├── .github └── FUNDING.yml ├── boosting.gif ├── awesome.py ├── contributing.md ├── code-of-conduct.md ├── LICENSE └── README.md /.github/FUNDING.yml: -------------------------------------------------------------------------------- 1 | github: [benedekrozemberczki] 2 | -------------------------------------------------------------------------------- /boosting.gif: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/benedekrozemberczki/awesome-gradient-boosting-papers/HEAD/boosting.gif -------------------------------------------------------------------------------- /awesome.py: -------------------------------------------------------------------------------- 1 | __author__ = "Benedek Rozemberczki" 2 | __maintainer__ = "Benedek Rozemberczki" 3 | __email__ = "benedek.rozemberczki@gmail.com" 4 | __status__ = "Production" 5 | -------------------------------------------------------------------------------- /contributing.md: -------------------------------------------------------------------------------- 1 | # Contribution Guidelines 2 | 3 | Please note that this project is released with a [Contributor Code of Conduct](code-of-conduct.md). By participating in this project you agree to abide by its terms. 4 | 5 | The pull request should have a useful title. Pull requests with `Update readme.md` as title will be closed. Please carefully read everything in `Adding to this list`. 6 | 7 | ## Adding to this list 8 | 9 | Please ensure your pull request adheres to the following guidelines: 10 | 11 | - Search previous suggestions before making a new one, as yours may be a duplicate. 12 | - Make an individual pull request for each suggestion. 13 | - Chose corresponding section (Factorization, Deep Learning and so on) for your suggestion. 14 | - Include the name of the paper. 15 | - Include the year and conference in which the paper came out. 16 | - Keep chronological order. 17 | - Add the paper authors. 18 | - Add a link to the paper - preferrably on ArXiv. 19 | - Add an implementation of the paper. You can add multiple implementations. 20 | - Check your spelling and grammar. 21 | - List, after your addition, should be alphabetically. 22 | - The pull request and commit should have a useful title. 23 | - The body of your commit message should contain a link to the repository. 24 | 25 | Thank you for your suggestions! 26 | -------------------------------------------------------------------------------- /code-of-conduct.md: -------------------------------------------------------------------------------- 1 | # Contributor Covenant Code of Conduct 2 | 3 | ## Our Pledge 4 | 5 | In the interest of fostering an open and welcoming environment, we as 6 | contributors and maintainers pledge to making participation in our project and 7 | our community a harassment-free experience for everyone, regardless of age, body 8 | size, disability, ethnicity, gender identity and expression, level of experience, 9 | nationality, personal appearance, race, religion, or sexual identity and 10 | orientation. 11 | 12 | ## Our Standards 13 | 14 | Examples of behavior that contributes to creating a positive environment 15 | include: 16 | 17 | * Using welcoming and inclusive language 18 | * Being respectful of differing viewpoints and experiences 19 | * Gracefully accepting constructive criticism 20 | * Focusing on what is best for the community 21 | * Showing empathy towards other community members 22 | 23 | Examples of unacceptable behavior by participants include: 24 | 25 | * The use of sexualized language or imagery and unwelcome sexual attention or 26 | advances 27 | * Trolling, insulting/derogatory comments, and personal or political attacks 28 | * Public or private harassment 29 | * Publishing others' private information, such as a physical or electronic 30 | address, without explicit permission 31 | * Other conduct which could reasonably be considered inappropriate in a 32 | professional setting 33 | 34 | ## Our Responsibilities 35 | 36 | Project maintainers are responsible for clarifying the standards of acceptable 37 | behavior and are expected to take appropriate and fair corrective action in 38 | response to any instances of unacceptable behavior. 39 | 40 | Project maintainers have the right and responsibility to remove, edit, or 41 | reject comments, commits, code, wiki edits, issues, and other contributions 42 | that are not aligned to this Code of Conduct, or to ban temporarily or 43 | permanently any contributor for other behaviors that they deem inappropriate, 44 | threatening, offensive, or harmful. 45 | 46 | ## Scope 47 | 48 | This Code of Conduct applies both within project spaces and in public spaces 49 | when an individual is representing the project or its community. Examples of 50 | representing a project or community include using an official project e-mail 51 | address, posting via an official social media account, or acting as an appointed 52 | representative at an online or offline event. Representation of a project may be 53 | further defined and clarified by project maintainers. 54 | 55 | ## Enforcement 56 | 57 | Instances of abusive, harassing, or otherwise unacceptable behavior may be 58 | reported by contacting the project team at benedek.rozemberczki@gmail.com. All 59 | complaints will be reviewed and investigated and will result in a response that 60 | is deemed necessary and appropriate to the circumstances. The project team is 61 | obligated to maintain confidentiality with regard to the reporter of an incident. 62 | Further details of specific enforcement policies may be posted separately. 63 | 64 | Project maintainers who do not follow or enforce the Code of Conduct in good 65 | faith may face temporary or permanent repercussions as determined by other 66 | members of the project's leadership. 67 | 68 | ## Attribution 69 | 70 | This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 1.4, 71 | available at [http://contributor-covenant.org/version/1/4][version] 72 | 73 | [homepage]: http://contributor-covenant.org 74 | [version]: http://contributor-covenant.org/version/1/4/ 75 | -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | CC0 1.0 Universal 2 | 3 | Statement of Purpose 4 | 5 | The laws of most jurisdictions throughout the world automatically confer 6 | exclusive Copyright and Related Rights (defined below) upon the creator and 7 | subsequent owner(s) (each and all, an "owner") of an original work of 8 | authorship and/or a database (each, a "Work"). 9 | 10 | Certain owners wish to permanently relinquish those rights to a Work for the 11 | purpose of contributing to a commons of creative, cultural and scientific 12 | works ("Commons") that the public can reliably and without fear of later 13 | claims of infringement build upon, modify, incorporate in other works, reuse 14 | and redistribute as freely as possible in any form whatsoever and for any 15 | purposes, including without limitation commercial purposes. These owners may 16 | contribute to the Commons to promote the ideal of a free culture and the 17 | further production of creative, cultural and scientific works, or to gain 18 | reputation or greater distribution for their Work in part through the use and 19 | efforts of others. 20 | 21 | For these and/or other purposes and motivations, and without any expectation 22 | of additional consideration or compensation, the person associating CC0 with a 23 | Work (the "Affirmer"), to the extent that he or she is an owner of Copyright 24 | and Related Rights in the Work, voluntarily elects to apply CC0 to the Work 25 | and publicly distribute the Work under its terms, with knowledge of his or her 26 | Copyright and Related Rights in the Work and the meaning and intended legal 27 | effect of CC0 on those rights. 28 | 29 | 1. Copyright and Related Rights. A Work made available under CC0 may be 30 | protected by copyright and related or neighboring rights ("Copyright and 31 | Related Rights"). Copyright and Related Rights include, but are not limited 32 | to, the following: 33 | 34 | i. the right to reproduce, adapt, distribute, perform, display, communicate, 35 | and translate a Work; 36 | 37 | ii. moral rights retained by the original author(s) and/or performer(s); 38 | 39 | iii. publicity and privacy rights pertaining to a person's image or likeness 40 | depicted in a Work; 41 | 42 | iv. rights protecting against unfair competition in regards to a Work, 43 | subject to the limitations in paragraph 4(a), below; 44 | 45 | v. rights protecting the extraction, dissemination, use and reuse of data in 46 | a Work; 47 | 48 | vi. database rights (such as those arising under Directive 96/9/EC of the 49 | European Parliament and of the Council of 11 March 1996 on the legal 50 | protection of databases, and under any national implementation thereof, 51 | including any amended or successor version of such directive); and 52 | 53 | vii. other similar, equivalent or corresponding rights throughout the world 54 | based on applicable law or treaty, and any national implementations thereof. 55 | 56 | 2. Waiver. To the greatest extent permitted by, but not in contravention of, 57 | applicable law, Affirmer hereby overtly, fully, permanently, irrevocably and 58 | unconditionally waives, abandons, and surrenders all of Affirmer's Copyright 59 | and Related Rights and associated claims and causes of action, whether now 60 | known or unknown (including existing as well as future claims and causes of 61 | action), in the Work (i) in all territories worldwide, (ii) for the maximum 62 | duration provided by applicable law or treaty (including future time 63 | extensions), (iii) in any current or future medium and for any number of 64 | copies, and (iv) for any purpose whatsoever, including without limitation 65 | commercial, advertising or promotional purposes (the "Waiver"). Affirmer makes 66 | the Waiver for the benefit of each member of the public at large and to the 67 | detriment of Affirmer's heirs and successors, fully intending that such Waiver 68 | shall not be subject to revocation, rescission, cancellation, termination, or 69 | any other legal or equitable action to disrupt the quiet enjoyment of the Work 70 | by the public as contemplated by Affirmer's express Statement of Purpose. 71 | 72 | 3. Public License Fallback. Should any part of the Waiver for any reason be 73 | judged legally invalid or ineffective under applicable law, then the Waiver 74 | shall be preserved to the maximum extent permitted taking into account 75 | Affirmer's express Statement of Purpose. In addition, to the extent the Waiver 76 | is so judged Affirmer hereby grants to each affected person a royalty-free, 77 | non transferable, non sublicensable, non exclusive, irrevocable and 78 | unconditional license to exercise Affirmer's Copyright and Related Rights in 79 | the Work (i) in all territories worldwide, (ii) for the maximum duration 80 | provided by applicable law or treaty (including future time extensions), (iii) 81 | in any current or future medium and for any number of copies, and (iv) for any 82 | purpose whatsoever, including without limitation commercial, advertising or 83 | promotional purposes (the "License"). The License shall be deemed effective as 84 | of the date CC0 was applied by Affirmer to the Work. Should any part of the 85 | License for any reason be judged legally invalid or ineffective under 86 | applicable law, such partial invalidity or ineffectiveness shall not 87 | invalidate the remainder of the License, and in such case Affirmer hereby 88 | affirms that he or she will not (i) exercise any of his or her remaining 89 | Copyright and Related Rights in the Work or (ii) assert any associated claims 90 | and causes of action with respect to the Work, in either case contrary to 91 | Affirmer's express Statement of Purpose. 92 | 93 | 4. Limitations and Disclaimers. 94 | 95 | a. No trademark or patent rights held by Affirmer are waived, abandoned, 96 | surrendered, licensed or otherwise affected by this document. 97 | 98 | b. Affirmer offers the Work as-is and makes no representations or warranties 99 | of any kind concerning the Work, express, implied, statutory or otherwise, 100 | including without limitation warranties of title, merchantability, fitness 101 | for a particular purpose, non infringement, or the absence of latent or 102 | other defects, accuracy, or the present or absence of errors, whether or not 103 | discoverable, all to the greatest extent permissible under applicable law. 104 | 105 | c. Affirmer disclaims responsibility for clearing rights of other persons 106 | that may apply to the Work or any use thereof, including without limitation 107 | any person's Copyright and Related Rights in the Work. Further, Affirmer 108 | disclaims responsibility for obtaining any necessary consents, permissions 109 | or other rights required for any use of the Work. 110 | 111 | d. Affirmer understands and acknowledges that Creative Commons is not a 112 | party to this document and has no duty or obligation with respect to this 113 | CC0 or use of the Work. 114 | 115 | For more information, please see 116 | 117 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Awesome Gradient Boosting Research Papers 2 | [![Awesome](https://cdn.rawgit.com/sindresorhus/awesome/d7305f38d29fed78fa85652e3a63e154dd8e8829/media/badge.svg)](https://github.com/sindresorhus/awesome) [![PRs Welcome](https://img.shields.io/badge/PRs-welcome-brightgreen.svg?style=flat-square)](http://makeapullrequest.com) ![License](https://img.shields.io/github/license/benedekrozemberczki/awesome-gradient-boosting-papers.svg?color=blue) [![repo size](https://img.shields.io/github/repo-size/benedekrozemberczki/awesome-gradient-boosting-papers.svg)](https://github.com/benedekrozemberczki/awesome-gradient-boosting-papers/archive/master.zip) [![benedekrozemberczki](https://img.shields.io/twitter/follow/benrozemberczki?style=social&logo=twitter)](https://twitter.com/intent/follow?screen_name=benrozemberczki) 3 |

4 | 5 |

6 | 7 | -------------------------------- 8 | 9 | A curated list of gradient and adaptive boosting papers with implementations from the following conferences: 10 | 11 | - Machine learning 12 | * [NeurIPS](https://nips.cc/) 13 | * [ICML](https://icml.cc/) 14 | * [ICLR](https://iclr.cc/) 15 | - Computer vision 16 | * [CVPR](http://cvpr2019.thecvf.com/) 17 | * [ICCV](http://iccv2019.thecvf.com/) 18 | * [ECCV](https://eccv2018.org/) 19 | - Natural language processing 20 | * [ACL](http://www.acl2019.org/EN/index.xhtml) 21 | * [NAACL](https://naacl2019.org/) 22 | * [EMNLP](https://www.emnlp-ijcnlp2019.org/) 23 | - Data 24 | * [KDD](https://www.kdd.org/) 25 | * [CIKM](http://www.cikmconference.org/) 26 | * [ICDM](http://icdm2019.bigke.org/) 27 | * [SDM](https://www.siam.org/Conferences/CM/Conference/sdm19) 28 | * [PAKDD](http://pakdd2019.medmeeting.org) 29 | * [PKDD/ECML](http://ecmlpkdd2019.org) 30 | * [RECSYS](https://recsys.acm.org/) 31 | * [SIGIR](https://sigir.org/) 32 | * [WWW](https://www2019.thewebconf.org/) 33 | * [WSDM](www.wsdm-conference.org) 34 | - Artificial intelligence 35 | * [AAAI](https://www.aaai.org/) 36 | * [AISTATS](https://www.aistats.org/) 37 | * [ICANN](https://e-nns.org/icann2019/) 38 | * [IJCAI](https://www.ijcai.org/) 39 | * [UAI](http://www.auai.org/) 40 | 41 | Similar collections about [graph classification](https://github.com/benedekrozemberczki/awesome-graph-classification), [classification/regression tree](https://github.com/benedekrozemberczki/awesome-decision-tree-papers), [fraud detection](https://github.com/benedekrozemberczki/awesome-fraud-detection-papers), [Monte Carlo tree search](https://github.com/benedekrozemberczki/awesome-monte-carlo-tree-search-papers), and [community detection](https://github.com/benedekrozemberczki/awesome-community-detection) papers with implementations. 42 | 43 | ## 2023 44 | 45 | - **Computing Abductive Explanations for Boosted Trees (AISTATS 2023)** 46 | - Gilles Audemard, Jean-Marie Lagniez, Pierre Marquis, Nicolas Szczepanski 47 | - [[Paper]](https://arxiv.org/abs/2209.07740) 48 | 49 | - **Boosted Off-Policy Learning (AISTATS 2023)** 50 | - Ben London, Levi Lu, Ted Sandler, Thorsten Joachims 51 | - [[Paper]](https://arxiv.org/abs/2208.01148) 52 | 53 | - **Variational Boosted Soft Trees (AISTATS 2023)** 54 | - Tristan Cinquin, Tammo Rukat, Philipp Schmidt, Martin Wistuba, Artur Bekasov 55 | - [[Paper]](https://arxiv.org/abs/2302.10706) 56 | 57 | - **Krylov-Bellman boosting: Super-linear policy evaluation in general state spaces (AISTATS 2023)** 58 | - Eric Xia, Martin J. Wainwright 59 | - [[Paper]](https://arxiv.org/abs/2210.11377) 60 | 61 | - **FairGBM: Gradient Boosting with Fairness Constraints (ICLR 2023)** 62 | - André Ferreira Cruz, Catarina Belém, João Bravo, Pedro Saleiro, Pedro Bizarro 63 | - [[Paper]](https://arxiv.org/abs/2209.07850) 64 | 65 | - **Gradient Boosting Performs Gaussian Process Inference (ICLR 2023)** 66 | - Aleksei Ustimenko, Artem Beliakov, Liudmila Prokhorenkova 67 | - [[Paper]](https://arxiv.org/abs/2206.05608) 68 | 69 | 70 | ## 2022 71 | 72 | - **TransBoost: A Boosting-Tree Kernel Transfer Learning Algorithm for Improving Financial Inclusion (AAAI 2022)** 73 | - Yiheng Sun, Tian Lu, Cong Wang, Yuan Li, Huaiyu Fu, Jingran Dong, Yunjie Xu 74 | - [[Paper]](https://arxiv.org/abs/2112.02365) 75 | 76 | - **A Resilient Distributed Boosting Algorithm (ICML 2022)** 77 | - Yuval Filmus, Idan Mehalel, Shay Moran 78 | - [[Paper]](https://arxiv.org/abs/2206.04713) 79 | 80 | - **Fast Provably Robust Decision Trees and Boosting (ICML 2022)** 81 | - Jun-Qi Guo, Ming-Zhuo Teng, Wei Gao, Zhi-Hua Zhou 82 | - [[Paper]](https://proceedings.mlr.press/v162/guo22h.html) 83 | 84 | - **Building Robust Ensembles via Margin Boosting (ICML 2022)** 85 | - Dinghuai Zhang, Hongyang Zhang, Aaron C. Courville, Yoshua Bengio, Pradeep Ravikumar, Arun Sai Suggala 86 | - [[Paper]](https://arxiv.org/abs/2206.03362) 87 | 88 | - **Retrieval-Based Gradient Boosting Decision Trees for Disease Risk Assessment (KDD 2022)** 89 | - Handong Ma, Jiahang Cao, Yuchen Fang, Weinan Zhang, Wenbo Sheng, Shaodian Zhang, Yong Yu 90 | - [[Paper]](https://dl.acm.org/doi/abs/10.1145/3534678.3539052) 91 | 92 | - **Federated Functional Gradient Boosting (AISTATS 2022)** 93 | - Zebang Shen, Hamed Hassani, Satyen Kale, Amin Karbasi 94 | - [[Paper]](https://arxiv.org/abs/2103.06972) 95 | 96 | - **ExactBoost: Directly Boosting the Margin in Combinatorial and Non-decomposable Metrics (AISTATS 2022)** 97 | - Daniel Csillag, Carolina Piazza, Thiago Ramos, João Vitor Romano, Roberto I. Oliveira, Paulo Orenstein 98 | - [[Paper]](https://proceedings.mlr.press/v151/csillag22a.html) 99 | 100 | ## 2021 101 | 102 | - **Precision-based Boosting (AAAI 2021)** 103 | - Mohammad Hossein Nikravan, Marjan Movahedan, Sandra Zilles 104 | - [[Paper]](https://ojs.aaai.org/index.php/AAAI/article/view/17105) 105 | 106 | - **BNN: Boosting Neural Network Framework Utilizing Limited Amount of Data (CIKM 2021)** 107 | - Amit Livne, Roy Dor, Bracha Shapira, Lior Rokach 108 | - [[Paper]](https://dl.acm.org/doi/abs/10.1145/3459637.3482414) 109 | 110 | - **Unsupervised Domain Adaptation for Static Malware Detection based on Gradient Boosting Trees (CIKM 2021)** 111 | - Panpan Qi, Wei Wang, Lei Zhu, See-Kiong Ng 112 | - [[Paper]](https://dl.acm.org/doi/pdf/10.1145/3459637.3482400) 113 | 114 | - **Individually Fair Gradient Boosting (ICLR 2021)** 115 | - Alexander Vargo, Fan Zhang, Mikhail Yurochkin, Yuekai Sun 116 | - [[Paper]](https://arxiv.org/abs/2103.16785) 117 | 118 | - **Are Neural Rankers still Outperformed by Gradient Boosted Decision Trees (ICLR 2021)** 119 | - Zhen Qin, Le Yan, Honglei Zhuang, Yi Tay, Rama Kumar Pasumarthi, Xuanhui Wang, Michael Bendersky, Marc Najork 120 | - [[Paper]](https://iclr.cc/virtual/2021/spotlight/3536) 121 | 122 | - **AdaGCN: Adaboosting Graph Convolutional Networks into Deep Models (ICLR 2021)** 123 | - Ke Sun, Zhanxing Zhu, Zhouchen Lin 124 | - [[Paper]](https://arxiv.org/abs/1908.05081) 125 | - [[Code]](https://github.com/datake/AdaGCN) 126 | 127 | - **Uncertainty in Gradient Boosting via Ensembles (ICLR 2021)** 128 | - Andrey Malinin, Liudmila Prokhorenkova, Aleksei Ustimenko 129 | - [[Paper]](https://arxiv.org/abs/2006.10562) 130 | - 131 | - **Boost then Convolve: Gradient Boosting Meets Graph Neural Networks (ICLR 2021)** 132 | - Sergei Ivanov, Liudmila Prokhorenkova 133 | - [[Paper]](https://arxiv.org/abs/2101.08543) 134 | 135 | - **GBHT: Gradient Boosting Histogram Transform for Density Estimation (ICML 2021)** 136 | - Jingyi Cui, Hanyuan Hang, Yisen Wang, Zhouchen Lin 137 | - [[Paper]](https://arxiv.org/abs/2106.05738) 138 | 139 | - **Boosting for Online Convex Optimization (ICML 2021)** 140 | - Elad Hazan, Karan Singh 141 | - [[Paper]](https://arxiv.org/abs/2102.09305) 142 | 143 | - **Accuracy, Interpretability, and Differential Privacy via Explainable Boosting (ICML 2021)** 144 | - Harsha Nori, Rich Caruana, Zhiqi Bu, Judy Hanwen Shen, Janardhan Kulkarni 145 | - [[Paper]](https://arxiv.org/abs/2106.09680) 146 | 147 | - **SGLB: Stochastic Gradient Langevin Boosting (ICML 2021)** 148 | - Aleksei Ustimenko, Liudmila Prokhorenkova 149 | - [[Paper]](https://arxiv.org/abs/2001.07248) 150 | 151 | - **Self-boosting for Feature Distillation (IJCAI 2021)** 152 | - Yulong Pei, Yanyun Qu, Junping Zhang 153 | - [[Paper]](https://www.ijcai.org/proceedings/2021/131) 154 | 155 | - **Boosting Variational Inference With Locally Adaptive Step-Sizes (IJCAI 2021)** 156 | - Gideon Dresdner, Saurav Shekhar, Fabian Pedregosa, Francesco Locatello, Gunnar Rätsch 157 | - [[Paper]](https://arxiv.org/abs/2105.09240) 158 | 159 | - **Probabilistic Gradient Boosting Machines for Large-Scale Probabilistic Regression (KDD 2021)** 160 | - Olivier Sprangers, Sebastian Schelter, Maarten de Rijke 161 | - [[Paper]](https://arxiv.org/abs/2106.01682) 162 | 163 | - **Task-wise Split Gradient Boosting Trees for Multi-center Diabetes Prediction (KDD 2021)** 164 | - Mingcheng Chen, Zhenghui Wang, Zhiyun Zhao, Weinan Zhang, Xiawei Guo, Jian Shen, Yanru Qu, Jieli Lu, Min Xu, Yu Xu, Tiange Wang, Mian Li, Weiwei Tu, Yong Yu, Yufang Bi, Weiqing Wang, Guang Ning 165 | - [[Paper]](https://arxiv.org/abs/2108.07107) 166 | 167 | - **Better Short than Greedy: Interpretable Models through Optimal Rule Boosting (SDM 2021)** 168 | - Mario Boley, Simon Teshuva, Pierre Le Bodic, Geoffrey I. Webb 169 | - [[Paper]](https://arxiv.org/abs/2101.08380) 170 | 171 | ## 2020 172 | 173 | - **A Unified Framework for Knowledge Intensive Gradient Boosting: Leveraging Human Experts for Noisy Sparse Domains (AAAI 2020)** 174 | - Harsha Kokel, Phillip Odom, Shuo Yang, Sriraam Natarajan 175 | - [[Paper]](https://personal.utdallas.edu/~sriraam.natarajan/Papers/Kokel_AAAI20.pdf) 176 | - [[Code]](https://github.com/harshakokel/KiGB) 177 | 178 | - **Practical Federated Gradient Boosting Decision Trees (AAAI 2020)** 179 | - Qinbin Li, Zeyi Wen, Bingsheng He 180 | - [[Paper]](https://arxiv.org/abs/1911.04206) 181 | 182 | - **Privacy-Preserving Gradient Boosting Decision Trees (AAAI 2020)** 183 | - Qinbin Li, Zhaomin Wu, Zeyi Wen, Bingsheng He 184 | - [[Paper]](https://arxiv.org/abs/1911.04209) 185 | 186 | - **Accelerating Gradient Boosting Machines (AISTATS 2020)** 187 | - Haihao Lu, Sai Praneeth Karimireddy, Natalia Ponomareva, Vahab S. Mirrokni 188 | - [[Paper]](https://arxiv.org/abs/1903.08708) 189 | 190 | - **Scalable Feature Selection for Multitask Gradient Boosted Trees (AISTATS 2020)** 191 | - Cuize Han, Nikhil Rao, Daria Sorokina, Karthik Subbian 192 | - [[Paper]](http://proceedings.mlr.press/v108/han20a.html) 193 | 194 | - **Functional Gradient Boosting for Learning Residual-like Networks with Statistical Guarantees (AISTATS 2020)** 195 | - Atsushi Nitanda, Taiji Suzuki 196 | - [[Paper]](http://proceedings.mlr.press/v108/nitanda20a.html) 197 | 198 | - **Learning Optimal Decision Trees with MaxSAT and its Integration in AdaBoost (IJCAI 2020)** 199 | - Hao Hu, Mohamed Siala, Emmanuel Hebrard, Marie-José Huguet 200 | - [[Paper]](https://www.ijcai.org/Proceedings/2020/163) 201 | 202 | - **MixBoost: Synthetic Oversampling using Boosted Mixup for Handling Extreme Imbalance (ICDM 2020)** 203 | - Anubha Kabra, Ayush Chopra, Nikaash Puri, Pinkesh Badjatiya, Sukriti Verma, Piyush Gupta, Balaji Krishnamurthy 204 | - [[Paper]](https://arxiv.org/abs/2009.01571) 205 | 206 | - **Boosting for Control of Dynamical Systems (ICML 2020)** 207 | - Naman Agarwal, Nataly Brukhim, Elad Hazan, Zhou Lu 208 | - [[Paper]](https://arxiv.org/abs/1906.08720) 209 | 210 | - **Quantum Boosting (ICML 2020)** 211 | - Srinivasan Arunachalam, Reevu Maity 212 | - [[Paper]](https://arxiv.org/abs/2002.05056) 213 | 214 | - **Boosted Histogram Transform for Regression (ICML 2020)** 215 | - Yuchao Cai, Hanyuan Hang, Hanfang Yang, Zhouchen Lin 216 | - [[Paper]](https://proceedings.icml.cc/static/paper_files/icml/2020/2360-Paper.pdf) 217 | 218 | - **Boosting Frank-Wolfe by Chasing Gradients (ICML 2020)** 219 | - Cyrille W. Combettes, Sebastian Pokutta 220 | - [[Paper]](https://arxiv.org/abs/2003.06369) 221 | 222 | - **NGBoost: Natural Gradient Boosting for Probabilistic Prediction (ICML 2020)** 223 | - Tony Duan, Avati Anand, Daisy Yi Ding, Khanh K. Thai, Sanjay Basu, Andrew Y. Ng, Alejandro Schuler 224 | - [[Paper]](https://arxiv.org/abs/1910.03225) 225 | - [[Code]](https://github.com/stanfordmlgroup/ngboost) 226 | 227 | - **Online Agnostic Boosting via Regret Minimization (NeurIPS 2020)** 228 | - Nataly Brukhim, Xinyi Chen, Elad Hazan, Shay Moran 229 | - [[Paper]](https://arxiv.org/abs/2003.01150) 230 | 231 | - **Boosting First-Order Methods by Shifting Objective: New Schemes with Faster Worst Case Rates (NeurIPS 2020)** 232 | - Kaiwen Zhou, Anthony Man-Cho So, James Cheng 233 | - [[Paper]](https://arxiv.org/abs/2005.12061) 234 | 235 | - **Optimization and Generalization Analysis of Transduction through Gradient Boosting and Application to Multi-scale Graph Neural Networks (NeurIPS 2020)** 236 | - Kenta Oono, Taiji Suzuki 237 | - [[Paper]](https://arxiv.org/abs/2006.08550) 238 | - [[Code]](https://github.com/delta2323/GB-GNN) 239 | 240 | - **Gradient Boosted Normalizing Flows (NeurIPS 2020)** 241 | - Robert Giaquinto, Arindam Banerjee 242 | - [[Paper]](https://arxiv.org/abs/2002.11896) 243 | - [[Code]](https://github.com/robert-giaquinto/gradient-boosted-normalizing-flows) 244 | 245 | - **HyperML: A Boosting Metric Learning Approach in Hyperbolic Space for Recommender Systems (WSDM 2020)** 246 | - Lucas Vinh Tran, Yi Tay, Shuai Zhang, Gao Cong, Xiaoli Li 247 | - [[Paper]](https://arxiv.org/abs/1809.01703) 248 | 249 | ## 2019 250 | 251 | - **Induction of Non-Monotonic Logic Programs to Explain Boosted Tree Models Using LIME (AAAI 2019)** 252 | - Farhad Shakerin, Gopal Gupta 253 | - [[Paper]](https://arxiv.org/abs/1808.00629) 254 | 255 | - **Verifying Robustness of Gradient Boosted Models (AAAI 2019)** 256 | - Gil Einziger, Maayan Goldstein, Yaniv Sa'ar, Itai Segall 257 | - [[Paper]](https://arxiv.org/pdf/1906.10991.pdf) 258 | 259 | - **Online Multiclass Boosting with Bandit Feedback (AISTATS 2019)** 260 | - Daniel T. Zhang, Young Hun Jung, Ambuj Tewari 261 | - [[Paper]](https://arxiv.org/abs/1810.05290) 262 | 263 | - **AdaFair: Cumulative Fairness Adaptive Boosting (CIKM 2019)** 264 | - Vasileios Iosifidis, Eirini Ntoutsi 265 | - [[Paper]](https://arxiv.org/abs/1909.08982) 266 | 267 | - **Interpretable MTL from Heterogeneous Domains using Boosted Tree (CIKM 2019)** 268 | - Ya-Lin Zhang, Longfei Li 269 | - [[Paper]](https://dl.acm.org/citation.cfm?id=3357384.3358072) 270 | 271 | - **Adversarial Training of Gradient-Boosted Decision Trees (CIKM 2019)** 272 | - Stefano Calzavara, Claudio Lucchese, Gabriele Tolomei 273 | - [[Paper]](https://www.dais.unive.it/~calzavara/papers/cikm19.pdf) 274 | 275 | - **Fair Adversarial Gradient Tree Boosting (ICDM 2019)** 276 | - Vincent Grari, Boris Ruf, Sylvain Lamprier, Marcin Detyniecki 277 | - [[Paper]](https://arxiv.org/abs/1911.05369) 278 | 279 | - **Boosted Density Estimation Remastered (ICML 2019)** 280 | - Zac Cranko, Richard Nock 281 | - [[Paper]](https://arxiv.org/abs/1803.08178) 282 | 283 | - **Lossless or Quantized Boosting with Integer Arithmetic (ICML 2019)** 284 | - Richard Nock, Robert C. Williamson 285 | - [[Paper]](http://proceedings.mlr.press/v97/nock19a.html) 286 | 287 | - **Optimal Minimal Margin Maximization with Boosting (ICML 2019)** 288 | - Alexander Mathiasen, Kasper Green Larsen, Allan Grønlund 289 | - [[Paper]](https://arxiv.org/abs/1901.10789) 290 | 291 | - **Katalyst: Boosting Convex Katayusha for Non-Convex Problems with a Large Condition Number (ICML 2019)** 292 | - Zaiyi Chen, Yi Xu, Haoyuan Hu, Tianbao Yang 293 | - [[Paper]](https://arxiv.org/abs/1809.06754) 294 | 295 | - **Boosting for Comparison-Based Learning (IJCAI 2019)** 296 | - Michaël Perrot, Ulrike von Luxburg 297 | - [[Paper]](https://arxiv.org/abs/1810.13333) 298 | 299 | - **AugBoost: Gradient Boosting Enhanced with Step-Wise Feature Augmentation (IJCAI 2019)** 300 | - Philip Tannor, Lior Rokach 301 | - [[Paper]](https://www.ijcai.org/proceedings/2019/0493.pdf) 302 | 303 | - **Gradient Boosting with Piece-Wise Linear Regression Trees (IJCAI 2019)** 304 | - Yu Shi, Jian Li, Zhize Li 305 | - [[Paper]](https://arxiv.org/abs/1802.05640) 306 | - [[Code]](https://github.com/GBDT-PL/GBDT-PL) 307 | 308 | - **SpiderBoost and Momentum: Faster Variance Reduction Algorithms (NeurIPS 2019)** 309 | - Zhe Wang, Kaiyi Ji, Yi Zhou, Yingbin Liang, Vahid Tarokh 310 | - [[Paper]](http://papers.nips.cc/paper/8511-spiderboost-and-momentum-faster-variance-reduction-algorithms) 311 | 312 | - **Faster Boosting with Smaller Memory (NeurIPS 2019)** 313 | - Julaiti Alafate, Yoav Freund 314 | - [[Paper]](https://arxiv.org/abs/1901.09047) 315 | 316 | - **Regularized Gradient Boosting (NeurIPS 2019)** 317 | - Corinna Cortes, Mehryar Mohri, Dmitry Storcheus 318 | - [[Paper]](https://papers.nips.cc/paper/8784-regularized-gradient-boosting) 319 | 320 | - **Margin-Based Generalization Lower Bounds for Boosted Classifiers (NeurIPS 2019)** 321 | - Allan Grønlund, Lior Kamma, Kasper Green Larsen, Alexander Mathiasen, Jelani Nelson 322 | - [[Paper]](https://arxiv.org/abs/1909.12518) 323 | 324 | - **Minimal Variance Sampling in Stochastic Gradient Boosting (NeurIPS 2019)** 325 | - Bulat Ibragimov, Gleb Gusev 326 | - [[Paper]](https://papers.nips.cc/paper/9645-minimal-variance-sampling-in-stochastic-gradient-boosting) 327 | 328 | - **Universal Boosting Variational Inference (NeurIPS 2019)** 329 | - Trevor Campbell, Xinglong Li 330 | - [[Paper]](https://arxiv.org/abs/1906.01235) 331 | 332 | - **Provably Robust Boosted Decision Stumps and Trees against Adversarial Attacks (NeurIPS 2019)** 333 | - Maksym Andriushchenko, Matthias Hein 334 | - [[Paper]](https://arxiv.org/abs/1906.03526) 335 | - [[Code]](https://github.com/max-andr/provably-robust-boosting) 336 | 337 | - **Block-distributed Gradient Boosted Trees (SIGIR 2019)** 338 | - Theodore Vasiloudis, Hyunsu Cho, Henrik Boström 339 | - [[Paper]](https://arxiv.org/abs/1904.10522) 340 | 341 | - **Learning to Rank in Theory and Practice: From Gradient Boosting to Neural Networks and Unbiased Learning (SIGIR 2019)** 342 | - Claudio Lucchese, Franco Maria Nardini, Rama Kumar Pasumarthi, Sebastian Bruch, Michael Bendersky, Xuanhui Wang, Harrie Oosterhuis, Rolf Jagerman, Maarten de Rijke 343 | - [[Paper]](https://www.researchgate.net/publication/334579610_Learning_to_Rank_in_Theory_and_Practice_From_Gradient_Boosting_to_Neural_Networks_and_Unbiased_Learning) 344 | 345 | ## 2018 346 | - **Boosted Generative Models (AAAI 2018)** 347 | - Aditya Grover, Stefano Ermon 348 | - [[Paper]](https://arxiv.org/pdf/1702.08484.pdf) 349 | - [[Code]](https://github.com/ermongroup/bgm) 350 | 351 | - **Boosting Variational Inference: an Optimization Perspective (AISTATS 2018)** 352 | - Francesco Locatello, Rajiv Khanna, Joydeep Ghosh, Gunnar Rätsch 353 | - [[Paper]](https://arxiv.org/abs/1708.01733) 354 | - [[Code]](https://github.com/ratschlab/boosting-bbvi) 355 | 356 | - **Online Boosting Algorithms for Multi-label Ranking (AISTATS 2018)** 357 | - Young Hun Jung, Ambuj Tewari 358 | - [[Paper]](https://arxiv.org/abs/1710.08079) 359 | - [[Code]](https://github.com/yhjung88/OnlineMLRBoostingWithVFDT) 360 | 361 | - **DualBoost: Handling Missing Values with Feature Weights and Weak Classifiers that Abstain (CIKM 2018)** 362 | - Weihong Wang, Jie Xu, Yang Wang, Chen Cai, Fang Chen 363 | - [[Paper]](http://delivery.acm.org/10.1145/3270000/3269319/p1543-wang.pdf?ip=129.215.164.203&id=3269319&acc=ACTIVE%20SERVICE&key=C2D842D97AC95F7A%2EEB9E991028F4E1F1%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&__acm__=1558633895_f01b39fd47b943fd01eade763a397e04) 364 | 365 | - **Functional Gradient Boosting based on Residual Network Perception (ICML 2018)** 366 | - Atsushi Nitanda, Taiji Suzuki 367 | - [[Paper]](https://arxiv.org/abs/1802.09031) 368 | - [[Code]](https://github.com/anitan0925/ResFGB) 369 | 370 | - **Finding Influential Training Samples for Gradient Boosted Decision Trees (ICML 2018)** 371 | - Boris Sharchilev, Yury Ustinovskiy, Pavel Serdyukov, Maarten de Rijke 372 | - [[Paper]](https://arxiv.org/abs/1802.06640) 373 | 374 | - **Learning Deep ResNet Blocks Sequentially using Boosting Theory (ICML 2018)** 375 | - Furong Huang, Jordan T. Ash, John Langford, Robert E. Schapire 376 | - [[Paper]](https://arxiv.org/abs/1706.04964) 377 | - [[Code]](https://github.com/JordanAsh/boostresnet) 378 | 379 | - **UCBoost: A Boosting Approach to Tame Complexity and Optimality for Stochastic Bandits (IJCAI 2018)** 380 | - Fang Liu, Sinong Wang, Swapna Buccapatnam, Ness B. Shroff 381 | - [[Paper]](https://www.ijcai.org/proceedings/2018/0338.pdf) 382 | - [[Code]](https://smpybandits.github.io/docs/Policies.UCBoost.html) 383 | 384 | - **Adaboost with Auto-Evaluation for Conversational Models (IJCAI 2018)** 385 | - Juncen Li, Ping Luo, Ganbin Zhou, Fen Lin, Cheng Niu 386 | - [[Paper]](https://www.ijcai.org/proceedings/2018/0580.pdf) 387 | 388 | - **Ensemble Neural Relation Extraction with Adaptive Boosting (IJCAI 2018)** 389 | - Dongdong Yang, Senzhang Wang, Zhoujun Li 390 | - [[Paper]](https://www.ijcai.org/proceedings/2018/0630.pdf) 391 | 392 | - **CatBoost: Unbiased Boosting with Categorical Features (NIPS 2018)** 393 | - Liudmila Ostroumova Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, Andrey Gulin 394 | - [[Paper]](https://papers.nips.cc/paper/7898-catboost-unbiased-boosting-with-categorical-features.pdf) 395 | - [[Code]](https://github.com/catboost/catboost) 396 | 397 | - **Multitask Boosting for Survival Analysis with Competing Risks (NIPS 2018)** 398 | - Alexis Bellot, Mihaela van der Schaar 399 | - [[Paper]](https://papers.nips.cc/paper/7413-multitask-boosting-for-survival-analysis-with-competing-risks) 400 | 401 | - **Multi-Layered Gradient Boosting Decision Trees (NIPS 2018)** 402 | - Ji Feng, Yang Yu, Zhi-Hua Zhou 403 | - [[Paper]](https://papers.nips.cc/paper/7614-multi-layered-gradient-boosting-decision-trees.pdf) 404 | - [[Code]](https://github.com/kingfengji/mGBDT) 405 | 406 | - **Boosted Sparse and Low-Rank Tensor Regression (NIPS 2018)** 407 | - Lifang He, Kun Chen, Wanwan Xu, Jiayu Zhou, Fei Wang 408 | - [[Paper]](https://arxiv.org/abs/1811.01158) 409 | - [[Code]](https://github.com/LifangHe/NeurIPS18_SURF) 410 | 411 | - **Selective Gradient Boosting for Effective Learning to Rank (SIGIR 2018)** 412 | - Claudio Lucchese, Franco Maria Nardini, Raffaele Perego, Salvatore Orlando, Salvatore Trani 413 | - [[Paper]](http://quickrank.isti.cnr.it/selective-data/selective-SIGIR2018.pdf) 414 | - [[Code]](https://github.com/hpclab/quickrank/blob/master/documentation/selective.md) 415 | 416 | ## 2017 417 | - **Boosting for Real-Time Multivariate Time Series Classification (AAAI 2017)** 418 | - Haishuai Wang, Jun Wu 419 | - [[Paper]](https://www.aaai.org/ocs/index.php/AAAI/AAAI17/paper/download/14852/14241) 420 | 421 | - **Cross-Domain Sentiment Classification via Topic-Related TrAdaBoost (AAAI 2017)** 422 | - Xingchang Huang, Yanghui Rao, Haoran Xie, Tak-Lam Wong, Fu Lee Wang 423 | - [[Paper]](https://pdfs.semanticscholar.org/826c/c83d98a5c4c7dcc02be1f4dd9c27e2b99670.pdf) 424 | - [[Code]](https://github.com/xchhuang/cross-domain-sentiment-classification) 425 | 426 | - **Extreme Gradient Boosting and Behavioral Biometrics (AAAI 2017)** 427 | - Benjamin Manning 428 | - [[Paper]](https://pdfs.semanticscholar.org/8c6e/6c887d6d47dda3f0c73297fd4da516fef1ee.pdf) 429 | 430 | - **FeaBoost: Joint Feature and Label Refinement for Semantic Segmentation (AAAI 2017)** 431 | - Yulei Niu, Zhiwu Lu, Songfang Huang, Xin Gao, Ji-Rong Wen 432 | - [[Paper]](https://pdfs.semanticscholar.org/d566/73be998b3ed38ccbb53551e38758ae8cfc9d.pdf) 433 | 434 | - **Boosting Complementary Hash Tables for Fast Nearest Neighbor Search (AAAI 2017)** 435 | - Xianglong Liu, Cheng Deng, Yadong Mu, Zhujin Li 436 | - [[Paper]](https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14336) 437 | 438 | - **Gradient Boosting on Stochastic Data Streams (AISTATS 2017)** 439 | - Hanzhang Hu, Wen Sun, Arun Venkatraman, Martial Hebert, J. Andrew Bagnell 440 | - [[Paper]](https://arxiv.org/abs/1703.00377) 441 | 442 | - **BoostVHT: Boosting Distributed Streaming Decision Trees (CIKM 2017)** 443 | - Theodore Vasiloudis, Foteini Beligianni, Gianmarco De Francisci Morales 444 | - [[Paper]](https://melmeric.files.wordpress.com/2010/05/boostvht-boosting-distributed-streaming-decision-trees.pdf) 445 | 446 | - **Fast Boosting Based Detection Using Scale Invariant Multimodal Multiresolution Filtered Features (CVPR 2017)** 447 | - Arthur Daniel Costea, Robert Varga, Sergiu Nedevschi 448 | - [[Paper]](http://openaccess.thecvf.com/content_cvpr_2017/papers/Costea_Fast_Boosting_Based_CVPR_2017_paper.pdf) 449 | 450 | - **BIER - Boosting Independent Embeddings Robustly (ICCV 2017)** 451 | - Michael Opitz, Georg Waltner, Horst Possegger, Horst Bischof 452 | - [[Paper]](http://openaccess.thecvf.com/content_ICCV_2017/papers/Opitz_BIER_-_Boosting_ICCV_2017_paper.pdf) 453 | - [[Code]](https://github.com/mop/bier) 454 | 455 | - **An Analysis of Boosted Linear Classifiers on Noisy Data with Applications to Multiple-Instance Learning (ICDM 2017)** 456 | - Rui Liu, Soumya Ray 457 | - [[Paper]](https://ieeexplore.ieee.org/document/8215501) 458 | 459 | - **Variational Boosting: Iteratively Refining Posterior Approximations (ICML 2017)** 460 | - Andrew C. Miller, Nicholas J. Foti, Ryan P. Adams 461 | - [[Paper]](https://arxiv.org/abs/1611.06585) 462 | - [[Code]](https://github.com/andymiller/vboost) 463 | 464 | - **Boosted Fitted Q-Iteration (ICML 2017)** 465 | - Samuele Tosatto, Matteo Pirotta, Carlo D'Eramo, Marcello Restelli 466 | - [[Paper]](http://proceedings.mlr.press/v70/tosatto17a.html) 467 | 468 | - **A Simple Multi-Class Boosting Framework with Theoretical Guarantees and Empirical Proficiency (ICML 2017)** 469 | - Ron Appel, Pietro Perona 470 | - [[Paper]](http://proceedings.mlr.press/v70/appel17a.html) 471 | - [[Code]](https://github.com/GuillaumeCollin/A-Simple-Multi-Class-Boosting-Framework-with-Theoretical-Guarantees-and-Empirical-Proficiency) 472 | 473 | - **Gradient Boosted Decision Trees for High Dimensional Sparse Output (ICML 2017)** 474 | - Si Si, Huan Zhang, S. Sathiya Keerthi, Dhruv Mahajan, Inderjit S. Dhillon, Cho-Jui Hsieh 475 | - [[Paper]](http://proceedings.mlr.press/v70/si17a.html) 476 | - [[Code]](https://github.com/springdaisy/GBDT) 477 | 478 | - **Local Topic Discovery via Boosted Ensemble of Nonnegative Matrix Factorization (IJCAI 2017)** 479 | - Sangho Suh, Jaegul Choo, Joonseok Lee, Chandan K. Reddy 480 | - [[Paper]](http://dmkd.cs.vt.edu/papers/IJCAI17.pdf) 481 | - [[Code]](https://github.com/benedekrozemberczki/BoostedFactorization) 482 | 483 | - **Boosted Zero-Shot Learning with Semantic Correlation Regularization (IJCAI 2017)** 484 | - Te Pi, Xi Li, Zhongfei (Mark) Zhang 485 | - [[Paper]](https://arxiv.org/abs/1707.08008) 486 | 487 | - **BDT: Gradient Boosted Decision Tables for High Accuracy and Scoring Efficiency (KDD 2017)** 488 | - Yin Lou, Mikhail Obukhov 489 | - [[Paper]](https://yinlou.github.io/papers/lou-kdd17.pdf) 490 | 491 | - **CatBoost: Gradient Boosting with Categorical Features Support (NIPS 2017)** 492 | - Anna Veronika Dorogush, Vasily Ershov, Andrey Gulin 493 | - [[Paper]](https://arxiv.org/abs/1810.11363) 494 | - [[Code]](https://catboost.ai/) 495 | 496 | - **Cost Efficient Gradient Boosting (NIPS 2017)** 497 | - Sven Peter, Ferran Diego, Fred A. Hamprecht, Boaz Nadler 498 | - [[Paper]](https://papers.nips.cc/paper/6753-cost-efficient-gradient-boosting) 499 | - [[Code]](https://github.com/svenpeter42/LightGBM-CEGB) 500 | 501 | - **AdaGAN: Boosting Generative Models (NIPS 2017)** 502 | - Ilya O. Tolstikhin, Sylvain Gelly, Olivier Bousquet, Carl-Johann Simon-Gabriel, Bernhard Schölkopf 503 | - [[Paper]](https://arxiv.org/abs/1701.02386) 504 | - [[Code]](https://github.com/tolstikhin/adagan) 505 | 506 | - **LightGBM: A Highly Efficient Gradient Boosting Decision Tree (NIPS 2017)** 507 | - Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, Tie-Yan Liu 508 | - [[Paper]](https://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree) 509 | - [[Code]](https://lightgbm.readthedocs.io/en/latest/) 510 | 511 | - **Early Stopping for Kernel Boosting Algorithms: A General Analysis with Localized Complexities (NIPS 2017)** 512 | - Yuting Wei, Fanny Yang, Martin J. Wainwright 513 | - [[Paper]](https://arxiv.org/abs/1707.01543) 514 | - [[Code]](https://github.com/fanny-yang/EarlyStoppingRKHS) 515 | 516 | - **Online Multiclass Boosting (NIPS 2017)** 517 | - Young Hun Jung, Jack Goetz, Ambuj Tewari 518 | - [[Paper]](https://papers.nips.cc/paper/6693-online-multiclass-boosting.pdf) 519 | 520 | - **Stacking Bagged and Boosted Forests for Effective Automated Classification (SIGIR 2017)** 521 | - Raphael R. Campos, Sérgio D. Canuto, Thiago Salles, Clebson C. A. de Sá, Marcos André Gonçalves 522 | - [[Paper]](https://homepages.dcc.ufmg.br/~rcampos/papers/sigir2017/appendix.pdf) 523 | - [[Code]](https://github.com/raphaelcampos/stacking-bagged-boosted-forests) 524 | 525 | - **GB-CENT: Gradient Boosted Categorical Embedding and Numerical Trees (WWW 2017)** 526 | - Qian Zhao, Yue Shi, Liangjie Hong 527 | - [[Paper]](http://papers.www2017.com.au.s3-website-ap-southeast-2.amazonaws.com/proceedings/p1311.pdf) 528 | - [[Code]](https://github.com/grouplens/samantha) 529 | 530 | ## 2016 531 | - **Group Cost-Sensitive Boosting for Multi-Resolution Pedestrian Detection (AAAI 2016)** 532 | - Chao Zhu, Yuxin Peng 533 | - [[Paper]](https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/viewFile/11898/12146) 534 | - [[Code]](https://github.com/nnikolaou/Cost-sensitive-Boosting-Tutorial) 535 | 536 | - **Communication Efficient Distributed Agnostic Boosting (AISTATS 2016)** 537 | - Shang-Tse Chen, Maria-Florina Balcan, Duen Horng Chau 538 | - [[Paper]](https://arxiv.org/abs/1506.06318) 539 | 540 | - **Logistic Boosting Regression for Label Distribution Learning (CVPR 2016)** 541 | - Chao Xing, Xin Geng, Hui Xue 542 | - [[Paper]](https://zpascal.net/cvpr2016/Xing_Logistic_Boosting_Regression_CVPR_2016_paper.pdf) 543 | 544 | - **Structured Regression Gradient Boosting (CVPR 2016)** 545 | - Ferran Diego, Fred A. Hamprecht 546 | - [[Paper]](https://hci.iwr.uni-heidelberg.de/sites/default/files/publications/files/1037872734/diego_16_structured.pdf) 547 | 548 | - **L-EnsNMF: Boosted Local Topic Discovery via Ensemble of Nonnegative Matrix Factorization (ICDM 2016)** 549 | - Sangho Suh, Jaegul Choo, Joonseok Lee, Chandan K. Reddy 550 | - [[Paper]](https://ieeexplore.ieee.org/document/7837872) 551 | - [[Code]](https://github.com/benedekrozemberczki/BoostedFactorization) 552 | 553 | - **Meta-Gradient Boosted Decision Tree Model for Weight and Target Learning (ICML 2016)** 554 | - Yury Ustinovskiy, Valentina Fedorova, Gleb Gusev, Pavel Serdyukov 555 | - [[Paper]](http://proceedings.mlr.press/v48/ustinovskiy16.html) 556 | 557 | - **Generalized Dictionary for Multitask Learning with Boosting (IJCAI 2016)** 558 | - Boyu Wang, Joelle Pineau 559 | - [[Paper]](https://www.ijcai.org/Proceedings/16/Papers/299.pdf) 560 | 561 | - **Self-Paced Boost Learning for Classification (IJCAI 2016)** 562 | - Te Pi, Xi Li, Zhongfei Zhang, Deyu Meng, Fei Wu, Jun Xiao, Yueting Zhuang 563 | - [[Paper]](https://pdfs.semanticscholar.org/31b6/ab4a0771d5b7405cacdd12c398b1c832729d.pdf) 564 | 565 | - **Interactive Martingale Boosting (IJCAI 2016)** 566 | - Ashish Kulkarni, Pushpak Burange, Ganesh Ramakrishnan 567 | - [[Paper]](https://www.ijcai.org/Proceedings/16/Papers/124.pdf) 568 | 569 | - **Optimal and Adaptive Algorithms for Online Boosting (IJCAI 2016)** 570 | - Alina Beygelzimer, Satyen Kale, Haipeng Luo 571 | - [[Paper]](https://www.ijcai.org/Proceedings/16/Papers/614.pdf) 572 | - [[Code]](https://github.com/VowpalWabbit/vowpal_wabbit/blob/master/vowpalwabbit/boosting.cc) 573 | 574 | - **Rating-Boosted Latent Topics: Understanding Users and Items with Ratings and Reviews (IJCAI 2016)** 575 | - Yunzhi Tan, Min Zhang, Yiqun Liu, Shaoping Ma 576 | - [[Paper]](https://pdfs.semanticscholar.org/db63/89e0ca49ec0e4686e40604e7489cb4c0729d.pdf) 577 | 578 | - **XGBoost: A Scalable Tree Boosting System (KDD 2016)** 579 | - Tianqi Chen, Carlos Guestrin 580 | - [[Paper]](https://www.kdd.org/kdd2016/papers/files/rfp0697-chenAemb.pdf) 581 | - [[Code]](https://github.com/dmlc/xgboost) 582 | 583 | - **Boosted Decision Tree Regression Adjustment for Variance Reduction in Online Controlled Experiments (KDD 2016)** 584 | - Alexey Poyarkov, Alexey Drutsa, Andrey Khalyavin, Gleb Gusev, Pavel Serdyukov 585 | - [[Paper]](https://www.kdd.org/kdd2016/papers/files/adf0653-poyarkovA.pdf) 586 | 587 | - **Boosting with Abstention (NIPS 2016)** 588 | - Corinna Cortes, Giulia DeSalvo, Mehryar Mohri 589 | - [[Paper]](https://papers.nips.cc/paper/6336-boosting-with-abstention) 590 | 591 | - **SEBOOST - Boosting Stochastic Learning Using Subspace Optimization Techniques (NIPS 2016)** 592 | - Elad Richardson, Rom Herskovitz, Boris Ginsburg, Michael Zibulevsky 593 | - [[Paper]](https://papers.nips.cc/paper/6109-seboost-boosting-stochastic-learning-using-subspace-optimization-techniques.pdf) 594 | - [[Code]](https://github.com/eladrich/seboost) 595 | 596 | - **Incremental Boosting Convolutional Neural Network for Facial Action Unit Recognition (NIPS 2016)** 597 | - Shizhong Han, Zibo Meng, Ahmed-Shehab Khan, Yan Tong 598 | - [[Paper]](https://arxiv.org/abs/1707.05395) 599 | - [[Code]](https://github.com/sjsingh91/IB-CNN) 600 | 601 | - **Generalized BROOF-L2R: A General Framework for Learning to Rank Based on Boosting and Random Forests (SIGIR 2016)** 602 | - Clebson C. A. de Sá, Marcos André Gonçalves, Daniel Xavier de Sousa, Thiago Salles 603 | - [[Paper]](https://dl.acm.org/citation.cfm?id=2911540) 604 | 605 | ## 2015 606 | 607 | - **Online Boosting Algorithms for Anytime Transfer and Multitask Learning (AAAI 2015)** 608 | - Boyu Wang, Joelle Pineau 609 | - [[Paper]](https://www.cs.mcgill.ca/~jpineau/files/bwang-aaai15.pdf) 610 | 611 | - **A Boosted Multi-Task Model for Pedestrian Detection with Occlusion Handling (AAAI 2015)** 612 | - Chao Zhu, Yuxin Peng 613 | - [[Paper]](https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/viewFile/9879/9825) 614 | 615 | - **Efficient Second-Order Gradient Boosting for Conditional Random Fields (AISTATS 2015)** 616 | - Tianqi Chen, Sameer Singh, Ben Taskar, Carlos Guestrin 617 | - [[Paper]](http://proceedings.mlr.press/v38/chen15b.html) 618 | 619 | - **Tumblr Blog Recommendation with Boosted Inductive Matrix Completion (CIKM 2015)** 620 | - Donghyuk Shin, Suleyman Cetintas, Kuang-Chih Lee, Inderjit S. Dhillon 621 | - [[Paper]](https://dl.acm.org/citation.cfm?id=2806578) 622 | 623 | - **Basis mapping based boosting for object detection (CVPR 2015)** 624 | - Haoyu Ren, Ze-Nian Li 625 | - [[Paper]](https://ieeexplore.ieee.org/document/7298766) 626 | 627 | - **Tracking-by-Segmentation with Online Gradient Boosting Decision Tree (ICCV 2015)** 628 | - Jeany Son, Ilchae Jung, Kayoung Park, Bohyung Han 629 | - [[Paper]](https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Son_Tracking-by-Segmentation_With_Online_ICCV_2015_paper.pdf) 630 | - [[Code]](http://cvlab.postech.ac.kr/research/ogbdt_track/) 631 | 632 | - **Learning to Boost Filamentary Structure Segmentation (ICCV 2015)** 633 | - Lin Gu, Li Cheng 634 | - [[Paper]](https://isg.nist.gov/BII_2015/webPages/pages/2015_BII_program/PDFs/Day_3/Session_9/Abstract_Gu_Lin.pdf) 635 | 636 | - **Optimal and Adaptive Algorithms for Online Boosting (ICML 2015)** 637 | - Alina Beygelzimer, Satyen Kale, Haipeng Luo 638 | - [[Paper]](http://proceedings.mlr.press/v37/beygelzimer15.pdf) 639 | - [[Code]](https://github.com/VowpalWabbit/vowpal_wabbit/blob/master/vowpalwabbit/boosting.cc) 640 | 641 | - **Rademacher Observations, Private Data, and Boosting (ICML 2015)** 642 | - Richard Nock, Giorgio Patrini, Arik Friedman 643 | - [[Paper]](https://arxiv.org/abs/1502.02322) 644 | 645 | - **Boosted Categorical Restricted Boltzmann Machine for Computational Prediction of Splice Junctions (ICML 2015)** 646 | - Taehoon Lee, Sungroh Yoon 647 | - [[Paper]](https://pdfs.semanticscholar.org/d0ad/beef3053e98dd88ff74f42744417bc65a729.pdf) 648 | 649 | - **A Direct Boosting Approach for Semi-supervised Classification (IJCAI 2015)** 650 | - Shaodan Zhai, Tian Xia, Zhongliang Li, Shaojun Wang 651 | - [[Paper]](https://www.ijcai.org/Proceedings/15/Papers/565.pdf) 652 | 653 | - **A Boosting Algorithm for Item Recommendation with Implicit Feedback (IJCAI 2015)** 654 | - Yong Liu, Peilin Zhao, Aixin Sun, Chunyan Miao 655 | - [[Paper]](https://www.ijcai.org/Proceedings/15/Papers/255.pdf) 656 | - [[Code]](https://github.com/microsoft/recommenders) 657 | 658 | - **Training-Time Optimization of a Budgeted Booster (IJCAI 2015)** 659 | - Yi Huang, Brian Powers, Lev Reyzin 660 | - [[Paper]](https://www.ijcai.org/Proceedings/15/Papers/504.pdf) 661 | 662 | - **Optimal Action Extraction for Random Forests and Boosted Trees (KDD 2015)** 663 | - Zhicheng Cui, Wenlin Chen, Yujie He, Yixin Chen 664 | - [[Paper]](https://www.cse.wustl.edu/~ychen/public/OAE.pdf) 665 | 666 | - **Online Gradient Boosting (NIPS 2015)** 667 | - Alina Beygelzimer, Elad Hazan, Satyen Kale, Haipeng Luo 668 | - [[Paper]](https://arxiv.org/abs/1506.04820) 669 | - [[Code]](https://github.com/crm416/online_boosting) 670 | 671 | - **BROOF: Exploiting Out-of-Bag Errors Boosting and Random Forests for Effective Automated Classification (SIGIR 2015)** 672 | - Thiago Salles, Marcos André Gonçalves, Victor Rodrigues, Leonardo C. da Rocha 673 | - [[Paper]](https://homepages.dcc.ufmg.br/~tsalles/broof/appendix.pdf) 674 | 675 | - **Boosting Search with Deep Understanding of Contents and Users (WSDM 2015)** 676 | - Kaihua Zhu 677 | - [[Paper]](https://www.researchgate.net/publication/282482189_Boosting_Search_with_Deep_Understanding_of_Contents_and_Users) 678 | 679 | ## 2014 680 | - **On Boosting Sparse Parities (AAAI 2014)** 681 | - Lev Reyzin 682 | - [[Paper]](https://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8587) 683 | 684 | - **Joint Coupled-Feature Representation and Coupled Boosting for AD Diagnosis (CVPR 2014)** 685 | - Yinghuan Shi, Heung-Il Suk, Yang Gao, Dinggang Shen 686 | - [[Paper]](https://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Shi_Joint_Coupled-Feature_Representation_2014_CVPR_paper.pdf) 687 | 688 | - **From Categories to Individuals in Real Time - A Unified Boosting Approach (CVPR 2014)** 689 | - David Hall, Pietro Perona 690 | - [[Paper]](https://ieeexplore.ieee.org/document/6909424) 691 | - [[Code]](http://www.vision.caltech.edu/~dhall/projects/CategoriesToIndividuals/) 692 | 693 | - **Efficient Boosted Exemplar-Based Face Detection (CVPR 2014)** 694 | - Haoxiang Li, Zhe Lin, Jonathan Brandt, Xiaohui Shen, Gang Hua 695 | - [[Paper]](http://users.eecs.northwestern.edu/~xsh835/assets/cvpr14_exemplarfacedetection.pdf) 696 | 697 | - **Facial Expression Recognition via a Boosted Deep Belief Network (CVPR 2014)** 698 | - Ping Liu, Shizhong Han, Zibo Meng, Yan Tong 699 | - [[Paper]](https://ieeexplore.ieee.org/abstract/document/6909629) 700 | 701 | - **Confidence-Rated Multiple Instance Boosting for Object Detection (CVPR 2014)** 702 | - Karim Ali, Kate Saenko 703 | - [[Paper]](https://ieeexplore.ieee.org/document/6909708) 704 | 705 | - **The Return of AdaBoost.MH: Multi-Class Hamming Trees (ICLR 2014)** 706 | - Balázs Kégl 707 | - [[Paper]](https://arxiv.org/pdf/1312.6086.pdf) 708 | - [[Code]](https://github.com/aciditeam/acidano/blob/master/acidano/utils/cost.py) 709 | 710 | - **Deep Boosting (ICML 2014)** 711 | - Corinna Cortes, Mehryar Mohri, Umar Syed 712 | - [[Paper]](http://proceedings.mlr.press/v32/cortesb14.pdf) 713 | - [[Code]](https://github.com/google/deepboost) 714 | 715 | - **A Convergence Rate Analysis for LogitBoost, MART and Their Variant (ICML 2014)** 716 | - Peng Sun, Tong Zhang, Jie Zhou 717 | - [[Paper]](http://proceedings.mlr.press/v32/sunc14.pdf) 718 | 719 | - **Boosting with Online Binary Learners for the Multiclass Bandit Problem (ICML 2014)** 720 | - Shang-Tse Chen, Hsuan-Tien Lin, Chi-Jen Lu 721 | - [[Paper]](https://www.cc.gatech.edu/~schen351/paper/icml14boost.pdf) 722 | 723 | - **Boosting Multi-Step Autoregressive Forecasts (ICML 2014)** 724 | - Souhaib Ben Taieb, Rob J. Hyndman 725 | - [[Paper]](http://proceedings.mlr.press/v32/taieb14.pdf) 726 | 727 | - **Dynamic Programming Boosting for Discriminative Macro-Action Discovery (ICML 2014)** 728 | - Leonidas Lefakis, François Fleuret 729 | - [[Paper]](http://proceedings.mlr.press/v32/lefakis14.html) 730 | 731 | - **Guess-Averse Loss Functions For Cost-Sensitive Multiclass Boosting (ICML 2014)** 732 | - Oscar Beijbom, Mohammad J. Saberian, David J. Kriegman, Nuno Vasconcelos 733 | - [[Paper]](http://proceedings.mlr.press/v32/beijbom14.pdf) 734 | 735 | - **A Multi-Class Boosting Method with Direct Optimization (KDD 2014)** 736 | - Shaodan Zhai, Tian Xia, Shaojun Wang 737 | - [[Paper]](https://dl.acm.org/citation.cfm?id=2623689) 738 | 739 | - **Gradient Boosted Feature Selection (KDD 2014)** 740 | - Zhixiang Eddie Xu, Gao Huang, Kilian Q. Weinberger, Alice X. Zheng 741 | - [[Paper]](https://arxiv.org/abs/1901.04055) 742 | - [[Code]](https://github.com/dmlc/xgboost) 743 | 744 | - **Multi-Class Deep Boosting (NIPS 2014)** 745 | - Vitaly Kuznetsov, Mehryar Mohri, Umar Syed 746 | - [[Paper]](https://papers.nips.cc/paper/5514-multi-class-deep-boosting) 747 | 748 | - **Deconvolution of High Dimensional Mixtures via Boosting with Application to Diffusion-Weighted MRI of Human Brain (NIPS 2014)** 749 | - Charles Y. Zheng, Franco Pestilli, Ariel Rokem 750 | - [[Paper]](https://papers.nips.cc/paper/5506-deconvolution-of-high-dimensional-mixtures-via-boosting-with-application-to-diffusion-weighted-mri-of-human-brain) 751 | 752 | - **A Drifting-Games Analysis for Online Learning and Applications to Boosting (NIPS 2014)** 753 | - Haipeng Luo, Robert E. Schapire 754 | - [[Paper]](https://arxiv.org/abs/1406.1856) 755 | 756 | - **A Boosting Framework on Grounds of Online Learning (NIPS 2014)** 757 | - Tofigh Naghibi Mohamadpoor, Beat Pfister 758 | - [[Paper]](https://papers.nips.cc/paper/5512-a-boosting-framework-on-grounds-of-online-learning.pdf) 759 | 760 | - **Gradient Boosting Factorization Machines (RECSYS 2014)** 761 | - Chen Cheng, Fen Xia, Tong Zhang, Irwin King, Michael R. Lyu 762 | - [[Paper]](http://tongzhang-ml.org/papers/recsys14-fm.pdf) 763 | 764 | ## 2013 765 | 766 | - **Boosting Binary Keypoint Descriptors (CVPR 2013)** 767 | - Tomasz Trzcinski, C. Mario Christoudias, Pascal Fua, Vincent Lepetit 768 | - [[Paper]](https://cvlab.epfl.ch/research/page-90554-en-html/research-detect-binboost/) 769 | - [[Code]](https://github.com/biotrump/cvlab-BINBOOST) 770 | 771 | - **PerturBoost: Practical Confidential Classifier Learning in the Cloud (ICDM 2013)** 772 | - Keke Chen, Shumin Guo 773 | - [[Paper]](https://ieeexplore.ieee.org/document/6729587) 774 | 775 | - **Multiclass Semi-Supervised Boosting Using Similarity Learning (ICDM 2013)** 776 | - Jafar Tanha, Mohammad Javad Saberian, Maarten van Someren 777 | - [[Paper]](https://www.cse.msu.edu/~rongjin/publications/MultiClass-08.pdf) 778 | 779 | - **Saving Evaluation Time for the Decision Function in Boosting: Representation and Reordering Base Learner (ICML 2013)** 780 | - Peng Sun, Jie Zhou 781 | - [[Paper]](http://proceedings.mlr.press/v28/sun13.pdf) 782 | 783 | - **General Functional Matrix Factorization Using Gradient Boosting (ICML 2013)** 784 | - Tianqi Chen, Hang Li, Qiang Yang, Yong Yu 785 | - [[Paper]](http://w.hangli-hl.com/uploads/3/1/6/8/3168008/icml_2013.pdf) 786 | 787 | - **Margins, Shrinkage, and Boosting (ICML 2013)** 788 | - Matus Telgarsky 789 | - [[Paper]](https://arxiv.org/abs/1303.4172) 790 | 791 | - **Quickly Boosting Decision Trees - Pruning Underachieving Features Early (ICML 2013)** 792 | - Ron Appel, Thomas J. Fuchs, Piotr Dollár, Pietro Perona 793 | - [[Paper]](http://proceedings.mlr.press/v28/appel13.pdf) 794 | - [[Code]](https://github.com/pdollar/toolbox/blob/master/classify/adaBoostTrain.m) 795 | 796 | - **Human Boosting (ICML 2013)** 797 | - Harsh H. Pareek, Pradeep Ravikumar 798 | - [[Paper]](https://www.cs.cmu.edu/~pradeepr/paperz/humanboosting.pdf) 799 | 800 | - **Collaborative Boosting for Activity Classification in Microblogs (KDD 2013)** 801 | - Yangqiu Song, Zhengdong Lu, Cane Wing-ki Leung, Qiang Yang 802 | - [[Paper]](http://chbrown.github.io/kdd-2013-usb/kdd/p482.pdf) 803 | 804 | - **Direct 0-1 Loss Minimization and Margin Maximization with Boosting (NIPS 2013)** 805 | - Shaodan Zhai, Tian Xia, Ming Tan, Shaojun Wang 806 | - [[Paper]](https://papers.nips.cc/paper/5214-direct-0-1-loss-minimization-and-margin-maximization-with-boosting) 807 | 808 | - **Reservoir Boosting : Between Online and Offline Ensemble Learning (NIPS 2013)** 809 | - Leonidas Lefakis, François Fleuret 810 | - [[Paper]](https://papers.nips.cc/paper/5215-reservoir-boosting-between-online-and-offline-ensemble-learning) 811 | 812 | - **Non-Linear Domain Adaptation with Boosting (NIPS 2013)** 813 | - Carlos J. Becker, C. Mario Christoudias, Pascal Fua 814 | - [[Paper]](https://papers.nips.cc/paper/5200-non-linear-domain-adaptation-with-boosting) 815 | 816 | - **Boosting in the Presence of Label Noise (UAI 2013)** 817 | - Jakramate Bootkrajang, Ata Kabán 818 | - [[Paper]](https://arxiv.org/abs/1309.6818) 819 | 820 | ## 2012 821 | - **Contextual Boost for Pedestrian Detection (CVPR 2012)** 822 | - Yuanyuan Ding, Jing Xiao 823 | - [[Paper]](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.308.5611&rep=rep1&type=pdf) 824 | 825 | - **Shrink Boost for Selecting Multi-LBP Histogram Features in Object Detection (CVPR 2012)** 826 | - Cher Keng Heng, Sumio Yokomitsu, Yuichi Matsumoto, Hajime Tamura 827 | - [[Paper]](https://ieeexplore.ieee.org/document/6248061) 828 | 829 | - **Boosting Bottom-Up and Top-Down Visual Features for Saliency Estimation (CVPR 2012)** 830 | - Ali Borji 831 | - [[Paper]](http://ilab.usc.edu/borji/papers/cvpr-2012-BUModel-v4.pdf) 832 | 833 | - **Boosting Algorithms for Simultaneous Feature Extraction and Selection (CVPR 2012)** 834 | - Mohammad J. Saberian, Nuno Vasconcelos 835 | - [[Paper]](http://svcl.ucsd.edu/publications/conference/2012/cvpr/SOPBoost.pdf) 836 | 837 | - **Sharing Features in Multi-class Boosting via Group Sparsity (CVPR 2012)** 838 | - Sakrapee Paisitkriangkrai, Chunhua Shen, Anton van den Hengel 839 | - [[Paper]](https://cs.adelaide.edu.au/~paulp/publications/pubs/sharing_cvpr2012.pdf) 840 | 841 | - **Feature Weighting and Selection Using Hypothesis Margin of Boosting (ICDM 2012)** 842 | - Malak Alshawabkeh, Javed A. Aslam, Jennifer G. Dy, David R. Kaeli 843 | - [[Paper]](http://www.ece.neu.edu/fac-ece/jdy/papers/alshawabkeh-ICDM2012.pdf) 844 | 845 | - **An AdaBoost Algorithm for Multiclass Semi-supervised Learning (ICDM 2012)** 846 | - Jafar Tanha, Maarten van Someren, Hamideh Afsarmanesh 847 | - [[Paper]]https://ieeexplore.ieee.org/document/6413799) 848 | 849 | - **AOSO-LogitBoost: Adaptive One-Vs-One LogitBoost for Multi-Class Problem (ICML 2012)** 850 | - Peng Sun, Mark D. Reid, Jie Zhou 851 | - [[Paper]](AOSO-LogitBoost: Adaptive One-Vs-One LogitBoost for Multi-Class Problem) 852 | - [[Code]](https://github.com/pengsun/AOSOLogitBoost) 853 | 854 | - **An Online Boosting Algorithm with Theoretical Justifications (ICML 2012)** 855 | - Shang-Tse Chen, Hsuan-Tien Lin, Chi-Jen Lu 856 | - [[Paper]](https://arxiv.org/abs/1206.6422) 857 | 858 | - **Learning Image Descriptors with the Boosting-Trick (NIPS 2012)** 859 | - Tomasz Trzcinski, C. Mario Christoudias, Vincent Lepetit, Pascal Fua 860 | - [[Paper]](https://papers.nips.cc/paper/4848-learning-image-descriptors-with-the-boosting-trick.pdf) 861 | - [[Code]](https://github.com/biotrump/cvlab-BINBOOST) 862 | 863 | - **Accelerated Training for Matrix-norm Regularization: A Boosting Approach (NIPS 2012)** 864 | - Xinhua Zhang, Yaoliang Yu, Dale Schuurmans 865 | - [[Paper]](https://papers.nips.cc/paper/4663-accelerated-training-for-matrix-norm-regularization-a-boosting-approach) 866 | 867 | - **Learning from Heterogeneous Sources via Gradient Boosting Consensus (SDM 2012)** 868 | - Xiaoxiao Shi, Jean-François Paiement, David Grangier, Philip S. Yu 869 | - [[Paper]](http://david.grangier.info/papers/2012/shi_sdm_2012.pdf) 870 | - [[Code]](https://github.com/PriyeshV/GBDT-CC) 871 | 872 | ## 2011 873 | - **Selective Transfer Between Learning Tasks Using Task-Based Boosting (AAAI 2011)** 874 | - Eric Eaton, Marie desJardins 875 | - [[Paper]](http://www.cis.upenn.edu/~eeaton/papers/Eaton2011Selective.pdf) 876 | 877 | - **Incorporating Boosted Regression Trees into Ecological Latent Variable Models (AAAI 2011)** 878 | - Rebecca A. Hutchinson, Li-Ping Liu, Thomas G. Dietterich 879 | - [[Paper]](https://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/viewFile/3711/4086) 880 | 881 | - **FlowBoost - Appearance Learning from Sparsely Annotated Video (CVPR 2011)** 882 | - Karim Ali, David Hasler, François Fleuret 883 | - [[Paper]](http://www.karimali.org/publications/AHF_CVPR11.pdf) 884 | 885 | - **AdaBoost on Low-Rank PSD Matrices for Metric Learning (CVPR 2011)** 886 | - Jinbo Bi, Dijia Wu, Le Lu, Meizhu Liu, Yimo Tao, Matthias Wolf 887 | - [[Paper]](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5995363) 888 | 889 | - **Boosted Local Structured HOG-LBP for Object Localization (CVPR 2011)** 890 | - Junge Zhang, Kaiqi Huang, Yinan Yu, Tieniu Tan 891 | - [[Paper]](http://www.cbsr.ia.ac.cn/users/ynyu/1682.pdf) 892 | 893 | - **A Direct Formulation for Totally-Corrective Multi-Class Boosting (CVPR 2011)** 894 | - Chunhua Shen, Zhihui Hao 895 | - [[Paper]](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5995554) 896 | 897 | - **Gated Classifiers: Boosting Under High Intra-class Variation (CVPR 2011)** 898 | - Oscar M. Danielsson, Babak Rasolzadeh, Stefan Carlsson 899 | - [[Paper]](http://www.nada.kth.se/cvap/cvg/papers/danielssonCVPR11.pdf) 900 | 901 | - **TaylorBoost: First and Second-order Boosting Algorithms with Explicit Margin Control (CVPR 2011)** 902 | - Mohammad J. Saberian, Hamed Masnadi-Shirazi, Nuno Vasconcelos 903 | - [[Paper]](https://ieeexplore.ieee.org/document/5995605) 904 | - [[Code]](https://pythonhosted.org/bob.learn.boosting/) 905 | 906 | - **Robust and Efficient Regularized Boosting Using Total Bregman Divergence (CVPR 2011)** 907 | - Meizhu Liu, Baba C. Vemuri 908 | - [[Paper]](https://ieeexplore.ieee.org/document/5995686) 909 | 910 | - **Treat Samples differently: Object Tracking with Semi-Supervised Online CovBoost (ICCV 2011)** 911 | - Guorong Li, Lei Qin, Qingming Huang, Junbiao Pang, Shuqiang Jiang 912 | - [[Paper]](https://ieeexplore.ieee.org/document/6126297) 913 | 914 | - **LinkBoost: A Novel Cost-Sensitive Boosting Framework for Community-Level Network Link Prediction (ICDM 2011)** 915 | - Prakash Mandayam Comar, Pang-Ning Tan, Anil K. Jain 916 | - [[Paper]](http://www.cse.msu.edu/~ptan/papers/icdm2011.pdf) 917 | 918 | - **Learning Markov Logic Networks via Functional Gradient Boosting (ICDM 2011)** 919 | - Tushar Khot, Sriraam Natarajan, Kristian Kersting, Jude W. Shavlik 920 | - [[Paper]](https://github.com/starling-lab/BoostSRL) 921 | - [[Code]](https://ieeexplore.ieee.org/document/6137236) 922 | 923 | - **Boosting on a Budget: Sampling for Feature-Efficient Prediction (ICML 2011)** 924 | - Lev Reyzin 925 | - [[Paper]](http://www.icml-2011.org/papers/348_icmlpaper.pdf) 926 | 927 | - **Multiclass Boosting with Hinge Loss based on Output Coding (ICML 2011)** 928 | - Tianshi Gao, Daphne Koller 929 | - [[Paper]](http://ai.stanford.edu/~tianshig/papers/multiclassHingeBoost-ICML2011.pdf) 930 | - [[Code]](https://github.com/memect/hao/blob/master/awesome/multiclass-boosting.md) 931 | 932 | - **Generalized Boosting Algorithms for Convex Optimization (ICML 2011)** 933 | - Alexander Grubb, Drew Bagnell 934 | - [[Paper]](https://arxiv.org/pdf/1105.2054.pdf) 935 | 936 | - **Imitation Learning in Relational Domains: A Functional-Gradient Boosting Approach (IJCAI 2011)** 937 | - Sriraam Natarajan, Saket Joshi, Prasad Tadepalli, Kristian Kersting, Jude W. Shavlik 938 | - [[Paper]](http://ftp.cs.wisc.edu/machine-learning/shavlik-group/natarajan.ijcai11.pdf) 939 | 940 | - **Boosting with Maximum Adaptive Sampling (NIPS 2011)** 941 | - Charles Dubout, François Fleuret 942 | - [[Paper]](https://papers.nips.cc/paper/4310-boosting-with-maximum-adaptive-sampling) 943 | 944 | - **The Fast Convergence of Boosting (NIPS 2011)** 945 | - Matus Telgarsky 946 | - [[Paper]](https://papers.nips.cc/paper/4343-the-fast-convergence-of-boosting) 947 | 948 | - **ShareBoost: Efficient Multiclass Learning with Feature Sharing (NIPS 2011)** 949 | - Shai Shalev-Shwartz, Yonatan Wexler, Amnon Shashua 950 | - [[Paper]](https://papers.nips.cc/paper/4213-shareboost-efficient-multiclass-learning-with-feature-sharing) 951 | 952 | - **Multiclass Boosting: Theory and Algorithms (NIPS 2011)** 953 | - Mohammad J. Saberian, Nuno Vasconcelos 954 | - [[Paper]](https://papers.nips.cc/paper/4450-multiclass-boosting-theory-and-algorithms.pdf) 955 | 956 | - **Variance Penalizing AdaBoost (NIPS 2011)** 957 | - Pannagadatta K. Shivaswamy, Tony Jebara 958 | - [[Paper]](https://papers.nips.cc/paper/4207-variance-penalizing-adaboost.pdf) 959 | 960 | - **MKBoost: A Framework of Multiple Kernel Boosting (SDM 2011)** 961 | - Hao Xia, Steven C. H. Hoi 962 | - [[Paper]](https://ink.library.smu.edu.sg/cgi/viewcontent.cgi?article=3280&context=sis_research) 963 | 964 | - **A Boosting Approach to Improving Pseudo-Relevance Feedback (SIGIR 2011)** 965 | - Yuanhua Lv, ChengXiang Zhai, Wan Chen 966 | - [[Paper]](http://www.tyr.unlu.edu.ar/tallerIR/2012/papers/pseudorelevance.pdf) 967 | 968 | - **Bagging Gradient-Boosted Trees for High Precision, Low Variance Ranking Models (SIGIR 2011)** 969 | - Yasser Ganjisaffar, Rich Caruana, Cristina Videira Lopes 970 | - [[Paper]](http://www.ccs.neu.edu/home/vip/teach/MLcourse/4_boosting/materials/bagging_lmbamart_jforests.pdf) 971 | 972 | - **Boosting as a Product of Experts (UAI 2011)** 973 | - Narayanan Unny Edakunni, Gary Brown, Tim Kovacs 974 | - [[Paper]](https://arxiv.org/abs/1202.3716) 975 | 976 | - **Parallel Boosted Regression Trees for Web Search Ranking (WWW 2011)** 977 | - Stephen Tyree, Kilian Q. Weinberger, Kunal Agrawal, Jennifer Paykin 978 | - [[Paper]](http://www.cs.cornell.edu/~kilian/papers/fr819-tyreeA.pdf) 979 | - [[Code]](https://github.com/YS-L/pgbm) 980 | 981 | ## 2010 982 | - **The Boosting Effect of Exploratory Behaviors (AAAI 2010)** 983 | - Jivko Sinapov, Alexander Stoytchev 984 | - [[Paper]](https://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/download/1777/2265) 985 | 986 | - **Boosting-Based System Combination for Machine Translation (ACL 2010)** 987 | - Tong Xiao, Jingbo Zhu, Muhua Zhu, Huizhen Wang 988 | - [[Paper]](https://www.aclweb.org/anthology/P10-1076) 989 | 990 | - **BagBoo: A Scalable Hybrid Bagging-the-Boosting Model (CIKM 2010)** 991 | - Dmitry Yurievich Pavlov, Alexey Gorodilov, Cliff A. Brunk 992 | - [[Paper]](http://cache-default03h.cdn.yandex.net/download.yandex.ru/company/a_scalable_hybrid_bagging_the_boosting_model.pdf) 993 | - [[Code]](https://github.com/arogozhnikov/infiniteboost) 994 | 995 | - **Automatic Detection of Craters in Planetary Images: an Embedded Framework Using Feature Selection and Boosting (CIKM 2010)** 996 | - Wei Ding, Tomasz F. Stepinski, Lourenço P. C. Bandeira, Ricardo Vilalta, Youxi Wu, Zhenyu Lu, Tianyu Cao 997 | - [[Paper]](https://www.uh.edu/~rvilalta/papers/2010/cikm10.pdf) 998 | 999 | - **Facial Point Detection Using Boosted Regression and Graph Models (CVPR 2010)** 1000 | - Michel François Valstar, Brais Martínez, Xavier Binefa, Maja Pantic 1001 | - [[Paper]](https://ibug.doc.ic.ac.uk/media/uploads/documents/CVPR-2010-ValstarEtAl-CAMERA.pdf) 1002 | 1003 | - **Boosting for Transfer Learning with Multiple Sources (CVPR 2010)** 1004 | - Yi Yao, Gianfranco Doretto 1005 | - [[Paper]](https://ieeexplore.ieee.org/document/5539857) 1006 | 1007 | - **Efficient Rotation Invariant Object Detection Using Boosted Random Ferns (CVPR 2010)** 1008 | - Michael Villamizar, Francesc Moreno-Noguer, Juan Andrade-Cetto, Alberto Sanfeliu 1009 | - [[Paper]](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.307.4002&rep=rep1&type=pdf) 1010 | 1011 | - **Implicit Hierarchical Boosting for Multi-view Object Detection (CVPR 2010)** 1012 | - Xavier Perrotton, Marc Sturzel, Michel Roux 1013 | - [[Paper]](https://ieeexplore.ieee.org/document/5540115) 1014 | 1015 | - **On-Line Semi-Supervised Multiple-Instance Boosting (CVPR 2010)** 1016 | - Bernhard Zeisl, Christian Leistner, Amir Saffari, Horst Bischof 1017 | - [[Paper]](https://ieeexplore.ieee.org/document/5539860) 1018 | 1019 | - **Online Multi-Class LPBoost (CVPR 2010)** 1020 | - Amir Saffari, Martin Godec, Thomas Pock, Christian Leistner, Horst Bischof 1021 | - [[Paper]](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.165.8939&rep=rep1&type=pdf) 1022 | - [[Code]](https://github.com/amirsaffari/online-multiclass-lpboost) 1023 | 1024 | - **Homotopy Regularization for Boosting (ICDM 2010)** 1025 | - Zheng Wang, Yangqiu Song, Changshui Zhang 1026 | - [[Paper]](https://ieeexplore.ieee.org/document/5694094) 1027 | 1028 | - **Exploiting Local Data Uncertainty to Boost Global Outlier Detection (ICDM 2010)** 1029 | - Bo Liu, Jie Yin, Yanshan Xiao, Longbing Cao, Philip S. Yu 1030 | - [[Paper]](https://ieeexplore.ieee.org/document/5693984) 1031 | 1032 | - **Boosting Classifiers with Tightened L0-Relaxation Penalties (ICML 2010)** 1033 | - Noam Goldberg, Jonathan Eckstein 1034 | - [[Paper]](https://pdfs.semanticscholar.org/11df/aed4ec2a2f72878789fa3a54d588d693bdda.pdf) 1035 | 1036 | - **Boosting for Regression Transfer (ICML 2010)** 1037 | - David Pardoe, Peter Stone 1038 | - [[Paper]](https://www.cs.utexas.edu/~dpardoe/papers/ICML10.pdf) 1039 | - [[Code]](https://github.com/jay15summer/Two-stage-TrAdaboost.R2) 1040 | 1041 | - **Boosted Backpropagation Learning for Training Deep Modular Networks (ICML 2010)** 1042 | - Alexander Grubb, J. Andrew Bagnell 1043 | - [[Paper]](https://icml.cc/Conferences/2010/papers/451.pdf) 1044 | 1045 | - **Fast Boosting Using Adversarial Bandits (ICML 2010)** 1046 | - Róbert Busa-Fekete, Balázs Kégl 1047 | - [[Paper]](https://www.lri.fr/~kegl/research/PDFs/BuKe10.pdf) 1048 | 1049 | - **Boosting with Structure Information in the Functional Space: an Application to Graph Classification (KDD 2010)** 1050 | - Hongliang Fei, Jun Huan 1051 | - [[Paper]](https://dl.acm.org/citation.cfm?id=1835804.1835886) 1052 | 1053 | - **Multi-task Learning for Boosting with Application to Web Search Ranking (KDD 2010)** 1054 | - Olivier Chapelle, Pannagadatta K. Shivaswamy, Srinivas Vadrevu, Kilian Q. Weinberger, Ya Zhang, Belle L. Tseng 1055 | - [[Paper]](https://dl.acm.org/citation.cfm?id=1835953) 1056 | 1057 | - **A Theory of Multiclass Boosting (NIPS 2010)** 1058 | - Indraneel Mukherjee, Robert E. Schapire 1059 | - [[Paper]](http://rob.schapire.net/papers/multiboost-journal.pdf) 1060 | 1061 | - **Boosting Classifier Cascades (NIPS 2010)** 1062 | - Mohammad J. Saberian, Nuno Vasconcelos 1063 | - [[Paper]](https://papers.nips.cc/paper/4033-boosting-classifier-cascades.pdf) 1064 | 1065 | - **Joint Cascade Optimization Using A Product Of Boosted Classifiers (NIPS 2010)** 1066 | - Leonidas Lefakis, François Fleuret 1067 | - [[Paper]](https://papers.nips.cc/paper/4148-joint-cascade-optimization-using-a-product-of-boosted-classifiers) 1068 | 1069 | - **Robust LogitBoost and Adaptive Base Class (ABC) LogitBoost (UAI 2010)** 1070 | - Ping Li 1071 | - [[Paper]](https://arxiv.org/abs/1203.3491) 1072 | - [[Code]](https://github.com/pengsun/AOSOLogitBoost) 1073 | 1074 | ## 2009 1075 | 1076 | - **Feature Selection for Ranking Using Boosted Trees (CIKM 2009)** 1077 | - Feng Pan, Tim Converse, David Ahn, Franco Salvetti, Gianluca Donato 1078 | - [[Paper]](http://www.francosalvetti.com/cikm09_camera2.pdf) 1079 | 1080 | - **Boosting KNN Text Classification Accuracy by Using Supervised Term Weighting Schemes (CIKM 2009)** 1081 | - Iyad Batal, Milos Hauskrecht 1082 | - [[Paper]](https://people.cs.pitt.edu/~milos/research/CIKM_2009_boosting_KNN.pdf) 1083 | 1084 | - **Stochastic Gradient Boosted Distributed Decision Trees (CIKM 2009)** 1085 | - Jerry Ye, Jyh-Herng Chow, Jiang Chen, Zhaohui Zheng 1086 | - [[Paper]](http://cse.iitrpr.ac.in/ckn/courses/f2012/thomas.pdf) 1087 | 1088 | - **A General Magnitude-Preserving Boosting Algorithm for Search Ranking (CIKM 2009)** 1089 | - Chenguang Zhu, Weizhu Chen, Zeyuan Allen Zhu, Gang Wang, Dong Wang, Zheng Chen 1090 | - [[Paper]](https://www.microsoft.com/en-us/research/wp-content/uploads/2016/06/cikm2009-1.pdf) 1091 | 1092 | - **Reducing Joint Boost-Based Multiclass Classification to Proximity Search (CVPR 2009)** 1093 | - Alexandra Stefan, Vassilis Athitsos, Quan Yuan, Stan Sclaroff 1094 | - [[Paper]](https://www.semanticscholar.org/paper/Reducing-JointBoost-based-multiclass-classification-Stefan-Athitsos/08ba1a7d91ce9b4ac26869bfe4bb7c955b0d1a24) 1095 | 1096 | - **Imbalanced RankBoost for Efficiently Ranking Large-Scale Image-Video Collections (CVPR 2009)** 1097 | - Michele Merler, Rong Yan, John R. Smith 1098 | - [[Paper]](https://www.semanticscholar.org/paper/Imbalanced-RankBoost-for-efficiently-ranking-Merler-Yan/031ba6bf0d6df8bd3aa686ce85791b7d74f0b6d5) 1099 | 1100 | - **Regularized Multi-Class Semi-Supervised Boosting (CVPR 2009)** 1101 | - Amir Saffari, Christian Leistner, Horst Bischof 1102 | - [[Paper]](https://ieeexplore.ieee.org/abstract/document/5206715) 1103 | 1104 | - **Learning to Associate: HybridBoosted Multi-Target Tracker for Crowded Scene (CVPR 2009)** 1105 | - Yuan Li, Chang Huang, Ram Nevatia 1106 | - [[Paper]](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.309.8335&rep=rep1&type=pdf) 1107 | 1108 | - **Boosted Multi-task Learning for Face Verification with Applications to Web Image and Video Search (CVPR 2009)** 1109 | - Xiaogang Wang, Cha Zhang, Zhengyou Zhang 1110 | - [[Paper]](http://www.ee.cuhk.edu.hk/~xgwang/webface.pdf) 1111 | 1112 | - **LidarBoost: Depth Superresolution for ToF 3D Shape Scanning (CVPR 2009)** 1113 | - Sebastian Schuon, Christian Theobalt, James E. Davis, Sebastian Thrun 1114 | - [[Paper]](http://ai.stanford.edu/~schuon/sr/cvpr09_poster_lidarboost.pdf) 1115 | 1116 | - **Model Adaptation via Model Interpolation and Boosting for Web Search Ranking (EMNLP 2009)** 1117 | - Jianfeng Gao, Qiang Wu, Chris Burges, Krysta Marie Svore, Yi Su, Nazan Khan, Shalin Shah, Hongyan Zhou 1118 | - [[Paper]](https://pdfs.semanticscholar.org/7a82/66335d0b44596574588eabb090bfeae4ab35.pdf) 1119 | 1120 | - **Finding Shareable Informative Patterns and Optimal Coding Matrix for Multiclass Boosting (ICCV 2009)** 1121 | - Bang Zhang, Getian Ye, Yang Wang, Jie Xu, Gunawan Herman 1122 | - [[Paper]](https://ieeexplore.ieee.org/document/5459146) 1123 | 1124 | - **RankBoost with L1 Regularization for Facial Expression Recognition and Intensity Estimation (ICCV 2009)** 1125 | - Peng Yang, Qingshan Liu, Dimitris N. Metaxas 1126 | - [[Paper]](https://ieeexplore.ieee.org/document/5459371) 1127 | 1128 | - **A Robust Boosting Tracker with Minimum Error Bound in a Co-Training Framework (ICCV 2009)** 1129 | - Rong Liu, Jian Cheng, Hanqing Lu 1130 | - [[Paper]](http://nlpr-web.ia.ac.cn/2009papers/gjhy/gh1.pdf) 1131 | 1132 | - **Tutorial Summary: Survey of Boosting from an Optimization Perspective (ICML 2009)** 1133 | - Manfred K. Warmuth, S. V. N. Vishwanathan 1134 | - [[Paper]](http://www.stat.purdue.edu/~vishy/erlpboost/manfred.pdf) 1135 | 1136 | - **Boosting Products of Base Classifiers (ICML 2009)** 1137 | - Balázs Kégl, Róbert Busa-Fekete 1138 | - [[Paper]](https://users.lal.in2p3.fr/kegl/research/PDFs/keglBusafekete09.pdf) 1139 | 1140 | - **ABC-boost: Adaptive Base Class Boost for Multi-Class Classification (ICML 2009)** 1141 | - Ping Li 1142 | - [[Paper]](https://icml.cc/Conferences/2009/papers/417.pdf) 1143 | 1144 | - **Boosting with Structural Sparsity (ICML 2009)** 1145 | - John C. Duchi, Yoram Singer 1146 | - [[Paper]](https://web.stanford.edu/~jduchi/projects/DuchiSi09a.pdf) 1147 | 1148 | - **Boosting Constrained Mutual Subspace Method for Robust Image-Set Based Object Recognition (IJCAI 2009)** 1149 | - Xi Li, Kazuhiro Fukui, Nanning Zheng 1150 | - [[Paper]](https://www.researchgate.net/publication/220812439_Boosting_Constrained_Mutual_Subspace_Method_for_Robust_Image-Set_Based_Object_Recognition) 1151 | 1152 | - **Information Theoretic Regularization for Semi-supervised Boosting (KDD 2009)** 1153 | - Lei Zheng, Shaojun Wang, Yan Liu, Chi-Hoon Lee 1154 | - [[Paper]](https://pdfs.semanticscholar.org/5255/242d50851ce56354e10ae8fdcee6f47591c9.pdf) 1155 | 1156 | - **Potential-Based Agnostic Boosting (NIPS 2009)** 1157 | - Adam Kalai, Varun Kanade 1158 | - [[Paper]](https://papers.nips.cc/paper/3676-potential-based-agnostic-boosting) 1159 | 1160 | - **Positive Semidefinite Metric Learning with Boosting (NIPS 2009)** 1161 | - Chunhua Shen, Junae Kim, Lei Wang, Anton van den Hengel 1162 | - [[Paper]](https://papers.nips.cc/paper/3658-positive-semidefinite-metric-learning-with-boosting) 1163 | 1164 | - **Boosting with Spatial Regularization (NIPS 2009)** 1165 | - Zhen James Xiang, Yongxin Taylor Xi, Uri Hasson, Peter J. Ramadge 1166 | - [[Paper]](https://papers.nips.cc/paper/3696-boosting-with-spatial-regularization) 1167 | 1168 | - **Effective Boosting of Na%C3%AFve Bayesian Classifiers by Local Accuracy Estimation (PAKDD 2009)** 1169 | - Zhipeng Xie 1170 | - [[Paper]](https://link.springer.com/chapter/10.1007/978-3-642-01307-2_88) 1171 | 1172 | - **Multi-resolution Boosting for Classification and Regression Problems (PAKDD 2009)** 1173 | - Chandan K. Reddy, Jin Hyeong Park 1174 | - [[Paper]](http://dmkd.cs.vt.edu/papers/PAKDD09.pdf) 1175 | 1176 | - **Efficient Active Learning with Boosting (SDM 2009)** 1177 | - Zheng Wang, Yangqiu Song, Changshui Zhang 1178 | - [[Paper]](https://pdfs.semanticscholar.org/c8be/b70c37e4b4c4ad77e46b39060c977779d201.pdf) 1179 | 1180 | ## 2008 1181 | - **Group-Based Learning: A Boosting Approach (CIKM 2008)** 1182 | - Weijian Ni, Jun Xu, Hang Li, Yalou Huang 1183 | - [[Paper]](http://www.bigdatalab.ac.cn/~junxu/publications/CIKM2008_GroupLearn.pdf) 1184 | 1185 | - **Semi-Supervised Boosting Using Visual Similarity Learning (CVPR 2008)** 1186 | - Christian Leistner, Helmut Grabner, Horst Bischof 1187 | - [[Paper]](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.144.7914&rep=rep1&type=pdf) 1188 | 1189 | - **Mining Compositional Features for Boosting (CVPR 2008)** 1190 | - Junsong Yuan, Jiebo Luo, Ying Wu 1191 | - [[Paper]](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4587347) 1192 | 1193 | - **Boosted Deformable Model for Human Body Alignment (CVPR 2008)** 1194 | - Xiaoming Liu, Ting Yu, Thomas Sebastian, Peter H. Tu 1195 | - [[Paper]](https://www.cse.msu.edu/~liuxm/publication/Liu_Yu_Sebastian_Tu_cvpr08.pdf) 1196 | 1197 | - **Discriminative Modeling by Boosting on Multilevel Aggregates (CVPR 2008)** 1198 | - Jason J. Corso 1199 | - [[Paper]](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.409.3166&rep=rep1&type=pdf) 1200 | 1201 | - **Face Alignment via Boosted Ranking Model (CVPR 2008)** 1202 | - Hao Wu, Xiaoming Liu, Gianfranco Doretto 1203 | - [[Paper]](https://ieeexplore.ieee.org/document/4587753) 1204 | 1205 | - **Boosting Adaptive Linear Weak Classifiers for Online Learning and Tracking (CVPR 2008)** 1206 | - Toufiq Parag, Fatih Porikli, Ahmed M. Elgammal 1207 | - [[Paper]](https://www.merl.com/publications/docs/TR2008-065.pdf) 1208 | 1209 | - **Detection with Multi-Exit Asymmetric Boosting (CVPR 2008)** 1210 | - Minh-Tri Pham, V-D. D. Hoang, Tat-Jen Cham 1211 | - [[Paper]](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.330.6364&rep=rep1&type=pdf) 1212 | 1213 | - **Boosting Ordinal Features for Accurate and Fast Iris Recognition (CVPR 2008)** 1214 | - Zhaofeng He, Zhenan Sun, Tieniu Tan, Xianchao Qiu, Cheng Zhong, Wenbo Dong 1215 | - [[Paper]](https://www.researchgate.net/publication/224323296_Boosting_ordinal_features_for_accurate_and_fast_iris_recognition) 1216 | 1217 | - **Adaptive and Compact Shape Descriptor by Progressive Feature Combination and Selection with Boosting (CVPR 2008)** 1218 | - Cheng Chen, Yueting Zhuang, Jun Xiao, Fei Wu 1219 | - [[Paper]](https://ieeexplore.ieee.org/document/4587613) 1220 | 1221 | - **Boosting Relational Sequence Alignments (ICDM 2008)** 1222 | - Andreas Karwath, Kristian Kersting, Niels Landwehr 1223 | - [[Paper]](https://www.cs.uni-potsdam.de/~landwehr/ICDM08boosting.pdf) 1224 | 1225 | - **Boosting with Incomplete Information (ICML 2008)** 1226 | - Gholamreza Haffari, Yang Wang, Shaojun Wang, Greg Mori, Feng Jiao 1227 | - [[Paper]](http://users.monash.edu.au/~gholamrh/publications/boosting_icml08_slides.pdf) 1228 | 1229 | - **ManifoldBoost: Stagewise Function Approximation for Fully-, Semi- and Un-supervised Learning (ICML 2008)** 1230 | - Nicolas Loeff, David A. Forsyth, Deepak Ramachandran 1231 | - [[Paper]](http://reason.cs.uiuc.edu/deepak/manifoldboost.pdf) 1232 | 1233 | - **Random Classification Noise Defeats All Convex Potential Boosters (ICML 2008)** 1234 | - Philip M. Long, Rocco A. Servedio 1235 | - [[Paper]](http://phillong.info/publications/LS09_potential.pdf) 1236 | 1237 | - **Multi-class Cost-Sensitive Boosting with P-norm Loss Functions (KDD 2008)** 1238 | - Aurelie C. Lozano, Naoki Abe 1239 | - [[Paper]](https://dl.acm.org/citation.cfm?id=1401953) 1240 | 1241 | - **MCBoost: Multiple Classifier Boosting for Perceptual Co-clustering of Images and Visual Features (NIPS 2008)** 1242 | - Tae-Kyun Kim, Roberto Cipolla 1243 | - [[Paper]](https://papers.nips.cc/paper/3483-mcboost-multiple-classifier-boosting-for-perceptual-co-clustering-of-images-and-visual-features) 1244 | 1245 | - **PSDBoost: Matrix-Generation Linear Programming for Positive Semidefinite Matrices Learning (NIPS 2008)** 1246 | - Chunhua Shen, Alan Welsh, Lei Wang 1247 | - [[Paper]](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.879.7750&rep=rep1&type=pdf) 1248 | 1249 | - **On the Design of Loss Functions for Classification: Theory, Robustness to Outliers, and SavageBoost (NIPS 2008)** 1250 | - Hamed Masnadi-Shirazi, Nuno Vasconcelos 1251 | - [[Paper]](https://papers.nips.cc/paper/3591-on-the-design-of-loss-functions-for-classification-theory-robustness-to-outliers-and-savageboost) 1252 | 1253 | - **Adaptive Martingale Boosting (NIPS 2008)** 1254 | - Philip M. Long, Rocco A. Servedio 1255 | - [[Paper]](http://phillong.info/publications/LS08_adaptive_martingale_boosting.pdf) 1256 | 1257 | - **A Boosting Algorithm for Learning Bipartite Ranking Functions with Partially Labeled Data (SIGIR 2008)** 1258 | - Massih-Reza Amini, Tuong-Vinh Truong, Cyril Goutte 1259 | - [[Paper]](http://ama.liglab.fr/~amini/Publis/SemiSupRanking_sigir08.pdf) 1260 | 1261 | ## 2007 1262 | 1263 | - **Using Error-Correcting Output Codes with Model-Refinement to Boost Centroid Text Classifier (ACL 2007)** 1264 | - Songbo Tan 1265 | - [[Paper]](https://dl.acm.org/citation.cfm?id=1557794) 1266 | 1267 | - **Fast Human Pose Estimation using Appearance and Motion via Multi-Dimensional Boosting Regression (CVPR 2007)** 1268 | - Alessandro Bissacco, Ming-Hsuan Yang, Stefano Soatto 1269 | - [[Paper]](http://vision.ucla.edu/papers/bissaccoYS07.pdf) 1270 | 1271 | - **Generic Face Alignment using Boosted Appearance Model (CVPR 2007)** 1272 | - Xiaoming Liu 1273 | - [[Paper]](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4270290) 1274 | 1275 | - **Eigenboosting: Combining Discriminative and Generative Information (CVPR 2007)** 1276 | - Helmut Grabner, Peter M. Roth, Horst Bischof 1277 | - [[Paper]](https://www.tugraz.at/fileadmin/user_upload/Institute/ICG/Documents/lrs/pubs/grabner_cvpr_07.pdf) 1278 | 1279 | - **Online Learning Asymmetric Boosted Classifiers for Object Detection (CVPR 2007)** 1280 | - Minh-Tri Pham, Tat-Jen Cham 1281 | - [[Paper]](https://ieeexplore.ieee.org/abstract/document/4270108) 1282 | 1283 | - **Improving Part based Object Detection by Unsupervised Online Boosting (CVPR 2007)** 1284 | - Bo Wu, Ram Nevatia 1285 | - [[Paper]](https://ieeexplore.ieee.org/document/4270173) 1286 | 1287 | - **A Specialized Processor Suitable for AdaBoost-Based Detection with Haar-like Features (CVPR 2007)** 1288 | - Masayuki Hiromoto, Kentaro Nakahara, Hiroki Sugano, Yukihiro Nakamura, Ryusuke Miyamoto 1289 | - [[Paper]](https://ieeexplore.ieee.org/document/4270413) 1290 | 1291 | - **Simultaneous Object Detection and Segmentation by Boosting Local Shape Feature based Classifier (CVPR 2007)** 1292 | - Bo Wu, Ram Nevatia 1293 | - [[Paper]](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.309.9795&rep=rep1&type=pdf) 1294 | 1295 | - **Compositional Boosting for Computing Hierarchical Image Structures (CVPR 2007)** 1296 | - Tianfu Wu, Gui-Song Xia, Song Chun Zhu 1297 | - [[Paper]](https://ieeexplore.ieee.org/document/4270059) 1298 | 1299 | - **Boosting Coded Dynamic Features for Facial Action Units and Facial Expression Recognition (CVPR 2007)** 1300 | - Peng Yang, Qingshan Liu, Dimitris N. Metaxas 1301 | - [[Paper]](https://ieeexplore.ieee.org/document/4270084) 1302 | 1303 | - **Object Classification in Visual Surveillance Using Adaboost (CVPR 2007)** 1304 | - John-Paul Renno, Dimitrios Makris, Graeme A. Jones 1305 | - [[Paper]](https://ieeexplore.ieee.org/abstract/document/4270512) 1306 | 1307 | - **A Boosting Regression Approach to Medical Anatomy Detection (CVPR 2007)** 1308 | - Shaohua Kevin Zhou, Jinghao Zhou, Dorin Comaniciu 1309 | - [[Paper]](http://ww.w.comaniciu.net/Papers/BoostingRegression_CVPR07.pdf) 1310 | 1311 | - **Joint Real-time Object Detection and Pose Estimation Using Probabilistic Boosting Network (CVPR 2007)** 1312 | - Jingdan Zhang, Shaohua Kevin Zhou, Leonard McMillan, Dorin Comaniciu 1313 | - [[Paper]](http://csbio.unc.edu/mcmillan/pubs/CVPR07_Zhang.pdf) 1314 | 1315 | - **Kernel Sharing With Joint Boosting For Multi-Class Concept Detection (CVPR 2007)** 1316 | - Wei Jiang, Shih-Fu Chang, Alexander C. Loui 1317 | - [[Paper]](http://www.ee.columbia.edu/~wjiang/references/jiangcvprws07.pdf) 1318 | 1319 | - **Scale-Space Based Weak Regressors for Boosting (ECML 2007)** 1320 | - Jin Hyeong Park, Chandan K. Reddy 1321 | - [[Paper]](http://www.cs.wayne.edu/~reddy/Papers/ECML07.pdf) 1322 | 1323 | - **Avoiding Boosting Overfitting by Removing Confusing Samples (ECML 2007)** 1324 | - Alexander Vezhnevets, Olga Barinova 1325 | - [[Paper]](http://groups.inf.ed.ac.uk/calvin/hp_avezhnev/Pubs/AvoidingBoostingOverfitting.pdf) 1326 | 1327 | - **DynamicBoost: Boosting Time Series Generated by Dynamical Systems (ICCV 2007)** 1328 | - René Vidal, Paolo Favaro 1329 | - [[Paper]](http://vision.jhu.edu/assets/VidalICCV07.pdf) 1330 | 1331 | - **Incremental Learning of Boosted Face Detector (ICCV 2007)** 1332 | - Chang Huang, Haizhou Ai, Takayoshi Yamashita, Shihong Lao, Masato Kawade 1333 | - [[Paper]](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.126.9012&rep=rep1&type=pdf) 1334 | 1335 | - **Gradient Feature Selection for Online Boosting (ICCV 2007)** 1336 | - Xiaoming Liu, Ting Yu 1337 | - [[Paper]](https://www.cse.msu.edu/~liuxm/publication/Liu_Yu_ICCV2007.pdf) 1338 | 1339 | - **Fast Training and Selection of Haar Features Using Statistics in Boosting-based Face Detection (ICCV 2007)** 1340 | - Minh-Tri Pham, Tat-Jen Cham 1341 | - [[Paper]](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.212.6173&rep=rep1&type=pdf) 1342 | 1343 | - **Cluster Boosted Tree Classifier for Multi-View - Multi-Pose Object Detection (ICCV 2007)** 1344 | - Bo Wu, Ramakant Nevatia 1345 | - [[Paper]](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.309.9885&rep=rep1&type=pdf) 1346 | 1347 | - **Asymmetric Boosting (ICML 2007)** 1348 | - Hamed Masnadi-Shirazi, Nuno Vasconcelos 1349 | - [[Paper]](http://www.svcl.ucsd.edu/publications/conference/2007/icml07/AsymmetricBoosting.pdf) 1350 | 1351 | - **Boosting for Transfer Learning (ICML 2007)** 1352 | - Wenyuan Dai, Qiang Yang, Gui-Rong Xue, Yong Yu 1353 | - [[Paper]](http://www.cs.ust.hk/~qyang/Docs/2007/tradaboost.pdf) 1354 | 1355 | - **Gradient Boosting for Kernelized Output Spaces (ICML 2007)** 1356 | - Pierre Geurts, Louis Wehenkel, Florence d'Alché-Buc 1357 | - [[Paper]](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.435.3970&rep=rep1&type=pdf) 1358 | 1359 | - **Boosting a Complete Technique to Find MSS and MUS Thanks to a Local Search Oracle (IJCAI 2007)** 1360 | - Éric Grégoire, Bertrand Mazure, Cédric Piette 1361 | - [[Paper]](http://www.cril.univ-artois.fr/~piette/IJCAI07_HYCAM.pdf) 1362 | 1363 | - **Training Conditional Random Fields Using Virtual Evidence Boosting (IJCAI 2007)** 1364 | - Lin Liao, Tanzeem Choudhury, Dieter Fox, Henry A. Kautz 1365 | - [[Paper]](https://www.ijcai.org/Proceedings/07/Papers/407.pdf) 1366 | 1367 | - **Simple Training of Dependency Parsers via Structured Boosting (IJCAI 2007)** 1368 | - Qin Iris Wang, Dekang Lin, Dale Schuurmans 1369 | - [[Paper]](https://www.ijcai.org/Proceedings/07/Papers/284.pdf) 1370 | 1371 | - **Real Boosting a la Carte with an Application to Boosting Oblique Decision Tree (IJCAI 2007)** 1372 | - Claudia Henry, Richard Nock, Frank Nielsen 1373 | - [[Paper]](https://www.ijcai.org/Proceedings/07/Papers/135.pdf) 1374 | 1375 | - **Managing Domain Knowledge and Multiple Models with Boosting (IJCAI 2007)** 1376 | - Peng Zang, Charles Lee Isbell Jr. 1377 | - [[Paper]](https://www.ijcai.org/Proceedings/07/Papers/185.pdf) 1378 | 1379 | - **Model-Shared Subspace Boosting for Multi-label Classification (KDD 2007)** 1380 | - Rong Yan, Jelena Tesic, John R. Smith 1381 | - [[Paper]](http://rogerioferis.com/VisualRecognitionAndSearch2014/material/papers/IMARSKDD2007.pdf) 1382 | 1383 | - **Regularized Boost for Semi-Supervised Learning (NIPS 2007)** 1384 | - Ke Chen, Shihai Wang 1385 | - [[Paper]](https://papers.nips.cc/paper/3167-regularized-boost-for-semi-supervised-learning.pdf) 1386 | 1387 | - **Boosting Algorithms for Maximizing the Soft Margin (NIPS 2007)** 1388 | - Manfred K. Warmuth, Karen A. Glocer, Gunnar Rätsch 1389 | - [[Paper]](https://papers.nips.cc/paper/3374-boosting-algorithms-for-maximizing-the-soft-margin.pdf) 1390 | 1391 | - **McRank: Learning to Rank Using Multiple Classification and Gradient Boosting (NIPS 2007)** 1392 | - Ping Li, Christopher J. C. Burges, Qiang Wu 1393 | - [[Paper]](https://papers.nips.cc/paper/3270-mcrank-learning-to-rank-using-multiple-classification-and-gradient-boosting.pdf) 1394 | 1395 | - **One-Pass Boosting (NIPS 2007)** 1396 | - Zafer Barutçuoglu, Philip M. Long, Rocco A. Servedio 1397 | - [[Paper]](http://phillong.info/publications/BLS07_one_pass.pdf) 1398 | 1399 | - **Boosting the Area under the ROC Curve (NIPS 2007)** 1400 | - Philip M. Long, Rocco A. Servedio 1401 | - [[Paper]](https://papers.nips.cc/paper/3247-boosting-the-area-under-the-roc-curve.pdf) 1402 | 1403 | - **FilterBoost: Regression and Classification on Large Datasets (NIPS 2007)** 1404 | - Joseph K. Bradley, Robert E. Schapire 1405 | - [[Paper]](http://rob.schapire.net/papers/FilterBoost_paper.pdf) 1406 | 1407 | - **A General Boosting Method and its Application to Learning Ranking Functions for Web Search (NIPS 2007)** 1408 | - Zhaohui Zheng, Hongyuan Zha, Tong Zhang, Olivier Chapelle, Keke Chen, Gordon Sun 1409 | - [[Paper]](https://pdfs.semanticscholar.org/8f8d/874a3f0217289ba317b1f6175ac3b6f73d70.pdf) 1410 | 1411 | - **Efficient Multiclass Boosting Classification with Active Learning (SDM 2007)** 1412 | - Jian Huang, Seyda Ertekin, Yang Song, Hongyuan Zha, C. Lee Giles 1413 | - [[Paper]](https://epubs.siam.org/doi/abs/10.1137/1.9781611972771.27) 1414 | 1415 | - **AdaRank: a Boosting Algorithm for Information Retrieval (SIGIR 2007)** 1416 | - Jun Xu, Hang Li 1417 | - [[Paper]](http://www.bigdatalab.ac.cn/~junxu/publications/SIGIR2007_AdaRank.pdf) 1418 | 1419 | ## 2006 1420 | 1421 | - **Gradient Boosting for Sequence Alignment (AAAI 2006)** 1422 | - Charles Parker, Alan Fern, Prasad Tadepalli 1423 | - [[Paper]](http://web.engr.oregonstate.edu/~afern/papers/aaai06-align.pdf) 1424 | 1425 | - **Boosting Kernel Models for Regression (ICDM 2006)** 1426 | - Ping Sun, Xin Yao 1427 | - [[Paper]](https://www.cs.bham.ac.uk/~xin/papers/icdm06SunYao.pdf) 1428 | 1429 | - **Boosting for Learning Multiple Classes with Imbalanced Class Distribution (ICDM 2006)** 1430 | - Yanmin Sun, Mohamed S. Kamel, Yang Wang 1431 | - [[Paper]](http://people.ee.duke.edu/~lcarin/ImbalancedClassDistribution.pdf) 1432 | 1433 | - **Boosting the Feature Space: Text Classification for Unstructured Data on the Web (ICDM 2006)** 1434 | - Yang Song, Ding Zhou, Jian Huang, Isaac G. Councill, Hongyuan Zha, C. Lee Giles 1435 | - [[Paper]](http://sonyis.me/paperpdf/icdm06_song.pdf) 1436 | 1437 | - **Totally Corrective Boosting Algorithms that Maximize the Margin (ICML 2006)** 1438 | - Manfred K. Warmuth, Jun Liao, Gunnar Rätsch 1439 | - [[Paper]](https://users.soe.ucsc.edu/~manfred/pubs/C75.pdf) 1440 | 1441 | - **How Boosting the Margin Can Also Boost Classifier Complexity (ICML 2006)** 1442 | - Lev Reyzin, Robert E. Schapire 1443 | - [[Paper]](http://rob.schapire.net/papers/boost_complexity.pdf) 1444 | 1445 | - **Multiclass Boosting with Repartitioning (ICML 2006)** 1446 | - Ling Li 1447 | - [[Paper]](https://authors.library.caltech.edu/72259/1/p569-li.pdf) 1448 | 1449 | - **AdaBoost is Consistent (NIPS 2006)** 1450 | - Peter L. Bartlett, Mikhail Traskin 1451 | - [[Paper]](http://jmlr.csail.mit.edu/papers/volume8/bartlett07b/bartlett07b.pdf) 1452 | 1453 | - **Boosting Structured Prediction for Imitation Learning (NIPS 2006)** 1454 | - Nathan D. Ratliff, David M. Bradley, J. Andrew Bagnell, Joel E. Chestnutt 1455 | - [[Paper]](https://papers.nips.cc/paper/3154-boosting-structured-prediction-for-imitation-learning.pdf) 1456 | 1457 | - **Chained Boosting (NIPS 2006)** 1458 | - Christian R. Shelton, Wesley Huie, Kin Fai Kan 1459 | - [[Paper]](https://papers.nips.cc/paper/2981-chained-boosting) 1460 | 1461 | - **When Efficient Model Averaging Out-Performs Boosting and Bagging (PKDD 2006)** 1462 | - Ian Davidson, Wei Fan 1463 | - [[Paper]](https://link.springer.com/chapter/10.1007/11871637_46) 1464 | 1465 | ## 2005 1466 | - **Semantic Place Classification of Indoor Environments with Mobile Robots Using Boosting (AAAI 2005)** 1467 | - Axel Rottmann, Óscar Martínez Mozos, Cyrill Stachniss, Wolfram Burgard 1468 | - [[Paper]](http://www2.informatik.uni-freiburg.de/~stachnis/pdf/rottmann05aaai.pdf) 1469 | 1470 | - **Boosting-based Parse Reranking with Subtree Features (ACL 2005)** 1471 | - Taku Kudo, Jun Suzuki, Hideki Isozaki 1472 | - [[Paper]](http://chasen.org/~taku/publications/acl2005.pdf) 1473 | 1474 | - **Using RankBoost to Compare Retrieval Systems (CIKM 2005)** 1475 | - Huyen-Trang Vu, Patrick Gallinari 1476 | - [[Paper]](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.98.9470&rep=rep1&type=pdf) 1477 | 1478 | - **Classifier Fusion Using Shared Sampling Distribution for Boosting (ICDM 2005)** 1479 | - Costin Barbu, Raja Tanveer Iqbal, Jing Peng 1480 | - [[Paper]](https://ieeexplore.ieee.org/document/1565659) 1481 | 1482 | - **Semi-Supervised Mixture of Kernels via LPBoost Methods (ICDM 2005)** 1483 | - Jinbo Bi, Glenn Fung, Murat Dundar, R. Bharat Rao 1484 | - [[Paper]](https://ieeexplore.ieee.org/document/1565728) 1485 | 1486 | - **Efficient Discriminative Learning of Bayesian Network Classifier via Boosted Augmented Naive Bayes (ICML 2005)** 1487 | - Yushi Jing, Vladimir Pavlovic, James M. Rehg 1488 | - [[Paper]](http://mrl.isr.uc.pt/pub/bscw.cgi/d27355/Jing05Efficient.pdf) 1489 | 1490 | - **Unifying the Error-Correcting and Output-Code AdaBoost within the Margin Framework (ICML 2005)** 1491 | - Yijun Sun, Sinisa Todorovic, Jian Li, Dapeng Wu 1492 | - [[Paper]](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.138.4246&rep=rep1&type=pdf) 1493 | 1494 | - **A Smoothed Boosting Algorithm Using Probabilistic Output Codes (ICML 2005)** 1495 | - Rong Jin, Jian Zhang 1496 | - [[Paper]](http://www.stat.purdue.edu/~jianzhan/papers/icml05jin.pdf) 1497 | 1498 | - **Robust Boosting and its Relation to Bagging (KDD 2005)** 1499 | - Saharon Rosset 1500 | - [[Paper]](https://www.tau.ac.il/~saharon/papers/bagboost.pdf) 1501 | 1502 | - **Efficient Computations via Scalable Sparse Kernel Partial Least Squares and Boosted Latent Features (KDD 2005)** 1503 | - Michinari Momma 1504 | - [[Paper]](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.387.2078&rep=rep1&type=pdf) 1505 | 1506 | - **Multiple Instance Boosting for Object Detection (NIPS 2005)** 1507 | - Paul A. Viola, John C. Platt, Cha Zhang 1508 | - [[Paper]](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.138.8312&rep=rep1&type=pdf) 1509 | 1510 | - **Convergence and Consistency of Regularized Boosting Algorithms with Stationary B-Mixing Observations (NIPS 2005)** 1511 | - Aurelie C. Lozano, Sanjeev R. Kulkarni, Robert E. Schapire 1512 | - [[Paper]](https://www.cs.princeton.edu/~schapire/papers/betamix.pdf) 1513 | 1514 | - **Boosted decision trees for word recognition in handwritten document retrieval (SIGIR 2005)** 1515 | - Nicholas R. Howe, Toni M. Rath, R. Manmatha 1516 | - [[Paper]](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.152.1551&rep=rep1&type=pdf) 1517 | 1518 | - **Obtaining Calibrated Probabilities from Boosting (UAI 2005)** 1519 | - Alexandru Niculescu-Mizil, Rich Caruana 1520 | - [[Paper]](https://www.cs.cornell.edu/~caruana/niculescu.scldbst.crc.rev4.pdf) 1521 | 1522 | ## 2004 1523 | 1524 | - **Online Parallel Boosting (AAAI 2004)** 1525 | - Jesse A. Reichler, Harlan D. Harris, Michael A. Savchenko 1526 | - [[Paper]](https://www.aaai.org/Papers/AAAI/2004/AAAI04-059.pdf) 1527 | 1528 | - **A Boosting Approach to Multiple Instance Learning (ECML 2004)** 1529 | - Peter Auer, Ronald Ortner 1530 | - [[Paper]](https://link.springer.com/chapter/10.1007/978-3-540-30115-8_9) 1531 | 1532 | - **A Boosting Algorithm for Classification of Semi-Structured Text (EMNLP 2004)** 1533 | - Taku Kudo, Yuji Matsumoto 1534 | - [[Paper]](https://www.aclweb.org/anthology/W04-3239) 1535 | 1536 | - **Text Classification by Boosting Weak Learners based on Terms and Concepts (ICDM 2004)** 1537 | - Stephan Bloehdorn, Andreas Hotho 1538 | - [[Paper]](https://ieeexplore.ieee.org/document/1410303) 1539 | 1540 | - **Boosting Grammatical Inference with Confidence Oracles (ICML 2004)** 1541 | - Jean-Christophe Janodet, Richard Nock, Marc Sebban, Henri-Maxime Suchier 1542 | - [[Paper]](http://www1.univ-ag.fr/~rnock/Articles/Drafts/icml04-jnss.pdf) 1543 | 1544 | - **Surrogate Maximization/Minimization Algorithms for AdaBoost and the Logistic Regression Model (ICML 2004)** 1545 | - Zhihua Zhang, James T. Kwok, Dit-Yan Yeung 1546 | - [[Paper]](https://icml.cc/Conferences/2004/proceedings/papers/77.pdf) 1547 | 1548 | - **Training Conditional Random Fields via Gradient Tree Boosting (ICML 2004)** 1549 | - Thomas G. Dietterich, Adam Ashenfelter, Yaroslav Bulatov 1550 | - [[Paper]](http://web.engr.oregonstate.edu/~tgd/publications/ml2004-treecrf.pdf) 1551 | 1552 | - **Boosting Margin Based Distance Functions for Clustering (ICML 2004)** 1553 | - Tomer Hertz, Aharon Bar-Hillel, Daphna Weinshall 1554 | - [[Paper]](http://www.cs.huji.ac.il/~daphna/papers/distboost-icml.pdf) 1555 | 1556 | - **Column-Generation Boosting Methods for Mixture of Kernels (KDD 2004)** 1557 | - Jinbo Bi, Tong Zhang, Kristin P. Bennett 1558 | - [[Paper]](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.94.6359&rep=rep1&type=pdf) 1559 | 1560 | - **Optimal Aggregation of Classifiers and Boosting Maps in Functional Magnetic Resonance Imaging (NIPS 2004)** 1561 | - Vladimir Koltchinskii, Manel Martínez-Ramón, Stefan Posse 1562 | - [[Paper]](https://papers.nips.cc/paper/2699-optimal-aggregation-of-classifiers-and-boosting-maps-in-functional-magnetic-resonance-imaging.pdf) 1563 | 1564 | - **Boosting on Manifolds: Adaptive Regularization of Base Classifiers (NIPS 2004)** 1565 | - Balázs Kégl, Ligen Wang 1566 | - [[Paper]](https://papers.nips.cc/paper/2613-boosting-on-manifolds-adaptive-regularization-of-base-classifiers) 1567 | 1568 | - **Contextual Models for Object Detection Using Boosted Random Fields (NIPS 2004)** 1569 | - Antonio Torralba, Kevin P. Murphy, William T. Freeman 1570 | - [[Paper]](https://www.cs.ubc.ca/~murphyk/Papers/BRF-nips04-camera.pdf) 1571 | 1572 | - **Generalization Error and Algorithmic Convergence of Median Boosting (NIPS 2004)** 1573 | - Balázs Kégl 1574 | - [[Paper]](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.70.8990&rep=rep1&type=pdf) 1575 | 1576 | - **An Application of Boosting to Graph Classification (NIPS 2004)** 1577 | - Taku Kudo, Eisaku Maeda, Yuji Matsumoto 1578 | - [[Paper]](https://papers.nips.cc/paper/2739-an-application-of-boosting-to-graph-classification) 1579 | 1580 | - **Logistic Regression and Boosting for Labeled Bags of Instances (PAKDD 2004)** 1581 | - Xin Xu, Eibe Frank 1582 | - [[Paper]](https://www.cs.waikato.ac.nz/~ml/publications/2004/xu-frank.pdf) 1583 | 1584 | - **Fast and Light Boosting for Adaptive Mining of Data Streams (PAKDD 2004)** 1585 | - Fang Chu, Carlo Zaniolo 1586 | - [[Paper]](http://web.cs.ucla.edu/~zaniolo/papers/NBCAJMW77MW0J8CP.pdf) 1587 | 1588 | ## 2003 1589 | - **On Boosting and the Exponential Loss (AISTATS 2003)** 1590 | - Abraham J. Wyner 1591 | - [[Paper]](http://www-stat.wharton.upenn.edu/~ajw/exploss.ps) 1592 | 1593 | - **Boosting Support Vector Machines for Text Classification through Parameter-Free Threshold Relaxation (CIKM 2003)** 1594 | - James G. Shanahan, Norbert Roma 1595 | - [[Paper]](https://dl.acm.org/citation.cfm?id=956911) 1596 | 1597 | - **Learning Cross-Document Structural Relationships Using Boosting (CIKM 2003)** 1598 | - Zhu Zhang, Jahna Otterbacher, Dragomir R. Radev 1599 | - [[Paper]](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.128.7712&rep=rep1&type=pdf) 1600 | 1601 | - **On Boosting Improvement: Error Reduction and Convergence Speed-Up (ECML 2003)** 1602 | - Marc Sebban, Henri-Maxime Suchier 1603 | - [[Paper]](https://link.springer.com/chapter/10.1007/978-3-540-39857-8_32) 1604 | 1605 | - **Boosting Lazy Decision Trees (ICML 2003)** 1606 | - Xiaoli Zhang Fern, Carla E. Brodley 1607 | - [[Paper]](https://www.aaai.org/Papers/ICML/2003/ICML03-026.pdf) 1608 | 1609 | - **On the Convergence of Boosting Procedures (ICML 2003)** 1610 | - Tong Zhang, Bin Yu 1611 | - [[Paper]](https://pdfs.semanticscholar.org/dd3f/901b232280533fbdb9e57f144f44723617cf.pdf) 1612 | 1613 | - **Linear Programming Boosting for Uneven Datasets (ICML 2003)** 1614 | - Jure Leskovec, John Shawe-Taylor 1615 | - [[Paper]](https://cs.stanford.edu/people/jure/pubs/textbooster-icml03.pdf) 1616 | 1617 | - **Monte Carlo Theory as an Explanation of Bagging and Boosting (IJCAI 2003)** 1618 | - Roberto Esposito, Lorenza Saitta 1619 | - [[Paper]](https://dl.acm.org/citation.cfm?id=1630733) 1620 | 1621 | - **On the Dynamics of Boosting (NIPS 2003)** 1622 | - Cynthia Rudin, Ingrid Daubechies, Robert E. Schapire 1623 | - [[Paper]](https://papers.nips.cc/paper/2535-on-the-dynamics-of-boosting) 1624 | 1625 | - **Mutual Boosting for Contextual Inference (NIPS 2003)** 1626 | - Michael Fink, Pietro Perona 1627 | - [[Paper]](https://papers.nips.cc/paper/2520-mutual-boosting-for-contextual-inference) 1628 | 1629 | - **Boosting Versus Covering (NIPS 2003)** 1630 | - Kohei Hatano, Manfred K. Warmuth 1631 | - [[Paper]](https://papers.nips.cc/paper/2532-boosting-versus-covering) 1632 | 1633 | - **Multiple-Instance Learning via Disjunctive Programming Boosting (NIPS 2003)** 1634 | - Stuart Andrews, Thomas Hofmann 1635 | - [[Paper]](https://papers.nips.cc/paper/2478-multiple-instance-learning-via-disjunctive-programming-boosting) 1636 | 1637 | - **Averaged Boosting: A Noise-Robust Ensemble Method (PAKDD 2003)** 1638 | - Yongdai Kim 1639 | - [[Paper]](https://link.springer.com/chapter/10.1007/3-540-36175-8_38) 1640 | 1641 | - **SMOTEBoost: Improving Prediction of the Minority Class in Boosting (PKDD 2003)** 1642 | - Nitesh V. Chawla, Aleksandar Lazarevic, Lawrence O. Hall, Kevin W. Bowyer 1643 | - [[Paper]](https://www3.nd.edu/~nchawla/papers/ECML03.pdf) 1644 | 1645 | ## 2002 1646 | 1647 | - **Minimum Majority Classification and Boosting (AAAI 2002)** 1648 | - Philip M. Long 1649 | - [[Paper]](http://phillong.info/publications/minmaj.pdf) 1650 | 1651 | - **Ranking Algorithms for Named Entity Extraction: Boosting and the Voted Perceptron (ACL 2002)** 1652 | - Michael Collins 1653 | - [[Paper]](https://www.aclweb.org/anthology/P02-1062) 1654 | 1655 | - **Boosting to Correct Inductive Bias in Text Classification (CIKM 2002)** 1656 | - Yan Liu, Yiming Yang, Jaime G. Carbonell 1657 | - [[Paper]](https://dl.acm.org/citation.cfm?id=584792.584850) 1658 | 1659 | - **How to Make AdaBoost.M1 Work for Weak Base Classifiers by Changing Only One Line of the Code (ECML 2002)** 1660 | - Günther Eibl, Karl Peter Pfeiffer 1661 | - [[Paper]](https://dl.acm.org/citation.cfm?id=650068) 1662 | 1663 | - **Scaling Boosting by Margin-Based Inclusionof Features and Relations (ECML 2002)** 1664 | - Susanne Hoche, Stefan Wrobel 1665 | - [[Paper]](https://link.springer.com/chapter/10.1007/3-540-36755-1_13) 1666 | 1667 | - **A Robust Boosting Algorithm (ECML 2002)** 1668 | - Richard Nock, Patrice Lefaucheur 1669 | - [[Paper]](https://dl.acm.org/citation.cfm?id=650081) 1670 | 1671 | - **iBoost: Boosting Using an instance-Based Exponential Weighting Scheme (ECML 2002)** 1672 | - Stephen Kwek, Chau Nguyen 1673 | - [[Paper]](https://www.researchgate.net/publication/220516082_iBoost_Boosting_using_an_instance-based_exponential_weighting_scheme) 1674 | 1675 | - **Boosting Density Function Estimators (ECML 2002)** 1676 | - Franck Thollard, Marc Sebban, Philippe Ézéquel 1677 | - [[Paper]](https://link.springer.com/chapter/10.1007%2F3-540-36755-1_36) 1678 | 1679 | - **Statistical Behavior and Consistency of Support Vector Machines, Boosting, and Beyond (ICML 2002)** 1680 | - Tong Zhang 1681 | - [[Paper]](https://www.researchgate.net/publication/221344927_Statistical_Behavior_and_Consistency_of_Support_Vector_Machines_Boosting_and_Beyond) 1682 | 1683 | - **A Boosted Maximum Entropy Model for Learning Text Chunking (ICML 2002)** 1684 | - Seong-Bae Park, Byoung-Tak Zhang 1685 | - [[Paper]](https://www.researchgate.net/publication/221345636_A_Boosted_Maximum_Entropy_Model_for_Learning_Text_Chunking) 1686 | 1687 | - **Towards Large Margin Speech Recognizers by Boosting and Discriminative Training (ICML 2002)** 1688 | - Carsten Meyer, Peter Beyerlein 1689 | - [[Paper]](https://www.semanticscholar.org/paper/Towards-Large-Margin-Speech-Recognizers-by-Boosting-Meyer-Beyerlein/8408479e36da812cdbf6bc15f7849c3e76a1016d) 1690 | 1691 | - **Incorporating Prior Knowledge into Boosting (ICML 2002)** 1692 | - Robert E. Schapire, Marie Rochery, Mazin G. Rahim, Narendra K. Gupta 1693 | - [[Paper]](http://rob.schapire.net/papers/boostknowledge.pdf) 1694 | 1695 | - **Modeling Auction Price Uncertainty Using Boosting-based Conditional Density Estimation (ICML 2002)** 1696 | - Robert E. Schapire, Peter Stone, David A. McAllester, Michael L. Littman, János A. Csirik 1697 | - [[Paper]](http://www.cs.utexas.edu/~ai-lab/pubs/ICML02-tac.pdf) 1698 | 1699 | - **MARK: A Boosting Algorithm for Heterogeneous Kernel Models (KDD 2002)** 1700 | - Kristin P. Bennett, Michinari Momma, Mark J. Embrechts 1701 | - [[Paper]](http://homepages.rpiscrews.us/~bennek/papers/kdd2.pdf) 1702 | 1703 | - **Predicting rare classes: can boosting make any weak learner strong (KDD 2002)** 1704 | - Mahesh V. Joshi, Ramesh C. Agarwal, Vipin Kumar 1705 | - [[Paper]](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.13.1159&rep=rep1&type=pdf) 1706 | 1707 | - **Kernel Design Using Boosting (NIPS 2002)** 1708 | - Koby Crammer, Joseph Keshet, Yoram Singer 1709 | - [[Paper]](https://pdfs.semanticscholar.org/ff79/344807e972fdd7e5e1c3ed5c539dd1aeecbe.pdf) 1710 | 1711 | - **FloatBoost Learning for Classification (NIPS 2002)** 1712 | - Stan Z. Li, ZhenQiu Zhang, Heung-Yeung Shum, HongJiang Zhang 1713 | - [[Paper]](https://pdfs.semanticscholar.org/8ccc/5ef87eab96a4cae226750eba8322b30606ea.pdf) 1714 | 1715 | - **Discriminative Learning for Label Sequences via Boosting (NIPS 2002)** 1716 | - Yasemin Altun, Thomas Hofmann, Mark Johnson 1717 | - [[Paper]](http://web.science.mq.edu.au/~mjohnson/papers/nips02.pdf) 1718 | 1719 | - **Boosting Density Estimation (NIPS 2002)** 1720 | - Saharon Rosset, Eran Segal 1721 | - [[Paper]](https://papers.nips.cc/paper/2298-boosting-density-estimation.pdf) 1722 | 1723 | - **Self Supervised Boosting (NIPS 2002)** 1724 | - Max Welling, Richard S. Zemel, Geoffrey E. Hinton 1725 | - [[Paper]](https://pdfs.semanticscholar.org/6a2a/f112a803e70c23b7055de2e73007cf42c301.pdf) 1726 | 1727 | - **Boosted Dyadic Kernel Discriminants (NIPS 2002)** 1728 | - Baback Moghaddam, Gregory Shakhnarovich 1729 | - [[Paper]](http://www.merl.com/publications/docs/TR2002-55.pdf) 1730 | 1731 | - **A Method to Boost Support Vector Machines (PAKDD 2002)** 1732 | - Lili Diao, Keyun Hu, Yuchang Lu, Chunyi Shi 1733 | - [[Paper]](https://elkingarcia.github.io/Papers/MLDM07.pdf) 1734 | 1735 | - **A Method to Boost Naive Bayesian Classifiers (PAKDD 2002)** 1736 | - Lili Diao, Keyun Hu, Yuchang Lu, Chunyi Shi 1737 | - [[Paper]](https://link.springer.com/chapter/10.1007/3-540-47887-6_11) 1738 | 1739 | - **Predicting Rare Classes: Comparing Two-Phase Rule Induction to Cost-Sensitive Boosting (PKDD 2002)** 1740 | - Mahesh V. Joshi, Ramesh C. Agarwal, Vipin Kumar 1741 | - [[Paper]](https://link.springer.com/chapter/10.1007/3-540-45681-3_20) 1742 | 1743 | - **Iterative Data Squashing for Boosting Based on a Distribution-Sensitive Distance (PKDD 2002)** 1744 | - Yuta Choki, Einoshin Suzuki 1745 | - [[Paper]](https://link.springer.com/chapter/10.1007/3-540-45681-3_8) 1746 | 1747 | - **Staged Mixture Modelling and Boosting (UAI 2002)** 1748 | - Christopher Meek, Bo Thiesson, David Heckerman 1749 | - [[Paper]](https://arxiv.org/abs/1301.0586) 1750 | 1751 | - **Advances in Boosting (UAI 2002)** 1752 | - Robert E. Schapire 1753 | - [[Paper]](http://rob.schapire.net/papers/uai02.pdf) 1754 | 1755 | ## 2001 1756 | - **Is Regularization Unnecessary for Boosting? (AISTATS 2001)** 1757 | - Wenxin Jiang 1758 | - [[Paper]](https://www.researchgate.net/publication/2439718_Is_Regularization_Unnecessary_for_Boosting) 1759 | 1760 | - **Online Bagging and Boosting (AISTATS 2001)** 1761 | - Nikunj C. Oza, Stuart J. Russell 1762 | - [[Paper]](https://ti.arc.nasa.gov/m/profile/oza/files/ozru01a.pdf) 1763 | 1764 | - **Text Categorization Using Transductive Boosting (ECML 2001)** 1765 | - Hirotoshi Taira, Masahiko Haruno 1766 | - [[Paper]](https://link.springer.com/chapter/10.1007/3-540-44795-4_39) 1767 | 1768 | - **Improving Term Extraction by System Combination Using Boosting (ECML 2001)** 1769 | - Jordi Vivaldi, Lluís Màrquez, Horacio Rodríguez 1770 | - [[Paper]](https://dl.acm.org/citation.cfm?id=3108351) 1771 | 1772 | - **Analysis of the Performance of AdaBoost.M2 for the Simulated Digit-Recognition-Example (ECML 2001)** 1773 | - Günther Eibl, Karl Peter Pfeiffer 1774 | - [[Paper]](https://link.springer.com/chapter/10.1007/3-540-44795-4_10) 1775 | 1776 | - **On the Practice of Branching Program Boosting (ECML 2001)** 1777 | - Tapio Elomaa, Matti Kääriäinen 1778 | - [[Paper]](https://www.researchgate.net/publication/221112522_On_the_Practice_of_Branching_Program_Boosting) 1779 | 1780 | - **Boosting Mixture Models for Semi-supervised Learning (ICANN 2001)** 1781 | - Yves Grandvalet, Florence d'Alché-Buc, Christophe Ambroise 1782 | - [[Paper]](https://link.springer.com/chapter/10.1007/3-540-44668-0_7 1783 | 1784 | - **A Comparison of Stacking with Meta Decision Trees to Bagging, Boosting, and Stacking with other Methods (ICDM 2001)** 1785 | - Bernard Zenko, Ljupco Todorovski, Saso Dzeroski 1786 | - [[Paper]](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.23.3118&rep=rep1&type=pdf) 1787 | 1788 | - **Using Boosting to Simplify Classification Models (ICDM 2001)** 1789 | - Virginia Wheway 1790 | - [[Paper]](https://ieeexplore.ieee.org/abstract/document/989565) 1791 | 1792 | - **Evaluating Boosting Algorithms to Classify Rare Classes: Comparison and Improvements (ICDM 2001)** 1793 | - Mahesh V. Joshi, Vipin Kumar, Ramesh C. Agarwal 1794 | - [[Paper]](https://pdfs.semanticscholar.org/b829/fe743e4beeeed65d32d2d7931354df7a2f60.pdf) 1795 | - [[Code]]( ) 1796 | 1797 | - **Boosting Neighborhood-Based Classifiers (ICML 2001)** 1798 | - Marc Sebban, Richard Nock, Stéphane Lallich 1799 | - [[Paper]](https://www.semanticscholar.org/paper/Boosting-Neighborhood-Based-Classifiers-Sebban-Nock/ee88e3bbe8a7e81cae7ee53da2c824de7c82f882) 1800 | 1801 | - **Boosting Noisy Data (ICML 2001)** 1802 | - Abba Krieger, Chuan Long, Abraham J. Wyner 1803 | - [[Paper]](https://www.researchgate.net/profile/Abba_Krieger/publication/221345435_Boosting_Noisy_Data/links/00463528a1ba641692000000.pdf) 1804 | 1805 | - **Some Theoretical Aspects of Boosting in the Presence of Noisy Data (ICML 2001)** 1806 | - Wenxin Jiang 1807 | - [[Paper]](http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=2494A2C06ACA22FA971AC1C29B53FF62?doi=10.1.1.27.7231&rep=rep1&type=pdf) 1808 | 1809 | - **Filters, Wrappers and a Boosting-Based Hybrid for Feature Selection (ICML 2001)** 1810 | - Sanmay Das 1811 | - [[Paper]](https://pdfs.semanticscholar.org/93b6/25a0e35b59fa6a3e7dc1cbdb31268d62d69f.pdf) 1812 | 1813 | - **The Distributed Boosting Algorithm (KDD 2001)** 1814 | - Aleksandar Lazarevic, Zoran Obradovic 1815 | - [[Paper]](https://www.researchgate.net/publication/2488971_The_Distributed_Boosting_Algorithm) 1816 | 1817 | - **Experimental Comparisons of Online and Batch Versions of Bagging and Boosting (KDD 2001)** 1818 | - Nikunj C. Oza, Stuart J. Russell 1819 | - [[Paper]](https://people.eecs.berkeley.edu/~russell/papers/kdd01-online.pdf) 1820 | 1821 | - **Semi-supervised MarginBoost (NIPS 2001)** 1822 | - Florence d'Alché-Buc, Yves Grandvalet, Christophe Ambroise 1823 | - [[Paper]](https://pdfs.semanticscholar.org/2197/f1c2d55827b6928cc80030922569acce2d6c.pdf) 1824 | 1825 | - **Boosting and Maximum Likelihood for Exponential Models (NIPS 2001)** 1826 | - Guy Lebanon, John D. Lafferty 1827 | - [[Paper]](https://papers.nips.cc/paper/2042-boosting-and-maximum-likelihood-for-exponential-models.pdf) 1828 | 1829 | - **Fast and Robust Classification using Asymmetric AdaBoost and a Detector Cascade (NIPS 2001)** 1830 | - Paul A. Viola, Michael J. Jones 1831 | - [[Paper]](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.68.4306&rep=rep1&type=pdf) 1832 | 1833 | - **Boosting Localized Classifiers in Heterogeneous Databases (SDM 2001)** 1834 | - Aleksandar Lazarevic, Zoran Obradovic 1835 | - [[Paper]](https://epubs.siam.org/doi/abs/10.1137/1.9781611972719.14) 1836 | 1837 | - **Greedy function approximation: A gradient boosting machine (Ann. Statist 2001)** 1838 | - Jerome H. Friedman 1839 | - [[Paper]](https://projecteuclid.org/journals/annals-of-statistics/volume-29/issue-5/Greedy-function-approximation-A-gradient-boosting-machine/10.1214/aos/1013203451.full) 1840 | 1841 | ## 2000 1842 | - **Boosted Wrapper Induction (AAAI 2000)** 1843 | - Dayne Freitag, Nicholas Kushmerick 1844 | - [[Paper]](https://pdfs.semanticscholar.org/d009/a2bd48a9d1971fbc0d99f6df00539a62048a.pdf) 1845 | 1846 | - **An Improved Boosting Algorithm and its Application to Text Categorization (CIKM 2000)** 1847 | - Fabrizio Sebastiani, Alessandro Sperduti, Nicola Valdambrini 1848 | - [[Paper]](http://nmis.isti.cnr.it/sebastiani/Publications/CIKM00.pdf) 1849 | 1850 | - **Boosting for Document Routing (CIKM 2000)** 1851 | - Raj D. Iyer, David D. Lewis, Robert E. Schapire, Yoram Singer, Amit Singhal 1852 | - [[Paper]](http://singhal.info/cikm-2000.pdf) 1853 | 1854 | - **On the Boosting Pruning Problem (ECML 2000)** 1855 | - Christino Tamon, Jie Xiang 1856 | - [[Paper]](https://link.springer.com/chapter/10.1007/3-540-45164-1_41) 1857 | 1858 | - **Boosting Applied to Word Sense Disambiguation (ECML 2000)** 1859 | - Gerard Escudero, Lluís Màrquez, German Rigau 1860 | - [[Paper]](https://dl.acm.org/citation.cfm?id=649539) 1861 | 1862 | - **An Empirical Study of MetaCost Using Boosting Algorithms (ECML 2000)** 1863 | - Kai Ming Ting 1864 | - [[Paper]](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.218.1624&rep=rep1&type=pdf) 1865 | 1866 | - **FeatureBoost: A Meta-Learning Algorithm that Improves Model Robustness (ICML 2000)** 1867 | - Joseph O'Sullivan, John Langford, Rich Caruana, Avrim Blum 1868 | - [[Paper]](https://www.researchgate.net/publication/221345746_FeatureBoost_A_Meta-Learning_Algorithm_that_Improves_Model_Robustness) 1869 | 1870 | - **Comparing the Minimum Description Length Principle and Boosting in the Automatic Analysis of Discourse (ICML 2000)** 1871 | - Tadashi Nomoto, Yuji Matsumoto 1872 | - [[Paper]](https://www.researchgate.net/publication/221344998_Comparing_the_Minimum_Description_Length_Principle_and_Boosting_in_the_Automatic_Analysis_of_Discourse) 1873 | 1874 | - **A Boosting Approach to Topic Spotting on Subdialogues (ICML 2000)** 1875 | - Kary Myers, Michael J. Kearns, Satinder P. Singh, Marilyn A. Walker 1876 | - [[Paper]](https://www.cis.upenn.edu/~mkearns/papers/topicspot.pdf) 1877 | 1878 | - **A Comparative Study of Cost-Sensitive Boosting Algorithms (ICML 2000)** 1879 | - Kai Ming Ting 1880 | - [[Paper]](https://dl.acm.org/citation.cfm?id=657944) 1881 | 1882 | - **Boosting a Positive-Data-Only Learner (ICML 2000)** 1883 | - Andrew R. Mitchell 1884 | - [[Paper]](http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.34.3669) 1885 | 1886 | - **A Column Generation Algorithm For Boosting (ICML 2000)** 1887 | - Kristin P. Bennett, Ayhan Demiriz, John Shawe-Taylor 1888 | - [[Paper]](http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=1828D5853F656BD6892E9C2C446ECC68?doi=10.1.1.16.9612&rep=rep1&type=pdf) 1889 | 1890 | - **A Gradient-Based Boosting Algorithm for Regression Problems (NIPS 2000)** 1891 | - Richard S. Zemel, Toniann Pitassi 1892 | - [[Paper]](https://pdfs.semanticscholar.org/c41a/9417f5605b55bdd216d119e47669a92f5c50.pdf) 1893 | 1894 | - **Weak Learners and Improved Rates of Convergence in Boosting (NIPS 2000)** 1895 | - Shie Mannor, Ron Meir 1896 | - [[Paper]](https://papers.nips.cc/paper/1906-weak-learners-and-improved-rates-of-convergence-in-boosting.pdf) 1897 | 1898 | - **Adaptive Boosting for Spatial Functions with Unstable Driving Attributes (PAKDD 2000)** 1899 | - Aleksandar Lazarevic, Tim Fiez, Zoran Obradovic 1900 | - [[Paper]](http://www.dabi.temple.edu/~zoran/papers/lazarevic01j.pdf) 1901 | 1902 | - **Scaling Up a Boosting-Based Learner via Adaptive Sampling (PAKDD 2000)** 1903 | - Carlos Domingo, Osamu Watanabe 1904 | - [[Paper]](https://link.springer.com/chapter/10.1007/3-540-45571-X_37) 1905 | 1906 | - **Learning First Order Logic Time Series Classifiers: Rules and Boosting (PKDD 2000)** 1907 | - Juan J. Rodríguez Diez, Carlos Alonso González, Henrik Boström 1908 | - [[Paper]](https://people.dsv.su.se/~henke/papers/rodriguez00b.pdf) 1909 | 1910 | - **Bagging and Boosting with Dynamic Integration of Classifiers (PKDD 2000)** 1911 | - Alexey Tsymbal, Seppo Puuronen 1912 | - [[Paper]](https://link.springer.com/chapter/10.1007/3-540-45372-5_12) 1913 | 1914 | - **Text Filtering by Boosting Naive Bayes Classifiers (SIGIR 2000)** 1915 | - Yu-Hwan Kim, Shang-Yoon Hahn, Byoung-Tak Zhang 1916 | - [[Paper]](https://www.researchgate.net/publication/221299823_Text_filtering_by_boosting_Naive_Bayes_classifiers) 1917 | 1918 | ## 1999 1919 | - **Boosting Methodology for Regression Problems (AISTATS 1999)** 1920 | - Greg Ridgeway, David Madigan, Thomas Richardson 1921 | - [[Paper]](https://pdfs.semanticscholar.org/5f19/6a8baa281b2190c4519305bec8f5c91c8e5a.pdf) 1922 | 1923 | - **Boosting Applied to Tagging and PP Attachment (EMNLP 1999)** 1924 | - Steven Abney, Robert E. Schapire, Yoram Singer 1925 | - [[Paper]](https://www.aclweb.org/anthology/W99-0606) 1926 | 1927 | - **Lazy Bayesian Rules: A Lazy Semi-Naive Bayesian Learning Technique Competitive to Boosting Decision Trees (ICML 1999)** 1928 | - Zijian Zheng, Geoffrey I. Webb, Kai Ming Ting 1929 | - [[Paper]](https://pdfs.semanticscholar.org/067e/86836ddbcb5e2844e955c16e058366a18c77.pdf) 1930 | 1931 | - **AdaCost: Misclassification Cost-Sensitive Boosting (ICML 1999)** 1932 | - Wei Fan, Salvatore J. Stolfo, Junxin Zhang, Philip K. Chan 1933 | - [[Paper]](https://pdfs.semanticscholar.org/9ddf/bc2cc5c1b13b80a1a487b9caa57e80edd863.pdf) 1934 | 1935 | - **Boosting a Strong Learner: Evidence Against the Minimum Margin (ICML 1999)** 1936 | - Michael Bonnell Harries 1937 | - [[Paper]](https://dl.acm.org/citation.cfm?id=657480) 1938 | 1939 | - **Boosting Algorithms as Gradient Descent (NIPS 1999)** 1940 | - Llew Mason, Jonathan Baxter, Peter L. Bartlett, Marcus R. Frean 1941 | - [[Paper]](https://papers.nips.cc/paper/1766-boosting-algorithms-as-gradient-descent.pdf) 1942 | 1943 | - **Boosting with Multi-Way Branching in Decision Trees (NIPS 1999)** 1944 | - Yishay Mansour, David A. McAllester 1945 | - [[Paper]](https://papers.nips.cc/paper/1659-boosting-with-multi-way-branching-in-decision-trees.pdf) 1946 | 1947 | - **Potential Boosters (NIPS 1999)** 1948 | - Nigel Duffy, David P. Helmbold 1949 | - [[Paper]](https://pdfs.semanticscholar.org/4884/c765b6ceab7bdfb6703489810c8a386fd2a8.pdf) 1950 | 1951 | ## 1998 1952 | - **An Efficient Boosting Algorithm for Combining Preferences (ICML 1998)** 1953 | - Yoav Freund, Raj D. Iyer, Robert E. Schapire, Yoram Singer 1954 | - [[Paper]](http://jmlr.csail.mit.edu/papers/volume4/freund03a/freund03a.pdf) 1955 | 1956 | - **Query Learning Strategies Using Boosting and Bagging (ICML 1998)** 1957 | - Naoki Abe, Hiroshi Mamitsuka 1958 | - [[Paper]](https://www.bic.kyoto-u.ac.jp/pathway/mami/pubs/Files/icml98.pdf) 1959 | 1960 | - **Regularizing AdaBoost (NIPS 1998)** 1961 | - Gunnar Rätsch, Takashi Onoda, Klaus-Robert Müller 1962 | - [[Paper]](https://pdfs.semanticscholar.org/0afc/9de245547c675d40ad29240e2788c0416f91.pdf) 1963 | 1964 | ## 1997 1965 | - **Boosting the Margin: A New Explanation for the Effectiveness of Voting Methods (ICML 1997)** 1966 | - Robert E. Schapire, Yoav Freund, Peter Barlett, Wee Sun Lee 1967 | - [[Paper]](https://www.cc.gatech.edu/~isbell/tutorials/boostingmargins.pdf) 1968 | 1969 | - **Using Output Codes to Boost Multiclass Learning Problems (ICML 1997)** 1970 | - Robert E. Schapire 1971 | - [[Paper]](http://rob.schapire.net/papers/Schapire97.pdf) 1972 | 1973 | - **Improving Regressors Using Boosting Techniques (ICML 1997)** 1974 | - Harris Drucker 1975 | - [[Paper]](https://pdfs.semanticscholar.org/8d49/e2dedb817f2c3330e74b63c5fc86d2399ce3.pdf) 1976 | 1977 | - **Pruning Adaptive Boosting (ICML 1997)** 1978 | - Dragos D. Margineantu, Thomas G. Dietterich 1979 | - [[Paper]](https://pdfs.semanticscholar.org/b25f/615fc139fbdeccc3bcf4462f908d7f8e37f9.pdf) 1980 | 1981 | - **Training Methods for Adaptive Boosting of Neural Networks (NIPS 1997)** 1982 | - Holger Schwenk, Yoshua Bengio 1983 | - [[Paper]](https://papers.nips.cc/paper/1335-training-methods-for-adaptive-boosting-of-neural-networks.pdf) 1984 | 1985 | ## 1996 1986 | - **Experiments with a New Boosting Algorithm (ICML 1996)** 1987 | - Yoav Freund, Robert E. Schapire 1988 | - [[Paper]](https://cseweb.ucsd.edu/~yfreund/papers/boostingexperiments.pdf) 1989 | 1990 | ## 1995 1991 | - **Boosting Decision Trees (NIPS 1995)** 1992 | - Harris Drucker, Corinna Cortes 1993 | - [[Paper]](https://papers.nips.cc/paper/1059-boosting-decision-trees.pdf) 1994 | 1995 | ## 1994 1996 | - **Boosting and Other Machine Learning Algorithms (ICML 1994)** 1997 | - Harris Drucker, Corinna Cortes, Lawrence D. Jackel, Yann LeCun, Vladimir Vapnik 1998 | - [[Paper]](https://www.sciencedirect.com/science/article/pii/B9781558603356500155) 1999 | 2000 | -------------------------------------------------------------------------------- 2001 | 2002 | **License** 2003 | 2004 | - [CC0 Universal](https://github.com/benedekrozemberczki/awesome-gradient-boosting-papers/blob/master/LICENSE) 2005 | --------------------------------------------------------------------------------