├── README.md
├── __init__.py
├── generate_eval_dataset.py
├── generate_train_dataset.py
├── graph2text.py
├── metadata
├── OntologyClasses.xml
├── delex.txt
├── entities.list
├── entity_type.list
├── onto_classes_system.json
├── ontology_ponderated_occurences.json
├── prop_schema.list
└── properties.list
├── multi-bleu.perl
├── relex_predictions.py
├── support
├── __init__.py
├── generate_eval_metadata.py
├── generate_lists.py
├── generate_nodelex.py
├── generate_onto_classes_system.py
├── get_entity_type.py
├── get_property_schema.py
└── link_metadata.py
└── utils
├── __init__.py
├── rdf_utils.py
├── sparql_utils.py
└── text_utils.py
/README.md:
--------------------------------------------------------------------------------
1 | # Learning to generate text from RDF fact graphs with seq2seq models
2 |
3 | #### Project work by Badr Abdullah, François Buet, and Reem Mathbout.
4 |
5 | The repository contains code to prepare data for training models that generate natural language text from RDF triples using the WebNLG data (more info about the data can be found in this paper: http://webnlg.loria.fr/pages/webnlg-challenge-report.pdf). All modules in this project have been developed
6 | and tested with python 3.6. There are only two non-core Python libraries required to run the modules: NLTK and SPARQLWrapper.
7 |
8 | For now, the code can be used to parse RDF data from XML files, apply text preprocessing, retrieve semantic types for RDF entities, perform delexicalization on the target sentences and generate datasets to be used for
9 | training and evaluations sequence to sequence models for NLG from fact graphs.
10 |
11 | ## Generating Training Datasets
12 | To use the module for generating training datasets, use:
13 |
14 | ###### Flat sequences in the source side
15 | ```
16 | mkdir ../datasets
17 | python generate_train_dataset.py \
18 | -path ../challenge_data_train_dev/train \
19 | -src_mode flat \
20 | -src ../datasets/train.src \
21 | -tgt ../datasets/train.tgt
22 | ```
23 |
24 | Example: the pair {*triple:* Albany , Oregon | country | United States, *text:* "Albany , Oregon is in the U.S."} would be represented as follows:
25 | ```
26 | src: ENTITY_1 CITY country ENTITY_2 COUNTRY
27 |
28 | tgt: ENTITY_1 is in the ENTITY_2 .
29 | ```
30 |
31 |
32 | ###### Structured sequences in the source side
33 | ```
34 | python generate_train_dataset.py \
35 | -path ../challenge_data_train_dev/train \
36 | -src_mode structured \
37 | -src ../datasets/train.src \
38 | -tgt ../datasets/train.tgt
39 | ```
40 |
41 | Example: the pair (triple: Albany , Oregon | country | United States, "Albany , Oregon is in the U.S.") would be represented as follows:
42 | ```
43 | src: ( ( ENTITY_1 CITY ( country ( ENTITY_2 COUNTRY ) ) ) )
44 |
45 | tgt: ENTITY_1 is in the ENTITY_2 .
46 | ```
47 |
48 | ## Generating Evaluation Datasets
49 | To use the module for generating evaluation (dev and test) datasets, use:
50 |
51 | (Running this script would generate 5 files: dev.src, dev.tgt, dev.ref1, dev.ref2, dev.ref3, and dev.relex)
52 |
53 | ###### Flat sequences in the source side
54 | ```
55 | mkdir ../datasets
56 | python generate_eval_dataset.py \
57 | -path ../challenge_data_train_dev/dev \
58 | -src_mode flat \
59 | -src ../datasets/dev.src \
60 | -tgt ../datasets/dev.tgt \
61 | -ref ../datasets/dev.ref \
62 | -relex ../datasets/dev.relex
63 | ```
64 |
65 | ###### Structured sequences in the source side
66 | ```
67 | python generate_eval_dataset.py \
68 | -path ../challenge_data_train_dev/dev \
69 | -src_mode structured \
70 | -src ../datasets/dev.src \
71 | -tgt ../datasets/dev.tgt \
72 | -ref ../datasets/dev.ref \
73 | -relex ../datasets/dev.relex
74 | ```
75 |
76 | ## Using OpenNTM
77 | Once we have the data, we can train a seq2seq model. We show how to use OpenNMT for this task:
78 | (probably you would want to move the datasets directory to where you have installed OpenNMT)
79 |
80 | ### 1. Preprocess the data.
81 |
82 | ```
83 | th preprocess.lua \
84 | -train_src datasets/train.src \
85 | -train_tgt datasets/train.tgt \
86 | -valid_src datasets/dev.src \
87 | -valid_tgt datasets/dev.tgt \
88 | -save_data datasets/data_tensor
89 | ```
90 |
91 | ### 2. Train a model.
92 | ```
93 | th train.lua -data datasets/data_tensor-train.t7 -save_model s2s_model
94 | ```
95 |
96 | ### 3. Use the model for inference.
97 | ```
98 | th translate.lua -model s2s_model_epochX_PPL.t7 -src datasets/dev.src -output predictions.dev
99 | ```
100 |
101 | ### 4. Relexicalize predictions.
102 | ```
103 | python relex_preditions.py \
104 | -pred predictions.dev \
105 | -relex datasets/dev.relex \
106 | -output predictions.relex
107 | ```
108 |
109 | ### 5. Evaluate with BLEU script.
110 | ```
111 | multi-bleu.perl datasets/dev.ref < predictions.relex
112 | ```
113 |
--------------------------------------------------------------------------------
/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/badrex/rdf2text/bdc72db893d76972af196123b71ef0c6b2d3e552/__init__.py
--------------------------------------------------------------------------------
/generate_eval_dataset.py:
--------------------------------------------------------------------------------
1 | """
2 | A program to process RDF data and generate dataset for evaluation and testing.
3 | """
4 |
5 | from utils import rdf_utils
6 | import argparse
7 | from graph2text import *
8 |
9 | def generate():
10 | """
11 | Read options from user input, and generate eval dataset.
12 | """
13 |
14 | DISCR = 'Generate dataset from XML files of RDF to Text Entries.'
15 | parser = argparse.ArgumentParser(description=DISCR)
16 | parser.add_argument('-path', type=str, help='Path to data.', required=True)
17 | parser.add_argument('-src_mode', help='Source mode: flat or structured.',
18 | choices=['flat', 'structured'], default = 'flat', nargs = '?')
19 | parser.add_argument('-delex_mode', type=str, help='Advanced or simple delexicalization',
20 | choices=['simple', 'adv'], default = 'adv', nargs = '?')
21 |
22 | parser.add_argument('-src', type=str, help='Path to output file for src.',
23 | required=True)
24 | parser.add_argument('-tgt', type=str, help='Path to output file for tgt.',
25 | required=True)
26 | parser.add_argument('-ref', type=str, help='Path to output ref files.',
27 | required=True)
28 | parser.add_argument('-relex', type=str, help='Path to ouput relex file.',
29 | required=True)
30 |
31 |
32 | args = parser.parse_args()
33 |
34 | instances, _, _ = rdf_utils.generate_instances(args.path, eval=True)
35 |
36 | for (size, ins) in instances.items():
37 | for i in ins:
38 | lexs = i.Lexicalisation
39 |
40 | for k in range(len(lexs), 3):
41 | lexs.append(rdf_utils.Lexicalisation('', '', ''))
42 |
43 | tripleset = (i.originaltripleset, i.modifiedtripleset)
44 | G = FactGraph(tripleset, lexs[0].lex)
45 |
46 | print(G.lexicalization)
47 |
48 | # get relexicalization dict
49 | relex_entities = [e for (id, e) in sorted(G.id2entity.items())]
50 |
51 | assert len(relex_entities) == len(G.entities) , \
52 | "The number of entities and size of relexicalization dict do not match."
53 |
54 | # write relex_dict to a file
55 | with open(args.relex, 'a+', encoding="utf8") as relexFile:
56 | relexFile.write('\t'.join(relex_entities) + '\n')
57 |
58 | # write src
59 | with open(args.src, 'a+', encoding="utf8") as srcFile:
60 | if args.src_mode == 'structured':
61 | srcFile.write(G.linearize_graph(structured=True, incoming_edges=True).replace('\n', ' ') + '\n')
62 | else:
63 | srcFile.write(G.linearize_graph() + '\n')
64 |
65 | # write tgt
66 | adv_delex = False if args.delex_mode == 'simple' else True
67 |
68 | with open(args.tgt, 'a+', encoding="utf8") as tgtFile:
69 | tgtFile.write(G.delexicalize_text(adv_delex).replace('\n', ' ') + '\n')
70 |
71 | # write ref
72 | for i in range(3):
73 | ref_str = text_utils.tokenize_and_concat(lexs[i].lex)
74 | with open(args.ref + str(i + 1), 'a+', encoding="utf8") as refFile:
75 | refFile.write(ref_str.replace('\n', ' ') + '\n')
76 |
77 |
78 | def main():
79 | generate()
80 |
81 | if __name__ == '__main__':
82 | main()
83 |
--------------------------------------------------------------------------------
/generate_train_dataset.py:
--------------------------------------------------------------------------------
1 | """
2 | A program to process RDF data and generate dataset for training.
3 | """
4 |
5 | from utils import rdf_utils
6 | import argparse
7 | from graph2text import *
8 |
9 | def generate():
10 | """
11 | Read options from user input, and generate dataset.
12 | """
13 |
14 | DISCR = 'Generate dataset from XML files of RDF to Text Entries.'
15 | parser = argparse.ArgumentParser(description=DISCR)
16 | parser.add_argument('-path', type=str, help='Path to data.', required=True)
17 | parser.add_argument('-src_mode', help='source mode: flat or structured.',
18 | choices=['flat', 'structured'], default = 'flat', nargs = '?')
19 |
20 | parser.add_argument('-delex_mode', type=str, help='Advanced or simple delexicalization',
21 | choices=['simple', 'adv'], default = 'adv', nargs = '?')
22 |
23 | parser.add_argument('-src', type=str, help='Path to output file for src.',
24 | required=True)
25 | parser.add_argument('-tgt', type=str, help='Path to output file for tgt.',
26 | required=True)
27 |
28 | args = parser.parse_args()
29 |
30 | instances, _, _ = rdf_utils.generate_instances(args.path)
31 |
32 | for (size, ins) in instances.items():
33 | for i in ins:
34 | tripleset = (i.originaltripleset, i.modifiedtripleset)
35 | G = FactGraph(tripleset, i.Lexicalisation.lex)
36 |
37 | with open(args.src, 'a+', encoding="utf8") as srcFile:
38 | if args.src_mode == 'structured':
39 | srcFile.write(G.linearize_graph(structured=True, incoming_edges=True) + '\n')
40 | else:
41 | srcFile.write(G.linearize_graph() + '\n')
42 |
43 | # write tgt
44 | adv_delex = False if args.delex_mode == 'simple' else True
45 |
46 | with open(args.tgt, 'a+', encoding="utf8") as tgtFile:
47 | tgtFile.write(G.delexicalize_text(adv_delex).replace('\n', ' ') + '\n')
48 |
49 |
50 | def main():
51 | generate()
52 |
53 | if __name__ == '__main__':
54 | main()
55 |
--------------------------------------------------------------------------------
/graph2text.py:
--------------------------------------------------------------------------------
1 | """
2 | A module for RDF Entity, RDF Property, and FactGraph.
3 | """
4 |
5 | from utils import text_utils, rdf_utils, sparql_utils
6 | import xml.etree.ElementTree as et
7 | import re
8 | import string
9 | from collections import defaultdict
10 |
11 |
12 | # populate a dict for schema properties: prop --> (domain, range)
13 | prop2schema = {}
14 |
15 | with open('metadata/prop_schema.list', encoding="utf8") as f:
16 | for line in f.readlines():
17 | (p, d, r) = line.strip().split()
18 | prop2schema[p] = (d, r)
19 |
20 | # populate a dict for semantic types of entities: entity --> type
21 | entity2type = {}
22 |
23 | with open('metadata/entity_type.list', encoding="utf8") as f:
24 | for line in f.readlines():
25 | last_space_idx = line.rfind(' ')
26 | entity = line[:last_space_idx]
27 | stype = line[last_space_idx:]
28 |
29 | hash_idx = stype.find('#')
30 | stype = stype[hash_idx + 1:]
31 |
32 | entity2type[entity] = stype.strip()
33 |
34 |
35 | class RDFEntity:
36 | """ A class to represent an RDF entity. """
37 |
38 | def __init__(self, ID, o_rdf_entity, m_rdf_entity, semantic_type=None):
39 | """
40 | Instantiate an entity.
41 | :param o_rdf_entity: original entity from an RDF triple (dtype: string)
42 | :param m_rdf_entity: modified entity from an RDF triple (dtype: string)
43 | """
44 | self.ID = 'ENTITY_' + str(ID)
45 |
46 | # the join function is used to substitute multiple spaces with only one
47 | self.olex_form = ' '.join(self.text_split(o_rdf_entity).split())
48 | self.mlex_form = ' '.join(self.text_split(m_rdf_entity).split())
49 |
50 | if semantic_type is None:
51 | self.stype = entity2type[o_rdf_entity]
52 | else:
53 | hash_idx = semantic_type.find('#')
54 | semantic_type = semantic_type[hash_idx + 1:]
55 | self.stype = semantic_type
56 |
57 | self.aliases = self.get_aliases()
58 |
59 | def text_split(self, entity_str):
60 | """Return the text of the entity after split."""
61 | return ' '.join(entity_str.split('_'))
62 |
63 | def get_aliases(self):
64 | """Return a list of aliases for the entity."""
65 | # TODO: find a way to retrieve a list of aliases for an entity from
66 | # (for example) an online resource
67 | return [self.mlex_form, self.mlex_form.lower()]
68 |
69 | def set_stype(self, semantic_type):
70 | """Given a semantic_type, modify self.stype."""
71 | self.stype = semantic_type
72 |
73 |
74 | class RDFProperty:
75 | """ A class to represent RDF property (predicate). """
76 |
77 | def __init__(self, o_rdf_property, m_rdf_property):
78 | """
79 | Instantiate a property.
80 | :param o_rdf_property: original prop from an RDF triple (dtype: string)
81 | :param o_rdf_property: modified prop from an RDF triple (dtype: string)
82 | """
83 | self.olex_form = self.text_split(o_rdf_property)
84 | self.mlex_form = self.text_split(m_rdf_property)
85 | self.type_form = o_rdf_property.upper()
86 | self.domain = prop2schema[o_rdf_property][0]
87 | self.range = prop2schema[o_rdf_property][1]
88 |
89 | def text_split(self, property_string):
90 | """Return the text of the property after (camelCase) split."""
91 | return text_utils.camel_case_split(property_string)
92 |
93 |
94 | class FactGraph:
95 | """
96 | A class to represent RDF graph instances for natural language generation
97 | from structed input (e.g. RDF triples from a knowledge base).
98 | NOTE: Training instances are represented as (graph, text) pairs, while eval
99 | and test instances are represented only as graphs.
100 | """
101 |
102 | def __init__(self, tripleset_tuple, lexicalization=None):
103 | """
104 | Initialize and construct a graph from RDF triples.
105 | :param rdf_triples: a set of structured RDF triples (dtype: Tripleset)
106 | :param lexicalization: a text that realises the triple set for training
107 | instances
108 | :dtype: string
109 | :default: None (for eval and test instances).
110 | """
111 |
112 | # a set of RDF triples
113 | otripleset, mtripleset = tripleset_tuple
114 | # original
115 | self.o_rdf_triples = otripleset[0].triples
116 |
117 | # modified
118 | self.m_rdf_triples = mtripleset.triples
119 |
120 | assert len(self.o_rdf_triples) == len(self.m_rdf_triples), \
121 | "Original and modified tripleset are not the same length."
122 |
123 | # for training instances, initilize the corresponding lexicalization
124 | if lexicalization:
125 | self.lexicalization = lexicalization
126 |
127 | # a dict for entities in the graph instance
128 | # this dict maps from lex_form of entity to entity object
129 | self.entities = {}
130 |
131 | # id2entity dict is used for relexicalization for eval datasets
132 | self.id2entity = {}
133 |
134 | # a dict for properties in the graph instance
135 | # this dict maps from lex_form of property to property object
136 | self.properties = {}
137 |
138 | # call contruct_graph() method to build the graph from the RDF triples
139 |
140 | # two dicts to link entities in the graph instance (subj --> (prop, obj))
141 | # and (obj --> (prop, subj))
142 | # these data structures make easy to generate structured sequences
143 | self.subj2obj = {}
144 | self.obj2subj = {}
145 |
146 | # call method to construct entity graph and populate other dicts
147 | self._contruct_graph()
148 |
149 | def _contruct_graph(self):
150 | """
151 | Build the graph.
152 | Populate entities, properties, subj2obj, and obj2subj dicts.
153 | """
154 | entityID = 0
155 |
156 | # loop through each zipped triple
157 | for (otriple, mtriple) in zip(self.o_rdf_triples, self.m_rdf_triples):
158 | # extract nodes (entities) and edges (properties) from original
159 | o_subj = otriple.subject
160 | o_obj = otriple.object
161 | o_prop = otriple.property
162 |
163 | # extract nodes (entities) and edges (properties) from modified
164 | m_subj = mtriple.subject
165 | m_obj = mtriple.object
166 | m_prop = mtriple.property
167 |
168 | # update properties dict by instantiating RDFProperty objects
169 | if o_prop not in self.properties:
170 | self.properties[o_prop] = RDFProperty(o_prop, m_prop)
171 |
172 | # update entities dict by instantiating RDFEntity objects
173 | if o_subj not in self.entities:
174 | entityID += 1
175 | # first try to use the domain of the property
176 | if self.properties[o_prop].domain != '*':
177 | self.entities[o_subj] = RDFEntity(entityID, o_subj, m_subj,
178 | self.properties[o_prop].domain)
179 |
180 | # directly retrieve the type of the subj
181 | else:
182 | self.entities[o_subj] = RDFEntity(entityID, o_subj, m_subj)
183 |
184 | # add to id2entity dicr
185 | self.id2entity[entityID] = self.entities[o_subj].mlex_form
186 |
187 | if o_obj not in self.entities:
188 | entityID += 1
189 | # we first try to use the range of the property
190 | if self.properties[o_prop].range != '*':
191 | self.entities[o_obj] = RDFEntity(entityID, o_obj, m_obj,
192 | self.properties[o_prop].range)
193 |
194 | # try to directly retrieve the type of the obj
195 | else:
196 | self.entities[o_obj] = RDFEntity(entityID, o_obj, m_obj)
197 |
198 | # if the stype is 'THING', use the expression of the prop as a type
199 | if self.entities[o_obj].stype == 'THING':
200 | self.entities[o_obj].set_stype(self.properties[o_prop].type_form)
201 |
202 | # add to id2entity dicr
203 | self.id2entity[entityID] = self.entities[o_obj].mlex_form
204 |
205 | # populate the subj2obj and obj2subj dicst with (prop, [objs]) or
206 | # (prop, [subjs]) tuples
207 | # flag var to check if the property already added to a node
208 | propFound = False
209 |
210 | # TODO: make FIRST and SECOND blocks more elegant
211 | # FIRST: populate subj2obj
212 | if o_subj not in self.subj2obj:
213 | self.subj2obj[o_subj] = [(o_prop, [o_obj])]
214 | # if subj entity already seen in the graph
215 | else:
216 | # we need to do something smart now
217 | # loop through all already added (prob, [obj]) tuples
218 | for i, (p, o) in enumerate(self.subj2obj[o_subj]):
219 | # if the prop already exists, append to the list of object
220 | if p == o_prop:
221 | propFound = True
222 | # get the list and append to it
223 | self.subj2obj[o_subj][i][1].append(o_obj)
224 | break
225 | # if the search failed, add a new (prop, [obj]) tuple
226 | if not propFound:
227 | self.subj2obj[o_subj].append((o_prop, [o_obj]))
228 |
229 | # SECOND: populate obj2subj
230 | # flag var to check if the property already added to a node
231 | propFound = False
232 |
233 | if o_obj not in self.obj2subj:
234 | self.obj2subj[o_obj] = [(o_prop, [o_subj])]
235 | # if subj entity already seen in the graph
236 | else:
237 | # we need to do something smart now
238 | # loop through all already added (prob, [subj]) tuples
239 | for i, (p, s) in enumerate(self.obj2subj[o_obj]):
240 | # if the prop already exists, append to the list of object
241 | if p == o_prop:
242 | propFound = True
243 | self.obj2subj[o_obj][i][1].append(o_subj)
244 | break
245 |
246 | # if the search failed, add a new (prop, [obj]) tuple
247 | if not propFound:
248 | self.obj2subj[o_obj].append((o_prop, [o_subj]))
249 |
250 |
251 | def delexicalize_text(self, advanced=False):
252 | """
253 | Apply delexicalization on text. Return delexicaled text.
254 | :para advanced: turn on advanced string similarity procedure
255 | (dtype: bool, default: False)
256 | """
257 | no_match_list = []
258 | original_text = ' '.join(re.sub('\s+',' ', self.lexicalization).split())
259 | delex_text = original_text
260 |
261 | # loop over each entity, find its match in the text
262 | for entity in self.entities.values():
263 | # flag var, set to True if the procedure finds a match
264 | matchFound = False
265 |
266 | # remove quotes from the entity string
267 | entity_str = entity.mlex_form.replace('"', '')
268 |
269 | # Simple text matching
270 | # 1. try exact matching 1258
271 | if entity_str in self.lexicalization:
272 | delex_text = delex_text.replace(entity_str,
273 | ' ' + entity.ID + ' ')
274 | matchFound = True
275 |
276 | # 2. try lowercased search 1122
277 | elif entity_str.lower() in self.lexicalization.lower():
278 | start_idx = delex_text.lower().find(entity_str.lower())
279 | end_idx = start_idx + len(entity_str)
280 |
281 | delex_text = delex_text[:start_idx] + ' ' \
282 | + entity.ID + ' ' + delex_text[end_idx + 1:]
283 | matchFound = True
284 |
285 | # 3. Try handling entities with the subtring (semanticType) 1006
286 | # e.g. Ballistic (comicsCharacter) --> Ballistic
287 | elif entity_str.endswith(')'):
288 | left_idx = entity_str.find('(')
289 |
290 | entity_str = entity_str[:left_idx].strip()
291 |
292 | if entity_str in self.lexicalization:
293 | delex_text = delex_text.replace(entity_str,
294 | ' ' + entity.ID + ' ')
295 | matchFound = True
296 |
297 |
298 | # if search succeeded, go to next entity, otherwise keep searching
299 | if matchFound or not advanced:
300 | continue
301 |
302 | # simple search not succeeded, do non-trivial text matching
303 | # 4. try date format handling
304 | if text_utils.is_date_format(entity_str):
305 | entity_ngrams = text_utils.find_ngrams(self.lexicalization)
306 |
307 | entity_ngrams = [text_utils.tokenize_and_concat(' '.join(ngram))
308 | for ngram in entity_ngrams]
309 |
310 | date_strings = [d_str for d_str in entity_ngrams
311 | if text_utils.is_date_format(d_str)]
312 |
313 | # sort data strings by length, get the longest match
314 | date_strings.sort(key=len, reverse=True)
315 |
316 | if date_strings:
317 | best_match = date_strings[0]
318 | delex_text = text_utils.tokenize_and_concat(delex_text)
319 | delex_text = delex_text.replace(best_match, ' ' + entity.ID + ' ')
320 |
321 | matchFound = True
322 |
323 | # 5. try abbreviation handling
324 | # if entity_str contains more than one capitalized word, try to find
325 | # a potential abbreviation of it in the text
326 | if len(text_utils.get_capitalized(entity_str)) > 1 and not matchFound:
327 | # from the entity string, make a list of possible abbreviations
328 | abbr_candidates = text_utils.generate_abbrs(entity_str)
329 | abbr_candidates.sort(key=len, reverse=True)
330 |
331 | # get a list of unigrams in the text sentence
332 | text_unigrams = text_utils.find_ngrams(self.lexicalization, N=1)
333 | text_unigrams = [' '.join(unigram) for unigram in text_unigrams]
334 |
335 | for abbr in abbr_candidates:
336 | # make sure candidate abbr contains more than 1 capital letter
337 | nCaps = len([c for c in abbr if c.isupper()])
338 |
339 | if abbr in text_unigrams and nCaps > 1: # SUCCESS
340 | print('before:', entity_str, abbr, delex_text)
341 | delex_text = delex_text.replace(abbr, ' ' + entity.ID + ' ')
342 | print('after:', entity_str, abbr, delex_text)
343 | matchFound = True
344 |
345 | # 6. try character-level string matching (last hope)
346 | if not matchFound:
347 | delex_text = text_utils.tokenize_and_concat(delex_text)
348 | best_match = text_utils.find_best_match(entity_str, delex_text)
349 |
350 | if best_match:
351 | delex_text = delex_text.replace(best_match,
352 | ' ' + entity.ID + ' ')
353 |
354 | matchFound = True
355 |
356 | if not matchFound:
357 | no_match_list.append((entity_str, self.lexicalization))
358 |
359 | final_delex = text_utils.tokenize_and_concat(delex_text)
360 |
361 | # make sure the text ends with a period
362 | final_delex = final_delex if final_delex[-1] == '.' else final_delex + ' .'
363 |
364 | return final_delex # , no_match_list
365 |
366 |
367 | def get_entityGraph(self):
368 | """
369 | Return a dict of entities and thier outgoing edges.
370 | """
371 | return self.subj2obj
372 |
373 |
374 | def linearize_graph(self, structured=False, incoming_edges=False):
375 | """
376 | Generate a linear sequence representing the graph from the triple set
377 | (flat sequence) or from the entity graphs (structured sequence).
378 | """
379 |
380 | if not structured:
381 | seq = ''
382 |
383 | # to generate a flat sequence, linearize rdf_triples
384 | for triple in self.o_rdf_triples:
385 | # extract nodes (entities) and edges (properties)
386 | subj = triple.subject
387 | obj = triple.object
388 | prop = triple.property
389 |
390 | seq = ' '.join(
391 | [
392 | seq,
393 | self.entities[subj].ID,
394 | self.entities[subj].stype,
395 | self.properties[prop].mlex_form,
396 | self.entities[obj].ID,
397 | self.entities[obj].stype,
398 | ]
399 | )
400 | else:
401 | # to generate a structured sequence, linearize entity graphs
402 | if incoming_edges:
403 | entityGraph = self.obj2subj
404 | else:
405 | entityGraph = self.subj2obj
406 |
407 | seq = '('
408 |
409 | for (attr, val) in entityGraph.items():
410 | seq = ' '.join([seq, '('])
411 | seq = ' '.join(
412 | [
413 | seq,
414 | self.entities[attr].ID,
415 | self.entities[attr].stype
416 | ]
417 | )
418 |
419 | for prop, obj_list in val:
420 | seq = ' '.join([seq, '(', self.properties[prop].mlex_form])
421 |
422 | for obj in obj_list:
423 | seq = ' '.join(
424 | [
425 | seq,
426 | '(',
427 | self.entities[obj].ID,
428 | self.entities[obj].stype,
429 | ')'
430 | ]
431 | )
432 | seq = ' '.join([seq, ')'])
433 | seq = ' '.join([seq, ')'])
434 | seq = ' '.join([seq, ')'])
435 |
436 | return seq.lstrip()
437 |
438 |
439 | def test():
440 | xml_str = """
441 | Donald Trump | birthPlace | USA
442 | USA | leaderName | Donald Trump
443 | USA | capital | Washington DC
444 | Donald Trump | spouse | Melania Knauss
445 | Melania Knauss | nationality | Slovenia
446 | Melania Knauss | nationality | USA
447 | Melania Knauss | birthDate | "1923-11-18"
448 | """
449 |
450 | otriple_set = et.fromstring(xml_str)
451 | mtriple_set = et.fromstring(xml_str)
452 |
453 | s = """Donald Trump was born in the United States of Amercia,
454 | the country where he later became the president . The captial of the US
455 | is Washington DC . Donald Trump 's wife , Melania Knauss , has two
456 | nationalities ; American and Slovenian . Melania was
457 | born on 18th of November 1923 .""".replace('\n', '')
458 |
459 | t_org = rdf_utils.Tripleset()
460 | t_org.fill_tripleset(otriple_set)
461 |
462 | t_mod = rdf_utils.Tripleset()
463 | t_mod.fill_tripleset(otriple_set)
464 |
465 | test_case = FactGraph(([t_org], t_mod), s)
466 |
467 | print('Properties: ', [*test_case.properties])
468 | print('Entities: ', [*test_case.entities])
469 | print('subj2obj Graph: ', test_case.subj2obj)
470 | print('obj2subj Graph: ', test_case.obj2subj)
471 | print('Linearization: ', test_case.linearize_graph())
472 | print('Strucutred [1]:',
473 | test_case.linearize_graph(structured=True))
474 | print('Strucutred [2]:',
475 | test_case.linearize_graph(structured=True, incoming_edges=True))
476 |
477 | delex = test_case.delexicalize_text(advanced=True)
478 | print('Lexicalisation:', delex)
479 |
480 | for p in test_case.properties.values():
481 | print(p.mlex_form, p.type_form, p.domain, p.range)
482 |
483 | assert test_case.entities.keys() == \
484 | {'Donald Trump', 'USA', 'Washington DC', 'Melania Knauss', \
485 | 'Slovenia', '"1923-11-18"'}, \
486 | "Test case failed! Entities do not match."
487 |
488 | assert test_case.properties.keys() == \
489 | {'leaderName', 'birthPlace', 'capital', 'spouse', 'nationality', 'birthDate'}, \
490 | "Test case failed! Properties do not match."
491 |
492 | assert test_case.subj2obj == \
493 | {'Donald Trump': [
494 | ('birthPlace', ['USA']),
495 | ('spouse', ['Melania Knauss'])
496 | ],
497 | 'USA': [
498 | ('leaderName', ['Donald Trump']),
499 | ('capital', ['Washington DC'])
500 | ],
501 | 'Melania Knauss': [
502 | ('nationality', ['Slovenia', 'USA']),
503 | ('birthDate', ['"1923-11-18"'])
504 | ]
505 | }, "Test case failed! entityGraph does not match."
506 |
507 | print('\nTesting SUCCESSFUL!')
508 |
509 | def main():
510 | test()
511 |
512 | if __name__ == '__main__':
513 | main()
514 |
515 |
516 | python generate_train_dataset.py -path ../challenge_data_train_dev/train -src_mode flat -src ../datasetsX/train.src -tgt ../datasetsX/train.tgt
517 |
--------------------------------------------------------------------------------
/metadata/entities.list:
--------------------------------------------------------------------------------
1 | "737"^^xsd:nonNegativeInteger
2 | 27367194
3 | Slavey_language
4 | American_Craftsman
5 | Arabic
6 | "1998-03-16"^^xsd:date
7 | "1928 PC"@en
8 | Magik_(rapper)
9 | Airports_Authority_of_India
10 | Iraqi_dinar
11 | "5.60937E8"^^
12 | Daniele_Zoratto
13 | "PR6031.O867"@en
14 | Saint_Anne,_Alderney
15 | Australia
16 | "Chopped Fruits, Sour Cream, Condensed Milk, Granola, Shredded Coconut, Raisins"@en
17 | Christian_alternative_rock
18 | "compressed rice cooked inbanana leafwith vegetables or minced meat fillings"
19 | "Acta Math. Hungar."@en
20 | Postmodern_architecture
21 | Taquirari
22 | "Concert and events venue"@en
23 | Tarō_Asō
24 | 57392246
25 | Alvis_Speed_25
26 | 23rd_Street_(Manhattan)
27 | Tejano
28 | Fall_Creek_Township,_Madison_County,_Indiana
29 | 1634:_The_Galileo_Affair
30 | "State Senate"@en
31 | United_Kingdom
32 | Illinois
33 | Jusuf_Kalla
34 | Hatchback
35 | "Dave Laughlin"@en
36 | "3500"^^xsd:nonNegativeInteger
37 | "8.3"^^xsd:double
38 | Orange_County,_California
39 | Central_Español
40 | 1962
41 | Folk_rock
42 | Alcatraz_Versus_the_Scrivener's_Bones
43 | Tranmere_Rovers_F.C.
44 | International_Tennis_Federation
45 | "23900"^^xsd:nonNegativeInteger
46 | "1872.69"^^xsd:double
47 | "Mark Desmond"@en
48 | FC_Tom_Tomsk
49 | Alvis_Speed_25__6
50 | "Lalbhai Dalpatbhai Campus, near CEPT University, opp. Gujarat University, University Road"@en
51 | Nigerian_Air_Force
52 | "Admin. Sci. Q."
53 | Paul_Gustavson
54 | "2000.0"^^
55 | Maya_Rudolph
56 | Levan_Khomeriki
57 | Roy_Thomas
58 | Kornelije_Kovač
59 | Visayas
60 | "121.92"^^xsd:double
61 | Warsaw
62 | "1927-07-23"^^xsd:date
63 | Russian_Football_National_League
64 | Jerry_Ordway
65 | "286.4526850031616"^^
66 | Pakistan
67 | Association_of_American_Universities
68 | 3000
69 | "83.82"^^xsd:double
70 | DeSoto_Custom
71 | "Amsterdamsche Football Club Ajax"@en
72 | 334
73 | Cornish_language
74 | S.S.D._Potenza_Calcio
75 | Aarhus_Airport
76 | "0236-5294"
77 | SV_Babelsberg_03
78 | "21.2"^^xsd:double
79 | Apollo_8
80 | Mamnoon_Hussain
81 | Church_of_Denmark
82 | Parliament_of_Catalonia
83 | "1982"^^xsd:gYear
84 | 2014–15_Bundesliga
85 | Frank_de_Boer
86 | "523.951"^^xsd:double
87 | AIDA_Cruises
88 | Harrietstown,_New_York
89 | "0-670-03380-4"
90 | Turkmenistan_Airlines
91 | Old_Man_Gloom
92 | "Cleveland, Ohio 44114"@en
93 | 1635:_The_Cannon_Law
94 | First_Vienna_FC
95 | Helmut_Jahn
96 | Monarchy_of_Denmark
97 | "Alkmaar Zaanstreek"@en
98 | Italians
99 | Alfred_Moore_Scales
100 | Cottage_cheese
101 | Battle_of_Gettysburg
102 | Sammy_Price
103 | Greeks
104 | Adams_Township,_Madison_County,_Indiana
105 | Runcorn_F.C._Halton
106 | Hardcover
107 | "1473-5571"
108 | Al-Khor_Sports_Club
109 | "Pennsylvania"@en
110 | Aleksandr_Prudnikov
111 | New_Hampshire
112 | "1911"^^xsd:gYear
113 | Abdul_Halim_of_Kedah
114 | Alderney
115 | Aberdeen
116 | "Michael Manley"@en
117 | "306.019"^^xsd:double
118 | Manitoba
119 | Nashville,_Tennessee
120 | ACF_Fiorentina
121 | "167.945"^^xsd:double
122 | "5700.0"^^xsd:double
123 | Ampara_District
124 | "Rear Admiral in the Argentine Navy"@en
125 | "7.9"^^
126 | Mid-Atlantic_Regional_Spaceport_Launch_Pad_0
127 | "1990"^^xsd:gYear
128 | "Türk Şehitleri Anıtı"@en
129 | "07/25"
130 | Vietnamese_language
131 | 3500
132 | Mulatu_Teshome
133 | Valery_Petrakov
134 | "27 June 2015 (JD2457200.5)"
135 | Ampara
136 | FC_Dinamo_Batumi
137 | "100305.0"^^
138 | "Jepson Way,"@en
139 | "3684.0"^^xsd:double
140 | Doug_Moench
141 | Into_Battle_(novel)
142 | "179.0"^^
143 | "60"^^xsd:positiveInteger
144 | FC_Zestafoni
145 | James_Pain
146 | Sumitra_Mahajan
147 | "STV"@en
148 | Maccabi_Tel_Aviv_B.C.
149 | George_Winkler
150 | Richard_A._Teague
151 | Irish_people
152 | Arlington,_Texas
153 | "39500.0"^^xsd:double
154 | Igorot_people
155 | "13017.0"(minutes)
156 | Drum_and_bass
157 | Prime_Minister_of_Azerbaijan
158 | Charles_Elkin_Mathews
159 | "192.0"^^xsd:double
160 | "32024459"
161 | Seattle
162 | Dan_Horrigan
163 | "13/31"
164 | "39"
165 | ALV_X-1
166 | Isaac_Rojas
167 | Derbyshire
168 | Raisin
169 | Sri_Lankan_rupee
170 | Max_Huiberts
171 | Fantasy_literature
172 | "1928 SJ"@en
173 | Georgian_architecture
174 | South_Capitol_Street
175 | Preußisch_Oldendorf
176 | "1773.0"^^xsd:double
177 | Danish_language
178 | A_Glastonbury_Romance
179 | Honda
180 | "04/22 'Oostbaan'"
181 | "1121.05"^^xsd:double
182 | 110_Lydia
183 | A.C._Lumezzane
184 | "1-56947-301-3"
185 | FC_Barcelona
186 | 1461102
187 | Cesena
188 | Abhandlungen_aus_dem_Mathematischen_Seminar_der_Universität_Hamburg
189 | Luanda
190 | French_people
191 | 737
192 | Beef_kway_teow
193 | Courcouronnes
194 | "1360-0443"
195 | Rochdale
196 | European_Parliament
197 | Black_Knight_(Dane_Whitman)
198 | Artur_Rasizade
199 | "Nationwide, also can be found in Malaysia and Singapore"@en
200 | "KABI"
201 | Eastern_Province,_Sri_Lanka
202 | Socialist_Republic_of_Serbia
203 | Shuvalan
204 | Palace_of_Westminster
205 | Ranil_Wickremesinghe
206 | Philippe_of_Belgium
207 | Defender_(association_football)
208 | 103_Colmore_Row
209 | "B.M. Reddy"@en
210 | Granola
211 | Iraq
212 | "Bimonthly"@en
213 | A-Rosa_Luna
214 | "125.28"^^xsd:double
215 | Folk_music_of_Ireland
216 | Giuseppe_Iachini
217 | 2014–15_North_West_Counties_Football_League
218 | "Breaz Valer Daniel"@en
219 | "Sold to the Netherlands 1 April 1948"
220 | Olympia,_Washington
221 | "Bread, almonds, garlic, water, olive oil"@en
222 | Hull_City_A.F.C.
223 | Death_metal
224 | Ajax_Youth_Academy
225 | Christmas_pudding
226 | Washington_(state)
227 | "682, 817,214, 469, 972"
228 | Prokopis_Pavlopoulos
229 | "1966-02-28"
230 | "545.897"^^xsd:double
231 | "Fish cooked in sour and hot sauce"
232 | Netherlands_national_football_team
233 | 3.9447e+07
234 | 159
235 | Anderson,_Indiana
236 | Abner_(footballer)
237 | Ministry_of_Economy,_Development_and_Tourism_(Greece)
238 | R.S.C._Anderlecht
239 | Germans
240 | 770404678
241 | Pickard_Chilton
242 | "1969-09-01"^^xsd:date
243 | Seminary_Ridge
244 | Jens_Härtel
245 | Navajo_language
246 | "400.0"^^
247 | "6.603633E9"^^
248 | SV_Werder_Bremen
249 | Sandesh_(confectionery)
250 | "1931"
251 | "Legion of Merit ribbon.svg"
252 | Riverside_Art_Museum
253 | "with metal joints (arranged in a straight line), spiral bevel fully floating back axle"
254 | "Chișinău, Moldova"@en
255 | "18.52"^^xsd:double
256 | Lufkin,_Texas
257 | "Yuzhnoye Design Bureau"@en
258 | DeSoto_Firedome
259 | France
260 | "1989-05-09"^^xsd:date
261 | Ahmedabad
262 | "17R/35L"
263 | Central_Denmark_Region
264 | "3684.12"^^xsd:double
265 | "2744.0"^^xsd:double
266 | Adam_McQuaid
267 | Stephen_Dilts
268 | Adirondack_Regional_Airport
269 | Olympiacos_F.C.
270 | Alpena_County_Regional_Airport
271 | "−7"
272 | Rafael_Viñoly
273 | Candombe
274 | "83646315"
275 | Ahmad_Kadhim_Assad
276 | 78771100
277 | "247.0"^^xsd:double
278 | "KACY"
279 | 1929
280 | Poales
281 | "1933-10-17"^^xsd:date
282 | Emile_Roemer
283 | "929.0"^^xsd:double
284 | Jack_Kirby
285 | "South Runway"
286 | SC_Wiener_Neustadt
287 | "Government of Addis Ababa"@en
288 | "2777.0"^^xsd:double
289 | Mexican_peso
290 | "28.0"^^
291 | 94
292 | "American Defense Service ribbon.svg"@en
293 | Dáil_Éireann
294 | "06/24 'Kaagbaan'"
295 | A_Long_Long_Way
296 | "5.0"^^
297 | "247.0"^^
298 | "318875313"
299 | "1998-07-21"^^xsd:date
300 | "1.524"^^xsd:double
301 | Roger_McKenzie_(comics)
302 | Alba_County
303 | Abdul_Rahman_Ya'kub
304 | Aaron_Turner
305 | Juan_Perón
306 | Iraq_national_under-23_football_team
307 | The_Secret_Scripture
308 | Wheeler,_Texas
309 | "Rome, Italy"@en
310 | Hays_County,_Texas
311 | "1509.98"^^xsd:double
312 | Augustus_Pugin
313 | Reidsville,_North_Carolina
314 | Pork_belly
315 | Henry_Clay
316 | Paul_Ryan
317 | Airbus_Group
318 | Pound_sterling
319 | 2014–15_Lega_Pro
320 | Valentina_Matviyenko
321 | Curitiba
322 | "American Motors Matador"@en
323 | 2014–15_A_EPSTH,_Greece
324 | Italy_national_football_team
325 | Opelika,_Alabama
326 | Mikulov
327 | Pop_music
328 | Accrington
329 | Addis_Ababa
330 | "8.0"^^xsd:double
331 | "April 2014"
332 | "A.E Dimitra Efxeinoupolis"@en
333 | "1901-03-04"^^xsd:date
334 | Estadio_Jorge_Calero_Suárez
335 | Asser_Levy_Public_Baths
336 | Mumbai
337 | ENAIRE
338 | "and all-syncromesh, centre change lever, open tubular propellor shaft"
339 | Verona
340 | "5600.0"^^xsd:double
341 | Anaheim,_California
342 | Felipe_González
343 | "30.0"^^
344 | "1/19"
345 | County_of_Tyrol
346 | Humphrys,_Tennant_and_Dykes
347 | Telangana
348 | Albuquerque_City_Council
349 | Giovanni_Bertone
350 | "UT Austin, B.S. 1955"
351 | 2.79142e+11
352 | New_York_City
353 | United_States_Ambassador_to_Norway
354 | Alaa_Abdul-Zahra
355 | 107_Camilla
356 | El_Salvador_national_football_team
357 | "967.435"^^xsd:double
358 | 4.14e+06
359 | "16.55"^^
360 | National_Hockey_League
361 | "ASCQAG"@en
362 | Stadio_Pietro_Barbetti
363 | Community_of_Madrid
364 | Alfons_Gorbach
365 | Guitar
366 | "88.0"^^xsd:double
367 | ELA-3
368 | Dave_Laughlin
369 | "Supermini"@en
370 | Basil
371 | "1966"^^xsd:gYear
372 | "2014-10-28"^^xsd:date
373 | A_Loyal_Character_Dancer
374 | Arem-arem
375 | "Alan LaVern Bean"@en
376 | "noodles,porkorgans,vegetables,chicken,shrimp,beef"
377 | "Associazione Calcio Lumezzane SpA"@en
378 | A.F.C._Fylde
379 | Makis_Voridis
380 | Supermini
381 | Niger_State
382 | "15/33"
383 | "1999-05-29"^^xsd:date
384 | Swiss_Psalm
385 | Thomas_Doll
386 | Yugoslavia
387 | Malay_Peninsula
388 | "\"Squeezed\" or \"smashed\" fried chicken served with sambal"@en
389 | The_Wildweeds
390 | Simon_&_Schuster
391 | (19255)_1994_VK8
392 | Bloomsbury
393 | Dallas
394 | "1.2E8"^^
395 | "30843.8"^^xsd:double
396 | Provincial_Assembly_of_the_Punjab
397 | "05L/23R"
398 | Kingdom_of_Sarawak
399 | Saskatchewan
400 | Gujarat_Legislative_Assembly
401 | "Bo Bibbowski"@en
402 | Parliament_of_the_United_Kingdom
403 | Nigerian_Army
404 | 4.59723e+07
405 | C.D._Águila
406 | "Amsterdamsche Football Club Ajax Amateurs"@en
407 | "1856"^^xsd:gYear
408 | "Nationwide in Singapore and Indonesia"@en
409 | Mike_Akhigbe
410 | "James Pain and George Richard Pain,"@en
411 | Aaron_Boogaard
412 | RoPS
413 | Royal_Artillery
414 | "Drake Stevens"@en
415 | Colwyn_Bay_F.C.
416 | Alvah_Sabin
417 | "214.0"^^xsd:double
418 | Laurales
419 | Kurdish_languages
420 | Soup
421 | Glen_Ridge,_New_Jersey
422 | Göttingen
423 | Zvi_Sherf
424 | "609"
425 | Dance-pop
426 | C.D._FAS
427 | Travis_County,_Texas
428 | Penguin_Random_House
429 | "5.3"^^xsd:double
430 | "Vincent H. Crespi, Bernard S. Gerstman, A.T. Charlie Johnson, Masaaki Tanaka, Enge G. Wang"@en
431 | New_Mexico_House_of_Representatives
432 | Soviet_Union_national_football_team
433 | Ayam_penyet
434 | AFC_Ajax_N.V.
435 | "09L/27R"
436 | Elliot_See
437 | South_Region,_Brazil
438 | "18.0"^^
439 | "1411.0"^^xsd:double
440 | 3.11291e+07
441 | Ministry_of_Health,_Welfare_and_Sport_(Netherlands)
442 | The_Grantville_Gazette
443 | Real_Madrid_C.F.
444 | Italy_national_under-16_football_team
445 | Aleksandre_Guruli
446 | 69618
447 | Asian_South_Africans
448 | PSV_Eindhoven
449 | Alianza_F.C.
450 | Blackpool_F.C.
451 | 8002
452 | Wolf_Solent
453 | Jakarta
454 | Al_Anderson_(NRBQ)
455 | Adam_Holloway
456 | "252000.0"^^
457 | Battle_of_the_Wilderness
458 | Mayor_of_Stamford,_Connecticut
459 | Malaysian_Indian
460 | Houston_Texans
461 | Genoa
462 | Akeem_Dent
463 | "Fort Campbell, KY, raised in Dothan, AL"@en
464 | Thames,_New_Zealand
465 | Acura_TLX__10
466 | Dale,_Wisconsin
467 | Adare
468 | Rear_admiral
469 | Ground_beef
470 | Bury_F.C.
471 | 1634:_The_Baltic_War
472 | Alcobendas
473 | Margrethe_II_of_Denmark
474 | "2013-04-21"^^xsd:date
475 | "Admin. Sci. Q."@en
476 | "AMAHE9"
477 | 2011_PDL_season
478 | "657/714"
479 | "52.0"^^
480 | Bacon_sandwich
481 | Juan_Afara
482 | Black_metal
483 | "1868-09-07"^^xsd:date
484 | Cape_Canaveral_Air_Force_Station
485 | Benitoite
486 | "2001-03-01"^^xsd:date
487 | Chocolate
488 | "2"
489 | 507
490 | DuPage_County,_Illinois
491 | Synthpop
492 | "72.0"^^xsd:double
493 | Baked_Alaska
494 | Jacob_Zuma
495 | "94.0"^^xsd:double
496 | Audi_A1__5
497 | "1974-08-01"
498 | Wizards_at_War
499 | 1904
500 | Bundelkhand
501 | Tacoma,_Washington
502 | "3.8"^^xsd:double
503 | Abdulsalami_Abubakar
504 | Indian_people
505 | "0.0473"^^
506 | Sponge_cake
507 | "25.0"^^xsd:double
508 | Daniel_Webster
509 | "Retired"@en
510 | Livorno
511 | "ABI"@en
512 | SV_Werder_Bremen_II
513 | Khalid_Mahmood_(British_politician)
514 | "900.074"^^xsd:double
515 | Dead_Man's_Plack
516 | Bandeja_paisa
517 | Abner_W._Sibal
518 | "345.948"^^xsd:double
519 | Indian_rupee
520 | FSV_Zwickau
521 | Vandenberg_Air_Force_Base
522 | Brandon,_Manitoba
523 | "911.0"^^xsd:double
524 | "2004-07-14"^^xsd:date
525 | "Edwin Eugene Aldrin Jr."
526 | "4.8"^^xsd:double
527 | Abraham_A._Ribicoff
528 | Otkrytiye_Arena
529 | Mahé,_India
530 | Labour_Party_(UK)
531 | "100"^^xsd:nonNegativeInteger
532 | Broadcasting_House
533 | Plastik_Mak
534 | Carrarese_Calcio
535 | "3300.0"^^xsd:double
536 | Adonis_Georgiadis
537 | China
538 | New_Mexico_Territory
539 | Solanales
540 | Indonesian_rupiah
541 | SK_Rapid_Wien
542 | Computer_science
543 | "10R/28L"
544 | Audi_A1__3
545 | Federal_Chancellor_of_Switzerland
546 | "Associazione Calcio ChievoVerona S.r.l."@en
547 | Porius:_A_Romance_of_the_Dark_Ages
548 | Abilene_Regional_Airport
549 | Duncan_Rouleau
550 | "184.099"^^xsd:double
551 | Turkmenistan
552 | BBC
553 | "SLK"@en
554 | "2158-3226"
555 | Jinnah_International_Airport
556 | "0.02"^^
557 | "noodles, pork organs, vegetables, chicken, shrimp, beef"@en
558 | "Acta Palaeontol. Pol."@en
559 | "45644811"
560 | "5000"^^xsd:nonNegativeInteger
561 | Deram_Records
562 | Ferencvárosi_TC
563 | "~700"@en
564 | Sidcup
565 | "2743.0"^^xsd:double
566 | "75.324"^^
567 | Soul_music
568 | "2701.75"^^xsd:double
569 | Fried_egg
570 | "3746.66"^^xsd:double
571 | Aston_Martin_DBS
572 | DeSoto_(automobile)
573 | "SAGE Publications for the Samuel Curtis Johnson Graduate School of Management, Cornell University"@en
574 | American_Locomotive_Company
575 | 1.40159e+08
576 | "Benjamin Urich"@en
577 | Brazilians_in_Japan
578 | Anderson_Township,_Madison_County,_Indiana
579 | AC_Hotel_Bella_Sky_Copenhagen
580 | Trenton,_New_Jersey
581 | "5.2395158233968E8"^^
582 | John_Roberts
583 | 1101_Clematis
584 | Gadzhi_Gadzhiyev
585 | Soho_Press
586 | "61.8744"^^xsd:double
587 | Austin_Fernando
588 | "Member of theCongress of Deputies"
589 | "64.008"^^xsd:double
590 | "and"@en
591 | "1200000.0"^^
592 | Garlic
593 | Technical_Institute,_Kaduna
594 | Bozo_the_Iron_Man
595 | Administrative_Science_Quarterly
596 | Georgia,_Vermont
597 | Ampara_Hospital
598 | Christian_Burns
599 | The_Horns_of_Happiness
600 | "24.9936"^^xsd:double
601 | "ATISET"@en
602 | "3.04 m"@en
603 | "Acta Math. Hungar."
604 | "746.0"^^xsd:double
605 | "1978"
606 | "Onion, garlic, black pepper, chili"@en
607 | Spaceport_Florida_Launch_Complex_36
608 | "2013-03-11"^^xsd:date
609 | "265.0"^^
610 | List_of_counties_in_Texas
611 | Batak
612 | "Bread and bacon, with a condiment, often ketchup or brown sauce"@en
613 | Parkersburg,_West_Virginia
614 | Aaron_Hunt
615 | Logan_Township,_Fountain_County,_Indiana
616 | "512 & 737"
617 | Almond
618 | Malaysia
619 | Poland
620 | "ADICE5"@en
621 | Mexican_Spanish
622 | Udinese_Calcio
623 | House_of_Representatives_(Netherlands)
624 | Alan_Frew
625 | "3/21"
626 | Tyrol_(state)
627 | "1872"^^xsd:gYear
628 | "North Wall Quay"@en
629 | "292"^^xsd:positiveInteger
630 | "1998-07-21"
631 | Ashgabat_International_Airport
632 | Spain
633 | "179.0"^^xsd:double
634 | 3
635 | Atatürk_Monument_(İzmir)
636 | "4.41092E8"^^
637 | Collin_County,_Texas
638 | "Deceased"
639 | Twilight_(band)
640 | Hailemariam_Desalegn
641 | "45"^^xsd:positiveInteger
642 | Paul_Kupperberg
643 | "Ground beef, tapioca, noodle, rice vermicelli, beef broth, kailan, celery, salted vegetables, fried shallots"@en
644 | 4.41092e+11
645 | Lettuce
646 | Dodge
647 | Finns
648 | 2.046e+08
649 | Turkish_lira
650 | "AZAL Peşəkar Futbol Klubu"@en
651 | "4150"^^xsd:nonNegativeInteger
652 | Paperback
653 | "2.5498957060815E8"^^
654 | Brussels
655 | Marriott_International
656 | Dothan,_Alabama
657 | "120770.0"^^
658 | "1981.5"^^xsd:double
659 | "18L/36R"
660 | Motherwell_F.C.
661 | Guarania_(music)
662 | 2014–15_Azerbaijan_Premier_League
663 | England
664 | "173.52"^^xsd:double
665 | 1634:_The_Ram_Rebellion
666 | Salem,_Oregon
667 | "30.0"^^xsd:double
668 | Magdalene_College,_Cambridge
669 | "2989.0"^^xsd:double
670 | "Mayor of Stamford, Connecticut"
671 | Torino_F.C.
672 | Yuzhnoye_Design_Office
673 | Colombian_cuisine
674 | "Lambien"@en
675 | Ahmet_Ertegun
676 | Washington,_D.C.
677 | "23.0"^^xsd:double
678 | "1981-02-04"^^xsd:date
679 | "issues II, III, IV, V and VI"@en
680 | "4.3717E8"^^
681 | Paraguay
682 | Unione_Triestina_2012_S.S.D.
683 | Bhangra_(music)
684 | Joseph_Stalin
685 | K-W_United_FC
686 | Cooking_plantain
687 | "2702.0"^^xsd:double
688 | Academy_of_Comic_Book_Arts
689 | Andrew_the_Apostle
690 | Vermont's_3rd_congressional_district
691 | "3.7124E8"^^
692 | Native_Americans_in_the_United_States
693 | "6.120048890337E8"^^
694 | "Brussels, Belgium"@en
695 | "185.42"^^
696 | Columbus,_Ohio
697 | Haarlemmermeer
698 | "2009-06-01"^^xsd:date
699 | HIV
700 | "2.0"^^
701 | FC_Terek_Grozny
702 | A.S._Livorno_Calcio
703 | "734"
704 | Peter_Laird
705 | "Roland Desmond"@en
706 | "7.62"^^xsd:double
707 | Banana_leaf
708 | J._P._McManus
709 | Fort_Worth,_Texas
710 | "Annie Dunne"@en
711 | "Jorge Humberto Rodríguez"@en
712 | "from Connecticut's 4th district"@en
713 | Arròs_negre
714 | "Volkswagen Polo Mk5"@en
715 | Franklin_County,_Pennsylvania
716 | Georgia_(U.S._state)
717 | "Thomas Pallesen"@en
718 | Parliamentary_group_leader
719 | 404
720 | FK_Austria_Wien
721 | Alan_Tudyk
722 | "Associazione Sportiva Gubbio 1910 Srl"@en
723 | Serie_D
724 | SV_Germania_Schöneiche
725 | Hohne
726 | Greater_Manchester
727 | New_Democracy_(Greece)
728 | Purple_finch
729 | Sheikh_Russel_KC
730 | "2003.0"^^xsd:double
731 | "1972"^^xsd:gYear
732 | Paris_Cullins
733 | Clyde_F.C.
734 | 6.86088e+08
735 | Federal_Assembly_(Switzerland)
736 | "Bronze"@en
737 | "2009"
738 | 1097_Vicia
739 | "9800.0"^^xsd:double
740 | Madison,_Wisconsin
741 | 5000
742 | "Ground beef,tapioca,noodle, ricevermicelli, beefbroth, kailan,celery, salted vegetables, fried shallots"
743 | Steel_Azin_F.C.
744 | Chicharrón
745 | Stanislaw_Tillich
746 | Faber_and_Faber
747 | 102372
748 | "5.57"^^
749 | "1913"^^xsd:gYear
750 | Alvis_Speed_25__2
751 | Big_Hero_6_(film)
752 | "347.1"^^
753 | "210.312"^^xsd:double
754 | "1818.0"^^xsd:double
755 | "233"^^xsd:positiveInteger
756 | Coconut_milk
757 | Tom_Lyle
758 | Armin_van_Buuren
759 | Aaron_Bertram
760 | "Hüseyin Bütüner and Hilmi Güner"@en
761 | Kingdom_of_France
762 | Olive_oil
763 | Chiang_Kai-shek
764 | Parc_Olympique_Lyonnais
765 | Linn_County,_Oregon
766 | Frangipane
767 | Turkmenbashi_International_Airport
768 | "814"^^xsd:nonNegativeInteger
769 | "497.0"^^xsd:double
770 | "The Mechanics,"@en
771 | Cleveland
772 | 7.03959e+08
773 | Greek_language
774 | Javanese_cuisine
775 | Christopher_Taylor_(politician)
776 | Abdul_Taib_Mahmud
777 | "1868-08-15"^^xsd:date
778 | Campeonato_Brasileiro_Série_C
779 | Bangalore
780 | Italian_meal_structure
781 | 60
782 | "0-7156-3648-0"
783 | Inuktitut
784 | Lockheed_C-130_Hercules
785 | Punjab,_Pakistan
786 | Trinidad_and_Tobago_national_under-20_football_team
787 | B._V._Doshi
788 | Coupé
789 | Arctech_Helsinki_Shipyard
790 | William_Anders
791 | "45000.0"^^
792 | Aleksander_Barkov,_Jr.
793 | "2439.01"^^xsd:double
794 | "2006"^^xsd:gYear
795 | Vajubhai_Vala
796 | Italy
797 | 2.96521e+11
798 | Alberto_Teisaire
799 | "Minister for Health"
800 | Vica
801 | John_Wiley_&_Sons
802 | "August 27, 2011 (JD2455800.5)"
803 | "3"^^xsd:positiveInteger
804 | Bucharest
805 | 1981
806 | Nigerian_Navy
807 | Antioquia_Department
808 | Darien,_Connecticut
809 | Limerick_City_and_County_Council
810 | Rock_music
811 | Bolt_(DC_Comics)
812 | 8.82343e+10
813 | "1941-07-03"^^xsd:date
814 | "17068.8"^^
815 | Pure_mathematics
816 | Vietnamese_people_in_Japan
817 | Austrian_People's_Party
818 | Lockheed_AC-130
819 | "Deputy Parliamentary Spokesman ofPopular Orthodox Rally"
820 | Airman_(comics)
821 | "896.0"^^xsd:double
822 | "United States Air Force"@en
823 | "Indonesia and Malaysia"@en
824 | Albert_B._White
825 | "Lucky Ajax"@en
826 | "1500"^^xsd:nonNegativeInteger
827 | Annie_Dunne
828 | Alison_O'Donnell
829 | "1995"^^xsd:gYear
830 | Singapore
831 | "08/26"
832 | 230
833 | 137
834 | 2014–15_Regionalliga
835 | Brazil
836 | Chinese_cuisine
837 | Julia_Morgan
838 | "1.905"^^xsd:double
839 | Marousi
840 | Abu_Zahar_Ujang
841 | Kent
842 | Katowice
843 | 210
844 | Ponteareas
845 | "Big Hero 6(2014)"
846 | Pleasant_Township,_Steuben_County,_Indiana
847 | Jonathan_Mendelsohn
848 | English_Americans
849 | Hessisch_Oldendorf
850 | "Metapán, El Salvador"@en
851 | Alderney_Airport
852 | Iraq_national_football_team
853 | "Isidro Metapán"@en
854 | "Larry Bolatinsky"@en
855 | Alfredo_Zitarrosa
856 | Essex_County,_New_Jersey
857 | "--03-16"^^xsd:gMonthDay
858 | "8.3 m"@en
859 | "88.392"^^xsd:double
860 | "333.0"^^xsd:double
861 | F._Vilas
862 | Elizabeth_II
863 | Ximo_Puig
864 | "7.08"^^xsd:double
865 | Carroll_County,_Maryland
866 | Ohio
867 | "Denzil Antonio"@en
868 | "St. Benedict's Monastery, Adisham, Haputhale, Sri Lanka"@en
869 | History_of_the_St._Louis_Rams
870 | "1-4-2 Nakadori"@en
871 | 60040714
872 | "2005-05-05"^^xsd:date
873 | Robert_Gates
874 | Marry_Banilow
875 | Malik_Muhammad_Rafique_Rajwana
876 | Retrovirus
877 | "Kway teow , beef tenderloin, gula Melaka ,sliced, dried black beans, garlic, dark soy sauce, lengkuas , oyster sauce, soya sauce, chilli and sesame oil"@en
878 | Stadio_Marc'Antonio_Bentegodi
879 | Lancia_Thema
880 | Billy_Iuso
881 | 1955_Dodge
882 | "248"^^xsd:positiveInteger
883 | Palo_Seco
884 | Marysville,_Ohio
885 | "3400.0"^^xsd:double
886 | Nu_metal
887 | Najib_Razak
888 | Polish_language
889 | Military_Cross
890 | Gene_Colan
891 | "1989-01-01"^^xsd:date
892 | "597.0"^^xsd:double
893 | 5.54e+07
894 | Malaysian_Malay
895 | "-3.3528"^^xsd:double
896 | "1299.0"^^xsd:double
897 | French_language
898 | Bill_Oddie
899 | South_Africa
900 | "144.7"^^
901 | People's_Party_(Spain)
902 | "Member of theTexas State SenatefromDistrict 4(Port Arthur)"
903 | "62145.25893504"^^
904 | "52.0"(minutes)
905 | Cornell_University
906 | Michael_Tinkham
907 | Arabian_Sea
908 | "1923-11-18"^^xsd:date
909 | "June 1981"@en
910 | Atlanta_Falcons
911 | "895.807"^^xsd:double
912 | Romania
913 | AWH_Engineering_College
914 | Valencian_Community
915 | 2001
916 | "100000.0"^^xsd:double
917 | Paneer
918 | Agnes_Ward_White
919 | "546.0"^^xsd:double
920 | "Deputy Minister for Development, Competitiveness and Shipping"
921 | "President"@en
922 | "13.1064"^^xsd:double
923 | United_States_invasion_of_Panama
924 | "131.5998858742825"^^
925 | Milonga_(music)
926 | Jamie_Chung
927 | Scott_Adsit
928 | "3000"^^xsd:nonNegativeInteger
929 | "211.0"^^
930 | 103_Hera
931 | Aurakles
932 | "1974-03-04"^^xsd:date
933 | Association_for_Computing_Machinery
934 | Rice
935 | "Indonesia, derived from Chinese meat ball"@en
936 | "0567-7920"
937 | General_Dynamics_F-16_Fighting_Falcon
938 | A.S.D._Licata_1931
939 | Apiaceae
940 | "January 2009"
941 | Bacon
942 | A.S._Roma
943 | "250"^^xsd:nonNegativeInteger
944 | Julius_Springer
945 | North_West_Counties_Football_League
946 | "2003.45"^^xsd:double
947 | Batumi
948 | "2214.98"^^xsd:double
949 | Birmingham
950 | Atlas_II
951 | Onion
952 | Madrid
953 | Gérard_Larcher
954 | "−8"@en
955 | "Pakora and other fritters made from wheat or corn flour"@en
956 | President_of_Turkey
957 | "Balder Odinson"@en
958 | "2899.87"^^xsd:double
959 | 32024459
960 | Price_Daniel
961 | St._Louis
962 | Héctor_Numa_Moraes
963 | 2.58222e+08
964 | Matteo_Renzi
965 | "Blue, White and Orange"@en
966 | John_Digweed
967 | "AIP Adv."
968 | Allama_Iqbal_International_Airport
969 | Amarillo,_Texas
970 | "ACF Fiorentina S.p.A."@en
971 | Alexander_L._Wolf
972 | Rover_Company
973 | Aristóteles_Sandoval
974 | Aarhus
975 | "Chief of Defence Staff"
976 | "877.0"^^xsd:double
977 | "2009-10-02"^^xsd:date
978 | "Ground almond, jam, butter, eggs"@en
979 | Eva_Perón
980 | "1987-09-27"^^xsd:date
981 | "1971-07-01"^^xsd:date
982 | Sweden
983 | "1855-05-31"^^xsd:date
984 | 765
985 | "368.65"^^
986 | Karnataka
987 | Honda_Accord
988 | 25
989 | 1976
990 | Universal_Records_(defunct_record_label)
991 | The_Star-Spangled_Banner
992 | "2.16"^^xsd:double
993 | Al-Zawra'a_SC
994 | "10000"^^xsd:nonNegativeInteger
995 | "01461102"
996 | Boston
997 | Sheldon_Moldoff
998 | Populous_(company)
999 | "4/22"
1000 | Uruguayan_Primera_División
1001 | California_State_Legislature
1002 | Arese
1003 | Sami_languages
1004 | "360"^^xsd:positiveInteger
1005 | 2014–15_Topklasse
1006 | "Governor of Texas"@en
1007 | Hook_'em_(mascot)
1008 | "1202.846"^^
1009 | "978-0-15-204770-2"
1010 | Disco
1011 | "7.66"^^xsd:double
1012 | "900.0"^^xsd:double
1013 | Luxury_vehicle
1014 | Susana_Díaz
1015 | Euroleague
1016 | Baduy
1017 | "80002709"
1018 | Uruguay
1019 | Cook_County,_Illinois
1020 | "47.8536"^^xsd:double
1021 | Allan_Shivers
1022 | "Asphalt/Concrete"
1023 | "265.15"^^
1024 | N._R._Pogson
1025 | "Tomatoes, red chili, garlic, olive oil"@en
1026 | V12_engine
1027 | Suburban_Legends
1028 | Ridgewood,_Queens
1029 | Dublin
1030 | Ab_Klink
1031 | "3-speed automatic"
1032 | İstanbulspor_A.Ş.
1033 | Malaysian_Chinese
1034 | Philippine_English
1035 | San_Francisco_Bay_Area
1036 | Aston_Martin_Vantage
1037 | 17023
1038 | Electric_guitar
1039 | "837080.744"^^
1040 | "5.7"^^
1041 | Sumac_(band)
1042 | The_Grantville_Gazettes
1043 | Lotus_Eaters_(band)
1044 | Albany,_Oregon
1045 | Bakewell_pudding
1046 | Galicia_(Spain)
1047 | "Member of the Connecticut Senate from the 26th District"@en
1048 | "69618"^^xsd:nonNegativeInteger
1049 | Akita_Prefecture
1050 | Al_Kharaitiyat_SC
1051 | Alan_Bean
1052 | "APGPAC"
1053 | Japan
1054 | "1986-10-12"^^xsd:date
1055 | "185.0"^^
1056 | Sago
1057 | "Red granite and white marble"@en
1058 | Habbaniyah
1059 | "2439.0"^^xsd:double
1060 | "0.0348"^^
1061 | "0-439-92550-9"
1062 | "111483.648"^^
1063 | "PS3523.E55 S4 1982"@en
1064 | United_States_Air_Force
1065 | "50"^^xsd:positiveInteger
1066 | "DeMarce short stories in the"@en
1067 | "0965-2140"
1068 | "UTAA"
1069 | 34
1070 | "11/29"
1071 | "1963"^^xsd:gYear
1072 | Khadija_Arib
1073 | Gangsta_rap
1074 | "1935"^^xsd:gYear
1075 | FC_Kuban_Krasnodar
1076 | "→ Sampdoria"@en
1077 | "Atlanta, Georgia"@en
1078 | American_Journal_of_Mathematics
1079 | FC_Karpaty_Lviv
1080 | "3500.0"^^xsd:double
1081 | "singer, Reality television judge"@en
1082 | Berliner_AK_07
1083 | Malay_cuisine
1084 | "Helmut Jahn"@en
1085 | Kimberly,_Wisconsin
1086 | Andrews_County,_Texas
1087 | Andrew_White_(musician)
1088 | FC_Torpedo_Moscow
1089 | 1878
1090 | La_Paz,_Iloilo_City
1091 | "159.106"^^xsd:double
1092 | "1932-03-15"
1093 | Mark_Sixma
1094 | Tamil_language
1095 | "1999"^^xsd:gYear
1096 | Chinese_language
1097 | "Shuvalan, Baku, Azerbaijan"@en
1098 | Gran_Asunción
1099 | "1732-2421"
1100 | Acta_Palaeontologica_Polonica
1101 | Connecticut_Huskies
1102 | "Print"@en
1103 | Batagor
1104 | Greece
1105 | "solo_singer"@en
1106 | County_Limerick
1107 | Sarawak
1108 | 11264_Claudiomaccone
1109 | "Singapore and Indonesia"@en
1110 | "120.0"^^
1111 | 2
1112 | "V8"@en
1113 | "4000.0"^^xsd:double
1114 | Akeem_Adams
1115 | (29075)_1950_DA
1116 | Al-Amin_Daggash
1117 | Belgrade
1118 | Floating_World_Records
1119 | Ketchup
1120 | George_MacDonald
1121 | "Istanbul, Turkey"@en
1122 | 2011
1123 | 1._FC_Köln
1124 | "Edwin E. Aldrin, Jr."@en
1125 | Cyril_Ramaphosa
1126 | "Maryland"@en
1127 | Atlantic_City_International_Airport
1128 | 211
1129 | New_Jersey
1130 | "111484.0"^^xsd:double
1131 | Leeds_United_F.C.
1132 | AWD_(vehicle)
1133 | 1955_Dodge__2
1134 | Warner_Music_Group
1135 | "490.9"^^
1136 | United_States_Congress
1137 | "Port Authority of New York and New Jersey & SJTA"@en
1138 | French_Guiana
1139 | "Blackpool"@en
1140 | Alexandria,_Indiana
1141 | 1999
1142 | 2.88749e+11
1143 | Port_Authority_of_New_York_and_New_Jersey
1144 | "1987"^^xsd:gYear
1145 | "Clerk"@en
1146 | Lentivirus
1147 | Blackburn_Rovers_F.C.
1148 | "3453.0"^^xsd:double
1149 | "1296.654601076267"^^
1150 | "93645978"
1151 | Veikkausliiga
1152 | Apollo_14
1153 | Republic_of_Ireland
1154 | 1910
1155 | "Ottoman Army soldiers killed in the Battle of Baku"@en
1156 | "Member of theConnecticut Senatefrom the26th District"
1157 | Premier_Development_League
1158 | "1 June 2009"
1159 | Trinidad_and_Tobago_national_football_team
1160 | Vigor_Lamezia
1161 | Al_Asad_Airbase
1162 | "Ahri'ahn"@en
1163 | "2006-12-31"^^xsd:date
1164 | Ahmet_Davutoğlu
1165 | "512"^^xsd:positiveInteger
1166 | (66391)_1999_KW4
1167 | Christian_Heinrich_Friedrich_Peters
1168 | 6.15591e+12
1169 | Mathematics
1170 | Nikos_Voutsis
1171 | ".Asherton, Texas"@en
1172 | 100
1173 | 10000
1174 | "Eric Flint, Virginia DeMarce, et al."@en
1175 | U.S._Città_di_Palermo
1176 | Spanish–American_War
1177 | Ram_Naik
1178 | "I6"@en
1179 | Celery
1180 | "HOK SVE"@en
1181 | "1080-6377"
1182 | Danes
1183 | "1980-04-23"^^xsd:date
1184 | Sergey_Sobyanin
1185 | Auburn,_Alabama
1186 | 250
1187 | FC_Amkar_Perm
1188 | "0.0252"^^
1189 | Manhattan
1190 | 1983
1191 | "Am. J. Math."
1192 | Adare_Manor
1193 | DeKalb_County,_Georgia
1194 | Taro
1195 | "1099.0"^^xsd:double
1196 | "95040.0"^^xsd:double
1197 | "Joden , Godenzonen"@en
1198 | Shirley,_Derbyshire
1199 | Andrews_County_Airport
1200 | Angola_International_Airport
1201 | Sardar_Ayaz_Sadiq
1202 | Coloured
1203 | Northbrook,_Illinois
1204 | Shiitake
1205 | Aston_Martin_RHAM/1
1206 | "1907-07-11"^^xsd:date
1207 | Opel_Vectra
1208 | "9450994531"^^xsd:decimal
1209 | Aenir
1210 | A.C._Chievo_Verona
1211 | Chili_pepper
1212 | A.C._Cesena
1213 | Arianespace
1214 | Apple
1215 | Aston_Martin_V8__1
1216 | Doris_Bures
1217 | "1.1E8"^^
1218 | Magistrate
1219 | "1989"^^xsd:gYear
1220 | Burbank,_California
1221 | Lieutenant_colonel
1222 | 27250
1223 | U.S._Route_83
1224 | Jones_County,_Texas
1225 | "AGR"
1226 | Iraq_national_under-20_football_team
1227 | Silvano_Aureoles_Conejo
1228 | 1._FC_Union_Berlin
1229 | Ajoblanco
1230 | "Dane Whitman"@en
1231 | A_Severed_Wasp
1232 | "3.048"^^xsd:double
1233 | Shabab_Al-Ordon_Club
1234 | "Steve Bright"@en
1235 | Battle_of_Mine_Run
1236 | "VAM Classic"@en
1237 | "14R/32L"
1238 | Fighter_pilot
1239 | "Voice, bodhrán, percussion, autoharp"@en
1240 | "18L/36R 'Aalsmeerbaan'"
1241 | Gale_Brewer
1242 | Civil_Aviation_Authority_of_New_Zealand
1243 | "Parti Pesaka Bumiputera Bersatu"@en
1244 | Lamborghini
1245 | BBC_Radio
1246 | Standard_Chinese
1247 | Spata
1248 | "Stellendam, Netherlands"@en
1249 | Hip_hop_music
1250 | "978-1-4165-4253-7"
1251 | Cubanelle
1252 | "Associazione Sportiva Roma S.p.A."@en
1253 | Aleksandra_Kovač
1254 | 320_South_Boston_Building
1255 | Erasmus_University_Rotterdam
1256 | "1947-01-21"^^xsd:date
1257 | Florida_Panthers
1258 | "1983-10-03"^^xsd:date
1259 | Elizabeth_Garrett
1260 | Johns_Hopkins_University
1261 | John_Madin
1262 | Styria
1263 | "0-439-17684-0"
1264 | Bionico
1265 | Amdavad_ni_Gufa
1266 | 618
1267 | 250_Delaware_Avenue
1268 | "3048.0"^^xsd:double
1269 | Italy_national_under-17_football_team
1270 | Montevideo
1271 | Tapioca
1272 | "fried fish dumpling with tofu and vegetables inpeanut sauce"
1273 | Banjo
1274 | Europe
1275 | "Two door coupé"@en
1276 | Fuad_Masum
1277 | Siege_of_Petersburg
1278 | Ernie_Colón
1279 | "Petrol"@en
1280 | Houston
1281 | "1856-09-22"^^xsd:date
1282 | Andrew_Mitchell
1283 | Arrondissement_of_Antwerp
1284 | "14L/32R"
1285 | Jazz
1286 | German_language
1287 | Democratic_Labour_Party_(Brazil)
1288 | 4.862e+08
1289 | Prince_Edward_Island
1290 | "Warm (freshly baked) or cold"
1291 | "France, United States or China"@en
1292 | "AAIDBI"@en
1293 | Grantville_Gazette_II
1294 | "1987-02-27"^^xsd:date
1295 | 4.79343e+11
1296 | 2158
1297 | Walter_Baade
1298 | College_of_William_&_Mary
1299 | 2015_Campeonato_Brasileiro_Série_C
1300 | Balder_(comics)
1301 | "1923 OAA907 XC"@en
1302 | 1995
1303 | "1533.0"^^xsd:double
1304 | Tab_Benoit
1305 | Ethiopia
1306 | Chicago
1307 | Andreea_Bălan
1308 | Secretary_of_State_of_Vermont
1309 | "Nationwide in Indonesia, also popular in neighboring Southeast Asian countries"@en
1310 | "5.20906E8"^^
1311 | Irlam_Town_F.C.
1312 | Patrick_McLoughlin
1313 | S.S._Robur_Siena
1314 | 16000
1315 | A_Wizard_of_Mars
1316 | Gruppo_Bertone
1317 | "/"@en
1318 | South_Jersey_Transportation_Authority
1319 | "1121.0"^^xsd:double
1320 | Germans_of_Romania
1321 | Honey
1322 | "4019.09"^^xsd:double
1323 | AIDAstella
1324 | Columbus_Blue_Jackets
1325 | Mendrisio
1326 | "1904"^^xsd:gYear
1327 | Frank_Borman
1328 | "62145.3"^^xsd:double
1329 | Philippines
1330 | Ace_Wilder
1331 | Round_Rock,_Texas
1332 | "Hot"
1333 | Squid
1334 | "Paris, New York or Hong Kong"@en
1335 | "1974-08-01"^^xsd:date
1336 | Akron_Summit_Assault
1337 | "140000.0"^^
1338 | Lemon
1339 | "~500"@en
1340 | "1985"
1341 | Bhajji
1342 | "1.9304"^^xsd:double
1343 | Vladimir_Putin
1344 | 1996
1345 | "1981"^^xsd:gYear
1346 | Public_Square,_Cleveland
1347 | "ASB"
1348 | 1985
1349 | 1.83309e+08
1350 | Netherlands_national_under-17_football_team
1351 | "1995"
1352 | Station_wagon
1353 | "Asociación Deportiva"@en
1354 | Electronic_music
1355 | Abel_Hernández
1356 | Bakewell_tart
1357 | "336265"^^xsd:nonNegativeInteger
1358 | "Hugh Hazzard"@en
1359 | "Bhaji, bajji"@en
1360 | Lars_Løkke_Rasmussen
1361 | Peñarol
1362 | "320"^^xsd:positiveInteger
1363 | Japanese_occupation_of_British_Borneo
1364 | Aaron_Deer
1365 | "47487.6"^^xsd:double
1366 | "2014-07-13"^^xsd:date
1367 | Minna
1368 | Argentina
1369 | "1580.7"^^xsd:double
1370 | Asherton,_Texas
1371 | Club_sandwich
1372 | Colmore_Row
1373 | Oregon
1374 | Vermont
1375 | "1927"
1376 | "87000823"
1377 | McDonnell_Douglas_F-15_Eagle
1378 | Arts_and_Crafts_movement
1379 | Summit_County,_Ohio
1380 | ADO_Den_Haag
1381 | Fruits_de_Mer_Records
1382 | "2003"^^xsd:gYear
1383 | "compressed rice cooked in banana leaf with vegetables or minced meat fillings"@en
1384 | "Newport Pagnell, Buckinghamshire, England, United Kingdom"@en
1385 | Purple_Heart
1386 | Head_South_By_Weaving
1387 | Edmund_J._Davis
1388 | Invasion_of_Grenada
1389 | Airbus_Defence_and_Space
1390 | Greater_St._Louis
1391 | T._S._Thakur
1392 | Ícolo_e_Bengo
1393 | Netherlands
1394 | American_submarine_NR-1
1395 | Springfield,_Illinois
1396 | Paleobiology
1397 | Istanbul
1398 | Bobina
1399 | Adisham_Hall
1400 | Uruguayans
1401 | Operation_Enduring_Freedom
1402 | "1950"^^xsd:gYear
1403 | Roy_D._Chapin,_Jr.
1404 | "Universitas Apulensis"@en
1405 | British_Arabs
1406 | Acta_Mathematica_Hungarica
1407 | "210.0"^^xsd:double
1408 | Arrow_(comics)
1409 | "506.882"^^xsd:double
1410 | 512
1411 | Adolfo_Suárez_Madrid–Barajas_Airport
1412 | NRBQ
1413 | Asilomar_State_Beach
1414 | Aleksandr_Tukmanov
1415 | Autoharp
1416 | "57392246"
1417 | Rome
1418 | "Tomatoes, guanciale, cheese , olive oil"@en
1419 | Lansing,_Michigan
1420 | "Member of theHellenic Parliament"
1421 | Moscow
1422 | World_War_I
1423 | "non_performing_personnel"
1424 | "Secretary of State of Vermont"
1425 | "3.73513E8"^^
1426 | West_Roxbury
1427 | Tadao_Ando
1428 | Prime_Minister_of_Romania
1429 | "22"^^xsd:positiveInteger
1430 | Fir_Park
1431 | "2.5977670247055E8"^^
1432 | "4349.0"^^xsd:double
1433 | Azerbaijan_Premier_League
1434 | "AFIT, M.S. 1962"
1435 | 1988
1436 | Albert_Jennings_Fountain
1437 | Albany,_Georgia
1438 | 1._FC_Magdeburg
1439 | Bacon_Explosion
1440 | Rock_and_roll
1441 | "Technical Institute, Kaduna"@en
1442 | City_manager
1443 | Audi_A1
1444 | 1.85e+09
1445 | Bananaman
1446 | "2004-01-22"^^xsd:date
1447 | 1.35589e+08
1448 | "500.15"^^
1449 | Ariane_5
1450 | Virtuti_Militari
1451 | "Samuda Brothers Cubitt Town, London"@en
1452 | Progressive_metal
1453 | "733.044"^^xsd:double
1454 | Democratic_Party_(United_States)
1455 | "86.4"^^xsd:double
1456 | University_of_Texas_at_Austin
1457 | "1200.0"^^xsd:double
1458 | George_Brenner
1459 | Convertible
1460 | "4.6"^^xsd:double
1461 | Sociology
1462 | "Edwin Eugene Aldrin Jr."@en
1463 | "Vice-President of New Democracy"@en
1464 | Four_World_Trade_Center
1465 | "0.0482"^^
1466 | Socialist_Party_(Netherlands)
1467 | "1932-07-27"^^xsd:date
1468 | Alba
1469 | Blue
1470 | Derbyshire_Dales
1471 | "164.0"^^
1472 | "2007-03-30"^^xsd:date
1473 | Putrajaya
1474 | 5
1475 | Errata,_Mississippi
1476 | Cleveland_City_Council
1477 | "10L/28R"
1478 | "VIAG"
1479 | "Medium expendable launch system"@en
1480 | "481248.0"^^xsd:double
1481 | Finland
1482 | Críona_Ní_Dhálaigh
1483 | "7900.0"^^xsd:double
1484 | Brazil_national_under-20_football_team
1485 | Adam_Koc
1486 | Alligator_Records
1487 | "76798317"
1488 | "Aurakles"@en
1489 | "2193.95"^^xsd:double
1490 | Al_Khor
1491 | Arrabbiata_sauce
1492 | Indian_Air_Force
1493 | White_people
1494 | Kevin_Eastman
1495 | Robert_A._Heinlein
1496 | 1960
1497 | Massimo_Drago
1498 | 51969173
1499 | Japanese_people
1500 | Brandon_Sanderson
1501 | Barack_Obama
1502 | Alfred_Giles_(architect)
1503 | Eric_Flint
1504 | Flanders
1505 | West_Germany
1506 | Sludge_metal
1507 | Claude_Bartolone
1508 | 6573
1509 | Alex_Day
1510 | Newport_Pagnell
1511 | "101 Ukrop Way"@en
1512 | Guadalajara
1513 | "1.337"^^xsd:double
1514 | Hungary
1515 | Mestizo
1516 | "Kuttikkattoor"@en
1517 | George_H._W._Bush
1518 | "Governor of Connecticut"@en
1519 | Rolls-Royce_Holdings
1520 | "1817.83"^^xsd:double
1521 | "2009-12-18"^^xsd:date
1522 | Addis_Ababa_City_Hall
1523 | "1046-8188"
1524 | Garth_Nix
1525 | "910.742"^^xsd:double
1526 | "2988.87"^^xsd:double
1527 | Eagle_Award_(comics)
1528 | VfL_Wolfsburg
1529 | Madeleine_L'Engle
1530 | Mindanao
1531 | Steuben_County,_Indiana
1532 | "Am. J. Math."@en
1533 | "SBCT"
1534 | "Tampere, Finland"@en
1535 | "170.0"^^xsd:double
1536 | "(Location of airport in Turkmenistan)"
1537 | Rashid_Rakhimov
1538 | Poaceae
1539 | "1988-11-22"^^xsd:date
1540 | "Barisan Ra'ayat Jati Sarawak"@en
1541 | 1862
1542 | "1588-2632"
1543 | Labour_Party_(Argentina)
1544 | Stanford_University
1545 | Belgium
1546 | "125800.0"^^
1547 | "700"^^xsd:nonNegativeInteger
1548 | "AIP Adv."@en
1549 | "Marv Wolfman"@en
1550 | "AIT"@en
1551 | "265.0"^^xsd:double
1552 | Alternative_rock
1553 | "165.0"^^
1554 | "India"@en
1555 | Avant-garde_metal
1556 | (410777)_2009_FD
1557 | Chicken
1558 | "Dodge Coronet"@en
1559 | Arion_(comics)
1560 | "3999.89"^^xsd:double
1561 | "4387.0"^^
1562 | "4.8"^^
1563 | Lewis_Nockalls_Cottingham
1564 | Monocotyledon
1565 | Gubbio
1566 | "Warm or cold"@en
1567 | Polydor_Records
1568 | "505, 575"
1569 | James_W._Reid_(politician)
1570 | Punk_rock
1571 | "57059226"
1572 | Vandenberg_AFB_Space_Launch_Complex_2
1573 | "Retired"
1574 | "1988"
1575 | Jesús_Casillas_Romero
1576 | 1_Decembrie_1918_University,_Alba_Iulia
1577 | "ORAA"
1578 | "Universitas Aarhusiensis"@en
1579 | Arepa
1580 | 11_Diagonal_Street
1581 | "Al Anbar Province, Iraq"@en
1582 | ACM_Transactions_on_Information_Systems
1583 | "53502"^^xsd:nonNegativeInteger
1584 | Mexico_City
1585 | "2002-12-05"^^xsd:date
1586 | AZAL_Arena
1587 | "Rome"@en
1588 | "A894 VA; A904 VD;"@en
1589 | "1558-2868"
1590 | Lee_County,_Alabama
1591 | 3678
1592 | "3800.86"^^xsd:double
1593 | W_Connection_F.C.
1594 | Austria-Hungary
1595 | "~173 K"@en
1596 | Gabriela_Michetti
1597 | 280
1598 | "1862"
1599 | "for Gravesham"@en
1600 | Spanish_Socialist_Workers'_Party
1601 | Metapán
1602 | Kate_Hardie
1603 | House_of_Low_Culture
1604 | Sri_Jayawardenepura_Kotte
1605 | "3800.0"^^xsd:double
1606 | Juventus_F.C.
1607 | Georgia_national_under-21_football_team
1608 | Susana_Mendoza
1609 | "January 2009"@en
1610 | 3.449e+08
1611 | 3180
1612 | The_Fylde
1613 | Pecorino_Romano
1614 | "Knightsbridge, London"@en
1615 | "47290"^^xsd:nonNegativeInteger
1616 | "89646863"
1617 | Conservative_Party_of_Canada
1618 | "167.94"^^xsd:double
1619 | Texas
1620 | Princeton_University
1621 | Washtenaw_County,_Michigan
1622 | Chrysler
1623 | Tony_Tan
1624 | "880000.0"^^xsd:double
1625 | Kendall_County,_Texas
1626 | Basim_Qasim
1627 | "APN"@en
1628 | Horacio_Rodríguez_Larreta
1629 | "6.7"^^
1630 | British_Hong_Kong
1631 | "NWC, M.A. 1957"
1632 | "2011-08-27"^^xsd:date
1633 | Contra_Costa_County,_California
1634 | "Airbus Defence and Space for"@en
1635 | Audi_A1__4
1636 | Addiction
1637 | Arifin_Zakaria
1638 | Korean_War
1639 | Abraham_Lincoln
1640 | U.S._Castrovillari_Calcio
1641 | "Adams, Fall Creek, Lafayette, Richland, Union"@en
1642 | "1932-03-15"^^xsd:date
1643 | Malays_(ethnic_group)
1644 | "0-7653-0633-6"
1645 | "-71.0"^^
1646 | Cephalopod_ink
1647 | 1955_Dodge__5
1648 | Acura_TLX
1649 | Mid-size_car
1650 | B._Zellner
1651 | Lippincott_Williams_&_Wilkins
1652 | Gordon_Marsden
1653 | Tony_Hall,_Baron_Hall_of_Birkenhead
1654 | Akeem_Ayers
1655 | "39371"^^xsd:nonNegativeInteger
1656 | "3090.0"^^xsd:double
1657 | 93645978
1658 | "1857-03-03"^^xsd:date
1659 | Ireland
1660 | Springer_Science+Business_Media
1661 | Dessert
1662 | Point_Fortin
1663 | 1987
1664 | Sulaiman_Abdul_Rahman_Taib
1665 | Pierce_County,_Washington
1666 | Rosids
1667 | Carpi_F.C._1909
1668 | Dick_Dillin
1669 | 200_Public_Square
1670 | Graz
1671 | Alexis_Tsipras
1672 | "202.0"^^
1673 | Battle_of_Salem_Church
1674 | Fried_chicken
1675 | Essex_County,_New_York
1676 | NASA
1677 | Justicialist_Party
1678 | "13017.0"^^
1679 | Delfino_Pescara_1936
1680 | Connecticut
1681 | "13.18"^^xsd:double
1682 | Siniša_Mihajlović
1683 | Cuyahoga_County,_Ohio
1684 | Americans
1685 | White_rice
1686 | "9953.28"^^xsd:double
1687 | "City Administrator"@en
1688 | Angola
1689 | Coventry
1690 | Catalonia
1691 | "600.151"^^xsd:double
1692 | Java
1693 | "93.8784"^^xsd:double
1694 | "9.8"^^
1695 | Whiskey_Rebellion
1696 | Barrow_A.F.C.
1697 | Cornell_Big_Red
1698 | Albert_E._Austin
1699 | Ankara
1700 | "609.6"^^xsd:double
1701 | Bread
1702 | Italian_language
1703 | 2988
1704 | Scotland_national_under-19_football_team
1705 | Ann_Arbor,_Michigan
1706 | Anyang_Halla
1707 | AIP_Advances
1708 | "388"^^xsd:positiveInteger
1709 | Lega_Pro
1710 | "2005-11-26"^^xsd:date
1711 | T&TEC_Sports_Club
1712 | Post-metal
1713 | Maiden_Castle_(novel)
1714 | 19238
1715 | American_Motors
1716 | California_State_Assembly
1717 | Chesterfield_F.C.
1718 | "hot"
1719 | Chrysler_Newport
1720 | Mellow_Candle
1721 | Euro
1722 | Quattro_GmbH
1723 | Jorge_Humberto_Rodríguez
1724 | "Asser Levy Place and East 23rd Street"@en
1725 | Rona_Fairhead
1726 | Banyumasan_people
1727 | "33.8328"^^xsd:double
1728 | Virtus_Entella
1729 | "30 March 2007"
1730 | Boston_Bruins
1731 | Psychedelia
1732 | "Kelvin Mao"@en
1733 | "3990.0"^^xsd:double
1734 | "Rutland Arms, Bakewell, in 1820"@en
1735 | United_States_House_of_Representatives
1736 | Athens_International_Airport
1737 | Steve_Bright
1738 | "Punjab, Pakistan"@en
1739 | FC_Samtredia
1740 | Joe_Biden
1741 | Pietro_Canonica
1742 | "12R/30L"
1743 | 546
1744 | Orthoretrovirinae
1745 | Flowering_plant
1746 | "279.806"^^xsd:double
1747 | O_Canada
1748 | 45644811
1749 | Alan_Martin_(footballer,_born_1989)
1750 | "4100.0"^^xsd:double
1751 | Audi_A1__2
1752 | Faversham
1753 | Sergio_Mattarella
1754 | Æthelwald,_Ealdorman_of_East_Anglia
1755 | "211.0"^^xsd:double
1756 | Casey_Ribicoff
1757 | "Asphalt"@en
1758 | Peanut_sauce
1759 | 1959
1760 | Schiphol_Group
1761 | "50000"^^xsd:nonNegativeInteger
1762 | Baghdad
1763 | "Demak Jaya, Jalan Bako, Kuching, Sarawak"@en
1764 | "2013-03-17"^^xsd:date
1765 | Grozny
1766 | Brutalist_architecture
1767 | Amar_Osim
1768 | Cyrus_Vance,_Jr.
1769 | "359.64"^^xsd:double
1770 | Dave_Challinor
1771 | Romanesque_Revival_architecture
1772 | Afonso_Pena_International_Airport
1773 | Inkpot_Award
1774 | Voice_of_the_Wetlands_All-Stars
1775 | 4150
1776 | Qarabağ_FK
1777 | 7202
1778 | "Dr. G. P. Prabhukumar"@en
1779 | Potter_County,_Texas
1780 | Gulf_War
1781 | Steven_T._Seagle
1782 | Hearst_Castle
1783 | Four-stroke_engine
1784 | Dieter_Hecking
1785 | Historic_districts_in_the_United_States
1786 | 20
1787 | "Gram flour, vegetables"@en
1788 | Agra_Airport
1789 | "Governor of North Carolina"
1790 | "1989-02-24"^^xsd:date
1791 | FC_Rubin_Kazan
1792 | Front-engine_design
1793 | FC_Alania_Vladikavkaz
1794 | Bethesda,_Maryland
1795 | Kuching
1796 | Boeing_C-17_Globemaster_III
1797 | Carl_A._Wirtanen
1798 | "0.0"^^
1799 | 2.83326e+11
1800 | Radboud_University_Nijmegen
1801 | 1955_Dodge__4
1802 | "4-speedautomatic(ZF 4HP18QE)"
1803 | John_van_den_Brom
1804 | Airey_Neave
1805 | Acehnese_people
1806 | Frederick_County,_Maryland
1807 | John_Geering
1808 | "Warton, Fylde, Lancashire"@en
1809 | Randall_County,_Texas
1810 | 23
1811 | "1971-07-01"
1812 | Alexandria,_Virginia
1813 | "*\n* at stern stabilizers."@en
1814 | 1080
1815 | "Aarhus, Denmark"@en
1816 | 2014–15_Eredivisie
1817 | Hong_Kong
1818 | "Member of the House of Representatives"
1819 | Norbert_Lammert
1820 | Madison_County,_Indiana
1821 | Uttar_Pradesh
1822 | "0.0925"^^
1823 | Frederick,_Maryland
1824 | Coatbridge
1825 | "Nationwide in Indonesia, but more specific to Java"@en
1826 | Austrian_German
1827 | HAL_Light_Combat_Helicopter
1828 | "929.03"^^xsd:double
1829 | Scotland_national_under-21_football_team
1830 | 3.52497e+11
1831 | Eastern_Provincial_Council
1832 | Aaron_S._Daggett
1833 | Wilfred_R._Cousins,_Jr.
1834 | "64512.0"^^xsd:double
1835 | Olusegun_Obasanjo
1836 | Filipinos_in_Japan
1837 | Andrew_Rayel
1838 | Douglas_R._Oberhelman
1839 | Perth
1840 | "ASPHALT"@en
1841 | FC_Spartak_Moscow
1842 | "49805501"
1843 | Conservative_Party_(UK)
1844 | 20_Fenchurch_Street
1845 | "3746.66"^^
1846 | Big_12_Conference
1847 | "0.0999"^^xsd:double
1848 | Alex_Tyus
1849 | "2"^^xsd:nonNegativeInteger
1850 | Gus_Poyet
1851 | Alfred_Garth_Jones
1852 | "1873.0"^^xsd:double
1853 | "3078.48"^^xsd:double
1854 | Maple_Ridge_Township,_Alpena_County,_Michigan
1855 | Attica,_Indiana
1856 | Manchester
1857 | Allan_Sandage
1858 | Irish_language
1859 | Carles_Puigdemont
1860 | Sumatra
1861 | Asian_Canadians
1862 | Lauraceae
1863 | Amharic
1864 | "27367194"
1865 | San_Sebastián_de_los_Reyes
1866 | F.C._Bari_1908
1867 | A.F.C._Blackpool
1868 | John_Sánchez
1869 | "1850.0"^^
1870 | A_Fortress_of_Grey_Ice
1871 | Mondelez_International
1872 | Aarhus_University,_School_of_Business_and_Social_Sciences
1873 | "0-374-26131-8"
1874 | North_Wall,_Dublin
1875 | Staten_Island
1876 | Brown_sauce
1877 | 1.7e+06
1878 | Tirstrup
1879 | "2195.0"^^xsd:double
1880 | April_O'Neil
1881 | Andrews,_Texas
1882 | Dwight_D._Eisenhower
1883 | Sony_Music_Entertainment
1884 | Leon_Trotsky
1885 | Ahora_Madrid
1886 | Banana
1887 | Ryan_Potter
1888 | Asunción
1889 | Jan_Duursema
1890 | "Bryning Lane"@en
1891 | HOK_(firm)
1892 | 2014–15_Serie_A
1893 | "535.0"^^xsd:double
1894 | "December 31, 2006 (JD2454100.5)"
1895 | Miri,_Malaysia
1896 | 2014–15_Russian_Premier_League
1897 | "1875-03-04"^^xsd:date
1898 | "3.0"^^
1899 | Oladipo_Diya
1900 | "3.9"^^
1901 | 50
1902 | "63800.0"^^
1903 | "Wiley-Blackwell on behalf of the Society for the Study of Addiction"@en
1904 | Real_Zaragoza
1905 | Shumai
1906 | "500.0"^^
1907 | "60336.0"^^xsd:double
1908 | "518.16"^^xsd:double
1909 | "2009"^^xsd:gYear
1910 | "448"^^xsd:positiveInteger
1911 | "Texas"@en
1912 | Castle_(novel)
1913 | Dianne_Feinstein
1914 | Estádio_Municipal_Coaracy_da_Mata_Fonseca
1915 | 63
1916 | Portugal_national_football_team
1917 | "AFC Ajax NV"@en
1918 | "2215.0"^^xsd:double
1919 | Jefferson_Davis
1920 | "Massachusetts Institute of Technology, Sc.D. 1963"@en
1921 | Flemish_Region
1922 | 300_North_LaSalle
1923 | "ACM Trans. Inf. Syst."@en
1924 | "Wrecked"
1925 | Genoa_C.F.C.
1926 | "American"@en
1927 | Rosales
1928 | Indie_rock
1929 | 49805501
1930 | Singing
1931 | Aston_Martin
1932 | Palo_Seco_Velodrome
1933 | Jorge_Orosmán_da_Silva
1934 | Superleague_Greece
1935 | Daniel_Gould_Fowle
1936 | Bill_Everett
1937 | David_Scott
1938 | Austin,_Texas
1939 | "Edwin E. Aldrin, Jr."
1940 | 1963
1941 | "18.0"^^xsd:double
1942 | 57059226
1943 | FC_Dynamo_Moscow
1944 | "2776.73"^^xsd:double
1945 | Alvis_Speed_25__3
1946 | New_Mexico
1947 | "Armin Van Buuren, Bobina, Mark Sixma, Jonathan Mendelsohn, Christian Burns, Jwaydan, Alexander Popov, Jano, Alexandre Bergheau, Jonny Rose, Sylvia Tosun, Lira Yin, Alexandra Badoi"@en
1948 | Alvis_Car_and_Engineering_Company
1949 | "783.1"^^xsd:double
1950 | "Radboud University Nijmegen"@en
1951 | Alessio_Romagnoli
1952 | "Indonesia"@en
1953 | Noodle
1954 | Guanciale
1955 | "Flemish department of Mobility and Public Works"@en
1956 | "672"^^xsd:positiveInteger
1957 | Fort_Campbell
1958 | "1421.2"^^xsd:double
1959 | "2014.0"^^xsd:double
1960 | Kaliber_44
1961 | Acoustic_music
1962 | Newark,_New_Jersey
1963 | "Association Football Club Blackpool"@en
1964 | 75
1965 | "1927-07-23"
1966 | Greater_Los_Angeles_Area
1967 | 2009
1968 | Vila_Nova_Futebol_Clube
1969 | "A919 HA; 1927 WB;"@en
1970 | Helsinki
1971 | Francis_G._Slay
1972 | Viking_Press
1973 | "70634"^^xsd:nonNegativeInteger
1974 | Mason_School_of_Business
1975 | Massachusetts
1976 | "7/25"
1977 | Kourou,_French_Guiana
1978 | "1995-09-02"^^xsd:date
1979 | "20"^^xsd:positiveInteger
1980 | "MAT"@en
1981 | "East Link Bridge"@en
1982 | House_music
1983 | Puerto_Ricans
1984 | Battle_of_France
1985 | Rolando_Maran
1986 | Munster
1987 | Wellington
1988 | "Tomatoes,red chili,garlic,olive oil"
1989 | "December 2008"@en
1990 | 14th_New_Jersey_Volunteer_Infantry_Monument
1991 | Stockholm
1992 | Gram_flour
1993 | "AFIT, M.S. 1962"@en
1994 | Pakora
1995 | Sparta_Rotterdam
1996 | "AAIDBI"
1997 | Sergey_Belyavsky
1998 | "1239.35"^^xsd:double
1999 | Don_Sweeney
2000 | "90.72"^^xsd:double
2001 | "1.621640918388E8"^^
2002 | Asher_and_Mary_Isabelle_Richardson_House
2003 | Agustín_Barboza
2004 | Blackpool
2005 | Albuquerque,_New_Mexico
2006 | Boris_Johnson
2007 | Efxeinoupoli
2008 | 83646315
2009 | John_F._Kennedy
2010 | Diemen
2011 | "June 1981"
2012 | Olympique_Lyonnais
2013 | Austria
2014 | "0-439-17685-9"
2015 | 6.81e+06
2016 | "12/30"
2017 | "→ Tom Tomsk"@en
2018 | Chameleon_Circuit_(band)
2019 | "3799.94"^^xsd:double
2020 | Williamsburg,_Virginia
2021 | Minangkabau_people
2022 | Folk_music
2023 | Ticino
2024 | Solanum
2025 | "16000"^^xsd:nonNegativeInteger
2026 | Diesel-electric_transmission
2027 | Erie_County,_New_York
2028 | "523.9"^^xsd:double
2029 | Albert_Uderzo
2030 | Kill_Rock_Stars
2031 | "~10000"@en
2032 | Al-Shamal_Sports_Club
2033 | Liberal_Democrats
2034 | Accrington_Stanley_F.C.
2035 | Berlin
2036 | "1976"
2037 | Ilocano_people
2038 | "1-4165-2060-0"
2039 | Bill_Marriott
2040 | Little_Chute,_Wisconsin
2041 | 600
2042 | Brooklyn
2043 | "16.86"^^
2044 | "488160.0"^^xsd:double
2045 | "1958"^^xsd:gYear
2046 | "170.28"^^xsd:double
2047 | Minotaur_IV
2048 | "733.0"^^xsd:double
2049 | Singapore_dollar
2050 | Jean-Michel_Aulas
2051 | C._Woods
2052 | "202.15"^^
2053 | "4.75426E8"^^
2054 | "1965-01-03"^^xsd:date
2055 | Mendoza,_Argentina
2056 | "600"^^xsd:nonNegativeInteger
2057 | "Urban, ,\nIn Soldevanahalli, Acharya Dr. Sarvapalli Radhakrishnan Road, Hessarghatta Main Road, Bangalore – 560090."@en
2058 | Kaiser_Chiefs
2059 | "Aarhus Lufthavn A/S"@en
2060 | Crewe_Alexandra_F.C.
2061 | "806"
2062 | "18C/36C 'Zwanenburgbaan'"
2063 | "3499.71"^^xsd:double
2064 | Left_Ecology_Freedom
2065 | Brian_Robertson_(trombonist)
2066 | National_Assembly_(Azerbaijan)
2067 | English_football_league_system
2068 | "24.0"^^xsd:double
2069 | Finnish_language
2070 | "Nurturing Excellence"@en
2071 | "November 26, 2005 (JD2453700.5)"
2072 | Atlantic_City,_New_Jersey
2073 | Warton,_Fylde
2074 | Nottingham
2075 | 3XN
2076 | FC_Sachsen_Leipzig
2077 | Aston_Martin_V8
2078 | Karl_Kesel
2079 | Lancashire
2080 | 1961
2081 | Abilene,_Texas
2082 | René_Goscinny
2083 | Spacewatch
2084 | Christian_Democratic_Appeal
2085 | American_Civil_War
2086 | Marysville_Auto_Plant
2087 | 657
2088 | Knightsbridge
2089 | Addis_Ababa_Stadium
2090 | "540000.0"^^xsd:double
2091 | Stadio_Dino_Manuzzi
2092 | Christian_Panucci
2093 | Red
2094 | Flemish_Government
2095 | Brasília
2096 | Bebi_Dol
2097 | "E11"@en
2098 | Walt_Disney_Studios_Motion_Pictures
2099 | "0.0068"^^xsd:double
2100 | Redefine_Properties_Limited
2101 | Chief_of_the_Astronaut_Office
2102 | "268.0"^^xsd:double
2103 | Gary_Cohn_(comics)
2104 | "Georgia"@en
2105 | Fulton_County,_Georgia
2106 | Pietro_Grasso
2107 | Greenville,_Wisconsin
2108 | Baymax
2109 | Rahm_Emanuel
2110 | 1964
2111 | Manuel_Valls
2112 | 1928
2113 | Alpharetta,_Georgia
2114 | Don_Tripp
2115 | "4099.86"^^xsd:double
2116 | Alfa_Romeo_164
2117 | Auron_(comics)
2118 | Byron_Brown
2119 | "UT Austin, B.S. 1955"@en
2120 | Tomato
2121 | "18R/36L 'Polderbaan'"
2122 | AZAL_PFK
2123 | John_Buscema
2124 | Wiley-Blackwell
2125 | "Governor of North Carolina"@en
2126 | Rabadash_Records
2127 | "4348.89"^^xsd:double
2128 | "17.92"^^
2129 | Len_Wein
2130 | "12"^^xsd:positiveInteger
2131 | "1219.0"^^xsd:double
2132 | "0001-8392"
2133 | Turkmenabat_Airport
2134 | National_League_North
2135 | Chorizo
2136 | Don_Guardian
2137 | Josef_Klaus
2138 | Apium
2139 | "Ralph Payne"@en
2140 | A.T._Charlie_Johnson
2141 | Chinatown,_San_Francisco
2142 | Auckland
2143 | Dimmit_County,_Texas
2144 | "November 4, 2013"
2145 | Physics
2146 | Daniel_Martínez_(politician)
2147 | Grenadier_Guards
2148 | 13123
2149 | "140000.0"^^xsd:double
2150 | Rock_(geology)
2151 | Adams_County,_Pennsylvania
2152 | "22.86"^^xsd:double
2153 | Shehbaz_Sharif
2154 | Shinzō_Abe
2155 | 814
2156 | "Arts and Crafts Movement and American craftsman Bungalows"@en
2157 | U.C._Sampdoria
2158 | Anders_Osborne
2159 | "610.0"^^xsd:double
2160 | New_England_Patriots
2161 | Spanish_language
2162 | Mexicans
2163 | Bloomington,_Maryland
2164 | Phil_Lesh_and_Friends
2165 | Beef
2166 | 2014–15_Football_League_(Greece)
2167 | Chelsea_F.C.
2168 | Monocacy_National_Battlefield
2169 | "Sri Lanka"@en
2170 | 12
2171 | Groton,_Connecticut
2172 | Damon_Wayans,_Jr.
2173 | Vegetable
2174 | 1036_Ganymed
2175 | Ithaca,_New_York
2176 | Solanaceae
2177 | Canada
2178 | Gujarat
2179 | New_Douglas_Park
2180 | Ducati
2181 | Sedan_(automobile)
2182 | A_EPSTH_2nd_GROUP
2183 | Pork
2184 | 45
2185 | Dutch_language
2186 | BLT
2187 | "28.0"^^xsd:double
2188 | Wee_Giant
2189 | "1983"
2190 | "ACM Trans. Inf. Syst."
2191 | Sycamore,_Illinois
2192 | 1.42e+07
2193 | "Legion of Merit ribbon.svg"@en
2194 | Paracuellos_de_Jarama
2195 | 9001
2196 | "74.3326587666432"^^
2197 | "United States representatives"@en
2198 | Athens
2199 | 5300
2200 | Akihito
2201 | Leinster
2202 | Alfred_N._Phillips
2203 | Cumberland_County,_Pennsylvania
2204 | Cuttlefish
2205 | Alhambra_(1855)
2206 | "Faversham, Kent, England"@en
2207 | "1.55"^^xsd:double
2208 | Eagle_(automobile)
2209 | 1480153
2210 | Commelinids
2211 | Indonesia
2212 | Diane_Duane
2213 | Alex_Plante
2214 | "16/34"
2215 | Weymouth_Sands
2216 | Harcourt_(publisher)
2217 | "Jon Valor"@en
2218 | Al-Taqaddum_Air_Base
2219 | Ska_punk
2220 | "173.0"^^
2221 | Shrimp
2222 | Bird
2223 | Baku
2224 | 2.52783e+06
2225 | Indonesian_language
2226 | James_Pallotta
2227 | "973.0"^^xsd:double
2228 | Atlanta_City_Council
2229 | Black_Pirate
2230 | New_wave_music
2231 | Alagoas
2232 | Congress_Poland
2233 | "164.0"^^xsd:double
2234 | SK_Vorwärts_Steyr
2235 | Stadio_Armando_Picchi
2236 | "AMAHE9"@en
2237 | AIDAluna
2238 | Gravesend
2239 | Ardmore_Airport_(New_Zealand)
2240 | Audi_e-tron
2241 | 3800
2242 | "9-speedZF9HPautomatic(V6)"
2243 | AFC_Ajax
2244 | Marietta,_Ohio
2245 | Isis_(band)
2246 | "Dessert"@en
2247 | Gábor_Kubatov
2248 | "19238"^^xsd:nonNegativeInteger
2249 | Egg_Harbor_Township,_New_Jersey
2250 | Alexander_Nouri
2251 | 3.77016e+11
2252 | Batchoy
2253 | "Governor of West Virginia"@en
2254 | "4.79343E8"^^
2255 | "2900.0"^^xsd:double
2256 | Hogao
2257 | African_Americans
2258 | Abradab
2259 | "161.53755844165633"^^
2260 | Apollo_11
2261 | Owen_Glendower_(novel)
2262 | "8.334"^^xsd:double
2263 | Kristina_Kovač
2264 | "Provisional President of the Argentine Senate"
2265 | Sapindales
2266 | "210.922"^^xsd:double
2267 | City_of_Brussels
2268 | Russian_Civil_War
2269 | University_of_Vienna
2270 | George_Kapitan
2271 | Stellendam
2272 | 1.07433e+08
2273 | Greymachine
2274 | "Minister of Transport"
2275 | Caterpillar_Inc.
2276 | Austria_national_football_team
2277 | 4.19113e+11
2278 | Benton_County,_Oregon
2279 | Los_Angeles_Herald-Examiner
2280 | "507.0"^^xsd:double
2281 | "94.8024"^^
2282 | "755.3"^^xsd:double
2283 | Harvard_University
2284 | "560"^^xsd:positiveInteger
2285 | Mexico
2286 | Spaniards
2287 | Great_Britain
2288 | Kuala_Lumpur
2289 | "280.0"^^xsd:double
2290 | United_States_Army
2291 | Steve_Bruce
2292 | Indianapolis
2293 | "5.11592E8"^^
2294 | Belgaum
2295 | "1878"^^xsd:gYear
2296 | Faroese_language
2297 | "765"
2298 | Denzil_Antonio
2299 | "Member of the Texas State Senate from District 4"@en
2300 | Lafayette_Township,_Madison_County,_Indiana
2301 | Deșteaptă-te,_române!
2302 | US_Lesquin
2303 | Philips_Records
2304 | A.C._Milan
2305 | 76798317
2306 | Battle_of_Cold_Harbor
2307 | "1989-07-10"^^xsd:date
2308 | Jacob_Bundsgaard
2309 | Lake_Placid,_New_York
2310 | Mols
2311 | Ellington,_Wisconsin
2312 | Carnival_Corporation_&_plc
2313 | Tarrant_County,_Texas
2314 | Apollo_12
2315 | Avocado
2316 | Chris_Patten
2317 | "Mayor"@en
2318 | "1988-01-08"^^xsd:date
2319 | Abarth_1000_GT_Coupé__1
2320 | "New Mexico"@en
2321 | "4019.0"^^xsd:double
2322 | "140.8"^^
2323 | "03R/21L"
2324 | Enrique_Peña_Nieto
2325 | Meyer_Werft
2326 | Musician
2327 | Stockport_County_F.C.
2328 | "Member of the Congress of Deputies"@en
2329 | National_Park_Service
2330 | The_Violet_Keystone
2331 | "Helipad"
2332 | Farrar,_Straus_and_Giroux
2333 | Buffalo,_New_York
2334 | "solo_singer"
2335 | California
2336 | "23"^^xsd:positiveInteger
2337 | "60040714"
2338 | Halimah_Yacob
2339 | Richland_Township,_Madison_County,_Indiana
2340 | 476
2341 | Bajik
2342 | MTU_Friedrichshafen
2343 | "17L/35R"
2344 | Texan
2345 | Alfred_Worden
2346 | Shortcrust_pastry
2347 | "0025-5858"
2348 | James_Craig_Watson
2349 | Addiction_(journal)
2350 | "1865-8784"
2351 | August_Horch
2352 | "1979-03-30"^^xsd:date
2353 | Arapiraca
2354 | The_Bodley_Head
2355 | Grand_Chute,_Wisconsin
2356 | "34"^^xsd:positiveInteger
2357 | "1793-10-23"^^xsd:date
2358 | Tennis
2359 | Audi_Brussels
2360 | Richard_J._Berry
2361 | Adenan_Satem
2362 | "*\n*Box keel depth :"@en
2363 | "SEAT Ibiza Mk4"@en
2364 | Budapest
2365 | Birmingham_City_Council
2366 | Alan_Shepard
2367 | "Print & Paperback"@en
2368 | "Madrid, Paracuellos de Jarama, San Sebastián de los Reyes and Alcobendas"@en
2369 | Favoritner_AC
2370 | "\"Squeezed\" or \"smashed\"fried chickenserved withsambal"
2371 | "3992.88"^^xsd:double
2372 | 53502
2373 | Aleksandr_Chumakov
2374 | "1174"^^xsd:positiveInteger
2375 | Monroe_Township,_Madison_County,_Indiana
2376 | Michigan
2377 | White_South_African
2378 | Sweet_potato
2379 | A.D._Isidro_Metapán
2380 | "3360.12"^^xsd:double
2381 | Jwaydan_Moyine
2382 | Luanda_Province
2383 | 3Arena
2384 | 3._Liga
2385 | RCA_Records
2386 | Lazio
2387 | Barny_Cakes
2388 | Menasha_(town),_Wisconsin
2389 | "17023"^^xsd:nonNegativeInteger
2390 | Above_the_Veil
2391 | Union_Army
2392 | AIDS_(journal)
2393 | Asterix_(character)
2394 | Juha_Sipilä
2395 | 318875313
2396 | "0002-9327"
2397 | "(original structure); 1832 (current structure)"
2398 | "Astérix"@en
2399 | "(Location of airport in India)"
2400 | Windsor,_Connecticut
2401 | Wolters_Kluwer
2402 | Imst
2403 | Costa_Crociere
2404 | Tuanku_Bujang_Tuanku_Othman
2405 | Static_Caravan_Recordings
2406 | Buzz_Aldrin
2407 | "1929"
2408 | Blockbuster_(DC_Comics)
2409 | John_Clancy_(Labour_politician)
2410 | Pallacanestro_Cantù
2411 | Luis_Miguel_Ramis
2412 | Ben_Ramsey
2413 | "100305.0"(minutes)
2414 | Francisco_Franco
2415 | Schenectady,_New_York
2416 | "NWC, M.A. 1957"@en
2417 | Copenhagen
2418 | Abarth_1000_GT_Coupé
2419 | 108_St_Georges_Terrace
2420 | "Asa Gigante ''"@en
2421 | 1.62447e+07
2422 | Marius_Moga
2423 | "2195.17"^^xsd:double
2424 | Fallujah
2425 | Delta_II
2426 | "Kellamergh Park"@en
2427 | Luciano_Spalletti
2428 | Zamboangans
2429 | Câmpia_Turzii
2430 | Montreal_Locomotive_Works
2431 | Serie_B
2432 | 8805735
2433 | AFAS_Stadion
2434 | Galactic
2435 | Serie_A
2436 | "14/32"
2437 | Virginia
2438 | "12L/30R"
2439 | "1933-10-17"
2440 | RB_Leipzig
2441 | "January, 2014"
2442 | William_M._O._Dawson
2443 | "1.8"^^
2444 | "1978-11-12"^^xsd:date
2445 | Newmarket,_Ontario
2446 | Hugo_Sperrle
2447 | "2015-06-27"^^xsd:date
2448 | Paleontology
2449 | Vicenza_Calcio
2450 | "39500.0"^^
2451 | ARA_Veinticinco_de_Mayo_(V-2)
2452 | Agra
2453 | "38.892"^^xsd:double
2454 | Haputale
2455 | Aston_Martin_Virage
2456 | 4.16136e+11
2457 | Robert_Eenhoorn
2458 | George_Richard_Pain
2459 | Antwerp_International_Airport
2460 | Allen_Forrest
2461 | Varese_Calcio_S.S.D.
2462 | Drone_music
2463 | Chennai
2464 | Clayton,_Winnebago_County,_Wisconsin
2465 | Ethiopian_birr
2466 | Sanat_Mes_Kerman_F.C.
2467 | 1931
2468 | Blues
2469 | United_States
2470 | 2939
2471 | "46451790"
2472 | 10_Hygiea
2473 | Audi
2474 | California_State_Senate
2475 | Meride
2476 | Uruguay_Olympic_football_team
2477 | "22.1"^^xsd:double
2478 | University_of_Michigan
2479 | Real_Madrid_Castilla
2480 | Sportpark_De_Toekomst
2481 | Songwriter
2482 | Stanyan_Records
2483 | "Associazione Sportiva"@en
2484 | "524.5"^^
2485 | "1982-07-23"^^xsd:date
2486 | ","@en
2487 | "In service"
2488 | "1981"
2489 | Alpena,_Michigan
2490 | "~179 K"@en
2491 | Cruise_ship
2492 | Rostock
2493 | Agremiação_Sportiva_Arapiraquense
2494 | "1891-05-20"^^xsd:date
2495 | Lockheed_Martin
2496 | "Ajo blanco"@en
2497 | Electroacoustic_music
2498 | Wichita_Thunder
2499 | "ATISET"
2500 | Buenos_Aires
2501 | Georgetown,_Texas
2502 | Trance_music
2503 | Battle_of_Chancellorsville
2504 | Ska
2505 | Binignit
2506 | European_University_Association
2507 | "ATW"@en
2508 | "AMHAAJ"
2509 | Fruit_preserves
2510 | Juan_Carlos_I_of_Spain
2511 | Macmillan_Publishers
2512 | Visvesvaraya_Technological_University
2513 | "3180"^^xsd:nonNegativeInteger
2514 | Condensed_milk
2515 | Blaenau_Ffestiniog
2516 | "1910"
2517 | Stephen_Yong_Kuet_Tze
2518 | Buenos_Aires_City_Legislature
2519 | Russia_national_football_B_team
2520 | 1634:_The_Bavarian_Crisis
2521 | Fountain_County,_Indiana
2522 | 106
2523 | 8.37081e+11
2524 | Shanachie_Records
2525 | "Tomatoes,guanciale, cheese (Pecorino Romano),olive oil"
2526 | Dan_Mishkin
2527 | Greenlandic_language
2528 | 8.78885e+09
2529 | 1001_Gaussia
2530 | "253.26"^^xsd:double
2531 | Denmark
2532 | Alfa_Romeo_164__5
2533 | Sara_Miller_McCune
2534 | Peter_Stöger
2535 | Appleton,_Wisconsin
2536 | Gregory_L._Fenves
2537 | Andra_(singer)
2538 | President_of_the_United_States
2539 | De_Graafschap
2540 | Milk
2541 | White_Americans
2542 | 1089_Tama
2543 | "1936-05-21"^^xsd:date
2544 | "Deputy Parliamentary Spokesman of Popular Orthodox Rally"@en
2545 | Abel_Caballero
2546 | Narendra_Modi
2547 | Michele_Marcolini
2548 | Polish_Academy_of_Sciences
2549 | Dougherty_County,_Georgia
2550 | "2013-09-18"^^xsd:date
2551 | Mid-Atlantic_Regional_Spaceport
2552 | 2014
2553 | Seat_of_local_government
2554 | "476"^^xsd:nonNegativeInteger
2555 | 1911
2556 | Hergé
2557 | Al_Shorta_SC
2558 | Fiat_Croma
2559 | "1930-01-20"
2560 | Javanese_people
2561 | 70634
2562 | "Offices:"@en
2563 | 12467
2564 | Lincoln,_Nebraska
2565 | Hoofdklasse
2566 | Amazing-Man_(Centaur_Publications)
2567 | Marv_Wolfman
2568 | SAGE_Publications
2569 | Ballistic_(DC_Comics)
2570 | "2005-08-11"^^xsd:date
2571 | Qatar_Stars_League
2572 | United_Petrotrin_F.C.
2573 | LASK_Linz
2574 | 50000
2575 | Condiment
2576 | Enda_Kenny
2577 | Stan_Lee
2578 | "3.04"^^xsd:double
2579 | "8805735"
2580 |
2581 | "Colmore Row, Birmingham, England"@en
2582 | "2013-03-16"^^xsd:date
2583 | "Main course"@en
2584 | Antonis_Milionis
2585 | "red beans,pork belly, whiterice,ground meat,chicharon,fried egg,plantain(patacones),chorizo, arepa, hogao sauce,black pudding(morcilla),avocadoandlemon"
2586 | "Massachusetts Institute of Technology, Sc.D. 1963"
2587 | "1799.84"^^xsd:double
2588 | New_Netherland
2589 | Bernalillo_County,_New_Mexico
2590 | Alpena_County,_Michigan
2591 | Eisner_Award
2592 | Rosaceae
2593 | Tor_Books
2594 | Giorgos_Kaminis
2595 | "914.8"^^xsd:double
2596 | Corvallis,_Oregon
2597 | 1._FC_Lokomotive_Leipzig
2598 | Neptun_Werft
2599 | "6.11961E8"^^
2600 | English_language
2601 | German_Empire
2602 | Bart_De_Wever
2603 | Kashubians
2604 | Tim_Brooke-Taylor
2605 | Carrie_Lam_(politician)
2606 | California_State_Capitol
2607 | Oregano
2608 | "1937"^^xsd:gYear
2609 | Sri_Lanka
2610 | 1000_Piazzia
2611 | Smilodon
2612 | 2015
2613 | Kids_Imagine_Nation
2614 | Maccabi_Tel_Aviv_F.C.
2615 | 46451790
2616 | "2194.0"^^xsd:double
2617 | 39371
2618 | "Addiction"
2619 | Mario_Botta
2620 | Wheel_Horse
2621 | 2000
2622 | Drogheda_United_F.C.
2623 | "Abh. Math. Semin. Univ. Hambg."@en
2624 | "0269-9370"
2625 | David_Cameron
2626 | "Lega Pro/A"@en
2627 | "42.0"^^xsd:double
2628 | Cauliflower
2629 | Ganges
2630 | Germany
2631 | Felipe_VI_of_Spain
2632 | S.S._Chieti_Calcio
2633 | Turkey
2634 | "ADICE5"
2635 | "7500.0"^^xsd:double
2636 | "2005-04-07"^^xsd:date
2637 | Paisa_Region
2638 | Siomay
2639 | American_Institute_of_Physics
2640 | Chinese_people_in_Japan
2641 | Maine
2642 | "single plate clutch, separate 4-speed gearbox all-silent"
2643 | "5.23329E8"^^
2644 | University_of_Adelaide
2645 | "7.5"^^
2646 | Lemper
2647 | "597.408"^^xsd:double
2648 | Alba_Iulia
2649 | Anwar_Zaheer_Jamali
2650 | Haider_al-Abadi
2651 | Zamba_(artform)
2652 | Covington,_Indiana
2653 | Bibbo_Bibbowski
2654 | Saranac_Lake,_New_York
2655 | "2014-01-09"^^xsd:date
2656 | Parti_Pesaka_Bumiputera_Bersatu
2657 | Tudor_Revival_architecture
2658 | ALCO_RS-3
2659 | "APGPAC"@en
2660 | Black_pudding
2661 | CRBL
2662 | Test_pilot
2663 | "Bacon,sausage"
2664 | "São José dos Pinhais, Brazil"@en
2665 | Maccabi_Ashdod_B.C.
2666 | Accademia_di_Architettura_di_Mendrisio
2667 | "5.4"^^
2668 | "Tudor and Jacabian"@en
2669 | "429.9"^^xsd:double
2670 | Angola,_Indiana
2671 | Johann_Schneider-Ammann
2672 | "1532.53"^^xsd:double
2673 | David_Weber
2674 | "78771100"
2675 | Akeem_Priestley
2676 | 541458
2677 | "Association Football Club Fylde"@en
2678 | 1.39705e+08
2679 | A.E_Dimitra_Efxeinoupolis
2680 | "Rick Parker"@en
2681 | "1218.59"^^xsd:double
2682 | Vermicelli
2683 | "600.0"^^xsd:double
2684 | Johns_Hopkins_University_Press
2685 | Andalusia
2686 | Atlanta
2687 | Olympic_Stadium_(Athens)
2688 | "fried fish dumpling with tofu and vegetables in peanut sauce"@en
2689 | "3000.0"^^xsd:double
2690 | Adam_Maher
2691 | SEAT_Ibiza
2692 | J._V._Jones
2693 | Jalisco
2694 | "non_performing_personnel"@en
2695 | 1.03926e+08
2696 | Alabama
2697 | "Acta Palaeontol. Pol."
2698 | Cape_Town
2699 | "6700.0"^^xsd:double
2700 | Ice_cream
2701 | P&O_(company)
2702 | Sergey_Rodionov
2703 | Chinese_Filipino
2704 | Debbie_Wasserman_Schultz
2705 | University_of_Texas_System
2706 | Chief_of_the_Defence_Staff_(Nigeria)
2707 | Citrus
2708 | "Max Huiberts"@en
2709 | Acharya_Institute_of_Technology
2710 | "518.0"^^xsd:double
2711 | Philip_Charles_Hardwick
2712 | Virginia_DeMarce
2713 | "May 1950 – August 1956"@en
2714 | Ben_Urich
2715 | A._Storrs
2716 | "1930-01-20"^^xsd:date
2717 | "Livorno Calcio S.p.A."@en
2718 | "173.0"^^xsd:double
2719 | Funk
2720 | "4.40756E8"^^
2721 | A.S._Gubbio_1910
2722 | Meringue
2723 | "''Alvinegro"@en
2724 | Whig_Party_(United_States)
2725 | Paraná_(state)
2726 | Asajaya
2727 | Robert_A._M._Stern
2728 | 101_Helena
2729 | Gardner_Fox
2730 | Padang_cuisine
2731 | Alcatraz_Versus_the_Evil_Librarians
2732 | Distinguished_Service_Medal_(United_States_Navy)
2733 | Uruguay_national_football_team
2734 | AFC_Ajax_(amateurs)
2735 | "Blue, White and Orange"
2736 | "Exchange National Bank Building"@en
2737 | "Institute of Paleobiology, Polish Academy of Sciences"@en
2738 | "2000"^^xsd:gYear
2739 | "House of Representatives (Netherlands)"@en
2740 | King_County,_Washington
2741 | Eberhard_van_der_Laan
2742 | "253260.0"^^
2743 | Empoli_F.C.
2744 | Milan
2745 | Oleh_Luzhny
2746 | "5.6"^^
2747 | 18
2748 | Persea
2749 | London
2750 | Baku_Turkish_Martyrs'_Memorial
2751 | Salvadoran_Primera_División
2752 | Palm_sugar
2753 | B_postcode_area
2754 | Akron,_Ohio
2755 | Charles_Michel
2756 | Antares_(rocket)
2757 | Williamson_County,_Texas
2758 | "1104.1"^^xsd:double
2759 | "AMHAAJ"@en
2760 | St._Vincent–St._Mary_High_School
2761 | "1966-02-28"^^xsd:date
2762 | Grantville_Gazette_III
2763 | Johnny_Sansone
2764 | "White rice, cuttlefish or squid, cephalopod ink, cubanelle peppers"@en
2765 | Agnes_Kant
2766 | K2_(Kovač_sisters_duo)
2767 | Inter_Milan
2768 | Antonis_Samaras
2769 | Kempe_Gowda_I
2770 | "27250"^^xsd:nonNegativeInteger
2771 | "09R/27L"
2772 | Kerala
2773 | Bakso
2774 | Samuda_Brothers
2775 | General_Dynamics
2776 | 1.30786e+08
2777 | Koreans_in_Japan
2778 | Roger_Stern
2779 | Cello
2780 | "A900 GA"@en
2781 | São_José_dos_Pinhais
2782 | Jill_Shilling
2783 | Front-engine,_front-wheel-drive_layout
2784 | "159.0"^^xsd:double
2785 | "1982.0"^^xsd:double
2786 | Philippine_Spanish
2787 | Awadh
2788 | "12.0"^^xsd:double
2789 | Raúl_Fernando_Sendic_Rodríguez
2790 | "1480153"
2791 | Joko_Widodo
2792 | 17000
2793 | Lahore
2794 | FC_Admira_Wacker_Mödling
2795 | Peoria,_Illinois
2796 | Los_Angeles_Rams
2797 | "Haputale, Sri Lanka"@en
2798 | Klaus_Iohannis
2799 | "John Aman"@en
2800 | Oyster_sauce
2801 | Indiana
2802 | Association_of_Public_and_Land-grant_Universities
2803 | Pacific_Grove,_California
2804 | "Addiction"@en
2805 | "Spacewatch"@en
2806 | Church_of_England
2807 | California's_11th_State_Assembly_district
2808 | Uruguayan_Segunda_División
2809 | Department_of_Commerce_Gold_Medal
2810 | 11th_Mississippi_Infantry_Monument
2811 | A.S.D._S.S._Nola_1925
2812 | "July 14, 2004 (JD2453200.5)"
2813 | Harry_Sahle
2814 | "170.0"^^
2815 | Amsterdam
2816 | Alley_Award
2817 | "April 2014"@en
2818 | Outagamie_County,_Wisconsin
2819 | Stuart_Parker_(footballer)
2820 | Switzerland
2821 | Johannesburg
2822 | 22
2823 | Cake
2824 | Joachim_Gauck
2825 | "51969173"
2826 | Akita,_Akita
2827 | Hamilton_Academical_F.C.
2828 | Australians
2829 | "United States Secretary of Health, Education, and Welfare"
2830 | Straight-six_engine
2831 | "90640840"
2832 | "1.8"^^xsd:double
2833 | All_India_Council_for_Technical_Education
2834 | "16.76"^^
2835 | "7.5E7"^^
2836 | San_Francisco
2837 | Doña_Ana_County,_New_Mexico
2838 | Mayor_of_Albuquerque
2839 | "1"^^xsd:nonNegativeInteger
2840 | "202.0"^^xsd:double
2841 | Robert_E._Lee
2842 | "1969-09-01"
2843 | "3571.0"^^
2844 | Rhythm_and_blues
2845 | Andreas_Voßkuhle
2846 | "2743.5"^^xsd:double
2847 | Anandiben_Patel
2848 | Asilomar_Conference_Grounds
2849 | "Abh. Math. Semin. Univ. Hambg."
2850 | "Fish cooked in sour and hot sauce"@en
2851 | AZ_Alkmaar
2852 | Antioch,_California
2853 | British_people
2854 | Afrobeat
2855 | B-Unique_Records
2856 | Albennie_Jones
2857 | Saab_9000
2858 | Live_Nation_Entertainment
2859 | Infraero
2860 | "8820.0"^^
2861 | Kochi
2862 | Azerbaijan
2863 | Walt_Simonson
2864 | Buxton
2865 | Water
2866 | "ASCQAG"
2867 | Taylor_County,_Texas
2868 | "Kheria Air Force Station"@en
2869 | Association_of_MBAs
2870 | Colombia
2871 | Adolf_Schärf
2872 | Puya_(singer)
2873 | "1853-03-04"^^xsd:date
2874 | Qiu_Xiaolong
2875 | 8.3e+06
2876 | 2014–15_Football_Conference
2877 | Honda_K_engine
2878 | Flibbertigibbet
2879 | 325
2880 | Laura_Boldrini
2881 | "1998"^^xsd:gYear
2882 | "17000"^^xsd:nonNegativeInteger
2883 | "1953-06-30"^^xsd:date
2884 | 47290
2885 | "60696.0"^^xsd:double
2886 | Ambient_music
2887 | Burlington,_Vermont
2888 | Franklin_D._Roosevelt
2889 | "1510.0"^^xsd:double
2890 | Mayors_of_Atlantic_City,_New_Jersey
2891 | 1913
2892 | "497.129"^^xsd:double
2893 | 109_Felicitas
2894 | "Member of the"@en
2895 | Calcio_Catania
2896 | Asphalt
2897 | "992.6"^^xsd:double
2898 | 4.45895e+11
2899 | Rutaceae
2900 | "Governor of Connecticut"
2901 | 1986_United_States_bombing_of_Libya
2902 | Charlie_McDonnell
2903 | 2953
2904 | "Richard J. Berry"@en
2905 | Soviet_Union
2906 | Mamiffer
2907 | Atalanta_B.C.
2908 | 1500
2909 | Battle_of_Antietam
2910 | Guiana_Space_Centre
2911 | "1941"^^xsd:gYear
2912 | "December 2008"
2913 | Alan_B._Miller_Hall
2914 | KV_Mechelen
2915 | List_of_Provisional_Presidents_of_Argentine_Senate
2916 | "Livorno, Italy"@en
2917 | Sesame_oil
2918 | Appleton_International_Airport
2919 | "Lalbhai Dalpatbhai Campus, nearCEPT University, opp.Gujarat University, University Road"@en
2920 | Turkish_Basketball_Super_League
2921 | Peritonitis
2922 | Bianca_Castafiore
2923 | Amsterdam_Airport_Schiphol
2924 | San_Marcos,_Texas
2925 | "24.48"^^xsd:double
2926 | 23900
2927 | Aktieselskab
2928 | "404/678/470"
2929 | Atiku_Abubakar
2930 | "United States"@en
2931 | Management
2932 | Goslarer_SC_08
2933 | "1800.0"^^xsd:double
2934 | Russia
2935 | "Deceased"@en
2936 | "Verona, Italy"@en
2937 | Amsterdam-Noord
2938 | Amatriciana_sauce
2939 | Mark_Rutte
2940 | "40.744"^^xsd:double
2941 | Aleksey_Chirikov_(icebreaker)
2942 | Tom_Tait
2943 | HIV/AIDS
2944 | Uab
2945 | Vitesse_Arnhem
2946 | "City Manager"@en
2947 | "1142.3"^^
2948 | "1.524"^^
2949 | String_instrument
2950 | New_Mexico_Senate
2951 | E-book
2952 | Doesburg
2953 | "Virginia DeMarce and"@en
2954 | Politician
2955 | Ground_meat
2956 | Contributing_property
2957 | Gettysburg,_Pennsylvania
2958 | Moro_people
2959 | "1411.22"^^xsd:double
2960 | "03/21"
2961 | World_War_II
2962 | "84.0"^^xsd:double
2963 | India
2964 | 2014–15_Serie_B
2965 | Kidney_bean
2966 | Kenosha,_Wisconsin
2967 | "42 m"@en
2968 | "09/27 'Buitenveldertbaan'"
2969 | Sausage
2970 | AEK_Athens_F.C.
2971 | John_Cowper_Powys
2972 | "18R/36L"
2973 | John_Reith,_1st_Baron_Reith
2974 | "88002539"
2975 | 1.42603e+08
2976 | Kirk_Joseph
2977 | "1986-04-15"^^xsd:date
2978 | "37.16"^^
2979 | "5300"^^xsd:nonNegativeInteger
2980 | Amsterdam-Centrum
2981 | Silvio_Berlusconi
2982 | Carmine_Infantino
2983 | Halton_Arp
2984 | Strawberry
2985 | Akita_Museum_of_Art
2986 | "→ Anzhi Makhachkala"@en
2987 | Alfa_Romeo_164__4
2988 | Konstantinos_Mitsotakis
2989 | Ring_of_Fire_II
2990 | "single plate clutch, separate 4-speed gearbox all-silent and \n\nall-syncromesh, centre change lever, open tubular propellor\n shaft with metal joints , spiral bevel fully floating back axle"@en
2991 | University_of_Göttingen
2992 | François_Hollande
2993 | Stadio_Olimpico
2994 | 89646863
2995 | Colin_Powell
2996 | "Sumatra and Malay Peninsula"@en
2997 | Frank_G._Jackson
2998 | AMC_Matador
2999 | "Asilomar Blvd., Pacific Grove, California"@en
3000 | (66063)_1998_RO1
3001 | Atlantic_County,_New_Jersey
3002 | Beverly_Hills,_California
3003 | Country_music
3004 | "Asam padeh"@en
3005 | Bella_Center
3006 | "34.0"^^xsd:double
3007 | Polish–Soviet_War
3008 | "1986"^^xsd:gYear
3009 | "1905-03-04"^^xsd:date
3010 | "1969-01-25"^^xsd:date
3011 | Cookie
3012 | Republican_Party_(United_States)
3013 | "2013-09-28"^^xsd:date
3014 | "Parti Bumiputera Sarawak"@en
3015 | Union_Township,_Madison_County,_Indiana
3016 | Battle_of_Fredericksburg
3017 | Antwerp
3018 | Ashgabat
3019 | Paulo_Sousa
3020 | Tennessee_Titans
3021 | "Akron Metro Futbol Club Summit Assault"@en
3022 | "A$120 million"@en
3023 | Auburn,_Washington
3024 | Asam_pedas
3025 | "32.2"^^xsd:double
3026 | "Meringue, ice cream,sponge cakeorChristmas pudding"
3027 | "11.8872"^^xsd:double
3028 | General_Dynamics_Electric_Boat
3029 | Wilson_Township,_Alpena_County,_Michigan
3030 | New_York
3031 | 1974
3032 | "front-wheel drive / all-wheel drive"@en
3033 | "03L/21R"
3034 | Graeme_Garden
3035 | Asian_Americans
3036 | "Gram flour,vegetables"
3037 | "1973"
3038 | "3310.0"^^xsd:double
3039 | "1923-11-18"
3040 | Jong_Ajax
3041 | "Agremiação Sportiva Arapiraquense"@en
3042 | Avenue_A_(Manhattan)
3043 | Pakistan_Civil_Aviation_Authority
3044 | "Ground almond, jam, butter, eggs"
3045 | Kansas_City_metropolitan_area
3046 | "2/20"
3047 | Sour_cream
3048 | "234, 330"
3049 | "Bacon butty, bacon sarnie, rasher sandwich, bacon sanger, piece 'n bacon, bacon cob, bacon barm, bacon muffin"@en
3050 | Canyon,_Texas
3051 | FC_Dallas
3052 | Nawaz_Sharif
--------------------------------------------------------------------------------
/metadata/onto_classes_system.json:
--------------------------------------------------------------------------------
1 | {
2 | "Abbey": [
3 | 5,
4 | "Building"
5 | ],
6 | "AcademicConference": [
7 | 3,
8 | "Event"
9 | ],
10 | "AcademicJournal": [
11 | 4,
12 | "WrittenWork"
13 | ],
14 | "AcademicSubject": [
15 | 2,
16 | "TopicalConcept"
17 | ],
18 | "Activity": [
19 | 1,
20 | "Activity"
21 | ],
22 | "Actor": [
23 | 4,
24 | "Person"
25 | ],
26 | "AdministrativeRegion": [
27 | 4,
28 | "AdministrativeRegion"
29 | ],
30 | "AdultActor": [
31 | 5,
32 | "Person"
33 | ],
34 | "Agent": [
35 | 1,
36 | "Agent"
37 | ],
38 | "Agglomeration": [
39 | 3,
40 | "PopulatedPlace"
41 | ],
42 | "Aircraft": [
43 | 2,
44 | "MeanOfTransportation"
45 | ],
46 | "Airline": [
47 | 5,
48 | "Company"
49 | ],
50 | "Airport": [
51 | 4,
52 | "Airport"
53 | ],
54 | "Album": [
55 | 3,
56 | "Work"
57 | ],
58 | "Altitude": [
59 | 1,
60 | "Altitude"
61 | ],
62 | "AmateurBoxer": [
63 | 5,
64 | "Person"
65 | ],
66 | "Ambassador": [
67 | 4,
68 | "Person"
69 | ],
70 | "AmericanFootballCoach": [
71 | 4,
72 | "Person"
73 | ],
74 | "AmericanFootballLeague": [
75 | 4,
76 | "Organisation"
77 | ],
78 | "AmericanFootballPlayer": [
79 | 5,
80 | "Person"
81 | ],
82 | "AmericanFootballTeam": [
83 | 4,
84 | "SportsTeam"
85 | ],
86 | "Amphibian": [
87 | 4,
88 | "Species"
89 | ],
90 | "AmusementParkAttraction": [
91 | 3,
92 | "ArchitecturalStructure"
93 | ],
94 | "AnatomicalStructure": [
95 | 1,
96 | "AnatomicalStructure"
97 | ],
98 | "Animal": [
99 | 3,
100 | "Species"
101 | ],
102 | "AnimangaCharacter": [
103 | 4,
104 | "Agent"
105 | ],
106 | "Anime": [
107 | 3,
108 | "Work"
109 | ],
110 | "Annotation": [
111 | 3,
112 | "WrittenWork"
113 | ],
114 | "Arachnid": [
115 | 4,
116 | "Species"
117 | ],
118 | "Archaea": [
119 | 2,
120 | "Species"
121 | ],
122 | "Archbishop": [
123 | 5,
124 | "Person"
125 | ],
126 | "Archeologist": [
127 | 3,
128 | "Person"
129 | ],
130 | "ArcherPlayer": [
131 | 4,
132 | "Person"
133 | ],
134 | "Archipelago": [
135 | 3,
136 | "Place"
137 | ],
138 | "Architect": [
139 | 3,
140 | "Person"
141 | ],
142 | "ArchitecturalStructure": [
143 | 2,
144 | "ArchitecturalStructure"
145 | ],
146 | "Archive": [
147 | 3,
148 | "Work"
149 | ],
150 | "Area": [
151 | 1,
152 | "Area"
153 | ],
154 | "Arena": [
155 | 3,
156 | "ArchitecturalStructure"
157 | ],
158 | "Aristocrat": [
159 | 3,
160 | "Person"
161 | ],
162 | "Arrondissement": [
163 | 6,
164 | "AdministrativeRegion"
165 | ],
166 | "Artery": [
167 | 2,
168 | "AnatomicalStructure"
169 | ],
170 | "Article": [
171 | 3,
172 | "WrittenWork"
173 | ],
174 | "ArtificialSatellite": [
175 | 4,
176 | "Place"
177 | ],
178 | "Artist": [
179 | 3,
180 | "Person"
181 | ],
182 | "ArtistDiscography": [
183 | 3,
184 | "Work"
185 | ],
186 | "ArtisticGenre": [
187 | 3,
188 | "TopicalConcept"
189 | ],
190 | "Artwork": [
191 | 2,
192 | "Work"
193 | ],
194 | "Asteroid": [
195 | 3,
196 | "Place"
197 | ],
198 | "Astronaut": [
199 | 3,
200 | "Astronaut"
201 | ],
202 | "Athlete": [
203 | 3,
204 | "Person"
205 | ],
206 | "Athletics": [
207 | 3,
208 | "Activity"
209 | ],
210 | "AthleticsPlayer": [
211 | 4,
212 | "Person"
213 | ],
214 | "Atoll": [
215 | 4,
216 | "PopulatedPlace"
217 | ],
218 | "Attack": [
219 | 3,
220 | "Event"
221 | ],
222 | "AustralianFootballLeague": [
223 | 4,
224 | "Organisation"
225 | ],
226 | "AustralianFootballTeam": [
227 | 4,
228 | "SportsTeam"
229 | ],
230 | "AustralianRulesFootballPlayer": [
231 | 4,
232 | "Person"
233 | ],
234 | "AutoRacingLeague": [
235 | 4,
236 | "Organisation"
237 | ],
238 | "Automobile": [
239 | 2,
240 | "MeanOfTransportation"
241 | ],
242 | "AutomobileEngine": [
243 | 3,
244 | "Device"
245 | ],
246 | "Award": [
247 | 1,
248 | "Award"
249 | ],
250 | "BackScene": [
251 | 5,
252 | "MusicalArtist"
253 | ],
254 | "Bacteria": [
255 | 2,
256 | "Species"
257 | ],
258 | "BadmintonPlayer": [
259 | 4,
260 | "Person"
261 | ],
262 | "Band": [
263 | 4,
264 | "Organisation"
265 | ],
266 | "Bank": [
267 | 4,
268 | "Company"
269 | ],
270 | "Baronet": [
271 | 5,
272 | "Person"
273 | ],
274 | "BaseballLeague": [
275 | 4,
276 | "Organisation"
277 | ],
278 | "BaseballPlayer": [
279 | 4,
280 | "Person"
281 | ],
282 | "BaseballSeason": [
283 | 3,
284 | "SportsSeason"
285 | ],
286 | "BaseballTeam": [
287 | 4,
288 | "SportsTeam"
289 | ],
290 | "BasketballLeague": [
291 | 4,
292 | "Organisation"
293 | ],
294 | "BasketballPlayer": [
295 | 4,
296 | "Person"
297 | ],
298 | "BasketballTeam": [
299 | 4,
300 | "SportsTeam"
301 | ],
302 | "Bay": [
303 | 4,
304 | "Place"
305 | ],
306 | "Beach": [
307 | 3,
308 | "Place"
309 | ],
310 | "BeachVolleyballPlayer": [
311 | 5,
312 | "Person"
313 | ],
314 | "BeautyQueen": [
315 | 3,
316 | "Person"
317 | ],
318 | "Beer": [
319 | 3,
320 | "Food"
321 | ],
322 | "Beverage": [
323 | 2,
324 | "Food"
325 | ],
326 | "Biathlete": [
327 | 5,
328 | "Person"
329 | ],
330 | "BiologicalDatabase": [
331 | 3,
332 | "Work"
333 | ],
334 | "Biologist": [
335 | 4,
336 | "Person"
337 | ],
338 | "Biomolecule": [
339 | 1,
340 | "Biomolecule"
341 | ],
342 | "Bird": [
343 | 4,
344 | "Species"
345 | ],
346 | "Birth": [
347 | 4,
348 | "Event"
349 | ],
350 | "Blazon": [
351 | 1,
352 | "Blazon"
353 | ],
354 | "BloodVessel": [
355 | 2,
356 | "AnatomicalStructure"
357 | ],
358 | "BoardGame": [
359 | 3,
360 | "Activity"
361 | ],
362 | "BobsleighAthlete": [
363 | 5,
364 | "Person"
365 | ],
366 | "BodyOfWater": [
367 | 3,
368 | "Place"
369 | ],
370 | "Bodybuilder": [
371 | 4,
372 | "Person"
373 | ],
374 | "Bone": [
375 | 2,
376 | "AnatomicalStructure"
377 | ],
378 | "Book": [
379 | 3,
380 | "Book"
381 | ],
382 | "BowlingLeague": [
383 | 4,
384 | "Organisation"
385 | ],
386 | "Boxer": [
387 | 4,
388 | "Person"
389 | ],
390 | "Boxing": [
391 | 3,
392 | "Activity"
393 | ],
394 | "BoxingCategory": [
395 | 4,
396 | "Activity"
397 | ],
398 | "BoxingLeague": [
399 | 4,
400 | "Organisation"
401 | ],
402 | "BoxingStyle": [
403 | 4,
404 | "Activity"
405 | ],
406 | "Brain": [
407 | 2,
408 | "AnatomicalStructure"
409 | ],
410 | "Brewery": [
411 | 4,
412 | "Company"
413 | ],
414 | "Bridge": [
415 | 5,
416 | "Infrastructure"
417 | ],
418 | "BritishRoyalty": [
419 | 4,
420 | "Person"
421 | ],
422 | "BroadcastNetwork": [
423 | 4,
424 | "Organisation"
425 | ],
426 | "Broadcaster": [
427 | 3,
428 | "Organisation"
429 | ],
430 | "BrownDwarf": [
431 | 4,
432 | "Place"
433 | ],
434 | "Building": [
435 | 3,
436 | "Building"
437 | ],
438 | "BullFighter": [
439 | 4,
440 | "Person"
441 | ],
442 | "BusCompany": [
443 | 5,
444 | "Company"
445 | ],
446 | "BusinessPerson": [
447 | 3,
448 | "Person"
449 | ],
450 | "Camera": [
451 | 2,
452 | "Device"
453 | ],
454 | "CanadianFootballLeague": [
455 | 4,
456 | "Organisation"
457 | ],
458 | "CanadianFootballPlayer": [
459 | 5,
460 | "Person"
461 | ],
462 | "CanadianFootballTeam": [
463 | 4,
464 | "SportsTeam"
465 | ],
466 | "Canal": [
467 | 5,
468 | "Place"
469 | ],
470 | "Canoeist": [
471 | 4,
472 | "Person"
473 | ],
474 | "Canton": [
475 | 6,
476 | "AdministrativeRegion"
477 | ],
478 | "Cape": [
479 | 3,
480 | "Place"
481 | ],
482 | "Capital": [
483 | 5,
484 | "City"
485 | ],
486 | "CapitalOfRegion": [
487 | 5,
488 | "City"
489 | ],
490 | "CardGame": [
491 | 3,
492 | "Activity"
493 | ],
494 | "Cardinal": [
495 | 4,
496 | "Person"
497 | ],
498 | "CardinalDirection": [
499 | 2,
500 | "TopicalConcept"
501 | ],
502 | "CareerStation": [
503 | 2,
504 | "TimePeriod"
505 | ],
506 | "Cartoon": [
507 | 2,
508 | "Work"
509 | ],
510 | "Case": [
511 | 2,
512 | "UnitOfWork"
513 | ],
514 | "Casino": [
515 | 4,
516 | "Building"
517 | ],
518 | "Castle": [
519 | 4,
520 | "Building"
521 | ],
522 | "Cat": [
523 | 5,
524 | "Species"
525 | ],
526 | "Caterer": [
527 | 4,
528 | "Company"
529 | ],
530 | "Cave": [
531 | 3,
532 | "Place"
533 | ],
534 | "Celebrity": [
535 | 3,
536 | "Person"
537 | ],
538 | "CelestialBody": [
539 | 2,
540 | "Place"
541 | ],
542 | "Cemetery": [
543 | 2,
544 | "Place"
545 | ],
546 | "Chancellor": [
547 | 4,
548 | "Person"
549 | ],
550 | "ChartsPlacements": [
551 | 1,
552 | "ChartsPlacements"
553 | ],
554 | "Cheese": [
555 | 2,
556 | "Food"
557 | ],
558 | "Chef": [
559 | 3,
560 | "Person"
561 | ],
562 | "ChemicalCompound": [
563 | 2,
564 | "ChemicalSubstance"
565 | ],
566 | "ChemicalElement": [
567 | 2,
568 | "ChemicalSubstance"
569 | ],
570 | "ChemicalSubstance": [
571 | 1,
572 | "ChemicalSubstance"
573 | ],
574 | "ChessPlayer": [
575 | 4,
576 | "Person"
577 | ],
578 | "ChristianBishop": [
579 | 4,
580 | "Person"
581 | ],
582 | "ChristianDoctrine": [
583 | 3,
584 | "TopicalConcept"
585 | ],
586 | "ChristianPatriarch": [
587 | 4,
588 | "Person"
589 | ],
590 | "Church": [
591 | 5,
592 | "Building"
593 | ],
594 | "City": [
595 | 4,
596 | "City"
597 | ],
598 | "CityDistrict": [
599 | 4,
600 | "Settlement"
601 | ],
602 | "ClassicalMusicArtist": [
603 | 5,
604 | "MusicalArtist"
605 | ],
606 | "ClassicalMusicComposition": [
607 | 3,
608 | "Work"
609 | ],
610 | "Cleric": [
611 | 3,
612 | "Person"
613 | ],
614 | "ClericalAdministrativeRegion": [
615 | 5,
616 | "AdministrativeRegion"
617 | ],
618 | "ClericalOrder": [
619 | 4,
620 | "Organisation"
621 | ],
622 | "ClubMoss": [
623 | 4,
624 | "Species"
625 | ],
626 | "Coach": [
627 | 3,
628 | "Person"
629 | ],
630 | "CoalPit": [
631 | 3,
632 | "Place"
633 | ],
634 | "CollectionOfValuables": [
635 | 2,
636 | "Work"
637 | ],
638 | "College": [
639 | 4,
640 | "EducationalInstitution"
641 | ],
642 | "CollegeCoach": [
643 | 4,
644 | "Person"
645 | ],
646 | "Colour": [
647 | 1,
648 | "Colour"
649 | ],
650 | "CombinationDrug": [
651 | 3,
652 | "ChemicalSubstance"
653 | ],
654 | "Comedian": [
655 | 4,
656 | "Person"
657 | ],
658 | "ComedyGroup": [
659 | 4,
660 | "Organisation"
661 | ],
662 | "Comic": [
663 | 3,
664 | "WrittenWork"
665 | ],
666 | "ComicStrip": [
667 | 4,
668 | "WrittenWork"
669 | ],
670 | "ComicsCharacter": [
671 | 3,
672 | "Agent"
673 | ],
674 | "ComicsCreator": [
675 | 4,
676 | "Person"
677 | ],
678 | "Community": [
679 | 3,
680 | "PopulatedPlace"
681 | ],
682 | "Company": [
683 | 3,
684 | "Company"
685 | ],
686 | "Competition": [
687 | 2,
688 | "Event"
689 | ],
690 | "ConcentrationCamp": [
691 | 2,
692 | "Place"
693 | ],
694 | "Congressman": [
695 | 4,
696 | "Person"
697 | ],
698 | "Conifer": [
699 | 4,
700 | "Species"
701 | ],
702 | "Constellation": [
703 | 3,
704 | "Place"
705 | ],
706 | "Contest": [
707 | 3,
708 | "Event"
709 | ],
710 | "Continent": [
711 | 3,
712 | "PopulatedPlace"
713 | ],
714 | "ControlledDesignationOfOriginWine": [
715 | 4,
716 | "Food"
717 | ],
718 | "Convention": [
719 | 3,
720 | "Event"
721 | ],
722 | "ConveyorSystem": [
723 | 3,
724 | "MeanOfTransportation"
725 | ],
726 | "Country": [
727 | 3,
728 | "Country"
729 | ],
730 | "CountrySeat": [
731 | 2,
732 | "Place"
733 | ],
734 | "Crater": [
735 | 3,
736 | "Place"
737 | ],
738 | "Creek": [
739 | 5,
740 | "Place"
741 | ],
742 | "CricketGround": [
743 | 4,
744 | "ArchitecturalStructure"
745 | ],
746 | "CricketLeague": [
747 | 4,
748 | "Organisation"
749 | ],
750 | "CricketTeam": [
751 | 4,
752 | "SportsTeam"
753 | ],
754 | "Cricketer": [
755 | 4,
756 | "Person"
757 | ],
758 | "Criminal": [
759 | 3,
760 | "Person"
761 | ],
762 | "CrossCountrySkier": [
763 | 5,
764 | "Person"
765 | ],
766 | "Crustacean": [
767 | 4,
768 | "Species"
769 | ],
770 | "CultivatedVariety": [
771 | 4,
772 | "Species"
773 | ],
774 | "Curler": [
775 | 5,
776 | "Person"
777 | ],
778 | "CurlingLeague": [
779 | 4,
780 | "Organisation"
781 | ],
782 | "Currency": [
783 | 1,
784 | "Currency"
785 | ],
786 | "Cycad": [
787 | 4,
788 | "Species"
789 | ],
790 | "CyclingCompetition": [
791 | 4,
792 | "Event"
793 | ],
794 | "CyclingLeague": [
795 | 4,
796 | "Organisation"
797 | ],
798 | "CyclingRace": [
799 | 5,
800 | "Event"
801 | ],
802 | "CyclingTeam": [
803 | 4,
804 | "SportsTeam"
805 | ],
806 | "Cyclist": [
807 | 4,
808 | "Person"
809 | ],
810 | "DTMRacer": [
811 | 6,
812 | "Person"
813 | ],
814 | "Dam": [
815 | 4,
816 | "Infrastructure"
817 | ],
818 | "Dancer": [
819 | 4,
820 | "Person"
821 | ],
822 | "DartsPlayer": [
823 | 4,
824 | "Person"
825 | ],
826 | "Database": [
827 | 2,
828 | "Work"
829 | ],
830 | "Deanery": [
831 | 6,
832 | "AdministrativeRegion"
833 | ],
834 | "Death": [
835 | 4,
836 | "Event"
837 | ],
838 | "Decoration": [
839 | 2,
840 | "Award"
841 | ],
842 | "Deity": [
843 | 2,
844 | "Agent"
845 | ],
846 | "Demographics": [
847 | 1,
848 | "Demographics"
849 | ],
850 | "Department": [
851 | 6,
852 | "AdministrativeRegion"
853 | ],
854 | "Depth": [
855 | 1,
856 | "Depth"
857 | ],
858 | "Deputy": [
859 | 4,
860 | "Person"
861 | ],
862 | "Desert": [
863 | 3,
864 | "Place"
865 | ],
866 | "Device": [
867 | 1,
868 | "Device"
869 | ],
870 | "DigitalCamera": [
871 | 3,
872 | "Device"
873 | ],
874 | "Dike": [
875 | 4,
876 | "Infrastructure"
877 | ],
878 | "Diocese": [
879 | 6,
880 | "AdministrativeRegion"
881 | ],
882 | "Diploma": [
883 | 1,
884 | "Diploma"
885 | ],
886 | "Disease": [
887 | 1,
888 | "Disease"
889 | ],
890 | "DisneyCharacter": [
891 | 3,
892 | "Agent"
893 | ],
894 | "District": [
895 | 6,
896 | "AdministrativeRegion"
897 | ],
898 | "DistrictWaterBoard": [
899 | 6,
900 | "AdministrativeRegion"
901 | ],
902 | "Divorce": [
903 | 4,
904 | "Event"
905 | ],
906 | "Document": [
907 | 2,
908 | "Work"
909 | ],
910 | "DocumentType": [
911 | 3,
912 | "TopicalConcept"
913 | ],
914 | "Dog": [
915 | 5,
916 | "Species"
917 | ],
918 | "Drama": [
919 | 3,
920 | "WrittenWork"
921 | ],
922 | "Drug": [
923 | 2,
924 | "ChemicalSubstance"
925 | ],
926 | "Earthquake": [
927 | 2,
928 | "NaturalEvent"
929 | ],
930 | "Economist": [
931 | 3,
932 | "Person"
933 | ],
934 | "EducationalInstitution": [
935 | 3,
936 | "EducationalInstitution"
937 | ],
938 | "Egyptologist": [
939 | 3,
940 | "Person"
941 | ],
942 | "Election": [
943 | 3,
944 | "Event"
945 | ],
946 | "ElectionDiagram": [
947 | 1,
948 | "ElectionDiagram"
949 | ],
950 | "ElectricalSubstation": [
951 | 5,
952 | "Infrastructure"
953 | ],
954 | "Embryology": [
955 | 2,
956 | "AnatomicalStructure"
957 | ],
958 | "Employer": [
959 | 2,
960 | "Agent"
961 | ],
962 | "EmployersOrganisation": [
963 | 3,
964 | "Organisation"
965 | ],
966 | "Engine": [
967 | 2,
968 | "Device"
969 | ],
970 | "Engineer": [
971 | 3,
972 | "Person"
973 | ],
974 | "Entomologist": [
975 | 4,
976 | "Person"
977 | ],
978 | "Enzyme": [
979 | 2,
980 | "Biomolecule"
981 | ],
982 | "Escalator": [
983 | 3,
984 | "MeanOfTransportation"
985 | ],
986 | "EthnicGroup": [
987 | 1,
988 | "EthnicGroup"
989 | ],
990 | "Eukaryote": [
991 | 2,
992 | "Species"
993 | ],
994 | "EurovisionSongContestEntry": [
995 | 4,
996 | "Work"
997 | ],
998 | "Event": [
999 | 1,
1000 | "Event"
1001 | ],
1002 | "Factory": [
1003 | 4,
1004 | "Building"
1005 | ],
1006 | "Family": [
1007 | 2,
1008 | "Agent"
1009 | ],
1010 | "Farmer": [
1011 | 3,
1012 | "Person"
1013 | ],
1014 | "Fashion": [
1015 | 2,
1016 | "TopicalConcept"
1017 | ],
1018 | "FashionDesigner": [
1019 | 4,
1020 | "Person"
1021 | ],
1022 | "Fencer": [
1023 | 4,
1024 | "Person"
1025 | ],
1026 | "Fern": [
1027 | 4,
1028 | "Species"
1029 | ],
1030 | "FictionalCharacter": [
1031 | 2,
1032 | "Agent"
1033 | ],
1034 | "Fiefdom": [
1035 | 6,
1036 | "AdministrativeRegion"
1037 | ],
1038 | "FieldHockeyLeague": [
1039 | 4,
1040 | "Organisation"
1041 | ],
1042 | "FigureSkater": [
1043 | 5,
1044 | "Person"
1045 | ],
1046 | "File": [
1047 | 3,
1048 | "Work"
1049 | ],
1050 | "FillingStation": [
1051 | 5,
1052 | "Infrastructure"
1053 | ],
1054 | "Film": [
1055 | 2,
1056 | "Work"
1057 | ],
1058 | "FilmFestival": [
1059 | 3,
1060 | "Event"
1061 | ],
1062 | "Fish": [
1063 | 4,
1064 | "Species"
1065 | ],
1066 | "Flag": [
1067 | 1,
1068 | "Flag"
1069 | ],
1070 | "FloweringPlant": [
1071 | 4,
1072 | "Species"
1073 | ],
1074 | "Food": [
1075 | 1,
1076 | "Food"
1077 | ],
1078 | "FootballLeagueSeason": [
1079 | 3,
1080 | "SportsSeason"
1081 | ],
1082 | "FootballMatch": [
1083 | 4,
1084 | "Event"
1085 | ],
1086 | "Forest": [
1087 | 3,
1088 | "Place"
1089 | ],
1090 | "FormerMunicipality": [
1091 | 7,
1092 | "AdministrativeRegion"
1093 | ],
1094 | "FormulaOneRacer": [
1095 | 6,
1096 | "Person"
1097 | ],
1098 | "FormulaOneRacing": [
1099 | 4,
1100 | "Organisation"
1101 | ],
1102 | "FormulaOneTeam": [
1103 | 4,
1104 | "SportsTeam"
1105 | ],
1106 | "Fort": [
1107 | 4,
1108 | "ArchitecturalStructure"
1109 | ],
1110 | "Fungus": [
1111 | 3,
1112 | "Species"
1113 | ],
1114 | "GaelicGamesPlayer": [
1115 | 4,
1116 | "Person"
1117 | ],
1118 | "Galaxy": [
1119 | 3,
1120 | "Place"
1121 | ],
1122 | "Game": [
1123 | 2,
1124 | "Activity"
1125 | ],
1126 | "Garden": [
1127 | 2,
1128 | "Place"
1129 | ],
1130 | "Gate": [
1131 | 3,
1132 | "ArchitecturalStructure"
1133 | ],
1134 | "GatedCommunity": [
1135 | 3,
1136 | "PopulatedPlace"
1137 | ],
1138 | "Gene": [
1139 | 2,
1140 | "Biomolecule"
1141 | ],
1142 | "GeneLocation": [
1143 | 1,
1144 | "GeneLocation"
1145 | ],
1146 | "Genre": [
1147 | 2,
1148 | "TopicalConcept"
1149 | ],
1150 | "GeologicalPeriod": [
1151 | 2,
1152 | "TimePeriod"
1153 | ],
1154 | "GeopoliticalOrganisation": [
1155 | 3,
1156 | "Organisation"
1157 | ],
1158 | "Ginkgo": [
1159 | 4,
1160 | "Species"
1161 | ],
1162 | "GivenName": [
1163 | 2,
1164 | "Name"
1165 | ],
1166 | "Glacier": [
1167 | 3,
1168 | "Place"
1169 | ],
1170 | "Globularswarm": [
1171 | 4,
1172 | "Place"
1173 | ],
1174 | "Gnetophytes": [
1175 | 4,
1176 | "Species"
1177 | ],
1178 | "GolfCourse": [
1179 | 4,
1180 | "ArchitecturalStructure"
1181 | ],
1182 | "GolfLeague": [
1183 | 4,
1184 | "Organisation"
1185 | ],
1186 | "GolfPlayer": [
1187 | 4,
1188 | "Person"
1189 | ],
1190 | "GolfTournament": [
1191 | 5,
1192 | "Event"
1193 | ],
1194 | "GovernmentAgency": [
1195 | 3,
1196 | "Organisation"
1197 | ],
1198 | "GovernmentCabinet": [
1199 | 4,
1200 | "Organisation"
1201 | ],
1202 | "GovernmentType": [
1203 | 3,
1204 | "TopicalConcept"
1205 | ],
1206 | "GovernmentalAdministrativeRegion": [
1207 | 5,
1208 | "AdministrativeRegion"
1209 | ],
1210 | "Governor": [
1211 | 4,
1212 | "Person"
1213 | ],
1214 | "GrandPrix": [
1215 | 4,
1216 | "Event"
1217 | ],
1218 | "Grape": [
1219 | 5,
1220 | "Species"
1221 | ],
1222 | "GraveMonument": [
1223 | 3,
1224 | "Place"
1225 | ],
1226 | "GreenAlga": [
1227 | 4,
1228 | "Species"
1229 | ],
1230 | "GridironFootballPlayer": [
1231 | 4,
1232 | "Person"
1233 | ],
1234 | "GrossDomesticProduct": [
1235 | 1,
1236 | "GrossDomesticProduct"
1237 | ],
1238 | "GrossDomesticProductPerCapita": [
1239 | 1,
1240 | "GrossDomesticProductPerCapita"
1241 | ],
1242 | "Group": [
1243 | 3,
1244 | "Organisation"
1245 | ],
1246 | "Guitar": [
1247 | 3,
1248 | "Device"
1249 | ],
1250 | "Guitarist": [
1251 | 6,
1252 | "MusicalArtist"
1253 | ],
1254 | "Gymnast": [
1255 | 4,
1256 | "Person"
1257 | ],
1258 | "HandballLeague": [
1259 | 4,
1260 | "Organisation"
1261 | ],
1262 | "HandballPlayer": [
1263 | 4,
1264 | "Person"
1265 | ],
1266 | "HandballTeam": [
1267 | 4,
1268 | "SportsTeam"
1269 | ],
1270 | "HighDiver": [
1271 | 4,
1272 | "Person"
1273 | ],
1274 | "Historian": [
1275 | 4,
1276 | "Person"
1277 | ],
1278 | "HistoricBuilding": [
1279 | 4,
1280 | "Building"
1281 | ],
1282 | "HistoricPlace": [
1283 | 2,
1284 | "Place"
1285 | ],
1286 | "HistoricalAreaOfAuthority": [
1287 | 5,
1288 | "AdministrativeRegion"
1289 | ],
1290 | "HistoricalCountry": [
1291 | 4,
1292 | "Country"
1293 | ],
1294 | "HistoricalDistrict": [
1295 | 7,
1296 | "AdministrativeRegion"
1297 | ],
1298 | "HistoricalEvent": [
1299 | 3,
1300 | "Event"
1301 | ],
1302 | "HistoricalPeriod": [
1303 | 2,
1304 | "TimePeriod"
1305 | ],
1306 | "HistoricalProvince": [
1307 | 7,
1308 | "AdministrativeRegion"
1309 | ],
1310 | "HistoricalRegion": [
1311 | 4,
1312 | "Region"
1313 | ],
1314 | "HistoricalSettlement": [
1315 | 4,
1316 | "Settlement"
1317 | ],
1318 | "HockeyClub": [
1319 | 4,
1320 | "Organisation"
1321 | ],
1322 | "HockeyTeam": [
1323 | 4,
1324 | "SportsTeam"
1325 | ],
1326 | "Holiday": [
1327 | 1,
1328 | "Holiday"
1329 | ],
1330 | "HollywoodCartoon": [
1331 | 3,
1332 | "Work"
1333 | ],
1334 | "Hormone": [
1335 | 2,
1336 | "Biomolecule"
1337 | ],
1338 | "Horse": [
1339 | 5,
1340 | "Species"
1341 | ],
1342 | "HorseRace": [
1343 | 5,
1344 | "Event"
1345 | ],
1346 | "HorseRider": [
1347 | 4,
1348 | "Person"
1349 | ],
1350 | "HorseRiding": [
1351 | 3,
1352 | "Activity"
1353 | ],
1354 | "HorseTrainer": [
1355 | 3,
1356 | "Person"
1357 | ],
1358 | "Hospital": [
1359 | 4,
1360 | "Building"
1361 | ],
1362 | "Host": [
1363 | 4,
1364 | "Person"
1365 | ],
1366 | "HotSpring": [
1367 | 3,
1368 | "Place"
1369 | ],
1370 | "Hotel": [
1371 | 4,
1372 | "Building"
1373 | ],
1374 | "HumanDevelopmentIndex": [
1375 | 1,
1376 | "HumanDevelopmentIndex"
1377 | ],
1378 | "HumanGene": [
1379 | 3,
1380 | "Biomolecule"
1381 | ],
1382 | "HumanGeneLocation": [
1383 | 2,
1384 | "GeneLocation"
1385 | ],
1386 | "Humorist": [
1387 | 4,
1388 | "Person"
1389 | ],
1390 | "IceHockeyLeague": [
1391 | 4,
1392 | "Organisation"
1393 | ],
1394 | "IceHockeyPlayer": [
1395 | 5,
1396 | "Person"
1397 | ],
1398 | "Ideology": [
1399 | 2,
1400 | "TopicalConcept"
1401 | ],
1402 | "Image": [
1403 | 3,
1404 | "Work"
1405 | ],
1406 | "InformationAppliance": [
1407 | 2,
1408 | "Device"
1409 | ],
1410 | "Infrastructure": [
1411 | 3,
1412 | "Infrastructure"
1413 | ],
1414 | "InlineHockeyLeague": [
1415 | 4,
1416 | "Organisation"
1417 | ],
1418 | "Insect": [
1419 | 4,
1420 | "Species"
1421 | ],
1422 | "Instrument": [
1423 | 2,
1424 | "Device"
1425 | ],
1426 | "Instrumentalist": [
1427 | 5,
1428 | "MusicalArtist"
1429 | ],
1430 | "Intercommunality": [
1431 | 3,
1432 | "PopulatedPlace"
1433 | ],
1434 | "InternationalFootballLeagueEvent": [
1435 | 4,
1436 | "Event"
1437 | ],
1438 | "InternationalOrganisation": [
1439 | 3,
1440 | "Organisation"
1441 | ],
1442 | "Island": [
1443 | 3,
1444 | "PopulatedPlace"
1445 | ],
1446 | "Jockey": [
1447 | 4,
1448 | "Person"
1449 | ],
1450 | "Journalist": [
1451 | 3,
1452 | "Person"
1453 | ],
1454 | "Judge": [
1455 | 3,
1456 | "Person"
1457 | ],
1458 | "LacrosseLeague": [
1459 | 4,
1460 | "Organisation"
1461 | ],
1462 | "LacrossePlayer": [
1463 | 4,
1464 | "Person"
1465 | ],
1466 | "Lake": [
1467 | 4,
1468 | "Place"
1469 | ],
1470 | "Language": [
1471 | 1,
1472 | "Language"
1473 | ],
1474 | "LaunchPad": [
1475 | 4,
1476 | "Infrastructure"
1477 | ],
1478 | "Law": [
1479 | 3,
1480 | "WrittenWork"
1481 | ],
1482 | "LawFirm": [
1483 | 4,
1484 | "Company"
1485 | ],
1486 | "Lawyer": [
1487 | 3,
1488 | "Person"
1489 | ],
1490 | "LegalCase": [
1491 | 3,
1492 | "UnitOfWork"
1493 | ],
1494 | "Legislature": [
1495 | 3,
1496 | "Organisation"
1497 | ],
1498 | "Letter": [
1499 | 3,
1500 | "WrittenWork"
1501 | ],
1502 | "Library": [
1503 | 4,
1504 | "EducationalInstitution"
1505 | ],
1506 | "Lieutenant": [
1507 | 4,
1508 | "Person"
1509 | ],
1510 | "LifeCycleEvent": [
1511 | 2,
1512 | "Event"
1513 | ],
1514 | "Ligament": [
1515 | 2,
1516 | "AnatomicalStructure"
1517 | ],
1518 | "LightNovel": [
1519 | 5,
1520 | "Book"
1521 | ],
1522 | "Lighthouse": [
1523 | 4,
1524 | "ArchitecturalStructure"
1525 | ],
1526 | "LineOfFashion": [
1527 | 2,
1528 | "Work"
1529 | ],
1530 | "Linguist": [
1531 | 3,
1532 | "Person"
1533 | ],
1534 | "Lipid": [
1535 | 2,
1536 | "Biomolecule"
1537 | ],
1538 | "List": [
1539 | 1,
1540 | "List"
1541 | ],
1542 | "LiteraryGenre": [
1543 | 3,
1544 | "TopicalConcept"
1545 | ],
1546 | "Locality": [
1547 | 3,
1548 | "PopulatedPlace"
1549 | ],
1550 | "Lock": [
1551 | 4,
1552 | "Infrastructure"
1553 | ],
1554 | "Locomotive": [
1555 | 2,
1556 | "MeanOfTransportation"
1557 | ],
1558 | "LunarCrater": [
1559 | 4,
1560 | "Place"
1561 | ],
1562 | "Lymph": [
1563 | 2,
1564 | "AnatomicalStructure"
1565 | ],
1566 | "Magazine": [
1567 | 4,
1568 | "WrittenWork"
1569 | ],
1570 | "Mammal": [
1571 | 4,
1572 | "Species"
1573 | ],
1574 | "Manga": [
1575 | 4,
1576 | "WrittenWork"
1577 | ],
1578 | "Manhua": [
1579 | 4,
1580 | "WrittenWork"
1581 | ],
1582 | "Manhwa": [
1583 | 4,
1584 | "WrittenWork"
1585 | ],
1586 | "Marriage": [
1587 | 4,
1588 | "Event"
1589 | ],
1590 | "MartialArtist": [
1591 | 4,
1592 | "Person"
1593 | ],
1594 | "MathematicalConcept": [
1595 | 2,
1596 | "TopicalConcept"
1597 | ],
1598 | "Mayor": [
1599 | 4,
1600 | "Person"
1601 | ],
1602 | "MeanOfTransportation": [
1603 | 1,
1604 | "MeanOfTransportation"
1605 | ],
1606 | "Media": [
1607 | 1,
1608 | "Media"
1609 | ],
1610 | "MedicalSpecialty": [
1611 | 1,
1612 | "MedicalSpecialty"
1613 | ],
1614 | "Medician": [
1615 | 4,
1616 | "Person"
1617 | ],
1618 | "Medicine": [
1619 | 1,
1620 | "Medicine"
1621 | ],
1622 | "Meeting": [
1623 | 3,
1624 | "Event"
1625 | ],
1626 | "MemberOfParliament": [
1627 | 4,
1628 | "Person"
1629 | ],
1630 | "MemberResistanceMovement": [
1631 | 3,
1632 | "Person"
1633 | ],
1634 | "Memorial": [
1635 | 3,
1636 | "Place"
1637 | ],
1638 | "MetroStation": [
1639 | 5,
1640 | "Infrastructure"
1641 | ],
1642 | "MicroRegion": [
1643 | 6,
1644 | "AdministrativeRegion"
1645 | ],
1646 | "MilitaryAircraft": [
1647 | 3,
1648 | "MeanOfTransportation"
1649 | ],
1650 | "MilitaryConflict": [
1651 | 3,
1652 | "Event"
1653 | ],
1654 | "MilitaryPerson": [
1655 | 3,
1656 | "Person"
1657 | ],
1658 | "MilitaryService": [
1659 | 3,
1660 | "TimePeriod"
1661 | ],
1662 | "MilitaryStructure": [
1663 | 3,
1664 | "ArchitecturalStructure"
1665 | ],
1666 | "MilitaryUnit": [
1667 | 3,
1668 | "Organisation"
1669 | ],
1670 | "MilitaryVehicle": [
1671 | 2,
1672 | "MeanOfTransportation"
1673 | ],
1674 | "Mill": [
1675 | 3,
1676 | "ArchitecturalStructure"
1677 | ],
1678 | "Mine": [
1679 | 2,
1680 | "Place"
1681 | ],
1682 | "Mineral": [
1683 | 2,
1684 | "ChemicalSubstance"
1685 | ],
1686 | "Minister": [
1687 | 4,
1688 | "Person"
1689 | ],
1690 | "MixedMartialArtsEvent": [
1691 | 4,
1692 | "Event"
1693 | ],
1694 | "MixedMartialArtsLeague": [
1695 | 4,
1696 | "Organisation"
1697 | ],
1698 | "MobilePhone": [
1699 | 2,
1700 | "Device"
1701 | ],
1702 | "Model": [
1703 | 3,
1704 | "Person"
1705 | ],
1706 | "Mollusca": [
1707 | 4,
1708 | "Species"
1709 | ],
1710 | "Monarch": [
1711 | 3,
1712 | "Person"
1713 | ],
1714 | "Monastery": [
1715 | 5,
1716 | "Building"
1717 | ],
1718 | "MonoclonalAntibody": [
1719 | 3,
1720 | "ChemicalSubstance"
1721 | ],
1722 | "Monument": [
1723 | 2,
1724 | "Place"
1725 | ],
1726 | "Mosque": [
1727 | 5,
1728 | "Building"
1729 | ],
1730 | "Moss": [
1731 | 4,
1732 | "Species"
1733 | ],
1734 | "MotocycleRacer": [
1735 | 6,
1736 | "Person"
1737 | ],
1738 | "MotorRace": [
1739 | 5,
1740 | "Event"
1741 | ],
1742 | "Motorcycle": [
1743 | 2,
1744 | "MeanOfTransportation"
1745 | ],
1746 | "MotorcycleRacingLeague": [
1747 | 4,
1748 | "Organisation"
1749 | ],
1750 | "MotorcycleRider": [
1751 | 5,
1752 | "Person"
1753 | ],
1754 | "MotorsportRacer": [
1755 | 4,
1756 | "Person"
1757 | ],
1758 | "MotorsportSeason": [
1759 | 2,
1760 | "SportsSeason"
1761 | ],
1762 | "Mountain": [
1763 | 3,
1764 | "Place"
1765 | ],
1766 | "MountainPass": [
1767 | 3,
1768 | "Place"
1769 | ],
1770 | "MountainRange": [
1771 | 3,
1772 | "Place"
1773 | ],
1774 | "MouseGene": [
1775 | 3,
1776 | "Biomolecule"
1777 | ],
1778 | "MouseGeneLocation": [
1779 | 2,
1780 | "GeneLocation"
1781 | ],
1782 | "MovieDirector": [
1783 | 3,
1784 | "Person"
1785 | ],
1786 | "MovieGenre": [
1787 | 3,
1788 | "TopicalConcept"
1789 | ],
1790 | "MovingImage": [
1791 | 4,
1792 | "Work"
1793 | ],
1794 | "MovingWalkway": [
1795 | 3,
1796 | "MeanOfTransportation"
1797 | ],
1798 | "MultiVolumePublication": [
1799 | 3,
1800 | "WrittenWork"
1801 | ],
1802 | "Municipality": [
1803 | 6,
1804 | "AdministrativeRegion"
1805 | ],
1806 | "Murderer": [
1807 | 4,
1808 | "Person"
1809 | ],
1810 | "Muscle": [
1811 | 2,
1812 | "AnatomicalStructure"
1813 | ],
1814 | "Museum": [
1815 | 4,
1816 | "Building"
1817 | ],
1818 | "MusicComposer": [
1819 | 4,
1820 | "Person"
1821 | ],
1822 | "MusicDirector": [
1823 | 5,
1824 | "MusicalArtist"
1825 | ],
1826 | "MusicFestival": [
1827 | 3,
1828 | "Event"
1829 | ],
1830 | "MusicGenre": [
1831 | 3,
1832 | "TopicalConcept"
1833 | ],
1834 | "Musical": [
1835 | 3,
1836 | "Work"
1837 | ],
1838 | "MusicalArtist": [
1839 | 4,
1840 | "MusicalArtist"
1841 | ],
1842 | "MusicalWork": [
1843 | 2,
1844 | "Work"
1845 | ],
1846 | "MythologicalFigure": [
1847 | 3,
1848 | "Agent"
1849 | ],
1850 | "NCAATeamSeason": [
1851 | 3,
1852 | "SportsSeason"
1853 | ],
1854 | "Name": [
1855 | 1,
1856 | "Name"
1857 | ],
1858 | "NarutoCharacter": [
1859 | 3,
1860 | "Agent"
1861 | ],
1862 | "NascarDriver": [
1863 | 6,
1864 | "Person"
1865 | ],
1866 | "NationalAnthem": [
1867 | 3,
1868 | "Work"
1869 | ],
1870 | "NationalCollegiateAthleticAssociationAthlete": [
1871 | 4,
1872 | "Person"
1873 | ],
1874 | "NationalFootballLeagueEvent": [
1875 | 4,
1876 | "Event"
1877 | ],
1878 | "NationalFootballLeagueSeason": [
1879 | 4,
1880 | "SportsSeason"
1881 | ],
1882 | "NationalSoccerClub": [
1883 | 5,
1884 | "SoccerClub"
1885 | ],
1886 | "NaturalEvent": [
1887 | 1,
1888 | "NaturalEvent"
1889 | ],
1890 | "NaturalPlace": [
1891 | 2,
1892 | "Place"
1893 | ],
1894 | "NaturalRegion": [
1895 | 4,
1896 | "Region"
1897 | ],
1898 | "Nerve": [
1899 | 2,
1900 | "AnatomicalStructure"
1901 | ],
1902 | "NetballPlayer": [
1903 | 4,
1904 | "Person"
1905 | ],
1906 | "Newspaper": [
1907 | 4,
1908 | "WrittenWork"
1909 | ],
1910 | "NobelPrize": [
1911 | 2,
1912 | "Award"
1913 | ],
1914 | "Noble": [
1915 | 3,
1916 | "Person"
1917 | ],
1918 | "NobleFamily": [
1919 | 3,
1920 | "Agent"
1921 | ],
1922 | "Non-ProfitOrganisation": [
1923 | 3,
1924 | "Organisation"
1925 | ],
1926 | "NordicCombined": [
1927 | 5,
1928 | "Person"
1929 | ],
1930 | "Novel": [
1931 | 4,
1932 | "Book"
1933 | ],
1934 | "NuclearPowerStation": [
1935 | 5,
1936 | "Infrastructure"
1937 | ],
1938 | "Ocean": [
1939 | 4,
1940 | "Place"
1941 | ],
1942 | "OfficeHolder": [
1943 | 3,
1944 | "OfficeHolder"
1945 | ],
1946 | "OldTerritory": [
1947 | 4,
1948 | "PopulatedPlace"
1949 | ],
1950 | "OlympicEvent": [
1951 | 5,
1952 | "Event"
1953 | ],
1954 | "OlympicResult": [
1955 | 2,
1956 | "SportCompetitionResult"
1957 | ],
1958 | "Olympics": [
1959 | 4,
1960 | "Event"
1961 | ],
1962 | "On-SiteTransportation": [
1963 | 2,
1964 | "MeanOfTransportation"
1965 | ],
1966 | "Openswarm": [
1967 | 4,
1968 | "Place"
1969 | ],
1970 | "Opera": [
1971 | 3,
1972 | "Work"
1973 | ],
1974 | "Organ": [
1975 | 3,
1976 | "Device"
1977 | ],
1978 | "Organisation": [
1979 | 2,
1980 | "Organisation"
1981 | ],
1982 | "OrganisationMember": [
1983 | 3,
1984 | "Person"
1985 | ],
1986 | "Orphan": [
1987 | 3,
1988 | "Person"
1989 | ],
1990 | "OverseasDepartment": [
1991 | 7,
1992 | "AdministrativeRegion"
1993 | ],
1994 | "PaintballLeague": [
1995 | 4,
1996 | "Organisation"
1997 | ],
1998 | "Painter": [
1999 | 4,
2000 | "Person"
2001 | ],
2002 | "Painting": [
2003 | 3,
2004 | "Work"
2005 | ],
2006 | "Parish": [
2007 | 6,
2008 | "AdministrativeRegion"
2009 | ],
2010 | "Park": [
2011 | 2,
2012 | "Place"
2013 | ],
2014 | "Parliament": [
2015 | 3,
2016 | "Organisation"
2017 | ],
2018 | "PenaltyShootOut": [
2019 | 2,
2020 | "Event"
2021 | ],
2022 | "PeriodOfArtisticStyle": [
2023 | 2,
2024 | "TimePeriod"
2025 | ],
2026 | "PeriodicalLiterature": [
2027 | 3,
2028 | "WrittenWork"
2029 | ],
2030 | "Person": [
2031 | 2,
2032 | "Person"
2033 | ],
2034 | "PersonFunction": [
2035 | 1,
2036 | "PersonFunction"
2037 | ],
2038 | "PersonalEvent": [
2039 | 3,
2040 | "Event"
2041 | ],
2042 | "Philosopher": [
2043 | 3,
2044 | "Person"
2045 | ],
2046 | "PhilosophicalConcept": [
2047 | 2,
2048 | "TopicalConcept"
2049 | ],
2050 | "Photographer": [
2051 | 4,
2052 | "Person"
2053 | ],
2054 | "Place": [
2055 | 1,
2056 | "Place"
2057 | ],
2058 | "Planet": [
2059 | 3,
2060 | "Place"
2061 | ],
2062 | "Plant": [
2063 | 3,
2064 | "Species"
2065 | ],
2066 | "Play": [
2067 | 3,
2068 | "WrittenWork"
2069 | ],
2070 | "PlayWright": [
2071 | 4,
2072 | "Person"
2073 | ],
2074 | "PlayboyPlaymate": [
2075 | 3,
2076 | "Person"
2077 | ],
2078 | "Poem": [
2079 | 3,
2080 | "WrittenWork"
2081 | ],
2082 | "Poet": [
2083 | 4,
2084 | "Person"
2085 | ],
2086 | "PokerPlayer": [
2087 | 4,
2088 | "Person"
2089 | ],
2090 | "PoliticalConcept": [
2091 | 2,
2092 | "TopicalConcept"
2093 | ],
2094 | "PoliticalFunction": [
2095 | 2,
2096 | "PersonFunction"
2097 | ],
2098 | "PoliticalParty": [
2099 | 3,
2100 | "Organisation"
2101 | ],
2102 | "Politician": [
2103 | 3,
2104 | "Person"
2105 | ],
2106 | "PoliticianSpouse": [
2107 | 3,
2108 | "Person"
2109 | ],
2110 | "PoloLeague": [
2111 | 4,
2112 | "Organisation"
2113 | ],
2114 | "Polyhedron": [
2115 | 1,
2116 | "Polyhedron"
2117 | ],
2118 | "Polysaccharide": [
2119 | 2,
2120 | "Biomolecule"
2121 | ],
2122 | "Pope": [
2123 | 4,
2124 | "Person"
2125 | ],
2126 | "PopulatedPlace": [
2127 | 2,
2128 | "PopulatedPlace"
2129 | ],
2130 | "Population": [
2131 | 1,
2132 | "Population"
2133 | ],
2134 | "Port": [
2135 | 4,
2136 | "Infrastructure"
2137 | ],
2138 | "PowerStation": [
2139 | 4,
2140 | "Infrastructure"
2141 | ],
2142 | "Prefecture": [
2143 | 6,
2144 | "AdministrativeRegion"
2145 | ],
2146 | "PrehistoricalPeriod": [
2147 | 2,
2148 | "TimePeriod"
2149 | ],
2150 | "Presenter": [
2151 | 3,
2152 | "Person"
2153 | ],
2154 | "President": [
2155 | 4,
2156 | "Person"
2157 | ],
2158 | "Priest": [
2159 | 4,
2160 | "Person"
2161 | ],
2162 | "PrimeMinister": [
2163 | 4,
2164 | "Person"
2165 | ],
2166 | "Prison": [
2167 | 4,
2168 | "Building"
2169 | ],
2170 | "Producer": [
2171 | 3,
2172 | "Person"
2173 | ],
2174 | "Profession": [
2175 | 2,
2176 | "PersonFunction"
2177 | ],
2178 | "Professor": [
2179 | 4,
2180 | "Person"
2181 | ],
2182 | "ProgrammingLanguage": [
2183 | 2,
2184 | "Language"
2185 | ],
2186 | "Project": [
2187 | 2,
2188 | "UnitOfWork"
2189 | ],
2190 | "ProtectedArea": [
2191 | 2,
2192 | "Place"
2193 | ],
2194 | "Protein": [
2195 | 2,
2196 | "Biomolecule"
2197 | ],
2198 | "ProtohistoricalPeriod": [
2199 | 2,
2200 | "TimePeriod"
2201 | ],
2202 | "Province": [
2203 | 6,
2204 | "AdministrativeRegion"
2205 | ],
2206 | "Psychologist": [
2207 | 3,
2208 | "Person"
2209 | ],
2210 | "PublicService": [
2211 | 1,
2212 | "PublicService"
2213 | ],
2214 | "PublicTransitSystem": [
2215 | 4,
2216 | "Company"
2217 | ],
2218 | "Publisher": [
2219 | 4,
2220 | "Company"
2221 | ],
2222 | "Pyramid": [
2223 | 3,
2224 | "ArchitecturalStructure"
2225 | ],
2226 | "Quote": [
2227 | 3,
2228 | "WrittenWork"
2229 | ],
2230 | "Race": [
2231 | 4,
2232 | "Event"
2233 | ],
2234 | "RaceHorse": [
2235 | 6,
2236 | "Species"
2237 | ],
2238 | "RaceTrack": [
2239 | 4,
2240 | "ArchitecturalStructure"
2241 | ],
2242 | "Racecourse": [
2243 | 5,
2244 | "ArchitecturalStructure"
2245 | ],
2246 | "RacingDriver": [
2247 | 5,
2248 | "Person"
2249 | ],
2250 | "RadioControlledRacingLeague": [
2251 | 4,
2252 | "Organisation"
2253 | ],
2254 | "RadioHost": [
2255 | 4,
2256 | "Person"
2257 | ],
2258 | "RadioProgram": [
2259 | 2,
2260 | "Work"
2261 | ],
2262 | "RadioStation": [
2263 | 4,
2264 | "Organisation"
2265 | ],
2266 | "RailwayLine": [
2267 | 5,
2268 | "Infrastructure"
2269 | ],
2270 | "RailwayStation": [
2271 | 5,
2272 | "Infrastructure"
2273 | ],
2274 | "RailwayTunnel": [
2275 | 5,
2276 | "Infrastructure"
2277 | ],
2278 | "RallyDriver": [
2279 | 6,
2280 | "Person"
2281 | ],
2282 | "Ratio": [
2283 | 2,
2284 | "Relationship"
2285 | ],
2286 | "Rebellion": [
2287 | 3,
2288 | "Event"
2289 | ],
2290 | "RecordLabel": [
2291 | 4,
2292 | "Company"
2293 | ],
2294 | "RecordOffice": [
2295 | 4,
2296 | "Organisation"
2297 | ],
2298 | "Referee": [
2299 | 3,
2300 | "Person"
2301 | ],
2302 | "Reference": [
2303 | 4,
2304 | "WrittenWork"
2305 | ],
2306 | "Regency": [
2307 | 6,
2308 | "AdministrativeRegion"
2309 | ],
2310 | "Region": [
2311 | 3,
2312 | "Region"
2313 | ],
2314 | "Reign": [
2315 | 2,
2316 | "TimePeriod"
2317 | ],
2318 | "Relationship": [
2319 | 1,
2320 | "Relationship"
2321 | ],
2322 | "Religious": [
2323 | 3,
2324 | "Person"
2325 | ],
2326 | "ReligiousBuilding": [
2327 | 4,
2328 | "Building"
2329 | ],
2330 | "ReligiousOrganisation": [
2331 | 3,
2332 | "Organisation"
2333 | ],
2334 | "Reptile": [
2335 | 4,
2336 | "Species"
2337 | ],
2338 | "ResearchProject": [
2339 | 3,
2340 | "UnitOfWork"
2341 | ],
2342 | "RestArea": [
2343 | 4,
2344 | "Infrastructure"
2345 | ],
2346 | "Restaurant": [
2347 | 4,
2348 | "Building"
2349 | ],
2350 | "Resume": [
2351 | 3,
2352 | "WrittenWork"
2353 | ],
2354 | "River": [
2355 | 5,
2356 | "Place"
2357 | ],
2358 | "Road": [
2359 | 5,
2360 | "Infrastructure"
2361 | ],
2362 | "RoadJunction": [
2363 | 5,
2364 | "Infrastructure"
2365 | ],
2366 | "RoadTunnel": [
2367 | 5,
2368 | "Infrastructure"
2369 | ],
2370 | "Rocket": [
2371 | 2,
2372 | "MeanOfTransportation"
2373 | ],
2374 | "RocketEngine": [
2375 | 3,
2376 | "Device"
2377 | ],
2378 | "RollerCoaster": [
2379 | 4,
2380 | "ArchitecturalStructure"
2381 | ],
2382 | "RomanEmperor": [
2383 | 3,
2384 | "Person"
2385 | ],
2386 | "RouteOfTransportation": [
2387 | 4,
2388 | "Infrastructure"
2389 | ],
2390 | "RouteStop": [
2391 | 1,
2392 | "RouteStop"
2393 | ],
2394 | "Rower": [
2395 | 4,
2396 | "Person"
2397 | ],
2398 | "Royalty": [
2399 | 3,
2400 | "Person"
2401 | ],
2402 | "RugbyClub": [
2403 | 4,
2404 | "SportsTeam"
2405 | ],
2406 | "RugbyLeague": [
2407 | 4,
2408 | "Organisation"
2409 | ],
2410 | "RugbyPlayer": [
2411 | 4,
2412 | "Person"
2413 | ],
2414 | "Saint": [
2415 | 4,
2416 | "Person"
2417 | ],
2418 | "Sales": [
2419 | 2,
2420 | "Activity"
2421 | ],
2422 | "SambaSchool": [
2423 | 3,
2424 | "Organisation"
2425 | ],
2426 | "Satellite": [
2427 | 3,
2428 | "Place"
2429 | ],
2430 | "School": [
2431 | 4,
2432 | "EducationalInstitution"
2433 | ],
2434 | "ScientificConcept": [
2435 | 2,
2436 | "TopicalConcept"
2437 | ],
2438 | "Scientist": [
2439 | 3,
2440 | "Person"
2441 | ],
2442 | "ScreenWriter": [
2443 | 4,
2444 | "Person"
2445 | ],
2446 | "Sculptor": [
2447 | 4,
2448 | "Person"
2449 | ],
2450 | "Sculpture": [
2451 | 3,
2452 | "Work"
2453 | ],
2454 | "Sea": [
2455 | 4,
2456 | "Place"
2457 | ],
2458 | "Senator": [
2459 | 4,
2460 | "Person"
2461 | ],
2462 | "SerialKiller": [
2463 | 5,
2464 | "Person"
2465 | ],
2466 | "Settlement": [
2467 | 3,
2468 | "Settlement"
2469 | ],
2470 | "Ship": [
2471 | 2,
2472 | "MeanOfTransportation"
2473 | ],
2474 | "ShoppingMall": [
2475 | 4,
2476 | "Building"
2477 | ],
2478 | "Shrine": [
2479 | 5,
2480 | "Building"
2481 | ],
2482 | "Singer": [
2483 | 5,
2484 | "MusicalArtist"
2485 | ],
2486 | "Single": [
2487 | 3,
2488 | "Work"
2489 | ],
2490 | "SiteOfSpecialScientificInterest": [
2491 | 2,
2492 | "Place"
2493 | ],
2494 | "Skater": [
2495 | 5,
2496 | "Person"
2497 | ],
2498 | "SkiArea": [
2499 | 4,
2500 | "ArchitecturalStructure"
2501 | ],
2502 | "SkiResort": [
2503 | 5,
2504 | "ArchitecturalStructure"
2505 | ],
2506 | "Ski_jumper": [
2507 | 5,
2508 | "Person"
2509 | ],
2510 | "Skier": [
2511 | 5,
2512 | "Person"
2513 | ],
2514 | "Skyscraper": [
2515 | 4,
2516 | "Building"
2517 | ],
2518 | "SnookerChamp": [
2519 | 5,
2520 | "Person"
2521 | ],
2522 | "SnookerPlayer": [
2523 | 4,
2524 | "Person"
2525 | ],
2526 | "SnookerWorldRanking": [
2527 | 2,
2528 | "SportCompetitionResult"
2529 | ],
2530 | "SoapCharacter": [
2531 | 3,
2532 | "Agent"
2533 | ],
2534 | "Soccer": [
2535 | 4,
2536 | "Activity"
2537 | ],
2538 | "SoccerClub": [
2539 | 4,
2540 | "SoccerClub"
2541 | ],
2542 | "SoccerClubSeason": [
2543 | 3,
2544 | "SportsSeason"
2545 | ],
2546 | "SoccerLeague": [
2547 | 4,
2548 | "Organisation"
2549 | ],
2550 | "SoccerLeagueSeason": [
2551 | 3,
2552 | "SportsSeason"
2553 | ],
2554 | "SoccerManager": [
2555 | 4,
2556 | "Person"
2557 | ],
2558 | "SoccerPlayer": [
2559 | 4,
2560 | "Person"
2561 | ],
2562 | "SoccerTournament": [
2563 | 5,
2564 | "Event"
2565 | ],
2566 | "SocietalEvent": [
2567 | 2,
2568 | "Event"
2569 | ],
2570 | "SoftballLeague": [
2571 | 4,
2572 | "Organisation"
2573 | ],
2574 | "Software": [
2575 | 2,
2576 | "Work"
2577 | ],
2578 | "SolarEclipse": [
2579 | 2,
2580 | "NaturalEvent"
2581 | ],
2582 | "Song": [
2583 | 3,
2584 | "Work"
2585 | ],
2586 | "SongWriter": [
2587 | 4,
2588 | "Person"
2589 | ],
2590 | "Sound": [
2591 | 3,
2592 | "Work"
2593 | ],
2594 | "SpaceMission": [
2595 | 3,
2596 | "Event"
2597 | ],
2598 | "SpaceShuttle": [
2599 | 2,
2600 | "MeanOfTransportation"
2601 | ],
2602 | "SpaceStation": [
2603 | 2,
2604 | "MeanOfTransportation"
2605 | ],
2606 | "Spacecraft": [
2607 | 2,
2608 | "MeanOfTransportation"
2609 | ],
2610 | "Species": [
2611 | 1,
2612 | "Species"
2613 | ],
2614 | "SpeedSkater": [
2615 | 5,
2616 | "Person"
2617 | ],
2618 | "SpeedwayLeague": [
2619 | 4,
2620 | "Organisation"
2621 | ],
2622 | "SpeedwayRider": [
2623 | 6,
2624 | "Person"
2625 | ],
2626 | "SpeedwayTeam": [
2627 | 4,
2628 | "SportsTeam"
2629 | ],
2630 | "Sport": [
2631 | 2,
2632 | "Activity"
2633 | ],
2634 | "SportCompetitionResult": [
2635 | 1,
2636 | "SportCompetitionResult"
2637 | ],
2638 | "SportFacility": [
2639 | 3,
2640 | "ArchitecturalStructure"
2641 | ],
2642 | "SportsClub": [
2643 | 3,
2644 | "Organisation"
2645 | ],
2646 | "SportsEvent": [
2647 | 3,
2648 | "Event"
2649 | ],
2650 | "SportsLeague": [
2651 | 3,
2652 | "Organisation"
2653 | ],
2654 | "SportsManager": [
2655 | 3,
2656 | "Person"
2657 | ],
2658 | "SportsSeason": [
2659 | 1,
2660 | "SportsSeason"
2661 | ],
2662 | "SportsTeam": [
2663 | 3,
2664 | "SportsTeam"
2665 | ],
2666 | "SportsTeamMember": [
2667 | 4,
2668 | "Person"
2669 | ],
2670 | "SportsTeamSeason": [
2671 | 2,
2672 | "SportsSeason"
2673 | ],
2674 | "Square": [
2675 | 3,
2676 | "ArchitecturalStructure"
2677 | ],
2678 | "SquashPlayer": [
2679 | 4,
2680 | "Person"
2681 | ],
2682 | "Stadium": [
2683 | 4,
2684 | "ArchitecturalStructure"
2685 | ],
2686 | "Standard": [
2687 | 2,
2688 | "TopicalConcept"
2689 | ],
2690 | "Star": [
2691 | 3,
2692 | "Place"
2693 | ],
2694 | "State": [
2695 | 3,
2696 | "PopulatedPlace"
2697 | ],
2698 | "StatedResolution": [
2699 | 3,
2700 | "WrittenWork"
2701 | ],
2702 | "Station": [
2703 | 4,
2704 | "Infrastructure"
2705 | ],
2706 | "Statistic": [
2707 | 1,
2708 | "Statistic"
2709 | ],
2710 | "StillImage": [
2711 | 4,
2712 | "Work"
2713 | ],
2714 | "StormSurge": [
2715 | 2,
2716 | "NaturalEvent"
2717 | ],
2718 | "Stream": [
2719 | 4,
2720 | "Place"
2721 | ],
2722 | "Street": [
2723 | 3,
2724 | "PopulatedPlace"
2725 | ],
2726 | "SubMunicipality": [
2727 | 6,
2728 | "AdministrativeRegion"
2729 | ],
2730 | "SumoWrestler": [
2731 | 5,
2732 | "Person"
2733 | ],
2734 | "SupremeCourtOfTheUnitedStatesCase": [
2735 | 4,
2736 | "UnitOfWork"
2737 | ],
2738 | "Surfer": [
2739 | 4,
2740 | "Person"
2741 | ],
2742 | "Surname": [
2743 | 2,
2744 | "Name"
2745 | ],
2746 | "Swarm": [
2747 | 3,
2748 | "Place"
2749 | ],
2750 | "Swimmer": [
2751 | 4,
2752 | "Person"
2753 | ],
2754 | "Synagogue": [
2755 | 5,
2756 | "Building"
2757 | ],
2758 | "SystemOfLaw": [
2759 | 2,
2760 | "TopicalConcept"
2761 | ],
2762 | "TableTennisPlayer": [
2763 | 4,
2764 | "Person"
2765 | ],
2766 | "Tax": [
2767 | 2,
2768 | "TopicalConcept"
2769 | ],
2770 | "Taxon": [
2771 | 2,
2772 | "TopicalConcept"
2773 | ],
2774 | "TeamMember": [
2775 | 4,
2776 | "Person"
2777 | ],
2778 | "TeamSport": [
2779 | 3,
2780 | "Activity"
2781 | ],
2782 | "TelevisionDirector": [
2783 | 3,
2784 | "Person"
2785 | ],
2786 | "TelevisionEpisode": [
2787 | 2,
2788 | "Work"
2789 | ],
2790 | "TelevisionHost": [
2791 | 4,
2792 | "Person"
2793 | ],
2794 | "TelevisionPersonality": [
2795 | 3,
2796 | "Person"
2797 | ],
2798 | "TelevisionSeason": [
2799 | 2,
2800 | "Work"
2801 | ],
2802 | "TelevisionShow": [
2803 | 2,
2804 | "Work"
2805 | ],
2806 | "TelevisionStation": [
2807 | 4,
2808 | "Organisation"
2809 | ],
2810 | "Temple": [
2811 | 5,
2812 | "Building"
2813 | ],
2814 | "TennisLeague": [
2815 | 4,
2816 | "Organisation"
2817 | ],
2818 | "TennisPlayer": [
2819 | 4,
2820 | "Person"
2821 | ],
2822 | "TennisTournament": [
2823 | 5,
2824 | "Event"
2825 | ],
2826 | "Tenure": [
2827 | 2,
2828 | "TimePeriod"
2829 | ],
2830 | "TermOfOffice": [
2831 | 3,
2832 | "Organisation"
2833 | ],
2834 | "Territory": [
2835 | 3,
2836 | "PopulatedPlace"
2837 | ],
2838 | "Theatre": [
2839 | 4,
2840 | "ArchitecturalStructure"
2841 | ],
2842 | "TheatreDirector": [
2843 | 3,
2844 | "Person"
2845 | ],
2846 | "TheologicalConcept": [
2847 | 2,
2848 | "TopicalConcept"
2849 | ],
2850 | "TimePeriod": [
2851 | 1,
2852 | "TimePeriod"
2853 | ],
2854 | "TopicalConcept": [
2855 | 1,
2856 | "TopicalConcept"
2857 | ],
2858 | "Tournament": [
2859 | 4,
2860 | "Event"
2861 | ],
2862 | "Tower": [
2863 | 3,
2864 | "ArchitecturalStructure"
2865 | ],
2866 | "Town": [
2867 | 4,
2868 | "Settlement"
2869 | ],
2870 | "TrackList": [
2871 | 2,
2872 | "List"
2873 | ],
2874 | "TradeUnion": [
2875 | 3,
2876 | "Organisation"
2877 | ],
2878 | "Train": [
2879 | 2,
2880 | "MeanOfTransportation"
2881 | ],
2882 | "TrainCarriage": [
2883 | 2,
2884 | "MeanOfTransportation"
2885 | ],
2886 | "Tram": [
2887 | 2,
2888 | "MeanOfTransportation"
2889 | ],
2890 | "TramStation": [
2891 | 5,
2892 | "Infrastructure"
2893 | ],
2894 | "Treadmill": [
2895 | 4,
2896 | "ArchitecturalStructure"
2897 | ],
2898 | "Treaty": [
2899 | 3,
2900 | "WrittenWork"
2901 | ],
2902 | "Tunnel": [
2903 | 3,
2904 | "ArchitecturalStructure"
2905 | ],
2906 | "Type": [
2907 | 2,
2908 | "TopicalConcept"
2909 | ],
2910 | "UndergroundJournal": [
2911 | 4,
2912 | "WrittenWork"
2913 | ],
2914 | "UnitOfWork": [
2915 | 1,
2916 | "UnitOfWork"
2917 | ],
2918 | "University": [
2919 | 4,
2920 | "University"
2921 | ],
2922 | "Unknown": [
2923 | 1,
2924 | "Unknown"
2925 | ],
2926 | "Vaccine": [
2927 | 3,
2928 | "ChemicalSubstance"
2929 | ],
2930 | "Valley": [
2931 | 3,
2932 | "Place"
2933 | ],
2934 | "Vein": [
2935 | 2,
2936 | "AnatomicalStructure"
2937 | ],
2938 | "Venue": [
2939 | 3,
2940 | "ArchitecturalStructure"
2941 | ],
2942 | "Vicar": [
2943 | 4,
2944 | "Person"
2945 | ],
2946 | "VicePresident": [
2947 | 4,
2948 | "Person"
2949 | ],
2950 | "VicePrimeMinister": [
2951 | 4,
2952 | "Person"
2953 | ],
2954 | "VideoGame": [
2955 | 3,
2956 | "Work"
2957 | ],
2958 | "VideogamesLeague": [
2959 | 4,
2960 | "Organisation"
2961 | ],
2962 | "Village": [
2963 | 4,
2964 | "Settlement"
2965 | ],
2966 | "Vodka": [
2967 | 3,
2968 | "Food"
2969 | ],
2970 | "VoiceActor": [
2971 | 5,
2972 | "Person"
2973 | ],
2974 | "Volcano": [
2975 | 3,
2976 | "Place"
2977 | ],
2978 | "VolleyballCoach": [
2979 | 4,
2980 | "Person"
2981 | ],
2982 | "VolleyballLeague": [
2983 | 4,
2984 | "Organisation"
2985 | ],
2986 | "VolleyballPlayer": [
2987 | 4,
2988 | "Person"
2989 | ],
2990 | "WaterPoloPlayer": [
2991 | 4,
2992 | "Person"
2993 | ],
2994 | "WaterRide": [
2995 | 4,
2996 | "ArchitecturalStructure"
2997 | ],
2998 | "WaterTower": [
2999 | 4,
3000 | "ArchitecturalStructure"
3001 | ],
3002 | "Watermill": [
3003 | 4,
3004 | "ArchitecturalStructure"
3005 | ],
3006 | "WaterwayTunnel": [
3007 | 5,
3008 | "Infrastructure"
3009 | ],
3010 | "Weapon": [
3011 | 2,
3012 | "Device"
3013 | ],
3014 | "Website": [
3015 | 2,
3016 | "Work"
3017 | ],
3018 | "WindMotor": [
3019 | 4,
3020 | "ArchitecturalStructure"
3021 | ],
3022 | "Windmill": [
3023 | 4,
3024 | "ArchitecturalStructure"
3025 | ],
3026 | "Wine": [
3027 | 3,
3028 | "Food"
3029 | ],
3030 | "WineRegion": [
3031 | 2,
3032 | "Place"
3033 | ],
3034 | "Winery": [
3035 | 4,
3036 | "Company"
3037 | ],
3038 | "WinterSportPlayer": [
3039 | 4,
3040 | "Person"
3041 | ],
3042 | "WomensTennisAssociationTournament": [
3043 | 5,
3044 | "Event"
3045 | ],
3046 | "Work": [
3047 | 1,
3048 | "Work"
3049 | ],
3050 | "WorldHeritageSite": [
3051 | 2,
3052 | "Place"
3053 | ],
3054 | "Wrestler": [
3055 | 4,
3056 | "Person"
3057 | ],
3058 | "WrestlingEvent": [
3059 | 4,
3060 | "Event"
3061 | ],
3062 | "Writer": [
3063 | 3,
3064 | "Person"
3065 | ],
3066 | "WrittenWork": [
3067 | 2,
3068 | "WrittenWork"
3069 | ],
3070 | "Year": [
3071 | 2,
3072 | "Year"
3073 | ],
3074 | "YearInSpaceflight": [
3075 | 2,
3076 | "TimePeriod"
3077 | ],
3078 | "Zoo": [
3079 | 3,
3080 | "ArchitecturalStructure"
3081 | ]
3082 | }
--------------------------------------------------------------------------------
/metadata/ontology_ponderated_occurences.json:
--------------------------------------------------------------------------------
1 | {
2 | "ACADEMICJOURNAL": 615,
3 | "ACTIVITY": 30,
4 | "ACTOR": 3,
5 | "ADMINISTRATIVEREGION": 1386,
6 | "AGENT": 11003,
7 | "AIRCRAFT": 101,
8 | "AIRLINE": 55,
9 | "AIRPORT": 2190,
10 | "ALBUM": 10,
11 | "ANIMAL": 29,
12 | "ARCHITECT": 209,
13 | "ARCHITECTURALSTRUCTURE": 4238,
14 | "ARTIFICIALSATELLITE": 485,
15 | "ARTIST": 390,
16 | "ASTRONAUT": 2241,
17 | "ATHLETE": 174,
18 | "AWARD": 123,
19 | "BAND": 331,
20 | "BASEBALLPLAYER": 3,
21 | "BIRD": 22,
22 | "BODYOFWATER": 36,
23 | "BOOK": 1541,
24 | "BUILDING": 1969,
25 | "CELESTIALBODY": 485,
26 | "CHEESE": 2,
27 | "CHEMICALCOMPOUND": 61,
28 | "CHEMICALSUBSTANCE": 4,
29 | "CITY": 2737,
30 | "CLERIC": 6,
31 | "COMEDIAN": 35,
32 | "COMICSCHARACTER": 297,
33 | "COMICSCREATOR": 326,
34 | "COMPANY": 1307,
35 | "CONTINENT": 2,
36 | "CONVENTION": 10,
37 | "COUNTRY": 6109,
38 | "CULTIVATEDVARIETY": 5,
39 | "CURRENCY": 102,
40 | "DISEASE": 26,
41 | "EDUCATIONALINSTITUTION": 1644,
42 | "ETHNICGROUP": 764,
43 | "EUKARYOTE": 657,
44 | "EVENT": 76,
45 | "FICTIONALCHARACTER": 306,
46 | "FILM": 67,
47 | "FISH": 65,
48 | "FOOD": 4044,
49 | "FOOTBALLLEAGUESEASON": 63,
50 | "FUNGUS": 7,
51 | "GOLFCOURSE": 176,
52 | "GOVERNMENTAGENCY": 225,
53 | "GOVERNOR": 23,
54 | "GRAPE": 40,
55 | "HISTORICPLACE": 28,
56 | "HOSPITAL": 94,
57 | "HOTEL": 118,
58 | "INFORMATIONAPPLIANCE": 19,
59 | "INFRASTRUCTURE": 2218,
60 | "ISLAND": 311,
61 | "JUDGE": 35,
62 | "LAKE": 18,
63 | "LANGUAGE": 789,
64 | "LEGISLATURE": 121,
65 | "LOCATION": 18193,
66 | "MAYOR": 32,
67 | "MEANOFTRANSPORTATION": 101,
68 | "MEMBEROFPARLIAMENT": 13,
69 | "MILITARYCONFLICT": 86,
70 | "MILITARYPERSON": 19,
71 | "MILITARYUNIT": 434,
72 | "MINERAL": 4,
73 | "MOLLUSCA": 7,
74 | "MONUMENT": 749,
75 | "MOUNTAINRANGE": 12,
76 | "MUSEUM": 223,
77 | "MUSICALARTIST": 2069,
78 | "MUSICALWORK": 12,
79 | "NATURALPLACE": 48,
80 | "NEWSPAPER": 11,
81 | "OFFICEHOLDER": 1101,
82 | "ORGANISATION": 5227,
83 | "PERIODICALLITERATURE": 615,
84 | "PERSON": 9262,
85 | "PLACE": 18213,
86 | "PLANT": 610,
87 | "POLITICALPARTY": 44,
88 | "POLITICIAN": 249,
89 | "POPULATEDPLACE": 12668,
90 | "PRESIDENT": 135,
91 | "PRIMEMINISTER": 32,
92 | "PROTECTEDAREA": 80,
93 | "PUBLISHER": 233,
94 | "RECORDLABEL": 10,
95 | "REGION": 1299,
96 | "RIVER": 18,
97 | "ROAD": 28,
98 | "ROUTEOFTRANSPORTATION": 28,
99 | "ROYALTY": 122,
100 | "SAINT": 6,
101 | "SATELLITE": 485,
102 | "SCHOOL": 424,
103 | "SCIENTIST": 120,
104 | "SETTLEMENT": 5120,
105 | "SHOPPINGMALL": 4,
106 | "SKIAREA": 34,
107 | "SOCCERCLUB": 1764,
108 | "SOCCERLEAGUE": 255,
109 | "SOCCERMANAGER": 677,
110 | "SOCCERPLAYER": 347,
111 | "SOCCERTOURNAMENT": 66,
112 | "SOCIETALEVENT": 113,
113 | "SOFTWARE": 60,
114 | "SPECIES": 610,
115 | "SPORT": 30,
116 | "SPORTFACILITY": 105,
117 | "SPORTSLEAGUE": 348,
118 | "SPORTSMANAGER": 677,
119 | "SPORTSSEASON": 63,
120 | "SPORTSTEAM": 1680,
121 | "SPORTSTEAMSEASON": 63,
122 | "STADIUM": 124,
123 | "STREAM": 18,
124 | "TELEVISIONSHOW": 7,
125 | "TIMEPERIOD": 1054,
126 | "TOWN": 381,
127 | "UNIVERSITY": 1561,
128 | "VENUE": 188,
129 | "VILLAGE": 140,
130 | "WIKIDATA:Q11424": 67,
131 | "WORK": 2486,
132 | "WRITER": 257,
133 | "WRITTENWORK": 2123,
134 | "YEAR": 1056
135 | }
--------------------------------------------------------------------------------
/metadata/prop_schema.list:
--------------------------------------------------------------------------------
1 | ribbon * *
2 | nearestCity PLACE POPULATEDPLACE
3 | enginetype * *
4 | year * HEMA#GYEAR
5 | family SPECIES SPECIES
6 | established CHRISTIANDOCTRINE HEMA#STRING
7 | derivative MUSICGENRE MUSICGENRE
8 | crew1Up * *
9 | Planet/minimumTemperature PLANET KELVIN
10 | Planet/periapsis PLANET KILOMETRE
11 | derivatives * *
12 | Planet/maximumTemperature PLANET KELVIN
13 | timeInSpace * HEMA#DOUBLE
14 | subsid * *
15 | epoch PLANET HEMA#STRING
16 | notableWork * WORK
17 | unit * *
18 | division * *
19 | activeYearsStartDate * HEMA#DATE
20 | modelStartYear MEANOFTRANSPORTATION HEMA#GYEAR
21 | party * POLITICALPARTY
22 | variations * *
23 | dateOfDeath * *
24 | course GRANDPRIX HEMA#DOUBLE
25 | targetAirport AIRLINE AIRPORT
26 | instrument ARTIST INSTRUMENT
27 | MeanOfTransportation/length MEANOFTRANSPORTATION MILLIMETRE
28 | ground SOCCERCLUB PLACE
29 | served * *
30 | years SOCCERPLAYER HEMA#GYEAR
31 | numberOfStudents EDUCATIONALINSTITUTION HEMA#NONNEGATIVEINTEGER
32 | creatorOfDish FOOD PERSON
33 | yearOfConstruction PLACE HEMA#GYEAR
34 | subsequentWork WORK WORK
35 | languages * *
36 | associatedActs * *
37 | Person/height PERSON CENTIMETRE
38 | beds * *
39 | champions * *
40 | shipMaidenVoyage * *
41 | lastAired * *
42 | runwayDesignation AIRPORT HEMA#STRING
43 | nativenameA * *
44 | position * *
45 | publisher WORK AGENT
46 | productionEndYear * HEMA#GYEAR
47 | spokenIn LANGUAGE POPULATEDPLACE
48 | deathCause PERSON *
49 | length * HEMA#DOUBLE
50 | site * *
51 | northwest * *
52 | unrankedClassis * *
53 | architecturalStyle ARCHITECTURALSTRUCTURE *
54 | shipDraft SHIP HEMA#DOUBLE
55 | foundation POPULATEDPLACE HEMA#STRING
56 | similarDish * *
57 | anthem * WORK
58 | orderDate SHIP HEMA#DATE
59 | buildingStartDate * HEMA#STRING
60 | minTemp * *
61 | inaugurationDate * *
62 | draftPick GRIDIRONFOOTBALLPLAYER HEMA#STRING
63 | governingBody PLACE ORGANISATION
64 | north * *
65 | order SPECIES *
66 | rocketStages ROCKET HEMA#NONNEGATIVEINTEGER
67 | shipBeam SHIP HEMA#DOUBLE
68 | alternateName * *
69 | assembly MEANOFTRANSPORTATION *
70 | designCompany MEANOFTRANSPORTATION COMPANY
71 | wheelbase AUTOMOBILE HEMA#DOUBLE
72 | significantProject PERSON *
73 | aircraftFighter MILITARYUNIT MEANOFTRANSPORTATION
74 | municipality * POPULATEDPLACE
75 | areaTotal PLACE HEMA#DOUBLE
76 | height * HEMA#DOUBLE
77 | cityServed * *
78 | ethnicGroup POPULATEDPLACE ETHNICGROUP
79 | abbreviation * HEMA#STRING
80 | generalManager SPORTSTEAM PERSON
81 | shipOperator * *
82 | Building/floorArea BUILDING SQUAREMETRE
83 | Planet/apoapsis PLANET KILOMETRE
84 | category * *
85 | density * HEMA#DOUBLE
86 | buildingType BUILDING *
87 | background * HEMA#STRING
88 | colours * *
89 | numberOfRooms HOTEL HEMA#NONNEGATIVEINTEGER
90 | christeningDate SHIP HEMA#DATE
91 | creator * AGENT
92 | clubs * *
93 | sportGoverningBody * *
94 | icaoLocationIdentifier AIRPORT HEMA#STRING
95 | leader * PERSON
96 | river PLACE RIVER
97 | Planet/mass PLANET KILOGRAM
98 | fat FOOD HEMA#DOUBLE
99 | r4Surface * *
100 | doctoralStudent SCIENTIST PERSON
101 | officialSchoolColour EDUCATIONALINSTITUTION HEMA#STRING
102 | nationalteam * *
103 | neighboringMunicipality POPULATEDPLACE POPULATEDPLACE
104 | first * *
105 | r1LengthM * *
106 | aircraftAttack MILITARYUNIT MEANOFTRANSPORTATION
107 | escapeVelocity PLANET HEMA#DOUBLE
108 | completionDate WORK HEMA#DATE
109 | designer * PERSON
110 | fate COMPANY -RDF-SYNTAX-NS#LANGSTRING
111 | free FICTIONALCHARACTER HEMA#STRING
112 | dedicatedTo * *
113 | postalCode * HEMA#STRING
114 | foundingDate * HEMA#DATE
115 | precededBy * *
116 | union * *
117 | isPartOf * *
118 | distributingCompany RECORDLABEL COMPANY
119 | activeYearsEndYear * HEMA#GYEAR
120 | open * *
121 | carbohydrate FOOD HEMA#DOUBLE
122 | officialLanguage POPULATEDPLACE LANGUAGE
123 | owningOrganisation * ORGANISATION
124 | country * COUNTRY
125 | runwayLength AIRPORT HEMA#DOUBLE
126 | northeast * *
127 | placeOfBirth * *
128 | state * POPULATEDPLACE
129 | absMagnitude * *
130 | headquarter ORGANISATION POPULATEDPLACE
131 | diameter * HEMA#DOUBLE
132 | ordo * *
133 | jurisdiction * *
134 | dean EDUCATIONALINSTITUTION PERSON
135 | governor * PERSON
136 | activeYearsEndDate * HEMA#DATE
137 | minimumTemperature PLANET HEMA#DOUBLE
138 | operator * *
139 | populationTotal * HEMA#NONNEGATIVEINTEGER
140 | r1Surface * *
141 | academicStaff * *
142 | owner * AGENT
143 | primeMinister * PERSON
144 | placeOfDeath * *
145 | doctoralStudents * *
146 | impactFactor ACADEMICJOURNAL HEMA#DOUBLE
147 | r3Surface * *
148 | ingredientName FOOD HEMA#STRING
149 | familia * *
150 | profession PERSON *
151 | region * PLACE
152 | r1Number * *
153 | commander * PERSON
154 | layout AUTOMOBILE *
155 | employer PERSON ORGANISATION
156 | district PLACE POPULATEDPLACE
157 | office * HEMA#STRING
158 | range MEANOFTRANSPORTATION_,_INSTRUMENT HEMA#POSITIVEINTEGER
159 | r4LengthF * *
160 | protein FOOD HEMA#DOUBLE
161 | deathDate PERSON HEMA#DATE
162 | developer * AGENT
163 | faculty * *
164 | crew2Up * *
165 | part * PLACE
166 | stateOfOrigin PERSON COUNTRY
167 | firstAired * *
168 | termStart * *
169 | Planet/surfaceArea PLANET SQUAREKILOMETRE
170 | shipClass * *
171 | currentclub * *
172 | firstPublicationYear PERIODICALLITERATURE HEMA#GYEAR
173 | r3LengthF * *
174 | predecessor * *
175 | stages * *
176 | students * *
177 | shipDisplacement SHIP HEMA#DOUBLE
178 | MeanOfTransportation/diameter MEANOFTRANSPORTATION METRE
179 | subdivisionName ISLAND PLACE
180 | finalFlight ROCKET HEMA#DATE
181 | founder * PERSON
182 | maidenVoyage SHIP HEMA#DATE
183 | genus SPECIES *
184 | arrondissement POPULATEDPLACE POPULATEDPLACE
185 | affiliations * *
186 | largestCity POPULATEDPLACE POPULATEDPLACE
187 | location * PLACE
188 | season AGENT *
189 | parentCompany * COMPANY
190 | mascot * HEMA#STRING
191 | previousWork WORK WORK
192 | width * HEMA#DOUBLE
193 | rotationPeriod PLANET HEMA#DOUBLE
194 | r2Surface * *
195 | areaLand PLACE HEMA#DOUBLE
196 | children * *
197 | nrhpReferenceNumber HISTORICPLACE HEMA#STRING
198 | eissn * *
199 | engine AUTOMOBILE AUTOMOBILEENGINE
200 | fossil SPECIES SPECIES
201 | west * *
202 | followedBy * *
203 | significantBuildings * *
204 | mass * HEMA#DOUBLE
205 | congress * *
206 | team * SPORTSTEAM
207 | network BROADCASTER BROADCASTER
208 | alias * -RDF-SYNTAX-NS#LANGSTRING
209 | function * *
210 | architecture * *
211 | Planet/temperature PLANET KELVIN
212 | hometown AGENT SETTLEMENT
213 | capacity * HEMA#NONNEGATIVEINTEGER
214 | numberOfPages WRITTENWORK HEMA#POSITIVEINTEGER
215 | shipOrdered * *
216 | headquarters * *
217 | associatedBand * BAND
218 | buildingEndDate * HEMA#STRING
219 | servingTemperature FOOD HEMA#STRING
220 | youthclubs * *
221 | class MEANOFTRANSPORTATION *
222 | singleTemperature * *
223 | series * *
224 | floorCount BUILDING HEMA#POSITIVEINTEGER
225 | dateOfRet * *
226 | chrtitle * *
227 | frequency * HEMA#DOUBLE
228 | discoverer * PERSON
229 | surfaceArea PLANET HEMA#DOUBLE
230 | partsType * *
231 | capital POPULATEDPLACE CITY
232 | occupation * PERSONFUNCTION
233 | neighboringMunicipalities * *
234 | utcOffset PLACE HEMA#STRING
235 | currentTenants * *
236 | startDate EVENT HEMA#DATE
237 | musicFusionGenre MUSICGENRE MUSICGENRE
238 | bandMember BAND PERSON
239 | locationTown * *
240 | formerTeam ATHLETE SPORTSTEAM
241 | athletics UNIVERSITY *
242 | shipLaunch SHIP HEMA#DATE
243 | militaryBranch MILITARYPERSON MILITARYUNIT
244 | mission * SPACEMISSION
245 | birthName PERSON -RDF-SYNTAX-NS#LANGSTRING
246 | facultySize EDUCATIONALINSTITUTION HEMA#NONNEGATIVEINTEGER
247 | nationality PERSON COUNTRY
248 | comparable ROCKET ROCKET
249 | countySeat POPULATEDPLACE *
250 | p * *
251 | architect ARCHITECTURALSTRUCTURE ARCHITECT
252 | formerName * -RDF-SYNTAX-NS#LANGSTRING
253 | openingDate * HEMA#DATE
254 | coden WRITTENWORK HEMA#STRING
255 | managerClub ATHLETE SPORTSTEAM
256 | representative PLACE HEMA#NONNEGATIVEINTEGER
257 | rank * HEMA#STRING
258 | keyPerson * PERSON
259 | senators * *
260 | genre * GENRE
261 | primeminister * *
262 | draftTeam ATHLETE SPORTSTEAM
263 | distributor * ORGANISATION
264 | campus UNIVERSITY *
265 | absoluteMagnitude CELESTIALBODY HEMA#DOUBLE
266 | manager SPORTSTEAM PERSON
267 | orbitalPeriod PLANET HEMA#DOUBLE
268 | floorArea BUILDING HEMA#DOUBLE
269 | director FILM PERSON
270 | builder * *
271 | issn PERIODICALLITERATURE HEMA#STRING
272 | affiliation ORGANISATION ORGANISATION
273 | gemstone * *
274 | transmission AUTOMOBILE HEMA#STRING
275 | foundationPlace ORGANISATION CITY
276 | r5Number * *
277 | sites * *
278 | discipline AGENT *
279 | elevation PLACE HEMA#DOUBLE
280 | isbn WRITTENWORK HEMA#STRING
281 | lid * *
282 | keyPeople * *
283 | Planet/density PLANET KILOGRAMPERCUBICMETRE
284 | musicSubgenre MUSICGENRE MUSICGENRE
285 | runwaySurface AIRPORT HEMA#STRING
286 | history * *
287 | alterEgo * *
288 | material ISLAND HEMA#STRING
289 | mainIngredient * *
290 | averageSpeed * HEMA#DOUBLE
291 | topSpeed * HEMA#DOUBLE
292 | undergrad * *
293 | discovered CELESTIALBODY HEMA#DATE
294 | birthDate PERSON HEMA#DATE
295 | coach * PERSON
296 | firstAppearance FICTIONALCHARACTER HEMA#STRING
297 | address PLACE -RDF-SYNTAX-NS#LANGSTRING
298 | Planet/averageSpeed PLANET KILOMETREPERSECOND
299 | child PERSON PERSON
300 | almaMater PERSON EDUCATIONALINSTITUTION
301 | managerclubs * *
302 | draftRound GRIDIRONFOOTBALLPLAYER HEMA#STRING
303 | stylisticOrigin MUSICGENRE MUSICGENRE
304 | shipOwner * *
305 | iataLocationIdentifier INFRASTRUCTURE HEMA#STRING
306 | academicDiscipline ACADEMICJOURNAL *
307 | stylisticOrigins * *
308 | aka * *
309 | aircraftHelicopter MILITARYUNIT MEANOFTRANSPORTATION
310 | totalLaunches * HEMA#NONNEGATIVEINTEGER
311 | alternativeNames * *
312 | debutTeam ATHLETE SPORTSTEAM
313 | tenant ARCHITECTURALSTRUCTURE ORGANISATION
314 | elevationF * *
315 | starring WORK ACTOR
316 | elevationM * *
317 | areaCode PLACE HEMA#STRING
318 | hubs * *
319 | largestcity * *
320 | author WORK PERSON
321 | demonym * -RDF-SYNTAX-NS#LANGSTRING
322 | title * -RDF-SYNTAX-NS#LANGSTRING
323 | aircraftTransport MILITARYUNIT MEANOFTRANSPORTATION
324 | league * SPORTSLEAGUE
325 | selection ASTRONAUT *
326 | related * *
327 | shipInService * *
328 | rockets * *
329 | added HISTORICPLACE HEMA#DATE
330 | maidenFlight ROCKET HEMA#DATE
331 | deathPlace PERSON PLACE
332 | origin * POPULATEDPLACE
333 | servingSize FOOD HEMA#DOUBLE
334 | city * CITY
335 | battle * MILITARYCONFLICT
336 | powertype * *
337 | shipBuilder * *
338 | battles * *
339 | locationCountry * COUNTRY
340 | parent PERSON PERSON
341 | awards * *
342 | branch * *
343 | chancellor * PERSON
344 | ethnicGroups * *
345 | shipChristened * *
346 | shipCompleted * *
347 | dateOfBirth * *
348 | r5Surface * *
349 | garrison MILITARYUNIT POPULATEDPLACE
350 | creators * *
351 | motto * HEMA#STRING
352 | ingredient FOOD *
353 | currency * CURRENCY
354 | cylindercount * *
355 | faa * *
356 | website * *
357 | product ORGANISATION *
358 | canton SETTLEMENT SETTLEMENT
359 | leaderTitle POPULATEDPLACE -RDF-SYNTAX-NS#LANGSTRING
360 | label * *
361 | builddate * *
362 | numberOfPostgraduateStudents UNIVERSITY HEMA#NONNEGATIVEINTEGER
363 | r1LengthF * *
364 | lccn WRITTENWORK HEMA#STRING
365 | chief1Name * *
366 | relatedMeanOfTransportation MEANOFTRANSPORTATION MEANOFTRANSPORTATION
367 | serviceStartYear MILITARYPERSON HEMA#GYEAR
368 | chairman * PERSON
369 | cost * HEMA#DOUBLE
370 | nativeName * *
371 | language * LANGUAGE
372 | manufacturer * ORGANISATION
373 | latinName ANATOMICALSTRUCTURE HEMA#STRING
374 | deathYear PERSON HEMA#GYEAR
375 | tenants * *
376 | sport * SPORT
377 | mediaType WRITTENWORK *
378 | leaderParty POPULATEDPLACE *
379 | religion * *
380 | regionServed ORGANISATION PLACE
381 | associatedMusicalArtist * MUSICALARTIST
382 | voice * PERSON
383 | president ORGANISATION PERSON
384 | deputy * PERSON
385 | higher * *
386 | bedCount HOSPITAL HEMA#NONNEGATIVEINTEGER
387 | rector EDUCATIONALINSTITUTION PERSON
388 | outlook * *
389 | colour * COLOUR
390 | southeast * *
391 | subsidiary COMPANY COMPANY
392 | fullname * *
393 | residence PERSON PLACE
394 | award * AWARD
395 | successor * *
396 | settlementType * *
397 | owningCompany * COMPANY
398 | powerType MEANOFTRANSPORTATION *
399 | doctoralAdvisor SCIENTIST PERSON
400 | hasVariant * *
401 | countryOrigin ROCKET COUNTRY
402 | foundedBy * AGENT
403 | editor * AGENT
404 | significantBuilding ARCHITECT BUILDING
405 | hubAirport AIRLINE AIRPORT
406 | areaWater PLACE HEMA#DOUBLE
407 | southwest * *
408 | postgrad * *
409 | periapsis CELESTIALBODY HEMA#DOUBLE
410 | Planet/orbitalPeriod PLANET DAY
411 | activeYearsStartYear * HEMA#GYEAR
412 | unrankedDivisio * *
413 | built * *
414 | locationCity ORGANISATION CITY
415 | crewMembers * *
416 | spouse PERSON PERSON
417 | bodyStyle AUTOMOBILE *
418 | legislature * *
419 | patronSaint SETTLEMENT PERSON
420 | bird PLACE SPECIES
421 | birthYear PERSON HEMA#GYEAR
422 | numberOfUndergraduateStudents EDUCATIONALINSTITUTION HEMA#NONNEGATIVEINTEGER
423 | literaryGenre WRITTENWORK *
424 | birthPlace PERSON PLACE
425 | apoapsis CELESTIALBODY HEMA#DOUBLE
426 | avgSpeed * *
427 | isPartOfMilitaryConflict MILITARYCONFLICT MILITARYCONFLICT
428 | Person/weight PERSON KILOGRAM
429 | temperature * HEMA#DOUBLE
430 | modelYears * *
431 | leaderName POPULATEDPLACE PERSON
432 | populationDensity POPULATEDPLACE HEMA#DOUBLE
433 | impact * *
434 | launchSite SPACEMISSION BUILDING
435 | Planet/meanTemperature PLANET KELVIN
436 | education PERSON *
437 | militaryRank MILITARYPERSON *
438 | monarch * PERSON
439 | fullName * *
440 | status * HEMA#STRING
441 | oclc WRITTENWORK HEMA#STRING
442 | recordLabel * RECORDLABEL
443 | unrankedOrdo * *
444 | governmentType * GOVERNMENTTYPE
445 | chairperson ORGANISATION PERSON
446 | vicePresident * PERSON
447 | mayor * MAYOR
448 | influencedBy * *
449 | nickname * *
450 |
--------------------------------------------------------------------------------
/metadata/properties.list:
--------------------------------------------------------------------------------
1 | ribbon
2 | nearestCity
3 | enginetype
4 | year
5 | family
6 | established
7 | derivative
8 | crew1Up
9 | Planet/minimumTemperature
10 | Planet/periapsis
11 | derivatives
12 | Planet/maximumTemperature
13 | timeInSpace
14 | subsid
15 | epoch
16 | notableWork
17 | unit
18 | division
19 | activeYearsStartDate
20 | modelStartYear
21 | party
22 | variations
23 | dateOfDeath
24 | course
25 | targetAirport
26 | instrument
27 | MeanOfTransportation/length
28 | ground
29 | served
30 | years
31 | numberOfStudents
32 | creatorOfDish
33 | yearOfConstruction
34 | subsequentWork
35 | languages
36 | associatedActs
37 | Person/height
38 | beds
39 | champions
40 | shipMaidenVoyage
41 | lastAired
42 | runwayDesignation
43 | nativenameA
44 | position
45 | publisher
46 | productionEndYear
47 | spokenIn
48 | deathCause
49 | length
50 | site
51 | northwest
52 | unrankedClassis
53 | architecturalStyle
54 | shipDraft
55 | foundation
56 | similarDish
57 | anthem
58 | orderDate
59 | buildingStartDate
60 | minTemp
61 | inaugurationDate
62 | draftPick
63 | governingBody
64 | north
65 | order
66 | rocketStages
67 | shipBeam
68 | alternateName
69 | assembly
70 | designCompany
71 | wheelbase
72 | significantProject
73 | aircraftFighter
74 | municipality
75 | areaTotal
76 | height
77 | cityServed
78 | ethnicGroup
79 | abbreviation
80 | generalManager
81 | shipOperator
82 | Building/floorArea
83 | Planet/apoapsis
84 | category
85 | density
86 | buildingType
87 | background
88 | colours
89 | numberOfRooms
90 | christeningDate
91 | creator
92 | clubs
93 | sportGoverningBody
94 | icaoLocationIdentifier
95 | leader
96 | river
97 | Planet/mass
98 | fat
99 | r4Surface
100 | doctoralStudent
101 | officialSchoolColour
102 | nationalteam
103 | neighboringMunicipality
104 | first
105 | r1LengthM
106 | aircraftAttack
107 | escapeVelocity
108 | completionDate
109 | designer
110 | fate
111 | free
112 | dedicatedTo
113 | postalCode
114 | foundingDate
115 | precededBy
116 | union
117 | isPartOf
118 | distributingCompany
119 | activeYearsEndYear
120 | open
121 | carbohydrate
122 | officialLanguage
123 | owningOrganisation
124 | country
125 | runwayLength
126 | northeast
127 | placeOfBirth
128 | state
129 | absMagnitude
130 | headquarter
131 | diameter
132 | ordo
133 | jurisdiction
134 | dean
135 | governor
136 | activeYearsEndDate
137 | minimumTemperature
138 | operator
139 | populationTotal
140 | r1Surface
141 | academicStaff
142 | owner
143 | primeMinister
144 | placeOfDeath
145 | doctoralStudents
146 | impactFactor
147 | r3Surface
148 | ingredientName
149 | familia
150 | profession
151 | region
152 | r1Number
153 | commander
154 | layout
155 | employer
156 | district
157 | office
158 | range
159 | r4LengthF
160 | protein
161 | deathDate
162 | developer
163 | faculty
164 | crew2Up
165 | part
166 | stateOfOrigin
167 | firstAired
168 | termStart
169 | Planet/surfaceArea
170 | shipClass
171 | currentclub
172 | firstPublicationYear
173 | r3LengthF
174 | predecessor
175 | stages
176 | students
177 | shipDisplacement
178 | MeanOfTransportation/diameter
179 | subdivisionName
180 | finalFlight
181 | founder
182 | maidenVoyage
183 | genus
184 | arrondissement
185 | affiliations
186 | largestCity
187 | location
188 | season
189 | parentCompany
190 | mascot
191 | previousWork
192 | width
193 | rotationPeriod
194 | r2Surface
195 | areaLand
196 | children
197 | nrhpReferenceNumber
198 | eissn
199 | engine
200 | fossil
201 | west
202 | followedBy
203 | significantBuildings
204 | mass
205 | congress
206 | team
207 | network
208 | alias
209 | function
210 | architecture
211 | Planet/temperature
212 | hometown
213 | capacity
214 | numberOfPages
215 | shipOrdered
216 | headquarters
217 | associatedBand
218 | buildingEndDate
219 | servingTemperature
220 | youthclubs
221 | class
222 | singleTemperature
223 | series
224 | floorCount
225 | dateOfRet
226 | chrtitle
227 | frequency
228 | discoverer
229 | surfaceArea
230 | partsType
231 | capital
232 | occupation
233 | neighboringMunicipalities
234 | utcOffset
235 | currentTenants
236 | startDate
237 | musicFusionGenre
238 | bandMember
239 | locationTown
240 | formerTeam
241 | athletics
242 | shipLaunch
243 | militaryBranch
244 | mission
245 | birthName
246 | facultySize
247 | nationality
248 | comparable
249 | countySeat
250 | p
251 | architect
252 | formerName
253 | openingDate
254 | coden
255 | managerClub
256 | representative
257 | rank
258 | keyPerson
259 | senators
260 | genre
261 | primeminister
262 | draftTeam
263 | distributor
264 | campus
265 | absoluteMagnitude
266 | manager
267 | orbitalPeriod
268 | floorArea
269 | director
270 | builder
271 | issn
272 | affiliation
273 | gemstone
274 | transmission
275 | foundationPlace
276 | r5Number
277 | sites
278 | discipline
279 | elevation
280 | isbn
281 | lid
282 | keyPeople
283 | Planet/density
284 | musicSubgenre
285 | runwaySurface
286 | history
287 | alterEgo
288 | material
289 | mainIngredient
290 | averageSpeed
291 | topSpeed
292 | undergrad
293 | discovered
294 | birthDate
295 | coach
296 | firstAppearance
297 | address
298 | Planet/averageSpeed
299 | child
300 | almaMater
301 | managerclubs
302 | draftRound
303 | stylisticOrigin
304 | shipOwner
305 | iataLocationIdentifier
306 | academicDiscipline
307 | stylisticOrigins
308 | aka
309 | aircraftHelicopter
310 | totalLaunches
311 | alternativeNames
312 | debutTeam
313 | tenant
314 | elevationF
315 | starring
316 | elevationM
317 | areaCode
318 | hubs
319 | largestcity
320 | author
321 | demonym
322 | title
323 | aircraftTransport
324 | league
325 | selection
326 | related
327 | shipInService
328 | rockets
329 | added
330 | maidenFlight
331 | deathPlace
332 | origin
333 | servingSize
334 | city
335 | battle
336 | powertype
337 | shipBuilder
338 | battles
339 | locationCountry
340 | parent
341 | awards
342 | branch
343 | chancellor
344 | ethnicGroups
345 | shipChristened
346 | shipCompleted
347 | dateOfBirth
348 | r5Surface
349 | garrison
350 | creators
351 | motto
352 | ingredient
353 | currency
354 | cylindercount
355 | faa
356 | website
357 | product
358 | canton
359 | leaderTitle
360 | label
361 | builddate
362 | numberOfPostgraduateStudents
363 | r1LengthF
364 | lccn
365 | chief1Name
366 | relatedMeanOfTransportation
367 | serviceStartYear
368 | chairman
369 | cost
370 | nativeName
371 | language
372 | manufacturer
373 | latinName
374 | deathYear
375 | tenants
376 | sport
377 | mediaType
378 | leaderParty
379 | religion
380 | regionServed
381 | associatedMusicalArtist
382 | voice
383 | president
384 | deputy
385 | higher
386 | bedCount
387 | rector
388 | outlook
389 | colour
390 | southeast
391 | subsidiary
392 | fullname
393 | residence
394 | award
395 | successor
396 | settlementType
397 | owningCompany
398 | powerType
399 | doctoralAdvisor
400 | hasVariant
401 | countryOrigin
402 | foundedBy
403 | editor
404 | significantBuilding
405 | hubAirport
406 | areaWater
407 | southwest
408 | postgrad
409 | periapsis
410 | Planet/orbitalPeriod
411 | activeYearsStartYear
412 | unrankedDivisio
413 | built
414 | locationCity
415 | crewMembers
416 | spouse
417 | bodyStyle
418 | legislature
419 | patronSaint
420 | bird
421 | birthYear
422 | numberOfUndergraduateStudents
423 | literaryGenre
424 | birthPlace
425 | apoapsis
426 | avgSpeed
427 | isPartOfMilitaryConflict
428 | Person/weight
429 | temperature
430 | modelYears
431 | leaderName
432 | populationDensity
433 | impact
434 | launchSite
435 | Planet/meanTemperature
436 | education
437 | militaryRank
438 | monarch
439 | fullName
440 | status
441 | oclc
442 | recordLabel
443 | unrankedOrdo
444 | governmentType
445 | chairperson
446 | vicePresident
447 | mayor
448 | influencedBy
449 | nickname
--------------------------------------------------------------------------------
/multi-bleu.perl:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env perl
2 | #
3 | # This file is part of moses. Its use is licensed under the GNU Lesser General
4 | # Public License version 2.1 or, at your option, any later version.
5 |
6 | # $Id$
7 | use warnings;
8 | use strict;
9 |
10 | my $lowercase = 0;
11 | if ($ARGV[0] eq "-lc") {
12 | $lowercase = 1;
13 | shift;
14 | }
15 |
16 | my $stem = $ARGV[0];
17 | if (!defined $stem) {
18 | print STDERR "usage: multi-bleu.pl [-lc] reference < hypothesis\n";
19 | print STDERR "Reads the references from reference or reference0, reference1, ...\n";
20 | exit(1);
21 | }
22 |
23 | $stem .= ".ref" if !-e $stem && !-e $stem."0" && -e $stem.".ref0";
24 |
25 | my @REF;
26 | my $ref=0;
27 | while(-e "$stem$ref") {
28 | &add_to_ref("$stem$ref",\@REF);
29 | $ref++;
30 | }
31 | &add_to_ref($stem,\@REF) if -e $stem;
32 | die("ERROR: could not find reference file $stem") unless scalar @REF;
33 |
34 | # add additional references explicitly specified on the command line
35 | shift;
36 | foreach my $stem (@ARGV) {
37 | &add_to_ref($stem,\@REF) if -e $stem;
38 | }
39 |
40 |
41 |
42 | sub add_to_ref {
43 | my ($file,$REF) = @_;
44 | my $s=0;
45 | if ($file =~ /.gz$/) {
46 | open(REF,"gzip -dc $file|") or die "Can't read $file";
47 | } else {
48 | open(REF,$file) or die "Can't read $file";
49 | }
50 | while([) {
51 | chop;
52 | push @{$$REF[$s++]}, $_;
53 | }
54 | close(REF);
55 | }
56 |
57 | my(@CORRECT,@TOTAL,$length_translation,$length_reference);
58 | my $s=0;
59 | while() {
60 | chop;
61 | $_ = lc if $lowercase;
62 | my @WORD = split;
63 | my %REF_NGRAM = ();
64 | my $length_translation_this_sentence = scalar(@WORD);
65 | my ($closest_diff,$closest_length) = (9999,9999);
66 | foreach my $reference (@{$REF[$s]}) {
67 | # print "$s $_ <=> $reference\n";
68 | $reference = lc($reference) if $lowercase;
69 | my @WORD = split(' ',$reference);
70 | my $length = scalar(@WORD);
71 | my $diff = abs($length_translation_this_sentence-$length);
72 | if ($diff < $closest_diff) {
73 | $closest_diff = $diff;
74 | $closest_length = $length;
75 | # print STDERR "$s: closest diff ".abs($length_translation_this_sentence-$length)." = abs($length_translation_this_sentence-$length), setting len: $closest_length\n";
76 | } elsif ($diff == $closest_diff) {
77 | $closest_length = $length if $length < $closest_length;
78 | # from two references with the same closeness to me
79 | # take the *shorter* into account, not the "first" one.
80 | }
81 | for(my $n=1;$n<=4;$n++) {
82 | my %REF_NGRAM_N = ();
83 | for(my $start=0;$start<=$#WORD-($n-1);$start++) {
84 | my $ngram = "$n";
85 | for(my $w=0;$w<$n;$w++) {
86 | $ngram .= " ".$WORD[$start+$w];
87 | }
88 | $REF_NGRAM_N{$ngram}++;
89 | }
90 | foreach my $ngram (keys %REF_NGRAM_N) {
91 | if (!defined($REF_NGRAM{$ngram}) ||
92 | $REF_NGRAM{$ngram} < $REF_NGRAM_N{$ngram}) {
93 | $REF_NGRAM{$ngram} = $REF_NGRAM_N{$ngram};
94 | # print "$i: REF_NGRAM{$ngram} = $REF_NGRAM{$ngram}]
\n";
95 | }
96 | }
97 | }
98 | }
99 | $length_translation += $length_translation_this_sentence;
100 | $length_reference += $closest_length;
101 | for(my $n=1;$n<=4;$n++) {
102 | my %T_NGRAM = ();
103 | for(my $start=0;$start<=$#WORD-($n-1);$start++) {
104 | my $ngram = "$n";
105 | for(my $w=0;$w<$n;$w++) {
106 | $ngram .= " ".$WORD[$start+$w];
107 | }
108 | $T_NGRAM{$ngram}++;
109 | }
110 | foreach my $ngram (keys %T_NGRAM) {
111 | $ngram =~ /^(\d+) /;
112 | my $n = $1;
113 | # my $corr = 0;
114 | # print "$i e $ngram $T_NGRAM{$ngram}
\n";
115 | $TOTAL[$n] += $T_NGRAM{$ngram};
116 | if (defined($REF_NGRAM{$ngram})) {
117 | if ($REF_NGRAM{$ngram} >= $T_NGRAM{$ngram}) {
118 | $CORRECT[$n] += $T_NGRAM{$ngram};
119 | # $corr = $T_NGRAM{$ngram};
120 | # print "$i e correct1 $T_NGRAM{$ngram}
\n";
121 | }
122 | else {
123 | $CORRECT[$n] += $REF_NGRAM{$ngram};
124 | # $corr = $REF_NGRAM{$ngram};
125 | # print "$i e correct2 $REF_NGRAM{$ngram}
\n";
126 | }
127 | }
128 | # $REF_NGRAM{$ngram} = 0 if !defined $REF_NGRAM{$ngram};
129 | # print STDERR "$ngram: {$s, $REF_NGRAM{$ngram}, $T_NGRAM{$ngram}, $corr}\n"
130 | }
131 | }
132 | $s++;
133 | }
134 | my $brevity_penalty = 1;
135 | my $bleu = 0;
136 |
137 | my @bleu=();
138 |
139 | for(my $n=1;$n<=4;$n++) {
140 | if (defined ($TOTAL[$n])){
141 | $bleu[$n]=($TOTAL[$n])?$CORRECT[$n]/$TOTAL[$n]:0;
142 | # print STDERR "CORRECT[$n]:$CORRECT[$n] TOTAL[$n]:$TOTAL[$n]\n";
143 | }else{
144 | $bleu[$n]=0;
145 | }
146 | }
147 |
148 | if ($length_reference==0){
149 | printf "BLEU = 0, 0/0/0/0 (BP=0, ratio=0, hyp_len=0, ref_len=0)\n";
150 | exit(1);
151 | }
152 |
153 | if ($length_translation<$length_reference) {
154 | $brevity_penalty = exp(1-$length_reference/$length_translation);
155 | }
156 | $bleu = $brevity_penalty * exp((my_log( $bleu[1] ) +
157 | my_log( $bleu[2] ) +
158 | my_log( $bleu[3] ) +
159 | my_log( $bleu[4] ) ) / 4) ;
160 | printf "BLEU = %.2f, %.1f/%.1f/%.1f/%.1f (BP=%.3f, ratio=%.3f, hyp_len=%d, ref_len=%d)\n",
161 | 100*$bleu,
162 | 100*$bleu[1],
163 | 100*$bleu[2],
164 | 100*$bleu[3],
165 | 100*$bleu[4],
166 | $brevity_penalty,
167 | $length_translation / $length_reference,
168 | $length_translation,
169 | $length_reference;
170 |
171 | sub my_log {
172 | return -9999999999 unless $_[0];
173 | return log($_[0]);
174 | }
175 |
--------------------------------------------------------------------------------
/relex_predictions.py:
--------------------------------------------------------------------------------
1 | """
2 | A program that takes the text generated by a neural network and a
3 | relexicalization table to produce text for evaluation.
4 | """
5 |
6 | import argparse
7 |
8 | def generate():
9 | """
10 | Read options from user input, and final textual output.
11 | """
12 |
13 | DISCR = 'Perfrom relexicalization on the predictions of DNN.'
14 | parser = argparse.ArgumentParser(description=DISCR)
15 | parser.add_argument('-pred', type=str, help='Path to prediction file.',
16 | required=True)
17 |
18 | parser.add_argument('-relex', help='File to relexicalization table.',
19 | required=True)
20 |
21 | parser.add_argument('-output', type=str, help='Path to output file for final predictions.',
22 | required=True)
23 |
24 | args = parser.parse_args()
25 |
26 | # read from preditions file
27 | with open(args.pred, encoding="utf8") as predF:
28 | predictions = predF.readlines()
29 |
30 | # read relex table
31 | relex_table = []
32 |
33 | with open(args.relex, encoding="utf8") as relexF:
34 | lines = relexF.readlines()
35 |
36 | for line in lines:
37 | relex_entities = line.split('\t')
38 |
39 | instance_relex = {}
40 |
41 | for (k, e) in enumerate(relex_entities):
42 | instance_relex['ENTITY_' + str(k+1)] = e.replace('"', '').replace('\n', ' ')
43 |
44 | relex_table.append(instance_relex)
45 |
46 |
47 | # sanity check
48 | assert len(predictions) == len(relex_table), \
49 | "Length of prediction file and relex table are not equal."
50 |
51 |
52 | #print(relex_table)
53 | final_predictions = []
54 |
55 | for (pred, relex) in zip(predictions, relex_table):
56 | predX = pred
57 | for (id, lex) in relex.items():
58 | predX = predX.replace(id, lex)
59 |
60 | final_predictions.append(predX)
61 |
62 | assert len(predictions) == len(final_predictions), \
63 | "Length of prediction file and relex table are not equal."
64 |
65 | with open(args.output, 'a+', encoding="utf8") as opFile:
66 | opFile.write(''.join(final_predictions))
67 |
68 | def main():
69 | generate()
70 |
71 | if __name__ == '__main__':
72 | main()
73 |
--------------------------------------------------------------------------------
/support/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/badrex/rdf2text/bdc72db893d76972af196123b71ef0c6b2d3e552/support/__init__.py
--------------------------------------------------------------------------------
/support/generate_eval_metadata.py:
--------------------------------------------------------------------------------
1 | """
2 | A program to process RDF data and generate metadata (e.g. size, category)
3 | for evaluation and testing.
4 | """
5 |
6 | from utils import rdf_utils
7 | import argparse
8 | from graph2text import *
9 |
10 | def generate():
11 | """
12 | Read options from user input, and generate eval dataset.
13 | """
14 |
15 | DISCR = 'Generate dataset from XML files of RDF to Text Entries.'
16 | parser = argparse.ArgumentParser(description=DISCR)
17 | parser.add_argument('-path', type=str, help='Path to tgt data.',
18 | required=True)
19 |
20 | parser.add_argument('-seen', type=str, help='SEEN or UNSEEN.',
21 | required=True)
22 |
23 | parser.add_argument('-output', type=str, help='Path to output file.',
24 | required=True)
25 |
26 | args = parser.parse_args()
27 |
28 | instances, _, _ = rdf_utils.generate_instances(args.path, eval=True)
29 |
30 | counter = 1
31 |
32 | for (size, ins) in instances.items():
33 | for i in ins:
34 | id = counter
35 | size = i.size
36 | cat = i.category
37 |
38 | mdata = [id, int(size), cat, args.seen]
39 |
40 | print(mdata)
41 |
42 | # write to a file
43 | with open(args.output, 'a+', encoding="utf8") as outputFile:
44 | outputFile.write('\t'.join(str(j) for j in mdata) + '\n')
45 |
46 | counter += 1
47 |
48 |
49 | def main():
50 | generate()
51 |
52 | if __name__ == '__main__':
53 | main()
54 |
--------------------------------------------------------------------------------
/support/generate_lists.py:
--------------------------------------------------------------------------------
1 | """
2 | A program to process RDF data and generate lists of entities and properties.
3 | """
4 |
5 | from utils import rdf_utils
6 | import argparse
7 | import os
8 |
9 |
10 | def generate():
11 | """
12 | Read options from user input, and generate dataset.
13 | """
14 |
15 | DISCR = 'Generate lists of entities and properties from RDF data.'
16 | parser = argparse.ArgumentParser(description=DISCR)
17 | parser.add_argument('-path', type=str, help='Path to data.', required=True)
18 |
19 | parser.add_argument('-entity_list', type=str, help='Path to entities file.',
20 | required=True)
21 | parser.add_argument('-prop_list', type=str, help='Path to properties file.',
22 | required=True)
23 |
24 | args = parser.parse_args()
25 |
26 | subdirs = [f.path for f in os.scandir(args.path) if f.is_dir()]
27 |
28 | e_list = set()
29 | p_list = set()
30 |
31 | for data_dir in subdirs:
32 | _, entities, properties = rdf_utils.generate_instances(data_dir, True)
33 | e_list.update(entities)
34 | p_list.update(properties)
35 |
36 | print(data_dir, len(entities), len(properties))
37 | print(data_dir, len(e_list), len(p_list))
38 |
39 | print(len(e_list), len(p_list))
40 |
41 | with open(args.entity_list, '+a') as eFile:
42 | eFile.write("\n".join(e_list))
43 |
44 | with open(args.prop_list, '+a') as pFile:
45 | pFile.write("\n".join(p_list))
46 |
47 |
48 | def main():
49 | generate()
50 |
51 | if __name__ == '__main__':
52 | main()
53 |
--------------------------------------------------------------------------------
/support/generate_nodelex.py:
--------------------------------------------------------------------------------
1 | """
2 | A program to generate a list of entities which could not be delex.
3 | NOTE: Only for testing purposes.
4 | """
5 |
6 | from utils import rdf_utils
7 | import argparse
8 | from graph2text import *
9 |
10 | def generate():
11 | """
12 | Read options from user input, and generate list.
13 | """
14 |
15 | DISCR = 'Generate list of entities from XML files of RDF to Text Entries.'
16 | parser = argparse.ArgumentParser(description=DISCR)
17 | parser.add_argument('-path', type=str, help='Path to data.', required=True)
18 | parser.add_argument('-output', help='Path to output file.', required=True)
19 |
20 | args = parser.parse_args()
21 |
22 | instances, _, _ = rdf_utils.generate_instances(args.path)
23 |
24 | not_delex = set()
25 |
26 | counter = 0
27 | for (size, ins) in instances.items():
28 | for i in ins:
29 | tripleset = (i.originaltripleset, i.modifiedtripleset)
30 | G = FactGraph(tripleset, i.Lexicalisation.lex)
31 | _, nodelex = G.delexicalize_text(advanced=True)
32 |
33 | not_delex.update(nodelex)
34 | counter += 1
35 |
36 | if counter % 10 == 0:
37 | print("Processed so far: ", counter)
38 |
39 | print(len(not_delex))
40 |
41 | with open(args.output, 'w+', encoding="utf8") as opFile:
42 | opFile.write("\n".join(str(e) + ' § ' + str(s) for (e, s) in not_delex))
43 |
44 |
45 | def main():
46 | generate()
47 |
48 | if __name__ == '__main__':
49 | main()
50 |
--------------------------------------------------------------------------------
/support/generate_onto_classes_system.py:
--------------------------------------------------------------------------------
1 | import json
2 | import xml.etree.ElementTree as ET
3 |
4 | threshold = 1000
5 |
6 | with open('metadata/ontology_ponderated_occurences.json', encoding="utf8") as f:
7 | ontology_ponderated_occurences = json.load(f)
8 |
9 | system = dict()
10 | genealogy = 10*[""]
11 |
12 | def walker(elem, level):
13 | valid_relative = genealogy[level//2-1]
14 | try:
15 | text = elem.text
16 | if (text[0].isalpha()) & (text != "edit"):
17 | if text.upper() in ontology_ponderated_occurences:
18 | occurences = ontology_ponderated_occurences[text.upper()]
19 | else:
20 | occurences = 0
21 | if occurences > threshold or valid_relative == "":
22 | valid_relative = text
23 | system[text] = (level//2, valid_relative)
24 | genealogy[level//2] = valid_relative
25 | print('-'*level+'o '+text+' * '+valid_relative)
26 | except Exception:
27 | pass
28 |
29 | for child in elem.getchildren():
30 | walker(child, level+1)
31 |
32 | root = ET.parse('metadata/OntologyClasses.xml')
33 | walker(root.getroot(), 0)
34 |
35 | with open('metadata/onto_classes_system.json', 'w') as f:
36 | json.dump(system, f, ensure_ascii=False, indent=3, sort_keys=True)
37 |
--------------------------------------------------------------------------------
/support/get_entity_type.py:
--------------------------------------------------------------------------------
1 | """
2 | For each property in the dataset, get its domain and range.
3 | """
4 |
5 | from collections import defaultdict
6 | from utils import sparql_utils
7 | import argparse
8 |
9 | def generate():
10 | """
11 | Read options from user input, and generate output.
12 | """
13 |
14 | DISCR = 'Get semantic type for entities in the RDF data.'
15 | parser = argparse.ArgumentParser(description=DISCR)
16 | parser.add_argument('-output', type=str, help='Path to output file.', required=True)
17 |
18 | args = parser.parse_args()
19 |
20 | with open('metadata/entities.list', encoding="utf8") as f:
21 | rdf_entity_list = [e.strip() for e in f.readlines()]
22 |
23 | entity_type = []
24 |
25 | for (i, e) in enumerate(rdf_entity_list):
26 | stype = sparql_utils.get_resource_type(e)
27 |
28 | entity_type.append((e, stype))
29 |
30 | if i != 0 and i % 10 == 0:
31 | print(i, "entities processed so far ...")
32 |
33 |
34 | with open(args.output, '+w') as pFile:
35 | for (e, stype) in entity_type:
36 | pFile.write(' '.join((e, stype)) + '\n')
37 |
38 | def main():
39 | generate()
40 |
41 | if __name__ == '__main__':
42 | main()
43 |
--------------------------------------------------------------------------------
/support/get_property_schema.py:
--------------------------------------------------------------------------------
1 | """
2 | For each property in the dataset, get its domain and range.
3 | """
4 |
5 | from collections import defaultdict
6 | from utils import sparql_utils
7 | import argparse
8 |
9 | def generate():
10 | """
11 | Read options from user input, and generate dataset.
12 | """
13 |
14 | DISCR = 'Generate schema for properties in the RDF data.'
15 | parser = argparse.ArgumentParser(description=DISCR)
16 | parser.add_argument('-output', type=str, help='Path to output file.', required=True)
17 |
18 | args = parser.parse_args()
19 |
20 | with open('metadata/properties.list', encoding="utf8") as f:
21 | rdf_prop_list = [prop.strip() for prop in f.readlines()]
22 |
23 | prop_schema = []
24 |
25 | for (i, prop) in enumerate(rdf_prop_list):
26 | prop_domain = sparql_utils.get_property_domain(prop)
27 | prop_range = sparql_utils.get_property_range(prop)
28 |
29 | prop_schema.append((prop, prop_domain, prop_range))
30 |
31 | if i != 0 and i % 10 == 0:
32 | print(i, "properties processed so far ...")
33 |
34 |
35 | with open(args.output, '+w') as pFile:
36 | for (p, d, r) in prop_schema:
37 | pFile.write(' '.join((p, d, r)) + '\n')
38 |
39 | def main():
40 | generate()
41 |
42 | if __name__ == '__main__':
43 | main()
44 |
--------------------------------------------------------------------------------
/support/link_metadata.py:
--------------------------------------------------------------------------------
1 | """
2 | A program to link metadata (e.g. size, category) to lexicalised predictions
3 | for evaluation and testing.
4 | """
5 |
6 | import argparse
7 |
8 | def link():
9 | """
10 | Read options from user input, and generate eval dataset.
11 | """
12 |
13 | DISCR = 'Link metadata to predictions.'
14 | parser = argparse.ArgumentParser(description=DISCR)
15 | parser.add_argument('-pred', type=str, help='Path to preditions.',
16 | required=True)
17 |
18 | parser.add_argument('-meta', type=str, help='Path to metadata.',
19 | required=True)
20 |
21 | parser.add_argument('-output', type=str, help='Path to output file.',
22 | required=True)
23 |
24 | args = parser.parse_args()
25 |
26 | with open(args.pred, 'r', encoding="utf8") as predFile:
27 | predictions = predFile.readlines()
28 |
29 | with open(args.meta, 'r', encoding="utf8") as metaFile:
30 | metadata = metaFile.readlines()
31 |
32 |
33 | for (d, p) in zip(metadata, predictions):
34 | # write to a file
35 | print(d, p)
36 | with open(args.output, 'a+', encoding="utf8") as outputFile:
37 | d = [i.replace('\n', '') for i in d.split()]
38 | d.append(p.replace('\n', ''))
39 | outputFile.write('\t'.join([j for j in d]) + '\n')
40 |
41 |
42 | def main():
43 | link()
44 |
45 | if __name__ == '__main__':
46 | main()
47 |
--------------------------------------------------------------------------------
/utils/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/badrex/rdf2text/bdc72db893d76972af196123b71ef0c6b2d3e552/utils/__init__.py
--------------------------------------------------------------------------------
/utils/rdf_utils.py:
--------------------------------------------------------------------------------
1 | """
2 | This module contains some useful classes and functions to deal with RDF data and
3 | read and process XML files.
4 | """
5 |
6 | from nltk.tokenize import word_tokenize
7 | import xml.etree.ElementTree as et
8 | from collections import defaultdict
9 | import argparse
10 | import os
11 |
12 |
13 | class Triple:
14 |
15 | def __init__(self, s, p, o):
16 | self.subject = s
17 | self.object = o
18 | self.property = p
19 |
20 |
21 | class Tripleset:
22 |
23 | def __init__(self):
24 | self.triples = []
25 |
26 | def fill_tripleset(self, t):
27 | for xml_triple in t:
28 | s, p, o = xml_triple.text.split(' | ')
29 |
30 | # inistiate a triple
31 | triple = Triple(s, p, o)
32 | self.triples.append(triple)
33 |
34 |
35 | class Lexicalisation:
36 |
37 | def __init__(self, lex, comment, lid):
38 | self.lex = lex
39 | self.comment = comment
40 | self.id = lid
41 |
42 |
43 | class Entry:
44 |
45 | def __init__(self, category, size, eid):
46 | self.originaltripleset = []
47 | self.modifiedtripleset = Tripleset()
48 | self.lexs = []
49 | self.category = category
50 | self.size = size
51 | self.id = eid
52 |
53 | def fill_originaltriple(self, xml_t):
54 | otripleset = Tripleset()
55 | self.originaltripleset.append(otripleset) # multiple originaltriplesets for one entry
56 | otripleset.fill_tripleset(xml_t)
57 |
58 | def fill_modifiedtriple(self, xml_t):
59 | self.modifiedtripleset.fill_tripleset(xml_t)
60 |
61 | def create_lex(self, xml_lex):
62 | comment = xml_lex.attrib['comment']
63 | lid = xml_lex.attrib['lid']
64 | lex = Lexicalisation(xml_lex.text, comment, lid)
65 | self.lexs.append(lex)
66 |
67 | def count_lexs(self):
68 | return len(self.lexs)
69 |
70 |
71 | class RDFInstance(object):
72 |
73 | def __init__(self, category, size, otripleset, mtripleset, lex=None):
74 | """
75 | Instantiate RDFInstance object.
76 | :param category: category of entry (dtype: string)
77 | :param size: number of triples in entry (dtype: int)
78 | :param otripleset: a list original tripleset (dtype: list (Tripleset))
79 | :param mtripleset: a modified tripleset (dtype: Tripleset)
80 | :param sentence: a sentence that realises the triple set for training
81 | instances
82 | :dtype: Lexicalisation object (to get text, Lexicalisation.lex)
83 | :default: None (for eval and test instances).
84 | """
85 |
86 | self.category = category
87 | self.size = size
88 | self.originaltripleset = otripleset
89 | self.modifiedtripleset = mtripleset
90 |
91 | if lex:
92 | self.Lexicalisation = lex
93 |
94 | self.entities = set()
95 | self.properties = set()
96 |
97 | self._populate_sets()
98 |
99 |
100 | def _populate_sets(self):
101 | """
102 | populate the two sets; entities and properties.
103 | """
104 | for tset in self.originaltripleset:
105 | for triple in tset.triples:
106 | s = triple.subject
107 | p = triple.property
108 | o = triple.object
109 |
110 | self.entities.update((s, o))
111 | self.properties.add(p)
112 |
113 |
114 | def parseXML(xml_file):
115 | """
116 | Parse an xml file, return a list of RDF-Text instances (list(Entry)).
117 | :param category: xml_file string (dtype: string)
118 | """
119 |
120 | entries = []
121 |
122 | tree = et.parse(xml_file)
123 | root = tree.getroot()
124 |
125 | for xml_entry in root.iter('entry'):
126 | # to ignore triples with no lexicalisations
127 | # get a list of tags in the entry
128 | tags = [c.tag for c in xml_entry]
129 |
130 | if "lex" not in tags:
131 | # skip this entry, move to next entry in the loop
132 | continue
133 |
134 | # get attributes
135 | entry_id = xml_entry.attrib['eid']
136 | category = xml_entry.attrib['category']
137 | size = xml_entry.attrib['size']
138 |
139 | entry = Entry(category, size, entry_id)
140 |
141 | for element in xml_entry:
142 | if element.tag == 'originaltripleset':
143 | entry.fill_originaltriple(element)
144 | elif element.tag == 'modifiedtripleset':
145 | entry.fill_modifiedtriple(element)
146 | elif element.tag == 'lex':
147 | entry.create_lex(element)
148 |
149 | entries.append(entry)
150 |
151 | return entries
152 |
153 |
154 | def generate_instances(dir, extended=False, eval=False):
155 | """
156 | Traverse through a path, visit all subdirectories, and return a dict of
157 | entries accessible by size: size --> list of entries
158 | :param dir: path to data files (dtype: string)
159 | :param extended: should it generate entities and properties?
160 | (dtype: bool, default: False)
161 | """
162 |
163 | subfolders = [f.path for f in os.scandir(dir) if f.is_dir() ]
164 |
165 | instances = defaultdict(list)
166 |
167 | global_entities = set()
168 | global_properties = set()
169 |
170 | # loop through each dir
171 | for d in sorted(subfolders):
172 | xml_files = [f for f in os.listdir(d) if f.endswith('.xml')]
173 |
174 | # loop through each file in the directory
175 | for f in xml_files:
176 | # create new XMLParser object
177 | entries = parseXML(d + '/' + f)
178 |
179 | if eval:
180 | for entry in entries:
181 | rdfInstance = RDFInstance(entry.category,
182 | entry.size,
183 | entry.originaltripleset,
184 | entry.modifiedtripleset,
185 | entry.lexs)
186 |
187 | # append to list of instances
188 | instances[entry.size].append(rdfInstance)
189 |
190 | if extended:
191 | global_entities.update(rdfInstance.entities)
192 | global_properties.update(rdfInstance.properties)
193 |
194 | else:
195 | for entry in entries:
196 | for lex in entry.lexs:
197 | rdfInstance = RDFInstance(entry.category,
198 | entry.size,
199 | entry.originaltripleset,
200 | entry.modifiedtripleset,
201 | lex)
202 |
203 | # append to list of instances
204 | instances[entry.size].append(rdfInstance)
205 |
206 | if extended:
207 | global_entities.update(rdfInstance.entities)
208 | global_properties.update(rdfInstance.properties)
209 |
210 | return instances, global_entities, global_properties
211 |
--------------------------------------------------------------------------------
/utils/sparql_utils.py:
--------------------------------------------------------------------------------
1 | import json
2 | from SPARQLWrapper import SPARQLWrapper, JSON
3 |
4 | # dictionary: ontology class -> [precision score, closest valid parent class]
5 | # (an ontology class is valid if its frequency is higher than a defined threshold)
6 | with open('metadata/onto_classes_system.json', encoding="utf8") as f:
7 | onto_classes_system = json.load(f)
8 |
9 | def dbpedia_query(query_string, resource = False):
10 | sparql = SPARQLWrapper("http://dbpedia.org/sparql")
11 | sparql.setQuery(query_string)
12 | sparql.setReturnFormat(JSON)
13 |
14 | # query dbpedia about a resource/entity (subject or object of a triple)
15 | if resource:
16 | try:
17 | results = sparql.query().convert()
18 |
19 | # we only consider the dbpedia:ontology results
20 | ontology_url = "http://dbpedia.org/ontology/"
21 | onto_classes = [x["x"]["value"][28:]
22 | for x in results["results"]["bindings"]
23 | if x["x"]["value"].startswith(ontology_url)]
24 |
25 | bestPrecision = 0
26 | mostPreciseType = "THING"
27 |
28 | for type in onto_classes:
29 | if type in onto_classes_system:
30 | if onto_classes_system[type][0] > bestPrecision:
31 | mostPreciseType = type
32 | bestPrecision = onto_classes_system[type][0]
33 |
34 | # the ontology class returned is the closest valid parent
35 | # of the most precise class
36 | return onto_classes_system[mostPreciseType][1].upper()
37 |
38 | except Exception:
39 | return "THING"
40 |
41 | else: # query dbpedia about an ontology (property of a triple)
42 | try:
43 | results = sparql.query().convert()
44 | if len(results["results"]["bindings"]) == 0:
45 | return "*"
46 | else: # there should be exactly one result
47 | return results["results"]["bindings"][0]["x"]["value"][28:].upper()
48 |
49 | except Exception:
50 | return "*"
51 |
52 |
53 | def get_property_range(property):
54 | query_string = """
55 | PREFIX rdfs:
56 | SELECT ?x
57 | WHERE { rdfs:range ?x .}
58 | """
59 |
60 | return dbpedia_query(query_string)
61 |
62 |
63 | def get_property_domain(property):
64 | query_string = """
65 | PREFIX rdfs:
66 | SELECT ?x
67 | WHERE { rdfs:domain ?x .}
68 | """
69 |
70 | return dbpedia_query(query_string)
71 |
72 |
73 | def get_resource_type(resource):
74 | query_string = """
75 | PREFIX rdf:
76 | SELECT ?x
77 | WHERE { rdf:type ?x .}
78 | """
79 |
80 | return dbpedia_query(query_string, resource = True)
81 |
--------------------------------------------------------------------------------
/utils/text_utils.py:
--------------------------------------------------------------------------------
1 | """
2 | Some useful function to process text.
3 | """
4 |
5 | import difflib, re
6 | from dateutil import parser
7 | from nltk.tokenize import word_tokenize
8 | from nltk.tag import StanfordNERTagger
9 |
10 | TAGS = {'LOCATION', 'ORGANIZATION', 'DATE', \
11 | 'MONEY', 'PERSON', 'PERCENT', 'TIME'}
12 |
13 | def initialize_tagger(DIR):
14 | """Given a path, return a StanfordNERTagger object."""
15 |
16 | NERTagger = StanfordNERTagger(
17 | DIR + 'StanfordNLP/stanford-ner/classifiers/english.muc.7class.distsim.crf.ser.gz',
18 | DIR + 'StanfordNLP/stanford-ner/stanford-ner.jar',
19 | encoding='utf-8')
20 |
21 | return NERTagger
22 |
23 |
24 | def extract_named_entities(text):
25 | """
26 | Given some text (string), return named entities and their positions (list).
27 | """
28 | # tokenize
29 | tokenized_text = word_tokenize(text)
30 | # NER tagging
31 | NERTagger = initialize_tagger('/home/badr/')
32 | tagged_text = NERTagger.tag(tokenized_text)
33 | # entities
34 | named_entities = []
35 |
36 | # set a previous_tag to non-entity
37 | previous_tag = 'O'
38 |
39 | for (word, tag) in tagged_text:
40 | if tag in TAGS:
41 | # if same as previous tag, concatenate with last entry
42 | if previous_tag == tag:
43 | named_entities.append(' '.join([named_entities.pop(), word]))
44 |
45 | else: # if not same as previous, append new entry
46 | named_entities.append(word)
47 |
48 | previous_tag = tag
49 |
50 | # get indicies of names entities in the text
51 | entity_position_list = []
52 |
53 | for entity in named_entities:
54 | start_idx = text.find(entity)
55 | end_idx = start_idx + len(entity)
56 | entity_position_list.append((entity, (start_idx, end_idx)))
57 |
58 | return entity_position_list
59 |
60 |
61 | def find_ngrams(text, N=None):
62 | """Given some text, return list of ngrams from n = 1 up to N (or num of tokens)."""
63 | tokens = word_tokenize(text)
64 | ngrams = []
65 |
66 | if N is None:
67 | N = len(tokens)
68 |
69 | for n in range(1, N + 1):
70 | ngrams.extend(*[zip(*[tokens[i:] for i in range(n)])])
71 |
72 | return ngrams
73 |
74 | def tokenize_and_concat(text):
75 | """A wrapper for nltk tokenizer that returns a string."""
76 | return ' '.join(word_tokenize(text))
77 |
78 |
79 | def get_capitalized(text):
80 | """Return a list of capitalized words in a string."""
81 | return [w for w in word_tokenize(text) if w[0].isupper()]
82 |
83 |
84 | def find_best_match(entity_str, text_lex):
85 | """
86 | Given an entity string and list of ngrams that occur in the text
87 | lexicalization of a graph, return the ngram that is the best match.
88 | :para entity_str: entity (string)
89 | :para text_lex: text (string)
90 | """
91 | lex_ngrams = [' '.join(ngrams) for ngrams in find_ngrams(text_lex)]
92 |
93 | best_matches = difflib.get_close_matches(entity_str, lex_ngrams)
94 |
95 | return best_matches[0] if best_matches else None
96 |
97 |
98 | def is_date_format(text):
99 | """Given a string, return True if date, False otherwise."""
100 | try:
101 | parser.parse(text)
102 | return True
103 | except (ValueError, OverflowError) as e:
104 | return False
105 |
106 | def char_ngrams(chars, N=None):
107 | """Given some string, return list of character ngrams."""
108 | char_ngrams = []
109 |
110 | if N is None:
111 | N = len(chars)
112 |
113 | for n in range(2, N + 1):
114 | char_ngrams.extend(*[zip(*[chars[i:] for i in range(n)])])
115 |
116 | return char_ngrams
117 |
118 |
119 | def generate_abbrs(text):
120 | """
121 | Given a text (entity), return a list of possible abbreviations.
122 | For example, generate_abbrs("United States") -- > ['U. S.', 'U.S.', 'U S', 'US']
123 | """
124 | all_inits = [w[0] for w in text.split() if not w[0].isdigit()]
125 | capital_inits = [w[0].upper() for w in text.split() if not w[0].isdigit()]
126 | init_caps_only = [c for c in all_inits if c.isupper()]
127 |
128 | abbrs_pool = []
129 |
130 | for char_set in (all_inits, capital_inits, init_caps_only):
131 | c_ngrams = [''.join(g) for g in char_ngrams(char_set)] + \
132 | [' '.join(g) for g in char_ngrams(char_set)] + \
133 | ['.'.join(g) + '.' for g in char_ngrams(char_set)] + \
134 | ['.'.join(g) for g in char_ngrams(char_set)] + \
135 | ['. '.join(g) + '.' for g in char_ngrams(char_set)]
136 |
137 | abbrs_pool.extend(c_ngrams)
138 |
139 | return sorted(set(abbrs_pool), key=len, reverse=True)
140 |
141 |
142 | # pre-compile regexes for the CamelCase converting function
143 | first_cap_re = re.compile('(.)([A-Z][a-z]+)')
144 | all_cap_re = re.compile('([a-z0-9])([A-Z])')
145 |
146 | def camel_case_split(property_string):
147 | """Return the text of the property after (camelCase) split."""
148 | s1 = first_cap_re.sub(r'\1 \2', property_string)
149 | return all_cap_re.sub(r'\1 \2', s1).lower().replace('_', ' ').replace('/', ' ')
150 |
151 | # test function
152 | def test_date_format():
153 | dates = [
154 | "Jan 19, 1990",
155 | "January 19, 1990",
156 | "Jan 19,1990",
157 | "01/19/1990",
158 | "01/19/90",
159 | "1990",
160 | "Jan 1990",
161 | "January, 1990",
162 | "2009-6-19",
163 | "28th of August, 2008",
164 | "August 28th, 2008"
165 | ]
166 |
167 | for d in dates:
168 | print(d, is_date_format(d))
169 |
170 |
171 | def test_abbrs():
172 | print(generate_abbrs("Massachusetts Institute, of Technology, Sc.D. 1963"))
173 | print(generate_abbrs("United States"))
174 | print(generate_abbrs("New York City"))
175 |
176 | def test_NER():
177 | text = """While in France, Christine Lagarde Johnson's team discussed
178 | short-term stimulus efforts in a recent interview with the Wall
179 | Street Journal on August 1st 2017. The United Nations decided to apply
180 | harmless nuclear regulations on Iran. The United States of America
181 | has many great cities such as New York, Las Vegas, and San Francisco.
182 | Distinguished Service Medal from United States Navy ranks higher than
183 | Department of Commerce Gold Medal.""".replace('\n', '')
184 |
185 | E = extract_named_entities(text)
186 |
187 | for (e, i) in E:
188 | print('§', e, '§', i[0], i[1])
189 |
190 |
191 | def test_best_match():
192 | entity_list = [
193 | "Massachusetts Institute, of Technology, Sc.D. 1963",
194 | "Italy",
195 | "Colombian cuisine",
196 | "United States",
197 | """In Soldevanahalli, Acharya Dr. Sarvapalli Radhakrishnan Road,
198 | Hessarghatta Main Road, Bangalore – 560090.""",
199 | "Dr. G. P. Prabhukumar",
200 | "Lars Løkke Rasmussen",
201 | "Prime Minister of Romania",
202 | "Türk Şehitleri Anıtı", "16000",
203 | "United States",
204 | "St. Louis",
205 | "25.0",
206 | "Americans",
207 | "Ilocano people",
208 | "English language",
209 | "Alan Shepard",
210 | "1971-07-01",
211 | "2014–15 Azerbaijan Premier League"
212 | ]
213 |
214 | text_list = [
215 | """Born on the twentieth of January, 1930, 1963 Massachusetts Institute
216 | of Technology, Sc.D. graduate Buzz Aldrin has won 20 awards.""",
217 | """talian born Michele Marcolini is the manager of AC Lumezzane.
218 | He also played for Vicenza Calcio and owns Torino FC.""",
219 | """A typical dish found in Columbia is Bandeja paisa, which comes
220 | from the Antioquia Department region.""",
221 | """St Vincent-St Mary High School (Akron, Ohio, US) is the ground of
222 | Akron Summit Assault.""",
223 | """Acharya Institute of Technology (motto: 'Nurturing Excellence') was
224 | established in 2000 and is located at Soldevanahalli, Acharya Dr.
225 | Sarvapalli Radhakrishnan Road, Hessarghatta Main Road, Bangalore –
226 | 560090, Karnataka, India. The Institute is affiliated with
227 | Visvesvaraya Technological University of Belgaum.""",
228 | """The Acharya Institute of Technology's campus is located in
229 | Soldevanahalli, Acharya Dr. Sarvapalli Radhakrishnan Road, Hessarghatta
230 | Main Road, Bangalore, India, 560090. It was established in 2000 and its
231 | director is Dr G.P. Prabhukumar. It is affiliated to the Visvesvaraya
232 | Technological UNiversity in Belgaum.""",
233 | """The School of Business and Social Sciences at the Aarhus University
234 | is located in the city of Aarhus, Denmark, and is affiliated with the
235 | European University Association in Brussels. Aarhus is ruled by a
236 | magistrate government, and is led by Lars Lokke Rasmussen. The
237 | religion is the Church of Denmark.""",
238 | """The 1 Decembrie 1918 University is located in Romania and its Latin
239 | name is 'Universitas Apulensis'. Romania's ethnic group is the Germans
240 | of Romania and its leader is Prime Minister Klaus Iohannis. Romania's
241 | capital is Bucharest and its anthem is Desteapta-te, romane!""",
242 | """Baku Turkish Martyrs' Memorial, made of red granite and white marble,
243 | is dedicated to the Ottoman Army soldiers killed in the Battle of Baku.
244 | The memorial, called Turk Sehitleri Aniti, was designed by Hüseyin
245 | Bütüner and Hilmi Güner and is located in Azerbaijan, the capital of
246 | which is Baku.""",
247 | """The School of Business and Social Sciences is located in Aarhus and
248 | it was established in 1928. It has 737 academic staff and 16,000
249 | students. Its dean is Thomas Pallesen and it is affiliated with the
250 | European University Association.""",
251 | """Andrews County Airport is located in Texas in the U.S. Austin is the
252 | capital of Texas whose largest city is Houston. English is spoken
253 | in that state.""",
254 | """Elliot See was born in Dallas on 23 July 1927. He graduated from the
255 | University of Texas at Austin which is an affiliate of the University
256 | of Texas system. He died in St louis .""",
257 | """Aarhus Airport, which serves the city of Aarhus in Denmark, has a
258 | runway length of 2,776 and is named 10R/28L. Aktieselskab operates the
259 | airport which is 25 metres above sea level.""",
260 | """The character of Baymax appeared in Big Hero 6 which stars Ryan
261 | Potter. He was created by Steven T Seagle and the American,
262 | Duncan Rouleau.""",
263 | """Batchoy is found in Philippine Spanish and Arabic speaking
264 | Philippines. The Philippines is home to the llocano and ENTITY.""",
265 | "English is the language used in 1634: The Ram Rebellion.",
266 | "Alan Shephard passed away on 1998-07-21 in California.",
267 | """Buzz Aldrin, who retired on July 1st 1971 , once spent 52 minutes
268 | in outer space.""",
269 | """AZAL Arena, which holds 3500 fans, is the ground of AZAL PFK who
270 | played in the Azerbaijan Premier League in 2014-15. Qarabag FK have
271 | been champions of this league. """
272 | ]
273 |
274 | for (e, s) in zip(entity_list, text_list):
275 | best_match = find_best_match(e, s)
276 | print('entity:', e, ', best match:', best_match)
277 |
278 | def main():
279 | # test extract_named_entities function.
280 | #test_NER()
281 |
282 | # test best match
283 | test_best_match()
284 |
285 | # test data format
286 | test_date_format()
287 |
288 | # test generate_abbrs
289 | test_abbrs()
290 |
291 | if __name__ == '__main__':
292 | main()
293 |
--------------------------------------------------------------------------------