├── Data.csv
├── Data_v2.csv
├── README.md
└── pandas.ipynb
/Data.csv:
--------------------------------------------------------------------------------
1 | ,Name,Age,City,Degree,Grade
2 | person1,Ali,27,Tehran,MSC,83
3 | person2,Hosein,32,Esfahan,PHD,68
4 | person3,Sadeq,23,Mashhad,MA,45
5 | pesron4,Hamid,26,Tabriz,MA,72
6 | person5,Hamed,25,Qazvin,MSC,54
7 | peson6,Reza,30,Tehran,MSC,66
8 | person7,Taha,28,Babol,MSC,90
9 | person8,Amir,40,Tehran,PHD,81
10 | person9,Omid,35,Arak,PHD,76
11 | person10,Shayan,19,Mashhad,MA,38
12 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Training pandas
2 |
3 | `Pandas` is a popular Python library used for data analysis and manipulation. It provides powerful data structures like DataFrame and Series for handling structured data, along with a wide range of operations for combining, transforming, and analyzing data.
4 |
5 | In this section, we wanted to bring you most of the exercises available in `pandas`.
6 | We put the used data in csv format for you so that you can have more exercises on them
7 |
8 | ## Ways of communication
9 |
10 | Contact me in case of problems.
11 |
12 | - ashkan02011@gmail.com
13 | - [github](https://github.com/ashkan0201)
14 |
--------------------------------------------------------------------------------
/pandas.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "## Pandas is a popular Python library used for data analysis and manipulation. It provides powerful data structures like DataFrame and Series for handling structured data, along with a wide range of operations for combining, transforming, and analyzing data."
8 | ]
9 | },
10 | {
11 | "cell_type": "code",
12 | "execution_count": 1,
13 | "metadata": {},
14 | "outputs": [
15 | {
16 | "name": "stdout",
17 | "output_type": "stream",
18 | "text": [
19 | "Requirement already satisfied: pandas in c:\\users\\user\\anaconda3\\lib\\site-packages (1.1.3)\n",
20 | "Requirement already satisfied: python-dateutil>=2.7.3 in c:\\users\\user\\anaconda3\\lib\\site-packages (from pandas) (2.8.1)\n",
21 | "Requirement already satisfied: numpy>=1.15.4 in c:\\users\\user\\anaconda3\\lib\\site-packages (from pandas) (1.24.3)\n",
22 | "Requirement already satisfied: pytz>=2017.2 in c:\\users\\user\\anaconda3\\lib\\site-packages (from pandas) (2020.1)\n",
23 | "Requirement already satisfied: six>=1.5 in c:\\users\\user\\anaconda3\\lib\\site-packages (from python-dateutil>=2.7.3->pandas) (1.15.0)\n"
24 | ]
25 | }
26 | ],
27 | "source": [
28 | "# Installation\n",
29 | "!pip install pandas"
30 | ]
31 | },
32 | {
33 | "cell_type": "code",
34 | "execution_count": 2,
35 | "metadata": {},
36 | "outputs": [],
37 | "source": [
38 | "import pandas as pd"
39 | ]
40 | },
41 | {
42 | "cell_type": "code",
43 | "execution_count": 3,
44 | "metadata": {},
45 | "outputs": [
46 | {
47 | "name": "stdout",
48 | "output_type": "stream",
49 | "text": [
50 | "0 A\n",
51 | "1 s\n",
52 | "2 h\n",
53 | "3 k\n",
54 | "4 a\n",
55 | "5 n\n",
56 | "dtype: object\n"
57 | ]
58 | }
59 | ],
60 | "source": [
61 | "# The left part is our indexes and the right part is our data.\n",
62 | "\n",
63 | "# My Data\n",
64 | "data = [\"A\", \"s\", \"h\", \"k\", \"a\", \"n\"]\n",
65 | "\n",
66 | "result = pd.Series(data)\n",
67 | "\n",
68 | "print(result)"
69 | ]
70 | },
71 | {
72 | "cell_type": "code",
73 | "execution_count": 4,
74 | "metadata": {},
75 | "outputs": [
76 | {
77 | "name": "stdout",
78 | "output_type": "stream",
79 | "text": [
80 | "1 A\n",
81 | "3 s\n",
82 | "5 h\n",
83 | "7 k\n",
84 | "9 a\n",
85 | "11 n\n",
86 | "dtype: object\n",
87 | "\n",
88 | "\n",
89 | "['A' 's' 'h' 'k' 'a' 'n']\n",
90 | "Int64Index([1, 3, 5, 7, 9, 11], dtype='int64')\n"
91 | ]
92 | }
93 | ],
94 | "source": [
95 | "# Defining an arbitrary index on the data.\n",
96 | "\n",
97 | "# My Data\n",
98 | "data = [\"A\", \"s\", \"h\", \"k\", \"a\", \"n\"]\n",
99 | "\n",
100 | "result = pd.Series(data, index=[1, 3, 5, 7, 9, 11])\n",
101 | "\n",
102 | "print(result)\n",
103 | "print(\"\\n\")\n",
104 | "print(result.values)\n",
105 | "print(result.index)"
106 | ]
107 | },
108 | {
109 | "cell_type": "code",
110 | "execution_count": 5,
111 | "metadata": {},
112 | "outputs": [
113 | {
114 | "name": "stdout",
115 | "output_type": "stream",
116 | "text": [
117 | "A s h k a n\n",
118 | "A s h k a n\n"
119 | ]
120 | }
121 | ],
122 | "source": [
123 | "# Indexing in the list.\n",
124 | "# In this section, if you define an index for your data, when you get the index,\n",
125 | "#you must give exactly the index of the same values that you defined for the index in the serial argument.\n",
126 | "\n",
127 | "# My Data\n",
128 | "data = [\"A\", \"s\", \"h\", \"k\", \"a\", \"n\"]\n",
129 | "\n",
130 | "result = pd.Series(data, index=[\"in0\", \"in1\", \"in2\", \"in3\", \"in4\", \"in5\"])\n",
131 | "\n",
132 | "print(result[\"in0\"], result[\"in1\"], result[\"in2\"], result[\"in3\"], result[\"in4\"], result[\"in5\"])\n",
133 | "print(result[0], result[1], result[2], result[3], result[4], result[5])"
134 | ]
135 | },
136 | {
137 | "cell_type": "code",
138 | "execution_count": 6,
139 | "metadata": {},
140 | "outputs": [
141 | {
142 | "name": "stdout",
143 | "output_type": "stream",
144 | "text": [
145 | "ten 10\n",
146 | "twenty 20\n",
147 | "thirty 30\n",
148 | "forty 40\n",
149 | "dtype: int64\n",
150 | "\n",
151 | "\n",
152 | "ten 10\n",
153 | "twenty 20\n",
154 | "thirty 30\n",
155 | "forty 40\n",
156 | "dtype: int64\n"
157 | ]
158 | }
159 | ],
160 | "source": [
161 | "# Slicing with Pandaz functions.\n",
162 | "\n",
163 | "# My Data\n",
164 | "data = [10, 20, 30, 40, 50, 60]\n",
165 | "\n",
166 | "result = pd.Series(data, index=[\"ten\", \"twenty\", \"thirty\", \"forty\", \"fifty\", \"sixty\"])\n",
167 | "\n",
168 | "# Indexing with the iloc function means to get the index from the data itself\n",
169 | "print(result.iloc[:4])\n",
170 | "\n",
171 | "print(\"\\n\")\n",
172 | "\n",
173 | "# Indexing with the loc function means to take from the defined index itself\n",
174 | "print(result.loc[\"ten\":\"forty\"])"
175 | ]
176 | },
177 | {
178 | "cell_type": "code",
179 | "execution_count": 7,
180 | "metadata": {},
181 | "outputs": [
182 | {
183 | "name": "stdout",
184 | "output_type": "stream",
185 | "text": [
186 | "ten 10\n",
187 | "twenty 20\n",
188 | "thirty 30\n",
189 | "forty 40\n",
190 | "dtype: int64\n",
191 | "\n",
192 | "\n",
193 | "ten 10\n",
194 | "twenty 20\n",
195 | "thirty 30\n",
196 | "forty 40\n",
197 | "dtype: int64\n"
198 | ]
199 | }
200 | ],
201 | "source": [
202 | "# Slicing\n",
203 | "\n",
204 | "# My Data\n",
205 | "data = [10, 20, 30, 40, 50, 60]\n",
206 | "\n",
207 | "result = pd.Series(data, index=[\"ten\", \"twenty\", \"thirty\", \"forty\", \"fifty\", \"sixty\"])\n",
208 | "print(result[\"ten\":\"forty\"])\n",
209 | "print(\"\\n\")\n",
210 | "print(result[0:4])"
211 | ]
212 | },
213 | {
214 | "cell_type": "code",
215 | "execution_count": 8,
216 | "metadata": {},
217 | "outputs": [
218 | {
219 | "name": "stdout",
220 | "output_type": "stream",
221 | "text": [
222 | "a Ashkan\n",
223 | "b Python\n",
224 | "c Pandas\n",
225 | "dtype: object\n"
226 | ]
227 | }
228 | ],
229 | "source": [
230 | "# In this section, the data is in the form of a dictionary.\n",
231 | "# The key in this section is the index and the value is our data.\n",
232 | "\n",
233 | "# My Data\n",
234 | "data = {\n",
235 | " \"a\":\"Ashkan\",\n",
236 | " \"b\":\"Python\",\n",
237 | " \"c\":\"Pandas\"\n",
238 | "}\n",
239 | "\n",
240 | "result = pd.Series(data)\n",
241 | "print(result)"
242 | ]
243 | },
244 | {
245 | "cell_type": "code",
246 | "execution_count": 9,
247 | "metadata": {},
248 | "outputs": [
249 | {
250 | "name": "stdout",
251 | "output_type": "stream",
252 | "text": [
253 | "Ashkan Python Pandas nan\n",
254 | "Ashkan Python Pandas nan\n"
255 | ]
256 | }
257 | ],
258 | "source": [
259 | "# Define arbitrary index\n",
260 | "# Pay attention, when you define an index in this section,\n",
261 | "# the index values must be equal to the dictionary key values\n",
262 | "\n",
263 | "\n",
264 | "# My Data\n",
265 | "data = {\n",
266 | " \"a\":\"Ashkan\",\n",
267 | " \"b\":\"Python\",\n",
268 | " \"c\":\"Pandas\"\n",
269 | "}\n",
270 | "\n",
271 | "result = pd.Series(data, index=[\"a\", \"b\", \"c\", \"d\"])\n",
272 | "\n",
273 | "# Getting data with index in two ways:\n",
274 | "\n",
275 | "# 1\n",
276 | "print(result[\"a\"], result[\"b\"], result[\"c\"] ,result[\"d\"])\n",
277 | "\n",
278 | "# 2\n",
279 | "print(result[0], result[1], result[2], result[3])"
280 | ]
281 | },
282 | {
283 | "cell_type": "code",
284 | "execution_count": null,
285 | "metadata": {},
286 | "outputs": [],
287 | "source": []
288 | },
289 | {
290 | "cell_type": "markdown",
291 | "metadata": {},
292 | "source": [
293 | "### Mathematical calculations in pandaz."
294 | ]
295 | },
296 | {
297 | "cell_type": "code",
298 | "execution_count": 10,
299 | "metadata": {},
300 | "outputs": [
301 | {
302 | "name": "stdout",
303 | "output_type": "stream",
304 | "text": [
305 | "Addition\n",
306 | "0 8585\n",
307 | "1 [85, 85]\n",
308 | "2 171.7\n",
309 | "3 8585\n",
310 | "4 170\n",
311 | "dtype: object\n",
312 | "\n",
313 | "Subtraction\n",
314 | "0 -3\n",
315 | "1 -1\n",
316 | "2 1\n",
317 | "3 3\n",
318 | "dtype: int64\n",
319 | "\n",
320 | "Distribution\n",
321 | "0 0.250000\n",
322 | "1 0.666667\n",
323 | "2 1.500000\n",
324 | "3 4.000000\n",
325 | "dtype: float64\n",
326 | "\n",
327 | "Multiplication\n",
328 | "0 4\n",
329 | "1 6\n",
330 | "2 6\n",
331 | "3 4\n",
332 | "dtype: int64\n",
333 | "\n",
334 | "Power\n",
335 | "0 1\n",
336 | "1 8\n",
337 | "2 9\n",
338 | "3 4\n",
339 | "dtype: int64\n"
340 | ]
341 | }
342 | ],
343 | "source": [
344 | "# My Data\n",
345 | "data1 = [\"85\", [85], 85.85, (\"85\"), 85]\n",
346 | "data2 = [\"85\", [85], 85.85, (\"85\"), 85]\n",
347 | "data3 = [1, 2, 3, 4]\n",
348 | "data4 = [4, 3, 2, 1]\n",
349 | "\n",
350 | "ser1 = pd.Series(data1)\n",
351 | "ser2 = pd.Series(data2)\n",
352 | "ser3 = pd.Series(data3)\n",
353 | "ser4 = pd.Series(data4)\n",
354 | "\n",
355 | "print(\"Addition\")\n",
356 | "print(ser1.add(ser2))\n",
357 | "\n",
358 | "print(\"\\nSubtraction\")\n",
359 | "print(ser3.sub(ser4))\n",
360 | "\n",
361 | "print(\"\\nDistribution\")\n",
362 | "print(ser3.div(ser4))\n",
363 | "\n",
364 | "print(\"\\nMultiplication\")\n",
365 | "print(ser3.mul(ser4))\n",
366 | "\n",
367 | "print(\"\\nPower\")\n",
368 | "print(ser3.pow(ser4))"
369 | ]
370 | },
371 | {
372 | "cell_type": "code",
373 | "execution_count": 11,
374 | "metadata": {},
375 | "outputs": [
376 | {
377 | "data": {
378 | "text/html": [
379 | "
\n",
380 | "\n",
393 | "
\n",
394 | " \n",
395 | " \n",
396 | " | \n",
397 | " column1 | \n",
398 | "
\n",
399 | " \n",
400 | " \n",
401 | " \n",
402 | " 0 | \n",
403 | " A | \n",
404 | "
\n",
405 | " \n",
406 | " 1 | \n",
407 | " s | \n",
408 | "
\n",
409 | " \n",
410 | " 2 | \n",
411 | " h | \n",
412 | "
\n",
413 | " \n",
414 | " 3 | \n",
415 | " k | \n",
416 | "
\n",
417 | " \n",
418 | " 4 | \n",
419 | " a | \n",
420 | "
\n",
421 | " \n",
422 | " 5 | \n",
423 | " n | \n",
424 | "
\n",
425 | " \n",
426 | "
\n",
427 | "
"
428 | ],
429 | "text/plain": [
430 | " column1\n",
431 | "0 A\n",
432 | "1 s\n",
433 | "2 h\n",
434 | "3 k\n",
435 | "4 a\n",
436 | "5 n"
437 | ]
438 | },
439 | "execution_count": 11,
440 | "metadata": {},
441 | "output_type": "execute_result"
442 | }
443 | ],
444 | "source": [
445 | "# Name the column\n",
446 | "\n",
447 | "# My Data\n",
448 | "data = [\"A\", \"s\", \"h\", \"k\", \"a\", \"n\"]\n",
449 | "\n",
450 | "result = pd.DataFrame(data, columns=[\"column1\"])\n",
451 | "\n",
452 | "result"
453 | ]
454 | },
455 | {
456 | "cell_type": "code",
457 | "execution_count": 12,
458 | "metadata": {},
459 | "outputs": [
460 | {
461 | "data": {
462 | "text/html": [
463 | "\n",
464 | "\n",
477 | "
\n",
478 | " \n",
479 | " \n",
480 | " | \n",
481 | " Name | \n",
482 | " Age | \n",
483 | " Id | \n",
484 | "
\n",
485 | " \n",
486 | " \n",
487 | " \n",
488 | " 0 | \n",
489 | " Ashkan | \n",
490 | " 19 | \n",
491 | " 872634 | \n",
492 | "
\n",
493 | " \n",
494 | " 1 | \n",
495 | " Sara | \n",
496 | " 20 | \n",
497 | " 981239 | \n",
498 | "
\n",
499 | " \n",
500 | " 2 | \n",
501 | " Donya | \n",
502 | " 18 | \n",
503 | " 918243 | \n",
504 | "
\n",
505 | " \n",
506 | "
\n",
507 | "
"
508 | ],
509 | "text/plain": [
510 | " Name Age Id\n",
511 | "0 Ashkan 19 872634\n",
512 | "1 Sara 20 981239\n",
513 | "2 Donya 18 918243"
514 | ]
515 | },
516 | "execution_count": 12,
517 | "metadata": {},
518 | "output_type": "execute_result"
519 | }
520 | ],
521 | "source": [
522 | "# Name the column in the dictionary\n",
523 | "\n",
524 | "# My Data\n",
525 | "data = {\n",
526 | " \"Name\":[\"Ashkan\", \"Sara\", \"Donya\"],\n",
527 | " \"Age\":[19, 20, 18],\n",
528 | " \"Id\":[872634, 981239, 918243]\n",
529 | "}\n",
530 | "# Keys are column names and values are table rows\n",
531 | "result = pd.DataFrame(data)\n",
532 | "\n",
533 | "result"
534 | ]
535 | },
536 | {
537 | "cell_type": "code",
538 | "execution_count": 13,
539 | "metadata": {},
540 | "outputs": [
541 | {
542 | "data": {
543 | "text/html": [
544 | "\n",
545 | "\n",
558 | "
\n",
559 | " \n",
560 | " \n",
561 | " | \n",
562 | " Name | \n",
563 | " Id | \n",
564 | "
\n",
565 | " \n",
566 | " \n",
567 | " \n",
568 | " 0 | \n",
569 | " Ashkan | \n",
570 | " 872634 | \n",
571 | "
\n",
572 | " \n",
573 | " 1 | \n",
574 | " Sara | \n",
575 | " 981239 | \n",
576 | "
\n",
577 | " \n",
578 | " 2 | \n",
579 | " Donya | \n",
580 | " 918243 | \n",
581 | "
\n",
582 | " \n",
583 | "
\n",
584 | "
"
585 | ],
586 | "text/plain": [
587 | " Name Id\n",
588 | "0 Ashkan 872634\n",
589 | "1 Sara 981239\n",
590 | "2 Donya 918243"
591 | ]
592 | },
593 | "execution_count": 13,
594 | "metadata": {},
595 | "output_type": "execute_result"
596 | }
597 | ],
598 | "source": [
599 | "# Column indexing\n",
600 | "\n",
601 | "# My Data\n",
602 | "data = {\n",
603 | " \"Name\":[\"Ashkan\", \"Sara\", \"Donya\"],\n",
604 | " \"Age\":[19, 20, 18],\n",
605 | " \"Id\":[872634, 981239, 918243]\n",
606 | "}\n",
607 | "\n",
608 | "result = pd.DataFrame(data)\n",
609 | "\n",
610 | "result[[\"Name\", \"Id\"]]"
611 | ]
612 | },
613 | {
614 | "cell_type": "code",
615 | "execution_count": 14,
616 | "metadata": {},
617 | "outputs": [
618 | {
619 | "name": "stdout",
620 | "output_type": "stream",
621 | "text": [
622 | "Name Ashkan\n",
623 | "Age 19\n",
624 | "Id 872634\n",
625 | "Name: 0, dtype: object\n",
626 | "\n",
627 | "\n",
628 | "Name Ashkan\n",
629 | "Age 19\n",
630 | "Id 872634\n",
631 | "Name: 0, dtype: object\n",
632 | "\n",
633 | "\n",
634 | " Name Age Id\n",
635 | "0 Ashkan 19 872634\n",
636 | "\n",
637 | "\n",
638 | " Name Age Id\n",
639 | "0 Ashkan 19 872634\n"
640 | ]
641 | }
642 | ],
643 | "source": [
644 | "# Row indexing\n",
645 | "\n",
646 | "# My Data\n",
647 | "data = {\n",
648 | " \"Name\":[\"Ashkan\", \"Sara\", \"Donya\"],\n",
649 | " \"Age\":[19, 20, 18],\n",
650 | " \"Id\":[872634, 981239, 918243]\n",
651 | "}\n",
652 | "\n",
653 | "result = pd.DataFrame(data, index=[\"0\", \"1\", \"2\"])\n",
654 | "\n",
655 | "# Vertical\n",
656 | "print(result.loc[\"0\"])\n",
657 | "print(\"\\n\")\n",
658 | "print(result.iloc[0])\n",
659 | "\n",
660 | "print(\"\\n\")\n",
661 | "\n",
662 | "# Horizontal\n",
663 | "print(result.loc[[\"0\"]])\n",
664 | "print(\"\\n\")\n",
665 | "print(result.iloc[[0]])"
666 | ]
667 | },
668 | {
669 | "cell_type": "code",
670 | "execution_count": 15,
671 | "metadata": {},
672 | "outputs": [
673 | {
674 | "name": "stdout",
675 | "output_type": "stream",
676 | "text": [
677 | " Name Age Id\n",
678 | "1 Sara 20 981239\n",
679 | "2 Donya 18 918243\n",
680 | "\n",
681 | "\n",
682 | " Name Age Id\n",
683 | "1 Sara 20 981239\n",
684 | "2 Donya 18 918243\n"
685 | ]
686 | }
687 | ],
688 | "source": [
689 | "# Row Slicing\n",
690 | "\n",
691 | "# My Data\n",
692 | "data = {\n",
693 | " \"Name\":[\"Ashkan\", \"Sara\", \"Donya\"],\n",
694 | " \"Age\":[19, 20, 18],\n",
695 | " \"Id\":[872634, 981239, 918243]\n",
696 | "}\n",
697 | "\n",
698 | "result = pd.DataFrame(data, index=[\"0\", \"1\", \"2\"])\n",
699 | "\n",
700 | "# 1\n",
701 | "print(result.loc[\"1\":\"2\"])\n",
702 | "\n",
703 | "print(\"\\n\")\n",
704 | "\n",
705 | "# 2\n",
706 | "print(result.iloc[1:])"
707 | ]
708 | },
709 | {
710 | "cell_type": "code",
711 | "execution_count": 16,
712 | "metadata": {},
713 | "outputs": [
714 | {
715 | "name": "stdout",
716 | "output_type": "stream",
717 | "text": [
718 | " Name Age\n",
719 | "0 Ashkan 19\n",
720 | "1 Sara 20\n",
721 | "\n",
722 | "\n",
723 | " Name Age\n",
724 | "0 Ashkan 19\n",
725 | "1 Sara 20\n"
726 | ]
727 | }
728 | ],
729 | "source": [
730 | "# Slashing rows and columns together\n",
731 | "\n",
732 | "# My Data\n",
733 | "data = {\n",
734 | " \"Name\":[\"Ashkan\", \"Sara\", \"Donya\"],\n",
735 | " \"Age\":[19, 20, 18],\n",
736 | " \"Id\":[872634, 981239, 918243]\n",
737 | "}\n",
738 | "\n",
739 | "result = pd.DataFrame(data, index=[\"0\", \"1\", \"2\"])\n",
740 | "\n",
741 | "# The right part of the bracket is for columns and the other part for rows\n",
742 | "\n",
743 | "# 1\n",
744 | "print(result.loc[\"0\":\"1\", \"Name\":\"Age\"])\n",
745 | "\n",
746 | "print(\"\\n\")\n",
747 | "\n",
748 | "# 2\n",
749 | "print(result.iloc[0:2, 0:2])"
750 | ]
751 | },
752 | {
753 | "cell_type": "code",
754 | "execution_count": 17,
755 | "metadata": {},
756 | "outputs": [
757 | {
758 | "name": "stdout",
759 | "output_type": "stream",
760 | "text": [
761 | "0 Ashkan\n",
762 | "1 Sara\n",
763 | "2 Donya\n",
764 | "Name: Name, dtype: object \n",
765 | "\n",
766 | "0 True\n",
767 | "1 False\n",
768 | "2 False\n",
769 | "Name: Name, dtype: bool \n",
770 | "\n",
771 | "0 False\n",
772 | "1 True\n",
773 | "2 False\n",
774 | "Name: Age, dtype: bool \n",
775 | "\n"
776 | ]
777 | }
778 | ],
779 | "source": [
780 | "# Comparative\n",
781 | "\n",
782 | "# My Data\n",
783 | "data = {\n",
784 | " \"Name\":[\"Ashkan\", \"Sara\", \"Donya\"],\n",
785 | " \"Age\":[19, 20, 18],\n",
786 | " \"Id\":[872634, 981239, 918243]\n",
787 | "}\n",
788 | "\n",
789 | "result = pd.DataFrame(data, index=[\"0\", \"1\", \"2\"])\n",
790 | "\n",
791 | "# 1\n",
792 | "print(result[\"Name\"], \"\\n\")\n",
793 | "\n",
794 | "# 2\n",
795 | "print(result[\"Name\"] == \"Ashkan\", \"\\n\")\n",
796 | "\n",
797 | "# 3\n",
798 | "print(result[\"Age\"] > 19, \"\\n\")"
799 | ]
800 | },
801 | {
802 | "cell_type": "code",
803 | "execution_count": 18,
804 | "metadata": {},
805 | "outputs": [
806 | {
807 | "name": "stdout",
808 | "output_type": "stream",
809 | "text": [
810 | " Name Age Id\n",
811 | "0 Ashkan 19 872634 \n",
812 | "\n",
813 | " Name Age Id\n",
814 | "1 Sara 20 981239\n"
815 | ]
816 | }
817 | ],
818 | "source": [
819 | "# Query with condition.\n",
820 | "\n",
821 | "# My Data\n",
822 | "data = {\n",
823 | " \"Name\":[\"Ashkan\", \"Sara\", \"Donya\"],\n",
824 | " \"Age\":[19, 20, 18],\n",
825 | " \"Id\":[872634, 981239, 918243]\n",
826 | "}\n",
827 | "\n",
828 | "result = pd.DataFrame(data, index=[\"0\", \"1\", \"2\"])\n",
829 | "\n",
830 | "# 1\n",
831 | "print(result[result[\"Name\"] == \"Ashkan\"], \"\\n\")\n",
832 | "\n",
833 | "# 2\n",
834 | "print(result[result.index == \"1\"])"
835 | ]
836 | },
837 | {
838 | "cell_type": "code",
839 | "execution_count": 19,
840 | "metadata": {},
841 | "outputs": [
842 | {
843 | "name": "stdout",
844 | "output_type": "stream",
845 | "text": [
846 | " Name Age Id\n",
847 | "0 True False True\n",
848 | "1 False False False\n",
849 | "2 False False False \n",
850 | "\n",
851 | " Name Age Id\n",
852 | "0 False True False\n",
853 | "1 True True True\n",
854 | "2 True True True \n",
855 | "\n",
856 | " Name Age Id\n",
857 | "0 NaN 19 NaN\n",
858 | "1 Sara 20 981239.0\n",
859 | "2 Donya 18 918243.0\n"
860 | ]
861 | }
862 | ],
863 | "source": [
864 | "# Null values\n",
865 | "\n",
866 | "# My Data\n",
867 | "data = {\n",
868 | " \"Name\":[None, \"Sara\", \"Donya\"],\n",
869 | " \"Age\":[19, 20, 18],\n",
870 | " \"Id\":[None, 981239, 918243]\n",
871 | "}\n",
872 | "\n",
873 | "result = pd.DataFrame(data)\n",
874 | "\n",
875 | "# Null\n",
876 | "print(result.isnull(), \"\\n\")\n",
877 | "\n",
878 | "# Not null\n",
879 | "print(result.notnull(), \"\\n\")\n",
880 | "\n",
881 | "# Where are the nulls?\n",
882 | "print(result[result.notnull()])"
883 | ]
884 | },
885 | {
886 | "cell_type": "code",
887 | "execution_count": 20,
888 | "metadata": {},
889 | "outputs": [
890 | {
891 | "data": {
892 | "text/html": [
893 | "\n",
894 | "\n",
907 | "
\n",
908 | " \n",
909 | " \n",
910 | " | \n",
911 | " Name | \n",
912 | " Age | \n",
913 | " Id | \n",
914 | "
\n",
915 | " \n",
916 | " \n",
917 | " \n",
918 | " 0 | \n",
919 | " Im not null! | \n",
920 | " 19 | \n",
921 | " Im not null! | \n",
922 | "
\n",
923 | " \n",
924 | " 1 | \n",
925 | " Sara | \n",
926 | " 20 | \n",
927 | " 981239 | \n",
928 | "
\n",
929 | " \n",
930 | " 2 | \n",
931 | " Donya | \n",
932 | " 18 | \n",
933 | " 918243 | \n",
934 | "
\n",
935 | " \n",
936 | "
\n",
937 | "
"
938 | ],
939 | "text/plain": [
940 | " Name Age Id\n",
941 | "0 Im not null! 19 Im not null!\n",
942 | "1 Sara 20 981239\n",
943 | "2 Donya 18 918243"
944 | ]
945 | },
946 | "execution_count": 20,
947 | "metadata": {},
948 | "output_type": "execute_result"
949 | }
950 | ],
951 | "source": [
952 | "# Assign values to null values.\n",
953 | "\n",
954 | "# My Data\n",
955 | "data = {\n",
956 | " \"Name\":[None, \"Sara\", \"Donya\"],\n",
957 | " \"Age\":[19, 20, 18],\n",
958 | " \"Id\":[None, 981239, 918243]\n",
959 | "}\n",
960 | "\n",
961 | "result = pd.DataFrame(data)\n",
962 | "\n",
963 | "result.fillna(\"Im not null!\")"
964 | ]
965 | },
966 | {
967 | "cell_type": "markdown",
968 | "metadata": {},
969 | "source": [
970 | "# To remove null values!\n",
971 | "### result.dropna()"
972 | ]
973 | },
974 | {
975 | "cell_type": "code",
976 | "execution_count": null,
977 | "metadata": {},
978 | "outputs": [],
979 | "source": []
980 | },
981 | {
982 | "cell_type": "markdown",
983 | "metadata": {},
984 | "source": [
985 | "# Work with csv files."
986 | ]
987 | },
988 | {
989 | "cell_type": "code",
990 | "execution_count": 21,
991 | "metadata": {},
992 | "outputs": [],
993 | "source": [
994 | "result = pd.read_csv(\"Data.csv\")"
995 | ]
996 | },
997 | {
998 | "cell_type": "code",
999 | "execution_count": 22,
1000 | "metadata": {},
1001 | "outputs": [
1002 | {
1003 | "data": {
1004 | "text/html": [
1005 | "\n",
1006 | "\n",
1019 | "
\n",
1020 | " \n",
1021 | " \n",
1022 | " | \n",
1023 | " Unnamed: 0 | \n",
1024 | " Name | \n",
1025 | " Age | \n",
1026 | " City | \n",
1027 | " Degree | \n",
1028 | " Grade | \n",
1029 | "
\n",
1030 | " \n",
1031 | " \n",
1032 | " \n",
1033 | " 0 | \n",
1034 | " person1 | \n",
1035 | " Ali | \n",
1036 | " 27 | \n",
1037 | " Tehran | \n",
1038 | " MSC | \n",
1039 | " 83 | \n",
1040 | "
\n",
1041 | " \n",
1042 | " 1 | \n",
1043 | " person2 | \n",
1044 | " Hosein | \n",
1045 | " 32 | \n",
1046 | " Esfahan | \n",
1047 | " PHD | \n",
1048 | " 68 | \n",
1049 | "
\n",
1050 | " \n",
1051 | " 2 | \n",
1052 | " person3 | \n",
1053 | " Sadeq | \n",
1054 | " 23 | \n",
1055 | " Mashhad | \n",
1056 | " MA | \n",
1057 | " 45 | \n",
1058 | "
\n",
1059 | " \n",
1060 | " 3 | \n",
1061 | " pesron4 | \n",
1062 | " Hamid | \n",
1063 | " 26 | \n",
1064 | " Tabriz | \n",
1065 | " MA | \n",
1066 | " 72 | \n",
1067 | "
\n",
1068 | " \n",
1069 | " 4 | \n",
1070 | " person5 | \n",
1071 | " Hamed | \n",
1072 | " 25 | \n",
1073 | " Qazvin | \n",
1074 | " MSC | \n",
1075 | " 54 | \n",
1076 | "
\n",
1077 | " \n",
1078 | " 5 | \n",
1079 | " peson6 | \n",
1080 | " Reza | \n",
1081 | " 30 | \n",
1082 | " Tehran | \n",
1083 | " MSC | \n",
1084 | " 66 | \n",
1085 | "
\n",
1086 | " \n",
1087 | " 6 | \n",
1088 | " person7 | \n",
1089 | " Taha | \n",
1090 | " 28 | \n",
1091 | " Babol | \n",
1092 | " MSC | \n",
1093 | " 90 | \n",
1094 | "
\n",
1095 | " \n",
1096 | " 7 | \n",
1097 | " person8 | \n",
1098 | " Amir | \n",
1099 | " 40 | \n",
1100 | " Tehran | \n",
1101 | " PHD | \n",
1102 | " 81 | \n",
1103 | "
\n",
1104 | " \n",
1105 | " 8 | \n",
1106 | " person9 | \n",
1107 | " Omid | \n",
1108 | " 35 | \n",
1109 | " Arak | \n",
1110 | " PHD | \n",
1111 | " 76 | \n",
1112 | "
\n",
1113 | " \n",
1114 | " 9 | \n",
1115 | " person10 | \n",
1116 | " Shayan | \n",
1117 | " 19 | \n",
1118 | " Mashhad | \n",
1119 | " MA | \n",
1120 | " 38 | \n",
1121 | "
\n",
1122 | " \n",
1123 | "
\n",
1124 | "
"
1125 | ],
1126 | "text/plain": [
1127 | " Unnamed: 0 Name Age City Degree Grade\n",
1128 | "0 person1 Ali 27 Tehran MSC 83\n",
1129 | "1 person2 Hosein 32 Esfahan PHD 68\n",
1130 | "2 person3 Sadeq 23 Mashhad MA 45\n",
1131 | "3 pesron4 Hamid 26 Tabriz MA 72\n",
1132 | "4 person5 Hamed 25 Qazvin MSC 54\n",
1133 | "5 peson6 Reza 30 Tehran MSC 66\n",
1134 | "6 person7 Taha 28 Babol MSC 90\n",
1135 | "7 person8 Amir 40 Tehran PHD 81\n",
1136 | "8 person9 Omid 35 Arak PHD 76\n",
1137 | "9 person10 Shayan 19 Mashhad MA 38"
1138 | ]
1139 | },
1140 | "execution_count": 22,
1141 | "metadata": {},
1142 | "output_type": "execute_result"
1143 | }
1144 | ],
1145 | "source": [
1146 | "result"
1147 | ]
1148 | },
1149 | {
1150 | "cell_type": "code",
1151 | "execution_count": 23,
1152 | "metadata": {},
1153 | "outputs": [
1154 | {
1155 | "data": {
1156 | "text/html": [
1157 | "\n",
1158 | "\n",
1171 | "
\n",
1172 | " \n",
1173 | " \n",
1174 | " | \n",
1175 | " Name | \n",
1176 | " Age | \n",
1177 | "
\n",
1178 | " \n",
1179 | " \n",
1180 | " \n",
1181 | " 0 | \n",
1182 | " Ali | \n",
1183 | " 27 | \n",
1184 | "
\n",
1185 | " \n",
1186 | " 1 | \n",
1187 | " Hosein | \n",
1188 | " 32 | \n",
1189 | "
\n",
1190 | " \n",
1191 | " 2 | \n",
1192 | " Sadeq | \n",
1193 | " 23 | \n",
1194 | "
\n",
1195 | " \n",
1196 | " 3 | \n",
1197 | " Hamid | \n",
1198 | " 26 | \n",
1199 | "
\n",
1200 | " \n",
1201 | "
\n",
1202 | "
"
1203 | ],
1204 | "text/plain": [
1205 | " Name Age\n",
1206 | "0 Ali 27\n",
1207 | "1 Hosein 32\n",
1208 | "2 Sadeq 23\n",
1209 | "3 Hamid 26"
1210 | ]
1211 | },
1212 | "execution_count": 23,
1213 | "metadata": {},
1214 | "output_type": "execute_result"
1215 | }
1216 | ],
1217 | "source": [
1218 | "# Indexing in csv files.\n",
1219 | "result.iloc[0:4,1:3]"
1220 | ]
1221 | },
1222 | {
1223 | "cell_type": "code",
1224 | "execution_count": 24,
1225 | "metadata": {},
1226 | "outputs": [
1227 | {
1228 | "data": {
1229 | "text/html": [
1230 | "\n",
1231 | "\n",
1244 | "
\n",
1245 | " \n",
1246 | " \n",
1247 | " | \n",
1248 | " Unnamed: 0 | \n",
1249 | " Name | \n",
1250 | " Age | \n",
1251 | " City | \n",
1252 | " Degree | \n",
1253 | " Grade | \n",
1254 | "
\n",
1255 | " \n",
1256 | " \n",
1257 | " \n",
1258 | " 0 | \n",
1259 | " person1 | \n",
1260 | " Ali | \n",
1261 | " 27 | \n",
1262 | " Tehran | \n",
1263 | " MSC | \n",
1264 | " 83 | \n",
1265 | "
\n",
1266 | " \n",
1267 | " 1 | \n",
1268 | " person2 | \n",
1269 | " Hosein | \n",
1270 | " 32 | \n",
1271 | " Esfahan | \n",
1272 | " PHD | \n",
1273 | " 68 | \n",
1274 | "
\n",
1275 | " \n",
1276 | " 2 | \n",
1277 | " person3 | \n",
1278 | " Sadeq | \n",
1279 | " 23 | \n",
1280 | " Mashhad | \n",
1281 | " MA | \n",
1282 | " 45 | \n",
1283 | "
\n",
1284 | " \n",
1285 | " 3 | \n",
1286 | " pesron4 | \n",
1287 | " Hamid | \n",
1288 | " 26 | \n",
1289 | " Tabriz | \n",
1290 | " MA | \n",
1291 | " 72 | \n",
1292 | "
\n",
1293 | " \n",
1294 | " 4 | \n",
1295 | " person5 | \n",
1296 | " Hamed | \n",
1297 | " 25 | \n",
1298 | " Qazvin | \n",
1299 | " MSC | \n",
1300 | " 54 | \n",
1301 | "
\n",
1302 | " \n",
1303 | "
\n",
1304 | "
"
1305 | ],
1306 | "text/plain": [
1307 | " Unnamed: 0 Name Age City Degree Grade\n",
1308 | "0 person1 Ali 27 Tehran MSC 83\n",
1309 | "1 person2 Hosein 32 Esfahan PHD 68\n",
1310 | "2 person3 Sadeq 23 Mashhad MA 45\n",
1311 | "3 pesron4 Hamid 26 Tabriz MA 72\n",
1312 | "4 person5 Hamed 25 Qazvin MSC 54"
1313 | ]
1314 | },
1315 | "execution_count": 24,
1316 | "metadata": {},
1317 | "output_type": "execute_result"
1318 | }
1319 | ],
1320 | "source": [
1321 | "# Reading the first 5 members.\n",
1322 | "result.head()"
1323 | ]
1324 | },
1325 | {
1326 | "cell_type": "code",
1327 | "execution_count": 25,
1328 | "metadata": {},
1329 | "outputs": [
1330 | {
1331 | "data": {
1332 | "text/html": [
1333 | "\n",
1334 | "\n",
1347 | "
\n",
1348 | " \n",
1349 | " \n",
1350 | " | \n",
1351 | " Unnamed: 0 | \n",
1352 | " Name | \n",
1353 | " Age | \n",
1354 | " City | \n",
1355 | " Degree | \n",
1356 | " Grade | \n",
1357 | "
\n",
1358 | " \n",
1359 | " \n",
1360 | " \n",
1361 | " 0 | \n",
1362 | " person1 | \n",
1363 | " Ali | \n",
1364 | " 27 | \n",
1365 | " Tehran | \n",
1366 | " MSC | \n",
1367 | " 83 | \n",
1368 | "
\n",
1369 | " \n",
1370 | " 1 | \n",
1371 | " person2 | \n",
1372 | " Hosein | \n",
1373 | " 32 | \n",
1374 | " Esfahan | \n",
1375 | " PHD | \n",
1376 | " 68 | \n",
1377 | "
\n",
1378 | " \n",
1379 | "
\n",
1380 | "
"
1381 | ],
1382 | "text/plain": [
1383 | " Unnamed: 0 Name Age City Degree Grade\n",
1384 | "0 person1 Ali 27 Tehran MSC 83\n",
1385 | "1 person2 Hosein 32 Esfahan PHD 68"
1386 | ]
1387 | },
1388 | "execution_count": 25,
1389 | "metadata": {},
1390 | "output_type": "execute_result"
1391 | }
1392 | ],
1393 | "source": [
1394 | "# Reading the first n term.\n",
1395 | "result.head(2)"
1396 | ]
1397 | },
1398 | {
1399 | "cell_type": "code",
1400 | "execution_count": 26,
1401 | "metadata": {},
1402 | "outputs": [
1403 | {
1404 | "data": {
1405 | "text/html": [
1406 | "\n",
1407 | "\n",
1420 | "
\n",
1421 | " \n",
1422 | " \n",
1423 | " | \n",
1424 | " Unnamed: 0 | \n",
1425 | " Name | \n",
1426 | " Age | \n",
1427 | " City | \n",
1428 | " Degree | \n",
1429 | " Grade | \n",
1430 | "
\n",
1431 | " \n",
1432 | " \n",
1433 | " \n",
1434 | " 5 | \n",
1435 | " peson6 | \n",
1436 | " Reza | \n",
1437 | " 30 | \n",
1438 | " Tehran | \n",
1439 | " MSC | \n",
1440 | " 66 | \n",
1441 | "
\n",
1442 | " \n",
1443 | " 6 | \n",
1444 | " person7 | \n",
1445 | " Taha | \n",
1446 | " 28 | \n",
1447 | " Babol | \n",
1448 | " MSC | \n",
1449 | " 90 | \n",
1450 | "
\n",
1451 | " \n",
1452 | " 7 | \n",
1453 | " person8 | \n",
1454 | " Amir | \n",
1455 | " 40 | \n",
1456 | " Tehran | \n",
1457 | " PHD | \n",
1458 | " 81 | \n",
1459 | "
\n",
1460 | " \n",
1461 | " 8 | \n",
1462 | " person9 | \n",
1463 | " Omid | \n",
1464 | " 35 | \n",
1465 | " Arak | \n",
1466 | " PHD | \n",
1467 | " 76 | \n",
1468 | "
\n",
1469 | " \n",
1470 | " 9 | \n",
1471 | " person10 | \n",
1472 | " Shayan | \n",
1473 | " 19 | \n",
1474 | " Mashhad | \n",
1475 | " MA | \n",
1476 | " 38 | \n",
1477 | "
\n",
1478 | " \n",
1479 | "
\n",
1480 | "
"
1481 | ],
1482 | "text/plain": [
1483 | " Unnamed: 0 Name Age City Degree Grade\n",
1484 | "5 peson6 Reza 30 Tehran MSC 66\n",
1485 | "6 person7 Taha 28 Babol MSC 90\n",
1486 | "7 person8 Amir 40 Tehran PHD 81\n",
1487 | "8 person9 Omid 35 Arak PHD 76\n",
1488 | "9 person10 Shayan 19 Mashhad MA 38"
1489 | ]
1490 | },
1491 | "execution_count": 26,
1492 | "metadata": {},
1493 | "output_type": "execute_result"
1494 | }
1495 | ],
1496 | "source": [
1497 | "# Reading the last 5 members.\n",
1498 | "result.tail()"
1499 | ]
1500 | },
1501 | {
1502 | "cell_type": "code",
1503 | "execution_count": 27,
1504 | "metadata": {},
1505 | "outputs": [
1506 | {
1507 | "data": {
1508 | "text/html": [
1509 | "\n",
1510 | "\n",
1523 | "
\n",
1524 | " \n",
1525 | " \n",
1526 | " | \n",
1527 | " Unnamed: 0 | \n",
1528 | " Name | \n",
1529 | " Age | \n",
1530 | " City | \n",
1531 | " Degree | \n",
1532 | " Grade | \n",
1533 | "
\n",
1534 | " \n",
1535 | " \n",
1536 | " \n",
1537 | " 8 | \n",
1538 | " person9 | \n",
1539 | " Omid | \n",
1540 | " 35 | \n",
1541 | " Arak | \n",
1542 | " PHD | \n",
1543 | " 76 | \n",
1544 | "
\n",
1545 | " \n",
1546 | " 9 | \n",
1547 | " person10 | \n",
1548 | " Shayan | \n",
1549 | " 19 | \n",
1550 | " Mashhad | \n",
1551 | " MA | \n",
1552 | " 38 | \n",
1553 | "
\n",
1554 | " \n",
1555 | "
\n",
1556 | "
"
1557 | ],
1558 | "text/plain": [
1559 | " Unnamed: 0 Name Age City Degree Grade\n",
1560 | "8 person9 Omid 35 Arak PHD 76\n",
1561 | "9 person10 Shayan 19 Mashhad MA 38"
1562 | ]
1563 | },
1564 | "execution_count": 27,
1565 | "metadata": {},
1566 | "output_type": "execute_result"
1567 | }
1568 | ],
1569 | "source": [
1570 | "# Read the last n member.\n",
1571 | "result.tail(2)"
1572 | ]
1573 | },
1574 | {
1575 | "cell_type": "code",
1576 | "execution_count": 28,
1577 | "metadata": {},
1578 | "outputs": [],
1579 | "source": [
1580 | "# Save data in a csv file.\n",
1581 | "\n",
1582 | "# My Data\n",
1583 | "data = {\n",
1584 | " \"Name\":[\"Ashkan\", \"Sara\", \"Donya\"],\n",
1585 | " \"Age\":[19, 20, 18],\n",
1586 | " \"Id\":[878128, 981239, 918243]\n",
1587 | "}\n",
1588 | "\n",
1589 | "result = pd.DataFrame(data)\n",
1590 | "\n",
1591 | "result.to_csv(\"SAVED_DATA.csv\", index=None)"
1592 | ]
1593 | },
1594 | {
1595 | "cell_type": "code",
1596 | "execution_count": 29,
1597 | "metadata": {},
1598 | "outputs": [],
1599 | "source": [
1600 | "# Reading a series of data from a csv file.\n",
1601 | "\n",
1602 | "result = pd.read_csv(\"Data.csv\")"
1603 | ]
1604 | },
1605 | {
1606 | "cell_type": "code",
1607 | "execution_count": 30,
1608 | "metadata": {},
1609 | "outputs": [
1610 | {
1611 | "data": {
1612 | "text/plain": [
1613 | "(10, 6)"
1614 | ]
1615 | },
1616 | "execution_count": 30,
1617 | "metadata": {},
1618 | "output_type": "execute_result"
1619 | }
1620 | ],
1621 | "source": [
1622 | "# To find out the number of rows and columns.\n",
1623 | "result.shape"
1624 | ]
1625 | },
1626 | {
1627 | "cell_type": "code",
1628 | "execution_count": 31,
1629 | "metadata": {},
1630 | "outputs": [
1631 | {
1632 | "data": {
1633 | "text/plain": [
1634 | "Unnamed: 0 10\n",
1635 | "Name 10\n",
1636 | "Age 10\n",
1637 | "City 10\n",
1638 | "Degree 10\n",
1639 | "Grade 10\n",
1640 | "dtype: int64"
1641 | ]
1642 | },
1643 | "execution_count": 31,
1644 | "metadata": {},
1645 | "output_type": "execute_result"
1646 | }
1647 | ],
1648 | "source": [
1649 | "# To find out the number of values.\n",
1650 | "result.count()"
1651 | ]
1652 | },
1653 | {
1654 | "cell_type": "code",
1655 | "execution_count": 32,
1656 | "metadata": {},
1657 | "outputs": [
1658 | {
1659 | "name": "stdout",
1660 | "output_type": "stream",
1661 | "text": [
1662 | "['person1' 'Ali' 27 'Tehran' 'MSC' 83]\n",
1663 | "['person2' 'Hosein' 32 'Esfahan' 'PHD' 68]\n",
1664 | "['person3' 'Sadeq' 23 'Mashhad' 'MA' 45]\n",
1665 | "['pesron4' 'Hamid' 26 'Tabriz' 'MA' 72]\n",
1666 | "['person5' 'Hamed' 25 'Qazvin' 'MSC' 54]\n",
1667 | "['peson6' 'Reza' 30 'Tehran' 'MSC' 66]\n",
1668 | "['person7' 'Taha' 28 'Babol' 'MSC' 90]\n",
1669 | "['person8' 'Amir' 40 'Tehran' 'PHD' 81]\n",
1670 | "['person9' 'Omid' 35 'Arak' 'PHD' 76]\n",
1671 | "['person10' 'Shayan' 19 'Mashhad' 'MA' 38]\n"
1672 | ]
1673 | }
1674 | ],
1675 | "source": [
1676 | "# Convert data to list.\n",
1677 | "for i in result.values:\n",
1678 | " print(i)"
1679 | ]
1680 | },
1681 | {
1682 | "cell_type": "code",
1683 | "execution_count": 33,
1684 | "metadata": {},
1685 | "outputs": [
1686 | {
1687 | "data": {
1688 | "text/html": [
1689 | "\n",
1690 | "\n",
1703 | "
\n",
1704 | " \n",
1705 | " \n",
1706 | " | \n",
1707 | " Age | \n",
1708 | " Grade | \n",
1709 | "
\n",
1710 | " \n",
1711 | " \n",
1712 | " \n",
1713 | " count | \n",
1714 | " 10.000000 | \n",
1715 | " 10.000000 | \n",
1716 | "
\n",
1717 | " \n",
1718 | " mean | \n",
1719 | " 28.500000 | \n",
1720 | " 67.300000 | \n",
1721 | "
\n",
1722 | " \n",
1723 | " std | \n",
1724 | " 6.059886 | \n",
1725 | " 16.938123 | \n",
1726 | "
\n",
1727 | " \n",
1728 | " min | \n",
1729 | " 19.000000 | \n",
1730 | " 38.000000 | \n",
1731 | "
\n",
1732 | " \n",
1733 | " 25% | \n",
1734 | " 25.250000 | \n",
1735 | " 57.000000 | \n",
1736 | "
\n",
1737 | " \n",
1738 | " 50% | \n",
1739 | " 27.500000 | \n",
1740 | " 70.000000 | \n",
1741 | "
\n",
1742 | " \n",
1743 | " 75% | \n",
1744 | " 31.500000 | \n",
1745 | " 79.750000 | \n",
1746 | "
\n",
1747 | " \n",
1748 | " max | \n",
1749 | " 40.000000 | \n",
1750 | " 90.000000 | \n",
1751 | "
\n",
1752 | " \n",
1753 | "
\n",
1754 | "
"
1755 | ],
1756 | "text/plain": [
1757 | " Age Grade\n",
1758 | "count 10.000000 10.000000\n",
1759 | "mean 28.500000 67.300000\n",
1760 | "std 6.059886 16.938123\n",
1761 | "min 19.000000 38.000000\n",
1762 | "25% 25.250000 57.000000\n",
1763 | "50% 27.500000 70.000000\n",
1764 | "75% 31.500000 79.750000\n",
1765 | "max 40.000000 90.000000"
1766 | ]
1767 | },
1768 | "execution_count": 33,
1769 | "metadata": {},
1770 | "output_type": "execute_result"
1771 | }
1772 | ],
1773 | "source": [
1774 | "# Get statistical data.\n",
1775 | "result.describe()"
1776 | ]
1777 | },
1778 | {
1779 | "cell_type": "code",
1780 | "execution_count": 34,
1781 | "metadata": {},
1782 | "outputs": [
1783 | {
1784 | "data": {
1785 | "text/html": [
1786 | "\n",
1787 | "\n",
1800 | "
\n",
1801 | " \n",
1802 | " \n",
1803 | " | \n",
1804 | " Unnamed: 0 | \n",
1805 | " Age | \n",
1806 | " City | \n",
1807 | " Degree | \n",
1808 | " Grade | \n",
1809 | "
\n",
1810 | " \n",
1811 | " Name | \n",
1812 | " | \n",
1813 | " | \n",
1814 | " | \n",
1815 | " | \n",
1816 | " | \n",
1817 | "
\n",
1818 | " \n",
1819 | " \n",
1820 | " \n",
1821 | " Ali | \n",
1822 | " person1 | \n",
1823 | " 27 | \n",
1824 | " Tehran | \n",
1825 | " MSC | \n",
1826 | " 83 | \n",
1827 | "
\n",
1828 | " \n",
1829 | " Hosein | \n",
1830 | " person2 | \n",
1831 | " 32 | \n",
1832 | " Esfahan | \n",
1833 | " PHD | \n",
1834 | " 68 | \n",
1835 | "
\n",
1836 | " \n",
1837 | " Sadeq | \n",
1838 | " person3 | \n",
1839 | " 23 | \n",
1840 | " Mashhad | \n",
1841 | " MA | \n",
1842 | " 45 | \n",
1843 | "
\n",
1844 | " \n",
1845 | " Hamid | \n",
1846 | " pesron4 | \n",
1847 | " 26 | \n",
1848 | " Tabriz | \n",
1849 | " MA | \n",
1850 | " 72 | \n",
1851 | "
\n",
1852 | " \n",
1853 | " Hamed | \n",
1854 | " person5 | \n",
1855 | " 25 | \n",
1856 | " Qazvin | \n",
1857 | " MSC | \n",
1858 | " 54 | \n",
1859 | "
\n",
1860 | " \n",
1861 | " Reza | \n",
1862 | " peson6 | \n",
1863 | " 30 | \n",
1864 | " Tehran | \n",
1865 | " MSC | \n",
1866 | " 66 | \n",
1867 | "
\n",
1868 | " \n",
1869 | " Taha | \n",
1870 | " person7 | \n",
1871 | " 28 | \n",
1872 | " Babol | \n",
1873 | " MSC | \n",
1874 | " 90 | \n",
1875 | "
\n",
1876 | " \n",
1877 | " Amir | \n",
1878 | " person8 | \n",
1879 | " 40 | \n",
1880 | " Tehran | \n",
1881 | " PHD | \n",
1882 | " 81 | \n",
1883 | "
\n",
1884 | " \n",
1885 | " Omid | \n",
1886 | " person9 | \n",
1887 | " 35 | \n",
1888 | " Arak | \n",
1889 | " PHD | \n",
1890 | " 76 | \n",
1891 | "
\n",
1892 | " \n",
1893 | " Shayan | \n",
1894 | " person10 | \n",
1895 | " 19 | \n",
1896 | " Mashhad | \n",
1897 | " MA | \n",
1898 | " 38 | \n",
1899 | "
\n",
1900 | " \n",
1901 | "
\n",
1902 | "
"
1903 | ],
1904 | "text/plain": [
1905 | " Unnamed: 0 Age City Degree Grade\n",
1906 | "Name \n",
1907 | "Ali person1 27 Tehran MSC 83\n",
1908 | "Hosein person2 32 Esfahan PHD 68\n",
1909 | "Sadeq person3 23 Mashhad MA 45\n",
1910 | "Hamid pesron4 26 Tabriz MA 72\n",
1911 | "Hamed person5 25 Qazvin MSC 54\n",
1912 | "Reza peson6 30 Tehran MSC 66\n",
1913 | "Taha person7 28 Babol MSC 90\n",
1914 | "Amir person8 40 Tehran PHD 81\n",
1915 | "Omid person9 35 Arak PHD 76\n",
1916 | "Shayan person10 19 Mashhad MA 38"
1917 | ]
1918 | },
1919 | "execution_count": 34,
1920 | "metadata": {},
1921 | "output_type": "execute_result"
1922 | }
1923 | ],
1924 | "source": [
1925 | "# Set the index with your desired column.\n",
1926 | "result.set_index(\"Name\")"
1927 | ]
1928 | },
1929 | {
1930 | "cell_type": "markdown",
1931 | "metadata": {},
1932 | "source": [
1933 | "# Ordering."
1934 | ]
1935 | },
1936 | {
1937 | "cell_type": "code",
1938 | "execution_count": 35,
1939 | "metadata": {},
1940 | "outputs": [
1941 | {
1942 | "data": {
1943 | "text/html": [
1944 | "\n",
1945 | "\n",
1958 | "
\n",
1959 | " \n",
1960 | " \n",
1961 | " | \n",
1962 | " Unnamed: 0 | \n",
1963 | " Name | \n",
1964 | " Age | \n",
1965 | " City | \n",
1966 | " Degree | \n",
1967 | " Grade | \n",
1968 | "
\n",
1969 | " \n",
1970 | " \n",
1971 | " \n",
1972 | " 0 | \n",
1973 | " person1 | \n",
1974 | " Ali | \n",
1975 | " 27 | \n",
1976 | " Tehran | \n",
1977 | " MSC | \n",
1978 | " 83 | \n",
1979 | "
\n",
1980 | " \n",
1981 | " 7 | \n",
1982 | " person8 | \n",
1983 | " Amir | \n",
1984 | " 40 | \n",
1985 | " Tehran | \n",
1986 | " PHD | \n",
1987 | " 81 | \n",
1988 | "
\n",
1989 | " \n",
1990 | " 4 | \n",
1991 | " person5 | \n",
1992 | " Hamed | \n",
1993 | " 25 | \n",
1994 | " Qazvin | \n",
1995 | " MSC | \n",
1996 | " 54 | \n",
1997 | "
\n",
1998 | " \n",
1999 | " 3 | \n",
2000 | " pesron4 | \n",
2001 | " Hamid | \n",
2002 | " 26 | \n",
2003 | " Tabriz | \n",
2004 | " MA | \n",
2005 | " 72 | \n",
2006 | "
\n",
2007 | " \n",
2008 | " 1 | \n",
2009 | " person2 | \n",
2010 | " Hosein | \n",
2011 | " 32 | \n",
2012 | " Esfahan | \n",
2013 | " PHD | \n",
2014 | " 68 | \n",
2015 | "
\n",
2016 | " \n",
2017 | " 8 | \n",
2018 | " person9 | \n",
2019 | " Omid | \n",
2020 | " 35 | \n",
2021 | " Arak | \n",
2022 | " PHD | \n",
2023 | " 76 | \n",
2024 | "
\n",
2025 | " \n",
2026 | " 5 | \n",
2027 | " peson6 | \n",
2028 | " Reza | \n",
2029 | " 30 | \n",
2030 | " Tehran | \n",
2031 | " MSC | \n",
2032 | " 66 | \n",
2033 | "
\n",
2034 | " \n",
2035 | " 2 | \n",
2036 | " person3 | \n",
2037 | " Sadeq | \n",
2038 | " 23 | \n",
2039 | " Mashhad | \n",
2040 | " MA | \n",
2041 | " 45 | \n",
2042 | "
\n",
2043 | " \n",
2044 | " 9 | \n",
2045 | " person10 | \n",
2046 | " Shayan | \n",
2047 | " 19 | \n",
2048 | " Mashhad | \n",
2049 | " MA | \n",
2050 | " 38 | \n",
2051 | "
\n",
2052 | " \n",
2053 | " 6 | \n",
2054 | " person7 | \n",
2055 | " Taha | \n",
2056 | " 28 | \n",
2057 | " Babol | \n",
2058 | " MSC | \n",
2059 | " 90 | \n",
2060 | "
\n",
2061 | " \n",
2062 | "
\n",
2063 | "
"
2064 | ],
2065 | "text/plain": [
2066 | " Unnamed: 0 Name Age City Degree Grade\n",
2067 | "0 person1 Ali 27 Tehran MSC 83\n",
2068 | "7 person8 Amir 40 Tehran PHD 81\n",
2069 | "4 person5 Hamed 25 Qazvin MSC 54\n",
2070 | "3 pesron4 Hamid 26 Tabriz MA 72\n",
2071 | "1 person2 Hosein 32 Esfahan PHD 68\n",
2072 | "8 person9 Omid 35 Arak PHD 76\n",
2073 | "5 peson6 Reza 30 Tehran MSC 66\n",
2074 | "2 person3 Sadeq 23 Mashhad MA 45\n",
2075 | "9 person10 Shayan 19 Mashhad MA 38\n",
2076 | "6 person7 Taha 28 Babol MSC 90"
2077 | ]
2078 | },
2079 | "execution_count": 35,
2080 | "metadata": {},
2081 | "output_type": "execute_result"
2082 | }
2083 | ],
2084 | "source": [
2085 | "# Sort data with your desired column.\n",
2086 | "result.sort_values(\"Name\")"
2087 | ]
2088 | },
2089 | {
2090 | "cell_type": "code",
2091 | "execution_count": 36,
2092 | "metadata": {},
2093 | "outputs": [
2094 | {
2095 | "data": {
2096 | "text/html": [
2097 | "\n",
2098 | "\n",
2111 | "
\n",
2112 | " \n",
2113 | " \n",
2114 | " | \n",
2115 | " Age | \n",
2116 | " City | \n",
2117 | " Degree | \n",
2118 | " Grade | \n",
2119 | " Name | \n",
2120 | " Unnamed: 0 | \n",
2121 | "
\n",
2122 | " \n",
2123 | " \n",
2124 | " \n",
2125 | " 0 | \n",
2126 | " 27 | \n",
2127 | " Tehran | \n",
2128 | " MSC | \n",
2129 | " 83 | \n",
2130 | " Ali | \n",
2131 | " person1 | \n",
2132 | "
\n",
2133 | " \n",
2134 | " 1 | \n",
2135 | " 32 | \n",
2136 | " Esfahan | \n",
2137 | " PHD | \n",
2138 | " 68 | \n",
2139 | " Hosein | \n",
2140 | " person2 | \n",
2141 | "
\n",
2142 | " \n",
2143 | " 2 | \n",
2144 | " 23 | \n",
2145 | " Mashhad | \n",
2146 | " MA | \n",
2147 | " 45 | \n",
2148 | " Sadeq | \n",
2149 | " person3 | \n",
2150 | "
\n",
2151 | " \n",
2152 | " 3 | \n",
2153 | " 26 | \n",
2154 | " Tabriz | \n",
2155 | " MA | \n",
2156 | " 72 | \n",
2157 | " Hamid | \n",
2158 | " pesron4 | \n",
2159 | "
\n",
2160 | " \n",
2161 | " 4 | \n",
2162 | " 25 | \n",
2163 | " Qazvin | \n",
2164 | " MSC | \n",
2165 | " 54 | \n",
2166 | " Hamed | \n",
2167 | " person5 | \n",
2168 | "
\n",
2169 | " \n",
2170 | " 5 | \n",
2171 | " 30 | \n",
2172 | " Tehran | \n",
2173 | " MSC | \n",
2174 | " 66 | \n",
2175 | " Reza | \n",
2176 | " peson6 | \n",
2177 | "
\n",
2178 | " \n",
2179 | " 6 | \n",
2180 | " 28 | \n",
2181 | " Babol | \n",
2182 | " MSC | \n",
2183 | " 90 | \n",
2184 | " Taha | \n",
2185 | " person7 | \n",
2186 | "
\n",
2187 | " \n",
2188 | " 7 | \n",
2189 | " 40 | \n",
2190 | " Tehran | \n",
2191 | " PHD | \n",
2192 | " 81 | \n",
2193 | " Amir | \n",
2194 | " person8 | \n",
2195 | "
\n",
2196 | " \n",
2197 | " 8 | \n",
2198 | " 35 | \n",
2199 | " Arak | \n",
2200 | " PHD | \n",
2201 | " 76 | \n",
2202 | " Omid | \n",
2203 | " person9 | \n",
2204 | "
\n",
2205 | " \n",
2206 | " 9 | \n",
2207 | " 19 | \n",
2208 | " Mashhad | \n",
2209 | " MA | \n",
2210 | " 38 | \n",
2211 | " Shayan | \n",
2212 | " person10 | \n",
2213 | "
\n",
2214 | " \n",
2215 | "
\n",
2216 | "
"
2217 | ],
2218 | "text/plain": [
2219 | " Age City Degree Grade Name Unnamed: 0\n",
2220 | "0 27 Tehran MSC 83 Ali person1\n",
2221 | "1 32 Esfahan PHD 68 Hosein person2\n",
2222 | "2 23 Mashhad MA 45 Sadeq person3\n",
2223 | "3 26 Tabriz MA 72 Hamid pesron4\n",
2224 | "4 25 Qazvin MSC 54 Hamed person5\n",
2225 | "5 30 Tehran MSC 66 Reza peson6\n",
2226 | "6 28 Babol MSC 90 Taha person7\n",
2227 | "7 40 Tehran PHD 81 Amir person8\n",
2228 | "8 35 Arak PHD 76 Omid person9\n",
2229 | "9 19 Mashhad MA 38 Shayan person10"
2230 | ]
2231 | },
2232 | "execution_count": 36,
2233 | "metadata": {},
2234 | "output_type": "execute_result"
2235 | }
2236 | ],
2237 | "source": [
2238 | "# Column sorting.\n",
2239 | "result.sort_index(axis=1)"
2240 | ]
2241 | },
2242 | {
2243 | "cell_type": "code",
2244 | "execution_count": 37,
2245 | "metadata": {},
2246 | "outputs": [
2247 | {
2248 | "data": {
2249 | "text/html": [
2250 | "\n",
2251 | "\n",
2264 | "
\n",
2265 | " \n",
2266 | " \n",
2267 | " | \n",
2268 | " Unnamed: 0 | \n",
2269 | " Name | \n",
2270 | " Age | \n",
2271 | " City | \n",
2272 | " Degree | \n",
2273 | " Grade | \n",
2274 | "
\n",
2275 | " \n",
2276 | " \n",
2277 | " \n",
2278 | " 0 | \n",
2279 | " person1 | \n",
2280 | " Ali | \n",
2281 | " 27 | \n",
2282 | " Tehran | \n",
2283 | " MSC | \n",
2284 | " 83 | \n",
2285 | "
\n",
2286 | " \n",
2287 | " 1 | \n",
2288 | " person2 | \n",
2289 | " Hosein | \n",
2290 | " 32 | \n",
2291 | " Esfahan | \n",
2292 | " PHD | \n",
2293 | " 68 | \n",
2294 | "
\n",
2295 | " \n",
2296 | " 2 | \n",
2297 | " person3 | \n",
2298 | " Sadeq | \n",
2299 | " 23 | \n",
2300 | " Mashhad | \n",
2301 | " MA | \n",
2302 | " 45 | \n",
2303 | "
\n",
2304 | " \n",
2305 | " 3 | \n",
2306 | " pesron4 | \n",
2307 | " Hamid | \n",
2308 | " 26 | \n",
2309 | " Tabriz | \n",
2310 | " MA | \n",
2311 | " 72 | \n",
2312 | "
\n",
2313 | " \n",
2314 | " 4 | \n",
2315 | " person5 | \n",
2316 | " Hamed | \n",
2317 | " 25 | \n",
2318 | " Qazvin | \n",
2319 | " MSC | \n",
2320 | " 54 | \n",
2321 | "
\n",
2322 | " \n",
2323 | " 5 | \n",
2324 | " peson6 | \n",
2325 | " Reza | \n",
2326 | " 30 | \n",
2327 | " Tehran | \n",
2328 | " MSC | \n",
2329 | " 66 | \n",
2330 | "
\n",
2331 | " \n",
2332 | " 6 | \n",
2333 | " person7 | \n",
2334 | " Taha | \n",
2335 | " 28 | \n",
2336 | " Babol | \n",
2337 | " MSC | \n",
2338 | " 90 | \n",
2339 | "
\n",
2340 | " \n",
2341 | " 7 | \n",
2342 | " person8 | \n",
2343 | " Amir | \n",
2344 | " 40 | \n",
2345 | " Tehran | \n",
2346 | " PHD | \n",
2347 | " 81 | \n",
2348 | "
\n",
2349 | " \n",
2350 | " 8 | \n",
2351 | " person9 | \n",
2352 | " Omid | \n",
2353 | " 35 | \n",
2354 | " Arak | \n",
2355 | " PHD | \n",
2356 | " 76 | \n",
2357 | "
\n",
2358 | " \n",
2359 | " 9 | \n",
2360 | " person10 | \n",
2361 | " Shayan | \n",
2362 | " 19 | \n",
2363 | " Mashhad | \n",
2364 | " MA | \n",
2365 | " 38 | \n",
2366 | "
\n",
2367 | " \n",
2368 | "
\n",
2369 | "
"
2370 | ],
2371 | "text/plain": [
2372 | " Unnamed: 0 Name Age City Degree Grade\n",
2373 | "0 person1 Ali 27 Tehran MSC 83\n",
2374 | "1 person2 Hosein 32 Esfahan PHD 68\n",
2375 | "2 person3 Sadeq 23 Mashhad MA 45\n",
2376 | "3 pesron4 Hamid 26 Tabriz MA 72\n",
2377 | "4 person5 Hamed 25 Qazvin MSC 54\n",
2378 | "5 peson6 Reza 30 Tehran MSC 66\n",
2379 | "6 person7 Taha 28 Babol MSC 90\n",
2380 | "7 person8 Amir 40 Tehran PHD 81\n",
2381 | "8 person9 Omid 35 Arak PHD 76\n",
2382 | "9 person10 Shayan 19 Mashhad MA 38"
2383 | ]
2384 | },
2385 | "execution_count": 37,
2386 | "metadata": {},
2387 | "output_type": "execute_result"
2388 | }
2389 | ],
2390 | "source": [
2391 | "# Row sorting.\n",
2392 | "result.sort_index(axis=0)"
2393 | ]
2394 | },
2395 | {
2396 | "cell_type": "code",
2397 | "execution_count": 38,
2398 | "metadata": {},
2399 | "outputs": [],
2400 | "source": [
2401 | "# Remove duplicate values of a column.\n",
2402 | "result.sort_values(\"Degree\", inplace=True)"
2403 | ]
2404 | },
2405 | {
2406 | "cell_type": "code",
2407 | "execution_count": 39,
2408 | "metadata": {},
2409 | "outputs": [
2410 | {
2411 | "data": {
2412 | "text/html": [
2413 | "\n",
2414 | "\n",
2427 | "
\n",
2428 | " \n",
2429 | " \n",
2430 | " | \n",
2431 | " Unnamed: 0 | \n",
2432 | " Name | \n",
2433 | " Age | \n",
2434 | " City | \n",
2435 | " Degree | \n",
2436 | " Grade | \n",
2437 | "
\n",
2438 | " \n",
2439 | " \n",
2440 | " \n",
2441 | " 2 | \n",
2442 | " person3 | \n",
2443 | " Sadeq | \n",
2444 | " 23 | \n",
2445 | " Mashhad | \n",
2446 | " MA | \n",
2447 | " 45 | \n",
2448 | "
\n",
2449 | " \n",
2450 | " 3 | \n",
2451 | " pesron4 | \n",
2452 | " Hamid | \n",
2453 | " 26 | \n",
2454 | " Tabriz | \n",
2455 | " MA | \n",
2456 | " 72 | \n",
2457 | "
\n",
2458 | " \n",
2459 | " 9 | \n",
2460 | " person10 | \n",
2461 | " Shayan | \n",
2462 | " 19 | \n",
2463 | " Mashhad | \n",
2464 | " MA | \n",
2465 | " 38 | \n",
2466 | "
\n",
2467 | " \n",
2468 | " 0 | \n",
2469 | " person1 | \n",
2470 | " Ali | \n",
2471 | " 27 | \n",
2472 | " Tehran | \n",
2473 | " MSC | \n",
2474 | " 83 | \n",
2475 | "
\n",
2476 | " \n",
2477 | " 4 | \n",
2478 | " person5 | \n",
2479 | " Hamed | \n",
2480 | " 25 | \n",
2481 | " Qazvin | \n",
2482 | " MSC | \n",
2483 | " 54 | \n",
2484 | "
\n",
2485 | " \n",
2486 | " 5 | \n",
2487 | " peson6 | \n",
2488 | " Reza | \n",
2489 | " 30 | \n",
2490 | " Tehran | \n",
2491 | " MSC | \n",
2492 | " 66 | \n",
2493 | "
\n",
2494 | " \n",
2495 | " 6 | \n",
2496 | " person7 | \n",
2497 | " Taha | \n",
2498 | " 28 | \n",
2499 | " Babol | \n",
2500 | " MSC | \n",
2501 | " 90 | \n",
2502 | "
\n",
2503 | " \n",
2504 | " 1 | \n",
2505 | " person2 | \n",
2506 | " Hosein | \n",
2507 | " 32 | \n",
2508 | " Esfahan | \n",
2509 | " PHD | \n",
2510 | " 68 | \n",
2511 | "
\n",
2512 | " \n",
2513 | " 7 | \n",
2514 | " person8 | \n",
2515 | " Amir | \n",
2516 | " 40 | \n",
2517 | " Tehran | \n",
2518 | " PHD | \n",
2519 | " 81 | \n",
2520 | "
\n",
2521 | " \n",
2522 | " 8 | \n",
2523 | " person9 | \n",
2524 | " Omid | \n",
2525 | " 35 | \n",
2526 | " Arak | \n",
2527 | " PHD | \n",
2528 | " 76 | \n",
2529 | "
\n",
2530 | " \n",
2531 | "
\n",
2532 | "
"
2533 | ],
2534 | "text/plain": [
2535 | " Unnamed: 0 Name Age City Degree Grade\n",
2536 | "2 person3 Sadeq 23 Mashhad MA 45\n",
2537 | "3 pesron4 Hamid 26 Tabriz MA 72\n",
2538 | "9 person10 Shayan 19 Mashhad MA 38\n",
2539 | "0 person1 Ali 27 Tehran MSC 83\n",
2540 | "4 person5 Hamed 25 Qazvin MSC 54\n",
2541 | "5 peson6 Reza 30 Tehran MSC 66\n",
2542 | "6 person7 Taha 28 Babol MSC 90\n",
2543 | "1 person2 Hosein 32 Esfahan PHD 68\n",
2544 | "7 person8 Amir 40 Tehran PHD 81\n",
2545 | "8 person9 Omid 35 Arak PHD 76"
2546 | ]
2547 | },
2548 | "execution_count": 39,
2549 | "metadata": {},
2550 | "output_type": "execute_result"
2551 | }
2552 | ],
2553 | "source": [
2554 | "# Display even duplicate values of a column.\n",
2555 | "result.sort_values(\"Degree\", inplace=False)"
2556 | ]
2557 | },
2558 | {
2559 | "cell_type": "code",
2560 | "execution_count": 40,
2561 | "metadata": {},
2562 | "outputs": [
2563 | {
2564 | "data": {
2565 | "text/html": [
2566 | "\n",
2567 | "\n",
2580 | "
\n",
2581 | " \n",
2582 | " \n",
2583 | " | \n",
2584 | " Unnamed: 0 | \n",
2585 | " Name | \n",
2586 | " Age | \n",
2587 | " City | \n",
2588 | " Degree | \n",
2589 | " Grade | \n",
2590 | "
\n",
2591 | " \n",
2592 | " \n",
2593 | " \n",
2594 | " 9 | \n",
2595 | " person10 | \n",
2596 | " Shayan | \n",
2597 | " 19 | \n",
2598 | " Mashhad | \n",
2599 | " MA | \n",
2600 | " 38 | \n",
2601 | "
\n",
2602 | " \n",
2603 | " 2 | \n",
2604 | " person3 | \n",
2605 | " Sadeq | \n",
2606 | " 23 | \n",
2607 | " Mashhad | \n",
2608 | " MA | \n",
2609 | " 45 | \n",
2610 | "
\n",
2611 | " \n",
2612 | " 4 | \n",
2613 | " person5 | \n",
2614 | " Hamed | \n",
2615 | " 25 | \n",
2616 | " Qazvin | \n",
2617 | " MSC | \n",
2618 | " 54 | \n",
2619 | "
\n",
2620 | " \n",
2621 | " 3 | \n",
2622 | " pesron4 | \n",
2623 | " Hamid | \n",
2624 | " 26 | \n",
2625 | " Tabriz | \n",
2626 | " MA | \n",
2627 | " 72 | \n",
2628 | "
\n",
2629 | " \n",
2630 | " 0 | \n",
2631 | " person1 | \n",
2632 | " Ali | \n",
2633 | " 27 | \n",
2634 | " Tehran | \n",
2635 | " MSC | \n",
2636 | " 83 | \n",
2637 | "
\n",
2638 | " \n",
2639 | " 6 | \n",
2640 | " person7 | \n",
2641 | " Taha | \n",
2642 | " 28 | \n",
2643 | " Babol | \n",
2644 | " MSC | \n",
2645 | " 90 | \n",
2646 | "
\n",
2647 | " \n",
2648 | " 5 | \n",
2649 | " peson6 | \n",
2650 | " Reza | \n",
2651 | " 30 | \n",
2652 | " Tehran | \n",
2653 | " MSC | \n",
2654 | " 66 | \n",
2655 | "
\n",
2656 | " \n",
2657 | " 1 | \n",
2658 | " person2 | \n",
2659 | " Hosein | \n",
2660 | " 32 | \n",
2661 | " Esfahan | \n",
2662 | " PHD | \n",
2663 | " 68 | \n",
2664 | "
\n",
2665 | " \n",
2666 | " 8 | \n",
2667 | " person9 | \n",
2668 | " Omid | \n",
2669 | " 35 | \n",
2670 | " Arak | \n",
2671 | " PHD | \n",
2672 | " 76 | \n",
2673 | "
\n",
2674 | " \n",
2675 | " 7 | \n",
2676 | " person8 | \n",
2677 | " Amir | \n",
2678 | " 40 | \n",
2679 | " Tehran | \n",
2680 | " PHD | \n",
2681 | " 81 | \n",
2682 | "
\n",
2683 | " \n",
2684 | "
\n",
2685 | "
"
2686 | ],
2687 | "text/plain": [
2688 | " Unnamed: 0 Name Age City Degree Grade\n",
2689 | "9 person10 Shayan 19 Mashhad MA 38\n",
2690 | "2 person3 Sadeq 23 Mashhad MA 45\n",
2691 | "4 person5 Hamed 25 Qazvin MSC 54\n",
2692 | "3 pesron4 Hamid 26 Tabriz MA 72\n",
2693 | "0 person1 Ali 27 Tehran MSC 83\n",
2694 | "6 person7 Taha 28 Babol MSC 90\n",
2695 | "5 peson6 Reza 30 Tehran MSC 66\n",
2696 | "1 person2 Hosein 32 Esfahan PHD 68\n",
2697 | "8 person9 Omid 35 Arak PHD 76\n",
2698 | "7 person8 Amir 40 Tehran PHD 81"
2699 | ]
2700 | },
2701 | "execution_count": 40,
2702 | "metadata": {},
2703 | "output_type": "execute_result"
2704 | }
2705 | ],
2706 | "source": [
2707 | "# Descending sort of a column.\n",
2708 | "result.sort_values(\"Age\", ascending=True)"
2709 | ]
2710 | },
2711 | {
2712 | "cell_type": "code",
2713 | "execution_count": 41,
2714 | "metadata": {},
2715 | "outputs": [
2716 | {
2717 | "data": {
2718 | "text/html": [
2719 | "\n",
2720 | "\n",
2733 | "
\n",
2734 | " \n",
2735 | " \n",
2736 | " | \n",
2737 | " Unnamed: 0 | \n",
2738 | " Name | \n",
2739 | " Age | \n",
2740 | " City | \n",
2741 | " Degree | \n",
2742 | " Grade | \n",
2743 | "
\n",
2744 | " \n",
2745 | " \n",
2746 | " \n",
2747 | " 7 | \n",
2748 | " person8 | \n",
2749 | " Amir | \n",
2750 | " 40 | \n",
2751 | " Tehran | \n",
2752 | " PHD | \n",
2753 | " 81 | \n",
2754 | "
\n",
2755 | " \n",
2756 | " 8 | \n",
2757 | " person9 | \n",
2758 | " Omid | \n",
2759 | " 35 | \n",
2760 | " Arak | \n",
2761 | " PHD | \n",
2762 | " 76 | \n",
2763 | "
\n",
2764 | " \n",
2765 | " 1 | \n",
2766 | " person2 | \n",
2767 | " Hosein | \n",
2768 | " 32 | \n",
2769 | " Esfahan | \n",
2770 | " PHD | \n",
2771 | " 68 | \n",
2772 | "
\n",
2773 | " \n",
2774 | " 5 | \n",
2775 | " peson6 | \n",
2776 | " Reza | \n",
2777 | " 30 | \n",
2778 | " Tehran | \n",
2779 | " MSC | \n",
2780 | " 66 | \n",
2781 | "
\n",
2782 | " \n",
2783 | " 6 | \n",
2784 | " person7 | \n",
2785 | " Taha | \n",
2786 | " 28 | \n",
2787 | " Babol | \n",
2788 | " MSC | \n",
2789 | " 90 | \n",
2790 | "
\n",
2791 | " \n",
2792 | " 0 | \n",
2793 | " person1 | \n",
2794 | " Ali | \n",
2795 | " 27 | \n",
2796 | " Tehran | \n",
2797 | " MSC | \n",
2798 | " 83 | \n",
2799 | "
\n",
2800 | " \n",
2801 | " 3 | \n",
2802 | " pesron4 | \n",
2803 | " Hamid | \n",
2804 | " 26 | \n",
2805 | " Tabriz | \n",
2806 | " MA | \n",
2807 | " 72 | \n",
2808 | "
\n",
2809 | " \n",
2810 | " 4 | \n",
2811 | " person5 | \n",
2812 | " Hamed | \n",
2813 | " 25 | \n",
2814 | " Qazvin | \n",
2815 | " MSC | \n",
2816 | " 54 | \n",
2817 | "
\n",
2818 | " \n",
2819 | " 2 | \n",
2820 | " person3 | \n",
2821 | " Sadeq | \n",
2822 | " 23 | \n",
2823 | " Mashhad | \n",
2824 | " MA | \n",
2825 | " 45 | \n",
2826 | "
\n",
2827 | " \n",
2828 | " 9 | \n",
2829 | " person10 | \n",
2830 | " Shayan | \n",
2831 | " 19 | \n",
2832 | " Mashhad | \n",
2833 | " MA | \n",
2834 | " 38 | \n",
2835 | "
\n",
2836 | " \n",
2837 | "
\n",
2838 | "
"
2839 | ],
2840 | "text/plain": [
2841 | " Unnamed: 0 Name Age City Degree Grade\n",
2842 | "7 person8 Amir 40 Tehran PHD 81\n",
2843 | "8 person9 Omid 35 Arak PHD 76\n",
2844 | "1 person2 Hosein 32 Esfahan PHD 68\n",
2845 | "5 peson6 Reza 30 Tehran MSC 66\n",
2846 | "6 person7 Taha 28 Babol MSC 90\n",
2847 | "0 person1 Ali 27 Tehran MSC 83\n",
2848 | "3 pesron4 Hamid 26 Tabriz MA 72\n",
2849 | "4 person5 Hamed 25 Qazvin MSC 54\n",
2850 | "2 person3 Sadeq 23 Mashhad MA 45\n",
2851 | "9 person10 Shayan 19 Mashhad MA 38"
2852 | ]
2853 | },
2854 | "execution_count": 41,
2855 | "metadata": {},
2856 | "output_type": "execute_result"
2857 | }
2858 | ],
2859 | "source": [
2860 | "# Ascending sort of a column.\n",
2861 | "result.sort_values(\"Age\", ascending=False)"
2862 | ]
2863 | },
2864 | {
2865 | "cell_type": "code",
2866 | "execution_count": null,
2867 | "metadata": {},
2868 | "outputs": [],
2869 | "source": []
2870 | },
2871 | {
2872 | "cell_type": "markdown",
2873 | "metadata": {},
2874 | "source": [
2875 | "# Using the graph for our values."
2876 | ]
2877 | },
2878 | {
2879 | "cell_type": "markdown",
2880 | "metadata": {},
2881 | "source": [
2882 | "### Install matplotlib"
2883 | ]
2884 | },
2885 | {
2886 | "cell_type": "code",
2887 | "execution_count": 42,
2888 | "metadata": {},
2889 | "outputs": [
2890 | {
2891 | "name": "stdout",
2892 | "output_type": "stream",
2893 | "text": [
2894 | "Requirement already satisfied: matplotlib in c:\\users\\user\\anaconda3\\lib\\site-packages (3.3.2)\n",
2895 | "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.3 in c:\\users\\user\\anaconda3\\lib\\site-packages (from matplotlib) (2.4.7)\n",
2896 | "Requirement already satisfied: cycler>=0.10 in c:\\users\\user\\anaconda3\\lib\\site-packages (from matplotlib) (0.10.0)\n",
2897 | "Requirement already satisfied: certifi>=2020.06.20 in c:\\users\\user\\anaconda3\\lib\\site-packages (from matplotlib) (2022.6.15)\n",
2898 | "Requirement already satisfied: pillow>=6.2.0 in c:\\users\\user\\anaconda3\\lib\\site-packages (from matplotlib) (8.0.1)\n",
2899 | "Requirement already satisfied: numpy>=1.15 in c:\\users\\user\\anaconda3\\lib\\site-packages (from matplotlib) (1.24.3)\n",
2900 | "Requirement already satisfied: python-dateutil>=2.1 in c:\\users\\user\\anaconda3\\lib\\site-packages (from matplotlib) (2.8.1)\n",
2901 | "Requirement already satisfied: kiwisolver>=1.0.1 in c:\\users\\user\\anaconda3\\lib\\site-packages (from matplotlib) (1.3.0)\n",
2902 | "Requirement already satisfied: six in c:\\users\\user\\anaconda3\\lib\\site-packages (from cycler>=0.10->matplotlib) (1.15.0)\n"
2903 | ]
2904 | }
2905 | ],
2906 | "source": [
2907 | "!pip install matplotlib"
2908 | ]
2909 | },
2910 | {
2911 | "cell_type": "code",
2912 | "execution_count": 43,
2913 | "metadata": {},
2914 | "outputs": [],
2915 | "source": [
2916 | "import matplotlib.pyplot as plt"
2917 | ]
2918 | },
2919 | {
2920 | "cell_type": "code",
2921 | "execution_count": 44,
2922 | "metadata": {},
2923 | "outputs": [
2924 | {
2925 | "data": {
2926 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAsFUlEQVR4nO3deXzU1b3/8deZLGQhy4QkBJJM2LKwZ8FgRUE261Z3WXrt9XbR2luKe/XX5da22lpbodj21nprW61V3KsVa5WwuKPZCEtCwpYFQvaN7Mmc3x8ZKCiQSTIz3/lOPs/Hg0eSSTLfz2MIb74553zOUVprhBBCmI/F6AKEEEIMjwS4EEKYlAS4EEKYlAS4EEKYlAS4EEKYlL8nLxYdHa0nTZrkyUsKIYTp5eXl1WutYz77uEcDfNKkSeTm5nrykkIIYXpKqfIzPS5DKEIIYVIS4EIIYVIS4EIIYVIS4EIIYVIS4EIIYVJOB7hSyk8pVaCUesPxcZRS6h2lVJnjrdV9ZQohhPisodyB3w4Un/Lx/UCO1joZyHF8LIQQwkOcCnClVAJwBfDHUx6+GnjK8f5TwDUurUwIYVrb9tWy+0iL0WX4PGfvwH8NfBewn/LYeK11NYDjbeyZvlEpdatSKlcplVtXVzeSWoUQJtDTZ2fNswX8158/oa6t2+hyfNqgAa6UuhKo1VrnDecCWusntNbztNbzYmI+1wkqhPAxOw41cLy7j/rjPdzz4k7sdjk0xl2cuQNfAFyllDoMbASWKKWeAWqUUhMAHG9r3ValEMI0coprGeNv4fuXT2d7aR1//vCw0SX5rEEDXGv9/7TWCVrrScAqYIvW+ibgdeBmx5fdDLzmtiqFEKagtSanpIYF06L5xkWTWTZ9PL/4Zwl7jsp4uDuMZB34w8BypVQZsNzxsRBiFCurPU5lYydLp8eilOKRG+YQGRLA2ucK6OzpN7o8nzOkANdab9NaX+l4v0FrvVRrnex42+ieEoUQZpFTPDCSuiRtYE1DVGgg61emc7C+nZ9u2mtkaT5JOjGFEC6TU1zDzInhTIgIPvnYgmnR3LpwCs/uqOCt3ccMrM73SIALIVyisb2H/Iomlk4f/7nP3b08ldnxEdz/ShHVLZ0GVOebJMCFEC6xbV8tdg1L0z7fEhLob2HDqnR6+uzc9fxO+mVpoUtIgAshXCKnuJaYsDHMjo844+enxIzlgatm8tHBBv7w7gEPV+ebJMCFECPW02fn3dI6lqbFYrGos37djVkJXDFnAuveLqWwstlzBfooCXAhxIh9eriRtu6+k6tPzkYpxc+umc348CBu31jA8e4+D1XomyTAhRAjtrm4hkB/CxcmRw/6tREhAaxfmU5lYwc/em2PB6rzXRLgQogR0VqTU1zLgqnjCAn0d+p7sidHsWbxNF7Or+K1wiNurtB3SYALIUbkQN1xKho7WHKG5YPnsnZpMpm2SH7w6m4qGzvcVJ1vkwAXQozIZkf35ZmWD56Lv5+FDasy0MAdzxfS128f9HvE6STAhRAjsqW4lukTwpkYGTz4F39GYlQID107i7zyJn6zZb8bqvNtEuBCiGFrau8ht7yRZdOHdvd9qqvT47kuI57fbCnj08OypdJQSIALIYZtW6mj+3KI49+f9eOrZ5JgDeGOjYW0dPa6qDrfJwEuhBi2nOJaoseOYc5Zui+dFRYUwIZV6Rxr7eL7r+5Ca2m1d4YEuBBiWHr77WwvrWNJWsw5uy+dlWGzctfyFN4oqublfFla6AwJcCHEsHx6qJG2rr4RD5+c6rZFU5k/OYr/eW03h+vbXfa8vkoCXAgxLDkltQT6Wbhw2uDdl87ysyjWr0wnwM/C2o0F9PTJ0sJzkQAXQgzZQPdlDV+YOo7QMc51XzprYmQwD183m6KqFtZvLnXpc/saCXAhxJAdqGvncEPHiJYPnstlsyewOjuRx7cf4MP99W65hi+QABdCDNmWkhoAFg+x+3IofnjlDCZHh3LnC4U0tfe47TpmJgEuhBiyzcW1pMWFkWANcds1QgL9eWxVBo3tPdz3cpEsLTwDCXAhxJA0d/SQV97EMheuPjmbWfER3HdpGm/vreHZTyrcfj2zkQAXQgzJ9tI6+u2aJW4a//6sry2YzEXJ0fz0jb2U1bR55JpmIQEuhBiSzcW1jAsNJD0h0iPXs1gUj66YS2igP2s3FtLV2++R65qBBLgQwmm9/Xa276tl8SBnX7pabFgQv7xxDsXVrTzy1j6PXdfbSYALIZyWe7iJ1q4+ty0fPJclaeP5rwsm8acPDrF1X63Hr++NJMCFEE7LKa4Z6L5MjjHk+vdflkbq+DDufXEndW3dhtTgTSTAhRBO21JSy/wpUYx1cfels4IC/HhsdQZtXX3c8+JO7PbRvbRQAlwI4ZSDdcc5WN/ukeWD55IaF8YPrpjO9tI6/vLhYUNrMZoEuBDCKTmOsy+XuLH70lk3nZ/EsumxPPzPEvYebTW6HMNIgAshnJJTUkPq+DASo9zXfekspRSP3DCXyJAA1m4soLNndC4tlAAXQgyqpaOXTw83sdSA1SdnExUayLoV6eyvPc6Dm/YaXY4hJMCFEIPaVlpLv1279PAGV7gwOZpvLpzC33ZU8K89x4wux+MkwIUQg9pSUktUaCDpiZFGl/I5d1+Syqz4cO57uYhjLV1Gl+NREuBCiHPq67ezbV8di1Nj8fNg96WzAv0tbFiVQXevnbteKBxVSwslwIUQ55RX3kRLZ68h3ZfOmhozlgeumsGHBxp44r2DRpfjMRLgQohzyimpJcBPcWGy686+dIcV8xK5fHYcv/rXPoqqmo0uxyMkwIUQ57S5uIbzp4wjLCjA6FLOSSnFz6+dQ2zYGNY+V0B7d5/RJbndoAGulApSSn2ilNqplNqjlPqx4/EHlFJHlFKFjj+Xu79cIYQnHapv52Bdu1c07zgjIiSA9SvTKW/s4IHX9xhdjts5cwfeDSzRWs8F0oFLlVLnOz63Xmud7vjzpruKFEIYI6d44OxLo9vnh2L+lHGsWTyNF/Oq+MfOo0aX41aDBrgecNzxYYDjz+iZ5hViFMspriVl/Fiv6L4cirVLk8mwRfK9V3dR1dRhdDlu49QYuFLKTylVCNQC72itdzg+tUYpVaSU+pNSynqW771VKZWrlMqtq6tzTdVCCLdr6ezl08ONLEkzz933CQF+FjaszKCzp59nd/juWZpOBbjWul9rnQ4kANlKqVnA74GpDAyrVAOPnuV7n9Baz9Naz4uJMWYPYSHE0L1bWkefXXv18sFzsY0LYebEcPLKm4wuxW2GtApFa90MbAMu1VrXOILdDvwfkO368oQQRskprsEaEkCG7Yy/XJtChs1KUVULvf12o0txC2dWocQopSId7wcDy4ASpdSEU77sWmC3WyoUQnhcX7+dbaXe233prKwkK529/ZRU++Zp9s4cqzEBeEop5cdA4L+gtX5DKfVXpVQ6AxOah4Fvuq1KIYRH5Vc009zR63WbVw1VZtLAbw/5FU3MTogwuBrXGzTAtdZFQMYZHv+KWyoSQhgup7gGf4tiYYp3d18OZmJEEHHhQeSVN3HzBZOMLsflpBNTCPE5OY6zL729+3IwSikykyLJr/DNiUwJcCHEacob2tlfe5ylJlw+eCaZNitVTZ3UtvreVrMS4EKI02x2nH3pTafvjMSp4+C+RgJcCHGaLSU1TIsdS9K4UKNLcYmZE8MJ9Lf45HpwCXAhxEmtXb3sONjoM3ffAGP8/ZgdH0F+RbPRpbicBLgQ4qT3Suvps2ufGf8+ISvJyq6qFrr7fOv0eglwIcRJOcU1RIYEkGmLNLoUl8q0RdLTb2fP0VajS3EpCXAhBAD9ds3WfbUsTo3F38+3oiHTsR1Avo+Ng/vW35IQYtgKKppo6ug1zeENQxEbHkSCNdjnVqJIgAshgIHlg/4WxaJU39w1NCvJSl55E1r7znEGEuBCCGBg/Dt7chThJu++PJtMm5Wa1m6OtvhOQ48EuBCCioYOymqP++TwyQm+OA4uAS6EIKfEfGdfDlXahDCCA/x8qqFHAlwIQU5xLVNjQpkU7Rvdl2cS4GdhTkIEBT40kSkBLsQo19bVy45DDabf+9sZWUlW9hxtpavXNxp6JMCFGOXeK6unt1+z1IfHv0/ItFnps2uKqlqMLsUlJMCFGOU2F9cQERxAVpJ5z7501omdCX1lHFwCXIhRrN+u2bavjotTY3yu+/JMokIDmRwd6jMNPb7/NyaEOKvCyiYa23tGxfj3CZk2K/k+0tAjAS7EKJZTXIufRbEo2Te7L88kMymShvYeKho7jC5lxCTAhRjFcoprOW+SlYgQ3+y+PJMsHxoHlwAfgq7efjp7fGP5kRCVjR3sq2nz6eadM0mODWPsGH+fGAeXAHfS8e4+Lt/wHl/7y6dGlyKES2wpGTj70pfb58/Ez6LIsEWSV95sdCkjJgHupAde38PB+nY+OthAyTHf2hRejE6bi2uYEh3KlJixRpficRk2K/uOtXK8u8/oUkZEAtwJr+88ykt5VfznF5II9LPw3I4Ko0sSYkSOd/f53NmXQ5GVZMWuYWdls9GljIgE+CAqGzv4/qu7yLRF8j9XzuCy2XG8UnBExsKFqb1fVkdPv50lPnb2pbPSEyMB8+9MKAF+Dn39du58vhCtYcOqDPz9LKzOttHW1cemXdVGlyfEsG0uriU8yJ95k3y/+/JMIoIDSBk/ljyTT2RKgJ/Db7fuJ7e8iYeunUViVAgA8ydHMSU6lOc+kWEUYU79ds3WklouTo0lYBR0X55Nps1KQUUzdrt5G3pG79/eIHIPN/JYThnXZcRzdXr8yceVUqzOtpFX3sS+Y20GVijE8OysaqahvWfUjn+fkJlkpaWzl4P1x40uZdgkwM+gpbOX2zcWkmAN4cdXz/zc56/PShiYzJS7cGFCOcU1+FkUF6eM8gA/eUJPs7GFjIAE+Gdorfn+q7s41trFhlXphJ3hfMCo0EAunRXHK/lVPrOvsBg9coprmZc0urovz2RKdCiRIQGm7siUAP+Ml/OP8EZRNXctTyHDdvYJntXZNlq7+thUJJOZwjyqmjooOdY26odPACwWRUZipKk7MiXAT3G4vp3/eW038ydHcduiqef82vOnRDFZJjOFyZzovhxNuw+eS1aSlbLa47R09BpdyrBIgDv09NlZu7GAAD8L61em42dR5/z6gcnMRHLLmyitkclMYQ45xbVMGhfCFB8++3IoToyDF1Sa8y5cAtxh/eZSiqpaePi62UyMDHbqe27ISpTJTGEa7d19fHRg4OxLpc59gzJazE2MxKLM29AjAQ58uL+ex7cfYHV2IpfNnuD090WFBvLFWXG8nCeTmcL7vVdWT0+/Xca/TxE6xp+0uHDyK5qNLmVYRn2AN7X3cOcLhUyODuWHV84Y8vevzk6ktauPN6UzU3i5LSU1hAX5c96kKKNL8SpZSVYKKproN2FDz6gOcK01971cRGN7D4+tyiAk0H/Iz/GFKeOYNC5EhlGEV7PbNVtK6liUEjOquy/PJDMpkvaeflPOZQ36N6mUClJKfaKU2qmU2qOU+rHj8Sil1DtKqTLHW9NtqvDsJxW8vbeG+y5NY1Z8xLCe40Rn5qeHmygz4Q+AGB12VjVTf7x71B3e4Iws28BvJGZcD+7Mf8XdwBKt9VwgHbhUKXU+cD+Qo7VOBnIcH5vG/to2fvrGXi5KjuZrCyaP6Lmuz0ogwE/x3CeVLqpOCNfaUlKLRcGilNFz9qWzEqOCiR4baMr14IMGuB5wYrOAAMcfDVwNPOV4/CngGncU6A7dff1857lCQgP9eXTFXCyDLBkcTPTYMXxxZhwvS2fmqNXS0ct7ZXVeuzHS5uJa5iVFYQ0NNLoUr6OUOnlSvdk4NRimlPJTShUCtcA7WusdwHitdTWA4+0Zp7aVUrcqpXKVUrl1dXUuKntkHnlrH8XVrfzyxjnEhgW55Dm/nG2jpbOXf+6WyczRpt+uufWvuXzlyU+49n8/YMfBBqNLOs2R5k6Kq1tl9ck5ZCZZOdzQQcPxbqNLGRKnAlxr3a+1TgcSgGyl1CxnL6C1fkJrPU9rPS8mxvhf37btq+XJ9w/xXxdMculm9uefmMzcIcMoo83j2w+w41Aj/zHfRk1rNyuf+Jhbn87lYJ137HL37+5LCfCzObmxlcmWEw5pOlpr3QxsAy4FapRSEwAcb2tdXZyr1bV1c8+LO0kdH8b9l6W59LktFsWqbBufHG5kf61MZo4WBRVNrHunlC/NnciD18xi6z0Xc88lKXywv55L1r/LA6/vobG9x9Aac4prSBoXwtRRePals+YkROBvUaYbB3dmFUqMUirS8X4wsAwoAV4HbnZ82c3Aa26q0SW01tz70k5au/p4bHUGQQF+Lr/GDTKZOaq0dQ1sOxwXHsSD18xCKUVwoB9rliSz9d6LWXFeIk9/dJhFv9zKE+8eMGR+pKOnjw8PNLAkLVa6L88hKMCPmRPDTbcSxZk78AnAVqVUEfApA2PgbwAPA8uVUmXAcsfHXusvHx5m2746fnDFdFLjwtxyjeixY7hEJjNHjR+9toeqpg42rEonIvj0rVljw4L42bWzeeuOhcxLsvKzN0tYtm47r+88itaem+h8v6yenj67LB90QmaSlaKqZnr77UaX4jRnVqEUaa0ztNZztNaztNY/cTzeoLVeqrVOdrxtdH+5w1Nc3crP3yxhaVosXzk/ya3X+nK2jeaOXt7afcyt1xHG+nvBEV4pOMLapcnMO0dnY8r4MP781Wye+fp8xo7xZ+1zBVz7vx+Se9gz/1xyimsJGyPdl87ItFnp6rVTUm2eIVCfb8nq7Oln7XMFRIQE8MgNc9z+a+QXpowjaVwIz0pnps+qaOjgB3/fzbwkK2sWT3Pqey5MjmbT2ot45IY5HG3u5IbHP+Jbz+RxuL7dbXXa7ZqckloWpsQQ6O/z/9RHLCtpYCIzr9xr70U/x+f/Vh96cy9ltcdZt2Iu48aOcfv1LBbFqvNsfHKokf213rEKQbhOX7+d258vQCn49ap0/IfQlu5nUayYl8i2ey/mzmUpbC+tY/n67fzkH3tp7nD9ROeuIy3UH++W1SdOmhgZTFx4kKlWovh0gL+95xjPfFzBrQuncFGy55Yw3pCVgL9FsVHuwn3OYzllFFQ089C1s0mwhgzrOUIC/bl9WTLb7rmY6zMT+MuHh1j4yFb++N5BuvtcN3eSU1yDRcHFqRLgzspKsppqItNnA/xYSxfffbmIWfHh3HNJqkevHRMmnZm+aMfBBn67dT83ZCVw1dyJI36+2PAgHr5+Dm/efhHpNisPbipm+bp32VRU7ZKJzpySWjJtVqKk+9JpGbZIjjR3UtPaZXQpTvHJALfbNXe9UEh3r50NqzIMGf9bnW2jqaOXf+2RyUxf0NLRy53PF2KLCuGBq2a69LnT4sJ5+mvZPPW1bEIC/fj2s/lc//sPR3QnWN3SyZ6jrXJ02hCdGAc3S1u9Twb4E+8d5MMDDTxw1QzDmhcumDoOW1QIz+6QYRSz01rzvb/voratmw2rMhg7ZujbDjtjUUoMm9ZexC+un01lUyfX//5Dvv1sPhUNHUN+rpzigb66ZTL+PSQzJ0YQ6G8xTUOPzwV4UVUzv/rXPi6fHceKeYmG1THQmZnIjkONHPCSlmoxPC/mVbGpqJq7LklhbmKkW6/lZ1GsPM/Gtnsu5valyWwprmXZuu08tGnvkA7e3VJSS2JUMNNipftyKAL9LcyJjzDNOLhPBXh7dx9rnysgNmwMP7/W/UsGByOTmeZ3sO44D7y+hy9MGcc3F0712HVDx/hz5/IUtt5zMddkTOSP7x9i0a+28qf3D9HTd+5Gk86efj7YX8/SNDn7cjgyk6zsPtLq0glld/GpAH/g9T2UN3awfmU6ESEBg3+Dm8WGBXHJzPG8lFdlih8GcbqePju3bywk0N/CupVz8RvhtsPDERcRxCM3zGXTdy5i1sQIfvLGXpav384/d519ovP9/fV0S/flsGXarPT029l9pNXoUgblMwH+j51HeTGvijWLpzF/yjijyznpxGSmdGaaz6Pv7GPXkRYevm4OEyKCDa1lxsRw/vr1bP781fMI9LPwrb/ls+IPH1FY2fy5r91SUsPYMf5kT5buy+HITIoEBjYq83Y+EeBVTR1879VdZNgiWbs02ehyTrNgajSJUcFyZqbJvF9Wzx+2H+TL821cOivO6HKAgYMHFqfG8s/bL+Jn187mUH071/zuA77zXAGVjQMTnXa7Jqe4loUp0dJ9OUyxYUEkRgWbYhzc9H/Dff127thYiNawYWWG1x3YeqIz8+ODjV6zP7Q4t8b2Hu56oZCpMaH88IoZRpfzOf5+Fr4838a2exfznSXTeGfvMZY+up2fv1nMRwcbqG3rdule96NRps1KfkWTRzceGw7vSrth+N3WA+SWN/HgNbOwjRteZ5y73TjPMZn5qWwz6+201nz3pSKaO3p5bHUGwYGu33bYVcaO8efuS1LZes/FfGnuRJ547yA3PbkDpWBxqvGHp5hZVpKVmtZujjR3Gl3KOZk6wPPKG9mQU8q1GfFckxFvdDlnFRsWxPIZMplpBs/sqGBzcQ33XZbGzIkRRpfjlAkRwTy6Yi7/WHMhFyXHcG1GvEf2/fFlZjmhx7QB3urYTD/eGsxPrnZtZ5w7rM620djew9t7aowuRZxFaU0bD76xl0UpMXz1gklGlzNks+IjePpr2axbkW50KaaXFhdGcICf13dkmjLAtdb84NXdVLd08euVGYQFGb9kcDAXTosmwRosnZleqqt3YNvhsCB/fnXjXCwGLBkU3sPfz8LcxAiv78g0ZYC/WnCE13ce5Y6lySf3LvB2FotidbaNjw42yGSmF3r4nyWUHGvjlzfMJSZMhh/EwDj43qOtdPZ477Cn6QK8vKGdH/59N9mTovhvJzfT9xY3Ojozn5fJTK+ypaSGv3x4mK8umMTiNNk7RAzItFnps2uKqpqNLuWsTBXgvf121m4sxM+iWL8q3ZDOuJGIDQ9i2fTxvCiTmV6jtq2Le18sIi0ujPsuTTO6HOFFMhwTmXlePIxiqgD/9eZSdlY28/D1c4iPNLYzbrhWzx+YzHxnr0xmGs1u19z9wk6Od/fxm9UZBAV475JB4XlRoYFMiQ4lv7zZ6FLOyjQB/tGBBv532wFWzkvk8tkTjC5n2C6aFk18pExmeoM/fXCI98rq+eGVM0geH2Z0OcILZSZ5d0OPKQK8uaOHO58vZPK4UP7nS97XGTcUA5OZiXx4oIFDbjzQVpzb7iMt/OKtEpbPGM9/zLcZXY7wUpk2K43tPZQPY092TzBFgP/kjb00tA9sph/qps30PenGeYn4WRQbP5W7cCN09PRx+8YCokID+cX1xm87LLzXv0+q985xcFME+F3LU1i3Ip3ZCebojBvM+PAglk2P5aXcqkH3dhau99M3ijlY3866FelyXqQ4p+TYsYSN8ffa9eCmCPAEawhfcsEhst5kdbaNBpnM9Li3dlfz3CcV3LpwCgumRRtdjvByFosi3RYpd+DidBclxwxMZn5SbnQpo0Z1Syf3vbyL2fER3L081ehyhElk2qyU1rTR1uX8kXaeIgFuED+LYtV5iXywv4HDMpnpdv12zZ3PF9Lbb2fDqnTZK1s4LTPJil3DzsoWo0v5HPkpNtCK805MZkpnprv94d0DfHywkQeumsmUGDnoVzgvPTESpfDKcXAJcAONDw9iaVosL+VVymSmGxVWNrPu7VKumDOBG7MSjC5HmExEcADJsWO9chxcAtxgq+fbqD/ew+Zimcx0h+PdA0sGx4cH8bNrZsuSQTEsWUlWCiqasNu9q6FHAtxgCx2TmXJmpnv86LU9VDZ2sH5lOhEh3r/tsPBOGTYrrV19HPCynUQlwA3mZ1GsPC+R98rqKW8wz2Tm0eZOvvvSTh59ex+5hxvp6/e+IaDXCo/wcn4Va5YkywntYkRONPR42zi4+dsafcCKeYlsyClj46eVptgRL7+iiVufzqOtq5fefju/2bKfsCB/FkyNZmFKDAtTokmwGns+aWVjBz94dTeZtkjWLjHXtsPC+0yJDiUyJIC88iZWnuc9Wy9IgHuBuIgglqTF8mJuJXcuS/HqJW6vFR7h3peKiAsP4rlb5hMbFsQHB+p5t7SO7aV1vLXnGABTY0IdYR7D+ZPHefRw4L5+O3c8XwjAhlUZ+Pt57+spzEEp5TipvtnoUk4jAe4lvpxt4529NeQU13CZF+62aLdr1r1Tym+37id7chSP35R1sg398tkTuHz2BLTW7K89zvbSOt4tq+fZHRX8+YPDBPpbmD85ioXJA4GeMn6sWycTf7NlP3nlTWxYlU5ilLG/CQjfkWmLZEtJLc0dPUSGeMcWDBLgXmJhSgwTI4J49pMKrwvwjp4+7np+J2/tOcbKeYn89JpZZ/wtQSlF8vgwkseH8Y2LptDV28+OQ428W1rHu6V1PPRmMQ+9WUxceBALUwaGWy6cFu3SfwyfHm7kN1vKuC4znqvT4132vEJkOsbBCyqbWZzqHSc3SYB7iYHJTBvrN5dS0dCBbZx33DlWt3Tyjady2Vvdyg+umM7XL5zs9N1zUIAfi1JiWJQSAwxMfL5bWse7ZXW8tfsYL+RWYVEwJyGSRY7hlrkJEcMe8mjp7OWOjYUkWEP4ydWzhvUcQpzN3IRILAoKypskwMXnrTgvgQ05pWz8tILvesFkZmFlM7c8nUtnTz9P3jyPJWnjR/R8EyODWZVtY1W2jb5+OzurWgaGW0rreGxLGRtyyggP8ufC5OiTgT4hwrmTl7TWfO/VXdS0dvHSty5grA9sOyy8S+gYf6ZPCPeqI9YG/SlXSiUCTwNxgB14Qmu9QSn1AHALUOf40u9prd90V6GjwYSIYJakjeeF3CruXJ5CgIGTb6/vPMq9L+4kJmwMz3x9Pqlxrj2xxt/PQlaSlawkK3ctT6G5o4f399ezfd/AHfqbuwYmQ5Njx7LQcRefPTnqrMeevZRXxaaiau79YirpiZEurVWIEzJtVl7Jr6Lfrr3iTF5nblP6gLu11vlKqTAgTyn1juNz67XWv3JfeaPPl+cnsrl4YDLz0lmeHwu32zW/zinjsZwyzptk5fGbshg3dozbrxsZEsiVcyZy5ZyJaK0prTl+cmXLXz8u58n3DzHG38L8KeNY6LhDnxY7MBl6qL6dH72+h/OnRHHboqlur1WMXllJVv76cTn7jrUxY2K40eUMHuBa62qg2vF+m1KqGJDZITdZlBLLhIggnv2k0uMB3tnTzz0v7mTTrmpuzErgwWtnMcbf8wf9KqVIjQsjNS6MWxZOobOnn48PNZwM9Ac3FfPgpmImRgSxMCWGoqoWAvwsrF+Z7hV3RcJ3Zdr+3dBjigA/lVJqEpAB7AAWAGuUUv8J5DJwl/65wSGl1K3ArQA2m/csgPdWJzozN+SUUdnY4bFlcMdaurjl6Vx2H23he5encctFU7xm35DgQD8Wp8aenDiqaurg3dKBteebiqpp6+7j8ZsynR4vF2K4EqOCiR47hvzyJm46P8noclDOnraslBoLbAce0lq/opQaD9QDGvgpMEFr/bVzPce8efN0bm7uCEv2fdUtnSx4eAvfungq937R/ZOZRVXNfOOpXNq7+9iwKoNlM0Y2WelJvf126tq6mRgp4S0849ancymtaWPbvYs9dk2lVJ7Wet5nH3dqlkwpFQC8DPxNa/0KgNa6Rmvdr7W2A/8HZLuy4NFsYDIzlhdyq+h18x4jbxQdZcUfPiLAz8LL/32BqcIbIMDPIuEtPCorycrhhg7qj3cbXcrgAa4Gfo9+EijWWq875fFTB2ivBXa7vrzRa3W2jbq2bnKKa93y/FprNmwuY82zBcycGMFraxaQFmf8mJ4Q3u5kQ48XtNU7cwe+APgKsEQpVej4cznwiFJql1KqCFgM3OnOQkebRSkxTIgIcss2s129/azdWMj6zaVclxnPs7fMJ9oDK02E8AWz4yMI8FNeccCDM6tQ3gfONJsla77dyN/Pwop5iTy2xbWTmTWtXdz6dC5FR1q4/7I0vrnQeyYrhTCDoAA/ZkyM8IqtZWWbNi+28rxEFPC8i87M3H2khat/+wFltcf5w01Z3LZoqoS3EMOQZbNSVNXs9jmqwUiAe7GJkcEsTo3lhdzKEf+g/HNXNTc8/iEWBS/ddgGXzIxzUZVCjD6ZSZF09doprm41tA4JcC+3OttGbVs3W0qGN5mpteY3OWV862/5TJ8Qzt/XLPCKBgQhzOzECT1Gj4NLgHu5i1NjBg5PGMZkZldvP3c8X8ij75RybUY8z91yPrFhQW6oUojRZUJEMBMiggw/4EEC3Mv5+1lYcV4i20vrqGrqcPr7atu6WPXEx7xWeJR7v5jKuhVzz7oRlBBi6DKTrOTLHbgYzFAnM/ccbeGa337AvmNtPH5TFt9ePE0mK4VwsUyblSPNnRxr6TKsBglwE4iPDObi1Fie/7Ry0NPf/7XnGDf8/iM08OJtX+DSWTJZKYQ7eMNJ9RLgJjHYZKbWmt9t3c83/5pHalwYr317AbPiIzxcpRCjx4wJ4Yzxtxg6jCIBbhKLU2MYHz7mjJOZXb393PXCTn75r31cNXciG289n9hwmawUwp0C/S3Mjo8w9IQeCXCT8PezsHJeIttK6zjS3Hny8bq2br78fx/zasER7rkkhQ2r0mWyUggPyUqysudIK129/YZcXwLcRFaclwjA84678L1HW7nmdx+wt7qV3/9HJmuWJMtkpRAelGGz0tNvZ8/RFkOuLwFuIgnWEC5OieH53Ere2j3QWdlv17x02wVcNtvzx68JMdplJkUCkF/ebMj1JcBNZnW2jZrWbm57Jp/k2LG8tkYmK4UwSmxYEIlRwYZ1ZA7pSDVhvCVpscyOj2Ba7Fh+ft1sGe8WwmBZNisfHGhAa+3xIUwJcJPx97Pwj+9caHQZQgiHzCQrfy88SlVTp8fOsD1BhlCEEGIETj2p3tMkwIUQYgTS4sIICfQzpKFHAlwIIUbA38/C3IRIQ3YmlAAXQogRykyKZG91Kx09fR69rgS4EEKMUFaSlX67pqjKsw09EuBCCDFCGYnGnNAjAS6EECNkDQ1kSkwoBR5eiSIBLoQQLpBps5Jf0YzW2mPXlAAXQggXyEqy0tjew+EG548+HCkJcCGEcIETDT2eHAeXABdCCBdIjh1L2Bh/j3ZkSoALIYQLWCyKdFukRzsyJcCFEMJFspKs7Ktpo62r1yPXkwAXQggXybRZ0Rp2VnqmoUcCXAghXCTdFolSnpvIlAAXQggXCQ8KICU2zGMTmRLgQgjhQplJVvIrmrDb3d/QIwEuhBAulGmLpK2rjwN1x91+LQlwIYRwoawkzzX0SIALIYQLTY4OxRoS4JFxcAlwIYRwIaUUmTar3IELIYQZZSZZOVDXTnNHj1uvIwEuhBAudmJjqwI3n5M5aIArpRKVUluVUsVKqT1Kqdsdj0cppd5RSpU53lrdWqkQQpjE3MQI/CzK7ePgztyB9wF3a62nA+cD31ZKzQDuB3K01slAjuNjIYQY9UIC/UmLC3P7OPigAa61rtZa5zvebwOKgXjgauApx5c9BVzjphqFEMJ0spKs7Kxspq/f7rZrDGkMXCk1CcgAdgDjtdbVMBDyQKzLqxNCCJPKtFlp7+lnX02b267hdIArpcYCLwN3aK1bh/B9tyqlcpVSuXV1dcOpUQghTOdEQ0++GycynQpwpVQAA+H9N631K46Ha5RSExyfnwDUnul7tdZPaK3naa3nxcTEuKJmIYTwegnWYKLHjnHrAQ/OrEJRwJNAsdZ63Smfeh242fH+zcBrri9PCCHMSSlFVlKkW1eiOHMHvgD4CrBEKVXo+HM58DCwXClVBix3fCyEEMIh02alvKGD+uPdbnl+/8G+QGv9PqDO8umlri1HCCF8x8lx8PImLpkZ5/Lnl05MIYRwk1nxEQT4KfLcNIwiAS6EEG4SFODHzIkRFJQ3u+X5JcCFEMKNMm1WdlY109Pn+oYeCXAhhHCjrCQr3X12iqudbp9xmgS4EEK4UVaSlWXTx6POthRkBAZdhSKEEGL44iKC+OPN89zy3HIHLoQQJiUBLoQQJiUBLoQQJiUBLoQQJiUBLoQQJiUBLoQQJiUBLoQQJiUBLoQQJqW01p67mFJ1QPkwvz0aqHdhOWYnr8e/yWtxOnk9TucLr0eS1vpzR5p5NMBHQimVq7V2TzuTCcnr8W/yWpxOXo/T+fLrIUMoQghhUhLgQghhUmYK8CeMLsDLyOvxb/JanE5ej9P57OthmjFwIYQQpzPTHbgQQohTSIALIYRJmSLAlVKXKqX2KaX2K6XuN7oeoyilEpVSW5VSxUqpPUqp242uyRsopfyUUgVKqTeMrsVoSqlIpdRLSqkSx8/JF4yuyShKqTsd/052K6WeU0oFGV2Tq3l9gCul/IDfAZcBM4DVSqkZxlZlmD7gbq31dOB84Nuj+LU41e1AsdFFeIkNwFta6zRgLqP0dVFKxQNrgXla61mAH7DK2Kpcz+sDHMgG9mutD2qte4CNwNUG12QIrXW11jrf8X4bA/84442tylhKqQTgCuCPRtdiNKVUOLAQeBJAa92jtW42tChj+QPBSil/IAQ4anA9LmeGAI8HKk/5uIpRHloASqlJQAaww+BSjPZr4LuA3eA6vMEUoA74s2NI6Y9KqVCjizKC1voI8CugAqgGWrTWbxtbleuZIcDPdJbzqF77qJQaC7wM3KG1bjW6HqMopa4EarXWeUbX4iX8gUzg91rrDKAdGJVzRkopKwO/qU8GJgKhSqmbjK3K9cwQ4FVA4ikfJ+CDvwo5SykVwEB4/01r/YrR9RhsAXCVUuowA0NrS5RSzxhbkqGqgCqt9Ynfyl5iINBHo2XAIa11nda6F3gFuMDgmlzODAH+KZCslJqslApkYCLidYNrMoRSSjEwvlmstV5ndD1G01r/P611gtZ6EgM/F1u01j53l+UsrfUxoFIplep4aCmw18CSjFQBnK+UCnH8u1mKD07o+htdwGC01n1KqTXAvxiYSf6T1nqPwWUZZQHwFWCXUqrQ8dj3tNZvGleS8DLfAf7muNk5CHzV4HoMobXeoZR6CchnYPVWAT7YUi+t9EIIYVJmGEIRQghxBhLgQghhUhLgQghhUhLgQghhUhLgQghhUhLgQghhUhLgQghhUv8ftTb0NcUa6ukAAAAASUVORK5CYII=\n",
2927 | "text/plain": [
2928 | ""
2929 | ]
2930 | },
2931 | "metadata": {
2932 | "needs_background": "light"
2933 | },
2934 | "output_type": "display_data"
2935 | }
2936 | ],
2937 | "source": [
2938 | "result = pd.read_csv(\"Data.csv\")\n",
2939 | "result[\"Age\"].plot()\n",
2940 | "plt.show()"
2941 | ]
2942 | },
2943 | {
2944 | "cell_type": "code",
2945 | "execution_count": null,
2946 | "metadata": {},
2947 | "outputs": [],
2948 | "source": []
2949 | },
2950 | {
2951 | "cell_type": "code",
2952 | "execution_count": 45,
2953 | "metadata": {},
2954 | "outputs": [],
2955 | "source": [
2956 | "#My datas\n",
2957 | "data1 = {\n",
2958 | " \"Name\":[\"ashkan\",\"ali\",\"mamad\"],\n",
2959 | " \"Score\":[100,39,55],\n",
2960 | " \"Quality\":[\"High\",\"Low\",\"Mid\"]\n",
2961 | "}\n",
2962 | "data2 = {\n",
2963 | " \"Name\":[\"ashkan\",\"ali\",\"mamad\"],\n",
2964 | " \"Score\":[95,70,22],\n",
2965 | " \"Quality\":[\"High\",\"Mid\",\"Low\"]\n",
2966 | "}\n",
2967 | "\n",
2968 | "result1 = pd.DataFrame(data1)\n",
2969 | "result2 = pd.DataFrame(data2)"
2970 | ]
2971 | },
2972 | {
2973 | "cell_type": "code",
2974 | "execution_count": 46,
2975 | "metadata": {},
2976 | "outputs": [
2977 | {
2978 | "data": {
2979 | "text/html": [
2980 | "\n",
2981 | "\n",
2994 | "
\n",
2995 | " \n",
2996 | " \n",
2997 | " | \n",
2998 | " Name | \n",
2999 | " Score_x | \n",
3000 | " Quality_x | \n",
3001 | " Score_y | \n",
3002 | " Quality_y | \n",
3003 | "
\n",
3004 | " \n",
3005 | " \n",
3006 | " \n",
3007 | " 0 | \n",
3008 | " ashkan | \n",
3009 | " 100 | \n",
3010 | " High | \n",
3011 | " 95 | \n",
3012 | " High | \n",
3013 | "
\n",
3014 | " \n",
3015 | " 1 | \n",
3016 | " ali | \n",
3017 | " 39 | \n",
3018 | " Low | \n",
3019 | " 70 | \n",
3020 | " Mid | \n",
3021 | "
\n",
3022 | " \n",
3023 | " 2 | \n",
3024 | " mamad | \n",
3025 | " 55 | \n",
3026 | " Mid | \n",
3027 | " 22 | \n",
3028 | " Low | \n",
3029 | "
\n",
3030 | " \n",
3031 | "
\n",
3032 | "
"
3033 | ],
3034 | "text/plain": [
3035 | " Name Score_x Quality_x Score_y Quality_y\n",
3036 | "0 ashkan 100 High 95 High\n",
3037 | "1 ali 39 Low 70 Mid\n",
3038 | "2 mamad 55 Mid 22 Low"
3039 | ]
3040 | },
3041 | "execution_count": 46,
3042 | "metadata": {},
3043 | "output_type": "execute_result"
3044 | }
3045 | ],
3046 | "source": [
3047 | "# Revision of additional values.\n",
3048 | "pd.merge(result1, result2, on=\"Name\")"
3049 | ]
3050 | },
3051 | {
3052 | "cell_type": "code",
3053 | "execution_count": 47,
3054 | "metadata": {},
3055 | "outputs": [
3056 | {
3057 | "data": {
3058 | "text/html": [
3059 | "\n",
3060 | "\n",
3073 | "
\n",
3074 | " \n",
3075 | " \n",
3076 | " | \n",
3077 | " Score_left | \n",
3078 | " Quality_left | \n",
3079 | " Score | \n",
3080 | " Quality | \n",
3081 | "
\n",
3082 | " \n",
3083 | " Name | \n",
3084 | " | \n",
3085 | " | \n",
3086 | " | \n",
3087 | " | \n",
3088 | "
\n",
3089 | " \n",
3090 | " \n",
3091 | " \n",
3092 | " ashkan | \n",
3093 | " 100 | \n",
3094 | " High | \n",
3095 | " 95 | \n",
3096 | " High | \n",
3097 | "
\n",
3098 | " \n",
3099 | " ali | \n",
3100 | " 39 | \n",
3101 | " Low | \n",
3102 | " 70 | \n",
3103 | " Mid | \n",
3104 | "
\n",
3105 | " \n",
3106 | " mamad | \n",
3107 | " 55 | \n",
3108 | " Mid | \n",
3109 | " 22 | \n",
3110 | " Low | \n",
3111 | "
\n",
3112 | " \n",
3113 | "
\n",
3114 | "
"
3115 | ],
3116 | "text/plain": [
3117 | " Score_left Quality_left Score Quality\n",
3118 | "Name \n",
3119 | "ashkan 100 High 95 High\n",
3120 | "ali 39 Low 70 Mid\n",
3121 | "mamad 55 Mid 22 Low"
3122 | ]
3123 | },
3124 | "execution_count": 47,
3125 | "metadata": {},
3126 | "output_type": "execute_result"
3127 | }
3128 | ],
3129 | "source": [
3130 | "# Connect two data.\n",
3131 | "result1.set_index(\"Name\", inplace=True)\n",
3132 | "result2.set_index(\"Name\", inplace=True)\n",
3133 | "\n",
3134 | "result1.join(result2, lsuffix=\"_left\")"
3135 | ]
3136 | },
3137 | {
3138 | "cell_type": "code",
3139 | "execution_count": 48,
3140 | "metadata": {},
3141 | "outputs": [
3142 | {
3143 | "name": "stdout",
3144 | "output_type": "stream",
3145 | "text": [
3146 | " Name Score_x Quality_x Score_y Quality_y\n",
3147 | "0 ashkan 100 High 95 High\n"
3148 | ]
3149 | }
3150 | ],
3151 | "source": [
3152 | "# Find identical values of a column.\n",
3153 | "\n",
3154 | "#My datas\n",
3155 | "data1 = {\n",
3156 | " \"Name\":[\"ashkan\",\"majid\",\"sara\"],\n",
3157 | " \"Score\":[100,39,55],\n",
3158 | " \"Quality\":[\"High\",\"Low\",\"Mid\"]\n",
3159 | "}\n",
3160 | "data2 = {\n",
3161 | " \"Name\":[\"ashkan\",\"ali\",\"mamad\"],\n",
3162 | " \"Score\":[95,70,22],\n",
3163 | " \"Quality\":[\"High\",\"Mid\",\"Low\"]\n",
3164 | "}\n",
3165 | "\n",
3166 | "result1 = pd.DataFrame(data1)\n",
3167 | "result2 = pd.DataFrame(data2)\n",
3168 | "\n",
3169 | "final = pd.merge(result1, result2, on=\"Name\")\n",
3170 | "print(final)"
3171 | ]
3172 | },
3173 | {
3174 | "cell_type": "code",
3175 | "execution_count": 49,
3176 | "metadata": {},
3177 | "outputs": [],
3178 | "source": [
3179 | "# Participating in two data or not participating in two data."
3180 | ]
3181 | },
3182 | {
3183 | "cell_type": "code",
3184 | "execution_count": 50,
3185 | "metadata": {},
3186 | "outputs": [
3187 | {
3188 | "data": {
3189 | "text/html": [
3190 | "\n",
3191 | "\n",
3204 | "
\n",
3205 | " \n",
3206 | " \n",
3207 | " | \n",
3208 | " Name | \n",
3209 | " Score_x | \n",
3210 | " Quality_x | \n",
3211 | " Score_y | \n",
3212 | " Quality_y | \n",
3213 | "
\n",
3214 | " \n",
3215 | " \n",
3216 | " \n",
3217 | " 0 | \n",
3218 | " ashkan | \n",
3219 | " 100 | \n",
3220 | " High | \n",
3221 | " 95.0 | \n",
3222 | " High | \n",
3223 | "
\n",
3224 | " \n",
3225 | " 1 | \n",
3226 | " majid | \n",
3227 | " 39 | \n",
3228 | " Low | \n",
3229 | " NaN | \n",
3230 | " NaN | \n",
3231 | "
\n",
3232 | " \n",
3233 | " 2 | \n",
3234 | " sara | \n",
3235 | " 55 | \n",
3236 | " Mid | \n",
3237 | " NaN | \n",
3238 | " NaN | \n",
3239 | "
\n",
3240 | " \n",
3241 | "
\n",
3242 | "
"
3243 | ],
3244 | "text/plain": [
3245 | " Name Score_x Quality_x Score_y Quality_y\n",
3246 | "0 ashkan 100 High 95.0 High\n",
3247 | "1 majid 39 Low NaN NaN\n",
3248 | "2 sara 55 Mid NaN NaN"
3249 | ]
3250 | },
3251 | "execution_count": 50,
3252 | "metadata": {},
3253 | "output_type": "execute_result"
3254 | }
3255 | ],
3256 | "source": [
3257 | "#left\n",
3258 | "final = pd.merge(result1, result2, on=\"Name\", how=\"left\")\n",
3259 | "final"
3260 | ]
3261 | },
3262 | {
3263 | "cell_type": "code",
3264 | "execution_count": 51,
3265 | "metadata": {},
3266 | "outputs": [
3267 | {
3268 | "data": {
3269 | "text/html": [
3270 | "\n",
3271 | "\n",
3284 | "
\n",
3285 | " \n",
3286 | " \n",
3287 | " | \n",
3288 | " Name | \n",
3289 | " Score_x | \n",
3290 | " Quality_x | \n",
3291 | " Score_y | \n",
3292 | " Quality_y | \n",
3293 | "
\n",
3294 | " \n",
3295 | " \n",
3296 | " \n",
3297 | " 0 | \n",
3298 | " ashkan | \n",
3299 | " 100.0 | \n",
3300 | " High | \n",
3301 | " 95 | \n",
3302 | " High | \n",
3303 | "
\n",
3304 | " \n",
3305 | " 1 | \n",
3306 | " ali | \n",
3307 | " NaN | \n",
3308 | " NaN | \n",
3309 | " 70 | \n",
3310 | " Mid | \n",
3311 | "
\n",
3312 | " \n",
3313 | " 2 | \n",
3314 | " mamad | \n",
3315 | " NaN | \n",
3316 | " NaN | \n",
3317 | " 22 | \n",
3318 | " Low | \n",
3319 | "
\n",
3320 | " \n",
3321 | "
\n",
3322 | "
"
3323 | ],
3324 | "text/plain": [
3325 | " Name Score_x Quality_x Score_y Quality_y\n",
3326 | "0 ashkan 100.0 High 95 High\n",
3327 | "1 ali NaN NaN 70 Mid\n",
3328 | "2 mamad NaN NaN 22 Low"
3329 | ]
3330 | },
3331 | "execution_count": 51,
3332 | "metadata": {},
3333 | "output_type": "execute_result"
3334 | }
3335 | ],
3336 | "source": [
3337 | "#right\n",
3338 | "final = pd.merge(result1, result2, on=\"Name\", how=\"right\")\n",
3339 | "final"
3340 | ]
3341 | },
3342 | {
3343 | "cell_type": "code",
3344 | "execution_count": 52,
3345 | "metadata": {},
3346 | "outputs": [
3347 | {
3348 | "data": {
3349 | "text/html": [
3350 | "\n",
3351 | "\n",
3364 | "
\n",
3365 | " \n",
3366 | " \n",
3367 | " | \n",
3368 | " Name | \n",
3369 | " Score_x | \n",
3370 | " Quality_x | \n",
3371 | " Score_y | \n",
3372 | " Quality_y | \n",
3373 | "
\n",
3374 | " \n",
3375 | " \n",
3376 | " \n",
3377 | " 0 | \n",
3378 | " ashkan | \n",
3379 | " 100.0 | \n",
3380 | " High | \n",
3381 | " 95.0 | \n",
3382 | " High | \n",
3383 | "
\n",
3384 | " \n",
3385 | " 1 | \n",
3386 | " majid | \n",
3387 | " 39.0 | \n",
3388 | " Low | \n",
3389 | " NaN | \n",
3390 | " NaN | \n",
3391 | "
\n",
3392 | " \n",
3393 | " 2 | \n",
3394 | " sara | \n",
3395 | " 55.0 | \n",
3396 | " Mid | \n",
3397 | " NaN | \n",
3398 | " NaN | \n",
3399 | "
\n",
3400 | " \n",
3401 | " 3 | \n",
3402 | " ali | \n",
3403 | " NaN | \n",
3404 | " NaN | \n",
3405 | " 70.0 | \n",
3406 | " Mid | \n",
3407 | "
\n",
3408 | " \n",
3409 | " 4 | \n",
3410 | " mamad | \n",
3411 | " NaN | \n",
3412 | " NaN | \n",
3413 | " 22.0 | \n",
3414 | " Low | \n",
3415 | "
\n",
3416 | " \n",
3417 | "
\n",
3418 | "
"
3419 | ],
3420 | "text/plain": [
3421 | " Name Score_x Quality_x Score_y Quality_y\n",
3422 | "0 ashkan 100.0 High 95.0 High\n",
3423 | "1 majid 39.0 Low NaN NaN\n",
3424 | "2 sara 55.0 Mid NaN NaN\n",
3425 | "3 ali NaN NaN 70.0 Mid\n",
3426 | "4 mamad NaN NaN 22.0 Low"
3427 | ]
3428 | },
3429 | "execution_count": 52,
3430 | "metadata": {},
3431 | "output_type": "execute_result"
3432 | }
3433 | ],
3434 | "source": [
3435 | "# Total data\n",
3436 | "final = pd.merge(result1, result2, on=\"Name\", how=\"outer\")\n",
3437 | "final"
3438 | ]
3439 | },
3440 | {
3441 | "cell_type": "code",
3442 | "execution_count": 53,
3443 | "metadata": {},
3444 | "outputs": [
3445 | {
3446 | "data": {
3447 | "text/html": [
3448 | "\n",
3449 | "\n",
3462 | "
\n",
3463 | " \n",
3464 | " \n",
3465 | " | \n",
3466 | " Name | \n",
3467 | " Score | \n",
3468 | " Quality | \n",
3469 | "
\n",
3470 | " \n",
3471 | " \n",
3472 | " \n",
3473 | " 0 | \n",
3474 | " ashkan | \n",
3475 | " 100 | \n",
3476 | " High | \n",
3477 | "
\n",
3478 | " \n",
3479 | " 1 | \n",
3480 | " majid | \n",
3481 | " 39 | \n",
3482 | " Low | \n",
3483 | "
\n",
3484 | " \n",
3485 | " 2 | \n",
3486 | " sara | \n",
3487 | " 55 | \n",
3488 | " Mid | \n",
3489 | "
\n",
3490 | " \n",
3491 | " 0 | \n",
3492 | " ashkan | \n",
3493 | " 95 | \n",
3494 | " High | \n",
3495 | "
\n",
3496 | " \n",
3497 | " 1 | \n",
3498 | " ali | \n",
3499 | " 70 | \n",
3500 | " Mid | \n",
3501 | "
\n",
3502 | " \n",
3503 | " 2 | \n",
3504 | " mamad | \n",
3505 | " 22 | \n",
3506 | " Low | \n",
3507 | "
\n",
3508 | " \n",
3509 | "
\n",
3510 | "
"
3511 | ],
3512 | "text/plain": [
3513 | " Name Score Quality\n",
3514 | "0 ashkan 100 High\n",
3515 | "1 majid 39 Low\n",
3516 | "2 sara 55 Mid\n",
3517 | "0 ashkan 95 High\n",
3518 | "1 ali 70 Mid\n",
3519 | "2 mamad 22 Low"
3520 | ]
3521 | },
3522 | "execution_count": 53,
3523 | "metadata": {},
3524 | "output_type": "execute_result"
3525 | }
3526 | ],
3527 | "source": [
3528 | "# Concatenate two data\n",
3529 | "final = pd.concat([result1, result2])\n",
3530 | "final"
3531 | ]
3532 | },
3533 | {
3534 | "cell_type": "code",
3535 | "execution_count": null,
3536 | "metadata": {},
3537 | "outputs": [],
3538 | "source": []
3539 | },
3540 | {
3541 | "cell_type": "code",
3542 | "execution_count": 54,
3543 | "metadata": {},
3544 | "outputs": [
3545 | {
3546 | "data": {
3547 | "text/plain": [
3548 | "{'ashkan': [0], 'majid': [1], 'sara': [2]}"
3549 | ]
3550 | },
3551 | "execution_count": 54,
3552 | "metadata": {},
3553 | "output_type": "execute_result"
3554 | }
3555 | ],
3556 | "source": [
3557 | "# It says in which lines that value exists.\n",
3558 | "\n",
3559 | "#My datas\n",
3560 | "data = {\n",
3561 | " \"Name\":[\"ashkan\",\"majid\",\"sara\"],\n",
3562 | " \"Score\":[100,39,55],\n",
3563 | " \"Quality\":[\"High\",\"Low\",\"Mid\"]\n",
3564 | "}\n",
3565 | "\n",
3566 | "result = pd.DataFrame(data)\n",
3567 | "\n",
3568 | "group = result.groupby(\"Name\")\n",
3569 | "group.groups"
3570 | ]
3571 | },
3572 | {
3573 | "cell_type": "code",
3574 | "execution_count": 55,
3575 | "metadata": {},
3576 | "outputs": [
3577 | {
3578 | "name": "stdout",
3579 | "output_type": "stream",
3580 | "text": [
3581 | " Name Score Quality\n",
3582 | "0 ashkan 100 High\n",
3583 | "1 majid 39 Low\n",
3584 | "2 sara 55 Mid \n",
3585 | "\n"
3586 | ]
3587 | },
3588 | {
3589 | "data": {
3590 | "text/plain": [
3591 | "{False: [1, 2], True: [0]}"
3592 | ]
3593 | },
3594 | "execution_count": 55,
3595 | "metadata": {},
3596 | "output_type": "execute_result"
3597 | }
3598 | ],
3599 | "source": [
3600 | "# Compare columns based on true or false.\n",
3601 | "# We are looking for the name column that has the name \"ashkan\" in it\n",
3602 | "\n",
3603 | "print(result, \"\\n\")\n",
3604 | "\n",
3605 | "def checker(name):\n",
3606 | " if result.loc[name].Name == \"ashkan\":\n",
3607 | " return True\n",
3608 | " else:\n",
3609 | " return False\n",
3610 | "\n",
3611 | "result.groupby(checker).groups"
3612 | ]
3613 | },
3614 | {
3615 | "cell_type": "code",
3616 | "execution_count": 56,
3617 | "metadata": {},
3618 | "outputs": [
3619 | {
3620 | "data": {
3621 | "text/html": [
3622 | "\n",
3623 | "\n",
3636 | "
\n",
3637 | " \n",
3638 | " \n",
3639 | " | \n",
3640 | " Score | \n",
3641 | "
\n",
3642 | " \n",
3643 | " Name | \n",
3644 | " | \n",
3645 | "
\n",
3646 | " \n",
3647 | " \n",
3648 | " \n",
3649 | " ashkan | \n",
3650 | " 274 | \n",
3651 | "
\n",
3652 | " \n",
3653 | " majid | \n",
3654 | " 143 | \n",
3655 | "
\n",
3656 | " \n",
3657 | " sara | \n",
3658 | " 140 | \n",
3659 | "
\n",
3660 | " \n",
3661 | "
\n",
3662 | "
"
3663 | ],
3664 | "text/plain": [
3665 | " Score\n",
3666 | "Name \n",
3667 | "ashkan 274\n",
3668 | "majid 143\n",
3669 | "sara 140"
3670 | ]
3671 | },
3672 | "execution_count": 56,
3673 | "metadata": {},
3674 | "output_type": "execute_result"
3675 | }
3676 | ],
3677 | "source": [
3678 | "# Apply the function on each of our cells.\n",
3679 | "\n",
3680 | "# My data\n",
3681 | "data = {\n",
3682 | " \"Name\":[\"ashkan\", \"ashkan\", \"ashkan\", \"majid\", \"majid\",\"majid\", \"sara\", \"sara\"],\n",
3683 | " \"Score\":[100, 79, 95, 99, 12, 32 ,52, 88],\n",
3684 | " \"Quality\":[\"High\", \"Low\", \"Mid\", \"Low\", \"High\", \"Low\", \"Mid\", \"Low\"]\n",
3685 | "}\n",
3686 | "\n",
3687 | "result = pd.DataFrame(data)\n",
3688 | "\n",
3689 | "group = result.groupby(\"Name\")\n",
3690 | "\n",
3691 | "group.agg(sum)"
3692 | ]
3693 | },
3694 | {
3695 | "cell_type": "code",
3696 | "execution_count": 57,
3697 | "metadata": {},
3698 | "outputs": [
3699 | {
3700 | "name": "stdout",
3701 | "output_type": "stream",
3702 | "text": [
3703 | "This is for ashkan\n",
3704 | " Name Score Quality\n",
3705 | "0 ashkan 100 High\n",
3706 | "1 ashkan 79 Low\n",
3707 | "2 ashkan 95 Mid \n",
3708 | "\n",
3709 | "This is for majid\n",
3710 | " Name Score Quality\n",
3711 | "3 majid 99 Low\n",
3712 | "4 majid 12 High\n",
3713 | "5 majid 32 Low \n",
3714 | "\n",
3715 | "This is for sara\n",
3716 | " Name Score Quality\n",
3717 | "6 sara 52 Mid\n",
3718 | "7 sara 88 Low \n",
3719 | "\n"
3720 | ]
3721 | }
3722 | ],
3723 | "source": [
3724 | "# to split\n",
3725 | "for name, data in result.groupby(\"Name\"):\n",
3726 | " print(f\"This is for {name}\")\n",
3727 | " print(data, \"\\n\")"
3728 | ]
3729 | },
3730 | {
3731 | "cell_type": "code",
3732 | "execution_count": 58,
3733 | "metadata": {},
3734 | "outputs": [
3735 | {
3736 | "data": {
3737 | "text/plain": [
3738 | "Name object\n",
3739 | "Score int64\n",
3740 | "Quality object\n",
3741 | "dtype: object"
3742 | ]
3743 | },
3744 | "execution_count": 58,
3745 | "metadata": {},
3746 | "output_type": "execute_result"
3747 | }
3748 | ],
3749 | "source": [
3750 | "# View the type of each column.\n",
3751 | "result.dtypes"
3752 | ]
3753 | },
3754 | {
3755 | "cell_type": "code",
3756 | "execution_count": null,
3757 | "metadata": {},
3758 | "outputs": [],
3759 | "source": []
3760 | },
3761 | {
3762 | "cell_type": "code",
3763 | "execution_count": 59,
3764 | "metadata": {},
3765 | "outputs": [
3766 | {
3767 | "name": "stdout",
3768 | "output_type": "stream",
3769 | "text": [
3770 | "Date 2012-02-02\n",
3771 | "Consumption 1563.41\n",
3772 | "Wind 73.469\n",
3773 | "Solar 44.675\n",
3774 | "Wind+Solar 118.144\n",
3775 | "Name: 2012-02-02 00:00:00, dtype: object \n",
3776 | "\n",
3777 | " Date Consumption Wind Solar Wind+Solar\n",
3778 | "2017-10-31 2017-10-31 1204.08577 256.960 56.767 313.727\n",
3779 | "2017-11-01 2017-11-01 1309.18478 420.446 37.046 457.492\n",
3780 | "2017-11-02 2017-11-02 1474.19484 336.745 51.504 388.249\n",
3781 | "2017-11-03 2017-11-03 1471.18241 115.927 50.761 166.688\n",
3782 | "2017-11-04 2017-11-04 1284.77485 309.381 57.358 366.739\n",
3783 | "2017-11-05 2017-11-05 1193.85495 259.371 25.261 284.632\n",
3784 | "2017-11-06 2017-11-06 1505.67173 98.420 40.298 138.718\n",
3785 | "2017-11-07 2017-11-07 1545.63945 148.785 27.302 176.087\n",
3786 | "2017-11-08 2017-11-08 1547.48171 62.667 18.332 80.999\n",
3787 | "2017-11-09 2017-11-09 1557.63091 210.488 15.289 225.777\n",
3788 | "2017-11-10 2017-11-10 1560.41732 627.814 12.786 640.600\n",
3789 | "2017-11-11 2017-11-11 1346.43916 530.919 18.164 549.083\n",
3790 | "2017-11-12 2017-11-12 1241.51495 235.422 15.732 251.154\n",
3791 | "2017-11-13 2017-11-13 1538.83561 205.072 36.997 242.069\n",
3792 | "2017-11-14 2017-11-14 1577.45348 294.483 38.772 333.255\n",
3793 | "2017-11-15 2017-11-15 1562.03367 98.029 25.802 123.831\n",
3794 | "2017-11-16 2017-11-16 1574.73479 179.491 18.145 197.636\n",
3795 | "2017-11-17 2017-11-17 1552.21780 204.464 32.919 237.383\n",
3796 | "2017-11-18 2017-11-18 1369.91888 606.663 18.880 625.543\n",
3797 | "2017-11-19 2017-11-19 1268.00462 721.238 28.651 749.889\n",
3798 | "2017-11-20 2017-11-20 1565.56805 380.284 14.922 395.206\n",
3799 | "2017-11-21 2017-11-21 1576.49592 318.591 11.240 329.831\n",
3800 | "2017-11-22 2017-11-22 1558.72998 588.234 46.147 634.381\n",
3801 | "2017-11-23 2017-11-23 1581.78770 730.728 42.047 772.775\n",
3802 | "2017-11-24 2017-11-24 1528.12694 313.086 30.441 343.527\n",
3803 | "2017-11-25 2017-11-25 1333.15585 238.670 13.552 252.222\n",
3804 | "2017-11-26 2017-11-26 1276.09818 599.330 22.586 621.916\n",
3805 | "2017-11-27 2017-11-27 1602.17797 743.280 21.983 765.263\n",
3806 | "2017-11-28 2017-11-28 1615.38061 514.931 19.658 534.589\n",
3807 | "2017-11-29 2017-11-29 1603.98435 99.653 24.155 123.808\n",
3808 | "2017-11-30 2017-11-30 1617.03309 66.389 14.314 80.703\n"
3809 | ]
3810 | }
3811 | ],
3812 | "source": [
3813 | "# Indexing and slicing in historical indexes\n",
3814 | "\n",
3815 | "result = pd.read_csv(\"Data_v2.csv\")\n",
3816 | "\n",
3817 | "final = result.set_index(pd.DatetimeIndex(result[\"Date\"].values))\n",
3818 | "\n",
3819 | "# Indexing\n",
3820 | "print(final.loc[\"2012-2-2\"], \"\\n\")\n",
3821 | "\n",
3822 | "# Slicing\n",
3823 | "print(final.loc[\"2017-10-31\":\"2017-11\"])"
3824 | ]
3825 | },
3826 | {
3827 | "cell_type": "code",
3828 | "execution_count": 60,
3829 | "metadata": {},
3830 | "outputs": [
3831 | {
3832 | "data": {
3833 | "text/plain": [
3834 | ""
3848 | ]
3849 | },
3850 | "execution_count": 60,
3851 | "metadata": {},
3852 | "output_type": "execute_result"
3853 | }
3854 | ],
3855 | "source": [
3856 | "# Information about Date.\n",
3857 | "result.info"
3858 | ]
3859 | },
3860 | {
3861 | "cell_type": "code",
3862 | "execution_count": 61,
3863 | "metadata": {},
3864 | "outputs": [
3865 | {
3866 | "data": {
3867 | "text/plain": [
3868 | "1338.6758355897814"
3869 | ]
3870 | },
3871 | "execution_count": 61,
3872 | "metadata": {},
3873 | "output_type": "execute_result"
3874 | }
3875 | ],
3876 | "source": [
3877 | "# Calculate the average of a column.\n",
3878 | "result[\"Consumption\"].mean()"
3879 | ]
3880 | },
3881 | {
3882 | "cell_type": "code",
3883 | "execution_count": 62,
3884 | "metadata": {},
3885 | "outputs": [
3886 | {
3887 | "data": {
3888 | "text/plain": [
3889 | "165.7757102347912"
3890 | ]
3891 | },
3892 | "execution_count": 62,
3893 | "metadata": {},
3894 | "output_type": "execute_result"
3895 | }
3896 | ],
3897 | "source": [
3898 | "# standard deviation.\n",
3899 | "result[\"Consumption\"].std()"
3900 | ]
3901 | },
3902 | {
3903 | "cell_type": "code",
3904 | "execution_count": 63,
3905 | "metadata": {},
3906 | "outputs": [
3907 | {
3908 | "data": {
3909 | "text/plain": [
3910 | "-0.30883182959773414"
3911 | ]
3912 | },
3913 | "execution_count": 63,
3914 | "metadata": {},
3915 | "output_type": "execute_result"
3916 | }
3917 | ],
3918 | "source": [
3919 | "# Coordination between changes.\n",
3920 | "result[\"Wind\"].corr(result[\"Solar\"])"
3921 | ]
3922 | },
3923 | {
3924 | "cell_type": "code",
3925 | "execution_count": 64,
3926 | "metadata": {},
3927 | "outputs": [
3928 | {
3929 | "name": "stdout",
3930 | "output_type": "stream",
3931 | "text": [
3932 | "max: 851.556 \n",
3933 | "min: 21.478\n"
3934 | ]
3935 | }
3936 | ],
3937 | "source": [
3938 | "# The highest and lowest value of a column.\n",
3939 | "max_ = result[\"Wind+Solar\"].max()\n",
3940 | "min_ = result[\"Wind+Solar\"].min()\n",
3941 | "print(f\"max: {max_} \\nmin: {min_}\")"
3942 | ]
3943 | },
3944 | {
3945 | "cell_type": "code",
3946 | "execution_count": null,
3947 | "metadata": {},
3948 | "outputs": [],
3949 | "source": []
3950 | }
3951 | ],
3952 | "metadata": {
3953 | "kernelspec": {
3954 | "display_name": "Python 3",
3955 | "language": "python",
3956 | "name": "python3"
3957 | },
3958 | "language_info": {
3959 | "codemirror_mode": {
3960 | "name": "ipython",
3961 | "version": 3
3962 | },
3963 | "file_extension": ".py",
3964 | "mimetype": "text/x-python",
3965 | "name": "python",
3966 | "nbconvert_exporter": "python",
3967 | "pygments_lexer": "ipython3",
3968 | "version": "3.8.5"
3969 | }
3970 | },
3971 | "nbformat": 4,
3972 | "nbformat_minor": 4
3973 | }
3974 |
--------------------------------------------------------------------------------