├── screenshot.png ├── README.md ├── .gitattributes ├── .gitignore ├── 3D_reconstruction └── main.cpp └── Colaboratory'ye_Hoş_Geldiniz.ipynb /screenshot.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/basharbme/3D_Reconstruction/master/screenshot.png -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # 3D Reconstruction 2 | 3 | **A Program Written in QT using VTK libraries to perform 3D-Reconstruction** 4 | 5 | ## How to use 6 | 7 | #### requirement 8 | * VTK runtime libraries 9 | * g++ compiler 10 | 11 | #### usage 12 | ```bash 13 | # Just past slices path to the excuteable 14 | ./path/to/your_executable_fle /path/to/slices 15 | ``` 16 | 17 | ## Screenshot 18 |
19 |
--------------------------------------------------------------------------------
/.gitattributes:
--------------------------------------------------------------------------------
1 | # Auto detect text files and perform LF normalization
2 | * text=auto
3 |
4 | # Custom for Visual Studio
5 | *.cs diff=csharp
6 | *.sln merge=union
7 | *.csproj merge=union
8 | *.vbproj merge=union
9 | *.fsproj merge=union
10 | *.dbproj merge=union
11 |
12 | # Standard to msysgit
13 | *.doc diff=astextplain
14 | *.DOC diff=astextplain
15 | *.docx diff=astextplain
16 | *.DOCX diff=astextplain
17 | *.dot diff=astextplain
18 | *.DOT diff=astextplain
19 | *.pdf diff=astextplain
20 | *.PDF diff=astextplain
21 | *.rtf diff=astextplain
22 | *.RTF diff=astextplain
23 |
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | # C++ objects and libs
2 |
3 | *.slo
4 | *.lo
5 | *.o
6 | *.a
7 | *.la
8 | *.lai
9 | *.so
10 | *.dll
11 | *.dylib
12 |
13 | # Qt-es
14 |
15 | *.pro.user
16 | *.pro.user.*
17 | moc_*.cpp
18 | qrc_*.cpp
19 | ui_*.h
20 | Makefile*
21 | *-build-*
22 |
23 | # QtCreator
24 |
25 | *.autosave
26 |
27 | # =========================
28 | # Operating System Files
29 | # =========================
30 |
31 | # OSX
32 | # =========================
33 |
34 | .DS_Store
35 | .AppleDouble
36 | .LSOverride
37 |
38 | # Icon must ends with two \r.
39 | Icon
40 |
41 | # Thumbnails
42 | ._*
43 |
44 | # Files that might appear on external disk
45 | .Spotlight-V100
46 | .Trashes
47 |
48 | # Windows
49 | # =========================
50 |
51 | # Windows image file caches
52 | Thumbs.db
53 | ehthumbs.db
54 |
55 | # Folder config file
56 | Desktop.ini
57 |
58 | # Recycle Bin used on file shares
59 | $RECYCLE.BIN/
60 |
61 | # Windows Installer files
62 | *.cab
63 | *.msi
64 | *.msm
65 | *.msp
66 |
--------------------------------------------------------------------------------
/3D_reconstruction/main.cpp:
--------------------------------------------------------------------------------
1 |
2 | /**
3 | @ a little software of 3D reconstruction
4 | @author: timlentse
5 | @email: tinglenxan@gmail.com
6 | */
7 |
8 | #include "
26 | ]
27 | },
28 | {
29 | "cell_type": "markdown",
30 | "metadata": {
31 | "id": "5fCEDCU_qrC0"
32 | },
33 | "source": [
34 | "
Colaboratory nedir?
\n",
37 | "\n",
38 | "Colaboratory (ya da kısaca \"Colab\"), tarayıcınızda Python'u yazmanızı ve çalıştırmanızı sağlar. Üstelik: \n",
39 | "- Hiç yapılandırma gerektirmez\n",
40 | "- GPU'lara ücretsiz erişim imkanı sunar\n",
41 | "- Kolay paylaşım imkanı sunar\n",
42 | "\n",
43 | "İster öğrenci ister veri bilimci ister yapay zeka araştırmacısı olun, Colab işinizi kolaylaştırabilir. Daha fazla bilgi edinmek için Colab'e Giriş videosunu izleyebilir ya da aşağıdan hemen kullanmaya başlayabilirsiniz."
44 | ]
45 | },
46 | {
47 | "cell_type": "markdown",
48 | "metadata": {
49 | "id": "GJBs_flRovLc"
50 | },
51 | "source": [
52 | "## Başlarken\n",
53 | "\n",
54 | "Okuduğunuz doküman statik bir web sayfası değil, kod yazmanıza ve yürütmenize imkan veren Colab not defteri adında etkileşimli bir ortamdır.\n",
55 | "\n",
56 | "Örneğin, buradaki kod hücresinde, bir değeri hesaplayan, bir değişken içinde saklayan ve sonucu yazdıran kısa bir Python dizesi görebilirsiniz:"
57 | ]
58 | },
59 | {
60 | "cell_type": "code",
61 | "metadata": {
62 | "colab": {
63 | "base_uri": "https://localhost:8080/",
64 | "height": 34
65 | },
66 | "id": "gJr_9dXGpJ05",
67 | "outputId": "9f556d03-ec67-4950-a485-cfdba9ddd14d"
68 | },
69 | "source": [
70 | "seconds_in_a_day = 24 * 60 * 60\n",
71 | "seconds_in_a_day"
72 | ],
73 | "execution_count": null,
74 | "outputs": [
75 | {
76 | "output_type": "execute_result",
77 | "data": {
78 | "text/plain": [
79 | "86400"
80 | ]
81 | },
82 | "metadata": {
83 | "tags": []
84 | },
85 | "execution_count": 0
86 | }
87 | ]
88 | },
89 | {
90 | "cell_type": "markdown",
91 | "metadata": {
92 | "id": "2fhs6GZ4qFMx"
93 | },
94 | "source": [
95 | "Yukarıdaki hücrede kodu yürütmek için tıklayarak seçin, ardından ya kodun sol tarafındaki oynat düğmesine basın ya da \"Command/Ctrl+Enter\" klavye kısayolunu kullanın. Kodu düzenlemek için hücreyi tıklamanız yeterlidir. Sonrasında düzenlemeye başlayabilirsiniz.\n",
96 | "\n",
97 | "Bir hücrede tanımladığınız değişkenler daha sonra başka hücrelerde kullanılabilir:"
98 | ]
99 | },
100 | {
101 | "cell_type": "code",
102 | "metadata": {
103 | "colab": {
104 | "base_uri": "https://localhost:8080/",
105 | "height": 34
106 | },
107 | "id": "-gE-Ez1qtyIA",
108 | "outputId": "94cb2224-0edf-457b-90b5-0ac3488d8a97"
109 | },
110 | "source": [
111 | "seconds_in_a_week = 7 * seconds_in_a_day\n",
112 | "seconds_in_a_week"
113 | ],
114 | "execution_count": null,
115 | "outputs": [
116 | {
117 | "output_type": "execute_result",
118 | "data": {
119 | "text/plain": [
120 | "604800"
121 | ]
122 | },
123 | "metadata": {
124 | "tags": []
125 | },
126 | "execution_count": 0
127 | }
128 | ]
129 | },
130 | {
131 | "cell_type": "markdown",
132 | "metadata": {
133 | "id": "lSrWNr3MuFUS"
134 | },
135 | "source": [
136 | "Colab not defterleri; yürütülebilir kod, zengin metin, resimler, HTML, LaTeX ve diğer öğeleri tek bir dokümanda birleştirmenizi sağlar. Oluşturduğunuz Colab not defterleri Google Drive hesabınızda saklanır. Colab not defterlerinizi arkadaşlarınızla veya iş arkadaşlarınızla kolayca paylaşabilir, not defterlerinize yorum yapmalarını, hatta düzenlemelerini sağlayabilirsiniz. Daha fazla bilgiyi Colab'e Genel Bakış bölümünde bulabilirsiniz. Yeni bir Colab not defteri oluşturmak için yukarıdaki Dosya menüsünü ya da yeni bir Colab not defteri oluşturma bağlantısını kullanabilirsiniz.\n",
137 | "\n",
138 | "Colab not defterleri, Colab tarafından barındırılan Jupyter not defterleridir. Jupyter projesi hakkında daha fazla bilgiyi jupyter.org adresinde bulabilirsiniz."
139 | ]
140 | },
141 | {
142 | "cell_type": "markdown",
143 | "metadata": {
144 | "id": "UdRyKR44dcNI"
145 | },
146 | "source": [
147 | "## Veri bilimi\n",
148 | "\n",
149 | "Colab ile popüler Python kitaplıklarının tüm avantajlarından yararlanarak veri analiz edip görselleştirebilirsiniz. Aşağıdaki kod hücresi rastgele veri oluşturmak için numpy'yi, bu veriyi görselleştirmek için de matplotlib'i kullanır. Kodu düzenlemek için hücreyi tıklamanız yeterlidir. Sonrasında düzenlemeye başlayabilirsiniz."
150 | ]
151 | },
152 | {
153 | "cell_type": "code",
154 | "metadata": {
155 | "colab": {
156 | "base_uri": "https://localhost:8080/",
157 | "height": 281
158 | },
159 | "id": "C4HZx7Gndbrh",
160 | "outputId": "46abc637-6abd-41b2-9bba-80a7ae992e06"
161 | },
162 | "source": [
163 | "import numpy as np\n",
164 | "from matplotlib import pyplot as plt\n",
165 | "\n",
166 | "ys = 200 + np.random.randn(100)\n",
167 | "x = [x for x in range(len(ys))]\n",
168 | "\n",
169 | "plt.plot(x, ys, '-')\n",
170 | "plt.fill_between(x, ys, 195, where=(ys > 195), facecolor='g', alpha=0.6)\n",
171 | "\n",
172 | "plt.title(\"Sample Visualization\")\n",
173 | "plt.show()"
174 | ],
175 | "execution_count": null,
176 | "outputs": [
177 | {
178 | "output_type": "display_data",
179 | "data": {
180 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEICAYAAABRSj9aAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsvXe4JOdd5/v9VejuEydogkbBki1L\nloUlW7IALWYXgw2XLFgvcAnGpDULvg/2xXjx8rCENXgNlzXBrGG9zlg4YBks27JXsiyhHGYUZjQa\nTdDkmZP7dK5c7/3jrbdSV3VX9+kzJ8z7eZ55pk+f6urqPlW/+r3fXyLGGCQSiUSyeVHW+gAkEolE\nsrpIQy+RSCSbHGnoJRKJZJMjDb1EIpFscqShl0gkkk2ONPQSiUSyyZGGXrLhIKI/IqLPrNK+/56I\n/utq7Dv2Hg8Q0a8Fj3+eiO5Zhff4PSL66Kj3K9mYSEMvKQwRfTcRPUpEdSKqEtEjRPTta31cRSGi\nbxDRf8t4/nYimiUijTH2nxhj77tQx8QYu4Mx9gMr2QcRvZGIzqb2+37G2K+t7OgkmwVp6CWFIKJp\nAF8F8CEA2wFcDuCPAVhreVwD8ikAv0BElHr+rQDuYIy5a3BMEsmqIw29pCjXAQBj7LOMMY8xZjDG\n7mGM7QcAIrqGiL5FREtEtEhEdxDRVvFiIjpJRO8hov1E1CaijxHRbiL6OhE1ieibRLQt2PZqImJE\n9HYiOk9EM0T0O3kHRkS3BSuNGhE9R0RvzNn0XwBcAuDfxl67DcCPAvh08PMniehPgsc7iOirwX6r\nRPQQESnB7xgRvTK2n/jrtgWvWyCi5eDxFTnH/ktE9HDw+D8TUSv2zyGiTwa/+2UiOhR8V8eJ6NeD\n5ycAfB3AZbHXXZaWt4jox4noYPBZHiCiV6f+Nr8T/G3qRPR5Iqrkfd+SjYc09JKiHAHgEdGniOiH\nhFGOQQD+O4DLALwawJUA/ii1zVsAfD/4TePHwA3U7wHYCX4u/lZq++8FcC2AHwDwu0T05vRBEdHl\nAL4G4E/AVxq/A+BOItqZ3pYxZgD4AoBfjD390wBeZIw9l/GZ3w3gbHB8u4NjLdIzRAHwCQBXAXgZ\nAAPA3/Z7EWPszxljk4yxSfDvcAHA54Nfz4PfkKYB/DKAvySiWxhjbQA/BOC8eC1j7Hx8v0R0HYDP\nAnhX8FnuBvAVIirFNvtpAD8I4OUAbgLwSwU+p2SDIA29pBCMsQaA7wY3dP8bwAIR3UVEu4PfH2OM\n3csYsxhjCwA+COB7Urv5EGNsjjF2DsBDAJ5gjD3DGDMB/DOAm1Pb/zFjrM0YOwBuOH8249B+AcDd\njLG7GWM+Y+xeAHsB/HDOR/kUgP8Q81h/MXguCwfAHgBXMcYcxthDrEBzKMbYEmPsTsZYhzHWBPCn\n6P4uciGiMfDVx18zxr4e7PNrjLGXGOdfAdyD2MqkDz8D4GvB38cB8BcAxgB8V2ybv2GMnWeMVQF8\nBcDrih6vZP0jDb2kMIyxQ4yxX2KMXQHgNeDe+18BQCDDfI6IzhFRA8BnAOxI7WIu9tjI+Hkytf2Z\n2ONTwfuluQrATwWSRI2IauA3pD05n+FhAIsAfoKIrgHwHQD+Mecj/38AjgG4J5BL3puzXQIiGiei\n/0VEp4Lv4kEAW4lILfJ6AB8DcJgx9mexff4QET0eSEg18BtZ+vvN4zLw7w8AwBjzwb/by2PbzMYe\nd9D9t5BsYKShlwwFY+xFAJ8EN/gA8H5wb/9Gxtg0uKedDnoOypWxxy8DcD5jmzMA/oExtjX2b4Ix\n9oEe+/00uCf/CwD+D2NsLmsjxliTMfZuxtgrAPw4gN8mojcFv+4AGI9tfmns8bsBvArAdwbfxb8L\nnu/7fQQ3k+sA/GrsuTKAO8E98d2Msa3g8ovYX79VxnnwG6LYH4F/t+f6HY9kcyANvaQQRHQ9Eb1b\nBBWJ6EpwKeXxYJMpAC0A9UA3f88I3va/Bt7xt4Hr0p/P2OYzAH6MiP4vIlKJqEI83TAz+BnwaQBv\nBvAfkS/bgIh+lIheGRjGOgAPgB/8+lkAPxe85w8iKc1Mga9QakS0HcAfFvmwRPRD4HGKnwziCYIS\ngDK4Zu8G28VTMucAXEJEW3J2/QUAP0JEbyIiHfxGZAF4tMhxSTY+0tBLitIE8J0AniCiNriBfx7c\naAA81fIWcIP4NQBfGsF7/iu4dHIfgL9gjHUVFjHGzgC4HTxQugDu4b8HPc5txthJcCM3AeCuHu9/\nLYBvgt/AHgPwYcbY/cHv3gkeUK4B+HlwTV3wV+Aa+CL49/SN3h8z5GfAg6WHYhk0fx/o/L8FbrCX\nAfxc/LiD1dVnARwP5KuExMUYOwy+evlQcEw/BuDHGGN2weOSbHBIDh6RrDeI6GoAJwDoMrddIlk5\n0qOXSCSSTU5fQ09EVxLR/UT0QlBw8c7g+e1EdC8RHQ3+F8UutweFF88S0V4i+u7V/hASiUQiyaev\ndENEewDsYYw9TURTAPYB+AnwgooqY+wDQabANsbY7xLRJIA2Y4wR0U0AvsAYu351P4ZEIpFI8ujr\n0TPGZhhjTwePmwAOgeff3o4oY+FT4MYfjLFWrKhkAsUqCSUSiUSySmiDbBwEyW4G8AR4Pu9M8KtZ\n8BJxsd1PgpfD7wLwIzn7ejuAtwPAxMTE66+/Xjr9EolEMgj79u1bZIx1tftIUzjrJpBk/hXAnzLG\nvkREtaBwQ/x+mTG2LfWafwfgDxhjXT1K4tx6661s7969hY5DIpFIJBwi2scYu7XfdoWyboIiizvB\nW7mK/Oi5QL8XOv58+nWMsQcBvIKIipZqSyQSiWTEFMm6IfDeG4cYYx+M/eouAG8LHr8NwJeD7UUl\nIYjoFvCKvqVRHrREIpFIilNEo38D+GCGA0T0bPDc7wH4AIAvENGvgjdM+ungd28B8ItE5ICXgf9M\nkY5/EolEIlkd+hr6oNtfXjOmN6WfCDru/VnGthKJRCJZA2RlrEQikWxypKGXSCSSTY409BKJRLLJ\nkYZ+SBaaFu4+MNN/Q4lEIlljpKEfki/uO4vfvONpzNbNtT4UiUQi6Yk09EPSNB0AwIFz9TU+EolE\nIumNNPRD0rE9AMDz0tBLJJJ1jjT0Q9Kx+eAj6dFLJJL1jjT0Q9IOPPr9Z5fX+EgkEomkN9LQD4kR\nGPrFloP5hgzISiSS9Ys09EPStlwoCjf2Ur6RSCTrGWnoh6RlOdgyuQyASUMvkUjWNdLQD0nHdlHW\nLUyOd6Shl0gk6xpp6IekbbtQVRdTE8syICuRSNY10tAPScf2oaoepidqWGg6mG/KgKxEIlmfSEM/\nJKbtQVVdTE/WAMjCKcn6Zq5h4j/9w160LHetD0WyBkhDPwS268P1AU3xMD1RB8Bw4GxjrQ9LIsnl\n8eNL+MbBORyelefpxUiRmbFXEtH9RPQCER0koncGz28nonuJ6Gjw/7bg+Z8nov1EdICIHiWi1672\nh7jQiKpYVXWhaR4mxzo4cK62xkclkeSz1LIBAG3LW+Mj2Ry0N9jKqIhH7wJ4N2PsBgC3AXgHEd0A\n4L0A7mOMXQvgvuBnADgB4HsYYzcCeB+Aj4z+sNcWURWrqvx/GZCVXAgOnq/j0ZcWh3pttc0NvejR\nJBmeA2fruOmP78Hppc5aH0ph+hp6xtgMY+zp4HETwCEAlwO4HcCngs0+BeAngm0eZYwJq/c4gCtG\nfdBrjSE8eoX/Pz1Zx3zTCS8mScRy28acrBweCX9z31H8wZefH+q1S8G5aTgbyxNdj5yuduD5DOfr\nxlofSmEG0uiJ6GoANwN4AsBuxpiYvDELYHfGS34VwNdz9vV2ItpLRHsXFhYGOYw1Ryx/NZVfNKUS\nN2TLHWno07zvay/gNz6zb60PY1PQMNywPfagVNsWAOnRjwLD4d+h6Wyc77KwoSeiSQB3AngXYywR\n0WGMMQAstf33ghv6383aH2PsI4yxWxljt+7cuXPgA19L2qFGnzT4G023uxAstWzMydTTkdAw7aEN\ndejRS0O/YsSKftMZeiLSwY38HYyxLwVPzxHRnuD3ewDMx7a/CcBHAdzOGFsa7SGvPeJiEdKNMPQy\nda0b0/HC4LVkZTRNB6bjD/XaxRa/2UqPvhvH8wdy0sR3OOzfYi0oknVDAD4G4BBj7IOxX90F4G3B\n47cB+HKw/csAfAnAWxljR0Z7uOuDdDBWDT16eRGlMRwXpr1xLoj1TMty4XgMrjf49ymDsfl86L6j\n+MkPP1J4eyHdGBvIo9cKbPMGAG8FcICIng2e+z0AHwDwBSL6VQCnAPx08Ls/AHAJgA/zewRcxtit\nIz3qNaZjRemVQNyjH04/3QxYrgeFCLqa9B1Mx4Ph+PB9BkWhNTq6zUErcCQ6jodptXh4zfV8NIzA\nOMnVVRcnlzoDZdCIFf1GksH6GnrG2MMA8q7QN2Vs/2sAfm2Fx7WuEV6RltLoWxexR/8rn3gKr9w1\niT++/TWJ54WOaboexktF/ApJFrbrw3Z5GMywPUxX9MKvXe5EDoj06Ltpmg5M14fnM6gFnBEjdk5v\nFGRl7BB0UumVqgzG4sRSC2eWu9PNTJfLDNLArIz4uTXodxlP++1sILnhQlE3+I2waCwp1Og30Dkt\nDf0QtG0PCvlQFO5hqYoHgF3Uhr5puplLWTsw9BtpmbseaSUM/WDn2VKQWglEsqMkomEOFr8Q57Jw\nYjYC0tAPgWF70LToj0wE6Kp/0WbdMMbQtrzMYhyRmdCW2vCKaJor9+h1bfj0zM1MI/Doi16/YTB2\nA32X0tAPQdtyQ31eoGnumnj0z5+r41svzl3w941juT581p2FwBgLPfqVGpizyx28/n334vhCa0X7\n2ai0RiDdVModecPNoGkGQe6CMbbOZs2jlyTp2F6ozws01V2T9MoPP3AMf3jXwZ7bPPbSEn78bx9e\ntRNTeJvp/bs+gx+U0a3U+zmx2MZS28ax+YvV0EcB1UEzZ0RDs7GyIWsaUrieD2PAVaeQvzZSeqU0\n9EPQsV0oSjKVUlGcnks/y/Xwu1/cP/K+L8ttB60+ZfFPn17G/rP1Ves5I1YyaUMf/3mlHr24UVys\n8thKpZuS7kLTHGnoU8S/16Ir8o4jPfqLgrbtQkl59Kra29AfnWvh83vPDN19MI/ljtX3wl8Olu7x\nNLtR0so19FEcY6UGRnhP69XQO56Pzz15Gp7P+m88BCuVbkq6DVXxNpSufCFIGPqC382mrIyVdNOy\n3DB3XqCqLlpmflMzcUKNOtd+uWPDcllPAyMM/Go1XRNGyEplIVju6Dx68fr4hbmeeOTYIt77pQN4\n/PjqdPxoxT73oMZ6qW1B10yoqhfKFBJOI7YaLpqRJJyOjbQ6koZ+CDqWG7Y/EGiq29PbFF0HWyM2\nVEVygGuBga+tlqEPPpPlMPD+dpykR7+5pZuFJk9hPJdRSzAK+Ofm3+2g3+Viy4SuWVAVF3Yfp+Bi\nI27oi55boqWHlG42OR3bzQ7G9rgAxUk0yjYJpuPBdKJqyTyqgYGvtldHuhFBLAbAjvVhiV8IKy29\nD6WbderRi8yW1epR3jRdlDQPquKHGnFRlto2SroVOicbKYi42jSMwSQxxljowAz6d1hLpKEfgo7t\ndXn0ap+sG2HoR5mZI/J/gd76ouhFvloefVxOiTcwi0s5K5du1neHUNEGeKa2OgHvpulC01xoqj+Q\ndOP7DPWOG2r0wMaSHFabeH//Ilk3luuH/dg3UrxDGvoBYYzBcPwujV5TeWdBJ6ezoDCGo9SYa3FD\n38MACgO/Whp9/L3j/T+sEWbdrHeNXqQwrpZH37IcaKrb16FIUzcc+AzQdTts1bGRDNRq0wjOJ6Ji\nrYrj53E6JrWekYZ+QGzPh+dH/W0E/YaPRB79CA19LIsmbznu+ywsCFleJekm7mXH5RozEYxd2ec2\nw6yb9dkhVLQZOLvcXpX9t0wXihJkzgwgGYiVRkmzQo9ettOOEKvisZJdqGBKnMeaZkuNfjMjTgZx\n0QiE4c/zOIW23ByhoYpLMXk3kIbphEVLq511AyQDsNYIg7Hi9Y0hR+mtNostbuhn61YiID0qmqYD\nTXWgKM5A36WIHZTiHn3sRiHqO87Viq9E/vwbL+LOfWcLb7+eaZoudNWDpjmFpBth3Eua3ZV8sJ6R\nhn5ARPe/XI8+52QJs25G6dEb/dvPxnPnq7HmVr1YbFl4/Z/ci8deKpYqGA+QZnn0mprd8GwQxOfr\nVxy2ViwFE5wMx08E+EZFI5BuFMUd0NDzv3lJt8K2HfHXH5vn9R33HpwtvM9/2ncGXzsw03/DDUDD\ndKBr/HststIR311Jt8GwceQbaegHROTapnvd9GtVLAz8sMOdsyji0QsvvqSbYfZNPx4+uoillo1j\nBfvKxG9ucQlJePe61r+oqx/mOi+YqrYdVMp8eMVq6PQt04Wq8bTe9gCrwqW4Rx9kisX/FiI991S1\n+OCNWsfBXGN1YhEXmqbpQNOcoOCx//cqvjtd5zdQa4PUJUhDPyDhGMGu9EphiLINWlQwNUpD31+j\nFzeDibFWYvteCE++aAEJ/2x8CZvw6J3I+1np526vQtbSqOjYLiyXYXqiDgCYWQVD37Y8HoxV3IHi\nHdVWXLrp7rooNOpTi8ViC6bjwfEYFjbJwPeG4UJR7SDI3f97NWLSTfzn9U6RmbFXEtH9RPQCER0k\noncGz28nonuJ6Gjw/7bg+euJ6DEisojod1b7A1xowqEjGQVTQL5nLTz5URqqmuGEN5i8/YoA7PhY\nG7bLCkkoD7+0wPdZ0AtvWTx9D0hp9MGyVtftFQdjxarBcvMzm9YKkXEzPVkDAJwfcYql54tMLweq\n6g20Olpq29A1D4rix9Ir44aef68nloqt3oSzsNR24G+Cwqu6aUNXbWiKV8gZMUKPfpMZegAugHcz\nxm4AcBuAdxDRDQDeC+A+xti1AO4LfgaAKoDfAvAXq3C8a04YjM1ogQDkSwvC0Hcsf2QBnHrHQaVs\nAWC5hlRINxOVVuLnPM4ud3Bu2QyOtahHzwtygGTbA+HR8z7oKzP08devtwEvQh6ZGm9CITZyj16c\nU5rmBlk3gwVjxU1YnKPx71JIN2eXzUIVs2J7z0/GiDYqDcMO01aL3ECFoRce/UbJvOlr6BljM4yx\np4PHTQCHAFwO4HYAnwo2+xSAnwi2mWeMPQVg458FGQjPMp1109ejt6Lq0VENf6h1bGiqCV3zc/dZ\n6zggMIyPcQ02PlYuiygAywb06LmhN1MavaLwmoOV9lgxHQ9EfB/rLZc+DHiWTIyVrZF79KGhVx2o\nqgvDLv5dij43QHTOGhkaveMxzBbobhqPC4m2DxsZXojGA92dAt9rJyZHApvLow8hoqsB3AzgCQC7\nGWMi9D4LYPeA+3o7Ee0lor0LCwuDvHRg/uqbR7D/bG0k+4oGgw+WR881VrvnNoOy3LGhazY01evp\n0Zd0F7omqmN7338fO76Esu5gomIW9sJblodyYOiNREGJB03xB5YbsjDs6D3WW0B2MaaDl0ptnB8g\nVbEIIqtJU/nAG8djcGPy1dG5Jt731RfwP+8/hi/sPYNDM43wd0stK/zbKwqDQn5ibmw95pUX0enj\nXvxGN/SM8RoTHoztXfAoEK08dH1jefRa0Q2JaBLAnQDexRhrEEXT0hljjIgG0iMYYx8B8BEAuPXW\nW1dN7HM8H3/1zaNoWy5uumJr4ncf+tZRXLZlDG95/RWF9ycMVlq6URQfCvmZwVjL5Rfn5LiJVqeE\npuVi1xCfJc1yx4JecqD2SA2rdRxugPT+HSwZY3jk2AK2Ti/AMKcKxRMYY+hYHi7ZFnj0brzXjR9o\nw1EzLVWhvF31xHB8TIybMO2xwob+4Pk6Lp2u4JLJ8lDvWZQoV91CuWTgXK14BksRhOwngrEA9yyn\nVe6nfWHvGXzs4RPh9goBd7/z3+L6S6ex1LZQGov+5ukWCnXDgap48HwVp6odfFefY4nfGBZaGzsg\n27E9XjWsuiAl6F9jedgynu//itXUppNuAICIdHAjfwdj7EvB03NEtCf4/R4A86tziCtDZBVkLfc/\n++QpfOaJUwPtT+jWaekGAHQtu4xaeGTlEr8wRuXR1w0XumYH+mK+R6+qFnStfxuEU0sdzDVsbN+y\nCFUtNqTCdPgYwVKpW7qxHN6Ea6XNtJygGjn06AtIN4wx/OxHHseHH3hpqPcchKWWxT+n4qFSNjDX\nsEYaqGzGNfqMzJnljoPxioU33/ZVvOHmb0FVXXzw3iNgjGG57YSpgACC9Mzo+2uYDibHW1AUHyeX\n+nv09c7m8eiFTRDSDdC/303HcYNzWrSTWF+JAXkUybohAB8DcIgx9sHYr+4C8Lbg8dsAfHn0h7dy\n6j0MfdN0cXi2MVBwtG3zDAZF6X6NlpOiJTzQSokv6UfRgdF2fXRsH7reu1qSa7R2ZOh7tEF4LOil\nvn3LIi8gKWDoI/3YhaL4XVk3iuKtuJmW+GziRtkscKNcbNlomC5m66vvdS61bZRLDoiAStmA47Ew\nQDsKIunGycyc4bEaC6rqY3K8hZftOYZ7Ds7hsZeW4PqRngxwQx+XbmodG5pmYbxi4PRS/5VI3eAx\nH1XxN7yhb4QrJSdcKfVzwgzbg6pGGUybyaN/A4C3Avg+Ino2+PfDAD4A4PuJ6CiANwc/g4guJaKz\nAH4bwO8T0Vkiml6l4++LMPTp0nnGGNqWh47t4+wAPcQN24WuZt/F86ZMiZtMpcyNzig0ZvG5dM2G\n0iM1bLljQ9dtKAqDrnk9PfrHXlpEpWRjYqwV3LT6x9Pjhl5T/K48ekXxQm+p6PDlNEZo6It79KeD\nAqClgtXAK6HatsOA51hwMxpl5k38O87KnFkOjLXg6suOo6Q74SzhhKFXnMRqoGbY0FQHY+UmTiz2\nT7GsGTzmUylbG97QC0lMT3j0vc9Rw/agKd6KV6kXmr4aPWPsYQB5wuqbMrafBVBc9F5l8gx9O9Dn\nAODwbBNXbh8vtL92RotigaI4mR5BM5RuAo9+JIaeX7ziJM3zROodB3smo2BhXqtirs8vYuv0PIhQ\nuICkncgI8btaIBBFcsOwAVlh1IRHXyTf+Uxg6C9EYc9C0wwNfVgdWzNx04iugngwNitzhgflo+9E\n01xcfdlRHDl1AwDe0EygpAqu6oaDiUkHimLh1GIHjDHE429pah2Hn3Payg39YsvC3Qdm8Nbbrur5\nnquFqCHQNBe+z9+/X0pxx+HXv7IJPfoNjWhD2jCSBi7ey/3wXLPw/rKGjghU1c1sWhZKNyP06EX2\nTC+N3nQ8WC4LMwQ0zUI1J+vmxGIbS20H27fwmbaqUixTRtzEVNWFoniZHr34vgbpuhjHSKS0sUIe\n/ZnQo1+dRm5xltpW6DWLv/EoPXohValq9k1TZF/FuXLPCVRK0Q1ewAP3QaovY2gaLnTNwXilDcPx\nwwyiPOoGN/Il3cRcc2Wf8SvPnccffPkgThWQjFaDuHQTVbb3PrdM24OiuIWkm/VU2LfpDX2eRh//\n+cXZQQy9B0XNNpZ8nGCWoefPVUrZhv6Bw/NYag3mHSUMfY5RFjKN8PZ01cptbCZ6nUyO8+W7WjCv\nOF3ME9foDYfr8yv16IX3qip8ylIRjV5IN/WOu6qj80TAU9QR8L+HP9IUy5bpQtc8vtIK+9VExrph\nuOHNXKCpHl5+xYsg8sNVBhBo9La48XpwfR6MHK/wQOypPgHZ5Y4NTbVRLpkr9uhFttKZ5bUy9EGq\nZJBeCfQ/Rzu2B0VxQMRAxJA3IPxMtYNv/9N78dGHjo/2oIdk0xt64bmnjavQ51TFxaGZ/Bz7pukk\nvLO25UKhbEOjqW6mtymeK+kWFEp6pB3bxa988il87qkzBT8RR+Qz67qTa5RF4FV4e7puYznH0M8F\nQUsRMBb52v28knZMPyZyEz3ouUfvZzbTGoQopdWDpnkDafQMq9eeWRxbfNVEBIyVTZyPBYGPzTcT\nee+D0rIc6Gqy9Yb4Ttq2B89HQroRXHnpSbzx2+9BuRT36CNDL6QLXXMwPiYMfW+jW+tY0DV+Y6sb\nHuwVdG8Uf5cz1bVpkNZMePTFsm7atgNF4TddTfFzNfr3fe0F1Dou/uwbL+LYfLH2EqvJpjf0wqM3\nnaTREsu2rVPLOLHYSZTux3nfV1/AW/7u0fDntuV2FUsJ1Jy5sVF6nANNS6a3LbVs+CwpJRWhFnrr\ndmYRTXwbsXTXNTvRtjiOqIoUOnhR49xMZN0k2xFbXR79yqQbVXGhKtkB7zQnl1rhZ1jqI0esBOGV\nlmMpjPGiqX89soA3f/BBfOmZc0O/R8viYwSBqDBP/F2W29HfNg1RUrYB+DkqqpTjAf2xcgcE1tej\nrwerBxEYX0mwWzgiZ9fKozdcKOQnnJFCWTeKcDyyDf0jxxZxz8E5vGzPSyBy8N47n1vzvkCb3tDH\nDWhcrhGPt04vwfOBl+azT/CHji7gfM3EfBDUa9tR5kMaLShPT6drNs3ghCIfuuompAehIRdJZYwj\n0tzSRTRxljtJj76kO+jYfqYXNtcwUSk5YdpoVnZHFu2YfqwofkKHN92kRr9i6Ub1oKpO3xYItutj\nvmGHTcYGlcUGQQwciUsnlbKB87UO2paL9975HADgmdPLQ79HM5guBXS3MRDGupTh0WehKl7XazXN\nhaIwjFesnu2KfZ+hZXrQVAdlnV8PK5FvQo9+gKw3geP5uO3938SXnx3+BtowHZT0QBLr0xxQ0Ild\n/2oqJgUArufjD+96HuMVA9ddfQjXvfwA9p6q4Y4B63VGzaY39PWEoY8eixvAtukqAODwXANpZuoG\nZur8RH7hPP89D8Zmnwyq6sJn3SlXCY01lc0ijNCgqYeitUH8JE3vY7mT9PbE/zWj2/ubrZsolaIL\nLmtIRRYt0w3yqr2uE98SlbEZRT6DEEo3ileob/i5mgEGvloDVjcgG6+KFVRKBhaaNv7sGy9ipm6i\nUu6sqAVH0+T90gF0acm11M28H6rKpSbPZ5FHH7TmKPdJsWyaLhi4XCgK5FZi6MVq4HR18PGLyx0b\nsw0Lz5xeyffqQgu+VyL0bCUi6DiRR59OPgCAO544jWPzbVx39QGoio/Ldp7Bjq3zeP/XDw00xWvU\nbGhDbzoeHj++1HO8XD3HoxeAI2v+AAAgAElEQVSBmC1Ty1DIzwzI7j0ZeWEHQ0Pv9fToge54QHzp\nrSh2QmMWssKgHr1IcwNiQ09S+4ikm8DrC7zOrH43M3UDZT0etCuW+96yopuYkuqsaLlsJMHYqDU0\nl836DW8R+vwWYehX0aOPD/YQVMoGfAZ8+rFTuPLSk7h0xzkcnm0OrWc3zEhD5gFZH51g5RTezPWi\nHn0UiI2km6CVdaXdU7qpxVJ6yyMw9CJedGYIQy8ctZUEvRuGA1WNt4fwcudJCEwnclwUxU0EY9uW\ni/9xz4u4ZMsCdm3nE7uIgBuueQ6m4+FzT54e+lhXyoY29AfO1fF/f+RxPN5j5F2tE03Wid8Q+HLY\nh6Z6mBxv4/BMlqGvQlM9jFdMvDDDK2gN2++aLiWIGpslf980I3klnYK5GJzsgxrBWscJi2Q0cfHa\n3dKNpvKAKBB5fVkdLGcbZqjPA5FE0O8GxG9ikcdtBYbe9xkcj0FRPCjEKykHvZkJTCfav6Y6fefu\nCkM/PVkDYbRVqmmWWhkefZkbn7GyieuuegHTE3W4PnBkgDTeOK1gXqwg3q+mZgzu0QP85tkIpZvI\n0NcNL+EcxYmvHkRMYlhDzxhDzXBB8FFtDz5qUhzjSvoKNbq+194ePWMMph3p+emY1MmlNhqmhysu\nPYl4WcBYxcBY2ZIe/bDcePkWaAqwr4f+WTdsjFX4yZD06B2UAgM1MV7Hodl612ufOlnF9GQVkxNV\nPH+uBsvlfV3yPPq8cYItK/IcNNVJeKTCUAyaW7/csaBpos+40Bfd1DZRMzMgJt2kslAs10Ot4yYN\n/QAavaqIlYUXBvrE0BFxk0k30xqEjs1vForCguKw3vs5U+1AVXxUSibKJbdvbvhKqLajPjeC6YkG\nyiUTN1zzDDTNw/QkP7cOnOs+x4rQsrxEAkC8G2g9lULbj6hHS4ZHH2Te5LVCiG+vKD5KuouFIVdL\nhuPBdhkmJ/jNb9CAbGTohzeedcMOb3KAKHjMP7cs1wcDYh69F66sgKgPUDoAzp/rXJB2HHlsaENf\n0VVctUPB3pPV3G3qpouxcrehj+tzk+MNzDXsRMOmluXixdkmtk1XMT3RwOklI/Re8jT6POkm7jmk\nq1iFrDDIHFCAG2s9NPTZwU4u70QnnTgB05k38w1+DKLYJ/5Z+hnVpumG+rGi+KGBj3vh/BiHb1Xc\nsb1wFaVpLjqW3zOL4Uy1g/GKASI+r7boUPQ8XM/PlYuWWjbKJTvhwZVLFt747fdgxzbefnu80kZJ\nc/H8EIbe9xk6th9KfwAS4wTTq7Z+xHvl1A0nlN34cfLrJK+5WXr1UNaHr44V5+D0BNfY89qQ1A0H\n//7Dj+BEqoWyMPS1zvCD55spj15VsyvbBYadOqcVD2aiFUX+6qqyCl1NB2FDG3oAeMVuYP/ZemZ6\npO8ztE0vXEo3E9JN5GVPjXP9PV4h+8zpZfgM2DpdxdREHQzA08HKoVd6JdDtWTeNSGPlRVXRsQpv\nc9COlvwiFTePbJml2ragqdGFmCfdRKmV0cVWNCWSr1ZETQL30hhjMY8+So0c9oI0Hd5ICuDfH0N3\nhlGcU0ttlMs8qKjrRpgZMwiO5+Nr+2fw259/Frf8yT247f3fxNEM6YWP6uu9fyJgcqI2VEBW/E3j\n5xxvYxAFY0sF9Xkg6RQ0DCeRrTNeaUFXPdz/YnYj2vQKQNc7YTbaoIi0ULHaySuaOjbfwtOna3j6\nVHLVHnfKhh3GzoeOJG+gvQL9nZTzwj36ZIUykO3Rl8sm5hrmyKbLDcqGN/TX7CY4HguDpXFElsBY\naOiTPT5Cj34iMPSz0T6eOrkMAsPWyWo49PmpYOWQ1+umSDBWTAgSHuli0NN7EG/X9Xy0LD/y6HPS\nF6ttK5H2x7vu+V3SzWxYLBXX6It69NFNTBh1y/VjHr0w+MXaHmfRsb1YjCMogMtJsWSM4VS1HVZ6\nlnR7qH43f/3No3jHPz6Nrz5/EhOTJ+HBxK//w96uv+1iy4Su99//9EQNL842By6Lb1nJzw2I71Kk\nSHa3P+iFFkvP5O0MkufHnl2n8JX95zM99bRMVNItzBeYSpWFMIqT4w2oih+2rEgjPn+66K1uRH+H\nmSEmejmeD9NhCclLVb2ecaR4mi+QjEkBydqWNJWSAdNhYZHahWbDG/pX7Obrzn0nu3V6EXwt6RY0\n1Uvk1Ddi+lylZKKkuYnMm6dOLGF6sglN81AumSjrTpiFk9frJk/uaFleeKFqWtIjFd7mIIY+XroN\nxNMrU1k3htN10pVLTpd0M5cqlop/lv4efTKvGOAeuKiQVULvJ7uYrAidoL9I/LjyPK+64aBt+aFc\nV9Lz+/v04uFjC9g6tYzv+fZv4KbrnsGN1z2FE4tt/OcvPpfwyhZbVjiEohfTk3U4HsPRucGqJOMN\nzQS8pzz/TNU2nzdQlPhKrW46Xa992aUn4HgMn83IEKmlZKJyyRo6/lGNZSuNV4xc6UaswrsNfcyj\nH0KnD3vRJ4KxvRv5xVtxAMmYFD9GB7rqZbYwF6rCTGNtArIb3tBvHSdMVAzsO9Wt08eXmrrmdQVj\n4zm005NV3PXcObxwvgHH8/HsmRq2TC2Gv5+cqIXSTj+PPn6yiOlScelGbMMYC4wuC3Obi5DOj4/S\nK6Pj8nyGpuF1GXpds8Jls2C2bkJV/IR3E46d62Oc45XCwqgbjgcruADiGv2gcQiB4biRoQ9WRnlF\nU6KcXujNJd1Gy0yW6t//4jweObaY+36O5+OFmQa2TFWhBIPTtm9ZwrVXHcLdB2bDaU7i7xfPuMlD\naNGD6vTxoSOCpEZvDeTRx9Mrax0rEYwEgInxNnZsm8enHzvRlQ7K5cLoOMq6BcPJHrbTj0QGT6mV\nm0svbnRp56RuOEHTNjZUQDadcQTkV7YLojTfyImx3Liht3NltErYvnptArIb3tADwPTUIp46Ve3S\nv6LKP7srLa9leomL54ZrnoPLOviFjz2Guw/MwHD8sJgKANfpg933y7qJL++Fd6+FenpkqBqGC8+P\nToKi0kZ4kQQnlUI+iFhCA28YDhiySuAtVNPSTYMPtU53itXU3oaesSBQGHr0IhAbSTfC+4sbp0Hp\nxMrO8+QxgUitHKtEHj2QjEv80Veex7s+/0xu/5kjc03YLsOWyaSmfvXlx7Br+wzef/chPHB4Hm2b\nxySyNNk042Nt6Ko3cOZNnkcfavSxWE0R4jUNdcOBntGg72V7jmOx5eDrz88knk+vEEulZHXs337r\nKP78Gy8WOo54/v9YpRP+3dKIG3pabuRVrRbGyvaKPHpdTRp6w/ZydXQjnWAQxKSEDMtTnrPPhXLg\n0a9V5s2mMPRbp5ax1HK6miNFHr0LVbXDP67r+TAcP7FsG6sYeP0ND6NtG3jX554N9ps09AItR7oR\n1XVxDyc+75P/z39uW26YQz8W6MlF5ZuoF33USEtP6YvpzpWCkm53ZaHMNkzoeveFlv4saQyH9/RP\ne/RcukkGY7VU1o1he7m6bJqOFXUX1Ppo9KGhLwuNnn9WIZGZjoczVV65+q2coOP+s/xvPZ0y9ETA\njdc+g8mJBn7jM/vw4JGFxHv0QqwKD5wbLCAbDR2JGaSgMC2vc2Uv4oa+EbQoTrNj6zwmx9r4xCMn\nEs/XjaRMFObStyycXGzjL795BJ989EShlely20ZJc6EQw1i5g6bpZRY+htJNO+3R82MplzpDGfqw\nRXHM2dNU7njZOQ5At0YfODaBTJlOfohT1i0QmPToV8LWwPPedzop3zRiHr2qOqGBbKY0bsHEeBu3\n3PAINM3FRMVIpBtOxwx9nnQDdBvcZsoji3v9IodeeJ9Fl8DRsjfujfiJKtYw1UtPSzfdw0dmap1E\nxk20T7fnzScKFHZr9FZXemVyX3/3wDH86IceKpSFkOXRx/sFxT3z09UOKiUnLOIS3rbw6F9aaIUD\nZ+54IrtScf/ZGkq6GwZ042iai5uvfwykdvDOzz0TvEcxjXx6soZDM42BOlmGHn1cugkC+i2LG6ai\nfW6ASLqpdWxYLuuSbgB+U7piz0t49kwdz56JbkzL7eSAk3h17F/eewSeD3Rsv1Bh2HIsW0ic/2cz\nuliKv3O1nTSQtWDYSqXUwZnlwStrQwdMS95AgfwEBMOJJBsAUIJzUVTHppMf4igKQ6XsYHaEcwoG\nocjM2CuJ6H4ieoGIDhLRO4PntxPRvUR0NPh/W/A8EdHfENExItpPRLes9oeYGm9AVz3sS6dgxTR6\nTXXCu3gz4+IRTE82cNtND+B1r3488fzEWCu8g+dJN+J3cf04PgYu/n/TdMMceqEnF/Xos/qbcH3R\njW2TnQGgazYahhd6XYwxzDftRMaNoN/c2FYqoBUfr2amCqbSvepfnG2ibhQL0BpO1HYivFEG7103\nHNzyJ/filz/xJGbrJk5X26iUo4CnMMKir4poGbvrkvN48MhCZqHOs2eWMTWx3CVlCSplCze/+lGQ\nErV/LsL0RB2Wy3BsoXhANj4cQ6AqPO4jHIVBNHoee2GhhJAn+1y+8wxUxcfX9p8Pn6ulMnxKQbbR\nQ0cXcNdz53HpDt5gLH0dZlFt29DE+MUgcJ71t2iGGn3yMwrJqlLm/agGTVsMWzSngrFAvsMlrs+0\nVCluAFnJD3HKpc669uhdAO9mjN0A4DYA7yCiGwC8F8B9jLFrAdwX/AwAPwTg2uDf2wH83ciPOgUR\nMD1VxVMnkh593XCC8nuux4uTRlw8WfokAIyPdTA5nvRKiCL5Jq9gCuguukgbw/jJtBh4meJEL+zR\nGzyAm/DoU7NAhUefzggp6TYYotVOrePA8RjK5SxD37uAJIw/pNMrHT+zYCreSlk0z0oHhrMwHC8m\nASU1+oPn6mgYLu4/PI83ffB+PHemhko58vBCQx8YxSNzTSjE8KqrXgDA8PnUHADT8XBkroXpyd7G\nanK8hZuvfxw7t890nSt5CCnowNniOn3aUeCP+Xch8scH0ejF60XtRN5rNc3D1EQ9kfuflnpKug0i\nhs89dQa65uKGa/ajUrKLGfpYZbfw6LO6WIrrp5ZKS2waLrTA0A8zjL2R5dH3GT4iri9FSZ7bpuPl\nJj/EKZU6OL9GRVN9DT1jbIYx9nTwuAngEIDLAdwO4FPBZp8C8BPB49sBfJpxHgewlYj2jPzIU2yd\nWsKRuVaiKEpkCXAN2wlPmqw/chGmJmpQlez0KYGS6pfeSmVNiP+5dBNo9OXBPPp6xw7bq0bvm+PR\n62lDz99TGAlxwVcypJt+6WYiuB3WCChRVWy6BUK8lTJjLNTS+w0FSfcXUhTeN0d8ry/M8NqH77zx\nYZTLC2hZXkJy0VTeInoxNPQtTIy1MT7WwY5t8/jsk6cSue0vzDTg+egKxGaxdXoZt7z6qdzeR2km\nxlpQFH8gj75lutDU5N9afJcif3wQjR7gN13h0ecFDwF+vh84V4fvs2gsZeyaIQIqJQeMAVddfgS6\n5vDEiJP5vacE1XaUlqprPC0xK2YjrmfbjZINnCDGxvvo8/N2UJ2+kRnk7h3oD4OxatLQG7aHppmd\n/BCnUjLD6+1CM5BGT0RXA7gZwBMAdjPGRFh+FsDu4PHlAOJu0tngufS+3k5Ee4lo78LCwoCH3c3W\n6WUwING2tGFGHoimObBcBtv1M3Noi/CKK47g5lc/0XMbPmUqVoGb8sjSGn1Zd8MbTtGmX7VURaPY\nb/wEXWhZQdO25D5FJtFDR3l6YXrgSHqfvY5JePRqyqM33SyNProo5psWLJffLNNVumeqHfz+vxwI\nja/jMd5fKLaK0mOrsxdmGhgr2dg6vYxbX/MIbnn147j68mh8GxGvHRAB6MOzdYyP8ZvDFbtPYrHl\n4L5DUVB2f6BJFzH0g0IETFQMnFwsrimL7qBxxHcpjNsg0o14fT/pBuDfQcf2cWKpnRhSEqekG6iU\nbLxsDw/cbptaxtlls2/FbL3jJqdyVTqZufTxAK1wCuKSbDSMfTBD3zST7R+AeGvufOlGUfww5Tae\nfLCcETdLUykZaFv57TRWk8KGnogmAdwJ4F2MsUQZKuMC2UAiGWPsI4yxWxljt+7cuXOQl2Yi8pTj\ngaB45V+kjTuxIO1g6X6VsoVLtubnXwPdBreZ0ljFAJKW5QZDpa2oOKlgT/r5phV2rgzfV3ETeepn\nlw2Ml80unblSNjE92cB9h+YAxEcIZhn63t38RNFSpFmKEz+eXpksMmlbbmJcXbpl8jcPzeEzj5/G\n8QVuDKNMh2R2RDsm3UyMc6mACNi5fT4j08jCUsuG6Xg4u2yGUsuO7fMYK1v4+MPHQ413/7k6KiU7\n88Y3CirlJo4P4NE3Myaaie/ifAFjnYWqRMNv8uRLIJKanj9Xj6UqJ7d/1cv347XXPx4aSZGplm5Z\nEMd0eKFRXFYsl9o4Xe3+XhqmA4X4vtOGXkg3AHBuwOrYrIyjqIVJnnTjQov1FBI3XNPxY+miPTz6\nQB6dWwOvvpChJyId3MjfwRj7UvD0nJBkgv+FW3QOwJWxl18RPLeqlHQHZd3F8Zi3VOtYUddILQrE\nDuvRF0FTXbRixrFlukHnRX6C8EZbvMhkqcUDUoOM2nM9H88FwcLk+ybTF88ud1AuZXuOO7bOYN+p\nZdQ6dm+PXumXdZOt0Rs2l24IfIAykEzrizfNSnv0QksXF4PoDqjEPHo+fMSF7fp4aaGFqYnu9hdx\nNM3EQssMM26EoVeI4erLD+PJk8v4p71nAYhAbDU3ELtSxsfaOF3tFB4t1zJdKGryOxI31Jn6cB69\nosQCkD1uEhPjLWiKj/1n6121G4Jt08vYOhWtfqYn61AVv6dOX8vICBurdHBm2egKqrYsN9TwxeuS\nhZC8WndQj365Y3fJVlrMGcmCJwVE52G8QLBX+wOBkEfXIiBbJOuGAHwMwCHG2Adjv7oLwNuCx28D\n8OXY878YZN/cBqAek3hWlbFKM9HlTqRgAQiHKzdNNzOHdlRoqpvwzOODOeLbtEwXCy0TJd3KrGzN\n49BMEx3bx7bppA6aTl88U22Hy9o0O7fPw2d8nml6hGDys3iZoxHDz5ZOHY1JN6IRmfjc8Yyc00sd\nEDEQWFeqp8iOCQ19KneZP7bRNB0cnW/C9ZM1Dllwj94K2w/Eg6dXXnoS27cs4b999SCOzbdwYqHT\nlT8/SsYrbVguw1zB/juLLRN6Kjc7Lt3kldz3QknIYPmGXiGGySAgm55Glb9vH9OTtbAvVBbVjDm3\nY5UODNvvWuG1zMjQZ0k34TD2AQ39TL2TGLQD9G/kF0/zBZLBWJHn3+v7FAkP69LQA3gDgLcC+D4i\nejb498MAPgDg+4noKIA3Bz8DwN0AjgM4BuB/A/jN0R92NuOVFo4vRBdxM6XR8+f4zFFd9UKtbZSo\nqgvLjbJLeDAtvfR2wmBsSbfCytYiHv0TJ7iBj1ftAkjMAjUdD9W2i7FK9sm/ZXIZZd3Btw7NY7Zu\nZubQi8/iMyTKvOO0LD63NupnE6+M9cPgLBB5S8Kjn6iYKOluV5Wu8Ojng2pL8Zm02AWmqfxmLcY7\n9vPoeZEYvzEoxDBeiSQCPgHoWRiOg1/+xJNgALZMraKhD3q+n1wsln1xvmaE8oQgHowtOlkq8fow\n1bf/TWJ6chnPn69HQ8gLvN+WqSqeP1fvGrMnSA+tB6LGg/FOlI7nw3JZmKwgdPBG6qZTKrUH7mc/\nUze7VrFaH4fLdJLT5dSYR9+rc6VAyKNrUR1bJOvmYcYYMcZuYoy9Lvh3N2NsiTH2JsbYtYyxNzPG\nqsH2jDH2DsbYNYyxGxlje1f/Y3DGx9qYa9hhGXPDdGMafXCSmHwU3Wp48/x9kicL11iTF4eiOqgZ\nDuqGh5JuRZWtBTT6J09UMTHWSRRzAfzidX0+GFt4N2M5Hj0RcMm2Gdx/eA5nlzsoZVTFin0C+UvZ\ntuUlVitizJ3lBB59hp7ZsVycWGyhXG6ipNtdPUxEBau4GMIiFTVp6Fumg0MzTaiKj4mx3pp3KejJ\n8tyZOibG2l3GbWKsjVde9UKY3rcagdjwvYKbTF7P9zg8yOdm/K2jc2tQ2QaIbpqlAtfA9GQdhu3j\nmTNciinyftumqnD9/EErWX3bRavneAWsWDGGHn07rdHz31fKg/V6F4N20t8rd1hYzzx6ilXFR+nE\nHmod7vT0koMVxUel5Kxbj37DIDy1U9U2OrYHz48km6gZlpNb+j0K0kUXTdPp0lg1xQlTyYQH0C/w\nCfD++k+cWMLWqe6AsHhfw/bC7IU86QYAdm6bQ8P0cHS+nRt4FAYhT6dP9/Pmx+GH6ZUJXT3m0Z9a\n4m2EVbW7wdpCKxmwigaDJ9PgWpaLF2bqmJpo9NXTRUrp3lPVMOMmzVV7jmPbdBWTY+1CvWuGpVI2\noCh+IUMfto/O8egBDNS5MnpNsv9SL8RNj2dpsa7VaeZrgoBsnk5fzfB+o6E40XMiqaGk29DVyGuu\np24UY2UD1babu4JIIwbtpFeyUfwsez9t201990mPvqS7fc/FcqmzJtWxm8rQTwTL4hML7URDMyDy\n6JuBR68oq3Mxq7FYAP/f6brLa6obBkGFEdL6dM4DgGMLLdQNt0ufB2Ll27YbdvPLk24AYMfWhVC6\nSns26c+Sl2LZzsoICfqwmLEiJ76vKIDYsnyMV9rQdSvU5AVCv50N2rmm+4sA3EC1LA8Hz9cxOd7f\n+xZGxHT83OImIuCWGx7Dra95uO/+VsIgKZZCxkjXOMS/iyItktNEbXb73yQmxprQVO48lFO1G3mU\nSzYmxzq5hr6WodGLx3FDH68K1nUnEYyNy06VWMOwtuXiNz6zD1/cdzb3+KLake7zvtfcWMN2MzV6\nEVso4iCsVdHUpjL0wqM/sdSOql+15DKvabqopWZFjhLRE0c0zGqYDtItE1TVDTthCkOvKG5XP/k0\nTwSVv9u2ZBj6WP/4s8s82NkrRVDTohtGL42e7zPHo7e6b5iKwvV5M8ejPxQMYefj9Rwsxwy96Xho\nW1zuER694SQDvUDUfKppen31eSDZi6ZXFaumemH/ltWkaIqlKIjq8uhjhn44jV549P0NU7wifJBV\n8PTUIp48sZSZXVTt2NC1ZHxAfI54FlY82K9rViIYG2+XXClxw3l0voW3ffwJfP352bDhXBZipZRX\nO5JXMNWx3cR3TxSc7y736IvcOCslEzPrNb1yo6BpHiolm3v0qQIGhRg0lVewpae/j5KJ8Ta2b1nC\nZ544Cd9nfLpUytDH5Q7hBSiK07dg6qkTVYyVrUztPZ6+eG6ZT53vF2zesW0WQLZnA8Skm5ylbHzo\niEBR3LCpGVH3MvdQUMk6PtaBrtuoGW6Y1RMNo7Cw0LSDeand0k38++yXccP3FxmPou0KVpOiKZYz\nOR59PF13GI1efJdFDfdUUKOi9hmZGGf79BLqhosj893fd63TXfCnEENJdxNSXjwNWovN/q2nWjOL\nQO5vf+FZ7Du9zFuS9yhKiiSxrJRiJ9exiU86E2gKH3pfbRebC1ApG2gY3tBjNYdlUxl6IEqxzCrw\n0DXeCrVlugmPYNRcsfsEzi2beOjYItqW17V6iBuquHST50kAvBXA48cXsWVqIXP5HB/9d2a5g3Kp\nv8d42a6zuPLSk2H3z6599pFu4mMEBYrCG5rxYSFRMFYEak8E2vRYuQ1ds3lpe6CtioybqYk6fMbn\nsWZKN3FDP17co09n3KwVRVMsz9X4ZDMxLzeOrq7A0AffZa9iqThCp9f6pFbG2b6Fx5Eef6l79Rlv\naBanpNmJaWDx9iG6ZieCsXHvWRjsluXgpuv2YnqyltnyWDDbMKGpXqaz16u/E88kS1cp+7ACj75I\nKwqxirjQrRA2naEfr7RwfLHZNcgYQHCn5wVTq+XRA8DuS2ZQ1m188pETsN3uAFZYYERR7xC1T+/3\nM1UD800b2zP0eb7PKAf47HIn9HJ6UdJt3HDN/txeLf3yirNWK0Tco+dZN8n9aqoHxoDxsgVV9WMB\nOP4diP78wkufa5g9Df3kWCdsR9wLflF7mRk3a4HIEoqnWH51/3kcPJ9cncxkpFYKQmM9hAQ5SDAW\niCpkB7mpjFUMjFdMPH48y9BbmbKRlpp+Fp/lUNJtLIeN+JKvVxQfr7jiCF53/ZO4dMcMT781ehv6\nSql70I54r2bGJDTGGDf0qWtFpDWnVxl5RJOmLmxAdvMZ+rE2qm0X50XDp0R3OhsLLQuuP3hDs0FQ\nFIbLdp3C/Ye5TphXwl4uOVFBUZ8JTGH+fIY+H99n3XCw0LTDlLSVkDcDF+AZQNWW3dWLXWQPpYOx\nfH/853KZL+fDAFxwcQuPfjrQ3eebJjpOsr8Ifw/+t5soEIgVlEvGQNuvJqLpmsi8WWpZeOfnnsHf\nfutYYrtztfzq5kh+WX3pZmKsBV1zBo5fbJ2ex2PHu3X6eEOzOHpMngHiYxS5EW2ZHlzPz5yqde1V\nL2LX9rlw+yxjLZitGyiV8lKKsx0u2/O7ei4BfAVbMxyYDisUGK+s0aSpTWfoReaNaK+a6OOtOjgX\npB4WSRNbCVdceip83J2CKFYb0Undb8jHkyeqKOtObs64MPSizL9XamVRopTI7u+q2rHh+tGINIGi\neDAdF6abzKOPH6MwdOmUOtHNM/LoLRi2l+gvAkTfZxF9XnDz9U/g+pcfLLz9apJOsbzrufPwfODQ\nbMqjr+d79GKG7kqCsUUNPRHwHTc+hFdccWSg99m+JVunrxlOpsyh63YiC6tpumFvKHFDqxsOb1bY\nY0UuKs/zmKkbuYkK/Drsfm1WzyWA/x3CBnEDSDcXOpd+0xl6ocE+e6aGkpbMa9U1J8zmWK08+ug4\nOtixlWfeZKVXAoCuG7Hn8tsNGLaHew/NYuv0fG56m/A0jgRl/kWkm34Ig5Dl0c/mNENTlSCP3vG7\nPHphnER1qLh4RRB2qW1DU/zwRjBb59JNWloar7QxNVHDzm1zhT/LxHj7gmTUFCGdYvnFfbzZ6+kl\nI8wFb5oOWpafGygX/XQ0j/EAABozSURBVGqGKphSB18NTI63cgdf57F9ulunt10fbcvPfO+SZida\nIMQ7TAojutiyedvqHtevpjpoW35msNv3GeYbVmZbboBXcGed78IJS5/TRG5otIt8n5rqYaxs4dOP\nncBDR1fetbcom9DQB8vhtt0VcNVUJxwjt5oaveDKoHVrXql1PBukV7uBzz11GrWOi6suO9H1u/Q+\njwbdO/OqYgdBzMDN8nDyDL0STJKyXJaxzOXfedqjFxf3YstCuWTzsWslJ5JuUoZe11x81+sexPRk\n/0DsekWkWB6ebeLg+Sa2TlXhM74iAyKPbzU0+i1Ty3jVy5/v24l1pXCd3sBjMZ2+ZuS3CtB1Pt5Q\neM+tWEGekEVOLQknoYeh11wwZCcRhCvRnBtoqWShY/tdbZbTvegFqurltnDO47WvegJtdxlv/diT\n+C9f2t8zCWNUbDpDr6o+xivZQxUSg4BXMetGsGv7HN5w87e6SupVcfLqSekG6G43YLs+/te/HsO2\n6WpXf5s4fEScj1PVDgCWayAGRVP9TElpJux6ma7a5IFY2+326IXhF6MThVdWjWn0WjCerlQyAunG\n7Upp2wyIFMs7nz4LhRiuveoQgKjNtmhjkWvoFWHoB/foFWK4+rLjiayo1WLb9AIeO74YetdZYzAF\npVTRVDxpQg8NfSf4ubdHL16fpldqJQDs3s77L375mfOJ50PpJuecBlB4xbNlqobbbrofV19+DJ97\n8jT+n398utDrVsKmM/QA95aA7sq/uBe/2tKNYHK81SW3RB59dHx57Qbueu48Zhs2Xn55f31UU30w\nBoyV7ZFll+TFDubqZlCUle6L76Fj88BV2pCIm9lY4NGL3GnR5GqxZaIUpN2VdV4qzoc9bEJDH6RY\n3vH4KVyybQ5bp6pQyMfh2aIePc94Wg9ZRL3YtmURDcPD4eAGFtVKZHv08W3iBXkiFnFyKSn7ZaHH\nprilmctxUAQT421snarhn/adTsioWV1UgXQn0OI3XVX18aqrX8D3vv4Z/M4PvKrw64ZlUxp6EZDt\nyl9PpVquFWXdxNRELRzSAGTnrPs+w4cfOIrpiSZ2bJvv2k+aMKslJ1NjGPhAk+4LZqZuYqxkd93E\nFMUL5bG091PSbVRKRkJSi+dOL7as0ACUSyZmGwY6trspDb0IqrdtD5ftPANFYZgcb+PILJejZmoG\nCPnVzbu2z+KKS09eqMMdGpEOLNIse/VtTwfn+eAgfm4Ib18Y+l4avRp69N3bzPQYtCPYs/M0jsy1\ncfB8JA2G0k3qXExMPhuiR9IlWxp4zeVbBn7doGxKQy8CsunIvB6LmK+loVdVH9/1ugexfUuGoY8F\ngu55YQ7HFzq4+vIjhXqMiH2MIuNGoORUCs42slPU4pk2aY/+misP49bXPJp4TuROM8ZQbTvhKqdc\nsrDc5u2Iew1j36iEcQrNDdMCx8fqOBQY+vN1E5WynVvdvPuSWbzq6hcuzMGugLGKgYmKgYeC2Qdi\nVnBm1k0qON+KFeSpwexfUXvQa0UurvNGhnQz1zBBYCj1CMxfuuMcFMXHnU9H/XIMu7sVBxB59Jra\nnWW2ntichn4sO2AjjDuBdS3B1pqseZUffeglTFQM7N5xPu9lCYTnO4ocegHv/ZHlGRmZy99kf5u0\nR++Eqy2ByJ1uWi4cj8UMvQkG4Nyyue7+VqOgUjagaw4u3Xk6vCFOjTcxU7fQNB3M1AyUc3K9Nxpb\np+fxrcML+M7334f33/0iN7S9PPpQuokK8oiAsu7Gpmr1Csb21uh73UD5cTjYuW0W//LMWTieH1Sl\nV4N9p2tiird8Xku0tT6A1UAsi7ulG5HWWKwL34Uk3sYX4JV4B2ca2HnJ+cIDUkRWyyhSK6Pjyi4g\nma2b2HFJ9pzZ6Hj6G2hdt1HtWGGxVFy6AXgW0mYMxhIB/+a1D6QarnFv/uh8C2eW25vG0F971YvY\nOr0MxghgQKViZLZ14Ncrw3LHAWMMbcvDJfEWJroNwy7Fts1G3ByyculnGyZKev/r47JdZ/DMocvw\nwOEF7D1ZxScfPYnLd5/qymYTzkx6hvN6Y1Ma+vFKG5ftOt2la4uT40IFYgch3W6gYbowbB9jOdkB\nWWirIN3w9snJC6ZpOujYfmYuctKj77+U1TUHc8tOWCwlDF9cQ92MHj3Q3UZ6coIHLA/PNjHbsHDZ\nrgvft3w1KJcsXLH7dN/tFGIo67xvjOn48PxkYSNPrpiEqvg9zy2tp0bfyQ3ExtmxdR6Vko33/NNz\nqBkOrrz0BF79igNdDqI4jvVu6IvMjP04Ec0T0fOx515LRI8R0QEi+goRTQfPl4joE8HzzxHRG1fx\n2HscM3Djtc9iy2Sy0lBo9mupz+eRbjcQdi4cwDsXBnGkHn1G1k2YuZDZ/W8wj76kWzAdFvbQj0s3\n0T43n0efxVi5A0318MTxJdju6FJkNxK6bqPatsMWBnFDLzT8kt77fFBVDwTWQ7rp/70qCsPuHWdQ\nMxxcteelTCPPtxs+zfVCUkSj/ySAH0w991EA72WM3QjgnwG8J3j+PwJA8Pz3A/gfRLRu4gBCulmt\noSMrId5PHoh6kRfxPsJ9CI1+xNJNuqXqbF143b09+kLSTbC6OjbP5TZh6PmIRS5ZbVaPPg0RMDHe\nxINBxWRervdmRlNNLLftqEVxSrrh2/S+fvmkKK/Lo+/YLlqW33NOQ5xXvuxF3HLDY3jVyw/2rUgf\ntGr4QlNkZuyDANKVOtcBeDB4fC+AtwSPbwDwreB18wBqAG4dyZGOgKj4Yv39UcIJUYFHf34Ij35q\nooHpyeWRGkYx7NyLlZNHfdJ7e/RFpBuhyUeGnv9MBFRKdtc+NzuTYw1Ug7mpeWX6mxld4/1u4kNH\nBCKAqxbwnnXNDZuiCfKqufPQVA87t2W3BRdEFcrrz3mMM6y3fRDA7cHjnwJwZfD4OQA/TkQaEb0c\nwOtjv0tARG8nor1EtHdh4cL0fOAl/d2tddcD6XYDMzUzyKMurv1dddkJ/JvXPjTS48rKBuot3cTT\nK4t49PwCOTrfQklPFgCJ1czF4tEDUUAWGOwmv1ko6Taqncij1xNFjkEOfoG++GrQkjzObFgsNbqV\n0maSbrL4FQC/SUT7AEwBEJ/y4wDOAtgL4K8APAog8ypljH2EMXYrY+zWnTt3DnkYg7Nn5xns3F68\nGdaFRFO9cG7s+brBK1wLZtysFlnjBGfqwUCMDI89Kd0U9+hPLrZRTuVWi+yIi8qjDyZgKYrf1QL6\nYkDXeWOzsBd9LG1RSDdFVuSqandJN5FHP1ppM35s65Whsm4YYy8C+AEAIKLrAPxI8LwL4P8V2xHR\nowAG6226ytxwzYG1PoRcVNUL58bO1s3cntkXkmhyVdKjz50z2yOPPgvhCbk+g6Yl9yk8r4slGAtE\nHv1YOXswxmanFEwdm2+KyWtO7HfdU+Py0FSna/jIbI+V6LCI87eoHLRWDOXRE9Gu4H8FwO8D+Pvg\n53Eimggefz8AlzG2/sv31gmq4oYe/dnldjj0eC2JpJvIaJ+vGyjlGPrBg7GRJ5T2YENDfxFJN+WS\nhZLmoqSPro3FRkJ4xqKCdliPXlPdLo9+rm6ipLm5E9WGYWqigVu/7dFwdOJ6pa9HT0SfBfBGADuI\n6CyAPwQwSUTvCDb5EoBPBI93Afg/ROQDOAfgrSM/4k2MojjoWHxY9nrJo87qqjlTNzAx2bt9LlAs\nGKsoDLrmwXHVLkNfuQgNPRHwssuODZRttZkQAVdh6NWM9MpCfd81F81Ot0Y/Sn0e4H+v1W73PAr6\nGnrG2M/m/OqvM7Y9CWD1W7FtUlTVRct2sdxx1k0etZry6G3Xx3LbxfbtORN6BgzGAlynd9yxro6G\nW6ermJ5cXhcDvS8k11y5rtTOC0ro0S/xmoJ4jGq80sHObbPYnjNOM46mOmiZ3GmiQAMrWhW7GdmU\nlbEbFVV10bacsBf5qL2PYUi3ZhAZN3k53nwxx6AqrLDGrKkWgLEuj35irD3yLCLJ+qYUVJiernag\npwa/K4qPW254stB+NM2B6/MWGhVdBcBnxZYrF6ehXzfFTBLek75tuX17kV9ItFT75NDQ50gLPE20\nd4l6Gl1Ptj+QXLwIj95wvBVVsIvzVqRY+j7DQtNeF87TWiAN/TpCtBsQBUmjrHAdFiHdiAwGcRPq\ndcH060WSJiptl4b+YkcPGpsBUV/5YUj3u1lq2/DZ+s+OWS2koV9HcEPv43zNhELrI49a12xMjHXw\nuadOw/X8mHSTfxNSVb9rzmsvSqGhX9+5yJLVR7QjBngu/LCIbB3h0c+tQrHURkIa+nWEpnpwPIYz\nyx2MlbunN60FRMC1Vx3Esfk2vrD3LGbqJjTV61ldrCgeFCru0QsDvx5ubJK1R/SNWUkFe3purBj2\nfbEaehmMXUeIwOdL8y2URjgOcKXs2j6D7dNV/MU9h3DTFdtQ6VPMo5AXBGWLcfnu0yiXjXXfGEpy\nYdA0E8D4yjT6cG4s38dco7sr6sWE9OjXESJn+PhCa101tCICrrv6eVTbLh44vNC3mEdRXNAAbQvK\nJQuX7zrbf0PJRYGuiarY4T160SOnkZZuLtJVozT06whRsWd7DOV1EIiNs2Wqhj07uDHuF9Dadcl5\n7No+cyEOS7IJEcH59Ni+QVDVtEZvoVJyEk3zLiakdLOOiFcBrofUyjTXXn0I89U9GB/rXcD08stf\nukBHJNmMRH3nVy7diKyb+R79mS4GpKFfR8Sbd42tQy1xrGzgu2+5b9136pNsbEoj8OgVYtBUL/To\nZxoG9Iu0KhaQhn5dEW+2tB49euDinHokubCURuDRA3zKVCum0VcmLt5zV2r064j1Lt1IJBeCUKNf\n4YAgTXXQtBy4no9qy7loi6UAaejXFcLQq4q/7ifWSCSrxdbpZey+5DymJ2sr2o+q2mgYLhZaFhgu\n3tRKQEo36woh3YyVzXVRLCWRrAUl3cbrrt+74v2oqoOGaV/0OfSA9OjXFSIYux4mS0kkGx1N5SMJ\no0Z80tBL1gGKwqCQv66KpSSSjQqfMuVi/iLvcwNIQ7/uuGzXaey6RBYbSSQrRdNctCwXcw0LROyi\n7qXU19AT0ceJaJ6Ino8991oieoyIDhDRV4hoOnheJ6JPBc8fIqL/spoHvxn5tlfux+5LZtf6MCSS\nDY+mOjAdhnM1A5XS+mgSuFYU8eg/CeAHU899FMB7GWM3AvhnAO8Jnv8pAOXg+dcD+HUiunokRyqR\nSCQDIIaIv7TQyh1mf7HQ19Azxh4EUE09fR2AB4PH9wJ4i9gcwAQRaQDGANgAGqM5VIlEIimOyMN/\naaGF8kVcFQsMr9EfBHB78PinAFwZPP4igDaAGQCnAfwFYyx9kwAAENHbiWgvEe1dWFgY8jAkEokk\nG9FCoW15F3UgFhje0P8KgN8kon0ApsA9dwD4DgAegMsAvBzAu4noFVk7YIx9hDF2K2Ps1p07dw55\nGBKJRJJNvIXCxW7ohyqYYoy9COAHAICIrgPwI8Gvfg7ANxhjDoB5InoEwK0Ajo/gWCUSiaQw0tBH\nDOXRE9Gu4H8FwO8D+PvgV6cBfF/wuwkAtwF4ceWHKZFIJIMR734pDX0fiOizAB4D8CoiOktEvwrg\nZ4noCLgRPw/gE8Hm/xPAJBEdBPAUgE8wxvavzqFLJBJJPvGmaJXSxZtDDxSQbhhjP5vzq7/O2LYF\nHpyVSCSSNUXTpHQjkE3NJBLJpkRVfCgKH1J/sXeDlYZeIpFsWnTVg6Z6F3VVLCANvUQi2cRomgtd\nu7iLpQBp6CUSySZmy+QiynJamzT0Eolk83Ljdc+s9SGsC2SbYolEItnkSEMvkUgkmxxp6CUSiWST\nIw29RCKRbHKkoZdIJJJNjjT0EolEssmRhl4ikUg2OdLQSyQSySZHGnqJRCLZ5EhDL5FIJJscaegl\nEolkkyMNvUQikWxyiowS/DgRzRPR87HnXktEjxHRASL6ChFNB8//PBE9G/vnE9HrVvMDSCQSiaQ3\nRTz6TwL4wdRzHwXwXsbYjQD+GcB7AIAxdgdj7HWMsdcBeCuAE4yx/7+9e4+R6qzDOP59uLVyqaV2\naZSL0MhiUKSQjWJaa2kNocWIpqLdNLEJJITQxHpJG4wYo/+ZmCompoRQaLVKjfQircYGsWb9A7EL\nRVjKSgEvbEtla29GTaH684/zkozrjrOcndnpvvN8ksmc854zM7+Xd3ly5p0zcw7WsV4zM7tANYM+\nIrqAlwY0twNdaXk3cPMgD+0EHhxWdWZmNmxl5+iPACvT8ipg5iD7fBrYUe0JJK2V1C2pu7+/v2QZ\nZmZWS9mgXw2sl7QfmAL815V3JX0A+EdE9Az2YICI2BIRHRHR0dbWVrIMMzOrpdQVpiKiF1gGIKkd\nWDFgl1v4P0fzZmY2ckoFvaRpEXFG0hhgI7C5YtsY4FPAh+pTopmZDcdQTq/cAewF5knqk7QG6JR0\nDOgFnge2VzzkWuBURJxsRMFmZnZhah7RR0RnlU2bquz/K2DJMGoyM7M68jdjzcwy56A3M8ucg97M\nLHMOejOzzDnozcwy56A3M8ucg97MLHMOejOzzDnozcwy56A3M8ucg97MLHMOejOzzDnozcwy56A3\nM8ucg97MLHMOejOzzDnozcwyN5RLCW6TdEZST0XbQkl7JR2W9JikSyq2vS9tO5K2X9yo4s3MrLah\nHNHfBywf0LYV2BARC4BHgDsBJI0DHgDWRcR7gOuAc/Uq1szMLlzNoI+ILuClAc3tQFda3g3cnJaX\nAYci4nfpsX+NiH/VqVYzMyuh7Bz9EWBlWl4FzEzL7UBIekLSAUl3VXsCSWsldUvq7u/vL1mGmZnV\nUjboVwPrJe0HpgBnU/s44Brg1nT/CUk3DPYEEbElIjoioqOtra1kGWZmVsu4Mg+KiF6KaRoktQMr\n0qY+oCsiXkzbfgYsBvYMv1QzMyuj1BG9pGnpfgywEdicNj0BLJA0MX0w+2HgmXoUamZm5Qzl9Mod\nwF5gnqQ+SWuATknHgF7geWA7QES8DNwNPAUcBA5ExE8bVbyZmdVWc+omIjqrbNpUZf8HKE6xNDOz\nNwF/M9bMLHMOejOzzDnozcwy56A3M8ucg97MLHMOejOzzDnozcwy56A3M8ucg97MLHMOejOzzDno\nzcwy56A3M8ucg97MLHMOejOzzDnozcwy56A3M8ucg97MLHNDuZTgNklnJPVUtC2UtFfSYUmPSbok\ntc+W9E9JB9Ntc/VnNjOzkTCUI/r7gOUD2rYCGyJiAfAIcGfFthMRcVW6ratPmWZmVtZQrhnbJWn2\ngOZ2oCst7waeAL5S18qGaPyY8UyeMLkZL21mNiyTJkwakdepGfRVHAFWAo8Cq4CZFdvmSHoaeA3Y\nGBG/HuwJJK0F1gLMmjWrZBmwdM5Sls5ZWvrxZma5K/th7GpgvaT9wBTgbGo/DcyKiEXAF4Afnp+/\nHygitkRER0R0tLW1lSzDzMxqKXVEHxG9wDIASe3AitT+OvB6Wt4v6QTFNE93Xao1M7MLVuqIXtK0\ndD8G2AhsTuttksam5SuBucDJ+pRqZmZl1Dyil7QDuA64XFIf8FVgsqTb0y4PA9vT8rXA1yWdA/4N\nrIuIl+petZmZDdlQzrrprLJp0yD7PgQ8NNyizMysfvzNWDOzzDnozcwy56A3M8ucg97MLHOKiGbX\ngKR+4E/DeIrLgRfrVM5o0Yp9htbst/vcOi603++MiJrfOH1TBP1wSeqOiI5m1zGSWrHP0Jr9dp9b\nR6P67akbM7PMOejNzDKXS9BvaXYBTdCKfYbW7Lf73Doa0u8s5ujNzKy6XI7ozcysCge9mVnmRnXQ\nS1ou6feSjkva0Ox6GkHSTElPSnpG0hFJd6T2yyTtlvRsup/a7FobQdJYSU9Lejytz5G0L435jyRN\naHaN9STpUkk7JfVKOirpg60w1pI+n/6+eyTtkHRxjmMtaZukM5J6KtoGHV8VvpP6f0jS4rKvO2qD\nPv3u/XeBG4H5QKek+c2tqiHeAL4YEfOBJcDtqZ8bgD0RMRfYk9ZzdAdwtGL9G8C3IuJdwMvAmqZU\n1TibgJ9HxLuBhRR9z3qsJU0HPgt0RMR7gbHALeQ51vcBywe0VRvfGymu6TGX4rKr95R90VEb9MD7\ngeMRcTIizgIPUlzHNisRcToiDqTlv1H8x59O0df70273Ax9vToWNI2kGxdXLtqZ1AdcDO9MuWfVb\n0lsprulwL0BEnI2IV2iBsab4yfS3SBoHTKS4LGl2Yx0RXcDAa3RUG9+VwPei8BvgUklvL/O6ozno\npwOnKtb7Ulu2JM0GFgH7gCsi4nTa9AJwRZPKaqRvA3dRXMQG4G3AKxHxRlrPbcznAP3A9jRdtVXS\nJDIf64h4Dvgm8GeKgH8V2E/eY12p2vjWLeNGc9C3FEmTKS7q8rmIeK1yWxTnyGZ1nqykjwJnImJ/\ns2sZQeOAxcA9EbEI+DsDpmkyHeupFEevc4B3AJP43+mNltCo8R3NQf8cMLNifUZqy46k8RQh/4OI\neDg1/+X827h0f6ZZ9TXI1cDHJP2RYlrueor560vT23vIb8z7gL6I2JfWd1IEf+5j/RHgDxHRHxHn\nKC5PejV5j3WlauNbt4wbzUH/FDA3fTI/geLDm11Nrqnu0rz0vcDRiLi7YtMu4La0fBvwk5GurZEi\n4ksRMSMiZlOM7S8j4lbgSeCTabes+h0RLwCnJM1LTTcAz5D5WFNM2SyRNDH9vZ/vd7ZjPUC18d0F\nfCadfbMEeLViiufCRMSovQE3AceAE8CXm11Pg/p4DcVbuUPAwXS7iWK+eg/wLPAL4LJm19rAf4Pr\ngMfT8pXAb4HjwI+Bi5pdX537ehXQncb7UWBqK4w18DWgF+gBvg9clONYAzsoPoc4R/EObk218QVE\ncWbhCeAwxVlJpV7XP4FgZpa50Tx1Y2ZmQ+CgNzPLnIPezCxzDnozs8w56M3MMuegNzPLnIPezCxz\n/wEY0siNlckV2gAAAABJRU5ErkJggg==\n",
181 | "text/plain": [
182 | "
\n",
243 | " [Colab'de TensorFlow 2](/notebooks/tensorflow_version.ipynb)\n",
244 | "\n",
245 | "\n",
246 | "### Verilerle Çalışma\n",
247 | "- [Veri yükleme: Drive, E-Tablolar ve Google Cloud Storage](/notebooks/io.ipynb) \n",
248 | "- [Grafikler: Veri görselleştirme](/notebooks/charts.ipynb)\n",
249 | "- [BigQuery'yi kullanmaya başlama](/notebooks/bigquery.ipynb)\n",
250 | "\n",
251 | "### Makine Öğrenimi Hızlandırılmış Kursu\n",
252 | "Google'ın online Makine Öğrenimi kursundan birkaç not defterini burada bulabilirsiniz. Daha fazlası için tam kurs web sitesine bakın.\n",
253 | "- [Pandas'a giriş](/notebooks/mlcc/intro_to_pandas.ipynb)\n",
254 | "- [TensorFlow kavramları](/notebooks/mlcc/tensorflow_programming_concepts.ipynb)\n",
255 | "- [TensorFlow ile ilk adımlar](/notebooks/mlcc/first_steps_with_tensor_flow.ipynb)\n",
256 | "- [Nöral ağlara giriş](/notebooks/mlcc/intro_to_neural_nets.ipynb)\n",
257 | "- [Seyrek veriler ve yerleştirilmiş öğelere giriş](/notebooks/mlcc/intro_to_sparse_data_and_embeddings.ipynb)\n",
258 | "\n",
259 | "\n",
260 | "### Hızlandırılmış Donanım Kullanma\n",
261 | "- [GPU'lar ile TensorFlow](/notebooks/gpu.ipynb)\n",
262 | "- [TPU'lar ile TensorFlow](/notebooks/tpu.ipynb)"
263 | ]
264 | },
265 | {
266 | "cell_type": "markdown",
267 | "metadata": {
268 | "id": "P-H6Lw1vyNNd"
269 | },
270 | "source": [
271 | "\n",
272 | "\n",
273 | "## Makine Öğrenimi Örnekleri\n",
274 | "\n",
275 | "Colaboratory'nin mümkün kıldığı etkileşimli makine öğrenimi analizlerinin uçtan uca örneklerini görmek için, TensorFlow Hub'daki modelleri kullanan bu eğiticilere bakın.\n",
276 | "\n",
277 | "Öne çıkan birkaç örnek:\n",
278 | "\n",
279 | "- Bir Resim Sınıflandırıcıyı Yeniden Eğitme: Çiçekleri ayırt etmek için önceden eğitilmiş bir resim sınıflandırıcının üzerine bir Keras modeli inşa eder.\n",
280 | "- Metin Sınıflandırma: IMDB'deki film yorumlarını olumlu veya olumsuz olarak sınıflandırır.\n",
281 | "- Stil Aktarımı: Resimler arasında stil aktarımı yapmak için derin öğrenmeyi kullanır.\n",
282 | "- Çok Dilli Evrensel Cümle Kodlayıcı Soru-Cevap: SQuAD veri kümesinden soruları cevaplamak için bir makine öğrenimi modeli kullanır.\n",
283 | "- Video İnterpolasyonu: Bir videonun ilk ve son karesi arasında ne olduğunu tahmin eder.\n"
284 | ]
285 | }
286 | ]
287 | }
--------------------------------------------------------------------------------