├── .gitattributes
├── .gitignore
├── LICENSE
├── README.md
├── data
├── __init__.py
├── coco.py
├── coco_labels.txt
├── config.py
├── example.jpg
├── scripts
│ ├── COCO2014.sh
│ ├── VOC2007.sh
│ └── VOC2012.sh
└── voc0712.py
├── demo
├── __init__.py
├── demo.ipynb
└── live.py
├── doc
├── 003534.jpg
├── 003534_repul.jpg
├── SSD.jpg
├── detection_example.png
├── detection_example2.png
├── detection_examples.png
└── ssd.png
├── eval.py
├── layers
├── __init__.py
├── box_utils.py
├── functions
│ ├── __init__.py
│ ├── detection.py
│ └── prior_box.py
└── modules
│ ├── __init__.py
│ ├── l2norm.py
│ ├── multibox_loss.py
│ └── repulsion_loss.py
├── ssd.py
├── test.py
├── train.py
└── utils
├── __init__.py
└── augmentations.py
/.gitattributes:
--------------------------------------------------------------------------------
1 | *.ipynb linguist-language=Python
2 | .ipynb_checkpoints/* linguist-documentation
3 | dev.ipynb linguist-documentation
4 |
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | # Byte-compiled / optimized / DLL files
2 | __pycache__/
3 | *.py[cod]
4 | *$py.class
5 |
6 | # C extensions
7 | *.so
8 |
9 | # Distribution / packaging
10 | .Python
11 | env/
12 | build/
13 | develop-eggs/
14 | dist/
15 | downloads/
16 | eggs/
17 | .eggs/
18 | lib/
19 | lib64/
20 | parts/
21 | sdist/
22 | var/
23 | *.egg-info/
24 | .installed.cfg
25 | *.egg
26 |
27 | # PyInstaller
28 | # Usually these files are written by a python script from a template
29 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
30 | *.manifest
31 | *.spec
32 |
33 | # Installer logs
34 | pip-log.txt
35 | pip-delete-this-directory.txt
36 |
37 | # Unit test / coverage reports
38 | htmlcov/
39 | .tox/
40 | .coverage
41 | .coverage.*
42 | .cache
43 | nosetests.xml
44 | coverage.xml
45 | *,cover
46 | .hypothesis/
47 |
48 | # Translations
49 | *.mo
50 | *.pot
51 |
52 | # Django stuff:
53 | *.log
54 | local_settings.py
55 |
56 | # Flask stuff:
57 | instance/
58 | .webassets-cache
59 |
60 | # Scrapy stuff:
61 | .scrapy
62 |
63 | # Sphinx documentation
64 | docs/_build/
65 |
66 | # PyBuilder
67 | target/
68 |
69 | # IPython Notebook
70 | .ipynb_checkpoints
71 |
72 | # pyenv
73 | .python-version
74 |
75 | # celery beat schedule file
76 | celerybeat-schedule
77 |
78 | # dotenv
79 | .env
80 |
81 | # virtualenv
82 | venv/
83 | ENV/
84 |
85 | # Spyder project settings
86 | .spyderproject
87 |
88 | # Rope project settings
89 | .ropeproject
90 |
91 | # atom remote-sync package
92 | .remote-sync.json
93 |
94 | # weights
95 | weights/
96 |
97 | #DS_Store
98 | .DS_Store
99 |
100 | # dev stuff
101 | eval/
102 | eval.ipynb
103 | dev.ipynb
104 | .vscode/
105 |
106 | # not ready
107 | videos/
108 | templates/
109 | data/ssd_dataloader.py
110 | data/datasets/
111 | doc/visualize.py
112 | read_results.py
113 | ssd300_120000/
114 | demos/live
115 | webdemo.py
116 | test_data_aug.py
117 |
118 | # attributes
119 |
120 | # pycharm
121 | .idea/
122 | .settings/
123 | .project
124 | .project
125 | .pydevproject
126 |
127 | # temp checkout soln
128 | data/datasets/
129 | data/ssd_dataloader.py
130 |
131 | # pylint
132 | .pylintrc
133 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | MIT License
2 |
3 | Copyright (c) 2017 Max deGroot, Ellis Brown
4 |
5 | Permission is hereby granted, free of charge, to any person obtaining a copy
6 | of this software and associated documentation files (the "Software"), to deal
7 | in the Software without restriction, including without limitation the rights
8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 | copies of the Software, and to permit persons to whom the Software is
10 | furnished to do so, subject to the following conditions:
11 |
12 | The above copyright notice and this permission notice shall be included in all
13 | copies or substantial portions of the Software.
14 |
15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 | SOFTWARE.
22 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Repulsion Loss implemented with SSD
2 | Forked from [PyTorch-SSD](https://github.com/amdegroot/ssd.pytorch), which is a [PyTorch](http://pytorch.org/) implementation of [Single Shot MultiBox Detector](http://arxiv.org/abs/1512.02325) from the 2016 paper by Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang, and Alexander C. Berg. The official and original Caffe code can be found [here](https://github.com/weiliu89/caffe/tree/ssd).
3 |
4 |
5 |
6 |
7 | ### Table of Contents
8 | - Installation
9 | - Datasets
10 | - Train
11 | - Evaluate
12 | - Performance
13 | - Demos
14 | - Future Work
15 | - Reference
16 |
17 |
18 |
19 |
20 |
21 |
22 | ## Installation
23 | - Install [PyTorch](http://pytorch.org/) by selecting your environment on the website and running the appropriate command.
24 | - Clone this repository.
25 | * Note: We currently only support Python 3+.
26 | - Then download the dataset by following the [instructions](#datasets) below.
27 | - We now support [Visdom](https://github.com/facebookresearch/visdom) for real-time loss visualization during training!
28 | * To use Visdom in the browser:
29 | ```Shell
30 | # First install Python server and client
31 | pip install visdom
32 | # Start the server (probably in a screen or tmux)
33 | python -m visdom.server
34 | ```
35 | * Then (during training) navigate to http://localhost:8097/ (see the Train section below for training details).
36 | - Note: For training, we currently support [VOC](http://host.robots.ox.ac.uk/pascal/VOC/) and [COCO](http://mscoco.org/), and aim to add [ImageNet](http://www.image-net.org/) support soon.
37 |
38 | ## Datasets
39 | To make things easy, we provide bash scripts to handle the dataset downloads and setup for you. We also provide simple dataset loaders that inherit `torch.utils.data.Dataset`, making them fully compatible with the `torchvision.datasets` [API](http://pytorch.org/docs/torchvision/datasets.html).
40 |
41 |
42 | ### COCO
43 | Microsoft COCO: Common Objects in Context
44 |
45 | ##### Download COCO 2014
46 | ```Shell
47 | # specify a directory for dataset to be downloaded into, else default is ~/data/
48 | sh data/scripts/COCO2014.sh
49 | ```
50 |
51 | ### VOC Dataset
52 | PASCAL VOC: Visual Object Classes
53 |
54 | ##### Download VOC2007 trainval & test
55 | ```Shell
56 | # specify a directory for dataset to be downloaded into, else default is ~/data/
57 | sh data/scripts/VOC2007.sh #
58 | ```
59 |
60 | ##### Download VOC2012 trainval
61 | ```Shell
62 | # specify a directory for dataset to be downloaded into, else default is ~/data/
63 | sh data/scripts/VOC2012.sh #
64 | ```
65 |
66 | ## Training SSD
67 | - First download the fc-reduced [VGG-16](https://arxiv.org/abs/1409.1556) PyTorch base network weights at: https://s3.amazonaws.com/amdegroot-models/vgg16_reducedfc.pth
68 | - By default, we assume you have downloaded the file in the `ssd.pytorch/weights` dir:
69 |
70 | ```Shell
71 | mkdir weights
72 | cd weights
73 | wget https://s3.amazonaws.com/amdegroot-models/vgg16_reducedfc.pth
74 | ```
75 |
76 | - To train SSD using the train script simply specify the parameters listed in `train.py` as a flag or manually change them.
77 |
78 | ```Shell
79 | python train.py
80 | ```
81 |
82 | - Note:
83 | * For training, an NVIDIA GPU is strongly recommended for speed.
84 | * For instructions on Visdom usage/installation, see the Installation section.
85 | * You can pick-up training from a checkpoint by specifying the path as one of the training parameters (again, see `train.py` for options)
86 |
87 | ## Evaluation
88 | To evaluate a trained network:
89 |
90 | ```Shell
91 | python eval.py
92 | ```
93 |
94 | You can specify the parameters listed in the `eval.py` file by flagging them or manually changing them.
95 |
96 | ## Example
97 | SSD:
98 |
99 | 
100 |
101 | SSD + repulsion loss:
102 |
103 | 
104 |
105 |
106 | ## Performance
107 |
108 | #### VOC2007 Test
109 |
110 | ##### mAP
111 |
112 | | Method | mAP | mAP on Crowd |
113 | |:-:|:-:|:-:|
114 | | SSD | 77.52% | 48.24% |
115 | | SSD+RepGT | 77.43% | 50.12% |
116 |
117 |
118 |
119 | ## Demos
120 |
121 | ### Use a pre-trained SSD network for detection
122 |
123 | #### Download a pre-trained network
124 | - We are trying to provide PyTorch `state_dicts` (dict of weight tensors) of the latest SSD model definitions trained on different datasets.
125 | - Currently, we provide the following PyTorch models:
126 | * SSD300 trained on VOC0712 (newest PyTorch weights)
127 | - https://s3.amazonaws.com/amdegroot-models/ssd300_mAP_77.43_v2.pth
128 | * SSD300 trained on VOC0712 (original Caffe weights)
129 | - https://s3.amazonaws.com/amdegroot-models/ssd_300_VOC0712.pth
130 | - Our goal is to reproduce this table from the [original paper](http://arxiv.org/abs/1512.02325)
131 |
132 | 
133 |
134 | ### Try the demo notebook
135 | - Make sure you have [jupyter notebook](http://jupyter.readthedocs.io/en/latest/install.html) installed.
136 | - Two alternatives for installing jupyter notebook:
137 | 1. If you installed PyTorch with [conda](https://www.continuum.io/downloads) (recommended), then you should already have it. (Just navigate to the ssd.pytorch cloned repo and run):
138 | `jupyter notebook`
139 |
140 | 2. If using [pip](https://pypi.python.org/pypi/pip):
141 |
142 | ```Shell
143 | # make sure pip is upgraded
144 | pip3 install --upgrade pip
145 | # install jupyter notebook
146 | pip install jupyter
147 | # Run this inside ssd.pytorch
148 | jupyter notebook
149 | ```
150 |
151 | - Now navigate to `demo/demo.ipynb` at http://localhost:8888 (by default) and have at it!
152 |
153 | ### Try the webcam demo
154 | - Works on CPU (may have to tweak `cv2.waitkey` for optimal fps) or on an NVIDIA GPU
155 | - This demo currently requires opencv2+ w/ python bindings and an onboard webcam
156 | * You can change the default webcam in `demo/live.py`
157 | - Install the [imutils](https://github.com/jrosebr1/imutils) package to leverage multi-threading on CPU:
158 | * `pip install imutils`
159 | - Running `python -m demo.live` opens the webcam and begins detecting!
160 |
161 | ## TODO
162 | We have accumulated the following to-do list, which we hope to complete in the near future
163 | - Still to come:
164 | * [x] Support for the MS COCO dataset
165 | * [ ] Support for SSD512 training and testing
166 | * [ ] Support for training on custom datasets
167 | * [ ] Support for RepBox term
168 | * [ ] Support for selecting the second largest IoU from the same class
169 |
170 | ## Authors
171 |
172 |
173 | ## References
174 | - Xinlong Wang, et al. "Repulsion Loss: Detecting Pedestrians in a Crowd." [CVPR2018](https://arxiv.org/abs/1711.07752).
175 | - Wei Liu, et al. "SSD: Single Shot MultiBox Detector." [ECCV2016](http://arxiv.org/abs/1512.02325).
176 | - [Pytorch-SSD](https://github.com/amdegroot/ssd.pytorch).
177 | - [Original Implementation (CAFFE)](https://github.com/weiliu89/caffe/tree/ssd).
178 |
--------------------------------------------------------------------------------
/data/__init__.py:
--------------------------------------------------------------------------------
1 | from .voc0712 import VOCDetection, VOCAnnotationTransform, VOC_CLASSES, VOC_ROOT
2 |
3 | #from .coco import COCODetection, COCOAnnotationTransform, COCO_CLASSES, COCO_ROOT, get_label_map
4 | from .config import *
5 | import torch
6 | import cv2
7 | import numpy as np
8 |
9 | def detection_collate(batch):
10 | """Custom collate fn for dealing with batches of images that have a different
11 | number of associated object annotations (bounding boxes).
12 |
13 | Arguments:
14 | batch: (tuple) A tuple of tensor images and lists of annotations
15 |
16 | Return:
17 | A tuple containing:
18 | 1) (tensor) batch of images stacked on their 0 dim
19 | 2) (list of tensors) annotations for a given image are stacked on
20 | 0 dim
21 | """
22 | targets = []
23 | imgs = []
24 | for sample in batch:
25 | imgs.append(sample[0])
26 | targets.append(torch.FloatTensor(sample[1]))
27 | return torch.stack(imgs, 0), targets
28 |
29 |
30 | def base_transform(image, size, mean):
31 | x = cv2.resize(image, (size, size)).astype(np.float32)
32 | x -= mean
33 | x = x.astype(np.float32)
34 | return x
35 |
36 |
37 | class BaseTransform:
38 | def __init__(self, size, mean):
39 | self.size = size
40 | self.mean = np.array(mean, dtype=np.float32)
41 |
42 | def __call__(self, image, boxes=None, labels=None):
43 | return base_transform(image, self.size, self.mean), boxes, labels
44 |
--------------------------------------------------------------------------------
/data/coco.py:
--------------------------------------------------------------------------------
1 | from .config import HOME
2 | import os
3 | import os.path as osp
4 | import sys
5 | import torch
6 | import torch.utils.data as data
7 | import torchvision.transforms as transforms
8 | import cv2
9 | import numpy as np
10 |
11 | COCO_ROOT = osp.join(HOME, 'data/coco/')
12 | IMAGES = 'images'
13 | ANNOTATIONS = 'annotations'
14 | COCO_API = 'PythonAPI'
15 | INSTANCES_SET = 'instances_{}.json'
16 | COCO_CLASSES = ('person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
17 | 'train', 'truck', 'boat', 'traffic light', 'fire', 'hydrant',
18 | 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog',
19 | 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra',
20 | 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie',
21 | 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',
22 | 'kite', 'baseball bat', 'baseball glove', 'skateboard',
23 | 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup',
24 | 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
25 | 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
26 | 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed',
27 | 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote',
28 | 'keyboard', 'cell phone', 'microwave oven', 'toaster', 'sink',
29 | 'refrigerator', 'book', 'clock', 'vase', 'scissors',
30 | 'teddy bear', 'hair drier', 'toothbrush')
31 |
32 |
33 | def get_label_map(label_file):
34 | label_map = {}
35 | labels = open(label_file, 'r')
36 | for line in labels:
37 | ids = line.split(',')
38 | label_map[int(ids[0])] = int(ids[1])
39 | return label_map
40 |
41 |
42 | class COCOAnnotationTransform(object):
43 | """Transforms a COCO annotation into a Tensor of bbox coords and label index
44 | Initilized with a dictionary lookup of classnames to indexes
45 | """
46 | def __init__(self):
47 | self.label_map = get_label_map(osp.join(COCO_ROOT, 'coco_labels.txt'))
48 |
49 | def __call__(self, target, width, height):
50 | """
51 | Args:
52 | target (dict): COCO target json annotation as a python dict
53 | height (int): height
54 | width (int): width
55 | Returns:
56 | a list containing lists of bounding boxes [bbox coords, class idx]
57 | """
58 | scale = np.array([width, height, width, height])
59 | res = []
60 | for obj in target:
61 | if 'bbox' in obj:
62 | bbox = obj['bbox']
63 | bbox[2] += bbox[0]
64 | bbox[3] += bbox[1]
65 | label_idx = self.label_map[obj['category_id']] - 1
66 | final_box = list(np.array(bbox)/scale)
67 | final_box.append(label_idx)
68 | res += [final_box] # [xmin, ymin, xmax, ymax, label_idx]
69 | else:
70 | print("no bbox problem!")
71 |
72 | return res # [[xmin, ymin, xmax, ymax, label_idx], ... ]
73 |
74 |
75 | class COCODetection(data.Dataset):
76 | """`MS Coco Detection `_ Dataset.
77 | Args:
78 | root (string): Root directory where images are downloaded to.
79 | set_name (string): Name of the specific set of COCO images.
80 | transform (callable, optional): A function/transform that augments the
81 | raw images`
82 | target_transform (callable, optional): A function/transform that takes
83 | in the target (bbox) and transforms it.
84 | """
85 |
86 | def __init__(self, root, image_set='trainval35k', transform=None,
87 | target_transform=COCOAnnotationTransform(), dataset_name='MS COCO'):
88 | sys.path.append(osp.join(root, COCO_API))
89 | from pycocotools.coco import COCO
90 | self.root = osp.join(root, IMAGES, image_set)
91 | self.coco = COCO(osp.join(root, ANNOTATIONS,
92 | INSTANCES_SET.format(image_set)))
93 | self.ids = list(self.coco.imgToAnns.keys())
94 | self.transform = transform
95 | self.target_transform = target_transform
96 | self.name = dataset_name
97 |
98 | def __getitem__(self, index):
99 | """
100 | Args:
101 | index (int): Index
102 | Returns:
103 | tuple: Tuple (image, target).
104 | target is the object returned by ``coco.loadAnns``.
105 | """
106 | im, gt, h, w = self.pull_item(index)
107 | return im, gt
108 |
109 | def __len__(self):
110 | return len(self.ids)
111 |
112 | def pull_item(self, index):
113 | """
114 | Args:
115 | index (int): Index
116 | Returns:
117 | tuple: Tuple (image, target, height, width).
118 | target is the object returned by ``coco.loadAnns``.
119 | """
120 | img_id = self.ids[index]
121 | target = self.coco.imgToAnns[img_id]
122 | ann_ids = self.coco.getAnnIds(imgIds=img_id)
123 |
124 | target = self.coco.loadAnns(ann_ids)
125 | path = osp.join(self.root, self.coco.loadImgs(img_id)[0]['file_name'])
126 | assert osp.exists(path), 'Image path does not exist: {}'.format(path)
127 | img = cv2.imread(osp.join(self.root, path))
128 | height, width, _ = img.shape
129 | if self.target_transform is not None:
130 | target = self.target_transform(target, width, height)
131 | if self.transform is not None:
132 | target = np.array(target)
133 | img, boxes, labels = self.transform(img, target[:, :4],
134 | target[:, 4])
135 | # to rgb
136 | img = img[:, :, (2, 1, 0)]
137 |
138 | target = np.hstack((boxes, np.expand_dims(labels, axis=1)))
139 | return torch.from_numpy(img).permute(2, 0, 1), target, height, width
140 |
141 | def pull_image(self, index):
142 | '''Returns the original image object at index in PIL form
143 |
144 | Note: not using self.__getitem__(), as any transformations passed in
145 | could mess up this functionality.
146 |
147 | Argument:
148 | index (int): index of img to show
149 | Return:
150 | cv2 img
151 | '''
152 | img_id = self.ids[index]
153 | path = self.coco.loadImgs(img_id)[0]['file_name']
154 | return cv2.imread(osp.join(self.root, path), cv2.IMREAD_COLOR)
155 |
156 | def pull_anno(self, index):
157 | '''Returns the original annotation of image at index
158 |
159 | Note: not using self.__getitem__(), as any transformations passed in
160 | could mess up this functionality.
161 |
162 | Argument:
163 | index (int): index of img to get annotation of
164 | Return:
165 | list: [img_id, [(label, bbox coords),...]]
166 | eg: ('001718', [('dog', (96, 13, 438, 332))])
167 | '''
168 | img_id = self.ids[index]
169 | ann_ids = self.coco.getAnnIds(imgIds=img_id)
170 | return self.coco.loadAnns(ann_ids)
171 |
172 | def __repr__(self):
173 | fmt_str = 'Dataset ' + self.__class__.__name__ + '\n'
174 | fmt_str += ' Number of datapoints: {}\n'.format(self.__len__())
175 | fmt_str += ' Root Location: {}\n'.format(self.root)
176 | tmp = ' Transforms (if any): '
177 | fmt_str += '{0}{1}\n'.format(tmp, self.transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
178 | tmp = ' Target Transforms (if any): '
179 | fmt_str += '{0}{1}'.format(tmp, self.target_transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
180 | return fmt_str
181 |
--------------------------------------------------------------------------------
/data/coco_labels.txt:
--------------------------------------------------------------------------------
1 | 1,1,person
2 | 2,2,bicycle
3 | 3,3,car
4 | 4,4,motorcycle
5 | 5,5,airplane
6 | 6,6,bus
7 | 7,7,train
8 | 8,8,truck
9 | 9,9,boat
10 | 10,10,traffic light
11 | 11,11,fire hydrant
12 | 13,12,stop sign
13 | 14,13,parking meter
14 | 15,14,bench
15 | 16,15,bird
16 | 17,16,cat
17 | 18,17,dog
18 | 19,18,horse
19 | 20,19,sheep
20 | 21,20,cow
21 | 22,21,elephant
22 | 23,22,bear
23 | 24,23,zebra
24 | 25,24,giraffe
25 | 27,25,backpack
26 | 28,26,umbrella
27 | 31,27,handbag
28 | 32,28,tie
29 | 33,29,suitcase
30 | 34,30,frisbee
31 | 35,31,skis
32 | 36,32,snowboard
33 | 37,33,sports ball
34 | 38,34,kite
35 | 39,35,baseball bat
36 | 40,36,baseball glove
37 | 41,37,skateboard
38 | 42,38,surfboard
39 | 43,39,tennis racket
40 | 44,40,bottle
41 | 46,41,wine glass
42 | 47,42,cup
43 | 48,43,fork
44 | 49,44,knife
45 | 50,45,spoon
46 | 51,46,bowl
47 | 52,47,banana
48 | 53,48,apple
49 | 54,49,sandwich
50 | 55,50,orange
51 | 56,51,broccoli
52 | 57,52,carrot
53 | 58,53,hot dog
54 | 59,54,pizza
55 | 60,55,donut
56 | 61,56,cake
57 | 62,57,chair
58 | 63,58,couch
59 | 64,59,potted plant
60 | 65,60,bed
61 | 67,61,dining table
62 | 70,62,toilet
63 | 72,63,tv
64 | 73,64,laptop
65 | 74,65,mouse
66 | 75,66,remote
67 | 76,67,keyboard
68 | 77,68,cell phone
69 | 78,69,microwave
70 | 79,70,oven
71 | 80,71,toaster
72 | 81,72,sink
73 | 82,73,refrigerator
74 | 84,74,book
75 | 85,75,clock
76 | 86,76,vase
77 | 87,77,scissors
78 | 88,78,teddy bear
79 | 89,79,hair drier
80 | 90,80,toothbrush
81 |
--------------------------------------------------------------------------------
/data/config.py:
--------------------------------------------------------------------------------
1 | # config.py
2 | import os.path
3 |
4 | # gets home dir cross platform
5 | HOME = os.path.expanduser("~")
6 |
7 | # for making bounding boxes pretty
8 | COLORS = ((255, 0, 0, 128), (0, 255, 0, 128), (0, 0, 255, 128),
9 | (0, 255, 255, 128), (255, 0, 255, 128), (255, 255, 0, 128))
10 |
11 | MEANS = (104, 117, 123)
12 |
13 | # SSD300 CONFIGS
14 | voc = {
15 | 'num_classes': 21,
16 | 'lr_steps': (80000, 100000, 120000),
17 | 'max_iter': 120000,
18 | 'feature_maps': [38, 19, 10, 5, 3, 1],
19 | 'min_dim': 300,
20 | 'steps': [8, 16, 32, 64, 100, 300],
21 | 'min_sizes': [30, 60, 111, 162, 213, 264],
22 | 'max_sizes': [60, 111, 162, 213, 264, 315],
23 | 'aspect_ratios': [[2], [2, 3], [2, 3], [2, 3], [2], [2]],
24 | 'variance': [0.1, 0.2],
25 | 'clip': True,
26 | 'name': 'VOC',
27 | }
28 |
29 | coco = {
30 | 'num_classes': 201,
31 | 'lr_steps': (280000, 360000, 400000),
32 | 'max_iter': 400000,
33 | 'feature_maps': [38, 19, 10, 5, 3, 1],
34 | 'min_dim': 300,
35 | 'steps': [8, 16, 32, 64, 100, 300],
36 | 'min_sizes': [21, 45, 99, 153, 207, 261],
37 | 'max_sizes': [45, 99, 153, 207, 261, 315],
38 | 'aspect_ratios': [[2], [2, 3], [2, 3], [2, 3], [2], [2]],
39 | 'variance': [0.1, 0.2],
40 | 'clip': True,
41 | 'name': 'COCO',
42 | }
43 |
--------------------------------------------------------------------------------
/data/example.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bailvwangzi/repulsion_loss_ssd/fcf6c14be7e6ec2a1e146226a43491e744aef9c6/data/example.jpg
--------------------------------------------------------------------------------
/data/scripts/COCO2014.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | start=`date +%s`
4 |
5 | # handle optional download dir
6 | if [ -z "$1" ]
7 | then
8 | # navigate to ~/data
9 | echo "navigating to ~/data/ ..."
10 | mkdir -p ~/data
11 | cd ~/data/
12 | mkdir -p ./coco
13 | cd ./coco
14 | mkdir -p ./images
15 | mkdir -p ./annotations
16 | else
17 | # check if specified dir is valid
18 | if [ ! -d $1 ]; then
19 | echo $1 " is not a valid directory"
20 | exit 0
21 | fi
22 | echo "navigating to " $1 " ..."
23 | cd $1
24 | fi
25 |
26 | if [ ! -d images ]
27 | then
28 | mkdir -p ./images
29 | fi
30 |
31 | # Download the image data.
32 | cd ./images
33 | echo "Downloading MSCOCO train images ..."
34 | curl -LO http://images.cocodataset.org/zips/train2014.zip
35 | echo "Downloading MSCOCO val images ..."
36 | curl -LO http://images.cocodataset.org/zips/val2014.zip
37 |
38 | cd ../
39 | if [ ! -d annotations]
40 | then
41 | mkdir -p ./annotations
42 | fi
43 |
44 | # Download the annotation data.
45 | cd ./annotations
46 | echo "Downloading MSCOCO train/val annotations ..."
47 | curl -LO http://images.cocodataset.org/annotations/annotations_trainval2014.zip
48 | echo "Finished downloading. Now extracting ..."
49 |
50 | # Unzip data
51 | echo "Extracting train images ..."
52 | unzip ../images/train2014.zip -d ../images
53 | echo "Extracting val images ..."
54 | unzip ../images/val2014.zip -d ../images
55 | echo "Extracting annotations ..."
56 | unzip ./annotations_trainval2014.zip
57 |
58 | echo "Removing zip files ..."
59 | rm ../images/train2014.zip
60 | rm ../images/val2014.zip
61 | rm ./annotations_trainval2014.zip
62 |
63 | echo "Creating trainval35k dataset..."
64 |
65 | # Download annotations json
66 | echo "Downloading trainval35k annotations from S3"
67 | curl -LO https://s3.amazonaws.com/amdegroot-datasets/instances_trainval35k.json.zip
68 |
69 | # combine train and val
70 | echo "Combining train and val images"
71 | mkdir ../images/trainval35k
72 | cd ../images/train2014
73 | find -maxdepth 1 -name '*.jpg' -exec cp -t ../trainval35k {} + # dir too large for cp
74 | cd ../val2014
75 | find -maxdepth 1 -name '*.jpg' -exec cp -t ../trainval35k {} +
76 |
77 |
78 | end=`date +%s`
79 | runtime=$((end-start))
80 |
81 | echo "Completed in " $runtime " seconds"
82 |
--------------------------------------------------------------------------------
/data/scripts/VOC2007.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | # Ellis Brown
3 |
4 | start=`date +%s`
5 |
6 | # handle optional download dir
7 | if [ -z "$1" ]
8 | then
9 | # navigate to ~/data
10 | echo "navigating to ~/data/ ..."
11 | mkdir -p ~/data
12 | cd ~/data/
13 | else
14 | # check if is valid directory
15 | if [ ! -d $1 ]; then
16 | echo $1 "is not a valid directory"
17 | exit 0
18 | fi
19 | echo "navigating to" $1 "..."
20 | cd $1
21 | fi
22 |
23 | echo "Downloading VOC2007 trainval ..."
24 | # Download the data.
25 | curl -LO http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar
26 | echo "Downloading VOC2007 test data ..."
27 | curl -LO http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar
28 | echo "Done downloading."
29 |
30 | # Extract data
31 | echo "Extracting trainval ..."
32 | tar -xvf VOCtrainval_06-Nov-2007.tar
33 | echo "Extracting test ..."
34 | tar -xvf VOCtest_06-Nov-2007.tar
35 | echo "removing tars ..."
36 | rm VOCtrainval_06-Nov-2007.tar
37 | rm VOCtest_06-Nov-2007.tar
38 |
39 | end=`date +%s`
40 | runtime=$((end-start))
41 |
42 | echo "Completed in" $runtime "seconds"
--------------------------------------------------------------------------------
/data/scripts/VOC2012.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | # Ellis Brown
3 |
4 | start=`date +%s`
5 |
6 | # handle optional download dir
7 | if [ -z "$1" ]
8 | then
9 | # navigate to ~/data
10 | echo "navigating to ~/data/ ..."
11 | mkdir -p ~/data
12 | cd ~/data/
13 | else
14 | # check if is valid directory
15 | if [ ! -d $1 ]; then
16 | echo $1 "is not a valid directory"
17 | exit 0
18 | fi
19 | echo "navigating to" $1 "..."
20 | cd $1
21 | fi
22 |
23 | echo "Downloading VOC2012 trainval ..."
24 | # Download the data.
25 | curl -LO http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
26 | echo "Done downloading."
27 |
28 |
29 | # Extract data
30 | echo "Extracting trainval ..."
31 | tar -xvf VOCtrainval_11-May-2012.tar
32 | echo "removing tar ..."
33 | rm VOCtrainval_11-May-2012.tar
34 |
35 | end=`date +%s`
36 | runtime=$((end-start))
37 |
38 | echo "Completed in" $runtime "seconds"
--------------------------------------------------------------------------------
/data/voc0712.py:
--------------------------------------------------------------------------------
1 | """VOC Dataset Classes
2 |
3 | Original author: Francisco Massa
4 | https://github.com/fmassa/vision/blob/voc_dataset/torchvision/datasets/voc.py
5 |
6 | Updated by: Ellis Brown, Max deGroot
7 | """
8 | from .config import HOME
9 | import os.path as osp
10 | import sys
11 | import torch
12 | import torch.utils.data as data
13 | import cv2
14 | import numpy as np
15 | if sys.version_info[0] == 2:
16 | import xml.etree.cElementTree as ET
17 | else:
18 | import xml.etree.ElementTree as ET
19 |
20 | VOC_CLASSES = ( # always index 0
21 | 'aeroplane', 'bicycle', 'bird', 'boat',
22 | 'bottle', 'bus', 'car', 'cat', 'chair',
23 | 'cow', 'diningtable', 'dog', 'horse',
24 | 'motorbike', 'person', 'pottedplant',
25 | 'sheep', 'sofa', 'train', 'tvmonitor')
26 |
27 | # note: if you used our download scripts, this should be right
28 | VOC_ROOT = osp.join(HOME, "data/VOCdevkit/")
29 |
30 | class VOCAnnotationTransform(object):
31 | """Transforms a VOC annotation into a Tensor of bbox coords and label index
32 | Initilized with a dictionary lookup of classnames to indexes
33 |
34 | Arguments:
35 | class_to_ind (dict, optional): dictionary lookup of classnames -> indexes
36 | (default: alphabetic indexing of VOC's 20 classes)
37 | keep_difficult (bool, optional): keep difficult instances or not
38 | (default: False)
39 | height (int): height
40 | width (int): width
41 | """
42 |
43 | def __init__(self, class_to_ind=None, keep_difficult=False):
44 | self.class_to_ind = class_to_ind or dict(
45 | zip(VOC_CLASSES, range(len(VOC_CLASSES))))
46 | self.keep_difficult = keep_difficult
47 |
48 | def __call__(self, target, width, height):
49 | """
50 | Arguments:
51 | target (annotation) : the target annotation to be made usable
52 | will be an ET.Element
53 | Returns:
54 | a list containing lists of bounding boxes [bbox coords, class name]
55 | """
56 | res = []
57 | for obj in target.iter('object'):
58 | difficult = int(obj.find('difficult').text) == 1
59 | if not self.keep_difficult and difficult:
60 | continue
61 | name = obj.find('name').text.lower().strip()
62 | bbox = obj.find('bndbox')
63 |
64 | pts = ['xmin', 'ymin', 'xmax', 'ymax']
65 | bndbox = []
66 | for i, pt in enumerate(pts):
67 | cur_pt = int(bbox.find(pt).text) - 1
68 | # scale height or width
69 | cur_pt = cur_pt / width if i % 2 == 0 else cur_pt / height
70 | bndbox.append(cur_pt)
71 | label_idx = self.class_to_ind[name]
72 | bndbox.append(label_idx)
73 | res += [bndbox] # [xmin, ymin, xmax, ymax, label_ind]
74 | # img_id = target.find('filename').text[:-4]
75 |
76 | return res # [[xmin, ymin, xmax, ymax, label_ind], ... ]
77 |
78 |
79 | class VOCDetection(data.Dataset):
80 | """VOC Detection Dataset Object
81 |
82 | input is image, target is annotation
83 |
84 | Arguments:
85 | root (string): filepath to VOCdevkit folder.
86 | image_set (string): imageset to use (eg. 'train', 'val', 'test')
87 | transform (callable, optional): transformation to perform on the
88 | input image
89 | target_transform (callable, optional): transformation to perform on the
90 | target `annotation`
91 | (eg: take in caption string, return tensor of word indices)
92 | dataset_name (string, optional): which dataset to load
93 | (default: 'VOC2007')
94 | """
95 |
96 | def __init__(self, root,
97 | image_sets=[('2007', 'trainval'), ('2012', 'trainval')],
98 | transform=None, target_transform=VOCAnnotationTransform(),
99 | dataset_name='VOC0712'):
100 | self.root = root
101 | self.image_set = image_sets
102 | self.transform = transform
103 | self.target_transform = target_transform
104 | self.name = dataset_name
105 | self._annopath = osp.join('%s', 'Annotations', '%s.xml')
106 | self._imgpath = osp.join('%s', 'JPEGImages', '%s.jpg')
107 | self.ids = list()
108 | for (year, name) in image_sets:
109 | rootpath = osp.join(self.root, 'VOC' + year)
110 | for line in open(osp.join(rootpath, 'ImageSets', 'Main', name + '.txt')):
111 | self.ids.append((rootpath, line.strip()))
112 |
113 | def __getitem__(self, index):
114 | im, gt, h, w = self.pull_item(index)
115 |
116 | return im, gt
117 |
118 | def __len__(self):
119 | return len(self.ids)
120 |
121 | def pull_item(self, index):
122 | img_id = self.ids[index]
123 | target = ET.parse(self._annopath % img_id).getroot()
124 | img = cv2.imread(self._imgpath % img_id)
125 | height, width, channels = img.shape
126 |
127 | if self.target_transform is not None:
128 | target = self.target_transform(target, width, height)
129 |
130 | if self.transform is not None:
131 | target = np.array(target)
132 | img, boxes, labels = self.transform(img, target[:, :4], target[:, 4])
133 | # to rgb
134 | img = img[:, :, (2, 1, 0)]
135 | # img = img.transpose(2, 0, 1)
136 | target = np.hstack((boxes, np.expand_dims(labels, axis=1)))
137 | return torch.from_numpy(img).permute(2, 0, 1), target, height, width
138 | # return torch.from_numpy(img), target, height, width
139 |
140 | def pull_image(self, index):
141 | '''Returns the original image object at index in PIL form
142 |
143 | Note: not using self.__getitem__(), as any transformations passed in
144 | could mess up this functionality.
145 |
146 | Argument:
147 | index (int): index of img to show
148 | Return:
149 | PIL img
150 | '''
151 | img_id = self.ids[index]
152 | return cv2.imread(self._imgpath % img_id, cv2.IMREAD_COLOR)
153 |
154 | def pull_anno(self, index):
155 | '''Returns the original annotation of image at index
156 |
157 | Note: not using self.__getitem__(), as any transformations passed in
158 | could mess up this functionality.
159 |
160 | Argument:
161 | index (int): index of img to get annotation of
162 | Return:
163 | list: [img_id, [(label, bbox coords),...]]
164 | eg: ('001718', [('dog', (96, 13, 438, 332))])
165 | '''
166 | img_id = self.ids[index]
167 | anno = ET.parse(self._annopath % img_id).getroot()
168 | gt = self.target_transform(anno, 1, 1)
169 | return img_id[1], gt
170 |
171 | def pull_tensor(self, index):
172 | '''Returns the original image at an index in tensor form
173 |
174 | Note: not using self.__getitem__(), as any transformations passed in
175 | could mess up this functionality.
176 |
177 | Argument:
178 | index (int): index of img to show
179 | Return:
180 | tensorized version of img, squeezed
181 | '''
182 | return torch.Tensor(self.pull_image(index)).unsqueeze_(0)
183 |
--------------------------------------------------------------------------------
/demo/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bailvwangzi/repulsion_loss_ssd/fcf6c14be7e6ec2a1e146226a43491e744aef9c6/demo/__init__.py
--------------------------------------------------------------------------------
/demo/live.py:
--------------------------------------------------------------------------------
1 | from __future__ import print_function
2 | import torch
3 | from torch.autograd import Variable
4 | import cv2
5 | import time
6 | from imutils.video import FPS, WebcamVideoStream
7 | import argparse
8 |
9 | parser = argparse.ArgumentParser(description='Single Shot MultiBox Detection')
10 | parser.add_argument('--weights', default='weights/ssd_300_VOC0712.pth',
11 | type=str, help='Trained state_dict file path')
12 | parser.add_argument('--cuda', default=False, type=bool,
13 | help='Use cuda in live demo')
14 | args = parser.parse_args()
15 |
16 | COLORS = [(255, 0, 0), (0, 255, 0), (0, 0, 255)]
17 | FONT = cv2.FONT_HERSHEY_SIMPLEX
18 |
19 |
20 | def cv2_demo(net, transform):
21 | def predict(frame):
22 | height, width = frame.shape[:2]
23 | x = torch.from_numpy(transform(frame)[0]).permute(2, 0, 1)
24 | x = Variable(x.unsqueeze(0))
25 | y = net(x) # forward pass
26 | detections = y.data
27 | # scale each detection back up to the image
28 | scale = torch.Tensor([width, height, width, height])
29 | for i in range(detections.size(1)):
30 | j = 0
31 | while detections[0, i, j, 0] >= 0.6:
32 | pt = (detections[0, i, j, 1:] * scale).cpu().numpy()
33 | cv2.rectangle(frame,
34 | (int(pt[0]), int(pt[1])),
35 | (int(pt[2]), int(pt[3])),
36 | COLORS[i % 3], 2)
37 | cv2.putText(frame, labelmap[i - 1], (int(pt[0]), int(pt[1])),
38 | FONT, 2, (255, 255, 255), 2, cv2.LINE_AA)
39 | j += 1
40 | return frame
41 |
42 | # start video stream thread, allow buffer to fill
43 | print("[INFO] starting threaded video stream...")
44 | stream = WebcamVideoStream(src=0).start() # default camera
45 | time.sleep(1.0)
46 | # start fps timer
47 | # loop over frames from the video file stream
48 | while True:
49 | # grab next frame
50 | frame = stream.read()
51 | key = cv2.waitKey(1) & 0xFF
52 |
53 | # update FPS counter
54 | fps.update()
55 | frame = predict(frame)
56 |
57 | # keybindings for display
58 | if key == ord('p'): # pause
59 | while True:
60 | key2 = cv2.waitKey(1) or 0xff
61 | cv2.imshow('frame', frame)
62 | if key2 == ord('p'): # resume
63 | break
64 | cv2.imshow('frame', frame)
65 | if key == 27: # exit
66 | break
67 |
68 |
69 | if __name__ == '__main__':
70 | import sys
71 | from os import path
72 | sys.path.append(path.dirname(path.dirname(path.abspath(__file__))))
73 |
74 | from data import BaseTransform, VOC_CLASSES as labelmap
75 | from ssd import build_ssd
76 |
77 | net = build_ssd('test', 300, 21) # initialize SSD
78 | net.load_state_dict(torch.load(args.weights))
79 | transform = BaseTransform(net.size, (104/256.0, 117/256.0, 123/256.0))
80 |
81 | fps = FPS().start()
82 | cv2_demo(net.eval(), transform)
83 | # stop the timer and display FPS information
84 | fps.stop()
85 |
86 | print("[INFO] elasped time: {:.2f}".format(fps.elapsed()))
87 | print("[INFO] approx. FPS: {:.2f}".format(fps.fps()))
88 |
89 | # cleanup
90 | cv2.destroyAllWindows()
91 | stream.stop()
92 |
--------------------------------------------------------------------------------
/doc/003534.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bailvwangzi/repulsion_loss_ssd/fcf6c14be7e6ec2a1e146226a43491e744aef9c6/doc/003534.jpg
--------------------------------------------------------------------------------
/doc/003534_repul.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bailvwangzi/repulsion_loss_ssd/fcf6c14be7e6ec2a1e146226a43491e744aef9c6/doc/003534_repul.jpg
--------------------------------------------------------------------------------
/doc/SSD.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bailvwangzi/repulsion_loss_ssd/fcf6c14be7e6ec2a1e146226a43491e744aef9c6/doc/SSD.jpg
--------------------------------------------------------------------------------
/doc/detection_example.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bailvwangzi/repulsion_loss_ssd/fcf6c14be7e6ec2a1e146226a43491e744aef9c6/doc/detection_example.png
--------------------------------------------------------------------------------
/doc/detection_example2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bailvwangzi/repulsion_loss_ssd/fcf6c14be7e6ec2a1e146226a43491e744aef9c6/doc/detection_example2.png
--------------------------------------------------------------------------------
/doc/detection_examples.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bailvwangzi/repulsion_loss_ssd/fcf6c14be7e6ec2a1e146226a43491e744aef9c6/doc/detection_examples.png
--------------------------------------------------------------------------------
/doc/ssd.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bailvwangzi/repulsion_loss_ssd/fcf6c14be7e6ec2a1e146226a43491e744aef9c6/doc/ssd.png
--------------------------------------------------------------------------------
/eval.py:
--------------------------------------------------------------------------------
1 | """Adapted from:
2 | @longcw faster_rcnn_pytorch: https://github.com/longcw/faster_rcnn_pytorch
3 | @rbgirshick py-faster-rcnn https://github.com/rbgirshick/py-faster-rcnn
4 | Licensed under The MIT License [see LICENSE for details]
5 | """
6 |
7 | from __future__ import print_function
8 | import torch
9 | import torch.nn as nn
10 | import torch.backends.cudnn as cudnn
11 | from torch.autograd import Variable
12 | from data import VOC_ROOT, VOCAnnotationTransform, VOCDetection, BaseTransform
13 | from data import VOC_CLASSES as labelmap
14 | import torch.utils.data as data
15 |
16 | from ssd import build_ssd
17 |
18 | import sys
19 | import os
20 | import time
21 | import argparse
22 | import numpy as np
23 | import pickle
24 | import cv2
25 |
26 | if sys.version_info[0] == 2:
27 | import xml.etree.cElementTree as ET
28 | else:
29 | import xml.etree.ElementTree as ET
30 |
31 |
32 | def str2bool(v):
33 | return v.lower() in ("yes", "true", "t", "1")
34 |
35 |
36 | parser = argparse.ArgumentParser(
37 | description='Single Shot MultiBox Detector Evaluation')
38 | parser.add_argument('--trained_model',
39 | default='weights/ssd300_mAP_77.43_v2.pth', type=str,
40 | help='Trained state_dict file path to open')
41 | parser.add_argument('--save_folder', default='eval/', type=str,
42 | help='File path to save results')
43 | parser.add_argument('--confidence_threshold', default=0.01, type=float,
44 | help='Detection confidence threshold')
45 | parser.add_argument('--top_k', default=5, type=int,
46 | help='Further restrict the number of predictions to parse')
47 | parser.add_argument('--cuda', default=True, type=str2bool,
48 | help='Use cuda to train model')
49 | parser.add_argument('--voc_root', default=VOC_ROOT,
50 | help='Location of VOC root directory')
51 | parser.add_argument('--cleanup', default=True, type=str2bool,
52 | help='Cleanup and remove results files following eval')
53 |
54 | args = parser.parse_args()
55 |
56 | if not os.path.exists(args.save_folder):
57 | os.mkdir(args.save_folder)
58 |
59 | if torch.cuda.is_available():
60 | if args.cuda:
61 | torch.set_default_tensor_type('torch.cuda.FloatTensor')
62 | if not args.cuda:
63 | print("WARNING: It looks like you have a CUDA device, but aren't using \
64 | CUDA. Run with --cuda for optimal eval speed.")
65 | torch.set_default_tensor_type('torch.FloatTensor')
66 | else:
67 | torch.set_default_tensor_type('torch.FloatTensor')
68 |
69 | annopath = os.path.join(args.voc_root, 'VOC2007', 'Annotations', '%s.xml')
70 | imgpath = os.path.join(args.voc_root, 'VOC2007', 'JPEGImages', '%s.jpg')
71 | imgsetpath = os.path.join(args.voc_root, 'VOC2007', 'ImageSets',
72 | 'Main', '{:s}.txt')
73 | YEAR = '2007'
74 | devkit_path = args.voc_root + 'VOC' + YEAR
75 | dataset_mean = (104, 117, 123)
76 | set_type = 'test'
77 |
78 |
79 | class Timer(object):
80 | """A simple timer."""
81 | def __init__(self):
82 | self.total_time = 0.
83 | self.calls = 0
84 | self.start_time = 0.
85 | self.diff = 0.
86 | self.average_time = 0.
87 |
88 | def tic(self):
89 | # using time.time instead of time.clock because time time.clock
90 | # does not normalize for multithreading
91 | self.start_time = time.time()
92 |
93 | def toc(self, average=True):
94 | self.diff = time.time() - self.start_time
95 | self.total_time += self.diff
96 | self.calls += 1
97 | self.average_time = self.total_time / self.calls
98 | if average:
99 | return self.average_time
100 | else:
101 | return self.diff
102 |
103 |
104 | def parse_rec(filename):
105 | """ Parse a PASCAL VOC xml file """
106 | tree = ET.parse(filename)
107 | objects = []
108 | for obj in tree.findall('object'):
109 | obj_struct = {}
110 | obj_struct['name'] = obj.find('name').text
111 | #obj_struct['pose'] = obj.find('pose').text
112 | #obj_struct['truncated'] = int(obj.find('truncated').text)
113 | obj_struct['difficult'] = int(obj.find('difficult').text)
114 | bbox = obj.find('bndbox')
115 | obj_struct['bbox'] = [int(bbox.find('xmin').text) - 1,
116 | int(bbox.find('ymin').text) - 1,
117 | int(bbox.find('xmax').text) - 1,
118 | int(bbox.find('ymax').text) - 1]
119 | objects.append(obj_struct)
120 |
121 | return objects
122 |
123 |
124 | def get_output_dir(name, phase):
125 | """Return the directory where experimental artifacts are placed.
126 | If the directory does not exist, it is created.
127 | A canonical path is built using the name from an imdb and a network
128 | (if not None).
129 | """
130 | filedir = os.path.join(name, phase)
131 | if not os.path.exists(filedir):
132 | os.makedirs(filedir)
133 | return filedir
134 |
135 |
136 | def get_voc_results_file_template(image_set, cls):
137 | # VOCdevkit/VOC2007/results/det_test_aeroplane.txt
138 | filename = 'det_' + image_set + '_%s.txt' % (cls)
139 | filedir = os.path.join(devkit_path, 'results')
140 | if not os.path.exists(filedir):
141 | os.makedirs(filedir)
142 | path = os.path.join(filedir, filename)
143 | return path
144 |
145 |
146 | def write_voc_results_file(all_boxes, dataset):
147 | for cls_ind, cls in enumerate(labelmap):
148 | print('Writing {:s} VOC results file'.format(cls))
149 | filename = get_voc_results_file_template(set_type, cls)
150 | with open(filename, 'wt') as f:
151 | for im_ind, index in enumerate(dataset.ids):
152 | dets = all_boxes[cls_ind+1][im_ind]
153 | if dets == []:
154 | continue
155 | # the VOCdevkit expects 1-based indices
156 | for k in range(dets.shape[0]):
157 | f.write('{:s} {:.3f} {:.1f} {:.1f} {:.1f} {:.1f}\n'.
158 | format(index[1], dets[k, -1],
159 | dets[k, 0] + 1, dets[k, 1] + 1,
160 | dets[k, 2] + 1, dets[k, 3] + 1))
161 |
162 |
163 | def do_python_eval(output_dir='output', use_07=True):
164 | cachedir = os.path.join(devkit_path, 'annotations_cache')
165 | aps = []
166 | # The PASCAL VOC metric changed in 2010
167 | use_07_metric = use_07
168 | print('VOC07 metric? ' + ('Yes' if use_07_metric else 'No'))
169 | if not os.path.isdir(output_dir):
170 | os.mkdir(output_dir)
171 | for i, cls in enumerate(labelmap):
172 | filename = get_voc_results_file_template(set_type, cls)
173 | rec, prec, ap = voc_eval(
174 | filename, annopath, imgsetpath.format(set_type), cls, cachedir,
175 | ovthresh=0.5, use_07_metric=use_07_metric)
176 | aps += [ap]
177 | print('AP for {} = {:.4f}'.format(cls, ap))
178 | with open(os.path.join(output_dir, cls + '_pr.pkl'), 'wb') as f:
179 | pickle.dump({'rec': rec, 'prec': prec, 'ap': ap}, f)
180 | print('Mean AP = {:.4f}'.format(np.mean(aps)))
181 | print('~~~~~~~~')
182 | print('Results:')
183 | for ap in aps:
184 | print('{:.3f}'.format(ap))
185 | print('{:.3f}'.format(np.mean(aps)))
186 | print('~~~~~~~~')
187 | print('')
188 | print('--------------------------------------------------------------')
189 | print('Results computed with the **unofficial** Python eval code.')
190 | print('Results should be very close to the official MATLAB eval code.')
191 | print('--------------------------------------------------------------')
192 |
193 |
194 | def voc_ap(rec, prec, use_07_metric=True):
195 | """ ap = voc_ap(rec, prec, [use_07_metric])
196 | Compute VOC AP given precision and recall.
197 | If use_07_metric is true, uses the
198 | VOC 07 11 point method (default:True).
199 | """
200 | if use_07_metric:
201 | # 11 point metric
202 | ap = 0.
203 | for t in np.arange(0., 1.1, 0.1):
204 | if np.sum(rec >= t) == 0:
205 | p = 0
206 | else:
207 | p = np.max(prec[rec >= t])
208 | ap = ap + p / 11.
209 | else:
210 | # correct AP calculation
211 | # first append sentinel values at the end
212 | mrec = np.concatenate(([0.], rec, [1.]))
213 | mpre = np.concatenate(([0.], prec, [0.]))
214 |
215 | # compute the precision envelope
216 | for i in range(mpre.size - 1, 0, -1):
217 | mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
218 |
219 | # to calculate area under PR curve, look for points
220 | # where X axis (recall) changes value
221 | i = np.where(mrec[1:] != mrec[:-1])[0]
222 |
223 | # and sum (\Delta recall) * prec
224 | ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
225 | return ap
226 |
227 |
228 | def voc_eval(detpath,
229 | annopath,
230 | imagesetfile,
231 | classname,
232 | cachedir,
233 | ovthresh=0.5,
234 | use_07_metric=True):
235 | """rec, prec, ap = voc_eval(detpath,
236 | annopath,
237 | imagesetfile,
238 | classname,
239 | [ovthresh],
240 | [use_07_metric])
241 | Top level function that does the PASCAL VOC evaluation.
242 | detpath: Path to detections
243 | detpath.format(classname) should produce the detection results file.
244 | annopath: Path to annotations
245 | annopath.format(imagename) should be the xml annotations file.
246 | imagesetfile: Text file containing the list of images, one image per line.
247 | classname: Category name (duh)
248 | cachedir: Directory for caching the annotations
249 | [ovthresh]: Overlap threshold (default = 0.5)
250 | [use_07_metric]: Whether to use VOC07's 11 point AP computation
251 | (default True)
252 | """
253 | # assumes detections are in detpath.format(classname)
254 | # assumes annotations are in annopath.format(imagename)
255 | # assumes imagesetfile is a text file with each line an image name
256 | # cachedir caches the annotations in a pickle file
257 | # first load gt
258 | if not os.path.isdir(cachedir):
259 | os.mkdir(cachedir)
260 | cachefile = os.path.join(cachedir, 'annots.pkl')
261 | # read list of images
262 | with open(imagesetfile, 'r') as f:
263 | lines = f.readlines()
264 | imagenames = [x.strip() for x in lines]
265 | if not os.path.isfile(cachefile):
266 | # load annots
267 | recs = {}
268 | for i, imagename in enumerate(imagenames):
269 | recs[imagename] = parse_rec(annopath % (imagename))
270 | if i % 100 == 0:
271 | print('Reading annotation for {:d}/{:d}'.format(
272 | i + 1, len(imagenames)))
273 | # save
274 | print('Saving cached annotations to {:s}'.format(cachefile))
275 | with open(cachefile, 'wb') as f:
276 | pickle.dump(recs, f)
277 | else:
278 | # load
279 | with open(cachefile, 'rb') as f:
280 | recs = pickle.load(f)
281 |
282 | # extract gt objects for this class
283 | class_recs = {}
284 | npos = 0
285 | for imagename in imagenames:
286 | R = [obj for obj in recs[imagename] if obj['name'] == classname]
287 | bbox = np.array([x['bbox'] for x in R])
288 | difficult = np.array([x['difficult'] for x in R]).astype(np.bool)
289 | det = [False] * len(R)
290 | npos = npos + sum(~difficult)
291 | class_recs[imagename] = {'bbox': bbox,
292 | 'difficult': difficult,
293 | 'det': det}
294 |
295 | # read dets
296 | detfile = detpath.format(classname)
297 | with open(detfile, 'r') as f:
298 | lines = f.readlines()
299 | if any(lines) == 1:
300 |
301 | splitlines = [x.strip().split(' ') for x in lines]
302 | image_ids = [x[0] for x in splitlines]
303 | confidence = np.array([float(x[1]) for x in splitlines])
304 | BB = np.array([[float(z) for z in x[2:]] for x in splitlines])
305 |
306 | # sort by confidence
307 | sorted_ind = np.argsort(-confidence)
308 | sorted_scores = np.sort(-confidence)
309 | BB = BB[sorted_ind, :]
310 | image_ids = [image_ids[x] for x in sorted_ind]
311 |
312 | # go down dets and mark TPs and FPs
313 | nd = len(image_ids)
314 | tp = np.zeros(nd)
315 | fp = np.zeros(nd)
316 | for d in range(nd):
317 | R = class_recs[image_ids[d]]
318 | bb = BB[d, :].astype(float)
319 | ovmax = -np.inf
320 | BBGT = R['bbox'].astype(float)
321 | if BBGT.size > 0:
322 | # compute overlaps
323 | # intersection
324 | ixmin = np.maximum(BBGT[:, 0], bb[0])
325 | iymin = np.maximum(BBGT[:, 1], bb[1])
326 | ixmax = np.minimum(BBGT[:, 2], bb[2])
327 | iymax = np.minimum(BBGT[:, 3], bb[3])
328 | iw = np.maximum(ixmax - ixmin, 0.)
329 | ih = np.maximum(iymax - iymin, 0.)
330 | inters = iw * ih
331 | uni = ((bb[2] - bb[0]) * (bb[3] - bb[1]) +
332 | (BBGT[:, 2] - BBGT[:, 0]) *
333 | (BBGT[:, 3] - BBGT[:, 1]) - inters)
334 | overlaps = inters / uni
335 | ovmax = np.max(overlaps)
336 | jmax = np.argmax(overlaps)
337 |
338 | if ovmax > ovthresh:
339 | if not R['difficult'][jmax]:
340 | if not R['det'][jmax]:
341 | tp[d] = 1.
342 | R['det'][jmax] = 1
343 | else:
344 | fp[d] = 1.
345 | else:
346 | fp[d] = 1.
347 |
348 | # compute precision recall
349 | fp = np.cumsum(fp)
350 | tp = np.cumsum(tp)
351 | rec = tp / float(npos)
352 | # avoid divide by zero in case the first detection matches a difficult
353 | # ground truth
354 | prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps)
355 | ap = voc_ap(rec, prec, use_07_metric)
356 | else:
357 | rec = -1.
358 | prec = -1.
359 | ap = -1.
360 |
361 | return rec, prec, ap
362 |
363 |
364 | def test_net(save_folder, net, cuda, dataset, transform, top_k,
365 | im_size=300, thresh=0.05):
366 | num_images = len(dataset)
367 | # all detections are collected into:
368 | # all_boxes[cls][image] = N x 5 array of detections in
369 | # (x1, y1, x2, y2, score)
370 | all_boxes = [[[] for _ in range(num_images)]
371 | for _ in range(len(labelmap)+1)]
372 |
373 | # timers
374 | _t = {'im_detect': Timer(), 'misc': Timer()}
375 | output_dir = get_output_dir('ssd300_120000', set_type)
376 | det_file = os.path.join(output_dir, 'detections.pkl')
377 |
378 | for i in range(num_images):
379 | im, gt, h, w = dataset.pull_item(i)
380 |
381 | x = Variable(im.unsqueeze(0))
382 | if args.cuda:
383 | x = x.cuda()
384 | _t['im_detect'].tic()
385 | detections = net(x).data
386 | detect_time = _t['im_detect'].toc(average=False)
387 |
388 | # skip j = 0, because it's the background class
389 | for j in range(1, detections.size(1)):
390 | dets = detections[0, j, :]
391 | mask = dets[:, 0].gt(0.).expand(5, dets.size(0)).t()
392 | dets = torch.masked_select(dets, mask).view(-1, 5)
393 | if dets.dim() == 0:
394 | continue
395 | boxes = dets[:, 1:]
396 | boxes[:, 0] *= w
397 | boxes[:, 2] *= w
398 | boxes[:, 1] *= h
399 | boxes[:, 3] *= h
400 | scores = dets[:, 0].cpu().numpy()
401 | cls_dets = np.hstack((boxes.cpu().numpy(),
402 | scores[:, np.newaxis])).astype(np.float32,
403 | copy=False)
404 | all_boxes[j][i] = cls_dets
405 |
406 | print('im_detect: {:d}/{:d} {:.3f}s'.format(i + 1,
407 | num_images, detect_time))
408 |
409 | with open(det_file, 'wb') as f:
410 | pickle.dump(all_boxes, f, pickle.HIGHEST_PROTOCOL)
411 |
412 | print('Evaluating detections')
413 | evaluate_detections(all_boxes, output_dir, dataset)
414 |
415 |
416 | def evaluate_detections(box_list, output_dir, dataset):
417 | write_voc_results_file(box_list, dataset)
418 | do_python_eval(output_dir)
419 |
420 |
421 | if __name__ == '__main__':
422 | # load net
423 | num_classes = len(labelmap) + 1 # +1 for background
424 | net = build_ssd('test', 300, num_classes) # initialize SSD
425 | net.load_state_dict(torch.load(args.trained_model))
426 | net.eval()
427 | print('Finished loading model!')
428 | # load data
429 | dataset = VOCDetection(args.voc_root, [('2007', set_type)],
430 | BaseTransform(300, dataset_mean),
431 | VOCAnnotationTransform())
432 | if args.cuda:
433 | net = net.cuda()
434 | cudnn.benchmark = True
435 | # evaluation
436 | test_net(args.save_folder, net, args.cuda, dataset,
437 | BaseTransform(net.size, dataset_mean), args.top_k, 300,
438 | thresh=args.confidence_threshold)
439 |
--------------------------------------------------------------------------------
/layers/__init__.py:
--------------------------------------------------------------------------------
1 | from .functions import *
2 | from .modules import *
3 |
--------------------------------------------------------------------------------
/layers/box_utils.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | from __future__ import division
3 | import torch
4 | import time
5 |
6 | def point_form(boxes):
7 | """ Convert prior_boxes to (xmin, ymin, xmax, ymax)
8 | representation for comparison to point form ground truth data.
9 | Args:
10 | boxes: (tensor) center-size default boxes from priorbox layers.
11 | Return:
12 | boxes: (tensor) Converted xmin, ymin, xmax, ymax form of boxes.
13 | """
14 | return torch.cat((boxes[:, :2] - boxes[:, 2:]/2, # xmin, ymin
15 | boxes[:, :2] + boxes[:, 2:]/2), 1) # xmax, ymax
16 |
17 |
18 | def center_size(boxes):
19 | """ Convert prior_boxes to (cx, cy, w, h)
20 | representation for comparison to center-size form ground truth data.
21 | Args:
22 | boxes: (tensor) point_form boxes
23 | Return:
24 | boxes: (tensor) Converted xmin, ymin, xmax, ymax form of boxes.
25 | """
26 | return torch.cat((boxes[:, 2:] + boxes[:, :2])/2, # cx, cy
27 | boxes[:, 2:] - boxes[:, :2], 1) # w, h
28 |
29 |
30 | def intersect(box_a, box_b):
31 | """ We resize both tensors to [A,B,2] without new malloc:
32 | [A,2] -> [A,1,2] -> [A,B,2]
33 | [B,2] -> [1,B,2] -> [A,B,2]
34 | Then we compute the area of intersect between box_a and box_b.
35 | Args:
36 | box_a: (tensor) bounding boxes, Shape: [A,4].
37 | box_b: (tensor) bounding boxes, Shape: [B,4].
38 | Return:
39 | (tensor) intersection area, Shape: [A,B].
40 | """
41 | A = box_a.size(0)
42 | B = box_b.size(0)
43 | max_xy = torch.min(box_a[:, 2:].unsqueeze(1).expand(A, B, 2),
44 | box_b[:, 2:].unsqueeze(0).expand(A, B, 2))
45 | min_xy = torch.max(box_a[:, :2].unsqueeze(1).expand(A, B, 2),
46 | box_b[:, :2].unsqueeze(0).expand(A, B, 2))
47 | inter = torch.clamp((max_xy - min_xy), min=0)
48 | return inter[:, :, 0] * inter[:, :, 1]
49 |
50 |
51 | def jaccard(box_a, box_b):
52 | """Compute the jaccard overlap of two sets of boxes. The jaccard overlap
53 | is simply the intersection over union of two boxes. Here we operate on
54 | ground truth boxes and default boxes.
55 | E.g.:
56 | A ∩ B / A ∪ B = A ∩ B / (area(A) + area(B) - A ∩ B)
57 | Args:
58 | box_a: (tensor) Ground truth bounding boxes, Shape: [num_objects,4]
59 | box_b: (tensor) Prior boxes from priorbox layers, Shape: [num_priors,4]
60 | Return:
61 | jaccard overlap: (tensor) Shape: [box_a.size(0), box_b.size(0)]
62 | """
63 | inter = intersect(box_a, box_b)
64 | area_a = ((box_a[:, 2]-box_a[:, 0]) *
65 | (box_a[:, 3]-box_a[:, 1])).unsqueeze(1).expand_as(inter) # [A,B]
66 | area_b = ((box_b[:, 2]-box_b[:, 0]) *
67 | (box_b[:, 3]-box_b[:, 1])).unsqueeze(0).expand_as(inter) # [A,B]
68 | union = area_a + area_b - inter
69 | return inter / union # [A,B]
70 |
71 | def IoG(box_a, box_b):
72 | """Compute the IoG of two sets of boxes.
73 | E.g.:
74 | A ∩ B / A = A ∩ B / area(A)
75 | Args:
76 | box_a: (tensor) Ground truth bounding boxes, Shape: [num_objects,4]
77 | box_b: (tensor) Prior boxes from priorbox layers, Shape: [num_objects,4]
78 | Return:
79 | IoG: (tensor) Shape: [num_objects]
80 | """
81 | inter_xmin = torch.max(box_a[:, 0], box_b[:, 0])
82 | inter_ymin = torch.max(box_a[:, 1], box_b[:, 1])
83 | inter_xmax = torch.min(box_a[:, 2], box_b[:, 2])
84 | inter_ymax = torch.min(box_a[:, 3], box_b[:, 3])
85 | Iw = torch.clamp(inter_xmax - inter_xmin, min=0)
86 | Ih = torch.clamp(inter_ymax - inter_ymin, min=0)
87 | I = Iw * Ih
88 | G = (box_a[:, 2] - box_a[:, 0]) * (box_a[:, 3] - box_a[:, 1])
89 | return I / G
90 |
91 | def match(threshold, predicts, truths, priors, variances, labels, loc_t, loc_g, conf_t, idx):
92 | """Match each prior box with the ground truth box of the highest jaccard
93 | overlap, encode the bounding boxes, then return the matched indices
94 | corresponding to both confidence and location preds.
95 | new update: Match each predict box with the second largest target
96 | Args:
97 | threshold: (float) The overlap threshold used when mathing boxes.
98 | predicts: (tensor) encoded predict boxes, Shape: [num_obj, num_priors].
99 | truths: (tensor) Ground truth boxes, Shape: [num_obj, num_priors].
100 | priors: (tensor) Prior boxes from priorbox layers, Shape: [n_priors,4].
101 | variances: (tensor) Variances corresponding to each prior coord,
102 | Shape: [num_priors, 4].
103 | labels: (tensor) All the class labels for the image, Shape: [num_obj].
104 | loc_t: (tensor) Tensor to be filled w/ encoded location targets.
105 | loc_g: (tensor) Tensor to be filled w/ decoded second largest location targets.
106 | conf_t: (tensor) Tensor to be filled w/ matched indices for conf preds.
107 | idx: (int) current batch index
108 | Return:
109 | The matched indices corresponding to 1)location and 2)confidence preds.
110 | """
111 | # jaccard index
112 | overlaps = jaccard(
113 | truths,
114 | point_form(priors)
115 | )
116 | # (Bipartite Matching)
117 | # [1,num_objects] best prior for each ground truth
118 | best_prior_overlap, best_prior_idx = overlaps.max(1, keepdim=True)
119 | # [1,num_priors] best ground truth for each prior
120 | best_truth_overlap, best_truth_idx = overlaps.max(0, keepdim=True)
121 | best_truth_idx.squeeze_(0)
122 | best_truth_overlap.squeeze_(0)
123 | best_prior_idx.squeeze_(1)
124 | best_prior_overlap.squeeze_(1)
125 | best_truth_overlap.index_fill_(0, best_prior_idx, 2) # ensure best prior
126 | # TODO refactor: index best_prior_idx with long tensor
127 | # ensure every gt matches with its prior of max overlap
128 | for j in range(best_prior_idx.size(0)):
129 | best_truth_idx[best_prior_idx[j]] = j
130 |
131 | matches = truths[best_truth_idx]
132 | conf = labels[best_truth_idx] + 1 # Shape: [num_priors]
133 | conf[best_truth_overlap < threshold] = 0 # label as background
134 | loc = encode(matches, priors, variances)
135 | loc_t[idx] = loc # [num_priors,4] encoded offsets to learn
136 | conf_t[idx] = conf # [num_priors] top class label for each prior
137 |
138 | # jaccard index, predict with gt, not anchor with gt
139 | predicts = decode(predicts, priors, variances)
140 | overlaps = jaccard(
141 | truths,
142 | predicts
143 | )
144 | # for i in range(best_truth_idx.size(0)):
145 | # overlaps[best_truth_idx[i]][i] = -1
146 | # TODO select the second largest IoU target from the same class
147 | index = torch.unsqueeze(best_truth_idx, 0)
148 | overlaps.scatter_(0, index, -1)
149 | second_truth_overlap, second_truth_idx = overlaps.max(0, keepdim=True)
150 | second_truth_idx.squeeze_(0)
151 | matches_G = truths[second_truth_idx]
152 | loc_g[idx] = matches_G
153 |
154 | def encode(matched, priors, variances):
155 | """Encode the variances from the priorbox layers into the ground truth boxes
156 | we have matched (based on jaccard overlap) with the prior boxes.
157 | Args:
158 | matched: (tensor) Coords of ground truth for each prior in point-form
159 | Shape: [num_priors, 4].
160 | priors: (tensor) Prior boxes in center-offset form
161 | Shape: [num_priors,4].
162 | variances: (list[float]) Variances of priorboxes
163 | Return:
164 | encoded boxes (tensor), Shape: [num_priors, 4]
165 | """
166 |
167 | # dist b/t match center and prior's center
168 | g_cxcy = (matched[:, :2] + matched[:, 2:])/2 - priors[:, :2]
169 | # encode variance
170 | g_cxcy /= (variances[0] * priors[:, 2:])
171 | # match wh / prior wh
172 | g_wh = (matched[:, 2:] - matched[:, :2]) / priors[:, 2:]
173 | g_wh = torch.log(g_wh + 1e-10) / variances[1]
174 | # return target for smooth_l1_loss
175 | return torch.cat([g_cxcy, g_wh], 1) # [num_priors,4]
176 |
177 |
178 | # Adapted from https://github.com/Hakuyume/chainer-ssd
179 | def decode(loc, priors, variances):
180 | """Decode locations from predictions using priors to undo
181 | the encoding we did for offset regression at train time.
182 | Args:
183 | loc (tensor): location predictions for loc layers,
184 | Shape: [num_priors,4]
185 | priors (tensor): Prior boxes in center-offset form.
186 | Shape: [num_priors,4].
187 | variances: (list[float]) Variances of priorboxes
188 | Return:
189 | decoded bounding box predictions
190 | """
191 |
192 | boxes = torch.cat((
193 | priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:],
194 | priors[:, 2:] * torch.exp(loc[:, 2:] * variances[1])), 1)
195 | boxes[:, :2] -= boxes[:, 2:] / 2
196 | boxes[:, 2:] += boxes[:, :2]
197 | return boxes
198 |
199 | def decode_new(loc, priors, variances):
200 | """Decode locations from predictions using priors to undo
201 | the encoding we did for offset regression at train time.
202 | Args:
203 | loc (tensor): location predictions for loc layers,
204 | Shape: [num_priors,4]
205 | priors (tensor): Prior boxes in center-offset form.
206 | Shape: [num_priors,4].
207 | variances: (list[float]) Variances of priorboxes
208 | Return:
209 | decoded bounding box predictions
210 | """
211 | boxes = torch.cat((
212 | priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:],
213 | priors[:, 2:] * torch.exp(loc[:, 2:] * variances[1])), 1)
214 | boxes[:, :2] = boxes[:, :2] - boxes[:, 2:] / 2
215 | boxes[:, 2:] = boxes[:, 2:] + boxes[:, :2]
216 | return boxes
217 |
218 | def log_sum_exp(x):
219 | """Utility function for computing log_sum_exp while determining
220 | This will be used to determine unaveraged confidence loss across
221 | all examples in a batch.
222 | Args:
223 | x (Variable(tensor)): conf_preds from conf layers
224 | """
225 | x_max = x.data.max()
226 | return torch.log(torch.sum(torch.exp(x-x_max), 1, keepdim=True)) + x_max
227 |
228 |
229 | # Original author: Francisco Massa:
230 | # https://github.com/fmassa/object-detection.torch
231 | # Ported to PyTorch by Max deGroot (02/01/2017)
232 | def nms(boxes, scores, overlap=0.5, top_k=200):
233 | """Apply non-maximum suppression at test time to avoid detecting too many
234 | overlapping bounding boxes for a given object.
235 | Args:
236 | boxes: (tensor) The location preds for the img, Shape: [num_priors,4].
237 | scores: (tensor) The class predscores for the img, Shape:[num_priors].
238 | overlap: (float) The overlap thresh for suppressing unnecessary boxes.
239 | top_k: (int) The Maximum number of box preds to consider.
240 | Return:
241 | The indices of the kept boxes with respect to num_priors.
242 | """
243 | keep = scores.new(scores.size(0)).zero_().long()
244 | if boxes.numel() == 0:
245 | return keep
246 | x1 = boxes[:, 0]
247 | y1 = boxes[:, 1]
248 | x2 = boxes[:, 2]
249 | y2 = boxes[:, 3]
250 | area = torch.mul(x2 - x1, y2 - y1)
251 | v, idx = scores.sort(0) # sort in ascending order
252 | # I = I[v >= 0.01]
253 | idx = idx[-top_k:] # indices of the top-k largest vals
254 | xx1 = boxes.new()
255 | yy1 = boxes.new()
256 | xx2 = boxes.new()
257 | yy2 = boxes.new()
258 | w = boxes.new()
259 | h = boxes.new()
260 |
261 | # keep = torch.Tensor()
262 | count = 0
263 | while idx.numel() > 0:
264 | i = idx[-1] # index of current largest val
265 | # keep.append(i)
266 | keep[count] = i
267 | count += 1
268 | if idx.size(0) == 1:
269 | break
270 | idx = idx[:-1] # remove kept element from view
271 | # load bboxes of next highest vals
272 | torch.index_select(x1, 0, idx, out=xx1)
273 | torch.index_select(y1, 0, idx, out=yy1)
274 | torch.index_select(x2, 0, idx, out=xx2)
275 | torch.index_select(y2, 0, idx, out=yy2)
276 | # store element-wise max with next highest score
277 | xx1 = torch.clamp(xx1, min=x1[i])
278 | yy1 = torch.clamp(yy1, min=y1[i])
279 | xx2 = torch.clamp(xx2, max=x2[i])
280 | yy2 = torch.clamp(yy2, max=y2[i])
281 | w.resize_as_(xx2)
282 | h.resize_as_(yy2)
283 | w = xx2 - xx1
284 | h = yy2 - yy1
285 | # check sizes of xx1 and xx2.. after each iteration
286 | w = torch.clamp(w, min=0.0)
287 | h = torch.clamp(h, min=0.0)
288 | inter = w*h
289 | # IoU = i / (area(a) + area(b) - i)
290 | rem_areas = torch.index_select(area, 0, idx) # load remaining areas)
291 | union = (rem_areas - inter) + area[i]
292 | IoU = inter/union # store result in iou
293 | # keep only elements with an IoU <= overlap
294 | idx = idx[IoU.le(overlap)]
295 | return keep, count
296 |
--------------------------------------------------------------------------------
/layers/functions/__init__.py:
--------------------------------------------------------------------------------
1 | from .detection import Detect
2 | from .prior_box import PriorBox
3 |
4 |
5 | __all__ = ['Detect', 'PriorBox']
6 |
--------------------------------------------------------------------------------
/layers/functions/detection.py:
--------------------------------------------------------------------------------
1 | import torch
2 | from torch.autograd import Function
3 | from ..box_utils import decode, nms
4 | from data import voc as cfg
5 |
6 |
7 | class Detect(Function):
8 | """At test time, Detect is the final layer of SSD. Decode location preds,
9 | apply non-maximum suppression to location predictions based on conf
10 | scores and threshold to a top_k number of output predictions for both
11 | confidence score and locations.
12 | """
13 | def __init__(self, num_classes, bkg_label, top_k, conf_thresh, nms_thresh):
14 | self.num_classes = num_classes
15 | self.background_label = bkg_label
16 | self.top_k = top_k
17 | # Parameters used in nms.
18 | self.nms_thresh = nms_thresh
19 | if nms_thresh <= 0:
20 | raise ValueError('nms_threshold must be non negative.')
21 | self.conf_thresh = conf_thresh
22 | self.variance = cfg['variance']
23 |
24 | def forward(self, loc_data, conf_data, prior_data):
25 | """
26 | Args:
27 | loc_data: (tensor) Loc preds from loc layers
28 | Shape: [batch,num_priors*4]
29 | conf_data: (tensor) Shape: Conf preds from conf layers
30 | Shape: [batch*num_priors,num_classes]
31 | prior_data: (tensor) Prior boxes and variances from priorbox layers
32 | Shape: [1,num_priors,4]
33 | """
34 | num = loc_data.size(0) # batch size
35 | num_priors = prior_data.size(0)
36 | output = torch.zeros(num, self.num_classes, self.top_k, 5)
37 | conf_preds = conf_data.view(num, num_priors,
38 | self.num_classes).transpose(2, 1)
39 |
40 | # Decode predictions into bboxes.
41 | for i in range(num):
42 | decoded_boxes = decode(loc_data[i], prior_data, self.variance)
43 | # For each class, perform nms
44 | conf_scores = conf_preds[i].clone()
45 |
46 | for cl in range(1, self.num_classes):
47 | c_mask = conf_scores[cl].gt(self.conf_thresh)
48 | scores = conf_scores[cl][c_mask]
49 | if scores.dim() == 0:
50 | continue
51 | l_mask = c_mask.unsqueeze(1).expand_as(decoded_boxes)
52 | boxes = decoded_boxes[l_mask].view(-1, 4)
53 | # idx of highest scoring and non-overlapping boxes per class
54 | ids, count = nms(boxes, scores, self.nms_thresh, self.top_k)
55 | output[i, cl, :count] = \
56 | torch.cat((scores[ids[:count]].unsqueeze(1),
57 | boxes[ids[:count]]), 1)
58 | flt = output.contiguous().view(num, -1, 5)
59 | _, idx = flt[:, :, 0].sort(1, descending=True)
60 | _, rank = idx.sort(1)
61 | flt[(rank < self.top_k).unsqueeze(-1).expand_as(flt)].fill_(0)
62 | return output
63 |
--------------------------------------------------------------------------------
/layers/functions/prior_box.py:
--------------------------------------------------------------------------------
1 | from __future__ import division
2 | from math import sqrt as sqrt
3 | from itertools import product as product
4 | import torch
5 |
6 |
7 | class PriorBox(object):
8 | """Compute priorbox coordinates in center-offset form for each source
9 | feature map.
10 | """
11 | def __init__(self, cfg):
12 | super(PriorBox, self).__init__()
13 | self.image_size = cfg['min_dim']
14 | # number of priors for feature map location (either 4 or 6)
15 | self.num_priors = len(cfg['aspect_ratios'])
16 | self.variance = cfg['variance'] or [0.1]
17 | self.feature_maps = cfg['feature_maps']
18 | self.min_sizes = cfg['min_sizes']
19 | self.max_sizes = cfg['max_sizes']
20 | self.steps = cfg['steps']
21 | self.aspect_ratios = cfg['aspect_ratios']
22 | self.clip = cfg['clip']
23 | self.version = cfg['name']
24 | for v in self.variance:
25 | if v <= 0:
26 | raise ValueError('Variances must be greater than 0')
27 |
28 | def forward(self):
29 | mean = []
30 | for k, f in enumerate(self.feature_maps):
31 | for i, j in product(range(f), repeat=2):
32 | f_k = self.image_size / self.steps[k]
33 | # unit center x,y
34 | cx = (j + 0.5) / f_k
35 | cy = (i + 0.5) / f_k
36 |
37 | # aspect_ratio: 1
38 | # rel size: min_size
39 | s_k = self.min_sizes[k]/self.image_size
40 | mean += [cx, cy, s_k, s_k]
41 |
42 | # aspect_ratio: 1
43 | # rel size: sqrt(s_k * s_(k+1))
44 | s_k_prime = sqrt(s_k * (self.max_sizes[k]/self.image_size))
45 | mean += [cx, cy, s_k_prime, s_k_prime]
46 |
47 | # rest of aspect ratios
48 | for ar in self.aspect_ratios[k]:
49 | mean += [cx, cy, s_k*sqrt(ar), s_k/sqrt(ar)]
50 | mean += [cx, cy, s_k/sqrt(ar), s_k*sqrt(ar)]
51 | # back to torch land
52 | output = torch.Tensor(mean).view(-1, 4)
53 | if self.clip:
54 | output.clamp_(max=1, min=0)
55 | return output
56 |
--------------------------------------------------------------------------------
/layers/modules/__init__.py:
--------------------------------------------------------------------------------
1 | from .l2norm import L2Norm
2 | from .multibox_loss import MultiBoxLoss
3 | from .repulsion_loss import RepulsionLoss
4 |
5 | __all__ = ['L2Norm', 'MultiBoxLoss', 'RepulsionLoss']
6 |
--------------------------------------------------------------------------------
/layers/modules/l2norm.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn as nn
3 | from torch.autograd import Function
4 | from torch.autograd import Variable
5 | import torch.nn.init as init
6 |
7 | class L2Norm(nn.Module):
8 | def __init__(self,n_channels, scale):
9 | super(L2Norm,self).__init__()
10 | self.n_channels = n_channels
11 | self.gamma = scale or None
12 | self.eps = 1e-10
13 | self.weight = nn.Parameter(torch.Tensor(self.n_channels))
14 | self.reset_parameters()
15 |
16 | def reset_parameters(self):
17 | init.constant(self.weight,self.gamma)
18 |
19 | def forward(self, x):
20 | norm = x.pow(2).sum(dim=1, keepdim=True).sqrt()+self.eps
21 | #x /= norm
22 | x = torch.div(x,norm)
23 | out = self.weight.unsqueeze(0).unsqueeze(2).unsqueeze(3).expand_as(x) * x
24 | return out
25 |
--------------------------------------------------------------------------------
/layers/modules/multibox_loss.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | from __future__ import division
3 | import torch
4 | import torch.nn as nn
5 | import torch.nn.functional as F
6 | from torch.autograd import Variable
7 | from data import coco as cfg
8 | from ..box_utils import match, log_sum_exp
9 | from .repulsion_loss import RepulsionLoss
10 |
11 |
12 | class MultiBoxLoss(nn.Module):
13 | """SSD Weighted Loss Function
14 | Compute Targets:
15 | 1) Produce Confidence Target Indices by matching ground truth boxes
16 | with (default) 'priorboxes' that have jaccard index > threshold parameter
17 | (default threshold: 0.5).
18 | 2) Produce localization target by 'encoding' variance into offsets of ground
19 | truth boxes and their matched 'priorboxes'.
20 | 3) Hard negative mining to filter the excessive number of negative examples
21 | that comes with using a large number of default bounding boxes.
22 | (default negative:positive ratio 3:1)
23 | Objective Loss:
24 | L(x,c,l,g) = (Lconf(x, c) + αLloc(x,l,g)) / N
25 | Where, Lconf is the CrossEntropy Loss and Lloc is the SmoothL1 Loss
26 | weighted by α which is set to 1 by cross val.
27 | Args:
28 | c: class confidences,
29 | l: predicted boxes,
30 | g: ground truth boxes
31 | N: number of matched default boxes
32 | See: https://arxiv.org/pdf/1512.02325.pdf for more details.
33 | """
34 |
35 | def __init__(self, num_classes, overlap_thresh, prior_for_matching,
36 | bkg_label, neg_mining, neg_pos, neg_overlap, encode_target,
37 | use_gpu=True):
38 | super(MultiBoxLoss, self).__init__()
39 | self.use_gpu = use_gpu
40 | self.num_classes = num_classes
41 | self.threshold = overlap_thresh
42 | self.background_label = bkg_label
43 | self.encode_target = encode_target
44 | self.use_prior_for_matching = prior_for_matching
45 | self.do_neg_mining = neg_mining
46 | self.negpos_ratio = neg_pos
47 | self.neg_overlap = neg_overlap
48 | self.variance = cfg['variance']
49 |
50 | def forward(self, predictions, targets):
51 | """Multibox Loss
52 | Args:
53 | predictions (tuple): A tuple containing loc preds, conf preds,
54 | and prior boxes from SSD net.
55 | conf shape: torch.size(batch_size,num_priors,num_classes)
56 | loc shape: torch.size(batch_size,num_priors,4)
57 | priors shape: torch.size(num_priors,4)
58 |
59 | targets (tensor): Ground truth boxes and labels for a batch,
60 | shape: [batch_size,num_objs,5] (last idx is the label).
61 | """
62 | loc_data, conf_data, priors = predictions
63 | num = loc_data.size(0)
64 | priors = priors[:loc_data.size(1), :]
65 | num_priors = (priors.size(0))
66 | num_classes = self.num_classes
67 |
68 | # match priors (default boxes) and ground truth boxes
69 | loc_t = torch.Tensor(num, num_priors, 4)
70 | loc_g = torch.Tensor(num, num_priors, 4)
71 | conf_t = torch.LongTensor(num, num_priors)
72 | for idx in range(num):
73 | predicts = loc_data[idx].data
74 | truths = targets[idx][:, :-1].data
75 | labels = targets[idx][:, -1].data
76 | defaults = priors.data
77 | match(self.threshold, predicts, truths, defaults, self.variance, labels,
78 | loc_t, loc_g, conf_t, idx)
79 | if self.use_gpu:
80 | loc_t = loc_t.cuda()
81 | loc_g = loc_g.cuda()
82 | conf_t = conf_t.cuda()
83 | # wrap targets
84 | loc_t = Variable(loc_t, requires_grad=False)
85 | loc_g = Variable(loc_g, requires_grad=False)
86 | conf_t = Variable(conf_t, requires_grad=False)
87 |
88 | pos = conf_t > 0
89 | num_pos = pos.sum(dim=1, keepdim=True)
90 |
91 | # Localization Loss (Smooth L1)
92 | # Shape: [batch,num_priors,4]
93 | pos_idx = pos.unsqueeze(pos.dim()).expand_as(loc_data)
94 | loc_p = loc_data[pos_idx].view(-1, 4)
95 | loc_t = loc_t[pos_idx].view(-1, 4)
96 | loc_g = loc_g[pos_idx].view(-1, 4)
97 | priors = priors[pos_idx].view(-1, 4)
98 | loss_l = F.smooth_l1_loss(loc_p, loc_t, size_average=False)
99 | repul_loss = RepulsionLoss(sigma=0.)
100 | loss_l_repul = repul_loss(loc_p, loc_g, priors)
101 |
102 | # Compute max conf across batch for hard negative mining
103 | batch_conf = conf_data.view(-1, self.num_classes)
104 | loss_c = log_sum_exp(batch_conf) - batch_conf.gather(1, conf_t.view(-1, 1))
105 |
106 | # Hard Negative Mining
107 | loss_c[pos] = 0 # filter out pos boxes for now
108 | loss_c = loss_c.view(num, -1)
109 | _, loss_idx = loss_c.sort(1, descending=True)
110 | _, idx_rank = loss_idx.sort(1)
111 | num_pos = pos.long().sum(1, keepdim=True)
112 | num_neg = torch.clamp(self.negpos_ratio*num_pos, max=pos.size(1)-1)
113 | neg = idx_rank < num_neg.expand_as(idx_rank)
114 |
115 | # Confidence Loss Including Positive and Negative Examples
116 | pos_idx = pos.unsqueeze(2).expand_as(conf_data)
117 | neg_idx = neg.unsqueeze(2).expand_as(conf_data)
118 | conf_p = conf_data[(pos_idx+neg_idx).gt(0)].view(-1, self.num_classes)
119 | targets_weighted = conf_t[(pos+neg).gt(0)]
120 | loss_c = F.cross_entropy(conf_p, targets_weighted, size_average=False)
121 |
122 | # Sum of losses: L(x,c,l,g) = (Lconf(x, c) + αLloc(x,l,g)) / N
123 |
124 | N = num_pos.data.sum()
125 | loss_l /= N
126 | loss_l_repul /= N
127 | loss_c /= N
128 | return loss_l, loss_l_repul, loss_c
129 |
--------------------------------------------------------------------------------
/layers/modules/repulsion_loss.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | from __future__ import division
3 | import torch
4 | import torch.nn as nn
5 | import torch.nn.functional as F
6 | from torch.autograd import Variable
7 | from data import coco as cfg
8 | from ..box_utils import IoG, decode_new
9 | import sys
10 |
11 |
12 | class RepulsionLoss(nn.Module):
13 |
14 | def __init__(self, use_gpu=True, sigma=0.):
15 | super(RepulsionLoss, self).__init__()
16 | self.use_gpu = use_gpu
17 | self.variance = cfg['variance']
18 | self.sigma = sigma
19 |
20 | # TODO
21 | def smoothln(self, x, sigma=0.):
22 | pass
23 |
24 | def forward(self, loc_data, ground_data, prior_data):
25 |
26 | decoded_boxes = decode_new(loc_data, Variable(prior_data.data, requires_grad=False), self.variance)
27 | iog = IoG(ground_data, decoded_boxes)
28 | # sigma = 1
29 | # loss = torch.sum(-torch.log(1-iog+1e-10))
30 | # sigma = 0
31 | loss = torch.sum(iog)
32 | return loss
33 |
--------------------------------------------------------------------------------
/ssd.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn as nn
3 | import torch.nn.functional as F
4 | from torch.autograd import Variable
5 | from layers import *
6 | from data import voc, coco
7 | import os
8 |
9 |
10 | class SSD(nn.Module):
11 | """Single Shot Multibox Architecture
12 | The network is composed of a base VGG network followed by the
13 | added multibox conv layers. Each multibox layer branches into
14 | 1) conv2d for class conf scores
15 | 2) conv2d for localization predictions
16 | 3) associated priorbox layer to produce default bounding
17 | boxes specific to the layer's feature map size.
18 | See: https://arxiv.org/pdf/1512.02325.pdf for more details.
19 |
20 | Args:
21 | phase: (string) Can be "test" or "train"
22 | size: input image size
23 | base: VGG16 layers for input, size of either 300 or 500
24 | extras: extra layers that feed to multibox loc and conf layers
25 | head: "multibox head" consists of loc and conf conv layers
26 | """
27 |
28 | def __init__(self, phase, size, base, extras, head, num_classes):
29 | super(SSD, self).__init__()
30 | self.phase = phase
31 | self.num_classes = num_classes
32 | self.cfg = (coco, voc)[num_classes == 21]
33 | self.priorbox = PriorBox(self.cfg)
34 | self.priors = Variable(self.priorbox.forward(), volatile=True)
35 | self.size = size
36 |
37 | # SSD network
38 | self.vgg = nn.ModuleList(base)
39 | # Layer learns to scale the l2 normalized features from conv4_3
40 | self.L2Norm = L2Norm(512, 20)
41 | self.extras = nn.ModuleList(extras)
42 |
43 | self.loc = nn.ModuleList(head[0])
44 | self.conf = nn.ModuleList(head[1])
45 |
46 | if phase == 'test':
47 | self.softmax = nn.Softmax(dim=-1)
48 | self.detect = Detect(num_classes, 0, 200, 0.01, 0.45)
49 |
50 | def forward(self, x):
51 | """Applies network layers and ops on input image(s) x.
52 |
53 | Args:
54 | x: input image or batch of images. Shape: [batch,3,300,300].
55 |
56 | Return:
57 | Depending on phase:
58 | test:
59 | Variable(tensor) of output class label predictions,
60 | confidence score, and corresponding location predictions for
61 | each object detected. Shape: [batch,topk,7]
62 |
63 | train:
64 | list of concat outputs from:
65 | 1: confidence layers, Shape: [batch*num_priors,num_classes]
66 | 2: localization layers, Shape: [batch,num_priors*4]
67 | 3: priorbox layers, Shape: [2,num_priors*4]
68 | """
69 | sources = list()
70 | loc = list()
71 | conf = list()
72 |
73 | # apply vgg up to conv4_3 relu
74 | for k in range(23):
75 | x = self.vgg[k](x)
76 |
77 | s = self.L2Norm(x)
78 | sources.append(s)
79 |
80 | # apply vgg up to fc7
81 | for k in range(23, len(self.vgg)):
82 | x = self.vgg[k](x)
83 | sources.append(x)
84 |
85 | # apply extra layers and cache source layer outputs
86 | for k, v in enumerate(self.extras):
87 | x = F.relu(v(x), inplace=True)
88 | if k % 2 == 1:
89 | sources.append(x)
90 |
91 | # apply multibox head to source layers
92 | for (x, l, c) in zip(sources, self.loc, self.conf):
93 | loc.append(l(x).permute(0, 2, 3, 1).contiguous())
94 | conf.append(c(x).permute(0, 2, 3, 1).contiguous())
95 |
96 | loc = torch.cat([o.view(o.size(0), -1) for o in loc], 1)
97 | conf = torch.cat([o.view(o.size(0), -1) for o in conf], 1)
98 | if self.phase == "test":
99 | output = self.detect(
100 | loc.view(loc.size(0), -1, 4), # loc preds
101 | self.softmax(conf.view(conf.size(0), -1,
102 | self.num_classes)), # conf preds
103 | self.priors.type(type(x.data)) # default boxes
104 | )
105 | else:
106 | output = (
107 | loc.view(loc.size(0), -1, 4),
108 | conf.view(conf.size(0), -1, self.num_classes),
109 | self.priors
110 | )
111 | return output
112 |
113 | def load_weights(self, base_file):
114 | other, ext = os.path.splitext(base_file)
115 | if ext == '.pkl' or '.pth':
116 | print('Loading weights into state dict...')
117 | self.load_state_dict(torch.load(base_file,
118 | map_location=lambda storage, loc: storage))
119 | print('Finished!')
120 | else:
121 | print('Sorry only .pth and .pkl files supported.')
122 |
123 |
124 | # This function is derived from torchvision VGG make_layers()
125 | # https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py
126 | def vgg(cfg, i, batch_norm=False):
127 | layers = []
128 | in_channels = i
129 | for v in cfg:
130 | if v == 'M':
131 | layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
132 | elif v == 'C':
133 | layers += [nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True)]
134 | else:
135 | conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
136 | if batch_norm:
137 | layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
138 | else:
139 | layers += [conv2d, nn.ReLU(inplace=True)]
140 | in_channels = v
141 | pool5 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
142 | conv6 = nn.Conv2d(512, 1024, kernel_size=3, padding=6, dilation=6)
143 | conv7 = nn.Conv2d(1024, 1024, kernel_size=1)
144 | layers += [pool5, conv6,
145 | nn.ReLU(inplace=True), conv7, nn.ReLU(inplace=True)]
146 | return layers
147 |
148 |
149 | def add_extras(cfg, i, batch_norm=False):
150 | # Extra layers added to VGG for feature scaling
151 | layers = []
152 | in_channels = i
153 | flag = False
154 | for k, v in enumerate(cfg):
155 | if in_channels != 'S':
156 | if v == 'S':
157 | layers += [nn.Conv2d(in_channels, cfg[k + 1],
158 | kernel_size=(1, 3)[flag], stride=2, padding=1)]
159 | else:
160 | layers += [nn.Conv2d(in_channels, v, kernel_size=(1, 3)[flag])]
161 | flag = not flag
162 | in_channels = v
163 | return layers
164 |
165 |
166 | def multibox(vgg, extra_layers, cfg, num_classes):
167 | loc_layers = []
168 | conf_layers = []
169 | vgg_source = [21, -2]
170 | for k, v in enumerate(vgg_source):
171 | loc_layers += [nn.Conv2d(vgg[v].out_channels,
172 | cfg[k] * 4, kernel_size=3, padding=1)]
173 | conf_layers += [nn.Conv2d(vgg[v].out_channels,
174 | cfg[k] * num_classes, kernel_size=3, padding=1)]
175 | for k, v in enumerate(extra_layers[1::2], 2):
176 | loc_layers += [nn.Conv2d(v.out_channels, cfg[k]
177 | * 4, kernel_size=3, padding=1)]
178 | conf_layers += [nn.Conv2d(v.out_channels, cfg[k]
179 | * num_classes, kernel_size=3, padding=1)]
180 | return vgg, extra_layers, (loc_layers, conf_layers)
181 |
182 |
183 | base = {
184 | '300': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'C', 512, 512, 512, 'M',
185 | 512, 512, 512],
186 | '512': [],
187 | }
188 | extras = {
189 | '300': [256, 'S', 512, 128, 'S', 256, 128, 256, 128, 256],
190 | '512': [],
191 | }
192 | mbox = {
193 | '300': [4, 6, 6, 6, 4, 4], # number of boxes per feature map location
194 | '512': [],
195 | }
196 |
197 |
198 | def build_ssd(phase, size=300, num_classes=21):
199 | if phase != "test" and phase != "train":
200 | print("ERROR: Phase: " + phase + " not recognized")
201 | return
202 | if size != 300:
203 | print("ERROR: You specified size " + repr(size) + ". However, " +
204 | "currently only SSD300 (size=300) is supported!")
205 | return
206 | base_, extras_, head_ = multibox(vgg(base[str(size)], 3),
207 | add_extras(extras[str(size)], 1024),
208 | mbox[str(size)], num_classes)
209 | return SSD(phase, size, base_, extras_, head_, num_classes)
210 |
--------------------------------------------------------------------------------
/test.py:
--------------------------------------------------------------------------------
1 | from __future__ import print_function
2 | import sys
3 | import os
4 | import argparse
5 | import torch
6 | import torch.nn as nn
7 | import torch.backends.cudnn as cudnn
8 | import torchvision.transforms as transforms
9 | from torch.autograd import Variable
10 | from data import VOC_ROOT, VOC_CLASSES as labelmap
11 | from PIL import Image
12 | from data import VOCAnnotationTransform, VOCDetection, BaseTransform, VOC_CLASSES
13 | import torch.utils.data as data
14 | from ssd import build_ssd
15 |
16 | parser = argparse.ArgumentParser(description='Single Shot MultiBox Detection')
17 | parser.add_argument('--trained_model', default='weights/ssd_300_VOC0712.pth',
18 | type=str, help='Trained state_dict file path to open')
19 | parser.add_argument('--save_folder', default='eval/', type=str,
20 | help='Dir to save results')
21 | parser.add_argument('--visual_threshold', default=0.6, type=float,
22 | help='Final confidence threshold')
23 | parser.add_argument('--cuda', default=True, type=bool,
24 | help='Use cuda to train model')
25 | parser.add_argument('--voc_root', default=VOC_ROOT, help='Location of VOC root directory')
26 | parser.add_argument('-f', default=None, type=str, help="Dummy arg so we can load in Jupyter Notebooks")
27 | args = parser.parse_args()
28 |
29 | if args.cuda and torch.cuda.is_available():
30 | torch.set_default_tensor_type('torch.cuda.FloatTensor')
31 | else:
32 | torch.set_default_tensor_type('torch.FloatTensor')
33 |
34 | if not os.path.exists(args.save_folder):
35 | os.mkdir(args.save_folder)
36 |
37 |
38 | def test_net(save_folder, net, cuda, testset, transform, thresh):
39 | # dump predictions and assoc. ground truth to text file for now
40 | gt_filename = save_folder+'gt.txt'
41 | pd_filename = save_folder+'pred.txt'
42 | num_images = len(testset)
43 | for i in range(num_images):
44 | print('Testing image {:d}/{:d}....'.format(i+1, num_images))
45 | img = testset.pull_image(i)
46 | img_id, annotation = testset.pull_anno(i)
47 | x = torch.from_numpy(transform(img)[0]).permute(2, 0, 1)
48 | x = Variable(x.unsqueeze(0))
49 |
50 | with open(gt_filename, mode='a') as f:
51 | f.write(img_id+' ')
52 | for box in annotation:
53 | f.write(' '.join(str(b) for b in box)+' ')
54 | f.write('\n')
55 | if cuda:
56 | x = x.cuda()
57 |
58 | y = net(x) # forward pass
59 | detections = y.data
60 | # scale each detection back up to the image
61 | scale = torch.Tensor([img.shape[1], img.shape[0],
62 | img.shape[1], img.shape[0]])
63 | pred_num = 0
64 | for i in range(detections.size(1)):
65 | j = 0
66 | while detections[0, i, j, 0] >= thresh:
67 | if pred_num == 0:
68 | with open(pd_filename, mode='a') as f:
69 | f.write(img_id+' ')
70 | score = detections[0, i, j, 0]
71 | label_name = labelmap[i-1]
72 | pt = (detections[0, i, j, 1:]*scale).cpu().numpy()
73 | coords = (pt[0], pt[1], pt[2], pt[3])
74 | pred_num += 1
75 | with open(pd_filename, mode='a') as f:
76 | f.write(str(i-1) + ' ' + str(score) + ' ' +' '.join(str(c) for c in coords)+' ')
77 | j += 1
78 | with open(pd_filename, mode='a') as f:
79 | f.write('\n')
80 |
81 | def test_voc():
82 | # load net
83 | num_classes = len(VOC_CLASSES) + 1 # +1 background
84 | net = build_ssd('test', 300, num_classes) # initialize SSD
85 | net.load_state_dict(torch.load(args.trained_model))
86 | net.eval()
87 | print('Finished loading model!')
88 | # load data
89 | testset = VOCDetection(args.voc_root, [('2007', 'test')], None, VOCAnnotationTransform())
90 | if args.cuda:
91 | net = net.cuda()
92 | cudnn.benchmark = True
93 | # evaluation
94 | test_net(args.save_folder, net, args.cuda, testset,
95 | BaseTransform(net.size, (104, 117, 123)),
96 | thresh=args.visual_threshold)
97 |
98 | if __name__ == '__main__':
99 | test_voc()
100 |
--------------------------------------------------------------------------------
/train.py:
--------------------------------------------------------------------------------
1 | from __future__ import division
2 | from data import *
3 | from utils.augmentations import SSDAugmentation
4 | from layers.modules import MultiBoxLoss
5 | from ssd import build_ssd
6 | import os
7 | import sys
8 | import time
9 | import torch
10 | from torch.autograd import Variable
11 | import torch.nn as nn
12 | import torch.optim as optim
13 | import torch.backends.cudnn as cudnn
14 | import torch.nn.init as init
15 | import torch.utils.data as data
16 | import numpy as np
17 | import argparse
18 |
19 |
20 | def str2bool(v):
21 | return v.lower() in ("yes", "true", "t", "1")
22 |
23 |
24 | parser = argparse.ArgumentParser(
25 | description='Single Shot MultiBox Detector Training With Pytorch')
26 | train_set = parser.add_mutually_exclusive_group()
27 | parser.add_argument('--dataset', default='VOC', choices=['VOC', 'COCO'],
28 | type=str, help='VOC or COCO')
29 | parser.add_argument('--dataset_root', default=VOC_ROOT,
30 | help='Dataset root directory path')
31 | parser.add_argument('--basenet', default='vgg16_reducedfc.pth',
32 | help='Pretrained base model')
33 | parser.add_argument('--batch_size', default=32, type=int,
34 | help='Batch size for training')
35 | parser.add_argument('--resume', default=None, type=str,
36 | help='Checkpoint state_dict file to resume training from')
37 | parser.add_argument('--start_iter', default=0, type=int,
38 | help='Resume training at this iter')
39 | parser.add_argument('--num_workers', default=4, type=int,
40 | help='Number of workers used in dataloading')
41 | parser.add_argument('--cuda', default=True, type=str2bool,
42 | help='Use CUDA to train model')
43 | parser.add_argument('--lr', '--learning-rate', default=1e-3, type=float,
44 | help='initial learning rate')
45 | parser.add_argument('--momentum', default=0.9, type=float,
46 | help='Momentum value for optim')
47 | parser.add_argument('--weight_decay', default=5e-4, type=float,
48 | help='Weight decay for SGD')
49 | parser.add_argument('--gamma', default=0.1, type=float,
50 | help='Gamma update for SGD')
51 | parser.add_argument('--visdom', default=False, type=str2bool,
52 | help='Use visdom for loss visualization')
53 | parser.add_argument('--save_folder', default='weights/',
54 | help='Directory for saving checkpoint models')
55 | args = parser.parse_args()
56 |
57 |
58 | if torch.cuda.is_available():
59 | if args.cuda:
60 | torch.set_default_tensor_type('torch.cuda.FloatTensor')
61 | if not args.cuda:
62 | print("WARNING: It looks like you have a CUDA device, but aren't " +
63 | "using CUDA.\nRun with --cuda for optimal training speed.")
64 | torch.set_default_tensor_type('torch.FloatTensor')
65 | else:
66 | torch.set_default_tensor_type('torch.FloatTensor')
67 |
68 | if not os.path.exists(args.save_folder):
69 | os.mkdir(args.save_folder)
70 |
71 | import visdom
72 | viz=visdom.Visdom()
73 |
74 | def train():
75 | if args.dataset == 'COCO':
76 | if args.dataset_root == VOC_ROOT:
77 | if not os.path.exists(COCO_ROOT):
78 | parser.error('Must specify dataset_root if specifying dataset')
79 | print("WARNING: Using default COCO dataset_root because " +
80 | "--dataset_root was not specified.")
81 | args.dataset_root = COCO_ROOT
82 | cfg = coco
83 | dataset = COCODetection(root=args.dataset_root,
84 | transform=SSDAugmentation(cfg['min_dim'],
85 | MEANS))
86 | elif args.dataset == 'VOC':
87 | #if args.dataset_root == COCO_ROOT:
88 | # parser.error('Must specify dataset if specifying dataset_root')
89 | cfg = voc
90 | dataset = VOCDetection(root=args.dataset_root,
91 | transform=SSDAugmentation(cfg['min_dim'],
92 | MEANS))
93 |
94 | if args.visdom:
95 | import visdom
96 | viz = visdom.Visdom()
97 |
98 | ssd_net = build_ssd('train', cfg['min_dim'], cfg['num_classes'])
99 | net = ssd_net
100 |
101 | if args.cuda:
102 | net = torch.nn.DataParallel(ssd_net, device_ids=[0,1,2,3])
103 | cudnn.benchmark = True
104 |
105 | if args.resume:
106 | print('Resuming training, loading {}...'.format(args.resume))
107 | ssd_net.load_weights(args.resume)
108 | else:
109 | vgg_weights = torch.load(args.save_folder + args.basenet)
110 | print('Loading base network...')
111 | ssd_net.vgg.load_state_dict(vgg_weights)
112 |
113 | if args.cuda:
114 | net = net.cuda()
115 |
116 | if not args.resume:
117 | print('Initializing weights...')
118 | # initialize newly added layers' weights with xavier method
119 | ssd_net.extras.apply(weights_init)
120 | ssd_net.loc.apply(weights_init)
121 | ssd_net.conf.apply(weights_init)
122 |
123 | optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=args.momentum,
124 | weight_decay=args.weight_decay)
125 | criterion = MultiBoxLoss(cfg['num_classes'], 0.5, True, 0, True, 3, 0.5,
126 | False, args.cuda)
127 |
128 | net.train()
129 | # loss counters
130 | loc_loss = 0
131 | conf_loss = 0
132 | repul_loss = 0
133 | epoch = 0
134 | print('Loading the dataset...')
135 |
136 | epoch_size = len(dataset) // args.batch_size
137 | print('Training SSD on:', dataset.name)
138 | print('Using the specified args:')
139 | print(args)
140 |
141 | step_index = 0
142 |
143 | if args.visdom:
144 | vis_title = 'SSD.PyTorch on ' + dataset.name
145 | vis_legend = ['Loc Loss', 'Repul Loss', 'Conf Loss', 'Total Loss']
146 | iter_plot = create_vis_plot('Iteration', 'Loss', vis_title, vis_legend)
147 | epoch_plot = create_vis_plot('Epoch', 'Loss', vis_title, vis_legend)
148 |
149 | data_loader = data.DataLoader(dataset, args.batch_size,
150 | num_workers=args.num_workers,
151 | shuffle=True, collate_fn=detection_collate,
152 | pin_memory=True)
153 | # create batch iterator
154 | batch_iterator = iter(data_loader)
155 | for iteration in range(args.start_iter, cfg['max_iter']):
156 | if args.visdom and iteration != 0 and (iteration % epoch_size == 0):
157 | update_vis_plot(epoch, loc_loss, repul_loss, conf_loss, epoch_plot, None,
158 | 'append', epoch_size)
159 | # reset epoch loss counters
160 | loc_loss = 0
161 | conf_loss = 0
162 | repul_loss = 0
163 | epoch += 1
164 |
165 | if iteration in cfg['lr_steps']:
166 | step_index += 1
167 | adjust_learning_rate(optimizer, args.gamma, step_index)
168 |
169 | # load train data
170 | try:
171 | images, targets = next(batch_iterator)
172 | except StopIteration:
173 | batch_iterator = iter(data_loader)
174 | images, targets = next(batch_iterator)
175 |
176 | if args.cuda:
177 | images = Variable(images.cuda())
178 | targets = [Variable(ann.cuda(), volatile=True) for ann in targets]
179 | else:
180 | images = Variable(images)
181 | targets = [Variable(ann, volatile=True) for ann in targets]
182 | # forward
183 | t0 = time.time()
184 | out = net(images)
185 | # backprop
186 | optimizer.zero_grad()
187 | loss_l, loss_l_repul, loss_c = criterion(out, targets)
188 | loss = loss_l + loss_c + loss_l_repul
189 | loss.backward()
190 | optimizer.step()
191 | t1 = time.time()
192 | loc_loss += loss_l.data[0]
193 | conf_loss += loss_c.data[0]
194 | repul_loss += loss_l_repul.data[0]
195 |
196 | if iteration % 10 == 0:
197 | print('timer: %.4f sec.' % (t1 - t0))
198 | # print('iter ' + repr(iteration) + ' || Loss: %.4f ||' % (loss.data[0]), end=' ')
199 | print('iter ' + repr(iteration) + ' || Loss: %.4f ' % (loss.data[0]) + ' || conf_loss: %.4f ' % (loss_c.data[0]) + ' || smoothl1 loss: %.4f ' % (loss_l.data[0]) + ' || repul loss: %.4f ||' % (loss_l_repul.data[0]), end=' ')
200 |
201 | if args.visdom:
202 | update_vis_plot(iteration, loss_l.data[0], loss_l_repul.data[0], loss_c.data[0],
203 | iter_plot, epoch_plot, 'append')
204 |
205 | if iteration != 0 and iteration % 5000 == 0:
206 | print('Saving state, iter:', iteration)
207 | torch.save(ssd_net.state_dict(), 'weights/ssd300_VOC_' +
208 | repr(iteration) + '.pth')
209 | torch.save(ssd_net.state_dict(),
210 | args.save_folder + '' + args.dataset + '.pth')
211 |
212 |
213 | def adjust_learning_rate(optimizer, gamma, step):
214 | """Sets the learning rate to the initial LR decayed by 10 at every
215 | specified step
216 | # Adapted from PyTorch Imagenet example:
217 | # https://github.com/pytorch/examples/blob/master/imagenet/main.py
218 | """
219 | lr = args.lr * (gamma ** (step))
220 | for param_group in optimizer.param_groups:
221 | param_group['lr'] = lr
222 |
223 |
224 | def xavier(param):
225 | init.xavier_uniform(param)
226 |
227 |
228 | def weights_init(m):
229 | if isinstance(m, nn.Conv2d):
230 | xavier(m.weight.data)
231 | m.bias.data.zero_()
232 |
233 |
234 | def create_vis_plot(_xlabel, _ylabel, _title, _legend):
235 | return viz.line(
236 | X=torch.zeros((1,)).cpu(),
237 | Y=torch.zeros((1, 3)).cpu(),
238 | opts=dict(
239 | xlabel=_xlabel,
240 | ylabel=_ylabel,
241 | title=_title,
242 | legend=_legend
243 | )
244 | )
245 |
246 |
247 | def update_vis_plot(iteration, loc, conf, window1, window2, update_type,
248 | epoch_size=1):
249 | viz.line(
250 | X=torch.ones((1, 3)).cpu() * iteration,
251 | Y=torch.Tensor([loc, conf, loc + conf]).unsqueeze(0).cpu() / epoch_size,
252 | win=window1,
253 | update=update_type
254 | )
255 | # initialize epoch plot on first iteration
256 | if iteration == 0:
257 | viz.line(
258 | X=torch.zeros((1, 3)).cpu(),
259 | Y=torch.Tensor([loc, conf, loc + conf]).unsqueeze(0).cpu(),
260 | win=window2,
261 | update=True
262 | )
263 |
264 |
265 | if __name__ == '__main__':
266 | train()
267 |
--------------------------------------------------------------------------------
/utils/__init__.py:
--------------------------------------------------------------------------------
1 | from .augmentations import SSDAugmentation
--------------------------------------------------------------------------------
/utils/augmentations.py:
--------------------------------------------------------------------------------
1 | import torch
2 | from torchvision import transforms
3 | import cv2
4 | import numpy as np
5 | import types
6 | from numpy import random
7 |
8 |
9 | def intersect(box_a, box_b):
10 | max_xy = np.minimum(box_a[:, 2:], box_b[2:])
11 | min_xy = np.maximum(box_a[:, :2], box_b[:2])
12 | inter = np.clip((max_xy - min_xy), a_min=0, a_max=np.inf)
13 | return inter[:, 0] * inter[:, 1]
14 |
15 |
16 | def jaccard_numpy(box_a, box_b):
17 | """Compute the jaccard overlap of two sets of boxes. The jaccard overlap
18 | is simply the intersection over union of two boxes.
19 | E.g.:
20 | A ∩ B / A ∪ B = A ∩ B / (area(A) + area(B) - A ∩ B)
21 | Args:
22 | box_a: Multiple bounding boxes, Shape: [num_boxes,4]
23 | box_b: Single bounding box, Shape: [4]
24 | Return:
25 | jaccard overlap: Shape: [box_a.shape[0], box_a.shape[1]]
26 | """
27 | inter = intersect(box_a, box_b)
28 | area_a = ((box_a[:, 2]-box_a[:, 0]) *
29 | (box_a[:, 3]-box_a[:, 1])) # [A,B]
30 | area_b = ((box_b[2]-box_b[0]) *
31 | (box_b[3]-box_b[1])) # [A,B]
32 | union = area_a + area_b - inter
33 | return inter / union # [A,B]
34 |
35 |
36 | class Compose(object):
37 | """Composes several augmentations together.
38 | Args:
39 | transforms (List[Transform]): list of transforms to compose.
40 | Example:
41 | >>> augmentations.Compose([
42 | >>> transforms.CenterCrop(10),
43 | >>> transforms.ToTensor(),
44 | >>> ])
45 | """
46 |
47 | def __init__(self, transforms):
48 | self.transforms = transforms
49 |
50 | def __call__(self, img, boxes=None, labels=None):
51 | for t in self.transforms:
52 | img, boxes, labels = t(img, boxes, labels)
53 | return img, boxes, labels
54 |
55 |
56 | class Lambda(object):
57 | """Applies a lambda as a transform."""
58 |
59 | def __init__(self, lambd):
60 | assert isinstance(lambd, types.LambdaType)
61 | self.lambd = lambd
62 |
63 | def __call__(self, img, boxes=None, labels=None):
64 | return self.lambd(img, boxes, labels)
65 |
66 |
67 | class ConvertFromInts(object):
68 | def __call__(self, image, boxes=None, labels=None):
69 | return image.astype(np.float32), boxes, labels
70 |
71 |
72 | class SubtractMeans(object):
73 | def __init__(self, mean):
74 | self.mean = np.array(mean, dtype=np.float32)
75 |
76 | def __call__(self, image, boxes=None, labels=None):
77 | image = image.astype(np.float32)
78 | image -= self.mean
79 | return image.astype(np.float32), boxes, labels
80 |
81 |
82 | class ToAbsoluteCoords(object):
83 | def __call__(self, image, boxes=None, labels=None):
84 | height, width, channels = image.shape
85 | boxes[:, 0] *= width
86 | boxes[:, 2] *= width
87 | boxes[:, 1] *= height
88 | boxes[:, 3] *= height
89 |
90 | return image, boxes, labels
91 |
92 |
93 | class ToPercentCoords(object):
94 | def __call__(self, image, boxes=None, labels=None):
95 | height, width, channels = image.shape
96 | boxes[:, 0] /= width
97 | boxes[:, 2] /= width
98 | boxes[:, 1] /= height
99 | boxes[:, 3] /= height
100 |
101 | return image, boxes, labels
102 |
103 |
104 | class Resize(object):
105 | def __init__(self, size=300):
106 | self.size = size
107 |
108 | def __call__(self, image, boxes=None, labels=None):
109 | image = cv2.resize(image, (self.size,
110 | self.size))
111 | return image, boxes, labels
112 |
113 |
114 | class RandomSaturation(object):
115 | def __init__(self, lower=0.5, upper=1.5):
116 | self.lower = lower
117 | self.upper = upper
118 | assert self.upper >= self.lower, "contrast upper must be >= lower."
119 | assert self.lower >= 0, "contrast lower must be non-negative."
120 |
121 | def __call__(self, image, boxes=None, labels=None):
122 | if random.randint(2):
123 | image[:, :, 1] *= random.uniform(self.lower, self.upper)
124 |
125 | return image, boxes, labels
126 |
127 |
128 | class RandomHue(object):
129 | def __init__(self, delta=18.0):
130 | assert delta >= 0.0 and delta <= 360.0
131 | self.delta = delta
132 |
133 | def __call__(self, image, boxes=None, labels=None):
134 | if random.randint(2):
135 | image[:, :, 0] += random.uniform(-self.delta, self.delta)
136 | image[:, :, 0][image[:, :, 0] > 360.0] -= 360.0
137 | image[:, :, 0][image[:, :, 0] < 0.0] += 360.0
138 | return image, boxes, labels
139 |
140 |
141 | class RandomLightingNoise(object):
142 | def __init__(self):
143 | self.perms = ((0, 1, 2), (0, 2, 1),
144 | (1, 0, 2), (1, 2, 0),
145 | (2, 0, 1), (2, 1, 0))
146 |
147 | def __call__(self, image, boxes=None, labels=None):
148 | if random.randint(2):
149 | swap = self.perms[random.randint(len(self.perms))]
150 | shuffle = SwapChannels(swap) # shuffle channels
151 | image = shuffle(image)
152 | return image, boxes, labels
153 |
154 |
155 | class ConvertColor(object):
156 | def __init__(self, current='BGR', transform='HSV'):
157 | self.transform = transform
158 | self.current = current
159 |
160 | def __call__(self, image, boxes=None, labels=None):
161 | if self.current == 'BGR' and self.transform == 'HSV':
162 | image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
163 | elif self.current == 'HSV' and self.transform == 'BGR':
164 | image = cv2.cvtColor(image, cv2.COLOR_HSV2BGR)
165 | else:
166 | raise NotImplementedError
167 | return image, boxes, labels
168 |
169 |
170 | class RandomContrast(object):
171 | def __init__(self, lower=0.5, upper=1.5):
172 | self.lower = lower
173 | self.upper = upper
174 | assert self.upper >= self.lower, "contrast upper must be >= lower."
175 | assert self.lower >= 0, "contrast lower must be non-negative."
176 |
177 | # expects float image
178 | def __call__(self, image, boxes=None, labels=None):
179 | if random.randint(2):
180 | alpha = random.uniform(self.lower, self.upper)
181 | image *= alpha
182 | return image, boxes, labels
183 |
184 |
185 | class RandomBrightness(object):
186 | def __init__(self, delta=32):
187 | assert delta >= 0.0
188 | assert delta <= 255.0
189 | self.delta = delta
190 |
191 | def __call__(self, image, boxes=None, labels=None):
192 | if random.randint(2):
193 | delta = random.uniform(-self.delta, self.delta)
194 | image += delta
195 | return image, boxes, labels
196 |
197 |
198 | class ToCV2Image(object):
199 | def __call__(self, tensor, boxes=None, labels=None):
200 | return tensor.cpu().numpy().astype(np.float32).transpose((1, 2, 0)), boxes, labels
201 |
202 |
203 | class ToTensor(object):
204 | def __call__(self, cvimage, boxes=None, labels=None):
205 | return torch.from_numpy(cvimage.astype(np.float32)).permute(2, 0, 1), boxes, labels
206 |
207 |
208 | class RandomSampleCrop(object):
209 | """Crop
210 | Arguments:
211 | img (Image): the image being input during training
212 | boxes (Tensor): the original bounding boxes in pt form
213 | labels (Tensor): the class labels for each bbox
214 | mode (float tuple): the min and max jaccard overlaps
215 | Return:
216 | (img, boxes, classes)
217 | img (Image): the cropped image
218 | boxes (Tensor): the adjusted bounding boxes in pt form
219 | labels (Tensor): the class labels for each bbox
220 | """
221 | def __init__(self):
222 | self.sample_options = (
223 | # using entire original input image
224 | None,
225 | # sample a patch s.t. MIN jaccard w/ obj in .1,.3,.4,.7,.9
226 | (0.1, None),
227 | (0.3, None),
228 | (0.7, None),
229 | (0.9, None),
230 | # randomly sample a patch
231 | (None, None),
232 | )
233 |
234 | def __call__(self, image, boxes=None, labels=None):
235 | height, width, _ = image.shape
236 | while True:
237 | # randomly choose a mode
238 | mode = random.choice(self.sample_options)
239 | if mode is None:
240 | return image, boxes, labels
241 |
242 | min_iou, max_iou = mode
243 | if min_iou is None:
244 | min_iou = float('-inf')
245 | if max_iou is None:
246 | max_iou = float('inf')
247 |
248 | # max trails (50)
249 | for _ in range(50):
250 | current_image = image
251 |
252 | w = random.uniform(0.3 * width, width)
253 | h = random.uniform(0.3 * height, height)
254 |
255 | # aspect ratio constraint b/t .5 & 2
256 | if h / w < 0.5 or h / w > 2:
257 | continue
258 |
259 | left = random.uniform(width - w)
260 | top = random.uniform(height - h)
261 |
262 | # convert to integer rect x1,y1,x2,y2
263 | rect = np.array([int(left), int(top), int(left+w), int(top+h)])
264 |
265 | # calculate IoU (jaccard overlap) b/t the cropped and gt boxes
266 | overlap = jaccard_numpy(boxes, rect)
267 |
268 | # is min and max overlap constraint satisfied? if not try again
269 | if overlap.min() < min_iou and max_iou < overlap.max():
270 | continue
271 |
272 | # cut the crop from the image
273 | current_image = current_image[rect[1]:rect[3], rect[0]:rect[2],
274 | :]
275 |
276 | # keep overlap with gt box IF center in sampled patch
277 | centers = (boxes[:, :2] + boxes[:, 2:]) / 2.0
278 |
279 | # mask in all gt boxes that above and to the left of centers
280 | m1 = (rect[0] < centers[:, 0]) * (rect[1] < centers[:, 1])
281 |
282 | # mask in all gt boxes that under and to the right of centers
283 | m2 = (rect[2] > centers[:, 0]) * (rect[3] > centers[:, 1])
284 |
285 | # mask in that both m1 and m2 are true
286 | mask = m1 * m2
287 |
288 | # have any valid boxes? try again if not
289 | if not mask.any():
290 | continue
291 |
292 | # take only matching gt boxes
293 | current_boxes = boxes[mask, :].copy()
294 |
295 | # take only matching gt labels
296 | current_labels = labels[mask]
297 |
298 | # should we use the box left and top corner or the crop's
299 | current_boxes[:, :2] = np.maximum(current_boxes[:, :2],
300 | rect[:2])
301 | # adjust to crop (by substracting crop's left,top)
302 | current_boxes[:, :2] -= rect[:2]
303 |
304 | current_boxes[:, 2:] = np.minimum(current_boxes[:, 2:],
305 | rect[2:])
306 | # adjust to crop (by substracting crop's left,top)
307 | current_boxes[:, 2:] -= rect[:2]
308 |
309 | return current_image, current_boxes, current_labels
310 |
311 |
312 | class Expand(object):
313 | def __init__(self, mean):
314 | self.mean = mean
315 |
316 | def __call__(self, image, boxes, labels):
317 | if random.randint(2):
318 | return image, boxes, labels
319 |
320 | height, width, depth = image.shape
321 | ratio = random.uniform(1, 4)
322 | left = random.uniform(0, width*ratio - width)
323 | top = random.uniform(0, height*ratio - height)
324 |
325 | expand_image = np.zeros(
326 | (int(height*ratio), int(width*ratio), depth),
327 | dtype=image.dtype)
328 | expand_image[:, :, :] = self.mean
329 | expand_image[int(top):int(top + height),
330 | int(left):int(left + width)] = image
331 | image = expand_image
332 |
333 | boxes = boxes.copy()
334 | boxes[:, :2] += (int(left), int(top))
335 | boxes[:, 2:] += (int(left), int(top))
336 |
337 | return image, boxes, labels
338 |
339 |
340 | class RandomMirror(object):
341 | def __call__(self, image, boxes, classes):
342 | _, width, _ = image.shape
343 | if random.randint(2):
344 | image = image[:, ::-1]
345 | boxes = boxes.copy()
346 | boxes[:, 0::2] = width - boxes[:, 2::-2]
347 | return image, boxes, classes
348 |
349 |
350 | class SwapChannels(object):
351 | """Transforms a tensorized image by swapping the channels in the order
352 | specified in the swap tuple.
353 | Args:
354 | swaps (int triple): final order of channels
355 | eg: (2, 1, 0)
356 | """
357 |
358 | def __init__(self, swaps):
359 | self.swaps = swaps
360 |
361 | def __call__(self, image):
362 | """
363 | Args:
364 | image (Tensor): image tensor to be transformed
365 | Return:
366 | a tensor with channels swapped according to swap
367 | """
368 | # if torch.is_tensor(image):
369 | # image = image.data.cpu().numpy()
370 | # else:
371 | # image = np.array(image)
372 | image = image[:, :, self.swaps]
373 | return image
374 |
375 |
376 | class PhotometricDistort(object):
377 | def __init__(self):
378 | self.pd = [
379 | RandomContrast(),
380 | ConvertColor(transform='HSV'),
381 | RandomSaturation(),
382 | RandomHue(),
383 | ConvertColor(current='HSV', transform='BGR'),
384 | RandomContrast()
385 | ]
386 | self.rand_brightness = RandomBrightness()
387 | self.rand_light_noise = RandomLightingNoise()
388 |
389 | def __call__(self, image, boxes, labels):
390 | im = image.copy()
391 | im, boxes, labels = self.rand_brightness(im, boxes, labels)
392 | if random.randint(2):
393 | distort = Compose(self.pd[:-1])
394 | else:
395 | distort = Compose(self.pd[1:])
396 | im, boxes, labels = distort(im, boxes, labels)
397 | return self.rand_light_noise(im, boxes, labels)
398 |
399 |
400 | class SSDAugmentation(object):
401 | def __init__(self, size=300, mean=(104, 117, 123)):
402 | self.mean = mean
403 | self.size = size
404 | self.augment = Compose([
405 | ConvertFromInts(),
406 | ToAbsoluteCoords(),
407 | PhotometricDistort(),
408 | Expand(self.mean),
409 | RandomSampleCrop(),
410 | RandomMirror(),
411 | ToPercentCoords(),
412 | Resize(self.size),
413 | SubtractMeans(self.mean)
414 | ])
415 |
416 | def __call__(self, img, boxes, labels):
417 | return self.augment(img, boxes, labels)
418 |
--------------------------------------------------------------------------------