├── .gitignore ├── LICENSE ├── README.md ├── amodal_test.py ├── amodal_train.py ├── checkpoints └── gitkeep ├── cocoapi ├── .gitignore ├── .travis.yml ├── PythonAPI │ ├── Makefile │ ├── pycocoDemo.ipynb │ ├── pycocoEvalDemo.ipynb │ ├── pycocotools │ │ ├── __init__.py │ │ ├── _mask.pyx │ │ ├── coco.py │ │ ├── cocoeval.py │ │ └── mask.py │ └── setup.py ├── README.txt ├── common │ ├── gason.cpp │ ├── gason.h │ ├── maskApi.c │ └── maskApi.h └── license.txt ├── config.py ├── data └── amodalImage.py ├── datasets └── .gitkeep ├── evaluate ├── amodalevalCOCOA.py ├── amodalevalD2SA.py ├── bbox.py └── evaluate.py ├── modal ├── Functions.py ├── amodal.py ├── deeplabv2.py ├── densenet.py ├── lib │ ├── nn │ │ ├── __init__.py │ │ ├── modules │ │ │ ├── __init__.py │ │ │ ├── batchnorm.py │ │ │ ├── comm.py │ │ │ ├── replicate.py │ │ │ ├── tests │ │ │ │ ├── test_numeric_batchnorm.py │ │ │ │ └── test_sync_batchnorm.py │ │ │ └── unittest.py │ │ └── parallel │ │ │ ├── __init__.py │ │ │ └── data_parallel.py │ └── utils │ │ ├── __init__.py │ │ ├── data │ │ ├── __init__.py │ │ ├── dataloader.py │ │ ├── dataset.py │ │ ├── distributed.py │ │ └── sampler.py │ │ └── th.py ├── loss.py ├── mobilenet.py ├── modals.py ├── models_BCE.py ├── models_gloable.py ├── msc_deeplab.py ├── networks.py ├── resnet.py ├── resnet_deeplab.py └── resnext.py ├── model.py ├── nms ├── __init__.py ├── _ext │ ├── __init__.py │ └── nms │ │ ├── __init__.py │ │ └── _nms.so ├── build.py ├── nms_wrapper.py ├── pth_nms.py └── src │ ├── cuda │ ├── nms_kernel.cu │ └── nms_kernel.h │ ├── nms.c │ ├── nms.h │ ├── nms_cuda.c │ └── nms_cuda.h ├── results ├── COCO │ ├── ARCNN │ │ ├── COCO_val2014_000000281533 │ │ │ ├── 00_COCO_val2014_000000281533.jpg │ │ │ ├── 01_COCO_val2014_000000281533.jpg │ │ │ ├── 02_COCO_val2014_000000281533.jpg │ │ │ ├── 03_COCO_val2014_000000281533.jpg │ │ │ ├── 04_COCO_val2014_000000281533.jpg │ │ │ ├── 05_COCO_val2014_000000281533.jpg │ │ │ ├── 06_COCO_val2014_000000281533.jpg │ │ │ ├── 07_COCO_val2014_000000281533.jpg │ │ │ ├── 08_COCO_val2014_000000281533.jpg │ │ │ ├── 09_COCO_val2014_000000281533.jpg │ │ │ ├── 10_COCO_val2014_000000281533.jpg │ │ │ ├── 11_COCO_val2014_000000281533.jpg │ │ │ ├── 12_COCO_val2014_000000281533.jpg │ │ │ ├── 13_COCO_val2014_000000281533.jpg │ │ │ ├── 14_COCO_val2014_000000281533.jpg │ │ │ ├── 15_COCO_val2014_000000281533.jpg │ │ │ ├── 16_COCO_val2014_000000281533.jpg │ │ │ └── COCO_val2014_000000281533.jpg │ │ ├── COCO_val2014_000000494154 │ │ │ ├── 00_COCO_val2014_000000494154.jpg │ │ │ ├── 01_COCO_val2014_000000494154.jpg │ │ │ ├── 02_COCO_val2014_000000494154.jpg │ │ │ ├── 03_COCO_val2014_000000494154.jpg │ │ │ ├── 04_COCO_val2014_000000494154.jpg │ │ │ ├── 05_COCO_val2014_000000494154.jpg │ │ │ ├── 06_COCO_val2014_000000494154.jpg │ │ │ ├── 07_COCO_val2014_000000494154.jpg │ │ │ ├── 08_COCO_val2014_000000494154.jpg │ │ │ ├── 09_COCO_val2014_000000494154.jpg │ │ │ ├── 10_COCO_val2014_000000494154.jpg │ │ │ ├── 11_COCO_val2014_000000494154.jpg │ │ │ ├── 12_COCO_val2014_000000494154.jpg │ │ │ ├── 13_COCO_val2014_000000494154.jpg │ │ │ ├── 14_COCO_val2014_000000494154.jpg │ │ │ ├── 15_COCO_val2014_000000494154.jpg │ │ │ ├── 16_COCO_val2014_000000494154.jpg │ │ │ ├── 17_COCO_val2014_000000494154.jpg │ │ │ └── COCO_val2014_000000494154.jpg │ │ ├── COCO_val2014_000000543525 │ │ │ ├── 00_COCO_val2014_000000543525.jpg │ │ │ ├── 01_COCO_val2014_000000543525.jpg │ │ │ ├── 02_COCO_val2014_000000543525.jpg │ │ │ ├── 03_COCO_val2014_000000543525.jpg │ │ │ ├── 04_COCO_val2014_000000543525.jpg │ │ │ ├── 05_COCO_val2014_000000543525.jpg │ │ │ ├── 06_COCO_val2014_000000543525.jpg │ │ │ ├── 07_COCO_val2014_000000543525.jpg │ │ │ └── COCO_val2014_000000543525.jpg │ │ └── COCO_val2014_000000579463 │ │ │ ├── 00_COCO_val2014_000000579463.jpg │ │ │ ├── 01_COCO_val2014_000000579463.jpg │ │ │ ├── 02_COCO_val2014_000000579463.jpg │ │ │ ├── 03_COCO_val2014_000000579463.jpg │ │ │ ├── 04_COCO_val2014_000000579463.jpg │ │ │ ├── 05_COCO_val2014_000000579463.jpg │ │ │ ├── 06_COCO_val2014_000000579463.jpg │ │ │ ├── 07_COCO_val2014_000000579463.jpg │ │ │ └── COCO_val2014_000000579463.jpg │ ├── AmodalMask │ │ ├── COCO_val2014_000000281533 │ │ │ ├── COCO_val2014_000000281533.jpg │ │ │ ├── gt_00_COCO_val2014_000000281533.jpg │ │ │ ├── gt_01_COCO_val2014_000000281533.jpg │ │ │ ├── gt_02_COCO_val2014_000000281533.jpg │ │ │ ├── gt_03_COCO_val2014_000000281533.jpg │ │ │ ├── gt_04_COCO_val2014_000000281533.jpg │ │ │ ├── gt_05_COCO_val2014_000000281533.jpg │ │ │ ├── gt_06_COCO_val2014_000000281533.jpg │ │ │ ├── gt_07_COCO_val2014_000000281533.jpg │ │ │ ├── gt_08_COCO_val2014_000000281533.jpg │ │ │ ├── gt_09_COCO_val2014_000000281533.jpg │ │ │ ├── gt_10_COCO_val2014_000000281533.jpg │ │ │ ├── gt_11_COCO_val2014_000000281533.jpg │ │ │ ├── gt_12_COCO_val2014_000000281533.jpg │ │ │ ├── gt_13_COCO_val2014_000000281533.jpg │ │ │ ├── gt_14_COCO_val2014_000000281533.jpg │ │ │ ├── gt_15_COCO_val2014_000000281533.jpg │ │ │ ├── gt_16_COCO_val2014_000000281533.jpg │ │ │ ├── our_120_COCO_val2014_000000281533.jpg │ │ │ ├── our_14_COCO_val2014_000000281533.jpg │ │ │ ├── our_151_COCO_val2014_000000281533.jpg │ │ │ ├── our_211_COCO_val2014_000000281533.jpg │ │ │ ├── our_215_COCO_val2014_000000281533.jpg │ │ │ ├── our_216_COCO_val2014_000000281533.jpg │ │ │ ├── our_222_COCO_val2014_000000281533.jpg │ │ │ ├── our_246_COCO_val2014_000000281533.jpg │ │ │ ├── our_348_COCO_val2014_000000281533.jpg │ │ │ ├── our_521_COCO_val2014_000000281533.jpg │ │ │ ├── our_555_COCO_val2014_000000281533.jpg │ │ │ ├── our_571_COCO_val2014_000000281533.jpg │ │ │ ├── our_58_COCO_val2014_000000281533.jpg │ │ │ ├── our_601_COCO_val2014_000000281533.jpg │ │ │ ├── our_635_COCO_val2014_000000281533.jpg │ │ │ ├── our_644_COCO_val2014_000000281533.jpg │ │ │ └── our_91_COCO_val2014_000000281533.jpg │ │ ├── COCO_val2014_000000494154 │ │ │ ├── COCO_val2014_000000494154.jpg │ │ │ ├── gt_00_COCO_val2014_000000494154.jpg │ │ │ ├── gt_01_COCO_val2014_000000494154.jpg │ │ │ ├── gt_02_COCO_val2014_000000494154.jpg │ │ │ ├── gt_03_COCO_val2014_000000494154.jpg │ │ │ ├── gt_04_COCO_val2014_000000494154.jpg │ │ │ ├── gt_05_COCO_val2014_000000494154.jpg │ │ │ ├── gt_06_COCO_val2014_000000494154.jpg │ │ │ ├── gt_07_COCO_val2014_000000494154.jpg │ │ │ ├── gt_08_COCO_val2014_000000494154.jpg │ │ │ ├── gt_09_COCO_val2014_000000494154.jpg │ │ │ ├── gt_10_COCO_val2014_000000494154.jpg │ │ │ ├── gt_11_COCO_val2014_000000494154.jpg │ │ │ ├── gt_12_COCO_val2014_000000494154.jpg │ │ │ ├── gt_13_COCO_val2014_000000494154.jpg │ │ │ ├── gt_14_COCO_val2014_000000494154.jpg │ │ │ ├── gt_15_COCO_val2014_000000494154.jpg │ │ │ ├── gt_16_COCO_val2014_000000494154.jpg │ │ │ ├── gt_17_COCO_val2014_000000494154.jpg │ │ │ ├── our_06_COCO_val2014_000000494154.jpg │ │ │ ├── our_10_COCO_val2014_000000494154.jpg │ │ │ ├── our_116_COCO_val2014_000000494154.jpg │ │ │ ├── our_193_COCO_val2014_000000494154.jpg │ │ │ ├── our_21_COCO_val2014_000000494154.jpg │ │ │ ├── our_262_COCO_val2014_000000494154.jpg │ │ │ ├── our_275_COCO_val2014_000000494154.jpg │ │ │ ├── our_309_COCO_val2014_000000494154.jpg │ │ │ ├── our_336_COCO_val2014_000000494154.jpg │ │ │ ├── our_384_COCO_val2014_000000494154.jpg │ │ │ ├── our_48_COCO_val2014_000000494154.jpg │ │ │ ├── our_528_COCO_val2014_000000494154.jpg │ │ │ ├── our_561_COCO_val2014_000000494154.jpg │ │ │ ├── our_565_COCO_val2014_000000494154.jpg │ │ │ ├── our_571_COCO_val2014_000000494154.jpg │ │ │ ├── our_697_COCO_val2014_000000494154.jpg │ │ │ └── our_751_COCO_val2014_000000494154.jpg │ │ ├── COCO_val2014_000000543525 │ │ │ ├── COCO_val2014_000000543525.jpg │ │ │ ├── gt_00_COCO_val2014_000000543525.jpg │ │ │ ├── gt_01_COCO_val2014_000000543525.jpg │ │ │ ├── gt_02_COCO_val2014_000000543525.jpg │ │ │ ├── gt_03_COCO_val2014_000000543525.jpg │ │ │ ├── gt_04_COCO_val2014_000000543525.jpg │ │ │ ├── gt_05_COCO_val2014_000000543525.jpg │ │ │ ├── gt_06_COCO_val2014_000000543525.jpg │ │ │ ├── gt_07_COCO_val2014_000000543525.jpg │ │ │ ├── our_158_COCO_val2014_000000543525.jpg │ │ │ ├── our_176_COCO_val2014_000000543525.jpg │ │ │ ├── our_213_COCO_val2014_000000543525.jpg │ │ │ ├── our_250_COCO_val2014_000000543525.jpg │ │ │ ├── our_386_COCO_val2014_000000543525.jpg │ │ │ ├── our_645_COCO_val2014_000000543525.jpg │ │ │ ├── our_650_COCO_val2014_000000543525.jpg │ │ │ └── our_75_COCO_val2014_000000543525.jpg │ │ └── COCO_val2014_000000579463 │ │ │ ├── COCO_val2014_000000579463.jpg │ │ │ ├── gt_00_COCO_val2014_000000579463.jpg │ │ │ ├── gt_01_COCO_val2014_000000579463.jpg │ │ │ ├── gt_02_COCO_val2014_000000579463.jpg │ │ │ ├── gt_03_COCO_val2014_000000579463.jpg │ │ │ ├── gt_04_COCO_val2014_000000579463.jpg │ │ │ ├── gt_05_COCO_val2014_000000579463.jpg │ │ │ ├── gt_06_COCO_val2014_000000579463.jpg │ │ │ ├── gt_07_COCO_val2014_000000579463.jpg │ │ │ ├── our_03_COCO_val2014_000000579463.jpg │ │ │ ├── our_140_COCO_val2014_000000579463.jpg │ │ │ ├── our_152_COCO_val2014_000000579463.jpg │ │ │ ├── our_157_COCO_val2014_000000579463.jpg │ │ │ ├── our_501_COCO_val2014_000000579463.jpg │ │ │ ├── our_503_COCO_val2014_000000579463.jpg │ │ │ ├── our_80_COCO_val2014_000000579463.jpg │ │ │ └── our_86_COCO_val2014_000000579463.jpg │ ├── OURS │ │ ├── COCO_val2014_000000281533 │ │ │ ├── COCO_val2014_000000281533.jpg │ │ │ ├── gt_00_COCO_val2014_000000281533.jpg │ │ │ ├── gt_01_COCO_val2014_000000281533.jpg │ │ │ ├── gt_02_COCO_val2014_000000281533.jpg │ │ │ ├── gt_03_COCO_val2014_000000281533.jpg │ │ │ ├── gt_04_COCO_val2014_000000281533.jpg │ │ │ ├── gt_05_COCO_val2014_000000281533.jpg │ │ │ ├── gt_06_COCO_val2014_000000281533.jpg │ │ │ ├── gt_07_COCO_val2014_000000281533.jpg │ │ │ ├── gt_08_COCO_val2014_000000281533.jpg │ │ │ ├── gt_09_COCO_val2014_000000281533.jpg │ │ │ ├── gt_10_COCO_val2014_000000281533.jpg │ │ │ ├── gt_11_COCO_val2014_000000281533.jpg │ │ │ ├── gt_12_COCO_val2014_000000281533.jpg │ │ │ ├── gt_13_COCO_val2014_000000281533.jpg │ │ │ ├── gt_14_COCO_val2014_000000281533.jpg │ │ │ ├── gt_15_COCO_val2014_000000281533.jpg │ │ │ ├── gt_16_COCO_val2014_000000281533.jpg │ │ │ ├── our_06_COCO_val2014_000000281533.jpg │ │ │ ├── our_101_COCO_val2014_000000281533.jpg │ │ │ ├── our_103_COCO_val2014_000000281533.jpg │ │ │ ├── our_146_COCO_val2014_000000281533.jpg │ │ │ ├── our_17_COCO_val2014_000000281533.jpg │ │ │ ├── our_227_COCO_val2014_000000281533.jpg │ │ │ ├── our_287_COCO_val2014_000000281533.jpg │ │ │ ├── our_28_COCO_val2014_000000281533.jpg │ │ │ ├── our_306_COCO_val2014_000000281533.jpg │ │ │ ├── our_372_COCO_val2014_000000281533.jpg │ │ │ ├── our_407_COCO_val2014_000000281533.jpg │ │ │ ├── our_42_COCO_val2014_000000281533.jpg │ │ │ ├── our_431_COCO_val2014_000000281533.jpg │ │ │ ├── our_481_COCO_val2014_000000281533.jpg │ │ │ ├── our_486_COCO_val2014_000000281533.jpg │ │ │ ├── our_64_COCO_val2014_000000281533.jpg │ │ │ └── our_83_COCO_val2014_000000281533.jpg │ │ ├── COCO_val2014_000000494154 │ │ │ ├── COCO_val2014_000000494154.jpg │ │ │ ├── gt_00_COCO_val2014_000000494154.jpg │ │ │ ├── gt_01_COCO_val2014_000000494154.jpg │ │ │ ├── gt_02_COCO_val2014_000000494154.jpg │ │ │ ├── gt_03_COCO_val2014_000000494154.jpg │ │ │ ├── gt_04_COCO_val2014_000000494154.jpg │ │ │ ├── gt_05_COCO_val2014_000000494154.jpg │ │ │ ├── gt_06_COCO_val2014_000000494154.jpg │ │ │ ├── gt_07_COCO_val2014_000000494154.jpg │ │ │ ├── gt_08_COCO_val2014_000000494154.jpg │ │ │ ├── gt_09_COCO_val2014_000000494154.jpg │ │ │ ├── gt_10_COCO_val2014_000000494154.jpg │ │ │ ├── gt_11_COCO_val2014_000000494154.jpg │ │ │ ├── gt_12_COCO_val2014_000000494154.jpg │ │ │ ├── gt_13_COCO_val2014_000000494154.jpg │ │ │ ├── gt_14_COCO_val2014_000000494154.jpg │ │ │ ├── gt_15_COCO_val2014_000000494154.jpg │ │ │ ├── gt_16_COCO_val2014_000000494154.jpg │ │ │ ├── gt_17_COCO_val2014_000000494154.jpg │ │ │ ├── our_00_COCO_val2014_000000494154.jpg │ │ │ ├── our_12_COCO_val2014_000000494154.jpg │ │ │ ├── our_132_COCO_val2014_000000494154.jpg │ │ │ ├── our_192_COCO_val2014_000000494154.jpg │ │ │ ├── our_194_COCO_val2014_000000494154.jpg │ │ │ ├── our_218_COCO_val2014_000000494154.jpg │ │ │ ├── our_221_COCO_val2014_000000494154.jpg │ │ │ ├── our_23_COCO_val2014_000000494154.jpg │ │ │ ├── our_308_COCO_val2014_000000494154.jpg │ │ │ ├── our_423_COCO_val2014_000000494154.jpg │ │ │ ├── our_433_COCO_val2014_000000494154.jpg │ │ │ ├── our_445_COCO_val2014_000000494154.jpg │ │ │ ├── our_463_COCO_val2014_000000494154.jpg │ │ │ ├── our_530_COCO_val2014_000000494154.jpg │ │ │ ├── our_574_COCO_val2014_000000494154.jpg │ │ │ ├── our_595_COCO_val2014_000000494154.jpg │ │ │ ├── our_63_COCO_val2014_000000494154.jpg │ │ │ └── our_90_COCO_val2014_000000494154.jpg │ │ ├── COCO_val2014_000000543525 │ │ │ ├── COCO_val2014_000000543525 - Copy (2).jpg │ │ │ ├── COCO_val2014_000000543525 - Copy (3).jpg │ │ │ ├── COCO_val2014_000000543525 - Copy.jpg │ │ │ ├── COCO_val2014_000000543525.jpg │ │ │ ├── gt_00_COCO_val2014_000000543525.jpg │ │ │ ├── gt_01_COCO_val2014_000000543525.jpg │ │ │ ├── gt_02_COCO_val2014_000000543525.jpg │ │ │ ├── gt_03_COCO_val2014_000000543525.jpg │ │ │ ├── gt_04_COCO_val2014_000000543525.jpg │ │ │ ├── gt_05_COCO_val2014_000000543525.jpg │ │ │ ├── gt_06_COCO_val2014_000000543525.jpg │ │ │ ├── gt_07_COCO_val2014_000000543525.jpg │ │ │ ├── our_02_COCO_val2014_000000543525.jpg │ │ │ ├── our_156_COCO_val2014_000000543525.jpg │ │ │ ├── our_22_COCO_val2014_000000543525.jpg │ │ │ ├── our_333_COCO_val2014_000000543525.jpg │ │ │ ├── our_336_COCO_val2014_000000543525.jpg │ │ │ ├── our_401_COCO_val2014_000000543525.jpg │ │ │ ├── our_56_COCO_val2014_000000543525.jpg │ │ │ └── our_57_COCO_val2014_000000543525.jpg │ │ └── COCO_val2014_000000579463 │ │ │ ├── COCO_val2014_000000579463.jpg │ │ │ ├── gt_00_COCO_val2014_000000579463.jpg │ │ │ ├── gt_01_COCO_val2014_000000579463.jpg │ │ │ ├── gt_02_COCO_val2014_000000579463.jpg │ │ │ ├── gt_03_COCO_val2014_000000579463.jpg │ │ │ ├── gt_04_COCO_val2014_000000579463.jpg │ │ │ ├── gt_05_COCO_val2014_000000579463.jpg │ │ │ ├── gt_06_COCO_val2014_000000579463.jpg │ │ │ ├── gt_07_COCO_val2014_000000579463.jpg │ │ │ ├── our_03_COCO_val2014_000000579463.jpg │ │ │ ├── our_147_COCO_val2014_000000579463.jpg │ │ │ ├── our_208_COCO_val2014_000000579463.jpg │ │ │ ├── our_22_COCO_val2014_000000579463.jpg │ │ │ ├── our_230_COCO_val2014_000000579463.jpg │ │ │ ├── our_346_COCO_val2014_000000579463.jpg │ │ │ ├── our_350_COCO_val2014_000000579463.jpg │ │ │ └── our_38_COCO_val2014_000000579463.jpg │ ├── final_res.pdf │ ├── pic1 │ │ ├── COCO_val2014_000000543525.jpg │ │ ├── COCO_val2014_000000543525_gt.png │ │ ├── COCO_val2014_000000543525_rcnn.png │ │ ├── COCO_val2014_000000543525_sem_dist_map.png │ │ └── COCO_val2014_000000543525_thirst.png │ ├── pic2 │ │ ├── COCO_val2014_000000494154.jpg │ │ ├── COCO_val2014_000000494154_gt.png │ │ ├── COCO_val2014_000000494154_mrcnn.png │ │ ├── COCO_val2014_000000494154_sem_dist_map.png │ │ └── COCO_val2014_000000494154_thirst.png │ └── pic3 │ │ ├── COCO_val2014_000000579463.jpg │ │ ├── COCO_val2014_000000579463_gt.png │ │ ├── COCO_val2014_000000579463_mrcnn.png │ │ ├── COCO_val2014_000000579463_sem_Dist_map.png │ │ └── COCO_val2014_000000579463_thirst.png ├── D2S │ ├── D2S.pdf │ ├── D2S_004811 │ │ ├── 07_D2S_004811.jpg │ │ ├── 09_D2S_004811.jpg │ │ ├── 25_D2S_004811.jpg │ │ ├── D2S_004811.jpg │ │ ├── D2S_004811.png │ │ ├── gt_00_D2S_004811.jpg │ │ ├── gt_01_D2S_004811.jpg │ │ ├── gt_02_D2S_004811.jpg │ │ ├── our_03_D2S_004811.jpg │ │ ├── our_137_D2S_004811.jpg │ │ └── our_78_D2S_004811.jpg │ ├── D2S_026022 │ │ ├── 00_D2S_026022.jpg │ │ ├── 02_D2S_026022.jpg │ │ ├── 105_D2S_026022.jpg │ │ ├── 11_D2S_026022.jpg │ │ ├── 29_D2S_026022.jpg │ │ ├── 45_D2S_026022.jpg │ │ ├── 70_D2S_026022.jpg │ │ ├── 77_D2S_026022.jpg │ │ ├── D2S_026022.jpg │ │ ├── D2S_026022.png │ │ ├── gt_00_D2S_026022.jpg │ │ ├── gt_01_D2S_026022.jpg │ │ ├── gt_02_D2S_026022.jpg │ │ ├── gt_03_D2S_026022.jpg │ │ ├── gt_04_D2S_026022.jpg │ │ ├── gt_05_D2S_026022.jpg │ │ ├── gt_06_D2S_026022.jpg │ │ ├── gt_07_D2S_026022.jpg │ │ ├── our_08_D2S_026022.jpg │ │ ├── our_108_D2S_026022.jpg │ │ ├── our_170_D2S_026022.jpg │ │ ├── our_204_D2S_026022.jpg │ │ ├── our_26_D2S_026022.jpg │ │ ├── our_33_D2S_026022.jpg │ │ ├── our_57_D2S_026022.jpg │ │ └── our_98_D2S_026022.jpg │ ├── D2S_038111 │ │ ├── 00_D2S_038111.jpg │ │ ├── 15_D2S_038111.jpg │ │ ├── 36_D2S_038111.jpg │ │ ├── D2S_038111.jpg │ │ ├── D2S_038111.png │ │ ├── gt_00_D2S_038111.jpg │ │ ├── gt_01_D2S_038111.jpg │ │ ├── gt_02_D2S_038111.jpg │ │ ├── our_13_D2S_038111.jpg │ │ ├── our_32_D2S_038111.jpg │ │ └── our_44_D2S_038111.jpg │ ├── D2S_058302 │ │ ├── 13_D2S_058302.jpg │ │ ├── 16_D2S_058302.jpg │ │ ├── D2S_058302.jpg │ │ ├── D2S_058302.png │ │ ├── gt_00_D2S_058302.jpg │ │ ├── gt_01_D2S_058302.jpg │ │ ├── our_07_D2S_058302.jpg │ │ └── our_40_D2S_058302.jpg │ └── D2S_068312 │ │ ├── 02_D2S_068312.jpg │ │ ├── 189_D2S_068312.jpg │ │ ├── 197_D2S_068312.jpg │ │ ├── 19_D2S_068312.jpg │ │ ├── 223_D2S_068312.jpg │ │ ├── 33_D2S_068312.jpg │ │ ├── 43_D2S_068312.jpg │ │ ├── 52_D2S_068312.jpg │ │ ├── 72_D2S_068312.jpg │ │ ├── 92_D2S_068312.jpg │ │ ├── D2S_068312.jpg │ │ ├── gt_00_D2S_068312.jpg │ │ ├── gt_01_D2S_068312.jpg │ │ ├── gt_02_D2S_068312.jpg │ │ ├── gt_03_D2S_068312.jpg │ │ ├── gt_04_D2S_068312.jpg │ │ ├── gt_05_D2S_068312.jpg │ │ ├── gt_06_D2S_068312.jpg │ │ ├── gt_07_D2S_068312.jpg │ │ ├── gt_08_D2S_068312.jpg │ │ ├── gt_09_D2S_068312.jpg │ │ ├── our_05_D2S_068312.jpg │ │ ├── our_102_D2S_068312.jpg │ │ ├── our_11_D2S_068312.jpg │ │ ├── our_122_D2S_068312.jpg │ │ ├── our_183_D2S_068312.jpg │ │ ├── our_190_D2S_068312.jpg │ │ ├── our_236_D2S_068312.jpg │ │ ├── our_258_D2S_068312.jpg │ │ ├── our_42_D2S_068312.jpg │ │ └── our_56_D2S_068312.jpg └── sem-dist-map-demo.png ├── roialign ├── __init__.py └── roi_align │ ├── __init__.py │ ├── _ext │ ├── __init__.py │ └── crop_and_resize │ │ ├── __init__.py │ │ └── _crop_and_resize.so │ ├── build.py │ ├── crop_and_resize.py │ ├── roi_align.py │ └── src │ ├── crop_and_resize.c │ ├── crop_and_resize.h │ ├── crop_and_resize_gpu.c │ ├── crop_and_resize_gpu.h │ └── cuda │ ├── crop_and_resize_kernel.cu │ └── crop_and_resize_kernel.h ├── scripts ├── AmodalMask visualize.ipynb ├── COCOA_D2S_TO_OurFormate.ipynb ├── D2S TO Amodal COCO.ipynb ├── format_converter.ipynb └── our_dataformat_decoder.ipynb └── utils.py /.gitignore: -------------------------------------------------------------------------------- 1 | efactored from www.pytorch.org 2 | # Jack12 3 | ## PyTorch 4 | */**/__pycache__ 5 | 6 | env 7 | .circleci/scripts/COMMIT_MSG 8 | 9 | # IPython notebook checkpoints 10 | .ipynb_checkpoints 11 | 12 | # Editor temporaries 13 | *.swn 14 | *.swo 15 | *.swp 16 | *.swm 17 | *~ 18 | 19 | # macOS dir files 20 | .DS_Store 21 | 22 | ## General 23 | 24 | # Compiled Object files 25 | *.slo 26 | *.lo 27 | *.o 28 | *.cuo 29 | *.obj 30 | 31 | # Compiled Dynamic libraries 32 | # can not ignore roi align, tks to @Julian 33 | # *.so 34 | *.dylib 35 | *.dll 36 | 37 | # Compiled Static libraries 38 | *.lai 39 | *.la 40 | *.a 41 | *.lib 42 | 43 | # Compiled protocol buffers 44 | *.pb.h 45 | *.pb.cc 46 | *_pb2.py 47 | 48 | # Compiled python 49 | *.pyc 50 | *.pyd 51 | 52 | # Compiled MATLAB 53 | *.mex* 54 | 55 | # IPython notebook checkpoints 56 | .ipynb_checkpoints 57 | 58 | # Editor temporaries 59 | *.swn 60 | *.swo 61 | *.swp 62 | *~ 63 | 64 | # Sublime Text settings 65 | *.sublime-workspace 66 | *.sublime-project 67 | 68 | # Eclipse Project settings 69 | *.*project 70 | .settings 71 | 72 | # QtCreator files 73 | *.user 74 | 75 | # PyCharm files 76 | .idea 77 | 78 | # OSX dir files 79 | .DS_Store 80 | 81 | # GDB history 82 | .gdb_history 83 | 84 | ## Caffe2 85 | 86 | # build, distribute, and bins (+ python proto bindings) 87 | build 88 | build_host_protoc 89 | build_android 90 | build_ios 91 | /build_* 92 | .build_debug/* 93 | .build_release/* 94 | distribute/* 95 | *.testbin 96 | *.bin 97 | cmake_build 98 | .cmake_build 99 | gen 100 | .setuptools-cmake-build 101 | .pytest_cache 102 | aten/build/* 103 | 104 | # Bram 105 | plsdontbreak 106 | 107 | # Generated documentation 108 | docs/_site 109 | docs/gathered 110 | _site 111 | doxygen 112 | docs/dev 113 | 114 | # LevelDB files 115 | *.sst 116 | *.ldb 117 | LOCK 118 | CURRENT 119 | MANIFEST-* 120 | 121 | # generated version file 122 | caffe2/version.py 123 | 124 | # setup.py intermediates 125 | .eggs 126 | caffe2.egg-info 127 | 128 | # Atom/Watchman required file 129 | .watchmanconfig 130 | 131 | # Files generated by CLion 132 | cmake-build-debug 133 | 134 | # Files generated by ctags 135 | CTAGS 136 | tags 137 | TAGS 138 | 139 | # BEGIN NOT-CLEAN-FILES (setup.py handles this marker. Do not change.) 140 | # 141 | # Below files are not deleted by "setup.py clean". 142 | 143 | # Visual Studio Code files 144 | .vscode 145 | .vs 146 | 147 | 148 | # Files generated when a patch is rejected 149 | *.orig 150 | *.rej 151 | 152 | # for amodal segmentation 153 | # we choose not to upload something too big 154 | # datasets 155 | /datasets/ 156 | !/datasets/.gitkeep 157 | # pytorch model 158 | *.pth 159 | -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | MIT License 2 | 3 | Copyright (c) 2019 apchenstu 4 | 5 | Permission is hereby granted, free of charge, to any person obtaining a copy 6 | of this software and associated documentation files (the "Software"), to deal 7 | in the Software without restriction, including without limitation the rights 8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 | copies of the Software, and to permit persons to whom the Software is 10 | furnished to do so, subject to the following conditions: 11 | 12 | The above copyright notice and this permission notice shall be included in all 13 | copies or substantial portions of the Software. 14 | 15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 | SOFTWARE. 22 | -------------------------------------------------------------------------------- /amodal_test.py: -------------------------------------------------------------------------------- 1 | import os 2 | import skimage.io 3 | 4 | 5 | import pickle 6 | import model as modellib 7 | from modal.deeplabv2 import * 8 | from amodal_train import Amodalfig 9 | 10 | # Root directory of the project 11 | ROOT_DIR = os.getcwd() 12 | 13 | # Directory to save logs and trained model 14 | MODEL_DIR = os.path.join(ROOT_DIR, "logs") 15 | IMAGE_DIR = os.path.join(ROOT_DIR, "images") 16 | IMAGE_DIR = './datasets/coco_amodal/val2014/' 17 | AMODAL_MODEL_PATH = './checkpoints/COCOA.pth' 18 | 19 | 20 | class InferenceConfig(Amodalfig): 21 | # Set batch size to 1 since we'll be running inference on 22 | # one image at a time. Batch size = GPU_COUNT * IMAGES_PER_GPU 23 | GPU_COUNT = 1 24 | IMAGES_PER_GPU = 1 25 | DETECTION_MIN_CONFIDENCE = 0 26 | 27 | config = InferenceConfig() 28 | config.display() 29 | 30 | # Create model object. 31 | config.NUM_CLASSES = 1+1 32 | model = modellib.MaskRCNN(model_dir=MODEL_DIR, config=config) 33 | model.mask.conv1 = nn.Conv2d(439, 256, kernel_size=3, stride=1) 34 | model.mask.conv5 = nn.Conv2d(256, config.NUM_CLASSES, kernel_size=1, stride=1) 35 | model.classifier.linear_class = nn.Linear(1024, config.NUM_CLASSES) 36 | model.classifier.linear_bbox = nn.Linear(1024, config.NUM_CLASSES * 4) 37 | model.GLM_modual = DeepLabV2_ResNet101_MSC(182) 38 | model.current_epoch = 0 39 | 40 | # Load weights trained on MS-COCO 41 | model.load_weights(AMODAL_MODEL_PATH) 42 | 43 | if config.GPU_COUNT: 44 | model = model.cuda() 45 | 46 | class_names = ['BG', 'objects'] 47 | image_list = os.listdir(IMAGE_DIR) 48 | for i,item in enumerate(image_list): 49 | if item.endswith('.jpg'): 50 | print('image: ',item) 51 | image_path = os.path.join(IMAGE_DIR,item) 52 | image = skimage.io.imread(image_path) 53 | 54 | results = model.detect([image]) 55 | 56 | if len(results)==0: 57 | continue 58 | 59 | r = results[0] 60 | 61 | save_path = os.path.join('./results/', item+'.json') 62 | with open(save_path, 'wb') as output: 63 | pickle.dump(r, output) 64 | 65 | 66 | -------------------------------------------------------------------------------- /checkpoints/gitkeep: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/checkpoints/gitkeep -------------------------------------------------------------------------------- /cocoapi/.gitignore: -------------------------------------------------------------------------------- 1 | images/ 2 | annotations/ 3 | results/ 4 | external/ 5 | .DS_Store 6 | 7 | MatlabAPI/analyze*/ 8 | MatlabAPI/visualize*/ 9 | MatlabAPI/private/maskApiMex.* 10 | 11 | PythonAPI/pycocotools/__init__.pyc 12 | PythonAPI/pycocotools/_mask.c 13 | PythonAPI/pycocotools/_mask.so 14 | PythonAPI/pycocotools/coco.pyc 15 | PythonAPI/pycocotools/cocoeval.pyc 16 | PythonAPI/pycocotools/mask.pyc 17 | -------------------------------------------------------------------------------- /cocoapi/.travis.yml: -------------------------------------------------------------------------------- 1 | group: travis_latest 2 | language: python 3 | cache: pip 4 | python: 5 | - 2.7 6 | - 3.6 7 | install: 8 | - pip install --upgrade pip 9 | - pip install pycocotools 10 | script: 11 | - true 12 | -------------------------------------------------------------------------------- /cocoapi/PythonAPI/Makefile: -------------------------------------------------------------------------------- 1 | all: 2 | # install pycocotools locally 3 | python setup.py build_ext --inplace 4 | rm -rf build 5 | 6 | install: 7 | # install pycocotools to the Python site-packages 8 | python setup.py build_ext install 9 | rm -rf build -------------------------------------------------------------------------------- /cocoapi/PythonAPI/pycocotools/__init__.py: -------------------------------------------------------------------------------- 1 | __author__ = 'tylin' 2 | -------------------------------------------------------------------------------- /cocoapi/PythonAPI/setup.py: -------------------------------------------------------------------------------- 1 | from setuptools import setup, Extension 2 | import numpy as np 3 | 4 | # To compile and install locally run "python setup.py build_ext --inplace" 5 | # To install library to Python site-packages run "python setup.py build_ext install" 6 | 7 | ext_modules = [ 8 | Extension( 9 | 'pycocotools._mask', 10 | sources=['../common/maskApi.c', 'pycocotools/_mask.pyx'], 11 | include_dirs = [np.get_include(), '../common'], 12 | extra_compile_args=['-Wno-cpp', '-Wno-unused-function', '-std=c99'], 13 | ) 14 | ] 15 | 16 | setup( 17 | name='pycocotools', 18 | packages=['pycocotools'], 19 | package_dir = {'pycocotools': 'pycocotools'}, 20 | install_requires=[ 21 | 'setuptools>=18.0', 22 | 'cython>=0.27.3', 23 | 'matplotlib>=2.1.0' 24 | ], 25 | version='2.0', 26 | ext_modules= ext_modules 27 | ) 28 | -------------------------------------------------------------------------------- /cocoapi/README.txt: -------------------------------------------------------------------------------- 1 | COCO API - http://cocodataset.org/ 2 | 3 | COCO is a large image dataset designed for object detection, segmentation, person keypoints detection, stuff segmentation, and caption generation. This package provides Matlab, Python, and Lua APIs that assists in loading, parsing, and visualizing the annotations in COCO. Please visit http://cocodataset.org/ for more information on COCO, including for the data, paper, and tutorials. The exact format of the annotations is also described on the COCO website. The Matlab and Python APIs are complete, the Lua API provides only basic functionality. 4 | 5 | In addition to this API, please download both the COCO images and annotations in order to run the demos and use the API. Both are available on the project website. 6 | -Please download, unzip, and place the images in: coco/images/ 7 | -Please download and place the annotations in: coco/annotations/ 8 | For substantially more details on the API please see http://cocodataset.org/#download. 9 | 10 | After downloading the images and annotations, run the Matlab, Python, or Lua demos for example usage. 11 | 12 | To install: 13 | -For Matlab, add coco/MatlabApi to the Matlab path (OSX/Linux binaries provided) 14 | -For Python, run "make" under coco/PythonAPI 15 | -For Lua, run “luarocks make LuaAPI/rocks/coco-scm-1.rockspec” under coco/ 16 | -------------------------------------------------------------------------------- /cocoapi/common/gason.h: -------------------------------------------------------------------------------- 1 | // https://github.com/vivkin/gason - pulled January 10, 2016 2 | #pragma once 3 | 4 | #include 5 | #include 6 | #include 7 | 8 | enum JsonTag { 9 | JSON_NUMBER = 0, 10 | JSON_STRING, 11 | JSON_ARRAY, 12 | JSON_OBJECT, 13 | JSON_TRUE, 14 | JSON_FALSE, 15 | JSON_NULL = 0xF 16 | }; 17 | 18 | struct JsonNode; 19 | 20 | #define JSON_VALUE_PAYLOAD_MASK 0x00007FFFFFFFFFFFULL 21 | #define JSON_VALUE_NAN_MASK 0x7FF8000000000000ULL 22 | #define JSON_VALUE_TAG_MASK 0xF 23 | #define JSON_VALUE_TAG_SHIFT 47 24 | 25 | union JsonValue { 26 | uint64_t ival; 27 | double fval; 28 | 29 | JsonValue(double x) 30 | : fval(x) { 31 | } 32 | JsonValue(JsonTag tag = JSON_NULL, void *payload = nullptr) { 33 | assert((uintptr_t)payload <= JSON_VALUE_PAYLOAD_MASK); 34 | ival = JSON_VALUE_NAN_MASK | ((uint64_t)tag << JSON_VALUE_TAG_SHIFT) | (uintptr_t)payload; 35 | } 36 | bool isDouble() const { 37 | return (int64_t)ival <= (int64_t)JSON_VALUE_NAN_MASK; 38 | } 39 | JsonTag getTag() const { 40 | return isDouble() ? JSON_NUMBER : JsonTag((ival >> JSON_VALUE_TAG_SHIFT) & JSON_VALUE_TAG_MASK); 41 | } 42 | uint64_t getPayload() const { 43 | assert(!isDouble()); 44 | return ival & JSON_VALUE_PAYLOAD_MASK; 45 | } 46 | double toNumber() const { 47 | assert(getTag() == JSON_NUMBER); 48 | return fval; 49 | } 50 | char *toString() const { 51 | assert(getTag() == JSON_STRING); 52 | return (char *)getPayload(); 53 | } 54 | JsonNode *toNode() const { 55 | assert(getTag() == JSON_ARRAY || getTag() == JSON_OBJECT); 56 | return (JsonNode *)getPayload(); 57 | } 58 | }; 59 | 60 | struct JsonNode { 61 | JsonValue value; 62 | JsonNode *next; 63 | char *key; 64 | }; 65 | 66 | struct JsonIterator { 67 | JsonNode *p; 68 | 69 | void operator++() { 70 | p = p->next; 71 | } 72 | bool operator!=(const JsonIterator &x) const { 73 | return p != x.p; 74 | } 75 | JsonNode *operator*() const { 76 | return p; 77 | } 78 | JsonNode *operator->() const { 79 | return p; 80 | } 81 | }; 82 | 83 | inline JsonIterator begin(JsonValue o) { 84 | return JsonIterator{o.toNode()}; 85 | } 86 | inline JsonIterator end(JsonValue) { 87 | return JsonIterator{nullptr}; 88 | } 89 | 90 | #define JSON_ERRNO_MAP(XX) \ 91 | XX(OK, "ok") \ 92 | XX(BAD_NUMBER, "bad number") \ 93 | XX(BAD_STRING, "bad string") \ 94 | XX(BAD_IDENTIFIER, "bad identifier") \ 95 | XX(STACK_OVERFLOW, "stack overflow") \ 96 | XX(STACK_UNDERFLOW, "stack underflow") \ 97 | XX(MISMATCH_BRACKET, "mismatch bracket") \ 98 | XX(UNEXPECTED_CHARACTER, "unexpected character") \ 99 | XX(UNQUOTED_KEY, "unquoted key") \ 100 | XX(BREAKING_BAD, "breaking bad") \ 101 | XX(ALLOCATION_FAILURE, "allocation failure") 102 | 103 | enum JsonErrno { 104 | #define XX(no, str) JSON_##no, 105 | JSON_ERRNO_MAP(XX) 106 | #undef XX 107 | }; 108 | 109 | const char *jsonStrError(int err); 110 | 111 | class JsonAllocator { 112 | struct Zone { 113 | Zone *next; 114 | size_t used; 115 | } *head = nullptr; 116 | 117 | public: 118 | JsonAllocator() = default; 119 | JsonAllocator(const JsonAllocator &) = delete; 120 | JsonAllocator &operator=(const JsonAllocator &) = delete; 121 | JsonAllocator(JsonAllocator &&x) : head(x.head) { 122 | x.head = nullptr; 123 | } 124 | JsonAllocator &operator=(JsonAllocator &&x) { 125 | head = x.head; 126 | x.head = nullptr; 127 | return *this; 128 | } 129 | ~JsonAllocator() { 130 | deallocate(); 131 | } 132 | void *allocate(size_t size); 133 | void deallocate(); 134 | }; 135 | 136 | int jsonParse(char *str, char **endptr, JsonValue *value, JsonAllocator &allocator); 137 | -------------------------------------------------------------------------------- /cocoapi/common/maskApi.h: -------------------------------------------------------------------------------- 1 | /************************************************************************** 2 | * Microsoft COCO Toolbox. version 2.0 3 | * Data, paper, and tutorials available at: http://mscoco.org/ 4 | * Code written by Piotr Dollar and Tsung-Yi Lin, 2015. 5 | * Licensed under the Simplified BSD License [see coco/license.txt] 6 | **************************************************************************/ 7 | #pragma once 8 | 9 | typedef unsigned int uint; 10 | typedef unsigned long siz; 11 | typedef unsigned char byte; 12 | typedef double* BB; 13 | typedef struct { siz h, w, m; uint *cnts; } RLE; 14 | 15 | /* Initialize/destroy RLE. */ 16 | void rleInit( RLE *R, siz h, siz w, siz m, uint *cnts ); 17 | void rleFree( RLE *R ); 18 | 19 | /* Initialize/destroy RLE array. */ 20 | void rlesInit( RLE **R, siz n ); 21 | void rlesFree( RLE **R, siz n ); 22 | 23 | /* Encode binary masks using RLE. */ 24 | void rleEncode( RLE *R, const byte *mask, siz h, siz w, siz n ); 25 | 26 | /* Decode binary masks encoded via RLE. */ 27 | void rleDecode( const RLE *R, byte *mask, siz n ); 28 | 29 | /* Compute union or intersection of encoded masks. */ 30 | void rleMerge( const RLE *R, RLE *M, siz n, int intersect ); 31 | 32 | /* Compute area of encoded masks. */ 33 | void rleArea( const RLE *R, siz n, uint *a ); 34 | 35 | /* Compute intersection over union between masks. */ 36 | void rleIou( RLE *dt, RLE *gt, siz m, siz n, byte *iscrowd, double *o ); 37 | 38 | /* Compute non-maximum suppression between bounding masks */ 39 | void rleNms( RLE *dt, siz n, uint *keep, double thr ); 40 | 41 | /* Compute intersection over union between bounding boxes. */ 42 | void bbIou( BB dt, BB gt, siz m, siz n, byte *iscrowd, double *o ); 43 | 44 | /* Compute non-maximum suppression between bounding boxes */ 45 | void bbNms( BB dt, siz n, uint *keep, double thr ); 46 | 47 | /* Get bounding boxes surrounding encoded masks. */ 48 | void rleToBbox( const RLE *R, BB bb, siz n ); 49 | 50 | /* Convert bounding boxes to encoded masks. */ 51 | void rleFrBbox( RLE *R, const BB bb, siz h, siz w, siz n ); 52 | 53 | /* Convert polygon to encoded mask. */ 54 | void rleFrPoly( RLE *R, const double *xy, siz k, siz h, siz w ); 55 | 56 | /* Get compressed string representation of encoded mask. */ 57 | char* rleToString( const RLE *R ); 58 | 59 | /* Convert from compressed string representation of encoded mask. */ 60 | void rleFrString( RLE *R, char *s, siz h, siz w ); 61 | -------------------------------------------------------------------------------- /cocoapi/license.txt: -------------------------------------------------------------------------------- 1 | Copyright (c) 2014, Piotr Dollar and Tsung-Yi Lin 2 | All rights reserved. 3 | 4 | Redistribution and use in source and binary forms, with or without 5 | modification, are permitted provided that the following conditions are met: 6 | 7 | 1. Redistributions of source code must retain the above copyright notice, this 8 | list of conditions and the following disclaimer. 9 | 2. Redistributions in binary form must reproduce the above copyright notice, 10 | this list of conditions and the following disclaimer in the documentation 11 | and/or other materials provided with the distribution. 12 | 13 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 14 | ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 15 | WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 16 | DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 17 | ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 18 | (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 19 | LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 20 | ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 21 | (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 22 | SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 23 | 24 | The views and conclusions contained in the software and documentation are those 25 | of the authors and should not be interpreted as representing official policies, 26 | either expressed or implied, of the FreeBSD Project. 27 | -------------------------------------------------------------------------------- /datasets/.gitkeep: -------------------------------------------------------------------------------- 1 | 2 | 3 | -------------------------------------------------------------------------------- /evaluate/bbox.py: -------------------------------------------------------------------------------- 1 | import torch 2 | import numpy as np 3 | 4 | 5 | def bbox_overlaps(boxes, query_boxes): 6 | """ 7 | Parameters 8 | ---------- 9 | boxes: (N, 4) ndarray or tensor or variable 10 | query_boxes: (K, 4) ndarray or tensor or variable 11 | Returns 12 | ------- 13 | overlaps: (N, K) overlap between boxes and query_boxes 14 | """ 15 | if isinstance(boxes, np.ndarray): 16 | boxes = torch.from_numpy(boxes) 17 | query_boxes = torch.from_numpy(query_boxes) 18 | out_fn = lambda x: x.numpy() # If input is ndarray, turn the overlaps back to ndarray when return 19 | else: 20 | out_fn = lambda x: x 21 | 22 | box_areas = (boxes[:, 2] - boxes[:, 0] + 1) * \ 23 | (boxes[:, 3] - boxes[:, 1] + 1) 24 | query_areas = (query_boxes[:, 2] - query_boxes[:, 0] + 1) * \ 25 | (query_boxes[:, 3] - query_boxes[:, 1] + 1) 26 | 27 | iw = (torch.min(boxes[:, 2:3], query_boxes[:, 2:3].t()) - torch.max( 28 | boxes[:, 0:1], query_boxes[:, 0:1].t()) + 1).clamp(min=0) 29 | ih = (torch.min(boxes[:, 3:4], query_boxes[:, 3:4].t()) - torch.max( 30 | boxes[:, 1:2], query_boxes[:, 1:2].t()) + 1).clamp(min=0) 31 | ua = box_areas.view(-1, 1) + query_areas.view(1, -1) - iw * ih 32 | overlaps = iw * ih / ua 33 | return out_fn(overlaps) -------------------------------------------------------------------------------- /evaluate/evaluate.py: -------------------------------------------------------------------------------- 1 | import numpy as np 2 | from evaluate.bbox import bbox_overlaps 3 | 4 | def evaluate_recall(roidb, thresholds=None, 5 | area='all', 6 | limit=None): 7 | """Evaluate detection proposal recall metrics. 8 | Returns: 9 | results: dictionary of results with keys 10 | 'ar': average recall 11 | 'recalls': vector recalls at each IoU overlap threshold 12 | 'thresholds': vector of IoU overlap thresholds 13 | 'gt_overlaps': vector of all ground-truth overlaps 14 | """ 15 | # Record max overlap value for each gt box 16 | # Return vector of overlap values 17 | areas = { 18 | 'all': 0, 19 | 'small': 1, 20 | 'medium': 2, 21 | 'large': 3, 22 | '96-128': 4, 23 | '128-256': 5, 24 | '256-512': 6, 25 | '512-inf': 7 26 | } 27 | area_ranges = [ 28 | [0 ** 2, 1e5 ** 2], # all 29 | [0 ** 2, 32 ** 2], # small 30 | [32 ** 2, 96 ** 2], # medium 31 | [96 ** 2, 1e5 ** 2], # large 32 | [96 ** 2, 128 ** 2], # 96-128 33 | [128 ** 2, 256 ** 2], # 128-256 34 | [256 ** 2, 512 ** 2], # 256-512 35 | [512 ** 2, 1e5 ** 2], # 512-inf 36 | ] 37 | assert area in areas, 'unknown area range: {}'.format(area) 38 | area_range = area_ranges[areas[area]] 39 | gt_overlaps = np.zeros(0) 40 | num_pos = 0 41 | for i in range(len(roidb)): 42 | # Checking for max_overlaps == 1 avoids including crowd annotations 43 | # (...pretty hacking :/) 44 | # max_gt_overlaps = roidb[i]['gt_overlaps'].toarray().max(axis=1) 45 | # gt_inds = np.where((roidb[i]['gt_classes'] > 0) & 46 | # (max_gt_overlaps == 1))[0] 47 | 48 | gt_inds = np.where(roidb[i]['gt_classes'].view(-1) > 0) 49 | gt_boxes = roidb[i]['boxes'][:,gt_inds].squeeze().view((-1,4)) 50 | gt_areas = roidb[i]['seg_areas'][:,0,gt_inds].squeeze() 51 | # valid_gt_inds = np.where((gt_areas >= area_range[0]) & 52 | # (gt_areas <= area_range[1]))[0] 53 | # gt_boxes = gt_boxes[valid_gt_inds, :] 54 | num_pos += len(gt_inds[0]) 55 | 56 | 57 | boxes = roidb[i]['mrcnn_bbox'] 58 | 59 | if boxes.shape[0] == 0: 60 | continue 61 | if limit is not None and boxes.shape[0] > limit: 62 | boxes = boxes[:limit, :] 63 | 64 | 65 | overlaps = bbox_overlaps(boxes, gt_boxes) 66 | 67 | _gt_overlaps = np.zeros((gt_boxes.shape[0])) 68 | for j in range(gt_boxes.shape[0]): 69 | # find which proposal box maximally covers each gt box 70 | # argmax_overlaps = overlaps.argmax(dim=0) 71 | # and get the iou amount of coverage for each gt box 72 | max_overlaps,argmax_overlaps = overlaps.max(dim=0) 73 | # find which gt box is 'best' covered (i.e. 'best' = most iou) 74 | gt_ind = max_overlaps.argmax() 75 | gt_ovr = max_overlaps.max() 76 | assert (gt_ovr >= 0) 77 | # find the proposal box that covers the best covered gt box 78 | box_ind = argmax_overlaps[gt_ind] 79 | # record the iou coverage of this gt box 80 | _gt_overlaps[j] = overlaps[box_ind, gt_ind] 81 | assert (_gt_overlaps[j] == gt_ovr) 82 | # mark the proposal box and the gt box as used 83 | overlaps[box_ind, :] = -1 84 | overlaps[:, gt_ind] = -1 85 | # append recorded iou coverage level 86 | 87 | gt_overlaps = np.hstack((gt_overlaps, _gt_overlaps)) 88 | 89 | gt_overlaps = np.sort(gt_overlaps) 90 | if thresholds is None: 91 | step = 0.05 92 | thresholds = np.arange(0.5, 0.95 + 1e-5, step) 93 | recalls = np.zeros_like(thresholds) 94 | # compute recall for each iou threshold 95 | for i, t in enumerate(thresholds): 96 | recalls[i] = (gt_overlaps >= t).sum() / float(num_pos) 97 | # ar = 2 * np.trapz(recalls, thresholds) 98 | ar = recalls.mean() 99 | return { 100 | 'ar': ar, 101 | 'recalls': recalls, 102 | 'thresholds': thresholds, 103 | 'gt_overlaps': gt_overlaps} -------------------------------------------------------------------------------- /modal/deeplabv2.py: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env python 2 | # coding: utf-8 3 | # 4 | # Author: Kazuto Nakashima 5 | # URL: http://kazuto1011.github.io 6 | # Created: 2017-11-19 7 | 8 | from __future__ import absolute_import, print_function 9 | 10 | import torch 11 | import torch.nn as nn 12 | import torch.nn.functional as F 13 | from .msc_deeplab import MSC 14 | from .resnet_deeplab import _ConvBnReLU, _ResLayer, _Stem 15 | 16 | def DeepLabV2_ResNet101_MSC(n_classes): 17 | return MSC( 18 | base=DeepLabV2( 19 | n_classes=n_classes, n_blocks=[3, 4, 23, 3], atrous_rates=[6, 12, 18, 24] 20 | ), 21 | scales=[0.5, 0.75], 22 | ) 23 | 24 | class _ASPP(nn.Module): 25 | """ 26 | Atrous spatial pyramid pooling (ASPP) 27 | """ 28 | 29 | def __init__(self, in_ch, out_ch, rates): 30 | super(_ASPP, self).__init__() 31 | for i, rate in enumerate(rates): 32 | self.add_module( 33 | "c{}".format(i), 34 | nn.Conv2d(in_ch, out_ch, 3, 1, padding=rate, dilation=rate, bias=True), 35 | ) 36 | 37 | for m in self.children(): 38 | nn.init.normal_(m.weight, mean=0, std=0.01) 39 | nn.init.constant_(m.bias, 0) 40 | 41 | def forward(self, x): 42 | return sum([stage(x) for stage in self.children()]) 43 | 44 | 45 | class DeepLabV2(nn.Sequential): 46 | """ 47 | DeepLab v2: Dilated ResNet + ASPP 48 | Output stride is fixed at 8 49 | """ 50 | 51 | def __init__(self, n_classes, n_blocks, atrous_rates): 52 | super(DeepLabV2, self).__init__() 53 | ch = [64 * 2 ** p for p in range(6)] 54 | self.add_module("layer1", _Stem(ch[0])) 55 | self.add_module("layer2", _ResLayer(n_blocks[0], ch[0], ch[2], 1, 1)) 56 | self.add_module("layer3", _ResLayer(n_blocks[1], ch[2], ch[3], 2, 1)) 57 | self.add_module("layer4", _ResLayer(n_blocks[2], ch[3], ch[4], 1, 2)) 58 | self.add_module("layer5", _ResLayer(n_blocks[3], ch[4], ch[5], 1, 4)) 59 | self.add_module("aspp", _ASPP(ch[5], n_classes, atrous_rates)) 60 | 61 | def freeze_bn(self): 62 | for m in self.modules(): 63 | if isinstance(m, _ConvBnReLU.BATCH_NORM): 64 | m.eval() 65 | 66 | 67 | if __name__ == "__main__": 68 | model = DeepLabV2( 69 | n_classes=21, n_blocks=[3, 4, 23, 3], atrous_rates=[6, 12, 18, 24] 70 | ) 71 | model.eval() 72 | image = torch.randn(1, 3, 513, 513) 73 | 74 | print(model) 75 | print("input:", image.shape) 76 | print("output:", model(image).shape) 77 | -------------------------------------------------------------------------------- /modal/lib/nn/__init__.py: -------------------------------------------------------------------------------- 1 | from .modules import * 2 | from .parallel import UserScatteredDataParallel, user_scattered_collate, async_copy_to 3 | -------------------------------------------------------------------------------- /modal/lib/nn/modules/__init__.py: -------------------------------------------------------------------------------- 1 | # -*- coding: utf-8 -*- 2 | # File : __init__.py 3 | # Author : Jiayuan Mao 4 | # Email : maojiayuan@gmail.com 5 | # Date : 27/01/2018 6 | # 7 | # This file is part of Synchronized-BatchNorm-PyTorch. 8 | # https://github.com/vacancy/Synchronized-BatchNorm-PyTorch 9 | # Distributed under MIT License. 10 | 11 | from .batchnorm import SynchronizedBatchNorm1d, SynchronizedBatchNorm2d, SynchronizedBatchNorm3d 12 | from .replicate import DataParallelWithCallback, patch_replication_callback 13 | -------------------------------------------------------------------------------- /modal/lib/nn/modules/replicate.py: -------------------------------------------------------------------------------- 1 | # -*- coding: utf-8 -*- 2 | # File : replicate.py 3 | # Author : Jiayuan Mao 4 | # Email : maojiayuan@gmail.com 5 | # Date : 27/01/2018 6 | # 7 | # This file is part of Synchronized-BatchNorm-PyTorch. 8 | # https://github.com/vacancy/Synchronized-BatchNorm-PyTorch 9 | # Distributed under MIT License. 10 | 11 | import functools 12 | 13 | from torch.nn.parallel.data_parallel import DataParallel 14 | 15 | __all__ = [ 16 | 'CallbackContext', 17 | 'execute_replication_callbacks', 18 | 'DataParallelWithCallback', 19 | 'patch_replication_callback' 20 | ] 21 | 22 | 23 | class CallbackContext(object): 24 | pass 25 | 26 | 27 | def execute_replication_callbacks(modules): 28 | """ 29 | Execute an replication callback `__data_parallel_replicate__` on each module created by original replication. 30 | 31 | The callback will be invoked with arguments `__data_parallel_replicate__(ctx, copy_id)` 32 | 33 | Note that, as all modules are isomorphism, we assign each sub-module with a context 34 | (shared among multiple copies of this module on different devices). 35 | Through this context, different copies can share some information. 36 | 37 | We guarantee that the callback on the master copy (the first copy) will be called ahead of calling the callback 38 | of any slave copies. 39 | """ 40 | master_copy = modules[0] 41 | nr_modules = len(list(master_copy.modules())) 42 | ctxs = [CallbackContext() for _ in range(nr_modules)] 43 | 44 | for i, module in enumerate(modules): 45 | for j, m in enumerate(module.modules()): 46 | if hasattr(m, '__data_parallel_replicate__'): 47 | m.__data_parallel_replicate__(ctxs[j], i) 48 | 49 | 50 | class DataParallelWithCallback(DataParallel): 51 | """ 52 | Data Parallel with a replication callback. 53 | 54 | An replication callback `__data_parallel_replicate__` of each module will be invoked after being created by 55 | original `replicate` function. 56 | The callback will be invoked with arguments `__data_parallel_replicate__(ctx, copy_id)` 57 | 58 | Examples: 59 | > sync_bn = SynchronizedBatchNorm1d(10, eps=1e-5, affine=False) 60 | > sync_bn = DataParallelWithCallback(sync_bn, device_ids=[0, 1]) 61 | # sync_bn.__data_parallel_replicate__ will be invoked. 62 | """ 63 | 64 | def replicate(self, module, device_ids): 65 | modules = super(DataParallelWithCallback, self).replicate(module, device_ids) 66 | execute_replication_callbacks(modules) 67 | return modules 68 | 69 | 70 | def patch_replication_callback(data_parallel): 71 | """ 72 | Monkey-patch an existing `DataParallel` object. Add the replication callback. 73 | Useful when you have customized `DataParallel` implementation. 74 | 75 | Examples: 76 | > sync_bn = SynchronizedBatchNorm1d(10, eps=1e-5, affine=False) 77 | > sync_bn = DataParallel(sync_bn, device_ids=[0, 1]) 78 | > patch_replication_callback(sync_bn) 79 | # this is equivalent to 80 | > sync_bn = SynchronizedBatchNorm1d(10, eps=1e-5, affine=False) 81 | > sync_bn = DataParallelWithCallback(sync_bn, device_ids=[0, 1]) 82 | """ 83 | 84 | assert isinstance(data_parallel, DataParallel) 85 | 86 | old_replicate = data_parallel.replicate 87 | 88 | @functools.wraps(old_replicate) 89 | def new_replicate(module, device_ids): 90 | modules = old_replicate(module, device_ids) 91 | execute_replication_callbacks(modules) 92 | return modules 93 | 94 | data_parallel.replicate = new_replicate 95 | -------------------------------------------------------------------------------- /modal/lib/nn/modules/tests/test_numeric_batchnorm.py: -------------------------------------------------------------------------------- 1 | # -*- coding: utf-8 -*- 2 | # File : test_numeric_batchnorm.py 3 | # Author : Jiayuan Mao 4 | # Email : maojiayuan@gmail.com 5 | # Date : 27/01/2018 6 | # 7 | # This file is part of Synchronized-BatchNorm-PyTorch. 8 | 9 | import unittest 10 | 11 | import torch 12 | import torch.nn as nn 13 | from torch.autograd import Variable 14 | 15 | from sync_batchnorm.unittest import TorchTestCase 16 | 17 | 18 | def handy_var(a, unbias=True): 19 | n = a.size(0) 20 | asum = a.sum(dim=0) 21 | as_sum = (a ** 2).sum(dim=0) # a square sum 22 | sumvar = as_sum - asum * asum / n 23 | if unbias: 24 | return sumvar / (n - 1) 25 | else: 26 | return sumvar / n 27 | 28 | 29 | class NumericTestCase(TorchTestCase): 30 | def testNumericBatchNorm(self): 31 | a = torch.rand(16, 10) 32 | bn = nn.BatchNorm2d(10, momentum=1, eps=1e-5, affine=False) 33 | bn.train() 34 | 35 | a_var1 = Variable(a, requires_grad=True) 36 | b_var1 = bn(a_var1) 37 | loss1 = b_var1.sum() 38 | loss1.backward() 39 | 40 | a_var2 = Variable(a, requires_grad=True) 41 | a_mean2 = a_var2.mean(dim=0, keepdim=True) 42 | a_std2 = torch.sqrt(handy_var(a_var2, unbias=False).clamp(min=1e-5)) 43 | # a_std2 = torch.sqrt(a_var2.var(dim=0, keepdim=True, unbiased=False) + 1e-5) 44 | b_var2 = (a_var2 - a_mean2) / a_std2 45 | loss2 = b_var2.sum() 46 | loss2.backward() 47 | 48 | self.assertTensorClose(bn.running_mean, a.mean(dim=0)) 49 | self.assertTensorClose(bn.running_var, handy_var(a)) 50 | self.assertTensorClose(a_var1.data, a_var2.data) 51 | self.assertTensorClose(b_var1.data, b_var2.data) 52 | self.assertTensorClose(a_var1.grad, a_var2.grad) 53 | 54 | 55 | if __name__ == '__main__': 56 | unittest.main() 57 | -------------------------------------------------------------------------------- /modal/lib/nn/modules/tests/test_sync_batchnorm.py: -------------------------------------------------------------------------------- 1 | # -*- coding: utf-8 -*- 2 | # File : test_sync_batchnorm.py 3 | # Author : Jiayuan Mao 4 | # Email : maojiayuan@gmail.com 5 | # Date : 27/01/2018 6 | # 7 | # This file is part of Synchronized-BatchNorm-PyTorch. 8 | 9 | import unittest 10 | 11 | import torch 12 | import torch.nn as nn 13 | from torch.autograd import Variable 14 | 15 | from sync_batchnorm import SynchronizedBatchNorm1d, SynchronizedBatchNorm2d, DataParallelWithCallback 16 | from sync_batchnorm.unittest import TorchTestCase 17 | 18 | 19 | def handy_var(a, unbias=True): 20 | n = a.size(0) 21 | asum = a.sum(dim=0) 22 | as_sum = (a ** 2).sum(dim=0) # a square sum 23 | sumvar = as_sum - asum * asum / n 24 | if unbias: 25 | return sumvar / (n - 1) 26 | else: 27 | return sumvar / n 28 | 29 | 30 | def _find_bn(module): 31 | for m in module.modules(): 32 | if isinstance(m, (nn.BatchNorm1d, nn.BatchNorm2d, SynchronizedBatchNorm1d, SynchronizedBatchNorm2d)): 33 | return m 34 | 35 | 36 | class SyncTestCase(TorchTestCase): 37 | def _syncParameters(self, bn1, bn2): 38 | bn1.reset_parameters() 39 | bn2.reset_parameters() 40 | if bn1.affine and bn2.affine: 41 | bn2.weight.data.copy_(bn1.weight.data) 42 | bn2.bias.data.copy_(bn1.bias.data) 43 | 44 | def _checkBatchNormResult(self, bn1, bn2, input, is_train, cuda=False): 45 | """Check the forward and backward for the customized batch normalization.""" 46 | bn1.train(mode=is_train) 47 | bn2.train(mode=is_train) 48 | 49 | if cuda: 50 | input = input.cuda() 51 | 52 | self._syncParameters(_find_bn(bn1), _find_bn(bn2)) 53 | 54 | input1 = Variable(input, requires_grad=True) 55 | output1 = bn1(input1) 56 | output1.sum().backward() 57 | input2 = Variable(input, requires_grad=True) 58 | output2 = bn2(input2) 59 | output2.sum().backward() 60 | 61 | self.assertTensorClose(input1.data, input2.data) 62 | self.assertTensorClose(output1.data, output2.data) 63 | self.assertTensorClose(input1.grad, input2.grad) 64 | self.assertTensorClose(_find_bn(bn1).running_mean, _find_bn(bn2).running_mean) 65 | self.assertTensorClose(_find_bn(bn1).running_var, _find_bn(bn2).running_var) 66 | 67 | def testSyncBatchNormNormalTrain(self): 68 | bn = nn.BatchNorm1d(10) 69 | sync_bn = SynchronizedBatchNorm1d(10) 70 | 71 | self._checkBatchNormResult(bn, sync_bn, torch.rand(16, 10), True) 72 | 73 | def testSyncBatchNormNormalEval(self): 74 | bn = nn.BatchNorm1d(10) 75 | sync_bn = SynchronizedBatchNorm1d(10) 76 | 77 | self._checkBatchNormResult(bn, sync_bn, torch.rand(16, 10), False) 78 | 79 | def testSyncBatchNormSyncTrain(self): 80 | bn = nn.BatchNorm1d(10, eps=1e-5, affine=False) 81 | sync_bn = SynchronizedBatchNorm1d(10, eps=1e-5, affine=False) 82 | sync_bn = DataParallelWithCallback(sync_bn, device_ids=[0, 1]) 83 | 84 | bn.cuda() 85 | sync_bn.cuda() 86 | 87 | self._checkBatchNormResult(bn, sync_bn, torch.rand(16, 10), True, cuda=True) 88 | 89 | def testSyncBatchNormSyncEval(self): 90 | bn = nn.BatchNorm1d(10, eps=1e-5, affine=False) 91 | sync_bn = SynchronizedBatchNorm1d(10, eps=1e-5, affine=False) 92 | sync_bn = DataParallelWithCallback(sync_bn, device_ids=[0, 1]) 93 | 94 | bn.cuda() 95 | sync_bn.cuda() 96 | 97 | self._checkBatchNormResult(bn, sync_bn, torch.rand(16, 10), False, cuda=True) 98 | 99 | def testSyncBatchNorm2DSyncTrain(self): 100 | bn = nn.BatchNorm2d(10) 101 | sync_bn = SynchronizedBatchNorm2d(10) 102 | sync_bn = DataParallelWithCallback(sync_bn, device_ids=[0, 1]) 103 | 104 | bn.cuda() 105 | sync_bn.cuda() 106 | 107 | self._checkBatchNormResult(bn, sync_bn, torch.rand(16, 10, 16, 16), True, cuda=True) 108 | 109 | 110 | if __name__ == '__main__': 111 | unittest.main() 112 | -------------------------------------------------------------------------------- /modal/lib/nn/modules/unittest.py: -------------------------------------------------------------------------------- 1 | # -*- coding: utf-8 -*- 2 | # File : unittest.py 3 | # Author : Jiayuan Mao 4 | # Email : maojiayuan@gmail.com 5 | # Date : 27/01/2018 6 | # 7 | # This file is part of Synchronized-BatchNorm-PyTorch. 8 | # https://github.com/vacancy/Synchronized-BatchNorm-PyTorch 9 | # Distributed under MIT License. 10 | 11 | import unittest 12 | 13 | import numpy as np 14 | from torch.autograd import Variable 15 | 16 | 17 | def as_numpy(v): 18 | if isinstance(v, Variable): 19 | v = v.data 20 | return v.cpu().numpy() 21 | 22 | 23 | class TorchTestCase(unittest.TestCase): 24 | def assertTensorClose(self, a, b, atol=1e-3, rtol=1e-3): 25 | npa, npb = as_numpy(a), as_numpy(b) 26 | self.assertTrue( 27 | np.allclose(npa, npb, atol=atol), 28 | 'Tensor close check failed\n{}\n{}\nadiff={}, rdiff={}'.format(a, b, np.abs(npa - npb).max(), np.abs((npa - npb) / np.fmax(npa, 1e-5)).max()) 29 | ) 30 | -------------------------------------------------------------------------------- /modal/lib/nn/parallel/__init__.py: -------------------------------------------------------------------------------- 1 | from .data_parallel import UserScatteredDataParallel, user_scattered_collate, async_copy_to 2 | -------------------------------------------------------------------------------- /modal/lib/nn/parallel/data_parallel.py: -------------------------------------------------------------------------------- 1 | # -*- coding: utf8 -*- 2 | 3 | import torch.cuda as cuda 4 | import torch.nn as nn 5 | import torch 6 | import collections 7 | from torch.nn.parallel._functions import Gather 8 | 9 | 10 | __all__ = ['UserScatteredDataParallel', 'user_scattered_collate', 'async_copy_to'] 11 | 12 | 13 | def async_copy_to(obj, dev, main_stream=None): 14 | if torch.is_tensor(obj): 15 | v = obj.cuda(dev, non_blocking=True) 16 | if main_stream is not None: 17 | v.data.record_stream(main_stream) 18 | return v 19 | elif isinstance(obj, collections.Mapping): 20 | return {k: async_copy_to(o, dev, main_stream) for k, o in obj.items()} 21 | elif isinstance(obj, collections.Sequence): 22 | return [async_copy_to(o, dev, main_stream) for o in obj] 23 | else: 24 | return obj 25 | 26 | 27 | def dict_gather(outputs, target_device, dim=0): 28 | """ 29 | Gathers variables from different GPUs on a specified device 30 | (-1 means the CPU), with dictionary support. 31 | """ 32 | def gather_map(outputs): 33 | out = outputs[0] 34 | if torch.is_tensor(out): 35 | # MJY(20180330) HACK:: force nr_dims > 0 36 | if out.dim() == 0: 37 | outputs = [o.unsqueeze(0) for o in outputs] 38 | return Gather.apply(target_device, dim, *outputs) 39 | elif out is None: 40 | return None 41 | elif isinstance(out, collections.Mapping): 42 | return {k: gather_map([o[k] for o in outputs]) for k in out} 43 | elif isinstance(out, collections.Sequence): 44 | return type(out)(map(gather_map, zip(*outputs))) 45 | return gather_map(outputs) 46 | 47 | 48 | class DictGatherDataParallel(nn.DataParallel): 49 | def gather(self, outputs, output_device): 50 | return dict_gather(outputs, output_device, dim=self.dim) 51 | 52 | 53 | class UserScatteredDataParallel(DictGatherDataParallel): 54 | def scatter(self, inputs, kwargs, device_ids): 55 | assert len(inputs) == 1 56 | inputs = inputs[0] 57 | inputs = _async_copy_stream(inputs, device_ids) 58 | inputs = [[i] for i in inputs] 59 | assert len(kwargs) == 0 60 | kwargs = [{} for _ in range(len(inputs))] 61 | 62 | return inputs, kwargs 63 | 64 | 65 | def user_scattered_collate(batch): 66 | return batch 67 | 68 | 69 | def _async_copy(inputs, device_ids): 70 | nr_devs = len(device_ids) 71 | assert type(inputs) in (tuple, list) 72 | assert len(inputs) == nr_devs 73 | 74 | outputs = [] 75 | for i, dev in zip(inputs, device_ids): 76 | with cuda.device(dev): 77 | outputs.append(async_copy_to(i, dev)) 78 | 79 | return tuple(outputs) 80 | 81 | 82 | def _async_copy_stream(inputs, device_ids): 83 | nr_devs = len(device_ids) 84 | assert type(inputs) in (tuple, list) 85 | assert len(inputs) == nr_devs 86 | 87 | outputs = [] 88 | streams = [_get_stream(d) for d in device_ids] 89 | for i, dev, stream in zip(inputs, device_ids, streams): 90 | with cuda.device(dev): 91 | main_stream = cuda.current_stream() 92 | with cuda.stream(stream): 93 | outputs.append(async_copy_to(i, dev, main_stream=main_stream)) 94 | main_stream.wait_stream(stream) 95 | 96 | return outputs 97 | 98 | 99 | """Adapted from: torch/nn/parallel/_functions.py""" 100 | # background streams used for copying 101 | _streams = None 102 | 103 | 104 | def _get_stream(device): 105 | """Gets a background stream for copying between CPU and GPU""" 106 | global _streams 107 | if device == -1: 108 | return None 109 | if _streams is None: 110 | _streams = [None] * cuda.device_count() 111 | if _streams[device] is None: _streams[device] = cuda.Stream(device) 112 | return _streams[device] 113 | -------------------------------------------------------------------------------- /modal/lib/utils/__init__.py: -------------------------------------------------------------------------------- 1 | from .th import * 2 | -------------------------------------------------------------------------------- /modal/lib/utils/data/__init__.py: -------------------------------------------------------------------------------- 1 | 2 | from .dataset import Dataset, TensorDataset, ConcatDataset 3 | from .dataloader import DataLoader 4 | -------------------------------------------------------------------------------- /modal/lib/utils/data/dataset.py: -------------------------------------------------------------------------------- 1 | import bisect 2 | import warnings 3 | 4 | from torch._utils import _accumulate 5 | from torch import randperm 6 | 7 | 8 | class Dataset(object): 9 | """An abstract class representing a Dataset. 10 | 11 | All other datasets should subclass it. All subclasses should override 12 | ``__len__``, that provides the size of the dataset, and ``__getitem__``, 13 | supporting integer indexing in range from 0 to len(self) exclusive. 14 | """ 15 | 16 | def __getitem__(self, index): 17 | raise NotImplementedError 18 | 19 | def __len__(self): 20 | raise NotImplementedError 21 | 22 | def __add__(self, other): 23 | return ConcatDataset([self, other]) 24 | 25 | 26 | class TensorDataset(Dataset): 27 | """Dataset wrapping data and target tensors. 28 | 29 | Each sample will be retrieved by indexing both tensors along the first 30 | dimension. 31 | 32 | Arguments: 33 | data_tensor (Tensor): contains sample data. 34 | target_tensor (Tensor): contains sample targets (labels). 35 | """ 36 | 37 | def __init__(self, data_tensor, target_tensor): 38 | assert data_tensor.size(0) == target_tensor.size(0) 39 | self.data_tensor = data_tensor 40 | self.target_tensor = target_tensor 41 | 42 | def __getitem__(self, index): 43 | return self.data_tensor[index], self.target_tensor[index] 44 | 45 | def __len__(self): 46 | return self.data_tensor.size(0) 47 | 48 | 49 | class ConcatDataset(Dataset): 50 | """ 51 | Dataset to concatenate multiple datasets. 52 | Purpose: useful to assemble different existing datasets, possibly 53 | large-scale datasets as the concatenation operation is done in an 54 | on-the-fly manner. 55 | 56 | Arguments: 57 | datasets (iterable): List of datasets to be concatenated 58 | """ 59 | 60 | @staticmethod 61 | def cumsum(sequence): 62 | r, s = [], 0 63 | for e in sequence: 64 | l = len(e) 65 | r.append(l + s) 66 | s += l 67 | return r 68 | 69 | def __init__(self, datasets): 70 | super(ConcatDataset, self).__init__() 71 | assert len(datasets) > 0, 'datasets should not be an empty iterable' 72 | self.datasets = list(datasets) 73 | self.cumulative_sizes = self.cumsum(self.datasets) 74 | 75 | def __len__(self): 76 | return self.cumulative_sizes[-1] 77 | 78 | def __getitem__(self, idx): 79 | dataset_idx = bisect.bisect_right(self.cumulative_sizes, idx) 80 | if dataset_idx == 0: 81 | sample_idx = idx 82 | else: 83 | sample_idx = idx - self.cumulative_sizes[dataset_idx - 1] 84 | return self.datasets[dataset_idx][sample_idx] 85 | 86 | @property 87 | def cummulative_sizes(self): 88 | warnings.warn("cummulative_sizes attribute is renamed to " 89 | "cumulative_sizes", DeprecationWarning, stacklevel=2) 90 | return self.cumulative_sizes 91 | 92 | 93 | class Subset(Dataset): 94 | def __init__(self, dataset, indices): 95 | self.dataset = dataset 96 | self.indices = indices 97 | 98 | def __getitem__(self, idx): 99 | return self.dataset[self.indices[idx]] 100 | 101 | def __len__(self): 102 | return len(self.indices) 103 | 104 | 105 | def random_split(dataset, lengths): 106 | """ 107 | Randomly split a dataset into non-overlapping new datasets of given lengths 108 | ds 109 | 110 | Arguments: 111 | dataset (Dataset): Dataset to be split 112 | lengths (iterable): lengths of splits to be produced 113 | """ 114 | if sum(lengths) != len(dataset): 115 | raise ValueError("Sum of input lengths does not equal the length of the input dataset!") 116 | 117 | indices = randperm(sum(lengths)) 118 | return [Subset(dataset, indices[offset - length:offset]) for offset, length in zip(_accumulate(lengths), lengths)] 119 | -------------------------------------------------------------------------------- /modal/lib/utils/data/distributed.py: -------------------------------------------------------------------------------- 1 | import math 2 | import torch 3 | from .sampler import Sampler 4 | from torch.distributed import get_world_size, get_rank 5 | 6 | 7 | class DistributedSampler(Sampler): 8 | """Sampler that restricts data loading to a subset of the dataset. 9 | 10 | It is especially useful in conjunction with 11 | :class:`torch.nn.parallel.DistributedDataParallel`. In such case, each 12 | process can pass a DistributedSampler instance as a DataLoader sampler, 13 | and load a subset of the original dataset that is exclusive to it. 14 | 15 | .. note:: 16 | Dataset is assumed to be of constant size. 17 | 18 | Arguments: 19 | dataset: Dataset used for sampling. 20 | num_replicas (optional): Number of processes participating in 21 | distributed training. 22 | rank (optional): Rank of the current process within num_replicas. 23 | """ 24 | 25 | def __init__(self, dataset, num_replicas=None, rank=None): 26 | if num_replicas is None: 27 | num_replicas = get_world_size() 28 | if rank is None: 29 | rank = get_rank() 30 | self.dataset = dataset 31 | self.num_replicas = num_replicas 32 | self.rank = rank 33 | self.epoch = 0 34 | self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.num_replicas)) 35 | self.total_size = self.num_samples * self.num_replicas 36 | 37 | def __iter__(self): 38 | # deterministically shuffle based on epoch 39 | g = torch.Generator() 40 | g.manual_seed(self.epoch) 41 | indices = list(torch.randperm(len(self.dataset), generator=g)) 42 | 43 | # add extra samples to make it evenly divisible 44 | indices += indices[:(self.total_size - len(indices))] 45 | assert len(indices) == self.total_size 46 | 47 | # subsample 48 | offset = self.num_samples * self.rank 49 | indices = indices[offset:offset + self.num_samples] 50 | assert len(indices) == self.num_samples 51 | 52 | return iter(indices) 53 | 54 | def __len__(self): 55 | return self.num_samples 56 | 57 | def set_epoch(self, epoch): 58 | self.epoch = epoch 59 | -------------------------------------------------------------------------------- /modal/lib/utils/data/sampler.py: -------------------------------------------------------------------------------- 1 | import torch 2 | 3 | 4 | class Sampler(object): 5 | """Base class for all Samplers. 6 | 7 | Every Sampler subclass has to provide an __iter__ method, providing a way 8 | to iterate over indices of dataset elements, and a __len__ method that 9 | returns the length of the returned iterators. 10 | """ 11 | 12 | def __init__(self, data_source): 13 | pass 14 | 15 | def __iter__(self): 16 | raise NotImplementedError 17 | 18 | def __len__(self): 19 | raise NotImplementedError 20 | 21 | 22 | class SequentialSampler(Sampler): 23 | """Samples elements sequentially, always in the same order. 24 | 25 | Arguments: 26 | data_source (Dataset): dataset to sample from 27 | """ 28 | 29 | def __init__(self, data_source): 30 | self.data_source = data_source 31 | 32 | def __iter__(self): 33 | return iter(range(len(self.data_source))) 34 | 35 | def __len__(self): 36 | return len(self.data_source) 37 | 38 | 39 | class RandomSampler(Sampler): 40 | """Samples elements randomly, without replacement. 41 | 42 | Arguments: 43 | data_source (Dataset): dataset to sample from 44 | """ 45 | 46 | def __init__(self, data_source): 47 | self.data_source = data_source 48 | 49 | def __iter__(self): 50 | return iter(torch.randperm(len(self.data_source)).long()) 51 | 52 | def __len__(self): 53 | return len(self.data_source) 54 | 55 | 56 | class SubsetRandomSampler(Sampler): 57 | """Samples elements randomly from a given list of indices, without replacement. 58 | 59 | Arguments: 60 | indices (list): a list of indices 61 | """ 62 | 63 | def __init__(self, indices): 64 | self.indices = indices 65 | 66 | def __iter__(self): 67 | return (self.indices[i] for i in torch.randperm(len(self.indices))) 68 | 69 | def __len__(self): 70 | return len(self.indices) 71 | 72 | 73 | class WeightedRandomSampler(Sampler): 74 | """Samples elements from [0,..,len(weights)-1] with given probabilities (weights). 75 | 76 | Arguments: 77 | weights (list) : a list of weights, not necessary summing up to one 78 | num_samples (int): number of samples to draw 79 | replacement (bool): if ``True``, samples are drawn with replacement. 80 | If not, they are drawn without replacement, which means that when a 81 | sample index is drawn for a row, it cannot be drawn again for that row. 82 | """ 83 | 84 | def __init__(self, weights, num_samples, replacement=True): 85 | self.weights = torch.DoubleTensor(weights) 86 | self.num_samples = num_samples 87 | self.replacement = replacement 88 | 89 | def __iter__(self): 90 | return iter(torch.multinomial(self.weights, self.num_samples, self.replacement)) 91 | 92 | def __len__(self): 93 | return self.num_samples 94 | 95 | 96 | class BatchSampler(object): 97 | """Wraps another sampler to yield a mini-batch of indices. 98 | 99 | Args: 100 | sampler (Sampler): Base sampler. 101 | batch_size (int): Size of mini-batch. 102 | drop_last (bool): If ``True``, the sampler will drop the last batch if 103 | its size would be less than ``batch_size`` 104 | 105 | Example: 106 | >>> list(BatchSampler(range(10), batch_size=3, drop_last=False)) 107 | [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]] 108 | >>> list(BatchSampler(range(10), batch_size=3, drop_last=True)) 109 | [[0, 1, 2], [3, 4, 5], [6, 7, 8]] 110 | """ 111 | 112 | def __init__(self, sampler, batch_size, drop_last): 113 | self.sampler = sampler 114 | self.batch_size = batch_size 115 | self.drop_last = drop_last 116 | 117 | def __iter__(self): 118 | batch = [] 119 | for idx in self.sampler: 120 | batch.append(idx) 121 | if len(batch) == self.batch_size: 122 | yield batch 123 | batch = [] 124 | if len(batch) > 0 and not self.drop_last: 125 | yield batch 126 | 127 | def __len__(self): 128 | if self.drop_last: 129 | return len(self.sampler) // self.batch_size 130 | else: 131 | return (len(self.sampler) + self.batch_size - 1) // self.batch_size 132 | -------------------------------------------------------------------------------- /modal/lib/utils/th.py: -------------------------------------------------------------------------------- 1 | import torch 2 | from torch.autograd import Variable 3 | import numpy as np 4 | import collections 5 | 6 | __all__ = ['as_variable', 'as_numpy', 'mark_volatile'] 7 | 8 | def as_variable(obj): 9 | if isinstance(obj, Variable): 10 | return obj 11 | if isinstance(obj, collections.Sequence): 12 | return [as_variable(v) for v in obj] 13 | elif isinstance(obj, collections.Mapping): 14 | return {k: as_variable(v) for k, v in obj.items()} 15 | else: 16 | return Variable(obj) 17 | 18 | def as_numpy(obj): 19 | if isinstance(obj, collections.Sequence): 20 | return [as_numpy(v) for v in obj] 21 | elif isinstance(obj, collections.Mapping): 22 | return {k: as_numpy(v) for k, v in obj.items()} 23 | elif isinstance(obj, Variable): 24 | return obj.data.cpu().numpy() 25 | elif torch.is_tensor(obj): 26 | return obj.cpu().numpy() 27 | else: 28 | return np.array(obj) 29 | 30 | def mark_volatile(obj): 31 | if torch.is_tensor(obj): 32 | obj = Variable(obj) 33 | if isinstance(obj, Variable): 34 | obj.no_grad = True 35 | return obj 36 | elif isinstance(obj, collections.Mapping): 37 | return {k: mark_volatile(o) for k, o in obj.items()} 38 | elif isinstance(obj, collections.Sequence): 39 | return [mark_volatile(o) for o in obj] 40 | else: 41 | return obj 42 | -------------------------------------------------------------------------------- /modal/msc_deeplab.py: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env python 2 | # coding: utf-8 3 | # 4 | # Author: Kazuto Nakashima 5 | # URL: http://kazuto1011.github.io 6 | # Created: 2018-03-26 7 | 8 | import torch 9 | import torch.nn as nn 10 | import torch.nn.functional as F 11 | 12 | 13 | class MSC(nn.Module): 14 | """ 15 | Multi-scale inputs 16 | """ 17 | 18 | def __init__(self, base, scales=None): 19 | super(MSC, self).__init__() 20 | self.base = base 21 | if scales: 22 | self.scales = scales 23 | else: 24 | self.scales = [0.5, 0.75] 25 | 26 | def forward(self, x): 27 | # Original 28 | logits = self.base(x) 29 | _, _, H, W = logits.shape 30 | interp = lambda l: F.upsample( 31 | l, size=(H, W), mode="bilinear", align_corners=False 32 | ) 33 | 34 | # Scaled 35 | logits_pyramid = [] 36 | for p in self.scales: 37 | h = F.upsample(x, size=(int(x.size(2)*p),int(x.size(3)*p)),mode="bilinear", align_corners=False) 38 | #h = F.interpolate(x, scale_factor=p, mode="bilinear", align_corners=False) 39 | logits_pyramid.append(self.base(h)) 40 | 41 | # Pixel-wise max 42 | logits_all = [logits] + [interp(l) for l in logits_pyramid] 43 | logits_max = torch.max(torch.stack(logits_all), dim=0)[0] 44 | 45 | if self.training: 46 | return [logits] + logits_pyramid + [logits_max] 47 | else: 48 | return logits_max 49 | -------------------------------------------------------------------------------- /nms/__init__.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/nms/__init__.py -------------------------------------------------------------------------------- /nms/_ext/__init__.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/nms/_ext/__init__.py -------------------------------------------------------------------------------- /nms/_ext/nms/__init__.py: -------------------------------------------------------------------------------- 1 | 2 | from torch.utils.ffi import _wrap_function 3 | from ._nms import lib as _lib, ffi as _ffi 4 | 5 | __all__ = [] 6 | def _import_symbols(locals): 7 | for symbol in dir(_lib): 8 | fn = getattr(_lib, symbol) 9 | if callable(fn): 10 | locals[symbol] = _wrap_function(fn, _ffi) 11 | else: 12 | locals[symbol] = fn 13 | __all__.append(symbol) 14 | 15 | _import_symbols(locals()) 16 | -------------------------------------------------------------------------------- /nms/_ext/nms/_nms.so: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/nms/_ext/nms/_nms.so -------------------------------------------------------------------------------- /nms/build.py: -------------------------------------------------------------------------------- 1 | import os 2 | import torch 3 | from torch.utils.ffi import create_extension 4 | 5 | 6 | sources = ['src/nms.c'] 7 | headers = ['src/nms.h'] 8 | defines = [] 9 | with_cuda = False 10 | 11 | if torch.cuda.is_available(): 12 | print('Including CUDA code.') 13 | sources += ['src/nms_cuda.c'] 14 | headers += ['src/nms_cuda.h'] 15 | defines += [('WITH_CUDA', None)] 16 | with_cuda = True 17 | 18 | this_file = os.path.dirname(os.path.realpath(__file__)) 19 | print(this_file) 20 | extra_objects = ['src/cuda/nms_kernel.cu.o'] 21 | extra_objects = [os.path.join(this_file, fname) for fname in extra_objects] 22 | 23 | ffi = create_extension( 24 | '_ext.nms', 25 | headers=headers, 26 | sources=sources, 27 | define_macros=defines, 28 | relative_to=__file__, 29 | with_cuda=with_cuda, 30 | extra_objects=extra_objects 31 | ) 32 | 33 | if __name__ == '__main__': 34 | ffi.build() 35 | -------------------------------------------------------------------------------- /nms/nms_wrapper.py: -------------------------------------------------------------------------------- 1 | # -------------------------------------------------------- 2 | # Fast R-CNN 3 | # Copyright (c) 2015 Microsoft 4 | # Licensed under The MIT License [see LICENSE for details] 5 | # Written by Ross Girshick 6 | # -------------------------------------------------------- 7 | from __future__ import absolute_import 8 | from __future__ import division 9 | from __future__ import print_function 10 | 11 | from nms.pth_nms import pth_nms 12 | 13 | 14 | def nms(dets, thresh): 15 | """Dispatch to either CPU or GPU NMS implementations. 16 | Accept dets as tensor""" 17 | return pth_nms(dets, thresh) 18 | -------------------------------------------------------------------------------- /nms/pth_nms.py: -------------------------------------------------------------------------------- 1 | import torch 2 | from ._ext import nms 3 | import numpy as np 4 | 5 | def pth_nms(dets, thresh): 6 | """ 7 | dets has to be a tensor 8 | """ 9 | if not dets.is_cuda: 10 | x1 = dets[:, 1] 11 | y1 = dets[:, 0] 12 | x2 = dets[:, 3] 13 | y2 = dets[:, 2] 14 | scores = dets[:, 4] 15 | 16 | areas = (x2 - x1 + 1) * (y2 - y1 + 1) 17 | order = scores.sort(0, descending=True)[1] 18 | # order = torch.from_numpy(np.ascontiguousarray(scores.numpy().argsort()[::-1])).long() 19 | 20 | keep = torch.LongTensor(dets.size(0)) 21 | num_out = torch.LongTensor(1) 22 | nms.cpu_nms(keep, num_out, dets, order, areas, thresh) 23 | 24 | return keep[:num_out[0]] 25 | else: 26 | x1 = dets[:, 1] 27 | y1 = dets[:, 0] 28 | x2 = dets[:, 3] 29 | y2 = dets[:, 2] 30 | scores = dets[:, 4] 31 | 32 | dets_temp = torch.FloatTensor(dets.size()).cuda() 33 | dets_temp[:, 0] = dets[:, 1] 34 | dets_temp[:, 1] = dets[:, 0] 35 | dets_temp[:, 2] = dets[:, 3] 36 | dets_temp[:, 3] = dets[:, 2] 37 | dets_temp[:, 4] = dets[:, 4] 38 | 39 | areas = (x2 - x1 + 1) * (y2 - y1 + 1) 40 | order = scores.sort(0, descending=True)[1] 41 | # order = torch.from_numpy(np.ascontiguousarray(scores.cpu().numpy().argsort()[::-1])).long().cuda() 42 | 43 | dets = dets[order].contiguous() 44 | 45 | keep = torch.LongTensor(dets.size(0)) 46 | num_out = torch.LongTensor(1) 47 | # keep = torch.cuda.LongTensor(dets.size(0)) 48 | # num_out = torch.cuda.LongTensor(1) 49 | nms.gpu_nms(keep, num_out, dets_temp, thresh) 50 | 51 | return order[keep[:num_out[0]].cuda()].contiguous() 52 | # return order[keep[:num_out[0]]].contiguous() 53 | 54 | -------------------------------------------------------------------------------- /nms/src/cuda/nms_kernel.cu: -------------------------------------------------------------------------------- 1 | // ------------------------------------------------------------------ 2 | // Faster R-CNN 3 | // Copyright (c) 2015 Microsoft 4 | // Licensed under The MIT License [see fast-rcnn/LICENSE for details] 5 | // Written by Shaoqing Ren 6 | // ------------------------------------------------------------------ 7 | #ifdef __cplusplus 8 | extern "C" { 9 | #endif 10 | 11 | #include 12 | #include 13 | #include 14 | #include "nms_kernel.h" 15 | 16 | __device__ inline float devIoU(float const * const a, float const * const b) { 17 | float left = fmaxf(a[0], b[0]), right = fminf(a[2], b[2]); 18 | float top = fmaxf(a[1], b[1]), bottom = fminf(a[3], b[3]); 19 | float width = fmaxf(right - left + 1, 0.f), height = fmaxf(bottom - top + 1, 0.f); 20 | float interS = width * height; 21 | float Sa = (a[2] - a[0] + 1) * (a[3] - a[1] + 1); 22 | float Sb = (b[2] - b[0] + 1) * (b[3] - b[1] + 1); 23 | return interS / (Sa + Sb - interS); 24 | } 25 | 26 | __global__ void nms_kernel(const int n_boxes, const float nms_overlap_thresh, 27 | const float *dev_boxes, unsigned long long *dev_mask) { 28 | const int row_start = blockIdx.y; 29 | const int col_start = blockIdx.x; 30 | 31 | // if (row_start > col_start) return; 32 | 33 | const int row_size = 34 | fminf(n_boxes - row_start * threadsPerBlock, threadsPerBlock); 35 | const int col_size = 36 | fminf(n_boxes - col_start * threadsPerBlock, threadsPerBlock); 37 | 38 | __shared__ float block_boxes[threadsPerBlock * 5]; 39 | if (threadIdx.x < col_size) { 40 | block_boxes[threadIdx.x * 5 + 0] = 41 | dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 0]; 42 | block_boxes[threadIdx.x * 5 + 1] = 43 | dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 1]; 44 | block_boxes[threadIdx.x * 5 + 2] = 45 | dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 2]; 46 | block_boxes[threadIdx.x * 5 + 3] = 47 | dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 3]; 48 | block_boxes[threadIdx.x * 5 + 4] = 49 | dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 4]; 50 | } 51 | __syncthreads(); 52 | 53 | if (threadIdx.x < row_size) { 54 | const int cur_box_idx = threadsPerBlock * row_start + threadIdx.x; 55 | const float *cur_box = dev_boxes + cur_box_idx * 5; 56 | int i = 0; 57 | unsigned long long t = 0; 58 | int start = 0; 59 | if (row_start == col_start) { 60 | start = threadIdx.x + 1; 61 | } 62 | for (i = start; i < col_size; i++) { 63 | if (devIoU(cur_box, block_boxes + i * 5) > nms_overlap_thresh) { 64 | t |= 1ULL << i; 65 | } 66 | } 67 | const int col_blocks = DIVUP(n_boxes, threadsPerBlock); 68 | dev_mask[cur_box_idx * col_blocks + col_start] = t; 69 | } 70 | } 71 | 72 | 73 | void _nms(int boxes_num, float * boxes_dev, 74 | unsigned long long * mask_dev, float nms_overlap_thresh) { 75 | 76 | dim3 blocks(DIVUP(boxes_num, threadsPerBlock), 77 | DIVUP(boxes_num, threadsPerBlock)); 78 | dim3 threads(threadsPerBlock); 79 | nms_kernel<<>>(boxes_num, 80 | nms_overlap_thresh, 81 | boxes_dev, 82 | mask_dev); 83 | } 84 | 85 | #ifdef __cplusplus 86 | } 87 | #endif 88 | -------------------------------------------------------------------------------- /nms/src/cuda/nms_kernel.h: -------------------------------------------------------------------------------- 1 | #ifndef _NMS_KERNEL 2 | #define _NMS_KERNEL 3 | 4 | #ifdef __cplusplus 5 | extern "C" { 6 | #endif 7 | 8 | #define DIVUP(m,n) ((m) / (n) + ((m) % (n) > 0)) 9 | int const threadsPerBlock = sizeof(unsigned long long) * 8; 10 | 11 | void _nms(int boxes_num, float * boxes_dev, 12 | unsigned long long * mask_dev, float nms_overlap_thresh); 13 | 14 | #ifdef __cplusplus 15 | } 16 | #endif 17 | 18 | #endif 19 | 20 | -------------------------------------------------------------------------------- /nms/src/nms.c: -------------------------------------------------------------------------------- 1 | #include 2 | #include 3 | 4 | int cpu_nms(THLongTensor * keep_out, THLongTensor * num_out, THFloatTensor * boxes, THLongTensor * order, THFloatTensor * areas, float nms_overlap_thresh) { 5 | // boxes has to be sorted 6 | THArgCheck(THLongTensor_isContiguous(keep_out), 0, "keep_out must be contiguous"); 7 | THArgCheck(THLongTensor_isContiguous(boxes), 2, "boxes must be contiguous"); 8 | THArgCheck(THLongTensor_isContiguous(order), 3, "order must be contiguous"); 9 | THArgCheck(THLongTensor_isContiguous(areas), 4, "areas must be contiguous"); 10 | // Number of ROIs 11 | long boxes_num = THFloatTensor_size(boxes, 0); 12 | long boxes_dim = THFloatTensor_size(boxes, 1); 13 | 14 | long * keep_out_flat = THLongTensor_data(keep_out); 15 | float * boxes_flat = THFloatTensor_data(boxes); 16 | long * order_flat = THLongTensor_data(order); 17 | float * areas_flat = THFloatTensor_data(areas); 18 | 19 | THByteTensor* suppressed = THByteTensor_newWithSize1d(boxes_num); 20 | THByteTensor_fill(suppressed, 0); 21 | unsigned char * suppressed_flat = THByteTensor_data(suppressed); 22 | 23 | // nominal indices 24 | int i, j; 25 | // sorted indices 26 | int _i, _j; 27 | // temp variables for box i's (the box currently under consideration) 28 | float ix1, iy1, ix2, iy2, iarea; 29 | // variables for computing overlap with box j (lower scoring box) 30 | float xx1, yy1, xx2, yy2; 31 | float w, h; 32 | float inter, ovr; 33 | 34 | long num_to_keep = 0; 35 | for (_i=0; _i < boxes_num; ++_i) { 36 | i = order_flat[_i]; 37 | if (suppressed_flat[i] == 1) { 38 | continue; 39 | } 40 | keep_out_flat[num_to_keep++] = i; 41 | ix1 = boxes_flat[i * boxes_dim]; 42 | iy1 = boxes_flat[i * boxes_dim + 1]; 43 | ix2 = boxes_flat[i * boxes_dim + 2]; 44 | iy2 = boxes_flat[i * boxes_dim + 3]; 45 | iarea = areas_flat[i]; 46 | for (_j = _i + 1; _j < boxes_num; ++_j) { 47 | j = order_flat[_j]; 48 | if (suppressed_flat[j] == 1) { 49 | continue; 50 | } 51 | xx1 = fmaxf(ix1, boxes_flat[j * boxes_dim]); 52 | yy1 = fmaxf(iy1, boxes_flat[j * boxes_dim + 1]); 53 | xx2 = fminf(ix2, boxes_flat[j * boxes_dim + 2]); 54 | yy2 = fminf(iy2, boxes_flat[j * boxes_dim + 3]); 55 | w = fmaxf(0.0, xx2 - xx1 + 1); 56 | h = fmaxf(0.0, yy2 - yy1 + 1); 57 | inter = w * h; 58 | ovr = inter / (iarea + areas_flat[j] - inter); 59 | if (ovr >= nms_overlap_thresh) { 60 | suppressed_flat[j] = 1; 61 | } 62 | } 63 | } 64 | 65 | long *num_out_flat = THLongTensor_data(num_out); 66 | *num_out_flat = num_to_keep; 67 | THByteTensor_free(suppressed); 68 | return 1; 69 | } -------------------------------------------------------------------------------- /nms/src/nms.h: -------------------------------------------------------------------------------- 1 | int cpu_nms(THLongTensor * keep_out, THLongTensor * num_out, THFloatTensor * boxes, THLongTensor * order, THFloatTensor * areas, float nms_overlap_thresh); -------------------------------------------------------------------------------- /nms/src/nms_cuda.c: -------------------------------------------------------------------------------- 1 | // ------------------------------------------------------------------ 2 | // Faster R-CNN 3 | // Copyright (c) 2015 Microsoft 4 | // Licensed under The MIT License [see fast-rcnn/LICENSE for details] 5 | // Written by Shaoqing Ren 6 | // ------------------------------------------------------------------ 7 | #include 8 | #include 9 | #include 10 | #include 11 | 12 | #include "cuda/nms_kernel.h" 13 | 14 | 15 | extern THCState *state; 16 | 17 | int gpu_nms(THLongTensor * keep, THLongTensor* num_out, THCudaTensor * boxes, float nms_overlap_thresh) { 18 | // boxes has to be sorted 19 | THArgCheck(THLongTensor_isContiguous(keep), 0, "boxes must be contiguous"); 20 | THArgCheck(THCudaTensor_isContiguous(state, boxes), 2, "boxes must be contiguous"); 21 | // Number of ROIs 22 | int boxes_num = THCudaTensor_size(state, boxes, 0); 23 | int boxes_dim = THCudaTensor_size(state, boxes, 1); 24 | 25 | float* boxes_flat = THCudaTensor_data(state, boxes); 26 | 27 | const int col_blocks = DIVUP(boxes_num, threadsPerBlock); 28 | THCudaLongTensor * mask = THCudaLongTensor_newWithSize2d(state, boxes_num, col_blocks); 29 | unsigned long long* mask_flat = THCudaLongTensor_data(state, mask); 30 | 31 | _nms(boxes_num, boxes_flat, mask_flat, nms_overlap_thresh); 32 | 33 | THLongTensor * mask_cpu = THLongTensor_newWithSize2d(boxes_num, col_blocks); 34 | THLongTensor_copyCuda(state, mask_cpu, mask); 35 | THCudaLongTensor_free(state, mask); 36 | 37 | unsigned long long * mask_cpu_flat = THLongTensor_data(mask_cpu); 38 | 39 | THLongTensor * remv_cpu = THLongTensor_newWithSize1d(col_blocks); 40 | unsigned long long* remv_cpu_flat = THLongTensor_data(remv_cpu); 41 | THLongTensor_fill(remv_cpu, 0); 42 | 43 | long * keep_flat = THLongTensor_data(keep); 44 | long num_to_keep = 0; 45 | 46 | int i, j; 47 | for (i = 0; i < boxes_num; i++) { 48 | int nblock = i / threadsPerBlock; 49 | int inblock = i % threadsPerBlock; 50 | 51 | if (!(remv_cpu_flat[nblock] & (1ULL << inblock))) { 52 | keep_flat[num_to_keep++] = i; 53 | unsigned long long *p = &mask_cpu_flat[0] + i * col_blocks; 54 | for (j = nblock; j < col_blocks; j++) { 55 | remv_cpu_flat[j] |= p[j]; 56 | } 57 | } 58 | } 59 | 60 | long * num_out_flat = THLongTensor_data(num_out); 61 | * num_out_flat = num_to_keep; 62 | 63 | THLongTensor_free(mask_cpu); 64 | THLongTensor_free(remv_cpu); 65 | 66 | return 1; 67 | } 68 | -------------------------------------------------------------------------------- /nms/src/nms_cuda.h: -------------------------------------------------------------------------------- 1 | int gpu_nms(THLongTensor * keep_out, THLongTensor* num_out, THCudaTensor * boxes, float nms_overlap_thresh); -------------------------------------------------------------------------------- /results/COCO/ARCNN/COCO_val2014_000000281533/00_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/ARCNN/COCO_val2014_000000281533/00_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/ARCNN/COCO_val2014_000000281533/01_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/ARCNN/COCO_val2014_000000281533/01_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/ARCNN/COCO_val2014_000000281533/02_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/ARCNN/COCO_val2014_000000281533/02_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/ARCNN/COCO_val2014_000000281533/03_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/ARCNN/COCO_val2014_000000281533/03_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/ARCNN/COCO_val2014_000000281533/04_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/ARCNN/COCO_val2014_000000281533/04_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/ARCNN/COCO_val2014_000000281533/05_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/ARCNN/COCO_val2014_000000281533/05_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/ARCNN/COCO_val2014_000000281533/06_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/ARCNN/COCO_val2014_000000281533/06_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/ARCNN/COCO_val2014_000000281533/07_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/ARCNN/COCO_val2014_000000281533/07_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/ARCNN/COCO_val2014_000000281533/08_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/ARCNN/COCO_val2014_000000281533/08_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/ARCNN/COCO_val2014_000000281533/09_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/ARCNN/COCO_val2014_000000281533/09_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/ARCNN/COCO_val2014_000000281533/10_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/ARCNN/COCO_val2014_000000281533/10_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/ARCNN/COCO_val2014_000000281533/11_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/ARCNN/COCO_val2014_000000281533/11_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/ARCNN/COCO_val2014_000000281533/12_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/ARCNN/COCO_val2014_000000281533/12_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/ARCNN/COCO_val2014_000000281533/13_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/ARCNN/COCO_val2014_000000281533/13_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/ARCNN/COCO_val2014_000000281533/14_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/ARCNN/COCO_val2014_000000281533/14_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/ARCNN/COCO_val2014_000000281533/15_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/ARCNN/COCO_val2014_000000281533/15_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/ARCNN/COCO_val2014_000000281533/16_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/ARCNN/COCO_val2014_000000281533/16_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/ARCNN/COCO_val2014_000000281533/COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/ARCNN/COCO_val2014_000000281533/COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/ARCNN/COCO_val2014_000000494154/00_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/ARCNN/COCO_val2014_000000494154/00_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/ARCNN/COCO_val2014_000000494154/01_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/ARCNN/COCO_val2014_000000494154/01_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/ARCNN/COCO_val2014_000000494154/02_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/ARCNN/COCO_val2014_000000494154/02_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/ARCNN/COCO_val2014_000000494154/03_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/ARCNN/COCO_val2014_000000494154/03_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/ARCNN/COCO_val2014_000000494154/04_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/ARCNN/COCO_val2014_000000494154/04_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/ARCNN/COCO_val2014_000000494154/05_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/ARCNN/COCO_val2014_000000494154/05_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/ARCNN/COCO_val2014_000000494154/06_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/ARCNN/COCO_val2014_000000494154/06_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/ARCNN/COCO_val2014_000000494154/07_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/ARCNN/COCO_val2014_000000494154/07_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/ARCNN/COCO_val2014_000000494154/08_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/ARCNN/COCO_val2014_000000494154/08_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/ARCNN/COCO_val2014_000000494154/09_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/ARCNN/COCO_val2014_000000494154/09_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/ARCNN/COCO_val2014_000000494154/10_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/ARCNN/COCO_val2014_000000494154/10_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/ARCNN/COCO_val2014_000000494154/11_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/ARCNN/COCO_val2014_000000494154/11_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/ARCNN/COCO_val2014_000000494154/12_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/ARCNN/COCO_val2014_000000494154/12_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/ARCNN/COCO_val2014_000000494154/13_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/ARCNN/COCO_val2014_000000494154/13_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/ARCNN/COCO_val2014_000000494154/14_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/ARCNN/COCO_val2014_000000494154/14_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/ARCNN/COCO_val2014_000000494154/15_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/ARCNN/COCO_val2014_000000494154/15_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/ARCNN/COCO_val2014_000000494154/16_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/ARCNN/COCO_val2014_000000494154/16_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/ARCNN/COCO_val2014_000000494154/17_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/ARCNN/COCO_val2014_000000494154/17_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/ARCNN/COCO_val2014_000000494154/COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/ARCNN/COCO_val2014_000000494154/COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/ARCNN/COCO_val2014_000000543525/00_COCO_val2014_000000543525.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/ARCNN/COCO_val2014_000000543525/00_COCO_val2014_000000543525.jpg -------------------------------------------------------------------------------- /results/COCO/ARCNN/COCO_val2014_000000543525/01_COCO_val2014_000000543525.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/ARCNN/COCO_val2014_000000543525/01_COCO_val2014_000000543525.jpg -------------------------------------------------------------------------------- /results/COCO/ARCNN/COCO_val2014_000000543525/02_COCO_val2014_000000543525.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/ARCNN/COCO_val2014_000000543525/02_COCO_val2014_000000543525.jpg -------------------------------------------------------------------------------- /results/COCO/ARCNN/COCO_val2014_000000543525/03_COCO_val2014_000000543525.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/ARCNN/COCO_val2014_000000543525/03_COCO_val2014_000000543525.jpg -------------------------------------------------------------------------------- /results/COCO/ARCNN/COCO_val2014_000000543525/04_COCO_val2014_000000543525.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/ARCNN/COCO_val2014_000000543525/04_COCO_val2014_000000543525.jpg -------------------------------------------------------------------------------- /results/COCO/ARCNN/COCO_val2014_000000543525/05_COCO_val2014_000000543525.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/ARCNN/COCO_val2014_000000543525/05_COCO_val2014_000000543525.jpg -------------------------------------------------------------------------------- /results/COCO/ARCNN/COCO_val2014_000000543525/06_COCO_val2014_000000543525.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/ARCNN/COCO_val2014_000000543525/06_COCO_val2014_000000543525.jpg -------------------------------------------------------------------------------- /results/COCO/ARCNN/COCO_val2014_000000543525/07_COCO_val2014_000000543525.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/ARCNN/COCO_val2014_000000543525/07_COCO_val2014_000000543525.jpg -------------------------------------------------------------------------------- /results/COCO/ARCNN/COCO_val2014_000000543525/COCO_val2014_000000543525.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/ARCNN/COCO_val2014_000000543525/COCO_val2014_000000543525.jpg -------------------------------------------------------------------------------- /results/COCO/ARCNN/COCO_val2014_000000579463/00_COCO_val2014_000000579463.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/ARCNN/COCO_val2014_000000579463/00_COCO_val2014_000000579463.jpg -------------------------------------------------------------------------------- /results/COCO/ARCNN/COCO_val2014_000000579463/01_COCO_val2014_000000579463.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/ARCNN/COCO_val2014_000000579463/01_COCO_val2014_000000579463.jpg -------------------------------------------------------------------------------- /results/COCO/ARCNN/COCO_val2014_000000579463/02_COCO_val2014_000000579463.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/ARCNN/COCO_val2014_000000579463/02_COCO_val2014_000000579463.jpg -------------------------------------------------------------------------------- /results/COCO/ARCNN/COCO_val2014_000000579463/03_COCO_val2014_000000579463.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/ARCNN/COCO_val2014_000000579463/03_COCO_val2014_000000579463.jpg -------------------------------------------------------------------------------- /results/COCO/ARCNN/COCO_val2014_000000579463/04_COCO_val2014_000000579463.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/ARCNN/COCO_val2014_000000579463/04_COCO_val2014_000000579463.jpg -------------------------------------------------------------------------------- /results/COCO/ARCNN/COCO_val2014_000000579463/05_COCO_val2014_000000579463.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/ARCNN/COCO_val2014_000000579463/05_COCO_val2014_000000579463.jpg -------------------------------------------------------------------------------- /results/COCO/ARCNN/COCO_val2014_000000579463/06_COCO_val2014_000000579463.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/ARCNN/COCO_val2014_000000579463/06_COCO_val2014_000000579463.jpg -------------------------------------------------------------------------------- /results/COCO/ARCNN/COCO_val2014_000000579463/07_COCO_val2014_000000579463.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/ARCNN/COCO_val2014_000000579463/07_COCO_val2014_000000579463.jpg -------------------------------------------------------------------------------- /results/COCO/ARCNN/COCO_val2014_000000579463/COCO_val2014_000000579463.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/ARCNN/COCO_val2014_000000579463/COCO_val2014_000000579463.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000281533/COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000281533/COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000281533/gt_00_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000281533/gt_00_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000281533/gt_01_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000281533/gt_01_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000281533/gt_02_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000281533/gt_02_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000281533/gt_03_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000281533/gt_03_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000281533/gt_04_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000281533/gt_04_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000281533/gt_05_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000281533/gt_05_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000281533/gt_06_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000281533/gt_06_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000281533/gt_07_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000281533/gt_07_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000281533/gt_08_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000281533/gt_08_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000281533/gt_09_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000281533/gt_09_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000281533/gt_10_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000281533/gt_10_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000281533/gt_11_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000281533/gt_11_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000281533/gt_12_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000281533/gt_12_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000281533/gt_13_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000281533/gt_13_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000281533/gt_14_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000281533/gt_14_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000281533/gt_15_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000281533/gt_15_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000281533/gt_16_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000281533/gt_16_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000281533/our_120_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000281533/our_120_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000281533/our_14_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000281533/our_14_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000281533/our_151_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000281533/our_151_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000281533/our_211_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000281533/our_211_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000281533/our_215_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000281533/our_215_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000281533/our_216_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000281533/our_216_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000281533/our_222_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000281533/our_222_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000281533/our_246_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000281533/our_246_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000281533/our_348_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000281533/our_348_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000281533/our_521_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000281533/our_521_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000281533/our_555_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000281533/our_555_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000281533/our_571_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000281533/our_571_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000281533/our_58_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000281533/our_58_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000281533/our_601_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000281533/our_601_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000281533/our_635_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000281533/our_635_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000281533/our_644_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000281533/our_644_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000281533/our_91_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000281533/our_91_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000494154/COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000494154/COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000494154/gt_00_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000494154/gt_00_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000494154/gt_01_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000494154/gt_01_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000494154/gt_02_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000494154/gt_02_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000494154/gt_03_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000494154/gt_03_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000494154/gt_04_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000494154/gt_04_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000494154/gt_05_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000494154/gt_05_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000494154/gt_06_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000494154/gt_06_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000494154/gt_07_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000494154/gt_07_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000494154/gt_08_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000494154/gt_08_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000494154/gt_09_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000494154/gt_09_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000494154/gt_10_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000494154/gt_10_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000494154/gt_11_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000494154/gt_11_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000494154/gt_12_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000494154/gt_12_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000494154/gt_13_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000494154/gt_13_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000494154/gt_14_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000494154/gt_14_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000494154/gt_15_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000494154/gt_15_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000494154/gt_16_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000494154/gt_16_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000494154/gt_17_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000494154/gt_17_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000494154/our_06_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000494154/our_06_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000494154/our_10_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000494154/our_10_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000494154/our_116_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000494154/our_116_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000494154/our_193_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000494154/our_193_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000494154/our_21_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000494154/our_21_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000494154/our_262_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000494154/our_262_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000494154/our_275_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000494154/our_275_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000494154/our_309_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000494154/our_309_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000494154/our_336_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000494154/our_336_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000494154/our_384_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000494154/our_384_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000494154/our_48_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000494154/our_48_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000494154/our_528_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000494154/our_528_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000494154/our_561_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000494154/our_561_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000494154/our_565_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000494154/our_565_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000494154/our_571_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000494154/our_571_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000494154/our_697_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000494154/our_697_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000494154/our_751_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000494154/our_751_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000543525/COCO_val2014_000000543525.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000543525/COCO_val2014_000000543525.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000543525/gt_00_COCO_val2014_000000543525.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000543525/gt_00_COCO_val2014_000000543525.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000543525/gt_01_COCO_val2014_000000543525.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000543525/gt_01_COCO_val2014_000000543525.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000543525/gt_02_COCO_val2014_000000543525.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000543525/gt_02_COCO_val2014_000000543525.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000543525/gt_03_COCO_val2014_000000543525.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000543525/gt_03_COCO_val2014_000000543525.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000543525/gt_04_COCO_val2014_000000543525.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000543525/gt_04_COCO_val2014_000000543525.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000543525/gt_05_COCO_val2014_000000543525.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000543525/gt_05_COCO_val2014_000000543525.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000543525/gt_06_COCO_val2014_000000543525.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000543525/gt_06_COCO_val2014_000000543525.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000543525/gt_07_COCO_val2014_000000543525.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000543525/gt_07_COCO_val2014_000000543525.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000543525/our_158_COCO_val2014_000000543525.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000543525/our_158_COCO_val2014_000000543525.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000543525/our_176_COCO_val2014_000000543525.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000543525/our_176_COCO_val2014_000000543525.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000543525/our_213_COCO_val2014_000000543525.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000543525/our_213_COCO_val2014_000000543525.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000543525/our_250_COCO_val2014_000000543525.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000543525/our_250_COCO_val2014_000000543525.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000543525/our_386_COCO_val2014_000000543525.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000543525/our_386_COCO_val2014_000000543525.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000543525/our_645_COCO_val2014_000000543525.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000543525/our_645_COCO_val2014_000000543525.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000543525/our_650_COCO_val2014_000000543525.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000543525/our_650_COCO_val2014_000000543525.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000543525/our_75_COCO_val2014_000000543525.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000543525/our_75_COCO_val2014_000000543525.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000579463/COCO_val2014_000000579463.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000579463/COCO_val2014_000000579463.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000579463/gt_00_COCO_val2014_000000579463.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000579463/gt_00_COCO_val2014_000000579463.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000579463/gt_01_COCO_val2014_000000579463.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000579463/gt_01_COCO_val2014_000000579463.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000579463/gt_02_COCO_val2014_000000579463.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000579463/gt_02_COCO_val2014_000000579463.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000579463/gt_03_COCO_val2014_000000579463.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000579463/gt_03_COCO_val2014_000000579463.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000579463/gt_04_COCO_val2014_000000579463.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000579463/gt_04_COCO_val2014_000000579463.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000579463/gt_05_COCO_val2014_000000579463.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000579463/gt_05_COCO_val2014_000000579463.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000579463/gt_06_COCO_val2014_000000579463.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000579463/gt_06_COCO_val2014_000000579463.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000579463/gt_07_COCO_val2014_000000579463.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000579463/gt_07_COCO_val2014_000000579463.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000579463/our_03_COCO_val2014_000000579463.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000579463/our_03_COCO_val2014_000000579463.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000579463/our_140_COCO_val2014_000000579463.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000579463/our_140_COCO_val2014_000000579463.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000579463/our_152_COCO_val2014_000000579463.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000579463/our_152_COCO_val2014_000000579463.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000579463/our_157_COCO_val2014_000000579463.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000579463/our_157_COCO_val2014_000000579463.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000579463/our_501_COCO_val2014_000000579463.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000579463/our_501_COCO_val2014_000000579463.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000579463/our_503_COCO_val2014_000000579463.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000579463/our_503_COCO_val2014_000000579463.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000579463/our_80_COCO_val2014_000000579463.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000579463/our_80_COCO_val2014_000000579463.jpg -------------------------------------------------------------------------------- /results/COCO/AmodalMask/COCO_val2014_000000579463/our_86_COCO_val2014_000000579463.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/AmodalMask/COCO_val2014_000000579463/our_86_COCO_val2014_000000579463.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000281533/COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000281533/COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000281533/gt_00_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000281533/gt_00_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000281533/gt_01_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000281533/gt_01_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000281533/gt_02_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000281533/gt_02_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000281533/gt_03_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000281533/gt_03_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000281533/gt_04_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000281533/gt_04_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000281533/gt_05_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000281533/gt_05_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000281533/gt_06_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000281533/gt_06_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000281533/gt_07_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000281533/gt_07_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000281533/gt_08_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000281533/gt_08_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000281533/gt_09_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000281533/gt_09_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000281533/gt_10_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000281533/gt_10_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000281533/gt_11_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000281533/gt_11_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000281533/gt_12_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000281533/gt_12_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000281533/gt_13_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000281533/gt_13_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000281533/gt_14_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000281533/gt_14_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000281533/gt_15_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000281533/gt_15_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000281533/gt_16_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000281533/gt_16_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000281533/our_06_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000281533/our_06_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000281533/our_101_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000281533/our_101_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000281533/our_103_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000281533/our_103_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000281533/our_146_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000281533/our_146_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000281533/our_17_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000281533/our_17_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000281533/our_227_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000281533/our_227_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000281533/our_287_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000281533/our_287_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000281533/our_28_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000281533/our_28_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000281533/our_306_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000281533/our_306_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000281533/our_372_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000281533/our_372_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000281533/our_407_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000281533/our_407_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000281533/our_42_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000281533/our_42_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000281533/our_431_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000281533/our_431_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000281533/our_481_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000281533/our_481_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000281533/our_486_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000281533/our_486_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000281533/our_64_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000281533/our_64_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000281533/our_83_COCO_val2014_000000281533.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000281533/our_83_COCO_val2014_000000281533.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000494154/COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000494154/COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000494154/gt_00_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000494154/gt_00_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000494154/gt_01_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000494154/gt_01_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000494154/gt_02_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000494154/gt_02_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000494154/gt_03_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000494154/gt_03_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000494154/gt_04_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000494154/gt_04_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000494154/gt_05_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000494154/gt_05_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000494154/gt_06_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000494154/gt_06_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000494154/gt_07_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000494154/gt_07_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000494154/gt_08_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000494154/gt_08_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000494154/gt_09_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000494154/gt_09_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000494154/gt_10_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000494154/gt_10_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000494154/gt_11_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000494154/gt_11_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000494154/gt_12_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000494154/gt_12_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000494154/gt_13_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000494154/gt_13_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000494154/gt_14_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000494154/gt_14_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000494154/gt_15_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000494154/gt_15_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000494154/gt_16_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000494154/gt_16_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000494154/gt_17_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000494154/gt_17_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000494154/our_00_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000494154/our_00_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000494154/our_12_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000494154/our_12_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000494154/our_132_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000494154/our_132_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000494154/our_192_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000494154/our_192_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000494154/our_194_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000494154/our_194_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000494154/our_218_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000494154/our_218_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000494154/our_221_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000494154/our_221_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000494154/our_23_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000494154/our_23_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000494154/our_308_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000494154/our_308_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000494154/our_423_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000494154/our_423_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000494154/our_433_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000494154/our_433_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000494154/our_445_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000494154/our_445_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000494154/our_463_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000494154/our_463_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000494154/our_530_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000494154/our_530_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000494154/our_574_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000494154/our_574_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000494154/our_595_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000494154/our_595_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000494154/our_63_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000494154/our_63_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000494154/our_90_COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000494154/our_90_COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000543525/COCO_val2014_000000543525 - Copy (2).jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000543525/COCO_val2014_000000543525 - Copy (2).jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000543525/COCO_val2014_000000543525 - Copy (3).jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000543525/COCO_val2014_000000543525 - Copy (3).jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000543525/COCO_val2014_000000543525 - Copy.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000543525/COCO_val2014_000000543525 - Copy.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000543525/COCO_val2014_000000543525.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000543525/COCO_val2014_000000543525.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000543525/gt_00_COCO_val2014_000000543525.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000543525/gt_00_COCO_val2014_000000543525.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000543525/gt_01_COCO_val2014_000000543525.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000543525/gt_01_COCO_val2014_000000543525.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000543525/gt_02_COCO_val2014_000000543525.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000543525/gt_02_COCO_val2014_000000543525.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000543525/gt_03_COCO_val2014_000000543525.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000543525/gt_03_COCO_val2014_000000543525.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000543525/gt_04_COCO_val2014_000000543525.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000543525/gt_04_COCO_val2014_000000543525.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000543525/gt_05_COCO_val2014_000000543525.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000543525/gt_05_COCO_val2014_000000543525.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000543525/gt_06_COCO_val2014_000000543525.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000543525/gt_06_COCO_val2014_000000543525.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000543525/gt_07_COCO_val2014_000000543525.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000543525/gt_07_COCO_val2014_000000543525.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000543525/our_02_COCO_val2014_000000543525.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000543525/our_02_COCO_val2014_000000543525.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000543525/our_156_COCO_val2014_000000543525.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000543525/our_156_COCO_val2014_000000543525.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000543525/our_22_COCO_val2014_000000543525.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000543525/our_22_COCO_val2014_000000543525.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000543525/our_333_COCO_val2014_000000543525.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000543525/our_333_COCO_val2014_000000543525.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000543525/our_336_COCO_val2014_000000543525.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000543525/our_336_COCO_val2014_000000543525.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000543525/our_401_COCO_val2014_000000543525.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000543525/our_401_COCO_val2014_000000543525.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000543525/our_56_COCO_val2014_000000543525.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000543525/our_56_COCO_val2014_000000543525.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000543525/our_57_COCO_val2014_000000543525.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000543525/our_57_COCO_val2014_000000543525.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000579463/COCO_val2014_000000579463.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000579463/COCO_val2014_000000579463.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000579463/gt_00_COCO_val2014_000000579463.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000579463/gt_00_COCO_val2014_000000579463.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000579463/gt_01_COCO_val2014_000000579463.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000579463/gt_01_COCO_val2014_000000579463.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000579463/gt_02_COCO_val2014_000000579463.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000579463/gt_02_COCO_val2014_000000579463.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000579463/gt_03_COCO_val2014_000000579463.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000579463/gt_03_COCO_val2014_000000579463.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000579463/gt_04_COCO_val2014_000000579463.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000579463/gt_04_COCO_val2014_000000579463.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000579463/gt_05_COCO_val2014_000000579463.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000579463/gt_05_COCO_val2014_000000579463.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000579463/gt_06_COCO_val2014_000000579463.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000579463/gt_06_COCO_val2014_000000579463.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000579463/gt_07_COCO_val2014_000000579463.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000579463/gt_07_COCO_val2014_000000579463.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000579463/our_03_COCO_val2014_000000579463.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000579463/our_03_COCO_val2014_000000579463.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000579463/our_147_COCO_val2014_000000579463.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000579463/our_147_COCO_val2014_000000579463.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000579463/our_208_COCO_val2014_000000579463.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000579463/our_208_COCO_val2014_000000579463.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000579463/our_22_COCO_val2014_000000579463.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000579463/our_22_COCO_val2014_000000579463.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000579463/our_230_COCO_val2014_000000579463.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000579463/our_230_COCO_val2014_000000579463.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000579463/our_346_COCO_val2014_000000579463.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000579463/our_346_COCO_val2014_000000579463.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000579463/our_350_COCO_val2014_000000579463.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000579463/our_350_COCO_val2014_000000579463.jpg -------------------------------------------------------------------------------- /results/COCO/OURS/COCO_val2014_000000579463/our_38_COCO_val2014_000000579463.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/OURS/COCO_val2014_000000579463/our_38_COCO_val2014_000000579463.jpg -------------------------------------------------------------------------------- /results/COCO/final_res.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/final_res.pdf -------------------------------------------------------------------------------- /results/COCO/pic1/COCO_val2014_000000543525.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/pic1/COCO_val2014_000000543525.jpg -------------------------------------------------------------------------------- /results/COCO/pic1/COCO_val2014_000000543525_gt.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/pic1/COCO_val2014_000000543525_gt.png -------------------------------------------------------------------------------- /results/COCO/pic1/COCO_val2014_000000543525_rcnn.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/pic1/COCO_val2014_000000543525_rcnn.png -------------------------------------------------------------------------------- /results/COCO/pic1/COCO_val2014_000000543525_sem_dist_map.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/pic1/COCO_val2014_000000543525_sem_dist_map.png -------------------------------------------------------------------------------- /results/COCO/pic1/COCO_val2014_000000543525_thirst.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/pic1/COCO_val2014_000000543525_thirst.png -------------------------------------------------------------------------------- /results/COCO/pic2/COCO_val2014_000000494154.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/pic2/COCO_val2014_000000494154.jpg -------------------------------------------------------------------------------- /results/COCO/pic2/COCO_val2014_000000494154_gt.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/pic2/COCO_val2014_000000494154_gt.png -------------------------------------------------------------------------------- /results/COCO/pic2/COCO_val2014_000000494154_mrcnn.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/pic2/COCO_val2014_000000494154_mrcnn.png -------------------------------------------------------------------------------- /results/COCO/pic2/COCO_val2014_000000494154_sem_dist_map.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/pic2/COCO_val2014_000000494154_sem_dist_map.png -------------------------------------------------------------------------------- /results/COCO/pic2/COCO_val2014_000000494154_thirst.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/pic2/COCO_val2014_000000494154_thirst.png -------------------------------------------------------------------------------- /results/COCO/pic3/COCO_val2014_000000579463.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/pic3/COCO_val2014_000000579463.jpg -------------------------------------------------------------------------------- /results/COCO/pic3/COCO_val2014_000000579463_gt.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/pic3/COCO_val2014_000000579463_gt.png -------------------------------------------------------------------------------- /results/COCO/pic3/COCO_val2014_000000579463_mrcnn.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/pic3/COCO_val2014_000000579463_mrcnn.png -------------------------------------------------------------------------------- /results/COCO/pic3/COCO_val2014_000000579463_sem_Dist_map.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/pic3/COCO_val2014_000000579463_sem_Dist_map.png -------------------------------------------------------------------------------- /results/COCO/pic3/COCO_val2014_000000579463_thirst.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/COCO/pic3/COCO_val2014_000000579463_thirst.png -------------------------------------------------------------------------------- /results/D2S/D2S.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S.pdf -------------------------------------------------------------------------------- /results/D2S/D2S_004811/07_D2S_004811.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_004811/07_D2S_004811.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_004811/09_D2S_004811.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_004811/09_D2S_004811.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_004811/25_D2S_004811.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_004811/25_D2S_004811.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_004811/D2S_004811.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_004811/D2S_004811.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_004811/D2S_004811.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_004811/D2S_004811.png -------------------------------------------------------------------------------- /results/D2S/D2S_004811/gt_00_D2S_004811.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_004811/gt_00_D2S_004811.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_004811/gt_01_D2S_004811.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_004811/gt_01_D2S_004811.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_004811/gt_02_D2S_004811.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_004811/gt_02_D2S_004811.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_004811/our_03_D2S_004811.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_004811/our_03_D2S_004811.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_004811/our_137_D2S_004811.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_004811/our_137_D2S_004811.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_004811/our_78_D2S_004811.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_004811/our_78_D2S_004811.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_026022/00_D2S_026022.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_026022/00_D2S_026022.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_026022/02_D2S_026022.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_026022/02_D2S_026022.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_026022/105_D2S_026022.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_026022/105_D2S_026022.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_026022/11_D2S_026022.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_026022/11_D2S_026022.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_026022/29_D2S_026022.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_026022/29_D2S_026022.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_026022/45_D2S_026022.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_026022/45_D2S_026022.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_026022/70_D2S_026022.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_026022/70_D2S_026022.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_026022/77_D2S_026022.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_026022/77_D2S_026022.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_026022/D2S_026022.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_026022/D2S_026022.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_026022/D2S_026022.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_026022/D2S_026022.png -------------------------------------------------------------------------------- /results/D2S/D2S_026022/gt_00_D2S_026022.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_026022/gt_00_D2S_026022.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_026022/gt_01_D2S_026022.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_026022/gt_01_D2S_026022.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_026022/gt_02_D2S_026022.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_026022/gt_02_D2S_026022.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_026022/gt_03_D2S_026022.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_026022/gt_03_D2S_026022.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_026022/gt_04_D2S_026022.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_026022/gt_04_D2S_026022.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_026022/gt_05_D2S_026022.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_026022/gt_05_D2S_026022.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_026022/gt_06_D2S_026022.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_026022/gt_06_D2S_026022.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_026022/gt_07_D2S_026022.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_026022/gt_07_D2S_026022.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_026022/our_08_D2S_026022.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_026022/our_08_D2S_026022.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_026022/our_108_D2S_026022.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_026022/our_108_D2S_026022.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_026022/our_170_D2S_026022.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_026022/our_170_D2S_026022.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_026022/our_204_D2S_026022.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_026022/our_204_D2S_026022.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_026022/our_26_D2S_026022.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_026022/our_26_D2S_026022.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_026022/our_33_D2S_026022.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_026022/our_33_D2S_026022.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_026022/our_57_D2S_026022.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_026022/our_57_D2S_026022.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_026022/our_98_D2S_026022.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_026022/our_98_D2S_026022.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_038111/00_D2S_038111.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_038111/00_D2S_038111.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_038111/15_D2S_038111.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_038111/15_D2S_038111.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_038111/36_D2S_038111.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_038111/36_D2S_038111.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_038111/D2S_038111.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_038111/D2S_038111.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_038111/D2S_038111.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_038111/D2S_038111.png -------------------------------------------------------------------------------- /results/D2S/D2S_038111/gt_00_D2S_038111.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_038111/gt_00_D2S_038111.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_038111/gt_01_D2S_038111.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_038111/gt_01_D2S_038111.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_038111/gt_02_D2S_038111.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_038111/gt_02_D2S_038111.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_038111/our_13_D2S_038111.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_038111/our_13_D2S_038111.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_038111/our_32_D2S_038111.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_038111/our_32_D2S_038111.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_038111/our_44_D2S_038111.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_038111/our_44_D2S_038111.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_058302/13_D2S_058302.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_058302/13_D2S_058302.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_058302/16_D2S_058302.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_058302/16_D2S_058302.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_058302/D2S_058302.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_058302/D2S_058302.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_058302/D2S_058302.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_058302/D2S_058302.png -------------------------------------------------------------------------------- /results/D2S/D2S_058302/gt_00_D2S_058302.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_058302/gt_00_D2S_058302.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_058302/gt_01_D2S_058302.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_058302/gt_01_D2S_058302.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_058302/our_07_D2S_058302.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_058302/our_07_D2S_058302.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_058302/our_40_D2S_058302.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_058302/our_40_D2S_058302.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_068312/02_D2S_068312.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_068312/02_D2S_068312.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_068312/189_D2S_068312.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_068312/189_D2S_068312.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_068312/197_D2S_068312.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_068312/197_D2S_068312.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_068312/19_D2S_068312.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_068312/19_D2S_068312.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_068312/223_D2S_068312.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_068312/223_D2S_068312.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_068312/33_D2S_068312.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_068312/33_D2S_068312.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_068312/43_D2S_068312.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_068312/43_D2S_068312.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_068312/52_D2S_068312.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_068312/52_D2S_068312.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_068312/72_D2S_068312.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_068312/72_D2S_068312.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_068312/92_D2S_068312.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_068312/92_D2S_068312.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_068312/D2S_068312.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_068312/D2S_068312.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_068312/gt_00_D2S_068312.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_068312/gt_00_D2S_068312.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_068312/gt_01_D2S_068312.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_068312/gt_01_D2S_068312.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_068312/gt_02_D2S_068312.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_068312/gt_02_D2S_068312.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_068312/gt_03_D2S_068312.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_068312/gt_03_D2S_068312.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_068312/gt_04_D2S_068312.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_068312/gt_04_D2S_068312.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_068312/gt_05_D2S_068312.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_068312/gt_05_D2S_068312.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_068312/gt_06_D2S_068312.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_068312/gt_06_D2S_068312.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_068312/gt_07_D2S_068312.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_068312/gt_07_D2S_068312.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_068312/gt_08_D2S_068312.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_068312/gt_08_D2S_068312.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_068312/gt_09_D2S_068312.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_068312/gt_09_D2S_068312.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_068312/our_05_D2S_068312.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_068312/our_05_D2S_068312.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_068312/our_102_D2S_068312.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_068312/our_102_D2S_068312.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_068312/our_11_D2S_068312.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_068312/our_11_D2S_068312.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_068312/our_122_D2S_068312.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_068312/our_122_D2S_068312.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_068312/our_183_D2S_068312.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_068312/our_183_D2S_068312.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_068312/our_190_D2S_068312.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_068312/our_190_D2S_068312.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_068312/our_236_D2S_068312.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_068312/our_236_D2S_068312.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_068312/our_258_D2S_068312.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_068312/our_258_D2S_068312.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_068312/our_42_D2S_068312.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_068312/our_42_D2S_068312.jpg -------------------------------------------------------------------------------- /results/D2S/D2S_068312/our_56_D2S_068312.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/D2S/D2S_068312/our_56_D2S_068312.jpg -------------------------------------------------------------------------------- /results/sem-dist-map-demo.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/results/sem-dist-map-demo.png -------------------------------------------------------------------------------- /roialign/__init__.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/roialign/__init__.py -------------------------------------------------------------------------------- /roialign/roi_align/__init__.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/roialign/roi_align/__init__.py -------------------------------------------------------------------------------- /roialign/roi_align/_ext/__init__.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/roialign/roi_align/_ext/__init__.py -------------------------------------------------------------------------------- /roialign/roi_align/_ext/crop_and_resize/__init__.py: -------------------------------------------------------------------------------- 1 | 2 | from torch.utils.ffi import _wrap_function 3 | from ._crop_and_resize import lib as _lib, ffi as _ffi 4 | 5 | __all__ = [] 6 | def _import_symbols(locals): 7 | for symbol in dir(_lib): 8 | fn = getattr(_lib, symbol) 9 | if callable(fn): 10 | locals[symbol] = _wrap_function(fn, _ffi) 11 | else: 12 | locals[symbol] = fn 13 | __all__.append(symbol) 14 | 15 | _import_symbols(locals()) 16 | -------------------------------------------------------------------------------- /roialign/roi_align/_ext/crop_and_resize/_crop_and_resize.so: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/apchenstu/SLN-Amodal/68d541068248bf6491b1120006b2ee79c7a9d17b/roialign/roi_align/_ext/crop_and_resize/_crop_and_resize.so -------------------------------------------------------------------------------- /roialign/roi_align/build.py: -------------------------------------------------------------------------------- 1 | import os 2 | import torch 3 | from torch.utils.ffi import create_extension 4 | 5 | 6 | sources = ['src/crop_and_resize.c'] 7 | headers = ['src/crop_and_resize.h'] 8 | defines = [] 9 | with_cuda = False 10 | 11 | extra_objects = [] 12 | if torch.cuda.is_available(): 13 | print('Including CUDA code.') 14 | sources += ['src/crop_and_resize_gpu.c'] 15 | headers += ['src/crop_and_resize_gpu.h'] 16 | defines += [('WITH_CUDA', None)] 17 | extra_objects += ['src/cuda/crop_and_resize_kernel.cu.o'] 18 | with_cuda = True 19 | 20 | extra_compile_args = ['-fopenmp', '-std=c99'] 21 | 22 | this_file = os.path.dirname(os.path.realpath(__file__)) 23 | print(this_file) 24 | sources = [os.path.join(this_file, fname) for fname in sources] 25 | headers = [os.path.join(this_file, fname) for fname in headers] 26 | extra_objects = [os.path.join(this_file, fname) for fname in extra_objects] 27 | 28 | ffi = create_extension( 29 | '_ext.crop_and_resize', 30 | headers=headers, 31 | sources=sources, 32 | define_macros=defines, 33 | relative_to=__file__, 34 | with_cuda=with_cuda, 35 | extra_objects=extra_objects, 36 | extra_compile_args=extra_compile_args 37 | ) 38 | 39 | if __name__ == '__main__': 40 | ffi.build() 41 | -------------------------------------------------------------------------------- /roialign/roi_align/crop_and_resize.py: -------------------------------------------------------------------------------- 1 | import math 2 | import torch 3 | import torch.nn as nn 4 | import torch.nn.functional as F 5 | from torch.autograd import Function 6 | 7 | from ._ext import crop_and_resize as _backend 8 | 9 | 10 | class CropAndResizeFunction(Function): 11 | 12 | def __init__(self, crop_height, crop_width, extrapolation_value=0): 13 | self.crop_height = crop_height 14 | self.crop_width = crop_width 15 | self.extrapolation_value = extrapolation_value 16 | 17 | def forward(self, image, boxes, box_ind): 18 | crops = torch.zeros_like(image) 19 | 20 | if image.is_cuda: 21 | _backend.crop_and_resize_gpu_forward( 22 | image, boxes, box_ind, 23 | self.extrapolation_value, self.crop_height, self.crop_width, crops) 24 | else: 25 | _backend.crop_and_resize_forward( 26 | image, boxes, box_ind, 27 | self.extrapolation_value, self.crop_height, self.crop_width, crops) 28 | 29 | # save for backward 30 | self.im_size = image.size() 31 | self.save_for_backward(boxes, box_ind) 32 | 33 | return crops 34 | 35 | def backward(self, grad_outputs): 36 | boxes, box_ind = self.saved_tensors 37 | 38 | grad_outputs = grad_outputs.contiguous() 39 | grad_image = torch.zeros_like(grad_outputs).resize_(*self.im_size) 40 | 41 | if grad_outputs.is_cuda: 42 | _backend.crop_and_resize_gpu_backward( 43 | grad_outputs, boxes, box_ind, grad_image 44 | ) 45 | else: 46 | _backend.crop_and_resize_backward( 47 | grad_outputs, boxes, box_ind, grad_image 48 | ) 49 | 50 | return grad_image, None, None 51 | 52 | 53 | class CropAndResize(nn.Module): 54 | """ 55 | Crop and resize ported from tensorflow 56 | See more details on https://www.tensorflow.org/api_docs/python/tf/image/crop_and_resize 57 | """ 58 | 59 | def __init__(self, crop_height, crop_width, extrapolation_value=0): 60 | super(CropAndResize, self).__init__() 61 | 62 | self.crop_height = crop_height 63 | self.crop_width = crop_width 64 | self.extrapolation_value = extrapolation_value 65 | 66 | def forward(self, image, boxes, box_ind): 67 | return CropAndResizeFunction(self.crop_height, self.crop_width, self.extrapolation_value)(image, boxes, box_ind) 68 | -------------------------------------------------------------------------------- /roialign/roi_align/roi_align.py: -------------------------------------------------------------------------------- 1 | import torch 2 | from torch import nn 3 | 4 | from .crop_and_resize import CropAndResizeFunction, CropAndResize 5 | 6 | 7 | class RoIAlign(nn.Module): 8 | 9 | def __init__(self, crop_height, crop_width, extrapolation_value=0, transform_fpcoor=True): 10 | super(RoIAlign, self).__init__() 11 | 12 | self.crop_height = crop_height 13 | self.crop_width = crop_width 14 | self.extrapolation_value = extrapolation_value 15 | self.transform_fpcoor = transform_fpcoor 16 | 17 | def forward(self, featuremap, boxes, box_ind): 18 | """ 19 | RoIAlign based on crop_and_resize. 20 | See more details on https://github.com/ppwwyyxx/tensorpack/blob/6d5ba6a970710eaaa14b89d24aace179eb8ee1af/examples/FasterRCNN/model.py#L301 21 | :param featuremap: NxCxHxW 22 | :param boxes: Mx4 float box with (x1, y1, x2, y2) **without normalization** 23 | :param box_ind: M 24 | :return: MxCxoHxoW 25 | """ 26 | x1, y1, x2, y2 = torch.split(boxes, 1, dim=1) 27 | image_height, image_width = featuremap.size()[2:4] 28 | 29 | if self.transform_fpcoor: 30 | spacing_w = (x2 - x1) / float(self.crop_width) 31 | spacing_h = (y2 - y1) / float(self.crop_height) 32 | 33 | nx0 = (x1 + spacing_w / 2 - 0.5) / float(image_width - 1) 34 | ny0 = (y1 + spacing_h / 2 - 0.5) / float(image_height - 1) 35 | nw = spacing_w * float(self.crop_width - 1) / float(image_width - 1) 36 | nh = spacing_h * float(self.crop_height - 1) / float(image_height - 1) 37 | 38 | boxes = torch.cat((ny0, nx0, ny0 + nh, nx0 + nw), 1) 39 | else: 40 | x1 = x1 / float(image_width - 1) 41 | x2 = x2 / float(image_width - 1) 42 | y1 = y1 / float(image_height - 1) 43 | y2 = y2 / float(image_height - 1) 44 | boxes = torch.cat((y1, x1, y2, x2), 1) 45 | 46 | boxes = boxes.detach().contiguous() 47 | box_ind = box_ind.detach() 48 | return CropAndResizeFunction(self.crop_height, self.crop_width, self.extrapolation_value)(featuremap, boxes, box_ind) 49 | -------------------------------------------------------------------------------- /roialign/roi_align/src/crop_and_resize.h: -------------------------------------------------------------------------------- 1 | void crop_and_resize_forward( 2 | THFloatTensor * image, 3 | THFloatTensor * boxes, // [y1, x1, y2, x2] 4 | THIntTensor * box_index, // range in [0, batch_size) 5 | const float extrapolation_value, 6 | const int crop_height, 7 | const int crop_width, 8 | THFloatTensor * crops 9 | ); 10 | 11 | void crop_and_resize_backward( 12 | THFloatTensor * grads, 13 | THFloatTensor * boxes, // [y1, x1, y2, x2] 14 | THIntTensor * box_index, // range in [0, batch_size) 15 | THFloatTensor * grads_image // resize to [bsize, c, hc, wc] 16 | ); -------------------------------------------------------------------------------- /roialign/roi_align/src/crop_and_resize_gpu.c: -------------------------------------------------------------------------------- 1 | #include 2 | #include "cuda/crop_and_resize_kernel.h" 3 | 4 | extern THCState *state; 5 | 6 | 7 | void crop_and_resize_gpu_forward( 8 | THCudaTensor * image, 9 | THCudaTensor * boxes, // [y1, x1, y2, x2] 10 | THCudaIntTensor * box_index, // range in [0, batch_size) 11 | const float extrapolation_value, 12 | const int crop_height, 13 | const int crop_width, 14 | THCudaTensor * crops 15 | ) { 16 | const int batch_size = THCudaTensor_size(state, image, 0); 17 | const int depth = THCudaTensor_size(state, image, 1); 18 | const int image_height = THCudaTensor_size(state, image, 2); 19 | const int image_width = THCudaTensor_size(state, image, 3); 20 | 21 | const int num_boxes = THCudaTensor_size(state, boxes, 0); 22 | 23 | // init output space 24 | THCudaTensor_resize4d(state, crops, num_boxes, depth, crop_height, crop_width); 25 | THCudaTensor_zero(state, crops); 26 | 27 | cudaStream_t stream = THCState_getCurrentStream(state); 28 | CropAndResizeLaucher( 29 | THCudaTensor_data(state, image), 30 | THCudaTensor_data(state, boxes), 31 | THCudaIntTensor_data(state, box_index), 32 | num_boxes, batch_size, image_height, image_width, 33 | crop_height, crop_width, depth, extrapolation_value, 34 | THCudaTensor_data(state, crops), 35 | stream 36 | ); 37 | } 38 | 39 | 40 | void crop_and_resize_gpu_backward( 41 | THCudaTensor * grads, 42 | THCudaTensor * boxes, // [y1, x1, y2, x2] 43 | THCudaIntTensor * box_index, // range in [0, batch_size) 44 | THCudaTensor * grads_image // resize to [bsize, c, hc, wc] 45 | ) { 46 | // shape 47 | const int batch_size = THCudaTensor_size(state, grads_image, 0); 48 | const int depth = THCudaTensor_size(state, grads_image, 1); 49 | const int image_height = THCudaTensor_size(state, grads_image, 2); 50 | const int image_width = THCudaTensor_size(state, grads_image, 3); 51 | 52 | const int num_boxes = THCudaTensor_size(state, grads, 0); 53 | const int crop_height = THCudaTensor_size(state, grads, 2); 54 | const int crop_width = THCudaTensor_size(state, grads, 3); 55 | 56 | // init output space 57 | THCudaTensor_zero(state, grads_image); 58 | 59 | cudaStream_t stream = THCState_getCurrentStream(state); 60 | CropAndResizeBackpropImageLaucher( 61 | THCudaTensor_data(state, grads), 62 | THCudaTensor_data(state, boxes), 63 | THCudaIntTensor_data(state, box_index), 64 | num_boxes, batch_size, image_height, image_width, 65 | crop_height, crop_width, depth, 66 | THCudaTensor_data(state, grads_image), 67 | stream 68 | ); 69 | } -------------------------------------------------------------------------------- /roialign/roi_align/src/crop_and_resize_gpu.h: -------------------------------------------------------------------------------- 1 | void crop_and_resize_gpu_forward( 2 | THCudaTensor * image, 3 | THCudaTensor * boxes, // [y1, x1, y2, x2] 4 | THCudaIntTensor * box_index, // range in [0, batch_size) 5 | const float extrapolation_value, 6 | const int crop_height, 7 | const int crop_width, 8 | THCudaTensor * crops 9 | ); 10 | 11 | void crop_and_resize_gpu_backward( 12 | THCudaTensor * grads, 13 | THCudaTensor * boxes, // [y1, x1, y2, x2] 14 | THCudaIntTensor * box_index, // range in [0, batch_size) 15 | THCudaTensor * grads_image // resize to [bsize, c, hc, wc] 16 | ); -------------------------------------------------------------------------------- /roialign/roi_align/src/cuda/crop_and_resize_kernel.h: -------------------------------------------------------------------------------- 1 | #ifndef _CropAndResize_Kernel 2 | #define _CropAndResize_Kernel 3 | 4 | #ifdef __cplusplus 5 | extern "C" { 6 | #endif 7 | 8 | void CropAndResizeLaucher( 9 | const float *image_ptr, const float *boxes_ptr, 10 | const int *box_ind_ptr, int num_boxes, int batch, int image_height, 11 | int image_width, int crop_height, int crop_width, int depth, 12 | float extrapolation_value, float *crops_ptr, cudaStream_t stream); 13 | 14 | void CropAndResizeBackpropImageLaucher( 15 | const float *grads_ptr, const float *boxes_ptr, 16 | const int *box_ind_ptr, int num_boxes, int batch, int image_height, 17 | int image_width, int crop_height, int crop_width, int depth, 18 | float *grads_image_ptr, cudaStream_t stream); 19 | 20 | #ifdef __cplusplus 21 | } 22 | #endif 23 | 24 | #endif --------------------------------------------------------------------------------