├── 1-IntroToNumpy.ipynb ├── 10-MatplotlibStyles.ipynb ├── 11-VisualizationSeaborn.ipynb ├── 12-BoxPlotExercise.ipynb ├── 13-EDAExercise.ipynb ├── 13-WineQT.csv ├── 14-IntroToFeatureEngineering.ipynb ├── 15-BalancingData.ipynb ├── 16-EncodingData.ipynb ├── 17-FeatureEngineeringEDA.ipynb ├── 17-googleplaystore.csv ├── 17-googleplaystore_user_reviews.csv ├── 2-NumpyMatrices.ipynb ├── 3-NumpyOperations.ipynb ├── 4-IntroToPandas.ipynb ├── 5-IntroToDataFrames.ipynb ├── 6-DataFrameOperations.ipynb ├── 6-employee.csv ├── 6-weather.xlsx ├── 6-weatherna.xlsx ├── 7-DataFramesConcatMerge.ipynb ├── 7-concat_data1.csv ├── 7-concat_data2.csv ├── 7-merge_data1.csv ├── 7-merge_data2.csv ├── 8-DataFramesApply.ipynb ├── 8-apply_function_data.csv ├── 9-IntroToMatplotlib.ipynb └── athlete_events.csv.zip /1-IntroToNumpy.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 1, 6 | "id": "1fb57f0e-09e4-4d94-8f0e-8309e1a87a03", 7 | "metadata": {}, 8 | "outputs": [], 9 | "source": [ 10 | "import numpy as np" 11 | ] 12 | }, 13 | { 14 | "cell_type": "code", 15 | "execution_count": 2, 16 | "id": "0d49ad03-441c-4029-8f66-f7df7229e30d", 17 | "metadata": {}, 18 | "outputs": [], 19 | "source": [ 20 | "# !pip install numpy" 21 | ] 22 | }, 23 | { 24 | "cell_type": "code", 25 | "execution_count": 3, 26 | "id": "26d84fa4-cbb6-4918-8578-1a53254d5a42", 27 | "metadata": {}, 28 | "outputs": [], 29 | "source": [ 30 | "my_list = [10,20,30,40]" 31 | ] 32 | }, 33 | { 34 | "cell_type": "code", 35 | "execution_count": 4, 36 | "id": "0259ed6a-0ada-4fbd-bd28-24d5a9de56f9", 37 | "metadata": {}, 38 | "outputs": [ 39 | { 40 | "data": { 41 | "text/plain": [ 42 | "list" 43 | ] 44 | }, 45 | "execution_count": 4, 46 | "metadata": {}, 47 | "output_type": "execute_result" 48 | } 49 | ], 50 | "source": [ 51 | "type(my_list)" 52 | ] 53 | }, 54 | { 55 | "cell_type": "code", 56 | "execution_count": 5, 57 | "id": "c2203e96-654d-4ef7-99a6-7da8898d821c", 58 | "metadata": {}, 59 | "outputs": [ 60 | { 61 | "data": { 62 | "text/plain": [ 63 | "array([10, 20, 30, 40])" 64 | ] 65 | }, 66 | "execution_count": 5, 67 | "metadata": {}, 68 | "output_type": "execute_result" 69 | } 70 | ], 71 | "source": [ 72 | "np.array(my_list)" 73 | ] 74 | }, 75 | { 76 | "cell_type": "code", 77 | "execution_count": 7, 78 | "id": "da2872d8-9302-46da-b3e4-3985b54e3f38", 79 | "metadata": {}, 80 | "outputs": [], 81 | "source": [ 82 | "my_numpy_array = np.array([10,20,30,40,50])" 83 | ] 84 | }, 85 | { 86 | "cell_type": "code", 87 | "execution_count": 8, 88 | "id": "5ccd584b-4de3-4559-b483-ff1ee1163a6e", 89 | "metadata": {}, 90 | "outputs": [ 91 | { 92 | "data": { 93 | "text/plain": [ 94 | "numpy.ndarray" 95 | ] 96 | }, 97 | "execution_count": 8, 98 | "metadata": {}, 99 | "output_type": "execute_result" 100 | } 101 | ], 102 | "source": [ 103 | "type(my_numpy_array)" 104 | ] 105 | }, 106 | { 107 | "cell_type": "code", 108 | "execution_count": 9, 109 | "id": "bf67ef44-7500-4ebc-bfa5-7ddd7fc50d45", 110 | "metadata": {}, 111 | "outputs": [ 112 | { 113 | "data": { 114 | "text/plain": [ 115 | "50" 116 | ] 117 | }, 118 | "execution_count": 9, 119 | "metadata": {}, 120 | "output_type": "execute_result" 121 | } 122 | ], 123 | "source": [ 124 | "my_numpy_array.max()" 125 | ] 126 | }, 127 | { 128 | "cell_type": "code", 129 | "execution_count": 10, 130 | "id": "4ab51f52-414d-420c-86cc-1c9ea70927b4", 131 | "metadata": {}, 132 | "outputs": [], 133 | "source": [ 134 | "# https://jalammar.github.io/visual-numpy/" 135 | ] 136 | }, 137 | { 138 | "cell_type": "code", 139 | "execution_count": 11, 140 | "id": "36a5ac42-ed4d-4e90-bc25-573eba461423", 141 | "metadata": {}, 142 | "outputs": [ 143 | { 144 | "data": { 145 | "text/plain": [ 146 | "array([1., 1., 1., 1., 1.])" 147 | ] 148 | }, 149 | "execution_count": 11, 150 | "metadata": {}, 151 | "output_type": "execute_result" 152 | } 153 | ], 154 | "source": [ 155 | "np.ones(5)" 156 | ] 157 | }, 158 | { 159 | "cell_type": "code", 160 | "execution_count": 12, 161 | "id": "1d9da7af-82f9-45aa-9653-03d38878215b", 162 | "metadata": {}, 163 | "outputs": [ 164 | { 165 | "data": { 166 | "text/plain": [ 167 | "array([0., 0., 0., 0., 0.])" 168 | ] 169 | }, 170 | "execution_count": 12, 171 | "metadata": {}, 172 | "output_type": "execute_result" 173 | } 174 | ], 175 | "source": [ 176 | "np.zeros(5)" 177 | ] 178 | }, 179 | { 180 | "cell_type": "code", 181 | "execution_count": 13, 182 | "id": "1282564c-1772-4e36-b7f6-93878ecd6338", 183 | "metadata": {}, 184 | "outputs": [ 185 | { 186 | "data": { 187 | "text/plain": [ 188 | "array([0.92592341, 0.22830596, 0.30502652, 0.8765612 , 0.98434607])" 189 | ] 190 | }, 191 | "execution_count": 13, 192 | "metadata": {}, 193 | "output_type": "execute_result" 194 | } 195 | ], 196 | "source": [ 197 | "np.random.random(5)" 198 | ] 199 | }, 200 | { 201 | "cell_type": "code", 202 | "execution_count": 14, 203 | "id": "c14068c5-c994-4f88-b2f7-cebafcd29dda", 204 | "metadata": {}, 205 | "outputs": [], 206 | "source": [ 207 | "#array arithmetic " 208 | ] 209 | }, 210 | { 211 | "cell_type": "code", 212 | "execution_count": 15, 213 | "id": "d49721cc-0826-4afb-9dd4-47b7544e6a35", 214 | "metadata": {}, 215 | "outputs": [], 216 | "source": [ 217 | "my_list1 = [1,2]" 218 | ] 219 | }, 220 | { 221 | "cell_type": "code", 222 | "execution_count": 16, 223 | "id": "feb571da-8d3c-4bbc-9ec4-2031e861e5e9", 224 | "metadata": {}, 225 | "outputs": [], 226 | "source": [ 227 | "my_list2 = [2,3]" 228 | ] 229 | }, 230 | { 231 | "cell_type": "code", 232 | "execution_count": 17, 233 | "id": "3d62e70c-a553-4ec6-9f2d-b34cd839abf4", 234 | "metadata": {}, 235 | "outputs": [ 236 | { 237 | "data": { 238 | "text/plain": [ 239 | "[1, 2, 2, 3]" 240 | ] 241 | }, 242 | "execution_count": 17, 243 | "metadata": {}, 244 | "output_type": "execute_result" 245 | } 246 | ], 247 | "source": [ 248 | "my_list1 + my_list2" 249 | ] 250 | }, 251 | { 252 | "cell_type": "code", 253 | "execution_count": 18, 254 | "id": "80c32ce8-2b96-46c6-98a6-0e88b92d0cc5", 255 | "metadata": {}, 256 | "outputs": [], 257 | "source": [ 258 | "my_numpy_array1 = np.array(my_list1)" 259 | ] 260 | }, 261 | { 262 | "cell_type": "code", 263 | "execution_count": 19, 264 | "id": "1adc383b-a188-47ad-9b76-7e250654f463", 265 | "metadata": {}, 266 | "outputs": [], 267 | "source": [ 268 | "my_numpy_array2 = np.array(my_list2)" 269 | ] 270 | }, 271 | { 272 | "cell_type": "code", 273 | "execution_count": 20, 274 | "id": "62e29b38-b57c-45bb-aa11-c7125f5185e2", 275 | "metadata": {}, 276 | "outputs": [ 277 | { 278 | "data": { 279 | "text/plain": [ 280 | "array([3, 5])" 281 | ] 282 | }, 283 | "execution_count": 20, 284 | "metadata": {}, 285 | "output_type": "execute_result" 286 | } 287 | ], 288 | "source": [ 289 | "my_numpy_array1 + my_numpy_array2" 290 | ] 291 | }, 292 | { 293 | "cell_type": "code", 294 | "execution_count": 21, 295 | "id": "a5bb5256-50c9-4543-9893-fc511cbdfd24", 296 | "metadata": {}, 297 | "outputs": [ 298 | { 299 | "data": { 300 | "text/plain": [ 301 | "array([-1, -1])" 302 | ] 303 | }, 304 | "execution_count": 21, 305 | "metadata": {}, 306 | "output_type": "execute_result" 307 | } 308 | ], 309 | "source": [ 310 | "my_numpy_array1 - my_numpy_array2" 311 | ] 312 | }, 313 | { 314 | "cell_type": "code", 315 | "execution_count": 22, 316 | "id": "58eab283-49f5-4ad2-b70d-6421b7815aa2", 317 | "metadata": {}, 318 | "outputs": [ 319 | { 320 | "data": { 321 | "text/plain": [ 322 | "array([2, 6])" 323 | ] 324 | }, 325 | "execution_count": 22, 326 | "metadata": {}, 327 | "output_type": "execute_result" 328 | } 329 | ], 330 | "source": [ 331 | "my_numpy_array1 * my_numpy_array2" 332 | ] 333 | }, 334 | { 335 | "cell_type": "code", 336 | "execution_count": 23, 337 | "id": "5d2893cc-c4b2-4526-9496-e2255bc3fd85", 338 | "metadata": {}, 339 | "outputs": [ 340 | { 341 | "data": { 342 | "text/plain": [ 343 | "array([0.5 , 0.66666667])" 344 | ] 345 | }, 346 | "execution_count": 23, 347 | "metadata": {}, 348 | "output_type": "execute_result" 349 | } 350 | ], 351 | "source": [ 352 | "my_numpy_array1 / my_numpy_array2" 353 | ] 354 | }, 355 | { 356 | "cell_type": "code", 357 | "execution_count": 24, 358 | "id": "c87b0273-3a58-421b-aec3-4340b2c1b4f6", 359 | "metadata": {}, 360 | "outputs": [ 361 | { 362 | "data": { 363 | "text/plain": [ 364 | "array([ 5, 10])" 365 | ] 366 | }, 367 | "execution_count": 24, 368 | "metadata": {}, 369 | "output_type": "execute_result" 370 | } 371 | ], 372 | "source": [ 373 | "my_numpy_array1 * 5" 374 | ] 375 | }, 376 | { 377 | "cell_type": "code", 378 | "execution_count": 36, 379 | "id": "ad8366a9-31c8-4a77-82ac-216d11beab90", 380 | "metadata": {}, 381 | "outputs": [], 382 | "source": [ 383 | "other_array = np.array([10,20,30,40,50])" 384 | ] 385 | }, 386 | { 387 | "cell_type": "code", 388 | "execution_count": 39, 389 | "id": "c8ee65c3-e766-4a11-bb64-3be6186dfc9d", 390 | "metadata": {}, 391 | "outputs": [ 392 | { 393 | "data": { 394 | "text/plain": [ 395 | "10" 396 | ] 397 | }, 398 | "execution_count": 39, 399 | "metadata": {}, 400 | "output_type": "execute_result" 401 | } 402 | ], 403 | "source": [ 404 | "other_array.min()" 405 | ] 406 | }, 407 | { 408 | "cell_type": "code", 409 | "execution_count": 38, 410 | "id": "eeffe892-315f-4dca-b65c-c8138a466ae3", 411 | "metadata": {}, 412 | "outputs": [ 413 | { 414 | "data": { 415 | "text/plain": [ 416 | "150" 417 | ] 418 | }, 419 | "execution_count": 38, 420 | "metadata": {}, 421 | "output_type": "execute_result" 422 | } 423 | ], 424 | "source": [ 425 | "other_array.sum()" 426 | ] 427 | }, 428 | { 429 | "cell_type": "code", 430 | "execution_count": 26, 431 | "id": "9c0c51b0-ef15-43ee-afc5-e8835d0d3035", 432 | "metadata": {}, 433 | "outputs": [], 434 | "source": [ 435 | "#indexing & arange" 436 | ] 437 | }, 438 | { 439 | "cell_type": "code", 440 | "execution_count": 26, 441 | "id": "c5c3fd4d-c92e-43ca-8783-739f27fd2f44", 442 | "metadata": {}, 443 | "outputs": [], 444 | "source": [ 445 | "#indexing & arange" 446 | ] 447 | }, 448 | { 449 | "cell_type": "code", 450 | "execution_count": 27, 451 | "id": "ef6d052d-c978-4315-9a79-ada784e4c88f", 452 | "metadata": {}, 453 | "outputs": [ 454 | { 455 | "data": { 456 | "text/plain": [ 457 | "[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]" 458 | ] 459 | }, 460 | "execution_count": 27, 461 | "metadata": {}, 462 | "output_type": "execute_result" 463 | } 464 | ], 465 | "source": [ 466 | "list(range(0,10))" 467 | ] 468 | }, 469 | { 470 | "cell_type": "code", 471 | "execution_count": 28, 472 | "id": "626bfbd7-bf3b-4726-aff0-c3a9695ff2a9", 473 | "metadata": {}, 474 | "outputs": [ 475 | { 476 | "data": { 477 | "text/plain": [ 478 | "array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])" 479 | ] 480 | }, 481 | "execution_count": 28, 482 | "metadata": {}, 483 | "output_type": "execute_result" 484 | } 485 | ], 486 | "source": [ 487 | "np.arange(0,10)" 488 | ] 489 | }, 490 | { 491 | "cell_type": "code", 492 | "execution_count": 29, 493 | "id": "e53ca57a-f857-496e-a5e5-fc96bf150782", 494 | "metadata": {}, 495 | "outputs": [ 496 | { 497 | "data": { 498 | "text/plain": [ 499 | "array([ 0, 2, 4, 6, 8, 10, 12, 14, 16, 18])" 500 | ] 501 | }, 502 | "execution_count": 29, 503 | "metadata": {}, 504 | "output_type": "execute_result" 505 | } 506 | ], 507 | "source": [ 508 | "np.arange(0,20,2)" 509 | ] 510 | }, 511 | { 512 | "cell_type": "code", 513 | "execution_count": 30, 514 | "id": "927f9dc2-82f0-4b43-aef7-110d0cd175d1", 515 | "metadata": {}, 516 | "outputs": [], 517 | "source": [ 518 | "np_array = np.arange(0,10)" 519 | ] 520 | }, 521 | { 522 | "cell_type": "code", 523 | "execution_count": 31, 524 | "id": "fc8d78cf-aafa-4c6c-a4ba-f0aa61eb8013", 525 | "metadata": {}, 526 | "outputs": [ 527 | { 528 | "data": { 529 | "text/plain": [ 530 | "0" 531 | ] 532 | }, 533 | "execution_count": 31, 534 | "metadata": {}, 535 | "output_type": "execute_result" 536 | } 537 | ], 538 | "source": [ 539 | "np_array[0]" 540 | ] 541 | }, 542 | { 543 | "cell_type": "code", 544 | "execution_count": 32, 545 | "id": "82641c03-30ac-4fbe-bb83-97a070874bbd", 546 | "metadata": {}, 547 | "outputs": [ 548 | { 549 | "data": { 550 | "text/plain": [ 551 | "9" 552 | ] 553 | }, 554 | "execution_count": 32, 555 | "metadata": {}, 556 | "output_type": "execute_result" 557 | } 558 | ], 559 | "source": [ 560 | "np_array[-1]" 561 | ] 562 | }, 563 | { 564 | "cell_type": "code", 565 | "execution_count": 33, 566 | "id": "4471d6f3-e97c-41f0-878e-96297bc8f954", 567 | "metadata": {}, 568 | "outputs": [ 569 | { 570 | "data": { 571 | "text/plain": [ 572 | "array([1, 2, 3])" 573 | ] 574 | }, 575 | "execution_count": 33, 576 | "metadata": {}, 577 | "output_type": "execute_result" 578 | } 579 | ], 580 | "source": [ 581 | "np_array[1:4:]" 582 | ] 583 | }, 584 | { 585 | "cell_type": "code", 586 | "execution_count": 34, 587 | "id": "e825564c-4794-4fa2-a36e-7febfc5c1e0b", 588 | "metadata": {}, 589 | "outputs": [ 590 | { 591 | "data": { 592 | "text/plain": [ 593 | "array([9, 8, 7, 6, 5, 4, 3, 2, 1, 0])" 594 | ] 595 | }, 596 | "execution_count": 34, 597 | "metadata": {}, 598 | "output_type": "execute_result" 599 | } 600 | ], 601 | "source": [ 602 | "np_array[::-1]" 603 | ] 604 | }, 605 | { 606 | "cell_type": "code", 607 | "execution_count": 35, 608 | "id": "f365c8f6-3d33-42ba-b22b-7de141eb0fcd", 609 | "metadata": {}, 610 | "outputs": [ 611 | { 612 | "data": { 613 | "text/plain": [ 614 | "array([2, 4])" 615 | ] 616 | }, 617 | "execution_count": 35, 618 | "metadata": {}, 619 | "output_type": "execute_result" 620 | } 621 | ], 622 | "source": [ 623 | "np_array[2:6:2]" 624 | ] 625 | }, 626 | { 627 | "cell_type": "code", 628 | "execution_count": 40, 629 | "id": "9b8a4c06-e364-4281-b1d8-5972ba54235f", 630 | "metadata": {}, 631 | "outputs": [], 632 | "source": [ 633 | "# random" 634 | ] 635 | }, 636 | { 637 | "cell_type": "code", 638 | "execution_count": 41, 639 | "id": "c14f32bf-8f4e-48cf-b477-59972e009ffd", 640 | "metadata": {}, 641 | "outputs": [ 642 | { 643 | "data": { 644 | "text/plain": [ 645 | "array([-1.01630674, -1.09829885, 0.70948785, 2.54035352])" 646 | ] 647 | }, 648 | "execution_count": 41, 649 | "metadata": {}, 650 | "output_type": "execute_result" 651 | } 652 | ], 653 | "source": [ 654 | "np.random.randn(4)" 655 | ] 656 | }, 657 | { 658 | "cell_type": "code", 659 | "execution_count": 42, 660 | "id": "765bda37-7d9f-4a5e-8a96-cbe295f3c17b", 661 | "metadata": {}, 662 | "outputs": [ 663 | { 664 | "data": { 665 | "text/plain": [ 666 | "array([[-1.92619892, 0.6432985 , 1.52906877, -0.45387039],\n", 667 | " [ 1.09507191, -1.56907651, -0.0185524 , 0.21799423],\n", 668 | " [-0.8186812 , -1.12639982, -1.59773834, 0.36370991],\n", 669 | " [ 0.71767334, 0.64516878, -0.37454103, 0.50293794]])" 670 | ] 671 | }, 672 | "execution_count": 42, 673 | "metadata": {}, 674 | "output_type": "execute_result" 675 | } 676 | ], 677 | "source": [ 678 | "np.random.randn(4,4) #we will see matrices in details" 679 | ] 680 | }, 681 | { 682 | "cell_type": "code", 683 | "execution_count": 43, 684 | "id": "78e2d329-f546-4370-9d5b-cc7421d78abd", 685 | "metadata": {}, 686 | "outputs": [ 687 | { 688 | "data": { 689 | "text/plain": [ 690 | "array([ 89, 169, 249, 29, 161])" 691 | ] 692 | }, 693 | "execution_count": 43, 694 | "metadata": {}, 695 | "output_type": "execute_result" 696 | } 697 | ], 698 | "source": [ 699 | "np.random.randint(1,300,5)" 700 | ] 701 | }, 702 | { 703 | "cell_type": "code", 704 | "execution_count": null, 705 | "id": "ca004933-ae90-4d7b-9cf7-be50d4abfa1a", 706 | "metadata": {}, 707 | "outputs": [], 708 | "source": [] 709 | } 710 | ], 711 | "metadata": { 712 | "kernelspec": { 713 | "display_name": "Python 3 (ipykernel)", 714 | "language": "python", 715 | "name": "python3" 716 | }, 717 | "language_info": { 718 | "codemirror_mode": { 719 | "name": "ipython", 720 | "version": 3 721 | }, 722 | "file_extension": ".py", 723 | "mimetype": "text/x-python", 724 | "name": "python", 725 | "nbconvert_exporter": "python", 726 | "pygments_lexer": "ipython3", 727 | "version": "3.12.7" 728 | } 729 | }, 730 | "nbformat": 4, 731 | "nbformat_minor": 5 732 | } 733 | -------------------------------------------------------------------------------- /2-NumpyMatrices.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 1, 6 | "id": "72f6ebd3-aa54-4af5-b500-01d0763f6325", 7 | "metadata": {}, 8 | "outputs": [], 9 | "source": [ 10 | "import numpy as np" 11 | ] 12 | }, 13 | { 14 | "cell_type": "code", 15 | "execution_count": 7, 16 | "id": "954bbbad-343b-4292-84c1-bc2bf84646cc", 17 | "metadata": {}, 18 | "outputs": [], 19 | "source": [ 20 | "my_matrix = [[5,10],[15,20]]" 21 | ] 22 | }, 23 | { 24 | "cell_type": "code", 25 | "execution_count": 8, 26 | "id": "c5ce2b9d-1fed-423d-81a5-4b14a3d0c78c", 27 | "metadata": {}, 28 | "outputs": [ 29 | { 30 | "data": { 31 | "text/plain": [ 32 | "[5, 10]" 33 | ] 34 | }, 35 | "execution_count": 8, 36 | "metadata": {}, 37 | "output_type": "execute_result" 38 | } 39 | ], 40 | "source": [ 41 | "my_matrix[0]" 42 | ] 43 | }, 44 | { 45 | "cell_type": "code", 46 | "execution_count": 9, 47 | "id": "950601d3-cbad-4ed5-9cda-450e16f0ced3", 48 | "metadata": {}, 49 | "outputs": [ 50 | { 51 | "data": { 52 | "text/plain": [ 53 | "[15, 20]" 54 | ] 55 | }, 56 | "execution_count": 9, 57 | "metadata": {}, 58 | "output_type": "execute_result" 59 | } 60 | ], 61 | "source": [ 62 | "my_matrix[1]" 63 | ] 64 | }, 65 | { 66 | "cell_type": "code", 67 | "execution_count": 12, 68 | "id": "6159f2ac-8a24-4d03-b925-d4019db1c551", 69 | "metadata": {}, 70 | "outputs": [], 71 | "source": [ 72 | "#my_matrix.sum()" 73 | ] 74 | }, 75 | { 76 | "cell_type": "code", 77 | "execution_count": 10, 78 | "id": "7bdd8805-da83-44cf-9585-8c5751810b98", 79 | "metadata": {}, 80 | "outputs": [], 81 | "source": [ 82 | "numpy_matrix = np.array([[5,10],[15,20]])" 83 | ] 84 | }, 85 | { 86 | "cell_type": "code", 87 | "execution_count": 13, 88 | "id": "122650fc-f8bc-49ef-a028-aaa76d4f0365", 89 | "metadata": {}, 90 | "outputs": [ 91 | { 92 | "data": { 93 | "text/plain": [ 94 | "50" 95 | ] 96 | }, 97 | "execution_count": 13, 98 | "metadata": {}, 99 | "output_type": "execute_result" 100 | } 101 | ], 102 | "source": [ 103 | "numpy_matrix.sum()" 104 | ] 105 | }, 106 | { 107 | "cell_type": "code", 108 | "execution_count": 20, 109 | "id": "5cac9c72-f3ee-4fef-9f25-aafce4dffc35", 110 | "metadata": {}, 111 | "outputs": [], 112 | "source": [ 113 | "# row x column" 114 | ] 115 | }, 116 | { 117 | "cell_type": "code", 118 | "execution_count": 21, 119 | "id": "f6609207-a1e5-4b34-8f55-8a82a628d052", 120 | "metadata": {}, 121 | "outputs": [ 122 | { 123 | "data": { 124 | "text/plain": [ 125 | "array([[1., 1.],\n", 126 | " [1., 1.],\n", 127 | " [1., 1.],\n", 128 | " [1., 1.]])" 129 | ] 130 | }, 131 | "execution_count": 21, 132 | "metadata": {}, 133 | "output_type": "execute_result" 134 | } 135 | ], 136 | "source": [ 137 | "np.ones((4,2))" 138 | ] 139 | }, 140 | { 141 | "cell_type": "code", 142 | "execution_count": 22, 143 | "id": "aee3b6df-1975-47cd-b591-faa33008fedf", 144 | "metadata": {}, 145 | "outputs": [ 146 | { 147 | "data": { 148 | "text/plain": [ 149 | "array([[0., 0., 0.],\n", 150 | " [0., 0., 0.],\n", 151 | " [0., 0., 0.],\n", 152 | " [0., 0., 0.],\n", 153 | " [0., 0., 0.]])" 154 | ] 155 | }, 156 | "execution_count": 22, 157 | "metadata": {}, 158 | "output_type": "execute_result" 159 | } 160 | ], 161 | "source": [ 162 | "np.zeros((5,3))" 163 | ] 164 | }, 165 | { 166 | "cell_type": "code", 167 | "execution_count": 23, 168 | "id": "7363c000-e3b8-4bd5-9707-2c503371062e", 169 | "metadata": {}, 170 | "outputs": [ 171 | { 172 | "data": { 173 | "text/plain": [ 174 | "array([[0.16776112, 0.00703872],\n", 175 | " [0.00533717, 0.89356651],\n", 176 | " [0.11160896, 0.6911002 ]])" 177 | ] 178 | }, 179 | "execution_count": 23, 180 | "metadata": {}, 181 | "output_type": "execute_result" 182 | } 183 | ], 184 | "source": [ 185 | "np.random.random((3,2))" 186 | ] 187 | }, 188 | { 189 | "cell_type": "code", 190 | "execution_count": 24, 191 | "id": "cc49bbe3-a8af-42b2-8805-a3500bf8f941", 192 | "metadata": {}, 193 | "outputs": [], 194 | "source": [ 195 | "# matrix arithmetic " 196 | ] 197 | }, 198 | { 199 | "cell_type": "code", 200 | "execution_count": 25, 201 | "id": "19cc3b60-84d3-4545-8d21-34fe71fe6879", 202 | "metadata": {}, 203 | "outputs": [], 204 | "source": [ 205 | "first_array = np.array([[10,20],[30,40]])" 206 | ] 207 | }, 208 | { 209 | "cell_type": "code", 210 | "execution_count": 26, 211 | "id": "771b116e-9e59-481d-8864-582578be9e84", 212 | "metadata": {}, 213 | "outputs": [], 214 | "source": [ 215 | "second_array = np.array([[5,15],[25,35]])" 216 | ] 217 | }, 218 | { 219 | "cell_type": "code", 220 | "execution_count": 27, 221 | "id": "72be3206-0a4c-4809-9481-6a1910087c5c", 222 | "metadata": {}, 223 | "outputs": [ 224 | { 225 | "data": { 226 | "text/plain": [ 227 | "array([[15, 35],\n", 228 | " [55, 75]])" 229 | ] 230 | }, 231 | "execution_count": 27, 232 | "metadata": {}, 233 | "output_type": "execute_result" 234 | } 235 | ], 236 | "source": [ 237 | "first_array + second_array" 238 | ] 239 | }, 240 | { 241 | "cell_type": "code", 242 | "execution_count": 28, 243 | "id": "62b64bd9-a3bd-4cc2-be1f-935476760d7c", 244 | "metadata": {}, 245 | "outputs": [ 246 | { 247 | "data": { 248 | "text/plain": [ 249 | "array([[20, 40],\n", 250 | " [60, 80]])" 251 | ] 252 | }, 253 | "execution_count": 28, 254 | "metadata": {}, 255 | "output_type": "execute_result" 256 | } 257 | ], 258 | "source": [ 259 | "first_array * 2" 260 | ] 261 | }, 262 | { 263 | "cell_type": "code", 264 | "execution_count": 29, 265 | "id": "5db28430-a4c7-4f2b-a49a-37f6e379dac1", 266 | "metadata": {}, 267 | "outputs": [ 268 | { 269 | "data": { 270 | "text/plain": [ 271 | "array([[ 2.5, 5. ],\n", 272 | " [ 7.5, 10. ]])" 273 | ] 274 | }, 275 | "execution_count": 29, 276 | "metadata": {}, 277 | "output_type": "execute_result" 278 | } 279 | ], 280 | "source": [ 281 | "first_array / 4" 282 | ] 283 | }, 284 | { 285 | "cell_type": "code", 286 | "execution_count": 30, 287 | "id": "1179266b-7e27-432c-a654-1a6561673e5e", 288 | "metadata": {}, 289 | "outputs": [], 290 | "source": [ 291 | "# We can add and multiply matrices using arithmetic operators (+-*/) if the two matrices are the same size." 292 | ] 293 | }, 294 | { 295 | "cell_type": "code", 296 | "execution_count": 31, 297 | "id": "1d87b8cc-6e70-4be7-ae60-86a1767cedea", 298 | "metadata": {}, 299 | "outputs": [], 300 | "source": [ 301 | "third_array = np.array([[10],[20]])" 302 | ] 303 | }, 304 | { 305 | "cell_type": "code", 306 | "execution_count": 32, 307 | "id": "f687de5e-aef8-4cc0-ad37-828efd0dfb66", 308 | "metadata": {}, 309 | "outputs": [ 310 | { 311 | "data": { 312 | "text/plain": [ 313 | "array([[10],\n", 314 | " [20]])" 315 | ] 316 | }, 317 | "execution_count": 32, 318 | "metadata": {}, 319 | "output_type": "execute_result" 320 | } 321 | ], 322 | "source": [ 323 | "third_array" 324 | ] 325 | }, 326 | { 327 | "cell_type": "code", 328 | "execution_count": 34, 329 | "id": "d24223ca-2633-4ac1-b1a8-69445fb2cf2c", 330 | "metadata": {}, 331 | "outputs": [ 332 | { 333 | "data": { 334 | "text/plain": [ 335 | "(2, 1)" 336 | ] 337 | }, 338 | "execution_count": 34, 339 | "metadata": {}, 340 | "output_type": "execute_result" 341 | } 342 | ], 343 | "source": [ 344 | "third_array.shape" 345 | ] 346 | }, 347 | { 348 | "cell_type": "code", 349 | "execution_count": 35, 350 | "id": "c5bc1e6f-24f9-44f8-953d-b82f37dac569", 351 | "metadata": {}, 352 | "outputs": [ 353 | { 354 | "data": { 355 | "text/plain": [ 356 | "(2, 2)" 357 | ] 358 | }, 359 | "execution_count": 35, 360 | "metadata": {}, 361 | "output_type": "execute_result" 362 | } 363 | ], 364 | "source": [ 365 | "first_array.shape" 366 | ] 367 | }, 368 | { 369 | "cell_type": "code", 370 | "execution_count": 39, 371 | "id": "1f633a46-e0a8-4862-b4e3-7d89ef4b6ccb", 372 | "metadata": {}, 373 | "outputs": [ 374 | { 375 | "data": { 376 | "text/plain": [ 377 | "array([[10, 20],\n", 378 | " [30, 40]])" 379 | ] 380 | }, 381 | "execution_count": 39, 382 | "metadata": {}, 383 | "output_type": "execute_result" 384 | } 385 | ], 386 | "source": [ 387 | "first_array" 388 | ] 389 | }, 390 | { 391 | "cell_type": "code", 392 | "execution_count": 36, 393 | "id": "206689b4-63c1-44e5-ae36-52ae81ab72a7", 394 | "metadata": {}, 395 | "outputs": [ 396 | { 397 | "data": { 398 | "text/plain": [ 399 | "array([[20, 30],\n", 400 | " [50, 60]])" 401 | ] 402 | }, 403 | "execution_count": 36, 404 | "metadata": {}, 405 | "output_type": "execute_result" 406 | } 407 | ], 408 | "source": [ 409 | "first_array + third_array" 410 | ] 411 | }, 412 | { 413 | "cell_type": "code", 414 | "execution_count": 38, 415 | "id": "99ad1db3-fb96-48a5-9768-4f3a7a3cc007", 416 | "metadata": {}, 417 | "outputs": [], 418 | "source": [ 419 | "# We do these arithmetic operations on matrices of different size only if the different dimension is one \n", 420 | "#in which case NumPy uses its broadcast rules for that operation:" 421 | ] 422 | }, 423 | { 424 | "cell_type": "code", 425 | "execution_count": 40, 426 | "id": "2454ca51-f2b0-4d03-96f2-a29c5edbabdd", 427 | "metadata": {}, 428 | "outputs": [], 429 | "source": [ 430 | "fourth_array = np.ones((3,4))" 431 | ] 432 | }, 433 | { 434 | "cell_type": "code", 435 | "execution_count": 41, 436 | "id": "1d906d74-8433-403c-8124-edd33d66a861", 437 | "metadata": {}, 438 | "outputs": [ 439 | { 440 | "data": { 441 | "text/plain": [ 442 | "array([[1., 1., 1., 1.],\n", 443 | " [1., 1., 1., 1.],\n", 444 | " [1., 1., 1., 1.]])" 445 | ] 446 | }, 447 | "execution_count": 41, 448 | "metadata": {}, 449 | "output_type": "execute_result" 450 | } 451 | ], 452 | "source": [ 453 | "fourth_array" 454 | ] 455 | }, 456 | { 457 | "cell_type": "code", 458 | "execution_count": 43, 459 | "id": "cb738a02-12cb-4a72-9d24-071d93fb4953", 460 | "metadata": {}, 461 | "outputs": [], 462 | "source": [ 463 | "#fourth_array + first_array" 464 | ] 465 | }, 466 | { 467 | "cell_type": "code", 468 | "execution_count": 44, 469 | "id": "5ce99420-058e-42e4-9902-c476cc1b2187", 470 | "metadata": {}, 471 | "outputs": [], 472 | "source": [ 473 | "# matrix multiplication" 474 | ] 475 | }, 476 | { 477 | "cell_type": "code", 478 | "execution_count": 45, 479 | "id": "69ba681c-383f-4edc-a426-9bd6b33b1ad4", 480 | "metadata": {}, 481 | "outputs": [], 482 | "source": [ 483 | "first_matrix = np.array([[10,20,30]])" 484 | ] 485 | }, 486 | { 487 | "cell_type": "code", 488 | "execution_count": 46, 489 | "id": "f3bb87c5-c15e-4442-9039-b3bb9c5d8281", 490 | "metadata": {}, 491 | "outputs": [ 492 | { 493 | "data": { 494 | "text/plain": [ 495 | "array([[10, 20, 30]])" 496 | ] 497 | }, 498 | "execution_count": 46, 499 | "metadata": {}, 500 | "output_type": "execute_result" 501 | } 502 | ], 503 | "source": [ 504 | "first_matrix" 505 | ] 506 | }, 507 | { 508 | "cell_type": "code", 509 | "execution_count": 48, 510 | "id": "a72ba3ee-fa2b-4994-963b-f7ee7f7bd98e", 511 | "metadata": {}, 512 | "outputs": [], 513 | "source": [ 514 | "second_matrix = np.array([[2,3],[2,3],[2,3]])" 515 | ] 516 | }, 517 | { 518 | "cell_type": "code", 519 | "execution_count": 49, 520 | "id": "27bdfcc0-422e-44a1-86b2-02eae12bddf0", 521 | "metadata": {}, 522 | "outputs": [ 523 | { 524 | "data": { 525 | "text/plain": [ 526 | "array([[2, 3],\n", 527 | " [2, 3],\n", 528 | " [2, 3]])" 529 | ] 530 | }, 531 | "execution_count": 49, 532 | "metadata": {}, 533 | "output_type": "execute_result" 534 | } 535 | ], 536 | "source": [ 537 | "second_matrix" 538 | ] 539 | }, 540 | { 541 | "cell_type": "code", 542 | "execution_count": 50, 543 | "id": "a2da66f7-9f6f-41e8-9a9f-9369097e1eae", 544 | "metadata": {}, 545 | "outputs": [ 546 | { 547 | "data": { 548 | "text/plain": [ 549 | "(1, 3)" 550 | ] 551 | }, 552 | "execution_count": 50, 553 | "metadata": {}, 554 | "output_type": "execute_result" 555 | } 556 | ], 557 | "source": [ 558 | "first_matrix.shape" 559 | ] 560 | }, 561 | { 562 | "cell_type": "code", 563 | "execution_count": 51, 564 | "id": "e2f0f5b3-44c9-4215-b168-0ecffacbbbdd", 565 | "metadata": {}, 566 | "outputs": [ 567 | { 568 | "data": { 569 | "text/plain": [ 570 | "(3, 2)" 571 | ] 572 | }, 573 | "execution_count": 51, 574 | "metadata": {}, 575 | "output_type": "execute_result" 576 | } 577 | ], 578 | "source": [ 579 | "second_matrix.shape" 580 | ] 581 | }, 582 | { 583 | "cell_type": "code", 584 | "execution_count": 53, 585 | "id": "ec0e77f1-6a73-48fc-9319-8f4632210cbc", 586 | "metadata": {}, 587 | "outputs": [], 588 | "source": [ 589 | "#first_matrix * second_matrix" 590 | ] 591 | }, 592 | { 593 | "cell_type": "code", 594 | "execution_count": 55, 595 | "id": "b4bc56b7-4306-4faf-8e9d-1c10635d707b", 596 | "metadata": {}, 597 | "outputs": [], 598 | "source": [ 599 | "result_matrix = first_matrix.dot(second_matrix)" 600 | ] 601 | }, 602 | { 603 | "cell_type": "code", 604 | "execution_count": 56, 605 | "id": "2acd6119-f2fb-4e6c-a665-545e4081a259", 606 | "metadata": {}, 607 | "outputs": [ 608 | { 609 | "data": { 610 | "text/plain": [ 611 | "array([[120, 180]])" 612 | ] 613 | }, 614 | "execution_count": 56, 615 | "metadata": {}, 616 | "output_type": "execute_result" 617 | } 618 | ], 619 | "source": [ 620 | "result_matrix" 621 | ] 622 | }, 623 | { 624 | "cell_type": "code", 625 | "execution_count": 57, 626 | "id": "669d4ef7-c56c-48bc-b1d4-754e2a8071ac", 627 | "metadata": {}, 628 | "outputs": [ 629 | { 630 | "data": { 631 | "text/plain": [ 632 | "(1, 2)" 633 | ] 634 | }, 635 | "execution_count": 57, 636 | "metadata": {}, 637 | "output_type": "execute_result" 638 | } 639 | ], 640 | "source": [ 641 | "result_matrix.shape" 642 | ] 643 | }, 644 | { 645 | "cell_type": "code", 646 | "execution_count": null, 647 | "id": "cd818bc9-1470-40c4-b4d9-c9ba2d07279c", 648 | "metadata": {}, 649 | "outputs": [], 650 | "source": [] 651 | } 652 | ], 653 | "metadata": { 654 | "kernelspec": { 655 | "display_name": "Python 3 (ipykernel)", 656 | "language": "python", 657 | "name": "python3" 658 | }, 659 | "language_info": { 660 | "codemirror_mode": { 661 | "name": "ipython", 662 | "version": 3 663 | }, 664 | "file_extension": ".py", 665 | "mimetype": "text/x-python", 666 | "name": "python", 667 | "nbconvert_exporter": "python", 668 | "pygments_lexer": "ipython3", 669 | "version": "3.12.7" 670 | } 671 | }, 672 | "nbformat": 4, 673 | "nbformat_minor": 5 674 | } 675 | -------------------------------------------------------------------------------- /3-NumpyOperations.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 1, 6 | "id": "437a0fe2-0f98-4934-bb29-38e5d7165254", 7 | "metadata": {}, 8 | "outputs": [], 9 | "source": [ 10 | "import numpy as np" 11 | ] 12 | }, 13 | { 14 | "cell_type": "code", 15 | "execution_count": 2, 16 | "id": "e1deac09-18e9-4935-90b0-c91c7735bd9d", 17 | "metadata": {}, 18 | "outputs": [], 19 | "source": [ 20 | "new_array = np.random.randint(1,100,20)" 21 | ] 22 | }, 23 | { 24 | "cell_type": "code", 25 | "execution_count": 3, 26 | "id": "472dbcc3-af2f-4dff-8769-0e3c145c4727", 27 | "metadata": {}, 28 | "outputs": [ 29 | { 30 | "data": { 31 | "text/plain": [ 32 | "array([37, 64, 64, 69, 81, 36, 23, 62, 10, 95, 40, 83, 59, 76, 28, 19, 7,\n", 33 | " 81, 61, 47])" 34 | ] 35 | }, 36 | "execution_count": 3, 37 | "metadata": {}, 38 | "output_type": "execute_result" 39 | } 40 | ], 41 | "source": [ 42 | "new_array" 43 | ] 44 | }, 45 | { 46 | "cell_type": "code", 47 | "execution_count": 4, 48 | "id": "24dab151-b634-4ded-b23f-c38328eba437", 49 | "metadata": {}, 50 | "outputs": [ 51 | { 52 | "data": { 53 | "text/plain": [ 54 | "array([ True, True, True, True, True, True, False, True, False,\n", 55 | " True, True, True, True, True, True, False, False, True,\n", 56 | " True, True])" 57 | ] 58 | }, 59 | "execution_count": 4, 60 | "metadata": {}, 61 | "output_type": "execute_result" 62 | } 63 | ], 64 | "source": [ 65 | "new_array > 25" 66 | ] 67 | }, 68 | { 69 | "cell_type": "code", 70 | "execution_count": 5, 71 | "id": "312ad7b2-b85c-44b7-aadd-e921dbadc105", 72 | "metadata": {}, 73 | "outputs": [ 74 | { 75 | "data": { 76 | "text/plain": [ 77 | "array([37, 64, 64, 69, 81, 36, 62, 95, 40, 83, 59, 76, 28, 81, 61, 47])" 78 | ] 79 | }, 80 | "execution_count": 5, 81 | "metadata": {}, 82 | "output_type": "execute_result" 83 | } 84 | ], 85 | "source": [ 86 | "new_array[new_array > 25]" 87 | ] 88 | }, 89 | { 90 | "cell_type": "code", 91 | "execution_count": 6, 92 | "id": "15e8535a-5ec9-4591-a815-dff5e5984a39", 93 | "metadata": {}, 94 | "outputs": [], 95 | "source": [ 96 | "#transpose & reshape" 97 | ] 98 | }, 99 | { 100 | "cell_type": "code", 101 | "execution_count": 7, 102 | "id": "3ab27706-fdc1-4872-b0b2-4f06d60667fb", 103 | "metadata": {}, 104 | "outputs": [], 105 | "source": [ 106 | "matrix_array = np.array([[10,20],[20,30],[30,40]])" 107 | ] 108 | }, 109 | { 110 | "cell_type": "code", 111 | "execution_count": 8, 112 | "id": "086bf92a-1e69-408f-8254-79247608801c", 113 | "metadata": {}, 114 | "outputs": [ 115 | { 116 | "data": { 117 | "text/plain": [ 118 | "array([[10, 20],\n", 119 | " [20, 30],\n", 120 | " [30, 40]])" 121 | ] 122 | }, 123 | "execution_count": 8, 124 | "metadata": {}, 125 | "output_type": "execute_result" 126 | } 127 | ], 128 | "source": [ 129 | "matrix_array" 130 | ] 131 | }, 132 | { 133 | "cell_type": "code", 134 | "execution_count": 9, 135 | "id": "43d1afcd-7433-4136-ae52-32465301311b", 136 | "metadata": {}, 137 | "outputs": [ 138 | { 139 | "data": { 140 | "text/plain": [ 141 | "array([[10, 20, 30],\n", 142 | " [20, 30, 40]])" 143 | ] 144 | }, 145 | "execution_count": 9, 146 | "metadata": {}, 147 | "output_type": "execute_result" 148 | } 149 | ], 150 | "source": [ 151 | "matrix_array.transpose()" 152 | ] 153 | }, 154 | { 155 | "cell_type": "code", 156 | "execution_count": 10, 157 | "id": "02538ca8-983f-4c62-b789-5f5402203d08", 158 | "metadata": {}, 159 | "outputs": [ 160 | { 161 | "data": { 162 | "text/plain": [ 163 | "array([[10, 20, 30],\n", 164 | " [20, 30, 40]])" 165 | ] 166 | }, 167 | "execution_count": 10, 168 | "metadata": {}, 169 | "output_type": "execute_result" 170 | } 171 | ], 172 | "source": [ 173 | "matrix_array.T" 174 | ] 175 | }, 176 | { 177 | "cell_type": "code", 178 | "execution_count": 11, 179 | "id": "f5765d0e-743f-44eb-b561-e9f7786eaa28", 180 | "metadata": {}, 181 | "outputs": [], 182 | "source": [ 183 | "random_array = np.random.random((6,1))" 184 | ] 185 | }, 186 | { 187 | "cell_type": "code", 188 | "execution_count": 12, 189 | "id": "8a3a534f-a4ae-412f-9ac0-f1373e8c495e", 190 | "metadata": {}, 191 | "outputs": [ 192 | { 193 | "data": { 194 | "text/plain": [ 195 | "array([[0.24590505],\n", 196 | " [0.82413243],\n", 197 | " [0.57636962],\n", 198 | " [0.03514044],\n", 199 | " [0.87443472],\n", 200 | " [0.97933209]])" 201 | ] 202 | }, 203 | "execution_count": 12, 204 | "metadata": {}, 205 | "output_type": "execute_result" 206 | } 207 | ], 208 | "source": [ 209 | "random_array" 210 | ] 211 | }, 212 | { 213 | "cell_type": "code", 214 | "execution_count": 13, 215 | "id": "d77eb2ad-00ea-4ed8-864b-acc8cebdd873", 216 | "metadata": {}, 217 | "outputs": [ 218 | { 219 | "data": { 220 | "text/plain": [ 221 | "array([[0.24590505, 0.82413243, 0.57636962],\n", 222 | " [0.03514044, 0.87443472, 0.97933209]])" 223 | ] 224 | }, 225 | "execution_count": 13, 226 | "metadata": {}, 227 | "output_type": "execute_result" 228 | } 229 | ], 230 | "source": [ 231 | "random_array.reshape(2,3)" 232 | ] 233 | }, 234 | { 235 | "cell_type": "code", 236 | "execution_count": 14, 237 | "id": "4632a7c3-3dee-48c6-9bcc-c040d2a5ca06", 238 | "metadata": {}, 239 | "outputs": [ 240 | { 241 | "data": { 242 | "text/plain": [ 243 | "array([[0.24590505, 0.82413243],\n", 244 | " [0.57636962, 0.03514044],\n", 245 | " [0.87443472, 0.97933209]])" 246 | ] 247 | }, 248 | "execution_count": 14, 249 | "metadata": {}, 250 | "output_type": "execute_result" 251 | } 252 | ], 253 | "source": [ 254 | "random_array.reshape(3,2)" 255 | ] 256 | }, 257 | { 258 | "cell_type": "code", 259 | "execution_count": 15, 260 | "id": "804bec25-7d21-4316-b09b-8ea10facd0b5", 261 | "metadata": {}, 262 | "outputs": [], 263 | "source": [ 264 | "# real life cases" 265 | ] 266 | }, 267 | { 268 | "cell_type": "code", 269 | "execution_count": 16, 270 | "id": "fe86536a-d9a8-4232-b4f1-c2e114ee7473", 271 | "metadata": {}, 272 | "outputs": [], 273 | "source": [ 274 | "data = np.array([10, 12, 13, 15, 18, 25, 100, 105])" 275 | ] 276 | }, 277 | { 278 | "cell_type": "code", 279 | "execution_count": 17, 280 | "id": "11db04e7-7468-4b6d-b334-39aa2b25b16e", 281 | "metadata": {}, 282 | "outputs": [], 283 | "source": [ 284 | "# Compute Z-scores\n", 285 | "mean = np.mean(data)" 286 | ] 287 | }, 288 | { 289 | "cell_type": "code", 290 | "execution_count": 33, 291 | "id": "dc22ef31-9fbf-4d09-894a-a65ac72173e1", 292 | "metadata": {}, 293 | "outputs": [ 294 | { 295 | "data": { 296 | "text/plain": [ 297 | "37.25" 298 | ] 299 | }, 300 | "execution_count": 33, 301 | "metadata": {}, 302 | "output_type": "execute_result" 303 | } 304 | ], 305 | "source": [ 306 | "mean" 307 | ] 308 | }, 309 | { 310 | "cell_type": "code", 311 | "execution_count": 18, 312 | "id": "5d881ccf-38ef-4ae1-8668-782f97e84718", 313 | "metadata": {}, 314 | "outputs": [], 315 | "source": [ 316 | "std = np.std(data)" 317 | ] 318 | }, 319 | { 320 | "cell_type": "code", 321 | "execution_count": 34, 322 | "id": "574be2c0-da02-4c85-8bcf-65894540611a", 323 | "metadata": {}, 324 | "outputs": [ 325 | { 326 | "data": { 327 | "text/plain": [ 328 | "37.9333296719389" 329 | ] 330 | }, 331 | "execution_count": 34, 332 | "metadata": {}, 333 | "output_type": "execute_result" 334 | } 335 | ], 336 | "source": [ 337 | "std" 338 | ] 339 | }, 340 | { 341 | "cell_type": "code", 342 | "execution_count": 19, 343 | "id": "ecdec468-346f-4383-8ccb-526aa4a6a0cf", 344 | "metadata": {}, 345 | "outputs": [], 346 | "source": [ 347 | "z_scores = (data - mean) / std" 348 | ] 349 | }, 350 | { 351 | "cell_type": "code", 352 | "execution_count": 20, 353 | "id": "8a3f41f4-4353-4f42-97ba-9551524caa26", 354 | "metadata": {}, 355 | "outputs": [ 356 | { 357 | "data": { 358 | "text/plain": [ 359 | "array([-0.71836562, -0.66564154, -0.6392795 , -0.58655542, -0.50746929,\n", 360 | " -0.322935 , 1.65421809, 1.78602829])" 361 | ] 362 | }, 363 | "execution_count": 20, 364 | "metadata": {}, 365 | "output_type": "execute_result" 366 | } 367 | ], 368 | "source": [ 369 | "z_scores" 370 | ] 371 | }, 372 | { 373 | "cell_type": "code", 374 | "execution_count": 27, 375 | "id": "104fa3fb-1f3a-4c86-8295-58ed55437a19", 376 | "metadata": {}, 377 | "outputs": [ 378 | { 379 | "data": { 380 | "text/plain": [ 381 | "array([False, False, False, False, False, False, True, True])" 382 | ] 383 | }, 384 | "execution_count": 27, 385 | "metadata": {}, 386 | "output_type": "execute_result" 387 | } 388 | ], 389 | "source": [ 390 | "np.abs(z_scores) > 1" 391 | ] 392 | }, 393 | { 394 | "cell_type": "code", 395 | "execution_count": 31, 396 | "id": "b313bd09-9756-477d-b31f-f0789a0ffa02", 397 | "metadata": {}, 398 | "outputs": [], 399 | "source": [ 400 | "outliers = data[np.abs(z_scores) > 1]" 401 | ] 402 | }, 403 | { 404 | "cell_type": "code", 405 | "execution_count": 32, 406 | "id": "9382f411-a1af-4832-8773-6d40cf825c1d", 407 | "metadata": {}, 408 | "outputs": [ 409 | { 410 | "data": { 411 | "text/plain": [ 412 | "array([100, 105])" 413 | ] 414 | }, 415 | "execution_count": 32, 416 | "metadata": {}, 417 | "output_type": "execute_result" 418 | } 419 | ], 420 | "source": [ 421 | "outliers" 422 | ] 423 | }, 424 | { 425 | "cell_type": "code", 426 | "execution_count": 35, 427 | "id": "d29b964f-e793-476f-8769-d3682fb1f722", 428 | "metadata": {}, 429 | "outputs": [], 430 | "source": [ 431 | "# math equations" 432 | ] 433 | }, 434 | { 435 | "cell_type": "code", 436 | "execution_count": 36, 437 | "id": "85dde08e-5413-4f15-90b1-2288aed891f0", 438 | "metadata": {}, 439 | "outputs": [], 440 | "source": [ 441 | "# Solve 2x + 3y = 8 and 5x + 7y = 19" 442 | ] 443 | }, 444 | { 445 | "cell_type": "code", 446 | "execution_count": 37, 447 | "id": "9273c982-8e1f-431b-9483-d180845a611b", 448 | "metadata": {}, 449 | "outputs": [], 450 | "source": [ 451 | "# Coefficients matrix\n", 452 | "A = np.array([[2, 3], [5, 7]])" 453 | ] 454 | }, 455 | { 456 | "cell_type": "code", 457 | "execution_count": 38, 458 | "id": "9ab5dfce-3da3-47c1-b2c8-33534b8ca273", 459 | "metadata": {}, 460 | "outputs": [], 461 | "source": [ 462 | "# Constants matrix\n", 463 | "b = np.array([8, 19])" 464 | ] 465 | }, 466 | { 467 | "cell_type": "code", 468 | "execution_count": 39, 469 | "id": "cd363c3a-f124-48dd-ba10-01884419b0c1", 470 | "metadata": {}, 471 | "outputs": [], 472 | "source": [ 473 | "# Solve for x and y\n", 474 | "solution = np.linalg.solve(A, b)" 475 | ] 476 | }, 477 | { 478 | "cell_type": "code", 479 | "execution_count": 40, 480 | "id": "5df130f7-c9cb-4386-8c0c-0bc49a298cfc", 481 | "metadata": {}, 482 | "outputs": [ 483 | { 484 | "data": { 485 | "text/plain": [ 486 | "array([1., 2.])" 487 | ] 488 | }, 489 | "execution_count": 40, 490 | "metadata": {}, 491 | "output_type": "execute_result" 492 | } 493 | ], 494 | "source": [ 495 | "solution" 496 | ] 497 | }, 498 | { 499 | "cell_type": "code", 500 | "execution_count": 41, 501 | "id": "3009a2b7-24b3-453d-b826-474fc5325fbe", 502 | "metadata": {}, 503 | "outputs": [], 504 | "source": [ 505 | "# data analysis" 506 | ] 507 | }, 508 | { 509 | "cell_type": "code", 510 | "execution_count": 42, 511 | "id": "3256f315-c092-4513-a216-1b9de7e0d277", 512 | "metadata": {}, 513 | "outputs": [], 514 | "source": [ 515 | "# Stock prices over 5 days\n", 516 | "prices = np.array([100, 102, 105, 107, 110])" 517 | ] 518 | }, 519 | { 520 | "cell_type": "code", 521 | "execution_count": 48, 522 | "id": "c20fbdc5-ab57-40ba-a956-73c54102c3c1", 523 | "metadata": {}, 524 | "outputs": [ 525 | { 526 | "data": { 527 | "text/plain": [ 528 | "array([2, 3, 2, 3])" 529 | ] 530 | }, 531 | "execution_count": 48, 532 | "metadata": {}, 533 | "output_type": "execute_result" 534 | } 535 | ], 536 | "source": [ 537 | "np.diff(prices)" 538 | ] 539 | }, 540 | { 541 | "cell_type": "code", 542 | "execution_count": 51, 543 | "id": "d4c4ab0f-cc36-45a4-ae5c-ca7995b18d2a", 544 | "metadata": {}, 545 | "outputs": [ 546 | { 547 | "data": { 548 | "text/plain": [ 549 | "array([100, 102, 105, 107])" 550 | ] 551 | }, 552 | "execution_count": 51, 553 | "metadata": {}, 554 | "output_type": "execute_result" 555 | } 556 | ], 557 | "source": [ 558 | "prices[:len(prices)-1:]" 559 | ] 560 | }, 561 | { 562 | "cell_type": "code", 563 | "execution_count": 52, 564 | "id": "19d00e9e-d786-4796-be84-de6cf5dd99c2", 565 | "metadata": {}, 566 | "outputs": [ 567 | { 568 | "data": { 569 | "text/plain": [ 570 | "array([100, 102, 105, 107])" 571 | ] 572 | }, 573 | "execution_count": 52, 574 | "metadata": {}, 575 | "output_type": "execute_result" 576 | } 577 | ], 578 | "source": [ 579 | "prices[:-1:]" 580 | ] 581 | }, 582 | { 583 | "cell_type": "code", 584 | "execution_count": 53, 585 | "id": "1b28d184-4bc4-4a56-81d4-a85d0e0a8930", 586 | "metadata": {}, 587 | "outputs": [ 588 | { 589 | "data": { 590 | "text/plain": [ 591 | "array([0.02 , 0.02941176, 0.01904762, 0.02803738])" 592 | ] 593 | }, 594 | "execution_count": 53, 595 | "metadata": {}, 596 | "output_type": "execute_result" 597 | } 598 | ], 599 | "source": [ 600 | "np.diff(prices) / prices[:-1]" 601 | ] 602 | }, 603 | { 604 | "cell_type": "code", 605 | "execution_count": 54, 606 | "id": "07d1d026-8960-4338-b46d-8c1d43eaed81", 607 | "metadata": {}, 608 | "outputs": [], 609 | "source": [ 610 | "returns = np.diff(prices) / prices[:-1] * 100" 611 | ] 612 | }, 613 | { 614 | "cell_type": "code", 615 | "execution_count": 55, 616 | "id": "d4cf197f-0f40-46cb-a992-3a82b4a91d58", 617 | "metadata": {}, 618 | "outputs": [ 619 | { 620 | "data": { 621 | "text/plain": [ 622 | "array([2. , 2.94117647, 1.9047619 , 2.80373832])" 623 | ] 624 | }, 625 | "execution_count": 55, 626 | "metadata": {}, 627 | "output_type": "execute_result" 628 | } 629 | ], 630 | "source": [ 631 | "returns" 632 | ] 633 | }, 634 | { 635 | "cell_type": "code", 636 | "execution_count": null, 637 | "id": "19720d75-517e-4bb1-8fb5-15538cade503", 638 | "metadata": {}, 639 | "outputs": [], 640 | "source": [] 641 | } 642 | ], 643 | "metadata": { 644 | "kernelspec": { 645 | "display_name": "Python 3 (ipykernel)", 646 | "language": "python", 647 | "name": "python3" 648 | }, 649 | "language_info": { 650 | "codemirror_mode": { 651 | "name": "ipython", 652 | "version": 3 653 | }, 654 | "file_extension": ".py", 655 | "mimetype": "text/x-python", 656 | "name": "python", 657 | "nbconvert_exporter": "python", 658 | "pygments_lexer": "ipython3", 659 | "version": "3.12.7" 660 | } 661 | }, 662 | "nbformat": 4, 663 | "nbformat_minor": 5 664 | } 665 | -------------------------------------------------------------------------------- /4-IntroToPandas.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 1, 6 | "id": "23d1ec8c-a21d-42a4-8d58-5965122143f9", 7 | "metadata": {}, 8 | "outputs": [], 9 | "source": [ 10 | "import numpy as np\n", 11 | "import pandas as pd" 12 | ] 13 | }, 14 | { 15 | "cell_type": "code", 16 | "execution_count": 2, 17 | "id": "af91d4f5-f4ea-4a8b-9d25-daeda74a11fb", 18 | "metadata": {}, 19 | "outputs": [], 20 | "source": [ 21 | "grades = {\"Atil\" : 50, \"James\" : 60, \"Lars\" : 30}" 22 | ] 23 | }, 24 | { 25 | "cell_type": "code", 26 | "execution_count": 3, 27 | "id": "2ff32a67-6dc8-4072-9886-246df48cc766", 28 | "metadata": {}, 29 | "outputs": [ 30 | { 31 | "data": { 32 | "text/plain": [ 33 | "Atil 50\n", 34 | "James 60\n", 35 | "Lars 30\n", 36 | "dtype: int64" 37 | ] 38 | }, 39 | "execution_count": 3, 40 | "metadata": {}, 41 | "output_type": "execute_result" 42 | } 43 | ], 44 | "source": [ 45 | "pd.Series(grades)" 46 | ] 47 | }, 48 | { 49 | "cell_type": "code", 50 | "execution_count": 4, 51 | "id": "a1692e7c-c1a7-43d4-9244-fcd1c3100900", 52 | "metadata": {}, 53 | "outputs": [], 54 | "source": [ 55 | "names = [\"Atil\", \"James\", \"Lars\"]\n", 56 | "grades = [50,60,30]" 57 | ] 58 | }, 59 | { 60 | "cell_type": "code", 61 | "execution_count": 5, 62 | "id": "7e321ef4-9c4a-42b7-94ab-f6aaf4dabf45", 63 | "metadata": {}, 64 | "outputs": [ 65 | { 66 | "data": { 67 | "text/plain": [ 68 | "0 Atil\n", 69 | "1 James\n", 70 | "2 Lars\n", 71 | "dtype: object" 72 | ] 73 | }, 74 | "execution_count": 5, 75 | "metadata": {}, 76 | "output_type": "execute_result" 77 | } 78 | ], 79 | "source": [ 80 | "pd.Series(names)" 81 | ] 82 | }, 83 | { 84 | "cell_type": "code", 85 | "execution_count": 6, 86 | "id": "2b205ae0-9a96-4159-86ae-792c5055dd58", 87 | "metadata": {}, 88 | "outputs": [ 89 | { 90 | "data": { 91 | "text/plain": [ 92 | "0 50\n", 93 | "1 60\n", 94 | "2 30\n", 95 | "dtype: int64" 96 | ] 97 | }, 98 | "execution_count": 6, 99 | "metadata": {}, 100 | "output_type": "execute_result" 101 | } 102 | ], 103 | "source": [ 104 | "pd.Series(grades)" 105 | ] 106 | }, 107 | { 108 | "cell_type": "code", 109 | "execution_count": 8, 110 | "id": "7fed230e-a1dc-4107-bd5d-ad5fac6f9222", 111 | "metadata": {}, 112 | "outputs": [ 113 | { 114 | "data": { 115 | "text/plain": [ 116 | "Atil 50\n", 117 | "James 60\n", 118 | "Lars 30\n", 119 | "dtype: int64" 120 | ] 121 | }, 122 | "execution_count": 8, 123 | "metadata": {}, 124 | "output_type": "execute_result" 125 | } 126 | ], 127 | "source": [ 128 | "pd.Series(grades, names)" 129 | ] 130 | }, 131 | { 132 | "cell_type": "code", 133 | "execution_count": 9, 134 | "id": "df5075ea-cb92-40f2-8b4f-26fdf0a5e59b", 135 | "metadata": {}, 136 | "outputs": [ 137 | { 138 | "data": { 139 | "text/plain": [ 140 | "Atil 50\n", 141 | "James 60\n", 142 | "Lars 30\n", 143 | "dtype: int64" 144 | ] 145 | }, 146 | "execution_count": 9, 147 | "metadata": {}, 148 | "output_type": "execute_result" 149 | } 150 | ], 151 | "source": [ 152 | "pd.Series(data=grades, index=names)" 153 | ] 154 | }, 155 | { 156 | "cell_type": "code", 157 | "execution_count": 12, 158 | "id": "ac4c4496-e0dc-48d2-b43d-1272de5c4c55", 159 | "metadata": {}, 160 | "outputs": [], 161 | "source": [ 162 | "# with numpy" 163 | ] 164 | }, 165 | { 166 | "cell_type": "code", 167 | "execution_count": 13, 168 | "id": "3815d62c-e2a1-4967-b16a-24253772f37e", 169 | "metadata": {}, 170 | "outputs": [], 171 | "source": [ 172 | "numpy_array = np.array([50,40,30,20])" 173 | ] 174 | }, 175 | { 176 | "cell_type": "code", 177 | "execution_count": 14, 178 | "id": "75a32580-c465-4b56-89bc-bc14e67c4e33", 179 | "metadata": {}, 180 | "outputs": [ 181 | { 182 | "data": { 183 | "text/plain": [ 184 | "0 50\n", 185 | "1 40\n", 186 | "2 30\n", 187 | "3 20\n", 188 | "dtype: int64" 189 | ] 190 | }, 191 | "execution_count": 14, 192 | "metadata": {}, 193 | "output_type": "execute_result" 194 | } 195 | ], 196 | "source": [ 197 | "pd.Series(numpy_array)" 198 | ] 199 | }, 200 | { 201 | "cell_type": "code", 202 | "execution_count": 15, 203 | "id": "637e26d3-384e-4dc9-92e6-4789faf19737", 204 | "metadata": {}, 205 | "outputs": [], 206 | "source": [ 207 | "#arithmetic" 208 | ] 209 | }, 210 | { 211 | "cell_type": "code", 212 | "execution_count": 16, 213 | "id": "fb84603e-bbbe-4616-b4f6-6c3c910201ac", 214 | "metadata": {}, 215 | "outputs": [], 216 | "source": [ 217 | "contest_result = pd.Series([10,5,100],[\"Atil\",\"James\",\"Lars\"])" 218 | ] 219 | }, 220 | { 221 | "cell_type": "code", 222 | "execution_count": 17, 223 | "id": "8e0a72d5-05b4-40ca-8b8c-b7bf071dbbcf", 224 | "metadata": {}, 225 | "outputs": [], 226 | "source": [ 227 | "contest_result2 = pd.Series([20,50,10],[\"Atil\",\"James\",\"Lars\"])" 228 | ] 229 | }, 230 | { 231 | "cell_type": "code", 232 | "execution_count": 18, 233 | "id": "b23585b5-3bcf-4660-8d20-62df036e057b", 234 | "metadata": {}, 235 | "outputs": [ 236 | { 237 | "data": { 238 | "text/plain": [ 239 | "10" 240 | ] 241 | }, 242 | "execution_count": 18, 243 | "metadata": {}, 244 | "output_type": "execute_result" 245 | } 246 | ], 247 | "source": [ 248 | "contest_result[\"Atil\"]" 249 | ] 250 | }, 251 | { 252 | "cell_type": "code", 253 | "execution_count": 20, 254 | "id": "a71c3814-c119-4d44-b4b8-f1dce7772844", 255 | "metadata": {}, 256 | "outputs": [ 257 | { 258 | "data": { 259 | "text/plain": [ 260 | "50" 261 | ] 262 | }, 263 | "execution_count": 20, 264 | "metadata": {}, 265 | "output_type": "execute_result" 266 | } 267 | ], 268 | "source": [ 269 | "contest_result2[\"James\"]" 270 | ] 271 | }, 272 | { 273 | "cell_type": "code", 274 | "execution_count": 21, 275 | "id": "1c0fcf04-3499-482f-80f3-73c208ec0b7b", 276 | "metadata": {}, 277 | "outputs": [], 278 | "source": [ 279 | "final_result = contest_result + contest_result2" 280 | ] 281 | }, 282 | { 283 | "cell_type": "code", 284 | "execution_count": 22, 285 | "id": "58435907-ea8e-4006-ac86-dde519e69995", 286 | "metadata": {}, 287 | "outputs": [ 288 | { 289 | "data": { 290 | "text/plain": [ 291 | "Atil 30\n", 292 | "James 55\n", 293 | "Lars 110\n", 294 | "dtype: int64" 295 | ] 296 | }, 297 | "execution_count": 22, 298 | "metadata": {}, 299 | "output_type": "execute_result" 300 | } 301 | ], 302 | "source": [ 303 | "final_result" 304 | ] 305 | }, 306 | { 307 | "cell_type": "code", 308 | "execution_count": 28, 309 | "id": "51b27973-0dd6-4538-9d57-76b968ec1d42", 310 | "metadata": {}, 311 | "outputs": [ 312 | { 313 | "data": { 314 | "text/plain": [ 315 | "Atil 200\n", 316 | "James 250\n", 317 | "Lars 1000\n", 318 | "dtype: int64" 319 | ] 320 | }, 321 | "execution_count": 28, 322 | "metadata": {}, 323 | "output_type": "execute_result" 324 | } 325 | ], 326 | "source": [ 327 | "contest_result * contest_result2" 328 | ] 329 | }, 330 | { 331 | "cell_type": "code", 332 | "execution_count": 29, 333 | "id": "196dd510-5972-4326-ba45-4ff5c52ded15", 334 | "metadata": {}, 335 | "outputs": [ 336 | { 337 | "data": { 338 | "text/plain": [ 339 | "Atil -10\n", 340 | "James -45\n", 341 | "Lars 90\n", 342 | "dtype: int64" 343 | ] 344 | }, 345 | "execution_count": 29, 346 | "metadata": {}, 347 | "output_type": "execute_result" 348 | } 349 | ], 350 | "source": [ 351 | "contest_result - contest_result2" 352 | ] 353 | }, 354 | { 355 | "cell_type": "code", 356 | "execution_count": 30, 357 | "id": "250259b1-01e7-4939-b220-2b1a20bc8358", 358 | "metadata": {}, 359 | "outputs": [ 360 | { 361 | "data": { 362 | "text/plain": [ 363 | "Atil 0.5\n", 364 | "James 0.1\n", 365 | "Lars 10.0\n", 366 | "dtype: float64" 367 | ] 368 | }, 369 | "execution_count": 30, 370 | "metadata": {}, 371 | "output_type": "execute_result" 372 | } 373 | ], 374 | "source": [ 375 | "contest_result / contest_result2" 376 | ] 377 | }, 378 | { 379 | "cell_type": "code", 380 | "execution_count": 31, 381 | "id": "1f08ec1e-e86b-44c4-8cf4-3d825fa2f798", 382 | "metadata": {}, 383 | "outputs": [], 384 | "source": [ 385 | "# if indices are different" 386 | ] 387 | }, 388 | { 389 | "cell_type": "code", 390 | "execution_count": 32, 391 | "id": "ae2dc7ac-49e0-4ee6-b332-45cc26c9a63c", 392 | "metadata": {}, 393 | "outputs": [], 394 | "source": [ 395 | "different_series = pd.Series([20,30,40,50],[\"a\",\"b\",\"c\",\"d\"])" 396 | ] 397 | }, 398 | { 399 | "cell_type": "code", 400 | "execution_count": 33, 401 | "id": "0f28aed8-e468-4d77-bf28-27c5c25a47f4", 402 | "metadata": {}, 403 | "outputs": [], 404 | "source": [ 405 | "different_series_2 = pd.Series([10,5,3,1],[\"a\",\"c\",\"f\",\"g\"])" 406 | ] 407 | }, 408 | { 409 | "cell_type": "code", 410 | "execution_count": 34, 411 | "id": "0fbe6585-8637-4cc5-acc8-e670ce193cb9", 412 | "metadata": {}, 413 | "outputs": [ 414 | { 415 | "data": { 416 | "text/plain": [ 417 | "a 30.0\n", 418 | "b NaN\n", 419 | "c 45.0\n", 420 | "d NaN\n", 421 | "f NaN\n", 422 | "g NaN\n", 423 | "dtype: float64" 424 | ] 425 | }, 426 | "execution_count": 34, 427 | "metadata": {}, 428 | "output_type": "execute_result" 429 | } 430 | ], 431 | "source": [ 432 | "different_series + different_series_2" 433 | ] 434 | }, 435 | { 436 | "cell_type": "code", 437 | "execution_count": null, 438 | "id": "d1e61ce6-7028-447b-9687-a3616f3aebdd", 439 | "metadata": {}, 440 | "outputs": [], 441 | "source": [] 442 | }, 443 | { 444 | "cell_type": "code", 445 | "execution_count": null, 446 | "id": "1e6a8522-9530-4366-aa1c-7891c72c187f", 447 | "metadata": {}, 448 | "outputs": [], 449 | "source": [] 450 | } 451 | ], 452 | "metadata": { 453 | "kernelspec": { 454 | "display_name": "Python 3 (ipykernel)", 455 | "language": "python", 456 | "name": "python3" 457 | }, 458 | "language_info": { 459 | "codemirror_mode": { 460 | "name": "ipython", 461 | "version": 3 462 | }, 463 | "file_extension": ".py", 464 | "mimetype": "text/x-python", 465 | "name": "python", 466 | "nbconvert_exporter": "python", 467 | "pygments_lexer": "ipython3", 468 | "version": "3.12.7" 469 | } 470 | }, 471 | "nbformat": 4, 472 | "nbformat_minor": 5 473 | } 474 | -------------------------------------------------------------------------------- /5-IntroToDataFrames.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 1, 6 | "id": "fb4d27a5-0b89-48a5-8709-58c043eed003", 7 | "metadata": {}, 8 | "outputs": [], 9 | "source": [ 10 | "import pandas as pd" 11 | ] 12 | }, 13 | { 14 | "cell_type": "code", 15 | "execution_count": 2, 16 | "id": "e4bf5df2-7b4b-43a6-8b7d-3a8d22338b68", 17 | "metadata": {}, 18 | "outputs": [], 19 | "source": [ 20 | "import numpy as np" 21 | ] 22 | }, 23 | { 24 | "cell_type": "code", 25 | "execution_count": 4, 26 | "id": "ad99a045-88b7-48a1-a5f4-05250b69bcda", 27 | "metadata": {}, 28 | "outputs": [], 29 | "source": [ 30 | "data = np.random.randn(4,3)" 31 | ] 32 | }, 33 | { 34 | "cell_type": "code", 35 | "execution_count": 5, 36 | "id": "2cebcf7a-eb73-45ca-a930-66844ebb4c85", 37 | "metadata": {}, 38 | "outputs": [ 39 | { 40 | "data": { 41 | "text/plain": [ 42 | "array([[ 0.3004821 , 0.16147545, 0.18858324],\n", 43 | " [-0.33678892, 0.0432555 , 0.91340869],\n", 44 | " [ 0.27501465, 1.64987553, -0.30196493],\n", 45 | " [ 0.47401973, -1.33659515, 1.79410449]])" 46 | ] 47 | }, 48 | "execution_count": 5, 49 | "metadata": {}, 50 | "output_type": "execute_result" 51 | } 52 | ], 53 | "source": [ 54 | "data" 55 | ] 56 | }, 57 | { 58 | "cell_type": "code", 59 | "execution_count": 6, 60 | "id": "3a982c95-4ab3-452a-b5f0-1079c631a196", 61 | "metadata": {}, 62 | "outputs": [], 63 | "source": [ 64 | "data_frame = pd.DataFrame(data)" 65 | ] 66 | }, 67 | { 68 | "cell_type": "code", 69 | "execution_count": 7, 70 | "id": "c626d8ef-e786-456b-8a9e-2df6ad5ddd5a", 71 | "metadata": {}, 72 | "outputs": [ 73 | { 74 | "data": { 75 | "text/html": [ 76 | "
\n", 77 | "\n", 90 | "\n", 91 | " \n", 92 | " \n", 93 | " \n", 94 | " \n", 95 | " \n", 96 | " \n", 97 | " \n", 98 | " \n", 99 | " \n", 100 | " \n", 101 | " \n", 102 | " \n", 103 | " \n", 104 | " \n", 105 | " \n", 106 | " \n", 107 | " \n", 108 | " \n", 109 | " \n", 110 | " \n", 111 | " \n", 112 | " \n", 113 | " \n", 114 | " \n", 115 | " \n", 116 | " \n", 117 | " \n", 118 | " \n", 119 | " \n", 120 | " \n", 121 | " \n", 122 | " \n", 123 | " \n", 124 | " \n", 125 | "
012
00.3004820.1614750.188583
1-0.3367890.0432550.913409
20.2750151.649876-0.301965
30.474020-1.3365951.794104
\n", 126 | "
" 127 | ], 128 | "text/plain": [ 129 | " 0 1 2\n", 130 | "0 0.300482 0.161475 0.188583\n", 131 | "1 -0.336789 0.043255 0.913409\n", 132 | "2 0.275015 1.649876 -0.301965\n", 133 | "3 0.474020 -1.336595 1.794104" 134 | ] 135 | }, 136 | "execution_count": 7, 137 | "metadata": {}, 138 | "output_type": "execute_result" 139 | } 140 | ], 141 | "source": [ 142 | "data_frame" 143 | ] 144 | }, 145 | { 146 | "cell_type": "code", 147 | "execution_count": 8, 148 | "id": "7a6d22b0-2f1e-4f3e-81a5-3ad01abc8f11", 149 | "metadata": {}, 150 | "outputs": [ 151 | { 152 | "data": { 153 | "text/plain": [ 154 | "pandas.core.frame.DataFrame" 155 | ] 156 | }, 157 | "execution_count": 8, 158 | "metadata": {}, 159 | "output_type": "execute_result" 160 | } 161 | ], 162 | "source": [ 163 | "type(data_frame)" 164 | ] 165 | }, 166 | { 167 | "cell_type": "code", 168 | "execution_count": 9, 169 | "id": "40edb828-6209-44f5-836f-26aeafee9b99", 170 | "metadata": {}, 171 | "outputs": [ 172 | { 173 | "data": { 174 | "text/plain": [ 175 | "pandas.core.series.Series" 176 | ] 177 | }, 178 | "execution_count": 9, 179 | "metadata": {}, 180 | "output_type": "execute_result" 181 | } 182 | ], 183 | "source": [ 184 | "type(data_frame[0])" 185 | ] 186 | }, 187 | { 188 | "cell_type": "code", 189 | "execution_count": 10, 190 | "id": "ae7d6353-4dcf-4dad-938a-daf83726e537", 191 | "metadata": {}, 192 | "outputs": [], 193 | "source": [ 194 | "new_df = pd.DataFrame(data,index=[\"Atil\",\"Zeynep\",\"Atlas\",\"Mehmet\"],columns = [\"Salary\",\"Age\",\"Seniority\"])" 195 | ] 196 | }, 197 | { 198 | "cell_type": "code", 199 | "execution_count": 11, 200 | "id": "469beed2-06c2-4dff-b3cc-76f7129d5ab3", 201 | "metadata": {}, 202 | "outputs": [ 203 | { 204 | "data": { 205 | "text/html": [ 206 | "
\n", 207 | "\n", 220 | "\n", 221 | " \n", 222 | " \n", 223 | " \n", 224 | " \n", 225 | " \n", 226 | " \n", 227 | " \n", 228 | " \n", 229 | " \n", 230 | " \n", 231 | " \n", 232 | " \n", 233 | " \n", 234 | " \n", 235 | " \n", 236 | " \n", 237 | " \n", 238 | " \n", 239 | " \n", 240 | " \n", 241 | " \n", 242 | " \n", 243 | " \n", 244 | " \n", 245 | " \n", 246 | " \n", 247 | " \n", 248 | " \n", 249 | " \n", 250 | " \n", 251 | " \n", 252 | " \n", 253 | " \n", 254 | " \n", 255 | "
SalaryAgeSeniority
Atil0.3004820.1614750.188583
Zeynep-0.3367890.0432550.913409
Atlas0.2750151.649876-0.301965
Mehmet0.474020-1.3365951.794104
\n", 256 | "
" 257 | ], 258 | "text/plain": [ 259 | " Salary Age Seniority\n", 260 | "Atil 0.300482 0.161475 0.188583\n", 261 | "Zeynep -0.336789 0.043255 0.913409\n", 262 | "Atlas 0.275015 1.649876 -0.301965\n", 263 | "Mehmet 0.474020 -1.336595 1.794104" 264 | ] 265 | }, 266 | "execution_count": 11, 267 | "metadata": {}, 268 | "output_type": "execute_result" 269 | } 270 | ], 271 | "source": [ 272 | "new_df" 273 | ] 274 | }, 275 | { 276 | "cell_type": "code", 277 | "execution_count": 12, 278 | "id": "2651f0ac-813f-46ce-b689-4f3512a67f7c", 279 | "metadata": {}, 280 | "outputs": [ 281 | { 282 | "data": { 283 | "text/plain": [ 284 | "Atil 0.161475\n", 285 | "Zeynep 0.043255\n", 286 | "Atlas 1.649876\n", 287 | "Mehmet -1.336595\n", 288 | "Name: Age, dtype: float64" 289 | ] 290 | }, 291 | "execution_count": 12, 292 | "metadata": {}, 293 | "output_type": "execute_result" 294 | } 295 | ], 296 | "source": [ 297 | "new_df[\"Age\"]" 298 | ] 299 | }, 300 | { 301 | "cell_type": "code", 302 | "execution_count": 13, 303 | "id": "ac07ca3d-7d94-4e49-a4d6-0e51f4db0eba", 304 | "metadata": {}, 305 | "outputs": [ 306 | { 307 | "data": { 308 | "text/plain": [ 309 | "Atil 0.300482\n", 310 | "Zeynep -0.336789\n", 311 | "Atlas 0.275015\n", 312 | "Mehmet 0.474020\n", 313 | "Name: Salary, dtype: float64" 314 | ] 315 | }, 316 | "execution_count": 13, 317 | "metadata": {}, 318 | "output_type": "execute_result" 319 | } 320 | ], 321 | "source": [ 322 | "new_df[\"Salary\"]" 323 | ] 324 | }, 325 | { 326 | "cell_type": "code", 327 | "execution_count": 14, 328 | "id": "12b66c00-3245-434d-ae2c-58ea8ef5b6ba", 329 | "metadata": {}, 330 | "outputs": [ 331 | { 332 | "data": { 333 | "text/html": [ 334 | "
\n", 335 | "\n", 348 | "\n", 349 | " \n", 350 | " \n", 351 | " \n", 352 | " \n", 353 | " \n", 354 | " \n", 355 | " \n", 356 | " \n", 357 | " \n", 358 | " \n", 359 | " \n", 360 | " \n", 361 | " \n", 362 | " \n", 363 | " \n", 364 | " \n", 365 | " \n", 366 | " \n", 367 | " \n", 368 | " \n", 369 | " \n", 370 | " \n", 371 | " \n", 372 | " \n", 373 | " \n", 374 | " \n", 375 | " \n", 376 | " \n", 377 | " \n", 378 | "
SalaryAge
Atil0.3004820.161475
Zeynep-0.3367890.043255
Atlas0.2750151.649876
Mehmet0.474020-1.336595
\n", 379 | "
" 380 | ], 381 | "text/plain": [ 382 | " Salary Age\n", 383 | "Atil 0.300482 0.161475\n", 384 | "Zeynep -0.336789 0.043255\n", 385 | "Atlas 0.275015 1.649876\n", 386 | "Mehmet 0.474020 -1.336595" 387 | ] 388 | }, 389 | "execution_count": 14, 390 | "metadata": {}, 391 | "output_type": "execute_result" 392 | } 393 | ], 394 | "source": [ 395 | "new_df[[\"Salary\",\"Age\"]]" 396 | ] 397 | }, 398 | { 399 | "cell_type": "code", 400 | "execution_count": 16, 401 | "id": "8150b626-c434-4f51-9972-3a77779f7ceb", 402 | "metadata": {}, 403 | "outputs": [ 404 | { 405 | "data": { 406 | "text/plain": [ 407 | "Salary 0.300482\n", 408 | "Age 0.161475\n", 409 | "Seniority 0.188583\n", 410 | "Name: Atil, dtype: float64" 411 | ] 412 | }, 413 | "execution_count": 16, 414 | "metadata": {}, 415 | "output_type": "execute_result" 416 | } 417 | ], 418 | "source": [ 419 | "new_df.loc[\"Atil\"]" 420 | ] 421 | }, 422 | { 423 | "cell_type": "code", 424 | "execution_count": 17, 425 | "id": "770fac31-a010-4609-b833-c73674a58ad7", 426 | "metadata": {}, 427 | "outputs": [ 428 | { 429 | "data": { 430 | "text/plain": [ 431 | "Salary 0.300482\n", 432 | "Age 0.161475\n", 433 | "Seniority 0.188583\n", 434 | "Name: Atil, dtype: float64" 435 | ] 436 | }, 437 | "execution_count": 17, 438 | "metadata": {}, 439 | "output_type": "execute_result" 440 | } 441 | ], 442 | "source": [ 443 | "new_df.iloc[0]" 444 | ] 445 | }, 446 | { 447 | "cell_type": "code", 448 | "execution_count": 18, 449 | "id": "aff2262a-0c9a-46ef-ae3a-2981843fb2c3", 450 | "metadata": {}, 451 | "outputs": [ 452 | { 453 | "data": { 454 | "text/plain": [ 455 | "Salary -0.336789\n", 456 | "Age 0.043255\n", 457 | "Seniority 0.913409\n", 458 | "Name: Zeynep, dtype: float64" 459 | ] 460 | }, 461 | "execution_count": 18, 462 | "metadata": {}, 463 | "output_type": "execute_result" 464 | } 465 | ], 466 | "source": [ 467 | "new_df.iloc[1]" 468 | ] 469 | }, 470 | { 471 | "cell_type": "code", 472 | "execution_count": 19, 473 | "id": "d96971a1-59f7-48bf-a765-0ca2f3cd37e0", 474 | "metadata": {}, 475 | "outputs": [ 476 | { 477 | "data": { 478 | "text/html": [ 479 | "
\n", 480 | "\n", 493 | "\n", 494 | " \n", 495 | " \n", 496 | " \n", 497 | " \n", 498 | " \n", 499 | " \n", 500 | " \n", 501 | " \n", 502 | " \n", 503 | " \n", 504 | " \n", 505 | " \n", 506 | " \n", 507 | " \n", 508 | " \n", 509 | " \n", 510 | " \n", 511 | " \n", 512 | " \n", 513 | " \n", 514 | " \n", 515 | " \n", 516 | " \n", 517 | " \n", 518 | " \n", 519 | " \n", 520 | " \n", 521 | " \n", 522 | " \n", 523 | " \n", 524 | " \n", 525 | " \n", 526 | " \n", 527 | " \n", 528 | "
SalaryAgeSeniority
Atil0.3004820.1614750.188583
Zeynep-0.3367890.0432550.913409
Atlas0.2750151.649876-0.301965
Mehmet0.474020-1.3365951.794104
\n", 529 | "
" 530 | ], 531 | "text/plain": [ 532 | " Salary Age Seniority\n", 533 | "Atil 0.300482 0.161475 0.188583\n", 534 | "Zeynep -0.336789 0.043255 0.913409\n", 535 | "Atlas 0.275015 1.649876 -0.301965\n", 536 | "Mehmet 0.474020 -1.336595 1.794104" 537 | ] 538 | }, 539 | "execution_count": 19, 540 | "metadata": {}, 541 | "output_type": "execute_result" 542 | } 543 | ], 544 | "source": [ 545 | "new_df" 546 | ] 547 | }, 548 | { 549 | "cell_type": "code", 550 | "execution_count": 20, 551 | "id": "49ef5767-4cc4-4d1b-b484-aea1c7e3a850", 552 | "metadata": {}, 553 | "outputs": [], 554 | "source": [ 555 | "new_df[\"Extra\"] = 10" 556 | ] 557 | }, 558 | { 559 | "cell_type": "code", 560 | "execution_count": 21, 561 | "id": "6b11f54d-5269-43dd-be52-88aa5700183f", 562 | "metadata": {}, 563 | "outputs": [ 564 | { 565 | "data": { 566 | "text/html": [ 567 | "
\n", 568 | "\n", 581 | "\n", 582 | " \n", 583 | " \n", 584 | " \n", 585 | " \n", 586 | " \n", 587 | " \n", 588 | " \n", 589 | " \n", 590 | " \n", 591 | " \n", 592 | " \n", 593 | " \n", 594 | " \n", 595 | " \n", 596 | " \n", 597 | " \n", 598 | " \n", 599 | " \n", 600 | " \n", 601 | " \n", 602 | " \n", 603 | " \n", 604 | " \n", 605 | " \n", 606 | " \n", 607 | " \n", 608 | " \n", 609 | " \n", 610 | " \n", 611 | " \n", 612 | " \n", 613 | " \n", 614 | " \n", 615 | " \n", 616 | " \n", 617 | " \n", 618 | " \n", 619 | " \n", 620 | " \n", 621 | "
SalaryAgeSeniorityExtra
Atil0.3004820.1614750.18858310
Zeynep-0.3367890.0432550.91340910
Atlas0.2750151.649876-0.30196510
Mehmet0.474020-1.3365951.79410410
\n", 622 | "
" 623 | ], 624 | "text/plain": [ 625 | " Salary Age Seniority Extra\n", 626 | "Atil 0.300482 0.161475 0.188583 10\n", 627 | "Zeynep -0.336789 0.043255 0.913409 10\n", 628 | "Atlas 0.275015 1.649876 -0.301965 10\n", 629 | "Mehmet 0.474020 -1.336595 1.794104 10" 630 | ] 631 | }, 632 | "execution_count": 21, 633 | "metadata": {}, 634 | "output_type": "execute_result" 635 | } 636 | ], 637 | "source": [ 638 | "new_df" 639 | ] 640 | }, 641 | { 642 | "cell_type": "code", 643 | "execution_count": 22, 644 | "id": "c8a88b85-17b0-484d-8b35-7da0fdb8bcc4", 645 | "metadata": {}, 646 | "outputs": [ 647 | { 648 | "data": { 649 | "text/html": [ 650 | "
\n", 651 | "\n", 664 | "\n", 665 | " \n", 666 | " \n", 667 | " \n", 668 | " \n", 669 | " \n", 670 | " \n", 671 | " \n", 672 | " \n", 673 | " \n", 674 | " \n", 675 | " \n", 676 | " \n", 677 | " \n", 678 | " \n", 679 | " \n", 680 | " \n", 681 | " \n", 682 | " \n", 683 | " \n", 684 | " \n", 685 | " \n", 686 | " \n", 687 | " \n", 688 | " \n", 689 | " \n", 690 | " \n", 691 | " \n", 692 | " \n", 693 | " \n", 694 | " \n", 695 | " \n", 696 | " \n", 697 | " \n", 698 | " \n", 699 | "
SalaryAgeSeniority
Atil0.3004820.1614750.188583
Zeynep-0.3367890.0432550.913409
Atlas0.2750151.649876-0.301965
Mehmet0.474020-1.3365951.794104
\n", 700 | "
" 701 | ], 702 | "text/plain": [ 703 | " Salary Age Seniority\n", 704 | "Atil 0.300482 0.161475 0.188583\n", 705 | "Zeynep -0.336789 0.043255 0.913409\n", 706 | "Atlas 0.275015 1.649876 -0.301965\n", 707 | "Mehmet 0.474020 -1.336595 1.794104" 708 | ] 709 | }, 710 | "execution_count": 22, 711 | "metadata": {}, 712 | "output_type": "execute_result" 713 | } 714 | ], 715 | "source": [ 716 | "new_df.drop(\"Extra\", axis = 1)" 717 | ] 718 | }, 719 | { 720 | "cell_type": "code", 721 | "execution_count": 23, 722 | "id": "ef32c4df-d97e-458f-8a3d-ecad21971ba7", 723 | "metadata": {}, 724 | "outputs": [ 725 | { 726 | "data": { 727 | "text/html": [ 728 | "
\n", 729 | "\n", 742 | "\n", 743 | " \n", 744 | " \n", 745 | " \n", 746 | " \n", 747 | " \n", 748 | " \n", 749 | " \n", 750 | " \n", 751 | " \n", 752 | " \n", 753 | " \n", 754 | " \n", 755 | " \n", 756 | " \n", 757 | " \n", 758 | " \n", 759 | " \n", 760 | " \n", 761 | " \n", 762 | " \n", 763 | " \n", 764 | " \n", 765 | " \n", 766 | " \n", 767 | " \n", 768 | " \n", 769 | " \n", 770 | " \n", 771 | " \n", 772 | " \n", 773 | " \n", 774 | " \n", 775 | " \n", 776 | " \n", 777 | " \n", 778 | " \n", 779 | " \n", 780 | " \n", 781 | " \n", 782 | "
SalaryAgeSeniorityExtra
Atil0.3004820.1614750.18858310
Zeynep-0.3367890.0432550.91340910
Atlas0.2750151.649876-0.30196510
Mehmet0.474020-1.3365951.79410410
\n", 783 | "
" 784 | ], 785 | "text/plain": [ 786 | " Salary Age Seniority Extra\n", 787 | "Atil 0.300482 0.161475 0.188583 10\n", 788 | "Zeynep -0.336789 0.043255 0.913409 10\n", 789 | "Atlas 0.275015 1.649876 -0.301965 10\n", 790 | "Mehmet 0.474020 -1.336595 1.794104 10" 791 | ] 792 | }, 793 | "execution_count": 23, 794 | "metadata": {}, 795 | "output_type": "execute_result" 796 | } 797 | ], 798 | "source": [ 799 | "new_df" 800 | ] 801 | }, 802 | { 803 | "cell_type": "code", 804 | "execution_count": 24, 805 | "id": "6a3d8308-03c4-4f07-80e0-2571bdbe2125", 806 | "metadata": {}, 807 | "outputs": [], 808 | "source": [ 809 | "new_df.drop(\"Extra\", axis=1, inplace=True)" 810 | ] 811 | }, 812 | { 813 | "cell_type": "code", 814 | "execution_count": 25, 815 | "id": "8231f9ec-9fab-4c94-8105-83d3b29f2dc7", 816 | "metadata": {}, 817 | "outputs": [ 818 | { 819 | "data": { 820 | "text/html": [ 821 | "
\n", 822 | "\n", 835 | "\n", 836 | " \n", 837 | " \n", 838 | " \n", 839 | " \n", 840 | " \n", 841 | " \n", 842 | " \n", 843 | " \n", 844 | " \n", 845 | " \n", 846 | " \n", 847 | " \n", 848 | " \n", 849 | " \n", 850 | " \n", 851 | " \n", 852 | " \n", 853 | " \n", 854 | " \n", 855 | " \n", 856 | " \n", 857 | " \n", 858 | " \n", 859 | " \n", 860 | " \n", 861 | " \n", 862 | " \n", 863 | " \n", 864 | " \n", 865 | " \n", 866 | " \n", 867 | " \n", 868 | " \n", 869 | " \n", 870 | "
SalaryAgeSeniority
Atil0.3004820.1614750.188583
Zeynep-0.3367890.0432550.913409
Atlas0.2750151.649876-0.301965
Mehmet0.474020-1.3365951.794104
\n", 871 | "
" 872 | ], 873 | "text/plain": [ 874 | " Salary Age Seniority\n", 875 | "Atil 0.300482 0.161475 0.188583\n", 876 | "Zeynep -0.336789 0.043255 0.913409\n", 877 | "Atlas 0.275015 1.649876 -0.301965\n", 878 | "Mehmet 0.474020 -1.336595 1.794104" 879 | ] 880 | }, 881 | "execution_count": 25, 882 | "metadata": {}, 883 | "output_type": "execute_result" 884 | } 885 | ], 886 | "source": [ 887 | "new_df" 888 | ] 889 | }, 890 | { 891 | "cell_type": "code", 892 | "execution_count": 26, 893 | "id": "908e5ffd-55ed-48b3-ba93-ab7b85d56962", 894 | "metadata": {}, 895 | "outputs": [ 896 | { 897 | "data": { 898 | "text/html": [ 899 | "
\n", 900 | "\n", 913 | "\n", 914 | " \n", 915 | " \n", 916 | " \n", 917 | " \n", 918 | " \n", 919 | " \n", 920 | " \n", 921 | " \n", 922 | " \n", 923 | " \n", 924 | " \n", 925 | " \n", 926 | " \n", 927 | " \n", 928 | " \n", 929 | " \n", 930 | " \n", 931 | " \n", 932 | " \n", 933 | " \n", 934 | " \n", 935 | " \n", 936 | " \n", 937 | " \n", 938 | " \n", 939 | " \n", 940 | " \n", 941 | " \n", 942 | "
SalaryAgeSeniority
Atil0.3004820.1614750.188583
Zeynep-0.3367890.0432550.913409
Atlas0.2750151.649876-0.301965
\n", 943 | "
" 944 | ], 945 | "text/plain": [ 946 | " Salary Age Seniority\n", 947 | "Atil 0.300482 0.161475 0.188583\n", 948 | "Zeynep -0.336789 0.043255 0.913409\n", 949 | "Atlas 0.275015 1.649876 -0.301965" 950 | ] 951 | }, 952 | "execution_count": 26, 953 | "metadata": {}, 954 | "output_type": "execute_result" 955 | } 956 | ], 957 | "source": [ 958 | "new_df.drop(\"Mehmet\", axis=0)" 959 | ] 960 | }, 961 | { 962 | "cell_type": "code", 963 | "execution_count": 27, 964 | "id": "2535f6b2-d9e7-49ef-838b-71fa8ce63367", 965 | "metadata": {}, 966 | "outputs": [ 967 | { 968 | "data": { 969 | "text/html": [ 970 | "
\n", 971 | "\n", 984 | "\n", 985 | " \n", 986 | " \n", 987 | " \n", 988 | " \n", 989 | " \n", 990 | " \n", 991 | " \n", 992 | " \n", 993 | " \n", 994 | " \n", 995 | " \n", 996 | " \n", 997 | " \n", 998 | " \n", 999 | " \n", 1000 | " \n", 1001 | " \n", 1002 | " \n", 1003 | " \n", 1004 | " \n", 1005 | " \n", 1006 | " \n", 1007 | " \n", 1008 | " \n", 1009 | " \n", 1010 | " \n", 1011 | " \n", 1012 | " \n", 1013 | " \n", 1014 | " \n", 1015 | " \n", 1016 | " \n", 1017 | " \n", 1018 | " \n", 1019 | "
SalaryAgeSeniority
Atil0.3004820.1614750.188583
Zeynep-0.3367890.0432550.913409
Atlas0.2750151.649876-0.301965
Mehmet0.474020-1.3365951.794104
\n", 1020 | "
" 1021 | ], 1022 | "text/plain": [ 1023 | " Salary Age Seniority\n", 1024 | "Atil 0.300482 0.161475 0.188583\n", 1025 | "Zeynep -0.336789 0.043255 0.913409\n", 1026 | "Atlas 0.275015 1.649876 -0.301965\n", 1027 | "Mehmet 0.474020 -1.336595 1.794104" 1028 | ] 1029 | }, 1030 | "execution_count": 27, 1031 | "metadata": {}, 1032 | "output_type": "execute_result" 1033 | } 1034 | ], 1035 | "source": [ 1036 | "new_df" 1037 | ] 1038 | }, 1039 | { 1040 | "cell_type": "code", 1041 | "execution_count": 28, 1042 | "id": "70b2482d-fd9e-4f75-8621-fd4d8e06fb59", 1043 | "metadata": {}, 1044 | "outputs": [ 1045 | { 1046 | "data": { 1047 | "text/plain": [ 1048 | "Salary 0.275015\n", 1049 | "Age 1.649876\n", 1050 | "Seniority -0.301965\n", 1051 | "Name: Atlas, dtype: float64" 1052 | ] 1053 | }, 1054 | "execution_count": 28, 1055 | "metadata": {}, 1056 | "output_type": "execute_result" 1057 | } 1058 | ], 1059 | "source": [ 1060 | "new_df.loc[\"Atlas\"]" 1061 | ] 1062 | }, 1063 | { 1064 | "cell_type": "code", 1065 | "execution_count": 29, 1066 | "id": "7846d57c-c7a7-4199-a1f3-c48938896365", 1067 | "metadata": {}, 1068 | "outputs": [ 1069 | { 1070 | "data": { 1071 | "text/plain": [ 1072 | "0.2750146502922042" 1073 | ] 1074 | }, 1075 | "execution_count": 29, 1076 | "metadata": {}, 1077 | "output_type": "execute_result" 1078 | } 1079 | ], 1080 | "source": [ 1081 | "new_df.loc[\"Atlas\"][\"Salary\"]" 1082 | ] 1083 | }, 1084 | { 1085 | "cell_type": "code", 1086 | "execution_count": 30, 1087 | "id": "f379c5be-ca84-43a9-af87-874e7ba2b5a2", 1088 | "metadata": {}, 1089 | "outputs": [ 1090 | { 1091 | "data": { 1092 | "text/plain": [ 1093 | "0.2750146502922042" 1094 | ] 1095 | }, 1096 | "execution_count": 30, 1097 | "metadata": {}, 1098 | "output_type": "execute_result" 1099 | } 1100 | ], 1101 | "source": [ 1102 | "new_df.loc[\"Atlas\",\"Salary\"]" 1103 | ] 1104 | }, 1105 | { 1106 | "cell_type": "code", 1107 | "execution_count": 31, 1108 | "id": "e93d2e83-471c-4ad9-af11-cc407827b735", 1109 | "metadata": {}, 1110 | "outputs": [ 1111 | { 1112 | "data": { 1113 | "text/html": [ 1114 | "
\n", 1115 | "\n", 1128 | "\n", 1129 | " \n", 1130 | " \n", 1131 | " \n", 1132 | " \n", 1133 | " \n", 1134 | " \n", 1135 | " \n", 1136 | " \n", 1137 | " \n", 1138 | " \n", 1139 | " \n", 1140 | " \n", 1141 | " \n", 1142 | " \n", 1143 | " \n", 1144 | " \n", 1145 | " \n", 1146 | " \n", 1147 | " \n", 1148 | " \n", 1149 | " \n", 1150 | " \n", 1151 | " \n", 1152 | " \n", 1153 | " \n", 1154 | " \n", 1155 | " \n", 1156 | " \n", 1157 | " \n", 1158 | " \n", 1159 | " \n", 1160 | " \n", 1161 | " \n", 1162 | " \n", 1163 | "
SalaryAgeSeniority
Atil0.3004820.1614750.188583
Zeynep-0.3367890.0432550.913409
Atlas0.2750151.649876-0.301965
Mehmet0.474020-1.3365951.794104
\n", 1164 | "
" 1165 | ], 1166 | "text/plain": [ 1167 | " Salary Age Seniority\n", 1168 | "Atil 0.300482 0.161475 0.188583\n", 1169 | "Zeynep -0.336789 0.043255 0.913409\n", 1170 | "Atlas 0.275015 1.649876 -0.301965\n", 1171 | "Mehmet 0.474020 -1.336595 1.794104" 1172 | ] 1173 | }, 1174 | "execution_count": 31, 1175 | "metadata": {}, 1176 | "output_type": "execute_result" 1177 | } 1178 | ], 1179 | "source": [ 1180 | "new_df" 1181 | ] 1182 | }, 1183 | { 1184 | "cell_type": "code", 1185 | "execution_count": 32, 1186 | "id": "0c271a08-8024-432b-a5ff-2ccf2efb4b5e", 1187 | "metadata": {}, 1188 | "outputs": [], 1189 | "source": [ 1190 | "boolean_frame = new_df > 0" 1191 | ] 1192 | }, 1193 | { 1194 | "cell_type": "code", 1195 | "execution_count": 33, 1196 | "id": "f8765d12-35ae-49f9-9dba-2d1fdb6e932f", 1197 | "metadata": {}, 1198 | "outputs": [ 1199 | { 1200 | "data": { 1201 | "text/html": [ 1202 | "
\n", 1203 | "\n", 1216 | "\n", 1217 | " \n", 1218 | " \n", 1219 | " \n", 1220 | " \n", 1221 | " \n", 1222 | " \n", 1223 | " \n", 1224 | " \n", 1225 | " \n", 1226 | " \n", 1227 | " \n", 1228 | " \n", 1229 | " \n", 1230 | " \n", 1231 | " \n", 1232 | " \n", 1233 | " \n", 1234 | " \n", 1235 | " \n", 1236 | " \n", 1237 | " \n", 1238 | " \n", 1239 | " \n", 1240 | " \n", 1241 | " \n", 1242 | " \n", 1243 | " \n", 1244 | " \n", 1245 | " \n", 1246 | " \n", 1247 | " \n", 1248 | " \n", 1249 | " \n", 1250 | " \n", 1251 | "
SalaryAgeSeniority
AtilTrueTrueTrue
ZeynepFalseTrueTrue
AtlasTrueTrueFalse
MehmetTrueFalseTrue
\n", 1252 | "
" 1253 | ], 1254 | "text/plain": [ 1255 | " Salary Age Seniority\n", 1256 | "Atil True True True\n", 1257 | "Zeynep False True True\n", 1258 | "Atlas True True False\n", 1259 | "Mehmet True False True" 1260 | ] 1261 | }, 1262 | "execution_count": 33, 1263 | "metadata": {}, 1264 | "output_type": "execute_result" 1265 | } 1266 | ], 1267 | "source": [ 1268 | "boolean_frame" 1269 | ] 1270 | }, 1271 | { 1272 | "cell_type": "code", 1273 | "execution_count": 34, 1274 | "id": "c2587736-dbae-489d-8e4d-ed8adc820e6f", 1275 | "metadata": {}, 1276 | "outputs": [ 1277 | { 1278 | "data": { 1279 | "text/html": [ 1280 | "
\n", 1281 | "\n", 1294 | "\n", 1295 | " \n", 1296 | " \n", 1297 | " \n", 1298 | " \n", 1299 | " \n", 1300 | " \n", 1301 | " \n", 1302 | " \n", 1303 | " \n", 1304 | " \n", 1305 | " \n", 1306 | " \n", 1307 | " \n", 1308 | " \n", 1309 | " \n", 1310 | " \n", 1311 | " \n", 1312 | " \n", 1313 | " \n", 1314 | " \n", 1315 | " \n", 1316 | " \n", 1317 | " \n", 1318 | " \n", 1319 | " \n", 1320 | " \n", 1321 | " \n", 1322 | " \n", 1323 | " \n", 1324 | " \n", 1325 | " \n", 1326 | " \n", 1327 | " \n", 1328 | " \n", 1329 | "
SalaryAgeSeniority
Atil0.3004820.1614750.188583
ZeynepNaN0.0432550.913409
Atlas0.2750151.649876NaN
Mehmet0.474020NaN1.794104
\n", 1330 | "
" 1331 | ], 1332 | "text/plain": [ 1333 | " Salary Age Seniority\n", 1334 | "Atil 0.300482 0.161475 0.188583\n", 1335 | "Zeynep NaN 0.043255 0.913409\n", 1336 | "Atlas 0.275015 1.649876 NaN\n", 1337 | "Mehmet 0.474020 NaN 1.794104" 1338 | ] 1339 | }, 1340 | "execution_count": 34, 1341 | "metadata": {}, 1342 | "output_type": "execute_result" 1343 | } 1344 | ], 1345 | "source": [ 1346 | "new_df[boolean_frame]" 1347 | ] 1348 | }, 1349 | { 1350 | "cell_type": "code", 1351 | "execution_count": 35, 1352 | "id": "33882312-56e3-46af-9570-243d9823c235", 1353 | "metadata": {}, 1354 | "outputs": [ 1355 | { 1356 | "data": { 1357 | "text/html": [ 1358 | "
\n", 1359 | "\n", 1372 | "\n", 1373 | " \n", 1374 | " \n", 1375 | " \n", 1376 | " \n", 1377 | " \n", 1378 | " \n", 1379 | " \n", 1380 | " \n", 1381 | " \n", 1382 | " \n", 1383 | " \n", 1384 | " \n", 1385 | " \n", 1386 | " \n", 1387 | " \n", 1388 | " \n", 1389 | " \n", 1390 | " \n", 1391 | " \n", 1392 | " \n", 1393 | " \n", 1394 | " \n", 1395 | " \n", 1396 | " \n", 1397 | " \n", 1398 | " \n", 1399 | " \n", 1400 | " \n", 1401 | " \n", 1402 | " \n", 1403 | " \n", 1404 | " \n", 1405 | " \n", 1406 | " \n", 1407 | "
SalaryAgeSeniority
Atil0.3004820.1614750.188583
ZeynepNaN0.0432550.913409
Atlas0.2750151.649876NaN
Mehmet0.474020NaN1.794104
\n", 1408 | "
" 1409 | ], 1410 | "text/plain": [ 1411 | " Salary Age Seniority\n", 1412 | "Atil 0.300482 0.161475 0.188583\n", 1413 | "Zeynep NaN 0.043255 0.913409\n", 1414 | "Atlas 0.275015 1.649876 NaN\n", 1415 | "Mehmet 0.474020 NaN 1.794104" 1416 | ] 1417 | }, 1418 | "execution_count": 35, 1419 | "metadata": {}, 1420 | "output_type": "execute_result" 1421 | } 1422 | ], 1423 | "source": [ 1424 | "new_df[new_df > 0]" 1425 | ] 1426 | }, 1427 | { 1428 | "cell_type": "code", 1429 | "execution_count": 36, 1430 | "id": "a593066a-4f14-44cf-b523-d8ee16249eed", 1431 | "metadata": {}, 1432 | "outputs": [ 1433 | { 1434 | "data": { 1435 | "text/html": [ 1436 | "
\n", 1437 | "\n", 1450 | "\n", 1451 | " \n", 1452 | " \n", 1453 | " \n", 1454 | " \n", 1455 | " \n", 1456 | " \n", 1457 | " \n", 1458 | " \n", 1459 | " \n", 1460 | " \n", 1461 | " \n", 1462 | " \n", 1463 | " \n", 1464 | " \n", 1465 | " \n", 1466 | " \n", 1467 | " \n", 1468 | " \n", 1469 | " \n", 1470 | " \n", 1471 | " \n", 1472 | " \n", 1473 | "
SalaryAgeSeniority
Atil0.3004820.1614750.188583
Mehmet0.474020-1.3365951.794104
\n", 1474 | "
" 1475 | ], 1476 | "text/plain": [ 1477 | " Salary Age Seniority\n", 1478 | "Atil 0.300482 0.161475 0.188583\n", 1479 | "Mehmet 0.474020 -1.336595 1.794104" 1480 | ] 1481 | }, 1482 | "execution_count": 36, 1483 | "metadata": {}, 1484 | "output_type": "execute_result" 1485 | } 1486 | ], 1487 | "source": [ 1488 | "new_df[new_df[\"Salary\"] > 0.3]" 1489 | ] 1490 | }, 1491 | { 1492 | "cell_type": "code", 1493 | "execution_count": 37, 1494 | "id": "f3e7d662-dfb0-4926-9ae3-cd02b9f04770", 1495 | "metadata": {}, 1496 | "outputs": [ 1497 | { 1498 | "data": { 1499 | "text/html": [ 1500 | "
\n", 1501 | "\n", 1514 | "\n", 1515 | " \n", 1516 | " \n", 1517 | " \n", 1518 | " \n", 1519 | " \n", 1520 | " \n", 1521 | " \n", 1522 | " \n", 1523 | " \n", 1524 | " \n", 1525 | " \n", 1526 | " \n", 1527 | " \n", 1528 | " \n", 1529 | " \n", 1530 | " \n", 1531 | "
SalaryAgeSeniority
Atlas0.2750151.649876-0.301965
\n", 1532 | "
" 1533 | ], 1534 | "text/plain": [ 1535 | " Salary Age Seniority\n", 1536 | "Atlas 0.275015 1.649876 -0.301965" 1537 | ] 1538 | }, 1539 | "execution_count": 37, 1540 | "metadata": {}, 1541 | "output_type": "execute_result" 1542 | } 1543 | ], 1544 | "source": [ 1545 | "new_df[new_df[\"Age\"] > 0.5]" 1546 | ] 1547 | }, 1548 | { 1549 | "cell_type": "code", 1550 | "execution_count": 38, 1551 | "id": "9097f182-6c2b-4905-8e23-90efa65a671b", 1552 | "metadata": {}, 1553 | "outputs": [ 1554 | { 1555 | "data": { 1556 | "text/html": [ 1557 | "
\n", 1558 | "\n", 1571 | "\n", 1572 | " \n", 1573 | " \n", 1574 | " \n", 1575 | " \n", 1576 | " \n", 1577 | " \n", 1578 | " \n", 1579 | " \n", 1580 | " \n", 1581 | " \n", 1582 | " \n", 1583 | " \n", 1584 | " \n", 1585 | " \n", 1586 | " \n", 1587 | " \n", 1588 | " \n", 1589 | " \n", 1590 | " \n", 1591 | " \n", 1592 | " \n", 1593 | " \n", 1594 | " \n", 1595 | " \n", 1596 | " \n", 1597 | " \n", 1598 | " \n", 1599 | " \n", 1600 | " \n", 1601 | " \n", 1602 | " \n", 1603 | " \n", 1604 | " \n", 1605 | " \n", 1606 | "
SalaryAgeSeniority
Atil0.3004820.1614750.188583
Zeynep-0.3367890.0432550.913409
Atlas0.2750151.649876-0.301965
Mehmet0.474020-1.3365951.794104
\n", 1607 | "
" 1608 | ], 1609 | "text/plain": [ 1610 | " Salary Age Seniority\n", 1611 | "Atil 0.300482 0.161475 0.188583\n", 1612 | "Zeynep -0.336789 0.043255 0.913409\n", 1613 | "Atlas 0.275015 1.649876 -0.301965\n", 1614 | "Mehmet 0.474020 -1.336595 1.794104" 1615 | ] 1616 | }, 1617 | "execution_count": 38, 1618 | "metadata": {}, 1619 | "output_type": "execute_result" 1620 | } 1621 | ], 1622 | "source": [ 1623 | "new_df" 1624 | ] 1625 | }, 1626 | { 1627 | "cell_type": "code", 1628 | "execution_count": 39, 1629 | "id": "2b3bbb0e-8717-44a8-b46b-21e993d496a2", 1630 | "metadata": {}, 1631 | "outputs": [ 1632 | { 1633 | "data": { 1634 | "text/html": [ 1635 | "
\n", 1636 | "\n", 1649 | "\n", 1650 | " \n", 1651 | " \n", 1652 | " \n", 1653 | " \n", 1654 | " \n", 1655 | " \n", 1656 | " \n", 1657 | " \n", 1658 | " \n", 1659 | " \n", 1660 | " \n", 1661 | " \n", 1662 | " \n", 1663 | " \n", 1664 | " \n", 1665 | " \n", 1666 | " \n", 1667 | " \n", 1668 | " \n", 1669 | " \n", 1670 | " \n", 1671 | " \n", 1672 | " \n", 1673 | " \n", 1674 | " \n", 1675 | " \n", 1676 | " \n", 1677 | " \n", 1678 | " \n", 1679 | " \n", 1680 | " \n", 1681 | " \n", 1682 | " \n", 1683 | " \n", 1684 | " \n", 1685 | " \n", 1686 | " \n", 1687 | " \n", 1688 | " \n", 1689 | "
indexSalaryAgeSeniority
0Atil0.3004820.1614750.188583
1Zeynep-0.3367890.0432550.913409
2Atlas0.2750151.649876-0.301965
3Mehmet0.474020-1.3365951.794104
\n", 1690 | "
" 1691 | ], 1692 | "text/plain": [ 1693 | " index Salary Age Seniority\n", 1694 | "0 Atil 0.300482 0.161475 0.188583\n", 1695 | "1 Zeynep -0.336789 0.043255 0.913409\n", 1696 | "2 Atlas 0.275015 1.649876 -0.301965\n", 1697 | "3 Mehmet 0.474020 -1.336595 1.794104" 1698 | ] 1699 | }, 1700 | "execution_count": 39, 1701 | "metadata": {}, 1702 | "output_type": "execute_result" 1703 | } 1704 | ], 1705 | "source": [ 1706 | "new_df.reset_index()" 1707 | ] 1708 | }, 1709 | { 1710 | "cell_type": "code", 1711 | "execution_count": 40, 1712 | "id": "8b5f12e7-0126-43bc-9709-64b62f5eea30", 1713 | "metadata": {}, 1714 | "outputs": [], 1715 | "source": [ 1716 | "new_indices = [\"Ati\", \"Zey\", \"Atl\", \"Meh\"]" 1717 | ] 1718 | }, 1719 | { 1720 | "cell_type": "code", 1721 | "execution_count": 41, 1722 | "id": "0ade90f3-bfeb-41ca-8ca6-c96f45bf7f4e", 1723 | "metadata": {}, 1724 | "outputs": [], 1725 | "source": [ 1726 | "new_df[\"NewIndex\"] = new_indices" 1727 | ] 1728 | }, 1729 | { 1730 | "cell_type": "code", 1731 | "execution_count": 42, 1732 | "id": "2ff6fc16-2eb2-4a1a-8a67-203f46701015", 1733 | "metadata": {}, 1734 | "outputs": [ 1735 | { 1736 | "data": { 1737 | "text/html": [ 1738 | "
\n", 1739 | "\n", 1752 | "\n", 1753 | " \n", 1754 | " \n", 1755 | " \n", 1756 | " \n", 1757 | " \n", 1758 | " \n", 1759 | " \n", 1760 | " \n", 1761 | " \n", 1762 | " \n", 1763 | " \n", 1764 | " \n", 1765 | " \n", 1766 | " \n", 1767 | " \n", 1768 | " \n", 1769 | " \n", 1770 | " \n", 1771 | " \n", 1772 | " \n", 1773 | " \n", 1774 | " \n", 1775 | " \n", 1776 | " \n", 1777 | " \n", 1778 | " \n", 1779 | " \n", 1780 | " \n", 1781 | " \n", 1782 | " \n", 1783 | " \n", 1784 | " \n", 1785 | " \n", 1786 | " \n", 1787 | " \n", 1788 | " \n", 1789 | " \n", 1790 | " \n", 1791 | " \n", 1792 | "
SalaryAgeSeniorityNewIndex
Atil0.3004820.1614750.188583Ati
Zeynep-0.3367890.0432550.913409Zey
Atlas0.2750151.649876-0.301965Atl
Mehmet0.474020-1.3365951.794104Meh
\n", 1793 | "
" 1794 | ], 1795 | "text/plain": [ 1796 | " Salary Age Seniority NewIndex\n", 1797 | "Atil 0.300482 0.161475 0.188583 Ati\n", 1798 | "Zeynep -0.336789 0.043255 0.913409 Zey\n", 1799 | "Atlas 0.275015 1.649876 -0.301965 Atl\n", 1800 | "Mehmet 0.474020 -1.336595 1.794104 Meh" 1801 | ] 1802 | }, 1803 | "execution_count": 42, 1804 | "metadata": {}, 1805 | "output_type": "execute_result" 1806 | } 1807 | ], 1808 | "source": [ 1809 | "new_df" 1810 | ] 1811 | }, 1812 | { 1813 | "cell_type": "code", 1814 | "execution_count": 43, 1815 | "id": "96a3578d-2f19-4bf5-ae93-2f8941783bc0", 1816 | "metadata": {}, 1817 | "outputs": [], 1818 | "source": [ 1819 | "new_df.set_index(\"NewIndex\", inplace=True)" 1820 | ] 1821 | }, 1822 | { 1823 | "cell_type": "code", 1824 | "execution_count": 44, 1825 | "id": "09bc1e88-a21e-4081-854f-19f8fae6a6c2", 1826 | "metadata": {}, 1827 | "outputs": [ 1828 | { 1829 | "data": { 1830 | "text/html": [ 1831 | "
\n", 1832 | "\n", 1845 | "\n", 1846 | " \n", 1847 | " \n", 1848 | " \n", 1849 | " \n", 1850 | " \n", 1851 | " \n", 1852 | " \n", 1853 | " \n", 1854 | " \n", 1855 | " \n", 1856 | " \n", 1857 | " \n", 1858 | " \n", 1859 | " \n", 1860 | " \n", 1861 | " \n", 1862 | " \n", 1863 | " \n", 1864 | " \n", 1865 | " \n", 1866 | " \n", 1867 | " \n", 1868 | " \n", 1869 | " \n", 1870 | " \n", 1871 | " \n", 1872 | " \n", 1873 | " \n", 1874 | " \n", 1875 | " \n", 1876 | " \n", 1877 | " \n", 1878 | " \n", 1879 | " \n", 1880 | " \n", 1881 | " \n", 1882 | " \n", 1883 | " \n", 1884 | " \n", 1885 | " \n", 1886 | "
SalaryAgeSeniority
NewIndex
Ati0.3004820.1614750.188583
Zey-0.3367890.0432550.913409
Atl0.2750151.649876-0.301965
Meh0.474020-1.3365951.794104
\n", 1887 | "
" 1888 | ], 1889 | "text/plain": [ 1890 | " Salary Age Seniority\n", 1891 | "NewIndex \n", 1892 | "Ati 0.300482 0.161475 0.188583\n", 1893 | "Zey -0.336789 0.043255 0.913409\n", 1894 | "Atl 0.275015 1.649876 -0.301965\n", 1895 | "Meh 0.474020 -1.336595 1.794104" 1896 | ] 1897 | }, 1898 | "execution_count": 44, 1899 | "metadata": {}, 1900 | "output_type": "execute_result" 1901 | } 1902 | ], 1903 | "source": [ 1904 | "new_df" 1905 | ] 1906 | }, 1907 | { 1908 | "cell_type": "code", 1909 | "execution_count": 45, 1910 | "id": "9aca0264-b96d-4a03-9d64-2da407d8f9ef", 1911 | "metadata": {}, 1912 | "outputs": [ 1913 | { 1914 | "data": { 1915 | "text/plain": [ 1916 | "Salary 0.300482\n", 1917 | "Age 0.161475\n", 1918 | "Seniority 0.188583\n", 1919 | "Name: Ati, dtype: float64" 1920 | ] 1921 | }, 1922 | "execution_count": 45, 1923 | "metadata": {}, 1924 | "output_type": "execute_result" 1925 | } 1926 | ], 1927 | "source": [ 1928 | "new_df.loc[\"Ati\"]" 1929 | ] 1930 | }, 1931 | { 1932 | "cell_type": "code", 1933 | "execution_count": 46, 1934 | "id": "384455e4-9156-43f8-8e72-a210ec07d396", 1935 | "metadata": {}, 1936 | "outputs": [], 1937 | "source": [ 1938 | "# multi index" 1939 | ] 1940 | }, 1941 | { 1942 | "cell_type": "code", 1943 | "execution_count": 47, 1944 | "id": "23e87726-c40a-4263-8f20-7836628f1fc8", 1945 | "metadata": {}, 1946 | "outputs": [], 1947 | "source": [ 1948 | "first_index = [\"Simpson\",\"Simpson\",\"Simpson\",\"South Park\", \"South Park\", \"South Park\"]" 1949 | ] 1950 | }, 1951 | { 1952 | "cell_type": "code", 1953 | "execution_count": 48, 1954 | "id": "ec9fa9ee-d22d-4913-bce2-0888a616d32d", 1955 | "metadata": {}, 1956 | "outputs": [], 1957 | "source": [ 1958 | "inner_index = [\"Homer\",\"Bart\",\"Marge\",\"Cartman\",\"Kenny\",\"Kyle\"]" 1959 | ] 1960 | }, 1961 | { 1962 | "cell_type": "code", 1963 | "execution_count": 49, 1964 | "id": "f781774e-8bc9-4a88-a953-2ee69e25c719", 1965 | "metadata": {}, 1966 | "outputs": [], 1967 | "source": [ 1968 | "zipped_index = list(zip(first_index, inner_index))" 1969 | ] 1970 | }, 1971 | { 1972 | "cell_type": "code", 1973 | "execution_count": 50, 1974 | "id": "c01bede1-f541-4816-b50b-971c8a12ae0a", 1975 | "metadata": {}, 1976 | "outputs": [ 1977 | { 1978 | "data": { 1979 | "text/plain": [ 1980 | "[('Simpson', 'Homer'),\n", 1981 | " ('Simpson', 'Bart'),\n", 1982 | " ('Simpson', 'Marge'),\n", 1983 | " ('South Park', 'Cartman'),\n", 1984 | " ('South Park', 'Kenny'),\n", 1985 | " ('South Park', 'Kyle')]" 1986 | ] 1987 | }, 1988 | "execution_count": 50, 1989 | "metadata": {}, 1990 | "output_type": "execute_result" 1991 | } 1992 | ], 1993 | "source": [ 1994 | "zipped_index" 1995 | ] 1996 | }, 1997 | { 1998 | "cell_type": "code", 1999 | "execution_count": 51, 2000 | "id": "ac824a0b-2faf-467e-8fcb-6ed8e522635b", 2001 | "metadata": {}, 2002 | "outputs": [], 2003 | "source": [ 2004 | "zipped_index = pd.MultiIndex.from_tuples(zipped_index)" 2005 | ] 2006 | }, 2007 | { 2008 | "cell_type": "code", 2009 | "execution_count": 52, 2010 | "id": "a84c1a99-7e64-4ac2-9db9-49be3321e8d8", 2011 | "metadata": {}, 2012 | "outputs": [ 2013 | { 2014 | "data": { 2015 | "text/plain": [ 2016 | "MultiIndex([( 'Simpson', 'Homer'),\n", 2017 | " ( 'Simpson', 'Bart'),\n", 2018 | " ( 'Simpson', 'Marge'),\n", 2019 | " ('South Park', 'Cartman'),\n", 2020 | " ('South Park', 'Kenny'),\n", 2021 | " ('South Park', 'Kyle')],\n", 2022 | " )" 2023 | ] 2024 | }, 2025 | "execution_count": 52, 2026 | "metadata": {}, 2027 | "output_type": "execute_result" 2028 | } 2029 | ], 2030 | "source": [ 2031 | "zipped_index" 2032 | ] 2033 | }, 2034 | { 2035 | "cell_type": "code", 2036 | "execution_count": 56, 2037 | "id": "d1427639-c668-4150-9ab0-edb50616a1d4", 2038 | "metadata": {}, 2039 | "outputs": [], 2040 | "source": [ 2041 | "sample_values = np.ones((6,2))" 2042 | ] 2043 | }, 2044 | { 2045 | "cell_type": "code", 2046 | "execution_count": 57, 2047 | "id": "5e4c3616-87cf-4e08-9179-e2c22c3ae662", 2048 | "metadata": {}, 2049 | "outputs": [ 2050 | { 2051 | "data": { 2052 | "text/plain": [ 2053 | "array([[1., 1.],\n", 2054 | " [1., 1.],\n", 2055 | " [1., 1.],\n", 2056 | " [1., 1.],\n", 2057 | " [1., 1.],\n", 2058 | " [1., 1.]])" 2059 | ] 2060 | }, 2061 | "execution_count": 57, 2062 | "metadata": {}, 2063 | "output_type": "execute_result" 2064 | } 2065 | ], 2066 | "source": [ 2067 | "sample_values" 2068 | ] 2069 | }, 2070 | { 2071 | "cell_type": "code", 2072 | "execution_count": 58, 2073 | "id": "02a010e2-fa34-45b0-93b4-e1adddd6cc7c", 2074 | "metadata": {}, 2075 | "outputs": [], 2076 | "source": [ 2077 | "big_df = pd.DataFrame(sample_values, index=zipped_index, columns=[\"Age\", \"Salary\"])" 2078 | ] 2079 | }, 2080 | { 2081 | "cell_type": "code", 2082 | "execution_count": 59, 2083 | "id": "60c50439-55a0-4dab-9d6d-654e87136103", 2084 | "metadata": {}, 2085 | "outputs": [ 2086 | { 2087 | "data": { 2088 | "text/html": [ 2089 | "
\n", 2090 | "\n", 2103 | "\n", 2104 | " \n", 2105 | " \n", 2106 | " \n", 2107 | " \n", 2108 | " \n", 2109 | " \n", 2110 | " \n", 2111 | " \n", 2112 | " \n", 2113 | " \n", 2114 | " \n", 2115 | " \n", 2116 | " \n", 2117 | " \n", 2118 | " \n", 2119 | " \n", 2120 | " \n", 2121 | " \n", 2122 | " \n", 2123 | " \n", 2124 | " \n", 2125 | " \n", 2126 | " \n", 2127 | " \n", 2128 | " \n", 2129 | " \n", 2130 | " \n", 2131 | " \n", 2132 | " \n", 2133 | " \n", 2134 | " \n", 2135 | " \n", 2136 | " \n", 2137 | " \n", 2138 | " \n", 2139 | " \n", 2140 | " \n", 2141 | " \n", 2142 | " \n", 2143 | " \n", 2144 | " \n", 2145 | " \n", 2146 | "
AgeSalary
SimpsonHomer1.01.0
Bart1.01.0
Marge1.01.0
South ParkCartman1.01.0
Kenny1.01.0
Kyle1.01.0
\n", 2147 | "
" 2148 | ], 2149 | "text/plain": [ 2150 | " Age Salary\n", 2151 | "Simpson Homer 1.0 1.0\n", 2152 | " Bart 1.0 1.0\n", 2153 | " Marge 1.0 1.0\n", 2154 | "South Park Cartman 1.0 1.0\n", 2155 | " Kenny 1.0 1.0\n", 2156 | " Kyle 1.0 1.0" 2157 | ] 2158 | }, 2159 | "execution_count": 59, 2160 | "metadata": {}, 2161 | "output_type": "execute_result" 2162 | } 2163 | ], 2164 | "source": [ 2165 | "big_df" 2166 | ] 2167 | }, 2168 | { 2169 | "cell_type": "code", 2170 | "execution_count": 60, 2171 | "id": "2e77bb05-1fb1-4fef-9616-1ec198d36b87", 2172 | "metadata": {}, 2173 | "outputs": [ 2174 | { 2175 | "data": { 2176 | "text/plain": [ 2177 | "Simpson Homer 1.0\n", 2178 | " Bart 1.0\n", 2179 | " Marge 1.0\n", 2180 | "South Park Cartman 1.0\n", 2181 | " Kenny 1.0\n", 2182 | " Kyle 1.0\n", 2183 | "Name: Age, dtype: float64" 2184 | ] 2185 | }, 2186 | "execution_count": 60, 2187 | "metadata": {}, 2188 | "output_type": "execute_result" 2189 | } 2190 | ], 2191 | "source": [ 2192 | "big_df[\"Age\"]" 2193 | ] 2194 | }, 2195 | { 2196 | "cell_type": "code", 2197 | "execution_count": 61, 2198 | "id": "fa95107f-89fb-4818-b95f-29a213129d53", 2199 | "metadata": {}, 2200 | "outputs": [ 2201 | { 2202 | "data": { 2203 | "text/html": [ 2204 | "
\n", 2205 | "\n", 2218 | "\n", 2219 | " \n", 2220 | " \n", 2221 | " \n", 2222 | " \n", 2223 | " \n", 2224 | " \n", 2225 | " \n", 2226 | " \n", 2227 | " \n", 2228 | " \n", 2229 | " \n", 2230 | " \n", 2231 | " \n", 2232 | " \n", 2233 | " \n", 2234 | " \n", 2235 | " \n", 2236 | " \n", 2237 | " \n", 2238 | " \n", 2239 | " \n", 2240 | " \n", 2241 | " \n", 2242 | " \n", 2243 | "
AgeSalary
Homer1.01.0
Bart1.01.0
Marge1.01.0
\n", 2244 | "
" 2245 | ], 2246 | "text/plain": [ 2247 | " Age Salary\n", 2248 | "Homer 1.0 1.0\n", 2249 | "Bart 1.0 1.0\n", 2250 | "Marge 1.0 1.0" 2251 | ] 2252 | }, 2253 | "execution_count": 61, 2254 | "metadata": {}, 2255 | "output_type": "execute_result" 2256 | } 2257 | ], 2258 | "source": [ 2259 | "big_df.loc[\"Simpson\"]" 2260 | ] 2261 | }, 2262 | { 2263 | "cell_type": "code", 2264 | "execution_count": 62, 2265 | "id": "5790bcf7-d6be-47bf-8cb3-1c249e70fce6", 2266 | "metadata": {}, 2267 | "outputs": [ 2268 | { 2269 | "data": { 2270 | "text/plain": [ 2271 | "Age 1.0\n", 2272 | "Salary 1.0\n", 2273 | "Name: Homer, dtype: float64" 2274 | ] 2275 | }, 2276 | "execution_count": 62, 2277 | "metadata": {}, 2278 | "output_type": "execute_result" 2279 | } 2280 | ], 2281 | "source": [ 2282 | "big_df.loc[\"Simpson\"].loc[\"Homer\"]" 2283 | ] 2284 | }, 2285 | { 2286 | "cell_type": "code", 2287 | "execution_count": null, 2288 | "id": "258bdd5c-a051-4fae-bcde-e4a0d7ebc18c", 2289 | "metadata": {}, 2290 | "outputs": [], 2291 | "source": [] 2292 | } 2293 | ], 2294 | "metadata": { 2295 | "kernelspec": { 2296 | "display_name": "Python 3 (ipykernel)", 2297 | "language": "python", 2298 | "name": "python3" 2299 | }, 2300 | "language_info": { 2301 | "codemirror_mode": { 2302 | "name": "ipython", 2303 | "version": 3 2304 | }, 2305 | "file_extension": ".py", 2306 | "mimetype": "text/x-python", 2307 | "name": "python", 2308 | "nbconvert_exporter": "python", 2309 | "pygments_lexer": "ipython3", 2310 | "version": "3.12.7" 2311 | } 2312 | }, 2313 | "nbformat": 4, 2314 | "nbformat_minor": 5 2315 | } 2316 | -------------------------------------------------------------------------------- /6-employee.csv: -------------------------------------------------------------------------------- 1 | Department,Employee,Salary,Experience,City 2 | Marketing,Emp_1,53483,1,New York 3 | Sales,Emp_2,78555,8,Austin 4 | Finance,Emp_3,47159,3,Austin 5 | Sales,Emp_4,110077,3,San Francisco 6 | Sales,Emp_5,65920,1,New York 7 | IT,Emp_6,97121,11,Chicago 8 | Finance,Emp_7,99479,5,Chicago 9 | Finance,Emp_8,119475,10,New York 10 | Finance,Emp_9,49457,7,Chicago 11 | Sales,Emp_10,96557,10,Chicago 12 | Marketing,Emp_11,107189,9,New York 13 | Finance,Emp_12,108953,12,Austin 14 | Sales,Emp_13,82995,7,New York 15 | IT,Emp_14,70757,9,Austin 16 | Marketing,Emp_15,39692,8,Chicago 17 | IT,Emp_16,75758,12,Chicago 18 | Marketing,Emp_17,102409,2,Chicago 19 | Sales,Emp_18,101211,1,San Francisco 20 | HR,Emp_19,95697,7,Austin 21 | Marketing,Emp_20,67065,7,San Francisco 22 | IT,Emp_21,62606,14,San Francisco 23 | Sales,Emp_22,41534,8,New York 24 | Marketing,Emp_23,70397,5,San Francisco 25 | HR,Emp_24,31016,3,New York 26 | HR,Emp_25,119789,12,New York 27 | Finance,Emp_26,85591,8,San Francisco 28 | Finance,Emp_27,119812,6,Austin 29 | IT,Emp_28,53247,11,Austin 30 | Marketing,Emp_29,54300,3,Austin 31 | Marketing,Emp_30,104065,1,Austin 32 | Finance,Emp_31,112798,3,Austin 33 | Marketing,Emp_32,39268,5,San Francisco 34 | Marketing,Emp_33,116807,14,San Francisco 35 | HR,Emp_34,42185,3,Chicago 36 | Finance,Emp_35,93704,1,Austin 37 | Sales,Emp_36,116779,5,San Francisco 38 | Finance,Emp_37,69099,10,Chicago 39 | Sales,Emp_38,38571,7,Austin 40 | HR,Emp_39,68044,14,New York 41 | IT,Emp_40,81214,7,Chicago 42 | Marketing,Emp_41,91228,11,San Francisco 43 | HR,Emp_42,78984,9,New York 44 | Marketing,Emp_43,70774,10,New York 45 | IT,Emp_44,32568,10,New York 46 | IT,Emp_45,92592,12,Chicago 47 | HR,Emp_46,97563,13,San Francisco 48 | IT,Emp_47,32695,3,New York 49 | Sales,Emp_48,78190,7,Austin 50 | IT,Emp_49,35258,1,New York 51 | Marketing,Emp_50,117538,4,New York 52 | -------------------------------------------------------------------------------- /6-weather.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/atilsamancioglu/PythonForDataScienceNotebooks/HEAD/6-weather.xlsx -------------------------------------------------------------------------------- /6-weatherna.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/atilsamancioglu/PythonForDataScienceNotebooks/HEAD/6-weatherna.xlsx -------------------------------------------------------------------------------- /7-DataFramesConcatMerge.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 1, 6 | "id": "7a53bee4-7e67-4878-868e-6fea4031cedb", 7 | "metadata": {}, 8 | "outputs": [], 9 | "source": [ 10 | "import pandas as pd" 11 | ] 12 | }, 13 | { 14 | "cell_type": "code", 15 | "execution_count": 2, 16 | "id": "694e35f2-64ec-458d-ad1a-2ff0faf2eea3", 17 | "metadata": {}, 18 | "outputs": [], 19 | "source": [ 20 | "df1 = pd.read_csv(\"7-concat_data1.csv\")" 21 | ] 22 | }, 23 | { 24 | "cell_type": "code", 25 | "execution_count": 3, 26 | "id": "1c5e1b97-c618-4728-a648-2b659dd82971", 27 | "metadata": {}, 28 | "outputs": [ 29 | { 30 | "data": { 31 | "text/html": [ 32 | "
\n", 33 | "\n", 46 | "\n", 47 | " \n", 48 | " \n", 49 | " \n", 50 | " \n", 51 | " \n", 52 | " \n", 53 | " \n", 54 | " \n", 55 | " \n", 56 | " \n", 57 | " \n", 58 | " \n", 59 | " \n", 60 | " \n", 61 | " \n", 62 | " \n", 63 | " \n", 64 | " \n", 65 | " \n", 66 | " \n", 67 | " \n", 68 | " \n", 69 | " \n", 70 | " \n", 71 | " \n", 72 | " \n", 73 | " \n", 74 | " \n", 75 | " \n", 76 | " \n", 77 | " \n", 78 | " \n", 79 | " \n", 80 | " \n", 81 | " \n", 82 | " \n", 83 | " \n", 84 | " \n", 85 | " \n", 86 | " \n", 87 | " \n", 88 | " \n", 89 | " \n", 90 | " \n", 91 | " \n", 92 | " \n", 93 | " \n", 94 | " \n", 95 | " \n", 96 | " \n", 97 | " \n", 98 | " \n", 99 | " \n", 100 | " \n", 101 | " \n", 102 | " \n", 103 | " \n", 104 | " \n", 105 | " \n", 106 | " \n", 107 | " \n", 108 | " \n", 109 | " \n", 110 | " \n", 111 | " \n", 112 | " \n", 113 | " \n", 114 | " \n", 115 | " \n", 116 | " \n", 117 | "
Employee_IDNameDepartment
01Emp_1Finance
12Emp_2Marketing
23Emp_3HR
34Emp_4Finance
45Emp_5Finance
56Emp_6Marketing
67Emp_7HR
78Emp_8HR
89Emp_9Finance
910Emp_10IT
\n", 118 | "
" 119 | ], 120 | "text/plain": [ 121 | " Employee_ID Name Department\n", 122 | "0 1 Emp_1 Finance\n", 123 | "1 2 Emp_2 Marketing\n", 124 | "2 3 Emp_3 HR\n", 125 | "3 4 Emp_4 Finance\n", 126 | "4 5 Emp_5 Finance\n", 127 | "5 6 Emp_6 Marketing\n", 128 | "6 7 Emp_7 HR\n", 129 | "7 8 Emp_8 HR\n", 130 | "8 9 Emp_9 Finance\n", 131 | "9 10 Emp_10 IT" 132 | ] 133 | }, 134 | "execution_count": 3, 135 | "metadata": {}, 136 | "output_type": "execute_result" 137 | } 138 | ], 139 | "source": [ 140 | "df1" 141 | ] 142 | }, 143 | { 144 | "cell_type": "code", 145 | "execution_count": 4, 146 | "id": "44e6b9f3-e5bc-4a2f-9b79-dc212e17d6cf", 147 | "metadata": {}, 148 | "outputs": [], 149 | "source": [ 150 | "df2 = pd.read_csv(\"7-concat_data2.csv\")" 151 | ] 152 | }, 153 | { 154 | "cell_type": "code", 155 | "execution_count": 5, 156 | "id": "b111ec8a-0921-4205-9499-ff321605e058", 157 | "metadata": {}, 158 | "outputs": [ 159 | { 160 | "data": { 161 | "text/html": [ 162 | "
\n", 163 | "\n", 176 | "\n", 177 | " \n", 178 | " \n", 179 | " \n", 180 | " \n", 181 | " \n", 182 | " \n", 183 | " \n", 184 | " \n", 185 | " \n", 186 | " \n", 187 | " \n", 188 | " \n", 189 | " \n", 190 | " \n", 191 | " \n", 192 | " \n", 193 | " \n", 194 | " \n", 195 | " \n", 196 | " \n", 197 | " \n", 198 | " \n", 199 | " \n", 200 | " \n", 201 | " \n", 202 | " \n", 203 | " \n", 204 | " \n", 205 | " \n", 206 | " \n", 207 | " \n", 208 | " \n", 209 | " \n", 210 | " \n", 211 | " \n", 212 | " \n", 213 | " \n", 214 | " \n", 215 | " \n", 216 | " \n", 217 | " \n", 218 | " \n", 219 | " \n", 220 | " \n", 221 | " \n", 222 | " \n", 223 | " \n", 224 | " \n", 225 | " \n", 226 | " \n", 227 | " \n", 228 | " \n", 229 | " \n", 230 | " \n", 231 | " \n", 232 | " \n", 233 | " \n", 234 | " \n", 235 | " \n", 236 | " \n", 237 | " \n", 238 | " \n", 239 | " \n", 240 | " \n", 241 | " \n", 242 | " \n", 243 | " \n", 244 | " \n", 245 | " \n", 246 | " \n", 247 | "
Employee_IDNameDepartment
011Emp_11Finance
112Emp_12Finance
213Emp_13Finance
314Emp_14Finance
415Emp_15Marketing
516Emp_16HR
617Emp_17Marketing
718Emp_18Marketing
819Emp_19Marketing
920Emp_20Finance
\n", 248 | "
" 249 | ], 250 | "text/plain": [ 251 | " Employee_ID Name Department\n", 252 | "0 11 Emp_11 Finance\n", 253 | "1 12 Emp_12 Finance\n", 254 | "2 13 Emp_13 Finance\n", 255 | "3 14 Emp_14 Finance\n", 256 | "4 15 Emp_15 Marketing\n", 257 | "5 16 Emp_16 HR\n", 258 | "6 17 Emp_17 Marketing\n", 259 | "7 18 Emp_18 Marketing\n", 260 | "8 19 Emp_19 Marketing\n", 261 | "9 20 Emp_20 Finance" 262 | ] 263 | }, 264 | "execution_count": 5, 265 | "metadata": {}, 266 | "output_type": "execute_result" 267 | } 268 | ], 269 | "source": [ 270 | "df2" 271 | ] 272 | }, 273 | { 274 | "cell_type": "code", 275 | "execution_count": 6, 276 | "id": "c9cada82-1121-4bab-bcde-9c5915fc8643", 277 | "metadata": {}, 278 | "outputs": [], 279 | "source": [ 280 | "#concat" 281 | ] 282 | }, 283 | { 284 | "cell_type": "code", 285 | "execution_count": 7, 286 | "id": "89f54b38-a58e-467f-a7c0-529beae35bbb", 287 | "metadata": {}, 288 | "outputs": [], 289 | "source": [ 290 | "df_concat = pd.concat([df1, df2], ignore_index=True)" 291 | ] 292 | }, 293 | { 294 | "cell_type": "code", 295 | "execution_count": 8, 296 | "id": "5ea30f98-78b3-4b39-ab09-948b2c9730b9", 297 | "metadata": {}, 298 | "outputs": [ 299 | { 300 | "data": { 301 | "text/html": [ 302 | "
\n", 303 | "\n", 316 | "\n", 317 | " \n", 318 | " \n", 319 | " \n", 320 | " \n", 321 | " \n", 322 | " \n", 323 | " \n", 324 | " \n", 325 | " \n", 326 | " \n", 327 | " \n", 328 | " \n", 329 | " \n", 330 | " \n", 331 | " \n", 332 | " \n", 333 | " \n", 334 | " \n", 335 | " \n", 336 | " \n", 337 | " \n", 338 | " \n", 339 | " \n", 340 | " \n", 341 | " \n", 342 | " \n", 343 | " \n", 344 | " \n", 345 | " \n", 346 | " \n", 347 | " \n", 348 | " \n", 349 | " \n", 350 | " \n", 351 | " \n", 352 | " \n", 353 | " \n", 354 | " \n", 355 | " \n", 356 | " \n", 357 | " \n", 358 | " \n", 359 | " \n", 360 | " \n", 361 | " \n", 362 | " \n", 363 | " \n", 364 | " \n", 365 | " \n", 366 | " \n", 367 | " \n", 368 | " \n", 369 | " \n", 370 | " \n", 371 | " \n", 372 | " \n", 373 | " \n", 374 | " \n", 375 | " \n", 376 | " \n", 377 | " \n", 378 | " \n", 379 | " \n", 380 | " \n", 381 | " \n", 382 | " \n", 383 | " \n", 384 | " \n", 385 | " \n", 386 | " \n", 387 | " \n", 388 | " \n", 389 | " \n", 390 | " \n", 391 | " \n", 392 | " \n", 393 | " \n", 394 | " \n", 395 | " \n", 396 | " \n", 397 | " \n", 398 | " \n", 399 | " \n", 400 | " \n", 401 | " \n", 402 | " \n", 403 | " \n", 404 | " \n", 405 | " \n", 406 | " \n", 407 | " \n", 408 | " \n", 409 | " \n", 410 | " \n", 411 | " \n", 412 | " \n", 413 | " \n", 414 | " \n", 415 | " \n", 416 | " \n", 417 | " \n", 418 | " \n", 419 | " \n", 420 | " \n", 421 | " \n", 422 | " \n", 423 | " \n", 424 | " \n", 425 | " \n", 426 | " \n", 427 | " \n", 428 | " \n", 429 | " \n", 430 | " \n", 431 | " \n", 432 | " \n", 433 | " \n", 434 | " \n", 435 | " \n", 436 | " \n", 437 | " \n", 438 | " \n", 439 | " \n", 440 | " \n", 441 | " \n", 442 | " \n", 443 | " \n", 444 | " \n", 445 | " \n", 446 | " \n", 447 | "
Employee_IDNameDepartment
01Emp_1Finance
12Emp_2Marketing
23Emp_3HR
34Emp_4Finance
45Emp_5Finance
56Emp_6Marketing
67Emp_7HR
78Emp_8HR
89Emp_9Finance
910Emp_10IT
1011Emp_11Finance
1112Emp_12Finance
1213Emp_13Finance
1314Emp_14Finance
1415Emp_15Marketing
1516Emp_16HR
1617Emp_17Marketing
1718Emp_18Marketing
1819Emp_19Marketing
1920Emp_20Finance
\n", 448 | "
" 449 | ], 450 | "text/plain": [ 451 | " Employee_ID Name Department\n", 452 | "0 1 Emp_1 Finance\n", 453 | "1 2 Emp_2 Marketing\n", 454 | "2 3 Emp_3 HR\n", 455 | "3 4 Emp_4 Finance\n", 456 | "4 5 Emp_5 Finance\n", 457 | "5 6 Emp_6 Marketing\n", 458 | "6 7 Emp_7 HR\n", 459 | "7 8 Emp_8 HR\n", 460 | "8 9 Emp_9 Finance\n", 461 | "9 10 Emp_10 IT\n", 462 | "10 11 Emp_11 Finance\n", 463 | "11 12 Emp_12 Finance\n", 464 | "12 13 Emp_13 Finance\n", 465 | "13 14 Emp_14 Finance\n", 466 | "14 15 Emp_15 Marketing\n", 467 | "15 16 Emp_16 HR\n", 468 | "16 17 Emp_17 Marketing\n", 469 | "17 18 Emp_18 Marketing\n", 470 | "18 19 Emp_19 Marketing\n", 471 | "19 20 Emp_20 Finance" 472 | ] 473 | }, 474 | "execution_count": 8, 475 | "metadata": {}, 476 | "output_type": "execute_result" 477 | } 478 | ], 479 | "source": [ 480 | "df_concat" 481 | ] 482 | }, 483 | { 484 | "cell_type": "code", 485 | "execution_count": 9, 486 | "id": "e338deec-cdb0-4cb0-a158-6c9c895d5d81", 487 | "metadata": {}, 488 | "outputs": [], 489 | "source": [ 490 | "df_merge1 = pd.read_csv(\"7-merge_data1.csv\")" 491 | ] 492 | }, 493 | { 494 | "cell_type": "code", 495 | "execution_count": 10, 496 | "id": "4e2ccfc5-d9b0-41d4-8ab4-d3fef3391d17", 497 | "metadata": {}, 498 | "outputs": [ 499 | { 500 | "data": { 501 | "text/html": [ 502 | "
\n", 503 | "\n", 516 | "\n", 517 | " \n", 518 | " \n", 519 | " \n", 520 | " \n", 521 | " \n", 522 | " \n", 523 | " \n", 524 | " \n", 525 | " \n", 526 | " \n", 527 | " \n", 528 | " \n", 529 | " \n", 530 | " \n", 531 | " \n", 532 | " \n", 533 | " \n", 534 | " \n", 535 | " \n", 536 | " \n", 537 | " \n", 538 | " \n", 539 | " \n", 540 | " \n", 541 | " \n", 542 | " \n", 543 | " \n", 544 | " \n", 545 | " \n", 546 | " \n", 547 | " \n", 548 | " \n", 549 | " \n", 550 | " \n", 551 | " \n", 552 | " \n", 553 | " \n", 554 | " \n", 555 | " \n", 556 | " \n", 557 | " \n", 558 | " \n", 559 | " \n", 560 | " \n", 561 | " \n", 562 | " \n", 563 | " \n", 564 | " \n", 565 | " \n", 566 | " \n", 567 | " \n", 568 | " \n", 569 | " \n", 570 | " \n", 571 | " \n", 572 | " \n", 573 | " \n", 574 | " \n", 575 | " \n", 576 | " \n", 577 | " \n", 578 | " \n", 579 | " \n", 580 | " \n", 581 | " \n", 582 | " \n", 583 | " \n", 584 | " \n", 585 | " \n", 586 | " \n", 587 | "
Employee_IDNameDepartment
01Emp_1IT
12Emp_2HR
23Emp_3IT
34Emp_4Marketing
45Emp_5Marketing
56Emp_6IT
67Emp_7IT
78Emp_8IT
89Emp_9Marketing
910Emp_10Marketing
\n", 588 | "
" 589 | ], 590 | "text/plain": [ 591 | " Employee_ID Name Department\n", 592 | "0 1 Emp_1 IT\n", 593 | "1 2 Emp_2 HR\n", 594 | "2 3 Emp_3 IT\n", 595 | "3 4 Emp_4 Marketing\n", 596 | "4 5 Emp_5 Marketing\n", 597 | "5 6 Emp_6 IT\n", 598 | "6 7 Emp_7 IT\n", 599 | "7 8 Emp_8 IT\n", 600 | "8 9 Emp_9 Marketing\n", 601 | "9 10 Emp_10 Marketing" 602 | ] 603 | }, 604 | "execution_count": 10, 605 | "metadata": {}, 606 | "output_type": "execute_result" 607 | } 608 | ], 609 | "source": [ 610 | "df_merge1" 611 | ] 612 | }, 613 | { 614 | "cell_type": "code", 615 | "execution_count": 11, 616 | "id": "b47a333e-e41c-4a8d-8205-1078a3122f5e", 617 | "metadata": {}, 618 | "outputs": [], 619 | "source": [ 620 | "df_merge2 = pd.read_csv(\"7-merge_data2.csv\")" 621 | ] 622 | }, 623 | { 624 | "cell_type": "code", 625 | "execution_count": 12, 626 | "id": "5ed9e197-b2ac-4edd-9778-7ffbd25aa965", 627 | "metadata": {}, 628 | "outputs": [ 629 | { 630 | "data": { 631 | "text/html": [ 632 | "
\n", 633 | "\n", 646 | "\n", 647 | " \n", 648 | " \n", 649 | " \n", 650 | " \n", 651 | " \n", 652 | " \n", 653 | " \n", 654 | " \n", 655 | " \n", 656 | " \n", 657 | " \n", 658 | " \n", 659 | " \n", 660 | " \n", 661 | " \n", 662 | " \n", 663 | " \n", 664 | " \n", 665 | " \n", 666 | " \n", 667 | " \n", 668 | " \n", 669 | " \n", 670 | " \n", 671 | " \n", 672 | " \n", 673 | " \n", 674 | " \n", 675 | " \n", 676 | " \n", 677 | " \n", 678 | " \n", 679 | " \n", 680 | " \n", 681 | " \n", 682 | " \n", 683 | " \n", 684 | " \n", 685 | " \n", 686 | " \n", 687 | " \n", 688 | " \n", 689 | " \n", 690 | " \n", 691 | " \n", 692 | " \n", 693 | " \n", 694 | " \n", 695 | " \n", 696 | " \n", 697 | " \n", 698 | " \n", 699 | " \n", 700 | " \n", 701 | " \n", 702 | " \n", 703 | " \n", 704 | " \n", 705 | "
Employee_IDSalaryExperience
05556583
111144785
2124843119
310327477
46891509
513957257
69657734
7118688618
\n", 706 | "
" 707 | ], 708 | "text/plain": [ 709 | " Employee_ID Salary Experience\n", 710 | "0 5 55658 3\n", 711 | "1 1 114478 5\n", 712 | "2 12 48431 19\n", 713 | "3 10 32747 7\n", 714 | "4 6 89150 9\n", 715 | "5 13 95725 7\n", 716 | "6 9 65773 4\n", 717 | "7 11 86886 18" 718 | ] 719 | }, 720 | "execution_count": 12, 721 | "metadata": {}, 722 | "output_type": "execute_result" 723 | } 724 | ], 725 | "source": [ 726 | "df_merge2" 727 | ] 728 | }, 729 | { 730 | "cell_type": "code", 731 | "execution_count": 13, 732 | "id": "9370d214-2a69-4512-ba49-c5a507413518", 733 | "metadata": {}, 734 | "outputs": [], 735 | "source": [ 736 | "# merge - inner join" 737 | ] 738 | }, 739 | { 740 | "cell_type": "code", 741 | "execution_count": 14, 742 | "id": "12aed07c-0858-4f7f-aed3-99e4ec8cdb4a", 743 | "metadata": {}, 744 | "outputs": [], 745 | "source": [ 746 | "df_merged = pd.merge(df_merge1, df_merge2, on=\"Employee_ID\", how=\"inner\")" 747 | ] 748 | }, 749 | { 750 | "cell_type": "code", 751 | "execution_count": 15, 752 | "id": "1382740d-2bbd-4fcd-af80-4702e723dd5c", 753 | "metadata": {}, 754 | "outputs": [ 755 | { 756 | "data": { 757 | "text/html": [ 758 | "
\n", 759 | "\n", 772 | "\n", 773 | " \n", 774 | " \n", 775 | " \n", 776 | " \n", 777 | " \n", 778 | " \n", 779 | " \n", 780 | " \n", 781 | " \n", 782 | " \n", 783 | " \n", 784 | " \n", 785 | " \n", 786 | " \n", 787 | " \n", 788 | " \n", 789 | " \n", 790 | " \n", 791 | " \n", 792 | " \n", 793 | " \n", 794 | " \n", 795 | " \n", 796 | " \n", 797 | " \n", 798 | " \n", 799 | " \n", 800 | " \n", 801 | " \n", 802 | " \n", 803 | " \n", 804 | " \n", 805 | " \n", 806 | " \n", 807 | " \n", 808 | " \n", 809 | " \n", 810 | " \n", 811 | " \n", 812 | " \n", 813 | " \n", 814 | " \n", 815 | " \n", 816 | " \n", 817 | " \n", 818 | " \n", 819 | " \n", 820 | " \n", 821 | " \n", 822 | " \n", 823 | " \n", 824 | " \n", 825 | "
Employee_IDNameDepartmentSalaryExperience
01Emp_1IT1144785
15Emp_5Marketing556583
26Emp_6IT891509
39Emp_9Marketing657734
410Emp_10Marketing327477
\n", 826 | "
" 827 | ], 828 | "text/plain": [ 829 | " Employee_ID Name Department Salary Experience\n", 830 | "0 1 Emp_1 IT 114478 5\n", 831 | "1 5 Emp_5 Marketing 55658 3\n", 832 | "2 6 Emp_6 IT 89150 9\n", 833 | "3 9 Emp_9 Marketing 65773 4\n", 834 | "4 10 Emp_10 Marketing 32747 7" 835 | ] 836 | }, 837 | "execution_count": 15, 838 | "metadata": {}, 839 | "output_type": "execute_result" 840 | } 841 | ], 842 | "source": [ 843 | "df_merged" 844 | ] 845 | }, 846 | { 847 | "cell_type": "code", 848 | "execution_count": 16, 849 | "id": "629eb38e-9f76-4725-8137-26df29ad7f90", 850 | "metadata": {}, 851 | "outputs": [], 852 | "source": [ 853 | "# merge - outer join" 854 | ] 855 | }, 856 | { 857 | "cell_type": "code", 858 | "execution_count": 17, 859 | "id": "699d9488-a992-444c-8bf8-3bb7fe1d1795", 860 | "metadata": {}, 861 | "outputs": [], 862 | "source": [ 863 | "df_merged_outer = pd.merge(df_merge1, df_merge2, on=\"Employee_ID\", how=\"outer\")" 864 | ] 865 | }, 866 | { 867 | "cell_type": "code", 868 | "execution_count": 18, 869 | "id": "717a2ab0-52d7-45dc-9d5c-6fe129194490", 870 | "metadata": {}, 871 | "outputs": [ 872 | { 873 | "data": { 874 | "text/html": [ 875 | "
\n", 876 | "\n", 889 | "\n", 890 | " \n", 891 | " \n", 892 | " \n", 893 | " \n", 894 | " \n", 895 | " \n", 896 | " \n", 897 | " \n", 898 | " \n", 899 | " \n", 900 | " \n", 901 | " \n", 902 | " \n", 903 | " \n", 904 | " \n", 905 | " \n", 906 | " \n", 907 | " \n", 908 | " \n", 909 | " \n", 910 | " \n", 911 | " \n", 912 | " \n", 913 | " \n", 914 | " \n", 915 | " \n", 916 | " \n", 917 | " \n", 918 | " \n", 919 | " \n", 920 | " \n", 921 | " \n", 922 | " \n", 923 | " \n", 924 | " \n", 925 | " \n", 926 | " \n", 927 | " \n", 928 | " \n", 929 | " \n", 930 | " \n", 931 | " \n", 932 | " \n", 933 | " \n", 934 | " \n", 935 | " \n", 936 | " \n", 937 | " \n", 938 | " \n", 939 | " \n", 940 | " \n", 941 | " \n", 942 | " \n", 943 | " \n", 944 | " \n", 945 | " \n", 946 | " \n", 947 | " \n", 948 | " \n", 949 | " \n", 950 | " \n", 951 | " \n", 952 | " \n", 953 | " \n", 954 | " \n", 955 | " \n", 956 | " \n", 957 | " \n", 958 | " \n", 959 | " \n", 960 | " \n", 961 | " \n", 962 | " \n", 963 | " \n", 964 | " \n", 965 | " \n", 966 | " \n", 967 | " \n", 968 | " \n", 969 | " \n", 970 | " \n", 971 | " \n", 972 | " \n", 973 | " \n", 974 | " \n", 975 | " \n", 976 | " \n", 977 | " \n", 978 | " \n", 979 | " \n", 980 | " \n", 981 | " \n", 982 | " \n", 983 | " \n", 984 | " \n", 985 | " \n", 986 | " \n", 987 | " \n", 988 | " \n", 989 | " \n", 990 | " \n", 991 | " \n", 992 | " \n", 993 | " \n", 994 | " \n", 995 | " \n", 996 | " \n", 997 | " \n", 998 | " \n", 999 | " \n", 1000 | " \n", 1001 | " \n", 1002 | " \n", 1003 | " \n", 1004 | " \n", 1005 | " \n", 1006 | "
Employee_IDNameDepartmentSalaryExperience
01Emp_1IT114478.05.0
12Emp_2HRNaNNaN
23Emp_3ITNaNNaN
34Emp_4MarketingNaNNaN
45Emp_5Marketing55658.03.0
56Emp_6IT89150.09.0
67Emp_7ITNaNNaN
78Emp_8ITNaNNaN
89Emp_9Marketing65773.04.0
910Emp_10Marketing32747.07.0
1011NaNNaN86886.018.0
1112NaNNaN48431.019.0
1213NaNNaN95725.07.0
\n", 1007 | "
" 1008 | ], 1009 | "text/plain": [ 1010 | " Employee_ID Name Department Salary Experience\n", 1011 | "0 1 Emp_1 IT 114478.0 5.0\n", 1012 | "1 2 Emp_2 HR NaN NaN\n", 1013 | "2 3 Emp_3 IT NaN NaN\n", 1014 | "3 4 Emp_4 Marketing NaN NaN\n", 1015 | "4 5 Emp_5 Marketing 55658.0 3.0\n", 1016 | "5 6 Emp_6 IT 89150.0 9.0\n", 1017 | "6 7 Emp_7 IT NaN NaN\n", 1018 | "7 8 Emp_8 IT NaN NaN\n", 1019 | "8 9 Emp_9 Marketing 65773.0 4.0\n", 1020 | "9 10 Emp_10 Marketing 32747.0 7.0\n", 1021 | "10 11 NaN NaN 86886.0 18.0\n", 1022 | "11 12 NaN NaN 48431.0 19.0\n", 1023 | "12 13 NaN NaN 95725.0 7.0" 1024 | ] 1025 | }, 1026 | "execution_count": 18, 1027 | "metadata": {}, 1028 | "output_type": "execute_result" 1029 | } 1030 | ], 1031 | "source": [ 1032 | "df_merged_outer" 1033 | ] 1034 | }, 1035 | { 1036 | "cell_type": "code", 1037 | "execution_count": 19, 1038 | "id": "cb99724f-2980-438c-bb08-fce6e2546d11", 1039 | "metadata": {}, 1040 | "outputs": [], 1041 | "source": [ 1042 | "# merge - left join" 1043 | ] 1044 | }, 1045 | { 1046 | "cell_type": "code", 1047 | "execution_count": 20, 1048 | "id": "ddd101ad-a66e-45ab-924d-275ca3b4c45c", 1049 | "metadata": {}, 1050 | "outputs": [], 1051 | "source": [ 1052 | "df_merged_left = pd.merge(df_merge1, df_merge2, on=\"Employee_ID\", how=\"left\")" 1053 | ] 1054 | }, 1055 | { 1056 | "cell_type": "code", 1057 | "execution_count": 21, 1058 | "id": "b1bd3612-1cd4-4b93-b7c9-b6aadf99e431", 1059 | "metadata": {}, 1060 | "outputs": [ 1061 | { 1062 | "data": { 1063 | "text/html": [ 1064 | "
\n", 1065 | "\n", 1078 | "\n", 1079 | " \n", 1080 | " \n", 1081 | " \n", 1082 | " \n", 1083 | " \n", 1084 | " \n", 1085 | " \n", 1086 | " \n", 1087 | " \n", 1088 | " \n", 1089 | " \n", 1090 | " \n", 1091 | " \n", 1092 | " \n", 1093 | " \n", 1094 | " \n", 1095 | " \n", 1096 | " \n", 1097 | " \n", 1098 | " \n", 1099 | " \n", 1100 | " \n", 1101 | " \n", 1102 | " \n", 1103 | " \n", 1104 | " \n", 1105 | " \n", 1106 | " \n", 1107 | " \n", 1108 | " \n", 1109 | " \n", 1110 | " \n", 1111 | " \n", 1112 | " \n", 1113 | " \n", 1114 | " \n", 1115 | " \n", 1116 | " \n", 1117 | " \n", 1118 | " \n", 1119 | " \n", 1120 | " \n", 1121 | " \n", 1122 | " \n", 1123 | " \n", 1124 | " \n", 1125 | " \n", 1126 | " \n", 1127 | " \n", 1128 | " \n", 1129 | " \n", 1130 | " \n", 1131 | " \n", 1132 | " \n", 1133 | " \n", 1134 | " \n", 1135 | " \n", 1136 | " \n", 1137 | " \n", 1138 | " \n", 1139 | " \n", 1140 | " \n", 1141 | " \n", 1142 | " \n", 1143 | " \n", 1144 | " \n", 1145 | " \n", 1146 | " \n", 1147 | " \n", 1148 | " \n", 1149 | " \n", 1150 | " \n", 1151 | " \n", 1152 | " \n", 1153 | " \n", 1154 | " \n", 1155 | " \n", 1156 | " \n", 1157 | " \n", 1158 | " \n", 1159 | " \n", 1160 | " \n", 1161 | " \n", 1162 | " \n", 1163 | " \n", 1164 | " \n", 1165 | " \n", 1166 | " \n", 1167 | " \n", 1168 | " \n", 1169 | " \n", 1170 | " \n", 1171 | "
Employee_IDNameDepartmentSalaryExperience
01Emp_1IT114478.05.0
12Emp_2HRNaNNaN
23Emp_3ITNaNNaN
34Emp_4MarketingNaNNaN
45Emp_5Marketing55658.03.0
56Emp_6IT89150.09.0
67Emp_7ITNaNNaN
78Emp_8ITNaNNaN
89Emp_9Marketing65773.04.0
910Emp_10Marketing32747.07.0
\n", 1172 | "
" 1173 | ], 1174 | "text/plain": [ 1175 | " Employee_ID Name Department Salary Experience\n", 1176 | "0 1 Emp_1 IT 114478.0 5.0\n", 1177 | "1 2 Emp_2 HR NaN NaN\n", 1178 | "2 3 Emp_3 IT NaN NaN\n", 1179 | "3 4 Emp_4 Marketing NaN NaN\n", 1180 | "4 5 Emp_5 Marketing 55658.0 3.0\n", 1181 | "5 6 Emp_6 IT 89150.0 9.0\n", 1182 | "6 7 Emp_7 IT NaN NaN\n", 1183 | "7 8 Emp_8 IT NaN NaN\n", 1184 | "8 9 Emp_9 Marketing 65773.0 4.0\n", 1185 | "9 10 Emp_10 Marketing 32747.0 7.0" 1186 | ] 1187 | }, 1188 | "execution_count": 21, 1189 | "metadata": {}, 1190 | "output_type": "execute_result" 1191 | } 1192 | ], 1193 | "source": [ 1194 | "df_merged_left" 1195 | ] 1196 | }, 1197 | { 1198 | "cell_type": "code", 1199 | "execution_count": 22, 1200 | "id": "0ada5b8d-e67b-4689-bd75-5fd2f54c6179", 1201 | "metadata": {}, 1202 | "outputs": [], 1203 | "source": [ 1204 | "# right join" 1205 | ] 1206 | }, 1207 | { 1208 | "cell_type": "code", 1209 | "execution_count": 23, 1210 | "id": "f858445a-fe5c-4afe-9618-911058b26aed", 1211 | "metadata": {}, 1212 | "outputs": [], 1213 | "source": [ 1214 | "df_merged_right = pd.merge(df_merge1, df_merge2, on=\"Employee_ID\", how=\"right\")" 1215 | ] 1216 | }, 1217 | { 1218 | "cell_type": "code", 1219 | "execution_count": 24, 1220 | "id": "7e2b7630-e10e-421c-b2eb-d38547e2b5ac", 1221 | "metadata": {}, 1222 | "outputs": [ 1223 | { 1224 | "data": { 1225 | "text/html": [ 1226 | "
\n", 1227 | "\n", 1240 | "\n", 1241 | " \n", 1242 | " \n", 1243 | " \n", 1244 | " \n", 1245 | " \n", 1246 | " \n", 1247 | " \n", 1248 | " \n", 1249 | " \n", 1250 | " \n", 1251 | " \n", 1252 | " \n", 1253 | " \n", 1254 | " \n", 1255 | " \n", 1256 | " \n", 1257 | " \n", 1258 | " \n", 1259 | " \n", 1260 | " \n", 1261 | " \n", 1262 | " \n", 1263 | " \n", 1264 | " \n", 1265 | " \n", 1266 | " \n", 1267 | " \n", 1268 | " \n", 1269 | " \n", 1270 | " \n", 1271 | " \n", 1272 | " \n", 1273 | " \n", 1274 | " \n", 1275 | " \n", 1276 | " \n", 1277 | " \n", 1278 | " \n", 1279 | " \n", 1280 | " \n", 1281 | " \n", 1282 | " \n", 1283 | " \n", 1284 | " \n", 1285 | " \n", 1286 | " \n", 1287 | " \n", 1288 | " \n", 1289 | " \n", 1290 | " \n", 1291 | " \n", 1292 | " \n", 1293 | " \n", 1294 | " \n", 1295 | " \n", 1296 | " \n", 1297 | " \n", 1298 | " \n", 1299 | " \n", 1300 | " \n", 1301 | " \n", 1302 | " \n", 1303 | " \n", 1304 | " \n", 1305 | " \n", 1306 | " \n", 1307 | " \n", 1308 | " \n", 1309 | " \n", 1310 | " \n", 1311 | " \n", 1312 | " \n", 1313 | " \n", 1314 | " \n", 1315 | " \n", 1316 | " \n", 1317 | "
Employee_IDNameDepartmentSalaryExperience
05Emp_5Marketing556583
11Emp_1IT1144785
212NaNNaN4843119
310Emp_10Marketing327477
46Emp_6IT891509
513NaNNaN957257
69Emp_9Marketing657734
711NaNNaN8688618
\n", 1318 | "
" 1319 | ], 1320 | "text/plain": [ 1321 | " Employee_ID Name Department Salary Experience\n", 1322 | "0 5 Emp_5 Marketing 55658 3\n", 1323 | "1 1 Emp_1 IT 114478 5\n", 1324 | "2 12 NaN NaN 48431 19\n", 1325 | "3 10 Emp_10 Marketing 32747 7\n", 1326 | "4 6 Emp_6 IT 89150 9\n", 1327 | "5 13 NaN NaN 95725 7\n", 1328 | "6 9 Emp_9 Marketing 65773 4\n", 1329 | "7 11 NaN NaN 86886 18" 1330 | ] 1331 | }, 1332 | "execution_count": 24, 1333 | "metadata": {}, 1334 | "output_type": "execute_result" 1335 | } 1336 | ], 1337 | "source": [ 1338 | "df_merged_right" 1339 | ] 1340 | }, 1341 | { 1342 | "cell_type": "code", 1343 | "execution_count": null, 1344 | "id": "ae49787d-43b9-4e55-845a-b72d3624051a", 1345 | "metadata": {}, 1346 | "outputs": [], 1347 | "source": [] 1348 | } 1349 | ], 1350 | "metadata": { 1351 | "kernelspec": { 1352 | "display_name": "Python 3 (ipykernel)", 1353 | "language": "python", 1354 | "name": "python3" 1355 | }, 1356 | "language_info": { 1357 | "codemirror_mode": { 1358 | "name": "ipython", 1359 | "version": 3 1360 | }, 1361 | "file_extension": ".py", 1362 | "mimetype": "text/x-python", 1363 | "name": "python", 1364 | "nbconvert_exporter": "python", 1365 | "pygments_lexer": "ipython3", 1366 | "version": "3.12.7" 1367 | } 1368 | }, 1369 | "nbformat": 4, 1370 | "nbformat_minor": 5 1371 | } 1372 | -------------------------------------------------------------------------------- /7-concat_data1.csv: -------------------------------------------------------------------------------- 1 | Employee_ID,Name,Department 2 | 1,Emp_1,Finance 3 | 2,Emp_2,Marketing 4 | 3,Emp_3,HR 5 | 4,Emp_4,Finance 6 | 5,Emp_5,Finance 7 | 6,Emp_6,Marketing 8 | 7,Emp_7,HR 9 | 8,Emp_8,HR 10 | 9,Emp_9,Finance 11 | 10,Emp_10,IT 12 | -------------------------------------------------------------------------------- /7-concat_data2.csv: -------------------------------------------------------------------------------- 1 | Employee_ID,Name,Department 2 | 11,Emp_11,Finance 3 | 12,Emp_12,Finance 4 | 13,Emp_13,Finance 5 | 14,Emp_14,Finance 6 | 15,Emp_15,Marketing 7 | 16,Emp_16,HR 8 | 17,Emp_17,Marketing 9 | 18,Emp_18,Marketing 10 | 19,Emp_19,Marketing 11 | 20,Emp_20,Finance 12 | -------------------------------------------------------------------------------- /7-merge_data1.csv: -------------------------------------------------------------------------------- 1 | Employee_ID,Name,Department 2 | 1,Emp_1,IT 3 | 2,Emp_2,HR 4 | 3,Emp_3,IT 5 | 4,Emp_4,Marketing 6 | 5,Emp_5,Marketing 7 | 6,Emp_6,IT 8 | 7,Emp_7,IT 9 | 8,Emp_8,IT 10 | 9,Emp_9,Marketing 11 | 10,Emp_10,Marketing 12 | -------------------------------------------------------------------------------- /7-merge_data2.csv: -------------------------------------------------------------------------------- 1 | Employee_ID,Salary,Experience 2 | 5,55658,3 3 | 1,114478,5 4 | 12,48431,19 5 | 10,32747,7 6 | 6,89150,9 7 | 13,95725,7 8 | 9,65773,4 9 | 11,86886,18 -------------------------------------------------------------------------------- /8-DataFramesApply.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 1, 6 | "id": "dcbdddc6-2ff9-420b-b7ae-68817c638a9f", 7 | "metadata": {}, 8 | "outputs": [], 9 | "source": [ 10 | "import pandas as pd" 11 | ] 12 | }, 13 | { 14 | "cell_type": "code", 15 | "execution_count": 2, 16 | "id": "208c614e-a2ac-4cc8-a210-0676280be17e", 17 | "metadata": {}, 18 | "outputs": [], 19 | "source": [ 20 | "df = pd.read_csv(\"8-apply_function_data.csv\")" 21 | ] 22 | }, 23 | { 24 | "cell_type": "code", 25 | "execution_count": 3, 26 | "id": "44fe998a-47b1-4a38-bcd2-e6929f28c1c4", 27 | "metadata": {}, 28 | "outputs": [ 29 | { 30 | "data": { 31 | "text/html": [ 32 | "
\n", 33 | "\n", 46 | "\n", 47 | " \n", 48 | " \n", 49 | " \n", 50 | " \n", 51 | " \n", 52 | " \n", 53 | " \n", 54 | " \n", 55 | " \n", 56 | " \n", 57 | " \n", 58 | " \n", 59 | " \n", 60 | " \n", 61 | " \n", 62 | " \n", 63 | " \n", 64 | " \n", 65 | " \n", 66 | " \n", 67 | " \n", 68 | " \n", 69 | " \n", 70 | " \n", 71 | " \n", 72 | " \n", 73 | " \n", 74 | " \n", 75 | " \n", 76 | " \n", 77 | " \n", 78 | " \n", 79 | " \n", 80 | " \n", 81 | " \n", 82 | " \n", 83 | " \n", 84 | " \n", 85 | " \n", 86 | " \n", 87 | " \n", 88 | " \n", 89 | " \n", 90 | " \n", 91 | " \n", 92 | " \n", 93 | " \n", 94 | " \n", 95 | " \n", 96 | " \n", 97 | " \n", 98 | " \n", 99 | " \n", 100 | " \n", 101 | " \n", 102 | " \n", 103 | " \n", 104 | " \n", 105 | " \n", 106 | " \n", 107 | " \n", 108 | " \n", 109 | " \n", 110 | " \n", 111 | " \n", 112 | " \n", 113 | " \n", 114 | " \n", 115 | " \n", 116 | " \n", 117 | " \n", 118 | " \n", 119 | " \n", 120 | " \n", 121 | " \n", 122 | " \n", 123 | " \n", 124 | " \n", 125 | " \n", 126 | " \n", 127 | " \n", 128 | " \n", 129 | " \n", 130 | " \n", 131 | " \n", 132 | " \n", 133 | " \n", 134 | " \n", 135 | " \n", 136 | " \n", 137 | " \n", 138 | " \n", 139 | " \n", 140 | " \n", 141 | " \n", 142 | " \n", 143 | " \n", 144 | " \n", 145 | " \n", 146 | " \n", 147 | " \n", 148 | " \n", 149 | " \n", 150 | " \n", 151 | " \n", 152 | " \n", 153 | " \n", 154 | " \n", 155 | " \n", 156 | " \n", 157 | " \n", 158 | " \n", 159 | "
Employee_IDNameDepartmentSalaryExperiencePerformance_Score
01Emp_1Marketing8225165
12Emp_2Sales52662243
23Emp_3Finance3839253
34Emp_4Sales60535203
45Emp_5Sales10860322
.....................
9596Emp_96Finance93734194
9697Emp_97Sales100467222
9798Emp_98IT82662233
9899Emp_99IT42688221
99100Emp_100HR55342143
\n", 160 | "

100 rows × 6 columns

\n", 161 | "
" 162 | ], 163 | "text/plain": [ 164 | " Employee_ID Name Department Salary Experience Performance_Score\n", 165 | "0 1 Emp_1 Marketing 82251 6 5\n", 166 | "1 2 Emp_2 Sales 52662 24 3\n", 167 | "2 3 Emp_3 Finance 38392 5 3\n", 168 | "3 4 Emp_4 Sales 60535 20 3\n", 169 | "4 5 Emp_5 Sales 108603 2 2\n", 170 | ".. ... ... ... ... ... ...\n", 171 | "95 96 Emp_96 Finance 93734 19 4\n", 172 | "96 97 Emp_97 Sales 100467 22 2\n", 173 | "97 98 Emp_98 IT 82662 23 3\n", 174 | "98 99 Emp_99 IT 42688 22 1\n", 175 | "99 100 Emp_100 HR 55342 14 3\n", 176 | "\n", 177 | "[100 rows x 6 columns]" 178 | ] 179 | }, 180 | "execution_count": 3, 181 | "metadata": {}, 182 | "output_type": "execute_result" 183 | } 184 | ], 185 | "source": [ 186 | "df" 187 | ] 188 | }, 189 | { 190 | "cell_type": "code", 191 | "execution_count": 4, 192 | "id": "20241537-af23-4981-9688-8cdb7f36810b", 193 | "metadata": {}, 194 | "outputs": [ 195 | { 196 | "data": { 197 | "text/html": [ 198 | "
\n", 199 | "\n", 212 | "\n", 213 | " \n", 214 | " \n", 215 | " \n", 216 | " \n", 217 | " \n", 218 | " \n", 219 | " \n", 220 | " \n", 221 | " \n", 222 | " \n", 223 | " \n", 224 | " \n", 225 | " \n", 226 | " \n", 227 | " \n", 228 | " \n", 229 | " \n", 230 | " \n", 231 | " \n", 232 | " \n", 233 | " \n", 234 | " \n", 235 | " \n", 236 | " \n", 237 | " \n", 238 | " \n", 239 | " \n", 240 | " \n", 241 | " \n", 242 | " \n", 243 | " \n", 244 | " \n", 245 | " \n", 246 | " \n", 247 | " \n", 248 | " \n", 249 | " \n", 250 | " \n", 251 | " \n", 252 | " \n", 253 | " \n", 254 | " \n", 255 | " \n", 256 | " \n", 257 | " \n", 258 | " \n", 259 | " \n", 260 | " \n", 261 | " \n", 262 | " \n", 263 | " \n", 264 | " \n", 265 | " \n", 266 | " \n", 267 | " \n", 268 | " \n", 269 | " \n", 270 | " \n", 271 | " \n", 272 | " \n", 273 | " \n", 274 | " \n", 275 | " \n", 276 | " \n", 277 | " \n", 278 | " \n", 279 | " \n", 280 | "
Employee_IDSalaryExperiencePerformance_Score
count100.000000100.000000100.000000100.00000
mean50.50000077508.09000012.0900003.03000
std29.01149226083.3275967.5439391.41746
min1.00000030206.0000001.0000001.00000
25%25.75000054347.5000005.0000002.00000
50%50.50000080932.00000012.0000003.00000
75%75.25000097620.50000019.0000004.00000
max100.000000119474.00000024.0000005.00000
\n", 281 | "
" 282 | ], 283 | "text/plain": [ 284 | " Employee_ID Salary Experience Performance_Score\n", 285 | "count 100.000000 100.000000 100.000000 100.00000\n", 286 | "mean 50.500000 77508.090000 12.090000 3.03000\n", 287 | "std 29.011492 26083.327596 7.543939 1.41746\n", 288 | "min 1.000000 30206.000000 1.000000 1.00000\n", 289 | "25% 25.750000 54347.500000 5.000000 2.00000\n", 290 | "50% 50.500000 80932.000000 12.000000 3.00000\n", 291 | "75% 75.250000 97620.500000 19.000000 4.00000\n", 292 | "max 100.000000 119474.000000 24.000000 5.00000" 293 | ] 294 | }, 295 | "execution_count": 4, 296 | "metadata": {}, 297 | "output_type": "execute_result" 298 | } 299 | ], 300 | "source": [ 301 | "df.describe()" 302 | ] 303 | }, 304 | { 305 | "cell_type": "code", 306 | "execution_count": 5, 307 | "id": "4b9883a1-c25c-40d1-b49f-4757021a8c14", 308 | "metadata": {}, 309 | "outputs": [ 310 | { 311 | "name": "stdout", 312 | "output_type": "stream", 313 | "text": [ 314 | "\n", 315 | "RangeIndex: 100 entries, 0 to 99\n", 316 | "Data columns (total 6 columns):\n", 317 | " # Column Non-Null Count Dtype \n", 318 | "--- ------ -------------- ----- \n", 319 | " 0 Employee_ID 100 non-null int64 \n", 320 | " 1 Name 100 non-null object\n", 321 | " 2 Department 100 non-null object\n", 322 | " 3 Salary 100 non-null int64 \n", 323 | " 4 Experience 100 non-null int64 \n", 324 | " 5 Performance_Score 100 non-null int64 \n", 325 | "dtypes: int64(4), object(2)\n", 326 | "memory usage: 4.8+ KB\n" 327 | ] 328 | } 329 | ], 330 | "source": [ 331 | "df.info()" 332 | ] 333 | }, 334 | { 335 | "cell_type": "code", 336 | "execution_count": 6, 337 | "id": "7add64b9-11d7-410c-893b-e1d06f42533d", 338 | "metadata": {}, 339 | "outputs": [ 340 | { 341 | "data": { 342 | "text/plain": [ 343 | "Index(['Employee_ID', 'Name', 'Department', 'Salary', 'Experience',\n", 344 | " 'Performance_Score'],\n", 345 | " dtype='object')" 346 | ] 347 | }, 348 | "execution_count": 6, 349 | "metadata": {}, 350 | "output_type": "execute_result" 351 | } 352 | ], 353 | "source": [ 354 | "df.columns" 355 | ] 356 | }, 357 | { 358 | "cell_type": "code", 359 | "execution_count": 7, 360 | "id": "e9878123-fa2a-4970-a847-95b10b0d00ba", 361 | "metadata": {}, 362 | "outputs": [ 363 | { 364 | "data": { 365 | "text/html": [ 366 | "
\n", 367 | "\n", 380 | "\n", 381 | " \n", 382 | " \n", 383 | " \n", 384 | " \n", 385 | " \n", 386 | " \n", 387 | " \n", 388 | " \n", 389 | " \n", 390 | " \n", 391 | " \n", 392 | " \n", 393 | " \n", 394 | " \n", 395 | " \n", 396 | " \n", 397 | " \n", 398 | " \n", 399 | " \n", 400 | " \n", 401 | " \n", 402 | " \n", 403 | " \n", 404 | " \n", 405 | " \n", 406 | " \n", 407 | " \n", 408 | " \n", 409 | " \n", 410 | " \n", 411 | " \n", 412 | " \n", 413 | " \n", 414 | " \n", 415 | " \n", 416 | " \n", 417 | " \n", 418 | " \n", 419 | " \n", 420 | " \n", 421 | " \n", 422 | " \n", 423 | " \n", 424 | " \n", 425 | " \n", 426 | " \n", 427 | " \n", 428 | " \n", 429 | " \n", 430 | " \n", 431 | " \n", 432 | " \n", 433 | " \n", 434 | " \n", 435 | " \n", 436 | " \n", 437 | " \n", 438 | " \n", 439 | " \n", 440 | " \n", 441 | " \n", 442 | " \n", 443 | " \n", 444 | " \n", 445 | " \n", 446 | " \n", 447 | " \n", 448 | " \n", 449 | " \n", 450 | " \n", 451 | " \n", 452 | " \n", 453 | " \n", 454 | " \n", 455 | " \n", 456 | " \n", 457 | " \n", 458 | " \n", 459 | " \n", 460 | " \n", 461 | " \n", 462 | " \n", 463 | " \n", 464 | " \n", 465 | " \n", 466 | " \n", 467 | " \n", 468 | " \n", 469 | " \n", 470 | " \n", 471 | " \n", 472 | " \n", 473 | " \n", 474 | " \n", 475 | " \n", 476 | " \n", 477 | " \n", 478 | " \n", 479 | " \n", 480 | " \n", 481 | " \n", 482 | " \n", 483 | " \n", 484 | " \n", 485 | " \n", 486 | " \n", 487 | " \n", 488 | " \n", 489 | " \n", 490 | " \n", 491 | " \n", 492 | " \n", 493 | " \n", 494 | " \n", 495 | " \n", 496 | " \n", 497 | " \n", 498 | " \n", 499 | " \n", 500 | " \n", 501 | " \n", 502 | " \n", 503 | " \n", 504 | " \n", 505 | " \n", 506 | " \n", 507 | " \n", 508 | " \n", 509 | " \n", 510 | " \n", 511 | " \n", 512 | " \n", 513 | " \n", 514 | " \n", 515 | " \n", 516 | " \n", 517 | " \n", 518 | " \n", 519 | " \n", 520 | " \n", 521 | " \n", 522 | " \n", 523 | " \n", 524 | " \n", 525 | " \n", 526 | " \n", 527 | " \n", 528 | " \n", 529 | " \n", 530 | " \n", 531 | " \n", 532 | " \n", 533 | " \n", 534 | " \n", 535 | " \n", 536 | " \n", 537 | " \n", 538 | " \n", 539 | " \n", 540 | " \n", 541 | " \n", 542 | " \n", 543 | " \n", 544 | " \n", 545 | " \n", 546 | " \n", 547 | " \n", 548 | " \n", 549 | " \n", 550 | " \n", 551 | " \n", 552 | " \n", 553 | " \n", 554 | " \n", 555 | " \n", 556 | " \n", 557 | " \n", 558 | " \n", 559 | " \n", 560 | " \n", 561 | " \n", 562 | " \n", 563 | " \n", 564 | " \n", 565 | "
Employee_IDNameDepartmentSalaryExperiencePerformance_Score
12Emp_2Sales52662243
23Emp_3Finance3839253
34Emp_4Sales60535203
45Emp_5Sales10860322
56Emp_6IT8225665
67Emp_7Finance119135221
78Emp_8Finance65222114
89Emp_9Finance107373161
910Emp_10Sales109575165
1011Emp_11Marketing11465114
1112Emp_12Finance9333595
1213Emp_13Sales4096563
1314Emp_14IT54538164
1415Emp_15Marketing10059233
1516Emp_16IT38110201
1617Emp_17Marketing10930941
1718Emp_18Sales57266194
1819Emp_19HR8299234
1920Emp_20Marketing112948195
\n", 566 | "
" 567 | ], 568 | "text/plain": [ 569 | " Employee_ID Name Department Salary Experience Performance_Score\n", 570 | "1 2 Emp_2 Sales 52662 24 3\n", 571 | "2 3 Emp_3 Finance 38392 5 3\n", 572 | "3 4 Emp_4 Sales 60535 20 3\n", 573 | "4 5 Emp_5 Sales 108603 2 2\n", 574 | "5 6 Emp_6 IT 82256 6 5\n", 575 | "6 7 Emp_7 Finance 119135 22 1\n", 576 | "7 8 Emp_8 Finance 65222 11 4\n", 577 | "8 9 Emp_9 Finance 107373 16 1\n", 578 | "9 10 Emp_10 Sales 109575 16 5\n", 579 | "10 11 Emp_11 Marketing 114651 1 4\n", 580 | "11 12 Emp_12 Finance 93335 9 5\n", 581 | "12 13 Emp_13 Sales 40965 6 3\n", 582 | "13 14 Emp_14 IT 54538 16 4\n", 583 | "14 15 Emp_15 Marketing 100592 3 3\n", 584 | "15 16 Emp_16 IT 38110 20 1\n", 585 | "16 17 Emp_17 Marketing 109309 4 1\n", 586 | "17 18 Emp_18 Sales 57266 19 4\n", 587 | "18 19 Emp_19 HR 82992 3 4\n", 588 | "19 20 Emp_20 Marketing 112948 19 5" 589 | ] 590 | }, 591 | "execution_count": 7, 592 | "metadata": {}, 593 | "output_type": "execute_result" 594 | } 595 | ], 596 | "source": [ 597 | "df[1:20]" 598 | ] 599 | }, 600 | { 601 | "cell_type": "code", 602 | "execution_count": 8, 603 | "id": "f080814d-8459-4c39-a38c-3ca84b623de5", 604 | "metadata": {}, 605 | "outputs": [], 606 | "source": [ 607 | "# Example 1: Apply a function to classify employees based on salary" 608 | ] 609 | }, 610 | { 611 | "cell_type": "code", 612 | "execution_count": 9, 613 | "id": "991a2aab-14a5-4165-8b25-b65daff95024", 614 | "metadata": {}, 615 | "outputs": [], 616 | "source": [ 617 | "def salary_category(salary):\n", 618 | " if salary < 50000:\n", 619 | " return \"Low\"\n", 620 | " elif 50000 <= salary < 80000:\n", 621 | " return \"Medium\"\n", 622 | " else:\n", 623 | " return \"High\"" 624 | ] 625 | }, 626 | { 627 | "cell_type": "code", 628 | "execution_count": 10, 629 | "id": "b300fcbe-b54d-4e07-8b15-823f8c74b326", 630 | "metadata": {}, 631 | "outputs": [], 632 | "source": [ 633 | "df[\"Salary_Category\"] = df[\"Salary\"].apply(salary_category)" 634 | ] 635 | }, 636 | { 637 | "cell_type": "code", 638 | "execution_count": 11, 639 | "id": "c20d58df-1a29-4197-aea6-9bf0e50ebb1a", 640 | "metadata": {}, 641 | "outputs": [ 642 | { 643 | "data": { 644 | "text/html": [ 645 | "
\n", 646 | "\n", 659 | "\n", 660 | " \n", 661 | " \n", 662 | " \n", 663 | " \n", 664 | " \n", 665 | " \n", 666 | " \n", 667 | " \n", 668 | " \n", 669 | " \n", 670 | " \n", 671 | " \n", 672 | " \n", 673 | " \n", 674 | " \n", 675 | " \n", 676 | " \n", 677 | " \n", 678 | " \n", 679 | " \n", 680 | " \n", 681 | " \n", 682 | " \n", 683 | " \n", 684 | " \n", 685 | " \n", 686 | " \n", 687 | " \n", 688 | " \n", 689 | " \n", 690 | " \n", 691 | " \n", 692 | " \n", 693 | " \n", 694 | " \n", 695 | " \n", 696 | " \n", 697 | " \n", 698 | " \n", 699 | " \n", 700 | " \n", 701 | " \n", 702 | " \n", 703 | " \n", 704 | " \n", 705 | " \n", 706 | " \n", 707 | " \n", 708 | " \n", 709 | " \n", 710 | " \n", 711 | " \n", 712 | " \n", 713 | " \n", 714 | " \n", 715 | " \n", 716 | " \n", 717 | " \n", 718 | " \n", 719 | " \n", 720 | " \n", 721 | " \n", 722 | " \n", 723 | " \n", 724 | " \n", 725 | " \n", 726 | " \n", 727 | " \n", 728 | " \n", 729 | " \n", 730 | " \n", 731 | " \n", 732 | " \n", 733 | " \n", 734 | " \n", 735 | " \n", 736 | " \n", 737 | " \n", 738 | " \n", 739 | " \n", 740 | " \n", 741 | " \n", 742 | " \n", 743 | " \n", 744 | " \n", 745 | " \n", 746 | " \n", 747 | " \n", 748 | " \n", 749 | " \n", 750 | " \n", 751 | " \n", 752 | " \n", 753 | " \n", 754 | " \n", 755 | " \n", 756 | " \n", 757 | " \n", 758 | " \n", 759 | " \n", 760 | " \n", 761 | " \n", 762 | " \n", 763 | " \n", 764 | " \n", 765 | " \n", 766 | " \n", 767 | " \n", 768 | " \n", 769 | " \n", 770 | " \n", 771 | " \n", 772 | " \n", 773 | " \n", 774 | " \n", 775 | " \n", 776 | " \n", 777 | " \n", 778 | " \n", 779 | " \n", 780 | " \n", 781 | " \n", 782 | " \n", 783 | " \n", 784 | "
Employee_IDNameDepartmentSalaryExperiencePerformance_ScoreSalary_Category
01Emp_1Marketing8225165High
12Emp_2Sales52662243Medium
23Emp_3Finance3839253Low
34Emp_4Sales60535203Medium
45Emp_5Sales10860322High
........................
9596Emp_96Finance93734194High
9697Emp_97Sales100467222High
9798Emp_98IT82662233High
9899Emp_99IT42688221Low
99100Emp_100HR55342143Medium
\n", 785 | "

100 rows × 7 columns

\n", 786 | "
" 787 | ], 788 | "text/plain": [ 789 | " Employee_ID Name Department Salary Experience Performance_Score \\\n", 790 | "0 1 Emp_1 Marketing 82251 6 5 \n", 791 | "1 2 Emp_2 Sales 52662 24 3 \n", 792 | "2 3 Emp_3 Finance 38392 5 3 \n", 793 | "3 4 Emp_4 Sales 60535 20 3 \n", 794 | "4 5 Emp_5 Sales 108603 2 2 \n", 795 | ".. ... ... ... ... ... ... \n", 796 | "95 96 Emp_96 Finance 93734 19 4 \n", 797 | "96 97 Emp_97 Sales 100467 22 2 \n", 798 | "97 98 Emp_98 IT 82662 23 3 \n", 799 | "98 99 Emp_99 IT 42688 22 1 \n", 800 | "99 100 Emp_100 HR 55342 14 3 \n", 801 | "\n", 802 | " Salary_Category \n", 803 | "0 High \n", 804 | "1 Medium \n", 805 | "2 Low \n", 806 | "3 Medium \n", 807 | "4 High \n", 808 | ".. ... \n", 809 | "95 High \n", 810 | "96 High \n", 811 | "97 High \n", 812 | "98 Low \n", 813 | "99 Medium \n", 814 | "\n", 815 | "[100 rows x 7 columns]" 816 | ] 817 | }, 818 | "execution_count": 11, 819 | "metadata": {}, 820 | "output_type": "execute_result" 821 | } 822 | ], 823 | "source": [ 824 | "df" 825 | ] 826 | }, 827 | { 828 | "cell_type": "code", 829 | "execution_count": 12, 830 | "id": "e0ded209-e186-4a29-9d3d-d0f9852904af", 831 | "metadata": {}, 832 | "outputs": [], 833 | "source": [ 834 | "# Example 2: Apply a function to calculate adjusted performance score" 835 | ] 836 | }, 837 | { 838 | "cell_type": "code", 839 | "execution_count": 13, 840 | "id": "8266a813-daae-4477-a2d7-b8731396e322", 841 | "metadata": {}, 842 | "outputs": [], 843 | "source": [ 844 | "def adjust_performance(row):\n", 845 | " if row[\"Experience\"] > 10:\n", 846 | " return row[\"Performance_Score\"] + 1\n", 847 | " return row[\"Performance_Score\"]" 848 | ] 849 | }, 850 | { 851 | "cell_type": "code", 852 | "execution_count": 14, 853 | "id": "a2d66ebf-da27-41b3-9f58-e726dca2ee09", 854 | "metadata": {}, 855 | "outputs": [], 856 | "source": [ 857 | "df[\"Adjusted_Performance\"] = df.apply(adjust_performance, axis=1)" 858 | ] 859 | }, 860 | { 861 | "cell_type": "code", 862 | "execution_count": 15, 863 | "id": "41dcdbb4-9c52-4285-bf0f-baab0bfb681b", 864 | "metadata": {}, 865 | "outputs": [ 866 | { 867 | "data": { 868 | "text/html": [ 869 | "
\n", 870 | "\n", 883 | "\n", 884 | " \n", 885 | " \n", 886 | " \n", 887 | " \n", 888 | " \n", 889 | " \n", 890 | " \n", 891 | " \n", 892 | " \n", 893 | " \n", 894 | " \n", 895 | " \n", 896 | " \n", 897 | " \n", 898 | " \n", 899 | " \n", 900 | " \n", 901 | " \n", 902 | " \n", 903 | " \n", 904 | " \n", 905 | " \n", 906 | " \n", 907 | " \n", 908 | " \n", 909 | " \n", 910 | " \n", 911 | " \n", 912 | " \n", 913 | " \n", 914 | " \n", 915 | " \n", 916 | " \n", 917 | " \n", 918 | " \n", 919 | " \n", 920 | " \n", 921 | " \n", 922 | " \n", 923 | " \n", 924 | " \n", 925 | " \n", 926 | " \n", 927 | " \n", 928 | " \n", 929 | " \n", 930 | " \n", 931 | " \n", 932 | " \n", 933 | " \n", 934 | " \n", 935 | " \n", 936 | " \n", 937 | " \n", 938 | " \n", 939 | " \n", 940 | " \n", 941 | " \n", 942 | " \n", 943 | " \n", 944 | " \n", 945 | " \n", 946 | " \n", 947 | " \n", 948 | " \n", 949 | " \n", 950 | " \n", 951 | " \n", 952 | " \n", 953 | " \n", 954 | " \n", 955 | " \n", 956 | " \n", 957 | " \n", 958 | " \n", 959 | " \n", 960 | " \n", 961 | " \n", 962 | " \n", 963 | " \n", 964 | " \n", 965 | " \n", 966 | " \n", 967 | " \n", 968 | " \n", 969 | " \n", 970 | " \n", 971 | " \n", 972 | " \n", 973 | " \n", 974 | " \n", 975 | " \n", 976 | " \n", 977 | " \n", 978 | " \n", 979 | " \n", 980 | " \n", 981 | " \n", 982 | " \n", 983 | " \n", 984 | " \n", 985 | " \n", 986 | " \n", 987 | " \n", 988 | " \n", 989 | " \n", 990 | " \n", 991 | " \n", 992 | " \n", 993 | " \n", 994 | " \n", 995 | " \n", 996 | " \n", 997 | " \n", 998 | " \n", 999 | " \n", 1000 | " \n", 1001 | " \n", 1002 | " \n", 1003 | " \n", 1004 | " \n", 1005 | " \n", 1006 | " \n", 1007 | " \n", 1008 | " \n", 1009 | " \n", 1010 | " \n", 1011 | " \n", 1012 | " \n", 1013 | " \n", 1014 | " \n", 1015 | " \n", 1016 | " \n", 1017 | " \n", 1018 | " \n", 1019 | " \n", 1020 | "
Employee_IDNameDepartmentSalaryExperiencePerformance_ScoreSalary_CategoryAdjusted_Performance
01Emp_1Marketing8225165High5
12Emp_2Sales52662243Medium4
23Emp_3Finance3839253Low3
34Emp_4Sales60535203Medium4
45Emp_5Sales10860322High2
...........................
9596Emp_96Finance93734194High5
9697Emp_97Sales100467222High3
9798Emp_98IT82662233High4
9899Emp_99IT42688221Low2
99100Emp_100HR55342143Medium4
\n", 1021 | "

100 rows × 8 columns

\n", 1022 | "
" 1023 | ], 1024 | "text/plain": [ 1025 | " Employee_ID Name Department Salary Experience Performance_Score \\\n", 1026 | "0 1 Emp_1 Marketing 82251 6 5 \n", 1027 | "1 2 Emp_2 Sales 52662 24 3 \n", 1028 | "2 3 Emp_3 Finance 38392 5 3 \n", 1029 | "3 4 Emp_4 Sales 60535 20 3 \n", 1030 | "4 5 Emp_5 Sales 108603 2 2 \n", 1031 | ".. ... ... ... ... ... ... \n", 1032 | "95 96 Emp_96 Finance 93734 19 4 \n", 1033 | "96 97 Emp_97 Sales 100467 22 2 \n", 1034 | "97 98 Emp_98 IT 82662 23 3 \n", 1035 | "98 99 Emp_99 IT 42688 22 1 \n", 1036 | "99 100 Emp_100 HR 55342 14 3 \n", 1037 | "\n", 1038 | " Salary_Category Adjusted_Performance \n", 1039 | "0 High 5 \n", 1040 | "1 Medium 4 \n", 1041 | "2 Low 3 \n", 1042 | "3 Medium 4 \n", 1043 | "4 High 2 \n", 1044 | ".. ... ... \n", 1045 | "95 High 5 \n", 1046 | "96 High 3 \n", 1047 | "97 High 4 \n", 1048 | "98 Low 2 \n", 1049 | "99 Medium 4 \n", 1050 | "\n", 1051 | "[100 rows x 8 columns]" 1052 | ] 1053 | }, 1054 | "execution_count": 15, 1055 | "metadata": {}, 1056 | "output_type": "execute_result" 1057 | } 1058 | ], 1059 | "source": [ 1060 | "df" 1061 | ] 1062 | }, 1063 | { 1064 | "cell_type": "code", 1065 | "execution_count": 16, 1066 | "id": "3c55d2b4-a0da-4c21-a6ce-b88c57f8a177", 1067 | "metadata": {}, 1068 | "outputs": [], 1069 | "source": [ 1070 | "# Example 3: Apply a lambda function to format employee names" 1071 | ] 1072 | }, 1073 | { 1074 | "cell_type": "code", 1075 | "execution_count": 17, 1076 | "id": "227442d6-82ef-4822-80a8-2d6388af7b32", 1077 | "metadata": {}, 1078 | "outputs": [], 1079 | "source": [ 1080 | "df[\"Formatted_Name\"] = df[\"Name\"].apply(lambda x: x.replace(\"_\", \" \"))" 1081 | ] 1082 | }, 1083 | { 1084 | "cell_type": "code", 1085 | "execution_count": 18, 1086 | "id": "c919d0ea-0358-422d-942d-50ed9265ea14", 1087 | "metadata": {}, 1088 | "outputs": [ 1089 | { 1090 | "data": { 1091 | "text/html": [ 1092 | "
\n", 1093 | "\n", 1106 | "\n", 1107 | " \n", 1108 | " \n", 1109 | " \n", 1110 | " \n", 1111 | " \n", 1112 | " \n", 1113 | " \n", 1114 | " \n", 1115 | " \n", 1116 | " \n", 1117 | " \n", 1118 | " \n", 1119 | " \n", 1120 | " \n", 1121 | " \n", 1122 | " \n", 1123 | " \n", 1124 | " \n", 1125 | " \n", 1126 | " \n", 1127 | " \n", 1128 | " \n", 1129 | " \n", 1130 | " \n", 1131 | " \n", 1132 | " \n", 1133 | " \n", 1134 | " \n", 1135 | " \n", 1136 | " \n", 1137 | " \n", 1138 | " \n", 1139 | " \n", 1140 | " \n", 1141 | " \n", 1142 | " \n", 1143 | " \n", 1144 | " \n", 1145 | " \n", 1146 | " \n", 1147 | " \n", 1148 | " \n", 1149 | " \n", 1150 | " \n", 1151 | " \n", 1152 | " \n", 1153 | " \n", 1154 | " \n", 1155 | " \n", 1156 | " \n", 1157 | " \n", 1158 | " \n", 1159 | " \n", 1160 | " \n", 1161 | " \n", 1162 | " \n", 1163 | " \n", 1164 | " \n", 1165 | " \n", 1166 | " \n", 1167 | " \n", 1168 | " \n", 1169 | " \n", 1170 | " \n", 1171 | " \n", 1172 | " \n", 1173 | " \n", 1174 | " \n", 1175 | " \n", 1176 | " \n", 1177 | " \n", 1178 | " \n", 1179 | " \n", 1180 | " \n", 1181 | " \n", 1182 | " \n", 1183 | "
Employee_IDNameDepartmentSalaryExperiencePerformance_ScoreSalary_CategoryAdjusted_PerformanceFormatted_Name
01Emp_1Marketing8225165High5Emp 1
12Emp_2Sales52662243Medium4Emp 2
23Emp_3Finance3839253Low3Emp 3
34Emp_4Sales60535203Medium4Emp 4
45Emp_5Sales10860322High2Emp 5
\n", 1184 | "
" 1185 | ], 1186 | "text/plain": [ 1187 | " Employee_ID Name Department Salary Experience Performance_Score \\\n", 1188 | "0 1 Emp_1 Marketing 82251 6 5 \n", 1189 | "1 2 Emp_2 Sales 52662 24 3 \n", 1190 | "2 3 Emp_3 Finance 38392 5 3 \n", 1191 | "3 4 Emp_4 Sales 60535 20 3 \n", 1192 | "4 5 Emp_5 Sales 108603 2 2 \n", 1193 | "\n", 1194 | " Salary_Category Adjusted_Performance Formatted_Name \n", 1195 | "0 High 5 Emp 1 \n", 1196 | "1 Medium 4 Emp 2 \n", 1197 | "2 Low 3 Emp 3 \n", 1198 | "3 Medium 4 Emp 4 \n", 1199 | "4 High 2 Emp 5 " 1200 | ] 1201 | }, 1202 | "execution_count": 18, 1203 | "metadata": {}, 1204 | "output_type": "execute_result" 1205 | } 1206 | ], 1207 | "source": [ 1208 | "df.head()" 1209 | ] 1210 | }, 1211 | { 1212 | "cell_type": "code", 1213 | "execution_count": null, 1214 | "id": "13c2ab2e-5971-45ae-864b-d27674e476e0", 1215 | "metadata": {}, 1216 | "outputs": [], 1217 | "source": [] 1218 | } 1219 | ], 1220 | "metadata": { 1221 | "kernelspec": { 1222 | "display_name": "Python 3 (ipykernel)", 1223 | "language": "python", 1224 | "name": "python3" 1225 | }, 1226 | "language_info": { 1227 | "codemirror_mode": { 1228 | "name": "ipython", 1229 | "version": 3 1230 | }, 1231 | "file_extension": ".py", 1232 | "mimetype": "text/x-python", 1233 | "name": "python", 1234 | "nbconvert_exporter": "python", 1235 | "pygments_lexer": "ipython3", 1236 | "version": "3.12.7" 1237 | } 1238 | }, 1239 | "nbformat": 4, 1240 | "nbformat_minor": 5 1241 | } 1242 | -------------------------------------------------------------------------------- /8-apply_function_data.csv: -------------------------------------------------------------------------------- 1 | Employee_ID,Name,Department,Salary,Experience,Performance_Score 2 | 1,Emp_1,Marketing,82251,6,5 3 | 2,Emp_2,Sales,52662,24,3 4 | 3,Emp_3,Finance,38392,5,3 5 | 4,Emp_4,Sales,60535,20,3 6 | 5,Emp_5,Sales,108603,2,2 7 | 6,Emp_6,IT,82256,6,5 8 | 7,Emp_7,Finance,119135,22,1 9 | 8,Emp_8,Finance,65222,11,4 10 | 9,Emp_9,Finance,107373,16,1 11 | 10,Emp_10,Sales,109575,16,5 12 | 11,Emp_11,Marketing,114651,1,4 13 | 12,Emp_12,Finance,93335,9,5 14 | 13,Emp_13,Sales,40965,6,3 15 | 14,Emp_14,IT,54538,16,4 16 | 15,Emp_15,Marketing,100592,3,3 17 | 16,Emp_16,IT,38110,20,1 18 | 17,Emp_17,Marketing,109309,4,1 19 | 18,Emp_18,Sales,57266,19,4 20 | 19,Emp_19,HR,82992,3,4 21 | 20,Emp_20,Marketing,112948,19,5 22 | 21,Emp_21,IT,36910,20,5 23 | 22,Emp_22,Sales,30206,7,3 24 | 23,Emp_23,Marketing,117054,20,4 25 | 24,Emp_24,HR,117897,9,1 26 | 25,Emp_25,HR,53419,1,5 27 | 26,Emp_26,Finance,80636,8,5 28 | 27,Emp_27,Finance,80015,7,1 29 | 28,Emp_28,IT,84268,18,5 30 | 29,Emp_29,Marketing,117939,8,3 31 | 30,Emp_30,Marketing,48141,1,4 32 | 31,Emp_31,Finance,110356,11,1 33 | 32,Emp_32,Marketing,101910,18,4 34 | 33,Emp_33,Marketing,86044,23,5 35 | 34,Emp_34,HR,97214,10,5 36 | 35,Emp_35,Finance,63827,3,1 37 | 36,Emp_36,Sales,85820,7,3 38 | 37,Emp_37,Finance,92623,16,2 39 | 38,Emp_38,Sales,111734,16,1 40 | 39,Emp_39,HR,105450,20,2 41 | 40,Emp_40,IT,52299,17,2 42 | 41,Emp_41,Marketing,73585,2,3 43 | 42,Emp_42,HR,94044,1,2 44 | 43,Emp_43,Marketing,72557,16,2 45 | 44,Emp_44,IT,79080,12,3 46 | 45,Emp_45,IT,32693,5,2 47 | 46,Emp_46,HR,99163,5,2 48 | 47,Emp_47,IT,55939,23,2 49 | 48,Emp_48,Sales,78925,9,1 50 | 49,Emp_49,IT,72941,9,1 51 | 50,Emp_50,Marketing,51834,3,1 52 | 51,Emp_51,Marketing,48047,19,3 53 | 52,Emp_52,Marketing,56105,16,5 54 | 53,Emp_53,Marketing,105766,16,2 55 | 54,Emp_54,Sales,45707,3,2 56 | 55,Emp_55,Finance,51976,20,3 57 | 56,Emp_56,HR,74262,24,2 58 | 57,Emp_57,Marketing,53776,22,1 59 | 58,Emp_58,IT,60080,24,5 60 | 59,Emp_59,Marketing,96842,1,4 61 | 60,Emp_60,IT,91373,24,2 62 | 61,Emp_61,IT,36776,20,1 63 | 62,Emp_62,Marketing,85016,11,4 64 | 63,Emp_63,Sales,39474,17,5 65 | 64,Emp_64,IT,88053,8,4 66 | 65,Emp_65,IT,51959,4,1 67 | 66,Emp_66,Marketing,35530,6,4 68 | 67,Emp_67,IT,33748,8,3 69 | 68,Emp_68,IT,43545,20,4 70 | 69,Emp_69,Marketing,96199,3,2 71 | 70,Emp_70,Marketing,64766,16,2 72 | 71,Emp_71,HR,103530,3,3 73 | 72,Emp_72,Sales,91087,18,1 74 | 73,Emp_73,Sales,98840,14,2 75 | 74,Emp_74,IT,84384,18,5 76 | 75,Emp_75,Sales,81005,2,2 77 | 76,Emp_76,IT,76576,22,2 78 | 77,Emp_77,HR,69353,3,1 79 | 78,Emp_78,Marketing,92003,16,4 80 | 79,Emp_79,Marketing,113211,9,2 81 | 80,Emp_80,Marketing,82733,4,3 82 | 81,Emp_81,Sales,95318,1,4 83 | 82,Emp_82,HR,119474,4,5 84 | 83,Emp_83,Sales,53664,1,1 85 | 84,Emp_84,Sales,97172,14,5 86 | 85,Emp_85,HR,115616,21,4 87 | 86,Emp_86,HR,56736,16,4 88 | 87,Emp_87,HR,30854,20,4 89 | 88,Emp_88,HR,68623,24,5 90 | 89,Emp_89,Marketing,37392,8,4 91 | 90,Emp_90,Finance,85680,7,5 92 | 91,Emp_91,Finance,76717,3,4 93 | 92,Emp_92,HR,117092,17,3 94 | 93,Emp_93,Finance,80859,1,4 95 | 94,Emp_94,Finance,56309,16,5 96 | 95,Emp_95,HR,117455,12,2 97 | 96,Emp_96,Finance,93734,19,4 98 | 97,Emp_97,Sales,100467,22,2 99 | 98,Emp_98,IT,82662,23,3 100 | 99,Emp_99,IT,42688,22,1 101 | 100,Emp_100,HR,55342,14,3 102 | -------------------------------------------------------------------------------- /athlete_events.csv.zip: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/atilsamancioglu/PythonForDataScienceNotebooks/HEAD/athlete_events.csv.zip --------------------------------------------------------------------------------