├── 1-IntroToNumpy.ipynb
├── 10-MatplotlibStyles.ipynb
├── 11-VisualizationSeaborn.ipynb
├── 12-BoxPlotExercise.ipynb
├── 13-EDAExercise.ipynb
├── 13-WineQT.csv
├── 14-IntroToFeatureEngineering.ipynb
├── 15-BalancingData.ipynb
├── 16-EncodingData.ipynb
├── 17-FeatureEngineeringEDA.ipynb
├── 17-googleplaystore.csv
├── 17-googleplaystore_user_reviews.csv
├── 2-NumpyMatrices.ipynb
├── 3-NumpyOperations.ipynb
├── 4-IntroToPandas.ipynb
├── 5-IntroToDataFrames.ipynb
├── 6-DataFrameOperations.ipynb
├── 6-employee.csv
├── 6-weather.xlsx
├── 6-weatherna.xlsx
├── 7-DataFramesConcatMerge.ipynb
├── 7-concat_data1.csv
├── 7-concat_data2.csv
├── 7-merge_data1.csv
├── 7-merge_data2.csv
├── 8-DataFramesApply.ipynb
├── 8-apply_function_data.csv
├── 9-IntroToMatplotlib.ipynb
└── athlete_events.csv.zip
/1-IntroToNumpy.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 1,
6 | "id": "1fb57f0e-09e4-4d94-8f0e-8309e1a87a03",
7 | "metadata": {},
8 | "outputs": [],
9 | "source": [
10 | "import numpy as np"
11 | ]
12 | },
13 | {
14 | "cell_type": "code",
15 | "execution_count": 2,
16 | "id": "0d49ad03-441c-4029-8f66-f7df7229e30d",
17 | "metadata": {},
18 | "outputs": [],
19 | "source": [
20 | "# !pip install numpy"
21 | ]
22 | },
23 | {
24 | "cell_type": "code",
25 | "execution_count": 3,
26 | "id": "26d84fa4-cbb6-4918-8578-1a53254d5a42",
27 | "metadata": {},
28 | "outputs": [],
29 | "source": [
30 | "my_list = [10,20,30,40]"
31 | ]
32 | },
33 | {
34 | "cell_type": "code",
35 | "execution_count": 4,
36 | "id": "0259ed6a-0ada-4fbd-bd28-24d5a9de56f9",
37 | "metadata": {},
38 | "outputs": [
39 | {
40 | "data": {
41 | "text/plain": [
42 | "list"
43 | ]
44 | },
45 | "execution_count": 4,
46 | "metadata": {},
47 | "output_type": "execute_result"
48 | }
49 | ],
50 | "source": [
51 | "type(my_list)"
52 | ]
53 | },
54 | {
55 | "cell_type": "code",
56 | "execution_count": 5,
57 | "id": "c2203e96-654d-4ef7-99a6-7da8898d821c",
58 | "metadata": {},
59 | "outputs": [
60 | {
61 | "data": {
62 | "text/plain": [
63 | "array([10, 20, 30, 40])"
64 | ]
65 | },
66 | "execution_count": 5,
67 | "metadata": {},
68 | "output_type": "execute_result"
69 | }
70 | ],
71 | "source": [
72 | "np.array(my_list)"
73 | ]
74 | },
75 | {
76 | "cell_type": "code",
77 | "execution_count": 7,
78 | "id": "da2872d8-9302-46da-b3e4-3985b54e3f38",
79 | "metadata": {},
80 | "outputs": [],
81 | "source": [
82 | "my_numpy_array = np.array([10,20,30,40,50])"
83 | ]
84 | },
85 | {
86 | "cell_type": "code",
87 | "execution_count": 8,
88 | "id": "5ccd584b-4de3-4559-b483-ff1ee1163a6e",
89 | "metadata": {},
90 | "outputs": [
91 | {
92 | "data": {
93 | "text/plain": [
94 | "numpy.ndarray"
95 | ]
96 | },
97 | "execution_count": 8,
98 | "metadata": {},
99 | "output_type": "execute_result"
100 | }
101 | ],
102 | "source": [
103 | "type(my_numpy_array)"
104 | ]
105 | },
106 | {
107 | "cell_type": "code",
108 | "execution_count": 9,
109 | "id": "bf67ef44-7500-4ebc-bfa5-7ddd7fc50d45",
110 | "metadata": {},
111 | "outputs": [
112 | {
113 | "data": {
114 | "text/plain": [
115 | "50"
116 | ]
117 | },
118 | "execution_count": 9,
119 | "metadata": {},
120 | "output_type": "execute_result"
121 | }
122 | ],
123 | "source": [
124 | "my_numpy_array.max()"
125 | ]
126 | },
127 | {
128 | "cell_type": "code",
129 | "execution_count": 10,
130 | "id": "4ab51f52-414d-420c-86cc-1c9ea70927b4",
131 | "metadata": {},
132 | "outputs": [],
133 | "source": [
134 | "# https://jalammar.github.io/visual-numpy/"
135 | ]
136 | },
137 | {
138 | "cell_type": "code",
139 | "execution_count": 11,
140 | "id": "36a5ac42-ed4d-4e90-bc25-573eba461423",
141 | "metadata": {},
142 | "outputs": [
143 | {
144 | "data": {
145 | "text/plain": [
146 | "array([1., 1., 1., 1., 1.])"
147 | ]
148 | },
149 | "execution_count": 11,
150 | "metadata": {},
151 | "output_type": "execute_result"
152 | }
153 | ],
154 | "source": [
155 | "np.ones(5)"
156 | ]
157 | },
158 | {
159 | "cell_type": "code",
160 | "execution_count": 12,
161 | "id": "1d9da7af-82f9-45aa-9653-03d38878215b",
162 | "metadata": {},
163 | "outputs": [
164 | {
165 | "data": {
166 | "text/plain": [
167 | "array([0., 0., 0., 0., 0.])"
168 | ]
169 | },
170 | "execution_count": 12,
171 | "metadata": {},
172 | "output_type": "execute_result"
173 | }
174 | ],
175 | "source": [
176 | "np.zeros(5)"
177 | ]
178 | },
179 | {
180 | "cell_type": "code",
181 | "execution_count": 13,
182 | "id": "1282564c-1772-4e36-b7f6-93878ecd6338",
183 | "metadata": {},
184 | "outputs": [
185 | {
186 | "data": {
187 | "text/plain": [
188 | "array([0.92592341, 0.22830596, 0.30502652, 0.8765612 , 0.98434607])"
189 | ]
190 | },
191 | "execution_count": 13,
192 | "metadata": {},
193 | "output_type": "execute_result"
194 | }
195 | ],
196 | "source": [
197 | "np.random.random(5)"
198 | ]
199 | },
200 | {
201 | "cell_type": "code",
202 | "execution_count": 14,
203 | "id": "c14068c5-c994-4f88-b2f7-cebafcd29dda",
204 | "metadata": {},
205 | "outputs": [],
206 | "source": [
207 | "#array arithmetic "
208 | ]
209 | },
210 | {
211 | "cell_type": "code",
212 | "execution_count": 15,
213 | "id": "d49721cc-0826-4afb-9dd4-47b7544e6a35",
214 | "metadata": {},
215 | "outputs": [],
216 | "source": [
217 | "my_list1 = [1,2]"
218 | ]
219 | },
220 | {
221 | "cell_type": "code",
222 | "execution_count": 16,
223 | "id": "feb571da-8d3c-4bbc-9ec4-2031e861e5e9",
224 | "metadata": {},
225 | "outputs": [],
226 | "source": [
227 | "my_list2 = [2,3]"
228 | ]
229 | },
230 | {
231 | "cell_type": "code",
232 | "execution_count": 17,
233 | "id": "3d62e70c-a553-4ec6-9f2d-b34cd839abf4",
234 | "metadata": {},
235 | "outputs": [
236 | {
237 | "data": {
238 | "text/plain": [
239 | "[1, 2, 2, 3]"
240 | ]
241 | },
242 | "execution_count": 17,
243 | "metadata": {},
244 | "output_type": "execute_result"
245 | }
246 | ],
247 | "source": [
248 | "my_list1 + my_list2"
249 | ]
250 | },
251 | {
252 | "cell_type": "code",
253 | "execution_count": 18,
254 | "id": "80c32ce8-2b96-46c6-98a6-0e88b92d0cc5",
255 | "metadata": {},
256 | "outputs": [],
257 | "source": [
258 | "my_numpy_array1 = np.array(my_list1)"
259 | ]
260 | },
261 | {
262 | "cell_type": "code",
263 | "execution_count": 19,
264 | "id": "1adc383b-a188-47ad-9b76-7e250654f463",
265 | "metadata": {},
266 | "outputs": [],
267 | "source": [
268 | "my_numpy_array2 = np.array(my_list2)"
269 | ]
270 | },
271 | {
272 | "cell_type": "code",
273 | "execution_count": 20,
274 | "id": "62e29b38-b57c-45bb-aa11-c7125f5185e2",
275 | "metadata": {},
276 | "outputs": [
277 | {
278 | "data": {
279 | "text/plain": [
280 | "array([3, 5])"
281 | ]
282 | },
283 | "execution_count": 20,
284 | "metadata": {},
285 | "output_type": "execute_result"
286 | }
287 | ],
288 | "source": [
289 | "my_numpy_array1 + my_numpy_array2"
290 | ]
291 | },
292 | {
293 | "cell_type": "code",
294 | "execution_count": 21,
295 | "id": "a5bb5256-50c9-4543-9893-fc511cbdfd24",
296 | "metadata": {},
297 | "outputs": [
298 | {
299 | "data": {
300 | "text/plain": [
301 | "array([-1, -1])"
302 | ]
303 | },
304 | "execution_count": 21,
305 | "metadata": {},
306 | "output_type": "execute_result"
307 | }
308 | ],
309 | "source": [
310 | "my_numpy_array1 - my_numpy_array2"
311 | ]
312 | },
313 | {
314 | "cell_type": "code",
315 | "execution_count": 22,
316 | "id": "58eab283-49f5-4ad2-b70d-6421b7815aa2",
317 | "metadata": {},
318 | "outputs": [
319 | {
320 | "data": {
321 | "text/plain": [
322 | "array([2, 6])"
323 | ]
324 | },
325 | "execution_count": 22,
326 | "metadata": {},
327 | "output_type": "execute_result"
328 | }
329 | ],
330 | "source": [
331 | "my_numpy_array1 * my_numpy_array2"
332 | ]
333 | },
334 | {
335 | "cell_type": "code",
336 | "execution_count": 23,
337 | "id": "5d2893cc-c4b2-4526-9496-e2255bc3fd85",
338 | "metadata": {},
339 | "outputs": [
340 | {
341 | "data": {
342 | "text/plain": [
343 | "array([0.5 , 0.66666667])"
344 | ]
345 | },
346 | "execution_count": 23,
347 | "metadata": {},
348 | "output_type": "execute_result"
349 | }
350 | ],
351 | "source": [
352 | "my_numpy_array1 / my_numpy_array2"
353 | ]
354 | },
355 | {
356 | "cell_type": "code",
357 | "execution_count": 24,
358 | "id": "c87b0273-3a58-421b-aec3-4340b2c1b4f6",
359 | "metadata": {},
360 | "outputs": [
361 | {
362 | "data": {
363 | "text/plain": [
364 | "array([ 5, 10])"
365 | ]
366 | },
367 | "execution_count": 24,
368 | "metadata": {},
369 | "output_type": "execute_result"
370 | }
371 | ],
372 | "source": [
373 | "my_numpy_array1 * 5"
374 | ]
375 | },
376 | {
377 | "cell_type": "code",
378 | "execution_count": 36,
379 | "id": "ad8366a9-31c8-4a77-82ac-216d11beab90",
380 | "metadata": {},
381 | "outputs": [],
382 | "source": [
383 | "other_array = np.array([10,20,30,40,50])"
384 | ]
385 | },
386 | {
387 | "cell_type": "code",
388 | "execution_count": 39,
389 | "id": "c8ee65c3-e766-4a11-bb64-3be6186dfc9d",
390 | "metadata": {},
391 | "outputs": [
392 | {
393 | "data": {
394 | "text/plain": [
395 | "10"
396 | ]
397 | },
398 | "execution_count": 39,
399 | "metadata": {},
400 | "output_type": "execute_result"
401 | }
402 | ],
403 | "source": [
404 | "other_array.min()"
405 | ]
406 | },
407 | {
408 | "cell_type": "code",
409 | "execution_count": 38,
410 | "id": "eeffe892-315f-4dca-b65c-c8138a466ae3",
411 | "metadata": {},
412 | "outputs": [
413 | {
414 | "data": {
415 | "text/plain": [
416 | "150"
417 | ]
418 | },
419 | "execution_count": 38,
420 | "metadata": {},
421 | "output_type": "execute_result"
422 | }
423 | ],
424 | "source": [
425 | "other_array.sum()"
426 | ]
427 | },
428 | {
429 | "cell_type": "code",
430 | "execution_count": 26,
431 | "id": "9c0c51b0-ef15-43ee-afc5-e8835d0d3035",
432 | "metadata": {},
433 | "outputs": [],
434 | "source": [
435 | "#indexing & arange"
436 | ]
437 | },
438 | {
439 | "cell_type": "code",
440 | "execution_count": 26,
441 | "id": "c5c3fd4d-c92e-43ca-8783-739f27fd2f44",
442 | "metadata": {},
443 | "outputs": [],
444 | "source": [
445 | "#indexing & arange"
446 | ]
447 | },
448 | {
449 | "cell_type": "code",
450 | "execution_count": 27,
451 | "id": "ef6d052d-c978-4315-9a79-ada784e4c88f",
452 | "metadata": {},
453 | "outputs": [
454 | {
455 | "data": {
456 | "text/plain": [
457 | "[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]"
458 | ]
459 | },
460 | "execution_count": 27,
461 | "metadata": {},
462 | "output_type": "execute_result"
463 | }
464 | ],
465 | "source": [
466 | "list(range(0,10))"
467 | ]
468 | },
469 | {
470 | "cell_type": "code",
471 | "execution_count": 28,
472 | "id": "626bfbd7-bf3b-4726-aff0-c3a9695ff2a9",
473 | "metadata": {},
474 | "outputs": [
475 | {
476 | "data": {
477 | "text/plain": [
478 | "array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])"
479 | ]
480 | },
481 | "execution_count": 28,
482 | "metadata": {},
483 | "output_type": "execute_result"
484 | }
485 | ],
486 | "source": [
487 | "np.arange(0,10)"
488 | ]
489 | },
490 | {
491 | "cell_type": "code",
492 | "execution_count": 29,
493 | "id": "e53ca57a-f857-496e-a5e5-fc96bf150782",
494 | "metadata": {},
495 | "outputs": [
496 | {
497 | "data": {
498 | "text/plain": [
499 | "array([ 0, 2, 4, 6, 8, 10, 12, 14, 16, 18])"
500 | ]
501 | },
502 | "execution_count": 29,
503 | "metadata": {},
504 | "output_type": "execute_result"
505 | }
506 | ],
507 | "source": [
508 | "np.arange(0,20,2)"
509 | ]
510 | },
511 | {
512 | "cell_type": "code",
513 | "execution_count": 30,
514 | "id": "927f9dc2-82f0-4b43-aef7-110d0cd175d1",
515 | "metadata": {},
516 | "outputs": [],
517 | "source": [
518 | "np_array = np.arange(0,10)"
519 | ]
520 | },
521 | {
522 | "cell_type": "code",
523 | "execution_count": 31,
524 | "id": "fc8d78cf-aafa-4c6c-a4ba-f0aa61eb8013",
525 | "metadata": {},
526 | "outputs": [
527 | {
528 | "data": {
529 | "text/plain": [
530 | "0"
531 | ]
532 | },
533 | "execution_count": 31,
534 | "metadata": {},
535 | "output_type": "execute_result"
536 | }
537 | ],
538 | "source": [
539 | "np_array[0]"
540 | ]
541 | },
542 | {
543 | "cell_type": "code",
544 | "execution_count": 32,
545 | "id": "82641c03-30ac-4fbe-bb83-97a070874bbd",
546 | "metadata": {},
547 | "outputs": [
548 | {
549 | "data": {
550 | "text/plain": [
551 | "9"
552 | ]
553 | },
554 | "execution_count": 32,
555 | "metadata": {},
556 | "output_type": "execute_result"
557 | }
558 | ],
559 | "source": [
560 | "np_array[-1]"
561 | ]
562 | },
563 | {
564 | "cell_type": "code",
565 | "execution_count": 33,
566 | "id": "4471d6f3-e97c-41f0-878e-96297bc8f954",
567 | "metadata": {},
568 | "outputs": [
569 | {
570 | "data": {
571 | "text/plain": [
572 | "array([1, 2, 3])"
573 | ]
574 | },
575 | "execution_count": 33,
576 | "metadata": {},
577 | "output_type": "execute_result"
578 | }
579 | ],
580 | "source": [
581 | "np_array[1:4:]"
582 | ]
583 | },
584 | {
585 | "cell_type": "code",
586 | "execution_count": 34,
587 | "id": "e825564c-4794-4fa2-a36e-7febfc5c1e0b",
588 | "metadata": {},
589 | "outputs": [
590 | {
591 | "data": {
592 | "text/plain": [
593 | "array([9, 8, 7, 6, 5, 4, 3, 2, 1, 0])"
594 | ]
595 | },
596 | "execution_count": 34,
597 | "metadata": {},
598 | "output_type": "execute_result"
599 | }
600 | ],
601 | "source": [
602 | "np_array[::-1]"
603 | ]
604 | },
605 | {
606 | "cell_type": "code",
607 | "execution_count": 35,
608 | "id": "f365c8f6-3d33-42ba-b22b-7de141eb0fcd",
609 | "metadata": {},
610 | "outputs": [
611 | {
612 | "data": {
613 | "text/plain": [
614 | "array([2, 4])"
615 | ]
616 | },
617 | "execution_count": 35,
618 | "metadata": {},
619 | "output_type": "execute_result"
620 | }
621 | ],
622 | "source": [
623 | "np_array[2:6:2]"
624 | ]
625 | },
626 | {
627 | "cell_type": "code",
628 | "execution_count": 40,
629 | "id": "9b8a4c06-e364-4281-b1d8-5972ba54235f",
630 | "metadata": {},
631 | "outputs": [],
632 | "source": [
633 | "# random"
634 | ]
635 | },
636 | {
637 | "cell_type": "code",
638 | "execution_count": 41,
639 | "id": "c14f32bf-8f4e-48cf-b477-59972e009ffd",
640 | "metadata": {},
641 | "outputs": [
642 | {
643 | "data": {
644 | "text/plain": [
645 | "array([-1.01630674, -1.09829885, 0.70948785, 2.54035352])"
646 | ]
647 | },
648 | "execution_count": 41,
649 | "metadata": {},
650 | "output_type": "execute_result"
651 | }
652 | ],
653 | "source": [
654 | "np.random.randn(4)"
655 | ]
656 | },
657 | {
658 | "cell_type": "code",
659 | "execution_count": 42,
660 | "id": "765bda37-7d9f-4a5e-8a96-cbe295f3c17b",
661 | "metadata": {},
662 | "outputs": [
663 | {
664 | "data": {
665 | "text/plain": [
666 | "array([[-1.92619892, 0.6432985 , 1.52906877, -0.45387039],\n",
667 | " [ 1.09507191, -1.56907651, -0.0185524 , 0.21799423],\n",
668 | " [-0.8186812 , -1.12639982, -1.59773834, 0.36370991],\n",
669 | " [ 0.71767334, 0.64516878, -0.37454103, 0.50293794]])"
670 | ]
671 | },
672 | "execution_count": 42,
673 | "metadata": {},
674 | "output_type": "execute_result"
675 | }
676 | ],
677 | "source": [
678 | "np.random.randn(4,4) #we will see matrices in details"
679 | ]
680 | },
681 | {
682 | "cell_type": "code",
683 | "execution_count": 43,
684 | "id": "78e2d329-f546-4370-9d5b-cc7421d78abd",
685 | "metadata": {},
686 | "outputs": [
687 | {
688 | "data": {
689 | "text/plain": [
690 | "array([ 89, 169, 249, 29, 161])"
691 | ]
692 | },
693 | "execution_count": 43,
694 | "metadata": {},
695 | "output_type": "execute_result"
696 | }
697 | ],
698 | "source": [
699 | "np.random.randint(1,300,5)"
700 | ]
701 | },
702 | {
703 | "cell_type": "code",
704 | "execution_count": null,
705 | "id": "ca004933-ae90-4d7b-9cf7-be50d4abfa1a",
706 | "metadata": {},
707 | "outputs": [],
708 | "source": []
709 | }
710 | ],
711 | "metadata": {
712 | "kernelspec": {
713 | "display_name": "Python 3 (ipykernel)",
714 | "language": "python",
715 | "name": "python3"
716 | },
717 | "language_info": {
718 | "codemirror_mode": {
719 | "name": "ipython",
720 | "version": 3
721 | },
722 | "file_extension": ".py",
723 | "mimetype": "text/x-python",
724 | "name": "python",
725 | "nbconvert_exporter": "python",
726 | "pygments_lexer": "ipython3",
727 | "version": "3.12.7"
728 | }
729 | },
730 | "nbformat": 4,
731 | "nbformat_minor": 5
732 | }
733 |
--------------------------------------------------------------------------------
/2-NumpyMatrices.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 1,
6 | "id": "72f6ebd3-aa54-4af5-b500-01d0763f6325",
7 | "metadata": {},
8 | "outputs": [],
9 | "source": [
10 | "import numpy as np"
11 | ]
12 | },
13 | {
14 | "cell_type": "code",
15 | "execution_count": 7,
16 | "id": "954bbbad-343b-4292-84c1-bc2bf84646cc",
17 | "metadata": {},
18 | "outputs": [],
19 | "source": [
20 | "my_matrix = [[5,10],[15,20]]"
21 | ]
22 | },
23 | {
24 | "cell_type": "code",
25 | "execution_count": 8,
26 | "id": "c5ce2b9d-1fed-423d-81a5-4b14a3d0c78c",
27 | "metadata": {},
28 | "outputs": [
29 | {
30 | "data": {
31 | "text/plain": [
32 | "[5, 10]"
33 | ]
34 | },
35 | "execution_count": 8,
36 | "metadata": {},
37 | "output_type": "execute_result"
38 | }
39 | ],
40 | "source": [
41 | "my_matrix[0]"
42 | ]
43 | },
44 | {
45 | "cell_type": "code",
46 | "execution_count": 9,
47 | "id": "950601d3-cbad-4ed5-9cda-450e16f0ced3",
48 | "metadata": {},
49 | "outputs": [
50 | {
51 | "data": {
52 | "text/plain": [
53 | "[15, 20]"
54 | ]
55 | },
56 | "execution_count": 9,
57 | "metadata": {},
58 | "output_type": "execute_result"
59 | }
60 | ],
61 | "source": [
62 | "my_matrix[1]"
63 | ]
64 | },
65 | {
66 | "cell_type": "code",
67 | "execution_count": 12,
68 | "id": "6159f2ac-8a24-4d03-b925-d4019db1c551",
69 | "metadata": {},
70 | "outputs": [],
71 | "source": [
72 | "#my_matrix.sum()"
73 | ]
74 | },
75 | {
76 | "cell_type": "code",
77 | "execution_count": 10,
78 | "id": "7bdd8805-da83-44cf-9585-8c5751810b98",
79 | "metadata": {},
80 | "outputs": [],
81 | "source": [
82 | "numpy_matrix = np.array([[5,10],[15,20]])"
83 | ]
84 | },
85 | {
86 | "cell_type": "code",
87 | "execution_count": 13,
88 | "id": "122650fc-f8bc-49ef-a028-aaa76d4f0365",
89 | "metadata": {},
90 | "outputs": [
91 | {
92 | "data": {
93 | "text/plain": [
94 | "50"
95 | ]
96 | },
97 | "execution_count": 13,
98 | "metadata": {},
99 | "output_type": "execute_result"
100 | }
101 | ],
102 | "source": [
103 | "numpy_matrix.sum()"
104 | ]
105 | },
106 | {
107 | "cell_type": "code",
108 | "execution_count": 20,
109 | "id": "5cac9c72-f3ee-4fef-9f25-aafce4dffc35",
110 | "metadata": {},
111 | "outputs": [],
112 | "source": [
113 | "# row x column"
114 | ]
115 | },
116 | {
117 | "cell_type": "code",
118 | "execution_count": 21,
119 | "id": "f6609207-a1e5-4b34-8f55-8a82a628d052",
120 | "metadata": {},
121 | "outputs": [
122 | {
123 | "data": {
124 | "text/plain": [
125 | "array([[1., 1.],\n",
126 | " [1., 1.],\n",
127 | " [1., 1.],\n",
128 | " [1., 1.]])"
129 | ]
130 | },
131 | "execution_count": 21,
132 | "metadata": {},
133 | "output_type": "execute_result"
134 | }
135 | ],
136 | "source": [
137 | "np.ones((4,2))"
138 | ]
139 | },
140 | {
141 | "cell_type": "code",
142 | "execution_count": 22,
143 | "id": "aee3b6df-1975-47cd-b591-faa33008fedf",
144 | "metadata": {},
145 | "outputs": [
146 | {
147 | "data": {
148 | "text/plain": [
149 | "array([[0., 0., 0.],\n",
150 | " [0., 0., 0.],\n",
151 | " [0., 0., 0.],\n",
152 | " [0., 0., 0.],\n",
153 | " [0., 0., 0.]])"
154 | ]
155 | },
156 | "execution_count": 22,
157 | "metadata": {},
158 | "output_type": "execute_result"
159 | }
160 | ],
161 | "source": [
162 | "np.zeros((5,3))"
163 | ]
164 | },
165 | {
166 | "cell_type": "code",
167 | "execution_count": 23,
168 | "id": "7363c000-e3b8-4bd5-9707-2c503371062e",
169 | "metadata": {},
170 | "outputs": [
171 | {
172 | "data": {
173 | "text/plain": [
174 | "array([[0.16776112, 0.00703872],\n",
175 | " [0.00533717, 0.89356651],\n",
176 | " [0.11160896, 0.6911002 ]])"
177 | ]
178 | },
179 | "execution_count": 23,
180 | "metadata": {},
181 | "output_type": "execute_result"
182 | }
183 | ],
184 | "source": [
185 | "np.random.random((3,2))"
186 | ]
187 | },
188 | {
189 | "cell_type": "code",
190 | "execution_count": 24,
191 | "id": "cc49bbe3-a8af-42b2-8805-a3500bf8f941",
192 | "metadata": {},
193 | "outputs": [],
194 | "source": [
195 | "# matrix arithmetic "
196 | ]
197 | },
198 | {
199 | "cell_type": "code",
200 | "execution_count": 25,
201 | "id": "19cc3b60-84d3-4545-8d21-34fe71fe6879",
202 | "metadata": {},
203 | "outputs": [],
204 | "source": [
205 | "first_array = np.array([[10,20],[30,40]])"
206 | ]
207 | },
208 | {
209 | "cell_type": "code",
210 | "execution_count": 26,
211 | "id": "771b116e-9e59-481d-8864-582578be9e84",
212 | "metadata": {},
213 | "outputs": [],
214 | "source": [
215 | "second_array = np.array([[5,15],[25,35]])"
216 | ]
217 | },
218 | {
219 | "cell_type": "code",
220 | "execution_count": 27,
221 | "id": "72be3206-0a4c-4809-9481-6a1910087c5c",
222 | "metadata": {},
223 | "outputs": [
224 | {
225 | "data": {
226 | "text/plain": [
227 | "array([[15, 35],\n",
228 | " [55, 75]])"
229 | ]
230 | },
231 | "execution_count": 27,
232 | "metadata": {},
233 | "output_type": "execute_result"
234 | }
235 | ],
236 | "source": [
237 | "first_array + second_array"
238 | ]
239 | },
240 | {
241 | "cell_type": "code",
242 | "execution_count": 28,
243 | "id": "62b64bd9-a3bd-4cc2-be1f-935476760d7c",
244 | "metadata": {},
245 | "outputs": [
246 | {
247 | "data": {
248 | "text/plain": [
249 | "array([[20, 40],\n",
250 | " [60, 80]])"
251 | ]
252 | },
253 | "execution_count": 28,
254 | "metadata": {},
255 | "output_type": "execute_result"
256 | }
257 | ],
258 | "source": [
259 | "first_array * 2"
260 | ]
261 | },
262 | {
263 | "cell_type": "code",
264 | "execution_count": 29,
265 | "id": "5db28430-a4c7-4f2b-a49a-37f6e379dac1",
266 | "metadata": {},
267 | "outputs": [
268 | {
269 | "data": {
270 | "text/plain": [
271 | "array([[ 2.5, 5. ],\n",
272 | " [ 7.5, 10. ]])"
273 | ]
274 | },
275 | "execution_count": 29,
276 | "metadata": {},
277 | "output_type": "execute_result"
278 | }
279 | ],
280 | "source": [
281 | "first_array / 4"
282 | ]
283 | },
284 | {
285 | "cell_type": "code",
286 | "execution_count": 30,
287 | "id": "1179266b-7e27-432c-a654-1a6561673e5e",
288 | "metadata": {},
289 | "outputs": [],
290 | "source": [
291 | "# We can add and multiply matrices using arithmetic operators (+-*/) if the two matrices are the same size."
292 | ]
293 | },
294 | {
295 | "cell_type": "code",
296 | "execution_count": 31,
297 | "id": "1d87b8cc-6e70-4be7-ae60-86a1767cedea",
298 | "metadata": {},
299 | "outputs": [],
300 | "source": [
301 | "third_array = np.array([[10],[20]])"
302 | ]
303 | },
304 | {
305 | "cell_type": "code",
306 | "execution_count": 32,
307 | "id": "f687de5e-aef8-4cc0-ad37-828efd0dfb66",
308 | "metadata": {},
309 | "outputs": [
310 | {
311 | "data": {
312 | "text/plain": [
313 | "array([[10],\n",
314 | " [20]])"
315 | ]
316 | },
317 | "execution_count": 32,
318 | "metadata": {},
319 | "output_type": "execute_result"
320 | }
321 | ],
322 | "source": [
323 | "third_array"
324 | ]
325 | },
326 | {
327 | "cell_type": "code",
328 | "execution_count": 34,
329 | "id": "d24223ca-2633-4ac1-b1a8-69445fb2cf2c",
330 | "metadata": {},
331 | "outputs": [
332 | {
333 | "data": {
334 | "text/plain": [
335 | "(2, 1)"
336 | ]
337 | },
338 | "execution_count": 34,
339 | "metadata": {},
340 | "output_type": "execute_result"
341 | }
342 | ],
343 | "source": [
344 | "third_array.shape"
345 | ]
346 | },
347 | {
348 | "cell_type": "code",
349 | "execution_count": 35,
350 | "id": "c5bc1e6f-24f9-44f8-953d-b82f37dac569",
351 | "metadata": {},
352 | "outputs": [
353 | {
354 | "data": {
355 | "text/plain": [
356 | "(2, 2)"
357 | ]
358 | },
359 | "execution_count": 35,
360 | "metadata": {},
361 | "output_type": "execute_result"
362 | }
363 | ],
364 | "source": [
365 | "first_array.shape"
366 | ]
367 | },
368 | {
369 | "cell_type": "code",
370 | "execution_count": 39,
371 | "id": "1f633a46-e0a8-4862-b4e3-7d89ef4b6ccb",
372 | "metadata": {},
373 | "outputs": [
374 | {
375 | "data": {
376 | "text/plain": [
377 | "array([[10, 20],\n",
378 | " [30, 40]])"
379 | ]
380 | },
381 | "execution_count": 39,
382 | "metadata": {},
383 | "output_type": "execute_result"
384 | }
385 | ],
386 | "source": [
387 | "first_array"
388 | ]
389 | },
390 | {
391 | "cell_type": "code",
392 | "execution_count": 36,
393 | "id": "206689b4-63c1-44e5-ae36-52ae81ab72a7",
394 | "metadata": {},
395 | "outputs": [
396 | {
397 | "data": {
398 | "text/plain": [
399 | "array([[20, 30],\n",
400 | " [50, 60]])"
401 | ]
402 | },
403 | "execution_count": 36,
404 | "metadata": {},
405 | "output_type": "execute_result"
406 | }
407 | ],
408 | "source": [
409 | "first_array + third_array"
410 | ]
411 | },
412 | {
413 | "cell_type": "code",
414 | "execution_count": 38,
415 | "id": "99ad1db3-fb96-48a5-9768-4f3a7a3cc007",
416 | "metadata": {},
417 | "outputs": [],
418 | "source": [
419 | "# We do these arithmetic operations on matrices of different size only if the different dimension is one \n",
420 | "#in which case NumPy uses its broadcast rules for that operation:"
421 | ]
422 | },
423 | {
424 | "cell_type": "code",
425 | "execution_count": 40,
426 | "id": "2454ca51-f2b0-4d03-96f2-a29c5edbabdd",
427 | "metadata": {},
428 | "outputs": [],
429 | "source": [
430 | "fourth_array = np.ones((3,4))"
431 | ]
432 | },
433 | {
434 | "cell_type": "code",
435 | "execution_count": 41,
436 | "id": "1d906d74-8433-403c-8124-edd33d66a861",
437 | "metadata": {},
438 | "outputs": [
439 | {
440 | "data": {
441 | "text/plain": [
442 | "array([[1., 1., 1., 1.],\n",
443 | " [1., 1., 1., 1.],\n",
444 | " [1., 1., 1., 1.]])"
445 | ]
446 | },
447 | "execution_count": 41,
448 | "metadata": {},
449 | "output_type": "execute_result"
450 | }
451 | ],
452 | "source": [
453 | "fourth_array"
454 | ]
455 | },
456 | {
457 | "cell_type": "code",
458 | "execution_count": 43,
459 | "id": "cb738a02-12cb-4a72-9d24-071d93fb4953",
460 | "metadata": {},
461 | "outputs": [],
462 | "source": [
463 | "#fourth_array + first_array"
464 | ]
465 | },
466 | {
467 | "cell_type": "code",
468 | "execution_count": 44,
469 | "id": "5ce99420-058e-42e4-9902-c476cc1b2187",
470 | "metadata": {},
471 | "outputs": [],
472 | "source": [
473 | "# matrix multiplication"
474 | ]
475 | },
476 | {
477 | "cell_type": "code",
478 | "execution_count": 45,
479 | "id": "69ba681c-383f-4edc-a426-9bd6b33b1ad4",
480 | "metadata": {},
481 | "outputs": [],
482 | "source": [
483 | "first_matrix = np.array([[10,20,30]])"
484 | ]
485 | },
486 | {
487 | "cell_type": "code",
488 | "execution_count": 46,
489 | "id": "f3bb87c5-c15e-4442-9039-b3bb9c5d8281",
490 | "metadata": {},
491 | "outputs": [
492 | {
493 | "data": {
494 | "text/plain": [
495 | "array([[10, 20, 30]])"
496 | ]
497 | },
498 | "execution_count": 46,
499 | "metadata": {},
500 | "output_type": "execute_result"
501 | }
502 | ],
503 | "source": [
504 | "first_matrix"
505 | ]
506 | },
507 | {
508 | "cell_type": "code",
509 | "execution_count": 48,
510 | "id": "a72ba3ee-fa2b-4994-963b-f7ee7f7bd98e",
511 | "metadata": {},
512 | "outputs": [],
513 | "source": [
514 | "second_matrix = np.array([[2,3],[2,3],[2,3]])"
515 | ]
516 | },
517 | {
518 | "cell_type": "code",
519 | "execution_count": 49,
520 | "id": "27bdfcc0-422e-44a1-86b2-02eae12bddf0",
521 | "metadata": {},
522 | "outputs": [
523 | {
524 | "data": {
525 | "text/plain": [
526 | "array([[2, 3],\n",
527 | " [2, 3],\n",
528 | " [2, 3]])"
529 | ]
530 | },
531 | "execution_count": 49,
532 | "metadata": {},
533 | "output_type": "execute_result"
534 | }
535 | ],
536 | "source": [
537 | "second_matrix"
538 | ]
539 | },
540 | {
541 | "cell_type": "code",
542 | "execution_count": 50,
543 | "id": "a2da66f7-9f6f-41e8-9a9f-9369097e1eae",
544 | "metadata": {},
545 | "outputs": [
546 | {
547 | "data": {
548 | "text/plain": [
549 | "(1, 3)"
550 | ]
551 | },
552 | "execution_count": 50,
553 | "metadata": {},
554 | "output_type": "execute_result"
555 | }
556 | ],
557 | "source": [
558 | "first_matrix.shape"
559 | ]
560 | },
561 | {
562 | "cell_type": "code",
563 | "execution_count": 51,
564 | "id": "e2f0f5b3-44c9-4215-b168-0ecffacbbbdd",
565 | "metadata": {},
566 | "outputs": [
567 | {
568 | "data": {
569 | "text/plain": [
570 | "(3, 2)"
571 | ]
572 | },
573 | "execution_count": 51,
574 | "metadata": {},
575 | "output_type": "execute_result"
576 | }
577 | ],
578 | "source": [
579 | "second_matrix.shape"
580 | ]
581 | },
582 | {
583 | "cell_type": "code",
584 | "execution_count": 53,
585 | "id": "ec0e77f1-6a73-48fc-9319-8f4632210cbc",
586 | "metadata": {},
587 | "outputs": [],
588 | "source": [
589 | "#first_matrix * second_matrix"
590 | ]
591 | },
592 | {
593 | "cell_type": "code",
594 | "execution_count": 55,
595 | "id": "b4bc56b7-4306-4faf-8e9d-1c10635d707b",
596 | "metadata": {},
597 | "outputs": [],
598 | "source": [
599 | "result_matrix = first_matrix.dot(second_matrix)"
600 | ]
601 | },
602 | {
603 | "cell_type": "code",
604 | "execution_count": 56,
605 | "id": "2acd6119-f2fb-4e6c-a665-545e4081a259",
606 | "metadata": {},
607 | "outputs": [
608 | {
609 | "data": {
610 | "text/plain": [
611 | "array([[120, 180]])"
612 | ]
613 | },
614 | "execution_count": 56,
615 | "metadata": {},
616 | "output_type": "execute_result"
617 | }
618 | ],
619 | "source": [
620 | "result_matrix"
621 | ]
622 | },
623 | {
624 | "cell_type": "code",
625 | "execution_count": 57,
626 | "id": "669d4ef7-c56c-48bc-b1d4-754e2a8071ac",
627 | "metadata": {},
628 | "outputs": [
629 | {
630 | "data": {
631 | "text/plain": [
632 | "(1, 2)"
633 | ]
634 | },
635 | "execution_count": 57,
636 | "metadata": {},
637 | "output_type": "execute_result"
638 | }
639 | ],
640 | "source": [
641 | "result_matrix.shape"
642 | ]
643 | },
644 | {
645 | "cell_type": "code",
646 | "execution_count": null,
647 | "id": "cd818bc9-1470-40c4-b4d9-c9ba2d07279c",
648 | "metadata": {},
649 | "outputs": [],
650 | "source": []
651 | }
652 | ],
653 | "metadata": {
654 | "kernelspec": {
655 | "display_name": "Python 3 (ipykernel)",
656 | "language": "python",
657 | "name": "python3"
658 | },
659 | "language_info": {
660 | "codemirror_mode": {
661 | "name": "ipython",
662 | "version": 3
663 | },
664 | "file_extension": ".py",
665 | "mimetype": "text/x-python",
666 | "name": "python",
667 | "nbconvert_exporter": "python",
668 | "pygments_lexer": "ipython3",
669 | "version": "3.12.7"
670 | }
671 | },
672 | "nbformat": 4,
673 | "nbformat_minor": 5
674 | }
675 |
--------------------------------------------------------------------------------
/3-NumpyOperations.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 1,
6 | "id": "437a0fe2-0f98-4934-bb29-38e5d7165254",
7 | "metadata": {},
8 | "outputs": [],
9 | "source": [
10 | "import numpy as np"
11 | ]
12 | },
13 | {
14 | "cell_type": "code",
15 | "execution_count": 2,
16 | "id": "e1deac09-18e9-4935-90b0-c91c7735bd9d",
17 | "metadata": {},
18 | "outputs": [],
19 | "source": [
20 | "new_array = np.random.randint(1,100,20)"
21 | ]
22 | },
23 | {
24 | "cell_type": "code",
25 | "execution_count": 3,
26 | "id": "472dbcc3-af2f-4dff-8769-0e3c145c4727",
27 | "metadata": {},
28 | "outputs": [
29 | {
30 | "data": {
31 | "text/plain": [
32 | "array([37, 64, 64, 69, 81, 36, 23, 62, 10, 95, 40, 83, 59, 76, 28, 19, 7,\n",
33 | " 81, 61, 47])"
34 | ]
35 | },
36 | "execution_count": 3,
37 | "metadata": {},
38 | "output_type": "execute_result"
39 | }
40 | ],
41 | "source": [
42 | "new_array"
43 | ]
44 | },
45 | {
46 | "cell_type": "code",
47 | "execution_count": 4,
48 | "id": "24dab151-b634-4ded-b23f-c38328eba437",
49 | "metadata": {},
50 | "outputs": [
51 | {
52 | "data": {
53 | "text/plain": [
54 | "array([ True, True, True, True, True, True, False, True, False,\n",
55 | " True, True, True, True, True, True, False, False, True,\n",
56 | " True, True])"
57 | ]
58 | },
59 | "execution_count": 4,
60 | "metadata": {},
61 | "output_type": "execute_result"
62 | }
63 | ],
64 | "source": [
65 | "new_array > 25"
66 | ]
67 | },
68 | {
69 | "cell_type": "code",
70 | "execution_count": 5,
71 | "id": "312ad7b2-b85c-44b7-aadd-e921dbadc105",
72 | "metadata": {},
73 | "outputs": [
74 | {
75 | "data": {
76 | "text/plain": [
77 | "array([37, 64, 64, 69, 81, 36, 62, 95, 40, 83, 59, 76, 28, 81, 61, 47])"
78 | ]
79 | },
80 | "execution_count": 5,
81 | "metadata": {},
82 | "output_type": "execute_result"
83 | }
84 | ],
85 | "source": [
86 | "new_array[new_array > 25]"
87 | ]
88 | },
89 | {
90 | "cell_type": "code",
91 | "execution_count": 6,
92 | "id": "15e8535a-5ec9-4591-a815-dff5e5984a39",
93 | "metadata": {},
94 | "outputs": [],
95 | "source": [
96 | "#transpose & reshape"
97 | ]
98 | },
99 | {
100 | "cell_type": "code",
101 | "execution_count": 7,
102 | "id": "3ab27706-fdc1-4872-b0b2-4f06d60667fb",
103 | "metadata": {},
104 | "outputs": [],
105 | "source": [
106 | "matrix_array = np.array([[10,20],[20,30],[30,40]])"
107 | ]
108 | },
109 | {
110 | "cell_type": "code",
111 | "execution_count": 8,
112 | "id": "086bf92a-1e69-408f-8254-79247608801c",
113 | "metadata": {},
114 | "outputs": [
115 | {
116 | "data": {
117 | "text/plain": [
118 | "array([[10, 20],\n",
119 | " [20, 30],\n",
120 | " [30, 40]])"
121 | ]
122 | },
123 | "execution_count": 8,
124 | "metadata": {},
125 | "output_type": "execute_result"
126 | }
127 | ],
128 | "source": [
129 | "matrix_array"
130 | ]
131 | },
132 | {
133 | "cell_type": "code",
134 | "execution_count": 9,
135 | "id": "43d1afcd-7433-4136-ae52-32465301311b",
136 | "metadata": {},
137 | "outputs": [
138 | {
139 | "data": {
140 | "text/plain": [
141 | "array([[10, 20, 30],\n",
142 | " [20, 30, 40]])"
143 | ]
144 | },
145 | "execution_count": 9,
146 | "metadata": {},
147 | "output_type": "execute_result"
148 | }
149 | ],
150 | "source": [
151 | "matrix_array.transpose()"
152 | ]
153 | },
154 | {
155 | "cell_type": "code",
156 | "execution_count": 10,
157 | "id": "02538ca8-983f-4c62-b789-5f5402203d08",
158 | "metadata": {},
159 | "outputs": [
160 | {
161 | "data": {
162 | "text/plain": [
163 | "array([[10, 20, 30],\n",
164 | " [20, 30, 40]])"
165 | ]
166 | },
167 | "execution_count": 10,
168 | "metadata": {},
169 | "output_type": "execute_result"
170 | }
171 | ],
172 | "source": [
173 | "matrix_array.T"
174 | ]
175 | },
176 | {
177 | "cell_type": "code",
178 | "execution_count": 11,
179 | "id": "f5765d0e-743f-44eb-b561-e9f7786eaa28",
180 | "metadata": {},
181 | "outputs": [],
182 | "source": [
183 | "random_array = np.random.random((6,1))"
184 | ]
185 | },
186 | {
187 | "cell_type": "code",
188 | "execution_count": 12,
189 | "id": "8a3a534f-a4ae-412f-9ac0-f1373e8c495e",
190 | "metadata": {},
191 | "outputs": [
192 | {
193 | "data": {
194 | "text/plain": [
195 | "array([[0.24590505],\n",
196 | " [0.82413243],\n",
197 | " [0.57636962],\n",
198 | " [0.03514044],\n",
199 | " [0.87443472],\n",
200 | " [0.97933209]])"
201 | ]
202 | },
203 | "execution_count": 12,
204 | "metadata": {},
205 | "output_type": "execute_result"
206 | }
207 | ],
208 | "source": [
209 | "random_array"
210 | ]
211 | },
212 | {
213 | "cell_type": "code",
214 | "execution_count": 13,
215 | "id": "d77eb2ad-00ea-4ed8-864b-acc8cebdd873",
216 | "metadata": {},
217 | "outputs": [
218 | {
219 | "data": {
220 | "text/plain": [
221 | "array([[0.24590505, 0.82413243, 0.57636962],\n",
222 | " [0.03514044, 0.87443472, 0.97933209]])"
223 | ]
224 | },
225 | "execution_count": 13,
226 | "metadata": {},
227 | "output_type": "execute_result"
228 | }
229 | ],
230 | "source": [
231 | "random_array.reshape(2,3)"
232 | ]
233 | },
234 | {
235 | "cell_type": "code",
236 | "execution_count": 14,
237 | "id": "4632a7c3-3dee-48c6-9bcc-c040d2a5ca06",
238 | "metadata": {},
239 | "outputs": [
240 | {
241 | "data": {
242 | "text/plain": [
243 | "array([[0.24590505, 0.82413243],\n",
244 | " [0.57636962, 0.03514044],\n",
245 | " [0.87443472, 0.97933209]])"
246 | ]
247 | },
248 | "execution_count": 14,
249 | "metadata": {},
250 | "output_type": "execute_result"
251 | }
252 | ],
253 | "source": [
254 | "random_array.reshape(3,2)"
255 | ]
256 | },
257 | {
258 | "cell_type": "code",
259 | "execution_count": 15,
260 | "id": "804bec25-7d21-4316-b09b-8ea10facd0b5",
261 | "metadata": {},
262 | "outputs": [],
263 | "source": [
264 | "# real life cases"
265 | ]
266 | },
267 | {
268 | "cell_type": "code",
269 | "execution_count": 16,
270 | "id": "fe86536a-d9a8-4232-b4f1-c2e114ee7473",
271 | "metadata": {},
272 | "outputs": [],
273 | "source": [
274 | "data = np.array([10, 12, 13, 15, 18, 25, 100, 105])"
275 | ]
276 | },
277 | {
278 | "cell_type": "code",
279 | "execution_count": 17,
280 | "id": "11db04e7-7468-4b6d-b334-39aa2b25b16e",
281 | "metadata": {},
282 | "outputs": [],
283 | "source": [
284 | "# Compute Z-scores\n",
285 | "mean = np.mean(data)"
286 | ]
287 | },
288 | {
289 | "cell_type": "code",
290 | "execution_count": 33,
291 | "id": "dc22ef31-9fbf-4d09-894a-a65ac72173e1",
292 | "metadata": {},
293 | "outputs": [
294 | {
295 | "data": {
296 | "text/plain": [
297 | "37.25"
298 | ]
299 | },
300 | "execution_count": 33,
301 | "metadata": {},
302 | "output_type": "execute_result"
303 | }
304 | ],
305 | "source": [
306 | "mean"
307 | ]
308 | },
309 | {
310 | "cell_type": "code",
311 | "execution_count": 18,
312 | "id": "5d881ccf-38ef-4ae1-8668-782f97e84718",
313 | "metadata": {},
314 | "outputs": [],
315 | "source": [
316 | "std = np.std(data)"
317 | ]
318 | },
319 | {
320 | "cell_type": "code",
321 | "execution_count": 34,
322 | "id": "574be2c0-da02-4c85-8bcf-65894540611a",
323 | "metadata": {},
324 | "outputs": [
325 | {
326 | "data": {
327 | "text/plain": [
328 | "37.9333296719389"
329 | ]
330 | },
331 | "execution_count": 34,
332 | "metadata": {},
333 | "output_type": "execute_result"
334 | }
335 | ],
336 | "source": [
337 | "std"
338 | ]
339 | },
340 | {
341 | "cell_type": "code",
342 | "execution_count": 19,
343 | "id": "ecdec468-346f-4383-8ccb-526aa4a6a0cf",
344 | "metadata": {},
345 | "outputs": [],
346 | "source": [
347 | "z_scores = (data - mean) / std"
348 | ]
349 | },
350 | {
351 | "cell_type": "code",
352 | "execution_count": 20,
353 | "id": "8a3f41f4-4353-4f42-97ba-9551524caa26",
354 | "metadata": {},
355 | "outputs": [
356 | {
357 | "data": {
358 | "text/plain": [
359 | "array([-0.71836562, -0.66564154, -0.6392795 , -0.58655542, -0.50746929,\n",
360 | " -0.322935 , 1.65421809, 1.78602829])"
361 | ]
362 | },
363 | "execution_count": 20,
364 | "metadata": {},
365 | "output_type": "execute_result"
366 | }
367 | ],
368 | "source": [
369 | "z_scores"
370 | ]
371 | },
372 | {
373 | "cell_type": "code",
374 | "execution_count": 27,
375 | "id": "104fa3fb-1f3a-4c86-8295-58ed55437a19",
376 | "metadata": {},
377 | "outputs": [
378 | {
379 | "data": {
380 | "text/plain": [
381 | "array([False, False, False, False, False, False, True, True])"
382 | ]
383 | },
384 | "execution_count": 27,
385 | "metadata": {},
386 | "output_type": "execute_result"
387 | }
388 | ],
389 | "source": [
390 | "np.abs(z_scores) > 1"
391 | ]
392 | },
393 | {
394 | "cell_type": "code",
395 | "execution_count": 31,
396 | "id": "b313bd09-9756-477d-b31f-f0789a0ffa02",
397 | "metadata": {},
398 | "outputs": [],
399 | "source": [
400 | "outliers = data[np.abs(z_scores) > 1]"
401 | ]
402 | },
403 | {
404 | "cell_type": "code",
405 | "execution_count": 32,
406 | "id": "9382f411-a1af-4832-8773-6d40cf825c1d",
407 | "metadata": {},
408 | "outputs": [
409 | {
410 | "data": {
411 | "text/plain": [
412 | "array([100, 105])"
413 | ]
414 | },
415 | "execution_count": 32,
416 | "metadata": {},
417 | "output_type": "execute_result"
418 | }
419 | ],
420 | "source": [
421 | "outliers"
422 | ]
423 | },
424 | {
425 | "cell_type": "code",
426 | "execution_count": 35,
427 | "id": "d29b964f-e793-476f-8769-d3682fb1f722",
428 | "metadata": {},
429 | "outputs": [],
430 | "source": [
431 | "# math equations"
432 | ]
433 | },
434 | {
435 | "cell_type": "code",
436 | "execution_count": 36,
437 | "id": "85dde08e-5413-4f15-90b1-2288aed891f0",
438 | "metadata": {},
439 | "outputs": [],
440 | "source": [
441 | "# Solve 2x + 3y = 8 and 5x + 7y = 19"
442 | ]
443 | },
444 | {
445 | "cell_type": "code",
446 | "execution_count": 37,
447 | "id": "9273c982-8e1f-431b-9483-d180845a611b",
448 | "metadata": {},
449 | "outputs": [],
450 | "source": [
451 | "# Coefficients matrix\n",
452 | "A = np.array([[2, 3], [5, 7]])"
453 | ]
454 | },
455 | {
456 | "cell_type": "code",
457 | "execution_count": 38,
458 | "id": "9ab5dfce-3da3-47c1-b2c8-33534b8ca273",
459 | "metadata": {},
460 | "outputs": [],
461 | "source": [
462 | "# Constants matrix\n",
463 | "b = np.array([8, 19])"
464 | ]
465 | },
466 | {
467 | "cell_type": "code",
468 | "execution_count": 39,
469 | "id": "cd363c3a-f124-48dd-ba10-01884419b0c1",
470 | "metadata": {},
471 | "outputs": [],
472 | "source": [
473 | "# Solve for x and y\n",
474 | "solution = np.linalg.solve(A, b)"
475 | ]
476 | },
477 | {
478 | "cell_type": "code",
479 | "execution_count": 40,
480 | "id": "5df130f7-c9cb-4386-8c0c-0bc49a298cfc",
481 | "metadata": {},
482 | "outputs": [
483 | {
484 | "data": {
485 | "text/plain": [
486 | "array([1., 2.])"
487 | ]
488 | },
489 | "execution_count": 40,
490 | "metadata": {},
491 | "output_type": "execute_result"
492 | }
493 | ],
494 | "source": [
495 | "solution"
496 | ]
497 | },
498 | {
499 | "cell_type": "code",
500 | "execution_count": 41,
501 | "id": "3009a2b7-24b3-453d-b826-474fc5325fbe",
502 | "metadata": {},
503 | "outputs": [],
504 | "source": [
505 | "# data analysis"
506 | ]
507 | },
508 | {
509 | "cell_type": "code",
510 | "execution_count": 42,
511 | "id": "3256f315-c092-4513-a216-1b9de7e0d277",
512 | "metadata": {},
513 | "outputs": [],
514 | "source": [
515 | "# Stock prices over 5 days\n",
516 | "prices = np.array([100, 102, 105, 107, 110])"
517 | ]
518 | },
519 | {
520 | "cell_type": "code",
521 | "execution_count": 48,
522 | "id": "c20fbdc5-ab57-40ba-a956-73c54102c3c1",
523 | "metadata": {},
524 | "outputs": [
525 | {
526 | "data": {
527 | "text/plain": [
528 | "array([2, 3, 2, 3])"
529 | ]
530 | },
531 | "execution_count": 48,
532 | "metadata": {},
533 | "output_type": "execute_result"
534 | }
535 | ],
536 | "source": [
537 | "np.diff(prices)"
538 | ]
539 | },
540 | {
541 | "cell_type": "code",
542 | "execution_count": 51,
543 | "id": "d4c4ab0f-cc36-45a4-ae5c-ca7995b18d2a",
544 | "metadata": {},
545 | "outputs": [
546 | {
547 | "data": {
548 | "text/plain": [
549 | "array([100, 102, 105, 107])"
550 | ]
551 | },
552 | "execution_count": 51,
553 | "metadata": {},
554 | "output_type": "execute_result"
555 | }
556 | ],
557 | "source": [
558 | "prices[:len(prices)-1:]"
559 | ]
560 | },
561 | {
562 | "cell_type": "code",
563 | "execution_count": 52,
564 | "id": "19d00e9e-d786-4796-be84-de6cf5dd99c2",
565 | "metadata": {},
566 | "outputs": [
567 | {
568 | "data": {
569 | "text/plain": [
570 | "array([100, 102, 105, 107])"
571 | ]
572 | },
573 | "execution_count": 52,
574 | "metadata": {},
575 | "output_type": "execute_result"
576 | }
577 | ],
578 | "source": [
579 | "prices[:-1:]"
580 | ]
581 | },
582 | {
583 | "cell_type": "code",
584 | "execution_count": 53,
585 | "id": "1b28d184-4bc4-4a56-81d4-a85d0e0a8930",
586 | "metadata": {},
587 | "outputs": [
588 | {
589 | "data": {
590 | "text/plain": [
591 | "array([0.02 , 0.02941176, 0.01904762, 0.02803738])"
592 | ]
593 | },
594 | "execution_count": 53,
595 | "metadata": {},
596 | "output_type": "execute_result"
597 | }
598 | ],
599 | "source": [
600 | "np.diff(prices) / prices[:-1]"
601 | ]
602 | },
603 | {
604 | "cell_type": "code",
605 | "execution_count": 54,
606 | "id": "07d1d026-8960-4338-b46d-8c1d43eaed81",
607 | "metadata": {},
608 | "outputs": [],
609 | "source": [
610 | "returns = np.diff(prices) / prices[:-1] * 100"
611 | ]
612 | },
613 | {
614 | "cell_type": "code",
615 | "execution_count": 55,
616 | "id": "d4cf197f-0f40-46cb-a992-3a82b4a91d58",
617 | "metadata": {},
618 | "outputs": [
619 | {
620 | "data": {
621 | "text/plain": [
622 | "array([2. , 2.94117647, 1.9047619 , 2.80373832])"
623 | ]
624 | },
625 | "execution_count": 55,
626 | "metadata": {},
627 | "output_type": "execute_result"
628 | }
629 | ],
630 | "source": [
631 | "returns"
632 | ]
633 | },
634 | {
635 | "cell_type": "code",
636 | "execution_count": null,
637 | "id": "19720d75-517e-4bb1-8fb5-15538cade503",
638 | "metadata": {},
639 | "outputs": [],
640 | "source": []
641 | }
642 | ],
643 | "metadata": {
644 | "kernelspec": {
645 | "display_name": "Python 3 (ipykernel)",
646 | "language": "python",
647 | "name": "python3"
648 | },
649 | "language_info": {
650 | "codemirror_mode": {
651 | "name": "ipython",
652 | "version": 3
653 | },
654 | "file_extension": ".py",
655 | "mimetype": "text/x-python",
656 | "name": "python",
657 | "nbconvert_exporter": "python",
658 | "pygments_lexer": "ipython3",
659 | "version": "3.12.7"
660 | }
661 | },
662 | "nbformat": 4,
663 | "nbformat_minor": 5
664 | }
665 |
--------------------------------------------------------------------------------
/4-IntroToPandas.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 1,
6 | "id": "23d1ec8c-a21d-42a4-8d58-5965122143f9",
7 | "metadata": {},
8 | "outputs": [],
9 | "source": [
10 | "import numpy as np\n",
11 | "import pandas as pd"
12 | ]
13 | },
14 | {
15 | "cell_type": "code",
16 | "execution_count": 2,
17 | "id": "af91d4f5-f4ea-4a8b-9d25-daeda74a11fb",
18 | "metadata": {},
19 | "outputs": [],
20 | "source": [
21 | "grades = {\"Atil\" : 50, \"James\" : 60, \"Lars\" : 30}"
22 | ]
23 | },
24 | {
25 | "cell_type": "code",
26 | "execution_count": 3,
27 | "id": "2ff32a67-6dc8-4072-9886-246df48cc766",
28 | "metadata": {},
29 | "outputs": [
30 | {
31 | "data": {
32 | "text/plain": [
33 | "Atil 50\n",
34 | "James 60\n",
35 | "Lars 30\n",
36 | "dtype: int64"
37 | ]
38 | },
39 | "execution_count": 3,
40 | "metadata": {},
41 | "output_type": "execute_result"
42 | }
43 | ],
44 | "source": [
45 | "pd.Series(grades)"
46 | ]
47 | },
48 | {
49 | "cell_type": "code",
50 | "execution_count": 4,
51 | "id": "a1692e7c-c1a7-43d4-9244-fcd1c3100900",
52 | "metadata": {},
53 | "outputs": [],
54 | "source": [
55 | "names = [\"Atil\", \"James\", \"Lars\"]\n",
56 | "grades = [50,60,30]"
57 | ]
58 | },
59 | {
60 | "cell_type": "code",
61 | "execution_count": 5,
62 | "id": "7e321ef4-9c4a-42b7-94ab-f6aaf4dabf45",
63 | "metadata": {},
64 | "outputs": [
65 | {
66 | "data": {
67 | "text/plain": [
68 | "0 Atil\n",
69 | "1 James\n",
70 | "2 Lars\n",
71 | "dtype: object"
72 | ]
73 | },
74 | "execution_count": 5,
75 | "metadata": {},
76 | "output_type": "execute_result"
77 | }
78 | ],
79 | "source": [
80 | "pd.Series(names)"
81 | ]
82 | },
83 | {
84 | "cell_type": "code",
85 | "execution_count": 6,
86 | "id": "2b205ae0-9a96-4159-86ae-792c5055dd58",
87 | "metadata": {},
88 | "outputs": [
89 | {
90 | "data": {
91 | "text/plain": [
92 | "0 50\n",
93 | "1 60\n",
94 | "2 30\n",
95 | "dtype: int64"
96 | ]
97 | },
98 | "execution_count": 6,
99 | "metadata": {},
100 | "output_type": "execute_result"
101 | }
102 | ],
103 | "source": [
104 | "pd.Series(grades)"
105 | ]
106 | },
107 | {
108 | "cell_type": "code",
109 | "execution_count": 8,
110 | "id": "7fed230e-a1dc-4107-bd5d-ad5fac6f9222",
111 | "metadata": {},
112 | "outputs": [
113 | {
114 | "data": {
115 | "text/plain": [
116 | "Atil 50\n",
117 | "James 60\n",
118 | "Lars 30\n",
119 | "dtype: int64"
120 | ]
121 | },
122 | "execution_count": 8,
123 | "metadata": {},
124 | "output_type": "execute_result"
125 | }
126 | ],
127 | "source": [
128 | "pd.Series(grades, names)"
129 | ]
130 | },
131 | {
132 | "cell_type": "code",
133 | "execution_count": 9,
134 | "id": "df5075ea-cb92-40f2-8b4f-26fdf0a5e59b",
135 | "metadata": {},
136 | "outputs": [
137 | {
138 | "data": {
139 | "text/plain": [
140 | "Atil 50\n",
141 | "James 60\n",
142 | "Lars 30\n",
143 | "dtype: int64"
144 | ]
145 | },
146 | "execution_count": 9,
147 | "metadata": {},
148 | "output_type": "execute_result"
149 | }
150 | ],
151 | "source": [
152 | "pd.Series(data=grades, index=names)"
153 | ]
154 | },
155 | {
156 | "cell_type": "code",
157 | "execution_count": 12,
158 | "id": "ac4c4496-e0dc-48d2-b43d-1272de5c4c55",
159 | "metadata": {},
160 | "outputs": [],
161 | "source": [
162 | "# with numpy"
163 | ]
164 | },
165 | {
166 | "cell_type": "code",
167 | "execution_count": 13,
168 | "id": "3815d62c-e2a1-4967-b16a-24253772f37e",
169 | "metadata": {},
170 | "outputs": [],
171 | "source": [
172 | "numpy_array = np.array([50,40,30,20])"
173 | ]
174 | },
175 | {
176 | "cell_type": "code",
177 | "execution_count": 14,
178 | "id": "75a32580-c465-4b56-89bc-bc14e67c4e33",
179 | "metadata": {},
180 | "outputs": [
181 | {
182 | "data": {
183 | "text/plain": [
184 | "0 50\n",
185 | "1 40\n",
186 | "2 30\n",
187 | "3 20\n",
188 | "dtype: int64"
189 | ]
190 | },
191 | "execution_count": 14,
192 | "metadata": {},
193 | "output_type": "execute_result"
194 | }
195 | ],
196 | "source": [
197 | "pd.Series(numpy_array)"
198 | ]
199 | },
200 | {
201 | "cell_type": "code",
202 | "execution_count": 15,
203 | "id": "637e26d3-384e-4dc9-92e6-4789faf19737",
204 | "metadata": {},
205 | "outputs": [],
206 | "source": [
207 | "#arithmetic"
208 | ]
209 | },
210 | {
211 | "cell_type": "code",
212 | "execution_count": 16,
213 | "id": "fb84603e-bbbe-4616-b4f6-6c3c910201ac",
214 | "metadata": {},
215 | "outputs": [],
216 | "source": [
217 | "contest_result = pd.Series([10,5,100],[\"Atil\",\"James\",\"Lars\"])"
218 | ]
219 | },
220 | {
221 | "cell_type": "code",
222 | "execution_count": 17,
223 | "id": "8e0a72d5-05b4-40ca-8b8c-b7bf071dbbcf",
224 | "metadata": {},
225 | "outputs": [],
226 | "source": [
227 | "contest_result2 = pd.Series([20,50,10],[\"Atil\",\"James\",\"Lars\"])"
228 | ]
229 | },
230 | {
231 | "cell_type": "code",
232 | "execution_count": 18,
233 | "id": "b23585b5-3bcf-4660-8d20-62df036e057b",
234 | "metadata": {},
235 | "outputs": [
236 | {
237 | "data": {
238 | "text/plain": [
239 | "10"
240 | ]
241 | },
242 | "execution_count": 18,
243 | "metadata": {},
244 | "output_type": "execute_result"
245 | }
246 | ],
247 | "source": [
248 | "contest_result[\"Atil\"]"
249 | ]
250 | },
251 | {
252 | "cell_type": "code",
253 | "execution_count": 20,
254 | "id": "a71c3814-c119-4d44-b4b8-f1dce7772844",
255 | "metadata": {},
256 | "outputs": [
257 | {
258 | "data": {
259 | "text/plain": [
260 | "50"
261 | ]
262 | },
263 | "execution_count": 20,
264 | "metadata": {},
265 | "output_type": "execute_result"
266 | }
267 | ],
268 | "source": [
269 | "contest_result2[\"James\"]"
270 | ]
271 | },
272 | {
273 | "cell_type": "code",
274 | "execution_count": 21,
275 | "id": "1c0fcf04-3499-482f-80f3-73c208ec0b7b",
276 | "metadata": {},
277 | "outputs": [],
278 | "source": [
279 | "final_result = contest_result + contest_result2"
280 | ]
281 | },
282 | {
283 | "cell_type": "code",
284 | "execution_count": 22,
285 | "id": "58435907-ea8e-4006-ac86-dde519e69995",
286 | "metadata": {},
287 | "outputs": [
288 | {
289 | "data": {
290 | "text/plain": [
291 | "Atil 30\n",
292 | "James 55\n",
293 | "Lars 110\n",
294 | "dtype: int64"
295 | ]
296 | },
297 | "execution_count": 22,
298 | "metadata": {},
299 | "output_type": "execute_result"
300 | }
301 | ],
302 | "source": [
303 | "final_result"
304 | ]
305 | },
306 | {
307 | "cell_type": "code",
308 | "execution_count": 28,
309 | "id": "51b27973-0dd6-4538-9d57-76b968ec1d42",
310 | "metadata": {},
311 | "outputs": [
312 | {
313 | "data": {
314 | "text/plain": [
315 | "Atil 200\n",
316 | "James 250\n",
317 | "Lars 1000\n",
318 | "dtype: int64"
319 | ]
320 | },
321 | "execution_count": 28,
322 | "metadata": {},
323 | "output_type": "execute_result"
324 | }
325 | ],
326 | "source": [
327 | "contest_result * contest_result2"
328 | ]
329 | },
330 | {
331 | "cell_type": "code",
332 | "execution_count": 29,
333 | "id": "196dd510-5972-4326-ba45-4ff5c52ded15",
334 | "metadata": {},
335 | "outputs": [
336 | {
337 | "data": {
338 | "text/plain": [
339 | "Atil -10\n",
340 | "James -45\n",
341 | "Lars 90\n",
342 | "dtype: int64"
343 | ]
344 | },
345 | "execution_count": 29,
346 | "metadata": {},
347 | "output_type": "execute_result"
348 | }
349 | ],
350 | "source": [
351 | "contest_result - contest_result2"
352 | ]
353 | },
354 | {
355 | "cell_type": "code",
356 | "execution_count": 30,
357 | "id": "250259b1-01e7-4939-b220-2b1a20bc8358",
358 | "metadata": {},
359 | "outputs": [
360 | {
361 | "data": {
362 | "text/plain": [
363 | "Atil 0.5\n",
364 | "James 0.1\n",
365 | "Lars 10.0\n",
366 | "dtype: float64"
367 | ]
368 | },
369 | "execution_count": 30,
370 | "metadata": {},
371 | "output_type": "execute_result"
372 | }
373 | ],
374 | "source": [
375 | "contest_result / contest_result2"
376 | ]
377 | },
378 | {
379 | "cell_type": "code",
380 | "execution_count": 31,
381 | "id": "1f08ec1e-e86b-44c4-8cf4-3d825fa2f798",
382 | "metadata": {},
383 | "outputs": [],
384 | "source": [
385 | "# if indices are different"
386 | ]
387 | },
388 | {
389 | "cell_type": "code",
390 | "execution_count": 32,
391 | "id": "ae2dc7ac-49e0-4ee6-b332-45cc26c9a63c",
392 | "metadata": {},
393 | "outputs": [],
394 | "source": [
395 | "different_series = pd.Series([20,30,40,50],[\"a\",\"b\",\"c\",\"d\"])"
396 | ]
397 | },
398 | {
399 | "cell_type": "code",
400 | "execution_count": 33,
401 | "id": "0f28aed8-e468-4d77-bf28-27c5c25a47f4",
402 | "metadata": {},
403 | "outputs": [],
404 | "source": [
405 | "different_series_2 = pd.Series([10,5,3,1],[\"a\",\"c\",\"f\",\"g\"])"
406 | ]
407 | },
408 | {
409 | "cell_type": "code",
410 | "execution_count": 34,
411 | "id": "0fbe6585-8637-4cc5-acc8-e670ce193cb9",
412 | "metadata": {},
413 | "outputs": [
414 | {
415 | "data": {
416 | "text/plain": [
417 | "a 30.0\n",
418 | "b NaN\n",
419 | "c 45.0\n",
420 | "d NaN\n",
421 | "f NaN\n",
422 | "g NaN\n",
423 | "dtype: float64"
424 | ]
425 | },
426 | "execution_count": 34,
427 | "metadata": {},
428 | "output_type": "execute_result"
429 | }
430 | ],
431 | "source": [
432 | "different_series + different_series_2"
433 | ]
434 | },
435 | {
436 | "cell_type": "code",
437 | "execution_count": null,
438 | "id": "d1e61ce6-7028-447b-9687-a3616f3aebdd",
439 | "metadata": {},
440 | "outputs": [],
441 | "source": []
442 | },
443 | {
444 | "cell_type": "code",
445 | "execution_count": null,
446 | "id": "1e6a8522-9530-4366-aa1c-7891c72c187f",
447 | "metadata": {},
448 | "outputs": [],
449 | "source": []
450 | }
451 | ],
452 | "metadata": {
453 | "kernelspec": {
454 | "display_name": "Python 3 (ipykernel)",
455 | "language": "python",
456 | "name": "python3"
457 | },
458 | "language_info": {
459 | "codemirror_mode": {
460 | "name": "ipython",
461 | "version": 3
462 | },
463 | "file_extension": ".py",
464 | "mimetype": "text/x-python",
465 | "name": "python",
466 | "nbconvert_exporter": "python",
467 | "pygments_lexer": "ipython3",
468 | "version": "3.12.7"
469 | }
470 | },
471 | "nbformat": 4,
472 | "nbformat_minor": 5
473 | }
474 |
--------------------------------------------------------------------------------
/5-IntroToDataFrames.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 1,
6 | "id": "fb4d27a5-0b89-48a5-8709-58c043eed003",
7 | "metadata": {},
8 | "outputs": [],
9 | "source": [
10 | "import pandas as pd"
11 | ]
12 | },
13 | {
14 | "cell_type": "code",
15 | "execution_count": 2,
16 | "id": "e4bf5df2-7b4b-43a6-8b7d-3a8d22338b68",
17 | "metadata": {},
18 | "outputs": [],
19 | "source": [
20 | "import numpy as np"
21 | ]
22 | },
23 | {
24 | "cell_type": "code",
25 | "execution_count": 4,
26 | "id": "ad99a045-88b7-48a1-a5f4-05250b69bcda",
27 | "metadata": {},
28 | "outputs": [],
29 | "source": [
30 | "data = np.random.randn(4,3)"
31 | ]
32 | },
33 | {
34 | "cell_type": "code",
35 | "execution_count": 5,
36 | "id": "2cebcf7a-eb73-45ca-a930-66844ebb4c85",
37 | "metadata": {},
38 | "outputs": [
39 | {
40 | "data": {
41 | "text/plain": [
42 | "array([[ 0.3004821 , 0.16147545, 0.18858324],\n",
43 | " [-0.33678892, 0.0432555 , 0.91340869],\n",
44 | " [ 0.27501465, 1.64987553, -0.30196493],\n",
45 | " [ 0.47401973, -1.33659515, 1.79410449]])"
46 | ]
47 | },
48 | "execution_count": 5,
49 | "metadata": {},
50 | "output_type": "execute_result"
51 | }
52 | ],
53 | "source": [
54 | "data"
55 | ]
56 | },
57 | {
58 | "cell_type": "code",
59 | "execution_count": 6,
60 | "id": "3a982c95-4ab3-452a-b5f0-1079c631a196",
61 | "metadata": {},
62 | "outputs": [],
63 | "source": [
64 | "data_frame = pd.DataFrame(data)"
65 | ]
66 | },
67 | {
68 | "cell_type": "code",
69 | "execution_count": 7,
70 | "id": "c626d8ef-e786-456b-8a9e-2df6ad5ddd5a",
71 | "metadata": {},
72 | "outputs": [
73 | {
74 | "data": {
75 | "text/html": [
76 | "
\n",
77 | "\n",
90 | "
\n",
91 | " \n",
92 | " \n",
93 | " | \n",
94 | " 0 | \n",
95 | " 1 | \n",
96 | " 2 | \n",
97 | "
\n",
98 | " \n",
99 | " \n",
100 | " \n",
101 | " | 0 | \n",
102 | " 0.300482 | \n",
103 | " 0.161475 | \n",
104 | " 0.188583 | \n",
105 | "
\n",
106 | " \n",
107 | " | 1 | \n",
108 | " -0.336789 | \n",
109 | " 0.043255 | \n",
110 | " 0.913409 | \n",
111 | "
\n",
112 | " \n",
113 | " | 2 | \n",
114 | " 0.275015 | \n",
115 | " 1.649876 | \n",
116 | " -0.301965 | \n",
117 | "
\n",
118 | " \n",
119 | " | 3 | \n",
120 | " 0.474020 | \n",
121 | " -1.336595 | \n",
122 | " 1.794104 | \n",
123 | "
\n",
124 | " \n",
125 | "
\n",
126 | "
"
127 | ],
128 | "text/plain": [
129 | " 0 1 2\n",
130 | "0 0.300482 0.161475 0.188583\n",
131 | "1 -0.336789 0.043255 0.913409\n",
132 | "2 0.275015 1.649876 -0.301965\n",
133 | "3 0.474020 -1.336595 1.794104"
134 | ]
135 | },
136 | "execution_count": 7,
137 | "metadata": {},
138 | "output_type": "execute_result"
139 | }
140 | ],
141 | "source": [
142 | "data_frame"
143 | ]
144 | },
145 | {
146 | "cell_type": "code",
147 | "execution_count": 8,
148 | "id": "7a6d22b0-2f1e-4f3e-81a5-3ad01abc8f11",
149 | "metadata": {},
150 | "outputs": [
151 | {
152 | "data": {
153 | "text/plain": [
154 | "pandas.core.frame.DataFrame"
155 | ]
156 | },
157 | "execution_count": 8,
158 | "metadata": {},
159 | "output_type": "execute_result"
160 | }
161 | ],
162 | "source": [
163 | "type(data_frame)"
164 | ]
165 | },
166 | {
167 | "cell_type": "code",
168 | "execution_count": 9,
169 | "id": "40edb828-6209-44f5-836f-26aeafee9b99",
170 | "metadata": {},
171 | "outputs": [
172 | {
173 | "data": {
174 | "text/plain": [
175 | "pandas.core.series.Series"
176 | ]
177 | },
178 | "execution_count": 9,
179 | "metadata": {},
180 | "output_type": "execute_result"
181 | }
182 | ],
183 | "source": [
184 | "type(data_frame[0])"
185 | ]
186 | },
187 | {
188 | "cell_type": "code",
189 | "execution_count": 10,
190 | "id": "ae7d6353-4dcf-4dad-938a-daf83726e537",
191 | "metadata": {},
192 | "outputs": [],
193 | "source": [
194 | "new_df = pd.DataFrame(data,index=[\"Atil\",\"Zeynep\",\"Atlas\",\"Mehmet\"],columns = [\"Salary\",\"Age\",\"Seniority\"])"
195 | ]
196 | },
197 | {
198 | "cell_type": "code",
199 | "execution_count": 11,
200 | "id": "469beed2-06c2-4dff-b3cc-76f7129d5ab3",
201 | "metadata": {},
202 | "outputs": [
203 | {
204 | "data": {
205 | "text/html": [
206 | "\n",
207 | "\n",
220 | "
\n",
221 | " \n",
222 | " \n",
223 | " | \n",
224 | " Salary | \n",
225 | " Age | \n",
226 | " Seniority | \n",
227 | "
\n",
228 | " \n",
229 | " \n",
230 | " \n",
231 | " | Atil | \n",
232 | " 0.300482 | \n",
233 | " 0.161475 | \n",
234 | " 0.188583 | \n",
235 | "
\n",
236 | " \n",
237 | " | Zeynep | \n",
238 | " -0.336789 | \n",
239 | " 0.043255 | \n",
240 | " 0.913409 | \n",
241 | "
\n",
242 | " \n",
243 | " | Atlas | \n",
244 | " 0.275015 | \n",
245 | " 1.649876 | \n",
246 | " -0.301965 | \n",
247 | "
\n",
248 | " \n",
249 | " | Mehmet | \n",
250 | " 0.474020 | \n",
251 | " -1.336595 | \n",
252 | " 1.794104 | \n",
253 | "
\n",
254 | " \n",
255 | "
\n",
256 | "
"
257 | ],
258 | "text/plain": [
259 | " Salary Age Seniority\n",
260 | "Atil 0.300482 0.161475 0.188583\n",
261 | "Zeynep -0.336789 0.043255 0.913409\n",
262 | "Atlas 0.275015 1.649876 -0.301965\n",
263 | "Mehmet 0.474020 -1.336595 1.794104"
264 | ]
265 | },
266 | "execution_count": 11,
267 | "metadata": {},
268 | "output_type": "execute_result"
269 | }
270 | ],
271 | "source": [
272 | "new_df"
273 | ]
274 | },
275 | {
276 | "cell_type": "code",
277 | "execution_count": 12,
278 | "id": "2651f0ac-813f-46ce-b689-4f3512a67f7c",
279 | "metadata": {},
280 | "outputs": [
281 | {
282 | "data": {
283 | "text/plain": [
284 | "Atil 0.161475\n",
285 | "Zeynep 0.043255\n",
286 | "Atlas 1.649876\n",
287 | "Mehmet -1.336595\n",
288 | "Name: Age, dtype: float64"
289 | ]
290 | },
291 | "execution_count": 12,
292 | "metadata": {},
293 | "output_type": "execute_result"
294 | }
295 | ],
296 | "source": [
297 | "new_df[\"Age\"]"
298 | ]
299 | },
300 | {
301 | "cell_type": "code",
302 | "execution_count": 13,
303 | "id": "ac07ca3d-7d94-4e49-a4d6-0e51f4db0eba",
304 | "metadata": {},
305 | "outputs": [
306 | {
307 | "data": {
308 | "text/plain": [
309 | "Atil 0.300482\n",
310 | "Zeynep -0.336789\n",
311 | "Atlas 0.275015\n",
312 | "Mehmet 0.474020\n",
313 | "Name: Salary, dtype: float64"
314 | ]
315 | },
316 | "execution_count": 13,
317 | "metadata": {},
318 | "output_type": "execute_result"
319 | }
320 | ],
321 | "source": [
322 | "new_df[\"Salary\"]"
323 | ]
324 | },
325 | {
326 | "cell_type": "code",
327 | "execution_count": 14,
328 | "id": "12b66c00-3245-434d-ae2c-58ea8ef5b6ba",
329 | "metadata": {},
330 | "outputs": [
331 | {
332 | "data": {
333 | "text/html": [
334 | "\n",
335 | "\n",
348 | "
\n",
349 | " \n",
350 | " \n",
351 | " | \n",
352 | " Salary | \n",
353 | " Age | \n",
354 | "
\n",
355 | " \n",
356 | " \n",
357 | " \n",
358 | " | Atil | \n",
359 | " 0.300482 | \n",
360 | " 0.161475 | \n",
361 | "
\n",
362 | " \n",
363 | " | Zeynep | \n",
364 | " -0.336789 | \n",
365 | " 0.043255 | \n",
366 | "
\n",
367 | " \n",
368 | " | Atlas | \n",
369 | " 0.275015 | \n",
370 | " 1.649876 | \n",
371 | "
\n",
372 | " \n",
373 | " | Mehmet | \n",
374 | " 0.474020 | \n",
375 | " -1.336595 | \n",
376 | "
\n",
377 | " \n",
378 | "
\n",
379 | "
"
380 | ],
381 | "text/plain": [
382 | " Salary Age\n",
383 | "Atil 0.300482 0.161475\n",
384 | "Zeynep -0.336789 0.043255\n",
385 | "Atlas 0.275015 1.649876\n",
386 | "Mehmet 0.474020 -1.336595"
387 | ]
388 | },
389 | "execution_count": 14,
390 | "metadata": {},
391 | "output_type": "execute_result"
392 | }
393 | ],
394 | "source": [
395 | "new_df[[\"Salary\",\"Age\"]]"
396 | ]
397 | },
398 | {
399 | "cell_type": "code",
400 | "execution_count": 16,
401 | "id": "8150b626-c434-4f51-9972-3a77779f7ceb",
402 | "metadata": {},
403 | "outputs": [
404 | {
405 | "data": {
406 | "text/plain": [
407 | "Salary 0.300482\n",
408 | "Age 0.161475\n",
409 | "Seniority 0.188583\n",
410 | "Name: Atil, dtype: float64"
411 | ]
412 | },
413 | "execution_count": 16,
414 | "metadata": {},
415 | "output_type": "execute_result"
416 | }
417 | ],
418 | "source": [
419 | "new_df.loc[\"Atil\"]"
420 | ]
421 | },
422 | {
423 | "cell_type": "code",
424 | "execution_count": 17,
425 | "id": "770fac31-a010-4609-b833-c73674a58ad7",
426 | "metadata": {},
427 | "outputs": [
428 | {
429 | "data": {
430 | "text/plain": [
431 | "Salary 0.300482\n",
432 | "Age 0.161475\n",
433 | "Seniority 0.188583\n",
434 | "Name: Atil, dtype: float64"
435 | ]
436 | },
437 | "execution_count": 17,
438 | "metadata": {},
439 | "output_type": "execute_result"
440 | }
441 | ],
442 | "source": [
443 | "new_df.iloc[0]"
444 | ]
445 | },
446 | {
447 | "cell_type": "code",
448 | "execution_count": 18,
449 | "id": "aff2262a-0c9a-46ef-ae3a-2981843fb2c3",
450 | "metadata": {},
451 | "outputs": [
452 | {
453 | "data": {
454 | "text/plain": [
455 | "Salary -0.336789\n",
456 | "Age 0.043255\n",
457 | "Seniority 0.913409\n",
458 | "Name: Zeynep, dtype: float64"
459 | ]
460 | },
461 | "execution_count": 18,
462 | "metadata": {},
463 | "output_type": "execute_result"
464 | }
465 | ],
466 | "source": [
467 | "new_df.iloc[1]"
468 | ]
469 | },
470 | {
471 | "cell_type": "code",
472 | "execution_count": 19,
473 | "id": "d96971a1-59f7-48bf-a765-0ca2f3cd37e0",
474 | "metadata": {},
475 | "outputs": [
476 | {
477 | "data": {
478 | "text/html": [
479 | "\n",
480 | "\n",
493 | "
\n",
494 | " \n",
495 | " \n",
496 | " | \n",
497 | " Salary | \n",
498 | " Age | \n",
499 | " Seniority | \n",
500 | "
\n",
501 | " \n",
502 | " \n",
503 | " \n",
504 | " | Atil | \n",
505 | " 0.300482 | \n",
506 | " 0.161475 | \n",
507 | " 0.188583 | \n",
508 | "
\n",
509 | " \n",
510 | " | Zeynep | \n",
511 | " -0.336789 | \n",
512 | " 0.043255 | \n",
513 | " 0.913409 | \n",
514 | "
\n",
515 | " \n",
516 | " | Atlas | \n",
517 | " 0.275015 | \n",
518 | " 1.649876 | \n",
519 | " -0.301965 | \n",
520 | "
\n",
521 | " \n",
522 | " | Mehmet | \n",
523 | " 0.474020 | \n",
524 | " -1.336595 | \n",
525 | " 1.794104 | \n",
526 | "
\n",
527 | " \n",
528 | "
\n",
529 | "
"
530 | ],
531 | "text/plain": [
532 | " Salary Age Seniority\n",
533 | "Atil 0.300482 0.161475 0.188583\n",
534 | "Zeynep -0.336789 0.043255 0.913409\n",
535 | "Atlas 0.275015 1.649876 -0.301965\n",
536 | "Mehmet 0.474020 -1.336595 1.794104"
537 | ]
538 | },
539 | "execution_count": 19,
540 | "metadata": {},
541 | "output_type": "execute_result"
542 | }
543 | ],
544 | "source": [
545 | "new_df"
546 | ]
547 | },
548 | {
549 | "cell_type": "code",
550 | "execution_count": 20,
551 | "id": "49ef5767-4cc4-4d1b-b484-aea1c7e3a850",
552 | "metadata": {},
553 | "outputs": [],
554 | "source": [
555 | "new_df[\"Extra\"] = 10"
556 | ]
557 | },
558 | {
559 | "cell_type": "code",
560 | "execution_count": 21,
561 | "id": "6b11f54d-5269-43dd-be52-88aa5700183f",
562 | "metadata": {},
563 | "outputs": [
564 | {
565 | "data": {
566 | "text/html": [
567 | "\n",
568 | "\n",
581 | "
\n",
582 | " \n",
583 | " \n",
584 | " | \n",
585 | " Salary | \n",
586 | " Age | \n",
587 | " Seniority | \n",
588 | " Extra | \n",
589 | "
\n",
590 | " \n",
591 | " \n",
592 | " \n",
593 | " | Atil | \n",
594 | " 0.300482 | \n",
595 | " 0.161475 | \n",
596 | " 0.188583 | \n",
597 | " 10 | \n",
598 | "
\n",
599 | " \n",
600 | " | Zeynep | \n",
601 | " -0.336789 | \n",
602 | " 0.043255 | \n",
603 | " 0.913409 | \n",
604 | " 10 | \n",
605 | "
\n",
606 | " \n",
607 | " | Atlas | \n",
608 | " 0.275015 | \n",
609 | " 1.649876 | \n",
610 | " -0.301965 | \n",
611 | " 10 | \n",
612 | "
\n",
613 | " \n",
614 | " | Mehmet | \n",
615 | " 0.474020 | \n",
616 | " -1.336595 | \n",
617 | " 1.794104 | \n",
618 | " 10 | \n",
619 | "
\n",
620 | " \n",
621 | "
\n",
622 | "
"
623 | ],
624 | "text/plain": [
625 | " Salary Age Seniority Extra\n",
626 | "Atil 0.300482 0.161475 0.188583 10\n",
627 | "Zeynep -0.336789 0.043255 0.913409 10\n",
628 | "Atlas 0.275015 1.649876 -0.301965 10\n",
629 | "Mehmet 0.474020 -1.336595 1.794104 10"
630 | ]
631 | },
632 | "execution_count": 21,
633 | "metadata": {},
634 | "output_type": "execute_result"
635 | }
636 | ],
637 | "source": [
638 | "new_df"
639 | ]
640 | },
641 | {
642 | "cell_type": "code",
643 | "execution_count": 22,
644 | "id": "c8a88b85-17b0-484d-8b35-7da0fdb8bcc4",
645 | "metadata": {},
646 | "outputs": [
647 | {
648 | "data": {
649 | "text/html": [
650 | "\n",
651 | "\n",
664 | "
\n",
665 | " \n",
666 | " \n",
667 | " | \n",
668 | " Salary | \n",
669 | " Age | \n",
670 | " Seniority | \n",
671 | "
\n",
672 | " \n",
673 | " \n",
674 | " \n",
675 | " | Atil | \n",
676 | " 0.300482 | \n",
677 | " 0.161475 | \n",
678 | " 0.188583 | \n",
679 | "
\n",
680 | " \n",
681 | " | Zeynep | \n",
682 | " -0.336789 | \n",
683 | " 0.043255 | \n",
684 | " 0.913409 | \n",
685 | "
\n",
686 | " \n",
687 | " | Atlas | \n",
688 | " 0.275015 | \n",
689 | " 1.649876 | \n",
690 | " -0.301965 | \n",
691 | "
\n",
692 | " \n",
693 | " | Mehmet | \n",
694 | " 0.474020 | \n",
695 | " -1.336595 | \n",
696 | " 1.794104 | \n",
697 | "
\n",
698 | " \n",
699 | "
\n",
700 | "
"
701 | ],
702 | "text/plain": [
703 | " Salary Age Seniority\n",
704 | "Atil 0.300482 0.161475 0.188583\n",
705 | "Zeynep -0.336789 0.043255 0.913409\n",
706 | "Atlas 0.275015 1.649876 -0.301965\n",
707 | "Mehmet 0.474020 -1.336595 1.794104"
708 | ]
709 | },
710 | "execution_count": 22,
711 | "metadata": {},
712 | "output_type": "execute_result"
713 | }
714 | ],
715 | "source": [
716 | "new_df.drop(\"Extra\", axis = 1)"
717 | ]
718 | },
719 | {
720 | "cell_type": "code",
721 | "execution_count": 23,
722 | "id": "ef32c4df-d97e-458f-8a3d-ecad21971ba7",
723 | "metadata": {},
724 | "outputs": [
725 | {
726 | "data": {
727 | "text/html": [
728 | "\n",
729 | "\n",
742 | "
\n",
743 | " \n",
744 | " \n",
745 | " | \n",
746 | " Salary | \n",
747 | " Age | \n",
748 | " Seniority | \n",
749 | " Extra | \n",
750 | "
\n",
751 | " \n",
752 | " \n",
753 | " \n",
754 | " | Atil | \n",
755 | " 0.300482 | \n",
756 | " 0.161475 | \n",
757 | " 0.188583 | \n",
758 | " 10 | \n",
759 | "
\n",
760 | " \n",
761 | " | Zeynep | \n",
762 | " -0.336789 | \n",
763 | " 0.043255 | \n",
764 | " 0.913409 | \n",
765 | " 10 | \n",
766 | "
\n",
767 | " \n",
768 | " | Atlas | \n",
769 | " 0.275015 | \n",
770 | " 1.649876 | \n",
771 | " -0.301965 | \n",
772 | " 10 | \n",
773 | "
\n",
774 | " \n",
775 | " | Mehmet | \n",
776 | " 0.474020 | \n",
777 | " -1.336595 | \n",
778 | " 1.794104 | \n",
779 | " 10 | \n",
780 | "
\n",
781 | " \n",
782 | "
\n",
783 | "
"
784 | ],
785 | "text/plain": [
786 | " Salary Age Seniority Extra\n",
787 | "Atil 0.300482 0.161475 0.188583 10\n",
788 | "Zeynep -0.336789 0.043255 0.913409 10\n",
789 | "Atlas 0.275015 1.649876 -0.301965 10\n",
790 | "Mehmet 0.474020 -1.336595 1.794104 10"
791 | ]
792 | },
793 | "execution_count": 23,
794 | "metadata": {},
795 | "output_type": "execute_result"
796 | }
797 | ],
798 | "source": [
799 | "new_df"
800 | ]
801 | },
802 | {
803 | "cell_type": "code",
804 | "execution_count": 24,
805 | "id": "6a3d8308-03c4-4f07-80e0-2571bdbe2125",
806 | "metadata": {},
807 | "outputs": [],
808 | "source": [
809 | "new_df.drop(\"Extra\", axis=1, inplace=True)"
810 | ]
811 | },
812 | {
813 | "cell_type": "code",
814 | "execution_count": 25,
815 | "id": "8231f9ec-9fab-4c94-8105-83d3b29f2dc7",
816 | "metadata": {},
817 | "outputs": [
818 | {
819 | "data": {
820 | "text/html": [
821 | "\n",
822 | "\n",
835 | "
\n",
836 | " \n",
837 | " \n",
838 | " | \n",
839 | " Salary | \n",
840 | " Age | \n",
841 | " Seniority | \n",
842 | "
\n",
843 | " \n",
844 | " \n",
845 | " \n",
846 | " | Atil | \n",
847 | " 0.300482 | \n",
848 | " 0.161475 | \n",
849 | " 0.188583 | \n",
850 | "
\n",
851 | " \n",
852 | " | Zeynep | \n",
853 | " -0.336789 | \n",
854 | " 0.043255 | \n",
855 | " 0.913409 | \n",
856 | "
\n",
857 | " \n",
858 | " | Atlas | \n",
859 | " 0.275015 | \n",
860 | " 1.649876 | \n",
861 | " -0.301965 | \n",
862 | "
\n",
863 | " \n",
864 | " | Mehmet | \n",
865 | " 0.474020 | \n",
866 | " -1.336595 | \n",
867 | " 1.794104 | \n",
868 | "
\n",
869 | " \n",
870 | "
\n",
871 | "
"
872 | ],
873 | "text/plain": [
874 | " Salary Age Seniority\n",
875 | "Atil 0.300482 0.161475 0.188583\n",
876 | "Zeynep -0.336789 0.043255 0.913409\n",
877 | "Atlas 0.275015 1.649876 -0.301965\n",
878 | "Mehmet 0.474020 -1.336595 1.794104"
879 | ]
880 | },
881 | "execution_count": 25,
882 | "metadata": {},
883 | "output_type": "execute_result"
884 | }
885 | ],
886 | "source": [
887 | "new_df"
888 | ]
889 | },
890 | {
891 | "cell_type": "code",
892 | "execution_count": 26,
893 | "id": "908e5ffd-55ed-48b3-ba93-ab7b85d56962",
894 | "metadata": {},
895 | "outputs": [
896 | {
897 | "data": {
898 | "text/html": [
899 | "\n",
900 | "\n",
913 | "
\n",
914 | " \n",
915 | " \n",
916 | " | \n",
917 | " Salary | \n",
918 | " Age | \n",
919 | " Seniority | \n",
920 | "
\n",
921 | " \n",
922 | " \n",
923 | " \n",
924 | " | Atil | \n",
925 | " 0.300482 | \n",
926 | " 0.161475 | \n",
927 | " 0.188583 | \n",
928 | "
\n",
929 | " \n",
930 | " | Zeynep | \n",
931 | " -0.336789 | \n",
932 | " 0.043255 | \n",
933 | " 0.913409 | \n",
934 | "
\n",
935 | " \n",
936 | " | Atlas | \n",
937 | " 0.275015 | \n",
938 | " 1.649876 | \n",
939 | " -0.301965 | \n",
940 | "
\n",
941 | " \n",
942 | "
\n",
943 | "
"
944 | ],
945 | "text/plain": [
946 | " Salary Age Seniority\n",
947 | "Atil 0.300482 0.161475 0.188583\n",
948 | "Zeynep -0.336789 0.043255 0.913409\n",
949 | "Atlas 0.275015 1.649876 -0.301965"
950 | ]
951 | },
952 | "execution_count": 26,
953 | "metadata": {},
954 | "output_type": "execute_result"
955 | }
956 | ],
957 | "source": [
958 | "new_df.drop(\"Mehmet\", axis=0)"
959 | ]
960 | },
961 | {
962 | "cell_type": "code",
963 | "execution_count": 27,
964 | "id": "2535f6b2-d9e7-49ef-838b-71fa8ce63367",
965 | "metadata": {},
966 | "outputs": [
967 | {
968 | "data": {
969 | "text/html": [
970 | "\n",
971 | "\n",
984 | "
\n",
985 | " \n",
986 | " \n",
987 | " | \n",
988 | " Salary | \n",
989 | " Age | \n",
990 | " Seniority | \n",
991 | "
\n",
992 | " \n",
993 | " \n",
994 | " \n",
995 | " | Atil | \n",
996 | " 0.300482 | \n",
997 | " 0.161475 | \n",
998 | " 0.188583 | \n",
999 | "
\n",
1000 | " \n",
1001 | " | Zeynep | \n",
1002 | " -0.336789 | \n",
1003 | " 0.043255 | \n",
1004 | " 0.913409 | \n",
1005 | "
\n",
1006 | " \n",
1007 | " | Atlas | \n",
1008 | " 0.275015 | \n",
1009 | " 1.649876 | \n",
1010 | " -0.301965 | \n",
1011 | "
\n",
1012 | " \n",
1013 | " | Mehmet | \n",
1014 | " 0.474020 | \n",
1015 | " -1.336595 | \n",
1016 | " 1.794104 | \n",
1017 | "
\n",
1018 | " \n",
1019 | "
\n",
1020 | "
"
1021 | ],
1022 | "text/plain": [
1023 | " Salary Age Seniority\n",
1024 | "Atil 0.300482 0.161475 0.188583\n",
1025 | "Zeynep -0.336789 0.043255 0.913409\n",
1026 | "Atlas 0.275015 1.649876 -0.301965\n",
1027 | "Mehmet 0.474020 -1.336595 1.794104"
1028 | ]
1029 | },
1030 | "execution_count": 27,
1031 | "metadata": {},
1032 | "output_type": "execute_result"
1033 | }
1034 | ],
1035 | "source": [
1036 | "new_df"
1037 | ]
1038 | },
1039 | {
1040 | "cell_type": "code",
1041 | "execution_count": 28,
1042 | "id": "70b2482d-fd9e-4f75-8621-fd4d8e06fb59",
1043 | "metadata": {},
1044 | "outputs": [
1045 | {
1046 | "data": {
1047 | "text/plain": [
1048 | "Salary 0.275015\n",
1049 | "Age 1.649876\n",
1050 | "Seniority -0.301965\n",
1051 | "Name: Atlas, dtype: float64"
1052 | ]
1053 | },
1054 | "execution_count": 28,
1055 | "metadata": {},
1056 | "output_type": "execute_result"
1057 | }
1058 | ],
1059 | "source": [
1060 | "new_df.loc[\"Atlas\"]"
1061 | ]
1062 | },
1063 | {
1064 | "cell_type": "code",
1065 | "execution_count": 29,
1066 | "id": "7846d57c-c7a7-4199-a1f3-c48938896365",
1067 | "metadata": {},
1068 | "outputs": [
1069 | {
1070 | "data": {
1071 | "text/plain": [
1072 | "0.2750146502922042"
1073 | ]
1074 | },
1075 | "execution_count": 29,
1076 | "metadata": {},
1077 | "output_type": "execute_result"
1078 | }
1079 | ],
1080 | "source": [
1081 | "new_df.loc[\"Atlas\"][\"Salary\"]"
1082 | ]
1083 | },
1084 | {
1085 | "cell_type": "code",
1086 | "execution_count": 30,
1087 | "id": "f379c5be-ca84-43a9-af87-874e7ba2b5a2",
1088 | "metadata": {},
1089 | "outputs": [
1090 | {
1091 | "data": {
1092 | "text/plain": [
1093 | "0.2750146502922042"
1094 | ]
1095 | },
1096 | "execution_count": 30,
1097 | "metadata": {},
1098 | "output_type": "execute_result"
1099 | }
1100 | ],
1101 | "source": [
1102 | "new_df.loc[\"Atlas\",\"Salary\"]"
1103 | ]
1104 | },
1105 | {
1106 | "cell_type": "code",
1107 | "execution_count": 31,
1108 | "id": "e93d2e83-471c-4ad9-af11-cc407827b735",
1109 | "metadata": {},
1110 | "outputs": [
1111 | {
1112 | "data": {
1113 | "text/html": [
1114 | "\n",
1115 | "\n",
1128 | "
\n",
1129 | " \n",
1130 | " \n",
1131 | " | \n",
1132 | " Salary | \n",
1133 | " Age | \n",
1134 | " Seniority | \n",
1135 | "
\n",
1136 | " \n",
1137 | " \n",
1138 | " \n",
1139 | " | Atil | \n",
1140 | " 0.300482 | \n",
1141 | " 0.161475 | \n",
1142 | " 0.188583 | \n",
1143 | "
\n",
1144 | " \n",
1145 | " | Zeynep | \n",
1146 | " -0.336789 | \n",
1147 | " 0.043255 | \n",
1148 | " 0.913409 | \n",
1149 | "
\n",
1150 | " \n",
1151 | " | Atlas | \n",
1152 | " 0.275015 | \n",
1153 | " 1.649876 | \n",
1154 | " -0.301965 | \n",
1155 | "
\n",
1156 | " \n",
1157 | " | Mehmet | \n",
1158 | " 0.474020 | \n",
1159 | " -1.336595 | \n",
1160 | " 1.794104 | \n",
1161 | "
\n",
1162 | " \n",
1163 | "
\n",
1164 | "
"
1165 | ],
1166 | "text/plain": [
1167 | " Salary Age Seniority\n",
1168 | "Atil 0.300482 0.161475 0.188583\n",
1169 | "Zeynep -0.336789 0.043255 0.913409\n",
1170 | "Atlas 0.275015 1.649876 -0.301965\n",
1171 | "Mehmet 0.474020 -1.336595 1.794104"
1172 | ]
1173 | },
1174 | "execution_count": 31,
1175 | "metadata": {},
1176 | "output_type": "execute_result"
1177 | }
1178 | ],
1179 | "source": [
1180 | "new_df"
1181 | ]
1182 | },
1183 | {
1184 | "cell_type": "code",
1185 | "execution_count": 32,
1186 | "id": "0c271a08-8024-432b-a5ff-2ccf2efb4b5e",
1187 | "metadata": {},
1188 | "outputs": [],
1189 | "source": [
1190 | "boolean_frame = new_df > 0"
1191 | ]
1192 | },
1193 | {
1194 | "cell_type": "code",
1195 | "execution_count": 33,
1196 | "id": "f8765d12-35ae-49f9-9dba-2d1fdb6e932f",
1197 | "metadata": {},
1198 | "outputs": [
1199 | {
1200 | "data": {
1201 | "text/html": [
1202 | "\n",
1203 | "\n",
1216 | "
\n",
1217 | " \n",
1218 | " \n",
1219 | " | \n",
1220 | " Salary | \n",
1221 | " Age | \n",
1222 | " Seniority | \n",
1223 | "
\n",
1224 | " \n",
1225 | " \n",
1226 | " \n",
1227 | " | Atil | \n",
1228 | " True | \n",
1229 | " True | \n",
1230 | " True | \n",
1231 | "
\n",
1232 | " \n",
1233 | " | Zeynep | \n",
1234 | " False | \n",
1235 | " True | \n",
1236 | " True | \n",
1237 | "
\n",
1238 | " \n",
1239 | " | Atlas | \n",
1240 | " True | \n",
1241 | " True | \n",
1242 | " False | \n",
1243 | "
\n",
1244 | " \n",
1245 | " | Mehmet | \n",
1246 | " True | \n",
1247 | " False | \n",
1248 | " True | \n",
1249 | "
\n",
1250 | " \n",
1251 | "
\n",
1252 | "
"
1253 | ],
1254 | "text/plain": [
1255 | " Salary Age Seniority\n",
1256 | "Atil True True True\n",
1257 | "Zeynep False True True\n",
1258 | "Atlas True True False\n",
1259 | "Mehmet True False True"
1260 | ]
1261 | },
1262 | "execution_count": 33,
1263 | "metadata": {},
1264 | "output_type": "execute_result"
1265 | }
1266 | ],
1267 | "source": [
1268 | "boolean_frame"
1269 | ]
1270 | },
1271 | {
1272 | "cell_type": "code",
1273 | "execution_count": 34,
1274 | "id": "c2587736-dbae-489d-8e4d-ed8adc820e6f",
1275 | "metadata": {},
1276 | "outputs": [
1277 | {
1278 | "data": {
1279 | "text/html": [
1280 | "\n",
1281 | "\n",
1294 | "
\n",
1295 | " \n",
1296 | " \n",
1297 | " | \n",
1298 | " Salary | \n",
1299 | " Age | \n",
1300 | " Seniority | \n",
1301 | "
\n",
1302 | " \n",
1303 | " \n",
1304 | " \n",
1305 | " | Atil | \n",
1306 | " 0.300482 | \n",
1307 | " 0.161475 | \n",
1308 | " 0.188583 | \n",
1309 | "
\n",
1310 | " \n",
1311 | " | Zeynep | \n",
1312 | " NaN | \n",
1313 | " 0.043255 | \n",
1314 | " 0.913409 | \n",
1315 | "
\n",
1316 | " \n",
1317 | " | Atlas | \n",
1318 | " 0.275015 | \n",
1319 | " 1.649876 | \n",
1320 | " NaN | \n",
1321 | "
\n",
1322 | " \n",
1323 | " | Mehmet | \n",
1324 | " 0.474020 | \n",
1325 | " NaN | \n",
1326 | " 1.794104 | \n",
1327 | "
\n",
1328 | " \n",
1329 | "
\n",
1330 | "
"
1331 | ],
1332 | "text/plain": [
1333 | " Salary Age Seniority\n",
1334 | "Atil 0.300482 0.161475 0.188583\n",
1335 | "Zeynep NaN 0.043255 0.913409\n",
1336 | "Atlas 0.275015 1.649876 NaN\n",
1337 | "Mehmet 0.474020 NaN 1.794104"
1338 | ]
1339 | },
1340 | "execution_count": 34,
1341 | "metadata": {},
1342 | "output_type": "execute_result"
1343 | }
1344 | ],
1345 | "source": [
1346 | "new_df[boolean_frame]"
1347 | ]
1348 | },
1349 | {
1350 | "cell_type": "code",
1351 | "execution_count": 35,
1352 | "id": "33882312-56e3-46af-9570-243d9823c235",
1353 | "metadata": {},
1354 | "outputs": [
1355 | {
1356 | "data": {
1357 | "text/html": [
1358 | "\n",
1359 | "\n",
1372 | "
\n",
1373 | " \n",
1374 | " \n",
1375 | " | \n",
1376 | " Salary | \n",
1377 | " Age | \n",
1378 | " Seniority | \n",
1379 | "
\n",
1380 | " \n",
1381 | " \n",
1382 | " \n",
1383 | " | Atil | \n",
1384 | " 0.300482 | \n",
1385 | " 0.161475 | \n",
1386 | " 0.188583 | \n",
1387 | "
\n",
1388 | " \n",
1389 | " | Zeynep | \n",
1390 | " NaN | \n",
1391 | " 0.043255 | \n",
1392 | " 0.913409 | \n",
1393 | "
\n",
1394 | " \n",
1395 | " | Atlas | \n",
1396 | " 0.275015 | \n",
1397 | " 1.649876 | \n",
1398 | " NaN | \n",
1399 | "
\n",
1400 | " \n",
1401 | " | Mehmet | \n",
1402 | " 0.474020 | \n",
1403 | " NaN | \n",
1404 | " 1.794104 | \n",
1405 | "
\n",
1406 | " \n",
1407 | "
\n",
1408 | "
"
1409 | ],
1410 | "text/plain": [
1411 | " Salary Age Seniority\n",
1412 | "Atil 0.300482 0.161475 0.188583\n",
1413 | "Zeynep NaN 0.043255 0.913409\n",
1414 | "Atlas 0.275015 1.649876 NaN\n",
1415 | "Mehmet 0.474020 NaN 1.794104"
1416 | ]
1417 | },
1418 | "execution_count": 35,
1419 | "metadata": {},
1420 | "output_type": "execute_result"
1421 | }
1422 | ],
1423 | "source": [
1424 | "new_df[new_df > 0]"
1425 | ]
1426 | },
1427 | {
1428 | "cell_type": "code",
1429 | "execution_count": 36,
1430 | "id": "a593066a-4f14-44cf-b523-d8ee16249eed",
1431 | "metadata": {},
1432 | "outputs": [
1433 | {
1434 | "data": {
1435 | "text/html": [
1436 | "\n",
1437 | "\n",
1450 | "
\n",
1451 | " \n",
1452 | " \n",
1453 | " | \n",
1454 | " Salary | \n",
1455 | " Age | \n",
1456 | " Seniority | \n",
1457 | "
\n",
1458 | " \n",
1459 | " \n",
1460 | " \n",
1461 | " | Atil | \n",
1462 | " 0.300482 | \n",
1463 | " 0.161475 | \n",
1464 | " 0.188583 | \n",
1465 | "
\n",
1466 | " \n",
1467 | " | Mehmet | \n",
1468 | " 0.474020 | \n",
1469 | " -1.336595 | \n",
1470 | " 1.794104 | \n",
1471 | "
\n",
1472 | " \n",
1473 | "
\n",
1474 | "
"
1475 | ],
1476 | "text/plain": [
1477 | " Salary Age Seniority\n",
1478 | "Atil 0.300482 0.161475 0.188583\n",
1479 | "Mehmet 0.474020 -1.336595 1.794104"
1480 | ]
1481 | },
1482 | "execution_count": 36,
1483 | "metadata": {},
1484 | "output_type": "execute_result"
1485 | }
1486 | ],
1487 | "source": [
1488 | "new_df[new_df[\"Salary\"] > 0.3]"
1489 | ]
1490 | },
1491 | {
1492 | "cell_type": "code",
1493 | "execution_count": 37,
1494 | "id": "f3e7d662-dfb0-4926-9ae3-cd02b9f04770",
1495 | "metadata": {},
1496 | "outputs": [
1497 | {
1498 | "data": {
1499 | "text/html": [
1500 | "\n",
1501 | "\n",
1514 | "
\n",
1515 | " \n",
1516 | " \n",
1517 | " | \n",
1518 | " Salary | \n",
1519 | " Age | \n",
1520 | " Seniority | \n",
1521 | "
\n",
1522 | " \n",
1523 | " \n",
1524 | " \n",
1525 | " | Atlas | \n",
1526 | " 0.275015 | \n",
1527 | " 1.649876 | \n",
1528 | " -0.301965 | \n",
1529 | "
\n",
1530 | " \n",
1531 | "
\n",
1532 | "
"
1533 | ],
1534 | "text/plain": [
1535 | " Salary Age Seniority\n",
1536 | "Atlas 0.275015 1.649876 -0.301965"
1537 | ]
1538 | },
1539 | "execution_count": 37,
1540 | "metadata": {},
1541 | "output_type": "execute_result"
1542 | }
1543 | ],
1544 | "source": [
1545 | "new_df[new_df[\"Age\"] > 0.5]"
1546 | ]
1547 | },
1548 | {
1549 | "cell_type": "code",
1550 | "execution_count": 38,
1551 | "id": "9097f182-6c2b-4905-8e23-90efa65a671b",
1552 | "metadata": {},
1553 | "outputs": [
1554 | {
1555 | "data": {
1556 | "text/html": [
1557 | "\n",
1558 | "\n",
1571 | "
\n",
1572 | " \n",
1573 | " \n",
1574 | " | \n",
1575 | " Salary | \n",
1576 | " Age | \n",
1577 | " Seniority | \n",
1578 | "
\n",
1579 | " \n",
1580 | " \n",
1581 | " \n",
1582 | " | Atil | \n",
1583 | " 0.300482 | \n",
1584 | " 0.161475 | \n",
1585 | " 0.188583 | \n",
1586 | "
\n",
1587 | " \n",
1588 | " | Zeynep | \n",
1589 | " -0.336789 | \n",
1590 | " 0.043255 | \n",
1591 | " 0.913409 | \n",
1592 | "
\n",
1593 | " \n",
1594 | " | Atlas | \n",
1595 | " 0.275015 | \n",
1596 | " 1.649876 | \n",
1597 | " -0.301965 | \n",
1598 | "
\n",
1599 | " \n",
1600 | " | Mehmet | \n",
1601 | " 0.474020 | \n",
1602 | " -1.336595 | \n",
1603 | " 1.794104 | \n",
1604 | "
\n",
1605 | " \n",
1606 | "
\n",
1607 | "
"
1608 | ],
1609 | "text/plain": [
1610 | " Salary Age Seniority\n",
1611 | "Atil 0.300482 0.161475 0.188583\n",
1612 | "Zeynep -0.336789 0.043255 0.913409\n",
1613 | "Atlas 0.275015 1.649876 -0.301965\n",
1614 | "Mehmet 0.474020 -1.336595 1.794104"
1615 | ]
1616 | },
1617 | "execution_count": 38,
1618 | "metadata": {},
1619 | "output_type": "execute_result"
1620 | }
1621 | ],
1622 | "source": [
1623 | "new_df"
1624 | ]
1625 | },
1626 | {
1627 | "cell_type": "code",
1628 | "execution_count": 39,
1629 | "id": "2b3bbb0e-8717-44a8-b46b-21e993d496a2",
1630 | "metadata": {},
1631 | "outputs": [
1632 | {
1633 | "data": {
1634 | "text/html": [
1635 | "\n",
1636 | "\n",
1649 | "
\n",
1650 | " \n",
1651 | " \n",
1652 | " | \n",
1653 | " index | \n",
1654 | " Salary | \n",
1655 | " Age | \n",
1656 | " Seniority | \n",
1657 | "
\n",
1658 | " \n",
1659 | " \n",
1660 | " \n",
1661 | " | 0 | \n",
1662 | " Atil | \n",
1663 | " 0.300482 | \n",
1664 | " 0.161475 | \n",
1665 | " 0.188583 | \n",
1666 | "
\n",
1667 | " \n",
1668 | " | 1 | \n",
1669 | " Zeynep | \n",
1670 | " -0.336789 | \n",
1671 | " 0.043255 | \n",
1672 | " 0.913409 | \n",
1673 | "
\n",
1674 | " \n",
1675 | " | 2 | \n",
1676 | " Atlas | \n",
1677 | " 0.275015 | \n",
1678 | " 1.649876 | \n",
1679 | " -0.301965 | \n",
1680 | "
\n",
1681 | " \n",
1682 | " | 3 | \n",
1683 | " Mehmet | \n",
1684 | " 0.474020 | \n",
1685 | " -1.336595 | \n",
1686 | " 1.794104 | \n",
1687 | "
\n",
1688 | " \n",
1689 | "
\n",
1690 | "
"
1691 | ],
1692 | "text/plain": [
1693 | " index Salary Age Seniority\n",
1694 | "0 Atil 0.300482 0.161475 0.188583\n",
1695 | "1 Zeynep -0.336789 0.043255 0.913409\n",
1696 | "2 Atlas 0.275015 1.649876 -0.301965\n",
1697 | "3 Mehmet 0.474020 -1.336595 1.794104"
1698 | ]
1699 | },
1700 | "execution_count": 39,
1701 | "metadata": {},
1702 | "output_type": "execute_result"
1703 | }
1704 | ],
1705 | "source": [
1706 | "new_df.reset_index()"
1707 | ]
1708 | },
1709 | {
1710 | "cell_type": "code",
1711 | "execution_count": 40,
1712 | "id": "8b5f12e7-0126-43bc-9709-64b62f5eea30",
1713 | "metadata": {},
1714 | "outputs": [],
1715 | "source": [
1716 | "new_indices = [\"Ati\", \"Zey\", \"Atl\", \"Meh\"]"
1717 | ]
1718 | },
1719 | {
1720 | "cell_type": "code",
1721 | "execution_count": 41,
1722 | "id": "0ade90f3-bfeb-41ca-8ca6-c96f45bf7f4e",
1723 | "metadata": {},
1724 | "outputs": [],
1725 | "source": [
1726 | "new_df[\"NewIndex\"] = new_indices"
1727 | ]
1728 | },
1729 | {
1730 | "cell_type": "code",
1731 | "execution_count": 42,
1732 | "id": "2ff6fc16-2eb2-4a1a-8a67-203f46701015",
1733 | "metadata": {},
1734 | "outputs": [
1735 | {
1736 | "data": {
1737 | "text/html": [
1738 | "\n",
1739 | "\n",
1752 | "
\n",
1753 | " \n",
1754 | " \n",
1755 | " | \n",
1756 | " Salary | \n",
1757 | " Age | \n",
1758 | " Seniority | \n",
1759 | " NewIndex | \n",
1760 | "
\n",
1761 | " \n",
1762 | " \n",
1763 | " \n",
1764 | " | Atil | \n",
1765 | " 0.300482 | \n",
1766 | " 0.161475 | \n",
1767 | " 0.188583 | \n",
1768 | " Ati | \n",
1769 | "
\n",
1770 | " \n",
1771 | " | Zeynep | \n",
1772 | " -0.336789 | \n",
1773 | " 0.043255 | \n",
1774 | " 0.913409 | \n",
1775 | " Zey | \n",
1776 | "
\n",
1777 | " \n",
1778 | " | Atlas | \n",
1779 | " 0.275015 | \n",
1780 | " 1.649876 | \n",
1781 | " -0.301965 | \n",
1782 | " Atl | \n",
1783 | "
\n",
1784 | " \n",
1785 | " | Mehmet | \n",
1786 | " 0.474020 | \n",
1787 | " -1.336595 | \n",
1788 | " 1.794104 | \n",
1789 | " Meh | \n",
1790 | "
\n",
1791 | " \n",
1792 | "
\n",
1793 | "
"
1794 | ],
1795 | "text/plain": [
1796 | " Salary Age Seniority NewIndex\n",
1797 | "Atil 0.300482 0.161475 0.188583 Ati\n",
1798 | "Zeynep -0.336789 0.043255 0.913409 Zey\n",
1799 | "Atlas 0.275015 1.649876 -0.301965 Atl\n",
1800 | "Mehmet 0.474020 -1.336595 1.794104 Meh"
1801 | ]
1802 | },
1803 | "execution_count": 42,
1804 | "metadata": {},
1805 | "output_type": "execute_result"
1806 | }
1807 | ],
1808 | "source": [
1809 | "new_df"
1810 | ]
1811 | },
1812 | {
1813 | "cell_type": "code",
1814 | "execution_count": 43,
1815 | "id": "96a3578d-2f19-4bf5-ae93-2f8941783bc0",
1816 | "metadata": {},
1817 | "outputs": [],
1818 | "source": [
1819 | "new_df.set_index(\"NewIndex\", inplace=True)"
1820 | ]
1821 | },
1822 | {
1823 | "cell_type": "code",
1824 | "execution_count": 44,
1825 | "id": "09bc1e88-a21e-4081-854f-19f8fae6a6c2",
1826 | "metadata": {},
1827 | "outputs": [
1828 | {
1829 | "data": {
1830 | "text/html": [
1831 | "\n",
1832 | "\n",
1845 | "
\n",
1846 | " \n",
1847 | " \n",
1848 | " | \n",
1849 | " Salary | \n",
1850 | " Age | \n",
1851 | " Seniority | \n",
1852 | "
\n",
1853 | " \n",
1854 | " | NewIndex | \n",
1855 | " | \n",
1856 | " | \n",
1857 | " | \n",
1858 | "
\n",
1859 | " \n",
1860 | " \n",
1861 | " \n",
1862 | " | Ati | \n",
1863 | " 0.300482 | \n",
1864 | " 0.161475 | \n",
1865 | " 0.188583 | \n",
1866 | "
\n",
1867 | " \n",
1868 | " | Zey | \n",
1869 | " -0.336789 | \n",
1870 | " 0.043255 | \n",
1871 | " 0.913409 | \n",
1872 | "
\n",
1873 | " \n",
1874 | " | Atl | \n",
1875 | " 0.275015 | \n",
1876 | " 1.649876 | \n",
1877 | " -0.301965 | \n",
1878 | "
\n",
1879 | " \n",
1880 | " | Meh | \n",
1881 | " 0.474020 | \n",
1882 | " -1.336595 | \n",
1883 | " 1.794104 | \n",
1884 | "
\n",
1885 | " \n",
1886 | "
\n",
1887 | "
"
1888 | ],
1889 | "text/plain": [
1890 | " Salary Age Seniority\n",
1891 | "NewIndex \n",
1892 | "Ati 0.300482 0.161475 0.188583\n",
1893 | "Zey -0.336789 0.043255 0.913409\n",
1894 | "Atl 0.275015 1.649876 -0.301965\n",
1895 | "Meh 0.474020 -1.336595 1.794104"
1896 | ]
1897 | },
1898 | "execution_count": 44,
1899 | "metadata": {},
1900 | "output_type": "execute_result"
1901 | }
1902 | ],
1903 | "source": [
1904 | "new_df"
1905 | ]
1906 | },
1907 | {
1908 | "cell_type": "code",
1909 | "execution_count": 45,
1910 | "id": "9aca0264-b96d-4a03-9d64-2da407d8f9ef",
1911 | "metadata": {},
1912 | "outputs": [
1913 | {
1914 | "data": {
1915 | "text/plain": [
1916 | "Salary 0.300482\n",
1917 | "Age 0.161475\n",
1918 | "Seniority 0.188583\n",
1919 | "Name: Ati, dtype: float64"
1920 | ]
1921 | },
1922 | "execution_count": 45,
1923 | "metadata": {},
1924 | "output_type": "execute_result"
1925 | }
1926 | ],
1927 | "source": [
1928 | "new_df.loc[\"Ati\"]"
1929 | ]
1930 | },
1931 | {
1932 | "cell_type": "code",
1933 | "execution_count": 46,
1934 | "id": "384455e4-9156-43f8-8e72-a210ec07d396",
1935 | "metadata": {},
1936 | "outputs": [],
1937 | "source": [
1938 | "# multi index"
1939 | ]
1940 | },
1941 | {
1942 | "cell_type": "code",
1943 | "execution_count": 47,
1944 | "id": "23e87726-c40a-4263-8f20-7836628f1fc8",
1945 | "metadata": {},
1946 | "outputs": [],
1947 | "source": [
1948 | "first_index = [\"Simpson\",\"Simpson\",\"Simpson\",\"South Park\", \"South Park\", \"South Park\"]"
1949 | ]
1950 | },
1951 | {
1952 | "cell_type": "code",
1953 | "execution_count": 48,
1954 | "id": "ec9fa9ee-d22d-4913-bce2-0888a616d32d",
1955 | "metadata": {},
1956 | "outputs": [],
1957 | "source": [
1958 | "inner_index = [\"Homer\",\"Bart\",\"Marge\",\"Cartman\",\"Kenny\",\"Kyle\"]"
1959 | ]
1960 | },
1961 | {
1962 | "cell_type": "code",
1963 | "execution_count": 49,
1964 | "id": "f781774e-8bc9-4a88-a953-2ee69e25c719",
1965 | "metadata": {},
1966 | "outputs": [],
1967 | "source": [
1968 | "zipped_index = list(zip(first_index, inner_index))"
1969 | ]
1970 | },
1971 | {
1972 | "cell_type": "code",
1973 | "execution_count": 50,
1974 | "id": "c01bede1-f541-4816-b50b-971c8a12ae0a",
1975 | "metadata": {},
1976 | "outputs": [
1977 | {
1978 | "data": {
1979 | "text/plain": [
1980 | "[('Simpson', 'Homer'),\n",
1981 | " ('Simpson', 'Bart'),\n",
1982 | " ('Simpson', 'Marge'),\n",
1983 | " ('South Park', 'Cartman'),\n",
1984 | " ('South Park', 'Kenny'),\n",
1985 | " ('South Park', 'Kyle')]"
1986 | ]
1987 | },
1988 | "execution_count": 50,
1989 | "metadata": {},
1990 | "output_type": "execute_result"
1991 | }
1992 | ],
1993 | "source": [
1994 | "zipped_index"
1995 | ]
1996 | },
1997 | {
1998 | "cell_type": "code",
1999 | "execution_count": 51,
2000 | "id": "ac824a0b-2faf-467e-8fcb-6ed8e522635b",
2001 | "metadata": {},
2002 | "outputs": [],
2003 | "source": [
2004 | "zipped_index = pd.MultiIndex.from_tuples(zipped_index)"
2005 | ]
2006 | },
2007 | {
2008 | "cell_type": "code",
2009 | "execution_count": 52,
2010 | "id": "a84c1a99-7e64-4ac2-9db9-49be3321e8d8",
2011 | "metadata": {},
2012 | "outputs": [
2013 | {
2014 | "data": {
2015 | "text/plain": [
2016 | "MultiIndex([( 'Simpson', 'Homer'),\n",
2017 | " ( 'Simpson', 'Bart'),\n",
2018 | " ( 'Simpson', 'Marge'),\n",
2019 | " ('South Park', 'Cartman'),\n",
2020 | " ('South Park', 'Kenny'),\n",
2021 | " ('South Park', 'Kyle')],\n",
2022 | " )"
2023 | ]
2024 | },
2025 | "execution_count": 52,
2026 | "metadata": {},
2027 | "output_type": "execute_result"
2028 | }
2029 | ],
2030 | "source": [
2031 | "zipped_index"
2032 | ]
2033 | },
2034 | {
2035 | "cell_type": "code",
2036 | "execution_count": 56,
2037 | "id": "d1427639-c668-4150-9ab0-edb50616a1d4",
2038 | "metadata": {},
2039 | "outputs": [],
2040 | "source": [
2041 | "sample_values = np.ones((6,2))"
2042 | ]
2043 | },
2044 | {
2045 | "cell_type": "code",
2046 | "execution_count": 57,
2047 | "id": "5e4c3616-87cf-4e08-9179-e2c22c3ae662",
2048 | "metadata": {},
2049 | "outputs": [
2050 | {
2051 | "data": {
2052 | "text/plain": [
2053 | "array([[1., 1.],\n",
2054 | " [1., 1.],\n",
2055 | " [1., 1.],\n",
2056 | " [1., 1.],\n",
2057 | " [1., 1.],\n",
2058 | " [1., 1.]])"
2059 | ]
2060 | },
2061 | "execution_count": 57,
2062 | "metadata": {},
2063 | "output_type": "execute_result"
2064 | }
2065 | ],
2066 | "source": [
2067 | "sample_values"
2068 | ]
2069 | },
2070 | {
2071 | "cell_type": "code",
2072 | "execution_count": 58,
2073 | "id": "02a010e2-fa34-45b0-93b4-e1adddd6cc7c",
2074 | "metadata": {},
2075 | "outputs": [],
2076 | "source": [
2077 | "big_df = pd.DataFrame(sample_values, index=zipped_index, columns=[\"Age\", \"Salary\"])"
2078 | ]
2079 | },
2080 | {
2081 | "cell_type": "code",
2082 | "execution_count": 59,
2083 | "id": "60c50439-55a0-4dab-9d6d-654e87136103",
2084 | "metadata": {},
2085 | "outputs": [
2086 | {
2087 | "data": {
2088 | "text/html": [
2089 | "\n",
2090 | "\n",
2103 | "
\n",
2104 | " \n",
2105 | " \n",
2106 | " | \n",
2107 | " | \n",
2108 | " Age | \n",
2109 | " Salary | \n",
2110 | "
\n",
2111 | " \n",
2112 | " \n",
2113 | " \n",
2114 | " | Simpson | \n",
2115 | " Homer | \n",
2116 | " 1.0 | \n",
2117 | " 1.0 | \n",
2118 | "
\n",
2119 | " \n",
2120 | " | Bart | \n",
2121 | " 1.0 | \n",
2122 | " 1.0 | \n",
2123 | "
\n",
2124 | " \n",
2125 | " | Marge | \n",
2126 | " 1.0 | \n",
2127 | " 1.0 | \n",
2128 | "
\n",
2129 | " \n",
2130 | " | South Park | \n",
2131 | " Cartman | \n",
2132 | " 1.0 | \n",
2133 | " 1.0 | \n",
2134 | "
\n",
2135 | " \n",
2136 | " | Kenny | \n",
2137 | " 1.0 | \n",
2138 | " 1.0 | \n",
2139 | "
\n",
2140 | " \n",
2141 | " | Kyle | \n",
2142 | " 1.0 | \n",
2143 | " 1.0 | \n",
2144 | "
\n",
2145 | " \n",
2146 | "
\n",
2147 | "
"
2148 | ],
2149 | "text/plain": [
2150 | " Age Salary\n",
2151 | "Simpson Homer 1.0 1.0\n",
2152 | " Bart 1.0 1.0\n",
2153 | " Marge 1.0 1.0\n",
2154 | "South Park Cartman 1.0 1.0\n",
2155 | " Kenny 1.0 1.0\n",
2156 | " Kyle 1.0 1.0"
2157 | ]
2158 | },
2159 | "execution_count": 59,
2160 | "metadata": {},
2161 | "output_type": "execute_result"
2162 | }
2163 | ],
2164 | "source": [
2165 | "big_df"
2166 | ]
2167 | },
2168 | {
2169 | "cell_type": "code",
2170 | "execution_count": 60,
2171 | "id": "2e77bb05-1fb1-4fef-9616-1ec198d36b87",
2172 | "metadata": {},
2173 | "outputs": [
2174 | {
2175 | "data": {
2176 | "text/plain": [
2177 | "Simpson Homer 1.0\n",
2178 | " Bart 1.0\n",
2179 | " Marge 1.0\n",
2180 | "South Park Cartman 1.0\n",
2181 | " Kenny 1.0\n",
2182 | " Kyle 1.0\n",
2183 | "Name: Age, dtype: float64"
2184 | ]
2185 | },
2186 | "execution_count": 60,
2187 | "metadata": {},
2188 | "output_type": "execute_result"
2189 | }
2190 | ],
2191 | "source": [
2192 | "big_df[\"Age\"]"
2193 | ]
2194 | },
2195 | {
2196 | "cell_type": "code",
2197 | "execution_count": 61,
2198 | "id": "fa95107f-89fb-4818-b95f-29a213129d53",
2199 | "metadata": {},
2200 | "outputs": [
2201 | {
2202 | "data": {
2203 | "text/html": [
2204 | "\n",
2205 | "\n",
2218 | "
\n",
2219 | " \n",
2220 | " \n",
2221 | " | \n",
2222 | " Age | \n",
2223 | " Salary | \n",
2224 | "
\n",
2225 | " \n",
2226 | " \n",
2227 | " \n",
2228 | " | Homer | \n",
2229 | " 1.0 | \n",
2230 | " 1.0 | \n",
2231 | "
\n",
2232 | " \n",
2233 | " | Bart | \n",
2234 | " 1.0 | \n",
2235 | " 1.0 | \n",
2236 | "
\n",
2237 | " \n",
2238 | " | Marge | \n",
2239 | " 1.0 | \n",
2240 | " 1.0 | \n",
2241 | "
\n",
2242 | " \n",
2243 | "
\n",
2244 | "
"
2245 | ],
2246 | "text/plain": [
2247 | " Age Salary\n",
2248 | "Homer 1.0 1.0\n",
2249 | "Bart 1.0 1.0\n",
2250 | "Marge 1.0 1.0"
2251 | ]
2252 | },
2253 | "execution_count": 61,
2254 | "metadata": {},
2255 | "output_type": "execute_result"
2256 | }
2257 | ],
2258 | "source": [
2259 | "big_df.loc[\"Simpson\"]"
2260 | ]
2261 | },
2262 | {
2263 | "cell_type": "code",
2264 | "execution_count": 62,
2265 | "id": "5790bcf7-d6be-47bf-8cb3-1c249e70fce6",
2266 | "metadata": {},
2267 | "outputs": [
2268 | {
2269 | "data": {
2270 | "text/plain": [
2271 | "Age 1.0\n",
2272 | "Salary 1.0\n",
2273 | "Name: Homer, dtype: float64"
2274 | ]
2275 | },
2276 | "execution_count": 62,
2277 | "metadata": {},
2278 | "output_type": "execute_result"
2279 | }
2280 | ],
2281 | "source": [
2282 | "big_df.loc[\"Simpson\"].loc[\"Homer\"]"
2283 | ]
2284 | },
2285 | {
2286 | "cell_type": "code",
2287 | "execution_count": null,
2288 | "id": "258bdd5c-a051-4fae-bcde-e4a0d7ebc18c",
2289 | "metadata": {},
2290 | "outputs": [],
2291 | "source": []
2292 | }
2293 | ],
2294 | "metadata": {
2295 | "kernelspec": {
2296 | "display_name": "Python 3 (ipykernel)",
2297 | "language": "python",
2298 | "name": "python3"
2299 | },
2300 | "language_info": {
2301 | "codemirror_mode": {
2302 | "name": "ipython",
2303 | "version": 3
2304 | },
2305 | "file_extension": ".py",
2306 | "mimetype": "text/x-python",
2307 | "name": "python",
2308 | "nbconvert_exporter": "python",
2309 | "pygments_lexer": "ipython3",
2310 | "version": "3.12.7"
2311 | }
2312 | },
2313 | "nbformat": 4,
2314 | "nbformat_minor": 5
2315 | }
2316 |
--------------------------------------------------------------------------------
/6-employee.csv:
--------------------------------------------------------------------------------
1 | Department,Employee,Salary,Experience,City
2 | Marketing,Emp_1,53483,1,New York
3 | Sales,Emp_2,78555,8,Austin
4 | Finance,Emp_3,47159,3,Austin
5 | Sales,Emp_4,110077,3,San Francisco
6 | Sales,Emp_5,65920,1,New York
7 | IT,Emp_6,97121,11,Chicago
8 | Finance,Emp_7,99479,5,Chicago
9 | Finance,Emp_8,119475,10,New York
10 | Finance,Emp_9,49457,7,Chicago
11 | Sales,Emp_10,96557,10,Chicago
12 | Marketing,Emp_11,107189,9,New York
13 | Finance,Emp_12,108953,12,Austin
14 | Sales,Emp_13,82995,7,New York
15 | IT,Emp_14,70757,9,Austin
16 | Marketing,Emp_15,39692,8,Chicago
17 | IT,Emp_16,75758,12,Chicago
18 | Marketing,Emp_17,102409,2,Chicago
19 | Sales,Emp_18,101211,1,San Francisco
20 | HR,Emp_19,95697,7,Austin
21 | Marketing,Emp_20,67065,7,San Francisco
22 | IT,Emp_21,62606,14,San Francisco
23 | Sales,Emp_22,41534,8,New York
24 | Marketing,Emp_23,70397,5,San Francisco
25 | HR,Emp_24,31016,3,New York
26 | HR,Emp_25,119789,12,New York
27 | Finance,Emp_26,85591,8,San Francisco
28 | Finance,Emp_27,119812,6,Austin
29 | IT,Emp_28,53247,11,Austin
30 | Marketing,Emp_29,54300,3,Austin
31 | Marketing,Emp_30,104065,1,Austin
32 | Finance,Emp_31,112798,3,Austin
33 | Marketing,Emp_32,39268,5,San Francisco
34 | Marketing,Emp_33,116807,14,San Francisco
35 | HR,Emp_34,42185,3,Chicago
36 | Finance,Emp_35,93704,1,Austin
37 | Sales,Emp_36,116779,5,San Francisco
38 | Finance,Emp_37,69099,10,Chicago
39 | Sales,Emp_38,38571,7,Austin
40 | HR,Emp_39,68044,14,New York
41 | IT,Emp_40,81214,7,Chicago
42 | Marketing,Emp_41,91228,11,San Francisco
43 | HR,Emp_42,78984,9,New York
44 | Marketing,Emp_43,70774,10,New York
45 | IT,Emp_44,32568,10,New York
46 | IT,Emp_45,92592,12,Chicago
47 | HR,Emp_46,97563,13,San Francisco
48 | IT,Emp_47,32695,3,New York
49 | Sales,Emp_48,78190,7,Austin
50 | IT,Emp_49,35258,1,New York
51 | Marketing,Emp_50,117538,4,New York
52 |
--------------------------------------------------------------------------------
/6-weather.xlsx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/atilsamancioglu/PythonForDataScienceNotebooks/HEAD/6-weather.xlsx
--------------------------------------------------------------------------------
/6-weatherna.xlsx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/atilsamancioglu/PythonForDataScienceNotebooks/HEAD/6-weatherna.xlsx
--------------------------------------------------------------------------------
/7-DataFramesConcatMerge.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 1,
6 | "id": "7a53bee4-7e67-4878-868e-6fea4031cedb",
7 | "metadata": {},
8 | "outputs": [],
9 | "source": [
10 | "import pandas as pd"
11 | ]
12 | },
13 | {
14 | "cell_type": "code",
15 | "execution_count": 2,
16 | "id": "694e35f2-64ec-458d-ad1a-2ff0faf2eea3",
17 | "metadata": {},
18 | "outputs": [],
19 | "source": [
20 | "df1 = pd.read_csv(\"7-concat_data1.csv\")"
21 | ]
22 | },
23 | {
24 | "cell_type": "code",
25 | "execution_count": 3,
26 | "id": "1c5e1b97-c618-4728-a648-2b659dd82971",
27 | "metadata": {},
28 | "outputs": [
29 | {
30 | "data": {
31 | "text/html": [
32 | "\n",
33 | "\n",
46 | "
\n",
47 | " \n",
48 | " \n",
49 | " | \n",
50 | " Employee_ID | \n",
51 | " Name | \n",
52 | " Department | \n",
53 | "
\n",
54 | " \n",
55 | " \n",
56 | " \n",
57 | " | 0 | \n",
58 | " 1 | \n",
59 | " Emp_1 | \n",
60 | " Finance | \n",
61 | "
\n",
62 | " \n",
63 | " | 1 | \n",
64 | " 2 | \n",
65 | " Emp_2 | \n",
66 | " Marketing | \n",
67 | "
\n",
68 | " \n",
69 | " | 2 | \n",
70 | " 3 | \n",
71 | " Emp_3 | \n",
72 | " HR | \n",
73 | "
\n",
74 | " \n",
75 | " | 3 | \n",
76 | " 4 | \n",
77 | " Emp_4 | \n",
78 | " Finance | \n",
79 | "
\n",
80 | " \n",
81 | " | 4 | \n",
82 | " 5 | \n",
83 | " Emp_5 | \n",
84 | " Finance | \n",
85 | "
\n",
86 | " \n",
87 | " | 5 | \n",
88 | " 6 | \n",
89 | " Emp_6 | \n",
90 | " Marketing | \n",
91 | "
\n",
92 | " \n",
93 | " | 6 | \n",
94 | " 7 | \n",
95 | " Emp_7 | \n",
96 | " HR | \n",
97 | "
\n",
98 | " \n",
99 | " | 7 | \n",
100 | " 8 | \n",
101 | " Emp_8 | \n",
102 | " HR | \n",
103 | "
\n",
104 | " \n",
105 | " | 8 | \n",
106 | " 9 | \n",
107 | " Emp_9 | \n",
108 | " Finance | \n",
109 | "
\n",
110 | " \n",
111 | " | 9 | \n",
112 | " 10 | \n",
113 | " Emp_10 | \n",
114 | " IT | \n",
115 | "
\n",
116 | " \n",
117 | "
\n",
118 | "
"
119 | ],
120 | "text/plain": [
121 | " Employee_ID Name Department\n",
122 | "0 1 Emp_1 Finance\n",
123 | "1 2 Emp_2 Marketing\n",
124 | "2 3 Emp_3 HR\n",
125 | "3 4 Emp_4 Finance\n",
126 | "4 5 Emp_5 Finance\n",
127 | "5 6 Emp_6 Marketing\n",
128 | "6 7 Emp_7 HR\n",
129 | "7 8 Emp_8 HR\n",
130 | "8 9 Emp_9 Finance\n",
131 | "9 10 Emp_10 IT"
132 | ]
133 | },
134 | "execution_count": 3,
135 | "metadata": {},
136 | "output_type": "execute_result"
137 | }
138 | ],
139 | "source": [
140 | "df1"
141 | ]
142 | },
143 | {
144 | "cell_type": "code",
145 | "execution_count": 4,
146 | "id": "44e6b9f3-e5bc-4a2f-9b79-dc212e17d6cf",
147 | "metadata": {},
148 | "outputs": [],
149 | "source": [
150 | "df2 = pd.read_csv(\"7-concat_data2.csv\")"
151 | ]
152 | },
153 | {
154 | "cell_type": "code",
155 | "execution_count": 5,
156 | "id": "b111ec8a-0921-4205-9499-ff321605e058",
157 | "metadata": {},
158 | "outputs": [
159 | {
160 | "data": {
161 | "text/html": [
162 | "\n",
163 | "\n",
176 | "
\n",
177 | " \n",
178 | " \n",
179 | " | \n",
180 | " Employee_ID | \n",
181 | " Name | \n",
182 | " Department | \n",
183 | "
\n",
184 | " \n",
185 | " \n",
186 | " \n",
187 | " | 0 | \n",
188 | " 11 | \n",
189 | " Emp_11 | \n",
190 | " Finance | \n",
191 | "
\n",
192 | " \n",
193 | " | 1 | \n",
194 | " 12 | \n",
195 | " Emp_12 | \n",
196 | " Finance | \n",
197 | "
\n",
198 | " \n",
199 | " | 2 | \n",
200 | " 13 | \n",
201 | " Emp_13 | \n",
202 | " Finance | \n",
203 | "
\n",
204 | " \n",
205 | " | 3 | \n",
206 | " 14 | \n",
207 | " Emp_14 | \n",
208 | " Finance | \n",
209 | "
\n",
210 | " \n",
211 | " | 4 | \n",
212 | " 15 | \n",
213 | " Emp_15 | \n",
214 | " Marketing | \n",
215 | "
\n",
216 | " \n",
217 | " | 5 | \n",
218 | " 16 | \n",
219 | " Emp_16 | \n",
220 | " HR | \n",
221 | "
\n",
222 | " \n",
223 | " | 6 | \n",
224 | " 17 | \n",
225 | " Emp_17 | \n",
226 | " Marketing | \n",
227 | "
\n",
228 | " \n",
229 | " | 7 | \n",
230 | " 18 | \n",
231 | " Emp_18 | \n",
232 | " Marketing | \n",
233 | "
\n",
234 | " \n",
235 | " | 8 | \n",
236 | " 19 | \n",
237 | " Emp_19 | \n",
238 | " Marketing | \n",
239 | "
\n",
240 | " \n",
241 | " | 9 | \n",
242 | " 20 | \n",
243 | " Emp_20 | \n",
244 | " Finance | \n",
245 | "
\n",
246 | " \n",
247 | "
\n",
248 | "
"
249 | ],
250 | "text/plain": [
251 | " Employee_ID Name Department\n",
252 | "0 11 Emp_11 Finance\n",
253 | "1 12 Emp_12 Finance\n",
254 | "2 13 Emp_13 Finance\n",
255 | "3 14 Emp_14 Finance\n",
256 | "4 15 Emp_15 Marketing\n",
257 | "5 16 Emp_16 HR\n",
258 | "6 17 Emp_17 Marketing\n",
259 | "7 18 Emp_18 Marketing\n",
260 | "8 19 Emp_19 Marketing\n",
261 | "9 20 Emp_20 Finance"
262 | ]
263 | },
264 | "execution_count": 5,
265 | "metadata": {},
266 | "output_type": "execute_result"
267 | }
268 | ],
269 | "source": [
270 | "df2"
271 | ]
272 | },
273 | {
274 | "cell_type": "code",
275 | "execution_count": 6,
276 | "id": "c9cada82-1121-4bab-bcde-9c5915fc8643",
277 | "metadata": {},
278 | "outputs": [],
279 | "source": [
280 | "#concat"
281 | ]
282 | },
283 | {
284 | "cell_type": "code",
285 | "execution_count": 7,
286 | "id": "89f54b38-a58e-467f-a7c0-529beae35bbb",
287 | "metadata": {},
288 | "outputs": [],
289 | "source": [
290 | "df_concat = pd.concat([df1, df2], ignore_index=True)"
291 | ]
292 | },
293 | {
294 | "cell_type": "code",
295 | "execution_count": 8,
296 | "id": "5ea30f98-78b3-4b39-ab09-948b2c9730b9",
297 | "metadata": {},
298 | "outputs": [
299 | {
300 | "data": {
301 | "text/html": [
302 | "\n",
303 | "\n",
316 | "
\n",
317 | " \n",
318 | " \n",
319 | " | \n",
320 | " Employee_ID | \n",
321 | " Name | \n",
322 | " Department | \n",
323 | "
\n",
324 | " \n",
325 | " \n",
326 | " \n",
327 | " | 0 | \n",
328 | " 1 | \n",
329 | " Emp_1 | \n",
330 | " Finance | \n",
331 | "
\n",
332 | " \n",
333 | " | 1 | \n",
334 | " 2 | \n",
335 | " Emp_2 | \n",
336 | " Marketing | \n",
337 | "
\n",
338 | " \n",
339 | " | 2 | \n",
340 | " 3 | \n",
341 | " Emp_3 | \n",
342 | " HR | \n",
343 | "
\n",
344 | " \n",
345 | " | 3 | \n",
346 | " 4 | \n",
347 | " Emp_4 | \n",
348 | " Finance | \n",
349 | "
\n",
350 | " \n",
351 | " | 4 | \n",
352 | " 5 | \n",
353 | " Emp_5 | \n",
354 | " Finance | \n",
355 | "
\n",
356 | " \n",
357 | " | 5 | \n",
358 | " 6 | \n",
359 | " Emp_6 | \n",
360 | " Marketing | \n",
361 | "
\n",
362 | " \n",
363 | " | 6 | \n",
364 | " 7 | \n",
365 | " Emp_7 | \n",
366 | " HR | \n",
367 | "
\n",
368 | " \n",
369 | " | 7 | \n",
370 | " 8 | \n",
371 | " Emp_8 | \n",
372 | " HR | \n",
373 | "
\n",
374 | " \n",
375 | " | 8 | \n",
376 | " 9 | \n",
377 | " Emp_9 | \n",
378 | " Finance | \n",
379 | "
\n",
380 | " \n",
381 | " | 9 | \n",
382 | " 10 | \n",
383 | " Emp_10 | \n",
384 | " IT | \n",
385 | "
\n",
386 | " \n",
387 | " | 10 | \n",
388 | " 11 | \n",
389 | " Emp_11 | \n",
390 | " Finance | \n",
391 | "
\n",
392 | " \n",
393 | " | 11 | \n",
394 | " 12 | \n",
395 | " Emp_12 | \n",
396 | " Finance | \n",
397 | "
\n",
398 | " \n",
399 | " | 12 | \n",
400 | " 13 | \n",
401 | " Emp_13 | \n",
402 | " Finance | \n",
403 | "
\n",
404 | " \n",
405 | " | 13 | \n",
406 | " 14 | \n",
407 | " Emp_14 | \n",
408 | " Finance | \n",
409 | "
\n",
410 | " \n",
411 | " | 14 | \n",
412 | " 15 | \n",
413 | " Emp_15 | \n",
414 | " Marketing | \n",
415 | "
\n",
416 | " \n",
417 | " | 15 | \n",
418 | " 16 | \n",
419 | " Emp_16 | \n",
420 | " HR | \n",
421 | "
\n",
422 | " \n",
423 | " | 16 | \n",
424 | " 17 | \n",
425 | " Emp_17 | \n",
426 | " Marketing | \n",
427 | "
\n",
428 | " \n",
429 | " | 17 | \n",
430 | " 18 | \n",
431 | " Emp_18 | \n",
432 | " Marketing | \n",
433 | "
\n",
434 | " \n",
435 | " | 18 | \n",
436 | " 19 | \n",
437 | " Emp_19 | \n",
438 | " Marketing | \n",
439 | "
\n",
440 | " \n",
441 | " | 19 | \n",
442 | " 20 | \n",
443 | " Emp_20 | \n",
444 | " Finance | \n",
445 | "
\n",
446 | " \n",
447 | "
\n",
448 | "
"
449 | ],
450 | "text/plain": [
451 | " Employee_ID Name Department\n",
452 | "0 1 Emp_1 Finance\n",
453 | "1 2 Emp_2 Marketing\n",
454 | "2 3 Emp_3 HR\n",
455 | "3 4 Emp_4 Finance\n",
456 | "4 5 Emp_5 Finance\n",
457 | "5 6 Emp_6 Marketing\n",
458 | "6 7 Emp_7 HR\n",
459 | "7 8 Emp_8 HR\n",
460 | "8 9 Emp_9 Finance\n",
461 | "9 10 Emp_10 IT\n",
462 | "10 11 Emp_11 Finance\n",
463 | "11 12 Emp_12 Finance\n",
464 | "12 13 Emp_13 Finance\n",
465 | "13 14 Emp_14 Finance\n",
466 | "14 15 Emp_15 Marketing\n",
467 | "15 16 Emp_16 HR\n",
468 | "16 17 Emp_17 Marketing\n",
469 | "17 18 Emp_18 Marketing\n",
470 | "18 19 Emp_19 Marketing\n",
471 | "19 20 Emp_20 Finance"
472 | ]
473 | },
474 | "execution_count": 8,
475 | "metadata": {},
476 | "output_type": "execute_result"
477 | }
478 | ],
479 | "source": [
480 | "df_concat"
481 | ]
482 | },
483 | {
484 | "cell_type": "code",
485 | "execution_count": 9,
486 | "id": "e338deec-cdb0-4cb0-a158-6c9c895d5d81",
487 | "metadata": {},
488 | "outputs": [],
489 | "source": [
490 | "df_merge1 = pd.read_csv(\"7-merge_data1.csv\")"
491 | ]
492 | },
493 | {
494 | "cell_type": "code",
495 | "execution_count": 10,
496 | "id": "4e2ccfc5-d9b0-41d4-8ab4-d3fef3391d17",
497 | "metadata": {},
498 | "outputs": [
499 | {
500 | "data": {
501 | "text/html": [
502 | "\n",
503 | "\n",
516 | "
\n",
517 | " \n",
518 | " \n",
519 | " | \n",
520 | " Employee_ID | \n",
521 | " Name | \n",
522 | " Department | \n",
523 | "
\n",
524 | " \n",
525 | " \n",
526 | " \n",
527 | " | 0 | \n",
528 | " 1 | \n",
529 | " Emp_1 | \n",
530 | " IT | \n",
531 | "
\n",
532 | " \n",
533 | " | 1 | \n",
534 | " 2 | \n",
535 | " Emp_2 | \n",
536 | " HR | \n",
537 | "
\n",
538 | " \n",
539 | " | 2 | \n",
540 | " 3 | \n",
541 | " Emp_3 | \n",
542 | " IT | \n",
543 | "
\n",
544 | " \n",
545 | " | 3 | \n",
546 | " 4 | \n",
547 | " Emp_4 | \n",
548 | " Marketing | \n",
549 | "
\n",
550 | " \n",
551 | " | 4 | \n",
552 | " 5 | \n",
553 | " Emp_5 | \n",
554 | " Marketing | \n",
555 | "
\n",
556 | " \n",
557 | " | 5 | \n",
558 | " 6 | \n",
559 | " Emp_6 | \n",
560 | " IT | \n",
561 | "
\n",
562 | " \n",
563 | " | 6 | \n",
564 | " 7 | \n",
565 | " Emp_7 | \n",
566 | " IT | \n",
567 | "
\n",
568 | " \n",
569 | " | 7 | \n",
570 | " 8 | \n",
571 | " Emp_8 | \n",
572 | " IT | \n",
573 | "
\n",
574 | " \n",
575 | " | 8 | \n",
576 | " 9 | \n",
577 | " Emp_9 | \n",
578 | " Marketing | \n",
579 | "
\n",
580 | " \n",
581 | " | 9 | \n",
582 | " 10 | \n",
583 | " Emp_10 | \n",
584 | " Marketing | \n",
585 | "
\n",
586 | " \n",
587 | "
\n",
588 | "
"
589 | ],
590 | "text/plain": [
591 | " Employee_ID Name Department\n",
592 | "0 1 Emp_1 IT\n",
593 | "1 2 Emp_2 HR\n",
594 | "2 3 Emp_3 IT\n",
595 | "3 4 Emp_4 Marketing\n",
596 | "4 5 Emp_5 Marketing\n",
597 | "5 6 Emp_6 IT\n",
598 | "6 7 Emp_7 IT\n",
599 | "7 8 Emp_8 IT\n",
600 | "8 9 Emp_9 Marketing\n",
601 | "9 10 Emp_10 Marketing"
602 | ]
603 | },
604 | "execution_count": 10,
605 | "metadata": {},
606 | "output_type": "execute_result"
607 | }
608 | ],
609 | "source": [
610 | "df_merge1"
611 | ]
612 | },
613 | {
614 | "cell_type": "code",
615 | "execution_count": 11,
616 | "id": "b47a333e-e41c-4a8d-8205-1078a3122f5e",
617 | "metadata": {},
618 | "outputs": [],
619 | "source": [
620 | "df_merge2 = pd.read_csv(\"7-merge_data2.csv\")"
621 | ]
622 | },
623 | {
624 | "cell_type": "code",
625 | "execution_count": 12,
626 | "id": "5ed9e197-b2ac-4edd-9778-7ffbd25aa965",
627 | "metadata": {},
628 | "outputs": [
629 | {
630 | "data": {
631 | "text/html": [
632 | "\n",
633 | "\n",
646 | "
\n",
647 | " \n",
648 | " \n",
649 | " | \n",
650 | " Employee_ID | \n",
651 | " Salary | \n",
652 | " Experience | \n",
653 | "
\n",
654 | " \n",
655 | " \n",
656 | " \n",
657 | " | 0 | \n",
658 | " 5 | \n",
659 | " 55658 | \n",
660 | " 3 | \n",
661 | "
\n",
662 | " \n",
663 | " | 1 | \n",
664 | " 1 | \n",
665 | " 114478 | \n",
666 | " 5 | \n",
667 | "
\n",
668 | " \n",
669 | " | 2 | \n",
670 | " 12 | \n",
671 | " 48431 | \n",
672 | " 19 | \n",
673 | "
\n",
674 | " \n",
675 | " | 3 | \n",
676 | " 10 | \n",
677 | " 32747 | \n",
678 | " 7 | \n",
679 | "
\n",
680 | " \n",
681 | " | 4 | \n",
682 | " 6 | \n",
683 | " 89150 | \n",
684 | " 9 | \n",
685 | "
\n",
686 | " \n",
687 | " | 5 | \n",
688 | " 13 | \n",
689 | " 95725 | \n",
690 | " 7 | \n",
691 | "
\n",
692 | " \n",
693 | " | 6 | \n",
694 | " 9 | \n",
695 | " 65773 | \n",
696 | " 4 | \n",
697 | "
\n",
698 | " \n",
699 | " | 7 | \n",
700 | " 11 | \n",
701 | " 86886 | \n",
702 | " 18 | \n",
703 | "
\n",
704 | " \n",
705 | "
\n",
706 | "
"
707 | ],
708 | "text/plain": [
709 | " Employee_ID Salary Experience\n",
710 | "0 5 55658 3\n",
711 | "1 1 114478 5\n",
712 | "2 12 48431 19\n",
713 | "3 10 32747 7\n",
714 | "4 6 89150 9\n",
715 | "5 13 95725 7\n",
716 | "6 9 65773 4\n",
717 | "7 11 86886 18"
718 | ]
719 | },
720 | "execution_count": 12,
721 | "metadata": {},
722 | "output_type": "execute_result"
723 | }
724 | ],
725 | "source": [
726 | "df_merge2"
727 | ]
728 | },
729 | {
730 | "cell_type": "code",
731 | "execution_count": 13,
732 | "id": "9370d214-2a69-4512-ba49-c5a507413518",
733 | "metadata": {},
734 | "outputs": [],
735 | "source": [
736 | "# merge - inner join"
737 | ]
738 | },
739 | {
740 | "cell_type": "code",
741 | "execution_count": 14,
742 | "id": "12aed07c-0858-4f7f-aed3-99e4ec8cdb4a",
743 | "metadata": {},
744 | "outputs": [],
745 | "source": [
746 | "df_merged = pd.merge(df_merge1, df_merge2, on=\"Employee_ID\", how=\"inner\")"
747 | ]
748 | },
749 | {
750 | "cell_type": "code",
751 | "execution_count": 15,
752 | "id": "1382740d-2bbd-4fcd-af80-4702e723dd5c",
753 | "metadata": {},
754 | "outputs": [
755 | {
756 | "data": {
757 | "text/html": [
758 | "\n",
759 | "\n",
772 | "
\n",
773 | " \n",
774 | " \n",
775 | " | \n",
776 | " Employee_ID | \n",
777 | " Name | \n",
778 | " Department | \n",
779 | " Salary | \n",
780 | " Experience | \n",
781 | "
\n",
782 | " \n",
783 | " \n",
784 | " \n",
785 | " | 0 | \n",
786 | " 1 | \n",
787 | " Emp_1 | \n",
788 | " IT | \n",
789 | " 114478 | \n",
790 | " 5 | \n",
791 | "
\n",
792 | " \n",
793 | " | 1 | \n",
794 | " 5 | \n",
795 | " Emp_5 | \n",
796 | " Marketing | \n",
797 | " 55658 | \n",
798 | " 3 | \n",
799 | "
\n",
800 | " \n",
801 | " | 2 | \n",
802 | " 6 | \n",
803 | " Emp_6 | \n",
804 | " IT | \n",
805 | " 89150 | \n",
806 | " 9 | \n",
807 | "
\n",
808 | " \n",
809 | " | 3 | \n",
810 | " 9 | \n",
811 | " Emp_9 | \n",
812 | " Marketing | \n",
813 | " 65773 | \n",
814 | " 4 | \n",
815 | "
\n",
816 | " \n",
817 | " | 4 | \n",
818 | " 10 | \n",
819 | " Emp_10 | \n",
820 | " Marketing | \n",
821 | " 32747 | \n",
822 | " 7 | \n",
823 | "
\n",
824 | " \n",
825 | "
\n",
826 | "
"
827 | ],
828 | "text/plain": [
829 | " Employee_ID Name Department Salary Experience\n",
830 | "0 1 Emp_1 IT 114478 5\n",
831 | "1 5 Emp_5 Marketing 55658 3\n",
832 | "2 6 Emp_6 IT 89150 9\n",
833 | "3 9 Emp_9 Marketing 65773 4\n",
834 | "4 10 Emp_10 Marketing 32747 7"
835 | ]
836 | },
837 | "execution_count": 15,
838 | "metadata": {},
839 | "output_type": "execute_result"
840 | }
841 | ],
842 | "source": [
843 | "df_merged"
844 | ]
845 | },
846 | {
847 | "cell_type": "code",
848 | "execution_count": 16,
849 | "id": "629eb38e-9f76-4725-8137-26df29ad7f90",
850 | "metadata": {},
851 | "outputs": [],
852 | "source": [
853 | "# merge - outer join"
854 | ]
855 | },
856 | {
857 | "cell_type": "code",
858 | "execution_count": 17,
859 | "id": "699d9488-a992-444c-8bf8-3bb7fe1d1795",
860 | "metadata": {},
861 | "outputs": [],
862 | "source": [
863 | "df_merged_outer = pd.merge(df_merge1, df_merge2, on=\"Employee_ID\", how=\"outer\")"
864 | ]
865 | },
866 | {
867 | "cell_type": "code",
868 | "execution_count": 18,
869 | "id": "717a2ab0-52d7-45dc-9d5c-6fe129194490",
870 | "metadata": {},
871 | "outputs": [
872 | {
873 | "data": {
874 | "text/html": [
875 | "\n",
876 | "\n",
889 | "
\n",
890 | " \n",
891 | " \n",
892 | " | \n",
893 | " Employee_ID | \n",
894 | " Name | \n",
895 | " Department | \n",
896 | " Salary | \n",
897 | " Experience | \n",
898 | "
\n",
899 | " \n",
900 | " \n",
901 | " \n",
902 | " | 0 | \n",
903 | " 1 | \n",
904 | " Emp_1 | \n",
905 | " IT | \n",
906 | " 114478.0 | \n",
907 | " 5.0 | \n",
908 | "
\n",
909 | " \n",
910 | " | 1 | \n",
911 | " 2 | \n",
912 | " Emp_2 | \n",
913 | " HR | \n",
914 | " NaN | \n",
915 | " NaN | \n",
916 | "
\n",
917 | " \n",
918 | " | 2 | \n",
919 | " 3 | \n",
920 | " Emp_3 | \n",
921 | " IT | \n",
922 | " NaN | \n",
923 | " NaN | \n",
924 | "
\n",
925 | " \n",
926 | " | 3 | \n",
927 | " 4 | \n",
928 | " Emp_4 | \n",
929 | " Marketing | \n",
930 | " NaN | \n",
931 | " NaN | \n",
932 | "
\n",
933 | " \n",
934 | " | 4 | \n",
935 | " 5 | \n",
936 | " Emp_5 | \n",
937 | " Marketing | \n",
938 | " 55658.0 | \n",
939 | " 3.0 | \n",
940 | "
\n",
941 | " \n",
942 | " | 5 | \n",
943 | " 6 | \n",
944 | " Emp_6 | \n",
945 | " IT | \n",
946 | " 89150.0 | \n",
947 | " 9.0 | \n",
948 | "
\n",
949 | " \n",
950 | " | 6 | \n",
951 | " 7 | \n",
952 | " Emp_7 | \n",
953 | " IT | \n",
954 | " NaN | \n",
955 | " NaN | \n",
956 | "
\n",
957 | " \n",
958 | " | 7 | \n",
959 | " 8 | \n",
960 | " Emp_8 | \n",
961 | " IT | \n",
962 | " NaN | \n",
963 | " NaN | \n",
964 | "
\n",
965 | " \n",
966 | " | 8 | \n",
967 | " 9 | \n",
968 | " Emp_9 | \n",
969 | " Marketing | \n",
970 | " 65773.0 | \n",
971 | " 4.0 | \n",
972 | "
\n",
973 | " \n",
974 | " | 9 | \n",
975 | " 10 | \n",
976 | " Emp_10 | \n",
977 | " Marketing | \n",
978 | " 32747.0 | \n",
979 | " 7.0 | \n",
980 | "
\n",
981 | " \n",
982 | " | 10 | \n",
983 | " 11 | \n",
984 | " NaN | \n",
985 | " NaN | \n",
986 | " 86886.0 | \n",
987 | " 18.0 | \n",
988 | "
\n",
989 | " \n",
990 | " | 11 | \n",
991 | " 12 | \n",
992 | " NaN | \n",
993 | " NaN | \n",
994 | " 48431.0 | \n",
995 | " 19.0 | \n",
996 | "
\n",
997 | " \n",
998 | " | 12 | \n",
999 | " 13 | \n",
1000 | " NaN | \n",
1001 | " NaN | \n",
1002 | " 95725.0 | \n",
1003 | " 7.0 | \n",
1004 | "
\n",
1005 | " \n",
1006 | "
\n",
1007 | "
"
1008 | ],
1009 | "text/plain": [
1010 | " Employee_ID Name Department Salary Experience\n",
1011 | "0 1 Emp_1 IT 114478.0 5.0\n",
1012 | "1 2 Emp_2 HR NaN NaN\n",
1013 | "2 3 Emp_3 IT NaN NaN\n",
1014 | "3 4 Emp_4 Marketing NaN NaN\n",
1015 | "4 5 Emp_5 Marketing 55658.0 3.0\n",
1016 | "5 6 Emp_6 IT 89150.0 9.0\n",
1017 | "6 7 Emp_7 IT NaN NaN\n",
1018 | "7 8 Emp_8 IT NaN NaN\n",
1019 | "8 9 Emp_9 Marketing 65773.0 4.0\n",
1020 | "9 10 Emp_10 Marketing 32747.0 7.0\n",
1021 | "10 11 NaN NaN 86886.0 18.0\n",
1022 | "11 12 NaN NaN 48431.0 19.0\n",
1023 | "12 13 NaN NaN 95725.0 7.0"
1024 | ]
1025 | },
1026 | "execution_count": 18,
1027 | "metadata": {},
1028 | "output_type": "execute_result"
1029 | }
1030 | ],
1031 | "source": [
1032 | "df_merged_outer"
1033 | ]
1034 | },
1035 | {
1036 | "cell_type": "code",
1037 | "execution_count": 19,
1038 | "id": "cb99724f-2980-438c-bb08-fce6e2546d11",
1039 | "metadata": {},
1040 | "outputs": [],
1041 | "source": [
1042 | "# merge - left join"
1043 | ]
1044 | },
1045 | {
1046 | "cell_type": "code",
1047 | "execution_count": 20,
1048 | "id": "ddd101ad-a66e-45ab-924d-275ca3b4c45c",
1049 | "metadata": {},
1050 | "outputs": [],
1051 | "source": [
1052 | "df_merged_left = pd.merge(df_merge1, df_merge2, on=\"Employee_ID\", how=\"left\")"
1053 | ]
1054 | },
1055 | {
1056 | "cell_type": "code",
1057 | "execution_count": 21,
1058 | "id": "b1bd3612-1cd4-4b93-b7c9-b6aadf99e431",
1059 | "metadata": {},
1060 | "outputs": [
1061 | {
1062 | "data": {
1063 | "text/html": [
1064 | "\n",
1065 | "\n",
1078 | "
\n",
1079 | " \n",
1080 | " \n",
1081 | " | \n",
1082 | " Employee_ID | \n",
1083 | " Name | \n",
1084 | " Department | \n",
1085 | " Salary | \n",
1086 | " Experience | \n",
1087 | "
\n",
1088 | " \n",
1089 | " \n",
1090 | " \n",
1091 | " | 0 | \n",
1092 | " 1 | \n",
1093 | " Emp_1 | \n",
1094 | " IT | \n",
1095 | " 114478.0 | \n",
1096 | " 5.0 | \n",
1097 | "
\n",
1098 | " \n",
1099 | " | 1 | \n",
1100 | " 2 | \n",
1101 | " Emp_2 | \n",
1102 | " HR | \n",
1103 | " NaN | \n",
1104 | " NaN | \n",
1105 | "
\n",
1106 | " \n",
1107 | " | 2 | \n",
1108 | " 3 | \n",
1109 | " Emp_3 | \n",
1110 | " IT | \n",
1111 | " NaN | \n",
1112 | " NaN | \n",
1113 | "
\n",
1114 | " \n",
1115 | " | 3 | \n",
1116 | " 4 | \n",
1117 | " Emp_4 | \n",
1118 | " Marketing | \n",
1119 | " NaN | \n",
1120 | " NaN | \n",
1121 | "
\n",
1122 | " \n",
1123 | " | 4 | \n",
1124 | " 5 | \n",
1125 | " Emp_5 | \n",
1126 | " Marketing | \n",
1127 | " 55658.0 | \n",
1128 | " 3.0 | \n",
1129 | "
\n",
1130 | " \n",
1131 | " | 5 | \n",
1132 | " 6 | \n",
1133 | " Emp_6 | \n",
1134 | " IT | \n",
1135 | " 89150.0 | \n",
1136 | " 9.0 | \n",
1137 | "
\n",
1138 | " \n",
1139 | " | 6 | \n",
1140 | " 7 | \n",
1141 | " Emp_7 | \n",
1142 | " IT | \n",
1143 | " NaN | \n",
1144 | " NaN | \n",
1145 | "
\n",
1146 | " \n",
1147 | " | 7 | \n",
1148 | " 8 | \n",
1149 | " Emp_8 | \n",
1150 | " IT | \n",
1151 | " NaN | \n",
1152 | " NaN | \n",
1153 | "
\n",
1154 | " \n",
1155 | " | 8 | \n",
1156 | " 9 | \n",
1157 | " Emp_9 | \n",
1158 | " Marketing | \n",
1159 | " 65773.0 | \n",
1160 | " 4.0 | \n",
1161 | "
\n",
1162 | " \n",
1163 | " | 9 | \n",
1164 | " 10 | \n",
1165 | " Emp_10 | \n",
1166 | " Marketing | \n",
1167 | " 32747.0 | \n",
1168 | " 7.0 | \n",
1169 | "
\n",
1170 | " \n",
1171 | "
\n",
1172 | "
"
1173 | ],
1174 | "text/plain": [
1175 | " Employee_ID Name Department Salary Experience\n",
1176 | "0 1 Emp_1 IT 114478.0 5.0\n",
1177 | "1 2 Emp_2 HR NaN NaN\n",
1178 | "2 3 Emp_3 IT NaN NaN\n",
1179 | "3 4 Emp_4 Marketing NaN NaN\n",
1180 | "4 5 Emp_5 Marketing 55658.0 3.0\n",
1181 | "5 6 Emp_6 IT 89150.0 9.0\n",
1182 | "6 7 Emp_7 IT NaN NaN\n",
1183 | "7 8 Emp_8 IT NaN NaN\n",
1184 | "8 9 Emp_9 Marketing 65773.0 4.0\n",
1185 | "9 10 Emp_10 Marketing 32747.0 7.0"
1186 | ]
1187 | },
1188 | "execution_count": 21,
1189 | "metadata": {},
1190 | "output_type": "execute_result"
1191 | }
1192 | ],
1193 | "source": [
1194 | "df_merged_left"
1195 | ]
1196 | },
1197 | {
1198 | "cell_type": "code",
1199 | "execution_count": 22,
1200 | "id": "0ada5b8d-e67b-4689-bd75-5fd2f54c6179",
1201 | "metadata": {},
1202 | "outputs": [],
1203 | "source": [
1204 | "# right join"
1205 | ]
1206 | },
1207 | {
1208 | "cell_type": "code",
1209 | "execution_count": 23,
1210 | "id": "f858445a-fe5c-4afe-9618-911058b26aed",
1211 | "metadata": {},
1212 | "outputs": [],
1213 | "source": [
1214 | "df_merged_right = pd.merge(df_merge1, df_merge2, on=\"Employee_ID\", how=\"right\")"
1215 | ]
1216 | },
1217 | {
1218 | "cell_type": "code",
1219 | "execution_count": 24,
1220 | "id": "7e2b7630-e10e-421c-b2eb-d38547e2b5ac",
1221 | "metadata": {},
1222 | "outputs": [
1223 | {
1224 | "data": {
1225 | "text/html": [
1226 | "\n",
1227 | "\n",
1240 | "
\n",
1241 | " \n",
1242 | " \n",
1243 | " | \n",
1244 | " Employee_ID | \n",
1245 | " Name | \n",
1246 | " Department | \n",
1247 | " Salary | \n",
1248 | " Experience | \n",
1249 | "
\n",
1250 | " \n",
1251 | " \n",
1252 | " \n",
1253 | " | 0 | \n",
1254 | " 5 | \n",
1255 | " Emp_5 | \n",
1256 | " Marketing | \n",
1257 | " 55658 | \n",
1258 | " 3 | \n",
1259 | "
\n",
1260 | " \n",
1261 | " | 1 | \n",
1262 | " 1 | \n",
1263 | " Emp_1 | \n",
1264 | " IT | \n",
1265 | " 114478 | \n",
1266 | " 5 | \n",
1267 | "
\n",
1268 | " \n",
1269 | " | 2 | \n",
1270 | " 12 | \n",
1271 | " NaN | \n",
1272 | " NaN | \n",
1273 | " 48431 | \n",
1274 | " 19 | \n",
1275 | "
\n",
1276 | " \n",
1277 | " | 3 | \n",
1278 | " 10 | \n",
1279 | " Emp_10 | \n",
1280 | " Marketing | \n",
1281 | " 32747 | \n",
1282 | " 7 | \n",
1283 | "
\n",
1284 | " \n",
1285 | " | 4 | \n",
1286 | " 6 | \n",
1287 | " Emp_6 | \n",
1288 | " IT | \n",
1289 | " 89150 | \n",
1290 | " 9 | \n",
1291 | "
\n",
1292 | " \n",
1293 | " | 5 | \n",
1294 | " 13 | \n",
1295 | " NaN | \n",
1296 | " NaN | \n",
1297 | " 95725 | \n",
1298 | " 7 | \n",
1299 | "
\n",
1300 | " \n",
1301 | " | 6 | \n",
1302 | " 9 | \n",
1303 | " Emp_9 | \n",
1304 | " Marketing | \n",
1305 | " 65773 | \n",
1306 | " 4 | \n",
1307 | "
\n",
1308 | " \n",
1309 | " | 7 | \n",
1310 | " 11 | \n",
1311 | " NaN | \n",
1312 | " NaN | \n",
1313 | " 86886 | \n",
1314 | " 18 | \n",
1315 | "
\n",
1316 | " \n",
1317 | "
\n",
1318 | "
"
1319 | ],
1320 | "text/plain": [
1321 | " Employee_ID Name Department Salary Experience\n",
1322 | "0 5 Emp_5 Marketing 55658 3\n",
1323 | "1 1 Emp_1 IT 114478 5\n",
1324 | "2 12 NaN NaN 48431 19\n",
1325 | "3 10 Emp_10 Marketing 32747 7\n",
1326 | "4 6 Emp_6 IT 89150 9\n",
1327 | "5 13 NaN NaN 95725 7\n",
1328 | "6 9 Emp_9 Marketing 65773 4\n",
1329 | "7 11 NaN NaN 86886 18"
1330 | ]
1331 | },
1332 | "execution_count": 24,
1333 | "metadata": {},
1334 | "output_type": "execute_result"
1335 | }
1336 | ],
1337 | "source": [
1338 | "df_merged_right"
1339 | ]
1340 | },
1341 | {
1342 | "cell_type": "code",
1343 | "execution_count": null,
1344 | "id": "ae49787d-43b9-4e55-845a-b72d3624051a",
1345 | "metadata": {},
1346 | "outputs": [],
1347 | "source": []
1348 | }
1349 | ],
1350 | "metadata": {
1351 | "kernelspec": {
1352 | "display_name": "Python 3 (ipykernel)",
1353 | "language": "python",
1354 | "name": "python3"
1355 | },
1356 | "language_info": {
1357 | "codemirror_mode": {
1358 | "name": "ipython",
1359 | "version": 3
1360 | },
1361 | "file_extension": ".py",
1362 | "mimetype": "text/x-python",
1363 | "name": "python",
1364 | "nbconvert_exporter": "python",
1365 | "pygments_lexer": "ipython3",
1366 | "version": "3.12.7"
1367 | }
1368 | },
1369 | "nbformat": 4,
1370 | "nbformat_minor": 5
1371 | }
1372 |
--------------------------------------------------------------------------------
/7-concat_data1.csv:
--------------------------------------------------------------------------------
1 | Employee_ID,Name,Department
2 | 1,Emp_1,Finance
3 | 2,Emp_2,Marketing
4 | 3,Emp_3,HR
5 | 4,Emp_4,Finance
6 | 5,Emp_5,Finance
7 | 6,Emp_6,Marketing
8 | 7,Emp_7,HR
9 | 8,Emp_8,HR
10 | 9,Emp_9,Finance
11 | 10,Emp_10,IT
12 |
--------------------------------------------------------------------------------
/7-concat_data2.csv:
--------------------------------------------------------------------------------
1 | Employee_ID,Name,Department
2 | 11,Emp_11,Finance
3 | 12,Emp_12,Finance
4 | 13,Emp_13,Finance
5 | 14,Emp_14,Finance
6 | 15,Emp_15,Marketing
7 | 16,Emp_16,HR
8 | 17,Emp_17,Marketing
9 | 18,Emp_18,Marketing
10 | 19,Emp_19,Marketing
11 | 20,Emp_20,Finance
12 |
--------------------------------------------------------------------------------
/7-merge_data1.csv:
--------------------------------------------------------------------------------
1 | Employee_ID,Name,Department
2 | 1,Emp_1,IT
3 | 2,Emp_2,HR
4 | 3,Emp_3,IT
5 | 4,Emp_4,Marketing
6 | 5,Emp_5,Marketing
7 | 6,Emp_6,IT
8 | 7,Emp_7,IT
9 | 8,Emp_8,IT
10 | 9,Emp_9,Marketing
11 | 10,Emp_10,Marketing
12 |
--------------------------------------------------------------------------------
/7-merge_data2.csv:
--------------------------------------------------------------------------------
1 | Employee_ID,Salary,Experience
2 | 5,55658,3
3 | 1,114478,5
4 | 12,48431,19
5 | 10,32747,7
6 | 6,89150,9
7 | 13,95725,7
8 | 9,65773,4
9 | 11,86886,18
--------------------------------------------------------------------------------
/8-DataFramesApply.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 1,
6 | "id": "dcbdddc6-2ff9-420b-b7ae-68817c638a9f",
7 | "metadata": {},
8 | "outputs": [],
9 | "source": [
10 | "import pandas as pd"
11 | ]
12 | },
13 | {
14 | "cell_type": "code",
15 | "execution_count": 2,
16 | "id": "208c614e-a2ac-4cc8-a210-0676280be17e",
17 | "metadata": {},
18 | "outputs": [],
19 | "source": [
20 | "df = pd.read_csv(\"8-apply_function_data.csv\")"
21 | ]
22 | },
23 | {
24 | "cell_type": "code",
25 | "execution_count": 3,
26 | "id": "44fe998a-47b1-4a38-bcd2-e6929f28c1c4",
27 | "metadata": {},
28 | "outputs": [
29 | {
30 | "data": {
31 | "text/html": [
32 | "\n",
33 | "\n",
46 | "
\n",
47 | " \n",
48 | " \n",
49 | " | \n",
50 | " Employee_ID | \n",
51 | " Name | \n",
52 | " Department | \n",
53 | " Salary | \n",
54 | " Experience | \n",
55 | " Performance_Score | \n",
56 | "
\n",
57 | " \n",
58 | " \n",
59 | " \n",
60 | " | 0 | \n",
61 | " 1 | \n",
62 | " Emp_1 | \n",
63 | " Marketing | \n",
64 | " 82251 | \n",
65 | " 6 | \n",
66 | " 5 | \n",
67 | "
\n",
68 | " \n",
69 | " | 1 | \n",
70 | " 2 | \n",
71 | " Emp_2 | \n",
72 | " Sales | \n",
73 | " 52662 | \n",
74 | " 24 | \n",
75 | " 3 | \n",
76 | "
\n",
77 | " \n",
78 | " | 2 | \n",
79 | " 3 | \n",
80 | " Emp_3 | \n",
81 | " Finance | \n",
82 | " 38392 | \n",
83 | " 5 | \n",
84 | " 3 | \n",
85 | "
\n",
86 | " \n",
87 | " | 3 | \n",
88 | " 4 | \n",
89 | " Emp_4 | \n",
90 | " Sales | \n",
91 | " 60535 | \n",
92 | " 20 | \n",
93 | " 3 | \n",
94 | "
\n",
95 | " \n",
96 | " | 4 | \n",
97 | " 5 | \n",
98 | " Emp_5 | \n",
99 | " Sales | \n",
100 | " 108603 | \n",
101 | " 2 | \n",
102 | " 2 | \n",
103 | "
\n",
104 | " \n",
105 | " | ... | \n",
106 | " ... | \n",
107 | " ... | \n",
108 | " ... | \n",
109 | " ... | \n",
110 | " ... | \n",
111 | " ... | \n",
112 | "
\n",
113 | " \n",
114 | " | 95 | \n",
115 | " 96 | \n",
116 | " Emp_96 | \n",
117 | " Finance | \n",
118 | " 93734 | \n",
119 | " 19 | \n",
120 | " 4 | \n",
121 | "
\n",
122 | " \n",
123 | " | 96 | \n",
124 | " 97 | \n",
125 | " Emp_97 | \n",
126 | " Sales | \n",
127 | " 100467 | \n",
128 | " 22 | \n",
129 | " 2 | \n",
130 | "
\n",
131 | " \n",
132 | " | 97 | \n",
133 | " 98 | \n",
134 | " Emp_98 | \n",
135 | " IT | \n",
136 | " 82662 | \n",
137 | " 23 | \n",
138 | " 3 | \n",
139 | "
\n",
140 | " \n",
141 | " | 98 | \n",
142 | " 99 | \n",
143 | " Emp_99 | \n",
144 | " IT | \n",
145 | " 42688 | \n",
146 | " 22 | \n",
147 | " 1 | \n",
148 | "
\n",
149 | " \n",
150 | " | 99 | \n",
151 | " 100 | \n",
152 | " Emp_100 | \n",
153 | " HR | \n",
154 | " 55342 | \n",
155 | " 14 | \n",
156 | " 3 | \n",
157 | "
\n",
158 | " \n",
159 | "
\n",
160 | "
100 rows × 6 columns
\n",
161 | "
"
162 | ],
163 | "text/plain": [
164 | " Employee_ID Name Department Salary Experience Performance_Score\n",
165 | "0 1 Emp_1 Marketing 82251 6 5\n",
166 | "1 2 Emp_2 Sales 52662 24 3\n",
167 | "2 3 Emp_3 Finance 38392 5 3\n",
168 | "3 4 Emp_4 Sales 60535 20 3\n",
169 | "4 5 Emp_5 Sales 108603 2 2\n",
170 | ".. ... ... ... ... ... ...\n",
171 | "95 96 Emp_96 Finance 93734 19 4\n",
172 | "96 97 Emp_97 Sales 100467 22 2\n",
173 | "97 98 Emp_98 IT 82662 23 3\n",
174 | "98 99 Emp_99 IT 42688 22 1\n",
175 | "99 100 Emp_100 HR 55342 14 3\n",
176 | "\n",
177 | "[100 rows x 6 columns]"
178 | ]
179 | },
180 | "execution_count": 3,
181 | "metadata": {},
182 | "output_type": "execute_result"
183 | }
184 | ],
185 | "source": [
186 | "df"
187 | ]
188 | },
189 | {
190 | "cell_type": "code",
191 | "execution_count": 4,
192 | "id": "20241537-af23-4981-9688-8cdb7f36810b",
193 | "metadata": {},
194 | "outputs": [
195 | {
196 | "data": {
197 | "text/html": [
198 | "\n",
199 | "\n",
212 | "
\n",
213 | " \n",
214 | " \n",
215 | " | \n",
216 | " Employee_ID | \n",
217 | " Salary | \n",
218 | " Experience | \n",
219 | " Performance_Score | \n",
220 | "
\n",
221 | " \n",
222 | " \n",
223 | " \n",
224 | " | count | \n",
225 | " 100.000000 | \n",
226 | " 100.000000 | \n",
227 | " 100.000000 | \n",
228 | " 100.00000 | \n",
229 | "
\n",
230 | " \n",
231 | " | mean | \n",
232 | " 50.500000 | \n",
233 | " 77508.090000 | \n",
234 | " 12.090000 | \n",
235 | " 3.03000 | \n",
236 | "
\n",
237 | " \n",
238 | " | std | \n",
239 | " 29.011492 | \n",
240 | " 26083.327596 | \n",
241 | " 7.543939 | \n",
242 | " 1.41746 | \n",
243 | "
\n",
244 | " \n",
245 | " | min | \n",
246 | " 1.000000 | \n",
247 | " 30206.000000 | \n",
248 | " 1.000000 | \n",
249 | " 1.00000 | \n",
250 | "
\n",
251 | " \n",
252 | " | 25% | \n",
253 | " 25.750000 | \n",
254 | " 54347.500000 | \n",
255 | " 5.000000 | \n",
256 | " 2.00000 | \n",
257 | "
\n",
258 | " \n",
259 | " | 50% | \n",
260 | " 50.500000 | \n",
261 | " 80932.000000 | \n",
262 | " 12.000000 | \n",
263 | " 3.00000 | \n",
264 | "
\n",
265 | " \n",
266 | " | 75% | \n",
267 | " 75.250000 | \n",
268 | " 97620.500000 | \n",
269 | " 19.000000 | \n",
270 | " 4.00000 | \n",
271 | "
\n",
272 | " \n",
273 | " | max | \n",
274 | " 100.000000 | \n",
275 | " 119474.000000 | \n",
276 | " 24.000000 | \n",
277 | " 5.00000 | \n",
278 | "
\n",
279 | " \n",
280 | "
\n",
281 | "
"
282 | ],
283 | "text/plain": [
284 | " Employee_ID Salary Experience Performance_Score\n",
285 | "count 100.000000 100.000000 100.000000 100.00000\n",
286 | "mean 50.500000 77508.090000 12.090000 3.03000\n",
287 | "std 29.011492 26083.327596 7.543939 1.41746\n",
288 | "min 1.000000 30206.000000 1.000000 1.00000\n",
289 | "25% 25.750000 54347.500000 5.000000 2.00000\n",
290 | "50% 50.500000 80932.000000 12.000000 3.00000\n",
291 | "75% 75.250000 97620.500000 19.000000 4.00000\n",
292 | "max 100.000000 119474.000000 24.000000 5.00000"
293 | ]
294 | },
295 | "execution_count": 4,
296 | "metadata": {},
297 | "output_type": "execute_result"
298 | }
299 | ],
300 | "source": [
301 | "df.describe()"
302 | ]
303 | },
304 | {
305 | "cell_type": "code",
306 | "execution_count": 5,
307 | "id": "4b9883a1-c25c-40d1-b49f-4757021a8c14",
308 | "metadata": {},
309 | "outputs": [
310 | {
311 | "name": "stdout",
312 | "output_type": "stream",
313 | "text": [
314 | "\n",
315 | "RangeIndex: 100 entries, 0 to 99\n",
316 | "Data columns (total 6 columns):\n",
317 | " # Column Non-Null Count Dtype \n",
318 | "--- ------ -------------- ----- \n",
319 | " 0 Employee_ID 100 non-null int64 \n",
320 | " 1 Name 100 non-null object\n",
321 | " 2 Department 100 non-null object\n",
322 | " 3 Salary 100 non-null int64 \n",
323 | " 4 Experience 100 non-null int64 \n",
324 | " 5 Performance_Score 100 non-null int64 \n",
325 | "dtypes: int64(4), object(2)\n",
326 | "memory usage: 4.8+ KB\n"
327 | ]
328 | }
329 | ],
330 | "source": [
331 | "df.info()"
332 | ]
333 | },
334 | {
335 | "cell_type": "code",
336 | "execution_count": 6,
337 | "id": "7add64b9-11d7-410c-893b-e1d06f42533d",
338 | "metadata": {},
339 | "outputs": [
340 | {
341 | "data": {
342 | "text/plain": [
343 | "Index(['Employee_ID', 'Name', 'Department', 'Salary', 'Experience',\n",
344 | " 'Performance_Score'],\n",
345 | " dtype='object')"
346 | ]
347 | },
348 | "execution_count": 6,
349 | "metadata": {},
350 | "output_type": "execute_result"
351 | }
352 | ],
353 | "source": [
354 | "df.columns"
355 | ]
356 | },
357 | {
358 | "cell_type": "code",
359 | "execution_count": 7,
360 | "id": "e9878123-fa2a-4970-a847-95b10b0d00ba",
361 | "metadata": {},
362 | "outputs": [
363 | {
364 | "data": {
365 | "text/html": [
366 | "\n",
367 | "\n",
380 | "
\n",
381 | " \n",
382 | " \n",
383 | " | \n",
384 | " Employee_ID | \n",
385 | " Name | \n",
386 | " Department | \n",
387 | " Salary | \n",
388 | " Experience | \n",
389 | " Performance_Score | \n",
390 | "
\n",
391 | " \n",
392 | " \n",
393 | " \n",
394 | " | 1 | \n",
395 | " 2 | \n",
396 | " Emp_2 | \n",
397 | " Sales | \n",
398 | " 52662 | \n",
399 | " 24 | \n",
400 | " 3 | \n",
401 | "
\n",
402 | " \n",
403 | " | 2 | \n",
404 | " 3 | \n",
405 | " Emp_3 | \n",
406 | " Finance | \n",
407 | " 38392 | \n",
408 | " 5 | \n",
409 | " 3 | \n",
410 | "
\n",
411 | " \n",
412 | " | 3 | \n",
413 | " 4 | \n",
414 | " Emp_4 | \n",
415 | " Sales | \n",
416 | " 60535 | \n",
417 | " 20 | \n",
418 | " 3 | \n",
419 | "
\n",
420 | " \n",
421 | " | 4 | \n",
422 | " 5 | \n",
423 | " Emp_5 | \n",
424 | " Sales | \n",
425 | " 108603 | \n",
426 | " 2 | \n",
427 | " 2 | \n",
428 | "
\n",
429 | " \n",
430 | " | 5 | \n",
431 | " 6 | \n",
432 | " Emp_6 | \n",
433 | " IT | \n",
434 | " 82256 | \n",
435 | " 6 | \n",
436 | " 5 | \n",
437 | "
\n",
438 | " \n",
439 | " | 6 | \n",
440 | " 7 | \n",
441 | " Emp_7 | \n",
442 | " Finance | \n",
443 | " 119135 | \n",
444 | " 22 | \n",
445 | " 1 | \n",
446 | "
\n",
447 | " \n",
448 | " | 7 | \n",
449 | " 8 | \n",
450 | " Emp_8 | \n",
451 | " Finance | \n",
452 | " 65222 | \n",
453 | " 11 | \n",
454 | " 4 | \n",
455 | "
\n",
456 | " \n",
457 | " | 8 | \n",
458 | " 9 | \n",
459 | " Emp_9 | \n",
460 | " Finance | \n",
461 | " 107373 | \n",
462 | " 16 | \n",
463 | " 1 | \n",
464 | "
\n",
465 | " \n",
466 | " | 9 | \n",
467 | " 10 | \n",
468 | " Emp_10 | \n",
469 | " Sales | \n",
470 | " 109575 | \n",
471 | " 16 | \n",
472 | " 5 | \n",
473 | "
\n",
474 | " \n",
475 | " | 10 | \n",
476 | " 11 | \n",
477 | " Emp_11 | \n",
478 | " Marketing | \n",
479 | " 114651 | \n",
480 | " 1 | \n",
481 | " 4 | \n",
482 | "
\n",
483 | " \n",
484 | " | 11 | \n",
485 | " 12 | \n",
486 | " Emp_12 | \n",
487 | " Finance | \n",
488 | " 93335 | \n",
489 | " 9 | \n",
490 | " 5 | \n",
491 | "
\n",
492 | " \n",
493 | " | 12 | \n",
494 | " 13 | \n",
495 | " Emp_13 | \n",
496 | " Sales | \n",
497 | " 40965 | \n",
498 | " 6 | \n",
499 | " 3 | \n",
500 | "
\n",
501 | " \n",
502 | " | 13 | \n",
503 | " 14 | \n",
504 | " Emp_14 | \n",
505 | " IT | \n",
506 | " 54538 | \n",
507 | " 16 | \n",
508 | " 4 | \n",
509 | "
\n",
510 | " \n",
511 | " | 14 | \n",
512 | " 15 | \n",
513 | " Emp_15 | \n",
514 | " Marketing | \n",
515 | " 100592 | \n",
516 | " 3 | \n",
517 | " 3 | \n",
518 | "
\n",
519 | " \n",
520 | " | 15 | \n",
521 | " 16 | \n",
522 | " Emp_16 | \n",
523 | " IT | \n",
524 | " 38110 | \n",
525 | " 20 | \n",
526 | " 1 | \n",
527 | "
\n",
528 | " \n",
529 | " | 16 | \n",
530 | " 17 | \n",
531 | " Emp_17 | \n",
532 | " Marketing | \n",
533 | " 109309 | \n",
534 | " 4 | \n",
535 | " 1 | \n",
536 | "
\n",
537 | " \n",
538 | " | 17 | \n",
539 | " 18 | \n",
540 | " Emp_18 | \n",
541 | " Sales | \n",
542 | " 57266 | \n",
543 | " 19 | \n",
544 | " 4 | \n",
545 | "
\n",
546 | " \n",
547 | " | 18 | \n",
548 | " 19 | \n",
549 | " Emp_19 | \n",
550 | " HR | \n",
551 | " 82992 | \n",
552 | " 3 | \n",
553 | " 4 | \n",
554 | "
\n",
555 | " \n",
556 | " | 19 | \n",
557 | " 20 | \n",
558 | " Emp_20 | \n",
559 | " Marketing | \n",
560 | " 112948 | \n",
561 | " 19 | \n",
562 | " 5 | \n",
563 | "
\n",
564 | " \n",
565 | "
\n",
566 | "
"
567 | ],
568 | "text/plain": [
569 | " Employee_ID Name Department Salary Experience Performance_Score\n",
570 | "1 2 Emp_2 Sales 52662 24 3\n",
571 | "2 3 Emp_3 Finance 38392 5 3\n",
572 | "3 4 Emp_4 Sales 60535 20 3\n",
573 | "4 5 Emp_5 Sales 108603 2 2\n",
574 | "5 6 Emp_6 IT 82256 6 5\n",
575 | "6 7 Emp_7 Finance 119135 22 1\n",
576 | "7 8 Emp_8 Finance 65222 11 4\n",
577 | "8 9 Emp_9 Finance 107373 16 1\n",
578 | "9 10 Emp_10 Sales 109575 16 5\n",
579 | "10 11 Emp_11 Marketing 114651 1 4\n",
580 | "11 12 Emp_12 Finance 93335 9 5\n",
581 | "12 13 Emp_13 Sales 40965 6 3\n",
582 | "13 14 Emp_14 IT 54538 16 4\n",
583 | "14 15 Emp_15 Marketing 100592 3 3\n",
584 | "15 16 Emp_16 IT 38110 20 1\n",
585 | "16 17 Emp_17 Marketing 109309 4 1\n",
586 | "17 18 Emp_18 Sales 57266 19 4\n",
587 | "18 19 Emp_19 HR 82992 3 4\n",
588 | "19 20 Emp_20 Marketing 112948 19 5"
589 | ]
590 | },
591 | "execution_count": 7,
592 | "metadata": {},
593 | "output_type": "execute_result"
594 | }
595 | ],
596 | "source": [
597 | "df[1:20]"
598 | ]
599 | },
600 | {
601 | "cell_type": "code",
602 | "execution_count": 8,
603 | "id": "f080814d-8459-4c39-a38c-3ca84b623de5",
604 | "metadata": {},
605 | "outputs": [],
606 | "source": [
607 | "# Example 1: Apply a function to classify employees based on salary"
608 | ]
609 | },
610 | {
611 | "cell_type": "code",
612 | "execution_count": 9,
613 | "id": "991a2aab-14a5-4165-8b25-b65daff95024",
614 | "metadata": {},
615 | "outputs": [],
616 | "source": [
617 | "def salary_category(salary):\n",
618 | " if salary < 50000:\n",
619 | " return \"Low\"\n",
620 | " elif 50000 <= salary < 80000:\n",
621 | " return \"Medium\"\n",
622 | " else:\n",
623 | " return \"High\""
624 | ]
625 | },
626 | {
627 | "cell_type": "code",
628 | "execution_count": 10,
629 | "id": "b300fcbe-b54d-4e07-8b15-823f8c74b326",
630 | "metadata": {},
631 | "outputs": [],
632 | "source": [
633 | "df[\"Salary_Category\"] = df[\"Salary\"].apply(salary_category)"
634 | ]
635 | },
636 | {
637 | "cell_type": "code",
638 | "execution_count": 11,
639 | "id": "c20d58df-1a29-4197-aea6-9bf0e50ebb1a",
640 | "metadata": {},
641 | "outputs": [
642 | {
643 | "data": {
644 | "text/html": [
645 | "\n",
646 | "\n",
659 | "
\n",
660 | " \n",
661 | " \n",
662 | " | \n",
663 | " Employee_ID | \n",
664 | " Name | \n",
665 | " Department | \n",
666 | " Salary | \n",
667 | " Experience | \n",
668 | " Performance_Score | \n",
669 | " Salary_Category | \n",
670 | "
\n",
671 | " \n",
672 | " \n",
673 | " \n",
674 | " | 0 | \n",
675 | " 1 | \n",
676 | " Emp_1 | \n",
677 | " Marketing | \n",
678 | " 82251 | \n",
679 | " 6 | \n",
680 | " 5 | \n",
681 | " High | \n",
682 | "
\n",
683 | " \n",
684 | " | 1 | \n",
685 | " 2 | \n",
686 | " Emp_2 | \n",
687 | " Sales | \n",
688 | " 52662 | \n",
689 | " 24 | \n",
690 | " 3 | \n",
691 | " Medium | \n",
692 | "
\n",
693 | " \n",
694 | " | 2 | \n",
695 | " 3 | \n",
696 | " Emp_3 | \n",
697 | " Finance | \n",
698 | " 38392 | \n",
699 | " 5 | \n",
700 | " 3 | \n",
701 | " Low | \n",
702 | "
\n",
703 | " \n",
704 | " | 3 | \n",
705 | " 4 | \n",
706 | " Emp_4 | \n",
707 | " Sales | \n",
708 | " 60535 | \n",
709 | " 20 | \n",
710 | " 3 | \n",
711 | " Medium | \n",
712 | "
\n",
713 | " \n",
714 | " | 4 | \n",
715 | " 5 | \n",
716 | " Emp_5 | \n",
717 | " Sales | \n",
718 | " 108603 | \n",
719 | " 2 | \n",
720 | " 2 | \n",
721 | " High | \n",
722 | "
\n",
723 | " \n",
724 | " | ... | \n",
725 | " ... | \n",
726 | " ... | \n",
727 | " ... | \n",
728 | " ... | \n",
729 | " ... | \n",
730 | " ... | \n",
731 | " ... | \n",
732 | "
\n",
733 | " \n",
734 | " | 95 | \n",
735 | " 96 | \n",
736 | " Emp_96 | \n",
737 | " Finance | \n",
738 | " 93734 | \n",
739 | " 19 | \n",
740 | " 4 | \n",
741 | " High | \n",
742 | "
\n",
743 | " \n",
744 | " | 96 | \n",
745 | " 97 | \n",
746 | " Emp_97 | \n",
747 | " Sales | \n",
748 | " 100467 | \n",
749 | " 22 | \n",
750 | " 2 | \n",
751 | " High | \n",
752 | "
\n",
753 | " \n",
754 | " | 97 | \n",
755 | " 98 | \n",
756 | " Emp_98 | \n",
757 | " IT | \n",
758 | " 82662 | \n",
759 | " 23 | \n",
760 | " 3 | \n",
761 | " High | \n",
762 | "
\n",
763 | " \n",
764 | " | 98 | \n",
765 | " 99 | \n",
766 | " Emp_99 | \n",
767 | " IT | \n",
768 | " 42688 | \n",
769 | " 22 | \n",
770 | " 1 | \n",
771 | " Low | \n",
772 | "
\n",
773 | " \n",
774 | " | 99 | \n",
775 | " 100 | \n",
776 | " Emp_100 | \n",
777 | " HR | \n",
778 | " 55342 | \n",
779 | " 14 | \n",
780 | " 3 | \n",
781 | " Medium | \n",
782 | "
\n",
783 | " \n",
784 | "
\n",
785 | "
100 rows × 7 columns
\n",
786 | "
"
787 | ],
788 | "text/plain": [
789 | " Employee_ID Name Department Salary Experience Performance_Score \\\n",
790 | "0 1 Emp_1 Marketing 82251 6 5 \n",
791 | "1 2 Emp_2 Sales 52662 24 3 \n",
792 | "2 3 Emp_3 Finance 38392 5 3 \n",
793 | "3 4 Emp_4 Sales 60535 20 3 \n",
794 | "4 5 Emp_5 Sales 108603 2 2 \n",
795 | ".. ... ... ... ... ... ... \n",
796 | "95 96 Emp_96 Finance 93734 19 4 \n",
797 | "96 97 Emp_97 Sales 100467 22 2 \n",
798 | "97 98 Emp_98 IT 82662 23 3 \n",
799 | "98 99 Emp_99 IT 42688 22 1 \n",
800 | "99 100 Emp_100 HR 55342 14 3 \n",
801 | "\n",
802 | " Salary_Category \n",
803 | "0 High \n",
804 | "1 Medium \n",
805 | "2 Low \n",
806 | "3 Medium \n",
807 | "4 High \n",
808 | ".. ... \n",
809 | "95 High \n",
810 | "96 High \n",
811 | "97 High \n",
812 | "98 Low \n",
813 | "99 Medium \n",
814 | "\n",
815 | "[100 rows x 7 columns]"
816 | ]
817 | },
818 | "execution_count": 11,
819 | "metadata": {},
820 | "output_type": "execute_result"
821 | }
822 | ],
823 | "source": [
824 | "df"
825 | ]
826 | },
827 | {
828 | "cell_type": "code",
829 | "execution_count": 12,
830 | "id": "e0ded209-e186-4a29-9d3d-d0f9852904af",
831 | "metadata": {},
832 | "outputs": [],
833 | "source": [
834 | "# Example 2: Apply a function to calculate adjusted performance score"
835 | ]
836 | },
837 | {
838 | "cell_type": "code",
839 | "execution_count": 13,
840 | "id": "8266a813-daae-4477-a2d7-b8731396e322",
841 | "metadata": {},
842 | "outputs": [],
843 | "source": [
844 | "def adjust_performance(row):\n",
845 | " if row[\"Experience\"] > 10:\n",
846 | " return row[\"Performance_Score\"] + 1\n",
847 | " return row[\"Performance_Score\"]"
848 | ]
849 | },
850 | {
851 | "cell_type": "code",
852 | "execution_count": 14,
853 | "id": "a2d66ebf-da27-41b3-9f58-e726dca2ee09",
854 | "metadata": {},
855 | "outputs": [],
856 | "source": [
857 | "df[\"Adjusted_Performance\"] = df.apply(adjust_performance, axis=1)"
858 | ]
859 | },
860 | {
861 | "cell_type": "code",
862 | "execution_count": 15,
863 | "id": "41dcdbb4-9c52-4285-bf0f-baab0bfb681b",
864 | "metadata": {},
865 | "outputs": [
866 | {
867 | "data": {
868 | "text/html": [
869 | "\n",
870 | "\n",
883 | "
\n",
884 | " \n",
885 | " \n",
886 | " | \n",
887 | " Employee_ID | \n",
888 | " Name | \n",
889 | " Department | \n",
890 | " Salary | \n",
891 | " Experience | \n",
892 | " Performance_Score | \n",
893 | " Salary_Category | \n",
894 | " Adjusted_Performance | \n",
895 | "
\n",
896 | " \n",
897 | " \n",
898 | " \n",
899 | " | 0 | \n",
900 | " 1 | \n",
901 | " Emp_1 | \n",
902 | " Marketing | \n",
903 | " 82251 | \n",
904 | " 6 | \n",
905 | " 5 | \n",
906 | " High | \n",
907 | " 5 | \n",
908 | "
\n",
909 | " \n",
910 | " | 1 | \n",
911 | " 2 | \n",
912 | " Emp_2 | \n",
913 | " Sales | \n",
914 | " 52662 | \n",
915 | " 24 | \n",
916 | " 3 | \n",
917 | " Medium | \n",
918 | " 4 | \n",
919 | "
\n",
920 | " \n",
921 | " | 2 | \n",
922 | " 3 | \n",
923 | " Emp_3 | \n",
924 | " Finance | \n",
925 | " 38392 | \n",
926 | " 5 | \n",
927 | " 3 | \n",
928 | " Low | \n",
929 | " 3 | \n",
930 | "
\n",
931 | " \n",
932 | " | 3 | \n",
933 | " 4 | \n",
934 | " Emp_4 | \n",
935 | " Sales | \n",
936 | " 60535 | \n",
937 | " 20 | \n",
938 | " 3 | \n",
939 | " Medium | \n",
940 | " 4 | \n",
941 | "
\n",
942 | " \n",
943 | " | 4 | \n",
944 | " 5 | \n",
945 | " Emp_5 | \n",
946 | " Sales | \n",
947 | " 108603 | \n",
948 | " 2 | \n",
949 | " 2 | \n",
950 | " High | \n",
951 | " 2 | \n",
952 | "
\n",
953 | " \n",
954 | " | ... | \n",
955 | " ... | \n",
956 | " ... | \n",
957 | " ... | \n",
958 | " ... | \n",
959 | " ... | \n",
960 | " ... | \n",
961 | " ... | \n",
962 | " ... | \n",
963 | "
\n",
964 | " \n",
965 | " | 95 | \n",
966 | " 96 | \n",
967 | " Emp_96 | \n",
968 | " Finance | \n",
969 | " 93734 | \n",
970 | " 19 | \n",
971 | " 4 | \n",
972 | " High | \n",
973 | " 5 | \n",
974 | "
\n",
975 | " \n",
976 | " | 96 | \n",
977 | " 97 | \n",
978 | " Emp_97 | \n",
979 | " Sales | \n",
980 | " 100467 | \n",
981 | " 22 | \n",
982 | " 2 | \n",
983 | " High | \n",
984 | " 3 | \n",
985 | "
\n",
986 | " \n",
987 | " | 97 | \n",
988 | " 98 | \n",
989 | " Emp_98 | \n",
990 | " IT | \n",
991 | " 82662 | \n",
992 | " 23 | \n",
993 | " 3 | \n",
994 | " High | \n",
995 | " 4 | \n",
996 | "
\n",
997 | " \n",
998 | " | 98 | \n",
999 | " 99 | \n",
1000 | " Emp_99 | \n",
1001 | " IT | \n",
1002 | " 42688 | \n",
1003 | " 22 | \n",
1004 | " 1 | \n",
1005 | " Low | \n",
1006 | " 2 | \n",
1007 | "
\n",
1008 | " \n",
1009 | " | 99 | \n",
1010 | " 100 | \n",
1011 | " Emp_100 | \n",
1012 | " HR | \n",
1013 | " 55342 | \n",
1014 | " 14 | \n",
1015 | " 3 | \n",
1016 | " Medium | \n",
1017 | " 4 | \n",
1018 | "
\n",
1019 | " \n",
1020 | "
\n",
1021 | "
100 rows × 8 columns
\n",
1022 | "
"
1023 | ],
1024 | "text/plain": [
1025 | " Employee_ID Name Department Salary Experience Performance_Score \\\n",
1026 | "0 1 Emp_1 Marketing 82251 6 5 \n",
1027 | "1 2 Emp_2 Sales 52662 24 3 \n",
1028 | "2 3 Emp_3 Finance 38392 5 3 \n",
1029 | "3 4 Emp_4 Sales 60535 20 3 \n",
1030 | "4 5 Emp_5 Sales 108603 2 2 \n",
1031 | ".. ... ... ... ... ... ... \n",
1032 | "95 96 Emp_96 Finance 93734 19 4 \n",
1033 | "96 97 Emp_97 Sales 100467 22 2 \n",
1034 | "97 98 Emp_98 IT 82662 23 3 \n",
1035 | "98 99 Emp_99 IT 42688 22 1 \n",
1036 | "99 100 Emp_100 HR 55342 14 3 \n",
1037 | "\n",
1038 | " Salary_Category Adjusted_Performance \n",
1039 | "0 High 5 \n",
1040 | "1 Medium 4 \n",
1041 | "2 Low 3 \n",
1042 | "3 Medium 4 \n",
1043 | "4 High 2 \n",
1044 | ".. ... ... \n",
1045 | "95 High 5 \n",
1046 | "96 High 3 \n",
1047 | "97 High 4 \n",
1048 | "98 Low 2 \n",
1049 | "99 Medium 4 \n",
1050 | "\n",
1051 | "[100 rows x 8 columns]"
1052 | ]
1053 | },
1054 | "execution_count": 15,
1055 | "metadata": {},
1056 | "output_type": "execute_result"
1057 | }
1058 | ],
1059 | "source": [
1060 | "df"
1061 | ]
1062 | },
1063 | {
1064 | "cell_type": "code",
1065 | "execution_count": 16,
1066 | "id": "3c55d2b4-a0da-4c21-a6ce-b88c57f8a177",
1067 | "metadata": {},
1068 | "outputs": [],
1069 | "source": [
1070 | "# Example 3: Apply a lambda function to format employee names"
1071 | ]
1072 | },
1073 | {
1074 | "cell_type": "code",
1075 | "execution_count": 17,
1076 | "id": "227442d6-82ef-4822-80a8-2d6388af7b32",
1077 | "metadata": {},
1078 | "outputs": [],
1079 | "source": [
1080 | "df[\"Formatted_Name\"] = df[\"Name\"].apply(lambda x: x.replace(\"_\", \" \"))"
1081 | ]
1082 | },
1083 | {
1084 | "cell_type": "code",
1085 | "execution_count": 18,
1086 | "id": "c919d0ea-0358-422d-942d-50ed9265ea14",
1087 | "metadata": {},
1088 | "outputs": [
1089 | {
1090 | "data": {
1091 | "text/html": [
1092 | "\n",
1093 | "\n",
1106 | "
\n",
1107 | " \n",
1108 | " \n",
1109 | " | \n",
1110 | " Employee_ID | \n",
1111 | " Name | \n",
1112 | " Department | \n",
1113 | " Salary | \n",
1114 | " Experience | \n",
1115 | " Performance_Score | \n",
1116 | " Salary_Category | \n",
1117 | " Adjusted_Performance | \n",
1118 | " Formatted_Name | \n",
1119 | "
\n",
1120 | " \n",
1121 | " \n",
1122 | " \n",
1123 | " | 0 | \n",
1124 | " 1 | \n",
1125 | " Emp_1 | \n",
1126 | " Marketing | \n",
1127 | " 82251 | \n",
1128 | " 6 | \n",
1129 | " 5 | \n",
1130 | " High | \n",
1131 | " 5 | \n",
1132 | " Emp 1 | \n",
1133 | "
\n",
1134 | " \n",
1135 | " | 1 | \n",
1136 | " 2 | \n",
1137 | " Emp_2 | \n",
1138 | " Sales | \n",
1139 | " 52662 | \n",
1140 | " 24 | \n",
1141 | " 3 | \n",
1142 | " Medium | \n",
1143 | " 4 | \n",
1144 | " Emp 2 | \n",
1145 | "
\n",
1146 | " \n",
1147 | " | 2 | \n",
1148 | " 3 | \n",
1149 | " Emp_3 | \n",
1150 | " Finance | \n",
1151 | " 38392 | \n",
1152 | " 5 | \n",
1153 | " 3 | \n",
1154 | " Low | \n",
1155 | " 3 | \n",
1156 | " Emp 3 | \n",
1157 | "
\n",
1158 | " \n",
1159 | " | 3 | \n",
1160 | " 4 | \n",
1161 | " Emp_4 | \n",
1162 | " Sales | \n",
1163 | " 60535 | \n",
1164 | " 20 | \n",
1165 | " 3 | \n",
1166 | " Medium | \n",
1167 | " 4 | \n",
1168 | " Emp 4 | \n",
1169 | "
\n",
1170 | " \n",
1171 | " | 4 | \n",
1172 | " 5 | \n",
1173 | " Emp_5 | \n",
1174 | " Sales | \n",
1175 | " 108603 | \n",
1176 | " 2 | \n",
1177 | " 2 | \n",
1178 | " High | \n",
1179 | " 2 | \n",
1180 | " Emp 5 | \n",
1181 | "
\n",
1182 | " \n",
1183 | "
\n",
1184 | "
"
1185 | ],
1186 | "text/plain": [
1187 | " Employee_ID Name Department Salary Experience Performance_Score \\\n",
1188 | "0 1 Emp_1 Marketing 82251 6 5 \n",
1189 | "1 2 Emp_2 Sales 52662 24 3 \n",
1190 | "2 3 Emp_3 Finance 38392 5 3 \n",
1191 | "3 4 Emp_4 Sales 60535 20 3 \n",
1192 | "4 5 Emp_5 Sales 108603 2 2 \n",
1193 | "\n",
1194 | " Salary_Category Adjusted_Performance Formatted_Name \n",
1195 | "0 High 5 Emp 1 \n",
1196 | "1 Medium 4 Emp 2 \n",
1197 | "2 Low 3 Emp 3 \n",
1198 | "3 Medium 4 Emp 4 \n",
1199 | "4 High 2 Emp 5 "
1200 | ]
1201 | },
1202 | "execution_count": 18,
1203 | "metadata": {},
1204 | "output_type": "execute_result"
1205 | }
1206 | ],
1207 | "source": [
1208 | "df.head()"
1209 | ]
1210 | },
1211 | {
1212 | "cell_type": "code",
1213 | "execution_count": null,
1214 | "id": "13c2ab2e-5971-45ae-864b-d27674e476e0",
1215 | "metadata": {},
1216 | "outputs": [],
1217 | "source": []
1218 | }
1219 | ],
1220 | "metadata": {
1221 | "kernelspec": {
1222 | "display_name": "Python 3 (ipykernel)",
1223 | "language": "python",
1224 | "name": "python3"
1225 | },
1226 | "language_info": {
1227 | "codemirror_mode": {
1228 | "name": "ipython",
1229 | "version": 3
1230 | },
1231 | "file_extension": ".py",
1232 | "mimetype": "text/x-python",
1233 | "name": "python",
1234 | "nbconvert_exporter": "python",
1235 | "pygments_lexer": "ipython3",
1236 | "version": "3.12.7"
1237 | }
1238 | },
1239 | "nbformat": 4,
1240 | "nbformat_minor": 5
1241 | }
1242 |
--------------------------------------------------------------------------------
/8-apply_function_data.csv:
--------------------------------------------------------------------------------
1 | Employee_ID,Name,Department,Salary,Experience,Performance_Score
2 | 1,Emp_1,Marketing,82251,6,5
3 | 2,Emp_2,Sales,52662,24,3
4 | 3,Emp_3,Finance,38392,5,3
5 | 4,Emp_4,Sales,60535,20,3
6 | 5,Emp_5,Sales,108603,2,2
7 | 6,Emp_6,IT,82256,6,5
8 | 7,Emp_7,Finance,119135,22,1
9 | 8,Emp_8,Finance,65222,11,4
10 | 9,Emp_9,Finance,107373,16,1
11 | 10,Emp_10,Sales,109575,16,5
12 | 11,Emp_11,Marketing,114651,1,4
13 | 12,Emp_12,Finance,93335,9,5
14 | 13,Emp_13,Sales,40965,6,3
15 | 14,Emp_14,IT,54538,16,4
16 | 15,Emp_15,Marketing,100592,3,3
17 | 16,Emp_16,IT,38110,20,1
18 | 17,Emp_17,Marketing,109309,4,1
19 | 18,Emp_18,Sales,57266,19,4
20 | 19,Emp_19,HR,82992,3,4
21 | 20,Emp_20,Marketing,112948,19,5
22 | 21,Emp_21,IT,36910,20,5
23 | 22,Emp_22,Sales,30206,7,3
24 | 23,Emp_23,Marketing,117054,20,4
25 | 24,Emp_24,HR,117897,9,1
26 | 25,Emp_25,HR,53419,1,5
27 | 26,Emp_26,Finance,80636,8,5
28 | 27,Emp_27,Finance,80015,7,1
29 | 28,Emp_28,IT,84268,18,5
30 | 29,Emp_29,Marketing,117939,8,3
31 | 30,Emp_30,Marketing,48141,1,4
32 | 31,Emp_31,Finance,110356,11,1
33 | 32,Emp_32,Marketing,101910,18,4
34 | 33,Emp_33,Marketing,86044,23,5
35 | 34,Emp_34,HR,97214,10,5
36 | 35,Emp_35,Finance,63827,3,1
37 | 36,Emp_36,Sales,85820,7,3
38 | 37,Emp_37,Finance,92623,16,2
39 | 38,Emp_38,Sales,111734,16,1
40 | 39,Emp_39,HR,105450,20,2
41 | 40,Emp_40,IT,52299,17,2
42 | 41,Emp_41,Marketing,73585,2,3
43 | 42,Emp_42,HR,94044,1,2
44 | 43,Emp_43,Marketing,72557,16,2
45 | 44,Emp_44,IT,79080,12,3
46 | 45,Emp_45,IT,32693,5,2
47 | 46,Emp_46,HR,99163,5,2
48 | 47,Emp_47,IT,55939,23,2
49 | 48,Emp_48,Sales,78925,9,1
50 | 49,Emp_49,IT,72941,9,1
51 | 50,Emp_50,Marketing,51834,3,1
52 | 51,Emp_51,Marketing,48047,19,3
53 | 52,Emp_52,Marketing,56105,16,5
54 | 53,Emp_53,Marketing,105766,16,2
55 | 54,Emp_54,Sales,45707,3,2
56 | 55,Emp_55,Finance,51976,20,3
57 | 56,Emp_56,HR,74262,24,2
58 | 57,Emp_57,Marketing,53776,22,1
59 | 58,Emp_58,IT,60080,24,5
60 | 59,Emp_59,Marketing,96842,1,4
61 | 60,Emp_60,IT,91373,24,2
62 | 61,Emp_61,IT,36776,20,1
63 | 62,Emp_62,Marketing,85016,11,4
64 | 63,Emp_63,Sales,39474,17,5
65 | 64,Emp_64,IT,88053,8,4
66 | 65,Emp_65,IT,51959,4,1
67 | 66,Emp_66,Marketing,35530,6,4
68 | 67,Emp_67,IT,33748,8,3
69 | 68,Emp_68,IT,43545,20,4
70 | 69,Emp_69,Marketing,96199,3,2
71 | 70,Emp_70,Marketing,64766,16,2
72 | 71,Emp_71,HR,103530,3,3
73 | 72,Emp_72,Sales,91087,18,1
74 | 73,Emp_73,Sales,98840,14,2
75 | 74,Emp_74,IT,84384,18,5
76 | 75,Emp_75,Sales,81005,2,2
77 | 76,Emp_76,IT,76576,22,2
78 | 77,Emp_77,HR,69353,3,1
79 | 78,Emp_78,Marketing,92003,16,4
80 | 79,Emp_79,Marketing,113211,9,2
81 | 80,Emp_80,Marketing,82733,4,3
82 | 81,Emp_81,Sales,95318,1,4
83 | 82,Emp_82,HR,119474,4,5
84 | 83,Emp_83,Sales,53664,1,1
85 | 84,Emp_84,Sales,97172,14,5
86 | 85,Emp_85,HR,115616,21,4
87 | 86,Emp_86,HR,56736,16,4
88 | 87,Emp_87,HR,30854,20,4
89 | 88,Emp_88,HR,68623,24,5
90 | 89,Emp_89,Marketing,37392,8,4
91 | 90,Emp_90,Finance,85680,7,5
92 | 91,Emp_91,Finance,76717,3,4
93 | 92,Emp_92,HR,117092,17,3
94 | 93,Emp_93,Finance,80859,1,4
95 | 94,Emp_94,Finance,56309,16,5
96 | 95,Emp_95,HR,117455,12,2
97 | 96,Emp_96,Finance,93734,19,4
98 | 97,Emp_97,Sales,100467,22,2
99 | 98,Emp_98,IT,82662,23,3
100 | 99,Emp_99,IT,42688,22,1
101 | 100,Emp_100,HR,55342,14,3
102 |
--------------------------------------------------------------------------------
/athlete_events.csv.zip:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/atilsamancioglu/PythonForDataScienceNotebooks/HEAD/athlete_events.csv.zip
--------------------------------------------------------------------------------