├── .gitignore ├── 2007_on_one_method_of_non_diagonal_regularization_in_sparse_bayesian_learning └── Revm.pdf ├── 2008_automated_distinguishing_of_mouse_behavior_in_new_environment_and_under_amphetamine_using_decision_trees └── PosterC8_Konushin.pdf ├── 2008_automatic_segmentation_of_mouse_behavior_using_hidden_markov_model └── PosterA8_Vetrov.pdf ├── 2010_automatic_detection_of_cell_division_intensity_in_budding_yeast └── Cell-paper.pdf ├── 2010_intermodal_registration_algorithm_for_segmentation_of_mouse_brain_images_ └── Intermodal-paper.pdf ├── 2010_the_algorithm_for_detection_of_fuzzy_behavioral_patterns └── Vishnevskiy_FullPaper2.3.pdf ├── 2010_variational_relevance_vector_machine_for_tabular_data └── Kropotov10a.pdf ├── 2011_graph_preserving_label_decomposition_in_discrete_mrfs_with_selfish_potentials └── Dissml2011_GPLD.pdf ├── 2011_image_segmentation_with_a_shape_prior_based_on_simplified_skeleton └── 2011_image_segmentation_with_a_shape_prior_based_on_simplified_skeleton.pdf ├── 2011_mrf_energy_minimization_approach_with_epitomic_textural_global_term_for_image_segmentation_problems └── elshin_eacv11.pdf ├── 2012_minimizing_sparse_high_order_energies_by_submodular_vertex_cover └── nips2012svc.pdf ├── 2012_submodular_relaxation_for_mrfs_with_high_order_potentials └── SMR_HiPot12_supplementary.pdf ├── 2013_a_principled_deep_random_field_model_for_image_segmentation ├── koj_cvpr2013.pdf └── koj_cvpr2013_supplement.pdf ├── 2013_an_approach_to_segmentation_of_mouse_brain_images_via_intermodal_registration └── PatRec1302017VoroninKOR.pdf ├── 2013_automatic_determination_of_cell_division_rate_using_microscope_images └── PatRec1301009NekrasovKOR.pdf ├── 2013_learning_a_model_for_shape_constrained_image_segmentation_from_weakly_labeled_data └── yangel_emmcvpr_2013.pdf ├── 2013_spatial_inference_machines └── svk_cvpr2013.pdf ├── 2014_perceptually_inspired_layout_aware_losses_for_image_segmentation └── skeletalLossesLearning_eccv2014_cameraReady.pdf ├── 2014_putting_mrfs_on_a_tensor_train ├── icml2014_NROV-1.pdf └── icml2014_NROV_supplementary-1.pdf ├── 2014_variational_inference_for_sequential_distance_dependent_chinese_restaurant_process └── seqddcrp_icml2014_cr2.pdf ├── 2015_a_newton_type_incremental_method_with_a_superlinear_convergence_rate └── OPT2015_paper_16.pdf ├── 2015_inferring_m_best_diverse_labelings_in_a_single_one └── mbest_iccv15.pdf ├── 2015_joint_optimization_of_segmentation_and_color_clustering └── 0871.pdf ├── 2015_learning_representations_in_directed_networks └── ivanov_bartunov_aist2015.pdf ├── 2015_m_best_diverse_labelings_for_submodular_energies_and_beyond └── mbest_submodular_nips2015.pdf ├── 2015_multi_utility_learning_structured_output_learning_with_multiple_annotation_specific_loss_functions └── 1406.5910v1.pdf ├── 2015_tensorizing_neural_networks └── tensorNet_nips2015_arXiv.pdf ├── 2016_Figurnov_PerforatedCNNs.pdf ├── 2016_a_superlinearly_convergent_proximal_newton_type_method_for_the_optimization_of_finite_sums ├── proxNIM_CameraReady1.pdf └── proxNIM_supplementary_CameraReady1.pdf ├── 2016_deep_part_based_generative_shape_model_with_latent_variables.pdf ├── README.md ├── TissueSegmentation-NekrasovShapovalovVetrov2012.pdf ├── WCSP paper.pdf ├── bartunov-oneshot.pdf ├── nips16_dropout_paper.pdf ├── nips16_dropout_pos.pdf ├── nips16_rvi_paper.pdf ├── nips16_rvi_poster.pdf ├── nips16_tensor_paper.pdf ├── nips16_tensor_poster.pdf ├── nips16_tensor_pres.pdf └── proj_deep_shape_models ├── ShapeBM-MRF_first_part.pdf └── ShapeBM-MRF_second_part.pdf /.gitignore: -------------------------------------------------------------------------------- 1 | ## Core latex/pdflatex auxiliary files: 2 | *.aux 3 | *.lof 4 | *.log 5 | *.lot 6 | *.fls 7 | *.out 8 | *.toc 9 | *.fmt 10 | *.fot 11 | *.cb 12 | *.cb2 13 | *DS_Store 14 | ## Intermediate documents: 15 | *.dvi 16 | *-converted-to.* 17 | # these rules might exclude image files for figures etc. 18 | # *.ps 19 | # *.eps 20 | # *.pdf 21 | 22 | ## Bibliography auxiliary files (bibtex/biblatex/biber): 23 | *.bbl 24 | *.bcf 25 | *.blg 26 | *-blx.aux 27 | *-blx.bib 28 | *.brf 29 | *.run.xml 30 | 31 | ## Build tool auxiliary files: 32 | *.fdb_latexmk 33 | *.synctex 34 | *.synctex.gz 35 | *.synctex.gz(busy) 36 | *.pdfsync 37 | 38 | ## Auxiliary and intermediate files from other packages: 39 | # algorithms 40 | *.alg 41 | *.loa 42 | 43 | # achemso 44 | acs-*.bib 45 | 46 | # amsthm 47 | *.thm 48 | 49 | # beamer 50 | *.nav 51 | *.snm 52 | *.vrb 53 | 54 | # cprotect 55 | *.cpt 56 | 57 | # fixme 58 | *.lox 59 | 60 | #(r)(e)ledmac/(r)(e)ledpar 61 | *.end 62 | *.?end 63 | *.[1-9] 64 | *.[1-9][0-9] 65 | *.[1-9][0-9][0-9] 66 | *.[1-9]R 67 | *.[1-9][0-9]R 68 | *.[1-9][0-9][0-9]R 69 | *.eledsec[1-9] 70 | *.eledsec[1-9]R 71 | *.eledsec[1-9][0-9] 72 | *.eledsec[1-9][0-9]R 73 | *.eledsec[1-9][0-9][0-9] 74 | *.eledsec[1-9][0-9][0-9]R 75 | 76 | # glossaries 77 | *.acn 78 | *.acr 79 | *.glg 80 | *.glo 81 | *.gls 82 | *.glsdefs 83 | 84 | # gnuplottex 85 | *-gnuplottex-* 86 | 87 | # hyperref 88 | *.brf 89 | 90 | # knitr 91 | *-concordance.tex 92 | # TODO Comment the next line if you want to keep your tikz graphics files 93 | *.tikz 94 | *-tikzDictionary 95 | 96 | # listings 97 | *.lol 98 | 99 | # makeidx 100 | *.idx 101 | *.ilg 102 | *.ind 103 | *.ist 104 | 105 | # minitoc 106 | *.maf 107 | *.mlf 108 | *.mlt 109 | *.mtc 110 | *.mtc[0-9] 111 | *.mtc[1-9][0-9] 112 | 113 | # minted 114 | _minted* 115 | *.pyg 116 | 117 | # morewrites 118 | *.mw 119 | 120 | # mylatexformat 121 | *.fmt 122 | 123 | # nomencl 124 | *.nlo 125 | 126 | # sagetex 127 | *.sagetex.sage 128 | *.sagetex.py 129 | *.sagetex.scmd 130 | 131 | # sympy 132 | *.sout 133 | *.sympy 134 | sympy-plots-for-*.tex/ 135 | 136 | # pdfcomment 137 | *.upa 138 | *.upb 139 | 140 | # pythontex 141 | *.pytxcode 142 | pythontex-files-*/ 143 | 144 | # thmtools 145 | *.loe 146 | 147 | # TikZ & PGF 148 | *.dpth 149 | *.md5 150 | *.auxlock 151 | 152 | # todonotes 153 | *.tdo 154 | 155 | # xindy 156 | *.xdy 157 | 158 | # xypic precompiled matrices 159 | *.xyc 160 | 161 | # endfloat 162 | *.ttt 163 | *.fff 164 | 165 | # Latexian 166 | TSWLatexianTemp* 167 | 168 | ## Editors: 169 | # WinEdt 170 | *.bak 171 | *.sav 172 | 173 | # Texpad 174 | .texpadtmp 175 | 176 | # Kile 177 | *.backup 178 | 179 | # KBibTeX 180 | *~[0-9]* 181 | -------------------------------------------------------------------------------- /2007_on_one_method_of_non_diagonal_regularization_in_sparse_bayesian_learning/Revm.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/bayesgroup/papers/773721f03c6ebbe7c62d4246d51239d6012758bb/2007_on_one_method_of_non_diagonal_regularization_in_sparse_bayesian_learning/Revm.pdf -------------------------------------------------------------------------------- /2008_automated_distinguishing_of_mouse_behavior_in_new_environment_and_under_amphetamine_using_decision_trees/PosterC8_Konushin.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/bayesgroup/papers/773721f03c6ebbe7c62d4246d51239d6012758bb/2008_automated_distinguishing_of_mouse_behavior_in_new_environment_and_under_amphetamine_using_decision_trees/PosterC8_Konushin.pdf -------------------------------------------------------------------------------- /2008_automatic_segmentation_of_mouse_behavior_using_hidden_markov_model/PosterA8_Vetrov.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/bayesgroup/papers/773721f03c6ebbe7c62d4246d51239d6012758bb/2008_automatic_segmentation_of_mouse_behavior_using_hidden_markov_model/PosterA8_Vetrov.pdf -------------------------------------------------------------------------------- /2010_automatic_detection_of_cell_division_intensity_in_budding_yeast/Cell-paper.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/bayesgroup/papers/773721f03c6ebbe7c62d4246d51239d6012758bb/2010_automatic_detection_of_cell_division_intensity_in_budding_yeast/Cell-paper.pdf -------------------------------------------------------------------------------- /2010_intermodal_registration_algorithm_for_segmentation_of_mouse_brain_images_/Intermodal-paper.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/bayesgroup/papers/773721f03c6ebbe7c62d4246d51239d6012758bb/2010_intermodal_registration_algorithm_for_segmentation_of_mouse_brain_images_/Intermodal-paper.pdf -------------------------------------------------------------------------------- /2010_the_algorithm_for_detection_of_fuzzy_behavioral_patterns/Vishnevskiy_FullPaper2.3.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/bayesgroup/papers/773721f03c6ebbe7c62d4246d51239d6012758bb/2010_the_algorithm_for_detection_of_fuzzy_behavioral_patterns/Vishnevskiy_FullPaper2.3.pdf -------------------------------------------------------------------------------- /2010_variational_relevance_vector_machine_for_tabular_data/Kropotov10a.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/bayesgroup/papers/773721f03c6ebbe7c62d4246d51239d6012758bb/2010_variational_relevance_vector_machine_for_tabular_data/Kropotov10a.pdf -------------------------------------------------------------------------------- /2011_graph_preserving_label_decomposition_in_discrete_mrfs_with_selfish_potentials/Dissml2011_GPLD.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/bayesgroup/papers/773721f03c6ebbe7c62d4246d51239d6012758bb/2011_graph_preserving_label_decomposition_in_discrete_mrfs_with_selfish_potentials/Dissml2011_GPLD.pdf -------------------------------------------------------------------------------- /2011_image_segmentation_with_a_shape_prior_based_on_simplified_skeleton/2011_image_segmentation_with_a_shape_prior_based_on_simplified_skeleton.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/bayesgroup/papers/773721f03c6ebbe7c62d4246d51239d6012758bb/2011_image_segmentation_with_a_shape_prior_based_on_simplified_skeleton/2011_image_segmentation_with_a_shape_prior_based_on_simplified_skeleton.pdf -------------------------------------------------------------------------------- /2011_mrf_energy_minimization_approach_with_epitomic_textural_global_term_for_image_segmentation_problems/elshin_eacv11.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/bayesgroup/papers/773721f03c6ebbe7c62d4246d51239d6012758bb/2011_mrf_energy_minimization_approach_with_epitomic_textural_global_term_for_image_segmentation_problems/elshin_eacv11.pdf -------------------------------------------------------------------------------- /2012_minimizing_sparse_high_order_energies_by_submodular_vertex_cover/nips2012svc.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/bayesgroup/papers/773721f03c6ebbe7c62d4246d51239d6012758bb/2012_minimizing_sparse_high_order_energies_by_submodular_vertex_cover/nips2012svc.pdf -------------------------------------------------------------------------------- /2012_submodular_relaxation_for_mrfs_with_high_order_potentials/SMR_HiPot12_supplementary.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/bayesgroup/papers/773721f03c6ebbe7c62d4246d51239d6012758bb/2012_submodular_relaxation_for_mrfs_with_high_order_potentials/SMR_HiPot12_supplementary.pdf -------------------------------------------------------------------------------- /2013_a_principled_deep_random_field_model_for_image_segmentation/koj_cvpr2013.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/bayesgroup/papers/773721f03c6ebbe7c62d4246d51239d6012758bb/2013_a_principled_deep_random_field_model_for_image_segmentation/koj_cvpr2013.pdf -------------------------------------------------------------------------------- /2013_a_principled_deep_random_field_model_for_image_segmentation/koj_cvpr2013_supplement.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/bayesgroup/papers/773721f03c6ebbe7c62d4246d51239d6012758bb/2013_a_principled_deep_random_field_model_for_image_segmentation/koj_cvpr2013_supplement.pdf -------------------------------------------------------------------------------- /2013_an_approach_to_segmentation_of_mouse_brain_images_via_intermodal_registration/PatRec1302017VoroninKOR.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/bayesgroup/papers/773721f03c6ebbe7c62d4246d51239d6012758bb/2013_an_approach_to_segmentation_of_mouse_brain_images_via_intermodal_registration/PatRec1302017VoroninKOR.pdf -------------------------------------------------------------------------------- /2013_automatic_determination_of_cell_division_rate_using_microscope_images/PatRec1301009NekrasovKOR.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/bayesgroup/papers/773721f03c6ebbe7c62d4246d51239d6012758bb/2013_automatic_determination_of_cell_division_rate_using_microscope_images/PatRec1301009NekrasovKOR.pdf -------------------------------------------------------------------------------- /2013_learning_a_model_for_shape_constrained_image_segmentation_from_weakly_labeled_data/yangel_emmcvpr_2013.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/bayesgroup/papers/773721f03c6ebbe7c62d4246d51239d6012758bb/2013_learning_a_model_for_shape_constrained_image_segmentation_from_weakly_labeled_data/yangel_emmcvpr_2013.pdf -------------------------------------------------------------------------------- /2013_spatial_inference_machines/svk_cvpr2013.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/bayesgroup/papers/773721f03c6ebbe7c62d4246d51239d6012758bb/2013_spatial_inference_machines/svk_cvpr2013.pdf -------------------------------------------------------------------------------- /2014_perceptually_inspired_layout_aware_losses_for_image_segmentation/skeletalLossesLearning_eccv2014_cameraReady.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/bayesgroup/papers/773721f03c6ebbe7c62d4246d51239d6012758bb/2014_perceptually_inspired_layout_aware_losses_for_image_segmentation/skeletalLossesLearning_eccv2014_cameraReady.pdf -------------------------------------------------------------------------------- /2014_putting_mrfs_on_a_tensor_train/icml2014_NROV-1.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/bayesgroup/papers/773721f03c6ebbe7c62d4246d51239d6012758bb/2014_putting_mrfs_on_a_tensor_train/icml2014_NROV-1.pdf -------------------------------------------------------------------------------- /2014_putting_mrfs_on_a_tensor_train/icml2014_NROV_supplementary-1.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/bayesgroup/papers/773721f03c6ebbe7c62d4246d51239d6012758bb/2014_putting_mrfs_on_a_tensor_train/icml2014_NROV_supplementary-1.pdf -------------------------------------------------------------------------------- /2014_variational_inference_for_sequential_distance_dependent_chinese_restaurant_process/seqddcrp_icml2014_cr2.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/bayesgroup/papers/773721f03c6ebbe7c62d4246d51239d6012758bb/2014_variational_inference_for_sequential_distance_dependent_chinese_restaurant_process/seqddcrp_icml2014_cr2.pdf -------------------------------------------------------------------------------- /2015_a_newton_type_incremental_method_with_a_superlinear_convergence_rate/OPT2015_paper_16.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/bayesgroup/papers/773721f03c6ebbe7c62d4246d51239d6012758bb/2015_a_newton_type_incremental_method_with_a_superlinear_convergence_rate/OPT2015_paper_16.pdf -------------------------------------------------------------------------------- /2015_inferring_m_best_diverse_labelings_in_a_single_one/mbest_iccv15.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/bayesgroup/papers/773721f03c6ebbe7c62d4246d51239d6012758bb/2015_inferring_m_best_diverse_labelings_in_a_single_one/mbest_iccv15.pdf -------------------------------------------------------------------------------- /2015_joint_optimization_of_segmentation_and_color_clustering/0871.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/bayesgroup/papers/773721f03c6ebbe7c62d4246d51239d6012758bb/2015_joint_optimization_of_segmentation_and_color_clustering/0871.pdf -------------------------------------------------------------------------------- /2015_learning_representations_in_directed_networks/ivanov_bartunov_aist2015.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/bayesgroup/papers/773721f03c6ebbe7c62d4246d51239d6012758bb/2015_learning_representations_in_directed_networks/ivanov_bartunov_aist2015.pdf -------------------------------------------------------------------------------- /2015_m_best_diverse_labelings_for_submodular_energies_and_beyond/mbest_submodular_nips2015.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/bayesgroup/papers/773721f03c6ebbe7c62d4246d51239d6012758bb/2015_m_best_diverse_labelings_for_submodular_energies_and_beyond/mbest_submodular_nips2015.pdf -------------------------------------------------------------------------------- /2015_multi_utility_learning_structured_output_learning_with_multiple_annotation_specific_loss_functions/1406.5910v1.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/bayesgroup/papers/773721f03c6ebbe7c62d4246d51239d6012758bb/2015_multi_utility_learning_structured_output_learning_with_multiple_annotation_specific_loss_functions/1406.5910v1.pdf -------------------------------------------------------------------------------- /2015_tensorizing_neural_networks/tensorNet_nips2015_arXiv.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/bayesgroup/papers/773721f03c6ebbe7c62d4246d51239d6012758bb/2015_tensorizing_neural_networks/tensorNet_nips2015_arXiv.pdf -------------------------------------------------------------------------------- /2016_Figurnov_PerforatedCNNs.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/bayesgroup/papers/773721f03c6ebbe7c62d4246d51239d6012758bb/2016_Figurnov_PerforatedCNNs.pdf -------------------------------------------------------------------------------- /2016_a_superlinearly_convergent_proximal_newton_type_method_for_the_optimization_of_finite_sums/proxNIM_CameraReady1.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/bayesgroup/papers/773721f03c6ebbe7c62d4246d51239d6012758bb/2016_a_superlinearly_convergent_proximal_newton_type_method_for_the_optimization_of_finite_sums/proxNIM_CameraReady1.pdf -------------------------------------------------------------------------------- /2016_a_superlinearly_convergent_proximal_newton_type_method_for_the_optimization_of_finite_sums/proxNIM_supplementary_CameraReady1.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/bayesgroup/papers/773721f03c6ebbe7c62d4246d51239d6012758bb/2016_a_superlinearly_convergent_proximal_newton_type_method_for_the_optimization_of_finite_sums/proxNIM_supplementary_CameraReady1.pdf -------------------------------------------------------------------------------- /2016_deep_part_based_generative_shape_model_with_latent_variables.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/bayesgroup/papers/773721f03c6ebbe7c62d4246d51239d6012758bb/2016_deep_part_based_generative_shape_model_with_latent_variables.pdf -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # papers -------------------------------------------------------------------------------- /TissueSegmentation-NekrasovShapovalovVetrov2012.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/bayesgroup/papers/773721f03c6ebbe7c62d4246d51239d6012758bb/TissueSegmentation-NekrasovShapovalovVetrov2012.pdf -------------------------------------------------------------------------------- /WCSP paper.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/bayesgroup/papers/773721f03c6ebbe7c62d4246d51239d6012758bb/WCSP paper.pdf -------------------------------------------------------------------------------- /bartunov-oneshot.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/bayesgroup/papers/773721f03c6ebbe7c62d4246d51239d6012758bb/bartunov-oneshot.pdf -------------------------------------------------------------------------------- /nips16_dropout_paper.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/bayesgroup/papers/773721f03c6ebbe7c62d4246d51239d6012758bb/nips16_dropout_paper.pdf -------------------------------------------------------------------------------- /nips16_dropout_pos.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/bayesgroup/papers/773721f03c6ebbe7c62d4246d51239d6012758bb/nips16_dropout_pos.pdf -------------------------------------------------------------------------------- /nips16_rvi_paper.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/bayesgroup/papers/773721f03c6ebbe7c62d4246d51239d6012758bb/nips16_rvi_paper.pdf -------------------------------------------------------------------------------- /nips16_rvi_poster.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/bayesgroup/papers/773721f03c6ebbe7c62d4246d51239d6012758bb/nips16_rvi_poster.pdf -------------------------------------------------------------------------------- /nips16_tensor_paper.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/bayesgroup/papers/773721f03c6ebbe7c62d4246d51239d6012758bb/nips16_tensor_paper.pdf -------------------------------------------------------------------------------- /nips16_tensor_poster.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/bayesgroup/papers/773721f03c6ebbe7c62d4246d51239d6012758bb/nips16_tensor_poster.pdf -------------------------------------------------------------------------------- /nips16_tensor_pres.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/bayesgroup/papers/773721f03c6ebbe7c62d4246d51239d6012758bb/nips16_tensor_pres.pdf -------------------------------------------------------------------------------- /proj_deep_shape_models/ShapeBM-MRF_first_part.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/bayesgroup/papers/773721f03c6ebbe7c62d4246d51239d6012758bb/proj_deep_shape_models/ShapeBM-MRF_first_part.pdf -------------------------------------------------------------------------------- /proj_deep_shape_models/ShapeBM-MRF_second_part.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/bayesgroup/papers/773721f03c6ebbe7c62d4246d51239d6012758bb/proj_deep_shape_models/ShapeBM-MRF_second_part.pdf --------------------------------------------------------------------------------