├── CITATION.cff ├── LICENSE ├── README.md └── VERSION /CITATION.cff: -------------------------------------------------------------------------------- 1 | cff-version: 1.2.0 2 | message: If you use this software, please cite it using these metadata. 3 | title: Table of imaging analysis methods and software 4 | authors: 5 | - family-names: Ahanonu 6 | given-names: Biafra 7 | orcid: https://orcid.org/0000-0002-2021-5848 8 | version: 1.1 9 | date-released: "2018-11-21" 10 | license: MIT 11 | repository-code: https://github.com/bahanonu/imaging_tools -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | MIT License 2 | 3 | Copyright (c) 2018-2021 Biafra Ahanonu 4 | 5 | Permission is hereby granted, free of charge, to any person obtaining a copy 6 | of this software and associated documentation files (the "Software"), to deal 7 | in the Software without restriction, including without limitation the rights 8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 | copies of the Software, and to permit persons to whom the Software is 10 | furnished to do so, subject to the following conditions: 11 | 12 | The above copyright notice and this permission notice shall be included in all 13 | copies or substantial portions of the Software. 14 | 15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 | SOFTWARE. 22 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Imaging analysis tools 2 | A table containing imaging analysis tools for biology and neuroscience, with a focus on calcium imaging. 3 | 4 | Created by Biafra Ahanonu, PhD (HHMI Hanna Gray Fellow, Basbaum Lab, UCSF). 5 | 6 | [![DOI](https://zenodo.org/badge/427113554.svg)](https://zenodo.org/badge/latestdoi/427113554) 7 | 8 | 9 |

10 | 11 | ciapkgMovie 12 | 13 |

Calcium imaging analysis with CIAtah (https://github.com/bahanonu/ciatah). 14 |

15 |

16 | 17 | The table can also be found at: 18 | - https://bahanonu.com/brain/imaging_tools/ 19 | - https://bahanonu.com/syscarut/articles/233/ 20 | - If you would like to cite this table, see `Cite this repository` in the right `About` section or https://zenodo.org/record/8349533. 21 | 22 | _Notes_: 23 | - I use _cell extraction_ to refer to algorithms that perform cell segmentation and extract neural activity traces. 24 | - In cases where the publication did not explicitly give the algorithm a name, made one based on the underlying method used. 25 | - This table includes algorithms that simultaneously extract cell images/contours and reconstruct cell activity traces along with ones mainly focused on determining one or the other. 26 | - Several calcium imaging related packages have also been included along with algorithms dealing with post-hoc handling of data or cell activity traces. 27 | - Future versions of the repository will include table file (e.g. CSV) and basic LaTeX code so others can import or modify the table more easily going forward. 28 | - Depending on monitor size and browser, scroll horizontally to see right-most table columns (e.g. websites/URLs). 29 | - Any additional papers or algorithms that should be added or suggested updates to the table, leave a comment on the associated blog post or open an issue on the GitHub page, I want to make sure everyone’s brilliant work is acknowledged! 30 | 31 | 32 |
Table 1:Ca2+ imaging cell extraction and trace reconstruction algorithms
35 | 36 | 37 | 38 |
53 | 64 | 76 | 86 | 100 | 116 | 126 | 138 | 150 | 160 | 171 | 183 | 193 | 205 | 215 | 227 | 239 | 251 | 263 | 275 | 285 | 297 | 310 | 320 | 343 | 355 | 369 | 379 | 391 | 403 | 415 | 427 | 438 | 458 | 470 | 482 | 494 | 504 | 516 | 528 | 540 | 552 | 565 | 577 | 587 | 599 | 609 | 619 | 629 | 641 | 653 | 670 | 680 | 690 | 700 | 710 | 722 | 732 | 744 | 754 | 764 | 776 | 788 | 800 | 813 | 825 | 837 | 851 | 863 | 875 | 887 | 897 | 909 | 921 | 933 | 945 | 957 | 969 | 981 | 993 | 1005 | 1017 | 1029 | 1041 | 1053 | 1065 | 1077 | 1089 | 1102 | 1114 | 1126 | 1138 | 1148 | 1160 | 1173 | 1185 | 1197 | 1209 | 1221 | 1233 | 1245 | 1257 | 1269 | 1281 | 1293 | 1305 | 1317 | 1327 | 1339 | 1351 | 1363 | 1375 | 1387 | 1399 | 1412 |






# Method YearAnalysis pipeline Notes/Code Citation






1 PhaseCorrelation 1996Motion correction. •  Phase correlation for motion correction, to include translation, rotation, and scale-invariance. Reddy and Chatterji 1996
2 Turboreg 1998Motion correction. •  Motion correction.
•  http://bigwww.epfl.ch/thevenaz/turboreg/
Thevenaz et al. 1998
3 subPixelPhase 2002Motion correction. •  Closed-form solution to subpixel translation estimation using phase correlation. Foroosh et al. 2002
4 ROI 2005Cell extraction •  Matrix multiplication; in some methods neuropil/background subtraction implemented. Kerr et al. 2005Kuchibhotla et al. 2014Peron et al. 2015
5 CellProfiler 2006Cell segmentation •  Multi-algorithm pipeline for cell segmentation.
•  https://cellprofiler.org
Carpenter et al. 2006McQuin et al. 2018Lamprecht et al. 2007
6 PCA-ICA 2009Cell extraction •  Cell extraction using principal component analysis (PCA) followed by independent component analysis (ICA). Mukamel et al. 2009
7 ANTs 2009Image analysis •  Suite of tools for registering and analyzing imaging data.
•  http://stnava.github.io/ANTs/
Avants et al. 2009
8 elastix 2009Motion correction •  A general toolbox for rigid and non-rigid image registration.
•  https://elastix.lumc.nl
Klein et al. 2009
9 Lucas–Kanade framework2009Motion correction •  Lucas-Kanade framework for non-uniform motion image registration. Greenberg and Kerr 2009
10 CIRF (calcium-behavior) 2011Cell extraction •  Regressive model to obtain Ca2+ signal based on behavior. Miri et al. 2011
11 openBIS 2011Data handling •  FAIR data management.
•  https://openbis.ch
Bauch et al. 2011
12 Automated ROI analysis 2012Cell extraction •  Automatic ellipses based ROI detection. Francis et al. 2012
13 OMERO 2012Data handling •  Microscopy data handling.
•  https://www.openmicroscopy.org
Allan et al. 2012
14 ADINA 2013Cell extraction •  Sparse dictionary learning. Diego et al. 2013
15 TPP 2013Analysis pipeline •  Tool for processing two-photon calcium imaging data, e.g. finding cells with SeNeCA.
•  http://uemweb.biomed.cas.cz/tpp/
Tomek et al. 2013
16 NMF 2014Cell extraction •  Cell extraction using nonnegative matrix factorization (NMF). Followed by CNMF. Pnevmatikakis et al. 2014Maruyama et al. 2014
17 SIMA 2014Analysis pipeline •  Normalized cut segmentation, motion correction, etc.
•  https://github.com/losonczylab/sima
Kaifosh et al. 2014
18 DataJoint 2015Data handling •  Schema for data handling.
•  https://github.com/datajoint/datajoint-matlab
Yatsenko et al. 2015
19 NWB 2015Data handling •  Neurodata Without Borders (NWB) initiative to produce a common data format for electrophysiology and imaging studies.
•  https://github.com/NeurodataWithoutBorders
Teeters et al. 2015
20 Suite2p 2016Cell extraction •  Generative model along with GUIs. Pachitariu et al. 2016
21 CNMF (CaImAn) 2016Cell extraction •  Constrained NMF (CNMF).
•  https://github.com/flatironinstitute/CaImAn-MATLAB
Pnevmatikakis et al. 2016
22 CNMF-E 2016Cell extraction •  CNMF + background model to handle one-photon data.
•  https://github.com/zhoupc/CNMF_E
Zhou et al. 20162018
23 Apthorpe CNN 2016Cell segmentation •  Convolutional neural network (CNN). Apthorpe et al. 2016
24 moco 2016Motion correction •  Fourier-transform based motion correction.
•  https://github.com/NTCColumbia/moco
Dubbs et al. 2016
25 Cytomine 2016Analysis GUI •  Analysis of large-scale imaging data.
•  https://cytomine.be
Marée et al. 2016
26 ROI clustering 2016Cell extraction •  Select high-intensity pixels then perform clustering to segment.
•  https://www.bu.edu/hanlab/files/2016/02/pfgc.zip
Mohammed et al. 2016
27 CELLMax (conference) 2017Cell extraction •  Cell segmentation and activity trace extraction using a maximum likelihood approach. Ahanonu et al. 20182017Ahanonu 2018
28 sc-CNMF 2017Cell extraction •  CNMF + GMM/RNN seed cleansing. Lu et al. 2017
29 OASIS 2017Trace analysis •  Generalized pool adjacent violators algorithm.
•  https://github.com/zhoupc/OASIS_matlab
Friedrich et al. 2017
30 ABLE 2017Cell segmentation •  Multiple active contours and a cost function to identify cells in 2P data.
•  https://github.com/StephanieRey/ABLE
Reynolds et al. 2017
31 SCALPEL 2017Cell extraction •  Dictionary learning, dissimilarity, and clustering.
•  https://cran.r-project.org/web/packages/scalpel/index.html
Petersen et al. 2017
32 HNCcorr 2017Cell segmentation •  Combinatorial optimization (correlation space analysis).
•  https://github.com/hochbaumGroup/HNCcorr
Spaen et al. 2017
33 OnACID 2017Cell extraction (online) •  NMF variant for online Ca2+ imaging processing. Giovannucci et al. 2017
34 EXTRACT 2017Cell extraction •  Robust statistical estimation. Inan et al. 2017
35 NETCAL 2017Analysis pipeline •  Calcium imaging analysis GUI.
•  https://github.com/orlandi/netcal
Orlandi et al.
36 NoRMCorre 2017Motion correction. •  Piecewise rigid motion correction.
•  https://github.com/simonsfoundation/NoRMCorre
Pnevmatikakis and Giovannucci 2017
37 CellReg 2017Cross-session alignment•  Alignment of cells across days using a probabilistic approach.
•  https://github.com/zivlab/CellReg
Sheintuch et al. 2017
38 NeuroSeg 2017Cell segmentation •  Filtering and seed/clustering based cell segmentation.
•  https://github.com/baidatong/NeuroSeg
Guan et al. 2018
39 CNMF-E+ 2017Cell extraction •  Shrinkage estimation to improve CNMF-E initialization. Takekawa et al. 2017
40 Toolbox-Romano 2017Analysis pipeline •  Full analysis pipeline with ROI-based segmentation
•  https://github.com/zebrain-lab/Toolbox-Romano-et-al
Romano et al. 2017
41 SamuROI 2017Analysis GUI •  GUI for data visualization
•  https://github.com/samuroi/SamuROI
Rueckl et al. 2017
42 KNIME 2017Analysis pipeline •  Workflow manager for data analysis.
•  https://www.knime.com
Fillbrunn et al. 2017
43 U-Net2DS 2017Cell segmentation •  Evaluated several deep learning models on Neurofinder, U-Net2DS best.
•  https://github.com/alexklibisz/deep-calcium
Klibisz et al. 2017
44 CLEAN (conference) 2018Cell sorting •  Machine learning based cell sorting of cell extraction outputs based on image and activity trace features. Ahanonu et al. 2018Ahanonu 2018
45 FISSA 2018Trace analysis •  Neuropil decontamination using local region around cell.
•  https://github.com/rochefort-lab/fissa
Keemink et al. 2018
46 LSSC 2018Cell segmentation •  Spectral clustering; variant to find local subset of eigenvectors. Mishne et al. 2018
47 PMD - PCA 2018Denoising •  Spatially-localized penalized matrix decomposition for denoising; compression; and improved demixing.
•  https://github.com/paninski-lab/funimag
Buchanan et al. 2018
48 MIN1PIPE 2018Analysis pipeline •  Pre-processing to enhance neural signals then sc-CNMF for cell extraction. Lu et al. 2018
49 CaImAn (preprint) 2018Analysis pipeline •  CNMF + several other processing tools. Giovannucci et al. 2018
50 SEUDO (preprint) 2018Trace analysis •  Mixture of Gaussians + maximum likelihood; post-hoc activity trace correction. Gauthier et al. 2018
51 ACSAT 2018Cell segmentation •  Global and local adaptive thresholding to identify neurons.
•  https://github.com/sshen8/acsat
Shen et al. 2018
52 onlineMotionCorrection 2018Motion correction •  Tested multiple algorithms and developed an online motion correction pipeline.
•  https://github.com/amitani/onlineMotionCorrection
Mitani and Komiyama 2018
53 CIAtah 2019Analysis pipeline •  1P and 2P Imaging analysis pipeline supporting PCA-ICA, CNMF, CELLMax, EXTRACT, etc.
•  https://github.com/bahanonu/ciatah
Corder et al. 2019Ahanonu 2018Ahanonu and Corder 2022
54 NAOMi (bioRxiv) 2019Simulator •  Generative model for creating simulated calcium imaging movies. Charles et al. 2019
55 CALIMA 2019Analysis pipeline •  Calcium imaging analysis GUI. Radstake et al. 2019
56 STNeuroNet 2019Cell segmentation •  Convolutional neural network to detect and segment cells. Soltanian-Zadeh et al. 2019
57 AQuA 2019Cell extraction •  Astrocyte imaging focused. Non-ROI cluster and propagation based detection of events. Wang et al. 2019
58 CaImAn 2019Analysis pipeline •  Popular calcium imaging pipeline that includes CNMF + several other processing tools.
•  https://github.com/flatironinstitute/CaImAn
Giovannucci et al. 2019
59 DL+RWL1-SF 2019Cell extraction •  Dictionary learning and spatial correlation based cell extraction. Mishne and Charles 2019
60 Segment2P 2019Cell segmentation •  Pre-process images and run through DeepLabV3.
•  https://github.com/NoahDolev/Segment2P
Dolev et al. 2019
61 LANMC 2019Motion correction •  Long short-term memory non-rigid motion correction, reduce computational cost by predicting non-rigid motion. Chen et al. 2019
62 marked point processes 2020Cell extraction •  Probabilistic generative model, specifically a marked point process, to extract activity traces. Shibue and Komaki 2020
63 LocaNMF 2020Region extraction •  Localized semi-nonnegative matrix factorization for extracting active regions.
•  https://github.com/ikinsella/locaNMF
Saxena et al. 2020
64 EZcalcium 2020Analysis pipeline •  Calcium imaging analysis toolbox.
•  https://github.com/porteralab/EZcalcium
Cantu et al. 2020
65 OnACID-E + ring CNN 2020Cell extraction (online) •  OnACID for miniscope and new ring CNN background model to improve accuracy.
•  https://github.com/flatironinstitute/CaImAn
Friedrich et al. 2020
66 Auto CNMF-E sorting 2020Cell sorting •  Machine learning (AutoML) based curation of CNMF-E outputs.
•  https://github.com/jf-lab/cnmfe-reviewer
Tran et al. 2020a,b
67 DeepInterpolation 2020Denoising •  Encoder-decoder architecture with 2D conv. to denoise imaging data.
•  https://github.com/AllenInstitute/deepinterpolation
Lecoq et al. 2020
68 BIAFLOWS 2020Benchmarking •  Framework for benchmarking imaging analysis workflows.
•  https://biaflows.neubias.org
Rubens et al. 2020
69 FIBSI 2020Trace analysis •  Extension of Ramer-Douglas-Peucker algorithm to identify baseline that is used for signal detection.
•  https://github.com/rmcassidy/FIBSI_program
Cassidy et al. 2020Alles et al. 2021
70 DISCo 2020Cell segmentation •  Pixel correlation and deep learning (CNN) + graph based segmentation.
•  https://github.com/EKirschbaum/DISCo
Kirschbaum et al. 2020
71 DeepCINAC 2020Trace analysis •  Trace analysis after human labeling followed by CNNs + bidirectional long-short term memory (LSTM) network.
•  https://gitlab.com/cossartlab/deepcinac
Denis et al. 2020
72 NDSEP 2020Cell extraction •  Dataflow framework for real-time calcium imaging processing.
•  http://dspcad-www.iacs.umd.edu/bcnm/index.html
Lee et al. 2020
73 DeepBrainSeg 2020Segmentation •  Dual-pathway CNN to learn local and contextual features. Tan et al. 2020
74 RT-3DMC 2020Motion correction •  Bead or soma tracking for real-time motion correction during 2P imaging.
•  https://github.com/SilverLabUCL/SilverLab-Microscope
Griffiths et al. 2020
75 Cellpose 2021Cell segmentation •  Neural network and gradient-based cell segmentation.
•  https://github.com/mouseland/cellpose
Stringer et al. 2021
76 NAOMi 2021Simulator •  Detailed model simulation for benchmarking calcium imaging algorithms.
•  https://bitbucket.org/adamshch/naomi_sim/src/master/
Song et al. 2021
77 OnACID-E + ring CNN 2021Cell extraction (online) •  OnACID for 1P data and ring CNN background model.
•  https://github.com/flatironinstitute/CaImAn
Friedrich et al. 2021
78 EXTRACT 2021Cell extraction •  Robust statistics based cell extraction.
•  https://github.com/schnitzer-lab/EXTRACT-public
Inan et al. 2021
79 Minian 2021Analysis pipeline •  Imaging analysis pipeline with CNMF for cell extraction, in part using Jupyter notebooks with GUI elements.
•  https://github.com/DeniseCaiLab/minian
Dong et al. 2021
80 Mesmerize 2021Analysis pipeline •  Imaging analysis platform with CaImAn for cell extraction, import support for other cell extraction algorithms.
•  https://github.com/kushalkolar/MESmerize
Kolar et al. 2021
81 DeepInterpolation 2021Denoising •  Encoder-decoder architecture with 2D conv. to denoise imaging data.
•  https://github.com/AllenInstitute/deepinterpolation
Lecoq et al. 2021
82 BEAR 2021Cell extraction •  Neural network approximation of PCA for cell extraction.
•  https://github.com/NICALab/BEAR
Han et al. 2021
83 CaPTure 2021Cell extraction •  ROI segmentation and activity extraction.
•  https://github.com/LieberInstitute/CaPTure
Tippani et al. 2021
84 CASCADE 2021Trace analysis •  Spike inference based on dual ephys/calcium imaging recordings.
•  https://github.com/HelmchenLabSoftware/Cascade
Rupprecht et al. 2021
85 VolPy 2021Analysis pipeline •  Voltage imaging analysis pipeline integrated into CaImAn.
•  https://github.com/flatironinstitute/CaImAn
Cai et al. 2021
86 DeepCAD 2021Denoising •  Deep neural network based denoising.
•  https://github.com/cabooster/DeepCAD-RT
Li et al. 2021
87 SpecSeg 2021Cell extraction •  Spectral density of pixels to identify ROIs. Also incorporates motion correction and cross-session matching.
•  https://github.com/Leveltlab/SpectralSegmentation
de Kraker et al. 2021
88 FIOLA 2021Cell extraction (online) •  GPU- and computational graph-based speed-ups along with non-negative least squares for post-initialization signal extraction.
•  https://github.com/nel-lab/FIOLA
Giovannucci et al. 2021
89 PatchWarp 2021Motion correction •  Affine transformation of subfields followed by stitching subfields together.
•  https://github.com/ryhattori/PatchWarp
Hattori and Komiyama 2021
90 MVG-CNN 2021Region extraction •  Automated sleep states classification using multiplex visibility graphs and deep learning. Data URL.
•  https://github.com/comp-imaging-sci/MVG-CNN
Zhang et al. 2021
91 Flow-Registration 2021Motion correction •  Variational optical flow for non-uniform motion correction
•  https://github.com/phflot/flow_registration
Flotho et al. 2022
92 SUNS 2021Cell segmentation •  Cell segmentation using shallow U-Nets.
•  https://github.com/YijunBao/Shallow-UNet-Neuron-Segmentation_SUNS
Bao et al. 2021
93 Carignan 2021Cell extraction •  Online cell extraction and triggering based on OnACID and CaImAn.
•  https://github.com/tzklab/carignan
Taniguchi et al. 2021
94 MullenClassifier 2021Cell sorting •  Feature extraction from cell images and tracs followed by supervised learning classifier. Mullen et al. 2021
95 timeUnet 2021Denoising •  Deep learning for denoising with temporal information added in.
•  https://github.com/BoHuangLab/Transfer-Learning-Denoising/
Wang et al. 2021
96 EMC2 2021Motion correction •  Wavelet decomposition to detect bright spots followed by motion correction with multiple hypothesis tracking and computing elastic deformation.
•  https://icy.bioimageanalysis.org/plugin/elastic-motion-correction-concatenation-emc2-of-tracks/
Lagache et al. 2021
97 GraFT 2022Cell extraction •  Dictionary-based learning of activity traces followed by graph-based segmentation.
•  https://github.com/adamshch/GraFT-analysis
Charles et al. 2022
98 CaPTure 2022Analysis pipeline •  Binary/watershed segmentation followed by ROI-based mean traces.
•  https://github.com/LieberInstitute/CaPTure
Tippani et al. 2022
99 SpecSeg 2022Cell segmentation •  Cross spectral power-based segmentation of neurons and neurites.
•  https://github.com/Leveltlab/SpectralSegmentation
de Kraker et al. 2022
100CITE-On 2022Cell extraction •  Online cell detection and trace extraction using CNNs.
•  https://gitlab.iit.it/fellin-public/cite-on
Sità et al. 2022
101DL-assisted 2P fiberscope2022Denoising •  Denoising 2P fiberscope data using deep neural network (conditional generative adversarial network).
•  https://figshare.com/articles/dataset/Data/19193792
Guan et al. 2022
1024SM 2022Cell extraction •  Generative adversarial network for image segmentation.
•  https://github.com/SharifAmit/4SM
Kamran et al. 2022
103DeepCAD-RT 2022Denoising •  Improved version of DeepCAD for real time performance.
•  https://github.com/cabooster/DeepCAD-RT/
Li et al. 2023a
104SEUDO 2022Trace analysis •  Mixture of Gaussians + maximum likelihood; post-hoc activity trace correction.
•  https://github.com/adamshch/SEUDO
Gauthier et al. 2022
105AxialMotionCorrect 2022Motion correction •  Axial motion correction via multi-plane scanning plus maximum likelihood optimization.
•  https://gitlab.com/anflores/axial_motion_correction
Flores-Valle and Seelig 2022
106FIFER 2022Motion correction •  Feature-based motion correction, finding features using a density-based estimating and clustering algorithm and matching features with a similarity metric for registration.
•  https://github.com/Weiyi-Liu-Unique/FIFER
Liu et al. 2022
107NWB 2022Data handling •  Neurodata Without Borders (NWB) to standardize ephys and imaging data across tools.
•  https://github.com/NeurodataWithoutBorders
Rübel et al. 2022
108DeCalciOn 2023Online analysis pipeline•  Integrate hardware and software to online decode calcium signals.
•  https://github.com/zhe-ch/ACTEV
Chen et al. 2023
109jGCaMP8 2023Calcium indicator •  Improved calcium indicators with increased sensitivity and reduced background. Zhang et al. 2023a
110NeuroSeg-II 2023Cell segmentation •  2P cell segmentation using region-based convolutional neural network with modifications.
•  https://github.com/XZH-James/NeuroSeg2
Xu et al. 2023
111CaliAli 2023Cross-session alignment•  Cross-session alignment using vasculature information.
•  https://github.com/CaliAli-PV/CaliAli
Vergara et al. 2023
112DeepWonder 2023Cell extraction •  Deep-learning-based cell finding for widefield datasets.
•  https://github.com/yuanlong-o/Deep_widefield_cal_inferece
Zhang et al. 2023b
113ASTRA 2023Cell segmentation •  Deep neural network for astrocyte segmentation.
•  https://gitlab.iit.it/fellin-public/astra
Bonato et al. 2023
114SRDTrans 2023Denoise •  Spatial redundancy for training followed by spatiotemporal transformer architecture to reduce CNN bias/issues.
•  https://github.com/cabooster/SRDTrans
Li et al. 2023b
115REALS 2023Motion correction •  Motion correction via simultaneous transformation and low rank and sparse decomposition with gradient-based updates.
•  https://openaccess.thecvf.com/content/WACV2023/supplemental/Cho_Robust_and_Efficient_WACV_2023_supplemental.zip
Cho et al. 2023
116LD-MCM 2023Motion correction •  Motion correction using deep learning feature identification and control point registration.
•  https://github.com/bahanonu/ciatah
Ahanonu et al. 2023






1416 | 1417 | 1418 |
© Biafra Ahanonu 2018-2023. 1419 | 1420 | 1421 | 1422 | 1423 | 1424 |


1425 | 1426 | 1427 | 1428 |

1431 | 1432 | 1433 | 1434 |

1435 |

References

1437 |
1438 |

1439 |    B Srinivasa Reddy and Biswanath N Chatterji. An fft-based technique 1441 | for translation, rotation, and scale-invariant image registration. IEEE 1443 | transactions on image processing, 5(8):1266–1271, 1996. 1445 |

1446 |

1447 |    Philippe Thevenaz, Urs E Ruttimann, and Michael Unser. A pyramid 1449 | approach to subpixel registration based on intensity. Image Processing, 1451 | IEEE Transactions on, 7(1):27–41, 1998. 1453 |

1454 |

1455 |    Hassan Foroosh, Josiane B Zerubia, and Marc Berthod. Extension of 1457 | phase correlation to subpixel registration. IEEE transactions on image 1459 | processing, 11(3):188–200, 2002. 1461 |

1462 |

1463 |    J N Kerr, D Greenberg, and F Helmchen. Imaging input and output 1465 | of neocortical networks in vivo. Proc Natl Acad Sci U S A, 102(39): 1467 | 14063–14068, 2005. ISSN 0027-8424 (Print) 0027-8424. doi: 10.1073/pnas. 1468 | 0506029102. 1469 |

1470 |

1471 |    K V Kuchibhotla, S Wegmann, K J 1473 | Kopeikina, J Hawkes, N Rudinskiy, M L Andermann, T L Spires-Jones, 1474 | B J Bacskai, and B T Hyman. Neurofibrillary tangle-bearing neurons are 1475 | functionally integrated in cortical circuits in vivo. Proc Natl Acad Sci U S 1477 | A, 111(1):510–514, 2014. ISSN 0027-8424. doi: 10.1073/pnas.1318807111. 1479 | 1480 | 1481 | 1482 |

1483 |

1484 |    Simon P. Peron, Jeremy Freeman, Vijay Iyer, Caiying Guo, and Karel 1486 | Svoboda. A Cellular Resolution 1487 | Map of Barrel Cortex Activity during Tactile Behavior. Neuron, 86(3): 1489 | 783–799, 2015. ISSN 10974199. doi: 10.1016/j.neuron.2015.03.027. URL 1490 | http://dx.doi.org/10.1016/j.neuron.2015.03.027. 1493 |

1494 |

1495 |    Anne E Carpenter, Thouis R Jones, Michael R Lamprecht, Colin 1497 | Clarke, In Han Kang, Ola Friman, David A Guertin, Joo Han Chang, 1498 | Robert A Lindquist, Jason Moffat, et al. Cellprofiler: image analysis 1499 | software for identifying and quantifying cell phenotypes. Genome biology, 1501 | 7(10):1–11, 2006. 1502 |

1503 |

1504 |    Claire McQuin, Allen Goodman, Vasiliy Chernyshev, Lee Kamentsky, 1506 | Beth A Cimini, Kyle W Karhohs, Minh Doan, Liya Ding, Susanne M 1507 | Rafelski, Derek Thirstrup, et al. Cellprofiler 3.0: Next-generation image 1508 | processing for biology. PLoS biology, 16(7):e2005970, 2018. 1510 |

1511 |

1512 |    Michael R Lamprecht, David M Sabatini, and Anne E Carpenter. 1514 | Cellprofiler™: free, versatile software for automated biological image 1515 | analysis. Biotechniques, 42(1):71–75, 2007. 1517 |

1518 |

1519 |    Eran A Mukamel, Axel Nimmerjahn, and Mark J Schnitzer. Automated 1521 | analysis of cellular signals from large-scale calcium imaging data. Neuron, 1523 | 63(6):747–760, 2009. 1524 |

1525 |

1526 |    Brian B Avants, Nick Tustison, Gang Song, et al. Advanced 1528 | normalization tools (ants). Insight j, 2(365):1–35, 2009. 1530 |

1531 |

1532 |    Stefan Klein, Marius Staring, Keelin Murphy, Max A Viergever, and 1534 | 1535 | 1536 | 1537 | Josien PW Pluim. Elastix: a toolbox for intensity-based medical image 1538 | registration. IEEE transactions on medical imaging, 29(1):196–205, 2009. 1540 |

1541 |

1542 |    David S Greenberg and Jason ND Kerr. Automated correction of fast 1544 | motion artifacts for two-photon imaging of awake animals. Journal of 1546 | neuroscience methods, 176(1):1–15, 2009. 1548 |

1549 |

1550 |    A Miri, K Daie, 1552 | R D Burdine, E Aksay, and D W Tank. Regression-based identification 1553 | of behavior-encoding neurons during large-scale optical imaging of neural 1554 | activity at cellular resolution. J Neurophysiol, 105(2):964–980, 2011. ISSN 1556 | 1522-1598 (Electronic) 0022-3077 (Linking). doi: 10.1152/jn.00702.2010. 1557 | URL http://www.ncbi.nlm.nih.gov/pubmed/21084686. 1560 |

1561 |

1562 |    Angela Bauch, Izabela Adamczyk, Piotr Buczek, Franz-Josef Elmer, 1564 | Kaloyan Enimanev, Pawel Glyzewski, Manuel Kohler, Tomasz Pylak, 1565 | Andreas Quandt, Chandrasekhar Ramakrishnan, et al. openbis: a flexible 1566 | framework for managing and analyzing complex data in biology research. 1567 | BMC bioinformatics, 12(1):1–19, 2011. 1569 |

1570 |

1571 |    M Francis, X Qian, C Charbel, J Ledoux, J C Parker, and M S Taylor. 1573 | Automated region of interest analysis of dynamic Ca(2)+ signals in image 1574 | sequences. Am J Physiol Cell Physiol, 303(3):C236–43, 2012. ISSN 1576 | 0363-6143. doi: 10.1152/ajpcell.00016.2012. 1577 |

1578 |

1579 |    Chris Allan, Jean-Marie Burel, Josh Moore, Colin Blackburn, Melissa 1581 | Linkert, Scott Loynton, Donald MacDonald, William J Moore, Carlos 1582 | Neves, Andrew Patterson, et al. Omero: flexible, model-driven data 1583 | management for experimental biology. Nature methods, 9(3):245–253, 2012. 1585 |

1586 |

1587 |    Ferran Diego, Susanne Reichinnek, Martin Both, and Fred A Hamprecht. 1589 | 1590 | 1591 | 1592 | Automated identification of neuronal activity from calcium imaging by 1593 | sparse dictionary learning. In Biomedical Imaging (ISBI), 2013 IEEE 10th 1595 | International Symposium on, pages 1058–1061. IEEE, 2013. 1597 |

1598 |

1599 |    Jakub Tomek, Ondrej Novak, and Josef Syka. Two-photon processor and 1601 | seneca: a freely available software package to process data from two-photon 1602 | calcium imaging at speeds down to several milliseconds per frame. Journal 1604 | of neurophysiology, 110(1):243–256, 2013. 1606 |

1607 |

1608 |    Eftychios A Pnevmatikakis, Yuanjun Gao, Daniel Soudry, David Pfau, 1610 | Clay Lacefield, Kira Poskanzer, Randy Bruno, Rafael Yuste, and Liam 1611 | Paninski. A structured matrix factorization framework for large scale 1612 | calcium imaging data analysis. arXiv preprint arXiv:1409.2903, 2014. 1614 |

1615 |

1616 |    Ryuichi Maruyama, Kazuma Maeda, Hajime Moroda, Ichiro Kato, 1618 | Masashi Inoue, Hiroyoshi Miyakawa, and Toru Aonishi. Detecting cells 1619 | using non-negative matrix factorization on calcium imaging data. Neural 1621 | Netw, 55:11–19, mar 2014. ISSN 0893-6080. doi: 10.1016/j.neunet.2014. 1623 | 03.007. URL http://www.ncbi.nlm.nih.gov/pubmed/24705544. 1626 |

1627 |

1628 |    Patrick Kaifosh, Jeffrey D Zaremba, Nathan B Danielson, and Attila 1630 | Losonczy. SIMA: Python software for analysis of dynamic fluorescence 1631 | imaging data. Frontiers in neuroinformatics, 8:80, 2014. 1633 |

1634 |

1635 |    Dimitri Yatsenko, Jacob Reimer, Alexander S Ecker, Edgar Y Walker, 1637 | Fabian Sinz, Philipp Berens, Andreas Hoenselaar, R James Cotton, 1638 | Athanassios S Siapas, and Andreas S Tolias. Datajoint: managing big 1639 | scientific data using matlab or python. BioRxiv, page 031658, 2015. 1641 |

1642 |

1643 |    Jeffery L Teeters, Keith Godfrey, Rob Young, Chinh Dang, Claudia 1645 | Friedsam, Barry Wark, Hiroki Asari, Simon Peron, Nuo Li, and Adrien 1646 | 1647 | 1648 | 1649 | Peyrache. Neurodata without borders: creating a common data format for 1650 | neurophysiology. Neuron, 88(4):629–634, 2015. 1652 |

1653 |

1654 |    Marius Pachitariu, Carsen Stringer, Sylvia Schröder, Mario Dipoppa, 1656 | L Federico Rossi, Matteo Carandini, and Kenneth D Harris. Suite2p: 1657 | beyond 10,000 neurons with standard two-photon microscopy. Biorxiv, 1659 | page 061507, 2016. 1660 |

1661 |

1662 |    Eftychios A Pnevmatikakis, Daniel Soudry, Yuanjun Gao, Timothy A 1664 | Machado, Josh Merel, David Pfau, Thomas Reardon, Yu Mu, Clay 1665 | Lacefield, Weijian Yang, et al. Simultaneous denoising, deconvolution, and 1666 | demixing of calcium imaging data. Neuron, 89(2):285–299, 2016. 1668 |

1669 |

1670 |    P Zhou, SL Resendez, GD Stuber, RE Kass, and L Paninski. Efficient 1672 | and accurate extraction of in vivo calcium signals from microendoscope 1673 | video data. arXiv preprint arXiv:1605.07266, 2016. 1675 |

1676 |

1677 |    Pengcheng Zhou, Shanna L Resendez, Jose Rodriguez-Romaguera, 1679 | Jessica C Jimenez, Shay Q Neufeld, Andrea Giovannucci, Johannes 1680 | Friedrich, Eftychios A Pnevmatikakis, Garret D Stuber, Rene Hen, 1681 | et al. Efficient and accurate extraction of in vivo calcium signals from 1682 | microendoscopic video data. ELife, 7:e28728, 2018. 1684 |

1685 |

1686 |    Noah Apthorpe, Alexander Riordan, Robert Aguilar, Jan Homann, 1688 | Yi Gu, David Tank, and H Sebastian Seung. Automatic neuron detection 1689 | in calcium imaging data using convolutional networks. In Advances in 1691 | Neural Information Processing Systems, pages 3270–3278, 2016. 1693 |

1694 |

1695 |    Alexander Dubbs, James Guevara, and Rafael Yuste. moco: Fast motion 1697 | correction for calcium imaging. Frontiers in neuroinformatics, 10:6, 2016. 1699 | 1700 | 1701 | 1702 |

1703 |

1704 |    Raphaël Marée, Loïc Rollus, Benjamin Stévens, Renaud Hoyoux, 1706 | Gilles Louppe, Rémy Vandaele, Jean-Michel Begon, Philipp Kainz, Pierre 1707 | Geurts, and Louis Wehenkel. Collaborative analysis of multi-gigapixel 1708 | imaging data using cytomine. Bioinformatics, 32(9):1395–1401, 2016. 1710 |

1711 |

1712 |    Ali I Mohammed, Howard J Gritton, Hua-an Tseng, Mark E Bucklin, 1714 | Zhaojie Yao, and Xue Han. An integrative approach for analyzing hundreds 1715 | of neurons in task performing mice using wide-field calcium imaging. 1716 | Scientific reports, 6(1):20986, 2016. 1718 |

1719 |

1720 |    B. Ahanonu, L. J. Kitch, T. H. Kim, M. C. Larkin, E. O. Hamel, 1722 | J. Lecoq, D. E. Aldarondo, and M. J. Schnitzer. Maximum likelihood and 1723 | machine learning based methods for automated cell sorting of large-scale 1724 | neural calcium imaging data. Society for Neuroscience, 2018. URL 1725 | https://abstractsonline.com/pp8/#!/4649/presentation/41917. 1728 |

1729 |

1730 |    B. Ahanonu, L. J. Kitch, T. H. Kim, M. C. Larkin, 1732 | E. O. Hamel, J. Lecoq, and M. J. Schnitzer. Maximum 1733 | likelihood based cell sorting of large-scale neural calcium 1734 | imaging data. Society for Neuroscience, 2017. URL 1735 | http://www.abstractsonline.com/pp8/index.html#!/4376/presentation/18520. 1738 |

1739 |

1740 |    Biafra Owowonta Ahanonu. Neural Ensemble Dynamics in Behaving 1743 | Animals: Computational Approaches and Applications in Amygdala and 1745 | Striatum. Stanford University, 2018. 1747 |

1748 |

1749 |    Jinghao Lu, Chunyuan Li, and Fan Wang. Seeds cleansing cnmf for 1751 | spatiotemporal neural signals extraction of miniscope imaging data. arXiv 1753 | preprint arXiv:1704.00793, 2017. 1755 |

1756 | 1757 | 1758 | 1759 |

1760 |    Johannes Friedrich, Pengcheng Zhou, and Liam Paninski. Fast online 1762 | deconvolution of calcium imaging data. PLoS computational biology, 13 1764 | (3):e1005423, 2017. 1765 |

1766 |

1767 |    Stephanie Reynolds, Therese Abrahamsson, Renaud Schuck, P Jesper 1769 | Sjöström, Simon R Schultz, and Pier Luigi Dragotti. Able: An 1770 | activity-based level set segmentation algorithm for two-photon calcium 1771 | imaging data. eNeuro, pages ENEURO–0012, 2017. 1773 |

1774 |

1775 |    Ashley Petersen, Noah Simon, and Daniela Witten. SCALPEL: 1777 | Extracting Neurons from Calcium Imaging Data. ArXiv e-prints, art. 1779 | arXiv:1703.06946, March 2017. 1780 |

1781 |

1782 |    Quico Spaen, Dorit S Hochbaum, and Roberto Asín-Achá. Hnccorr: 1784 | A novel combinatorial approach for cell identification in calcium-imaging 1785 | movies. arXiv preprint arXiv:1703.01999, 2017. 1787 |

1788 |

1789 |    Andrea Giovannucci, Johannes Friedrich, Matt Kaufman, Anne 1791 | Churchland, Dmitri Chklovskii, Liam Paninski, and Eftychios A 1792 | Pnevmatikakis. Onacid: Online analysis of calcium imaging data in real 1793 | time. In Advances in Neural Information Processing Systems, pages 1795 | 2381–2391, 2017. 1796 |

1797 |

1798 |    Hakan Inan, Murat A Erdogdu, and Mark Schnitzer. Robust estimation 1800 | of neural signals in calcium imaging. In Advances in Neural Information 1802 | Processing Systems, pages 2901–2910, 2017. 1804 |

1805 |

1806 |    JG Orlandi, 1808 | S Fernández-García, A Comella-Bolla, M Masana, G García-Díaz 1809 | Barriga, M Yaghoubi, A Kipp, JM Canals, MA Colicos, J Davidsen, 1810 | 1811 | 1812 | 1813 | et al. Netcal: An interactive platform for large-scale, network and 1814 | population dynamics analysis of calcium imaging recordings, zenodo 1815 | (2017). 1816 |

1817 |

1818 |    Eftychios A Pnevmatikakis and Andrea Giovannucci. Normcorre: An 1820 | online algorithm for piecewise rigid motion correction of calcium imaging 1821 | data. Journal of neuroscience methods, 291:83–94, 2017. 1823 |

1824 |

1825 |    Liron Sheintuch, Alon Rubin, Noa Brande-Eilat, Nitzan Geva, Noa Sadeh, 1827 | Or Pinchasof, and Yaniv Ziv. Tracking the same neurons across multiple 1828 | days in ca2+ imaging data. Cell reports, 21(4):1102–1115, 2017. 1830 |

1831 |

1832 |    Jiangheng Guan, Jingcheng Li, Shanshan Liang, Ruijie Li, Xingyi Li, 1834 | Xiaozhe Shi, Ciyu Huang, Jianxiong Zhang, Junxia Pan, Hongbo Jia, 1835 | et al. Neuroseg: automated cell detection and segmentation for in vivo 1836 | two-photon ca 2+ imaging data. Brain Structure and Function, 223(1): 1838 | 519–533, 2018. 1839 |

1840 |

1841 |    Takashi Takekawa, Hirotaka Asai, Noriaki Ohkawa, Masanori Nomoto, 1843 | Reiko Okubo-Suzuki, Khaled Ghandour, Masaaki Sato, Yasunori Hayashi, 1844 | Kaoru Inokuchi, and Tomoki Fukai. Automatic sorting system for large 1845 | calcium imaging data. bioRxiv, page 215145, 2017. 1847 |

1848 |

1849 |    Sebastián A Romano, Verónica Pérez-Schuster, Adrien Jouary, 1851 | Jonathan Boulanger-Weill, Alessia Candeo, Thomas Pietri, and Germán 1852 | Sumbre. An integrated calcium imaging processing toolbox for the analysis 1853 | of neuronal population dynamics. PLoS computational biology, 13(6): 1855 | e1005526, 2017. 1856 |

1857 |

1858 |    Martin Rueckl, Stephen C Lenzi, Laura Moreno-Velasquez, Daniel 1860 | Parthier, Dietmar Schmitz, Sten Ruediger, and Friedrich W Johenning. 1861 | 1862 | 1863 | 1864 | Samuroi, a python-based software tool for visualization and analysis of 1865 | dynamic time series imaging at multiple spatial scales. Frontiers in 1867 | neuroinformatics, 11:44, 2017. 1869 |

1870 |

1871 |    Alexander Fillbrunn, Christian Dietz, Julianus Pfeuffer, René Rahn, 1873 | Gregory A Landrum, and Michael R Berthold. Knime for reproducible 1874 | cross-domain analysis of life science data. Journal of biotechnology, 261: 1876 | 149–156, 2017. 1877 |

1878 |

1879 |    Aleksander Klibisz, Derek Rose, Matthew Eicholtz, Jay Blundon, and 1881 | Stanislav Zakharenko. Fast, simple calcium imaging segmentation with 1882 | fully convolutional networks. In International Workshop on Deep Learning 1884 | in Medical Image Analysis, pages 285–293. Springer, 2017. 1886 |

1887 |

1888 |    Sander W Keemink, Scott C Lowe, Janelle MP Pakan, Evelyn Dylda, 1890 | Mark CW Van Rossum, and Nathalie L Rochefort. Fissa: A neuropil 1891 | decontamination toolbox for calcium imaging signals. Scientific reports, 8 1893 | (1):1–12, 2018. 1894 |

1895 |

1896 |    Gal Mishne, Ronald R Coifman, Maria Lavzin, and Jackie Schiller. 1898 | Automated cellular structure extraction in biological images with 1899 | applications to calcium imaging data. bioRxiv, page 313981, 2018. 1901 |

1902 |

1903 |    E Kelly Buchanan, Ian Kinsella, Ding Zhou, Rong Zhu, Pengcheng Zhou, 1905 | Felipe Gerhard, John Ferrante, Ying Ma, Sharon Kim, Mohammed Shaik, 1906 | et al. Penalized matrix decomposition for denoising, compression, and 1907 | improved demixing of functional imaging data. bioRxiv, page 334706, 2018. 1909 |

1910 |

1911 |    Jinghao Lu, Chunyuan Li, Jonnathan Singh-Alvarado, Zhe Charles 1913 | Zhou, Flavio Fröhlich, Richard Mooney, and Fan Wang. MIN1PIPE: A 1914 | 1915 | 1916 | 1917 | Miniscope 1-Photon-Based Calcium Imaging Signal Extraction Pipeline. 1918 | Cell Reports, 23(12):3673–3684, 2018. ISSN 2211-1247. 1920 |

1921 |

1922 |    Andrea Giovannucci, Johannes Friedrich, Pat Gunn, Jeremie Kalfon, 1924 | Sue Ann Koay, Jiannis Taxidis, Farzaneh Najafi, Jeffrey L Gauthier, 1925 | Pengcheng Zhou, and David W Tank. CaImAn: An open source tool for 1926 | scalable Calcium Imaging data Analysis. bioRxiv, page 339564, 2018. 1928 |

1929 |

1930 |    Jeffrey L Gauthier, Sue Ann Koay, Edward H Nieh, David W Tank, 1932 | Jonathan W Pillow, and Adam S Charles. Detecting and correcting false 1933 | transients in calcium imaging. bioRxiv, page 473470, 2018. 1935 |

1936 |

1937 |    Simon P Shen, Hua-an Tseng, Kyle R Hansen, Ruofan Wu, Howard J 1939 | Gritton, Jennie Si, and Xue Han. Automatic cell segmentation by adaptive 1940 | thresholding (acsat) for large-scale calcium imaging datasets. eneuro, 5(5), 1942 | 2018. 1943 |

1944 |

1945 |    Akinori Mitani and Takaki Komiyama. Real-time processing of 1947 | two-photon calcium imaging data including lateral motion artifact 1948 | correction. Frontiers in neuroinformatics, 12:98, 2018. 1950 |

1951 |

1952 |    Gregory Corder, Biafra Ahanonu, Benjamin F Grewe, Dong Wang, 1954 | Mark J Schnitzer, and Grégory Scherrer. An amygdalar neural ensemble 1955 | that encodes the unpleasantness of pain. Science, 363(6424):276–281, 2019. 1957 |

1958 |

1959 |    Biafra Ahanonu and Gregory Corder. Recording pain-related brain 1961 | activity in behaving animals using calcium imaging calcium imaging and 1962 | miniature microscopes. In Contemporary Approaches to the Study of Pain: 1964 | From Molecules to Neural Networks, pages 217–276. Springer, 2022. 1966 |

1967 | 1968 | 1969 | 1970 |

1971 |    Adam S Charles, Alex Song, Jeffrey L Gauthier, Jonathan W Pillow, 1973 | and David W Tank. Neural anatomy and optical microscopy (naomi) 1974 | simulation for evaluating calcium imaging methods. bioRxiv, page 726174, 1976 | 2019. 1977 |

1978 |

1979 |    FDW Radstake, EAL Raaijmakers, R Luttge, Svitlana Zinger, and 1981 | Jean-Philippe Frimat. Calima: The semi-automated open-source calcium 1982 | imaging analyzer. Computer methods and programs in biomedicine, 179: 1984 | 104991, 2019. 1985 |

1986 |

1987 |    Somayyeh Soltanian-Zadeh, Kaan Sahingur, Sarah Blau, Yiyang Gong, 1989 | and Sina Farsiu. Fast and robust active neuron segmentation in two-photon 1990 | calcium imaging using spatiotemporal deep learning. Proceedings of the 1992 | National Academy of Sciences, 116(17):8554–8563, 2019. 1994 |

1995 |

1996 |    Yizhi Wang, Nicole V DelRosso, Trisha V Vaidyanathan, Michelle K 1998 | Cahill, Michael E Reitman, Silvia Pittolo, Xuelong Mi, Guoqiang Yu, 1999 | and Kira E Poskanzer. Accurate quantification of astrocyte and 2000 | neurotransmitter fluorescence dynamics for single-cell and population-level 2001 | physiology. Nature Neuroscience, 22(11):1936–1944, 2019. 2003 |

2004 |

2005 |    Andrea Giovannucci, Johannes Friedrich, Pat Gunn, Jeremie Kalfon, 2007 | Brandon L Brown, Sue Ann Koay, Jiannis Taxidis, Farzaneh Najafi, 2008 | Jeffrey L Gauthier, Pengcheng Zhou, et al. Caiman an open source tool 2009 | for scalable calcium imaging data analysis. Elife, 8:e38173, 2019. 2011 |

2012 |

2013 |    Gal Mishne and Adam S Charles. Learning spatially-correlated 2015 | temporal dictionaries for calcium imaging. In ICASSP 2019-2019 IEEE 2017 | International Conference on Acoustics, Speech and Signal Processing 2019 | (ICASSP), pages 1065–1069. IEEE, 2019. 2021 |

2022 | 2023 | 2024 | 2025 |

2026 |    Noah Dolev, Lior Pinkus, and Michal Rivlin-Etzion. Segment2p: 2028 | Parameter-free automated segmentation of cellular fluorescent signals. 2029 | BioRxiv, page 832188, 2019. 2031 |

2032 |

2033 |    Zhe Chen, Hugh T Blair, and Jason Cong. Lanmc: Lstm-assisted 2035 | non-rigid motion correction on fpga for calcium image stabilization. 2036 | In Proceedings of the 2019 ACM/SIGDA International Symposium on 2038 | Field-Programmable Gate Arrays, pages 104–109, 2019. 2040 |

2041 |

2042 |    Ryohei Shibue and Fumiyasu Komaki. Deconvolution of calcium imaging 2044 | data using marked point processes. PLoS computational biology, 16(3): 2046 | e1007650, 2020. 2047 |

2048 |

2049 |    Shreya Saxena, Ian Kinsella, Simon 2051 | Musall, Sharon H Kim, Jozsef Meszaros, David N Thibodeaux, Carla 2052 | Kim, John Cunningham, Elizabeth MC Hillman, Anne Churchland, et al. 2053 | Localized semi-nonnegative matrix factorization (locanmf) of widefield 2054 | calcium imaging data. PLOS Computational Biology, 16(4):e1007791, 2056 | 2020. 2057 |

2058 |

2059 |    Daniel A Cantu, Bo Wang, Michael W Gongwer, Cynthia X He, 2061 | Anubhuti Goel, Anand Suresh, Nazim Kourdougli, Erica D Arroyo, 2062 | William Zeiger, and Carlos Portera-Cailliau. Ezcalcium: Open source 2063 | toolbox for analysis of calcium imaging data. bioRxiv, 2020. 2065 |

2066 |

2067 |    Johannes Friedrich, Andrea Giovannucci, and 2069 | Eftychios A Pnevmatikakis. Online analysis of microendoscopic 1-photon 2070 | calcium imaging data streams. bioRxiv, 2020. 2072 |

2073 |

2074 |    Lina M Tran, Andrew J Mocle, Adam I Ramsaran, Alex D Jacob, 2076 | 2077 | 2078 | 2079 | Paul W Frankland, and Sheena A Josselyn. Automated curation 2080 | of cnmf-e-extracted roi spatial footprints and calcium traces using 2081 | open-source automl tools. bioRxiv, 2020a. 2083 |

2084 |

2085 |    Lina M Tran, Andrew J Mocle, Adam I Ramsaran, Alexander D 2087 | Jacob, Paul W Frankland, and Sheena A Josselyn. Automated curation 2088 | of cnmf-e-extracted roi spatial footprints and calcium traces using 2089 | open-source automl tools. Frontiers in Neural Circuits, 14:42, 2020b. 2091 |

2092 |

2093 |    Jerome Lecoq, Michael Oliver, Joshua H Siegle, Natalia Orlova, and 2095 | Christof Koch. Removing independent noise in systems neuroscience data 2096 | using deepinterpolation. bioRxiv, 2020. 2098 |

2099 |

2100 |    Ulysse Rubens, Romain Mormont, Lassi Paavolainen, Volker Bäcker, 2102 | Benjamin Pavie, Leandro A Scholz, Gino Michiels, Martin Maška, 2103 | Devrim Ünay, Graeme Ball, et al. Biaflows: A collaborative framework 2104 | to reproducibly deploy and benchmark bioimage analysis workflows. 2105 | Patterns, 1(3):100040, 2020. 2107 |

2108 |

2109 |    Ryan M Cassidy, Alexis G Bavencoffe, Elia R Lopez, Sai S Cheruvu, 2111 | Edgar T Walters, Rosa A Uribe, Anne Marie Krachler, and Max A 2112 | Odem. Frequency-independent biological signal identification (fibsi): A 2113 | free program that simplifies intensive analysis of non-stationary time series 2114 | data. bioRxiv, 2020. 2116 |

2117 |

2118 |    Sascha RA Alles, Max A Odem, Van B Lu, Ryan M Cassidy, and 2120 | Peter A Smith. Chronic bdnf simultaneously inhibits and unmasks 2121 | superficial dorsal horn neuronal activity. Scientific reports, 11(1):1–14, 2123 | 2021. 2124 |

2125 |

2126 |    Elke Kirschbaum, Alberto Bailoni, and Fred A Hamprecht. Disco: deep 2128 | 2129 | 2130 | 2131 | learning, instance segmentation, and correlations for cell segmentation in 2132 | calcium imaging. In Medical Image Computing and Computer Assisted 2134 | Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, 2136 | October 4–8, 2020, Proceedings, Part V 23, pages 151–162. Springer, 2020. 2138 |

2139 |

2140 |    Julien Denis, Robin F Dard, Eleonora Quiroli, Rosa Cossart, and 2142 | Michel A Picardo. Deepcinac: a deep-learning-based python toolbox for 2143 | inferring calcium imaging neuronal activity based on movie visualization. 2144 | eneuro, 7(4), 2020. 2146 |

2147 |

2148 |    Yaesop Lee, Jing Xie, Eungjoo Lee, Srijesh Sudarsanan, Da-Ting Lin, 2150 | Rong Chen, and Shuvra S Bhattacharyya. Real-time neuron detection and 2151 | neural signal extraction platform for miniature calcium imaging. Frontiers 2153 | in Computational Neuroscience, 14:43, 2020. 2155 |

2156 |

2157 |    Chaozhen Tan, Yue Guan, Zhao Feng, Hong Ni, Zoutao Zhang, Zhiguang 2159 | Wang, Xiangning Li, Jing Yuan, Hui Gong, Qingming Luo, et al. 2160 | Deepbrainseg: Automated brain region segmentation for micro-optical 2161 | images with a convolutional neural network. Frontiers in neuroscience, 14: 2163 | 179, 2020. 2164 |

2165 |

2166 |    Victoria A Griffiths, Antoine M Valera, Joanna YN Lau, Hana 2168 | Roš, Thomas J Younts, Bóris Marin, Chiara Baragli, Diccon Coyle, 2169 | Geoffrey J Evans, George Konstantinou, et al. Real-time 3d movement 2170 | correction for two-photon imaging in behaving animals. Nature methods, 2172 | 17(7):741–748, 2020. 2173 |

2174 |

2175 |    Carsen Stringer, Tim Wang, Michalis Michaelos, and Marius Pachitariu. 2177 | Cellpose: a generalist algorithm for cellular segmentation. Nature Methods, 2179 | 18(1):100–106, 2021. 2180 |

2181 | 2182 | 2183 | 2184 |

2185 |    Alexander Song, Jeff L Gauthier, Jonathan W Pillow, David W Tank, 2187 | and Adam S Charles. Neural anatomy and optical microscopy (naomi) 2188 | simulation for evaluating calcium imaging methods. Journal of 2190 | Neuroscience Methods, 358:109173, 2021. 2192 |

2193 |

2194 |    Johannes 2196 | Friedrich, Andrea Giovannucci, and Eftychios A Pnevmatikakis. Online 2197 | analysis of microendoscopic 1-photon calcium imaging data streams. PLoS 2199 | computational biology, 17(1):e1008565, 2021. 2201 |

2202 |

2203 |    Hakan Inan, Claudia Schmuckermair, Tugce Tasci, Biafra Ahanonu, 2205 | Oscar Hernandez, Jérôme Lecoq, Fatih Dinç, Mark J Wagner, Murat 2206 | Erdogdu, and Mark J Schnitzer. Fast and statistically robust cell 2207 | extraction from large-scale neural calcium imaging datasets. bioRxiv, 2021. 2209 |

2210 |

2211 |    Zhe Dong, William Mau, Yu Susie Feng, Zachary T Pennington, 2213 | Lingxuan Chen, Yosif Zaki, Kanaka Rajan, Tristan Shuman, Daniel 2214 | Aharoni, and Denise J Cai. Minian: An open-source miniscope analysis 2215 | pipeline. bioRxiv, 2021. 2217 |

2218 |

2219 |    Kushal Kolar, Daniel Dondorp, Jordi Cornelis Zwiggelaar, Jørgen 2221 | Høyer, and Marios Chatzigeorgiou. Mesmerize: a dynamically adaptable 2222 | user-friendly analysis platform for 2d & 3d calcium imaging data. bioRxiv, 2224 | page 840488, 2021. 2225 |

2226 |

2227 |    Jérôme Lecoq, Michael Oliver, Joshua H Siegle, Natalia Orlova, Peter 2229 | Ledochowitsch, and Christof Koch. Removing independent noise in 2230 | systems neuroscience data using deepinterpolation. Nature Methods, pages 2232 | 1–8, 2021. 2233 |

2234 | 2235 | 2236 | 2237 |

2238 |    Seungjae Han, Eun-Seo Cho, Inkyu Park, Kijung Shin, and Young-Gyu 2240 | Yoon. Efficient neural network approximation of robust pca for automated 2241 | analysis of calcium imaging data. In International Conference on Medical 2243 | Image Computing and Computer-Assisted Intervention, pages 595–604. 2245 | Springer, 2021. 2246 |

2247 |

2248 |    Madhavi Tippani, Elizabeth A Pattie, Brittany A Davis, Claudia V 2250 | Nguyen, Yanhong Wang, Srinidhi Rao Sripathy, Brady J Maher, Keri 2251 | Martinowich, Andrew E Jaffe, and Stephanie Cerceo Page. Capture: 2252 | Calcium peak toolbox for analysis of in vitro calcium imaging data. 2253 | bioRxiv, 2021. 2255 |

2256 |

2257 |    Peter Rupprecht, Stefano Carta, Adrian Hoffmann, Mayumi Echizen, 2259 | Antonin Blot, Alex C Kwan, Yang Dan, Sonja B Hofer, Kazuo Kitamura, 2260 | Fritjof Helmchen, et al. A database and deep learning toolbox for 2261 | noise-optimized, generalized spike inference from calcium imaging. Nature 2263 | Neuroscience, 24(9):1324–1337, 2021. 2265 |

2266 |

2267 |    Changjia Cai, Johannes Friedrich, Amrita Singh, M Hossein Eybposh, 2269 | Eftychios A Pnevmatikakis, Kaspar Podgorski, and Andrea Giovannucci. 2270 | Volpy: automated and scalable analysis pipelines for voltage imaging 2271 | datasets. PLoS computational biology, 17(4):e1008806, 2021. 2273 |

2274 |

2275 |    Xinyang Li, Guoxun Zhang, Jiamin Wu, Yuanlong Zhang, Zhifeng Zhao, 2277 | Xing Lin, Hui Qiao, Hao Xie, Haoqian Wang, Lu Fang, et al. Reinforcing 2278 | neuron extraction and spike inference in calcium imaging using deep 2279 | self-supervised denoising. Nature Methods, pages 1–6, 2021. 2281 |

2282 |

2283 |    Leander 2285 | de Kraker, Koen Seignette, Premnath Thamizharasu, Bastijn JG van den 2286 | Boom, Ildefonso Ferreira Pica, Ingo Willuhn, Christiaan N Levelt, and 2287 | 2288 | 2289 | 2290 | Chris van der Togt. Specseg: cross spectral power-based segmentation of 2291 | neurons and neurites in chronic calcium imaging datasets. bioRxiv, pages 2293 | 2020–10, 2021. 2294 |

2295 |

2296 |    Andrea Giovannucci, Changjia Cai, Cynthia Dong, Marton Rozsa, and 2298 | Eftychios Pnevmatikakis. Fiola: An accelerated pipeline for fluorescence 2299 | imaging online analysis. 2021. 2300 |

2301 |

2302 |    Ryoma Hattori and Takaki Komiyama. Patchwarp: 2304 | Corrections of non-uniform image distortions in two-photon 2305 | calcium imaging data by patchwork affine transformations. 2306 | bioRxiv, 2021. doi: 10.1101/2021.11.10.468164. URL 2308 | https://www.biorxiv.org/content/early/2021/11/13/2021.11.10.468164. 2311 |

2312 |

2313 |    Xiaohui Zhang, Eric C Landsness, Wei Chen, Hanyang Miao, Michelle 2315 | Tang, Lindsey M Brier, Joseph P Culver, Jin-Moo Lee, and Mark A 2316 | Anastasio. Automated sleep state classification of wide-field calcium 2317 | imaging data via multiplex visibility graphs and deep learning. Journal of 2319 | Neuroscience Methods, page 109421, 2021. 2321 |

2322 |

2323 |    Philipp Flotho, Shinobu Nomura, Bernd Kuhn, and Daniel J Strauss. 2325 | Software for non-parametric image registration of 2-photon imaging data. 2326 | Journal of Biophotonics, 15(8):e202100330, 2022. 2328 |

2329 |

2330 |    Yijun Bao, Somayyeh Soltanian-Zadeh, Sina Farsiu, and Yiyang Gong. 2332 | Segmentation of neurons from fluorescence calcium recordings beyond real 2333 | time. Nature machine intelligence, 3(7):590–600, 2021. 2335 |

2336 |

2337 |    Masaki Taniguchi, Taro Tezuka, Pablo Vergara, Sakthivel Srinivasan, 2339 | Takuma Hosokawa, Yoan Chérasse, Toshie Naoi, Takeshi Sakurai, 2340 | and Masanori Sakaguchi. Open-source software for real-time calcium 2341 | 2342 | 2343 | 2344 | imaging and synchronized neuron firing detection. In 2021 43rd Annual 2346 | International Conference of the IEEE Engineering in Medicine & Biology 2348 | Society (EMBC), pages 2997–3003. IEEE, 2021. 2350 |

2351 |

2352 |    Brian R Mullen, Sydney C Weiser, Desiderio Ascencio, and James B 2354 | Ackman. Automated classification of signal sources in mesoscale calcium 2355 | imaging. bioRxiv, pages 2021–02, 2021. 2357 |

2358 |

2359 |    Yina Wang, Henry Pinkard, Emaad Khwaja, Shuqin Zhou, Laura 2361 | Waller, and Bo Huang. Image denoising for fluorescence microscopy by 2362 | self-supervised transfer learning. bioRxiv, pages 2021–02, 2021. 2364 |

2365 |

2366 |    Thibault Lagache, Alison Hanson, Jesús E Pérez-Ortega, Adrienne 2368 | Fairhall, and Rafael Yuste. Tracking calcium dynamics from individual 2369 | neurons in behaving animals. PLOS Computational Biology, 17(10): 2371 | e1009432, 2021. 2372 |

2373 |

2374 |    Adam S Charles, Nathan Cermak, Rifqi O Affan, Benjamin B Scott, 2376 | Jackie Schiller, and Gal Mishne. Graft: graph filtered temporal dictionary 2377 | learning for functional neural imaging. IEEE Transactions on Image 2379 | Processing, 31:3509–3524, 2022. 2381 |

2382 |

2383 |    Madhavi Tippani, Elizabeth A Pattie, Brittany A Davis, Claudia V 2385 | Nguyen, Yanhong Wang, Srinidhi Rao Sripathy, Brady J Maher, Keri 2386 | Martinowich, Andrew E Jaffe, and Stephanie Cerceo Page. Capture: 2387 | Calcium peaktoolbox for analysis of in vitro calcium imaging data. BMC 2389 | neuroscience, 23(1):71, 2022. 2391 |

2392 |

2393 |    Leander de Kraker, Koen Seignette, 2395 | Premnath Thamizharasu, Bastijn JG van den Boom, Ildefonso Ferreira 2396 | Pica, Ingo Willuhn, Christiaan N Levelt, and Chris van der Togt. Specseg 2397 | 2398 | 2399 | 2400 | is a versatile toolbox that segments neurons and neurites in chronic calcium 2401 | imaging datasets based on low-frequency cross-spectral power. Cell reports 2403 | methods, 2(10), 2022. 2405 |

2406 |

2407 |    Luca Sità, Marco Brondi, Pedro Lagomarsino de Leon Roig, Sebastiano 2409 | Curreli, Mariangela Panniello, Dania Vecchia, and Tommaso Fellin. A 2410 | deep-learning approach for online cell identification and trace extraction in 2411 | functional two-photon calcium imaging. Nature Communications, 13(1): 2413 | 1529, 2022. 2414 |

2415 |

2416 |    Honghua Guan, Dawei Li, Hyeon-cheol Park, Ang Li, Yuanlei Yue, 2418 | Yung-Tian A Gau, Ming-Jun Li, Dwight E Bergles, Hui Lu, and Xingde 2419 | Li. Deep-learning two-photon fiberscopy for video-rate brain imaging in 2420 | freely-behaving mice. Nature communications, 13(1):1534, 2022. 2422 |

2423 |

2424 |    Sharif Amit Kamran, Khondker Fariha Hossain, Hussein Moghnieh, 2426 | Sarah Riar, Allison Bartlett, Alireza Tavakkoli, Kenton M Sanders, and 2427 | Salah A Baker. New open-source software for subcellular segmentation 2428 | and analysis of spatiotemporal fluorescence signals using deep learning. 2429 | Iscience, 25(5), 2022. 2431 |

2432 |

2433 |    Xinyang Li, Yixin Li, Yiliang Zhou, Jiamin Wu, Zhifeng Zhao, Jiaqi 2435 | Fan, Fei Deng, Zhaofa Wu, Guihua Xiao, Jing He, et al. Real-time 2436 | denoising enables high-sensitivity fluorescence time-lapse imaging beyond 2437 | the shot-noise limit. Nature Biotechnology, 41(2):282–292, 2023a. 2439 |

2440 |

2441 |    Jeffrey L Gauthier, Sue Ann Koay, Edward H Nieh, David W Tank, 2443 | Jonathan W Pillow, and Adam S Charles. Detecting and correcting false 2444 | transients in calcium imaging. Nature Methods, 19(4):470–478, 2022. 2446 |

2447 |

2448 |    Andres Flores-Valle and Johannes D Seelig. Axial motion estimation 2450 | 2451 | 2452 | 2453 | and correction for simultaneous multi-plane two-photon calcium imaging. 2454 | Biomedical Optics Express, 13(4):2035–2049, 2022. 2456 |

2457 |

2458 |    Weiyi Liu, Junxia Pan, Yuanxu Xu, Meng Wang, Hongbo Jia, Kuan 2460 | Zhang, Xiaowei Chen, Xingyi Li, and Xiang Liao. Fast and accurate motion 2461 | correction for two-photon ca2+ imaging in behaving mice. Frontiers in 2463 | Neuroinformatics, 16:851188, 2022. 2465 |

2466 |

2467 |    Oliver Rübel, Andrew Tritt, Ryan Ly, Benjamin K Dichter, Satrajit 2469 | Ghosh, Lawrence Niu, Pamela Baker, Ivan Soltesz, Lydia Ng, Karel 2470 | Svoboda, et al. The neurodata without borders ecosystem for 2471 | neurophysiological data science. Elife, 11:e78362, 2022. 2473 |

2474 |

2475 |    Zhe Chen, Garrett J Blair, Changliang Guo, Jim Zhou, Juan-Luis 2477 | Romero-Sosa, Alicia Izquierdo, Peyman Golshani, Jason Cong, Daniel 2478 | Aharoni, and Hugh T Blair. A hardware system for real-time decoding of 2479 | in vivo calcium imaging data. Elife, 12:e78344, 2023. 2481 |

2482 |

2483 |    Yan Zhang, Márton Rózsa, Yajie Liang, Daniel Bushey, Ziqiang 2485 | Wei, Jihong Zheng, Daniel Reep, Gerard Joey Broussard, Arthur Tsang, 2486 | Getahun Tsegaye, et al. Fast and sensitive gcamp calcium indicators for 2487 | imaging neural populations. Nature, 615(7954):884–891, 2023a. 2489 |

2490 |

2491 |    Zhehao Xu, Yukun Wu, Jiangheng Guan, Shanshan Liang, Junxia Pan, 2493 | Meng Wang, Qianshuo Hu, Hongbo Jia, Xiaowei Chen, and Xiang Liao. 2494 | Neuroseg-ii: A deep learning approach for generalized neuron segmentation 2495 | in two-photon ca2+ imaging. Frontiers in Cellular Neuroscience, 17: 2497 | 1127847, 2023. 2498 |

2499 |

2500 |    Pablo Vergara, Yuteng Wang, Sakthivel Srinivasan, Yoan Cherasse, 2502 | Toshie Naoi, Yuki Sugaya, Takeshi Sakurai, Masanobu Kano, and Masanori 2503 | 2504 | 2505 | 2506 | Sakaguchi. The caliali tool for long-term tracking of neuronal population 2507 | dynamics in calcium imaging. bioRxiv, pages 2023–05, 2023. 2509 |

2510 |

2511 |    Yuanlong Zhang, Guoxun Zhang, Xiaofei Han, Jiamin Wu, Ziwei Li, 2513 | Xinyang Li, Guihua Xiao, Hao Xie, Lu Fang, and Qionghai Dai. Rapid 2514 | detection of neurons in widefield calcium imaging datasets after training 2515 | with synthetic data. Nature Methods, 20(5):747–754, 2023b. 2517 |

2518 |

2519 |    Jacopo Bonato, Sebastiano Curreli, Sara Romanzi, Stefano Panzeri, and 2521 | Tommaso Fellin. Astra: a deep learning algorithm for fast semantic 2522 | segmentation of large-scale astrocytic networks. bioRxiv, pages 2023–05, 2524 | 2023. 2525 |

2526 |

2527 |    Xinyang Li, Xiaowan Hu, Xingye Chen, Jiaqi Fan, Zhifeng Zhao, Jiamin 2529 | Wu, Haoqian Wang, and Qionghai Dai. Spatial redundancy transformer 2530 | for self-supervised fluorescence image denoising. bioRxiv, pages 2023–06, 2532 | 2023b. 2533 |

2534 |

2535 |    Junmo Cho, Seungjae Han, Eun-Seo Cho, Kijung Shin, and Young-Gyu 2537 | Yoon. Robust and efficient alignment of calcium imaging data through 2538 | simultaneous low rank and sparse decomposition. In Proceedings of the 2540 | IEEE/CVF Winter Conference on Applications of Computer Vision, pages 2542 | 1939–1948, 2023. 2543 |

2544 |

2545 |    Biafra Ahanonu, Andrew Crowther, Artur Kania, Mariela Rosa Casillas, 2547 | and Allan Basbaum. Long-term optical imaging of the spinal cord in awake, 2548 | behaving animals. bioRxiv, pages 2023–05, 2023. 2550 |

2551 |
2552 |



Footnotes

2554 | -------------------------------------------------------------------------------- /VERSION: -------------------------------------------------------------------------------- 1 | v1.1 2 | 2023.09.14 [14:42:16] 3 | --------------------------------------------------------------------------------