├── Dockerfile
├── README.md
├── app.py
└── requirements.txt
/Dockerfile:
--------------------------------------------------------------------------------
1 | # Use an official Python runtime as a parent image
2 | FROM python:3.6-slim
3 |
4 | # Set the working directory to /app
5 | WORKDIR /app
6 |
7 | # Copy the current directory contents into the container at /app
8 | ADD . /app
9 |
10 | # Install any needed packages specified in requirements.txt
11 | RUN pip install -r requirements.txt
12 |
13 | # Make port 80 available to the world outside this container
14 | #EXPOSE 80
15 |
16 | # Define environment variable
17 | ENV NAME World
18 |
19 | # Run app.py when the container launches
20 | CMD ["python", "app.py"]
21 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Docker_Python_DataScience
2 | Some DataScience Test with docker + python + SciKit-learn
3 |
4 |
Version 1
5 |
6 | - Install Docker
7 | - clone the Repo
8 | - >docker build -t "tag_name" .
(example - docker build -t dspython .)
9 | - docker run "tag_name"
(example - docker run dspython)
10 |
11 |
12 | app.py:
13 |
14 | Uses scikit-learn machine learning library (from requirements.txt) and takes sample fruit dataset (height,weight,texture) and predicts the fruit based on the input dataset.
15 |
16 | #Docker
17 | #Python
18 | #SciKit-learn
19 | #MachineLearning
20 |
--------------------------------------------------------------------------------
/app.py:
--------------------------------------------------------------------------------
1 | from sklearn import tree
2 | from sklearn import neighbors
3 |
4 | #[size,weight, texture]
5 | X = [[181, 80, 44], [177, 70, 43], [160, 60, 38], [154, 54, 37], [166, 65, 40],
6 | [190, 90, 47], [175, 64, 39],
7 | [177, 70, 40], [159, 55, 37], [171, 75, 42], [181, 85, 43]]
8 |
9 | Y = ['apple', 'apple', 'orange', 'orange', 'apple', 'apple', 'orange', 'orange',
10 | 'orange', 'apple', 'apple']
11 |
12 | #classifier - DecisionTreeClassifier
13 | clf_tree = tree.DecisionTreeClassifier();
14 | clf_tree = clf_tree.fit(X,Y);
15 |
16 | #classifier - neighbour
17 | clf_neighbors = neighbors.KNeighborsClassifier();
18 | clf_neighbors = clf_neighbors.fit(X,Y);
19 |
20 | #test_data
21 | test_data = [[190,70,42],[172,64,39],[182,80,42]];
22 |
23 | #prediction
24 | prediction_tree = clf_tree.predict(test_data);
25 | prediction_neighbors = clf_neighbors.predict(test_data);
26 |
27 | print("prediction of DecisionTreeClassifier:",prediction_tree);
28 |
29 | print("prediction of Neighour:",prediction_neighbors);
30 |
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | numpy
2 | scipy
3 | scikit-learn
4 |
--------------------------------------------------------------------------------