├── CNAME ├── arrays.classes.html ├── arrays.datetime.html ├── arrays.dtypes.html ├── arrays.html ├── arrays.indexing.html ├── arrays.interface.html ├── arrays.ndarray.html ├── arrays.nditer.html ├── arrays.scalars.html ├── c-api.array.html ├── c-api.config.html ├── c-api.coremath.html ├── c-api.deprecations.html ├── c-api.dtype.html ├── c-api.generalized-ufuncs.html ├── c-api.html ├── c-api.iterator.html ├── c-api.types-and-structures.html ├── c-api.ufunc.html ├── distutils.html ├── generated ├── numpy.DataSource.abspath.html ├── numpy.DataSource.exists.html ├── numpy.DataSource.html ├── numpy.DataSource.open.html ├── numpy.MachAr.html ├── numpy.RankWarning.html ├── numpy.absolute.html ├── numpy.add.html ├── numpy.all.html ├── numpy.allclose.html ├── numpy.alterdot.html ├── numpy.amax.html ├── numpy.amin.html ├── numpy.angle.html ├── numpy.any.html ├── numpy.append.html ├── numpy.apply_along_axis.html ├── numpy.apply_over_axes.html ├── numpy.arange.html ├── numpy.arccos.html ├── numpy.arccosh.html ├── numpy.arcsin.html ├── numpy.arcsinh.html ├── numpy.arctan.html ├── numpy.arctan2.html ├── numpy.arctanh.html ├── numpy.argmax.html ├── numpy.argmin.html ├── numpy.argpartition.html ├── numpy.argsort.html ├── numpy.argwhere.html ├── numpy.around.html ├── numpy.array.html ├── numpy.array2string.html ├── numpy.array_equal.html ├── numpy.array_equiv.html ├── numpy.array_repr.html ├── numpy.array_split.html ├── numpy.array_str.html ├── numpy.asanyarray.html ├── numpy.asarray.html ├── numpy.asarray_chkfinite.html ├── numpy.ascontiguousarray.html ├── numpy.asfarray.html ├── numpy.asfortranarray.html ├── numpy.asmatrix.html ├── numpy.asscalar.html ├── numpy.atleast_1d.html ├── numpy.atleast_2d.html ├── numpy.atleast_3d.html ├── numpy.average.html ├── numpy.bartlett.html ├── numpy.base_repr.html ├── numpy.binary_repr.html ├── numpy.bincount.html ├── numpy.bitwise_and.html ├── numpy.bitwise_or.html ├── numpy.bitwise_xor.html ├── numpy.blackman.html ├── numpy.bmat.html ├── numpy.broadcast.html ├── numpy.broadcast.index.html ├── numpy.broadcast.iters.html ├── numpy.broadcast.next.html ├── numpy.broadcast.reset.html ├── numpy.broadcast.shape.html ├── numpy.broadcast.size.html ├── numpy.broadcast_arrays.html ├── numpy.broadcast_to.html ├── numpy.busday_count.html ├── numpy.busday_offset.html ├── numpy.busdaycalendar.holidays.html ├── numpy.busdaycalendar.html ├── numpy.busdaycalendar.weekmask.html ├── numpy.c_.html ├── numpy.can_cast.html ├── numpy.cbrt.html ├── numpy.ceil.html ├── numpy.chararray.T.html ├── numpy.chararray.astype.html ├── numpy.chararray.base.html ├── numpy.chararray.copy.html ├── numpy.chararray.count.html ├── numpy.chararray.ctypes.html ├── numpy.chararray.data.html ├── numpy.chararray.decode.html ├── numpy.chararray.dtype.html ├── numpy.chararray.dump.html ├── numpy.chararray.dumps.html ├── numpy.chararray.encode.html ├── numpy.chararray.endswith.html ├── numpy.chararray.expandtabs.html ├── numpy.chararray.fill.html ├── numpy.chararray.find.html ├── numpy.chararray.flags.html ├── numpy.chararray.flat.html ├── numpy.chararray.flatten.html ├── numpy.chararray.getfield.html ├── numpy.chararray.html ├── numpy.chararray.imag.html ├── numpy.chararray.index.html ├── numpy.chararray.isalnum.html ├── numpy.chararray.isalpha.html ├── numpy.chararray.isdecimal.html ├── numpy.chararray.isdigit.html ├── numpy.chararray.islower.html ├── numpy.chararray.isnumeric.html ├── numpy.chararray.isspace.html ├── numpy.chararray.istitle.html ├── numpy.chararray.isupper.html ├── numpy.chararray.item.html ├── numpy.chararray.itemsize.html ├── numpy.chararray.join.html ├── numpy.chararray.ljust.html ├── numpy.chararray.lower.html ├── numpy.chararray.lstrip.html ├── numpy.chararray.nbytes.html ├── numpy.chararray.ndim.html ├── numpy.chararray.nonzero.html ├── numpy.chararray.put.html ├── numpy.chararray.ravel.html ├── numpy.chararray.real.html ├── numpy.chararray.repeat.html ├── numpy.chararray.replace.html ├── numpy.chararray.reshape.html ├── numpy.chararray.resize.html ├── numpy.chararray.rfind.html ├── numpy.chararray.rindex.html ├── numpy.chararray.rjust.html ├── numpy.chararray.rsplit.html ├── numpy.chararray.rstrip.html ├── numpy.chararray.searchsorted.html ├── numpy.chararray.setfield.html ├── numpy.chararray.setflags.html ├── numpy.chararray.shape.html ├── numpy.chararray.size.html ├── numpy.chararray.sort.html ├── numpy.chararray.split.html ├── numpy.chararray.splitlines.html ├── numpy.chararray.squeeze.html ├── numpy.chararray.startswith.html ├── numpy.chararray.strides.html ├── numpy.chararray.strip.html ├── numpy.chararray.swapaxes.html ├── numpy.chararray.swapcase.html ├── numpy.chararray.take.html ├── numpy.chararray.title.html ├── numpy.chararray.tofile.html ├── numpy.chararray.tolist.html ├── numpy.chararray.tostring.html ├── numpy.chararray.translate.html ├── numpy.chararray.transpose.html ├── numpy.chararray.upper.html ├── numpy.chararray.view.html ├── numpy.chararray.zfill.html ├── numpy.choose.html ├── numpy.clip.html ├── numpy.column_stack.html ├── numpy.common_type.html ├── numpy.compress.html ├── numpy.concatenate.html ├── numpy.conj.html ├── numpy.convolve.html ├── numpy.copy.html ├── numpy.copysign.html ├── numpy.copyto.html ├── numpy.core.defchararray.add.html ├── numpy.core.defchararray.array.html ├── numpy.core.defchararray.asarray.html ├── numpy.core.defchararray.capitalize.html ├── numpy.core.defchararray.center.html ├── numpy.core.defchararray.chararray.T.html ├── numpy.core.defchararray.chararray.astype.html ├── numpy.core.defchararray.chararray.base.html ├── numpy.core.defchararray.chararray.copy.html ├── numpy.core.defchararray.chararray.count.html ├── numpy.core.defchararray.chararray.ctypes.html ├── numpy.core.defchararray.chararray.data.html ├── numpy.core.defchararray.chararray.decode.html ├── numpy.core.defchararray.chararray.dtype.html ├── numpy.core.defchararray.chararray.dump.html ├── numpy.core.defchararray.chararray.dumps.html ├── numpy.core.defchararray.chararray.encode.html ├── numpy.core.defchararray.chararray.endswith.html ├── numpy.core.defchararray.chararray.expandtabs.html ├── numpy.core.defchararray.chararray.fill.html ├── numpy.core.defchararray.chararray.find.html ├── numpy.core.defchararray.chararray.flags.html ├── numpy.core.defchararray.chararray.flat.html ├── numpy.core.defchararray.chararray.flatten.html ├── numpy.core.defchararray.chararray.getfield.html ├── numpy.core.defchararray.chararray.html ├── numpy.core.defchararray.chararray.imag.html ├── numpy.core.defchararray.chararray.index.html ├── numpy.core.defchararray.chararray.isalnum.html ├── numpy.core.defchararray.chararray.isalpha.html ├── numpy.core.defchararray.chararray.isdecimal.html ├── numpy.core.defchararray.chararray.isdigit.html ├── numpy.core.defchararray.chararray.islower.html ├── numpy.core.defchararray.chararray.isnumeric.html ├── numpy.core.defchararray.chararray.isspace.html ├── numpy.core.defchararray.chararray.istitle.html ├── numpy.core.defchararray.chararray.isupper.html ├── numpy.core.defchararray.chararray.item.html ├── numpy.core.defchararray.chararray.itemsize.html ├── numpy.core.defchararray.chararray.join.html ├── numpy.core.defchararray.chararray.ljust.html ├── numpy.core.defchararray.chararray.lower.html ├── numpy.core.defchararray.chararray.lstrip.html ├── numpy.core.defchararray.chararray.nbytes.html ├── numpy.core.defchararray.chararray.ndim.html ├── numpy.core.defchararray.chararray.nonzero.html ├── numpy.core.defchararray.chararray.put.html ├── numpy.core.defchararray.chararray.ravel.html ├── numpy.core.defchararray.chararray.real.html ├── numpy.core.defchararray.chararray.repeat.html ├── numpy.core.defchararray.chararray.replace.html ├── numpy.core.defchararray.chararray.reshape.html ├── numpy.core.defchararray.chararray.resize.html ├── numpy.core.defchararray.chararray.rfind.html ├── numpy.core.defchararray.chararray.rindex.html ├── numpy.core.defchararray.chararray.rjust.html ├── numpy.core.defchararray.chararray.rsplit.html ├── numpy.core.defchararray.chararray.rstrip.html ├── numpy.core.defchararray.chararray.searchsorted.html ├── numpy.core.defchararray.chararray.setfield.html ├── numpy.core.defchararray.chararray.setflags.html ├── numpy.core.defchararray.chararray.shape.html ├── numpy.core.defchararray.chararray.size.html ├── numpy.core.defchararray.chararray.sort.html ├── numpy.core.defchararray.chararray.split.html ├── numpy.core.defchararray.chararray.splitlines.html ├── numpy.core.defchararray.chararray.squeeze.html ├── numpy.core.defchararray.chararray.startswith.html ├── numpy.core.defchararray.chararray.strides.html ├── numpy.core.defchararray.chararray.strip.html ├── numpy.core.defchararray.chararray.swapaxes.html ├── numpy.core.defchararray.chararray.swapcase.html ├── numpy.core.defchararray.chararray.take.html ├── numpy.core.defchararray.chararray.title.html ├── numpy.core.defchararray.chararray.tofile.html ├── numpy.core.defchararray.chararray.tolist.html ├── numpy.core.defchararray.chararray.tostring.html ├── numpy.core.defchararray.chararray.translate.html ├── numpy.core.defchararray.chararray.transpose.html ├── numpy.core.defchararray.chararray.upper.html ├── numpy.core.defchararray.chararray.view.html ├── numpy.core.defchararray.chararray.zfill.html ├── numpy.core.defchararray.count.html ├── numpy.core.defchararray.decode.html ├── numpy.core.defchararray.encode.html ├── numpy.core.defchararray.equal.html ├── numpy.core.defchararray.find.html ├── numpy.core.defchararray.greater.html ├── numpy.core.defchararray.greater_equal.html ├── numpy.core.defchararray.index.html ├── numpy.core.defchararray.isalpha.html ├── numpy.core.defchararray.isdecimal.html ├── numpy.core.defchararray.isdigit.html ├── numpy.core.defchararray.islower.html ├── numpy.core.defchararray.isnumeric.html ├── numpy.core.defchararray.isspace.html ├── numpy.core.defchararray.istitle.html ├── numpy.core.defchararray.isupper.html ├── numpy.core.defchararray.join.html ├── numpy.core.defchararray.less.html ├── numpy.core.defchararray.less_equal.html ├── numpy.core.defchararray.ljust.html ├── numpy.core.defchararray.lower.html ├── numpy.core.defchararray.lstrip.html ├── numpy.core.defchararray.mod.html ├── numpy.core.defchararray.multiply.html ├── numpy.core.defchararray.not_equal.html ├── numpy.core.defchararray.partition.html ├── numpy.core.defchararray.replace.html ├── numpy.core.defchararray.rfind.html ├── numpy.core.defchararray.rindex.html ├── numpy.core.defchararray.rjust.html ├── numpy.core.defchararray.rpartition.html ├── numpy.core.defchararray.rsplit.html ├── numpy.core.defchararray.rstrip.html ├── numpy.core.defchararray.split.html ├── numpy.core.defchararray.splitlines.html ├── numpy.core.defchararray.startswith.html ├── numpy.core.defchararray.strip.html ├── numpy.core.defchararray.swapcase.html ├── numpy.core.defchararray.title.html ├── numpy.core.defchararray.translate.html ├── numpy.core.defchararray.upper.html ├── numpy.core.defchararray.zfill.html ├── numpy.core.records.array.html ├── numpy.core.records.fromarrays.html ├── numpy.core.records.fromfile.html ├── numpy.core.records.fromrecords.html ├── numpy.core.records.fromstring.html ├── numpy.corrcoef.html ├── numpy.correlate.html ├── numpy.cos.html ├── numpy.cosh.html ├── numpy.count_nonzero.html ├── numpy.cov.html ├── numpy.cross.html ├── numpy.cumprod.html ├── numpy.cumsum.html ├── numpy.deg2rad.html ├── numpy.degrees.html ├── numpy.delete.html ├── numpy.diag.html ├── numpy.diag_indices.html ├── numpy.diag_indices_from.html ├── numpy.diagflat.html ├── numpy.diagonal.html ├── numpy.diff.html ├── numpy.digitize.html ├── numpy.distutils.cpuinfo.cpu.html ├── numpy.distutils.exec_command.html ├── numpy.distutils.log.set_verbosity.html ├── numpy.distutils.misc_util.all_strings.html ├── numpy.distutils.misc_util.allpath.html ├── numpy.distutils.misc_util.appendpath.html ├── numpy.distutils.misc_util.blue_text.html ├── numpy.distutils.misc_util.cyan_text.html ├── numpy.distutils.misc_util.cyg2win32.html ├── numpy.distutils.misc_util.dict_append.html ├── numpy.distutils.misc_util.dot_join.html ├── numpy.distutils.misc_util.filter_sources.html ├── numpy.distutils.misc_util.generate_config_py.html ├── numpy.distutils.misc_util.get_cmd.html ├── numpy.distutils.misc_util.get_dependencies.html ├── numpy.distutils.misc_util.get_ext_source_files.html ├── numpy.distutils.misc_util.get_numpy_include_dirs.html ├── numpy.distutils.misc_util.get_script_files.html ├── numpy.distutils.misc_util.green_text.html ├── numpy.distutils.misc_util.has_cxx_sources.html ├── numpy.distutils.misc_util.has_f_sources.html ├── numpy.distutils.misc_util.is_local_src_dir.html ├── numpy.distutils.misc_util.red_text.html ├── numpy.distutils.misc_util.terminal_has_colors.html ├── numpy.distutils.misc_util.yellow_text.html ├── numpy.distutils.system_info.get_info.html ├── numpy.distutils.system_info.get_standard_file.html ├── numpy.divide.html ├── numpy.dot.html ├── numpy.dsplit.html ├── numpy.dstack.html ├── numpy.dtype.__reduce__.html ├── numpy.dtype.__setstate__.html ├── numpy.dtype.alignment.html ├── numpy.dtype.base.html ├── numpy.dtype.byteorder.html ├── numpy.dtype.char.html ├── numpy.dtype.descr.html ├── numpy.dtype.fields.html ├── numpy.dtype.flags.html ├── numpy.dtype.hasobject.html ├── numpy.dtype.html ├── numpy.dtype.isalignedstruct.html ├── numpy.dtype.isbuiltin.html ├── numpy.dtype.isnative.html ├── numpy.dtype.itemsize.html ├── numpy.dtype.kind.html ├── numpy.dtype.metadata.html ├── numpy.dtype.name.html ├── numpy.dtype.names.html ├── numpy.dtype.newbyteorder.html ├── numpy.dtype.num.html ├── numpy.dtype.shape.html ├── numpy.dtype.str.html ├── numpy.dtype.subdtype.html ├── numpy.dtype.type.html ├── numpy.ediff1d.html ├── numpy.einsum.html ├── numpy.empty.html ├── numpy.empty_like.html ├── numpy.equal.html ├── numpy.errstate.html ├── numpy.exp.html ├── numpy.exp2.html ├── numpy.expand_dims.html ├── numpy.expm1.html ├── numpy.extract.html ├── numpy.eye.html ├── numpy.fabs.html ├── numpy.fft.fft.html ├── numpy.fft.fft2.html ├── numpy.fft.fftfreq.html ├── numpy.fft.fftn.html ├── numpy.fft.fftshift.html ├── numpy.fft.hfft.html ├── numpy.fft.ifft.html ├── numpy.fft.ifft2.html ├── numpy.fft.ifftn.html ├── numpy.fft.ifftshift.html ├── numpy.fft.ihfft.html ├── numpy.fft.irfft.html ├── numpy.fft.irfft2.html ├── numpy.fft.irfftn.html ├── numpy.fft.rfft.html ├── numpy.fft.rfft2.html ├── numpy.fft.rfftfreq.html ├── numpy.fft.rfftn.html ├── numpy.fill_diagonal.html ├── numpy.find_common_type.html ├── numpy.finfo.html ├── numpy.fix.html ├── numpy.flatiter.coords.html ├── numpy.flatiter.copy.html ├── numpy.flatiter.html ├── numpy.flatiter.next.html ├── numpy.flatnonzero.html ├── numpy.fliplr.html ├── numpy.flipud.html ├── numpy.floor.html ├── numpy.floor_divide.html ├── numpy.fmax.html ├── numpy.fmin.html ├── numpy.fmod.html ├── numpy.format_parser.html ├── numpy.frexp.html ├── numpy.frombuffer.html ├── numpy.fromfile.html ├── numpy.fromfunction.html ├── numpy.fromiter.html ├── numpy.frompyfunc.html ├── numpy.fromregex.html ├── numpy.fromstring.html ├── numpy.full.html ├── numpy.full_like.html ├── numpy.fv.html ├── numpy.generic.T.html ├── numpy.generic.__array__.html ├── numpy.generic.__array_interface__.html ├── numpy.generic.__array_priority__.html ├── numpy.generic.__array_struct__.html ├── numpy.generic.__array_wrap__.html ├── numpy.generic.__reduce__.html ├── numpy.generic.__setstate__.html ├── numpy.generic.all.html ├── numpy.generic.any.html ├── numpy.generic.argmax.html ├── numpy.generic.argmin.html ├── numpy.generic.argsort.html ├── numpy.generic.astype.html ├── numpy.generic.base.html ├── numpy.generic.byteswap.html ├── numpy.generic.choose.html ├── numpy.generic.clip.html ├── numpy.generic.compress.html ├── numpy.generic.conj.html ├── numpy.generic.conjugate.html ├── numpy.generic.copy.html ├── numpy.generic.cumprod.html ├── numpy.generic.cumsum.html ├── numpy.generic.data.html ├── numpy.generic.diagonal.html ├── numpy.generic.dtype.html ├── numpy.generic.dump.html ├── numpy.generic.dumps.html ├── numpy.generic.fill.html ├── numpy.generic.flags.html ├── numpy.generic.flat.html ├── numpy.generic.flatten.html ├── numpy.generic.getfield.html ├── numpy.generic.html ├── numpy.generic.imag.html ├── numpy.generic.item.html ├── numpy.generic.itemset.html ├── numpy.generic.itemsize.html ├── numpy.generic.max.html ├── numpy.generic.mean.html ├── numpy.generic.min.html ├── numpy.generic.nbytes.html ├── numpy.generic.ndim.html ├── numpy.generic.newbyteorder.html ├── numpy.generic.nonzero.html ├── numpy.generic.prod.html ├── numpy.generic.ptp.html ├── numpy.generic.put.html ├── numpy.generic.ravel.html ├── numpy.generic.real.html ├── numpy.generic.repeat.html ├── numpy.generic.reshape.html ├── numpy.generic.resize.html ├── numpy.generic.round.html ├── numpy.generic.searchsorted.html ├── numpy.generic.setfield.html ├── numpy.generic.setflags.html ├── numpy.generic.shape.html ├── numpy.generic.size.html ├── numpy.generic.sort.html ├── numpy.generic.squeeze.html ├── numpy.generic.std.html ├── numpy.generic.strides.html ├── numpy.generic.sum.html ├── numpy.generic.swapaxes.html ├── numpy.generic.take.html ├── numpy.generic.tobytes.html ├── numpy.generic.tofile.html ├── numpy.generic.tolist.html ├── numpy.generic.tostring.html ├── numpy.generic.trace.html ├── numpy.generic.transpose.html ├── numpy.generic.var.html ├── numpy.generic.view.html ├── numpy.genfromtxt.html ├── numpy.get_printoptions.html ├── numpy.getbuffer.html ├── numpy.getbufsize.html ├── numpy.geterr.html ├── numpy.geterrcall.html ├── numpy.geterrobj.html ├── numpy.gradient.html ├── numpy.greater.html ├── numpy.greater_equal.html ├── numpy.hamming.html ├── numpy.hanning.html ├── numpy.histogram.html ├── numpy.histogram2d.html ├── numpy.histogramdd.html ├── numpy.hsplit.html ├── numpy.hstack.html ├── numpy.hypot.html ├── numpy.i0.html ├── numpy.identity.html ├── numpy.iinfo.html ├── numpy.iinfo.max.html ├── numpy.iinfo.min.html ├── numpy.imag.html ├── numpy.in1d.html ├── numpy.indices.html ├── numpy.info.html ├── numpy.inner.html ├── numpy.insert.html ├── numpy.interp.html ├── numpy.intersect1d.html ├── numpy.invert.html ├── numpy.ipmt.html ├── numpy.irr.html ├── numpy.is_busday.html ├── numpy.isclose.html ├── numpy.iscomplex.html ├── numpy.iscomplexobj.html ├── numpy.isfinite.html ├── numpy.isfortran.html ├── numpy.isinf.html ├── numpy.isnan.html ├── numpy.isneginf.html ├── numpy.isposinf.html ├── numpy.isreal.html ├── numpy.isrealobj.html ├── numpy.isscalar.html ├── numpy.issctype.html ├── numpy.issubclass_.html ├── numpy.issubdtype.html ├── numpy.issubsctype.html ├── numpy.ix_.html ├── numpy.kaiser.html ├── numpy.kron.html ├── numpy.ldexp.html ├── numpy.left_shift.html ├── numpy.less.html ├── numpy.less_equal.html ├── numpy.lexsort.html ├── numpy.lib.Arrayterator.flat.html ├── numpy.lib.Arrayterator.html ├── numpy.lib.Arrayterator.shape.html ├── numpy.lib.NumpyVersion.html ├── numpy.lib.user_array.container.html ├── numpy.linalg.LinAlgError.html ├── numpy.linalg.cholesky.html ├── numpy.linalg.cond.html ├── numpy.linalg.det.html ├── numpy.linalg.eig.html ├── numpy.linalg.eigh.html ├── numpy.linalg.eigvals.html ├── numpy.linalg.eigvalsh.html ├── numpy.linalg.inv.html ├── numpy.linalg.lstsq.html ├── numpy.linalg.matrix_power.html ├── numpy.linalg.matrix_rank.html ├── numpy.linalg.norm.html ├── numpy.linalg.pinv.html ├── numpy.linalg.qr.html ├── numpy.linalg.slogdet.html ├── numpy.linalg.solve.html ├── numpy.linalg.svd.html ├── numpy.linalg.tensorinv.html ├── numpy.linalg.tensorsolve.html ├── numpy.linspace.html ├── numpy.load.html ├── numpy.loadtxt.html ├── numpy.log.html ├── numpy.log10.html ├── numpy.log1p.html ├── numpy.log2.html ├── numpy.logaddexp.html ├── numpy.logaddexp2.html ├── numpy.logical_and.html ├── numpy.logical_not.html ├── numpy.logical_or.html ├── numpy.logical_xor.html ├── numpy.logspace.html ├── numpy.lookfor.html ├── numpy.ma.MaskType.html ├── numpy.ma.MaskedArray.T.html ├── numpy.ma.MaskedArray.__abs__.html ├── numpy.ma.MaskedArray.__add__.html ├── numpy.ma.MaskedArray.__and__.html ├── numpy.ma.MaskedArray.__array__.html ├── numpy.ma.MaskedArray.__array_priority__.html ├── numpy.ma.MaskedArray.__array_wrap__.html ├── numpy.ma.MaskedArray.__contains__.html ├── numpy.ma.MaskedArray.__copy__.html ├── numpy.ma.MaskedArray.__deepcopy__.html ├── numpy.ma.MaskedArray.__delitem__.html ├── numpy.ma.MaskedArray.__div__.html ├── numpy.ma.MaskedArray.__divmod__.html ├── numpy.ma.MaskedArray.__eq__.html ├── numpy.ma.MaskedArray.__float__.html ├── numpy.ma.MaskedArray.__floordiv__.html ├── numpy.ma.MaskedArray.__ge__.html ├── numpy.ma.MaskedArray.__getitem__.html ├── numpy.ma.MaskedArray.__getstate__.html ├── numpy.ma.MaskedArray.__gt__.html ├── numpy.ma.MaskedArray.__hex__.html ├── numpy.ma.MaskedArray.__iadd__.html ├── numpy.ma.MaskedArray.__iand__.html ├── numpy.ma.MaskedArray.__idiv__.html ├── numpy.ma.MaskedArray.__ifloordiv__.html ├── numpy.ma.MaskedArray.__ilshift__.html ├── numpy.ma.MaskedArray.__imod__.html ├── numpy.ma.MaskedArray.__imul__.html ├── numpy.ma.MaskedArray.__int__.html ├── numpy.ma.MaskedArray.__ior__.html ├── numpy.ma.MaskedArray.__ipow__.html ├── numpy.ma.MaskedArray.__irshift__.html ├── numpy.ma.MaskedArray.__isub__.html ├── numpy.ma.MaskedArray.__itruediv__.html ├── numpy.ma.MaskedArray.__ixor__.html ├── numpy.ma.MaskedArray.__le__.html ├── numpy.ma.MaskedArray.__len__.html ├── numpy.ma.MaskedArray.__long__.html ├── numpy.ma.MaskedArray.__lshift__.html ├── numpy.ma.MaskedArray.__lt__.html ├── numpy.ma.MaskedArray.__mod__.html ├── numpy.ma.MaskedArray.__mul__.html ├── numpy.ma.MaskedArray.__ne__.html ├── numpy.ma.MaskedArray.__new__.html ├── numpy.ma.MaskedArray.__nonzero__.html ├── numpy.ma.MaskedArray.__oct__.html ├── numpy.ma.MaskedArray.__or__.html ├── numpy.ma.MaskedArray.__pow__.html ├── numpy.ma.MaskedArray.__radd__.html ├── numpy.ma.MaskedArray.__rand__.html ├── numpy.ma.MaskedArray.__rdiv__.html ├── numpy.ma.MaskedArray.__rdivmod__.html ├── numpy.ma.MaskedArray.__reduce__.html ├── numpy.ma.MaskedArray.__repr__.html ├── numpy.ma.MaskedArray.__rfloordiv__.html ├── numpy.ma.MaskedArray.__rlshift__.html ├── numpy.ma.MaskedArray.__rmod__.html ├── numpy.ma.MaskedArray.__rmul__.html ├── numpy.ma.MaskedArray.__ror__.html ├── numpy.ma.MaskedArray.__rpow__.html ├── numpy.ma.MaskedArray.__rrshift__.html ├── numpy.ma.MaskedArray.__rshift__.html ├── numpy.ma.MaskedArray.__rsub__.html ├── numpy.ma.MaskedArray.__rtruediv__.html ├── numpy.ma.MaskedArray.__rxor__.html ├── numpy.ma.MaskedArray.__setitem__.html ├── numpy.ma.MaskedArray.__setmask__.html ├── numpy.ma.MaskedArray.__setstate__.html ├── numpy.ma.MaskedArray.__str__.html ├── numpy.ma.MaskedArray.__sub__.html ├── numpy.ma.MaskedArray.__truediv__.html ├── numpy.ma.MaskedArray.__xor__.html ├── numpy.ma.MaskedArray.all.html ├── numpy.ma.MaskedArray.anom.html ├── numpy.ma.MaskedArray.any.html ├── numpy.ma.MaskedArray.argmax.html ├── numpy.ma.MaskedArray.argmin.html ├── numpy.ma.MaskedArray.argsort.html ├── numpy.ma.MaskedArray.astype.html ├── numpy.ma.MaskedArray.base.html ├── numpy.ma.MaskedArray.byteswap.html ├── numpy.ma.MaskedArray.choose.html ├── numpy.ma.MaskedArray.clip.html ├── numpy.ma.MaskedArray.compress.html ├── numpy.ma.MaskedArray.compressed.html ├── numpy.ma.MaskedArray.conj.html ├── numpy.ma.MaskedArray.conjugate.html ├── numpy.ma.MaskedArray.copy.html ├── numpy.ma.MaskedArray.count.html ├── numpy.ma.MaskedArray.ctypes.html ├── numpy.ma.MaskedArray.cumprod.html ├── numpy.ma.MaskedArray.cumsum.html ├── numpy.ma.MaskedArray.data.html ├── numpy.ma.MaskedArray.diagonal.html ├── numpy.ma.MaskedArray.dtype.html ├── numpy.ma.MaskedArray.dump.html ├── numpy.ma.MaskedArray.dumps.html ├── numpy.ma.MaskedArray.fill.html ├── numpy.ma.MaskedArray.fill_value.html ├── numpy.ma.MaskedArray.filled.html ├── numpy.ma.MaskedArray.flags.html ├── numpy.ma.MaskedArray.flat.html ├── numpy.ma.MaskedArray.flatten.html ├── numpy.ma.MaskedArray.get_fill_value.html ├── numpy.ma.MaskedArray.harden_mask.html ├── numpy.ma.MaskedArray.ids.html ├── numpy.ma.MaskedArray.imag.html ├── numpy.ma.MaskedArray.iscontiguous.html ├── numpy.ma.MaskedArray.item.html ├── numpy.ma.MaskedArray.itemsize.html ├── numpy.ma.MaskedArray.mask.html ├── numpy.ma.MaskedArray.max.html ├── numpy.ma.MaskedArray.mean.html ├── numpy.ma.MaskedArray.min.html ├── numpy.ma.MaskedArray.nbytes.html ├── numpy.ma.MaskedArray.ndim.html ├── numpy.ma.MaskedArray.nonzero.html ├── numpy.ma.MaskedArray.prod.html ├── numpy.ma.MaskedArray.product.html ├── numpy.ma.MaskedArray.ptp.html ├── numpy.ma.MaskedArray.put.html ├── numpy.ma.MaskedArray.ravel.html ├── numpy.ma.MaskedArray.real.html ├── numpy.ma.MaskedArray.recordmask.html ├── numpy.ma.MaskedArray.repeat.html ├── numpy.ma.MaskedArray.reshape.html ├── numpy.ma.MaskedArray.resize.html ├── numpy.ma.MaskedArray.round.html ├── numpy.ma.MaskedArray.searchsorted.html ├── numpy.ma.MaskedArray.set_fill_value.html ├── numpy.ma.MaskedArray.shape.html ├── numpy.ma.MaskedArray.shrink_mask.html ├── numpy.ma.MaskedArray.size.html ├── numpy.ma.MaskedArray.soften_mask.html ├── numpy.ma.MaskedArray.sort.html ├── numpy.ma.MaskedArray.squeeze.html ├── numpy.ma.MaskedArray.std.html ├── numpy.ma.MaskedArray.strides.html ├── numpy.ma.MaskedArray.sum.html ├── numpy.ma.MaskedArray.swapaxes.html ├── numpy.ma.MaskedArray.take.html ├── numpy.ma.MaskedArray.tobytes.html ├── numpy.ma.MaskedArray.tofile.html ├── numpy.ma.MaskedArray.toflex.html ├── numpy.ma.MaskedArray.tolist.html ├── numpy.ma.MaskedArray.torecords.html ├── numpy.ma.MaskedArray.tostring.html ├── numpy.ma.MaskedArray.trace.html ├── numpy.ma.MaskedArray.transpose.html ├── numpy.ma.MaskedArray.unshare_mask.html ├── numpy.ma.MaskedArray.var.html ├── numpy.ma.MaskedArray.view.html ├── numpy.ma.all.html ├── numpy.ma.allclose.html ├── numpy.ma.allequal.html ├── numpy.ma.anom.html ├── numpy.ma.anomalies.html ├── numpy.ma.any.html ├── numpy.ma.append.html ├── numpy.ma.apply_along_axis.html ├── numpy.ma.arange.html ├── numpy.ma.argmax.html ├── numpy.ma.argmin.html ├── numpy.ma.argsort.html ├── numpy.ma.around.html ├── numpy.ma.array.html ├── numpy.ma.asanyarray.html ├── numpy.ma.asarray.html ├── numpy.ma.atleast_1d.html ├── numpy.ma.atleast_2d.html ├── numpy.ma.atleast_3d.html ├── numpy.ma.average.html ├── numpy.ma.choose.html ├── numpy.ma.clip.html ├── numpy.ma.clump_masked.html ├── numpy.ma.clump_unmasked.html ├── numpy.ma.column_stack.html ├── numpy.ma.common_fill_value.html ├── numpy.ma.compress_cols.html ├── numpy.ma.compress_rowcols.html ├── numpy.ma.compress_rows.html ├── numpy.ma.compressed.html ├── numpy.ma.concatenate.html ├── numpy.ma.conjugate.html ├── numpy.ma.copy.html ├── numpy.ma.corrcoef.html ├── numpy.ma.count.html ├── numpy.ma.count_masked.html ├── numpy.ma.cov.html ├── numpy.ma.cumprod.html ├── numpy.ma.cumsum.html ├── numpy.ma.default_fill_value.html ├── numpy.ma.diag.html ├── numpy.ma.dot.html ├── numpy.ma.dstack.html ├── numpy.ma.dump.html ├── numpy.ma.dumps.html ├── numpy.ma.ediff1d.html ├── numpy.ma.empty.html ├── numpy.ma.empty_like.html ├── numpy.ma.expand_dims.html ├── numpy.ma.filled.html ├── numpy.ma.fix_invalid.html ├── numpy.ma.flatnotmasked_contiguous.html ├── numpy.ma.flatnotmasked_edges.html ├── numpy.ma.frombuffer.html ├── numpy.ma.fromfunction.html ├── numpy.ma.getdata.html ├── numpy.ma.getmask.html ├── numpy.ma.getmaskarray.html ├── numpy.ma.harden_mask.html ├── numpy.ma.hsplit.html ├── numpy.ma.hstack.html ├── numpy.ma.identity.html ├── numpy.ma.indices.html ├── numpy.ma.inner.html ├── numpy.ma.innerproduct.html ├── numpy.ma.is_mask.html ├── numpy.ma.is_masked.html ├── numpy.ma.load.html ├── numpy.ma.loads.html ├── numpy.ma.make_mask.html ├── numpy.ma.make_mask_descr.html ├── numpy.ma.make_mask_none.html ├── numpy.ma.mask_cols.html ├── numpy.ma.mask_or.html ├── numpy.ma.mask_rowcols.html ├── numpy.ma.mask_rows.html ├── numpy.ma.masked_all.html ├── numpy.ma.masked_all_like.html ├── numpy.ma.masked_array.html ├── numpy.ma.masked_array.mask.html ├── numpy.ma.masked_equal.html ├── numpy.ma.masked_greater.html ├── numpy.ma.masked_greater_equal.html ├── numpy.ma.masked_inside.html ├── numpy.ma.masked_invalid.html ├── numpy.ma.masked_less.html ├── numpy.ma.masked_less_equal.html ├── numpy.ma.masked_not_equal.html ├── numpy.ma.masked_object.html ├── numpy.ma.masked_outside.html ├── numpy.ma.masked_values.html ├── numpy.ma.masked_where.html ├── numpy.ma.max.html ├── numpy.ma.maximum_fill_value.html ├── numpy.ma.mean.html ├── numpy.ma.median.html ├── numpy.ma.min.html ├── numpy.ma.mr_.html ├── numpy.ma.nonzero.html ├── numpy.ma.notmasked_contiguous.html ├── numpy.ma.notmasked_edges.html ├── numpy.ma.ones.html ├── numpy.ma.outer.html ├── numpy.ma.outerproduct.html ├── numpy.ma.polyfit.html ├── numpy.ma.power.html ├── numpy.ma.prod.html ├── numpy.ma.ptp.html ├── numpy.ma.ravel.html ├── numpy.ma.reshape.html ├── numpy.ma.resize.html ├── numpy.ma.round.html ├── numpy.ma.row_stack.html ├── numpy.ma.set_fill_value.html ├── numpy.ma.shape.html ├── numpy.ma.size.html ├── numpy.ma.soften_mask.html ├── numpy.ma.sort.html ├── numpy.ma.squeeze.html ├── numpy.ma.std.html ├── numpy.ma.sum.html ├── numpy.ma.swapaxes.html ├── numpy.ma.trace.html ├── numpy.ma.transpose.html ├── numpy.ma.vander.html ├── numpy.ma.var.html ├── numpy.ma.vstack.html ├── numpy.ma.where.html ├── numpy.ma.zeros.html ├── numpy.mask_indices.html ├── numpy.mat.html ├── numpy.matlib.empty.html ├── numpy.matlib.eye.html ├── numpy.matlib.identity.html ├── numpy.matlib.ones.html ├── numpy.matlib.rand.html ├── numpy.matlib.randn.html ├── numpy.matlib.repmat.html ├── numpy.matlib.zeros.html ├── numpy.matmul.html ├── numpy.matrix.A.html ├── numpy.matrix.A1.html ├── numpy.matrix.H.html ├── numpy.matrix.I.html ├── numpy.matrix.T.html ├── numpy.matrix.all.html ├── numpy.matrix.any.html ├── numpy.matrix.argmax.html ├── numpy.matrix.argmin.html ├── numpy.matrix.argpartition.html ├── numpy.matrix.argsort.html ├── numpy.matrix.astype.html ├── numpy.matrix.base.html ├── numpy.matrix.byteswap.html ├── numpy.matrix.choose.html ├── numpy.matrix.clip.html ├── numpy.matrix.compress.html ├── numpy.matrix.conj.html ├── numpy.matrix.conjugate.html ├── numpy.matrix.copy.html ├── numpy.matrix.ctypes.html ├── numpy.matrix.cumprod.html ├── numpy.matrix.cumsum.html ├── numpy.matrix.data.html ├── numpy.matrix.diagonal.html ├── numpy.matrix.dot.html ├── numpy.matrix.dtype.html ├── numpy.matrix.dump.html ├── numpy.matrix.dumps.html ├── numpy.matrix.fill.html ├── numpy.matrix.flags.html ├── numpy.matrix.flat.html ├── numpy.matrix.flatten.html ├── numpy.matrix.getA.html ├── numpy.matrix.getA1.html ├── numpy.matrix.getH.html ├── numpy.matrix.getI.html ├── numpy.matrix.getT.html ├── numpy.matrix.getfield.html ├── numpy.matrix.html ├── numpy.matrix.imag.html ├── numpy.matrix.item.html ├── numpy.matrix.itemset.html ├── numpy.matrix.itemsize.html ├── numpy.matrix.max.html ├── numpy.matrix.mean.html ├── numpy.matrix.min.html ├── numpy.matrix.nbytes.html ├── numpy.matrix.ndim.html ├── numpy.matrix.newbyteorder.html ├── numpy.matrix.nonzero.html ├── numpy.matrix.partition.html ├── numpy.matrix.prod.html ├── numpy.matrix.ptp.html ├── numpy.matrix.put.html ├── numpy.matrix.ravel.html ├── numpy.matrix.real.html ├── numpy.matrix.repeat.html ├── numpy.matrix.reshape.html ├── numpy.matrix.resize.html ├── numpy.matrix.round.html ├── numpy.matrix.searchsorted.html ├── numpy.matrix.setfield.html ├── numpy.matrix.setflags.html ├── numpy.matrix.shape.html ├── numpy.matrix.size.html ├── numpy.matrix.sort.html ├── numpy.matrix.squeeze.html ├── numpy.matrix.std.html ├── numpy.matrix.strides.html ├── numpy.matrix.sum.html ├── numpy.matrix.swapaxes.html ├── numpy.matrix.take.html ├── numpy.matrix.tobytes.html ├── numpy.matrix.tofile.html ├── numpy.matrix.tolist.html ├── numpy.matrix.tostring.html ├── numpy.matrix.trace.html ├── numpy.matrix.transpose.html ├── numpy.matrix.var.html ├── numpy.matrix.view.html ├── numpy.maximum.html ├── numpy.may_share_memory.html ├── numpy.mean.html ├── numpy.median.html ├── numpy.memmap.flush.html ├── numpy.memmap.html ├── numpy.meshgrid.html ├── numpy.mgrid.html ├── numpy.min_scalar_type.html ├── numpy.minimum.html ├── numpy.mintypecode.html ├── numpy.mirr.html ├── numpy.mod.html ├── numpy.modf.html ├── numpy.moveaxis.html ├── numpy.msort.html ├── numpy.multiply.html ├── numpy.nan_to_num.html ├── numpy.nanargmax.html ├── numpy.nanargmin.html ├── numpy.nanmax.html ├── numpy.nanmean.html ├── numpy.nanmedian.html ├── numpy.nanmin.html ├── numpy.nanpercentile.html ├── numpy.nanprod.html ├── numpy.nanstd.html ├── numpy.nansum.html ├── numpy.nanvar.html ├── numpy.ndarray.T.html ├── numpy.ndarray.__abs__.html ├── numpy.ndarray.__add__.html ├── numpy.ndarray.__and__.html ├── numpy.ndarray.__array__.html ├── numpy.ndarray.__array_wrap__.html ├── numpy.ndarray.__contains__.html ├── numpy.ndarray.__copy__.html ├── numpy.ndarray.__deepcopy__.html ├── numpy.ndarray.__div__.html ├── numpy.ndarray.__divmod__.html ├── numpy.ndarray.__eq__.html ├── numpy.ndarray.__float__.html ├── numpy.ndarray.__floordiv__.html ├── numpy.ndarray.__ge__.html ├── numpy.ndarray.__getitem__.html ├── numpy.ndarray.__gt__.html ├── numpy.ndarray.__hex__.html ├── numpy.ndarray.__iadd__.html ├── numpy.ndarray.__iand__.html ├── numpy.ndarray.__idiv__.html ├── numpy.ndarray.__ifloordiv__.html ├── numpy.ndarray.__ilshift__.html ├── numpy.ndarray.__imod__.html ├── numpy.ndarray.__imul__.html ├── numpy.ndarray.__int__.html ├── numpy.ndarray.__invert__.html ├── numpy.ndarray.__ior__.html ├── numpy.ndarray.__ipow__.html ├── numpy.ndarray.__irshift__.html ├── numpy.ndarray.__isub__.html ├── numpy.ndarray.__itruediv__.html ├── numpy.ndarray.__ixor__.html ├── numpy.ndarray.__le__.html ├── numpy.ndarray.__len__.html ├── numpy.ndarray.__long__.html ├── numpy.ndarray.__lshift__.html ├── numpy.ndarray.__lt__.html ├── numpy.ndarray.__mod__.html ├── numpy.ndarray.__mul__.html ├── numpy.ndarray.__ne__.html ├── numpy.ndarray.__neg__.html ├── numpy.ndarray.__new__.html ├── numpy.ndarray.__nonzero__.html ├── numpy.ndarray.__oct__.html ├── numpy.ndarray.__or__.html ├── numpy.ndarray.__pos__.html ├── numpy.ndarray.__pow__.html ├── numpy.ndarray.__reduce__.html ├── numpy.ndarray.__repr__.html ├── numpy.ndarray.__rshift__.html ├── numpy.ndarray.__setitem__.html ├── numpy.ndarray.__setstate__.html ├── numpy.ndarray.__str__.html ├── numpy.ndarray.__sub__.html ├── numpy.ndarray.__truediv__.html ├── numpy.ndarray.__xor__.html ├── numpy.ndarray.all.html ├── numpy.ndarray.any.html ├── numpy.ndarray.argmax.html ├── numpy.ndarray.argmin.html ├── numpy.ndarray.argpartition.html ├── numpy.ndarray.argsort.html ├── numpy.ndarray.astype.html ├── numpy.ndarray.base.html ├── numpy.ndarray.byteswap.html ├── numpy.ndarray.choose.html ├── numpy.ndarray.clip.html ├── numpy.ndarray.compress.html ├── numpy.ndarray.conj.html ├── numpy.ndarray.conjugate.html ├── numpy.ndarray.copy.html ├── numpy.ndarray.ctypes.html ├── numpy.ndarray.cumprod.html ├── numpy.ndarray.cumsum.html ├── numpy.ndarray.data.html ├── numpy.ndarray.diagonal.html ├── numpy.ndarray.dot.html ├── numpy.ndarray.dtype.html ├── numpy.ndarray.dump.html ├── numpy.ndarray.dumps.html ├── numpy.ndarray.fill.html ├── numpy.ndarray.flags.html ├── numpy.ndarray.flat.html ├── numpy.ndarray.flatten.html ├── numpy.ndarray.getfield.html ├── numpy.ndarray.html ├── numpy.ndarray.imag.html ├── numpy.ndarray.item.html ├── numpy.ndarray.itemset.html ├── numpy.ndarray.itemsize.html ├── numpy.ndarray.max.html ├── numpy.ndarray.mean.html ├── numpy.ndarray.min.html ├── numpy.ndarray.nbytes.html ├── numpy.ndarray.ndim.html ├── numpy.ndarray.newbyteorder.html ├── numpy.ndarray.nonzero.html ├── numpy.ndarray.partition.html ├── numpy.ndarray.prod.html ├── numpy.ndarray.ptp.html ├── numpy.ndarray.put.html ├── numpy.ndarray.ravel.html ├── numpy.ndarray.real.html ├── numpy.ndarray.repeat.html ├── numpy.ndarray.reshape.html ├── numpy.ndarray.resize.html ├── numpy.ndarray.round.html ├── numpy.ndarray.searchsorted.html ├── numpy.ndarray.setfield.html ├── numpy.ndarray.setflags.html ├── numpy.ndarray.shape.html ├── numpy.ndarray.size.html ├── numpy.ndarray.sort.html ├── numpy.ndarray.squeeze.html ├── numpy.ndarray.std.html ├── numpy.ndarray.strides.html ├── numpy.ndarray.sum.html ├── numpy.ndarray.swapaxes.html ├── numpy.ndarray.take.html ├── numpy.ndarray.tobytes.html ├── numpy.ndarray.tofile.html ├── numpy.ndarray.tolist.html ├── numpy.ndarray.tostring.html ├── numpy.ndarray.trace.html ├── numpy.ndarray.transpose.html ├── numpy.ndarray.var.html ├── numpy.ndarray.view.html ├── numpy.ndenumerate.html ├── numpy.ndenumerate.next.html ├── numpy.ndindex.html ├── numpy.ndindex.ndincr.html ├── numpy.ndindex.next.html ├── numpy.nditer.copy.html ├── numpy.nditer.debug_print.html ├── numpy.nditer.enable_external_loop.html ├── numpy.nditer.html ├── numpy.nditer.iternext.html ├── numpy.nditer.next.html ├── numpy.nditer.remove_axis.html ├── numpy.nditer.remove_multi_index.html ├── numpy.nditer.reset.html ├── numpy.negative.html ├── numpy.newbuffer.html ├── numpy.nonzero.html ├── numpy.not_equal.html ├── numpy.nper.html ├── numpy.npv.html ├── numpy.obj2sctype.html ├── numpy.ogrid.html ├── numpy.ones.html ├── numpy.ones_like.html ├── numpy.outer.html ├── numpy.packbits.html ├── numpy.pad.html ├── numpy.partition.html ├── numpy.percentile.html ├── numpy.piecewise.html ├── numpy.place.html ├── numpy.pmt.html ├── numpy.poly.html ├── numpy.poly1d.__call__.html ├── numpy.poly1d.deriv.html ├── numpy.poly1d.html ├── numpy.poly1d.integ.html ├── numpy.polyadd.html ├── numpy.polyder.html ├── numpy.polydiv.html ├── numpy.polyfit.html ├── numpy.polyint.html ├── numpy.polymul.html ├── numpy.polynomial.chebyshev.Chebyshev.__call__.html ├── numpy.polynomial.chebyshev.Chebyshev.basis.html ├── numpy.polynomial.chebyshev.Chebyshev.cast.html ├── numpy.polynomial.chebyshev.Chebyshev.convert.html ├── numpy.polynomial.chebyshev.Chebyshev.copy.html ├── numpy.polynomial.chebyshev.Chebyshev.cutdeg.html ├── numpy.polynomial.chebyshev.Chebyshev.degree.html ├── numpy.polynomial.chebyshev.Chebyshev.deriv.html ├── numpy.polynomial.chebyshev.Chebyshev.fit.html ├── numpy.polynomial.chebyshev.Chebyshev.fromroots.html ├── numpy.polynomial.chebyshev.Chebyshev.has_samecoef.html ├── numpy.polynomial.chebyshev.Chebyshev.has_samedomain.html ├── numpy.polynomial.chebyshev.Chebyshev.has_sametype.html ├── numpy.polynomial.chebyshev.Chebyshev.has_samewindow.html ├── numpy.polynomial.chebyshev.Chebyshev.html ├── numpy.polynomial.chebyshev.Chebyshev.identity.html ├── numpy.polynomial.chebyshev.Chebyshev.integ.html ├── numpy.polynomial.chebyshev.Chebyshev.linspace.html ├── numpy.polynomial.chebyshev.Chebyshev.mapparms.html ├── numpy.polynomial.chebyshev.Chebyshev.roots.html ├── numpy.polynomial.chebyshev.Chebyshev.trim.html ├── numpy.polynomial.chebyshev.Chebyshev.truncate.html ├── numpy.polynomial.chebyshev.cheb2poly.html ├── numpy.polynomial.chebyshev.chebadd.html ├── numpy.polynomial.chebyshev.chebcompanion.html ├── numpy.polynomial.chebyshev.chebder.html ├── numpy.polynomial.chebyshev.chebdiv.html ├── numpy.polynomial.chebyshev.chebdomain.html ├── numpy.polynomial.chebyshev.chebfit.html ├── numpy.polynomial.chebyshev.chebfromroots.html ├── numpy.polynomial.chebyshev.chebgauss.html ├── numpy.polynomial.chebyshev.chebgrid2d.html ├── numpy.polynomial.chebyshev.chebgrid3d.html ├── numpy.polynomial.chebyshev.chebint.html ├── numpy.polynomial.chebyshev.chebline.html ├── numpy.polynomial.chebyshev.chebmul.html ├── numpy.polynomial.chebyshev.chebmulx.html ├── numpy.polynomial.chebyshev.chebone.html ├── numpy.polynomial.chebyshev.chebpow.html ├── numpy.polynomial.chebyshev.chebroots.html ├── numpy.polynomial.chebyshev.chebsub.html ├── numpy.polynomial.chebyshev.chebtrim.html ├── numpy.polynomial.chebyshev.chebval.html ├── numpy.polynomial.chebyshev.chebval2d.html ├── numpy.polynomial.chebyshev.chebval3d.html ├── numpy.polynomial.chebyshev.chebvander.html ├── numpy.polynomial.chebyshev.chebvander2d.html ├── numpy.polynomial.chebyshev.chebvander3d.html ├── numpy.polynomial.chebyshev.chebweight.html ├── numpy.polynomial.chebyshev.chebx.html ├── numpy.polynomial.chebyshev.chebzero.html ├── numpy.polynomial.chebyshev.poly2cheb.html ├── numpy.polynomial.hermite.Hermite.__call__.html ├── numpy.polynomial.hermite.Hermite.basis.html ├── numpy.polynomial.hermite.Hermite.cast.html ├── numpy.polynomial.hermite.Hermite.convert.html ├── numpy.polynomial.hermite.Hermite.copy.html ├── numpy.polynomial.hermite.Hermite.cutdeg.html ├── numpy.polynomial.hermite.Hermite.degree.html ├── numpy.polynomial.hermite.Hermite.deriv.html ├── numpy.polynomial.hermite.Hermite.fit.html ├── numpy.polynomial.hermite.Hermite.fromroots.html ├── numpy.polynomial.hermite.Hermite.has_samecoef.html ├── numpy.polynomial.hermite.Hermite.has_samedomain.html ├── numpy.polynomial.hermite.Hermite.has_sametype.html ├── numpy.polynomial.hermite.Hermite.has_samewindow.html ├── numpy.polynomial.hermite.Hermite.html ├── numpy.polynomial.hermite.Hermite.identity.html ├── numpy.polynomial.hermite.Hermite.integ.html ├── numpy.polynomial.hermite.Hermite.linspace.html ├── numpy.polynomial.hermite.Hermite.mapparms.html ├── numpy.polynomial.hermite.Hermite.roots.html ├── numpy.polynomial.hermite.Hermite.trim.html ├── numpy.polynomial.hermite.Hermite.truncate.html ├── numpy.polynomial.hermite.herm2poly.html ├── numpy.polynomial.hermite.hermadd.html ├── numpy.polynomial.hermite.hermcompanion.html ├── numpy.polynomial.hermite.hermder.html ├── numpy.polynomial.hermite.hermdiv.html ├── numpy.polynomial.hermite.hermdomain.html ├── numpy.polynomial.hermite.hermfit.html ├── numpy.polynomial.hermite.hermfromroots.html ├── numpy.polynomial.hermite.hermgauss.html ├── numpy.polynomial.hermite.hermgrid2d.html ├── numpy.polynomial.hermite.hermgrid3d.html ├── numpy.polynomial.hermite.hermint.html ├── numpy.polynomial.hermite.hermline.html ├── numpy.polynomial.hermite.hermmul.html ├── numpy.polynomial.hermite.hermmulx.html ├── numpy.polynomial.hermite.hermone.html ├── numpy.polynomial.hermite.hermpow.html ├── numpy.polynomial.hermite.hermroots.html ├── numpy.polynomial.hermite.hermsub.html ├── numpy.polynomial.hermite.hermtrim.html ├── numpy.polynomial.hermite.hermval.html ├── numpy.polynomial.hermite.hermval2d.html ├── numpy.polynomial.hermite.hermval3d.html ├── numpy.polynomial.hermite.hermvander.html ├── numpy.polynomial.hermite.hermvander2d.html ├── numpy.polynomial.hermite.hermvander3d.html ├── numpy.polynomial.hermite.hermweight.html ├── numpy.polynomial.hermite.hermx.html ├── numpy.polynomial.hermite.hermzero.html ├── numpy.polynomial.hermite.poly2herm.html ├── numpy.polynomial.hermite_e.HermiteE.__call__.html ├── numpy.polynomial.hermite_e.HermiteE.basis.html ├── numpy.polynomial.hermite_e.HermiteE.cast.html ├── numpy.polynomial.hermite_e.HermiteE.convert.html ├── numpy.polynomial.hermite_e.HermiteE.copy.html ├── numpy.polynomial.hermite_e.HermiteE.cutdeg.html ├── numpy.polynomial.hermite_e.HermiteE.degree.html ├── numpy.polynomial.hermite_e.HermiteE.deriv.html ├── numpy.polynomial.hermite_e.HermiteE.fit.html ├── numpy.polynomial.hermite_e.HermiteE.fromroots.html ├── numpy.polynomial.hermite_e.HermiteE.has_samecoef.html ├── numpy.polynomial.hermite_e.HermiteE.has_samedomain.html ├── numpy.polynomial.hermite_e.HermiteE.has_sametype.html ├── numpy.polynomial.hermite_e.HermiteE.has_samewindow.html ├── numpy.polynomial.hermite_e.HermiteE.html ├── numpy.polynomial.hermite_e.HermiteE.identity.html ├── numpy.polynomial.hermite_e.HermiteE.integ.html ├── numpy.polynomial.hermite_e.HermiteE.linspace.html ├── numpy.polynomial.hermite_e.HermiteE.mapparms.html ├── numpy.polynomial.hermite_e.HermiteE.roots.html ├── numpy.polynomial.hermite_e.HermiteE.trim.html ├── numpy.polynomial.hermite_e.HermiteE.truncate.html ├── numpy.polynomial.hermite_e.herme2poly.html ├── numpy.polynomial.hermite_e.hermeadd.html ├── numpy.polynomial.hermite_e.hermecompanion.html ├── numpy.polynomial.hermite_e.hermeder.html ├── numpy.polynomial.hermite_e.hermediv.html ├── numpy.polynomial.hermite_e.hermedomain.html ├── numpy.polynomial.hermite_e.hermefit.html ├── numpy.polynomial.hermite_e.hermefromroots.html ├── numpy.polynomial.hermite_e.hermegauss.html ├── numpy.polynomial.hermite_e.hermegrid2d.html ├── numpy.polynomial.hermite_e.hermegrid3d.html ├── numpy.polynomial.hermite_e.hermeint.html ├── numpy.polynomial.hermite_e.hermeline.html ├── numpy.polynomial.hermite_e.hermemul.html ├── numpy.polynomial.hermite_e.hermemulx.html ├── numpy.polynomial.hermite_e.hermeone.html ├── numpy.polynomial.hermite_e.hermepow.html ├── numpy.polynomial.hermite_e.hermeroots.html ├── numpy.polynomial.hermite_e.hermesub.html ├── numpy.polynomial.hermite_e.hermetrim.html ├── numpy.polynomial.hermite_e.hermeval.html ├── numpy.polynomial.hermite_e.hermeval2d.html ├── numpy.polynomial.hermite_e.hermeval3d.html ├── numpy.polynomial.hermite_e.hermevander.html ├── numpy.polynomial.hermite_e.hermevander2d.html ├── numpy.polynomial.hermite_e.hermevander3d.html ├── numpy.polynomial.hermite_e.hermeweight.html ├── numpy.polynomial.hermite_e.hermex.html ├── numpy.polynomial.hermite_e.hermezero.html ├── numpy.polynomial.hermite_e.poly2herme.html ├── numpy.polynomial.laguerre.Laguerre.__call__.html ├── numpy.polynomial.laguerre.Laguerre.basis.html ├── numpy.polynomial.laguerre.Laguerre.cast.html ├── numpy.polynomial.laguerre.Laguerre.convert.html ├── numpy.polynomial.laguerre.Laguerre.copy.html ├── numpy.polynomial.laguerre.Laguerre.cutdeg.html ├── numpy.polynomial.laguerre.Laguerre.degree.html ├── numpy.polynomial.laguerre.Laguerre.deriv.html ├── numpy.polynomial.laguerre.Laguerre.fit.html ├── numpy.polynomial.laguerre.Laguerre.fromroots.html ├── numpy.polynomial.laguerre.Laguerre.has_samecoef.html ├── numpy.polynomial.laguerre.Laguerre.has_samedomain.html ├── numpy.polynomial.laguerre.Laguerre.has_sametype.html ├── numpy.polynomial.laguerre.Laguerre.has_samewindow.html ├── numpy.polynomial.laguerre.Laguerre.html ├── numpy.polynomial.laguerre.Laguerre.identity.html ├── numpy.polynomial.laguerre.Laguerre.integ.html ├── numpy.polynomial.laguerre.Laguerre.linspace.html ├── numpy.polynomial.laguerre.Laguerre.mapparms.html ├── numpy.polynomial.laguerre.Laguerre.roots.html ├── numpy.polynomial.laguerre.Laguerre.trim.html ├── numpy.polynomial.laguerre.Laguerre.truncate.html ├── numpy.polynomial.laguerre.lag2poly.html ├── numpy.polynomial.laguerre.lagadd.html ├── numpy.polynomial.laguerre.lagcompanion.html ├── numpy.polynomial.laguerre.lagder.html ├── numpy.polynomial.laguerre.lagdiv.html ├── numpy.polynomial.laguerre.lagdomain.html ├── numpy.polynomial.laguerre.lagfit.html ├── numpy.polynomial.laguerre.lagfromroots.html ├── numpy.polynomial.laguerre.laggauss.html ├── numpy.polynomial.laguerre.laggrid2d.html ├── numpy.polynomial.laguerre.laggrid3d.html ├── numpy.polynomial.laguerre.lagint.html ├── numpy.polynomial.laguerre.lagline.html ├── numpy.polynomial.laguerre.lagmul.html ├── numpy.polynomial.laguerre.lagmulx.html ├── numpy.polynomial.laguerre.lagone.html ├── numpy.polynomial.laguerre.lagpow.html ├── numpy.polynomial.laguerre.lagroots.html ├── numpy.polynomial.laguerre.lagsub.html ├── numpy.polynomial.laguerre.lagtrim.html ├── numpy.polynomial.laguerre.lagval.html ├── numpy.polynomial.laguerre.lagval2d.html ├── numpy.polynomial.laguerre.lagval3d.html ├── numpy.polynomial.laguerre.lagvander.html ├── numpy.polynomial.laguerre.lagvander2d.html ├── numpy.polynomial.laguerre.lagvander3d.html ├── numpy.polynomial.laguerre.lagweight.html ├── numpy.polynomial.laguerre.lagx.html ├── numpy.polynomial.laguerre.lagzero.html ├── numpy.polynomial.laguerre.poly2lag.html ├── numpy.polynomial.legendre.Legendre.__call__.html ├── numpy.polynomial.legendre.Legendre.basis.html ├── numpy.polynomial.legendre.Legendre.cast.html ├── numpy.polynomial.legendre.Legendre.convert.html ├── numpy.polynomial.legendre.Legendre.copy.html ├── numpy.polynomial.legendre.Legendre.cutdeg.html ├── numpy.polynomial.legendre.Legendre.degree.html ├── numpy.polynomial.legendre.Legendre.deriv.html ├── numpy.polynomial.legendre.Legendre.fit.html ├── numpy.polynomial.legendre.Legendre.fromroots.html ├── numpy.polynomial.legendre.Legendre.has_samecoef.html ├── numpy.polynomial.legendre.Legendre.has_samedomain.html ├── numpy.polynomial.legendre.Legendre.has_sametype.html ├── numpy.polynomial.legendre.Legendre.has_samewindow.html ├── numpy.polynomial.legendre.Legendre.html ├── numpy.polynomial.legendre.Legendre.identity.html ├── numpy.polynomial.legendre.Legendre.integ.html ├── numpy.polynomial.legendre.Legendre.linspace.html ├── numpy.polynomial.legendre.Legendre.mapparms.html ├── numpy.polynomial.legendre.Legendre.roots.html ├── numpy.polynomial.legendre.Legendre.trim.html ├── numpy.polynomial.legendre.Legendre.truncate.html ├── numpy.polynomial.legendre.leg2poly.html ├── numpy.polynomial.legendre.legadd.html ├── numpy.polynomial.legendre.legcompanion.html ├── numpy.polynomial.legendre.legder.html ├── numpy.polynomial.legendre.legdiv.html ├── numpy.polynomial.legendre.legdomain.html ├── numpy.polynomial.legendre.legfit.html ├── numpy.polynomial.legendre.legfromroots.html ├── numpy.polynomial.legendre.leggauss.html ├── numpy.polynomial.legendre.leggrid2d.html ├── numpy.polynomial.legendre.leggrid3d.html ├── numpy.polynomial.legendre.legint.html ├── numpy.polynomial.legendre.legline.html ├── numpy.polynomial.legendre.legmul.html ├── numpy.polynomial.legendre.legmulx.html ├── numpy.polynomial.legendre.legone.html ├── numpy.polynomial.legendre.legpow.html ├── numpy.polynomial.legendre.legroots.html ├── numpy.polynomial.legendre.legsub.html ├── numpy.polynomial.legendre.legtrim.html ├── numpy.polynomial.legendre.legval.html ├── numpy.polynomial.legendre.legval2d.html ├── numpy.polynomial.legendre.legval3d.html ├── numpy.polynomial.legendre.legvander.html ├── numpy.polynomial.legendre.legvander2d.html ├── numpy.polynomial.legendre.legvander3d.html ├── numpy.polynomial.legendre.legweight.html ├── numpy.polynomial.legendre.legx.html ├── numpy.polynomial.legendre.legzero.html ├── numpy.polynomial.legendre.poly2leg.html ├── numpy.polynomial.polynomial.Polynomial.__call__.html ├── numpy.polynomial.polynomial.Polynomial.basis.html ├── numpy.polynomial.polynomial.Polynomial.cast.html ├── numpy.polynomial.polynomial.Polynomial.convert.html ├── numpy.polynomial.polynomial.Polynomial.copy.html ├── numpy.polynomial.polynomial.Polynomial.cutdeg.html ├── numpy.polynomial.polynomial.Polynomial.degree.html ├── numpy.polynomial.polynomial.Polynomial.deriv.html ├── numpy.polynomial.polynomial.Polynomial.fit.html ├── numpy.polynomial.polynomial.Polynomial.fromroots.html ├── numpy.polynomial.polynomial.Polynomial.has_samecoef.html ├── numpy.polynomial.polynomial.Polynomial.has_samedomain.html ├── numpy.polynomial.polynomial.Polynomial.has_sametype.html ├── numpy.polynomial.polynomial.Polynomial.has_samewindow.html ├── numpy.polynomial.polynomial.Polynomial.html ├── numpy.polynomial.polynomial.Polynomial.identity.html ├── numpy.polynomial.polynomial.Polynomial.integ.html ├── numpy.polynomial.polynomial.Polynomial.linspace.html ├── numpy.polynomial.polynomial.Polynomial.mapparms.html ├── numpy.polynomial.polynomial.Polynomial.roots.html ├── numpy.polynomial.polynomial.Polynomial.trim.html ├── numpy.polynomial.polynomial.Polynomial.truncate.html ├── numpy.polynomial.polynomial.polyadd.html ├── numpy.polynomial.polynomial.polycompanion.html ├── numpy.polynomial.polynomial.polyder.html ├── numpy.polynomial.polynomial.polydiv.html ├── numpy.polynomial.polynomial.polydomain.html ├── numpy.polynomial.polynomial.polyfit.html ├── numpy.polynomial.polynomial.polyfromroots.html ├── numpy.polynomial.polynomial.polygrid2d.html ├── numpy.polynomial.polynomial.polygrid3d.html ├── numpy.polynomial.polynomial.polyint.html ├── numpy.polynomial.polynomial.polyline.html ├── numpy.polynomial.polynomial.polymul.html ├── numpy.polynomial.polynomial.polymulx.html ├── numpy.polynomial.polynomial.polyone.html ├── numpy.polynomial.polynomial.polypow.html ├── numpy.polynomial.polynomial.polyroots.html ├── numpy.polynomial.polynomial.polysub.html ├── numpy.polynomial.polynomial.polytrim.html ├── numpy.polynomial.polynomial.polyval.html ├── numpy.polynomial.polynomial.polyval2d.html ├── numpy.polynomial.polynomial.polyval3d.html ├── numpy.polynomial.polynomial.polyvander.html ├── numpy.polynomial.polynomial.polyvander2d.html ├── numpy.polynomial.polynomial.polyvander3d.html ├── numpy.polynomial.polynomial.polyx.html ├── numpy.polynomial.polynomial.polyzero.html ├── numpy.polysub.html ├── numpy.polyval.html ├── numpy.power.html ├── numpy.ppmt.html ├── numpy.prod.html ├── numpy.promote_types.html ├── numpy.ptp.html ├── numpy.put.html ├── numpy.putmask.html ├── numpy.pv.html ├── numpy.r_.html ├── numpy.rad2deg.html ├── numpy.radians.html ├── numpy.random.RandomState.beta.html ├── numpy.random.RandomState.binomial.html ├── numpy.random.RandomState.bytes.html ├── numpy.random.RandomState.chisquare.html ├── numpy.random.RandomState.choice.html ├── numpy.random.RandomState.dirichlet.html ├── numpy.random.RandomState.exponential.html ├── numpy.random.RandomState.f.html ├── numpy.random.RandomState.gamma.html ├── numpy.random.RandomState.geometric.html ├── numpy.random.RandomState.get_state.html ├── numpy.random.RandomState.gumbel.html ├── numpy.random.RandomState.html ├── numpy.random.RandomState.hypergeometric.html ├── numpy.random.RandomState.laplace.html ├── numpy.random.RandomState.logistic.html ├── numpy.random.RandomState.lognormal.html ├── numpy.random.RandomState.logseries.html ├── numpy.random.RandomState.multinomial.html ├── numpy.random.RandomState.multivariate_normal.html ├── numpy.random.RandomState.negative_binomial.html ├── numpy.random.RandomState.noncentral_chisquare.html ├── numpy.random.RandomState.noncentral_f.html ├── numpy.random.RandomState.normal.html ├── numpy.random.RandomState.pareto.html ├── numpy.random.RandomState.permutation.html ├── numpy.random.RandomState.poisson.html ├── numpy.random.RandomState.power.html ├── numpy.random.RandomState.rand.html ├── numpy.random.RandomState.randint.html ├── numpy.random.RandomState.randn.html ├── numpy.random.RandomState.random_integers.html ├── numpy.random.RandomState.random_sample.html ├── numpy.random.RandomState.rayleigh.html ├── numpy.random.RandomState.seed.html ├── numpy.random.RandomState.set_state.html ├── numpy.random.RandomState.shuffle.html ├── numpy.random.RandomState.standard_cauchy.html ├── numpy.random.RandomState.standard_exponential.html ├── numpy.random.RandomState.standard_gamma.html ├── numpy.random.RandomState.standard_normal.html ├── numpy.random.RandomState.standard_t.html ├── numpy.random.RandomState.tomaxint.html ├── numpy.random.RandomState.triangular.html ├── numpy.random.RandomState.uniform.html ├── numpy.random.RandomState.vonmises.html ├── numpy.random.RandomState.wald.html ├── numpy.random.RandomState.weibull.html ├── numpy.random.RandomState.zipf.html ├── numpy.random.beta.html ├── numpy.random.binomial.html ├── numpy.random.bytes.html ├── numpy.random.chisquare.html ├── numpy.random.choice.html ├── numpy.random.dirichlet.html ├── numpy.random.exponential.html ├── numpy.random.f.html ├── numpy.random.gamma.html ├── numpy.random.geometric.html ├── numpy.random.get_state.html ├── numpy.random.gumbel.html ├── numpy.random.hypergeometric.html ├── numpy.random.laplace.html ├── numpy.random.logistic.html ├── numpy.random.lognormal.html ├── numpy.random.logseries.html ├── numpy.random.multinomial.html ├── numpy.random.multivariate_normal.html ├── numpy.random.negative_binomial.html ├── numpy.random.noncentral_chisquare.html ├── numpy.random.noncentral_f.html ├── numpy.random.normal.html ├── numpy.random.pareto.html ├── numpy.random.permutation.html ├── numpy.random.poisson.html ├── numpy.random.power.html ├── numpy.random.rand.html ├── numpy.random.randint.html ├── numpy.random.randn.html ├── numpy.random.random.html ├── numpy.random.random_integers.html ├── numpy.random.random_sample.html ├── numpy.random.ranf.html ├── numpy.random.rayleigh.html ├── numpy.random.sample.html ├── numpy.random.seed.html ├── numpy.random.set_state.html ├── numpy.random.shuffle.html ├── numpy.random.standard_cauchy.html ├── numpy.random.standard_exponential.html ├── numpy.random.standard_gamma.html ├── numpy.random.standard_normal.html ├── numpy.random.standard_t.html ├── numpy.random.triangular.html ├── numpy.random.uniform.html ├── numpy.random.vonmises.html ├── numpy.random.wald.html ├── numpy.random.weibull.html ├── numpy.random.zipf.html ├── numpy.rate.html ├── numpy.ravel.html ├── numpy.ravel_multi_index.html ├── numpy.real.html ├── numpy.real_if_close.html ├── numpy.recarray.T.html ├── numpy.recarray.all.html ├── numpy.recarray.any.html ├── numpy.recarray.argmax.html ├── numpy.recarray.argmin.html ├── numpy.recarray.argpartition.html ├── numpy.recarray.argsort.html ├── numpy.recarray.astype.html ├── numpy.recarray.base.html ├── numpy.recarray.byteswap.html ├── numpy.recarray.choose.html ├── numpy.recarray.clip.html ├── numpy.recarray.compress.html ├── numpy.recarray.conj.html ├── numpy.recarray.conjugate.html ├── numpy.recarray.copy.html ├── numpy.recarray.ctypes.html ├── numpy.recarray.cumprod.html ├── numpy.recarray.cumsum.html ├── numpy.recarray.data.html ├── numpy.recarray.diagonal.html ├── numpy.recarray.dot.html ├── numpy.recarray.dtype.html ├── numpy.recarray.dump.html ├── numpy.recarray.dumps.html ├── numpy.recarray.field.html ├── numpy.recarray.fill.html ├── numpy.recarray.flags.html ├── numpy.recarray.flat.html ├── numpy.recarray.flatten.html ├── numpy.recarray.getfield.html ├── numpy.recarray.html ├── numpy.recarray.imag.html ├── numpy.recarray.item.html ├── numpy.recarray.itemset.html ├── numpy.recarray.itemsize.html ├── numpy.recarray.max.html ├── numpy.recarray.mean.html ├── numpy.recarray.min.html ├── numpy.recarray.nbytes.html ├── numpy.recarray.ndim.html ├── numpy.recarray.newbyteorder.html ├── numpy.recarray.nonzero.html ├── numpy.recarray.partition.html ├── numpy.recarray.prod.html ├── numpy.recarray.ptp.html ├── numpy.recarray.put.html ├── numpy.recarray.ravel.html ├── numpy.recarray.real.html ├── numpy.recarray.repeat.html ├── numpy.recarray.reshape.html ├── numpy.recarray.resize.html ├── numpy.recarray.round.html ├── numpy.recarray.searchsorted.html ├── numpy.recarray.setfield.html ├── numpy.recarray.setflags.html ├── numpy.recarray.shape.html ├── numpy.recarray.size.html ├── numpy.recarray.sort.html ├── numpy.recarray.squeeze.html ├── numpy.recarray.std.html ├── numpy.recarray.strides.html ├── numpy.recarray.sum.html ├── numpy.recarray.swapaxes.html ├── numpy.recarray.take.html ├── numpy.recarray.tobytes.html ├── numpy.recarray.tofile.html ├── numpy.recarray.tolist.html ├── numpy.recarray.tostring.html ├── numpy.recarray.trace.html ├── numpy.recarray.transpose.html ├── numpy.recarray.var.html ├── numpy.recarray.view.html ├── numpy.reciprocal.html ├── numpy.record.T.html ├── numpy.record.all.html ├── numpy.record.any.html ├── numpy.record.argmax.html ├── numpy.record.argmin.html ├── numpy.record.argsort.html ├── numpy.record.astype.html ├── numpy.record.base.html ├── numpy.record.byteswap.html ├── numpy.record.choose.html ├── numpy.record.clip.html ├── numpy.record.compress.html ├── numpy.record.conj.html ├── numpy.record.conjugate.html ├── numpy.record.copy.html ├── numpy.record.cumprod.html ├── numpy.record.cumsum.html ├── numpy.record.data.html ├── numpy.record.diagonal.html ├── numpy.record.dtype.html ├── numpy.record.dump.html ├── numpy.record.dumps.html ├── numpy.record.fill.html ├── numpy.record.flags.html ├── numpy.record.flat.html ├── numpy.record.flatten.html ├── numpy.record.getfield.html ├── numpy.record.html ├── numpy.record.imag.html ├── numpy.record.item.html ├── numpy.record.itemset.html ├── numpy.record.itemsize.html ├── numpy.record.max.html ├── numpy.record.mean.html ├── numpy.record.min.html ├── numpy.record.nbytes.html ├── numpy.record.ndim.html ├── numpy.record.newbyteorder.html ├── numpy.record.nonzero.html ├── numpy.record.pprint.html ├── numpy.record.prod.html ├── numpy.record.ptp.html ├── numpy.record.put.html ├── numpy.record.ravel.html ├── numpy.record.real.html ├── numpy.record.repeat.html ├── numpy.record.reshape.html ├── numpy.record.resize.html ├── numpy.record.round.html ├── numpy.record.searchsorted.html ├── numpy.record.setfield.html ├── numpy.record.setflags.html ├── numpy.record.shape.html ├── numpy.record.size.html ├── numpy.record.sort.html ├── numpy.record.squeeze.html ├── numpy.record.std.html ├── numpy.record.strides.html ├── numpy.record.sum.html ├── numpy.record.swapaxes.html ├── numpy.record.take.html ├── numpy.record.tobytes.html ├── numpy.record.tofile.html ├── numpy.record.tolist.html ├── numpy.record.tostring.html ├── numpy.record.trace.html ├── numpy.record.transpose.html ├── numpy.record.var.html ├── numpy.record.view.html ├── numpy.remainder.html ├── numpy.repeat.html ├── numpy.require.html ├── numpy.reshape.html ├── numpy.resize.html ├── numpy.restoredot.html ├── numpy.result_type.html ├── numpy.right_shift.html ├── numpy.rint.html ├── numpy.roll.html ├── numpy.rollaxis.html ├── numpy.roots.html ├── numpy.rot90.html ├── numpy.round_.html ├── numpy.s_.html ├── numpy.save.html ├── numpy.savetxt.html ├── numpy.savez.html ├── numpy.savez_compressed.html ├── numpy.sctype2char.html ├── numpy.searchsorted.html ├── numpy.select.html ├── numpy.set_printoptions.html ├── numpy.set_string_function.html ├── numpy.setbufsize.html ├── numpy.setdiff1d.html ├── numpy.seterr.html ├── numpy.seterrcall.html ├── numpy.seterrobj.html ├── numpy.setxor1d.html ├── numpy.shares_memory.html ├── numpy.sign.html ├── numpy.signbit.html ├── numpy.sin.html ├── numpy.sinc.html ├── numpy.sinh.html ├── numpy.sort.html ├── numpy.sort_complex.html ├── numpy.source.html ├── numpy.split.html ├── numpy.sqrt.html ├── numpy.square.html ├── numpy.squeeze.html ├── numpy.stack.html ├── numpy.std.html ├── numpy.subtract.html ├── numpy.sum.html ├── numpy.swapaxes.html ├── numpy.take.html ├── numpy.tan.html ├── numpy.tanh.html ├── numpy.tensordot.html ├── numpy.testing.Tester.html ├── numpy.testing.assert_allclose.html ├── numpy.testing.assert_almost_equal.html ├── numpy.testing.assert_approx_equal.html ├── numpy.testing.assert_array_almost_equal.html ├── numpy.testing.assert_array_almost_equal_nulp.html ├── numpy.testing.assert_array_equal.html ├── numpy.testing.assert_array_less.html ├── numpy.testing.assert_array_max_ulp.html ├── numpy.testing.assert_equal.html ├── numpy.testing.assert_raises.html ├── numpy.testing.assert_raises_regex.html ├── numpy.testing.assert_string_equal.html ├── numpy.testing.assert_warns.html ├── numpy.testing.decorate_methods.html ├── numpy.testing.decorators.deprecated.html ├── numpy.testing.decorators.knownfailureif.html ├── numpy.testing.decorators.setastest.html ├── numpy.testing.decorators.skipif.html ├── numpy.testing.decorators.slow.html ├── numpy.testing.run_module_suite.html ├── numpy.testing.rundocs.html ├── numpy.tile.html ├── numpy.trace.html ├── numpy.transpose.html ├── numpy.trapz.html ├── numpy.tri.html ├── numpy.tril.html ├── numpy.tril_indices.html ├── numpy.tril_indices_from.html ├── numpy.trim_zeros.html ├── numpy.triu.html ├── numpy.triu_indices.html ├── numpy.triu_indices_from.html ├── numpy.true_divide.html ├── numpy.trunc.html ├── numpy.typename.html ├── numpy.ufunc.accumulate.html ├── numpy.ufunc.at.html ├── numpy.ufunc.identity.html ├── numpy.ufunc.nargs.html ├── numpy.ufunc.nin.html ├── numpy.ufunc.nout.html ├── numpy.ufunc.ntypes.html ├── numpy.ufunc.outer.html ├── numpy.ufunc.reduce.html ├── numpy.ufunc.reduceat.html ├── numpy.ufunc.types.html ├── numpy.union1d.html ├── numpy.unique.html ├── numpy.unpackbits.html ├── numpy.unravel_index.html ├── numpy.unwrap.html ├── numpy.vander.html ├── numpy.var.html ├── numpy.vdot.html ├── numpy.vectorize.__call__.html ├── numpy.vectorize.html ├── numpy.vsplit.html ├── numpy.vstack.html ├── numpy.where.html ├── numpy.zeros.html └── numpy.zeros_like.html ├── index.html ├── internals.code-explanations.html ├── internals.html ├── maskedarray.baseclass.html ├── maskedarray.generic.html ├── maskedarray.html ├── routines.array-creation.html ├── routines.array-manipulation.html ├── routines.bitwise.html ├── routines.char.html ├── routines.ctypeslib.html ├── routines.datetime.html ├── routines.dtype.html ├── routines.dual.html ├── routines.emath.html ├── routines.err.html ├── routines.fft.html ├── routines.financial.html ├── routines.functional.html ├── routines.help.html ├── routines.html ├── routines.indexing.html ├── routines.io.html ├── routines.linalg.html ├── routines.logic.html ├── routines.ma.html ├── routines.math.html ├── routines.matlib.html ├── routines.other.html ├── routines.padding.html ├── routines.polynomials.chebyshev.html ├── routines.polynomials.classes.html ├── routines.polynomials.hermite.html ├── routines.polynomials.hermite_e.html ├── routines.polynomials.html ├── routines.polynomials.laguerre.html ├── routines.polynomials.legendre.html ├── routines.polynomials.package.html ├── routines.polynomials.poly1d.html ├── routines.polynomials.polynomial.html ├── routines.random.html ├── routines.set.html ├── routines.sort.html ├── routines.statistics.html ├── routines.testing.html ├── routines.window.html ├── swig.html ├── swig.interface-file.html ├── swig.testing.html └── ufuncs.html /CNAME: -------------------------------------------------------------------------------- 1 | numpy.apachecn.org -------------------------------------------------------------------------------- /generated/numpy.broadcast.next.html: -------------------------------------------------------------------------------- 1 | 2 |
4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.broadcast.next.html
5 | 6 |校对:(虚位以待)
7 |
broadcast.
next
4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.busdaycalendar.holidays.html
5 | 6 |校对:(虚位以待)
7 |
busdaycalendar.
holidays
假日数组的副本,表示额外的无效天数。
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.busdaycalendar.weekmask.html
5 | 6 |校对:(虚位以待)
7 |
busdaycalendar.
weekmask
指示有效天数的七元素布尔掩码的副本。
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.chararray.data.html
5 | 6 |校对:(虚位以待)
7 |
chararray.
data
Python缓冲区对象指向数组的数据的开始。
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.core.defchararray.chararray.data.html
5 | 6 |校对:(虚位以待)
7 |
chararray.
data
Python缓冲区对象指向数组的数据的开始。
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.distutils.cpuinfo.cpu.html
5 | 6 |校对:(虚位以待)
7 |
numpy.distutils.cpuinfo.
cpu
= <numpy.distutils.cpuinfo.LinuxCPUInfo object>4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.distutils.log.set_verbosity.html
5 | 6 |校对:(虚位以待)
7 |
numpy.distutils.log.
set_verbosity
(v, force=False)[source]4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.distutils.misc_util.blue_text.html
5 | 6 |校对:(虚位以待)
7 |
numpy.distutils.misc_util.
blue_text
(s)[source]4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.distutils.misc_util.cyan_text.html
5 | 6 |校对:(虚位以待)
7 |
numpy.distutils.misc_util.
cyan_text
(s)[source]4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.distutils.misc_util.cyg2win32.html
5 | 6 |校对:(虚位以待)
7 |
numpy.distutils.misc_util.
cyg2win32
(path)[source]4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.distutils.misc_util.dot_join.html
5 | 6 |校对:(虚位以待)
7 |
numpy.distutils.misc_util.
dot_join
(*args)[source]4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.distutils.misc_util.get_cmd.html
5 | 6 |校对:(虚位以待)
7 |
numpy.distutils.misc_util.
get_cmd
(cmdname, _cache={})[source]4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.distutils.misc_util.green_text.html
5 | 6 |校对:(虚位以待)
7 |
numpy.distutils.misc_util.
green_text
(s)[source]4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.distutils.misc_util.red_text.html
5 | 6 |校对:(虚位以待)
7 |
numpy.distutils.misc_util.
red_text
(s)[source]4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.distutils.misc_util.yellow_text.html
5 | 6 |校对:(虚位以待)
7 |
numpy.distutils.misc_util.
yellow_text
(s)[source]4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.__reduce__.html
5 | 6 |校对:(虚位以待)
7 |
dtype.
__reduce__
()4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.__setstate__.html
5 | 6 |校对:(虚位以待)
7 |
dtype.
__setstate__
()4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.alignment.html
5 | 6 |校对:(虚位以待)
7 |
dtype.
alignment
根据编译器,此数据类型所需的对齐(字节)。
12 |有关详细信息,请参阅本手册的C-API部分。
13 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.base.html
5 | 6 |校对:(虚位以待)
7 |
dtype.
base
4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.char.html
5 | 6 |校对:(虚位以待)
7 |
dtype.
char
21种不同内置类型中的每一种的唯一字符代码。
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.descr.html
5 | 6 |校对:(虚位以待)
7 |
dtype.
descr
数组类型的数组接口完全描述。
12 |该格式是__ array_interface __属性中的“descr”键所需的格式。
13 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.hasobject.html
5 | 6 |校对:(虚位以待)
7 |
dtype.
hasobject
布尔值,指示此dtype是否在任何字段或子类型中包含任何引用计数的对象。
12 |回忆一下,在代表Python对象的ndarray存储器中实际是该对象的存储器地址(指针)。可能需要特殊处理,并且此属性可用于区分可能包含任意Python对象的数据类型和不包含的对象的数据类型。
13 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.isalignedstruct.html
5 | 6 |校对:(虚位以待)
7 |
dtype.
isalignedstruct
布尔值,表示dtype是否为保持字段对齐的结构体。这个标志是粘性的,因此当将多个结构组合在一起时,它被保留并产生也对齐的新的类型。
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.isnative.html
5 | 6 |校对:(虚位以待)
7 |
dtype.
isnative
布尔值,指示此dtype的字节顺序是否为平台本地的。
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.itemsize.html
5 | 6 |校对:(虚位以待)
7 |
dtype.
itemsize
此数据类型对象的元素大小。
12 |对于21种类型中的18种,该数字由数据类型固定。对于灵活的数据类型,这个数字可以是任何东西。
13 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.metadata.html
5 | 6 |校对:(虚位以待)
7 |
dtype.
metadata
4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.name.html
5 | 6 |校对:(虚位以待)
7 |
dtype.
name
此数据类型的位宽名称。
12 |未调整大小的灵活数据类型对象没有此属性。
13 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.num.html
5 | 6 |校对:(虚位以待)
7 |
dtype.
num
21种不同内置类型中的每一种的唯一编号。
12 |这些大致从最小到最大精度排序。
13 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.shape.html
5 | 6 |校对:(虚位以待)
7 |
dtype.
shape
如果此数据类型描述子数组,则子数组的形状元组,否则为()
。
4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.str.html
5 | 6 |校对:(虚位以待)
7 |
dtype.
str
此数据类型对象的数组协议typestring。
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.dtype.type.html
5 | 6 |校对:(虚位以待)
7 |
dtype.
type
用于实例化此数据类型的标量的类型对象。
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.flatiter.next.html
5 | 6 |校对:(虚位以待)
7 |
flatiter.
next
4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.generic.T.html
5 | 6 |校对:(虚位以待)
7 |
generic.
T
转置
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.generic.__array__.html
5 | 6 |校对:(虚位以待)
7 |
generic.
__array__
()sc .__ array __(| type)return 0-dim数组
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.generic.__array_interface__.html
5 | 6 |校对:(虚位以待)
7 |
generic.
__array_interface__
数组协议:Python端
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.generic.__array_priority__.html
5 | 6 |校对:(虚位以待)
7 |
generic.
__array_priority__
数组优先级。
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.generic.__array_struct__.html
5 | 6 |校对:(虚位以待)
7 |
generic.
__array_struct__
数组协议:struct
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.generic.__array_wrap__.html
5 | 6 |校对:(虚位以待)
7 |
generic.
__array_wrap__
()sc .__ array_wrap __(obj)返回数组的标量
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.generic.__reduce__.html
5 | 6 |校对:(虚位以待)
7 |
generic.
__reduce__
()4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.generic.__setstate__.html
5 | 6 |校对:(虚位以待)
7 |
generic.
__setstate__
()4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.generic.base.html
5 | 6 |校对:(虚位以待)
7 |
generic.
base
基础对象
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.generic.conj.html
5 | 6 |校对:(虚位以待)
7 |
generic.
conj
()4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.generic.data.html
5 | 6 |校对:(虚位以待)
7 |
generic.
data
指向数据开始的指针
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.generic.dtype.html
5 | 6 |校对:(虚位以待)
7 |
generic.
dtype
获取数组数据描述符
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.generic.flags.html
5 | 6 |校对:(虚位以待)
7 |
generic.
flags
标志的整数值
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.generic.flat.html
5 | 6 |校对:(虚位以待)
7 |
generic.
flat
标量的1-d视图
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.generic.imag.html
5 | 6 |校对:(虚位以待)
7 |
generic.
imag
标量的虚部
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.generic.itemsize.html
5 | 6 |校对:(虚位以待)
7 |
generic.
itemsize
一个元素的长度(以字节为单位)
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.generic.nbytes.html
5 | 6 |校对:(虚位以待)
7 |
generic.
nbytes
项目的长度(以字节为单位)
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.generic.ndim.html
5 | 6 |校对:(虚位以待)
7 |
generic.
ndim
数组维数
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.generic.real.html
5 | 6 |校对:(虚位以待)
7 |
generic.
real
实数部分
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.generic.shape.html
5 | 6 |校对:(虚位以待)
7 |
generic.
shape
数组维度的元组
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.generic.size.html
5 | 6 |校对:(虚位以待)
7 |
generic.
size
gentype中的元素数
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.generic.strides.html
5 | 6 |校对:(虚位以待)
7 |
generic.
strides
每个维度中的字节步长
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.generic.tobytes.html
5 | 6 |校对:(虚位以待)
7 |
generic.
tobytes
()4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.iinfo.max.html
5 | 6 |校对:(虚位以待)
7 |
iinfo.
max
给定dtype的最大值。
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.iinfo.min.html
5 | 6 |校对:(虚位以待)
7 |
iinfo.
min
给定dtype的最小值。
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskType.html
5 | 6 |校对:(虚位以待)
7 |
numpy.ma.
MaskType
[source]bool_
的别名
4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.T.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
T
4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.__abs__.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
__abs__
() <==> abs(x)4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.__add__.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
__add__
(other)[source]将self添加到其他,并返回一个新的蒙版数组。
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.__and__.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
__and__
x。和__(y)x&y
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.__array__.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
__array__
(|dtype) → reference if type unchanged, copy otherwise.如果未指定dtype,则返回对self的新引用,如果dtype与数组的当前dtype不同,则返回提供的数据类型的新数组。
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.__array_priority__.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
__array_priority__
= 154 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.__contains__.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
__contains__
x .__在x中包含__(y)y
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.__deepcopy__.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
__deepcopy__
(memo=None)[source]4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.__delitem__.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
__delitem__
x .__ delitem __(y)del x [y]
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.__div__.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
__div__
(other)[source]将其他划分为self,并返回一个新的屏蔽数组。
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.__divmod__.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
__divmod__
(y) <==> divmod(x, y)4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.__eq__.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
__eq__
(other)[source]检查其他是否等于自我元素。
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.__float__.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
__float__
()[source]转换为浮动。
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.__ge__.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
__ge__
x ._ge__(y)x> = y
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.__gt__.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
__gt__
x .__ gt__(y)x> y
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.__hex__.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
__hex__
() <==> hex(x)4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.__iadd__.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
__iadd__
(other)[source]添加其他到自己就地。
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.__iand__.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
__iand__
x .__ iand __(y)x&= y
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.__idiv__.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
__idiv__
(other)[source]将自己与其他地方分开。
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.__ilshift__.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
__ilshift__
x .__ ilshift __(y)x
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.__imod__.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
__imod__
x。_ imod __(y)x%= y
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.__imul__.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
__imul__
(other)[source]通过其他就地乘法自我。
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.__int__.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
__int__
()[source]转换为int。
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.__ior__.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
__ior__
x .__ ior __(y)x | = y
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.__ipow__.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
__ipow__
(other)[source]提高自己到力量其他,到位。
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.__irshift__.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
__irshift__
x .__ irshift __(y)x >> = y
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.__isub__.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
__isub__
(other)[source]从其他位置自行扣除。
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.__ixor__.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
__ixor__
x。_ ixor __(y)x ^ = y
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.__le__.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
__le__
x。_ le __(y)x
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.__len__.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
__len__
() <==> len(x)4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.__long__.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
__long__
() <==> long(x)4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.__lshift__.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
__lshift__
x .__ lshift __(y)x
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.__lt__.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
__lt__
x.__lt__(y) <==> x
4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.__mod__.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
__mod__
x .__ mod __(y)x%y
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.__mul__.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
__mul__
(other)[source]乘以其他,并返回一个新的蒙版数组。
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.__ne__.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
__ne__
(other)[source]检查其他不等于自我元素
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.__nonzero__.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
__nonzero__
x .__ nonzero __()x!= 0
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.__oct__.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
__oct__
() <==> oct(x)4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.__or__.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
__or__
x .__或__(y)x | y
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.__pow__.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
__pow__
(other)[source]提高自我对权力其他,掩蔽潜力NaNs / Infs
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.__radd__.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
__radd__
(other)[source]将其他添加到self,并返回一个新的蒙版数组。
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.__rand__.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
__rand__
x。_ rand __(y)y&x
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.__rdiv__.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
__rdiv__
点¯x.__ RDIV __(Y)Y / X
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.__rdivmod__.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
__rdivmod__
(y) <==> divmod(y, x)4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.__reduce__.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
__reduce__
()[source]返回用于酸洗MaskedArray的3元组。
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.__repr__.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
__repr__
()[source]文字字符串表示。
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.__rlshift__.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
__rlshift__
x .__ rlshift __(y)y
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.__rmod__.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
__rmod__
x .__ rmod __(y)y%x
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.__rmul__.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
__rmul__
(other)[source]通过self乘其他,并返回一个新的蒙版数组。
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.__ror__.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
__ror__
x .__ ror __(y)y | x
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.__rpow__.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
__rpow__
(other)[source]提高其他的力量自我,掩蔽潜力NaNs / Infs
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.__rrshift__.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
__rrshift__
x .__ rrshift __(y)y >> x
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.__rshift__.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
__rshift__
x .__ rshift__(y)x >> y
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.__rsub__.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
__rsub__
(other)[source]从其他中减去self,并返回一个新的蒙版数组。
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.__rxor__.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
__rxor__
x。_ rxor __(y)y ^ x
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.__str__.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
__str__
()[source]字符串表示。
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.__sub__.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
__sub__
(other)[source]从self中减去其他,并返回一个新的蒙版数组。
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.__xor__.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
__xor__
x .__ xor __(y)x ^ y
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.data.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
data
返回当前数据,作为原始基础数据的视图。
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.fill_value.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
fill_value
灌装值。
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.flat.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
flat
数组的平版本。
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.imag.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
imag
虚构部分。
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.mask.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
mask
面具
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.real.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
real
实体部分
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.recordmask.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
recordmask
返回记录的掩码。
12 |当所有字段都被屏蔽时,记录被屏蔽。
13 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.MaskedArray.take.html
5 | 6 |校对:(虚位以待)
7 |
MaskedArray.
take
(indices, axis=None, out=None, mode='raise')[source]4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ma.masked_array.mask.html
5 | 6 |校对:(虚位以待)
7 |
masked_array.
mask
面具
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.matrix.data.html
5 | 6 |校对:(虚位以待)
7 |
matrix.
data
Python缓冲区对象指向数组的数据的开始。
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.__abs__.html
5 | 6 |校对:(虚位以待)
7 |
ndarray.
__abs__
() <==> abs(x)4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.__add__.html
5 | 6 |校对:(虚位以待)
7 |
ndarray.
__add__
x .__ add __(y)x + y
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.__and__.html
5 | 6 |校对:(虚位以待)
7 |
ndarray.
__and__
x。和__(y)x&y
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.__array__.html
5 | 6 |校对:(虚位以待)
7 |
ndarray.
__array__
(|dtype) → reference if type unchanged, copy otherwise.如果未指定dtype,则返回对self的新引用,如果dtype与数组的当前dtype不同,则返回提供的数据类型的新数组。
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.__array_wrap__.html
5 | 6 |校对:(虚位以待)
7 |
ndarray.
__array_wrap__
(obj) → Object of same type as ndarray object a.4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.__contains__.html
5 | 6 |校对:(虚位以待)
7 |
ndarray.
__contains__
x .__在x中包含__(y)y
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.__deepcopy__.html
5 | 6 |校对:(虚位以待)
7 |
ndarray.
__deepcopy__
() → Deep copy of array.在数组上调用copy.deepcopy时使用。
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.__div__.html
5 | 6 |校对:(虚位以待)
7 |
ndarray.
__div__
x .__ div __(y)x / y
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.__divmod__.html
5 | 6 |校对:(虚位以待)
7 |
ndarray.
__divmod__
(y) <==> divmod(x, y)4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.__eq__.html
5 | 6 |校对:(虚位以待)
7 |
ndarray.
__eq__
x .__ eq __(y)x == y
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.__float__.html
5 | 6 |校对:(虚位以待)
7 |
ndarray.
__float__
() <==> float(x)4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.__floordiv__.html
5 | 6 |校对:(虚位以待)
7 |
ndarray.
__floordiv__
x .__ floordiv __(y)x // y
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.__ge__.html
5 | 6 |校对:(虚位以待)
7 |
ndarray.
__ge__
x ._ge__(y)x> = y
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.__getitem__.html
5 | 6 |校对:(虚位以待)
7 |
ndarray.
__getitem__
x .__ getitem __(y)x [y]
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.__gt__.html
5 | 6 |校对:(虚位以待)
7 |
ndarray.
__gt__
x .__ gt__(y)x> y
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.__hex__.html
5 | 6 |校对:(虚位以待)
7 |
ndarray.
__hex__
() <==> hex(x)4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.__iadd__.html
5 | 6 |校对:(虚位以待)
7 |
ndarray.
__iadd__
x .__ iadd __(y)x + = y
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.__iand__.html
5 | 6 |校对:(虚位以待)
7 |
ndarray.
__iand__
x .__ iand __(y)x&= y
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.__idiv__.html
5 | 6 |校对:(虚位以待)
7 |
ndarray.
__idiv__
x。_ idiv __(y)x / = y
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.__ifloordiv__.html
5 | 6 |校对:(虚位以待)
7 |
ndarray.
__ifloordiv__
x ._ ifloordiv __(y)x // = y
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.__ilshift__.html
5 | 6 |校对:(虚位以待)
7 |
ndarray.
__ilshift__
x .__ ilshift __(y)x
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.__imod__.html
5 | 6 |校对:(虚位以待)
7 |
ndarray.
__imod__
x。_ imod __(y)x%= y
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.__imul__.html
5 | 6 |校对:(虚位以待)
7 |
ndarray.
__imul__
x .__ imul __(y)x * = y
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.__int__.html
5 | 6 |校对:(虚位以待)
7 |
ndarray.
__int__
() <==> int(x)4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.__invert__.html
5 | 6 |校对:(虚位以待)
7 |
ndarray.
__invert__
x .__反转__()〜x
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.__ior__.html
5 | 6 |校对:(虚位以待)
7 |
ndarray.
__ior__
x .__ ior __(y)x | = y
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.__ipow__.html
5 | 6 |校对:(虚位以待)
7 |
ndarray.
__ipow__
x。_ ipow __(y)x ** = y
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.__irshift__.html
5 | 6 |校对:(虚位以待)
7 |
ndarray.
__irshift__
x .__ irshift __(y)x >> = y
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.__isub__.html
5 | 6 |校对:(虚位以待)
7 |
ndarray.
__isub__
x .__ isub __(y)x- = y
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.__itruediv__.html
5 | 6 |校对:(虚位以待)
7 |
ndarray.
__itruediv__
x .__ itruediv __(y)x / = y
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.__ixor__.html
5 | 6 |校对:(虚位以待)
7 |
ndarray.
__ixor__
x。_ ixor __(y)x ^ = y
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.__le__.html
5 | 6 |校对:(虚位以待)
7 |
ndarray.
__le__
x。_ le __(y)x
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.__len__.html
5 | 6 |校对:(虚位以待)
7 |
ndarray.
__len__
() <==> len(x)4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.__long__.html
5 | 6 |校对:(虚位以待)
7 |
ndarray.
__long__
() <==> long(x)4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.__lshift__.html
5 | 6 |校对:(虚位以待)
7 |
ndarray.
__lshift__
x .__ lshift __(y)x
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.__lt__.html
5 | 6 |校对:(虚位以待)
7 |
ndarray.
__lt__
x.__lt__(y) <==> x
4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.__mod__.html
5 | 6 |校对:(虚位以待)
7 |
ndarray.
__mod__
x .__ mod __(y)x%y
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.__mul__.html
5 | 6 |校对:(虚位以待)
7 |
ndarray.
__mul__
x。_ mul __(y)x * y
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.__ne__.html
5 | 6 |校对:(虚位以待)
7 |
ndarray.
__ne__
x .__ ne __(y)x!= y
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.__neg__.html
5 | 6 |校对:(虚位以待)
7 |
ndarray.
__neg__
x .__ neg __()-x
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.__new__.html
5 | 6 |校对:(虚位以待)
7 |
ndarray.
__new__
(S, ...) → a new object with type S, a subtype of T4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.__nonzero__.html
5 | 6 |校对:(虚位以待)
7 |
ndarray.
__nonzero__
x .__ nonzero __()x!= 0
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.__oct__.html
5 | 6 |校对:(虚位以待)
7 |
ndarray.
__oct__
() <==> oct(x)4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.__or__.html
5 | 6 |校对:(虚位以待)
7 |
ndarray.
__or__
x .__或__(y)x | y
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.__pos__.html
5 | 6 |校对:(虚位以待)
7 |
ndarray.
__pos__
x .__ pos __()+ x
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.__pow__.html
5 | 6 |校对:(虚位以待)
7 |
ndarray.
__pow__
(y[, z]) <==> pow(x, y[, z])4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.__reduce__.html
5 | 6 |校对:(虚位以待)
7 |
ndarray.
__reduce__
()酸洗。
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.__repr__.html
5 | 6 |校对:(虚位以待)
7 |
ndarray.
__repr__
() <==> repr(x)4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.__rshift__.html
5 | 6 |校对:(虚位以待)
7 |
ndarray.
__rshift__
x .__ rshift__(y)x >> y
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.__setitem__.html
5 | 6 |校对:(虚位以待)
7 |
ndarray.
__setitem__
x .__ setitem __(i,y)x [i] = y
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.__str__.html
5 | 6 |校对:(虚位以待)
7 |
ndarray.
__str__
() <==> str(x)4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.__sub__.html
5 | 6 |校对:(虚位以待)
7 |
ndarray.
__sub__
x .__ sub __(y)x-y
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.__truediv__.html
5 | 6 |校对:(虚位以待)
7 |
ndarray.
__truediv__
x。_ truediv __(y)x / y
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.__xor__.html
5 | 6 |校对:(虚位以待)
7 |
ndarray.
__xor__
x .__ xor __(y)x ^ y
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.data.html
5 | 6 |校对:(虚位以待)
7 |
ndarray.
data
Python缓冲区对象指向数组的数据的开始。
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndindex.ndincr.html
5 | 6 |校对:(虚位以待)
7 |
ndindex.
ndincr
()[source]将多维索引增加1。
12 |此方法仅用于向后兼容:不使用。
13 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.nditer.debug_print.html
5 | 6 |校对:(虚位以待)
7 |
nditer.
debug_print
()打印nditer
实例的当前状态并将调试信息输出到stdout。
4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.nditer.enable_external_loop.html
5 | 6 |校对:(虚位以待)
7 |
nditer.
enable_external_loop
()当在构造期间没有使用“external_loop”时,这是修改迭代器的行为,如同指定了标志。
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.nditer.next.html
5 | 6 |校对:(虚位以待)
7 |
nditer.
next
4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.nditer.remove_axis.html
5 | 6 |校对:(虚位以待)
7 |
nditer.
remove_axis
(i)从迭代器中删除轴i。需要启用标志“multi_index”。
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.nditer.remove_multi_index.html
5 | 6 |校对:(虚位以待)
7 |
nditer.
remove_multi_index
()当指定“multi_index”标志时,这将删除它,允许内部迭代结构进一步优化。
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.nditer.reset.html
5 | 6 |校对:(虚位以待)
7 |
nditer.
reset
()将迭代器重置为其初始状态。
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.poly1d.__call__.html
5 | 6 |校对:(虚位以待)
7 |
poly1d.
__call__
(val)[source]4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.polynomial.chebyshev.chebdomain.html
5 | 6 |校对:(虚位以待)
7 |
numpy.polynomial.chebyshev.
chebdomain
= array([-1, 1])4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.polynomial.chebyshev.chebone.html
5 | 6 |校对:(虚位以待)
7 |
numpy.polynomial.chebyshev.
chebone
= array([1])4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.polynomial.chebyshev.chebx.html
5 | 6 |校对:(虚位以待)
7 |
numpy.polynomial.chebyshev.
chebx
= array([0, 1])4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.polynomial.chebyshev.chebzero.html
5 | 6 |校对:(虚位以待)
7 |
numpy.polynomial.chebyshev.
chebzero
= array([0])4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.polynomial.hermite.Hermite.__call__.html
5 | 6 |校对:(虚位以待)
7 |
Hermite.
__call__
(arg)[source]4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.polynomial.hermite.hermdomain.html
5 | 6 |校对:(虚位以待)
7 |
numpy.polynomial.hermite.
hermdomain
= array([-1, 1])4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.polynomial.hermite.hermone.html
5 | 6 |校对:(虚位以待)
7 |
numpy.polynomial.hermite.
hermone
= array([1])4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.polynomial.hermite.hermx.html
5 | 6 |校对:(虚位以待)
7 |
numpy.polynomial.hermite.
hermx
= array([ 0. , 0.5])4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.polynomial.hermite.hermzero.html
5 | 6 |校对:(虚位以待)
7 |
numpy.polynomial.hermite.
hermzero
= array([0])4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.polynomial.hermite_e.hermedomain.html
5 | 6 |校对:(虚位以待)
7 |
numpy.polynomial.hermite_e.
hermedomain
= array([-1, 1])4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.polynomial.hermite_e.hermeone.html
5 | 6 |校对:(虚位以待)
7 |
numpy.polynomial.hermite_e.
hermeone
= array([1])4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.polynomial.hermite_e.hermex.html
5 | 6 |校对:(虚位以待)
7 |
numpy.polynomial.hermite_e.
hermex
= array([0, 1])4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.polynomial.hermite_e.hermezero.html
5 | 6 |校对:(虚位以待)
7 |
numpy.polynomial.hermite_e.
hermezero
= array([0])4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.polynomial.laguerre.lagdomain.html
5 | 6 |校对:(虚位以待)
7 |
numpy.polynomial.laguerre.
lagdomain
= array([0, 1])4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.polynomial.laguerre.lagone.html
5 | 6 |校对:(虚位以待)
7 |
numpy.polynomial.laguerre.
lagone
= array([1])4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.polynomial.laguerre.lagx.html
5 | 6 |校对:(虚位以待)
7 |
numpy.polynomial.laguerre.
lagx
= array([ 1, -1])4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.polynomial.laguerre.lagzero.html
5 | 6 |校对:(虚位以待)
7 |
numpy.polynomial.laguerre.
lagzero
= array([0])4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.polynomial.legendre.legdomain.html
5 | 6 |校对:(虚位以待)
7 |
numpy.polynomial.legendre.
legdomain
= array([-1, 1])4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.polynomial.legendre.legone.html
5 | 6 |校对:(虚位以待)
7 |
numpy.polynomial.legendre.
legone
= array([1])4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.polynomial.legendre.legx.html
5 | 6 |校对:(虚位以待)
7 |
numpy.polynomial.legendre.
legx
= array([0, 1])4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.polynomial.legendre.legzero.html
5 | 6 |校对:(虚位以待)
7 |
numpy.polynomial.legendre.
legzero
= array([0])4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.polynomial.polynomial.polydomain.html
5 | 6 |校对:(虚位以待)
7 |
numpy.polynomial.polynomial.
polydomain
= array([-1, 1])4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.polynomial.polynomial.polyone.html
5 | 6 |校对:(虚位以待)
7 |
numpy.polynomial.polynomial.
polyone
= array([1])4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.polynomial.polynomial.polyx.html
5 | 6 |校对:(虚位以待)
7 |
numpy.polynomial.polynomial.
polyx
= array([0, 1])4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.polynomial.polynomial.polyzero.html
5 | 6 |校对:(虚位以待)
7 |
numpy.polynomial.polynomial.
polyzero
= array([0])4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.data.html
5 | 6 |校对:(虚位以待)
7 |
recarray.
data
Python缓冲区对象指向数组的数据的开始。
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.recarray.field.html
5 | 6 |校对:(虚位以待)
7 |
recarray.
field
(attr, val=None)[source]4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.record.T.html
5 | 6 |校对:(虚位以待)
7 |
record.
T
转置
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.record.base.html
5 | 6 |校对:(虚位以待)
7 |
record.
base
基础对象
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.record.conj.html
5 | 6 |校对:(虚位以待)
7 |
record.
conj
()4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.record.data.html
5 | 6 |校对:(虚位以待)
7 |
record.
data
指向数据开始的指针
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.record.dtype.html
5 | 6 |校对:(虚位以待)
7 |
record.
dtype
dtype对象
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.record.flags.html
5 | 6 |校对:(虚位以待)
7 |
record.
flags
标志的整数值
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.record.flat.html
5 | 6 |校对:(虚位以待)
7 |
record.
flat
标量的1-d视图
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.record.getfield.html
5 | 6 |校对:(虚位以待)
7 |
record.
getfield
()4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.record.imag.html
5 | 6 |校对:(虚位以待)
7 |
record.
imag
标量的虚部
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.record.itemsize.html
5 | 6 |校对:(虚位以待)
7 |
record.
itemsize
一个元素的长度(以字节为单位)
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.record.nbytes.html
5 | 6 |校对:(虚位以待)
7 |
record.
nbytes
项目的长度(以字节为单位)
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.record.ndim.html
5 | 6 |校对:(虚位以待)
7 |
record.
ndim
数组维数
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.record.pprint.html
5 | 6 |校对:(虚位以待)
7 |
record.
pprint
()[source]美丽打印所有字段。
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.record.real.html
5 | 6 |校对:(虚位以待)
7 |
record.
real
实数部分
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.record.setfield.html
5 | 6 |校对:(虚位以待)
7 |
record.
setfield
()4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.record.shape.html
5 | 6 |校对:(虚位以待)
7 |
record.
shape
数组维度的元组
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.record.size.html
5 | 6 |校对:(虚位以待)
7 |
record.
size
gentype中的元素数
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.record.strides.html
5 | 6 |校对:(虚位以待)
7 |
record.
strides
每个维度中的字节步长
12 |4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.record.tobytes.html
5 | 6 |校对:(虚位以待)
7 |
record.
tobytes
()4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/generated/numpy.testing.Tester.html
5 | 6 |校对:(虚位以待)
7 |
numpy.testing.
Tester
[source]NoseTester
的别名
4 |8 | 9 |原文:https://docs.scipy.org/doc/numpy/reference/routines.padding.html
5 | 6 |校对:(虚位以待)
7 |
pad (array,pad_width,mode,\ * \ * kwargs) |
16 | 填充数组。 | 17 |