"
355 | ]
356 | },
357 | "metadata": {},
358 | "output_type": "display_data"
359 | }
360 | ],
361 | "source": [
362 | "#ploting heatmap for confusion matrix\n",
363 | "import seaborn as sns\n",
364 | "import matplotlib.pyplot as plt\n",
365 | "\n",
366 | "sns.heatmap(con_metric, annot=True, fmt='d')\n",
367 | "plt.title(\"Confusion Matrix\")\n",
368 | "plt.show()"
369 | ]
370 | },
371 | {
372 | "cell_type": "markdown",
373 | "metadata": {},
374 | "source": [
375 | "#### Precision, Recall & F1 Score"
376 | ]
377 | },
378 | {
379 | "cell_type": "code",
380 | "execution_count": 22,
381 | "metadata": {},
382 | "outputs": [
383 | {
384 | "name": "stdout",
385 | "output_type": "stream",
386 | "text": [
387 | " precision recall f1-score support\n",
388 | "\n",
389 | " Iris-setosa 1.00 1.00 1.00 13\n",
390 | "Iris-versicolor 1.00 0.69 0.81 16\n",
391 | " Iris-virginica 0.64 1.00 0.78 9\n",
392 | "\n",
393 | " avg / total 0.92 0.87 0.87 38\n",
394 | "\n"
395 | ]
396 | }
397 | ],
398 | "source": [
399 | "print(metrics.classification_report(y_test, y_pred))"
400 | ]
401 | },
402 | {
403 | "cell_type": "markdown",
404 | "metadata": {},
405 | "source": [
406 | "#### ROC AUC"
407 | ]
408 | },
409 | {
410 | "cell_type": "code",
411 | "execution_count": 16,
412 | "metadata": {},
413 | "outputs": [],
414 | "source": [
415 | "roc_auc = metrics.roc_auc_score(y_test, y_pred)\n",
416 | "print(roc_auc)"
417 | ]
418 | },
419 | {
420 | "cell_type": "markdown",
421 | "metadata": {},
422 | "source": [
423 | "#### Log Loss"
424 | ]
425 | },
426 | {
427 | "cell_type": "code",
428 | "execution_count": 19,
429 | "metadata": {},
430 | "outputs": [],
431 | "source": [
432 | "metrics.log_loss(y_test, y_pred)"
433 | ]
434 | }
435 | ],
436 | "metadata": {
437 | "kernelspec": {
438 | "display_name": "Python 3",
439 | "language": "python",
440 | "name": "python3"
441 | },
442 | "language_info": {
443 | "codemirror_mode": {
444 | "name": "ipython",
445 | "version": 3
446 | },
447 | "file_extension": ".py",
448 | "mimetype": "text/x-python",
449 | "name": "python",
450 | "nbconvert_exporter": "python",
451 | "pygments_lexer": "ipython3",
452 | "version": "3.6.5"
453 | },
454 | "toc": {
455 | "nav_menu": {},
456 | "number_sections": true,
457 | "sideBar": true,
458 | "skip_h1_title": false,
459 | "title_cell": "Table of Contents",
460 | "title_sidebar": "Contents",
461 | "toc_cell": false,
462 | "toc_position": {},
463 | "toc_section_display": true,
464 | "toc_window_display": false
465 | },
466 | "varInspector": {
467 | "cols": {
468 | "lenName": 16,
469 | "lenType": 16,
470 | "lenVar": 40
471 | },
472 | "kernels_config": {
473 | "python": {
474 | "delete_cmd_postfix": "",
475 | "delete_cmd_prefix": "del ",
476 | "library": "var_list.py",
477 | "varRefreshCmd": "print(var_dic_list())"
478 | },
479 | "r": {
480 | "delete_cmd_postfix": ") ",
481 | "delete_cmd_prefix": "rm(",
482 | "library": "var_list.r",
483 | "varRefreshCmd": "cat(var_dic_list()) "
484 | }
485 | },
486 | "types_to_exclude": [
487 | "module",
488 | "function",
489 | "builtin_function_or_method",
490 | "instance",
491 | "_Feature"
492 | ],
493 | "window_display": false
494 | }
495 | },
496 | "nbformat": 4,
497 | "nbformat_minor": 2
498 | }
499 |
--------------------------------------------------------------------------------
/12. K-NN/Iris.csv:
--------------------------------------------------------------------------------
1 | Id,SepalLengthCm,SepalWidthCm,PetalLengthCm,PetalWidthCm,Species
2 | 1,5.1,3.5,1.4,0.2,Iris-setosa
3 | 2,4.9,3.0,1.4,0.2,Iris-setosa
4 | 3,4.7,3.2,1.3,0.2,Iris-setosa
5 | 4,4.6,3.1,1.5,0.2,Iris-setosa
6 | 5,5.0,3.6,1.4,0.2,Iris-setosa
7 | 6,5.4,3.9,1.7,0.4,Iris-setosa
8 | 7,4.6,3.4,1.4,0.3,Iris-setosa
9 | 8,5.0,3.4,1.5,0.2,Iris-setosa
10 | 9,4.4,2.9,1.4,0.2,Iris-setosa
11 | 10,4.9,3.1,1.5,0.1,Iris-setosa
12 | 11,5.4,3.7,1.5,0.2,Iris-setosa
13 | 12,4.8,3.4,1.6,0.2,Iris-setosa
14 | 13,4.8,3.0,1.4,0.1,Iris-setosa
15 | 14,4.3,3.0,1.1,0.1,Iris-setosa
16 | 15,5.8,4.0,1.2,0.2,Iris-setosa
17 | 16,5.7,4.4,1.5,0.4,Iris-setosa
18 | 17,5.4,3.9,1.3,0.4,Iris-setosa
19 | 18,5.1,3.5,1.4,0.3,Iris-setosa
20 | 19,5.7,3.8,1.7,0.3,Iris-setosa
21 | 20,5.1,3.8,1.5,0.3,Iris-setosa
22 | 21,5.4,3.4,1.7,0.2,Iris-setosa
23 | 22,5.1,3.7,1.5,0.4,Iris-setosa
24 | 23,4.6,3.6,1.0,0.2,Iris-setosa
25 | 24,5.1,3.3,1.7,0.5,Iris-setosa
26 | 25,4.8,3.4,1.9,0.2,Iris-setosa
27 | 26,5.0,3.0,1.6,0.2,Iris-setosa
28 | 27,5.0,3.4,1.6,0.4,Iris-setosa
29 | 28,5.2,3.5,1.5,0.2,Iris-setosa
30 | 29,5.2,3.4,1.4,0.2,Iris-setosa
31 | 30,4.7,3.2,1.6,0.2,Iris-setosa
32 | 31,4.8,3.1,1.6,0.2,Iris-setosa
33 | 32,5.4,3.4,1.5,0.4,Iris-setosa
34 | 33,5.2,4.1,1.5,0.1,Iris-setosa
35 | 34,5.5,4.2,1.4,0.2,Iris-setosa
36 | 35,4.9,3.1,1.5,0.1,Iris-setosa
37 | 36,5.0,3.2,1.2,0.2,Iris-setosa
38 | 37,5.5,3.5,1.3,0.2,Iris-setosa
39 | 38,4.9,3.1,1.5,0.1,Iris-setosa
40 | 39,4.4,3.0,1.3,0.2,Iris-setosa
41 | 40,5.1,3.4,1.5,0.2,Iris-setosa
42 | 41,5.0,3.5,1.3,0.3,Iris-setosa
43 | 42,4.5,2.3,1.3,0.3,Iris-setosa
44 | 43,4.4,3.2,1.3,0.2,Iris-setosa
45 | 44,5.0,3.5,1.6,0.6,Iris-setosa
46 | 45,5.1,3.8,1.9,0.4,Iris-setosa
47 | 46,4.8,3.0,1.4,0.3,Iris-setosa
48 | 47,5.1,3.8,1.6,0.2,Iris-setosa
49 | 48,4.6,3.2,1.4,0.2,Iris-setosa
50 | 49,5.3,3.7,1.5,0.2,Iris-setosa
51 | 50,5.0,3.3,1.4,0.2,Iris-setosa
52 | 51,7.0,3.2,4.7,1.4,Iris-versicolor
53 | 52,6.4,3.2,4.5,1.5,Iris-versicolor
54 | 53,6.9,3.1,4.9,1.5,Iris-versicolor
55 | 54,5.5,2.3,4.0,1.3,Iris-versicolor
56 | 55,6.5,2.8,4.6,1.5,Iris-versicolor
57 | 56,5.7,2.8,4.5,1.3,Iris-versicolor
58 | 57,6.3,3.3,4.7,1.6,Iris-versicolor
59 | 58,4.9,2.4,3.3,1.0,Iris-versicolor
60 | 59,6.6,2.9,4.6,1.3,Iris-versicolor
61 | 60,5.2,2.7,3.9,1.4,Iris-versicolor
62 | 61,5.0,2.0,3.5,1.0,Iris-versicolor
63 | 62,5.9,3.0,4.2,1.5,Iris-versicolor
64 | 63,6.0,2.2,4.0,1.0,Iris-versicolor
65 | 64,6.1,2.9,4.7,1.4,Iris-versicolor
66 | 65,5.6,2.9,3.6,1.3,Iris-versicolor
67 | 66,6.7,3.1,4.4,1.4,Iris-versicolor
68 | 67,5.6,3.0,4.5,1.5,Iris-versicolor
69 | 68,5.8,2.7,4.1,1.0,Iris-versicolor
70 | 69,6.2,2.2,4.5,1.5,Iris-versicolor
71 | 70,5.6,2.5,3.9,1.1,Iris-versicolor
72 | 71,5.9,3.2,4.8,1.8,Iris-versicolor
73 | 72,6.1,2.8,4.0,1.3,Iris-versicolor
74 | 73,6.3,2.5,4.9,1.5,Iris-versicolor
75 | 74,6.1,2.8,4.7,1.2,Iris-versicolor
76 | 75,6.4,2.9,4.3,1.3,Iris-versicolor
77 | 76,6.6,3.0,4.4,1.4,Iris-versicolor
78 | 77,6.8,2.8,4.8,1.4,Iris-versicolor
79 | 78,6.7,3.0,5.0,1.7,Iris-versicolor
80 | 79,6.0,2.9,4.5,1.5,Iris-versicolor
81 | 80,5.7,2.6,3.5,1.0,Iris-versicolor
82 | 81,5.5,2.4,3.8,1.1,Iris-versicolor
83 | 82,5.5,2.4,3.7,1.0,Iris-versicolor
84 | 83,5.8,2.7,3.9,1.2,Iris-versicolor
85 | 84,6.0,2.7,5.1,1.6,Iris-versicolor
86 | 85,5.4,3.0,4.5,1.5,Iris-versicolor
87 | 86,6.0,3.4,4.5,1.6,Iris-versicolor
88 | 87,6.7,3.1,4.7,1.5,Iris-versicolor
89 | 88,6.3,2.3,4.4,1.3,Iris-versicolor
90 | 89,5.6,3.0,4.1,1.3,Iris-versicolor
91 | 90,5.5,2.5,4.0,1.3,Iris-versicolor
92 | 91,5.5,2.6,4.4,1.2,Iris-versicolor
93 | 92,6.1,3.0,4.6,1.4,Iris-versicolor
94 | 93,5.8,2.6,4.0,1.2,Iris-versicolor
95 | 94,5.0,2.3,3.3,1.0,Iris-versicolor
96 | 95,5.6,2.7,4.2,1.3,Iris-versicolor
97 | 96,5.7,3.0,4.2,1.2,Iris-versicolor
98 | 97,5.7,2.9,4.2,1.3,Iris-versicolor
99 | 98,6.2,2.9,4.3,1.3,Iris-versicolor
100 | 99,5.1,2.5,3.0,1.1,Iris-versicolor
101 | 100,5.7,2.8,4.1,1.3,Iris-versicolor
102 | 101,6.3,3.3,6.0,2.5,Iris-virginica
103 | 102,5.8,2.7,5.1,1.9,Iris-virginica
104 | 103,7.1,3.0,5.9,2.1,Iris-virginica
105 | 104,6.3,2.9,5.6,1.8,Iris-virginica
106 | 105,6.5,3.0,5.8,2.2,Iris-virginica
107 | 106,7.6,3.0,6.6,2.1,Iris-virginica
108 | 107,4.9,2.5,4.5,1.7,Iris-virginica
109 | 108,7.3,2.9,6.3,1.8,Iris-virginica
110 | 109,6.7,2.5,5.8,1.8,Iris-virginica
111 | 110,7.2,3.6,6.1,2.5,Iris-virginica
112 | 111,6.5,3.2,5.1,2.0,Iris-virginica
113 | 112,6.4,2.7,5.3,1.9,Iris-virginica
114 | 113,6.8,3.0,5.5,2.1,Iris-virginica
115 | 114,5.7,2.5,5.0,2.0,Iris-virginica
116 | 115,5.8,2.8,5.1,2.4,Iris-virginica
117 | 116,6.4,3.2,5.3,2.3,Iris-virginica
118 | 117,6.5,3.0,5.5,1.8,Iris-virginica
119 | 118,7.7,3.8,6.7,2.2,Iris-virginica
120 | 119,7.7,2.6,6.9,2.3,Iris-virginica
121 | 120,6.0,2.2,5.0,1.5,Iris-virginica
122 | 121,6.9,3.2,5.7,2.3,Iris-virginica
123 | 122,5.6,2.8,4.9,2.0,Iris-virginica
124 | 123,7.7,2.8,6.7,2.0,Iris-virginica
125 | 124,6.3,2.7,4.9,1.8,Iris-virginica
126 | 125,6.7,3.3,5.7,2.1,Iris-virginica
127 | 126,7.2,3.2,6.0,1.8,Iris-virginica
128 | 127,6.2,2.8,4.8,1.8,Iris-virginica
129 | 128,6.1,3.0,4.9,1.8,Iris-virginica
130 | 129,6.4,2.8,5.6,2.1,Iris-virginica
131 | 130,7.2,3.0,5.8,1.6,Iris-virginica
132 | 131,7.4,2.8,6.1,1.9,Iris-virginica
133 | 132,7.9,3.8,6.4,2.0,Iris-virginica
134 | 133,6.4,2.8,5.6,2.2,Iris-virginica
135 | 134,6.3,2.8,5.1,1.5,Iris-virginica
136 | 135,6.1,2.6,5.6,1.4,Iris-virginica
137 | 136,7.7,3.0,6.1,2.3,Iris-virginica
138 | 137,6.3,3.4,5.6,2.4,Iris-virginica
139 | 138,6.4,3.1,5.5,1.8,Iris-virginica
140 | 139,6.0,3.0,4.8,1.8,Iris-virginica
141 | 140,6.9,3.1,5.4,2.1,Iris-virginica
142 | 141,6.7,3.1,5.6,2.4,Iris-virginica
143 | 142,6.9,3.1,5.1,2.3,Iris-virginica
144 | 143,5.8,2.7,5.1,1.9,Iris-virginica
145 | 144,6.8,3.2,5.9,2.3,Iris-virginica
146 | 145,6.7,3.3,5.7,2.5,Iris-virginica
147 | 146,6.7,3.0,5.2,2.3,Iris-virginica
148 | 147,6.3,2.5,5.0,1.9,Iris-virginica
149 | 148,6.5,3.0,5.2,2.0,Iris-virginica
150 | 149,6.2,3.4,5.4,2.3,Iris-virginica
151 | 150,5.9,3.0,5.1,1.8,Iris-virginica
152 |
--------------------------------------------------------------------------------
/12. K-NN/knn.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "## Loading the Data"
8 | ]
9 | },
10 | {
11 | "cell_type": "code",
12 | "execution_count": 1,
13 | "metadata": {
14 | "ExecuteTime": {
15 | "end_time": "2018-08-28T13:18:52.554565Z",
16 | "start_time": "2018-08-28T13:18:42.492777Z"
17 | },
18 | "scrolled": false
19 | },
20 | "outputs": [
21 | {
22 | "data": {
23 | "text/html": [
24 | "\n",
25 | "\n",
38 | "
\n",
39 | " \n",
40 | " \n",
41 | " \n",
42 | " Id \n",
43 | " SepalLengthCm \n",
44 | " SepalWidthCm \n",
45 | " PetalLengthCm \n",
46 | " PetalWidthCm \n",
47 | " Species \n",
48 | " \n",
49 | " \n",
50 | " \n",
51 | " \n",
52 | " 0 \n",
53 | " 1 \n",
54 | " 5.1 \n",
55 | " 3.5 \n",
56 | " 1.4 \n",
57 | " 0.2 \n",
58 | " Iris-setosa \n",
59 | " \n",
60 | " \n",
61 | " 1 \n",
62 | " 2 \n",
63 | " 4.9 \n",
64 | " 3.0 \n",
65 | " 1.4 \n",
66 | " 0.2 \n",
67 | " Iris-setosa \n",
68 | " \n",
69 | " \n",
70 | " 2 \n",
71 | " 3 \n",
72 | " 4.7 \n",
73 | " 3.2 \n",
74 | " 1.3 \n",
75 | " 0.2 \n",
76 | " Iris-setosa \n",
77 | " \n",
78 | " \n",
79 | " 3 \n",
80 | " 4 \n",
81 | " 4.6 \n",
82 | " 3.1 \n",
83 | " 1.5 \n",
84 | " 0.2 \n",
85 | " Iris-setosa \n",
86 | " \n",
87 | " \n",
88 | " 4 \n",
89 | " 5 \n",
90 | " 5.0 \n",
91 | " 3.6 \n",
92 | " 1.4 \n",
93 | " 0.2 \n",
94 | " Iris-setosa \n",
95 | " \n",
96 | " \n",
97 | "
\n",
98 | "
"
99 | ],
100 | "text/plain": [
101 | " Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm Species\n",
102 | "0 1 5.1 3.5 1.4 0.2 Iris-setosa\n",
103 | "1 2 4.9 3.0 1.4 0.2 Iris-setosa\n",
104 | "2 3 4.7 3.2 1.3 0.2 Iris-setosa\n",
105 | "3 4 4.6 3.1 1.5 0.2 Iris-setosa\n",
106 | "4 5 5.0 3.6 1.4 0.2 Iris-setosa"
107 | ]
108 | },
109 | "execution_count": 1,
110 | "metadata": {},
111 | "output_type": "execute_result"
112 | }
113 | ],
114 | "source": [
115 | "import pandas as pd\n",
116 | "\n",
117 | "df = pd.read_csv('Iris.csv')\n",
118 | "\n",
119 | "df.head()"
120 | ]
121 | },
122 | {
123 | "cell_type": "code",
124 | "execution_count": 12,
125 | "metadata": {
126 | "ExecuteTime": {
127 | "end_time": "2018-08-28T13:25:15.259849Z",
128 | "start_time": "2018-08-28T13:25:15.252206Z"
129 | },
130 | "scrolled": true
131 | },
132 | "outputs": [
133 | {
134 | "data": {
135 | "text/plain": [
136 | "Iris-versicolor 50\n",
137 | "Iris-setosa 50\n",
138 | "Iris-virginica 50\n",
139 | "Name: Species, dtype: int64"
140 | ]
141 | },
142 | "execution_count": 12,
143 | "metadata": {},
144 | "output_type": "execute_result"
145 | }
146 | ],
147 | "source": [
148 | "df['Species'].value_counts()"
149 | ]
150 | },
151 | {
152 | "cell_type": "code",
153 | "execution_count": 2,
154 | "metadata": {
155 | "ExecuteTime": {
156 | "end_time": "2018-08-28T13:20:44.412954Z",
157 | "start_time": "2018-08-28T13:20:44.406610Z"
158 | }
159 | },
160 | "outputs": [],
161 | "source": [
162 | "label = df['Species']\n",
163 | "data = df.drop(\"Species\",axis=1)\n",
164 | "data = data.drop(\"Id\",axis=1)"
165 | ]
166 | },
167 | {
168 | "cell_type": "code",
169 | "execution_count": 3,
170 | "metadata": {
171 | "ExecuteTime": {
172 | "end_time": "2018-08-28T13:20:48.368033Z",
173 | "start_time": "2018-08-28T13:20:48.363026Z"
174 | }
175 | },
176 | "outputs": [
177 | {
178 | "name": "stdout",
179 | "output_type": "stream",
180 | "text": [
181 | "(150, 4)\n",
182 | "(150,)\n"
183 | ]
184 | }
185 | ],
186 | "source": [
187 | "print(data.shape)\n",
188 | "print(label.shape)"
189 | ]
190 | },
191 | {
192 | "cell_type": "code",
193 | "execution_count": 4,
194 | "metadata": {
195 | "ExecuteTime": {
196 | "end_time": "2018-08-28T13:21:12.869461Z",
197 | "start_time": "2018-08-28T13:21:03.190357Z"
198 | },
199 | "scrolled": true
200 | },
201 | "outputs": [
202 | {
203 | "name": "stdout",
204 | "output_type": "stream",
205 | "text": [
206 | "(150, 4)\n"
207 | ]
208 | }
209 | ],
210 | "source": [
211 | "# Data-preprocessing: Standardizing the data\n",
212 | "\n",
213 | "from sklearn.preprocessing import StandardScaler\n",
214 | "standardized_data = StandardScaler().fit_transform(data)\n",
215 | "print(standardized_data.shape)\n"
216 | ]
217 | },
218 | {
219 | "cell_type": "markdown",
220 | "metadata": {},
221 | "source": [
222 | "## Test Train Split"
223 | ]
224 | },
225 | {
226 | "cell_type": "code",
227 | "execution_count": 5,
228 | "metadata": {
229 | "ExecuteTime": {
230 | "end_time": "2018-08-28T13:21:34.456738Z",
231 | "start_time": "2018-08-28T13:21:33.866468Z"
232 | }
233 | },
234 | "outputs": [],
235 | "source": [
236 | "from sklearn.model_selection import train_test_split\n",
237 | "X_train, X_test, y_train, y_test = train_test_split(data, \\\n",
238 | " label, \\\n",
239 | " test_size = 0.25, \\\n",
240 | " random_state = 0)"
241 | ]
242 | },
243 | {
244 | "cell_type": "markdown",
245 | "metadata": {},
246 | "source": [
247 | "## Training"
248 | ]
249 | },
250 | {
251 | "cell_type": "code",
252 | "execution_count": 6,
253 | "metadata": {
254 | "ExecuteTime": {
255 | "end_time": "2018-08-28T13:23:00.800734Z",
256 | "start_time": "2018-08-28T13:23:00.217299Z"
257 | }
258 | },
259 | "outputs": [
260 | {
261 | "data": {
262 | "text/plain": [
263 | "KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',\n",
264 | " metric_params=None, n_jobs=1, n_neighbors=5, p=2,\n",
265 | " weights='uniform')"
266 | ]
267 | },
268 | "execution_count": 6,
269 | "metadata": {},
270 | "output_type": "execute_result"
271 | }
272 | ],
273 | "source": [
274 | "from sklearn.neighbors import KNeighborsClassifier\n",
275 | "classifier = KNeighborsClassifier()\n",
276 | "classifier.fit(X_train, y_train)"
277 | ]
278 | },
279 | {
280 | "cell_type": "markdown",
281 | "metadata": {},
282 | "source": [
283 | "## Predictions"
284 | ]
285 | },
286 | {
287 | "cell_type": "code",
288 | "execution_count": 7,
289 | "metadata": {
290 | "ExecuteTime": {
291 | "end_time": "2018-08-28T13:23:16.500700Z",
292 | "start_time": "2018-08-28T13:23:16.430890Z"
293 | }
294 | },
295 | "outputs": [],
296 | "source": [
297 | "y_pred = classifier.predict(X_test)"
298 | ]
299 | },
300 | {
301 | "cell_type": "markdown",
302 | "metadata": {},
303 | "source": [
304 | "## Measuring Performance"
305 | ]
306 | },
307 | {
308 | "cell_type": "code",
309 | "execution_count": 8,
310 | "metadata": {
311 | "ExecuteTime": {
312 | "end_time": "2018-08-28T13:23:41.528777Z",
313 | "start_time": "2018-08-28T13:23:41.522759Z"
314 | }
315 | },
316 | "outputs": [
317 | {
318 | "data": {
319 | "text/plain": [
320 | "0.9736842105263158"
321 | ]
322 | },
323 | "execution_count": 8,
324 | "metadata": {},
325 | "output_type": "execute_result"
326 | }
327 | ],
328 | "source": [
329 | "# calculate accuracy of class predictions\n",
330 | "from sklearn import metrics\n",
331 | "metrics.accuracy_score(y_test, y_pred)"
332 | ]
333 | }
334 | ],
335 | "metadata": {
336 | "kernelspec": {
337 | "display_name": "Python 3",
338 | "language": "python",
339 | "name": "python3"
340 | },
341 | "language_info": {
342 | "codemirror_mode": {
343 | "name": "ipython",
344 | "version": 3
345 | },
346 | "file_extension": ".py",
347 | "mimetype": "text/x-python",
348 | "name": "python",
349 | "nbconvert_exporter": "python",
350 | "pygments_lexer": "ipython3",
351 | "version": "3.6.5"
352 | },
353 | "toc": {
354 | "nav_menu": {},
355 | "number_sections": true,
356 | "sideBar": true,
357 | "skip_h1_title": false,
358 | "title_cell": "Table of Contents",
359 | "title_sidebar": "Contents",
360 | "toc_cell": false,
361 | "toc_position": {},
362 | "toc_section_display": true,
363 | "toc_window_display": false
364 | },
365 | "varInspector": {
366 | "cols": {
367 | "lenName": 16,
368 | "lenType": 16,
369 | "lenVar": 40
370 | },
371 | "kernels_config": {
372 | "python": {
373 | "delete_cmd_postfix": "",
374 | "delete_cmd_prefix": "del ",
375 | "library": "var_list.py",
376 | "varRefreshCmd": "print(var_dic_list())"
377 | },
378 | "r": {
379 | "delete_cmd_postfix": ") ",
380 | "delete_cmd_prefix": "rm(",
381 | "library": "var_list.r",
382 | "varRefreshCmd": "cat(var_dic_list()) "
383 | }
384 | },
385 | "types_to_exclude": [
386 | "module",
387 | "function",
388 | "builtin_function_or_method",
389 | "instance",
390 | "_Feature"
391 | ],
392 | "window_display": false
393 | }
394 | },
395 | "nbformat": 4,
396 | "nbformat_minor": 2
397 | }
398 |
--------------------------------------------------------------------------------
/13. NB/img/1.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/13. NB/img/1.PNG
--------------------------------------------------------------------------------
/13. NB/img/2.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/13. NB/img/2.PNG
--------------------------------------------------------------------------------
/13. NB/img/3.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/13. NB/img/3.PNG
--------------------------------------------------------------------------------
/13. NB/img/4.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/13. NB/img/4.PNG
--------------------------------------------------------------------------------
/13. NB/img/5.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/13. NB/img/5.PNG
--------------------------------------------------------------------------------
/13. NB/img/6.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/13. NB/img/6.PNG
--------------------------------------------------------------------------------
/13. NB/naive_bayes.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# Naive Bayes"
8 | ]
9 | },
10 | {
11 | "cell_type": "markdown",
12 | "metadata": {},
13 | "source": [
14 | "1. Conditional Probability\n",
15 | "2. Independent Events\n",
16 | "3. Bayes Theorem"
17 | ]
18 | },
19 | {
20 | "cell_type": "markdown",
21 | "metadata": {},
22 | "source": [
23 | "## Derivation"
24 | ]
25 | },
26 | {
27 | "cell_type": "markdown",
28 | "metadata": {},
29 | "source": [
30 | "Step-1 \n",
31 | "\n",
32 | "Step-2 \n",
33 | "\n",
34 | "Step-3 \n",
35 | "\n",
36 | "Step-4 \n",
37 | "\n",
38 | "Step-5 \n",
39 | "\n",
40 | "Step-6 \n",
41 | ""
42 | ]
43 | },
44 | {
45 | "cell_type": "markdown",
46 | "metadata": {},
47 | "source": [
48 | "## Example\n",
49 | "\n",
50 | "http://shatterline.com/blog/2013/09/12/not-so-naive-classification-with-the-naive-bayes-classifier/"
51 | ]
52 | },
53 | {
54 | "cell_type": "code",
55 | "execution_count": null,
56 | "metadata": {},
57 | "outputs": [],
58 | "source": []
59 | }
60 | ],
61 | "metadata": {
62 | "kernelspec": {
63 | "display_name": "Python 3",
64 | "language": "python",
65 | "name": "python3"
66 | },
67 | "language_info": {
68 | "codemirror_mode": {
69 | "name": "ipython",
70 | "version": 3
71 | },
72 | "file_extension": ".py",
73 | "mimetype": "text/x-python",
74 | "name": "python",
75 | "nbconvert_exporter": "python",
76 | "pygments_lexer": "ipython3",
77 | "version": "3.6.5"
78 | },
79 | "toc": {
80 | "nav_menu": {},
81 | "number_sections": true,
82 | "sideBar": true,
83 | "skip_h1_title": false,
84 | "title_cell": "Table of Contents",
85 | "title_sidebar": "Contents",
86 | "toc_cell": false,
87 | "toc_position": {},
88 | "toc_section_display": true,
89 | "toc_window_display": false
90 | },
91 | "varInspector": {
92 | "cols": {
93 | "lenName": 16,
94 | "lenType": 16,
95 | "lenVar": 40
96 | },
97 | "kernels_config": {
98 | "python": {
99 | "delete_cmd_postfix": "",
100 | "delete_cmd_prefix": "del ",
101 | "library": "var_list.py",
102 | "varRefreshCmd": "print(var_dic_list())"
103 | },
104 | "r": {
105 | "delete_cmd_postfix": ") ",
106 | "delete_cmd_prefix": "rm(",
107 | "library": "var_list.r",
108 | "varRefreshCmd": "cat(var_dic_list()) "
109 | }
110 | },
111 | "types_to_exclude": [
112 | "module",
113 | "function",
114 | "builtin_function_or_method",
115 | "instance",
116 | "_Feature"
117 | ],
118 | "window_display": false
119 | }
120 | },
121 | "nbformat": 4,
122 | "nbformat_minor": 2
123 | }
124 |
--------------------------------------------------------------------------------
/14. SVM/ML_Classification.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# Machine Learning"
8 | ]
9 | },
10 | {
11 | "cell_type": "markdown",
12 | "metadata": {},
13 | "source": [
14 | "## AI vs ML vs DL vs DS\n",
15 | "\n",
16 | " "
17 | ]
18 | },
19 | {
20 | "cell_type": "markdown",
21 | "metadata": {},
22 | "source": [
23 | "## What is Machine Learning?\n",
24 | "\n",
25 | "Basically ML is a collection of tools, statistical methods and algorithms which helps computers to learn from data."
26 | ]
27 | },
28 | {
29 | "cell_type": "markdown",
30 | "metadata": {},
31 | "source": [
32 | "## Types of ML Algorithms\n",
33 | "\n",
34 | "Broadly, there are 3 types of ML Algorithms:\n",
35 | "\n",
36 | "Supervised Algorithms \n",
37 | "Unsupervised Algorithms \n",
38 | "Reinforcement Learning - Learning by trail and error approach. \n",
39 | " "
40 | ]
41 | },
42 | {
43 | "cell_type": "markdown",
44 | "metadata": {},
45 | "source": [
46 | "# Classification"
47 | ]
48 | },
49 | {
50 | "cell_type": "markdown",
51 | "metadata": {},
52 | "source": [
53 | "## What is Classification?"
54 | ]
55 | },
56 | {
57 | "cell_type": "markdown",
58 | "metadata": {},
59 | "source": [
60 | "Lets first take an example to understand what a classification problem actually looks like: \n",
61 | " \n",
62 | "GIVEN Review text for some product from any e-commerce website. \n",
63 | "TASK Predict/Guess whether the review is Positive or Negative . \n",
64 | "\n",
65 | " "
66 | ]
67 | },
68 | {
69 | "cell_type": "markdown",
70 | "metadata": {},
71 | "source": [
72 | "OBSERVATIONS \n",
73 | "\n",
74 | "a. We have two classes here, Positive & Negative .\n",
75 | "b. It is also called 2-class classification or Binary classification.\n",
76 | " \n"
77 | ]
78 | },
79 | {
80 | "cell_type": "markdown",
81 | "metadata": {},
82 | "source": [
83 | "## How does classification actually works?"
84 | ]
85 | },
86 | {
87 | "cell_type": "markdown",
88 | "metadata": {},
89 | "source": [
90 | "\n",
91 | "Most of the Machine Learning is about finding a function.\n",
92 | "\n",
93 | "Machine Learning is not perfect. It will not learn the perfect function. It tries to do its best job using various techniques like: K-NN, SVM, Logistic Regression, Linear Regression, etc.\n",
94 | "\n",
95 | "Of course some of the techniques would be able to learn a better function compared to others.\n",
96 | "
\n",
97 | " "
98 | ]
99 | },
100 | {
101 | "cell_type": "markdown",
102 | "metadata": {
103 | "ExecuteTime": {
104 | "end_time": "2018-02-05T10:48:52.713000Z",
105 | "start_time": "2018-02-05T10:48:52.703000Z"
106 | }
107 | },
108 | "source": [
109 | "MATHEMATICAL FORMULATION \n",
110 | "\n",
111 | "Training Stage: \n",
112 | "\\begin{align}\n",
113 | "D & = \\{(x_i, y_i)_{i=1}^n | \\ x_i \\in \\mathbb{R}^d, y_i \\in \\{0, 1\\}\\}\n",
114 | "\\end{align}\n",
115 | "\n",
116 | "Testing Stage:\n",
117 | "\\begin{align}\n",
118 | "y_q & = f(x_q)\n",
119 | "\\end{align}"
120 | ]
121 | },
122 | {
123 | "cell_type": "markdown",
124 | "metadata": {},
125 | "source": [
126 | "## Classification vs Regression"
127 | ]
128 | },
129 | {
130 | "cell_type": "markdown",
131 | "metadata": {},
132 | "source": [
133 | "Observe that in classification $$y_i \\in \\{0, 1\\}$$ \n",
134 | "\n",
135 | "What if? $$y_i \\in \\mathbb{R}$$\n",
136 | "\n",
137 | "$$ i.e. \\ y_i \\ is \\ no \\ more \\ part \\ of \\ a \\ small \\ finite \\ set \\ of \\ classes. $$\n",
138 | "\n",
139 | "Lets take an example to understand this: \n",
140 | "GIVEN Lets say we have 10K students. Now for each student we have their weight, age, gender, race. \n",
141 | "TASK Predict height of each student? \n",
142 | "OBSERVATIONS Height is a Real Number. i.e. $$y_i \\in \\mathbb{R}$$ \n",
143 | "So, we can conclude that above task is a Regression task.\n"
144 | ]
145 | },
146 | {
147 | "cell_type": "markdown",
148 | "metadata": {},
149 | "source": [
150 | "# Classification Algorithm : Support Vector Machine"
151 | ]
152 | },
153 | {
154 | "cell_type": "markdown",
155 | "metadata": {},
156 | "source": [
157 | "## Visualizing a basic plot"
158 | ]
159 | },
160 | {
161 | "cell_type": "markdown",
162 | "metadata": {
163 | "cell_style": "split"
164 | },
165 | "source": [
166 | "Lets have a look at a plot.\n",
167 | " "
168 | ]
169 | },
170 | {
171 | "cell_type": "markdown",
172 | "metadata": {
173 | "cell_style": "split",
174 | "collapsed": true
175 | },
176 | "source": [
177 | "There are multiple hyper planes separating positives from negatives.\n",
178 | " "
179 | ]
180 | },
181 | {
182 | "cell_type": "markdown",
183 | "metadata": {},
184 | "source": [
185 | "## But where is the best hyper plane?\n",
186 | "\n",
187 | "KEY IDEA: SVM tries to find a hyperplane that separates +ves from -ves as widely as possible.\n",
188 | " \n",
189 | "Also known as MARGIN MAXIMIZING hyper plane."
190 | ]
191 | },
192 | {
193 | "cell_type": "markdown",
194 | "metadata": {
195 | "cell_style": "split"
196 | },
197 | "source": [
198 | "Lets look at this plane. Is this the best hyperplane?\n",
199 | "\n",
200 | " "
201 | ]
202 | },
203 | {
204 | "cell_type": "markdown",
205 | "metadata": {
206 | "cell_style": "split"
207 | },
208 | "source": [
209 | "Lets try to draw a plane parallel to original plane and lets try to move it towards +ve points.\n",
210 | "\n",
211 | " "
212 | ]
213 | },
214 | {
215 | "cell_type": "markdown",
216 | "metadata": {
217 | "cell_style": "split",
218 | "collapsed": true
219 | },
220 | "source": [
221 | "Similarly for -ve points.\n",
222 | "\n",
223 | " "
224 | ]
225 | },
226 | {
227 | "cell_type": "markdown",
228 | "metadata": {
229 | "cell_style": "split",
230 | "collapsed": true
231 | },
232 | "source": [
233 | "We will end up getting this: (Separating, +ve & -ve Hyperplane)\n",
234 | " \n",
235 | " "
236 | ]
237 | },
238 | {
239 | "cell_type": "markdown",
240 | "metadata": {},
241 | "source": [
242 | "## Margin & Support Vectors"
243 | ]
244 | },
245 | {
246 | "cell_type": "markdown",
247 | "metadata": {
248 | "cell_style": "split"
249 | },
250 | "source": [
251 | "Now lets look at the Magin.\n",
252 | "\n",
253 | " "
254 | ]
255 | },
256 | {
257 | "cell_type": "markdown",
258 | "metadata": {
259 | "cell_style": "split"
260 | },
261 | "source": [
262 | "Circled points are called SUPPORT VECTORS.\n",
263 | "\n",
264 | " "
265 | ]
266 | },
267 | {
268 | "cell_type": "markdown",
269 | "metadata": {},
270 | "source": [
271 | "MATHEMATICAL FORMULATION \n",
272 | "\\begin{align}\n",
273 | "Margin & = distance(\\pi_+, \\pi_-)\n",
274 | "\\end{align}\n",
275 | "$$As \\ MARGIN \\ increases, \\ GENERALIZATION \\ ACCURACY \\ increases.$$"
276 | ]
277 | },
278 | {
279 | "cell_type": "markdown",
280 | "metadata": {},
281 | "source": [
282 | "## Intuition: How to actually find the Margin Maximizing Hyperplane?"
283 | ]
284 | },
285 | {
286 | "cell_type": "markdown",
287 | "metadata": {
288 | "cell_style": "split"
289 | },
290 | "source": [
291 | "Lets first understand the idea behind Convex Hull.\n",
292 | "\n",
293 | "Lets look at some shapes and understand what a convex hull is.\n",
294 | "\n",
295 | " "
296 | ]
297 | },
298 | {
299 | "cell_type": "markdown",
300 | "metadata": {
301 | "cell_style": "split",
302 | "collapsed": true
303 | },
304 | "source": [
305 | "Lets now try to find margin maximizing Hyperplane using previous example.\n",
306 | "\n",
307 | " "
308 | ]
309 | },
310 | {
311 | "cell_type": "markdown",
312 | "metadata": {
313 | "cell_style": "split"
314 | },
315 | "source": [
316 | "STEP-1 \n",
317 | "Draw the convex hull for +ve and -ve points.\n",
318 | "\n",
319 | " "
320 | ]
321 | },
322 | {
323 | "cell_type": "markdown",
324 | "metadata": {
325 | "cell_style": "split"
326 | },
327 | "source": [
328 | "STEP-2 \n",
329 | "Find the shortest line connecting these hulls.\n",
330 | "\n",
331 | " "
332 | ]
333 | },
334 | {
335 | "cell_type": "markdown",
336 | "metadata": {},
337 | "source": [
338 | "STEP-3 \n",
339 | "Bisect the line. i.e break it into two equal parts\n",
340 | "\n",
341 | " "
342 | ]
343 | },
344 | {
345 | "cell_type": "markdown",
346 | "metadata": {},
347 | "source": [
348 | "# That's all, Thank you!\n",
349 | "\n",
350 | " "
351 | ]
352 | }
353 | ],
354 | "metadata": {
355 | "kernelspec": {
356 | "display_name": "Python 3",
357 | "language": "python",
358 | "name": "python3"
359 | },
360 | "language_info": {
361 | "codemirror_mode": {
362 | "name": "ipython",
363 | "version": 3
364 | },
365 | "file_extension": ".py",
366 | "mimetype": "text/x-python",
367 | "name": "python",
368 | "nbconvert_exporter": "python",
369 | "pygments_lexer": "ipython3",
370 | "version": "3.6.5"
371 | },
372 | "toc": {
373 | "nav_menu": {},
374 | "number_sections": true,
375 | "sideBar": true,
376 | "skip_h1_title": false,
377 | "title_cell": "Table of Contents",
378 | "title_sidebar": "Contents",
379 | "toc_cell": false,
380 | "toc_position": {
381 | "height": "calc(100% - 180px)",
382 | "left": "10px",
383 | "top": "150px",
384 | "width": "176px"
385 | },
386 | "toc_section_display": true,
387 | "toc_window_display": true
388 | },
389 | "varInspector": {
390 | "cols": {
391 | "lenName": 16,
392 | "lenType": 16,
393 | "lenVar": 40
394 | },
395 | "kernels_config": {
396 | "python": {
397 | "delete_cmd_postfix": "",
398 | "delete_cmd_prefix": "del ",
399 | "library": "var_list.py",
400 | "varRefreshCmd": "print(var_dic_list())"
401 | },
402 | "r": {
403 | "delete_cmd_postfix": ") ",
404 | "delete_cmd_prefix": "rm(",
405 | "library": "var_list.r",
406 | "varRefreshCmd": "cat(var_dic_list()) "
407 | }
408 | },
409 | "types_to_exclude": [
410 | "module",
411 | "function",
412 | "builtin_function_or_method",
413 | "instance",
414 | "_Feature"
415 | ],
416 | "window_display": false
417 | }
418 | },
419 | "nbformat": 4,
420 | "nbformat_minor": 2
421 | }
422 |
--------------------------------------------------------------------------------
/14. SVM/img/1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/14. SVM/img/1.png
--------------------------------------------------------------------------------
/14. SVM/img/10.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/14. SVM/img/10.png
--------------------------------------------------------------------------------
/14. SVM/img/11.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/14. SVM/img/11.png
--------------------------------------------------------------------------------
/14. SVM/img/2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/14. SVM/img/2.png
--------------------------------------------------------------------------------
/14. SVM/img/3.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/14. SVM/img/3.png
--------------------------------------------------------------------------------
/14. SVM/img/4.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/14. SVM/img/4.png
--------------------------------------------------------------------------------
/14. SVM/img/5.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/14. SVM/img/5.png
--------------------------------------------------------------------------------
/14. SVM/img/6.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/14. SVM/img/6.png
--------------------------------------------------------------------------------
/14. SVM/img/7.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/14. SVM/img/7.png
--------------------------------------------------------------------------------
/14. SVM/img/8.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/14. SVM/img/8.png
--------------------------------------------------------------------------------
/14. SVM/img/9.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/14. SVM/img/9.png
--------------------------------------------------------------------------------
/14. SVM/img/AI-ML-DL-DS.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/14. SVM/img/AI-ML-DL-DS.png
--------------------------------------------------------------------------------
/14. SVM/img/AmazonReview.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/14. SVM/img/AmazonReview.PNG
--------------------------------------------------------------------------------
/14. SVM/img/convex-hull.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/14. SVM/img/convex-hull.png
--------------------------------------------------------------------------------
/14. SVM/img/questions.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/14. SVM/img/questions.jpg
--------------------------------------------------------------------------------
/14. SVM/img/train-test.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/14. SVM/img/train-test.png
--------------------------------------------------------------------------------
/15. Decision Trees/1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/15. Decision Trees/1.png
--------------------------------------------------------------------------------
/15. Decision Trees/DT1.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/15. Decision Trees/DT1.PNG
--------------------------------------------------------------------------------
/15. Decision Trees/DT2.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/15. Decision Trees/DT2.PNG
--------------------------------------------------------------------------------
/15. Decision Trees/DT3.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/15. Decision Trees/DT3.PNG
--------------------------------------------------------------------------------
/16. PCA/Iris.csv:
--------------------------------------------------------------------------------
1 | Id,SepalLengthCm,SepalWidthCm,PetalLengthCm,PetalWidthCm,Species
2 | 1,5.1,3.5,1.4,0.2,Iris-setosa
3 | 2,4.9,3.0,1.4,0.2,Iris-setosa
4 | 3,4.7,3.2,1.3,0.2,Iris-setosa
5 | 4,4.6,3.1,1.5,0.2,Iris-setosa
6 | 5,5.0,3.6,1.4,0.2,Iris-setosa
7 | 6,5.4,3.9,1.7,0.4,Iris-setosa
8 | 7,4.6,3.4,1.4,0.3,Iris-setosa
9 | 8,5.0,3.4,1.5,0.2,Iris-setosa
10 | 9,4.4,2.9,1.4,0.2,Iris-setosa
11 | 10,4.9,3.1,1.5,0.1,Iris-setosa
12 | 11,5.4,3.7,1.5,0.2,Iris-setosa
13 | 12,4.8,3.4,1.6,0.2,Iris-setosa
14 | 13,4.8,3.0,1.4,0.1,Iris-setosa
15 | 14,4.3,3.0,1.1,0.1,Iris-setosa
16 | 15,5.8,4.0,1.2,0.2,Iris-setosa
17 | 16,5.7,4.4,1.5,0.4,Iris-setosa
18 | 17,5.4,3.9,1.3,0.4,Iris-setosa
19 | 18,5.1,3.5,1.4,0.3,Iris-setosa
20 | 19,5.7,3.8,1.7,0.3,Iris-setosa
21 | 20,5.1,3.8,1.5,0.3,Iris-setosa
22 | 21,5.4,3.4,1.7,0.2,Iris-setosa
23 | 22,5.1,3.7,1.5,0.4,Iris-setosa
24 | 23,4.6,3.6,1.0,0.2,Iris-setosa
25 | 24,5.1,3.3,1.7,0.5,Iris-setosa
26 | 25,4.8,3.4,1.9,0.2,Iris-setosa
27 | 26,5.0,3.0,1.6,0.2,Iris-setosa
28 | 27,5.0,3.4,1.6,0.4,Iris-setosa
29 | 28,5.2,3.5,1.5,0.2,Iris-setosa
30 | 29,5.2,3.4,1.4,0.2,Iris-setosa
31 | 30,4.7,3.2,1.6,0.2,Iris-setosa
32 | 31,4.8,3.1,1.6,0.2,Iris-setosa
33 | 32,5.4,3.4,1.5,0.4,Iris-setosa
34 | 33,5.2,4.1,1.5,0.1,Iris-setosa
35 | 34,5.5,4.2,1.4,0.2,Iris-setosa
36 | 35,4.9,3.1,1.5,0.1,Iris-setosa
37 | 36,5.0,3.2,1.2,0.2,Iris-setosa
38 | 37,5.5,3.5,1.3,0.2,Iris-setosa
39 | 38,4.9,3.1,1.5,0.1,Iris-setosa
40 | 39,4.4,3.0,1.3,0.2,Iris-setosa
41 | 40,5.1,3.4,1.5,0.2,Iris-setosa
42 | 41,5.0,3.5,1.3,0.3,Iris-setosa
43 | 42,4.5,2.3,1.3,0.3,Iris-setosa
44 | 43,4.4,3.2,1.3,0.2,Iris-setosa
45 | 44,5.0,3.5,1.6,0.6,Iris-setosa
46 | 45,5.1,3.8,1.9,0.4,Iris-setosa
47 | 46,4.8,3.0,1.4,0.3,Iris-setosa
48 | 47,5.1,3.8,1.6,0.2,Iris-setosa
49 | 48,4.6,3.2,1.4,0.2,Iris-setosa
50 | 49,5.3,3.7,1.5,0.2,Iris-setosa
51 | 50,5.0,3.3,1.4,0.2,Iris-setosa
52 | 51,7.0,3.2,4.7,1.4,Iris-versicolor
53 | 52,6.4,3.2,4.5,1.5,Iris-versicolor
54 | 53,6.9,3.1,4.9,1.5,Iris-versicolor
55 | 54,5.5,2.3,4.0,1.3,Iris-versicolor
56 | 55,6.5,2.8,4.6,1.5,Iris-versicolor
57 | 56,5.7,2.8,4.5,1.3,Iris-versicolor
58 | 57,6.3,3.3,4.7,1.6,Iris-versicolor
59 | 58,4.9,2.4,3.3,1.0,Iris-versicolor
60 | 59,6.6,2.9,4.6,1.3,Iris-versicolor
61 | 60,5.2,2.7,3.9,1.4,Iris-versicolor
62 | 61,5.0,2.0,3.5,1.0,Iris-versicolor
63 | 62,5.9,3.0,4.2,1.5,Iris-versicolor
64 | 63,6.0,2.2,4.0,1.0,Iris-versicolor
65 | 64,6.1,2.9,4.7,1.4,Iris-versicolor
66 | 65,5.6,2.9,3.6,1.3,Iris-versicolor
67 | 66,6.7,3.1,4.4,1.4,Iris-versicolor
68 | 67,5.6,3.0,4.5,1.5,Iris-versicolor
69 | 68,5.8,2.7,4.1,1.0,Iris-versicolor
70 | 69,6.2,2.2,4.5,1.5,Iris-versicolor
71 | 70,5.6,2.5,3.9,1.1,Iris-versicolor
72 | 71,5.9,3.2,4.8,1.8,Iris-versicolor
73 | 72,6.1,2.8,4.0,1.3,Iris-versicolor
74 | 73,6.3,2.5,4.9,1.5,Iris-versicolor
75 | 74,6.1,2.8,4.7,1.2,Iris-versicolor
76 | 75,6.4,2.9,4.3,1.3,Iris-versicolor
77 | 76,6.6,3.0,4.4,1.4,Iris-versicolor
78 | 77,6.8,2.8,4.8,1.4,Iris-versicolor
79 | 78,6.7,3.0,5.0,1.7,Iris-versicolor
80 | 79,6.0,2.9,4.5,1.5,Iris-versicolor
81 | 80,5.7,2.6,3.5,1.0,Iris-versicolor
82 | 81,5.5,2.4,3.8,1.1,Iris-versicolor
83 | 82,5.5,2.4,3.7,1.0,Iris-versicolor
84 | 83,5.8,2.7,3.9,1.2,Iris-versicolor
85 | 84,6.0,2.7,5.1,1.6,Iris-versicolor
86 | 85,5.4,3.0,4.5,1.5,Iris-versicolor
87 | 86,6.0,3.4,4.5,1.6,Iris-versicolor
88 | 87,6.7,3.1,4.7,1.5,Iris-versicolor
89 | 88,6.3,2.3,4.4,1.3,Iris-versicolor
90 | 89,5.6,3.0,4.1,1.3,Iris-versicolor
91 | 90,5.5,2.5,4.0,1.3,Iris-versicolor
92 | 91,5.5,2.6,4.4,1.2,Iris-versicolor
93 | 92,6.1,3.0,4.6,1.4,Iris-versicolor
94 | 93,5.8,2.6,4.0,1.2,Iris-versicolor
95 | 94,5.0,2.3,3.3,1.0,Iris-versicolor
96 | 95,5.6,2.7,4.2,1.3,Iris-versicolor
97 | 96,5.7,3.0,4.2,1.2,Iris-versicolor
98 | 97,5.7,2.9,4.2,1.3,Iris-versicolor
99 | 98,6.2,2.9,4.3,1.3,Iris-versicolor
100 | 99,5.1,2.5,3.0,1.1,Iris-versicolor
101 | 100,5.7,2.8,4.1,1.3,Iris-versicolor
102 | 101,6.3,3.3,6.0,2.5,Iris-virginica
103 | 102,5.8,2.7,5.1,1.9,Iris-virginica
104 | 103,7.1,3.0,5.9,2.1,Iris-virginica
105 | 104,6.3,2.9,5.6,1.8,Iris-virginica
106 | 105,6.5,3.0,5.8,2.2,Iris-virginica
107 | 106,7.6,3.0,6.6,2.1,Iris-virginica
108 | 107,4.9,2.5,4.5,1.7,Iris-virginica
109 | 108,7.3,2.9,6.3,1.8,Iris-virginica
110 | 109,6.7,2.5,5.8,1.8,Iris-virginica
111 | 110,7.2,3.6,6.1,2.5,Iris-virginica
112 | 111,6.5,3.2,5.1,2.0,Iris-virginica
113 | 112,6.4,2.7,5.3,1.9,Iris-virginica
114 | 113,6.8,3.0,5.5,2.1,Iris-virginica
115 | 114,5.7,2.5,5.0,2.0,Iris-virginica
116 | 115,5.8,2.8,5.1,2.4,Iris-virginica
117 | 116,6.4,3.2,5.3,2.3,Iris-virginica
118 | 117,6.5,3.0,5.5,1.8,Iris-virginica
119 | 118,7.7,3.8,6.7,2.2,Iris-virginica
120 | 119,7.7,2.6,6.9,2.3,Iris-virginica
121 | 120,6.0,2.2,5.0,1.5,Iris-virginica
122 | 121,6.9,3.2,5.7,2.3,Iris-virginica
123 | 122,5.6,2.8,4.9,2.0,Iris-virginica
124 | 123,7.7,2.8,6.7,2.0,Iris-virginica
125 | 124,6.3,2.7,4.9,1.8,Iris-virginica
126 | 125,6.7,3.3,5.7,2.1,Iris-virginica
127 | 126,7.2,3.2,6.0,1.8,Iris-virginica
128 | 127,6.2,2.8,4.8,1.8,Iris-virginica
129 | 128,6.1,3.0,4.9,1.8,Iris-virginica
130 | 129,6.4,2.8,5.6,2.1,Iris-virginica
131 | 130,7.2,3.0,5.8,1.6,Iris-virginica
132 | 131,7.4,2.8,6.1,1.9,Iris-virginica
133 | 132,7.9,3.8,6.4,2.0,Iris-virginica
134 | 133,6.4,2.8,5.6,2.2,Iris-virginica
135 | 134,6.3,2.8,5.1,1.5,Iris-virginica
136 | 135,6.1,2.6,5.6,1.4,Iris-virginica
137 | 136,7.7,3.0,6.1,2.3,Iris-virginica
138 | 137,6.3,3.4,5.6,2.4,Iris-virginica
139 | 138,6.4,3.1,5.5,1.8,Iris-virginica
140 | 139,6.0,3.0,4.8,1.8,Iris-virginica
141 | 140,6.9,3.1,5.4,2.1,Iris-virginica
142 | 141,6.7,3.1,5.6,2.4,Iris-virginica
143 | 142,6.9,3.1,5.1,2.3,Iris-virginica
144 | 143,5.8,2.7,5.1,1.9,Iris-virginica
145 | 144,6.8,3.2,5.9,2.3,Iris-virginica
146 | 145,6.7,3.3,5.7,2.5,Iris-virginica
147 | 146,6.7,3.0,5.2,2.3,Iris-virginica
148 | 147,6.3,2.5,5.0,1.9,Iris-virginica
149 | 148,6.5,3.0,5.2,2.0,Iris-virginica
150 | 149,6.2,3.4,5.4,2.3,Iris-virginica
151 | 150,5.9,3.0,5.1,1.8,Iris-virginica
152 |
--------------------------------------------------------------------------------
/17. Ensembles/Iris.csv:
--------------------------------------------------------------------------------
1 | Id,SepalLengthCm,SepalWidthCm,PetalLengthCm,PetalWidthCm,Species
2 | 1,5.1,3.5,1.4,0.2,Iris-setosa
3 | 2,4.9,3.0,1.4,0.2,Iris-setosa
4 | 3,4.7,3.2,1.3,0.2,Iris-setosa
5 | 4,4.6,3.1,1.5,0.2,Iris-setosa
6 | 5,5.0,3.6,1.4,0.2,Iris-setosa
7 | 6,5.4,3.9,1.7,0.4,Iris-setosa
8 | 7,4.6,3.4,1.4,0.3,Iris-setosa
9 | 8,5.0,3.4,1.5,0.2,Iris-setosa
10 | 9,4.4,2.9,1.4,0.2,Iris-setosa
11 | 10,4.9,3.1,1.5,0.1,Iris-setosa
12 | 11,5.4,3.7,1.5,0.2,Iris-setosa
13 | 12,4.8,3.4,1.6,0.2,Iris-setosa
14 | 13,4.8,3.0,1.4,0.1,Iris-setosa
15 | 14,4.3,3.0,1.1,0.1,Iris-setosa
16 | 15,5.8,4.0,1.2,0.2,Iris-setosa
17 | 16,5.7,4.4,1.5,0.4,Iris-setosa
18 | 17,5.4,3.9,1.3,0.4,Iris-setosa
19 | 18,5.1,3.5,1.4,0.3,Iris-setosa
20 | 19,5.7,3.8,1.7,0.3,Iris-setosa
21 | 20,5.1,3.8,1.5,0.3,Iris-setosa
22 | 21,5.4,3.4,1.7,0.2,Iris-setosa
23 | 22,5.1,3.7,1.5,0.4,Iris-setosa
24 | 23,4.6,3.6,1.0,0.2,Iris-setosa
25 | 24,5.1,3.3,1.7,0.5,Iris-setosa
26 | 25,4.8,3.4,1.9,0.2,Iris-setosa
27 | 26,5.0,3.0,1.6,0.2,Iris-setosa
28 | 27,5.0,3.4,1.6,0.4,Iris-setosa
29 | 28,5.2,3.5,1.5,0.2,Iris-setosa
30 | 29,5.2,3.4,1.4,0.2,Iris-setosa
31 | 30,4.7,3.2,1.6,0.2,Iris-setosa
32 | 31,4.8,3.1,1.6,0.2,Iris-setosa
33 | 32,5.4,3.4,1.5,0.4,Iris-setosa
34 | 33,5.2,4.1,1.5,0.1,Iris-setosa
35 | 34,5.5,4.2,1.4,0.2,Iris-setosa
36 | 35,4.9,3.1,1.5,0.1,Iris-setosa
37 | 36,5.0,3.2,1.2,0.2,Iris-setosa
38 | 37,5.5,3.5,1.3,0.2,Iris-setosa
39 | 38,4.9,3.1,1.5,0.1,Iris-setosa
40 | 39,4.4,3.0,1.3,0.2,Iris-setosa
41 | 40,5.1,3.4,1.5,0.2,Iris-setosa
42 | 41,5.0,3.5,1.3,0.3,Iris-setosa
43 | 42,4.5,2.3,1.3,0.3,Iris-setosa
44 | 43,4.4,3.2,1.3,0.2,Iris-setosa
45 | 44,5.0,3.5,1.6,0.6,Iris-setosa
46 | 45,5.1,3.8,1.9,0.4,Iris-setosa
47 | 46,4.8,3.0,1.4,0.3,Iris-setosa
48 | 47,5.1,3.8,1.6,0.2,Iris-setosa
49 | 48,4.6,3.2,1.4,0.2,Iris-setosa
50 | 49,5.3,3.7,1.5,0.2,Iris-setosa
51 | 50,5.0,3.3,1.4,0.2,Iris-setosa
52 | 51,7.0,3.2,4.7,1.4,Iris-versicolor
53 | 52,6.4,3.2,4.5,1.5,Iris-versicolor
54 | 53,6.9,3.1,4.9,1.5,Iris-versicolor
55 | 54,5.5,2.3,4.0,1.3,Iris-versicolor
56 | 55,6.5,2.8,4.6,1.5,Iris-versicolor
57 | 56,5.7,2.8,4.5,1.3,Iris-versicolor
58 | 57,6.3,3.3,4.7,1.6,Iris-versicolor
59 | 58,4.9,2.4,3.3,1.0,Iris-versicolor
60 | 59,6.6,2.9,4.6,1.3,Iris-versicolor
61 | 60,5.2,2.7,3.9,1.4,Iris-versicolor
62 | 61,5.0,2.0,3.5,1.0,Iris-versicolor
63 | 62,5.9,3.0,4.2,1.5,Iris-versicolor
64 | 63,6.0,2.2,4.0,1.0,Iris-versicolor
65 | 64,6.1,2.9,4.7,1.4,Iris-versicolor
66 | 65,5.6,2.9,3.6,1.3,Iris-versicolor
67 | 66,6.7,3.1,4.4,1.4,Iris-versicolor
68 | 67,5.6,3.0,4.5,1.5,Iris-versicolor
69 | 68,5.8,2.7,4.1,1.0,Iris-versicolor
70 | 69,6.2,2.2,4.5,1.5,Iris-versicolor
71 | 70,5.6,2.5,3.9,1.1,Iris-versicolor
72 | 71,5.9,3.2,4.8,1.8,Iris-versicolor
73 | 72,6.1,2.8,4.0,1.3,Iris-versicolor
74 | 73,6.3,2.5,4.9,1.5,Iris-versicolor
75 | 74,6.1,2.8,4.7,1.2,Iris-versicolor
76 | 75,6.4,2.9,4.3,1.3,Iris-versicolor
77 | 76,6.6,3.0,4.4,1.4,Iris-versicolor
78 | 77,6.8,2.8,4.8,1.4,Iris-versicolor
79 | 78,6.7,3.0,5.0,1.7,Iris-versicolor
80 | 79,6.0,2.9,4.5,1.5,Iris-versicolor
81 | 80,5.7,2.6,3.5,1.0,Iris-versicolor
82 | 81,5.5,2.4,3.8,1.1,Iris-versicolor
83 | 82,5.5,2.4,3.7,1.0,Iris-versicolor
84 | 83,5.8,2.7,3.9,1.2,Iris-versicolor
85 | 84,6.0,2.7,5.1,1.6,Iris-versicolor
86 | 85,5.4,3.0,4.5,1.5,Iris-versicolor
87 | 86,6.0,3.4,4.5,1.6,Iris-versicolor
88 | 87,6.7,3.1,4.7,1.5,Iris-versicolor
89 | 88,6.3,2.3,4.4,1.3,Iris-versicolor
90 | 89,5.6,3.0,4.1,1.3,Iris-versicolor
91 | 90,5.5,2.5,4.0,1.3,Iris-versicolor
92 | 91,5.5,2.6,4.4,1.2,Iris-versicolor
93 | 92,6.1,3.0,4.6,1.4,Iris-versicolor
94 | 93,5.8,2.6,4.0,1.2,Iris-versicolor
95 | 94,5.0,2.3,3.3,1.0,Iris-versicolor
96 | 95,5.6,2.7,4.2,1.3,Iris-versicolor
97 | 96,5.7,3.0,4.2,1.2,Iris-versicolor
98 | 97,5.7,2.9,4.2,1.3,Iris-versicolor
99 | 98,6.2,2.9,4.3,1.3,Iris-versicolor
100 | 99,5.1,2.5,3.0,1.1,Iris-versicolor
101 | 100,5.7,2.8,4.1,1.3,Iris-versicolor
102 | 101,6.3,3.3,6.0,2.5,Iris-virginica
103 | 102,5.8,2.7,5.1,1.9,Iris-virginica
104 | 103,7.1,3.0,5.9,2.1,Iris-virginica
105 | 104,6.3,2.9,5.6,1.8,Iris-virginica
106 | 105,6.5,3.0,5.8,2.2,Iris-virginica
107 | 106,7.6,3.0,6.6,2.1,Iris-virginica
108 | 107,4.9,2.5,4.5,1.7,Iris-virginica
109 | 108,7.3,2.9,6.3,1.8,Iris-virginica
110 | 109,6.7,2.5,5.8,1.8,Iris-virginica
111 | 110,7.2,3.6,6.1,2.5,Iris-virginica
112 | 111,6.5,3.2,5.1,2.0,Iris-virginica
113 | 112,6.4,2.7,5.3,1.9,Iris-virginica
114 | 113,6.8,3.0,5.5,2.1,Iris-virginica
115 | 114,5.7,2.5,5.0,2.0,Iris-virginica
116 | 115,5.8,2.8,5.1,2.4,Iris-virginica
117 | 116,6.4,3.2,5.3,2.3,Iris-virginica
118 | 117,6.5,3.0,5.5,1.8,Iris-virginica
119 | 118,7.7,3.8,6.7,2.2,Iris-virginica
120 | 119,7.7,2.6,6.9,2.3,Iris-virginica
121 | 120,6.0,2.2,5.0,1.5,Iris-virginica
122 | 121,6.9,3.2,5.7,2.3,Iris-virginica
123 | 122,5.6,2.8,4.9,2.0,Iris-virginica
124 | 123,7.7,2.8,6.7,2.0,Iris-virginica
125 | 124,6.3,2.7,4.9,1.8,Iris-virginica
126 | 125,6.7,3.3,5.7,2.1,Iris-virginica
127 | 126,7.2,3.2,6.0,1.8,Iris-virginica
128 | 127,6.2,2.8,4.8,1.8,Iris-virginica
129 | 128,6.1,3.0,4.9,1.8,Iris-virginica
130 | 129,6.4,2.8,5.6,2.1,Iris-virginica
131 | 130,7.2,3.0,5.8,1.6,Iris-virginica
132 | 131,7.4,2.8,6.1,1.9,Iris-virginica
133 | 132,7.9,3.8,6.4,2.0,Iris-virginica
134 | 133,6.4,2.8,5.6,2.2,Iris-virginica
135 | 134,6.3,2.8,5.1,1.5,Iris-virginica
136 | 135,6.1,2.6,5.6,1.4,Iris-virginica
137 | 136,7.7,3.0,6.1,2.3,Iris-virginica
138 | 137,6.3,3.4,5.6,2.4,Iris-virginica
139 | 138,6.4,3.1,5.5,1.8,Iris-virginica
140 | 139,6.0,3.0,4.8,1.8,Iris-virginica
141 | 140,6.9,3.1,5.4,2.1,Iris-virginica
142 | 141,6.7,3.1,5.6,2.4,Iris-virginica
143 | 142,6.9,3.1,5.1,2.3,Iris-virginica
144 | 143,5.8,2.7,5.1,1.9,Iris-virginica
145 | 144,6.8,3.2,5.9,2.3,Iris-virginica
146 | 145,6.7,3.3,5.7,2.5,Iris-virginica
147 | 146,6.7,3.0,5.2,2.3,Iris-virginica
148 | 147,6.3,2.5,5.0,1.9,Iris-virginica
149 | 148,6.5,3.0,5.2,2.0,Iris-virginica
150 | 149,6.2,3.4,5.4,2.3,Iris-virginica
151 | 150,5.9,3.0,5.1,1.8,Iris-virginica
152 |
--------------------------------------------------------------------------------
/17. Ensembles/ensembles.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "## Voting Ensemble"
8 | ]
9 | },
10 | {
11 | "cell_type": "code",
12 | "execution_count": 1,
13 | "metadata": {
14 | "ExecuteTime": {
15 | "end_time": "2018-07-16T05:53:07.010303Z",
16 | "start_time": "2018-07-16T05:52:51.448342Z"
17 | }
18 | },
19 | "outputs": [],
20 | "source": [
21 | "import pandas as pd"
22 | ]
23 | },
24 | {
25 | "cell_type": "code",
26 | "execution_count": 2,
27 | "metadata": {
28 | "ExecuteTime": {
29 | "end_time": "2018-07-16T05:55:14.290570Z",
30 | "start_time": "2018-07-16T05:55:14.096880Z"
31 | }
32 | },
33 | "outputs": [],
34 | "source": [
35 | "df = pd.read_csv('Iris.csv')\n",
36 | "label = df['Species']\n",
37 | "data = df.drop(\"Species\",axis=1)\n",
38 | "data = data.drop(\"Id\",axis=1)"
39 | ]
40 | },
41 | {
42 | "cell_type": "code",
43 | "execution_count": 3,
44 | "metadata": {
45 | "ExecuteTime": {
46 | "end_time": "2018-07-16T05:56:38.814839Z",
47 | "start_time": "2018-07-16T05:56:24.916233Z"
48 | }
49 | },
50 | "outputs": [],
51 | "source": [
52 | "from sklearn.model_selection import train_test_split\n",
53 | "X_train, X_test, y_train, y_test = train_test_split(data, \\\n",
54 | " label, \\\n",
55 | " test_size = 0.25, \\\n",
56 | " random_state = 0)"
57 | ]
58 | },
59 | {
60 | "cell_type": "code",
61 | "execution_count": 11,
62 | "metadata": {
63 | "ExecuteTime": {
64 | "end_time": "2018-07-16T06:05:35.590059Z",
65 | "start_time": "2018-07-16T06:05:35.581989Z"
66 | }
67 | },
68 | "outputs": [
69 | {
70 | "name": "stdout",
71 | "output_type": "stream",
72 | "text": [
73 | "(38, 4)\n"
74 | ]
75 | }
76 | ],
77 | "source": [
78 | "print(X_test.shape)"
79 | ]
80 | },
81 | {
82 | "cell_type": "code",
83 | "execution_count": 6,
84 | "metadata": {
85 | "ExecuteTime": {
86 | "end_time": "2018-07-16T05:58:53.381803Z",
87 | "start_time": "2018-07-16T05:58:53.375142Z"
88 | }
89 | },
90 | "outputs": [],
91 | "source": [
92 | "from sklearn.linear_model import LogisticRegression\n",
93 | "from sklearn.naive_bayes import GaussianNB\n",
94 | "from sklearn.ensemble import VotingClassifier"
95 | ]
96 | },
97 | {
98 | "cell_type": "code",
99 | "execution_count": 7,
100 | "metadata": {
101 | "ExecuteTime": {
102 | "end_time": "2018-07-16T06:01:33.647892Z",
103 | "start_time": "2018-07-16T06:01:33.599509Z"
104 | },
105 | "scrolled": true
106 | },
107 | "outputs": [
108 | {
109 | "data": {
110 | "text/plain": [
111 | "VotingClassifier(estimators=[('Log Reg', LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,\n",
112 | " intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,\n",
113 | " penalty='l2', random_state=None, solver='liblinear', tol=0.0001,\n",
114 | " verbose=0, warm_start=False)), ('GNB', GaussianNB(priors=None))],\n",
115 | " flatten_transform=None, n_jobs=1, voting='hard', weights=None)"
116 | ]
117 | },
118 | "execution_count": 7,
119 | "metadata": {},
120 | "output_type": "execute_result"
121 | }
122 | ],
123 | "source": [
124 | "clf1 = LogisticRegression()\n",
125 | "clf2 = GaussianNB()\n",
126 | "\n",
127 | "ensemble = VotingClassifier(estimators = [('Log Reg',clf1), ('GNB',clf2)])\n",
128 | "\n",
129 | "ensemble.fit(X_train, y_train)"
130 | ]
131 | },
132 | {
133 | "cell_type": "code",
134 | "execution_count": 8,
135 | "metadata": {
136 | "ExecuteTime": {
137 | "end_time": "2018-07-16T06:04:16.318615Z",
138 | "start_time": "2018-07-16T06:04:16.230233Z"
139 | },
140 | "scrolled": true
141 | },
142 | "outputs": [
143 | {
144 | "name": "stderr",
145 | "output_type": "stream",
146 | "text": [
147 | "c:\\users\\kanav\\appdata\\local\\programs\\python\\python36-32\\lib\\site-packages\\sklearn\\preprocessing\\label.py:151: DeprecationWarning: The truth value of an empty array is ambiguous. Returning False, but in future this will result in an error. Use `array.size > 0` to check that an array is not empty.\n",
148 | " if diff:\n"
149 | ]
150 | }
151 | ],
152 | "source": [
153 | "y_pred = ensemble.predict(X_test)"
154 | ]
155 | },
156 | {
157 | "cell_type": "code",
158 | "execution_count": 9,
159 | "metadata": {
160 | "ExecuteTime": {
161 | "end_time": "2018-07-16T06:04:19.761753Z",
162 | "start_time": "2018-07-16T06:04:19.752638Z"
163 | }
164 | },
165 | "outputs": [
166 | {
167 | "data": {
168 | "text/plain": [
169 | "1.0"
170 | ]
171 | },
172 | "execution_count": 9,
173 | "metadata": {},
174 | "output_type": "execute_result"
175 | }
176 | ],
177 | "source": [
178 | "from sklearn import metrics\n",
179 | "metrics.accuracy_score(y_test, y_pred)"
180 | ]
181 | },
182 | {
183 | "cell_type": "code",
184 | "execution_count": 10,
185 | "metadata": {
186 | "ExecuteTime": {
187 | "end_time": "2018-07-16T06:04:55.359282Z",
188 | "start_time": "2018-07-16T06:04:55.349153Z"
189 | }
190 | },
191 | "outputs": [
192 | {
193 | "data": {
194 | "text/plain": [
195 | "array([[13, 0, 0],\n",
196 | " [ 0, 16, 0],\n",
197 | " [ 0, 0, 9]], dtype=int64)"
198 | ]
199 | },
200 | "execution_count": 10,
201 | "metadata": {},
202 | "output_type": "execute_result"
203 | }
204 | ],
205 | "source": [
206 | "# print the confusion matrix\n",
207 | "con_metrics = metrics.confusion_matrix(y_test, y_pred)\n",
208 | "con_metrics"
209 | ]
210 | },
211 | {
212 | "cell_type": "markdown",
213 | "metadata": {},
214 | "source": [
215 | "## Stochastic Gradient Boosting"
216 | ]
217 | },
218 | {
219 | "cell_type": "code",
220 | "execution_count": 14,
221 | "metadata": {
222 | "ExecuteTime": {
223 | "end_time": "2018-07-16T06:12:53.391592Z",
224 | "start_time": "2018-07-16T06:12:53.208079Z"
225 | }
226 | },
227 | "outputs": [
228 | {
229 | "data": {
230 | "text/plain": [
231 | "GradientBoostingClassifier(criterion='friedman_mse', init=None,\n",
232 | " learning_rate=0.1, loss='deviance', max_depth=3,\n",
233 | " max_features=None, max_leaf_nodes=None,\n",
234 | " min_impurity_decrease=0.0, min_impurity_split=None,\n",
235 | " min_samples_leaf=1, min_samples_split=2,\n",
236 | " min_weight_fraction_leaf=0.0, n_estimators=100,\n",
237 | " presort='auto', random_state=7, subsample=1.0, verbose=0,\n",
238 | " warm_start=False)"
239 | ]
240 | },
241 | "execution_count": 14,
242 | "metadata": {},
243 | "output_type": "execute_result"
244 | }
245 | ],
246 | "source": [
247 | "from sklearn.ensemble import GradientBoostingClassifier\n",
248 | "\n",
249 | "seed = 7\n",
250 | "num_trees = 100\n",
251 | "gbdt = GradientBoostingClassifier(n_estimators=num_trees, random_state=seed)\n",
252 | "gbdt.fit(X_train, y_train)"
253 | ]
254 | },
255 | {
256 | "cell_type": "code",
257 | "execution_count": 15,
258 | "metadata": {
259 | "ExecuteTime": {
260 | "end_time": "2018-07-16T06:13:07.208587Z",
261 | "start_time": "2018-07-16T06:13:07.198507Z"
262 | }
263 | },
264 | "outputs": [],
265 | "source": [
266 | "y_pred = gbdt.predict(X_test)"
267 | ]
268 | },
269 | {
270 | "cell_type": "code",
271 | "execution_count": 16,
272 | "metadata": {
273 | "ExecuteTime": {
274 | "end_time": "2018-07-16T06:13:28.285005Z",
275 | "start_time": "2018-07-16T06:13:28.277082Z"
276 | }
277 | },
278 | "outputs": [
279 | {
280 | "data": {
281 | "text/plain": [
282 | "0.9736842105263158"
283 | ]
284 | },
285 | "execution_count": 16,
286 | "metadata": {},
287 | "output_type": "execute_result"
288 | }
289 | ],
290 | "source": [
291 | "from sklearn import metrics\n",
292 | "metrics.accuracy_score(y_test, y_pred)"
293 | ]
294 | },
295 | {
296 | "cell_type": "code",
297 | "execution_count": 17,
298 | "metadata": {
299 | "ExecuteTime": {
300 | "end_time": "2018-07-16T06:13:31.101837Z",
301 | "start_time": "2018-07-16T06:13:31.092446Z"
302 | }
303 | },
304 | "outputs": [
305 | {
306 | "data": {
307 | "text/plain": [
308 | "array([[13, 0, 0],\n",
309 | " [ 0, 15, 1],\n",
310 | " [ 0, 0, 9]], dtype=int64)"
311 | ]
312 | },
313 | "execution_count": 17,
314 | "metadata": {},
315 | "output_type": "execute_result"
316 | }
317 | ],
318 | "source": [
319 | "# print the confusion matrix\n",
320 | "con_metrics = metrics.confusion_matrix(y_test, y_pred)\n",
321 | "con_metrics"
322 | ]
323 | },
324 | {
325 | "cell_type": "markdown",
326 | "metadata": {},
327 | "source": [
328 | "## Adaboost"
329 | ]
330 | },
331 | {
332 | "cell_type": "code",
333 | "execution_count": 18,
334 | "metadata": {
335 | "ExecuteTime": {
336 | "end_time": "2018-07-16T06:14:45.628824Z",
337 | "start_time": "2018-07-16T06:14:45.558474Z"
338 | }
339 | },
340 | "outputs": [
341 | {
342 | "data": {
343 | "text/plain": [
344 | "AdaBoostClassifier(algorithm='SAMME.R', base_estimator=None,\n",
345 | " learning_rate=1.0, n_estimators=30, random_state=7)"
346 | ]
347 | },
348 | "execution_count": 18,
349 | "metadata": {},
350 | "output_type": "execute_result"
351 | }
352 | ],
353 | "source": [
354 | "from sklearn.ensemble import AdaBoostClassifier\n",
355 | "\n",
356 | "seed = 7\n",
357 | "num_trees = 30\n",
358 | "ada = AdaBoostClassifier(n_estimators=num_trees, random_state=seed)\n",
359 | "ada.fit(X_train, y_train)"
360 | ]
361 | },
362 | {
363 | "cell_type": "code",
364 | "execution_count": 22,
365 | "metadata": {
366 | "ExecuteTime": {
367 | "end_time": "2018-07-16T06:15:35.061501Z",
368 | "start_time": "2018-07-16T06:15:35.050525Z"
369 | }
370 | },
371 | "outputs": [],
372 | "source": [
373 | "y_pred = ada.predict(X_test)"
374 | ]
375 | },
376 | {
377 | "cell_type": "code",
378 | "execution_count": 23,
379 | "metadata": {
380 | "ExecuteTime": {
381 | "end_time": "2018-07-16T06:15:35.845279Z",
382 | "start_time": "2018-07-16T06:15:35.837080Z"
383 | }
384 | },
385 | "outputs": [
386 | {
387 | "data": {
388 | "text/plain": [
389 | "0.8947368421052632"
390 | ]
391 | },
392 | "execution_count": 23,
393 | "metadata": {},
394 | "output_type": "execute_result"
395 | }
396 | ],
397 | "source": [
398 | "from sklearn import metrics\n",
399 | "metrics.accuracy_score(y_test, y_pred)"
400 | ]
401 | },
402 | {
403 | "cell_type": "code",
404 | "execution_count": 24,
405 | "metadata": {
406 | "ExecuteTime": {
407 | "end_time": "2018-07-16T06:15:38.769632Z",
408 | "start_time": "2018-07-16T06:15:38.760685Z"
409 | }
410 | },
411 | "outputs": [
412 | {
413 | "data": {
414 | "text/plain": [
415 | "array([[13, 0, 0],\n",
416 | " [ 0, 15, 1],\n",
417 | " [ 0, 3, 6]], dtype=int64)"
418 | ]
419 | },
420 | "execution_count": 24,
421 | "metadata": {},
422 | "output_type": "execute_result"
423 | }
424 | ],
425 | "source": [
426 | "# print the confusion matrix\n",
427 | "con_metrics = metrics.confusion_matrix(y_test, y_pred)\n",
428 | "con_metrics"
429 | ]
430 | },
431 | {
432 | "cell_type": "code",
433 | "execution_count": null,
434 | "metadata": {},
435 | "outputs": [],
436 | "source": []
437 | }
438 | ],
439 | "metadata": {
440 | "kernelspec": {
441 | "display_name": "Python 3",
442 | "language": "python",
443 | "name": "python3"
444 | },
445 | "language_info": {
446 | "codemirror_mode": {
447 | "name": "ipython",
448 | "version": 3
449 | },
450 | "file_extension": ".py",
451 | "mimetype": "text/x-python",
452 | "name": "python",
453 | "nbconvert_exporter": "python",
454 | "pygments_lexer": "ipython3",
455 | "version": "3.6.5"
456 | },
457 | "toc": {
458 | "nav_menu": {},
459 | "number_sections": true,
460 | "sideBar": true,
461 | "skip_h1_title": false,
462 | "title_cell": "Table of Contents",
463 | "title_sidebar": "Contents",
464 | "toc_cell": false,
465 | "toc_position": {},
466 | "toc_section_display": true,
467 | "toc_window_display": false
468 | },
469 | "varInspector": {
470 | "cols": {
471 | "lenName": 16,
472 | "lenType": 16,
473 | "lenVar": 40
474 | },
475 | "kernels_config": {
476 | "python": {
477 | "delete_cmd_postfix": "",
478 | "delete_cmd_prefix": "del ",
479 | "library": "var_list.py",
480 | "varRefreshCmd": "print(var_dic_list())"
481 | },
482 | "r": {
483 | "delete_cmd_postfix": ") ",
484 | "delete_cmd_prefix": "rm(",
485 | "library": "var_list.r",
486 | "varRefreshCmd": "cat(var_dic_list()) "
487 | }
488 | },
489 | "types_to_exclude": [
490 | "module",
491 | "function",
492 | "builtin_function_or_method",
493 | "instance",
494 | "_Feature"
495 | ],
496 | "window_display": false
497 | }
498 | },
499 | "nbformat": 4,
500 | "nbformat_minor": 2
501 | }
502 |
--------------------------------------------------------------------------------
/18. Clustering - K Means/K-Means.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "What is Clustering? \n",
8 | "\n",
9 | "\n",
10 | "CLUSTERING TASK Group/ Cluster similar data points.\n",
11 | "\n",
12 | "OBSERVATIONS \n",
13 | " Points in a cluster are close together.\n",
14 | " Points in different cluster are far away from each other.\n",
15 | " \n",
16 | "\n",
17 | "Clustering is UNSUPERVISED LEARNING.\n",
18 | "\n",
19 | "Algorithm(for clustering): K-means, K-means++, Hierarchical Clustering, DBSCAN\n",
20 | " "
21 | ]
22 | },
23 | {
24 | "cell_type": "markdown",
25 | "metadata": {},
26 | "source": [
27 | "Applications of Clustering \n",
28 | " \n",
29 | " E-commerce - Task is to group similar customers based on there purchasing behavior(How much money they spent, kind of credit card, kind of products they buy, geographical area).\n",
30 | " \n",
31 | " Image Segmentation - group similar pixel\n",
32 | " After grouping, we typically apply ML techniques to perform object detection.\n",
33 | " "
34 | ]
35 | },
36 | {
37 | "cell_type": "markdown",
38 | "metadata": {},
39 | "source": [
40 | "K-MEANS CLUSTERING \n",
41 | " Group them into 'k' clusters.\n",
42 | " For every clusters, it assigns centroid to each cluster.\n",
43 | " "
44 | ]
45 | },
46 | {
47 | "cell_type": "markdown",
48 | "metadata": {},
49 | "source": [
50 | "https://towardsdatascience.com/clustering-using-k-means-algorithm-81da00f156f6"
51 | ]
52 | },
53 | {
54 | "cell_type": "markdown",
55 | "metadata": {},
56 | "source": [
57 | "## Coding Sample"
58 | ]
59 | },
60 | {
61 | "cell_type": "code",
62 | "execution_count": 1,
63 | "metadata": {
64 | "ExecuteTime": {
65 | "end_time": "2018-07-17T10:19:38.582848Z",
66 | "start_time": "2018-07-17T10:19:37.351142Z"
67 | }
68 | },
69 | "outputs": [],
70 | "source": [
71 | "import pandas as pd\n",
72 | "import numpy as np\n",
73 | "from sklearn import datasets\n",
74 | "\n",
75 | "from sklearn.cluster import KMeans\n",
76 | "import matplotlib.pyplot as plt"
77 | ]
78 | },
79 | {
80 | "cell_type": "code",
81 | "execution_count": 2,
82 | "metadata": {
83 | "ExecuteTime": {
84 | "end_time": "2018-07-17T10:19:38.602791Z",
85 | "start_time": "2018-07-17T10:19:38.594813Z"
86 | }
87 | },
88 | "outputs": [],
89 | "source": [
90 | "iris = datasets.load_iris()"
91 | ]
92 | },
93 | {
94 | "cell_type": "code",
95 | "execution_count": 3,
96 | "metadata": {
97 | "ExecuteTime": {
98 | "end_time": "2018-07-17T10:19:38.856145Z",
99 | "start_time": "2018-07-17T10:19:38.846141Z"
100 | }
101 | },
102 | "outputs": [],
103 | "source": [
104 | "x = pd.DataFrame(iris.data)\n",
105 | "x.columns = ['Sepal_Length','Sepal_Width','Petal_Length','Petal_Width']\n",
106 | " \n",
107 | "y = pd.DataFrame(iris.target)\n",
108 | "y.columns = ['Targets']"
109 | ]
110 | },
111 | {
112 | "cell_type": "code",
113 | "execution_count": 4,
114 | "metadata": {
115 | "ExecuteTime": {
116 | "end_time": "2018-07-17T10:19:39.948193Z",
117 | "start_time": "2018-07-17T10:19:39.913307Z"
118 | }
119 | },
120 | "outputs": [
121 | {
122 | "data": {
123 | "text/plain": [
124 | "KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300,\n",
125 | " n_clusters=3, n_init=10, n_jobs=1, precompute_distances='auto',\n",
126 | " random_state=None, tol=0.0001, verbose=0)"
127 | ]
128 | },
129 | "execution_count": 4,
130 | "metadata": {},
131 | "output_type": "execute_result"
132 | }
133 | ],
134 | "source": [
135 | "model = KMeans(n_clusters=3)\n",
136 | "model.fit(x)"
137 | ]
138 | },
139 | {
140 | "cell_type": "code",
141 | "execution_count": 5,
142 | "metadata": {
143 | "ExecuteTime": {
144 | "end_time": "2018-07-17T10:19:40.179576Z",
145 | "start_time": "2018-07-17T10:19:40.173592Z"
146 | }
147 | },
148 | "outputs": [
149 | {
150 | "name": "stdout",
151 | "output_type": "stream",
152 | "text": [
153 | "[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n",
154 | " 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
155 | " 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 2 2 2 0 2 2 2 2\n",
156 | " 2 2 0 0 2 2 2 2 0 2 0 2 0 2 2 0 0 2 2 2 2 2 0 2 2 2 2 0 2 2 2 0 2 2 2 0 2\n",
157 | " 2 0]\n",
158 | "[[5.9016129 2.7483871 4.39354839 1.43387097]\n",
159 | " [5.006 3.418 1.464 0.244 ]\n",
160 | " [6.85 3.07368421 5.74210526 2.07105263]]\n"
161 | ]
162 | }
163 | ],
164 | "source": [
165 | "print(model.labels_)\n",
166 | "print(model.cluster_centers_)"
167 | ]
168 | },
169 | {
170 | "cell_type": "code",
171 | "execution_count": 6,
172 | "metadata": {
173 | "ExecuteTime": {
174 | "end_time": "2018-07-17T10:19:41.279631Z",
175 | "start_time": "2018-07-17T10:19:41.099158Z"
176 | }
177 | },
178 | "outputs": [
179 | {
180 | "data": {
181 | "text/plain": [
182 | "Text(0.5,1,'K Mean Classification')"
183 | ]
184 | },
185 | "execution_count": 6,
186 | "metadata": {},
187 | "output_type": "execute_result"
188 | },
189 | {
190 | "data": {
191 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEICAYAAACktLTqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xl8VOX1+PHPmUkyWyAsCVsChEVEEJFdsQJCtVioWBesC4ob1VapWsW1+qu1tn61LlVb61q1orhQtNQNFVxxAbRuuODCIgooO0kIyZzfH88kZDKTZJJMmGRy3r7mZeaZ5957blrP3Dz33OcRVcUYY0x68aQ6AGOMMclnyd0YY9KQJXdjjElDltyNMSYNWXI3xpg0ZMndGGPSkCV30yqJyDgRWdOE+79DRH5X5f3ZIrJORLaLSMfIv3s3wXE/EpFxyd6vaXksuZu4RORrEflxlfe/EJFNIjI2Tt9xIqIiMrda++BI+6I9EHIMERkpIk+LyGYR2Sgib4vIqXvi2Kp6lqr+IRJHJnAjcJiqZqvqD5F/f9mYY4jIP0XkmmrHHaiqixqzX5MeLLmbOonIKcDtwCRVfbmGbhuA0SLSsUrbKcBnTR1fPCJyIPAS8DLQF+gInA0cnoJwOgN+4KMUHNu0UpbcTa1EZAbwF+AnqvpGLV1LgXnALyLbeYGpwEPV9tdfRBZErqQ/FZGpVT6bJCLvishWEVktIv+vymeFkb8CThGRVSLyvYhcXks81wP3q+p1qvq9OktVdWq8ziJyiYh8ISLbRORjEfl5lc/6isjLIrIlctw5kXYRkZtEZH3ks/dFZN/IZ/8UkWtEpB/waWRXm0XkpcjnKiJ9Iz8HROQvIrIysp/XRCQQ+ewxEfku0v6KiAys8r/LicCsyBDPfyLtlX9xiYhPRG4WkbWR180i4ot8Nk5E1ojIbyPxf7un/qoxe4Yld1Obs4E/ABNUdUkC/R8ATo78/BPcleraig9FJAQsAGYDnYDjgb9VJCxgR2T7dsAk4GwRObLaMX4E7A1MAK4UkX2qByEiQeBA4PEEYq7wBXAwkAP8HviXiHSNfPYH4HmgPVAA3BppPwwYA/SLxHwc8EPVnarqZ0DF+bVT1fFxjn0DMAwYDXQAZgHhyGfPAHvhfl/LiHxZquqdkZ//LzLE87M4+70cOADYHxgMjASuqPJ5l8j55gOnA7eLSPu4vx3T4lhyN7U5FHgT+CCRzpEr+w4isjcuST9Qrctk4GtVvU9Vy1R1GfAEcExk+0Wq+oGqhlX1feBhoPoY/+9VtVhV/wf8D5e0qmuP+//2twmdpTv2Y6q6NnLsOcDnuGQIsAvoCXRT1RJVfa1KexugPyCqulxVEz4mgIh4gNOA36jqN6parqpvqOrOSFz3quq2yPv/BwwWkZwEd38icLWqrlfVDbgvrWlVPt8V+XyXqj4NbMd9cZo0YMnd1OYs3FXp3SIiCW7zIHAOcAjw72qf9QRGRW5wbhaRzbgE1AVAREaJyEIR2SAiWyLHz622j++q/FwEZMeJYRPuyrdrnM/iEpGTReS9KnHtW+XYswAB3o5Uo5wGoKovAbfh7kesE5E7RaRtoseMyMWNx38RJyaviPw5Mly0Ffi6yjaJ6AasrPJ+ZaStwg+qWlblfU2/T9MCWXI3tVmPG/44GPhbgts8CPwKeFpVi6p9thp4WVXbVXllq+rZkc9nA08B3VU1B7gDl1TrJXLcxcDRifQXkZ7AXbgvpY6q2g74sOLYqvqdqp6pqt2AX+KGkvpGPvurqg7DDb30Ay6qZ7jfAyVAnzifnQBMAX6MGz4prAg58u+6pnRdi/tCrdCDKsNkJr1Zcje1UtW1wHhgoojclED/r3BDKfFuds4H+onINBHJjLxGVBk3bwNsVNUSERmJS24NNQuYLiIXVVTwiCvNfCRO3xAuUW6I9DsVd+VO5P2xIlIQebsp0rc8EvuoSKnjDlySLq9PkKoaBu4FbhSRbpGr9QMjNz7bADtx4/hB4Npqm68DaquVfxi4QkTyRCQXuBL4V33iMy2XJXdTJ1VdjUvwx4jInxLo/1rkS6F6+zbcTchf4K4gvwOuA3yRLr8CrhaRbbhE9GgjYn4jEvN44EsR2QjcCTwdp+/HuIqgxbiEOQh4vUqXEcBbIrId95fFbyJfYm1xV/ybcEMeP+BujtbXhbj7Gu8AG3G/Ew/unsVK4BvgY9z9j6ruAQZEhpLmxdnvNcAS4P3I/pdF2kwrILZYhzHGpB+7cjfGmDRkyd0YY9KQJXdjjElDltyNMSYNZaTqwLm5uVpYWJiqwxtjTIu0dOnS71U1r65+KUvuhYWFLFmSyHQlxhhjKojIyrp72bCMMcakJUvuxhiThiy5G2NMGrLkbowxaciSuzHGpCFL7saYPW7Xrl2sXLmSoqLqs0InZv369Xz33XdRbZs2bWLNmjXYfFlOncldRLpHFlBYHlmo4Ddx+oyLrPH4XuR1ZdOEa4xp6W6//Xby8vIYOHAgubm5nHPOOezatSuhbVesWMHIkSPp0aMHhYWFDBo0iFdeeYWJEyfStWtX+vXrR2FhIS+99FITn0XzV+eskJF1JLuq6jIRaQMsBY6MTJNa0WcccKGqTk70wMOHD1erczemdXnssceYPn161BV7MBjkjDPO4JZbbql125KSEnr27Mn3339POByubPd4PHi93qgviGAwyHvvvcdee+2V/JNIMRFZqqrD6+pX55W7qn4bWeuyYj7u5bgFdY0xpl7+8Ic/xAzFFBUVcdddd7Fz585at33qqacoLi6OSuwA4XA45sq/tLSUW2+9ldasXmPuIlIIDAHeivPxgSLyPxF5pspq9tW3nyEiS0RkyYYNG+odrDGmZfvmm2/itqsqW7ZsqXXbVatWUVJSktBxysrK+Pzzz+sdXzpJOLmLSDZupfrzVHVrtY+XAT1VdTBwKxBvVRhU9U5VHa6qw/Py6pwawRiTZoYPjz+a0KZNG3Jza1/3e8SIEWRlZSV0nEAgwCGHHFLv+NJJQsk9skbkE8BDqjq3+uequlVVt0d+fhrIjKzZaIwxlf785z8TCoUQ2b3ueTAY5IYbbsDjqT0djRkzhqFDh+L3+yvbfD4fHTp0IBgMVrZlZGSQk5PDmWeemfwTaEESqZYR3FqNy1X1xhr6dIn0I7KwsQe3nqQxxlQaMmQIr7/+OpMnT6ZLly4ccMABPP7445x88sl1bisiPP/881x22WUUFhbSo0cPLrjgAr766iuuv/56+vfvT7du3TjjjDN49913ad++/R44o+YrkWqZHwGv4hbYrbiTcRnQA0BV7xCRc4CzgTKgGLggskBxjaxaxhhj6i+Z1TKvqaqo6n6qun/k9bSq3qGqd0T63KaqA1V1sKoeUFdiN8ak2JIlcOCBkJEBHTrAlVdCWVnSD3PGGWeQkZGBiJCVlcWsWbOSfgwTX8rmczfGpMhnn8G4cbBjh3u/aRPccAOsXg333Ze0w0yfPp3777+/8v2uXbu4/vrryczM5I9//GPSjmPiq3NYpqnYsIwxKXLGGfDPf0J5eXS7zwcrV0Lnzo0+RDgcJjMzM6YmHSArK6vOmnZTs6QNyxhj0syyZbGJHcDvhxUrknKI7du3x03s4B4wMk3Pkrsxrc3++4PXG9teUgJ9+iTlENnZ2VHljlUlWqtuGseSuzGtzaxZ7iq9qkAApk6FLl2ScgiPx8Pxxx8f97PzzjsvKccwtbPkbkxr078/vPgiDB8OItC2LcycCffck9TDPPTQQ5x88smVDyd5vV7OO+88rrvuuqQex8RnN1SNac1UXYJvYuFwuM4nUE1i7IaqMaZGq1ev5vTTT6d7jx4MHTqURx55hE2bNjFr1ix69erFgAEDuPXWWykqKuJPf/oT/fr1o0+fPlx11VVs27aNu+66i0GDBtGzZ09mzpzJ+vXraz1e1cT+0UcfcfTRR1NQUMCYMWNYsGBB3G02b95cGc8+++zDrbfeSnmcG8HhcJi77767Mp5zzz23znhS4cknn2TUqFF0796dk046iRVJunldI1VNyWvYsGFqjNnz1q5dqx07dtSMjAwFFNBgMKgdOnTQrKysqLa8vDwNBAKVbX6/X3NzczUYDFa2ZWZman5+vm7evLnOY7/33nsaCoVURKKO869//SuqX1FRkfbt2zcmnmOPPTZmn2eddVbceDZt2pS031lj3XLLLVExer1ebdu2ra5YsaLe+wKWaAI51pK7Ma3Mb3/726ikmYxXIBDQ66+/vs5jH3744XG379Spk5aXl1f2u+eeezQUCsU9zscff1zZb/Xq1erz+Rocz55QXFys2dnZMTF6vV6dPn16vfeXaHK3YRljWpmFCxcmvda8uLg4oaXt3n777bjtW7Zs4fvvv698//LLL7Oj4gnaKjweD2+9tXs5iaVLl+Lz+eLG8+KLLyYSepP78ssv45aFlpeX88orrzTZcS25G9PK9O7du8Ya9IbKyMigTwI18l1qKLX0eDy0bdu28n3v3r3jJm2Px0NBQUHl+4KCgrjj8BkZGfTt2zeR0Jtc586da/wy7dGjR5Md15K7Ma3MhRdeSCAQiGrLzMzEW+3BJq/XG7fCxePxkJmZGdWWlZXFOeecU+exr7jiiqi518EtrHHaaadFzdN++umnk5ERPfWV1+slNzeX8ePHV7YNHTqUvn37NjiePaFjx44cccQRUecHbh77yy67rOkOnMjYTVO8bMzdmNR59NFHNS8vT0OhkPp8Pj3iiCP0mWee0Z49e2ogEFCfz6cHHnigLly4UAcPHqx+v1/9fr/2799fX3zxRT3kkEPU5/NpMBjU/Px8fe655xI+9o033qht2rTRUCikfr9fZ8yYoTt37ozp99prr8XEs2rVqph+69at0/Hjxzc4nj1hx44d+otf/EJ9Pp+GQiFt166d3nvvvQ3aFwmOuVuduzGtVHl5OStXrqRdu3Z06NABcBd7q1atwu/307nKBGJr166lvLyc7t27V7Zt2LCB7du3U1hYWO9hnp07d7JmzRo6depEmzZtauxXUzzxNCaePWXz5s388MMP9OjRI+avjUQlWuduyd0Y02S+/PJLbrrpJj788ENGjBjBb37zG/Lz82P6VdTOz58/n27dunHuuecyatSoFERcP6rKvHnzuPfeeykrK+Pkk09m6tSpMUNcyZRocrdhGWNMk3j77bc1OztbMzMzFdCsrCzNycnR5cuXR/XbsmWL9u3bt7KeXkQ0GAw2eNhiTzrttNOiSjZDoZBOmTJFw+Fwkx0TK4U0xqTSWWedxfbt29m1axfgpvrdunUr559/flS/2267jTVr1lBcXAy4C86ioiJmzpxZ2dYcvf/++zzyyCNRJZs7duzghRde4NVXX01hZI4ld2NM0pWWlvLee+/FtKsqixYtimqbN28eJSUlMX09Hg/vvvtuU4XYaC+88AJlcZYm3LFjB88++2wKIopmyd0Yk3QZGRk1ztte/QZqbm5u3H5lZWWVN3qbo/bt28e9Kerz+Wo8pz3JkrsxJuk8Hg8nn3xyTG13IBDgV7/6VVTbzJkzCYVCUW1er5c+ffrQv3//Jo+1oY466qi4VTler7fGuez3JEvuxpgmcdNNN3HIIYcQCATIycnB7/czZcoULr/88qh+EydO5PLLL8fv99O2bVtCoRD9+vVj/vz5KYo8MTk5OTz99NN06NCBtm3bVr4ef/xxunbtmurwrBTSGNO0VqxYwYoVKxgwYECtj9tv2rSJd955h9zcXIYMGdJsa9Wr27VrF4sXL6a8vJzRo0fHnTYhmRIthcyoq4MxxlT31Vdf8a9//YtNmzYxadIkxo8fz4YNG3jwwQdZtWoVY8eO5YgjjqC4uJgXXniBjz/+mO+++47jjjsOj8fDE088wZtvvslee+3FSSedRPv27Wnfvj2HHXZY5TFUlddff5158+YRDAY56aST6NevX8rOuaZ4MjMzGTNmTMriqlEi9ZJN8bI6d2NapkcffVQDgUDltMGhUEjHjBlTOZ0AoNnZ2Tpw4MCoud9DoZB269ZNe/XqVTkFbjAY1Hbt2ukHH3wQdYxwOKzTp0+vnPs9IyNDA4GA3nnnnSk553A4rKeeempMPP/4xz/2eCzY9APGmGTbsWMHnTp1oqioKKpdRKieSyqGVaq2x2sDGDJkCMuWLat8/+KLLzJlypSYaX/9fj9r1qyhY8eOjT+ZemhO8dgye8aYpHv55ZdjZmuE2GRd0Va9PV4buKX3Nm3aVPl+zpw5cedzz8jI4LnnnmtI6I3y6KOP1hhPc6hpj8eSuzEmYQ2d7Kouqho1H0tWVlbc6YZFpMliqE1t8dRUz59qltyNMQkbO3ZsjUmuOo/HE3eO+HhtBx10UNRiHfFq5MEthn344Yc3NPwGa27xJMKSuzEmYVlZWTz55JNkZ2eTnZ1NIBDA7/dzyimnkJeXR5s2bfD7/QSDQQ499FB69+5d2Zadnc2gQYMYNWoUoVAIv99PmzZtyM/P54EHHog6zsiRI7nkkkvw+/0EAgGys7MJBoM89thjZGdn7/HzHjFiBJdeemlMPI8++mhK4kmE3VA1xtTbtm3beOqpp9iyZQuHHnooe+21F6WlpcyfP5+1a9cyevRohg4dSjgcZsGCBXz22WcMGjSIsWPHArB48WKWLVtGYWEhEydOjDuOD7By5UqeeeYZAoEAU6ZMoV27dnvyNJtlPDafuzGtUTgMCxfC55/DoEEwerRrX7IEli6FXr3gxz8Gr5dPPvmEl19+mby8PCZNmoTP52PNmjU899xzBAIBJk+eHDVUkq5UlSVLlrB06VIKCws59NBD6zUf+8aNG5k/fz7l5eX89Kc/rXNRkcZK2nzuQHdgIbAc+Aj4TZw+AvwVWAG8Dwyta79W525Mkm3YoDpggGp2tmog4P49YoTqmDGqwaBra9NGw7166flTp2ogENBgMKht2rTRjh076syZM9Xv92soFNLs7GwNhULNbrm6ZCspKdEJEyZoKBTSQCCgbdq00V69eumaNWsS2r6i5r/i9+X3+5u89p0E69wTSe5dK5I10Ab4DBhQrc9PgWciSf4A4K269mvJ3ZgkO/po1cxM9591xcvrda8qbeUej77k8VQuMFHxEpGYtlAopNu3b0/1mTWZq666qvLBq4qX1+vV8ePH17ntunXrKhcYqfry+/26YsWKJos50eRe5w1VVf1WVZdFft4WuYKvvk7WFOCByLHfBNqJSOpnzjGmtSgvh6eegsjCGFHt5eVRTZ5wmIPCYaqvXKpxhmg9Hg/PPPNMkoNtPu65556YueTLy8t57bXX2Lp1a63bzp07N26VUHl5OXPmzElqnA1Rr2oZESkEhgBvVfsoH1hd5f0aYr8AEJEZIrJERJZs2LChfpEaY2oWDrtXgpTEJ5bauXNng0JqCXZV/zJM8DNwC5KE4/zOy8vL4y4+sqclnNxFJBt4AjhPVat/pcWbvi3mMkBV71TV4ao6PC8vr36RGmNqlpkJP/oRVL+SFIlpU+ATETZRt127dvGTn/wkaWE2N0cffXTch5D69+9f55QCkyZNitvu9/s58sgjkxJfYySU3EUkE5fYH1LVuXG6rMHdeK1QAKxtfHjGmITddRd06ADBoHsfCkHnzlBQ4H4GCASgbVtu3G+/yvrsrKwsAoEAhxxyCKFQCBEhIyODQCDAjTfe2CxWFWoqV199NQUFBZWLhQQCAdq2bRtTdx9Pnz59uPzyywkGg3g8HkSEYDDImWeeydChQ5s69DrVWQopblDpfmCjqp5XQ59JwDm4G6ujgL+q6sja9mulkMY0gc2b4cEH4aOPYNgwOOEE8Hrh0Udh8WLYay845RTKcnKYP38+CxYsoHPnzpx66qkUFBSwaNEi5s6dS3Z2NtOmTWPAgAGpPqMmV1JSwqOPPsrixYvp27cvp5xySr2+0N59911mz55NWVkZU6dO5cADD2zCaJNY5y4iPwJeBT4AKgaYLgN6AKjqHZEvgNuAiUARcKqq1pq5LbkbswetWwcffgg9e0Lfvq5t1Sp47DEoLISf/xziTCsAbgz57bffpry8nFGjRqVkbpe6qCrvvvsuW7duZcSIETHL9qWTpC3WoaqvEX9MvWofBX6deHjGmD0iHIZzz4V77gG/H0pL3YNNGRlQdXZFnw9eew2GR+eMN954gyOPPJKSkhJEBK/Xy5w5czj00EP38InU7PPPP+fwww/nu+++w+v1UlZWxq233sppp52W6tBSyp5QNSad3X47zJoFVedf93pjyiMBNx5fpd/WrVspKChg27ZtUd2CwSBffvllkz+JmYhwOEyvXr1YvXp1VClnMBjk5ZdfZvjwuh/kbGlsPndjDNx0U3Rih/iJHaC4GKrUtD/xxBNxS/3C4TAPP/xwMqNssMWLF7Nx48aYGv2SkhL+/ve/pyiq5sGSuzHpbPPm+vVftaryx40bN8at9S4pKaG5PKfyww8/xJ2COBwO891336UgoubDkrsx6ezQQ2u8URrXscdW/jhhwoS4szWGQqFmM+Y+evRoSktLY9qDwSBTpkxJQUTNhyV3Y9LZtddCTo67YQpuvD0QiJ/wp01zdfIR+++/P0cddVRU5UkoFGLcuHGVU/emWm5uLr/73e8IVtT24xJ7nz59mDZtWgojSz27oWpMuvv2W7jlFlcNs/fecMEF0KYN/PKX8MYb0LYtXHYZnH12zKbhcJjHH3+ce+65h/Lyck455RROOOGEek2Juye88MIL3H777WzcuJFjjjmG008/PSrhpxObz92Y1uCzz9wDSxMnuitygI0bYflyN597bfOxh8OwZo27ss/JSUo4a9euZeXKlQwbNqzysf7i4mLWr19Ply5d8FX8BRE3nDBr1qwhJyeHnDriWb9+PeFwmC5dutQ7xkTjaa6sWsaYdPbNN+7qe++94aij3JQDhxwCo0ZBx45unpmcHPjJT+JPKPbvf0O3btC/v5ui4JhjoI5ZEGuzceNGevfuTX5+PqNHj8bv9/PLX/6Siy++mNzcXAYOHEhubi7XXntt3Nkn582bR35+Pv3796dz584cffTRcWdl/PzzzxkxYgQ9evSgsLCQQYMG8cEHHyQUYzgcTjietJDIvMBN8bL53I1phEAget722l4nnBC97dtvu8U7qvbx+VQPO6zB4XTv3j1mXnNAMzMzo94Hg0G94447orZ95513NBgMRvXz+Xx6WLV4iouLtVOnTuqpNhd9u3btdPPmzXXG+Pvf/z7mOMFgUP/+9783+LxTgWQt1tFUL0vuxjTQW28lntgrFuyo6thjVUVi+/n9ql9/Xe9wPvvss7iJvaZXjx49orafOnVq3IVC/H6/fl0lnjlz5mibNm1i+sX7wqguHA5r27Zt48bTvXv3ep9zKiWa3G1YxpiW5o036te/+kNLX3zh0nl1Pp8bg6+njz/+uF79161bF/V+xYoVcYdGKtZ0rbBq1aq486QXFRWxcuXKWo+5a9eumCdtK6xfvz6RsFscS+7GtDRVatETUn0SrbFjIc4c5uzcCQMH1jucgw8+uF79Bw8eXC2csXHnVN+5cycDq8QzYsSIuP2ys7MZNWpUrcfMysqisLAw7mf77bdfAlG3PJbcjWlp8vNhn30S7/9//xf9/re/dQm/ajljMOhKJNu1q3c4HTp0YPLkyXE/q56Mg8EgN9xwQ1TbhRdeSHZ2dlR5ZTAY5Pzzz6ddlXjGjBnD0KFD8fv9lW0+n48+ffrUuHBGVbfccguBioqiKsf5y1/+Uue2LVIiYzdN8bIxd2MaafLk3WPngYDq3Xer3nSTatu2qh6PaseOqvfeG3/br75SnTZNtVs31UGDVB94QDUcblQ4F1xwgQYCAfV4PFpQUKDPPvusLly4UA8++GDt0qWLHnroofrWW2/VEM5XOm3aNO3WrZsOGjRIH3jgAQ3Hiae4uFivvvpq7dWrl/bo0UMvvfRS3bZtW8IxLly4UMeMGVNnPM0ZCY65W527Mca0IFbnbkxz9+WX8NOfuvHv7Gz3xOj27Uk/zLPPPsvAgQPJyMigW7du3H777XFvYJr0kugC6MaYZNq0yT1wtHGje8ho1y64/3744AN4/fXYha4baOHChRx99NEURab9/fbbb5k1axbbt2/n4osvTsoxTPNkV+7GpMJ997l51qs+PbpzJ7z/PrzzTtIOc8UVV1Qm9gpFRUVce+21lJWVJe04pvmx5G5MKixbFruIBrgr9nrWjddm+fLlcdtLS0v54YcfknYc0/xYcjcmFYYM2T3RV1Wq9StzrMPee+8dtz0zM5MOVab3NenHkrsxqXDqqbHzqvt87iGikSOTdphrrrkmZurbYDDIJZdcQmZmZtKOY5ofS+7GpEKHDvDmmzBhgnuYyO+HE0+EBQuSdjMV3GpKc+bMoV+/fogInTp14tprr+XSSy9N2jFM82R17sakmmpSE3rNh1FkDxzHNC2rczemudu0CS66CHr1ggED4NZbYyf5AldRc9ddbvGNnj3h3HOhAZNdRSX2Vavg9NOhe3cYOhQefjj+ZGJ7yOrVqzn99NPp3r07Q4cOZfbs2VaL31iJPMbaFC+bfsC0akVFqn37qmZl7Z5yNxhUnTo1tu8vfxk9/3pmpmp+vmoCc5jHtXatm5ogI2P3PkMh1SuvbNw5NdDatWu1Y8eOmpGRETWN7+9+97uUxNPcYVP+GtOMPfywW9u0tHR3W1ER/Oc/bom8CqtXu4ebqpZN7trlHn66++6GHfsvf4Ft26BqnfuOHW6CsS1bGrbPRrjxxhvZtm1bVN19UVER119/PVtSEE+6sORuTCosXOgSanUeD7z99u73y5bFn563uBheeqnhx676pVLB54MPP2zYPhth4cKFlMaJx+fz8WEK4kkXltyNSYU+fVwyrc7jgYKC3e/z8+OPw2dkQO/eDTt2797xb+Du3OmOt4f16tUr7o3enTt3kp+CeNKFJXdjUuGMM1yCrsrrhdxct9B1hWHDoG/f2L5ZWe7GakNceGHsA1RZWW5R7RoWtGhKF110Ucw861lZWRx00EE1LrBh6mbJ3ZhUKCiAZ591yTQQcFfxo0bByy9HP9gkAs8/D2PGuD7BoLu6njcP+vVr2LFHjXLj+Hli7yoTAAAdxElEQVR5bn8+H0ycCI8/npRTq6+RI0dy//33k5eXRzAYxOfzMXHiRJ544omUxJMurM7dmFRSdWWJfj907lx73++/dzdCCwuTUxdfXg4rV0L79u6VYuXl5axcuZL27dvTvhnE01xZnbsxe8KXX7rhkXHjYNYs+OabxLddtQq6dHHJuksXN9+MKsydCz/7GRx+uKuqKS+HRYvgV7+CM8+EO+6AOAtFA6xatIiXBw/m3XbtWDRyJN8uWeJq4n/3OxfjWWfBJ5+4L4mbb3bDQ+eeC2+9lYRfRuN4vV569+5tiT1J6rxyF5F7gcnAelXdN87n44Anga8iTXNV9eq6DmxX7qbFe/ttN33Azp2uPDEryw2xvPkm9O9f+7bff++GReIJhXZX0oRC7sGlr7/eXQ4ZDMLee8Mbb7gr/oiP7ruPnqedRhaQBeyMvEJt2uAtLXVxer0uzvbt3UNUxcXur4BAAG67zc15Y5q1ZF65/xOYWEefV1V1/8irzsRuTFo46yy3ctKuXe59aSls3eoWmq7LAQfU/FnVEskdO9wUwFXr3IuK4LPPYPbsqM08v/412bjEDuAD2gCebdtcYgf3V0BxsauxLy52bapunzNn7m4zLV6dyV1VXwE27oFYjGk5Skvhf/+LbVd1Qyh1+fLLxh1/xw43fFMRzvbt9IuTmCXyihHvL3aPB957r3FxmWYjWWPuB4rI/0TkGREZWFMnEZkhIktEZMmGDRuSdGhjUiAjI/7DRQBt2tS9vdfbuON7PFE3YDP8fuI8llQ/ZWXN4saqSY5kJPdlQE9VHQzcCsyrqaOq3qmqw1V1eF5N443GtAQeD5x8ctSYN+DGrs8+u+7tf/nLxI8lElsd4/e7YaGKcDIyeKd/f6pfu5cC5Z5q/5lnZsZ+uXi9rp6+rnsFpsVodHJX1a2quj3y89NApojkNjoyY5q7m25yFSiBAOTkuIQ7ZQpcfnnd2952W/ynQcePd3O9t23rXjk58I9/QI8ekJ3t2gIBuPFGGDEiatPhr77Kh7m5FANbgBLgne7dd38J5eS4bUePhssu290WCrma+fnzk/BLMc1FQnXuIlIIzK+hWqYLsE5VVURGAo/jruRr3bFVy5i0sWKFew0Y4JJwfbz3HsyYAe3auQeTgkF3g3bxYnfz86CD3PCPqqvO2brV3YytZehn5YsvsmHxYrpOmED+gQe6xrVr4YMPXOVNxdX5pk1uMe7cXFeGaXO9twiJVsskUgr5MDAOyAXWAVcBmQCqeoeInAOcDZQBxcAFqvpGXQe25G6ajfffh0cecWPOU6fC8Dr/u6m/0lK45hp46ik3Vv7HP9Z8nHjxvPIKXHWVS+7HHeemENiwAR580M0cOWaM+6uh+jQFKbZ161Zmz57Nxx9/zNChQ5k6dWrMsn+mfhJN7jafu2nd/vhH1UBA1etV9XjcvOkXXZTcY2zbptq27e650yte112XWDzDhsVu26GDana2qt/v3mdnqw4dqrpjR3Jjb4QVK1Zobm6uhkIhBTQUCmlBQYGuXbs21aG1aCQ4n7sld9N6rVixOzlWfQUCqu+9l7zjHHdc7DFAVUS1uHh3vy++iB9Poi+/X/Waa5IXdyONHz9ePR5P5QIcgGZkZOjxxx+f6tBatESTu00/YFqv+fPj13uXlrrx72T573/jt6vCnDm73//nP407TkkJ/OtfjdtHkpSVlfHyyy8TDodj2p966qkURdW6WHI3rVdmZvQMjBU8nvhzrTdUvGNUqFpKmZnZ+JuaNdXe72EiUuNi3BnN7L5AurLkblqvn/88/pW71wvHHpu845x4Yvz26sc56qjGHScYdJU3zYDX6+WII44gMzMzqt3n83HCCSekKKrWxZK7ab26dnXrkPr9rtY7GHQ/33STWykpWf76V+jVK7pNBB56KPqqvksXuOuu2HimTo3d54AB0KmTK4n0+13fww6r38NRTeyOO+6gd+/etGnTBr/fT3Z2Nvvuuy/XXXddqkNrFWw+d2M2bHAliuXlbqrdrl2b5jj//rebwjc/303B26FD4vF89x1cfbVbGPvMM91slKWl7r7B2rXuwaShQ5sm7kYIh8MsWLCAzz77jEGDBjF27Ngah2tMYpJW595ULLmbpFF1D+MsW+bmRj/00MbP3fLVV27+9M2b4bzzXG15UZGrT//6azekc8wxrhb9ppvg3XfdMnUVUwLcfz8sWOCusGfNcmPhn3ziVlrKy4NJk9y4/urV8Nxz7sp78mT3BOoPP7ibsOXlrl+nTo39DZk0YsndtA4lJfDTn7qnN8Nh9xBPbi689hp069awfV54IfzlL9Ft7dvDli3uGBU6dXJPeVZM+QsuSWdmur4VMjJcjAsW7H6flQUnnOCGYTwe91KF3/zGfVl4ve59ebkb1jnzzIadi0k7ltxN63DllXD99dErE3m9bs6XF16o//42boSOHZMWXq1E4t/QrS4QgA8/hN69mz4m0+zZMnumdbj33tgl58rL3eP627bVf38XXZScuBKR6IVVWVl0PbwxCbDkblq20lpmMS8rq//+muNKROXlu1dSMiZBltxNy3b00W6Mu7oBAxq28MQf/tD4mJKtYiphY+rBkrtp2a65BgoK3FznsHtu9QceaNj++vSBH/84tj1e9U28p0FF4vft1293jD6fu/E6bpyrZxdxN1kDAVcxEwzuvskaDLra9SFDGnY+ptWy54BNy9axI3z0ETz6KLz5pkuiJ5/cuJuiCxa4L4fLL3fljz/7Gdx5p1uo+uKL4ZtvXLnlH//oatJ/+1v32YgR7uZuRobr98YbbnWjG25wDzHNnw/PP+/q1qdPd19Kixa5+vdQCKZNc39xLFvm6uHLy90DTLUtpm1MDaxaxpjycnjrLffvAw5wwzyqLslu3QojR7rkW5Ovv3aLdeyzT/zVlSps2QJLlrgSyn33rd88MvWJx6Q1q5YxJhGvv+4e+5840Q2JdO4M//wn7LWXGzY58kiXjO+7L3bb4mI3Fr7PPu6Bpj594JRT4t/IveEGd5yjj4YDD4TBg91fAIn4/PPE4jGmCrtyN63Xli3QvXtsyWTFFXXV/zaCQXj11ehH/M8+230RVC3FDAbhkkvc9AIVnn/ePdFaVLS7zeuFQYPck621CYfdkM7q1bHxvPIKDBuW0Kma9GFX7sbUZe7c6CdOK1Qsf1FVSQn87W+734fDsYkdXAK/7bbotptvjk7s4IaAPv3UvWrzxhvuKdh48fz977Vva1o1S+6m9dq4sfY6+arCYTd5V4Wyspq3rf6XwIYN8ftlZroY6oox3th89XiMqcaSu2m9xo+PXyMfTzDoxrsrZGW5YZXqRNxi1VUdcUT0ohwVysth//1rP+7o0fG/RKrHY0w1ltxN6zVkiFsgo2rlSSgEe+/tkmeFYNDd0DzppOjt77jD9a9YWSgz082vfuON0f3OPdeVP1YkeBG3z5tvdrXttcnNdeP31ePp27fmRUCMwW6omtYuHIYnnnCLdpSXu/rz44+HhQvh9tvdsMixx8Jpp0Un2Aqff+6S+fvvw6hRcP757iZtdVu2wD/+4dZJ7dbNzf44enTicb7wQmLxmLRns0KaPS8chjVr3BOiOTmpjiY+Vbe4hd8f/aDT+vUu/i5dUhebMQmwahmzZ82d64Ye+vd3teLHHNOwWRmb0uLFbnilb1939Tx2rCtvHD4cevRwC30MGgQffJDqSI1pNLtyN4339ttwyCHR5X4+n3vo5tlnUxZWlG++cWPpO3bsbqtYEKN6OWS7drBypVsVyZhmxq7czZ5z/fWxU+Xu3OmWlFu1KjUxVXf33bFPjpaXx69z37XL5k83LZ4ld9N4X3wRf+GJrKzEH7Fvap9/nvic6Dt2uCt3Y1owS+6m8caMiV8vXlrq5l1pDsaOTXyyrexsNzmXMS2YJXfTeBdd5BJi1XnMg0G30HS7dqmLq6oTT3QTblWdgz0YdBUzVR8w8vncDddJk/Z8jMYkkSV303j5+W462hNOcBUz++3narqvvjrVke0WDMI777jJvgoKXNXMH/7gpuu97DI3OVfPnm5u9ldfjb/ghjEtiFXLGGNMC5K0ahkRuVdE1ovIhzV8LiLyVxFZISLvi8jQeP2MqdHGjW4qABH36tDBrVoUzxlnuMf9RdwQy8UXx++3ZImbNz0jw+3vyisTXzC7pATOO8+VQmZmwoQJbrWnP/0J8vLcPocNc3PBG9NcqWqtL2AMMBT4sIbPfwo8AwhwAPBWXftUVYYNG6bGqKpqbm7FJLvRr3ffje534onx+112WXS/Tz9VDYWi+wSDqqeemlg8Eyeq+v27txVRzcpSDQRi97lsWXJ+B8YkCFiiCeTYOq/cVfUVoLZ5SacAD0SO+ybQTkS6Nuobx7Qe8+fD99/H/+zcc3f/HA7D7Nnx+91wQ/T7666LP8/67NlumoHafPKJq8+vur2qq/ypXstfXOzG7Y1phpJxQzUfWF3l/ZpImzF1e/XVmj+rupDF1q3xa+khdkrcZcvcA0rV+f2u3r02y5cnPg2wqpswzJhmKBnJPd4qv3H/KxSRGSKyRESWbKhpAQPTuhx8cM2f9eu3++e2bWteULpqeSO48ft41S47d7oyx9r07++eUE2EiFvo2phmKBnJfQ1QdY7TAmBtvI6qeqeqDlfV4Xl5eUk4tGnxJk92Nzzj+etfd//s8cBxx8Xvd8EF0e9nzYpdHCMQgKlT3aRmtdlnH/jRj2K3z8yMnXs9EHA3ao1phpKR3J8CTo5UzRwAbFHVb5OwX9NafPpp9BVwTg7Mmxe9GDXAww/DtGku0YOrWjn/fFfFUlX//vDii262RxF31T9zpptfJhFPPgmnn+6eaPV43BO477wDl14K7du7fQ4eDE8/HRujMc1EnXXuIvIwMA7IBdYBVwGZAKp6h4gIcBswESgCTlXVOgvYrc7dxBUO707eyeinWvNwTiLibd/YfRrTCInWuWfU1UFVj6/jcwV+XY/YjKlZIgm7Pv0am4TjbW+J3bQANv2AMcakIUvuxhiThiy5G2NMGrLkbowxaciSuzHGpCFL7sYYk4YsuRtjTBqy5G6MMWnIkrsxxqQhS+7GGJOGLLkbY0wasuRujDFpyJK7McakIUvuxhiThiy5G2NMGrLkbowxaciSuzHGpCFL7sYYk4YsuRtjTBqy5G6MMWnIkrsxxqQhS+7GGJOGLLkbY0waykh1AC3JcpbzCq+QRx6TmIQPX6pDMsaYuCy5JyBMmNM5nTnMASCDDHz4eImXGMSgFEdnjDGxbFgmAY/wCI/xGMWRf7axje/5nilMQdFUh2eMMTEsuSfgDu5gBzti2tezng/5MAURGWNM7Sy5J2AnO+O2e/DU+JkxxqSSJfcEnMiJBAnGtGeRxf7sn4KIjDGmdpbcEzCDGezHfmSTDYAPH0GCzGY2GXZP2hjTDFlmSoAfP6/yKvOZz/M8Tze6MZ3pFFCQ6tCMMSYuS+4JyiCDIyP/VFVCCW/yJkGCDGc4HvtjyBjTDCSUiURkooh8KiIrROSSOJ9PF5ENIvJe5HVG8kNtfuYwhzzymMIUJjCBnvTkAz5IdVjGGFP3lbuIeIHbgUOBNcA7IvKUqn5crescVT2nCWJslj7hE07jNIooqmzbznYmMIFv+IZMMlMYnTGmtUvkyn0ksEJVv1TVUuARYErThtX83c3dlFIa015CCQtYkIKIjDFmt0SSez6wusr7NZG26o4WkfdF5HER6R5vRyIyQ0SWiMiSDRs2NCDc5mM96ymjLKZdUTayMQURGWPMbokkd4nTVv2Z+/8Ahaq6H/ACcH+8Hanqnao6XFWH5+Xl1S/SZmYSkwgRimnfxS7GMjYFERljzG6JJPc1QNUr8QJgbdUOqvqDqlY8qnkXMCw54TVfR3EUgxgU9XBTiBAzmUl34v7hYowxe0wipZDvAHuJSC/gG+AXwAlVO4hIV1X9NvL2CGB5UqNshjLJZBGL+Cf/5BEeIZtszuZsDufwVIdmjDF1J3dVLRORc4DnAC9wr6p+JCJXA0tU9SlgpogcAZQBG4HpTRhzo2xjG5vYRD75ePHW2G8LW3iBFxjBCHrQA3BT/65hDTmRf3z4mMEMJjMZP3460rHWY29kI0UUkU8+Ene0yxhjkiOhOndVfVpV+6lqH1X9Y6TtykhiR1UvVdWBqjpYVQ9R1U+aMuiGKKKIEzmRPPLYh33oQhce4qG4fQczmHa04xiOoSc96UhHHuIhutKV/vSnM505lmNZwAL2Yi/60pdudGMsY1kbPWIFwAY2cBiH0ZWu9KMfhRSykIVNfcrGmFZMVFMzH/nw4cN1yZIle+x4x3Is85lPCSWVbUGC/Jf/Mo5xlW2HczjP8myd+8siizLKCBOubPPipRe9+JRPK59UVZQhDOEjPoqqrgkS5H/8j770TcLZGWNaCxFZqqrD6+rXKp6V38AG/sN/ohI7uKv5P/GnqLbneC6hfZZSGpXYAcopZx3reIVXKtuWspQVrIgpm9zFLm7n9vqchjHGJKxVJPdv+ZYssuJ+9hVfRb1v7MpKirK6ymMBq1gVd2x/F7tYwYpGHcsYY2rSKpJ7X/rGXGWDG0Y5mIOj2ho7hW855Qxn919MwxgW90nWAIGo4SBjjEmmVpHcgwS5kiujatI9eAgR4nIuj+p7FVfF3YcXb9SMj0GC5JAT9RdBkCCTmMQ+7FPZ1pOeHM/xUcfOJJP2tOcMWsX8asaYFGgVyR1gFrP4J/9kCEPoSleO5ViWsITe9I7qdwVX8Gf+XJm0PXg4hVNYwQpO5ES60pX92I9/8A9WsIKzOIsCCtiLvbiGa3iYh2OOfTd383/8H/3pTz75nMEZLGMZOeTskXM3xrQ+raZaxhhj0oFVy1RTRhmHcRgePAhCkCB/5+/8iB8hVf75OT/nGZ5hAAPw4qUb3fgbf4t7o/ULvuBwDieTzMonVLezPQVnZ4wx0VrNlfv+7M//+F9CfT14om7ABgnye37PhVxY2baRjfSjH5vYVNnXh4/hDOdVXrUnUI0xTcKu3KtYxaqEEzsQU1lTRBHXcE1Urfq93EsRRVF9d7KT93iPJdhwkzEmtVpFcn+btxu9jxJK2MSmyvfv8i7FFMf0E4Tl6T9vmjGmmWsVyX0kIxu9Dx8+2tO+8v3+7E+AQEw/RelP/0YfzxhjGqNVJPce9GBf9k24v6faryVEiEu5NOoBp9M4jQCBqLF1Hz4GMYgRjGh80MYY0witIrmDm+PlEA6pTMZ+/NzETYxiVFS/yUzmSZ6kH/0QhM505k/8iYu5OKpfRzryJm8ygQl48RIgwDSm8TzP281UY0zKtZpqmarChGOuzsspj5kDRtGEEnWi/YwxprHSslpmIxv5Lb+lkEIGMIBbuZVyymP6lVHGiZyIHz8ZZDCYwSxnOSMZiSB48ZJBBn/hL3SjG4KQQQaCMJCBTGEKglTWxO/N3vyZP1e+F4Se9GQd67iQC+lFr1rjCRPmH/yDfdmXnvRkJjNZz/o98SszxrRSLebKvYgiBjGINaypnIgrSJApTGE2s6P69qc/n/JpUuOtSRZZUfH8jJ/xCI9E9ZnBDB7iIYooAtzcMp3pzEd8RFva7pE4jTHpIe2u3B/iIdaxLmqGxSKKmMe8qES+mMV7LLEDMfE8xVN8wu6FqFaxigd5sDKxg5vudyMbuZu791icxpjWpcUk90UsYgc7Ytq9eKPq2Ocxb0+GFcOLl3d4p/L9UpbGnUu+iCJbas8Y02RaTHLvTe+4SVIQutO98v0ABuzJsGIIQgEFle8LKIg7l3wGGfShz54MzRjTirSY5D6DGWSSGdXmxUsnOjGGMZVt05iGD9+eDi8qnrGMrWwbznB60StmERAfPn7Nr/d0iMaYVqLFJPfudOcZnqEnPQkQwIePAziARSyKKmv04GEJS2hHu6i28zk/ptSx+lzuFeIti5dPfkzbzdxcZzyCsIAFHMzB+PARIEA++cxjHnuxV71/D8YYk4gWUy1TQVFWsYoAATrRqda+n/IpG9jAaEZXJtzXeI0lLGE60yu/AJ7kSe7iLi7hEn7EjwD4mI+5nds5mqMZz3gAtrCF67meAzmQSUyqdzzf8z3b2U5PelpdvDGmQRKtlmlxyb06RZnLXO7jPsop5xRO4ViOjXv1Hc8XfMHN3Mz7vM8BHMBMZvIWbzGd6WxjG1lkcQVX8Dt+1+hYjTGmsVpNcj+Zk5nL3MpKmhAhfsJPeJzH67w6fou3mMAEdrKTMsrIIgtB2MnOmL5HciT/5t+NjtcYYxoj7erc41nGMp7giagSyR3s4Dme43Ver3P7GcxgBzsq52kvpTRuYgdXYll1PndjjGnOWnRyf5EX2cWumPYiiljAglq33clOPuTDeh3P6tKNMS1Fi07u7Wkft/bdh48OdKh12wwyYkor69KLXvXqb4wxqdKik/sxHBO33YOHX/CLWrf14mUa0/DjT+hYXrz0pW+9YzTGmFRo0cm9He34L/+lAx1oG/knhxzmMpfOdK5z+1u4hXGMI0CAHHLw4+c4jot7Rb+YxU1xCsYY0yQy6u7SvI1lLN/xHYtZTJgwoxkdd6gmniBBnuEZVkT+GcjAyqkMZjOb+7iPMYyxMkhjTIvT4kshjTGmNUlqKaSITBSRT0VkhYhcEudzn4jMiXz+logU1j9kY4wxyVJnchcRL3A7cDgwADheRKpPvXg6sElV+wI3AdclO1BjjDGJS+TKfSSwQlW/VNVS4BFgSrU+U4D7Iz8/DkwQEZs8xRhjUiSR5J4PrK7yfk2kLW4fVS0DtgAdq+9IRGaIyBIRWbJhw4aGRWyMMaZOiST3eFfg1e/CJtIHVb1TVYer6vC8vLxE4jPGGNMAiST3NVBlqSMoANbW1EdEMoAcYGMyAjTGGFN/idS5vwPsJSK9gG+AXwAnVOvzFHAKsBg4BnhJ66ixXLp06fcisrL+IVfKBb5vxPbNSTqdC6TX+aTTuUB6nU9rPZeeiXSqM7mrapmInAM8B3iBe1X1IxG5Gliiqk8B9wAPisgK3BV77c/+u/02alxGRJYkUuvZEqTTuUB6nU86nQuk1/nYudQuoSdUVfVp4OlqbVdW+bkEODaZgRljjGm4Fj23jDHGmPhacnK/M9UBJFE6nQuk1/mk07lAep2PnUstUja3jDHGmKbTkq/cjTHG1MCSuzHGpKEWl9xF5F4RWS8i9VsAtRkSke4islBElovIRyLym1TH1FAi4heRt0Xkf5Fz+X2qY2osEfGKyLsiMj/VsTSWiHwtIh+IyHsi0uLn2haRdiLyuIh8Evnv58BUx9QQIrJ35H+TitdWETkvKftuaWPuIjIG2A48oKr7pjqexhCRrkBXVV0mIm2ApcCRqvpxikOrt8hEcSFV3S4imcBrwG9U9c0Uh9ZgInIBMBxoq6qTUx1PY4jI18BwVU2Lh35E5H7gVVW9W0SygKCqbk51XI0RmYH3G2CUqjbmAU+gBV65q+orpMnUBqr6raoui/y8DVhO7KRsLYI62yNvMyOvlnXlUIWIFACTgLtTHYuJJiJtgTG4hydR1dKWntgjJgBfJCOxQwtM7ukqssDJEOCt1EbScJFhjPeA9cACVW2x5wLcDMwCwqkOJEkUeF5ElorIjFQH00i9gQ3AfZFhs7tFJJTqoJLgF8DDydqZJfdmQESygSeA81R1a6rjaShVLVfV/XGTy40UkRY5bCYik4H1qro01bEk0UGqOhS36M6vI8ObLVUGMBT4u6oOAXYAMSvEtSSRoaUjgMeStU9L7ikWGZ9+AnhIVeemOp5kiPyJvAiYmOJQGuog4IjIOPUjwHgR+VdqQ2ocVV0b+fd64N+4RXhaqjXAmip/GT6OS/Yt2eHAMlVdl6wdWnJPochNyHuA5ap6Y6rjaQwRyRORdpGfA8CPgU9SG1XDqOqlqlqgqoW4P5VfUtWTUhxWg4lIKHLDnsjwxWFAi602U9XvgNUisnekaQLQ4ooQqjmeJA7JQIIThzUnIvIwMA7IFZE1wFWqek9qo2qwg4BpwAeRsWqAyyITtbU0XYH7I3f8PcCjqtriSwjTRGfg35GVLzOA2ar6bGpDarRzgYciwxlfAqemOJ4GE5EgcCjwy6Tut6WVQhpjjKmbDcsYY0wasuRujDFpyJK7McakIUvuxhiThiy5G2NMGrLkbowxaciSuzHGpKH/DxQtJJoQrnPCAAAAAElFTkSuQmCC\n",
192 | "text/plain": [
193 | ""
194 | ]
195 | },
196 | "metadata": {},
197 | "output_type": "display_data"
198 | }
199 | ],
200 | "source": [
201 | "# Create a colormap\n",
202 | "colormap = np.array(['red', 'lime', 'black'])\n",
203 | " \n",
204 | "# Plot the Original Classifications\n",
205 | "plt.scatter(x.Petal_Length, x.Petal_Width, c=colormap[model.labels_])\n",
206 | " plt.title('K Mean Classification')"
207 | ]
208 | },
209 | {
210 | "cell_type": "code",
211 | "execution_count": 7,
212 | "metadata": {
213 | "ExecuteTime": {
214 | "end_time": "2018-07-17T10:19:41.423248Z",
215 | "start_time": "2018-07-17T10:19:41.416765Z"
216 | }
217 | },
218 | "outputs": [],
219 | "source": [
220 | "predict = model.predict(x)"
221 | ]
222 | },
223 | {
224 | "cell_type": "code",
225 | "execution_count": 8,
226 | "metadata": {
227 | "ExecuteTime": {
228 | "end_time": "2018-07-17T10:19:42.382162Z",
229 | "start_time": "2018-07-17T10:19:42.378195Z"
230 | }
231 | },
232 | "outputs": [],
233 | "source": [
234 | "Y = iris.target"
235 | ]
236 | },
237 | {
238 | "cell_type": "code",
239 | "execution_count": 9,
240 | "metadata": {
241 | "ExecuteTime": {
242 | "end_time": "2018-07-17T10:19:43.651757Z",
243 | "start_time": "2018-07-17T10:19:43.645806Z"
244 | }
245 | },
246 | "outputs": [],
247 | "source": [
248 | "from scipy.stats import mode\n",
249 | "labels = np.zeros_like(predict)\n",
250 | "for i in range(3):\n",
251 | " mask = (predict==i)\n",
252 | " labels[mask] = mode(Y[mask])[0]"
253 | ]
254 | },
255 | {
256 | "cell_type": "code",
257 | "execution_count": 10,
258 | "metadata": {
259 | "ExecuteTime": {
260 | "end_time": "2018-07-17T10:19:44.060673Z",
261 | "start_time": "2018-07-17T10:19:44.054680Z"
262 | }
263 | },
264 | "outputs": [
265 | {
266 | "data": {
267 | "text/plain": [
268 | "0.8933333333333333"
269 | ]
270 | },
271 | "execution_count": 10,
272 | "metadata": {},
273 | "output_type": "execute_result"
274 | }
275 | ],
276 | "source": [
277 | "from sklearn.metrics import confusion_matrix, accuracy_score\n",
278 | "accuracy_score(Y, labels)"
279 | ]
280 | },
281 | {
282 | "cell_type": "code",
283 | "execution_count": 11,
284 | "metadata": {
285 | "ExecuteTime": {
286 | "end_time": "2018-07-17T10:19:45.765142Z",
287 | "start_time": "2018-07-17T10:19:45.757126Z"
288 | }
289 | },
290 | "outputs": [
291 | {
292 | "data": {
293 | "text/plain": [
294 | "array([[50, 0, 0],\n",
295 | " [ 0, 48, 2],\n",
296 | " [ 0, 14, 36]], dtype=int64)"
297 | ]
298 | },
299 | "execution_count": 11,
300 | "metadata": {},
301 | "output_type": "execute_result"
302 | }
303 | ],
304 | "source": [
305 | "confusion_matrix(Y, labels)"
306 | ]
307 | }
308 | ],
309 | "metadata": {
310 | "kernelspec": {
311 | "display_name": "Python 3",
312 | "language": "python",
313 | "name": "python3"
314 | },
315 | "language_info": {
316 | "codemirror_mode": {
317 | "name": "ipython",
318 | "version": 3
319 | },
320 | "file_extension": ".py",
321 | "mimetype": "text/x-python",
322 | "name": "python",
323 | "nbconvert_exporter": "python",
324 | "pygments_lexer": "ipython3",
325 | "version": "3.6.5"
326 | },
327 | "toc": {
328 | "nav_menu": {},
329 | "number_sections": true,
330 | "sideBar": true,
331 | "skip_h1_title": false,
332 | "title_cell": "Table of Contents",
333 | "title_sidebar": "Contents",
334 | "toc_cell": false,
335 | "toc_position": {},
336 | "toc_section_display": true,
337 | "toc_window_display": false
338 | },
339 | "varInspector": {
340 | "cols": {
341 | "lenName": 16,
342 | "lenType": 16,
343 | "lenVar": 40
344 | },
345 | "kernels_config": {
346 | "python": {
347 | "delete_cmd_postfix": "",
348 | "delete_cmd_prefix": "del ",
349 | "library": "var_list.py",
350 | "varRefreshCmd": "print(var_dic_list())"
351 | },
352 | "r": {
353 | "delete_cmd_postfix": ") ",
354 | "delete_cmd_prefix": "rm(",
355 | "library": "var_list.r",
356 | "varRefreshCmd": "cat(var_dic_list()) "
357 | }
358 | },
359 | "types_to_exclude": [
360 | "module",
361 | "function",
362 | "builtin_function_or_method",
363 | "instance",
364 | "_Feature"
365 | ],
366 | "window_display": false
367 | }
368 | },
369 | "nbformat": 4,
370 | "nbformat_minor": 2
371 | }
372 |
--------------------------------------------------------------------------------
/18. Clustering - K Means/img/0.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/18. Clustering - K Means/img/0.jpg
--------------------------------------------------------------------------------
/18. Clustering - K Means/img/1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/18. Clustering - K Means/img/1.png
--------------------------------------------------------------------------------
/18. Clustering - K Means/img/2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/18. Clustering - K Means/img/2.png
--------------------------------------------------------------------------------
/18. Clustering - K Means/img/3.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/18. Clustering - K Means/img/3.jpg
--------------------------------------------------------------------------------
/18. Clustering - K Means/img/4.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/18. Clustering - K Means/img/4.jpg
--------------------------------------------------------------------------------
/18. Clustering - K Means/img/5.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/18. Clustering - K Means/img/5.png
--------------------------------------------------------------------------------
/18. Clustering - K Means/img/6.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/18. Clustering - K Means/img/6.png
--------------------------------------------------------------------------------
/18. Clustering - K Means/img/7.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/18. Clustering - K Means/img/7.png
--------------------------------------------------------------------------------
/18. Clustering - K Means/img/8.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/18. Clustering - K Means/img/8.png
--------------------------------------------------------------------------------
/18. Clustering - K Means/img/9.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/18. Clustering - K Means/img/9.png
--------------------------------------------------------------------------------
/18. Clustering - K Means/img/Algo.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/18. Clustering - K Means/img/Algo.jpg
--------------------------------------------------------------------------------
/19. Deep Learning/1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/19. Deep Learning/1.png
--------------------------------------------------------------------------------
/19. Deep Learning/10.jpeg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/19. Deep Learning/10.jpeg
--------------------------------------------------------------------------------
/19. Deep Learning/11.jpeg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/19. Deep Learning/11.jpeg
--------------------------------------------------------------------------------
/19. Deep Learning/12.PNG:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/19. Deep Learning/12.PNG
--------------------------------------------------------------------------------
/19. Deep Learning/2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/19. Deep Learning/2.png
--------------------------------------------------------------------------------
/19. Deep Learning/3.jpeg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/19. Deep Learning/3.jpeg
--------------------------------------------------------------------------------
/19. Deep Learning/4.jpeg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/19. Deep Learning/4.jpeg
--------------------------------------------------------------------------------
/19. Deep Learning/5.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/19. Deep Learning/5.jpg
--------------------------------------------------------------------------------
/19. Deep Learning/6.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/19. Deep Learning/6.jpg
--------------------------------------------------------------------------------
/19. Deep Learning/7.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/19. Deep Learning/7.png
--------------------------------------------------------------------------------
/19. Deep Learning/8.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/19. Deep Learning/8.png
--------------------------------------------------------------------------------
/19. Deep Learning/9.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/19. Deep Learning/9.jpg
--------------------------------------------------------------------------------
/20. Extras/Missing_values, Duplicates, Word_cloud/spam.csv:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/20. Extras/Missing_values, Duplicates, Word_cloud/spam.csv
--------------------------------------------------------------------------------
/20. Extras/Resources/Contents.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/20. Extras/Resources/Contents.pdf
--------------------------------------------------------------------------------
/20. Extras/Resources/Make Your Own Neural Network (Tariq Rashid) - {CHB Books}.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/20. Extras/Resources/Make Your Own Neural Network (Tariq Rashid) - {CHB Books}.pdf
--------------------------------------------------------------------------------
/20. Extras/Resources/seven_databases_in_seven_weeks_Database.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/20. Extras/Resources/seven_databases_in_seven_weeks_Database.pdf
--------------------------------------------------------------------------------
/20. Extras/Write Equations in IPython Notebook.txt:
--------------------------------------------------------------------------------
1 | Please refer these links, to write the equations in python notebook
2 | https://stackoverflow.com/questions/13208286/how-to-write-latex-in-ipython-notebook
3 | http://nbviewer.jupyter.org/github/ipython/ipython/blob/2.x/examples/Notebook/Display%20System.ipynb#LaTeX
--------------------------------------------------------------------------------
/3. Probability/prob.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "## Probability"
8 | ]
9 | },
10 | {
11 | "cell_type": "markdown",
12 | "metadata": {},
13 | "source": [
14 | "### Random Experiment, Sample Space, Event"
15 | ]
16 | },
17 | {
18 | "cell_type": "markdown",
19 | "metadata": {},
20 | "source": [
21 | "### Axioms of Probability"
22 | ]
23 | },
24 | {
25 | "cell_type": "markdown",
26 | "metadata": {},
27 | "source": [
28 | "### Conditional Probability & Independence"
29 | ]
30 | },
31 | {
32 | "cell_type": "markdown",
33 | "metadata": {},
34 | "source": [
35 | "### Random Variable (Discrete and Continuous)"
36 | ]
37 | },
38 | {
39 | "cell_type": "markdown",
40 | "metadata": {},
41 | "source": [
42 | "## Gaussian/Normal Distribution"
43 | ]
44 | },
45 | {
46 | "cell_type": "markdown",
47 | "metadata": {},
48 | "source": [
49 | "### PDF & CDF"
50 | ]
51 | },
52 | {
53 | "cell_type": "markdown",
54 | "metadata": {},
55 | "source": [
56 | "https://en.wikipedia.org/wiki/Normal_distribution\n",
57 | "\n",
58 | "https://en.wikipedia.org/wiki/Standard_deviation"
59 | ]
60 | },
61 | {
62 | "cell_type": "markdown",
63 | "metadata": {},
64 | "source": [
65 | "## Bayes Theorem"
66 | ]
67 | }
68 | ],
69 | "metadata": {
70 | "kernelspec": {
71 | "display_name": "Python 3",
72 | "language": "python",
73 | "name": "python3"
74 | },
75 | "language_info": {
76 | "codemirror_mode": {
77 | "name": "ipython",
78 | "version": 3
79 | },
80 | "file_extension": ".py",
81 | "mimetype": "text/x-python",
82 | "name": "python",
83 | "nbconvert_exporter": "python",
84 | "pygments_lexer": "ipython3",
85 | "version": "3.6.5"
86 | },
87 | "toc": {
88 | "nav_menu": {},
89 | "number_sections": true,
90 | "sideBar": true,
91 | "skip_h1_title": false,
92 | "title_cell": "Table of Contents",
93 | "title_sidebar": "Contents",
94 | "toc_cell": false,
95 | "toc_position": {},
96 | "toc_section_display": true,
97 | "toc_window_display": false
98 | },
99 | "varInspector": {
100 | "cols": {
101 | "lenName": 16,
102 | "lenType": 16,
103 | "lenVar": 40
104 | },
105 | "kernels_config": {
106 | "python": {
107 | "delete_cmd_postfix": "",
108 | "delete_cmd_prefix": "del ",
109 | "library": "var_list.py",
110 | "varRefreshCmd": "print(var_dic_list())"
111 | },
112 | "r": {
113 | "delete_cmd_postfix": ") ",
114 | "delete_cmd_prefix": "rm(",
115 | "library": "var_list.r",
116 | "varRefreshCmd": "cat(var_dic_list()) "
117 | }
118 | },
119 | "types_to_exclude": [
120 | "module",
121 | "function",
122 | "builtin_function_or_method",
123 | "instance",
124 | "_Feature"
125 | ],
126 | "window_display": false
127 | }
128 | },
129 | "nbformat": 4,
130 | "nbformat_minor": 2
131 | }
132 |
--------------------------------------------------------------------------------
/4. Pandas - 1/data/Iris.csv:
--------------------------------------------------------------------------------
1 | Id,SepalLengthCm,SepalWidthCm,PetalLengthCm,PetalWidthCm,Species
2 | 1,5.1,3.5,1.4,0.2,Iris-setosa
3 | 2,4.9,3.0,1.4,0.2,Iris-setosa
4 | 3,4.7,3.2,1.3,0.2,Iris-setosa
5 | 4,4.6,3.1,1.5,0.2,Iris-setosa
6 | 5,5.0,3.6,1.4,0.2,Iris-setosa
7 | 6,5.4,3.9,1.7,0.4,Iris-setosa
8 | 7,4.6,3.4,1.4,0.3,Iris-setosa
9 | 8,5.0,3.4,1.5,0.2,Iris-setosa
10 | 9,4.4,2.9,1.4,0.2,Iris-setosa
11 | 10,4.9,3.1,1.5,0.1,Iris-setosa
12 | 11,5.4,3.7,1.5,0.2,Iris-setosa
13 | 12,4.8,3.4,1.6,0.2,Iris-setosa
14 | 13,4.8,3.0,1.4,0.1,Iris-setosa
15 | 14,4.3,3.0,1.1,0.1,Iris-setosa
16 | 15,5.8,4.0,1.2,0.2,Iris-setosa
17 | 16,5.7,4.4,1.5,0.4,Iris-setosa
18 | 17,5.4,3.9,1.3,0.4,Iris-setosa
19 | 18,5.1,3.5,1.4,0.3,Iris-setosa
20 | 19,5.7,3.8,1.7,0.3,Iris-setosa
21 | 20,5.1,3.8,1.5,0.3,Iris-setosa
22 | 21,5.4,3.4,1.7,0.2,Iris-setosa
23 | 22,5.1,3.7,1.5,0.4,Iris-setosa
24 | 23,4.6,3.6,1.0,0.2,Iris-setosa
25 | 24,5.1,3.3,1.7,0.5,Iris-setosa
26 | 25,4.8,3.4,1.9,0.2,Iris-setosa
27 | 26,5.0,3.0,1.6,0.2,Iris-setosa
28 | 27,5.0,3.4,1.6,0.4,Iris-setosa
29 | 28,5.2,3.5,1.5,0.2,Iris-setosa
30 | 29,5.2,3.4,1.4,0.2,Iris-setosa
31 | 30,4.7,3.2,1.6,0.2,Iris-setosa
32 | 31,4.8,3.1,1.6,0.2,Iris-setosa
33 | 32,5.4,3.4,1.5,0.4,Iris-setosa
34 | 33,5.2,4.1,1.5,0.1,Iris-setosa
35 | 34,5.5,4.2,1.4,0.2,Iris-setosa
36 | 35,4.9,3.1,1.5,0.1,Iris-setosa
37 | 36,5.0,3.2,1.2,0.2,Iris-setosa
38 | 37,5.5,3.5,1.3,0.2,Iris-setosa
39 | 38,4.9,3.1,1.5,0.1,Iris-setosa
40 | 39,4.4,3.0,1.3,0.2,Iris-setosa
41 | 40,5.1,3.4,1.5,0.2,Iris-setosa
42 | 41,5.0,3.5,1.3,0.3,Iris-setosa
43 | 42,4.5,2.3,1.3,0.3,Iris-setosa
44 | 43,4.4,3.2,1.3,0.2,Iris-setosa
45 | 44,5.0,3.5,1.6,0.6,Iris-setosa
46 | 45,5.1,3.8,1.9,0.4,Iris-setosa
47 | 46,4.8,3.0,1.4,0.3,Iris-setosa
48 | 47,5.1,3.8,1.6,0.2,Iris-setosa
49 | 48,4.6,3.2,1.4,0.2,Iris-setosa
50 | 49,5.3,3.7,1.5,0.2,Iris-setosa
51 | 50,5.0,3.3,1.4,0.2,Iris-setosa
52 | 51,7.0,3.2,4.7,1.4,Iris-versicolor
53 | 52,6.4,3.2,4.5,1.5,Iris-versicolor
54 | 53,6.9,3.1,4.9,1.5,Iris-versicolor
55 | 54,5.5,2.3,4.0,1.3,Iris-versicolor
56 | 55,6.5,2.8,4.6,1.5,Iris-versicolor
57 | 56,5.7,2.8,4.5,1.3,Iris-versicolor
58 | 57,6.3,3.3,4.7,1.6,Iris-versicolor
59 | 58,4.9,2.4,3.3,1.0,Iris-versicolor
60 | 59,6.6,2.9,4.6,1.3,Iris-versicolor
61 | 60,5.2,2.7,3.9,1.4,Iris-versicolor
62 | 61,5.0,2.0,3.5,1.0,Iris-versicolor
63 | 62,5.9,3.0,4.2,1.5,Iris-versicolor
64 | 63,6.0,2.2,4.0,1.0,Iris-versicolor
65 | 64,6.1,2.9,4.7,1.4,Iris-versicolor
66 | 65,5.6,2.9,3.6,1.3,Iris-versicolor
67 | 66,6.7,3.1,4.4,1.4,Iris-versicolor
68 | 67,5.6,3.0,4.5,1.5,Iris-versicolor
69 | 68,5.8,2.7,4.1,1.0,Iris-versicolor
70 | 69,6.2,2.2,4.5,1.5,Iris-versicolor
71 | 70,5.6,2.5,3.9,1.1,Iris-versicolor
72 | 71,5.9,3.2,4.8,1.8,Iris-versicolor
73 | 72,6.1,2.8,4.0,1.3,Iris-versicolor
74 | 73,6.3,2.5,4.9,1.5,Iris-versicolor
75 | 74,6.1,2.8,4.7,1.2,Iris-versicolor
76 | 75,6.4,2.9,4.3,1.3,Iris-versicolor
77 | 76,6.6,3.0,4.4,1.4,Iris-versicolor
78 | 77,6.8,2.8,4.8,1.4,Iris-versicolor
79 | 78,6.7,3.0,5.0,1.7,Iris-versicolor
80 | 79,6.0,2.9,4.5,1.5,Iris-versicolor
81 | 80,5.7,2.6,3.5,1.0,Iris-versicolor
82 | 81,5.5,2.4,3.8,1.1,Iris-versicolor
83 | 82,5.5,2.4,3.7,1.0,Iris-versicolor
84 | 83,5.8,2.7,3.9,1.2,Iris-versicolor
85 | 84,6.0,2.7,5.1,1.6,Iris-versicolor
86 | 85,5.4,3.0,4.5,1.5,Iris-versicolor
87 | 86,6.0,3.4,4.5,1.6,Iris-versicolor
88 | 87,6.7,3.1,4.7,1.5,Iris-versicolor
89 | 88,6.3,2.3,4.4,1.3,Iris-versicolor
90 | 89,5.6,3.0,4.1,1.3,Iris-versicolor
91 | 90,5.5,2.5,4.0,1.3,Iris-versicolor
92 | 91,5.5,2.6,4.4,1.2,Iris-versicolor
93 | 92,6.1,3.0,4.6,1.4,Iris-versicolor
94 | 93,5.8,2.6,4.0,1.2,Iris-versicolor
95 | 94,5.0,2.3,3.3,1.0,Iris-versicolor
96 | 95,5.6,2.7,4.2,1.3,Iris-versicolor
97 | 96,5.7,3.0,4.2,1.2,Iris-versicolor
98 | 97,5.7,2.9,4.2,1.3,Iris-versicolor
99 | 98,6.2,2.9,4.3,1.3,Iris-versicolor
100 | 99,5.1,2.5,3.0,1.1,Iris-versicolor
101 | 100,5.7,2.8,4.1,1.3,Iris-versicolor
102 | 101,6.3,3.3,6.0,2.5,Iris-virginica
103 | 102,5.8,2.7,5.1,1.9,Iris-virginica
104 | 103,7.1,3.0,5.9,2.1,Iris-virginica
105 | 104,6.3,2.9,5.6,1.8,Iris-virginica
106 | 105,6.5,3.0,5.8,2.2,Iris-virginica
107 | 106,7.6,3.0,6.6,2.1,Iris-virginica
108 | 107,4.9,2.5,4.5,1.7,Iris-virginica
109 | 108,7.3,2.9,6.3,1.8,Iris-virginica
110 | 109,6.7,2.5,5.8,1.8,Iris-virginica
111 | 110,7.2,3.6,6.1,2.5,Iris-virginica
112 | 111,6.5,3.2,5.1,2.0,Iris-virginica
113 | 112,6.4,2.7,5.3,1.9,Iris-virginica
114 | 113,6.8,3.0,5.5,2.1,Iris-virginica
115 | 114,5.7,2.5,5.0,2.0,Iris-virginica
116 | 115,5.8,2.8,5.1,2.4,Iris-virginica
117 | 116,6.4,3.2,5.3,2.3,Iris-virginica
118 | 117,6.5,3.0,5.5,1.8,Iris-virginica
119 | 118,7.7,3.8,6.7,2.2,Iris-virginica
120 | 119,7.7,2.6,6.9,2.3,Iris-virginica
121 | 120,6.0,2.2,5.0,1.5,Iris-virginica
122 | 121,6.9,3.2,5.7,2.3,Iris-virginica
123 | 122,5.6,2.8,4.9,2.0,Iris-virginica
124 | 123,7.7,2.8,6.7,2.0,Iris-virginica
125 | 124,6.3,2.7,4.9,1.8,Iris-virginica
126 | 125,6.7,3.3,5.7,2.1,Iris-virginica
127 | 126,7.2,3.2,6.0,1.8,Iris-virginica
128 | 127,6.2,2.8,4.8,1.8,Iris-virginica
129 | 128,6.1,3.0,4.9,1.8,Iris-virginica
130 | 129,6.4,2.8,5.6,2.1,Iris-virginica
131 | 130,7.2,3.0,5.8,1.6,Iris-virginica
132 | 131,7.4,2.8,6.1,1.9,Iris-virginica
133 | 132,7.9,3.8,6.4,2.0,Iris-virginica
134 | 133,6.4,2.8,5.6,2.2,Iris-virginica
135 | 134,6.3,2.8,5.1,1.5,Iris-virginica
136 | 135,6.1,2.6,5.6,1.4,Iris-virginica
137 | 136,7.7,3.0,6.1,2.3,Iris-virginica
138 | 137,6.3,3.4,5.6,2.4,Iris-virginica
139 | 138,6.4,3.1,5.5,1.8,Iris-virginica
140 | 139,6.0,3.0,4.8,1.8,Iris-virginica
141 | 140,6.9,3.1,5.4,2.1,Iris-virginica
142 | 141,6.7,3.1,5.6,2.4,Iris-virginica
143 | 142,6.9,3.1,5.1,2.3,Iris-virginica
144 | 143,5.8,2.7,5.1,1.9,Iris-virginica
145 | 144,6.8,3.2,5.9,2.3,Iris-virginica
146 | 145,6.7,3.3,5.7,2.5,Iris-virginica
147 | 146,6.7,3.0,5.2,2.3,Iris-virginica
148 | 147,6.3,2.5,5.0,1.9,Iris-virginica
149 | 148,6.5,3.0,5.2,2.0,Iris-virginica
150 | 149,6.2,3.4,5.4,2.3,Iris-virginica
151 | 150,5.9,3.0,5.1,1.8,Iris-virginica
152 |
--------------------------------------------------------------------------------
/4. Pandas - 1/data/nyc_weather.csv:
--------------------------------------------------------------------------------
1 | EST,Temperature,DewPoint,Humidity,Sea Level PressureIn,VisibilityMiles,WindSpeedMPH,PrecipitationIn,CloudCover,Events,WindDirDegrees
2 | 1/1/2016,38,23,52,30.03,10,8,0,5,,281
3 | 1/2/2016,36,18,46,30.02,10,7,0,3,,275
4 | 1/3/2016,40,21,47,29.86,10,8,0,1,,277
5 | 1/4/2016,25,9,44,30.05,10,9,0,3,,345
6 | 1/5/2016,20,-3,41,30.57,10,5,0,0,,333
7 | 1/6/2016,33,4,35,30.5,10,4,0,0,,259
8 | 1/7/2016,39,11,33,30.28,10,2,0,3,,293
9 | 1/8/2016,39,29,64,30.2,10,4,0,8,,79
10 | 1/9/2016,44,38,77,30.16,9,8,T,8,Rain,76
11 | 1/10/2016,50,46,71,29.59,4,,1.8,7,Rain,109
12 | 1/11/2016,33,8,37,29.92,10,,0,1,,289
13 | 1/12/2016,35,15,53,29.85,10,6,T,4,,235
14 | 1/13/2016,26,4,42,29.94,10,10,0,0,,284
15 | 1/14/2016,30,12,47,29.95,10,5,T,7,,266
16 | 1/15/2016,43,31,62,29.82,9,5,T,2,,101
17 | 1/16/2016,47,37,70,29.52,8,7,0.24,7,Rain,340
18 | 1/17/2016,36,23,66,29.78,8,6,0.05,6,Fog-Snow,345
19 | 1/18/2016,25,6,53,29.83,9,12,T,2,Snow,293
20 | 1/19/2016,22,3,42,30.03,10,11,0,1,,293
21 | 1/20/2016,32,15,49,30.13,10,6,0,2,,302
22 | 1/21/2016,31,11,45,30.15,10,6,0,1,,312
23 | 1/22/2016,26,6,41,30.21,9,,0.01,3,Snow,34
24 | 1/23/2016,26,21,78,29.77,1,16,2.31,8,Fog-Snow,42
25 | 1/24/2016,28,11,53,29.92,8,6,T,3,Snow,327
26 | 1/25/2016,34,18,54,30.25,10,3,0,2,,286
27 | 1/26/2016,43,29,56,30.03,10,7,0,2,,244
28 | 1/27/2016,41,22,45,30.03,10,7,T,3,Rain,311
29 | 1/28/2016,37,20,51,29.9,10,5,0,1,,234
30 | 1/29/2016,36,21,50,29.58,10,8,0,4,,298
31 | 1/30/2016,34,16,46,30.01,10,7,0,0,,257
32 | 1/31/2016,46,28,52,29.9,10,5,0,0,,241
33 |
--------------------------------------------------------------------------------
/4. Pandas - 1/data/temp/new_excel_file.xlsx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/4. Pandas - 1/data/temp/new_excel_file.xlsx
--------------------------------------------------------------------------------
/4. Pandas - 1/data/temp/new_excel_file_noIndex.xlsx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/4. Pandas - 1/data/temp/new_excel_file_noIndex.xlsx
--------------------------------------------------------------------------------
/4. Pandas - 1/data/weather_data.xlsx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/4. Pandas - 1/data/weather_data.xlsx
--------------------------------------------------------------------------------
/4. Pandas - 1/image/1.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/4. Pandas - 1/image/1.jpg
--------------------------------------------------------------------------------
/9. Feature Engineering/1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/9. Feature Engineering/1.png
--------------------------------------------------------------------------------
/9. Feature Engineering/image/1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/9. Feature Engineering/image/1.png
--------------------------------------------------------------------------------
/Case Studies/Car Price Prediction/1.1. CarPrice_Data.csv:
--------------------------------------------------------------------------------
1 | car_ID,symboling,CarName,fueltype,aspiration,doornumber,carbody,drivewheel,enginelocation,wheelbase,carlength,carwidth,carheight,curbweight,enginetype,cylindernumber,enginesize,fuelsystem,boreratio,stroke,compressionratio,horsepower,peakrpm,citympg,highwaympg,price
2 | 1,3,alfa-romero giulia,gas,std,two,convertible,rwd,front,88.6,168.8,64.1,48.8,2548,dohc,four,130,mpfi,3.47,2.68,9,111,5000,21,27,13495
3 | 2,3,alfa-romero stelvio,gas,std,two,convertible,rwd,front,88.6,168.8,64.1,48.8,2548,dohc,four,130,mpfi,3.47,2.68,9,111,5000,21,27,16500
4 | 3,1,alfa-romero Quadrifoglio,gas,std,two,hatchback,rwd,front,94.5,171.2,65.5,52.4,2823,ohcv,six,152,mpfi,2.68,3.47,9,154,5000,19,26,16500
5 | 4,2,audi 100 ls,gas,std,four,sedan,fwd,front,99.8,176.6,66.2,54.3,2337,ohc,four,109,mpfi,3.19,3.4,10,102,5500,24,30,13950
6 | 5,2,audi 100ls,gas,std,four,sedan,4wd,front,99.4,176.6,66.4,54.3,2824,ohc,five,136,mpfi,3.19,3.4,8,115,5500,18,22,17450
7 | 6,2,audi fox,gas,std,two,sedan,fwd,front,99.8,177.3,66.3,53.1,2507,ohc,five,136,mpfi,3.19,3.4,8.5,110,5500,19,25,15250
8 | 7,1,audi 100ls,gas,std,four,sedan,fwd,front,105.8,192.7,71.4,55.7,2844,ohc,five,136,mpfi,3.19,3.4,8.5,110,5500,19,25,17710
9 | 8,1,audi 5000,gas,std,four,wagon,fwd,front,105.8,192.7,71.4,55.7,2954,ohc,five,136,mpfi,3.19,3.4,8.5,110,5500,19,25,18920
10 | 9,1,audi 4000,gas,turbo,four,sedan,fwd,front,105.8,192.7,71.4,55.9,3086,ohc,five,131,mpfi,3.13,3.4,8.3,140,5500,17,20,23875
11 | 10,0,audi 5000s (diesel),gas,turbo,two,hatchback,4wd,front,99.5,178.2,67.9,52,3053,ohc,five,131,mpfi,3.13,3.4,7,160,5500,16,22,17859.167
12 | 11,2,bmw 320i,gas,std,two,sedan,rwd,front,101.2,176.8,64.8,54.3,2395,ohc,four,108,mpfi,3.5,2.8,8.8,101,5800,23,29,16430
13 | 12,0,bmw 320i,gas,std,four,sedan,rwd,front,101.2,176.8,64.8,54.3,2395,ohc,four,108,mpfi,3.5,2.8,8.8,101,5800,23,29,16925
14 | 13,0,bmw x1,gas,std,two,sedan,rwd,front,101.2,176.8,64.8,54.3,2710,ohc,six,164,mpfi,3.31,3.19,9,121,4250,21,28,20970
15 | 14,0,bmw x3,gas,std,four,sedan,rwd,front,101.2,176.8,64.8,54.3,2765,ohc,six,164,mpfi,3.31,3.19,9,121,4250,21,28,21105
16 | 15,1,bmw z4,gas,std,four,sedan,rwd,front,103.5,189,66.9,55.7,3055,ohc,six,164,mpfi,3.31,3.19,9,121,4250,20,25,24565
17 | 16,0,bmw x4,gas,std,four,sedan,rwd,front,103.5,189,66.9,55.7,3230,ohc,six,209,mpfi,3.62,3.39,8,182,5400,16,22,30760
18 | 17,0,bmw x5,gas,std,two,sedan,rwd,front,103.5,193.8,67.9,53.7,3380,ohc,six,209,mpfi,3.62,3.39,8,182,5400,16,22,41315
19 | 18,0,bmw x3,gas,std,four,sedan,rwd,front,110,197,70.9,56.3,3505,ohc,six,209,mpfi,3.62,3.39,8,182,5400,15,20,36880
20 | 19,2,chevrolet impala,gas,std,two,hatchback,fwd,front,88.4,141.1,60.3,53.2,1488,l,three,61,2bbl,2.91,3.03,9.5,48,5100,47,53,5151
21 | 20,1,chevrolet monte carlo,gas,std,two,hatchback,fwd,front,94.5,155.9,63.6,52,1874,ohc,four,90,2bbl,3.03,3.11,9.6,70,5400,38,43,6295
22 | 21,0,chevrolet vega 2300,gas,std,four,sedan,fwd,front,94.5,158.8,63.6,52,1909,ohc,four,90,2bbl,3.03,3.11,9.6,70,5400,38,43,6575
23 | 22,1,dodge rampage,gas,std,two,hatchback,fwd,front,93.7,157.3,63.8,50.8,1876,ohc,four,90,2bbl,2.97,3.23,9.41,68,5500,37,41,5572
24 | 23,1,dodge challenger se,gas,std,two,hatchback,fwd,front,93.7,157.3,63.8,50.8,1876,ohc,four,90,2bbl,2.97,3.23,9.4,68,5500,31,38,6377
25 | 24,1,dodge d200,gas,turbo,two,hatchback,fwd,front,93.7,157.3,63.8,50.8,2128,ohc,four,98,mpfi,3.03,3.39,7.6,102,5500,24,30,7957
26 | 25,1,dodge monaco (sw),gas,std,four,hatchback,fwd,front,93.7,157.3,63.8,50.6,1967,ohc,four,90,2bbl,2.97,3.23,9.4,68,5500,31,38,6229
27 | 26,1,dodge colt hardtop,gas,std,four,sedan,fwd,front,93.7,157.3,63.8,50.6,1989,ohc,four,90,2bbl,2.97,3.23,9.4,68,5500,31,38,6692
28 | 27,1,dodge colt (sw),gas,std,four,sedan,fwd,front,93.7,157.3,63.8,50.6,1989,ohc,four,90,2bbl,2.97,3.23,9.4,68,5500,31,38,7609
29 | 28,1,dodge coronet custom,gas,turbo,two,sedan,fwd,front,93.7,157.3,63.8,50.6,2191,ohc,four,98,mpfi,3.03,3.39,7.6,102,5500,24,30,8558
30 | 29,-1,dodge dart custom,gas,std,four,wagon,fwd,front,103.3,174.6,64.6,59.8,2535,ohc,four,122,2bbl,3.34,3.46,8.5,88,5000,24,30,8921
31 | 30,3,dodge coronet custom (sw),gas,turbo,two,hatchback,fwd,front,95.9,173.2,66.3,50.2,2811,ohc,four,156,mfi,3.6,3.9,7,145,5000,19,24,12964
32 | 31,2,honda civic,gas,std,two,hatchback,fwd,front,86.6,144.6,63.9,50.8,1713,ohc,four,92,1bbl,2.91,3.41,9.6,58,4800,49,54,6479
33 | 32,2,honda civic cvcc,gas,std,two,hatchback,fwd,front,86.6,144.6,63.9,50.8,1819,ohc,four,92,1bbl,2.91,3.41,9.2,76,6000,31,38,6855
34 | 33,1,honda civic,gas,std,two,hatchback,fwd,front,93.7,150,64,52.6,1837,ohc,four,79,1bbl,2.91,3.07,10.1,60,5500,38,42,5399
35 | 34,1,honda accord cvcc,gas,std,two,hatchback,fwd,front,93.7,150,64,52.6,1940,ohc,four,92,1bbl,2.91,3.41,9.2,76,6000,30,34,6529
36 | 35,1,honda civic cvcc,gas,std,two,hatchback,fwd,front,93.7,150,64,52.6,1956,ohc,four,92,1bbl,2.91,3.41,9.2,76,6000,30,34,7129
37 | 36,0,honda accord lx,gas,std,four,sedan,fwd,front,96.5,163.4,64,54.5,2010,ohc,four,92,1bbl,2.91,3.41,9.2,76,6000,30,34,7295
38 | 37,0,honda civic 1500 gl,gas,std,four,wagon,fwd,front,96.5,157.1,63.9,58.3,2024,ohc,four,92,1bbl,2.92,3.41,9.2,76,6000,30,34,7295
39 | 38,0,honda accord,gas,std,two,hatchback,fwd,front,96.5,167.5,65.2,53.3,2236,ohc,four,110,1bbl,3.15,3.58,9,86,5800,27,33,7895
40 | 39,0,honda civic 1300,gas,std,two,hatchback,fwd,front,96.5,167.5,65.2,53.3,2289,ohc,four,110,1bbl,3.15,3.58,9,86,5800,27,33,9095
41 | 40,0,honda prelude,gas,std,four,sedan,fwd,front,96.5,175.4,65.2,54.1,2304,ohc,four,110,1bbl,3.15,3.58,9,86,5800,27,33,8845
42 | 41,0,honda accord,gas,std,four,sedan,fwd,front,96.5,175.4,62.5,54.1,2372,ohc,four,110,1bbl,3.15,3.58,9,86,5800,27,33,10295
43 | 42,0,honda civic,gas,std,four,sedan,fwd,front,96.5,175.4,65.2,54.1,2465,ohc,four,110,mpfi,3.15,3.58,9,101,5800,24,28,12945
44 | 43,1,honda civic (auto),gas,std,two,sedan,fwd,front,96.5,169.1,66,51,2293,ohc,four,110,2bbl,3.15,3.58,9.1,100,5500,25,31,10345
45 | 44,0,isuzu MU-X,gas,std,four,sedan,rwd,front,94.3,170.7,61.8,53.5,2337,ohc,four,111,2bbl,3.31,3.23,8.5,78,4800,24,29,6785
46 | 45,1,isuzu D-Max ,gas,std,two,sedan,fwd,front,94.5,155.9,63.6,52,1874,ohc,four,90,2bbl,3.03,3.11,9.6,70,5400,38,43,8916.5
47 | 46,0,isuzu D-Max V-Cross,gas,std,four,sedan,fwd,front,94.5,155.9,63.6,52,1909,ohc,four,90,2bbl,3.03,3.11,9.6,70,5400,38,43,8916.5
48 | 47,2,isuzu D-Max ,gas,std,two,hatchback,rwd,front,96,172.6,65.2,51.4,2734,ohc,four,119,spfi,3.43,3.23,9.2,90,5000,24,29,11048
49 | 48,0,jaguar xj,gas,std,four,sedan,rwd,front,113,199.6,69.6,52.8,4066,dohc,six,258,mpfi,3.63,4.17,8.1,176,4750,15,19,32250
50 | 49,0,jaguar xf,gas,std,four,sedan,rwd,front,113,199.6,69.6,52.8,4066,dohc,six,258,mpfi,3.63,4.17,8.1,176,4750,15,19,35550
51 | 50,0,jaguar xk,gas,std,two,sedan,rwd,front,102,191.7,70.6,47.8,3950,ohcv,twelve,326,mpfi,3.54,2.76,11.5,262,5000,13,17,36000
52 | 51,1,maxda rx3,gas,std,two,hatchback,fwd,front,93.1,159.1,64.2,54.1,1890,ohc,four,91,2bbl,3.03,3.15,9,68,5000,30,31,5195
53 | 52,1,maxda glc deluxe,gas,std,two,hatchback,fwd,front,93.1,159.1,64.2,54.1,1900,ohc,four,91,2bbl,3.03,3.15,9,68,5000,31,38,6095
54 | 53,1,mazda rx2 coupe,gas,std,two,hatchback,fwd,front,93.1,159.1,64.2,54.1,1905,ohc,four,91,2bbl,3.03,3.15,9,68,5000,31,38,6795
55 | 54,1,mazda rx-4,gas,std,four,sedan,fwd,front,93.1,166.8,64.2,54.1,1945,ohc,four,91,2bbl,3.03,3.15,9,68,5000,31,38,6695
56 | 55,1,mazda glc deluxe,gas,std,four,sedan,fwd,front,93.1,166.8,64.2,54.1,1950,ohc,four,91,2bbl,3.08,3.15,9,68,5000,31,38,7395
57 | 56,3,mazda 626,gas,std,two,hatchback,rwd,front,95.3,169,65.7,49.6,2380,rotor,two,70,4bbl,3.33,3.255,9.4,101,6000,17,23,10945
58 | 57,3,mazda glc,gas,std,two,hatchback,rwd,front,95.3,169,65.7,49.6,2380,rotor,two,70,4bbl,3.33,3.255,9.4,101,6000,17,23,11845
59 | 58,3,mazda rx-7 gs,gas,std,two,hatchback,rwd,front,95.3,169,65.7,49.6,2385,rotor,two,70,4bbl,3.33,3.255,9.4,101,6000,17,23,13645
60 | 59,3,mazda glc 4,gas,std,two,hatchback,rwd,front,95.3,169,65.7,49.6,2500,rotor,two,80,mpfi,3.33,3.255,9.4,135,6000,16,23,15645
61 | 60,1,mazda 626,gas,std,two,hatchback,fwd,front,98.8,177.8,66.5,53.7,2385,ohc,four,122,2bbl,3.39,3.39,8.6,84,4800,26,32,8845
62 | 61,0,mazda glc custom l,gas,std,four,sedan,fwd,front,98.8,177.8,66.5,55.5,2410,ohc,four,122,2bbl,3.39,3.39,8.6,84,4800,26,32,8495
63 | 62,1,mazda glc custom,gas,std,two,hatchback,fwd,front,98.8,177.8,66.5,53.7,2385,ohc,four,122,2bbl,3.39,3.39,8.6,84,4800,26,32,10595
64 | 63,0,mazda rx-4,gas,std,four,sedan,fwd,front,98.8,177.8,66.5,55.5,2410,ohc,four,122,2bbl,3.39,3.39,8.6,84,4800,26,32,10245
65 | 64,0,mazda glc deluxe,diesel,std,four,sedan,fwd,front,98.8,177.8,66.5,55.5,2443,ohc,four,122,idi,3.39,3.39,22.7,64,4650,36,42,10795
66 | 65,0,mazda 626,gas,std,four,hatchback,fwd,front,98.8,177.8,66.5,55.5,2425,ohc,four,122,2bbl,3.39,3.39,8.6,84,4800,26,32,11245
67 | 66,0,mazda glc,gas,std,four,sedan,rwd,front,104.9,175,66.1,54.4,2670,ohc,four,140,mpfi,3.76,3.16,8,120,5000,19,27,18280
68 | 67,0,mazda rx-7 gs,diesel,std,four,sedan,rwd,front,104.9,175,66.1,54.4,2700,ohc,four,134,idi,3.43,3.64,22,72,4200,31,39,18344
69 | 68,-1,buick electra 225 custom,diesel,turbo,four,sedan,rwd,front,110,190.9,70.3,56.5,3515,ohc,five,183,idi,3.58,3.64,21.5,123,4350,22,25,25552
70 | 69,-1,buick century luxus (sw),diesel,turbo,four,wagon,rwd,front,110,190.9,70.3,58.7,3750,ohc,five,183,idi,3.58,3.64,21.5,123,4350,22,25,28248
71 | 70,0,buick century,diesel,turbo,two,hardtop,rwd,front,106.7,187.5,70.3,54.9,3495,ohc,five,183,idi,3.58,3.64,21.5,123,4350,22,25,28176
72 | 71,-1,buick skyhawk,diesel,turbo,four,sedan,rwd,front,115.6,202.6,71.7,56.3,3770,ohc,five,183,idi,3.58,3.64,21.5,123,4350,22,25,31600
73 | 72,-1,buick opel isuzu deluxe,gas,std,four,sedan,rwd,front,115.6,202.6,71.7,56.5,3740,ohcv,eight,234,mpfi,3.46,3.1,8.3,155,4750,16,18,34184
74 | 73,3,buick skylark,gas,std,two,convertible,rwd,front,96.6,180.3,70.5,50.8,3685,ohcv,eight,234,mpfi,3.46,3.1,8.3,155,4750,16,18,35056
75 | 74,0,buick century special,gas,std,four,sedan,rwd,front,120.9,208.1,71.7,56.7,3900,ohcv,eight,308,mpfi,3.8,3.35,8,184,4500,14,16,40960
76 | 75,1,buick regal sport coupe (turbo),gas,std,two,hardtop,rwd,front,112,199.2,72,55.4,3715,ohcv,eight,304,mpfi,3.8,3.35,8,184,4500,14,16,45400
77 | 76,1,mercury cougar,gas,turbo,two,hatchback,rwd,front,102.7,178.4,68,54.8,2910,ohc,four,140,mpfi,3.78,3.12,8,175,5000,19,24,16503
78 | 77,2,mitsubishi mirage,gas,std,two,hatchback,fwd,front,93.7,157.3,64.4,50.8,1918,ohc,four,92,2bbl,2.97,3.23,9.4,68,5500,37,41,5389
79 | 78,2,mitsubishi lancer,gas,std,two,hatchback,fwd,front,93.7,157.3,64.4,50.8,1944,ohc,four,92,2bbl,2.97,3.23,9.4,68,5500,31,38,6189
80 | 79,2,mitsubishi outlander,gas,std,two,hatchback,fwd,front,93.7,157.3,64.4,50.8,2004,ohc,four,92,2bbl,2.97,3.23,9.4,68,5500,31,38,6669
81 | 80,1,mitsubishi g4,gas,turbo,two,hatchback,fwd,front,93,157.3,63.8,50.8,2145,ohc,four,98,spdi,3.03,3.39,7.6,102,5500,24,30,7689
82 | 81,3,mitsubishi mirage g4,gas,turbo,two,hatchback,fwd,front,96.3,173,65.4,49.4,2370,ohc,four,110,spdi,3.17,3.46,7.5,116,5500,23,30,9959
83 | 82,3,mitsubishi g4,gas,std,two,hatchback,fwd,front,96.3,173,65.4,49.4,2328,ohc,four,122,2bbl,3.35,3.46,8.5,88,5000,25,32,8499
84 | 83,3,mitsubishi outlander,gas,turbo,two,hatchback,fwd,front,95.9,173.2,66.3,50.2,2833,ohc,four,156,spdi,3.58,3.86,7,145,5000,19,24,12629
85 | 84,3,mitsubishi g4,gas,turbo,two,hatchback,fwd,front,95.9,173.2,66.3,50.2,2921,ohc,four,156,spdi,3.59,3.86,7,145,5000,19,24,14869
86 | 85,3,mitsubishi mirage g4,gas,turbo,two,hatchback,fwd,front,95.9,173.2,66.3,50.2,2926,ohc,four,156,spdi,3.59,3.86,7,145,5000,19,24,14489
87 | 86,1,mitsubishi montero,gas,std,four,sedan,fwd,front,96.3,172.4,65.4,51.6,2365,ohc,four,122,2bbl,3.35,3.46,8.5,88,5000,25,32,6989
88 | 87,1,mitsubishi pajero,gas,std,four,sedan,fwd,front,96.3,172.4,65.4,51.6,2405,ohc,four,122,2bbl,3.35,3.46,8.5,88,5000,25,32,8189
89 | 88,1,mitsubishi outlander,gas,turbo,four,sedan,fwd,front,96.3,172.4,65.4,51.6,2403,ohc,four,110,spdi,3.17,3.46,7.5,116,5500,23,30,9279
90 | 89,-1,mitsubishi mirage g4,gas,std,four,sedan,fwd,front,96.3,172.4,65.4,51.6,2403,ohc,four,110,spdi,3.17,3.46,7.5,116,5500,23,30,9279
91 | 90,1,Nissan versa,gas,std,two,sedan,fwd,front,94.5,165.3,63.8,54.5,1889,ohc,four,97,2bbl,3.15,3.29,9.4,69,5200,31,37,5499
92 | 91,1,nissan gt-r,diesel,std,two,sedan,fwd,front,94.5,165.3,63.8,54.5,2017,ohc,four,103,idi,2.99,3.47,21.9,55,4800,45,50,7099
93 | 92,1,nissan rogue,gas,std,two,sedan,fwd,front,94.5,165.3,63.8,54.5,1918,ohc,four,97,2bbl,3.15,3.29,9.4,69,5200,31,37,6649
94 | 93,1,nissan latio,gas,std,four,sedan,fwd,front,94.5,165.3,63.8,54.5,1938,ohc,four,97,2bbl,3.15,3.29,9.4,69,5200,31,37,6849
95 | 94,1,nissan titan,gas,std,four,wagon,fwd,front,94.5,170.2,63.8,53.5,2024,ohc,four,97,2bbl,3.15,3.29,9.4,69,5200,31,37,7349
96 | 95,1,nissan leaf,gas,std,two,sedan,fwd,front,94.5,165.3,63.8,54.5,1951,ohc,four,97,2bbl,3.15,3.29,9.4,69,5200,31,37,7299
97 | 96,1,nissan juke,gas,std,two,hatchback,fwd,front,94.5,165.6,63.8,53.3,2028,ohc,four,97,2bbl,3.15,3.29,9.4,69,5200,31,37,7799
98 | 97,1,nissan latio,gas,std,four,sedan,fwd,front,94.5,165.3,63.8,54.5,1971,ohc,four,97,2bbl,3.15,3.29,9.4,69,5200,31,37,7499
99 | 98,1,nissan note,gas,std,four,wagon,fwd,front,94.5,170.2,63.8,53.5,2037,ohc,four,97,2bbl,3.15,3.29,9.4,69,5200,31,37,7999
100 | 99,2,nissan clipper,gas,std,two,hardtop,fwd,front,95.1,162.4,63.8,53.3,2008,ohc,four,97,2bbl,3.15,3.29,9.4,69,5200,31,37,8249
101 | 100,0,nissan rogue,gas,std,four,hatchback,fwd,front,97.2,173.4,65.2,54.7,2324,ohc,four,120,2bbl,3.33,3.47,8.5,97,5200,27,34,8949
102 | 101,0,nissan nv200,gas,std,four,sedan,fwd,front,97.2,173.4,65.2,54.7,2302,ohc,four,120,2bbl,3.33,3.47,8.5,97,5200,27,34,9549
103 | 102,0,nissan dayz,gas,std,four,sedan,fwd,front,100.4,181.7,66.5,55.1,3095,ohcv,six,181,mpfi,3.43,3.27,9,152,5200,17,22,13499
104 | 103,0,nissan fuga,gas,std,four,wagon,fwd,front,100.4,184.6,66.5,56.1,3296,ohcv,six,181,mpfi,3.43,3.27,9,152,5200,17,22,14399
105 | 104,0,nissan otti,gas,std,four,sedan,fwd,front,100.4,184.6,66.5,55.1,3060,ohcv,six,181,mpfi,3.43,3.27,9,152,5200,19,25,13499
106 | 105,3,nissan teana,gas,std,two,hatchback,rwd,front,91.3,170.7,67.9,49.7,3071,ohcv,six,181,mpfi,3.43,3.27,9,160,5200,19,25,17199
107 | 106,3,nissan kicks,gas,turbo,two,hatchback,rwd,front,91.3,170.7,67.9,49.7,3139,ohcv,six,181,mpfi,3.43,3.27,7.8,200,5200,17,23,19699
108 | 107,1,nissan clipper,gas,std,two,hatchback,rwd,front,99.2,178.5,67.9,49.7,3139,ohcv,six,181,mpfi,3.43,3.27,9,160,5200,19,25,18399
109 | 108,0,peugeot 504,gas,std,four,sedan,rwd,front,107.9,186.7,68.4,56.7,3020,l,four,120,mpfi,3.46,3.19,8.4,97,5000,19,24,11900
110 | 109,0,peugeot 304,diesel,turbo,four,sedan,rwd,front,107.9,186.7,68.4,56.7,3197,l,four,152,idi,3.7,3.52,21,95,4150,28,33,13200
111 | 110,0,peugeot 504 (sw),gas,std,four,wagon,rwd,front,114.2,198.9,68.4,58.7,3230,l,four,120,mpfi,3.46,3.19,8.4,97,5000,19,24,12440
112 | 111,0,peugeot 504,diesel,turbo,four,wagon,rwd,front,114.2,198.9,68.4,58.7,3430,l,four,152,idi,3.7,3.52,21,95,4150,25,25,13860
113 | 112,0,peugeot 504,gas,std,four,sedan,rwd,front,107.9,186.7,68.4,56.7,3075,l,four,120,mpfi,3.46,2.19,8.4,95,5000,19,24,15580
114 | 113,0,peugeot 604sl,diesel,turbo,four,sedan,rwd,front,107.9,186.7,68.4,56.7,3252,l,four,152,idi,3.7,3.52,21,95,4150,28,33,16900
115 | 114,0,peugeot 504,gas,std,four,wagon,rwd,front,114.2,198.9,68.4,56.7,3285,l,four,120,mpfi,3.46,2.19,8.4,95,5000,19,24,16695
116 | 115,0,peugeot 505s turbo diesel,diesel,turbo,four,wagon,rwd,front,114.2,198.9,68.4,58.7,3485,l,four,152,idi,3.7,3.52,21,95,4150,25,25,17075
117 | 116,0,peugeot 504,gas,std,four,sedan,rwd,front,107.9,186.7,68.4,56.7,3075,l,four,120,mpfi,3.46,3.19,8.4,97,5000,19,24,16630
118 | 117,0,peugeot 504,diesel,turbo,four,sedan,rwd,front,107.9,186.7,68.4,56.7,3252,l,four,152,idi,3.7,3.52,21,95,4150,28,33,17950
119 | 118,0,peugeot 604sl,gas,turbo,four,sedan,rwd,front,108,186.7,68.3,56,3130,l,four,134,mpfi,3.61,3.21,7,142,5600,18,24,18150
120 | 119,1,plymouth fury iii,gas,std,two,hatchback,fwd,front,93.7,157.3,63.8,50.8,1918,ohc,four,90,2bbl,2.97,3.23,9.4,68,5500,37,41,5572
121 | 120,1,plymouth cricket,gas,turbo,two,hatchback,fwd,front,93.7,157.3,63.8,50.8,2128,ohc,four,98,spdi,3.03,3.39,7.6,102,5500,24,30,7957
122 | 121,1,plymouth fury iii,gas,std,four,hatchback,fwd,front,93.7,157.3,63.8,50.6,1967,ohc,four,90,2bbl,2.97,3.23,9.4,68,5500,31,38,6229
123 | 122,1,plymouth satellite custom (sw),gas,std,four,sedan,fwd,front,93.7,167.3,63.8,50.8,1989,ohc,four,90,2bbl,2.97,3.23,9.4,68,5500,31,38,6692
124 | 123,1,plymouth fury gran sedan,gas,std,four,sedan,fwd,front,93.7,167.3,63.8,50.8,2191,ohc,four,98,2bbl,2.97,3.23,9.4,68,5500,31,38,7609
125 | 124,-1,plymouth valiant,gas,std,four,wagon,fwd,front,103.3,174.6,64.6,59.8,2535,ohc,four,122,2bbl,3.35,3.46,8.5,88,5000,24,30,8921
126 | 125,3,plymouth duster,gas,turbo,two,hatchback,rwd,front,95.9,173.2,66.3,50.2,2818,ohc,four,156,spdi,3.59,3.86,7,145,5000,19,24,12764
127 | 126,3,porsche macan,gas,std,two,hatchback,rwd,front,94.5,168.9,68.3,50.2,2778,ohc,four,151,mpfi,3.94,3.11,9.5,143,5500,19,27,22018
128 | 127,3,porcshce panamera,gas,std,two,hardtop,rwd,rear,89.5,168.9,65,51.6,2756,ohcf,six,194,mpfi,3.74,2.9,9.5,207,5900,17,25,32528
129 | 128,3,porsche cayenne,gas,std,two,hardtop,rwd,rear,89.5,168.9,65,51.6,2756,ohcf,six,194,mpfi,3.74,2.9,9.5,207,5900,17,25,34028
130 | 129,3,porsche boxter,gas,std,two,convertible,rwd,rear,89.5,168.9,65,51.6,2800,ohcf,six,194,mpfi,3.74,2.9,9.5,207,5900,17,25,37028
131 | 130,1,porsche cayenne,gas,std,two,hatchback,rwd,front,98.4,175.7,72.3,50.5,3366,dohcv,eight,203,mpfi,3.94,3.11,10,288,5750,17,28,31400.5
132 | 131,0,renault 12tl,gas,std,four,wagon,fwd,front,96.1,181.5,66.5,55.2,2579,ohc,four,132,mpfi,3.46,3.9,8.7,90,5100,23,31,9295
133 | 132,2,renault 5 gtl,gas,std,two,hatchback,fwd,front,96.1,176.8,66.6,50.5,2460,ohc,four,132,mpfi,3.46,3.9,8.7,90,5100,23,31,9895
134 | 133,3,saab 99e,gas,std,two,hatchback,fwd,front,99.1,186.6,66.5,56.1,2658,ohc,four,121,mpfi,3.54,3.07,9.31,110,5250,21,28,11850
135 | 134,2,saab 99le,gas,std,four,sedan,fwd,front,99.1,186.6,66.5,56.1,2695,ohc,four,121,mpfi,3.54,3.07,9.3,110,5250,21,28,12170
136 | 135,3,saab 99le,gas,std,two,hatchback,fwd,front,99.1,186.6,66.5,56.1,2707,ohc,four,121,mpfi,2.54,2.07,9.3,110,5250,21,28,15040
137 | 136,2,saab 99gle,gas,std,four,sedan,fwd,front,99.1,186.6,66.5,56.1,2758,ohc,four,121,mpfi,3.54,3.07,9.3,110,5250,21,28,15510
138 | 137,3,saab 99gle,gas,turbo,two,hatchback,fwd,front,99.1,186.6,66.5,56.1,2808,dohc,four,121,mpfi,3.54,3.07,9,160,5500,19,26,18150
139 | 138,2,saab 99e,gas,turbo,four,sedan,fwd,front,99.1,186.6,66.5,56.1,2847,dohc,four,121,mpfi,3.54,3.07,9,160,5500,19,26,18620
140 | 139,2,subaru,gas,std,two,hatchback,fwd,front,93.7,156.9,63.4,53.7,2050,ohcf,four,97,2bbl,3.62,2.36,9,69,4900,31,36,5118
141 | 140,2,subaru dl,gas,std,two,hatchback,fwd,front,93.7,157.9,63.6,53.7,2120,ohcf,four,108,2bbl,3.62,2.64,8.7,73,4400,26,31,7053
142 | 141,2,subaru dl,gas,std,two,hatchback,4wd,front,93.3,157.3,63.8,55.7,2240,ohcf,four,108,2bbl,3.62,2.64,8.7,73,4400,26,31,7603
143 | 142,0,subaru,gas,std,four,sedan,fwd,front,97.2,172,65.4,52.5,2145,ohcf,four,108,2bbl,3.62,2.64,9.5,82,4800,32,37,7126
144 | 143,0,subaru brz,gas,std,four,sedan,fwd,front,97.2,172,65.4,52.5,2190,ohcf,four,108,2bbl,3.62,2.64,9.5,82,4400,28,33,7775
145 | 144,0,subaru baja,gas,std,four,sedan,fwd,front,97.2,172,65.4,52.5,2340,ohcf,four,108,mpfi,3.62,2.64,9,94,5200,26,32,9960
146 | 145,0,subaru r1,gas,std,four,sedan,4wd,front,97,172,65.4,54.3,2385,ohcf,four,108,2bbl,3.62,2.64,9,82,4800,24,25,9233
147 | 146,0,subaru r2,gas,turbo,four,sedan,4wd,front,97,172,65.4,54.3,2510,ohcf,four,108,mpfi,3.62,2.64,7.7,111,4800,24,29,11259
148 | 147,0,subaru trezia,gas,std,four,wagon,fwd,front,97,173.5,65.4,53,2290,ohcf,four,108,2bbl,3.62,2.64,9,82,4800,28,32,7463
149 | 148,0,subaru tribeca,gas,std,four,wagon,fwd,front,97,173.5,65.4,53,2455,ohcf,four,108,mpfi,3.62,2.64,9,94,5200,25,31,10198
150 | 149,0,subaru dl,gas,std,four,wagon,4wd,front,96.9,173.6,65.4,54.9,2420,ohcf,four,108,2bbl,3.62,2.64,9,82,4800,23,29,8013
151 | 150,0,subaru dl,gas,turbo,four,wagon,4wd,front,96.9,173.6,65.4,54.9,2650,ohcf,four,108,mpfi,3.62,2.64,7.7,111,4800,23,23,11694
152 | 151,1,toyota corona mark ii,gas,std,two,hatchback,fwd,front,95.7,158.7,63.6,54.5,1985,ohc,four,92,2bbl,3.05,3.03,9,62,4800,35,39,5348
153 | 152,1,toyota corona,gas,std,two,hatchback,fwd,front,95.7,158.7,63.6,54.5,2040,ohc,four,92,2bbl,3.05,3.03,9,62,4800,31,38,6338
154 | 153,1,toyota corolla 1200,gas,std,four,hatchback,fwd,front,95.7,158.7,63.6,54.5,2015,ohc,four,92,2bbl,3.05,3.03,9,62,4800,31,38,6488
155 | 154,0,toyota corona hardtop,gas,std,four,wagon,fwd,front,95.7,169.7,63.6,59.1,2280,ohc,four,92,2bbl,3.05,3.03,9,62,4800,31,37,6918
156 | 155,0,toyota corolla 1600 (sw),gas,std,four,wagon,4wd,front,95.7,169.7,63.6,59.1,2290,ohc,four,92,2bbl,3.05,3.03,9,62,4800,27,32,7898
157 | 156,0,toyota carina,gas,std,four,wagon,4wd,front,95.7,169.7,63.6,59.1,3110,ohc,four,92,2bbl,3.05,3.03,9,62,4800,27,32,8778
158 | 157,0,toyota mark ii,gas,std,four,sedan,fwd,front,95.7,166.3,64.4,53,2081,ohc,four,98,2bbl,3.19,3.03,9,70,4800,30,37,6938
159 | 158,0,toyota corolla 1200,gas,std,four,hatchback,fwd,front,95.7,166.3,64.4,52.8,2109,ohc,four,98,2bbl,3.19,3.03,9,70,4800,30,37,7198
160 | 159,0,toyota corona,diesel,std,four,sedan,fwd,front,95.7,166.3,64.4,53,2275,ohc,four,110,idi,3.27,3.35,22.5,56,4500,34,36,7898
161 | 160,0,toyota corolla,diesel,std,four,hatchback,fwd,front,95.7,166.3,64.4,52.8,2275,ohc,four,110,idi,3.27,3.35,22.5,56,4500,38,47,7788
162 | 161,0,toyota corona,gas,std,four,sedan,fwd,front,95.7,166.3,64.4,53,2094,ohc,four,98,2bbl,3.19,3.03,9,70,4800,38,47,7738
163 | 162,0,toyota corolla,gas,std,four,hatchback,fwd,front,95.7,166.3,64.4,52.8,2122,ohc,four,98,2bbl,3.19,3.03,9,70,4800,28,34,8358
164 | 163,0,toyota mark ii,gas,std,four,sedan,fwd,front,95.7,166.3,64.4,52.8,2140,ohc,four,98,2bbl,3.19,3.03,9,70,4800,28,34,9258
165 | 164,1,toyota corolla liftback,gas,std,two,sedan,rwd,front,94.5,168.7,64,52.6,2169,ohc,four,98,2bbl,3.19,3.03,9,70,4800,29,34,8058
166 | 165,1,toyota corona,gas,std,two,hatchback,rwd,front,94.5,168.7,64,52.6,2204,ohc,four,98,2bbl,3.19,3.03,9,70,4800,29,34,8238
167 | 166,1,toyota celica gt liftback,gas,std,two,sedan,rwd,front,94.5,168.7,64,52.6,2265,dohc,four,98,mpfi,3.24,3.08,9.4,112,6600,26,29,9298
168 | 167,1,toyota corolla tercel,gas,std,two,hatchback,rwd,front,94.5,168.7,64,52.6,2300,dohc,four,98,mpfi,3.24,3.08,9.4,112,6600,26,29,9538
169 | 168,2,toyota corona liftback,gas,std,two,hardtop,rwd,front,98.4,176.2,65.6,52,2540,ohc,four,146,mpfi,3.62,3.5,9.3,116,4800,24,30,8449
170 | 169,2,toyota corolla,gas,std,two,hardtop,rwd,front,98.4,176.2,65.6,52,2536,ohc,four,146,mpfi,3.62,3.5,9.3,116,4800,24,30,9639
171 | 170,2,toyota starlet,gas,std,two,hatchback,rwd,front,98.4,176.2,65.6,52,2551,ohc,four,146,mpfi,3.62,3.5,9.3,116,4800,24,30,9989
172 | 171,2,toyota tercel,gas,std,two,hardtop,rwd,front,98.4,176.2,65.6,52,2679,ohc,four,146,mpfi,3.62,3.5,9.3,116,4800,24,30,11199
173 | 172,2,toyota corolla,gas,std,two,hatchback,rwd,front,98.4,176.2,65.6,52,2714,ohc,four,146,mpfi,3.62,3.5,9.3,116,4800,24,30,11549
174 | 173,2,toyota cressida,gas,std,two,convertible,rwd,front,98.4,176.2,65.6,53,2975,ohc,four,146,mpfi,3.62,3.5,9.3,116,4800,24,30,17669
175 | 174,-1,toyota corolla,gas,std,four,sedan,fwd,front,102.4,175.6,66.5,54.9,2326,ohc,four,122,mpfi,3.31,3.54,8.7,92,4200,29,34,8948
176 | 175,-1,toyota celica gt,diesel,turbo,four,sedan,fwd,front,102.4,175.6,66.5,54.9,2480,ohc,four,110,idi,3.27,3.35,22.5,73,4500,30,33,10698
177 | 176,-1,toyota corona,gas,std,four,hatchback,fwd,front,102.4,175.6,66.5,53.9,2414,ohc,four,122,mpfi,3.31,3.54,8.7,92,4200,27,32,9988
178 | 177,-1,toyota corolla,gas,std,four,sedan,fwd,front,102.4,175.6,66.5,54.9,2414,ohc,four,122,mpfi,3.31,3.54,8.7,92,4200,27,32,10898
179 | 178,-1,toyota mark ii,gas,std,four,hatchback,fwd,front,102.4,175.6,66.5,53.9,2458,ohc,four,122,mpfi,3.31,3.54,8.7,92,4200,27,32,11248
180 | 179,3,toyota corolla liftback,gas,std,two,hatchback,rwd,front,102.9,183.5,67.7,52,2976,dohc,six,171,mpfi,3.27,3.35,9.3,161,5200,20,24,16558
181 | 180,3,toyota corona,gas,std,two,hatchback,rwd,front,102.9,183.5,67.7,52,3016,dohc,six,171,mpfi,3.27,3.35,9.3,161,5200,19,24,15998
182 | 181,-1,toyota starlet,gas,std,four,sedan,rwd,front,104.5,187.8,66.5,54.1,3131,dohc,six,171,mpfi,3.27,3.35,9.2,156,5200,20,24,15690
183 | 182,-1,toyouta tercel,gas,std,four,wagon,rwd,front,104.5,187.8,66.5,54.1,3151,dohc,six,161,mpfi,3.27,3.35,9.2,156,5200,19,24,15750
184 | 183,2,vokswagen rabbit,diesel,std,two,sedan,fwd,front,97.3,171.7,65.5,55.7,2261,ohc,four,97,idi,3.01,3.4,23,52,4800,37,46,7775
185 | 184,2,volkswagen 1131 deluxe sedan,gas,std,two,sedan,fwd,front,97.3,171.7,65.5,55.7,2209,ohc,four,109,mpfi,3.19,3.4,9,85,5250,27,34,7975
186 | 185,2,volkswagen model 111,diesel,std,four,sedan,fwd,front,97.3,171.7,65.5,55.7,2264,ohc,four,97,idi,3.01,3.4,23,52,4800,37,46,7995
187 | 186,2,volkswagen type 3,gas,std,four,sedan,fwd,front,97.3,171.7,65.5,55.7,2212,ohc,four,109,mpfi,3.19,3.4,9,85,5250,27,34,8195
188 | 187,2,volkswagen 411 (sw),gas,std,four,sedan,fwd,front,97.3,171.7,65.5,55.7,2275,ohc,four,109,mpfi,3.19,3.4,9,85,5250,27,34,8495
189 | 188,2,volkswagen super beetle,diesel,turbo,four,sedan,fwd,front,97.3,171.7,65.5,55.7,2319,ohc,four,97,idi,3.01,3.4,23,68,4500,37,42,9495
190 | 189,2,volkswagen dasher,gas,std,four,sedan,fwd,front,97.3,171.7,65.5,55.7,2300,ohc,four,109,mpfi,3.19,3.4,10,100,5500,26,32,9995
191 | 190,3,vw dasher,gas,std,two,convertible,fwd,front,94.5,159.3,64.2,55.6,2254,ohc,four,109,mpfi,3.19,3.4,8.5,90,5500,24,29,11595
192 | 191,3,vw rabbit,gas,std,two,hatchback,fwd,front,94.5,165.7,64,51.4,2221,ohc,four,109,mpfi,3.19,3.4,8.5,90,5500,24,29,9980
193 | 192,0,volkswagen rabbit,gas,std,four,sedan,fwd,front,100.4,180.2,66.9,55.1,2661,ohc,five,136,mpfi,3.19,3.4,8.5,110,5500,19,24,13295
194 | 193,0,volkswagen rabbit custom,diesel,turbo,four,sedan,fwd,front,100.4,180.2,66.9,55.1,2579,ohc,four,97,idi,3.01,3.4,23,68,4500,33,38,13845
195 | 194,0,volkswagen dasher,gas,std,four,wagon,fwd,front,100.4,183.1,66.9,55.1,2563,ohc,four,109,mpfi,3.19,3.4,9,88,5500,25,31,12290
196 | 195,-2,volvo 145e (sw),gas,std,four,sedan,rwd,front,104.3,188.8,67.2,56.2,2912,ohc,four,141,mpfi,3.78,3.15,9.5,114,5400,23,28,12940
197 | 196,-1,volvo 144ea,gas,std,four,wagon,rwd,front,104.3,188.8,67.2,57.5,3034,ohc,four,141,mpfi,3.78,3.15,9.5,114,5400,23,28,13415
198 | 197,-2,volvo 244dl,gas,std,four,sedan,rwd,front,104.3,188.8,67.2,56.2,2935,ohc,four,141,mpfi,3.78,3.15,9.5,114,5400,24,28,15985
199 | 198,-1,volvo 245,gas,std,four,wagon,rwd,front,104.3,188.8,67.2,57.5,3042,ohc,four,141,mpfi,3.78,3.15,9.5,114,5400,24,28,16515
200 | 199,-2,volvo 264gl,gas,turbo,four,sedan,rwd,front,104.3,188.8,67.2,56.2,3045,ohc,four,130,mpfi,3.62,3.15,7.5,162,5100,17,22,18420
201 | 200,-1,volvo diesel,gas,turbo,four,wagon,rwd,front,104.3,188.8,67.2,57.5,3157,ohc,four,130,mpfi,3.62,3.15,7.5,162,5100,17,22,18950
202 | 201,-1,volvo 145e (sw),gas,std,four,sedan,rwd,front,109.1,188.8,68.9,55.5,2952,ohc,four,141,mpfi,3.78,3.15,9.5,114,5400,23,28,16845
203 | 202,-1,volvo 144ea,gas,turbo,four,sedan,rwd,front,109.1,188.8,68.8,55.5,3049,ohc,four,141,mpfi,3.78,3.15,8.7,160,5300,19,25,19045
204 | 203,-1,volvo 244dl,gas,std,four,sedan,rwd,front,109.1,188.8,68.9,55.5,3012,ohcv,six,173,mpfi,3.58,2.87,8.8,134,5500,18,23,21485
205 | 204,-1,volvo 246,diesel,turbo,four,sedan,rwd,front,109.1,188.8,68.9,55.5,3217,ohc,six,145,idi,3.01,3.4,23,106,4800,26,27,22470
206 | 205,-1,volvo 264gl,gas,turbo,four,sedan,rwd,front,109.1,188.8,68.9,55.5,3062,ohc,four,141,mpfi,3.78,3.15,9.5,114,5400,19,25,22625
207 |
--------------------------------------------------------------------------------
/Case Studies/Car Price Prediction/1.2. Data Dictionary - carprices.xlsx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/Case Studies/Car Price Prediction/1.2. Data Dictionary - carprices.xlsx
--------------------------------------------------------------------------------
/Case Studies/Credit Card Fraud/dataset.txt:
--------------------------------------------------------------------------------
1 | Kindly download the dataset from the link mentioned in the jupyter notebook.
2 |
3 | THIS IS NOT THE DATA FILE!
4 |
5 | APRIL FOOL
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # ML_notes
--------------------------------------------------------------------------------
/cheat_sheets/Graphs.jpeg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/cheat_sheets/Graphs.jpeg
--------------------------------------------------------------------------------
/cheat_sheets/LaTeX_sheet.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/cheat_sheets/LaTeX_sheet.pdf
--------------------------------------------------------------------------------
/cheat_sheets/ML_cheatsheet-01.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/cheat_sheets/ML_cheatsheet-01.png
--------------------------------------------------------------------------------
/cheat_sheets/Matplotlib.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/cheat_sheets/Matplotlib.pdf
--------------------------------------------------------------------------------
/cheat_sheets/Pandas.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/cheat_sheets/Pandas.pdf
--------------------------------------------------------------------------------
/cheat_sheets/Python.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/cheat_sheets/Python.pdf
--------------------------------------------------------------------------------
/cheat_sheets/Scikit_Learn_Cheat_Sheet_Python.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/cheat_sheets/Scikit_Learn_Cheat_Sheet_Python.pdf
--------------------------------------------------------------------------------
/cheat_sheets/numpy-cheat-sheet.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bansalkanav/ML_notes/5051f2bdaaf7660b247c9707bd08b3f19c811a44/cheat_sheets/numpy-cheat-sheet.pdf
--------------------------------------------------------------------------------