├── .github
└── FUNDING.yml
├── LICENSE
├── README.md
├── atlas.png
├── awesome.py
├── chapters
├── deep_learning.md
├── fingerprints.md
├── kernels.md
└── matrix_factorization.md
├── code-of-conduct.md
└── contributing.md
/.github/FUNDING.yml:
--------------------------------------------------------------------------------
1 | github: [benedekrozemberczki]
2 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | CC0 1.0 Universal
2 |
3 | Statement of Purpose
4 |
5 | The laws of most jurisdictions throughout the world automatically confer
6 | exclusive Copyright and Related Rights (defined below) upon the creator and
7 | subsequent owner(s) (each and all, an "owner") of an original work of
8 | authorship and/or a database (each, a "Work").
9 |
10 | Certain owners wish to permanently relinquish those rights to a Work for the
11 | purpose of contributing to a commons of creative, cultural and scientific
12 | works ("Commons") that the public can reliably and without fear of later
13 | claims of infringement build upon, modify, incorporate in other works, reuse
14 | and redistribute as freely as possible in any form whatsoever and for any
15 | purposes, including without limitation commercial purposes. These owners may
16 | contribute to the Commons to promote the ideal of a free culture and the
17 | further production of creative, cultural and scientific works, or to gain
18 | reputation or greater distribution for their Work in part through the use and
19 | efforts of others.
20 |
21 | For these and/or other purposes and motivations, and without any expectation
22 | of additional consideration or compensation, the person associating CC0 with a
23 | Work (the "Affirmer"), to the extent that he or she is an owner of Copyright
24 | and Related Rights in the Work, voluntarily elects to apply CC0 to the Work
25 | and publicly distribute the Work under its terms, with knowledge of his or her
26 | Copyright and Related Rights in the Work and the meaning and intended legal
27 | effect of CC0 on those rights.
28 |
29 | 1. Copyright and Related Rights. A Work made available under CC0 may be
30 | protected by copyright and related or neighboring rights ("Copyright and
31 | Related Rights"). Copyright and Related Rights include, but are not limited
32 | to, the following:
33 |
34 | i. the right to reproduce, adapt, distribute, perform, display, communicate,
35 | and translate a Work;
36 |
37 | ii. moral rights retained by the original author(s) and/or performer(s);
38 |
39 | iii. publicity and privacy rights pertaining to a person's image or likeness
40 | depicted in a Work;
41 |
42 | iv. rights protecting against unfair competition in regards to a Work,
43 | subject to the limitations in paragraph 4(a), below;
44 |
45 | v. rights protecting the extraction, dissemination, use and reuse of data in
46 | a Work;
47 |
48 | vi. database rights (such as those arising under Directive 96/9/EC of the
49 | European Parliament and of the Council of 11 March 1996 on the legal
50 | protection of databases, and under any national implementation thereof,
51 | including any amended or successor version of such directive); and
52 |
53 | vii. other similar, equivalent or corresponding rights throughout the world
54 | based on applicable law or treaty, and any national implementations thereof.
55 |
56 | 2. Waiver. To the greatest extent permitted by, but not in contravention of,
57 | applicable law, Affirmer hereby overtly, fully, permanently, irrevocably and
58 | unconditionally waives, abandons, and surrenders all of Affirmer's Copyright
59 | and Related Rights and associated claims and causes of action, whether now
60 | known or unknown (including existing as well as future claims and causes of
61 | action), in the Work (i) in all territories worldwide, (ii) for the maximum
62 | duration provided by applicable law or treaty (including future time
63 | extensions), (iii) in any current or future medium and for any number of
64 | copies, and (iv) for any purpose whatsoever, including without limitation
65 | commercial, advertising or promotional purposes (the "Waiver"). Affirmer makes
66 | the Waiver for the benefit of each member of the public at large and to the
67 | detriment of Affirmer's heirs and successors, fully intending that such Waiver
68 | shall not be subject to revocation, rescission, cancellation, termination, or
69 | any other legal or equitable action to disrupt the quiet enjoyment of the Work
70 | by the public as contemplated by Affirmer's express Statement of Purpose.
71 |
72 | 3. Public License Fallback. Should any part of the Waiver for any reason be
73 | judged legally invalid or ineffective under applicable law, then the Waiver
74 | shall be preserved to the maximum extent permitted taking into account
75 | Affirmer's express Statement of Purpose. In addition, to the extent the Waiver
76 | is so judged Affirmer hereby grants to each affected person a royalty-free,
77 | non transferable, non sublicensable, non exclusive, irrevocable and
78 | unconditional license to exercise Affirmer's Copyright and Related Rights in
79 | the Work (i) in all territories worldwide, (ii) for the maximum duration
80 | provided by applicable law or treaty (including future time extensions), (iii)
81 | in any current or future medium and for any number of copies, and (iv) for any
82 | purpose whatsoever, including without limitation commercial, advertising or
83 | promotional purposes (the "License"). The License shall be deemed effective as
84 | of the date CC0 was applied by Affirmer to the Work. Should any part of the
85 | License for any reason be judged legally invalid or ineffective under
86 | applicable law, such partial invalidity or ineffectiveness shall not
87 | invalidate the remainder of the License, and in such case Affirmer hereby
88 | affirms that he or she will not (i) exercise any of his or her remaining
89 | Copyright and Related Rights in the Work or (ii) assert any associated claims
90 | and causes of action with respect to the Work, in either case contrary to
91 | Affirmer's express Statement of Purpose.
92 |
93 | 4. Limitations and Disclaimers.
94 |
95 | a. No trademark or patent rights held by Affirmer are waived, abandoned,
96 | surrendered, licensed or otherwise affected by this document.
97 |
98 | b. Affirmer offers the Work as-is and makes no representations or warranties
99 | of any kind concerning the Work, express, implied, statutory or otherwise,
100 | including without limitation warranties of title, merchantability, fitness
101 | for a particular purpose, non infringement, or the absence of latent or
102 | other defects, accuracy, or the present or absence of errors, whether or not
103 | discoverable, all to the greatest extent permissible under applicable law.
104 |
105 | c. Affirmer disclaims responsibility for clearing rights of other persons
106 | that may apply to the Work or any use thereof, including without limitation
107 | any person's Copyright and Related Rights in the Work. Further, Affirmer
108 | disclaims responsibility for obtaining any necessary consents, permissions
109 | or other rights required for any use of the Work.
110 |
111 | d. Affirmer understands and acknowledges that Creative Commons is not a
112 | party to this document and has no duty or obligation with respect to this
113 | CC0 or use of the Work.
114 |
115 | For more information, please see
116 |
117 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Awesome Graph Classification
2 | [](https://github.com/sindresorhus/awesome)
3 | [](http://makeapullrequest.com)
4 | 
5 | [](https://github.com/benedekrozemberczki/awesome-graph-classification/archive/master.zip) [](https://twitter.com/intent/follow?screen_name=benrozemberczki)
6 |
7 | A collection of graph classification methods, covering embedding, deep learning, graph kernel and factorization papers with reference implementations.
8 |
9 | Relevant graph classification benchmark datasets are available [[here]](https://github.com/shiruipan/graph_datasets).
10 |
11 | Similar collections about [community detection](https://github.com/benedekrozemberczki/awesome-community-detection), [classification/regression tree](https://github.com/benedekrozemberczki/awesome-decision-tree-papers), [fraud detection](https://github.com/benedekrozemberczki/awesome-fraud-detection-papers), [Monte Carlo tree search](https://github.com/benedekrozemberczki/awesome-monte-carlo-tree-search-papers), and [gradient boosting](https://github.com/benedekrozemberczki/awesome-gradient-boosting-papers) papers with implementations.
12 |
13 |
14 |
15 |
16 |
17 | -------------------------------------------------
18 |
19 | ## Contents
20 |
21 | 1. [Matrix Factorization](https://github.com/benedekrozemberczki/awesome-graph-classification/blob/master/chapters/matrix_factorization.md)
22 | 2. [Spectral and Statistical Fingerprints](https://github.com/benedekrozemberczki/awesome-graph-classification/blob/master/chapters/fingerprints.md)
23 | 3. [Deep Learning](https://github.com/benedekrozemberczki/awesome-graph-classification/blob/master/chapters/deep_learning.md)
24 | 4. [Graph Kernels](https://github.com/benedekrozemberczki/awesome-graph-classification/blob/master/chapters/kernels.md)
25 |
26 | -----------------------------------------------
27 |
28 | **License**
29 |
30 | - [CC0 Universal](https://github.com/benedekrozemberczki/awesome-graph-classification/blob/master/LICENSE)
31 |
--------------------------------------------------------------------------------
/atlas.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/benedekrozemberczki/awesome-graph-classification/39476c5707841930dfa4138aeadba55ab6383bf8/atlas.png
--------------------------------------------------------------------------------
/awesome.py:
--------------------------------------------------------------------------------
1 | __author__ = "Benedek Rozemberczki"
2 | __maintainer__ = "Benedek Rozemberczki"
3 | __email__ = "benedek.rozemberczki@gmail.com"
4 | __status__ = "Production"
5 |
--------------------------------------------------------------------------------
/chapters/deep_learning.md:
--------------------------------------------------------------------------------
1 | ## Deep Learning
2 | ### 2020
3 |
4 | - **Principal Neighbourhood Aggregation for Graph Nets (ArXiV 2020)**
5 | - Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, Petar Veličković
6 | - [[Paper]](https://arxiv.org/abs/2004.05718)
7 | - [[Python Reference]](https://github.com/lukecavabarrett/pna)
8 |
9 | - **ASAP: Adaptive Structure Aware Pooling for Learning Hierarchical Graph Representations (AAAI 2020)**
10 | - Ekagra Ranjan, Soumya Sanyal, Partha Pratim Talukdar
11 | - [[Paper]](https://arxiv.org/abs/1911.07979)
12 | - [[Python Reference]](https://github.com/malllabiisc/ASAP)
13 |
14 | - **PersLay: A Neural Network Layer for Persistence Diagrams and New Graph Topological Signatures (AISTATS 2020)**
15 | - Mathieu Carriere, Frederic Chazal, Yuichi Ike, Theo Lacombe, Martin Royer, Yuhei Umeda
16 | - [[Paper]](http://proceedings.mlr.press/v108/carriere20a.html)
17 | - [[Python Reference]](https://github.com/MathieuCarriere/perslay)
18 |
19 | - **Bridging the Gap Between Spectral and Spatial Domains in Graph Neural Networks (ArXiv 2020)**
20 | - Muhammet Balcilar, Guillaume Renton, Pierre Heroux, Benoit Gauzere, Sebastien Adam, Paul Honeine
21 | - [[Paper]](https://arxiv.org/abs/2003.11702)
22 | - [[Python Reference]](https://github.com/balcilar/Spectral-Designed-Graph-Convolutions)
23 |
24 | - **Segmented Graph-Bert for Graph Instance Modeling (ArXiv 2020)**
25 | - Jiawei Zhang
26 | - [[Paper]](https://arxiv.org/abs/2002.03283)
27 | - [[Python Reference]](https://github.com/jwzhanggy/SEG-BERT)
28 |
29 | - **Deep Graph Mapper: Seeing Graphs through the Neural Lens (ArXiv 2020)**
30 | - Cristian Bodnar, Cătălina Cangea, Pietro Liò
31 | - [[Paper]](https://arxiv.org/abs/2002.03864v2)
32 | - [[Python Reference]](https://github.com/crisbodnar/dgm)
33 |
34 | - **Benchmarking Graph Neural Networks (ArXiv 2020)**
35 | - Vijay Prakash Dwivedi, Chaitanya K. Joshi, Thomas Laurent, Yoshua Bengio, Xavier Bresson
36 | - [[Paper]](https://arxiv.org/abs/2003.00982)
37 | - [[Python Reference]](https://github.com/graphdeeplearning/benchmarking-gnns)
38 |
39 | - **Building Attention and Edge Convolution Neural Networks for Bioactivity and Physical-Chemical Property Prediction (BiorXiv 2020)**
40 | - Michael Withnall, Edvard Lindelöf, Ola Engkvist, Hongming Chen
41 | - [[Paper]](https://jcheminf.biomedcentral.com/articles/10.1186/s13321-019-0407-y)
42 | - [[Python Reference]](https://github.com/edvardlindelof/graph-neural-networks-for-drug-discovery)
43 |
44 | - **Second-Order Pooling for Graph Neural Networks (IEEE Transactions on Pattern Analysis and Machine Intelligence 2020)**
45 | - Zhengyang Wang, Shuiwang Ji
46 | - [[Paper]](https://ieeexplore.ieee.org/document/9104936)
47 | - [[Python Reference]](https://github.com/zhengyang-wang/sopool-gnns)
48 |
49 | - **Unsupervised Learning of Graph Hierarchical Abstractions with Differentiable Coarsening and Optimal Transport (ICLR 2020)**
50 | - Tengfei Ma, Jie Chen
51 | - [[Paper]](https://arxiv.org/abs/1912.11176v1)
52 | - [[Python Reference]](https://github.com/matenure/OTCoarsening)
53 |
54 | - **IsoNN: Isomorphic Neural Network for Graph Representation Learning and Classification (ICLR 2020)**
55 | - Lin Meng, Jiawei Zhang
56 | - [[Paper]](https://arxiv.org/abs/1907.09495v2)
57 | - [[Python Reference]](https://github.com/linmengsysu/IsoNN)
58 |
59 | - **Few-shot Learning on Graphs Via Super-Classes Based on Graph Spectral Measures (ICLR 2020)**
60 | - Jatin Chauhan, Deepak Nathani, Manohar Kaul
61 | - [[Paper]](https://openreview.net/forum?id=Bkeeca4Kvr)
62 | - [[Python Reference]](https://github.com/chauhanjatin10/GraphsFewShot)
63 |
64 | - **Memory-Based Graph Networks (ICLR 2020)**
65 | - Amir Hosein Khasahmadi, Kaveh Hassani, Parsa Moradi, Leo Lee, Quaid Morris
66 | - [[Paper]](https://openreview.net/forum?id=r1laNeBYPB)
67 | - [[Python Reference]](https://github.com/amirkhas/GraphMemoryNet)
68 |
69 | - **A Fair Comparison of Graph Neural Networks for Graph Classification (ICLR 2020)**
70 | - Federico Errica, Marco Podda, Davide Bacciu, Alessio Micheli
71 | - [[Paper]](https://openreview.net/pdf?id=HygDF6NFPB)
72 | - [[Python Reference]](https://github.com/diningphil/gnn-comparison)
73 |
74 | - **StructPool: Structured Graph Pooling via Conditional Random Fields (ICLR 2020)**
75 | - Hao Yuan, Shuiwang Ji
76 | - [[Paper]](https://openreview.net/forum?id=BJxg_hVtwH)
77 | - [[Python Reference]](https://github.com/Nate1874/StructPool)
78 |
79 | - **Strategies for Pre-training Graph Neural Networks (ICLR 2020)**
80 | - Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, Jure Leskovec
81 | - [[Paper]](https://arxiv.org/abs/1905.12265v3)
82 | - [[Python Reference]](https://github.com/snap-stanford/pretrain-gnns/)
83 |
84 | - **InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization (ICLR 2020)**
85 | - Fan-yun Sun, Jordan Hoffman, Vikas Verma, Jian Tang
86 | - [[Paper]](https://openreview.net/pdf?id=r1lfF2NYvH)
87 | - [[Python Reference]](https://github.com/fanyun-sun/InfoGraph)
88 |
89 | - **Convolutional Kernel Networks for Graph-Structured Data (ICML 2020)**
90 | - Dexiong Chen, Laurent Jacob, Julien Mairal
91 | - [[Paper]](https://arxiv.org/abs/2003.05189v2)
92 | - [[Python Reference]](https://github.com/claying/GCKN)
93 |
94 | - **Improving Attention Mechanism in Graph Neural Networks via Cardinality Preservation (IJCAI 2020)**
95 | - Shuo Zhang, Lei Xie
96 | - [[Paper]](https://arxiv.org/abs/1907.02204)
97 | - [[Python Reference]](https://github.com/zetayue/CPA)
98 |
99 | - **Mutual Information Maximization in Graph Neural Networks (IJCNN 2020)**
100 | - Xinhan Di, Pengqian Yu, Rui Bu, Mingchao Sun
101 | - [[Paper]](https://arxiv.org/abs/1905.08509v4)
102 | - [[Python Reference]](https://github.com/CODE-SUBMIT/Graph_Neighborhood_1)
103 |
104 | ### 2019
105 |
106 | - **GSSNN: Graph Smoothing Splines Neural Network (AAAI 2020)**
107 | - Shichao Zhu, Lewei Zhou, Shirui Pan, Chuan Zhou, Guiying Yan, Bin Wang
108 | - [[Paper]](https://shiruipan.github.io/publication/aaai-2020-zhu)
109 | - [[Python Reference]](https://github.com/CheriseZhu/GSSNN)
110 |
111 | - **Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks (AAAI 2019)**
112 | - Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav Rattan, and Martin Grohe
113 | - [[Paper]](https://arxiv.org/pdf/1810.02244v2.pdf)
114 | - [[Python Reference]](https://github.com/k-gnn/k-gnn)
115 |
116 | - **DAGCN: Dual Attention Graph Convolutional Networks (ACPR 2019)**
117 | - Fengwen Chen, Shirui Pan, Jing Jiang, Huan Huo, Guodong Long
118 | - [[Paper]](https://arxiv.org/abs/1904.02278v1)
119 | - [[Python Reference]](https://github.com/dawenzi123/DAGCN)
120 |
121 | - **Understanding Isomorphism Bias in Graph Data Sets (Arxiv 2019)**
122 | - Sergei Ivanov, Sergei Sviridov, Evgeny Burnaev
123 | - [[Paper]](https://arxiv.org/abs/1910.12091v2)
124 | - [[Python Reference]](https://github.com/nd7141/iso_bias)
125 |
126 | - **Graph Star Net for Generalized Multi-Task Learning (Arxiv 2019)**
127 | - Lu Haonan, Seth H. Huang, Tian Ye, Guo Xiuyan
128 | - [[Paper]](https://arxiv.org/abs/1906.12330v1)
129 | - [[Python Reference]](https://github.com/graph-star-team/graph_star)
130 |
131 | - **HATS: A Hierarchical Graph Attention Network for Stock Movement Prediction (Arxiv 2019)**
132 | - Raehyun Kim, Chan Ho So, Minbyul Jeong, Sanghoon Lee, Jinkyu Kim, Jaewoo Kang
133 | - [[Paper]](https://arxiv.org/abs/1908.07999v3)
134 | - [[Python Reference]](https://github.com/dmis-lab/hats)
135 |
136 | - **Spectral Clustering with Graph Neural Networks for Graph Pooling (Arxiv 2019)**
137 | - Filippo Maria Bianchi, Daniele Grattarola, Cesare Alippi
138 | - [[Paper]](https://arxiv.org/abs/1907.00481v3)
139 | - [[Python Reference]](https://github.com/FilippoMB/Benchmark_dataset_for_graph_classification)
140 |
141 | - **Hierarchical Representation Learning in Graph Neural Networks with Node Decimation Pooling (Arxiv 2019)**
142 | - Filippo Maria Bianchi, Daniele Grattarola, Lorenzo Livi, Cesare Alippi
143 | - [[Paper]](https://arxiv.org/abs/1910.11436v1)
144 | - [[Python Reference]](https://github.com/danielegrattarola/decimation-pooling)
145 |
146 | - **Capsule Neural Networks for Graph Classification using Explicit Tensorial Graph Representations (Arxiv 2019)**
147 | - Marcelo Daniel Gutierrez Mallea, Peter Meltzer, and Peter J Bentley
148 | - [[Paper]](https://arxiv.org/pdf/1902.08399v1.pdf)
149 | - [[Python Reference]](https://github.com/BraintreeLtd/PatchyCapsules)
150 |
151 | - **Are Powerful Graph Neural Nets Necessary? A Dissection on Graph Classification (Arxiv 2019)**
152 | - Ting Chen, Song Bian, Yizhou Sun
153 | - [[Paper]](https://arxiv.org/abs/1905.04579v3)
154 | - [[Python Reference]](https://github.com/chentingpc/gfn)
155 |
156 | - **Universal Self-Attention Network for Graph Classification (Arxiv 2019)**
157 | - Dai Quoc Nguyen, Tu Dinh Nguyen, and Dinh Phung}
158 | - [[Paper]](https://arxiv.org/abs/1909.11855)
159 | - [[Python Reference]](https://github.com/daiquocnguyen/Graph-Transformer)
160 |
161 | - **Discriminative Structural Graph Classification (ArXiV 2019)**
162 | - Younjoo Seo, Andreas Loukas, Nathanaël Perraudin
163 | - [[Paper]](https://arxiv.org/abs/1905.13422)
164 | - [[Python Reference]](https://github.com/youngjoo-epfl/DSGC)
165 |
166 | - **Symmetrical Graph Neural Network for Quantum Chemistry, with Dual R/K Space (ArXiV 2019)**
167 | - Shuqian Ye, Jiechun Liang, Rulin Liu, Xi Zhu
168 | - [[Paper]](https://arxiv.org/abs/1912.07256)
169 | - [[Python Reference]](https://github.com/yippp/SY-GNN)
170 |
171 | - **Graph Classification with Automatic Topologically-Oriented Learning (ArXiV 2019)**
172 | - Martin Royer, Frédéric Chazal, Clément Levrard, Yuichi Ike, Yuhei Umeda
173 | - [[Paper]](https://arxiv.org/pdf/1909.13472.pdf)
174 | - [[Python Reference]](https://github.com/martinroyer/atol)
175 | - [[Python]](https://github.com/giotto-ai/graph_classification_with_atol)
176 |
177 | - **Unsupervised Universal Self-Attention Network for Graph Classification (Arxiv 2019)**
178 | - Dai Quoc Nguyen, Tu Dinh Nguyen, and Dinh Phun
179 | - [[Paper]](https://arxiv.org/abs/1909.11855)
180 | - [[Python Reference]](https://github.com/daiquocnguyen/U2GNN)
181 |
182 | - **Crystal Graph Neural Networks for Data Mining in Materials Science (Arxiv 2019)**
183 | - Takenori Yamamoto
184 | - [[Paper]](https://storage.googleapis.com/rimcs_cgnn/cgnn_matsci_May_27_2019.pdf)
185 | - [[Python Reference]](https://github.com/Tony-Y/cgnn)
186 |
187 | - **Fast Training of Sparse Graph Neural Networks on Dense Hardware (Arxiv 2019)**
188 | - Matej Balog, Bart van Merriënboer, Subhodeep Moitra, Yujia Li, Daniel Tarlow
189 | - [[Paper]](https://arxiv.org/abs/1906.11786)
190 | - [[Python Reference]](https://github.com/anonymous-authors-iclr2020/fast_training_of_sparse_graph_neural_networks_on_dense_hardware)
191 |
192 | - **Hierarchical Representation Learning in Graph Neural Networks with Node Decimation Pooling (Arxiv 2019)**
193 | - Filippo Maria Bianchi, Daniele Grattarola, Lorenzo Livi, Cesare Alippi
194 | - [[Paper]](https://arxiv.org/abs/1910.11436)
195 | - [[Python Reference]](https://github.com/danielegrattarola/decimation-pooling)
196 |
197 | - **Are Powerful Graph Neural Nets Necessary? A Dissection on Graph Classification (Arxiv 2019)**
198 | - Ting Chen, Song Bian, Yizhou Sun
199 | - [[Paper]](https://arxiv.org/abs/1905.04579)
200 | - [[Python Reference]](https://github.com/Waterpine/vis_network)
201 |
202 | - **K-hop Graph Neural Networks (Arxiv 2019)**
203 | - Giannis Nikolentzos, George Dasoulas, Michalis Vazirgiannis
204 | - [[Paper]](https://arxiv.org/abs/1907.06051v1)
205 | - [[Python Reference]](https://github.com/giannisnik/k-hop-gnns)
206 |
207 | - **Learning Aligned-Spatial Graph Convolutional Networks for Graph Classification (ECML-PKDD 2019)**
208 | - Lu Bai, Yuhang Jiao, Lixin Cui, Edwin R. Hancock
209 | - [[Paper]](https://arxiv.org/abs/1904.04238)
210 | - [[Python Reference]](https://github.com/baiuoy/ASGCN_ECML-PKDD2019)
211 |
212 | - **AttPool: Towards Hierarchical Feature Representation in Graph Convolutional Networks via Attention Mechanism (ICCV 2019)**
213 | - Jingjia Huang, Zhangheng Li, Nannan Li, Shan Liu, Ge Li
214 | - [[Paper]](https://openaccess.thecvf.com/content_ICCV_2019/html/Huang_AttPool_Towards_Hierarchical_Feature_Representation_in_Graph_Convolutional_Networks_via_ICCV_2019_paper.html)
215 | - [[Python Reference]](https://github.com/hjjpku/Attention_in_Graph)
216 |
217 | - **Variational Recurrent Neural Networks for Graph Classification (ICLR RLGM 2019)**
218 | - Edouard Pineau, Nathan de Lara
219 | - [[Paper]](https://arxiv.org/abs/1902.02721v4)
220 | - [[Python Reference]](https://github.com/edouardpineau/Variational-Recurrent-Neural-Networks-for-Graph-Classification)
221 |
222 | - **edGNN: a Simple and Powerful GNN for Directed Labeled Graphs (ICLR RLGM 2019)**
223 | - Guillaume Jaume, An-phi Nguyen, María Rodríguez Martínez, Jean-Philippe Thiran, Maria Gabrani
224 | - [[Paper]](https://arxiv.org/abs/1904.08745v2)
225 | - [[Python Reference]](https://github.com/guillaumejaume/edGNN)
226 |
227 | - **Capsule Graph Neural Network (ICLR 2019)**
228 | - Zhang Xinyi and Lihui Chen
229 | - [[Paper]](https://openreview.net/forum?id=Byl8BnRcYm)
230 | - [[Python Reference]](https://github.com/benedekrozemberczki/CapsGNN)
231 |
232 | - **How Powerful are Graph Neural Networks? (ICLR 2019)**
233 | - Keyulu Xu, Weihua Hu, Jure Leskovec, Stefanie Jegelka
234 | - [[Paper]](https://arxiv.org/abs/1810.00826)
235 | - [[Python Reference]](https://github.com/weihua916/powerful-gnns)
236 |
237 | - **Graph U-Nets (ICML 2019)**
238 | - Hongyang Gao, Shuiwang Ji
239 | - [[Paper]](https://arxiv.org/abs/1905.05178v1f)
240 | - [[Python Reference]](https://github.com/HongyangGao/Graph-U-Nets)
241 |
242 | - **Relational Pooling for Graph Representations (ICML 2019)**
243 | - Ryan L. Murphy, Balasubramaniam Srinivasan, Vinayak Rao, Bruno Ribeiro
244 | - [[Paper]](https://arxiv.org/abs/1903.02541)
245 | - [[Python Reference]](https://github.com/PurdueMINDS/RelationalPooling)
246 |
247 | - **IPC: A Benchmark Data Set for Learning with Graph-Structured Data (ICML LRGSD 2019)**
248 | - Patrick Ferber, Tengfei Ma, Siyu Huo, Jie Chen, Michael Katz
249 | - [[Paper]](https://arxiv.org/abs/1905.06393)
250 | - [[Python Reference]](https://github.com/IBM/IPC-graph-data)
251 |
252 | - **Ego-CNN: Distributed, Egocentric Representations of Graphs for Detecting Critical Structure (ICML 2019)**
253 | - Ruo-Chun Tzeng, Shan-Hung Wu
254 | - [[Paper]](http://proceedings.mlr.press/v97/tzeng19a/tzeng19a.pdf)
255 | - [[Python Reference]](https://github.com/rutzeng/EgoCNN)
256 |
257 | - **Self-Attention Graph Pooling (ICML 2019)**
258 | - Junhyun Lee, Inyeop Lee, Jaewoo Kang
259 | - [[Paper]](https://arxiv.org/abs/1904.08082)
260 | - [[Python Reference]](https://github.com/inyeoplee77/SAGPool)
261 |
262 | - **Explainability Techniques for Graph Convolutional Networks (ICML 2019 Workshop)**
263 | - Federico Baldassarre, Hossein Azizpour
264 | - [[Paper]](https://128.84.21.199/pdf/1905.13686.pdf)
265 | - [[Python Reference]](https://github.com/gn-exp/gn-exp)
266 |
267 | - **Unsupervised Inductive Graph-Level Representation Learning via Graph-Graph Proximity (IJCAI 2019)**
268 | - Yunsheng Bai, Hao Ding, Yang Qiao, Agustin Marinovic, Ken Gu, Ting Chen, Yizhou Sun, Wei Wang
269 | - [[Paper]](https://arxiv.org/abs/1904.01098v2)
270 | - [[Python Reference]](https://github.com/yunshengb/UGraphEmb)
271 |
272 | - **Molecule Property Prediction Based on Spatial Graph Embedding (Journal of Cheminformatics Models 2019)**
273 | - Xiaofeng Wang, Zhen Li, Mingjian Jiang, Shuang Wang, Shugang Zhang, Zhiqiang Wei
274 | - [[Paper]](https://pubs.acs.org/doi/abs/10.1021/acs.jcim.9b00410)
275 | - [[Python Reference]](https://github.com/1128bian/C-SGEN)
276 |
277 | - **Graph Convolutional Networks with EigenPooling (KDD 2019)**
278 | - Yao Ma, Suhang Wang, Charu C Aggarwal, Jiliang Tang
279 | - [[Paper]](https://arxiv.org/pdf/1904.13107.pdf)
280 | - [[Python Reference]](https://github.com/alge24/eigenpooling)
281 |
282 | - **Distance Metric Learning for Graph Structured Data (KDD 2019)**
283 | - Tomoki Yoshida, Ichiro Takeuchi, Masayuki Karasuyama
284 | - [[Paper]](https://arxiv.org/abs/2002.00727v1)
285 | - [[Python Reference]](https://github.com/birdwatcherYT/Learning-Interpretable-Metric-between-Graphs)
286 |
287 | - **Graph Neural Tangent Kernel: Fusing Graph Neural Networks with Graph Kernels (NeurIPS 2019)**
288 | - Simon S. Du, Kangcheng Hou, Barnabás Póczos, Ruslan Salakhutdinov, Ruosong Wang, Keyulu Xu
289 | - [[Paper]](https://arxiv.org/abs/1905.13192)
290 | - [[Python Reference]](https://github.com/KangchengHou/gntk)
291 |
292 | - **Provably Powerful Graph Networks (NeurIPS 2019)**
293 | - Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, Yaron Lipman
294 | - [[Paper]](https://arxiv.org/abs/1905.11136v4)
295 | - [[Python Reference]](https://github.com/hadarser/ProvablyPowerfulGraphNetworks_torch)
296 |
297 | - **Mapping Images to Scene Graphs with Permutation-Invariant Structured Prediction (NeurIPS 2019)**
298 | - Roei Herzig, Moshiko Raboh, Gal Chechik, Jonathan Berant, Amir Globerson
299 | - [[Paper]](https://arxiv.org/abs/1802.05451)
300 | - [[Python Reference]](https://github.com/shikorab/SceneGraph)
301 |
302 | - **Semi-Supervised Graph Classification: A Hierarchical Graph Perspective (WWW 2019)**
303 | - Jia Li, Yu Rong, Hong Cheng, Helen Meng, Wenbing Huang, and Junzhou Huang
304 | - [[Paper]](https://arxiv.org/pdf/1904.05003.pdf)
305 | - [[Python Reference]](https://github.com/benedekrozemberczki/SEAL-CI)
306 |
307 | ### 2018
308 |
309 | - **An End-to-End Deep Learning Architecture for Graph Classification (AAAI 2018)**
310 | - Muhan Zhang, Zhicheng Cui, Marion Neumann and Yixin Chen
311 | - [[Paper]](https://www.cse.wustl.edu/~muhan/papers/AAAI_2018_DGCNN.pdf)
312 | - [[Python Tensorflow Reference]](https://github.com/muhanzhang/DGCNN)
313 | - [[Python Pytorch Reference]](https://github.com/muhanzhang/pytorch_DGCNN)
314 | - [[MATLAB Reference]](https://github.com/muhanzhang/DGCNN)
315 | - [[Python Alternative]](https://github.com/leftthomas/DGCNN)
316 | - [[Python Alternative]](https://github.com/hitlic/DGCNN-tensorflow)
317 |
318 | - **Three-Dimensionally Embedded Graph Convolutional Network for Molecule Interpretation (Arxiv 2018)**
319 | - Hyeoncheol Cho and Insung. S. Choi
320 | - [[Paper]](https://arxiv.org/abs/1811.09794)
321 | - [[Python Reference]](https://github.com/blackmints/3DGCN)
322 |
323 | - **Learning Graph-Level Representations with Recurrent Neural Networks (Arxiv 2018)**
324 | - Yu Jin and Joseph F. JaJa
325 | - [[Paper]](https://arxiv.org/pdf/1805.07683v4.pdf)
326 | - [[Python Reference]](https://github.com/yuj-umd/graphRNN)
327 |
328 | - **Deeply Learning Molecular Structure-Property Relationships Using Graph Attention Neural Network (ArXiv 2018)**
329 | - Seongok Ryu, Jaechang Lim, and Woo Youn Kim
330 | - [[Paper]](https://arxiv.org/abs/1805.10988)
331 | - [[Python Reference]](https://github.com/SeongokRyu/Molecular-GAT)
332 |
333 | - **Edge Attention-based Multi-Relational Graph Convolutional Networks (ArXiv 2018)**
334 | - Chao Shang, Qinqing Liu, Ko-Shin Chen, Jiangwen Sun, Jin Lu, Jinfeng Yi and Jinbo Bi
335 | - [[Paper]](https://arxiv.org/abs/1802.04944v1)
336 | - [[Python Reference]](https://github.com/Luckick/EAGCN)
337 |
338 | - **Compound-Protein Interaction Prediction with End-to-end Learning of Neural Networks for Graphs and Sequences (Bioinformatics 2018)**
339 | - Masashi Tsubaki, Kentaro Tomii, and Jun Sese
340 | - [[Paper]](https://academic.oup.com/bioinformatics/article/35/2/309/5050020)
341 | - [[Python Reference]](https://github.com/masashitsubaki/CPI_prediction)
342 | - [[Python Reference]](https://github.com/masashitsubaki/GNN_molecules)
343 | - [[Python Alternative ]](https://github.com/xnuohz/GCNDTI)
344 |
345 | - **Machine Learning for Organic Cage Property Prediction (Chemical Matters 2018)**
346 | - Lukas Turcani, Rebecca Greenway, Kim Jelfs
347 | - [[Paper]](https://pubs.acs.org/doi/10.1021/acs.chemmater.8b03572)
348 | - [[Python Reference]](https://github.com/qyuan7/Graph_Convolutional_Network_for_cages)
349 |
350 | - **Kernel Graph Convolutional Neural Networks (ICANN 2018)**
351 | - Giannis Nikolentzos, Polykarpos Meladianos, Antoine Jean-Pierre Tixier, Konstantinos Skianis, Michalis Vazirgiannis
352 | - [[Paper]](https://arxiv.org/pdf/1710.10689.pdf)
353 | - [[Python Reference]](https://github.com/giannisnik/cnn-graph-classification)
354 |
355 | - **Residual Gated Graph ConvNets (ICLR 2018)**
356 | - Xavier Bresson and Thomas Laurent
357 | - [[Paper]](https://arxiv.org/pdf/1711.07553v2.pdf)
358 | - [[Python Pytorch Reference]](https://github.com/xbresson/spatial_graph_convnets)
359 |
360 | - **Contextual Graph Markov Model: A Deep and Generative Approach to Graph Processing (ICML 2018)**
361 | - Davide Bacciu, Federico Errica, and Alessio Micheli
362 | - [[Paper]](https://arxiv.org/pdf/1805.10636.pdf)
363 | - [[Python Reference]](https://github.com/diningphil/CGMM)
364 |
365 | - **MolGAN: An Implicit Generative Model for Small Molecular Graphs (ICML 2018)**
366 | - Nicola De Cao and Thomas Kipf
367 | - [[Paper]](https://arxiv.org/pdf/1805.11973.pdf)
368 | - [[Python Reference]](https://github.com/nicola-decao/MolGAN)
369 |
370 | - **Graph Capsule Convolutional Neural Networks (ICML 2018)**
371 | - Saurabh Verma and Zhi-Li Zhang
372 | - [[Paper]](https://arxiv.org/abs/1805.08090)
373 | - [[Python Reference]](https://github.com/vermaMachineLearning/Graph-Capsule-CNN-Networks)
374 |
375 | - **Learning Graph Distances with Message Passing Neural Networks (ICPR 2018)**
376 | - Pau Riba, Andreas Fischer, Josep Llados, and Alicia Fornes
377 | - [[Paper]](https://ieeexplore.ieee.org/abstract/document/8545310)
378 | - [[Python Reference]](https://github.com/priba/siamese_ged)
379 |
380 | - **Commonsense Knowledge Aware Conversation Generation with Graph Attention (IJCAI-ECAI 2018)**
381 | - Hao Zhou, Tom Yang, Minlie Huang, Haizhou Zhao, Jingfang Xu and Xiaoyan Zhu
382 | - [[Paper]](http://coai.cs.tsinghua.edu.cn/hml/media/files/2018_commonsense_ZhouHao_3_TYVQ7Iq.pdf)
383 | - [[Python Reference]](https://github.com/tuxchow/ccm)
384 |
385 | - **SGR: Self-Supervised Spectral Graph Representation Learning (KDD DLDay 2018)**
386 | - Anton Tsitsulin, Davide Mottin, Panagiotis Karra, Alex Bronstein and Emmanueal Müller
387 | - [[Paper]](https://arxiv.org/abs/1807.02839)
388 | - [[Python Reference]](http://mott.in/publications/others/sgr/)
389 |
390 | - **Graph Classification Using Structural Attention (KDD 2018)**
391 | - John Boaz Lee, Ryan Rossi, and Xiangnan Kong
392 | - [[Paper]](http://ryanrossi.com/pubs/KDD18-graph-attention-model.pdf)
393 | - [[Python Pytorch Reference]](https://github.com/benedekrozemberczki/GAM)
394 |
395 | - **Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation (NIPS 2018)**
396 | - Jiaxuan You, Bowen Liu, Rex Ying, Vijay Pande, and Jure Leskovec
397 | - [[Paper]](https://arxiv.org/abs/1806.02473)
398 | - [[Python Reference]](https://github.com/bowenliu16/rl_graph_generation)
399 |
400 | - **Hierarchical Graph Representation Learning with Differentiable Pooling (NIPS 2018)**
401 | - Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton and Jure Leskovec
402 | - [[Paper]](http://papers.nips.cc/paper/7729-hierarchical-graph-representation-learning-with-differentiable-pooling.pdf)
403 | - [[Python Reference]](https://github.com/rusty1s/pytorch_geometric)
404 |
405 | - **Fast and Accurate Molecular Property Prediction: Learning Atomic Interactions and Potentials with Neural Networks (The Journal of Physical Chemistry Letters 2018)**
406 | - Masashi Tsubaki and Teruyasu Mizoguchi
407 | - [[Paper]](https://pubs.acs.org/doi/10.1021/acs.jpclett.8b01837)
408 | - [[Python Reference]](https://github.com/masashitsubaki/molecularGNN_3Dstructure)
409 |
410 | ### 2017
411 |
412 | - **Semi-Supervised Learning of Hierarchical Representations of Molecules Using Neural Message Passing (ArXiv 2017)**
413 | - Hai Nguyen, Shin-ichi Maeda, Kenta Oono
414 | - [[Paper]](https://arxiv.org/pdf/1711.10168.pdf)
415 | - [[Python Reference]](https://github.com/pfnet-research/hierarchical-molecular-learning)
416 |
417 | - **Dynamic Edge-Conditioned Filters in Convolutional Neural Networks on Graphs (CVPR 2017)**
418 | - Martin Simonovsky and Nikos Komodakis
419 | - [[paper]](https://arxiv.org/pdf/1704.02901v3.pdf)
420 | - [[Python Reference]](https://github.com/mys007/ecc)
421 |
422 | - **Graph Classification with 2D Convolutional Neural Networks (ICANN 2019)**
423 | - Antoine J.-P. Tixier, Giannis Nikolentzos, Polykarpos Meladianos and Michalis Vazirgiannis
424 | - [[Paper]](https://arxiv.org/abs/1708.02218)
425 | - [[Python Reference]](https://github.com/Tixierae/graph_2D_CNN)
426 |
427 | - **Deriving Neural Architectures from Sequence and Graph Kernels (ICML 2017)**
428 | - Tao Lei, Wengong Jin, Regina Barzilay, and Tommi Jaakkola
429 | - [[Paper]](https://arxiv.org/abs/1705.09037)
430 | - [[Python Reference]](https://github.com/taolei87/icml17_knn)
431 |
432 | - **CayleyNets: Graph Convolutional Neural Networks with Complex Rational Spectral Filters (IEEE TSP 2017)**
433 | - Ron Levie, Federico Monti, Xavier Bresson, Michael M. Bronstein
434 | - [[Paper]](https://arxiv.org/pdf/1705.07664v2.pdf)
435 | - [[Python Reference]](https://github.com/fmonti/CayleyNet)
436 |
437 | - **Deep Learning with Topological Signatures (NIPS 2017)**
438 | - Christoph Hofer, Roland Kwitt, Marc Niethammer, and Andreas Uhl
439 | - [[paper]](https://arxiv.org/abs/1707.04041)
440 | - [[Python Reference]](https://github.com/c-hofer/nips2017)
441 |
442 | - **Protein Interface Prediction using Graph Convolutional Networks (NIPS 2017)**
443 | - Alex Fout, Jonathon Byrd, Basir Shariat and Asa Ben-Hur
444 | - [[Paper]](https://papers.nips.cc/paper/7231-protein-interface-prediction-using-graph-convolutional-networks)
445 | - [[Python Reference]](https://github.com/fouticus/pipgcn)
446 |
447 | ### 2016
448 |
449 | - **Gated Graph Sequence Neural Networks (ICLR 2016)**
450 | - Yujia Li, Daniel Tarlow, Marc Brockschmidt, Richard Zemel
451 | - [[Paper]](https://arxiv.org/abs/1511.05493)
452 | - [[Python TensorFlow]](https://github.com/bdqnghi/ggnn.tensorflow)
453 | - [[Python PyTorch]](https://github.com/JamesChuanggg/ggnn.pytorch)
454 | - [[Python Reference]](https://github.com/YunjaeChoi/ggnnmols)
455 |
456 | - **Learning Convolutional Neural Networks for Graphs (ICML 2016)**
457 | - Mathias Niepert, Mohamed Ahmed, Konstantin Kutzkov
458 | - [[Paper]](https://arxiv.org/abs/1605.05273)
459 | - [[Python Reference]](https://github.com/tvayer/PSCN)
460 |
461 | - **Deep Topology Classification: A New Approach For Massive Graph Classification (IEEE Big Data 2016)**
462 | - Stephen Bonner, John Brennan, Georgios Theodoropoulos, Ibad Kureshi, Andrew Stephen McGough
463 | - [[Paper]](https://ieeexplore.ieee.org/document/7840988/)
464 | - [[Python Reference]](https://github.com/sbonner0/DeepTopologyClassification)
465 |
466 | - **Convolutional Networks on Graphs for Learning Molecular Fingerprints (NIPS 2015)**
467 | - David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-Bombarelli, Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P. Adams
468 | - [[Paper]](https://papers.nips.cc/paper/5954-convolutional-networks-on-graphs-for-learning-molecular-fingerprints.pdf)
469 | - [[Python Reference]](https://github.com/fllinares/neural_fingerprints_tf)
470 | - [[Python Reference]](https://github.com/jacklin18/neural-fingerprint-in-GNN)
471 | - [[Python Reference]](https://github.com/HIPS/neural-fingerprint)
472 | - [[Python Reference]](https://github.com/debbiemarkslab/neural-fingerprint-theano)
473 |
--------------------------------------------------------------------------------
/chapters/fingerprints.md:
--------------------------------------------------------------------------------
1 | ## Spectral and Statistical Fingerprints
2 |
3 | ### 2020
4 |
5 | - **Characteristic Functions on Graphs: Birds of a Feather, from Statistical Descriptors to Parametric Models (CIKM 2020)**
6 | - Benedek Rozemberczki and Rik Sarkar
7 | - [[Paper]](https://arxiv.org/abs/2005.07959)
8 | - [[Python Karate Club]](https://github.com/benedekrozemberczki/karateclub/)
9 | - [[Python Reference]](https://github.com/benedekrozemberczki/FEATHER/)
10 |
11 | - **Explainable Classification of Brain Networks via Contrast Subgraphs (KDD 2020)**
12 | - Tommaso Lanciano, Francesco Bonchi, and Aristides Gionis
13 | - [[Paper]](https://dl.acm.org/doi/10.1145/3394486.3403383)
14 | - [[Python Reference]](https://github.com/tlancian/contrast-subgraph)
15 |
16 | - **Just SLaQ When You Approximate: Accurate Spectral Distances for Web-Scale Graphs (WWW 2020)**
17 | - Anton Tsitsulin, Marina Munkhoeva, and Bryan Perozzi
18 | - [[Paper]](https://arxiv.org/abs/2003.01282)
19 | - [[Python Reference]](https://github.com/google-research/google-research/tree/master/graph_embedding/slaq)
20 |
21 | ### 2019
22 |
23 | - **A Simple Yet Effective Baseline for Non-Attribute Graph Classification (ICLR RLPM 2019)**
24 | - Chen Cai and Yusu Wang
25 | - [[Paper]](https://arxiv.org/abs/1811.03508)
26 | - [[Python Reference]](https://github.com/Chen-Cai-OSU/LDP)
27 |
28 | ### 2018
29 |
30 | - **Multi-Graph Multi-Label Learning Based on Entropy (Entropy 2018)**
31 | - Zixuan Zhu and Yuhai Zhao
32 | - [[Paper]](https://github.com/TonyZZX/MultiGraph_MultiLabel_Learning/blob/master/entropy-20-00245.pdf)
33 | - [[Python Reference]](https://github.com/TonyZZX/MultiGraph_MultiLabel_Learning)
34 |
35 | - **NetLSD: Hearing the Shape of a Graph (KDD 2018)**
36 | - Anton Tsitsulin, Davide Mottin, Panagiotis Karras, Alex Bronstein, and Emmanuel Müller
37 | - [[Paper]](https://arxiv.org/abs/1805.10712)
38 | - [[Python Reference]](https://github.com/xgfs/NetLSD)
39 | - [[Python Karate Club]](https://github.com/benedekrozemberczki/karateclub/)
40 |
41 | - **A Simple Baseline Algorithm for Graph Classification (Relational Representation Learning NIPS 2018)**
42 | - Nathan de Lara and Edouard Pineau
43 | - [[Paper]](https://arxiv.org/pdf/1810.09155.pdf)
44 | - [[Python Karate Club]](https://github.com/benedekrozemberczki/karateclub)
45 | - [[Python]](https://github.com/edouardpineau/A-simple-baseline-algorithm-for-graph-classification)
46 |
47 | ### 2017
48 |
49 | - **Hunt For The Unique, Stable, Sparse And Fast Feature Learning On Graphs (NIPS 2017)**
50 | - Saurabh Verma and Zhi-Li Zhang
51 | - [[Paper]](https://papers.nips.cc/paper/6614-hunt-for-the-unique-stable-sparse-and-fast-feature-learning-on-graphs.pdf)
52 | - [[Matlab Reference]](https://github.com/vermaMachineLearning/FGSD)
53 | - [[Python Karate Club]](https://github.com/benedekrozemberczki/karateclub/)
54 |
55 | ### 2015
56 |
57 | - **Joint Structure Feature Exploration and Regularization for Multi-Task Graph Classification (TKDE 2015)**
58 | - Shirui Pan, Jia Wu, Xingquan Zhuy, Chengqi Zhang, and Philip S. Yuz
59 | - [[Paper]](https://ieeexplore.ieee.org/document/7302040)
60 | - [[Java Reference]](https://github.com/shiruipan/MTG)
61 |
62 | ### 2012
63 |
64 | - **NetSimile: A Scalable Approach to Size-Independent Network Similarity (arXiv 2012)**
65 | - Michele Berlingerio, Danai Koutra, Tina Eliassi-Rad, and Christos Faloutsos
66 | - [[Paper]](https://arxiv.org/abs/1209.2684)
67 | - [[Python]](https://github.com/kristyspatel/Netsimile)
68 |
--------------------------------------------------------------------------------
/chapters/kernels.md:
--------------------------------------------------------------------------------
1 | ## Graph Kernels
2 |
3 | ### 2019
4 |
5 | - **Distribution of Node Embeddings as Multiresolution Features for Graphs (ICDM 2019)**
6 | - Mark Heimann, Tara Safavi, and Danai Koutra
7 | - [[Paper]](https://gemslab.github.io/papers/heimann-2019-RGM.pdf)
8 | - [[Code]](https://github.com/GemsLab/RGM)
9 |
10 | - **Optimal Transport for Structured Data with Application on Graphs (ICML 2019)**
11 | - Vayer Titouan, Nicolas Courty, Romain Tavenard, Chapel Laetitia, Rémi Flamary
12 | - [[Paper]](http://proceedings.mlr.press/v97/titouan19a.html)
13 | - [[Python Reference]](https://github.com/PythonOT/POT)
14 |
15 | - **A Persistent Weisfeiler–Lehman Procedure for Graph Classification (ICML 2019)**
16 | - Sebastian Rieck, Christian Bock, and Karsten Borgwardt
17 | - [[Paper]](http://proceedings.mlr.press/v97/rieck19a/rieck19a.pdf)
18 | - [[Python Reference]](https://github.com/BorgwardtLab/P-WL)
19 |
20 | - **Wasserstein Weisfeiler-Lehman Graph Kernels (NIPS 2019)**
21 | - Matteo Togninalli, Elisabetta Ghisu, Felipe Llinares-López, Bastian Rieck, and Karsten Borgwardt
22 | - [[Paper]](http://papers.nips.cc/paper/8872-wasserstein-weisfeiler-lehman-graph-kernels)
23 | - [[Code]](https://github.com/BorgwardtLab/WWL)
24 |
25 | - **Learning Metrics for Persistence-Based Summaries and Applications for Graph Classification (NIPS 2019)**
26 | - Qi Zhao, Yusu Wang
27 | - [[Paper]](https://arxiv.org/abs/1904.12189)
28 | - [[Code]](https://github.com/topology474/WKPI)
29 |
30 | - **Propagation Kernels: Efficient Graph Kernels from Propagated Information (Machine Learning 2019)**
31 | - Marion Neumann, Roman Garnett, Christian Bauckhage, Kristian Kersting
32 | - [[Paper]](https://link.springer.com/article/10.1007/s10994-015-5517-9)
33 | - [[Matlab Reference]](https://github.com/marionmari/propagation_kernels)
34 |
35 | - **DDGK: Learning Graph Representations for Deep Divergence Graph Kernels (WWW 2019)**
36 | - Rami Al-Rfou, Dustin Zelle, Bryan Perozzi
37 | - [[Paper]](https://arxiv.org/abs/1904.09671v1)
38 | - [[Code]](https://github.com/google-research/google-research/tree/master/graph_embedding/ddgk)
39 |
40 | ### 2018
41 |
42 | - **Message Passing Graph Kernels (2018)**
43 | - Giannis Nikolentzos, Michalis Vazirgiannis
44 | - [[Paper]](https://arxiv.org/pdf/1808.02510.pdf)
45 | - [[Python Reference]](https://github.com/giannisnik/message_passing_graph_kernels)
46 |
47 | ### 2017
48 |
49 | - **Matching Node Embeddings for Graph Similarity (AAAI 2017)**
50 | - Giannis Nikolentzos, Polykarpos Meladianos, and Michalis Vazirgiannis
51 | - [[Paper]](https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14494)
52 |
53 | - **Global Weisfeiler-Lehman Graph Kernels (ICDM 2017)**
54 | - Christopher Morris, Kristian Kersting and Petra Mutzel
55 | - [[Paper]](https://arxiv.org/pdf/1703.02379.pdf)
56 | - [[C++ Reference]](https://github.com/chrsmrrs/glocalwl)
57 |
58 | - **Kernel Method for Persistence Diagrams via Kernel Embedding and Weight Factor (JMLR 2017)**
59 | - Genki Kusano, Kenji Fukumizu, Yasuaki Hiraoka
60 | - [[Paper]](https://dl.acm.org/doi/abs/10.5555/3122009.3242046)
61 | - [[Python Reference]](https://github.com/genki-kusano/python-pwgk)
62 |
63 | - **On Valid Optimal Assignment Kernels and Applications to Graph Classification (NIPS 2016)**
64 | - Nils Kriege, Pierre-Louis Giscard, Richard Wilson
65 | - [[Paper]](https://arxiv.org/pdf/1606.01141.pdf)
66 | - [[Java Reference]](https://github.com/nlskrg/optimal_assignment_kernels)
67 |
68 | ### 2016
69 |
70 | - **Faster Kernels for Graphs with Continuous Attributes (ICDM 2016)**
71 | - Christopher Morris, Nils M. Kriege, Kristian Kersting and Petra Mutzel
72 | - [[Paper]](https://arxiv.org/abs/1610.00064)
73 | - [[Python Reference]](https://github.com/chrsmrrs/hashgraphkernel)
74 |
75 | - **Propagation Kernels: Efficient Graph Kernels From Propagated Information (Machine Learning 2016)**
76 | - Neumann, Marion and Garnett, Roman and Bauckhage, Christian and Kersting, Kristian
77 | - [[Paper]](https://link.springer.com/article/10.1007/s10994-015-5517-9)
78 | - [[Matlab Reference]](https://github.com/marionmari/propagation_kernels)
79 |
80 | - **Efficient Comparison of Massive Graphs Through The Use Of ‘Graph Fingerprints’ (MLGWorkshop 2016)**
81 | - Stephen Bonner, John Brennan, and A. Stephen McGough
82 | - [[Paper]](http://dro.dur.ac.uk/19773/1/19773.pdf?DDD10+lzdh59+d700tmt)
83 | - [[python Reference]](https://github.com/sbonner0/GraphFingerprintComparison)
84 |
85 | - **The Multiscale Laplacian Graph Kernel (NIPS 2016)**
86 | - Risi Kondor and Horace Pan
87 | - [[Paper]](https://arxiv.org/abs/1603.06186)
88 | - [[C++ Reference]](https://github.com/horacepan/MLGkernel)
89 |
90 | ### 2015
91 |
92 | - **An Aligned Subtree Kernel for Weighted Graphs (ICML 2015)**
93 | - Lu Bai, Luca Rossi, Zhihong Zhang, Edwin R. Hancock
94 | - [[Paper]](http://proceedings.mlr.press/v37/bai15.pdf)
95 |
96 | - **A Graph Kernel Based on the Jensen-Shannon Representation Alignment (IJCAI 2015)**
97 | - Lu Bai, Zhihong Zhang, Chaoyan Wang, Xiao Bai, Edwin R. Hancock
98 | - [[Paper]](http://ijcai.org/Proceedings/15/Papers/468.pdf)
99 | - [[Matlab reference]](https://github.com/baiuoy/Matlab-code-JS-alignment-kernel-IJCAI-2015)
100 |
101 | - **Halting Random Walk Kernels (NIPS 2015)**
102 | - Mahito Sugiyama and Karsten M. Borgward
103 | - [[Paper]](https://pdfs.semanticscholar.org/79ba/8bcfbf9496834fdc22a1f7c96d26d776cd6c.pdf)
104 | - [[C++ Reference]](https://github.com/BorgwardtLab/graph-kernels)
105 |
106 | ### 2013
107 |
108 | - **Scalable Kernels for Graphs with Continuous Attributes (NIPS 2013)**
109 | - Aasa Feragen, Niklas Kasenburg, Jens Petersen, Marleen de Bruijne and Karsten Borgwardt
110 | - [[Paper]](https://papers.nips.cc/paper/5155-scalable-kernels-for-graphs-with-continuous-attributes.pdf)
111 |
112 | ### 2012
113 |
114 | - **Nested Subtree Hash Kernels for Large-Scale Graph Classification over Streams (ICDM 2012)**
115 | - Bin Li, Xingquan Zhu, Lianhua Chi, Chengqi Zhang
116 | - [[Paper]](https://ieeexplore.ieee.org/document/6413884/)
117 | - [[Python Reference]](https://github.com/benedekrozemberczki/NestedSubtreeHash)
118 |
119 | - **Subgraph Matching Kernels for Attributed Graphs (ICML 2012)**
120 | - Nils Kriege and Petra Mutzel
121 | - [[Paper]](https://arxiv.org/abs/1206.6483)
122 | - [[Python Reference]](https://github.com/mockingbird2/GraphKernelBenchmark)
123 |
124 | - **Two New Graphs Kernels in Chemoinformatics (Pattern Recognition Letters 2012)**
125 | - Benoit Gaüzère, LucBrun, and Didier Villemin
126 | - [[Paper]](https://www.sciencedirect.com/science/article/abs/pii/S016786551200102X)
127 | - [[Python Reference]](https://github.com/jajupmochi/py-graph)
128 |
129 | ### 2011
130 |
131 | - **Weisfeiler-Lehman Graph Kernels (JMLR 2011)**
132 | - Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M. Borgwardt
133 | - [[Paper]](http://www.jmlr.org/papers/volume12/shervashidze11a/shervashidze11a.pdf)
134 | - [[Python Reference]](https://github.com/jajupmochi/py-graph)
135 | - [[Python Reference]](https://github.com/deeplego/wl-graph-kernels)
136 | - [[C++ Reference]](https://github.com/BorgwardtLab/graph-kernels)
137 |
138 | ### 2010
139 |
140 | - **Fast Neighborhood Subgraph Pairwise Distance Kernel (ICML 2010)**
141 | - Fabrizio Costa and Kurt De Grave
142 | - [[Paper]](https://icml.cc/Conferences/2010/papers/347.pdf)
143 | - [[C++ Reference]](www.bioinf.uni-freiburg.de/~costa/EDeNcpp.tgz)
144 | - [[Python Reference]](https://github.com/fabriziocosta/EDeN)
145 |
146 | - **Graph Kernels (JMLR 2010)**
147 | - S.V.N. Vishwanathan, Nicol N. Schraudolph, Risi Kondor, Karsten M. Borgwardt;
148 | - [[Paper]](http://www.jmlr.org/papers/volume11/vishwanathan10a/vishwanathan10a.pdf)
149 | - [[Python Reference]](https://github.com/jajupmochi/py-graph)
150 |
151 | ### 2009
152 |
153 | - **A Linear-time Graph Kernel (ICDM 2009)**
154 | - Shohei Hido and Hisashi Kashima
155 | - [[Paper]](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5360243)
156 | - [[Python Reference]](https://github.com/hgascon/adagio)
157 |
158 | - **Weisfeiler-Lehman Subtree Kernels (NIPS 2009)**
159 | - Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M. Borgwardt
160 | - [[Paper]](http://papers.nips.cc/paper/3813-fast-subtree-kernels-on-graphs.pdf)
161 | - [[Python Reference]](https://github.com/jajupmochi/py-graph)
162 | - [[Python Reference]](https://github.com/deeplego/wl-graph-kernels)
163 | - [[C++ Reference]](https://github.com/BorgwardtLab/graph-kernels)
164 |
165 | ### 2007
166 |
167 | - **Kernel on Bag of Paths For Measuring Similarity of Shapes (ESANN 2007)**
168 | - Frederic Suard, Alain Rakotomamonjy, and Abdelaziz Bensrhair
169 | - [[Paper]](https://pdfs.semanticscholar.org/149a/858889e8c3a54ee55b21511a7f56f5e9650b.pdf)
170 | - [[Python Reference]](https://github.com/jajupmochi/py-graph)
171 |
172 | ### 2005
173 |
174 | - **Fast Computation of Graph Kernels (NIPS 2006)**
175 | - S. V. N. Vishwanathan, Karsten M. Borgwardt, and Nicol N. Schraudolph
176 | - [[Paper]](http://www.dbs.ifi.lmu.de/Publikationen/Papers/VisBorSch06.pdf)
177 | - [[Python Reference]](https://github.com/jajupmochi/py-graph)
178 | - [[C++ Reference]](https://github.com/BorgwardtLab/graph-kernels)
179 |
180 | ### 2005
181 |
182 | - **Shortest-Path Kernels on Graphs (ICDM 2005)**
183 | - Karsten M. Borgwardt and Hans-Peter Kriegel
184 | - [[Paper]](https://www.ethz.ch/content/dam/ethz/special-interest/bsse/borgwardt-lab/documents/papers/BorKri05.pdf)
185 | - [[C++ Reference]](https://github.com/KitwareMedical/ITKTubeTK)
186 |
187 | - **Graph Kernels for Chemical Informatics (Neural Networks 2005)**
188 | - Liva Ralaivola, Sanjay J Swamidass, Hiroto Saigo, and Pierre Baldi
189 | - [[Paper]](https://www.sciencedirect.com/science/article/pii/S0893608005001693)
190 | - [[Python Reference]](https://github.com/jajupmochi/py-graph)
191 |
192 | ### 2004
193 |
194 | - **Cyclic Pattern Kernels For Predictive Graph Mining (KDD 2004)**
195 | - Tamás Horváth, Thomas Gärtner, and Stefan Wrobel
196 | - [[Paper]](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.332.6158&rep=rep1&type=pdf)
197 | - [[Python Reference]](https://github.com/jajupmochi/py-graph)
198 |
199 | - **Extensions of Marginalized Graph Kernels (ICML 2004)**
200 | - Pierre Mahe , Nobuhisa Ueda , Tatsuya Akutsu , Jean-Luc Perret , Jean-Philippe Vert
201 | - [[Paper]](http://members.cbio.mines-paristech.fr/~jvert/publi/04icml/icmlMod.pdf)
202 | - [[Python Reference]](https://github.com/jajupmochi/py-graph)
203 |
204 | ### 2003
205 |
206 | - **Marginalized Kernels Between Labeled Graphs (ICML 2003)**
207 | - Hisashi Kashima, Koji Tsuda, and Akihiro Inokuchi
208 | - [[Paper]](https://pdfs.semanticscholar.org/2dfd/92c808487049ab4c9b45db77e9055b9da5a2.pdf)
209 | - [[Python Reference]](https://github.com/jajupmochi/py-graph)
210 |
211 | - **On Graph Kernels: Hardness Results and Efficient Alternatives (Learning Theory and Kernel Machines 2003)**
212 | - Thomas Gärtner, Peter Flach, and Stefan Wrobel
213 | - [[Paper]](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.152.8681&rep=rep1&type=pdf)
214 | - [[Python Reference]](https://github.com/jajupmochi/py-graph)
215 |
--------------------------------------------------------------------------------
/chapters/matrix_factorization.md:
--------------------------------------------------------------------------------
1 | ## Matrix Factorization
2 |
3 | ### 2020
4 |
5 | - **Learning Distributed Representations of Graphs with Geo2DR (ICML GRL 2020)**
6 | - Paul Scherer and Pietro Lio
7 | - [[Paper]](https://arxiv.org/abs/2003.05926v3)
8 | - [[Python Reference]](https://github.com/paulmorio/geo2dr)
9 |
10 | ### 2019
11 |
12 | - **GL2vec: Graph Embedding Enriched by Line Graphs with Edge Features (ICONIP 2019)**
13 | - Hong Chen, Hisashi Koga
14 | - [[Paper]](https://link.springer.com/chapter/10.1007/978-3-030-36718-3_1)
15 | - [[Python Karate Club]](https://github.com/benedekrozemberczki/karateclub/)
16 |
17 | ### 2018
18 |
19 | - **Anonymous Walk Embeddings (ICML 2018)**
20 | - Sergey Ivanov and Evgeny Burnaev
21 | - [[Paper]](https://arxiv.org/pdf/1805.11921.pdf)
22 | - [[Python Reference]](https://github.com/nd7141/AWE)
23 |
24 | - **Hierarchical Stochastic Graphlet Embedding for Graph-based Pattern Recognition (Pattern Recognition 2018)**
25 | - Anjan Dutta, Pau Riba, Josep Lladós, Alicia Fornés
26 | - [[Paper]](https://arxiv.org/abs/1807.02839)
27 | - [[Matlab Reference]](https://github.com/priba/hierarchicalSGE)
28 |
29 | - **Learning Graph Representation via Frequent Subgraphs (SDM 2018)**
30 | - Dang Nguyen, Wei Luo, Tu Dinh Nguyen, Svetha Venkatesh, Dinh Phung
31 | - [[Paper]](https://epubs.siam.org/doi/10.1137/1.9781611975321.35)
32 | - [[Python Reference]](https://github.com/nphdang/GE-FSG)
33 |
34 | ### 2017
35 |
36 | - **Graph2vec (MLGWorkshop 2017)**
37 | - Annamalai Narayanan, Mahinthan Chandramohan, Lihui Chen, Yang Liu, and Santhoshkumar Saminathan
38 | - [[Paper]](https://arxiv.org/abs/1707.05005)
39 | - [[Python Karate Club]](https://github.com/benedekrozemberczki/karateclub/)
40 | - [[Python High Performance]](https://github.com/benedekrozemberczki/graph2vec)
41 | - [[Python Reference]](https://github.com/MLDroid/graph2vec_tf)
42 |
43 | ### 2016
44 |
45 | - **Rdf2Vec: RDF Graph Embeddings for Data Mining (ISWC 2016)**
46 | - Petar Ristoski and Heiko Paulheim
47 | - [[Paper]](https://link.springer.com/chapter/10.1007/978-3-319-46523-4_30)
48 | - [[Python Reference]](https://github.com/airobert/RDF2VecAtWebScale)
49 |
50 | - **Subgraph2Vec (MLGWorkshop 2016)**
51 | - Annamalai Narayanan, Mahinthan Chandramohan, Lihui Chen, Yang Liu, and Santhoshkumar Saminathan
52 | - [[Paper]](https://arxiv.org/abs/1606.08928)
53 | - [[Python High Performance]](https://github.com/MLDroid/subgraph2vec_gensim)
54 | - [[Python Reference]](https://github.com/MLDroid/subgraph2vec_tf)
55 |
56 | ### 2015
57 |
58 | - **Deep Graph Kernels (KDD 2015)**
59 | - Pinar Yanardag and S.V.N. Vishwanathan
60 | - [[Paper]](https://dl.acm.org/citation.cfm?id=2783417)
61 | - [[Python Reference]](https://github.com/pankajk/Deep-Graph-Kernels)
62 |
--------------------------------------------------------------------------------
/code-of-conduct.md:
--------------------------------------------------------------------------------
1 | # Contributor Covenant Code of Conduct
2 |
3 | ## Our Pledge
4 |
5 | In the interest of fostering an open and welcoming environment, we as
6 | contributors and maintainers pledge to making participation in our project and
7 | our community a harassment-free experience for everyone, regardless of age, body
8 | size, disability, ethnicity, gender identity and expression, level of experience,
9 | nationality, personal appearance, race, religion, or sexual identity and
10 | orientation.
11 |
12 | ## Our Standards
13 |
14 | Examples of behavior that contributes to creating a positive environment
15 | include:
16 |
17 | * Using welcoming and inclusive language
18 | * Being respectful of differing viewpoints and experiences
19 | * Gracefully accepting constructive criticism
20 | * Focusing on what is best for the community
21 | * Showing empathy towards other community members
22 |
23 | Examples of unacceptable behavior by participants include:
24 |
25 | * The use of sexualized language or imagery and unwelcome sexual attention or
26 | advances
27 | * Trolling, insulting/derogatory comments, and personal or political attacks
28 | * Public or private harassment
29 | * Publishing others' private information, such as a physical or electronic
30 | address, without explicit permission
31 | * Other conduct which could reasonably be considered inappropriate in a
32 | professional setting
33 |
34 | ## Our Responsibilities
35 |
36 | Project maintainers are responsible for clarifying the standards of acceptable
37 | behavior and are expected to take appropriate and fair corrective action in
38 | response to any instances of unacceptable behavior.
39 |
40 | Project maintainers have the right and responsibility to remove, edit, or
41 | reject comments, commits, code, wiki edits, issues, and other contributions
42 | that are not aligned to this Code of Conduct, or to ban temporarily or
43 | permanently any contributor for other behaviors that they deem inappropriate,
44 | threatening, offensive, or harmful.
45 |
46 | ## Scope
47 |
48 | This Code of Conduct applies both within project spaces and in public spaces
49 | when an individual is representing the project or its community. Examples of
50 | representing a project or community include using an official project e-mail
51 | address, posting via an official social media account, or acting as an appointed
52 | representative at an online or offline event. Representation of a project may be
53 | further defined and clarified by project maintainers.
54 |
55 | ## Enforcement
56 |
57 | Instances of abusive, harassing, or otherwise unacceptable behavior may be
58 | reported by contacting the project team at benedek.rozemberczki@gmail.com. All
59 | complaints will be reviewed and investigated and will result in a response that
60 | is deemed necessary and appropriate to the circumstances. The project team is
61 | obligated to maintain confidentiality with regard to the reporter of an incident.
62 | Further details of specific enforcement policies may be posted separately.
63 |
64 | Project maintainers who do not follow or enforce the Code of Conduct in good
65 | faith may face temporary or permanent repercussions as determined by other
66 | members of the project's leadership.
67 |
68 | ## Attribution
69 |
70 | This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 1.4,
71 | available at [http://contributor-covenant.org/version/1/4][version]
72 |
73 | [homepage]: http://contributor-covenant.org
74 | [version]: http://contributor-covenant.org/version/1/4/
75 |
--------------------------------------------------------------------------------
/contributing.md:
--------------------------------------------------------------------------------
1 | # Contribution Guidelines
2 |
3 | Please note that this project is released with a [Contributor Code of Conduct](code-of-conduct.md). By participating in this project you agree to abide by its terms.
4 |
5 | The pull request should have a useful title. Pull requests with `Update readme.md` as title will be closed. Please carefully read everything in `Adding to this list`.
6 |
7 | ## Adding to this list
8 |
9 | Please ensure your pull request adheres to the following guidelines:
10 |
11 | - Search previous suggestions before making a new one, as yours may be a duplicate.
12 | - Make an individual pull request for each suggestion.
13 | - Chose corresponding section (Factorization, Deep Learning and so on) for your suggestion.
14 | - Include the name of the paper.
15 | - Include the year and conference in which the paper came out.
16 | - Keep chronological order.
17 | - Add the paper authors.
18 | - Add a link to the paper - preferrably on ArXiv.
19 | - Add an implementation of the paper. You can add multiple implementations.
20 | - Check your spelling and grammar.
21 | - List, after your addition, should be alphabetically.
22 | - The pull request and commit should have a useful title.
23 | - The body of your commit message should contain a link to the repository.
24 |
25 | Thank you for your suggestions!
26 |
--------------------------------------------------------------------------------