├── .github
└── workflows
│ ├── main.yml
│ ├── publish_docs.yml
│ └── release_to_pypi.yml
├── .gitignore
├── .python-version
├── CITATION.cff
├── CONTRIBUTING.md
├── LICENSE
├── README.md
├── docs
├── conf.py
├── linkcode_github.py
└── source
│ ├── api.md
│ ├── artifacts
│ ├── accelerate_help.txt
│ ├── argparse_cli_help.txt
│ ├── deepspeed_help.txt
│ ├── lightning_help.txt
│ ├── torchrun.png
│ ├── torchrunx.excalidraw
│ ├── torchrunx.png
│ ├── transformers_help.txt
│ └── tyro_cli_help.txt
│ ├── examples
│ ├── accelerate.md
│ ├── deepspeed.md
│ ├── lightning.md
│ └── transformers.md
│ ├── how_it_works.md
│ ├── index.rst
│ └── usage
│ ├── cli.md
│ ├── general.md
│ ├── logging.md
│ └── slurm.md
├── pyproject.toml
├── scripts
├── build_docs.sh
├── examples
│ ├── accelerate_train.py
│ ├── deepspeed_train.py
│ ├── lightning_train.py
│ └── transformers_train.py
└── generate_help_menus.sh
├── src
└── torchrunx
│ ├── __init__.py
│ ├── __main__.py
│ ├── agent.py
│ ├── integrations
│ ├── __init__.py
│ ├── cli.py
│ └── lightning.py
│ ├── launcher.py
│ ├── py.typed
│ ├── utils
│ ├── __init__.py
│ ├── comm.py
│ ├── environment.py
│ ├── errors.py
│ ├── log_handling.py
│ └── log_streaming.py
│ └── worker.py
├── tests
├── __init__.py
├── test_ci.py
├── test_func.py
├── test_submitit.py
└── test_train_gpu.py
└── uv.lock
/.github/workflows/main.yml:
--------------------------------------------------------------------------------
1 | name: main
2 |
3 | on:
4 | push:
5 | branches: [main]
6 | pull_request:
7 | branches:
8 | - main
9 |
10 | jobs:
11 |
12 | checks:
13 | runs-on: ubuntu-latest
14 | steps:
15 | - uses: actions/checkout@v4
16 | - uses: astral-sh/setup-uv@v5
17 | with:
18 | version: "0.5.29"
19 | enable-cache: true
20 | - run: uv lock --check
21 | - run: uv sync
22 | - run: uv run --frozen ruff check
23 | if: success() || failure()
24 | - run: uv run --frozen ruff format --check
25 | if: success() || failure()
26 | - run: uv run --frozen pyright
27 | if: success() || failure()
28 |
29 | build-docs:
30 | runs-on: ubuntu-latest
31 | steps:
32 | - uses: actions/checkout@v4
33 | - uses: astral-sh/setup-uv@v5
34 | with:
35 | version: "0.5.29"
36 | - run: source ./scripts/build_docs.sh
37 | - uses: actions/upload-artifact@v4
38 | with:
39 | name: docs-html-build
40 | path: docs/_build/html
41 | retention-days: 14
42 |
43 | ##
44 |
45 | get-python-pytorch-versions:
46 | runs-on: ubuntu-latest
47 | outputs:
48 | versions: ${{ steps.get-versions.outputs.versions }}
49 | steps:
50 | - name: "Get (Python, PyTorch) versions"
51 | id: get-versions
52 | run: |
53 | MIN_PYTHON_VERSION=3.9
54 | MIN_PYTORCH_VERSION=2.0
55 |
56 | # Get PyTorch versions from PyPI
57 | pytorch_versions=$(
58 | curl -s https://pypi.org/pypi/torch/json | jq -r '.releases | keys[]' |
59 | # strip "patch" from versions
60 | grep -E '\.[0]+$' | sort -V | sed 's/\.0$//'
61 | )
62 |
63 | # For each PyTorch version, get Python versions that have builds
64 | # Generate JSON list of "python,pytorch" versions
65 |
66 | version_matrix=()
67 | for pytorch_version in $pytorch_versions; do
68 | # Skip if PyTorch version less than minium
69 | if [[ "$(printf '%s\n' "$pytorch_version" "$MIN_PYTORCH_VERSION" | sort -V | head -n 1)" != "$MIN_PYTORCH_VERSION" ]]; then continue; fi
70 |
71 | python_versions=$(
72 | curl -s "https://pypi.org/pypi/torch/$pytorch_version/json" |
73 | jq -r '.urls[].filename | select(test("manylinux1_x86_64")) | capture("(?cp[0-9]+)-") | .cp |
74 | sub("cp(?[0-9])(?[0-9]+)"; "\(.major).\(.minor)")'
75 | )
76 |
77 | for python_version in $python_versions; do
78 | # Skip if Python version less than minium
79 | if [[ "$(printf '%s\n' "$python_version" "$MIN_PYTHON_VERSION" | sort -V | head -n 1)" != "$MIN_PYTHON_VERSION" ]]; then continue; fi
80 |
81 | version_matrix+=($python_version,$pytorch_version)
82 | done
83 | done
84 | version_matrix=$(printf '%s\n' "${version_matrix[@]}" | jq -R . | jq -s -c .)
85 |
86 | # Write to outputs
87 | echo "versions=$version_matrix" >> $GITHUB_OUTPUT
88 |
89 | test:
90 | runs-on: ubuntu-latest
91 | needs: get-python-pytorch-versions
92 | strategy:
93 | fail-fast: false
94 | matrix:
95 | versions: ${{fromJson(needs.get-python-pytorch-versions.outputs.versions)}}
96 | steps:
97 | - uses: actions/checkout@v4
98 | - uses: astral-sh/setup-uv@v5
99 | with:
100 | version: "0.5.29"
101 | - run: |
102 | IFS=',' read -r python_version pytorch_version <<< ${{ matrix.versions }}
103 | echo "PYTHON_VERSION=$python_version" >> $GITHUB_ENV
104 | echo "PYTORCH_VERSION=$pytorch_version" >> $GITHUB_ENV
105 | if [[ "$pytorch_version" =~ ^2\.(0|1|2)$ ]]; then
106 | echo "NUMPY_VERSION=--with \"numpy<2\"" >> $GITHUB_ENV
107 | fi
108 | - run: uv run --python ${{ env.PYTHON_VERSION }} --with torch~=${{ env.PYTORCH_VERSION }} ${{ env.NUMPY_VERSION }} pytest --verbose tests/test_ci.py
109 |
--------------------------------------------------------------------------------
/.github/workflows/publish_docs.yml:
--------------------------------------------------------------------------------
1 | name: publish_docs
2 |
3 | on:
4 | release:
5 | types: [published]
6 | workflow_dispatch:
7 |
8 | jobs:
9 |
10 | publish-docs:
11 | runs-on: ubuntu-latest
12 | permissions:
13 | pages: write
14 | id-token: write
15 | environment:
16 | name: github-pages
17 | url: ${{ steps.deployment.outputs.page_url }}
18 | steps:
19 | - uses: actions/checkout@v4
20 | - uses: astral-sh/setup-uv@v5
21 | with:
22 | version: "0.5.29"
23 | - run: source ./scripts/build_docs.sh
24 | - uses: actions/configure-pages@v5
25 | - uses: actions/upload-pages-artifact@v3
26 | with:
27 | path: docs/_build/html
28 | - id: deployment
29 | uses: actions/deploy-pages@v4
30 |
--------------------------------------------------------------------------------
/.github/workflows/release_to_pypi.yml:
--------------------------------------------------------------------------------
1 | name: release_to_pypi
2 |
3 | on:
4 | release:
5 | types: [published]
6 |
7 | jobs:
8 | release-to-pypi:
9 | runs-on: ubuntu-latest
10 | permissions:
11 | id-token: write
12 | steps:
13 | - uses: actions/checkout@v4
14 | - uses: astral-sh/setup-uv@v5
15 | with:
16 | version: "0.5.29"
17 | - run: uv build
18 | - run: uv publish
19 |
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | docs/source/README.md
2 | docs/source/contributing.md
3 | docs/source/examples/scripts/
4 |
5 | torchrunx_logs/
6 | .ruff_cache/
7 | .vscode/
8 |
9 | # Byte-compiled / optimized / DLL files
10 | __pycache__/
11 | *.py[cod]
12 | *$py.class
13 |
14 | # C extensions
15 | *.so
16 |
17 | # Distribution / packaging
18 | .Python
19 | build/
20 | develop-eggs/
21 | dist/
22 | downloads/
23 | eggs/
24 | .eggs/
25 | lib/
26 | lib64/
27 | parts/
28 | sdist/
29 | var/
30 | wheels/
31 | share/python-wheels/
32 | *.egg-info/
33 | .installed.cfg
34 | *.egg
35 | MANIFEST
36 |
37 | # PyInstaller
38 | # Usually these files are written by a python script from a template
39 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
40 | *.manifest
41 | *.spec
42 |
43 | # Installer logs
44 | pip-log.txt
45 | pip-delete-this-directory.txt
46 |
47 | # Unit test / coverage reports
48 | htmlcov/
49 | .tox/
50 | .nox/
51 | .coverage
52 | .coverage.*
53 | .cache
54 | nosetests.xml
55 | coverage.xml
56 | *.cover
57 | *.py,cover
58 | .hypothesis/
59 | .pytest_cache/
60 | cover/
61 |
62 | # Translations
63 | *.mo
64 | *.pot
65 |
66 | # Django stuff:
67 | *.log
68 | local_settings.py
69 | db.sqlite3
70 | db.sqlite3-journal
71 |
72 | # Flask stuff:
73 | instance/
74 | .webassets-cache
75 |
76 | # Scrapy stuff:
77 | .scrapy
78 |
79 | # Sphinx documentation
80 | docs/_build/
81 |
82 | # PyBuilder
83 | .pybuilder/
84 | target/
85 |
86 | # Jupyter Notebook
87 | .ipynb_checkpoints
88 |
89 | # IPython
90 | profile_default/
91 | ipython_config.py
92 |
93 | # pyenv
94 | # For a library or package, you might want to ignore these files since the code is
95 | # intended to run in multiple environments; otherwise, check them in:
96 | # .python-version
97 |
98 | # pipenv
99 | # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
100 | # However, in case of collaboration, if having platform-specific dependencies or dependencies
101 | # having no cross-platform support, pipenv may install dependencies that don't work, or not
102 | # install all needed dependencies.
103 | #Pipfile.lock
104 |
105 | # poetry
106 | # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
107 | # This is especially recommended for binary packages to ensure reproducibility, and is more
108 | # commonly ignored for libraries.
109 | # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
110 | #poetry.lock
111 |
112 | # pdm
113 | # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
114 | #pdm.lock
115 | # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
116 | # in version control.
117 | # https://pdm.fming.dev/#use-with-ide
118 | .pdm.toml
119 |
120 | # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
121 | __pypackages__/
122 |
123 | # Celery stuff
124 | celerybeat-schedule
125 | celerybeat.pid
126 |
127 | # SageMath parsed files
128 | *.sage.py
129 |
130 | # Environments
131 | .env
132 | .venv
133 | env/
134 | venv/
135 | ENV/
136 | env.bak/
137 | venv.bak/
138 |
139 | # Spyder project settings
140 | .spyderproject
141 | .spyproject
142 |
143 | # Rope project settings
144 | .ropeproject
145 |
146 | # mkdocs documentation
147 | /site
148 |
149 | # mypy
150 | .mypy_cache/
151 | .dmypy.json
152 | dmypy.json
153 |
154 | # Pyre type checker
155 | .pyre/
156 |
157 | # pytype static type analyzer
158 | .pytype/
159 |
160 | # Cython debug symbols
161 | cython_debug/
162 |
163 | # PyCharm
164 | # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
165 | # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
166 | # and can be added to the global gitignore or merged into this file. For a more nuclear
167 | # option (not recommended) you can uncomment the following to ignore the entire idea folder.
168 | #.idea/
169 |
--------------------------------------------------------------------------------
/.python-version:
--------------------------------------------------------------------------------
1 | 3.9.20
2 |
--------------------------------------------------------------------------------
/CITATION.cff:
--------------------------------------------------------------------------------
1 | cff-version: 1.2.0
2 | title: torchrunx
3 | type: software
4 | authors:
5 | - given-names: Apoorv
6 | family-names: Khandelwal
7 | email: mail@apoorvkh.com
8 | - given-names: Peter
9 | family-names: Curtin
10 | email: peter_curtin@brown.edu
11 | repository-code: 'https://github.com/apoorvkh/torchrunx'
12 | url: 'https://torchrun.xyz'
13 | license: GPL-3.0
14 | year: 2025
15 |
--------------------------------------------------------------------------------
/CONTRIBUTING.md:
--------------------------------------------------------------------------------
1 | # Contributing
2 |
3 | We use the [`uv`](https://github.com/astral-sh/uv) package manager. Simply [install `uv`](https://github.com/astral-sh/uv#installation) and run `uv sync` in this repository to build the environment. Run `source .venv/bin/activate` to activate the environment.
4 |
5 | We use `ruff check` for linting, `ruff format` for formatting, `pyright` for static type checking, and `pytest` for testing. We expect all such checks to pass before merging changes to the main branch. We build wheels with `uv build` and upload to [PyPI](https://pypi.org/project/torchrunx) with `uv publish`. Our CI pipelines are powered by Github Actions.
6 |
7 | ## Pull Requests
8 |
9 | Make a pull request with your changes on Github and we'll try to look at it soon! If addressing a specific issue, mention it in the PR, and offer a short explanation of your fix. If adding a new feature, explain why it's meaningful and belongs in **torchrunx**.
10 |
11 | ## Testing
12 |
13 | `tests/` contains `pytest`-style tests for validating that code changes do not break the core functionality of our library.
14 |
15 | At the moment, we run `pytest tests/test_ci.py` (i.e. simple single-node CPU-only tests) in our Github Actions CI pipeline (`.github/workflows/release.yml`). One can manually run our more involved tests (on GPUs, on multiple machines from SLURM) on their own hardware.
16 |
17 | ## Documentation
18 |
19 | Our documentation is hosted on Github Pages and is updated with every package release. We build our documentation with [Sphinx](https://www.sphinx-doc.org): `source scripts/build_docs.sh`. The documentation will then be generated at `docs/_build/html` (and can be rendered with `python -m http.server --directory docs/_build/html`).
20 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # torchrunx 🔥
2 |
3 | [](https://github.com/apoorvkh/torchrunx/blob/main/pyproject.toml)
4 | [](https://github.com/pytorch/pytorch)
5 | [](https://pypi.org/project/torchrunx/)
6 | [](https://torchrun.xyz)
7 | 
8 | [](https://github.com/apoorvkh/torchrunx/blob/main/LICENSE)
9 |
10 | By [Apoorv Khandelwal](https://apoorvkh.com) and [Peter Curtin](https://github.com/pmcurtin)
11 |
12 | **The easiest way to run PyTorch on multiple GPUs or machines.**
13 |
14 | ---
15 |
16 | **`torchrunx`** is a *functional* utility for distributing PyTorch code across devices. This is a [more convenient, robust, and featureful](#torchrunx-uniquely-offers) alternative to CLI-based launchers, like `torchrun`, `accelerate launch`, and `deepspeed`.
17 |
18 | It enables complex workflows within a single script and has useful features even if only using 1 GPU.
19 |
20 | ```bash
21 | pip install torchrunx
22 | ```
23 |
24 | Requires: Linux. If using multiple machines: SSH & shared filesystem.
25 |
26 | ---
27 |
28 | Example: simple training loop
29 |
30 | Suppose we have some distributed training function (which needs to run on every GPU):
31 |
32 | ```python
33 | def distributed_training(model: nn.Module, num_steps: int) -> nn.Module: ...
34 | ```
35 |
36 |
37 | Implementation of distributed_training
(click to expand)
38 |
39 | ```python
40 | from __future__ import annotations
41 | import os
42 | import torch
43 | import torch.nn as nn
44 |
45 | def distributed_training(model: nn.Module, num_steps: int = 10) -> nn.Module | None:
46 | rank = int(os.environ['RANK'])
47 | local_rank = int(os.environ['LOCAL_RANK'])
48 |
49 | model.to(local_rank)
50 | ddp_model = nn.parallel.DistributedDataParallel(model, device_ids=[local_rank])
51 | optimizer = torch.optim.AdamW(ddp_model.parameters())
52 |
53 | for step in range(num_steps):
54 | optimizer.zero_grad()
55 |
56 | inputs = torch.randn(5, 10).to(local_rank)
57 | labels = torch.randn(5, 10).to(local_rank)
58 | outputs = ddp_model(inputs)
59 |
60 | torch.nn.functional.mse_loss(outputs, labels).backward()
61 | optimizer.step()
62 |
63 | if rank == 0:
64 | return model.cpu()
65 | ```
66 |
67 |
68 |
69 | We can distribute and run this function (e.g. on 2 machines x 2 GPUs) using **`torchrunx`**!
70 |
71 | ```python
72 | import logging
73 | import torchrunx
74 |
75 | logging.basicConfig(level=logging.INFO)
76 |
77 | launcher = torchrunx.Launcher(
78 | hostnames = ["localhost", "second_machine"], # or IP addresses
79 | workers_per_host = "gpu" # default, or just: 2
80 | )
81 |
82 | results = launcher.run(
83 | distributed_training,
84 | model = nn.Linear(10, 10),
85 | num_steps = 10
86 | )
87 | ```
88 |
89 | Once completed, you can retrieve the results and process them as you wish.
90 |
91 | ```python
92 | trained_model: nn.Module = results.rank(0)
93 | # or: results.index(hostname="localhost", local_rank=0)
94 |
95 | # and continue your script
96 | torch.save(trained_model.state_dict(), "outputs/model.pth")
97 | ```
98 |
99 | **See more examples where we fine-tune LLMs using:**
100 | - [Transformers](https://torchrun.xyz/examples/transformers.html)
101 | - [DeepSpeed](https://torchrun.xyz/examples/deepspeed.html)
102 | - [PyTorch Lightning](https://torchrun.xyz/examples/lightning.html)
103 | - [Accelerate](https://torchrun.xyz/examples/accelerate.html)
104 |
105 | **Refer to our [API](https://torchrun.xyz/api.html) and [Usage](https://torchrun.xyz/usage/general.html) for many more capabilities!**
106 |
107 | ---
108 |
109 | ## `torchrunx` uniquely offers
110 |
111 | 1. **An automatic launcher that "just works" for everyone** 🚀
112 |
113 | > `torchrunx` is an SSH-based, pure-Python library that is universally easy to install.
114 | > No system-specific dependencies and orchestration for *automatic* multi-node distribution.
115 |
116 | 2. **Conventional CLI commands** 🖥️
117 |
118 | > Run familiar commands, like `python my_script.py ...`, and customize arguments as you wish.
119 | >
120 | > Other launchers override `python` in a cumbersome way: e.g. `torchrun --nproc_per_node=2 --nnodes=2 --node_rank=0 --master_addr=100.43.331.111 --master_port=1234 my_script.py ...`.
121 |
122 | 3. **Support for more complex workflows in a single script** 🎛️
123 |
124 | > Your workflow may have steps that are complex (e.g. pre-train, fine-tune, test) or may different parallelizations (e.g. training on 8 GPUs, testing on 1 GPU). In these cases, CLI-based launchers require each step to live in its own script. Our library treats these steps in a modular way, so they can cleanly fit together in a single script!
125 | >
126 | >
127 | > We clean memory leaks as we go, so previous steps won't crash or adversely affect future steps.
128 |
129 | 4. **Better handling of system failures. No more zombies!** 🧟
130 |
131 | > With `torchrun`, your "work" is inherently coupled to your main Python process. If the system kills one of your workers (e.g. due to RAM OOM or segmentation faults), there is no way to fail gracefully in Python. Your processes might hang for 10 minutes (the NCCL timeout) or become perpetual zombies.
132 | >
133 | >
134 | > `torchrunx` decouples "launcher" and "worker" processes. If the system kills a worker, our launcher immediately raises a `WorkerFailure` exception, which users can handle as they wish. We always clean up all nodes, so no more zombies!
135 |
136 | 5. **Bonus features** 🎁
137 |
138 | > - Return objects from distributed functions.
139 | > - [Automatic detection of SLURM environments.](https://torchrun.xyz/usage/slurm.html)
140 | > - Start multi-node training from Python notebooks!
141 | > - Our library is fully typed!
142 | > - Custom, fine-grained handling of [logging](https://torchrun.xyz/usage/logging.html), [environment variables](https://torchrun.xyz/usage/general.html#environment-variables), and [exception propagation](https://torchrun.xyz/usage/general.html#exceptions). We have nice defaults too: no more interleaved logs and irrelevant exceptions!
143 |
144 | **On our [roadmap](https://github.com/apoorvkh/torchrunx/issues?q=is%3Aopen+is%3Aissue+label%3Aenhancement): higher-order parallelism, support for debuggers, and more!**
145 |
--------------------------------------------------------------------------------
/docs/conf.py:
--------------------------------------------------------------------------------
1 | """Configuration file for the Sphinx documentation builder."""
2 | from glob import glob
3 | import os
4 | import re
5 | import shutil
6 |
7 | shutil.copyfile("../README.md", "source/README.md")
8 | readme_f_str = open("source/README.md", "r").read()
9 | readme_f_str = readme_f_str.replace("", '').replace("
", "
")
10 | readme_f_str = re.sub(r"https://torchrun\.xyz/(.+?)\.html", r"./\1.md", readme_f_str)
11 | open("source/README.md", "w").write(readme_f_str)
12 |
13 | shutil.copyfile("../CONTRIBUTING.md", "source/contributing.md")
14 |
15 | os.makedirs("source/examples/scripts", exist_ok=True)
16 | [shutil.copy(f, "source/examples/scripts/") for f in glob("../scripts/examples/*.py")]
17 | html_extra_path = list(glob("source/examples/scripts/*.py"))
18 |
19 | project = "torchrunx"
20 | copyright = 'Apoorv Khandelwal & Peter Curtin'
21 | github_username = "apoorvkh"
22 | github_repository = "torchrunx"
23 | html_theme = "furo"
24 | language = "en"
25 |
26 | extensions = [
27 | "sphinx.ext.autodoc",
28 | "myst_parser", # support markdown
29 | "sphinx.ext.intersphinx", # link to external docs
30 | "sphinx.ext.napoleon", # for google style docstrings
31 | "sphinx.ext.linkcode", # link to github source
32 | # sidebar
33 | "sphinx_toolbox.sidebar_links",
34 | "sphinx_toolbox.github",
35 | ]
36 |
37 | maximum_signature_line_length = 90
38 | autodoc_member_order = "bysource"
39 |
40 | intersphinx_mapping = {
41 | 'python': ('https://docs.python.org/3.9', None),
42 | }
43 |
44 | from docs.linkcode_github import generate_linkcode_resolve_fn
45 | linkcode_resolve = generate_linkcode_resolve_fn(project, github_username, github_repository)
46 |
--------------------------------------------------------------------------------
/docs/linkcode_github.py:
--------------------------------------------------------------------------------
1 | ## sphinx.ext.linkcode configuration
2 | # Link code to Github source
3 | # From: https://github.com/scikit-learn/scikit-learn/blob/main/doc/sphinxext/github_link.py
4 |
5 | import inspect
6 | import os
7 | import subprocess
8 | import sys
9 | from operator import attrgetter
10 |
11 |
12 | def generate_linkcode_resolve_fn(package, github_username, github_repository):
13 |
14 | try:
15 | revision = (
16 | subprocess.check_output("git rev-parse --short HEAD".split()).strip().decode("utf-8")
17 | )
18 | except (subprocess.CalledProcessError, OSError):
19 | print("Failed to execute git to get revision")
20 | revision = None
21 |
22 | url_fmt = (
23 | f"https://github.com/{github_username}/{github_repository}/"
24 | "blob/{revision}/src/{package}/{path}#L{lineno}"
25 | )
26 |
27 | def linkcode_resolve(domain, info):
28 | if revision is None:
29 | return
30 | if domain not in ("py", "pyx"):
31 | return
32 | if not info.get("module") or not info.get("fullname"):
33 | return
34 |
35 | class_name = info["fullname"].split(".")[0]
36 | module = __import__(info["module"], fromlist=[class_name])
37 | obj = attrgetter(info["fullname"])(module)
38 |
39 | # Unwrap the object to get the correct source
40 | # file in case that is wrapped by a decorator
41 | obj = inspect.unwrap(obj)
42 |
43 | try:
44 | fn = inspect.getsourcefile(obj)
45 | except Exception:
46 | fn = None
47 | if not fn:
48 | try:
49 | fn = inspect.getsourcefile(sys.modules[obj.__module__])
50 | except Exception:
51 | fn = None
52 | if not fn:
53 | return
54 |
55 | fn = os.path.relpath(fn, start=os.path.dirname(__import__(package).__file__))
56 | try:
57 | lineno = inspect.getsourcelines(obj)[1]
58 | except Exception:
59 | lineno = ""
60 | return url_fmt.format(revision=revision, package=package, path=fn, lineno=lineno)
61 |
62 | return linkcode_resolve
63 |
--------------------------------------------------------------------------------
/docs/source/api.md:
--------------------------------------------------------------------------------
1 | # API
2 |
3 | ```{eval-rst}
4 | .. automodule:: torchrunx
5 | :members:
6 | ```
7 |
--------------------------------------------------------------------------------
/docs/source/artifacts/accelerate_help.txt:
--------------------------------------------------------------------------------
1 | usage: accelerate_train.py [-h] [OPTIONS]
2 |
3 | ╭─ options ──────────────────────────────────────────────────────────────────╮
4 | │ -h, --help │
5 | │ show this help message and exit │
6 | │ --batch-size INT │
7 | │ (required) │
8 | │ --output-dir PATH │
9 | │ (required) │
10 | ╰────────────────────────────────────────────────────────────────────────────╯
11 | ╭─ launcher options ─────────────────────────────────────────────────────────╮
12 | │ For configuring the function launch environment. │
13 | │ ────────────────────────────────────────────────────────────────────────── │
14 | │ --launcher.hostnames {[STR [STR ...]]}|{auto,slurm} │
15 | │ Nodes to launch the function on. By default, infer from SLURM, else │
16 | │ ``["localhost"]``. (default: auto) │
17 | │ --launcher.workers-per-host INT|{[INT [INT ...]]}|{cpu,gpu} │
18 | │ Number of processes to run per node. By default, number of GPUs per │
19 | │ host. (default: gpu) │
20 | │ --launcher.ssh-config-file {None}|STR|PATHLIKE │
21 | │ For connecting to nodes. By default, ``"~/.ssh/config"`` or │
22 | │ ``"/etc/ssh/ssh_config"``. (default: None) │
23 | │ --launcher.backend {None,nccl,gloo,mpi,ucc} │
24 | │ `Backend │
25 | │
8 | python accelerate_train.py --help
(expand)
9 |
10 | ```{eval-rst}
11 | .. literalinclude:: ../artifacts/accelerate_help.txt
12 | ```
13 |
14 |
15 | ## Training GPT-2 on WikiText in One Line
16 |
17 | The following command installs dependencies and runs our script (for example, with `GPT-2` on `WikiText`). For multi-node training (+ if not using SLURM), you should also pass e.g. `--launcher.hostnames node1 node2`.
18 |
19 | Pre-requisite: [uv](https://docs.astral.sh/uv)
20 |
21 | ```bash
22 | uv run --python "3.12" https://torchrun.xyz/accelerate_train.py \
23 | --batch-size 8 --output-dir output \
24 | --model.name gpt2 \
25 | --dataset.path "Salesforce/wikitext" --dataset.name "wikitext-2-v1" --dataset.split "train" --dataset.num-samples 80
26 | ```
27 |
28 | ## Script
29 |
30 | ```{eval-rst}
31 | .. literalinclude:: ./scripts/accelerate_train.py
32 | :start-after: # [docs:start-after]
33 | ```
34 |
--------------------------------------------------------------------------------
/docs/source/examples/deepspeed.md:
--------------------------------------------------------------------------------
1 | # DeepSpeed
2 |
3 | Here's an example script that uses `torchrunx` with [DeepSpeed](https://www.deepspeed.ai) to fine-tune any causal language model (from `transformers`) on any text dataset (from `datasets`) with any number of GPUs or nodes.
4 |
5 | [https://torchrun.xyz/deepspeed_train.py](https://raw.githubusercontent.com/apoorvkh/torchrunx/refs/heads/main/scripts/examples/deepspeed_train.py)
6 |
7 |
8 | python deepspeed_train.py --help
(expand)
9 |
10 | ```{eval-rst}
11 | .. literalinclude:: ../artifacts/deepspeed_help.txt
12 | ```
13 |
14 |
15 | ## Training GPT-2 on WikiText
16 |
17 | Deepspeed requires additional (non-Python) dependencies. Use the following commands to set up a project. [source: [Apoorv's Blog — Managing Project Dependencies](https://blog.apoorvkh.com/posts/project-dependencies.html)]
18 |
19 | Pre-requisite: [pixi](https://pixi.sh)
20 |
21 | ```bash
22 | pixi init my-project --format pyproject
23 | cd my-project
24 |
25 | # Install dependencies
26 | pixi project channel add "conda-forge" "nvidia/label/cuda-12.4.0"
27 | pixi add "python=3.12.7" "cuda=12.4.0" "gcc=11.4.0" "gxx=11.4.0"
28 | pixi add --pypi "torch==2.5.1" "deepspeed" "datasets" "tensorboard" "torch" "torchrunx" "transformers" "tyro"
29 |
30 | cat < .env
31 | export PYTHONNOUSERSITE="1"
32 | export LIBRARY_PATH="\$CONDA_PREFIX/lib"
33 | export LD_LIBRARY_PATH="\$CONDA_PREFIX/lib"
34 | export CUDA_HOME="\$CONDA_PREFIX"
35 | EOF
36 |
37 | # Activate environment
38 | pixi shell
39 | source .env
40 | ```
41 |
42 | Download [deepspeed_train.py](https://raw.githubusercontent.com/apoorvkh/torchrunx/refs/heads/main/docs/source/examples/scripts/deepspeed_train.py) and create `deepspeed_config.json` with:
43 |
44 | ```json
45 | {
46 | "train_batch_size": 8,
47 | "gradient_accumulation_steps": 1,
48 | "optimizer": {
49 | "type": "Adam",
50 | "params": { "lr": 0.00015 }
51 | },
52 | "fp16": { "enabled": true },
53 | "zero_optimization": true,
54 | "tensorboard": {
55 | "enabled": true,
56 | "output_path": "output/tensorboard/",
57 | "job_name": "gpt2_wikitext"
58 | }
59 | }
60 | ```
61 |
62 | ```bash
63 | python deepspeed_train.py --model-name gpt2 --deepspeed-config deepspeed_config.json --checkpoint-dir output \
64 | --dataset.path "Salesforce/wikitext" --dataset.name "wikitext-2-v1" --dataset.split "train" --dataset.num-samples 80
65 | ```
66 |
67 | For multi-node training (+ if not using SLURM), you should also pass e.g. `--launcher.hostnames node1 node2`.
68 |
69 | You can visualize the logs with:
70 |
71 | ```bash
72 | tensorboard --logdir output/tensorboard/gpt2_wikitext
73 | ```
74 |
75 | ## Script
76 |
77 | ```{eval-rst}
78 | .. literalinclude:: ./scripts/deepspeed_train.py
79 | ```
80 |
--------------------------------------------------------------------------------
/docs/source/examples/lightning.md:
--------------------------------------------------------------------------------
1 | # PyTorch Lightning
2 |
3 | Here's an example script that uses `torchrunx` with [PyTorch Lightning](https://lightning.ai/docs/pytorch/stable/) to fine-tune any causal language model (from `transformers`) on any text dataset (from `datasets`) with any number of GPUs or nodes.
4 |
5 | [https://torchrun.xyz/lightning_train.py](https://raw.githubusercontent.com/apoorvkh/torchrunx/refs/heads/main/scripts/examples/lightning_train.py)
6 |
7 |
8 | python lightning_train.py --help
(expand)
9 |
10 | ```{eval-rst}
11 | .. literalinclude:: ../artifacts/lightning_help.txt
12 | ```
13 |
14 |
15 | ## Training GPT-2 on WikiText in One Line
16 |
17 | The following command runs our script end-to-end: installing all dependencies, downloading model and data, training, etc.
18 |
19 | Pre-requisite: [uv](https://docs.astral.sh/uv)
20 |
21 | ```bash
22 | uv run --python "3.12" https://torchrun.xyz/lightning_train.py \
23 | --model.name gpt2 \
24 | --dataset.path "Salesforce/wikitext" --dataset.name "wikitext-2-v1" --dataset.split "train" --dataset.num-samples 80
25 | ```
26 |
27 | For multi-node training (+ if not using SLURM), you should also pass e.g. `--launcher.hostnames node1 node2`.
28 |
29 | ## Script
30 |
31 | ```{eval-rst}
32 | .. literalinclude:: ./scripts/lightning_train.py
33 | :start-after: # [docs:start-after]
34 | ```
35 |
--------------------------------------------------------------------------------
/docs/source/examples/transformers.md:
--------------------------------------------------------------------------------
1 | # Transformers
2 |
3 | Here's an example script that uses `torchrunx` with [`transformers.Trainer`](https://huggingface.co/docs/transformers/en/main_classes/trainer) to fine-tune any causal language model (from `transformers`) on any text dataset (from `datasets`) with any number of GPUs or nodes.
4 |
5 | [https://torchrun.xyz/transformers_train.py](https://raw.githubusercontent.com/apoorvkh/torchrunx/refs/heads/main/scripts/examples/transformers_train.py)
6 |
7 |
8 | python transformers_train.py --help
(expand)
9 |
10 | ```{eval-rst}
11 | .. literalinclude:: ../artifacts/transformers_help.txt
12 | ```
13 |
14 |
15 | ## Training GPT-2 on WikiText in One Line
16 |
17 | The following command runs our script end-to-end: installing all dependencies, downloading model and data, training, logging to TensorBoard, etc. For multi-node training (+ if not using SLURM), you should also pass e.g. `--launcher.hostnames node1 node2`.
18 |
19 | Pre-requisite: [uv](https://docs.astral.sh/uv)
20 |
21 | ```bash
22 | uv run --python "3.12" https://torchrun.xyz/transformers_train.py \
23 | --model.name gpt2 \
24 | --dataset.path "Salesforce/wikitext" --dataset.name "wikitext-2-v1" --dataset.split "train" --dataset.num-samples 80 \
25 | --trainer.output-dir output --trainer.per-device-train-batch-size 4 --trainer.report-to tensorboard
26 | ```
27 |
28 | You can visualize the logs with:
29 |
30 | ```bash
31 | uv run --with tensorboard tensorboard --logdir output/runs
32 | ```
33 |
34 | ## Script
35 |
36 | ```{eval-rst}
37 | .. literalinclude:: ./scripts/transformers_train.py
38 | :start-after: # [docs:start-after]
39 | ```
40 |
--------------------------------------------------------------------------------
/docs/source/how_it_works.md:
--------------------------------------------------------------------------------
1 | # How It Works
2 |
3 | Suppose you want to run a script (`train.py`) on `N` machines (or "nodes") with `M` GPUs each.
4 |
5 | You'll need to start a new process for each GPU. Each process will execute your script in parallel and select its GPU based on the process rank. Your script will also form a [distributed group](https://pytorch.org/docs/stable/distributed.html#torch.distributed.init_process_group) so the processes may communicate with each other (e.g. passing tensors).
6 |
7 | ## `torchrun`
8 |
9 | Normally, you'd do this by running the `torchrun --node-rank {i} ... train.py ...` command on every machine. In short, you'll end up with a topology like:
10 |
11 | 
12 |
13 | As a side effect of this structure, every process will run until (1) script completion or (2) another process stops communicating (e.g. if killed by the system for abnormal reasons). The status of other processes is not actively communicated: so if some process is indeed killed, it would take 10 minutes (by default) for the remaining processes to time-out. Also, since this approach parallelizes the entire script, we can't catch and handle these system-level issues as exceptions.
14 |
15 | ## `torchrunx` 🔥
16 |
17 | `torchrunx` offers a functional interface, with a launcher–worker topology, instead.
18 |
19 | 
20 |
21 | {func}`torchrunx.Launcher.run` runs in the current, *launcher* process. It uses SSH to start an *agent* process on every node (specified in `hostnames`), which in turn spawn `M` *worker* processes. The workers form a distributed process group and each executes `func(*args, **kwargs)` in parallel. Once all workers are finished, all of their returned values are propagated to the initial launcher process. Our agents constantly communicate (over their own GLOO-backend distributed group), so any agent or worker failures are immediately propagated, and all launched processes are terminated. Worker exceptions and system failures are propagated to and raised by {func}`torchrunx.Launcher.run`.
22 |
--------------------------------------------------------------------------------
/docs/source/index.rst:
--------------------------------------------------------------------------------
1 | .. include:: ./README.md
2 | :parser: myst_parser.sphinx_
3 |
4 | .. toctree::
5 | :hidden:
6 |
7 | api
8 | how_it_works
9 | contributing
10 |
11 | .. toctree::
12 | :caption: Usage
13 | :hidden:
14 |
15 | ./usage/general.md
16 | ./usage/cli.md
17 | ./usage/logging.md
18 | ./usage/slurm.md
19 |
20 | .. toctree::
21 | :caption: Examples
22 | :hidden:
23 |
24 | ./examples/transformers.md
25 | ./examples/deepspeed.md
26 | ./examples/lightning.md
27 | ./examples/accelerate.md
28 |
29 | .. sidebar-links::
30 | :github:
31 | :pypi: torchrunx
32 |
--------------------------------------------------------------------------------
/docs/source/usage/cli.md:
--------------------------------------------------------------------------------
1 | # From the CLI
2 |
3 | ## With `argparse`
4 |
5 | We provide some utilities to extend an {obj}`argparse.ArgumentParser` with arguments for building a {obj}`torchrunx.Launcher`.
6 |
7 | ```python
8 | from argparse import ArgumentParser
9 | from torchrunx.integrations.parsing import add_torchrunx_argument_group, launcher_from_args
10 |
11 | if __name__ == '__main__':
12 | parser = ArgumentParser()
13 | add_torchrunx_argument_group(parser)
14 | args = parser.parse_args()
15 |
16 | launcher = launcher_from_args(args)
17 | launcher.run(...)
18 | ```
19 |
20 | `python ... --help` then results in:
21 |
22 | ```{eval-rst}
23 | .. literalinclude:: ../artifacts/argparse_cli_help.txt
24 | ```
25 |
26 | ## With automatic CLI tools
27 |
28 | We can also automatically populate {mod}`torchrunx.Launcher` arguments using most CLI tools, e.g. [`tyro`](https://brentyi.github.io/tyro/) or any that [generate interfaces from dataclasses](https://brentyi.github.io/tyro/goals_and_alternatives).
29 |
30 | ```python
31 | import torchrunx
32 | import tyro
33 |
34 | if __name__ == "__main__":
35 | launcher = tyro.cli(torchrunx.Launcher)
36 | results = launcher.run(...)
37 | ```
38 |
39 | `python ... --help` then results in:
40 |
41 | ```{eval-rst}
42 | .. literalinclude:: ../artifacts/tyro_cli_help.txt
43 | :lines: 3-
44 | ```
45 |
--------------------------------------------------------------------------------
/docs/source/usage/general.md:
--------------------------------------------------------------------------------
1 | # General
2 |
3 | ## Multiple functions in one script
4 |
5 | Consider multiple stages of training: pre-training, supervised fine-tuning, RLHF, etc.
6 |
7 | Normally, this kind of work is delegated to multiple scripts. Why? Each stage is complicated (prone to memory leaks) and we don't want them to interfere with each other. They may even require different degrees of parallelism.
8 |
9 | `torchrunx` solves these problems — even within a single script — by modularizing workloads into isolated, self-cleaning processes.
10 |
11 | ```python
12 | # 2 nodes x 8 GPUs
13 | train_launcher = torchrunx.Launcher(hostnames=["node1", "node2"], workers_per_host=8)
14 | # 1 GPU
15 | eval_launcher = torchrunx.Launcher(hostnames=["node1"], workers_per_host=1)
16 |
17 | # Training & testing
18 |
19 | pretrained_model = train_launcher.run(train).rank(0)
20 | pretrained_acc = eval_launcher.run(evaluation, model=pretrained_model).rank(0)
21 | print(f"Pre-trained model accuracy: {pretrained_acc}")
22 |
23 | finetuned_model = train_launcher.run(finetuning, model=pretrained_model).rank(0)
24 | finetuned_acc = eval_launcher.run(evaluation, model=finetuned_model).rank(0)
25 | print(f"Fine-tuned model accuracy: {finetuned_acc}")
26 | ```
27 |
28 | ## Exceptions
29 |
30 | Exceptions that are raised in workers will be raised by the launcher process. A {mod}`torchrunx.AgentFailedError` or {mod}`torchrunx.WorkerFailedError` will be raised if any agent or worker dies unexpectedly (e.g. if sent a signal from the OS, due to segmentation faults or OOM).
31 |
32 | You can catch these errors and handle them as you wish!
33 |
34 | ```python
35 | for config in configs: # e.g. hyper-parameter sweep
36 | try:
37 | torchrunx.Launcher().run(train, config)
38 | except torch.cuda.OutOfMemoryError:
39 | print(f"{config} results in OOM... continuing...")
40 | ```
41 |
42 | If you are expecting intermittent failures, you can catch errors and invoke retries:
43 |
44 | ```python
45 | for retry in range(3):
46 | try:
47 | torchrunx.Launcher().run(train, resume_from_checkpoint=True)
48 | except torchrunx.WorkerFailedError as e:
49 | print(f"Error occurred: {e}")
50 | print(f"Retrying ({retry}) ...")
51 | else: # if run() is successful
52 | break
53 | ```
54 |
55 | ## Environment variables
56 |
57 | Environment variables in the launcher process that pattern match the [``copy_env_vars``](../api.md#torchrunx.Launcher.copy_env_vars) argument are automatically copied to agents and workers. We set useful defaults for Python and PyTorch. You could replace these. Or extend these like:
58 |
59 | ```python
60 | torchrunx.Launcher(copy_env_vars=(
61 | torchrunx.DEFAULT_ENV_VARS_FOR_COPY + ("HF_HOME", "WANDB_*",)
62 | ))
63 | ```
64 |
65 | You can also pass (1) specific environment variables and values via [``extra_env_vars``](../api.md#torchrunx.Launcher.extra_env_vars) or (2) a ``.env``-style file via [``env_file``](../api.md#torchrunx.Launcher.env_file). Our agents `source {env_file}`.
66 |
67 | Finally, we set the following environment variables in each worker: `LOCAL_RANK`, `RANK`, `LOCAL_WORLD_SIZE`, `WORLD_SIZE`, `MASTER_ADDR`, and `MASTER_PORT`.
68 |
--------------------------------------------------------------------------------
/docs/source/usage/logging.md:
--------------------------------------------------------------------------------
1 | # Custom Logging
2 |
3 | We forward all agent and worker logs (i.e. from {mod}`logging`, `stdout`, and `stderr`) to the launcher process.
4 |
5 | ## Defaults
6 |
7 | By default, the logs from the rank 0 agent and rank 0 worker are handled by loggers on the launcher process (and so they should be printed to `stdout`/`stderr`). You may control these logs like:
8 |
9 | ```python
10 | logging.basicConfig(level=logging.INFO)
11 | logging.getLogger("torchrunx").setLevel(logging.DEBUG)
12 | logging.getLogger("torchrunx.node1").setLevel(logging.INFO)
13 | logging.getLogger("torchrunx.node1.1").setLevel(logging.INFO) # worker 1 (local rank) on node 1
14 | ```
15 |
16 | Also, logs from all agents and workers are written to a directory (by the current timestamp) in `$TORCHRUNX_LOG_DIR` (default: `./torchrunx_logs`). These can be controlled using `$TORCHRUNX_LOG_LEVEL` (default: `INFO`).
17 |
18 | ## Customization
19 |
20 | You can fully customize how logs are processed using {func}`torchrunx.Launcher.set_logging_handlers`. You should provide it a factory function that constructs and returns a list of {obj}`logging.Handler` objects. Each {obj}`logging.Handler` controls where logs should be written. You can also add a filter to restrict the handler to the logs of a specific agent or worker.
21 |
22 | Here's an example:
23 |
24 | ```python
25 | from torchrunx.utils.log_handling import RedirectHandler, get_handler_filter
26 |
27 | def custom_handlers() -> list[logging.Handler]:
28 |
29 | # Handler: redirect logs from (host 0, agent) to logger on launcher process
30 | redirect_handler = RedirectHandler()
31 | redirect_handler.addFilter(get_handler_filter(
32 | hostname=hostnames[0], local_rank=None, log_level=logging.DEBUG
33 | ))
34 |
35 | # Handler: output logs from (host 0, worker 0) to "output.txt"
36 | file_handler = logging.FileHandler("output.txt")
37 | file_handler.addFilter(get_handler_filter(
38 | hostname=hostnames[0], local_rank=0, log_level=logging.DEBUG
39 | ))
40 |
41 | return [
42 | redirect_handler,
43 | file_handler,
44 | ]
45 | ```
46 |
47 | ```python
48 | torchrunx.Launcher(...).set_logging_handlers(custom_handlers).run(...)
49 | ```
50 |
51 | Finally, you can control library-specific logging (within the worker processes) by modifying the distributed function:
52 |
53 | ```python
54 | def distributed_function():
55 | logging.getLogger("transformers").setLevel(logging.DEBUG)
56 |
57 | logger = logging.getLogger("my_app")
58 | logger.info("Hello world!")
59 | ...
60 |
61 | torchrunx.Launcher(...).run(distributed_function)
62 | ```
63 |
--------------------------------------------------------------------------------
/docs/source/usage/slurm.md:
--------------------------------------------------------------------------------
1 | # Using SLURM
2 |
3 | Normally, you are expected to provide the `hostnames` argument in {obj}`torchrunx.Launcher` to specify which nodes you would like to launch your function onto.
4 |
5 | If your script is running within a SLURM allocation and you set `hostnames` to `"auto"` (default) or `"slurm"`, we will automatically detect the available nodes and distribute your function onto all of these. A {exc}`RuntimeError` will be raised if `hostnames="slurm"` but no SLURM allocation is detected.
6 |
7 | ## With `sbatch`
8 |
9 | You could have a script (`train.py`) that includes:
10 |
11 | ```python
12 | def distributed_training():
13 | ...
14 |
15 | if __name__ == "__main__":
16 | torchrunx.Launcher(
17 | hostnames = "slurm",
18 | workers_per_host = "gpu"
19 | ).run(distributed_training)
20 | ```
21 |
22 | And some `run.batch` file (e.g. allocating 2 nodes with 2 GPUs each):
23 |
24 | ```bash
25 | #!/bin/bash
26 | #SBATCH --job-name=torchrunx
27 | #SBATCH --time=1:00:00
28 | #SBATCH --ntasks-per-node=1
29 | #SBATCH --nodes=2
30 | #SBATCH --gpus-per-node=2
31 |
32 | # TODO: load your virutal environment
33 | python train.py
34 | ```
35 |
36 | `sbatch run.batch` should then run `python train.py` (the launcher process) on the primary machine in your SLURM allocation. The launcher will automatically distribute the training function onto both allocated nodes (and also parallelize it across the allocated GPUs).
37 |
38 | ## With `submitit`
39 |
40 | If we use the [`submitit`](https://github.com/facebookincubator/submitit) Python library, we can do all of this from a single python script.
41 |
42 | ```python
43 | def distributed_training():
44 | ...
45 |
46 | def launch_training():
47 | torchrunx.Launcher(
48 | hostnames = "slurm",
49 | workers_per_host = "gpu"
50 | ).run(distributed_training)
51 |
52 | if __name__ == "__main__":
53 | executor = submitit.SlurmExecutor(folder="slurm_outputs")
54 | executor.update_parameters(
55 | use_srun=False, time=60, ntasks_per_node=1,
56 | nodes=2, gpus_per_node=2
57 | )
58 | executor.submit(launch_training)
59 | ```
60 |
--------------------------------------------------------------------------------
/pyproject.toml:
--------------------------------------------------------------------------------
1 | [build-system]
2 | requires = ["hatchling"]
3 | build-backend = "hatchling.build"
4 |
5 | [project]
6 | name = "torchrunx"
7 | version = "0.3.1"
8 | authors = [
9 | { name = "Apoorv Khandelwal", email = "mail@apoorvkh.com" },
10 | { name = "Peter Curtin", email = "peter_curtin@brown.edu" },
11 | ]
12 | description = "Automatically initialize distributed PyTorch environments"
13 | readme = "README.md"
14 | license = { file = "LICENSE" }
15 | urls = { Repository = "https://github.com/apoorvkh/torchrunx.git", Documentation = "https://torchrun.xyz" }
16 | requires-python = ">=3.9"
17 | dependencies = [
18 | "cloudpickle>=3.0",
19 | "fabric>=3.2",
20 | "torch>=2.0",
21 | # torch.distributed depends on numpy
22 | # torch<=2.2 needs numpy<2
23 | "numpy>=1.20",
24 | "typing-extensions>=4.9.0",
25 | ]
26 | [dependency-groups]
27 | dev = ["ruff==0.9.5", "pyright[nodejs]==1.1.393", "pytest==8.3.4"]
28 | test-extras = ["submitit", "transformers"]
29 | docs = [
30 | "sphinx==7.4.7",
31 | "furo==2024.8.6",
32 | "myst-parser==3.0.1",
33 | "sphinx-toolbox==3.8.2",
34 | ]
35 |
36 | [tool.ruff]
37 | include = ["pyproject.toml", "src/**/*.py", "tests/**/*.py"]
38 | exclude = ["docs"]
39 | line-length = 100
40 | src = ["src", "tests"]
41 | [tool.ruff.lint]
42 | select = ["ALL"]
43 | ignore = [
44 | "TC003", # no type checking blocks for stdlib
45 | "D104", # package docstrings
46 | "ANN401", # self / cls / Any annotations
47 | "BLE001", # blind exceptions
48 | "TD", # todo syntax
49 | "FIX002", # existing todos
50 | "PLR0913", # too many arguments
51 | "DTZ005", # datetime timezone
52 | "S301", # bandit: pickle
53 | "S603",
54 | "S607", # bandit: subprocess
55 | "COM812",
56 | "ISC001", # conflict with formatter
57 | "G004" # f-string in logging
58 | ]
59 | [tool.ruff.lint.per-file-ignores]
60 | "tests/**/*.py" = [
61 | "D",
62 | "S101", # allow asserts
63 | "T201", # allow prints
64 | ]
65 | [tool.ruff.lint.pydocstyle]
66 | convention = "google"
67 |
68 | [tool.pyright]
69 | include = ["src", "tests"]
70 | pythonVersion = "3.9"
71 | pythonPlatform = "Linux"
72 |
--------------------------------------------------------------------------------
/scripts/build_docs.sh:
--------------------------------------------------------------------------------
1 | uv run --group docs python -m sphinx --builder html --doctree-dir docs/_build/.doctrees --conf-dir docs --show-traceback docs/source docs/_build/html
2 |
--------------------------------------------------------------------------------
/scripts/examples/accelerate_train.py:
--------------------------------------------------------------------------------
1 | # /// script
2 | # requires-python = ">=3.9"
3 | # dependencies = [
4 | # "accelerate",
5 | # "datasets",
6 | # "torch",
7 | # "transformers",
8 | # "tyro",
9 | # ]
10 | # ///
11 |
12 | # [docs:start-after]
13 | from __future__ import annotations
14 |
15 | import functools
16 | import logging
17 | import os
18 | from dataclasses import dataclass
19 | from pathlib import Path
20 | from typing import Annotated
21 |
22 | import torch
23 | import tyro
24 | from accelerate import Accelerator
25 | from datasets import load_dataset
26 | from torch.utils.data import Dataset
27 | from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedModel
28 |
29 | import torchrunx
30 |
31 | logging.basicConfig(level=logging.INFO)
32 |
33 |
34 | @dataclass
35 | class ModelConfig:
36 | name: str
37 |
38 |
39 | @dataclass
40 | class DatasetConfig:
41 | path: str
42 | name: str | None = None
43 | split: str | None = None
44 | text_column: str = "text"
45 | num_samples: int | None = None
46 |
47 |
48 | def load_training_data(
49 | tokenizer_name: str,
50 | dataset_config: DatasetConfig,
51 | ) -> Dataset:
52 | # Load dataset
53 |
54 | dataset = load_dataset(
55 | dataset_config.path, name=dataset_config.name, split=dataset_config.split
56 | )
57 | if dataset_config.num_samples is not None:
58 | dataset = dataset.select(range(dataset_config.num_samples))
59 |
60 | # Build tokenizer
61 |
62 | os.environ["TOKENIZERS_PARALLELISM"] = "false" # to suppress warnings
63 | tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
64 | if tokenizer.pad_token is None:
65 | tokenizer.pad_token = tokenizer.eos_token
66 | tokenize_fn = functools.partial(
67 | tokenizer,
68 | max_length=tokenizer.model_max_length,
69 | truncation=True,
70 | padding="max_length",
71 | )
72 |
73 | # Tokenize dataset
74 |
75 | return dataset.map(
76 | tokenize_fn,
77 | batched=True,
78 | input_columns=[dataset_config.text_column],
79 | remove_columns=[dataset_config.text_column],
80 | ).map(lambda x: {"labels": x["input_ids"]})
81 |
82 |
83 | def train(
84 | model: PreTrainedModel,
85 | train_dataset: Dataset,
86 | batch_size: int,
87 | output_dir: Path,
88 | ) -> Path:
89 | accelerator = Accelerator()
90 |
91 | optimizer = torch.optim.Adam(model.parameters())
92 | train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size)
93 |
94 | model, optimizer, train_dataloader = accelerator.prepare(model, optimizer, train_dataloader)
95 |
96 | model.train()
97 | for batch_idx, batch in enumerate(train_dataloader):
98 | device_batch = {k: torch.stack(v, dim=0).to(accelerator.device) for k, v in batch.items()}
99 | optimizer.zero_grad()
100 |
101 | loss = model(**device_batch).loss
102 | print(f"Step {batch_idx}, loss: {loss.item()}", flush=True, end="")
103 | accelerator.backward(loss)
104 |
105 | optimizer.step()
106 |
107 | accelerator.wait_for_everyone()
108 | accelerator.save_state(output_dir=output_dir, safe_serialization=False)
109 | return output_dir / "pytorch_model.bin"
110 |
111 |
112 | def main(
113 | launcher: torchrunx.Launcher,
114 | model_config: Annotated[ModelConfig, tyro.conf.arg(name="model")],
115 | dataset_config: Annotated[DatasetConfig, tyro.conf.arg(name="dataset")],
116 | batch_size: int,
117 | output_dir: Path,
118 | ):
119 | model = AutoModelForCausalLM.from_pretrained(model_config.name)
120 | train_dataset = load_training_data(
121 | tokenizer_name=model_config.name, dataset_config=dataset_config
122 | )
123 |
124 | # Launch training
125 | results = launcher.run(train, model, train_dataset, batch_size, output_dir)
126 |
127 | # Loading trained model from checkpoint
128 | checkpoint_path = results.rank(0)
129 | trained_model = AutoModelForCausalLM.from_pretrained(
130 | model_config.name, state_dict=torch.load(checkpoint_path)
131 | )
132 |
133 |
134 | if __name__ == "__main__":
135 | tyro.cli(main)
136 |
--------------------------------------------------------------------------------
/scripts/examples/deepspeed_train.py:
--------------------------------------------------------------------------------
1 | # /// script
2 | # requires-python = ">=3.9"
3 | # dependencies = [
4 | # "datasets",
5 | # "deepspeed",
6 | # "tensorboard",
7 | # "torch",
8 | # "torchrunx",
9 | # "transformers",
10 | # "tyro",
11 | # ]
12 | # ///
13 |
14 | # [docs:start-after]
15 | from __future__ import annotations
16 |
17 | import functools
18 | import logging
19 | import os
20 | from dataclasses import dataclass
21 | from pathlib import Path
22 | from typing import Annotated
23 |
24 | import deepspeed
25 | import torch
26 | import tyro
27 | from datasets import load_dataset
28 | from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
29 | from torch.utils.data import Dataset
30 | from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedModel
31 |
32 | import torchrunx
33 |
34 | logging.basicConfig(level=logging.INFO)
35 |
36 |
37 | @dataclass
38 | class DatasetConfig:
39 | path: str
40 | name: str | None = None
41 | split: str | None = None
42 | text_column: str = "text"
43 | num_samples: int | None = None
44 |
45 |
46 | def load_training_data(
47 | tokenizer_name: str,
48 | dataset_config: DatasetConfig,
49 | ) -> Dataset:
50 | # Load dataset
51 |
52 | dataset = load_dataset(
53 | dataset_config.path, name=dataset_config.name, split=dataset_config.split
54 | )
55 | if dataset_config.num_samples is not None:
56 | dataset = dataset.select(range(dataset_config.num_samples))
57 |
58 | # Build tokenizer
59 |
60 | os.environ["TOKENIZERS_PARALLELISM"] = "false" # to suppress warnings
61 | tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
62 | if tokenizer.pad_token is None:
63 | tokenizer.pad_token = tokenizer.eos_token
64 | tokenize_fn = functools.partial(
65 | tokenizer,
66 | max_length=tokenizer.model_max_length,
67 | truncation=True,
68 | padding="max_length",
69 | )
70 |
71 | # Tokenize dataset
72 |
73 | return dataset.map(
74 | tokenize_fn,
75 | batched=True,
76 | input_columns=[dataset_config.text_column],
77 | remove_columns=[dataset_config.text_column],
78 | ).map(lambda x: {"labels": x["input_ids"]})
79 |
80 |
81 | def train(
82 | model: PreTrainedModel,
83 | train_dataset: Dataset,
84 | deepspeed_config: str | dict,
85 | checkpoint_dir: str,
86 | ) -> None:
87 | model_engine, _, data_loader, _ = deepspeed.initialize(
88 | model=model,
89 | model_parameters=model.parameters(),
90 | training_data=train_dataset,
91 | config=deepspeed_config,
92 | )
93 |
94 | model_engine.train()
95 |
96 | for step, batch in enumerate(data_loader):
97 | input_batch = {k: torch.stack(v).T.to(model_engine.device) for k, v in batch.items()}
98 | loss = model_engine(**input_batch).loss
99 | model_engine.backward(loss)
100 | model_engine.step()
101 | print(f"Step {step}, loss: {loss.item()}", flush=True, end="")
102 |
103 | model_engine.save_checkpoint(checkpoint_dir)
104 |
105 |
106 | def main(
107 | model_name: str,
108 | deepspeed_config: Path,
109 | checkpoint_dir: Path,
110 | dataset_config: Annotated[DatasetConfig, tyro.conf.arg(name="dataset")],
111 | launcher: torchrunx.Launcher,
112 | ):
113 | model = AutoModelForCausalLM.from_pretrained(model_name)
114 | train_dataset = load_training_data(tokenizer_name=model_name, dataset_config=dataset_config)
115 |
116 | # Launch training
117 | launcher.run(train, model, train_dataset, str(deepspeed_config), str(checkpoint_dir))
118 |
119 | # Loading trained model from checkpoint
120 | state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir)
121 | trained_model = AutoModelForCausalLM.from_pretrained(model_name)
122 | trained_model.load_state_dict(state_dict)
123 |
124 |
125 | if __name__ == "__main__":
126 | tyro.cli(main)
127 |
--------------------------------------------------------------------------------
/scripts/examples/lightning_train.py:
--------------------------------------------------------------------------------
1 | # /// script
2 | # requires-python = ">=3.9"
3 | # dependencies = [
4 | # "datasets",
5 | # "lightning",
6 | # "torch",
7 | # "torchrunx",
8 | # "transformers",
9 | # "tyro",
10 | # ]
11 | # ///
12 |
13 | # [docs:start-after]
14 | from __future__ import annotations
15 |
16 | import functools
17 | import logging
18 | import os
19 | from dataclasses import dataclass
20 | from typing import Annotated
21 |
22 | import lightning as L
23 | import torch
24 | import tyro
25 | from datasets import load_dataset
26 | from torch.utils.data import Dataset
27 | from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedModel
28 |
29 | import torchrunx
30 | from torchrunx.integrations.lightning import TorchrunxClusterEnvironment
31 |
32 | logging.basicConfig(level=logging.INFO)
33 |
34 |
35 | @dataclass
36 | class ModelConfig:
37 | name: str
38 |
39 |
40 | @dataclass
41 | class DatasetConfig:
42 | path: str
43 | name: str | None = None
44 | split: str | None = None
45 | text_column: str = "text"
46 | num_samples: int | None = None
47 |
48 |
49 | def load_training_data(
50 | tokenizer_name: str,
51 | dataset_config: DatasetConfig,
52 | ) -> Dataset:
53 | # Load dataset
54 |
55 | dataset = load_dataset(
56 | dataset_config.path, name=dataset_config.name, split=dataset_config.split
57 | )
58 | if dataset_config.num_samples is not None:
59 | dataset = dataset.select(range(dataset_config.num_samples))
60 |
61 | # Build tokenizer
62 |
63 | os.environ["TOKENIZERS_PARALLELISM"] = "false" # to suppress warnings
64 | tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
65 | if tokenizer.pad_token is None:
66 | tokenizer.pad_token = tokenizer.eos_token
67 | tokenize_fn = functools.partial(
68 | tokenizer,
69 | max_length=tokenizer.model_max_length,
70 | truncation=True,
71 | padding="max_length",
72 | )
73 |
74 | # Tokenize dataset
75 |
76 | return dataset.map(
77 | tokenize_fn,
78 | batched=True,
79 | input_columns=[dataset_config.text_column],
80 | remove_columns=[dataset_config.text_column],
81 | ).map(lambda x: {"labels": x["input_ids"]})
82 |
83 |
84 | class CausalLMLightningWrapper(L.LightningModule):
85 | def __init__(self, model):
86 | super().__init__()
87 | self.model = model
88 |
89 | def training_step(self, batch, *args): # pyright: ignore
90 | device_batch = {k: torch.stack(v, dim=0).to(self.model.device) for k, v in batch.items()}
91 | loss = self.model(**device_batch).loss
92 | self.log("train_loss", loss)
93 | return loss
94 |
95 | def configure_optimizers(self):
96 | optimizer = torch.optim.Adam(self.parameters(), lr=1e-5)
97 | return optimizer
98 |
99 |
100 | def train(model: PreTrainedModel, train_dataset: Dataset) -> str:
101 | lightning_model = CausalLMLightningWrapper(model)
102 |
103 | train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=8)
104 |
105 | trainer = L.Trainer(
106 | accelerator="gpu",
107 | max_epochs=1,
108 | strategy="ddp",
109 | plugins=[TorchrunxClusterEnvironment()],
110 | enable_checkpointing=False,
111 | )
112 |
113 | trainer.fit(model=lightning_model, train_dataloaders=train_loader)
114 | checkpoint = f"{trainer.log_dir}/final.ckpt"
115 | trainer.save_checkpoint(checkpoint)
116 |
117 | return checkpoint
118 |
119 |
120 | def main(
121 | launcher: torchrunx.Launcher,
122 | model_config: Annotated[ModelConfig, tyro.conf.arg(name="model")],
123 | dataset_config: Annotated[DatasetConfig, tyro.conf.arg(name="dataset")],
124 | ):
125 | model = AutoModelForCausalLM.from_pretrained(model_config.name)
126 | train_dataset = load_training_data(
127 | tokenizer_name=model_config.name, dataset_config=dataset_config
128 | )
129 |
130 | # Launch training
131 | results = launcher.run(train, model, train_dataset)
132 |
133 | # Loading trained model from checkpoint
134 | checkpoint_path = results.rank(0)
135 | dummy_model = AutoModelForCausalLM.from_pretrained(model_config.name)
136 | trained_model = CausalLMLightningWrapper(dummy_model)
137 | trained_model.load_state_dict(torch.load(checkpoint_path)["state_dict"])
138 | trained_model = trained_model.model
139 |
140 |
141 | if __name__ == "__main__":
142 | tyro.cli(main)
143 |
--------------------------------------------------------------------------------
/scripts/examples/transformers_train.py:
--------------------------------------------------------------------------------
1 | # /// script
2 | # requires-python = ">=3.9"
3 | # dependencies = [
4 | # "datasets",
5 | # "tensorboard",
6 | # "torchrunx",
7 | # "transformers[torch]",
8 | # "tyro",
9 | # ]
10 | # ///
11 |
12 | # [docs:start-after]
13 | from __future__ import annotations
14 |
15 | import functools
16 | import logging
17 | import os
18 | from dataclasses import dataclass
19 | from typing import Annotated
20 |
21 | import tyro
22 | from datasets import Dataset, load_dataset
23 | from transformers import (
24 | AutoModelForCausalLM,
25 | AutoTokenizer,
26 | PreTrainedModel,
27 | Trainer,
28 | TrainingArguments,
29 | trainer_utils,
30 | )
31 |
32 | import torchrunx
33 |
34 | logging.basicConfig(level=logging.INFO)
35 |
36 | @dataclass
37 | class ModelConfig:
38 | name: str
39 |
40 |
41 | @dataclass
42 | class DatasetConfig:
43 | path: str
44 | name: str | None = None
45 | split: str | None = None
46 | text_column: str = "text"
47 | num_samples: int | None = None
48 |
49 |
50 | def load_training_data(
51 | tokenizer_name: str,
52 | dataset_config: DatasetConfig,
53 | ) -> Dataset:
54 | # Load dataset
55 |
56 | dataset = load_dataset(
57 | dataset_config.path, name=dataset_config.name, split=dataset_config.split
58 | )
59 | if dataset_config.num_samples is not None:
60 | dataset = dataset.select(range(dataset_config.num_samples))
61 |
62 | # Build tokenizer
63 |
64 | os.environ["TOKENIZERS_PARALLELISM"] = "false" # to suppress warnings
65 | tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
66 | if tokenizer.pad_token is None:
67 | tokenizer.pad_token = tokenizer.eos_token
68 | tokenize_fn = functools.partial(
69 | tokenizer,
70 | max_length=tokenizer.model_max_length,
71 | truncation=True,
72 | padding="max_length",
73 | )
74 |
75 | # Tokenize dataset
76 |
77 | return dataset.map(
78 | tokenize_fn,
79 | batched=True,
80 | input_columns=[dataset_config.text_column],
81 | remove_columns=[dataset_config.text_column],
82 | ).map(lambda x: {"labels": x["input_ids"]})
83 |
84 |
85 | def train(
86 | model: PreTrainedModel,
87 | train_dataset: Dataset,
88 | training_args: TrainingArguments,
89 | ) -> str:
90 | trainer = Trainer(model=model, train_dataset=train_dataset, args=training_args)
91 | trainer.train()
92 | return trainer_utils.get_last_checkpoint(training_args.output_dir)
93 |
94 |
95 | def main(
96 | launcher: torchrunx.Launcher,
97 | model_config: Annotated[ModelConfig, tyro.conf.arg(name="model")],
98 | dataset_config: Annotated[DatasetConfig, tyro.conf.arg(name="dataset")],
99 | training_args: Annotated[TrainingArguments, tyro.conf.arg(name="trainer", help="")],
100 | ):
101 | model = AutoModelForCausalLM.from_pretrained(model_config.name)
102 | train_dataset = load_training_data(
103 | tokenizer_name=model_config.name, dataset_config=dataset_config
104 | )
105 |
106 | # Launch training
107 | results = launcher.run(train, model, train_dataset, training_args)
108 |
109 | # Loading trained model from checkpoint
110 | checkpoint_path = results.rank(0)
111 | trained_model = AutoModelForCausalLM.from_pretrained(checkpoint_path)
112 |
113 |
114 | if __name__ == "__main__":
115 | tyro.cli(main)
116 |
--------------------------------------------------------------------------------
/scripts/generate_help_menus.sh:
--------------------------------------------------------------------------------
1 | mkdir docs/source/artifacts
2 |
3 | uv run python -c "from argparse import ArgumentParser; from torchrunx.integrations.parsing import add_torchrunx_argument_group; parser = ArgumentParser(); add_torchrunx_argument_group(parser); parser.parse_args()" --help > docs/source/artifacts/argparse_cli_help.txt
4 | uv run --with tyro python -c "import torchrunx; import tyro; tyro.cli(torchrunx.Launcher)" --help > docs/source/artifacts/tyro_cli_help.txt
5 |
6 | uv run --with . scripts/examples/transformers_train.py --help > docs/source/artifacts/transformers_help.txt
7 | uv run --with . scripts/examples/deepspeed_train.py --help > docs/source/artifacts/deepspeed_help.txt
8 | uv run --with . scripts/examples/lightning_train.py --help > docs/source/artifacts/lightning_help.txt
9 | uv run --with . scripts/examples/accelerate_train.py --help > docs/source/artifacts/accelerate_help.txt
10 |
--------------------------------------------------------------------------------
/src/torchrunx/__init__.py:
--------------------------------------------------------------------------------
1 | import importlib.metadata
2 |
3 | from .launcher import DEFAULT_ENV_VARS_FOR_COPY, Launcher, LaunchResult
4 | from .utils.errors import AgentFailedError, WorkerFailedError
5 |
6 | __version__ = importlib.metadata.version(__package__ or __name__)
7 |
8 | __all__ = [ # noqa: RUF022
9 | "DEFAULT_ENV_VARS_FOR_COPY",
10 | "Launcher",
11 | "LaunchResult",
12 | "AgentFailedError",
13 | "WorkerFailedError",
14 | ]
15 |
--------------------------------------------------------------------------------
/src/torchrunx/__main__.py:
--------------------------------------------------------------------------------
1 | """CLI entrypoint used for starting agents on different nodes."""
2 |
3 | from argparse import ArgumentParser
4 |
5 | from .agent import main
6 |
7 | if __name__ == "__main__":
8 | parser = ArgumentParser()
9 | parser.add_argument("--launcher-hostname", type=str)
10 | parser.add_argument("--launcher-port", type=int)
11 | parser.add_argument("--logger-port", type=int)
12 | parser.add_argument("--world-size", type=int)
13 | parser.add_argument("--rank", type=int)
14 | parser.add_argument("--hostname", type=str)
15 | args = parser.parse_args()
16 |
17 | main(
18 | launcher_hostname=args.launcher_hostname,
19 | launcher_port=args.launcher_port,
20 | world_size=args.world_size,
21 | rank=args.rank,
22 | logger_hostname=args.launcher_hostname,
23 | logger_port=args.logger_port,
24 | hostname=args.hostname,
25 | )
26 |
--------------------------------------------------------------------------------
/src/torchrunx/agent.py:
--------------------------------------------------------------------------------
1 | """Primary logic for agent processes."""
2 |
3 | from __future__ import annotations
4 |
5 | __all__ = ["main"]
6 |
7 | import logging
8 | import os
9 | import socket
10 | import sys
11 | import tempfile
12 |
13 | import torch
14 | import torch.distributed.elastic.multiprocessing as dist_mp
15 |
16 | from .utils.comm import (
17 | AgentPayload,
18 | AgentStatus,
19 | LauncherAgentGroup,
20 | get_open_port,
21 | )
22 | from .utils.log_streaming import log_records_to_socket, redirect_stdio_to_logger
23 | from .worker import WorkerArgs, worker_entrypoint
24 |
25 |
26 | def main(
27 | launcher_hostname: str,
28 | launcher_port: int,
29 | world_size: int,
30 | rank: int,
31 | logger_hostname: str,
32 | logger_port: int,
33 | hostname: str,
34 | ) -> None:
35 | """Main function for agent processes (started on each node).
36 |
37 | This function spawns local worker processes (which run the target function). All agents monitor
38 | their worker statuses (including returned objects and raised exceptions) and communicate these
39 | with each other (and launcher). All agents terminate if failure occurs in any agent.
40 |
41 | Arguments:
42 | launcher_hostname: Hostname of the launcher process.
43 | launcher_port: Port for the process group on the launcher.
44 | world_size: Number of agents + 1 (launcher).
45 | rank: Rank of this agent.
46 | logger_hostname: Hostname of the logging server.
47 | logger_port: Port for the logging server.
48 | hostname: Hostname of this agent.
49 | """
50 | # Setup logging & stream logs to server
51 |
52 | log_records_to_socket(
53 | hostname=hostname, local_rank=None, logger_hostname=logger_hostname, logger_port=logger_port
54 | )
55 |
56 | logger = logging.getLogger()
57 | redirect_stdio_to_logger(logger)
58 |
59 | logger.debug("Initializing launcher-agent group.")
60 |
61 | launcher_agent_group = LauncherAgentGroup(
62 | launcher_hostname=launcher_hostname,
63 | launcher_port=launcher_port,
64 | world_size=world_size,
65 | rank=rank,
66 | )
67 |
68 | agent_rank = launcher_agent_group.rank - 1
69 |
70 | logger.debug("Synchronizing launcher and agents.")
71 |
72 | payload = AgentPayload(
73 | hostname=socket.getfqdn(),
74 | port=get_open_port(),
75 | process_id=os.getpid(),
76 | )
77 |
78 | launcher_payload, agent_payloads = launcher_agent_group.sync_payloads(payload=payload)
79 |
80 | hostname = launcher_payload.hostnames[agent_rank]
81 | worker_world_size = launcher_payload.worker_world_size
82 | worker_global_ranks = launcher_payload.worker_global_ranks[agent_rank]
83 | num_workers = len(worker_global_ranks)
84 |
85 | logger.info(f"Starting {num_workers} worker processes.")
86 |
87 | ctx = dist_mp.start_processes(
88 | name=f"{hostname}_",
89 | entrypoint=worker_entrypoint,
90 | args={
91 | i: (
92 | WorkerArgs(
93 | function=launcher_payload.fn,
94 | logger_hostname=logger_hostname,
95 | logger_port=logger_port,
96 | master_hostname=agent_payloads[0].hostname,
97 | master_port=agent_payloads[0].port,
98 | backend=launcher_payload.backend,
99 | rank=worker_global_ranks[i],
100 | local_rank=i,
101 | node_rank=agent_rank,
102 | local_world_size=num_workers,
103 | world_size=worker_world_size,
104 | hostname=launcher_payload.hostnames[agent_rank],
105 | timeout=launcher_payload.timeout,
106 | ).serialize(),
107 | )
108 | for i in range(num_workers)
109 | },
110 | # environment variables from agent are already automatically copied to workers
111 | envs={i: {} for i in range(num_workers)},
112 | # we handle logging ourselves, so we can discard these
113 | **(
114 | {"logs_specs": dist_mp.DefaultLogsSpecs(log_dir=tempfile.mkdtemp())}
115 | if torch.__version__ >= "2.3"
116 | else {"log_dir": tempfile.mkdtemp()}
117 | ), # pyright: ignore [reportArgumentType]
118 | )
119 |
120 | # Monitor and communicate agent statuses
121 | # Terminate gracefully upon failure
122 |
123 | logger.debug("Entering worker monitoring and agent communication loop.")
124 |
125 | try:
126 | status = None
127 | while True:
128 | if status is None or status.state == "running":
129 | # status can contain ExceptionFromWorker or WorkerFailedError
130 | status = AgentStatus.from_result(result=ctx.wait(5))
131 |
132 | # can raise AgentFailedError in launcher and all agents
133 | agent_statuses = launcher_agent_group.sync_agent_statuses(status=status)
134 |
135 | all_done = all(s.state == "done" for s in agent_statuses)
136 | any_failed = any(s.state == "failed" for s in agent_statuses)
137 | if all_done or any_failed:
138 | logger.info(f"Workers exited {'with' if any_failed else 'without'} errors.")
139 | break
140 | finally:
141 | ctx.close()
142 | sys.stdout.flush()
143 | sys.stderr.flush()
144 | launcher_agent_group.shutdown()
145 |
146 | logger.debug("Terminating agent process.")
147 |
--------------------------------------------------------------------------------
/src/torchrunx/integrations/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/apoorvkh/torchrunx/44446340838d62e1996c716919b0b836554ba143/src/torchrunx/integrations/__init__.py
--------------------------------------------------------------------------------
/src/torchrunx/integrations/cli.py:
--------------------------------------------------------------------------------
1 | """Utilities for building a Launcher from argparse command-line arguments."""
2 |
3 | from __future__ import annotations
4 |
5 | __all__ = ["add_torchrunx_argument_group", "launcher_from_args"]
6 |
7 | from argparse import ArgumentParser, Namespace
8 | from typing import Literal
9 |
10 | from torchrunx import DEFAULT_ENV_VARS_FOR_COPY, Launcher
11 |
12 |
13 | def add_torchrunx_argument_group(parser: ArgumentParser) -> None:
14 | """Add an argument group for torchrunx.Launcher to an ArgumentParser."""
15 | group = parser.add_argument_group("torchrunx")
16 |
17 | group.add_argument(
18 | "--hostnames",
19 | type=str,
20 | nargs="+",
21 | default="auto",
22 | help="Nodes to launch the function on. Default: 'auto'. Use 'slurm' to infer from SLURM.",
23 | )
24 |
25 | group.add_argument(
26 | "--workers-per-host",
27 | type=str,
28 | nargs="+",
29 | default="gpu",
30 | help="Processes to run per node. Can be 'cpu', 'gpu', or list[int]. Default: 'gpu'.",
31 | )
32 |
33 | group.add_argument(
34 | "--ssh-config-file",
35 | type=str,
36 | default=None,
37 | help="Path to SSH config file. Default: '~/.ssh/config' or '/etc/ssh/ssh_config'.",
38 | )
39 |
40 | group.add_argument(
41 | "--backend",
42 | type=str,
43 | choices=["nccl", "gloo", "mpi", "ucc", "None"],
44 | default="nccl",
45 | help="For worker process group. Default: 'nccl'. Use 'gloo' for CPU. 'None' to disable.",
46 | )
47 |
48 | group.add_argument(
49 | "--timeout",
50 | type=int,
51 | default=600,
52 | help="Worker process group timeout in seconds. Default: 600.",
53 | )
54 |
55 | group.add_argument(
56 | "--copy-env-vars",
57 | type=str,
58 | nargs="+",
59 | default=DEFAULT_ENV_VARS_FOR_COPY,
60 | help="Environment variables to copy to workers. Supports Unix pattern matching.",
61 | )
62 |
63 | group.add_argument(
64 | "--extra-env-vars",
65 | type=str,
66 | nargs="*",
67 | default=None,
68 | help="Additional environment variables as key=value pairs.",
69 | )
70 |
71 | group.add_argument(
72 | "--env-file", type=str, default=None, help="Path to a .env file with environment variables."
73 | )
74 |
75 |
76 | def launcher_from_args(args: Namespace) -> Launcher:
77 | """Create a torchrunx.Launcher from argparse.Namespace."""
78 | _hostnames: list[str] = args.hostnames
79 | hostnames: list[str] | Literal["auto", "slurm"]
80 | if _hostnames == ["auto"]:
81 | hostnames = "auto"
82 | elif _hostnames == ["slurm"]:
83 | hostnames = "slurm"
84 | else:
85 | hostnames = _hostnames
86 |
87 | _workers_per_host: list[str] = args.workers_per_host
88 | workers_per_host: int | list[int] | Literal["cpu", "gpu"]
89 |
90 | if _workers_per_host == ["cpu"]:
91 | workers_per_host = "cpu"
92 | elif _workers_per_host == ["gpu"]:
93 | workers_per_host = "gpu"
94 | elif len(_workers_per_host) == 1:
95 | workers_per_host = int(_workers_per_host[0])
96 | else:
97 | workers_per_host = [int(w) for w in _workers_per_host]
98 |
99 | ssh_config_file: str | None = args.ssh_config_file
100 |
101 | _backend: str = args.backend
102 | backend: Literal["nccl", "gloo", "mpi", "ucc"] | None
103 | if _backend == "None": # noqa: SIM108
104 | backend = None
105 | else:
106 | backend = _backend # pyright: ignore [reportAssignmentType]
107 |
108 | timeout: int = args.timeout
109 |
110 | copy_env_vars: tuple[str, ...] = tuple(args.copy_env_vars)
111 |
112 | _extra_env_vars: list[str] | None = args.extra_env_vars
113 | extra_env_vars: dict[str, str] | None
114 | if _extra_env_vars is not None:
115 | extra_env_vars = dict(var.split("=", 1) for var in _extra_env_vars)
116 | else:
117 | extra_env_vars = None
118 |
119 | env_file: str | None = args.env_file
120 |
121 | return Launcher(
122 | hostnames=hostnames,
123 | workers_per_host=workers_per_host,
124 | ssh_config_file=ssh_config_file,
125 | backend=backend,
126 | timeout=timeout,
127 | copy_env_vars=copy_env_vars,
128 | extra_env_vars=extra_env_vars,
129 | env_file=env_file,
130 | )
131 |
--------------------------------------------------------------------------------
/src/torchrunx/integrations/lightning.py:
--------------------------------------------------------------------------------
1 | """Integration with PyTorch Lightning Trainer."""
2 |
3 | from lightning.fabric.plugins.environments.torchelastic import ( # pyright: ignore [reportMissingImports]
4 | TorchElasticEnvironment,
5 | )
6 |
7 |
8 | class TorchrunxClusterEnvironment(TorchElasticEnvironment):
9 | """Compatible ClusterEnvironment for PyTorch Lightning."""
10 |
11 | @staticmethod
12 | def detect() -> bool:
13 | """Force use of the TorchElasticEnvironment."""
14 | return True
15 |
--------------------------------------------------------------------------------
/src/torchrunx/launcher.py:
--------------------------------------------------------------------------------
1 | """For launching functions with our library."""
2 |
3 | from __future__ import annotations
4 |
5 | __all__ = ["DEFAULT_ENV_VARS_FOR_COPY", "LaunchResult", "Launcher"]
6 |
7 | import fnmatch
8 | import itertools
9 | import logging
10 | import os
11 | import socket
12 | import typing
13 | from dataclasses import dataclass, field
14 | from functools import partial
15 | from multiprocessing import Event, Process
16 | from typing import Generic, TypeVar
17 |
18 | import torch.distributed as dist
19 | from typing_extensions import ParamSpec, Self
20 |
21 | from .utils.comm import (
22 | LauncherAgentGroup,
23 | LauncherPayload,
24 | get_open_port,
25 | )
26 | from .utils.environment import (
27 | build_launch_command,
28 | execute_command,
29 | resolve_environment,
30 | )
31 | from .utils.errors import ExceptionFromWorker, WorkerFailedError
32 | from .utils.log_handling import default_handlers
33 | from .utils.log_streaming import LoggingServerArgs, start_logging_server
34 |
35 | DEFAULT_ENV_VARS_FOR_COPY = (
36 | "PATH",
37 | "LD_LIBRARY",
38 | "LIBRARY_PATH",
39 | "PYTHON*",
40 | "CUDA*",
41 | "TORCH*",
42 | "PYTORCH*",
43 | "NCCL*",
44 | )
45 |
46 | FunctionP = ParamSpec("FunctionP")
47 | FunctionR = TypeVar("FunctionR")
48 |
49 |
50 | @dataclass
51 | class Launcher:
52 | """For configuring the function launch environment."""
53 |
54 | hostnames: list[str] | typing.Literal["auto", "slurm"] = "auto"
55 | """Nodes to launch the function on. By default, infer from SLURM, else ``["localhost"]``."""
56 | workers_per_host: int | list[int] | typing.Literal["cpu", "gpu"] = "gpu"
57 | """Number of processes to run per node. By default, number of GPUs per host."""
58 | ssh_config_file: str | os.PathLike | None = None
59 | """For connecting to nodes. By default, ``"~/.ssh/config"`` or ``"/etc/ssh/ssh_config"``."""
60 | backend: typing.Literal["nccl", "gloo", "mpi", "ucc"] | None = "nccl"
61 | """`Backend `_
62 | for worker process group. By default, NCCL (GPU backend).
63 | Use GLOO for CPU backend. ``None`` for no process group."""
64 | timeout: int = 600
65 | """Worker process group timeout (seconds)."""
66 | copy_env_vars: tuple[str, ...] = DEFAULT_ENV_VARS_FOR_COPY
67 | """Environment variables to copy from the launcher process to workers.
68 | Supports Unix pattern matching syntax."""
69 | extra_env_vars: dict[str, str] | None = None
70 | """Additional environment variables to load onto workers."""
71 | env_file: str | os.PathLike | None = None
72 | """Path to a ``.env`` file, containing environment variables to load onto workers."""
73 |
74 | handler_factory: typing.Callable[[], list[logging.Handler]] | typing.Literal["auto"] | None = (
75 | field(default="auto", init=False)
76 | )
77 |
78 | def set_logging_handlers(
79 | self,
80 | handler_factory: typing.Callable[[], list[logging.Handler]] | typing.Literal["auto"] | None,
81 | ) -> Self:
82 | """Provide a ``handler_factory`` function to customize processing of agent/worker logs.
83 |
84 | Parameters:
85 | handler_factory: Function that constructs and returns :obj:`logging.Handler` objects.
86 | See `Custom Logging `_ for more details.
87 | """
88 | self.handler_factory = handler_factory
89 | return self
90 |
91 | def run( # noqa: C901, PLR0912, PLR0915
92 | self,
93 | func: typing.Callable[FunctionP, FunctionR],
94 | *args: FunctionP.args,
95 | **kwargs: FunctionP.kwargs,
96 | ) -> LaunchResult[FunctionR]:
97 | """Distribute a function onto specified nodes and parallelize across workers.
98 |
99 | Raises:
100 | RuntimeError: Configuration issues.
101 | Exception: Exceptions raised in worker processes are propagated.
102 | WorkerFailedError: If a worker fails (e.g. from a segmentation fault).
103 | AgentFailedError: If an agent fails, e.g. from an OS signal.
104 | """
105 | logger = logging.getLogger(__package__)
106 |
107 | if not dist.is_available():
108 | msg = "The torch.distributed package is not available."
109 | raise RuntimeError(msg)
110 |
111 | logger.debug("Preparing launch environment.")
112 |
113 | ###
114 |
115 | hostnames, workers_per_host = resolve_environment(
116 | self.hostnames, self.workers_per_host, ssh_config_file=self.ssh_config_file
117 | )
118 | ssh_config_file = self.ssh_config_file
119 | backend = self.backend
120 | timeout = self.timeout
121 |
122 | env_vars = {
123 | k: v
124 | for k, v in os.environ.items()
125 | if any(fnmatch.fnmatch(k, e) for e in self.copy_env_vars)
126 | }
127 | if self.extra_env_vars is not None:
128 | env_vars.update(self.extra_env_vars)
129 | env_file = self.env_file
130 |
131 | if self.handler_factory is None:
132 |
133 | def handler_factory() -> list[logging.Handler]:
134 | return []
135 | elif self.handler_factory == "auto":
136 | handler_factory = partial(default_handlers, hostnames, workers_per_host)
137 | else:
138 | handler_factory = self.handler_factory
139 |
140 | ###
141 |
142 | launcher_hostname = socket.getfqdn()
143 | launcher_port = get_open_port()
144 | logging_port = get_open_port()
145 | world_size = len(hostnames) + 1
146 |
147 | stop_logging_event = None
148 | log_process = None
149 | launcher_agent_group = None
150 |
151 | _cumulative_workers = [0, *itertools.accumulate(workers_per_host)]
152 | worker_global_ranks = [
153 | list(range(_cumulative_workers[n], _cumulative_workers[n + 1]))
154 | for n in range(len(hostnames))
155 | ]
156 | payload = LauncherPayload(
157 | fn=partial(func, *args, **kwargs),
158 | hostnames=hostnames,
159 | worker_global_ranks=worker_global_ranks,
160 | worker_world_size=sum(workers_per_host),
161 | backend=backend,
162 | timeout=timeout,
163 | )
164 | agent_payloads = None
165 |
166 | try:
167 | logger.debug("Starting logging server.")
168 |
169 | # Start logging server (recieves LogRecords from agents/workers)
170 |
171 | logging_server_args = LoggingServerArgs(
172 | handler_factory=handler_factory,
173 | logging_hostname=launcher_hostname,
174 | logging_port=logging_port,
175 | )
176 |
177 | stop_logging_event = Event()
178 |
179 | log_process = Process(
180 | target=start_logging_server,
181 | args=(logging_server_args.serialize(), stop_logging_event),
182 | daemon=True,
183 | )
184 |
185 | log_process.start()
186 |
187 | # Start agents on each node
188 |
189 | for i, hostname in enumerate(hostnames):
190 | logger.info(f'Launching "{func.__name__}" on {hostname}.')
191 |
192 | execute_command(
193 | command=build_launch_command(
194 | launcher_hostname=launcher_hostname,
195 | launcher_port=launcher_port,
196 | logger_port=logging_port,
197 | world_size=world_size,
198 | rank=i + 1,
199 | env_vars=env_vars,
200 | env_file=env_file,
201 | hostname=hostname,
202 | ),
203 | hostname=hostname,
204 | ssh_config_file=ssh_config_file,
205 | )
206 |
207 | logger.debug("Initializing launcher-agent group.")
208 |
209 | # Initialize launcher-agent process group
210 | # ranks = (launcher, agent_{hostnames[0]}, ..., agent[-1])
211 |
212 | launcher_agent_group = LauncherAgentGroup[FunctionR](
213 | launcher_hostname=launcher_hostname,
214 | launcher_port=launcher_port,
215 | world_size=world_size,
216 | rank=0,
217 | )
218 |
219 | # Sync initial payloads between launcher and agents
220 |
221 | logger.debug("Synchronizing launcher and agents.")
222 | launcher_payload, agent_payloads = launcher_agent_group.sync_payloads(payload=payload)
223 |
224 | # Monitor agent statuses (until failed or done)
225 |
226 | logger.debug("Entering agent monitoring loop.")
227 |
228 | while True:
229 | # could raise AgentFailedError
230 | agent_statuses = launcher_agent_group.sync_agent_statuses(status=None)
231 |
232 | # raises specific exception if any agent fails
233 | for s in agent_statuses:
234 | for v in s.return_values:
235 | if isinstance(v, ExceptionFromWorker):
236 | raise v.exception
237 | if isinstance(v, WorkerFailedError):
238 | raise v
239 |
240 | if all(s.state == "done" for s in agent_statuses):
241 | logger.info("All workers completed successfully.")
242 | return_values: list[list[FunctionR]] = [s.return_values for s in agent_statuses] # pyright: ignore [reportAssignmentType]
243 | return LaunchResult.from_returns(hostnames, return_values)
244 | finally:
245 | # cleanup: SIGTERM all agents
246 | if agent_payloads is not None:
247 | for agent_payload, agent_hostname in zip(agent_payloads, hostnames):
248 | logger.debug("Killing PID %s on %s.", agent_payload.process_id, agent_hostname)
249 |
250 | execute_command(
251 | command=f"kill {agent_payload.process_id}",
252 | hostname=agent_hostname,
253 | ssh_config_file=ssh_config_file,
254 | )
255 |
256 | if launcher_agent_group is not None:
257 | logger.debug("Killing launcher-agent group.")
258 | launcher_agent_group.shutdown()
259 |
260 | logger.debug("Stopping logging server.")
261 |
262 | if stop_logging_event is not None:
263 | stop_logging_event.set()
264 | if log_process is not None:
265 | log_process.kill()
266 |
267 |
268 | @dataclass
269 | class LaunchResult(Generic[FunctionR]):
270 | """Container for objects returned from workers after successful launches."""
271 |
272 | results: dict[str, list[FunctionR]] # [hostname][local_rank] -> FunctionR
273 |
274 | @classmethod
275 | def from_returns(cls, hostnames: list[str], return_values: list[list[FunctionR]]) -> Self: # noqa: D102
276 | return cls(results=dict(zip(hostnames, return_values)))
277 |
278 | def index(self, hostname: str, locak_rank: int) -> FunctionR:
279 | """Get return value from worker by host and local rank."""
280 | return self.results[hostname][locak_rank]
281 |
282 | def rank(self, i: int) -> FunctionR:
283 | """Get return value from worker by global rank."""
284 | for results_per_host in self.results.values():
285 | if i < len(results_per_host):
286 | return results_per_host[i]
287 | i -= len(results_per_host)
288 | raise IndexError
289 |
--------------------------------------------------------------------------------
/src/torchrunx/py.typed:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/apoorvkh/torchrunx/44446340838d62e1996c716919b0b836554ba143/src/torchrunx/py.typed
--------------------------------------------------------------------------------
/src/torchrunx/utils/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/apoorvkh/torchrunx/44446340838d62e1996c716919b0b836554ba143/src/torchrunx/utils/__init__.py
--------------------------------------------------------------------------------
/src/torchrunx/utils/comm.py:
--------------------------------------------------------------------------------
1 | """Utilities for Launcher-Agent communication."""
2 |
3 | from __future__ import annotations
4 |
5 | __all__ = [
6 | "AgentPayload",
7 | "AgentStatus",
8 | "ExceptionFromWorker",
9 | "LauncherAgentGroup",
10 | "LauncherPayload",
11 | "get_open_port",
12 | ]
13 |
14 | import datetime
15 | import socket
16 | from contextlib import closing
17 | from dataclasses import dataclass, field
18 | from typing import TYPE_CHECKING, Any, Callable, Generic, Literal, TypeVar
19 |
20 | import cloudpickle
21 | import torch.distributed as dist
22 | from typing_extensions import Self
23 |
24 | from .errors import AgentFailedError, ExceptionFromWorker, WorkerFailedError
25 |
26 | if TYPE_CHECKING:
27 | from torch.distributed.elastic.multiprocessing.api import RunProcsResult
28 |
29 |
30 | def get_open_port() -> int:
31 | """Return an open port number."""
32 | with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as s:
33 | s.bind(("", 0))
34 | return s.getsockname()[1]
35 |
36 |
37 | ObjectT = TypeVar("ObjectT", bound=Any)
38 | FunctionR = TypeVar("FunctionR")
39 |
40 |
41 | @dataclass
42 | class LauncherAgentGroup(Generic[FunctionR]):
43 | """Initializes a GLOO distributed process group between launcher and all agents."""
44 |
45 | launcher_hostname: str
46 | launcher_port: int
47 | world_size: int
48 | rank: int
49 |
50 | def __post_init__(self) -> None:
51 | """Initialize process group.
52 |
53 | Raises:
54 | torch.distributed.DistStoreError: if group initialization times out.
55 | """
56 | self.group = dist.init_process_group(
57 | backend="gloo",
58 | world_size=self.world_size,
59 | rank=self.rank,
60 | store=dist.TCPStore( # pyright: ignore [reportPrivateImportUsage]
61 | host_name=self.launcher_hostname,
62 | port=self.launcher_port,
63 | world_size=self.world_size,
64 | is_master=(self.rank == 0),
65 | ),
66 | timeout=datetime.timedelta(seconds=30),
67 | )
68 |
69 | def _all_gather(self, obj: ObjectT) -> list[ObjectT]:
70 | """Gather object from each rank to list (in rank-order).
71 |
72 | Raises:
73 | AgentFailedError: if any agent fails (observed by this communication).
74 | """
75 | try:
76 | rank_obj = cloudpickle.dumps((self.rank, obj))
77 | all_gather_list = [b""] * self.world_size
78 |
79 | dist.all_gather_object(
80 | object_list=all_gather_list, obj=rank_obj, group=self.group
81 | ) # raises RuntimeError if timeout
82 |
83 | rank_obj_list: list[tuple[int, ObjectT]] = sorted(
84 | [cloudpickle.loads(o) for o in all_gather_list]
85 | )
86 | return [obj for _, obj in rank_obj_list]
87 | except RuntimeError as e:
88 | # occurs if launcher or any agent dies and communication times out
89 | raise AgentFailedError from e
90 |
91 | def sync_payloads(
92 | self,
93 | payload: LauncherPayload | AgentPayload,
94 | ) -> tuple[LauncherPayload, list[AgentPayload]]:
95 | """All-gather payloads across launcher and all agents."""
96 | payloads = self._all_gather(payload)
97 | launcher_payload: LauncherPayload = payloads[0] # pyright: ignore [reportAssignmentType]
98 | agent_payloads: list[AgentPayload] = payloads[1:] # pyright: ignore [reportAssignmentType]
99 | return launcher_payload, agent_payloads
100 |
101 | def sync_agent_statuses(
102 | self, status: AgentStatus[FunctionR] | None
103 | ) -> list[AgentStatus[FunctionR]]:
104 | """All-gather agent statuses across launcher and all agents."""
105 | # only launcher has status = None
106 | agent_statuses: list[AgentStatus[FunctionR]] = self._all_gather(status)[1:] # pyright: ignore [reportAssignmentType]
107 | return agent_statuses
108 |
109 | def shutdown(self) -> None:
110 | """Terminate process group."""
111 | dist.destroy_process_group(group=self.group)
112 |
113 |
114 | @dataclass
115 | class LauncherPayload:
116 | """Payload from launcher to agents with runtime information."""
117 |
118 | fn: Callable
119 | hostnames: list[str]
120 | worker_global_ranks: list[list[int]]
121 | worker_world_size: int
122 | backend: Literal["nccl", "gloo", "mpi", "ucc"] | None
123 | timeout: int
124 |
125 |
126 | @dataclass
127 | class AgentPayload:
128 | """Payload corresponding to each agent."""
129 |
130 | hostname: str
131 | port: int
132 | process_id: int
133 |
134 |
135 | @dataclass
136 | class AgentStatus(Generic[FunctionR]):
137 | """Status of each agent (to be synchronized in LauncherAgentGroup).
138 |
139 | Attributes:
140 | state: Whether the agent is running, failed, or done.
141 | return_values: Objects returned (or exceptions raised) by workers (indexed by local rank).
142 | """
143 |
144 | state: Literal["running", "failed", "done"]
145 | return_values: list[FunctionR | WorkerFailedError | ExceptionFromWorker] = field(
146 | default_factory=list
147 | ) # indexed by local rank
148 |
149 | @classmethod
150 | def from_result(cls, result: RunProcsResult | None) -> Self:
151 | """Convert RunProcsResult (from polling worker process context) to AgentStatus."""
152 | if result is None:
153 | return cls(state="running")
154 |
155 | for local_rank, failure in result.failures.items():
156 | result.return_values[local_rank] = WorkerFailedError(failure.message)
157 |
158 | return_values = [result.return_values[key] for key in sorted(result.return_values.keys())]
159 |
160 | failed = any(isinstance(v, (ExceptionFromWorker, WorkerFailedError)) for v in return_values)
161 | state = "failed" if failed else "done"
162 |
163 | return cls(
164 | state=state,
165 | return_values=return_values,
166 | )
167 |
--------------------------------------------------------------------------------
/src/torchrunx/utils/environment.py:
--------------------------------------------------------------------------------
1 | """Utilities for determining hosts and workers in environment."""
2 |
3 | from __future__ import annotations
4 |
5 | from typing import Literal
6 |
7 | from typing_extensions import TypeAlias
8 |
9 | __all__ = [
10 | "auto_hosts",
11 | "build_launch_command",
12 | "execute_command",
13 | "get_cpus_per_host",
14 | "get_gpus_per_host",
15 | "in_slurm_job",
16 | "slurm_hosts",
17 | ]
18 |
19 | import ipaddress
20 | import os
21 | import shlex
22 | import socket
23 | import subprocess
24 | import sys
25 | from pathlib import Path
26 |
27 | import fabric
28 |
29 | Hostnames: TypeAlias = list[str]
30 | WorkersPerHost: TypeAlias = list[int]
31 |
32 |
33 | def resolve_environment(
34 | hostnames: list[str] | Literal["auto", "slurm"],
35 | workers_per_host: int | list[int] | Literal["cpu", "gpu"],
36 | *,
37 | ssh_config_file: str | os.PathLike | None = None,
38 | ) -> tuple[Hostnames, WorkersPerHost]:
39 | if hostnames == "auto":
40 | hostnames = auto_hosts()
41 | elif hostnames == "slurm":
42 | hostnames = slurm_hosts()
43 |
44 | if isinstance(workers_per_host, int):
45 | workers_per_host = [workers_per_host] * len(hostnames)
46 | elif workers_per_host == "cpu":
47 | workers_per_host = get_cpus_per_host(hostnames, ssh_config_file=ssh_config_file)
48 | elif workers_per_host == "gpu":
49 | gpus_per_host: list[int] = get_gpus_per_host(hostnames, ssh_config_file=ssh_config_file)
50 | if any(g == 0 for g in gpus_per_host):
51 | hosts_without_gpus = [h for h, g in zip(hostnames, gpus_per_host) if g == 0]
52 | msg = f'workers_per_host="gpu", but no GPUs detected on: {hosts_without_gpus}.'
53 | raise RuntimeError(msg)
54 | workers_per_host = gpus_per_host
55 |
56 | return hostnames, workers_per_host
57 |
58 |
59 | def auto_hosts() -> list[str]:
60 | """Automatically determine hostnames to launch to."""
61 | if in_slurm_job():
62 | return slurm_hosts()
63 | return ["localhost"]
64 |
65 |
66 | def in_slurm_job() -> bool:
67 | """Check if current process is running in a Slurm allocation."""
68 | return "SLURM_JOB_ID" in os.environ or "SLURM_JOBID" in os.environ
69 |
70 |
71 | def slurm_hosts() -> list[str]:
72 | """Retrieves hostnames of Slurm-allocated nodes."""
73 | if not in_slurm_job():
74 | msg = "Not in a SLURM job"
75 | raise RuntimeError(msg)
76 |
77 | return subprocess.check_output(["scontrol", "show", "hostnames"]).decode().strip().split("\n")
78 |
79 |
80 | def get_cpus_per_host(
81 | hostnames: list[str], *, ssh_config_file: str | os.PathLike | None = None
82 | ) -> list[int]:
83 | """Count the number of GPUs on each host."""
84 | python = shlex.quote(sys.executable)
85 | command = f"{python} -c \"import os; print(len(os.sched_getaffinity(0)), end='')\""
86 | return [
87 | int(
88 | execute_command(
89 | command, hostname, ssh_config_file=ssh_config_file, return_stdout_stderr=True
90 | )[0]
91 | )
92 | for hostname in hostnames
93 | ]
94 |
95 |
96 | def get_gpus_per_host(
97 | hostnames: list[str], *, ssh_config_file: str | os.PathLike | None = None
98 | ) -> list[int]:
99 | """Count the number of GPUs on each host."""
100 | python = shlex.quote(sys.executable)
101 | command = f"{python} -c \"import torch; print(torch.cuda.device_count(), end='')\""
102 | return [
103 | int(
104 | execute_command(
105 | command,
106 | hostname,
107 | ssh_config_file=ssh_config_file,
108 | return_stdout_stderr=True,
109 | )[0]
110 | )
111 | for hostname in hostnames
112 | ]
113 |
114 |
115 | def build_launch_command(
116 | launcher_hostname: str,
117 | launcher_port: int,
118 | logger_port: int,
119 | world_size: int,
120 | rank: int,
121 | env_vars: dict[str, str],
122 | env_file: str | os.PathLike | None,
123 | hostname: str,
124 | ) -> str:
125 | """Generator for command to launch torchrunx on an agent."""
126 | # shlex.quote prevents shell injection here (resolves S602 in execute_command)
127 |
128 | commands = []
129 |
130 | commands.append(f"cd {shlex.quote(str(Path.cwd()))}")
131 |
132 | env_exports = [shlex.quote(f"{k}={v}") for k, v in env_vars.items()]
133 | if len(env_exports) > 0:
134 | commands.append("export " + " ".join(env_exports))
135 |
136 | if env_file is not None:
137 | commands.append("source " + shlex.quote(str(env_file)))
138 |
139 | python = shlex.quote(sys.executable)
140 | launcher_hostname = shlex.quote(launcher_hostname)
141 | hostname = shlex.quote(hostname)
142 |
143 | commands.append(
144 | f"{python} -u -m torchrunx "
145 | f"--launcher-hostname {launcher_hostname} "
146 | f"--launcher-port {launcher_port} "
147 | f"--logger-port {logger_port} "
148 | f"--world-size {world_size} "
149 | f"--rank {rank} "
150 | f"--hostname {hostname}",
151 | )
152 |
153 | return " && ".join(commands)
154 |
155 |
156 | def execute_command(
157 | command: str,
158 | hostname: str,
159 | *,
160 | ssh_config_file: str | os.PathLike | None = None,
161 | return_stdout_stderr: bool = False,
162 | ) -> tuple[str, str]:
163 | """Run a command on local or remote host (using SSH)."""
164 | is_localhost = True
165 | _hostname_or_ip = hostname
166 | try:
167 | _ip = ipaddress.ip_address(_hostname_or_ip)
168 | except ValueError:
169 | _ip = ipaddress.ip_address(socket.gethostbyname(_hostname_or_ip))
170 | if not _ip.is_loopback:
171 | # compare local interface addresses between host and localhost
172 | _host_addrs = [addr[4][0] for addr in socket.getaddrinfo(str(_ip), None)]
173 | _localhost_addrs = [addr[4][0] for addr in socket.getaddrinfo(socket.gethostname(), None)]
174 | is_localhost = len(set(_host_addrs) & set(_localhost_addrs)) > 0
175 |
176 | if is_localhost:
177 | # S602: subprocess.Popen is called with shell=True (https://docs.python.org/3.9/library/subprocess.html#security-considerations)
178 | # Made sure to shlex.quote arguments in build_command to prevent shell injection
179 | process = subprocess.Popen( # noqa: S602
180 | command,
181 | shell=True,
182 | text=True,
183 | stdout=subprocess.PIPE,
184 | stderr=subprocess.PIPE,
185 | )
186 |
187 | if return_stdout_stderr:
188 | stdout, stderr = process.communicate()
189 | return stdout, stderr
190 | else:
191 | runtime_ssh_path = ssh_config_file
192 | if isinstance(ssh_config_file, os.PathLike):
193 | runtime_ssh_path = str(ssh_config_file)
194 |
195 | with fabric.Connection(
196 | host=hostname,
197 | config=fabric.Config(runtime_ssh_path=runtime_ssh_path),
198 | ) as conn:
199 | promise = conn.run(command, asynchronous=True, hide=True)
200 |
201 | if return_stdout_stderr:
202 | results = promise.join()
203 | return results.stdout, results.stderr
204 |
205 | return ("", "")
206 |
--------------------------------------------------------------------------------
/src/torchrunx/utils/errors.py:
--------------------------------------------------------------------------------
1 | """Exception classes for agents and workers."""
2 |
3 | from dataclasses import dataclass
4 |
5 | __all__ = [
6 | "AgentFailedError",
7 | "ExceptionFromWorker",
8 | "WorkerFailedError",
9 | ]
10 |
11 |
12 | class AgentFailedError(Exception):
13 | """Raised if agent fails (e.g. if signal received)."""
14 |
15 |
16 | class WorkerFailedError(Exception):
17 | """Raised if a worker fails (e.g. if signal recieved or segmentation fault)."""
18 |
19 |
20 | @dataclass
21 | class ExceptionFromWorker:
22 | """Container for exceptions raised inside workers (from user script)."""
23 |
24 | exception: Exception
25 |
--------------------------------------------------------------------------------
/src/torchrunx/utils/log_handling.py:
--------------------------------------------------------------------------------
1 | """Utilities for intercepting logs in worker processes and handling these in the Launcher."""
2 |
3 | from __future__ import annotations
4 |
5 | __all__ = [
6 | "RedirectHandler",
7 | "default_handlers",
8 | "file_handlers",
9 | "get_handler_filter",
10 | ]
11 |
12 | import datetime
13 | import logging
14 | import os
15 | from logging import LogRecord
16 | from pathlib import Path
17 | from typing import Callable
18 |
19 |
20 | def get_handler_filter(
21 | hostname: str,
22 | local_rank: int | None, # None indicates agent
23 | log_level: int = logging.NOTSET,
24 | ) -> Callable[[LogRecord], bool]:
25 | """Get an agent- or worker- specific filter to apply to :obj:`logging.Handler`."""
26 | return lambda record: (
27 | record.hostname == hostname # pyright: ignore [reportAttributeAccessIssue]
28 | and record.local_rank == local_rank # pyright: ignore [reportAttributeAccessIssue]
29 | and record.levelno >= log_level
30 | )
31 |
32 |
33 | class RedirectHandler(logging.Handler):
34 | """For handling logs from hostname/rank with a corresponding logger in the launcher process."""
35 |
36 | def emit(self, record: LogRecord) -> None:
37 | """Handle log record using corresponding logger."""
38 | logger = logging.getLogger(record.name)
39 | if logger.isEnabledFor(record.levelno):
40 | logger.handle(record)
41 |
42 |
43 | def file_handlers(
44 | hostnames: list[str],
45 | workers_per_host: list[int],
46 | log_dir: str | os.PathLike = Path("torchrunx_logs"),
47 | log_level: int = logging.NOTSET,
48 | ) -> list[logging.Handler]:
49 | """Handler builder function for writing logs for all workers/agents to a directory.
50 |
51 | Files are named with hostname and the local_rank (for workers).
52 | """
53 | handlers = []
54 |
55 | timestamp = datetime.datetime.now().isoformat(timespec="seconds")
56 | log_dir = Path(log_dir) / timestamp
57 | log_dir.mkdir(parents=True, exist_ok=True)
58 |
59 | formatter = logging.Formatter(
60 | "%(asctime)s:%(levelname)s: %(message)s", datefmt="%Y-%m-%d %H:%M:%S"
61 | )
62 |
63 | for hostname, num_workers in zip(hostnames, workers_per_host):
64 | for local_rank in [None, *range(num_workers)]:
65 | local_rank_str = f"[{local_rank}]" if local_rank is not None else ""
66 | file_path = log_dir / f"{hostname}{local_rank_str}.log"
67 |
68 | h = logging.FileHandler(file_path)
69 | h.addFilter(get_handler_filter(hostname, local_rank, log_level=log_level))
70 | h.setFormatter(formatter)
71 |
72 | handlers.append(h)
73 |
74 | return handlers
75 |
76 |
77 | def default_handlers(hostnames: list[str], workers_per_host: list[int]) -> list[logging.Handler]:
78 | """Constructs default :obj:`logging.Handler` objects.
79 |
80 | Logs for the rank 0 agent and rank 0 worker are redirected to loggers in the launcher process.
81 | Logs for all hosts/workers are written to files in ``$TORCHRUNX_LOG_DIR`` (named by timestamp,
82 | hostname, local_rank).
83 | """
84 | log_dir = Path(os.environ.get("TORCHRUNX_LOG_DIR", "torchrunx_logs"))
85 |
86 | file_log_level = os.environ.get("TORCHRUNX_LOG_LEVEL", "INFO")
87 | if file_log_level.isdigit():
88 | file_log_level = int(file_log_level)
89 | elif file_log_level in logging._nameToLevel: # noqa: SLF001
90 | file_log_level = logging._nameToLevel[file_log_level] # noqa: SLF001
91 | else:
92 | msg = (
93 | f"Invalid value for $TORCHRUNX_LOG_LEVEL: {file_log_level}. "
94 | f"Should be a positive integer or any of: {', '.join(logging._nameToLevel.keys())}." # noqa: SLF001
95 | )
96 | raise ValueError(msg)
97 |
98 | redirect_agent_0_handler = RedirectHandler()
99 | redirect_agent_0_handler.addFilter(get_handler_filter(hostnames[0], None))
100 |
101 | redirect_worker_0_handler = RedirectHandler()
102 | redirect_worker_0_handler.addFilter(get_handler_filter(hostnames[0], 0))
103 |
104 | return [
105 | redirect_agent_0_handler,
106 | redirect_worker_0_handler,
107 | *file_handlers(hostnames, workers_per_host, log_dir=log_dir, log_level=file_log_level),
108 | ]
109 |
--------------------------------------------------------------------------------
/src/torchrunx/utils/log_streaming.py:
--------------------------------------------------------------------------------
1 | """Utilities for intercepting logs in worker processes and handling these in the Launcher."""
2 |
3 | from __future__ import annotations
4 |
5 | __all__ = [
6 | "LoggingServerArgs",
7 | "log_records_to_socket",
8 | "redirect_stdio_to_logger",
9 | "start_logging_server",
10 | ]
11 |
12 | import logging
13 | import os
14 | import pickle
15 | import signal
16 | import struct
17 | import sys
18 | from dataclasses import dataclass
19 | from logging import Handler, Logger
20 | from logging.handlers import SocketHandler
21 | from multiprocessing.synchronize import Event as EventClass
22 | from socketserver import StreamRequestHandler, ThreadingTCPServer
23 | from threading import Thread
24 | from typing import Callable
25 |
26 | import cloudpickle
27 | from typing_extensions import Self
28 |
29 | ## Launcher utilities
30 |
31 |
32 | class _LogRecordSocketReceiver(ThreadingTCPServer):
33 | """TCP server for recieving Agent/Worker log records in Launcher.
34 |
35 | Uses threading to avoid bottlenecks (i.e. "out-of-order" logs in Launcher process).
36 | """
37 |
38 | def __init__(self, host: str, port: int, handlers: list[Handler]) -> None:
39 | """Processing streamed bytes as LogRecord objects."""
40 | self.host = host
41 | self.port = port
42 |
43 | class _LogRecordStreamHandler(StreamRequestHandler):
44 | def handle(self) -> None:
45 | while True:
46 | chunk_size = 4
47 | chunk = self.connection.recv(chunk_size)
48 | if len(chunk) < chunk_size:
49 | break
50 | slen = struct.unpack(">L", chunk)[0]
51 | chunk = self.connection.recv(slen)
52 | while len(chunk) < slen:
53 | chunk = chunk + self.connection.recv(slen - len(chunk))
54 | obj = pickle.loads(chunk)
55 |
56 | ## Transform log record
57 |
58 | record: WorkerLogRecord = logging.makeLogRecord(obj) # pyright: ignore [reportAssignmentType]
59 |
60 | if record.name != "root":
61 | record.msg = f"{record.name}:{record.msg}"
62 |
63 | record.name = f"torchrunx.{record.hostname}"
64 | if record.local_rank is not None:
65 | record.name += f".{record.local_rank}"
66 |
67 | ## Handle log record
68 |
69 | for handler in handlers:
70 | handler.handle(record)
71 |
72 | super().__init__(
73 | server_address=(host, port),
74 | RequestHandlerClass=_LogRecordStreamHandler,
75 | bind_and_activate=True,
76 | )
77 | self.daemon_threads = True
78 |
79 | def shutdown(self) -> None:
80 | """Override BaseServer.shutdown() with added timeout (to avoid hanging)."""
81 | self._BaseServer__shutdown_request = True
82 | self._BaseServer__is_shut_down.wait(timeout=3) # pyright: ignore[reportAttributeAccessIssue]
83 |
84 |
85 | @dataclass
86 | class LoggingServerArgs:
87 | """Arguments for starting a :class:`_LogRecordSocketReceiver`."""
88 |
89 | handler_factory: Callable[[], list[Handler]]
90 | logging_hostname: str
91 | logging_port: int
92 |
93 | def serialize(self) -> bytes:
94 | """Serialize :class:`LoggingServerArgs` for passing to a new process."""
95 | return cloudpickle.dumps(self)
96 |
97 | @classmethod
98 | def from_bytes(cls, serialized: bytes) -> Self:
99 | """Deserialize bytes to :class:`LoggingServerArgs`."""
100 | return cloudpickle.loads(serialized)
101 |
102 |
103 | def start_logging_server(serialized_args: bytes, stop_event: EventClass) -> None:
104 | """Serve :class:`_LogRecordSocketReceiver` until stop event triggered."""
105 | args = LoggingServerArgs.from_bytes(serialized_args)
106 |
107 | log_handlers = args.handler_factory()
108 |
109 | log_receiver = _LogRecordSocketReceiver(
110 | host=args.logging_hostname,
111 | port=args.logging_port,
112 | handlers=log_handlers,
113 | )
114 |
115 | try:
116 | log_receiver.serve_forever()
117 | except KeyboardInterrupt:
118 | sys.exit(128 + signal.SIGINT)
119 |
120 | while not stop_event.is_set():
121 | pass
122 |
123 | log_receiver.shutdown()
124 | log_receiver.server_close()
125 |
126 |
127 | ## Agent/worker utilities
128 |
129 |
130 | def redirect_stdio_to_logger(logger: Logger) -> None:
131 | """Redirect stderr/stdout: send output to logger at every flush."""
132 | logging.captureWarnings(capture=True)
133 |
134 | def redirect_fd_to_logger(read_fd: int, level: int) -> None:
135 | for line in os.fdopen(read_fd):
136 | logger.log(level, line.rstrip())
137 |
138 | # create (r, w) pipe and start logging all outputs from r
139 | read_out_fd, write_out_fd = os.pipe()
140 | Thread(
141 | target=redirect_fd_to_logger,
142 | kwargs={"read_fd": read_out_fd, "level": logging.INFO},
143 | daemon=True,
144 | ).start()
145 | # flush buffer before redirecting stdout
146 | sys.stdout.flush()
147 | # pipe: r <-> stdout instead of r <-> w
148 | os.dup2(write_out_fd, sys.stdout.fileno()) # set stdout fd to pipe
149 | os.close(write_out_fd)
150 |
151 | # repeat for stderr
152 | read_err_fd, write_err_fd = os.pipe()
153 | Thread(
154 | target=redirect_fd_to_logger,
155 | kwargs={"read_fd": read_err_fd, "level": logging.ERROR},
156 | daemon=True,
157 | ).start()
158 | sys.stderr.flush()
159 | os.dup2(write_err_fd, sys.stderr.fileno())
160 | os.close(write_err_fd)
161 |
162 |
163 | @dataclass
164 | class WorkerLogRecord(logging.LogRecord):
165 | """Adding hostname, local_rank attributes to LogRecord. local_rank=None for Agent."""
166 |
167 | hostname: str
168 | local_rank: int | None
169 |
170 | @classmethod
171 | def from_record(cls, record: logging.LogRecord, hostname: str, local_rank: int | None) -> Self:
172 | record.hostname = hostname
173 | record.local_rank = local_rank
174 | record.__class__ = cls
175 | return record # pyright: ignore [reportReturnType]
176 |
177 |
178 | def log_records_to_socket(
179 | hostname: str,
180 | local_rank: int | None, # None indicates agent
181 | logger_hostname: str,
182 | logger_port: int,
183 | ) -> None:
184 | """Encode LogRecords with hostname/local_rank. Send to TCP socket on Launcher."""
185 | logging.root.setLevel(logging.NOTSET)
186 |
187 | old_factory = logging.getLogRecordFactory()
188 |
189 | def record_factory(*args, **kwargs) -> WorkerLogRecord: # noqa: ANN002, ANN003
190 | record = old_factory(*args, **kwargs)
191 | return WorkerLogRecord.from_record(record, hostname, local_rank)
192 |
193 | logging.setLogRecordFactory(record_factory)
194 |
195 | logging.root.addHandler(SocketHandler(host=logger_hostname, port=logger_port))
196 |
--------------------------------------------------------------------------------
/src/torchrunx/worker.py:
--------------------------------------------------------------------------------
1 | """Arguments and entrypoint for the worker processes."""
2 |
3 | from __future__ import annotations
4 |
5 | import datetime
6 | import logging
7 | import os
8 | import sys
9 | import traceback
10 | from dataclasses import asdict, dataclass
11 | from typing import Any, Callable, Literal
12 |
13 | import cloudpickle
14 | import torch.distributed as dist
15 | from typing_extensions import Self
16 |
17 | from .utils.errors import ExceptionFromWorker
18 | from .utils.log_streaming import log_records_to_socket, redirect_stdio_to_logger
19 |
20 | __all__ = ["WorkerArgs", "worker_entrypoint"]
21 |
22 |
23 | @dataclass
24 | class WorkerArgs:
25 | """Arguments passed from agent to spawned workers."""
26 |
27 | function: Callable
28 | logger_hostname: str
29 | logger_port: int
30 | master_hostname: str
31 | master_port: int
32 | backend: Literal["nccl", "gloo", "mpi", "ucc"] | None
33 | rank: int
34 | local_rank: int
35 | node_rank: int
36 | local_world_size: int
37 | world_size: int
38 | hostname: str
39 | timeout: int
40 |
41 | def serialize(self) -> bytes:
42 | """Arguments must be serialized (to bytes) before passed to spawned workers."""
43 | return cloudpickle.dumps(asdict(self))
44 |
45 | @classmethod
46 | def from_bytes(cls, b: bytes) -> Self:
47 | """Deserialize the bytes back into a WorkerArgs object."""
48 | return cls(**cloudpickle.loads(b))
49 |
50 |
51 | def worker_entrypoint(serialized_worker_args: bytes) -> Any | ExceptionFromWorker:
52 | """Function called by spawned worker processes.
53 |
54 | Workers first prepare a process group (for communicating with all other workers).
55 | They then invoke the user-provided function.
56 | Logs are transmitted to the launcher process.
57 | """
58 | worker_args = WorkerArgs.from_bytes(serialized_worker_args)
59 |
60 | # Start logging to the logging server (i.e. the launcher)
61 |
62 | log_records_to_socket(
63 | hostname=worker_args.hostname,
64 | local_rank=worker_args.local_rank,
65 | logger_hostname=worker_args.logger_hostname,
66 | logger_port=worker_args.logger_port,
67 | )
68 |
69 | logger = logging.getLogger()
70 | redirect_stdio_to_logger(logger)
71 |
72 | # Set rank/world environment variables
73 |
74 | os.environ["RANK"] = str(worker_args.rank)
75 | os.environ["LOCAL_RANK"] = str(worker_args.local_rank)
76 | os.environ["GROUP_RANK"] = str(worker_args.node_rank)
77 | os.environ["LOCAL_WORLD_SIZE"] = str(worker_args.local_world_size)
78 | os.environ["WORLD_SIZE"] = str(worker_args.world_size)
79 | os.environ["MASTER_ADDR"] = worker_args.master_hostname
80 | os.environ["MASTER_PORT"] = str(worker_args.master_port)
81 |
82 | # Prepare the process group (e.g. for communication within the user's function)
83 |
84 | if worker_args.backend is not None:
85 | backend = worker_args.backend
86 |
87 | dist.init_process_group(
88 | backend=backend,
89 | world_size=worker_args.world_size,
90 | rank=worker_args.rank,
91 | store=dist.TCPStore( # pyright: ignore [reportPrivateImportUsage]
92 | host_name=worker_args.master_hostname,
93 | port=worker_args.master_port,
94 | world_size=worker_args.world_size,
95 | is_master=(worker_args.rank == 0),
96 | ),
97 | timeout=datetime.timedelta(seconds=worker_args.timeout),
98 | )
99 |
100 | # Invoke the user's function on this worker
101 |
102 | try:
103 | return worker_args.function()
104 | except Exception as e:
105 | traceback.print_exc()
106 | return ExceptionFromWorker(exception=e)
107 | finally:
108 | sys.stdout.flush()
109 | sys.stderr.flush()
110 |
--------------------------------------------------------------------------------
/tests/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/apoorvkh/torchrunx/44446340838d62e1996c716919b0b836554ba143/tests/__init__.py
--------------------------------------------------------------------------------
/tests/test_ci.py:
--------------------------------------------------------------------------------
1 | import datetime
2 | import os
3 | import tempfile
4 | import time
5 | from pathlib import Path
6 | from typing import NoReturn
7 |
8 | import pytest
9 | import torch
10 | import torch.distributed as dist
11 |
12 | import torchrunx as trx
13 |
14 |
15 | def test_simple_localhost() -> None:
16 | def dist_func() -> torch.Tensor:
17 | rank = int(os.environ["RANK"])
18 |
19 | w = torch.rand((100, 100)) if rank == 0 else torch.zeros((100, 100))
20 |
21 | dist.broadcast(w, 0)
22 |
23 | i = torch.rand((500, 100)) # batch, dim
24 | o = torch.matmul(i, w)
25 |
26 | dist.all_reduce(o, op=dist.ReduceOp.SUM)
27 |
28 | print(i)
29 |
30 | return o.detach()
31 |
32 | tmp = tempfile.mkdtemp()
33 | os.environ["TORCHRUNX_DIR"] = tmp
34 |
35 | r = trx.Launcher(
36 | workers_per_host=2,
37 | backend="gloo",
38 | ).run(dist_func)
39 |
40 | assert torch.all(r.rank(0) == r.rank(1))
41 |
42 |
43 | def test_logging() -> None:
44 | def dist_func() -> None:
45 | rank = int(os.environ["RANK"])
46 | print(f"worker rank: {rank}")
47 |
48 | tmp = tempfile.mkdtemp()
49 | os.environ["TORCHRUNX_LOG_DIR"] = tmp
50 |
51 | num_workers = 2
52 |
53 | before_timestamp = datetime.datetime.now()
54 |
55 | time.sleep(1)
56 |
57 | trx.Launcher(
58 | workers_per_host=num_workers,
59 | backend="gloo",
60 | ).run(
61 | dist_func,
62 | )
63 |
64 | after_timestamp = datetime.datetime.now()
65 |
66 | log_dirs = next(os.walk(tmp), (None, [], None))[1]
67 |
68 | assert len(log_dirs) == 1
69 |
70 | # this should error if mis-formatted
71 | log_timestamp = datetime.datetime.fromisoformat(log_dirs[0])
72 |
73 | assert before_timestamp <= log_timestamp <= after_timestamp
74 |
75 | log_files = next(os.walk(f"{tmp}/{log_dirs[0]}"), (None, None, []))[2]
76 |
77 | assert len(log_files) == num_workers + 1
78 |
79 | for file in log_files:
80 | with Path(f"{tmp}/{log_dirs[0]}/{file}").open() as f:
81 | contents = f.read()
82 | print(contents)
83 | if file.endswith("[0].log"):
84 | assert "worker rank: 0\n" in contents
85 | elif file.endswith("[1].log"):
86 | assert "worker rank: 1\n" in contents
87 |
88 |
89 | def test_error() -> None:
90 | def error_func() -> NoReturn:
91 | msg = "abcdefg"
92 | raise ValueError(msg)
93 |
94 | tmp = tempfile.mkdtemp()
95 | os.environ["TORCHRUNX_DIR"] = tmp
96 |
97 | with pytest.raises(ValueError) as excinfo: # noqa: PT011
98 | trx.Launcher(
99 | workers_per_host=1,
100 | backend="gloo",
101 | ).run(
102 | error_func,
103 | )
104 |
105 | assert "abcdefg" in str(excinfo.value)
106 |
107 |
108 | if __name__ == "__main__":
109 | test_simple_localhost()
110 |
--------------------------------------------------------------------------------
/tests/test_func.py:
--------------------------------------------------------------------------------
1 | import os
2 | from functools import reduce
3 | from operator import add
4 |
5 | import torch
6 | import torch.distributed as dist
7 |
8 | import torchrunx as trx
9 |
10 |
11 | def test_launch() -> None:
12 | result = trx.Launcher(hostnames="slurm").run(simple_matmul)
13 |
14 | result_values = reduce(add, result.results.values())
15 |
16 | t = True
17 | for i in range(len(result_values)):
18 | t = t and torch.all(result_values[i] == result_values[0])
19 |
20 | assert t, "Not all tensors equal"
21 |
22 |
23 | def simple_matmul() -> torch.Tensor:
24 | rank = int(os.environ["RANK"])
25 | local_rank = int(os.environ["LOCAL_RANK"])
26 | device = torch.device(local_rank) if torch.cuda.is_available() else torch.device("cpu")
27 |
28 | if rank == 0:
29 | w = torch.rand((100, 100), device=device) # in_dim, out_dim
30 | else:
31 | w = torch.zeros((100, 100), device=device)
32 |
33 | dist.broadcast(w, 0)
34 |
35 | i = torch.rand((500, 100), device=device) # batch, dim
36 | o = torch.matmul(i, w)
37 | dist.all_reduce(o, op=dist.ReduceOp.SUM)
38 | print(i)
39 | return o.detach().cpu()
40 |
41 |
42 | if __name__ == "__main__":
43 | test_launch()
44 |
--------------------------------------------------------------------------------
/tests/test_submitit.py:
--------------------------------------------------------------------------------
1 | from __future__ import annotations
2 |
3 | import copy
4 |
5 | import submitit # pyright: ignore [reportMissingImports]
6 | import torch
7 | from torch.utils.data import Dataset
8 | from transformers import ( # pyright: ignore [reportMissingImports]
9 | BertForMaskedLM,
10 | Trainer,
11 | TrainingArguments,
12 | )
13 |
14 | import torchrunx as trx
15 |
16 |
17 | class DummyDataset(Dataset):
18 | def __init__(self, max_text_length: int = 16, num_samples: int = 20000) -> None:
19 | super().__init__()
20 | self.input_ids = torch.randint(0, 30522, (num_samples, max_text_length))
21 | self.labels = copy.deepcopy(self.input_ids)
22 |
23 | def __len__(self) -> int:
24 | return len(self.input_ids)
25 |
26 | def __getitem__(self, index: int) -> dict[str, torch.Tensor]:
27 | return {
28 | "input_ids": self.input_ids[index],
29 | "labels": self.labels[index],
30 | }
31 |
32 |
33 | def main() -> None:
34 | model = BertForMaskedLM.from_pretrained("bert-base-uncased")
35 | train_dataset = DummyDataset()
36 |
37 | ## Training
38 |
39 | training_arguments = TrainingArguments(
40 | output_dir="output",
41 | do_train=True,
42 | per_device_train_batch_size=16,
43 | max_steps=20,
44 | )
45 |
46 | trainer = Trainer(
47 | model=model,
48 | args=training_arguments,
49 | train_dataset=train_dataset,
50 | )
51 |
52 | trainer.train()
53 |
54 |
55 | def launch() -> None:
56 | trx.Launcher(hostnames="slurm").run(main)
57 |
58 |
59 | def test_submitit() -> None:
60 | executor = submitit.SlurmExecutor(folder="logs")
61 |
62 | executor.update_parameters(
63 | time=60,
64 | nodes=1,
65 | ntasks_per_node=1,
66 | mem="32G",
67 | cpus_per_task=4,
68 | gpus_per_node=2,
69 | constraint="geforce3090",
70 | partition="3090-gcondo",
71 | stderr_to_stdout=True,
72 | use_srun=False,
73 | )
74 |
75 | executor.submit(launch).result()
76 |
77 |
78 | if __name__ == "__main__":
79 | executor = submitit.SlurmExecutor(folder="logs")
80 |
81 | executor.update_parameters(
82 | time=60,
83 | nodes=1,
84 | ntasks_per_node=1,
85 | mem="32G",
86 | cpus_per_task=4,
87 | gpus_per_node=2,
88 | constraint="geforce3090",
89 | partition="3090-gcondo",
90 | stderr_to_stdout=True,
91 | use_srun=False,
92 | )
93 |
94 | executor.submit(launch)
95 |
--------------------------------------------------------------------------------
/tests/test_train_gpu.py:
--------------------------------------------------------------------------------
1 | import os
2 |
3 | import torch
4 |
5 | import torchrunx as trx
6 |
7 |
8 | class MLP(torch.nn.Module):
9 | def __init__(self) -> None:
10 | super().__init__()
11 | self.a = torch.nn.Linear(10, 10, bias=False)
12 | self.b = torch.nn.Linear(10, 1, bias=False)
13 |
14 | def forward(self, x: torch.Tensor) -> torch.Tensor:
15 | return self.b(self.a(x))
16 |
17 |
18 | def worker() -> None:
19 | local_rank = int(os.environ["LOCAL_RANK"])
20 | print("init model")
21 | model = MLP().to(local_rank)
22 | print("init ddp")
23 | ddp_model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[local_rank])
24 |
25 | inp = torch.randn(10, 10).to(local_rank)
26 | print("train")
27 |
28 | for _ in range(20):
29 | output = ddp_model(inp)
30 | loss = output.sum()
31 | loss.backward()
32 |
33 |
34 | def test_distributed_train() -> None:
35 | trx.Launcher(
36 | backend="nccl",
37 | ).run(worker)
38 |
39 |
40 | if __name__ == "__main__":
41 | test_distributed_train()
42 |
--------------------------------------------------------------------------------