notebooks for different applications of the algorithms listed above.
27 |
28 | There is a blog associated with this project: http://mathematicaforprediction.wordpress.com .
29 |
30 | I have implemented and extensively used these algorithms in search and prediction engines work in the last 5.5 years.
31 |
32 | Anton Antonov
33 | 04.07.2013, Florida, USA
34 |
35 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 |
2 | ## Mission statement
3 |
4 | This open source project is for Mathematica (Wolfram Language) implementations of statistical and Machine Learning
5 | algorithms that can be used for data analysis, forecast, prediction, and recommendation systems.
6 |
7 | ## License matters
8 |
9 | All code files and executable documents are with the license GPL 3.0. For details see
10 | http://www.gnu.org/licenses/ .
11 |
12 | All documents are with the license Creative Commons Attribution 4.0 International (CC BY 4.0).
13 | For details see https://creativecommons.org/licenses/by/4.0/ .
14 |
15 | ## Organization
16 |
17 | The algorithms implementations are given in Mathematica package files ("*.m").
18 |
19 | Explanations or presentations about the algorithms are given in Mathematica notebook files ("*.nb"), in
20 | [PDF files](https://github.com/antononcube/MathematicaForPrediction/tree/master/Documentation),
21 | or in
22 | [Markdown files](https://github.com/antononcube/MathematicaForPrediction/tree/master/MarkdownDocuments).
23 |
24 | Here are some fairly unique to the Mathematica / WL landscape algorithms:
25 | - [Mosaic plots](https://mathematicaforprediction.wordpress.com/?s=mosaicplot)
26 | - [Outlier identifiers](https://github.com/antononcube/MathematicaForPrediction/blob/master/OutlierIdentifiers.m)
27 | - [Associative rules finding](https://github.com/antononcube/MathematicaForPrediction/blob/master/EclatAlgorithm.m)
28 | - [Prefix trees (Tries)](https://mathematicaforprediction.wordpress.com/2013/12/06/tries-with-frequencies-for-data-mining/)
29 | - [Quantile Regression](https://mathematicaforprediction.wordpress.com/?s=quantile+regression)
30 | - [Chernoff faces](https://mathematicaforprediction.wordpress.com/2016/06/03/making-chernoff-faces-for-data-visualization/)
31 | - Non-Negative Matrix Factorization (NNMF)
32 | - [Independent Component Analysis (ICA)](https://mathematicaforprediction.wordpress.com/2016/05/23/independent-component-analysis-for-multidimensional-signals/)
33 | - [Receiver Operating Characteristic (ROC)](https://github.com/antononcube/MathematicaForPrediction/blob/master/MarkdownDocuments/ROCFunctions-Example-Usage.md)
34 | - [Classifier ensembles](https://github.com/antononcube/MathematicaForPrediction/blob/master/MarkdownDocuments/ROC-for-Classifier-Ensembles-Bootstrapping-Damaging-and-Interpolation.md)
35 | - Framework for Linear vector space representations of document collections
36 | - Item-item recommender framework based on Sparse linear algebra
37 | - Generator of Naive Bayesian Classifiers (NBC's)
38 | - [Functional parsers](https://mathematicaforprediction.wordpress.com/2014/02/13/natural-language-processing-with-functional-parsers/)
39 | - [Software monad generator](https://github.com/antononcube/MathematicaForPrediction/blob/master/MonadicProgramming/StateMonadCodeGenerator.m)
40 |
41 | The implemented algorithms are (usually) well documented. There is a fair amount of documents with related applications.
42 | There are also
43 | [monadic programming implementations](https://github.com/antononcube/MathematicaForPrediction/tree/master/MonadicProgramming)
44 | closely related to the "main directory" packages.
45 |
46 | Some of the packages listed above have:
47 |
48 | - Counterpart implementations in [Python](https://pypi.org/user/antononcube/), [R](https://github.com/antononcube/R-packages), or other languages
49 | - Related [Wolfram Function Repository functions](https://resources.wolframcloud.com/publishers/resources?PublisherID=antononcube)
50 |
51 | (The code in the R directory in this repository though is not updated, it is just kept for references.
52 | See the corresponding, actively worked on, dedicated repository
53 | [R-packages](https://github.com/antononcube/R-packages).)
54 |
55 | ## Associated blog (at WordPress)
56 |
57 | There is a blog associated with this project, see
58 | [MathematicaForPrediction at WordPress](http://mathematicaforprediction.wordpress.com).
59 |
60 | ------
61 |
62 | ## Support & appreciation
63 |
64 | [](https://www.buymeacoffee.com/antonov70)
65 |
66 |
67 | 😅 ☕️ 😀
68 |
69 | ------
70 |
71 | Anton Antonov
72 | 04.07.2013, Florida, USA
73 | 11.01.2017, Florida, USA (updated)
74 | 09.17.2019, Florida, USA (updated)
75 | 29.10.2022, Florida, USA (updated)
76 |
--------------------------------------------------------------------------------
/UnitTests/HextileBins-Unit-Tests.mt:
--------------------------------------------------------------------------------
1 | (*
2 | HextileBins Mathematica unit tests
3 | Copyright (C) 2020 Anton Antonov
4 |
5 | This program is free software: you can redistribute it and/or modify
6 | it under the terms of the GNU General Public License as published by
7 | the Free Software Foundation, either version 3 of the License, or
8 | (at your option) any later version.
9 |
10 | This program is distributed in the hope that it will be useful,
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 | GNU General Public License for more details.
14 |
15 | You should have received a copy of the GNU General Public License
16 | along with this program. If not, see .
17 |
18 | Written by Anton Antonov,
19 | antononcube @ gmai l . c om,
20 | Windermere, Florida, USA.
21 | *)
22 |
23 | (*
24 | Mathematica is (C) Copyright 1988-2020 Wolfram Research, Inc.
25 |
26 | Protected by copyright law and international treaties.
27 |
28 | Unauthorized reproduction or distribution subject to severe civil
29 | and criminal penalties.
30 |
31 | Mathematica is a registered trademark of Wolfram Research, Inc.
32 | *)
33 |
34 | (* :Title: HextileBins-Unit-Tests *)
35 | (* :Author: Anton Antonov *)
36 | (* :Date: 2020-04-01 *)
37 |
38 | (* :Package Version: 0.1 *)
39 | (* :Mathematica Version: 12.0 *)
40 | (* :Copyright: (c) 2020 Anton Antonov *)
41 | (* :Keywords: Hextile, Hexagon, Binning, Histogram, Mathematica, Wolfram Language, unit test *)
42 | (* :Discussion:
43 |
44 | This file has unit tests of the functions HextileBins and HextileHistogram implemented in the file:
45 |
46 | https://github.com/antononcube/MathematicaForPrediction/blob/master/Misc/HextileBins.m
47 |
48 | *)
49 | BeginTestSection["HextileBins-Unit-Tests.mt"];
50 |
51 | VerificationTest[(* 1 *)
52 | CompoundExpression[
53 | Import["https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/master/Misc/HextileBins.m"],
54 | Greater[Length[DownValues[HextileBins`HextileBins]], 0]
55 | ]
56 | ,
57 | True
58 | ,
59 | TestID -> "LoadPackage"
60 | ];
61 |
62 |
63 | (***********************************************************)
64 | (* Generate data *)
65 | (***********************************************************)
66 |
67 | VerificationTest[(* 2 *)
68 | SeedRandom[1295];
69 |
70 | data = RandomVariate[MultinormalDistribution[{10, 10}, 7 IdentityMatrix[2]], 100];
71 |
72 | data2 = Map[# -> RandomInteger[{1, 10}] &, data];
73 |
74 | MatrixQ[data, NumericQ] && MatrixQ[ data2[[All,1]], NumericQ ]
75 | ,
76 | True
77 | ,
78 | TestID -> "Generated-2D-data-1"
79 | ];
80 |
81 |
82 | (***********************************************************)
83 | (* HextileBins standard calls *)
84 | (***********************************************************)
85 |
86 | VerificationTest[
87 |
88 | res = HextileBins[data, 2, "PolygonKeys" -> True ];
89 |
90 | MatchQ[ res, Association[ ( _Polygon -> _?NumericQ ).. ] ]
91 | ,
92 | True
93 | ,
94 | TestID -> "HextileBins-matrix-1"
95 | ];
96 |
97 |
98 | VerificationTest[
99 |
100 | res = HextileBins[data, 2, MinMax /@ Transpose[data], "PolygonKeys" -> True ];
101 |
102 | MatchQ[ res, Association[ ( _Polygon -> _?NumericQ ).. ] ]
103 | ,
104 | True
105 | ,
106 | TestID -> "HextileBins-matrix-2"
107 | ];
108 |
109 |
110 | VerificationTest[
111 |
112 | res = HextileBins[data, 2, "PolygonKeys" -> False ];
113 |
114 | MatchQ[ res, Association[ ( {_?NumericQ, _?NumericQ} -> _?NumericQ ).. ] ]
115 | ,
116 | True
117 | ,
118 | TestID -> "HextileBins-matrix-3"
119 | ];
120 |
121 |
122 | VerificationTest[
123 |
124 | res = HextileBins[data, 2, MinMax /@ Transpose[data], "PolygonKeys" -> False ];
125 |
126 | MatchQ[ res, Association[ ( {_?NumericQ, _?NumericQ} -> _?NumericQ ).. ] ]
127 | ,
128 | True
129 | ,
130 | TestID -> "HextileBins-matrix-4"
131 | ];
132 |
133 |
134 | VerificationTest[
135 |
136 | res = HextileBins[data2, 2 ];
137 |
138 | MatchQ[ res, Association[ ( _Polygon -> _?NumericQ ).. ] ]
139 | ,
140 | True
141 | ,
142 | TestID -> "HextileBins-rules-1"
143 | ];
144 |
145 |
146 | VerificationTest[
147 |
148 | res = HextileBins[data2, 2, MinMax /@ Transpose[ data2[[All,1]] ] ];
149 |
150 | MatchQ[ res, Association[ ( _Polygon -> _?NumericQ ).. ] ]
151 | ,
152 | True
153 | ,
154 | TestID -> "HextileBins-rules-2"
155 | ];
156 |
157 |
158 | VerificationTest[
159 |
160 | HextileBins[ data2, 2 ] == HextileBins[ Association @ data2, 2 ]
161 | ,
162 | True
163 | ,
164 | TestID -> "HextileBins-signature-1"
165 | ];
166 |
167 |
168 | VerificationTest[
169 |
170 | HextileBins[ data2, 2, "AggregationFunction" -> Total ] == HextileBins[ data2, 2 ]
171 | ,
172 | True
173 | ,
174 | TestID -> "HextileBins-signature-2"
175 | ];
176 |
177 |
178 | VerificationTest[
179 |
180 | HextileBins[ data, 2, "AggregationFunction" -> Mean ] == HextileBins[ data, 2 ]
181 | ,
182 | True
183 | ,
184 | TestID -> "HextileBins-signature-3"
185 | ];
186 |
187 |
188 | VerificationTest[
189 |
190 | HextileBins[ data, 2, Automatic ] == HextileBins[ data, 2 ] &&
191 | HextileBins[ data, 2, Automatic ] == HextileBins[ data, 2, MinMax /@ Transpose[ data ] ]
192 | ,
193 | True
194 | ,
195 | TestID -> "HextileBins-signature-4"
196 | ];
197 |
198 |
199 | VerificationTest[
200 |
201 | HextileBins[ data2, 2, Automatic ] == HextileBins[ data2, 2 ] &&
202 | HextileBins[ data2, 2, Automatic ] == HextileBins[ data2, 2, MinMax /@ Transpose[ data2[[All, 1]] ] ]
203 | ,
204 | True
205 | ,
206 | TestID -> "HextileBins-signature-5"
207 | ];
208 |
209 |
210 | VerificationTest[
211 |
212 | HextileBins[ data2, 2, Automatic, "AggregationFunction" -> Mean ] == HextileBins[ data2, 2, "AggregationFunction" -> Mean ]
213 | ,
214 | True
215 | ,
216 | TestID -> "HextileBins-signature-6"
217 | ];
218 |
219 |
220 | (***********************************************************)
221 | (* Messages *)
222 | (***********************************************************)
223 |
224 | VerificationTest[
225 |
226 | HextileBins[ data2, 2, "OverlapFactor" -> -1 ]
227 | ,
228 | $Failed
229 | ,
230 | {HextileBins::"nof"}
231 | ,
232 | TestID -> "HextileBins-OverlapFactor-wrong-1"
233 | ];
234 |
235 |
236 | EndTestSection[]
237 |
--------------------------------------------------------------------------------