├── 00-Hello.ipynb
├── INFO-ResearchGroups.md
├── MIR-01.ipynb
├── MIR-02_1.ipynb
├── MIR-02_2.ipynb
├── MIR-02_3.ipynb
├── MIR-02_4.ipynb
├── README.md
├── attachment
├── cat-meow.mp3
├── mir01-midi.mid
├── mir01-music-example.wav
├── mir01-music-score.png
├── mir01-musicxml.png
├── mir01-pianoroll.png
├── mir02-adsr.png
├── mir02-c4.png
├── mir02-centroidaudio.wav
├── mir02-dongda.wav
├── mir02-instrument-adsr.png
├── mir02-mds.png
├── mir02-melfilterbank.png
├── mir02-multiplef0.png
├── mir02-oboe_C6_1046Hz.wav
├── mir02-tf2salience.png
├── mir02-timbrespace.png
├── mir02-workflow.png
└── qrcode.jpg
└── requirements.txt
/00-Hello.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "Jupyter Notebook以单元格(cell)为单位来执行其中的代码\n",
8 | "\n",
9 | "可以通过快捷键`SHIFT+ENTER`运行光标所在的单元格\n",
10 | "\n",
11 | "因为我们在调用Python 3.7内核,因此每个单元格都默认以处理Python代码的方式来编译\n",
12 | "\n",
13 | "这段文本内容将该单元格的属性从code改成了Markdown,因此不会按代码编译\n",
14 | "\n",
15 | "那么,如何具体通过执行Python代码来入门音乐科技呢?\n",
16 | "\n",
17 | "关于Python的基础知识,网上资源丰富,建议读者自行熟悉\n",
18 | "\n",
19 | "不过博主说过了要无痛入门,所以每行代码到底在做什么会给大家安排得明明白白\n",
20 | "\n",
21 | "另外除了Python代码,Notebook自带许多Magic操作\n",
22 | "\n",
23 | "比如`%matplotlib inline`就会使图像内嵌显示在这里,而非弹出一个新的窗口"
24 | ]
25 | },
26 | {
27 | "cell_type": "markdown",
28 | "metadata": {},
29 | "source": [
30 | "### ♫ 这篇Notebook会简单介绍下今后文章里会经常出现的代码功能♫"
31 | ]
32 | },
33 | {
34 | "cell_type": "markdown",
35 | "metadata": {},
36 | "source": [
37 | "**✎ 使用模块**\n",
38 | "\n",
39 | "无论是Python本身内置模块,还是之前我们通过`pip`安装好的第三方模块(例如`librosa`)\n",
40 | "\n",
41 | "只要安装完毕,这些模块就可以立刻通过`import`来调用\n",
42 | "\n",
43 | "由于我们需要通过`matplotlib.pyplot`显示图像,用`IPython.display`播放音频\n",
44 | "\n",
45 | "还将用到`librosa`里的方法来加载一段音频,以及`librosa.display`画波形\n",
46 | "\n",
47 | "以上都需要被调用:"
48 | ]
49 | },
50 | {
51 | "cell_type": "code",
52 | "execution_count": 1,
53 | "metadata": {},
54 | "outputs": [],
55 | "source": [
56 | "%matplotlib inline \n",
57 | "import matplotlib.pyplot as plt # 将该模块重命名为plt被调用\n",
58 | "import IPython.display as ipd # 将该模块重命名为ipd被调用\n",
59 | "import librosa, librosa.display # 可用逗号分隔被调用的模块"
60 | ]
61 | },
62 | {
63 | "cell_type": "markdown",
64 | "metadata": {},
65 | "source": [
66 | "**✎ 加载音频文件**\n",
67 | "\n",
68 | "通过`librosa`模块里的`load`方法,我们可以加载指定路径下的音频,如`attachment`文件夹内的`cat-meow.mp3`\n",
69 | "\n",
70 | "该方法会返回两个变量:\n",
71 | "\n",
72 | "- `x`代表音频数据本身\n",
73 | "- `sr`代表以何种采样率得到的数据`x`"
74 | ]
75 | },
76 | {
77 | "cell_type": "code",
78 | "execution_count": 2,
79 | "metadata": {
80 | "collapsed": true
81 | },
82 | "outputs": [],
83 | "source": [
84 | "x, sr = librosa.load('attachment/cat-meow.mp3')"
85 | ]
86 | },
87 | {
88 | "cell_type": "markdown",
89 | "metadata": {},
90 | "source": [
91 | "如果出现无法加载的问题,极大可能是因为你的电脑需要另外安装[ffmpeg](https://www.ffmpeg.org/)\n",
92 | "\n",
93 | "Linux和OSX系统下的conda会默认安装ffmpeg,但是Windows用户需要额外安装 "
94 | ]
95 | },
96 | {
97 | "cell_type": "markdown",
98 | "metadata": {},
99 | "source": [
100 | "**✎ 播放音频**\n",
101 | "\n",
102 | "通过`ipd`模块里的`Audio`方法可以播放采样率为`sr`的音频数据`x`,听到一声猫咪叫~"
103 | ]
104 | },
105 | {
106 | "cell_type": "code",
107 | "execution_count": 3,
108 | "metadata": {},
109 | "outputs": [
110 | {
111 | "data": {
112 | "text/html": [
113 | "\n",
114 | " \n",
118 | " "
119 | ],
120 | "text/plain": [
121 | ""
122 | ]
123 | },
124 | "execution_count": 3,
125 | "metadata": {},
126 | "output_type": "execute_result"
127 | }
128 | ],
129 | "source": [
130 | "ipd.Audio(x, rate=sr)"
131 | ]
132 | },
133 | {
134 | "cell_type": "markdown",
135 | "metadata": {},
136 | "source": [
137 | "**✎ 画出音频波形**\n",
138 | "\n",
139 | "最后我们再用`plt`的`figure`方法规定画出一个尺寸为长15高5的图像\n",
140 | "\n",
141 | "图像是猫咪音频的波形图,即一维数据`x`在不同时间点上的大小,并用`alpha`变量的值规定图像透明度:"
142 | ]
143 | },
144 | {
145 | "cell_type": "code",
146 | "execution_count": 4,
147 | "metadata": {},
148 | "outputs": [
149 | {
150 | "data": {
151 | "text/plain": [
152 | ""
153 | ]
154 | },
155 | "execution_count": 4,
156 | "metadata": {},
157 | "output_type": "execute_result"
158 | },
159 | {
160 | "data": {
161 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3wAAAFACAYAAADnM37dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsnXeAJUd17r9zZ7UCSSgvCCQhiSSCwM+wJPOwn9+zQfhJwjY5g8Ei44cJBj8Dth4GE4xtFgFKCEUUEChnFNjVBm3OOafZndk0O3nm3vP+6K7qU9VV3X3v3E2z5werud1d4XR1qq/PqWpiZiiKoiiKoiiKoijjj9qhNkBRFEVRFEVRFEU5MKjgUxRFURRFURRFGaeo4FMURVEURVEURRmnqOBTFEVRFEVRFEUZp6jgUxRFURRFURRFGaeo4FMURVEURVEURRmnqOBTFEVRFEVRFEUZp6jgUxRFURRFURRFGaeo4FMURVEURVEURRmnTDjUBrTC6aefzueee+6hNkNRFEVRFEVRFOWQMHfu3G5mnlSW7ogUfOeeey7mzJlzqM1QFEVRFEVRFEU5JBDRxirpNKRTURRFURRFURRlnKKCT1EURVEURVEUZZyigk9RFEVRFEVRFGWcooJPURRFURRFURRlnKKCT1EURVEURVEUZZyigk9RFEVRFEVRFGWcooJPURRFURRFURRlnKKCT1EURVEURVEUZZzSFsFHRBcS0UoiWkNEXwts/3siWkZEi4jod0R0jtj2ESJanf77SDvsURRFURRFURRFUdog+IioA8DlAN4G4OUA3kdEL/eSzQcwmZlfBeDXAL6f5j0VwLcAvB7A6wB8i4hOGatNiqIoiqIoiqIoSns8fK8DsIaZ1zHzMIBbALxdJmDmx5m5P12cCeCs9PdbATzCzLuZeQ+ARwBc2AabFEVRDiqbd/fj13M3H2ozFEVRFEVRHNoh+M4EIHs5W9J1MT4O4IEW8yqKohyW3LtoO66bvgGNBh/0un/w0Ar0DY3i4inTDnrdiqIoiqIc3hzUSVuI6IMAJgP4QQt5LyWiOUQ0p6urq/3GKYqitAgzY//gCBjAO38+/aDU+ZXbF2LJ1n0AgN+v6sKjy3cAOPhiU1EURVGUw5t2CL6tAM4Wy2el6xyI6M8A/F8AlzDzUDN5AYCZr2Tmycw8edKkSW0wW1EUpT08uaoLU1cnL6KG640DWtfgSB31BmN5Zw/mbdpj1189db3KPUVRFEVRckxoQxmzAbyYiM5DItbeC+D9MgER/SGAKwBcyMw7xaaHAHxHTNTyFgBfb4NNiqIoY+L7D67AcRM78Ln/+eLStLv7hg+a2HrXz2ckPxi4fc4WEFFad/Lf7z+4Al+98KUHyZrWaTQYdWYc06FfB1IURVGUA8mYn7TMPArgc0jE23IAtzHzUiK6jIguSZP9AMAJAG4nogVEdHeadzeA/4dENM4GcFm6TlEU5ZAydXUXnliZhY//6ulN2Ll/MJiWD5LaGxypg9P/pTXjttliGDTDehoPd3748Er87XVzDrUZiqIoijLuaYeHD8x8P4D7vXXfFL//rCDvLwD8oh12KIqitMJIvYF1XX04/4xn2XUMYGi0jlnrduH1LzgNN8/aiI4a4d2Tkyj0eoNx3fT1+Jv//oJEfgnRd/GUqQCAr7/tZfijF53eNjv/5peznWXr2WN/3eHN8u09mLq664iwVVEURVGOdDSWRlGUo57fLd+JL9++wC7/6OGV9vf1MzcG8+wbGMFv52/FB6+eheumr3e2carBpjy2pi323TF3C77wq/noGRxJK5CVVSvjwSWduHX2prbYMxbmbNiNr/564aE2Q1EURVGOGlTwKYpyVDM82sD9i7c5umnepr2Z4yzd4Osq5iSwct/AgR+/d+eCrVjX3Rs2xIeBT984N7f6plkbcWNEvB4shkcbuGHmRjCytmVmcCQm9l/vW5YLo93XP4JLr5+DRVv2Wk+qoiiKoihxVPApinJUs3jrXqzv7gMA7DcetAK6e5NJhrNRdPCjKuEkaAN7+4eRqaQ4ZvOWPf2oNxjzN+3BHXO3YPu+AeztHznkIZQ3z9qItV29zn584ro5+OZdS4PpZ67bhaVbe5xvG27dO4Dt+wbsMVMURVEUpRgVfIqiHPUYOfH+q2amy5lbb9PuvuzzBwx87NqnsXrH/mg5Ugj2Do1iR094opdm7SsSawwA5K57aGknvnnXUlw7fT0uvX5u1It2sFi+vQd3zNuS85zu6BnEgs178OXbF+BnT6zBhlTIdfcO2X1+++XTMGvdLlsWe38VRVEURYmjgk9RFAWwQuSWpzehZ2DEERX3LdruhHYOjNSzBeSFR5aXcdm9yyqbUG9w4s0T7OgZdCug4E+nbgbwsyfWJsLVn1HmENBoMB5a2hkUroxkzOOKzv24b/F23DBzI9Z19eJj1z7tpPn2fcvQOzR6EK1WFEVRlPGBCj5FURTBTbM2up9Z4OyzCzfM3JCsSj19ZnsUBjbt6sNdC7YGNw8M153l2+dsxoeumYVGg9G5bxDb9w3gE6FPF4SUnl+12AkWP3a2wePYLNPWdON3y3c462Jey/Xdffi7W+bbbT96ZGWWnhmDo3WAgaumrgMAbN7df8DsVhRFUZTxgAo+RVGOWpgZ89MJWuw6Pw2A7fsGnG3GK1VYtvg9f9Pe3PZGg/HuK6bb5f7hUexKP+D+syfX4m+vn4NLr58bsKgCBVk+c9O85ssbA8yMZdt7ykNSUwXYtX/QEajSQfn+q2bim3ctyTIx8Jmb5uKBxdsPiO2KoiiKMh5QwacoylHL9n2D1vsWinyUk6CgYHsQDnux6ukEJI1UMTIzbpy5Ee+5YoZN8+CSTpjc0clgKBu7F3X4CYVqfg6O1nHtU+vxt9fPwYNLEqG0ZOs+jNYbRXvTEvsGRnDJT6bhvkXbXHukiRXa1J8gx9/20yfa8/kLRVEURRmPqOBTFOWoJRhWaIRawOs31uFwf3X5U/jLy6dhXVevLW/amm7cOnuTVyy7tlUI4TTJgknJlJowdXU3OvcNYMHmffjwL57G13+zGNPWdAMALp4yDcOjmfh7eGknfvy71egfbm783NBoHV9MQzOrNFlU2EZmaMl5ARVFURRFCaKCT1EUpQJSVHzjzsVNzRTJzPj+gysw0miAAfzLPcvsxC/fe3CFLWNopF4uYEKKrkgQEkCBBMZ/uKdvKPklFNTQaDa28K4F2/Dwss7wWMICuvYPYWf6CQtTYVlbydDOojQc+K0oiqIoSpgJh9oARVGUQ8W69JtwzU7zXy0dw8Rdbt074HyeYVffEL7wq/lOeCYALNyyLyreGBUdfZR4J4mSTLk8zYSlIgsq7anwjULDEyt34t8fXlmtgsK6y1ZkPLS0E6cedwxee95prVeoKIqiKOMQ9fApinJU0mgkXrc4BTO5FGAElszS2TOY81519Q45iQmE3X1DThk5z1zJJxniuDtgPHjT1+wKCkCipPQ1O/cns2Cmab73wHLcPGtTYU2DI3X88OGVheGvrmcunKgpncjAlMdWN/UJDEVRFEU5WlDBpyjKUUvLzqdmM3JJNjHGToo8OWWLL/D8siiUSKSTm3oGRnIDEn/0yCr7DcDRegO3z9mMf7lnmTNWbqr4vMKUx1bj5lmbct/Ge+fPpzuKLug9LdDSsTDN0ibXsXyKoiiKEkRDOhVFOappRbvFvGuFXreQsqFQArOB82kqxnX6xTI5i/nfnIjLjbuS2Ug/dM3TTmX2l8j80NJOEIBfPb0Rr3jeSfjKW8/HaScca8cC+maHaFE3K4qiKIrSBCr4FEU5KqkygUgoPLMKIW8c+b8pnDjZXq1GgisTK+N52IwJ/3TnklQgcs40k27n/kFs3et+l3DJtn24Ztp6TD7nlFAV4aojNrQKAyBVhIqiKIqSQwWfoihHL20SCFJ4yXVVRUxs4k3h64snDNngefRqSL18vsiqMitKYIzfp26Yk1v/+1Vd+P2qrriBBVWMVfHJIvf2D2P+pj144aRn4fmnHdd6oYqiKIoyTlDBpyjKUQl7X/xuRnPInBFHXZRwOl8ymlBKznsGm0FEhkrY255bH4rhDOUXv0Oit1na4en70DWzwABedsaJ+MG7/mCMpSmKoijKkY9O2qIoylHJis797opy51Y5EbUS8775XkA5XUu2LP4bGB9HFSRnyWf67I+wLQECk9CMdZxeVJQWpA1O+JKuXNHZg6fX765Yu6IoiqKMX1TwKYpy1PDUmi7sT78n9/XfLKo082PrUAX3X5XRekUpwlOj5KuN+xWN6rTCUSjAYM1lM44W0Gp7hyJPCwVmuv2hpZ3VjVMURVGUcYoKPkVRjhr+7YEVeGBJIgJKp/4PjF3zqfohdELyIfTy9G4K+YmCuMDJf3ihbCZRovTD7EUuyQJ5VkXsuTOAZkIsl8rbQX+fm/H8+dQbnAvdVRRFUZSjDRV8iqIcNcREXjA0sJ31FhSWl3ih31U+BdGKJA0bVjQBTDMUCWh3dUBdV1O7wUUjLudu3I1LfjIN67v7qhmsKIqiKOMQFXyKohxdhERETFhQe4VfkTl5Wp++JCQCy0vLjxuURTQzFs/3OebqFh+aj5hRXn8Fu4wtczboWD5FURTl6KUtgo+ILiSilUS0hoi+Ftj+x0Q0j4hGieid3rY6ES1I/93dDnsURVGCVP0kgJwcRfyWQiYmYpr+MHqBaaHtZVOzhEf1FZdOBUuyiKYmdfGqJG+ymtIyQsWWuV7zEaJp3WOd+1NRFEVRjlzGLPiIqAPA5QDeBuDlAN5HRC/3km0C8FEANweKGGDm/5b+u2Ss9iiKovh09w5h7sbEy7N5Tz8ajXi4ZM7JVzb2zqi/AiESCo/0V8nv7jUrhYqnbgk6Lu36sEwMt0/puEe30LydOaVsPj9RgarTgPqeWwaum74eO3sGq9SiKIqiKOOOdnyH73UA1jDzOgAgolsAvB3AMpOAmTek2xptqE9RFKUpPnrt01ZnPL5yJ970otPD+sFMVNnMR+WaSRfVcclGyqmVsnxAWG02Ixj9tNV33heO0gsZK+FA+NqYXQ9ibjuSz3A8+8RnHIDaFUVRFOXwph0hnWcC2CyWt6TrqvIMIppDRDOJ6C9jiYjo0jTdnK6urlZtVRTlaMSbKXJguJ5tkyIPKNQ6QQdVC/GJ+SpCmf3PJMRKinkrmxt9WGWOFKceL0STTcin1x5l0ZTtirYMha/KfdqyZ0Bn7FQURVGOSg6HSVvOYebJAN4P4D+J6IWhRMx8JTNPZubJkyZNOrgWKooybmAAP3pkpV0uGpcW+yh5jipOMU8gVdY5Ra7IoiQlNcRK4MpC0W0U8vRp2Xi/gzqsjoGbn96IS34yDX1DowexYkVRFEU59LRD8G0FcLZYPitdVwlm3pr+XQfgCQB/2AabFEVR8PDSTrznihm5b8BVCYD0BUy7acbXVOD/i27PV+LmqDShS2RTEyPvKqWkllo59E2GArmaenl7VfApiqIoRxntEHyzAbyYiM4jookA3gug0mybRHQKER2b/j4dwJsgxv4piqK0wpqdvZi5bhemPLYafcOtd/CzMWkVppiMfsO8aPbMsprFkjPzS/mcncWzmciclFsKL/iUzRfaAl7GZr2AVed1URRFUZSjiTELPmYeBfA5AA8BWA7gNmZeSkSXEdElAEBEryWiLQDeBeAKIlqaZn8ZgDlEtBDA4wD+jZlV8CmKMib+49FV+PZ9ywq9PVEC2q56mGP1ysISq2qwp/HQhWZ0aWbGGUMT6QvM84dBSm1cule5sNnABDaFv4sxovkT183WsXyKoijKUUU7ZukEM98P4H5v3TfF79lIQj39fNMBvLIdNiiKohgc4RD4QHeou+9+FiFcWK5c320XVDWyZA58EiFmlf8hu8LFQH5f+MllOa9mwJtYVHKFCNBmJGfQYVpWgN0elpFF/k9m4JKfTMM9n39zRQsVRVEU5cjmcJi0RVEU5cBQojqs5ymgDEqjGVuedcXPaERXxRjRoDAsyVvSDmP1d7V1nKP19IlBlN53Mtwg2Yj1gdUs/j2weHsbjFUURVGUwx8VfIqijE845L9qvaxSgu6kWGExiVSgJINj+GIVRysv2dIMnKu9HcLPb4F8mc3NphPb18ufWIMFm/fi4ilTmzFPURRFUY44VPApijLuoDbO+T+mkkKxpenv/KQpWbgle+ljXshwdTGPYUm+JlWg/82+1tspOttNOIXUe6GGqaLyOQnt3LirTyd0URRFUcY9KvgURRm3+HNzxDxHZR6lguFiLRD7qEE2mi3q1bI5pR9MSq5qRgYtaOEzFE1Ftkap+hVBys3amUvDgbGaFRTdDx9aWZ5IURRFUY5QVPApijKuWLOzFxu6eyt9a89PEP7iQnUfUFFUZ3GApe+W8qWU7/MrqrE8xNMXRa3Me+mOo2smT/HaqDczJkgpHeIXmku1ZHjf1VPXAQw8sWpnOKGiKIqijANU8CmKMq64dfYmZ9kPB6wiOuLrilM1Ex5Y7MUrKq1oshJXurUcrlghY0yCHiiKRj2WpSn9Pp/GdSqKoijjGBV8iqKMO4LzVhaOCTvYPf74xxnCUirkT/M/s3B4EfaWxte1pUZC9GPtwaF9IgR0waY9B8QqRVEURTnUqOBTFGVcwMwYHKnnxu0BBQKjbEJM73corLBQakVn6TTet9gH56oIOH+6lLI8TQSqjnEGzFaLrjo5TTAvub9JiL8yzx8D+Ke7luCGmRvx3fuXt2aAoiiKohymtOXD64qiKIeaJ1d14d8fXonXnnuadZzlpzqhSoGOMRlWhfK8iQ15EdLczJrx2lssaSzVi51up/duLMfB5g/MbRPbVT8cWFEURVHGAyr4FEU5omFmPLikEz99Yg0AYPaG3ZGEyH8BQWBX+9sjH/D28wWLDaofX+yFcmbr/Dk58zsS+hB7sVCK2toOzSmsKC0yIhSNMB9zoCoB5BUSLfPwi4pVFEVRlLagIZ2KohxRXDxlGh5e2gkA2D84gl88tQE/fWKNDZFkcDXREvh8m9xW+gmASJHV/IfNq6p8ucXCrqiGtmibkkKKxvDlymiTyMyN2wwtpBo5JJOrfMJPURRFUY401MOnKMoRBYOxemcv/vzljPdfNTO3NTxjC9yPssW+n0DFos14nvzpUvw8ZMJJg+6tZGWxMy0rjbxlv7Yq49PyZeQ2Ns9Y4y0LyUY4ZkutkBlpxgeyaBgT7uk3wSPLduCFk45H1/4hnH/Gs3DycRNbtkBRFEVRDjUq+BRFOWzZ3TeMvqFRnH3qcQCAkXoDAPDgkk687YIzCh1EIT1SOj1/oBDmVCQQImPvXC0JiHFjUmBE7IxW7IR0VlVXY1Bgrc7AEslXpiWdrCLx2HRkhXhcn4ChP/7dKrv6/DNOxPfe8Sp01A7M3KKKoiiKcqDRkE5FUQ4b+odHce+ibXb5X+5Zis/cNA8/englVu3Yj7/+6VMAknF7f3fLApjozSofJ6gym2bOUxfIz74TsaU4wLBwlPVU31CcjAK/oqua0TQVQzqbp1rOcCouWIondySiCfdM/67s7MEd87ZUsklRFEVRDkfUw6coymHDrPW7ccWTa7G+uw9/ev6zsa6rDwzGYyt34piOmvWWFY5ea0JpBMWiUHPZNhH/J9IQgIYox514JD8raFyMNYesq2xylEJP21gnaSkaQFiitvwxk0WFjnXWVKfUiOuXxayu5jyjdH3PwEiLtSuKoijKoUcFn6Iohw19Q6NgAA8t6cSu3mHI2TUeXrYjkovEiDgpr6rLBCITuylLdfG1UShwMB9imkpTM48M5RO5FhcHndr/GlN9g0rGIB40mjXAadyxybtQG+ZGQJp28g4ixxSzoiiKohzBaEinoiiHDVc8uc7+nrtxT6IDROxkuO9dEtAZU2lmMbQOYecXi39mRehD76HqfK+cU5EjND33ok3GSV1yrKDweJaFs5Z+5KCF4W82XwtUmbCmWVNiGStHrqYHxvUkA3ct2Irl23tatUJRFEVRDikq+BRFOSxY0Sk61HaKy2w5FDLpL7miqlgmuB9H4Oa/llBlwKB1GoaDUDm3nsAc+gKd6zN0tooVnLr9CEI4VrG3yvZ252sT7l5yZH3lAkLRnmAGvvrrhdi5f7BZ8xRFURTlkKOCT1GUg870td0YGK4DQDoBy3z89PG1QZGWi/ZDqDMvU5HVbkEt4g0e41CJnoenLNIvWI9w5zkewYJC2Ks4L16LfZxymcWeVQ6SbNdElGMoJ9TmRcWNSW+acXsl9hpN/aOHV2Gk3sCOnkH8/Mm1Y6lZURRFUQ4aKvgURTnofOf+5Xh4WfLx9PXdfVjb1YsdPa73xO3IUzj0MthRL5cAlP7Xetg4KPu8mT4KampBdfgRnbnwTyNuKZAgUqUc42eQgqZUh/mD3WL4aiykOA8ihTORVsgXeoGQ2wUGlmzbh3VdffjEdbNx76JtGB5tNGeooiiKohwCVPApinJAWb1jP1bt2O+uFL3pm2dtApB8kiEGFw2Uy5H4tEJj8Nyq2dFGsc5/bpbHghKLiAs0uOpP/hSTsMh/BcMSc5ot5CFtlbF60yqtKykidHycY1pQR3l14pzwvLwmtHNFZ4/d/o6fPYWewRFMXd1VcQ8URVEU5eDTFsFHRBcS0UoiWkNEXwts/2MimkdEo0T0Tm/bR4hodfrvI+2wR1GUw4e/v20BvnTbQmcdA2gwY21XL2at32XXAe6kJY7YirtjIiPk4gLF0Vd+mGUkLXn/QnVExReX1yOSeQTCTYXHrmjoodxPm65dYZuSFspsVjxK4Vscoho2psxEShvHOZ6BA3LV1HXOmMnvP7gC33twRUnpiqIoinLoGPNnGYioA8DlAP4cwBYAs4nobmZeJpJtAvBRAF/28p4K4FsAJiN5hM5N8+4Zq12Kohx6Hluxw4qxy+5ZhpOPOwbvee3Zdrv5DAPQ7s8JxD9s7nvsiPytmXxsag6XNIMptyZKKi+LwflpVuwWb9hh1HNZZm+0rUOqNVBYO7Vi4fEOhK8WOQjbee5UCXuVdS3YvLdNNSuKoijKgaEd3+F7HYA1zLwOAIjoFgBvB2AFHzNvSLf5Ax7eCuARZt6dbn8EwIUAftUGuxRFOUSM1hvoH6njppmbbO/46Q27QCA8ko7d+8W0DQgH4xX7buIhjPngvuDEHyKZm4Zy28sMcconZJ9oKFAN0STCGAZADBCl4wx9V12sYC98MbgbDPd7c+xmtb8DdUWrj7WXNCIW01qhvUPCLheu6qSsVm5hZdLMtKJgkemKD18zC9d//PUtVKgoiqIoB5Z2hHSeCWCzWN6SrjvQeRVFOUy5YeZGfOCqWRgYqWdhipx6q6zYYmeslEOF8Mci/Lyhz3GXBYDmHH/mrycIQn65ojF2oZUxEeFvyQQO5ZPm6o7GviY2cyyENJw1bGgJIeOKYlBlnkiasXoZC+eiqWJXYDUD2N03jHsWbsO+/hFc+fu1uHvhttaNVBRFUZQ20g4P30GBiC4FcCkAPP/5zz/E1iiKUsTO/UNgMHoGRwCkQiV1jxR5kIJU8P7YIEzjGnO2i9k4kYZaigFhRHJsmFcZJcVxwFY7Ho7hzKgZFVEtIAUx+VsCXsZA7uyn49nMz0IZPBxVd6SiV5Tk0fKOQa6sAoHVjtDSMpONTew1o8kbsuuKJ9fiiifXAgQcd8wEvPUVz8GxEzraYK2iKIqitE47PHxbAZwtls9K17U1LzNfycyTmXnypEmTWjJUUZT20mgwlmzdl1tvJrtgRnDiCwDuWLSImyqfLd/VDqVxPWwF3XoK/syX76eLqA6i5KZq04TsiHr3XEtzVpd5xry0RZGU1pSASaEJUe2qMSotIzRt8wVjbgvq96hijp+maTEecdfGIlQZSRv2D4/iczfPx76BkWZrVBRFUZS20g7BNxvAi4noPCKaCOC9AO6umPchAG8holOI6BQAb0nXKYpyBLBo6z58/TeL7PKTq7ow5bHVAIQ3pKJIcCZTacFF5oslMsKvIHwyP/4rbGx0nFhobVpM2S5YMSyNioayRkI7o8LYjUINlc0cFqHSE+selDChNi4UcvYFABWLvtwOxCovo8rRK8NVevaFBuJNwwC27xvA1VPXtVSjoiiKorSLMQs+Zh4F8DkkQm05gNuYeSkRXUZElwAAEb2WiLYAeBeAK4hoaZp3N4D/h0Q0zgZwmZnARVGUw4uLp0zF4i2ZN29guI5v3LnYdnj3D47ghw+txENLOzFtTeC7ZLHBYp5oyXXIK46rIm89h2LxEBhzZ8VZkWtLruJoOf5P8tIVetsiiYoERaBqZ22hDhMxjUTuNseWVNE5k8dUsM/Xz357JfOSlus6AiX2SSPT5fC8ppUtjFJZFArhZ1ex237sn4uKoiiKcpBpyxg+Zr4fwP3eum+K37ORhGuG8v4CwC/aYYeiKAcOBvCPv12E6//m9Tjl+InY3T9svXGrd+zH7r5hKwqqd2+zlATkPm1g1wfSVynTZq4yxqxy+abI+KcfciGQhfGVBePSnILY/goSGYBXNOatKISUOROCmfmRz0d47SsXCQBTmpezdb7Zjkgy6wm2RiMQzVjAwlDdMSLbLNmXEgnIyT46IcrpefzEqp14ctVO/Ph9r8Z5px9/gCxWFEVRlDht+fC6oihHAWlH/O6F28DM1mvBSD6u/u37ljcp9nLF279mHFQecv6E8gemN6leecRnFPKUSfkV0VrhbdWtyhEd8xhIFfMYNktOCFbK5Uo6P+yzkqdTrLeT7vg7VcmYsQ08jJ9NMVdscgbb8zn18i3f3jMmOxRFURSlVVTwKYpSymdunGu9eb+euxl3L9yGRgNOv1vO/Fi1ix0LS4yGF1Ysn5GFLMrQxSq2OElDE7MEc2XbYmGGrYwko3QAZBbNKPJ5+1QSOBopv0KigOKzs5aatvUOpPHKZbNyFir03DoRSZpPb+oX4ajF5o8xpDO+kK+LRXN4Ard3cBTfumsJ+oZGm7ZHURRFUcbCEfNZBkVRDh0bd/cDyPqwV4mJKGyH2++AS4EmxYHAhnFmS952EbpHnqdHlhnsh5tgPAKTO7AqV1MTTiDToQ/rSCG7WIQFerOTOB8zkUX3AAAgAElEQVRpj5he2aTgzrDzywhgaVNZkc54OSNkGI7ACoVWZrXLLSz+K2yQ+pVFXnG4GFn9XpbMppJ9aVby5U4p55xmf4WfOsj1MzcAAN5z5Qzc9sk34riJ+vhVFEVRDg7q4VMUpZDResNdwXBVj1htMFqs3PviEYmn9KLlnOW8BzCTCja4zhNEMmS0cHxbkVLwhIYXSOls9L1+frtI75ycm4TTZScVyebP1QojaGPml4kfX+zJH67Yy7y6OcnHov18L12BpzbkGQvZnHMqji1qs5RYmC/HltIdcdamnklm4Iu3LkCjwVjf3YeLp0w9UGYriqIoCgAVfIqiRNg/OILBkTr+6qdPhRNQXvBYocFmO+W0gxGCZJQLuf4f1yuWL9u3wV/Oec6aj+gLFl2UMCRMcqZRfFvQo0eRtBxdyBPwqHrOxnyVJI+Ve/zMjJmAG1bpVhewKWomITzXZjwQM3d4fT0v7G0n2QsM92D5YrtI4Bq27hnAJZdPw4buPjAnM94qiqIoyoFCY0oURQnyoWuexivPPCnoXckEmBmlFe6ec+oGsyF5qdBrMKNGbtihG5/pSijbb/bj84yXTXgb4+GWcg8kMtYxnMsRD4XiJUviOECNeKNMoDjCKV9LfB8qxCgGN/tCJFBkZnO2Jmt3175c2KNYb8Iww+mSNdl/ZX2wdTYl2DjeLGMVg6FyQ55J36vqrPN2yLTPjx5ZCQbwrium420XnIEtewZwxonPwN/92UuasFBRFEVRilEPn6IoObbuHcBoo4EFm/dEQhflLzewLRdB6bm/7Di8QIl5hIorSCJlQ1FpYUFQ5JdrhbixBKCWKgjpybSOo2CMYxEU2OfiNmORJGSfHyQa8gqWhlh6P6gkb6uY0Em30gr5mqolVrDrB40489x6ORP4DKAhro0HFndi8ZZ9eGTZDnT3DjVloaIoiqIUoYJPUZQcn7phDgDhrQkOksq6uOStlZtlRzj20QNXZOSC5CyO8AgohyIx45USWQpT2JH31K0Un4XV+2GcwfDIMhERlrBFYZvlpRTIe7/tA8eimbqreuSK1jvmBITl2CV8wB0aXojlyK2LCWbz76PXPt2ciYqiKIpSgAo+RVFySMdJ8lN8epq8Dqrv0ZNl5DrgeTFX3MEPhV+6i824a6ywjMQMRkeOVfSW+Z36WDihrN6GUMbG7EWQgjAoJgKKJxaa6IdcxprUePtqlHoqxQYZFioL9fcnVmerwrtQ2AlnJxekLau7qOzgKv+th+/2Fp6+IAws27avxCpFURRFqYYKPkVRLF37h7BlT3/evZQqlLKxbDK8MOYTlF6+kK9NdsrzoaEcrCDn2Yv04KU/MuYoDFKgCKLiIaL2qtRX1M5y90OfJAi3W6WaAnkimSkJRzT150qJeCtjBMNBCxJVOmbsjwwM06wHMHf6ecK2yJPnY0I8pRg1y1+9YxHWd/dhX/9IkxYqiqIoiotO2qIoCgDgrgVbcfXUdTmPUcgj1WDYD5ozYCfocDIgID48iLJxTKGOt59fisEmnXtZAcTRzC2V6VlXNb8jUgvaIG9XspQdE3erEdUhP13R/plQTGOXmWin1PtFBJYD0+Q+CTFU5O0sW2vXMJK5Y8xf70wlsD+3TOZcM/tDuc2F+1hJLxOQVZz3YpOzBORqNM1nPJIMdNQIn//VPLz6+afgNc8/BZPPOxVnnvzMImsURVEUJYh6+BTlMGB9dx+umbYei7bsLU3b3TuE7fsGWqpn+faerHPu8ftV3c6kEpZcP9b1xEWJOo9iOfMd5bIKzGQZOedemTsnGhsYNrqaFyieN9MF8fjK3NAwDpgZ3Lm8OIqR3+1AQ3iKP2yD3M7RbeENrvwJj+vMUpaGUwpvpH8uhByV/guNsRK2ngNtmP8QfSib+dFIXX3zN+3BVdPW4c75W6PXrqIoiqIUoYJPUQ4RU1d34bv3L0ejwfjNvC347fwt+MffLsaOnsHCfF+7YxH+9vo5mL6mu+k6v/rrRVizsxfvvmIG9vYP2/XDow3sGxhxwsoMsYlWsv+m6QKuE9m5NpvJ2x6jaW9bxMvYVL4yo1ogV1zZToedP3ZzOFOrFOetEl5ZBUZ8LtT4CwA3gzx/smYqj+PNQjpdqVcl9LLq2L6qY/zcuuLBpgwv1JOBB5dsxxMru3DV79di34CGeSqKoijVUcGnKIeIJ1Z24ak13bh97mY8sbIr0RoMfPyXswvz9Q3VAQa+c/9yrNm5v6m3/gzGl25fiP7hUXzomll2/c+fXIvOngEnZXE5GZnTzA06jDuzWhMoRd6pyuWX6LmYk69aEx8Y74sVFYFQxeQPh71aBWXFt5NcqEaJgy/qTC2oz3/JEG0DJ1/eZRppsuap0hbOC418Bl9gxr1+7HrahfDbvm8Qdy3cVikSQFEURVEMKvgU5RDw+IqdeHr9bjCATbv7wcyiu5f+ZUa9Ee6iGmHyxVsX4PGVO6tXzLChYqZDWW8wHlm2Iyhqko4mW4eZWTY4476QjVfynWbOv7hpTZH3MVYoaSzOsJJa/HDCsio5lojdNizbw2Z2KRNase3usa16TMjTbblQSilgQr61Ujdou14SpOsZ7jfx2q3VqyrwXCLO/ZJedxZvLOSLnr6hUTQajNU79qPRYAwM11u3XVEURRl3qOBTlIPIXQu24r8eXY2Hl3XaDlvPwKjbqUsX/ut3q/GXlz+FtV29eHzFTpu/d2g0TZz0/bbsCY/nu3jKVOwfzEK/Zm/Y7eRjJOMBv3bHoryIQ+iD3rD5bboiZRLt6MZ7wM1062PBfC1FchZsaCbcr4r8LBVrvnu0JcQRbaGoQm3ueUmL9qewPaq63woHZcaz58It053yxZ08fcci/Fo5bLF2tOs8PXzL05usnZf8ZBq6e4ewt38Y771yBmau34Uv3rYA9yzahnddMb1Z8xVFUZRxjM7SqSgHkQcWd2LL3n688syTbcdt/uY9XirGz59ci0eX7wAYdjKXPzj75GQWzbJeotj0vqtm4hnHdOD2T74Rl92zNJfcfuA5IuKI3G1GCMjOdCNXc5qyorsr5hkrw28GZ8LEWPlioWqdof3OlRuotypRYV2BIi+gkyhXgWdtKPy2yGUZylrWAMHTQqxkd5WkrNgQbP6Tlhf1bvqNGNjvVo6tDXU2meXfIhM8O+R+mGv/50+uBSPx7A2PNsAMfPf+5WAGrpq6rrUTUVEURRm3qOBTlIOIEVCLxRgc16uQeGbuWbjN9g8HhpMxex/5xdNpCti/lMvvFAUGMDhSx8BI3Uln+53Cg0Ak+qSeALDbbN88MMbK9oqb6G2GlFRFqnbCy4ou6Oc3VU41i/LbfQ8ZR9I56Ut3vMyWyLYWhAIDyWc5UuXqaxvrLfQNr3jcrXASyxxM4RVrX1SE2iIk3/OnY6svI0j8IgBMWfnEuUQ5y5y603ZjJtu++wZGQAA+e/O8zG5zLad/n1rThTe9aFKu/OXbe/CiZ5+AYzo0wEdRFOVoQe/4inIQobTD1kiFE4m39nKyBynOVu/cn/7iXIgXAPQNj8brS/+954oZWcdbFkBw1/udZ3Z/O2Fr5NqRm80z5KXhfNfbzVa9ex3qwofWtwtfWOctLa85n2KsoZuxethbbo3K3kfKh1DmQirTpahlBedBq8IrycveZC/s/fbn73SPtbwuWyGbXTQrI+fJ82DvV8gDaESef40avnv/iqA9X/n1Qjy2oolxv4qiKMoRjwo+RTmIbN6djLcjrydtO4WhcC/biQt0PQl4YPH26OQuJr8VayEBB9mx51wdvklOR55DC2Oh2APWnhIPXXl+W8Y+jt5uqpRZlmasYbehciq3pfNSpJhY+ebakme4FHq+J5G97VWIRcAasSeve+cFSGFFnle04ouFWCpmoHdw1FvHWLJ1H676/VowMxoF9xNFURTlyENDOhXlIJMJJrLehyTsCwCLrqhxB1qyXi95fcAHlmzHnr5hXPwHz8PJx03MKvL7itIIzicKdtBTLyTDF6ZJXhm6l6Ok3xjz0oVM9b08VUM6m7UpSsCBGRMg0c52xYrkDI0xwS0LbbktSP7J6jV1J2uz4+xVGxRXrtfXP7vyLebb3kyoblk6N7TTWEA5z7oVgWYG25xRrbRu+Oyg9AJmceHYthaNyP7ln1pvNJ9ze2AhaH0FK/j7WxeAAVw7fT1efc4pOO/04wEAS7f14Gu/WQQwsLt/BNNWd+Gez7+5+V1WFEVRDkvUw6coBxXpqmBn3JxdHQkik2nIW7mjZwi3ztmMh5Yms3/+56OrnNAvHy+4zP4KiYu8t8CE5TEK+pbVXUYcXp0j0uf2V4fyj8VfYXVxQfljwQ95tPVGjl9uXwIGldlYeNyiqQvq4CpleSqKcj8idbbe4rlzg9yXFpSusOGWYrv7WYT0NUxTJ1LeLel41Mnz/KHEM+ftEXsuSA54//pFuPe6rl6s3LE/EZOpl29wpI6Lp0xF39CofakzdVUXmIHP3DS3mZ1VFEVRDmPaIviI6EIiWklEa4joa4HtxxLRren2WUR0brr+XCIaIKIF6b+ft8MeRTkc6RkccTraxtsgVZXpkBJRbpIV+zvQI/ztvC0AAzfO3IhfTt+AR5ftiHrrJEEvjTCSvD66SVXsXWmfJCqq52DUbysq6omLZLYDX6XIqEuUo4tF5UWXx9IcTQkct6KQV7YwZ1TQ5zcEy+TwYmZD2LtoxBco8/759jA4eLyCIZxWNBIchef8iMn8wA74v4Mr/MSJve+7cqZd+4VfzXf24d8eWI5dfcNgdj/tYo7bxl39uH3O5pBliqIoyhHGmAUfEXUAuBzA2wC8HMD7iOjlXrKPA9jDzC8C8B8Avie2rWXm/5b++9RY7VGUw5UPXDXL9j6NsJIfNU9X5Rxfuc4g5VdKTfKbeVsK++mO6Av0G4s66vGOaWBLVbEQ3MHmcD2eri+k3R652G6R2FqcBp6YCKYYu0FVt9t6i60muKdeXgDl96SVtpcetXZAgd+5vyS9bvkXI+Zalfto06dpazYvpf9i8i5ft5NGvnVh2GtSrBVnGaf/g/ibpaunB+miKVORDctLfuwdGMEnb5gDBnDtU+tzE8AAwHUzNgQsVxRFUY402uHhex2ANcy8jpmHAdwC4O1emrcDuC79/WsA/4soND2Foow/egZHMDRat54KShVfJvoSZD/PD/2qTIXOfaAvG8wb8yqGq+BKdceyxlYEotSqVV3RlljTRj1kEYFcXmJ1WmlGP7xyLLXms3PBUmB9Yf1hz5aTpVQtR5JUanrKibBa5IVDyMGW86Ol6sqMCSRKHqoEoEZl3l5ynICh/Qs5eGWob/GhTk7Oqau7IOdgsXZ7ZcnyTRpm4Mu3L8Sd87dgxtpdNk3/8Ch4LF+pT9k/OILRevYlzzU7ew/7CWMGhuvY2z98qM1QFEVpinYIvjMByLiPLem6YBpmHgWwD8Bp6bbziGg+ET1JRNFR4kR0KRHNIaI5XV1dbTBbUQ48W/b04/1XzcQ7fzZDvLQvUFZAGkrpju3x05PolPpiLNRdkp6LKg4h452R5RV5XlrvgOfzy99VQveCUHH1ZUU0I6DygYwV6o0YZzy+1QrJynI8si04W4u9apH1B+qV3QGIyM2VK1SfFW3OZrLeOyMIxUg/p60ZyWdW5LWYXDuMWuh6K3PZk7G75D5RAQbwvQdWiDcnQth7os+pRPxZsb0HV09bjx89sjL5JiiAd/98hvNphydW7ESjwXh6/W4AwPBoA4vEt0ZjvP+qmbhuxkYAwEi9gf9zy3xMT4Vlo8H4wFUzi7IfEn7w0Ep88JpZh9oMRVGUpjjUk7ZsB/B8Zv5DAH8P4GYiOjGUkJmvZObJzDx50qT8x2QV5XDj8ZU78ekb52Z9LOHOCIdomWTuLI22My969ZzvDubCBeUwIha/5TaGCCkToaZBONAJLaLUFdR6EX6CiC5umTH7GJosIGd/M/kDXpriwmPFxD15Qa9wy55EcpZidbaV0AsAb4X/cqVG6fykDGdcnrlmslkx2Xq7zHVmLroGC0ElNZ0XxulMJJM3LSs7RM7tKH6mNjibxMFzRZ87TY35aZIPjNTxo0dW4gNXzwQD+I9HV2H59h4AwA8fWYlVO/fjsnuX4ocPrcRDSzvxj79ZbItpNJJPPXz/wRX494dXOubu6h0CAPzVT59KlvuS5dEGY+/ACFbtSL5Dur67L7mftsCanfsxOFLH0Gg9mqbRYNw2exMuf3y1s354tIG1Xb12ubt3yDZRo8Ho3DeYrFMURTmMacdnGbYCOFssn5WuC6XZQkQTAJwEYBcnT8khAGDmuUS0FsBLAMxpg12KckhxOzaJ56aBcOfZDW0LKEJCrsfneCREB9KEZFnvggwVE+XVOKvbdA6reAADpkSplO5AeIo4/7M4As0VIs1W5QbvxSuybRdJ0kzbyrqbzVeYWJ4UgSaxLx+KiBpE4pf7GYhmaMXzW/b+wXx+IucJNC8VKEvPIrMNgbRiLb9fJuSzJsqQxeePYbYkP7dgz2FRgDmfnPz2WmanXr/ubA2Bg0tkPx9BDMxYt8uxY11XH1723BMBBm6fk0wc9fjKnXjxc06wJTQajP/83Wos2boPO/cPAgC+9JbzcePMDe51mv6+auo6vOJ5J+Hrv1kEIPmUxC2ffCP+5e6l6O4dwruvmIHbPvlGm29guI7LH1+DgZE6vnFRMn3ATx5bjYeWduJjbzoPf/3qs/B/blmA804/Hht29eGyt1+AP3z+KfDZ3T+M61Nv4+MrujA0WscfnH0yXnPOKbhm2noAwK2XvtG20S+mrcdv528FgzHphGNx7cdelytzZed+nHf68Zg4IXm3Pn/THvzBWSej5sURD482bBpFUZQDQTvuMLMBvJiIziOiiQDeC+BuL83dAD6S/n4ngMeYmYloUjrpC4joBQBeDGBdG2xSlEOOIzBEJykkQPxOpNzudB1Fr8yffMX3DGQdwXzQoZ0dFIDffW5G9vg2Jz+b7MQ7O+9S1Rave91SYWP1LuX22/cglVRK8VSBLfmTozAgs+LOVUsWtKRqcm+TpwxD54IRXJVsq25G/rpgm86/jlhcR74nPXfdCj+ZyWvzicLtzKBkvHDk2EQgJ5zUtdUt27HDTxjbBnfCl2D55n+crw8AFm3di6/cvhAMYOa6Xbl6PnzNLLz98ml4bMUO7OgZdI7vLbM35w91ep/80m0LMDBct/W+78oZ6OodAgPoH8o+NXHXgq149xXT8cSqnZi5Lhtj+OCSTjADCzbvtfuzvrsPzMCedPzd526eh960rMGROj567dNopGkHR5K6F2zai+HRhrX7Y9fOxvruxNt3x7wtSbsx0Ds0iuHRBi5/fDW+eOsC6xH80u0LcM/Cbdaub9y5BLM37Pb2mfGOnz2VPzyKoihtZMyCLx2T9zkADwFYDuA2Zl5KRJcR0SVpsmsAnEZEa5CEbppPN/wxgEVEtADJZC6fYmb3bqgoRzimjxMaj8d+Im+9/8ZeliE7pqHOGDjrtPk9K9m5lZ09VwNWFR/VqCyonIQFNUULDMu/MptbFRRR+ROwb6yisuSwxDc1uXP57j/ySqeAatUVKP02E3m3UWinL5RjLzIyr3j26QbpiWMwGo2sPBsiCiMkkzQkL2gy1zvZlzPSw1gJ9lpYvHSKluOlMcty3234JwNPrenGsu09zkssBrBt7yCYE68ZBw5zo5G11bQ13SIkMllZb2Q1ynubKf/BJdtx6fVzMGPtLids9uIp03DV79flziwWbWHE84buPty9YBtW79iPy+5Zau308944c6NdHhip2xBZezzT9e/42VN4YEknVu/Yj3+9bzmufHItwMAvp29w2vzb9y2zYawAMFxvpPvI2N03jIunTIWiKEq7oXbMtHWwmTx5Ms+Zo1GfyuHL9n0D+Pgv56BWg+ll5DtbZtkLG/NDLE0S84NFWlOYLUpuN1UHnCjZR5+zt/eEzNsgO6Ry0rwauWkajWy9LNt0ZIF8fj+dsbdmXj+J/akRoS4KyM+omNli9tmWmzWZ0yH1J9Kwx4KyN2Ayr2+/zCvLNm1qOvhmnSS3zyKWz3kp4Le7OY/SShsNsS3vuso6rubAItk305mVxUk7G1mvGGBzvCkZo5auIwLsxIoinXz7IM9DkChX1FezJybZlxINL42za955bO0VaWNPsxrB6ahnx4XQSA0leRxEfbFry1BnETZJ5LQtM6PB6XhA7zgZm2qUjFfrqCXibiQVADUCOohyZYlDWgnm5Pxhr21D6SShc9umBcNMbGPzevcxGSJu7iVm27mnJeGVZj//4pXPxb0LtyOZ6EbUkxbsnE9A8L5q9pOQ3jMIuOB5J2JiRw3zNu0BQKjVgDe98HR89n++CO+7cqbzAiW5LrPWDYXfmmtPvnxrNPIhs7LtzLYbP/4GvP/qmfa8v+Hjr8fJx03ERVOmAgzc8Zk/wqdvmIud+4fwjtechY+96TwMjtTx6PIdWLuzF6cePxFzN+7Bf773D53jNFJv4JgODQdVlKMVIprLzJNL06ngU5T2c3H63asaEcz4vboUYlJlCGRHTHaQZCq3E+a+AQ91erNudZbfdF6MLZngSzrAVryknUyTIib4pC1+fTHBZzq8pviks5bv9Pvixm+1vOBL7PbbwdZDbicuab9s/5w2DthfLPiESPaOmxEadSF+jFCyAtnpfIp6PYUWalPfqIbZEV84eXYb2wG3raV9/oGVxz0TO2kmFiIxrSws+LJlc2yszXCPacho57xvWvBRWoYR567QgDj/TT3mGPjnTiO9gIgot08NIQZtnZzZa5qbmTGhVkODk8lNQJlIpFSUJucVNyX4OK3Q/wpS6PiXdQUyge7eL+S9LJtl1rsLWPGcbK8R2WNtzoV6I2mHjg6y4t8IS5nf2GIFpRF8YHSkbVZvuNdznZNyOmqZVXUh3Mz1Ju2Xx1veOx0PLaTQdO+l5nwz14aps6OWnFef+dMX4adPrHGvfZH/Rc8+AWu7+uw5aOp73snPxD/+xctw6vETsbtvGF/41Tx8/W0vw3cfWI4rPzwZzz3pmcUHUlGUcUVVwdeOSVsU5aAyc90uPLmyC//wtpcealOCDI82xJiXtIPkKIPkT6jjFuvMFa0Hsk5IVRgAcWJXtVc++Q5jS8R65YECpTDN9bIL4YrpmrCvDdj9CZRP4m9+c3qgwqW1bkdoQ4W05G2vUmFov2Qn1hRMHCizLcckKyQLjUwqM9doQ4jQTA4ie3nAyQfVEXiZIDI5HXeD1URm2d/5VMwl9mUfbU+Eg7A7dO6kYjagy3OCJdAcObEnPfRGp8v2yNtvBIkUg97epzdAky9rjzQ1u+WLt2LCPnbrDpAly1oheBxI3C8Z/g+/iVzvbq7uZP9Ynjte+1q7BZc/vsYtxdu+Jh0HKE4RMIDtewfw+V/Nc6r/zgPLwQz8flUX/uKVz8XO/UN44aQTfEMVRTmK0TgA5YjjoaWd+P3qw/dbjP/+SDI7pwyhy/4Tm/w+TVnQsaU0vMv2N9IsTv/D64zY+r3aqhHqoreeu1Cf+PtRMVu0riZw2ugAiT3A7EfTcklm9ijJ7wuMqsUWpfF7sxxJ12xD5osLHpNWD48/Bo2tx0xeo5wTOqbOLES4pCFTj5xJKkOLy6wz6Yy3CJQ/bkYIGmFaS+vztaDxxIekaSIkSSz7L3PIGU8opHLwPPLbyfymVKGadpNiUQo8d3xdZgMj2zdZj/HEWm+cFG+ePcYD6bwQC7Rrsj29QlPBzVnyTEMiE+JZs5Er9uVqytouKTu1TLz0k39lXnP+iEPhCnh5fqUF3DBjI95/1Sz83S3zcc209fivR5NPTGza1e/XgJF6I7dOUZTxiwo+5Yji6fW7MW/T3qY7fsu29RwQe3zumLsF09fsSjoPkU5IqAMb3p9UIJaoEdkxIWSdwlyWgBgE/DfWsZbNurtFKUIComy8UGt+qnD95SW6XWDZds3V4S5nx1U0frChCg5IpMb4uR7O73fgAfcYBI9RmRkVzpGiFwvOcuC6KCk6uK2Z88ZzvqVCg633LGZLThgUVWLFDttQQRIdd1Ez5JnjX95WxIiUMry1RmT/WW+gPL5WBGZyyeZPbxIypDbzePofmRdnkhBMbptwJqi8VxpyyRdr0evQhr1mYs6xH1lYeb6+/ElujwUKILd8cw81NzTzO/pCKlS+EGpS9sp9Bdw08v4dfa8QuL3I8wWA9Vj/dt4WPLKsExdNmYrP3jwXF0+Zhr3pDKVA8t3DTbv67bcUQ6Kw0WD8eu7myJ4rypHB8u09uOXpTYfajEOOCj7liOG387fgsnuWotFoRB+IP3p4JT7+y9n4pzsX40PXzLLrv3rHQjsFdzOM1BvYuKsPe/uHk7E1JVw7fT2Sx3sqkESn0c3NuU6E3wGK1kYRzwFloisksvxVfkepeO+c98zRFLly/Jffwm73TXyk0GaVfRGyQy0Yq+D0RXygyuhypUyI2dha4/i53G5zFZpsMb9DXGR2SJhGqmtm721aEtdj8Lr0r0PRUffeDjDc67uc5Bpy5R6Ehyvz9PntlU1OIwSPEG6JEAQ6SIz9M+JOCj8hi4xYNNS8vNLLl9uTtNxEJAo1am0UNtjrLn+fsZ43huuFM/Z57ZCUSXZ/nfPFu9c4gtA/B71lR2x5+yyPVyiPv0+QzUHxlxrS45jLLu7luWsiuDL7bceFwj9HGQ8t7UR37xA+ecMcgIHP3jwXX/n1Qizf3oPP3DwX2/YOOLZ09w05s4wqypHIb+ZtwY2zNmJguH6oTTmk6Bg+5Yjh6qnrk7el6cPr0WU78Gcvf46T5rEVO0EEdPYkH/jd1z+CD1wzE2DgmqnrcekfvwDPnNiBzbv7ceIzjsFJxx0Tre+DV8/CvoFhG+7zJy+ZhC+/9fxo+oHheqZeYr1ABkCyY1fcm7UCTmzyRSLJjhLDjiXJ3qojN7sfi4LiPr6pER0AACAASURBVKT4q+ZcpzSUhvMdKM854P0s+RC3V47fJtX63Xmrc521EhP8N/QAxBA7oWiDoluWEGrFsAGF+1Zh5/2afNFddCzjRbulVj8GcdpRhsRYaCaNkd6ssnpMZ7lVHBFhVsTKY3e7O2QzuajNLLb23mGEEjIRZOqTk4ewFX6pGUJIGbFGQuzlTmFXz6W/07DHBkBp7Hr+HCJQeq+zs42yeMtsBByK7kFZ3bG0sWbNebWdZUJowKg8VA0kSYS5biKJuBSMPTIsNFS+SWlm9o3tkVlyJ5TirB6IcyJinrHlhhkbsbarD1v2DNjCGMBXbl8IALj0+jkAATd94g1gZnz8l4kw3LZ3AJfeMAfvmXw2/uhFp+v4QOWIYU/fsP1G5x3ztuCDbzjnEFt06FAPn3JEcPGUqU7niwH8x6OrAMC+lXxg8XbnjTkArN/VZ5cfWdaJlTv2AwA+fdNc/ODhFbl66g3G1+5YhIunTMXe9BtSSZmMNTt7C238hzsWJbZ5vUTz4WJjtyHs1WK7zR+9UtQlch70aUL5iQESCZ2OSKTQ4JvrQEerGPY6OHJL1sUhsbagOteuoOoqNSgMl7dHbLPsaDkEOsmF5fkHL0RQOJfvdKgTWCJ781Rq2/jLCy7Y3HQ1zZCOyzMnjD1vypRcRUNiQsW/zuUxcDxP8p7m3yMYjvevni5D/JPiz1zX/qQmjlCLHINQOGS2JfMEyvDRUFEdNSll2K3bs0He44KCTf4gZGHy/kXntW9sDyV23kvfQLsqUFrs/Yz96d/tKJrW1kKZ2Mtejnl3XXb/yhRl17Up0oTcMoDpa7uz8qSINM8FBj5w9Ux86Jqn7X36kzfMATNw6+zN+Ltb5mP7vgE8vLQTIZgZq9PnrKIcaq6dvsFeuvUKUVrjGfXwKYc1o/UGJnTU7BTdsgvBDHz73mWYuX4Xfvmx17mzniUvxfGNOxebRQDAP925GBM7amAGRkbzF/+e/mEs3rrPecdadotYvWM/1nf3YX13X/LQZPmONl9K9rAW37FqIN8/IPGQ9zr7/iQFlL7CNi1EXjop8sxDPfQG2q2KsxWyx+6olMArcobzWYQqesxpbw53TCvoBSdtoEmR74bmyx7LI8E2U7SQstJNV7k4rbMHJQ0r3/z7SbN13tam9sFOnp9kixw70zZ+H9spzevUNnPMQ5hPivjjrKpe2znGaJQ/Ds75fIVfD7K0yb2AwRHFJj9RwJS87HHuA6Z+5M9RgrwXGFkQvzfITzzYiU7gHUtzH6D8NoYQveLmUKSn5H40vG2l5CsXC4B/2ktiNnHgd6jF3LQETr2K5orJxF5272ZRlK3ftGfAKM7V45li83L6OQshMO15mDMd8mWGf4peev1cNJjx48dWY2JHDV9+y/l49onPwDMnduBTqTi84sOTcebJz8RovYFtewfx/NOOc8roGxrF+u4+PPekZ+C0E47NG6AobeDxFTvt/bFR9qJvnKOCTzls6R8exXuumFGQgjEjddV/7Nqn849bFs+99KnIDAyNJl0G/yG3orMHX75toVOOL7imru5C39AoLrzguQCSMM4v3rYg/9QV1bKoW+LUT9mPmEDyH+rJDcx0qAJdD0ISkpR2vJyODfklhupMthf2/UW+WIfaD58qvOfm+2CZKcImv868BAkYdYCQnVHzNl3aUcmElp5DVY5MZoQvwMlLFBNefo3FFRXk9w0oo6Dxmmmu+HT6XnmRa9ghZg8DRJ7BuV64bPtMgZpsZC2h9P/ZTUO+RPJf1NhrwAgJFmsdwUX2nuAIQWkH3Bc1+UPmNkD2QolyItKERIa+Aei/zCJnRcAAs4+I4N0I/KxFns18OGXuarBF15zSjdh1BXLc6xu8SwW3sffbMd9/bpSoUnss0npCLxlMO5C3LKsLTibDwHC9ge88sDyrNk3zyRvm4LhjJqB/ZNTZ5r+sBAP/9o5XYdveAbzlFWdAUQ4ER7fUS1DBpxxQ7lu0HS95zgl48XOe1VS+uRt341t3Lc0eooHp8szbY+bkgeb215IlK7jEssnTP1xH39Aojj92AgaG65izYY99APmPX07H0Pz08bXYPzRiBd/nfzXPEZOm3+J3/H3smBZIwYYsrMc+rCncWSHR+bP7l3WmTCIGB98G1+Rr4BbvhE4nJe0Nxaf/T3aqIfLlPHmBvKFuV6gKX+42q/PGqg1jeZsvMzsmOZtyQjJ24PIzP/rFxPqJUcjNGzIq1DEtuxZyXe2Y4ErXl5wubtksRFAgp9NGbRChseQOZj+EQHGEF4l7lHMn8+5gBdqaTVoCSLjYaqIwqQmlHdae3HGgrEyxL3aMG7miIRM/+XuaFUpCBJNRJaH2QtgmEv+NfX4iiKNiQ2dR7gEQOezZWvPLmOhcn4E2Kqi59NoPI8+YCPbYJ2HOtVAFtr3FGEHvBUPy7E0jSXzPZFYNmIGBkbq9B4AIDeZsHJHI9PXfLAaD8eYXT7LDLk49bmLOK6gozTBaNz3DhKPcwaeCT2kf9y/ejteeeyomPSsJz/jirQuwasd+XPC8k/DFP38JeodG8aJnFw/2fnhpp52RrgE4msR4ypx+SvqEZOert/kHZqpHMlEGYH13H9575Qz88yWvwD/fvdSZzUx2JMwvO1GBuGl09gwGH85+WJt50Cd2kN0PQvK2NfiCW3aIvPJt+sCb3aCQ8tLlxvl4naliQRGGkM0m6NbJWQezpEhfqPhZGCguw/acAWfGhUq4jXIgRGPUokjblIqagrztIngMENtfkZpL2oPhFV6+I37HM7RoBMQoy5GiXtqQSio94G6iUBEh5F5ZQSDahvy0ohpKRZWZeAkg7x7l3qvkOEArpJDeZ4gdAV4T9xx5TO02aVzRzvnbCw6jf5+LvnigfDG+JozLJjeRHCcX2NwCkVzmvu8cg9jVA5nIE6Hh2qKnJwmpV+UeYp4P5uWDU4crHK1AFc9NWW+DOTtXEPgbutCInPPf2s/Au6+YYWuX+3vnZ/87CECdGcd0uFNPLN/eg427+gAQzj39OLzg9BMwoUbYuLsfw6MNPO/kZ+BZzwhPzrajZxDDow2cfaoKy/HIis79Tp/iKNd7KviOdtZ19eLU4yfi5OMmNp13Z88g5m3agwsveC4unjINzIx3vOYsfOxN5wEAVu3YD2Zg2fYefOL62QAD//gXL8PrX3CaHdzv8+PfJR+KPfvU49ILNLv5O/1CK3iyt/cMRs3IFNGLCL79FQ/Jf757GeRYXtOR8Psy9QbbSRSeXr8brzvv1Ozh7vdMTE4jXHxBxaYDY96UZusImWD0dVsOzsqWHzq2gk2+cvbKqYnf4XFzzSkJRtamtvkZ7s57xfmzAobwO8Gh7Y4RJOpqVrX5RVVMl9nhtllsPGKV8nJ4bVX5yFSov6gsX6xU2p3YIc+9CHFaqzUD082OgGGgEfAYFbZtpNzo/pYdALn/tqBUwcleSKgCcd744dfmGjMiMPxixvVrmo63vE859zynCAZQS+6tZh/k/Sh6W3DHD0vkvTQ36Yu8R8p1/kuqfHXBtpNCwjxDqpyz2VMkfmib6TCGdid2D88tsttWRRXY+2NBMnm6yfX5cc7sDkEg9rPZfQnujzmWouLs2HMauusdI/NT/HbCfUH4q58+ZceF/8Urn4sHFneCwXjrK87A5t399ju7559xIjbs6sPQaDb9PoHw93/+EvzpS5+da5sv374Qe/qHce/n35zbBgB7+4exfd8gTj1+Inb2DOG5Jz8DczbsthE+yoGhL/2E1vHHhiXK1r0DOPW4ifiv363CU2u68devzvqdM9buwlmnPBOfvmkuvvTn5zv34eB46aMIFXxHOV+4ZT5ef95p+MZFL286790Lt+HOBVtx4QXPtTfjp9bswvlnPAuvPPMkN5SSk5v4d+5fjm//1SvxqjNPst9UMphvpDCATbv7PaGWPV7kwybkdasRUEf2IMxCSryi0idXg+Wbcbf7KR9qW/f224fxv9yzFG8479TgU092bkIdHzk1vK2ntCcd7xpb72G6o7nOhakv1LFIt3Mj1Llo8uYodqiyxpEdhMhm2WbRbREh1Izma/lRMEZhaSnoTftr/ZcRvjm5FWOxz1W01ppwkZ7YLmrUiNBxC3CqLLQx+a4co94wqyqoxJJ2odCSf4JVIDs33Qws20nen9If+bFdJhzPTJIjXvKIa6DB5rt62XLyl5Nw8sDxce992e9Q9IEUG6F9zZ+rkQMo9r3mz6zjJQkJo9h9s8op75RZkFg8xgIFx26qhaviBsYu6CaeDWVZ/ZQyTe7FWkHd9pwOVZ0KNRP6adpQ3kLkczkTeJkXOqs/uaZNOfcv2m7v+Q8u6XQ8jys7e5xDauTqjx5ZhX9/ZCUufMUZeN/rng8iwra9A9jbPwIwMDhSx+bd/djdN4zHV3Zh2poufOD15+DmWRuzQ8/A/37V83Dfom1tEXy7+4bROziKk55Z/HmodvOtu5bgf5z/7KAAjjFSb+DTN87FKcdNxDcvfnnUY9oMZv/XdvXiteedihOEuPvirQsAAFd+eHIw7ydvmIM3v3gSpq1OZpx9YEkn/tdLn4NnTuzAv963zJ5T+wZGnPO9Z2BkzHYfyajgO4oZGE7i69fs7MX0Nd14/mnH4axT8qENi7fsw76BEQyN1vH0ht34h7e+FD2DI+juTT5bcNGUqfai6uwZwHfvX54+9LNLzcyOxCD8398uRo0IEyfU8NevPhPT1+zC5R94Nd51xXTxEGHbic+FnzDsCvkWvF4HUEu8fDD1p2V01Ch5Gx7qHOSfEI68tCGXyLYzA7M27M5sQtJhkePTcvUg+0hy6KFbsxuyDnVY4vl57STjliJBINMk+VwxXVn4RPo6sT5Cfp1I2VTFaV4zHSHgOBH9OqvqHT9NZY3k9FNbaEeRlUNhqH7vmYMLZUXn9UTVfJ6g9ssry28rNUrAyRjeB99ec1m4n07LUhkhZGbzjYrR0BSiBTsU0EXNH9xIWtkcUrz455L87XuMEzFG2ay43r1M7q70fmYbMwucmT49m/2XLiYUnanC4aR4I0gLyjzhwRJC7wTS88TkCQme+LVe8eBWvQBkWSExVVJlmSUxzehXI6uqVHZZxd5zMnSfdV4aIPUmyvuAlyd4/soyzbNTXDj2OLPweJtzMi2jwUAtteahpZ14cGknZKgqA3jXz2c43p8GAzfN2uhMlsQA7lu0DQxg8+5+nH3qcegbGsWKzv141Vkn4dLr5+CtrzgD73nt2bmJigBg2upuTF/bjamru6xxpsZffux1OP2EY7Ghuw+7+obxmnNOsfk2dPdh7sY9eMdrzooeDgB2PgIgib466bhjcOyEDqzesR+jDca01d248IIzMHfjHkzoqOFPX/ps7B8cwZKtiXf0jS88LbmmGailb4r6hkZxTEcNf/2zpwAGtu8bxJY9A3jZc4/Bjp5BnHb8REzoaO3rbv9633Ks3JHU/ak/eSFeesaz8JwTk/DbbXsHAEqG+PzJ+ZNw7IQOm2/59h4wA1NXddn26x8exWdumouTnnlMdi9FOuSGgVo6v0DfUf7hdToSXZyTJ0/mOXPmHGozjngumjIVjUYihsx5cO8X8qENF/14qvMW7tTjJ2Jv/wgYbD9oDCQ3WjPtMyPznB3TUcNIvZE+1JMb7YRaDQ3OOmavf8Fp9uOYgPu9FFPuaIMxsYPsR8SBpG4zhmC0nripOohQbzBqtSSsS9pVE6GkJB4IiXgkjNYZHR2UPDwabOut1ZJyrXBloKPm2mF2RnaYTPqOWmJTKJTVdLRkaKYzJkOIRMdbKR6Opj774C0StnL/kbWBuW/bsrz9lS/gze7KsDAz7bGsZ0KNnIH99Ub2mCOkDxbRY/A/k+NN/pfUYQd3Zh+jtg92oRIaIl7JdhTS4+y3i7HJn0wHgX30kZ0SE1ZoLwvRQTfHrSE8UPZj16KgRLi4DSHPG7PddFo6fKMCnfZAErejFunoA8jaWOznqLw+kZwrstNutroiw7XF3g/EySvbxnjv5Rgh00ED4Nw/kmPvdB0dG2tE6blBNm/oeuiouaOu3DJg29pci3LcnMlvamFOxhyZ7R01sudzeqtCveGO35X5Ke3AymvQ2AG4kznVG2zTmUDOWi25/sz52GDOZvX1ritZvl9H6J5CIr15GWYnZhLH3Bw/syzrM4fDH88lnydA/lySOPbBPU9s2V4Ce72K5ZpIJI+p3zby9u2/BJQGmPaS98jArSNnt39PlfcvcfqKzeZ8FOMz4f4111XoXspeWweFnmhHrrgvsjxz//fLkLvoN6EsJ9Q+phzpwSYk11tHmsm8lKin90r54frcWNK0jcy9xoiERiMTC+aeCyTpTjl+Ivb0D2f7mPZ7Lnv7BXjNOafgoilTrZB7ak03vvvAcvdhIdrmhGMn4NqPvg7vumI6AOCrb30pdu4fwp+97Nm49Pq56B8ZxZfecj627hnAuyefjQeWbMfVU9fZVvnYm87FL55aDwLwhhechhlrdwEEfPZ/vAiXP7HGOUCm3e75/Jtx0ZSpySYGPviGc0AAbpy5Ec9+1rH4h7e9DF+6PZmBXM6n8JwTj8X7X38O/ut3q/A3bzoPk885Fbv7h3HcxA68REzOt69/BD2DI5j0rGPxzbuWYPn2Hhx7TAdeePoJePFzTsBdC7bae4K5/C448yT83//9Mrz3ypn23D31uIm4+iOvxa6+Iazr6sV3H1hhz2djuzOOVJ4ftaQfZ55PIETDd49kiGguM4fdoTKdCr6jE2bGRVOmod5IBkGbjgcR8NP3vwYnPGMCHl22AzfM3IA6J44UI4xMx8p0IgymU8XsdpSM4AOyi3RCLanTiBljE8yNU3SUTdmjDcYxHYSRUcaEDrI3+BqZTo37UDFv/Gq2Y0WY0EHOQy7p5CY36g4iDI02cOyEmu0EyP0zHVTbsco9fBNkh8cIHUqFhBw3lx2L7MGGNK2VIPIBYdKayvxOiUwaeCLLDoHcf2mDEcam3Xxb7T5CnhNZ58ccO5O2o4LgszZxdo4ZS82NWu6b8eIAaYdW5JX6Udpm9tGUiUh5YcGX1V5V8Nlp0MV5LDtfST7OQvNsp4rSjrl7Ddj9hNv5aEXwyfNQdqyqCz7CqBggZ85vs3/OTITsdYrhtoc/oYYR8yy22/NQdKbNuWbKGW0wJtSy+5JZZ/fBEXzJR8z9k1sKPlPOaCPztHcQnHufvHf4+Y29YcFHqKcN0+BywSdFodmFmjigzJ7gS+tIBF/Nnkv+OeW3a0OcEEaoyeNaeC9Cdtz9e4qxR7aVzZaWywF7nHOJc4fL2VfzgsB/UeY/R0w58poz93pbhmen2RfzrMru03l7fcGXa6fQTnhFhAQfkAYziGsnMSn75T+r/HumFaCiPHnuStv8Z4m9t/rXTMh+aas4p+R9pgzHfpk/kNB/7po8ph5zrzTnov8cNPuffeLI25Yumxe2prykf5E0rLzmiYBvXvRyXHbvMlxw5klYtm2fY1voGpD9FnPfM/cGc78wEUBEQJ2z/TZlWgEcaGPZxzDHgWD2JTs/akT2ZXs2UVSyY6b95T3Q3FPNcJJ7P/9mDI3Wsa6rD1/59UJ3f71zwbZ7I9v3GuX3D7bOLIrDf5niCz5jcQclbWefIwzcF3BqHOlUFXwa0jlOaTQYfcOjwVjreoPR3TuERiN7sJnpkpmTyVb2Dozgl9M3wF5G5D7M5Vtbi7novE6B7eA7N6IkEDEJ0SKblpCIDebEC0gQb+MZGK0zRhsNdNQ63IchJeXUme1buVqN0u9AiY4bixsLTGc/s99pQxZTU4t1Zl/MzdferKUtosOB9GFjvuEUe8mS1cP+inICnQn/ZuvcnGW9zqK9bYKR3SSdNuLMNrnfTqc+t2cRO23PiPNpC/bNt9vvYCVtn/fm+VY57d0ifg3lpbHzi0wp5qOJMknkHHDsLuhI5uupfkqVldNUpmg5fk+uYEcip4l/OpWUUjFBNYKXDuKHhLKjXWpCcHtB40vRTlak+1Pmc84Kdx/Y5mLYiGnnJY6JfDA2ZiaZzqN33XGuFsdeU34DIizeOx+K26rkqJt7lRGGFGp/I4blDJXZrQ6AE+EBmcY8C0zawMFlZGlyKkmWJ3r95nkFYW/s8BfNQmr2l8QORW+LwnZTH3vNW/keII6tXJcT4QETnGI4sA5ZGXKohm0n51oMV+as5UzsiQASZ2flSyPzTLR1ef2By+5dBgBYunVf8P5kyssmU3I/HWOGadgKmNFgMV8Bc/pS0Z3DwFyzDDODKmUeeHnecTJhnGkI2zeitF8GE0mVf8jKiChO7TO2Go8hpW1EFDiHCHbOgMT+ZCNReg9gOO3OZl/FAbPXkX+upm1HMPtozp98oP/e/uGWJis8kmkt+FY57Hl4WSfed9VM7O0fTt7+iteGX//NInz8utnpxZCtT8KHgP98dBWum77ehgC5HqvsZiSvYechaW586YqGuLjNjUfeoDj9X4PNzSy9SYtORkcNmNCRvX2qc+Y5M8LNID0nNXFTcFO4N8VaarB5q2Xe3ksPk18MyzYxN9GGFwIo0pvwrHz3xO96+DnjWLsCxpn9kO0jj7d8ExayxvfW+f0UecxDdgXXec8Pk7mgD1SILJOkkQVllQmf/Ppi62L1VF5P6THgfNt6z0mRuXXZ1mwbF1HJCi9RrgMkmjd4nUUMjnkknSKb2NlmjmPwRUGlC6H11jfneqgaGSFgTMm+7Zn8tWIl/WvHE5v7XXonIHvzRtbpMv/Ye0kmNppt5oWdxHgP/fuhLRfppFOxa6zgWLOXznS8YymNnWZNjVzvuYXccmznXJTWEHbJrH7kvuMdM3lE+ZkITTw5NWQizYq1gn3OXsS6Cf0Xk36duQK9NpangbkHebfZHPKRG3pmhjL7L+/8OnP3jACybP94SrFTEzvhtz+Qtj2lHv1atq0jDY82kyElaQgdtezZk3j5821EFDiG7L5+8e2Uzynjocq88wTjxZflyxfQNlqB8+ejPZbi/LLnClxvqG1Hsd/GHrNN3m+T68ub5VyeOOmNTN5DrXnpPcF/ke54r8W+yOPDpk05q1Nes0nkUlbOB6+ZhbVdvTiaUA/fOKVnYBT1BuODV8+yD9rbP/VH6O4dQnfvMEbr2VPbGbNAaRx8+oamI43NMBdM9lYHwbu6FAhgoKODUK9nY9dqgBOC5niP0oyEbMa2GgENEOqNfGiZuUGNpN47Wa6MxU/Su5OXm/CM0XoDE2od2UOGsvCERKimNyQyN7NsHKBtB4gOeQ5KbzxilWw/iuVN3mqZococr8AWmVVHqVfU3OxMV4JMkuhD0+nAMPKTMrQEWSuaIbTLbpcL+R3JdViSnfAcDtUqy1G+B15/0e03iwckKB03CTjhO0GTZIdSPDCDlbZqeVEZorNeoap8KpY/8ie8/+0vk1ROOCLDz8xLH04b8oAOS6h0Xoi0QJaBONJese5wczDyIeJOFAVl14vv/TadNSKCnAnHesdh2jZNK8KuTAdMevmsTZzddyl1fTCy6zA1y95f5cs5cz2YQt3mdK4k0cGDs282fA/Zc8S+uCLR8ul+1Vne30VhpmxRteyI2n2Vbc3Zx+1N2KTpjJpQduOlSSJqsvbzJx8x7Uii7ORnFnIPAB01tp6YLNwQ2fUqTjVTZkeaoN5gRwj4j3V5rGz4n7GFvJBQY5//rPOOkcQ+AgN56P+z9+bxlhXVvfh37XPu0Pf2fHugZ3qEBrpp6Ibuhm7BGRUEp4CgoCIgQpsXkzxfYp7JizExw+/FaByCU5yHaIyQyU+GXz7B54g+Y8zgGFEUcAChaXq49+z1/qhaVauGvc8+93ZDA3v15/Y5Z+8aVs3rW2vVKtIm+SZA5bytvsftK3VH8Gu76wu6j6k5WQB3AkKjzVrXj9lq/8BR/7decYtQ2+UrVtrIasRV5Uv6Tjun69J+15sIGijq5cHVPQcih8o8nYV0velz0aQWAZ2GczbFytySQl513qWqAF8v3jmezAUlM4jJHdkRRuOjJhocavlFgClUu2jAxwzcfd8hrF/s74b+26/diSecvBT7D01iqFtg7lHwRno8UQv4HmVUloy79x/CgSNTXvVuF5nnvtUcCBbQJqp7fZbOC6NsBQMzMEUzVRCiyYvcolm4ScKANMAsKJPMdseS0OlQMMnos0h614qcQGBoqiwxUnQc/960QUyMZHArUpOc/FYfYDa24nrykPL22Bz27jA5LaGezLXAIxMUKUEpmBART0I1DSjCi2WQScQXToLFE7UXfEKdXeY6ssg+X+cp/aKasgtvbTgVI8d4Nt2muaRRtHCphY1EsFALXrAQZhOuqRGbXRyC4cdYvJhLplwJCppQtJIPEKsqqf5xw4BO4Gucu0hbcPYl0t84ek3qtzbbCoWv6ddePy4HDSM8142fQHgbJLMgvp935Iubg5Dpz/a5PuOm+6SZr9O2FSG/oAKF6qdmfiEwwYHt0HmImbeYDbgQIVvMsnw7mudFYdcL9ldqFAXApe8mEr+w64QIb3LFhJiDmfXLDEhTB+zWukLVmwiHpOtJQFAhTrtg+2JobgeEznQA2LSl3CbnwvVvRHEj01c25nUdK8kGoEGhKomjAR9pD622bdz67jqk6pls6ppI7GrIA3fXlmH/MfXkwaGszaLt0U5UdGEZHrDkSMoI+M1c+R2fg9dzdZyX8OPryKbHqq0BUITg9E8nz6j1QNIjIuv4Aw7ExEBLz+LCs7RB7j5QAUduDCoHc6b8tm9EzkkcU4j4h+I7qHBx1ETB/OnkNNs3ZFyWamNd6s6NcPLPfb7kPEtL27gfih+m4HEiP8mzDpGfJ3TZoviuvKqfAHaDh6SvWp45PFN+4RtvdbLiG/7+mzhnwyJXnj/+x29hxfwx/MonvooOET554x48mqgFfI8yeuYff9oskrKQMFAUZsGaspNWh7yzgKLw2i5mo5Er4Hc+ZdT5nHl9ZwAAIABJREFUCZVcnILMd4Y4DfCjkuDTdouXXYhlR1J7zurYGadXMqamSowOddxiIqalgbMPtSMWrTPJbiHgBQ3Z0JbZXU8qEs5M1N7kgKhwjjRs8dxirNbSYBYiZf5BMMBSeIu1TYEoET+wv0WO0cJJdinlaNKvWm1zVBW2DxgYCG/EAaPySn2Gi0rUviqd5LlLM+VI+knQ5kTgGPlWsp4KfkHi8atwCCn+jGBovyZtleu/UPXCwcOHjnJFRMUzHacZWYFUpZfTDDTt1k4wqGNuENLjsCJIKCjnR8WM2KnKPBBe/ZmYIF8BWpHQaACPeRGMOZJzx+pMnWqPktmcw4HsuGvzb9+3S6VG8U5RQiHWARwXBiCrPzJn7rxjJjeGrXDa7aozhWru05tvsm6ItsVVmyREvq+FAj370qhBbDSDvq4KktKJ1iuyKNDCqC2veCcmGLCX7/PCv/8Vr3WyEcuAO5PvHV/5+iW53y4qo9S521Cxc4zfbLX/EznnbT4OBeDHc6zSYelj/pkGddoCQ2uEHGiT7yqN3BrCMGf+pf+UKi0HCvQAIv/MtIHvcZofhwKDOk+BDYDAOkg2KzoqH9kV9BjenpUDg9lrZwlkgRcH2snQp4DavCHfR2QjTOYglvJbocdtsNvNFQHzYHEYZXiRunab+1Ifkrgba7qXRKKL6/e+4US2kqS8ltIkKBunbu6R/G14rRl33l9hZc2ecebHFPYnIuPDoWMdnxkLNkMPHpnCPQeMh9Ef7z/s3usx9MOfHcRd9x3E5mXz8OP9h7F6Ir267JFCLeB7BNChyR6e97bP4NrHrcdFpy93z197y79h1/pFePIpSwEAYqNcMuyhfdHKFfa96fiyQ1rAXDVwpCwxJIbnkIEFJ0gQeVAoO2e90oMaWUTlu0xMBRmTyV6pzCYJmJwqQWQ8D2qvmZO90goJ5reIgFMlOwDmABlCmT7ZXVQTUyz0SfkZcN4+Hciw8WKhWwCf8+ZGVhSwC6k++wdSCw7bnWd4sKCWnURIiaRGY+YUC3lOmPFlDbQf0bfklxJc3byWEazjdTVMTJadaorfZdNTwlJd2EZpqXdZvjKR9M5fUP9BFJ9aXozPCwCaGdGWuEdJHv47q/pI89IdJG3jjHzSjLhptHzeMw1erRXzrcnVlZKM17p+KWJ2XagKubIKb7nnufdhWvl2a5LPICEcL3G9KHnXCY2ZwlL8RQVzGg+YNQBE1io0TUQ0ifp+L71x58RTjpxd2TlWNHUSoWTvoTnUHolAqTR0Akh0WVX1CfjQ64OuVX9+25uIurnT8qpNY0XY132Bo4RFeI2meafpc+e0XCahVY0+P6nb0Di2kEx0raSeU0EGrDHDWhj4K4sUPldV5SvamVlLXPargAP8VkZgmHbvWE+x8bwqVj3mnToqAi/YkwurItpgsbMWce6mNVew+Xjg4PubBi5kw2uAIR7AZb0r1dGAsN0k/dAhEJG2kDKf4r2UpHUI4NKzBDWOXJVF67uTItjMYqF8QLbOKbhKIRzi1gkKq/JnZJ5YrhFTykL1qaxGD6oPK56k45elbi9y1164MaV+l6XZHDWe1lWd2MFLsMqHjge3os0vCrFQMGUQsCMylYS/8l2fx9hwFw8ennKAVHi/6E2ftnXBuPSsVfjIF7/vri77jzvvx+/+7X/i/3ve6ZiYPYLv3/Mgls4dxXD3+HWNclQAHxFdAOCPYEzw38HMr4/ejwB4L4DtAH4K4FJm/q599ysArgbQA/AKZv7U0eDpkUT7D03i/kNTGB/u4Kp3fQGvveQ0vPoT/4qNS+fgVRecjJe+54soGXjPZ76Li05fju/99EFMzB7GZ79zD77w3Xvx4JEpdyeLDM7Jnp/AZaHqWNudw5M9DHULd1/dkV6JWcMdN5tM9tgAPGfKYK9E6BZgtlo71m6KzcQ31Svt4gHnbr9kAzLHCz9j9ZhR9hjU9Utfj0VLaAccvLDdK8vkTJ5btK0wEexyIZyYhLRxpHx68JsKXiQVB++8RiYyfXchs13kxN2+TKLKTCMWLCopZiJDIqi4KCw15RdeLziFQkxcVl07TahZqFzadWaiGYlzmsECwSaOHi1qcd30JRVBt2dgchMsgHqJDcSWWg6qwAtF/TlIph/rTftfZQJQ/Un6Wz5rE8a+7ZenkxD8hxs/yPffHFWVrarc/do+l48T+htQ0E5KsDwm1GRcuKDKvEm1owiVySh1zzPZkTXBB5ynShkDDtgoYOTO5UQgyW/wGW1HofKV/LwQbsvAXrh280sQnoJ+Gmi2dIWo+onbVuLFfVR+58Q6f0VEOB9QFEY/8KugOp9ECM71SRuQi69mV4I7tuHKY+OQysoBMohmkCGAmmE3cRVI8sllakePVytgl67cqlXses6uY6jySrkY3mRPz99uzKhZR9WFA4ylyU2E/dKBx3RQ+HmFlcUM+Xdk3omXWmcuy76coYUOu7bSm8xydMWU1/QKBwZZzJPhNsnJ5iXyiIDFsJ/rqjeZOsfOlI6Xgo1QLdfBgOEAtoTRdwvq+odtl54tlFxtIH1H80T2P5EVxTTTawZNos57umVUg0WRGWHlLJE/WfqQ1DUQ9iX757Xbvs0ne6XfxGBjqaVNkzWYPWiPQDEYr/nk11w/KmyeJQMf+eL3wTCeSJ922jL81VfvBBHwd/9+N05dPg+/8udfBQhYND6CN1y27bj0ADpjwEdEHQBvBvBkAHcA+CIR3czM/66CXQ3gXmbeQESXAfhdAJcS0SkALgNwKoDlAP6eiDYxc2+mfB0ruvv+Q1g6dzR5fvBID0TASLfAkV6J23/6IDYsnh0sbt/58QP40Be+h1c/4xTc/JUf4KcHjPOUv/jKDwCYDjhVMl718a+iUxC+cfd+XP2eLzrzycNTPVz0plsd8Ji0AOvt//wdTPYYw10zQDoF4cCRKcwe6QJkAByReT7UJTxwoMTocAdlaRyeTE6xAya9nhkBU70SQ8MdTPUYQx27iwKT1mRZukVeJsNeyZjssZskxjodO5AZUz12NukCRmTx78As4r1e6XbohOS7PuugyS0WldIbJ9+yAmokjAWTq8rWefyUSYZ9GAmkFxSwn/wStkIpy02wkSxgg0e7aUqY5jLkXRa9yirRdaCFmcY0rUhhvpk300m1aXhZqJPwUSWxasM4vhPSbJ2XzO5Sa02l1Xwb8iYnlE27qoXCEGkv1sxnaqFJZebC1MXJsFqfhe7UzahRyOl1vYSUiDdQvCCGEqAHTWOmpPnI5a+xid6Y0M0R9y3OTT4VJNOXs7UTYdKJZZpXL2C6fPXcqUpkwpEbM7qMsrEYCuE2NovwF45zUpkIBAzaUM3vQTxS6Qfgxn9PgXB07UOmrvWn8BAcT9AZRHGg6syAV99YRQAQBHxRkIeYbsq85MvjJycmb3YrsoRuKwL89RkSjdntIsYjSkyDxVaP2cyPui6NHGB4kqsv2HGoyk5+LdTmsTnSG8Sph0qOZAZ2dRdvEGnLDMerAiLuPlNVoHRjkYP+FIxdLVOALEDx98b1Sj8mZZNZNtMB8pZE5DeX5Y5jkfnAciTHaFulOQCgJGNpZcydgSl13lDksY5cXm6tsaZ6JTqdwp7PtXIgGzmuY+slPlMJ6Xul8u5pyy8KBJS+zcw6at+RalBJVNWd9AV/XhfowVpksTlrLMCuU5AFvcKbX8cPT/UwOtRx76bKEiPdjuWPMcUSvsDf/OudODjZw6yhDt73udsBwN01/ZMHDuOX/uyreMdVfa/Fe8jpaGj4zgbwLWb+DgAQ0YcBXAxAA76LAfyG/f4xAH9M5tTkxQA+zMyHAfwXEX3LpvfZugyPTJX45t37B2Z0qvQXGjMDh6Z6GO4UOHB4ClMl4/c/9XU3KUpnDmYvNmCma43LtYmIFv57pTE7AWRiNun0SgN+PvPtWzFl7Y0LMgNI4g91DGAE/ATuHImU/oJdZtMheyVZM00A6LgdjyNTJaaGTEed7JXoFgWKgjA1xTg02QMwhKnSgKye3U4jq/FjhJcWO3MVWw4RaqdKdW0BA3KYvyzZHeqWsw4lA11SZwNhd2OoALG9CLlOCuXoSbRQJ5MoGsiadnIQQKmFgL6kM5fFRS+f7CfVxunor5nFM4lqA+od4MYUSx/HlJpxVs1G2i+aYJom6Uvf8WEqtGhRGjKujfDjFziGgLuwYgfl1ScWCu/TpUTLNWhigSDka78ObASIqEF/bsRWRQLxWHeyAYXPjnlXRzi00hf9+3HtmG+U+2AUtGTU53Lkdu7htQNuKhEhkNM+Jz/1+SrNg4AgZ+ZnI7FkypH+UQt+viApv8mXzDvJnzwfMox18jLmdakj7ODnYkIwbkI+wrjMYb9JWI3GT8g3uX7FEC+TucJ6JGLyiTYkyddBXJduTdUVUUFxc0i/MJuk6TGAABh7Fl1dGO2PT92fXfNVKWFE7gDIm2SSB31+U89XqAPGEVITcFpAQKgvFLPIL17+IZW+8BT3H+cADnK1lDcXFplRQHKv9DhnqmQMdwgyApy23DZazwpa1k1CuBkOf0bTmb0WnmfDroAmcsdyHOCz5Revuga4sTWZ9MBJvNz2SgYX4ViWjWjdQ+RMrWiWS8ABVfl08pmNGnvodN/1wGG9HntBzGiE4fLuWSu40srVBw4bwHdkqsRIt8BUr8Rwx1i7DXUIDx7pGdl+xJgoHzzSw3C3QM9axBGZe6ILItx9/yH86f/5Lzw42cO8WUNYOmcUC8aHMNVjjA13Mdwtko2IGVHR6fQPdHQA3woA31e/7wCwsyoMM08R0X0AJuzzz0VxV+QyIaJrAVwLALMWLMUrP/ovA7IZT6fxsmw65pGpEvccOIJl80dx38FJgIChokCnIEz2Sjx4pIfFc0acJqvXM3tRh6dKB+LKkjE20sVwp8DhqR66RYGhDuGg7TCHp0prq9/BkdKbouw/NIWJ2cMg+J0ZsgPCXCFgwFmvZAf8hjuEB49MYf7YMI70TEcFvEbuiDWT7DFjyA46AXMy4PVumPlkt+sSTPQI5/l+7tBlsNZR4z6vBbecKkYtZH2ZUlSW/poFeR2b6pCbvcNkknWRo5dJlpmV0q/VPlQgLOVWV46+6TCpQHksqInwHLyPBcDKOrK/o/ADC+tR47D+QslXFa5/nw6+Z/j0DKRC76AkwlJK6cNKYfEYUTh7hpQdFwOmnaWatAbPJsqlTwJN6pajzzS7qGNmhOuZtGHfOhAQ0i9SzdisTDoS1nXcqjLF4r+RkdM5TKopZ3ofhw2+5xgZkKpn15rMM+94gEERdItMH3GvonTzdRw/5xAQcCZ8uuRVt2GOP+lnFD4CpUG9iSEFICTOT7zJ+j5GDqR6XijJ32nvFL9UURgNCOW7N/3zFxvJ+7JkqyGD44Vh0o/rULSsUmZYeUw78IFjnyBbC6Z+Te83aSr5Tbejkhm0DlVkOsCaTNs6YlbasUi+iu+cFIApz8qSURaiKfbpiUWLNrsMU4JrC5E547qXc6os/0U8atEoMFEFglLrKyVc+MKbzE72jOf3khmHp3pWgcLOaYucBS0K4EivxGRZoiyNMmW4a0DfVK8EEeHQZA8j3QIPHpnC3NEuGIyPffkOvwkQtGvVqjl9Glq4YlOTcI8Ypy3MfBOAmwBgx44dfMu+o+8u9W/+9U685Z++jWXzR0EgzB8bgu5Co0MFZo90IXemdEBAx7TmrKFIrLdtOWvYA+/xka7T/omNcrdDmJxigBjzx4bcTpI/Qyfltw5G7K7PUIecqeac0SFM9YxnS9i8ux2zY9ItCjCX6Fp3kQURhtxOkmFWAz+ZeLuFP1DsdtKQTmBVXVZ29II79zLh+i+ClLxy5p3BRUAZk70sYwjQmhzwp+h1yBWnchp5rW6QtvIFoSem6In7nV0rg0Wsagn3k1wq5kR9MZNCyNcgxJVc9Uu+OrtUrxaCnPT8X1/WM0IMyxf1LFwkamUrx6mvA+vevEbgUuve9KobcI3YL42ZAIUBWXHfUZFn0LPrGK94V1mWmgLmltKsoFCVU5/K61e3Mc9JsUQS1I+m1SmqOclWZ6bRgjBVgm9NgXMavKAsodydAjHHjnmr598qLXs0dfehClPqaQzE6tk1yVJJ7Zy+C974OTyXTzMyTi8y2STPOHjnLXa0OamEFfO3oJ1qBjvHa7FNiBA6VnEarygN50TNIJBEwyfBnVM0X3q4M4gOLPirOuR3vIHqtKmZMoncYrRs7PJ1fDrezHvx/BibKcamoMKL8OGdv5ErpDgzMRmE3mlFWNN+BAry5wm1o5Pg9CrBgU8Pfv3vKQdYObrH2GSiz7uJSSlBTCPDHix5F6TAlohOWrts+ZbrtML4SoxS6aeKB+89HYBrU5WaL5NaAHqqf4wMmWNHnQ5h1rDR7HUKwhAXRlvMhtdejzHcKVCWjClijA4VzhR0uFNgqmSMDXfADMwe6Rp/F50CxwKjVBG94nv/0STc0QB8PwCwSv1eaZ/lwtxBRF0A82CctzSJ+5DR07Ysw9O2LKsN4y7JnAYdmSrx7R8/gM3L5uKHPzvoJqPr3/8lAORMKoetqSfImJb2Sns2jwjb1y7Al2+/1/ZhY6rZKQhTZWm1kIyyZIx0OwbYMUBUuMHUKQizbEcf6hgwaA71ml0q0VBq99W90peZSA4Z+/vy5LnYnWuvnWJvLp9yQJkAtQMDq9oHKpdTieQ//CsK5Rk3KROCxSMg9Tw4RB+ujNUkC6LNoyAv5JqywQnpdVJC7nG/OHFAdzl8Q9aDwC5SU7jgcxkIYExvyBwVqsw6J7wgrMdUiBdByX+X9VgvpNMT5JsyngnXJ7+cgH5MeIGuM8tY1RisyGY6VTdo2Qbqu015qMvMBWjSWGliFHzWcV+Rfk2WOu0MZrMCm38ZaFjgBTQRppVsrSVYuFNZmbR0FHd5uEvDC5rBJlsOVCC10JD3Mk9HSSTARpcVBLfpGYcPnN5AhYc6HyfzgsrP4JSw4KJFEgE9aS5ZSxQwI5WqHEORMsi5f82ctsiRmct7Ik0rQ6+lQLjW1/XgEEexAz9SKxxdWhpsyLBfR3XZPR/sAI20lWiTnHMQFjAo3cdcQZBoGyVt22Ks+p2J580Rc3WgvYjKFw9uVV/Xeaq2LQpx52KeiDLAXTheeNPEISsfMcx5R2la6duiZXSb+PDtZBzKWdmEIpNpPQ4Lw7d4IxUgDqjNfTJ8iYxHtp4AuCMsBZE/+0l+U6EslQMZwHr49bwXRG4cdApRFtjrv0RL6+qYXDuw67yeOoWRm8WplIkhZr5eDu1ZEN4BYXykC2ajTOlZ0EaAU9AMdQt02fBXFAYkEhFGuoaXyZJdePGcf7zR0QB8XwSwkYjWwoC1ywBcHoW5GcBVMGfzngvgH5mZiehmAB8kov8N47RlI4AvHAWejhlNF+wBwHC3wOZlcwEAy+fPcs//8hV7ccReVfDJ//sDPHPbCrz43V/A9edvwLkbJnD9+7+M79/7IE6YN4rfvPg0F+8Zb7wVBRFuunI7/uqrd+JH+w/j1m/8GL2SrQ2yUc0Pdc3U1CtLTJWM0aGOu5dkqFM4e2IG0CXCpAWDZSkusMlORDJgTdok/wjodO2OFxG6hR98ZgDItbReIC4Kc0BZJhbnMrdUC6mdzDtVmsRIkEzDpMKPc1Otn1Eq5LssHJizk6u6TDfYdYomfAeQiwzvNbIapSxDdhMVV+6DFP9SFmPEn5Maslnaiblpvw7bti7dOFp1FlF7oBHreUHVdbTwIaufVW2d488ukyYsq3Ko3V4tJxVRIiTvbLs01EMHFNZ4jvPKCINR04pvnIEaoFVRMtilMRszoOnM4gmrWriqCxel0rd8mchx+CC/TGIchyMDXOI0MrNK8NsJ95y+E0FczOzEFMvl6wR5EfTDMRaOWXLP3KYqCVgSJx4WTNkLUIMx7YRzk4keJWJ2ZmJY903kXkLu88rVQVohKt2kPAJufFAngOfa1Mbvsb+CwFde+DUY+W7eCcFPr5Q75Th4DyAALsaJldeiuFlOFcavicqMMQI0Omy8CSB1VLLxFmkWN/Wec3MmKV8IiheofFUORnYAepzWktd25cYOOec00lIc9QPdXKEDGHLvRRYQb5uQ/JL1259bddc42Dowd/D565566uwZl74cJTxIK22HEtNI4yHV5y1n4+S7eHCVTX3m0puDgq2lmLcm8+WWWvCaTAKc9ZcfDx5IGiCsxgWrq0usVlCOFEnf1V47CyKneSUyYM0BwahuxYOpKCTEORvA/voXuwAXVrYqe4yeLQMIIOvRtSBYL/SMbauNUiUGtaJFXb94HNc+bj1e9fGvAgB+/kmbsHv9BC676bMgANedtx5PPfUEHI80Y8Bnz+TdCOBTME563sXM/0ZEvwngNma+GcA7AbzPOmW5BwYUwob7KIyDlykANxzPHjqPJcndHc/dYRSeH7hml3v31heciXfc+h3sXDcRxLn2ceuwYclsLJs3Cy/duw7MjE9/8ydul2FyqnQTlZlMzKQ/3C1weMo4bBnqFBjqFMZpip0EukpDJ+51O2R2R4YLr4nsdvwk0OuxNwNVF5cWZMxDndcou/vTAQKzUbezVZDzFCVzir7bT2tShEfnCUwvlBTDCP9bP3WXzkftIfnIlFoQQxxmiW13x0pDMtESwZ0NsPOgs3SpO6ArgpXEkbLrhU6H1fwB4YTp6oaRlEmnm76rF1OD/PMJ9E0tiNKnPkJqkGGUbDYGBx9KCOxHpjR6Z5vS13ntHkXhc4g+IndmJOFiet5MXba1AdB3j6BZD/GCYjPGgg8/Fjh8Hn9PeKvIrrrcFH0eBQrKUtdS4bu4z/TnaHCeff36jAIAQf59vEUVl0S0F/5cVDSOWAEiu/nnBV4FWFgERa+VcXnJ/GvBknyXeFBjUcxC5X3Jti8raxwNdppUnxvn6SCE3EMo1abHRTD0KaxjUnUsMYL30X1kthocYPBeUD14I2JVd3491sAsNzaKglD2PJ8EbxZoIgYjMiolvNaS/FPJV09xot0JRpuTDcK1Tyv+CrWOarNVvZ4yRDPkTfVKudethOvHjPDKDvNpzQptR9XO50SbVZD/LrJJPO97OUHVElnP6PBnxsShnVzPII5gCgImSw92fP2qPsKh/GD6CLsM9cazGzNqvIjs1IHXYrrxqWaroA2lbcnUf4d8+Yq4zOw3D0w8zzfDaNt0e7s+RgaMooCrY2YD7uIjRa6D2FqUZ06LWABlz3z2zMXHzkSVoJzH6OYTmY2Ax5+0BP/49R+hZMJzt6/Cl2//GQoCVi0cwx33HkRBjGv2rsPb//k7eOPzzwQAfOLl5+IjX/we9mxYhFnDHXzi5edavo/imnKU6aic4WPmvwbw19Gz16jvhwA8ryLu6wC87mjw8WglIsI1j1ufPL9424ok3OhQYbSFdqmQgWR2XwhDhUxkJk5Zik2z9d5kZ1m9WAHec1PP3nkjoLBjJzfnWlkWAlZemNy9PCZRY0pqBpzs9pQ9A0Snej7X0s6e3Q4w1TMpJMJ0xfotExFDCbL2U3bKCAbwAX4BY0SLNmTBIDdxwU6ckh6RmCvAgkJyk5EXcvSMjUA4TARpyn71vyXTBNBq4Yzg7umBn9ilrKA4diafiucy7UZFSShIvy4QmYWwjIInoimn73W4sC7T+kmzVj28gr84/eq0+hQRfkGUBUsLdUEZ7MtASOrLnQrXv+iDUbZzNsygMS8p+A5FETO/sR6oOmxUSf1afjpUNyZ0yjlHJD7cMRAGRNCKihVOE3YmU0KqN29M+5AGImY98BoGSdebfHE2LqLfTsBWfMmaYHbqvWm8NwMMAah2qQ43fqTvhA4pgnLoOUQEZPbvct3Uaws5RCNs8pI1xpTLp++1J3F6/jMG+DFolXByebSsW7mea+YW8ufCVEu4PqB4JZEO5Lv9TIRys4RAowq9qZjMY6ru/Vznf7v6V+G1p0l9DYc4MsnNvUamUSBI4pGRRwQc+7pV9Sr9LuAbDkBo8OTAkJmUbVnU2TobUOpY+HKeK21lJGsVm5ZhZpQIZwup156q6/icmy6IgC//XBzy1K1IxmLI8QgZz3LPpX/GjIQ/KXuh69BXRyCaSHgXz7aNAHQ/D9jPQslUjACIG6Ds61ryK2Tj3T4Mrs1wYFOvI/B9m4CPvewcDHcKvPzxG/Cct37GjQ0Q8NYXbMeBw1N44PAUFs8ewVNO8Zq74W6BF+4+0f0e6hy/F64LPWKctrTUjP785eeazy/fgZv++TtuAgG821+Z8hnsrpmQ6xJ6pfFKZBZiMT3gYIeE2bipLdkAtmC3zw6isjR/Qx0v7EJ/wuzKMYtLXsZkz0zY3SF77QXb8xhExgTdkix+HTUhi+Dg8/Czjp9k/QRlzjykmj2ZKP1VFBQscDKh6nvddJouf/VMz9GkwsMHywCGcCaUIvkJOLP0syy63mTEr7pp8CArx1xmmcjwW/E65j6bTfCCwq854CUygl4c9DkbnWRVGvIyt2Pvzs9UFSbHbL/H0s9jOZPC8IVunyhOLr3wVS2zR4+CceUfCNv1okXMZVVIjvJA0je8eRmUkF+d70zI8e0zNMJFVbiA6mrEv+s3LLNMVSXp+llqOgkgo+mx55YUD+GuvfZSqMAeyxijwPLCzR9gJ8SbM95e0hNA4DQ78IKVjGvnwMP1MQrWFzHNArQwZ6tHNkpIBEyypov+jjcG3AagaIbAqRMJI5SmVe3nCm+e7QVKDupSr3nMUuOiWQpmLIjD/ViYdXM/wub3Qrf3GNmx2o1CbUw6ZqyQL+WGrSNXl8KjqhsigIlUP4BPx2piEoEePh3hoOpovrS37TbBPOzmFlbmeOqdVILvR+SuZHBlVPEDa8VgXvFjUVpCt1s8HQmcdufl1CAOQDx5U08BLZIeq7QAe7xFIlgSU0ZW8dILyz3gdukqgCTlI+WSVJvPdlzj6L5Krp31mUhXH0E7itWLNRFa+kRaAAAgAElEQVQWPtwcofpVVKcO3LtxYhJ37cxeUSF1W9hE3QaFGhsC8pn9lQ4yd+hNLoJYsBmZc/WCMefscLQw15oNdwvMHR3CqoXm2NX4SBfjIwYqaSeMj0RqAd+jlCZ7pbF9LoCx4S42LpmN1z1rCw4e6eGqd33B3MFX2oWwAHpTcIsAYBdDeHMAMzHre1fUxE4AONTuydInB1xlYp3shQ5h9AQEOzFM9WTRNrODWcz8pbZlaRYcY2KhJgVVfme6w/6JO1cHv4h4M1QT1Oxw2YW/ILeAeCBkzT3s4poCWb1ESM4Vgmy0oMQUHKiHL06VkOgFBG3cA3deIwibJKKFEZtTHXN9KBR5lTDE2QAZDEhIStpPOo4WQr+YVMSPFuj+CTcP4VhxQpd/KP2vtBlTrqyD0IBR6+BIJblizNSzoIpoGXEbKZl0A6HZPvNjUiSo9AyoUA78zITlXBH6hzx65Gc6tVkVCX2ONyskOZNIxa0WzkXAcqaCSjD1HhRVPRKpdSIqq5wXQtiGbg5k7WRFwIP3YKi1BoVKRAQ43R8KPaDkmZLSHXiD7V0k5YTTnknfkTnHWb4o4EiZA3gGVFEg3EpPFtNMRHUZatO8UxUR1HVabllVoMYJ/0RKUFeGixZcuKmbYO9lsyGYgjp1Xh4znVjqyFUvSbux05yQChNsdkbp9CWKPFRKHShQpXnR/Z6i+pEw/j4+D4IDplTXYftF6leDRWg+4PmROTxem30d+FldLIO8RtOQbKzLNVguX/hx1Sm8/KE9cbp8VFnEsYljSFWw7g+ufhHWiwPHVgZiwG3elGzPmZLO0q/pMhWnQNgDTm0EHZiv2reFGgN6zimdAGbP9zG80yNyr1CQcV7or4RgN971fHbLvr0AjA+M684LLef+6LIzsG7RON579dnp3PYooBbwPUrpxIlxdDuEm28MXcPOGu7ggtNOwJ//3zsgZol+UBoyqna/GJuBEi3cJlqwuOhn8j3wPGWFFO0F1AMlD0oESMpkJ+flylIfPPcH0budyNQTfvLSYM4PX3JmrXK4mSE7coyOXc06kAXUi0p6wot3AKUg8ozlfyYvBFRQbmqJFzduEpaVUE7CpymD7IrVLcJuF5KVgKXqfHpTIKd8VyRE/YMgqBld2RkGCblG8lEGK0//GBXyk4kZCUXyGWxOVDRu2KeinKoyHYjz/hTnXZ1mxJCWqtSHTzdTKlXmuHgCQkrp5/aMcMpnjq9m1E9Q5egz+7YykZyY2Jzc/KMeSPevmmNkPLuTRBIhyt8Da5N6bDImu/yBiZTmyYUP3ydmrixzjQ4XhnHjw61RYXzHn86HkITzc7Xqt2S+ddwkbs3cSKcdmhCLQCskmzYuOz0kNQ8ItZHMYYB4M9Cdd4RqnairOCAAo11h8tog1/1UOoIRAy2aKqvuT3GvDLqJ+gzKjvB93TyuBfAgTR0mFvzTICmzBIhljvTjAJAyIsAbzssCHPw1DGHfh6pPqPQlrxLGQknn6wEUHBhz7MpaTQQ5rEYqAMMDqBLmXKNuPyfjuLDs8ifFW1C/0uaqTvVmmqQr4Vg1vhhYS/k6WjaK+r1vM2es7EafiWaealNxF8+1j1hahdvVbt2Jpll9n6NfW32aYi3mqoKAxXNGgrTXL54NAO7qskcbHf9Gpy1Ni3aum0jAntBL9qzFX7z8XLsTYzo2wQywggj/6+LTsO8JG+xdKxSYErgBhXrxSU/SMnHKgGR4gUCEAYLch+fNBAA9mM1OnXOVW/jpJBZytDvlXqzakjA2bWeqKpMx+91LPzEhKa8rnxKEQH6HOScQuh1jxUP8Lf1VT3oBil/I4sawtv56lofmg5JfWsBysqGOp8pRB2RTbqNfSdz60seChDbJcQuP66dN+QopLY4WKet54spQOnwUwgrjMcgBUsGxjssm1IS/hJI+M728K5MOqjfVkVe1o95tb0aK70ykKiF1Jkt/Fe/Nx0zERxUznP50kFwJY273Hd4xkIwVmYdF8BU+4zksuX9V5jU7uWmBS6jI3JguwmoopPmIGuxU1mPwS+WbrV8/l8dOMLQJqZ/Xos0xUh9svgXnq3ROcXs4od+HdfMV+3qWMCW8V0IR/EMKMy4q2suymVjmqOpImVeP5C8BaRWsxM8zy1JAbuhn6rFqrqpK09Qdh89UYtL/BcjEdaGBGsPIDqUKV9pG7JVwm88ls/EsbtuxZK+tjNshrrtgww8+vrRZEJ7NGXffjiZFDf4kvutD7GWjMmIgXttNnShgpwGcjD/2+cDxELbdrrULQQTMGuqoad2bVvr8KVs/pPIy4NtsULk7AkkBVqKgDWUeKUi3v5NmknnpL/ftxQrlLf+xQC3ge4ySB3Pmt1yRcMryOVgzMYbzTlqM1z1rCzYsma20cCqOPCM1SBWFWgwKnuv0ZBA6gYO8UCEHm106ZHY2u5nDsQbcmbAd8hNez/7JMi5mLHqhCYQ7mWzgJ23r9Ckol0zKtiBq8uJwQWU/gbqFoYLCKmQkq0YdZcKFglo66fYDRnoHuCqfWBisSKmaSVILXhK+mny3UjWvJn7zORNRvTk/ObnJrYuVEg9F4WPJuj7XQKxp2kcwWJeqTiEUyuvkRur7LFdQij5VZvKG8iGTz35dYEZdJB85J9zpd37gNUs9CFaVsBaYo0aWfmiypKj11Jwc8aQNw/U86c7mVRQhqXPyYzEQ8mziDDmzFAq/umCVVcVxb8wxFL4VATeY95GCVC+wGkpBVwZc1bARFyIeiyKoeybDaMn64DgP3yZ1xSEQjDU6fVntN0b6JBYL4HFySR1k4mf5c4K/74/SX518gnB9idvUxVFrnQwDsRDS7e+vjZJt0tDMWLRu73zRWSAALzt/PdYtnh20ofyF2mIK5jQCuTEhcpLjh7z2y2vDFA86TV0+XQEAnrN9pasA0cq7f+THuZszbKVrp3/6PRHwPy86FX+5by/efuWOENBm+r68CwFb9GnL5upQwCYQaAZ1OfVE5py8UNgPH6vUAr7HKPmdELtc2EHxB8/bhkWzRzDS7WDbqvl44/PPCHZ5iICnnHKCnxRk4gklhWACs4/ULjJ8nvbdLz31pFCVD6QABWZQyzUKYqYkaemD8HqBE7PPMIznS1JhWy8yEYsjG2dKqhaFGFzEcoreKfS7bH1WRvJfBoJA0QKeyyVnyBkLcqQELue4R+JzGldnlitatrS5glRWSyipxQCKMvXkguSlpIqsj94yMAiYouRLFN+vitNLt+LZzEobwhm/tOoQnIyHJpmnr6o6XfqQFGI5Gq3ZtL6nlxdHQKUPD5n+Ee6Wh2M4NGNm30YyjwPB3KyzkXDppd1pnKZl7xdO8nQCMAUfDRJpwImur+gRBb9qGqamU1TNQ9QvkA1YV4IYxIRJsf3fz2R1Yy6YFuNM+43NSqE9EzWef7XwHwXTcfO8K3ATpSdARqyHtCdTbe7rorCPl+RLvv6C9V7JJZYbFAVw1TknolOYtPZsWOTAybtefBaWzh3FrnUTePxJS/Cm55+Bt1yx3Y+fQJ4yD3eum8Anb9jjNtPfcsWZeMNl2/DJG/Zg09I5IAJueuEOvP7ZW3HzjXvw7hefhcvOWoWCCNtWz8efXLkDRQFccOoJ+J/POMXx8oeXbguAolhIjQ138eJz1wZg6LcuOQ2/9NSTMD7SwdO3LMO7rjoLBQEj3ULJeIRLzliBt75gOwoCXvnkTbhl3x786UvOxoev3e3qc8H4MP78+nPx4Wt34y/37cX1563HjhMX4oW71uBVF5yM1z9nK8S7ZkFeXrxw63J8wjoelLo6a+1C/NFl2/Dx68/FW67YHpw7DOoUoTzoz8zaNs7MYY81Iu4nhB6HtGPHDr7tttsebjYeFfSMN96Kk5bOwS8+9SQsmTOSdS17z4EjODzVw/5DU/jJ/sPYvX4CUyXj7bd+B3/91Tuxe/0EPvPtnwJQAgfsvX+A8QJaGgtwMRE9cdE4Vi2YhadvWYZv//gBXLxtBa573224496DAGRH0nuck7uP5MLMsrRenAov4E2V3tVvqdxjikdOw6B33ewEDWX2mS5I5A7wd+wKUtpVQJsp+d0lD1T17lWnIEzZg9ndgrK7xVpok3VGFhy9ELnFV0ks+rnsMgKhJ8N4qOszCsHBdpdn6J1P4qggQTkcoFaLpJwHlXOFPYYyu1F1aMsTe3Qjiorq2ku1gU3LHXyXdleHTFxdInTeI3Uq/HlX87494jLGpAUeZ76sXgbaqKC/cWhmooQMbWYGu2HBKs2eMo/uRJINUWSulOFb4rpPlW8QzgoEvk+Y2L3oll6nqbdBqzZAtHArc4V2NCDJao+GAe+s0/Q1r70wivA3pRrOWyb4Mcy6AuyrjppP2KZBSRr5Me7mCMVrz44HaScpS1nKuOOgfoOLnUlMyrzjBF1v2oW+mB9K3ctmnIwPb8YmDhNiMZ3deSFmXw+M8BySFqzkfJt8dxdXqzaK2zkWwPWZK+fwQdWnbt+cqBLypPJVYykobsxAkJd5mMvLrUNxHajyRt3U1XPgXTLmIfPMAQ749kjGgS4/pC8qHjJrQpwVRc+zvOm07Hu31um1L/oMz1b6ekIUT/gIvFnDn58M+l+cv8pcxpMW6iUeMwL3/O4cK/zaVqi+K8kWEV96nvyrV+x1vP5o/yEsGh/Bh7/4fZy7YQJrJsYzlQh876cP4of3HcTHvvR9/OzBKdx9/0FXJX/2snMwOtTBwSM9HJzsYeH4sIu3/9AkfvCzgzj5hLnZdPvR/kOTKEvguz89gA1LZuPSmz6Ls0+cwGsuOgXMjJ88cARHemWleWNZMi5+86ddH/v9556OU5bPdevtdO+d++2//g985ts/AQC84gkbsXPtBMZGOhjqFLjwjbcCBLz58jOT+rznwBFc+c7Pu76k+9vGJXPwjbv3u2720r1r8fZ//i9zZRYD55+0GL/81JOnxe/xTET0JWbe0S9c67TlMU5EwImLxmttmWXyWTYP2LR0DgBzqHV8uAsQ8OpnnIIL33grGMDOtRO4es9aLJ8/C09/462gSEghMrtOG5bMdumftmIeAOBPXrjDDHQgXGSAcCI2UMM+YHtvmewU2bgSjgBi4yq827GOX6IJKucOWkgOGZt3BOv2DAUB//2pJ+P3PvWfgdbPhVWLqatrG0buugkWX1uizFGXdIWNyIlmSvAJKq0PTXvPJ2KJ4ufuAfv/47w4/KwuZZq5bsa85jb9XkfTrYZE0oolmqYkgnEcMZIkdXaDlC0XtjGLlKZTlWYcrT6Puj6dBqtqZTF7Antvb3nJuiLPioJkH3PF9yqqqIRYy+CSdPNIGtELtdaBgpRTTQHaBXpQDhKQBbBy6S6R5G4uaHDBHkwAcNfu6DNvwSDmzNxX01H0WW1X7qDYPqF+fSnX5Ely0Ts9/VCUXxNKxmvCuwoxPbnYU6YeJYc6voWDOPvaWE0m4ghUSt8g1v0K3qOiMKzDq+xkPPhNjqi40dznhH2YvgtAXUnhPwsymq1Tls3F7vUT7i61nx08gqv/9DYAjFv27cH+Q5M4cLiH226/B5/99k9x+c7V+INPfR0/fuCwq+MX7lqD933u9qAalswZBQBcvnN1bXWtnhjD6okx7Fo3AQA4MlWCwRjuFA40zRruJK7/54wO4eQThmrTrqM5oybu6WPzAQAvPmctTlluwCMRJY5LYioK49nyg5//HiZmD2PjUiO7BZtb06BffMom7JvagHsOHMHKBWNBejtOXAhmzoLnhePDAAFX7FyDD3z+dhCAidkjeNsLtgMAnvvWzzhxSWROke+GO4/saxVmSi3ge4zTB6/ZhdHu9AbBpWetwp6NiwAA52xYhM98+ydYt3gcyy14lDuQAL8D89YrtmPlgpqDsnbMX7R1OW7+yg8RigSw3yKRmIOoIfBCDBopRFkA1kyM47s/PWDjmpkiFg0JwOqFY/jZwSP42YOTeMsV27F6Ygy/97f/mRRBFqWc8M46gKQt30uE9/smKas4ujhu1fV5uiz0Aouk6I6azt21Qn6EdRolqYTDXHhJstIcg9N6IhWzjocqODAwzVSQE2IAVHEJtM5rUDyZFRKT5I4SaeTRJ494HMyQIdfvHbBR2sMqVit4yT8WiTZ60YBfvWkUeCXVoEvzZQdvKqQT5D41w0ZosilTgXbioQVyfR7H1TfsvMMyciINSFoRjs+cqbiS9dVvzr7XHhJLZhRqAkzmqqhvUPAyQxHOSIPmO1tu7nc3Mwww1iuqLDuWdQC5aiBhKI4WoPB+nFSnr+tRrEtc2IpyaD5cHAF4El53APvezfVRolrrXJDViqp+8KTNS3Fwsodv/+gB/LcnbcIHPn877r7/EF50zon41L/fja/e8TMAwLZV81GWjPsOTeF7Pz0AAjA61MHvPHsLNiyZE/C/ZM4oNi6ZjbvuPwTAAKM5o0O4cOtyXLh1OQDgbS/cjgOHe5gz2sW9Dx7BvFlD2HHiwnw1D0jD3YfnRJU7uzcg9QO0g9JIt4ORbscBUk2/8cxTa+PKZemzRzr4/HfuwRNPWeru0/uTK3dg2dxRXPzmT2Pp3NFAgzw+0gK+lh7DNDcz2JrS6FDHubH91advxrd+tB8rF4y59y87fz3e9k/fxs61C/HLF5yEXskYG67vcn902RkAgG/e/YBbacmCGg3o4ACAXpKqznSF1xEIgCiIcMK8UfzqMzbjj//xm/jXH9ynDvP7ZV//lgVr9cSYJG5MoEjdscN+EcybyrGyiecsaBkEOIWyZ3/pszK9xiitKl1SisgQxWmAqgWOSnk8FoZq+ArYJvV0mmUZFHOEsmAkXE2PhTwvCm+U+l3C7OCoqS5G+q5B2lVBoj4WBkthQmNSwqRELQjJ5dnTbduqX5VdNEY9lQnHUrKPa6c5CwjDnAiczFUBlCSv92GIS/IQ/LnPiCfmelNFFydqR6dJypQ5KEsUV9qOKyrTR0m1aTE487w0IYauJIM1cymmbDXpQ5T9nkOt6eM4gbgN9Au9zuQoNz1oE9C4vvppBKNuCqm1KucofnX2JsUaFGpT4BPmjeKu+w8G2u9nnr4c1zwuvC/t9Su3uu9bV87HvQ8eAWC0P/PHjEXSfQcnUZA5r1aljXrds7Zgqqxw5Q0PSgCvyROZp6WHjwTcXXT6Clx0+orgnVir3bJvL75+137X9wiYtvnpo4VawNfSUaN4B+3Crctx8glzsWj2sJs0+5FMpuZiWv+8BIWmIZa0eVLwPA6nwgudtmIufufZZuF43SVb8P9//Uf433/3DaPlsyuVNi2Tcz86jRfsXIP3f+526Gsd8os4h4/Y3CPmnlUJSWpl1KCJg8QUqGXl4TRNMgJG/jL7Oi1bU9L3/4XlUUItMgJIGrJSVibkX2aBwzQB7DQhx8yoqQSZATBN0u6/zlWjk1QOr0Myud2LmiyD5LR2MzOgOfoaPdMAR8ZuVbETAbkpOO8XSEu3SGsq8cYaR5e2EtDH/nnIu648ycibtpEN589ERuxLNAEMVcjVAqG4LAZEhhdJqyjhGa+a/lc5xqIXAig0D7lemAU38cu+Dc35xCNuco9TAFWRSIKio2eqPzZhtw44ZrmtCGNXsQTUMVWkQdIuYSdx9RBo2X1JdJkcCCTGTS/cjsmyxJEp03Fz2p+YFowPY4E68yY0b1b/uMZ88rGt9Xk006alsyHSUeM5/lFMLeBr6ZiSPqs3WLw5+OQNe3DJm/8PRroFDk72KgU0OYf43Z8ckFcI9HKBgOTj6PSKgrBxyZzAYYoWuCT87z9vq1uMAOC521fiA5+/PTQjjQRTCtdCANZZQ6F34UU6ik/FsNMgBuQWWy8MCYmTGRUsITkHlH0XxamSe5KzI+zvNYwTFmFCWkWfjVQJ1uKIKiE6F64p5tBZz2Q5qKzn6Hn/HLzEVGep1Y/fujqaGaiP066EaGGeMcBKYmuBsyJjpHVZu3lAHtBU5+oTHbTPTIsE72khXz0j0qMkpOBMXm58KyRMQOD4R877xU6SBDjL3aVuky1EqS6S3tCKz9/pDblw/lCoUXGt50zOzBlxAQMwjHx7xf2pX19P+1Daw+PyxDnofKQ+gy+kY+o6spqtGNjmxn5VZ0+AW+YMcFSI2Cw4l55urmTc6r6nQJ+kDfIbo5fvXI0PfP52AMBTT12Kg0d6GO4W2H94Ct+4az/uefAICMD7r96Jex48gqIgjBSdxhvELbVUR/F1HY9xBV8L+Fo6fqlTEG7ZZy6Pv/CNt2YWb8KrLjgZv/+p/8RvP2sLrnjH51JQqLzAAcbM6ymnnIBP/dtdiaOP1RNj+Oh1u/G8t302AWtC2mQVMHcCfvja3fjx/kPY96GvJIttIA5rW0YRuAS4utU3Z0yTkpPB1APtDTP2fkgwO6gOYCoPln1yUWWoEaEiIVCbBcVajVrhv58UH+UXxI1+DwQoZ0g5OVk/r48FxVsNg8kr3Zn6Z+M3F3Ix8mcHg6widvMZcbYyGld73IgVbAzSlFULvU4jCDONfpKFaJk0HDiyg19bBmivlPLMPaF8OQIATHDWDs5RgQJ1ALuNL91ExN7aQEOGBPP5GO6reOd05+/i8GS0jJHzUkTIsXJmCeFvTR+tay9GpZYxjub7V2rWmMs7B+D0fFnfjfJrRdA2uaBxZVHN1JAJHvQ5uwEgzaHDxufBw3eGdpy4EKsXzsKzz1yJ0aEOeiXjFz7yFfzwZwfxyRv2oFMQnn/2ahye6iUgbqpX4v5DU84p3Lyx6R8vaamlOpI147FO7T18LT0i6IzVCyA7127RIeBxmxbjkzfswbxZQ+78H6zAQzBufXX41z9nK/Y9cSOIgBPmjib5zBrq4JeechIWjA+HedXwNj7SxYmLZuOc9ROBvJsVAqEXdA4WW7jnCM60CCAMRLIKqUenLekQ1CIv6dXjtijV/oFiwUS8slalESfB+mlNZbP6Uh2sQtCykm+/Ms5kYcgKaPkQFYEo+j/PzXQEyZwA3xjX1FaK1CnXY1Yv3yd85PI5Ggu0XAOTYv+q0dmfsnH6TBRyZqrKdDtJKkYaAOTSav0nVAjWtnNf3L7S/pxp+JCvFOzFvLorLRBeWZKkT/mNkGCOijLiih9am+jKXtOJm/XrCOE0oUYJV3UCHz/pfTK/q/kzSU6B/txrSYijh6zaIjlyoFirKw1Fcf7ihj14w2Vn4DeeeSpesmcd5o8NY3Sog/GRLm66cgc+ct3u4NxcTmPX7RTB9QMttXQs6IW71rh+WzzGVXwt4GvpEUGvveS0YNEhAG+4dBsAY44JmPN/sUC0eM4I1iwaBwH41adtxmZ7l81HrtuNG5+wMcmHiPD4k5fgfVfvxIWnL8es4Y4VogiPP3lxLY+/8vTNFmyGk4pzZgIEu/hayApDy1MP8Vi9qfKMpxf6GGzprBwItOGrIQiFglUDySiIrwXPjGSfCoMB7EuyC2opYjoWcpqQExypOs8macS8ab6axW4StkEaFdQv6cGhj++XDRL2XxuU8agvxwQ3foP0+2149AG4/lvdtoP9TEANB+9dWnF9Ce/wc4j8QX0n2PvGdNwIiOkvmh93RlADvQh1MfxdcnojKoeVymhjKQfuHUhkXxe1mzCWMX3HZ87CvekmiNRn4M04SMR8SXjKDfZspefbN/uMc5tEofOx/FxOQRSZy+L0Y1aJgMvPXhMURwNo6Vu33LgHH7t+N3asMR4pP3rdOZg90sXvPmcrPnD1LnQKqj2uMT7SGo+1dHzQJWeswNhwFwxg/mNci9yOypYeMfQHzzsdv/yxf3EC6salc5Iw1523HvccOIIlc0bwzR89gFnDHbz58jNx0ZtuxRmrFzhw2M9bKAC87Lz1eNl56/HA4SmMdIvspfQx6Tvx3CKcWfnDJTyzVPtk+uRn/uMSClTmL1wnqAvBddZptipAdb79DJZSQQahOafKjNJH6QPFL8Vh4meV5BOZHkhLgzsZ0UnpSiJOwseQuh8DeYaqyuo3Bjhbvzp+rXIjJz02e1nJV8Rk/3C1D5tx4foV+eaRqnF32lWwJmGACCQ1KLvwxjZu7L02aY9I+g5nBX9nnuQcX4bOpb84PZ5dHGAC0HFghOxjewUDw/3SJPyDw7p25/LUeE6AJPmyy+Xx0OWQ76phgnN9qiRSDiZ/V2k8c8bdKk5L6tfBscwwTVpWMRD0N8d3Gtd9qvaJiW0A1hHcu7CP6AvCASkTh/nUTH4azL3yKSdh19oJdDuE937mu1gwNoyfPXgEH7xmF57/9s/ho9ftdmvjSLeDX3jyJlzxjs9h1nAHH7lud3UmLbV0nNJwt8AZq+bjM9/+CS6y1208Volq7yk6TmnHjh182223PdxstPQw0J33HcRv/dV/4L9+cgB//Yq9jePdd3CykdeumdLX79qPX/qzf4EsyAHYYtlRFsDhxDklanltoPOAZ025xCGKADcHP8mckyHyHjpFngmcyWiwBf9MC3NOkCTLF7My27LXSSi0IF4AYzOjGNOJACimZyX7S3JF6CkKk6c+Wxlca2Hjx0K63NkkAFsAb9ZcLCMcyZkqAvn7yxT/2mytzttgQb68ul5cXIR1BhsnAGbk68sL4faSW8WHr6OU58KeWy1VeWNhWAM+4Z1ZlZV83ChrEAi9MjwEWpDPJ5HEyZ8nk98aTEHFCTykqzaV31o7rdtG+l/VakZRXEDqWOnRyZuAyhgqbd9gNm2gx4tra9sWRBSeVWPzzo/NgCPLk58nCju2gvpmaR+yppQ+r9KenzN5satjM45MHr2ydP1HzwWuj9hy9UpJ189PQKix66pwus7lkcwdwr+5qkZDEz++dRn95chmbpNNuV5pyicAT0Cj1KPOS3gtXH2YfKXcvZJ9+0mB7IeeF6WOdDjnaTKee1S8uM1c2jYcOZ7CTQSGn8fjMRo/00PTndHMxIkf7l43gc995x48afNSXH/+enf/20VvuhXvfvHZGCoKzBsbwpGpMjOmI4gAACAASURBVHs33Dfv3p/dXG2ppUcK3XvgCO66/xA2L5v7cLNyTIiIvsTMO/qFazV8LT2iaNm8WVgyZ8R55GxKDwXYA4CTTpiDK3auxvs+d3vmrb/0GNFirYWI8Gto4pmEdyHYhYkd1ziKwV72cZ3Y7AXwqhBaQHHpc/oyENADSSdNORCkKgBXRYwsRVikuaMYpGXX4CPJPsNrI/ajGPnbJavTZi1xIi1alWDZuGFrgmhedLvFv10/qMkyn9gA8TLhtcBNsNe9CIhy4fzgFEGdonQSEjClAILeqIg1b5oz0cfntImSoQAvL+Sz2xAQDZ30ZW/56BMKAI0tozbT1OEMcM/MClIPpOP4qyD0MPefvm41ONbl1lSyAUD6jlKdn2xkeCuG/qMju6ety8AqfV2frj04aLp4KGiNpfa8KY6xZB6XWi2iPqfZi6eOeI7WZ/CCPi2fBKxZOI7v3XMAr71kC3plie1rFmbB3C37wg3TqovAW7DX0iOdqq7ueKxRC/haesTRi89Zi13rJh5uNirpsrNX4/2fu93tQANIQJ7e89afoUhIwbdYQ+FlIi2xhbxUAbS86BlTk1hHgSj8ob0EUo6NfklUUUU6FP8YBEk0y6Lx+8GoT6kzGwvx94H5YVj3+/0QW/+KTPpy9JCQlnD6PTAz6kiZB1qgposFSB+0Hm7JP8sl7wXvEDA2RbQaFInmrlApBkBKg7XM/R1hScP3gXWA5lf9Dk1YpT44qR8QnPNhcckP+100cv4EsqoXgvEoClbnFHUZvYffUkMm8qDUpVixGaCBm8yfzkJAm7279xaiWlQlml5XXw4U2mi5fCN0mQDoaOjoR8lsS75v6mcSb9ZwBwcne8Fmw68+fTPOPnEhJnts75gzVAXmWmqppccOtbNAS484Wj0xhqeeesLDzUYtOdNH0s/8rjHCVzUJ1YePvacJVUG1GNykl1PH6oU81ULBuoJVCb+cBpiRcD9dZDVDRDZomzbLvhk8r4s6HWDXJOdGPaSyOUKvu/37xlEiUceAHHBwnjwtsgpGASEwFZTY+jOIx4Fc78IlDlegvqtnJRsTRJOk0i5V1AOHVR3yRVLLURgN6JQ2K04vSMvOFo5vlzIlZU3ikf/UaUgo/R6OP9V55X0+A/czmWMpCeaTTeotTDg4S5dTw0WUA+SaYo+Ur3/O1oDXVQtmBe32iidugnPWA1+uZ5+5Ah+4ehc+cu1ufOxl54CI8JYrtmN0qIPNJ8xFt1MEYK+lllpqCWgBX0stHRP62PW7A292Wm4DvIAD9eHeoVKmcbvRQjrtQBjS+VVI7TmjqgR3xXGzEv70JPIMxssAyVRiy7FQx0FdPWjNyXQRZpCG5pfTcP3SEeFy+mA3YiOTaaPWqkXw/jfnXvdLro4G6ErTqSPOfNNATNpSzDHjPOoxaXpu1AvqHlK4sW1BZqA5VN/Z2go608tpjDOfV/pCA00dNo6bxo8AZATmADlnR+5spw9rwl1yxooA8D7rjJUujD7rlgWPNq8C/uxoaDLrQeQZqxbgpXvX+iHJwPXnbcAt+/aEYJCQgkOF2t10GCHb4FxmtFcW1i3hnS86KzhPvW7xOG7Zt9el8ZYrtuPnzloFAvDbz9qCJ5+yFJ+84Vy8+fIz8epnbMavX3QqnnPmSrxkzzrMGxtCURBGhzq4Zd8erFo4ho9df05rttZSSy1V0owAHxEtJKK/I6Jv2s8FFeGusmG+SURXqef/RERfJ6Kv2L8lM+GnpZaOFxrpdrJCVkKR0FFJseAEK1zF2ogwQDZZj0cyqoggkN3hzqBOSgNnKRBRGwC3/onkqUlaVcWsxTYNabr5p+9TgAsgbOcqJNcw/0A2rgo0YJrTo8EgzEzyqjrXOO38I2ZiQEBRwBhMiMMWiUwwYEQ7rXFXLajPTNbV/EZoqcrhkGZVAGiiiYyfI3wfA6Gr964N04QPWxDhpXvXuefrFs3G5TtXVwO8KA8i4HWXbMHTtyzDqcvnBemffeIEfuOZpwRhLzljpUuHAYxZ7RfBXKXzkWt345VP3hRUgtY0bl05T3MTvNNOXsQkmAjYsWYhfu0Zm908fcu+PcrLM+OD1+xy3jA/ecMeF+85Z67E5mVzsXXlfADGgc2aiXHsXr8IZ524EC/Zs7ZPI7bUUkst5WmmGr7/AeAfmHkjgH+wvwMiooUAfh3ATgBnA/j1CBhewczb7N+PZshPSy0dd+SEl4wdJEXfq8CZCISaWAnMIvBorZmkpyzYwnQr8F5/o8pQO9KUqvOpC1gjkjfMezrC/VGhCv5mBpKQqtXIP64sY8PCpwK3ipxTyc4sO6cRSpmoT+GhaMum2kuvCVRoT1WkgATRWmmPqN67o78awWXO4tmXk40d+ORrKQc0dVz9V5kgSTvpIObJpWetxo1P2ODTU6COCLj87NUY6hSRyWiIXFcumIXRoY5LnQA8cfOSUENGYfqnr5qPlz9+A563Y2VgOv+ai07B9jULExAamsya/F987lqcvXYhxke62LtxsfOYG9fHtlXz3e/taxaElzfb8LNHhnDLvj34laedjFc8YSNe+ZRN2L1+EUDAK57o73slAv7w0m2YMzoUPDP8EsZHuvj9552eaYSWWmqppZnRTAHfxQDeY7+/B8AlmTBPBfB3zHwPM98L4O8AXDDDfFtq6bineNc73v3Xn4GcFQVwoC0KFx/mj8+O1AmsfcFBxUu1uZ1/0exx44BZNiKB+mjRTJOioKWQMF9Zlrr3lXGU0NzQVpTjZ40pC/+St5U4vRbZZ2wgK7LParJnQFV3IopJp36uN1NMdVIwPvUXOaNGKq4AtlKZaML+ZjZXKcQcOecpnOc1d0Y4Jg+Sqio2gXzRU29CaYBcWNaFY8O44LRlIBgA5erQsnv5zjX4xA3n4qV71+G8TYvtPGhC/c6ztiRcCTC79KzVuNDemUUwWrDzTloMAnD+Sd4QaPuahbj5xj14xRM24kXnnOiev/LJm7B+0Ww8fcsyl8YzT18OImDNxDgA4DnbVzqt21CnwHtestN4CCVzTu78k5bg+WevxsT4CEDA2WsX4jUXnoK1i0z8Vz9jM06YOwoQsGrhLADAuRsW4ymnnoC5FtC9/+qdeOLJnt8/ffHZ2LAk9HpJRInHzJZaaqmlo00z9dK5lJnvtN/vArA0E2YFgO+r33fYZ0LvJqIegI8D+C2uuBiQiK4FcC0ArF69eoZst9TSsae3XL4dN3zwy8bDH4wr7kTAycQjwNxpzBGQk+8iALOPL5cwO42d/qHUeJKed92uhFtKtYgxVVmAhvx71+TTUcX0jaaZ6KMAjKugOjgFyQ7Cuq8PJZY3TSCpUK6NyoD1DkhB3v2yEgG+EX8NwDRl+kqzsvsCxxdMD0LZfjiD/iZp6i+xgxZ9zYIzhwbsWTxWdRzqyPX+CWcZ9+Mxp0XVz129a6CnmIzBJ0BOo6gfV847mbdau3bh1uU4cHgK//CfPwIRsG31fBf5jNXz8e7PAC8/bz3GhrsBAL14m1ny1y+ejW7HvNiycn6Q1bxZQ7jv4CR+4cmbsHz+LLzk3LX4y3/5IT76st0oCsLVe9Zh6ZxRXKmAneGP8JTIidcTNi/FEzZ7ceSD1+7C7OEurn3c+kzJDS0cH8YfXroN9x+awvY13giJmbFr/QRmj3hxiQDsXr8Iu9cvwsEjvUpLh/lj4Zm6RbNHKvNvqaWWWjqW1BfwEdHfA8i5RHy1/sHMTJTxD11PVzDzD4hoDgzgeyGA9+YCMvNNAG4CzMXrA+bTUksPOa2eGMOHrt2F59/0Wcwa7uDBw1PmhQVzVRofDU7ku7vm2j7w7s49xQJ3ICja70xKsNOAUn67wOZBDBIibDI9mqZgHpBUTFbQqqiXPjQd4BGn4NzgDFi+rMZ0EMZnCNQFPsZgpWn8JLPKeJR5GgEkvatxtCgebzl1YRTAafIgYE/gELn0BAgF/KoNFPkQTV0chiUvJvc7DhqzWfsiAoKiMQvMTuVaDQpbw1yTECUtY56ApXNn4Zq961AUhE9/6yf4tQtPwYr5RrP1lsu3Y/XEGN551VlYOncUzIzTVsxDTM/ZvjL4PWdkCCedYDReH7xmFy58061YOG5A0VCH8HM7VrmzbgvHhxOw15Tmjja7hzV35xwRBWBv87K5uO/gpPvdesRsqaWWHglEFQq1ZpGJvg7gfGa+k4iWAfgnZj4pCvN8G+Y6+/tPbLgPReFeBGAHM9/YL98dO3bwbbfdNm2+W2rp4aCL3nSrvwOK2Yu9egdeCe/xe9LSGXycgsidSxEhz1/QnGq3ClKmZArwadMz+S2aydLmLyZd8lu0Hp3CaykkfREeS9bpheVx3hAJbpecojjakUXh/R64DEp1wbGUnxmJTM9IyywU8KDrAAZsw9V1Pl15J6BJeI53/nXd6/LothTQFZQ7aiedfoxXJE9W+YD8nXMSRk/9ul016f5EKm6p2k3C1akbpe7ll7u2BOEGhK5r3V+kvfVdlHE/yWkddTlK1YbxS7k3DoAbm6aveD5Lq6EXk8QAZ9l2i3mSNErmoC1y6FPyNH3X3mGnAZxq1yZnZ8lq9972wu247n1fSi4Xj9PImYgTgEu2Lcd5mxZj9ugQlluAd6zowOEpjI8c39cDs23LIulILbXUUksPPRHRl5h5R79wMz3DdzOAq+z3qwB8MhPmUwCeQkQLrLOWpwD4FBF1iWiRZXYIwIUAvjZDflpq6bgl2bkWc0cRZp0gjVRm7qctIklPPwDVyd6hUEyh4JoJbYI1kW0o+TJNovBbv+RyGo5YmK2J0pdy2qB+CVE+SBPNDdW9rMhr+tt2TTJqVlvNQuU5DcZAVULcJ49GlcDBNweyYq1wBvjG3xge/Hmw6P8qr1Pg8Asnz/NzgntH+h2psCkQBQErF4xFniZVGhTVebTxQgRc87j12HTC3GMO9gAc92APMG3egr2WWmrpkUYzBXyvB/BkIvomgCfZ3yCiHUT0DgBg5nsAvBbAF+3fb9pnIzDA76sAvgLgBwDePkN+WmrpuKV3veiscHffahaUsioQQt2Ofi6xWCBVGq7XXnKaSzAnliTarSChPPCspSpU1lQmSsJx5lt1esHjjNA8HZop/OkH8nQlzxys9WfmaEA2Vn/54GGna16uJr10ZqQ3UIIyyHPW4C/DFeltFB3PwzmXBuo8a6Z928fTGauBGG0K+c8Y6vnn8nvD4tkAgN959lbnhVJCXbh1Gd5/9U6AgF992ubUoyeA33vO1qQELbXUUkstPfJoRoCPmX/KzE9k5o3M/CQL5MDMtzHzS1W4dzHzBvv3bvvsADNvZ+atzHwqM/88M/dmVpyWWjp+qVOEghkB7nJls7NuVDXinj0WvrLKK/vjyl0nAgT8tydtwrZV8/GqC07Ohk81F5T+jtGnCmL1ffHjVIsR8dfnUTPqw3td4jMCf0rw7hPS1UM/uFKVHOualaaIAubi1WoJG2u+MgFrypyBPw3yySfIyaucTm2wpNP+n16MrjVysJo+d/+dSs95qozyqNKguysWuCoc+zBVCeUKk58FMs8Nv2+47AwX4sPX7Q5i7dmw2DhXgZmbXEq2nM/YugynLE/P4bXUUksttfTIo5lq+FpqqaWByAhWWtPgPWyGcKFKBtSiuYhpy+fPwuufvRWP27QYALB342JnblaVRo6zxLQtyieOUSO+V2IIbcI2EBCr0QT2CTjQ6yypslTL5qkX1kEpvu8sBtZVvFVqbfsAYI4+a9uzz9P+ZrNVJozHTseZA8yszS/VvzRuqEdrQmEqStUZ9J1QK6jj1e0rJBAv2ojoZ3Y9e6SLK3evsZtLwJK5IxjuFrhl314snjPiNHw3nL8Bpyybi+vP31CfYEsttdRSS48YOv4N5ltq6VFGsrGfmP0p4U88AYZkIYBXCjrTzz0bFyX5iJMJiSYAQmWCMBPlZVLFg83DaUGsi1Emk6j45iVUs9yU6oLH8mwd8Kp/f3RIg6Y6WVuXqX91cBAurwWsyaBv4Mx7hUviZKMekbyveq5jcPCmfzumjldsJ5tGg+o6DHjKphVyqs+1zYR8b1SbPVGHCBwy2U8N/nyv8NrGgDWtjcxNHZYuPWs13vvZ23Hj4zdi6dxR93zd4tn4+PXn4N9/eD/OWL0AT7P317XUUksttfTooFbD11JLDyHJBb2x8kufIQIQCHDe2ioWHQ09d/uqbF46jPEiGD5MBfNQKNUv+2qagsSr9IFNKA3VRONRZ+Y4U61bnEgMILROrl5TlgNV0zOMfOioudayETiteFYfivs8bcYTB/3ZQ6jq9tS/p9MqKd+yaaLzzYG2MPfQ3LKWFBCsCkuE4JoBoZFuB2esXpCJ0VJLLbXU0iOdWsDXUksPIZWlEcYExKUu1o1oqAfmlpX2cmNQ1kyzUghUz//ihnNDITMDYBKUF4cT0KjsAEmJw+zAgVL51bOVoenDnaMC7KooaaeBojrqB++OFtg7WnURb0zUZSh9Q+I00dRWYpwKXvRnFeU0laFGLzacJTc2cuNjpm2ir0NIGNOfmVfB7yi8zCPaYZMuw9tesD3Lz/uv3olzN0w05r+lllpqqaVHPrWAr6WWHkKSKxm2rJjvnoVAwgifr7noVMhZm+FOASLg49efA4BTc64a2rZqPq7afaITDGMSQVK0fc5sM7Gzgz/7FPwfqQEbczZ40GNFTTWBOSBRH6Iut7on9dxQ/euGFCVQgdCaZJPXiGWAXUVAivOP+OirXa7KXzZVakPp3x78xaEGBX1atyceO116odKukrOwHCEo3bVuAiDgTc8/E++8ynj/3bV+wmn2COY6hhzNHxuuPd/bUksttdTSo49awNdSSw8hXX/+Bvz8EzcB8GZX529aEoUinL12IW58/AasmRjHLzx5E958+XYMdwu89pItXiS10l+V6LZwbBi/duEpeN6OVSAi3HTljsSU7OYb9+DF56wNhOPkrFMkOJMOw5HZXBCyGVHNr6ZxBzX1a5RolN6xEpFnwm81dlDAJRugIleKgcYAxGn/ySivEy5mrEGrS0F11sriyHCSTZGj1NCubBqx9tF65zR5wpv+PG/TYhQgLJw9jPER42nzoq3LAQL+x9M2Y96soaNTiJZaaqmllh4V1Dptaamlh5C2rTKavTUTY/jFj/6LvceLnVMULWRfcNoyXHCacZ4gAty2VfMxe6SL+w9NAjAyoTf5DOm9V+8Mfi+bZy9OJhhHK2TMNJ995gr8zdfuwp33HVShjYEmw+wKlTohK0Q7ICRCdYAEEQq6AcUBNTUX/6uSr0u9nzCfi1uVXi7/2rxrwgRpDarS6keZ9OrMLTn6rAuXSzBbBwEy9zsIdQ5GgrSnUR+JwpD8JgurQjZps8b5DZiQzpuiZ8KrDnvZ2avxoc9/D0TAzfv2uHe37NsLAPjQNbswZ3QI525InTi11FJLLbX02KVWw9dSSw8DbVo6B2evXQgCsOPEhSBtstUPlIgWhoH3Xb3TgchGRMCTN59ghV+y6RGeuHlJtcmn+p4avSHQoGSBAkV/1awNJC9TwmH4pj7egJQBJrl06vinKESsKQ3zSlOq0pwNXmdHnypxfgRYKil5GT5ocn4vSaJO8afAH9Tn0aAE+DXYZMgPkPCNG7MEFBUMzxltNXsttdRSSy2l1Gr4WmrpYaLnn70KZ65egMeftARfu+M+fOrf7wIAfOLl59bGWzMxhq/94D689QXbMX9seKA8CUajNz7SwUvOXat4WY0vfvcefOOu/VYJEwueHKUTKm3qNEFADFDqIUoV8EvzqIZ8A6OgBjahA2OCDC6mfrBWqXv6AmABKwivTqjjcyCHJ9PQrFVpPfuFTzWenGwsJOaRDfkMtWiDFcgl3aQ/9am8nDavSqdMxChkk0FpIk9ZPhe/dckWnLZ8buMytNRSSy211FIL+Fpq6WGiDUvmYMOSOQCAF517Is4/aQmWzB3BUKde8f4bzzwVZQnMGu4MnOcHrtmJuaNDeOnedck70Rqk8nQefsUibej2HolzGTFZdSJuBGpyWpx60OM50Pk5fvNIor+qaZp3viUZqrwCTrNq0PpUw0QaItSZ0CDq1rgRazTFHD30PS6fWQC4OEojq0rzv2NWYt+cOvag2uU4j2ZxTch0lOW2Msh1RQLABFy8bcVg2vyWWmqppZZastSadLbU0nFAc0aHsGXlvOAy5Coa6XamBfYAYG6NyddlZ60CETAe39GVqiWUsF5DDQ7SaaE8p7jpn0UEsNIs8vlXWoL21z7WcdOvTupSrzoT1//xUTbUpNqf09b85R9WX+xeFdc1U9JxONGiuSBVnQzTB3spc9UdMMy+jzrSfgroe+LmpfjDn9uGK3aumS6XLbXUUkstPcap1fC11FJLAMxZwj972TnolYxL/+Sz7rmWrdn+70RWq4XQUrO/dyxPCUiTNLJhmz13iq8+RGFBGufX7L3X4DQBEARyV11I4qyxqKqXMD31i1INLMdhEg7j0EpLarWw7N7kSxM8rcI5le2h80zrq9/5RUk7rW0LHlPVnu9ndWxNk0TRWIWD89Avzxvg+8DskS5uunI7RrodDHfbvdmWWmqppZamTy3ga6mllhyNDlnNoTY7jO3WYo2fMs3sp2QjZEw/w7dBlgEYIA+SEi1P7ncleUgUB68EazVp59hwiWUCe0AVm2XmNZ9x3TOlycd8x/U2GPWHrNqjbHJnY5Qnw5iSVFl9yu/AE2wVW+nX2vBxF65oktoSp4C0BvBK/w3aqCJ1AXkZDEgE/PHlZ7ROWFpqqaWWWjoq1G4bttRSSwktGBsOtA45QKE9i9ZRYk0XCe6D4RF2grz8TDNApfTOEnBQO74KJgV4VoHbOoAh32NgNihblfXXR5vZLK9UH8gASragLwoV8BNETbkMU+7fC6rK6nnIlMaajcZx45D9NLdZy82q7LLcUcgA1Zd42bxZmJg9UstVSy211FJLLTWlFvC11FJLCb31BdsBGEcuOa2cJ0qeVQE7CZcKuiJQ51VFCeiMNYwx9UUxXBM/n2hzUEoJCEpyrwIM0W/R/vTzLJkzb+XcC51ubXqhh0zHrkangpkz/YKTHyEYizWTYezpmVwK8Nb81ALBo0bVprN1z3KaZfdHwJsvP/OocNdSSy211FJLQGvS2VJLLWVo9kgX6xaN46QT5uJvvnZn3mwvb3hpwIDCVFWmhf4dR0+aqd80sNG3SFRwlWOh8llMtdaiznSwP8+lTYwKD04C0BSVxefen7+IJWNWWIk6++UQtknc/lWAJTDbjB9kiTL11lz9ai5RHxwiDqxVzj5h1+6x1rYqj/gi9e1rFuC22+8FEfDaS7bgB/cexFCH2jN7LbXUUkstHVVqAV9LLbWUpTc+32gZvvWjB/CNu/e756G2rl5/kpzbYgUGBExkQ+csAilAR6weibaJSEBAJHDnMIRjytx71pg0Lq0NkMlLAeGS49chVJDycJxIQ1YT9priqKhsFL2oLXrmXU6jm39eF6cPhV2jL/UrQxy23/dYe5dA2MiKWDR555+8BF+6/V7csm8vALTXLrTUUksttXRMqN1GbKmllmrpDy/dlj600muVjO20O5kwrP8j/xG8j8Og+oyWM/l0aWkj0EjTFPNYnXJ/4lCA18BMwK0OHGvygrcqrQS4ZBRgFL3PgRcBxINQrJCL4TgrRknUeiFr+Uwr+WDpJlEwSkCUfFL8rCLtOk3btEn6ZI3GMmE8YpgAvGTPWtx84x5sWTEPZ69deDQ5bKmlllpqqaWEWsDXUkst9aVEW4YQ1MXE1a+CME7Rl+YSPBMAJSAjiBIDoCCHPGUBZk3AbPqxDZ99mGom4zzqAKbX7un0IuzoQubTiXWFOT6ryWEaVr8zWlfTfjmHKGzbhJC8JCTmtxn2fdgKHmPQNz3E3pxyfdkXjRAXVDTYMd4TDfQzti4DEWHR7BG85qJTjy3zLbXUUkstPeapNelsqaWW+tKzz1yJj3/5DifA/s6zt2L+2BBe9r4vhcCNkTWty59Ny8jpia2d0ZaVCOMTVdy5lkkqZSdjiDqAjV9O8+Tz8ukGwIZhzUZNDTYxP2zMUo2pZt9sVCY6mVDLqpStEVLmWlNYcf4ipqCZi+lVdA2M5C463beCrBSzVRrcTBbTpxyKT77X08vO24DZIx3s3bgYRXFU9Y4ttdRSSy21VEuthq+lllrqSy/Zs9YJ3vuesBGnrZgHkoNJMLqMifGRRKETUB/JW8BSTvumTf102CpyJpVkAWgD+TrRGikGqs5uxUaMdcrKWMvXhFip2RIdW6RhDI0vQ8oqI5tykdhQKuDnMWyQqMdgCYRM09WPyNdnYpIaa/6qCpVkM0NwlVOvVuWllZp6g8K+O++kJS3Ya6mlllpq6SGnFvC11FJLzYiAM1cvwPknLYkf4yPX7cK+J2yoPE9Vk2TywIG8CnPIzMMorRwk68+IAJScSB+nEWv0qmANIa/xHEQzlE05F/0YmTVqwFQL6DOsBKa9EQDKZOS0gBQ9Fx5iL5fNqnFmFRO2cI12L0D7vtYKAtYtHsfO9qxeSy211FJLDxPNCPAR0f9r786j7LjqO4F/v6839abe1JJa6m7tq7WrJVmbkW0Jr7EMIpZl4QXL2IDtgTGLTQwZE+AMDhk8cBKTKGYmhhkYIJOADJkkoONMmMEw1pwQjJ0DXsKZETZYODbg4zGLfeePV1Wvlnur6i3dr9/r7+ccuV9V3br39iur9X79u8sgya+RfNz7OuAo99ckXyD5ldj5JSS/TfIJkp8n2V5Nf0Rk8mwa68cNe5YGS8bP6+3Aqnm9AIGu9lZsHh+An36xJjFcn/ItZ6zZNnclyTLx7E9aliY0Jy5Pc86gJ5J88zKR8TjN0f1InSkxRXguWeo7YUIhR0qgFe8P49eCICwIuTK/d+u50PBLW/AcScJaUrzGmFLWz+R8DwLVZdTyZkHjQar/5TUr5+ITR7ZoSiqjcgAAIABJREFUI3UREambajN8dwA4aYxZAeCkd2zzUQBXW87fDeAeY8xyAM8DOFZlf0Rkknzo8vUYH+oKjltbCrjxnGXBB92WAnHP4U1414FV2L18OFmB9ZNzKdpyjtBL+8QdygLGp3gFWTtbysheTVnSZ6+VApTU4adEon+JoKySfnljWp3BKZFYNTTx/kUq9M46AmB7J2B/k+hXZVmQJqUuf+P3IOgzOYOxamX9/xd7WyJBLYH+rrZJ65qIiEge1QZ8BwHc772+H8DltkLGmJMAfhE+x+JkjfMA/HnW/SIyPa2a34vPHNsRHC+f24N9q+dGPvSarHRMbJRmpfkYS2Ios7540OD6bJ8nsIgsdJLjhmS2yx5QBdds7aUMbU2sMxLP5hEo+HPmQtf8OY8MVZI2VDcx185awH4h/D0kvp+y3vSqC2WIRuTh1WJdyWwSOLBmPq7ZubgG7YuIiFSu2oBvnjHmGe/1jwHMK+PeIQAvGGN+4x2fBrDQVZjkjSRPkTx15syZynorIjXX35Ucie1n2Bj6cByW5yN43ulZ5QeI7tbz1BUEOJZqjCluqG4LgqxDFmOH8deRINa45gPaO2nP0rkFw2grCt7yCSc0KwrwKuhOJV0uZWdj50MxuTXQC/3/PtzTgbfvXxEMgRYREamXzG0ZSH4dwHzLpTvDB8YYQ6au0V0VY8xxAMcBYGJiYkpG8ohIZVaPzMapHz6P3lmt+PHPXy5liwgwlFWLZ+KM7SByIbl4SSKTFVNstrQtgB9oMFHekhuL/6QJTTYzQLBVgL/thB+QRYIaW+fKiVItwSXBYAXPyPw3140MFTTW7zRf2xlZ2lThQDhWp2vbDleXaiFt2mHwnub8l8bv071XbcXoQCf+xxNnrL8IERERqYfMgM8Ys991jeRPSI4YY54hOQLg2TLafg5AP8lWL8s3CuBHZdwvItPUZRsX4LKNC3DD/Q9HAit/M+7iIhzE9sUD+PYP/yV3vXl/0xOPEQ0te8DlaIu2g1jQ5y9qkry32AtHMjDRX3uqL3p3nrpKQYu7pB94BQFrvGnHrRUFW/FOO6P8fHIP/a3k14J+Ws/WL0eD/ukDa+cFc1zPWTnXXlhERKQOqh1rcgLAtd7rawF8Oe+Npvjr6QcBvKGS+0Vk+nvvxWuCT8Rv2rUE775gFf7ybbsAANfvWYyDm52juKsWfGYPBWdAaY5a8gO8JfpxcQzndE7qivUrWYTJeI+hoC08jtA4grmUduOJzMSxayJaXnmGgdYgNZddVfbDyxswh8WHciYSwwTevn9lZtsiIiL1UG3A9xEAB0g+DmC/dwySEyTv8wuR/AaALwI4n+Rpkhd4l24HcBvJJ1Cc0/epKvsjItPIsuEe9HW2ob+zHYe2juKclcNobSkEH5jn9HQEoY5tmGdEWVknOkeBhu8jSsMwTaxw2VPZQot4RL+j6rb+Zvz+WAAbHq3pYmJlUoOelKC1lmPpp2ddySHDCSx9IYFDW0ZrNsxURERkMmQO6UxjjHkOwPmW86cA3BA63uu4/ykA26vpg4hMb394ZIv1fIHEgv5O3LB3Cf70G08lR9HREcg4k1ups+ac56OrZdrrsC3gEa8r3lZkZCBL7aQFJ/FRo/6Q0UQ7Jlourb5oXZOkgopT3wvLRceoWkdnGD3MITz/MtKN2NTL3730LPzeVx4N5kK+8exF2L+mnPXKREREppaWDxORSTXQ3Y6B7ugCFiTQ2dYCANi5bAgAsLC/K1omVj7+CT/5gT+cIwzN2XPeFx/bGK0lfuwOMOz15BHuoy1g9KM0xsqkLTgSPxeOnUxW1JeRAozMaSxX3k5nVGF7PtGAvbwuRLH0PocyecFXAoPd7cHrB27di7aWAsYGuyx1iYiITA9VZfhERCpx79GtWNjfCaC4fP3N+5bjm08+h9MvvBQqVQxVUlehNCYaNTlX3IjdhuKgz2D1TtJrKZTmiVRl70XqcEoTLWe7N3HNq9DP4vlVFLJSg175YhaRMKEFkw0Amuzsoq2+XIGs7S0vu7HsJvJdz1ioxnLO3lXLMFwCb9gyimXD3Thxyx784+mfZfRKRERkelCGT0Sm3NhgFwoFbyAmiYvWj+Dmc5dbZ7tFPpBb5tuZRKm09SnjQplAk/zgn5bwKi+pV0oXJTKXoSIMlbO3Zs9l+fPJ/N4yNPMvCGPzBm95y+appwK29zxr2GrF/Gee0V8SGB/swuFt4yAJktg01l9NyyIiIlNGAZ+ITAvz+2ZhVpv3I8kybi+eiYnGJrYcT/bwvsRdOQOV8JA/dwEEc/fcPWKyTDjwC/UvHPJFXocmIZL+u2EiYW9FQVG1Qd8USZ21WU6Q67jFf7/ff+ladLa3lNk7ERGR+lPAJyLTxk3nLCu+ILB10UAxyAs+kLtWu2T+hJItHmDoMz+jwZQt4xcNtpC6YXh8jl4kSHUEgsZ20jvBRAeKwV00nxcTjFK1dNQW3UwR9zOb/E64pjLSezD+M/V7cnDTQoz0dU56v0RERCaDAj4RmTY621tAEO84fwVuOW85gkiJwMFNC1InyyU/wJcxrtAyftA1vNN2my37Fr7ClEIMl3H1KVTG37w+WpVxB571yNSV22ZG+XKG6IaX7vG/RjLDxnIyrQ8NkukUERFxUcAnItPGzqVDuOfwRuxfOx9zejqwbfEgWgoFvOeCVXj9llG0FgqhGLCU0/IXOUH4KxzHKZfiWTCGz8eza4kyybrjswkZ+2OTJ75Iu7+S+irmqjxHhBa5tYI5f/Zb7M8vT2ci2Vj/2Pu6eKi7/A6KiIhMEwr4RGTaKBSI5XN7g+PbL1qFz96wA+esnIvB7nZ86ebdAIClwz24//rtiWycK/hKnHNkd/zhkbZiQZDlzbEziQuOtqz8+13rS5pkJbmil2ShPCtYllMkpamyqkpbT7N2QWpGTUyWij5n4MJ1I9i/VvvsiYhI49K2DCIybXW0tqDD8lNq1fxebz+04sy4yPIkdA3xtM/LC86Hgr6AKX34j0pm7sIbdEcCRZbmISZ3OqDlVbJvNd3jwMX15qRJ3/0if9Ox9y78XMsL/sr4Bph8br5PHNmCwe52vPzrVzDQ1Z4sICIi0kCU4RORhjKxaBC7vM3aH7h1D9570ZpQUGbscYt7JRR7OUfcYLscXYyFwfBS44w9HHP2ItfT0nvRMMjVTFq2sybC3agyHk27vZqqw8G7gfdMYlk92/uzZE43+jrbMG/2LLS36p9JERFpbPqXTEQayl2XnYXN4wPB8a7lc/DxKzcHH9zbWgopUYKxvgQsc/Bi40TzBB75c1L5Qxz31niuwHGKcoLxcZCejJg5eq1GAWOi3qyLlkeUNbdSRESkUSngE5GGt3S4Bx9+3Xq0tRSwJRQMRvhpwIzsXbAZd4p4vs1Rk6Oi+FIu6a0lY6L4GXuI4goEncofP5nablpVwTXHW+W/Q1V3J55pZUqdivhERKRJKeATkaawYbQff/G24qIu/jjL+LDKeKjlUs1n/jwt2IOxclu1lS+uDZp3pc/M6vLKinGnuC5rltGysmr88u0Xrsax3UsqbFVERGR60qItItJUbPvRGQAFMBnwBVkt94oltiuuOXw5exirxa8hLTdmayEc1lSy4kr1Kl3nxRVbVpNkNLEoL5oxLLLNjPTbvO/abZg3e1aFrYuIiExfyvCJSFNpKRSigYg/By+U7osEKSZxpnac0YstHEmu/Jl2l7uxtHBq6qTN5ZucnpjU4bjWdyU0xFPBnoiINCsFfCLSVN66bxkiq1jGYqt8i6+U/mu54DxVu+lf8YZsswazhoHm6011fc6+O7uEZUaj7X3Omntpvy21D3N7Z6UXEBERaQIK+ESkqfR1tmHxnO7kqpsp96Qn+fIv02krkr2ISf7VQpLrcubL+eXpgV9VObGPCQ2SzR9IVycR4AVzNZl8Fx3fjH/64KYFAIF3vXZVDXomIiIyPSngE5GmFZ/Pl5UNMtbz+RZByc81I7Cc3ejCPS0NYK1sLmF6S9XVVv3CK+Ez4SyfNUin5TAj6AOAfavmlt0/ERGRRqGAT0SajnHveh4tV6My+W6m+5J1uZKUaDWrbJnLqRhbFS6OjcuzWsvbG5N44SjgKpgnWeqV2TDaj7Ujs3P2TEREpDEp4BOR5sQabqtWaSWulUKc/MydY2fwoIzr3rztuGXeFVsNJ88curLE5lmaxPYa/jDS8rfYCP//8IkrN2PJnG78/hs2Vt5XERGRBqCAT0SaTnyFzrjELLh867NEL5Yd3biGbvphSHyIpmNVUevsxLSNI/xbTPQwdJQnIVatsuYGJh6Ka8MG+/m0oZwgsHV8AEuHe8rokYiISOOqKuAjOUjyayQf974OOMr9NckXSH4ldv7PSP4zye94fzZV0x8REQDoamspfd6PDUF0CcIxS+xkHbaYO4KJZsLcsWKpFWNrIDKE0VjCt3guq1aDLGMc+xxm1Zx7hGaNpMR7+MDBdTVuTUREZPqqNsN3B4CTxpgVAE56xzYfBXC149q7jTGbvD/fqbI/IiJ43yVrcfyaCXdMVnbKKkeU45Qn8Mreg8/eo6xt4dPvzl/eVjz7vrJqTmyZEQ9gQ6+zUrgxwVBOFjdYFxERmUmqDfgOArjfe30/gMtthYwxJwH8osq2RERy6etqw0hfJ/7wqi04PDFW2ZDEyIqQ8eUhK6omUO7udckhikyZx5a9EUT0zumwCZ2JfAnOpr7XjqGcIiIiElFtwDfPGPOM9/rHAOZVUMeHSX6X5D0kO6rsj4hIYNFQN67eubh4EIoG8uzRV252qjqubBaiCS1Hg/YjkxIBhbeacM2PcwuGnKbMfSxnMZeaDOf0omLnUE4C3e2t6O9qq0VrIiIiDSMz4CP5dZLfs/w5GC5niuugl/vv9nsBrAawDcAggNtT+nEjyVMkT505c6bMZkREigjgttBG22lz64JzieGGsZvzyFwFphLJrdjzcq/pmbc2R9CZc1KeyVmufPYVTv/1gZX4/E070dHaUusGRUREprXWrALGmP2uayR/QnLEGPMMyREAz5bTeCg7+EuS/xHAu1LKHgdwHAAmJiZq/hFBRJpXe2sBv37lVQDFTM9wT2gwgZ/gCi2S6RpKGF5HM3EyK1GWOyqLdSgzARedx1cqXt5efO4aHb2MjXJN23g9ayOKWq0CmrYxRWtBi1KLiMjMVO2/gCcAXOu9vhbAl8u52QsSQZIozv/7XpX9ERFJ+MJNO/Gp64qLdRzeNo51C/sqzGM51KQyE8oyhsKg/Bvj5VbOcMusemwBm3E0YOLX7OuRlo0ZFczp7sDEYusi0iIiIk2v2oDvIwAOkHwcwH7vGCQnSN7nFyL5DQBfBHA+ydMkL/Au/WeSjwB4BMAcAB+qsj8iIgmtLQXM7Z0FAGhvif3Yi2X0ErGDazhnrEw5ksWrC3nC9ZU2gcheliU6j8/dH2tm03XO0Vh4a72KRnOGd01Pay8cJ3v3XLJhBF3tmQNaREREmlJV/wIaY54DcL7l/CkAN4SO9zruP6+a9kVEypJ3h3FvfKAJnQtnstICIFsUE9v3PDL8MFyvPcxKactSPl6fib1y3UnQW/vTMciS9vfAitEy4WCvGgRg0r4V2t8nzQEQEZGZTJMaRGRmce1TbpO20GUlbea4VNsVLeObuWczjtKuBFtF5Uy0d4kKLMeuTGLaYySAHYsH8dq1lSwgLSIi0hw0xkVEZgwC6GxrSZwDksMiKw70LBmoeGYqPsUtukKmsbx2Z9eiAzdt64xaBJU50mWmOC/OpBTJI/i+U+qxrjPqCPoS1Tgekv+t7VgyhPddujZ/h0VERJqQAj4RmTHuPboVI33FuXyuQM9+4B4qaF2x01LOpGW1Uma1+QFOPJPlD+AsDsSMztlLDjlNBo/FSi0rgZrYPY4gLSsGtGXeksMxWeqDdy3cjaxFT519iA0pFRERmck0pFNEZoyxwS60eou2fObYjujFXCuSlMOU1k7JGXmkL53iLpddn+1V9IRJDOQsBpMJXvqzkrcmK4CLZ/IqqSicULxu1+J8HRMREWliCvhEZEbq6YgOcKh1vOcctmnZliB1DGNo3U1bh/LMznOWCCfwTOKSU3waZNoQ2HLew7xl7YvcFI9HB7tAAFsXDWJssKuM1kVERJqThnSKyIzErM3b0u5FcpVN27BLG/tcvLS5dxXsVefPwYuOloz0zRbQBeczMmj9Xe14/qVfRRe18UZnVjSMsiYr4xTde9UWPPPzlzF7lv55ExERAZThE5GZLGegkVXMFq6VMZLTWs46qy+lwpSdCqzbIsSHUALAgv5OewWxE3/8xq2la96fozsW4d6jW90djNdXwyAvXFWhQCzs70TvrLbaNSAiItLAFPCJyIyUFXdUEo+kBV2JbQQc67RYV63M0R5j5/Pskxe/7237lnvz8xiZvxcM2SQwt7cD3d5wWAKY092Bd752FQ5tGcX4UFfmME/bwjjlDuV0XqthECkiItIsNOZFRGasSnYcSNvNoPyKoicYjwJDZQyKwzRdXFlCegusvBpq1l/ZMzyEc8382Vg90gsA+Oybd+DpF17GJ//uCTx55sVoYOn14Y4LV6O/qx2r5/cGC+H4DdASxMYX57Ser4aCPREREStl+EREJls4k+XMapngv6WlXMqMYiyBlq2G4d6ORErs4vUj6Ggt7lFIEqvm9+IDl62LdPjNe5biTbuXAAD2rBjGuoV90WAPwFdu3Rtp2JZJTZvrmCsz6LiumE9ERCRJAZ+IzEiFAnHP4c0pUULePQKibOturlvQlwj2rpgYixQ0AMYHuyNBW2IFzjzpMOst9m9g9/I5iUsEYLzVXvq62jA22BmUObh5YfGeDJ88uhVrR2bn2j7BVaisqX4E/uiqrfjTa7blKS0iIjKjKOATkRmrs93LaHnHebNE+eK/UnTX0VrAbQdWBld+a+MCHN42nqhr7YLZVbbpKmucF/N+z2ct6Mvd/thgF96+f2UpyK0w9WYZ9eo0PtSF+X2zKmtIRESkiSngExHJIRxrfPDy9WUvNnnu6nk4Z8UwCODgpoUoeDd+4siWxEIm8QVTItKW9LSdM6XtGWLNAAAuWj8CgOjxtjE4d/U8dLeXpnffet4KvOeCVbj70AbHd2a3oG8WDm0ZjTSYZ1hm1pjO8GUN4xQREcmmRVtEZMZqbykEC4cEgYO/6EhsRGdwqoyRnvHr77lwNd5z4WoAwG9eeRUEsGRON+667CzcdeJR972u5ThjXNu4h28lgKt3LsJjT/8cu5fPwaaxfhzZNo7+ruI2BuFMJACsGZmNNSPuzKMLSVy1YxGe/tnLeOjJn2aORrVm88KbHEZfRp9X2b0TERGZOZThE5EZa7i3A7ect6J0IhY8+AHSxrH+0om8whkpy/KahdC5rYsG8cCte4Py79i/ItS6o1F/03PbZufx9GPo+xob7MK5q+bi5nOXY5P3fQ10t1e1Eb1Le2sBv3PxGtywd2m0P+GuWoaYJsp4X/c45hx+/MrNVfZURESkeSngE5EZbU5PeySIKFgCn/aW5Fy/dQvT57SFa7lkw0jieqHAIMjzrZjbAwA4f808fOnm3fj8TWcXF02poY9dsamm9eUxNtiVCOQSK3V6se3akb5I9m7z2EBQ+G3nLsfvH9pYDGC98l+4aReWDvdM7jcgIiLSwBTwiYiEvPuC1dGsExHMt7v67MVexg541wWrgutOLGYHty0ezNX2a8+aHwSBLQWiq70Vf/DbG6NtZO6qXrR+tD/cjeDFrLaWXH2ppS3jAziyfVHivC2bOtDdjs/duDO4dt7qucH11kLpnyw/a+gvvCMiIiJ2CvhERAAvsCP2rJiD2Z1tkWzesb1LItHJYHd76SKimb/oV+J3Ll5TVbe62subau0HTpduGCku/uKnz+o80e281XODYDnMP/eW1yzHhy5fj5vPXYaejtZI9pMAPnXtNgV3IiIiFdCiLSIyo7UWSgu3nLhlD4DQKpks7o030tcZHPuByE9f/GWpktjCIv7Xno7WsgM2G0aWKymJLGASu7xr2RA+d+PZePqF/4fFQ9248vhD+NUrr1bdl0rN75uFG/YuxX3feKp4wvuWLtkwgs62FuuwV/+9jA99LXeFVBERkZlMGT4RmdE2jPbhwnXRYMOfH5bGldVLFKiB/q62XPX5Ra7asQgk0dPRipXzetHeWkB3R2vdA6TLNi7AtsVDkTftrfuW47rdS6zl33lgFXYuG4qcWzrcjSu3jWPz2AC2jA9Mco9FREQanwI+EZnRSGLjaH8kGLp808LiteA/yXirpVDMu121Y5Ez8KjVwpfv2L8Cb9q1xL5op+X4yPbxRB3vv3QtPnj5+tp0qEIkcf2exbn3z9u3em5izuGsthYcPXsRxoe68IGD6yalnyIiIs1EAZ+IzHi7lw/hP91wdnB8aGtpw/D3X7I2eN0SiuD6u9rxb1+/AUe2j2PjaH90fz4CG0f7iwuu1MDWRYM4tHW02A6QHfRZrJzXG2zDUE+jA1349PU7oAGZIiIiU6OqgI/kIMmvkXzc+5r4NTfJTSQfIvkoye+SPBy6toTkt0k+QfLzJNur6Y+ISCVIoq+zLXoOQEdrC+b3zQIA3H1oIy7dGB36mdiawUtdPXDrXnz4deuxoL+2Wyp8+HXrI9mx4uvwhn+h42lsoLsdV+0Yx86lQ9mFRUREpCrVZvjuAHDSGLMCwEnvOO4lANcYY84CcCGAf0/S/zXz3QDuMcYsB/A8gGNV9kdEpCbetHsJrt9Tmlu2dsFsdLTaV4mchD3LnVbM7UVp1U3iAwfPilx/3yXVrQo6VY5sH8edoeypiIiITI5qA76DAO73Xt8P4PJ4AWPMD4wxj3uvnwbwLIBhkgRwHoA/T7tfRKQeXr9lFBevT64cabN0uGfK8mofO7wJD9xaXE30tydGsWV8IJLp26GsmYiIiIRUG/DNM8Y8473+MYB5aYVJbgfQDuBJAEMAXjDG/Ma7fBrAwpR7byR5iuSpM2fOVNltEZHa2TTWj4vXLwABbB6bmpUjr9m5GAfW+j9yiX/zW2sbYDCniIiITLXMDaJIfh3AfMulO8MHxhhDMrlRVKmeEQCfAXCtMeZVljkGyhhzHMBxAJiYmHC2IyJSDy3er88+ePnUrBx5xcRY8Pp9l6zB5nFtUyAiIiJJmQGfMWa/6xrJn5AcMcY84wV0zzrKzQbwVQB3GmO+5Z1+DkA/yVYvyzcK4EdlfwciItPA0R2LcM7K4bq07Q/j1DYFIiIiElftkM4TAK71Xl8L4MvxAt7Km38J4NPGGH++HowxBsCDAN6Qdr+ISCPo7mjF6vmz690NERERkYhqA76PADhA8nEA+71jkJwgeZ9X5goA5wC4juR3vD+bvGu3A7iN5BMozun7VJX9EREREREREQ+LibbGMjExYU6dOlXvboiIiIiIiNQFyf9tjJnIKldthk9ERERERESmKQV8IiIiIiIiTUoBn4iIiIiISJNSwCciIiIiItKkFPCJiIiIiIg0KQV8IiIiIiIiTUoBn4iIiIiISJNSwCciIiIiItKkGnLjdZK/APD9evdDJtUcAD+tdydkUukZNz894+am59v89Iybn55xY1tkjBnOKtQ6FT2ZBN/Ps6u8NC6Sp/SMm5uecfPTM25uer7NT8+4+ekZzwwa0ikiIiIiItKkFPCJiIiIiIg0qUYN+I7XuwMy6fSMm5+ecfPTM25uer7NT8+4+ekZzwANuWiLiIiIiIiIZGvUDJ+IiIiIiIhkUMAnIiIiIiLSpBoq4CN5Icnvk3yC5B317o9UJ+t5kryN5GMkv0vyJMlF9einVC7v31mSh0gakloausHkecYkr/D+Lj9K8rNT3UepTo6f1eMkHyT5D97P64vr0U+pHZL/geSzJL9X775I9bKeJ8mj3t/dR0h+k+TGqe6jTK6GmcNHsgXADwAcAHAawMMAjhhjHqtrx6QieZ4nyXMBfNsY8xLJtwLYZ4w5XJcOS9ny/p0l2QvgqwDaAdxijDk11X2VyuT8e7wCwBcAnGeMeZ7kXGPMs3XpsJQt5zM+DuAfjDGfJLkWwF8ZYxbXo79SGyTPAfAigE8bY9bVuz9SnaznSXIXgH/yfkZfBOAuY8yOqe6nTJ5GyvBtB/CEMeYpY8yvAPwXAAfr3CepXObzNMY8aIx5yTv8FoDRKe6jVCfv39kPArgbwMtT2TmpiTzP+M0A/sgY8zwAKNhrOHmesQEw23vdB+DpKeyfTAJjzN8D+Jd690NqI+t5GmO+6f+Mhj5vNaVGCvgWAvi/oePT3jlpTOU+z2MA/tuk9khqLfMZk9wCYMwY89Wp7JjUTJ6/xysBrCT5P0l+i+SFU9Y7qYU8z/guAG8keRrAXwG4dWq6JiKTQJ+3mlBrvTsgkoXkGwFMAHhNvfsitUOyAOBjAK6rc1dkcrUCWAFgH4q/Nf57kuuNMS/UtVdSS0cA/Jkx5t+R3AngMyTXGWNerXfHRCQ/byrNMQB76t0Xqa1GyvD9CMBY6HjUOyeNKdfzJLkfwJ0ALjPG/HKK+ia1kfWMewGsA/B3JH8I4GwAJ7RwS0PJ8/f4NIATxphfG2P+GcX5YCumqH9SvTzP+BiK8zRhjHkIwCwAc6akdyJSEyQ3ALgPwEFjzHP17o/UViMFfA8DWEFyCcl2AFcCOFHnPknlMp8nyc0A/gTFYE/zfhpP6jM2xvzMGDPHGLPYW+DhWyg+ay3a0jjy/Fz+EorZPZCcg+IQz6emspNSlTzP+P8AOB8ASK5BMeA7M6W9FJGKkRwH8BcArjbG/KDe/ZHaa5iAzxjzGwC3APgbAP8E4AvGmEfr2yuplOt5kvw9kpd5xT4KoAfAF0l+h6QC/AaS8xlLA8v5jP8GwHMkHwPwIIB367fHjSPnM34ngDeT/EcAnwNwnWmUJcDFiuTnADwEYBXJ0ySP1btPUjnb8yT5FpJv8Yr7txnlAAABqklEQVT8LoAhAPd6n7f0i9cm0zDbMoiIiIiIiEh5GibDJyIiIiIiIuVRwCciIiIiItKkFPCJiIiIiIg0KQV8IiIiIiIiTUoBn4iIiIiISJNqrXcHRERE6o3kEICT3uF8AK+gtJfcS8aYXXXpmIiISJW0LYOIiEgIybsAvGiM+YN690VERKRaGtIpIiKSguSL3td9JP87yS+TfIrkR0geJfm/SD5CcplXbpjkfyX5sPdnd32/AxERmckU8ImIiOS3EcBbAKwBcDWAlcaY7QDuA3CrV+bjAO4xxmwDcMi7JiIiUheawyciIpLfw8aYZwCA5JMA/tY7/wiAc73X+wGsJenfM5tkjzHmxSntqYiICBTwiYiIlOOXodevho5fRenf1AKAs40xL09lx0RERGw0pFNERKS2/hal4Z0guamOfRERkRlOAZ+IiEht/SsAEyS/S/IxFOf8iYiI1IW2ZRAREREREWlSyvCJiIiIiIg0KQV8IiIiIiIiTUoBn4iIiIiISJNSwCciIiIiItKkFPCJiIiIiIg0KQV8IiIiIiIiTUoBn4iIiIiISJP6/9LmKZuvW7tjAAAAAElFTkSuQmCC\n",
162 | "text/plain": [
163 | ""
164 | ]
165 | },
166 | "metadata": {},
167 | "output_type": "display_data"
168 | }
169 | ],
170 | "source": [
171 | "plt.figure(figsize=(15, 5))\n",
172 | "librosa.display.waveplot(x, sr, alpha=0.8)"
173 | ]
174 | },
175 | {
176 | "cell_type": "markdown",
177 | "metadata": {},
178 | "source": [
179 | "希望此时此刻,你已经感受到Jupyter Notebook的方便之处\n",
180 | "\n",
181 | "如果你成功在自己的电脑上运行了每一个单元格,并做了一些自己的注解的话,记得随手保存!\n",
182 | "\n",
183 | "你还可以将该Notebook下载为PDF等格式(File->Downloaded as)\n",
184 | "\n",
185 | "若想探索更多妙用,可以参考知乎问题[如何优雅地使用Jupyter](https://www.zhihu.com/question/59392251)"
186 | ]
187 | }
188 | ],
189 | "metadata": {
190 | "kernelspec": {
191 | "display_name": "Python [conda env:py37]",
192 | "language": "python",
193 | "name": "conda-env-py37-py"
194 | },
195 | "language_info": {
196 | "codemirror_mode": {
197 | "name": "ipython",
198 | "version": 3
199 | },
200 | "file_extension": ".py",
201 | "mimetype": "text/x-python",
202 | "name": "python",
203 | "nbconvert_exporter": "python",
204 | "pygments_lexer": "ipython3",
205 | "version": "3.7.0"
206 | }
207 | },
208 | "nbformat": 4,
209 | "nbformat_minor": 2
210 | }
211 |
--------------------------------------------------------------------------------
/INFO-ResearchGroups.md:
--------------------------------------------------------------------------------
1 | > 又到了每年各位同学准备着手申请硕士/博士专业,以及各大公司开始提前批招聘应届生的时候了! 为了方便大家,总结了一份与音乐科技相关的科研组列表,如有遗漏还请包涵!
2 |
3 | 以下科研组按地区排列([英国及欧洲](#英国及欧洲地区)/[北美](#北美地区)/[亚洲](#亚洲地区),排名不分先后),每个组织的研究重点有所不同,可访问其官网仔细查看。
4 |
5 | **♬ 在文章的[最后](#最后)还有份小惊喜哟!♬**
6 |
7 | ---
8 |
9 | ### 『英国及欧洲地区』
10 |
11 | ✎ Centre for Digital Music (C4DM)
12 | - Queen Mary University of London
13 | - London, Uk
14 | - http://c4dm.eecs.qmul.ac.uk
15 |
16 | ✎ Embodied AudioVisual Interaction Group (EAVI)
17 | - Goldsmiths, University of London
18 | - London, UK
19 | - http://eavi.goldsmithsdigital.com
20 |
21 | ✎ Music Informatics Research Group
22 | - City University London
23 | - London, UK
24 | - http://mirg.city.ac.uk
25 |
26 | ✎ Centre for Music and Science (CMS)
27 | - University of Cambridge
28 | - Cambridge, UK
29 | - https://cms.mus.cam.ac.uk
30 |
31 | ✎ Machine Audition (A-Lab) of Centre for Vision Speech and Signal Processing
32 | - University of Surrey
33 | - Surrey, Uk
34 | - https://www.surrey.ac.uk/centre-vision-speech-signal-processing/research/a-lab-machine-audition
35 |
36 | ✎ Music Technology Group (MTG)
37 | - Universitat Pompeu Fabra
38 | - Barcelona, Spain
39 | - https://www.upf.edu/web/mtg
40 |
41 | ✎ Department of Computational Perception
42 | - Johannes Kepler University Linz
43 | - Linz, Austria
44 | - https://www.jku.at/en/institute-of-computational-perception/
45 |
46 | ✎ Intelligent Music Processing and Machine Learning Group (IMP/ML)
47 | - Austrian Research Institute for Artificial Intelligence (OFAI)
48 | - Vienna, Austria
49 | - http://www.ofai.at/research/impml/index.html
50 |
51 | ✎ Music Information Retrieval Lab
52 | - Vienna University of Technology
53 | - Vienna, Austria
54 | - http://www.ifs.tuwien.ac.at/mir/
55 |
56 | ✎ Institute for Electronic Music and Acoustics (IEM)
57 | - University of Music and Performing Arts Graz
58 | - Graz, Austria
59 | - https://iem.kug.ac.at/en/institute-of-electronic-music-and-acoustics.html
60 |
61 | ✎ International Audio Laboratories Erlangen (AudioLabs)
62 | - Fraunhofer IIS and Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
63 | - Erlangen, Germany
64 | - https://www.audiolabs-erlangen.de
65 |
66 | ✎ Special Interest Group on Music Analysis (SIGMA)
67 | - Technische Universität Dortmund
68 | - Dortmund, Germany
69 | - http://sig-ma.de
70 |
71 | ✎ Institute for Research and Coordination in Acoustics/Music (IRCAM)
72 | - Paris, France
73 | - https://www.ircam.fr
74 |
75 | ✎ Audio Data Analysis and Signal Processing (ADASP)
76 | - Telecom ParisTech
77 | - Paris, France
78 | - http://www.tsi.telecom-paristech.fr/aao/en/
79 |
80 | ✎ Algomus
81 | - Lille, France
82 | - http://www.algomus.fr
83 |
84 | ✎ Audio Signal Processing Research Group
85 | - Aalto University
86 | - Aalto, Finland
87 | - http://spa.aalto.fi/en/research/research_groups/audio_signal_processing/
88 |
89 | ✎ Department of Music, Art and Culture Studies
90 | - University of Jyväskylä
91 | - Jyväskylä, Finland
92 | - https://www.jyu.fi/hytk/fi/laitokset/mutku/en
93 |
94 | ✎ Audio Analysis Lab
95 | - Aalborg University
96 | - Aalborg, Denmark
97 | - https://audio.create.aau.dk
98 |
99 | ✎ Multimedia and Geometry (MG)
100 | - Utrecht University
101 | - Utrecht, Netherlands
102 | - http://www.cs.uu.nl/groups/MG/
103 |
104 | ✎ Institute for Psychoacoustics and Electronic Music (IPEM)
105 | - Ghent University
106 | - Ghent, Belgium
107 | - https://www.ugent.be/lw/kunstwetenschappen/en/research-groups/musicology/ipem
108 |
109 | ✎ MIR Group
110 | - University of Coimbra
111 | - Coimbra, Portugal
112 | - http://mir.dei.uc.pt/index.html
113 |
114 | ---
115 |
116 | ### 『北美地区』
117 |
118 | ✎ Centre of Interdisciplinary Research in Music Media and Technology (CIRMMT)
119 | - McGill University
120 | - Montreal, Canada
121 | - http://www.cirmmt.org
122 |
123 | ✎ Metacreation Lab
124 | - Simon Fraser University
125 | - Surrey, Canada
126 | - http://metacreation.net
127 |
128 | ✎ Music Intelligence and Sound Technology Interdisciplinary Collective (MISTIC)
129 | - University of Victoria
130 | - Victoria, Canada
131 | - http://mistic.finearts.uvic.ca
132 |
133 | ✎ Center for Computer Research in Music and Acoustics (CCRMA)
134 | - Stanford University
135 | - Standford, USA
136 | - https://ccrma.stanford.edu
137 |
138 | ✎ Music and Audio Research Laboratory (MARL)
139 | - New York University
140 | - New York City, USA
141 | - https://steinhardt.nyu.edu/marl/
142 |
143 | ✎ Laboratory for the Recognition and Organization of Speech and Audio (LabROSA)
144 | - Columbia University
145 | - New York City, USA
146 | - https://labrosa.ee.columbia.edu
147 | - 备注:项目已停,网站可查看以往工作
148 |
149 | ✎ Georgia Tech Center for Music Technology (GTCMT)
150 | - Georgia Institute of Technology
151 | - Atlanta, USA
152 | - http://www.gtcmt.gatech.edu
153 |
154 | ✎ Computer Music Project (CMP)
155 | - Carnegie Mellon University (CMU)
156 | - Pittsburgh, USA
157 | - http://www.cs.cmu.edu/%7Emusic/
158 |
159 | ✎ Audio Information Research Laboratory (AIR)
160 | - University of Rochester
161 | - Rochester, USA
162 | - http://www2.ece.rochester.edu/projects/air/index.html
163 |
164 | ✎ Soundlab
165 | - Princeton University
166 | - Princeton, USA
167 | - http://soundlab.cs.princeton.edu
168 | - 备注:项目已停,网站可查看以往工作
169 |
170 | ✎ Music and Entertainment Technology Laboratory (MET-lab)
171 | - Drexel University
172 | - Philadelphia, USA
173 | - http://www.met-lab.org
174 |
175 | ✎ Music Engineering
176 | - University of Miami
177 | - Coral Gables, USA
178 | - http://mue.music.miami.edu
179 |
180 | ✎ Bregman Media Labs
181 | - Dartmouth College
182 | - Hanover, USA
183 | - http://bregman.dartmouth.edu
184 |
185 | ✎ The Media Lab
186 | - Massachusetts Institute of Technology (MIT)
187 | - Cambridge, USA
188 | - https://www.media.mit.edu
189 |
190 | ✎ Center for New Music and Audio Technologies (CNMAT)
191 | - UC Berkeley
192 | - Berkeley, USA
193 | - http://cnmat.berkeley.edu
194 |
195 | ✎ Center for Research in Electronic Art Technology (CREATE)
196 | - UCSB
197 | - Santa Barbara, USA
198 | - http://www.create.ucsb.edu
199 |
200 | ✎ Computer Music
201 | - UCSD
202 | - San Diego, USA
203 | - http://musicweb.ucsd.edu/grad/grad-pages.php?i=202
204 |
205 | ---
206 |
207 | ### 『亚洲地区』
208 |
209 | ✎ Multimedia Information Retrieval Lab
210 | - National Taiwan University, Taiwan
211 | - http://mirlab.org
212 |
213 | ✎ Music and Audio Computing Lab (MAC)
214 | - Academia Sinica, Taiwan
215 | - http://mac.iis.sinica.edu.tw
216 |
217 | ✎ Media Interaction Group
218 | - National Institute of Advanced Industrial Science and Technology (AIST)
219 | - Japan
220 | - https://staff.aist.go.jp/m.goto/MIG/index-j.html
221 | - 备注:只招收博士后
222 |
223 | ✎ Speech and Audio Processing Laboratory
224 | - Kyoto University
225 | - Japan
226 | - http://sap.ist.i.kyoto-u.ac.jp/EN/
227 |
228 | ✎ Music and Audio Computing Lab
229 | - Korea Advanced Institute of Science and Technology
230 | - Korea
231 | - http://mac.kaist.ac.kr
232 |
233 | ✎ Sound and Music Computing Lab
234 | - National University of Singapore
235 | - Singapore
236 | - https://www.smcnus.org
237 |
238 | ✎ Music Cognition Group
239 | - Agency for Science, Technology and Research (A*STAR)
240 | - Singapore
241 | - https://www.a-star.edu.sg/ihpc/Research/Social-Cognitive-Computing-SCC/Music-Cognition/Overview-and-Recent-Highlights
242 |
243 | ✎ Dr. Gus Xia(夏光宇)带领的人工音乐智能相关研究
244 | - 上海纽约大学
245 | - http://www.cs.cmu.edu/~gxia/
246 |
247 | ✎ 李伟教授带领的音频音乐信息处理相关研究
248 | - 复旦大学
249 | - http://homepage.fudan.edu.cn/weili/
250 |
251 | ---
252 |
253 | ### 『最后』
254 |
255 | 该行业在国内得益于全国声音与音乐技术会议(CSMT)的召开,使得学术界与工业界的朋友们可以借此互相交流,博主也有幸在天津大学读本科时,跟随关欣老师和梁晓晶学姐一起参加了2013年的第一届会议。
256 |
257 | 会议官网上可下载往届报告集和论文集:
258 |
259 | ➥ http://www.csmcw-csmt.cn/index.html
260 |
261 | 最后再给自己打个小广告,博主预计在2019年8月左右博士毕业,所以欢迎音乐科技界内各位前辈的职位推荐,点击[这里](https://beiciliang.weebly.com/cv.html)可浏览我的英文简历,多谢!
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # intro2musictech
2 |
3 | 公众号“无痛入门音乐科技”开源代码和相关资料链接,欢迎微信扫码关注或直接搜索intro2musictech!
4 |
5 |
6 |
7 | **♬ 以后有新的公众号文章发布,其ipynb格式会在GitHub这里同步更新 ♬**
8 |
9 | **♫ 方便读者在自己的电脑上一边阅读一边执行代码,快速入门,无痛skr ♫**
10 |
11 | 更新日期 | 公众号文章链接 | GitHub代码链接
12 | -------- | ---------------------------------------- | ---------------------------------------------------------
13 | 20180727 | [「README」无痛入门音乐科技门槛须知](https://mp.weixin.qq.com/s/S8Q5iSUMgKZQ5g-17dF8UA) | N/A
14 | 20180728 | [「SETUP」从零设置编程环境](https://mp.weixin.qq.com/s/ngvmPl5S7QI-PqUUBtbQ3w) | 可直接浏览[下方内容](#从零设置编程环境),附测试代码[00-Hello.ipynb](https://github.com/beiciliang/intro2musictech/blob/master/00-Hello.ipynb)
15 | 20180803 | [「NIME-01」那些为身障人士设计的乐器](https://mp.weixin.qq.com/s/vUU30Ap5ot-Ygpy8eBeC4w) | N/A
16 | 20180805 | [「MIR-01」要把音乐画出来,总共分几步?](https://mp.weixin.qq.com/s/pvpFoKKa0Ki_uZ3Y6rqaJw) | [MIR-01.ipynb](https://github.com/beiciliang/intro2musictech/blob/master/MIR-01.ipynb)
17 | 20180811 | [「NIME-02」日常物件在没有成精的前提下如何发声儿?](https://mp.weixin.qq.com/s/X05DgjhXO7oMf8Gej5P3Mw) | N/A,可参考[The Bela Blog](http://blog.bela.io/)
18 | 20180818 | [「MIR-02_1」音频特征小全之概览](https://mp.weixin.qq.com/s/oFrW7hmZgmAuZGIVHjZTAQ) | [MIR-02_1.ipynb](https://github.com/beiciliang/intro2musictech/blob/master/MIR-02_1.ipynb)
19 | 20180822 | [「INFO」音乐科技相关科研组列表](https://mp.weixin.qq.com/s/2nDWikda9fh2x5o093F6HA) | 列表会在[这里](https://github.com/beiciliang/intro2musictech/blob/master/INFO-ResearchGroups.md)更新
20 | 20180827 | [「NIME-03」为什么说钢琴是乐器之王?复杂!](https://mp.weixin.qq.com/s?__biz=MzU5MzY3NzI0OA==&mid=2247483718&idx=1&sn=fbf3f7c11e61096bafd72ea6ed0c0e8a&scene=19#wechat_redirect) | N/A,原知乎问题在[这里](https://www.zhihu.com/question/288614974)
21 | 20180913 | [「MIR-02_2」音频特征小全之时域特征](https://mp.weixin.qq.com/s/fwbxA0ZWJPuOKolouQea3Q) | [MIR-02_2.ipynb](https://github.com/beiciliang/intro2musictech/blob/master/MIR-02_2.ipynb)
22 | 20181014 | [「MIR-02_3」音频特征小全之频域特征](https://mp.weixin.qq.com/s/TOAXROVlOVYDmVlmFIyBxQ) | [MIR-02_3.ipynb](https://github.com/beiciliang/intro2musictech/blob/master/MIR-02_3.ipynb)
23 | 20181124 | [「MIR-02_4」音频特征小全之乐音特征](https://mp.weixin.qq.com/s/XqZvZ4-m3xd81udyUSg4wg) | [MIR-02_4.ipynb](https://github.com/beiciliang/intro2musictech/blob/master/MIR-02_4.ipynb)
24 | 20181130 | [「INFO」音乐科技相关会议期刊列表](https://mp.weixin.qq.com/s?__biz=MzU5MzY3NzI0OA==&mid=2247483761&idx=1&sn=52b81b9fca161df1afad2a8babad251a&scene=19#wechat_redirect) | N/A
25 | 20181217 | [「INFO」2018年度那些亮眼的音乐科技成就](https://mp.weixin.qq.com/s/5FBzxHm1PcgBpHy6645JmA) | N/A
26 | 20190218 | [「INFO」C4DM在ICASSP 2019的收录成果](https://mp.weixin.qq.com/s/RkcOyFf4eLIe512B37nmIw) | N/A
27 | 20190819 | [「INFO」在C4DM读博是怎样一番体验?](https://mp.weixin.qq.com/s/N4p_jmsuY6RVuz1IjrSMeg) | N/A
28 | 20191113 | [「MIR-02_4」音频特征小全之提取工具](http://mp.weixin.qq.com/s?__biz=MzU5MzY3NzI0OA==&mid=2247483792&idx=1&sn=38b07d6efff4523eecd78366f3e87962&chksm=fe0d9f3fc97a1629669c5875ea33a3b43878a2859e71a052c7c38b212127fea936e935e79c75#rd) | N/A
29 | 20200112 | [「INFO」2019年度那些亮眼的音乐科技成就](http://mp.weixin.qq.com/s?__biz=MzU5MzY3NzI0OA==&mid=2247483802&idx=1&sn=9790d92e685baa74f28f3053c4ff15ef&chksm=fe0d9f35c97a1623fc305ce8c79b19e7451f5500d95b08c4fd5c27e47c8a256094c3e2022066#rd) | N/A
30 | 20200307 | [「MIR-03」听歌识曲: 音乐宇宙里的占星师](http://mp.weixin.qq.com/s?__biz=MzU5MzY3NzI0OA==&mid=2247483818&idx=1&sn=db17b69603b98532f993f7f094248ce3&chksm=fe0d9f05c97a16139ee4114ed6890c8d99bd2c09210aa7ba0d085a2f44599e5cbd5a93375290#rd) | 可参考鲁霄在[知乎上的系列文章](https://zhuanlan.zhihu.com/p/75360272)
31 | 20200314 | [「MIR-04」音乐推荐: 努力懂你的预言家](http://mp.weixin.qq.com/s?__biz=MzU5MzY3NzI0OA==&mid=2247483885&idx=1&sn=f9e4c9f71451575d1111e566943f4aff&chksm=fe0d9f42c97a16544b35edd490294e754e9e3cf48a13ca6585bcb7f58c02d0c1bf0222822793#rd) | N/A
32 | 20200320 | [「MIR-05_0」震惊! AI发现这些歌竟然...](http://mp.weixin.qq.com/s?__biz=MzU5MzY3NzI0OA==&mid=2247483898&idx=1&sn=3a405119a32714442c8dcd9be830cdb9&chksm=fe0d9f55c97a1643a091acb7d6c25c14a8d19d107f9d430ffd9055a468f4d18c43666b2c260f#rd) | N/A
33 | 20200430 | [「INFO」《音频音乐技术》正式出版](http://mp.weixin.qq.com/s?__biz=MzU5MzY3NzI0OA==&mid=2247483904&idx=1&sn=959fd70b768b9416a5065748ba6f5818&chksm=fe0d9cafc97a15b9c1123a30af34497d5e79e5b636a15a70ad169434ed5b0cf937f13ca87a7b#rd) | N/A
34 | 20200516 | [「说得好听」EP7-音乐推荐算法的小秘密](http://mp.weixin.qq.com/s?__biz=MzU5MzY3NzI0OA==&mid=2247483914&idx=1&sn=1a474f9bdfb1c7981a461151737bb5e0&chksm=fe0d9ca5c97a15b36c77c5879d916cb7f2a56c62741c3490dd1c18c5f638231452e9929e398f#rd) | 小宇宙上的[播客链接](https://www.xiaoyuzhoufm.com/episode/5ebeec95418a84a0468f2ed5)
35 | 20201008 | [「MIR-05_1」音乐流派自动识别的前世今生](http://mp.weixin.qq.com/s?__biz=MzU5MzY3NzI0OA==&mid=2247483923&idx=1&sn=2fe1ad96ba0b764888f28fdd88ce9e36&chksm=fe0d9cbcc97a15aa70632d73d3d7cafbc63d97027d8a9d1ecd7fee20212649d6b1fbde37c90f#rd) | N/A
36 | 20210306 | [「INFO」2020年度那些亮眼的音乐科技成就](http://mp.weixin.qq.com/s?__biz=MzU5MzY3NzI0OA==&mid=2247483940&idx=1&sn=c6470c7b689da2882ee4fb6c43e1577c&chksm=fe0d9c8bc97a159d2c7734ab466b38d2d524f4e8e2ce87a2d54cf5303ae5c436eadbdd103b09#rd) | N/A
37 | 20210604 | [「MIR-05_2」当音乐标签化身为音频Embedding时能解决什么?](http://mp.weixin.qq.com/s?__biz=MzU5MzY3NzI0OA==&mid=2247483954&idx=1&sn=7bdcc70838c0fc3d014cdedec91411b2&chksm=fe0d9c9dc97a158b31d11ec699d6e5ab53caf1897431cdf2f20f73ab67d885790b4a9361f055#rd) | arXiv上的[论文链接](https://arxiv.org/abs/2010.15389)
38 | 20210806 | [「INFO」三分钟认识音乐科技](http://mp.weixin.qq.com/s?__biz=MzU5MzY3NzI0OA==&mid=2247483960&idx=1&sn=80ce28a10186dab81af2af239df76c8a&chksm=fe0d9c97c97a158114decdbdbe6cc6916c6c81f6fce9f9c52617fc6d0ea8738b9720efe8975a#rd) | 英文原版视频的[YouTube链接](https://www.youtube.com/watch?v=YgYV-7-ohxQ)
39 | 20210904 | [「MIR-06」打破砂锅问到底,不同python库做音频预处理的区别在哪里?](http://mp.weixin.qq.com/s?__biz=MzU5MzY3NzI0OA==&mid=2247483966&idx=1&sn=f968b4f55595357afa8f6d483715262d&chksm=fe0d9c91c97a1587f42ce8e52d3cd4eec9ba49cad01680aead1b60d0918c134340ce75e3c469#rd) | TBC
40 | 20221017 | [「INFO」从数据角度聊聊音乐版权版税](https://mp.weixin.qq.com/s?__biz=MzU5MzY3NzI0OA==&mid=2247483988&idx=1&sn=d5b6dfa1ab0e460f9abad915838f6e59&chksm=fe0d9cfbc97a15edff8b2f5ac49ca678350bc3af18d6558c6508499703e384f82bca36253ca8&scene=178&cur_album_id=1342444458121576448#rd) | N/A
41 | 20230326 | [「INFO」分享我的MIR研发技术栈](https://mp.weixin.qq.com/s?__biz=MzU5MzY3NzI0OA==&mid=2247483994&idx=1&sn=3dfeefafc11c264106f448379052b42d&chksm=fe0d9cf5c97a15e30a5338b9031ae1741ea45856d234dc02d13ecc7723b5682a747f9c00de31&scene=178&cur_album_id=1342444458121576448#rd) | [B站视频链接](https://www.bilibili.com/video/BV1MX4y1R7cu/?share_source=copy_web&vd_source=9a7c2143e3aca83788929d6099a36f8f)
42 |
43 | ---
44 |
45 | ### 从零设置编程环境:
46 |
47 | 以下内容适用于编程零基础的读者,如果你已经清楚如何`git clone`本项目,并能在一个基于Python 3的虚拟环境内安装Jupyter Notebook以及[requirements.txt](https://github.com/beiciliang/intro2musictech/blob/master/requirements.txt)中的第三方库之后,不报错地加载[00-Hello.ipynb](https://github.com/beiciliang/intro2musictech/blob/master/00-Hello.ipynb)并运行其中代码,恭喜你,编程环境配置成功!
48 |
49 | 1. [命令行基础操作](#命令行)
50 |
51 | 2. [Git用法](#git用法)
52 |
53 | 3. [Anaconda设置环境](#anaconda设置环境)
54 |
55 | 4. [用Jupyter Notebook运行Python代码](#用jupyter-notebook运行python)
56 |
57 | 5. [如何退出](#如何退出)
58 |
59 | 6. [后续工作](#后续工作)
60 |
61 | ---
62 |
63 | ### 『命令行』
64 |
65 | 在计算机还没有酷炫的交互界面甚至连鼠标都没有的年代,人们通过命令行来操作程序,如果你学会了在命令行下如何操作,表面上能看起来像个黑客,实际上能大大加快操作速度。
66 |
67 | 假如你是MacOS或Linux用户,博主希望你懂得如何使用终端(Terminal);假如你是Windows用户,则希望你懂得如何使用命令窗口(Command Prompt)或PowerShell。**以下内容以在MacOS上操作为例!**
68 |
69 | ✎ 打开命令行界面后,应该会看到一个白色或黑色的窗口,正等待着你的命令:
70 | ```
71 | HOSTNAME:~ USER$
72 | ```
73 |
74 | 其中`HOSTNAME`的部分指主机名,冒号后的`~`表示当前路径在根目录下,`USER`是用户名,最后`$`提示终端在等待你输入命令。本文将主要用到`ls` `cd` `pwd` `git` `conda` `pip` 这些命令。
75 |
76 | ✎ 首先`ls`表示列出当前路径下的所有文件:
77 | ```
78 | HOSTNAME:~ USER$ ls
79 | ```
80 |
81 | 输入后回车,窗口中会返回所有文件和文件夹的名字。
82 |
83 | ✎ 假设一个叫`Downloads`的文件夹在上述返回的名字列表中,进入这个文件夹需要`cd`:
84 | ```
85 | HOSTNAME:~ USER$ cd Downloads
86 | ```
87 |
88 | ✎ 回车后“当前路径”已经由`~`变成这个文件夹的位置,输入`pwd`可以再确认:
89 | ```
90 | HOSTNAME:Downloads USER$ pwd
91 | ```
92 |
93 | 回车后会显示当前路径为
94 | ```
95 | /Users/USER/Downloads
96 | ```
97 |
98 | ✎ 如果需要返回上一级目录,依然可以使用`cd`:
99 | ```
100 | HOSTNAME:Downloads USER$ cd ..
101 | ```
102 |
103 | 这些就是最最基本的命令行了!下面的部分会继续讲解其他命令行的用法,需要时刻注意路径是否正确,指令之间是否有空格分隔等等。
104 |
105 | ---
106 |
107 | ### 『Git用法』
108 |
109 | Git即版本控制,是一种记录一个或若干文件内容变化,以便将来查阅特定版本修订情况的系统。程序员们用它才能最快发现到底是谁在什么时候删了一行不该删的代码。
110 |
111 | 公众号涉及的代码都是由博主先在自己的电脑上通过git进行本地版本控制,再托管到Github这个可以让读者们看到的地方。如果有错误的地方,其他人也可以发起`pull request`来纠正,博主再`git merge`把别人的修改意见融到自己的代码中。
112 |
113 |
114 | ✎ 首先需要将Git安装在你的计算机上,安装指南[点击链接](https://git-scm.com/book/zh/v2/%E8%B5%B7%E6%AD%A5-%E5%AE%89%E8%A3%85-Git)
115 |
116 | ✎ 其次,你需要一个GitHub账号,这也能方便将来对自己代码的托管。
117 |
118 | ✎ 之后你可以通过Git命令行,将公众号的代码克隆到你的计算机上:
119 | ```
120 | HOSTNAME:~ USER$ git clone https://github.com/beiciliang/intro2musictech.git
121 | ```
122 |
123 | 克隆完成后若在当前路径下输入`ls`,返回的名单中将包含`intro2musictech`。
124 |
125 | 因为公众号的代码会随新文章的发布而增加更多内容,博主建议读者发现有新文章发布后通过`git pull`来同步更新。
126 |
127 | ☞ 如果实在觉得各种git指令太晦涩,可通过GitHub Desktop软件进行版本控制。
128 |
129 | ☞ 如果想更深入了解git和GitHub,英文好的读者可直接参考官方帮助文档,中文资料可参考[这里](https://github.com/xirong/my-git/blob/master/how-to-use-github.md)
130 |
131 | ---
132 |
133 | ### 『Anaconda设置环境』
134 |
135 | 现在通过`ls`查看一下`intro2musictech`文件夹里都有哪些东东:
136 |
137 | ```
138 | HOSTNAME:~ USER$ ls intro2musictech
139 | ```
140 |
141 | 其中`attachment`文件夹里包含一些音乐素材和图片,以`.ipynb`为后缀的文件都是Jupyter Notebook,重点是`requirements.txt`中所有的Python库,成功安装这些才能确保今后所有`.ipynb`中的Python代码能跑起来。
142 |
143 | 不过首先需要解决的大事儿是,如何安装Python?
144 |
145 | 我们可借助Anaconda,即一个预装了很多我们用的到或用不到的第三方库的Python。
146 |
147 | ✎ 首先去官网根据自己系统的型号,下载**Anaconda3**并安装,但是国内的同学也许会发现官网下载太慢,这种情况可从国内清华大学开源软件镜像站进行下载并配置镜像:
148 |
149 | ☞ [官方下载链接](https://www.anaconda.com/download/)
150 |
151 | ☞ [清华大学镜像站](https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/)
152 |
153 | ✎ 安装过程中,建议勾选把Anaconda加入环境变量,并设置Anaconda所带的Python 3.6为系统默认的Python版本,不过这些步骤不做问题也不大,反正之后我们要建立一个新的Python 3.7虚拟环境!
154 |
155 | **另**,建议国内读者通过镜像成功安装Anaconda之后,修改其包管理镜像为国内源,即运行下方两个命令行:
156 |
157 | ```
158 | $ conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
159 | $ conda config --set show_channel_urls yes
160 | ```
161 |
162 | ✎ 安装Anaconda后,用它建立虚拟环境可以指定要安装在环境中的Python版本和第三方库,避免在自己的电脑上瞎安装/起冲突/费时间,这对需要同时用Python版本2和3的程序员非常有必要!
163 |
164 | ✎ 下面的命令行将一步步带领读者走向成功的一半!
165 |
166 | 1. 先用`conda`在全局下安装些notebook的拓展包:
167 | ```
168 | $ conda install nb_conda
169 | $ conda install -c conda-forge jupyter_nbextensions_configurator
170 | ```
171 |
172 | 2. 建立一个名字为`py37`的环境,该环境下Python版本为3.7,并安装`ipykernel`这个库也就顺便将Jupyther Notebook安装到`py37`环境中:
173 | ```
174 | $ conda create -n py37 python=3.7 ipykernel
175 | ```
176 |
177 | 3. 激活`py37`环境:
178 | ```
179 | $ source activate py37
180 | ```
181 |
182 | 激活后可见命令行开头有括号提示你已经在括号内显示的虚拟环境中。
183 |
184 | 4. 在该虚拟环境下用`pip`安装其他第三方库(先升级下`pip`):
185 | ```
186 | (py37)$ pip install --upgrade pip
187 | (py37)$ pip install numpy scipy matplotlib librosa scikit-learn
188 | ```
189 |
190 | **另**,这些库也可通过指令`pip install -r requirements.txt`来安装,注意除非当前路径与该txt文件相同,否则要在指令中声明txt所在的具体路径!
191 |
192 | 对于第三方库的安装,用`pip`或`conda`其实没有大区别,但博主一般会参考这个库本身建议哪种方式最简单。
193 |
194 | 5. 此时你可通过`conda list`指令来查看`py37`环境下具体成功安装上了哪些库。
195 |
196 | 6. 若想退出虚拟环境,可直接输入`source deactivate`后回车,不过为了最后关于Notebook的环节,暂且先不要退出!
197 |
198 | **对于完全不想安装anaconda,只想用`pip`掌控大权的读者**:
199 |
200 | 创建虚拟环境的时候就需要用其他如[virtualenv](https://virtualenv.pypa.io/en/stable/)的辅助,在创建并激活进入到虚拟环境后:
201 | ```
202 | (py37)$ pip install --upgrade pip
203 | (py37)$ pip install ipykernel
204 | (py37)$ ipython kernel install --user --name=py37
205 | (py37)$ pip install -r requirements.txt
206 | ```
207 |
208 | 在以上设置完成后才能确保`py37`中的Python 3内核将被Notebook正确调用。
209 |
210 | ---
211 |
212 | ### 『用Jupyter Notebook运行Python』
213 |
214 | Jupyter Notebook本身是一种网页端应用,能让用户将说明文本、数学方程、代码和可视化内容全部组合到一个易于共享的文档中。
215 |
216 | ✎ 现在我们在`py37`虚拟环境下直接用命令行打开该应用:
217 | ```
218 | (py37)$ jupyter notebook
219 | ```
220 |
221 | 此时你的浏览器应该会直接弹出一个新页面,你也可以粘贴命令行返回的URL链接,拷贝到浏览器中打开应用。
222 |
223 | ✎ 点击页面右侧的`New`并选择`Python [conda env:py37]`可新建一个基于该虚拟环境的Notebook。
224 |
225 | ✎ 现在我们回到之前的页面,进入`intro2musictech`文件夹后打开`00-Hello.ipynb`。
226 |
227 | ✎ 读者也可直接浏览[00-Hello.ipynb](https://github.com/beiciliang/intro2musictech/blob/master/00-Hello.ipynb)的内容。
228 |
229 | ✎ 其中简要介绍了Notebook在跑Python代码时的妙用,你会用它加载一段音频后听到猫叫,并画出波形!
230 |
231 | ---
232 |
233 | ### 『如何退出』
234 |
235 | ✎ 关闭Notebook不仅仅要关闭浏览器页面,在其运行的命令行界面,要通过两次`CTRL+C`中止程序。
236 |
237 | ✎ 通过`source deactivate`命令行退出当前虚拟环境。
238 |
239 | ✎ 以后若需要再次激活某个虚拟环境但不巧忘了其名字,可通过`conda env list`指令来查询。
240 |
241 | ✎ 慎重!如果对这个`py37`虚拟环境不爽,可以用`conda env remove -n py37`彻底删除。
242 |
243 | ---
244 |
245 | ### 『后续工作』
246 |
247 | 假设上述所有步骤都能成功执行,那么一旦有新文章时,读者可以在自己的电脑上获取更新后查看最新的Notebook,大致流程如下:
248 | ```
249 | $ cd intro2musictech
250 | $ git pull
251 | $ source activate py37
252 | (py37)$ jupyter notebook
253 | ```
254 |
255 |
--------------------------------------------------------------------------------
/attachment/cat-meow.mp3:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/beiciliang/intro2musictech/d845e93bc49fa6046519325c3281c1562f907755/attachment/cat-meow.mp3
--------------------------------------------------------------------------------
/attachment/mir01-midi.mid:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/beiciliang/intro2musictech/d845e93bc49fa6046519325c3281c1562f907755/attachment/mir01-midi.mid
--------------------------------------------------------------------------------
/attachment/mir01-music-example.wav:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/beiciliang/intro2musictech/d845e93bc49fa6046519325c3281c1562f907755/attachment/mir01-music-example.wav
--------------------------------------------------------------------------------
/attachment/mir01-music-score.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/beiciliang/intro2musictech/d845e93bc49fa6046519325c3281c1562f907755/attachment/mir01-music-score.png
--------------------------------------------------------------------------------
/attachment/mir01-musicxml.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/beiciliang/intro2musictech/d845e93bc49fa6046519325c3281c1562f907755/attachment/mir01-musicxml.png
--------------------------------------------------------------------------------
/attachment/mir01-pianoroll.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/beiciliang/intro2musictech/d845e93bc49fa6046519325c3281c1562f907755/attachment/mir01-pianoroll.png
--------------------------------------------------------------------------------
/attachment/mir02-adsr.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/beiciliang/intro2musictech/d845e93bc49fa6046519325c3281c1562f907755/attachment/mir02-adsr.png
--------------------------------------------------------------------------------
/attachment/mir02-c4.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/beiciliang/intro2musictech/d845e93bc49fa6046519325c3281c1562f907755/attachment/mir02-c4.png
--------------------------------------------------------------------------------
/attachment/mir02-centroidaudio.wav:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/beiciliang/intro2musictech/d845e93bc49fa6046519325c3281c1562f907755/attachment/mir02-centroidaudio.wav
--------------------------------------------------------------------------------
/attachment/mir02-dongda.wav:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/beiciliang/intro2musictech/d845e93bc49fa6046519325c3281c1562f907755/attachment/mir02-dongda.wav
--------------------------------------------------------------------------------
/attachment/mir02-instrument-adsr.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/beiciliang/intro2musictech/d845e93bc49fa6046519325c3281c1562f907755/attachment/mir02-instrument-adsr.png
--------------------------------------------------------------------------------
/attachment/mir02-mds.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/beiciliang/intro2musictech/d845e93bc49fa6046519325c3281c1562f907755/attachment/mir02-mds.png
--------------------------------------------------------------------------------
/attachment/mir02-melfilterbank.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/beiciliang/intro2musictech/d845e93bc49fa6046519325c3281c1562f907755/attachment/mir02-melfilterbank.png
--------------------------------------------------------------------------------
/attachment/mir02-multiplef0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/beiciliang/intro2musictech/d845e93bc49fa6046519325c3281c1562f907755/attachment/mir02-multiplef0.png
--------------------------------------------------------------------------------
/attachment/mir02-oboe_C6_1046Hz.wav:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/beiciliang/intro2musictech/d845e93bc49fa6046519325c3281c1562f907755/attachment/mir02-oboe_C6_1046Hz.wav
--------------------------------------------------------------------------------
/attachment/mir02-tf2salience.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/beiciliang/intro2musictech/d845e93bc49fa6046519325c3281c1562f907755/attachment/mir02-tf2salience.png
--------------------------------------------------------------------------------
/attachment/mir02-timbrespace.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/beiciliang/intro2musictech/d845e93bc49fa6046519325c3281c1562f907755/attachment/mir02-timbrespace.png
--------------------------------------------------------------------------------
/attachment/mir02-workflow.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/beiciliang/intro2musictech/d845e93bc49fa6046519325c3281c1562f907755/attachment/mir02-workflow.png
--------------------------------------------------------------------------------
/attachment/qrcode.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/beiciliang/intro2musictech/d845e93bc49fa6046519325c3281c1562f907755/attachment/qrcode.jpg
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | numpy==1.15.0
2 | scipy==1.1.0
3 | matplotlib==2.2.2
4 | librosa==0.6.1
5 | scikit-learn==0.19.2
--------------------------------------------------------------------------------