├── .gitignore
├── Data
├── cars_photo.jpg
├── Train_Data
│ ├── 0.jpg
│ ├── 1.jpg
│ ├── 2.jpg
│ ├── 3.jpg
│ ├── 4.jpg
│ ├── 5.jpg
│ ├── 6.jpg
│ ├── 7.jpg
│ ├── 8.jpg
│ └── 9.jpg
└── Train_Label.text
├── requirements.txt
├── Sensor_Data
├── zed_process.py
└── lidar_process.py
├── predict.py
├── get_data.py
├── train.py
├── README.md
├── get_model.py
├── ai.py
└── LICENSE
/.gitignore:
--------------------------------------------------------------------------------
1 | __pycache__
2 | *.pyc
3 | .DS_Store
4 |
5 | Data/Checkpoints/
6 | Data/Model/
7 |
--------------------------------------------------------------------------------
/Data/cars_photo.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ardamavi/Jetson-RaceCar-AI/HEAD/Data/cars_photo.jpg
--------------------------------------------------------------------------------
/Data/Train_Data/0.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ardamavi/Jetson-RaceCar-AI/HEAD/Data/Train_Data/0.jpg
--------------------------------------------------------------------------------
/Data/Train_Data/1.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ardamavi/Jetson-RaceCar-AI/HEAD/Data/Train_Data/1.jpg
--------------------------------------------------------------------------------
/Data/Train_Data/2.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ardamavi/Jetson-RaceCar-AI/HEAD/Data/Train_Data/2.jpg
--------------------------------------------------------------------------------
/Data/Train_Data/3.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ardamavi/Jetson-RaceCar-AI/HEAD/Data/Train_Data/3.jpg
--------------------------------------------------------------------------------
/Data/Train_Data/4.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ardamavi/Jetson-RaceCar-AI/HEAD/Data/Train_Data/4.jpg
--------------------------------------------------------------------------------
/Data/Train_Data/5.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ardamavi/Jetson-RaceCar-AI/HEAD/Data/Train_Data/5.jpg
--------------------------------------------------------------------------------
/Data/Train_Data/6.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ardamavi/Jetson-RaceCar-AI/HEAD/Data/Train_Data/6.jpg
--------------------------------------------------------------------------------
/Data/Train_Data/7.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ardamavi/Jetson-RaceCar-AI/HEAD/Data/Train_Data/7.jpg
--------------------------------------------------------------------------------
/Data/Train_Data/8.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ardamavi/Jetson-RaceCar-AI/HEAD/Data/Train_Data/8.jpg
--------------------------------------------------------------------------------
/Data/Train_Data/9.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ardamavi/Jetson-RaceCar-AI/HEAD/Data/Train_Data/9.jpg
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | scipy
2 | numpy
3 | scikit-learn
4 | scikit-image
5 | tensorflow
6 | keras
7 | h5py
8 |
--------------------------------------------------------------------------------
/Data/Train_Label.text:
--------------------------------------------------------------------------------
1 | 0.jpg 0.5 1.0 5.0 10.0 100.0
2 | 1.jpg 0.3 0.8 4.0 6.0 120.0
3 | 2.jpg 0.7 0.8 356.0 6.0 130.0
4 | 3.jpg 0.2 0.5 1.0 10.0 120.0
5 | 4.jpg 0.5 0.0 2.0 5.0 70.0
6 | 5.jpg 0.4 1.0 350.0 20.0 50.0
7 | 6.jpg 0.9 0.2 355.0 5.0 40.0
8 | 7.jpg 0.1 0.2 358.0 6.0 60.0
9 | 8.jpg 0.5 1.0 270.0 10.0 40.0
10 | 9.jpg 0.7 0.9 340.0 5.0 60.0
--------------------------------------------------------------------------------
/Sensor_Data/zed_process.py:
--------------------------------------------------------------------------------
1 | # Arda Mavi
2 | import cv2
3 |
4 | # Getting capture:
5 | def get_capture(camera=1): # Camera 0 is jetson's embeded camera.
6 | cap = cv2.VideoCapture(camera)
7 | return cap
8 |
9 | # Release capture:
10 | def release_capture(capture):
11 | capture.release()
12 |
13 | # For 3D Picture:
14 | stereo = cv2.StereoBM_create(numDisparities=16, blockSize=15)
15 |
16 | # Take a picture:
17 | def get_zed_data(capture):
18 | ret, img = capture.read()
19 |
20 | img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
21 |
22 | img_left = img[0:376, 0:672]
23 | img_right = img[0:376, 672:1344]
24 |
25 | disparity = stereo.compute(img_left,img_right)
26 |
27 | return disparity
28 |
--------------------------------------------------------------------------------
/predict.py:
--------------------------------------------------------------------------------
1 | # Arda Mavi
2 |
3 | import sys
4 | import numpy as np
5 | from get_data import get_img
6 | from scipy.misc import imresize
7 | from keras.models import model_from_json
8 |
9 | def predict(model, img, lidar_data):
10 | Y = model.predict([img, lidar_data])
11 | return Y
12 |
13 | def get_ready_model():
14 | # Getting model:
15 | model_file = open('Data/Model/model.json', 'r')
16 | model = model_file.read()
17 | model_file.close()
18 | model = model_from_json(model)
19 | # Getting weights:
20 | model.load_weights("Data/Model/weights.h5")
21 | return model
22 |
23 | if __name__ == '__main__':
24 | img_dir = sys.argv[1]
25 | lidar_data = [sys.argv[2], sys.argv[3], sys.argv[4]]
26 | img = get_img(img_dir)
27 | model = get_ready_model()
28 | img = np.array(img).reshape(1, 500, 500, 1)
29 | lidar_data = np.array(lidar_data).reshape(1, 3)
30 | print(predict(model, img, lidar_data))
31 |
--------------------------------------------------------------------------------
/get_data.py:
--------------------------------------------------------------------------------
1 | # Arda Mavi
2 |
3 | import numpy as np
4 | from scipy.misc import imread, imresize
5 |
6 | def get_img(data_path):
7 | # Getting image array from path:
8 | img = imread(data_path, mode='L')
9 | img = imresize(img, (500, 500, 1))
10 | return img
11 |
12 | def get_data():
13 | with open('Data/Train_Label.text', 'r') as file:
14 | all_file = file.read()
15 | X_1, X_2, Y = [], [], []
16 | datasets = all_file.split('\n')
17 | for data in datasets:
18 | one_data = data.split(' ')
19 | img = get_img('Data/Train_Data/'+one_data[0])
20 | X_1.append(img)
21 | X_2.append([float(one_data[3]), float(one_data[4]), float(one_data[5])])
22 | Y.append([float(one_data[1]), float(one_data[2])])
23 | X_1 = np.array(X_1).reshape(len(datasets), 500, 500, 1)
24 | X_2 = np.array(X_2).reshape(len(datasets), 3)
25 | Y = np.array(Y).reshape(len(datasets), 2)
26 | return X_1, X_2, Y
27 |
--------------------------------------------------------------------------------
/Sensor_Data/lidar_process.py:
--------------------------------------------------------------------------------
1 | # Arda Mavi
2 | from sweeppy import Sweep
3 | import itertools
4 |
5 | def get_lidar_data():
6 | with Sweep('/dev/ttyUSB0') as lidar:
7 | while not lidar.get_motor_ready():
8 | pass
9 | lidar.start_scanning()
10 | scans = lidar.get_scans()
11 | data = []
12 | for scan in itertools.islice(lidar.get_scans(), 1):
13 | datas = scan[0]
14 | data.append([datas[0], datas[1], datas[2]])
15 | lidar.stop_scanning()
16 | return data
17 |
18 | def start_lidar():
19 | set_motor_speed(speed=5)
20 | set_sample_rate(rate=500)
21 | with Sweep('/dev/ttyUSB0') as lidar:
22 | lidar.start_scanning()
23 |
24 | def stop_lidar():
25 | set_motor_speed(speed=0)
26 | set_sample_rate(rate=0)
27 | with Sweep('/dev/ttyUSB0') as lidar:
28 | lidar.stop_scanning()
29 |
30 | def set_motor_speed(speed=5):
31 | with Sweep('/dev/ttyUSB0') as lidar:
32 | if lidar.get_motor_speed() != speed:
33 | lidar.set_motor_speed(speed)
34 |
35 | def set_sample_rate(rate=500):
36 | with Sweep('/dev/ttyUSB0') as lidar:
37 | if lidar.get_sample_rate() != rate:
38 | lidar.set_sample_rate(rate)
39 |
--------------------------------------------------------------------------------
/train.py:
--------------------------------------------------------------------------------
1 | # Arda Mavi
2 |
3 | import os
4 | import numpy as np
5 | from get_data import get_data
6 | from get_model import get_model, save_model
7 | from keras.callbacks import ModelCheckpoint, TensorBoard
8 | from keras.preprocessing.image import ImageDataGenerator
9 |
10 | def train_model(model, X_1, X_2, Y):
11 |
12 | batch_size = 1
13 | epochs = 10
14 |
15 | checkpoints = []
16 | if not os.path.exists('Data/Checkpoints/'):
17 | os.makedirs('Data/Checkpoints/')
18 | checkpoints.append(ModelCheckpoint('Data/Checkpoints/best_weights.h5', monitor='val_loss', verbose=0, save_best_only=True, save_weights_only=True, mode='auto', period=1))
19 | checkpoints.append(TensorBoard(log_dir='Data/Checkpoints/./logs', histogram_freq=0, write_graph=True, write_images=False, embeddings_freq=0, embeddings_layer_names=None, embeddings_metadata=None))
20 |
21 | model.fit([X_1, X_2], Y, batch_size=batch_size, epochs=epochs, validation_data=([X_1, X_2], Y), shuffle=True, callbacks=checkpoints)
22 |
23 | return model
24 |
25 | def main():
26 | X_1, X_2, Y = get_data()
27 | model = train_model(get_model(), X_1, X_2, Y)
28 | save_model(model)
29 | return model
30 |
31 | if __name__ == '__main__':
32 | main()
33 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Jetson-RaceCar-AI
2 | Artificial intelligence for Jetson RaceCar
3 | Autonomous race car with deep learning.
4 |
5 | ### Race Car's Photo
6 |
7 |
8 | ### Hardware
9 | + System:
10 | NVIDIA Jetson TX1 with Jetpack 3.0
11 |
12 | + Camera:
13 | [ZED Stereo Camera](https://www.stereolabs.com) ( [ZED SDK](https://www.stereolabs.com/developers/) )
14 |
15 | + Lidar:
16 | [Scanse Sweep](http://scanse.io)
17 | For more information look up Jim's blog post [JetsonHacks - Sweep Software Installing](http://www.jetsonhacks.com/2017/06/06/scanse-sweep-lidar-software-install/).
18 |
19 | ### Running Artificial Intelligence Command:
20 | `python3 ai.py`
21 |
22 | ### Using Predict Command:
23 | `python3 predict.py `
24 |
25 | ### Model Training:
26 | `python3 train.py`
27 |
28 | ### Using TensorBoard:
29 | `tensorboard --logdir=Data/Checkpoints/./logs`
30 |
31 | ### Installing TensorFlow for Jetson TX1:
32 | Look up my [TensorFlow-For-Jetson-TX1](https://github.com/ardamavi/TensorFlow-For-Jetson-TX1) repository.
33 |
34 | ### Important Notes:
35 | - Used Python Version: 3.6
36 | - Install necessary modules with `sudo pip3 install -r requirements.txt` command.
37 | - Install [Sweeppy](https://github.com/scanse/sweep-sdk/tree/master/sweeppy)
38 | - Install [OpenCV with CUDA for Jetson TX1](http://docs.opencv.org/3.2.0/d6/d15/tutorial_building_tegra_cuda.html)
39 |
--------------------------------------------------------------------------------
/get_model.py:
--------------------------------------------------------------------------------
1 | # Arda Mavi
2 |
3 | import os
4 | from keras.models import Model
5 | from keras.layers import Input, Conv2D, Activation, MaxPooling2D, Flatten, Dense, Dropout, concatenate
6 |
7 | def save_model(model):
8 | if not os.path.exists('Data/Model/'):
9 | os.makedirs('Data/Model/')
10 | model_json = model.to_json()
11 | with open("Data/Model/model.json", "w") as model_file:
12 | model_file.write(model_json)
13 | model.save_weights("Data/Model/weights.h5")
14 | print('Model and weights saved')
15 | return
16 |
17 |
18 | def get_model():
19 | img_inputs = Input(shape=(500, 500, 1))
20 | lidar_inputs = Input(shape=(3,))
21 |
22 | conv_1 = Conv2D(32, (4,4), strides=(2,2))(img_inputs)
23 |
24 | conv_2 = Conv2D(32, (4,4), strides=(2,2))(conv_1)
25 |
26 | conv_3 = Conv2D(32, (3,3), strides=(1,1))(conv_2)
27 | act_3 = Activation('relu')(conv_3)
28 |
29 | pooling_1 = MaxPooling2D(pool_size=(2, 2), strides=(2, 2))(act_3)
30 |
31 | flat_1 = Flatten()(pooling_1)
32 |
33 | fc = Dense(32)(flat_1)
34 |
35 | lidar_fc = Dense(32)(lidar_inputs)
36 |
37 | concatenate_layer = concatenate([fc, lidar_fc])
38 |
39 | fc = Dense(10)(concatenate_layer)
40 | fc = Activation('relu')(fc)
41 | fc = Dropout(0.5)(fc)
42 |
43 | outputs = Dense(2)(fc)
44 |
45 | outputs = Activation('sigmoid')(outputs)
46 |
47 |
48 | model = Model(inputs=[img_inputs, lidar_inputs], outputs=[outputs])
49 |
50 | model.compile(loss='mse', optimizer='adadelta', metrics=['accuracy'])
51 |
52 | print(model.summary())
53 |
54 | return model
55 |
56 | if __name__ == '__main__':
57 | save_model(get_model())
58 |
--------------------------------------------------------------------------------
/ai.py:
--------------------------------------------------------------------------------
1 | # Arda Mavi
2 |
3 | import time
4 | import numpy as np
5 | from scipy.misc import imresize
6 | from multiprocessing import Process, Value, Array
7 | from predict import predict, get_ready_model
8 | from Sensor_Data.zed_process import get_zed_data, get_capture, release_capture
9 | from Sensor_Data.lidar_process import get_lidar_data, start_lidar, stop_lidar
10 |
11 | zed_data = Array('f', [])
12 | lidar_data = Array('f', [])
13 | data_flow = Value('i', 1)
14 |
15 | def zed_data_process(cap):
16 | while data_flow.value:
17 | zed_data = np.array(imresize(np.array(get_zed_data(cap)), (500, 500, 1)))
18 |
19 | def lidar_data_process():
20 | while data_flow.value:
21 | lidar_data = np.array(get_lidar_data())
22 |
23 | def ai():
24 | print('Preparing model ...')
25 | model = get_ready_model()
26 | print('Model ready.')
27 |
28 | print('Preparing lidar ...')
29 | start_lidar()
30 | print('Lidar ready.')
31 |
32 | print('Preparing camera...')
33 | cap = get_capture()
34 | print('Camera ready.')
35 |
36 | data_flow.value = True
37 |
38 | print('Threads starting')
39 | # Start getting data process:
40 | camera_process = Process(target=zed_data_process, args=(cap,))
41 | camera_process.start()
42 | print('Camera thread start.')
43 |
44 | lidar_process = Process(target=lidar_data_process)
45 | lidar_process.start()
46 | print('Lidar thread start.')
47 |
48 | print('AI will start in a short time.')
49 | time.sleep(2)
50 |
51 | while True:
52 | stereo_img = np.array(zed_data)
53 | lidar_map = np.array(lidar_data)
54 | try:
55 | if stereo_img.size != 0 and lidar_map.size != 0:
56 | print(predict(model, stereo_img, lidar_map))
57 | except:
58 | print('AI Error !')
59 | break
60 |
61 | data_flow.value = False
62 | camera_process.join()
63 | lidar_process.join()
64 |
65 | stop_lidar()
66 |
67 | release_capture(cap)
68 |
69 | if __name__ == '__main__':
70 | ai()
71 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | Apache License
2 | Version 2.0, January 2004
3 | http://www.apache.org/licenses/
4 |
5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6 |
7 | 1. Definitions.
8 |
9 | "License" shall mean the terms and conditions for use, reproduction,
10 | and distribution as defined by Sections 1 through 9 of this document.
11 |
12 | "Licensor" shall mean the copyright owner or entity authorized by
13 | the copyright owner that is granting the License.
14 |
15 | "Legal Entity" shall mean the union of the acting entity and all
16 | other entities that control, are controlled by, or are under common
17 | control with that entity. For the purposes of this definition,
18 | "control" means (i) the power, direct or indirect, to cause the
19 | direction or management of such entity, whether by contract or
20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the
21 | outstanding shares, or (iii) beneficial ownership of such entity.
22 |
23 | "You" (or "Your") shall mean an individual or Legal Entity
24 | exercising permissions granted by this License.
25 |
26 | "Source" form shall mean the preferred form for making modifications,
27 | including but not limited to software source code, documentation
28 | source, and configuration files.
29 |
30 | "Object" form shall mean any form resulting from mechanical
31 | transformation or translation of a Source form, including but
32 | not limited to compiled object code, generated documentation,
33 | and conversions to other media types.
34 |
35 | "Work" shall mean the work of authorship, whether in Source or
36 | Object form, made available under the License, as indicated by a
37 | copyright notice that is included in or attached to the work
38 | (an example is provided in the Appendix below).
39 |
40 | "Derivative Works" shall mean any work, whether in Source or Object
41 | form, that is based on (or derived from) the Work and for which the
42 | editorial revisions, annotations, elaborations, or other modifications
43 | represent, as a whole, an original work of authorship. For the purposes
44 | of this License, Derivative Works shall not include works that remain
45 | separable from, or merely link (or bind by name) to the interfaces of,
46 | the Work and Derivative Works thereof.
47 |
48 | "Contribution" shall mean any work of authorship, including
49 | the original version of the Work and any modifications or additions
50 | to that Work or Derivative Works thereof, that is intentionally
51 | submitted to Licensor for inclusion in the Work by the copyright owner
52 | or by an individual or Legal Entity authorized to submit on behalf of
53 | the copyright owner. For the purposes of this definition, "submitted"
54 | means any form of electronic, verbal, or written communication sent
55 | to the Licensor or its representatives, including but not limited to
56 | communication on electronic mailing lists, source code control systems,
57 | and issue tracking systems that are managed by, or on behalf of, the
58 | Licensor for the purpose of discussing and improving the Work, but
59 | excluding communication that is conspicuously marked or otherwise
60 | designated in writing by the copyright owner as "Not a Contribution."
61 |
62 | "Contributor" shall mean Licensor and any individual or Legal Entity
63 | on behalf of whom a Contribution has been received by Licensor and
64 | subsequently incorporated within the Work.
65 |
66 | 2. Grant of Copyright License. Subject to the terms and conditions of
67 | this License, each Contributor hereby grants to You a perpetual,
68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69 | copyright license to reproduce, prepare Derivative Works of,
70 | publicly display, publicly perform, sublicense, and distribute the
71 | Work and such Derivative Works in Source or Object form.
72 |
73 | 3. Grant of Patent License. Subject to the terms and conditions of
74 | this License, each Contributor hereby grants to You a perpetual,
75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76 | (except as stated in this section) patent license to make, have made,
77 | use, offer to sell, sell, import, and otherwise transfer the Work,
78 | where such license applies only to those patent claims licensable
79 | by such Contributor that are necessarily infringed by their
80 | Contribution(s) alone or by combination of their Contribution(s)
81 | with the Work to which such Contribution(s) was submitted. If You
82 | institute patent litigation against any entity (including a
83 | cross-claim or counterclaim in a lawsuit) alleging that the Work
84 | or a Contribution incorporated within the Work constitutes direct
85 | or contributory patent infringement, then any patent licenses
86 | granted to You under this License for that Work shall terminate
87 | as of the date such litigation is filed.
88 |
89 | 4. Redistribution. You may reproduce and distribute copies of the
90 | Work or Derivative Works thereof in any medium, with or without
91 | modifications, and in Source or Object form, provided that You
92 | meet the following conditions:
93 |
94 | (a) You must give any other recipients of the Work or
95 | Derivative Works a copy of this License; and
96 |
97 | (b) You must cause any modified files to carry prominent notices
98 | stating that You changed the files; and
99 |
100 | (c) You must retain, in the Source form of any Derivative Works
101 | that You distribute, all copyright, patent, trademark, and
102 | attribution notices from the Source form of the Work,
103 | excluding those notices that do not pertain to any part of
104 | the Derivative Works; and
105 |
106 | (d) If the Work includes a "NOTICE" text file as part of its
107 | distribution, then any Derivative Works that You distribute must
108 | include a readable copy of the attribution notices contained
109 | within such NOTICE file, excluding those notices that do not
110 | pertain to any part of the Derivative Works, in at least one
111 | of the following places: within a NOTICE text file distributed
112 | as part of the Derivative Works; within the Source form or
113 | documentation, if provided along with the Derivative Works; or,
114 | within a display generated by the Derivative Works, if and
115 | wherever such third-party notices normally appear. The contents
116 | of the NOTICE file are for informational purposes only and
117 | do not modify the License. You may add Your own attribution
118 | notices within Derivative Works that You distribute, alongside
119 | or as an addendum to the NOTICE text from the Work, provided
120 | that such additional attribution notices cannot be construed
121 | as modifying the License.
122 |
123 | You may add Your own copyright statement to Your modifications and
124 | may provide additional or different license terms and conditions
125 | for use, reproduction, or distribution of Your modifications, or
126 | for any such Derivative Works as a whole, provided Your use,
127 | reproduction, and distribution of the Work otherwise complies with
128 | the conditions stated in this License.
129 |
130 | 5. Submission of Contributions. Unless You explicitly state otherwise,
131 | any Contribution intentionally submitted for inclusion in the Work
132 | by You to the Licensor shall be under the terms and conditions of
133 | this License, without any additional terms or conditions.
134 | Notwithstanding the above, nothing herein shall supersede or modify
135 | the terms of any separate license agreement you may have executed
136 | with Licensor regarding such Contributions.
137 |
138 | 6. Trademarks. This License does not grant permission to use the trade
139 | names, trademarks, service marks, or product names of the Licensor,
140 | except as required for reasonable and customary use in describing the
141 | origin of the Work and reproducing the content of the NOTICE file.
142 |
143 | 7. Disclaimer of Warranty. Unless required by applicable law or
144 | agreed to in writing, Licensor provides the Work (and each
145 | Contributor provides its Contributions) on an "AS IS" BASIS,
146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147 | implied, including, without limitation, any warranties or conditions
148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149 | PARTICULAR PURPOSE. You are solely responsible for determining the
150 | appropriateness of using or redistributing the Work and assume any
151 | risks associated with Your exercise of permissions under this License.
152 |
153 | 8. Limitation of Liability. In no event and under no legal theory,
154 | whether in tort (including negligence), contract, or otherwise,
155 | unless required by applicable law (such as deliberate and grossly
156 | negligent acts) or agreed to in writing, shall any Contributor be
157 | liable to You for damages, including any direct, indirect, special,
158 | incidental, or consequential damages of any character arising as a
159 | result of this License or out of the use or inability to use the
160 | Work (including but not limited to damages for loss of goodwill,
161 | work stoppage, computer failure or malfunction, or any and all
162 | other commercial damages or losses), even if such Contributor
163 | has been advised of the possibility of such damages.
164 |
165 | 9. Accepting Warranty or Additional Liability. While redistributing
166 | the Work or Derivative Works thereof, You may choose to offer,
167 | and charge a fee for, acceptance of support, warranty, indemnity,
168 | or other liability obligations and/or rights consistent with this
169 | License. However, in accepting such obligations, You may act only
170 | on Your own behalf and on Your sole responsibility, not on behalf
171 | of any other Contributor, and only if You agree to indemnify,
172 | defend, and hold each Contributor harmless for any liability
173 | incurred by, or claims asserted against, such Contributor by reason
174 | of your accepting any such warranty or additional liability.
175 |
176 | END OF TERMS AND CONDITIONS
177 |
178 | APPENDIX: How to apply the Apache License to your work.
179 |
180 | To apply the Apache License to your work, attach the following
181 | boilerplate notice, with the fields enclosed by brackets "{}"
182 | replaced with your own identifying information. (Don't include
183 | the brackets!) The text should be enclosed in the appropriate
184 | comment syntax for the file format. We also recommend that a
185 | file or class name and description of purpose be included on the
186 | same "printed page" as the copyright notice for easier
187 | identification within third-party archives.
188 |
189 | Copyright 2017 Arda Mavi
190 |
191 | Licensed under the Apache License, Version 2.0 (the "License");
192 | you may not use this file except in compliance with the License.
193 | You may obtain a copy of the License at
194 |
195 | http://www.apache.org/licenses/LICENSE-2.0
196 |
197 | Unless required by applicable law or agreed to in writing, software
198 | distributed under the License is distributed on an "AS IS" BASIS,
199 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200 | See the License for the specific language governing permissions and
201 | limitations under the License.
202 |
--------------------------------------------------------------------------------