├── .gitignore
├── LICENSE
├── README.md
├── assets
├── cameraui.jpg
├── cctv_system.jpg
├── dl.png
├── encrypt.png
├── index.jpeg
├── locations.png
├── logo.png
└── search_tab.png
├── camera
├── caption_gen.py
├── feed.py
├── models.py
├── results.csv
└── word_map.json
├── encryption
├── decrypt.py
└── encrypt.py
├── model
├── __init__.py
├── datasets.py
├── eval.py
├── model.py
└── utils.py
├── requirements.txt
├── search
├── search.py
└── search_word.py
└── test
├── coordinates.csv
├── coordinates.py
├── results.csv
└── test.csv
/.gitignore:
--------------------------------------------------------------------------------
1 | # Editors
2 | .vscode/
3 | .idea/
4 |
5 | # Vagrant
6 | .vagrant/
7 |
8 | # Mac/OSX
9 | .DS_Store
10 |
11 | # Windows
12 | Thumbs.db
13 |
14 | # Source for the following rules: https://raw.githubusercontent.com/github/gitignore/master/Python.gitignore
15 | # Byte-compiled / optimized / DLL files
16 | __pycache__/
17 | *.py[cod]
18 | *$py.class
19 |
20 | # C extensions
21 | *.so
22 |
23 | # Distribution / packaging
24 | .Python
25 | build/
26 | develop-eggs/
27 | dist/
28 | downloads/
29 | eggs/
30 | .eggs/
31 | lib/
32 | lib64/
33 | parts/
34 | sdist/
35 | var/
36 | wheels/
37 | *.egg-info/
38 | .installed.cfg
39 | *.egg
40 | MANIFEST
41 |
42 | # PyInstaller
43 | # Usually these files are written by a python script from a template
44 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
45 | *.manifest
46 | *.spec
47 |
48 | # Installer logs
49 | pip-log.txt
50 | pip-delete-this-directory.txt
51 |
52 | # Unit test / coverage reports
53 | htmlcov/
54 | .tox/
55 | .nox/
56 | .coverage
57 | .coverage.*
58 | .cache
59 | nosetests.xml
60 | coverage.xml
61 | *.cover
62 | .hypothesis/
63 | .pytest_cache/
64 |
65 | # Translations
66 | *.mo
67 | *.pot
68 |
69 | # Django stuff:
70 | *.log
71 | local_settings.py
72 | db.sqlite3
73 |
74 | # Flask stuff:
75 | instance/
76 | .webassets-cache
77 |
78 | # Scrapy stuff:
79 | .scrapy
80 |
81 | # Sphinx documentation
82 | docs/_build/
83 |
84 | # PyBuilder
85 | target/
86 |
87 | # Jupyter Notebook
88 | .ipynb_checkpoints
89 |
90 | # IPython
91 | profile_default/
92 | ipython_config.py
93 |
94 | # pyenv
95 | .python-version
96 |
97 | # celery beat schedule file
98 | celerybeat-schedule
99 |
100 | # SageMath parsed files
101 | *.sage.py
102 |
103 | # Environments
104 | .env
105 | .venv
106 | env/
107 | venv/
108 | ENV/
109 | env.bak/
110 | venv.bak/
111 |
112 | # Spyder project settings
113 | .spyderproject
114 | .spyproject
115 |
116 | # Rope project settings
117 | .ropeproject
118 |
119 | # mkdocs documentation
120 | /site
121 |
122 | # mypy
123 | .mypy_cache/
124 | .dmypy.json
125 | dmypy.json
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | Apache License
2 | Version 2.0, January 2004
3 | http://www.apache.org/licenses/
4 |
5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6 |
7 | 1. Definitions.
8 |
9 | "License" shall mean the terms and conditions for use, reproduction,
10 | and distribution as defined by Sections 1 through 9 of this document.
11 |
12 | "Licensor" shall mean the copyright owner or entity authorized by
13 | the copyright owner that is granting the License.
14 |
15 | "Legal Entity" shall mean the union of the acting entity and all
16 | other entities that control, are controlled by, or are under common
17 | control with that entity. For the purposes of this definition,
18 | "control" means (i) the power, direct or indirect, to cause the
19 | direction or management of such entity, whether by contract or
20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the
21 | outstanding shares, or (iii) beneficial ownership of such entity.
22 |
23 | "You" (or "Your") shall mean an individual or Legal Entity
24 | exercising permissions granted by this License.
25 |
26 | "Source" form shall mean the preferred form for making modifications,
27 | including but not limited to software source code, documentation
28 | source, and configuration files.
29 |
30 | "Object" form shall mean any form resulting from mechanical
31 | transformation or translation of a Source form, including but
32 | not limited to compiled object code, generated documentation,
33 | and conversions to other media types.
34 |
35 | "Work" shall mean the work of authorship, whether in Source or
36 | Object form, made available under the License, as indicated by a
37 | copyright notice that is included in or attached to the work
38 | (an example is provided in the Appendix below).
39 |
40 | "Derivative Works" shall mean any work, whether in Source or Object
41 | form, that is based on (or derived from) the Work and for which the
42 | editorial revisions, annotations, elaborations, or other modifications
43 | represent, as a whole, an original work of authorship. For the purposes
44 | of this License, Derivative Works shall not include works that remain
45 | separable from, or merely link (or bind by name) to the interfaces of,
46 | the Work and Derivative Works thereof.
47 |
48 | "Contribution" shall mean any work of authorship, including
49 | the original version of the Work and any modifications or additions
50 | to that Work or Derivative Works thereof, that is intentionally
51 | submitted to Licensor for inclusion in the Work by the copyright owner
52 | or by an individual or Legal Entity authorized to submit on behalf of
53 | the copyright owner. For the purposes of this definition, "submitted"
54 | means any form of electronic, verbal, or written communication sent
55 | to the Licensor or its representatives, including but not limited to
56 | communication on electronic mailing lists, source code control systems,
57 | and issue tracking systems that are managed by, or on behalf of, the
58 | Licensor for the purpose of discussing and improving the Work, but
59 | excluding communication that is conspicuously marked or otherwise
60 | designated in writing by the copyright owner as "Not a Contribution."
61 |
62 | "Contributor" shall mean Licensor and any individual or Legal Entity
63 | on behalf of whom a Contribution has been received by Licensor and
64 | subsequently incorporated within the Work.
65 |
66 | 2. Grant of Copyright License. Subject to the terms and conditions of
67 | this License, each Contributor hereby grants to You a perpetual,
68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69 | copyright license to reproduce, prepare Derivative Works of,
70 | publicly display, publicly perform, sublicense, and distribute the
71 | Work and such Derivative Works in Source or Object form.
72 |
73 | 3. Grant of Patent License. Subject to the terms and conditions of
74 | this License, each Contributor hereby grants to You a perpetual,
75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76 | (except as stated in this section) patent license to make, have made,
77 | use, offer to sell, sell, import, and otherwise transfer the Work,
78 | where such license applies only to those patent claims licensable
79 | by such Contributor that are necessarily infringed by their
80 | Contribution(s) alone or by combination of their Contribution(s)
81 | with the Work to which such Contribution(s) was submitted. If You
82 | institute patent litigation against any entity (including a
83 | cross-claim or counterclaim in a lawsuit) alleging that the Work
84 | or a Contribution incorporated within the Work constitutes direct
85 | or contributory patent infringement, then any patent licenses
86 | granted to You under this License for that Work shall terminate
87 | as of the date such litigation is filed.
88 |
89 | 4. Redistribution. You may reproduce and distribute copies of the
90 | Work or Derivative Works thereof in any medium, with or without
91 | modifications, and in Source or Object form, provided that You
92 | meet the following conditions:
93 |
94 | (a) You must give any other recipients of the Work or
95 | Derivative Works a copy of this License; and
96 |
97 | (b) You must cause any modified files to carry prominent notices
98 | stating that You changed the files; and
99 |
100 | (c) You must retain, in the Source form of any Derivative Works
101 | that You distribute, all copyright, patent, trademark, and
102 | attribution notices from the Source form of the Work,
103 | excluding those notices that do not pertain to any part of
104 | the Derivative Works; and
105 |
106 | (d) If the Work includes a "NOTICE" text file as part of its
107 | distribution, then any Derivative Works that You distribute must
108 | include a readable copy of the attribution notices contained
109 | within such NOTICE file, excluding those notices that do not
110 | pertain to any part of the Derivative Works, in at least one
111 | of the following places: within a NOTICE text file distributed
112 | as part of the Derivative Works; within the Source form or
113 | documentation, if provided along with the Derivative Works; or,
114 | within a display generated by the Derivative Works, if and
115 | wherever such third-party notices normally appear. The contents
116 | of the NOTICE file are for informational purposes only and
117 | do not modify the License. You may add Your own attribution
118 | notices within Derivative Works that You distribute, alongside
119 | or as an addendum to the NOTICE text from the Work, provided
120 | that such additional attribution notices cannot be construed
121 | as modifying the License.
122 |
123 | You may add Your own copyright statement to Your modifications and
124 | may provide additional or different license terms and conditions
125 | for use, reproduction, or distribution of Your modifications, or
126 | for any such Derivative Works as a whole, provided Your use,
127 | reproduction, and distribution of the Work otherwise complies with
128 | the conditions stated in this License.
129 |
130 | 5. Submission of Contributions. Unless You explicitly state otherwise,
131 | any Contribution intentionally submitted for inclusion in the Work
132 | by You to the Licensor shall be under the terms and conditions of
133 | this License, without any additional terms or conditions.
134 | Notwithstanding the above, nothing herein shall supersede or modify
135 | the terms of any separate license agreement you may have executed
136 | with Licensor regarding such Contributions.
137 |
138 | 6. Trademarks. This License does not grant permission to use the trade
139 | names, trademarks, service marks, or product names of the Licensor,
140 | except as required for reasonable and customary use in describing the
141 | origin of the Work and reproducing the content of the NOTICE file.
142 |
143 | 7. Disclaimer of Warranty. Unless required by applicable law or
144 | agreed to in writing, Licensor provides the Work (and each
145 | Contributor provides its Contributions) on an "AS IS" BASIS,
146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147 | implied, including, without limitation, any warranties or conditions
148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149 | PARTICULAR PURPOSE. You are solely responsible for determining the
150 | appropriateness of using or redistributing the Work and assume any
151 | risks associated with Your exercise of permissions under this License.
152 |
153 | 8. Limitation of Liability. In no event and under no legal theory,
154 | whether in tort (including negligence), contract, or otherwise,
155 | unless required by applicable law (such as deliberate and grossly
156 | negligent acts) or agreed to in writing, shall any Contributor be
157 | liable to You for damages, including any direct, indirect, special,
158 | incidental, or consequential damages of any character arising as a
159 | result of this License or out of the use or inability to use the
160 | Work (including but not limited to damages for loss of goodwill,
161 | work stoppage, computer failure or malfunction, or any and all
162 | other commercial damages or losses), even if such Contributor
163 | has been advised of the possibility of such damages.
164 |
165 | 9. Accepting Warranty or Additional Liability. While redistributing
166 | the Work or Derivative Works thereof, You may choose to offer,
167 | and charge a fee for, acceptance of support, warranty, indemnity,
168 | or other liability obligations and/or rights consistent with this
169 | License. However, in accepting such obligations, You may act only
170 | on Your own behalf and on Your sole responsibility, not on behalf
171 | of any other Contributor, and only if You agree to indemnify,
172 | defend, and hold each Contributor harmless for any liability
173 | incurred by, or claims asserted against, such Contributor by reason
174 | of your accepting any such warranty or additional liability.
175 |
176 | END OF TERMS AND CONDITIONS
177 |
178 | APPENDIX: How to apply the Apache License to your work.
179 |
180 | To apply the Apache License to your work, attach the following
181 | boilerplate notice, with the fields enclosed by brackets "[]"
182 | replaced with your own identifying information. (Don't include
183 | the brackets!) The text should be enclosed in the appropriate
184 | comment syntax for the file format. We also recommend that a
185 | file or class name and description of purpose be included on the
186 | same "printed page" as the copyright notice for easier
187 | identification within third-party archives.
188 |
189 | Copyright [yyyy] [name of copyright owner]
190 |
191 | Licensed under the Apache License, Version 2.0 (the "License");
192 | you may not use this file except in compliance with the License.
193 | You may obtain a copy of the License at
194 |
195 | http://www.apache.org/licenses/LICENSE-2.0
196 |
197 | Unless required by applicable law or agreed to in writing, software
198 | distributed under the License is distributed on an "AS IS" BASIS,
199 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200 | See the License for the specific language governing permissions and
201 | limitations under the License.
202 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # capbot
2 | Repository to hold code for the [cap-bot](https://github.com/aryankargwal/cap-bot) varient that is being presented at the SIIC Defence Hackathon 2021.
3 |
4 |
5 | ## Problem Inspiration
6 | 
7 | A plethora of surveillance devices are being used by the Defense Services for supervision and monitoring. However, most of them are manually operated at the cost of enormous amounts of time and manual labour.
8 | Check out the [video proposal](https://www.youtube.com/watch?v=nBATYSIb7fs) for the Problem Statement.
9 |
10 |
11 | ## Problem Description
12 | Present state-of-the-art Surveillance Devices require both consistent manual assistance and time for their successful operation. This results in a considerable loss of manual and technical resources.
13 |
14 |
15 | ## Proposed Solution
16 | We propose a Deep Learning Application that will be able to solve the above mentioned problems.
17 | - Our application named ‘Cap-Bot’ is capable of running Image Captioning on multiple CCTV footages and storing the captions along with the camera number and the time of capture in a convenient log.
18 | 
19 | - The file of saved captions can then be used to look up for incidents from any instant of time just by entering a few keywords. The returned camera number and time slot can then be used to obtain the required CCTV footage.
20 | 
21 |
22 | ### Check out the [Project Proposal](https://www.youtube.com/watch?v=Sr8dNQMBRZI) for our product.
23 |
24 | ## Advantages and Features
25 | - Interface to map CCTV Location in a defined area and eventually help single out points of interest.
26 | 
27 | - Since our model relies on Deep Learning, the time can be reduced considerably as we are resorting to an automatic searching operation.
28 | 
29 | - Since the information is purely textual, the encryption of information is way easier than pictorial.
30 | 
31 |
32 | ## Steps of Deployment
33 | - [x] Training the Model
34 | - [x] Write the Search Module
35 | - [x] Captioning UI
36 | - [x] Search UI
37 | - [x] Perfecting Search feature
38 | - [x] Resolving Backend
39 | - [x] Encryption of Generation Captions
40 | Extra Feature
41 | - [ ] CCTV Localization with results
42 |
43 |
44 | ## Using the deployed version of the web application
45 | Please download the Model Checkpoints and move the file to the camera folder.
46 |
47 | - Setting up the Python Environment with dependencies
48 |
49 | pip install -r requirements.txt
50 | - Cloning the Repository:
51 |
52 | git clone https://github.com/aryankargwal/capbot2.0
53 | - Entering the directory for captioning:
54 |
55 | cd capbot2.0/camera
56 | - Running the captioning web application:
57 |
58 | streamlit run feed.py
59 | - Entering the directory for searching:
60 |
61 | cd capbot2.0/search
62 | - Running the searching web application:
63 |
64 | streamlit run search.py
65 | - Stopping the web application from the terminal
66 |
67 | Ctrl+C
68 |
69 |
70 |
71 | ## License
72 | This project is under the Apache License. See [LICENSE](LICENSE) for Details.
73 |
74 | ## Contributors
75 |
76 |
138 |
139 |
140 |
141 |
142 |
143 | crafted with ♥ by team Missing-Colon
144 |
145 |
--------------------------------------------------------------------------------
/assets/cameraui.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/aryankargwal/cap-bot/bce709ad8a2c77c95890450d3b571419786417ee/assets/cameraui.jpg
--------------------------------------------------------------------------------
/assets/cctv_system.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/aryankargwal/cap-bot/bce709ad8a2c77c95890450d3b571419786417ee/assets/cctv_system.jpg
--------------------------------------------------------------------------------
/assets/dl.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/aryankargwal/cap-bot/bce709ad8a2c77c95890450d3b571419786417ee/assets/dl.png
--------------------------------------------------------------------------------
/assets/encrypt.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/aryankargwal/cap-bot/bce709ad8a2c77c95890450d3b571419786417ee/assets/encrypt.png
--------------------------------------------------------------------------------
/assets/index.jpeg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/aryankargwal/cap-bot/bce709ad8a2c77c95890450d3b571419786417ee/assets/index.jpeg
--------------------------------------------------------------------------------
/assets/locations.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/aryankargwal/cap-bot/bce709ad8a2c77c95890450d3b571419786417ee/assets/locations.png
--------------------------------------------------------------------------------
/assets/logo.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/aryankargwal/cap-bot/bce709ad8a2c77c95890450d3b571419786417ee/assets/logo.png
--------------------------------------------------------------------------------
/assets/search_tab.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/aryankargwal/cap-bot/bce709ad8a2c77c95890450d3b571419786417ee/assets/search_tab.png
--------------------------------------------------------------------------------
/camera/caption_gen.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn.functional as F
3 | import numpy as np
4 | import json
5 | import cv2
6 | from skimage import transform
7 | import torchvision.transforms as transforms
8 | from imageio import imread
9 | from PIL import Image
10 |
11 | device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
12 |
13 |
14 | def caption_image_beam_search(encoder, decoder, image_path, word_map, beam_size=8):
15 |
16 | k = beam_size
17 | vocab_size = len(word_map)
18 |
19 | # Read image and process
20 | img = image_path
21 | if len(img.shape) == 2:
22 | img = img[:, :, np.newaxis]
23 | img = np.concatenate([img, img, img], axis=2)
24 | img = np.array(Image.fromarray(img).resize((256, 256)))
25 | img = img.transpose(2, 0, 1)
26 | img = img / 255.
27 | img = torch.FloatTensor(img).to(device)
28 | normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
29 | std=[0.229, 0.224, 0.225])
30 | transform = transforms.Compose([normalize])
31 | image = transform(img) # (3, 256, 256)
32 |
33 | # Encode
34 | image = image.unsqueeze(0) # (1, 3, 256, 256)
35 | # (1, enc_image_size, enc_image_size, encoder_dim)
36 | encoder_out = encoder(image)
37 | enc_image_size = encoder_out.size(1)
38 | encoder_dim = encoder_out.size(3)
39 |
40 | # Flatten encoding
41 | # (1, num_pixels, encoder_dim)
42 | encoder_out = encoder_out.view(1, -1, encoder_dim)
43 | num_pixels = encoder_out.size(1)
44 |
45 | # We'll treat the problem as having a batch size of k
46 | # (k, num_pixels, encoder_dim)
47 | encoder_out = encoder_out.expand(k, num_pixels, encoder_dim)
48 |
49 | # Tensor to store top k previous words at each step; now they're just
50 | k_prev_words = torch.LongTensor(
51 | [[word_map['']]] * k).to(device) # (k, 1)
52 |
53 | # Tensor to store top k sequences; now they're just
54 | seqs = k_prev_words # (k, 1)
55 |
56 | # Tensor to store top k sequences' scores; now they're just 0
57 | top_k_scores = torch.zeros(k, 1).to(device) # (k, 1)
58 |
59 | # Tensor to store top k sequences' alphas; now they're just 1s
60 | seqs_alpha = torch.ones(k, 1, enc_image_size, enc_image_size).to(
61 | device) # (k, 1, enc_image_size, enc_image_size)
62 |
63 | # Lists to store completed sequences, their alphas and scores
64 | complete_seqs = list()
65 | complete_seqs_alpha = list()
66 | complete_seqs_scores = list()
67 |
68 | # Start decoding
69 | step = 1
70 | h, c = decoder.init_hidden_state(encoder_out)
71 |
72 | # s is a number less than or equal to k, because sequences are removed from this process once they hit
73 | while True:
74 |
75 | embeddings = decoder.embedding(
76 | k_prev_words).squeeze(1) # (s, embed_dim)
77 |
78 | # (s, encoder_dim), (s, num_pixels)
79 | awe, alpha = decoder.attention(encoder_out, h)
80 |
81 | # (s, enc_image_size, enc_image_size)
82 | alpha = alpha.view(-1, enc_image_size, enc_image_size)
83 |
84 | # gating scalar, (s, encoder_dim)
85 | gate = decoder.sigmoid(decoder.f_beta(h))
86 | awe = gate * awe
87 |
88 | h, c = decoder.decode_step(
89 | torch.cat([embeddings, awe], dim=1), (h, c)) # (s, decoder_dim)
90 |
91 | scores = decoder.fc(h) # (s, vocab_size)
92 | scores = F.log_softmax(scores, dim=1)
93 |
94 | # Add
95 | scores = top_k_scores.expand_as(scores) + scores # (s, vocab_size)
96 |
97 | # For the first step, all k points will have the same scores (since same k previous words, h, c)
98 | if step == 1:
99 | top_k_scores, top_k_words = scores[0].topk(k, 0, True, True) # (s)
100 | else:
101 | # Unroll and find top scores, and their unrolled indices
102 | # (s)
103 | top_k_scores, top_k_words = scores.view(-1).topk(k, 0, True, True)
104 |
105 | # Convert unrolled indices to actual indices of scores
106 | prev_word_inds = top_k_words / vocab_size # (s)
107 | next_word_inds = top_k_words % vocab_size # (s)
108 |
109 | # Add new words to sequences, alphas
110 | seqs = torch.cat(
111 | [seqs[prev_word_inds], next_word_inds.unsqueeze(1)], dim=1) # (s, step+1)
112 | seqs_alpha = torch.cat([seqs_alpha[prev_word_inds], alpha[prev_word_inds].unsqueeze(1)],
113 | dim=1) # (s, step+1, enc_image_size, enc_image_size)
114 |
115 | # Which sequences are incomplete (didn't reach )?
116 | incomplete_inds = [ind for ind, next_word in enumerate(next_word_inds) if
117 | next_word != word_map['']]
118 | complete_inds = list(
119 | set(range(len(next_word_inds))) - set(incomplete_inds))
120 |
121 | # Set aside complete sequences
122 | if len(complete_inds) > 0:
123 | complete_seqs.extend(seqs[complete_inds].tolist())
124 | complete_seqs_alpha.extend(seqs_alpha[complete_inds].tolist())
125 | complete_seqs_scores.extend(top_k_scores[complete_inds])
126 | k -= len(complete_inds) # reduce beam length accordingly
127 |
128 | # Proceed with incomplete sequences
129 | if k == 0:
130 | break
131 | seqs = seqs[incomplete_inds]
132 | seqs_alpha = seqs_alpha[incomplete_inds]
133 | h = h[prev_word_inds[incomplete_inds]]
134 | c = c[prev_word_inds[incomplete_inds]]
135 | encoder_out = encoder_out[prev_word_inds[incomplete_inds]]
136 | top_k_scores = top_k_scores[incomplete_inds].unsqueeze(1)
137 | k_prev_words = next_word_inds[incomplete_inds].unsqueeze(1)
138 |
139 | # Break if things have been going on too long
140 | if step > 50:
141 | break
142 | step += 1
143 |
144 | i = complete_seqs_scores.index(max(complete_seqs_scores))
145 | seq = complete_seqs[i]
146 |
147 | return seq
148 |
149 |
150 | def cap_gen(img):
151 |
152 | model = 'BEST_checkpoint_coco_5_cap_per_img_5_min_word_freq.pth.tar'
153 | word_map = 'word_map.json'
154 |
155 | # Load model
156 | checkpoint = torch.load(model, map_location=str(device))
157 | decoder = checkpoint['decoder']
158 | decoder = decoder.to(device)
159 | decoder.eval()
160 | encoder = checkpoint['encoder']
161 | encoder = encoder.to(device)
162 | encoder.eval()
163 |
164 | # Load word map (word2ix)
165 | with open(word_map, 'r') as j:
166 | word_map = json.load(j)
167 | rev_word_map = {v: k for k, v in word_map.items()} # ix2word
168 |
169 | # Encode, decode with attention and beam search
170 | seq = caption_image_beam_search(encoder, decoder, img, word_map,)
171 |
172 | words = [rev_word_map[ind] for ind in seq]
173 | return words
174 |
--------------------------------------------------------------------------------
/camera/feed.py:
--------------------------------------------------------------------------------
1 | from caption_gen import *
2 | import streamlit as st
3 | import cv2
4 | import csv
5 | from PIL import Image
6 | import pandas as pd
7 | import time
8 | from datetime import datetime
9 | import tempfile
10 | from imageio import imread
11 |
12 | # To display the webcam feed
13 | FRAME_WINDOW = st.image([])
14 |
15 |
16 | def run_app():
17 | # sidebar
18 | st.sidebar.image("../assets/logo.png")
19 | st.sidebar.header("Log maker")
20 | st.sidebar.markdown(
21 | "An interactive logging application to upload/connect camera to start the captioning and save the captions in an encrypted form for added secuirity."
22 | )
23 | st.sidebar.markdown(
24 | "[Github Repository](https://github.com/aryankargwal/capbot2.0)"
25 | )
26 | st.sidebar.markdown("[Proposal Video](https://www.youtube.com/watch?v=Sr8dNQMBRZI)")
27 |
28 | # source selector
29 | st.header("Select the source of the feed:")
30 | source = st.selectbox("", ("Live Camera", "Upload"))
31 |
32 | if source == "Upload":
33 | video_file = st.file_uploader(
34 | "surveillance feed", accept_multiple_files=False, type=["mp4"]
35 | )
36 | tfile = tempfile.NamedTemporaryFile(delete=False)
37 | if video_file is not None:
38 | tfile.write(video_file.read())
39 | vid = cv2.VideoCapture(tfile.name)
40 | if source == "Live Camera":
41 | vid = cv2.VideoCapture(0)
42 | run = st.checkbox("Run", key="start")
43 | show_frame = st.checkbox("Show frames", key="frame")
44 | csvw = CSVWorker()
45 | # Starts the app, when the button is clicked
46 | while run:
47 | _, frame = vid.read()
48 | frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
49 | if show_frame:
50 | FRAME_WINDOW.image(frame)
51 | # img = Image.fromarray(frame)
52 | # img = img.resize((224, 224))
53 | pred = cap_gen(frame)
54 | print(pred)
55 | csvw.write(pred)
56 | caption = " "
57 | caption.join(pred)
58 | st.write(caption)
59 | time.sleep(5)
60 | vid.release()
61 | cv2.destroyAllWindows()
62 |
63 |
64 | def main():
65 | run_app()
66 |
67 |
68 | @st.cache(show_spinner=False)
69 | class CSVWorker:
70 | def __init__(self):
71 | self.fields = [
72 | "w1",
73 | "w2",
74 | "w3",
75 | "w4",
76 | "w5",
77 | "w6",
78 | "w7",
79 | "w8",
80 | "w9",
81 | "w10",
82 | "time",
83 | "camera",
84 | ]
85 | self.filename = "results.csv"
86 | self.create_csv()
87 |
88 | def create_csv(self):
89 | df = pd.DataFrame(list(), columns=self.fields)
90 | df.to_csv(self.filename)
91 |
92 | def write(self, pred):
93 | df = pd.read_csv(self.filename)
94 | pred = pred[1:-1]
95 | if len(pred) >= 10:
96 | entry = [
97 | pred[0],
98 | pred[1],
99 | pred[2],
100 | pred[3],
101 | pred[4],
102 | pred[5],
103 | pred[6],
104 | pred[7],
105 | pred[8],
106 | pred[9],
107 | datetime.now(),
108 | 1,
109 | ]
110 | elif len(pred) < 10:
111 | entry = []
112 | for i in range(len(pred)):
113 | entry.append(pred[i])
114 | for i in range(len(entry) - 1, 11):
115 | entry.append("")
116 | entry.append(datetime.now)
117 | entry.append(1)
118 | with open(self.filename, "a") as csvfile:
119 | # creating a csv writer object
120 | csvwriter = csv.writer(csvfile)
121 | # writing data rows
122 | csvwriter.writerow(entry)
123 |
124 |
125 | if __name__ == "__main__":
126 | main()
127 |
--------------------------------------------------------------------------------
/camera/models.py:
--------------------------------------------------------------------------------
1 | import torch
2 | from torch import nn
3 | import torchvision
4 |
5 | device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
6 |
7 |
8 | class Encoder(nn.Module):
9 | """
10 | Encoder.
11 | """
12 |
13 | def __init__(self, encoded_image_size=14):
14 | super(Encoder, self).__init__()
15 | self.enc_image_size = encoded_image_size
16 |
17 | resnet = torchvision.models.resnet101(pretrained=True) # pretrained ImageNet ResNet-101
18 |
19 | # Remove linear and pool layers (since we're not doing classification)
20 | modules = list(resnet.children())[:-2]
21 | self.resnet = nn.Sequential(*modules)
22 |
23 | # Resize image to fixed size to allow input images of variable size
24 | self.adaptive_pool = nn.AdaptiveAvgPool2d((encoded_image_size, encoded_image_size))
25 |
26 | self.fine_tune()
27 |
28 | def forward(self, images):
29 | """
30 | Forward propagation.
31 | :param images: images, a tensor of dimensions (batch_size, 3, image_size, image_size)
32 | :return: encoded images
33 | """
34 | out = self.resnet(images) # (batch_size, 2048, image_size/32, image_size/32)
35 | out = self.adaptive_pool(out) # (batch_size, 2048, encoded_image_size, encoded_image_size)
36 | out = out.permute(0, 2, 3, 1) # (batch_size, encoded_image_size, encoded_image_size, 2048)
37 | return out
38 |
39 | def fine_tune(self, fine_tune=True):
40 | """
41 | Allow or prevent the computation of gradients for convolutional blocks 2 through 4 of the encoder.
42 | :param fine_tune: Allow?
43 | """
44 | for p in self.resnet.parameters():
45 | p.requires_grad = False
46 | # If fine-tuning, only fine-tune convolutional blocks 2 through 4
47 | for c in list(self.resnet.children())[5:]:
48 | for p in c.parameters():
49 | p.requires_grad = fine_tune
50 |
51 |
52 | class Attention(nn.Module):
53 | """
54 | Attention Network.
55 | """
56 |
57 | def __init__(self, encoder_dim, decoder_dim, attention_dim):
58 | """
59 | :param encoder_dim: feature size of encoded images
60 | :param decoder_dim: size of decoder's RNN
61 | :param attention_dim: size of the attention network
62 | """
63 | super(Attention, self).__init__()
64 | self.encoder_att = nn.Linear(encoder_dim, attention_dim) # linear layer to transform encoded image
65 | self.decoder_att = nn.Linear(decoder_dim, attention_dim) # linear layer to transform decoder's output
66 | self.full_att = nn.Linear(attention_dim, 1) # linear layer to calculate values to be softmax-ed
67 | self.relu = nn.ReLU()
68 | self.softmax = nn.Softmax(dim=1) # softmax layer to calculate weights
69 |
70 | def forward(self, encoder_out, decoder_hidden):
71 | """
72 | Forward propagation.
73 | :param encoder_out: encoded images, a tensor of dimension (batch_size, num_pixels, encoder_dim)
74 | :param decoder_hidden: previous decoder output, a tensor of dimension (batch_size, decoder_dim)
75 | :return: attention weighted encoding, weights
76 | """
77 | att1 = self.encoder_att(encoder_out) # (batch_size, num_pixels, attention_dim)
78 | att2 = self.decoder_att(decoder_hidden) # (batch_size, attention_dim)
79 | att = self.full_att(self.relu(att1 + att2.unsqueeze(1))).squeeze(2) # (batch_size, num_pixels)
80 | alpha = self.softmax(att) # (batch_size, num_pixels)
81 | attention_weighted_encoding = (encoder_out * alpha.unsqueeze(2)).sum(dim=1) # (batch_size, encoder_dim)
82 |
83 | return attention_weighted_encoding, alpha
84 |
85 |
86 | class DecoderWithAttention(nn.Module):
87 | """
88 | Decoder.
89 | """
90 |
91 | def __init__(self, attention_dim, embed_dim, decoder_dim, vocab_size, encoder_dim=2048, dropout=0.5):
92 | """
93 | :param attention_dim: size of attention network
94 | :param embed_dim: embedding size
95 | :param decoder_dim: size of decoder's RNN
96 | :param vocab_size: size of vocabulary
97 | :param encoder_dim: feature size of encoded images
98 | :param dropout: dropout
99 | """
100 | super(DecoderWithAttention, self).__init__()
101 |
102 | self.encoder_dim = encoder_dim
103 | self.attention_dim = attention_dim
104 | self.embed_dim = embed_dim
105 | self.decoder_dim = decoder_dim
106 | self.vocab_size = vocab_size
107 | self.dropout = dropout
108 |
109 | self.attention = Attention(encoder_dim, decoder_dim, attention_dim) # attention network
110 |
111 | self.embedding = nn.Embedding(vocab_size, embed_dim) # embedding layer
112 | self.dropout = nn.Dropout(p=self.dropout)
113 | self.decode_step = nn.LSTMCell(embed_dim + encoder_dim, decoder_dim, bias=True) # decoding LSTMCell
114 | self.init_h = nn.Linear(encoder_dim, decoder_dim) # linear layer to find initial hidden state of LSTMCell
115 | self.init_c = nn.Linear(encoder_dim, decoder_dim) # linear layer to find initial cell state of LSTMCell
116 | self.f_beta = nn.Linear(decoder_dim, encoder_dim) # linear layer to create a sigmoid-activated gate
117 | self.sigmoid = nn.Sigmoid()
118 | self.fc = nn.Linear(decoder_dim, vocab_size) # linear layer to find scores over vocabulary
119 | self.init_weights() # initialize some layers with the uniform distribution
120 |
121 | def init_weights(self):
122 | """
123 | Initializes some parameters with values from the uniform distribution, for easier convergence.
124 | """
125 | self.embedding.weight.data.uniform_(-0.1, 0.1)
126 | self.fc.bias.data.fill_(0)
127 | self.fc.weight.data.uniform_(-0.1, 0.1)
128 |
129 | def load_pretrained_embeddings(self, embeddings):
130 | """
131 | Loads embedding layer with pre-trained embeddings.
132 | :param embeddings: pre-trained embeddings
133 | """
134 | self.embedding.weight = nn.Parameter(embeddings)
135 |
136 | def fine_tune_embeddings(self, fine_tune=True):
137 | """
138 | Allow fine-tuning of embedding layer? (Only makes sense to not-allow if using pre-trained embeddings).
139 | :param fine_tune: Allow?
140 | """
141 | for p in self.embedding.parameters():
142 | p.requires_grad = fine_tune
143 |
144 | def init_hidden_state(self, encoder_out):
145 | """
146 | Creates the initial hidden and cell states for the decoder's LSTM based on the encoded images.
147 | :param encoder_out: encoded images, a tensor of dimension (batch_size, num_pixels, encoder_dim)
148 | :return: hidden state, cell state
149 | """
150 | mean_encoder_out = encoder_out.mean(dim=1)
151 | h = self.init_h(mean_encoder_out) # (batch_size, decoder_dim)
152 | c = self.init_c(mean_encoder_out)
153 | return h, c
154 |
155 | def forward(self, encoder_out, encoded_captions, caption_lengths):
156 | """
157 | Forward propagation.
158 | :param encoder_out: encoded images, a tensor of dimension (batch_size, enc_image_size, enc_image_size, encoder_dim)
159 | :param encoded_captions: encoded captions, a tensor of dimension (batch_size, max_caption_length)
160 | :param caption_lengths: caption lengths, a tensor of dimension (batch_size, 1)
161 | :return: scores for vocabulary, sorted encoded captions, decode lengths, weights, sort indices
162 | """
163 |
164 | batch_size = encoder_out.size(0)
165 | encoder_dim = encoder_out.size(-1)
166 | vocab_size = self.vocab_size
167 |
168 | # Flatten image
169 | encoder_out = encoder_out.view(batch_size, -1, encoder_dim) # (batch_size, num_pixels, encoder_dim)
170 | num_pixels = encoder_out.size(1)
171 |
172 | # Sort input data by decreasing lengths; why? apparent below
173 | caption_lengths, sort_ind = caption_lengths.squeeze(1).sort(dim=0, descending=True)
174 | encoder_out = encoder_out[sort_ind]
175 | encoded_captions = encoded_captions[sort_ind]
176 |
177 | # Embedding
178 | embeddings = self.embedding(encoded_captions) # (batch_size, max_caption_length, embed_dim)
179 |
180 | # Initialize LSTM state
181 | h, c = self.init_hidden_state(encoder_out) # (batch_size, decoder_dim)
182 |
183 | # We won't decode at the position, since we've finished generating as soon as we generate
184 | # So, decoding lengths are actual lengths - 1
185 | decode_lengths = (caption_lengths - 1).tolist()
186 |
187 | # Create tensors to hold word predicion scores and alphas
188 | predictions = torch.zeros(batch_size, max(decode_lengths), vocab_size).to(device)
189 | alphas = torch.zeros(batch_size, max(decode_lengths), num_pixels).to(device)
190 |
191 | # At each time-step, decode by
192 | # attention-weighing the encoder's output based on the decoder's previous hidden state output
193 | # then generate a new word in the decoder with the previous word and the attention weighted encoding
194 | for t in range(max(decode_lengths)):
195 | batch_size_t = sum([l > t for l in decode_lengths])
196 | attention_weighted_encoding, alpha = self.attention(encoder_out[:batch_size_t],
197 | h[:batch_size_t])
198 | gate = self.sigmoid(self.f_beta(h[:batch_size_t])) # gating scalar, (batch_size_t, encoder_dim)
199 | attention_weighted_encoding = gate * attention_weighted_encoding
200 | h, c = self.decode_step(
201 | torch.cat([embeddings[:batch_size_t, t, :], attention_weighted_encoding], dim=1),
202 | (h[:batch_size_t], c[:batch_size_t])) # (batch_size_t, decoder_dim)
203 | preds = self.fc(self.dropout(h)) # (batch_size_t, vocab_size)
204 | predictions[:batch_size_t, t, :] = preds
205 | alphas[:batch_size_t, t, :] = alpha
206 |
207 | return predictions, encoded_captions, decode_lengths, alphas, sort_ind
208 |
--------------------------------------------------------------------------------
/camera/results.csv:
--------------------------------------------------------------------------------
1 | ,w1,w2,w3,w4,w5,w6,w7,w8,w9,w10,time,camera
2 |
--------------------------------------------------------------------------------
/camera/word_map.json:
--------------------------------------------------------------------------------
1 | {"a": 1, "man": 2, "with": 3, "red": 4, "helmet": 5, "on": 6, "small": 7, "moped": 8, "dirt": 9, "road": 10, "riding": 11, "motor": 12, "bike": 13, "the": 14, "countryside": 15, "back": 16, "of": 17, "motorcycle": 18, "path": 19, "young": 20, "person": 21, "rests": 22, "to": 23, "foreground": 24, "verdant": 25, "area": 26, "bridge": 27, "and": 28, "background": 29, "cloud": 30, "mountains": 31, "in": 32, "shirt": 33, "hat": 34, "is": 35, "hill": 36, "side": 37, "woman": 38, "wearing": 39, "net": 40, "her": 41, "head": 42, "cutting": 43, "cake": 44, "large": 45, "white": 46, "sheet": 47, "hair": 48, "there": 49, "that": 50, "marking": 51, "chefs": 52, "knife": 53, "child": 54, "holding": 55, "flowered": 56, "umbrella": 57, "petting": 58, "yak": 59, "an": 60, "next": 61, "herd": 62, "cattle": 63, "boy": 64, "barefoot": 65, "touching": 66, "horn": 67, "cow": 68, "who": 69, "while": 70, "standing": 71, "livestock": 72, "front": 73, "computer": 74, "keyboard": 75, "little": 76, "headphones": 77, "looking": 78, "at": 79, "monitor": 80, "he": 81, "listening": 82, "intently": 83, "school": 84, "stares": 85, "up": 86, "kid": 87, "phones": 88, "using": 89, "one": 90, "long": 91, "row": 92, "computers": 93, "earphones": 94, "something": 95, "group": 96, "people": 97, "sitting": 98, "desk": 99, "children": 100, "stations": 101, "table": 102, "plays": 103, "kitchen": 104, "making": 105, "pizzas": 106, "apron": 107, "oven": 108, "pans": 109, "baker": 110, "working": 111, "rolling": 112, "dough": 113, "by": 114, "stove": 115, "pies": 116, "being": 117, "made": 118, "near": 119, "wall": 120, "pots": 121, "hanging": 122, "room": 123, "cat": 124, "girl": 125, "smiles": 126, "as": 127, "she": 128, "holds": 129, "wears": 130, "brightly": 131, "colored": 132, "skirt": 133, "carrying": 134, "soft": 135, "toy": 136, "intent": 137, "blowing": 138, "out": 139, "candle": 140, "preparing": 141, "blow": 142, "single": 143, "bowl": 144, "birthday": 145, "ice": 146, "cream": 147, "getting": 148, "ready": 149, "dessert": 150, "commercial": 151, "stainless": 152, "pot": 153, "food": 154, "cooking": 155, "some": 156, "sits": 157, "has": 158, "all": 159, "steel": 160, "appliances": 161, "counters": 162, "sink": 163, "many": 164, "machines": 165, "cooks": 166, "two": 167, "men": 168, "aprons": 169, "style": 170, "professional": 171, "metallic": 172, "around": 173, "prepare": 174, "several": 175, "plates": 176, "shirts": 177, "restaurant": 178, "are": 179, "someone": 180, "ordered": 181, "this": 182, "chef": 183, "very": 184, "dark": 185, "picture": 186, "shelf": 187, "cluttered": 188, "view": 189, "messy": 190, "shelves": 191, "storage": 192, "wood": 193, "walls": 194, "dim": 195, "lit": 196, "consisting": 197, "objects": 198, "put": 199, "together": 200, "filled": 201, "black": 202, "lots": 203, "counter": 204, "top": 205, "space": 206, "brown": 207, "cabinets": 208, "tea": 209, "kettle": 210, "microwave": 211, "glass": 212, "wooden": 213, "modern": 214, "may": 215, "different": 216, "items": 217, "sinks": 218, "toilet": 219, "various": 220, "cleaning": 221, "dish": 222, "washing": 223, "station": 224, "it": 225, "mop": 226, "bucket": 227, "industrial": 228, "bicycle": 229, "train": 230, "but": 231, "guy": 232, "his": 233, "past": 234, "traveling": 235, "along": 236, "tracks": 237, "narrow": 238, "utensils": 239, "galley": 240, "both": 241, "sides": 242, "hallway": 243, "leading": 244, "into": 245, "doorway": 246, "refrigerator": 247, "pantry": 248, "door": 249, "closed": 250, "floors": 251, "furniture": 252, "beautiful": 253, "open": 254, "dining": 255, "features": 256, "island": 257, "center": 258, "windows": 259, "mostly": 260, "laptop": 261, "spacious": 262, "full": 263, "eating": 264, "vegetables": 265, "forks": 266, "mouth": 267, "assortment": 268, "mixed": 269, "eats": 270, "plate": 271, "fresh": 272, "from": 273, "shown": 274, "variety": 275, "plaid": 276, "curtains": 277, "metal": 278, "older": 279, "tops": 280, "empty": 281, "glasses": 282, "bottles": 283, "placed": 284, "performing": 285, "kickflip": 286, "skateboard": 287, "city": 288, "street": 289, "doing": 290, "trick": 291, "jumps": 292, "air": 293, "beneath": 294, "him": 295, "skateboarder": 296, "flipping": 297, "board": 298, "kitchenette": 299, "uses": 300, "great": 301, "efficiency": 302, "image": 303, "setting": 304, "fruit": 305, "clean": 306, "for": 307, "us": 308, "see": 309, "decorated": 310, "loaded": 311, "pickup": 312, "truck": 313, "number": 314, "things": 315, "crowded": 316, "overloaded": 317, "old": 318, "pick": 319, "over": 320, "cargo": 321, "carries": 322, "amount": 323, "few": 324, "ball": 325, "stick": 326, "spoons": 327, "selection": 328, "tools": 329, "lined": 330, "multiple": 331, "surrounded": 332, "chairs": 333, "laid": 334, "across": 335, "boat": 336, "mean": 337, "wheels": 338, "bunch": 339, "aboard": 340, "rolled": 341, "trailer": 342, "cart": 343, "students": 344, "workstation": 345, "examines": 346, "lap": 347, "hand": 348, "other": 349, "mouse": 350, "use": 351, "reading": 352, "material": 353, "elephant": 354, "water": 355, "creek": 356, "forest": 357, "river": 358, "rides": 359, "couple": 360, "women": 361, "home": 362, "dinner": 363, "lights": 364, "huge": 365, "pan": 366, "inside": 367, "granite": 368, "baby": 369, "laying": 370, "down": 371, "teddy": 372, "bear": 373, "crib": 374, "stuffed": 375, "gloves": 376, "lying": 377, "left": 378, "taking": 379, "lays": 380, "beside": 381, "lies": 382, "blue": 383, "green": 384, "bedding": 385, "shopping": 386, "walk": 387, "homeless": 388, "begs": 389, "cash": 390, "walking": 391, "begging": 392, "cup": 393, "bikers": 394, "building": 395, "shots": 396, "bicycles": 397, "streets": 398, "tall": 399, "bikes": 400, "photos": 401, "skate": 402, "park": 403, "performs": 404, "athletes": 405, "tricks": 406, "falls": 407, "off": 408, "parked": 409, "chained": 410, "fixture": 411, "sidewalk": 412, "locked": 413, "post": 414, "approaching": 415, "bird": 416, "three": 417, "riders": 418, "trees": 419, "pigeon": 420, "coming": 421, "smiling": 422, "colorful": 423, "greets": 424, "bicyclists": 425, "kitten": 426, "fence": 427, "tank": 428, "yard": 429, "yellow": 430, "kitty": 431, "bathroom": 432, "just": 433, "toliet": 434, "section": 435, "lighting": 436, "cabinet": 437, "mirror": 438, "been": 439, "cleaned": 440, "store": 441, "shows": 442, "males": 443, "leaning": 444, "toward": 445, "adjust": 446, "shop": 447, "employee": 448, "helping": 449, "customer": 450, "talking": 451, "about": 452, "broken": 453, "shower": 454, "looks": 455, "missing": 456, "tile": 457, "stall": 458, "needs": 459, "be": 460, "fixed": 461, "basement": 462, "big": 463, "whit": 464, "rest": 465, "shabby": 466, "interesting": 467, "focal": 468, "point": 469, "perspective": 470, "washroom": 471, "under": 472, "i": 473, "stand": 474, "persons": 475, "reflection": 476, "behind": 477, "mirrored": 478, "corner": 479, "bathtub": 480, "mirrors": 481, "tub": 482, "doors": 483, "beige": 484, "bedroom": 485, "another": 486, "double": 487, "carpeted": 488, "floor": 489, "vanity": 490, "opens": 491, "diamond": 492, "patterned": 493, "onto": 494, "closet": 495, "jacuzzi": 496, "tiled": 497, "adjoining": 498, "flowers": 499, "shot": 500, "includes": 501, "letter": 502, "framed": 503, "potted": 504, "plant": 505, "tissue": 506, "commode": 507, "enclosed": 508, "featuring": 509, "ride": 510, "busy": 511, "lane": 512, "passing": 513, "burger": 514, "king": 515, "most": 516, "not": 517, "nice": 518, "displayed": 519, "piece": 520, "interior": 521, "scene": 522, "furnishings": 523, "including": 524, "dogs": 525, "they": 526, "restroom": 527, "camera": 528, "currently": 529, "repair": 530, "photograph": 531, "undergoing": 532, "major": 533, "renovations": 534, "process": 535, "remodeling": 536, "remolded": 537, "where": 538, "installed": 539, "construction": 540, "unfinished": 541, "plumbing": 542, "guests": 543, "bath": 544, "standup": 545, "which": 546, "covered": 547, "tiles": 548, "without": 549, "curtain": 550, "held": 551, "walled": 552, "through": 553, "faded": 554, "paint": 555, "no": 556, "panel": 557, "painted": 558, "buckets": 559, "toilets": 560, "paper": 561, "holder": 562, "soap": 563, "window": 564, "like": 565, "dust": 566, "brush": 567, "low": 568, "rough": 569, "close": 570, "pale": 571, "cement": 572, "broom": 573, "fixtures": 574, "contains": 575, "well": 576, "above": 577, "them": 578, "equipment": 579, "fire": 580, "extinguisher": 581, "photo": 582, "porcelain": 583, "posed": 584, "tan": 585, "flower": 586, "ground": 587, "curb": 588, "house": 589, "lawn": 590, "outside": 591, "gray": 592, "median": 593, "lady": 594, "divider": 595, "takes": 596, "public": 597, "flooring": 598, "each": 599, "used": 600, "multicolored": 601, "pedestal": 602, "cars": 603, "driving": 604, "highway": 605, "traffic": 606, "stop": 607, "intersection": 608, "sit": 609, "asia": 610, "taxi": 611, "cabs": 612, "buildings": 613, "heavy": 614, "going": 615, "direction": 616, "stuck": 617, "high": 618, "way": 619, "parking": 620, "late": 621, "evening": 622, "wires": 623, "break": 624, "glow": 625, "waits": 626, "light": 627, "signs": 628, "opened": 629, "shapped": 630, "mug": 631, "himself": 632, "self": 633, "cell": 634, "phone": 635, "selfie": 636, "bare": 637, "varying": 638, "awaits": 639, "cabinetry": 640, "meters": 641, "series": 642, "located": 643, "meter": 644, "car": 645, "elegant": 646, "decorations": 647, "fashion": 648, "gold": 649, "feet": 650, "lovely": 651, "vintage": 652, "styled": 653, "claw": 654, "footed": 655, "foot": 656, "seen": 657, "stuff": 658, "shelving": 659, "unit": 660, "between": 661, "hygiene": 662, "products": 663, "wrong": 664, "additional": 665, "medicine": 666, "urinal": 667, "mounted": 668, "pair": 669, "tongs": 670, "thing": 671, "glazed": 672, "donut": 673, "rod": 674, "tasty": 675, "treat": 676, "antenna": 677, "orange": 678, "striped": 679, "tabby": 680, "vehicles": 681, "wheel": 682, "fluffy": 683, "tail": 684, "tire": 685, "vehicle": 686, "hiding": 687, "fender": 688, "jetliner": 689, "flying": 690, "airplane": 691, "flies": 692, "sky": 693, "comes": 694, "land": 695, "plane": 696, "silver": 697, "bus": 698, "lot": 699, "parks": 700, "metro": 701, "outdoor": 702, "resting": 703, "playing": 704, "stepping": 705, "playground": 706, "skateboarding": 707, "jacket": 708, "attire": 709, "tie": 710, "eyes": 711, "dressed": 712, "necktie": 713, "nicely": 714, "surfboards": 715, "field": 716, "fashioned": 717, "retro": 718, "wagon": 719, "surfboard": 720, "cop": 721, "police": 722, "officer": 723, "cops": 724, "backpack": 725, "book": 726, "bag": 727, "stone": 728, "floored": 729, "possibly": 730, "lid": 731, "blurry": 732, "seat": 733, "perched": 734, "was": 735, "position": 736, "revealing": 737, "shiny": 738, "display": 739, "new": 740, "brand": 741, "show": 742, "end": 743, "dirty": 744, "non": 745, "transparent": 746, "plain": 747, "birds": 748, "church": 749, "spire": 750, "decorative": 751, "roof": 752, "clock": 753, "tower": 754, "towering": 755, "its": 756, "steeple": 757, "fly": 758, "driveway": 759, "license": 760, "luxurious": 761, "hedge": 762, "showing": 763, "container": 764, "crosses": 765, "base": 766, "designed": 767, "neck": 768, "shut": 769, "sort": 770, "religious": 771, "object": 772, "picking": 773, "bananas": 774, "bunches": 775, "attending": 776, "bundles": 777, "grabbing": 778, "stack": 779, "pile": 780, "sun": 781, "plaque": 782, "middle": 783, "decor": 784, "decoration": 785, "decal": 786, "cramped": 787, "combination": 788, "advanced": 789, "control": 790, "fountain": 791, "faucet": 792, "controls": 793, "horses": 794, "grazing": 795, "pasture": 796, "filed": 797, "grass": 798, "horse": 799, "drawn": 800, "carriage": 801, "pass": 802, "outdoors": 803, "pavement": 804, "discarded": 805, "someones": 806, "crowd": 807, "graze": 808, "amid": 809, "snow": 810, "melting": 811, "spot": 812, "estate": 813, "wind": 814, "indicator": 815, "weather": 816, "vane": 817, "clear": 818, "cycle": 819, "tree": 820, "unattended": 821, "roadway": 822, "trash": 823, "can": 824, "compact": 825, "waste": 826, "bin": 827, "toilette": 828, "purple": 829, "brick": 830, "sport": 831, "motorbike": 832, "blur": 833, "against": 834, "office": 835, "works": 836, "motorcycles": 837, "hats": 838, "their": 839, "motorists": 840, "gathered": 841, "stores": 842, "apartment": 843, "motorcyclists": 844, "bowls": 845, "bottle": 846, "cinnamon": 847, "sugar": 848, "cereal": 849, "milk": 850, "desert": 851, "mashed": 852, "oatmeal": 853, "eat": 854, "rows": 855, "helmets": 856, "motorbikes": 857, "line": 858, "set": 859, "makes": 860, "tightly": 861, "columns": 862, "grouped": 863, "ally": 864, "neighborhood": 865, "alley": 866, "lush": 867, "mopeds": 868, "scooter": 869, "happy": 870, "work": 871, "hope": 872, "setup": 873, "printer": 874, "scanner": 875, "extra": 876, "tablet": 877, "vases": 878, "run": 879, "planters": 880, "sign": 881, "plaster": 882, "external": 883, "images": 884, "attached": 885, "overlooking": 886, "chair": 887, "faces": 888, "away": 889, "fro": 890, "television": 891, "pillow": 892, "living": 893, "ornate": 894, "books": 895, "tv": 896, "straight": 897, "ahead": 898, "lanes": 899, "heading": 900, "motorized": 901, "scooters": 902, "stopped": 903, "lamp": 904, "screen": 905, "flat": 906, "surround": 907, "sound": 908, "country": 909, "swiftly": 910, "painting": 911, "oranges": 912, "pitcher": 913, "vase": 914, "pieces": 915, "frame": 916, "case": 917, "packed": 918, "boxed": 919, "delivery": 920, "market": 921, "packaged": 922, "boxes": 923, "cardboard": 924, "box": 925, "plastic": 926, "unopened": 927, "perfectly": 928, "ripe": 929, "barrel": 930, "or": 931, "plantains": 932, "piled": 933, "containers": 934, "depicting": 935, "writing": 936, "ticket": 937, "rider": 938, "race": 939, "track": 940, "racetrack": 941, "racer": 942, "performance": 943, "beverage": 944, "slices": 945, "cold": 946, "juice": 947, "beer": 948, "stands": 949, "containing": 950, "liquid": 951, "sliced": 952, "wide": 953, "nearing": 954, "nearby": 955, "electric": 956, "kfc": 957, "facade": 958, "town": 959, "bread": 960, "basket": 961, "finch": 962, "newspaper": 963, "grey": 964, "wine": 965, "winery": 966, "among": 967, "bench": 968, "entrance": 969, "warped": 970, "cottage": 971, "cabin": 972, "garden": 973, "dog": 974, "watches": 975, "animal": 976, "facing": 977, "watching": 978, "wildlife": 979, "hound": 980, "rug": 981, "advertising": 982, "arizona": 983, "airport": 984, "baggage": 985, "claim": 986, "terminal": 987, "displaying": 988, "ad": 989, "jumping": 990, "news": 991, "passes": 992, "find": 993, "taken": 994, "four": 995, "engine": 996, "jet": 997, "transport": 998, "grassy": 999, "jumbo": 1000, "landing": 1001, "flight": 1002, "china": 1003, "runway": 1004, "airfield": 1005, "safety": 1006, "vest": 1007, "arms": 1008, "giving": 1009, "directions": 1010, "controller": 1011, "directing": 1012, "reflective": 1013, "gear": 1014, "airliner": 1015, "sticks": 1016, "airline": 1017, "employees": 1018, "aircraft": 1019, "gate": 1020, "connected": 1021, "passengers": 1022, "propeller": 1023, "planes": 1024, "renovated": 1025, "propellor": 1026, "fighter": 1027, "tarmac": 1028, "pilot": 1029, "war": 1030, "type": 1031, "p": 1032, "40": 1033, "taxis": 1034, "take": 1035, "towards": 1036, "wet": 1037, "unloading": 1038, "arrival": 1039, "gates": 1040, "airplanes": 1041, "carrier": 1042, "pulls": 1043, "disconnected": 1044, "boarding": 1045, "fancy": 1046, "emptied": 1047, "plan": 1048, "animals": 1049, "bull": 1050, "giraffe": 1051, "deer": 1052, "parakeet": 1053, "childrens": 1054, "strewn": 1055, "toys": 1056, "personal": 1057, "cross": 1058, "pulled": 1059, "crossing": 1060, "signal": 1061, "crosswalk": 1062, "night": 1063, "appearing": 1064, "confusing": 1065, "electronic": 1066, "glows": 1067, "time": 1068, "arrows": 1069, "stripes": 1070, "warplane": 1071, "airstrip": 1072, "model": 1073, "american": 1074, "insignia": 1075, "wings": 1076, "bending": 1077, "check": 1078, "radio": 1079, "operated": 1080, "crouched": 1081, "kneeling": 1082, "miniature": 1083, "cloudy": 1084, "partially": 1085, "day": 1086, "biplane": 1087, "siting": 1088, "sunny": 1089, "lone": 1090, "underneath": 1091, "boats": 1092, "harbor": 1093, "beach": 1094, "sea": 1095, "leaves": 1096, "native": 1097, "slowly": 1098, "giraffes": 1099, "place": 1100, "wing": 1101, "pointed": 1102, "landscape": 1103, "sandy": 1104, "hills": 1105, "rain": 1106, "mountain": 1107, "ascends": 1108, "passenger": 1109, "beginning": 1110, "ascent": 1111, "sheep": 1112, "farm": 1113, "flock": 1114, "goats": 1115, "walks": 1116, "habitat": 1117, "herding": 1118, "keep": 1119, "watch": 1120, "bright": 1121, "sheeps": 1122, "chewing": 1123, "hay": 1124, "mouthful": 1125, "hungry": 1126, "zoo": 1127, "alone": 1128, "rocky": 1129, "shines": 1130, "drive": 1131, "skyscrapers": 1132, "shining": 1133, "sunlight": 1134, "elderly": 1135, "bottom": 1136, "poster": 1137, "billboard": 1138, "art": 1139, "installation": 1140, "stopping": 1141, "get": 1142, "doesnt": 1143, "appear": 1144, "anyone": 1145, "waiting": 1146, "political": 1147, "advertisement": 1148, "coach": 1149, "here": 1150, "scott": 1151, "browns": 1152, "campaign": 1153, "tour": 1154, "curvy": 1155, "curved": 1156, "curve": 1157, "following": 1158, "alongside": 1159, "fish": 1160, "eye": 1161, "rounding": 1162, "africa": 1163, "goes": 1164, "vast": 1165, "expanse": 1166, "puffy": 1167, "clouds": 1168, "fill": 1169, "den": 1170, "licks": 1171, "limb": 1172, "strangely": 1173, "lick": 1174, "branch": 1175, "bark": 1176, "glowing": 1177, "clearly": 1178, "visible": 1179, "pole": 1180, "sets": 1181, "drinking": 1182, "drink": 1183, "pond": 1184, "awkwardly": 1185, "sips": 1186, "puddle": 1187, "knees": 1188, "rocks": 1189, "stroll": 1190, "bush": 1191, "rub": 1192, "necks": 1193, "paths": 1194, "pin": 1195, "enclosure": 1196, "hits": 1197, "body": 1198, "smaller": 1199, "exhibit": 1200, "posted": 1201, "south": 1202, "streetlight": 1203, "directional": 1204, "naked": 1205, "stoplight": 1206, "signals": 1207, "c": 1208, "3": 1209, "plants": 1210, "overgrown": 1211, "hose": 1212, "wilderness": 1213, "creepy": 1214, "shaped": 1215, "rear": 1216, "below": 1217, "situated": 1218, "woods": 1219, "buses": 1220, "pedestrians": 1221, "busses": 1222, "dusk": 1223, "cathedral": 1224, "direct": 1225, "illuminated": 1226, "second": 1227, "if": 1228, "u": 1229, "busted": 1230, "pedestrian": 1231, "symbol": 1232, "sunglasses": 1233, "herself": 1234, "commuter": 1235, "urban": 1236, "caravan": 1237, "opposite": 1238, "bent": 1239, "submerged": 1240, "flood": 1241, "waters": 1242, "grill": 1243, "flooded": 1244, "muddy": 1245, "pier": 1246, "structure": 1247, "reaching": 1248, "greet": 1249, "extends": 1250, "onlooker": 1251, "feeding": 1252, "approaches": 1253, "almost": 1254, "touches": 1255, "speaking": 1256, "kids": 1257, "chips": 1258, "rusted": 1259, "pink": 1260, "hydrant": 1261, "slightly": 1262, "rusty": 1263, "make": 1264, "look": 1265, "more": 1266, "festive": 1267, "stickers": 1268, "face": 1269, "sandwich": 1270, "sticky": 1271, "sculpture": 1272, "pushing": 1273, "inner": 1274, "courtyard": 1275, "snaps": 1276, "having": 1277, "fun": 1278, "newly": 1279, "married": 1280, "emo": 1281, "hipster": 1282, "wedding": 1283, "bride": 1284, "groom": 1285, "pose": 1286, "pictures": 1287, "leaking": 1288, "gushing": 1289, "pouring": 1290, "spilling": 1291, "spouting": 1292, "pen": 1293, "dusted": 1294, "girls": 1295, "firefighter": 1296, "fireman": 1297, "poking": 1298, "fired": 1299, "balloon": 1300, "zebra": 1301, "ducks": 1302, "duck": 1303, "freeway": 1304, "states": 1305, "las": 1306, "vegas": 1307, "north": 1308, "float": 1309, "parade": 1310, "towing": 1311, "wheeled": 1312, "band": 1313, "part": 1314, "swan": 1315, "floating": 1316, "flags": 1317, "tents": 1318, "docked": 1319, "bank": 1320, "shore": 1321, "lake": 1322, "backdrop": 1323, "dry": 1324, "seagulls": 1325, "floats": 1326, "patch": 1327, "neighboring": 1328, "threw": 1329, "palm": 1330, "neon": 1331, "reflections": 1332, "streaming": 1333, "thru": 1334, "crane": 1335, "because": 1336, "warning": 1337, "languages": 1338, "closeup": 1339, "vertical": 1340, "triangle": 1341, "english": 1342, "foreign": 1343, "same": 1344, "wavy": 1345, "swimming": 1346, "ocean": 1347, "waves": 1348, "beak": 1349, "swims": 1350, "closely": 1351, "dispenser": 1352, "gather": 1353, "fed": 1354, "surrounding": 1355, "raised": 1356, "mural": 1357, "heard": 1358, "scattered": 1359, "gathering": 1360, "quiet": 1361, "suburbs": 1362, "growing": 1363, "multi": 1364, "cones": 1365, "far": 1366, "right": 1367, "drives": 1368, "slow": 1369, "apple": 1370, "travels": 1371, "historical": 1372, "travel": 1373, "tropical": 1374, "forward": 1375, "spots": 1376, "zebras": 1377, "turns": 1378, "pack": 1379, "rd": 1380, "stacked": 1381, "shelve": 1382, "rack": 1383, "types": 1384, "id": 1385, "age": 1386, "says": 1387, "you": 1388, "must": 1389, "18": 1390, "enter": 1391, "cover": 1392, "cab": 1393, "guiding": 1394, "pictured": 1395, "indicating": 1396, "distance": 1397, "statue": 1398, "lion": 1399, "york": 1400, "library": 1401, "lions": 1402, "statues": 1403, "appears": 1404, "signage": 1405, "repairing": 1406, "attaching": 1407, "less": 1408, "than": 1409, "mile": 1410, "trail": 1411, "hangs": 1412, "perches": 1413, "claws": 1414, "skates": 1415, "skateboards": 1416, "vandalized": 1417, "prohibiting": 1418, "skating": 1419, "arrow": 1420, "points": 1421, "oil": 1422, "flag": 1423, "reads": 1424, "damaged": 1425, "word": 1426, "barn": 1427, "mother": 1428, "larger": 1429, "sanctuary": 1430, "grown": 1431, "staring": 1432, "directly": 1433, "lens": 1434, "massive": 1435, "pennsylvania": 1436, "avenue": 1437, "stately": 1438, "adorned": 1439, "st": 1440, "ones": 1441, "feathers": 1442, "lettering": 1443, "adorns": 1444, "concrete": 1445, "live": 1446, "life": 1447, "sneakers": 1448, "hang": 1449, "av": 1450, "first": 1451, "shoes": 1452, "power": 1453, "lines": 1454, "cages": 1455, "sheets": 1456, "have": 1457, "clothes": 1458, "covering": 1459, "cloth": 1460, "tarps": 1461, "strapped": 1462, "advantage": 1463, "birdbath": 1464, "diving": 1465, "splashes": 1466, "asian": 1467, "language": 1468, "interstate": 1469, "somewhere": 1470, "poll": 1471, "gliding": 1472, "snowy": 1473, "range": 1474, "photographer": 1475, "swooping": 1476, "rather": 1477, "name": 1478, "indicates": 1479, "during": 1480, "winter": 1481, "panting": 1482, "tongue": 1483, "cute": 1484, "adult": 1485, "rock": 1486, "sick": 1487, "cane": 1488, "hurdle": 1489, "ramp": 1490, "crouching": 1491, "balancing": 1492, "printed": 1493, "traffice": 1494, "poles": 1495, "sticking": 1496, "posts": 1497, "similar": 1498, "eiffel": 1499, "pigeons": 1500, "ledge": 1501, "railing": 1502, "seated": 1503, "besides": 1504, "prominent": 1505, "landmark": 1506, "hilltop": 1507, "fields": 1508, "canadian": 1509, "geese": 1510, "swim": 1511, "wading": 1512, "cage": 1513, "unusual": 1514, "headed": 1515, "story": 1516, "dr": 1517, "focused": 1518, "atop": 1519, "dead": 1520, "detroit": 1521, "give": 1522, "names": 1523, "utility": 1524, "sports": 1525, "ram": 1526, "bends": 1527, "woolly": 1528, "broadway": 1529, "star": 1530, "nypd": 1531, "security": 1532, "edge": 1533, "cliff": 1534, "numerous": 1535, "interact": 1536, "explaining": 1537, "landscaping": 1538, "shops": 1539, "selling": 1540, "dress": 1541, "poses": 1542, "walkway": 1543, "posing": 1544, "legs": 1545, "flamingos": 1546, "shallow": 1547, "foraging": 1548, "female": 1549, "peacocks": 1550, "strange": 1551, "huddled": 1552, "wild": 1553, "turkeys": 1554, "dried": 1555, "railroad": 1556, "trains": 1557, "scouts": 1558, "uniform": 1559, "scout": 1560, "cannon": 1561, "tiny": 1562, "angry": 1563, "guys": 1564, "bookshelf": 1565, "conversation": 1566, "these": 1567, "costumes": 1568, "snowboard": 1569, "mask": 1570, "crazy": 1571, "hands": 1572, "scary": 1573, "costume": 1574, "snowboarder": 1575, "hugged": 1576, "upward": 1577, "bend": 1578, "moving": 1579, "graffiti": 1580, "weathered": 1581, "boxcar": 1582, "spray": 1583, "elaborate": 1584, "freight": 1585, "propane": 1586, "marked": 1587, "gas": 1588, "parrots": 1589, "log": 1590, "watering": 1591, "tin": 1592, "moves": 1593, "last": 1594, "grain": 1595, "pulling": 1596, "short": 1597, "speeds": 1598, "rails": 1599, "arriving": 1600, "planter": 1601, "real": 1602, "bed": 1603, "shape": 1604, "clutter": 1605, "junction": 1606, "posters": 1607, "houses": 1608, "running": 1609, "speed": 1610, "platform": 1611, "photographs": 1612, "peeks": 1613, "tunnel": 1614, "overpass": 1615, "go": 1616, "depot": 1617, "milling": 1618, "upside": 1619, "sighn": 1620, "propped": 1621, "sigh": 1622, "sittin": 1623, "somewhat": 1624, "telephone": 1625, "dented": 1626, "humorous": 1627, "sox": 1628, "supporting": 1629, "words": 1630, "written": 1631, "marker": 1632, "freshly": 1633, "plowed": 1634, "wonderland": 1635, "suburban": 1636, "recently": 1637, "clings": 1638, "rural": 1639, "carts": 1640, "videos": 1641, "worker": 1642, "jack": 1643, "hammer": 1644, "operating": 1645, "blond": 1646, "knitting": 1647, "sweater": 1648, "coin": 1649, "paying": 1650, "pays": 1651, "decorating": 1652, "fake": 1653, "putting": 1654, "wrapping": 1655, "designs": 1656, "sand": 1657, "accept": 1658, "credit": 1659, "cards": 1660, "remaining": 1661, "porch": 1662, "dock": 1663, "beam": 1664, "sunbathing": 1665, "milks": 1666, "milking": 1667, "eventually": 1668, "authentic": 1669, "couch": 1670, "curled": 1671, "napping": 1672, "sleeping": 1673, "bulldozer": 1674, "asphalt": 1675, "machine": 1676, "paving": 1677, "vests": 1678, "dump": 1679, "pay": 1680, "loader": 1681, "workers": 1682, "own": 1683, "fat": 1684, "hauling": 1685, "easier": 1686, "funny": 1687, "logging": 1688, "logs": 1689, "travelling": 1690, "semi": 1691, "shoe": 1692, "laces": 1693, "shoelace": 1694, "navy": 1695, "strings": 1696, "tiger": 1697, "cats": 1698, "business": 1699, "gravel": 1700, "antique": 1701, "classic": 1702, "booth": 1703, "event": 1704, "vendor": 1705, "ox": 1706, "tow": 1707, "card": 1708, "tows": 1709, "care": 1710, "towed": 1711, "luggage": 1712, "suitcase": 1713, "owner": 1714, "amongst": 1715, "clothing": 1716, "folded": 1717, "furry": 1718, "sofa": 1719, "arm": 1720, "sad": 1721, "expression": 1722, "cows": 1723, "kind": 1724, "banana": 1725, "bite": 1726, "perch": 1727, "peek": 1728, "maroon": 1729, "coffee": 1730, "recliner": 1731, "monitors": 1732, "horizon": 1733, "grazes": 1734, "scared": 1735, "bulls": 1736, "calmly": 1737, "fair": 1738, "piles": 1739, "stable": 1740, "lie": 1741, "stalls": 1742, "sill": 1743, "curious": 1744, "wandering": 1745, "meadow": 1746, "lay": 1747, "fast": 1748, "asleep": 1749, "lounging": 1750, "itself": 1751, "firetruck": 1752, "hides": 1753, "drawers": 1754, "peaking": 1755, "flatbed": 1756, "transporting": 1757, "load": 1758, "carry": 1759, "faced": 1760, "bushes": 1761, "lose": 1762, "kinds": 1763, "electronics": 1764, "stereo": 1765, "others": 1766, "calf": 1767, "upon": 1768, "mud": 1769, "climbing": 1770, "entertainment": 1771, "halo": 1772, "heads": 1773, "silo": 1774, "featured": 1775, "skies": 1776, "remote": 1777, "blanket": 1778, "trucks": 1779, "stretched": 1780, "fishermen": 1781, "nets": 1782, "fishing": 1783, "twin": 1784, "pontoon": 1785, "wrecked": 1786, "umbrellas": 1787, "shaded": 1788, "steer": 1789, "alert": 1790, "tied": 1791, "peeking": 1792, "ceiling": 1793, "desktop": 1794, "savannah": 1795, "elephants": 1796, "mama": 1797, "roam": 1798, "freely": 1799, "wildebeests": 1800, "golden": 1801, "grasses": 1802, "assorted": 1803, "ties": 1804, "racks": 1805, "neatly": 1806, "arrange": 1807, "sale": 1808, "mens": 1809, "dozens": 1810, "colors": 1811, "figurines": 1812, "ceramic": 1813, "figurine": 1814, "photographed": 1815, "signing": 1816, "important": 1817, "documents": 1818, "papers": 1819, "suit": 1820, "suits": 1821, "also": 1822, "medium": 1823, "sized": 1824, "marina": 1825, "moored": 1826, "sizes": 1827, "moustache": 1828, "individual": 1829, "comical": 1830, "mustache": 1831, "serious": 1832, "facial": 1833, "tying": 1834, "do": 1835, "bow": 1836, "assisted": 1837, "sailboat": 1838, "lighthouse": 1839, "ship": 1840, "hil": 1841, "turned": 1842, "shoreline": 1843, "flipped": 1844, "piercings": 1845, "brunette": 1846, "drawing": 1847, "adjusted": 1848, "entering": 1849, "groups": 1850, "trunk": 1851, "toned": 1852, "insects": 1853, "throwing": 1854, "spraying": 1855, "afield": 1856, "cylinders": 1857, "pails": 1858, "indian": 1859, "nd": 1860, "jugs": 1861, "tanks": 1862, "ridden": 1863, "item": 1864, "ferry": 1865, "teddybear": 1866, "tug": 1867, "jungle": 1868, "sprouting": 1869, "yacht": 1870, "mingle": 1871, "coast": 1872, "party": 1873, "pushes": 1874, "daytime": 1875, "prairie": 1876, "dusty": 1877, "shrubbery": 1878, "male": 1879, "tusks": 1880, "family": 1881, "drinks": 1882, "stream": 1883, "ferries": 1884, "scape": 1885, "sailing": 1886, "scenic": 1887, "daily": 1888, "thames": 1889, "england": 1890, "formally": 1891, "onlookers": 1892, "docks": 1893, "cranes": 1894, "reach": 1895, "patiently": 1896, "gazing": 1897, "port": 1898, "bring": 1899, "gated": 1900, "adults": 1901, "gun": 1902, "formal": 1903, "suspenders": 1904, "sprawled": 1905, "bags": 1906, "accessories": 1907, "spread": 1908, "thrown": 1909, "shoulder": 1910, "shade": 1911, "environment": 1912, "wooded": 1913, "boulders": 1914, "paddles": 1915, "canoe": 1916, "kayak": 1917, "rowing": 1918, "glides": 1919, "kayaks": 1920, "canal": 1921, "british": 1922, "design": 1923, "color": 1924, "corrected": 1925, "congested": 1926, "within": 1927, "ships": 1928, "docking": 1929, "yachts": 1930, "rhinoceros": 1931, "rhino": 1932, "hold": 1933, "share": 1934, "neckties": 1935, "patterns": 1936, "six": 1937, "levels": 1938, "pattern": 1939, "crystal": 1940, "decker": 1941, "waving": 1942, "sails": 1943, "still": 1944, "extremely": 1945, "calm": 1946, "abandoned": 1947, "leads": 1948, "parasol": 1949, "gloomy": 1950, "foggy": 1951, "embracing": 1952, "hugging": 1953, "whos": 1954, "keeper": 1955, "caged": 1956, "bathing": 1957, "hot": 1958, "stretching": 1959, "upwards": 1960, "feed": 1961, "grove": 1962, "tusked": 1963, "shrubs": 1964, "adorable": 1965, "son": 1966, "rubbing": 1967, "captive": 1968, "branches": 1969, "raises": 1970, "grab": 1971, "twigs": 1972, "lifts": 1973, "wade": 1974, "wire": 1975, "touch": 1976, "trunks": 1977, "laughing": 1978, "teenage": 1979, "hover": 1980, "talk": 1981, "laugh": 1982, "smile": 1983, "shades": 1984, "chest": 1985, "polka": 1986, "dot": 1987, "belt": 1988, "driver": 1989, "brief": 1990, "tattoos": 1991, "eastern": 1992, "decorate": 1993, "briefcase": 1994, "lunch": 1995, "sorts": 1996, "passangers": 1997, "tourists": 1998, "stagecoach": 1999, "cases": 2000, "block": 2001, "suitcases": 2002, "louis": 2003, "animation": 2004, "scarf": 2005, "dimensional": 2006, "stylish": 2007, "drawings": 2008, "handles": 2009, "deployed": 2010, "help": 2011, "when": 2012, "lock": 2013, "handle": 2014, "frisbee": 2015, "catch": 2016, "trying": 2017, "dig": 2018, "prepares": 2019, "jump": 2020, "squatting": 2021, "toddler": 2022, "persian": 2023, "carpet": 2024, "protecting": 2025, "covers": 2026, "infant": 2027, "really": 2028, "need": 2029, "match": 2030, "hotel": 2031, "wrestles": 2032, "deck": 2033, "adjusting": 2034, "placing": 2035, "too": 2036, "anything": 2037, "retriever": 2038, "pool": 2039, "sleeps": 2040, "backyard": 2041, "stories": 2042, "celebrity": 2043, "creature": 2044, "magazine": 2045, "always": 2046, "print": 2047, "latest": 2048, "cartoon": 2049, "characters": 2050, "stare": 2051, "puppy": 2052, "snuggled": 2053, "cushions": 2054, "shaggy": 2055, "gets": 2056, "served": 2057, "broccoli": 2058, "given": 2059, "railway": 2060, "polar": 2061, "fours": 2062, "backpacks": 2063, "hunting": 2064, "salmon": 2065, "bears": 2066, "fallen": 2067, "waist": 2068, "deep": 2069, "toss": 2070, "disc": 2071, "smelling": 2072, "vibrant": 2073, "game": 2074, "motion": 2075, "throw": 2076, "catching": 2077, "five": 2078, "circular": 2079, "play": 2080, "waterfront": 2081, "friends": 2082, "early": 2083, "hour": 2084, "winged": 2085, "lands": 2086, "purses": 2087, "peacefully": 2088, "pillows": 2089, "sleepy": 2090, "disk": 2091, "catches": 2092, "towel": 2093, "wetsuit": 2094, "sunset": 2095, "rumpled": 2096, "mattress": 2097, "terrier": 2098, "sheeted": 2099, "blankets": 2100, "frumpled": 2101, "reflected": 2102, "campsite": 2103, "barbecue": 2104, "grate": 2105, "fenced": 2106, "bars": 2107, "younger": 2108, "teens": 2109, "dune": 2110, "racing": 2111, "captivity": 2112, "cliffs": 2113, "followed": 2114, "hiker": 2115, "canyon": 2116, "hillside": 2117, "shady": 2118, "wooly": 2119, "curly": 2120, "half": 2121, "hybrid": 2122, "biting": 2123, "fighting": 2124, "involved": 2125, "fight": 2126, "playful": 2127, "teeth": 2128, "terrain": 2129, "hind": 2130, "wrestling": 2131, "groomed": 2132, "kite": 2133, "throws": 2134, "yelling": 2135, "leans": 2136, "plains": 2137, "grassland": 2138, "we": 2139, "shrub": 2140, "knee": 2141, "battling": 2142, "leg": 2143, "donkey": 2144, "collage": 2145, "places": 2146, "scrub": 2147, "summer": 2148, "savanna": 2149, "afternoon": 2150, "jockeys": 2151, "cowboys": 2152, "uniforms": 2153, "6": 2154, "races": 2155, "attention": 2156, "gazelles": 2157, "portion": 2158, "buggy": 2159, "thats": 2160, "team": 2161, "farmer": 2162, "plowing": 2163, "plow": 2164, "trotting": 2165, "hilly": 2166, "majestically": 2167, "leather": 2168, "coat": 2169, "pet": 2170, "ranch": 2171, "trainer": 2172, "horseback": 2173, "pathway": 2174, "led": 2175, "saddle": 2176, "trolley": 2177, "conductor": 2178, "pony": 2179, "hairy": 2180, "bushy": 2181, "tails": 2182, "ponies": 2183, "dressage": 2184, "practicing": 2185, "certain": 2186, "tending": 2187, "trolly": 2188, "stops": 2189, "before": 2190, "continues": 2191, "pull": 2192, "angles": 2193, "markings": 2194, "gaze": 2195, "course": 2196, "jockey": 2197, "wait": 2198, "only": 2199, "trails": 2200, "gallops": 2201, "competition": 2202, "corral": 2203, "knights": 2204, "performers": 2205, "medieval": 2206, "times": 2207, "perform": 2208, "observers": 2209, "arena": 2210, "jousting": 2211, "knight": 2212, "outfits": 2213, "character": 2214, "surface": 2215, "haunches": 2216, "elegantly": 2217, "haired": 2218, "sword": 2219, "figures": 2220, "corn": 2221, "bridle": 2222, "lead": 2223, "rope": 2224, "impressed": 2225, "grace": 2226, "bun": 2227, "lettuce": 2228, "hotdog": 2229, "ketchup": 2230, "topped": 2231, "foods": 2232, "cheese": 2233, "meat": 2234, "cheeses": 2235, "sausages": 2236, "fruits": 2237, "meats": 2238, "baseball": 2239, "player": 2240, "bat": 2241, "hit": 2242, "powdered": 2243, "breakfast": 2244, "pancakes": 2245, "toppings": 2246, "sauce": 2247, "whipped": 2248, "swinging": 2249, "players": 2250, "pitch": 2251, "hitting": 2252, "try": 2253, "tray": 2254, "tangerines": 2255, "pear": 2256, "apples": 2257, "pears": 2258, "array": 2259, "boys": 2260, "league": 2261, "balls": 2262, "forth": 2263, "softball": 2264, "clusters": 2265, "hung": 2266, "magazines": 2267, "slice": 2268, "ornament": 2269, "scoop": 2270, "grocery": 2271, "supermarket": 2272, "produce": 2273, "indoor": 2274, "kicked": 2275, "winding": 2276, "catchers": 2277, "mitt": 2278, "attentively": 2279, "third": 2280, "engages": 2281, "defensive": 2282, "cap": 2283, "skis": 2284, "participating": 2285, "surfing": 2286, "surfer": 2287, "skiing": 2288, "chain": 2289, "link": 2290, "baskets": 2291, "etc": 2292, "include": 2293, "potatoes": 2294, "price": 2295, "arrangement": 2296, "saying": 2297, "how": 2298, "much": 2299, "cost": 2300, "apricots": 2301, "arranged": 2302, "cartons": 2303, "pitchers": 2304, "mound": 2305, "jersey": 2306, "action": 2307, "desserts": 2308, "chocolate": 2309, "deserts": 2310, "stalk": 2311, "peak": 2312, "slope": 2313, "mounting": 2314, "ski": 2315, "skier": 2316, "slopes": 2317, "casts": 2318, "shadow": 2319, "bundled": 2320, "headdress": 2321, "necklace": 2322, "outfit": 2323, "shoulders": 2324, "performer": 2325, "sauteed": 2326, "spoon": 2327, "stir": 2328, "fry": 2329, "frying": 2330, "accompanied": 2331, "fried": 2332, "onions": 2333, "stirs": 2334, "skiers": 2335, "glove": 2336, "lunges": 2337, "reaches": 2338, "pitching": 2339, "rays": 2340, "salads": 2341, "cut": 2342, "pizza": 2343, "salad": 2344, "soda": 2345, "rice": 2346, "cola": 2347, "meal": 2348, "doughnuts": 2349, "donuts": 2350, "frosting": 2351, "bagels": 2352, "seafood": 2353, "cooked": 2354, "shrimp": 2355, "vegetable": 2356, "carrots": 2357, "warm": 2358, "learning": 2359, "skiies": 2360, "greeting": 2361, "fiving": 2362, "celebrating": 2363, "after": 2364, "win": 2365, "fives": 2366, "jackets": 2367, "mangoes": 2368, "pasta": 2369, "finely": 2370, "shredded": 2371, "beef": 2372, "main": 2373, "entree": 2374, "steak": 2375, "steamed": 2376, "caterpillar": 2377, "emerging": 2378, "bug": 2379, "fork": 2380, "twig": 2381, "worm": 2382, "candies": 2383, "junk": 2384, "sprinkles": 2385, "cherries": 2386, "sundae": 2387, "sweet": 2388, "treats": 2389, "marshmallows": 2390, "delicious": 2391, "chicken": 2392, "soup": 2393, "cauliflower": 2394, "scallions": 2395, "onion": 2396, "slicer": 2397, "celery": 2398, "mini": 2399, "stalks": 2400, "steps": 2401, "grinding": 2402, "stairway": 2403, "chinese": 2404, "teenager": 2405, "shells": 2406, "eaten": 2407, "mixture": 2408, "beans": 2409, "evergreens": 2410, "aquarium": 2411, "tape": 2412, "measure": 2413, "pants": 2414, "thick": 2415, "snowboarding": 2416, "d": 2417, "noodles": 2418, "dressing": 2419, "veggies": 2420, "square": 2421, "carrot": 2422, "giant": 2423, "cricket": 2424, "insect": 2425, "trap": 2426, "trapped": 2427, "ramps": 2428, "practices": 2429, "skatepark": 2430, "protective": 2431, "patio": 2432, "hooded": 2433, "hollywood": 2434, "fame": 2435, "electrical": 2436, "demonstrates": 2437, "exposure": 2438, "youngster": 2439, "simple": 2440, "tip": 2441, "stunt": 2442, "skills": 2443, "picked": 2444, "soil": 2445, "woven": 2446, "earth": 2447, "cock": 2448, "boots": 2449, "toothbrushes": 2450, "tube": 2451, "toothpaste": 2452, "tooth": 2453, "brushes": 2454, "paste": 2455, "skateboarders": 2456, "dc": 2457, "rail": 2458, "bar": 2459, "jean": 2460, "jumped": 2461, "pipe": 2462, "mid": 2463, "skater": 2464, "does": 2465, "startled": 2466, "railings": 2467, "manual": 2468, "tennis": 2469, "shorts": 2470, "skiier": 2471, "snowball": 2472, "demolished": 2473, "snowman": 2474, "microphone": 2475, "relish": 2476, "condiments": 2477, "monochrome": 2478, "boards": 2479, "slanted": 2480, "burrito": 2481, "teenagers": 2482, "hoodie": 2483, "boarder": 2484, "indoors": 2485, "slides": 2486, "pickle": 2487, "nachos": 2488, "snowboards": 2489, "fort": 2490, "enjoying": 2491, "bites": 2492, "african": 2493, "wintery": 2494, "sandwiches": 2495, "deli": 2496, "tags": 2497, "plenty": 2498, "buy": 2499, "pastries": 2500, "muffins": 2501, "storm": 2502, "incline": 2503, "boarders": 2504, "sausage": 2505, "chili": 2506, "garage": 2507, "crate": 2508, "buns": 2509, "regular": 2510, "styrofoam": 2511, "wedges": 2512, "eight": 2513, "serving": 2514, "doughnut": 2515, "bespectacled": 2516, "zodiac": 2517, "sweatshirt": 2518, "boiled": 2519, "eggs": 2520, "picnic": 2521, "wax": 2522, "napkins": 2523, "frosted": 2524, "sprinkled": 2525, "maker": 2526, "weird": 2527, "what": 2528, "hikes": 2529, "challenging": 2530, "sliding": 2531, "bean": 2532, "chew": 2533, "beanbag": 2534, "baked": 2535, "goods": 2536, "trays": 2537, "enjoys": 2538, "snowboarders": 2539, "conversing": 2540, "geared": 2541, "rink": 2542, "gently": 2543, "roofed": 2544, "facility": 2545, "lodge": 2546, "layed": 2547, "dozen": 2548, "snack": 2549, "sweets": 2550, "bakery": 2551, "napkin": 2552, "carseat": 2553, "varieties": 2554, "icing": 2555, "purchase": 2556, "garnish": 2557, "layered": 2558, "avocado": 2559, "ham": 2560, "kale": 2561, "twp": 2562, "fingers": 2563, "enormous": 2564, "guest": 2565, "ten": 2566, "flavored": 2567, "toasted": 2568, "grilled": 2569, "panini": 2570, "fries": 2571, "platter": 2572, "toothpicks": 2573, "french": 2574, "cookie": 2575, "bitten": 2576, "oddly": 2577, "wrapped": 2578, "bagged": 2579, "yummy": 2580, "sprinkle": 2581, "basketball": 2582, "tattoo": 2583, "uniformed": 2584, "hoop": 2585, "goal": 2586, "kicking": 2587, "soccer": 2588, "kicks": 2589, "candles": 2590, "2nd": 2591, "year": 2592, "done": 2593, "baking": 2594, "rising": 2595, "wave": 2596, "bodysuit": 2597, "halves": 2598, "doily": 2599, "2": 2600, "teams": 2601, "competing": 2602, "chasing": 2603, "praying": 2604, "youth": 2605, "huddling": 2606, "kick": 2607, "contending": 2608, "surfers": 2609, "morning": 2610, "sunrise": 2611, "tractor": 2612, "highchair": 2613, "layer": 2614, "prepared": 2615, "accents": 2616, "surfboarder": 2617, "bringing": 2618, "breaking": 2619, "crashing": 2620, "football": 2621, "members": 2622, "whle": 2623, "soccerball": 2624, "deciding": 2625, "returns": 2626, "goalie": 2627, "mate": 2628, "mom": 2629, "hospital": 2630, "iv": 2631, "hooked": 2632, "pointing": 2633, "finger": 2634, "notebook": 2635, "childs": 2636, "toes": 2637, "gestures": 2638, "fudge": 2639, "pastry": 2640, "creme": 2641, "whip": 2642, "could": 2643, "remodeled": 2644, "doctors": 2645, "rags": 2646, "possible": 2647, "drying": 2648, "upright": 2649, "frames": 2650, "mattresses": 2651, "rooms": 2652, "fireplace": 2653, "displays": 2654, "so": 2655, "drizzled": 2656, "attempts": 2657, "read": 2658, "novel": 2659, "grabs": 2660, "grips": 2661, "instructing": 2662, "dad": 2663, "coaches": 2664, "beds": 2665, "headboard": 2666, "differently": 2667, "cozy": 2668, "surf": 2669, "canopy": 2670, "linens": 2671, "drape": 2672, "mosquito": 2673, "netting": 2674, "overhead": 2675, "size": 2676, "neutral": 2677, "mickey": 2678, "ears": 2679, "mouses": 2680, "resort": 2681, "privacy": 2682, "rental": 2683, "cabana": 2684, "frowning": 2685, "grimacing": 2686, "pf": 2687, "surfboarding": 2688, "volley": 2689, "paddling": 2690, "whom": 2691, "finished": 2692, "breasted": 2693, "companion": 2694, "enjoy": 2695, "floral": 2696, "carnival": 2697, "spreads": 2698, "were": 2699, "date": 2700, "silverware": 2701, "wife": 2702, "got": 2703, "bowler": 2704, "lab": 2705, "love": 2706, "mic": 2707, "racket": 2708, "racquet": 2709, "court": 2710, "raquet": 2711, "poured": 2712, "italian": 2713, "presented": 2714, "tomatoes": 2715, "olives": 2716, "christmas": 2717, "gifts": 2718, "holiday": 2719, "veggie": 2720, "egg": 2721, "pie": 2722, "racquets": 2723, "identical": 2724, "rackets": 2725, "pepperoni": 2726, "sub": 2727, "pretty": 2728, "gigantic": 2729, "novelty": 2730, "females": 2731, "fencing": 2732, "seating": 2733, "vegetarian": 2734, "gone": 2735, "nearly": 2736, "come": 2737, "serve": 2738, "coke": 2739, "swirl": 2740, "audience": 2741, "best": 2742, "lunging": 2743, "traditional": 2744, "fully": 2745, "whole": 2746, "uncut": 2747, "paddle": 2748, "cook": 2749, "slicing": 2750, "easy": 2751, "tables": 2752, "comfy": 2753, "brushing": 2754, "toothbrush": 2755, "halfway": 2756, "draped": 2757, "bored": 2758, "ottoman": 2759, "remotes": 2760, "oval": 2761, "pineapple": 2762, "compartment": 2763, "hut": 2764, "utensil": 2765, "floss": 2766, "cleaner": 2767, "kept": 2768, "mouthwash": 2769, "foaming": 2770, "cool": 2771, "numbered": 2772, "affixed": 2773, "pajamas": 2774, "wii": 2775, "projection": 2776, "projector": 2777, "gentleman": 2778, "video": 2779, "games": 2780, "dimly": 2781, "chilling": 2782, "nintendo": 2783, "controllers": 2784, "nightstand": 2785, "bookshelves": 2786, "extending": 2787, "collection": 2788, "residence": 2789, "folks": 2790, "bowling": 2791, "preparation": 2792, "interactive": 2793, "sectional": 2794, "stairs": 2795, "hardwood": 2796, "manipulating": 2797, "ribbon": 2798, "fabric": 2799, "pressing": 2800, "buttons": 2801, "wand": 2802, "theme": 2803, "orderly": 2804, "ceilings": 2805, "florida": 2806, "location": 2807, "couches": 2808, "lamps": 2809, "inflatable": 2810, "sofas": 2811, "nook": 2812, "since": 2813, "shinning": 2814, "hockey": 2815, "hard": 2816, "provide": 2817, "contrast": 2818, "mac": 2819, "macintosh": 2820, "wired": 2821, "wireless": 2822, "matching": 2823, "glimpse": 2824, "corridor": 2825, "desks": 2826, "descent": 2827, "screens": 2828, "information": 2829, "furnished": 2830, "partial": 2831, "dribbling": 2832, "project": 2833, "chandelier": 2834, "laptops": 2835, "matress": 2836, "releases": 2837, "else": 2838, "string": 2839, "tries": 2840, "let": 2841, "kites": 2842, "flown": 2843, "choppy": 2844, "pottery": 2845, "attempting": 2846, "launch": 2847, "parachute": 2848, "onlooking": 2849, "para": 2850, "parasailing": 2851, "windsurfing": 2852, "sail": 2853, "skinned": 2854, "pushed": 2855, "swing": 2856, "rises": 2857, "higher": 2858, "any": 2859, "vicinity": 2860, "brass": 2861, "bureau": 2862, "classroom": 2863, "split": 2864, "studying": 2865, "cookies": 2866, "triangular": 2867, "excitedly": 2868, "laughs": 2869, "runs": 2870, "patrol": 2871, "jeep": 2872, "dragon": 2873, "bit": 2874, "erected": 2875, "local": 2876, "fronts": 2877, "blurred": 2878, "lamppost": 2879, "batter": 2880, "catcher": 2881, "umpire": 2882, "turn": 2883, "swung": 2884, "stadium": 2885, "spectators": 2886, "wiffle": 2887, "bats": 2888, "referee": 2889, "recording": 2890, "batters": 2891, "foul": 2892, "swings": 2893, "misses": 2894, "castle": 2895, "ben": 2896, "clocktower": 2897, "barge": 2898, "skyline": 2899, "rivers": 2900, "architectural": 2901, "scaffolding": 2902, "warms": 2903, "mimicking": 2904, "stance": 2905, "rolls": 2906, "call": 2907, "warming": 2908, "t": 2909, "teaching": 2910, "tee": 2911, "barry": 2912, "bonds": 2913, "fans": 2914, "photographers": 2915, "films": 2916, "receive": 2917, "entertaining": 2918, "blood": 2919, "battle": 2920, "everywhere": 2921, "cardinals": 2922, "dugout": 2923, "circle": 2924, "poised": 2925, "mushroom": 2926, "bake": 2927, "fulled": 2928, "balances": 2929, "casserole": 2930, "crackers": 2931, "clothe": 2932, "homemade": 2933, "form": 2934, "returning": 2935, "return": 2936, "opponent": 2937, "rustic": 2938, "came": 2939, "serves": 2940, "celebrates": 2941, "reacts": 2942, "fists": 2943, "viewed": 2944, "tournament": 2945, "doubles": 2946, "converse": 2947, "dresses": 2948, "checkered": 2949, "pesto": 2950, "peppers": 2951, "artichokes": 2952, "checked": 2953, "follows": 2954, "mushrooms": 2955, "anchovies": 2956, "strike": 2957, "incoming": 2958, "shutters": 2959, "bulb": 2960, "theres": 2961, "seems": 2962, "font": 2963, "barred": 2964, "mat": 2965, "prints": 2966, "envelope": 2967, "supplies": 2968, "adjacent": 2969, "mugs": 2970, "tablets": 2971, "ladies": 2972, "o": 2973, "f": 2974, "blown": 2975, "jars": 2976, "shapes": 2977, "typing": 2978, "operates": 2979, "extension": 2980, "cords": 2981, "toaster": 2982, "conference": 2983, "devices": 2984, "gesture": 2985, "eagerly": 2986, "rabbit": 2987, "bunny": 2988, "tight": 2989, "happily": 2990, "ribbons": 2991, "alcohol": 2992, "retail": 2993, "curio": 2994, "symbols": 2995, "tears": 2996, "pit": 2997, "falling": 2998, "apart": 2999, "wants": 3000, "plush": 3001, "beers": 3002, "mall": 3003, "smart": 3004, "smartphone": 3005, "iphone": 3006, "round": 3007, "device": 3008, "ipod": 3009, "charging": 3010, "cellphone": 3011, "clay": 3012, "formed": 3013, "dripping": 3014, "sidwalk": 3015, "heels": 3016, "cubicle": 3017, "indiana": 3018, "jones": 3019, "talks": 3020, "spaghetti": 3021, "stood": 3022, "recorder": 3023, "pouch": 3024, "gadgets": 3025, "pocket": 3026, "speaks": 3027, "festival": 3028, "texting": 3029, "cel": 3030, "ear": 3031, "mobile": 3032, "attachments": 3033, "cameras": 3034, "messing": 3035, "opening": 3036, "babys": 3037, "bulletin": 3038, "refridgerator": 3039, "mementos": 3040, "fridge": 3041, "magnets": 3042, "countertop": 3043, "studio": 3044, "freezer": 3045, "homes": 3046, "thin": 3047, "otherwise": 3048, "build": 3049, "touring": 3050, "stocked": 3051, "lower": 3052, "combo": 3053, "dated": 3054, "lemons": 3055, "lemon": 3056, "stock": 3057, "hued": 3058, "pail": 3059, "beautifully": 3060, "dishes": 3061, "daisy": 3062, "greenery": 3063, "variations": 3064, "pillar": 3065, "details": 3066, "scissors": 3067, "labeled": 3068, "pinned": 3069, "pairs": 3070, "prices": 3071, "surgical": 3072, "community": 3073, "babies": 3074, "training": 3075, "potty": 3076, "twins": 3077, "toddlers": 3078, "radiator": 3079, "heater": 3080, "towers": 3081, "steep": 3082, "infamous": 3083, "clocks": 3084, "angle": 3085, "built": 3086, "nighttime": 3087, "stars": 3088, "dolls": 3089, "doll": 3090, "numbers": 3091, "indicate": 3092, "twelve": 3093, "thirty": 3094, "roman": 3095, "numerals": 3096, "bells": 3097, "stained": 3098, "either": 3099, "balconies": 3100, "western": 3101, "west": 3102, "jar": 3103, "intricately": 3104, "detailed": 3105, "tulips": 3106, "bouquet": 3107, "stemmed": 3108, "stems": 3109, "centerpiece": 3110, "artsy": 3111, "representing": 3112, "scissor": 3113, "clippers": 3114, "nuts": 3115, "factory": 3116, "cigar": 3117, "trimming": 3118, "shavings": 3119, "pencil": 3120, "ruler": 3121, "spool": 3122, "thread": 3123, "craft": 3124, "sewing": 3125, "contents": 3126, "developed": 3127, "creative": 3128, "gummy": 3129, "candy": 3130, "spiral": 3131, "graham": 3132, "cracker": 3133, "themed": 3134, "santa": 3135, "kittens": 3136, "nap": 3137, "laundry": 3138, "knitted": 3139, "consists": 3140, "dip": 3141, "laden": 3142, "meeting": 3143, "pumping": 3144, "liquor": 3145, "stem": 3146, "benches": 3147, "merchandise": 3148, "flea": 3149, "motocycle": 3150, "aisle": 3151, "seats": 3152, "depart": 3153, "occupied": 3154, "travelers": 3155, "sleeveless": 3156, "cocktail": 3157, "toe": 3158, "heel": 3159, "pumps": 3160, "neat": 3161, "tidy": 3162, "residential": 3163, "cupboards": 3164, "dishwasher": 3165, "crock": 3166, "charming": 3167, "peering": 3168, "remodel": 3169, "dinging": 3170, "trimmed": 3171, "peeled": 3172, "blender": 3173, "blended": 3174, "washer": 3175, "inspects": 3176, "groceries": 3177, "fixes": 3178, "cooker": 3179, "smooth": 3180, "countertops": 3181, "mixing": 3182, "stirring": 3183, "booster": 3184, "stool": 3185, "stripped": 3186, "bathes": 3187, "newborn": 3188, "purpose": 3189, "basin": 3190, "observing": 3191, "basic": 3192, "odd": 3193, "awful": 3194, "marble": 3195, "farmhouse": 3196, "purse": 3197, "rectangle": 3198, "knives": 3199, "magnet": 3200, "seven": 3201, "sharp": 3202, "lime": 3203, "raw": 3204, "threes": 3205, "lived": 3206, "remains": 3207, "despite": 3208, "showcasing": 3209, "dinette": 3210, "settings": 3211, "means": 3212, "later": 3213, "corkscrew": 3214, "coasting": 3215, "reflects": 3216, "boiling": 3217, "burner": 3218, "checking": 3219, "concoction": 3220, "scratching": 3221, "pad": 3222, "organized": 3223, "bicyclist": 3224, "showering": 3225, "bricked": 3226, "fisheye": 3227, "dorm": 3228, "roll": 3229, "hanger": 3230, "usually": 3231, "found": 3232, "nursing": 3233, "will": 3234, "wheelchair": 3235, "accessible": 3236, "sidewalks": 3237, "cityscape": 3238, "european": 3239, "leopard": 3240, "facet": 3241, "robe": 3242, "towels": 3243, "powder": 3244, "sleek": 3245, "efficient": 3246, "overheard": 3247, "aerial": 3248, "fuel": 3249, "pump": 3250, "tool": 3251, "dresser": 3252, "carriages": 3253, "suv": 3254, "vw": 3255, "van": 3256, "awesome": 3257, "volkswagon": 3258, "pipes": 3259, "nasty": 3260, "cable": 3261, "certainly": 3262, "appropriate": 3263, "cans": 3264, "rubbish": 3265, "garbage": 3266, "bundle": 3267, "presses": 3268, "urinals": 3269, "smell": 3270, "automatic": 3271, "freshener": 3272, "rotunda": 3273, "uk": 3274, "bathed": 3275, "copper": 3276, "cupcake": 3277, "crotch": 3278, "rocket": 3279, "cot": 3280, "toiled": 3281, "tuna": 3282, "dutch": 3283, "key": 3284, "hole": 3285, "calico": 3286, "curls": 3287, "sleep": 3288, "wheeler": 3289, "fit": 3290, "cooler": 3291, "debris": 3292, "order": 3293, "typical": 3294, "such": 3295, "snacks": 3296, "motorcyles": 3297, "highlighted": 3298, "ripped": 3299, "mantle": 3300, "better": 3301, "officers": 3302, "lightly": 3303, "attend": 3304, "grand": 3305, "architecture": 3306, "dots": 3307, "motorcylce": 3308, "cellular": 3309, "cigarette": 3310, "driven": 3311, "motorcyclist": 3312, "united": 3313, "tons": 3314, "bandanna": 3315, "gang": 3316, "today": 3317, "rainy": 3318, "individuals": 3319, "damp": 3320, "subway": 3321, "am": 3322, "unable": 3323, "crew": 3324, "loading": 3325, "squadron": 3326, "jets": 3327, "formation": 3328, "smoke": 3329, "cloudless": 3330, "trailing": 3331, "leaving": 3332, "vapor": 3333, "shuttle": 3334, "aircrafts": 3335, "force": 3336, "lufthansa": 3337, "humongous": 3338, "strip": 3339, "engines": 3340, "hangar": 3341, "bomber": 3342, "seattle": 3343, "needle": 3344, "washington": 3345, "quite": 3346, "compared": 3347, "scraper": 3348, "unison": 3349, "world": 3350, "1": 3351, "german": 3352, "biplanes": 3353, "military": 3354, "underside": 3355, "ends": 3356, "crafts": 3357, "streams": 3358, "soaring": 3359, "approach": 3360, "hogs": 3361, "vegetation": 3362, "nature": 3363, "reserve": 3364, "buffalo": 3365, "wholly": 3366, "ha": 3367, "lambs": 3368, "paddock": 3369, "v": 3370, "angel": 3371, "leafless": 3372, "zooming": 3373, "push": 3374, "button": 3375, "turquoise": 3376, "president": 3377, "begins": 3378, "delta": 3379, "scrubby": 3380, "rise": 3381, "juvenile": 3382, "clearing": 3383, "huddle": 3384, "surroundings": 3385, "liner": 3386, "crops": 3387, "sailboats": 3388, "okay": 3389, "strung": 3390, "contemplating": 3391, "markers": 3392, "pointy": 3393, "rested": 3394, "jeans": 3395, "sexy": 3396, "extreme": 3397, "knoll": 3398, "iron": 3399, "cast": 3400, "bronze": 3401, "blonde": 3402, "leaf": 3403, "stretches": 3404, "lapse": 3405, "photography": 3406, "transit": 3407, "vehicular": 3408, "picks": 3409, "bits": 3410, "london": 3411, "occupy": 3412, "grassing": 3413, "overlooks": 3414, "roaming": 3415, "coats": 3416, "shearing": 3417, "feeder": 3418, "fairly": 3419, "natural": 3420, "camper": 3421, "nudging": 3422, "forested": 3423, "chopped": 3424, "plank": 3425, "separate": 3426, "girrafe": 3427, "overlook": 3428, "bay": 3429, "bricks": 3430, "weeds": 3431, "barriers": 3432, "decked": 3433, "dalmatian": 3434, "department": 3435, "usa": 3436, "hikers": 3437, "allows": 3438, "unused": 3439, "stones": 3440, "probably": 3441, "separated": 3442, "steam": 3443, "waterway": 3444, "leafy": 3445, "buss": 3446, "site": 3447, "exit": 3448, "feild": 3449, "schoolbus": 3450, "graffitied": 3451, "proud": 3452, "free": 3453, "fall": 3454, "fishnet": 3455, "stockings": 3456, "finds": 3457, "sparse": 3458, "stump": 3459, "armchairs": 3460, "hydrants": 3461, "bolt": 3462, "nut": 3463, "fir": 3464, "decaying": 3465, "knob": 3466, "worn": 3467, "sculptures": 3468, "gulls": 3469, "camp": 3470, "grounds": 3471, "tagged": 3472, "weighed": 3473, "tag": 3474, "modified": 3475, "changed": 3476, "handwritten": 3477, "letters": 3478, "peeping": 3479, "seed": 3480, "seeds": 3481, "metropolitan": 3482, "ways": 3483, "tilted": 3484, "lean": 3485, "extended": 3486, "perfect": 3487, "warns": 3488, "owners": 3489, "ct": 3490, "raising": 3491, "detour": 3492, "say": 3493, "tide": 3494, "pelican": 3495, "observed": 3496, "roadside": 3497, "miss": 3498, "route": 3499, "taped": 3500, "duct": 3501, "relax": 3502, "boar": 3503, "did": 3504, "camouflaged": 3505, "hummingbird": 3506, "humming": 3507, "grouping": 3508, "falcon": 3509, "parrot": 3510, "hawk": 3511, "exotic": 3512, "silly": 3513, "slight": 3514, "owl": 3515, "tips": 3516, "citrus": 3517, "fog": 3518, "blurs": 3519, "beyond": 3520, "legged": 3521, "seagull": 3522, "sheared": 3523, "goat": 3524, "fied": 3525, "skinny": 3526, "unhealthy": 3527, "wheat": 3528, "secluded": 3529, "blending": 3530, "wiht": 3531, "lakeside": 3532, "seashore": 3533, "prominently": 3534, "llamas": 3535, "misty": 3536, "gentlemen": 3537, "eachother": 3538, "bushel": 3539, "dumpster": 3540, "barrels": 3541, "bails": 3542, "twine": 3543, "random": 3544, "cleans": 3545, "good": 3546, "nibbling": 3547, "hook": 3548, "supply": 3549, "barricades": 3550, "blocked": 3551, "shadows": 3552, "grates": 3553, "caboose": 3554, "observation": 3555, "decks": 3556, "movie": 3557, "rounds": 3558, "dull": 3559, "54": 3560, "necessary": 3561, "encased": 3562, "buried": 3563, "punk": 3564, "tagging": 3565, "graffitti": 3566, "caricature": 3567, "beaver": 3568, "blossoms": 3569, "waking": 3570, "fifteen": 3571, "minutes": 3572, "sticker": 3573, "rainbow": 3574, "murals": 3575, "vans": 3576, "paws": 3577, "dont": 3578, "often": 3579, "warehouse": 3580, "equipped": 3581, "cherry": 3582, "picker": 3583, "tuxedo": 3584, "sheer": 3585, "bandana": 3586, "wander": 3587, "shine": 3588, "fading": 3589, "goblet": 3590, "statute": 3591, "paw": 3592, "onward": 3593, "trailers": 3594, "calfs": 3595, "reddish": 3596, "brownish": 3597, "chrome": 3598, "rims": 3599, "naps": 3600, "eyed": 3601, "spotted": 3602, "balcony": 3603, "windowsill": 3604, "package": 3605, "inches": 3606, "paved": 3607, "barnyard": 3608, "browsing": 3609, "mass": 3610, "unidentifiable": 3611, "tethered": 3612, "hes": 3613, "played": 3614, "enough": 3615, "now": 3616, "pug": 3617, "bearded": 3618, "bulldog": 3619, "anchored": 3620, "1960s": 3621, "socialize": 3622, "wallpaper": 3623, "isle": 3624, "pews": 3625, "ceremony": 3626, "garb": 3627, "cuddled": 3628, "longhorn": 3629, "horns": 3630, "focus": 3631, "reception": 3632, "blazer": 3633, "portrait": 3634, "bald": 3635, "corsage": 3636, "sections": 3637, "rowboats": 3638, "pockets": 3639, "beached": 3640, "soaked": 3641, "dads": 3642, "mans": 3643, "artist": 3644, "depiction": 3645, "stylized": 3646, "tiki": 3647, "coverings": 3648, "folding": 3649, "toasting": 3650, "celebration": 3651, "raise": 3652, "toast": 3653, "carefully": 3654, "customers": 3655, "sells": 3656, "bottled": 3657, "tapes": 3658, "wrap": 3659, "lobby": 3660, "hall": 3661, "professionally": 3662, "backseat": 3663, "gown": 3664, "slide": 3665, "unique": 3666, "projected": 3667, "presentation": 3668, "delivering": 3669, "lecture": 3670, "film": 3671, "motorboat": 3672, "drug": 3673, "buggies": 3674, "husky": 3675, "sleigh": 3676, "husband": 3677, "sweaters": 3678, "archway": 3679, "couples": 3680, "wear": 3681, "content": 3682, "businessman": 3683, "collar": 3684, "pensive": 3685, "eyeglasses": 3686, "profile": 3687, "handful": 3688, "robot": 3689, "wars": 3690, "club": 3691, "cafe": 3692, "shading": 3693, "tress": 3694, "channel": 3695, "cubes": 3696, "kissing": 3697, "whiile": 3698, "kiss": 3699, "sharing": 3700, "dryer": 3701, "fur": 3702, "user": 3703, "web": 3704, "bordered": 3705, "arrives": 3706, "backsides": 3707, "lining": 3708, "heeled": 3709, "lagoon": 3710, "wit": 3711, "gull": 3712, "separating": 3713, "basking": 3714, "snuggling": 3715, "though": 3716, "alleyway": 3717, "cobbled": 3718, "dragging": 3719, "cobble": 3720, "concerned": 3721, "whatever": 3722, "breast": 3723, "snout": 3724, "designated": 3725, "cinder": 3726, "tailgate": 3727, "stays": 3728, "sandal": 3729, "artificial": 3730, "pugs": 3731, "cheek": 3732, "inverted": 3733, "upturned": 3734, "leash": 3735, "highland": 3736, "sunshine": 3737, "caption": 3738, "sanding": 3739, "rubber": 3740, "dummy": 3741, "frisby": 3742, "frisbe": 3743, "relaxes": 3744, "pines": 3745, "leashes": 3746, "brands": 3747, "lace": 3748, "packs": 3749, "duffle": 3750, "boardwalk": 3751, "upholstered": 3752, "comforter": 3753, "trio": 3754, "dvds": 3755, "movies": 3756, "dvd": 3757, "muzzle": 3758, "lip": 3759, "carousel": 3760, "areas": 3761, "conveyor": 3762, "steal": 3763, "reclines": 3764, "conveyer": 3765, "had": 3766, "surrounds": 3767, "darth": 3768, "vader": 3769, "saber": 3770, "grizzly": 3771, "installing": 3772, "hoof": 3773, "nest": 3774, "cave": 3775, "lazily": 3776, "boulder": 3777, "doggy": 3778, "mountainous": 3779, "&": 3780, "cub": 3781, "chillin": 3782, "peer": 3783, "families": 3784, "service": 3785, "visiting": 3786, "session": 3787, "shit": 3788, "boars": 3789, "leaping": 3790, "plaza": 3791, "corgi": 3792, "keeps": 3793, "antelopes": 3794, "hog": 3795, "draw": 3796, "examine": 3797, "tossing": 3798, "legos": 3799, "blocks": 3800, "rump": 3801, "frisbees": 3802, "cluster": 3803, "ostrich": 3804, "tender": 3805, "moment": 3806, "rich": 3807, "murky": 3808, "splashing": 3809, "reins": 3810, "colt": 3811, "nurses": 3812, "momma": 3813, "leaned": 3814, "monument": 3815, "cowboy": 3816, "fo": 3817, "sure": 3818, "shes": 3819, "safe": 3820, "backs": 3821, "rodeo": 3822, "sturdy": 3823, "fitted": 3824, "twist": 3825, "greens": 3826, "progress": 3827, "lego": 3828, "dachshund": 3829, "map": 3830, "crates": 3831, "pineapples": 3832, "smoothies": 3833, "cups": 3834, "gravy": 3835, "blueberry": 3836, "glaze": 3837, "waffle": 3838, "cone": 3839, "daughter": 3840, "topping": 3841, "vanilla": 3842, "strawberry": 3843, "shoot": 3844, "spewing": 3845, "speak": 3846, "climate": 3847, "gears": 3848, "hiking": 3849, "skiis": 3850, "host": 3851, "yams": 3852, "bins": 3853, "grapefruit": 3854, "pine": 3855, "glide": 3856, "wheelbarrow": 3857, "collecting": 3858, "evergreen": 3859, "directed": 3860, "watched": 3861, "macaroni": 3862, "sushi": 3863, "cantaloupe": 3864, "peaches": 3865, "powered": 3866, "pork": 3867, "meaty": 3868, "uniquely": 3869, "friend": 3870, "jelly": 3871, "packets": 3872, "bagel": 3873, "healthy": 3874, "potato": 3875, "bento": 3876, "sking": 3877, "spatula": 3878, "brocolli": 3879, "pea": 3880, "pods": 3881, "skillet": 3882, "mountainside": 3883, "chopsticks": 3884, "tent": 3885, "buying": 3886, "farmers": 3887, "cakes": 3888, "eagle": 3889, "tackling": 3890, "mark": 3891, "hunched": 3892, "flip": 3893, "roasted": 3894, "cheesy": 3895, "coated": 3896, "lift": 3897, "sideways": 3898, "then": 3899, "telling": 3900, "gloved": 3901, "cabbage": 3902, "root": 3903, "turnips": 3904, "crown": 3905, "bounds": 3906, "shack": 3907, "knifes": 3908, "withered": 3909, "stabbed": 3910, "illusion": 3911, "rotini": 3912, "shell": 3913, "tossed": 3914, "parmesan": 3915, "lite": 3916, "cranberry": 3917, "curry": 3918, "untouched": 3919, "competitors": 3920, "sporting": 3921, "skiiers": 3922, "engaged": 3923, "competitive": 3924, "dome": 3925, "destination": 3926, "born": 3927, "crumbs": 3928, "croutons": 3929, "spill": 3930, "adolescent": 3931, "garnished": 3932, "parsley": 3933, "spears": 3934, "practice": 3935, "concentrates": 3936, "midair": 3937, "gain": 3938, "quickly": 3939, "speeding": 3940, "stunts": 3941, "wake": 3942, "tomato": 3943, "gnarly": 3944, "downhill": 3945, "spending": 3946, "wonderful": 3947, "sustenance": 3948, "strawberries": 3949, "cucumbers": 3950, "sloped": 3951, "barbeque": 3952, "shirtless": 3953, "grapes": 3954, "tablecloth": 3955, "berries": 3956, "bell": 3957, "patches": 3958, "cotton": 3959, "loose": 3960, "stuffing": 3961, "cutouts": 3962, "capped": 3963, "skinning": 3964, "depicts": 3965, "balance": 3966, "grinds": 3967, "pic": 3968, "chairlift": 3969, "trek": 3970, "trekking": 3971, "column": 3972, "slider": 3973, "burgers": 3974, "hamburgers": 3975, "pickles": 3976, "mustard": 3977, "instructor": 3978, "preforming": 3979, "hovers": 3980, "gourmet": 3981, "spicy": 3982, "wrapper": 3983, "nestled": 3984, "crusty": 3985, "hotdogs": 3986, "aluminum": 3987, "foil": 3988, "tinfoil": 3989, "sauerkraut": 3990, "inserted": 3991, "filling": 3992, "breaded": 3993, "senior": 3994, "citizen": 3995, "jam": 3996, "sloppy": 3997, "joe": 3998, "snowsuit": 3999, "holes": 4000, "saucer": 4001, "parents": 4002, "father": 4003, "feast": 4004, "penguin": 4005, "blade": 4006, "tier": 4007, "biscuits": 4008, "rushing": 4009, "flavors": 4010, "pepper": 4011, "turkey": 4012, "guacamole": 4013, "cole": 4014, "slaw": 4015, "kit": 4016, "should": 4017, "coco": 4018, "celebrate": 4019, "ion": 4020, "munching": 4021, "mess": 4022, "jointly": 4023, "college": 4024, "swimsuit": 4025, "newlywed": 4026, "robotic": 4027, "rectangular": 4028, "iced": 4029, "proudly": 4030, "presents": 4031, "special": 4032, "unkempt": 4033, "m": 4034, "unmade": 4035, "suite": 4036, "queen": 4037, "tone": 4038, "pregnant": 4039, "wigs": 4040, "drag": 4041, "queens": 4042, "bedside": 4043, "traveler": 4044, "checkerboard": 4045, "dressers": 4046, "ex": 4047, "entirely": 4048, "shipping": 4049, "envelopes": 4050, "fedex": 4051, "modernized": 4052, "drawer": 4053, "oar": 4054, "posh": 4055, "extravagant": 4056, "ornately": 4057, "slabs": 4058, "carpeting": 4059, "colonial": 4060, "boogie": 4061, "wakeboard": 4062, "current": 4063, "raft": 4064, "overlooked": 4065, "rundown": 4066, "uncooked": 4067, "crust": 4068, "exiting": 4069, "beard": 4070, "w": 4071, "swimmers": 4072, "wallpapered": 4073, "aiming": 4074, "aimed": 4075, "email": 4076, "ith": 4077, "student": 4078, "study": 4079, "spinach": 4080, "heavily": 4081, "peel": 4082, "handmade": 4083, "already": 4084, "sleeve": 4085, "margarita": 4086, "lookign": 4087, "chicago": 4088, "fits": 4089, "grated": 4090, "fedora": 4091, "restaraunt": 4092, "oriental": 4093, "flatbread": 4094, "bacon": 4095, "pita": 4096, "prosciutto": 4097, "bakes": 4098, "winds": 4099, "gooey": 4100, "olive": 4101, "super": 4102, "mario": 4103, "booklet": 4104, "wiimote": 4105, "instruction": 4106, "outdated": 4107, "season": 4108, "overweight": 4109, "fan": 4110, "prepped": 4111, "trim": 4112, "controlled": 4113, "gaming": 4114, "system": 4115, "statement": 4116, "boxing": 4117, "golf": 4118, "keyboards": 4119, "desktops": 4120, "piano": 4121, "relaxing": 4122, "comparison": 4123, "jutting": 4124, "handling": 4125, "chute": 4126, "fling": 4127, "whale": 4128, "glider": 4129, "ballon": 4130, "n": 4131, "controlling": 4132, "ornaments": 4133, "plateau": 4134, "partly": 4135, "valley": 4136, "posture": 4137, "move": 4138, "note": 4139, "maid": 4140, "regarding": 4141, "damage": 4142, "guard": 4143, "ropes": 4144, "upscale": 4145, "roped": 4146, "awaiting": 4147, "strikes": 4148, "hoping": 4149, "zombie": 4150, "actors": 4151, "opposing": 4152, "striking": 4153, "vines": 4154, "ginger": 4155, "batting": 4156, "sandals": 4157, "ingredients": 4158, "trey": 4159, "intercept": 4160, "australian": 4161, "turf": 4162, "baseline": 4163, "bleachers": 4164, "exterior": 4165, "cobblestone": 4166, "protruding": 4167, "feature": 4168, "keys": 4169, "mp3": 4170, "charge": 4171, "minimal": 4172, "peripheral": 4173, "human": 4174, "parts": 4175, "snake": 4176, "whose": 4177, "reacting": 4178, "music": 4179, "audio": 4180, "historic": 4181, "notes": 4182, "outlet": 4183, "plugged": 4184, "job": 4185, "standard": 4186, "compute": 4187, "bot": 4188, "homework": 4189, "destroyed": 4190, "alcoholic": 4191, "frosty": 4192, "pens": 4193, "pencils": 4194, "graces": 4195, "deco": 4196, "amused": 4197, "tripod": 4198, "vending": 4199, "even": 4200, "recycling": 4201, "faux": 4202, "yet": 4203, "assembled": 4204, "crossed": 4205, "checks": 4206, "booths": 4207, "wih": 4208, "rimmed": 4209, "grinning": 4210, "blackberry": 4211, "menu": 4212, "icons": 4213, "samsung": 4214, "missed": 4215, "message": 4216, "gps": 4217, "sprint": 4218, "caucasian": 4219, "cellphones": 4220, "makeshift": 4221, "appliance": 4222, "roaster": 4223, "roast": 4224, "removing": 4225, "dilapidated": 4226, "crumbling": 4227, "disrepair": 4228, "arranging": 4229, "museum": 4230, "substance": 4231, "smoothie": 4232, "goo": 4233, "helps": 4234, "combing": 4235, "takeout": 4236, "appetizers": 4237, "creamy": 4238, "breads": 4239, "peas": 4240, "pins": 4241, "clothesline": 4242, "pigtails": 4243, "sugary": 4244, "platters": 4245, "cupcakes": 4246, "britain": 4247, "watery": 4248, "blooming": 4249, "daffodils": 4250, "petals": 4251, "models": 4252, "gourds": 4253, "captured": 4254, "wilting": 4255, "roses": 4256, "wilted": 4257, "drooping": 4258, "tabletop": 4259, "poodle": 4260, "livingroom": 4261, "selecting": 4262, "buffet": 4263, "glassware": 4264, "pleased": 4265, "hearty": 4266, "croissant": 4267, "melon": 4268, "croissants": 4269, "finishing": 4270, "bearing": 4271, "tasting": 4272, "testing": 4273, "amounts": 4274, "eager": 4275, "exhibition": 4276, "vineyard": 4277, "diagonal": 4278, "wheelie": 4279, "handed": 4280, "gamer": 4281, "hugs": 4282, "g": 4283, "chunk": 4284, "butcher": 4285, "trashcans": 4286, "untidy": 4287, "halfpipe": 4288, "chopping": 4289, "burners": 4290, "griddle": 4291, "berry": 4292, "blackberries": 4293, "crumb": 4294, "juicer": 4295, "wiping": 4296, "leave": 4297, "lavatory": 4298, "tiling": 4299, "cyclists": 4300, "filthy": 4301, "outline": 4302, "entire": 4303, "completely": 4304, "constructed": 4305, "incomplete": 4306, "unpainted": 4307, "victorian": 4308, "casting": 4309, "pedaling": 4310, "bathmat": 4311, "bathrooms": 4312, "blues": 4313, "ring": 4314, "crooked": 4315, "litter": 4316, "automobile": 4317, "torn": 4318, "asking": 4319, "licking": 4320, "wanting": 4321, "hood": 4322, "lifted": 4323, "chevrolet": 4324, "tucked": 4325, "rush": 4326, "int": 4327, "nozzle": 4328, "zone": 4329, "altar": 4330, "ladle": 4331, "mystery": 4332, "stew": 4333, "sectioned": 4334, "muffin": 4335, "worked": 4336, "packages": 4337, "unwrapped": 4338, "wrappers": 4339, "exposed": 4340, "entry": 4341, "reflect": 4342, "streaks": 4343, "towl": 4344, "seasoning": 4345, "swirly": 4346, "antennae": 4347, "windshield": 4348, "bookcase": 4349, "cycles": 4350, "pagoda": 4351, "becomes": 4352, "airborne": 4353, "handlebars": 4354, "motocross": 4355, "rv": 4356, "lifting": 4357, "lookout": 4358, "kill": 4359, "masters": 4360, "footstool": 4361, "speakers": 4362, "spinning": 4363, "spitting": 4364, "letting": 4365, "landed": 4366, "tarp": 4367, "prop": 4368, "support": 4369, "propellers": 4370, "kangaroo": 4371, "nine": 4372, "angels": 4373, "pilots": 4374, "greenish": 4375, "mast": 4376, "ascending": 4377, "bust": 4378, "unpaved": 4379, "minivan": 4380, "know": 4381, "moon": 4382, "luxury": 4383, "heart": 4384, "costumed": 4385, "herds": 4386, "linger": 4387, "tram": 4388, "scenery": 4389, "distant": 4390, "structures": 4391, "spreading": 4392, "turtle": 4393, "stripe": 4394, "pumpkin": 4395, "pumpkins": 4396, "marks": 4397, "harvest": 4398, "squash": 4399, "takeoff": 4400, "twilight": 4401, "dawn": 4402, "hours": 4403, "fron": 4404, "california": 4405, "guide": 4406, "trough": 4407, "lamb": 4408, "snap": 4409, "mad": 4410, "passed": 4411, "vista": 4412, "stormy": 4413, "yaks": 4414, "once": 4415, "14": 4416, "tourist": 4417, "studies": 4418, "staff": 4419, "shepherd": 4420, "tends": 4421, "drivers": 4422, "navigate": 4423, "oncoming": 4424, "sloping": 4425, "amtrak": 4426, "beat": 4427, "wool": 4428, "shaved": 4429, "sheered": 4430, "idly": 4431, "hydrogen": 4432, "scratches": 4433, "create": 4434, "effect": 4435, "ladder": 4436, "rubs": 4437, "straw": 4438, "caution": 4439, "gracefully": 4440, "outstretched": 4441, "span": 4442, "womans": 4443, "punching": 4444, "innocent": 4445, "pretending": 4446, "punch": 4447, "tough": 4448, "nosing": 4449, "nose": 4450, "peels": 4451, "crow": 4452, "mix": 4453, "banner": 4454, "barren": 4455, "stork": 4456, "marshy": 4457, "vulture": 4458, "pop": 4459, "pepsi": 4460, "fences": 4461, "japanese": 4462, "furnace": 4463, "named": 4464, "district": 4465, "downtown": 4466, "indicated": 4467, "titled": 4468, "jackson": 4469, "east": 4470, "witha": 4471, "ny": 4472, "my": 4473, "disembarking": 4474, "outcropping": 4475, "bunched": 4476, "unhappy": 4477, "army": 4478, "cgi": 4479, "bad": 4480, "patient": 4481, "thomas": 4482, "reflecting": 4483, "rust": 4484, "necked": 4485, "ruffled": 4486, "underground": 4487, "sniffing": 4488, "sniffs": 4489, "bamboo": 4490, "fine": 4491, "locomotive": 4492, "locomotives": 4493, "enters": 4494, "billowing": 4495, "toronto": 4496, "la": 4497, "cuts": 4498, "roads": 4499, "overhang": 4500, "thai": 4501, "blocking": 4502, "until": 4503, "except": 4504, "6th": 4505, "happen": 4506, "anywhere": 4507, "barbwire": 4508, "crepes": 4509, "icecream": 4510, "gelato": 4511, "boarded": 4512, "seperate": 4513, "crossroads": 4514, "corners": 4515, "meaning": 4516, "universal": 4517, "attendants": 4518, "kart": 4519, "gallery": 4520, "sing": 4521, "page": 4522, "describe": 4523, "headlights": 4524, "frog": 4525, "puppet": 4526, "jammed": 4527, "promoting": 4528, "buds": 4529, "would": 4530, "positioned": 4531, "comfortably": 4532, "cushioned": 4533, "buckled": 4534, "stored": 4535, "dreary": 4536, "annoyed": 4537, "wicker": 4538, "mill": 4539, "padded": 4540, "lounge": 4541, "species": 4542, "curbside": 4543, "comfortable": 4544, "hairless": 4545, "patchwork": 4546, "quilt": 4547, "sweeper": 4548, "central": 4549, "file": 4550, "files": 4551, "text": 4552, "vcr": 4553, "interacting": 4554, "village": 4555, "pets": 4556, "pats": 4557, "stroking": 4558, "saw": 4559, "horned": 4560, "medal": 4561, "shed": 4562, "hipsters": 4563, "nick": 4564, "knack": 4565, "circus": 4566, "topper": 4567, "ugly": 4568, "affection": 4569, "mouths": 4570, "uncomfortable": 4571, "clip": 4572, "hitching": 4573, "underbrush": 4574, "enclosures": 4575, "balloons": 4576, "alot": 4577, "peaceful": 4578, "splash": 4579, "ample": 4580, "national": 4581, "offering": 4582, "handing": 4583, "marching": 4584, "triumphantly": 4585, "growth": 4586, "rafts": 4587, "flotation": 4588, "skin": 4589, "obscured": 4590, "boston": 4591, "spring": 4592, "drizzle": 4593, "swans": 4594, "parasols": 4595, "vacation": 4596, "duffel": 4597, "mount": 4598, "ditch": 4599, "aged": 4600, "stacks": 4601, "exercise": 4602, "countries": 4603, "replica": 4604, "socializing": 4605, "spare": 4606, "bangs": 4607, "flowery": 4608, "step": 4609, "shepard": 4610, "crafted": 4611, "santas": 4612, "frozen": 4613, "essentials": 4614, "walkways": 4615, "scruffy": 4616, "filtered": 4617, "effort": 4618, "pokes": 4619, "spokes": 4620, "rocking": 4621, "zoomed": 4622, "noses": 4623, "bone": 4624, "contraption": 4625, "conventional": 4626, "shaving": 4627, "leftover": 4628, "framing": 4629, "addition": 4630, "add": 4631, "labrador": 4632, "dancing": 4633, "policemen": 4634, "feather": 4635, "plumes": 4636, "those": 4637, "lost": 4638, "unicorn": 4639, "rose": 4640, "mane": 4641, "figure": 4642, "bridal": 4643, "merry": 4644, "squared": 4645, "layers": 4646, "tiered": 4647, "holly": 4648, "touched": 4649, "lowering": 4650, "saddled": 4651, "coral": 4652, "saddles": 4653, "idle": 4654, "visitors": 4655, "oats": 4656, "clump": 4657, "granola": 4658, "chip": 4659, "parchment": 4660, "climb": 4661, "attempt": 4662, "san": 4663, "francisco": 4664, "giants": 4665, "stretch": 4666, "fastball": 4667, "shaking": 4668, "unripe": 4669, "flops": 4670, "midst": 4671, "watermelon": 4672, "melons": 4673, "sealed": 4674, "mesh": 4675, "amateur": 4676, "bases": 4677, "advancing": 4678, "poultry": 4679, "baseman": 4680, "lips": 4681, "gadget": 4682, "knit": 4683, "garment": 4684, "springs": 4685, "ferns": 4686, "bruised": 4687, "strainer": 4688, "upclose": 4689, "dense": 4690, "strips": 4691, "superman": 4692, "cucumber": 4693, "zucchini": 4694, "planted": 4695, "plot": 4696, "twisted": 4697, "fixing": 4698, "dwarfed": 4699, "walker": 4700, "harness": 4701, "burned": 4702, "diced": 4703, "recipe": 4704, "noodle": 4705, "salami": 4706, "pauses": 4707, "drifts": 4708, "wedge": 4709, "leaps": 4710, "packaging": 4711, "florets": 4712, "blend": 4713, "sour": 4714, "shares": 4715, "broth": 4716, "rim": 4717, "hamburger": 4718, "ridding": 4719, "consumption": 4720, "asparagus": 4721, "navigates": 4722, "olympic": 4723, "turning": 4724, "respective": 4725, "quick": 4726, "pace": 4727, "competitor": 4728, "olympics": 4729, "mountaintop": 4730, "problem": 4731, "circles": 4732, "gentle": 4733, "rip": 4734, "chops": 4735, "chop": 4736, "wok": 4737, "allow": 4738, "pain": 4739, "plated": 4740, "herbs": 4741, "joins": 4742, "pate": 4743, "finish": 4744, "arch": 4745, "won": 4746, "reached": 4747, "uphill": 4748, "silhouette": 4749, "launches": 4750, "unusually": 4751, "tack": 4752, "excited": 4753, "squirrel": 4754, "nothing": 4755, "orders": 4756, "sled": 4757, "dunkin": 4758, "goggles": 4759, "pausing": 4760, "rooster": 4761, "joke": 4762, "chickens": 4763, "peanut": 4764, "butter": 4765, "halved": 4766, "sandwhich": 4767, "waxed": 4768, "mozzarella": 4769, "cooling": 4770, "entrees": 4771, "peculiar": 4772, "fronted": 4773, "polaroid": 4774, "possession": 4775, "congratulations": 4776, "your": 4777, "upcoming": 4778, "congratulating": 4779, "torsos": 4780, "walnut": 4781, "walnuts": 4782, "maybe": 4783, "bows": 4784, "chin": 4785, "differnt": 4786, "browned": 4787, "cracked": 4788, "filing": 4789, "cresting": 4790, "excitement": 4791, "blinds": 4792, "shutter": 4793, "pleasant": 4794, "joined": 4795, "surfs": 4796, "foamy": 4797, "breaks": 4798, "skill": 4799, "hammock": 4800, "burning": 4801, "labels": 4802, "tech": 4803, "master": 4804, "server": 4805, "barely": 4806, "knocked": 4807, "altered": 4808, "nightstands": 4809, "disheveled": 4810, "sneaker": 4811, "bottoms": 4812, "level": 4813, "lavish": 4814, "futuristic": 4815, "nude": 4816, "tangled": 4817, "silk": 4818, "pizzeria": 4819, "feta": 4820, "appetizing": 4821, "paneled": 4822, "struggles": 4823, "connect": 4824, "xbox": 4825, "sample": 4826, "booze": 4827, "basil": 4828, "leafs": 4829, "macbook": 4830, "pro": 4831, "contact": 4832, "patrons": 4833, "athlete": 4834, "shirted": 4835, "tosses": 4836, "strong": 4837, "glue": 4838, "sweat": 4839, "clips": 4840, "nail": 4841, "polish": 4842, "toiletries": 4843, "stocking": 4844, "hairbrush": 4845, "chews": 4846, "rodent": 4847, "ferret": 4848, "gum": 4849, "brother": 4850, "dance": 4851, "panda": 4852, "koala": 4853, "shocked": 4854, "mote": 4855, "snuggle": 4856, "gives": 4857, "thumbs": 4858, "rugs": 4859, "videogame": 4860, "pastel": 4861, "nun": 4862, "chuck": 4863, "attachment": 4864, "trade": 4865, "panoramic": 4866, "junky": 4867, "motions": 4868, "concert": 4869, "via": 4870, "official": 4871, "government": 4872, "flagpole": 4873, "texas": 4874, "th": 4875, "peacock": 4876, "ray": 4877, "overcast": 4878, "jetty": 4879, "fliers": 4880, "activity": 4881, "memorial": 4882, "storefronts": 4883, "inspect": 4884, "ornamental": 4885, "bullpen": 4886, "took": 4887, "misshapen": 4888, "beverages": 4889, "producing": 4890, "browning": 4891, "cutter": 4892, "meet": 4893, "rackett": 4894, "act": 4895, "smack": 4896, "refrigerated": 4897, "unbaked": 4898, "quiche": 4899, "judge": 4900, "paperwork": 4901, "everyone": 4902, "doodling": 4903, "cylinder": 4904, "suspended": 4905, "stage": 4906, "sided": 4907, "demonic": 4908, "smirk": 4909, "crochet": 4910, "eccentric": 4911, "raincoat": 4912, "ovens": 4913, "microwaves": 4914, "makeup": 4915, "flyers": 4916, "storefront": 4917, "portable": 4918, "glossy": 4919, "almond": 4920, "pudding": 4921, "yogurt": 4922, "taller": 4923, "sprayed": 4924, "littered": 4925, "cupboard": 4926, "retrieving": 4927, "magenta": 4928, "holders": 4929, "hairdryer": 4930, "singing": 4931, "corded": 4932, "cloths": 4933, "mothers": 4934, "brushed": 4935, "kiwi": 4936, "peach": 4937, "teapot": 4938, "dial": 4939, "numeral": 4940, "skyscraper": 4941, "condition": 4942, "artwork": 4943, "perhaps": 4944, "daisies": 4945, "irises": 4946, "seal": 4947, "overview": 4948, "terra": 4949, "cotta": 4950, "binder": 4951, "handled": 4952, "doctor": 4953, "injured": 4954, "instrument": 4955, "blank": 4956, "carved": 4957, "loaf": 4958, "meatloaf": 4959, "tortillas": 4960, "sauces": 4961, "tortilla": 4962, "mexican": 4963, "salsa": 4964, "quesadilla": 4965, "decent": 4966, "omelette": 4967, "omelet": 4968, "pancake": 4969, "coffe": 4970, "scallops": 4971, "terrace": 4972, "class": 4973, "rescue": 4974, "overturned": 4975, "crash": 4976, "cuddling": 4977, "minor": 4978, "skilled": 4979, "bitty": 4980, "easily": 4981, "closing": 4982, "12": 4983, "pinkish": 4984, "spice": 4985, "woodwork": 4986, "rods": 4987, "grow": 4988, "marbled": 4989, "mint": 4990, "seperated": 4991, "divided": 4992, "useful": 4993, "rounded": 4994, "biking": 4995, "biker": 4996, "walkers": 4997, "dude": 4998, "quietly": 4999, "pared": 5000, "shave": 5001, "toiletry": 5002, "resembling": 5003, "vespas": 5004, "sparsely": 5005, "niche": 5006, "fern": 5007, "tinted": 5008, "wreaths": 5009, "digital": 5010, "dove": 5011, "mascot": 5012, "motel": 5013, "belongings": 5014, "packing": 5015, "receptacle": 5016, "rollers": 5017, "checker": 5018, "scrubber": 5019, "toiler": 5020, "s": 5021, "pew": 5022, "peers": 5023, "flush": 5024, "flushing": 5025, "glaring": 5026, "scrubbing": 5027, "upper": 5028, "presenting": 5029, "bidet": 5030, "removed": 5031, "crawling": 5032, "changing": 5033, "onboard": 5034, "honey": 5035, "trashcan": 5036, "switch": 5037, "hosts": 5038, "dispensers": 5039, "motorcyle": 5040, "usual": 5041, "sensor": 5042, "never": 5043, "crude": 5044, "chopper": 5045, "businesses": 5046, "honda": 5047, "wizard": 5048, "options": 5049, "stoned": 5050, "elevator": 5051, "mosaic": 5052, "entryway": 5053, "movement": 5054, "viewer": 5055, "wrought": 5056, "length": 5057, "mache": 5058, "socks": 5059, "televisions": 5060, "contrail": 5061, "france": 5062, "aeroplane": 5063, "crowds": 5064, "releasing": 5065, "acrobatic": 5066, "routine": 5067, "serviced": 5068, "hoses": 5069, "girafee": 5070, "hidden": 5071, "spider": 5072, "closer": 5073, "interested": 5074, "foliage": 5075, "exploring": 5076, "airy": 5077, "streetlights": 5078, "mingling": 5079, "thicket": 5080, "outcrop": 5081, "examining": 5082, "private": 5083, "propellors": 5084, "licked": 5085, "sequence": 5086, "searching": 5087, "lonely": 5088, "leashed": 5089, "antelope": 5090, "congregate": 5091, "stoplights": 5092, "towns": 5093, "luggages": 5094, "icy": 5095, "lapsed": 5096, "gorgeous": 5097, "slug": 5098, "animated": 5099, "changes": 5100, "carvings": 5101, "humans": 5102, "grasslands": 5103, "bustling": 5104, "ban": 5105, "banks": 5106, "woolen": 5107, "fleet": 5108, "circled": 5109, "blossoming": 5110, "fireplug": 5111, "establishment": 5112, "cactus": 5113, "overexposed": 5114, "ash": 5115, "sunken": 5116, "barricade": 5117, "tired": 5118, "hundreds": 5119, "jogging": 5120, "available": 5121, "stranded": 5122, "wrench": 5123, "lever": 5124, "attendant": 5125, "cockatoo": 5126, "pure": 5127, "parachuting": 5128, "abundant": 5129, "ofa": 5130, "sin": 5131, "cylindrical": 5132, "sepia": 5133, "chalk": 5134, "welcoming": 5135, "feeling": 5136, "chalkboard": 5137, "miles": 5138, "dear": 5139, "littering": 5140, "stating": 5141, "ave": 5142, "investigating": 5143, "centre": 5144, "bumper": 5145, "hate": 5146, "sister": 5147, "labelled": 5148, "flowering": 5149, "convex": 5150, "seeing": 5151, "dinning": 5152, "virtual": 5153, "arabic": 5154, "pakistan": 5155, "mossy": 5156, "awning": 5157, "erect": 5158, "locations": 5159, "every": 5160, "kerouac": 5161, "boulevard": 5162, "clustered": 5163, "target": 5164, "property": 5165, "india": 5166, "southeast": 5167, "union": 5168, "pacific": 5169, "bog": 5170, "moss": 5171, "drain": 5172, "skull": 5173, "swords": 5174, "pirate": 5175, "expired": 5176, "artistic": 5177, "theater": 5178, "pouches": 5179, "idea": 5180, "everything": 5181, "trip": 5182, "trucking": 5183, "lacking": 5184, "headlight": 5185, "handbag": 5186, "shark": 5187, "fleece": 5188, "loves": 5189, "creating": 5190, "housed": 5191, "viewing": 5192, "complete": 5193, "cushion": 5194, "ordering": 5195, "taker": 5196, "squints": 5197, "siamese": 5198, "barbed": 5199, "hello": 5200, "convoy": 5201, "fuzzy": 5202, "curiously": 5203, "barges": 5204, "canoes": 5205, "admiring": 5206, "mower": 5207, "dairy": 5208, "barber": 5209, "mommy": 5210, "smeared": 5211, "whiskey": 5212, "martini": 5213, "gowns": 5214, "alternative": 5215, "puts": 5216, "capital": 5217, "capitol": 5218, "handler": 5219, "procession": 5220, "observes": 5221, "met": 5222, "solemn": 5223, "expressions": 5224, "smoggy": 5225, "hazy": 5226, "boating": 5227, "paid": 5228, "tones": 5229, "actually": 5230, "supports": 5231, "inlet": 5232, "sumo": 5233, "ref": 5234, "wrestle": 5235, "populated": 5236, "pavilion": 5237, "favorite": 5238, "boaters": 5239, "cruise": 5240, "expansive": 5241, "shoppers": 5242, "balding": 5243, "bowtie": 5244, "heights": 5245, "commuting": 5246, "fist": 5247, "intertwined": 5248, "trooper": 5249, "rowboat": 5250, "oars": 5251, "boundary": 5252, "dollar": 5253, "bill": 5254, "monkey": 5255, "looked": 5256, "curling": 5257, "teenaged": 5258, "literature": 5259, "loads": 5260, "raccoon": 5261, "pooh": 5262, "contrasting": 5263, "musical": 5264, "gathers": 5265, "armchair": 5266, "cubs": 5267, "elevated": 5268, "limbs": 5269, "belly": 5270, "company": 5271, "panorama": 5272, "visor": 5273, "riverbank": 5274, "patchy": 5275, "rhinos": 5276, "pigs": 5277, "investigates": 5278, "discs": 5279, "collide": 5280, "based": 5281, "youths": 5282, "ostriches": 5283, "nuzzles": 5284, "galloping": 5285, "confined": 5286, "gazelle": 5287, "hippo": 5288, "oxen": 5289, "autumn": 5290, "renaissance": 5291, "period": 5292, "caramel": 5293, "motorist": 5294, "label": 5295, "diner": 5296, "melted": 5297, "descending": 5298, "moms": 5299, "scale": 5300, "weight": 5301, "toothpick": 5302, "eatables": 5303, "slab": 5304, "broccolli": 5305, "feeds": 5306, "linen": 5307, "intense": 5308, "sold": 5309, "euro": 5310, "money": 5311, "brocclie": 5312, "standng": 5313, "shredding": 5314, "gnar": 5315, "tint": 5316, "climber": 5317, "meals": 5318, "cilantro": 5319, "sandwhiches": 5320, "receipts": 5321, "tangerine": 5322, "llama": 5323, "cheesecake": 5324, "pike": 5325, "quarter": 5326, "drop": 5327, "doubled": 5328, "bunt": 5329, "bundt": 5330, "goatee": 5331, "hovering": 5332, "smoky": 5333, "lighter": 5334, "camping": 5335, "flips": 5336, "teen": 5337, "capture": 5338, "colorfully": 5339, "edited": 5340, "skying": 5341, "boad": 5342, "carton": 5343, "subs": 5344, "gauges": 5345, "eatting": 5346, "fixings": 5347, "somebody": 5348, "ma": 5349, "blt": 5350, "eleven": 5351, "soars": 5352, "assembly": 5353, "processing": 5354, "fryer": 5355, "automated": 5356, "anticipation": 5357, "bathrobe": 5358, "skillfully": 5359, "grind": 5360, "instead": 5361, "leap": 5362, "fills": 5363, "tilting": 5364, "autographs": 5365, "rings": 5366, "philly": 5367, "backhand": 5368, "bobble": 5369, "danish": 5370, "parasailer": 5371, "windy": 5372, "rotating": 5373, "mason": 5374, "pretzel": 5375, "sparklers": 5376, "sparkler": 5377, "backing": 5378, "pretzels": 5379, "pastrami": 5380, "coleslaw": 5381, "dipping": 5382, "marinara": 5383, "dipped": 5384, "smoking": 5385, "sesame": 5386, "heaping": 5387, "leftovers": 5388, "want": 5389, "edges": 5390, "mills": 5391, "bunk": 5392, "bedspread": 5393, "woodland": 5394, "mitts": 5395, "drapes": 5396, "sponge": 5397, "bob": 5398, "cartoons": 5399, "jalapeno": 5400, "workspace": 5401, "inviting": 5402, "website": 5403, "sat": 5404, "whine": 5405, "glares": 5406, "anticipating": 5407, "squats": 5408, "requires": 5409, "react": 5410, "opponents": 5411, "lasagna": 5412, "me": 5413, "offers": 5414, "unoccupied": 5415, "taco": 5416, "wineglass": 5417, "oblong": 5418, "clothed": 5419, "pepperonis": 5420, "kneels": 5421, "circuit": 5422, "units": 5423, "science": 5424, "operate": 5425, "console": 5426, "bookstore": 5427, "cord": 5428, "largest": 5429, "affectionate": 5430, "snuggles": 5431, "carried": 5432, "motes": 5433, "learn": 5434, "contemporary": 5435, "paintings": 5436, "goofy": 5437, "convention": 5438, "cds": 5439, "pc": 5440, "flash": 5441, "test": 5442, "stroke": 5443, "deliver": 5444, "bounces": 5445, "bouncing": 5446, "weaving": 5447, "ktichen": 5448, "flys": 5449, "kits": 5450, "illustration": 5451, "rally": 5452, "kiteboarding": 5453, "resembles": 5454, "amazed": 5455, "thermos": 5456, "guinness": 5457, "detailing": 5458, "fold": 5459, "hitter": 5460, "caught": 5461, "womens": 5462, "leaguer": 5463, "pitches": 5464, "memorabilia": 5465, "caps": 5466, "braid": 5467, "focusing": 5468, "exchanging": 5469, "fastened": 5470, "10": 5471, "death": 5472, "comically": 5473, "textbook": 5474, "gift": 5475, "fisherman": 5476, "pliers": 5477, "active": 5478, "smallest": 5479, "passageway": 5480, "parent": 5481, "prep": 5482, "refrigerators": 5483, "starts": 5484, "remove": 5485, "broad": 5486, "daylight": 5487, "code": 5488, "tshirt": 5489, "tell": 5490, "sponsored": 5491, "intriguing": 5492, "utilizing": 5493, "policeman": 5494, "nokia": 5495, "calculator": 5496, "mixer": 5497, "article": 5498, "dries": 5499, "comb": 5500, "ancient": 5501, "slim": 5502, "hear": 5503, "lowered": 5504, "downward": 5505, "finding": 5506, "goldfish": 5507, "styles": 5508, "complex": 5509, "matches": 5510, "alter": 5511, "houseplant": 5512, "gin": 5513, "height": 5514, "dying": 5515, "sunflowers": 5516, "arts": 5517, "crayons": 5518, "redheaded": 5519, "plywood": 5520, "pedals": 5521, "brake": 5522, "pedal": 5523, "starting": 5524, "present": 5525, "cutlery": 5526, "salt": 5527, "wines": 5528, "taste": 5529, "champagne": 5530, "calendar": 5531, "attic": 5532, "themselves": 5533, "postal": 5534, "pillars": 5535, "feel": 5536, "mannequin": 5537, "photographing": 5538, "ca": 5539, "wash": 5540, "flowing": 5541, "wraps": 5542, "vessel": 5543, "stucco": 5544, "marketplace": 5545, "linoleum": 5546, "curtained": 5547, "accented": 5548, "handicap": 5549, "enclosing": 5550, "change": 5551, "surfaces": 5552, "likes": 5553, "mouthed": 5554, "rushes": 5555, "ford": 5556, "mustang": 5557, "lowers": 5558, "checkers": 5559, "gothic": 5560, "cruising": 5561, "surveys": 5562, "sunlit": 5563, "unknown": 5564, "outhouse": 5565, "speaker": 5566, "harley": 5567, "davidson": 5568, "stair": 5569, "ridge": 5570, "pecking": 5571, "remnants": 5572, "readies": 5573, "airports": 5574, "recognizable": 5575, "years": 5576, "michigan": 5577, "zookeeper": 5578, "follow": 5579, "ferris": 5580, "staning": 5581, "dug": 5582, "peoples": 5583, "transportation": 5584, "seem": 5585, "ringed": 5586, "criss": 5587, "soon": 5588, "props": 5589, "deckered": 5590, "beanie": 5591, "shelter": 5592, "manicured": 5593, "firehydrant": 5594, "canada": 5595, "valve": 5596, "co": 5597, "crack": 5598, "bugs": 5599, "clause": 5600, "claus": 5601, "famous": 5602, "vine": 5603, "buoy": 5604, "dangled": 5605, "embedded": 5606, "mcdonalds": 5607, "forrest": 5608, "recovery": 5609, "poolside": 5610, "burnt": 5611, "beaten": 5612, "mexico": 5613, "dumb": 5614, "delicate": 5615, "maintenance": 5616, "consumed": 5617, "consuming": 5618, "emitting": 5619, "billows": 5620, "enforcement": 5621, "personnel": 5622, "flashing": 5623, "mounds": 5624, "35": 5625, "jesus": 5626, "explains": 5627, "heron": 5628, "swamp": 5629, "rugged": 5630, "lighted": 5631, "arrive": 5632, "windmill": 5633, "tulip": 5634, "toll": 5635, "cant": 5636, "peeling": 5637, "telescope": 5638, "4": 5639, "backed": 5640, "protect": 5641, "attractive": 5642, "aqua": 5643, "mack": 5644, "eighteen": 5645, "moose": 5646, "overgrowth": 5647, "camouflage": 5648, "walked": 5649, "beagle": 5650, "vegetated": 5651, "relaxed": 5652, "mixers": 5653, "machinery": 5654, "delivers": 5655, "logo": 5656, "weedy": 5657, "nears": 5658, "strain": 5659, "penned": 5660, "shovel": 5661, "seemingly": 5662, "ashore": 5663, "noise": 5664, "watercraft": 5665, "satchel": 5666, "sidelines": 5667, "rapid": 5668, "rafting": 5669, "afro": 5670, "liberty": 5671, "manhattan": 5672, "shopped": 5673, "abstract": 5674, "reverse": 5675, "lobster": 5676, "reclining": 5677, "particular": 5678, "lounges": 5679, "fix": 5680, "depicted": 5681, "ravine": 5682, "looming": 5683, "arched": 5684, "classical": 5685, "trained": 5686, "entertain": 5687, "clowns": 5688, "ladys": 5689, "canes": 5690, "batch": 5691, "canvas": 5692, "stillness": 5693, "bonnet": 5694, "underwater": 5695, "provided": 5696, "fetching": 5697, "dyed": 5698, "dunk": 5699, "growling": 5700, "dives": 5701, "sorting": 5702, "handlers": 5703, "khaki": 5704, "crouches": 5705, "puppies": 5706, "cannot": 5707, "climbs": 5708, "butt": 5709, "wintry": 5710, "grizzle": 5711, "indifferent": 5712, "mating": 5713, "nad": 5714, "definitely": 5715, "infront": 5716, "tundra": 5717, "ruffle": 5718, "bee": 5719, "lets": 5720, "yawning": 5721, "yawns": 5722, "rearing": 5723, "fierce": 5724, "ultimate": 5725, "contest": 5726, "intended": 5727, "stomach": 5728, "freeze": 5729, "wagging": 5730, "darkened": 5731, "floppy": 5732, "trophy": 5733, "backside": 5734, "nibble": 5735, "clippings": 5736, "pressed": 5737, "camel": 5738, "lama": 5739, "faster": 5740, "knacks": 5741, "baseballs": 5742, "limes": 5743, "heaped": 5744, "dodgers": 5745, "digitally": 5746, "manipulated": 5747, "stages": 5748, "vendors": 5749, "sell": 5750, "dotted": 5751, "bushels": 5752, "runner": 5753, "hips": 5754, "infield": 5755, "ethnic": 5756, "monkeys": 5757, "steaming": 5758, "wound": 5759, "tofu": 5760, "juicy": 5761, "receiving": 5762, "expressing": 5763, "outfield": 5764, "brocoli": 5765, "coloring": 5766, "enjoyed": 5767, "bud": 5768, "slit": 5769, "bloody": 5770, "kabob": 5771, "harvesting": 5772, "hardly": 5773, "garlic": 5774, "fritter": 5775, "rare": 5776, "smothered": 5777, "nordic": 5778, "dishing": 5779, "radishes": 5780, "waterskiing": 5781, "kiteboard": 5782, "warmly": 5783, "spikes": 5784, "sight": 5785, "acting": 5786, "obstacle": 5787, "stairwell": 5788, "comfort": 5789, "helicopter": 5790, "accident": 5791, "catsup": 5792, "snowing": 5793, "amazing": 5794, "summit": 5795, "struggling": 5796, "nerd": 5797, "bakers": 5798, "offerings": 5799, "tented": 5800, "hash": 5801, "corned": 5802, "chases": 5803, "chase": 5804, "lollipop": 5805, "grooms": 5806, "applying": 5807, "waxing": 5808, "receipt": 5809, "sinking": 5810, "plying": 5811, "swell": 5812, "oceans": 5813, "placid": 5814, "bodyboarding": 5815, "shift": 5816, "underwear": 5817, "suited": 5818, "pipeline": 5819, "flickr": 5820, "denim": 5821, "overalls": 5822, "beachgoers": 5823, "crest": 5824, "manmade": 5825, "clad": 5826, "simulated": 5827, "wetsuits": 5828, "dive": 5829, "sailboard": 5830, "windsurfer": 5831, "wed": 5832, "brochure": 5833, "adding": 5834, "tarts": 5835, "filmed": 5836, "adorn": 5837, "fell": 5838, "slats": 5839, "guitar": 5840, "bigger": 5841, "hawaiian": 5842, "squinting": 5843, "sprinkling": 5844, "afghan": 5845, "sucks": 5846, "concept": 5847, "batteries": 5848, "tvs": 5849, "steering": 5850, "ridiculous": 5851, "compilation": 5852, "household": 5853, "futon": 5854, "playfully": 5855, "velvet": 5856, "burgundy": 5857, "guided": 5858, "quarters": 5859, "alarm": 5860, "oclock": 5861, "butterfly": 5862, "chilly": 5863, "obelisk": 5864, "panned": 5865, "parachutes": 5866, "minnesota": 5867, "dropping": 5868, "afar": 5869, "colgate": 5870, "bunting": 5871, "mets": 5872, "avoid": 5873, "calls": 5874, "drank": 5875, "elements": 5876, "8": 5877, "easel": 5878, "scratch": 5879, "spooning": 5880, "added": 5881, "crush": 5882, "latte": 5883, "stain": 5884, "glassed": 5885, "lieing": 5886, "start": 5887, "seminar": 5888, "technician": 5889, "technicians": 5890, "teh": 5891, "dell": 5892, "removes": 5893, "repairs": 5894, "stovetop": 5895, "state": 5896, "primarily": 5897, "disabled": 5898, "salon": 5899, "crocheted": 5900, "intensely": 5901, "iphones": 5902, "crossword": 5903, "comics": 5904, "quality": 5905, "product": 5906, "click": 5907, "chandeliers": 5908, "archways": 5909, "processor": 5910, "cube": 5911, "blenders": 5912, "analog": 5913, "grows": 5914, "clipped": 5915, "blades": 5916, "eatery": 5917, "needed": 5918, "crafting": 5919, "grains": 5920, "waffles": 5921, "syrup": 5922, "crumbled": 5923, "scrambled": 5924, "ravioli": 5925, "buttered": 5926, "bones": 5927, "landscaped": 5928, "dangling": 5929, "knick": 5930, "shears": 5931, "compete": 5932, "mainly": 5933, "ivy": 5934, "abundance": 5935, "dual": 5936, "basins": 5937, "unclear": 5938, "dingy": 5939, "cycling": 5940, "flame": 5941, "custom": 5942, "panels": 5943, "sanitizer": 5944, "nearest": 5945, "victoria": 5946, "causing": 5947, "1950s": 5948, "please": 5949, "sorry": 5950, "soldier": 5951, "turret": 5952, "cemetery": 5953, "graveyard": 5954, "sock": 5955, "mail": 5956, "spoonful": 5957, "straddles": 5958, "poor": 5959, "hedges": 5960, "thee": 5961, "flatscreen": 5962, "nostalgic": 5963, "cables": 5964, "seaplane": 5965, "smiley": 5966, "forefront": 5967, "border": 5968, "collie": 5969, "airlines": 5970, "747": 5971, "belongs": 5972, "treed": 5973, "petted": 5974, "loving": 5975, "amidst": 5976, "wondering": 5977, "pawing": 5978, "lightening": 5979, "lightning": 5980, "teachers": 5981, "rearview": 5982, "disco": 5983, "dwarfs": 5984, "visitor": 5985, "jug": 5986, "quaint": 5987, "solitary": 5988, "horizontally": 5989, "commuters": 5990, "casino": 5991, "logos": 5992, "antiques": 5993, "battered": 5994, "silhouettes": 5995, "parallel": 5996, "bloom": 5997, "herded": 5998, "grafitti": 5999, "splattered": 6000, "pebbles": 6001, "hyrdant": 6002, "protected": 6003, "girraffe": 6004, "giraff": 6005, "barrier": 6006, "exactly": 6007, "patriotic": 6008, "chains": 6009, "sprays": 6010, "motorhome": 6011, "cautionary": 6012, "storks": 6013, "beaks": 6014, "goose": 6015, "citizens": 6016, "safari": 6017, "dodge": 6018, "duke": 6019, "blvd": 6020, "suburb": 6021, "reigns": 6022, "derby": 6023, "guards": 6024, "ago": 6025, "centered": 6026, "chugs": 6027, "brothers": 6028, "directs": 6029, "advertisements": 6030, "34th": 6031, "according": 6032, "chugging": 6033, "stationary": 6034, "bullet": 6035, "billboards": 6036, "coal": 6037, "tacks": 6038, "nailed": 6039, "passanger": 6040, "calling": 6041, "graffitid": 6042, "withe": 6043, "intersecting": 6044, "signed": 6045, "replaced": 6046, "y": 6047, "r": 6048, "civilians": 6049, "scrap": 6050, "convertible": 6051, "catnip": 6052, "blind": 6053, "semis": 6054, "monster": 6055, "tuxedos": 6056, "streamers": 6057, "slatted": 6058, "fox": 6059, "trampoline": 6060, "hooks": 6061, "bison": 6062, "washed": 6063, "stowed": 6064, "sisters": 6065, "messed": 6066, "waitress": 6067, "chart": 6068, "spanning": 6069, "blouse": 6070, "coastline": 6071, "similarly": 6072, "undone": 6073, "evil": 6074, "collared": 6075, "paisley": 6076, "teacher": 6077, "auditorium": 6078, "arrayed": 6079, "chaise": 6080, "butts": 6081, "escort": 6082, "alien": 6083, "grade": 6084, "lapel": 6085, "pinning": 6086, "grandfather": 6087, "en": 6088, "briefcases": 6089, "corona": 6090, "chests": 6091, "appreciating": 6092, "incredible": 6093, "pup": 6094, "sorted": 6095, "keeping": 6096, "fetch": 6097, "gripping": 6098, "cautiously": 6099, "piercing": 6100, "grooming": 6101, "gym": 6102, "least": 6103, "affectionately": 6104, "bowing": 6105, "nuzzling": 6106, "equestrian": 6107, "draught": 6108, "bucking": 6109, "occupants": 6110, "balanced": 6111, "squeezed": 6112, "lemonade": 6113, "pause": 6114, "adjusts": 6115, "plantain": 6116, "fingertips": 6117, "tapping": 6118, "youngsters": 6119, "unripened": 6120, "budding": 6121, "bloomed": 6122, "mit": 6123, "contain": 6124, "raspberry": 6125, "deserted": 6126, "measuring": 6127, "stirred": 6128, "clown": 6129, "wig": 6130, "outing": 6131, "winters": 6132, "cashews": 6133, "neglected": 6134, "cruises": 6135, "maintain": 6136, "diagonally": 6137, "steaks": 6138, "runners": 6139, "skaters": 6140, "platforms": 6141, "sandwiched": 6142, "sales": 6143, "wares": 6144, "thighs": 6145, "laced": 6146, "gotten": 6147, "twenty": 6148, "campus": 6149, "skat": 6150, "eggplant": 6151, "tilts": 6152, "cameraman": 6153, "knotted": 6154, "foam": 6155, "failing": 6156, "unpeeled": 6157, "cob": 6158, "function": 6159, "ironic": 6160, "worms": 6161, "overflowing": 6162, "tater": 6163, "tots": 6164, "pub": 6165, "engraved": 6166, "brownies": 6167, "curl": 6168, "frothy": 6169, "carving": 6170, "potatos": 6171, "generated": 6172, "avatar": 6173, "triple": 6174, "blows": 6175, "teaches": 6176, "tucking": 6177, "tucks": 6178, "rendering": 6179, "positions": 6180, "bead": 6181, "windowed": 6182, "grandma": 6183, "closes": 6184, "wipes": 6185, "medical": 6186, "professionals": 6187, "scrubs": 6188, "tether": 6189, "modem": 6190, "bikini": 6191, "delivered": 6192, "seriously": 6193, "yorkie": 6194, "stoic": 6195, "stitch": 6196, "consoles": 6197, "returned": 6198, "athletic": 6199, "muscles": 6200, "backwards": 6201, "flexing": 6202, "observe": 6203, "uncovered": 6204, "admires": 6205, "confused": 6206, "exhausted": 6207, "nacks": 6208, "organizer": 6209, "caddy": 6210, "accessory": 6211, "clogged": 6212, "bristles": 6213, "un": 6214, "cough": 6215, "flow": 6216, "thumb": 6217, "oak": 6218, "fabrics": 6219, "disorganized": 6220, "mantel": 6221, "silhouetted": 6222, "gliders": 6223, "mlb": 6224, "teammates": 6225, "handicapped": 6226, "helped": 6227, "williams": 6228, "difficult": 6229, "attended": 6230, "crusts": 6231, "mice": 6232, "ergonomic": 6233, "usb": 6234, "compass": 6235, "tricycle": 6236, "gesturing": 6237, "sunflower": 6238, "online": 6239, "wallet": 6240, "bracelets": 6241, "coins": 6242, "cd": 6243, "typewriter": 6244, "record": 6245, "passport": 6246, "scrunched": 6247, "mature": 6248, "newer": 6249, "bicycling": 6250, "fantasy": 6251, "unaware": 6252, "mooring": 6253, "anchor": 6254, "lanyard": 6255, "onstage": 6256, "chimneys": 6257, "bought": 6258, "tissues": 6259, "materials": 6260, "crumpled": 6261, "cutters": 6262, "pegs": 6263, "peg": 6264, "meets": 6265, "enjoyable": 6266, "flutes": 6267, "menus": 6268, "grins": 6269, "handsome": 6270, "gap": 6271, "discussing": 6272, "discussion": 6273, "staged": 6274, "filming": 6275, "unfurnished": 6276, "pendant": 6277, "instruments": 6278, "dread": 6279, "locks": 6280, "renovation": 6281, "feminine": 6282, "fluid": 6283, "removable": 6284, "adjustable": 6285, "sprayer": 6286, "maple": 6287, "necklaces": 6288, "jewelry": 6289, "dividers": 6290, "hamper": 6291, "roller": 6292, "widow": 6293, "average": 6294, "khakis": 6295, "able": 6296, "crashed": 6297, "colliding": 6298, "flushed": 6299, "pours": 6300, "calves": 6301, "antlers": 6302, "5": 6303, "cyclist": 6304, "hero": 6305, "deers": 6306, "virgin": 6307, "mary": 6308, "chapel": 6309, "latin": 6310, "ruins": 6311, "reindeer": 6312, "muscle": 6313, "tires": 6314, "staircase": 6315, "lazy": 6316, "uncommonly": 6317, "fitting": 6318, "chaps": 6319, "access": 6320, "tale": 6321, "release": 6322, "airliners": 6323, "recreational": 6324, "mamma": 6325, "ghost": 6326, "neath": 6327, "protesting": 6328, "flashes": 6329, "instructions": 6330, "welcome": 6331, "pamphlets": 6332, "shorn": 6333, "brochures": 6334, "guides": 6335, "horizontal": 6336, "departing": 6337, "awnings": 6338, "mechanical": 6339, "temporary": 6340, "crosstown": 6341, "51": 6342, "wildflowers": 6343, "circling": 6344, "hyde": 6345, "hyrdrant": 6346, "coca": 6347, "stools": 6348, "angrily": 6349, "arid": 6350, "mt": 6351, "press": 6352, "birdcage": 6353, "fondant": 6354, "tiers": 6355, "protector": 6356, "version": 6357, "japan": 6358, "steet": 6359, "sip": 6360, "dunes": 6361, "sydney": 6362, "australia": 6363, "county": 6364, "headband": 6365, "tiara": 6366, "hug": 6367, "shadowed": 6368, "taping": 6369, "encompassing": 6370, "kisses": 6371, "pearls": 6372, "casual": 6373, "gorilla": 6374, "informational": 6375, "cities": 6376, "projects": 6377, "witch": 6378, "witches": 6379, "tended": 6380, "chimney": 6381, "trestle": 6382, "guarding": 6383, "signaling": 6384, "merge": 6385, "proceeding": 6386, "merging": 6387, "development": 6388, "cal": 6389, "boxcars": 6390, "drifting": 6391, "tugboat": 6392, "navigating": 6393, "solar": 6394, "atm": 6395, "satellite": 6396, "kiosk": 6397, "refuse": 6398, "mailbox": 6399, "fashionable": 6400, "wrangling": 6401, "why": 6402, "bubble": 6403, "tipped": 6404, "blanketed": 6405, "penn": 6406, "farmland": 6407, "potter": 6408, "cuddle": 6409, "amusement": 6410, "darkly": 6411, "bumping": 6412, "formations": 6413, "source": 6414, "halloween": 6415, "knot": 6416, "hangings": 6417, "protects": 6418, "tusk": 6419, "handbags": 6420, "lazing": 6421, "law": 6422, "snowstorm": 6423, "rains": 6424, "wrestler": 6425, "pokemon": 6426, "spectator": 6427, "isolated": 6428, "wolf": 6429, "visit": 6430, "brow": 6431, "freez": 6432, "partner": 6433, "proceed": 6434, "wagons": 6435, "blinder": 6436, "bridled": 6437, "mule": 6438, "blinders": 6439, "racers": 6440, "clydesdale": 6441, "uneaten": 6442, "kiwis": 6443, "tempting": 6444, "doo": 6445, "provides": 6446, "listens": 6447, "crepe": 6448, "dolphins": 6449, "dolphin": 6450, "organic": 6451, "princess": 6452, "describing": 6453, "cowgirl": 6454, "chives": 6455, "variation": 6456, "roasting": 6457, "mild": 6458, "alpine": 6459, "coupe": 6460, "marathon": 6461, "crashes": 6462, "scenes": 6463, "patty": 6464, "cheeseburger": 6465, "chilli": 6466, "careful": 6467, "propel": 6468, "deformed": 6469, "executing": 6470, "beginner": 6471, "radish": 6472, "twisting": 6473, "descend": 6474, "sodas": 6475, "choose": 6476, "partaking": 6477, "windsurfs": 6478, "dominates": 6479, "pyramid": 6480, "coconut": 6481, "overly": 6482, "liter": 6483, "dumplings": 6484, "tim": 6485, "skewers": 6486, "plat": 6487, "rapids": 6488, "casually": 6489, "simulator": 6490, "meatball": 6491, "meatballs": 6492, "crinkle": 6493, "goblets": 6494, "wishes": 6495, "submarine": 6496, "monogrammed": 6497, "sideline": 6498, "spear": 6499, "turntable": 6500, "earring": 6501, "beauty": 6502, "accent": 6503, "sweeps": 6504, "grandmother": 6505, "heating": 6506, "peperoni": 6507, "finishes": 6508, "begin": 6509, "song": 6510, "concentrating": 6511, "goers": 6512, "obscene": 6513, "upstairs": 6514, "dinnerware": 6515, "apartments": 6516, "globe": 6517, "amazon": 6518, "breeze": 6519, "parasails": 6520, "microphones": 6521, "brings": 6522, "grasps": 6523, "campers": 6524, "fail": 6525, "b": 6526, "oversized": 6527, "award": 6528, "armoire": 6529, "technological": 6530, "happens": 6531, "sex": 6532, "dwelling": 6533, "chatting": 6534, "teach": 6535, "colleagues": 6536, "whats": 6537, "pretends": 6538, "funky": 6539, "wildly": 6540, "luck": 6541, "scantily": 6542, "buliding": 6543, "telephones": 6544, "tri": 6545, "pirates": 6546, "send": 6547, "sleeved": 6548, "bump": 6549, "headset": 6550, "trashed": 6551, "await": 6552, "disposal": 6553, "teal": 6554, "elaborately": 6555, "gilded": 6556, "freezers": 6557, "milkshake": 6558, "alcove": 6559, "quote": 6560, "ping": 6561, "pong": 6562, "fathers": 6563, "pendulum": 6564, "gazes": 6565, "penny": 6566, "flannel": 6567, "squeezing": 6568, "raspberries": 6569, "goodies": 6570, "dips": 6571, "corporate": 6572, "smells": 6573, "gay": 6574, "superimposed": 6575, "bowels": 6576, "kitchenware": 6577, "saucepan": 6578, "seaside": 6579, "shawl": 6580, "backsplash": 6581, "functional": 6582, "beams": 6583, "pour": 6584, "social": 6585, "lucky": 6586, "pristine": 6587, "reveals": 6588, "shaves": 6589, "headless": 6590, "sees": 6591, "scheme": 6592, "partition": 6593, "flair": 6594, "description": 6595, "dashboard": 6596, "restored": 6597, "tubs": 6598, "sidecar": 6599, "od": 6600, "cruiser": 6601, "pane": 6602, "transported": 6603, "trinkets": 6604, "roofs": 6605, "vein": 6606, "designer": 6607, "mechanic": 6608, "squat": 6609, "auto": 6610, "earlier": 6611, "folds": 6612, "pages": 6613, "cemetary": 6614, "stting": 6615, "grave": 6616, "sleeper": 6617, "jumpsuit": 6618, "hoisted": 6619, "inspecting": 6620, "showcase": 6621, "triumph": 6622, "showroom": 6623, "radar": 6624, "domed": 6625, "taxiing": 6626, "initials": 6627, "dropped": 6628, "ana": 6629, "jetliners": 6630, "southwest": 6631, "helicopters": 6632, "terminals": 6633, "787": 6634, "treeline": 6635, "expensive": 6636, "beachside": 6637, "atmosphere": 6638, "unloaded": 6639, "badly": 6640, "tanker": 6641, "region": 6642, "streetcar": 6643, "ambulance": 6644, "university": 6645, "jeeps": 6646, "9": 6647, "h": 6648, "trams": 6649, "rusting": 6650, "advertise": 6651, "manhole": 6652, "gutter": 6653, "sewer": 6654, "updated": 6655, "articulated": 6656, "europe": 6657, "sightseeing": 6658, "rigged": 6659, "lily": 6660, "pads": 6661, "rams": 6662, "poop": 6663, "chick": 6664, "prey": 6665, "urinating": 6666, "providing": 6667, "ann": 6668, "chicks": 6669, "puddles": 6670, "bolted": 6671, "treetops": 6672, "trainers": 6673, "chinatown": 6674, "squares": 6675, "lavender": 6676, "width": 6677, "switching": 6678, "sipping": 6679, "sippy": 6680, "rue": 6681, "paul": 6682, "peter": 6683, "google": 6684, "nowhere": 6685, "siding": 6686, "instructional": 6687, "reader": 6688, "steers": 6689, "forklift": 6690, "pallets": 6691, "occupying": 6692, "involving": 6693, "dalmation": 6694, "prone": 6695, "classy": 6696, "tux": 6697, "stay": 6698, "ankles": 6699, "gondola": 6700, "caring": 6701, "aa": 6702, "boxer": 6703, "dancers": 6704, "cultural": 6705, "dancer": 6706, "ladybug": 6707, "called": 6708, "flights": 6709, "atrium": 6710, "addresses": 6711, "peaked": 6712, "interest": 6713, "tot": 6714, "linked": 6715, "stride": 6716, "jerseys": 6717, "wildebeest": 6718, "sands": 6719, "fourth": 6720, "foal": 6721, "cropped": 6722, "decrepit": 6723, "beets": 6724, "skulls": 6725, "photoshopped": 6726, "jello": 6727, "advertises": 6728, "peanuts": 6729, "sum": 6730, "measured": 6731, "empire": 6732, "glassy": 6733, "forehead": 6734, "temple": 6735, "jumper": 6736, "tomatoe": 6737, "applesauce": 6738, "packet": 6739, "servings": 6740, "slalom": 6741, "knows": 6742, "pound": 6743, "popular": 6744, "crowding": 6745, "portions": 6746, "ability": 6747, "handrails": 6748, "propping": 6749, "condiment": 6750, "peace": 6751, "coveralls": 6752, "couscous": 6753, "vegtables": 6754, "ont": 6755, "compartments": 6756, "lunchbox": 6757, "surprised": 6758, "slop": 6759, "choice": 6760, "poached": 6761, "went": 6762, "reveal": 6763, "dominos": 6764, "grape": 6765, "soldiers": 6766, "snail": 6767, "severely": 6768, "elder": 6769, "attractively": 6770, "again": 6771, "ironing": 6772, "hearts": 6773, "pools": 6774, "outlined": 6775, "sonic": 6776, "soccor": 6777, "carpets": 6778, "tipping": 6779, "minimalist": 6780, "cause": 6781, "paperback": 6782, "partitions": 6783, "further": 6784, "slept": 6785, "padding": 6786, "slippers": 6787, "pacifier": 6788, "awkward": 6789, "enthusiast": 6790, "l": 6791, "components": 6792, "lovingly": 6793, "persona": 6794, "cosmetic": 6795, "manicure": 6796, "tapestry": 6797, "studs": 6798, "technology": 6799, "banquet": 6800, "future": 6801, "expo": 6802, "component": 6803, "siblings": 6804, "lava": 6805, "webcam": 6806, "soul": 6807, "stroller": 6808, "forehand": 6809, "smash": 6810, "braids": 6811, "flamingo": 6812, "flapping": 6813, "said": 6814, "raring": 6815, "rared": 6816, "shake": 6817, "crushed": 6818, "flakes": 6819, "shaker": 6820, "spiky": 6821, "vegan": 6822, "podium": 6823, "addressing": 6824, "crying": 6825, "autographed": 6826, "captioned": 6827, "telegraph": 6828, "readying": 6829, "recycled": 6830, "tins": 6831, "mints": 6832, "mitten": 6833, "starbucks": 6834, "armor": 6835, "smokes": 6836, "keychain": 6837, "charm": 6838, "drab": 6839, "general": 6840, "advertised": 6841, "icebox": 6842, "international": 6843, "zones": 6844, "dye": 6845, "opener": 6846, "fountains": 6847, "scones": 6848, "pearl": 6849, "decorates": 6850, "organization": 6851, "razor": 6852, "mash": 6853, "naan": 6854, "cafeteria": 6855, "sampling": 6856, "informal": 6857, "sundaes": 6858, "solid": 6859, "violin": 6860, "waiter": 6861, "paneling": 6862, "stoves": 6863, "uninstalled": 6864, "cookware": 6865, "temperature": 6866, "clasping": 6867, "clasped": 6868, "views": 6869, "unattached": 6870, "completed": 6871, "escorted": 6872, "ventilation": 6873, "masks": 6874, "illegally": 6875, "ajar": 6876, "maneuver": 6877, "spaces": 6878, "densely": 6879, "bmw": 6880, "stret": 6881, "citys": 6882, "herder": 6883, "lids": 6884, "intricate": 6885, "slot": 6886, "chipped": 6887, "runways": 6888, "altitude": 6889, "alike": 6890, "spandex": 6891, "ewe": 6892, "hazard": 6893, "headscarf": 6894, "pics": 6895, "creatively": 6896, "harbour": 6897, "final": 6898, "shooting": 6899, "assisting": 6900, "sheering": 6901, "lampposts": 6902, "tours": 6903, "subject": 6904, "plug": 6905, "flanked": 6906, "flanking": 6907, "nuzzle": 6908, "search": 6909, "sedan": 6910, "centers": 6911, "underpass": 6912, "restaurants": 6913, "roosters": 6914, "anime": 6915, "deal": 6916, "automobiles": 6917, "unload": 6918, "hurt": 6919, "hollow": 6920, "parakeets": 6921, "bard": 6922, "nectar": 6923, "shadowy": 6924, "cay": 6925, "elf": 6926, "broke": 6927, "perpendicular": 6928, "barb": 6929, "piers": 6930, "lincoln": 6931, "e": 6932, "viewers": 6933, "westminster": 6934, "peddling": 6935, "allowed": 6936, "diesel": 6937, "drops": 6938, "adds": 6939, "sack": 6940, "loses": 6941, "wiring": 6942, "write": 6943, "tickets": 6944, "writes": 6945, "multistory": 6946, "lanterns": 6947, "banners": 6948, "squid": 6949, "lumber": 6950, "toyota": 6951, "suspicious": 6952, "starring": 6953, "tote": 6954, "wheelchairs": 6955, "rind": 6956, "planner": 6957, "plus": 6958, "saver": 6959, "marquee": 6960, "statutes": 6961, "musician": 6962, "rig": 6963, "splashed": 6964, "think": 6965, "suites": 6966, "politician": 6967, "shakes": 6968, "saluting": 6969, "bookcases": 6970, "vent": 6971, "hurry": 6972, "waterfall": 6973, "experience": 6974, "kayaking": 6975, "entwined": 6976, "thatched": 6977, "hub": 6978, "columned": 6979, "join": 6980, "stilts": 6981, "rooftop": 6982, "acoustic": 6983, "collars": 6984, "buidling": 6985, "staying": 6986, "convenience": 6987, "mules": 6988, "venturing": 6989, "ribs": 6990, "outfielder": 6991, "engaging": 6992, "fielder": 6993, "cheap": 6994, "clumps": 6995, "lesson": 6996, "astride": 6997, "attempted": 6998, "24": 6999, "brilliant": 7000, "ripeness": 7001, "ripen": 7002, "homeplate": 7003, "coconuts": 7004, "tar": 7005, "consist": 7006, "merchant": 7007, "wrinkled": 7008, "hey": 7009, "handrail": 7010, "retaining": 7011, "greasy": 7012, "cabbages": 7013, "custard": 7014, "mogul": 7015, "judges": 7016, "kraut": 7017, "crests": 7018, "helmeted": 7019, "crab": 7020, "rapped": 7021, "baguette": 7022, "amish": 7023, "sugared": 7024, "savory": 7025, "volleyball": 7026, "imitating": 7027, "spices": 7028, "carves": 7029, "stamp": 7030, "swimmer": 7031, "bib": 7032, "possessions": 7033, "successfully": 7034, "sprints": 7035, "gel": 7036, "flour": 7037, "jail": 7038, "prison": 7039, "become": 7040, "artifacts": 7041, "seasoned": 7042, "comforters": 7043, "whites": 7044, "graphic": 7045, "might": 7046, "distorted": 7047, "7": 7048, "buddy": 7049, "aim": 7050, "vigorously": 7051, "bbq": 7052, "grilling": 7053, "diners": 7054, "inspired": 7055, "vying": 7056, "chubby": 7057, "q": 7058, "combined": 7059, "booty": 7060, "manner": 7061, "cabins": 7062, "spiked": 7063, "ascend": 7064, "jordan": 7065, "sailer": 7066, "lilies": 7067, "chocolates": 7068, "cuddles": 7069, "vacant": 7070, "ballpark": 7071, "pitched": 7072, "scoreboard": 7073, "courts": 7074, "physical": 7075, "microsoft": 7076, "sporty": 7077, "notebooks": 7078, "answering": 7079, "dice": 7080, "dividing": 7081, "graduates": 7082, "forty": 7083, "resturant": 7084, "hike": 7085, "edged": 7086, "specialty": 7087, "keypad": 7088, "charger": 7089, "ass": 7090, "350": 7091, "dash": 7092, "tallest": 7093, "shorter": 7094, "slate": 7095, "rooftops": 7096, "drier": 7097, "gauge": 7098, "architecturally": 7099, "appearance": 7100, "placemat": 7101, "captain": 7102, "america": 7103, "notepad": 7104, "list": 7105, "stationed": 7106, "bulding": 7107, "slender": 7108, "beads": 7109, "strand": 7110, "listen": 7111, "diverse": 7112, "greek": 7113, "thinks": 7114, "related": 7115, "choices": 7116, "thanksgiving": 7117, "marine": 7118, "rowers": 7119, "speedboat": 7120, "shouting": 7121, "arches": 7122, "tolit": 7123, "example": 7124, "rat": 7125, "created": 7126, "uneven": 7127, "tasks": 7128, "chic": 7129, "precariously": 7130, "highest": 7131, "pained": 7132, "textured": 7133, "messenger": 7134, "newspapers": 7135, "inset": 7136, "cockpit": 7137, "atv": 7138, "trouble": 7139, "singapore": 7140, "nails": 7141, "fueled": 7142, "houseplants": 7143, "proceeds": 7144, "descends": 7145, "solo": 7146, "interacts": 7147, "pm": 7148, "wispy": 7149, "pig": 7150, "stake": 7151, "enclose": 7152, "splayed": 7153, "browse": 7154, "faucets": 7155, "respected": 7156, "march": 7157, "disney": 7158, "monorail": 7159, "resemble": 7160, "arrangements": 7161, "thermometer": 7162, "multitude": 7163, "laps": 7164, "murdered": 7165, "flap": 7166, "perching": 7167, "hen": 7168, "weed": 7169, "safeway": 7170, "diaper": 7171, "picturesque": 7172, "kingdom": 7173, "hawks": 7174, "hoods": 7175, "caked": 7176, "donations": 7177, "collect": 7178, "thank": 7179, "bumps": 7180, "connecting": 7181, "mechanism": 7182, "standstill": 7183, "engineer": 7184, "adventure": 7185, "arrived": 7186, "departure": 7187, "approached": 7188, "defaced": 7189, "commute": 7190, "dispensing": 7191, "canned": 7192, "emits": 7193, "maintained": 7194, "roaring": 7195, "americans": 7196, "god": 7197, "payment": 7198, "armored": 7199, "bovine": 7200, "inspection": 7201, "tanning": 7202, "workshop": 7203, "awards": 7204, "plaques": 7205, "passersby": 7206, "ran": 7207, "folder": 7208, "engage": 7209, "slacks": 7210, "loosely": 7211, "unfolded": 7212, "flashlight": 7213, "allot": 7214, "hip": 7215, "raining": 7216, "re": 7217, "longboard": 7218, "shetland": 7219, "hooves": 7220, "gaining": 7221, "stepped": 7222, "majestic": 7223, "swimwear": 7224, "spaniel": 7225, "frisbie": 7226, "days": 7227, "skimpy": 7228, "incredibly": 7229, "totally": 7230, "farming": 7231, "moved": 7232, "hitched": 7233, "draft": 7234, "trot": 7235, "obstacles": 7236, "aside": 7237, "polo": 7238, "mare": 7239, "hurdles": 7240, "yankees": 7241, "violet": 7242, "teammate": 7243, "per": 7244, "electricity": 7245, "prior": 7246, "pieced": 7247, "cheering": 7248, "tupperware": 7249, "executes": 7250, "pierced": 7251, "avoiding": 7252, "tricky": 7253, "bannister": 7254, "elongated": 7255, "googles": 7256, "rode": 7257, "impressive": 7258, "skatboard": 7259, "launched": 7260, "isnt": 7261, "concession": 7262, "links": 7263, "puffs": 7264, "campfire": 7265, "parka": 7266, "wiped": 7267, "chooses": 7268, "exposing": 7269, "bartender": 7270, "30th": 7271, "trophies": 7272, "tells": 7273, "bra": 7274, "sucking": 7275, "diapers": 7276, "levitating": 7277, "backward": 7278, "broadcast": 7279, "patients": 7280, "operation": 7281, "locker": 7282, "undressed": 7283, "aggressively": 7284, "composite": 7285, "grasping": 7286, "peripherals": 7287, "guitars": 7288, "eclectic": 7289, "arc": 7290, "sailors": 7291, "tassels": 7292, "te": 7293, "waterside": 7294, "parasailers": 7295, "examples": 7296, "grid": 7297, "proximity": 7298, "spires": 7299, "populate": 7300, "participate": 7301, "flattened": 7302, "clutching": 7303, "nasa": 7304, "demonstration": 7305, "motorola": 7306, "gatorade": 7307, "pedestals": 7308, "ruined": 7309, "grained": 7310, "markets": 7311, "samples": 7312, "volunteers": 7313, "rafters": 7314, "ballroom": 7315, "boom": 7316, "embroidered": 7317, "member": 7318, "buddha": 7319, "wedged": 7320, "skewered": 7321, "souffle": 7322, "watermelons": 7323, "thinking": 7324, "rag": 7325, "address": 7326, "conditions": 7327, "arctic": 7328, "octopus": 7329, "crowed": 7330, "implements": 7331, "thre": 7332, "holidng": 7333, "soaking": 7334, "layout": 7335, "century": 7336, "curving": 7337, "specially": 7338, "dealership": 7339, "ruck": 7340, "plethora": 7341, "ads": 7342, "copy": 7343, "korean": 7344, "harry": 7345, "kennel": 7346, "admire": 7347, "cam": 7348, "crop": 7349, "clinic": 7350, "notices": 7351, "flames": 7352, "familiar": 7353, "giraffee": 7354, "rollerblading": 7355, "waling": 7356, "strolls": 7357, "digging": 7358, "spouts": 7359, "serene": 7360, "nobody": 7361, "eps": 7362, "diffrent": 7363, "sparrows": 7364, "judged": 7365, "lizard": 7366, "fifth": 7367, "loitering": 7368, "feeders": 7369, "brooklyn": 7370, "ended": 7371, "signpost": 7372, "germany": 7373, "billed": 7374, "windup": 7375, "slows": 7376, "payphone": 7377, "plume": 7378, "viewpoint": 7379, "foothills": 7380, "screaming": 7381, "nutritious": 7382, "throughout": 7383, "al": 7384, "speech": 7385, "scottish": 7386, "winnie": 7387, "farther": 7388, "sons": 7389, "squeeze": 7390, "meander": 7391, "shelters": 7392, "monk": 7393, "rickshaw": 7394, "buddhist": 7395, "turbulent": 7396, "elk": 7397, "bail": 7398, "dolly": 7399, "bale": 7400, "loan": 7401, "shielding": 7402, "os": 7403, "drags": 7404, "frolicking": 7405, "frizbee": 7406, "escape": 7407, "attacked": 7408, "armed": 7409, "shields": 7410, "shield": 7411, "purposes": 7412, "#": 7413, "naval": 7414, "bowel": 7415, "enthusiasts": 7416, "colander": 7417, "navel": 7418, "paraphernalia": 7419, "triangles": 7420, "brace": 7421, "tattooed": 7422, "foodstuffs": 7423, "cider": 7424, "avocados": 7425, "hummus": 7426, "snowshoes": 7427, "snowmobile": 7428, "friday": 7429, "13th": 7430, "valentines": 7431, "hush": 7432, "including:": 7433, "shoveling": 7434, "sprouts": 7435, "dollars": 7436, "rippling": 7437, "lacy": 7438, "cocoa": 7439, "flavor": 7440, "seasonings": 7441, "ponytail": 7442, "ceremonial": 7443, "barrow": 7444, "celebratory": 7445, "arranges": 7446, "lampshade": 7447, "maneuvering": 7448, "whimsical": 7449, "bandages": 7450, "bandaged": 7451, "tubes": 7452, "nurse": 7453, "apparatus": 7454, "tend": 7455, "emergency": 7456, "injury": 7457, "due": 7458, "overcooked": 7459, "royal": 7460, "squatted": 7461, "successful": 7462, "disassembled": 7463, "sony": 7464, "belonging": 7465, "burns": 7466, "loft": 7467, "crt": 7468, "amp": 7469, "activities": 7470, "wreath": 7471, "correct": 7472, "constructing": 7473, "umpires": 7474, "ages": 7475, "powerful": 7476, "pondering": 7477, "fellow": 7478, "apparel": 7479, "friendly": 7480, "calculators": 7481, "reserved": 7482, "ranging": 7483, "muscular": 7484, "talbe": 7485, "theatre": 7486, "casing": 7487, "wrenches": 7488, "leafed": 7489, "decoratively": 7490, "artistically": 7491, "ware": 7492, "weathervane": 7493, "decadent": 7494, "biscuit": 7495, "soups": 7496, "cuisine": 7497, "bubbly": 7498, "beret": 7499, "ordinary": 7500, "bands": 7501, "drainer": 7502, "saucers": 7503, "poorly": 7504, "tp": 7505, "fifties": 7506, "cutout": 7507, "matter": 7508, "bulging": 7509, "eyeballs": 7510, "googly": 7511, "plunger": 7512, "meanders": 7513, "rotten": 7514, "filth": 7515, "rifle": 7516, "capable": 7517, "urine": 7518, "motorcyclers": 7519, "crucifix": 7520, "backlit": 7521, "sole": 7522, "doorways": 7523, "cubicles": 7524, "bridges": 7525, "pride": 7526, "runaway": 7527, "servicing": 7528, "vertically": 7529, "cathay": 7530, "embrace": 7531, "romantic": 7532, "harvested": 7533, "bi": 7534, "chased": 7535, "airways": 7536, "crammed": 7537, "avid": 7538, "dinosaur": 7539, "ranger": 7540, "streak": 7541, "chipping": 7542, "longer": 7543, "mission": 7544, "stoop": 7545, "rancher": 7546, "shear": 7547, "tattered": 7548, "3d": 7549, "speckled": 7550, "russian": 7551, "yoga": 7552, "borders": 7553, "designating": 7554, "puffed": 7555, "lad": 7556, "patting": 7557, "wreck": 7558, "blooms": 7559, "offspring": 7560, "protest": 7561, "strap": 7562, "toting": 7563, "ups": 7564, "paints": 7565, "ed": 7566, "dumping": 7567, "mulch": 7568, "trucked": 7569, "bookbag": 7570, "records": 7571, "goodbye": 7572, "trust": 7573, "somber": 7574, "former": 7575, "guardrail": 7576, "likely": 7577, "chance": 7578, "flooding": 7579, "boxers": 7580, "grounded": 7581, "skirts": 7582, "postcard": 7583, "rad": 7584, "coolers": 7585, "snapshot": 7586, "sundown": 7587, "houseboat": 7588, "bold": 7589, "buoys": 7590, "lingerie": 7591, "role": 7592, "kilt": 7593, "looms": 7594, "umping": 7595, "coaster": 7596, "wanders": 7597, "health": 7598, "preserve": 7599, "theyre": 7600, "blueberries": 7601, "ump": 7602, "receives": 7603, "happening": 7604, "started": 7605, "overripe": 7606, "butterflies": 7607, "juicing": 7608, "ripened": 7609, "chiquita": 7610, "ripening": 7611, "overhand": 7612, "housing": 7613, "grainy": 7614, "thinly": 7615, "contemplates": 7616, "escalator": 7617, "appealing": 7618, "creatures": 7619, "unrecognizable": 7620, "purchasing": 7621, "veil": 7622, "shoots": 7623, "loop": 7624, "ollie": 7625, "complicated": 7626, "trimmings": 7627, "dreadlocks": 7628, "rugby": 7629, "receiver": 7630, "mixes": 7631, "cobbler": 7632, "waring": 7633, "beaming": 7634, "devil": 7635, "highly": 7636, "quilted": 7637, "burritos": 7638, "cigarettes": 7639, "unbuttoned": 7640, "chunks": 7641, "clinging": 7642, "simultaneously": 7643, "journal": 7644, "crusted": 7645, "herb": 7646, "gross": 7647, "deviled": 7648, "artisan": 7649, "saloon": 7650, "combs": 7651, "converted": 7652, "struck": 7653, "crisp": 7654, "companions": 7655, "lilacs": 7656, "internet": 7657, "delight": 7658, "contestant": 7659, "origami": 7660, "heat": 7661, "fancily": 7662, "kiln": 7663, "contained": 7664, "hashbrowns": 7665, "donkeys": 7666, "thought": 7667, "dribbles": 7668, "toga": 7669, "comparing": 7670, "comic": 7671, "orchids": 7672, "bistro": 7673, "scrolls": 7674, "lantern": 7675, "restricted": 7676, "bouquets": 7677, "screwdriver": 7678, "smal": 7679, "tandem": 7680, "servers": 7681, "whisk": 7682, "sharpening": 7683, "strains": 7684, "kitchens": 7685, "lotion": 7686, "dental": 7687, "outfitted": 7688, "trike": 7689, "shuttered": 7690, "ipad": 7691, "boot": 7692, "loaves": 7693, "kawasaki": 7694, "tavern": 7695, "frontal": 7696, "boeing": 7697, "void": 7698, "identification": 7699, "launching": 7700, "disembark": 7701, "ale": 7702, "readied": 7703, "tights": 7704, "atlantic": 7705, "klm": 7706, "frown": 7707, "downwards": 7708, "adn": 7709, "territory": 7710, "intersections": 7711, "spans": 7712, "auction": 7713, "plastered": 7714, "writings": 7715, "sayings": 7716, "aloft": 7717, "joy": 7718, "scarfs": 7719, "cardinal": 7720, "pelicans": 7721, "italy": 7722, "listing": 7723, "embankment": 7724, "passage": 7725, "safely": 7726, "hauls": 7727, "bluebird": 7728, "mallet": 7729, "croquet": 7730, "saint": 7731, "destinations": 7732, "madison": 7733, "rights": 7734, "slogan": 7735, "attack": 7736, "booties": 7737, "whiskers": 7738, "riverside": 7739, "scraps": 7740, "feasting": 7741, "smashed": 7742, "flowerpot": 7743, "wades": 7744, "panes": 7745, "stnading": 7746, "mist": 7747, "wheelers": 7748, "operator": 7749, "somebodys": 7750, "mock": 7751, "yells": 7752, "cape": 7753, "transports": 7754, "untied": 7755, "loosened": 7756, "clapping": 7757, "sideburns": 7758, "foreheads": 7759, "cove": 7760, "stature": 7761, "riverboat": 7762, "hauled": 7763, "egyptian": 7764, "wristband": 7765, "wrist": 7766, "bracelet": 7767, "swampy": 7768, "tear": 7769, "cocker": 7770, "angled": 7771, "cheetah": 7772, "brushy": 7773, "sniff": 7774, "firsbee": 7775, "ina": 7776, "score": 7777, "swishing": 7778, "bridles": 7779, "eyeing": 7780, "roots": 7781, "bass": 7782, "victory": 7783, "brimmed": 7784, "floret": 7785, "sprout": 7786, "suspension": 7787, "leeks": 7788, "swiss": 7789, "pecks": 7790, "lentils": 7791, "charcoal": 7792, "disposable": 7793, "grills": 7794, "fires": 7795, "confetti": 7796, "wtih": 7797, "kayaker": 7798, "moderately": 7799, "ending": 7800, "currents": 7801, "composed": 7802, "pretend": 7803, "hotels": 7804, "taught": 7805, "doves": 7806, "bodyboard": 7807, "unplugged": 7808, "burn": 7809, "crouch": 7810, "duel": 7811, "cordless": 7812, "soar": 7813, "hobby": 7814, "lookers": 7815, "parasail": 7816, "kitesurfing": 7817, "imac": 7818, "ate": 7819, "screensaver": 7820, "overstuffed": 7821, "singer": 7822, "obama": 7823, "barack": 7824, "enthusiastic": 7825, "attraction": 7826, "courthouse": 7827, "fillings": 7828, "oversize": 7829, "squirting": 7830, "mohawk": 7831, "camo": 7832, "attentive": 7833, "teacup": 7834, "cappuccino": 7835, "teacups": 7836, "michael": 7837, "crossbones": 7838, "filter": 7839, "simply": 7840, "fluorescent": 7841, "musicians": 7842, "topless": 7843, "domestic": 7844, "proper": 7845, "rotting": 7846, "plentiful": 7847, "etched": 7848, "bleeding": 7849, "juices": 7850, "demonstrating": 7851, "bubbles": 7852, "indians": 7853, "monitoring": 7854, "officials": 7855, "ii": 7856, "overhanging": 7857, "foilage": 7858, "charter": 7859, "firm": 7860, "barking": 7861, "original": 7862, "haight": 7863, "cuckoo": 7864, "coo": 7865, "limit": 7866, "30": 7867, "teeshirt": 7868, "wording": 7869, "obese": 7870, "july": 7871, "1st": 7872, "brownie": 7873, "trainyard": 7874, "22": 7875, "ducklings": 7876, "extensive": 7877, "network": 7878, "demon": 7879, "streaking": 7880, "straps": 7881, "holstein": 7882, "hasnt": 7883, "distinctive": 7884, "armrest": 7885, "firefighters": 7886, "apparently": 7887, "firetrucks": 7888, "dumped": 7889, "program": 7890, "beast": 7891, "walkie": 7892, "talkie": 7893, "stables": 7894, "labeling": 7895, "truly": 7896, "broadly": 7897, "enthusiastically": 7898, "hanged": 7899, "straightening": 7900, "modeling": 7901, "sailor": 7902, "media": 7903, "interviewed": 7904, "torso": 7905, "hosing": 7906, "potential": 7907, "torches": 7908, "steamboat": 7909, "manager": 7910, "stamps": 7911, "messages": 7912, "scribbled": 7913, "drainage": 7914, "hump": 7915, "fatigues": 7916, "tugging": 7917, "deflated": 7918, "darker": 7919, "explore": 7920, "harnessed": 7921, "desolate": 7922, "pinto": 7923, "screened": 7924, "scoops": 7925, "atlanta": 7926, "braves": 7927, "mates": 7928, "spins": 7929, "blossom": 7930, "pilled": 7931, "ramen": 7932, "raisins": 7933, "handlebar": 7934, "elbow": 7935, "poked": 7936, "completing": 7937, "brave": 7938, "grinder": 7939, "hilton": 7940, "hoagie": 7941, "edible": 7942, "strolling": 7943, "dances": 7944, "snows": 7945, "gyro": 7946, "spanish": 7947, "krispy": 7948, "kreme": 7949, "occasion": 7950, "lifeguard": 7951, "overtaken": 7952, "barbershop": 7953, "plating": 7954, "malaysia": 7955, "2013": 7956, "malaysian": 7957, "solders": 7958, "anniversary": 7959, "gains": 7960, "wipe": 7961, "knelt": 7962, "enterprise": 7963, "seaweed": 7964, "miscellaneous": 7965, "aims": 7966, "lunge": 7967, "jalapenos": 7968, "whiteboard": 7969, "karaoke": 7970, "mats": 7971, "surge": 7972, "multicolor": 7973, "fifty": 7974, "technique": 7975, "photoshop": 7976, "illustrated": 7977, "combed": 7978, "kettles": 7979, "smartphones": 7980, "ton": 7981, "illuminating": 7982, "outs": 7983, "stony": 7984, "exceptionally": 7985, "fascinating": 7986, "distinct": 7987, "prevent": 7988, "mussels": 7989, "diagram": 7990, "kichen": 7991, "streamlined": 7992, "spirit": 7993, "vivid": 7994, "stark": 7995, "puzzled": 7996, "inter": 7997, "soiled": 7998, "individually": 7999, "peeing": 8000, "pee": 8001, "disarray": 8002, "marsh": 8003, "era": 8004, "20th": 8005, "performed": 8006, "tailed": 8007, "devoid": 8008, "slat": 8009, "illuminate": 8010, "sequential": 8011, "benched": 8012, "wont": 8013, "holing": 8014, "yes": 8015, "divers": 8016, "hong": 8017, "kong": 8018, "manger": 8019, "brought": 8020, "sparrow": 8021, "reeds": 8022, "meme": 8023, "egret": 8024, "mph": 8025, "resident": 8026, "derelict": 8027, "5th": 8028, "cupola": 8029, "pallet": 8030, "oin": 8031, "duvet": 8032, "feels": 8033, "magnifying": 8034, "maps": 8035, "thigh": 8036, "panties": 8037, "businessmen": 8038, "tye": 8039, "beaded": 8040, "shrine": 8041, "sprinkler": 8042, "bibs": 8043, "bye": 8044, "downed": 8045, "pandas": 8046, "graphics": 8047, "montage": 8048, "exciting": 8049, "brook": 8050, "patrolling": 8051, "situation": 8052, "interaction": 8053, "expert": 8054, "emptying": 8055, "none": 8056, "sending": 8057, "grapefruits": 8058, "cents": 8059, "sleds": 8060, "sledding": 8061, "iwth": 8062, "cookout": 8063, "brussel": 8064, "brussels": 8065, "sleeves": 8066, "losing": 8067, "delicacy": 8068, "earbuds": 8069, "rapidly": 8070, "purchased": 8071, "dougnuts": 8072, "wakeboarding": 8073, "trench": 8074, "skewer": 8075, "mayo": 8076, "mayonnaise": 8077, "assistance": 8078, "paragliding": 8079, "glare": 8080, "furnishing": 8081, "sliver": 8082, "spin": 8083, "wrinkles": 8084, "daybed": 8085, "cradle": 8086, "spaceous": 8087, "mousepad": 8088, "sponsor": 8089, "daughters": 8090, "glory": 8091, "protection": 8092, "fourteen": 8093, "interface": 8094, "converses": 8095, "chat": 8096, "extend": 8097, "appointed": 8098, "foyer": 8099, "lcd": 8100, "handset": 8101, "lg": 8102, "primitive": 8103, "spilled": 8104, "lunches": 8105, "paris": 8106, "hamster": 8107, "dandelion": 8108, "emerges": 8109, "artfully": 8110, "hearth": 8111, "underway": 8112, "sheriffs": 8113, "vender": 8114, "journey": 8115, "urn": 8116, "zombies": 8117, "loafs": 8118, "ultra": 8119, "paintbrush": 8120, "modeled": 8121, "amenities": 8122, "earrings": 8123, "fogged": 8124, "amusing": 8125, "applied": 8126, "pant": 8127, "sheriff": 8128, "gateway": 8129, "closest": 8130, "motionless": 8131, "plans": 8132, "taxing": 8133, "turbine": 8134, "qantas": 8135, "gazebo": 8136, "slap": 8137, "slowing": 8138, "flaps": 8139, "scratched": 8140, "robin": 8141, "missiles": 8142, "jal": 8143, "witting": 8144, "emblems": 8145, "choosing": 8146, "preserver": 8147, "immediate": 8148, "juts": 8149, "gardens": 8150, "normal": 8151, "barefooted": 8152, "harnesses": 8153, "joining": 8154, "downstairs": 8155, "parading": 8156, "varied": 8157, "steams": 8158, "picket": 8159, "sings": 8160, "outer": 8161, "turbines": 8162, "fireworks": 8163, "attracts": 8164, "luncheon": 8165, "drums": 8166, "firemen": 8167, "kilts": 8168, "gong": 8169, "alive": 8170, "masked": 8171, "protester": 8172, "ensemble": 8173, "hull": 8174, "halter": 8175, "cheerleader": 8176, "extraordinary": 8177, "bodies": 8178, "spell": 8179, "peope": 8180, "spelling": 8181, "suckling": 8182, "mowed": 8183, "duo": 8184, "fribee": 8185, "forage": 8186, "captures": 8187, "vinyl": 8188, "emblem": 8189, "maneuvers": 8190, "sharply": 8191, "pecans": 8192, "baord": 8193, "cheddar": 8194, "kneepads": 8195, "stemware": 8196, "chowder": 8197, "nourishment": 8198, "vert": 8199, "duplicate": 8200, "seas": 8201, "sunscreen": 8202, "ther": 8203, "shared": 8204, "loveseat": 8205, "grip": 8206, "arching": 8207, "settee": 8208, "venue": 8209, "southwestern": 8210, "assembling": 8211, "exercises": 8212, "bordering": 8213, "supreme": 8214, "salesman": 8215, "hp": 8216, "odds": 8217, "carnation": 8218, "joker": 8219, "stylus": 8220, "canister": 8221, "router": 8222, "jumble": 8223, "workbench": 8224, "loom": 8225, "negative": 8226, "depict": 8227, "palace": 8228, "collectibles": 8229, "modest": 8230, "spotless": 8231, "shampoo": 8232, "ankle": 8233, "fascinated": 8234, "peeler": 8235, "admired": 8236, "huts": 8237, "continental": 8238, "sever": 8239, "crows": 8240, "peopel": 8241, "peal": 8242, "gras": 8243, "vancouver": 8244, "attractions": 8245, "sunning": 8246, "division": 8247, "shores": 8248, "common": 8249, "25": 8250, "posting": 8251, "prince": 8252, "netted": 8253, "fe": 8254, "review": 8255, "acknowledging": 8256, "hi": 8257, "reason": 8258, "vessels": 8259, "kimono": 8260, "forms": 8261, "realistic": 8262, "astounding": 8263, "sling": 8264, "peaks": 8265, "separates": 8266, "clouded": 8267, "pomeranian": 8268, "obstructed": 8269, "lasso": 8270, "coaching": 8271, "coached": 8272, "slushy": 8273, "ans": 8274, "segments": 8275, "alfredo": 8276, "organizing": 8277, "warmer": 8278, "alfalfa": 8279, "patties": 8280, "paired": 8281, "skeleton": 8282, "nike": 8283, "lodged": 8284, "creams": 8285, "cornbread": 8286, "vat": 8287, "batches": 8288, "inn": 8289, "grater": 8290, "crispy": 8291, "birth": 8292, "spotlight": 8293, "floaters": 8294, "motif": 8295, "chested": 8296, "save": 8297, "reclined": 8298, "sophisticated": 8299, "netbook": 8300, "expose": 8301, "cheeks": 8302, "pod": 8303, "darkness": 8304, "smokey": 8305, "rhode": 8306, "peson": 8307, "turban": 8308, "supposed": 8309, "succulents": 8310, "ceramics": 8311, "felt": 8312, "yarn": 8313, "diorama": 8314, "dine": 8315, "lobsters": 8316, "barbecued": 8317, "exhaust": 8318, "chill": 8319, "heated": 8320, "skylight": 8321, "minimalistic": 8322, "heap": 8323, "backpacking": 8324, "cupping": 8325, "rears": 8326, "gump": 8327, "kickstand": 8328, "secure": 8329, "frontier": 8330, "fueling": 8331, "contrails": 8332, "x": 8333, "sheepdog": 8334, "trial": 8335, "danger": 8336, "dramatic": 8337, "greenhouse": 8338, "inclosure": 8339, "hide": 8340, "escorting": 8341, "woody": 8342, "pastures": 8343, "clover": 8344, "snowed": 8345, "sheers": 8346, "de": 8347, "believing": 8348, "rabbits": 8349, "flaming": 8350, "scarves": 8351, "largely": 8352, "stray": 8353, "unzipped": 8354, "vision": 8355, "barrack": 8356, "document": 8357, "attendees": 8358, "frolic": 8359, "silos": 8360, "pasties": 8361, "poem": 8362, "spout": 8363, "zippered": 8364, "tortoise": 8365, "vultures": 8366, "robes": 8367, "chihuahua": 8368, "frizbe": 8369, "breeds": 8370, "simpsons": 8371, "driftwood": 8372, "gallop": 8373, "equestrians": 8374, "ontop": 8375, "graceful": 8376, "straddling": 8377, "jams": 8378, "oj": 8379, "yellowish": 8380, "susan": 8381, "spoke": 8382, "tastes": 8383, "traversing": 8384, "mein": 8385, "techniques": 8386, "benedict": 8387, "cheer": 8388, "drum": 8389, "elders": 8390, "slathered": 8391, "rules": 8392, "coating": 8393, "selections": 8394, "lattice": 8395, "dangerous": 8396, "tart": 8397, "unlit": 8398, "ratchet": 8399, "juggling": 8400, "tangle": 8401, "rolex": 8402, "leggings": 8403, "energy": 8404, "southern": 8405, "wilson": 8406, "restuarant": 8407, "upset": 8408, "question": 8409, "recess": 8410, "shelfs": 8411, "13": 8412, "systems": 8413, "cracks": 8414, "checkout": 8415, "elizabeth": 8416, "partners": 8417, "detail": 8418, "webpage": 8419, "timer": 8420, "adidas": 8421, "budweiser": 8422, "micro": 8423, "bound": 8424, "tab": 8425, "11": 8426, "oxygen": 8427, "outlets": 8428, "drenched": 8429, "don": 8430, "appetizer": 8431, "cellar": 8432, "tackle": 8433, "pinstripe": 8434, "maze": 8435, "bedspreads": 8436, "newest": 8437, "merchants": 8438, "repaired": 8439, "assists": 8440, "fighters": 8441, "motorcylces": 8442, "bunkbed": 8443, "thorough": 8444, "accordion": 8445, "ar": 8446, "john": 8447, "protestors": 8448, "ward": 8449, "kiddie": 8450, "announcer": 8451, "crews": 8452, "tokyo": 8453, "protesters": 8454, "tuck": 8455, "zipper": 8456, "bomb": 8457, "squad": 8458, "james": 8459, "sites": 8460, "sash": 8461, "badges": 8462, "oakland": 8463, "algae": 8464, "die": 8465, "skimming": 8466, "sunbathers": 8467, "limo": 8468, "express": 8469, "grimaces": 8470, "collectible": 8471, "marilyn": 8472, "monroe": 8473, "butting": 8474, "doge": 8475, "ducking": 8476, "campground": 8477, "chariot": 8478, "bikinis": 8479, "swimsuits": 8480, "exercising": 8481, "draws": 8482, "wakeboarder": 8483, "gnawing": 8484, "gerbil": 8485, "puzzle": 8486, "taht": 8487, "ramping": 8488, "cranberries": 8489, "pickled": 8490, "garnishment": 8491, "wth": 8492, "munch": 8493, "blends": 8494, "aids": 8495, "pills": 8496, "graph": 8497, "easter": 8498, "playstation": 8499, "batman": 8500, "holidays": 8501, "coastal": 8502, "biggest": 8503, "guinea": 8504, "dj": 8505, "laminate": 8506, "mittens": 8507, "cooktop": 8508, "stains": 8509, "dinosaurs": 8510, "workout": 8511, "ranges": 8512, "transformed": 8513, "moto": 8514, "haircut": 8515, "sculpted": 8516, "portraits": 8517, "pattered": 8518, "grits": 8519, "rained": 8520, "cardigan": 8521, "organ": 8522, "cubby": 8523, "kneel": 8524, "waiters": 8525, "hutch": 8526, "bulbs": 8527, "ducky": 8528, "cobblestones": 8529, "50": 8530, "50th": 8531, "blacktop": 8532, "soaps": 8533, "seashells": 8534, "plungers": 8535, "dudes": 8536, "plums": 8537, "suzuki": 8538, "reporter": 8539, "roams": 8540, "barricaded": 8541, "glacier": 8542, "specialized": 8543, "creates": 8544, "valves": 8545, "traveled": 8546, "bathe": 8547, "fowl": 8548, "troll": 8549, "los": 8550, "angeles": 8551, "alaska": 8552, "droplets": 8553, "messily": 8554, "tequila": 8555, "grease": 8556, "shock": 8557, "furthest": 8558, "squished": 8559, "services": 8560, "determined": 8561, "canopies": 8562, "cubical": 8563, "geisha": 8564, "barbie": 8565, "zipping": 8566, "mr": 8567, "prize": 8568, "crook": 8569, "vice": 8570, "op": 8571, "waterhole": 8572, "orphanage": 8573, "vitamin": 8574, "mandarin": 8575, "miller": 8576, "needles": 8577, "grin": 8578, "gardening": 8579, "sparkling": 8580, "surboard": 8581, "kiteboards": 8582, "decals": 8583, "wieners": 8584, "consume": 8585, "lavishly": 8586, "gymnasium": 8587, "parlor": 8588, "headphone": 8589, "mime": 8590, "berlin": 8591, "dandelions": 8592, "selfies": 8593, "recorded": 8594, "tap": 8595, "cubed": 8596, "omelets": 8597, "canisters": 8598, "blackboard": 8599, "dollhouse": 8600, "outward": 8601, "candid": 8602, "assist": 8603, "figs": 8604, "dirtbike": 8605, "grayish": 8606, "illuminates": 8607, "speedometer": 8608, "idling": 8609, "jewish": 8610, "our": 8611, "roundabout": 8612, "birdhouse": 8613, "drift": 8614, "restrooms": 8615, "yield": 8616, "mm": 8617, "bout": 8618, "hitch": 8619, "catholic": 8620, "windmills": 8621, "carriers": 8622, "learns": 8623, "quad": 8624, "barns": 8625, "relief": 8626, "milked": 8627, "confinement": 8628, "pasted": 8629, "overcoat": 8630, "bolts": 8631, "rummaging": 8632, "wardrobe": 8633, "usage": 8634, "plump": 8635, "decided": 8636, "haul": 8637, "straws": 8638, "steady": 8639, "cheetos": 8640, "unidentified": 8641, "hookah": 8642, "combines": 8643, "chilies": 8644, "vegitables": 8645, "draining": 8646, "flask": 8647, "spam": 8648, "footlong": 8649, "cheerful": 8650, "shoving": 8651, "shakers": 8652, "inthe": 8653, "cheers": 8654, "programming": 8655, "ruby": 8656, "bandage": 8657, "idiot": 8658, "mechanics": 8659, "slip": 8660, "elbows": 8661, "homey": 8662, "browses": 8663, "flyer": 8664, "inflated": 8665, "chamber": 8666, "aid": 8667, "refigerator": 8668, "arent": 8669, "screwed": 8670, "pressure": 8671, "regal": 8672, "canon": 8673, "plugs": 8674, "disgusting": 8675, "roles": 8676, "piping": 8677, "dials": 8678, "pamphlet": 8679, "overtop": 8680, "volvo": 8681, "ever": 8682, "checkpoint": 8683, "tuned": 8684, "blackened": 8685, "malnourished": 8686, "folders": 8687, "manikin": 8688, "demonstrate": 8689, "graduation": 8690, "exits": 8691, "breed": 8692, "struts": 8693, "frilly": 8694, "trots": 8695, "hers": 8696, "treading": 8697, "participants": 8698, "chickpeas": 8699, "wiener": 8700, "mmm": 8701, "beet": 8702, "ona": 8703, "makings": 8704, "bunnies": 8705, "aggressive": 8706, "pillowcases": 8707, "arugula": 8708, "meant": 8709, "experiment": 8710, "slew": 8711, "hardware": 8712, "congregated": 8713, "winning": 8714, "slam": 8715, "colourful": 8716, "promotional": 8717, "clicking": 8718, "catering": 8719, "pda": 8720, "announcing": 8721, "canning": 8722, "gnome": 8723, "ambulances": 8724, "limited": 8725, "redone": 8726, "moldy": 8727, "grime": 8728, "ivory": 8729, "instructs": 8730, "mercedes": 8731, "benz": 8732, "title": 8733, "motorcade": 8734, "steeples": 8735, "atvs": 8736, "popping": 8737, "bred": 8738, "66": 8739, "photographic": 8740, "55": 8741, "trellis": 8742, "footpath": 8743, "branded": 8744, "20": 8745, "mauve": 8746, "baron": 8747, "elvis": 8748, "venice": 8749, "secured": 8750, "mansion": 8751, "boombox": 8752, "applies": 8753, "autograph": 8754, "mold": 8755, "mortar": 8756, "snacking": 8757, "minute": 8758, "hors": 8759, "diet": 8760, "airborn": 8761, "whizzes": 8762, "actual": 8763, "singular": 8764, "listed": 8765, "crested": 8766, "surgery": 8767, "actively": 8768, "chow": 8769, "delicately": 8770, "penalty": 8771, "pops": 8772, "communicating": 8773, "approval": 8774, "urns": 8775, "sewn": 8776, "especially": 8777, "papered": 8778, "outwards": 8779, "tranquil": 8780, "binoculars": 8781, "themself": 8782, "whirlpool": 8783, "necessities": 8784, "pylons": 8785, "meowing": 8786, "glances": 8787, "forming": 8788, "swirled": 8789, "yamaha": 8790, "granddaughter": 8791, "nonchalantly": 8792, "continue": 8793, "sync": 8794, "stooping": 8795, "volunteer": 8796, "lorry": 8797, "griaffe": 8798, "alto": 8799, "chevy": 8800, "offered": 8801, "nibbles": 8802, "craggy": 8803, "beachfront": 8804, "battleship": 8805, "congregating": 8806, "cocking": 8807, "buck": 8808, "cookbook": 8809, "skiiing": 8810, "discuss": 8811, "zooms": 8812, "badge": 8813, "surveying": 8814, "lessons": 8815, "mismatched": 8816, "relatively": 8817, "task": 8818, "texts": 8819, "preparations": 8820, "rubble": 8821, "battery": 8822, "awake": 8823, "protrudes": 8824, "im": 8825, "stoops": 8826, "handheld": 8827, "refreshments": 8828, "breasts": 8829, "barstools": 8830, "washbasin": 8831, "spa": 8832, "slid": 8833, "lack": 8834, "christ": 8835, "connection": 8836, "cessna": 8837, "betting": 8838, "bales": 8839, "bills": 8840, "beaked": 8841, "clams": 8842, "chess": 8843, "beacon": 8844, "streetlamp": 8845, "phrase": 8846, "donation": 8847, "outskirts": 8848, "udders": 8849, "bluff": 8850, "monks": 8851, "gingham": 8852, "perked": 8853, "attacking": 8854, "sombrero": 8855, "almonds": 8856, "chewed": 8857, "becoming": 8858, "handstand": 8859, "unpacked": 8860, "exact": 8861, "heritage": 8862, "charms": 8863, "glistening": 8864, "surfboarders": 8865, "haze": 8866, "swift": 8867, "rom": 8868, "allowing": 8869, "stomachs": 8870, "remain": 8871, "washes": 8872, "popcorn": 8873, "erase": 8874, "nerf": 8875, "sanctioned": 8876, "candlelight": 8877, "data": 8878, "ledges": 8879, "pre": 8880, "personalized": 8881, "courch": 8882, "sideboard": 8883, "postage": 8884, "wineglasses": 8885, "recessed": 8886, "knobs": 8887, "bleacher": 8888, "refurbished": 8889, "hopping": 8890, "digs": 8891, "leathers": 8892, "bluish": 8893, "bouncy": 8894, "dusting": 8895, "perimeter": 8896, "airshow": 8897, "begun": 8898, "nineteen": 8899, "cocked": 8900, "penguins": 8901, "rockaway": 8902, "george": 8903, "alertly": 8904, "climbers": 8905, "lipstick": 8906, "stern": 8907, "braces": 8908, "jewels": 8909, "fairy": 8910, "footboard": 8911, "flurry": 8912, "barley": 8913, "af": 8914, "blizzard": 8915, "glazing": 8916, "orchid": 8917, "planks": 8918, "sweating": 8919, "supported": 8920, "blast": 8921, "fanning": 8922, "refrigeration": 8923, "icon": 8924, "chars": 8925, "remarkable": 8926, "toped": 8927, "fin": 8928, "crutches": 8929, "insides": 8930, "hundred": 8931, "investigate": 8932, "wharf": 8933, "joint": 8934, "refueling": 8935, "windsurfers": 8936, "smoker": 8937, "stading": 8938, "espresso": 8939, "spools": 8940, "dedicated": 8941, "aer": 8942, "believe": 8943, "predators": 8944, "strokes": 8945, "duty": 8946, "roping": 8947, "pealed": 8948, "dollop": 8949, "ot": 8950, "crabs": 8951, "collected": 8952, "calzone": 8953, "nathans": 8954, "puff": 8955, "coordinating": 8956, "dramatically": 8957, "received": 8958, "nunchuck": 8959, "recreation": 8960, "effects": 8961, "ink": 8962, "spatulas": 8963, "mango": 8964, "knickknacks": 8965, "creations": 8966, "politicians": 8967, "skim": 8968, "styling": 8969, "skidding": 8970, "motorcross": 8971, "arial": 8972, "shamrock": 8973, "wonder": 8974, "k": 8975, "brim": 8976, "eof": 8977, "bourbon": 8978, "icicles": 8979, "sil": 8980, "fabulous": 8981, "processed": 8982, "boutonniere": 8983, "beards": 8984, "retrieves": 8985, "cleared": 8986, "souvenirs": 8987, "offer": 8988, "medley": 8989, "protein": 8990, "pinstriped": 8991, "orchard": 8992, "hops": 8993, "represent": 8994, "core": 8995, "rye": 8996, "interviewing": 8997, "badminton": 8998, "chunky": 8999, "hoody": 9000, "parliament": 9001, "leisurely": 9002, "flank": 9003, "belong": 9004, "camcorder": 9005, "crawls": 9006, "cookbooks": 9007, "fridges": 9008, "scooping": 9009, "garland": 9010, "lei": 9011, "wastebasket": 9012, "vespa": 9013, "functions": 9014, "vietnamese": 9015, "obscures": 9016, "bounded": 9017, "volkswagen": 9018, "palms": 9019, "manchester": 9020, "mermaid": 9021, "trumpet": 9022, "informing": 9023, "youre": 9024, "crescent": 9025, "handkerchief": 9026, "masts": 9027, "known": 9028, "plater": 9029, "poppy": 9030, "alligator": 9031, "sweaty": 9032, "arcade": 9033, "lovers": 9034, "binders": 9035, "ottomans": 9036, "philadelphia": 9037, "phillies": 9038, "octagonal": 9039, "lo": 9040, "pat": 9041, "noon": 9042, "brunch": 9043, "snoozing": 9044, "highlights": 9045, "customized": 9046, "gleaming": 9047, "chargers": 9048, "buldings": 9049, "needing": 9050, "whoa": 9051, "shacks": 9052, "turbans": 9053, "prom": 9054, "beetle": 9055, "anti": 9056, "brides": 9057, "pomegranates": 9058, "quantity": 9059, "basebal": 9060, "braided": 9061, "twists": 9062, "shallows": 9063, "calzones": 9064, "bassinet": 9065, "convenient": 9066, "pinking": 9067, "shattered": 9068, "granny": 9069, "smith": 9070, "notice": 9071, "magnificent": 9072, "jobs": 9073, "articles": 9074, "routes": 9075, "trolleys": 9076, "cosmetics": 9077, "menacingly": 9078, "guns": 9079, "locking": 9080, "balck": 9081, "released": 9082, "clutched": 9083, "afraid": 9084, "tartar": 9085, "plae": 9086, "response": 9087, "girlfriend": 9088, "sadly": 9089, "spend": 9090, "sharpie": 9091, "corks": 9092, "blindfolded": 9093, "blindfold": 9094, "chats": 9095, "wheeling": 9096, "culinary": 9097, "geometric": 9098, "gallon": 9099, "doorstep": 9100, "bu": 9101, "hatch": 9102, "fluffed": 9103, "slipper": 9104, "tractors": 9105, "tortoiseshell": 9106, "priest": 9107, "pastor": 9108, "doggie": 9109, "timey": 9110, "hangers": 9111, "surprise": 9112, "irish": 9113, "blower": 9114, "tummy": 9115, "chees": 9116, "taps": 9117, "institutional": 9118, "focuses": 9119, "porridge": 9120, "grating": 9121, "clam": 9122, "lockers": 9123, "jetway": 9124, "scotland": 9125, "movable": 9126, "civil": 9127, "reporters": 9128, "inscription": 9129, "mallard": 9130, "nesting": 9131, "feathered": 9132, "prizes": 9133, "idyllic": 9134, "popsicle": 9135, "boa": 9136, "forlorn": 9137, "tearing": 9138, "dummies": 9139, "mannequins": 9140, "matt": 9141, "mardi": 9142, "2012": 9143, "ease": 9144, "ted": 9145, "showed": 9146, "carnations": 9147, "prancing": 9148, "tankless": 9149, "horrible": 9150, "bystanders": 9151, "carport": 9152, "dangerously": 9153, "coup": 9154, "cacti": 9155, "ladders": 9156, "tried": 9157, "sacks": 9158, "compound": 9159, "grassed": 9160, "carcass": 9161, "mangos": 9162, "powdery": 9163, "shoved": 9164, "bratwurst": 9165, "confection": 9166, "manufacturing": 9167, "occupies": 9168, "pharmacy": 9169, "counting": 9170, "pill": 9171, "satin": 9172, "polished": 9173, "artful": 9174, "memory": 9175, "clipboard": 9176, "zip": 9177, "garnishes": 9178, "smoked": 9179, "forked": 9180, "sunroof": 9181, "anytime": 9182, "sneaks": 9183, "seuss": 9184, "grumpy": 9185, "contentedly": 9186, "toa": 9187, "3rd": 9188, "examined": 9189, "embellished": 9190, "footprints": 9191, "flippers": 9192, "coals": 9193, "sittign": 9194, "bet": 9195, "payer": 9196, "creation": 9197, "properly": 9198, "foldable": 9199, "peep": 9200, "bizarre": 9201, "splits": 9202, "motors": 9203, "representation": 9204, "sweeping": 9205, "mailboxes": 9206, "drunk": 9207, "spigot": 9208, "collector": 9209, "terrible": 9210, "crowns": 9211, "unseen": 9212, "disks": 9213, "colts": 9214, "pomegranate": 9215, "marmalade": 9216, "oreo": 9217, "scuba": 9218, "yourself": 9219, "margherita": 9220, "allover": 9221, "wi": 9222, "orioles": 9223, "facebook": 9224, "app": 9225, "blazing": 9226, "magnetic": 9227, "artists": 9228, "whether": 9229, "abandon": 9230, "del": 9231, "monte": 9232, "graduate": 9233, "umbrealla": 9234, "motoring": 9235, "pawn": 9236, "pitbull": 9237, "buffalos": 9238, "blaze": 9239, "nutella": 9240, "skateboarded": 9241, "reef": 9242, "ciabatta": 9243, "mariners": 9244, "stunning": 9245, "scrolling": 9246, "twirling": 9247, "adobe": 9248, "sharpener": 9249, "graveled": 9250, "courtroom": 9251, "wrote": 9252, "doubledecker": 9253, "piggy": 9254, "reduce": 9255, "freightliner": 9256, "curves": 9257, "lacrosse": 9258, "aging": 9259, "pavers": 9260, "dew": 9261, "hd": 9262, "29": 9263, "funeral": 9264, "album": 9265, "hotplate": 9266, "conditioner": 9267, "sown": 9268, "presidents": 9269, "drill": 9270, "owls": 9271, "true": 9272, "mysterious": 9273, "treks": 9274, "chestnut": 9275, "bannanas": 9276, "creamer": 9277, "plats": 9278, "deodorant": 9279, "connects": 9280, "hunches": 9281, "longingly": 9282, "conversations": 9283, "martin": 9284, "abraham": 9285, "brakes": 9286, "stree": 9287, "excellent": 9288, "bees": 9289, "carraige": 9290, "duster": 9291, "chilled": 9292, "candlesticks": 9293, "lollipops": 9294, "placemats": 9295, "taxidermy": 9296, "leak": 9297, "inscribed": 9298, "nw": 9299, "steve": 9300, "flows": 9301, "kings": 9302, "combat": 9303, "riderless": 9304, "snowsuits": 9305, "clementines": 9306, "dunking": 9307, "nursery": 9308, "tabe": 9309, "kleenex": 9310, "showerhead": 9311, "sterile": 9312, "banister": 9313, "clinton": 9314, "dodging": 9315, "skii": 9316, "bucks": 9317, "tomatos": 9318, "johns": 9319, "clementine": 9320, "stuffs": 9321, "cork": 9322, "prepping": 9323, "breath": 9324, "munches": 9325, "feathery": 9326, "medals": 9327, "shred": 9328, "j": 9329, "production": 9330, "aligned": 9331, "users": 9332, "dole": 9333, "vaulted": 9334, "bareback": 9335, "goofing": 9336, "playroom": 9337, "vote": 9338, "honk": 9339, "boring": 9340, "specific": 9341, "dismantled": 9342, "pleasure": 9343, "widescreen": 9344, "backup": 9345, "bid": 9346, "railed": 9347, "busily": 9348, "clutches": 9349, "vacuum": 9350, "bleak": 9351, "thorny": 9352, "patricks": 9353, "stitched": 9354, "limousine": 9355, "wile": 9356, "hatchback": 9357, "bazaar": 9358, "skatebaord": 9359, "minnie": 9360, "sibling": 9361, "tastefully": 9362, "snowmen": 9363, "exchange": 9364, "ok": 9365, "invisible": 9366, "pom": 9367, "greyhound": 9368, "railways": 9369, "executive": 9370, "condom": 9371, "lapt": 9372, "accompany": 9373, "grungy": 9374, "dam": 9375, "furred": 9376, "moderate": 9377, "drizzling": 9378, "register": 9379, "application": 9380, "soapy": 9381, "raggedy": 9382, "baltimore": 9383, "strapping": 9384, "actions": 9385, "straining": 9386, "rent": 9387, "snowfall": 9388, "emirates": 9389, "queue": 9390, "thatch": 9391, "baggy": 9392, "included": 9393, "ipads": 9394, "toolbox": 9395, "shortly": 9396, "bonsai": 9397, "puppets": 9398, "crossroad": 9399, "streaked": 9400, "catamaran": 9401, "preforms": 9402, "golfer": 9403, "artichoke": 9404, "spelled": 9405, "gingerbread": 9406, "dreads": 9407, "presidential": 9408, "hula": 9409, "birch": 9410, "retrieve": 9411, "tacos": 9412, "cartoonish": 9413, "kitcehn": 9414, "choo": 9415, "harper": 9416, "identically": 9417, "dick": 9418, "pursuit": 9419, "bulidings": 9420, "accepting": 9421, "thousands": 9422, "bible": 9423, "buiding": 9424, "gauze": 9425, "procedure": 9426, "charity": 9427, "loved": 9428, "sunday": 9429, "crater": 9430, "scatter": 9431, "printing": 9432, "grille": 9433, "keepers": 9434, "clipping": 9435, "forces": 9436, "inspected": 9437, "slippery": 9438, "collision": 9439, "winner": 9440, "ronald": 9441, "mcdonald": 9442, "pounce": 9443, "tigers": 9444, "paused": 9445, "stacking": 9446, "nativity": 9447, "vodka": 9448, "jay": 9449, "17": 9450, "staples": 9451, "slips": 9452, "funnel": 9453, "flesh": 9454, "airfrance": 9455, "dynamite": 9456, "stethoscope": 9457, "hyenas": 9458, "valleys": 9459, "myspace": 9460, "kerry": 9461, "delectable": 9462, "laser": 9463, "toasters": 9464, "buttery": 9465, "marijuana": 9466, "15": 9467, "pint": 9468, "vie": 9469, "workings": 9470, "brahma": 9471, "winners": 9472, "jeff": 9473, "dragged": 9474, "beware": 9475, "talbot": 9476, "thirteen": 9477, "choir": 9478, "monopoly": 9479, "eva": 9480, "coop": 9481, "bronco": 9482, "salvation": 9483, "scarecrow": 9484, "swaddled": 9485, "dentist": 9486, "": 9487, "": 9488, "": 9489, "": 0}
--------------------------------------------------------------------------------
/encryption/decrypt.py:
--------------------------------------------------------------------------------
1 | from cryptography.fernet import Fernet
2 | fernet = Fernet(key)
3 |
4 | with open('result.csv', 'rb') as enc_file:
5 | encrypted = enc_file.read()
6 |
7 | decrypted = fernet.decrypt(encrypted)
8 |
9 | with open('result.csv', 'wb') as dec_file:
10 | dec_file.write(decrypted)
11 |
--------------------------------------------------------------------------------
/encryption/encrypt.py:
--------------------------------------------------------------------------------
1 | from cryptography.fernet import Fernet
2 | key = Fernet.generate_key()
3 |
4 | with open('filekey.key', 'wb') as filekey:
5 | filekey.write(key)
6 |
7 | with open('filekey.key', 'rb') as filekey:
8 | key = filekey.read()
9 |
10 | fernet = Fernet(key)
11 |
12 | with open('result.csv', 'rb') as file:
13 | original = file.read()
14 | encrypted = fernet.encrypt(original)
15 |
16 | with open('result.csv', 'wb') as encrypted_file:
17 | encrypted_file.write(encrypted)
--------------------------------------------------------------------------------
/model/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/aryankargwal/cap-bot/bce709ad8a2c77c95890450d3b571419786417ee/model/__init__.py
--------------------------------------------------------------------------------
/model/datasets.py:
--------------------------------------------------------------------------------
1 | import torch
2 | from torch.utils.data import Dataset
3 | import h5py
4 | import json
5 | import os
6 |
7 |
8 | class CaptionDataset(Dataset):
9 | """
10 | A PyTorch Dataset class to be used in a PyTorch DataLoader to create batches.
11 | """
12 |
13 | def __init__(self, data_folder, data_name, split, transform=None):
14 | """
15 | :param data_folder: folder where data files are stored
16 | :param data_name: base name of processed datasets
17 | :param split: split, one of 'TRAIN', 'VAL', or 'TEST'
18 | :param transform: image transform pipeline
19 | """
20 | self.split = split
21 | assert self.split in {'TRAIN', 'VAL', 'TEST'}
22 |
23 | # Open hdf5 file where images are stored
24 | self.h = h5py.File(os.path.join(data_folder, self.split + '_IMAGES_' + data_name + '.hdf5'), 'r')
25 | self.imgs = self.h['images']
26 |
27 | # Captions per image
28 | self.cpi = self.h.attrs['captions_per_image']
29 |
30 | # Load encoded captions (completely into memory)
31 | with open(os.path.join(data_folder, self.split + '_CAPTIONS_' + data_name + '.json'), 'r') as j:
32 | self.captions = json.load(j)
33 |
34 | # Load caption lengths (completely into memory)
35 | with open(os.path.join(data_folder, self.split + '_CAPLENS_' + data_name + '.json'), 'r') as j:
36 | self.caplens = json.load(j)
37 |
38 | # PyTorch transformation pipeline for the image (normalizing, etc.)
39 | self.transform = transform
40 |
41 | # Total number of datapoints
42 | self.dataset_size = len(self.captions)
43 |
44 | def __getitem__(self, i):
45 | # Remember, the Nth caption corresponds to the (N // captions_per_image)th image
46 | img = torch.FloatTensor(self.imgs[i // self.cpi] / 255.)
47 | if self.transform is not None:
48 | img = self.transform(img)
49 |
50 | caption = torch.LongTensor(self.captions[i])
51 |
52 | caplen = torch.LongTensor([self.caplens[i]])
53 |
54 | if self.split is 'TRAIN':
55 | return img, caption, caplen
56 | else:
57 | # For validation of testing, also return all 'captions_per_image' captions to find BLEU-4 score
58 | all_captions = torch.LongTensor(
59 | self.captions[((i // self.cpi) * self.cpi):(((i // self.cpi) * self.cpi) + self.cpi)])
60 | return img, caption, caplen, all_captions
61 |
62 | def __len__(self):
63 | return self.dataset_size
64 |
65 |
--------------------------------------------------------------------------------
/model/eval.py:
--------------------------------------------------------------------------------
1 | import torch.backends.cudnn as cudnn
2 | import torch.optim
3 | import torch.utils.data
4 | import torchvision.transforms as transforms
5 | from datasets import *
6 | from utils import *
7 | from nltk.translate.bleu_score import corpus_bleu
8 | import torch.nn.functional as F
9 | from tqdm import tqdm
10 |
11 | # Parameters
12 | data_folder = '/media/ssd/caption data' # folder with data files saved by create_input_files.py
13 | data_name = 'coco_5_cap_per_img_5_min_word_freq' # base name shared by data files
14 | checkpoint = '../BEST_checkpoint_coco_5_cap_per_img_5_min_word_freq.pth.tar' # model checkpoint
15 | word_map_file = './camera/word_map.json' # word map, ensure it's the same the data was encoded with and the model was trained with
16 | device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # sets device for model and PyTorch tensors
17 | cudnn.benchmark = True # set to true only if inputs to model are fixed size; otherwise lot of computational overhead
18 |
19 | # Load model
20 | checkpoint = torch.load(checkpoint)
21 | decoder = checkpoint['decoder']
22 | decoder = decoder.to(device)
23 | decoder.eval()
24 | encoder = checkpoint['encoder']
25 | encoder = encoder.to(device)
26 | encoder.eval()
27 |
28 | # Load word map (word2ix)
29 | with open(word_map_file, 'r') as j:
30 | word_map = json.load(j)
31 | rev_word_map = {v: k for k, v in word_map.items()}
32 | vocab_size = len(word_map)
33 |
34 | # Normalization transform
35 | normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
36 | std=[0.229, 0.224, 0.225])
37 |
38 |
39 | def evaluate(beam_size):
40 | """
41 | Evaluation
42 | :param beam_size: beam size at which to generate captions for evaluation
43 | :return: BLEU-4 score
44 | """
45 | # DataLoader
46 | loader = torch.utils.data.DataLoader(
47 | CaptionDataset(data_folder, data_name, 'TEST', transform=transforms.Compose([normalize])),
48 | batch_size=1, shuffle=True, num_workers=1, pin_memory=True)
49 |
50 | # TODO: Batched Beam Search
51 | # Therefore, do not use a batch_size greater than 1 - IMPORTANT!
52 |
53 | # Lists to store references (true captions), and hypothesis (prediction) for each image
54 | # If for n images, we have n hypotheses, and references a, b, c... for each image, we need -
55 | # references = [[ref1a, ref1b, ref1c], [ref2a, ref2b], ...], hypotheses = [hyp1, hyp2, ...]
56 | references = list()
57 | hypotheses = list()
58 |
59 | # For each image
60 | for i, (image, caps, caplens, allcaps) in enumerate(
61 | tqdm(loader, desc="EVALUATING AT BEAM SIZE " + str(beam_size))):
62 |
63 | k = beam_size
64 |
65 | # Move to GPU device, if available
66 | image = image.to(device) # (1, 3, 256, 256)
67 |
68 | # Encode
69 | encoder_out = encoder(image) # (1, enc_image_size, enc_image_size, encoder_dim)
70 | enc_image_size = encoder_out.size(1)
71 | encoder_dim = encoder_out.size(3)
72 |
73 | # Flatten encoding
74 | encoder_out = encoder_out.view(1, -1, encoder_dim) # (1, num_pixels, encoder_dim)
75 | num_pixels = encoder_out.size(1)
76 |
77 | # We'll treat the problem as having a batch size of k
78 | encoder_out = encoder_out.expand(k, num_pixels, encoder_dim) # (k, num_pixels, encoder_dim)
79 |
80 | # Tensor to store top k previous words at each step; now they're just
81 | k_prev_words = torch.LongTensor([[word_map['']]] * k).to(device) # (k, 1)
82 |
83 | # Tensor to store top k sequences; now they're just
84 | seqs = k_prev_words # (k, 1)
85 |
86 | # Tensor to store top k sequences' scores; now they're just 0
87 | top_k_scores = torch.zeros(k, 1).to(device) # (k, 1)
88 |
89 | # Lists to store completed sequences and scores
90 | complete_seqs = list()
91 | complete_seqs_scores = list()
92 |
93 | # Start decoding
94 | step = 1
95 | h, c = decoder.init_hidden_state(encoder_out)
96 |
97 | # s is a number less than or equal to k, because sequences are removed from this process once they hit
98 | while True:
99 |
100 | embeddings = decoder.embedding(k_prev_words).squeeze(1) # (s, embed_dim)
101 |
102 | awe, _ = decoder.attention(encoder_out, h) # (s, encoder_dim), (s, num_pixels)
103 |
104 | gate = decoder.sigmoid(decoder.f_beta(h)) # gating scalar, (s, encoder_dim)
105 | awe = gate * awe
106 |
107 | h, c = decoder.decode_step(torch.cat([embeddings, awe], dim=1), (h, c)) # (s, decoder_dim)
108 |
109 | scores = decoder.fc(h) # (s, vocab_size)
110 | scores = F.log_softmax(scores, dim=1)
111 |
112 | # Add
113 | scores = top_k_scores.expand_as(scores) + scores # (s, vocab_size)
114 |
115 | # For the first step, all k points will have the same scores (since same k previous words, h, c)
116 | if step == 1:
117 | top_k_scores, top_k_words = scores[0].topk(k, 0, True, True) # (s)
118 | else:
119 | # Unroll and find top scores, and their unrolled indices
120 | top_k_scores, top_k_words = scores.view(-1).topk(k, 0, True, True) # (s)
121 |
122 | # Convert unrolled indices to actual indices of scores
123 | prev_word_inds = top_k_words / vocab_size # (s)
124 | next_word_inds = top_k_words % vocab_size # (s)
125 |
126 | # Add new words to sequences
127 | seqs = torch.cat([seqs[prev_word_inds], next_word_inds.unsqueeze(1)], dim=1) # (s, step+1)
128 |
129 | # Which sequences are incomplete (didn't reach )?
130 | incomplete_inds = [ind for ind, next_word in enumerate(next_word_inds) if
131 | next_word != word_map['']]
132 | complete_inds = list(set(range(len(next_word_inds))) - set(incomplete_inds))
133 |
134 | # Set aside complete sequences
135 | if len(complete_inds) > 0:
136 | complete_seqs.extend(seqs[complete_inds].tolist())
137 | complete_seqs_scores.extend(top_k_scores[complete_inds])
138 | k -= len(complete_inds) # reduce beam length accordingly
139 |
140 | # Proceed with incomplete sequences
141 | if k == 0:
142 | break
143 | seqs = seqs[incomplete_inds]
144 | h = h[prev_word_inds[incomplete_inds]]
145 | c = c[prev_word_inds[incomplete_inds]]
146 | encoder_out = encoder_out[prev_word_inds[incomplete_inds]]
147 | top_k_scores = top_k_scores[incomplete_inds].unsqueeze(1)
148 | k_prev_words = next_word_inds[incomplete_inds].unsqueeze(1)
149 |
150 | # Break if things have been going on too long
151 | if step > 50:
152 | break
153 | step += 1
154 |
155 | i = complete_seqs_scores.index(max(complete_seqs_scores))
156 | seq = complete_seqs[i]
157 |
158 | # References
159 | img_caps = allcaps[0].tolist()
160 | img_captions = list(
161 | map(lambda c: [w for w in c if w not in {word_map[''], word_map[''], word_map['']}],
162 | img_caps)) # remove and pads
163 | references.append(img_captions)
164 |
165 | # Hypotheses
166 | hypotheses.append([w for w in seq if w not in {word_map[''], word_map[''], word_map['']}])
167 |
168 | assert len(references) == len(hypotheses)
169 |
170 | # Calculate BLEU-4 scores
171 | bleu4 = corpus_bleu(references, hypotheses)
172 |
173 | return bleu4
174 |
175 |
176 | if __name__ == '__main__':
177 | beam_size = [1, 3, 5]
178 | for beam in beam_size:
179 | print("\nBLEU-4 score @ beam size of %d is %.4f." % (beam, evaluate(beam)))
180 |
--------------------------------------------------------------------------------
/model/model.py:
--------------------------------------------------------------------------------
1 | import torch
2 | from torch import nn
3 | import torchvision
4 |
5 | device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
6 |
7 |
8 | class Encoder(nn.Module):
9 | """
10 | Encoder.
11 | """
12 |
13 | def __init__(self, encoded_image_size=14):
14 | super(Encoder, self).__init__()
15 | self.enc_image_size = encoded_image_size
16 |
17 | resnet = torchvision.models.resnet101(pretrained=True) # pretrained ImageNet ResNet-101
18 |
19 | # Remove linear and pool layers (since we're not doing classification)
20 | modules = list(resnet.children())[:-2]
21 | self.resnet = nn.Sequential(*modules)
22 |
23 | # Resize image to fixed size to allow input images of variable size
24 | self.adaptive_pool = nn.AdaptiveAvgPool2d((encoded_image_size, encoded_image_size))
25 |
26 | self.fine_tune()
27 |
28 | def forward(self, images):
29 | """
30 | Forward propagation.
31 | :param images: images, a tensor of dimensions (batch_size, 3, image_size, image_size)
32 | :return: encoded images
33 | """
34 | out = self.resnet(images) # (batch_size, 2048, image_size/32, image_size/32)
35 | out = self.adaptive_pool(out) # (batch_size, 2048, encoded_image_size, encoded_image_size)
36 | out = out.permute(0, 2, 3, 1) # (batch_size, encoded_image_size, encoded_image_size, 2048)
37 | return out
38 |
39 | def fine_tune(self, fine_tune=True):
40 | """
41 | Allow or prevent the computation of gradients for convolutional blocks 2 through 4 of the encoder.
42 | :param fine_tune: Allow?
43 | """
44 | for p in self.resnet.parameters():
45 | p.requires_grad = False
46 | # If fine-tuning, only fine-tune convolutional blocks 2 through 4
47 | for c in list(self.resnet.children())[5:]:
48 | for p in c.parameters():
49 | p.requires_grad = fine_tune
50 |
51 |
52 | class Attention(nn.Module):
53 | """
54 | Attention Network.
55 | """
56 |
57 | def __init__(self, encoder_dim, decoder_dim, attention_dim):
58 | """
59 | :param encoder_dim: feature size of encoded images
60 | :param decoder_dim: size of decoder's RNN
61 | :param attention_dim: size of the attention network
62 | """
63 | super(Attention, self).__init__()
64 | self.encoder_att = nn.Linear(encoder_dim, attention_dim) # linear layer to transform encoded image
65 | self.decoder_att = nn.Linear(decoder_dim, attention_dim) # linear layer to transform decoder's output
66 | self.full_att = nn.Linear(attention_dim, 1) # linear layer to calculate values to be softmax-ed
67 | self.relu = nn.ReLU()
68 | self.softmax = nn.Softmax(dim=1) # softmax layer to calculate weights
69 |
70 | def forward(self, encoder_out, decoder_hidden):
71 | """
72 | Forward propagation.
73 | :param encoder_out: encoded images, a tensor of dimension (batch_size, num_pixels, encoder_dim)
74 | :param decoder_hidden: previous decoder output, a tensor of dimension (batch_size, decoder_dim)
75 | :return: attention weighted encoding, weights
76 | """
77 | att1 = self.encoder_att(encoder_out) # (batch_size, num_pixels, attention_dim)
78 | att2 = self.decoder_att(decoder_hidden) # (batch_size, attention_dim)
79 | att = self.full_att(self.relu(att1 + att2.unsqueeze(1))).squeeze(2) # (batch_size, num_pixels)
80 | alpha = self.softmax(att) # (batch_size, num_pixels)
81 | attention_weighted_encoding = (encoder_out * alpha.unsqueeze(2)).sum(dim=1) # (batch_size, encoder_dim)
82 |
83 | return attention_weighted_encoding, alpha
84 |
85 |
86 | class DecoderWithAttention(nn.Module):
87 | """
88 | Decoder.
89 | """
90 |
91 | def __init__(self, attention_dim, embed_dim, decoder_dim, vocab_size, encoder_dim=2048, dropout=0.5):
92 | """
93 | :param attention_dim: size of attention network
94 | :param embed_dim: embedding size
95 | :param decoder_dim: size of decoder's RNN
96 | :param vocab_size: size of vocabulary
97 | :param encoder_dim: feature size of encoded images
98 | :param dropout: dropout
99 | """
100 | super(DecoderWithAttention, self).__init__()
101 |
102 | self.encoder_dim = encoder_dim
103 | self.attention_dim = attention_dim
104 | self.embed_dim = embed_dim
105 | self.decoder_dim = decoder_dim
106 | self.vocab_size = vocab_size
107 | self.dropout = dropout
108 |
109 | self.attention = Attention(encoder_dim, decoder_dim, attention_dim) # attention network
110 |
111 | self.embedding = nn.Embedding(vocab_size, embed_dim) # embedding layer
112 | self.dropout = nn.Dropout(p=self.dropout)
113 | self.decode_step = nn.LSTMCell(embed_dim + encoder_dim, decoder_dim, bias=True) # decoding LSTMCell
114 | self.init_h = nn.Linear(encoder_dim, decoder_dim) # linear layer to find initial hidden state of LSTMCell
115 | self.init_c = nn.Linear(encoder_dim, decoder_dim) # linear layer to find initial cell state of LSTMCell
116 | self.f_beta = nn.Linear(decoder_dim, encoder_dim) # linear layer to create a sigmoid-activated gate
117 | self.sigmoid = nn.Sigmoid()
118 | self.fc = nn.Linear(decoder_dim, vocab_size) # linear layer to find scores over vocabulary
119 | self.init_weights() # initialize some layers with the uniform distribution
120 |
121 | def init_weights(self):
122 | """
123 | Initializes some parameters with values from the uniform distribution, for easier convergence.
124 | """
125 | self.embedding.weight.data.uniform_(-0.1, 0.1)
126 | self.fc.bias.data.fill_(0)
127 | self.fc.weight.data.uniform_(-0.1, 0.1)
128 |
129 | def load_pretrained_embeddings(self, embeddings):
130 | """
131 | Loads embedding layer with pre-trained embeddings.
132 | :param embeddings: pre-trained embeddings
133 | """
134 | self.embedding.weight = nn.Parameter(embeddings)
135 |
136 | def fine_tune_embeddings(self, fine_tune=True):
137 | """
138 | Allow fine-tuning of embedding layer? (Only makes sense to not-allow if using pre-trained embeddings).
139 | :param fine_tune: Allow?
140 | """
141 | for p in self.embedding.parameters():
142 | p.requires_grad = fine_tune
143 |
144 | def init_hidden_state(self, encoder_out):
145 | """
146 | Creates the initial hidden and cell states for the decoder's LSTM based on the encoded images.
147 | :param encoder_out: encoded images, a tensor of dimension (batch_size, num_pixels, encoder_dim)
148 | :return: hidden state, cell state
149 | """
150 | mean_encoder_out = encoder_out.mean(dim=1)
151 | h = self.init_h(mean_encoder_out) # (batch_size, decoder_dim)
152 | c = self.init_c(mean_encoder_out)
153 | return h, c
154 |
155 | def forward(self, encoder_out, encoded_captions, caption_lengths):
156 | """
157 | Forward propagation.
158 | :param encoder_out: encoded images, a tensor of dimension (batch_size, enc_image_size, enc_image_size, encoder_dim)
159 | :param encoded_captions: encoded captions, a tensor of dimension (batch_size, max_caption_length)
160 | :param caption_lengths: caption lengths, a tensor of dimension (batch_size, 1)
161 | :return: scores for vocabulary, sorted encoded captions, decode lengths, weights, sort indices
162 | """
163 |
164 | batch_size = encoder_out.size(0)
165 | encoder_dim = encoder_out.size(-1)
166 | vocab_size = self.vocab_size
167 |
168 | # Flatten image
169 | encoder_out = encoder_out.view(batch_size, -1, encoder_dim) # (batch_size, num_pixels, encoder_dim)
170 | num_pixels = encoder_out.size(1)
171 |
172 | # Sort input data by decreasing lengths; why? apparent below
173 | caption_lengths, sort_ind = caption_lengths.squeeze(1).sort(dim=0, descending=True)
174 | encoder_out = encoder_out[sort_ind]
175 | encoded_captions = encoded_captions[sort_ind]
176 |
177 | # Embedding
178 | embeddings = self.embedding(encoded_captions) # (batch_size, max_caption_length, embed_dim)
179 |
180 | # Initialize LSTM state
181 | h, c = self.init_hidden_state(encoder_out) # (batch_size, decoder_dim)
182 |
183 | # We won't decode at the position, since we've finished generating as soon as we generate
184 | # So, decoding lengths are actual lengths - 1
185 | decode_lengths = (caption_lengths - 1).tolist()
186 |
187 | # Create tensors to hold word predicion scores and alphas
188 | predictions = torch.zeros(batch_size, max(decode_lengths), vocab_size).to(device)
189 | alphas = torch.zeros(batch_size, max(decode_lengths), num_pixels).to(device)
190 |
191 | # At each time-step, decode by
192 | # attention-weighing the encoder's output based on the decoder's previous hidden state output
193 | # then generate a new word in the decoder with the previous word and the attention weighted encoding
194 | for t in range(max(decode_lengths)):
195 | batch_size_t = sum([l > t for l in decode_lengths])
196 | attention_weighted_encoding, alpha = self.attention(encoder_out[:batch_size_t],
197 | h[:batch_size_t])
198 | gate = self.sigmoid(self.f_beta(h[:batch_size_t])) # gating scalar, (batch_size_t, encoder_dim)
199 | attention_weighted_encoding = gate * attention_weighted_encoding
200 | h, c = self.decode_step(
201 | torch.cat([embeddings[:batch_size_t, t, :], attention_weighted_encoding], dim=1),
202 | (h[:batch_size_t], c[:batch_size_t])) # (batch_size_t, decoder_dim)
203 | preds = self.fc(self.dropout(h)) # (batch_size_t, vocab_size)
204 | predictions[:batch_size_t, t, :] = preds
205 | alphas[:batch_size_t, t, :] = alpha
206 |
207 | return predictions, encoded_captions, decode_lengths, alphas, sort_ind
208 |
--------------------------------------------------------------------------------
/model/utils.py:
--------------------------------------------------------------------------------
1 | import os
2 | import numpy as np
3 | import h5py
4 | import json
5 | import torch
6 | from imageio import imread
7 | from tqdm import tqdm
8 | from collections import Counter
9 | from random import seed, choice, sample
10 |
11 |
12 | def create_input_files(dataset, karpathy_json_path, image_folder, captions_per_image, min_word_freq, output_folder,
13 | max_len=100):
14 | """
15 | Creates input files for training, validation, and test data.
16 | :param dataset: name of dataset, one of 'coco', 'flickr8k', 'flickr30k'
17 | :param karpathy_json_path: path of Karpathy JSON file with splits and captions
18 | :param image_folder: folder with downloaded images
19 | :param captions_per_image: number of captions to sample per image
20 | :param min_word_freq: words occuring less frequently than this threshold are binned as s
21 | :param output_folder: folder to save files
22 | :param max_len: don't sample captions longer than this length
23 | """
24 |
25 | assert dataset in {'coco', 'flickr8k', 'flickr30k'}
26 |
27 | # Read Karpathy JSON
28 | with open(karpathy_json_path, 'r') as j:
29 | data = json.load(j)
30 |
31 | # Read image paths and captions for each image
32 | train_image_paths = []
33 | train_image_captions = []
34 | val_image_paths = []
35 | val_image_captions = []
36 | test_image_paths = []
37 | test_image_captions = []
38 | word_freq = Counter()
39 |
40 | for img in data['images']:
41 | captions = []
42 | for c in img['sentences']:
43 | # Update word frequency
44 | word_freq.update(c['tokens'])
45 | if len(c['tokens']) <= max_len:
46 | captions.append(c['tokens'])
47 |
48 | if len(captions) == 0:
49 | continue
50 |
51 | path = os.path.join(image_folder, img['filepath'], img['filename']) if dataset == 'coco' else os.path.join(
52 | image_folder, img['filename'])
53 |
54 | if img['split'] in {'train', 'restval'}:
55 | train_image_paths.append(path)
56 | train_image_captions.append(captions)
57 | elif img['split'] in {'val'}:
58 | val_image_paths.append(path)
59 | val_image_captions.append(captions)
60 | elif img['split'] in {'test'}:
61 | test_image_paths.append(path)
62 | test_image_captions.append(captions)
63 |
64 | # Sanity check
65 | assert len(train_image_paths) == len(train_image_captions)
66 | assert len(val_image_paths) == len(val_image_captions)
67 | assert len(test_image_paths) == len(test_image_captions)
68 |
69 | # Create word map
70 | words = [w for w in word_freq.keys() if word_freq[w] > min_word_freq]
71 | word_map = {k: v + 1 for v, k in enumerate(words)}
72 | word_map[''] = len(word_map) + 1
73 | word_map[''] = len(word_map) + 1
74 | word_map[''] = len(word_map) + 1
75 | word_map[''] = 0
76 |
77 | # Create a base/root name for all output files
78 | base_filename = dataset + '_' + str(captions_per_image) + '_cap_per_img_' + str(min_word_freq) + '_min_word_freq'
79 |
80 | # Save word map to a JSON
81 | with open(os.path.join(output_folder, 'WORDMAP_' + base_filename + '.json'), 'w') as j:
82 | json.dump(word_map, j)
83 |
84 | # Sample captions for each image, save images to HDF5 file, and captions and their lengths to JSON files
85 | seed(123)
86 | for impaths, imcaps, split in [(train_image_paths, train_image_captions, 'TRAIN'),
87 | (val_image_paths, val_image_captions, 'VAL'),
88 | (test_image_paths, test_image_captions, 'TEST')]:
89 |
90 | with h5py.File(os.path.join(output_folder, split + '_IMAGES_' + base_filename + '.hdf5'), 'a') as h:
91 | # Make a note of the number of captions we are sampling per image
92 | h.attrs['captions_per_image'] = captions_per_image
93 |
94 | # Create dataset inside HDF5 file to store images
95 | images = h.create_dataset('images', (len(impaths), 3, 256, 256), dtype='uint8')
96 |
97 | print("\nReading %s images and captions, storing to file...\n" % split)
98 |
99 | enc_captions = []
100 | caplens = []
101 |
102 | for i, path in enumerate(tqdm(impaths)):
103 |
104 | # Sample captions
105 | if len(imcaps[i]) < captions_per_image:
106 | captions = imcaps[i] + [choice(imcaps[i]) for _ in range(captions_per_image - len(imcaps[i]))]
107 | else:
108 | captions = sample(imcaps[i], k=captions_per_image)
109 |
110 | # Sanity check
111 | assert len(captions) == captions_per_image
112 |
113 | # Read images
114 | img = imread(impaths[i])
115 | if len(img.shape) == 2:
116 | img = img[:, :, np.newaxis]
117 | img = np.concatenate([img, img, img], axis=2)
118 | img = np.array(Image.fromarray(img).resize((256,256)))
119 | img = img.transpose(2, 0, 1)
120 | assert img.shape == (3, 256, 256)
121 | assert np.max(img) <= 255
122 |
123 | # Save image to HDF5 file
124 | images[i] = img
125 |
126 | for j, c in enumerate(captions):
127 | # Encode captions
128 | enc_c = [word_map['']] + [word_map.get(word, word_map['']) for word in c] + [
129 | word_map['']] + [word_map['']] * (max_len - len(c))
130 |
131 | # Find caption lengths
132 | c_len = len(c) + 2
133 |
134 | enc_captions.append(enc_c)
135 | caplens.append(c_len)
136 |
137 | # Sanity check
138 | assert images.shape[0] * captions_per_image == len(enc_captions) == len(caplens)
139 |
140 | # Save encoded captions and their lengths to JSON files
141 | with open(os.path.join(output_folder, split + '_CAPTIONS_' + base_filename + '.json'), 'w') as j:
142 | json.dump(enc_captions, j)
143 |
144 | with open(os.path.join(output_folder, split + '_CAPLENS_' + base_filename + '.json'), 'w') as j:
145 | json.dump(caplens, j)
146 |
147 |
148 | def init_embedding(embeddings):
149 | """
150 | Fills embedding tensor with values from the uniform distribution.
151 | :param embeddings: embedding tensor
152 | """
153 | bias = np.sqrt(3.0 / embeddings.size(1))
154 | torch.nn.init.uniform_(embeddings, -bias, bias)
155 |
156 |
157 | def load_embeddings(emb_file, word_map):
158 | """
159 | Creates an embedding tensor for the specified word map, for loading into the model.
160 | :param emb_file: file containing embeddings (stored in GloVe format)
161 | :param word_map: word map
162 | :return: embeddings in the same order as the words in the word map, dimension of embeddings
163 | """
164 |
165 | # Find embedding dimension
166 | with open(emb_file, 'r') as f:
167 | emb_dim = len(f.readline().split(' ')) - 1
168 |
169 | vocab = set(word_map.keys())
170 |
171 | # Create tensor to hold embeddings, initialize
172 | embeddings = torch.FloatTensor(len(vocab), emb_dim)
173 | init_embedding(embeddings)
174 |
175 | # Read embedding file
176 | print("\nLoading embeddings...")
177 | for line in open(emb_file, 'r'):
178 | line = line.split(' ')
179 |
180 | emb_word = line[0]
181 | embedding = list(map(lambda t: float(t), filter(lambda n: n and not n.isspace(), line[1:])))
182 |
183 | # Ignore word if not in train_vocab
184 | if emb_word not in vocab:
185 | continue
186 |
187 | embeddings[word_map[emb_word]] = torch.FloatTensor(embedding)
188 |
189 | return embeddings, emb_dim
190 |
191 |
192 | def clip_gradient(optimizer, grad_clip):
193 | """
194 | Clips gradients computed during backpropagation to avoid explosion of gradients.
195 | :param optimizer: optimizer with the gradients to be clipped
196 | :param grad_clip: clip value
197 | """
198 | for group in optimizer.param_groups:
199 | for param in group['params']:
200 | if param.grad is not None:
201 | param.grad.data.clamp_(-grad_clip, grad_clip)
202 |
203 |
204 | def save_checkpoint(data_name, epoch, epochs_since_improvement, encoder, decoder, encoder_optimizer, decoder_optimizer,
205 | bleu4, is_best):
206 | """
207 | Saves model checkpoint.
208 | :param data_name: base name of processed dataset
209 | :param epoch: epoch number
210 | :param epochs_since_improvement: number of epochs since last improvement in BLEU-4 score
211 | :param encoder: encoder model
212 | :param decoder: decoder model
213 | :param encoder_optimizer: optimizer to update encoder's weights, if fine-tuning
214 | :param decoder_optimizer: optimizer to update decoder's weights
215 | :param bleu4: validation BLEU-4 score for this epoch
216 | :param is_best: is this checkpoint the best so far?
217 | """
218 | state = {'epoch': epoch,
219 | 'epochs_since_improvement': epochs_since_improvement,
220 | 'bleu-4': bleu4,
221 | 'encoder': encoder,
222 | 'decoder': decoder,
223 | 'encoder_optimizer': encoder_optimizer,
224 | 'decoder_optimizer': decoder_optimizer}
225 | filename = 'checkpoint_' + data_name + '.pth.tar'
226 | torch.save(state, filename)
227 | # If this checkpoint is the best so far, store a copy so it doesn't get overwritten by a worse checkpoint
228 | if is_best:
229 | torch.save(state, 'BEST_' + filename)
230 |
231 |
232 | class AverageMeter(object):
233 | """
234 | Keeps track of most recent, average, sum, and count of a metric.
235 | """
236 |
237 | def __init__(self):
238 | self.reset()
239 |
240 | def reset(self):
241 | self.val = 0
242 | self.avg = 0
243 | self.sum = 0
244 | self.count = 0
245 |
246 | def update(self, val, n=1):
247 | self.val = val
248 | self.sum += val * n
249 | self.count += n
250 | self.avg = self.sum / self.count
251 |
252 |
253 | def adjust_learning_rate(optimizer, shrink_factor):
254 | """
255 | Shrinks learning rate by a specified factor.
256 | :param optimizer: optimizer whose learning rate must be shrunk.
257 | :param shrink_factor: factor in interval (0, 1) to multiply learning rate with.
258 | """
259 |
260 | print("\nDECAYING learning rate.")
261 | for param_group in optimizer.param_groups:
262 | param_group['lr'] = param_group['lr'] * shrink_factor
263 | print("The new learning rate is %f\n" % (optimizer.param_groups[0]['lr'],))
264 |
265 |
266 | def accuracy(scores, targets, k):
267 | """
268 | Computes top-k accuracy, from predicted and true labels.
269 | :param scores: scores from the model
270 | :param targets: true labels
271 | :param k: k in top-k accuracy
272 | :return: top-k accuracy
273 | """
274 |
275 | batch_size = targets.size(0)
276 | _, ind = scores.topk(k, 1, True, True)
277 | correct = ind.eq(targets.view(-1, 1).expand_as(ind))
278 | correct_total = correct.view(-1).float().sum() # 0D tensor
279 | return correct_total.item() * (100.0 / batch_size)
280 |
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | streamlit==0.79.0
2 | numpy==1.20.1
3 | pandas==1.2.3
4 | torch==1.8.0
5 | torchvision==0.9.0
6 | h5py==3.2.1
7 | Pillow==8.1.2
8 | opencv_python==4.5.1.48
9 | imageio==1.4
10 | nltk==3.5
11 | tqdm==4.59.0
12 | cryptography==3.4.6
13 | scikit-image==0.18.1
14 |
--------------------------------------------------------------------------------
/search/search.py:
--------------------------------------------------------------------------------
1 | # imports
2 | import streamlit as st
3 | import cv2
4 | import csv
5 | from PIL import Image
6 | import pandas as pd
7 | import time
8 | import os
9 | import numpy as np
10 | from datetime import time
11 | from search_word import search_word
12 |
13 |
14 | # sidebar
15 | st.sidebar.image("../assets/logo.png")
16 | st.sidebar.header("Search Module")
17 | st.sidebar.markdown(
18 | "Utilizing data analytics and data algorithms, we provide a light yet efficient search and data analyzer for the **_'cap-bot'_** predicitons while ensuring a safe and convenient environment to aid the search"
19 | )
20 | st.sidebar.header("Features")
21 | st.sidebar.markdown("""- Get a visualization of the CCTV Cameras""")
22 | st.sidebar.markdown("""- Define keywords of the event""")
23 | st.sidebar.markdown("""- Define time of the event""")
24 | st.sidebar.markdown("[Github Repository](https://github.com/aryankargwal/capbot2.0)")
25 | st.sidebar.markdown("[Proposal Video](https://www.youtube.com/watch?v=Sr8dNQMBRZI)")
26 |
27 |
28 | # Data Uploads
29 | st.header("Data Uploading")
30 | # uploading results
31 | st.subheader("Upload the CCTV Log here")
32 | file = st.file_uploader("logs")
33 |
34 |
35 | # loading results
36 | @st.cache
37 | def load_data(nrows):
38 | data = pd.read_csv(file, nrows=nrows)
39 | lower = lambda x: str(x).lower()
40 | data.rename(lower, axis="columns", inplace=True)
41 | return data
42 |
43 |
44 | if file is not None:
45 | data_load_state = st.text("")
46 | data = load_data(10000)
47 | # seeing data
48 | st.subheader("Raw data")
49 | st.write(data)
50 |
51 | # sample cctv map
52 | st.subheader("Upload the CCTV Co-ordinates here")
53 | cctv_map = st.file_uploader("co-ordinates")
54 | if cctv_map is not None:
55 | st.subheader("CCTV Map")
56 | df = pd.read_csv(cctv_map)
57 | st.map(df)
58 |
59 |
60 | # Search
61 | st.header("Searching Logs")
62 |
63 | # keywords
64 | st.subheader("Enter the keywords of the incident")
65 | keywords = st.text_input("")
66 | keywords = keywords.split(sep=" ")
67 | list(keywords)
68 |
69 | # time
70 | st.subheader("The time where the incident might have occured")
71 | footage_time = st.slider("", value=(time(9, 30), time(14, 45)))
72 | # button
73 | if st.button("Start Search"):
74 | row = search_word(data, keywords)
75 | for k in row:
76 | st.write(data.loc[[k], :])
77 |
--------------------------------------------------------------------------------
/search/search_word.py:
--------------------------------------------------------------------------------
1 | def search_word(df,keywords):
2 | l = []
3 | for i in df.index:
4 | y = df.loc[i, :].values.tolist()
5 | y = set(y)
6 | if y.intersection(set(keywords)):
7 | l.append(i)
8 | return l
--------------------------------------------------------------------------------
/test/coordinates.csv:
--------------------------------------------------------------------------------
1 | ,lat,lon
2 | 0,10.001894625688907,-9.963281846903001
3 | 1,10.000203766794348,-9.999519659046241
4 | 2,10.003667497881652,-9.980918928527075
5 | 3,9.994402584601014,-10.023811973194322
6 | 4,9.978416039573414,-9.992408682392336
7 | 5,10.021207143006142,-10.020802672960423
8 | 6,10.020730553569745,-10.030923611699805
9 | 7,10.003739153303957,-10.009927952580504
10 | 8,9.957844862885969,-9.993033862997207
11 | 9,9.982384424733533,-9.97871073993292
12 | 10,10.024744436909218,-10.009315511455016
13 | 11,9.995096871277493,-10.011780670282253
14 | 12,10.011816348109205,-10.024895468287708
15 | 13,10.01161961721637,-10.006947927407465
16 | 14,10.003005577874363,-9.97350432169051
17 | 15,10.033180099789615,-10.027671323333731
18 | 16,9.995521710941592,-10.047567792085179
19 | 17,9.999610025447875,-9.992783436910658
20 | 18,10.00200973960348,-10.016277069283115
21 | 19,10.035334367932741,-10.01839726966658
22 | 20,9.982507608795808,-9.988193908919351
23 | 21,9.987240929140512,-10.015773142281505
24 | 22,9.981748308214053,-10.01792308823075
25 | 23,9.980547102982971,-10.00583226524451
26 | 24,9.990355129525877,-9.997637893252733
27 | 25,9.992740381438011,-9.97794344903894
28 | 26,9.972098199425036,-9.981130519537977
29 | 27,9.990463241028031,-10.020254118993407
30 | 28,10.030351628881553,-10.006197842810526
31 | 29,9.993291833468135,-9.981156057781039
32 | 30,10.00417036982159,-9.98400980706904
33 | 31,10.023438708295124,-9.999473457731813
34 | 32,10.030192281297092,-10.003623956842677
35 | 33,10.034948525292979,-10.019409164656624
36 | 34,10.021635039963474,-9.96843090410144
37 | 35,9.991239672760974,-10.039267296066539
38 | 36,10.017183852472748,-9.998521414912613
39 | 37,9.999093995557878,-10.037998574631509
40 | 38,10.058493246809405,-9.988945386365923
41 | 39,10.011471438929057,-10.030548532955835
42 | 40,9.995497399824401,-10.015307393822315
43 | 41,9.981255435045584,-10.000290606542938
44 | 42,9.98189394017183,-10.008152131965717
45 | 43,10.000936276121472,-10.049648758397167
46 | 44,9.972629227663994,-9.993201307090377
47 | 45,10.01235968722261,-10.017095226167983
48 | 46,10.029919226823436,-9.988930567492806
49 | 47,10.030565531350135,-9.981922479158435
50 | 48,9.975335826984862,-10.006579083737185
51 | 49,9.986538439779984,-10.025585318308858
52 | 50,9.991218894678505,-9.998124066332146
53 | 51,9.96681753719071,-9.982708845188329
54 | 52,9.957692128351514,-9.991589911444594
55 | 53,10.010804037064295,-9.984478456397541
56 | 54,9.990352773487636,-9.991635502064653
57 | 55,9.982176526580268,-9.986063431046986
58 | 56,10.01026524413382,-9.98989966616809
59 | 57,10.009651443505536,-9.989463274197027
60 | 58,9.984029000031365,-10.012014104361032
61 | 59,10.016638640304556,-10.003303431411206
62 | 60,10.003159637400474,-9.98112522505928
63 | 61,10.017444444135846,-9.990279787372417
64 | 62,9.98766929680974,-9.972487408421769
65 | 63,10.046199833090807,-9.989721976392133
66 | 64,10.021486110525084,-10.016452065996386
67 | 65,10.027378916183373,-10.013572421444978
68 | 66,9.99805450900211,-10.063573994547175
69 | 67,9.989803108362535,-10.014573676189462
70 | 68,9.995298463972004,-9.988869040523106
71 | 69,9.977765159589826,-9.962077417991226
72 | 70,10.003861425339819,-9.992583815956056
73 | 71,9.995096768944432,-10.010530708120298
74 | 72,10.007452309057541,-10.022093866173286
75 | 73,9.967590668590343,-10.010349680717171
76 | 74,10.002814726832465,-10.011968669953534
77 | 75,10.002558858615105,-10.00812149759447
78 | 76,9.970127350771861,-9.966849470796127
79 | 77,9.997620862132274,-9.995395744869302
80 | 78,10.009084357092446,-10.017792318664823
81 | 79,10.001834988081443,-9.980396747010921
82 | 80,10.033246655961497,-9.997090806290869
83 | 81,9.987318490360751,-10.032513653565376
84 | 82,9.99741317826938,-10.01159813555461
85 | 83,9.983051683970931,-10.009971931388721
86 | 84,9.999222963752459,-9.977361753414838
87 | 85,10.011054359043627,-10.02506567915574
88 | 86,10.006037080521276,-10.01194265230492
89 | 87,9.985976120305427,-10.01027877823261
90 | 88,9.986870626428558,-9.967131997624142
91 | 89,10.013217550971424,-9.992807077826292
92 | 90,10.000164608165035,-9.999335289754832
93 | 91,10.001128493178154,-9.989214321579754
94 | 92,9.96609201491246,-10.009777110117161
95 | 93,10.011804783321653,-10.005159172692604
96 | 94,10.003809095171581,-10.014138174632594
97 | 95,10.044451596286098,-9.97769936571465
98 | 96,9.991842848564545,-10.033288941224622
99 | 97,10.013337106748502,-10.039822780457984
100 | 98,9.993438438805613,-9.997348700450063
101 | 99,9.955486757213606,-9.991953047716896
102 |
--------------------------------------------------------------------------------
/test/coordinates.py:
--------------------------------------------------------------------------------
1 | import pandas as pd
2 | import numpy as np
3 |
4 | df = pd.DataFrame(
5 | np.random.randn(100, 2) / [50, 50] + [10, -10], columns=["lat", "lon"]
6 | )
7 | df.to_csv("file1.csv")
8 |
--------------------------------------------------------------------------------
/test/results.csv:
--------------------------------------------------------------------------------
1 | w1,w2,w3,w4,w5,w6,w7,w8,w9,w10,time,camera
2 | man,in,red,shirt,is,standing,in,front,of,an,00:36.3,1
3 | man,in,red,shirt,is,standing,in,front,of,skyscraper,00:46.7,1
4 | man,in,red,shirt,is,standing,in,front,of,an,00:57.0,1
5 |
--------------------------------------------------------------------------------