├── .gitignore
├── CODE_OF_CONDUCT.md
├── CONTRIBUTING.md
├── LICENSE
├── Makefile
├── README.md
├── cfn-templates
└── sagemaker-domain.yaml
├── img
├── canvas-add-to-model-registry.png
├── canvas-analyze-quick-build.png
├── canvas-analyze-standard-build.png
├── canvas-build-comparison.png
├── canvas-configure-model-config.png
├── canvas-create-data-flow.png
├── canvas-create-model.png
├── canvas-datasets.png
├── canvas-download-performance-report.png
├── canvas-endpoint-resource-error.png
├── canvas-model-deploy.png
├── canvas-model-leaderboard.png
├── canvas-model-new-version.png
├── canvas-model-registry-details.png
├── canvas-predictions.png
├── canvas-start-quick-build.png
├── chronos-main-figure.png
├── chronos.png
├── git-repo-qr-code.png
├── quicksight_filter_item_101_store_001.png
├── smd-select.png
└── workshop-qr-code.svg
├── notebooks
├── additional
│ ├── gluonts_pipeline
│ │ ├── inference.py
│ │ ├── preprocess.py
│ │ ├── register.py
│ │ ├── train.py
│ │ └── train_step.py
│ ├── lab1a_gluonts.ipynb
│ └── lab2a_tide.ipynb
├── lab1_sagemaker_canvas.ipynb
├── lab2_sagemaker_autopilot_api.ipynb
├── lab3_sagemaker_deepar.ipynb
├── lab4_chronos.ipynb
├── lab5_autogluon.ipynb
└── lab6_results.ipynb
├── scripts
└── lcc-script.sh
└── test
└── model-performance
├── autogluon-2H-2-17533-20240919-145927.csv
├── autogluon-2h-370-17533-20240927-145601.csv
├── autogluon-Chronos[base]-2h-370-17533-20240930-114821.csv
├── autogluon-Chronos[base]-2h-370-17533-bt4-20240930-122110.csv
├── autogluon-Chronos[mini]-2H-2-17533-20240919-181432.csv
├── autogluon-Chronos[mini]-2H-2-17533-20240919-182135.csv
├── autogluon-Chronos[mini]-2H-2-17533-bt4-20240919-182239.csv
├── autopilot-2H-370-17533-20240919-151404.csv
├── autopilot-full-2h-370-17533-20241001-091815.csv
├── canvas-1D-2-1462-20240927-150101.csv
├── canvas-1D-2-35065-20240920-091227.csv
├── canvas-1D-370-35065-20240920-091316.csv
├── canvas-1D-370-35065-20240927-105539.csv
├── canvas-1H-2-1462-20240927-191325.csv
├── canvas-1H-370-35065-20240920-091430.csv
├── canvas-1H-370-35065-20240927-134914.csv
├── chronos-2H-370-17533-bt4-20240919-130527.csv
├── chronos-2H-370-17533-off10-20240919-130527.csv
├── deepar-2H-370-17533-20240919-202341.csv
├── deepar-2h-2-17533-20240927-105431.csv
├── gluonts-1h-10-8736-bt4-20241106-080455.csv
├── gluonts-1h-10-8736-bt4-20241106-181402.csv
└── gluonts-1h-10-8736-bt4-20241107-214657.csv
/.gitignore:
--------------------------------------------------------------------------------
1 | # Byte-compiled / optimized / DLL files
2 | __pycache__/
3 | *.py[cod]
4 | *$py.class
5 |
6 | # C extensions
7 | *.so
8 |
9 | # Distribution / packaging
10 | .Python
11 | build/
12 | develop-eggs/
13 | dist/
14 | downloads/
15 | eggs/
16 | .eggs/
17 | lib/
18 | lib64/
19 | parts/
20 | sdist/
21 | var/
22 | wheels/
23 | pip-wheel-metadata/
24 | share/python-wheels/
25 | *.egg-info/
26 | .installed.cfg
27 | *.egg
28 | MANIFEST
29 |
30 | # PyInstaller
31 | # Usually these files are written by a python script from a template
32 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
33 | *.manifest
34 | *.spec
35 |
36 | # Installer logs
37 | pip-log.txt
38 | pip-delete-this-directory.txt
39 |
40 | # Unit test / coverage reports
41 | htmlcov/
42 | .tox/
43 | .nox/
44 | .coverage
45 | .coverage.*
46 | .cache
47 | nosetests.xml
48 | coverage.xml
49 | *.cover
50 | *.py,cover
51 | .hypothesis/
52 | .pytest_cache/
53 |
54 | # Translations
55 | *.mo
56 | *.pot
57 |
58 | # Django stuff:
59 | *.log
60 | local_settings.py
61 | db.sqlite3
62 | db.sqlite3-journal
63 |
64 | # Flask stuff:
65 | instance/
66 | .webassets-cache
67 |
68 | # Scrapy stuff:
69 | .scrapy
70 |
71 | # Sphinx documentation
72 | docs/_build/
73 |
74 | # PyBuilder
75 | target/
76 |
77 | # Jupyter Notebook
78 | .ipynb_checkpoints
79 |
80 | # IPython
81 | profile_default/
82 | ipython_config.py
83 |
84 | # pyenv
85 | .python-version
86 |
87 | # pipenv
88 | # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
89 | # However, in case of collaboration, if having platform-specific dependencies or dependencies
90 | # having no cross-platform support, pipenv may install dependencies that don't work, or not
91 | # install all needed dependencies.
92 | #Pipfile.lock
93 |
94 | # PEP 582; used by e.g. github.com/David-OConnor/pyflow
95 | __pypackages__/
96 |
97 | # Celery stuff
98 | celerybeat-schedule
99 | celerybeat.pid
100 |
101 | # SageMath parsed files
102 | *.sage.py
103 |
104 | # Environments
105 | .env
106 | .venv
107 | env/
108 | venv/
109 | ENV/
110 | env.bak/
111 | venv.bak/
112 |
113 | # Spyder project settings
114 | .spyderproject
115 | .spyproject
116 |
117 | # Rope project settings
118 | .ropeproject
119 |
120 | # mkdocs documentation
121 | /site
122 |
123 | # mypy
124 | .mypy_cache/
125 | .dmypy.json
126 | dmypy.json
127 |
128 | # Pyre type checker
129 | .pyre/
130 |
131 | # Project-specific
132 | deploy
133 |
134 | # Build folder
135 |
136 | */build/*
137 |
138 | # SAM
139 | .aws-sam/*
140 | samconfig.*
141 | .DS_Store
142 | .environment
143 | .not-used-snippets
144 |
145 | .gp2/*
146 | *.pdf
147 | *snapshot.json
148 | .test*
149 | *.zip
--------------------------------------------------------------------------------
/CODE_OF_CONDUCT.md:
--------------------------------------------------------------------------------
1 | ## Code of Conduct
2 | This project has adopted the [Amazon Open Source Code of Conduct](https://aws.github.io/code-of-conduct).
3 | For more information see the [Code of Conduct FAQ](https://aws.github.io/code-of-conduct-faq) or contact
4 | opensource-codeofconduct@amazon.com with any additional questions or comments.
--------------------------------------------------------------------------------
/CONTRIBUTING.md:
--------------------------------------------------------------------------------
1 | # Contributing Guidelines
2 |
3 | Thank you for your interest in contributing to our project. Whether it's a bug report, new feature, correction, or additional
4 | documentation, we greatly value feedback and contributions from our community.
5 |
6 | Please read through this document before submitting any issues or pull requests to ensure we have all the necessary
7 | information to effectively respond to your bug report or contribution.
8 |
9 |
10 | ## Reporting Bugs/Feature Requests
11 |
12 | We welcome you to use the GitHub issue tracker to report bugs or suggest features.
13 |
14 | When filing an issue, please check existing open, or recently closed, issues to make sure somebody else hasn't already
15 | reported the issue. Please try to include as much information as you can. Details like these are incredibly useful:
16 |
17 | * A reproducible test case or series of steps
18 | * The version of our code being used
19 | * Any modifications you've made relevant to the bug
20 | * Anything unusual about your environment or deployment
21 |
22 |
23 | ## Contributing via Pull Requests
24 | Contributions via pull requests are much appreciated. Before sending us a pull request, please ensure that:
25 |
26 | 1. You are working against the latest source on the *main* branch.
27 | 2. You check existing open, and recently merged, pull requests to make sure someone else hasn't addressed the problem already.
28 | 3. You open an issue to discuss any significant work - we would hate for your time to be wasted.
29 |
30 | To send us a pull request, please:
31 |
32 | 1. Fork the repository.
33 | 2. Modify the source; please focus on the specific change you are contributing. If you also reformat all the code, it will be hard for us to focus on your change.
34 | 3. Ensure local tests pass.
35 | 4. Commit to your fork using clear commit messages.
36 | 5. Send us a pull request, answering any default questions in the pull request interface.
37 | 6. Pay attention to any automated CI failures reported in the pull request, and stay involved in the conversation.
38 |
39 | GitHub provides additional document on [forking a repository](https://help.github.com/articles/fork-a-repo/) and
40 | [creating a pull request](https://help.github.com/articles/creating-a-pull-request/).
41 |
42 |
43 | ## Finding contributions to work on
44 | Looking at the existing issues is a great way to find something to contribute on. As our projects, by default, use the default GitHub issue labels (enhancement/bug/duplicate/help wanted/invalid/question/wontfix), looking at any 'help wanted' issues is a great place to start.
45 |
46 |
47 | ## Code of Conduct
48 | This project has adopted the [Amazon Open Source Code of Conduct](https://aws.github.io/code-of-conduct).
49 | For more information see the [Code of Conduct FAQ](https://aws.github.io/code-of-conduct-faq) or contact
50 | opensource-codeofconduct@amazon.com with any additional questions or comments.
51 |
52 |
53 | ## Security issue notifications
54 | If you discover a potential security issue in this project we ask that you notify AWS/Amazon Security via our [vulnerability reporting page](http://aws.amazon.com/security/vulnerability-reporting/). Please do **not** create a public github issue.
55 |
56 |
57 | ## Licensing
58 |
59 | See the [LICENSE](LICENSE) file for our project's licensing. We will ask you to confirm the licensing of your contribution.
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | MIT No Attribution
2 |
3 | Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
4 |
5 | Permission is hereby granted, free of charge, to any person obtaining a copy of
6 | this software and associated documentation files (the "Software"), to deal in
7 | the Software without restriction, including without limitation the rights to
8 | use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
9 | the Software, and to permit persons to whom the Software is furnished to do so.
10 |
11 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
12 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
13 | FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
14 | COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
15 | IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
16 | CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
--------------------------------------------------------------------------------
/Makefile:
--------------------------------------------------------------------------------
1 | deploy-domain:
2 | aws cloudformation deploy \
3 | --template-file cfn-templates/sagemaker-domain.yaml \
4 | --stack-name sm-domain-ts-workshop \
5 | --capabilities CAPABILITY_IAM CAPABILITY_NAMED_IAM \
6 | --parameter-overrides \
7 | DomainNamePrefix='sm-domain-time-series'
8 |
9 | destroy-domain:
10 | aws cloudformation delete-stack \
11 | --stack-name sm-domain-ts-workshop && \
12 | aws cloudformation wait stack-delete-complete \
13 | --stack-name sm-domain-ts-workshop
14 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Modern Time Series Forecasting on AWS
2 |
3 | ## Overview
4 | This workshop demonstrates how to use AWS services to implement time series forecasting. It covers the following examples and AWS services:
5 | 1. Amazon SageMaker Canvas
6 | 2. Amazon SageMaker Autopilot API
7 | 3. Amazon SageMaker DeepAR
8 | 4. Chronos
9 | 5. AutoGluon
10 |
11 | Additional notebooks cover forecasting with GluonTS, a custom algorithm on SageMaker, and Amazon QuickSight.
12 |
13 | The [workshop](https://catalog.us-east-1.prod.workshops.aws/workshops/76a419ba-6303-4e7c-ac02-47112ed7cb3f/en-US) is available in AWS workshop catalog. You can run this workshop on an AWS-led event or in your own AWS account.
14 |
15 | ## How to use this workshop
16 | To use this workshop, you need an Amazon SageMaker domain. All workshop content is in Jupyter notebooks running on Amazon SageMaker. To get started, follow the instructions in the **Getting started** section. To clean up resources, follow the instructions in the **Clean-up** section. You can execute the notebooks in any order, and you don't need to switch between the notebooks and the workshop web page.
17 |
18 | ## Required resources
19 |
20 | **Ignore this section if you're using an AWS-provided account as a part of an AWS-led workshop.**
21 |
22 | In order to be able to run notebooks and complete workshop labs you need access to the following resources in your AWS account. You can check quotas for all following resources in AWS console in [Service Quotas](https://us-east-1.console.aws.amazon.com/servicequotas/home/services/sagemaker/quotas) console.
23 |
24 | **Studio JupyterLab app**
25 | Minimal required instance type is `ml.m5.2xlarge`. We recommend to use `ml.m5.4xlarge` as an instance to run all notebooks. If you have access to GPU-instances like `ml.g5.4xlarge` or `ml.g6.4xlarge`, use these instance to run the notebooks.
26 |
27 | To experiment with the full dataset with 370 time series in the lab 5 AutoGluon you need a GPU instance for the notebook - `ml.g5.4xlarge`/`ml.g6.4xlarge` or `ml.g5.8xlarge`/`ml.g6.8xlarge`.
28 |
29 | - Check quota for [`ml.m5.2xlarge`](https://us-east-1.console.aws.amazon.com/servicequotas/home/services/sagemaker/quotas/L-7C9662F1)
30 | - Check quota for [`ml.m5.4xlarge`](https://us-east-1.console.aws.amazon.com/servicequotas/home/services/sagemaker/quotas/L-2CA31BFA)
31 | - Check quota for [`ml.g5.4xlarge`](https://us-east-1.console.aws.amazon.com/servicequotas/home/services/sagemaker/quotas/L-81940D85)
32 | - Check quota for [`ml.g6.4xlarge`](https://us-east-1.console.aws.amazon.com/servicequotas/home/services/sagemaker/quotas/L-692B8304)
33 | - Check quota for [`ml.g5.8xlarge`](https://us-east-1.console.aws.amazon.com/servicequotas/home/services/sagemaker/quotas/L-19B6BAFC)
34 | - Check quota for [`ml.g6.8xlarge`](https://us-east-1.console.aws.amazon.com/servicequotas/home/services/sagemaker/quotas/L-804C2AFF)
35 |
36 |
37 | **Number of concurrent AutoML Jobs**
38 | To follow the optimal flow of the workshop, you need to run at least three AutoML jobs in parallel. We recommend to have a quota set to six or more concurrent jobs.
39 |
40 | - Check quota for [maximum number of concurrent AutoML Jobs](https://us-east-1.console.aws.amazon.com/servicequotas/home/services/sagemaker/quotas/L-CFC2D5B6)
41 |
42 | **Training jobs**
43 | To run a training job for DeepAR algorithm you need a `ml.c5.4xlarge` compute instance
44 |
45 | - Check quota for [`ml.c5.4xlarge`](https://us-east-1.console.aws.amazon.com/servicequotas/home/services/sagemaker/quotas/L-E7898792)
46 |
47 | **SageMaker real-time inference endpoints**
48 | DeepAR, Chronos, and AutoGluon notebooks deploy SageMaker real-time inference endpoints to test models. You need access to the following compute instances for endpoint use:
49 | - Minimal for Autopilot and DeepAR endpoints: check [`ml.m5.xlarge`](https://us-east-1.console.aws.amazon.com/servicequotas/home/services/sagemaker/quotas/L-2F737F8D)
50 | - Recommended for Autopilot and DeepAR endpoints: check [`ml.m5.4xlarge`](https://us-east-1.console.aws.amazon.com/servicequotas/home/services/sagemaker/quotas/L-E2649D46)
51 | - Minimal for Chronos Small endpoint: check [`ml.g5.xlarge`](https://us-east-1.console.aws.amazon.com/servicequotas/home/services/sagemaker/quotas/L-1928E07B)
52 | - Optional for Chronos Base: check [`ml.g5.2xlarge`](https://us-east-1.console.aws.amazon.com/servicequotas/home/services/sagemaker/quotas/L-9614C779)
53 | - Optional for Chronos Large: check [`ml.g5.4xlarge`](https://us-east-1.console.aws.amazon.com/servicequotas/home/services/sagemaker/quotas/L-C1B9A48D)
54 |
55 | ## Workshop flow
56 | The notebooks from Lab 1 to Lab 5 are self-sufficient. You can run them in any order. If you're unfamiliar with time series forecasting, we recommend starting with the Lab 1 notebook and continuing from there. Alternatively, you can run only the notebooks that interest you, such as `lab4_chronos` or `lab5_autogluon`.
57 |
58 | The model training in Labs 1, 2, and 3 takes 15-40 minutes, depending on the algorithm. You don't need to wait for the training to complete before moving on to the next notebook. You can come back to the previous notebook once the training is done.
59 |
60 | Executing all five notebooks will take 2-3 hours. If you're new to time series forecasting, Jupyter notebooks, or Python, it may take longer.
61 |
62 | ## Workshop costs
63 | The notebooks in this workshop create cost-generating resources in your account. Make sure you always delete created SageMaker inference endpoints, log out of Canvas, and stop JupyterLab spaces if you don't use them.
64 |
65 | If running all notebooks with all sections, including optional sections and training three models using **Standard** builds in Canvas, the estimated cost is approximately 90-100 USD.
66 |
67 | Please note that your actual costs may vary depending on the duration of the workshop, the number of inference endpoints created, and the time the endpoints remain in service.
68 |
69 | To optimize costs, follow these recommendations:
70 | 1. Run only **Quick** builds in Canvas to minimize costs. Note that in this case you cannot download model performance JSON files
71 | 2. Use only a sample from the full dataset to train models and run all experiments. Each notebook contains code to create a small dataset with a sample from the time series
72 | 3. Promptly delete SageMaker inference endpoints after use
73 | 4. Use `ml.m5.xlarge` instance for JupyterLab app to balance performance and cost
74 | 5. Limit Chronos experiments to one endpoint and a sample of the time series in the notebook `lab4_chronos`
75 |
76 | ## Getting started
77 | If you'd lke to create a new domain, you have two options:
78 | 1. Use the provided AWS CloudFormation [template](./cfn-templates/sagemaker-domain.yaml) that creates a SageMaker domain, a user profile, and adds the IAM roles required for executing the provided notebooks - this is the recommended approach
79 | 1. Follow the onboarding [instructions](https://docs.aws.amazon.com/sagemaker/latest/dg/gs-studio-onboard.html) in the Developer Guide and create a new domain and a user profile via AWS Console
80 |
81 | ## Datasets
82 |
83 | All examples and notebooks in this workshop using the same real-world dataset. It makes possible to compare performance and model metrics across different approaches.
84 |
85 | You use the [electricity dataset](https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014) from the repository of the University of California, Irvine:
86 | > Trindade, Artur. (2015). ElectricityLoadDiagrams20112014. UCI Machine Learning Repository. https://doi.org/10.24432/C58C86.
87 |
88 |
89 | ## Example 1: Amazon SageMaker Canvas
90 |
91 | Open the [lab 1 notebook](./notebooks/lab1_sagemaker_canvas.ipynb) and follow the instructions.
92 |
93 | Additional SageMaker Canvas links:
94 | - [Time Series Forecasts in Amazon SageMaker Canvas](https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-time-series.html)
95 | - [Canvas Workshop - time series forecast lab](https://catalog.workshops.aws/canvas-immersion-day/en-US/1-use-cases/3-retail)
96 | - [Time-Series Forecasting Using Amazon SageMaker Canvas](https://catalog.us-east-1.prod.workshops.aws/workshops/866925a4-cb5f-4a3d-9cd7-80edc0aa5f0c/en-US/4-0sagemakercanvas)
97 |
98 |
99 | ## Example 2: Amazon SageMaker Autopilot API
100 |
101 | Open the [lab 2 notebook](./notebooks/lab2_sagemaker_autopilot_api.ipynb) and follow the instructions.
102 |
103 | Note: previous Autopilot UX in Studio Classic merged with Canvas as of re:Invent 2023. All AutoML functionality is moved to Canvas as of now.
104 |
105 | Additional SageMaker Autopilot API links:
106 | - [Amazon SageMaker Autopilot](https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html)
107 | - [Time series forecasting algorithms in SageMaker](https://docs.aws.amazon.com/sagemaker/latest/dg/timeseries-forecasting-algorithms.html)
108 | - Example notebook [Time series Forecasting with Amazon SageMaker Autopilot](https://github.com/aws/amazon-sagemaker-examples/blob/main/autopilot/autopilot_time_series.ipynb)
109 | - [Lab 2 - Demand Forecasting with SageMaker Autopilot API](https://catalog.us-east-1.prod.workshops.aws/workshops/caef4710-3721-4957-a2ce-33799920ef72/en-US/40-sagemakerautopilot)
110 | - [Time series forecasting with Amazon SageMaker AutoML](https://aws.amazon.com/it/blogs/machine-learning/time-series-forecasting-with-amazon-sagemaker-automl/)
111 |
112 | ## Example 3: Amazon SageMaker DeepAR
113 |
114 | Open the [lab 3 notebook](./notebooks/lab3_sagemaker_deepar.ipynb) and follow the instructions.
115 |
116 | Additional DeepAR links:
117 | - [Use the SageMaker DeepAR forecasting algorithm](https://docs.aws.amazon.com/sagemaker/latest/dg/deepar.html)
118 | - [Deep AR Forecasting](https://sagemaker.readthedocs.io/en/stable/algorithms/time_series/deep_ar.html)
119 | - [Example notebook](https://github.com/aws/amazon-sagemaker-examples/blob/main/introduction_to_amazon_algorithms/deepar_electricity/DeepAR-Electricity.ipynb)
120 | - [Deep Demand Forecasting with Amazon SageMaker notebook](https://github.com/awslabs/sagemaker-deep-demand-forecast/blob/mainline/src/deep-demand-forecast.ipynb)
121 | - [DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks](https://arxiv.org/abs/1704.04110)
122 | - [Predictive Analytics with Time-series Machine Learning on Amazon Timestream](https://aws.amazon.com/blogs/database/predictive-analytics-with-time-series-machine-learning-on-amazon-timestream/)
123 | - [Bike-Share Demand Forecasting 2b: SageMaker DeepAR Algorithm](https://github.com/aws-samples/time-series-forecasting-on-aws/blob/main/2b_SageMaker_Built-In_DeepAR.ipynb)
124 |
125 | ## Example 4: Chronos
126 |
127 | Open the [lab 4 notebook](./notebooks/lab4_chronos.ipynb) and follow the instructions.
128 |
129 | Links to more Chronos content:
130 | - [Chronos models on Huggingface](https://huggingface.co/amazon/chronos-t5-large)
131 | - [Chronos GitHub](https://github.com/amazon-science/chronos-forecasting)
132 | - [Lot of Chronos-related content on Chronos GitHub](https://github.com/amazon-science/chronos-forecasting?tab=readme-ov-file#-coverage)
133 | - [Chronos: Learning the Language of Time Series](https://arxiv.org/html/2403.07815v1)
134 | - [Adapting language model architectures for time series forecasting](https://www.amazon.science/blog/adapting-language-model-architectures-for-time-series-forecasting)
135 | - [Evaluating Chronos models](https://github.com/amazon-science/chronos-forecasting/blob/main/scripts/README.md#evaluating-chronos-models)
136 | - [Chronos-related content on Chronos GitHub](https://github.com/amazon-science/chronos-forecasting?tab=readme-ov-file#-coverage)
137 | - [Fast and accurate zero-shot forecasting with Chronos-Bolt and AutoGluon](https://aws.amazon.com/blogs/machine-learning/fast-and-accurate-zero-shot-forecasting-with-chronos-bolt-and-autogluon/)
138 |
139 |
140 | ## Example 5: AutoGluon
141 |
142 | Open the [lab 5 notebook](./notebooks/lab5_autogluon.ipynb) and follow the instructions.
143 |
144 | Links to AutoGluon content:
145 | - AutoGluon time series
146 | - [AutoGluon time series forecasting](https://auto.gluon.ai/stable/tutorials/timeseries/index.html)
147 | - AutoGluon Chronos
148 | - [AutoGluon forecasting with Chronos](https://auto.gluon.ai/stable/tutorials/timeseries/forecasting-chronos.html)
149 | - [Forecasting with Chronos notebook Colab](https://colab.research.google.com/github/autogluon/autogluon/blob/stable/docs/tutorials/timeseries/forecasting-chronos.ipynb)
150 | - [AutoGluon Cloud](https://auto.gluon.ai/cloud/dev/tutorials/autogluon-cloud.html)
151 | - [AutoGluon Assistant](https://github.com/autogluon/autogluon-assistant)
152 |
153 | ## Additional examples
154 | The additional notebooks in the folder `notebooks/additional` cover more approaches you can use for time series forecasting. These notebooks demonstrate:
155 | 1. GluonTS
156 | 2. Custom algorithms on SageMaker
157 | 3. Amazon QuickSight forecast
158 |
159 | ### Example 1A: GluonTS
160 |
161 | Navigate to the `additional` folder inside the `notebooks` folder. Open the [lab 1A notebook](./notebooks/additional/lab1a_gluonts.ipynb) and follow the instructions.
162 |
163 | The notebook `additional\lab1a_gluonts` also contains an end-to-end example of productization of a time series forecasting workflow. The lab demonstrates how to create a reproducible SageMaker pipeline with data processing, model training, model evaluation, model registration in the model registry, and model deployment to a SageMaker endpoint. The notebook uses [GluonTS implementation](https://github.com/awslabs/gluonts/blob/dev/src/gluonts/torch/model/tft/estimator.py) of Temporal Fusion Transformer forecast and SageMaker Python SDK PyTorch framework together with SageMaker built-in [Deep Learning Containers (DLC)](https://github.com/aws/deep-learning-containers).
164 |
165 | Links to GluonTS content:
166 | - [GluonTS: Probabilistic and Neural Time Series Modeling in Python](https://www.jmlr.org/papers/volume21/19-820/19-820.pdf): paper
167 | - [GluonTS - Probabilistic Time Series Modeling in Python](https://github.com/awslabs/gluonts): GitHub repository
168 | - [Creating neural time series models with Gluon Time Series](https://aws.amazon.com/blogs/machine-learning/creating-neural-time-series-models-with-gluon-time-series/)
169 | - [Deep demand forecast with Amazon SageMaker](https://github.com/awslabs/sagemaker-deep-demand-forecast)
170 |
171 | ### Example 2A: Amazon SageMaker custom algorithm
172 |
173 | This example is under development.
174 |
175 | Refer to the following resources to see how you can run custom algorithms on SageMaker:
176 | - [Robust time series forecasting with MLOps on Amazon SageMaker](https://aws.amazon.com/blogs/machine-learning/robust-time-series-forecasting-with-mlops-on-amazon-sagemaker/)
177 | - [Deep demand forecast with Amazon SageMaker](https://github.com/awslabs/sagemaker-deep-demand-forecast)
178 | - [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting (AAAI'21 Best Paper)](https://github.com/aws-samples/time-series-forecasting-on-aws/blob/main/3_SagaMaker_Custom_algorithm_Informer.ipynb)
179 | - [TiDE](https://arxiv.org/pdf/2304.08424.pdf)
180 |
181 |
182 | ### Example 3A: Amazon QuickSight forecast
183 | [Amazon QuickSight](https://docs.aws.amazon.com/quicksight/latest/user/welcome.html) has ML features to give you hidden insights and trends in your data. One of these ML features is **ML-powered forecast**. The built-in ML forecast uses [Random Cut Forest (RCF) algorithm](https://docs.aws.amazon.com/quicksight/latest/user/concept-of-ml-algorithms.html) to detect seasonality, trends, exclude outliers, and impute missing values. For more details on how QuickSight uses RCF to generate forecasts, see the [developer guide](https://docs.aws.amazon.com/quicksight/latest/user/how-does-rcf-generate-forecasts.html).
184 |
185 | 
186 |
187 | You can customize multiple settings on the **Forecast properties** pane, such as number of forecast periods, prediction interval, seasonality, and forecast boundaries.
188 |
189 | For more details refer to the Developer Guide [Forecasting and creating what-if scenarios with Amazon QuickSight](https://docs.aws.amazon.com/quicksight/latest/user/forecasts-and-whatifs.html).
190 |
191 | Besides a graphical forecasting, you can also add a forecast as a narrative in an insight widget. To learn more, see [Creating autonarratives with Amazon QuickSight](https://docs.aws.amazon.com/quicksight/latest/user/narratives-creating.html).
192 |
193 | Additional resources for Amazon QuickSight forecasting:
194 | - [ML-powered forecasting](https://docs.aws.amazon.com/quicksight/latest/user/forecast-function.html)
195 |
196 | ## Results and comparison
197 |
198 | Open the [lab 6 notebook](./notebooks/lab_final_results.ipnyb) and follow the instructions.
199 |
200 | Additional resources about time series forecast accuracy evaluation
201 | - [Evaluating Predictor Accuracy](https://docs.aws.amazon.com/forecast/latest/dg/metrics.html)
202 | - [Evaluating Chronos models](https://github.com/amazon-science/chronos-forecasting/tree/main/scripts#evaluating-chronos-models)
203 | - [Forecasting time series - evaluation metrics](https://auto.gluon.ai/stable/tutorials/timeseries/forecasting-metrics.html)
204 |
205 | ## Clean up
206 | To avoid unnecessary costs, you must remove all project-provisioned and generated resources from your AWS account.
207 |
208 | ### Shut down SageMaker resources
209 | You must complete this section before deleting the SageMaker domain or the CloudFormation stack.
210 |
211 | Complete the following activities to shut down your Amazon SageMaker resources:
212 | - [Log out of Canvas](https://docs.aws.amazon.com/sagemaker/latest/dg/canvas-log-out.html)
213 | - Make sure to delete all endpoints created by this workshop including Canvas asynchronous endpoints
214 | - [Stop running applications and spaces in Studio](https://docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-running.html#studio-updated-running-stop) > follow the instructions in the section **Use the Studio UI to delete your domain applications**
215 |
216 | ### Remove the SageMaker domain
217 | You don't need to complete this section if you run an AWS-instructor led workshop in an AWS-provisioned account.
218 |
219 | If you used the AWS Console to provision a Studio domain for this workshop, and don't need the domain, you can delete the domain by following the instructions in the [Developer Guide](https://docs.aws.amazon.com/sagemaker/latest/dg/gs-studio-delete-domain.html).
220 |
221 | If you provisioned a Studio domain with the provided CloudFormation template, you can delete the CloudFormation stack in the AWS console.
222 |
223 | If you provisioned a new VPC for the domain, go to the [VPC console](https://console.aws.amazon.com/vpc/home?#vpcs) and delete the provisioned VPC.
224 |
225 |
226 | ## Resources
227 |
228 | ### Algorithms
229 | - [References for machine learning and RCF](https://docs.aws.amazon.com/quicksight/latest/user/learn-more-about-machine-learning-and-rcf.html)
230 | - [Chronos forecasting GitHub repository](https://github.com/amazon-science/chronos-forecasting)
231 | - [Adapting language model architectures for time series forecasting](https://www.amazon.science/blog/adapting-language-model-architectures-for-time-series-forecasting)
232 | - [Chronos: Learning the Language of Time Series](https://arxiv.org/pdf/2403.07815.pdf)
233 | - [AutoGluon](https://github.com/autogluon/autogluon)
234 | - [AutoGluon Time series forecasting](https://auto.gluon.ai/stable/tutorials/timeseries/index.html)
235 | - [GluonTS - Probabilistic Time Series Modeling in Python](https://github.com/awslabs/gluonts)
236 | - [Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting](https://arxiv.org/abs/2012.07436)
237 | - [Sundial: A Family of Highly Capable Time Series Foundation Models](https://arxiv.org/abs/2502.00816v1)
238 |
239 | ### Books and whitepapers
240 | - [Time Series Analysis on AWS: Learn how to build forecasting models and detect anomalies in your time series data](https://www.amazon.com/Time-Analysis-AWS-forecasting-anomalies-ebook/dp/B09MMLLWDY)
241 | - [Time Series Forecasting Principles with Amazon Forecast](https://docs.aws.amazon.com/whitepapers/latest/time-series-forecasting-principles-with-amazon-forecast/time-series-forecasting-principles-with-amazon-forecast.html)
242 | - [Large Language Models Are Zero-Shot Time Series Forecasters](https://arxiv.org/pdf/2310.07820)
243 | - [An Evaluation of Standard Statistical Models and LLMs on Time Series Forecasting](https://arxiv.org/html/2408.04867v1)
244 | - [Forecasting: Principles and Practice](https://otexts.com/fpp3/)
245 | - [A simple combination of univariate models](https://www.sciencedirect.com/science/article/abs/pii/S0169207019300585)
246 |
247 | ### Blog posts
248 | - [Robust time series forecasting with MLOps on Amazon SageMaker](https://aws.amazon.com/blogs/machine-learning/robust-time-series-forecasting-with-mlops-on-amazon-sagemaker/)
249 | - [Deep demand forecasting with Amazon SageMaker](https://aws.amazon.com/blogs/machine-learning/deep-demand-forecasting-with-amazon-sagemaker/)
250 | - [Capture public health insights more quickly with no-code machine learning using Amazon SageMaker Canvas](https://aws.amazon.com/blogs/machine-learning/capture-public-health-insights-more-quickly-with-no-code-machine-learning-using-amazon-sagemaker-canvas/)
251 | - [Speed up your time series forecasting by up to 50 percent with Amazon SageMaker Canvas UI and AutoML APIs](https://aws.amazon.com/blogs/machine-learning/speed-up-your-time-series-forecasting-by-up-to-50-percent-with-amazon-sagemaker-canvas-ui-and-automl-apis/)
252 | - [Sagemaker Automated Model Tuning](https://aws.amazon.com/blogs/aws/sagemaker-automatic-model-tuning/)
253 | - [Time series forecasting with Amazon SageMaker AutoML](https://aws.amazon.com/it/blogs/machine-learning/time-series-forecasting-with-amazon-sagemaker-automl/)
254 |
255 | ### Workshops and notebooks
256 | - [Time series forecasting with AWS services workshop](https://catalog.us-east-1.prod.workshops.aws/workshops/caef4710-3721-4957-a2ce-33799920ef72/en-US)
257 | - [Time series Forecasting with Amazon SageMaker Autopilot](https://github.com/aws/amazon-sagemaker-examples/blob/main/autopilot/autopilot_time_series.ipynb)
258 | - [Deep Demand Forecasting with Amazon SageMaker notebook](https://github.com/awslabs/sagemaker-deep-demand-forecast/blob/mainline/src/deep-demand-forecast.ipynb)
259 | - [Timeseries Forecasting on AWS](https://github.com/aws-samples/time-series-forecasting-on-aws)
260 | - [Inventory Forecasting using Amazon SageMaker](https://catalog.us-east-1.prod.workshops.aws/workshops/866925a4-cb5f-4a3d-9cd7-80edc0aa5f0c/en-US)
261 | - [Tutorial at IJCAI 2021 (with videos)](https://lovvge.github.io/Forecasting-Tutorial-IJCAI-2021/)
262 |
263 |
264 | ## QR codes and links
265 |
266 | ### This GitHub repository
267 | Link: https://github.com/aws-samples/modern-time-series-forecasting-on-aws
268 | Short link: https://bit.ly/47hnKH6
269 |
270 | 
271 |
272 | ### AWS workshop
273 | Link: https://catalog.workshops.aws/modern-time-series-forecasting-on-aws/en-US
274 | Short link: https://bit.ly/4dBQ0G8
275 |
276 | 
277 | ---
278 |
279 | Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
280 | SPDX-License-Identifier: MIT-0
--------------------------------------------------------------------------------
/img/canvas-add-to-model-registry.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/aws-samples/modern-time-series-forecasting-on-aws/f8b8a32cd0a3b7af37796834fa55dc6bf8748d31/img/canvas-add-to-model-registry.png
--------------------------------------------------------------------------------
/img/canvas-analyze-quick-build.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/aws-samples/modern-time-series-forecasting-on-aws/f8b8a32cd0a3b7af37796834fa55dc6bf8748d31/img/canvas-analyze-quick-build.png
--------------------------------------------------------------------------------
/img/canvas-analyze-standard-build.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/aws-samples/modern-time-series-forecasting-on-aws/f8b8a32cd0a3b7af37796834fa55dc6bf8748d31/img/canvas-analyze-standard-build.png
--------------------------------------------------------------------------------
/img/canvas-build-comparison.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/aws-samples/modern-time-series-forecasting-on-aws/f8b8a32cd0a3b7af37796834fa55dc6bf8748d31/img/canvas-build-comparison.png
--------------------------------------------------------------------------------
/img/canvas-configure-model-config.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/aws-samples/modern-time-series-forecasting-on-aws/f8b8a32cd0a3b7af37796834fa55dc6bf8748d31/img/canvas-configure-model-config.png
--------------------------------------------------------------------------------
/img/canvas-create-data-flow.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/aws-samples/modern-time-series-forecasting-on-aws/f8b8a32cd0a3b7af37796834fa55dc6bf8748d31/img/canvas-create-data-flow.png
--------------------------------------------------------------------------------
/img/canvas-create-model.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/aws-samples/modern-time-series-forecasting-on-aws/f8b8a32cd0a3b7af37796834fa55dc6bf8748d31/img/canvas-create-model.png
--------------------------------------------------------------------------------
/img/canvas-datasets.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/aws-samples/modern-time-series-forecasting-on-aws/f8b8a32cd0a3b7af37796834fa55dc6bf8748d31/img/canvas-datasets.png
--------------------------------------------------------------------------------
/img/canvas-download-performance-report.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/aws-samples/modern-time-series-forecasting-on-aws/f8b8a32cd0a3b7af37796834fa55dc6bf8748d31/img/canvas-download-performance-report.png
--------------------------------------------------------------------------------
/img/canvas-endpoint-resource-error.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/aws-samples/modern-time-series-forecasting-on-aws/f8b8a32cd0a3b7af37796834fa55dc6bf8748d31/img/canvas-endpoint-resource-error.png
--------------------------------------------------------------------------------
/img/canvas-model-deploy.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/aws-samples/modern-time-series-forecasting-on-aws/f8b8a32cd0a3b7af37796834fa55dc6bf8748d31/img/canvas-model-deploy.png
--------------------------------------------------------------------------------
/img/canvas-model-leaderboard.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/aws-samples/modern-time-series-forecasting-on-aws/f8b8a32cd0a3b7af37796834fa55dc6bf8748d31/img/canvas-model-leaderboard.png
--------------------------------------------------------------------------------
/img/canvas-model-new-version.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/aws-samples/modern-time-series-forecasting-on-aws/f8b8a32cd0a3b7af37796834fa55dc6bf8748d31/img/canvas-model-new-version.png
--------------------------------------------------------------------------------
/img/canvas-model-registry-details.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/aws-samples/modern-time-series-forecasting-on-aws/f8b8a32cd0a3b7af37796834fa55dc6bf8748d31/img/canvas-model-registry-details.png
--------------------------------------------------------------------------------
/img/canvas-predictions.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/aws-samples/modern-time-series-forecasting-on-aws/f8b8a32cd0a3b7af37796834fa55dc6bf8748d31/img/canvas-predictions.png
--------------------------------------------------------------------------------
/img/canvas-start-quick-build.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/aws-samples/modern-time-series-forecasting-on-aws/f8b8a32cd0a3b7af37796834fa55dc6bf8748d31/img/canvas-start-quick-build.png
--------------------------------------------------------------------------------
/img/chronos-main-figure.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/aws-samples/modern-time-series-forecasting-on-aws/f8b8a32cd0a3b7af37796834fa55dc6bf8748d31/img/chronos-main-figure.png
--------------------------------------------------------------------------------
/img/chronos.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/aws-samples/modern-time-series-forecasting-on-aws/f8b8a32cd0a3b7af37796834fa55dc6bf8748d31/img/chronos.png
--------------------------------------------------------------------------------
/img/git-repo-qr-code.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/aws-samples/modern-time-series-forecasting-on-aws/f8b8a32cd0a3b7af37796834fa55dc6bf8748d31/img/git-repo-qr-code.png
--------------------------------------------------------------------------------
/img/quicksight_filter_item_101_store_001.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/aws-samples/modern-time-series-forecasting-on-aws/f8b8a32cd0a3b7af37796834fa55dc6bf8748d31/img/quicksight_filter_item_101_store_001.png
--------------------------------------------------------------------------------
/img/smd-select.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/aws-samples/modern-time-series-forecasting-on-aws/f8b8a32cd0a3b7af37796834fa55dc6bf8748d31/img/smd-select.png
--------------------------------------------------------------------------------
/img/workshop-qr-code.svg:
--------------------------------------------------------------------------------
1 |
2 |
--------------------------------------------------------------------------------
/notebooks/additional/gluonts_pipeline/inference.py:
--------------------------------------------------------------------------------
1 | import os
2 | import json
3 | from typing import Any, List, Dict, Union
4 | from pathlib import Path
5 | from gluonts.model.predictor import Predictor
6 | from gluonts.dataset.common import ListDataset
7 | from gluonts.dataset.field_names import FieldName
8 | from gluonts.model.forecast import QuantileForecast
9 | import numpy as np
10 |
11 | class QuantileForecastEncoder(json.JSONEncoder):
12 | def default(self, obj):
13 | if isinstance(obj, QuantileForecast):
14 | return {
15 | "__type__": "QuantileForecast",
16 | "forecast_arrays": obj.forecast_array.tolist(),
17 | "start_date": obj.start_date.to_timestamp().isoformat() if obj.start_date else None,
18 | "forecast_keys": obj.forecast_keys,
19 | "item_id": obj.item_id,
20 | "info": obj.info,
21 | "freq": obj.freq.freqstr,
22 | "prediction_length": obj.prediction_length,
23 |
24 | }
25 | if isinstance(obj, np.ndarray):
26 | return obj.tolist()
27 | return super().default(obj)
28 |
29 |
30 | def model_fn(model_dir: str) -> Predictor:
31 | print("loading model from {model_dir}")
32 | predictor = Predictor.deserialize(Path(model_dir))
33 | print("model was loaded successfully from {model_dir}")
34 | return predictor
35 |
36 |
37 | def transform_fn(
38 | model: Predictor,
39 | request_body: Any,
40 | content_type: Any,
41 | accept_type: Any
42 | ):
43 | # print(f'get {request_body}')
44 | request_data = json.loads(request_body)
45 |
46 | parameters = request_data['parameters']
47 | request_list_data = ListDataset(
48 | request_data['inputs'],
49 | freq=parameters['freq'],
50 | )
51 |
52 | forecasts = list(model.predict(request_list_data, num_samples=parameters['num_samples']))
53 | return json.dumps(forecasts, cls=QuantileForecastEncoder), content_type
--------------------------------------------------------------------------------
/notebooks/additional/gluonts_pipeline/preprocess.py:
--------------------------------------------------------------------------------
1 | import os
2 | from typing import Dict
3 | from gluonts.dataset.jsonl import JsonLinesWriter
4 | from pathlib import Path
5 | from gluonts.dataset.split import DateSplitter
6 | from gluonts.dataset.pandas import PandasDataset
7 | from gluonts.dataset.field_names import FieldName
8 | import pandas as pd
9 | import numpy as np
10 | import boto3
11 | import zipfile
12 | import json
13 | import random
14 | import string
15 |
16 | def _generate_unique_id(length=12):
17 | characters = string.ascii_lowercase + string.digits
18 | return ''.join(random.choices(characters, k=length))
19 |
20 | def preprocess(
21 | input_data_s3_path,
22 | output_s3_prefix,
23 | freq,
24 | prediction_length,
25 | data_start,
26 | data_end,
27 | backtest_windows=4,
28 | sample_size=0,
29 | pipeline_run_id=None,
30 | ) -> Dict[str,str]:
31 | """
32 | Prepares time series data for training.
33 | """
34 | # if called without pipeline_run_id, generate a unique run_id
35 | if not pipeline_run_id:
36 | pipeline_run_id = _generate_unique_id()
37 |
38 | # load raw dataset
39 | print(f'Downloading from {input_data_s3_path}')
40 |
41 | os.makedirs("./data", exist_ok=True)
42 | s3 = boto3.client('s3')
43 |
44 | dataset_zip_filename = input_data_s3_path.split('/')[-1]
45 | s3.download_file(
46 | input_data_s3_path.split('/')[2],
47 | '/'.join(input_data_s3_path.split('/')[3:]),
48 | f'./data/{dataset_zip_filename}'
49 | )
50 |
51 | print(f'Unzipping {dataset_zip_filename}')
52 | zip_ref = zipfile.ZipFile(f'./data/{dataset_zip_filename}', 'r')
53 | zip_ref.extractall('./data')
54 | zip_ref.close()
55 | dataset_path = '.'.join(zip_ref.filename.split('.')[:-1])
56 |
57 | # load into DataFrame and resample
58 | # supported frequences for this example are 1h or 1d only
59 | print(f'Load dataset from {dataset_path} and resample to {freq} frequency')
60 | data_kw = pd.read_csv(
61 | dataset_path,
62 | sep=';',
63 | index_col=0,
64 | decimal=',',
65 | parse_dates=True,
66 | ).resample(freq).sum() / {'1h':4, '1d':'96'}[freq]
67 |
68 | # get the full dataset or a random sample of sample_size
69 | if sample_size != 0:
70 | print(f'Get a sample of {sample_size} time series out of the full dataset')
71 | ts_sample = data_kw[np.random.choice(data_kw.columns.to_list(), size=sample_size, replace=False)]
72 | else:
73 | print(f'Get the full dataset')
74 | ts_sample = data_kw
75 |
76 | # calculate the end of the training part based on backtest_windows
77 | end_training_date = pd.Period(data_end, freq=freq) - backtest_windows*prediction_length
78 |
79 | # convert to GluonTS format
80 | ts_dataset = PandasDataset(
81 | dict(ts_sample[(ts_sample.index > data_start) & (ts_sample.index <= data_end)])
82 | )
83 | # split to get the train dataset
84 | train_ds, _ = DateSplitter(date=end_training_date).split(ts_dataset)
85 |
86 | test_entry = next(iter(ts_dataset))
87 | train_entry = next(iter(train_ds))
88 | len_test = len(test_entry['target'])
89 | len_train = len(train_entry['target'])
90 |
91 | print(f'--------------------------------------------------------')
92 | print(f"The test dataset contains {len(train_ds)} time series: {[e[FieldName.ITEM_ID] for e in train_ds]}")
93 | print(f"The test dataset starts {test_entry['start'].to_timestamp()} and ends {test_entry['start'] + len_test} and contains {len_test} data points")
94 | print(f"The train dataset starts {train_entry['start']} and ends {train_entry['start'] + len_train} and contains {len_train} data points")
95 | print(f"The backtest contains {len_test-len_train} data points and has {(len_test-len_train)/prediction_length} windows of {prediction_length} length")
96 | print(f'--------------------------------------------------------')
97 |
98 | # save train and test datasets
99 | train_file_name = 'train.jsonl.gz'
100 | test_file_name = 'test.jsonl.gz'
101 | train_file_path = Path(f'./data/{train_file_name}')
102 | test_file_path = Path(f'./data/{test_file_name}')
103 | train_file_s3_path = f'{output_s3_prefix}/{pipeline_run_id}/train/{train_file_name}'
104 | test_file_s3_path = f'{output_s3_prefix}/{pipeline_run_id}/test/{test_file_name}'
105 |
106 | JsonLinesWriter().write_to_file(train_ds, train_file_path)
107 | JsonLinesWriter().write_to_file(ts_dataset, test_file_path)
108 |
109 | # upload files to S3
110 | print(f'Upload train and test datasets to {train_file_s3_path} and {test_file_s3_path}')
111 | s3.upload_file(
112 | train_file_path,
113 | train_file_s3_path.split('/')[2],
114 | '/'.join(train_file_s3_path.split('/')[3:])
115 | )
116 | s3.upload_file(
117 | test_file_path,
118 | test_file_s3_path.split('/')[2],
119 | '/'.join(test_file_s3_path.split('/')[3:])
120 | )
121 |
122 | print('### Data processing completed. Exiting.')
123 |
124 | return {
125 | 'train_data':train_file_s3_path,
126 | 'test_data':test_file_s3_path,
127 | 'pipeline_run_id':pipeline_run_id,
128 | }
129 |
130 |
131 |
132 |
133 |
134 |
135 |
136 |
137 |
138 |
139 |
140 |
141 |
142 |
--------------------------------------------------------------------------------
/notebooks/additional/gluonts_pipeline/register.py:
--------------------------------------------------------------------------------
1 | from typing import Dict
2 | from sagemaker.estimator import Estimator
3 |
4 | def register(
5 | training_job_name,
6 | model_package_group_name,
7 | model_approval_status='PendingManualApproval',
8 | pipeline_run_id=None,
9 | )-> Dict[str,str]:
10 | """
11 | Register model trained by the pipeline trained job in SageMaker model registry.
12 | """
13 |
14 | print(f'Attaching estimator to the job {training_job_name}')
15 | estimator = Estimator.attach(training_job_name)
16 |
17 | print(f'Registering the model in {model_package_group_name}')
18 | supported_instances = ['ml.m5.xlarge', 'ml.m5.2xlarge', "ml.g5.xlarge", 'ml.g5.2xlarge']
19 |
20 | model_package = estimator.register(
21 | content_types=["application/json"],
22 | response_types=["application/json"],
23 | inference_instances=supported_instances,
24 | transform_instances=supported_instances,
25 | model_package_group_name=model_package_group_name,
26 | approval_status=model_approval_status,
27 | model_name="gluonts-tft-model",
28 | domain="MACHINE_LEARNING",
29 | task="OTHER",
30 | framework='PYTORCH',
31 | framework_version='2.3',
32 | description='GluonTS TFT model group',
33 | customer_metadata_properties={
34 | 'pipeline_run_id':pipeline_run_id,
35 | }
36 | )
37 |
38 | print('### Model registration completed. Exiting.')
39 |
40 | return {
41 | "model_package_arn":model_package.model_package_arn,
42 | "model_package_group_name":model_package_group_name,
43 | }
--------------------------------------------------------------------------------
/notebooks/additional/gluonts_pipeline/train.py:
--------------------------------------------------------------------------------
1 | import os
2 | import argparse
3 | import json
4 | import pandas as pd
5 | import numpy as np
6 | from typing import List, Dict, Tuple, Union
7 | from gluonts.dataset.jsonl import JsonLinesFile
8 | from pathlib import Path
9 | from gluonts.dataset.common import ListDataset
10 | from gluonts.model.predictor import Predictor
11 | from gluonts.dataset.field_names import FieldName
12 | from gluonts.dataset.split import OffsetSplitter
13 | from gluonts.dataset.util import to_pandas
14 | from gluonts.evaluation import Evaluator
15 | from gluonts.torch import TemporalFusionTransformerEstimator
16 |
17 |
18 | def _load_dataset(path, freq):
19 | return ListDataset(JsonLinesFile(path=path), freq=freq)
20 |
21 |
22 | def _evaluate(
23 | predictor: Predictor,
24 | test_data: ListDataset,
25 | prediction_length: int,
26 | quantiles: List[float] = None,
27 | num_windows: int = 1,
28 | num_samples: int = 20,
29 | ) -> Tuple[Dict[str, float], pd.DataFrame]:
30 |
31 | # prepare test pairs
32 | # the testing windows are taken from the end of the dataset
33 | _, test_template = OffsetSplitter(offset=-num_windows*prediction_length).split(test_data)
34 |
35 | test_pairs = test_template.generate_instances(
36 | prediction_length=prediction_length,
37 | windows=num_windows,
38 | )
39 |
40 | # predict
41 | forecasts = predictor.predict(test_pairs.input, num_samples)
42 |
43 | # evaluate
44 | evaluator = Evaluator(quantiles=quantiles if quantiles else (np.arange(10) / 10.0)[1:])
45 |
46 | return evaluator([to_pandas(l) for l in test_pairs.label], forecasts)
47 |
48 |
49 | def _train_predictor(
50 | dataset: ListDataset,
51 | trainer_hp,
52 | model_hp,
53 | ) -> Predictor:
54 | return TemporalFusionTransformerEstimator(
55 | **model_hp,
56 | trainer_kwargs={"max_epochs": trainer_hp['epochs']},
57 | ).train(dataset)
58 |
59 | def _save_predictor(predictor: Predictor, model_dir: Path):
60 | predictor.serialize(model_dir)
61 |
62 |
63 | if __name__ == "__main__":
64 |
65 | parser = argparse.ArgumentParser()
66 | aa = parser.add_argument
67 |
68 | # data, model, and output directories. Defaults are set in the environment variables.
69 | aa('--output_data_dir', type=str, default=os.environ.get('SM_OUTPUT_DATA_DIR'))
70 | aa('--model_dir', type=str, default=os.environ.get('SM_MODEL_DIR'))
71 | aa('--train_dir', type=str, default=os.environ.get('SM_CHANNEL_TRAIN'))
72 | aa('--test_dir', type=str, default=os.environ.get('SM_CHANNEL_TEST'))
73 | aa('--sm_training_env', type=str, default=os.environ.get('SM_TRAINING_ENV'))
74 |
75 | args, _ = parser.parse_known_args()
76 | print(f'Passed arguments: {args}')
77 |
78 | # get SageMaker enviroment setup
79 | sm_training_env = json.loads(args.sm_training_env)
80 |
81 | # hyperparameters
82 | hyperparameters = sm_training_env['hyperparameters']
83 |
84 | # load datasets into GluonTS format
85 | print(f'Load datasets into GluonTS format')
86 | train_ds = _load_dataset(Path(f'{args.train_dir}/train.jsonl.gz'), hyperparameters['freq'])
87 | test_ds = _load_dataset(Path(f'{args.test_dir}/test.jsonl.gz'), hyperparameters['freq'])
88 |
89 | train_entry = next(iter(train_ds))
90 | test_entry = next(iter(test_ds))
91 | len_train = train_entry[FieldName.TARGET].shape[0]
92 | len_test = test_entry[FieldName.TARGET].shape[0]
93 |
94 | print(f'--------------------------------------------------------')
95 | print(f"The test dataset contains {len(train_ds)} time series: {[e[FieldName.ITEM_ID] for e in train_ds]}")
96 | print(f"The test dataset starts {test_entry[FieldName.START].to_timestamp()} and ends {test_entry[FieldName.START] + len_test} and contains {len_test} data points")
97 | print(f"The train dataset starts {train_entry[FieldName.START]} and ends {train_entry[FieldName.START] + len_train} and contains {len_train} data points")
98 | print(f"The backtest contains {len_test-len_train} data points and has {(len_test-len_train)/hyperparameters['prediction_length']} windows of {hyperparameters['prediction_length']} length")
99 | print(f'--------------------------------------------------------')
100 |
101 | # training
102 | print(f"Training the predictor for {hyperparameters['epochs']} epochs")
103 | predictor = _train_predictor(
104 | train_ds,
105 | {
106 | 'epochs':hyperparameters['epochs'],
107 | },
108 | {
109 | 'freq':hyperparameters['freq'],
110 | 'prediction_length':hyperparameters['prediction_length'],
111 | 'context_length':hyperparameters['context_length'],
112 | },
113 | )
114 |
115 | # evaluation
116 | print(f"Evaluating the model on {hyperparameters['backtest_windows']} rolling windows")
117 | agg_metrics, item_metrics = _evaluate(
118 | predictor,
119 | test_ds,
120 | hyperparameters['prediction_length'],
121 | [float(x) for x in hyperparameters['quantiles'].split(',')],
122 | hyperparameters['backtest_windows'],
123 | hyperparameters['num_samples'],
124 | )
125 |
126 | # emit test metrics - SageMaker collects them from the log stream
127 | print(f"test_MSE={agg_metrics['MSE']}")
128 | print(f"test_MAPE={agg_metrics['MAPE']}")
129 | print(f"test_sMAPE={agg_metrics['sMAPE']}")
130 | print(f"test_RMSE={agg_metrics['RMSE']}")
131 | print(f"test_mean_wQuantileLoss={agg_metrics['mean_wQuantileLoss']}")
132 | print(f"test_mean_absolute_QuantileLoss={agg_metrics['mean_absolute_QuantileLoss']}")
133 |
134 | # save predictor and results
135 | # os.makedirs('./output/model', exist_ok=True)
136 |
137 | with open(os.path.join(args.output_data_dir, 'agg_metrics.json'), 'w', encoding="utf-8") as fout:
138 | json.dump(agg_metrics, fout)
139 |
140 | item_metrics.to_csv(
141 | os.path.join(args.output_data_dir, 'item_metrics.csv.gz'),
142 | index=False,
143 | encoding="utf-8",
144 | compression="gzip",
145 | )
146 |
147 | _save_predictor(predictor, Path(args.model_dir))
148 |
149 | print('### Training completed. Exiting.')
--------------------------------------------------------------------------------
/notebooks/additional/gluonts_pipeline/train_step.py:
--------------------------------------------------------------------------------
1 | import os
2 | import json
3 | import pandas as pd
4 | import numpy as np
5 | from typing import List, Dict, Tuple, Union
6 | from gluonts.dataset.jsonl import JsonLinesFile
7 | from pathlib import Path
8 | from gluonts.dataset.common import ListDataset
9 | from gluonts.model.predictor import Predictor
10 | from gluonts.dataset.split import OffsetSplitter
11 | from gluonts.dataset.util import to_pandas
12 | from gluonts.evaluation import Evaluator
13 | from gluonts.torch import TemporalFusionTransformerEstimator
14 | import boto3
15 |
16 | def _upload_directory_to_s3(local_dir, bucket_name, s3_prefix):
17 | s3_client = boto3.client('s3')
18 |
19 | # Ensure the local directory path ends with a separator
20 | local_dir = os.path.join(local_dir, '')
21 |
22 | # Walk through all files in the directory
23 | for root, dirs, files in os.walk(local_dir):
24 | for filename in files:
25 | # Get the full local path
26 | local_path = os.path.join(root, filename)
27 |
28 | # Calculate relative path from the local directory
29 | relative_path = os.path.relpath(local_path, local_dir)
30 |
31 | # Create S3 key with prefix
32 | s3_key = os.path.join(s3_prefix, relative_path).replace("\\", "/")
33 |
34 | try:
35 | print(f"Uploading {local_path} to {bucket_name}/{s3_key}")
36 | s3_client.upload_file(local_path, bucket_name, s3_key)
37 | except Exception as e:
38 | print(f"Error uploading {local_path}: {e}")
39 |
40 |
41 | def _load_dataset(path, freq):
42 | return ListDataset(JsonLinesFile(path=path), freq=freq)
43 |
44 |
45 | def _evaluate(
46 | predictor: Predictor,
47 | test_data: ListDataset,
48 | prediction_length: int,
49 | quantiles: List[float] = None,
50 | num_windows: int = 1,
51 | num_samples: int = 20,
52 | ) -> Tuple[Dict[str, float], pd.DataFrame]:
53 |
54 | # prepare test pairs
55 | # the testing windows are taken from the end of the dataset
56 | _, test_template = OffsetSplitter(offset=-num_windows*prediction_length).split(test_data)
57 |
58 | test_pairs = test_template.generate_instances(
59 | prediction_length=prediction_length,
60 | windows=num_windows,
61 | )
62 |
63 | # predict
64 | forecasts = predictor.predict(test_pairs.input, num_samples)
65 |
66 | # evaluate
67 | evaluator = Evaluator(quantiles=quantiles if quantiles else (np.arange(10) / 10.0)[1:])
68 |
69 | return evaluator([to_pandas(l) for l in test_pairs.label], forecasts)
70 |
71 |
72 | def _train_predictor(
73 | dataset: ListDataset,
74 | trainer_hp,
75 | model_hp,
76 | ) -> Predictor:
77 | return TemporalFusionTransformerEstimator(
78 | **model_hp,
79 | trainer_kwargs={"max_epochs": trainer_hp['epochs']},
80 | ).train(dataset)
81 |
82 | def _save_predictor(predictor: Predictor, model_dir: Path):
83 | predictor.serialize(model_dir)
84 |
85 |
86 | def train(
87 | train_data_s3_path,
88 | test_data_s3_path,
89 | output_s3_prefix,
90 | hyperparameters,
91 |
92 | )-> Dict[str, Union[str,float]]:
93 | """
94 | Trains the TFT predictor
95 | """
96 |
97 | freq = hyperparameters['freq']
98 | prediction_length = hyperparameters['prediction_length']
99 |
100 | # download datasets from S3
101 | print(f'Download datasets from {train_data_s3_path} and {test_data_s3_path}')
102 | os.makedirs("./data", exist_ok=True)
103 | s3 = boto3.client('s3')
104 |
105 | train_filename = train_data_s3_path.split('/')[-1]
106 | test_filename = test_data_s3_path.split('/')[-1]
107 | s3.download_file(
108 | train_data_s3_path.split('/')[2],
109 | '/'.join(train_data_s3_path.split('/')[3:]),
110 | f'./data/{train_filename}'
111 | )
112 | s3.download_file(
113 | test_data_s3_path.split('/')[2],
114 | '/'.join(test_data_s3_path.split('/')[3:]),
115 | f'./data/{test_filename}'
116 | )
117 |
118 | # load datasets into GluonTS format
119 | print(f'Load datasets into GluonTS format')
120 | train_ds = _load_dataset(Path(f'./data/{train_filename}'), freq)
121 | test_ds = _load_dataset(Path(f'./data/{test_filename}'), freq)
122 |
123 | train_entry = next(iter(train_ds))
124 | test_entry = next(iter(test_ds))
125 | len_train = train_entry['target'].shape[0]
126 | len_test = test_entry['target'].shape[0]
127 |
128 | print(f'--------------------------------------------------------')
129 | print(f"The test dataset contains {len(train_ds)} time series: {[e['item_id'] for e in train_ds]}")
130 | print(f"The test dataset starts {test_entry['start'].to_timestamp()} and ends {test_entry['start'] + len_test} and contains {len_test} data points")
131 | print(f"The train dataset starts {train_entry['start']} and ends {train_entry['start'] + len_train} and contains {len_train} data points")
132 | print(f"The backtest contains {len_test-len_train} data points and has {(len_test-len_train)/prediction_length} windows of {prediction_length} length")
133 | print(f'--------------------------------------------------------')
134 |
135 | # training
136 | print(f"Training the predictor for {hyperparameters['epochs']} epochs")
137 | predictor = _train_predictor(
138 | train_ds,
139 | {
140 | 'epochs':hyperparameters['epochs'],
141 | },
142 | {
143 | 'freq':hyperparameters['freq'],
144 | 'prediction_length':hyperparameters['prediction_length'],
145 | 'context_length':hyperparameters['context_length'],
146 | },
147 | )
148 |
149 | # evaluation
150 | print(f"Evaluating the model on {hyperparameters['backtest_windows']} rolling windows")
151 | agg_metrics, item_metrics = _evaluate(
152 | predictor,
153 | test_ds,
154 | prediction_length,
155 | [float(x) for x in hyperparameters['quantiles'].split(',')],
156 | hyperparameters['backtest_windows'],
157 | hyperparameters['num_samples'],
158 | )
159 |
160 | # save predictor and results
161 | os.makedirs('./output/model', exist_ok=True)
162 |
163 | with open(os.path.join('./output', 'agg_metrics.json'), 'w', encoding="utf-8") as fout:
164 | json.dump(agg_metrics, fout)
165 |
166 | item_metrics.to_csv(
167 | os.path.join('./output', 'item_metrics.csv.gz'),
168 | index=False,
169 | encoding="utf-8",
170 | compression="gzip",
171 | )
172 |
173 | _save_predictor(predictor, Path('./output/model'))
174 |
175 | # upload artifacts to S3
176 | metrics_s3_path = f'{output_s3_prefix}'
177 | model_s3_path = f'{output_s3_prefix}/model'
178 |
179 | print(f'Upload metrics to {metrics_s3_path} and {model_s3_path}')
180 | _upload_directory_to_s3('./output', metrics_s3_path.split('/')[2], '/'.join(metrics_s3_path.split('/')[3:]))
181 | _upload_directory_to_s3('./output/model', model_s3_path.split('/')[2], '/'.join(model_s3_path.split('/')[3:]))
182 |
183 | print('### Training completed. Exiting.')
184 |
185 | return {
186 | 'metrics_s3_path':metrics_s3_path,
187 | 'model_s3_path':model_s3_path,
188 | 'agg_metrics':agg_metrics,
189 | }
190 |
191 |
192 |
--------------------------------------------------------------------------------
/notebooks/additional/lab2a_tide.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "id": "79856ce0-f2bf-4c44-b7be-f7fbffb26648",
6 | "metadata": {},
7 | "source": [
8 | "
\n",
9 | "\n",
10 | "\n",
11 | "\n",
12 | "# Lab 2A: Implement a custom algorithm on Amazon SageMaker AI\n",
13 | "\n",
14 | "This notebook demonstrates how to use SageMaker infrastructure, features, and [Python SDK](https://sagemaker.readthedocs.io/en/stable/index.html) to build, evaluate, and train any time series forecasting algorithm. You learn how to train a model in a notebook, in a remote function, and with a built-in SageMaker training container.\n",
15 | "\n",
16 | "As an example of a time series forecast algorithm, this notebook uses a popular state-of-the-art algorithm TiDE.\n",
17 | "\n",
18 | "TiDE (Time-series Dense Encoder) is a powerful MLP-based encoder-decoder model developed by Google Research that excels at long-term time series forecasting. Unlike complex Transformer-based approaches, TiDE achieves state-of-the-art performance using a simple architecture built on dense neural networks. The model supports both univariate and multivariate forecasting, handles past and future covariates, and provides probabilistic forecasting capabilities while maintaining linear computational scaling. In this notebook, you explore how to implement and train TiDE models using the [Darts library](https://unit8co.github.io/darts/) ([Darts paper](https://www.jmlr.org/papers/v23/21-1177.html)), which offers a comprehensive implementation of the architecture. \n",
19 | "\n",
20 | "For more details on TiDE refer to the [orginal paper](https://arxiv.org/pdf/2304.08424.pdf)."
21 | ]
22 | },
23 | {
24 | "cell_type": "code",
25 | "execution_count": null,
26 | "id": "f8d92142-dbe4-47b1-a426-4f87f762f0e7",
27 | "metadata": {},
28 | "outputs": [],
29 | "source": []
30 | },
31 | {
32 | "cell_type": "code",
33 | "execution_count": null,
34 | "id": "b0ea5193-5810-48a5-b444-f0f4bd33a88b",
35 | "metadata": {},
36 | "outputs": [],
37 | "source": []
38 | },
39 | {
40 | "cell_type": "code",
41 | "execution_count": null,
42 | "id": "857576f5-bf49-4c7e-93e9-ec24c6d19307",
43 | "metadata": {},
44 | "outputs": [],
45 | "source": []
46 | },
47 | {
48 | "cell_type": "code",
49 | "execution_count": null,
50 | "id": "af163342-0529-4417-8221-dde428fa7c6e",
51 | "metadata": {},
52 | "outputs": [],
53 | "source": []
54 | }
55 | ],
56 | "metadata": {
57 | "kernelspec": {
58 | "display_name": "Python 3 (ipykernel)",
59 | "language": "python",
60 | "name": "python3"
61 | },
62 | "language_info": {
63 | "codemirror_mode": {
64 | "name": "ipython",
65 | "version": 3
66 | },
67 | "file_extension": ".py",
68 | "mimetype": "text/x-python",
69 | "name": "python",
70 | "nbconvert_exporter": "python",
71 | "pygments_lexer": "ipython3",
72 | "version": "3.11.10"
73 | }
74 | },
75 | "nbformat": 4,
76 | "nbformat_minor": 5
77 | }
78 |
--------------------------------------------------------------------------------
/scripts/lcc-script.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | set -e # Exit immediately if any command exits with a non-zero status
4 |
5 | if [ ! -z "${SM_JOB_DEF_VERSION}" ]
6 | then
7 | echo "Running in job mode, skip lcc"
8 | else
9 | echo "Cloning repository..."
10 | git clone https://github.com/aws-samples/modern-time-series-forecasting-on-aws.git || { echo "Error: Failed to clone repository"; exit 0; }
11 | echo "Files cloned from GitHub repo"
12 | fi
13 |
--------------------------------------------------------------------------------
/test/model-performance/autogluon-2H-2-17533-20240919-145927.csv:
--------------------------------------------------------------------------------
1 | timestamp,metric_name,value,experiment
2 | 20240919-145927,WQL,0.1156577823719694,autogluon-2H-2-17533
3 | 20240919-145927,MAPE,0.2885169559140486,autogluon-2H-2-17533
4 | 20240919-145927,WAPE,0.15921398464384248,autogluon-2H-2-17533
5 | 20240919-145927,RMSE,360.86992704956197,autogluon-2H-2-17533
6 | 20240919-145927,MASE,2.2880993443987947,autogluon-2H-2-17533
7 |
--------------------------------------------------------------------------------
/test/model-performance/autogluon-2h-370-17533-20240927-145601.csv:
--------------------------------------------------------------------------------
1 | timestamp,metric_name,value,experiment
2 | 20240927-145601,WQL,0.11037998847054764,autogluon-2h-370-17533
3 | 20240927-145601,MAPE,1.6516148818064893,autogluon-2h-370-17533
4 | 20240927-145601,WAPE,0.1406391102446078,autogluon-2h-370-17533
5 | 20240927-145601,RMSE,469.43349226376284,autogluon-2h-370-17533
6 | 20240927-145601,MASE,2.2952414901217364,autogluon-2h-370-17533
7 |
--------------------------------------------------------------------------------
/test/model-performance/autogluon-Chronos[base]-2h-370-17533-20240930-114821.csv:
--------------------------------------------------------------------------------
1 | timestamp,metric_name,value,experiment
2 | 20240930-114821,WQL,0.12102911796784806,autogluon-Chronos[base]-2h-370-17533
3 | 20240930-114821,MAPE,1.47092451846345,autogluon-Chronos[base]-2h-370-17533
4 | 20240930-114821,WAPE,0.15875072294548903,autogluon-Chronos[base]-2h-370-17533
5 | 20240930-114821,RMSE,486.90959145556263,autogluon-Chronos[base]-2h-370-17533
6 | 20240930-114821,MASE,2.58511763010597,autogluon-Chronos[base]-2h-370-17533
7 |
--------------------------------------------------------------------------------
/test/model-performance/autogluon-Chronos[base]-2h-370-17533-bt4-20240930-122110.csv:
--------------------------------------------------------------------------------
1 | timestamp,metric_name,value,experiment
2 | 20240930-122110,WQL,0.07136258019209654,autogluon-Chronos[base]-2h-370-17533-bt4
3 | 20240930-122110,MAPE,0.7416368759663339,autogluon-Chronos[base]-2h-370-17533-bt4
4 | 20240930-122110,WAPE,0.09690419086435706,autogluon-Chronos[base]-2h-370-17533-bt4
5 | 20240930-122110,RMSE,332.57348314704785,autogluon-Chronos[base]-2h-370-17533-bt4
6 | 20240930-122110,MASE,1.8060419826796434,autogluon-Chronos[base]-2h-370-17533-bt4
7 |
--------------------------------------------------------------------------------
/test/model-performance/autogluon-Chronos[mini]-2H-2-17533-20240919-181432.csv:
--------------------------------------------------------------------------------
1 | timestamp,metric_name,value,experiment
2 | 20240919-181432,WQL,0.18883697269731292,autogluon-Chronos[mini]-2H-2-17533
3 | 20240919-181432,MAPE,0.31105072680353685,autogluon-Chronos[mini]-2H-2-17533
4 | 20240919-181432,WAPE,0.24859525461343024,autogluon-Chronos[mini]-2H-2-17533
5 | 20240919-181432,RMSE,480.77695008147555,autogluon-Chronos[mini]-2H-2-17533
6 | 20240919-181432,MASE,3.216504374910825,autogluon-Chronos[mini]-2H-2-17533
7 |
--------------------------------------------------------------------------------
/test/model-performance/autogluon-Chronos[mini]-2H-2-17533-20240919-182135.csv:
--------------------------------------------------------------------------------
1 | timestamp,metric_name,value,experiment
2 | 20240919-182135,WQL,0.18883697269731292,autogluon-Chronos[mini]-2H-2-17533
3 | 20240919-182135,MAPE,0.31105072680353685,autogluon-Chronos[mini]-2H-2-17533
4 | 20240919-182135,WAPE,0.24859525461343024,autogluon-Chronos[mini]-2H-2-17533
5 | 20240919-182135,RMSE,480.77695008147555,autogluon-Chronos[mini]-2H-2-17533
6 | 20240919-182135,MASE,3.216504374910825,autogluon-Chronos[mini]-2H-2-17533
7 |
--------------------------------------------------------------------------------
/test/model-performance/autogluon-Chronos[mini]-2H-2-17533-bt4-20240919-182239.csv:
--------------------------------------------------------------------------------
1 | timestamp,metric_name,value,experiment
2 | 20240919-182239,WQL,0.0940352201345739,autogluon-Chronos[mini]-2H-2-17533-bt4
3 | 20240919-182239,MAPE,0.14535047086521502,autogluon-Chronos[mini]-2H-2-17533-bt4
4 | 20240919-182239,WAPE,0.12784565920417557,autogluon-Chronos[mini]-2H-2-17533-bt4
5 | 20240919-182239,RMSE,261.14083988245284,autogluon-Chronos[mini]-2H-2-17533-bt4
6 | 20240919-182239,MASE,1.7555795864080155,autogluon-Chronos[mini]-2H-2-17533-bt4
7 |
--------------------------------------------------------------------------------
/test/model-performance/autopilot-2H-370-17533-20240919-151404.csv:
--------------------------------------------------------------------------------
1 | timestamp,metric_name,value,experiment
2 | 20240919-151404,test:mean_wQuantileLoss,0.14979657456312492,autopilot-2H-370-17533
3 | 20240919-151404,test:MAPE,2.305517748336631,autopilot-2H-370-17533
4 | 20240919-151404,test:WAPE,0.22661944788511876,autopilot-2H-370-17533
5 | 20240919-151404,test:MASE,3.4459806753541664,autopilot-2H-370-17533
6 | 20240919-151404,test:RMSE,857.5111828358137,autopilot-2H-370-17533
7 |
--------------------------------------------------------------------------------
/test/model-performance/autopilot-full-2h-370-17533-20241001-091815.csv:
--------------------------------------------------------------------------------
1 | timestamp,metric_name,value,experiment
2 | 20241001-091815,RMSE,510.97817799106963,autopilot-full-2h-370-17533
3 | 20241001-091815,MAPE,1.3929039028229513,autopilot-full-2h-370-17533
4 | 20241001-091815,AverageWeightedQuantileLoss,0.12616037450201764,autopilot-full-2h-370-17533
5 | 20241001-091815,MASE,3.3095442369554786,autopilot-full-2h-370-17533
6 | 20241001-091815,WAPE,0.16565958678793932,autopilot-full-2h-370-17533
7 |
--------------------------------------------------------------------------------
/test/model-performance/canvas-1D-2-1462-20240927-150101.csv:
--------------------------------------------------------------------------------
1 | timestamp,metric_name,value,experiment
2 | 20240927-150101,unweighted_p10_quantile_loss,79.35375816346044,canvas-1D-2-1462
3 | 20240927-150101,unweighted_p50_quantile_loss,110.36289838400728,canvas-1D-2-1462
4 | 20240927-150101,unweighted_p90_quantile_loss,115.68823908288182,canvas-1D-2-1462
5 | 20240927-150101,w_p10_quantile_loss,0.14812526890431274,canvas-1D-2-1462
6 | 20240927-150101,w_p50_quantile_loss,0.20600831489941798,canvas-1D-2-1462
7 | 20240927-150101,w_p90_quantile_loss,0.21594883367614676,canvas-1D-2-1462
8 | 20240927-150101,mse,117.38312582165692,canvas-1D-2-1462
9 | 20240927-150101,MAPE,5.471807199970325,canvas-1D-2-1462
10 | 20240927-150101,MASE,0.5659456483257921,canvas-1D-2-1462
11 | 20240927-150101,RMSE,10.834349349252909,canvas-1D-2-1462
12 | 20240927-150101,WAPE,0.20708747993771542,canvas-1D-2-1462
13 | 20240927-150101,total_demand,535.7206015586853,canvas-1D-2-1462
14 | 20240927-150101,mean_wQuantileLoss,0.19002747249329252,canvas-1D-2-1462
15 |
--------------------------------------------------------------------------------
/test/model-performance/canvas-1D-2-35065-20240920-091227.csv:
--------------------------------------------------------------------------------
1 | timestamp,metric_name,value,experiment
2 | 20240920-091227,unweighted_p10_quantile_loss,522.1545467516479,canvas-1D-2-35065
3 | 20240920-091227,unweighted_p50_quantile_loss,418.2918188645812,canvas-1D-2-35065
4 | 20240920-091227,unweighted_p90_quantile_loss,88.93523869396464,canvas-1D-2-35065
5 | 20240920-091227,w_p10_quantile_loss,0.2705572393809178,canvas-1D-2-35065
6 | 20240920-091227,w_p50_quantile_loss,0.21674019784309548,canvas-1D-2-35065
7 | 20240920-091227,w_p90_quantile_loss,0.04608228122193617,canvas-1D-2-35065
8 | 20240920-091227,mse,5214.695808655263,canvas-1D-2-35065
9 | 20240920-091227,MAPE,13.40919101592671,canvas-1D-2-35065
10 | 20240920-091227,MASE,0.8540038436366449,canvas-1D-2-35065
11 | 20240920-091227,RMSE,72.21285071685831,canvas-1D-2-35065
12 | 20240920-091227,WAPE,0.2129545380743781,canvas-1D-2-35065
13 | 20240920-091227,total_demand,1929.9226586818695,canvas-1D-2-35065
14 | 20240920-091227,mean_wQuantileLoss,0.17779323948198314,canvas-1D-2-35065
15 |
--------------------------------------------------------------------------------
/test/model-performance/canvas-1D-370-35065-20240920-091316.csv:
--------------------------------------------------------------------------------
1 | timestamp,metric_name,value,experiment
2 | 20240920-091316,unweighted_p10_quantile_loss,292683.4389936282,canvas-1D-370-35065
3 | 20240920-091316,unweighted_p50_quantile_loss,294649.06495108077,canvas-1D-370-35065
4 | 20240920-091316,unweighted_p90_quantile_loss,103816.21627109816,canvas-1D-370-35065
5 | 20240920-091316,w_p10_quantile_loss,0.24906812284923815,canvas-1D-370-35065
6 | 20240920-091316,w_p50_quantile_loss,0.25074083371094535,canvas-1D-370-35065
7 | 20240920-091316,w_p90_quantile_loss,0.08834565493989524,canvas-1D-370-35065
8 | 20240920-091316,mse,564504.6974620013,canvas-1D-370-35065
9 | 20240920-091316,MAPE,30.353922822828423,canvas-1D-370-35065
10 | 20240920-091316,MASE,5.516681237219801,canvas-1D-370-35065
11 | 20240920-091316,RMSE,751.3352763327443,canvas-1D-370-35065
12 | 20240920-091316,WAPE,0.25157162443989295,canvas-1D-370-35065
13 | 20240920-091316,total_demand,1175114.0035322406,canvas-1D-370-35065
14 | 20240920-091316,mean_wQuantileLoss,0.1960515371666929,canvas-1D-370-35065
15 |
--------------------------------------------------------------------------------
/test/model-performance/canvas-1D-370-35065-20240927-105539.csv:
--------------------------------------------------------------------------------
1 | timestamp,metric_name,value,experiment
2 | 20240927-105539,unweighted_p10_quantile_loss,297199.3998739211,canvas-1D-2-35065
3 | 20240927-105539,unweighted_p50_quantile_loss,295534.347844236,canvas-1D-2-35065
4 | 20240927-105539,unweighted_p90_quantile_loss,114231.87216739124,canvas-1D-2-35065
5 | 20240927-105539,w_p10_quantile_loss,0.25291112094705553,canvas-1D-2-35065
6 | 20240927-105539,w_p50_quantile_loss,0.2514941928663074,canvas-1D-2-35065
7 | 20240927-105539,w_p90_quantile_loss,0.09720918295929162,canvas-1D-2-35065
8 | 20240927-105539,mse,618814.8448009331,canvas-1D-2-35065
9 | 20240927-105539,MAPE,29.94114844437655,canvas-1D-2-35065
10 | 20240927-105539,MASE,5.388823451737506,canvas-1D-2-35065
11 | 20240927-105539,RMSE,786.6478531089582,canvas-1D-2-35065
12 | 20240927-105539,WAPE,0.25089821719852534,canvas-1D-2-35065
13 | 20240927-105539,total_demand,1175114.0035322406,canvas-1D-2-35065
14 | 20240927-105539,mean_wQuantileLoss,0.20053816559088486,canvas-1D-2-35065
15 |
--------------------------------------------------------------------------------
/test/model-performance/canvas-1H-2-1462-20240927-191325.csv:
--------------------------------------------------------------------------------
1 | timestamp,metric_name,value,experiment
2 | 20240927-191325,unweighted_p10_quantile_loss,1931.487541330404,canvas-1H-2-1462
3 | 20240927-191325,unweighted_p50_quantile_loss,2976.2502571636023,canvas-1H-2-1462
4 | 20240927-191325,unweighted_p90_quantile_loss,1489.1675719392233,canvas-1H-2-1462
5 | 20240927-191325,w_p10_quantile_loss,0.04400921315553926,canvas-1H-2-1462
6 | 20240927-191325,w_p50_quantile_loss,0.06781427742553345,canvas-1H-2-1462
7 | 20240927-191325,w_p90_quantile_loss,0.03393089093013167,canvas-1H-2-1462
8 | 20240927-191325,mse,295.2931500637976,canvas-1H-2-1462
9 | 20240927-191325,MAPE,0.09448020517932307,canvas-1H-2-1462
10 | 20240927-191325,MASE,0.6833017471674712,canvas-1H-2-1462
11 | 20240927-191325,RMSE,17.184095846561075,canvas-1H-2-1462
12 | 20240927-191325,WAPE,0.06851069553250001,canvas-1H-2-1462
13 | 20240927-191325,total_demand,43888.25436401367,canvas-1H-2-1462
14 | 20240927-191325,mean_wQuantileLoss,0.04858479383706813,canvas-1H-2-1462
15 |
--------------------------------------------------------------------------------
/test/model-performance/canvas-1H-370-35065-20240920-091430.csv:
--------------------------------------------------------------------------------
1 | timestamp,metric_name,value,experiment
2 | 20240920-091430,unweighted_p10_quantile_loss,4422313.214299129,canvas-1H-370-35065
3 | 20240920-091430,unweighted_p50_quantile_loss,4959004.337389071,canvas-1H-370-35065
4 | 20240920-091430,unweighted_p90_quantile_loss,1788631.0110390235,canvas-1H-370-35065
5 | 20240920-091430,w_p10_quantile_loss,0.14370379287627855,canvas-1H-370-35065
6 | 20240920-091430,w_p50_quantile_loss,0.16114365890423862,canvas-1H-370-35065
7 | 20240920-091430,w_p90_quantile_loss,0.05812185792524794,canvas-1H-370-35065
8 | 20240920-091430,mse,276069.7514223092,canvas-1H-370-35065
9 | 20240920-091430,MAPE,0.5323419548980269,canvas-1H-370-35065
10 | 20240920-091430,MASE,2.5127543740670513,canvas-1H-370-35065
11 | 20240920-091430,RMSE,525.4234020504884,canvas-1H-370-35065
12 | 20240920-091430,WAPE,0.16186690776404453,canvas-1H-370-35065
13 | 20240920-091430,total_demand,30773809.97247936,canvas-1H-370-35065
14 | 20240920-091430,mean_wQuantileLoss,0.12098976990192171,canvas-1H-370-35065
15 |
--------------------------------------------------------------------------------
/test/model-performance/canvas-1H-370-35065-20240927-134914.csv:
--------------------------------------------------------------------------------
1 | timestamp,metric_name,value,experiment
2 | 20240927-134914,unweighted_p10_quantile_loss,4461949.856010195,canvas-1H-370-35065
3 | 20240927-134914,unweighted_p50_quantile_loss,4936261.369882716,canvas-1H-370-35065
4 | 20240927-134914,unweighted_p90_quantile_loss,1790727.625640128,canvas-1H-370-35065
5 | 20240927-134914,w_p10_quantile_loss,0.14499179204656368,canvas-1H-370-35065
6 | 20240927-134914,w_p50_quantile_loss,0.16040462244672188,canvas-1H-370-35065
7 | 20240927-134914,w_p90_quantile_loss,0.05818998776042206,canvas-1H-370-35065
8 | 20240927-134914,mse,276198.33052579156,canvas-1H-370-35065
9 | 20240927-134914,MAPE,0.5682595636394644,canvas-1H-370-35065
10 | 20240927-134914,MASE,2.7190232957157017,canvas-1H-370-35065
11 | 20240927-134914,RMSE,525.5457454168871,canvas-1H-370-35065
12 | 20240927-134914,WAPE,0.16123915241712355,canvas-1H-370-35065
13 | 20240927-134914,total_demand,30773809.97247936,canvas-1H-370-35065
14 | 20240927-134914,mean_wQuantileLoss,0.12119546741790255,canvas-1H-370-35065
15 |
--------------------------------------------------------------------------------
/test/model-performance/chronos-2H-370-17533-bt4-20240919-130527.csv:
--------------------------------------------------------------------------------
1 | timestamp,metric_name,value,experiment
2 | 20240919-130527,WQL,0.08387127944380027,chronos-chronos-t5-small-2H-370-17533-bt4
3 | 20240919-130527,MAPE,0.952375908485444,chronos-chronos-t5-small-2H-370-17533-bt4
4 | 20240919-130527,WAPE,0.11370558726111012,chronos-chronos-t5-small-2H-370-17533-bt4
5 | 20240919-130527,RMSE,308.83172065685693,chronos-chronos-t5-small-2H-370-17533-bt4
6 | 20240919-130527,MASE,1.9435703009669876,chronos-chronos-t5-small-2H-370-17533-bt4
7 | 20240919-130527,WQL,0.07530871644875207,chronos-chronos-t5-base-2H-370-17533-bt4
8 | 20240919-130527,MAPE,0.6694141157625808,chronos-chronos-t5-base-2H-370-17533-bt4
9 | 20240919-130527,WAPE,0.10237149753335748,chronos-chronos-t5-base-2H-370-17533-bt4
10 | 20240919-130527,RMSE,264.7049115043852,chronos-chronos-t5-base-2H-370-17533-bt4
11 | 20240919-130527,MASE,1.808932873018792,chronos-chronos-t5-base-2H-370-17533-bt4
12 | 20240919-130527,WQL,0.07304669144187251,chronos-chronos-t5-large-2H-370-17533-bt4
13 | 20240919-130527,MAPE,0.7852700020916967,chronos-chronos-t5-large-2H-370-17533-bt4
14 | 20240919-130527,WAPE,0.0994895806641236,chronos-chronos-t5-large-2H-370-17533-bt4
15 | 20240919-130527,RMSE,268.68509695234684,chronos-chronos-t5-large-2H-370-17533-bt4
16 | 20240919-130527,MASE,1.780262578979926,chronos-chronos-t5-large-2H-370-17533-bt4
17 |
--------------------------------------------------------------------------------
/test/model-performance/chronos-2H-370-17533-off10-20240919-130527.csv:
--------------------------------------------------------------------------------
1 | timestamp,metric_name,value,experiment
2 | 20240919-130527,WQL,0.062098830633961564,chronos-chronos-t5-small-2H-370-17533-off10
3 | 20240919-130527,MAPE,0.5717769900528037,chronos-chronos-t5-small-2H-370-17533-off10
4 | 20240919-130527,WAPE,0.08857892065787676,chronos-chronos-t5-small-2H-370-17533-off10
5 | 20240919-130527,RMSE,345.87860162878553,chronos-chronos-t5-small-2H-370-17533-off10
6 | 20240919-130527,MASE,1.64961587503781,chronos-chronos-t5-small-2H-370-17533-off10
7 | 20240919-130527,WQL,0.05673146361178913,chronos-chronos-t5-base-2H-370-17533-off10
8 | 20240919-130527,MAPE,0.484702837086737,chronos-chronos-t5-base-2H-370-17533-off10
9 | 20240919-130527,WAPE,0.08153096465865009,chronos-chronos-t5-base-2H-370-17533-off10
10 | 20240919-130527,RMSE,285.10273880993134,chronos-chronos-t5-base-2H-370-17533-off10
11 | 20240919-130527,MASE,1.57590851804799,chronos-chronos-t5-base-2H-370-17533-off10
12 | 20240919-130527,WQL,0.05686362673922743,chronos-chronos-t5-large-2H-370-17533-off10
13 | 20240919-130527,MAPE,0.41598719208847507,chronos-chronos-t5-large-2H-370-17533-off10
14 | 20240919-130527,WAPE,0.08108158218258046,chronos-chronos-t5-large-2H-370-17533-off10
15 | 20240919-130527,RMSE,282.1125940188181,chronos-chronos-t5-large-2H-370-17533-off10
16 | 20240919-130527,MASE,1.5247410696140768,chronos-chronos-t5-large-2H-370-17533-off10
17 |
--------------------------------------------------------------------------------
/test/model-performance/deepar-2H-370-17533-20240919-202341.csv:
--------------------------------------------------------------------------------
1 | timestamp,metric_name,value,experiment
2 | 20240919-202341,test:mean_wQuantileLoss,0.057275453987167074,deepar-2H-370-17533
3 | 20240919-202341,train:final_loss,3.725597706708041,deepar-2H-370-17533
4 | 20240919-202341,test:RMSE,621.6844993824717,deepar-2H-370-17533
5 |
--------------------------------------------------------------------------------
/test/model-performance/deepar-2h-2-17533-20240927-105431.csv:
--------------------------------------------------------------------------------
1 | timestamp,metric_name,value,experiment
2 | 20240927-105431,test:mean_wQuantileLoss,0.07233166282643218,deepar-2h-2-17533
3 | 20240927-105431,train:final_loss,3.733606360175393,deepar-2h-2-17533
4 | 20240927-105431,test:RMSE,877.3897729764718,deepar-2h-2-17533
5 |
--------------------------------------------------------------------------------
/test/model-performance/gluonts-1h-10-8736-bt4-20241106-080455.csv:
--------------------------------------------------------------------------------
1 | timestamp,metric_name,value,experiment
2 | 20241106-080455,MSE,20554.96211210322,gluonts-SimpleFeedForward-1h-10-8736-bt4
3 | 20241106-080455,abs_error,310388.6882653013,gluonts-SimpleFeedForward-1h-10-8736-bt4
4 | 20241106-080455,abs_target_sum,1933850.430311788,gluonts-SimpleFeedForward-1h-10-8736-bt4
5 | 20241106-080455,abs_target_mean,287.77536165353985,gluonts-SimpleFeedForward-1h-10-8736-bt4
6 | 20241106-080455,MAPE,0.49496113229443317,gluonts-SimpleFeedForward-1h-10-8736-bt4
7 | 20241106-080455,sMAPE,0.3394244618303942,gluonts-SimpleFeedForward-1h-10-8736-bt4
8 | 20241106-080455,num_masked_target_values,0.0,gluonts-SimpleFeedForward-1h-10-8736-bt4
9 | 20241106-080455,QuantileLoss[0.1],240710.38248697147,gluonts-SimpleFeedForward-1h-10-8736-bt4
10 | 20241106-080455,Coverage[0.1],0.16800595238095237,gluonts-SimpleFeedForward-1h-10-8736-bt4
11 | 20241106-080455,QuantileLoss[0.2],289160.4046860036,gluonts-SimpleFeedForward-1h-10-8736-bt4
12 | 20241106-080455,Coverage[0.2],0.2541666666666667,gluonts-SimpleFeedForward-1h-10-8736-bt4
13 | 20241106-080455,QuantileLoss[0.3],312643.3398831085,gluonts-SimpleFeedForward-1h-10-8736-bt4
14 | 20241106-080455,Coverage[0.3],0.33556547619047616,gluonts-SimpleFeedForward-1h-10-8736-bt4
15 | 20241106-080455,QuantileLoss[0.4],316419.8080766086,gluonts-SimpleFeedForward-1h-10-8736-bt4
16 | 20241106-080455,Coverage[0.4],0.4153273809523809,gluonts-SimpleFeedForward-1h-10-8736-bt4
17 | 20241106-080455,QuantileLoss[0.5],310388.6882653013,gluonts-SimpleFeedForward-1h-10-8736-bt4
18 | 20241106-080455,Coverage[0.5],0.5055059523809524,gluonts-SimpleFeedForward-1h-10-8736-bt4
19 | 20241106-080455,QuantileLoss[0.6],294462.0134910503,gluonts-SimpleFeedForward-1h-10-8736-bt4
20 | 20241106-080455,Coverage[0.6],0.5465773809523811,gluonts-SimpleFeedForward-1h-10-8736-bt4
21 | 20241106-080455,QuantileLoss[0.7],262103.71350753936,gluonts-SimpleFeedForward-1h-10-8736-bt4
22 | 20241106-080455,Coverage[0.7],0.6364583333333333,gluonts-SimpleFeedForward-1h-10-8736-bt4
23 | 20241106-080455,QuantileLoss[0.8],217507.30710448523,gluonts-SimpleFeedForward-1h-10-8736-bt4
24 | 20241106-080455,Coverage[0.8],0.7311011904761904,gluonts-SimpleFeedForward-1h-10-8736-bt4
25 | 20241106-080455,QuantileLoss[0.9],158937.5408318817,gluonts-SimpleFeedForward-1h-10-8736-bt4
26 | 20241106-080455,Coverage[0.9],0.8313988095238095,gluonts-SimpleFeedForward-1h-10-8736-bt4
27 | 20241106-080455,RMSE,143.37001817710433,gluonts-SimpleFeedForward-1h-10-8736-bt4
28 | 20241106-080455,NRMSE,0.4982011571571272,gluonts-SimpleFeedForward-1h-10-8736-bt4
29 | 20241106-080455,ND,0.16050294448845168,gluonts-SimpleFeedForward-1h-10-8736-bt4
30 | 20241106-080455,wQuantileLoss[0.1],0.12447207845756848,gluonts-SimpleFeedForward-1h-10-8736-bt4
31 | 20241106-080455,wQuantileLoss[0.2],0.14952573381767856,gluonts-SimpleFeedForward-1h-10-8736-bt4
32 | 20241106-080455,wQuantileLoss[0.3],0.16166883176828836,gluonts-SimpleFeedForward-1h-10-8736-bt4
33 | 20241106-080455,wQuantileLoss[0.4],0.16362165507577195,gluonts-SimpleFeedForward-1h-10-8736-bt4
34 | 20241106-080455,wQuantileLoss[0.5],0.16050294448845168,gluonts-SimpleFeedForward-1h-10-8736-bt4
35 | 20241106-080455,wQuantileLoss[0.6],0.15226721202196344,gluonts-SimpleFeedForward-1h-10-8736-bt4
36 | 20241106-080455,wQuantileLoss[0.7],0.135534635667393,gluonts-SimpleFeedForward-1h-10-8736-bt4
37 | 20241106-080455,wQuantileLoss[0.8],0.112473696877073,gluonts-SimpleFeedForward-1h-10-8736-bt4
38 | 20241106-080455,wQuantileLoss[0.9],0.0821870907597837,gluonts-SimpleFeedForward-1h-10-8736-bt4
39 | 20241106-080455,mean_absolute_QuantileLoss,266925.91092588333,gluonts-SimpleFeedForward-1h-10-8736-bt4
40 | 20241106-080455,mean_wQuantileLoss,0.13802820877044134,gluonts-SimpleFeedForward-1h-10-8736-bt4
41 | 20241106-080455,MAE_Coverage,0.3466435185185185,gluonts-SimpleFeedForward-1h-10-8736-bt4
42 | 20241106-080455,MSE,20076.85618215075,gluonts-NBEATS-1h-10-8736-bt4
43 | 20241106-080455,abs_error,355277.7003341072,gluonts-NBEATS-1h-10-8736-bt4
44 | 20241106-080455,abs_target_sum,1933850.430311788,gluonts-NBEATS-1h-10-8736-bt4
45 | 20241106-080455,abs_target_mean,287.77536165353985,gluonts-NBEATS-1h-10-8736-bt4
46 | 20241106-080455,MAPE,0.31730921659271843,gluonts-NBEATS-1h-10-8736-bt4
47 | 20241106-080455,sMAPE,0.3608155859211519,gluonts-NBEATS-1h-10-8736-bt4
48 | 20241106-080455,num_masked_target_values,0.0,gluonts-NBEATS-1h-10-8736-bt4
49 | 20241106-080455,QuantileLoss[0.1],346993.6474386893,gluonts-NBEATS-1h-10-8736-bt4
50 | 20241106-080455,Coverage[0.1],0.4866071428571429,gluonts-NBEATS-1h-10-8736-bt4
51 | 20241106-080455,QuantileLoss[0.2],349064.66066254384,gluonts-NBEATS-1h-10-8736-bt4
52 | 20241106-080455,Coverage[0.2],0.4866071428571429,gluonts-NBEATS-1h-10-8736-bt4
53 | 20241106-080455,QuantileLoss[0.3],351135.67388639826,gluonts-NBEATS-1h-10-8736-bt4
54 | 20241106-080455,Coverage[0.3],0.4866071428571429,gluonts-NBEATS-1h-10-8736-bt4
55 | 20241106-080455,QuantileLoss[0.4],353206.6871102528,gluonts-NBEATS-1h-10-8736-bt4
56 | 20241106-080455,Coverage[0.4],0.4866071428571429,gluonts-NBEATS-1h-10-8736-bt4
57 | 20241106-080455,QuantileLoss[0.5],355277.7003341072,gluonts-NBEATS-1h-10-8736-bt4
58 | 20241106-080455,Coverage[0.5],0.4866071428571429,gluonts-NBEATS-1h-10-8736-bt4
59 | 20241106-080455,QuantileLoss[0.6],357348.71355796175,gluonts-NBEATS-1h-10-8736-bt4
60 | 20241106-080455,Coverage[0.6],0.4866071428571429,gluonts-NBEATS-1h-10-8736-bt4
61 | 20241106-080455,QuantileLoss[0.7],359419.7267818162,gluonts-NBEATS-1h-10-8736-bt4
62 | 20241106-080455,Coverage[0.7],0.4866071428571429,gluonts-NBEATS-1h-10-8736-bt4
63 | 20241106-080455,QuantileLoss[0.8],361490.7400056707,gluonts-NBEATS-1h-10-8736-bt4
64 | 20241106-080455,Coverage[0.8],0.4866071428571429,gluonts-NBEATS-1h-10-8736-bt4
65 | 20241106-080455,QuantileLoss[0.9],363561.75322952523,gluonts-NBEATS-1h-10-8736-bt4
66 | 20241106-080455,Coverage[0.9],0.4866071428571429,gluonts-NBEATS-1h-10-8736-bt4
67 | 20241106-080455,RMSE,141.6928233262036,gluonts-NBEATS-1h-10-8736-bt4
68 | 20241106-080455,NRMSE,0.49237301800976013,gluonts-NBEATS-1h-10-8736-bt4
69 | 20241106-080455,ND,0.18371519056767333,gluonts-NBEATS-1h-10-8736-bt4
70 | 20241106-080455,wQuantileLoss[0.1],0.17943148135957168,gluonts-NBEATS-1h-10-8736-bt4
71 | 20241106-080455,wQuantileLoss[0.2],0.18050240866159714,gluonts-NBEATS-1h-10-8736-bt4
72 | 20241106-080455,wQuantileLoss[0.3],0.18157333596362252,gluonts-NBEATS-1h-10-8736-bt4
73 | 20241106-080455,wQuantileLoss[0.4],0.18264426326564795,gluonts-NBEATS-1h-10-8736-bt4
74 | 20241106-080455,wQuantileLoss[0.5],0.18371519056767333,gluonts-NBEATS-1h-10-8736-bt4
75 | 20241106-080455,wQuantileLoss[0.6],0.18478611786969876,gluonts-NBEATS-1h-10-8736-bt4
76 | 20241106-080455,wQuantileLoss[0.7],0.18585704517172416,gluonts-NBEATS-1h-10-8736-bt4
77 | 20241106-080455,wQuantileLoss[0.8],0.18692797247374957,gluonts-NBEATS-1h-10-8736-bt4
78 | 20241106-080455,wQuantileLoss[0.9],0.18799889977577502,gluonts-NBEATS-1h-10-8736-bt4
79 | 20241106-080455,mean_absolute_QuantileLoss,355277.70033410727,gluonts-NBEATS-1h-10-8736-bt4
80 | 20241106-080455,mean_wQuantileLoss,0.18371519056767335,gluonts-NBEATS-1h-10-8736-bt4
81 | 20241106-080455,MAE_Coverage,0.22371031746031747,gluonts-NBEATS-1h-10-8736-bt4
82 | 20241106-080455,MSE,24120.076428087465,gluonts-GaussianProcess-1h-10-8736-bt4
83 | 20241106-080455,abs_error,378382.5389505496,gluonts-GaussianProcess-1h-10-8736-bt4
84 | 20241106-080455,abs_target_sum,1933850.430311788,gluonts-GaussianProcess-1h-10-8736-bt4
85 | 20241106-080455,abs_target_mean,287.77536165353985,gluonts-GaussianProcess-1h-10-8736-bt4
86 | 20241106-080455,MAPE,0.5678405054544273,gluonts-GaussianProcess-1h-10-8736-bt4
87 | 20241106-080455,sMAPE,0.37280373740447525,gluonts-GaussianProcess-1h-10-8736-bt4
88 | 20241106-080455,num_masked_target_values,0.0,gluonts-GaussianProcess-1h-10-8736-bt4
89 | 20241106-080455,QuantileLoss[0.1],257311.11205047648,gluonts-GaussianProcess-1h-10-8736-bt4
90 | 20241106-080455,Coverage[0.1],0.11696428571428572,gluonts-GaussianProcess-1h-10-8736-bt4
91 | 20241106-080455,QuantileLoss[0.2],332085.40687584557,gluonts-GaussianProcess-1h-10-8736-bt4
92 | 20241106-080455,Coverage[0.2],0.16889880952380953,gluonts-GaussianProcess-1h-10-8736-bt4
93 | 20241106-080455,QuantileLoss[0.3],371906.35510617006,gluonts-GaussianProcess-1h-10-8736-bt4
94 | 20241106-080455,Coverage[0.3],0.2331845238095238,gluonts-GaussianProcess-1h-10-8736-bt4
95 | 20241106-080455,QuantileLoss[0.4],385296.89450299414,gluonts-GaussianProcess-1h-10-8736-bt4
96 | 20241106-080455,Coverage[0.4],0.3171130952380953,gluonts-GaussianProcess-1h-10-8736-bt4
97 | 20241106-080455,QuantileLoss[0.5],378382.5389505496,gluonts-GaussianProcess-1h-10-8736-bt4
98 | 20241106-080455,Coverage[0.5],0.4105654761904762,gluonts-GaussianProcess-1h-10-8736-bt4
99 | 20241106-080455,QuantileLoss[0.6],367635.3604437279,gluonts-GaussianProcess-1h-10-8736-bt4
100 | 20241106-080455,Coverage[0.6],0.4641369047619047,gluonts-GaussianProcess-1h-10-8736-bt4
101 | 20241106-080455,QuantileLoss[0.7],329628.2808167407,gluonts-GaussianProcess-1h-10-8736-bt4
102 | 20241106-080455,Coverage[0.7],0.5686011904761905,gluonts-GaussianProcess-1h-10-8736-bt4
103 | 20241106-080455,QuantileLoss[0.8],270698.6428038415,gluonts-GaussianProcess-1h-10-8736-bt4
104 | 20241106-080455,Coverage[0.8],0.6680059523809524,gluonts-GaussianProcess-1h-10-8736-bt4
105 | 20241106-080455,QuantileLoss[0.9],187117.86916145514,gluonts-GaussianProcess-1h-10-8736-bt4
106 | 20241106-080455,Coverage[0.9],0.7733630952380952,gluonts-GaussianProcess-1h-10-8736-bt4
107 | 20241106-080455,RMSE,155.30639532256058,gluonts-GaussianProcess-1h-10-8736-bt4
108 | 20241106-080455,NRMSE,0.5396792638194576,gluonts-GaussianProcess-1h-10-8736-bt4
109 | 20241106-080455,ND,0.19566277361457798,gluonts-GaussianProcess-1h-10-8736-bt4
110 | 20241106-080455,wQuantileLoss[0.1],0.13305636672686785,gluonts-GaussianProcess-1h-10-8736-bt4
111 | 20241106-080455,wQuantileLoss[0.2],0.1717223843533259,gluonts-GaussianProcess-1h-10-8736-bt4
112 | 20241106-080455,wQuantileLoss[0.3],0.1923139190481287,gluonts-GaussianProcess-1h-10-8736-bt4
113 | 20241106-080455,wQuantileLoss[0.4],0.19923820811771573,gluonts-GaussianProcess-1h-10-8736-bt4
114 | 20241106-080455,wQuantileLoss[0.5],0.19566277361457798,gluonts-GaussianProcess-1h-10-8736-bt4
115 | 20241106-080455,wQuantileLoss[0.6],0.1901053745839358,gluonts-GaussianProcess-1h-10-8736-bt4
116 | 20241106-080455,wQuantileLoss[0.7],0.17045179691771503,gluonts-GaussianProcess-1h-10-8736-bt4
117 | 20241106-080455,wQuantileLoss[0.8],0.139979100017677,gluonts-GaussianProcess-1h-10-8736-bt4
118 | 20241106-080455,wQuantileLoss[0.9],0.09675922513370734,gluonts-GaussianProcess-1h-10-8736-bt4
119 | 20241106-080455,mean_absolute_QuantileLoss,320006.94007908896,gluonts-GaussianProcess-1h-10-8736-bt4
120 | 20241106-080455,mean_wQuantileLoss,0.1654765720570724,gluonts-GaussianProcess-1h-10-8736-bt4
121 | 20241106-080455,MAE_Coverage,0.3074239417989418,gluonts-GaussianProcess-1h-10-8736-bt4
122 | 20241106-080455,MSE,21334.89029071459,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
123 | 20241106-080455,abs_error,396163.6205423127,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
124 | 20241106-080455,abs_target_sum,1933850.430311788,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
125 | 20241106-080455,abs_target_mean,287.77536165353985,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
126 | 20241106-080455,MAPE,0.8344180096876155,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
127 | 20241106-080455,sMAPE,0.4051719308738019,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
128 | 20241106-080455,num_masked_target_values,0.0,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
129 | 20241106-080455,QuantileLoss[0.1],233901.37818849954,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
130 | 20241106-080455,Coverage[0.1],0.18675595238095238,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
131 | 20241106-080455,QuantileLoss[0.2],322680.2048905965,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
132 | 20241106-080455,Coverage[0.2],0.2788690476190476,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
133 | 20241106-080455,QuantileLoss[0.3],378082.01421908627,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
134 | 20241106-080455,Coverage[0.3],0.3461309523809524,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
135 | 20241106-080455,QuantileLoss[0.4],400299.18625961663,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
136 | 20241106-080455,Coverage[0.4],0.4157738095238095,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
137 | 20241106-080455,QuantileLoss[0.5],396163.6205423127,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
138 | 20241106-080455,Coverage[0.5],0.5026785714285714,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
139 | 20241106-080455,QuantileLoss[0.6],371417.69543256215,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
140 | 20241106-080455,Coverage[0.6],0.5976190476190476,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
141 | 20241106-080455,QuantileLoss[0.7],325011.75360091677,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
142 | 20241106-080455,Coverage[0.7],0.6869047619047619,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
143 | 20241106-080455,QuantileLoss[0.8],257238.8791061459,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
144 | 20241106-080455,Coverage[0.8],0.7680059523809524,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
145 | 20241106-080455,QuantileLoss[0.9],165589.1830871597,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
146 | 20241106-080455,Coverage[0.9],0.8327380952380953,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
147 | 20241106-080455,RMSE,146.06467845004346,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
148 | 20241106-080455,NRMSE,0.5075649201195149,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
149 | 20241106-080455,ND,0.20485742554476696,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
150 | 20241106-080455,wQuantileLoss[0.1],0.12095112141159149,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
151 | 20241106-080455,wQuantileLoss[0.2],0.1668589255057186,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
152 | 20241106-080455,wQuantileLoss[0.3],0.19550737135246254,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
153 | 20241106-080455,wQuantileLoss[0.4],0.20699593928527232,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
154 | 20241106-080455,wQuantileLoss[0.5],0.20485742554476696,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
155 | 20241106-080455,wQuantileLoss[0.6],0.19206123162931465,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
156 | 20241106-080455,wQuantileLoss[0.7],0.16806457650838913,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
157 | 20241106-080455,wQuantileLoss[0.8],0.13301901484939152,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
158 | 20241106-080455,wQuantileLoss[0.9],0.08562667540967081,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
159 | 20241106-080455,mean_absolute_QuantileLoss,316709.3239252107,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
160 | 20241106-080455,mean_wQuantileLoss,0.1637713646107309,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
161 | 20241106-080455,MAE_Coverage,0.3476851851851852,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
162 | 20241106-080455,MSE,20453.903226090588,gluonts-MQCNN-1h-10-8736-bt4
163 | 20241106-080455,abs_error,324250.87280253635,gluonts-MQCNN-1h-10-8736-bt4
164 | 20241106-080455,abs_target_sum,1933850.430311788,gluonts-MQCNN-1h-10-8736-bt4
165 | 20241106-080455,abs_target_mean,287.77536165353985,gluonts-MQCNN-1h-10-8736-bt4
166 | 20241106-080455,MAPE,0.533053060136319,gluonts-MQCNN-1h-10-8736-bt4
167 | 20241106-080455,sMAPE,0.36282727055510205,gluonts-MQCNN-1h-10-8736-bt4
168 | 20241106-080455,num_masked_target_values,0.0,gluonts-MQCNN-1h-10-8736-bt4
169 | 20241106-080455,QuantileLoss[0.1],242852.0840527105,gluonts-MQCNN-1h-10-8736-bt4
170 | 20241106-080455,Coverage[0.1],0.15907738095238094,gluonts-MQCNN-1h-10-8736-bt4
171 | 20241106-080455,QuantileLoss[0.2],311015.5716887718,gluonts-MQCNN-1h-10-8736-bt4
172 | 20241106-080455,Coverage[0.2],0.28288690476190476,gluonts-MQCNN-1h-10-8736-bt4
173 | 20241106-080455,QuantileLoss[0.3],322810.83915022,gluonts-MQCNN-1h-10-8736-bt4
174 | 20241106-080455,Coverage[0.3],0.30297619047619045,gluonts-MQCNN-1h-10-8736-bt4
175 | 20241106-080455,QuantileLoss[0.4],331178.3973383634,gluonts-MQCNN-1h-10-8736-bt4
176 | 20241106-080455,Coverage[0.4],0.4001488095238096,gluonts-MQCNN-1h-10-8736-bt4
177 | 20241106-080455,QuantileLoss[0.5],324250.87280253635,gluonts-MQCNN-1h-10-8736-bt4
178 | 20241106-080455,Coverage[0.5],0.5504464285714287,gluonts-MQCNN-1h-10-8736-bt4
179 | 20241106-080455,QuantileLoss[0.6],297429.26302844606,gluonts-MQCNN-1h-10-8736-bt4
180 | 20241106-080455,Coverage[0.6],0.5703869047619048,gluonts-MQCNN-1h-10-8736-bt4
181 | 20241106-080455,QuantileLoss[0.7],269201.9485019067,gluonts-MQCNN-1h-10-8736-bt4
182 | 20241106-080455,Coverage[0.7],0.7178571428571429,gluonts-MQCNN-1h-10-8736-bt4
183 | 20241106-080455,QuantileLoss[0.8],216633.78681745386,gluonts-MQCNN-1h-10-8736-bt4
184 | 20241106-080455,Coverage[0.8],0.8019345238095237,gluonts-MQCNN-1h-10-8736-bt4
185 | 20241106-080455,QuantileLoss[0.9],142342.50592784095,gluonts-MQCNN-1h-10-8736-bt4
186 | 20241106-080455,Coverage[0.9],0.8706845238095238,gluonts-MQCNN-1h-10-8736-bt4
187 | 20241106-080455,RMSE,143.01714311959455,gluonts-MQCNN-1h-10-8736-bt4
188 | 20241106-080455,NRMSE,0.4969749400985084,gluonts-MQCNN-1h-10-8736-bt4
189 | 20241106-080455,ND,0.16767112270945303,gluonts-MQCNN-1h-10-8736-bt4
190 | 20241106-080455,wQuantileLoss[0.1],0.12557955891839903,gluonts-MQCNN-1h-10-8736-bt4
191 | 20241106-080455,wQuantileLoss[0.2],0.1608271078330643,gluonts-MQCNN-1h-10-8736-bt4
192 | 20241106-080455,wQuantileLoss[0.3],0.166926476882793,gluonts-MQCNN-1h-10-8736-bt4
193 | 20241106-080455,wQuantileLoss[0.4],0.17125336693436455,gluonts-MQCNN-1h-10-8736-bt4
194 | 20241106-080455,wQuantileLoss[0.5],0.16767112270945303,gluonts-MQCNN-1h-10-8736-bt4
195 | 20241106-080455,wQuantileLoss[0.6],0.1538015858757456,gluonts-MQCNN-1h-10-8736-bt4
196 | 20241106-080455,wQuantileLoss[0.7],0.13920515479498805,gluonts-MQCNN-1h-10-8736-bt4
197 | 20241106-080455,wQuantileLoss[0.8],0.1120219968524281,gluonts-MQCNN-1h-10-8736-bt4
198 | 20241106-080455,wQuantileLoss[0.9],0.07360574721639229,gluonts-MQCNN-1h-10-8736-bt4
199 | 20241106-080455,mean_absolute_QuantileLoss,273079.4743675833,gluonts-MQCNN-1h-10-8736-bt4
200 | 20241106-080455,mean_wQuantileLoss,0.14121023533529198,gluonts-MQCNN-1h-10-8736-bt4
201 | 20241106-080455,MAE_Coverage,0.37719907407407405,gluonts-MQCNN-1h-10-8736-bt4
202 | 20241106-080455,MSE,120626.77846042384,gluonts-MQRNN-1h-10-8736-bt4
203 | 20241106-080455,abs_error,1708696.9935996654,gluonts-MQRNN-1h-10-8736-bt4
204 | 20241106-080455,abs_target_sum,1933850.430311788,gluonts-MQRNN-1h-10-8736-bt4
205 | 20241106-080455,abs_target_mean,287.77536165353985,gluonts-MQRNN-1h-10-8736-bt4
206 | 20241106-080455,MAPE,4.642684025336889,gluonts-MQRNN-1h-10-8736-bt4
207 | 20241106-080455,sMAPE,1.0497421392402313,gluonts-MQRNN-1h-10-8736-bt4
208 | 20241106-080455,num_masked_target_values,0.0,gluonts-MQRNN-1h-10-8736-bt4
209 | 20241106-080455,QuantileLoss[0.1],469208.3396337308,gluonts-MQRNN-1h-10-8736-bt4
210 | 20241106-080455,Coverage[0.1],0.41636904761904764,gluonts-MQRNN-1h-10-8736-bt4
211 | 20241106-080455,QuantileLoss[0.2],923095.8049626815,gluonts-MQRNN-1h-10-8736-bt4
212 | 20241106-080455,Coverage[0.2],0.601190476190476,gluonts-MQRNN-1h-10-8736-bt4
213 | 20241106-080455,QuantileLoss[0.3],1297062.3036221645,gluonts-MQRNN-1h-10-8736-bt4
214 | 20241106-080455,Coverage[0.3],0.7607142857142858,gluonts-MQRNN-1h-10-8736-bt4
215 | 20241106-080455,QuantileLoss[0.4],1590916.9085901747,gluonts-MQRNN-1h-10-8736-bt4
216 | 20241106-080455,Coverage[0.4],0.8248511904761905,gluonts-MQRNN-1h-10-8736-bt4
217 | 20241106-080455,QuantileLoss[0.5],1708696.9935996654,gluonts-MQRNN-1h-10-8736-bt4
218 | 20241106-080455,Coverage[0.5],0.8410714285714285,gluonts-MQRNN-1h-10-8736-bt4
219 | 20241106-080455,QuantileLoss[0.6],1661523.812853003,gluonts-MQRNN-1h-10-8736-bt4
220 | 20241106-080455,Coverage[0.6],0.8644345238095237,gluonts-MQRNN-1h-10-8736-bt4
221 | 20241106-080455,QuantileLoss[0.7],1507215.6589001382,gluonts-MQRNN-1h-10-8736-bt4
222 | 20241106-080455,Coverage[0.7],0.9092261904761905,gluonts-MQRNN-1h-10-8736-bt4
223 | 20241106-080455,QuantileLoss[0.8],1242963.4756011772,gluonts-MQRNN-1h-10-8736-bt4
224 | 20241106-080455,Coverage[0.8],0.9325892857142858,gluonts-MQRNN-1h-10-8736-bt4
225 | 20241106-080455,QuantileLoss[0.9],806353.9466135174,gluonts-MQRNN-1h-10-8736-bt4
226 | 20241106-080455,Coverage[0.9],0.9461309523809524,gluonts-MQRNN-1h-10-8736-bt4
227 | 20241106-080455,RMSE,347.31366005445835,gluonts-MQRNN-1h-10-8736-bt4
228 | 20241106-080455,NRMSE,1.2068915770231858,gluonts-MQRNN-1h-10-8736-bt4
229 | 20241106-080455,ND,0.8835724660071969,gluonts-MQRNN-1h-10-8736-bt4
230 | 20241106-080455,wQuantileLoss[0.1],0.24262907424442434,gluonts-MQRNN-1h-10-8736-bt4
231 | 20241106-080455,wQuantileLoss[0.2],0.4773356773066746,gluonts-MQRNN-1h-10-8736-bt4
232 | 20241106-080455,wQuantileLoss[0.3],0.6707149029167905,gluonts-MQRNN-1h-10-8736-bt4
233 | 20241106-080455,wQuantileLoss[0.4],0.8226680221249979,gluonts-MQRNN-1h-10-8736-bt4
234 | 20241106-080455,wQuantileLoss[0.5],0.8835724660071969,gluonts-MQRNN-1h-10-8736-bt4
235 | 20241106-080455,wQuantileLoss[0.6],0.8591790692856847,gluonts-MQRNN-1h-10-8736-bt4
236 | 20241106-080455,wQuantileLoss[0.7],0.7793858487065801,gluonts-MQRNN-1h-10-8736-bt4
237 | 20241106-080455,wQuantileLoss[0.8],0.6427402327080582,gluonts-MQRNN-1h-10-8736-bt4
238 | 20241106-080455,wQuantileLoss[0.9],0.41696810362087394,gluonts-MQRNN-1h-10-8736-bt4
239 | 20241106-080455,mean_absolute_QuantileLoss,1245226.3604862504,gluonts-MQRNN-1h-10-8736-bt4
240 | 20241106-080455,mean_wQuantileLoss,0.6439103774356979,gluonts-MQRNN-1h-10-8736-bt4
241 | 20241106-080455,MAE_Coverage,0.4461309523809523,gluonts-MQRNN-1h-10-8736-bt4
242 | 20241106-080455,MSE,23963.740487498282,gluonts-SeasonalNaive-1h-10-8736-bt4
243 | 20241106-080455,abs_error,353611.9989626674,gluonts-SeasonalNaive-1h-10-8736-bt4
244 | 20241106-080455,abs_target_sum,1933850.430311788,gluonts-SeasonalNaive-1h-10-8736-bt4
245 | 20241106-080455,abs_target_mean,287.77536165353985,gluonts-SeasonalNaive-1h-10-8736-bt4
246 | 20241106-080455,MAPE,0.5920573391566246,gluonts-SeasonalNaive-1h-10-8736-bt4
247 | 20241106-080455,sMAPE,0.3103506820879077,gluonts-SeasonalNaive-1h-10-8736-bt4
248 | 20241106-080455,num_masked_target_values,0.0,gluonts-SeasonalNaive-1h-10-8736-bt4
249 | 20241106-080455,QuantileLoss[0.1],482413.70590227813,gluonts-SeasonalNaive-1h-10-8736-bt4
250 | 20241106-080455,Coverage[0.1],0.5431547619047619,gluonts-SeasonalNaive-1h-10-8736-bt4
251 | 20241106-080455,QuantileLoss[0.2],450213.27916737547,gluonts-SeasonalNaive-1h-10-8736-bt4
252 | 20241106-080455,Coverage[0.2],0.5431547619047619,gluonts-SeasonalNaive-1h-10-8736-bt4
253 | 20241106-080455,QuantileLoss[0.3],418012.85243247275,gluonts-SeasonalNaive-1h-10-8736-bt4
254 | 20241106-080455,Coverage[0.3],0.5431547619047619,gluonts-SeasonalNaive-1h-10-8736-bt4
255 | 20241106-080455,QuantileLoss[0.4],385812.4256975701,gluonts-SeasonalNaive-1h-10-8736-bt4
256 | 20241106-080455,Coverage[0.4],0.5431547619047619,gluonts-SeasonalNaive-1h-10-8736-bt4
257 | 20241106-080455,QuantileLoss[0.5],353611.9989626674,gluonts-SeasonalNaive-1h-10-8736-bt4
258 | 20241106-080455,Coverage[0.5],0.5431547619047619,gluonts-SeasonalNaive-1h-10-8736-bt4
259 | 20241106-080455,QuantileLoss[0.6],321411.57222776476,gluonts-SeasonalNaive-1h-10-8736-bt4
260 | 20241106-080455,Coverage[0.6],0.5431547619047619,gluonts-SeasonalNaive-1h-10-8736-bt4
261 | 20241106-080455,QuantileLoss[0.7],289211.1454928621,gluonts-SeasonalNaive-1h-10-8736-bt4
262 | 20241106-080455,Coverage[0.7],0.5431547619047619,gluonts-SeasonalNaive-1h-10-8736-bt4
263 | 20241106-080455,QuantileLoss[0.8],257010.71875795937,gluonts-SeasonalNaive-1h-10-8736-bt4
264 | 20241106-080455,Coverage[0.8],0.5431547619047619,gluonts-SeasonalNaive-1h-10-8736-bt4
265 | 20241106-080455,QuantileLoss[0.9],224810.2920230567,gluonts-SeasonalNaive-1h-10-8736-bt4
266 | 20241106-080455,Coverage[0.9],0.5431547619047619,gluonts-SeasonalNaive-1h-10-8736-bt4
267 | 20241106-080455,RMSE,154.80226253998447,gluonts-SeasonalNaive-1h-10-8736-bt4
268 | 20241106-080455,NRMSE,0.5379274363534807,gluonts-SeasonalNaive-1h-10-8736-bt4
269 | 20241106-080455,ND,0.18285385127000528,gluonts-SeasonalNaive-1h-10-8736-bt4
270 | 20241106-080455,wQuantileLoss[0.1],0.2494576097203651,gluonts-SeasonalNaive-1h-10-8736-bt4
271 | 20241106-080455,wQuantileLoss[0.2],0.23280667010777514,gluonts-SeasonalNaive-1h-10-8736-bt4
272 | 20241106-080455,wQuantileLoss[0.3],0.21615573049518516,gluonts-SeasonalNaive-1h-10-8736-bt4
273 | 20241106-080455,wQuantileLoss[0.4],0.19950479088259523,gluonts-SeasonalNaive-1h-10-8736-bt4
274 | 20241106-080455,wQuantileLoss[0.5],0.18285385127000528,gluonts-SeasonalNaive-1h-10-8736-bt4
275 | 20241106-080455,wQuantileLoss[0.6],0.16620291165741535,gluonts-SeasonalNaive-1h-10-8736-bt4
276 | 20241106-080455,wQuantileLoss[0.7],0.1495519720448254,gluonts-SeasonalNaive-1h-10-8736-bt4
277 | 20241106-080455,wQuantileLoss[0.8],0.13290103243223542,gluonts-SeasonalNaive-1h-10-8736-bt4
278 | 20241106-080455,wQuantileLoss[0.9],0.11625009281964548,gluonts-SeasonalNaive-1h-10-8736-bt4
279 | 20241106-080455,mean_absolute_QuantileLoss,353611.9989626674,gluonts-SeasonalNaive-1h-10-8736-bt4
280 | 20241106-080455,mean_wQuantileLoss,0.18285385127000528,gluonts-SeasonalNaive-1h-10-8736-bt4
281 | 20241106-080455,MAE_Coverage,0.22701719576719576,gluonts-SeasonalNaive-1h-10-8736-bt4
282 | 20241106-080455,MSE,21392.03482248147,gluonts-Prophet-1h-10-8736-bt4
283 | 20241106-080455,abs_error,376606.29346479836,gluonts-Prophet-1h-10-8736-bt4
284 | 20241106-080455,abs_target_sum,1933850.430311788,gluonts-Prophet-1h-10-8736-bt4
285 | 20241106-080455,abs_target_mean,287.77536165353985,gluonts-Prophet-1h-10-8736-bt4
286 | 20241106-080455,MAPE,0.6738884865652881,gluonts-Prophet-1h-10-8736-bt4
287 | 20241106-080455,sMAPE,0.37342936957494466,gluonts-Prophet-1h-10-8736-bt4
288 | 20241106-080455,num_masked_target_values,0.0,gluonts-Prophet-1h-10-8736-bt4
289 | 20241106-080455,QuantileLoss[0.1],244542.52854257333,gluonts-Prophet-1h-10-8736-bt4
290 | 20241106-080455,Coverage[0.1],0.16979166666666667,gluonts-Prophet-1h-10-8736-bt4
291 | 20241106-080455,QuantileLoss[0.2],310879.564058149,gluonts-Prophet-1h-10-8736-bt4
292 | 20241106-080455,Coverage[0.2],0.25982142857142854,gluonts-Prophet-1h-10-8736-bt4
293 | 20241106-080455,QuantileLoss[0.3],353786.1223710363,gluonts-Prophet-1h-10-8736-bt4
294 | 20241106-080455,Coverage[0.3],0.35089285714285723,gluonts-Prophet-1h-10-8736-bt4
295 | 20241106-080455,QuantileLoss[0.4],374364.71891049703,gluonts-Prophet-1h-10-8736-bt4
296 | 20241106-080455,Coverage[0.4],0.4392857142857142,gluonts-Prophet-1h-10-8736-bt4
297 | 20241106-080455,QuantileLoss[0.5],376606.29346479836,gluonts-Prophet-1h-10-8736-bt4
298 | 20241106-080455,Coverage[0.5],0.5199404761904762,gluonts-Prophet-1h-10-8736-bt4
299 | 20241106-080455,QuantileLoss[0.6],362616.94570055755,gluonts-Prophet-1h-10-8736-bt4
300 | 20241106-080455,Coverage[0.6],0.5547619047619048,gluonts-Prophet-1h-10-8736-bt4
301 | 20241106-080455,QuantileLoss[0.7],329327.2961050865,gluonts-Prophet-1h-10-8736-bt4
302 | 20241106-080455,Coverage[0.7],0.6232142857142857,gluonts-Prophet-1h-10-8736-bt4
303 | 20241106-080455,QuantileLoss[0.8],273821.4479207531,gluonts-Prophet-1h-10-8736-bt4
304 | 20241106-080455,Coverage[0.8],0.6933035714285715,gluonts-Prophet-1h-10-8736-bt4
305 | 20241106-080455,QuantileLoss[0.9],193635.45118206405,gluonts-Prophet-1h-10-8736-bt4
306 | 20241106-080455,Coverage[0.9],0.7703869047619047,gluonts-Prophet-1h-10-8736-bt4
307 | 20241106-080455,RMSE,146.2601614332538,gluonts-Prophet-1h-10-8736-bt4
308 | 20241106-080455,NRMSE,0.5082442103203407,gluonts-Prophet-1h-10-8736-bt4
309 | 20241106-080455,ND,0.19474427161571095,gluonts-Prophet-1h-10-8736-bt4
310 | 20241106-080455,wQuantileLoss[0.1],0.1264536929586362,gluonts-Prophet-1h-10-8736-bt4
311 | 20241106-080455,wQuantileLoss[0.2],0.16075677786933448,gluonts-Prophet-1h-10-8736-bt4
312 | 20241106-080455,wQuantileLoss[0.3],0.1829438910195328,gluonts-Prophet-1h-10-8736-bt4
313 | 20241106-080455,wQuantileLoss[0.4],0.19358514652559738,gluonts-Prophet-1h-10-8736-bt4
314 | 20241106-080455,wQuantileLoss[0.5],0.19474427161571095,gluonts-Prophet-1h-10-8736-bt4
315 | 20241106-080455,wQuantileLoss[0.6],0.18751033689926788,gluonts-Prophet-1h-10-8736-bt4
316 | 20241106-080455,wQuantileLoss[0.7],0.17029615679842944,gluonts-Prophet-1h-10-8736-bt4
317 | 20241106-080455,wQuantileLoss[0.8],0.14159391213963005,gluonts-Prophet-1h-10-8736-bt4
318 | 20241106-080455,wQuantileLoss[0.9],0.10012948682429637,gluonts-Prophet-1h-10-8736-bt4
319 | 20241106-080455,mean_absolute_QuantileLoss,313286.7075839461,gluonts-Prophet-1h-10-8736-bt4
320 | 20241106-080455,mean_wQuantileLoss,0.16200151918338174,gluonts-Prophet-1h-10-8736-bt4
321 | 20241106-080455,MAE_Coverage,0.30577050264550265,gluonts-Prophet-1h-10-8736-bt4
322 | 20241106-080455,MSE,19185.081160918926,gluonts-NPTS-1h-10-8736-bt4
323 | 20241106-080455,abs_error,349404.60605022905,gluonts-NPTS-1h-10-8736-bt4
324 | 20241106-080455,abs_target_sum,1933850.430311788,gluonts-NPTS-1h-10-8736-bt4
325 | 20241106-080455,abs_target_mean,287.77536165353985,gluonts-NPTS-1h-10-8736-bt4
326 | 20241106-080455,MAPE,0.8968081786639033,gluonts-NPTS-1h-10-8736-bt4
327 | 20241106-080455,sMAPE,0.3171503899298057,gluonts-NPTS-1h-10-8736-bt4
328 | 20241106-080455,num_masked_target_values,0.0,gluonts-NPTS-1h-10-8736-bt4
329 | 20241106-080455,QuantileLoss[0.1],198787.71156291745,gluonts-NPTS-1h-10-8736-bt4
330 | 20241106-080455,Coverage[0.1],0.21294642857142856,gluonts-NPTS-1h-10-8736-bt4
331 | 20241106-080455,QuantileLoss[0.2],276528.5470673586,gluonts-NPTS-1h-10-8736-bt4
332 | 20241106-080455,Coverage[0.2],0.28377976190476195,gluonts-NPTS-1h-10-8736-bt4
333 | 20241106-080455,QuantileLoss[0.3],328469.0184515643,gluonts-NPTS-1h-10-8736-bt4
334 | 20241106-080455,Coverage[0.3],0.3453869047619048,gluonts-NPTS-1h-10-8736-bt4
335 | 20241106-080455,QuantileLoss[0.4],351305.5860314814,gluonts-NPTS-1h-10-8736-bt4
336 | 20241106-080455,Coverage[0.4],0.4058035714285714,gluonts-NPTS-1h-10-8736-bt4
337 | 20241106-080455,QuantileLoss[0.5],349404.60605022905,gluonts-NPTS-1h-10-8736-bt4
338 | 20241106-080455,Coverage[0.5],0.4711309523809524,gluonts-NPTS-1h-10-8736-bt4
339 | 20241106-080455,QuantileLoss[0.6],329019.6566468009,gluonts-NPTS-1h-10-8736-bt4
340 | 20241106-080455,Coverage[0.6],0.5127976190476191,gluonts-NPTS-1h-10-8736-bt4
341 | 20241106-080455,QuantileLoss[0.7],293654.63564441935,gluonts-NPTS-1h-10-8736-bt4
342 | 20241106-080455,Coverage[0.7],0.5950892857142858,gluonts-NPTS-1h-10-8736-bt4
343 | 20241106-080455,QuantileLoss[0.8],238033.35188405242,gluonts-NPTS-1h-10-8736-bt4
344 | 20241106-080455,Coverage[0.8],0.6949404761904763,gluonts-NPTS-1h-10-8736-bt4
345 | 20241106-080455,QuantileLoss[0.9],149487.60377643866,gluonts-NPTS-1h-10-8736-bt4
346 | 20241106-080455,Coverage[0.9],0.7967261904761905,gluonts-NPTS-1h-10-8736-bt4
347 | 20241106-080455,RMSE,138.5102204204402,gluonts-NPTS-1h-10-8736-bt4
348 | 20241106-080455,NRMSE,0.4813136872613723,gluonts-NPTS-1h-10-8736-bt4
349 | 20241106-080455,ND,0.18067819546617975,gluonts-NPTS-1h-10-8736-bt4
350 | 20241106-080455,wQuantileLoss[0.1],0.10279373649950145,gluonts-NPTS-1h-10-8736-bt4
351 | 20241106-080455,wQuantileLoss[0.2],0.14299376142692424,gluonts-NPTS-1h-10-8736-bt4
352 | 20241106-080455,wQuantileLoss[0.3],0.16985233878641087,gluonts-NPTS-1h-10-8736-bt4
353 | 20241106-080455,wQuantileLoss[0.4],0.18166119805596423,gluonts-NPTS-1h-10-8736-bt4
354 | 20241106-080455,wQuantileLoss[0.5],0.18067819546617975,gluonts-NPTS-1h-10-8736-bt4
355 | 20241106-080455,wQuantileLoss[0.6],0.17013707548921156,gluonts-NPTS-1h-10-8736-bt4
356 | 20241106-080455,wQuantileLoss[0.7],0.15184971445649725,gluonts-NPTS-1h-10-8736-bt4
357 | 20241106-080455,wQuantileLoss[0.8],0.12308777770661153,gluonts-NPTS-1h-10-8736-bt4
358 | 20241106-080455,wQuantileLoss[0.9],0.0773004992699137,gluonts-NPTS-1h-10-8736-bt4
359 | 20241106-080455,mean_absolute_QuantileLoss,279410.07967947354,gluonts-NPTS-1h-10-8736-bt4
360 | 20241106-080455,mean_wQuantileLoss,0.14448381079524608,gluonts-NPTS-1h-10-8736-bt4
361 | 20241106-080455,MAE_Coverage,0.3204034391534392,gluonts-NPTS-1h-10-8736-bt4
362 |
--------------------------------------------------------------------------------
/test/model-performance/gluonts-1h-10-8736-bt4-20241106-181402.csv:
--------------------------------------------------------------------------------
1 | timestamp,metric_name,value,experiment
2 | 20241106-181402,MSE,2775.3851223107026,gluonts-SimpleFeedForward-1h-10-8736-bt4
3 | 20241106-181402,abs_error,160010.71253004688,gluonts-SimpleFeedForward-1h-10-8736-bt4
4 | 20241106-181402,abs_target_sum,1060363.985675315,gluonts-SimpleFeedForward-1h-10-8736-bt4
5 | 20241106-181402,abs_target_mean,157.79225977311233,gluonts-SimpleFeedForward-1h-10-8736-bt4
6 | 20241106-181402,MAPE,0.25801824711235377,gluonts-SimpleFeedForward-1h-10-8736-bt4
7 | 20241106-181402,sMAPE,0.20219454907019324,gluonts-SimpleFeedForward-1h-10-8736-bt4
8 | 20241106-181402,num_masked_target_values,0.0,gluonts-SimpleFeedForward-1h-10-8736-bt4
9 | 20241106-181402,QuantileLoss[0.1],103931.47809452907,gluonts-SimpleFeedForward-1h-10-8736-bt4
10 | 20241106-181402,Coverage[0.1],0.14122023809523807,gluonts-SimpleFeedForward-1h-10-8736-bt4
11 | 20241106-181402,QuantileLoss[0.2],133939.34989503742,gluonts-SimpleFeedForward-1h-10-8736-bt4
12 | 20241106-181402,Coverage[0.2],0.23258928571428578,gluonts-SimpleFeedForward-1h-10-8736-bt4
13 | 20241106-181402,QuantileLoss[0.3],149539.81611929752,gluonts-SimpleFeedForward-1h-10-8736-bt4
14 | 20241106-181402,Coverage[0.3],0.3339285714285714,gluonts-SimpleFeedForward-1h-10-8736-bt4
15 | 20241106-181402,QuantileLoss[0.4],157514.49414235397,gluonts-SimpleFeedForward-1h-10-8736-bt4
16 | 20241106-181402,Coverage[0.4],0.4386904761904762,gluonts-SimpleFeedForward-1h-10-8736-bt4
17 | 20241106-181402,QuantileLoss[0.5],160010.71253004688,gluonts-SimpleFeedForward-1h-10-8736-bt4
18 | 20241106-181402,Coverage[0.5],0.5433035714285714,gluonts-SimpleFeedForward-1h-10-8736-bt4
19 | 20241106-181402,QuantileLoss[0.6],153263.1297431849,gluonts-SimpleFeedForward-1h-10-8736-bt4
20 | 20241106-181402,Coverage[0.6],0.5919642857142857,gluonts-SimpleFeedForward-1h-10-8736-bt4
21 | 20241106-181402,QuantileLoss[0.7],140805.00303752205,gluonts-SimpleFeedForward-1h-10-8736-bt4
22 | 20241106-181402,Coverage[0.7],0.6953869047619048,gluonts-SimpleFeedForward-1h-10-8736-bt4
23 | 20241106-181402,QuantileLoss[0.8],119143.75565828788,gluonts-SimpleFeedForward-1h-10-8736-bt4
24 | 20241106-181402,Coverage[0.8],0.7918154761904761,gluonts-SimpleFeedForward-1h-10-8736-bt4
25 | 20241106-181402,QuantileLoss[0.9],85146.83691103829,gluonts-SimpleFeedForward-1h-10-8736-bt4
26 | 20241106-181402,Coverage[0.9],0.8867559523809525,gluonts-SimpleFeedForward-1h-10-8736-bt4
27 | 20241106-181402,RMSE,52.681924056650615,gluonts-SimpleFeedForward-1h-10-8736-bt4
28 | 20241106-181402,NRMSE,0.3338688737483153,gluonts-SimpleFeedForward-1h-10-8736-bt4
29 | 20241106-181402,ND,0.1509016853567888,gluonts-SimpleFeedForward-1h-10-8736-bt4
30 | 20241106-181402,wQuantileLoss[0.1],0.09801490761527339,gluonts-SimpleFeedForward-1h-10-8736-bt4
31 | 20241106-181402,wQuantileLoss[0.2],0.1263145030427786,gluonts-SimpleFeedForward-1h-10-8736-bt4
32 | 20241106-181402,wQuantileLoss[0.3],0.14102687203588868,gluonts-SimpleFeedForward-1h-10-8736-bt4
33 | 20241106-181402,wQuantileLoss[0.4],0.14854757071180383,gluonts-SimpleFeedForward-1h-10-8736-bt4
34 | 20241106-181402,wQuantileLoss[0.5],0.1509016853567888,gluonts-SimpleFeedForward-1h-10-8736-bt4
35 | 20241106-181402,wQuantileLoss[0.6],0.14453822632006505,gluonts-SimpleFeedForward-1h-10-8736-bt4
36 | 20241106-181402,wQuantileLoss[0.7],0.13278931097216345,gluonts-SimpleFeedForward-1h-10-8736-bt4
37 | 20241106-181402,wQuantileLoss[0.8],0.11236118659990955,gluonts-SimpleFeedForward-1h-10-8736-bt4
38 | 20241106-181402,wQuantileLoss[0.9],0.08029963112790063,gluonts-SimpleFeedForward-1h-10-8736-bt4
39 | 20241106-181402,mean_absolute_QuantileLoss,133699.397347922,gluonts-SimpleFeedForward-1h-10-8736-bt4
40 | 20241106-181402,mean_wQuantileLoss,0.12608821042028578,gluonts-SimpleFeedForward-1h-10-8736-bt4
41 | 20241106-181402,MAE_Coverage,0.38969907407407417,gluonts-SimpleFeedForward-1h-10-8736-bt4
42 | 20241106-181402,MSE,1950.4088925865894,gluonts-NBEATS-1h-10-8736-bt4
43 | 20241106-181402,abs_error,158319.2642732688,gluonts-NBEATS-1h-10-8736-bt4
44 | 20241106-181402,abs_target_sum,1060363.985675315,gluonts-NBEATS-1h-10-8736-bt4
45 | 20241106-181402,abs_target_mean,157.79225977311233,gluonts-NBEATS-1h-10-8736-bt4
46 | 20241106-181402,MAPE,0.2402972222950998,gluonts-NBEATS-1h-10-8736-bt4
47 | 20241106-181402,sMAPE,0.21527708453741096,gluonts-NBEATS-1h-10-8736-bt4
48 | 20241106-181402,num_masked_target_values,0.0,gluonts-NBEATS-1h-10-8736-bt4
49 | 20241106-181402,QuantileLoss[0.1],167958.68235580812,gluonts-NBEATS-1h-10-8736-bt4
50 | 20241106-181402,Coverage[0.1],0.46964285714285714,gluonts-NBEATS-1h-10-8736-bt4
51 | 20241106-181402,QuantileLoss[0.2],165548.82783517332,gluonts-NBEATS-1h-10-8736-bt4
52 | 20241106-181402,Coverage[0.2],0.46964285714285714,gluonts-NBEATS-1h-10-8736-bt4
53 | 20241106-181402,QuantileLoss[0.3],163138.97331453845,gluonts-NBEATS-1h-10-8736-bt4
54 | 20241106-181402,Coverage[0.3],0.46964285714285714,gluonts-NBEATS-1h-10-8736-bt4
55 | 20241106-181402,QuantileLoss[0.4],160729.11879390362,gluonts-NBEATS-1h-10-8736-bt4
56 | 20241106-181402,Coverage[0.4],0.46964285714285714,gluonts-NBEATS-1h-10-8736-bt4
57 | 20241106-181402,QuantileLoss[0.5],158319.2642732688,gluonts-NBEATS-1h-10-8736-bt4
58 | 20241106-181402,Coverage[0.5],0.46964285714285714,gluonts-NBEATS-1h-10-8736-bt4
59 | 20241106-181402,QuantileLoss[0.6],155909.40975263398,gluonts-NBEATS-1h-10-8736-bt4
60 | 20241106-181402,Coverage[0.6],0.46964285714285714,gluonts-NBEATS-1h-10-8736-bt4
61 | 20241106-181402,QuantileLoss[0.7],153499.55523199914,gluonts-NBEATS-1h-10-8736-bt4
62 | 20241106-181402,Coverage[0.7],0.46964285714285714,gluonts-NBEATS-1h-10-8736-bt4
63 | 20241106-181402,QuantileLoss[0.8],151089.7007113643,gluonts-NBEATS-1h-10-8736-bt4
64 | 20241106-181402,Coverage[0.8],0.46964285714285714,gluonts-NBEATS-1h-10-8736-bt4
65 | 20241106-181402,QuantileLoss[0.9],148679.8461907295,gluonts-NBEATS-1h-10-8736-bt4
66 | 20241106-181402,Coverage[0.9],0.46964285714285714,gluonts-NBEATS-1h-10-8736-bt4
67 | 20241106-181402,RMSE,44.163433885813156,gluonts-NBEATS-1h-10-8736-bt4
68 | 20241106-181402,NRMSE,0.27988339826880765,gluonts-NBEATS-1h-10-8736-bt4
69 | 20241106-181402,ND,0.14930652720390147,gluonts-NBEATS-1h-10-8736-bt4
70 | 20241106-181402,wQuantileLoss[0.1],0.15839719626920387,gluonts-NBEATS-1h-10-8736-bt4
71 | 20241106-181402,wQuantileLoss[0.2],0.1561245290028783,gluonts-NBEATS-1h-10-8736-bt4
72 | 20241106-181402,wQuantileLoss[0.3],0.15385186173655266,gluonts-NBEATS-1h-10-8736-bt4
73 | 20241106-181402,wQuantileLoss[0.4],0.15157919447022705,gluonts-NBEATS-1h-10-8736-bt4
74 | 20241106-181402,wQuantileLoss[0.5],0.14930652720390147,gluonts-NBEATS-1h-10-8736-bt4
75 | 20241106-181402,wQuantileLoss[0.6],0.1470338599375759,gluonts-NBEATS-1h-10-8736-bt4
76 | 20241106-181402,wQuantileLoss[0.7],0.1447611926712503,gluonts-NBEATS-1h-10-8736-bt4
77 | 20241106-181402,wQuantileLoss[0.8],0.14248852540492468,gluonts-NBEATS-1h-10-8736-bt4
78 | 20241106-181402,wQuantileLoss[0.9],0.1402158581385991,gluonts-NBEATS-1h-10-8736-bt4
79 | 20241106-181402,mean_absolute_QuantileLoss,158319.26427326878,gluonts-NBEATS-1h-10-8736-bt4
80 | 20241106-181402,mean_wQuantileLoss,0.14930652720390147,gluonts-NBEATS-1h-10-8736-bt4
81 | 20241106-181402,MAE_Coverage,0.2255952380952381,gluonts-NBEATS-1h-10-8736-bt4
82 | 20241106-181402,MSE,2680.7500844596952,gluonts-GaussianProcess-1h-10-8736-bt4
83 | 20241106-181402,abs_error,195038.23047864335,gluonts-GaussianProcess-1h-10-8736-bt4
84 | 20241106-181402,abs_target_sum,1060363.985675315,gluonts-GaussianProcess-1h-10-8736-bt4
85 | 20241106-181402,abs_target_mean,157.79225977311233,gluonts-GaussianProcess-1h-10-8736-bt4
86 | 20241106-181402,MAPE,0.3020655674338906,gluonts-GaussianProcess-1h-10-8736-bt4
87 | 20241106-181402,sMAPE,0.24901002795281907,gluonts-GaussianProcess-1h-10-8736-bt4
88 | 20241106-181402,num_masked_target_values,0.0,gluonts-GaussianProcess-1h-10-8736-bt4
89 | 20241106-181402,QuantileLoss[0.1],108122.26556972912,gluonts-GaussianProcess-1h-10-8736-bt4
90 | 20241106-181402,Coverage[0.1],0.1431547619047619,gluonts-GaussianProcess-1h-10-8736-bt4
91 | 20241106-181402,QuantileLoss[0.2],150737.5502003047,gluonts-GaussianProcess-1h-10-8736-bt4
92 | 20241106-181402,Coverage[0.2],0.21696428571428572,gluonts-GaussianProcess-1h-10-8736-bt4
93 | 20241106-181402,QuantileLoss[0.3],176394.10445404742,gluonts-GaussianProcess-1h-10-8736-bt4
94 | 20241106-181402,Coverage[0.3],0.3007440476190476,gluonts-GaussianProcess-1h-10-8736-bt4
95 | 20241106-181402,QuantileLoss[0.4],190410.02594109948,gluonts-GaussianProcess-1h-10-8736-bt4
96 | 20241106-181402,Coverage[0.4],0.3949404761904762,gluonts-GaussianProcess-1h-10-8736-bt4
97 | 20241106-181402,QuantileLoss[0.5],195038.23047864335,gluonts-GaussianProcess-1h-10-8736-bt4
98 | 20241106-181402,Coverage[0.5],0.48377976190476185,gluonts-GaussianProcess-1h-10-8736-bt4
99 | 20241106-181402,QuantileLoss[0.6],189187.5788318215,gluonts-GaussianProcess-1h-10-8736-bt4
100 | 20241106-181402,Coverage[0.6],0.5255952380952381,gluonts-GaussianProcess-1h-10-8736-bt4
101 | 20241106-181402,QuantileLoss[0.7],173720.23567715057,gluonts-GaussianProcess-1h-10-8736-bt4
102 | 20241106-181402,Coverage[0.7],0.6169642857142857,gluonts-GaussianProcess-1h-10-8736-bt4
103 | 20241106-181402,QuantileLoss[0.8],144857.75769209766,gluonts-GaussianProcess-1h-10-8736-bt4
104 | 20241106-181402,Coverage[0.8],0.7041666666666666,gluonts-GaussianProcess-1h-10-8736-bt4
105 | 20241106-181402,QuantileLoss[0.9],99212.02530412623,gluonts-GaussianProcess-1h-10-8736-bt4
106 | 20241106-181402,Coverage[0.9],0.7925595238095238,gluonts-GaussianProcess-1h-10-8736-bt4
107 | 20241106-181402,RMSE,51.775960488045946,gluonts-GaussianProcess-1h-10-8736-bt4
108 | 20241106-181402,NRMSE,0.32812737812674714,gluonts-GaussianProcess-1h-10-8736-bt4
109 | 20241106-181402,ND,0.1839351704824539,gluonts-GaussianProcess-1h-10-8736-bt4
110 | 20241106-181402,wQuantileLoss[0.1],0.10196712358244532,gluonts-GaussianProcess-1h-10-8736-bt4
111 | 20241106-181402,wQuantileLoss[0.2],0.1421564219802357,gluonts-GaussianProcess-1h-10-8736-bt4
112 | 20241106-181402,wQuantileLoss[0.3],0.16635240996204445,gluonts-GaussianProcess-1h-10-8736-bt4
113 | 20241106-181402,wQuantileLoss[0.4],0.17957043856014487,gluonts-GaussianProcess-1h-10-8736-bt4
114 | 20241106-181402,wQuantileLoss[0.5],0.1839351704824539,gluonts-GaussianProcess-1h-10-8736-bt4
115 | 20241106-181402,wQuantileLoss[0.6],0.17841758244112135,gluonts-GaussianProcess-1h-10-8736-bt4
116 | 20241106-181402,wQuantileLoss[0.7],0.16383075813963374,gluonts-GaussianProcess-1h-10-8736-bt4
117 | 20241106-181402,wQuantileLoss[0.8],0.13661135199706162,gluonts-GaussianProcess-1h-10-8736-bt4
118 | 20241106-181402,wQuantileLoss[0.9],0.09356412198490595,gluonts-GaussianProcess-1h-10-8736-bt4
119 | 20241106-181402,mean_absolute_QuantileLoss,158631.0860165578,gluonts-GaussianProcess-1h-10-8736-bt4
120 | 20241106-181402,mean_wQuantileLoss,0.14960059768111633,gluonts-GaussianProcess-1h-10-8736-bt4
121 | 20241106-181402,MAE_Coverage,0.31808862433862434,gluonts-GaussianProcess-1h-10-8736-bt4
122 | 20241106-181402,MSE,2319.9428871070177,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
123 | 20241106-181402,abs_error,177290.60106763607,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
124 | 20241106-181402,abs_target_sum,1060363.985675315,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
125 | 20241106-181402,abs_target_mean,157.79225977311233,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
126 | 20241106-181402,MAPE,0.28652680420823484,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
127 | 20241106-181402,sMAPE,0.25022229327789214,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
128 | 20241106-181402,num_masked_target_values,0.0,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
129 | 20241106-181402,QuantileLoss[0.1],89518.85284943001,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
130 | 20241106-181402,Coverage[0.1],0.13467261904761904,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
131 | 20241106-181402,QuantileLoss[0.2],129303.35146963695,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
132 | 20241106-181402,Coverage[0.2],0.18839285714285717,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
133 | 20241106-181402,QuantileLoss[0.3],156751.6344294235,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
134 | 20241106-181402,Coverage[0.3],0.24583333333333335,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
135 | 20241106-181402,QuantileLoss[0.4],172359.21026093402,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
136 | 20241106-181402,Coverage[0.4],0.30625,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
137 | 20241106-181402,QuantileLoss[0.5],177290.60106763607,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
138 | 20241106-181402,Coverage[0.5],0.384375,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
139 | 20241106-181402,QuantileLoss[0.6],170113.25586288184,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
140 | 20241106-181402,Coverage[0.6],0.5063988095238094,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
141 | 20241106-181402,QuantileLoss[0.7],156581.46458156954,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
142 | 20241106-181402,Coverage[0.7],0.621875,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
143 | 20241106-181402,QuantileLoss[0.8],132627.30403193354,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
144 | 20241106-181402,Coverage[0.8],0.7117559523809524,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
145 | 20241106-181402,QuantileLoss[0.9],95599.67192574969,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
146 | 20241106-181402,Coverage[0.9],0.7915178571428572,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
147 | 20241106-181402,RMSE,48.16578544056993,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
148 | 20241106-181402,NRMSE,0.3052480870090013,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
149 | 20241106-181402,ND,0.1671978711675358,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
150 | 20241106-181402,wQuantileLoss[0.1],0.08442275865529143,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
151 | 20241106-181402,wQuantileLoss[0.2],0.12194242092000834,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
152 | 20241106-181402,wQuantileLoss[0.3],0.14782813877783008,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
153 | 20241106-181402,wQuantileLoss[0.4],0.16254721264525357,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
154 | 20241106-181402,wQuantileLoss[0.5],0.1671978711675358,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
155 | 20241106-181402,wQuantileLoss[0.6],0.1604291150595252,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
156 | 20241106-181402,wQuantileLoss[0.7],0.1476676562924262,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
157 | 20241106-181402,wQuantileLoss[0.8],0.1250771488126948,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
158 | 20241106-181402,wQuantileLoss[0.9],0.09015741124484254,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
159 | 20241106-181402,mean_absolute_QuantileLoss,142238.37183102168,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
160 | 20241106-181402,mean_wQuantileLoss,0.13414108150837867,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
161 | 20241106-181402,MAE_Coverage,0.3175099206349207,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
162 | 20241106-181402,MSE,2132.347569452132,gluonts-MQCNN-1h-10-8736-bt4
163 | 20241106-181402,abs_error,157090.22064877092,gluonts-MQCNN-1h-10-8736-bt4
164 | 20241106-181402,abs_target_sum,1060363.985675315,gluonts-MQCNN-1h-10-8736-bt4
165 | 20241106-181402,abs_target_mean,157.79225977311233,gluonts-MQCNN-1h-10-8736-bt4
166 | 20241106-181402,MAPE,0.2903656085227503,gluonts-MQCNN-1h-10-8736-bt4
167 | 20241106-181402,sMAPE,0.2112283989107681,gluonts-MQCNN-1h-10-8736-bt4
168 | 20241106-181402,num_masked_target_values,0.0,gluonts-MQCNN-1h-10-8736-bt4
169 | 20241106-181402,QuantileLoss[0.1],100859.35444308957,gluonts-MQCNN-1h-10-8736-bt4
170 | 20241106-181402,Coverage[0.1],0.24553571428571427,gluonts-MQCNN-1h-10-8736-bt4
171 | 20241106-181402,QuantileLoss[0.2],134774.9373253173,gluonts-MQCNN-1h-10-8736-bt4
172 | 20241106-181402,Coverage[0.2],0.32901785714285714,gluonts-MQCNN-1h-10-8736-bt4
173 | 20241106-181402,QuantileLoss[0.3],152094.46182656707,gluonts-MQCNN-1h-10-8736-bt4
174 | 20241106-181402,Coverage[0.3],0.41830357142857144,gluonts-MQCNN-1h-10-8736-bt4
175 | 20241106-181402,QuantileLoss[0.4],155147.88285885996,gluonts-MQCNN-1h-10-8736-bt4
176 | 20241106-181402,Coverage[0.4],0.4697916666666667,gluonts-MQCNN-1h-10-8736-bt4
177 | 20241106-181402,QuantileLoss[0.5],157090.22064877092,gluonts-MQCNN-1h-10-8736-bt4
178 | 20241106-181402,Coverage[0.5],0.5912202380952382,gluonts-MQCNN-1h-10-8736-bt4
179 | 20241106-181402,QuantileLoss[0.6],144346.27805889462,gluonts-MQCNN-1h-10-8736-bt4
180 | 20241106-181402,Coverage[0.6],0.5994047619047619,gluonts-MQCNN-1h-10-8736-bt4
181 | 20241106-181402,QuantileLoss[0.7],133733.16929524357,gluonts-MQCNN-1h-10-8736-bt4
182 | 20241106-181402,Coverage[0.7],0.7633928571428571,gluonts-MQCNN-1h-10-8736-bt4
183 | 20241106-181402,QuantileLoss[0.8],108628.85800980823,gluonts-MQCNN-1h-10-8736-bt4
184 | 20241106-181402,Coverage[0.8],0.7744047619047618,gluonts-MQCNN-1h-10-8736-bt4
185 | 20241106-181402,QuantileLoss[0.9],77060.79549965278,gluonts-MQCNN-1h-10-8736-bt4
186 | 20241106-181402,Coverage[0.9],0.8636904761904762,gluonts-MQCNN-1h-10-8736-bt4
187 | 20241106-181402,RMSE,46.177349095115154,gluonts-MQCNN-1h-10-8736-bt4
188 | 20241106-181402,NRMSE,0.2926464781068034,gluonts-MQCNN-1h-10-8736-bt4
189 | 20241106-181402,ND,0.1481474500934929,gluonts-MQCNN-1h-10-8736-bt4
190 | 20241106-181402,wQuantileLoss[0.1],0.09511767261583784,gluonts-MQCNN-1h-10-8736-bt4
191 | 20241106-181402,wQuantileLoss[0.2],0.12710252247909293,gluonts-MQCNN-1h-10-8736-bt4
192 | 20241106-181402,wQuantileLoss[0.3],0.14343608787288503,gluonts-MQCNN-1h-10-8736-bt4
193 | 20241106-181402,wQuantileLoss[0.4],0.14631568494855168,gluonts-MQCNN-1h-10-8736-bt4
194 | 20241106-181402,wQuantileLoss[0.5],0.1481474500934929,gluonts-MQCNN-1h-10-8736-bt4
195 | 20241106-181402,wQuantileLoss[0.6],0.1361289896760919,gluonts-MQCNN-1h-10-8736-bt4
196 | 20241106-181402,wQuantileLoss[0.7],0.12612005981141733,gluonts-MQCNN-1h-10-8736-bt4
197 | 20241106-181402,wQuantileLoss[0.8],0.10244487692650715,gluonts-MQCNN-1h-10-8736-bt4
198 | 20241106-181402,wQuantileLoss[0.9],0.07267390871501073,gluonts-MQCNN-1h-10-8736-bt4
199 | 20241106-181402,mean_absolute_QuantileLoss,129303.99532957823,gluonts-MQCNN-1h-10-8736-bt4
200 | 20241106-181402,mean_wQuantileLoss,0.12194302812654306,gluonts-MQCNN-1h-10-8736-bt4
201 | 20241106-181402,MAE_Coverage,0.3717592592592593,gluonts-MQCNN-1h-10-8736-bt4
202 | 20241106-181402,MSE,19358.998269501197,gluonts-MQRNN-1h-10-8736-bt4
203 | 20241106-181402,abs_error,843923.815799206,gluonts-MQRNN-1h-10-8736-bt4
204 | 20241106-181402,abs_target_sum,1060363.985675315,gluonts-MQRNN-1h-10-8736-bt4
205 | 20241106-181402,abs_target_mean,157.79225977311233,gluonts-MQRNN-1h-10-8736-bt4
206 | 20241106-181402,MAPE,10.950899213778792,gluonts-MQRNN-1h-10-8736-bt4
207 | 20241106-181402,sMAPE,0.9882469344378965,gluonts-MQRNN-1h-10-8736-bt4
208 | 20241106-181402,num_masked_target_values,0.0,gluonts-MQRNN-1h-10-8736-bt4
209 | 20241106-181402,QuantileLoss[0.1],527963.2541242407,gluonts-MQRNN-1h-10-8736-bt4
210 | 20241106-181402,Coverage[0.1],0.6425595238095237,gluonts-MQRNN-1h-10-8736-bt4
211 | 20241106-181402,QuantileLoss[0.2],809787.3054428424,gluonts-MQRNN-1h-10-8736-bt4
212 | 20241106-181402,Coverage[0.2],0.7729166666666666,gluonts-MQRNN-1h-10-8736-bt4
213 | 20241106-181402,QuantileLoss[0.3],982833.5523863547,gluonts-MQRNN-1h-10-8736-bt4
214 | 20241106-181402,Coverage[0.3],0.8785714285714287,gluonts-MQRNN-1h-10-8736-bt4
215 | 20241106-181402,QuantileLoss[0.4],866151.7817861272,gluonts-MQRNN-1h-10-8736-bt4
216 | 20241106-181402,Coverage[0.4],0.8785714285714287,gluonts-MQRNN-1h-10-8736-bt4
217 | 20241106-181402,QuantileLoss[0.5],843923.815799206,gluonts-MQRNN-1h-10-8736-bt4
218 | 20241106-181402,Coverage[0.5],0.9223214285714286,gluonts-MQRNN-1h-10-8736-bt4
219 | 20241106-181402,QuantileLoss[0.6],701255.2492217594,gluonts-MQRNN-1h-10-8736-bt4
220 | 20241106-181402,Coverage[0.6],0.940922619047619,gluonts-MQRNN-1h-10-8736-bt4
221 | 20241106-181402,QuantileLoss[0.7],575379.3920975274,gluonts-MQRNN-1h-10-8736-bt4
222 | 20241106-181402,Coverage[0.7],0.9633928571428572,gluonts-MQRNN-1h-10-8736-bt4
223 | 20241106-181402,QuantileLoss[0.8],421511.03247122094,gluonts-MQRNN-1h-10-8736-bt4
224 | 20241106-181402,Coverage[0.8],0.9790178571428572,gluonts-MQRNN-1h-10-8736-bt4
225 | 20241106-181402,QuantileLoss[0.9],248910.9942025168,gluonts-MQRNN-1h-10-8736-bt4
226 | 20241106-181402,Coverage[0.9],0.990625,gluonts-MQRNN-1h-10-8736-bt4
227 | 20241106-181402,RMSE,139.13661728495916,gluonts-MQRNN-1h-10-8736-bt4
228 | 20241106-181402,NRMSE,0.8817708643315083,gluonts-MQRNN-1h-10-8736-bt4
229 | 20241106-181402,ND,0.795881251343835,gluonts-MQRNN-1h-10-8736-bt4
230 | 20241106-181402,wQuantileLoss[0.1],0.4979075687750714,gluonts-MQRNN-1h-10-8736-bt4
231 | 20241106-181402,wQuantileLoss[0.2],0.7636880508791635,gluonts-MQRNN-1h-10-8736-bt4
232 | 20241106-181402,wQuantileLoss[0.3],0.9268831888518135,gluonts-MQRNN-1h-10-8736-bt4
233 | 20241106-181402,wQuantileLoss[0.4],0.8168438323888381,gluonts-MQRNN-1h-10-8736-bt4
234 | 20241106-181402,wQuantileLoss[0.5],0.795881251343835,gluonts-MQRNN-1h-10-8736-bt4
235 | 20241106-181402,wQuantileLoss[0.6],0.6613344650470663,gluonts-MQRNN-1h-10-8736-bt4
236 | 20241106-181402,wQuantileLoss[0.7],0.542624419416777,gluonts-MQRNN-1h-10-8736-bt4
237 | 20241106-181402,wQuantileLoss[0.8],0.3975154175033329,gluonts-MQRNN-1h-10-8736-bt4
238 | 20241106-181402,wQuantileLoss[0.9],0.2347410866128131,gluonts-MQRNN-1h-10-8736-bt4
239 | 20241106-181402,mean_absolute_QuantileLoss,664190.708614644,gluonts-MQRNN-1h-10-8736-bt4
240 | 20241106-181402,mean_wQuantileLoss,0.6263799200909679,gluonts-MQRNN-1h-10-8736-bt4
241 | 20241106-181402,MAE_Coverage,0.4906249999999999,gluonts-MQRNN-1h-10-8736-bt4
242 | 20241106-181402,MSE,2066.67041301526,gluonts-SeasonalNaive-1h-10-8736-bt4
243 | 20241106-181402,abs_error,147631.08123499842,gluonts-SeasonalNaive-1h-10-8736-bt4
244 | 20241106-181402,abs_target_sum,1060363.985675315,gluonts-SeasonalNaive-1h-10-8736-bt4
245 | 20241106-181402,abs_target_mean,157.79225977311233,gluonts-SeasonalNaive-1h-10-8736-bt4
246 | 20241106-181402,MAPE,0.29139723096273695,gluonts-SeasonalNaive-1h-10-8736-bt4
247 | 20241106-181402,sMAPE,0.1964473079101054,gluonts-SeasonalNaive-1h-10-8736-bt4
248 | 20241106-181402,num_masked_target_values,0.0,gluonts-SeasonalNaive-1h-10-8736-bt4
249 | 20241106-181402,QuantileLoss[0.1],179223.60020769734,gluonts-SeasonalNaive-1h-10-8736-bt4
250 | 20241106-181402,Coverage[0.1],0.5349702380952381,gluonts-SeasonalNaive-1h-10-8736-bt4
251 | 20241106-181402,QuantileLoss[0.2],171325.47046452263,gluonts-SeasonalNaive-1h-10-8736-bt4
252 | 20241106-181402,Coverage[0.2],0.5349702380952381,gluonts-SeasonalNaive-1h-10-8736-bt4
253 | 20241106-181402,QuantileLoss[0.3],163427.34072134786,gluonts-SeasonalNaive-1h-10-8736-bt4
254 | 20241106-181402,Coverage[0.3],0.5349702380952381,gluonts-SeasonalNaive-1h-10-8736-bt4
255 | 20241106-181402,QuantileLoss[0.4],155529.21097817313,gluonts-SeasonalNaive-1h-10-8736-bt4
256 | 20241106-181402,Coverage[0.4],0.5349702380952381,gluonts-SeasonalNaive-1h-10-8736-bt4
257 | 20241106-181402,QuantileLoss[0.5],147631.08123499842,gluonts-SeasonalNaive-1h-10-8736-bt4
258 | 20241106-181402,Coverage[0.5],0.5349702380952381,gluonts-SeasonalNaive-1h-10-8736-bt4
259 | 20241106-181402,QuantileLoss[0.6],139732.9514918237,gluonts-SeasonalNaive-1h-10-8736-bt4
260 | 20241106-181402,Coverage[0.6],0.5349702380952381,gluonts-SeasonalNaive-1h-10-8736-bt4
261 | 20241106-181402,QuantileLoss[0.7],131834.82174864894,gluonts-SeasonalNaive-1h-10-8736-bt4
262 | 20241106-181402,Coverage[0.7],0.5349702380952381,gluonts-SeasonalNaive-1h-10-8736-bt4
263 | 20241106-181402,QuantileLoss[0.8],123936.69200547425,gluonts-SeasonalNaive-1h-10-8736-bt4
264 | 20241106-181402,Coverage[0.8],0.5349702380952381,gluonts-SeasonalNaive-1h-10-8736-bt4
265 | 20241106-181402,QuantileLoss[0.9],116038.56226229951,gluonts-SeasonalNaive-1h-10-8736-bt4
266 | 20241106-181402,Coverage[0.9],0.5349702380952381,gluonts-SeasonalNaive-1h-10-8736-bt4
267 | 20241106-181402,RMSE,45.46064686094182,gluonts-SeasonalNaive-1h-10-8736-bt4
268 | 20241106-181402,NRMSE,0.2881044160614035,gluonts-SeasonalNaive-1h-10-8736-bt4
269 | 20241106-181402,ND,0.13922679686350956,gluonts-SeasonalNaive-1h-10-8736-bt4
270 | 20241106-181402,wQuantileLoss[0.1],0.16902082928962836,gluonts-SeasonalNaive-1h-10-8736-bt4
271 | 20241106-181402,wQuantileLoss[0.2],0.1615723211830987,gluonts-SeasonalNaive-1h-10-8736-bt4
272 | 20241106-181402,wQuantileLoss[0.3],0.15412381307656894,gluonts-SeasonalNaive-1h-10-8736-bt4
273 | 20241106-181402,wQuantileLoss[0.4],0.14667530497003922,gluonts-SeasonalNaive-1h-10-8736-bt4
274 | 20241106-181402,wQuantileLoss[0.5],0.13922679686350956,gluonts-SeasonalNaive-1h-10-8736-bt4
275 | 20241106-181402,wQuantileLoss[0.6],0.13177828875697986,gluonts-SeasonalNaive-1h-10-8736-bt4
276 | 20241106-181402,wQuantileLoss[0.7],0.12432978065045013,gluonts-SeasonalNaive-1h-10-8736-bt4
277 | 20241106-181402,wQuantileLoss[0.8],0.11688127254392046,gluonts-SeasonalNaive-1h-10-8736-bt4
278 | 20241106-181402,wQuantileLoss[0.9],0.10943276443739075,gluonts-SeasonalNaive-1h-10-8736-bt4
279 | 20241106-181402,mean_absolute_QuantileLoss,147631.08123499842,gluonts-SeasonalNaive-1h-10-8736-bt4
280 | 20241106-181402,mean_wQuantileLoss,0.13922679686350956,gluonts-SeasonalNaive-1h-10-8736-bt4
281 | 20241106-181402,MAE_Coverage,0.22610780423280424,gluonts-SeasonalNaive-1h-10-8736-bt4
282 | 20241106-181402,MSE,2041.7211777950765,gluonts-Prophet-1h-10-8736-bt4
283 | 20241106-181402,abs_error,173335.60835965935,gluonts-Prophet-1h-10-8736-bt4
284 | 20241106-181402,abs_target_sum,1060363.985675315,gluonts-Prophet-1h-10-8736-bt4
285 | 20241106-181402,abs_target_mean,157.79225977311233,gluonts-Prophet-1h-10-8736-bt4
286 | 20241106-181402,MAPE,0.34439058992896676,gluonts-Prophet-1h-10-8736-bt4
287 | 20241106-181402,sMAPE,0.2615444067105221,gluonts-Prophet-1h-10-8736-bt4
288 | 20241106-181402,num_masked_target_values,0.0,gluonts-Prophet-1h-10-8736-bt4
289 | 20241106-181402,QuantileLoss[0.1],99152.38494383259,gluonts-Prophet-1h-10-8736-bt4
290 | 20241106-181402,Coverage[0.1],0.13199404761904762,gluonts-Prophet-1h-10-8736-bt4
291 | 20241106-181402,QuantileLoss[0.2],133257.26048313058,gluonts-Prophet-1h-10-8736-bt4
292 | 20241106-181402,Coverage[0.2],0.20089285714285712,gluonts-Prophet-1h-10-8736-bt4
293 | 20241106-181402,QuantileLoss[0.3],155211.24386134886,gluonts-Prophet-1h-10-8736-bt4
294 | 20241106-181402,Coverage[0.3],0.290327380952381,gluonts-Prophet-1h-10-8736-bt4
295 | 20241106-181402,QuantileLoss[0.4],168381.82553495688,gluonts-Prophet-1h-10-8736-bt4
296 | 20241106-181402,Coverage[0.4],0.39613095238095236,gluonts-Prophet-1h-10-8736-bt4
297 | 20241106-181402,QuantileLoss[0.5],173335.60835965935,gluonts-Prophet-1h-10-8736-bt4
298 | 20241106-181402,Coverage[0.5],0.5114583333333333,gluonts-Prophet-1h-10-8736-bt4
299 | 20241106-181402,QuantileLoss[0.6],168946.8305044715,gluonts-Prophet-1h-10-8736-bt4
300 | 20241106-181402,Coverage[0.6],0.5602678571428571,gluonts-Prophet-1h-10-8736-bt4
301 | 20241106-181402,QuantileLoss[0.7],156724.31224252278,gluonts-Prophet-1h-10-8736-bt4
302 | 20241106-181402,Coverage[0.7],0.65625,gluonts-Prophet-1h-10-8736-bt4
303 | 20241106-181402,QuantileLoss[0.8],133471.9806772892,gluonts-Prophet-1h-10-8736-bt4
304 | 20241106-181402,Coverage[0.8],0.7346726190476189,gluonts-Prophet-1h-10-8736-bt4
305 | 20241106-181402,QuantileLoss[0.9],96277.16146839075,gluonts-Prophet-1h-10-8736-bt4
306 | 20241106-181402,Coverage[0.9],0.8072916666666667,gluonts-Prophet-1h-10-8736-bt4
307 | 20241106-181402,RMSE,45.18540890370559,gluonts-Prophet-1h-10-8736-bt4
308 | 20241106-181402,NRMSE,0.2863601102403703,gluonts-Prophet-1h-10-8736-bt4
309 | 20241106-181402,ND,0.16346802673542987,gluonts-Prophet-1h-10-8736-bt4
310 | 20241106-181402,wQuantileLoss[0.1],0.09350787680768441,gluonts-Prophet-1h-10-8736-bt4
311 | 20241106-181402,wQuantileLoss[0.2],0.1256712433497663,gluonts-Prophet-1h-10-8736-bt4
312 | 20241106-181402,wQuantileLoss[0.3],0.14637543896070682,gluonts-Prophet-1h-10-8736-bt4
313 | 20241106-181402,wQuantileLoss[0.4],0.1587962509191779,gluonts-Prophet-1h-10-8736-bt4
314 | 20241106-181402,wQuantileLoss[0.5],0.16346802673542987,gluonts-Prophet-1h-10-8736-bt4
315 | 20241106-181402,wQuantileLoss[0.6],0.15932909150707733,gluonts-Prophet-1h-10-8736-bt4
316 | 20241106-181402,wQuantileLoss[0.7],0.14780237197768428,gluonts-Prophet-1h-10-8736-bt4
317 | 20241106-181402,wQuantileLoss[0.8],0.12587374003680893,gluonts-Prophet-1h-10-8736-bt4
318 | 20241106-181402,wQuantileLoss[0.9],0.09079633292814508,gluonts-Prophet-1h-10-8736-bt4
319 | 20241106-181402,mean_absolute_QuantileLoss,142750.95645284472,gluonts-Prophet-1h-10-8736-bt4
320 | 20241106-181402,mean_wQuantileLoss,0.13462448591360898,gluonts-Prophet-1h-10-8736-bt4
321 | 20241106-181402,MAE_Coverage,0.32789351851851856,gluonts-Prophet-1h-10-8736-bt4
322 | 20241106-181402,MSE,2048.5676183551177,gluonts-NPTS-1h-10-8736-bt4
323 | 20241106-181402,abs_error,161316.0429316016,gluonts-NPTS-1h-10-8736-bt4
324 | 20241106-181402,abs_target_sum,1060363.985675315,gluonts-NPTS-1h-10-8736-bt4
325 | 20241106-181402,abs_target_mean,157.79225977311233,gluonts-NPTS-1h-10-8736-bt4
326 | 20241106-181402,MAPE,0.2924837016851417,gluonts-NPTS-1h-10-8736-bt4
327 | 20241106-181402,sMAPE,0.21299489574639283,gluonts-NPTS-1h-10-8736-bt4
328 | 20241106-181402,num_masked_target_values,0.0,gluonts-NPTS-1h-10-8736-bt4
329 | 20241106-181402,QuantileLoss[0.1],87846.8666409161,gluonts-NPTS-1h-10-8736-bt4
330 | 20241106-181402,Coverage[0.1],0.20967261904761902,gluonts-NPTS-1h-10-8736-bt4
331 | 20241106-181402,QuantileLoss[0.2],123593.96445873434,gluonts-NPTS-1h-10-8736-bt4
332 | 20241106-181402,Coverage[0.2],0.2901785714285714,gluonts-NPTS-1h-10-8736-bt4
333 | 20241106-181402,QuantileLoss[0.3],146881.18105940163,gluonts-NPTS-1h-10-8736-bt4
334 | 20241106-181402,Coverage[0.3],0.35892857142857143,gluonts-NPTS-1h-10-8736-bt4
335 | 20241106-181402,QuantileLoss[0.4],157408.59694362,gluonts-NPTS-1h-10-8736-bt4
336 | 20241106-181402,Coverage[0.4],0.4197916666666667,gluonts-NPTS-1h-10-8736-bt4
337 | 20241106-181402,QuantileLoss[0.5],161316.0429316016,gluonts-NPTS-1h-10-8736-bt4
338 | 20241106-181402,Coverage[0.5],0.4787202380952381,gluonts-NPTS-1h-10-8736-bt4
339 | 20241106-181402,QuantileLoss[0.6],156298.37572599584,gluonts-NPTS-1h-10-8736-bt4
340 | 20241106-181402,Coverage[0.6],0.5165178571428573,gluonts-NPTS-1h-10-8736-bt4
341 | 20241106-181402,QuantileLoss[0.7],145057.4421188393,gluonts-NPTS-1h-10-8736-bt4
342 | 20241106-181402,Coverage[0.7],0.5876488095238096,gluonts-NPTS-1h-10-8736-bt4
343 | 20241106-181402,QuantileLoss[0.8],121466.12843783917,gluonts-NPTS-1h-10-8736-bt4
344 | 20241106-181402,Coverage[0.8],0.6677083333333333,gluonts-NPTS-1h-10-8736-bt4
345 | 20241106-181402,QuantileLoss[0.9],85589.66618242188,gluonts-NPTS-1h-10-8736-bt4
346 | 20241106-181402,Coverage[0.9],0.7633928571428571,gluonts-NPTS-1h-10-8736-bt4
347 | 20241106-181402,RMSE,45.26110491752403,gluonts-NPTS-1h-10-8736-bt4
348 | 20241106-181402,NRMSE,0.28683982967608457,gluonts-NPTS-1h-10-8736-bt4
349 | 20241106-181402,ND,0.15213270642048837,gluonts-NPTS-1h-10-8736-bt4
350 | 20241106-181402,wQuantileLoss[0.1],0.08284595462280717,gluonts-NPTS-1h-10-8736-bt4
351 | 20241106-181402,wQuantileLoss[0.2],0.11655805565672898,gluonts-NPTS-1h-10-8736-bt4
352 | 20241106-181402,wQuantileLoss[0.3],0.1385195867114039,gluonts-NPTS-1h-10-8736-bt4
353 | 20241106-181402,wQuantileLoss[0.4],0.1484477019873238,gluonts-NPTS-1h-10-8736-bt4
354 | 20241106-181402,wQuantileLoss[0.5],0.15213270642048837,gluonts-NPTS-1h-10-8736-bt4
355 | 20241106-181402,wQuantileLoss[0.6],0.14740068300834827,gluonts-NPTS-1h-10-8736-bt4
356 | 20241106-181402,wQuantileLoss[0.7],0.13679966886696596,gluonts-NPTS-1h-10-8736-bt4
357 | 20241106-181402,wQuantileLoss[0.8],0.114551352251445,gluonts-NPTS-1h-10-8736-bt4
358 | 20241106-181402,wQuantileLoss[0.9],0.080717251187961,gluonts-NPTS-1h-10-8736-bt4
359 | 20241106-181402,mean_absolute_QuantileLoss,131717.58494437442,gluonts-NPTS-1h-10-8736-bt4
360 | 20241106-181402,mean_wQuantileLoss,0.1242192178570525,gluonts-NPTS-1h-10-8736-bt4
361 | 20241106-181402,MAE_Coverage,0.3018849206349207,gluonts-NPTS-1h-10-8736-bt4
362 |
--------------------------------------------------------------------------------
/test/model-performance/gluonts-1h-10-8736-bt4-20241107-214657.csv:
--------------------------------------------------------------------------------
1 | timestamp,metric_name,value,experiment
2 | 20241107-214657,MSE,621365.1752981541,gluonts-SimpleFeedForward-1h-10-8736-bt4
3 | 20241107-214657,abs_error,847399.32650858,gluonts-SimpleFeedForward-1h-10-8736-bt4
4 | 20241107-214657,abs_target_sum,7840969.521757782,gluonts-SimpleFeedForward-1h-10-8736-bt4
5 | 20241107-214657,abs_target_mean,1166.8109407377653,gluonts-SimpleFeedForward-1h-10-8736-bt4
6 | 20241107-214657,MAPE,0.19890838701033067,gluonts-SimpleFeedForward-1h-10-8736-bt4
7 | 20241107-214657,sMAPE,0.16907286257610193,gluonts-SimpleFeedForward-1h-10-8736-bt4
8 | 20241107-214657,num_masked_target_values,0.0,gluonts-SimpleFeedForward-1h-10-8736-bt4
9 | 20241107-214657,QuantileLoss[0.1],758006.3894938908,gluonts-SimpleFeedForward-1h-10-8736-bt4
10 | 20241107-214657,Coverage[0.1],0.171875,gluonts-SimpleFeedForward-1h-10-8736-bt4
11 | 20241107-214657,QuantileLoss[0.2],861823.9839150833,gluonts-SimpleFeedForward-1h-10-8736-bt4
12 | 20241107-214657,Coverage[0.2],0.278125,gluonts-SimpleFeedForward-1h-10-8736-bt4
13 | 20241107-214657,QuantileLoss[0.3],895174.3729425969,gluonts-SimpleFeedForward-1h-10-8736-bt4
14 | 20241107-214657,Coverage[0.3],0.39404761904761904,gluonts-SimpleFeedForward-1h-10-8736-bt4
15 | 20241107-214657,QuantileLoss[0.4],886984.2024955886,gluonts-SimpleFeedForward-1h-10-8736-bt4
16 | 20241107-214657,Coverage[0.4],0.5019345238095239,gluonts-SimpleFeedForward-1h-10-8736-bt4
17 | 20241107-214657,QuantileLoss[0.5],847399.32650858,gluonts-SimpleFeedForward-1h-10-8736-bt4
18 | 20241107-214657,Coverage[0.5],0.6023809523809524,gluonts-SimpleFeedForward-1h-10-8736-bt4
19 | 20241107-214657,QuantileLoss[0.6],768886.3691748355,gluonts-SimpleFeedForward-1h-10-8736-bt4
20 | 20241107-214657,Coverage[0.6],0.6489583333333334,gluonts-SimpleFeedForward-1h-10-8736-bt4
21 | 20241107-214657,QuantileLoss[0.7],683213.9093425189,gluonts-SimpleFeedForward-1h-10-8736-bt4
22 | 20241107-214657,Coverage[0.7],0.7354166666666666,gluonts-SimpleFeedForward-1h-10-8736-bt4
23 | 20241107-214657,QuantileLoss[0.8],562789.6253904708,gluonts-SimpleFeedForward-1h-10-8736-bt4
24 | 20241107-214657,Coverage[0.8],0.8132440476190477,gluonts-SimpleFeedForward-1h-10-8736-bt4
25 | 20241107-214657,QuantileLoss[0.9],394919.6603022926,gluonts-SimpleFeedForward-1h-10-8736-bt4
26 | 20241107-214657,Coverage[0.9],0.8880952380952379,gluonts-SimpleFeedForward-1h-10-8736-bt4
27 | 20241107-214657,RMSE,788.2671979082689,gluonts-SimpleFeedForward-1h-10-8736-bt4
28 | 20241107-214657,NRMSE,0.6755740543621007,gluonts-SimpleFeedForward-1h-10-8736-bt4
29 | 20241107-214657,ND,0.10807328406992847,gluonts-SimpleFeedForward-1h-10-8736-bt4
30 | 20241107-214657,wQuantileLoss[0.1],0.09667253359300924,gluonts-SimpleFeedForward-1h-10-8736-bt4
31 | 20241107-214657,wQuantileLoss[0.2],0.10991293634334652,gluonts-SimpleFeedForward-1h-10-8736-bt4
32 | 20241107-214657,wQuantileLoss[0.3],0.11416628651069127,gluonts-SimpleFeedForward-1h-10-8736-bt4
33 | 20241107-214657,wQuantileLoss[0.4],0.11312175108375438,gluonts-SimpleFeedForward-1h-10-8736-bt4
34 | 20241107-214657,wQuantileLoss[0.5],0.10807328406992847,gluonts-SimpleFeedForward-1h-10-8736-bt4
35 | 20241107-214657,wQuantileLoss[0.6],0.09806011451023561,gluonts-SimpleFeedForward-1h-10-8736-bt4
36 | 20241107-214657,wQuantileLoss[0.7],0.08713385601699884,gluonts-SimpleFeedForward-1h-10-8736-bt4
37 | 20241107-214657,wQuantileLoss[0.8],0.07177551498303811,gluonts-SimpleFeedForward-1h-10-8736-bt4
38 | 20241107-214657,wQuantileLoss[0.9],0.05036617719357744,gluonts-SimpleFeedForward-1h-10-8736-bt4
39 | 20241107-214657,mean_absolute_QuantileLoss,739910.871062873,gluonts-SimpleFeedForward-1h-10-8736-bt4
40 | 20241107-214657,mean_wQuantileLoss,0.09436471714495331,gluonts-SimpleFeedForward-1h-10-8736-bt4
41 | 20241107-214657,MAE_Coverage,0.3907407407407406,gluonts-SimpleFeedForward-1h-10-8736-bt4
42 | 20241107-214657,MSE,513058.7270739113,gluonts-NBEATS-1h-10-8736-bt4
43 | 20241107-214657,abs_error,830151.258899364,gluonts-NBEATS-1h-10-8736-bt4
44 | 20241107-214657,abs_target_sum,7840969.521757782,gluonts-NBEATS-1h-10-8736-bt4
45 | 20241107-214657,abs_target_mean,1166.8109407377653,gluonts-NBEATS-1h-10-8736-bt4
46 | 20241107-214657,MAPE,0.16987577294867512,gluonts-NBEATS-1h-10-8736-bt4
47 | 20241107-214657,sMAPE,0.16795732212397113,gluonts-NBEATS-1h-10-8736-bt4
48 | 20241107-214657,num_masked_target_values,0.0,gluonts-NBEATS-1h-10-8736-bt4
49 | 20241107-214657,QuantileLoss[0.1],927928.3856524556,gluonts-NBEATS-1h-10-8736-bt4
50 | 20241107-214657,Coverage[0.1],0.4413690476190476,gluonts-NBEATS-1h-10-8736-bt4
51 | 20241107-214657,QuantileLoss[0.2],903484.1039641828,gluonts-NBEATS-1h-10-8736-bt4
52 | 20241107-214657,Coverage[0.2],0.4413690476190476,gluonts-NBEATS-1h-10-8736-bt4
53 | 20241107-214657,QuantileLoss[0.3],879039.8222759096,gluonts-NBEATS-1h-10-8736-bt4
54 | 20241107-214657,Coverage[0.3],0.4413690476190476,gluonts-NBEATS-1h-10-8736-bt4
55 | 20241107-214657,QuantileLoss[0.4],854595.5405876366,gluonts-NBEATS-1h-10-8736-bt4
56 | 20241107-214657,Coverage[0.4],0.4413690476190476,gluonts-NBEATS-1h-10-8736-bt4
57 | 20241107-214657,QuantileLoss[0.5],830151.258899364,gluonts-NBEATS-1h-10-8736-bt4
58 | 20241107-214657,Coverage[0.5],0.4413690476190476,gluonts-NBEATS-1h-10-8736-bt4
59 | 20241107-214657,QuantileLoss[0.6],805706.9772110912,gluonts-NBEATS-1h-10-8736-bt4
60 | 20241107-214657,Coverage[0.6],0.4413690476190476,gluonts-NBEATS-1h-10-8736-bt4
61 | 20241107-214657,QuantileLoss[0.7],781262.6955228181,gluonts-NBEATS-1h-10-8736-bt4
62 | 20241107-214657,Coverage[0.7],0.4413690476190476,gluonts-NBEATS-1h-10-8736-bt4
63 | 20241107-214657,QuantileLoss[0.8],756818.4138345454,gluonts-NBEATS-1h-10-8736-bt4
64 | 20241107-214657,Coverage[0.8],0.4413690476190476,gluonts-NBEATS-1h-10-8736-bt4
65 | 20241107-214657,QuantileLoss[0.9],732374.1321462727,gluonts-NBEATS-1h-10-8736-bt4
66 | 20241107-214657,Coverage[0.9],0.4413690476190476,gluonts-NBEATS-1h-10-8736-bt4
67 | 20241107-214657,RMSE,716.2811787796126,gluonts-NBEATS-1h-10-8736-bt4
68 | 20241107-214657,NRMSE,0.6138793816303382,gluonts-NBEATS-1h-10-8736-bt4
69 | 20241107-214657,ND,0.10587354747340752,gluonts-NBEATS-1h-10-8736-bt4
70 | 20241107-214657,wQuantileLoss[0.1],0.1183435776758935,gluonts-NBEATS-1h-10-8736-bt4
71 | 20241107-214657,wQuantileLoss[0.2],0.11522607012527201,gluonts-NBEATS-1h-10-8736-bt4
72 | 20241107-214657,wQuantileLoss[0.3],0.11210856257465047,gluonts-NBEATS-1h-10-8736-bt4
73 | 20241107-214657,wQuantileLoss[0.4],0.10899105502402898,gluonts-NBEATS-1h-10-8736-bt4
74 | 20241107-214657,wQuantileLoss[0.5],0.10587354747340752,gluonts-NBEATS-1h-10-8736-bt4
75 | 20241107-214657,wQuantileLoss[0.6],0.10275603992278604,gluonts-NBEATS-1h-10-8736-bt4
76 | 20241107-214657,wQuantileLoss[0.7],0.09963853237216452,gluonts-NBEATS-1h-10-8736-bt4
77 | 20241107-214657,wQuantileLoss[0.8],0.09652102482154304,gluonts-NBEATS-1h-10-8736-bt4
78 | 20241107-214657,wQuantileLoss[0.9],0.09340351727092157,gluonts-NBEATS-1h-10-8736-bt4
79 | 20241107-214657,mean_absolute_QuantileLoss,830151.258899364,gluonts-NBEATS-1h-10-8736-bt4
80 | 20241107-214657,mean_wQuantileLoss,0.10587354747340752,gluonts-NBEATS-1h-10-8736-bt4
81 | 20241107-214657,MAE_Coverage,0.22873677248677252,gluonts-NBEATS-1h-10-8736-bt4
82 | 20241107-214657,MSE,517353.7761313581,gluonts-DeepAR-1h-10-8736-bt4
83 | 20241107-214657,abs_error,1078050.1977001084,gluonts-DeepAR-1h-10-8736-bt4
84 | 20241107-214657,abs_target_sum,7840969.521757782,gluonts-DeepAR-1h-10-8736-bt4
85 | 20241107-214657,abs_target_mean,1166.8109407377653,gluonts-DeepAR-1h-10-8736-bt4
86 | 20241107-214657,MAPE,0.21178039029426438,gluonts-DeepAR-1h-10-8736-bt4
87 | 20241107-214657,sMAPE,0.21684134632204927,gluonts-DeepAR-1h-10-8736-bt4
88 | 20241107-214657,num_masked_target_values,0.0,gluonts-DeepAR-1h-10-8736-bt4
89 | 20241107-214657,QuantileLoss[0.1],705143.2536384666,gluonts-DeepAR-1h-10-8736-bt4
90 | 20241107-214657,Coverage[0.1],0.059375,gluonts-DeepAR-1h-10-8736-bt4
91 | 20241107-214657,QuantileLoss[0.2],875018.9825982942,gluonts-DeepAR-1h-10-8736-bt4
92 | 20241107-214657,Coverage[0.2],0.07693452380952381,gluonts-DeepAR-1h-10-8736-bt4
93 | 20241107-214657,QuantileLoss[0.3],989605.915557466,gluonts-DeepAR-1h-10-8736-bt4
94 | 20241107-214657,Coverage[0.3],0.10758928571428572,gluonts-DeepAR-1h-10-8736-bt4
95 | 20241107-214657,QuantileLoss[0.4],1055248.679701458,gluonts-DeepAR-1h-10-8736-bt4
96 | 20241107-214657,Coverage[0.4],0.1483630952380952,gluonts-DeepAR-1h-10-8736-bt4
97 | 20241107-214657,QuantileLoss[0.5],1078050.1977001084,gluonts-DeepAR-1h-10-8736-bt4
98 | 20241107-214657,Coverage[0.5],0.19806547619047618,gluonts-DeepAR-1h-10-8736-bt4
99 | 20241107-214657,QuantileLoss[0.6],1111712.389153796,gluonts-DeepAR-1h-10-8736-bt4
100 | 20241107-214657,Coverage[0.6],0.23080357142857144,gluonts-DeepAR-1h-10-8736-bt4
101 | 20241107-214657,QuantileLoss[0.7],1034245.9985696841,gluonts-DeepAR-1h-10-8736-bt4
102 | 20241107-214657,Coverage[0.7],0.30044642857142856,gluonts-DeepAR-1h-10-8736-bt4
103 | 20241107-214657,QuantileLoss[0.8],884955.4130222801,gluonts-DeepAR-1h-10-8736-bt4
104 | 20241107-214657,Coverage[0.8],0.40476190476190477,gluonts-DeepAR-1h-10-8736-bt4
105 | 20241107-214657,QuantileLoss[0.9],649305.9710002927,gluonts-DeepAR-1h-10-8736-bt4
106 | 20241107-214657,Coverage[0.9],0.5428571428571429,gluonts-DeepAR-1h-10-8736-bt4
107 | 20241107-214657,RMSE,719.273088702308,gluonts-DeepAR-1h-10-8736-bt4
108 | 20241107-214657,NRMSE,0.6164435587547005,gluonts-DeepAR-1h-10-8736-bt4
109 | 20241107-214657,ND,0.13748940034885276,gluonts-DeepAR-1h-10-8736-bt4
110 | 20241107-214657,wQuantileLoss[0.1],0.08993062040118581,gluonts-DeepAR-1h-10-8736-bt4
111 | 20241107-214657,wQuantileLoss[0.2],0.11159576378536071,gluonts-DeepAR-1h-10-8736-bt4
112 | 20241107-214657,wQuantileLoss[0.3],0.12620963680721167,gluonts-DeepAR-1h-10-8736-bt4
113 | 20241107-214657,wQuantileLoss[0.4],0.13458140307436026,gluonts-DeepAR-1h-10-8736-bt4
114 | 20241107-214657,wQuantileLoss[0.5],0.13748940034885276,gluonts-DeepAR-1h-10-8736-bt4
115 | 20241107-214657,wQuantileLoss[0.6],0.14178251631624417,gluonts-DeepAR-1h-10-8736-bt4
116 | 20241107-214657,wQuantileLoss[0.7],0.13190282090751293,gluonts-DeepAR-1h-10-8736-bt4
117 | 20241107-214657,wQuantileLoss[0.8],0.11286300891320025,gluonts-DeepAR-1h-10-8736-bt4
118 | 20241107-214657,wQuantileLoss[0.9],0.08280939865899795,gluonts-DeepAR-1h-10-8736-bt4
119 | 20241107-214657,mean_absolute_QuantileLoss,931476.3112157607,gluonts-DeepAR-1h-10-8736-bt4
120 | 20241107-214657,mean_wQuantileLoss,0.11879606324588073,gluonts-DeepAR-1h-10-8736-bt4
121 | 20241107-214657,MAE_Coverage,0.226984126984127,gluonts-DeepAR-1h-10-8736-bt4
122 | 20241107-214657,MSE,591669.990028578,gluonts-GaussianProcess-1h-10-8736-bt4
123 | 20241107-214657,abs_error,1033484.9379525569,gluonts-GaussianProcess-1h-10-8736-bt4
124 | 20241107-214657,abs_target_sum,7840969.521757782,gluonts-GaussianProcess-1h-10-8736-bt4
125 | 20241107-214657,abs_target_mean,1166.8109407377653,gluonts-GaussianProcess-1h-10-8736-bt4
126 | 20241107-214657,MAPE,0.24041505643511182,gluonts-GaussianProcess-1h-10-8736-bt4
127 | 20241107-214657,sMAPE,0.22196994519295205,gluonts-GaussianProcess-1h-10-8736-bt4
128 | 20241107-214657,num_masked_target_values,0.0,gluonts-GaussianProcess-1h-10-8736-bt4
129 | 20241107-214657,QuantileLoss[0.1],782468.5503951254,gluonts-GaussianProcess-1h-10-8736-bt4
130 | 20241107-214657,Coverage[0.1],0.10922619047619046,gluonts-GaussianProcess-1h-10-8736-bt4
131 | 20241107-214657,QuantileLoss[0.2],968870.0443387064,gluonts-GaussianProcess-1h-10-8736-bt4
132 | 20241107-214657,Coverage[0.2],0.19166666666666668,gluonts-GaussianProcess-1h-10-8736-bt4
133 | 20241107-214657,QuantileLoss[0.3],1061806.0325222253,gluonts-GaussianProcess-1h-10-8736-bt4
134 | 20241107-214657,Coverage[0.3],0.2922619047619048,gluonts-GaussianProcess-1h-10-8736-bt4
135 | 20241107-214657,QuantileLoss[0.4],1078522.306882761,gluonts-GaussianProcess-1h-10-8736-bt4
136 | 20241107-214657,Coverage[0.4],0.40714285714285714,gluonts-GaussianProcess-1h-10-8736-bt4
137 | 20241107-214657,QuantileLoss[0.5],1033484.9379525569,gluonts-GaussianProcess-1h-10-8736-bt4
138 | 20241107-214657,Coverage[0.5],0.5357142857142857,gluonts-GaussianProcess-1h-10-8736-bt4
139 | 20241107-214657,QuantileLoss[0.6],974092.8959604588,gluonts-GaussianProcess-1h-10-8736-bt4
140 | 20241107-214657,Coverage[0.6],0.5928571428571429,gluonts-GaussianProcess-1h-10-8736-bt4
141 | 20241107-214657,QuantileLoss[0.7],849769.6314119821,gluonts-GaussianProcess-1h-10-8736-bt4
142 | 20241107-214657,Coverage[0.7],0.7016369047619048,gluonts-GaussianProcess-1h-10-8736-bt4
143 | 20241107-214657,QuantileLoss[0.8],679248.2890064333,gluonts-GaussianProcess-1h-10-8736-bt4
144 | 20241107-214657,Coverage[0.8],0.8063988095238095,gluonts-GaussianProcess-1h-10-8736-bt4
145 | 20241107-214657,QuantileLoss[0.9],425854.36995146907,gluonts-GaussianProcess-1h-10-8736-bt4
146 | 20241107-214657,Coverage[0.9],0.8879464285714287,gluonts-GaussianProcess-1h-10-8736-bt4
147 | 20241107-214657,RMSE,769.2008775531773,gluonts-GaussianProcess-1h-10-8736-bt4
148 | 20241107-214657,NRMSE,0.659233514785881,gluonts-GaussianProcess-1h-10-8736-bt4
149 | 20241107-214657,ND,0.13180575885223833,gluonts-GaussianProcess-1h-10-8736-bt4
150 | 20241107-214657,wQuantileLoss[0.1],0.09979232137350691,gluonts-GaussianProcess-1h-10-8736-bt4
151 | 20241107-214657,wQuantileLoss[0.2],0.12356508230904409,gluonts-GaussianProcess-1h-10-8736-bt4
152 | 20241107-214657,wQuantileLoss[0.3],0.13541769669883763,gluonts-GaussianProcess-1h-10-8736-bt4
153 | 20241107-214657,wQuantileLoss[0.4],0.13754961091099596,gluonts-GaussianProcess-1h-10-8736-bt4
154 | 20241107-214657,wQuantileLoss[0.5],0.13180575885223833,gluonts-GaussianProcess-1h-10-8736-bt4
155 | 20241107-214657,wQuantileLoss[0.6],0.12423117999087534,gluonts-GaussianProcess-1h-10-8736-bt4
156 | 20241107-214657,wQuantileLoss[0.7],0.10837558149588132,gluonts-GaussianProcess-1h-10-8736-bt4
157 | 20241107-214657,wQuantileLoss[0.8],0.08662809964017817,gluonts-GaussianProcess-1h-10-8736-bt4
158 | 20241107-214657,wQuantileLoss[0.9],0.05431144309001234,gluonts-GaussianProcess-1h-10-8736-bt4
159 | 20241107-214657,mean_absolute_QuantileLoss,872679.6731579688,gluonts-GaussianProcess-1h-10-8736-bt4
160 | 20241107-214657,mean_wQuantileLoss,0.11129741937350777,gluonts-GaussianProcess-1h-10-8736-bt4
161 | 20241107-214657,MAE_Coverage,0.3906250000000001,gluonts-GaussianProcess-1h-10-8736-bt4
162 | 20241107-214657,MSE,506420.21957510506,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
163 | 20241107-214657,abs_error,904810.0186330621,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
164 | 20241107-214657,abs_target_sum,7840969.521757782,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
165 | 20241107-214657,abs_target_mean,1166.8109407377653,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
166 | 20241107-214657,MAPE,0.303919967670033,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
167 | 20241107-214657,sMAPE,0.29610526186293484,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
168 | 20241107-214657,num_masked_target_values,0.0,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
169 | 20241107-214657,QuantileLoss[0.1],702962.5078474184,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
170 | 20241107-214657,Coverage[0.1],0.1418154761904762,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
171 | 20241107-214657,QuantileLoss[0.2],843698.9754430054,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
172 | 20241107-214657,Coverage[0.2],0.1842261904761905,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
173 | 20241107-214657,QuantileLoss[0.3],923172.4710499098,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
174 | 20241107-214657,Coverage[0.3],0.24017857142857144,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
175 | 20241107-214657,QuantileLoss[0.4],939963.6876435605,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
176 | 20241107-214657,Coverage[0.4],0.31101190476190477,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
177 | 20241107-214657,QuantileLoss[0.5],904810.0186330621,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
178 | 20241107-214657,Coverage[0.5],0.3949404761904762,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
179 | 20241107-214657,QuantileLoss[0.6],817274.2637810577,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
180 | 20241107-214657,Coverage[0.6],0.5181547619047618,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
181 | 20241107-214657,QuantileLoss[0.7],712211.058519595,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
182 | 20241107-214657,Coverage[0.7],0.637202380952381,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
183 | 20241107-214657,QuantileLoss[0.8],558132.5039513422,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
184 | 20241107-214657,Coverage[0.8],0.7220238095238095,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
185 | 20241107-214657,QuantileLoss[0.9],341950.85405915393,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
186 | 20241107-214657,Coverage[0.9],0.7910714285714285,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
187 | 20241107-214657,RMSE,711.6320816089625,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
188 | 20241107-214657,NRMSE,0.6098949339290589,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
189 | 20241107-214657,ND,0.11539517098265963,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
190 | 20241107-214657,wQuantileLoss[0.1],0.08965249844381858,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
191 | 20241107-214657,wQuantileLoss[0.2],0.10760135887556233,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
192 | 20241107-214657,wQuantileLoss[0.3],0.11773703092305271,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
193 | 20241107-214657,wQuantileLoss[0.4],0.11987850291156854,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
194 | 20241107-214657,wQuantileLoss[0.5],0.11539517098265963,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
195 | 20241107-214657,wQuantileLoss[0.6],0.10423127669521176,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
196 | 20241107-214657,wQuantileLoss[0.7],0.09083201465626052,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
197 | 20241107-214657,wQuantileLoss[0.8],0.0711815678408887,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
198 | 20241107-214657,wQuantileLoss[0.9],0.043610787302549754,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
199 | 20241107-214657,mean_absolute_QuantileLoss,749352.9267697895,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
200 | 20241107-214657,mean_wQuantileLoss,0.09556891207017472,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
201 | 20241107-214657,MAE_Coverage,0.31726190476190474,gluonts-TemporalFusionTransformer-1h-10-8736-bt4
202 | 20241107-214657,MSE,495405.71600424324,gluonts-MQCNN-1h-10-8736-bt4
203 | 20241107-214657,abs_error,809684.6485752523,gluonts-MQCNN-1h-10-8736-bt4
204 | 20241107-214657,abs_target_sum,7840969.521757782,gluonts-MQCNN-1h-10-8736-bt4
205 | 20241107-214657,abs_target_mean,1166.8109407377653,gluonts-MQCNN-1h-10-8736-bt4
206 | 20241107-214657,MAPE,0.2684776516556477,gluonts-MQCNN-1h-10-8736-bt4
207 | 20241107-214657,sMAPE,0.20535807771505876,gluonts-MQCNN-1h-10-8736-bt4
208 | 20241107-214657,num_masked_target_values,0.0,gluonts-MQCNN-1h-10-8736-bt4
209 | 20241107-214657,QuantileLoss[0.1],742749.07022983,gluonts-MQCNN-1h-10-8736-bt4
210 | 20241107-214657,Coverage[0.1],0.16577380952380955,gluonts-MQCNN-1h-10-8736-bt4
211 | 20241107-214657,QuantileLoss[0.2],844471.187695416,gluonts-MQCNN-1h-10-8736-bt4
212 | 20241107-214657,Coverage[0.2],0.2513392857142857,gluonts-MQCNN-1h-10-8736-bt4
213 | 20241107-214657,QuantileLoss[0.3],866008.1884494075,gluonts-MQCNN-1h-10-8736-bt4
214 | 20241107-214657,Coverage[0.3],0.2888392857142857,gluonts-MQCNN-1h-10-8736-bt4
215 | 20241107-214657,QuantileLoss[0.4],869947.2416351496,gluonts-MQCNN-1h-10-8736-bt4
216 | 20241107-214657,Coverage[0.4],0.4321428571428571,gluonts-MQCNN-1h-10-8736-bt4
217 | 20241107-214657,QuantileLoss[0.5],809684.6485752523,gluonts-MQCNN-1h-10-8736-bt4
218 | 20241107-214657,Coverage[0.5],0.5202380952380953,gluonts-MQCNN-1h-10-8736-bt4
219 | 20241107-214657,QuantileLoss[0.6],743172.5363041362,gluonts-MQCNN-1h-10-8736-bt4
220 | 20241107-214657,Coverage[0.6],0.5453869047619048,gluonts-MQCNN-1h-10-8736-bt4
221 | 20241107-214657,QuantileLoss[0.7],627556.8249516919,gluonts-MQCNN-1h-10-8736-bt4
222 | 20241107-214657,Coverage[0.7],0.7233630952380953,gluonts-MQCNN-1h-10-8736-bt4
223 | 20241107-214657,QuantileLoss[0.8],485640.02672345354,gluonts-MQCNN-1h-10-8736-bt4
224 | 20241107-214657,Coverage[0.8],0.8257440476190474,gluonts-MQCNN-1h-10-8736-bt4
225 | 20241107-214657,QuantileLoss[0.9],301772.67409519444,gluonts-MQCNN-1h-10-8736-bt4
226 | 20241107-214657,Coverage[0.9],0.8595238095238095,gluonts-MQCNN-1h-10-8736-bt4
227 | 20241107-214657,RMSE,703.8506347260357,gluonts-MQCNN-1h-10-8736-bt4
228 | 20241107-214657,NRMSE,0.6032259470253136,gluonts-MQCNN-1h-10-8736-bt4
229 | 20241107-214657,ND,0.10326333323047247,gluonts-MQCNN-1h-10-8736-bt4
230 | 20241107-214657,wQuantileLoss[0.1],0.0947266875822929,gluonts-MQCNN-1h-10-8736-bt4
231 | 20241107-214657,wQuantileLoss[0.2],0.10769984315741903,gluonts-MQCNN-1h-10-8736-bt4
232 | 20241107-214657,wQuantileLoss[0.3],0.11044656991030702,gluonts-MQCNN-1h-10-8736-bt4
233 | 20241107-214657,wQuantileLoss[0.4],0.11094893803899464,gluonts-MQCNN-1h-10-8736-bt4
234 | 20241107-214657,wQuantileLoss[0.5],0.10326333323047247,gluonts-MQCNN-1h-10-8736-bt4
235 | 20241107-214657,wQuantileLoss[0.6],0.0947806944335032,gluonts-MQCNN-1h-10-8736-bt4
236 | 20241107-214657,wQuantileLoss[0.7],0.08003561590314749,gluonts-MQCNN-1h-10-8736-bt4
237 | 20241107-214657,wQuantileLoss[0.8],0.061936221710320226,gluonts-MQCNN-1h-10-8736-bt4
238 | 20241107-214657,wQuantileLoss[0.9],0.03848665311831786,gluonts-MQCNN-1h-10-8736-bt4
239 | 20241107-214657,mean_absolute_QuantileLoss,699000.2665177258,gluonts-MQCNN-1h-10-8736-bt4
240 | 20241107-214657,mean_wQuantileLoss,0.08914717300941942,gluonts-MQCNN-1h-10-8736-bt4
241 | 20241107-214657,MAE_Coverage,0.36851851851851847,gluonts-MQCNN-1h-10-8736-bt4
242 | 20241107-214657,MSE,602056.1989273061,gluonts-SeasonalNaive-1h-10-8736-bt4
243 | 20241107-214657,abs_error,968718.28635148,gluonts-SeasonalNaive-1h-10-8736-bt4
244 | 20241107-214657,abs_target_sum,7840969.521757782,gluonts-SeasonalNaive-1h-10-8736-bt4
245 | 20241107-214657,abs_target_mean,1166.8109407377653,gluonts-SeasonalNaive-1h-10-8736-bt4
246 | 20241107-214657,MAPE,0.22112640814653392,gluonts-SeasonalNaive-1h-10-8736-bt4
247 | 20241107-214657,sMAPE,0.18031426801961994,gluonts-SeasonalNaive-1h-10-8736-bt4
248 | 20241107-214657,num_masked_target_values,0.0,gluonts-SeasonalNaive-1h-10-8736-bt4
249 | 20241107-214657,QuantileLoss[0.1],1214573.4515250581,gluonts-SeasonalNaive-1h-10-8736-bt4
250 | 20241107-214657,Coverage[0.1],0.5313988095238095,gluonts-SeasonalNaive-1h-10-8736-bt4
251 | 20241107-214657,QuantileLoss[0.2],1153109.6602316636,gluonts-SeasonalNaive-1h-10-8736-bt4
252 | 20241107-214657,Coverage[0.2],0.5313988095238095,gluonts-SeasonalNaive-1h-10-8736-bt4
253 | 20241107-214657,QuantileLoss[0.3],1091645.868938269,gluonts-SeasonalNaive-1h-10-8736-bt4
254 | 20241107-214657,Coverage[0.3],0.5313988095238095,gluonts-SeasonalNaive-1h-10-8736-bt4
255 | 20241107-214657,QuantileLoss[0.4],1030182.0776448745,gluonts-SeasonalNaive-1h-10-8736-bt4
256 | 20241107-214657,Coverage[0.4],0.5313988095238095,gluonts-SeasonalNaive-1h-10-8736-bt4
257 | 20241107-214657,QuantileLoss[0.5],968718.28635148,gluonts-SeasonalNaive-1h-10-8736-bt4
258 | 20241107-214657,Coverage[0.5],0.5313988095238095,gluonts-SeasonalNaive-1h-10-8736-bt4
259 | 20241107-214657,QuantileLoss[0.6],907254.4950580857,gluonts-SeasonalNaive-1h-10-8736-bt4
260 | 20241107-214657,Coverage[0.6],0.5313988095238095,gluonts-SeasonalNaive-1h-10-8736-bt4
261 | 20241107-214657,QuantileLoss[0.7],845790.7037646911,gluonts-SeasonalNaive-1h-10-8736-bt4
262 | 20241107-214657,Coverage[0.7],0.5313988095238095,gluonts-SeasonalNaive-1h-10-8736-bt4
263 | 20241107-214657,QuantileLoss[0.8],784326.9124712966,gluonts-SeasonalNaive-1h-10-8736-bt4
264 | 20241107-214657,Coverage[0.8],0.5313988095238095,gluonts-SeasonalNaive-1h-10-8736-bt4
265 | 20241107-214657,QuantileLoss[0.9],722863.1211779023,gluonts-SeasonalNaive-1h-10-8736-bt4
266 | 20241107-214657,Coverage[0.9],0.5313988095238095,gluonts-SeasonalNaive-1h-10-8736-bt4
267 | 20241107-214657,RMSE,775.9228047475509,gluonts-SeasonalNaive-1h-10-8736-bt4
268 | 20241107-214657,NRMSE,0.6649944542488958,gluonts-SeasonalNaive-1h-10-8736-bt4
269 | 20241107-214657,ND,0.12354572781636237,gluonts-SeasonalNaive-1h-10-8736-bt4
270 | 20241107-214657,wQuantileLoss[0.1],0.15490092751346085,gluonts-SeasonalNaive-1h-10-8736-bt4
271 | 20241107-214657,wQuantileLoss[0.2],0.14706212758918624,gluonts-SeasonalNaive-1h-10-8736-bt4
272 | 20241107-214657,wQuantileLoss[0.3],0.1392233276649116,gluonts-SeasonalNaive-1h-10-8736-bt4
273 | 20241107-214657,wQuantileLoss[0.4],0.13138452774063697,gluonts-SeasonalNaive-1h-10-8736-bt4
274 | 20241107-214657,wQuantileLoss[0.5],0.12354572781636237,gluonts-SeasonalNaive-1h-10-8736-bt4
275 | 20241107-214657,wQuantileLoss[0.6],0.11570692789208777,gluonts-SeasonalNaive-1h-10-8736-bt4
276 | 20241107-214657,wQuantileLoss[0.7],0.10786812796781314,gluonts-SeasonalNaive-1h-10-8736-bt4
277 | 20241107-214657,wQuantileLoss[0.8],0.10002932804353852,gluonts-SeasonalNaive-1h-10-8736-bt4
278 | 20241107-214657,wQuantileLoss[0.9],0.09219052811926394,gluonts-SeasonalNaive-1h-10-8736-bt4
279 | 20241107-214657,mean_absolute_QuantileLoss,968718.28635148,gluonts-SeasonalNaive-1h-10-8736-bt4
280 | 20241107-214657,mean_wQuantileLoss,0.12354572781636236,gluonts-SeasonalNaive-1h-10-8736-bt4
281 | 20241107-214657,MAE_Coverage,0.2257109788359788,gluonts-SeasonalNaive-1h-10-8736-bt4
282 | 20241107-214657,MSE,513524.1753865841,gluonts-Prophet-1h-10-8736-bt4
283 | 20241107-214657,abs_error,893692.8004313651,gluonts-Prophet-1h-10-8736-bt4
284 | 20241107-214657,abs_target_sum,7840969.521757782,gluonts-Prophet-1h-10-8736-bt4
285 | 20241107-214657,abs_target_mean,1166.8109407377653,gluonts-Prophet-1h-10-8736-bt4
286 | 20241107-214657,MAPE,0.3162780346209607,gluonts-Prophet-1h-10-8736-bt4
287 | 20241107-214657,sMAPE,0.3092261665660643,gluonts-Prophet-1h-10-8736-bt4
288 | 20241107-214657,num_masked_target_values,0.0,gluonts-Prophet-1h-10-8736-bt4
289 | 20241107-214657,QuantileLoss[0.1],694077.0088892874,gluonts-Prophet-1h-10-8736-bt4
290 | 20241107-214657,Coverage[0.1],0.11607142857142856,gluonts-Prophet-1h-10-8736-bt4
291 | 20241107-214657,QuantileLoss[0.2],826341.396470925,gluonts-Prophet-1h-10-8736-bt4
292 | 20241107-214657,Coverage[0.2],0.18705357142857143,gluonts-Prophet-1h-10-8736-bt4
293 | 20241107-214657,QuantileLoss[0.3],901139.5703235045,gluonts-Prophet-1h-10-8736-bt4
294 | 20241107-214657,Coverage[0.3],0.2663690476190476,gluonts-Prophet-1h-10-8736-bt4
295 | 20241107-214657,QuantileLoss[0.4],919363.0257825678,gluonts-Prophet-1h-10-8736-bt4
296 | 20241107-214657,Coverage[0.4],0.3546130952380952,gluonts-Prophet-1h-10-8736-bt4
297 | 20241107-214657,QuantileLoss[0.5],893692.8004313651,gluonts-Prophet-1h-10-8736-bt4
298 | 20241107-214657,Coverage[0.5],0.44538690476190473,gluonts-Prophet-1h-10-8736-bt4
299 | 20241107-214657,QuantileLoss[0.6],860659.0832785695,gluonts-Prophet-1h-10-8736-bt4
300 | 20241107-214657,Coverage[0.6],0.49598214285714287,gluonts-Prophet-1h-10-8736-bt4
301 | 20241107-214657,QuantileLoss[0.7],777101.5853908068,gluonts-Prophet-1h-10-8736-bt4
302 | 20241107-214657,Coverage[0.7],0.5910714285714286,gluonts-Prophet-1h-10-8736-bt4
303 | 20241107-214657,QuantileLoss[0.8],639399.2479384069,gluonts-Prophet-1h-10-8736-bt4
304 | 20241107-214657,Coverage[0.8],0.6912202380952381,gluonts-Prophet-1h-10-8736-bt4
305 | 20241107-214657,QuantileLoss[0.9],438213.497574374,gluonts-Prophet-1h-10-8736-bt4
306 | 20241107-214657,Coverage[0.9],0.7946428571428571,gluonts-Prophet-1h-10-8736-bt4
307 | 20241107-214657,RMSE,716.6060112688032,gluonts-Prophet-1h-10-8736-bt4
308 | 20241107-214657,NRMSE,0.614157775051114,gluonts-Prophet-1h-10-8736-bt4
309 | 20241107-214657,ND,0.11397733379162757,gluonts-Prophet-1h-10-8736-bt4
310 | 20241107-214657,wQuantileLoss[0.1],0.08851928412211067,gluonts-Prophet-1h-10-8736-bt4
311 | 20241107-214657,wQuantileLoss[0.2],0.10538765572011513,gluonts-Prophet-1h-10-8736-bt4
312 | 20241107-214657,wQuantileLoss[0.3],0.11492705944372651,gluonts-Prophet-1h-10-8736-bt4
313 | 20241107-214657,wQuantileLoss[0.4],0.11725119237250468,gluonts-Prophet-1h-10-8736-bt4
314 | 20241107-214657,wQuantileLoss[0.5],0.11397733379162757,gluonts-Prophet-1h-10-8736-bt4
315 | 20241107-214657,wQuantileLoss[0.6],0.10976437045066177,gluonts-Prophet-1h-10-8736-bt4
316 | 20241107-214657,wQuantileLoss[0.7],0.09910784415555243,gluonts-Prophet-1h-10-8736-bt4
317 | 20241107-214657,wQuantileLoss[0.8],0.08154594226697962,gluonts-Prophet-1h-10-8736-bt4
318 | 20241107-214657,wQuantileLoss[0.9],0.055887667508256765,gluonts-Prophet-1h-10-8736-bt4
319 | 20241107-214657,mean_absolute_QuantileLoss,772220.8017866452,gluonts-Prophet-1h-10-8736-bt4
320 | 20241107-214657,mean_wQuantileLoss,0.09848537220350391,gluonts-Prophet-1h-10-8736-bt4
321 | 20241107-214657,MAE_Coverage,0.3192460317460318,gluonts-Prophet-1h-10-8736-bt4
322 | 20241107-214657,MSE,497407.51645393326,gluonts-NPTS-1h-10-8736-bt4
323 | 20241107-214657,abs_error,753775.6228687668,gluonts-NPTS-1h-10-8736-bt4
324 | 20241107-214657,abs_target_sum,7840969.521757782,gluonts-NPTS-1h-10-8736-bt4
325 | 20241107-214657,abs_target_mean,1166.8109407377653,gluonts-NPTS-1h-10-8736-bt4
326 | 20241107-214657,MAPE,0.2222654429580105,gluonts-NPTS-1h-10-8736-bt4
327 | 20241107-214657,sMAPE,0.1743582554083264,gluonts-NPTS-1h-10-8736-bt4
328 | 20241107-214657,num_masked_target_values,0.0,gluonts-NPTS-1h-10-8736-bt4
329 | 20241107-214657,QuantileLoss[0.1],617423.9344890051,gluonts-NPTS-1h-10-8736-bt4
330 | 20241107-214657,Coverage[0.1],0.22752976190476196,gluonts-NPTS-1h-10-8736-bt4
331 | 20241107-214657,QuantileLoss[0.2],701661.2470645618,gluonts-NPTS-1h-10-8736-bt4
332 | 20241107-214657,Coverage[0.2],0.32559523809523805,gluonts-NPTS-1h-10-8736-bt4
333 | 20241107-214657,QuantileLoss[0.3],770585.2733677226,gluonts-NPTS-1h-10-8736-bt4
334 | 20241107-214657,Coverage[0.3],0.409970238095238,gluonts-NPTS-1h-10-8736-bt4
335 | 20241107-214657,QuantileLoss[0.4],766608.1028513353,gluonts-NPTS-1h-10-8736-bt4
336 | 20241107-214657,Coverage[0.4],0.4927083333333334,gluonts-NPTS-1h-10-8736-bt4
337 | 20241107-214657,QuantileLoss[0.5],753775.6228687668,gluonts-NPTS-1h-10-8736-bt4
338 | 20241107-214657,Coverage[0.5],0.5729166666666666,gluonts-NPTS-1h-10-8736-bt4
339 | 20241107-214657,QuantileLoss[0.6],698826.1362233879,gluonts-NPTS-1h-10-8736-bt4
340 | 20241107-214657,Coverage[0.6],0.6178571428571429,gluonts-NPTS-1h-10-8736-bt4
341 | 20241107-214657,QuantileLoss[0.7],595409.926329624,gluonts-NPTS-1h-10-8736-bt4
342 | 20241107-214657,Coverage[0.7],0.6994047619047619,gluonts-NPTS-1h-10-8736-bt4
343 | 20241107-214657,QuantileLoss[0.8],456182.5509127008,gluonts-NPTS-1h-10-8736-bt4
344 | 20241107-214657,Coverage[0.8],0.7811011904761905,gluonts-NPTS-1h-10-8736-bt4
345 | 20241107-214657,QuantileLoss[0.9],276380.42531627364,gluonts-NPTS-1h-10-8736-bt4
346 | 20241107-214657,Coverage[0.9],0.8532738095238095,gluonts-NPTS-1h-10-8736-bt4
347 | 20241107-214657,RMSE,705.2712360885939,gluonts-NPTS-1h-10-8736-bt4
348 | 20241107-214657,NRMSE,0.6044434547748211,gluonts-NPTS-1h-10-8736-bt4
349 | 20241107-214657,ND,0.09613296171820675,gluonts-NPTS-1h-10-8736-bt4
350 | 20241107-214657,wQuantileLoss[0.1],0.07874331519536266,gluonts-NPTS-1h-10-8736-bt4
351 | 20241107-214657,wQuantileLoss[0.2],0.08948654182592256,gluonts-NPTS-1h-10-8736-bt4
352 | 20241107-214657,wQuantileLoss[0.3],0.09827678467942488,gluonts-NPTS-1h-10-8736-bt4
353 | 20241107-214657,wQuantileLoss[0.4],0.09776955524748394,gluonts-NPTS-1h-10-8736-bt4
354 | 20241107-214657,wQuantileLoss[0.5],0.09613296171820675,gluonts-NPTS-1h-10-8736-bt4
355 | 20241107-214657,wQuantileLoss[0.6],0.08912496525898057,gluonts-NPTS-1h-10-8736-bt4
356 | 20241107-214657,wQuantileLoss[0.7],0.07593575318427528,gluonts-NPTS-1h-10-8736-bt4
357 | 20241107-214657,wQuantileLoss[0.8],0.05817935519923233,gluonts-NPTS-1h-10-8736-bt4
358 | 20241107-214657,wQuantileLoss[0.9],0.03524824634879015,gluonts-NPTS-1h-10-8736-bt4
359 | 20241107-214657,mean_absolute_QuantileLoss,626317.0243803752,gluonts-NPTS-1h-10-8736-bt4
360 | 20241107-214657,mean_wQuantileLoss,0.07987749762863101,gluonts-NPTS-1h-10-8736-bt4
361 | 20241107-214657,MAE_Coverage,0.3636574074074074,gluonts-NPTS-1h-10-8736-bt4
362 |
--------------------------------------------------------------------------------