├── GNN.jpg
├── README.md
└── 第5章第6章コード.ipynb
/GNN.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/atarum/GraphNeuralNetworks/5b9f9cda93355719f85cf519b1d305cff4fc080a/GNN.jpg
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # 「グラフニューラルネットワーク」(オーム社) サポートページ
2 | [](https://www.amazon.co.jp/dp/4274228878/)
3 |
4 | 「グラフニューラルネットワーク」(オーム社)に関するサポート情報を掲載します。
5 | ## 出版社・アマゾン
6 | オーム社 https://www.ohmsha.co.jp/book/9784274228872/
7 | アマゾン https://www.amazon.co.jp/dp/4274228878/
8 |
9 | ## 書誌情報
10 | グラフニューラルネットワーク: PyTorchによる実装
11 | 村田 剛志 著
12 | 本体3,200円+税
13 | A5判/248頁
14 | ISBN:978-4-274-22887-2
15 | 発売日:2022/07/20
16 | 発行元:オーム社
17 |
18 | ## 第5章第6章のコード
19 | - [このGitHub上で見る](/第5章第6章コード.ipynb "第5章第6章コード")
20 | - [Colaboratoryで見る](https://colab.research.google.com/drive/10MUzKFoYTQzelmmEwkPLNeo7PZu2G7pS?usp=sharing "Colaboratoryコード")
21 |
22 | ## 文中のリンク
23 | ### 第1章 グラフニューラルネットワークとは
24 | - 13ページ
25 | "Graph Neural Networks: A Review of Methods and Applications"
26 | Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng Li, Maosong Sun
27 | AI Open, Vol. 1, pp.57-81, 2020.
28 | https://doi.org/10.1016/j.aiopen.2021.01.001
29 |
30 | - 14ページ
31 | Traffic prediction with advanced Graph Neural Networks
32 | DeepMind, September 3, 2020.
33 | https://www.deepmind.com/blog/traffic-prediction-with-advanced-graph-neural-networks
34 |
35 | - 17ページ
36 | Graph Methods for COVID-19 Response
37 | William L. Hamilton
38 | https://cs.mcgill.ca/~wlh/comp766/files/graphs-against-covid.pdf
39 |
40 | ### 第2章 グラフエンベディング
41 | - 23ページ
42 | A Survey on Network Embedding
43 | Peng Cui, Xiao Wang, Jian Pei, Wenwu Zhu
44 | IEEE Transactions on Knowledge and Data Engineering, Vol. 31, No. 5, pp. 833-852, 2019.
45 | https://doi.org/10.1109/TKDE.2018.2849727
46 |
47 | - 31ページ
48 | DeepWalk: online learning of social representations
49 | Bryan Perozzi, Rami Al-Rfou, Steven Skiena
50 | The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'14), pp.701-710, 2014.
51 | https://doi.org/10.1145/2623330.2623732
52 | 著者Perozziによるコード
53 | https://github.com/phanein/deepwalk
54 | paperswithcode.comにおけるサイト
55 | https://paperswithcode.com/method/deepwalk
56 |
57 | - 36ページ
58 | LINE: Large-scale Information Network Embedding
59 | Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, Qiaozhu Mei
60 | Proceedings of the 24th International Conference on World Wide Web (WWW'15) pp.1067-1077, 2015.
61 | https://doi.org/10.1145/2736277.2741093
62 | 著者Tangによるコード
63 | https://github.com/tangjianpku/LINE
64 | paperswithcode.comにおけるサイト
65 | https://paperswithcode.com/method/line
66 |
67 | - 39ページ
68 | node2vec: Scalable Feature Learning for Networks
69 | Aditya Grover, Jure Leskovec
70 | Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'16) pp.855-864, 2016.
71 | https://doi.org/10.1145/2939672.2939754
72 | 著者Groverらによるサイト
73 | https://snap.stanford.edu/node2vec/
74 | paperswithcode.comにおけるサイト
75 | https://paperswithcode.com/method/node2vec
76 |
77 | - 40ページ
78 | GraRep: Learning Graph Representations with Global Structural Information
79 | Shaosheng Cao, Wei Lu, Qiongkai Xu
80 | Proceedings of the 24th ACM International Conference on Information and Knowledge Management (CIKM'15) pp.891-900, 2015.
81 | https://doi.org/10.1145/2806416.2806512
82 | paperswithcode.comにおけるサイト
83 | https://paperswithcode.com/paper/grarep-learning-graph-representations-with
84 |
85 | - 44ページ
86 | グラフエンベディング手法の比較のためのPythonコード
87 | https://github.com/yijiaozhang/hypercompare
88 |
89 | ### 第3章 グラフにおける畳み込み
90 | - 60ページ
91 | Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering
92 | Michaël Defferrard, Xavier Bresson, Pierre Vandergheynst
93 | Advances in Neural Information Processing Systems 29 (NIPS 2016), 2016.
94 | https://papers.nips.cc/paper/6081-convolutional-neural-networks-on-graphs-with-fast-localized-spectral-filtering
95 | https://arxiv.org/abs/1606.09375
96 | 著者Defferrardによるコード
97 | https://github.com/mdeff/cnn_graph
98 | paperswithcode.comにおけるサイト
99 | https://paperswithcode.com/paper/convolutional-neural-networks-on-graphs-with
100 |
101 | - 62ページ
102 | Semi-Supervised Classification with Graph Convolutional Networks
103 | Thomas N. Kipf, Max Welling
104 | 5th International Conference on Learning Representations (ICLR 2017), 2017.
105 | https://arxiv.org/abs/1609.02907
106 | 著者Kipfによるコード
107 | https://github.com/tkipf/gcn
108 | 著者Kipfによるサイト
109 | http://tkipf.github.io/graph-convolutional-networks/
110 |
111 | - 65ページ
112 | Learning Convolutional Neural Networks for Graphs
113 | Mathias Niepert, Mohamed Ahmed, Konstantin Kutzkov
114 | Proceedings of the 33rd International Conference on Machine Learning (ICML 2016), 2016.
115 | https://arxiv.org/abs/1605.05273
116 | コード
117 | https://github.com/Lookuz/PATCHY-SAN
118 | paperswithcode.comにおけるサイト
119 | https://paperswithcode.com/paper/learning-convolutional-neural-networks-for
120 |
121 | - 67ページ
122 | Diffusion-Convolutional Neural Networks
123 | James Atwood, Don Towsley
124 | Proceedings of the 30th International Conference on Neural Information Processing Systems (NIPS 2016), 2016.
125 | https://arxiv.org/abs/1511.02136
126 | コード
127 | https://github.com/jcatw/dcnn
128 | paperswithcode.comにおけるサイト
129 | https://paperswithcode.com/paper/diffusion-convolutional-neural-networks
130 |
131 | - 69ページ
132 | Inductive Representation Learning on Large Graphs
133 | William L. Hamilton, Rex Ying, Jure Leskovec
134 | Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS 2017), 2017.
135 | https://arxiv.org/abs/1706.02216
136 | コード
137 | https://github.com/williamleif/GraphSAGE
138 | 著者Hamiltonらによるサイト
139 | http://snap.stanford.edu/graphsage/
140 | paperswithcode.comにおけるサイト
141 | https://paperswithcode.com/paper/inductive-representation-learning-on-large
142 |
143 | ### 第4章 関連トピック
144 | - 74ページ
145 | Structural Deep Network Embedding
146 | Daixin Wang, Peng Cui, Wenwu Zhu
147 | Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'16), pp.1225–1234, 2016
148 | https://doi.org/10.1145/2939672.2939753
149 | paperswithcode.comにおけるサイト
150 | https://paperswithcode.com/paper/structural-deep-network-embedding
151 |
152 | - 80ページ
153 | Graph Attention Networks
154 | Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, Yoshua Bengio
155 | 6th International Conference on Learning Representations (ICLR 2018), 2018.
156 | https://arxiv.org/abs/1710.10903
157 | コード
158 | https://github.com/PetarV-/GAT
159 | 著者Velickovicらによるサイト
160 | https://petar-v.com/GAT/
161 | paperswithcode.comにおけるサイト
162 | https://paperswithcode.com/paper/graph-attention-networks
163 |
164 | - 83ページ
165 | Simplifying Graph Convolutional Networks
166 | Felix Wu, Tianyi Zhang, Amauri Holanda de Souza Jr., Christopher Fifty, Tao Yu, Kilian Q. Weinberger
167 | Proceedings of the 36th International Conference on Machine Learning (ICML 2019), 2019.
168 | https://arxiv.org/abs/1902.07153
169 | コード
170 | https://github.com/Tiiiger/SGC
171 | paperswithcode.comにおけるサイト
172 | https://paperswithcode.com/paper/simplifying-graph-convolutional-networks/
173 |
174 | - 86ページ
175 | How Powerful are Graph Neural Networks?
176 | Keyulu Xu, Weihua Hu, Jure Leskovec, Stefanie Jegelka
177 | 7th International Conference on Learning Representations (ICLR 2019), 2019.
178 | https://arxiv.org/abs/1810.00826
179 | コード
180 | https://github.com/weihua916/powerful-gnns
181 |
182 | - 87ページ
183 | paperswithcode.comにおけるサイト
184 | https://paperswithcode.com/paper/how-powerful-are-graph-neural-networks/
185 | A Survey on The Expressive Power of Graph Neural Networks
186 | Ryoma Sato
187 | https://arxiv.org/abs/2003.04078
188 |
189 | - 88ページ
190 | Adversarial Attacks and Defenses on Graphs
191 | Wei Jin, Yaxing Li, Han Xu, Yiqi Wang, Shuiwang Ji, Charu Aggarwal, Jiliang Tang
192 | ACM SIGKDD Explorations Newsletter, Vol.22, Issue 2, pp.19–34, 2020.
193 | https://doi.org/10.1145/3447556.3447566
194 |
195 | - 89ページ
196 | DeepRobust
197 | https://github.com/DSE-MSU/DeepRobust
198 |
199 | - 96ページ
200 | Explainability in Graph Neural Networks: A Taxonomic Survey
201 | Hao Yuan, Haiyang Yu, Shurui Gui, Shuiwang Ji
202 | https://arxiv.org/abs/2012.15445
203 |
204 | ### 第5章 実装のための準備
205 | - 103ページ
206 | Pythonの本家のサイト
207 | https://www.python.org/
208 | Python情報サイト
209 | https://www.python.jp/
210 |
211 | - 106ページ
212 | NumPyのquickstartのサイト
213 | https://numpy.org/doc/stable/user/quickstart.html
214 |
215 | - 109ページ
216 | SciPyのドキュメンテーション
217 | https://docs.scipy.org/doc/scipy/index.html
218 |
219 | - 112ページ
220 | pandasのドキュメンテーション
221 | https://pandas.pydata.org/docs/index.html
222 |
223 | - 113ページ
224 | Matplotlibの例
225 | https://matplotlib.org/stable/gallery/index.html
226 |
227 | - 115ページ
228 | Matplotlibのサイト
229 | https://matplotlib.org/stable/index.html
230 |
231 | - 116ページ
232 | seabornの例
233 | https://seaborn.pydata.org/examples/index.html
234 |
235 | - 117ページ
236 | seaborn.jointplot
237 | https://seaborn.pydata.org/generated/seaborn.jointplot.html
238 |
239 | - 118ページ
240 | seabornのサイト
241 | https://seaborn.pydata.org/
242 |
243 | - 119ページ
244 | scikit-learnのサイト
245 | https://scikit-learn.org/stable/
246 |
247 | - 120ページ
248 | scikit-learn algorithm cheat-sheet
249 | https://scikit-learn.org/stable/tutorial/machine_learning_map/
250 |
251 | - 122ページ
252 | Laurens van der Maatenによるサイト(t-SNE)
253 | https://lvdmaaten.github.io/tsne/
254 |
255 | - 123ページ
256 | How to use t-SNE Effectively
257 | https://distill.pub/2016/misread-tsne/
258 |
259 | - 125ページ
260 | Scipy Lecture Notes (英語)
261 | https://scipy-lectures.org/
262 | Scipy Lecture Notes (日本語訳)
263 | http://www.turbare.net/transl/scipy-lecture-notes/
264 |
265 | - 126ページ
266 | Jupyter Notebook
267 | https://jupyter.org/
268 | Anaconda
269 | https://www.anaconda.com/
270 |
271 | - 127ページ
272 | JupyterLab Desktop App
273 | https://github.com/jupyterlab/jupyterlab-desktop
274 |
275 | - 128ページ
276 | Colaboratory
277 | https://colab.research.google.com/
278 |
279 | ### 第6章 PyTorch Geometricによる実装
280 | - 135ページ
281 | PyTorch Get Started
282 | https://pytorch.org/get-started/locally/
283 | Colab Notebooks and Video Tutorials
284 | https://pytorch-geometric.readthedocs.io/en/latest/notes/colabs.html
285 |
286 | - 136ページ
287 | PyTorchチュートリアル(日本語翻訳版)
288 | https://yutaroogawa.github.io/pytorch_tutorials_jp/
289 | PyTorch Tutorials
290 | https://pytorch.org/tutorials/
291 | PyTorch Documentation
292 | https://pytorch.org/docs/stable/
293 | PyTorch basics (PyTorch Geometric Tutorial)
294 | https://antoniolonga.github.io/Pytorch_geometric_tutorials/posts/post2.html
295 |
296 | - 147ページ
297 | Loss Functions (PyTorch)
298 | https://pytorch.org/docs/stable/nn.html#loss-functions
299 |
300 | - 159ページ
301 | PyTorch Tutorials
302 | https://pytorch.org/tutorials/
303 | PyTorchチュートリアル(日本語翻訳版)
304 | https://yutaroogawa.github.io/pytorch_tutorials_jp/
305 |
306 | - 160ページ
307 | PyTorch Geometric (PyG)
308 | https://github.com/pyg-team/pytorch_geometric
309 | Deeo Graph Library (DGL)
310 | https://www.dgl.ai/
311 |
312 | - 161ページ
313 | Graph Nets
314 | https://github.com/deepmind/graph_nets
315 |
316 | - 162ページ
317 | Lightning
318 | https://www.pytorchlightning.ai/
319 | catalyst
320 | https://github.com/catalyst-team/catalyst
321 | fastai
322 | https://docs.fast.ai/
323 | ignite
324 | https://github.com/pytorch/ignite
325 |
326 | - 163ページ
327 | Introduction by Example (PyG Documentation)
328 | https://pytorch-geometric.readthedocs.io/en/latest/notes/introduction.html
329 |
330 | - 167ページ
331 | TUDataset
332 | http://graphkernels.cs.tu-dortmund.de
333 |
334 | - 177ページ
335 | Colab Notebooks and Video Tutorials
336 | https://pytorch-geometric.readthedocs.io/en/latest/notes/colabs.html
337 |
338 | ### 第7章 今後の学習に向けて
339 | - 214ページ
340 | Introduction to Graph Neural Networks
341 | Zhiyuan Liu, Jie Zhou
342 | Morgan & Claypool Publishers, 2020.
343 | https://doi.org/10.2200/S00980ED1V01Y202001AIM045
344 | Graph Representation Learning
345 | William L. Hamilton
346 | Morgan & Claypool publishers, 2020.
347 | https://doi.org/10.2200/S01045ED1V01Y202009AIM046
348 | (preprint)
349 | https://www.cs.mcgill.ca/~wlh/grl_book/
350 |
351 | - 215ページ
352 | Deep Learning on Graphs
353 | Yao Ma, Jiliang Tang
354 | Cambridge University Press, 2021.
355 | https://doi.org/10.1017/9781108924184
356 | (preprint)
357 | https://web.njit.edu/~ym329/dlg_book/
358 | Graph Neural Networks -- Foundations, Frontiers, and Applications
359 | Lingfei Wu, Peng Cui, Jian Pei, Liang Zhao
360 | Springer, 2022.
361 | https://doi.org/10.1007/978-981-16-6054-2
362 | (preprint)
363 | https://graph-neural-networks.github.io/
364 |
365 | - 216ページ
366 | A Comprehensive Survey on Graph Neural Networks
367 | Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, Philip S. Yu
368 | IEEE Transactions on Neural Networks and Learning Systems, Vol. 32, Issue 1, pp.4-24, 2021.
369 | https://doi.org/10.1109/TNNLS.2020.2978386
370 |
371 | - 217ページ
372 | Graph Neural Networks: A Review of Methods and Applications
373 | Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng Li, Maosong Sun
374 | AI Open, Vol. 1, pp.57-81, 2020.
375 | https://doi.org/10.1016/j.aiopen.2021.01.001
376 | Deep Learning on Graphs: A Survey
377 | Ziwei Zhang, Peng Cui, Wenwu Zhu
378 | IEEE Transactions on Knowledge and Data Engineering, Vol. 34, pp. 249-270, 2022.
379 | https://doi.org/10.1109/TKDE.2020.2981333
380 |
381 | - 218ページ
382 | CS224W: Machine Learning with Graphs
383 | Stanford / Fall 2022
384 | http://web.stanford.edu/class/cs224w/
385 | Pytorch Geometric Tutorial
386 | Antonio Longa, Gabriele Santin, Giovanni Pellegrini
387 | https://antoniolonga.github.io/Pytorch_geometric_tutorials/
388 | Colab Notebooks and Video Tutorials
389 | https://pytorch-geometric.readthedocs.io/en/latest/notes/colabs.html
390 |
391 | - 219ページ
392 | Graph Neural Networks
393 | https://hhaji.github.io/Deep-Learning/Graph-Neural-Networks/
394 | Must-read papers on GNN
395 | https://github.com/thunlp/GNNPapers
396 | Papers with codes – Graphs
397 | https://paperswithcode.com/area/graphs
398 | Awesome resources on Graph Neural Networks
399 | https://github.com/GRAND-Lab/Awesome-Graph-Neural-Networks
400 |
401 | - 220ページ
402 | Open Graph Benchmark (OGB)
403 | https://ogb.stanford.edu/
404 |
--------------------------------------------------------------------------------