├── Data Scientist's Salary Prediction
├── Data Scientist's Salary Prediction.ipynb
├── README.md
├── glassdoor_jobs.csv
└── readme-resources
│ ├── corr1.png
│ ├── data-scientist-salary-banner.png
│ ├── infogain.png
│ ├── jih.png
│ ├── prediction.PNG
│ ├── rating.png
│ └── rating1.png
├── Diabetes Classification
├── Diabetes Classification.ipynb
├── README.md
├── dataset
│ └── kaggle_diabetes.csv
└── readme-resources
│ └── diabetes-banner.png
├── First Innings Score Prediction - IPL
├── First Innings Score Prediction - IPL.ipynb
├── README.md
├── dataset
│ └── ipl.csv
└── readme-resources
│ ├── consistent_teams.PNG
│ ├── first-innings-banner.png
│ └── prediction.PNG
├── Heart Disease Prediction
├── Heart Disease Prediction.ipynb
└── heart.csv
├── Mall Customer Segmentation
├── Mall Customer Segmentation - PPT.pdf
├── Mall Customer Segmentation - Report.pdf
├── Mall Customer Segmentation.ipynb
└── Mall_Customers.csv
├── Predicting Admission into UCLA
├── Predicting Admission into UCLA.ipynb
└── admission_predict.csv
├── Predicting House Prices in Bengaluru
├── Bengaluru house price prediction.ipynb
└── Bengaluru_House_Data.csv
├── README.md
└── readme-resources
├── data-scientist-salary-banner.png
└── machine-learning.png
/Data Scientist's Salary Prediction/README.md:
--------------------------------------------------------------------------------
1 | 
2 |   
3 |
4 | ## Project Overview
5 | • Created a machine learning model that **estimates salary of data scientist based on the features like rating, company_founded, etc.**
6 | • Engineered features from the text of each job description to quantify the value companies put on python, excel, tableau and sql
7 |
8 | ## How will this project help?
9 | • This project **helps data scientist/analyst to negotiate their income for an existing or a new job**
10 |
11 | ## Resources Used
12 | • Packages: **pandas, numpy, sklearn, matplotlib, seaborn.**
13 | • Dataset by **Ken Jee**: https://github.com/PlayingNumbers/ds_salary_proj
14 |
15 | ## Exploratory Data Analysis (EDA) and Data Cleaning
16 | • **Removed unwanted columns**: 'Unnamed: 0'
17 | • **Plotted bargraphs and countplots** for numerical and categorical features respectively for EDA
18 | • **Numerical Features** (Rating, Founded): **Replaced NaN or -1 values with mean or meadian based on their distribution**
19 |  
20 | • **Categorical Features: Replaced NaN or -1 values with 'Other'/'Unknown' category**
21 | • **Removed unwanted alphabet/special characters from Salary feature**
22 | • **Converted the Salary column into one scale** i.e from (per hour, per annum, employer provided salary) to (per annum)
23 |
24 | ## Feature Engineering
25 | • **Creating new features** from existing features e.g. **job_in_headquaters from (job_location, headquarters)**, etc.
26 | 
27 | • Trimming columns i.e. **Trimming features having more than 10 categories to reduce the dimensionality**
28 | • **Handling ordinal and nominal categorical features**
29 | • Feature Selection using **information gain (mutual_info_regression) and correlation matrix**
30 | 
31 | 
32 | • Feature Scaling using **StandardScalar**
33 |
34 | ## Model Building and Evaluation
35 | Metric: Negative Root Mean Squared Error (NRMSE)
36 | • Multiple Linear Regression: -27.523
37 | • Lasso Regression: -27.993
38 | • **Random Forest: -17.637**
39 | • Gradient Boosting: -24.429
40 | • Voting (Random Forest + Gradient Boosting): -19.136
41 | _**Note: Evaluation scores are obtained using cross validation.**_
42 |
43 | ## Model Prediction
44 | 
45 |
--------------------------------------------------------------------------------
/Data Scientist's Salary Prediction/readme-resources/corr1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/anujvyas/Machine-Learning-Projects/6c39c0616e01b4603f21c5072b348b0719d2e87b/Data Scientist's Salary Prediction/readme-resources/corr1.png
--------------------------------------------------------------------------------
/Data Scientist's Salary Prediction/readme-resources/data-scientist-salary-banner.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/anujvyas/Machine-Learning-Projects/6c39c0616e01b4603f21c5072b348b0719d2e87b/Data Scientist's Salary Prediction/readme-resources/data-scientist-salary-banner.png
--------------------------------------------------------------------------------
/Data Scientist's Salary Prediction/readme-resources/infogain.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/anujvyas/Machine-Learning-Projects/6c39c0616e01b4603f21c5072b348b0719d2e87b/Data Scientist's Salary Prediction/readme-resources/infogain.png
--------------------------------------------------------------------------------
/Data Scientist's Salary Prediction/readme-resources/jih.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/anujvyas/Machine-Learning-Projects/6c39c0616e01b4603f21c5072b348b0719d2e87b/Data Scientist's Salary Prediction/readme-resources/jih.png
--------------------------------------------------------------------------------
/Data Scientist's Salary Prediction/readme-resources/prediction.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/anujvyas/Machine-Learning-Projects/6c39c0616e01b4603f21c5072b348b0719d2e87b/Data Scientist's Salary Prediction/readme-resources/prediction.PNG
--------------------------------------------------------------------------------
/Data Scientist's Salary Prediction/readme-resources/rating.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/anujvyas/Machine-Learning-Projects/6c39c0616e01b4603f21c5072b348b0719d2e87b/Data Scientist's Salary Prediction/readme-resources/rating.png
--------------------------------------------------------------------------------
/Data Scientist's Salary Prediction/readme-resources/rating1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/anujvyas/Machine-Learning-Projects/6c39c0616e01b4603f21c5072b348b0719d2e87b/Data Scientist's Salary Prediction/readme-resources/rating1.png
--------------------------------------------------------------------------------
/Diabetes Classification/README.md:
--------------------------------------------------------------------------------
1 | 
2 |
3 | ## Deployed Web App
4 | If you want to view the deployed model, then go to following links mention below:
5 | • GitHub: _https://github.com/anujvyas/Diabetes-Prediction-Deployment_
6 | • Web App: _https://predicting-diabetes.herokuapp.com/_
7 |
--------------------------------------------------------------------------------
/Diabetes Classification/dataset/kaggle_diabetes.csv:
--------------------------------------------------------------------------------
1 | Pregnancies,Glucose,BloodPressure,SkinThickness,Insulin,BMI,DiabetesPedigreeFunction,Age,Outcome
2 | 2,138,62,35,0,33.6,0.127,47,1
3 | 0,84,82,31,125,38.2,0.233,23,0
4 | 0,145,0,0,0,44.2,0.63,31,1
5 | 0,135,68,42,250,42.3,0.365,24,1
6 | 1,139,62,41,480,40.7,0.536,21,0
7 | 0,173,78,32,265,46.5,1.159,58,0
8 | 4,99,72,17,0,25.6,0.294,28,0
9 | 8,194,80,0,0,26.1,0.551,67,0
10 | 2,83,65,28,66,36.8,0.629,24,0
11 | 2,89,90,30,0,33.5,0.292,42,0
12 | 4,99,68,38,0,32.8,0.145,33,0
13 | 4,125,70,18,122,28.9,1.144,45,1
14 | 3,80,0,0,0,0,0.174,22,0
15 | 6,166,74,0,0,26.6,0.304,66,0
16 | 5,110,68,0,0,26,0.292,30,0
17 | 2,81,72,15,76,30.1,0.547,25,0
18 | 7,195,70,33,145,25.1,0.163,55,1
19 | 6,154,74,32,193,29.3,0.839,39,0
20 | 2,117,90,19,71,25.2,0.313,21,0
21 | 3,84,72,32,0,37.2,0.267,28,0
22 | 6,0,68,41,0,39,0.727,41,1
23 | 7,94,64,25,79,33.3,0.738,41,0
24 | 3,96,78,39,0,37.3,0.238,40,0
25 | 10,75,82,0,0,33.3,0.263,38,0
26 | 0,180,90,26,90,36.5,0.314,35,1
27 | 1,130,60,23,170,28.6,0.692,21,0
28 | 2,84,50,23,76,30.4,0.968,21,0
29 | 8,120,78,0,0,25,0.409,64,0
30 | 12,84,72,31,0,29.7,0.297,46,1
31 | 0,139,62,17,210,22.1,0.207,21,0
32 | 9,91,68,0,0,24.2,0.2,58,0
33 | 2,91,62,0,0,27.3,0.525,22,0
34 | 3,99,54,19,86,25.6,0.154,24,0
35 | 3,163,70,18,105,31.6,0.268,28,1
36 | 10,122,78,31,0,27.6,0.512,45,0
37 | 4,103,60,33,192,24,0.966,33,0
38 | 11,138,76,0,0,33.2,0.42,35,0
39 | 9,102,76,37,0,32.9,0.665,46,1
40 | 2,90,68,42,0,38.2,0.503,27,1
41 | 4,111,72,47,207,37.1,1.39,56,1
42 | 3,180,64,25,70,34,0.271,26,0
43 | 7,133,84,0,0,40.2,0.696,37,0
44 | 7,106,92,18,0,22.7,0.235,48,0
45 | 9,171,110,24,240,45.4,0.721,54,1
46 | 7,159,64,0,0,27.4,0.294,40,0
47 | 0,180,66,39,0,42,1.893,25,1
48 | 1,146,56,0,0,29.7,0.564,29,0
49 | 2,71,70,27,0,28,0.586,22,0
50 | 7,103,66,32,0,39.1,0.344,31,1
51 | 7,105,0,0,0,0,0.305,24,0
52 | 1,103,80,11,82,19.4,0.491,22,0
53 | 1,101,50,15,36,24.2,0.526,26,0
54 | 5,88,66,21,23,24.4,0.342,30,0
55 | 8,176,90,34,300,33.7,0.467,58,1
56 | 7,150,66,42,342,34.7,0.718,42,0
57 | 1,73,50,10,0,23,0.248,21,0
58 | 7,187,68,39,304,37.7,0.254,41,1
59 | 0,100,88,60,110,46.8,0.962,31,0
60 | 0,146,82,0,0,40.5,1.781,44,0
61 | 0,105,64,41,142,41.5,0.173,22,0
62 | 2,84,0,0,0,0,0.304,21,0
63 | 8,133,72,0,0,32.9,0.27,39,1
64 | 5,44,62,0,0,25,0.587,36,0
65 | 2,141,58,34,128,25.4,0.699,24,0
66 | 7,114,66,0,0,32.8,0.258,42,1
67 | 5,99,74,27,0,29,0.203,32,0
68 | 0,109,88,30,0,32.5,0.855,38,1
69 | 2,109,92,0,0,42.7,0.845,54,0
70 | 1,95,66,13,38,19.6,0.334,25,0
71 | 4,146,85,27,100,28.9,0.189,27,0
72 | 2,100,66,20,90,32.9,0.867,28,1
73 | 5,139,64,35,140,28.6,0.411,26,0
74 | 13,126,90,0,0,43.4,0.583,42,1
75 | 4,129,86,20,270,35.1,0.231,23,0
76 | 1,79,75,30,0,32,0.396,22,0
77 | 1,0,48,20,0,24.7,0.14,22,0
78 | 7,62,78,0,0,32.6,0.391,41,0
79 | 5,95,72,33,0,37.7,0.37,27,0
80 | 0,131,0,0,0,43.2,0.27,26,1
81 | 2,112,66,22,0,25,0.307,24,0
82 | 3,113,44,13,0,22.4,0.14,22,0
83 | 2,74,0,0,0,0,0.102,22,0
84 | 7,83,78,26,71,29.3,0.767,36,0
85 | 0,101,65,28,0,24.6,0.237,22,0
86 | 5,137,108,0,0,48.8,0.227,37,1
87 | 2,110,74,29,125,32.4,0.698,27,0
88 | 13,106,72,54,0,36.6,0.178,45,0
89 | 2,100,68,25,71,38.5,0.324,26,0
90 | 15,136,70,32,110,37.1,0.153,43,1
91 | 1,107,68,19,0,26.5,0.165,24,0
92 | 1,80,55,0,0,19.1,0.258,21,0
93 | 4,123,80,15,176,32,0.443,34,0
94 | 7,81,78,40,48,46.7,0.261,42,0
95 | 4,134,72,0,0,23.8,0.277,60,1
96 | 2,142,82,18,64,24.7,0.761,21,0
97 | 6,144,72,27,228,33.9,0.255,40,0
98 | 2,92,62,28,0,31.6,0.13,24,0
99 | 1,71,48,18,76,20.4,0.323,22,0
100 | 6,93,50,30,64,28.7,0.356,23,0
101 | 1,122,90,51,220,49.7,0.325,31,1
102 | 1,163,72,0,0,39,1.222,33,1
103 | 1,151,60,0,0,26.1,0.179,22,0
104 | 0,125,96,0,0,22.5,0.262,21,0
105 | 1,81,72,18,40,26.6,0.283,24,0
106 | 2,85,65,0,0,39.6,0.93,27,0
107 | 1,126,56,29,152,28.7,0.801,21,0
108 | 1,96,122,0,0,22.4,0.207,27,0
109 | 4,144,58,28,140,29.5,0.287,37,0
110 | 3,83,58,31,18,34.3,0.336,25,0
111 | 0,95,85,25,36,37.4,0.247,24,1
112 | 3,171,72,33,135,33.3,0.199,24,1
113 | 8,155,62,26,495,34,0.543,46,1
114 | 1,89,76,34,37,31.2,0.192,23,0
115 | 4,76,62,0,0,34,0.391,25,0
116 | 7,160,54,32,175,30.5,0.588,39,1
117 | 4,146,92,0,0,31.2,0.539,61,1
118 | 5,124,74,0,0,34,0.22,38,1
119 | 5,78,48,0,0,33.7,0.654,25,0
120 | 4,97,60,23,0,28.2,0.443,22,0
121 | 4,99,76,15,51,23.2,0.223,21,0
122 | 0,162,76,56,100,53.2,0.759,25,1
123 | 6,111,64,39,0,34.2,0.26,24,0
124 | 2,107,74,30,100,33.6,0.404,23,0
125 | 5,132,80,0,0,26.8,0.186,69,0
126 | 0,113,76,0,0,33.3,0.278,23,1
127 | 1,88,30,42,99,55,0.496,26,1
128 | 3,120,70,30,135,42.9,0.452,30,0
129 | 1,118,58,36,94,33.3,0.261,23,0
130 | 1,117,88,24,145,34.5,0.403,40,1
131 | 0,105,84,0,0,27.9,0.741,62,1
132 | 4,173,70,14,168,29.7,0.361,33,1
133 | 9,122,56,0,0,33.3,1.114,33,1
134 | 3,170,64,37,225,34.5,0.356,30,1
135 | 8,84,74,31,0,38.3,0.457,39,0
136 | 2,96,68,13,49,21.1,0.647,26,0
137 | 2,125,60,20,140,33.8,0.088,31,0
138 | 0,100,70,26,50,30.8,0.597,21,0
139 | 0,93,60,25,92,28.7,0.532,22,0
140 | 0,129,80,0,0,31.2,0.703,29,0
141 | 5,105,72,29,325,36.9,0.159,28,0
142 | 3,128,78,0,0,21.1,0.268,55,0
143 | 5,106,82,30,0,39.5,0.286,38,0
144 | 2,108,52,26,63,32.5,0.318,22,0
145 | 10,108,66,0,0,32.4,0.272,42,1
146 | 4,154,62,31,284,32.8,0.237,23,0
147 | 0,102,75,23,0,0,0.572,21,0
148 | 9,57,80,37,0,32.8,0.096,41,0
149 | 2,106,64,35,119,30.5,1.4,34,0
150 | 5,147,78,0,0,33.7,0.218,65,0
151 | 2,90,70,17,0,27.3,0.085,22,0
152 | 1,136,74,50,204,37.4,0.399,24,0
153 | 4,114,65,0,0,21.9,0.432,37,0
154 | 9,156,86,28,155,34.3,1.189,42,1
155 | 1,153,82,42,485,40.6,0.687,23,0
156 | 8,188,78,0,0,47.9,0.137,43,1
157 | 7,152,88,44,0,50,0.337,36,1
158 | 2,99,52,15,94,24.6,0.637,21,0
159 | 1,109,56,21,135,25.2,0.833,23,0
160 | 2,88,74,19,53,29,0.229,22,0
161 | 17,163,72,41,114,40.9,0.817,47,1
162 | 4,151,90,38,0,29.7,0.294,36,0
163 | 7,102,74,40,105,37.2,0.204,45,0
164 | 0,114,80,34,285,44.2,0.167,27,0
165 | 2,100,64,23,0,29.7,0.368,21,0
166 | 0,131,88,0,0,31.6,0.743,32,1
167 | 6,104,74,18,156,29.9,0.722,41,1
168 | 3,148,66,25,0,32.5,0.256,22,0
169 | 4,120,68,0,0,29.6,0.709,34,0
170 | 4,110,66,0,0,31.9,0.471,29,0
171 | 3,111,90,12,78,28.4,0.495,29,0
172 | 6,102,82,0,0,30.8,0.18,36,1
173 | 6,134,70,23,130,35.4,0.542,29,1
174 | 2,87,0,23,0,28.9,0.773,25,0
175 | 1,79,60,42,48,43.5,0.678,23,0
176 | 2,75,64,24,55,29.7,0.37,33,0
177 | 8,179,72,42,130,32.7,0.719,36,1
178 | 6,85,78,0,0,31.2,0.382,42,0
179 | 0,129,110,46,130,67.1,0.319,26,1
180 | 5,143,78,0,0,45,0.19,47,0
181 | 5,130,82,0,0,39.1,0.956,37,1
182 | 6,87,80,0,0,23.2,0.084,32,0
183 | 0,119,64,18,92,34.9,0.725,23,0
184 | 1,0,74,20,23,27.7,0.299,21,0
185 | 5,73,60,0,0,26.8,0.268,27,0
186 | 4,141,74,0,0,27.6,0.244,40,0
187 | 7,194,68,28,0,35.9,0.745,41,1
188 | 8,181,68,36,495,30.1,0.615,60,1
189 | 1,128,98,41,58,32,1.321,33,1
190 | 8,109,76,39,114,27.9,0.64,31,1
191 | 5,139,80,35,160,31.6,0.361,25,1
192 | 3,111,62,0,0,22.6,0.142,21,0
193 | 9,123,70,44,94,33.1,0.374,40,0
194 | 7,159,66,0,0,30.4,0.383,36,1
195 | 11,135,0,0,0,52.3,0.578,40,1
196 | 8,85,55,20,0,24.4,0.136,42,0
197 | 5,158,84,41,210,39.4,0.395,29,1
198 | 1,105,58,0,0,24.3,0.187,21,0
199 | 3,107,62,13,48,22.9,0.678,23,1
200 | 4,109,64,44,99,34.8,0.905,26,1
201 | 4,148,60,27,318,30.9,0.15,29,1
202 | 0,113,80,16,0,31,0.874,21,0
203 | 1,138,82,0,0,40.1,0.236,28,0
204 | 0,108,68,20,0,27.3,0.787,32,0
205 | 2,99,70,16,44,20.4,0.235,27,0
206 | 6,103,72,32,190,37.7,0.324,55,0
207 | 5,111,72,28,0,23.9,0.407,27,0
208 | 8,196,76,29,280,37.5,0.605,57,1
209 | 5,162,104,0,0,37.7,0.151,52,1
210 | 1,96,64,27,87,33.2,0.289,21,0
211 | 7,184,84,33,0,35.5,0.355,41,1
212 | 2,81,60,22,0,27.7,0.29,25,0
213 | 0,147,85,54,0,42.8,0.375,24,0
214 | 7,179,95,31,0,34.2,0.164,60,0
215 | 0,140,65,26,130,42.6,0.431,24,1
216 | 9,112,82,32,175,34.2,0.26,36,1
217 | 12,151,70,40,271,41.8,0.742,38,1
218 | 5,109,62,41,129,35.8,0.514,25,1
219 | 6,125,68,30,120,30,0.464,32,0
220 | 5,85,74,22,0,29,1.224,32,1
221 | 5,112,66,0,0,37.8,0.261,41,1
222 | 0,177,60,29,478,34.6,1.072,21,1
223 | 2,158,90,0,0,31.6,0.805,66,1
224 | 7,119,0,0,0,25.2,0.209,37,0
225 | 7,142,60,33,190,28.8,0.687,61,0
226 | 1,100,66,15,56,23.6,0.666,26,0
227 | 1,87,78,27,32,34.6,0.101,22,0
228 | 0,101,76,0,0,35.7,0.198,26,0
229 | 3,162,52,38,0,37.2,0.652,24,1
230 | 4,197,70,39,744,36.7,2.329,31,0
231 | 0,117,80,31,53,45.2,0.089,24,0
232 | 4,142,86,0,0,44,0.645,22,1
233 | 6,134,80,37,370,46.2,0.238,46,1
234 | 1,79,80,25,37,25.4,0.583,22,0
235 | 4,122,68,0,0,35,0.394,29,0
236 | 3,74,68,28,45,29.7,0.293,23,0
237 | 4,171,72,0,0,43.6,0.479,26,1
238 | 7,181,84,21,192,35.9,0.586,51,1
239 | 0,179,90,27,0,44.1,0.686,23,1
240 | 9,164,84,21,0,30.8,0.831,32,1
241 | 0,104,76,0,0,18.4,0.582,27,0
242 | 1,91,64,24,0,29.2,0.192,21,0
243 | 4,91,70,32,88,33.1,0.446,22,0
244 | 3,139,54,0,0,25.6,0.402,22,1
245 | 6,119,50,22,176,27.1,1.318,33,1
246 | 2,146,76,35,194,38.2,0.329,29,0
247 | 9,184,85,15,0,30,1.213,49,1
248 | 10,122,68,0,0,31.2,0.258,41,0
249 | 0,165,90,33,680,52.3,0.427,23,0
250 | 9,124,70,33,402,35.4,0.282,34,0
251 | 1,111,86,19,0,30.1,0.143,23,0
252 | 9,106,52,0,0,31.2,0.38,42,0
253 | 2,129,84,0,0,28,0.284,27,0
254 | 2,90,80,14,55,24.4,0.249,24,0
255 | 0,86,68,32,0,35.8,0.238,25,0
256 | 12,92,62,7,258,27.6,0.926,44,1
257 | 1,113,64,35,0,33.6,0.543,21,1
258 | 3,111,56,39,0,30.1,0.557,30,0
259 | 2,114,68,22,0,28.7,0.092,25,0
260 | 1,193,50,16,375,25.9,0.655,24,0
261 | 11,155,76,28,150,33.3,1.353,51,1
262 | 3,191,68,15,130,30.9,0.299,34,0
263 | 3,141,0,0,0,30,0.761,27,1
264 | 4,95,70,32,0,32.1,0.612,24,0
265 | 3,142,80,15,0,32.4,0.2,63,0
266 | 4,123,62,0,0,32,0.226,35,1
267 | 5,96,74,18,67,33.6,0.997,43,0
268 | 0,138,0,0,0,36.3,0.933,25,1
269 | 2,128,64,42,0,40,1.101,24,0
270 | 0,102,52,0,0,25.1,0.078,21,0
271 | 2,146,0,0,0,27.5,0.24,28,1
272 | 10,101,86,37,0,45.6,1.136,38,1
273 | 2,108,62,32,56,25.2,0.128,21,0
274 | 3,122,78,0,0,23,0.254,40,0
275 | 1,71,78,50,45,33.2,0.422,21,0
276 | 13,106,70,0,0,34.2,0.251,52,0
277 | 2,100,70,52,57,40.5,0.677,25,0
278 | 7,106,60,24,0,26.5,0.296,29,1
279 | 0,104,64,23,116,27.8,0.454,23,0
280 | 5,114,74,0,0,24.9,0.744,57,0
281 | 2,108,62,10,278,25.3,0.881,22,0
282 | 0,146,70,0,0,37.9,0.334,28,1
283 | 10,129,76,28,122,35.9,0.28,39,0
284 | 7,133,88,15,155,32.4,0.262,37,0
285 | 7,161,86,0,0,30.4,0.165,47,1
286 | 2,108,80,0,0,27,0.259,52,1
287 | 7,136,74,26,135,26,0.647,51,0
288 | 5,155,84,44,545,38.7,0.619,34,0
289 | 1,119,86,39,220,45.6,0.808,29,1
290 | 4,96,56,17,49,20.8,0.34,26,0
291 | 5,108,72,43,75,36.1,0.263,33,0
292 | 0,78,88,29,40,36.9,0.434,21,0
293 | 0,107,62,30,74,36.6,0.757,25,1
294 | 2,128,78,37,182,43.3,1.224,31,1
295 | 1,128,48,45,194,40.5,0.613,24,1
296 | 0,161,50,0,0,21.9,0.254,65,0
297 | 6,151,62,31,120,35.5,0.692,28,0
298 | 2,146,70,38,360,28,0.337,29,1
299 | 0,126,84,29,215,30.7,0.52,24,0
300 | 14,100,78,25,184,36.6,0.412,46,1
301 | 8,112,72,0,0,23.6,0.84,58,0
302 | 0,167,0,0,0,32.3,0.839,30,1
303 | 2,144,58,33,135,31.6,0.422,25,1
304 | 5,77,82,41,42,35.8,0.156,35,0
305 | 5,115,98,0,0,52.9,0.209,28,1
306 | 3,150,76,0,0,21,0.207,37,0
307 | 2,120,76,37,105,39.7,0.215,29,0
308 | 10,161,68,23,132,25.5,0.326,47,1
309 | 0,137,68,14,148,24.8,0.143,21,0
310 | 0,128,68,19,180,30.5,1.391,25,1
311 | 2,124,68,28,205,32.9,0.875,30,1
312 | 6,80,66,30,0,26.2,0.313,41,0
313 | 0,106,70,37,148,39.4,0.605,22,0
314 | 2,155,74,17,96,26.6,0.433,27,1
315 | 3,113,50,10,85,29.5,0.626,25,0
316 | 7,109,80,31,0,35.9,1.127,43,1
317 | 2,112,68,22,94,34.1,0.315,26,0
318 | 3,99,80,11,64,19.3,0.284,30,0
319 | 3,182,74,0,0,30.5,0.345,29,1
320 | 3,115,66,39,140,38.1,0.15,28,0
321 | 6,194,78,0,0,23.5,0.129,59,1
322 | 4,129,60,12,231,27.5,0.527,31,0
323 | 3,112,74,30,0,31.6,0.197,25,1
324 | 0,124,70,20,0,27.4,0.254,36,1
325 | 13,152,90,33,29,26.8,0.731,43,1
326 | 2,112,75,32,0,35.7,0.148,21,0
327 | 1,157,72,21,168,25.6,0.123,24,0
328 | 1,122,64,32,156,35.1,0.692,30,1
329 | 10,179,70,0,0,35.1,0.2,37,0
330 | 2,102,86,36,120,45.5,0.127,23,1
331 | 6,105,70,32,68,30.8,0.122,37,0
332 | 8,118,72,19,0,23.1,1.476,46,0
333 | 2,87,58,16,52,32.7,0.166,25,0
334 | 1,180,0,0,0,43.3,0.282,41,1
335 | 12,106,80,0,0,23.6,0.137,44,0
336 | 1,95,60,18,58,23.9,0.26,22,0
337 | 0,165,76,43,255,47.9,0.259,26,0
338 | 0,117,0,0,0,33.8,0.932,44,0
339 | 5,115,76,0,0,31.2,0.343,44,1
340 | 9,152,78,34,171,34.2,0.893,33,1
341 | 7,178,84,0,0,39.9,0.331,41,1
342 | 1,130,70,13,105,25.9,0.472,22,0
343 | 1,95,74,21,73,25.9,0.673,36,0
344 | 1,0,68,35,0,32,0.389,22,0
345 | 5,122,86,0,0,34.7,0.29,33,0
346 | 8,95,72,0,0,36.8,0.485,57,0
347 | 8,126,88,36,108,38.5,0.349,49,0
348 | 1,139,46,19,83,28.7,0.654,22,0
349 | 3,116,0,0,0,23.5,0.187,23,0
350 | 3,99,62,19,74,21.8,0.279,26,0
351 | 5,0,80,32,0,41,0.346,37,1
352 | 4,92,80,0,0,42.2,0.237,29,0
353 | 4,137,84,0,0,31.2,0.252,30,0
354 | 3,61,82,28,0,34.4,0.243,46,0
355 | 1,90,62,12,43,27.2,0.58,24,0
356 | 3,90,78,0,0,42.7,0.559,21,0
357 | 9,165,88,0,0,30.4,0.302,49,1
358 | 1,125,50,40,167,33.3,0.962,28,1
359 | 13,129,0,30,0,39.9,0.569,44,1
360 | 12,88,74,40,54,35.3,0.378,48,0
361 | 1,196,76,36,249,36.5,0.875,29,1
362 | 5,189,64,33,325,31.2,0.583,29,1
363 | 5,158,70,0,0,29.8,0.207,63,0
364 | 5,103,108,37,0,39.2,0.305,65,0
365 | 4,146,78,0,0,38.5,0.52,67,1
366 | 4,147,74,25,293,34.9,0.385,30,0
367 | 5,99,54,28,83,34,0.499,30,0
368 | 6,124,72,0,0,27.6,0.368,29,1
369 | 0,101,64,17,0,21,0.252,21,0
370 | 3,81,86,16,66,27.5,0.306,22,0
371 | 1,133,102,28,140,32.8,0.234,45,1
372 | 3,173,82,48,465,38.4,2.137,25,1
373 | 0,118,64,23,89,0,1.731,21,0
374 | 0,84,64,22,66,35.8,0.545,21,0
375 | 2,105,58,40,94,34.9,0.225,25,0
376 | 2,122,52,43,158,36.2,0.816,28,0
377 | 12,140,82,43,325,39.2,0.528,58,1
378 | 0,98,82,15,84,25.2,0.299,22,0
379 | 1,87,60,37,75,37.2,0.509,22,0
380 | 4,156,75,0,0,48.3,0.238,32,1
381 | 0,93,100,39,72,43.4,1.021,35,0
382 | 1,107,72,30,82,30.8,0.821,24,0
383 | 0,105,68,22,0,20,0.236,22,0
384 | 1,109,60,8,182,25.4,0.947,21,0
385 | 1,90,62,18,59,25.1,1.268,25,0
386 | 1,125,70,24,110,24.3,0.221,25,0
387 | 1,119,54,13,50,22.3,0.205,24,0
388 | 5,116,74,29,0,32.3,0.66,35,1
389 | 8,105,100,36,0,43.3,0.239,45,1
390 | 5,144,82,26,285,32,0.452,58,1
391 | 3,100,68,23,81,31.6,0.949,28,0
392 | 1,100,66,29,196,32,0.444,42,0
393 | 5,166,76,0,0,45.7,0.34,27,1
394 | 1,131,64,14,415,23.7,0.389,21,0
395 | 4,116,72,12,87,22.1,0.463,37,0
396 | 4,158,78,0,0,32.9,0.803,31,1
397 | 2,127,58,24,275,27.7,1.6,25,0
398 | 3,96,56,34,115,24.7,0.944,39,0
399 | 0,131,66,40,0,34.3,0.196,22,1
400 | 3,82,70,0,0,21.1,0.389,25,0
401 | 3,193,70,31,0,34.9,0.241,25,1
402 | 4,95,64,0,0,32,0.161,31,1
403 | 6,137,61,0,0,24.2,0.151,55,0
404 | 5,136,84,41,88,35,0.286,35,1
405 | 9,72,78,25,0,31.6,0.28,38,0
406 | 5,168,64,0,0,32.9,0.135,41,1
407 | 2,123,48,32,165,42.1,0.52,26,0
408 | 4,115,72,0,0,28.9,0.376,46,1
409 | 0,101,62,0,0,21.9,0.336,25,0
410 | 8,197,74,0,0,25.9,1.191,39,1
411 | 1,172,68,49,579,42.4,0.702,28,1
412 | 6,102,90,39,0,35.7,0.674,28,0
413 | 1,112,72,30,176,34.4,0.528,25,0
414 | 1,143,84,23,310,42.4,1.076,22,0
415 | 1,143,74,22,61,26.2,0.256,21,0
416 | 0,138,60,35,167,34.6,0.534,21,1
417 | 3,173,84,33,474,35.7,0.258,22,1
418 | 1,97,68,21,0,27.2,1.095,22,0
419 | 4,144,82,32,0,38.5,0.554,37,1
420 | 1,83,68,0,0,18.2,0.624,27,0
421 | 3,129,64,29,115,26.4,0.219,28,1
422 | 1,119,88,41,170,45.3,0.507,26,0
423 | 2,94,68,18,76,26,0.561,21,0
424 | 0,102,64,46,78,40.6,0.496,21,0
425 | 2,115,64,22,0,30.8,0.421,21,0
426 | 8,151,78,32,210,42.9,0.516,36,1
427 | 4,184,78,39,277,37,0.264,31,1
428 | 0,94,0,0,0,0,0.256,25,0
429 | 1,181,64,30,180,34.1,0.328,38,1
430 | 0,135,94,46,145,40.6,0.284,26,0
431 | 1,95,82,25,180,35,0.233,43,1
432 | 2,99,0,0,0,22.2,0.108,23,0
433 | 3,89,74,16,85,30.4,0.551,38,0
434 | 1,80,74,11,60,30,0.527,22,0
435 | 2,139,75,0,0,25.6,0.167,29,0
436 | 1,90,68,8,0,24.5,1.138,36,0
437 | 0,141,0,0,0,42.4,0.205,29,1
438 | 12,140,85,33,0,37.4,0.244,41,0
439 | 5,147,75,0,0,29.9,0.434,28,0
440 | 1,97,70,15,0,18.2,0.147,21,0
441 | 6,107,88,0,0,36.8,0.727,31,0
442 | 0,189,104,25,0,34.3,0.435,41,1
443 | 2,83,66,23,50,32.2,0.497,22,0
444 | 4,117,64,27,120,33.2,0.23,24,0
445 | 8,108,70,0,0,30.5,0.955,33,1
446 | 4,117,62,12,0,29.7,0.38,30,1
447 | 0,180,78,63,14,59.4,2.42,25,1
448 | 1,100,72,12,70,25.3,0.658,28,0
449 | 0,95,80,45,92,36.5,0.33,26,0
450 | 0,104,64,37,64,33.6,0.51,22,1
451 | 0,120,74,18,63,30.5,0.285,26,0
452 | 1,82,64,13,95,21.2,0.415,23,0
453 | 2,134,70,0,0,28.9,0.542,23,1
454 | 0,91,68,32,210,39.9,0.381,25,0
455 | 2,119,0,0,0,19.6,0.832,72,0
456 | 2,100,54,28,105,37.8,0.498,24,0
457 | 14,175,62,30,0,33.6,0.212,38,1
458 | 1,135,54,0,0,26.7,0.687,62,0
459 | 5,86,68,28,71,30.2,0.364,24,0
460 | 10,148,84,48,237,37.6,1.001,51,1
461 | 9,134,74,33,60,25.9,0.46,81,0
462 | 9,120,72,22,56,20.8,0.733,48,0
463 | 1,71,62,0,0,21.8,0.416,26,0
464 | 8,74,70,40,49,35.3,0.705,39,0
465 | 5,88,78,30,0,27.6,0.258,37,0
466 | 10,115,98,0,0,24,1.022,34,0
467 | 0,124,56,13,105,21.8,0.452,21,0
468 | 0,74,52,10,36,27.8,0.269,22,0
469 | 0,97,64,36,100,36.8,0.6,25,0
470 | 8,120,0,0,0,30,0.183,38,1
471 | 6,154,78,41,140,46.1,0.571,27,0
472 | 1,144,82,40,0,41.3,0.607,28,0
473 | 0,137,70,38,0,33.2,0.17,22,0
474 | 0,119,66,27,0,38.8,0.259,22,0
475 | 7,136,90,0,0,29.9,0.21,50,0
476 | 4,114,64,0,0,28.9,0.126,24,0
477 | 0,137,84,27,0,27.3,0.231,59,0
478 | 2,105,80,45,191,33.7,0.711,29,1
479 | 7,114,76,17,110,23.8,0.466,31,0
480 | 8,126,74,38,75,25.9,0.162,39,0
481 | 4,132,86,31,0,28,0.419,63,0
482 | 3,158,70,30,328,35.5,0.344,35,1
483 | 0,123,88,37,0,35.2,0.197,29,0
484 | 4,85,58,22,49,27.8,0.306,28,0
485 | 0,84,82,31,125,38.2,0.233,23,0
486 | 0,145,0,0,0,44.2,0.63,31,1
487 | 0,135,68,42,250,42.3,0.365,24,1
488 | 1,139,62,41,480,40.7,0.536,21,0
489 | 0,173,78,32,265,46.5,1.159,58,0
490 | 4,99,72,17,0,25.6,0.294,28,0
491 | 8,194,80,0,0,26.1,0.551,67,0
492 | 2,83,65,28,66,36.8,0.629,24,0
493 | 2,89,90,30,0,33.5,0.292,42,0
494 | 4,99,68,38,0,32.8,0.145,33,0
495 | 4,125,70,18,122,28.9,1.144,45,1
496 | 3,80,0,0,0,0,0.174,22,0
497 | 6,166,74,0,0,26.6,0.304,66,0
498 | 5,110,68,0,0,26,0.292,30,0
499 | 2,81,72,15,76,30.1,0.547,25,0
500 | 7,195,70,33,145,25.1,0.163,55,1
501 | 6,154,74,32,193,29.3,0.839,39,0
502 | 2,117,90,19,71,25.2,0.313,21,0
503 | 3,84,72,32,0,37.2,0.267,28,0
504 | 6,0,68,41,0,39,0.727,41,1
505 | 7,94,64,25,79,33.3,0.738,41,0
506 | 3,96,78,39,0,37.3,0.238,40,0
507 | 10,75,82,0,0,33.3,0.263,38,0
508 | 0,180,90,26,90,36.5,0.314,35,1
509 | 1,130,60,23,170,28.6,0.692,21,0
510 | 2,84,50,23,76,30.4,0.968,21,0
511 | 8,120,78,0,0,25,0.409,64,0
512 | 12,84,72,31,0,29.7,0.297,46,1
513 | 0,139,62,17,210,22.1,0.207,21,0
514 | 9,91,68,0,0,24.2,0.2,58,0
515 | 2,91,62,0,0,27.3,0.525,22,0
516 | 3,99,54,19,86,25.6,0.154,24,0
517 | 3,163,70,18,105,31.6,0.268,28,1
518 | 9,145,88,34,165,30.3,0.771,53,1
519 | 7,125,86,0,0,37.6,0.304,51,0
520 | 13,76,60,0,0,32.8,0.18,41,0
521 | 6,129,90,7,326,19.6,0.582,60,0
522 | 2,68,70,32,66,25,0.187,25,0
523 | 3,124,80,33,130,33.2,0.305,26,0
524 | 6,114,0,0,0,0,0.189,26,0
525 | 9,130,70,0,0,34.2,0.652,45,1
526 | 3,125,58,0,0,31.6,0.151,24,0
527 | 3,87,60,18,0,21.8,0.444,21,0
528 | 1,97,64,19,82,18.2,0.299,21,0
529 | 3,116,74,15,105,26.3,0.107,24,0
530 | 0,117,66,31,188,30.8,0.493,22,0
531 | 0,111,65,0,0,24.6,0.66,31,0
532 | 2,122,60,18,106,29.8,0.717,22,0
533 | 0,107,76,0,0,45.3,0.686,24,0
534 | 1,86,66,52,65,41.3,0.917,29,0
535 | 6,91,0,0,0,29.8,0.501,31,0
536 | 1,77,56,30,56,33.3,1.251,24,0
537 | 4,132,0,0,0,32.9,0.302,23,1
538 | 0,105,90,0,0,29.6,0.197,46,0
539 | 0,57,60,0,0,21.7,0.735,67,0
540 | 0,127,80,37,210,36.3,0.804,23,0
541 | 3,129,92,49,155,36.4,0.968,32,1
542 | 8,100,74,40,215,39.4,0.661,43,1
543 | 3,128,72,25,190,32.4,0.549,27,1
544 | 10,90,85,32,0,34.9,0.825,56,1
545 | 4,84,90,23,56,39.5,0.159,25,0
546 | 1,88,78,29,76,32,0.365,29,0
547 | 8,186,90,35,225,34.5,0.423,37,1
548 | 5,187,76,27,207,43.6,1.034,53,1
549 | 4,131,68,21,166,33.1,0.16,28,0
550 | 1,164,82,43,67,32.8,0.341,50,0
551 | 4,189,110,31,0,28.5,0.68,37,0
552 | 1,116,70,28,0,27.4,0.204,21,0
553 | 3,84,68,30,106,31.9,0.591,25,0
554 | 6,114,88,0,0,27.8,0.247,66,0
555 | 1,88,62,24,44,29.9,0.422,23,0
556 | 1,84,64,23,115,36.9,0.471,28,0
557 | 7,124,70,33,215,25.5,0.161,37,0
558 | 1,97,70,40,0,38.1,0.218,30,0
559 | 8,110,76,0,0,27.8,0.237,58,0
560 | 11,103,68,40,0,46.2,0.126,42,0
561 | 11,85,74,0,0,30.1,0.3,35,0
562 | 6,125,76,0,0,33.8,0.121,54,1
563 | 0,198,66,32,274,41.3,0.502,28,1
564 | 1,87,68,34,77,37.6,0.401,24,0
565 | 6,99,60,19,54,26.9,0.497,32,0
566 | 0,91,80,0,0,32.4,0.601,27,0
567 | 2,95,54,14,88,26.1,0.748,22,0
568 | 1,99,72,30,18,38.6,0.412,21,0
569 | 6,92,62,32,126,32,0.085,46,0
570 | 4,154,72,29,126,31.3,0.338,37,0
571 | 0,121,66,30,165,34.3,0.203,33,1
572 | 3,78,70,0,0,32.5,0.27,39,0
573 | 2,130,96,0,0,22.6,0.268,21,0
574 | 3,111,58,31,44,29.5,0.43,22,0
575 | 2,98,60,17,120,34.7,0.198,22,0
576 | 1,143,86,30,330,30.1,0.892,23,0
577 | 1,119,44,47,63,35.5,0.28,25,0
578 | 6,108,44,20,130,24,0.813,35,0
579 | 2,118,80,0,0,42.9,0.693,21,1
580 | 10,133,68,0,0,27,0.245,36,0
581 | 2,197,70,99,0,34.7,0.575,62,1
582 | 0,151,90,46,0,42.1,0.371,21,1
583 | 6,109,60,27,0,25,0.206,27,0
584 | 12,121,78,17,0,26.5,0.259,62,0
585 | 8,100,76,0,0,38.7,0.19,42,0
586 | 8,124,76,24,600,28.7,0.687,52,1
587 | 1,93,56,11,0,22.5,0.417,22,0
588 | 8,143,66,0,0,34.9,0.129,41,1
589 | 6,103,66,0,0,24.3,0.249,29,0
590 | 3,176,86,27,156,33.3,1.154,52,1
591 | 0,73,0,0,0,21.1,0.342,25,0
592 | 11,111,84,40,0,46.8,0.925,45,1
593 | 2,112,78,50,140,39.4,0.175,24,0
594 | 3,132,80,0,0,34.4,0.402,44,1
595 | 2,82,52,22,115,28.5,1.699,25,0
596 | 6,123,72,45,230,33.6,0.733,34,0
597 | 0,188,82,14,185,32,0.682,22,1
598 | 0,67,76,0,0,45.3,0.194,46,0
599 | 1,89,24,19,25,27.8,0.559,21,0
600 | 1,173,74,0,0,36.8,0.088,38,1
601 | 1,109,38,18,120,23.1,0.407,26,0
602 | 1,108,88,19,0,27.1,0.4,24,0
603 | 6,96,0,0,0,23.7,0.19,28,0
604 | 1,124,74,36,0,27.8,0.1,30,0
605 | 7,150,78,29,126,35.2,0.692,54,1
606 | 4,183,0,0,0,28.4,0.212,36,1
607 | 1,124,60,32,0,35.8,0.514,21,0
608 | 1,181,78,42,293,40,1.258,22,1
609 | 1,92,62,25,41,19.5,0.482,25,0
610 | 0,152,82,39,272,41.5,0.27,27,0
611 | 1,111,62,13,182,24,0.138,23,0
612 | 3,106,54,21,158,30.9,0.292,24,0
613 | 3,174,58,22,194,32.9,0.593,36,1
614 | 7,168,88,42,321,38.2,0.787,40,1
615 | 6,105,80,28,0,32.5,0.878,26,0
616 | 11,138,74,26,144,36.1,0.557,50,1
617 | 3,106,72,0,0,25.8,0.207,27,0
618 | 6,117,96,0,0,28.7,0.157,30,0
619 | 2,68,62,13,15,20.1,0.257,23,0
620 | 9,112,82,24,0,28.2,1.282,50,1
621 | 0,119,0,0,0,32.4,0.141,24,1
622 | 2,112,86,42,160,38.4,0.246,28,0
623 | 2,92,76,20,0,24.2,1.698,28,0
624 | 6,183,94,0,0,40.8,1.461,45,0
625 | 0,94,70,27,115,43.5,0.347,21,0
626 | 2,108,64,0,0,30.8,0.158,21,0
627 | 4,90,88,47,54,37.7,0.362,29,0
628 | 0,125,68,0,0,24.7,0.206,21,0
629 | 0,132,78,0,0,32.4,0.393,21,0
630 | 5,128,80,0,0,34.6,0.144,45,0
631 | 4,94,65,22,0,24.7,0.148,21,0
632 | 7,114,64,0,0,27.4,0.732,34,1
633 | 0,102,78,40,90,34.5,0.238,24,0
634 | 2,111,60,0,0,26.2,0.343,23,0
635 | 1,128,82,17,183,27.5,0.115,22,0
636 | 10,92,62,0,0,25.9,0.167,31,0
637 | 13,104,72,0,0,31.2,0.465,38,1
638 | 5,104,74,0,0,28.8,0.153,48,0
639 | 2,94,76,18,66,31.6,0.649,23,0
640 | 7,97,76,32,91,40.9,0.871,32,1
641 | 1,100,74,12,46,19.5,0.149,28,0
642 | 0,102,86,17,105,29.3,0.695,27,0
643 | 4,128,70,0,0,34.3,0.303,24,0
644 | 6,147,80,0,0,29.5,0.178,50,1
645 | 4,90,0,0,0,28,0.61,31,0
646 | 3,103,72,30,152,27.6,0.73,27,0
647 | 2,157,74,35,440,39.4,0.134,30,0
648 | 1,167,74,17,144,23.4,0.447,33,1
649 | 0,179,50,36,159,37.8,0.455,22,1
650 | 11,136,84,35,130,28.3,0.26,42,1
651 | 0,107,60,25,0,26.4,0.133,23,0
652 | 1,91,54,25,100,25.2,0.234,23,0
653 | 1,117,60,23,106,33.8,0.466,27,0
654 | 5,123,74,40,77,34.1,0.269,28,0
655 | 2,120,54,0,0,26.8,0.455,27,0
656 | 1,106,70,28,135,34.2,0.142,22,0
657 | 2,155,52,27,540,38.7,0.24,25,1
658 | 2,101,58,35,90,21.8,0.155,22,0
659 | 1,120,80,48,200,38.9,1.162,41,0
660 | 11,127,106,0,0,39,0.19,51,0
661 | 3,80,82,31,70,34.2,1.292,27,1
662 | 10,162,84,0,0,27.7,0.182,54,0
663 | 1,199,76,43,0,42.9,1.394,22,1
664 | 8,167,106,46,231,37.6,0.165,43,1
665 | 9,145,80,46,130,37.9,0.637,40,1
666 | 6,115,60,39,0,33.7,0.245,40,1
667 | 1,112,80,45,132,34.8,0.217,24,0
668 | 4,145,82,18,0,32.5,0.235,70,1
669 | 10,111,70,27,0,27.5,0.141,40,1
670 | 6,98,58,33,190,34,0.43,43,0
671 | 9,154,78,30,100,30.9,0.164,45,0
672 | 6,165,68,26,168,33.6,0.631,49,0
673 | 1,99,58,10,0,25.4,0.551,21,0
674 | 10,68,106,23,49,35.5,0.285,47,0
675 | 3,123,100,35,240,57.3,0.88,22,0
676 | 8,91,82,0,0,35.6,0.587,68,0
677 | 6,195,70,0,0,30.9,0.328,31,1
678 | 9,156,86,0,0,24.8,0.23,53,1
679 | 0,93,60,0,0,35.3,0.263,25,0
680 | 3,121,52,0,0,36,0.127,25,1
681 | 2,101,58,17,265,24.2,0.614,23,0
682 | 2,56,56,28,45,24.2,0.332,22,0
683 | 0,162,76,36,0,49.6,0.364,26,1
684 | 0,95,64,39,105,44.6,0.366,22,0
685 | 4,125,80,0,0,32.3,0.536,27,1
686 | 5,136,82,0,0,0,0.64,69,0
687 | 2,129,74,26,205,33.2,0.591,25,0
688 | 3,130,64,0,0,23.1,0.314,22,0
689 | 1,107,50,19,0,28.3,0.181,29,0
690 | 1,140,74,26,180,24.1,0.828,23,0
691 | 1,144,82,46,180,46.1,0.335,46,1
692 | 8,107,80,0,0,24.6,0.856,34,0
693 | 13,158,114,0,0,42.3,0.257,44,1
694 | 2,121,70,32,95,39.1,0.886,23,0
695 | 7,129,68,49,125,38.5,0.439,43,1
696 | 2,90,60,0,0,23.5,0.191,25,0
697 | 7,142,90,24,480,30.4,0.128,43,1
698 | 3,169,74,19,125,29.9,0.268,31,1
699 | 0,99,0,0,0,25,0.253,22,0
700 | 4,127,88,11,155,34.5,0.598,28,0
701 | 4,118,70,0,0,44.5,0.904,26,0
702 | 2,122,76,27,200,35.9,0.483,26,0
703 | 6,125,78,31,0,27.6,0.565,49,1
704 | 1,168,88,29,0,35,0.905,52,1
705 | 2,129,0,0,0,38.5,0.304,41,0
706 | 4,110,76,20,100,28.4,0.118,27,0
707 | 6,80,80,36,0,39.8,0.177,28,0
708 | 10,115,0,0,0,0,0.261,30,1
709 | 2,127,46,21,335,34.4,0.176,22,0
710 | 9,164,78,0,0,32.8,0.148,45,1
711 | 2,93,64,32,160,38,0.674,23,1
712 | 3,158,64,13,387,31.2,0.295,24,0
713 | 5,126,78,27,22,29.6,0.439,40,0
714 | 10,129,62,36,0,41.2,0.441,38,1
715 | 0,134,58,20,291,26.4,0.352,21,0
716 | 3,102,74,0,0,29.5,0.121,32,0
717 | 7,187,50,33,392,33.9,0.826,34,1
718 | 3,173,78,39,185,33.8,0.97,31,1
719 | 10,94,72,18,0,23.1,0.595,56,0
720 | 1,108,60,46,178,35.5,0.415,24,0
721 | 5,97,76,27,0,35.6,0.378,52,1
722 | 4,83,86,19,0,29.3,0.317,34,0
723 | 1,114,66,36,200,38.1,0.289,21,0
724 | 1,149,68,29,127,29.3,0.349,42,1
725 | 5,117,86,30,105,39.1,0.251,42,0
726 | 1,111,94,0,0,32.8,0.265,45,0
727 | 4,112,78,40,0,39.4,0.236,38,0
728 | 1,116,78,29,180,36.1,0.496,25,0
729 | 0,141,84,26,0,32.4,0.433,22,0
730 | 2,175,88,0,0,22.9,0.326,22,0
731 | 2,92,52,0,0,30.1,0.141,22,0
732 | 3,130,78,23,79,28.4,0.323,34,1
733 | 8,120,86,0,0,28.4,0.259,22,1
734 | 2,174,88,37,120,44.5,0.646,24,1
735 | 2,106,56,27,165,29,0.426,22,0
736 | 2,105,75,0,0,23.3,0.56,53,0
737 | 4,95,60,32,0,35.4,0.284,28,0
738 | 0,126,86,27,120,27.4,0.515,21,0
739 | 8,65,72,23,0,32,0.6,42,0
740 | 2,99,60,17,160,36.6,0.453,21,0
741 | 1,102,74,0,0,39.5,0.293,42,1
742 | 11,120,80,37,150,42.3,0.785,48,1
743 | 3,102,44,20,94,30.8,0.4,26,0
744 | 1,109,58,18,116,28.5,0.219,22,0
745 | 9,140,94,0,0,32.7,0.734,45,1
746 | 13,153,88,37,140,40.6,1.174,39,0
747 | 12,100,84,33,105,30,0.488,46,0
748 | 1,147,94,41,0,49.3,0.358,27,1
749 | 1,81,74,41,57,46.3,1.096,32,0
750 | 3,187,70,22,200,36.4,0.408,36,1
751 | 6,162,62,0,0,24.3,0.178,50,1
752 | 4,136,70,0,0,31.2,1.182,22,1
753 | 1,121,78,39,74,39,0.261,28,0
754 | 3,108,62,24,0,26,0.223,25,0
755 | 0,181,88,44,510,43.3,0.222,26,1
756 | 8,154,78,32,0,32.4,0.443,45,1
757 | 1,128,88,39,110,36.5,1.057,37,1
758 | 7,137,90,41,0,32,0.391,39,0
759 | 0,123,72,0,0,36.3,0.258,52,1
760 | 1,106,76,0,0,37.5,0.197,26,0
761 | 6,190,92,0,0,35.5,0.278,66,1
762 | 2,88,58,26,16,28.4,0.766,22,0
763 | 9,170,74,31,0,44,0.403,43,1
764 | 9,89,62,0,0,22.5,0.142,33,0
765 | 10,101,76,48,180,32.9,0.171,63,0
766 | 2,122,70,27,0,36.8,0.34,27,0
767 | 5,121,72,23,112,26.2,0.245,30,0
768 | 1,126,60,0,0,30.1,0.349,47,1
769 | 1,93,70,31,0,30.4,0.315,23,0
770 | 14,100,78,25,184,36.6,0.412,46,1
771 | 8,112,72,0,0,23.6,0.84,58,0
772 | 0,167,0,0,0,32.3,0.839,30,1
773 | 2,144,58,33,135,31.6,0.422,25,1
774 | 5,77,82,41,42,35.8,0.156,35,0
775 | 5,115,98,0,0,52.9,0.209,28,1
776 | 3,150,76,0,0,21,0.207,37,0
777 | 2,120,76,37,105,39.7,0.215,29,0
778 | 10,161,68,23,132,25.5,0.326,47,1
779 | 0,137,68,14,148,24.8,0.143,21,0
780 | 0,128,68,19,180,30.5,1.391,25,1
781 | 2,124,68,28,205,32.9,0.875,30,1
782 | 6,80,66,30,0,26.2,0.313,41,0
783 | 0,106,70,37,148,39.4,0.605,22,0
784 | 2,155,74,17,96,26.6,0.433,27,1
785 | 3,113,50,10,85,29.5,0.626,25,0
786 | 7,109,80,31,0,35.9,1.127,43,1
787 | 2,112,68,22,94,34.1,0.315,26,0
788 | 3,99,80,11,64,19.3,0.284,30,0
789 | 3,182,74,0,0,30.5,0.345,29,1
790 | 3,115,66,39,140,38.1,0.15,28,0
791 | 6,194,78,0,0,23.5,0.129,59,1
792 | 4,129,60,12,231,27.5,0.527,31,0
793 | 3,112,74,30,0,31.6,0.197,25,1
794 | 0,124,70,20,0,27.4,0.254,36,1
795 | 13,152,90,33,29,26.8,0.731,43,1
796 | 2,112,75,32,0,35.7,0.148,21,0
797 | 1,157,72,21,168,25.6,0.123,24,0
798 | 1,122,64,32,156,35.1,0.692,30,1
799 | 10,179,70,0,0,35.1,0.2,37,0
800 | 2,102,86,36,120,45.5,0.127,23,1
801 | 6,105,70,32,68,30.8,0.122,37,0
802 | 8,118,72,19,0,23.1,1.476,46,0
803 | 2,87,58,16,52,32.7,0.166,25,0
804 | 1,180,0,0,0,43.3,0.282,41,1
805 | 12,106,80,0,0,23.6,0.137,44,0
806 | 1,95,60,18,58,23.9,0.26,22,0
807 | 0,165,76,43,255,47.9,0.259,26,0
808 | 0,117,0,0,0,33.8,0.932,44,0
809 | 5,115,76,0,0,31.2,0.343,44,1
810 | 9,152,78,34,171,34.2,0.893,33,1
811 | 7,178,84,0,0,39.9,0.331,41,1
812 | 1,130,70,13,105,25.9,0.472,22,0
813 | 1,95,74,21,73,25.9,0.673,36,0
814 | 1,0,68,35,0,32,0.389,22,0
815 | 5,122,86,0,0,34.7,0.29,33,0
816 | 8,95,72,0,0,36.8,0.485,57,0
817 | 8,126,88,36,108,38.5,0.349,49,0
818 | 1,139,46,19,83,28.7,0.654,22,0
819 | 3,116,0,0,0,23.5,0.187,23,0
820 | 3,99,62,19,74,21.8,0.279,26,0
821 | 5,0,80,32,0,41,0.346,37,1
822 | 4,92,80,0,0,42.2,0.237,29,0
823 | 4,137,84,0,0,31.2,0.252,30,0
824 | 3,61,82,28,0,34.4,0.243,46,0
825 | 1,90,62,12,43,27.2,0.58,24,0
826 | 3,90,78,0,0,42.7,0.559,21,0
827 | 9,165,88,0,0,30.4,0.302,49,1
828 | 1,125,50,40,167,33.3,0.962,28,1
829 | 13,129,0,30,0,39.9,0.569,44,1
830 | 12,88,74,40,54,35.3,0.378,48,0
831 | 1,196,76,36,249,36.5,0.875,29,1
832 | 5,189,64,33,325,31.2,0.583,29,1
833 | 5,158,70,0,0,29.8,0.207,63,0
834 | 5,103,108,37,0,39.2,0.305,65,0
835 | 4,146,78,0,0,38.5,0.52,67,1
836 | 4,147,74,25,293,34.9,0.385,30,0
837 | 5,99,54,28,83,34,0.499,30,0
838 | 6,124,72,0,0,27.6,0.368,29,1
839 | 0,101,64,17,0,21,0.252,21,0
840 | 3,81,86,16,66,27.5,0.306,22,0
841 | 1,133,102,28,140,32.8,0.234,45,1
842 | 3,173,82,48,465,38.4,2.137,25,1
843 | 0,118,64,23,89,0,1.731,21,0
844 | 0,84,64,22,66,35.8,0.545,21,0
845 | 2,105,58,40,94,34.9,0.225,25,0
846 | 2,122,52,43,158,36.2,0.816,28,0
847 | 12,140,82,43,325,39.2,0.528,58,1
848 | 0,98,82,15,84,25.2,0.299,22,0
849 | 1,87,60,37,75,37.2,0.509,22,0
850 | 4,156,75,0,0,48.3,0.238,32,1
851 | 0,93,100,39,72,43.4,1.021,35,0
852 | 1,107,72,30,82,30.8,0.821,24,0
853 | 0,105,68,22,0,20,0.236,22,0
854 | 1,109,60,8,182,25.4,0.947,21,0
855 | 1,90,62,18,59,25.1,1.268,25,0
856 | 1,125,70,24,110,24.3,0.221,25,0
857 | 1,119,54,13,50,22.3,0.205,24,0
858 | 5,116,74,29,0,32.3,0.66,35,1
859 | 8,105,100,36,0,43.3,0.239,45,1
860 | 5,144,82,26,285,32,0.452,58,1
861 | 3,100,68,23,81,31.6,0.949,28,0
862 | 1,100,66,29,196,32,0.444,42,0
863 | 5,166,76,0,0,45.7,0.34,27,1
864 | 1,131,64,14,415,23.7,0.389,21,0
865 | 4,116,72,12,87,22.1,0.463,37,0
866 | 4,158,78,0,0,32.9,0.803,31,1
867 | 2,127,58,24,275,27.7,1.6,25,0
868 | 3,96,56,34,115,24.7,0.944,39,0
869 | 0,131,66,40,0,34.3,0.196,22,1
870 | 3,82,70,0,0,21.1,0.389,25,0
871 | 3,193,70,31,0,34.9,0.241,25,1
872 | 4,95,64,0,0,32,0.161,31,1
873 | 6,137,61,0,0,24.2,0.151,55,0
874 | 5,136,84,41,88,35,0.286,35,1
875 | 9,72,78,25,0,31.6,0.28,38,0
876 | 5,168,64,0,0,32.9,0.135,41,1
877 | 2,123,48,32,165,42.1,0.52,26,0
878 | 4,115,72,0,0,28.9,0.376,46,1
879 | 0,101,62,0,0,21.9,0.336,25,0
880 | 8,197,74,0,0,25.9,1.191,39,1
881 | 1,172,68,49,579,42.4,0.702,28,1
882 | 6,102,90,39,0,35.7,0.674,28,0
883 | 1,112,72,30,176,34.4,0.528,25,0
884 | 1,143,84,23,310,42.4,1.076,22,0
885 | 1,143,74,22,61,26.2,0.256,21,0
886 | 0,138,60,35,167,34.6,0.534,21,1
887 | 3,173,84,33,474,35.7,0.258,22,1
888 | 1,97,68,21,0,27.2,1.095,22,0
889 | 4,144,82,32,0,38.5,0.554,37,1
890 | 1,83,68,0,0,18.2,0.624,27,0
891 | 3,129,64,29,115,26.4,0.219,28,1
892 | 1,119,88,41,170,45.3,0.507,26,0
893 | 2,94,68,18,76,26,0.561,21,0
894 | 0,102,64,46,78,40.6,0.496,21,0
895 | 2,115,64,22,0,30.8,0.421,21,0
896 | 8,151,78,32,210,42.9,0.516,36,1
897 | 4,184,78,39,277,37,0.264,31,1
898 | 0,94,0,0,0,0,0.256,25,0
899 | 1,181,64,30,180,34.1,0.328,38,1
900 | 0,135,94,46,145,40.6,0.284,26,0
901 | 1,95,82,25,180,35,0.233,43,1
902 | 2,99,0,0,0,22.2,0.108,23,0
903 | 3,89,74,16,85,30.4,0.551,38,0
904 | 1,80,74,11,60,30,0.527,22,0
905 | 2,139,75,0,0,25.6,0.167,29,0
906 | 1,90,68,8,0,24.5,1.138,36,0
907 | 0,141,0,0,0,42.4,0.205,29,1
908 | 12,140,85,33,0,37.4,0.244,41,0
909 | 5,147,75,0,0,29.9,0.434,28,0
910 | 1,97,70,15,0,18.2,0.147,21,0
911 | 6,107,88,0,0,36.8,0.727,31,0
912 | 0,189,104,25,0,34.3,0.435,41,1
913 | 2,83,66,23,50,32.2,0.497,22,0
914 | 4,117,64,27,120,33.2,0.23,24,0
915 | 8,108,70,0,0,30.5,0.955,33,1
916 | 4,117,62,12,0,29.7,0.38,30,1
917 | 0,180,78,63,14,59.4,2.42,25,1
918 | 1,100,72,12,70,25.3,0.658,28,0
919 | 0,95,80,45,92,36.5,0.33,26,0
920 | 0,104,64,37,64,33.6,0.51,22,1
921 | 0,120,74,18,63,30.5,0.285,26,0
922 | 1,82,64,13,95,21.2,0.415,23,0
923 | 2,134,70,0,0,28.9,0.542,23,1
924 | 0,91,68,32,210,39.9,0.381,25,0
925 | 2,119,0,0,0,19.6,0.832,72,0
926 | 2,100,54,28,105,37.8,0.498,24,0
927 | 14,175,62,30,0,33.6,0.212,38,1
928 | 1,135,54,0,0,26.7,0.687,62,0
929 | 5,86,68,28,71,30.2,0.364,24,0
930 | 10,148,84,48,237,37.6,1.001,51,1
931 | 9,134,74,33,60,25.9,0.46,81,0
932 | 9,120,72,22,56,20.8,0.733,48,0
933 | 1,71,62,0,0,21.8,0.416,26,0
934 | 8,74,70,40,49,35.3,0.705,39,0
935 | 5,88,78,30,0,27.6,0.258,37,0
936 | 10,115,98,0,0,24,1.022,34,0
937 | 0,124,56,13,105,21.8,0.452,21,0
938 | 0,74,52,10,36,27.8,0.269,22,0
939 | 0,97,64,36,100,36.8,0.6,25,0
940 | 8,120,0,0,0,30,0.183,38,1
941 | 6,154,78,41,140,46.1,0.571,27,0
942 | 1,144,82,40,0,41.3,0.607,28,0
943 | 0,137,70,38,0,33.2,0.17,22,0
944 | 0,119,66,27,0,38.8,0.259,22,0
945 | 7,136,90,0,0,29.9,0.21,50,0
946 | 4,114,64,0,0,28.9,0.126,24,0
947 | 0,137,84,27,0,27.3,0.231,59,0
948 | 2,105,80,45,191,33.7,0.711,29,1
949 | 7,114,76,17,110,23.8,0.466,31,0
950 | 8,126,74,38,75,25.9,0.162,39,0
951 | 4,132,86,31,0,28,0.419,63,0
952 | 3,158,70,30,328,35.5,0.344,35,1
953 | 0,123,88,37,0,35.2,0.197,29,0
954 | 4,85,58,22,49,27.8,0.306,28,0
955 | 0,84,82,31,125,38.2,0.233,23,0
956 | 0,145,0,0,0,44.2,0.63,31,1
957 | 0,135,68,42,250,42.3,0.365,24,1
958 | 1,139,62,41,480,40.7,0.536,21,0
959 | 0,173,78,32,265,46.5,1.159,58,0
960 | 4,99,72,17,0,25.6,0.294,28,0
961 | 8,194,80,0,0,26.1,0.551,67,0
962 | 2,83,65,28,66,36.8,0.629,24,0
963 | 2,89,90,30,0,33.5,0.292,42,0
964 | 4,99,68,38,0,32.8,0.145,33,0
965 | 4,125,70,18,122,28.9,1.144,45,1
966 | 3,80,0,0,0,0,0.174,22,0
967 | 6,166,74,0,0,26.6,0.304,66,0
968 | 5,110,68,0,0,26,0.292,30,0
969 | 2,81,72,15,76,30.1,0.547,25,0
970 | 7,195,70,33,145,25.1,0.163,55,1
971 | 6,154,74,32,193,29.3,0.839,39,0
972 | 2,117,90,19,71,25.2,0.313,21,0
973 | 3,84,72,32,0,37.2,0.267,28,0
974 | 6,0,68,41,0,39,0.727,41,1
975 | 7,94,64,25,79,33.3,0.738,41,0
976 | 3,96,78,39,0,37.3,0.238,40,0
977 | 10,75,82,0,0,33.3,0.263,38,0
978 | 0,180,90,26,90,36.5,0.314,35,1
979 | 1,130,60,23,170,28.6,0.692,21,0
980 | 2,84,50,23,76,30.4,0.968,21,0
981 | 8,120,78,0,0,25,0.409,64,0
982 | 12,84,72,31,0,29.7,0.297,46,1
983 | 0,139,62,17,210,22.1,0.207,21,0
984 | 9,91,68,0,0,24.2,0.2,58,0
985 | 2,91,62,0,0,27.3,0.525,22,0
986 | 3,99,54,19,86,25.6,0.154,24,0
987 | 3,163,70,18,105,31.6,0.268,28,1
988 | 9,145,88,34,165,30.3,0.771,53,1
989 | 2,122,60,18,106,29.8,0.717,22,0
990 | 0,107,76,0,0,45.3,0.686,24,0
991 | 1,86,66,52,65,41.3,0.917,29,0
992 | 6,91,0,0,0,29.8,0.501,31,0
993 | 1,77,56,30,56,33.3,1.251,24,0
994 | 4,132,0,0,0,32.9,0.302,23,1
995 | 0,105,90,0,0,29.6,0.197,46,0
996 | 0,57,60,0,0,21.7,0.735,67,0
997 | 0,127,80,37,210,36.3,0.804,23,0
998 | 3,129,92,49,155,36.4,0.968,32,1
999 | 8,100,74,40,215,39.4,0.661,43,1
1000 | 3,128,72,25,190,32.4,0.549,27,1
1001 | 10,90,85,32,0,34.9,0.825,56,1
1002 | 4,84,90,23,56,39.5,0.159,25,0
1003 | 1,88,78,29,76,32,0.365,29,0
1004 | 8,186,90,35,225,34.5,0.423,37,1
1005 | 5,187,76,27,207,43.6,1.034,53,1
1006 | 4,131,68,21,166,33.1,0.16,28,0
1007 | 1,164,82,43,67,32.8,0.341,50,0
1008 | 4,189,110,31,0,28.5,0.68,37,0
1009 | 1,116,70,28,0,27.4,0.204,21,0
1010 | 3,84,68,30,106,31.9,0.591,25,0
1011 | 6,114,88,0,0,27.8,0.247,66,0
1012 | 1,88,62,24,44,29.9,0.422,23,0
1013 | 1,84,64,23,115,36.9,0.471,28,0
1014 | 7,124,70,33,215,25.5,0.161,37,0
1015 | 1,97,70,40,0,38.1,0.218,30,0
1016 | 8,110,76,0,0,27.8,0.237,58,0
1017 | 11,103,68,40,0,46.2,0.126,42,0
1018 | 11,85,74,0,0,30.1,0.3,35,0
1019 | 6,125,76,0,0,33.8,0.121,54,1
1020 | 0,198,66,32,274,41.3,0.502,28,1
1021 | 1,87,68,34,77,37.6,0.401,24,0
1022 | 6,99,60,19,54,26.9,0.497,32,0
1023 | 0,91,80,0,0,32.4,0.601,27,0
1024 | 2,95,54,14,88,26.1,0.748,22,0
1025 | 1,99,72,30,18,38.6,0.412,21,0
1026 | 6,92,62,32,126,32,0.085,46,0
1027 | 4,154,72,29,126,31.3,0.338,37,0
1028 | 0,121,66,30,165,34.3,0.203,33,1
1029 | 3,78,70,0,0,32.5,0.27,39,0
1030 | 2,130,96,0,0,22.6,0.268,21,0
1031 | 3,111,58,31,44,29.5,0.43,22,0
1032 | 2,98,60,17,120,34.7,0.198,22,0
1033 | 1,143,86,30,330,30.1,0.892,23,0
1034 | 1,119,44,47,63,35.5,0.28,25,0
1035 | 6,108,44,20,130,24,0.813,35,0
1036 | 2,118,80,0,0,42.9,0.693,21,1
1037 | 10,133,68,0,0,27,0.245,36,0
1038 | 2,197,70,99,0,34.7,0.575,62,1
1039 | 0,151,90,46,0,42.1,0.371,21,1
1040 | 6,109,60,27,0,25,0.206,27,0
1041 | 12,121,78,17,0,26.5,0.259,62,0
1042 | 8,100,76,0,0,38.7,0.19,42,0
1043 | 8,124,76,24,600,28.7,0.687,52,1
1044 | 1,93,56,11,0,22.5,0.417,22,0
1045 | 8,143,66,0,0,34.9,0.129,41,1
1046 | 6,103,66,0,0,24.3,0.249,29,0
1047 | 3,176,86,27,156,33.3,1.154,52,1
1048 | 0,73,0,0,0,21.1,0.342,25,0
1049 | 11,111,84,40,0,46.8,0.925,45,1
1050 | 2,112,78,50,140,39.4,0.175,24,0
1051 | 3,132,80,0,0,34.4,0.402,44,1
1052 | 2,82,52,22,115,28.5,1.699,25,0
1053 | 6,123,72,45,230,33.6,0.733,34,0
1054 | 0,188,82,14,185,32,0.682,22,1
1055 | 0,67,76,0,0,45.3,0.194,46,0
1056 | 1,89,24,19,25,27.8,0.559,21,0
1057 | 1,173,74,0,0,36.8,0.088,38,1
1058 | 1,109,38,18,120,23.1,0.407,26,0
1059 | 1,108,88,19,0,27.1,0.4,24,0
1060 | 6,96,0,0,0,23.7,0.19,28,0
1061 | 1,124,74,36,0,27.8,0.1,30,0
1062 | 7,150,78,29,126,35.2,0.692,54,1
1063 | 4,183,0,0,0,28.4,0.212,36,1
1064 | 1,124,60,32,0,35.8,0.514,21,0
1065 | 1,181,78,42,293,40,1.258,22,1
1066 | 1,92,62,25,41,19.5,0.482,25,0
1067 | 0,152,82,39,272,41.5,0.27,27,0
1068 | 1,111,62,13,182,24,0.138,23,0
1069 | 3,106,54,21,158,30.9,0.292,24,0
1070 | 3,174,58,22,194,32.9,0.593,36,1
1071 | 7,168,88,42,321,38.2,0.787,40,1
1072 | 6,105,80,28,0,32.5,0.878,26,0
1073 | 11,138,74,26,144,36.1,0.557,50,1
1074 | 3,106,72,0,0,25.8,0.207,27,0
1075 | 6,117,96,0,0,28.7,0.157,30,0
1076 | 2,68,62,13,15,20.1,0.257,23,0
1077 | 9,112,82,24,0,28.2,1.282,50,1
1078 | 0,119,0,0,0,32.4,0.141,24,1
1079 | 2,112,86,42,160,38.4,0.246,28,0
1080 | 2,92,76,20,0,24.2,1.698,28,0
1081 | 6,183,94,0,0,40.8,1.461,45,0
1082 | 0,94,70,27,115,43.5,0.347,21,0
1083 | 2,108,64,0,0,30.8,0.158,21,0
1084 | 4,90,88,47,54,37.7,0.362,29,0
1085 | 0,125,68,0,0,24.7,0.206,21,0
1086 | 0,132,78,0,0,32.4,0.393,21,0
1087 | 5,128,80,0,0,34.6,0.144,45,0
1088 | 4,94,65,22,0,24.7,0.148,21,0
1089 | 7,114,64,0,0,27.4,0.732,34,1
1090 | 0,102,78,40,90,34.5,0.238,24,0
1091 | 2,111,60,0,0,26.2,0.343,23,0
1092 | 1,128,82,17,183,27.5,0.115,22,0
1093 | 10,92,62,0,0,25.9,0.167,31,0
1094 | 13,104,72,0,0,31.2,0.465,38,1
1095 | 5,104,74,0,0,28.8,0.153,48,0
1096 | 2,94,76,18,66,31.6,0.649,23,0
1097 | 7,97,76,32,91,40.9,0.871,32,1
1098 | 1,100,74,12,46,19.5,0.149,28,0
1099 | 0,102,86,17,105,29.3,0.695,27,0
1100 | 4,128,70,0,0,34.3,0.303,24,0
1101 | 6,147,80,0,0,29.5,0.178,50,1
1102 | 4,90,0,0,0,28,0.61,31,0
1103 | 3,103,72,30,152,27.6,0.73,27,0
1104 | 2,157,74,35,440,39.4,0.134,30,0
1105 | 1,167,74,17,144,23.4,0.447,33,1
1106 | 0,179,50,36,159,37.8,0.455,22,1
1107 | 11,136,84,35,130,28.3,0.26,42,1
1108 | 0,107,60,25,0,26.4,0.133,23,0
1109 | 1,91,54,25,100,25.2,0.234,23,0
1110 | 1,117,60,23,106,33.8,0.466,27,0
1111 | 5,123,74,40,77,34.1,0.269,28,0
1112 | 2,120,54,0,0,26.8,0.455,27,0
1113 | 1,106,70,28,135,34.2,0.142,22,0
1114 | 2,155,52,27,540,38.7,0.24,25,1
1115 | 2,101,58,35,90,21.8,0.155,22,0
1116 | 1,120,80,48,200,38.9,1.162,41,0
1117 | 11,127,106,0,0,39,0.19,51,0
1118 | 3,80,82,31,70,34.2,1.292,27,1
1119 | 10,162,84,0,0,27.7,0.182,54,0
1120 | 1,199,76,43,0,42.9,1.394,22,1
1121 | 8,167,106,46,231,37.6,0.165,43,1
1122 | 9,145,80,46,130,37.9,0.637,40,1
1123 | 6,115,60,39,0,33.7,0.245,40,1
1124 | 1,112,80,45,132,34.8,0.217,24,0
1125 | 4,145,82,18,0,32.5,0.235,70,1
1126 | 10,111,70,27,0,27.5,0.141,40,1
1127 | 6,98,58,33,190,34,0.43,43,0
1128 | 9,154,78,30,100,30.9,0.164,45,0
1129 | 6,165,68,26,168,33.6,0.631,49,0
1130 | 1,99,58,10,0,25.4,0.551,21,0
1131 | 10,68,106,23,49,35.5,0.285,47,0
1132 | 3,123,100,35,240,57.3,0.88,22,0
1133 | 8,91,82,0,0,35.6,0.587,68,0
1134 | 6,195,70,0,0,30.9,0.328,31,1
1135 | 9,156,86,0,0,24.8,0.23,53,1
1136 | 0,93,60,0,0,35.3,0.263,25,0
1137 | 3,121,52,0,0,36,0.127,25,1
1138 | 2,101,58,17,265,24.2,0.614,23,0
1139 | 2,56,56,28,45,24.2,0.332,22,0
1140 | 0,162,76,36,0,49.6,0.364,26,1
1141 | 0,95,64,39,105,44.6,0.366,22,0
1142 | 4,125,80,0,0,32.3,0.536,27,1
1143 | 5,136,82,0,0,0,0.64,69,0
1144 | 2,129,74,26,205,33.2,0.591,25,0
1145 | 3,130,64,0,0,23.1,0.314,22,0
1146 | 1,107,50,19,0,28.3,0.181,29,0
1147 | 1,140,74,26,180,24.1,0.828,23,0
1148 | 1,144,82,46,180,46.1,0.335,46,1
1149 | 8,107,80,0,0,24.6,0.856,34,0
1150 | 13,158,114,0,0,42.3,0.257,44,1
1151 | 2,121,70,32,95,39.1,0.886,23,0
1152 | 7,129,68,49,125,38.5,0.439,43,1
1153 | 2,90,60,0,0,23.5,0.191,25,0
1154 | 7,142,90,24,480,30.4,0.128,43,1
1155 | 3,169,74,19,125,29.9,0.268,31,1
1156 | 0,99,0,0,0,25,0.253,22,0
1157 | 4,127,88,11,155,34.5,0.598,28,0
1158 | 4,118,70,0,0,44.5,0.904,26,0
1159 | 2,122,76,27,200,35.9,0.483,26,0
1160 | 6,125,78,31,0,27.6,0.565,49,1
1161 | 1,168,88,29,0,35,0.905,52,1
1162 | 2,129,0,0,0,38.5,0.304,41,0
1163 | 4,110,76,20,100,28.4,0.118,27,0
1164 | 6,80,80,36,0,39.8,0.177,28,0
1165 | 10,115,0,0,0,0,0.261,30,1
1166 | 2,127,46,21,335,34.4,0.176,22,0
1167 | 9,164,78,0,0,32.8,0.148,45,1
1168 | 2,93,64,32,160,38,0.674,23,1
1169 | 3,158,64,13,387,31.2,0.295,24,0
1170 | 5,126,78,27,22,29.6,0.439,40,0
1171 | 10,129,62,36,0,41.2,0.441,38,1
1172 | 0,134,58,20,291,26.4,0.352,21,0
1173 | 3,102,74,0,0,29.5,0.121,32,0
1174 | 7,187,50,33,392,33.9,0.826,34,1
1175 | 3,173,78,39,185,33.8,0.97,31,1
1176 | 10,94,72,18,0,23.1,0.595,56,0
1177 | 1,108,60,46,178,35.5,0.415,24,0
1178 | 5,97,76,27,0,35.6,0.378,52,1
1179 | 4,83,86,19,0,29.3,0.317,34,0
1180 | 1,114,66,36,200,38.1,0.289,21,0
1181 | 1,149,68,29,127,29.3,0.349,42,1
1182 | 5,117,86,30,105,39.1,0.251,42,0
1183 | 1,111,94,0,0,32.8,0.265,45,0
1184 | 4,112,78,40,0,39.4,0.236,38,0
1185 | 1,116,78,29,180,36.1,0.496,25,0
1186 | 0,141,84,26,0,32.4,0.433,22,0
1187 | 2,175,88,0,0,22.9,0.326,22,0
1188 | 2,92,52,0,0,30.1,0.141,22,0
1189 | 3,130,78,23,79,28.4,0.323,34,1
1190 | 8,120,86,0,0,28.4,0.259,22,1
1191 | 2,174,88,37,120,44.5,0.646,24,1
1192 | 2,106,56,27,165,29,0.426,22,0
1193 | 2,105,75,0,0,23.3,0.56,53,0
1194 | 4,95,60,32,0,35.4,0.284,28,0
1195 | 0,126,86,27,120,27.4,0.515,21,0
1196 | 8,65,72,23,0,32,0.6,42,0
1197 | 2,99,60,17,160,36.6,0.453,21,0
1198 | 1,102,74,0,0,39.5,0.293,42,1
1199 | 11,120,80,37,150,42.3,0.785,48,1
1200 | 3,102,44,20,94,30.8,0.4,26,0
1201 | 1,109,58,18,116,28.5,0.219,22,0
1202 | 9,140,94,0,0,32.7,0.734,45,1
1203 | 13,153,88,37,140,40.6,1.174,39,0
1204 | 12,100,84,33,105,30,0.488,46,0
1205 | 1,147,94,41,0,49.3,0.358,27,1
1206 | 1,81,74,41,57,46.3,1.096,32,0
1207 | 3,187,70,22,200,36.4,0.408,36,1
1208 | 6,162,62,0,0,24.3,0.178,50,1
1209 | 4,136,70,0,0,31.2,1.182,22,1
1210 | 1,121,78,39,74,39,0.261,28,0
1211 | 3,108,62,24,0,26,0.223,25,0
1212 | 0,181,88,44,510,43.3,0.222,26,1
1213 | 8,154,78,32,0,32.4,0.443,45,1
1214 | 1,128,88,39,110,36.5,1.057,37,1
1215 | 7,137,90,41,0,32,0.391,39,0
1216 | 0,123,72,0,0,36.3,0.258,52,1
1217 | 1,106,76,0,0,37.5,0.197,26,0
1218 | 6,190,92,0,0,35.5,0.278,66,1
1219 | 2,88,58,26,16,28.4,0.766,22,0
1220 | 9,170,74,31,0,44,0.403,43,1
1221 | 9,89,62,0,0,22.5,0.142,33,0
1222 | 10,101,76,48,180,32.9,0.171,63,0
1223 | 2,122,70,27,0,36.8,0.34,27,0
1224 | 5,121,72,23,112,26.2,0.245,30,0
1225 | 1,126,60,0,0,30.1,0.349,47,1
1226 | 1,93,70,31,0,30.4,0.315,23,0
1227 | 14,100,78,25,184,36.6,0.412,46,1
1228 | 8,112,72,0,0,23.6,0.84,58,0
1229 | 0,167,0,0,0,32.3,0.839,30,1
1230 | 2,144,58,33,135,31.6,0.422,25,1
1231 | 5,77,82,41,42,35.8,0.156,35,0
1232 | 5,115,98,0,0,52.9,0.209,28,1
1233 | 3,150,76,0,0,21,0.207,37,0
1234 | 2,120,76,37,105,39.7,0.215,29,0
1235 | 10,161,68,23,132,25.5,0.326,47,1
1236 | 0,137,68,14,148,24.8,0.143,21,0
1237 | 0,128,68,19,180,30.5,1.391,25,1
1238 | 2,124,68,28,205,32.9,0.875,30,1
1239 | 6,80,66,30,0,26.2,0.313,41,0
1240 | 0,106,70,37,148,39.4,0.605,22,0
1241 | 2,155,74,17,96,26.6,0.433,27,1
1242 | 3,113,50,10,85,29.5,0.626,25,0
1243 | 7,109,80,31,0,35.9,1.127,43,1
1244 | 2,112,68,22,94,34.1,0.315,26,0
1245 | 3,99,80,11,64,19.3,0.284,30,0
1246 | 3,182,74,0,0,30.5,0.345,29,1
1247 | 3,115,66,39,140,38.1,0.15,28,0
1248 | 6,194,78,0,0,23.5,0.129,59,1
1249 | 4,129,60,12,231,27.5,0.527,31,0
1250 | 3,112,74,30,0,31.6,0.197,25,1
1251 | 0,124,70,20,0,27.4,0.254,36,1
1252 | 13,152,90,33,29,26.8,0.731,43,1
1253 | 2,112,75,32,0,35.7,0.148,21,0
1254 | 1,157,72,21,168,25.6,0.123,24,0
1255 | 1,122,64,32,156,35.1,0.692,30,1
1256 | 10,179,70,0,0,35.1,0.2,37,0
1257 | 2,102,86,36,120,45.5,0.127,23,1
1258 | 6,93,50,30,64,28.7,0.356,23,0
1259 | 1,122,90,51,220,49.7,0.325,31,1
1260 | 1,163,72,0,0,39,1.222,33,1
1261 | 1,151,60,0,0,26.1,0.179,22,0
1262 | 0,125,96,0,0,22.5,0.262,21,0
1263 | 1,81,72,18,40,26.6,0.283,24,0
1264 | 2,85,65,0,0,39.6,0.93,27,0
1265 | 1,126,56,29,152,28.7,0.801,21,0
1266 | 1,96,122,0,0,22.4,0.207,27,0
1267 | 4,144,58,28,140,29.5,0.287,37,0
1268 | 3,83,58,31,18,34.3,0.336,25,0
1269 | 0,95,85,25,36,37.4,0.247,24,1
1270 | 3,171,72,33,135,33.3,0.199,24,1
1271 | 8,155,62,26,495,34,0.543,46,1
1272 | 1,89,76,34,37,31.2,0.192,23,0
1273 | 4,76,62,0,0,34,0.391,25,0
1274 | 7,160,54,32,175,30.5,0.588,39,1
1275 | 4,146,92,0,0,31.2,0.539,61,1
1276 | 5,124,74,0,0,34,0.22,38,1
1277 | 5,78,48,0,0,33.7,0.654,25,0
1278 | 4,97,60,23,0,28.2,0.443,22,0
1279 | 4,99,76,15,51,23.2,0.223,21,0
1280 | 0,162,76,56,100,53.2,0.759,25,1
1281 | 6,111,64,39,0,34.2,0.26,24,0
1282 | 2,107,74,30,100,33.6,0.404,23,0
1283 | 5,132,80,0,0,26.8,0.186,69,0
1284 | 0,113,76,0,0,33.3,0.278,23,1
1285 | 1,88,30,42,99,55,0.496,26,1
1286 | 3,120,70,30,135,42.9,0.452,30,0
1287 | 1,118,58,36,94,33.3,0.261,23,0
1288 | 1,117,88,24,145,34.5,0.403,40,1
1289 | 0,105,84,0,0,27.9,0.741,62,1
1290 | 4,173,70,14,168,29.7,0.361,33,1
1291 | 9,122,56,0,0,33.3,1.114,33,1
1292 | 3,170,64,37,225,34.5,0.356,30,1
1293 | 8,84,74,31,0,38.3,0.457,39,0
1294 | 2,96,68,13,49,21.1,0.647,26,0
1295 | 2,125,60,20,140,33.8,0.088,31,0
1296 | 0,100,70,26,50,30.8,0.597,21,0
1297 | 0,93,60,25,92,28.7,0.532,22,0
1298 | 0,129,80,0,0,31.2,0.703,29,0
1299 | 5,105,72,29,325,36.9,0.159,28,0
1300 | 3,128,78,0,0,21.1,0.268,55,0
1301 | 5,106,82,30,0,39.5,0.286,38,0
1302 | 2,108,52,26,63,32.5,0.318,22,0
1303 | 10,108,66,0,0,32.4,0.272,42,1
1304 | 4,154,62,31,284,32.8,0.237,23,0
1305 | 0,102,75,23,0,0,0.572,21,0
1306 | 9,57,80,37,0,32.8,0.096,41,0
1307 | 2,106,64,35,119,30.5,1.4,34,0
1308 | 5,147,78,0,0,33.7,0.218,65,0
1309 | 2,90,70,17,0,27.3,0.085,22,0
1310 | 1,136,74,50,204,37.4,0.399,24,0
1311 | 4,114,65,0,0,21.9,0.432,37,0
1312 | 9,156,86,28,155,34.3,1.189,42,1
1313 | 1,153,82,42,485,40.6,0.687,23,0
1314 | 8,188,78,0,0,47.9,0.137,43,1
1315 | 7,152,88,44,0,50,0.337,36,1
1316 | 2,99,52,15,94,24.6,0.637,21,0
1317 | 1,109,56,21,135,25.2,0.833,23,0
1318 | 2,88,74,19,53,29,0.229,22,0
1319 | 17,163,72,41,114,40.9,0.817,47,1
1320 | 4,151,90,38,0,29.7,0.294,36,0
1321 | 7,102,74,40,105,37.2,0.204,45,0
1322 | 0,114,80,34,285,44.2,0.167,27,0
1323 | 2,100,64,23,0,29.7,0.368,21,0
1324 | 0,131,88,0,0,31.6,0.743,32,1
1325 | 6,104,74,18,156,29.9,0.722,41,1
1326 | 3,148,66,25,0,32.5,0.256,22,0
1327 | 4,120,68,0,0,29.6,0.709,34,0
1328 | 4,110,66,0,0,31.9,0.471,29,0
1329 | 3,111,90,12,78,28.4,0.495,29,0
1330 | 6,102,82,0,0,30.8,0.18,36,1
1331 | 6,134,70,23,130,35.4,0.542,29,1
1332 | 2,87,0,23,0,28.9,0.773,25,0
1333 | 1,79,60,42,48,43.5,0.678,23,0
1334 | 2,75,64,24,55,29.7,0.37,33,0
1335 | 8,179,72,42,130,32.7,0.719,36,1
1336 | 6,85,78,0,0,31.2,0.382,42,0
1337 | 0,129,110,46,130,67.1,0.319,26,1
1338 | 5,143,78,0,0,45,0.19,47,0
1339 | 5,130,82,0,0,39.1,0.956,37,1
1340 | 6,87,80,0,0,23.2,0.084,32,0
1341 | 0,119,64,18,92,34.9,0.725,23,0
1342 | 1,0,74,20,23,27.7,0.299,21,0
1343 | 5,73,60,0,0,26.8,0.268,27,0
1344 | 4,141,74,0,0,27.6,0.244,40,0
1345 | 7,194,68,28,0,35.9,0.745,41,1
1346 | 8,181,68,36,495,30.1,0.615,60,1
1347 | 1,128,98,41,58,32,1.321,33,1
1348 | 8,109,76,39,114,27.9,0.64,31,1
1349 | 5,139,80,35,160,31.6,0.361,25,1
1350 | 3,111,62,0,0,22.6,0.142,21,0
1351 | 9,123,70,44,94,33.1,0.374,40,0
1352 | 7,159,66,0,0,30.4,0.383,36,1
1353 | 11,135,0,0,0,52.3,0.578,40,1
1354 | 8,85,55,20,0,24.4,0.136,42,0
1355 | 5,158,84,41,210,39.4,0.395,29,1
1356 | 1,105,58,0,0,24.3,0.187,21,0
1357 | 3,107,62,13,48,22.9,0.678,23,1
1358 | 4,109,64,44,99,34.8,0.905,26,1
1359 | 4,148,60,27,318,30.9,0.15,29,1
1360 | 0,113,80,16,0,31,0.874,21,0
1361 | 1,138,82,0,0,40.1,0.236,28,0
1362 | 0,108,68,20,0,27.3,0.787,32,0
1363 | 2,99,70,16,44,20.4,0.235,27,0
1364 | 6,103,72,32,190,37.7,0.324,55,0
1365 | 5,111,72,28,0,23.9,0.407,27,0
1366 | 8,196,76,29,280,37.5,0.605,57,1
1367 | 5,162,104,0,0,37.7,0.151,52,1
1368 | 1,96,64,27,87,33.2,0.289,21,0
1369 | 7,184,84,33,0,35.5,0.355,41,1
1370 | 2,81,60,22,0,27.7,0.29,25,0
1371 | 0,147,85,54,0,42.8,0.375,24,0
1372 | 7,179,95,31,0,34.2,0.164,60,0
1373 | 0,140,65,26,130,42.6,0.431,24,1
1374 | 9,112,82,32,175,34.2,0.26,36,1
1375 | 12,151,70,40,271,41.8,0.742,38,1
1376 | 5,109,62,41,129,35.8,0.514,25,1
1377 | 6,125,68,30,120,30,0.464,32,0
1378 | 5,85,74,22,0,29,1.224,32,1
1379 | 5,112,66,0,0,37.8,0.261,41,1
1380 | 0,177,60,29,478,34.6,1.072,21,1
1381 | 2,158,90,0,0,31.6,0.805,66,1
1382 | 7,119,0,0,0,25.2,0.209,37,0
1383 | 7,142,60,33,190,28.8,0.687,61,0
1384 | 1,100,66,15,56,23.6,0.666,26,0
1385 | 1,87,78,27,32,34.6,0.101,22,0
1386 | 0,101,76,0,0,35.7,0.198,26,0
1387 | 3,162,52,38,0,37.2,0.652,24,1
1388 | 4,197,70,39,744,36.7,2.329,31,0
1389 | 0,117,80,31,53,45.2,0.089,24,0
1390 | 4,142,86,0,0,44,0.645,22,1
1391 | 6,134,80,37,370,46.2,0.238,46,1
1392 | 1,79,80,25,37,25.4,0.583,22,0
1393 | 4,122,68,0,0,35,0.394,29,0
1394 | 3,74,68,28,45,29.7,0.293,23,0
1395 | 4,171,72,0,0,43.6,0.479,26,1
1396 | 7,181,84,21,192,35.9,0.586,51,1
1397 | 0,179,90,27,0,44.1,0.686,23,1
1398 | 9,164,84,21,0,30.8,0.831,32,1
1399 | 0,104,76,0,0,18.4,0.582,27,0
1400 | 1,91,64,24,0,29.2,0.192,21,0
1401 | 4,91,70,32,88,33.1,0.446,22,0
1402 | 3,139,54,0,0,25.6,0.402,22,1
1403 | 6,119,50,22,176,27.1,1.318,33,1
1404 | 2,146,76,35,194,38.2,0.329,29,0
1405 | 9,184,85,15,0,30,1.213,49,1
1406 | 10,122,68,0,0,31.2,0.258,41,0
1407 | 0,165,90,33,680,52.3,0.427,23,0
1408 | 9,124,70,33,402,35.4,0.282,34,0
1409 | 1,111,86,19,0,30.1,0.143,23,0
1410 | 9,106,52,0,0,31.2,0.38,42,0
1411 | 2,129,84,0,0,28,0.284,27,0
1412 | 2,90,80,14,55,24.4,0.249,24,0
1413 | 0,86,68,32,0,35.8,0.238,25,0
1414 | 12,92,62,7,258,27.6,0.926,44,1
1415 | 1,113,64,35,0,33.6,0.543,21,1
1416 | 3,111,56,39,0,30.1,0.557,30,0
1417 | 2,114,68,22,0,28.7,0.092,25,0
1418 | 1,193,50,16,375,25.9,0.655,24,0
1419 | 11,155,76,28,150,33.3,1.353,51,1
1420 | 3,191,68,15,130,30.9,0.299,34,0
1421 | 3,141,0,0,0,30,0.761,27,1
1422 | 4,95,70,32,0,32.1,0.612,24,0
1423 | 3,142,80,15,0,32.4,0.2,63,0
1424 | 4,123,62,0,0,32,0.226,35,1
1425 | 5,96,74,18,67,33.6,0.997,43,0
1426 | 0,138,0,0,0,36.3,0.933,25,1
1427 | 2,128,64,42,0,40,1.101,24,0
1428 | 0,102,52,0,0,25.1,0.078,21,0
1429 | 2,146,0,0,0,27.5,0.24,28,1
1430 | 10,101,86,37,0,45.6,1.136,38,1
1431 | 2,108,62,32,56,25.2,0.128,21,0
1432 | 3,122,78,0,0,23,0.254,40,0
1433 | 1,71,78,50,45,33.2,0.422,21,0
1434 | 13,106,70,0,0,34.2,0.251,52,0
1435 | 2,100,70,52,57,40.5,0.677,25,0
1436 | 7,106,60,24,0,26.5,0.296,29,1
1437 | 0,104,64,23,116,27.8,0.454,23,0
1438 | 5,114,74,0,0,24.9,0.744,57,0
1439 | 2,108,62,10,278,25.3,0.881,22,0
1440 | 0,146,70,0,0,37.9,0.334,28,1
1441 | 10,129,76,28,122,35.9,0.28,39,0
1442 | 7,133,88,15,155,32.4,0.262,37,0
1443 | 7,161,86,0,0,30.4,0.165,47,1
1444 | 2,108,80,0,0,27,0.259,52,1
1445 | 7,136,74,26,135,26,0.647,51,0
1446 | 5,155,84,44,545,38.7,0.619,34,0
1447 | 1,119,86,39,220,45.6,0.808,29,1
1448 | 4,96,56,17,49,20.8,0.34,26,0
1449 | 5,108,72,43,75,36.1,0.263,33,0
1450 | 0,78,88,29,40,36.9,0.434,21,0
1451 | 0,107,62,30,74,36.6,0.757,25,1
1452 | 2,128,78,37,182,43.3,1.224,31,1
1453 | 1,128,48,45,194,40.5,0.613,24,1
1454 | 0,161,50,0,0,21.9,0.254,65,0
1455 | 6,151,62,31,120,35.5,0.692,28,0
1456 | 2,146,70,38,360,28,0.337,29,1
1457 | 0,126,84,29,215,30.7,0.52,24,0
1458 | 14,100,78,25,184,36.6,0.412,46,1
1459 | 3,82,70,0,0,21.1,0.389,25,0
1460 | 3,193,70,31,0,34.9,0.241,25,1
1461 | 4,95,64,0,0,32,0.161,31,1
1462 | 6,137,61,0,0,24.2,0.151,55,0
1463 | 5,136,84,41,88,35,0.286,35,1
1464 | 9,72,78,25,0,31.6,0.28,38,0
1465 | 5,168,64,0,0,32.9,0.135,41,1
1466 | 2,123,48,32,165,42.1,0.52,26,0
1467 | 4,115,72,0,0,28.9,0.376,46,1
1468 | 0,101,62,0,0,21.9,0.336,25,0
1469 | 8,197,74,0,0,25.9,1.191,39,1
1470 | 1,172,68,49,579,42.4,0.702,28,1
1471 | 6,102,90,39,0,35.7,0.674,28,0
1472 | 1,112,72,30,176,34.4,0.528,25,0
1473 | 1,143,84,23,310,42.4,1.076,22,0
1474 | 1,143,74,22,61,26.2,0.256,21,0
1475 | 0,138,60,35,167,34.6,0.534,21,1
1476 | 3,173,84,33,474,35.7,0.258,22,1
1477 | 1,97,68,21,0,27.2,1.095,22,0
1478 | 4,144,82,32,0,38.5,0.554,37,1
1479 | 1,83,68,0,0,18.2,0.624,27,0
1480 | 3,129,64,29,115,26.4,0.219,28,1
1481 | 1,119,88,41,170,45.3,0.507,26,0
1482 | 2,94,68,18,76,26,0.561,21,0
1483 | 0,102,64,46,78,40.6,0.496,21,0
1484 | 2,115,64,22,0,30.8,0.421,21,0
1485 | 8,151,78,32,210,42.9,0.516,36,1
1486 | 4,184,78,39,277,37,0.264,31,1
1487 | 0,94,0,0,0,0,0.256,25,0
1488 | 1,181,64,30,180,34.1,0.328,38,1
1489 | 0,135,94,46,145,40.6,0.284,26,0
1490 | 1,95,82,25,180,35,0.233,43,1
1491 | 2,99,0,0,0,22.2,0.108,23,0
1492 | 3,89,74,16,85,30.4,0.551,38,0
1493 | 1,80,74,11,60,30,0.527,22,0
1494 | 2,139,75,0,0,25.6,0.167,29,0
1495 | 1,90,68,8,0,24.5,1.138,36,0
1496 | 0,141,0,0,0,42.4,0.205,29,1
1497 | 12,140,85,33,0,37.4,0.244,41,0
1498 | 5,147,75,0,0,29.9,0.434,28,0
1499 | 1,97,70,15,0,18.2,0.147,21,0
1500 | 6,107,88,0,0,36.8,0.727,31,0
1501 | 0,189,104,25,0,34.3,0.435,41,1
1502 | 2,83,66,23,50,32.2,0.497,22,0
1503 | 4,117,64,27,120,33.2,0.23,24,0
1504 | 8,108,70,0,0,30.5,0.955,33,1
1505 | 4,117,62,12,0,29.7,0.38,30,1
1506 | 0,180,78,63,14,59.4,2.42,25,1
1507 | 1,100,72,12,70,25.3,0.658,28,0
1508 | 0,95,80,45,92,36.5,0.33,26,0
1509 | 0,104,64,37,64,33.6,0.51,22,1
1510 | 0,120,74,18,63,30.5,0.285,26,0
1511 | 1,82,64,13,95,21.2,0.415,23,0
1512 | 2,134,70,0,0,28.9,0.542,23,1
1513 | 0,91,68,32,210,39.9,0.381,25,0
1514 | 2,119,0,0,0,19.6,0.832,72,0
1515 | 2,100,54,28,105,37.8,0.498,24,0
1516 | 14,175,62,30,0,33.6,0.212,38,1
1517 | 1,135,54,0,0,26.7,0.687,62,0
1518 | 5,86,68,28,71,30.2,0.364,24,0
1519 | 10,148,84,48,237,37.6,1.001,51,1
1520 | 9,134,74,33,60,25.9,0.46,81,0
1521 | 9,120,72,22,56,20.8,0.733,48,0
1522 | 1,71,62,0,0,21.8,0.416,26,0
1523 | 8,74,70,40,49,35.3,0.705,39,0
1524 | 5,88,78,30,0,27.6,0.258,37,0
1525 | 10,115,98,0,0,24,1.022,34,0
1526 | 0,124,56,13,105,21.8,0.452,21,0
1527 | 0,74,52,10,36,27.8,0.269,22,0
1528 | 0,97,64,36,100,36.8,0.6,25,0
1529 | 8,120,0,0,0,30,0.183,38,1
1530 | 6,154,78,41,140,46.1,0.571,27,0
1531 | 1,144,82,40,0,41.3,0.607,28,0
1532 | 0,137,70,38,0,33.2,0.17,22,0
1533 | 0,119,66,27,0,38.8,0.259,22,0
1534 | 7,136,90,0,0,29.9,0.21,50,0
1535 | 4,114,64,0,0,28.9,0.126,24,0
1536 | 0,137,84,27,0,27.3,0.231,59,0
1537 | 2,105,80,45,191,33.7,0.711,29,1
1538 | 7,114,76,17,110,23.8,0.466,31,0
1539 | 8,126,74,38,75,25.9,0.162,39,0
1540 | 4,132,86,31,0,28,0.419,63,0
1541 | 3,158,70,30,328,35.5,0.344,35,1
1542 | 0,123,88,37,0,35.2,0.197,29,0
1543 | 4,85,58,22,49,27.8,0.306,28,0
1544 | 0,84,82,31,125,38.2,0.233,23,0
1545 | 0,145,0,0,0,44.2,0.63,31,1
1546 | 0,135,68,42,250,42.3,0.365,24,1
1547 | 1,139,62,41,480,40.7,0.536,21,0
1548 | 0,173,78,32,265,46.5,1.159,58,0
1549 | 4,99,72,17,0,25.6,0.294,28,0
1550 | 8,194,80,0,0,26.1,0.551,67,0
1551 | 2,83,65,28,66,36.8,0.629,24,0
1552 | 2,89,90,30,0,33.5,0.292,42,0
1553 | 4,99,68,38,0,32.8,0.145,33,0
1554 | 4,125,70,18,122,28.9,1.144,45,1
1555 | 3,80,0,0,0,0,0.174,22,0
1556 | 6,166,74,0,0,26.6,0.304,66,0
1557 | 5,110,68,0,0,26,0.292,30,0
1558 | 2,81,72,15,76,30.1,0.547,25,0
1559 | 7,195,70,33,145,25.1,0.163,55,1
1560 | 6,154,74,32,193,29.3,0.839,39,0
1561 | 0,136,74,49,220,20.1,0.82,44,1
1562 | 0,126,84,29,215,30.7,0.52,24,0
1563 | 0,116,64,39,225,40.2,0.72,50,0
1564 | 2,142,94,59,177,38.3,0.62,63,1
1565 | 4,183,66,0,215,80.6,0.654,40,0
1566 | 1,100,62,0,0,64.4,0.152,36,0
1567 | 0,163,40,23,64,40.7,0.322,33,0
1568 | 6,139,84,37,0,50.7,0.32,50,1
1569 | 2,167,44,30,140,52.7,0.452,28,0
1570 | 3,162,0,110,215,48.7,0.52,24,0
1571 | 0,173,78,32,265,46.5,1.159,58,0
1572 | 4,99,72,17,0,25.6,0.294,28,0
1573 | 8,194,80,0,0,26.1,0.551,67,0
1574 | 2,83,65,28,66,36.8,0.629,24,0
1575 | 2,89,90,30,0,33.5,0.292,42,0
1576 | 4,99,68,38,0,32.8,0.145,33,0
1577 | 4,125,70,18,122,28.9,1.144,45,1
1578 | 3,80,0,0,0,0,0.174,22,0
1579 | 6,166,74,0,0,26.6,0.304,66,0
1580 | 5,110,68,0,0,26,0.292,30,0
1581 | 2,81,72,15,76,30.1,0.547,25,0
1582 | 7,195,70,33,145,25.1,0.163,55,1
1583 | 6,154,74,32,193,29.3,0.839,39,0
1584 | 0,136,74,49,220,20.1,0.82,44,1
1585 | 0,126,84,29,215,30.7,0.52,24,0
1586 | 0,116,64,39,225,40.2,0.72,50,0
1587 | 2,142,94,59,177,38.3,0.62,63,1
1588 | 4,183,66,0,215,80.6,0.654,40,0
1589 | 1,100,62,0,0,64.4,0.152,36,0
1590 | 0,163,40,23,64,40.7,0.322,33,0
1591 | 6,139,84,37,0,50.7,0.32,50,1
1592 | 2,167,44,30,140,52.7,0.452,28,0
1593 | 3,162,0,110,215,48.7,0.52,24,0
1594 | 7,178,84,0,0,39.9,0.331,41,1
1595 | 1,130,70,13,105,25.9,0.472,22,0
1596 | 1,95,74,21,73,25.9,0.673,36,0
1597 | 1,0,68,35,0,32,0.389,22,0
1598 | 5,122,86,0,0,34.7,0.29,33,0
1599 | 8,95,72,0,0,36.8,0.485,57,0
1600 | 8,126,88,36,108,38.5,0.349,49,0
1601 | 1,139,46,19,83,28.7,0.654,22,0
1602 | 3,116,0,0,0,23.5,0.187,23,0
1603 | 3,99,62,19,74,21.8,0.279,26,0
1604 | 5,0,80,32,0,41,0.346,37,1
1605 | 4,92,80,0,0,42.2,0.237,29,0
1606 | 4,137,84,0,0,31.2,0.252,30,0
1607 | 3,61,82,28,0,34.4,0.243,46,0
1608 | 1,90,62,12,43,27.2,0.58,24,0
1609 | 3,90,78,0,0,42.7,0.559,21,0
1610 | 9,165,88,0,0,30.4,0.302,49,1
1611 | 1,125,50,40,167,33.3,0.962,28,1
1612 | 13,129,0,30,0,39.9,0.569,44,1
1613 | 12,88,74,40,54,35.3,0.378,48,0
1614 | 1,196,76,36,249,36.5,0.875,29,1
1615 | 5,189,64,33,325,31.2,0.583,29,1
1616 | 5,158,70,0,0,29.8,0.207,63,0
1617 | 5,103,108,37,0,39.2,0.305,65,0
1618 | 4,146,78,0,0,38.5,0.52,67,1
1619 | 4,147,74,25,293,34.9,0.385,30,0
1620 | 5,99,54,28,83,34,0.499,30,0
1621 | 6,124,72,0,0,27.6,0.368,29,1
1622 | 0,101,64,17,0,21,0.252,21,0
1623 | 3,81,86,16,66,27.5,0.306,22,0
1624 | 1,133,102,28,140,32.8,0.234,45,1
1625 | 3,173,82,48,465,38.4,2.137,25,1
1626 | 0,118,64,23,89,0,1.731,21,0
1627 | 0,84,64,22,66,35.8,0.545,21,0
1628 | 2,105,58,40,94,34.9,0.225,25,0
1629 | 2,122,52,43,158,36.2,0.816,28,0
1630 | 12,140,82,43,325,39.2,0.528,58,1
1631 | 0,98,82,15,84,25.2,0.299,22,0
1632 | 1,87,60,37,75,37.2,0.509,22,0
1633 | 4,156,75,0,0,48.3,0.238,32,1
1634 | 0,93,100,39,72,43.4,1.021,35,0
1635 | 1,107,72,30,82,30.8,0.821,24,0
1636 | 0,105,68,22,0,20,0.236,22,0
1637 | 1,109,60,8,182,25.4,0.947,21,0
1638 | 1,90,62,18,59,25.1,1.268,25,0
1639 | 1,125,70,24,110,24.3,0.221,25,0
1640 | 1,119,54,13,50,22.3,0.205,24,0
1641 | 5,116,74,29,0,32.3,0.66,35,1
1642 | 8,105,100,36,0,43.3,0.239,45,1
1643 | 5,144,82,26,285,32,0.452,58,1
1644 | 3,100,68,23,81,31.6,0.949,28,0
1645 | 1,100,66,29,196,32,0.444,42,0
1646 | 5,166,76,0,0,45.7,0.34,27,1
1647 | 1,131,64,14,415,23.7,0.389,21,0
1648 | 4,116,72,12,87,22.1,0.463,37,0
1649 | 4,158,78,0,0,32.9,0.803,31,1
1650 | 2,127,58,24,275,27.7,1.6,25,0
1651 | 3,96,56,34,115,24.7,0.944,39,0
1652 | 0,131,66,40,0,34.3,0.196,22,1
1653 | 3,82,70,0,0,21.1,0.389,25,0
1654 | 3,193,70,31,0,34.9,0.241,25,1
1655 | 4,95,64,0,0,32,0.161,31,1
1656 | 6,137,61,0,0,24.2,0.151,55,0
1657 | 5,136,84,41,88,35,0.286,35,1
1658 | 9,72,78,25,0,31.6,0.28,38,0
1659 | 5,168,64,0,0,32.9,0.135,41,1
1660 | 2,123,48,32,165,42.1,0.52,26,0
1661 | 4,115,72,0,0,28.9,0.376,46,1
1662 | 0,101,62,0,0,21.9,0.336,25,0
1663 | 8,197,74,0,0,25.9,1.191,39,1
1664 | 1,172,68,49,579,42.4,0.702,28,1
1665 | 6,102,90,39,0,35.7,0.674,28,0
1666 | 1,112,72,30,176,34.4,0.528,25,0
1667 | 1,143,84,23,310,42.4,1.076,22,0
1668 | 1,143,74,22,61,26.2,0.256,21,0
1669 | 0,138,60,35,167,34.6,0.534,21,1
1670 | 3,173,84,33,474,35.7,0.258,22,1
1671 | 1,97,68,21,0,27.2,1.095,22,0
1672 | 4,144,82,32,0,38.5,0.554,37,1
1673 | 1,83,68,0,0,18.2,0.624,27,0
1674 | 3,129,64,29,115,26.4,0.219,28,1
1675 | 1,119,88,41,170,45.3,0.507,26,0
1676 | 2,94,68,18,76,26,0.561,21,0
1677 | 0,102,64,46,78,40.6,0.496,21,0
1678 | 2,115,64,22,0,30.8,0.421,21,0
1679 | 8,151,78,32,210,42.9,0.516,36,1
1680 | 4,184,78,39,277,37,0.264,31,1
1681 | 0,94,0,0,0,0,0.256,25,0
1682 | 1,181,64,30,180,34.1,0.328,38,1
1683 | 0,135,94,46,145,40.6,0.284,26,0
1684 | 1,95,82,25,180,35,0.233,43,1
1685 | 2,99,0,0,0,22.2,0.108,23,0
1686 | 3,89,74,16,85,30.4,0.551,38,0
1687 | 1,80,74,11,60,30,0.527,22,0
1688 | 1,173,74,0,0,36.8,0.088,38,1
1689 | 1,109,38,18,120,23.1,0.407,26,0
1690 | 1,108,88,19,0,27.1,0.4,24,0
1691 | 6,96,0,0,0,23.7,0.19,28,0
1692 | 1,124,74,36,0,27.8,0.1,30,0
1693 | 7,150,78,29,126,35.2,0.692,54,1
1694 | 4,183,0,0,0,28.4,0.212,36,1
1695 | 1,124,60,32,0,35.8,0.514,21,0
1696 | 1,181,78,42,293,40,1.258,22,1
1697 | 1,92,62,25,41,19.5,0.482,25,0
1698 | 0,152,82,39,272,41.5,0.27,27,0
1699 | 1,111,62,13,182,24,0.138,23,0
1700 | 3,106,54,21,158,30.9,0.292,24,0
1701 | 3,174,58,22,194,32.9,0.593,36,1
1702 | 7,168,88,42,321,38.2,0.787,40,1
1703 | 6,105,80,28,0,32.5,0.878,26,0
1704 | 11,138,74,26,144,36.1,0.557,50,1
1705 | 3,106,72,0,0,25.8,0.207,27,0
1706 | 6,117,96,0,0,28.7,0.157,30,0
1707 | 2,68,62,13,15,20.1,0.257,23,0
1708 | 9,112,82,24,0,28.2,1.282,50,1
1709 | 0,119,0,0,0,32.4,0.141,24,1
1710 | 2,112,86,42,160,38.4,0.246,28,0
1711 | 2,92,76,20,0,24.2,1.698,28,0
1712 | 6,183,94,0,0,40.8,1.461,45,0
1713 | 0,94,70,27,115,43.5,0.347,21,0
1714 | 2,108,64,0,0,30.8,0.158,21,0
1715 | 4,90,88,47,54,37.7,0.362,29,0
1716 | 0,125,68,0,0,24.7,0.206,21,0
1717 | 0,132,78,0,0,32.4,0.393,21,0
1718 | 5,128,80,0,0,34.6,0.144,45,0
1719 | 4,94,65,22,0,24.7,0.148,21,0
1720 | 7,114,64,0,0,27.4,0.732,34,1
1721 | 0,102,78,40,90,34.5,0.238,24,0
1722 | 2,111,60,0,0,26.2,0.343,23,0
1723 | 1,128,82,17,183,27.5,0.115,22,0
1724 | 10,92,62,0,0,25.9,0.167,31,0
1725 | 13,104,72,0,0,31.2,0.465,38,1
1726 | 5,104,74,0,0,28.8,0.153,48,0
1727 | 2,94,76,18,66,31.6,0.649,23,0
1728 | 7,97,76,32,91,40.9,0.871,32,1
1729 | 1,100,74,12,46,19.5,0.149,28,0
1730 | 0,102,86,17,105,29.3,0.695,27,0
1731 | 4,128,70,0,0,34.3,0.303,24,0
1732 | 6,147,80,0,0,29.5,0.178,50,1
1733 | 4,90,0,0,0,28,0.61,31,0
1734 | 3,103,72,30,152,27.6,0.73,27,0
1735 | 2,157,74,35,440,39.4,0.134,30,0
1736 | 1,167,74,17,144,23.4,0.447,33,1
1737 | 0,179,50,36,159,37.8,0.455,22,1
1738 | 11,136,84,35,130,28.3,0.26,42,1
1739 | 0,107,60,25,0,26.4,0.133,23,0
1740 | 1,91,54,25,100,25.2,0.234,23,0
1741 | 1,117,60,23,106,33.8,0.466,27,0
1742 | 5,123,74,40,77,34.1,0.269,28,0
1743 | 2,120,54,0,0,26.8,0.455,27,0
1744 | 1,106,70,28,135,34.2,0.142,22,0
1745 | 2,155,52,27,540,38.7,0.24,25,1
1746 | 2,101,58,35,90,21.8,0.155,22,0
1747 | 1,120,80,48,200,38.9,1.162,41,0
1748 | 11,127,106,0,0,39,0.19,51,0
1749 | 3,80,82,31,70,34.2,1.292,27,1
1750 | 10,162,84,0,0,27.7,0.182,54,0
1751 | 1,199,76,43,0,42.9,1.394,22,1
1752 | 8,167,106,46,231,37.6,0.165,43,1
1753 | 9,145,80,46,130,37.9,0.637,40,1
1754 | 6,115,60,39,0,33.7,0.245,40,1
1755 | 1,112,80,45,132,34.8,0.217,24,0
1756 | 4,145,82,18,0,32.5,0.235,70,1
1757 | 10,111,70,27,0,27.5,0.141,40,1
1758 | 6,98,58,33,190,34,0.43,43,0
1759 | 9,154,78,30,100,30.9,0.164,45,0
1760 | 6,165,68,26,168,33.6,0.631,49,0
1761 | 1,99,58,10,0,25.4,0.551,21,0
1762 | 10,68,106,23,49,35.5,0.285,47,0
1763 | 3,123,100,35,240,57.3,0.88,22,0
1764 | 8,91,82,0,0,35.6,0.587,68,0
1765 | 6,195,70,0,0,30.9,0.328,31,1
1766 | 9,156,86,0,0,24.8,0.23,53,1
1767 | 0,93,60,0,0,35.3,0.263,25,0
1768 | 3,121,52,0,0,36,0.127,25,1
1769 | 2,101,58,17,265,24.2,0.614,23,0
1770 | 2,56,56,28,45,24.2,0.332,22,0
1771 | 0,162,76,36,0,49.6,0.364,26,1
1772 | 0,95,64,39,105,44.6,0.366,22,0
1773 | 4,125,80,0,0,32.3,0.536,27,1
1774 | 5,136,82,0,0,0,0.64,69,0
1775 | 2,129,74,26,205,33.2,0.591,25,0
1776 | 3,130,64,0,0,23.1,0.314,22,0
1777 | 1,107,50,19,0,28.3,0.181,29,0
1778 | 1,140,74,26,180,24.1,0.828,23,0
1779 | 1,144,82,46,180,46.1,0.335,46,1
1780 | 8,107,80,0,0,24.6,0.856,34,0
1781 | 13,158,114,0,0,42.3,0.257,44,1
1782 | 2,121,70,32,95,39.1,0.886,23,0
1783 | 7,129,68,49,125,38.5,0.439,43,1
1784 | 2,90,60,0,0,23.5,0.191,25,0
1785 | 7,142,90,24,480,30.4,0.128,43,1
1786 | 3,169,74,19,125,29.9,0.268,31,1
1787 | 0,99,0,0,0,25,0.253,22,0
1788 | 4,127,88,11,155,34.5,0.598,28,0
1789 | 4,118,70,0,0,44.5,0.904,26,0
1790 | 2,122,76,27,200,35.9,0.483,26,0
1791 | 6,125,78,31,0,27.6,0.565,49,1
1792 | 1,168,88,29,0,35,0.905,52,1
1793 | 2,129,0,0,0,38.5,0.304,41,0
1794 | 4,110,76,20,100,28.4,0.118,27,0
1795 | 6,80,80,36,0,39.8,0.177,28,0
1796 | 10,115,0,0,0,0,0.261,30,1
1797 | 2,127,46,21,335,34.4,0.176,22,0
1798 | 9,164,78,0,0,32.8,0.148,45,1
1799 | 2,93,64,32,160,38,0.674,23,1
1800 | 3,158,64,13,387,31.2,0.295,24,0
1801 | 5,126,78,27,22,29.6,0.439,40,0
1802 | 10,129,62,36,0,41.2,0.441,38,1
1803 | 0,134,58,20,291,26.4,0.352,21,0
1804 | 3,102,74,0,0,29.5,0.121,32,0
1805 | 7,187,50,33,392,33.9,0.826,34,1
1806 | 3,173,78,39,185,33.8,0.97,31,1
1807 | 10,94,72,18,0,23.1,0.595,56,0
1808 | 1,108,60,46,178,35.5,0.415,24,0
1809 | 5,97,76,27,0,35.6,0.378,52,1
1810 | 4,83,86,19,0,29.3,0.317,34,0
1811 | 1,114,66,36,200,38.1,0.289,21,0
1812 | 1,149,68,29,127,29.3,0.349,42,1
1813 | 5,117,86,30,105,39.1,0.251,42,0
1814 | 1,111,94,0,0,32.8,0.265,45,0
1815 | 4,112,78,40,0,39.4,0.236,38,0
1816 | 1,116,78,29,180,36.1,0.496,25,0
1817 | 0,141,84,26,0,32.4,0.433,22,0
1818 | 2,175,88,0,0,22.9,0.326,22,0
1819 | 2,92,52,0,0,30.1,0.141,22,0
1820 | 3,130,78,23,79,28.4,0.323,34,1
1821 | 8,120,86,0,0,28.4,0.259,22,1
1822 | 2,174,88,37,120,44.5,0.646,24,1
1823 | 2,106,56,27,165,29,0.426,22,0
1824 | 2,105,75,0,0,23.3,0.56,53,0
1825 | 4,95,60,32,0,35.4,0.284,28,0
1826 | 0,126,86,27,120,27.4,0.515,21,0
1827 | 8,65,72,23,0,32,0.6,42,0
1828 | 2,99,60,17,160,36.6,0.453,21,0
1829 | 1,102,74,0,0,39.5,0.293,42,1
1830 | 11,120,80,37,150,42.3,0.785,48,1
1831 | 3,102,44,20,94,30.8,0.4,26,0
1832 | 1,109,58,18,116,28.5,0.219,22,0
1833 | 9,140,94,0,0,32.7,0.734,45,1
1834 | 13,153,88,37,140,40.6,1.174,39,0
1835 | 12,100,84,33,105,30,0.488,46,0
1836 | 1,147,94,41,0,49.3,0.358,27,1
1837 | 1,81,74,41,57,46.3,1.096,32,0
1838 | 3,187,70,22,200,36.4,0.408,36,1
1839 | 6,162,62,0,0,24.3,0.178,50,1
1840 | 4,136,70,0,0,31.2,1.182,22,1
1841 | 1,121,78,39,74,39,0.261,28,0
1842 | 3,108,62,24,0,26,0.223,25,0
1843 | 0,181,88,44,510,43.3,0.222,26,1
1844 | 8,154,78,32,0,32.4,0.443,45,1
1845 | 1,128,88,39,110,36.5,1.057,37,1
1846 | 7,137,90,41,0,32,0.391,39,0
1847 | 0,123,72,0,0,36.3,0.258,52,1
1848 | 1,106,76,0,0,37.5,0.197,26,0
1849 | 6,190,92,0,0,35.5,0.278,66,1
1850 | 2,88,58,26,16,28.4,0.766,22,0
1851 | 9,170,74,31,0,44,0.403,43,1
1852 | 9,89,62,0,0,22.5,0.142,33,0
1853 | 10,101,76,48,180,32.9,0.171,63,0
1854 | 2,122,70,27,0,36.8,0.34,27,0
1855 | 5,121,72,23,112,26.2,0.245,30,0
1856 | 1,126,60,0,0,30.1,0.349,47,1
1857 | 10,122,78,31,0,27.6,0.512,45,0
1858 | 4,103,60,33,192,24,0.966,33,0
1859 | 11,138,76,0,0,33.2,0.42,35,0
1860 | 9,102,76,37,0,32.9,0.665,46,1
1861 | 2,90,68,42,0,38.2,0.503,27,1
1862 | 4,111,72,47,207,37.1,1.39,56,1
1863 | 3,180,64,25,70,34,0.271,26,0
1864 | 7,133,84,0,0,40.2,0.696,37,0
1865 | 7,106,92,18,0,22.7,0.235,48,0
1866 | 9,171,110,24,240,45.4,0.721,54,1
1867 | 7,159,64,0,0,27.4,0.294,40,0
1868 | 0,180,66,39,0,42,1.893,25,1
1869 | 1,146,56,0,0,29.7,0.564,29,0
1870 | 2,71,70,27,0,28,0.586,22,0
1871 | 7,103,66,32,0,39.1,0.344,31,1
1872 | 7,105,0,0,0,0,0.305,24,0
1873 | 1,103,80,11,82,19.4,0.491,22,0
1874 | 1,101,50,15,36,24.2,0.526,26,0
1875 | 5,88,66,21,23,24.4,0.342,30,0
1876 | 8,176,90,34,300,33.7,0.467,58,1
1877 | 7,150,66,42,342,34.7,0.718,42,0
1878 | 1,73,50,10,0,23,0.248,21,0
1879 | 7,187,68,39,304,37.7,0.254,41,1
1880 | 0,100,88,60,110,46.8,0.962,31,0
1881 | 0,146,82,0,0,40.5,1.781,44,0
1882 | 0,105,64,41,142,41.5,0.173,22,0
1883 | 2,84,0,0,0,0,0.304,21,0
1884 | 8,133,72,0,0,32.9,0.27,39,1
1885 | 5,44,62,0,0,25,0.587,36,0
1886 | 2,141,58,34,128,25.4,0.699,24,0
1887 | 7,114,66,0,0,32.8,0.258,42,1
1888 | 5,99,74,27,0,29,0.203,32,0
1889 | 0,109,88,30,0,32.5,0.855,38,1
1890 | 2,109,92,0,0,42.7,0.845,54,0
1891 | 1,95,66,13,38,19.6,0.334,25,0
1892 | 4,146,85,27,100,28.9,0.189,27,0
1893 | 2,100,66,20,90,32.9,0.867,28,1
1894 | 5,139,64,35,140,28.6,0.411,26,0
1895 | 13,126,90,0,0,43.4,0.583,42,1
1896 | 4,129,86,20,270,35.1,0.231,23,0
1897 | 1,79,75,30,0,32,0.396,22,0
1898 | 1,0,48,20,0,24.7,0.14,22,0
1899 | 7,62,78,0,0,32.6,0.391,41,0
1900 | 5,95,72,33,0,37.7,0.37,27,0
1901 | 0,131,0,0,0,43.2,0.27,26,1
1902 | 2,112,66,22,0,25,0.307,24,0
1903 | 3,113,44,13,0,22.4,0.14,22,0
1904 | 2,74,0,0,0,0,0.102,22,0
1905 | 7,83,78,26,71,29.3,0.767,36,0
1906 | 0,101,65,28,0,24.6,0.237,22,0
1907 | 5,137,108,0,0,48.8,0.227,37,1
1908 | 2,110,74,29,125,32.4,0.698,27,0
1909 | 13,106,72,54,0,36.6,0.178,45,0
1910 | 2,100,68,25,71,38.5,0.324,26,0
1911 | 15,136,70,32,110,37.1,0.153,43,1
1912 | 1,107,68,19,0,26.5,0.165,24,0
1913 | 1,80,55,0,0,19.1,0.258,21,0
1914 | 4,123,80,15,176,32,0.443,34,0
1915 | 7,81,78,40,48,46.7,0.261,42,0
1916 | 4,134,72,0,0,23.8,0.277,60,1
1917 | 2,142,82,18,64,24.7,0.761,21,0
1918 | 6,144,72,27,228,33.9,0.255,40,0
1919 | 2,92,62,28,0,31.6,0.13,24,0
1920 | 1,71,48,18,76,20.4,0.323,22,0
1921 | 6,93,50,30,64,28.7,0.356,23,0
1922 | 1,122,90,51,220,49.7,0.325,31,1
1923 | 1,163,72,0,0,39,1.222,33,1
1924 | 1,151,60,0,0,26.1,0.179,22,0
1925 | 0,125,96,0,0,22.5,0.262,21,0
1926 | 1,81,72,18,40,26.6,0.283,24,0
1927 | 2,85,65,0,0,39.6,0.93,27,0
1928 | 1,126,56,29,152,28.7,0.801,21,0
1929 | 1,96,122,0,0,22.4,0.207,27,0
1930 | 4,144,58,28,140,29.5,0.287,37,0
1931 | 3,83,58,31,18,34.3,0.336,25,0
1932 | 0,95,85,25,36,37.4,0.247,24,1
1933 | 3,171,72,33,135,33.3,0.199,24,1
1934 | 8,155,62,26,495,34,0.543,46,1
1935 | 1,89,76,34,37,31.2,0.192,23,0
1936 | 4,76,62,0,0,34,0.391,25,0
1937 | 7,160,54,32,175,30.5,0.588,39,1
1938 | 4,146,92,0,0,31.2,0.539,61,1
1939 | 5,124,74,0,0,34,0.22,38,1
1940 | 5,78,48,0,0,33.7,0.654,25,0
1941 | 4,97,60,23,0,28.2,0.443,22,0
1942 | 4,99,76,15,51,23.2,0.223,21,0
1943 | 0,162,76,56,100,53.2,0.759,25,1
1944 | 6,111,64,39,0,34.2,0.26,24,0
1945 | 2,107,74,30,100,33.6,0.404,23,0
1946 | 5,132,80,0,0,26.8,0.186,69,0
1947 | 0,113,76,0,0,33.3,0.278,23,1
1948 | 1,88,30,42,99,55,0.496,26,1
1949 | 3,120,70,30,135,42.9,0.452,30,0
1950 | 1,118,58,36,94,33.3,0.261,23,0
1951 | 1,117,88,24,145,34.5,0.403,40,1
1952 | 0,105,84,0,0,27.9,0.741,62,1
1953 | 4,173,70,14,168,29.7,0.361,33,1
1954 | 9,122,56,0,0,33.3,1.114,33,1
1955 | 3,170,64,37,225,34.5,0.356,30,1
1956 | 8,84,74,31,0,38.3,0.457,39,0
1957 | 2,96,68,13,49,21.1,0.647,26,0
1958 | 2,125,60,20,140,33.8,0.088,31,0
1959 | 0,100,70,26,50,30.8,0.597,21,0
1960 | 0,93,60,25,92,28.7,0.532,22,0
1961 | 0,129,80,0,0,31.2,0.703,29,0
1962 | 5,105,72,29,325,36.9,0.159,28,0
1963 | 3,128,78,0,0,21.1,0.268,55,0
1964 | 5,106,82,30,0,39.5,0.286,38,0
1965 | 2,108,52,26,63,32.5,0.318,22,0
1966 | 10,108,66,0,0,32.4,0.272,42,1
1967 | 4,154,62,31,284,32.8,0.237,23,0
1968 | 0,102,75,23,0,0,0.572,21,0
1969 | 9,57,80,37,0,32.8,0.096,41,0
1970 | 2,106,64,35,119,30.5,1.4,34,0
1971 | 5,147,78,0,0,33.7,0.218,65,0
1972 | 2,90,70,17,0,27.3,0.085,22,0
1973 | 1,136,74,50,204,37.4,0.399,24,0
1974 | 4,114,65,0,0,21.9,0.432,37,0
1975 | 9,156,86,28,155,34.3,1.189,42,1
1976 | 1,153,82,42,485,40.6,0.687,23,0
1977 | 8,188,78,0,0,47.9,0.137,43,1
1978 | 7,152,88,44,0,50,0.337,36,1
1979 | 2,99,52,15,94,24.6,0.637,21,0
1980 | 1,109,56,21,135,25.2,0.833,23,0
1981 | 2,88,74,19,53,29,0.229,22,0
1982 | 17,163,72,41,114,40.9,0.817,47,1
1983 | 4,151,90,38,0,29.7,0.294,36,0
1984 | 7,102,74,40,105,37.2,0.204,45,0
1985 | 0,114,80,34,285,44.2,0.167,27,0
1986 | 2,100,64,23,0,29.7,0.368,21,0
1987 | 0,131,88,0,0,31.6,0.743,32,1
1988 | 6,104,74,18,156,29.9,0.722,41,1
1989 | 3,148,66,25,0,32.5,0.256,22,0
1990 | 4,120,68,0,0,29.6,0.709,34,0
1991 | 4,110,66,0,0,31.9,0.471,29,0
1992 | 3,111,90,12,78,28.4,0.495,29,0
1993 | 6,102,82,0,0,30.8,0.18,36,1
1994 | 6,134,70,23,130,35.4,0.542,29,1
1995 | 2,87,0,23,0,28.9,0.773,25,0
1996 | 1,79,60,42,48,43.5,0.678,23,0
1997 | 2,75,64,24,55,29.7,0.37,33,0
1998 | 8,179,72,42,130,32.7,0.719,36,1
1999 | 6,85,78,0,0,31.2,0.382,42,0
2000 | 0,129,110,46,130,67.1,0.319,26,1
2001 | 2,81,72,15,76,30.1,0.547,25,0
2002 |
--------------------------------------------------------------------------------
/Diabetes Classification/readme-resources/diabetes-banner.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/anujvyas/Machine-Learning-Projects/6c39c0616e01b4603f21c5072b348b0719d2e87b/Diabetes Classification/readme-resources/diabetes-banner.png
--------------------------------------------------------------------------------
/First Innings Score Prediction - IPL/README.md:
--------------------------------------------------------------------------------
1 | 
2 |   
3 |
4 | ## Project Overview
5 | • Created a model that predicts the score (in terms of range) of IPL matches
6 | • Optimized Multiple-Linear, Decision Tree, Random Forest, and AdaBoost regression models using GridsearchCV
7 |
8 | ## How will this project help?
9 | • This project is for the fantasy cricket fans out there, helping them to earn extra fantasy points for Dream11 IPL 2020
10 |
11 | ## Resources Used
12 | • Packages: pandas, numpy, sklearn, matplotlib, seaborn
13 | • Dataset by **Shivam Mitra**: https://github.com/codophobia/CricketScorePredictor
14 |
15 | ## Data Cleaning and Preprocessing
16 | • **Removing unwanted columns**
17 | • **Keeping only consistent teams**
18 | 
19 | • **Removing the first 5 overs data in every match**
20 | • **Converting the column 'date' from string into datetime object**
21 | • **Handling categorical features**
22 |
23 | ## Model Building and Evaluation
24 | Evaluation metric: Root Mean Squared Error (RMSE)
25 | • Multiple Linear Regression - 15.843
26 | • Decision Tree - 23.044
27 | • Random Forest - 18.171
28 | • **Adaptive Boosting (AdaBoost) - 15.798**
29 |
30 | ## Model Prediction
31 | 
32 |
33 | ## Future Scope
34 | • Add columns in dataset of top batsmen and bowlers of all the teams.
35 | • Add columns that consists of striker and non-striker's strike rates.
36 | • Implement this problem statement using Artificial Neural Network (ANN).
37 |
38 | ## Deployed Web App
39 | If you want to view the deployed model, then follow the links mentioned below:
40 | • GitHub: _https://github.com/anujvyas/IPL-First-Innings-Score-Prediction-Deployment_
41 | • Web App: _https://ipl-first-innings-score.herokuapp.com/_
42 |
--------------------------------------------------------------------------------
/First Innings Score Prediction - IPL/readme-resources/consistent_teams.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/anujvyas/Machine-Learning-Projects/6c39c0616e01b4603f21c5072b348b0719d2e87b/First Innings Score Prediction - IPL/readme-resources/consistent_teams.PNG
--------------------------------------------------------------------------------
/First Innings Score Prediction - IPL/readme-resources/first-innings-banner.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/anujvyas/Machine-Learning-Projects/6c39c0616e01b4603f21c5072b348b0719d2e87b/First Innings Score Prediction - IPL/readme-resources/first-innings-banner.png
--------------------------------------------------------------------------------
/First Innings Score Prediction - IPL/readme-resources/prediction.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/anujvyas/Machine-Learning-Projects/6c39c0616e01b4603f21c5072b348b0719d2e87b/First Innings Score Prediction - IPL/readme-resources/prediction.PNG
--------------------------------------------------------------------------------
/Heart Disease Prediction/heart.csv:
--------------------------------------------------------------------------------
1 | age,sex,cp,trestbps,chol,fbs,restecg,thalach,exang,oldpeak,slope,ca,thal,target
2 | 63,1,3,145,233,1,0,150,0,2.3,0,0,1,1
3 | 37,1,2,130,250,0,1,187,0,3.5,0,0,2,1
4 | 41,0,1,130,204,0,0,172,0,1.4,2,0,2,1
5 | 56,1,1,120,236,0,1,178,0,0.8,2,0,2,1
6 | 57,0,0,120,354,0,1,163,1,0.6,2,0,2,1
7 | 57,1,0,140,192,0,1,148,0,0.4,1,0,1,1
8 | 56,0,1,140,294,0,0,153,0,1.3,1,0,2,1
9 | 44,1,1,120,263,0,1,173,0,0,2,0,3,1
10 | 52,1,2,172,199,1,1,162,0,0.5,2,0,3,1
11 | 57,1,2,150,168,0,1,174,0,1.6,2,0,2,1
12 | 54,1,0,140,239,0,1,160,0,1.2,2,0,2,1
13 | 48,0,2,130,275,0,1,139,0,0.2,2,0,2,1
14 | 49,1,1,130,266,0,1,171,0,0.6,2,0,2,1
15 | 64,1,3,110,211,0,0,144,1,1.8,1,0,2,1
16 | 58,0,3,150,283,1,0,162,0,1,2,0,2,1
17 | 50,0,2,120,219,0,1,158,0,1.6,1,0,2,1
18 | 58,0,2,120,340,0,1,172,0,0,2,0,2,1
19 | 66,0,3,150,226,0,1,114,0,2.6,0,0,2,1
20 | 43,1,0,150,247,0,1,171,0,1.5,2,0,2,1
21 | 69,0,3,140,239,0,1,151,0,1.8,2,2,2,1
22 | 59,1,0,135,234,0,1,161,0,0.5,1,0,3,1
23 | 44,1,2,130,233,0,1,179,1,0.4,2,0,2,1
24 | 42,1,0,140,226,0,1,178,0,0,2,0,2,1
25 | 61,1,2,150,243,1,1,137,1,1,1,0,2,1
26 | 40,1,3,140,199,0,1,178,1,1.4,2,0,3,1
27 | 71,0,1,160,302,0,1,162,0,0.4,2,2,2,1
28 | 59,1,2,150,212,1,1,157,0,1.6,2,0,2,1
29 | 51,1,2,110,175,0,1,123,0,0.6,2,0,2,1
30 | 65,0,2,140,417,1,0,157,0,0.8,2,1,2,1
31 | 53,1,2,130,197,1,0,152,0,1.2,0,0,2,1
32 | 41,0,1,105,198,0,1,168,0,0,2,1,2,1
33 | 65,1,0,120,177,0,1,140,0,0.4,2,0,3,1
34 | 44,1,1,130,219,0,0,188,0,0,2,0,2,1
35 | 54,1,2,125,273,0,0,152,0,0.5,0,1,2,1
36 | 51,1,3,125,213,0,0,125,1,1.4,2,1,2,1
37 | 46,0,2,142,177,0,0,160,1,1.4,0,0,2,1
38 | 54,0,2,135,304,1,1,170,0,0,2,0,2,1
39 | 54,1,2,150,232,0,0,165,0,1.6,2,0,3,1
40 | 65,0,2,155,269,0,1,148,0,0.8,2,0,2,1
41 | 65,0,2,160,360,0,0,151,0,0.8,2,0,2,1
42 | 51,0,2,140,308,0,0,142,0,1.5,2,1,2,1
43 | 48,1,1,130,245,0,0,180,0,0.2,1,0,2,1
44 | 45,1,0,104,208,0,0,148,1,3,1,0,2,1
45 | 53,0,0,130,264,0,0,143,0,0.4,1,0,2,1
46 | 39,1,2,140,321,0,0,182,0,0,2,0,2,1
47 | 52,1,1,120,325,0,1,172,0,0.2,2,0,2,1
48 | 44,1,2,140,235,0,0,180,0,0,2,0,2,1
49 | 47,1,2,138,257,0,0,156,0,0,2,0,2,1
50 | 53,0,2,128,216,0,0,115,0,0,2,0,0,1
51 | 53,0,0,138,234,0,0,160,0,0,2,0,2,1
52 | 51,0,2,130,256,0,0,149,0,0.5,2,0,2,1
53 | 66,1,0,120,302,0,0,151,0,0.4,1,0,2,1
54 | 62,1,2,130,231,0,1,146,0,1.8,1,3,3,1
55 | 44,0,2,108,141,0,1,175,0,0.6,1,0,2,1
56 | 63,0,2,135,252,0,0,172,0,0,2,0,2,1
57 | 52,1,1,134,201,0,1,158,0,0.8,2,1,2,1
58 | 48,1,0,122,222,0,0,186,0,0,2,0,2,1
59 | 45,1,0,115,260,0,0,185,0,0,2,0,2,1
60 | 34,1,3,118,182,0,0,174,0,0,2,0,2,1
61 | 57,0,0,128,303,0,0,159,0,0,2,1,2,1
62 | 71,0,2,110,265,1,0,130,0,0,2,1,2,1
63 | 54,1,1,108,309,0,1,156,0,0,2,0,3,1
64 | 52,1,3,118,186,0,0,190,0,0,1,0,1,1
65 | 41,1,1,135,203,0,1,132,0,0,1,0,1,1
66 | 58,1,2,140,211,1,0,165,0,0,2,0,2,1
67 | 35,0,0,138,183,0,1,182,0,1.4,2,0,2,1
68 | 51,1,2,100,222,0,1,143,1,1.2,1,0,2,1
69 | 45,0,1,130,234,0,0,175,0,0.6,1,0,2,1
70 | 44,1,1,120,220,0,1,170,0,0,2,0,2,1
71 | 62,0,0,124,209,0,1,163,0,0,2,0,2,1
72 | 54,1,2,120,258,0,0,147,0,0.4,1,0,3,1
73 | 51,1,2,94,227,0,1,154,1,0,2,1,3,1
74 | 29,1,1,130,204,0,0,202,0,0,2,0,2,1
75 | 51,1,0,140,261,0,0,186,1,0,2,0,2,1
76 | 43,0,2,122,213,0,1,165,0,0.2,1,0,2,1
77 | 55,0,1,135,250,0,0,161,0,1.4,1,0,2,1
78 | 51,1,2,125,245,1,0,166,0,2.4,1,0,2,1
79 | 59,1,1,140,221,0,1,164,1,0,2,0,2,1
80 | 52,1,1,128,205,1,1,184,0,0,2,0,2,1
81 | 58,1,2,105,240,0,0,154,1,0.6,1,0,3,1
82 | 41,1,2,112,250,0,1,179,0,0,2,0,2,1
83 | 45,1,1,128,308,0,0,170,0,0,2,0,2,1
84 | 60,0,2,102,318,0,1,160,0,0,2,1,2,1
85 | 52,1,3,152,298,1,1,178,0,1.2,1,0,3,1
86 | 42,0,0,102,265,0,0,122,0,0.6,1,0,2,1
87 | 67,0,2,115,564,0,0,160,0,1.6,1,0,3,1
88 | 68,1,2,118,277,0,1,151,0,1,2,1,3,1
89 | 46,1,1,101,197,1,1,156,0,0,2,0,3,1
90 | 54,0,2,110,214,0,1,158,0,1.6,1,0,2,1
91 | 58,0,0,100,248,0,0,122,0,1,1,0,2,1
92 | 48,1,2,124,255,1,1,175,0,0,2,2,2,1
93 | 57,1,0,132,207,0,1,168,1,0,2,0,3,1
94 | 52,1,2,138,223,0,1,169,0,0,2,4,2,1
95 | 54,0,1,132,288,1,0,159,1,0,2,1,2,1
96 | 45,0,1,112,160,0,1,138,0,0,1,0,2,1
97 | 53,1,0,142,226,0,0,111,1,0,2,0,3,1
98 | 62,0,0,140,394,0,0,157,0,1.2,1,0,2,1
99 | 52,1,0,108,233,1,1,147,0,0.1,2,3,3,1
100 | 43,1,2,130,315,0,1,162,0,1.9,2,1,2,1
101 | 53,1,2,130,246,1,0,173,0,0,2,3,2,1
102 | 42,1,3,148,244,0,0,178,0,0.8,2,2,2,1
103 | 59,1,3,178,270,0,0,145,0,4.2,0,0,3,1
104 | 63,0,1,140,195,0,1,179,0,0,2,2,2,1
105 | 42,1,2,120,240,1,1,194,0,0.8,0,0,3,1
106 | 50,1,2,129,196,0,1,163,0,0,2,0,2,1
107 | 68,0,2,120,211,0,0,115,0,1.5,1,0,2,1
108 | 69,1,3,160,234,1,0,131,0,0.1,1,1,2,1
109 | 45,0,0,138,236,0,0,152,1,0.2,1,0,2,1
110 | 50,0,1,120,244,0,1,162,0,1.1,2,0,2,1
111 | 50,0,0,110,254,0,0,159,0,0,2,0,2,1
112 | 64,0,0,180,325,0,1,154,1,0,2,0,2,1
113 | 57,1,2,150,126,1,1,173,0,0.2,2,1,3,1
114 | 64,0,2,140,313,0,1,133,0,0.2,2,0,3,1
115 | 43,1,0,110,211,0,1,161,0,0,2,0,3,1
116 | 55,1,1,130,262,0,1,155,0,0,2,0,2,1
117 | 37,0,2,120,215,0,1,170,0,0,2,0,2,1
118 | 41,1,2,130,214,0,0,168,0,2,1,0,2,1
119 | 56,1,3,120,193,0,0,162,0,1.9,1,0,3,1
120 | 46,0,1,105,204,0,1,172,0,0,2,0,2,1
121 | 46,0,0,138,243,0,0,152,1,0,1,0,2,1
122 | 64,0,0,130,303,0,1,122,0,2,1,2,2,1
123 | 59,1,0,138,271,0,0,182,0,0,2,0,2,1
124 | 41,0,2,112,268,0,0,172,1,0,2,0,2,1
125 | 54,0,2,108,267,0,0,167,0,0,2,0,2,1
126 | 39,0,2,94,199,0,1,179,0,0,2,0,2,1
127 | 34,0,1,118,210,0,1,192,0,0.7,2,0,2,1
128 | 47,1,0,112,204,0,1,143,0,0.1,2,0,2,1
129 | 67,0,2,152,277,0,1,172,0,0,2,1,2,1
130 | 52,0,2,136,196,0,0,169,0,0.1,1,0,2,1
131 | 74,0,1,120,269,0,0,121,1,0.2,2,1,2,1
132 | 54,0,2,160,201,0,1,163,0,0,2,1,2,1
133 | 49,0,1,134,271,0,1,162,0,0,1,0,2,1
134 | 42,1,1,120,295,0,1,162,0,0,2,0,2,1
135 | 41,1,1,110,235,0,1,153,0,0,2,0,2,1
136 | 41,0,1,126,306,0,1,163,0,0,2,0,2,1
137 | 49,0,0,130,269,0,1,163,0,0,2,0,2,1
138 | 60,0,2,120,178,1,1,96,0,0,2,0,2,1
139 | 62,1,1,128,208,1,0,140,0,0,2,0,2,1
140 | 57,1,0,110,201,0,1,126,1,1.5,1,0,1,1
141 | 64,1,0,128,263,0,1,105,1,0.2,1,1,3,1
142 | 51,0,2,120,295,0,0,157,0,0.6,2,0,2,1
143 | 43,1,0,115,303,0,1,181,0,1.2,1,0,2,1
144 | 42,0,2,120,209,0,1,173,0,0,1,0,2,1
145 | 67,0,0,106,223,0,1,142,0,0.3,2,2,2,1
146 | 76,0,2,140,197,0,2,116,0,1.1,1,0,2,1
147 | 70,1,1,156,245,0,0,143,0,0,2,0,2,1
148 | 44,0,2,118,242,0,1,149,0,0.3,1,1,2,1
149 | 60,0,3,150,240,0,1,171,0,0.9,2,0,2,1
150 | 44,1,2,120,226,0,1,169,0,0,2,0,2,1
151 | 42,1,2,130,180,0,1,150,0,0,2,0,2,1
152 | 66,1,0,160,228,0,0,138,0,2.3,2,0,1,1
153 | 71,0,0,112,149,0,1,125,0,1.6,1,0,2,1
154 | 64,1,3,170,227,0,0,155,0,0.6,1,0,3,1
155 | 66,0,2,146,278,0,0,152,0,0,1,1,2,1
156 | 39,0,2,138,220,0,1,152,0,0,1,0,2,1
157 | 58,0,0,130,197,0,1,131,0,0.6,1,0,2,1
158 | 47,1,2,130,253,0,1,179,0,0,2,0,2,1
159 | 35,1,1,122,192,0,1,174,0,0,2,0,2,1
160 | 58,1,1,125,220,0,1,144,0,0.4,1,4,3,1
161 | 56,1,1,130,221,0,0,163,0,0,2,0,3,1
162 | 56,1,1,120,240,0,1,169,0,0,0,0,2,1
163 | 55,0,1,132,342,0,1,166,0,1.2,2,0,2,1
164 | 41,1,1,120,157,0,1,182,0,0,2,0,2,1
165 | 38,1,2,138,175,0,1,173,0,0,2,4,2,1
166 | 38,1,2,138,175,0,1,173,0,0,2,4,2,1
167 | 67,1,0,160,286,0,0,108,1,1.5,1,3,2,0
168 | 67,1,0,120,229,0,0,129,1,2.6,1,2,3,0
169 | 62,0,0,140,268,0,0,160,0,3.6,0,2,2,0
170 | 63,1,0,130,254,0,0,147,0,1.4,1,1,3,0
171 | 53,1,0,140,203,1,0,155,1,3.1,0,0,3,0
172 | 56,1,2,130,256,1,0,142,1,0.6,1,1,1,0
173 | 48,1,1,110,229,0,1,168,0,1,0,0,3,0
174 | 58,1,1,120,284,0,0,160,0,1.8,1,0,2,0
175 | 58,1,2,132,224,0,0,173,0,3.2,2,2,3,0
176 | 60,1,0,130,206,0,0,132,1,2.4,1,2,3,0
177 | 40,1,0,110,167,0,0,114,1,2,1,0,3,0
178 | 60,1,0,117,230,1,1,160,1,1.4,2,2,3,0
179 | 64,1,2,140,335,0,1,158,0,0,2,0,2,0
180 | 43,1,0,120,177,0,0,120,1,2.5,1,0,3,0
181 | 57,1,0,150,276,0,0,112,1,0.6,1,1,1,0
182 | 55,1,0,132,353,0,1,132,1,1.2,1,1,3,0
183 | 65,0,0,150,225,0,0,114,0,1,1,3,3,0
184 | 61,0,0,130,330,0,0,169,0,0,2,0,2,0
185 | 58,1,2,112,230,0,0,165,0,2.5,1,1,3,0
186 | 50,1,0,150,243,0,0,128,0,2.6,1,0,3,0
187 | 44,1,0,112,290,0,0,153,0,0,2,1,2,0
188 | 60,1,0,130,253,0,1,144,1,1.4,2,1,3,0
189 | 54,1,0,124,266,0,0,109,1,2.2,1,1,3,0
190 | 50,1,2,140,233,0,1,163,0,0.6,1,1,3,0
191 | 41,1,0,110,172,0,0,158,0,0,2,0,3,0
192 | 51,0,0,130,305,0,1,142,1,1.2,1,0,3,0
193 | 58,1,0,128,216,0,0,131,1,2.2,1,3,3,0
194 | 54,1,0,120,188,0,1,113,0,1.4,1,1,3,0
195 | 60,1,0,145,282,0,0,142,1,2.8,1,2,3,0
196 | 60,1,2,140,185,0,0,155,0,3,1,0,2,0
197 | 59,1,0,170,326,0,0,140,1,3.4,0,0,3,0
198 | 46,1,2,150,231,0,1,147,0,3.6,1,0,2,0
199 | 67,1,0,125,254,1,1,163,0,0.2,1,2,3,0
200 | 62,1,0,120,267,0,1,99,1,1.8,1,2,3,0
201 | 65,1,0,110,248,0,0,158,0,0.6,2,2,1,0
202 | 44,1,0,110,197,0,0,177,0,0,2,1,2,0
203 | 60,1,0,125,258,0,0,141,1,2.8,1,1,3,0
204 | 58,1,0,150,270,0,0,111,1,0.8,2,0,3,0
205 | 68,1,2,180,274,1,0,150,1,1.6,1,0,3,0
206 | 62,0,0,160,164,0,0,145,0,6.2,0,3,3,0
207 | 52,1,0,128,255,0,1,161,1,0,2,1,3,0
208 | 59,1,0,110,239,0,0,142,1,1.2,1,1,3,0
209 | 60,0,0,150,258,0,0,157,0,2.6,1,2,3,0
210 | 49,1,2,120,188,0,1,139,0,2,1,3,3,0
211 | 59,1,0,140,177,0,1,162,1,0,2,1,3,0
212 | 57,1,2,128,229,0,0,150,0,0.4,1,1,3,0
213 | 61,1,0,120,260,0,1,140,1,3.6,1,1,3,0
214 | 39,1,0,118,219,0,1,140,0,1.2,1,0,3,0
215 | 61,0,0,145,307,0,0,146,1,1,1,0,3,0
216 | 56,1,0,125,249,1,0,144,1,1.2,1,1,2,0
217 | 43,0,0,132,341,1,0,136,1,3,1,0,3,0
218 | 62,0,2,130,263,0,1,97,0,1.2,1,1,3,0
219 | 63,1,0,130,330,1,0,132,1,1.8,2,3,3,0
220 | 65,1,0,135,254,0,0,127,0,2.8,1,1,3,0
221 | 48,1,0,130,256,1,0,150,1,0,2,2,3,0
222 | 63,0,0,150,407,0,0,154,0,4,1,3,3,0
223 | 55,1,0,140,217,0,1,111,1,5.6,0,0,3,0
224 | 65,1,3,138,282,1,0,174,0,1.4,1,1,2,0
225 | 56,0,0,200,288,1,0,133,1,4,0,2,3,0
226 | 54,1,0,110,239,0,1,126,1,2.8,1,1,3,0
227 | 70,1,0,145,174,0,1,125,1,2.6,0,0,3,0
228 | 62,1,1,120,281,0,0,103,0,1.4,1,1,3,0
229 | 35,1,0,120,198,0,1,130,1,1.6,1,0,3,0
230 | 59,1,3,170,288,0,0,159,0,0.2,1,0,3,0
231 | 64,1,2,125,309,0,1,131,1,1.8,1,0,3,0
232 | 47,1,2,108,243,0,1,152,0,0,2,0,2,0
233 | 57,1,0,165,289,1,0,124,0,1,1,3,3,0
234 | 55,1,0,160,289,0,0,145,1,0.8,1,1,3,0
235 | 64,1,0,120,246,0,0,96,1,2.2,0,1,2,0
236 | 70,1,0,130,322,0,0,109,0,2.4,1,3,2,0
237 | 51,1,0,140,299,0,1,173,1,1.6,2,0,3,0
238 | 58,1,0,125,300,0,0,171,0,0,2,2,3,0
239 | 60,1,0,140,293,0,0,170,0,1.2,1,2,3,0
240 | 77,1,0,125,304,0,0,162,1,0,2,3,2,0
241 | 35,1,0,126,282,0,0,156,1,0,2,0,3,0
242 | 70,1,2,160,269,0,1,112,1,2.9,1,1,3,0
243 | 59,0,0,174,249,0,1,143,1,0,1,0,2,0
244 | 64,1,0,145,212,0,0,132,0,2,1,2,1,0
245 | 57,1,0,152,274,0,1,88,1,1.2,1,1,3,0
246 | 56,1,0,132,184,0,0,105,1,2.1,1,1,1,0
247 | 48,1,0,124,274,0,0,166,0,0.5,1,0,3,0
248 | 56,0,0,134,409,0,0,150,1,1.9,1,2,3,0
249 | 66,1,1,160,246,0,1,120,1,0,1,3,1,0
250 | 54,1,1,192,283,0,0,195,0,0,2,1,3,0
251 | 69,1,2,140,254,0,0,146,0,2,1,3,3,0
252 | 51,1,0,140,298,0,1,122,1,4.2,1,3,3,0
253 | 43,1,0,132,247,1,0,143,1,0.1,1,4,3,0
254 | 62,0,0,138,294,1,1,106,0,1.9,1,3,2,0
255 | 67,1,0,100,299,0,0,125,1,0.9,1,2,2,0
256 | 59,1,3,160,273,0,0,125,0,0,2,0,2,0
257 | 45,1,0,142,309,0,0,147,1,0,1,3,3,0
258 | 58,1,0,128,259,0,0,130,1,3,1,2,3,0
259 | 50,1,0,144,200,0,0,126,1,0.9,1,0,3,0
260 | 62,0,0,150,244,0,1,154,1,1.4,1,0,2,0
261 | 38,1,3,120,231,0,1,182,1,3.8,1,0,3,0
262 | 66,0,0,178,228,1,1,165,1,1,1,2,3,0
263 | 52,1,0,112,230,0,1,160,0,0,2,1,2,0
264 | 53,1,0,123,282,0,1,95,1,2,1,2,3,0
265 | 63,0,0,108,269,0,1,169,1,1.8,1,2,2,0
266 | 54,1,0,110,206,0,0,108,1,0,1,1,2,0
267 | 66,1,0,112,212,0,0,132,1,0.1,2,1,2,0
268 | 55,0,0,180,327,0,2,117,1,3.4,1,0,2,0
269 | 49,1,2,118,149,0,0,126,0,0.8,2,3,2,0
270 | 54,1,0,122,286,0,0,116,1,3.2,1,2,2,0
271 | 56,1,0,130,283,1,0,103,1,1.6,0,0,3,0
272 | 46,1,0,120,249,0,0,144,0,0.8,2,0,3,0
273 | 61,1,3,134,234,0,1,145,0,2.6,1,2,2,0
274 | 67,1,0,120,237,0,1,71,0,1,1,0,2,0
275 | 58,1,0,100,234,0,1,156,0,0.1,2,1,3,0
276 | 47,1,0,110,275,0,0,118,1,1,1,1,2,0
277 | 52,1,0,125,212,0,1,168,0,1,2,2,3,0
278 | 58,1,0,146,218,0,1,105,0,2,1,1,3,0
279 | 57,1,1,124,261,0,1,141,0,0.3,2,0,3,0
280 | 58,0,1,136,319,1,0,152,0,0,2,2,2,0
281 | 61,1,0,138,166,0,0,125,1,3.6,1,1,2,0
282 | 42,1,0,136,315,0,1,125,1,1.8,1,0,1,0
283 | 52,1,0,128,204,1,1,156,1,1,1,0,0,0
284 | 59,1,2,126,218,1,1,134,0,2.2,1,1,1,0
285 | 40,1,0,152,223,0,1,181,0,0,2,0,3,0
286 | 61,1,0,140,207,0,0,138,1,1.9,2,1,3,0
287 | 46,1,0,140,311,0,1,120,1,1.8,1,2,3,0
288 | 59,1,3,134,204,0,1,162,0,0.8,2,2,2,0
289 | 57,1,1,154,232,0,0,164,0,0,2,1,2,0
290 | 57,1,0,110,335,0,1,143,1,3,1,1,3,0
291 | 55,0,0,128,205,0,2,130,1,2,1,1,3,0
292 | 61,1,0,148,203,0,1,161,0,0,2,1,3,0
293 | 58,1,0,114,318,0,2,140,0,4.4,0,3,1,0
294 | 58,0,0,170,225,1,0,146,1,2.8,1,2,1,0
295 | 67,1,2,152,212,0,0,150,0,0.8,1,0,3,0
296 | 44,1,0,120,169,0,1,144,1,2.8,0,0,1,0
297 | 63,1,0,140,187,0,0,144,1,4,2,2,3,0
298 | 63,0,0,124,197,0,1,136,1,0,1,0,2,0
299 | 59,1,0,164,176,1,0,90,0,1,1,2,1,0
300 | 57,0,0,140,241,0,1,123,1,0.2,1,0,3,0
301 | 45,1,3,110,264,0,1,132,0,1.2,1,0,3,0
302 | 68,1,0,144,193,1,1,141,0,3.4,1,2,3,0
303 | 57,1,0,130,131,0,1,115,1,1.2,1,1,3,0
304 | 57,0,1,130,236,0,0,174,0,0,1,1,2,0
305 |
--------------------------------------------------------------------------------
/Mall Customer Segmentation/Mall Customer Segmentation - PPT.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/anujvyas/Machine-Learning-Projects/6c39c0616e01b4603f21c5072b348b0719d2e87b/Mall Customer Segmentation/Mall Customer Segmentation - PPT.pdf
--------------------------------------------------------------------------------
/Mall Customer Segmentation/Mall Customer Segmentation - Report.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/anujvyas/Machine-Learning-Projects/6c39c0616e01b4603f21c5072b348b0719d2e87b/Mall Customer Segmentation/Mall Customer Segmentation - Report.pdf
--------------------------------------------------------------------------------
/Mall Customer Segmentation/Mall_Customers.csv:
--------------------------------------------------------------------------------
1 | CustomerID,Gender,Age,Annual Income (k$),Spending Score (1-100)
2 | 1,Male,19,15,39
3 | 2,Male,21,15,81
4 | 3,Female,20,16,6
5 | 4,Female,23,16,77
6 | 5,Female,31,17,40
7 | 6,Female,22,17,76
8 | 7,Female,35,18,6
9 | 8,Female,23,18,94
10 | 9,Male,64,19,3
11 | 10,Female,30,19,72
12 | 11,Male,67,19,14
13 | 12,Female,35,19,99
14 | 13,Female,58,20,15
15 | 14,Female,24,20,77
16 | 15,Male,37,20,13
17 | 16,Male,22,20,79
18 | 17,Female,35,21,35
19 | 18,Male,20,21,66
20 | 19,Male,52,23,29
21 | 20,Female,35,23,98
22 | 21,Male,35,24,35
23 | 22,Male,25,24,73
24 | 23,Female,46,25,5
25 | 24,Male,31,25,73
26 | 25,Female,54,28,14
27 | 26,Male,29,28,82
28 | 27,Female,45,28,32
29 | 28,Male,35,28,61
30 | 29,Female,40,29,31
31 | 30,Female,23,29,87
32 | 31,Male,60,30,4
33 | 32,Female,21,30,73
34 | 33,Male,53,33,4
35 | 34,Male,18,33,92
36 | 35,Female,49,33,14
37 | 36,Female,21,33,81
38 | 37,Female,42,34,17
39 | 38,Female,30,34,73
40 | 39,Female,36,37,26
41 | 40,Female,20,37,75
42 | 41,Female,65,38,35
43 | 42,Male,24,38,92
44 | 43,Male,48,39,36
45 | 44,Female,31,39,61
46 | 45,Female,49,39,28
47 | 46,Female,24,39,65
48 | 47,Female,50,40,55
49 | 48,Female,27,40,47
50 | 49,Female,29,40,42
51 | 50,Female,31,40,42
52 | 51,Female,49,42,52
53 | 52,Male,33,42,60
54 | 53,Female,31,43,54
55 | 54,Male,59,43,60
56 | 55,Female,50,43,45
57 | 56,Male,47,43,41
58 | 57,Female,51,44,50
59 | 58,Male,69,44,46
60 | 59,Female,27,46,51
61 | 60,Male,53,46,46
62 | 61,Male,70,46,56
63 | 62,Male,19,46,55
64 | 63,Female,67,47,52
65 | 64,Female,54,47,59
66 | 65,Male,63,48,51
67 | 66,Male,18,48,59
68 | 67,Female,43,48,50
69 | 68,Female,68,48,48
70 | 69,Male,19,48,59
71 | 70,Female,32,48,47
72 | 71,Male,70,49,55
73 | 72,Female,47,49,42
74 | 73,Female,60,50,49
75 | 74,Female,60,50,56
76 | 75,Male,59,54,47
77 | 76,Male,26,54,54
78 | 77,Female,45,54,53
79 | 78,Male,40,54,48
80 | 79,Female,23,54,52
81 | 80,Female,49,54,42
82 | 81,Male,57,54,51
83 | 82,Male,38,54,55
84 | 83,Male,67,54,41
85 | 84,Female,46,54,44
86 | 85,Female,21,54,57
87 | 86,Male,48,54,46
88 | 87,Female,55,57,58
89 | 88,Female,22,57,55
90 | 89,Female,34,58,60
91 | 90,Female,50,58,46
92 | 91,Female,68,59,55
93 | 92,Male,18,59,41
94 | 93,Male,48,60,49
95 | 94,Female,40,60,40
96 | 95,Female,32,60,42
97 | 96,Male,24,60,52
98 | 97,Female,47,60,47
99 | 98,Female,27,60,50
100 | 99,Male,48,61,42
101 | 100,Male,20,61,49
102 | 101,Female,23,62,41
103 | 102,Female,49,62,48
104 | 103,Male,67,62,59
105 | 104,Male,26,62,55
106 | 105,Male,49,62,56
107 | 106,Female,21,62,42
108 | 107,Female,66,63,50
109 | 108,Male,54,63,46
110 | 109,Male,68,63,43
111 | 110,Male,66,63,48
112 | 111,Male,65,63,52
113 | 112,Female,19,63,54
114 | 113,Female,38,64,42
115 | 114,Male,19,64,46
116 | 115,Female,18,65,48
117 | 116,Female,19,65,50
118 | 117,Female,63,65,43
119 | 118,Female,49,65,59
120 | 119,Female,51,67,43
121 | 120,Female,50,67,57
122 | 121,Male,27,67,56
123 | 122,Female,38,67,40
124 | 123,Female,40,69,58
125 | 124,Male,39,69,91
126 | 125,Female,23,70,29
127 | 126,Female,31,70,77
128 | 127,Male,43,71,35
129 | 128,Male,40,71,95
130 | 129,Male,59,71,11
131 | 130,Male,38,71,75
132 | 131,Male,47,71,9
133 | 132,Male,39,71,75
134 | 133,Female,25,72,34
135 | 134,Female,31,72,71
136 | 135,Male,20,73,5
137 | 136,Female,29,73,88
138 | 137,Female,44,73,7
139 | 138,Male,32,73,73
140 | 139,Male,19,74,10
141 | 140,Female,35,74,72
142 | 141,Female,57,75,5
143 | 142,Male,32,75,93
144 | 143,Female,28,76,40
145 | 144,Female,32,76,87
146 | 145,Male,25,77,12
147 | 146,Male,28,77,97
148 | 147,Male,48,77,36
149 | 148,Female,32,77,74
150 | 149,Female,34,78,22
151 | 150,Male,34,78,90
152 | 151,Male,43,78,17
153 | 152,Male,39,78,88
154 | 153,Female,44,78,20
155 | 154,Female,38,78,76
156 | 155,Female,47,78,16
157 | 156,Female,27,78,89
158 | 157,Male,37,78,1
159 | 158,Female,30,78,78
160 | 159,Male,34,78,1
161 | 160,Female,30,78,73
162 | 161,Female,56,79,35
163 | 162,Female,29,79,83
164 | 163,Male,19,81,5
165 | 164,Female,31,81,93
166 | 165,Male,50,85,26
167 | 166,Female,36,85,75
168 | 167,Male,42,86,20
169 | 168,Female,33,86,95
170 | 169,Female,36,87,27
171 | 170,Male,32,87,63
172 | 171,Male,40,87,13
173 | 172,Male,28,87,75
174 | 173,Male,36,87,10
175 | 174,Male,36,87,92
176 | 175,Female,52,88,13
177 | 176,Female,30,88,86
178 | 177,Male,58,88,15
179 | 178,Male,27,88,69
180 | 179,Male,59,93,14
181 | 180,Male,35,93,90
182 | 181,Female,37,97,32
183 | 182,Female,32,97,86
184 | 183,Male,46,98,15
185 | 184,Female,29,98,88
186 | 185,Female,41,99,39
187 | 186,Male,30,99,97
188 | 187,Female,54,101,24
189 | 188,Male,28,101,68
190 | 189,Female,41,103,17
191 | 190,Female,36,103,85
192 | 191,Female,34,103,23
193 | 192,Female,32,103,69
194 | 193,Male,33,113,8
195 | 194,Female,38,113,91
196 | 195,Female,47,120,16
197 | 196,Female,35,120,79
198 | 197,Female,45,126,28
199 | 198,Male,32,126,74
200 | 199,Male,32,137,18
201 | 200,Male,30,137,83
202 |
--------------------------------------------------------------------------------
/Predicting Admission into UCLA/Predicting Admission into UCLA.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 1,
6 | "metadata": {},
7 | "outputs": [],
8 | "source": [
9 | "# Importing essential libraries\n",
10 | "import numpy as np\n",
11 | "import pandas as pd\n",
12 | "from matplotlib import pyplot as plt\n",
13 | "%matplotlib inline"
14 | ]
15 | },
16 | {
17 | "cell_type": "code",
18 | "execution_count": 2,
19 | "metadata": {},
20 | "outputs": [],
21 | "source": [
22 | "# Loading the dataset\n",
23 | "df = pd.read_csv('admission_predict.csv')"
24 | ]
25 | },
26 | {
27 | "cell_type": "markdown",
28 | "metadata": {},
29 | "source": [
30 | "## Exploring the dataset"
31 | ]
32 | },
33 | {
34 | "cell_type": "code",
35 | "execution_count": 3,
36 | "metadata": {},
37 | "outputs": [
38 | {
39 | "data": {
40 | "text/plain": [
41 | "(500, 9)"
42 | ]
43 | },
44 | "execution_count": 3,
45 | "metadata": {},
46 | "output_type": "execute_result"
47 | }
48 | ],
49 | "source": [
50 | "# Returns number of rows and columns of the dataset\n",
51 | "df.shape"
52 | ]
53 | },
54 | {
55 | "cell_type": "code",
56 | "execution_count": 4,
57 | "metadata": {},
58 | "outputs": [
59 | {
60 | "data": {
61 | "text/html": [
62 | "
\n",
63 | "\n",
76 | "
\n",
77 | " \n",
78 | " \n",
79 | " | \n",
80 | " Serial No. | \n",
81 | " GRE Score | \n",
82 | " TOEFL Score | \n",
83 | " University Rating | \n",
84 | " SOP | \n",
85 | " LOR | \n",
86 | " CGPA | \n",
87 | " Research | \n",
88 | " Chance of Admit | \n",
89 | "
\n",
90 | " \n",
91 | " \n",
92 | " \n",
93 | " 0 | \n",
94 | " 1 | \n",
95 | " 337 | \n",
96 | " 118 | \n",
97 | " 4 | \n",
98 | " 4.5 | \n",
99 | " 4.5 | \n",
100 | " 9.65 | \n",
101 | " 1 | \n",
102 | " 0.92 | \n",
103 | "
\n",
104 | " \n",
105 | " 1 | \n",
106 | " 2 | \n",
107 | " 324 | \n",
108 | " 107 | \n",
109 | " 4 | \n",
110 | " 4.0 | \n",
111 | " 4.5 | \n",
112 | " 8.87 | \n",
113 | " 1 | \n",
114 | " 0.76 | \n",
115 | "
\n",
116 | " \n",
117 | " 2 | \n",
118 | " 3 | \n",
119 | " 316 | \n",
120 | " 104 | \n",
121 | " 3 | \n",
122 | " 3.0 | \n",
123 | " 3.5 | \n",
124 | " 8.00 | \n",
125 | " 1 | \n",
126 | " 0.72 | \n",
127 | "
\n",
128 | " \n",
129 | " 3 | \n",
130 | " 4 | \n",
131 | " 322 | \n",
132 | " 110 | \n",
133 | " 3 | \n",
134 | " 3.5 | \n",
135 | " 2.5 | \n",
136 | " 8.67 | \n",
137 | " 1 | \n",
138 | " 0.80 | \n",
139 | "
\n",
140 | " \n",
141 | " 4 | \n",
142 | " 5 | \n",
143 | " 314 | \n",
144 | " 103 | \n",
145 | " 2 | \n",
146 | " 2.0 | \n",
147 | " 3.0 | \n",
148 | " 8.21 | \n",
149 | " 0 | \n",
150 | " 0.65 | \n",
151 | "
\n",
152 | " \n",
153 | "
\n",
154 | "
"
155 | ],
156 | "text/plain": [
157 | " Serial No. GRE Score TOEFL Score University Rating SOP LOR CGPA \\\n",
158 | "0 1 337 118 4 4.5 4.5 9.65 \n",
159 | "1 2 324 107 4 4.0 4.5 8.87 \n",
160 | "2 3 316 104 3 3.0 3.5 8.00 \n",
161 | "3 4 322 110 3 3.5 2.5 8.67 \n",
162 | "4 5 314 103 2 2.0 3.0 8.21 \n",
163 | "\n",
164 | " Research Chance of Admit \n",
165 | "0 1 0.92 \n",
166 | "1 1 0.76 \n",
167 | "2 1 0.72 \n",
168 | "3 1 0.80 \n",
169 | "4 0 0.65 "
170 | ]
171 | },
172 | "execution_count": 4,
173 | "metadata": {},
174 | "output_type": "execute_result"
175 | }
176 | ],
177 | "source": [
178 | "# Returns the first x number of rows when head(num). Without a number it returns 5\n",
179 | "df.head()"
180 | ]
181 | },
182 | {
183 | "cell_type": "code",
184 | "execution_count": 5,
185 | "metadata": {},
186 | "outputs": [
187 | {
188 | "data": {
189 | "text/html": [
190 | "\n",
191 | "\n",
204 | "
\n",
205 | " \n",
206 | " \n",
207 | " | \n",
208 | " Serial No. | \n",
209 | " GRE Score | \n",
210 | " TOEFL Score | \n",
211 | " University Rating | \n",
212 | " SOP | \n",
213 | " LOR | \n",
214 | " CGPA | \n",
215 | " Research | \n",
216 | " Chance of Admit | \n",
217 | "
\n",
218 | " \n",
219 | " \n",
220 | " \n",
221 | " 495 | \n",
222 | " 496 | \n",
223 | " 332 | \n",
224 | " 108 | \n",
225 | " 5 | \n",
226 | " 4.5 | \n",
227 | " 4.0 | \n",
228 | " 9.02 | \n",
229 | " 1 | \n",
230 | " 0.87 | \n",
231 | "
\n",
232 | " \n",
233 | " 496 | \n",
234 | " 497 | \n",
235 | " 337 | \n",
236 | " 117 | \n",
237 | " 5 | \n",
238 | " 5.0 | \n",
239 | " 5.0 | \n",
240 | " 9.87 | \n",
241 | " 1 | \n",
242 | " 0.96 | \n",
243 | "
\n",
244 | " \n",
245 | " 497 | \n",
246 | " 498 | \n",
247 | " 330 | \n",
248 | " 120 | \n",
249 | " 5 | \n",
250 | " 4.5 | \n",
251 | " 5.0 | \n",
252 | " 9.56 | \n",
253 | " 1 | \n",
254 | " 0.93 | \n",
255 | "
\n",
256 | " \n",
257 | " 498 | \n",
258 | " 499 | \n",
259 | " 312 | \n",
260 | " 103 | \n",
261 | " 4 | \n",
262 | " 4.0 | \n",
263 | " 5.0 | \n",
264 | " 8.43 | \n",
265 | " 0 | \n",
266 | " 0.73 | \n",
267 | "
\n",
268 | " \n",
269 | " 499 | \n",
270 | " 500 | \n",
271 | " 327 | \n",
272 | " 113 | \n",
273 | " 4 | \n",
274 | " 4.5 | \n",
275 | " 4.5 | \n",
276 | " 9.04 | \n",
277 | " 0 | \n",
278 | " 0.84 | \n",
279 | "
\n",
280 | " \n",
281 | "
\n",
282 | "
"
283 | ],
284 | "text/plain": [
285 | " Serial No. GRE Score TOEFL Score University Rating SOP LOR CGPA \\\n",
286 | "495 496 332 108 5 4.5 4.0 9.02 \n",
287 | "496 497 337 117 5 5.0 5.0 9.87 \n",
288 | "497 498 330 120 5 4.5 5.0 9.56 \n",
289 | "498 499 312 103 4 4.0 5.0 8.43 \n",
290 | "499 500 327 113 4 4.5 4.5 9.04 \n",
291 | "\n",
292 | " Research Chance of Admit \n",
293 | "495 1 0.87 \n",
294 | "496 1 0.96 \n",
295 | "497 1 0.93 \n",
296 | "498 0 0.73 \n",
297 | "499 0 0.84 "
298 | ]
299 | },
300 | "execution_count": 5,
301 | "metadata": {},
302 | "output_type": "execute_result"
303 | }
304 | ],
305 | "source": [
306 | "# Returns the first x number of rows when tail(num). Without a number it returns 5\n",
307 | "df.tail()"
308 | ]
309 | },
310 | {
311 | "cell_type": "code",
312 | "execution_count": 6,
313 | "metadata": {},
314 | "outputs": [
315 | {
316 | "data": {
317 | "text/plain": [
318 | "Index(['Serial No.', 'GRE Score', 'TOEFL Score', 'University Rating', 'SOP',\n",
319 | " 'LOR ', 'CGPA', 'Research', 'Chance of Admit '],\n",
320 | " dtype='object')"
321 | ]
322 | },
323 | "execution_count": 6,
324 | "metadata": {},
325 | "output_type": "execute_result"
326 | }
327 | ],
328 | "source": [
329 | "# Returns an object with all of the column headers\n",
330 | "df.columns"
331 | ]
332 | },
333 | {
334 | "cell_type": "code",
335 | "execution_count": 7,
336 | "metadata": {},
337 | "outputs": [
338 | {
339 | "name": "stdout",
340 | "output_type": "stream",
341 | "text": [
342 | "\n",
343 | "RangeIndex: 500 entries, 0 to 499\n",
344 | "Data columns (total 9 columns):\n",
345 | "Serial No. 500 non-null int64\n",
346 | "GRE Score 500 non-null int64\n",
347 | "TOEFL Score 500 non-null int64\n",
348 | "University Rating 500 non-null int64\n",
349 | "SOP 500 non-null float64\n",
350 | "LOR 500 non-null float64\n",
351 | "CGPA 500 non-null float64\n",
352 | "Research 500 non-null int64\n",
353 | "Chance of Admit 500 non-null float64\n",
354 | "dtypes: float64(4), int64(5)\n",
355 | "memory usage: 35.3 KB\n"
356 | ]
357 | }
358 | ],
359 | "source": [
360 | "# Returns basic information on all columns\n",
361 | "df.info()"
362 | ]
363 | },
364 | {
365 | "cell_type": "code",
366 | "execution_count": 8,
367 | "metadata": {},
368 | "outputs": [
369 | {
370 | "data": {
371 | "text/html": [
372 | "\n",
373 | "\n",
386 | "
\n",
387 | " \n",
388 | " \n",
389 | " | \n",
390 | " count | \n",
391 | " mean | \n",
392 | " std | \n",
393 | " min | \n",
394 | " 25% | \n",
395 | " 50% | \n",
396 | " 75% | \n",
397 | " max | \n",
398 | "
\n",
399 | " \n",
400 | " \n",
401 | " \n",
402 | " Serial No. | \n",
403 | " 500.0 | \n",
404 | " 250.50000 | \n",
405 | " 144.481833 | \n",
406 | " 1.00 | \n",
407 | " 125.7500 | \n",
408 | " 250.50 | \n",
409 | " 375.25 | \n",
410 | " 500.00 | \n",
411 | "
\n",
412 | " \n",
413 | " GRE Score | \n",
414 | " 500.0 | \n",
415 | " 316.47200 | \n",
416 | " 11.295148 | \n",
417 | " 290.00 | \n",
418 | " 308.0000 | \n",
419 | " 317.00 | \n",
420 | " 325.00 | \n",
421 | " 340.00 | \n",
422 | "
\n",
423 | " \n",
424 | " TOEFL Score | \n",
425 | " 500.0 | \n",
426 | " 107.19200 | \n",
427 | " 6.081868 | \n",
428 | " 92.00 | \n",
429 | " 103.0000 | \n",
430 | " 107.00 | \n",
431 | " 112.00 | \n",
432 | " 120.00 | \n",
433 | "
\n",
434 | " \n",
435 | " University Rating | \n",
436 | " 500.0 | \n",
437 | " 3.11400 | \n",
438 | " 1.143512 | \n",
439 | " 1.00 | \n",
440 | " 2.0000 | \n",
441 | " 3.00 | \n",
442 | " 4.00 | \n",
443 | " 5.00 | \n",
444 | "
\n",
445 | " \n",
446 | " SOP | \n",
447 | " 500.0 | \n",
448 | " 3.37400 | \n",
449 | " 0.991004 | \n",
450 | " 1.00 | \n",
451 | " 2.5000 | \n",
452 | " 3.50 | \n",
453 | " 4.00 | \n",
454 | " 5.00 | \n",
455 | "
\n",
456 | " \n",
457 | " LOR | \n",
458 | " 500.0 | \n",
459 | " 3.48400 | \n",
460 | " 0.925450 | \n",
461 | " 1.00 | \n",
462 | " 3.0000 | \n",
463 | " 3.50 | \n",
464 | " 4.00 | \n",
465 | " 5.00 | \n",
466 | "
\n",
467 | " \n",
468 | " CGPA | \n",
469 | " 500.0 | \n",
470 | " 8.57644 | \n",
471 | " 0.604813 | \n",
472 | " 6.80 | \n",
473 | " 8.1275 | \n",
474 | " 8.56 | \n",
475 | " 9.04 | \n",
476 | " 9.92 | \n",
477 | "
\n",
478 | " \n",
479 | " Research | \n",
480 | " 500.0 | \n",
481 | " 0.56000 | \n",
482 | " 0.496884 | \n",
483 | " 0.00 | \n",
484 | " 0.0000 | \n",
485 | " 1.00 | \n",
486 | " 1.00 | \n",
487 | " 1.00 | \n",
488 | "
\n",
489 | " \n",
490 | " Chance of Admit | \n",
491 | " 500.0 | \n",
492 | " 0.72174 | \n",
493 | " 0.141140 | \n",
494 | " 0.34 | \n",
495 | " 0.6300 | \n",
496 | " 0.72 | \n",
497 | " 0.82 | \n",
498 | " 0.97 | \n",
499 | "
\n",
500 | " \n",
501 | "
\n",
502 | "
"
503 | ],
504 | "text/plain": [
505 | " count mean std min 25% 50% \\\n",
506 | "Serial No. 500.0 250.50000 144.481833 1.00 125.7500 250.50 \n",
507 | "GRE Score 500.0 316.47200 11.295148 290.00 308.0000 317.00 \n",
508 | "TOEFL Score 500.0 107.19200 6.081868 92.00 103.0000 107.00 \n",
509 | "University Rating 500.0 3.11400 1.143512 1.00 2.0000 3.00 \n",
510 | "SOP 500.0 3.37400 0.991004 1.00 2.5000 3.50 \n",
511 | "LOR 500.0 3.48400 0.925450 1.00 3.0000 3.50 \n",
512 | "CGPA 500.0 8.57644 0.604813 6.80 8.1275 8.56 \n",
513 | "Research 500.0 0.56000 0.496884 0.00 0.0000 1.00 \n",
514 | "Chance of Admit 500.0 0.72174 0.141140 0.34 0.6300 0.72 \n",
515 | "\n",
516 | " 75% max \n",
517 | "Serial No. 375.25 500.00 \n",
518 | "GRE Score 325.00 340.00 \n",
519 | "TOEFL Score 112.00 120.00 \n",
520 | "University Rating 4.00 5.00 \n",
521 | "SOP 4.00 5.00 \n",
522 | "LOR 4.00 5.00 \n",
523 | "CGPA 9.04 9.92 \n",
524 | "Research 1.00 1.00 \n",
525 | "Chance of Admit 0.82 0.97 "
526 | ]
527 | },
528 | "execution_count": 8,
529 | "metadata": {},
530 | "output_type": "execute_result"
531 | }
532 | ],
533 | "source": [
534 | "# Returns basic statistics on numeric columns\n",
535 | "df.describe().T"
536 | ]
537 | },
538 | {
539 | "cell_type": "code",
540 | "execution_count": 9,
541 | "metadata": {},
542 | "outputs": [
543 | {
544 | "data": {
545 | "text/plain": [
546 | "Serial No. int64\n",
547 | "GRE Score int64\n",
548 | "TOEFL Score int64\n",
549 | "University Rating int64\n",
550 | "SOP float64\n",
551 | "LOR float64\n",
552 | "CGPA float64\n",
553 | "Research int64\n",
554 | "Chance of Admit float64\n",
555 | "dtype: object"
556 | ]
557 | },
558 | "execution_count": 9,
559 | "metadata": {},
560 | "output_type": "execute_result"
561 | }
562 | ],
563 | "source": [
564 | "# Returns different datatypes for each columns (float, int, string, bool, etc.)\n",
565 | "df.dtypes"
566 | ]
567 | },
568 | {
569 | "cell_type": "code",
570 | "execution_count": 10,
571 | "metadata": {},
572 | "outputs": [
573 | {
574 | "data": {
575 | "text/plain": [
576 | "Serial No. False\n",
577 | "GRE Score False\n",
578 | "TOEFL Score False\n",
579 | "University Rating False\n",
580 | "SOP False\n",
581 | "LOR False\n",
582 | "CGPA False\n",
583 | "Research False\n",
584 | "Chance of Admit False\n",
585 | "dtype: bool"
586 | ]
587 | },
588 | "execution_count": 10,
589 | "metadata": {},
590 | "output_type": "execute_result"
591 | }
592 | ],
593 | "source": [
594 | "# Returns true for a column having null values, else false\n",
595 | "df.isnull().any()"
596 | ]
597 | },
598 | {
599 | "cell_type": "code",
600 | "execution_count": 11,
601 | "metadata": {
602 | "scrolled": true
603 | },
604 | "outputs": [
605 | {
606 | "data": {
607 | "text/html": [
608 | "\n",
609 | "\n",
622 | "
\n",
623 | " \n",
624 | " \n",
625 | " | \n",
626 | " Serial No. | \n",
627 | " GRE | \n",
628 | " TOEFL | \n",
629 | " University Rating | \n",
630 | " SOP | \n",
631 | " LOR | \n",
632 | " CGPA | \n",
633 | " Research | \n",
634 | " Probability | \n",
635 | "
\n",
636 | " \n",
637 | " \n",
638 | " \n",
639 | " 0 | \n",
640 | " 1 | \n",
641 | " 337 | \n",
642 | " 118 | \n",
643 | " 4 | \n",
644 | " 4.5 | \n",
645 | " 4.5 | \n",
646 | " 9.65 | \n",
647 | " 1 | \n",
648 | " 0.92 | \n",
649 | "
\n",
650 | " \n",
651 | " 1 | \n",
652 | " 2 | \n",
653 | " 324 | \n",
654 | " 107 | \n",
655 | " 4 | \n",
656 | " 4.0 | \n",
657 | " 4.5 | \n",
658 | " 8.87 | \n",
659 | " 1 | \n",
660 | " 0.76 | \n",
661 | "
\n",
662 | " \n",
663 | " 2 | \n",
664 | " 3 | \n",
665 | " 316 | \n",
666 | " 104 | \n",
667 | " 3 | \n",
668 | " 3.0 | \n",
669 | " 3.5 | \n",
670 | " 8.00 | \n",
671 | " 1 | \n",
672 | " 0.72 | \n",
673 | "
\n",
674 | " \n",
675 | " 3 | \n",
676 | " 4 | \n",
677 | " 322 | \n",
678 | " 110 | \n",
679 | " 3 | \n",
680 | " 3.5 | \n",
681 | " 2.5 | \n",
682 | " 8.67 | \n",
683 | " 1 | \n",
684 | " 0.80 | \n",
685 | "
\n",
686 | " \n",
687 | " 4 | \n",
688 | " 5 | \n",
689 | " 314 | \n",
690 | " 103 | \n",
691 | " 2 | \n",
692 | " 2.0 | \n",
693 | " 3.0 | \n",
694 | " 8.21 | \n",
695 | " 0 | \n",
696 | " 0.65 | \n",
697 | "
\n",
698 | " \n",
699 | "
\n",
700 | "
"
701 | ],
702 | "text/plain": [
703 | " Serial No. GRE TOEFL University Rating SOP LOR CGPA Research \\\n",
704 | "0 1 337 118 4 4.5 4.5 9.65 1 \n",
705 | "1 2 324 107 4 4.0 4.5 8.87 1 \n",
706 | "2 3 316 104 3 3.0 3.5 8.00 1 \n",
707 | "3 4 322 110 3 3.5 2.5 8.67 1 \n",
708 | "4 5 314 103 2 2.0 3.0 8.21 0 \n",
709 | "\n",
710 | " Probability \n",
711 | "0 0.92 \n",
712 | "1 0.76 \n",
713 | "2 0.72 \n",
714 | "3 0.80 \n",
715 | "4 0.65 "
716 | ]
717 | },
718 | "execution_count": 11,
719 | "metadata": {},
720 | "output_type": "execute_result"
721 | }
722 | ],
723 | "source": [
724 | "# Renaming the columns with appropriate names\n",
725 | "df = df.rename(columns={'GRE Score': 'GRE', 'TOEFL Score': 'TOEFL', 'LOR ': 'LOR', 'Chance of Admit ': 'Probability'})\n",
726 | "df.head()"
727 | ]
728 | },
729 | {
730 | "cell_type": "markdown",
731 | "metadata": {},
732 | "source": [
733 | "## Data Visualization"
734 | ]
735 | },
736 | {
737 | "cell_type": "code",
738 | "execution_count": 12,
739 | "metadata": {},
740 | "outputs": [
741 | {
742 | "data": {
743 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAY8ElEQVR4nO3debjkVX3n8fdHFlFAUGkNINIwosK42+IeFRg3UMhExYwiKA6P+75gNGoSM+Jo1BE1hhEVlyiIOoIYBRXcAzSbYABFBERQGpVVXBq/88fvXLq8fe/t6qX6cvu8X89TT1ed33ZO1e1Pnd/5VZ1KVSFJ6sdt5rsCkqT1y+CXpM4Y/JLUGYNfkjpj8EtSZwx+SeqMwa+xJflQkr9bR/u6e5IbkmzUHp+S5PnrYt9tf/+e5MB1tb/VOO7bklyd5Bfr+9jSuAx+AZDkkiQ3Jbk+yTVJvpfkBUlu+RupqhdU1T+Oua+95lqnqi6rqi2q6uZ1UPe3JvnktP0/qaqOWtt9r2Y9dgBeDexWVX8xyzpbJnl3e45uTHJZkmOT7D6yTrVlNyT5eVt/o5HlpyT5XVs+dTt+luNtmuSfk1ze1vtpkves67ZrYTH4NeopVbUlsCNwGPB64Mh1fZAkG6/rfd5K7Aj8qqqummlhktsC3wDuC+wD3AHYFfgM8ORpq9+/qrYAHgPsDzxv2vKXtDfOqdtTZqnTG4AlwO7AlsDjgLNWu2Vz2IBfzw2Wwa+VVNW1VXUcQ+AcmOQ+AEk+luRt7f42Sb7Uzg5+neTbSW6T5BPA3YHjWw/zdUkWt17swUkuA74xUjYaGv8lyWlJrk3yxSR3asd6bJLLR+s4dVaR5InA3wL7t+Od05bfMnTU6vWmJJcmuSrJx5Ns1ZZN1ePA1vu+OskbZ3tukmzVtl/W9vemtv+9gJOA7Vo9PjbD5gcAdwP2q6rzqurmqrqxqo6tqrfO8lpcBHwXeMAcL9lcHgJ8oaquqMElVfXxkfbskOTzrT2/SvL+Vj7Oc3bL69nKH9bOFK9Jck6Sx44c56AkF7czyp8medYatkfrgMGvWVXVacDlwKNnWPzqtmwRcFeG8K2qOgC4jOHsYYuq+t8j2zyGoYf7hFkO+RyGnu12wHLgfWPU8SvA/wKObse7/wyrHdRujwN2BrYA3j9tnUcB9wL2BN6cZNdZDnk4sFXbz2NanZ9bVV8DngRc0epx0Azb7gV8tapuXFW7piS5N8Pzf9G420zzH8CrkrwoyX2TZGTfGwFfAi4FFgPbM5x9wHjP2S2vZ5LtgROAtwF3Al4DfC7JoiSbM7yWT2pnlI8Azl7D9mgdMPi1Klcw/Eee7o/AtsCOVfXHqvp2rXrip7e2Hu5Nsyz/ROsJ3wj8HfCM0bHttfAs4N1VdXFV3cAw/PHMaWcbf19VN1XVOcA5wEpvIK0u+wNvqKrrq+oS4J8ZevLj2Aa45aJvkge03vF1SS6ctu6ZSW4EzgdOAT44bfn72rZTt9muvbwdeAfDc7AU+HlWXPTeneFN9rXtdfldVX2nLRvnORt9PZ8NfLmqvlxVf6qqk9rxpoaw/gTcJ8ntqurKqvrhqp8uTYrBr1XZHvj1DOXvZOiFnthO4Q8dY18/W43llwKbMITl2tqu7W903xsznKlMGf0Uzm8ZerjTbQNsOsO+th+zHr9ieLMEoKrOrqqtgf8O3Hbaug9qddgfeCiw+bTlL6uqrUduM37aqg0nfaCqHglsDfwT8JF2RrMDcGlVLZ9h03Ges9HXa0fg6aNvRgxnUdu2N/L9gRcAVyY5oZ3JaJ4Y/JpVkocwhNp3pi9rPd5XV9XOwFMYhhP2nFo8yy5XdUaww8j9uzOcVVwN3AjcfqReGzEMMY273ysYgml038uBX65iu+mubnWavq+fj7n914HHt6GPVWpj8scA3wfevDoVnWV/N1XVB4DfALsxBPfdZ7k4O85zNvq8/4zhjG30zWjzqjqsHfurVfXfGN74LgD+79q2R2vO4NdKktwhyT4M472frKpzZ1hnnyT3aGPG1wE3txsM4bDzGhz62Ul2S3J74B+AY9vHPX8EbJZk7ySbAG/iz3vIvwQWZ+Sjp9N8Gnhlkp2SbMGKawIz9XRn1epyDPBPGT6WuSPwKuCTc295i48DVwJfSHKfJBsl2YzhUzdzOQw4JMmMHxGdS5JXtIvjt0uycRvm2ZLhkz2ntfoclmTzJJsleWTbdHWfs08CT0nyhKl2tePeLcldkzy1veH9HriBFX8rmgcGv0Ydn+R6ht7bG4F3A8+dZd1dgK8x/Cf+PvDBqjqlLXs78KZ2yv+a1Tj+J4CPMQy7bAa8DIZPGQEvAj7M0Lu+keHC8pTPtn9/leTMGfb7kbbvbwE/BX4HvHQ16jXqpe34FzOcCf1b2/8qVdXvGC6W/ifDhdDrgAsZPnnzjDm2Oxf4JvDakeL3588/x3/GLJvfxHAd4hcMZywvBv66jd3fzHC2dg+GC/KXMwzJwGo+Z1X1M2Bfhov8yxj+hl7LkDG3YfgwwBUMw4aPYXg9NU/iD7FIUl/s8UtSZwx+SeqMwS9JnTH4JakzC2JypW222aYWL14839WQpAXljDPOuLqqFk0vXxDBv3jxYpYuXTrf1ZCkBSXJpTOVO9QjSZ0x+CWpMwa/JHXG4Jekzhj8ktQZg1+SOmPwS1JnDH5J6ozBL0mdWRDf3JU0nsWHnjCR/V5y2N4T2a/mhz1+SeqMwS9JnTH4JakzBr8kdcbgl6TOGPyS1BmDX5I6Y/BLUmcMfknqjMEvSZ2ZaPAneWWSHyY5L8mnk2yWZKckpyb5cZKjk2w6yTpIkv7cxII/yfbAy4AlVXUfYCPgmcA7gPdU1S7Ab4CDJ1UHSdLKJj3UszFwuyQbA7cHrgT2AI5ty48C9ptwHSRJIyYW/FX1c+BdwGUMgX8tcAZwTVUtb6tdDmw/0/ZJDkmyNMnSZcuWTaqaktSdSQ713BHYF9gJ2A7YHHjSDKvWTNtX1RFVtaSqlixatGhS1ZSk7kxyqGcv4KdVtayq/gh8HngEsHUb+gG4G3DFBOsgSZpmkj/EchnwsCS3B24C9gSWAicDTwM+AxwIfHGCdVCn/EESaXaTHOM/leEi7pnAue1YRwCvB16V5CLgzsCRk6qDJGllE/3pxap6C/CWacUXA7tP8riSpNn5zV1J6ozBL0mdMfglqTMGvyR1xuCXpM4Y/JLUGYNfkjpj8EtSZwx+SeqMwS9JnTH4JakzBr8kdcbgl6TOGPyS1BmDX5I6Y/BLUmcMfknqjMEvSZ2Z6E8vSj3yh951a2ePX5I6Y/BLUmcMfknqjMEvSZ0x+CWpMwa/JHXG4Jekzhj8ktQZg1+SOmPwS1JnDH5J6ozBL0mdMfglqTMGvyR1xuCXpM4Y/JLUGX+IRdI644/QLAz2+CWpMwa/JHXG4Jekzkw0+JNsneTYJBckOT/Jw5PcKclJSX7c/r3jJOsgSfpzk+7x/x/gK1V1b+D+wPnAocDXq2oX4OvtsSRpPZlY8Ce5A/CXwJEAVfWHqroG2Bc4qq12FLDfpOogSVrZJHv8OwPLgI8mOSvJh5NsDty1qq4EaP/eZaaNkxySZGmSpcuWLZtgNSWpL5MM/o2BBwH/UlUPBG5kNYZ1quqIqlpSVUsWLVo0qTpKUncmGfyXA5dX1ant8bEMbwS/TLItQPv3qgnWQZI0zcSCv6p+Afwsyb1a0Z7AfwLHAQe2sgOBL06qDpKklU16yoaXAp9KsilwMfBchjebY5IcDFwGPH3CdZAkjZho8FfV2cCSGRbtOcnjSpJm5zd3JakzBr8kdcbgl6TOGPyS1BmDX5I6Y/BLUmcMfknqjMEvSZ0x+CWpMwa/JHXG4Jekzhj8ktQZg1+SOmPwS1JnDH5J6ozBL0mdMfglqTMGvyR1ZqyfXkzyyKr67qrKpCmLDz1hIvu95LC9J7JfqSfj9vgPH7NMknQrN2ePP8nDgUcAi5K8amTRHYCNJlkxSdJkrGqoZ1Ngi7beliPl1wFPm1SlJEmTM2fwV9U3gW8m+VhVXbqe6iRJmqCxLu4Ct01yBLB4dJuq2mMSlZIkTc64wf9Z4EPAh4GbJ1cdSdKkjRv8y6vqXyZaE0nSejFu8B+f5EXAF4DfTxVW1a8nUiutE36WXtJMxg3+A9u/rx0pK2DndVsdSdKkjRX8VbXTpCsiSVo/xp2y4TkzlVfVx9dtdSRJkzbuUM9DRu5vBuwJnAkY/JK0wIw71PPS0cdJtgI+MZEaSZImak2nZf4tsMu6rIgkaf0Yd4z/eIZP8cAwOduuwDGTqpQkaXLGHeN/18j95cClVXX5BOojSZqwsYZ62mRtFzDM0HlH4A+TrJQkaXLGCv4kzwBOA54OPAM4NYnTMkvSAjTuUM8bgYdU1VUASRYBXwOOnVTFJEmTMe6nem4zFfrNr1ZjW0nSrci4Pf6vJPkq8On2eH/gy+NsmGQjYCnw86raJ8lOwGeAOzF8CeyAqvKagSStJ3P22pPcI8kjq+q1wL8C9wPuD3wfOGLMY7wcOH/k8TuA91TVLsBvgINXu9aSpDW2quGa9wLXA1TV56vqVVX1Sobe/ntXtfMkdwP2ZvgBF5IE2IMV1waOAvZbs6pLktbEqoJ/cVX9YHphVS1l+BnGVXkv8DrgT+3xnYFrqmp5e3w5sP1MGyY5JMnSJEuXLVs2xqEkSeNYVfBvNsey2821YZJ9gKuq6ozR4hlWrRnKqKojqmpJVS1ZtGjRKqopSRrXqoL/9CT/c3phkoOBM2ZYf9QjgacmuYThYu4eDGcAWyeZuqh8N+CK1aqxJGmtrOpTPa8AvpDkWawI+iXApsBfzbVhVb0BeANAkscCr6mqZyX5LPA0hjeDA4EvrnHtJUmrbc7gr6pfAo9I8jjgPq34hKr6xloc8/XAZ5K8DTgLOHIt9iVJWk3jzsd/MnDymh6kqk4BTmn3LwZ2X9N9SZLWjt++laTOGPyS1Jlxp2yQpFu1xYeeMJH9XnLY3hPZ73yyxy9JnbHHP0H2QCTdGtnjl6TOGPyS1BmDX5I6Y/BLUmcMfknqjMEvSZ0x+CWpMwa/JHXG4Jekzhj8ktQZg1+SOmPwS1JnDH5J6ozBL0mdMfglqTMGvyR1xuCXpM4Y/JLUGYNfkjpj8EtSZwx+SerMxvNdAUla6BYfesJE9nvJYXtPZL/2+CWpMwa/JHXG4Jekzhj8ktQZg1+SOmPwS1JnDH5J6ozBL0mdMfglqTMGvyR1xuCXpM4Y/JLUmYkFf5Idkpyc5PwkP0zy8lZ+pyQnJflx+/eOk6qDJGllk+zxLwdeXVW7Ag8DXpxkN+BQ4OtVtQvw9fZYkrSeTCz4q+rKqjqz3b8eOB/YHtgXOKqtdhSw36TqIEla2XoZ40+yGHggcCpw16q6EoY3B+Au66MOkqTBxIM/yRbA54BXVNV1q7HdIUmWJlm6bNmyyVVQkjoz0eBPsglD6H+qqj7fin+ZZNu2fFvgqpm2raojqmpJVS1ZtGjRJKspSV2Z5Kd6AhwJnF9V7x5ZdBxwYLt/IPDFSdVBkrSySf7m7iOBA4Bzk5zdyv4WOAw4JsnBwGXA0ydYB0nSNBML/qr6DpBZFu85qeNKkubmN3clqTMGvyR1xuCXpM4Y/JLUGYNfkjpj8EtSZwx+SeqMwS9JnTH4JakzBr8kdcbgl6TOGPyS1BmDX5I6Y/BLUmcMfknqjMEvSZ0x+CWpMwa/JHXG4Jekzhj8ktQZg1+SOmPwS1JnDH5J6ozBL0mdMfglqTMGvyR1xuCXpM4Y/JLUGYNfkjpj8EtSZwx+SerMxvNdgUlbfOgJE9nvJYftPZH9StKk2eOXpM4Y/JLUGYNfkjpj8EtSZwx+SeqMwS9JnTH4JakzBr8kdWZegj/JE5NcmOSiJIfORx0kqVfrPfiTbAR8AHgSsBvwN0l2W9/1kKRezUePf3fgoqq6uKr+AHwG2Hce6iFJXUpVrd8DJk8DnlhVz2+PDwAeWlUvmbbeIcAh7eG9gAvH2P02wNXrsLoLiW3vU69t77XdsHpt37GqFk0vnI9J2jJD2UrvPlV1BHDEau04WVpVS9a0YguZbbftPem13bBu2j4fQz2XAzuMPL4bcMU81EOSujQfwX86sEuSnZJsCjwTOG4e6iFJXVrvQz1VtTzJS4CvAhsBH6mqH66j3a/W0NAGxrb3qde299puWAdtX+8XdyVJ88tv7kpSZwx+SerMggr+JDskOTnJ+Ul+mOTlrfz+Sb6f5Nwkxye5w8g2b2hTQ1yY5AnzV/s1l2SzJKclOae1++9b+U5JTk3y4yRHt4vlJLlte3xRW754Puu/NuZo+0ta+yrJNiPrJ8n72rIfJHnQ/NV+7czR9k+1v+fzknwkySatvIe2H9nKfpDk2CRbtPIN4m9+tnaPLD88yQ0jj9es3VW1YG7AtsCD2v0tgR8xTPtwOvCYVv484B/b/d2Ac4DbAjsBPwE2mu92rEG7A2zR7m8CnAo8DDgGeGYr/xDwwnb/RcCH2v1nAkfPdxsm0PYHAouBS4BtRtZ/MvDvbbuHAafOdxsm0PYnt2UBPj3yuvfQ9juMrPNu4NB2f4P4m5+t3e3xEuATwA0j669RuxdUj7+qrqyqM9v964Hzge0Zvtn7rbbaScBft/v7Ap+pqt9X1U+BiximjFhQajD1Lr9JuxWwB3BsKz8K2K/d37c9pi3fM8lMX5y71Zut7VV1VlVdMsMm+wIfb9v9B7B1km3XU3XXqTna/uW2rIDTGL4LA320/ToYzm6A27Hiy58bxN/8bO1uc5y9E3jdtE3WqN0LKvhHtVOaBzK8I54HPLUtejorviC2PfCzkc0ub2ULTpKNkpwNXMXw5vYT4JqqWt5WGW3bLe1uy68F7rx+a7zuTG97VZ06x+obzGsOc7e9DfEcAHylFXXR9iQfBX4B3Bs4vK2+wfzNz9LulwDHVdWV01Zfo3YvyOBv43qfA17RegDPA16c5AyGIaA/TK06w+YL8vOrVXVzVT2AoXe3O7DrTKu1fzeYdsPKbU9ynzlW76ntHwS+VVXfbo+7aHtVPRfYjuGMf/+2+gbT9hna/ZcMHdrDZ1h9jdq94IK/9XI+B3yqqj4PUFUXVNXjq+rBDGOeP2mrb3DTQ1TVNcApDOOdWyeZ+hLeaNtuaXdbvhXw6/Vb03VvpO1PnGO1De41h5XbnuQtwCLgVSOrddH2VnYzcDQrhnU3uL/5kXY/DrgHcFGSS4DbJ7morbZG7V5Qwd/Gro4Ezq+qd4+U36X9exvgTQwXOmGYCuKZ7cr3TsAuDGOiC0qSRUm2bvdvB+zF0Ns5GXhaW+1A4Ivt/nHtMW35N9p48IIzS9svmGOT44DntE+4PAy4dobT4wVhtrYneT7wBOBvqupPI5ts6G2/MMk9WlmAp7Dib2GD+Jufpd1nVNVfVNXiqloM/Laq7tE2WbN2r80V6PV9Ax7FcBrzA+Dsdnsy8HKGT/j8CDiM9o3kts0bGc4ALgSeNN9tWMN23w84q7X7PODNrXxnhjeyi4DPArdt5Zu1xxe15TvPdxsm0PaXMfR2ljP0aj/cysPwQz8/Ac4Flsx3GybQ9uWtfVP/B6bKN+i2M3RUv9vadh7wKdqnfDaUv/nZXvNp64x+qmeN2u2UDZLUmQU11CNJWnsGvyR1xuCXpM4Y/JLUGYNfkjpj8GuDk+SuSf4tycVJzsgwc+tftWWPTXJtkrOSXJDkXSPbHZRkWZKzR267zbD/N7aZE3/Q1nno+myftLbW+08vSpPUvtjz/4Cjqup/tLIdWTGXE8C3q2qf9gWZs5J8oaq+25YdXVUvmWP/Dwf2YZgl9vcZpoTedC3rvHGtmHNJmjh7/NrQ7AH8oaqmvr1NVV1aVSvNc1JVNzF8AWp1JjLbFri6qn7f9nF1VV0BkOQhSb7X5lI/LcmWbX71j2b4rYizkjyurXtQks8mOR44sZW9Nsnp7Uxiav75zZOc0PZ5XpL9Z66WND57/NrQ/FfgzHFWTHJHhmk8vjVSvH+SR408fnh7g5hyIvDmJD8CvsZwhvDNDD+CczSwf1WdnuHHgG5i+FY5VXXfJPcGTkxyz6l9A/erql8neXyry+4M38A9rk3OtQi4oqr2bnXeavynQpqZPX5t0JJ8oPWWTx8pfnSSHzBM7fulqvrFyLKjq+oBI7fR0KeGudIfDBwCLAOOTnIQw29CXFlVp7f1rmvDN49i+PEMquoC4FJgKvhPqqqpCbUe325nMbxx3ZvhjeBcYK8k70jy6Kq6dl08L+qbPX5taH7IihkbqaoXt3H4pSPrTI3x3xP4ThvjP3vcA9QwM+QpwClJzmWYJOtMZp4Od64fxbhx2npvr6p/XWkHyYMZ5qR6e5ITq+ofxq2rNBN7/NrQfAPYLMkLR8puP9OKVfUj4O3A68fdeZJ7JdllpOgBDL34C4Dtkjykrbdlmyb3W8CzWtk9gbszTBg43VeB52XFb8hun+QuSbZjmI3xk8C7gAX7O7q69bDHrw1KVVWS/YD3JHkdw3DMjcwe7h8CXtOm7YaVx/hfVFXfG3m8BXB4mzp3OcOsiIdU1R/ahdfD26eFbmKYUveDwIfamcFy4KD2aaDp9T4xya7A99uyG4BnM8zD/s4kfwL+CLwQaS05O6ckdcahHknqjMEvSZ0x+CWpMwa/JHXG4Jekzhj8ktQZg1+SOvP/AVCi7/ySOwZvAAAAAElFTkSuQmCC\n",
744 | "text/plain": [
745 | ""
746 | ]
747 | },
748 | "metadata": {
749 | "needs_background": "light"
750 | },
751 | "output_type": "display_data"
752 | }
753 | ],
754 | "source": [
755 | "# Visualizing the feature GRE\n",
756 | "fig = plt.hist(df['GRE'], rwidth=0.7)\n",
757 | "plt.title(\"Distribution of GRE Scores\")\n",
758 | "plt.xlabel('GRE Scores')\n",
759 | "plt.ylabel('Count')\n",
760 | "plt.show()"
761 | ]
762 | },
763 | {
764 | "cell_type": "code",
765 | "execution_count": 13,
766 | "metadata": {
767 | "scrolled": true
768 | },
769 | "outputs": [
770 | {
771 | "data": {
772 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAbiElEQVR4nO3de7xcZX3v8c+XQERuJiE7GMJlB82hXCqIW8qlUiHQgqAJleuhsJHU1FcLXqBKAFHw2Da0KrWeFk4UzBYoFymYIAqkkZutBBMIEgg0ELmExGQTLuEOib/zx3o2mcyency+rJnsPN/36zWvmXnW7bf2Sr6z5pmZZykiMDOzfGzW7ALMzKyxHPxmZplx8JuZZcbBb2aWGQe/mVlmHPxmZplx8Fs3ki6XdOEArWsXSa9KGpKe3yXpLwdi3Wl9P5fUPlDr68V2vynpeUm/a/S2zfrLwZ8ZSU9JekPSK5JekvTfkj4n6d1/CxHxuYj4P3Wu6/D1zRMRz0TENhGxZgBqv0jS1VXrPyoiOvq77l7WsTNwDrBnRLy/atop6YXu1fR3/n3F81cr5jtd0sOSXpf0O0mXSRpWMf0iSe9ULivppYrpIem16mmSPi5pSZ37sZekOyS9mP4tzJP0if7+fWzj5+DP0ycjYltgV2AqcC5wxUBvRNLmA73OjcSuwMqIWFE9ISKuSS902wBHAUu7nqc2JJ0DXAJ8GXgfcEBa5yxJQytWd33lshExrGpz+6xnWj1uAWYBOwCjgM8Dq/qwnh5twv8GBjUHf8Yi4uWImAmcCLRL2htA0nRJ30yPR0r6aTojfEHSvZI2k3QVsAtwSzrj/Iqk1nQmOknSM8AvKtoqA+ADku6X9LKkGZJGpG11O1vtelch6UjgfODEtL2H0vR3u45SXV+V9LSkFZJ+JOl9aVpXHe2SnkndNBf09LeR9L60fGda31fT+g+nCMsdUx3Te/M3l7QdcDFwVkTcFhHvRMRTwAkU4f8XvVlfX0kaCYwFvh8Rb6fbf0XELyvmmSBpvqRVkp5MxwBJO0qamf49PCHpsxXLXCTpRklXS1oFnJ7+blPSOlZKuqHimG+Z5l2Z/o39WtIOjfgb5MzBb0TE/cAS4GM1Jp+TprVQnBmeXywSpwLPULx72CYi/rFimT8B9gD+rIdNngacAewIrAb+pY4abwP+nrVnwfvUmO30dDsU2A3YBvi/VfP8MbA7MB74mqQ9etjk9yjOxndL+3Ma8JmI+E/WPZM/fUO1VzkI2BK4qWr/XgV+DhzRy/X11UrgCeBqSROrw1bS/sCPKN6VDAMOAZ5Kk6+l+DexI3Ac8PeSxlcsPgG4MS13DcU7iYkUf8cdgReBf03ztlP8nXcGtgc+B7wxgPtpNTj4rctSYESN9neA0cCu6ez03tjwAE8XRcRrEdHTf+CrImJBRLwGXAicoPThbz+dAnwnIhanID0POKnq3cbFEfFGRDwEPAR0ewFJtZwInBcRr6Qz8m8Dpw5AjSOB5yNidY1py9L0Lieks+Cu251V8z9QMW2DL56V0jE8lCLMvw0sk3SPpHFplknAlRExKyJ+HxHPRcRjKj7f+GPg3Ih4MyLmAz9g3b/NryLiJ2m5N4C/Ai6IiCUR8RZwEXBcOi7vUAT+ByNiTUTMi4gB7W6y7hz81mUM8EKN9n+iODO8Q9JiSVPqWNezvZj+NLAF6wZeX+2Y1le57s0p3ql0qfwWzusU7wqqjQSG1ljXmAGo8XlgZA9936PT9C43RMSwituhVfPvVzHt870tJAXxmRHxAYpuptcozvKhOAN/ssZiOwIvRMQrFW3Vf5vq478rcHPXixSwEFhDcVyuAm4HrpO0VNI/Stqit/tivePgNyR9lOI/7i+rp6Uz3nMiYjfgk8DZFW/rezrz39A7gp0rHu9Ccdb3PEXwbFVR1xCKLqZ617uUImQq170aWL6B5ao9n2qqXtdzvVxPLb8C3gL+vLJR0tYUXUizB2AbvRYRz1J0v+ydmp4FPlBj1qXACEnbVrRV/22qj9OzwFFVL2JbpncR70TExRGxJ0U32DEU3WpWIgd/xiRtJ+kY4Drg6oh4uMY8x0j6oCRRfONjTbpBEai79WHTfyFpT0lbAd8Abkxf9/wfYEtJR6ezvq8C76lYbjnQqoqvnla5FviSpLGStmHtZwK1ulV6lGq5Afg7SdtK2hU4G7h6/UvWte6XKT7c/Z6kIyVtIakV+DFFv/lV/d0GvPuhaeVNVdOHS7o4HdvN0oe9ZwD3pVmuAD4jaXyaPkbSH6QXiP8G/iGt90MU3ULXrKecyyn+lrumbbdImpAeHyrpD9OL/CqKF9x+f/XX1s/Bn6dbJL1CcSZ2AfAd4DM9zDsO+E/gVYqz1X+LiLvStH8Avprewv9tL7Z/FTCdottlS4oP/7pC8a8p+oyfo3gHUPktnx+n+5WSHqix3ivTuu8Bfgu8CZzVi7oqnZW2v5jindC/p/X3W/og/HzgWxRhN4fiWIxPfeBdur7BVHkbVccmxlB8QFp5qz57fxtopTi2q4AFFO9ETk813k/xb+JS4GXgbta+Azo5LbsUuBn4ekTMWk893wVmUnQXvkLx4vJHadr7KT4IXkXRBXQ3A/ACa+snX4jFzCwvPuM3M8uMg9/MLDMOfjOzzDj4zcwyMygGUBo5cmS0trY2uwwzs0Fl3rx5z0dES3X7oAj+1tZW5s6d2+wyzMwGFUlP12p3V4+ZWWYc/GZmmXHwm5llxsFvZpYZB7+ZWWYc/GZmmXHwm5llxsFvZpYZB7+ZWWYGxS93zaw+rVNuLWW9T009upT1WnP4jN/MLDMOfjOzzDj4zcwyU2rwS/qSpEckLZB0raQtJY2VNEfSIknXSxpaZg1mZrau0oJf0hjg80BbROwNDAFOAi4BLo2IccCLwKSyajAzs+7K7urZHHivpM2BrYBlwGHAjWl6BzCx5BrMzKxCacEfEc8B3wKeoQj8l4F5wEsRsTrNtgQYU2t5SZMlzZU0t7Ozs6wyzcyyU2ZXz3BgAjAW2BHYGjiqxqxRa/mImBYRbRHR1tLS7cphZmbWR2V29RwO/DYiOiPiHeAm4CBgWOr6AdgJWFpiDWZmVqXM4H8GOEDSVpIEjAceBe4EjkvztAMzSqzBzMyqlNnHP4fiQ9wHgIfTtqYB5wJnS3oC2B64oqwazMysu1LH6omIrwNfr2peDOxf5nbNzKxn/uWumVlmHPxmZplx8JuZZcbBb2aWGQe/mVlmHPxmZplx8JuZZcbX3DUbYL7urW3sfMZvZpYZB7+ZWWYc/GZmmXHwm5llxsFvZpYZB7+ZWWYc/GZmmXHwm5llpsyLre8uaX7FbZWkL0oaIWmWpEXpfnhZNZiZWXdlXnrx8YjYNyL2BT4CvA7cDEwBZkfEOGB2em5mZg3SqK6e8cCTEfE0MAHoSO0dwMQG1WBmZjQu+E8Crk2Pd4iIZQDpflStBSRNljRX0tzOzs4GlWlmtukrPfglDQU+Bfy4N8tFxLSIaIuItpaWlnKKMzPLUCPO+I8CHoiI5en5ckmjAdL9igbUYGZmSSOGZT6Ztd08ADOBdmBqup/RgBqswTw0sdnGq9QzfklbAUcAN1U0TwWOkLQoTZtaZg1mZrauUs/4I+J1YPuqtpUU3/IxM7Mm8C93zcwy4+A3M8uMg9/MLDMOfjOzzDTi65xmDeevk5r1zGf8ZmaZcfCbmWXGXT1mNmDcxTY4+IzfzCwzDn4zs8w4+M3MMuPgNzPLjIPfzCwzDn4zs8w4+M3MMuPgNzPLTNlX4Bom6UZJj0laKOlASSMkzZK0KN0PL7MGMzNbV9ln/N8FbouIPwD2ARYCU4DZETEOmJ2em5lZg5QW/JK2Aw4BrgCIiLcj4iVgAtCRZusAJpZVg5mZdVfmGf9uQCfwQ0kPSvqBpK2BHSJiGUC6H1VrYUmTJc2VNLezs7PEMs3M8lJm8G8O7AdcFhEfBl6jF906ETEtItoioq2lpaWsGs3MslNm8C8BlkTEnPT8RooXguWSRgOk+xUl1mBmZlVKC/6I+B3wrKTdU9N44FFgJtCe2tqBGWXVYGZm3ZU9Hv9ZwDWShgKLgc9QvNjcIGkS8AxwfMk1mJlZhVKDPyLmA201Jo0vc7tmZtYz/3LXzCwzDn4zs8z4mrubMF//1Mxq8Rm/mVlmHPxmZplx8JuZZcbBb2aWGQe/mVlmHPxmZplx8JuZZcbBb2aWGQe/mVlmHPxmZplx8JuZZcbBb2aWGQe/mVlmSh2dU9JTwCvAGmB1RLRJGgFcD7QCTwEnRMSLZdZhZmZrNeKM/9CI2Dciuq7ENQWYHRHjgNnpuZmZNUgzunomAB3pcQcwsQk1mJllq+zgD+AOSfMkTU5tO0TEMoB0P6rWgpImS5oraW5nZ2fJZZqZ5aPsK3AdHBFLJY0CZkl6rN4FI2IaMA2gra0tyirQzCw3pZ7xR8TSdL8CuBnYH1guaTRAul9RZg1mZrau0oJf0taStu16DPwpsACYCbSn2dqBGWXVYGZm3dUV/JIOrqetyg7ALyU9BNwP3BoRtwFTgSMkLQKOSM/NzKxB6u3j/x6wXx1t74qIxcA+NdpXAuPrLdDMzAbWeoNf0oHAQUCLpLMrJm0HDCmzMDMzK8eGzviHAtuk+bataF8FHFdWUWZmVp71Bn9E3A3cLWl6RDzdoJrMzKxE9fbxv0fSNIrxdd5dJiIOK6MoMzMrT73B/2PgcuAHFAOumZnZIFVv8K+OiMtKrcTMzBqi3h9w3SLpryWNljSi61ZqZWZmVop6z/i7fmn75Yq2AHYb2HLMzKxsdQV/RIwtuxAzM2uMuoJf0mm12iPiRwNbjpmZla3erp6PVjzekmLIhQcAB7+Z2SBTb1fPWZXPJb0PuKqUiszMrFR9HZb5dWDcQBZiZmaNUW8f/y0U3+KBYnC2PYAbyirKzMzKU28f/7cqHq8Gno6IJSXUY2ZmJaurqycN1vYYxQidw4G3yyzKzMzKU+8VuE6guIrW8cAJwBxJdQ3LLGmIpAcl/TQ9HytpjqRFkq6XNLSvxZuZWe/V++HuBcBHI6I9Ik6juGj6hXUu+wVgYcXzS4BLI2Ic8CIwqd5izcys/+oN/s0iYkXF85X1LCtpJ+BoilE9kSTgMODGNEsHMLHuas3MrN/q/XD3Nkm3A9em5ycCP6tjuX8GvsLaq3dtD7wUEavT8yXAmFoLSpoMTAbYZZdd6izTzMw2ZL1n7ZI+KOngiPgy8P+AD1FcQP1XwLQNLHsMsCIi5lU215g1arQREdMioi0i2lpaWta3KTMz64UNnfH/M3A+QETcBNwEIKktTfvkepY9GPiUpE9QDPOwXVpmmKTN01n/TsDSfu2BmZn1yob66Vsj4jfVjRExl+IyjD2KiPMiYqeIaAVOAn4REacAd7L2Qu3twIzeFm1mZn23oeDfcj3T3tvHbZ4LnC3pCYo+/yv6uB4zM+uDDXX1/FrSZyPi+5WNkiYB83pYppuIuAu4Kz1eTPF1UDMza4INBf8XgZslncLaoG8DhgLHllmYmZmVY73BHxHLgYMkHQrsnZpvjYhflF6ZmZmVot7x+O+k+FDWzMwGub6Ox29mZoOUg9/MLDMOfjOzzNQ7Vo+Z2Uatdcqtpaz3qalHl7LeZvIZv5lZZhz8ZmaZcfCbmWXGwW9mlhkHv5lZZhz8ZmaZcfCbmWXGwW9mlhkHv5lZZkoLfklbSrpf0kOSHpF0cWofK2mOpEWSrpc0tKwazMysuzLP+N8CDouIfYB9gSMlHQBcAlwaEeOAF4FJJdZgZmZVSgv+KLyanm6RbgEcBtyY2juAiWXVYGZm3ZXaxy9piKT5wApgFvAk8FJErE6zLAHG9LDsZElzJc3t7Owss0wzs6yUGvwRsSYi9gV2orjA+h61Zuth2WkR0RYRbS0tLWWWaWaWlYYMyxwRL0m6CzgAGCZp83TWvxOwtBE1mJmVZbANCV3mt3paJA1Lj98LHA4spLh273FptnZgRlk1mJlZd2We8Y8GOiQNoXiBuSEifirpUeA6Sd8EHgSuKLEGMzOrUlrwR8RvgA/XaF9M0d9vZmZN4F/umpllxsFvZpYZB7+ZWWYc/GZmmXHwm5llxsFvZpYZB7+ZWWYc/GZmmXHwm5llxsFvZpYZB7+ZWWYc/GZmmXHwm5llxsFvZpYZB7+ZWWYc/GZmmSnz0os7S7pT0kJJj0j6QmofIWmWpEXpfnhZNZiZWXdlnvGvBs6JiD0oLrL+N5L2BKYAsyNiHDA7PTczswYpLfgjYllEPJAev0JxofUxwASgI83WAUwsqwYzM+uuIX38kloprr87B9ghIpZB8eIAjOphmcmS5kqa29nZ2YgyzcyyUHrwS9oG+A/gixGxqt7lImJaRLRFRFtLS0t5BZqZZabU4Je0BUXoXxMRN6Xm5ZJGp+mjgRVl1mBmZusq81s9Aq4AFkbEdyomzQTa0+N2YEZZNZiZWXebl7jug4FTgYclzU9t5wNTgRskTQKeAY4vsQYzM6tSWvBHxC8B9TB5fFnbNTOz9fMvd83MMuPgNzPLjIPfzCwzDn4zs8yU+a2e7LVOubWU9T419ehS1mtmefAZv5lZZhz8ZmaZcfCbmWXGwW9mlhkHv5lZZhz8ZmaZcfCbmWXGwW9mlhkHv5lZZhz8ZmaZcfCbmWWmzEsvXilphaQFFW0jJM2StCjdDy9r+2ZmVluZZ/zTgSOr2qYAsyNiHDA7PTczswYqLfgj4h7gharmCUBHetwBTCxr+2ZmVluj+/h3iIhlAOl+VE8zSposaa6kuZ2dnQ0r0MxsU7fRfrgbEdMioi0i2lpaWppdjpnZJqPRwb9c0miAdL+iwds3M8teo4N/JtCeHrcDMxq8fTOz7JX5dc5rgV8Bu0taImkSMBU4QtIi4Ij03MzMGqi0a+5GxMk9TBpf1jbNzGzDNtoPd83MrBwOfjOzzDj4zcwy4+A3M8uMg9/MLDMOfjOzzJT2dc6NReuUW0tZ71NTjy5lvWZmZfMZv5lZZhz8ZmaZcfCbmWXGwW9mlhkHv5lZZhz8ZmaZcfCbmWXGwW9mlhkHv5lZZpoS/JKOlPS4pCckTWlGDWZmuWp48EsaAvwrcBSwJ3CypD0bXYeZWa6acca/P/BERCyOiLeB64AJTajDzCxLiojGblA6DjgyIv4yPT8V+KOIOLNqvsnA5PR0d+DxhhbaPyOB55tdRIm8f4Ob929w683+7RoRLdWNzRidUzXaur36RMQ0YFr55Qw8SXMjoq3ZdZTF+ze4ef8Gt4HYv2Z09SwBdq54vhOwtAl1mJllqRnB/2tgnKSxkoYCJwEzm1CHmVmWGt7VExGrJZ0J3A4MAa6MiEcaXUfJBmUXVS94/wY379/g1u/9a/iHu2Zm1lz+5a6ZWWYc/GZmmXHw95OkL0haIOkRSV9MbRdJek7S/HT7RLPr7A1JV0paIWlBRdsISbMkLUr3w1O7JP1LGn7jN5L2a17l9enl/n1c0ssVx/Jrzau8Pj3s3/Hp3+jvJbVVzX9eOn6PS/qzxlfcO73ZP0mtkt6oOH6XN6fq+vWwf/8k6bH0f+xmScMqpvX6+Dn4+0HS3sBnKX6NvA9wjKRxafKlEbFvuv2saUX2zXTgyKq2KcDsiBgHzE7PoRh6Y1y6TQYua1CN/TGd+vcP4N6KY/mNBtXYH9Ppvn8LgD8H7qlsTMOlnATslZb5tzSsysZsOnXuX/JkxfH7XNnFDYDpdN+/WcDeEfEh4H+A86Dvx8/B3z97APdFxOsRsRq4Gzi2yTX1W0TcA7xQ1TwB6EiPO4CJFe0/isJ9wDBJoxtTad/0cv8GnVr7FxELI6LWr98nANdFxFsR8VvgCYoTmY1WL/dv0Olh/+5IGQNwH8Xvn6CPx8/B3z8LgEMkbS9pK+ATrP1x2pnpbdmVXd0Gg9wOEbEMIN2PSu1jgGcr5luS2gabnvYP4EBJD0n6uaS9mlNeaTaV47c+YyU9KOluSR9rdjED4Azg5+lxn46fg78fImIhcAnF27DbgIeA1RTdHR8A9gWWAd9uVo0NUNcQHIPYAxTjnewDfA/4SZPrGWib+vFbBuwSER8Gzgb+XdJ2Ta6pzyRdQJEx13Q11Zhtg8fPwd9PEXFFROwXEYdQvD1bFBHLI2JNRPwe+D4b+VvnOi3v6sJJ9ytS+6YyBEfN/YuIVRHxanr8M2ALSSObV+aA21SOX02pC2RlejwPeBL4X82tqm8ktQPHAKfE2h9g9en4Ofj7SdKodL8LxYdL11b1cR9L0SU02M0E2tPjdmBGRftp6ds9BwAvd3WZDDI190/S+yUpPd6f4v/MyqZUWI6ZwEmS3iNpLMWH9Pc3uaYBI6ml68NOSbtR7N/i5lbVe5KOBM4FPhURr1dM6tvxiwjf+nED7gUepejmGZ/argIeBn6TDszoZtfZy326luIt8jsUZxSTgO0pvu2yKN2PSPOK4sI6T6Z9bmt2/QO8f2cCj6Tjex9wULPr7+P+HZsevwUsB26vmP+CdPweB45qdv0DuX/ApyuO3wPAJ5tdfx/37wmKvvz56XZ5f46fh2wwM8uMu3rMzDLj4Dczy4yD38wsMw5+M7PMOPjNzDLj4LdBKQ2T0TXi4u+qRkPdRdKMNNLmk5K+q+Iyn7VG25wv6fA0bU1Ve2ua/6cbqOUASXPSMgslXdSAP4FZnzX80otmAyGKX2PuC8Uw2MCrEfGt9GOrOcBlETEh/XhnGvB3wJfT4vdGxDE1VvtGROxb2SCptY5yOoATIuKhtL3d+7BL65A0JCLW9Hc9ZrX4jN82NYcBb0bEDwFSeH4JOCMNpFeGURQ/uCGKoToeBZC0jaQfSno4Ddj36dR+cmpbIOmSrpVIelXSNyTNoRgY7iNpYLF5km6vGFLi85IeTeu8rqR9sk2Yz/htU7MXMK+yISJWSXoG+GBq+pik+RWzfDoingTeW9H+24iod4jtS4HHJd1FMVhfR0S8CVxIMYTFHwJIGi5pR4qB/T4CvAjcIWliRPwE2BpYEBFfk7QFxTDfEyKiU9KJFO9azqC4VsDYiHir8oIcZvVy8NumRtQenbCyve6unnpExDckXQP8KfC/gZOBjwOHU1wko2u+FyUdAtwVEZ0AablDKEb9XAP8R5p9d2BvYFYaKmgI6V0FxVAg10j6CZveaKHWAA5+29Q8QjE+y7vSMLw7U4xnsn0ZG03vGC6T9H2gU9L21H4RqjWMbpc3K/r1BTwSEQfWmO9oiheLTwEXStor1l6kw2yD3Mdvm5rZwFaSToPiQ1KK6yFMj3VHNRwwko7uGsGTYnTENcBLwB0Ug7x1zTec4oPnP5E0MtV2MkWXTrXHgRZJB6Zlt5C0l6TNgJ0j4k7gK8AwYJsy9ss2XQ5+26REMergscDxkhZRXJ/0TeD8itk+VvW1zeM2sNrxkpZU3KrPwk+l6OOfTzEy6ynpzP2bwPD0Ie5DwKFRDFl9HnAnacTIiJhRtT4i4m3gOOCStOx84CCKLp+rJT0MPEhxbeeX6v8LmeHROc3McuMzfjOzzDj4zcwy4+A3M8uMg9/MLDMOfjOzzDj4zcwy4+A3M8vM/wfbwzoSDoVKGQAAAABJRU5ErkJggg==\n",
773 | "text/plain": [
774 | ""
775 | ]
776 | },
777 | "metadata": {
778 | "needs_background": "light"
779 | },
780 | "output_type": "display_data"
781 | }
782 | ],
783 | "source": [
784 | "# Visualizing the feature TOEFL\n",
785 | "fig = plt.hist(df['TOEFL'], rwidth=0.7)\n",
786 | "plt.title('Distribution of TOEFL Scores')\n",
787 | "plt.xlabel('TOEFL Scores')\n",
788 | "plt.ylabel('Count')\n",
789 | "plt.show()"
790 | ]
791 | },
792 | {
793 | "cell_type": "code",
794 | "execution_count": 14,
795 | "metadata": {},
796 | "outputs": [
797 | {
798 | "data": {
799 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAebElEQVR4nO3deZwcZb3v8c8XwiKyBMiAIQkMaASiInJGBFEOAucKsgQVIagQEG8OR1wRMYgKqBxy0IuKGzcHkIBsEUHCohI2AYHAsC9BjDGEIYEMcBLWCwZ+9496piia7pmeyXTXZPr7fr3mNd1PVT31m5qZ/nY9VV2liMDMzAxglbILMDOzocOhYGZmOYeCmZnlHApmZpZzKJiZWc6hYGZmOYdCi5N0uqTvDFJfm0p6XtKq6fkNkj4/GH2n/v4gafJg9deP9f5A0lOSnmhQ/89L2qIRffeyzlK2ZT0q/46suRwKw5ikBZJekvScpKWSbpF0hKT89x4RR0TE9+vsa/fe5omIhRGxdkS8Ogi1nyDpNxX97xkRM1a0737WMQ74OjAhIt5WZfqhkm6u0t7n9uqRttn8Fa+2fsVtWetnqJeksyW9kl7In5E0W9JW/Vj+DdtqMP+OrP8cCsPfPhGxDrAZMA34JnDmYK9E0ojB7nOI2Ax4OiKWlF1If5Tw+zglItYGxgCP04C/MWsOh0KLiIhlETELOBCYLOndkL/L+0F6PErSFWmv4hlJN0laRdK5wKbA5end4DGS2iWFpMMlLQSuK7QVX5DeLul2ScskXSZpg7SuXSR1FWvseccoaQ/gW8CBaX33pun5cFSq69uSHpW0RNI5ktZL03rqmCxpYRr6Oa7WtpG0Xlq+O/X37dT/7sBsYJNUx9kD2fZpG/9C0pVpr22OpLcXpoekd0jaQdITxWETSR+XdF/hZ54q6e+SnpY0s7A9q/0+1pT0mzTvUkl3SNq4uC0lbQ2cDuyYfsalkt4v6cni71HSJyXd09fPGhEvATOBbQvLvl3SdamOpySdJ2lkmtbb39aIQq3fl/SXtP2uljSq0P8h6ff2tKTvVO55WP84FFpMRNwOdAEfrjL562laG7Ax2QtzRMTBwEKyvY61I+KUwjL/CmwNfLTGKg8BPgdsAiwHTqujxj8C/wlclNb33iqzHZq+PgJsAawN/Lxing8BWwK7Ad9NL4DV/AxYL/Xzr6nmwyLiGmBPYFGq49C+au/FQcCJwPrAPOCkyhki4jbgBWDXQvOngfPT4y8D+6UaNwH+B/hFRTfF38fk9HONAzYEjgBeqljn3NR+a/oZR0bEHcDTwL8VZv0scG5fP6Skt6afdV6xGTg51bx1queEtP7e/raKPg0cBmwErA4cndY3Afgl8BlgdPp5x/RVp9XmUGhNi4ANqrT/k+wfa7OI+GdE3BR9XxzrhIh4Ib1DrObciHggIl4AvgMcoME5gPgZ4NSImB8RzwPHApMq9lJOjIiXIuJe4F7gTeGSajkQODYinouIBcD/AQ4ehBqLLomI2yNiOXAehXfSFS4ge1FF0jrAx1IbwL8Dx0VEV0S8TPbCun/Fz1z8ffyTLAzeERGvRsSdEfFsnfXOIAsC0t7IR3k9nKo5WtJS4DmyMM63X0TMi4jZEfFyRHQDp5KFV3/8OiIeqbInsj9weUTcHBGvAN8FfEG3FeBQaE1jgGeqtP+Q7B3e1ZLmS5paR1+P9WP6o8BqwKga8/bHJqm/Yt8jyPZwehTPFnqRbG+i0iiyd56VfdX7bnM52c9UaTWyF+X+1ALZC+8nJK0BfAK4KyJ6atsMuDQN8SwF5gKv8safubi9zwX+BFwoaZGkUyRVq7Wa3wD7SFobOAC4KSIW9zL/jyJiJNBOtjeyZc8ESRtJulDS45KeTX3392+g1vbbhMLPHBEvku3l2AA5FFqMpPeTveC96WyT9E756xGxBbAPcJSk3Xom1+iyr3dl4wqPNyV7oXyKbJhkrUJdq5INW9Xb7yKyF8li38uBJ/tYrtJTqabKvh6vc/mFwKaS1NMgaS2yYY5Hay5VQ0Q8lJbbkzcOHUH24rdnGuLp+VozIoq1RqGvf0bEiRExAfggsDfZ0NibVluljseBW4GPk73r73PoKC23EPgK8FNJb0nNJ6d1bBMR65Ltgai4WD1917AYGNvzJK1zwxXor+U5FFqEpHUl7Q1cCPwmIu6vMs/e6YCngGfJ3oX2nBb4JNmYe399VtKE9EL5PeDidKrhI8CakvZK716/DaxRWO5JoF2F02crXAB8TdLm6d1szzGI5f0pLtUyEzhJ0jqSNgOOIns3W485wP8DpqYDu28lO8urkwGEQnI+2fGDnYHfFtpPT3VuBiCpTdLEWp1I+oik96TAfZYs/Kqd5vkkMFbS6hXt5wDHAO8BLq23+IiYTRbaU1LTOsDzwFJJY4BvVFn/QD+ncTHZHs0HU/0n8sbAsX5yKAx/l0t6juxd5nFk47mH1Zh3PHAN2T/wrcAvI+KGNO1k4Ntp6OLofqz/XOBsst3/Ncle7IiIZcAXgDPI3pW/QHaQu0fPi+HTku6q0u9Zqe8bgX+QvTB/qR91FX0prX8+2R7U+an/PqWx/b2AXcjqn082pHFAHcdjarkg9XddRDxVaP8pMItseO854DbgA7308zayF81nyYaa/kz1sLsOeBB4QlJxfZeShqzSMaH++CFwTBoGOxHYDlgGXAlcUjHvQP+2iIgHyX5/F5LtNTwHLAFe7me9lsg32TGzWiT9Hfj3dCbWkJf2GpcC4yPiH2XXszLynoKZVSXpk2Tj/deVXUtvJO0jaa00dPcj4H5gQblVrbyG66dQzWwFSLoBmAAcHBGvlVxOXyaSDSWK7FjOpBUYumt5Hj4yM7Och4/MzCy3Ug8fjRo1Ktrb28suw8xspXLnnXc+FRFt1aat1KHQ3t5OZ2dn2WWYma1UJNX8DI2Hj8zMLOdQMDOznEPBzMxyDgUzM8s5FMzMLOdQMDOznEPBzMxyDgUzM8s1LBQknSVpiaQHKtq/JOmvkh6UdEqh/VhJ89K0WjeBNzOzBmrkJ5rPBn5OdvcmILsTFNkVDbeJiJclbZTaJwCTgHeR3aDkGknvTHfFMhsW2qde2ZB+F0zbqyH9Wmtq2J5CRNzIm28O/x/AtHS3KiJiSWqfCFwYES+nG2PMA7ZvVG1mZlZds48pvBP4sKQ5kv6cbiIP2Y3kHyvM15Xa3kTSFEmdkjq7u7sbXK6ZWWtpdiiMANYHdiC7effMdJP4ajfarnqjh4iYHhEdEdHR1lb1In9mZjZAzQ6FLuCSyNwOvAaMSu3jCvONBRY1uTYzs5bX7FD4PbArgKR3AqsDTwGzgEmS1pC0OTAeuL3JtZmZtbyGnX0k6QJgF2CUpC7geOAs4Kx0muorwOR0L9UHJc0EHgKWA0f6zCMzs+ZrWChExEE1Jn22xvwnASc1qh4zM+ubP9FsZmY5h4KZmeUcCmZmlnMomJlZzqFgZmY5h4KZmeUcCmZmlnMomJlZzqFgZmY5h4KZmeUcCmZmlnMomJlZzqFgZmY5h4KZmeUcCmZmlnMomJlZzqFgZma5hoWCpLMkLUm33qycdrSkkDQqPZek0yTNk3SfpO0aVZeZmdXWyD2Fs4E9KhsljQP+DVhYaN4TGJ++pgC/amBdZmZWQ8NCISJuBJ6pMunHwDFAFNomAudE5jZgpKTRjarNzMyqa+oxBUn7Ao9HxL0Vk8YAjxWed6W2an1MkdQpqbO7u7tBlZqZtaamhYKktYDjgO9Wm1ylLaq0ERHTI6IjIjra2toGs0Qzs5Y3oonrejuwOXCvJICxwF2StifbMxhXmHcssKiJtZmZGU3cU4iI+yNio4hoj4h2siDYLiKeAGYBh6SzkHYAlkXE4mbVZmZmmUaeknoBcCuwpaQuSYf3MvtVwHxgHvDfwBcaVZeZmdXWsOGjiDioj+nthccBHNmoWszMrD7+RLOZmeUcCmZmlnMomJlZzqFgZmY5h4KZmeUcCmZmlnMomJlZzqFgZmY5h4KZmeUcCmZmlnMomJlZzqFgZma5Zt5PwYaI9qlXNqTfBdP2aki/ZtY83lMwM7OcQ8HMzHIOBTMzyzXyzmtnSVoi6YFC2w8lPSzpPkmXShpZmHaspHmS/irpo42qy8zMamvknsLZwB4VbbOBd0fENsAjwLEAkiYAk4B3pWV+KWnVBtZmZmZVNCwUIuJG4JmKtqsjYnl6ehswNj2eCFwYES9HxD/I7tW8faNqMzOz6so8pvA54A/p8RjgscK0rtT2JpKmSOqU1Nnd3d3gEs3MWkspoSDpOGA5cF5PU5XZotqyETE9IjoioqOtra1RJZqZtaSmf3hN0mRgb2C3iOh54e8CxhVmGwssanZtZmatrql7CpL2AL4J7BsRLxYmzQImSVpD0ubAeOD2ZtZmZmYN3FOQdAGwCzBKUhdwPNnZRmsAsyUB3BYRR0TEg5JmAg+RDSsdGRGvNqo2MzOrrmGhEBEHVWk+s5f5TwJOalQ9ZmbWN3+i2czMcg4FMzPLORTMzCznUDAzs5xDwczMcg4FMzPLORTMzCznUDAzs5xDwczMcg4FMzPLORTMzCznUDAzs5xDwczMcg4FMzPLNf3Oa2bWetqnXtmQfhdM26sh/bYy7ymYmVnOoWBmZrmGhYKksyQtkfRAoW0DSbMl/S19Xz+1S9JpkuZJuk/Sdo2qy8zMamvknsLZwB4VbVOBayNiPHBteg6wJzA+fU0BftXAuszMrIaGhUJE3Ag8U9E8EZiRHs8A9iu0nxOZ24CRkkY3qjYzM6uu2ccUNo6IxQDp+0apfQzwWGG+rtT2JpKmSOqU1Nnd3d3QYs3MWs1QOdCsKm1RbcaImB4RHRHR0dbW1uCyzMxaS7ND4cmeYaH0fUlq7wLGFeYbCyxqcm1mZi2v2aEwC5icHk8GLiu0H5LOQtoBWNYzzGRmZs3TsE80S7oA2AUYJakLOB6YBsyUdDiwEPhUmv0q4GPAPOBF4LBG1WVmZrU1LBQi4qAak3arMm8ARzaqFjMzq89QOdBsZmZDQF2hIGmnetrMzGzlVu+ews/qbDMzs5VYr8cUJO0IfBBok3RUYdK6wKqNLMzMzJqvrwPNqwNrp/nWKbQ/C+zfqKLMzKwcvYZCRPwZ+LOksyPi0SbVZGZmJan3lNQ1JE0H2ovLRMSujSjKzMzKUW8o/BY4HTgDeLVx5ZiZWZnqDYXlEeF7HJiZDXP1npJ6uaQvSBqd7p62gaQNGlqZmZk1Xb17Cj0XsftGoS2ALQa3HDMzK1NdoRARmze6EDMzK19doSDpkGrtEXHO4JZjZmZlqnf46P2Fx2uSXen0LsChYGY2jNQ7fPSl4nNJ6wHnNqQiMzMrzUAvnf0iMH4wCzEzs/LVe0zhcrKzjSC7EN7WwMyBrlTS14DPpz7vJ7vT2mjgQmADsqGpgyPilYGuw8zM+q/eYwo/KjxeDjwaEV0DWaGkMcCXgQkR8ZKkmcAksttx/jgiLpR0OnA44A/MmZk1UV3DR+nCeA+TXSl1fWBF38GPAN4iaQSwFrAY2BW4OE2fAey3guswM7N+qvfOawcAtwOfAg4A5kga0KWzI+Jxsj2PhWRhsAy4E1gaEcvTbF3AmIH0b2ZmA1fv8NFxwPsjYgmApDbgGl5/Z183SesDE4HNgaVkF9vbs8qsUaUNSVOAKQCbbrppf1dvZma9qPfso1V6AiF5uh/LVtod+EdEdEfEP4FLyO7uNjINJwGMBRZVWzgipkdER0R0tLW1DbAEMzOrpt4X9j9K+pOkQyUdClwJXDXAdS4EdpC0liSRfRDuIeB6Xr+b22TgsgH2b2ZmA9TXPZrfAWwcEd+Q9AngQ4CAW4HzBrLCiJgj6WKy006XA3cD08mC5kJJP0htZw6kfzMzG7i+jin8BPgWQERcQjbUg6SONG2fgaw0Io4Hjq9ong9sP5D+zMxscPQ1fNQeEfdVNkZEJ9mtOc3MbBjpKxTW7GXaWwazEDMzK19foXCHpP9d2SjpcLLPFpiZ2TDS1zGFrwKXSvoMr4dAB7A68PFGFmZmNhy0T72yIf0umLZXQ/rtNRQi4kngg5I+Arw7NV8ZEdc1pBozMytVvfdTuJ7scwRmZjaMDfRTyWZmNgw5FMzMLOdQMDOznEPBzMxyDgUzM8s5FMzMLOdQMDOznEPBzMxyDgUzM8s5FMzMLOdQMDOzXCmhIGmkpIslPSxprqQdJW0gabakv6Xv65dRm5lZKytrT+GnwB8jYivgvcBcYCpwbUSMB65Nz83MrImaHgqS1gV2Bs4EiIhXImIpMBGYkWabAezX7NrMzFpdGXsKWwDdwK8l3S3pDElvBTaOiMUA6ftG1RaWNEVSp6TO7u7u5lVtZtYCygiFEcB2wK8i4n3AC/RjqCgipkdER0R0tLW1NapGM7OWVEYodAFdETEnPb+YLCSelDQaIH1fUkJtZmYtremhEBFPAI9J2jI17QY8BMwCJqe2ycBlza7NzKzV1XU7zgb4EnCepNWB+cBhZAE1U9LhwELgUyXVZmbWskoJhYi4B+ioMmm3ZtdiZmav8yeazcws51AwM7OcQ8HMzHIOBTMzyzkUzMws51AwM7OcQ8HMzHIOBTMzyzkUzMws51AwM7OcQ8HMzHIOBTMzyzkUzMws51AwM7OcQ8HMzHIOBTMzyzkUzMwsV1ooSFpV0t2SrkjPN5c0R9LfJF2UbtVpZmZNVOaewleAuYXn/wX8OCLGA/8DHF5KVWZmLayUUJA0FtgLOCM9F7ArcHGaZQawXxm1mZm1srL2FH4CHAO8lp5vCCyNiOXpeRcwptqCkqZI6pTU2d3d3fhKzcxaSNNDQdLewJKIuLPYXGXWqLZ8REyPiI6I6Ghra2tIjWZmrWpECevcCdhX0seANYF1yfYcRkoakfYWxgKLSqjNzKylNX1PISKOjYixEdEOTAKui4jPANcD+6fZJgOXNbs2M7NWN5Q+p/BN4ChJ88iOMZxZcj1mZi2njOGjXETcANyQHs8Hti+zHjOzVjeU9hTMzKxkpe4plKl96pUN6XfBtL0a0q+ZWTN4T8HMzHIOBTMzyzkUzMws51AwM7OcQ8HMzHIOBTMzyzkUzMws51AwM7OcQ8HMzHIOBTMzyzkUzMws51AwM7OcQ8HMzHIOBTMzyzU9FCSNk3S9pLmSHpT0ldS+gaTZkv6Wvq/f7NrMzFpdGXsKy4GvR8TWwA7AkZImAFOBayNiPHBtem5mZk3U9FCIiMURcVd6/BwwFxgDTARmpNlmAPs1uzYzs1ZX6jEFSe3A+4A5wMYRsRiy4AA2qrHMFEmdkjq7u7ubVaqZWUsoLRQkrQ38DvhqRDxb73IRMT0iOiKio62trXEFmpm1oFJCQdJqZIFwXkRckpqflDQ6TR8NLCmjNjOzVlbG2UcCzgTmRsSphUmzgMnp8WTgsmbXZmbW6kaUsM6dgIOB+yXdk9q+BUwDZko6HFgIfKqE2szMWlrTQyEibgZUY/JuzazFzMzeyJ9oNjOznEPBzMxyDgUzM8s5FMzMLOdQMDOznEPBzMxyDgUzM8s5FMzMLOdQMDOznEPBzMxyDgUzM8s5FMzMLOdQMDOznEPBzMxyDgUzM8s5FMzMLOdQMDOz3JALBUl7SPqrpHmSppZdj5lZKxlSoSBpVeAXwJ7ABOAgSRPKrcrMrHUMqVAAtgfmRcT8iHgFuBCYWHJNZmYtQxFRdg05SfsDe0TE59Pzg4EPRMQXC/NMAaakp1sCf62z+1HAU4NY7mBybQMzlGuDoV2faxuY4VLbZhHRVm3CiMGrZ1CoStsbUisipgPT+92x1BkRHQMtrJFc28AM5dpgaNfn2gamFWobasNHXcC4wvOxwKKSajEzazlDLRTuAMZL2lzS6sAkYFbJNZmZtYwhNXwUEcslfRH4E7AqcFZEPDhI3fd7yKmJXNvADOXaYGjX59oGZtjXNqQONJuZWbmG2vCRmZmVyKFgZma5YRUKks6StETSAzWmS9Jp6RIa90nabgjVtoukZZLuSV/fbWJt4yRdL2mupAclfaXKPKVsuzprK2XbSVpT0u2S7k21nVhlnjUkXZS22xxJ7c2orR/1HSqpu7DtPt+s+tL6V5V0t6QrqkwrbdvVUVtp203SAkn3p/V2Vpm+Yv+rETFsvoCdge2AB2pM/xjwB7LPQ+wAzBlCte0CXFHSdhsNbJcerwM8AkwYCtuuztpK2XZpW6ydHq8GzAF2qJjnC8Dp6fEk4KIhVt+hwM/L+LtL6z8KOL/a76/MbVdHbaVtN2ABMKqX6Sv0vzqs9hQi4kbgmV5mmQicE5nbgJGSRg+R2koTEYsj4q70+DlgLjCmYrZStl2dtZUibYvn09PV0lflmRsTgRnp8cXAbpKqfUizrPpKI2kssBdwRo1ZStt2ddQ2lK3Q/+qwCoU6jAEeKzzvYoi8wCQ7pl39P0h6VxkFpF3095G9qywqfdv1UhuUtO3SEMM9wBJgdkTU3G4RsRxYBmw4hOoD+GQaZrhY0rgq0xvlJ8AxwGs1ppe57fqqDcrbbgFcLelOZZf9qbRC/6utFgp9XkajRHeRXY/kvcDPgN83uwBJawO/A74aEc9WTq6ySNO2XR+1lbbtIuLViNiW7NP320t6d8UspW63Ouq7HGiPiG2Aa3j9nXlDSdobWBIRd/Y2W5W2hm+7OmsrZbslO0XEdmRXkz5S0s4V01dou7VaKAzZy2hExLM9u/oRcRWwmqRRzVq/pNXIXnTPi4hLqsxS2rbrq7ayt11a71LgBmCPikn5dpM0AliPEoYRa9UXEU9HxMvp6X8D/9KkknYC9pW0gOxqyLtK+k3FPGVtuz5rK3G7ERGL0vclwKVkV5cuWqH/1VYLhVnAIeno/A7AsohYXHZRAJLe1jNeKml7st/N001at4AzgbkRcWqN2UrZdvXUVta2k9QmaWR6/BZgd+DhitlmAZPT4/2B6yIdDRwK9VWMNe9Ldsym4SLi2IgYGxHtZAeRr4uIz1bMVsq2q6e2srabpLdKWqfnMfC/gMozGlfof3VIXeZiRUm6gOxMlFGSuoDjyQ6uERGnA1eRHZmfB7wIHDaEatsf+A9Jy4GXgEnNevEge2d0MHB/Gn8G+BawaaG+srZdPbWVte1GAzOU3RxqFWBmRFwh6XtAZ0TMIgu0cyXNI3uXO6kJdfWnvi9L2hdYnuo7tIn1vckQ2nZ91VbWdtsYuDS9BxoBnB8Rf5R0BAzO/6ovc2FmZrlWGz4yM7NeOBTMzCznUDAzs5xDwczMcg4FMzPLORRspSGpXRVXmZV0gqSj+1iuQ9JpDa7tlkKNn+7nsj1Xeb1b0sOSflTHMttK+ljh+b6Spva/crM3cijYsBcRnRHx5RXtJ32qttY6PpgetgP9CoXkpoh4H9m1nfaWtFMf829Ldi56z/pnRcS0AazX7A0cCjZsSLpB0n8pu4fAI5I+nNp3kXSFpFWUXYt+ZGGZeZI2Tp/+/Z2kO9LXTmn6CZKmS7oaOEfSu1L/96SLoY1P8/VcjXQa8OE0/WuSbpK0bWF9f5G0Ta2fISJeAu4hXcBM0vaSbkl7EbdI2lLS6sD3gAPTeg5Udn3/n6dlzlZ2Pf1bJM2XtH9qX0XSL5XdW+EKSVf1TDPrMaw+0WwGjIiI7dPQyvFkl3YAICJek3QZ8HHg15I+ACyIiCclnQ/8OCJulrQp8Cdg67TovwAfioiXJP0M+GlEnJdenFetWP9U4OiI2BtAUs+nXb8q6Z3AGhFxX63iJa0PjAduTE0PAztHxHJJuwP/GRGfVHYjoY6I+GJa7tCKrkYDHwK2IrvswcXAJ8j2ZN4DbER2aYazet2a1nK8p2Ark1ofvy+291ww706yF8BKFwEHpseT0nPIwuPn6VIas4B1e64xA8xK7+ABbgW+JembZFdm7Wmv5bdkw0GrAZ8Dzq4x34cl3Qc8QXZTlydS+3rAb9OxlB8D9V4W/PcR8VpEPER2aQTIQuK3qf0J4Po6+7IW4lCwlcnTwPoVbRsATxWe91y58lWq7wnfCrxDUhuwH6+HyCrAjhGxbfoak27qA/BCz8IRcT7ZBdBeAv4kadfeCo6IF4HZZDc+OYDsTl7V3JQuw/wesus49Qw5fR+4PiLeDewDrNnb+gpeLjxWxXezmhwKttJIl8deLGk3AEkbkF0K+uZ+9BFklxs+lezKqz1XU70a+GLPfMXjAEWStgDmR8RpZHsUlccHniO7bWjRGcBpwB0R0eulnyPiEeBk4JupaT3g8fT40D7W05ebyW4Ms4qkjcku0Gj2Bg4FW9kcAnw7DfNcB5wYEX/vZx8XAZ/l9aEjgC8DHeng8UPAETWWPRB4IK1/K+Cciun3AcuV3QXuawDpZi3PAr+us77TgZ0lbQ6cApws6S+88fjF9cCEngPNdfb7O7Jr7T8A/F+yO9gtq3NZaxG+SqpZg0nahOwGN1tFRG+3d2xGLWtHxPOSNgRuJ7uL1xN9LWetw2cfmTWQpEOAk4Cjyg6E5Ip0Su7qwPcdCFbJewpmZpbzMQUzM8s5FMzMLOdQMDOznEPBzMxyDgUzM8v9f7GnvvJSYpykAAAAAElFTkSuQmCC\n",
800 | "text/plain": [
801 | ""
802 | ]
803 | },
804 | "metadata": {
805 | "needs_background": "light"
806 | },
807 | "output_type": "display_data"
808 | }
809 | ],
810 | "source": [
811 | "# Visualizing the feature TOEFL\n",
812 | "fig = plt.hist(df['University Rating'], rwidth=0.7)\n",
813 | "plt.title('Distribution of University Rating')\n",
814 | "plt.xlabel('University Rating')\n",
815 | "plt.ylabel('Count')\n",
816 | "plt.show()"
817 | ]
818 | },
819 | {
820 | "cell_type": "code",
821 | "execution_count": 15,
822 | "metadata": {
823 | "scrolled": true
824 | },
825 | "outputs": [
826 | {
827 | "data": {
828 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAW5klEQVR4nO3de5RlZX3m8e8jDQIBRe2OIreGkVEJKyq2BsUxKMxEBEUnqCQGGoNhGY03jIpoojEmIZmMmpiLYcSIioSLGFAUb4CRFcU0iCCiQhCwBWlAAUGiNv7mj71LD9VV3afL3nWq6/1+1upV5+zLu3/9dtdz9n73Oe9JVSFJasf9Jl2AJGl+GfyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+DVxSd6d5I82UVu7JrkryRb98wuTvHhTtN2394kkKzdVextx3LcluTXJd+f72Fp8DH4NKsl1Se5J8oMktyf59yQvSfKz/3tV9ZKq+tMx2zpwfdtU1Q1VtV1V3bsJan9Lkg9Oa/+gqjr5F217I+vYBXgNsFdVPWyWbY5P8q3+RW91ktOmrT8kyZeS3J3ktiSnJNl5ZP1RSe7t978zyWVJDhn2b6ZJMfg1H55VVdsDuwEnAK8HTtrUB0myZFO3uUDsBtxWVWtmWtlfgRwBHFhV2wErgM+OrD8M+BDwN8BS4FeAHwEXJXnQSFNf6Pffge7f5/QkDx7g76MJM/g1b6rqjqo6B3gBsDLJ3gBJ3pfkbf3jpUk+1l8dfC/J55PcL8kHgF2Bj/Znpa9LsjxJJTk6yQ3A+SPLRl8E/lt/tntHkrOnwizJ/klWj9Y4dVWR5BnA8cAL+uN9pV//s6Gjvq43Jbk+yZok70/ywH7dVB0rk9zQD9O8cba+SfLAfv9b+vbe1Ld/IPBp4OF9He+bYfcnAJ+sqv/s+/m7VXVi326A/wu8rapOqap7quq7wIuBu4BXz/Dv9FPgvcA2wB6z1azNl8GveVdVXwJWA/9jhtWv6dctAx5KF75VVUcAN9BdPWxXVX81ss+vA48GfmOWQx4J/C7wcGAt8Ldj1Hge8OfAaf3xHjPDZkf1f55GF5DbAX83bZunAI8EDgD+OMmjZznku4AH9u38el/zi6rqM8BBwI19HUfNsO8XgSOTvDbJiqn7G71H0r1gnjHt7/dT4MPA/5zeWP+iOfXCcPUs9WozZvBrUm4EZhpG+AmwI7BbVf2kqj5fG55Q6i1VdXdV3TPL+g9U1Ver6m7gj4DnTwvHuXoh8Paquraq7gLeABw+7WrjT/qz7K8AXwHWeQHpa3kB8Iaq+kFVXUd3ln7EOEVU1QeBl9O98H0OWJPkuH710v7nTTPsetPIeoB9k9wOfBf4LeC5VXXHODVo82Lwa1J2Ar43w/L/A1wDfCrJtSMBtj7f3oj11wNbct/Am6uH9+2Ntr2E7kplyui7cH5Id1Uw3VJgqxna2mncQvphnAPpxudfArw1yW8At/ab7DjDbjuOrAf4YlXtUFVLq2rf/mpDi5DBr3mX5Al0oXbR9HX9Ge9rqmoP4FnAsUkOmFo9S5MbuiLYZeTxrnRXFbcCdwPbjtS1Bd0Q07jt3kh343W07bXAzRvYb7pb+5qmt/WdjWyH/irpDOByYG/gG3RDZ88b3a5/V9VvMnITWO0w+DVvkjygf4vgvwAfrKorZtjmkCSP6G9K3gnc2/+BLlDncrPxd5LslWRb4K3Amf3bPb8JbJ3k4CRbAm8C7j+y383A8tG3nk5zKvDqJLsn2Y6f3xNYuzHF9bWcDvxZku2T7AYcC3xw/Xt2+rdiHtzve78kB9G9c+fifpjsD4E3JfntJNskeRjwHuABwDs2plYtDga/5sNHk/yAbsjljcDbgRfNsu2ewGfobix+AfiHqrqwX/cXdAF2e5I/3IjjfwB4H92wy9bAK6B7lxHwUroQ/A7dFcDou3ymbojeluTSGdp9b9/2vwHfAv6Lbqx9Ll7eH/9auiuhD/Xtj+NOupvgNwC3A38F/H5VXQRQVafR3S94Nd3Vxdfo3rGzX1XdNsd6tRmLX8QiSW3xjF+SGmPwS1JjDH5JaozBL0mN2SwmtVq6dGktX7580mVI0mblkksuubWqlk1fvlkE//Lly1m1atWky5CkzUqS62da7lCPJDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1ZrP45K6kzcPy484dpN3rTjh4kHZb5Rm/JDXGM35pEfGMW+PwjF+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNWbQ4E/y6iRXJvlqklOTbJ1k9yQXJ7k6yWlJthqyBknSfQ0W/El2Al4BrKiqvYEtgMOBvwTeUVV7At8Hjh6qBknSuoYe6lkCbJNkCbAtcBPwdODMfv3JwHMGrkGSNGKw4K+q7wB/DdxAF/h3AJcAt1fV2n6z1cBOQ9UgSVrXYF+9mORBwKHA7sDtwBnAQTNsWrPsfwxwDMCuu+46UJXSpufXH2qhG3Ko50DgW1V1S1X9BDgLeDKwQz/0A7AzcONMO1fViVW1oqpWLFu2bMAyJaktQwb/DcC+SbZNEuAA4GvABcBh/TYrgbMHrEGSNM2QY/wX093EvRS4oj/WicDrgWOTXAM8BDhpqBokSesabIwfoKreDLx52uJrgScOeVxJ0uz85K4kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMUsmXYAWp+XHnTtIu9edcPAg7Uot8YxfkhrjGb+kRcGrzPF5xi9JjTH4JakxBr8kNWbQ4E+yQ5Izk3w9yVVJnpTkwUk+neTq/ueDhqxBknRfQ5/x/w1wXlU9CngMcBVwHPDZqtoT+Gz/XJI0TwYL/iQPAJ4KnARQVT+uqtuBQ4GT+81OBp4zVA2SpHUNeca/B3AL8M9JvpzkPUl+CXhoVd0E0P/85Zl2TnJMklVJVt1yyy0DlilJbRky+JcA+wD/WFWPA+5mI4Z1qurEqlpRVSuWLVs2VI2S1Jwhg381sLqqLu6fn0n3QnBzkh0B+p9rBqxBkjTNYMFfVd8Fvp3kkf2iA4CvAecAK/tlK4Gzh6pBkrSuoadseDlwSpKtgGuBF9G92Jye5GjgBuB5A9cgSRoxaPBX1WXAihlWHTDkcSVJs/OTu5LUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0ZK/iT7DfOMknSwjfuGf+7xlwmSVrg1jsff5InAU8GliU5dmTVA4AthixMkjSMDX0Ry1bAdv12248svxM4bKiiJEnDWW/wV9XngM8leV9VXT9PNUmSBjTuVy/eP8mJwPLRfarq6UMUJUkazrjBfwbwbuA9wL3DlSNJGtq4wb+2qv5x0EokSfNi3LdzfjTJS5PsmOTBU38GrUySNIhxz/hX9j9fO7KsgD02bTmSpKGNFfxVtfvQhUiS5sdYwZ/kyJmWV9X7N205kqShjTvU84SRx1sDBwCXAga/JG1mxh3qefno8yQPBD4wSEWSpEHNdVrmHwJ7bspCJEnzY9wx/o/SvYsHusnZHg2cPlRRkqThjDvG/9cjj9cC11fV6gHqkSQNbKyhnn6ytq/TzdD5IODHQxYlSRrOuN/A9XzgS8DzgOcDFydxWmZJ2gyNO9TzRuAJVbUGIMky4DPAmUMVJkkaxrjv6rnfVOj3btuIfSVJC8i4Z/znJfkkcGr//AXAx4cpSZvK8uPOHaTd6044eJB2Jc2PDX3n7iOAh1bVa5P8b+ApQIAvAKfMQ32SpE1sQ2f87wSOB6iqs4CzAJKs6Nc9a9DqJGkzsLldXW9onH55VV0+fWFVraL7GkZJ0mZmQ8G/9XrWbTPOAZJskeTLST7WP989ycVJrk5yWpKtxi1WkvSL21Dw/0eS35u+MMnRwCVjHuOVwFUjz/8SeEdV7Ql8Hzh6zHYkSZvAhsb4XwV8JMkL+XnQrwC2Ap67ocaT7AwcDPwZcGySAE8Hfrvf5GTgLYDf5ytJ82S9wV9VNwNPTvI0YO9+8blVdf6Y7b8TeB3dVA8ADwFur6q1/fPVwE4z7ZjkGOAYgF133XXMw0mSNmTc+fgvAC7YmIaTHAKsqapLkuw/tXim5mc55onAiQArVqyYcRtJ0sYb9wNcc7Ef8Owkz6S7SfwAuiuAHZIs6c/6dwZuHLAGSdI0g027UFVvqKqdq2o5cDhwflW9kO7KYWqCt5XA2UPVIEla1yTm23k93Y3ea+jG/E+aQA2S1Kwhh3p+pqouBC7sH18LPHE+jitJWpczbEpSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNWbJpAtYzJYfd+4g7V53wsGDtCupDZ7xS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUmMGCP8kuSS5IclWSK5O8sl/+4CSfTnJ1//NBQ9UgSVrXkGf8a4HXVNWjgX2BlyXZCzgO+GxV7Ql8tn8uSZongwV/Vd1UVZf2j38AXAXsBBwKnNxvdjLwnKFqkCSta17G+JMsBx4HXAw8tKpugu7FAfjlWfY5JsmqJKtuueWW+ShTkpowePAn2Q74MPCqqrpz3P2q6sSqWlFVK5YtWzZcgZLUmEGDP8mWdKF/SlWd1S++OcmO/fodgTVD1iBJuq8h39UT4CTgqqp6+8iqc4CV/eOVwNlD1SBJWteQ0zLvBxwBXJHksn7Z8cAJwOlJjgZuAJ43YA2SpGkGC/6qugjILKsPGOq4kqT185O7ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1Jjlky6gKEtP+7cQdq97oSDB2lXkobmGb8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxkwk+JM8I8k3klyT5LhJ1CBJrZr34E+yBfD3wEHAXsBvJdlrvuuQpFZN4oz/icA1VXVtVf0Y+Bfg0AnUIUlNSlXN7wGTw4BnVNWL++dHAL9WVX8wbbtjgGP6p48EvjFG80uBWzdhuZvaQq7P2ubG2uZuIde3WGrbraqWTV84iWmZM8OydV59qupE4MSNajhZVVUr5lrY0BZyfdY2N9Y2dwu5vsVe2ySGelYDu4w83xm4cQJ1SFKTJhH8/wHsmWT3JFsBhwPnTKAOSWrSvA/1VNXaJH8AfBLYAnhvVV25iZrfqKGhCVjI9Vnb3Fjb3C3k+hZ1bfN+c1eSNFl+cleSGmPwS1JjNsvgT/LeJGuSfHWW9Unyt/2UEJcn2WcB1bZ/kjuSXNb/+eN5rG2XJBckuSrJlUleOcM2E+m7MWubSN8l2TrJl5J8pa/tT2bY5v5JTuv77eIkyxdQbUcluWWk3148H7WNHH+LJF9O8rEZ1k2k38asbdL9dl2SK/pjr5ph/dx/V6tqs/sDPBXYB/jqLOufCXyC7jMD+wIXL6Da9gc+NqF+2xHYp3+8PfBNYK+F0Hdj1jaRvuv7Yrv+8ZbAxcC+07Z5KfDu/vHhwGkLqLajgL+bxP+5/vjHAh+a6d9uUv02Zm2T7rfrgKXrWT/n39XN8oy/qv4N+N56NjkUeH91vgjskGTHBVLbxFTVTVV1af/4B8BVwE7TNptI341Z20T0fXFX/3TL/s/0d0UcCpzcPz4TOCDJTB9WnERtE5NkZ+Bg4D2zbDKRfhuztoVuzr+rm2Xwj2En4Nsjz1ezQEKk96T+0vwTSX5lEgX0l9SPoztDHDXxvltPbTChvuuHBC4D1gCfrqpZ+62q1gJ3AA9ZILUB/GY/HHBmkl1mWD+UdwKvA346y/qJ9Rsbrg0m12/QvYB/Kskl6aawmW7Ov6uLNfjHmhZiQi6lmz/jMcC7gH+d7wKSbAd8GHhVVd05ffUMu8xb322gton1XVXdW1WPpfuk+ROT7D1tk4n12xi1fRRYXlW/CnyGn59hDyrJIcCaqrpkfZvNsGzwfhuzton024j9qmofupmMX5bkqdPWz7nvFmvwL9hpIarqzqlL86r6OLBlkqXzdfwkW9IF6ylVddYMm0ys7zZU26T7rj/u7cCFwDOmrfpZvyVZAjyQeR7ym622qrqtqn7UP/1/wOPnqaT9gGcnuY5uFt6nJ/ngtG0m1W8brG2C/TZ1/Bv7n2uAj9DNbDxqzr+rizX4zwGO7O967wvcUVU3TboogCQPmxrDTPJEun+D2+bp2AFOAq6qqrfPstlE+m6c2ibVd0mWJdmhf7wNcCDw9WmbnQOs7B8fBpxf/R24Sdc2bdz32XT3TwZXVW+oqp2rajndjdvzq+p3pm02kX4bp7ZJ9Vt/7F9Ksv3UY+B/AdPfKTjn39VJzM75C0tyKt07PJYmWQ28me6mFlX1buDjdHe8rwF+CLxoAdV2GPD7SdYC9wCHz8d/9N5+wBHAFf2YMMDxwK4j9U2q78apbVJ9tyNwcrovEbofcHpVfSzJW4FVVXUO3YvWB5JcQ3fGevg81DVuba9I8mxgbV/bUfNU24wWSL+NU9sk++2hwEf685wlwIeq6rwkL4Ff/HfVKRskqTGLdahHkjQLg1+SGmPwS1JjDH5JaozBL0mNMfi16CR5Y7qZKi/vZzb8tX75VknemeQ/k1yd5Ox+vpap/e7tt/9qkjOSbDtD21MzJl6e5HNJdhujnuOnPf/3TfH3lObK4NeikuRJwCF0M33+Kt0HmqbmM/lzupk//3tV7Uk35cNZI5OC3VNVj62qvYEfAy+Z5TBP69u+EHjTGGXdJ/ir6skb8VeSNjmDX4vNjsCtUx+1r6pbq+rG/uz9RcCrq+reft0/Az8Cnj5DO58HHrGBY32BkUmxkvxrP6HWlVOTaiU5Adimv5I4pV92V/9z/yQX9hOAfT3JKSOfTH5mv+yidHOurzNfvDRXBr8Wm08BuyT5ZpJ/SPLr/fJHADfMMPHbKuA+s3z2c8YcBFyxgWM9g/tOFPe7VfV4YAXdpz4fUlXH8fMriRfO0MbjgFcBewF7APsl2Rr4J+CgqnoKsGwDdUgbxeDXotJP4vZ44BjgFuC0JEfRzWQ408fUR5dv008XsQq4gW46gZlckGQN3TDSh0aWvyLJV4Av0k2etecYJX+pqlZX1U+By4DlwKOAa6vqW/02p47RjjS2zXKuHml9+qGcC4ELk1xBNwnYGcBuSbbvv+hlyj500+9Cf2Y+xiGeBtwNvA94K3Bskv3pXgieVFU/THIhsPUYbf1o5PG9dL+T8/JFJGqXZ/xaVJI8MsnomfZjgeur6m66+dTf3k9oRpIjgW2B8zf2OFV1D90QzZFJHkw3nfD3+9B/FN1X4U35Sbopp8f1dWCP/Pz7Z1+wsfVJ62Pwa7HZjm62yq8luZxu7Pwt/bo3AP8FfDPJ1cDzgOfOdYbPfgrcU4GXAecBS/pj/indcM+UE4HLp27ujtHuPXTfRXtekouAm+m+mUraJJydU1qAkmxXVXf17/L5e+DqqnrHpOvS4uAZv7Qw/V5/o/lKumGkf5pwPVpEPOOXpMZ4xi9JjTH4JakxBr8kNcbgl6TGGPyS1Jj/D/QUvzno6HEIAAAAAElFTkSuQmCC\n",
829 | "text/plain": [
830 | ""
831 | ]
832 | },
833 | "metadata": {
834 | "needs_background": "light"
835 | },
836 | "output_type": "display_data"
837 | }
838 | ],
839 | "source": [
840 | "# Visualizing the feature TOEFL\n",
841 | "fig = plt.hist(df['SOP'], rwidth=0.7)\n",
842 | "plt.title('Distribution of SOP')\n",
843 | "plt.xlabel('SOP Rating')\n",
844 | "plt.ylabel('Count')\n",
845 | "plt.show()"
846 | ]
847 | },
848 | {
849 | "cell_type": "code",
850 | "execution_count": 16,
851 | "metadata": {},
852 | "outputs": [
853 | {
854 | "data": {
855 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAYvklEQVR4nO3debhkdX3n8fdHGkQEZOkWmwZtmPCoaDQyLQF1jIqZUVEhEQ3zuDQOhmHcxa3do3EmGCNxNC4PihE3BIlGEDQqS9wI2ODGooFggx1auiGCgIzS8J0/zrmH4lK3u3qpOrf7vl/PU8+tOsvvfO+5t+pT53eqfidVhSRJAPfpuwBJ0uxhKEiSOoaCJKljKEiSOoaCJKljKEiSOoaCNoskH03yts3U1oOT3Jpkm/bx+Ulesjnabtv7apKlm6u9Ddjuu5PckOSXk972JGzO/wH1x1DQeiVZkeT2JLckuSnJ95Icm6T7/6mqY6vqL0ds66nrWqaqrq2qHavqzs1Q+18k+cy09p9eVSdvatsbWMfewGuB/avqQUPmPynJynWs/7gk57Z/g5uTnJlk/2nr39WG6S1Jfpbkxetob3GSape/tf27LNuA3+eoJN8ZnDbq/4BmN0NBo3pWVe0EPAQ4HngjcNLm3kiSeZu7zVniIcCNVbV6Q1dMcjDwdeDLwJ7APsCPgO8m2Xdg0euqakdgZ+A1wMeSPHQ9ze/SrnME8LYkf7yh9WkrU1XevK3zBqwAnjpt2oHAXcAj28efBN7d3p8PfAW4CfgP4Ns0b0A+3a5zO3Ar8AZgMVDA0cC1wLcGps1r2zsf+CvgIuBmmhfH3dp5TwJWDqsXeBrwO+COdns/GmjvJe39+wBvBa4BVgOfAh7QzpuqY2lb2w3AW9axnx7Qrr+mbe+tbftPbX/nu9o6Pjlk3Xv9HgPzvg18eMj0rwKfWsd+WA08d4Y277GP22kXAa8feLwM+DfgFuBy4E/a6Q8H/h9wZ/v73DTkf+BJwEqao6PVwCrgxQNt7w6cCfwa+D7wbuA7ff+veyuPFLRxquoimif9fxky+7XtvAXAHsCbm1XqhTQvrs+qpnvorwfW+SOaF5v/NsMmXwT8D5p3ymuBD4xQ49eA/wOc2m7v0UMWO6q9PRnYF9gR+LtpyzwBeChwCPD2JA+fYZMfpAmGfdvf50U0L4TfBJ5O+06+qo5aX+1TkuwAPA74wpDZpwH3emef5D5Jnk0TzleNuJ2DgEdOW/7faP6+DwDeCXwmycKqugI4Frig/X12maHZB7XrLqIJ/Q8l2bWd9yHgtnaZpe1Ns4ChoE1xHbDbkOl3AAuBh1TVHVX17WrfHq7DX1TVbVV1+wzzP11Vl1bVbcDbgOdNnYjeRM8HTqiqq6vqVuBNwJHTurHeWVW3V9WPaLpt7hUubS1/Brypqm6pqhXA+4AXbmJ9u9E8T1cNmbeK5oV/yp5JbqI5KvkScFxV/WA97d+Q5HbgAuDDwD9OzaiqL1TVdVV1V1WdClxJc4Q4qjuAd7X/A2fTHFU8tN1XzwHeUVW/qarLgYme49HMDAVtikU03UPTvZfmHefXk1w94gnMX2zA/GuAbbnnC+LG2rNtb7DteTRHOFMGPy30G5qjienmA9sNaWvRJtb3K5pup4VD5i2k6dKacl37rn1nmiOpp4zQ/nya3+d1NF0+207NSPKiJD9sP1xwE82RxIbs8xurau3A46l9t4BmHw/+Tdf399eEGAraKEkeS/OC953p89p3yq+tqn2BZwHHJTlkavYMTa7vSGLvgfsPpnkXegNNF8QOA3VtQ/OiM2q719GcBB5sey1w/XrWm+6Gtqbpbf37BrZzD+2R0QXAc4fMfh5wzpB1fkvzQYDfT3L4CNu4s6reR3Oe4KUASR4CfAx4ObB7GzaXAplabcN/m84amn2818C0vWdYVhNmKGiDJNk5yTOBzwOfqaqfDFnmmUl+L0loTiTe2d6gebHdd/o6I3hBkv3bPvZ3AadX85HVfwW2T3Jokm1pTu7ed2C964HFgx+fneYU4DVJ9kmyI3efg1g7w/JDtbWcBvzvJDu1L6rHAZ9Z95r3lGT7abfQnPBdmuSVbdu7Jnk3cDBNX/+wen5H03319g3Y/PHAG5JsD9yf5oV/TVvXi2mOFKZcD+yVZLsN+f3a2u4Evgj8RZIdkjyM5vyLZgFDQaM6M8ktNIf5bwFOAGb6HPx+wDdp+pAvoPnkzPntvL8C3tp2SbxuA7b/aZpPt/wS2B54JUBV3Uzz7vbjNO/Kb6M5yT1l6gTtjUkuGdLuJ9q2vwX8nObd8is2oK5Br2i3fzXNEdTn2vZHtYjmfMDg7T9V1XdoTsD/Kc15hGuAxwBPqKor19HeJ4AHJ3nWiNs/i6a76s/bfv730fz9rgd+H/juwLLnApcBv0xyw/SGRvBympPQv6TZ/6cAv92IdrSZZf3n/yRpvJK8B3hQVfkppJ55pCBp4pI8LMmj0jiQ5iOrX+q7LjWfAJCkSduJpstoT5ovt72P5kuJ6pndR5Kkjt1HkqTOFt19NH/+/Fq8eHHfZUjSFuXiiy++oaoWDJu3RYfC4sWLWb58ed9lSNIWJck1M82z+0iS1DEUJEkdQ0GS1BlbKCT5RJLVSS4dmLZbkm8kubL9uWs7PUk+kOSqJD9OcsC46pIkzWycRwqfpLny1aBlwDlVtR/N6I5TQyo/nWa8nP2AY4CPjLEuSdIMxhYKVfUt7j3W/mHcfTGNk4HDB6Z/qhr/AuySZNj48ZKkMZr0OYU9qmoVQPvzge30RdzzIhsr2fSLk0iSNtBsOdGcIdOGjr+R5Jgky5MsX7NmzZjLkqS5ZdKhcP1Ut1D7c3U7fSX3vPLSXjRXxLqXqjqxqpZU1ZIFC4Z+IU+StJEm/Y3mM4ClNFd4WsrdoyKeAbw8yeeBPwRunupmkrYWi5edNZZ2Vxx/6Fja1dw0tlBIcgrNhcDnJ1kJvIMmDE5LcjRwLXdfd/Zs4Bk0F3v/DTNf0UuSNEZjC4Wq+u8zzDpk+oRqxu9+2bhqkSSNZracaJYkzQKGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjpb9DWaJW0Z/Db3lsMjBUlSx1CQJHUMBUlSx1CQJHUMBUlSx1CQJHUMBUlSx1CQJHUMBUlSx1CQJHUMBUlSx1CQJHUMBUlSx1CQJHUMBUlSx1CQJHW8yI40R3ihG43CIwVJUsdQkCR1DAVJUsdQkCR1DAVJUsdQkCR1DAVJUsdQkCR1egmFJK9JclmSS5OckmT7JPskuTDJlUlOTbJdH7VJ0lw28VBIsgh4JbCkqh4JbAMcCbwH+Nuq2g/4FXD0pGuTpLmur+6jecD9kswDdgBWAU8BTm/nnwwc3lNtkjRnTTwUqurfgb8BrqUJg5uBi4Gbqmptu9hKYNGw9ZMck2R5kuVr1qyZRMmSNGf00X20K3AYsA+wJ3B/4OlDFq1h61fViVW1pKqWLFiwYHyFStIc1Ef30VOBn1fVmqq6A/gi8Dhgl7Y7CWAv4LoeapOkOa2PULgWOCjJDkkCHAJcDpwHHNEusxT4cg+1SdKc1sc5hQtpTihfAvykreFE4I3AcUmuAnYHTpp0bZI01/VykZ2qegfwjmmTrwYO7KEcSVLLbzRLkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpM6/vAiRpnBYvO2ss7a44/tCxtNs3jxQkSR1DQZLU6SUUkuyS5PQkP01yRZKDk+yW5BtJrmx/7tpHbZI0l/V1pPB/ga9V1cOARwNXAMuAc6pqP+Cc9rEkaYImHgpJdgaeCJwEUFW/q6qbgMOAk9vFTgYOn3RtkjTX9XGksC+wBvj7JD9I8vEk9wf2qKpVAO3PBw5bOckxSZYnWb5mzZrJVS1Jc0AfoTAPOAD4SFU9BriNDegqqqoTq2pJVS1ZsGDBuGqUpDmpj1BYCaysqgvbx6fThMT1SRYCtD9X91CbJM1pEw+Fqvol8IskD20nHQJcDpwBLG2nLQW+POnaJGmu6+sbza8APptkO+Bq4MU0AXVakqOBa4Hn9lSbJM1ZI4VCksdX1XfXN21UVfVDYMmQWYdsTHuSpM1j1O6jD444TZK0BVvnkUKSg4HHAQuSHDcwa2dgm3EWJkmavPV1H20H7Ngut9PA9F8DR4yrKElSP9YZClX1z8A/J/lkVV0zoZokST0Z9dNH901yIrB4cJ2qeso4ipIk9WPUUPgC8FHg48Cd4ytHktSnUUNhbVV9ZKyVSJJ6N+pHUs9M8tIkC9vrHuyWZLexViZJmrhRjxSmhp94/cC0ohnxVJK0lRgpFKpqn3EXIknq36jDXLxo2PSq+tTmLUeS1KdRu48eO3B/e5oxii4BDAVJ2oqM2n30isHHSR4AfHosFUmSerOx11P4DbDf5ixEktS/Uc8pnEnzaSNoBsJ7OHDauIqSJPVj1HMKfzNwfy1wTVWtHEM92sotXnbWWNpdcfyhY2lX2lRb2v/8SN1H7cB4P6UZKXVX4HdjqUaS1KuRQiHJ84CLaC6R+TzgwiQOnS1JW5lRu4/eAjy2qlYDJFkAfBM4fVyFSZImb9RPH91nKhBaN27AupKkLcSoRwpfS/JPwCnt4z8Dzh5PSZKkvqzvGs2/B+xRVa9P8qfAE4AAFwCfnUB9kqQJWl8X0PuBWwCq6otVdVxVvYbmKOH94y5OkjRZ6wuFxVX14+kTq2o5zaU5JUlbkfWdU9h+HfPutzkL0eRsaV+mkTQ56ztS+H6SP58+McnRwMXjKUmS1Jf1HSm8GvhSkudzdwgsAbYD/mSchUmSJm+doVBV1wOPS/Jk4JHt5LOq6tyxVyZJmrhRr6dwHnDemGuRJPXMbyVLkjqGgiSpYyhIkjqGgiSp01soJNkmyQ+SfKV9vE+SC5NcmeTUJNv1VZskzVV9Him8Crhi4PF7gL+tqv2AXwFH91KVJM1hvYRCkr2AQ4GPt48DPIW7L9pzMnB4H7VJ0lzW15HC+4E3AHe1j3cHbqqqte3jlcCiYSsmOSbJ8iTL16xZM/5KJWkOmXgoJHkmsLqqBsdOypBFa9j6VXViVS2pqiULFiwYS42SNFeNeuW1zenxwLOTPINmFNadaY4cdkkyrz1a2Au4rofaJGlOm/iRQlW9qar2qqrFwJHAuVX1fJphNI5oF1sKfHnStUnSXDebvqfwRuC4JFfRnGM4qed6JGnO6aP7qFNV5wPnt/evBg7ssx5Jmutm05GCJKlnhoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6Ew+FJHsnOS/JFUkuS/KqdvpuSb6R5Mr2566Trk2S5ro+jhTWAq+tqocDBwEvS7I/sAw4p6r2A85pH0uSJmjioVBVq6rqkvb+LcAVwCLgMODkdrGTgcMnXZskzXW9nlNIshh4DHAhsEdVrYImOIAHzrDOMUmWJ1m+Zs2aSZUqSXNCb6GQZEfgH4BXV9WvR12vqk6sqiVVtWTBggXjK1CS5qBeQiHJtjSB8Nmq+mI7+fokC9v5C4HVfdQmSXNZH58+CnAScEVVnTAw6wxgaXt/KfDlSdcmSXPdvB62+XjghcBPkvywnfZm4HjgtCRHA9cCz+2hNkma0yYeClX1HSAzzD5kkrVIku7JbzRLkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjp9DJ0tYPGys8bS7orjDx1Lu5LmBo8UJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEmdWRUKSZ6W5GdJrkqyrO96JGmumdd3AVOSbAN8CPhjYCXw/SRnVNXl49je4mVnjaNZVhx/6FjalaRJmE1HCgcCV1XV1VX1O+DzwGE91yRJc0qqqu8aAEhyBPC0qnpJ+/iFwB9W1cunLXcMcEz78KHAz0bcxHzghs1U7uZmbRvH2jbebK7P2jbOhtT2kKpaMGzGrOk+AjJk2r0Sq6pOBE7c4MaT5VW1ZGMKGzdr2zjWtvFmc33WtnE2V22zqftoJbD3wOO9gOt6qkWS5qTZFArfB/ZLsk+S7YAjgTN6rkmS5pRZ031UVWuTvBz4J2Ab4BNVddlm3MQGdzlNkLVtHGvbeLO5PmvbOJultllzolmS1L/Z1H0kSeqZoSBJ6mxVoZDkE0lWJ7l0hvlJ8oF2GI0fJzlgFtX2pCQ3J/lhe3v7BGvbO8l5Sa5IclmSVw1Zppd9N2Jtvey7JNsnuSjJj9ra3jlkmfsmObXdbxcmWTyLajsqyZqB/faSSdQ2sP1tkvwgyVeGzOtlv21Afb3tuyQrkvyk3e7yIfM37blaVVvNDXgicABw6QzznwF8leY7EQcBF86i2p4EfKWn/bYQOKC9vxPwr8D+s2HfjVhbL/uu3Rc7tve3BS4EDpq2zEuBj7b3jwROnUW1HQX8XR//c+32jwM+N+xv19d+24D6ett3wApg/jrmb9Jzdas6UqiqbwH/sY5FDgM+VY1/AXZJsnCW1NabqlpVVZe0928BrgAWTVusl303Ym29aPfFre3Dbdvb9E9uHAac3N4/HTgkybAvavZRW2+S7AUcCnx8hkV62W9TRqhvNtuk5+pWFQojWAT8YuDxSmbJC0zr4PZw/6tJHtFHAe1h+mNo3lkO6n3fraM26GnftV0MPwRWA9+oqhn3W1WtBW4Gdp8ltQE8p+1iOD3J3kPmj8v7gTcAd80wv7f91lpffdDfvivg60kuTjPsz3Sb9Fyda6Ew0lAaPbmEZjySRwMfBP5x0gUk2RH4B+DVVfXr6bOHrDKxfbee2nrbd1V1Z1X9Ac038A9M8shpi/S230ao7UxgcVU9Cvgmd78zH6skzwRWV9XF61psyLSJ7LcR6+tl37UeX1UHAE8HXpbkidPmb9K+m2uhMGuH0qiqX08d7lfV2cC2SeZPavtJtqV50f1sVX1xyCK97bv11db3vmu3exNwPvC0abO6/ZZkHvAAJtyNOFNtVXVjVf22ffgx4D9PqKTHA89OsoJmNOSnJPnMtGX63G/rra/HfUdVXdf+XA18iWaE6UGb9Fyda6FwBvCi9uz8QcDNVbWq76IAkjxoqs80yYE0f5sbJ7TtACcBV1TVCTMs1su+G6W2vvZdkgVJdmnv3w94KvDTaYudASxt7x8BnFvt2cC+a5vWz/xsmvM1Y1dVb6qqvapqMc1J5HOr6gXTFutlv41aX1/7Lsn9k+w0dR/4r8D0TzRu0nN11gxzsTkkOYXmkyjzk6wE3kFzgo2q+ihwNs2Z+auA3wAvnkW1HQH8ryRrgduBIyf1JKB5Z/RC4CdtHzTAm4EHD9TX174bpba+9t1C4OQ0F4i6D3BaVX0lybuA5VV1Bk2gfTrJVTTvdI+cQF2j1vbKJM8G1ra1HTWh2oaaJfttRrNk3+0BfKl9DzQP+FxVfS3JsbB5nqsOcyFJ6sy17iNJ0joYCpKkjqEgSeoYCpKkjqEgSeoYCppTktw6w/Rjkvy0vV2U5AkD885P8rN2GI3vJ/mDGdoYablp67w6yQ4Dj8+e+n6B1AdDQXNeO6zB/wSeUFUPA44FPpfkQQOLPb8dRuPDwHvX0dyoy015NdCFQlU9o/0GstQLQ0GCNwKvr6obANpRWU8GXjZk2QsYbXCxeyyX5CNJlmfg2gZJXgnsCZyX5Lx22ook85MsTnMNiY+163y9/WYySR7bDsR2QZL3ZoZrdEgbw1CQ4BHA9MHPlrfTp3saow24N325t1TVEuBRwB8leVRVfYBmTJonV9WTh7SxH/ChqnoEcBPwnHb63wPHVtXBwJ0j1CKNbKsa5kLajMI9R5b8bDvWzDY0F0uayUzLPa8d5ngezRAU+wM/Xk8NP6+qqaE9LgYWt+cbdqqq77XTPwc8c5RfSBqFRwoSXM69R7k8oJ0+5fnAPjQvwh9aR1v3Wi7JPsDrgEPaoZbPArYfoa7fDty/kyZQJnahGc1NhoIEfw28J8nuAO2nho6iOVncqao7gLcCByV5+EyNDVluZ+A24OYke9CMgz/lFprLjI6kqn4F3NKOfgmzYKA4bV3sPtJcs0M7Su2UE6rqhCSLgO8lKZoX6hcMG264qm5P8j6ad/5Hz7SRweWq6ugkPwAuA64Gvjuw6InAV5OsmuG8wjBHAx9LchvNdRJuHnE9ab0cJVXawiTZceqiQkmWAQur6lU9l6WthEcK0pbn0CRvonn+XkPP10HQ1sUjBUlSxxPNkqSOoSBJ6hgKkqSOoSBJ6hgKkqTO/wdqCMfBSMwwBQAAAABJRU5ErkJggg==\n",
856 | "text/plain": [
857 | ""
858 | ]
859 | },
860 | "metadata": {
861 | "needs_background": "light"
862 | },
863 | "output_type": "display_data"
864 | }
865 | ],
866 | "source": [
867 | "# Visualizing the feature TOEFL\n",
868 | "fig = plt.hist(df['LOR'], rwidth=0.7)\n",
869 | "plt.title('Distribution of LOR Rating')\n",
870 | "plt.xlabel('LOR Rating')\n",
871 | "plt.ylabel('Count')\n",
872 | "plt.show()"
873 | ]
874 | },
875 | {
876 | "cell_type": "code",
877 | "execution_count": 17,
878 | "metadata": {},
879 | "outputs": [
880 | {
881 | "data": {
882 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEWCAYAAACNJFuYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAWVUlEQVR4nO3de7RkZX3m8e8jLSCicmsRQTgwEm/MaEyLCo5RIVGDAt7JMtIYDMNyNCom2l5yMeNENI4xMZM4jDggKqKoA4o3RPCyVLRBjVxMQGgQQWhQRJBRWn/zx94N5XnP6VN9uvepc5rvZ61aVfv27t/b1VXP2W/t2pWqQpKkUfeYdAGSpMXHcJAkNQwHSVLDcJAkNQwHSVLDcJAkNQwHLbgk707yF5uprT2T3Jpkq376vCQv2Rxt9+19OsnKzdXeRuz3zUluTPKjhd63BIaDNrMka5LcnuRnSW5O8tUkxya58/9aVR1bVf9tzLYO3tA6VXV1VW1fVb/aDLX/dZL3T2v/6VV18qa2vZF1PAh4NfDwqnrALOvcN8k7k1zdh+Pl/fQuI+sckeT8JLcluaF//NIk6ZeflOSX/fY/TnJ2kodO289RSSrJ84fssxYfw0FDeGZV3QfYCzgeeC1w4ubeSZJlm7vNRWIv4KaqumGmhUm2Bs4BHgE8DbgvcABwE7B/v86rgX8A/g54ALArcCxwILD1SHNvq6rtgT2AG4CTpu1uJfDj/l53J1XlzdtmuwFrgIOnzdsf+DWwXz99EvDm/vEuwCeBm+nehL5M90fLKf02twO3Aq8BpoACjgauBr40Mm9Z3955wFuAbwA/Bc4AduqXPQm4ZqZ66d5kfwnc0e/vOyPtvaR/fA/gjcBVdG+k7wPu1y9bX8fKvrYbgTds4N/pfv32a/v23ti3f3Df51/3dZw0w7YvAa4Htt9A27cBz5njubrzeeinDwFuHZneq6/jOcA6YNdJ///ytnA3jxw0uKr6BnAN8J9nWPzqftlyur9uX99tUi+ie5N9ZnXDRm8b2eZ3gYcBT51ll0cCfww8kO5N7R/HqPEzwN8Cp/X7e+QMqx3V354M7ANsD/zTtHWeADwEOAj4yyQPm2WX76J7E9+n78+RwIur6vPA04Fr+zqOmmHbg4HPVNWts7T9eGAbumAcS5LtgRcC3xqZfSSwuqo+ClzaL9fdhOGghXItsNMM8+8AdgP2qqo7qurLVTXXBb/+uqpuq6rbZ1l+SlVdVFW3AX8BPH/9B9ab6IXAO6rqiv6N+XXAEdOGt95UVbdX1XeA7wBNyPS1vAB4XVX9rKrWAP8DeNGYdewMXLeB5bsAN1bVupF9frX/DOj2JE8cWffPktwMXE4XdkeNLDsS+GD/+IM4tHS3YjhooexON2w03d/RvTF9LskVSVaN0dYPNmL5VcA96d4wN9UD+/ZG215Gd8Sz3ujZRT+ne8Odbhe6cf/pbe0+Zh030QXqhpbvMhpaVXVAVe3QLxt93b+9qnaoqgdU1aFV9X2AJAcCewMf6tf7IPAfkzxqzBq1xBkOGlySx9C98X1l+rL+L+dXV9U+wDOB45IctH7xLE3OdWTxoJHHe9IdndxINw6/3UhdW9ENZ43b7rV04/Cjba+jG//fGDf2NU1v64djbv954KlJ7j3L8q8BvwAO28i6Rq0EAny7P532/H7+kZvQppYQw0GD6U+3fAbdX5/vr6rvzrDOM5I8uD+98hbgV/0Nujfdfeax6z9K8vAk2wF/A5xe3amu/w5sm+SQJPek+xB4m5HtrgemRk+7neZU4FVJ9u7H6Nd/RrFulvVn1NfyYeC/J7lPkr2A44D3b3jLO51Cd3T00SQPTXKPJDsneX2SP6iqm4E3Af+c5LlJtu/XeRQwW6DcKcm2wPOBY4BHjdxeDrxwCz5LTCMMBw3hE0l+RvcG9gbgHcCLZ1l3X7q/hG+l+4v3n6vqvH7ZW4A39mPlf7YR+z+F7kycHwHbAn8KUFU/BV4KvIfur/Tb6D4MX+8j/f1NSS6cod339m1/CbgS+H90b5jz8fJ+/1fQHVF9sG9/TlX1C7oPpb8HnE0Xqt+gG646v1/nbXSB8xq6M6uuB/4X3WnFX51jF4fTnTH1vqr60fob3enIW9Gd2aUtXOb+7E+SdHfjkYMkqWE4SJIahoMkqWE4SJIaS+KUtF122aWmpqYmXYYkLSkXXHDBjVW1fO41W0siHKampli9evWky5CkJSXJVXOvNTOHlSRJDcNBktQwHCRJDcNBktQwHCRJDcNBktQwHCRJDcNBktQwHCRJjSXxDWlpKZladdYg7a45/pBB2pVm4pGDJKlhOEiSGoaDJKlhOEiSGoaDJKlhOEiSGoaDJKlhOEiSGoaDJKlhOEiSGoaDJKlhOEiSGoaDJKlhOEiSGoaDJKlhOEiSGoaDJKlhOEiSGoaDJKlhOEiSGoaDJKlhOEiSGoaDJKlhOEiSGoaDJKmxbNIFSNpyTK06a5B21xx/yCDtanYeOUiSGoaDJKkxaDgkeVWSi5NclOTUJNsm2TvJ+UkuS3Jakq2HrEGStPEGC4ckuwN/Cqyoqv2ArYAjgLcCf19V+wI/AY4eqgZJ0vwMPay0DLhXkmXAdsB1wFOA0/vlJwOHD1yDJGkjDXa2UlX9MMnbgauB24HPARcAN1fVun61a4DdZ9o+yTHAMQB77rnnUGVqC+VZM9KmGXJYaUfgMGBv4IHAvYGnz7BqzbR9VZ1QVSuqasXy5cuHKlOSNIMhh5UOBq6sqrVVdQfwMeAAYId+mAlgD+DaAWuQJM3DkOFwNfC4JNslCXAQcAlwLvDcfp2VwBkD1iBJmofBwqGqzqf74PlC4Lv9vk4AXgscl+RyYGfgxKFqkCTNz6CXz6iqvwL+atrsK4D9h9yvJGnT+A1pSVLDcJAkNQwHSVLDcJAkNQwHSVLDcJAkNQwHSVLDcJAkNQwHSVLDcJAkNQa9fIakheXvWGhz8chBktQwHCRJDcNBktQwHCRJDcNBktQwHCRJDcNBktQwHCRJDcNBktQwHCRJDcNBktQwHCRJDcNBktQwHCRJDcNBktQwHCRJDcNBktQwHCRJDcNBktQwHCRJDcNBktQwHCRJDcNBktRYNukCtGWaWnXWIO2uOf6QQdqV9JsGPXJIskOS05N8L8mlSR6fZKckZye5rL/fccgaJEkbb+hhpX8APlNVDwUeCVwKrALOqap9gXP6aUnSIjJYOCS5L/BE4ESAqvplVd0MHAac3K92MnD4UDVIkuZnyCOHfYC1wP9J8q0k70lyb2DXqroOoL+//0wbJzkmyeokq9euXTtgmZKk6YYMh2XAo4F/qarfBm5jI4aQquqEqlpRVSuWL18+VI2SpBkMGQ7XANdU1fn99Ol0YXF9kt0A+vsbBqxBkjQPg4VDVf0I+EGSh/SzDgIuAc4EVvbzVgJnDFWDJGl+hv6ew8uBDyTZGrgCeDFdIH04ydHA1cDzBq5BkrSRBg2Hqvo2sGKGRQcNuV9J0qbx8hmSpIbhIElqGA6SpIbhIElqjBUOSQ4cZ54kacsw7pHDu8acJ0naAmzwVNYkjwcOAJYnOW5k0X2BrYYsTJI0OXN9z2FrYPt+vfuMzL8FeO5QRUmSJmuD4VBVXwS+mOSkqrpqgWqSJE3YuN+Q3ibJCcDU6DZV9ZQhipIkTda44fAR4N3Ae4BfDVeOJGkxGDcc1lXVvwxaiSRp0Rj3VNZPJHlpkt2S7LT+NmhlkqSJGffIYf3vL/z5yLyi+ylQSdIWZqxwqKq9hy5EkrR4jBUOSY6caX5VvW/zliNJWgzGHVZ6zMjjbel+rOdCwHCQpC3QuMNKLx+dTnI/4JRBKpIkTdx8L9n9c2DfzVmIJGnxGPczh0/QnZ0E3QX3HgZ8eKiiJEmTNe5nDm8febwOuKqqrhmgHknSIjDWsFJ/Ab7v0V2ZdUfgl0MWJUmarHF/Ce75wDeA5wHPB85P4iW7JWkLNe6w0huAx1TVDQBJlgOfB04fqjBJ0uSMe7bSPdYHQ++mjdhWkrTEjHvk8JkknwVO7adfAHxqmJIkSZM2129IPxjYtar+PMmzgScAAb4GfGAB6pMkTcBcQ0PvBH4GUFUfq6rjqupVdEcN7xy6OEnSZMwVDlNV9a/TZ1bVarqfDJUkbYHmCodtN7DsXpuzEEnS4jFXOHwzyZ9Mn5nkaOCCYUqSJE3aXGcrvRL4eJIXclcYrAC2Bp41ZGGSpMnZYDhU1fXAAUmeDOzXzz6rqr4weGWSpIkZ9/cczgXOHbgWSdIiMfi3nJNsleRbST7ZT++d5PwklyU5LcnWQ9cgSdo4C3EJjFcAl45MvxX4+6raF/gJcPQC1CBJ2giDhkOSPYBDgPf00wGewl0X7DsZOHzIGiRJG2/oI4d3Aq8Bft1P7wzcXFXr+ulrgN0HrkGStJEGC4ckzwBuqKrR70NkhlVrhnkkOSbJ6iSr165dO0iNkqSZDXnkcCBwaJI1wIfohpPeCeyQZP1ZUnsA1860cVWdUFUrqmrF8uXLByxTkjTdYOFQVa+rqj2qago4AvhCVb2Q7pTY9b8itxI4Y6gaJEnzM4kf7HktcFySy+k+gzhxAjVIkjZg3B/72SRVdR5wXv/4CmD/hdivpLuPqVVnDdLumuMPGaTdxc6f+pQkNQwHSVLDcJAkNQwHSVLDcJAkNQwHSVLDcJAkNQwHSVJjQb4Ep8nwS0GS5ssjB0lSw3CQJDUMB0lSw3CQJDUMB0lSw3CQJDUMB0lSw3CQJDUMB0lSw3CQJDUMB0lSw3CQJDUMB0lSw3CQJDUMB0lSw3CQJDUMB0lSw3CQJDUMB0lSw3CQJDUMB0lSw3CQJDUMB0lSY9mkC5CkpW5q1VmDtLvm+EMGaXccHjlIkhqGgySpMVg4JHlQknOTXJrk4iSv6OfvlOTsJJf19zsOVYMkaX6GPHJYB7y6qh4GPA74r0keDqwCzqmqfYFz+mlJ0iIyWDhU1XVVdWH/+GfApcDuwGHAyf1qJwOHD1WDJGl+FuQzhyRTwG8D5wO7VtV10AUIcP9Ztjkmyeokq9euXbsQZUqSeoOHQ5LtgY8Cr6yqW8bdrqpOqKoVVbVi+fLlwxUoSWoMGg5J7kkXDB+oqo/1s69Pslu/fDfghiFrkCRtvCHPVgpwInBpVb1jZNGZwMr+8UrgjKFqkCTNz5DfkD4QeBHw3STf7ue9Hjge+HCSo4GrgecNWIMkaR4GC4eq+gqQWRYfNNR+JUmbzm9IS5IahoMkqWE4SJIahoMkqWE4SJIahoMkqWE4SJIahoMkqWE4SJIahoMkqWE4SJIahoMkqWE4SJIahoMkqTHk7znc7U2tOmuQdtccf8gg7UrSeh45SJIahoMkqWE4SJIahoMkqWE4SJIahoMkqWE4SJIahoMkqWE4SJIahoMkqWE4SJIahoMkqWE4SJIahoMkqWE4SJIahoMkqWE4SJIahoMkqWE4SJIahoMkqTGRcEjytCT/luTyJKsmUYMkaXbLFnqHSbYC/ifwe8A1wDeTnFlVlwyxv6lVZw3RLGuOP2SQdiVpMZjEkcP+wOVVdUVV/RL4EHDYBOqQJM0iVbWwO0yeCzytql7ST78IeGxVvWzaescAx/STDwH+bUEL7ewC3DiB/Q5hS+mL/Vh8tpS+bIn92Kuqls+nkQUfVgIyw7wmoarqBOCE4cuZXZLVVbVikjVsLltKX+zH4rOl9MV+/KZJDCtdAzxoZHoP4NoJ1CFJmsUkwuGbwL5J9k6yNXAEcOYE6pAkzWLBh5Wqal2SlwGfBbYC3ltVFy90HWOa6LDWZral9MV+LD5bSl/sx4gF/0BakrT4+Q1pSVLDcJAkNe724ZDkIUm+PXK7Jckrp62TJP/YX+7jX5M8elL1bsiYfXlSkp+OrPOXk6p3Q5K8KsnFSS5KcmqSbact3ybJaf1zcn6SqclUumFj9OOoJGtHno+XTKrWDUnyir4PF0//P9UvXyqvkbn6sWhfH0nem+SGJBeNzNspydlJLuvvd5xl25X9OpclWTnWDqvKW3+j+4D8R3RfHBmd/wfAp+m+o/E44PxJ17oJfXkS8MlJ1zdH7bsDVwL36qc/DBw1bZ2XAu/uHx8BnDbpuufZj6OAf5p0rXP0Yz/gImA7upNYPg/sO22dRf8aGbMfi/b1ATwReDRw0ci8twGr+sergLfOsN1OwBX9/Y794x3n2t/d/shhmoOA71fVVdPmHwa8rzpfB3ZIstvCl7dRZuvLUrEMuFeSZXQv5unfhTkMOLl/fDpwUJKZvmA5aXP1Yyl4GPD1qvp5Va0Dvgg8a9o6S+E1Mk4/Fq2q+hLw42mzR18HJwOHz7DpU4Gzq+rHVfUT4GzgaXPtz3D4TUcAp84wf3fgByPT1/TzFrPZ+gLw+CTfSfLpJI9YyKLGUVU/BN4OXA1cB/y0qj43bbU7n5P+hf5TYOeFrHMuY/YD4Dn9UMzpSR40w/JJuwh4YpKdk2xHd5Qwvc6l8BoZpx+wyF8f0+xaVdcB9Pf3n2GdeT03hkOv/0LeocBHZlo8w7xFew7wHH25kG6o6ZHAu4D/u5C1jaMfNz0M2Bt4IHDvJH80fbUZNl1Uz8mY/fgEMFVV/4lumONkFpmquhR4K91fnJ8BvgOsm7baon8+xuzHon99zMO8nhvD4S5PBy6squtnWLbULvkxa1+q6paqurV//Cngnkl2WegC53AwcGVVra2qO4CPAQdMW+fO56Qfsrkf7SH3pM3Zj6q6qap+0U/+b+B3FrjGsVTViVX16Kp6It2/82XTVlkSr5G5+rFEXh+jrl8/fNff3zDDOvN6bgyHu/whsw/DnAkc2Z+R8Ti64YHrFq60jTZrX5I8YP3YfJL96f4P3LSAtY3jauBxSbbraz0IuHTaOmcC68+6eC7wheo/fVtE5uzHtHH5Q6cvXyyS3L+/3xN4Nu3/ryXxGpmrH0vk9TFq9HWwEjhjhnU+C/x+kh37o9nf7+dt2KQ/gV8MN7oPCm8C7jcy71jg2P5x6H6g6PvAd4EVk655E/ryMuBiukPqrwMHTLrmWfrxJuB7dOPEpwDbAH8DHNov35Zu2Oxy4BvAPpOueZ79eMvI83Eu8NBJ1zxLP74MXNLXedAM/6+WxGtkjH4s2tcHXZBdB9xBdzRwNN3nbOfQHQGdA+zUr7sCeM/Itn/cv1YuB148zv68fIYkqeGwkiSpYThIkhqGgySpYThIkhqGgySpYThII/rz3D+U5PtJLknyqSS/lWTfJJ/s51+Q5NwkT+y3Gb2y6iVJ/mRam2ck+dpkeiTNj+Eg9fovP30cOK+q/kNVPRx4PbArcBZwQj//d4CXA/uMbH5aVT2K7qqef5tk177NHeiupLlDkr0XrjfSpjEcpLs8Gbijqt69fkZVfRv4LeBrVXXmyPyLquqk6Q1U1Q10XwTbq5/1HLrrJ32I7mKI0pJgOEh32Q+4YIb5j6C7INuckuxDd0RxeT9r/aVMTu0fS0vCskkXIC01ST4O7Av8e1U9u5/9giRPAH4B/Jeq+nE/tPRg4CtVVUnWJdmvqi6apWlp0fDIQbrLxcx8VdSL6T43AKCqnkX3C247jaxzWlU9qqoeW1Uf7+e9gO6Xt65MsgaYwqElLRGGg3SXLwDbjJ5tlOQxdENEByY5dGTd7cZo7w+Bp1XVVFVN0QWP4aAlwXCQetVdhfJZwO/1p6xeDPw13bXvnwEcm+SK/rTUNwJvnq2tJFPAnnRX9lzf/pXALUkeO1QfpM3Fq7JKkhoeOUiSGoaDJKlhOEiSGoaDJKlhOEiSGoaDJKlhOEiSGv8f7w8y12Ry1J8AAAAASUVORK5CYII=\n",
883 | "text/plain": [
884 | ""
885 | ]
886 | },
887 | "metadata": {
888 | "needs_background": "light"
889 | },
890 | "output_type": "display_data"
891 | }
892 | ],
893 | "source": [
894 | "# Visualizing the feature TOEFL\n",
895 | "fig = plt.hist(df['CGPA'], rwidth=0.7)\n",
896 | "plt.title('Distribution of CGPA')\n",
897 | "plt.xlabel('CGPA')\n",
898 | "plt.ylabel('Count')\n",
899 | "plt.show()"
900 | ]
901 | },
902 | {
903 | "cell_type": "code",
904 | "execution_count": 18,
905 | "metadata": {},
906 | "outputs": [
907 | {
908 | "data": {
909 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAaIklEQVR4nO3deZhcdZ3v8fdHQJFFQBO47HFBR8QRMSqOM4qDKy7odQEfF1CUUdFxQe/F7aqjjDquD15HRWVYXMEVlRERQdQLaFBAFhmjBghBCCiIwiiE7/3j/PpQNt2dCklVJ+n363nq6VNn+dX3V11dnzq/c+p0qgpJkgDuNNsFSJLWHoaCJKlnKEiSeoaCJKlnKEiSeoaCJKlnKIgkH0/y1jXU1k5J/phkg3b/9CQvWRNtt/b+M8kBa6q9VXjcdyW5Jslvx/3Y45BkSZLHznYdmn2Gwnqu/bHflOSGJNcl+X9JXpak/91X1cuq6p1DtjXjG0dVXVZVm1XVijVQ+9uTfGZS+0+qqmNWt+1VrGNH4FBg16r6H1Ms3yvJrS0Mb0hySZIXjbPGcUpyYJIVrb9/SHJukqfMdl1aMwyFueGpVbU5sDPwHuB/A59e0w+SZMM13eZaYmfg2qq6eoZ1llXVZsDdgNcCn0xyv7FUN4QR/G7ObP3dku61dHySu6/hx5hWOr5/jYBP6hxSVddX1YnAfsABSXYDSHJ0kne16XlJvtn2Kn6X5AdJ7pTkOGAn4BvtE+L/SrIgSSU5KMllwPcG5g2+Cd07yY+TXJ/k6xNvHu0T9tLBGif2RpI8EXgTsF97vPPa8n44qtX1liSXJrk6ybFJtmjLJuo4IMllbejnzdM9N0m2aNsvb+29pbX/WOAUYLtWx9EreY6rqk4Cfgf87UD7f5PklPacXpLkOQPL9klyUdvLuCLJ6weWPaV9Ep/Yyxts87Akv2rbXZTkGQPLDkzyoyQfSvI74O1t/kuTXDywzR4D5e+e5Pz2e/piko1n6mvr763AUcBdgXsl2aq9fpYn+X2b3mGgrtOTvHuq10Nbvmfr53VJzkuy16RtD0/yI+DG9ngHJvl1689vkjxvZTVrJarK23p8A5YAj51i/mXAy9v00cC72vS7gY8DG7XbPwCZqi1gAVDAscCmdG8ME/M2bOucDlwB7NbW+TLwmbZsL2DpdPXSvZF9ZtLy04GXtOkXA4uBewGbAV8BjptU2ydbXQ8C/gzcf5rn6Vjg68Dmbdv/Ag6ars5J2/bL6T5oPQ24FXhwm7cpcDnwImBDYA/gGuABbfmVwD+06a2APdr0HsDVwMOBDYAD2vNzl7b82cB27TH3A/4EbNuWHQjcAryqPeZd2/pXAA8FAtwH2Hngef9xa+/uwMXAy6bp74HAD9v0hsCrgRuALYB7AM8ENmnP5QnA1yb9/qZ7PWwPXAvs0/r0uHZ//sC2lwEPaI+7BfAH4H5t+bYTz6m3O35zT2HuWkb3xz/ZzXR/XDtX1c1V9YNqf3EzeHtV/amqbppm+XFVdUFV/Ql4K/CctAPRq+l5wAer6tdV9UfgjcD+k/ZS3lFVN1XVecB5dOHwV1ot+wFvrKobqmoJ8AHgBatQy3ZJrgNuAr4KvK6qftaWPQVYUlX/UVW3VNVP6d4Mn9WW3wzsmuRuVfX7thzgpcAnqursqlpR3bGUPwN7AlTVCVW1rKpuraovAr8EHjZQ07Kq+kh7zJuAlwD/VlU/qc7iqrp0YP0jWnu/A74B7D5Df/ds/f0t8FzgGdXtiV5bVV+uqhur6gbgcODRk7ad7vXwfOCkqjqp9ekUYBFdSEw4uqourKpb6ELvVmC3JHetqiur6sIZatYQDIW5a3u6IY7J3kf36fs7bbf8sCHaunwVll9Ktwcyb6gqZ7Zda2+w7Q2BbQbmDZ4tdCPdHsVk84A7T9HW9qtQy7Kq2pLumMIRwD8OLNsZeHgbErmuvZk+D5g4aP1Muje+S5N8P8kjBrY7dNJ2O9L1myQvHBhauo7u0/fg8zr597Ij8KsZ+jDMczXhrKrasqrmVdWeVfXdVtMmST7RhuD+AJwBbDnpQ8B0r4edgWdP6u/f031Iud22LVT2A14GXJnkW0n+ZoaaNQRDYQ5K8lC6N7wfTl7WPikfWlX3Ap4KvC7J3hOLp2lyZXsSOw5M70T3yfgauuGOTQbq2gCYvwrtLqN7Ixls+xbgqpVsN9k1rabJbV2xiu1QVX+mO5D/wCRPb7MvB77f3kQnbptV1cvbNj+pqn2BrYGvAccPbHf4pO02qarPJ9mZbmjslcA9WiBdQDcs1JczqbzLgXuvap9W0aHA/YCHV9XdgEe1+YN1Tfd6uJxuL2Kwv5tW1XsG1v+rPlXVyVX1OLrg+AXdc6LVYCjMIUnulu7UwS/QjeP+fIp1npLkPklCN167ot2ge7O91x146Ocn2TXJJsC/AF+q7pTV/wI2TvLkJBsBbwHuMrDdVcCCTH+WyeeB1ya5Z5LNgH8FvtiGFobWajkeODzJ5u0N93XAZ2bectr2/kI3/PR/2qxvAvdN8oIkG7XbQ5PcP8mdkzwvyRZVdTO3PefQvcG9LMnD09m0PVeb043HF7AcIN0psLutpLRPAa9P8pDW3n1aX9ekzemG0K5rB5DfNsU6070ePgM8NckTkmyQZON0JyPsMEUbJNkmydOSbEo3rPZHbnvudAcZCnPDN5LcQPdJ7M3AB+kOek5lF+C7dH9gZwL/XlWnt2XvBt7Sdu1fP832UzmO7mD2b4GNgX+G7mwo4BV0b1ZX0O05DJ6NdEL7eW2Sn3J7R7W2zwB+A/w33YHVO+JV7fF/TbcH9bnW/h11FLBTkqe2sfXHA/vT7d38FngvtwXgC4AlbbjlZXRj61TVIrrjCv8X+D3dsN6BbdlFdMFzJl14PhD40UwFVdUJdGP8n6M7MPw1pj6utDo+THdQ+xrgLODbU6wz3evhcmBfurPOltO9Xt/A9O9Td6LbM1lGNxT6aLrXk1bDxFklkjRySU6n20v91GzXoqm5pyBJ6hkKkqSew0eSpJ57CpKk3jp9AbN58+bVggULZrsMSVqnnHPOOddU1fyplq3TobBgwQIWLVo022VI0jolyaXTLXP4SJLUMxQkST1DQZLUMxQkST1DQZLUMxQkST1DQZLUMxQkST1DQZLUW6e/0SxJa7sFh31rJO0uec+TR9KuewqSpJ6hIEnqGQqSpJ6hIEnqGQqSpJ6hIEnqGQqSpJ6hIEnqGQqSpJ6hIEnqGQqSpJ6hIEnqGQqSpJ6hIEnqGQqSpJ6hIEnqGQqSpJ6hIEnqjSwUkuyY5LQkFye5MMmr2/y3J7kiybntts/ANm9MsjjJJUmeMKraJElTG+X/aL4FOLSqfppkc+CcJKe0ZR+qqvcPrpxkV2B/4AHAdsB3k9y3qlaMsEZJ0oCR7SlU1ZVV9dM2fQNwMbD9DJvsC3yhqv5cVb8BFgMPG1V9kqTbG8sxhSQLgAcDZ7dZr0xyfpKjkmzV5m0PXD6w2VKmCJEkBydZlGTR8uXLR1i1JM09Iw+FJJsBXwZeU1V/AD4G3BvYHbgS+MDEqlNsXrebUXVkVS2sqoXz588fUdWSNDeNNBSSbEQXCJ+tqq8AVNVVVbWiqm4FPsltQ0RLgR0HNt8BWDbK+iRJf22UZx8F+DRwcVV9cGD+tgOrPQO4oE2fCOyf5C5J7gnsAvx4VPVJkm5vlGcfPRJ4AfDzJOe2eW8Cnptkd7qhoSXAPwFU1YVJjgcuojtz6RDPPJKk8RpZKFTVD5n6OMFJM2xzOHD4qGqSJM3MbzRLknqGgiSpZyhIknqGgiSpZyhIknqGgiSpZyhIknqGgiSpZyhIknqGgiSpZyhIknqGgiSpZyhIknqGgiSpZyhIknqGgiSpN8r/vLZWW3DYt0bS7pL3PHkk7UrSOLinIEnqGQqSpJ6hIEnqGQqSpJ6hIEnqGQqSpJ6hIEnqGQqSpJ6hIEnqGQqSpJ6hIEnqjSwUkuyY5LQkFye5MMmr2/y7JzklyS/bz63a/CQ5IsniJOcn2WNUtUmSpjbKPYVbgEOr6v7AnsAhSXYFDgNOrapdgFPbfYAnAbu028HAx0ZYmyRpCiMLhaq6sqp+2qZvAC4Gtgf2BY5pqx0DPL1N7wscW52zgC2TbDuq+iRJtzeWYwpJFgAPBs4GtqmqK6ELDmDrttr2wOUDmy1t8ya3dXCSRUkWLV++fJRlS9KcM/JQSLIZ8GXgNVX1h5lWnWJe3W5G1ZFVtbCqFs6fP39NlSlJYsShkGQjukD4bFV9pc2+amJYqP28us1fCuw4sPkOwLJR1idJ+mujPPsowKeBi6vqgwOLTgQOaNMHAF8fmP/CdhbSnsD1E8NMkqTxGOW/43wk8ALg50nObfPeBLwHOD7JQcBlwLPbspOAfYDFwI3Ai0ZYmyRpCiMLhar6IVMfJwDYe4r1CzhkVPVIklbObzRLknqGgiSpZyhIknqGgiSpZyhIknqGgiSpZyhIknqGgiSpZyhIknqGgiSpZyhIknqGgiSpZyhIknqGgiSpZyhIknqGgiSpZyhIknqGgiSpZyhIknqGgiSpZyhIknpDhUKSRw4zT5K0bht2T+EjQ86TJK3DNpxpYZJHAH8HzE/yuoFFdwM2GGVhkqTxmzEUgDsDm7X1Nh+Y/wfgWaMqSpI0O2YMhar6PvD9JEdX1aVjqkmSNEtWtqcw4S5JjgQWDG5TVf84iqIkSbNj2FA4Afg48ClgxejKkSTNpmHPPrqlqj5WVT+uqnMmbjNtkOSoJFcnuWBg3tuTXJHk3HbbZ2DZG5MsTnJJkifcwf5IklbDsKHwjSSvSLJtkrtP3FayzdHAE6eY/6Gq2r3dTgJIsiuwP/CAts2/J/HsJkkas2GHjw5oP98wMK+Ae023QVWdkWTBkO3vC3yhqv4M/CbJYuBhwJlDbi9JWgOGCoWquucafMxXJnkhsAg4tKp+D2wPnDWwztI273aSHAwcDLDTTjutwbIkSUOFQnsTv52qOnYVH+9jwDvp9jLeCXwAeDGQqZqf5jGPBI4EWLhw4ZTrSJLumGGHjx46ML0xsDfwU2CVQqGqrpqYTvJJ4Jvt7lJgx4FVdwCWrUrbkqTVN+zw0asG7yfZAjhuVR8sybZVdWW7+wxg4sykE4HPJfkgsB2wC/DjVW1fkrR6ht1TmOxGujfuaSX5PLAXMC/JUuBtwF5JdqcbGloC/BNAVV2Y5HjgIuAW4JCq8vsQkjRmwx5T+Aa3jfFvANwfOH6mbarquVPM/vQM6x8OHD5MPZKk0Rh2T+H9A9O3AJdW1dIR1CNJmkVDfXmtXRjvF3RXSt0K+Msoi5IkzY5h//Pac+gO/D4beA5wdhIvnS1J65lhh4/eDDy0qq4GSDIf+C7wpVEVJkkav2GvfXSniUBorl2FbSVJ64hh9xS+neRk4PPt/n7ASaMpSZI0W1b2P5rvA2xTVW9I8j+Bv6e7JMWZwGfHUJ8kaYxWNgT0YeAGgKr6SlW9rqpeS7eX8OFRFydJGq+VhcKCqjp/8syqWkT3rzklSeuRlYXCxjMsu+uaLESSNPtWFgo/SfLSyTOTHATM+O84JUnrnpWdffQa4KtJnsdtIbAQuDPdVU4lSeuRGUOh/f+Dv0vyGGC3NvtbVfW9kVcmSRq7Yf+fwmnAaSOuRZI0y/xWsiSpZyhIknqGgiSpZyhIknqGgiSpZyhIknqGgiSpZyhIknqGgiSpZyhIknqGgiSpZyhIknqGgiSpZyhIknojC4UkRyW5OskFA/PunuSUJL9sP7dq85PkiCSLk5yfZI9R1SVJmt4o9xSOBp44ad5hwKlVtQtwarsP8CRgl3Y7GPjYCOuSJE1jZKFQVWcAv5s0e1/gmDZ9DPD0gfnHVucsYMsk246qNknS1MZ9TGGbqroSoP3cus3fHrh8YL2lbd7tJDk4yaIki5YvXz7SYiVprllbDjRnink11YpVdWRVLayqhfPnzx9xWZI0t4w7FK6aGBZqP69u85cCOw6stwOwbMy1SdKcN+5QOBE4oE0fAHx9YP4L21lIewLXTwwzSZLGZ8NRNZzk88BewLwkS4G3Ae8Bjk9yEHAZ8Oy2+knAPsBi4EbgRaOqS5I0vZGFQlU9d5pFe0+xbgGHjKoWSdJw1pYDzZKktYChIEnqGQqSpJ6hIEnqGQqSpJ6hIEnqGQqSpJ6hIEnqGQqSpJ6hIEnqGQqSpJ6hIEnqGQqSpJ6hIEnqGQqSpJ6hIEnqGQqSpJ6hIEnqGQqSpJ6hIEnqGQqSpJ6hIEnqGQqSpJ6hIEnqGQqSpJ6hIEnqGQqSpJ6hIEnqbTgbD5pkCXADsAK4paoWJrk78EVgAbAEeE5V/X426pOkuWo29xQeU1W7V9XCdv8w4NSq2gU4td2XJI3R2jR8tC9wTJs+Bnj6LNYiSXPSbIVCAd9Jck6Sg9u8barqSoD2c+upNkxycJJFSRYtX758TOVK0twwK8cUgEdW1bIkWwOnJPnFsBtW1ZHAkQALFy6sURUoSXPRrOwpVNWy9vNq4KvAw4CrkmwL0H5ePRu1SdJcNvZQSLJpks0npoHHAxcAJwIHtNUOAL4+7tokaa6bjeGjbYCvJpl4/M9V1beT/AQ4PslBwGXAs2ehNkma08YeClX1a+BBU8y/Fth73PVIkm6zNp2SKkmaZYaCJKlnKEiSeoaCJKlnKEiSeoaCJKlnKEiSeoaCJKlnKEiSeoaCJKlnKEiSeoaCJKlnKEiSeoaCJKlnKEiSeoaCJKlnKEiSeoaCJKlnKEiSeoaCJKlnKEiSeoaCJKlnKEiSeoaCJKlnKEiSeoaCJKlnKEiSeoaCJKm31oVCkicmuSTJ4iSHzXY9kjSXrFWhkGQD4KPAk4Bdgecm2XV2q5KkuWOtCgXgYcDiqvp1Vf0F+AKw7yzXJElzxoazXcAk2wOXD9xfCjx8cIUkBwMHt7t/THLJkG3PA65Z7QpXIu8d9SOssrH0ey1l3+emOdH3Kd5rVqXfO0+3YG0LhUwxr/7qTtWRwJGr3HCyqKoW3tHC1lVztd9g3+373LKm+r22DR8tBXYcuL8DsGyWapGkOWdtC4WfALskuWeSOwP7AyfOck2SNGesVcNHVXVLklcCJwMbAEdV1YVrqPlVHnJaT8zVfoN9n6vmat/XSL9TVStfS5I0J6xtw0eSpFlkKEiSeutVKKzsEhlJ7pLki2352UkWjL/K0Rii769LclGS85OcmmTa85TXNcNeGiXJs5JUkvXmdMVh+p7kOe13f2GSz427xlEY4vW+U5LTkvysveb3mY06RyHJUUmuTnLBNMuT5Ij23JyfZI9VeoCqWi9udAemfwXcC7gzcB6w66R1XgF8vE3vD3xxtuseY98fA2zSpl8+l/re1tscOAM4C1g423WP8fe+C/AzYKt2f+vZrntM/T4SeHmb3hVYMtt1r8H+PwrYA7hgmuX7AP9J972vPYGzV6X99WlPYZhLZOwLHNOmvwTsnWSqL8yta1ba96o6rapubHfPovsOyPpg2EujvBP4N+C/x1nciA3T95cCH62q3wNU1dVjrnEUhul3AXdr01uwHn3fqarOAH43wyr7AsdW5yxgyyTbDtv++hQKU10iY/vp1qmqW4DrgXuMpbrRGqbvgw6i+ySxPlhp35M8GNixqr45zsLGYJjf+32B+yb5UZKzkjxxbNWNzjD9fjvw/CRLgZOAV42ntLXCqr4f/JW16nsKq2mll8gYcp110dD9SvJ8YCHw6JFWND4z9j3JnYAPAQeOq6AxGub3viHdENJedHuHP0iyW1VdN+LaRmmYfj8XOLqqPpDkEcBxrd+3jr68Wbda73Pr057CMJfI6NdJsiHdbuVMu2HriqEuD5LkscCbgadV1Z/HVNuorazvmwO7AacnWUI3xnrienKwedjX/Ner6uaq+g1wCV1IrMuG6fdBwPEAVXUmsDHdBePmgtW6XND6FArDXCLjROCANv0s4HvVjsys41ba9zaE8gm6QFgfxpUnzNj3qrq+quZV1YKqWkB3POVpVbVodspdo4Z5zX+N7iQDksyjG0769VirXPOG6fdlwN4ASe5PFwrLx1rl7DkReGE7C2lP4PqqunLYjdeb4aOa5hIZSf4FWFRVJwKfptuNXEy3h7D/7FW85gzZ9/cBmwEntGPrl1XV02at6DVkyL6vl4bs+8nA45NcBKwA3lBV185e1atvyH4fCnwyyWvphk4OXE8+AJLk83TDgfPaMZO3ARsBVNXH6Y6h7AMsBm4EXrRK7a8nz5MkaQ1Yn4aPJEmryVCQJPUMBUlSz1CQJPUMBUlSz1DQnJZkRZJzk1yQ5BtJtpztmgYl+eNs16C5xVDQXHdTVe1eVbvRfXflkHEX0L5dL60VDAXpNmcycOGwJG9I8pN2Tfp3tHmbJvlWkvPa3sV+bf5Dknw/yTlJTp64KmWSl7Y2zkvy5SSbtPlHJ/lgktOA9ybZLMl/JPl5e7xnDtRxeNv+rCTbjPMJ0dxjKEhAkg3oLotwYrv/eLprBD0M2B14SJJHAU8EllXVg9rexbeTbAR8BHhWVT0EOAo4vDX9lap6aFU9CLiY7po8E+4LPLaqDgXeSnc5ggdW1d8C32vrbAqc1bY/g+5S2NLIuNuque6uSc4FFgDnAKe0+Y9vt5+1+5vRhcQPgPcneS/wzar6QZLd6C66d0q7hMgGwMS1ZnZL8i5gy9bGyQOPfUJVrWjTj2XgsisT//8A+Aswccnvc4DHrW6HpZkYCprrbqqq3ZNsQffmewhwBN3lh99dVZ+YvEGSh9BdW+bdSb4DfBW4sKoeMUX7RwNPr6rzkhxId82aCX8abJapL29888A1e1bg36xGzOEjie5qqsA/A69vw0EnAy9OshlAku2TbJ1kO+DGqvoM8H66f4t4CTC/XbefJBsleUBrenPgytbm82Yo4TvAKyfuJNlqzfZQGo6fOqSmqn6W5Dxg/6o6rl1y+cw2JPRH4PnAfYD3JbkVuJnu/wD/JcmzgCPaHseGwIeBC+mOFZwNXAr8nC4kpvIu4KPp/hn7CuAdwFdG1FVpWl4lVZLUc/hIktQzFCRJPUNBktQzFCRJPUNBktQzFCRJPUNBktT7/xWl7Yryhr18AAAAAElFTkSuQmCC\n",
910 | "text/plain": [
911 | ""
912 | ]
913 | },
914 | "metadata": {
915 | "needs_background": "light"
916 | },
917 | "output_type": "display_data"
918 | }
919 | ],
920 | "source": [
921 | "# Visualizing the feature TOEFL\n",
922 | "fig = plt.hist(df['Research'], rwidth=0.7)\n",
923 | "plt.title('Distribution of Research Papers')\n",
924 | "plt.xlabel('Research')\n",
925 | "plt.ylabel('Count')\n",
926 | "plt.show()"
927 | ]
928 | },
929 | {
930 | "cell_type": "markdown",
931 | "metadata": {},
932 | "source": [
933 | "## Data Cleaning"
934 | ]
935 | },
936 | {
937 | "cell_type": "code",
938 | "execution_count": 19,
939 | "metadata": {},
940 | "outputs": [
941 | {
942 | "data": {
943 | "text/html": [
944 | "\n",
945 | "\n",
958 | "
\n",
959 | " \n",
960 | " \n",
961 | " | \n",
962 | " GRE | \n",
963 | " TOEFL | \n",
964 | " University Rating | \n",
965 | " SOP | \n",
966 | " LOR | \n",
967 | " CGPA | \n",
968 | " Research | \n",
969 | " Probability | \n",
970 | "
\n",
971 | " \n",
972 | " \n",
973 | " \n",
974 | " 0 | \n",
975 | " 337 | \n",
976 | " 118 | \n",
977 | " 4 | \n",
978 | " 4.5 | \n",
979 | " 4.5 | \n",
980 | " 9.65 | \n",
981 | " 1 | \n",
982 | " 0.92 | \n",
983 | "
\n",
984 | " \n",
985 | " 1 | \n",
986 | " 324 | \n",
987 | " 107 | \n",
988 | " 4 | \n",
989 | " 4.0 | \n",
990 | " 4.5 | \n",
991 | " 8.87 | \n",
992 | " 1 | \n",
993 | " 0.76 | \n",
994 | "
\n",
995 | " \n",
996 | " 2 | \n",
997 | " 316 | \n",
998 | " 104 | \n",
999 | " 3 | \n",
1000 | " 3.0 | \n",
1001 | " 3.5 | \n",
1002 | " 8.00 | \n",
1003 | " 1 | \n",
1004 | " 0.72 | \n",
1005 | "
\n",
1006 | " \n",
1007 | " 3 | \n",
1008 | " 322 | \n",
1009 | " 110 | \n",
1010 | " 3 | \n",
1011 | " 3.5 | \n",
1012 | " 2.5 | \n",
1013 | " 8.67 | \n",
1014 | " 1 | \n",
1015 | " 0.80 | \n",
1016 | "
\n",
1017 | " \n",
1018 | " 4 | \n",
1019 | " 314 | \n",
1020 | " 103 | \n",
1021 | " 2 | \n",
1022 | " 2.0 | \n",
1023 | " 3.0 | \n",
1024 | " 8.21 | \n",
1025 | " 0 | \n",
1026 | " 0.65 | \n",
1027 | "
\n",
1028 | " \n",
1029 | "
\n",
1030 | "
"
1031 | ],
1032 | "text/plain": [
1033 | " GRE TOEFL University Rating SOP LOR CGPA Research Probability\n",
1034 | "0 337 118 4 4.5 4.5 9.65 1 0.92\n",
1035 | "1 324 107 4 4.0 4.5 8.87 1 0.76\n",
1036 | "2 316 104 3 3.0 3.5 8.00 1 0.72\n",
1037 | "3 322 110 3 3.5 2.5 8.67 1 0.80\n",
1038 | "4 314 103 2 2.0 3.0 8.21 0 0.65"
1039 | ]
1040 | },
1041 | "execution_count": 19,
1042 | "metadata": {},
1043 | "output_type": "execute_result"
1044 | }
1045 | ],
1046 | "source": [
1047 | "# Removing the serial no, column\n",
1048 | "df.drop('Serial No.', axis='columns', inplace=True)\n",
1049 | "df.head()"
1050 | ]
1051 | },
1052 | {
1053 | "cell_type": "code",
1054 | "execution_count": 20,
1055 | "metadata": {},
1056 | "outputs": [
1057 | {
1058 | "data": {
1059 | "text/plain": [
1060 | "GRE 0\n",
1061 | "TOEFL 0\n",
1062 | "University Rating 0\n",
1063 | "SOP 0\n",
1064 | "LOR 0\n",
1065 | "CGPA 0\n",
1066 | "Research 0\n",
1067 | "Probability 0\n",
1068 | "dtype: int64"
1069 | ]
1070 | },
1071 | "execution_count": 20,
1072 | "metadata": {},
1073 | "output_type": "execute_result"
1074 | }
1075 | ],
1076 | "source": [
1077 | "# Replacing the 0 values from ['GRE','TOEFL','University Rating','SOP','LOR','CGPA'] by NaN\n",
1078 | "df_copy = df.copy(deep=True)\n",
1079 | "df_copy[['GRE','TOEFL','University Rating','SOP','LOR','CGPA']] = df_copy[['GRE','TOEFL','University Rating','SOP','LOR','CGPA']].replace(0, np.NaN)\n",
1080 | "df_copy.isnull().sum()"
1081 | ]
1082 | },
1083 | {
1084 | "cell_type": "markdown",
1085 | "metadata": {},
1086 | "source": [
1087 | "## Model Building"
1088 | ]
1089 | },
1090 | {
1091 | "cell_type": "code",
1092 | "execution_count": 21,
1093 | "metadata": {},
1094 | "outputs": [],
1095 | "source": [
1096 | "# Splitting the dataset in features and label\n",
1097 | "X = df_copy.drop('Probability', axis='columns')\n",
1098 | "y = df_copy['Probability']"
1099 | ]
1100 | },
1101 | {
1102 | "cell_type": "code",
1103 | "execution_count": 22,
1104 | "metadata": {},
1105 | "outputs": [],
1106 | "source": [
1107 | "# Using GridSearchCV to find the best algorithm for this problem\n",
1108 | "from sklearn.model_selection import GridSearchCV\n",
1109 | "from sklearn.linear_model import LinearRegression\n",
1110 | "from sklearn.linear_model import Lasso\n",
1111 | "from sklearn.svm import SVR\n",
1112 | "from sklearn.tree import DecisionTreeRegressor\n",
1113 | "from sklearn.ensemble import RandomForestRegressor\n",
1114 | "from sklearn.neighbors import KNeighborsRegressor"
1115 | ]
1116 | },
1117 | {
1118 | "cell_type": "code",
1119 | "execution_count": 23,
1120 | "metadata": {},
1121 | "outputs": [
1122 | {
1123 | "data": {
1124 | "text/html": [
1125 | "\n",
1126 | "\n",
1139 | "
\n",
1140 | " \n",
1141 | " \n",
1142 | " | \n",
1143 | " model | \n",
1144 | " best_parameters | \n",
1145 | " score | \n",
1146 | "
\n",
1147 | " \n",
1148 | " \n",
1149 | " \n",
1150 | " 0 | \n",
1151 | " linear_regression | \n",
1152 | " {'normalize': True} | \n",
1153 | " 0.810802 | \n",
1154 | "
\n",
1155 | " \n",
1156 | " 1 | \n",
1157 | " lasso | \n",
1158 | " {'alpha': 1, 'selection': 'random'} | \n",
1159 | " 0.215088 | \n",
1160 | "
\n",
1161 | " \n",
1162 | " 2 | \n",
1163 | " svr | \n",
1164 | " {'gamma': 'scale'} | \n",
1165 | " 0.654099 | \n",
1166 | "
\n",
1167 | " \n",
1168 | " 3 | \n",
1169 | " decision_tree | \n",
1170 | " {'criterion': 'mse', 'splitter': 'random'} | \n",
1171 | " 0.586808 | \n",
1172 | "
\n",
1173 | " \n",
1174 | " 4 | \n",
1175 | " random_forest | \n",
1176 | " {'n_estimators': 15} | \n",
1177 | " 0.768831 | \n",
1178 | "
\n",
1179 | " \n",
1180 | " 5 | \n",
1181 | " knn | \n",
1182 | " {'n_neighbors': 20} | \n",
1183 | " 0.722961 | \n",
1184 | "
\n",
1185 | " \n",
1186 | "
\n",
1187 | "
"
1188 | ],
1189 | "text/plain": [
1190 | " model best_parameters score\n",
1191 | "0 linear_regression {'normalize': True} 0.810802\n",
1192 | "1 lasso {'alpha': 1, 'selection': 'random'} 0.215088\n",
1193 | "2 svr {'gamma': 'scale'} 0.654099\n",
1194 | "3 decision_tree {'criterion': 'mse', 'splitter': 'random'} 0.586808\n",
1195 | "4 random_forest {'n_estimators': 15} 0.768831\n",
1196 | "5 knn {'n_neighbors': 20} 0.722961"
1197 | ]
1198 | },
1199 | "execution_count": 23,
1200 | "metadata": {},
1201 | "output_type": "execute_result"
1202 | }
1203 | ],
1204 | "source": [
1205 | "# Creating a function to calculate best model for this problem\n",
1206 | "def find_best_model(X, y):\n",
1207 | " models = {\n",
1208 | " 'linear_regression': {\n",
1209 | " 'model': LinearRegression(),\n",
1210 | " 'parameters': {\n",
1211 | " 'normalize': [True,False]\n",
1212 | " }\n",
1213 | " },\n",
1214 | " \n",
1215 | " 'lasso': {\n",
1216 | " 'model': Lasso(),\n",
1217 | " 'parameters': {\n",
1218 | " 'alpha': [1,2],\n",
1219 | " 'selection': ['random', 'cyclic']\n",
1220 | " }\n",
1221 | " },\n",
1222 | " \n",
1223 | " 'svr': {\n",
1224 | " 'model': SVR(),\n",
1225 | " 'parameters': {\n",
1226 | " 'gamma': ['auto','scale']\n",
1227 | " }\n",
1228 | " },\n",
1229 | " \n",
1230 | " 'decision_tree': {\n",
1231 | " 'model': DecisionTreeRegressor(),\n",
1232 | " 'parameters': {\n",
1233 | " 'criterion': ['mse', 'friedman_mse'],\n",
1234 | " 'splitter': ['best', 'random']\n",
1235 | " }\n",
1236 | " },\n",
1237 | " \n",
1238 | " 'random_forest': {\n",
1239 | " 'model': RandomForestRegressor(criterion='mse'),\n",
1240 | " 'parameters': {\n",
1241 | " 'n_estimators': [5,10,15,20]\n",
1242 | " }\n",
1243 | " },\n",
1244 | " \n",
1245 | " 'knn': {\n",
1246 | " 'model': KNeighborsRegressor(algorithm='auto'),\n",
1247 | " 'parameters': {\n",
1248 | " 'n_neighbors': [2,5,10,20]\n",
1249 | " }\n",
1250 | " }\n",
1251 | " }\n",
1252 | " \n",
1253 | " scores = []\n",
1254 | " for model_name, model_params in models.items():\n",
1255 | " gs = GridSearchCV(model_params['model'], model_params['parameters'], cv=5, return_train_score=False)\n",
1256 | " gs.fit(X, y)\n",
1257 | " scores.append({\n",
1258 | " 'model': model_name,\n",
1259 | " 'best_parameters': gs.best_params_,\n",
1260 | " 'score': gs.best_score_\n",
1261 | " })\n",
1262 | " \n",
1263 | " return pd.DataFrame(scores, columns=['model','best_parameters','score'])\n",
1264 | " \n",
1265 | "find_best_model(X, y)"
1266 | ]
1267 | },
1268 | {
1269 | "cell_type": "markdown",
1270 | "metadata": {},
1271 | "source": [
1272 | "#### Since the Linear Regression algorithm has the highest accuracy, the model selected for this problem is Linear Regression."
1273 | ]
1274 | },
1275 | {
1276 | "cell_type": "code",
1277 | "execution_count": 24,
1278 | "metadata": {},
1279 | "outputs": [
1280 | {
1281 | "name": "stdout",
1282 | "output_type": "stream",
1283 | "text": [
1284 | "Highest Accuracy : 81.0%\n"
1285 | ]
1286 | }
1287 | ],
1288 | "source": [
1289 | "# Using cross_val_score for gaining highest accuracy\n",
1290 | "from sklearn.model_selection import cross_val_score\n",
1291 | "scores = cross_val_score(LinearRegression(normalize=True), X, y, cv=5)\n",
1292 | "print('Highest Accuracy : {}%'.format(round(sum(scores)*100/len(scores)), 3))"
1293 | ]
1294 | },
1295 | {
1296 | "cell_type": "code",
1297 | "execution_count": 25,
1298 | "metadata": {},
1299 | "outputs": [
1300 | {
1301 | "name": "stdout",
1302 | "output_type": "stream",
1303 | "text": [
1304 | "400 100\n"
1305 | ]
1306 | }
1307 | ],
1308 | "source": [
1309 | "# Splitting the dataset into train and test samples\n",
1310 | "from sklearn.model_selection import train_test_split\n",
1311 | "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=5)\n",
1312 | "print(len(X_train), len(X_test))"
1313 | ]
1314 | },
1315 | {
1316 | "cell_type": "code",
1317 | "execution_count": 26,
1318 | "metadata": {},
1319 | "outputs": [
1320 | {
1321 | "data": {
1322 | "text/plain": [
1323 | "0.821478736588966"
1324 | ]
1325 | },
1326 | "execution_count": 26,
1327 | "metadata": {},
1328 | "output_type": "execute_result"
1329 | }
1330 | ],
1331 | "source": [
1332 | "# Creating Linear Regression Model\n",
1333 | "model = LinearRegression(normalize=True)\n",
1334 | "model.fit(X_train, y_train)\n",
1335 | "model.score(X_test, y_test)"
1336 | ]
1337 | },
1338 | {
1339 | "cell_type": "markdown",
1340 | "metadata": {},
1341 | "source": [
1342 | "#### Predicting the values using our trained model"
1343 | ]
1344 | },
1345 | {
1346 | "cell_type": "code",
1347 | "execution_count": 28,
1348 | "metadata": {
1349 | "scrolled": true
1350 | },
1351 | "outputs": [
1352 | {
1353 | "name": "stdout",
1354 | "output_type": "stream",
1355 | "text": [
1356 | "Chance of getting into UCLA is 92.855%\n"
1357 | ]
1358 | }
1359 | ],
1360 | "source": [
1361 | "# Prediction 1\n",
1362 | "# Input in the form : GRE, TOEFL, University Rating, SOP, LOR, CGPA, Research\n",
1363 | "print('Chance of getting into UCLA is {}%'.format(round(model.predict([[337, 118, 4, 4.5, 4.5, 9.65, 0]])[0]*100, 3)))"
1364 | ]
1365 | },
1366 | {
1367 | "cell_type": "code",
1368 | "execution_count": 29,
1369 | "metadata": {},
1370 | "outputs": [
1371 | {
1372 | "name": "stdout",
1373 | "output_type": "stream",
1374 | "text": [
1375 | "Chance of getting into UCLA is 73.627%\n"
1376 | ]
1377 | }
1378 | ],
1379 | "source": [
1380 | "# Prediction 2\n",
1381 | "# Input in the form : GRE, TOEFL, University Rating, SOP, LOR, CGPA, Research\n",
1382 | "print('Chance of getting into UCLA is {}%'.format(round(model.predict([[320, 113, 2, 2.0, 2.5, 8.64, 1]])[0]*100, 3)))"
1383 | ]
1384 | }
1385 | ],
1386 | "metadata": {
1387 | "kernelspec": {
1388 | "display_name": "Python 3",
1389 | "language": "python",
1390 | "name": "python3"
1391 | },
1392 | "language_info": {
1393 | "codemirror_mode": {
1394 | "name": "ipython",
1395 | "version": 3
1396 | },
1397 | "file_extension": ".py",
1398 | "mimetype": "text/x-python",
1399 | "name": "python",
1400 | "nbconvert_exporter": "python",
1401 | "pygments_lexer": "ipython3",
1402 | "version": "3.7.4"
1403 | }
1404 | },
1405 | "nbformat": 4,
1406 | "nbformat_minor": 2
1407 | }
1408 |
--------------------------------------------------------------------------------
/Predicting Admission into UCLA/admission_predict.csv:
--------------------------------------------------------------------------------
1 | Serial No.,GRE Score,TOEFL Score,University Rating,SOP,LOR ,CGPA,Research,Chance of Admit
2 | 1,337,118,4,4.5,4.5,9.65,1,0.92
3 | 2,324,107,4,4,4.5,8.87,1,0.76
4 | 3,316,104,3,3,3.5,8,1,0.72
5 | 4,322,110,3,3.5,2.5,8.67,1,0.8
6 | 5,314,103,2,2,3,8.21,0,0.65
7 | 6,330,115,5,4.5,3,9.34,1,0.9
8 | 7,321,109,3,3,4,8.2,1,0.75
9 | 8,308,101,2,3,4,7.9,0,0.68
10 | 9,302,102,1,2,1.5,8,0,0.5
11 | 10,323,108,3,3.5,3,8.6,0,0.45
12 | 11,325,106,3,3.5,4,8.4,1,0.52
13 | 12,327,111,4,4,4.5,9,1,0.84
14 | 13,328,112,4,4,4.5,9.1,1,0.78
15 | 14,307,109,3,4,3,8,1,0.62
16 | 15,311,104,3,3.5,2,8.2,1,0.61
17 | 16,314,105,3,3.5,2.5,8.3,0,0.54
18 | 17,317,107,3,4,3,8.7,0,0.66
19 | 18,319,106,3,4,3,8,1,0.65
20 | 19,318,110,3,4,3,8.8,0,0.63
21 | 20,303,102,3,3.5,3,8.5,0,0.62
22 | 21,312,107,3,3,2,7.9,1,0.64
23 | 22,325,114,4,3,2,8.4,0,0.7
24 | 23,328,116,5,5,5,9.5,1,0.94
25 | 24,334,119,5,5,4.5,9.7,1,0.95
26 | 25,336,119,5,4,3.5,9.8,1,0.97
27 | 26,340,120,5,4.5,4.5,9.6,1,0.94
28 | 27,322,109,5,4.5,3.5,8.8,0,0.76
29 | 28,298,98,2,1.5,2.5,7.5,1,0.44
30 | 29,295,93,1,2,2,7.2,0,0.46
31 | 30,310,99,2,1.5,2,7.3,0,0.54
32 | 31,300,97,2,3,3,8.1,1,0.65
33 | 32,327,103,3,4,4,8.3,1,0.74
34 | 33,338,118,4,3,4.5,9.4,1,0.91
35 | 34,340,114,5,4,4,9.6,1,0.9
36 | 35,331,112,5,4,5,9.8,1,0.94
37 | 36,320,110,5,5,5,9.2,1,0.88
38 | 37,299,106,2,4,4,8.4,0,0.64
39 | 38,300,105,1,1,2,7.8,0,0.58
40 | 39,304,105,1,3,1.5,7.5,0,0.52
41 | 40,307,108,2,4,3.5,7.7,0,0.48
42 | 41,308,110,3,3.5,3,8,1,0.46
43 | 42,316,105,2,2.5,2.5,8.2,1,0.49
44 | 43,313,107,2,2.5,2,8.5,1,0.53
45 | 44,332,117,4,4.5,4,9.1,0,0.87
46 | 45,326,113,5,4.5,4,9.4,1,0.91
47 | 46,322,110,5,5,4,9.1,1,0.88
48 | 47,329,114,5,4,5,9.3,1,0.86
49 | 48,339,119,5,4.5,4,9.7,0,0.89
50 | 49,321,110,3,3.5,5,8.85,1,0.82
51 | 50,327,111,4,3,4,8.4,1,0.78
52 | 51,313,98,3,2.5,4.5,8.3,1,0.76
53 | 52,312,100,2,1.5,3.5,7.9,1,0.56
54 | 53,334,116,4,4,3,8,1,0.78
55 | 54,324,112,4,4,2.5,8.1,1,0.72
56 | 55,322,110,3,3,3.5,8,0,0.7
57 | 56,320,103,3,3,3,7.7,0,0.64
58 | 57,316,102,3,2,3,7.4,0,0.64
59 | 58,298,99,2,4,2,7.6,0,0.46
60 | 59,300,99,1,3,2,6.8,1,0.36
61 | 60,311,104,2,2,2,8.3,0,0.42
62 | 61,309,100,2,3,3,8.1,0,0.48
63 | 62,307,101,3,4,3,8.2,0,0.47
64 | 63,304,105,2,3,3,8.2,1,0.54
65 | 64,315,107,2,4,3,8.5,1,0.56
66 | 65,325,111,3,3,3.5,8.7,0,0.52
67 | 66,325,112,4,3.5,3.5,8.92,0,0.55
68 | 67,327,114,3,3,3,9.02,0,0.61
69 | 68,316,107,2,3.5,3.5,8.64,1,0.57
70 | 69,318,109,3,3.5,4,9.22,1,0.68
71 | 70,328,115,4,4.5,4,9.16,1,0.78
72 | 71,332,118,5,5,5,9.64,1,0.94
73 | 72,336,112,5,5,5,9.76,1,0.96
74 | 73,321,111,5,5,5,9.45,1,0.93
75 | 74,314,108,4,4.5,4,9.04,1,0.84
76 | 75,314,106,3,3,5,8.9,0,0.74
77 | 76,329,114,2,2,4,8.56,1,0.72
78 | 77,327,112,3,3,3,8.72,1,0.74
79 | 78,301,99,2,3,2,8.22,0,0.64
80 | 79,296,95,2,3,2,7.54,1,0.44
81 | 80,294,93,1,1.5,2,7.36,0,0.46
82 | 81,312,105,3,2,3,8.02,1,0.5
83 | 82,340,120,4,5,5,9.5,1,0.96
84 | 83,320,110,5,5,4.5,9.22,1,0.92
85 | 84,322,115,5,4,4.5,9.36,1,0.92
86 | 85,340,115,5,4.5,4.5,9.45,1,0.94
87 | 86,319,103,4,4.5,3.5,8.66,0,0.76
88 | 87,315,106,3,4.5,3.5,8.42,0,0.72
89 | 88,317,107,2,3.5,3,8.28,0,0.66
90 | 89,314,108,3,4.5,3.5,8.14,0,0.64
91 | 90,316,109,4,4.5,3.5,8.76,1,0.74
92 | 91,318,106,2,4,4,7.92,1,0.64
93 | 92,299,97,3,5,3.5,7.66,0,0.38
94 | 93,298,98,2,4,3,8.03,0,0.34
95 | 94,301,97,2,3,3,7.88,1,0.44
96 | 95,303,99,3,2,2.5,7.66,0,0.36
97 | 96,304,100,4,1.5,2.5,7.84,0,0.42
98 | 97,306,100,2,3,3,8,0,0.48
99 | 98,331,120,3,4,4,8.96,1,0.86
100 | 99,332,119,4,5,4.5,9.24,1,0.9
101 | 100,323,113,3,4,4,8.88,1,0.79
102 | 101,322,107,3,3.5,3.5,8.46,1,0.71
103 | 102,312,105,2,2.5,3,8.12,0,0.64
104 | 103,314,106,2,4,3.5,8.25,0,0.62
105 | 104,317,104,2,4.5,4,8.47,0,0.57
106 | 105,326,112,3,3.5,3,9.05,1,0.74
107 | 106,316,110,3,4,4.5,8.78,1,0.69
108 | 107,329,111,4,4.5,4.5,9.18,1,0.87
109 | 108,338,117,4,3.5,4.5,9.46,1,0.91
110 | 109,331,116,5,5,5,9.38,1,0.93
111 | 110,304,103,5,5,4,8.64,0,0.68
112 | 111,305,108,5,3,3,8.48,0,0.61
113 | 112,321,109,4,4,4,8.68,1,0.69
114 | 113,301,107,3,3.5,3.5,8.34,1,0.62
115 | 114,320,110,2,4,3.5,8.56,0,0.72
116 | 115,311,105,3,3.5,3,8.45,1,0.59
117 | 116,310,106,4,4.5,4.5,9.04,1,0.66
118 | 117,299,102,3,4,3.5,8.62,0,0.56
119 | 118,290,104,4,2,2.5,7.46,0,0.45
120 | 119,296,99,2,3,3.5,7.28,0,0.47
121 | 120,327,104,5,3,3.5,8.84,1,0.71
122 | 121,335,117,5,5,5,9.56,1,0.94
123 | 122,334,119,5,4.5,4.5,9.48,1,0.94
124 | 123,310,106,4,1.5,2.5,8.36,0,0.57
125 | 124,308,108,3,3.5,3.5,8.22,0,0.61
126 | 125,301,106,4,2.5,3,8.47,0,0.57
127 | 126,300,100,3,2,3,8.66,1,0.64
128 | 127,323,113,3,4,3,9.32,1,0.85
129 | 128,319,112,3,2.5,2,8.71,1,0.78
130 | 129,326,112,3,3.5,3,9.1,1,0.84
131 | 130,333,118,5,5,5,9.35,1,0.92
132 | 131,339,114,5,4,4.5,9.76,1,0.96
133 | 132,303,105,5,5,4.5,8.65,0,0.77
134 | 133,309,105,5,3.5,3.5,8.56,0,0.71
135 | 134,323,112,5,4,4.5,8.78,0,0.79
136 | 135,333,113,5,4,4,9.28,1,0.89
137 | 136,314,109,4,3.5,4,8.77,1,0.82
138 | 137,312,103,3,5,4,8.45,0,0.76
139 | 138,316,100,2,1.5,3,8.16,1,0.71
140 | 139,326,116,2,4.5,3,9.08,1,0.8
141 | 140,318,109,1,3.5,3.5,9.12,0,0.78
142 | 141,329,110,2,4,3,9.15,1,0.84
143 | 142,332,118,2,4.5,3.5,9.36,1,0.9
144 | 143,331,115,5,4,3.5,9.44,1,0.92
145 | 144,340,120,4,4.5,4,9.92,1,0.97
146 | 145,325,112,2,3,3.5,8.96,1,0.8
147 | 146,320,113,2,2,2.5,8.64,1,0.81
148 | 147,315,105,3,2,2.5,8.48,0,0.75
149 | 148,326,114,3,3,3,9.11,1,0.83
150 | 149,339,116,4,4,3.5,9.8,1,0.96
151 | 150,311,106,2,3.5,3,8.26,1,0.79
152 | 151,334,114,4,4,4,9.43,1,0.93
153 | 152,332,116,5,5,5,9.28,1,0.94
154 | 153,321,112,5,5,5,9.06,1,0.86
155 | 154,324,105,3,3,4,8.75,0,0.79
156 | 155,326,108,3,3,3.5,8.89,0,0.8
157 | 156,312,109,3,3,3,8.69,0,0.77
158 | 157,315,105,3,2,2.5,8.34,0,0.7
159 | 158,309,104,2,2,2.5,8.26,0,0.65
160 | 159,306,106,2,2,2.5,8.14,0,0.61
161 | 160,297,100,1,1.5,2,7.9,0,0.52
162 | 161,315,103,1,1.5,2,7.86,0,0.57
163 | 162,298,99,1,1.5,3,7.46,0,0.53
164 | 163,318,109,3,3,3,8.5,0,0.67
165 | 164,317,105,3,3.5,3,8.56,0,0.68
166 | 165,329,111,4,4.5,4,9.01,1,0.81
167 | 166,322,110,5,4.5,4,8.97,0,0.78
168 | 167,302,102,3,3.5,5,8.33,0,0.65
169 | 168,313,102,3,2,3,8.27,0,0.64
170 | 169,293,97,2,2,4,7.8,1,0.64
171 | 170,311,99,2,2.5,3,7.98,0,0.65
172 | 171,312,101,2,2.5,3.5,8.04,1,0.68
173 | 172,334,117,5,4,4.5,9.07,1,0.89
174 | 173,322,110,4,4,5,9.13,1,0.86
175 | 174,323,113,4,4,4.5,9.23,1,0.89
176 | 175,321,111,4,4,4,8.97,1,0.87
177 | 176,320,111,4,4.5,3.5,8.87,1,0.85
178 | 177,329,119,4,4.5,4.5,9.16,1,0.9
179 | 178,319,110,3,3.5,3.5,9.04,0,0.82
180 | 179,309,108,3,2.5,3,8.12,0,0.72
181 | 180,307,102,3,3,3,8.27,0,0.73
182 | 181,300,104,3,3.5,3,8.16,0,0.71
183 | 182,305,107,2,2.5,2.5,8.42,0,0.71
184 | 183,299,100,2,3,3.5,7.88,0,0.68
185 | 184,314,110,3,4,4,8.8,0,0.75
186 | 185,316,106,2,2.5,4,8.32,0,0.72
187 | 186,327,113,4,4.5,4.5,9.11,1,0.89
188 | 187,317,107,3,3.5,3,8.68,1,0.84
189 | 188,335,118,5,4.5,3.5,9.44,1,0.93
190 | 189,331,115,5,4.5,3.5,9.36,1,0.93
191 | 190,324,112,5,5,5,9.08,1,0.88
192 | 191,324,111,5,4.5,4,9.16,1,0.9
193 | 192,323,110,5,4,5,8.98,1,0.87
194 | 193,322,114,5,4.5,4,8.94,1,0.86
195 | 194,336,118,5,4.5,5,9.53,1,0.94
196 | 195,316,109,3,3.5,3,8.76,0,0.77
197 | 196,307,107,2,3,3.5,8.52,1,0.78
198 | 197,306,105,2,3,2.5,8.26,0,0.73
199 | 198,310,106,2,3.5,2.5,8.33,0,0.73
200 | 199,311,104,3,4.5,4.5,8.43,0,0.7
201 | 200,313,107,3,4,4.5,8.69,0,0.72
202 | 201,317,103,3,2.5,3,8.54,1,0.73
203 | 202,315,110,2,3.5,3,8.46,1,0.72
204 | 203,340,120,5,4.5,4.5,9.91,1,0.97
205 | 204,334,120,5,4,5,9.87,1,0.97
206 | 205,298,105,3,3.5,4,8.54,0,0.69
207 | 206,295,99,2,2.5,3,7.65,0,0.57
208 | 207,315,99,2,3.5,3,7.89,0,0.63
209 | 208,310,102,3,3.5,4,8.02,1,0.66
210 | 209,305,106,2,3,3,8.16,0,0.64
211 | 210,301,104,3,3.5,4,8.12,1,0.68
212 | 211,325,108,4,4.5,4,9.06,1,0.79
213 | 212,328,110,4,5,4,9.14,1,0.82
214 | 213,338,120,4,5,5,9.66,1,0.95
215 | 214,333,119,5,5,4.5,9.78,1,0.96
216 | 215,331,117,4,4.5,5,9.42,1,0.94
217 | 216,330,116,5,5,4.5,9.36,1,0.93
218 | 217,322,112,4,4.5,4.5,9.26,1,0.91
219 | 218,321,109,4,4,4,9.13,1,0.85
220 | 219,324,110,4,3,3.5,8.97,1,0.84
221 | 220,312,104,3,3.5,3.5,8.42,0,0.74
222 | 221,313,103,3,4,4,8.75,0,0.76
223 | 222,316,110,3,3.5,4,8.56,0,0.75
224 | 223,324,113,4,4.5,4,8.79,0,0.76
225 | 224,308,109,2,3,4,8.45,0,0.71
226 | 225,305,105,2,3,2,8.23,0,0.67
227 | 226,296,99,2,2.5,2.5,8.03,0,0.61
228 | 227,306,110,2,3.5,4,8.45,0,0.63
229 | 228,312,110,2,3.5,3,8.53,0,0.64
230 | 229,318,112,3,4,3.5,8.67,0,0.71
231 | 230,324,111,4,3,3,9.01,1,0.82
232 | 231,313,104,3,4,4.5,8.65,0,0.73
233 | 232,319,106,3,3.5,2.5,8.33,1,0.74
234 | 233,312,107,2,2.5,3.5,8.27,0,0.69
235 | 234,304,100,2,2.5,3.5,8.07,0,0.64
236 | 235,330,113,5,5,4,9.31,1,0.91
237 | 236,326,111,5,4.5,4,9.23,1,0.88
238 | 237,325,112,4,4,4.5,9.17,1,0.85
239 | 238,329,114,5,4.5,5,9.19,1,0.86
240 | 239,310,104,3,2,3.5,8.37,0,0.7
241 | 240,299,100,1,1.5,2,7.89,0,0.59
242 | 241,296,101,1,2.5,3,7.68,0,0.6
243 | 242,317,103,2,2.5,2,8.15,0,0.65
244 | 243,324,115,3,3.5,3,8.76,1,0.7
245 | 244,325,114,3,3.5,3,9.04,1,0.76
246 | 245,314,107,2,2.5,4,8.56,0,0.63
247 | 246,328,110,4,4,2.5,9.02,1,0.81
248 | 247,316,105,3,3,3.5,8.73,0,0.72
249 | 248,311,104,2,2.5,3.5,8.48,0,0.71
250 | 249,324,110,3,3.5,4,8.87,1,0.8
251 | 250,321,111,3,3.5,4,8.83,1,0.77
252 | 251,320,104,3,3,2.5,8.57,1,0.74
253 | 252,316,99,2,2.5,3,9,0,0.7
254 | 253,318,100,2,2.5,3.5,8.54,1,0.71
255 | 254,335,115,4,4.5,4.5,9.68,1,0.93
256 | 255,321,114,4,4,5,9.12,0,0.85
257 | 256,307,110,4,4,4.5,8.37,0,0.79
258 | 257,309,99,3,4,4,8.56,0,0.76
259 | 258,324,100,3,4,5,8.64,1,0.78
260 | 259,326,102,4,5,5,8.76,1,0.77
261 | 260,331,119,4,5,4.5,9.34,1,0.9
262 | 261,327,108,5,5,3.5,9.13,1,0.87
263 | 262,312,104,3,3.5,4,8.09,0,0.71
264 | 263,308,103,2,2.5,4,8.36,1,0.7
265 | 264,324,111,3,2.5,1.5,8.79,1,0.7
266 | 265,325,110,2,3,2.5,8.76,1,0.75
267 | 266,313,102,3,2.5,2.5,8.68,0,0.71
268 | 267,312,105,2,2,2.5,8.45,0,0.72
269 | 268,314,107,3,3,3.5,8.17,1,0.73
270 | 269,327,113,4,4.5,5,9.14,0,0.83
271 | 270,308,108,4,4.5,5,8.34,0,0.77
272 | 271,306,105,2,2.5,3,8.22,1,0.72
273 | 272,299,96,2,1.5,2,7.86,0,0.54
274 | 273,294,95,1,1.5,1.5,7.64,0,0.49
275 | 274,312,99,1,1,1.5,8.01,1,0.52
276 | 275,315,100,1,2,2.5,7.95,0,0.58
277 | 276,322,110,3,3.5,3,8.96,1,0.78
278 | 277,329,113,5,5,4.5,9.45,1,0.89
279 | 278,320,101,2,2.5,3,8.62,0,0.7
280 | 279,308,103,2,3,3.5,8.49,0,0.66
281 | 280,304,102,2,3,4,8.73,0,0.67
282 | 281,311,102,3,4.5,4,8.64,1,0.68
283 | 282,317,110,3,4,4.5,9.11,1,0.8
284 | 283,312,106,3,4,3.5,8.79,1,0.81
285 | 284,321,111,3,2.5,3,8.9,1,0.8
286 | 285,340,112,4,5,4.5,9.66,1,0.94
287 | 286,331,116,5,4,4,9.26,1,0.93
288 | 287,336,118,5,4.5,4,9.19,1,0.92
289 | 288,324,114,5,5,4.5,9.08,1,0.89
290 | 289,314,104,4,5,5,9.02,0,0.82
291 | 290,313,109,3,4,3.5,9,0,0.79
292 | 291,307,105,2,2.5,3,7.65,0,0.58
293 | 292,300,102,2,1.5,2,7.87,0,0.56
294 | 293,302,99,2,1,2,7.97,0,0.56
295 | 294,312,98,1,3.5,3,8.18,1,0.64
296 | 295,316,101,2,2.5,2,8.32,1,0.61
297 | 296,317,100,2,3,2.5,8.57,0,0.68
298 | 297,310,107,3,3.5,3.5,8.67,0,0.76
299 | 298,320,120,3,4,4.5,9.11,0,0.86
300 | 299,330,114,3,4.5,4.5,9.24,1,0.9
301 | 300,305,112,3,3,3.5,8.65,0,0.71
302 | 301,309,106,2,2.5,2.5,8,0,0.62
303 | 302,319,108,2,2.5,3,8.76,0,0.66
304 | 303,322,105,2,3,3,8.45,1,0.65
305 | 304,323,107,3,3.5,3.5,8.55,1,0.73
306 | 305,313,106,2,2.5,2,8.43,0,0.62
307 | 306,321,109,3,3.5,3.5,8.8,1,0.74
308 | 307,323,110,3,4,3.5,9.1,1,0.79
309 | 308,325,112,4,4,4,9,1,0.8
310 | 309,312,108,3,3.5,3,8.53,0,0.69
311 | 310,308,110,4,3.5,3,8.6,0,0.7
312 | 311,320,104,3,3,3.5,8.74,1,0.76
313 | 312,328,108,4,4.5,4,9.18,1,0.84
314 | 313,311,107,4,4.5,4.5,9,1,0.78
315 | 314,301,100,3,3.5,3,8.04,0,0.67
316 | 315,305,105,2,3,4,8.13,0,0.66
317 | 316,308,104,2,2.5,3,8.07,0,0.65
318 | 317,298,101,2,1.5,2,7.86,0,0.54
319 | 318,300,99,1,1,2.5,8.01,0,0.58
320 | 319,324,111,3,2.5,2,8.8,1,0.79
321 | 320,327,113,4,3.5,3,8.69,1,0.8
322 | 321,317,106,3,4,3.5,8.5,1,0.75
323 | 322,323,104,3,4,4,8.44,1,0.73
324 | 323,314,107,2,2.5,4,8.27,0,0.72
325 | 324,305,102,2,2,2.5,8.18,0,0.62
326 | 325,315,104,3,3,2.5,8.33,0,0.67
327 | 326,326,116,3,3.5,4,9.14,1,0.81
328 | 327,299,100,3,2,2,8.02,0,0.63
329 | 328,295,101,2,2.5,2,7.86,0,0.69
330 | 329,324,112,4,4,3.5,8.77,1,0.8
331 | 330,297,96,2,2.5,1.5,7.89,0,0.43
332 | 331,327,113,3,3.5,3,8.66,1,0.8
333 | 332,311,105,2,3,2,8.12,1,0.73
334 | 333,308,106,3,3.5,2.5,8.21,1,0.75
335 | 334,319,108,3,3,3.5,8.54,1,0.71
336 | 335,312,107,4,4.5,4,8.65,1,0.73
337 | 336,325,111,4,4,4.5,9.11,1,0.83
338 | 337,319,110,3,3,2.5,8.79,0,0.72
339 | 338,332,118,5,5,5,9.47,1,0.94
340 | 339,323,108,5,4,4,8.74,1,0.81
341 | 340,324,107,5,3.5,4,8.66,1,0.81
342 | 341,312,107,3,3,3,8.46,1,0.75
343 | 342,326,110,3,3.5,3.5,8.76,1,0.79
344 | 343,308,106,3,3,3,8.24,0,0.58
345 | 344,305,103,2,2.5,3.5,8.13,0,0.59
346 | 345,295,96,2,1.5,2,7.34,0,0.47
347 | 346,316,98,1,1.5,2,7.43,0,0.49
348 | 347,304,97,2,1.5,2,7.64,0,0.47
349 | 348,299,94,1,1,1,7.34,0,0.42
350 | 349,302,99,1,2,2,7.25,0,0.57
351 | 350,313,101,3,2.5,3,8.04,0,0.62
352 | 351,318,107,3,3,3.5,8.27,1,0.74
353 | 352,325,110,4,3.5,4,8.67,1,0.73
354 | 353,303,100,2,3,3.5,8.06,1,0.64
355 | 354,300,102,3,3.5,2.5,8.17,0,0.63
356 | 355,297,98,2,2.5,3,7.67,0,0.59
357 | 356,317,106,2,2,3.5,8.12,0,0.73
358 | 357,327,109,3,3.5,4,8.77,1,0.79
359 | 358,301,104,2,3.5,3.5,7.89,1,0.68
360 | 359,314,105,2,2.5,2,7.64,0,0.7
361 | 360,321,107,2,2,1.5,8.44,0,0.81
362 | 361,322,110,3,4,5,8.64,1,0.85
363 | 362,334,116,4,4,3.5,9.54,1,0.93
364 | 363,338,115,5,4.5,5,9.23,1,0.91
365 | 364,306,103,2,2.5,3,8.36,0,0.69
366 | 365,313,102,3,3.5,4,8.9,1,0.77
367 | 366,330,114,4,4.5,3,9.17,1,0.86
368 | 367,320,104,3,3.5,4.5,8.34,1,0.74
369 | 368,311,98,1,1,2.5,7.46,0,0.57
370 | 369,298,92,1,2,2,7.88,0,0.51
371 | 370,301,98,1,2,3,8.03,1,0.67
372 | 371,310,103,2,2.5,2.5,8.24,0,0.72
373 | 372,324,110,3,3.5,3,9.22,1,0.89
374 | 373,336,119,4,4.5,4,9.62,1,0.95
375 | 374,321,109,3,3,3,8.54,1,0.79
376 | 375,315,105,2,2,2.5,7.65,0,0.39
377 | 376,304,101,2,2,2.5,7.66,0,0.38
378 | 377,297,96,2,2.5,2,7.43,0,0.34
379 | 378,290,100,1,1.5,2,7.56,0,0.47
380 | 379,303,98,1,2,2.5,7.65,0,0.56
381 | 380,311,99,1,2.5,3,8.43,1,0.71
382 | 381,322,104,3,3.5,4,8.84,1,0.78
383 | 382,319,105,3,3,3.5,8.67,1,0.73
384 | 383,324,110,4,4.5,4,9.15,1,0.82
385 | 384,300,100,3,3,3.5,8.26,0,0.62
386 | 385,340,113,4,5,5,9.74,1,0.96
387 | 386,335,117,5,5,5,9.82,1,0.96
388 | 387,302,101,2,2.5,3.5,7.96,0,0.46
389 | 388,307,105,2,2,3.5,8.1,0,0.53
390 | 389,296,97,2,1.5,2,7.8,0,0.49
391 | 390,320,108,3,3.5,4,8.44,1,0.76
392 | 391,314,102,2,2,2.5,8.24,0,0.64
393 | 392,318,106,3,2,3,8.65,0,0.71
394 | 393,326,112,4,4,3.5,9.12,1,0.84
395 | 394,317,104,2,3,3,8.76,0,0.77
396 | 395,329,111,4,4.5,4,9.23,1,0.89
397 | 396,324,110,3,3.5,3.5,9.04,1,0.82
398 | 397,325,107,3,3,3.5,9.11,1,0.84
399 | 398,330,116,4,5,4.5,9.45,1,0.91
400 | 399,312,103,3,3.5,4,8.78,0,0.67
401 | 400,333,117,4,5,4,9.66,1,0.95
402 | 401,304,100,2,3.5,3,8.22,0,0.63
403 | 402,315,105,2,3,3,8.34,0,0.66
404 | 403,324,109,3,3.5,3,8.94,1,0.78
405 | 404,330,116,4,4,3.5,9.23,1,0.91
406 | 405,311,101,3,2,2.5,7.64,1,0.62
407 | 406,302,99,3,2.5,3,7.45,0,0.52
408 | 407,322,103,4,3,2.5,8.02,1,0.61
409 | 408,298,100,3,2.5,4,7.95,1,0.58
410 | 409,297,101,3,2,4,7.67,1,0.57
411 | 410,300,98,1,2,2.5,8.02,0,0.61
412 | 411,301,96,1,3,4,7.56,0,0.54
413 | 412,313,94,2,2.5,1.5,8.13,0,0.56
414 | 413,314,102,4,2.5,2,7.88,1,0.59
415 | 414,317,101,3,3,2,7.94,1,0.49
416 | 415,321,110,4,3.5,4,8.35,1,0.72
417 | 416,327,106,4,4,4.5,8.75,1,0.76
418 | 417,315,104,3,4,2.5,8.1,0,0.65
419 | 418,316,103,3,3.5,2,7.68,0,0.52
420 | 419,309,111,2,2.5,4,8.03,0,0.6
421 | 420,308,102,2,2,3.5,7.98,1,0.58
422 | 421,299,100,3,2,3,7.42,0,0.42
423 | 422,321,112,3,3,4.5,8.95,1,0.77
424 | 423,322,112,4,3.5,2.5,9.02,1,0.73
425 | 424,334,119,5,4.5,5,9.54,1,0.94
426 | 425,325,114,5,4,5,9.46,1,0.91
427 | 426,323,111,5,4,5,9.86,1,0.92
428 | 427,312,106,3,3,5,8.57,0,0.71
429 | 428,310,101,3,3.5,5,8.65,1,0.71
430 | 429,316,103,2,2,4.5,8.74,0,0.69
431 | 430,340,115,5,5,4.5,9.06,1,0.95
432 | 431,311,104,3,4,3.5,8.13,1,0.74
433 | 432,320,112,2,3.5,3.5,8.78,1,0.73
434 | 433,324,112,4,4.5,4,9.22,1,0.86
435 | 434,316,111,4,4,5,8.54,0,0.71
436 | 435,306,103,3,3.5,3,8.21,0,0.64
437 | 436,309,105,2,2.5,4,7.68,0,0.55
438 | 437,310,110,1,1.5,4,7.23,1,0.58
439 | 438,317,106,1,1.5,3.5,7.65,1,0.61
440 | 439,318,110,1,2.5,3.5,8.54,1,0.67
441 | 440,312,105,2,1.5,3,8.46,0,0.66
442 | 441,305,104,2,2.5,1.5,7.79,0,0.53
443 | 442,332,112,1,1.5,3,8.66,1,0.79
444 | 443,331,116,4,4.5,4.5,9.44,1,0.92
445 | 444,321,114,5,4.5,4.5,9.16,1,0.87
446 | 445,324,113,5,4,5,9.25,1,0.92
447 | 446,328,116,5,4.5,5,9.08,1,0.91
448 | 447,327,118,4,5,5,9.67,1,0.93
449 | 448,320,108,3,3.5,5,8.97,1,0.84
450 | 449,312,109,2,2.5,4,9.02,0,0.8
451 | 450,315,101,3,3.5,4.5,9.13,0,0.79
452 | 451,320,112,4,3,4.5,8.86,1,0.82
453 | 452,324,113,4,4.5,4.5,9.25,1,0.89
454 | 453,328,116,4,5,3.5,9.6,1,0.93
455 | 454,319,103,3,2.5,4,8.76,1,0.73
456 | 455,310,105,2,3,3.5,8.01,0,0.71
457 | 456,305,102,2,1.5,2.5,7.64,0,0.59
458 | 457,299,100,2,2,2,7.88,0,0.51
459 | 458,295,99,1,2,1.5,7.57,0,0.37
460 | 459,312,100,1,3,3,8.53,1,0.69
461 | 460,329,113,4,4,3.5,9.36,1,0.89
462 | 461,319,105,4,4,4.5,8.66,1,0.77
463 | 462,301,102,3,2.5,2,8.13,1,0.68
464 | 463,307,105,4,3,3,7.94,0,0.62
465 | 464,304,107,3,3.5,3,7.86,0,0.57
466 | 465,298,97,2,2,3,7.21,0,0.45
467 | 466,305,96,4,3,4.5,8.26,0,0.54
468 | 467,314,99,4,3.5,4.5,8.73,1,0.71
469 | 468,318,101,5,3.5,5,8.78,1,0.78
470 | 469,323,110,4,4,5,8.88,1,0.81
471 | 470,326,114,4,4,3.5,9.16,1,0.86
472 | 471,320,110,5,4,4,9.27,1,0.87
473 | 472,311,103,3,2,4,8.09,0,0.64
474 | 473,327,116,4,4,4.5,9.48,1,0.9
475 | 474,316,102,2,4,3.5,8.15,0,0.67
476 | 475,308,105,4,3,2.5,7.95,1,0.67
477 | 476,300,101,3,3.5,2.5,7.88,0,0.59
478 | 477,304,104,3,2.5,2,8.12,0,0.62
479 | 478,309,105,4,3.5,2,8.18,0,0.65
480 | 479,318,103,3,4,4.5,8.49,1,0.71
481 | 480,325,110,4,4.5,4,8.96,1,0.79
482 | 481,321,102,3,3.5,4,9.01,1,0.8
483 | 482,323,107,4,3,2.5,8.48,1,0.78
484 | 483,328,113,4,4,2.5,8.77,1,0.83
485 | 484,304,103,5,5,3,7.92,0,0.71
486 | 485,317,106,3,3.5,3,7.89,1,0.73
487 | 486,311,101,2,2.5,3.5,8.34,1,0.7
488 | 487,319,102,3,2.5,2.5,8.37,0,0.68
489 | 488,327,115,4,3.5,4,9.14,0,0.79
490 | 489,322,112,3,3,4,8.62,1,0.76
491 | 490,302,110,3,4,4.5,8.5,0,0.65
492 | 491,307,105,2,2.5,4.5,8.12,1,0.67
493 | 492,297,99,4,3,3.5,7.81,0,0.54
494 | 493,298,101,4,2.5,4.5,7.69,1,0.53
495 | 494,300,95,2,3,1.5,8.22,1,0.62
496 | 495,301,99,3,2.5,2,8.45,1,0.68
497 | 496,332,108,5,4.5,4,9.02,1,0.87
498 | 497,337,117,5,5,5,9.87,1,0.96
499 | 498,330,120,5,4.5,5,9.56,1,0.93
500 | 499,312,103,4,4,5,8.43,0,0.73
501 | 500,327,113,4,4.5,4.5,9.04,0,0.84
502 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Machine Learning Projects
2 |   
3 |
4 | 
5 |
6 | ## Why this repository?
7 | • The main purpose of making this repository is to keep all my Machine Learning projects at one place, hence keeping my GitHub clean!
8 | • It looks good, isn't it?
9 |
10 | ## Overview
11 | • This repository consists of all my Machine Learning projects.
12 | • Datasets are provided in each of the folders above, and the solution to the problem statements as well.
13 |
14 | ## Algorithms used
15 | **Regression:**
16 | • _Linear Regression_
17 | • _Multiple-Linear Regression_
18 | • _Logistic Regression_
19 | • _Polynomial Regression_
20 | • _Lasso and Ridge Regression (L1 & L2 Regularization)_
21 | • _Elastic-Net Regression_
22 |
23 | **Classification:**
24 | • _K-Nearest Neighbours_
25 | • _Support Vector Machine_
26 | • _Naive Bayes_
27 | • _Decision Tree_
28 |
29 | **Clustering:**
30 | • _K-Means_
31 |
32 | **Ensemble:**
33 | • _Random Forest_
34 | • _Adaptive Boosting (AdaBoost)_
35 | • _Extreme Gradient Boosting (XGBoost)_
36 | • _Voting (Hard/Soft)_
37 |
38 | **Do ⭐ the repository, if it helped you in anyway.**
39 |
--------------------------------------------------------------------------------
/readme-resources/data-scientist-salary-banner.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/anujvyas/Machine-Learning-Projects/6c39c0616e01b4603f21c5072b348b0719d2e87b/readme-resources/data-scientist-salary-banner.png
--------------------------------------------------------------------------------
/readme-resources/machine-learning.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/anujvyas/Machine-Learning-Projects/6c39c0616e01b4603f21c5072b348b0719d2e87b/readme-resources/machine-learning.png
--------------------------------------------------------------------------------