├── README.md ├── bulk.sh ├── demo.ipynb ├── example_list.txt ├── graph.xml ├── prep.py ├── prepro.sh ├── productdef.yaml ├── radar average.ipynb └── subset.sh /README.md: -------------------------------------------------------------------------------- 1 | Pre-processing of Sentinel 1 2 | ============================ 3 | 4 | This project aims to connect [Sentinel 1](https://sentinel.esa.int/web/sentinel/missions/sentinel-1) 5 | with the [Open Data Cube](https://github.com/opendatacube/datacube-core). 6 | 7 | It takes Synthetic Aperture Radar data (specifically GRD scenes from the Sentinel 1 platform) and prepares it for ingestion into an opendatacube instance (such as Digital Earth Australia), using the Sentinel Toolbox (SNAP) software. 8 | 9 | *NOTE: in-progress, use at own risk.* 10 | 11 | Processing steps 12 | ---------------- 13 | Prerequisites: 14 | - Sentinel 1 GRD (ground-range, detected amplitude) scenes. 15 | - Precise orbital ephemeris metadata. (Possibly also calibration?) 16 | - A digital model for the elevations of the scattering surface (DSM/DEM). 17 | - gpt (graph processing tool) from the Sentinel Toolbox software. 18 | - Access to a configured ODC instance. 19 | 20 | Stages: 21 | 22 | 1. Update metadata (i.e. orbit vectors) 23 | 2. Trim border noise (an artifact of the S1 GRD products) 24 | 3. Calibrate (radiometric, outputting beta-nought) 25 | 4. Flatten (radiometric terrain correction) 26 | 5. Range-Doppler (geometric terrain correction) 27 | 6. Format for the AGDC (e.g. export metadata, tile and index) 28 | 29 | Implementation 30 | -------------- 31 | Initially will use auto-downloaded auxilliary data (ephemeris, DEM). Later, intend to use GDAL tools to subset a DSM, or test efficiency of chunked file-formats for the DSM raster. 32 | 33 | Steps 1-4 will be combined in a gpt xml. 34 | 35 | Step 5 will be a gpt command-line instruction. (Some operators chain together inefficiently, at least in previous gpt versions.) 36 | 37 | Step 6 will be a python prep script. 38 | 39 | The overall orchestration will initially be a shell script. (Other options would be a Makefile or a python cluster scheduling script.) 40 | 41 | A jupyter notebook will demonstrate the result (using opendatacube API). 42 | 43 | Known flaws 44 | ----------- 45 | 46 | - Ocean is masked out. (This is due to the nodata value used for the DEM by the terrain correction steps.) 47 | - Border noise is not entirely eliminated (some perimeter pixels). 48 | - Could conceive a more efficient unified radiometric/geometric terrain-correction operator (to reduce file IO concerning DSM)? 49 | - Further comparison with GAMMA software output is necessary. 50 | - Signal intensity units unspecified. 51 | - Currently autodownloading ancilliary data (e.g. using 3s SRTM, which is suboptimal). 52 | - Output format is ENVI raster (approximately 10x larger than input zip) rather than cloud optimised GeoTIFF. 53 | 54 | Instructions 55 | ------------ 56 | 57 | **Process imagery** 58 | 59 | 1. Ensure the graph processing tool is available (run "ln -s ../snap6/bin/gpt gpt" after installing SNAP) 60 | 2. Batch process some scenes (run "./bulk.sh example_list.txt" after confirming example input) 61 | 62 | (Takes 10-15min/scene, using 4 cores and 10-15GB memory, on VDI@NCI.) 63 | 64 | **Insert into Open Data Cube** 65 | 66 | 3. Ensure the environment has been prepared (run "datacube system check") 67 | 4. Define the products (run "datacube product add productdef.yaml") 68 | 5. For each newly preprocessed scene, run a preparation script (e.g. "python prep.py output1.dim") to generate metadata (yaml) in an appropriate format for datacube indexing. 69 | 6. For each of those prepared scenes, index into the datacube (e.g. "datacube dataset add output*.yaml --auto-match") 70 | 7. Verify the data using the datacube API (e.g. a python notebook). 71 | 72 | 73 | -------------------------------------------------------------------------------- /bulk.sh: -------------------------------------------------------------------------------- 1 | #!/bin/env bash 2 | # 3 | # Preprocess many Sentinel 1 scenes using gpt 4 | # 5 | 6 | # For testing, try a random subset of the full input list: 7 | # $ sort -R full.list | head > subset.list 8 | 9 | # For complete run: 10 | # $ /usr/bin/time ./bulk.sh full.list | tee master.log 11 | 12 | 13 | if [ "$#" != "1" ]; then # validate argument count 14 | echo Usage: . bulk.sh input_list.txt 15 | else 16 | echo "Processing files listed in $1" 17 | 18 | 19 | date 20 | 21 | while read -r line; do 22 | short=$(echo $line | sed s:^.\*/:: | sed s:\.zip$::) 23 | 24 | echo $short 25 | 26 | . prepro.sh $line $short.dim > $short.log 2>&1 27 | 28 | [ -e $short.data ] && echo DONE || echo ABORT # check whether final output produced (not whether ok) 29 | done < $1 30 | 31 | date 32 | fi 33 | -------------------------------------------------------------------------------- /demo.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 1, 6 | "metadata": { 7 | "collapsed": true 8 | }, 9 | "outputs": [], 10 | "source": [ 11 | "import datacube" 12 | ] 13 | }, 14 | { 15 | "cell_type": "code", 16 | "execution_count": 2, 17 | "metadata": { 18 | "collapsed": true 19 | }, 20 | "outputs": [], 21 | "source": [ 22 | "dc = datacube.Datacube()" 23 | ] 24 | }, 25 | { 26 | "cell_type": "code", 27 | "execution_count": 31, 28 | "metadata": { 29 | "collapsed": false 30 | }, 31 | "outputs": [ 32 | { 33 | "data": { 34 | "text/html": [ 35 | "
\n", 36 | "\n", 37 | " \n", 38 | " \n", 39 | " \n", 40 | " \n", 41 | " \n", 42 | " \n", 43 | " \n", 44 | " \n", 45 | " \n", 46 | " \n", 47 | " \n", 48 | " \n", 49 | " \n", 50 | " \n", 51 | " \n", 52 | " \n", 53 | " \n", 54 | " \n", 55 | " \n", 56 | " \n", 57 | " \n", 58 | " \n", 59 | " \n", 60 | " \n", 61 | " \n", 62 | " \n", 63 | " \n", 64 | " \n", 65 | " \n", 66 | " \n", 67 | " \n", 68 | " \n", 69 | " \n", 70 | " \n", 71 | " \n", 72 | " \n", 73 | " \n", 74 | " \n", 75 | " \n", 76 | " \n", 77 | " \n", 78 | " \n", 79 | " \n", 80 | " \n", 81 | " \n", 82 | " \n", 83 | " \n", 84 | " \n", 85 | " \n", 86 | " \n", 87 | " \n", 88 | " \n", 89 | " \n", 90 | " \n", 91 | " \n", 92 | " \n", 93 | "
namedescriptioninstrumentformatproduct_typeplatformcrsresolutiontile_sizespatial_dimensions
id
3s1a_gamma0_sceneSentinel-1A SAR Gamma0SARENVIgamma0SENTINEL_1ANaNNaNNaNNaN
4s1b_gamma0_sceneSentinel-1B SAR Gamma0SARENVIgamma0SENTINEL_1BNaNNaNNaNNaN
\n", 94 | "
" 95 | ], 96 | "text/plain": [ 97 | " name description instrument format product_type \\\n", 98 | "id \n", 99 | "3 s1a_gamma0_scene Sentinel-1A SAR Gamma0 SAR ENVI gamma0 \n", 100 | "4 s1b_gamma0_scene Sentinel-1B SAR Gamma0 SAR ENVI gamma0 \n", 101 | "\n", 102 | " platform crs resolution tile_size spatial_dimensions \n", 103 | "id \n", 104 | "3 SENTINEL_1A NaN NaN NaN NaN \n", 105 | "4 SENTINEL_1B NaN NaN NaN NaN " 106 | ] 107 | }, 108 | "execution_count": 31, 109 | "metadata": {}, 110 | "output_type": "execute_result" 111 | } 112 | ], 113 | "source": [ 114 | "dc.list_products()" 115 | ] 116 | }, 117 | { 118 | "cell_type": "code", 119 | "execution_count": 32, 120 | "metadata": { 121 | "collapsed": false 122 | }, 123 | "outputs": [ 124 | { 125 | "data": { 126 | "text/html": [ 127 | "
\n", 128 | "\n", 129 | " \n", 130 | " \n", 131 | " \n", 132 | " \n", 133 | " \n", 134 | " \n", 135 | " \n", 136 | " \n", 137 | " \n", 138 | " \n", 139 | " \n", 140 | " \n", 141 | " \n", 142 | " \n", 143 | " \n", 144 | " \n", 145 | " \n", 146 | " \n", 147 | " \n", 148 | " \n", 149 | " \n", 150 | " \n", 151 | " \n", 152 | " \n", 153 | " \n", 154 | " \n", 155 | " \n", 156 | " \n", 157 | " \n", 158 | " \n", 159 | " \n", 160 | " \n", 161 | " \n", 162 | " \n", 163 | " \n", 164 | " \n", 165 | " \n", 166 | " \n", 167 | " \n", 168 | " \n", 169 | " \n", 170 | " \n", 171 | " \n", 172 | " \n", 173 | " \n", 174 | " \n", 175 | " \n", 176 | " \n", 177 | " \n", 178 | " \n", 179 | "
dtypenamenodataunits
productmeasurement
s1a_gamma0_scenevhfloat32vh01
vvfloat32vv01
s1b_gamma0_scenevhfloat32vh01
vvfloat32vv01
\n", 180 | "
" 181 | ], 182 | "text/plain": [ 183 | " dtype name nodata units\n", 184 | "product measurement \n", 185 | "s1a_gamma0_scene vh float32 vh 0 1\n", 186 | " vv float32 vv 0 1\n", 187 | "s1b_gamma0_scene vh float32 vh 0 1\n", 188 | " vv float32 vv 0 1" 189 | ] 190 | }, 191 | "execution_count": 32, 192 | "metadata": {}, 193 | "output_type": "execute_result" 194 | } 195 | ], 196 | "source": [ 197 | "dc.list_measurements()" 198 | ] 199 | }, 200 | { 201 | "cell_type": "code", 202 | "execution_count": 33, 203 | "metadata": { 204 | "collapsed": false 205 | }, 206 | "outputs": [], 207 | "source": [ 208 | "x = dc.load(product='s1a_gamma0_scene', output_crs='EPSG:4326', resolution=(-0.00025, 0.00025))" 209 | ] 210 | }, 211 | { 212 | "cell_type": "code", 213 | "execution_count": 34, 214 | "metadata": { 215 | "collapsed": false 216 | }, 217 | "outputs": [ 218 | { 219 | "data": { 220 | "text/plain": [ 221 | "\n", 222 | "Dimensions: (latitude: 6006, longitude: 13062, time: 1)\n", 223 | "Coordinates:\n", 224 | " * time (time) datetime64[ns] 2015-02-23T09:09:18.828457\n", 225 | " * latitude (latitude) float64 -42.2 -42.2 -42.2 -42.2 -42.2 -42.2 -42.2 ...\n", 226 | " * longitude (longitude) float64 145.0 145.0 145.0 145.0 145.0 145.0 145.0 ...\n", 227 | "Data variables:\n", 228 | " vh (time, latitude, longitude) float32 0.0 0.0 0.0 0.0 0.0 0.0 ...\n", 229 | " vv (time, latitude, longitude) float32 0.0 0.0 0.0 0.0 0.0 0.0 ...\n", 230 | "Attributes:\n", 231 | " crs: EPSG:4326" 232 | ] 233 | }, 234 | "execution_count": 34, 235 | "metadata": {}, 236 | "output_type": "execute_result" 237 | } 238 | ], 239 | "source": [ 240 | "x" 241 | ] 242 | }, 243 | { 244 | "cell_type": "code", 245 | "execution_count": 35, 246 | "metadata": { 247 | "collapsed": true 248 | }, 249 | "outputs": [], 250 | "source": [ 251 | "%matplotlib inline" 252 | ] 253 | }, 254 | { 255 | "cell_type": "code", 256 | "execution_count": 36, 257 | "metadata": { 258 | "collapsed": false, 259 | "scrolled": true 260 | }, 261 | "outputs": [ 262 | { 263 | "data": { 264 | "text/plain": [ 265 | "" 266 | ] 267 | }, 268 | "execution_count": 36, 269 | "metadata": {}, 270 | "output_type": "execute_result" 271 | }, 272 | { 273 | "data": { 274 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEZCAYAAABrUHmEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYHFW9//H3JxD2zQCCELawKAoBIgauIA6bshgWvaCg\ngAiouF68+BMQJT7iVfF63VEvoldUEBUIQRYFYUCQECAhBAEJIYQEhAiEEAhLkvn+/qjTSdHpnqmZ\nrp6e7nxez1NPqk5tp2o6/e1z6tQ5igjMzMyKGNbqDJiZWftw0DAzs8IcNMzMrDAHDTMzK8xBw8zM\nCnPQMDOzwhw0SiRpC0nPS1Kr82Jm1gwOGg2QNEvSfpXliJgTEevFEH35RdJqkn4m6VFJCyTdLemg\nqm32l/SApBck/UXSlrl1R0m6TdKLkm6scfweSQvT9Lyk/+0jP72d61uSHkr5vF/ScX0cq+72kjaU\ndKukpyU9m67h7Wndj3P5fUXSq2n+eUlXp212lXRXuu47Je2SO/b6kv5P0lOSnpR0Th/53ErSjelY\n90vaP7duNUnfkfS4pGck/VDSKr0c65MpPy9L+nmN9UencyyQdJ+kw3s51uskXSrpX5LmSfqVpHXS\nuo0lXZzyNV/SXyWNrdr/05IekfScpMmS9qpxjuGSHpT0WFV63c+NpGty6ZW/0bR612GDICI8DXAC\nZgH7tTof/cjvWsCXgS3S8qHA88CWaXlD4DngvcBqwHnA7bn99wP+HTgbuLHG8ZcC2xTMS1/nOgfY\nPs2PBZ4F9uzleHW3B1avrEvLhwPPAMNqHOOiqrThwKPAZ9L8p9Pyqmn9L4BL0zm2Ah4GTugln38D\nvpW2fy8wH9gwd/6bgfXT/bkdOKeXYx0BHAb8CPh51brNgFeAd6XlQ4AXgY3qHOt84DpgbWBd4Hrg\nv9O6bYD/AF4PCDgF+BewVu5+vwDsmpY/DswDVHWOLwLdwGMNfG5uAr7Y6v9LK/PU8gy06wRclD7s\nL5J98Z6evjR6Kl9G6QP+VeA2YCFwJTAC+DWwALiD9IWdtn8T8Of0hfYAcNQgXMc04Mg0fwpwa27d\nWsAiYIeqfU6idtDoAbYteN5C58qtvxI4rR/XVXP79KU3Lv3tNqpaVytoHAjMqUqbnfsy/hcwJrfu\nTODmOnnaHngJWDuXdgvw0TR/J/C+3LpjgNkFrvWrrBg0xgJPVqXNA/aoc4xrgI/nlj8BXNvLORcA\nu6X5o4FJVX/LpcAmubRtgL8D764RNAp9boCtgSXAVs36/+Cp78nVUwMUEccDjwHviaxK6r8rq6o2\nfT/wQbJfftuR/dK8EHgd8CDZFxWS1iILGL8GNiL7wviRpB1rnV/Sj1JVwbO5fyvz9xS5BkmbADsA\n96Wkt5AFkco1LgJmpvSibpb0hKQ/SNqql+0Kn0vSmsDbyL50+lRv+1St8TIwAbggIp4ucLi3APdW\npd1blc9hVfM75c55laT/lzvWIxHxYm77abljKU35Y42UtG461o8k/bBAngHuAh6QNE7SMElHkF17\n9bVU/AgYJ2kDSa8D3kcWSFYgaVeyUtfDKelaYBVJYyUNI/tRcU9EPJXb7ftkAfXlOucv8rk5Hrgl\nImbXWW+DwEGjcX099P5FRDwaEQvJ/nPNjIibIqIH+D2wW9ruPcCsiLgoMvcAl5NVB60gIj4ZEa+L\niBG5fyvzu/aZaWlVsgD1i4iYkZLXIfsFmbeArLqiiH3Ifg2+Cfgn8Mf0JVJLf871E2BqRPy5YD5q\nbh8Ru6TjH0tW+iuir3xeB5whaR1J2wEnkv3SrpxzXEScV/BY1wKflbSRpE3JqsKoHC/9zT9VJNPp\n8/Ur4GKyaqpfAx+LiJfq7DKFrJrwGbLS0xLgx9UbSVqPrJQ9Pn2mSf9eDtxKFhS+BHw0t8+RwCoR\nMbHOuYt+bo4jqw60FnLQaL78r62Xaiyvk+a3AvbMlxjIvtw2LTtDkkT2JfIKy7+YIKuXXq9q8/XI\nqtb6FBG3RsSSiHge+CxZlcSOylqVLXvQ2Z9zSfoW8GayElslLf/w+oy+tq/K46sRcSlwpqSdC1xW\nX/n8DNkX5QzgCrIv6bkDPNbXgKnAPWRfwFcAi8mqlfpF0gFkz4n2iYjhQBdwoaTRdXb5A/APsmca\n6wGPAL+pOuYawETgb7lAiKRTyILljhGxGtmX+9WSNk0l6G+y/HO2wo+sep+bqnPvDWwCXFb4JlhT\nOGg0psxWUnOA7qoSw3oR8claG1d9ceanhZKm93GuC8mqwN4bEUtz6X8HlpVSJK0NbEvBaqHqLJLd\nH0XWqmzdNFW+NPs8l6SvkNWBHxgRL1TSI+LUyrEi4ht9bV/HcGBUgev4O1D9RTu6ks+ImB8RH4qI\nN0TEzsAqwORejjUqXWvFLrljvRwRn4mIkRGxHdlD8rsjYiCfs13Inq1MTce+i+wZ2gF1th8N/DTl\nYRFZae3gykpJq5FV682JiI/X2PeqiJiZzvUnshLD28me42wF/FXSP8m+9DdLVVFbsqJln5uq9OOB\ny1PerIUcNBrzJCt+8Qz0HY0/AjtI+pCkVVPzxN0lvanWxlVfnPlp3fTlVZOkn5BVAxwWEa9Wrb4C\neIukIyWtTtbSalpEPJT2HZbSh5PVYa+eqrmQ9GZJu6Rt1gG+TfaL+4E6WenrXGeSPdc5MCKe6+vm\n9ba9pD0k7ZXu6RqSvkDWEuiOvo5L1tpnaWpSupqkT5F9qd2Yjj1K0oh03QeTPeD/aq0DpWrAe4Bz\n0r07EtiZ9OtZ0maS3pDm9yRrpfblXq55lfTrfxVg1XTMShPdO4F3KDUPlrQbsDf1n2lMBk5O92dN\n4GOkZ07pb3wZWUOFE2rseydwqKRt0vYHkgWL+4DpwBZkPxB2AU4m+3+zCzC3yOcmXeNRuGpqaBiM\np+2dOpE1d5xN1rzzc2S/qJayvPXUjcBHctu/ppULsD/wUG55e7LgMY+sXvkGYHSJ+d2SrKXKIrIq\nkYVkLb+OyW2zH9l/2BdT/vOtu05I+y/NTT9P6/Yle7C/kOxL4XL6aBHTx7l6yKrvns/l84xejlV3\ne7I683vInh88Tdaqba8ax1ih9VRK34XswfKL6d/RuXVHAY+TVT1NAQ6o2veafL7T3+Cm9Dd4ANg3\nt+4dZM24X0jrPlB1rB8D51flt/rv8eXc+k+QVZstIHto/R+5dccC03PLW5FVPT2dpmsqf790/5am\nfOU/N3vl9h9P9n9hAVnJ6dg6f6d3kms9VeRzA3yA7Hlfy//Pe4qsHXUrSTqdrO51o4h4VtKxwBfI\nfs29AJwaEStUt0j6NbA78CrZr6SPxWurWszMrGQtrZ6SNJKsjjXfhO4Rsod3uwLnAhfU2f3XEfGm\niBhN1rrk5KZm1szMWv5M4zvA5/MJETEpIirNEicBm9faMSKuyy1OBkY2JYdmZrZMy4KGpHFkLTF6\na+lzMlnb9d6OsypZE7/retvOzMwat2ozDy7perK21cuSyJ5VnA2cRdZFQ35dft99ydp+793Hac4n\na1pY9GUtMzMboJY8CJe0E1nLoEVkwWIkWQuUsRExL72AdBlwUKS233WO82WyTtLe28f5Wvu038za\nSkQMeHiDrbcYHrPnLunPLrMjYuuBnm+wtaR6KiLui4hNI2JURGxD1i57txQwtiQLGMf1ETBOJnuR\n65iC5+Scc85peXO1vibn0XkcStPKmMdGzZ67hMX/3LbwRNbcuW20+kF4Rf4N0C+R9QR7vqSpkpa9\nXSvp6tQnD2Rt1l8PTJI0RdLZg5pjM7M6lkZP4andNPWZRlERMSo3fwrZW7W1tjs0Nz98ELJmZtZv\nPaX2MDS0DImgMVi6urpanYU+OY/lcB7L4TwOzOIOfs+45W+EDwZJsTJcp5k1ThLRwINwSTH/8eKv\njb1u87kNnW+wrVQlDTOzwbDU1VNmZlaUn2mYmVlhSzu4OtxBw8ysZO3XkLY4Bw0zs5L5mYaZmRW2\nuHNjhoOGmVnZlg541Oehz0HDzKxkPR1c0hgqfU+ZmXWMpajwVIukRyVNq9H/3qclPShpuqRv5NLP\nlDRD0gOS3tXMa3NJw8ysZCVUT/UAXRExv5IgqQsYB+wUEUskbZTSdwSOBnYkG2biBknbN6sbDJc0\nzMxK1hMqPNUhVvx+PhX4RkQsAYiIp1P64cBvI2JJRDwKzADGln9VGQcNM7OSNVo9RTZcxJ8k3ZnG\nDgLYAdhH0iRJN0l6a0rfHJiT2/fxlNYUrp4yMyvZ4lil7rq7b3+JKZNe7usQb4+IJyVtDPxZ0j/I\nvq83iIg9Jb0N+D0wCmpGnqY9infQMDMrWW/PNHb9t7XY9d/WWrZ84fcWrLBNRDyZ/v2XpAlk1U1z\ngMtT+p2SlkrakGzk0y1zu48Enmj8Kmpz9ZSZWcmWxrDCUzVJa0laJ82vDbwLmA5MAPZP6TsAq0XE\nM8BE4P2SVpO0DbAdMHmFA5fEJQ0zs5L1NPZ7fBPgCklB9h39m4j4s6ThwM8lTQdeAY4HiIj7Jf0O\nuB9YDHyimQMIeRAmM7OcMgZh+susHQpvv/82D3kQJjOzlVmtaqdO4aBhZlayng7ue6rl4VDS6ZJ6\nJI1Iy8em1+fvkXSrpJ372P8HkhYOTm7NzPr2aqxaeGo3Lc2xpJHAAcDsXPIjwD4RsUDSQcAFwJ51\n9n8rsD5NbJNsZtZfDT4IH9JafWXfAT6fT4iISRFRabg8iTpvNkoaBnyren8zs1ZbGio8tZuWlTQk\njQPmRMR0qe6NOxm4ts66TwETIuIp9XIAM7PBtrTlv8ebp6lBQ9L1ZG2OlyWRVSWdDZwFHFi1Lr/v\nvsCJwN41jvsG4CjgnUXzMn78+GXzXV1ddHV1Fd3VzDpYd3c33d3dpR6zp4NbT7XkPQ1JOwE3AIvI\ngsVIsk62xkbEPEmjgcuAgyJiZo39DwF+Bryc9t8SmBkRNRtH+z0NMyuqjPc0fjOjeCezH9x+st/T\n6EtE3AdsWlmWNAsYExHzJW1JFjCOqxUw0v7XAJvl9l9YL2CYmQ223josbHdDpb1XsLx66kvACOD8\n9KxicUSMBZB0NXBSpTOvqv3NzIYEv9zXZBExKjd/CnBKne0OrZO+XpOyZmbWb538ct+QCBpmZp3E\nJQ0zMyvMTW7NzKywXsb+bnsOGmZmJXNJw8zMCnOTWzMzK6yT3wh30DAzK9lSN7k1M7OiXNIwM7PC\nOvk9jc69MjOzFulBhad6JA2TNFXSxLS8v6S7U9otkkal9NUk/VbSDEm3p/77msZBw8ysZEtjWOGp\nF58F/p5bPh84JiJ2Ay4hG2IC4CTg2YjYHvgucF4TLmkZBw0zs5ItjlUKT7WkobArQ0BU9JANb036\n9/E0fzjwyzT/B2D/0i8ox880zMxKVsIb4ZWhsNfPpZ0CXCtpEfA8sGdK3xyYAxARSyU9J2lERDzb\naCZqcdAwMytZTy+VOHPunMecu+bVXS/pUOCpiLhHUldu1WlkA9PdJel0ssByCqzwYKQyQmpTOGiY\nmZVsaS8ljc1234TNdl8+CvbtP72/epO9gMPSCKVrAutK+iPwxoi4K21zKXBtmp8LbAE8IWkVYL2I\nmF/GddTiZxpmZiXrCRWeqkXEWRGxZRpn6APAjcBhwPqStkubvQt4IM1PBE5I80el7ZvGJQ0zs5KV\n/XJfRPRI+ihwuaSlwHzgI2n1hcCvJM0AniELNE3joGFmVrKyuhGJiJuBm9P8BGBCjW1eAY4u5YQF\nOGiYmZVsSY97uTUzs4I8RriZmRXWW+updtfy1lOSTpfUI2lEWj5W0jRJ90i6VdLOvez7NUn/kPR3\nSZ8avFybmdXXE8MKT+2mpSWN9Kr8AcDsXPIjwD4RsUDSQcAFLH/zMb/vh4HNI+KNaXmj5ufYzKxv\nHiO8eSqvyk+sJETEpNz6SWSvyNdyKnBMbr+nm5FBM7P+6uRnGi0rG0kaB8yJiOm9bHYyy996rLYt\n8AFJd0q6OvfSi5lZSzXyct9Q19SShqTrgU3ySWR9opwNnAUcWLUuv+++wInA3nUOvzqwKCLeJulI\n4OfAPvXyMn78+GXzXV1ddHV1Fb0MM+tg3d3ddHd3l3rMTm5yq4im9WtV/6TSTsANwCKyYDGSrJvf\nsRExT9Jo4DKyzrlm1jnG/Wn9Y2n5uYjYoM620YrrNLP2I4mIgRcBJMV7bzu18PaX7/Xjhs432Fry\nTCMi7gM2rSxLmgWMiYj5adSpy4Dj6gWMZAJZv/G/SD1B/qOJWTYzK6wdq52KavWD8IpgefXUl4AR\nwPmSBCyOiLEAkq4GToqIJ4FvAr+RdBqwkOz5h5lZyzloNFnqzbEyfwpZH/G1tjs0N78AeE/zc2dm\n1j8OGmZmVpiDhpmZFbakDd/0LspBw8ysZC5pmJlZYQ4aZmZWmIOGmZkV1kbv6vWbg4aZWck6ucNC\nBw0zs5J1cvVU57YLMzNrkaU9wwpP9UgaJmmKpIlpeWtJk9LAc5dIWjWlrybpt5JmSLo9dcXUNA4a\nZmYli1DhqRefBe7PLX8T+HYaeO454KSUfhLwbERsD3wXOK8Jl7SMg4aZWckaHU8jjWp6CPCzXPJ+\nZJ25AvwSOCLNH56WAf5A1pFr0zhomJmVLKL4VEdlVNMAkLQhMD8ietL6uSwf1XRzYE523lgKPCdp\nRJMuzUHDzKxsPajwVE3SocBTEXEPy3v/FqywceTWveYQuXWlc+spM7OS9fasYuG9s3lh+uzedt8L\nOEzSIcCawLpkzyrWlzQslTZGAk+k7ecCWwBPSFoFWC8i5jd+FbU5aJiZlay3Jrdr77w1a++89bLl\nJy/+62vWR8RZZMNhI+mdwH9GxIckXQocBVwKnABcmXaZmJbvSOtvLOkyanLQMDMrWU9PU97TOAP4\nraSvAlOBC1P6hcCvJM0AngE+0IyTVzhomJmVrKxuRCLiZuDmND8L2KPGNq8AR5dywgIcNMzMStbJ\nb4Q7aJiZlayXprRtz0HDzKxkndzLbcvf05B0uqSeyssoko6VNE3SPZJulbRznf32l3S3pKmSbpE0\nanBzbmZWW0ndiAxJLQ0a6VX5A4B8o+VHgH0iYlfgXOCCOrufDxwTEbsBlwBnNzOvZmZFRT+mdtPq\nkkblVfllImJSRCxIi5NY/qp8tR5g/TS/PstfdDEza6noUeGp3bTsmYakccCciJgu1b1xJwPX1ll3\nCnCtpEXA88Ce5efSzKz/2rHaqaimBg1J1wOb5JPISmRnk73xeGDVuvy++wInAnvXOfxpwEERcZek\n/yQrtZxSUtbNzAbMracGKCIOrJUuaSdga2CasmLGSOBuSWMjYp6k0cD/kgWFFfpQkbQRsEtE3JWS\nfkf9EgkA48ePXzbf1dVFV1dXv6/HzDpPd3c33d3dpR6zk0saiiEQEiXNAsZExPw06tRfgOMiYlKd\n7VcB/gm8PSIelnQSWYA5qs72MRSu08yGPklEA9/6kmLUJV8rvP0jx3yxofMNtqHynkawvHrqS8AI\n4PxUClkcEWMBJF0NnBQRT0o6Bbhc0lJgPvCRFuTbzGwFnfwbdUgEjYgYlZs/hTrPJiLi0Nz8lSzv\n5dHMbOhw0DAzs6LasSltUQ4aZmYla6NHFP1W6OU+STtI+ouk+9LyaEl+A9vMrJYOfiW86BvhFwBn\nAosBIuJemjzQh5lZ+1I/pvZStHpqrYiYXPXm9pIm5MfMrP21YQmiqKJB42lJ25JuhaR/J3tPwszM\nqjlo8EmyN7TfJOlxYBbwoablysysja30raci4hHgAElrA8MiYmFzs2Vm1sZW1pKGpM/VSQcgIv6n\nCXkyM2tvK3GT23XTtDtwKtnYFpsDHwfGNDdrZmbtSVF8WmFfaXVJd6RRSadLOiel/1rSg5LulfSz\n1AdfZZ/vS5qRRjzdtZnX1mtJIyK+kjJ0C1mHggvT8njg6mZmzMysbTVQPRURr0jaNyIWpcBwm6Rr\ngV9HxIcAJF1MNt7QTyUdDGwbEdtL2gP4CU0cX6joexqbAK/mll/lteNkmJlZRaj4VGv3iEVpdnWy\nH/cREdflNplMNqQEwOHARWm/O4D1JTXt+7lo66mLgMmSriCLoUcCv2xWpszM2lqDD8IlDQPuBrYF\nfhQRd+bWrQocB3w6JW0OzMnt/nhKe6qxXNRWtPXU11Lx6B0p6cSImNqMDJmZtb2e+qtefmgmL8+Y\n2evuEdED7CZpPWCCpDdHxP1p9fnAzRHxt7Rcq7jStPZbhYJGGhjpaeCKfFpEPNasjJmZta1eWk+t\nsf12rLH9dsuWF1xzff3DRDwvqRs4CLg/PRTfKCI+mttsLrBFbnkk8MSA8l1A0WcaVwN/TNNfgEfo\nY3hVM7OVVYOtpzaStH6aXxM4AHhQ0snAu4BjqnaZCByftt8TeC4ieq2aknSkpNUHcm1Fq6d2rjrh\nGOATAzmhmVnHa6xy6A3AL9NzjWHApRFxjaTFwKPAJEkBXB4R56Z1h0h6GHgROLHAOQ4Dvptaxv4W\n+FNEFOpPcEDjaUTElNS0y8zMShQR06nxHlxEDO9ln0/18xwnShoOHAwcSza89vURcXJf+xZ9ppF/\nM3wY2QU1rc7MzKyd1ap2GmoiYnFq4BTAmmRNd/sMGkWfaaybm1Yne8Zx+MCyambW4Rp8T6PZJB0k\n6f+AmcC/Az8jqxbrU9Hqqfsj4vdVJz0K+H2d7c3MVl69NLkdIiYCJwEfi4hX+rNj0ZLGmQXTBkTS\n6ZJ6JI1Iy4dJmpb6Xpksaa86+41J/bA8JOm7ZeXHzKwRjbSeGiT/BZwB3CDpk/15g7yvXm4PBg4B\nNpf0/dyq9Shp5D5JI8malM3OJd8QERPT+p2B3wE71tj9x8DJaVTBayS9OyL+VEa+zMwGbIg/04iI\n8cB4SaOB9wM3S5obEQf0tW9fJY0ngLuAl8leaa9ME4F3N5LpnO8An88n5PpdAViHGoU9SZsC60bE\n5JR0EXBESXkyMxu46MfUWvOAJ4FngNcX2aGvXm6nAdMk/aZoG97+kDQOmBMR06vGH0fSEcDXgY2B\nQ2vsvjnZm5AVc1OamVlLDfXWU5JOJSthbAz8ATgl101Jr/qqnvpdRBwNTE0vk7xGRIwukLnreW2P\nuCKLr2cDZwEHVq2rHHsCWZ8rewPnVm33mm3zWeorP2ZmTTf0B2HaCviPiLinvzv21Xrqs+nf9/Q7\nS0lEVH/ZAyBpJ2BrspKMyPpLuVvS2IiYl9v/VknbShoREc/mDtGv/lbGjx+/bL6rq4uurq7+X4yZ\ndZzu7m66u7vLPegQ//kaEWcMdF9F9H11kr4ZEV/oK60RkmaRDfQ0X9K2ETEzpY8BroyILWrscwdZ\n98B3kr078v2qPucr20WR6zQzk0TEwIsKkmK7/yo+EvbDZ32uofMNtqJNbmuVFg4uMyNksbly494n\n6T5JU4AfAEdXNkppFZ8ALgQeAmbUChhmZoOtDZrcDlhfzzROJftiHiXp3tyqdYHbysxIRIzKzZ8H\nnFdnuzG5+buBnWttZ2bWMm0YDIrq65nGxWRdoH+d7EWQioVVzxfMzKxiZQ0aEbEAWEDqv13S64E1\ngHUkreNBmMzMVtSO1U5FFXqmIWmcpBnALOBmsj7dPQiTmdlKpuiD8HOBPYGHImIbYH9gUtNyZWbW\nztrnjfB+Kxo0FkfEM8AwScMi4iZg9ybmy8ysbamn+NRuinaN/pykdYBbgN9Imkc2rKCZmVVrwxJE\nUUVLGocDLwGnAdeRDdwxrlmZMjNrZyvtexoVEZEvVfyySXkxM+sMbRgMiuq1pCFpoaTna0wLJT0/\nWJk0M2snjZQ0JI2UdKOk+yVNl/SZqvWvGbQupX1f0gxJ90jatZnX1td7Gus28+RmZh2psZLGEuBz\nEXFPepZ8t6Q/R8SDtQatS4PlbRsR20vaA/gJWWvXpij6TMPMzApqpPVURDxZ6bI8Il4AHmD5WEEr\nDFpH9sz5orT9HcD6/Rm+tb8cNMzMylbSexqStgZ2Be7ID1pXtdnmwJzc8uM0cUC6ok1uzcysqF6C\nwYuPPcyLjz3c5yFS1dQfyMY1Wgp8kdo9jg/qgHQOGmZmJeutKe06W2zHOltst2z56b/9ecX9pVXJ\nAsavIuLKOoPWTZE0ln4OSNcoV0+ZmZWt8eqpnwP3R8T3ACLivojYNCJGpa6c5gK7pVFOJwLHA0ja\nE3guIp5q0pW5pGFmVrZGXtqTtBfwQWC6pKlkoeWsqkHmlg1aFxHXSDpE0sNkPXWcOPCz981Bw8ys\nbA0EjYi4DVilj21GVS1/auBn7B8HDTOzkrVj9yBFOWiYmZXNQcPMzIpyScPMzIrr4KDR8ia31Z1v\nSTpM0jRJUyVNTi0JqvdZU9IfJT2QOvT6r8HPuZlZHR08cl9LSxq1Ot8CboiIiWn9zsDvgB1r7P6t\niLg5vQRzo6R3R8Sfmp5pM7M+dHL1VKtLGit0vhURi3KL6wArdOkVES9FxM1pfgkwhewtSDOz1uvg\nkkbLgkYvnW8h6QhJDwBXAR/p4zgbkI0i+JemZNTMrJ88RvgASboeyHfRK7LYejZwFq/tfGtZp1sR\nMQGYIGlv4Fxqd9KFpFWAi4HvRsSjveVl/Pjxy+a7urro6uoqfiFm1rG6u7vp7u4u9ZidXD2liMG/\nutT51g3AIrJgMZKsO9+xqS+V/LaPALtHxLM1jnMh8HxEnNbH+aIV12lm7UcSEVGr59ii+8duH/uf\nwttP/ennGjrfYGvJg/CIuA/YtLIsaRYwJiLmS9o2Imam9DHA8DoB41xgvYg4abDybWZWSAf/Rh0q\n72ks63wLeJ+k44FXgZeAoysbSZoSEWMkbU5WvfVArkOvH0bEzwc532ZmK+jk6qkhETTynW9FxHnA\neXW2G5P+fZzWt/wyM6vNQcPMzIpSBz9DddAwMytZOzalLcpBw8ysbJ1b0HDQMDMrmx+Em5lZcQ4a\nZmZWlEsaZmZWXAcHDb/rYGZWMkXxqeb+0oWSnpJ0b1X6pyU9mMYR+kYu/UxJM9IYQ+9q5rW5pGFm\nVjL1NFzU+AXwA+CiZceUush69N4pIpZI2iil70jWc8aOZP343SBp+2Z1uOeShplZ2RocTyMibgXm\nVyWfCnyJ8dD5AAANdUlEQVQjjSFERDyd0g8HfhsRS1Jv3zOAseVdzGs5aJiZlaxJ42nsAOwjaZKk\nmyS9NaVvDszJbfd4SmsKV0+ZmZWtl4qhBfMe5vl/zRzIUVcFNoiIPSW9Dfg9MIrcWETFctAYBw0z\ns5L11uR2g423Y4ONt1u2PPf+64sedg5wOUBE3ClpqaQNgbnAlrntRgJP9C/Hxbl6ysysbBHFp/rE\na0sRE4D9ASTtAKwWEc8AE4H3S1pN0jbAdsDk5lyYSxpmZqVrtMNCSRcDXcCGkh4DzgF+DvxC0nTg\nFeB4gIi4X9LvgPuBxcAnmjlUqYOGmVnJGn0jPCKOrbPquDrbfx34emNnLcZBw8ysbB5Pw8zMinLf\nU2ZmVpyDhpmZFeWShpmZFdd431ND1pB4T0PS6ZJ6JI1Iy4dJmiZpqqTJkvbqY/+J1b1Bmpm1SpO6\nERkSWl7SkDQSOACYnUu+ISImpvU7A78j68Gx1v5HAs83O59mZoV1cOupoVDS+A7w+XxCRCzKLa4D\n1IzHktYGTgPObVruzMz6qdHxNIaylpY0JI0D5kTEdEnV644ge1llY+DQOof4KvDfwEvNzKeZWb+0\nYTAoqulBQ9L1wCb5JLJbejZwFnBg1ToAImICMEHS3mQlifx2SNoF2C4iPidp6/y+tYwfP37ZfFdX\nF11dXf2+FjPrPN3d3XR3d5d6THVw9ZSa2EVJ7yeWdgJuABaRfeGPJOsHfmxEzKva9hFg94h4Npf2\ncbLA8yowHHg9cFtE7FfjXM3sisXMOogkIqLXH6F97B/77le8R4+bbjyzofMNtpZVT0XEfcCmlWVJ\ns4AxETFf0rYRMTOljwGG5wNG2v8nwE/SNlsBV9UKGGZmg62TSxotbz2VEyyvYnqfpOPJShEvkY1/\nC4CkKRExpgX5MzMrpoPf0xgyQSMiRuXmzwPOq7PdCgEjImYDo5uXOzOz4tqxVVRRQyZomJl1DFdP\nmZlZUe34pndRDhpmZmVzScPMzArr3JjhoGFmVjY3uTUzs+KWdm7QGAodFpqZdRRFFJ5q7i+dJuk+\nSfdK+o2k1SRtLWmSpH9IukRSS370O2iYmZUtovhURdJmwKfJesgYTVYjdAzwTeDbEfFG4DngpEG8\nomUcNMzMytZA0EhWAdZOpYk1gSeAfYHL0vpfAkc2/TpqcNAwMytbTz+mKhHxBPBt4DGyTlwXAFOA\n5yKissdcYLNmXkI9DhpmZiVr5JmGpA2Aw4GtyALD2sDBNU7Tkqftbj1lZla2XprcPvvCozz7wuy6\n68mGv36k0rO3pCuAtwMbSBqWShsjyaqsBp2DhplZ2Xrq9yMyYq0tGbHWlsuWZ877a/UmjwF7SloD\neAXYH7gT2BA4CrgUOAG4stQ8F+TqKTOzsjX2TGMy8AdgKjCNbMiI/wXOAD4n6SFgBHBhk6+iJpc0\nzMxK1ugb4RHxFeArVcmzgD0aOnAJHDTMzMrmbkTMzKwwj9xnZmaFuaRhZmaFOWiYmVlhSzt36L6W\nN7mVdLqkHkkj0vJhkqZJmippsqS96uw3XNJPU4+P90tqST8sZmYriJ7iU5tpaUlD0kiytx/zr0fe\nEBET0/qdgd8BO9bY/YvAU6nHRypBx8ys5Vw91TTfAT4PTKwkRMSi3Pp1qPn6CwAfAd6Y2+/ZZmTQ\nzKzfOrj1VMuqpySNA+ZExPQa646Q9ABwFVlwqF6/fpo9V9Ldki6VtHFzc2xmVlDjXaMPWU0NGpKu\nTyNPVabp6d/DyKqXzslvXpmJiAkRsSNwBHBujUOvStZh118j4q3AJLKuhM3MWq+Dg0ZTq6ci4sBa\n6ZJ2ArYGpkkSWQC4W9LYiJiX2/9WSdtKGpGvfoqIZyS9GBETUtLvqVEiyRs/fvyy+a6uLrq6ugZ2\nUWbWUbq7u+nu7i73oEuXlnu8IUQxBCKdpFlkQxvOl7RtRMxM6WOAKyNiixr7XAxcEBE3SfowcHBE\nvL/O8WMoXKeZDX2SiAj1vWXd/eOgTU4tvP11T/24ofMNtlY/CK8IlldPvU/S8cCrwEvA0ZWNJE2J\niDFp8QzgV5K+A/wLOHEQ82tmVl8H/0gdEiWNZnNJw8yKKqWksdHHCm9/3dM/dUnDzGxlFm340l5R\nDhpmZmXr4Pc0HDTMzMrWwdXhDhpmZmXr4Ca3DhpmZiWLHj/TMDOzojq4eqrlXaObmXWcnig+1SDp\nIEkPSnpI0hcGOfe9WqmCRuldBTSB81gO57EczuMANTCehqRhwA+BdwNvAY6R9KZBvoK6HDSGGOex\nHM5jOZzHgYmeKDzVMBaYERGzI2Ix8Fvg8EG9gF74mYaZWdkae7lvc2BObnkuWSAZEhw0zMxKFo01\nua3VpciQebK+0vQ91eo8mFn7aLDvqUeBrfqxy1MRsWlu/z2B8RFxUFo+I8tSfHOgeSrTShE0zMza\nhaRVgH8A+wP/BCYDx0TEAy3NWOLqKTOzISQilkr6FPBnssZKFw6VgAEuaZiZWT+0bZNbSRdKekrS\nvTXWnS6pR9KItPxOSc9JmpKms+scc2tJkyT9Q9IlkhoqiTUpj7+Q9IikqWm70YOVx5TWlc59n6Sb\n6hyzZfexH3ls2X1My5XzTpe0RNIGNfZr5eexaB5beR/XkzRR0j0pjx+uc8wxku5NL8p9t5H8GRAR\nbTkBewO7AvdWpY8ErgNmASNS2juBiQWOeSlwVJr/MfCxIZjHXwBHtug+rg/8Hdg8LW80BO9j0Ty2\n7D5WrX8PcMNQu4/9yGMrP49nAl+v/J2BZ4BVaxzzDmBsmr8GeHdZ+V0Zp7YtaUTErcD8Gqu+A3y+\nRnqR1hD7AZel+V8CRw4sd5km5RFKLCH2M4/HApdFxONp36frHLaV97FoHqF19zHvGOCSOuta/Xms\n6C2P0Lr7GMC6aX5d4JmIWJLfQNKmwLoRMTklXQQcUVZ+V0ZtGzRqkTQOmBMR02us3jMVoa+W9OYa\n+24IzI/lQ27NBTYbSnnMOTcVyb8tafgg5nEHYISkmyTdKem4Gvu2+j72mcecVt3Hyvo1gYNYHhjy\n61p9H/vMY06r7uMPgTdLegKYBny2xu6bk927irkpzQaoY1pPpQ/3F4EDa6y+G9gqIhZJOhiYQPbl\n8ppD1Niv1FYCJeQR4IyIeCr957wA+AJw7iDlcVVgDNkv4LWB2yXdHhEP5w9RY7/BvI9F8gituY/V\n92YccGtEPFfrEDXSBuM+9ieP0NrP47uBqRGxn6RtgesljY6IF/KHqLGfW/80oJNKGtsCWwPTJM0i\nqwOdIun1EfFCRCwCiIhrgeH5B6cp/WlgA2WdhZH2f2Io5TGteyr9u5isPrns7gXq5pHsV9p1EfFy\nRDwD3ALsUpW/lt7HInlM+WzFfbw75bHiA9Sp9mnhfSycx5TPVn4eTwQuT+efSfa8o7pjv7nAFrnl\nZtzHlUq7Bw2liYi4LyI2jYhREbEN2Ydlt4iYJ2mTZTtIY8maGj9b43g3AUel+ROAK4daHlMdLZJE\nVjd732Dlkex+vEPSKpLWAvYAarUfb9l9LJrHFt9HJK1P1viht3vTyvtYKI8tvo+zgQPS+TchK5k/\nkj9QRDwJPC9pbMrj8b1djxXQ6ifxA52Ai8l+MbwCPAacWLX+EZa3svgk2Yd5KvA3YI/cdlcDm6b5\nbchaWjxE1nJl+BDM41/I6m/vJXuot9Zg5TEtn07WOule4NND7T72I4+tvo8nABfXOM5Quo9F8tiy\n+wi8AfhTOve9ZG9NV7abkpt/KzAdmAF8r5H8eQq/3GdmZsW1e/WUmZkNIgcNMzMrzEHDzMwKc9Aw\nM7PCHDTMzKwwBw0zMyvMQcOGNEkLm3DMcZL+X5o/XFL1W8RFjnGTpDFl581sqHPQsKGu9BeJIuKq\niDgvLR4BvKXsc5h1KgcNaxuSvpUG25km6eiU9s70q//3kh6Q9Kvc9oektDslfU/SVSn9BEk/kPRv\nwGHAecoGEBqVL0FI2jD1d4SkNZQNhPR3SZcDa+TOc6Ckv0m6S9KlqfsSs47UMb3cWmeT9D5gdETs\nnDqru1PSzWn1rsCbgSeB2yS9nazX4J8Ae0fEY5Iu5rWlloiI2yVNBK6KiMvTeapPXdnnVODFiHiL\npJ2BKWn7DYGzgf0j4qVU7fWfwFdLvQFmQ4SDhrWLvUi9rUbWwWM38DZgITA5Iv4JIOkesl5RXwRm\nRsRjaf9LgFMaOP8+wPfS+adLmpbS9yQLWLelDvGGA7c3cB6zIc1Bw9pFdREgv/xKbn4p2edarLhP\nEUtYXm27RtW6fElFuX//HBEfHMC5zNqOn2nYUFf5cr4FeL+kYZI2Bt4BTK6/Gw8C20jaMi2/v852\nC4H1csuzgN3T/FG59FuADwFI2gkYndInAXulQYCQtKak7fu8KrM25aBhQ10ARMQVZN1fTwNuAD4f\nadyHOtu/DHwC+JOkO4HngQU1tv8t8HlJd0vaBvg2cKqku4H8IFg/BtaR9HdgPHBXOs/TwIeBS1KV\n1e3AGxu5YLOhzF2jW8eStHZEvJjmfwQ8FBHfa3G2zNqaSxrWyU6RNDWVDtYDftrqDJm1O5c0zMys\nMJc0zMysMAcNMzMrzEHDzMwKc9AwM7PCHDTMzKwwBw0zMyvs/wMbtgNGEmiNfQAAAABJRU5ErkJg\ngg==\n", 275 | "text/plain": [ 276 | "" 277 | ] 278 | }, 279 | "metadata": {}, 280 | "output_type": "display_data" 281 | } 282 | ], 283 | "source": [ 284 | "x.vv.plot()" 285 | ] 286 | }, 287 | { 288 | "cell_type": "code", 289 | "execution_count": 37, 290 | "metadata": { 291 | "collapsed": false 292 | }, 293 | "outputs": [ 294 | { 295 | "data": { 296 | "text/plain": [ 297 | "" 298 | ] 299 | }, 300 | "execution_count": 37, 301 | "metadata": {}, 302 | "output_type": "execute_result" 303 | }, 304 | { 305 | "data": { 306 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEZCAYAAABWwhjiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXecXWd17/39nZlRlyyNJdmWZEmW5N4NKIQWih3MBVNC\niuFNyCXgFOKbCi8lJIQLubmQ3JA3ISQhIRBCcoEQsE03xUAMdmxc5CYXVatavdc5Z71/rPWcOXM0\n5WiKRiOt7+dzPnN2eZ797H3O7OfsVX5LZkaSJEmSDIbKaA8gSZIkGbvkJJIkSZIMmpxEkiRJkkGT\nk0iSJEkyaHISSZIkSQZNTiJJkiTJoMlJZBiRdK6kPZI02mNJkiQ5EeQkMgQkrZb00rJsZuvMbJqd\npMk3ksZJ+kdJayTtlnSfpOub9nmZpOWS9kn6jqT5Ddt+TtIPJe2X9N1e+q9J2huvPZI+PsB4+jvW\nn0l6Msb5mKRfGqCvPveXdKakOyVtk7QjzuF5se1vG8Z7WNKReL9H0ldjn6sk/TjO+15JVzb0fYak\nT0l6RtJmSe8bYJwLJH03+npM0ssato2T9BFJGyRtl/RRSW399PWbMZ5Dkv6pl+0/H8fYLekRSa/p\np68Zkj4naaukLZL+RdKU2DZL0r/FuHZK+k9JS5va/w9JqyTtknSPpOf3cowOSY9LerppfZ/fG0lf\na1hfPqNlfZ1HMgqYWb4G+QJWAy8d7XEcx3gnAX8EnBvLrwT2APNj+UxgF/AzwDjgw8BdDe1fCvws\n8F7gu730XwXOa3EsAx3rfcD58X4psAN4bj/99bk/ML5si+XXANuBSi99fLppXQewBviteP8/Yrk9\ntn8S+FwcYwGwAvjlfsb5I+DPYv+fAXYCZzYc//vAGXF97gLe109frwVeDfwN8E9N2+YAh4GfjuX/\nBuwHZvbR18eAbwCTganAt4A/j23nAb8DzAYE3ARsBSY1XO99wFWx/OvAFkBNx/gD4HvA00P43twB\n/MFo/y/lq+EzGe0BjNUX8On48u/Hb8Rvj5tIrdyc4gv/AeCHwF7gVqAT+AywG/gv4gYe+18E3B43\nuOXAz52A81gGvC7e3wTc2bBtEnAAuKCpzVvofRKpAYtbPG5Lx2rYfivwu8dxXr3uHzfBG+Kzm9m0\nrbdJ5DpgXdO6tQ03563ANQ3b3g18v48xnQ8cBCY3rPsB8Kvx/l7g9Q3b3gCsbeFcP8Cxk8hSYHPT\nui3AT/TRx9eAX29Yfhvw9X6OuRu4Ot7/PHB302dZBc5qWHce8Cjw8l4mkZa+N8BCoAtYMFL/D/k6\n/leaswaJmb0JeBp4lbkJ68/LpqZdfwH4f/BfhkvwX6KfAGYAj+M3LiRNwieQzwAz8RvI30i6uLfj\nS/qbMC3saPhb3j/YyjlIOgu4AHgkVl2KTyrlHA8AK2N9q3xf0kZJX5C0oJ/9Wj6WpInAc/Cb0ID0\ntX+YQQ4BtwD/YGbbWujuUuChpnUPNY2z0vT+soZjflnS/9vQ1yoz29+w/7KGvhSvxr7mSZoaff2N\npI+2MGaAHwPLJd0gqSLptfi5N59L4W+AGyRNlzQDeD0+sRyDpKvwp7IVserrQJukpZIq+I+MB83s\nmYZmf4VPsIf6OH4r35s3AT8ws7V9bE9GgZxEhs5ATvRPmtkaM9uL/7OtNLM7zKwG/Dtwdez3KmC1\nmX3anAeBL+Lmo2Mws980sxlm1tnwt7y/asBBS+34hPVJM3sqVk/Bf2E2shs3b7TCi/BfixcBm4Cv\nxE2lN47nWH8HPGBmt7c4jl73N7Mro/834k+HrTDQOL8BvEvSFElLgDfjv8TLMW8wsw+32NfXgd+W\nNFPS2bjpjNJffOY3tzLo+H79C/BvuFnrM8CvmdnBPprcj5sVt+NPV13A3zbvJGka/hT+x/GdJv5+\nEbgTnyT+EPjVhjavA9rM7LY+jt3q9+aXcPNhchKRk8jI0/hr7GAvy1Pi/QLguY1PFPjN7uzhHpAk\n4TeVw3TfqMDt2tOadp+Gm+IGxMzuNLMuM9sD/DZuwrhYHrVWd5wez7Ek/RlwCf5EV9Y1OsPfNdD+\nTWM8YmafA94t6fIWTmugcf4WfuN8CvgSftNeP8i+/gR4AHgQvyF/CTiKm6GOC0nX4n6mF5lZB/Bi\n4BOSruijyReAJ3CfyDRgFfCvTX1OAG4DftQwMSLpJnzyvNjMxuE3+69KOjuesD9E9/fsmB9dfX1v\nmo79AuAs4D9avgjJCSEnkaExnFFY64DvNT1RTDOz3+xt56YbaeNrr6SHBzjWJ3CT2c+YWbVh/aNA\n/SlG0mRgMS2akZqHiF8fmUetTY1XuYkOeCxJ78dt6NeZ2b6y3sx+o/RlZv97oP37oANY1MJ5PAo0\n33ivKOM0s51m9otmdo6ZXQ60Aff009eiONfClQ19HTKz3zKzeWa2BHe632dmg/meXYn7Zh6Ivn+M\n++Cu7WP/K4C/jzEcwJ/mXlE2ShqHmwHXmdmv99L2y2a2Mo71TfyJ4nm4H2gB8J+SNuGTwJwwXc3n\nWOrfm6b1bwK+GGNLTiJyEhkamzn2RjTYHJGvABdI+kVJ7REO+WxJF/W2c9ONtPE1NW5mvSLp73Cz\nwavN7EjT5i8Bl0p6naTxeCTXMjN7MtpWYn0HbgMfH2YxJF0i6crYZwrwf/Bf5Mv7GMpAx3o37he6\nzsx2DXTx+ttf0k9Ien5c0wmS3olHGv3XQP3i0UTVCGEdJ+lm/Cb33eh7kaTOOO9X4AEDH+itozAb\nPgi8L67d64DLiV/XkuZIOifePxePgvujfs65LZ4O2oD26LOEBN8LvFARjizpauAF9O0TuQd4a1yf\nicCvET6r+Iz/Aw98+OVe2t4LvFLSebH/dfjk8QjwMHAu/oPhSuCt+P/NlcD6Vr43cY4/R5qyTk5O\nhPf+VH3h4ZVr8XDS38N/cVXpjs76LvArDfv3iKIBXgY82bB8Pj6ZbMHt0t8GrhjG8c7HI2EO4CaU\nvXhk2Rsa9nkp/g+8P8bfGD32y9G+2vD6p9j2EjxQYC9+k/giA0TcDHCsGm7u29Mwznf101ef++M2\n9wdx/8M2PGru+b30cUx0Vqy/EndU74+/VzRs+zlgA26quh+4tqnt1xrHHZ/BHfEZLAde0rDthXjY\n+L7YdmNTX38LfKxpvM2fxx81bH8bbmbbjTvBf6dh2xuBhxuWF+Cmqm3x+lr5/OL6VWNcjd+b5ze0\n/2P8f2E3/mT1xj4+p5+iITqrle8NcCPuLxz1//l8HftSfEhJkiRJctykOStJkiQZNKM+iUh6u1z2\noDOW3yhpmaQH5VIVvdr3JX1GLqHwkFzKo095iCRJkmRkGNVJRNI8PFqkMXloFR6WeBXwQeAf+mj+\nGTO7yMyuwOPo3zqig02SJEmOYbSfRD4CvKNxhZndbWYlIetuYG5vDc3sGw2L9wDzRmSESZIkSZ+0\nj9aBJd2Ax5w/rL6V09+KZ/H21087ntz0W/3sk9EDSZK0jJkNupzDwnM7bO36ruNpstbMFg72eKPN\niE4ikr6FZ5nWV+Ex9u8F3oOL2zVua2z7EjwL9gUDHOZjeFJVvzIW50UC7E62sohL6NTsVk5hVFhp\nj7JYxyNXdeLJMQ4POcbhYShj3GFb2MnW+vLqPlObWmPt+i6Oblrc8v4d56zsT2PupGdEJxEzu663\n9ZIuw7VyloUExzzgPklLzWxLSDN8HLjezHb21b+kP8KVWH+1r30K5Qu20h49qSeQJElOLJ2aTSfd\n94TVNrRJBKBqtSH3MVYYFXOWmT1CgyaUpNW4nPbOkEL4D+CXLGQUekPSW3GJi5f2tU+SJGMHe0G3\nbmjb/U8CUDswNlVOasOqiHRyM9qO9UKjVs4f4jU3PibpAUl1HSJJX5Wrm4Jn784G7pZ0v6T3tnKg\nGcwaxmGPDDnG4SHHODyc6DGWCeR4ONmu41Grtvwa64yaY70RM1vU8P4mXH+ot/1e2fC+YzDHGgum\nrBzj8JBjHB5yjMfP6fQkclJMIkmSnPq0zznH30zz6geH57qg87iNoYS//QD7z58O117GlGWbAKit\nHZvmrGpOIkmSJCeW/edPB6hPIGOZfBJJkiRJBk31NBK2zUkkSZJkmDl9AnxzEkmSZJhom+ql4tXp\nZqna5kjga4sg0C7P4q6uWAPA+O1nAGBHjgIwcep4337WdNTlt+H2qqseda3fMLKDH2bSJ5IkSTJK\nlAlkLHP09JlDchJJkiQZbqqDrpI99shJJEmSZJip5ZNIkiRJT9qmeH6HJk8CwA4c9L/h06j/3bod\ngErkg9TmeCJgMVK1Vf3doasWAjBhle/ftudQ/VjWHn6U6tjM6M4nkSRJklGiPoGMYXISSZIkSQZN\nbfDlSMYcOYkkSQKA2l2OTuNCli5CcivnzQcanhB27fP9znDZEtsSobzqGcrLpIm+ep1noHddutCX\n57p5q5ixaG/zv/tc4kTAtpf5Mac/McGPsdh1V3Xng0M6xxPFUJ9EJH0CeBXwTJQAb97+RuCduHjt\nPuBtZvZQbLse+EtcYPcTZvahIQ1mAMb+c2OSJKcUZQIZyxy1tpZfffBJvNRFX6wCXmRmVwEfxOsv\nIakCfDTaXgq8QdJFw3ZivZBPIkmSJMPMUJ9EzOxOSX1WPDSzuxsW7wbmxvulwFNmthZA0meB1wCP\nD2lA/ZCTSJIkyTBTtRNq5Hkr8PV4PxdY17BtPT6xjBg5iSTJaUIJ0bWj4etYOM+XNz7TYz9Njf32\nuu9j43XuwzjnM4/5+vB5lP2KL6QysxOAJz58FgAX/PqKHv12rNsBQNfZLovS9rT7SmzBHG8fyRUz\nf7SFbc/zY7avc39L9Rn/O1bSL2r9eAoeuPsAD959cFiOI+klwJuBF5RVvew2opctJ5EkSU4qygQy\nlunPnHXFcydzxXMn15f/+f/bMahjSLoC94Vcb2Y7Y/V6oNGpNA/YOKgDtEhOIkmSJMPMMJmzRO9P\nFkiaD/wH8EtmtrJh073AkvCnbAJuBN4wHIPpi5xEkiRJhpna0EN8/w14MXCmpKeB9wHjADOzjwN/\nCHQCH5Mk4KiZLTWzqqSbgdvpDvFdPqTBDEBOIklyClCZGDkZ7f4vXfwWAHbkCAC1Q4d7tLENm/1v\n+EiKZLud7b4NhU9kzpfdT2uR36EdewDY8dLzAOi8Yw0A1XkzAbjw91y23Tp8LBrvEu8cdVmU9s27\n4nge3lqd6HkplU3u95j59T1sf/kSH/PWbb5tipt/NOtMALqeavzxffJxxIZ2azWzNw6w/Sbgpj62\nfQO4cEgDOA5GPU9E0tsl1SR1xvIbJS2T9KCkOyVdPkD7v5a098SMNkmSkaZMIGOZGpWWX2OdUX0S\nkTQPuBZY27C6JNHsjszLfwCe20f7ZwFnMHaCNpIkOQ2opuzJCeMjwDuA28qKfpJoehCZmX+GO41e\nO4JjTJJRp226h8UW01QxX9WrBoYZq7Zte0MjNxe1ndnZY9k6Q65klZupKme5Gcp27vb9Vq73vi5x\nc1VbCbOd5sdsD9mT6V94wPc/IyoaPhwhvRH6KzUp8YbKb/f4fHv7zv0A7F/qx5uws8qklW7yUlRL\nZPw4APZcMQuASSe5Oat6CjxhtMqoTSKSbgDWmdnD7hfqlcYkmmZuBm4xs2fUTwdJclrS1qecxklP\nmUDGMrUTm2w4qozoJCLpW8BZjatw09N7gfcA1zVta2zbnETTuO0c4OeAnxrmISdJkgyZfBIZJszs\nut7WS7oMWAgsi6eIecB9kpaa2ZY+kmgauRpYDKyI9pMkPWlmF/Q1lpX2aP39DGbRqbGf0JQkydDZ\nYVvYydZh7bMfYcVTjlExZ5nZI8DZZVnSauAaM9vZTxJNY/uvAXMa2u/tbwIBWKxLh2XsSTIStC90\nrb3qTPdXVJ5YA4Bmh78iZD80zn0DJYTX9nnYbiVCX4++0IMZx/24W3KkVCDsusqjntr2h18lfBe1\nZyKMttP9LrUdbk6qPBUSTB0Rgvvgk74cx6ouvdjHtNsrElZ2+NgIvw2VMC6Ev4Zx8et8gof8Ft+M\ntrsvZtLTIUHf0Ya2xm/HIks/0SXhJ69z/8lwRtJ0ajaddP+oXD0MaRUnWDtrVDlZztToNmc1JtE8\nIOmespOkr0o6u4/2SZKcAtQnkDFMDbX8GuuMdnQWAGa2qOF9f0k0r+xj/bQRGlqSJMlxczo9iZwU\nk0iSJMmpRDrWkyQZUdrnukvP9vQUW5CFZXahp0fVJUGKTyT8FoQkSckbKZIi4x9+GugpcVLK3Xas\n8xyS2tbIJZl+hvcdkiJF+r0y7xzfXsYWY9Kic31xwxbvb6Xnf1jkidR9H2VMUR7Xpk7yvx3ubD50\nth9v0pPberTXrjheR/dt6eBFbr2e+MAa32f9pjiWn5N1NeWenCRkjfUkSZJk0OSTSJIkSTJoMsQ3\nSZKRJcxNClNS7Rk3EVXa/eZT2+gKu21hcqqW/aeHmu2WCMudEeatEvq7K6RLrFY/lIXsiHW62ahy\n0ENyCaGH2jzPB9a6MBU1KAD7IHxMJWrq8LMWAzD+IZe8014Pu62bseKcOOzLOhgqwhM8pHjiOlcB\n3nOVH3fao2FeK+MC7GwPbZ74WIypKAG3HfA/Ydbr2rSZk5HMWE+SJBklygQylumvsuGpRk4iSZIk\nw8zp9CRy+pxpkiTJCaJqlZZfvSHpE5KekfRQX8eQ9FeSnoraS1c3rK9Kuj+StW8ZgdPrQT6JJMko\ncuR8D6cdtyL8E2d4OGwlVIFs2w4A2kL+pPqQS48UX0o1fCNtC+Z5h+H/KPIoQD301h5b5cshW8Lh\nCAN+ao1vv8il2LsmefhskUfRqg09jtlxV8iCzI8qDSHx3jXfZdrb1zzj/Z3p/hwd9TG17fQQ4i0v\n8XOeeW+o9YYsS+3cbq3WyjORtR6hy4cvnQ/A+Cfc11MNH1Jb5wxf3nFyZbkPQyb6J4G/Bj7d20ZJ\nrwAWm9n5kn4C+Fu66y7tN7NrhjqAVslJJEmSk4r6BDKGGWrGupndKWlBP7u8hphgzOy/JJ0h6Swz\newZOrEMmJ5EkSZJh5gSE+M4F1jUsb4h1zwDjQ3OwC/iQmd06kgPJSSRJkmSYOQEZ670doAjRzjez\nzZLOA74r6SEzWz1SA8lJJElGkPYz3f9gJW/jaORgRD7IuFVbeizrgPshivR7yfGo7YtcjOhHMztj\nf8+bKL4Tne2S5rVJ4+tjqGxqqpUR+Rilz8qZ7lew8H10THa/zP6r3c8yoc39EW173XdRKXIm7ZVo\nt9H7m+f9dM33MbRvdp/Hjue7xMv05Z4fMusLj8XA/D5o89z/Uw1fTPW82d0SLcUndMd93mbe3B7X\n5WSl1k/M0rp7t7Dux1uGeoj1wLkNy/OAjQBmtjn+rpb0Pbz+Uk4iSZKcHpQJZCxT7edJZM6zz2LO\ns7uDCO76+8f62lX07d+4DfhN4HOSngvsilLh04EDZnZE0kzgecCHjv8MWicnkSRJkmFmqOYsSf8G\nvBg4U9LTwPuAcYCZ2cfN7GuS/pukFcB+4L9H04uBv5dUxVM4/tTMHh/SYAYgJ5EkGQKVSZN6Loc5\nqS4dEqYjVUJ1thpmrZASKSGs9Wp/a9xXWkJ0i8JubbebgizCaeuyKbGfwsREqUq4vyHEd4aH2tqE\nkEZZ7lUPa2Fa06EYYwn9jTFPfmA9APue5WatSWsjfHiNm726rvAyQPa8y/yUDvjY2tZ6iC8TfUyd\nd7l0iU326oQKKRfGR9XCkEXpOBLXbOIEapP9etTWNvqOwaZO7rF8soX2FoaabGhmb2xhn5t7WXcX\ncMWQDn6c5CSSJMlJRZlAxjIpe5IkSZIMmq5aqvgmSZIkg+RUqJ3eKjmJJEkfVMKmr4kT6utsf0h0\nhOy5KmH7Dh9HbZP7A1SkRsKHYVee77ttDht++EZqUU1QM0PSPSI/VcJsn+VRnBNvdwmlyoUuTbJ/\nke8/+f5IDRjf4AOBujQ8gEUlw8oEPw8LP0sl/CoWob52rsuRVJqqLR4+w89tyv6Qap8+DYD2h1xG\npba/pzx7d8Oe/euwS9EXOZQ6T7vPRBFqXNnVhW3369R2xcUAVB9yqZXq8icZC/QXnXWqkZNIkiQn\nFWUCGcukiu8JRNLbJdUkdcbyGyUtC2XKOyVd3k/bP5H0hKRHJR0TqZAkSTIa1Ewtv8Y6o/okImke\ncC2wtmH1KuBFZrZb0vXAP9CtTtnY9r8Dc83swlge+5VskiQ5JUifyInjI8A78OxLAMzs7obtd+Oi\nYr3xG8AbGtptG4kBJqcu7QtdJNV2hiR5mz+YH/xJ91+M2xG5GPd2ZxQXSfZK5HWUfA0LP4JF7kVl\nmtv/S/6GPfG0/62FbEn4D2rhK2lfFWVgS/5IlK7t2Bv9neH9lZyKyU81mXyKX2OW+xV0uLvE7c5X\nXATAjFsf9m1lbCGjToypjI3wxxSJ9xmPeMndg4tcamXiIyENH76RQy+6EIBJd8R1Guf5HzL31yjy\nVKpnx9gefCKujR+ndoH7fYq/SNOmUJvl16co+rYvWghA16o1jAVOhSeMVhm1SUTSDcA6M3tY6vOC\nvxX4eh/bFgM3Snod7o78bTNbMfwjTZLkRFImkLFMhvgOE5K+BZzVuApXmnwv8B7guqZtjW1fArwZ\neEEf3Y/HNWKeExPJPwEv6mssK+3R+vsZzKJTs1s/kSRJTll22BZ2snXgHY+DNGcNE2Z2XW/rJV0G\nLASWyR9D5gH3SVpqZlskXQF8HLjezPoK1VgHfDGO8yVJn+xvLIt16SDPIhlrtM/xUFWLinl109HU\nqBq40eNoixmrhOMWeZDx33zA14dZhnEddXmRYraqhlJt2/I1vk88TVcuWeLLO0KmJORK6u2L+myY\nrYqprOs5l/jqh1f69jAttd3pJqhSjbDaGaaox2K/MBlVYrt2eciwzZhavx6dd7p8icX51FV2N4bQ\nYYQtE1USiznryMUud2JxbhN+HMeMUOFinpq0Iq7jOfF7MWRTikSJSrjuhjheyJ50LXZ138qRalwr\nv7bavZfDz3Ez34Q13teOn3Il4WkDmLPKZ9+1cVO/+zXSqdl00v2jcrUtb7ltX6Q5a4Qxs0cg6n8C\nklYD15jZTknzgf8AfsnMVvbTzS3Ay4BPSnox8MQIDjk5jelRajYZccoEMpbJSeTEY3Sbs/4Q6AQ+\nFk8pR81sKYCkrwJvCb38DwH/Kul3gb24/yRJkmTUyUnkBGNmixre3wTc1Md+r2x4vxt41ciPLkmS\n5PjISSRJTmLapruP49BS9z9MfHyzbyjyJHtCSiT8DhaSIKXC38GrFwLdNv7awfAJLHR7ettCDzmt\nbfR+LSROACpz3Arbvskr7hFSHbUNMYan1sQgIzon/BC1vW7vr8wMufUO/9drKzLtu8J/c4aHzRYp\n+Uo5p5BXadvofotaGU8Jkw1pk2J6q86fVR9zW/g0FGHJ7avdX1BrkjcpYckWMiYd2/2voqIh4Tuq\nhY+jElItdfn6ee7jqM2KcxoX53gwQob3R3XGDr8m7Ss8VJgIgz4a0vJth6t0rPPrWypCTv/CAz3O\nu0/KOc71sXRt2DhQixGh6zTKWM9JJEmSk4oygYxlTqcnkdNnukySJDlBDFX2RNL1kh6X9KSkd/ay\nfb6kb4dE1HclzWnY9svR7glJbxrB0wRyEkmSJBl2hjKJSKoAHwVeDlwKvEHSRU27/TnwKTO7Evif\nwP+OtjOAPwKeA/wE8D5JTbLJw0uas5KTjrZLLwBAW8KsUeTWIyeiyKhPvG+1ry65F5HfUPI7anNc\nomTLc9zPMPuf3XY/cYX7FaqRw1G5xENKtdt9ACVHQ2G7LxLlABQ/QvgZaruij1JaNuTPy5iL1Dvy\n5ZJnUlQaLHIqDp3rY5z4sPdX5NbrOSxFkiSkSIq/h6lTfLlI08c1aN/a7e+wbX4da4s976OyzX0a\nRaKl7jsqeTWRx2Hr3M9zoMjA7PRjtD3qEvDEdddiz+Ggy8dY2RIyMvF51fNSwm3UNcevZ3vkjRxZ\n6P6bji2R4zJxPLTF9Z05jUbaHvfPvLpvH71xssii2NDMWUuBp8xsLYCkzwKvARprpV8C/I4fy74n\n6dZY/3Lg9gg8QtLtwPXA54YyoP7IJ5EkSU4u2sa+P6GGWn71wlw8mbqwnmM1BB8EXg8g6WeAKfEU\n0tx2Qy9th5WcRJIkSYaZIfpEeltpTcvvAF4s6T7ghfhk0dVi22ElzVnJCUftYSaKMNdKmGSKaaeY\nsUrFvMq54TMM01H1PF+2jgh73RcmpNUu71FMPJUIh525zM01lVDgLYq3lYsW+/FCoqSo+HK4O6QX\nvEhSCY9l2tQe2+pqvkXqo5h4igmsmK9iPyuqv1t9bLrAKxVO2BDnNtdNO23rvEJi3YxVTHrleHN8\nv9oTYVq62MOdLUKM1RC+W8xT2ukmoBLS3DY3RCP2+XWuxXXhQIT2xuczaXmUWzzqpjQiDLk62cdy\nuNPDkFXze9X4//TPobLAzWftW0MCZqLvXzl0tMe5jHsywnCLUnGXYSHBUn7l2gIPv+7LjFVon+/H\nLJ9H19bREfeu1vr+fb572dPseejp/pqvB+Y3LM8DesQqm9kmup9EJgOvN7O9ktYDL25qe8fxjP14\nyUkkSQagPoEkJ4QygYxl+vOJTLtiAdOuWFBf3vCZHzbvci+wRNICYBNwIw1lLwAknQnsMDMD3o0L\n0AJ8E/iTcKZXcJHbdw3lXAYizVlJkiTDzFDMWWZWBW4GbgceBT5rZsslvV9SUel4MfCEpMeB2cCf\nRNudwAeAHwP/BbzfzHaN5Lnmk0iSJMkwY0P0QpjZN4ALm9a9r+H9f+BCtb21/RTwqaGNoHVyEkmG\nlbbL/Ht/9EyXAR+32u3p1Y3P1PcptvYSWlrCYOtquePDdh42dvZG1b7wVVi7P0C3b/IfWNXZEQ57\ngZsI6qG64UNpXxs2/WKWCqkR7T3QY31tk4+xbr5qawotBuwZl07R2SEdHmGyJeS3hOTapjhmCT+u\n9RTsqIRfYf95PpZJ33P58baQAKmFb+ToGe5v6AhZlMrmHTH2CMcNGZUD89wPNOHJqCbY4Lux8HXs\n/6moQBi7UR96AAAgAElEQVTnWZdenxZhwmWscU614qOa6RUN2ePX82DIzUx6xM30k9ZFu/Bp2CKX\njSFk6evXr/g5ytgihLqEZpfPlTmz2Xe+S6pMvXNlnK+PpRI+j66n19NI9SXP8jd33MfJQNYTSZIk\nGSXKBDKWGWKeyJgiJ5EkSZJh5nTSzspJJEmSZJip1XISSZJeKeVHa9tcsqIyI0wPXWEXjxyPcZF7\nUQ07eF2mo+H9wRdcDMCEO7wEbN32XnIuQgacKPWqkEdv3xY5ECH1UVnh9nFNcz+DTXW/gixs7yEV\nUpvufprKgaY8kGKrj3yKkg9RZEHqtvvGvqa6r6JS8jHK+Rfp9jgHLnX/Qe3hpwBoC3kUCz9Q8YUU\nP0zdP/Sk+2vGR85Loba7SWYlfDHjvnqPL4ZMfj2nA2C+f2aT//NJ3+dMv84bftZ9SHM++ajvV3wi\ngeJcbJXnNGiyX9dJa9wXVTsrcmEe9n4PXem+kOIrObrIy+W23edFRyvhRzq8wMc+bnP4ZEJangk+\nrilP7UKb/DMpMvzVravoj7aTxBdSSHNWkiTJKFEmkLFMmrOSJEmSQTPUEN+xRE4iyfER4ZiVMC3V\nZUB2RD5TMYEU9dqrXMHaHnis3kWRBpnwAzejVEp1wHVe6a727EsAaHs4wjuLmm+EvxJyKHUV2WJu\nipBcbYuxRChxMbtUtvr6EtpaD8st5zClVOCL8NkScgwcutilViasjgqC6z2Et658W/oIFd/aJS5n\nUgnFW01xU1otrlMlVHrrKr9FUTfMWoqKhdXNfpxSbbFSTE7FPBhmtFLJr5j4anu65UHq0iFhijP8\n+s39uvddC9NX/XzjDqhQHq5LuBQz33qvjFjMkjrHzVaTHljr2yMUu2NDmKnmujnNIrR4fDmHOF65\nBgeX+jVj4RlMvneNn//2ntUXxwppzkqSpE6ZQJITQ5lAxjKn0yQy6rInkt4uqSapM5bfGNW6HpR0\np6TL+2j3Mkn3SXpA0g8kLTqxI0+SJOkdO47XWGdUJxFJ84BrgbUNq1cBLzKzq4APAv/QR/OPAW8w\ns6uB/wu8dyTHmiRJ0ipWU8uvsc5om7M+guvi31ZWmNndDdvvpu+CKjWglH08gyap5GRk6HrK/RSV\nK91vwfIVPXcoMuJFumSF18exBv9CPZQ0KhTWdu32NucvBKDtsTW+XPwr4X9RSJYX30dZz1kuEVL/\nSbTT/Q51qflN7sdgqvslyr+tFbmNsjzJx1gJn0h1nkvHT3hyM8cQPo7qYjd1tT3RU9q7bVV8HSOs\n1YrUSzlWR8jTRz8lJLh2doQ5r/H2bcVfNDnk1sNHYue6H6Jrio953FPupyjS5+3zGv5t4jp+bdl3\nAHjZm97ibf7zEe9zkauOK/w1Xc9sOfZ8+6G9SLiHXH353I7Mj3MJ+ZraQj+XCY94SLbF8cp3ZfIj\nIY0zcSK1jZuOawwnG6eTOWvUJhFJNwDrzOzhUiq0F94KfL2PbTcBX5d0ANgDPHf4R5kkyYlmrE8g\nkNFZw4akbwFnNa7Cf/i9F3gPrnXfuK2x7UuANwMv6KP73wWuN7MfS/p9/Knmpr7GstIerb+fwSw6\nNbv1E0mS5JRlh21hJ1uHtc98EhkmzOy63tZLugxYCCyTP4bMA+6TtNTMtki6Avg4Pkns7KX9TOBK\nM/txrPo8fT+xALBYlw7+RJIkOWXp1Gw66f5RudqWD73TnERGFjN7BDi7LEtaDVxjZjslzcd18n/J\nzFb20cVOYJqkJWa2AvhpYBg++aRQJN3Z6PbxUmK1lJatPhJSFpHPUHIQSu4F58Q/ZZFOb5Q9KX6A\nQuR5WLGpj4u8j5BV77rA7fsdq8JmXvIaJnreSJFnL7kWXVe51EjbHs/ZqOzyXAPbGr6Ruf5wrFKm\nteS4RI6FnTcvtofPpbFcbslJiTK37c+4P4dOt/fbjvjNU3xARQK+aYx1iqxJXLfKlpAUOc/PWVEm\nV+vcxHP4uZ53M+EpX99ec3/EkfM9F2NcjPXw+fV/L8Y/5n6pV7zCi+NNOBBjPDt8SSG1X3wabVN6\nSq00l6QtOSldG9xvU6Tmi2/j6GI/9rgNcW2KDyvyS4qPRnHudfmUVZ4npIkTu/NqNoxNV2eas048\nRrc56w+BTuBj8ZRy1MyWAkj6KvAWM9ss6Sbgi5Kq+KTyK6Mw7iRJhpljfmSMRXISObGY2aKG9zfR\nh2/DzF7Z8P5W4NaRH12SJMnxMdTQXUnXA3+Jxxx+wsw+1LT9L4CX4NPVZGCWmZVcuyqwDP9hvtbM\nXjukwQzASTGJJCeeyvhQoY0Q0iNL3ATRvtvNNEVqpLrITTttUVGvut3/toVabHVXhGmG+aZu1opw\n2WL+Qg0pSe0Rslsq4RVzUiji1sIEVAm5jI6tYU6JkNy6ym/djBLHPlpUfmN9VDYsdF3iqrUdKz1k\nt4QWV2Z7KC9T/a9CgZjYbnRLe9RNX6X6YQkzDvNWkSupjzEUiNlei3MOpeEIhS6muSJTUkJ+SwVD\nOzvG9Iyb4sb90ANEahEmXQm7ybh9IbeyIExJmxvkQuL6VHb7ddn5PDdHzfhOWIujj9q8MEGGUnAx\nQbaFqa4aprquJhNTWd8eVQfbt5fKkmHOClNoMXfVKRIva93MVd0d+5e/QPsS/33ZtaJ/Fd+TjaE4\n1uV6Mx8FXoanLtwr6VYze7y7f/u9hv1vBq5q6GK/mV0z6AEcJy0lG0q6QNJ3JD0Sy1dIyuS+5LSg\nPoEkSasMLWV9KfCUma01s6PAZ4HX9HO0N+AJ14UT6tVvNWP9H4B3A0cBzOwh4MaRGlSSJMnYRsfx\nOoa5wLqG5fX0kXQdgUgLge82rB4v6R5JP5LU3+QzLLRqzppkZvc0JQV29bVzkiTJaU0/jvVDy1dy\n6PF+zXO9zSx99Xgj8AWzHvFg8yP46Dzgu5IeMrPVA4x40LQ6iWyTtJg4EUk/C4z9tNJTmPZzIsSz\n2OzjB4DNDimKdSHl0e52745lIVle/ANhv27bEuGgYeNvW7TQl3d1262hoQpgVCPUky6HpqnhEwjp\ncwBCPp2QMbFFIXO+KcJgS0ht+EiKtHg99LdIkEclRJvg63UwonqKX6b4UMLvUHwhhC+mUsKOiz8j\n/hZ59WP8II3nUcYYYci0+fnbGSGtUkJ7y3UvYcnFDxA+DTvT/QWVCHutnu3+Bx0On8fmbT3OuVQ0\nrJ4Tn+MzPcNoK8/457X1pxfUh1wb55/pmX//IwBmxHfiyIX+43bcoy7ZUtnhfpnq5R4ircf8vlN8\nHgNRJPYVsjHMjNDd4puKz89CLl/xORVfle7sPo6e7bqrtj9CqcPf0vX0+pbGMur0M4lMuGgxEy5a\nXF/efet3mndZD8xvWJ5H37JONwJv63Fos83xd7Wk7wFXA6M+ifwmnvx3kaQNMaBfHKlBJUly+lIm\nkLHMEKOz7gWWSFqA/1i/Efd79EDShcD0Rr1BSdOBA2Z2JJKynwd8qLntcNLSJGJmq4BrJU0GKmY2\nNivFJEmSnAiGkCdiZtWIuLqd7hDf5ZLeD9xrZl+JXW/Ene6NXAz8fYT5VoA/bYzqGgn6nUQk/V4f\n6wEws78YgTElSZKMbYYoe2Jm3wAubFr3vqbl9/fS7i7giiEd/DgZ6EkkDNpcCDyHbsn2G4B7RmpQ\nSf+0F78EQNihLXwRRXa7Xj41JMiLDIet8qCPel5HkeOO/IV6edWQCKnE+lrkZFSKXyJK1baFVEZ1\n2/YeY6xe5vH97StcyqL4HbyTkMGY63kJlf0hg178LOFnUPy1RRGYcjT8CE+u8XZFPmNT+A1mhDRL\nKTkbvg06p/c81/BX2Exfr70Heo6xyHRETkyR5wC6/TnlupbrP8clRLQx/DqRm6E4t+Ys7FI+uORO\nlJyXtpXRf5EEmev9lrwRKv651jpComT//h7jOXyR59Z0PtwtVbLn/J7H7lrvn0kl/jIr/GDRV9uK\naBvXl72tGR5Knkf7Wf65dj2xotf9So5S8bV0FBn8kmPz2EoqRUYmfExHzvM+tSCuczW+5z96sKWx\nnWiUGetOmekk/QDXttoby38MfHXER5ckyWlHmUDGNDmJHMNZQIMKHUfoKfGeJEmSFFLF9xg+Ddwj\n6Uv4HPs64J9HbFSnKe0XemglO8OsUxRjwwd1ZInP27a121Sh/RHuWqJBJjapx04OU0YJUy1VAsO8\nUkxKbI3wyiluUqhddYEvh9JtpZig9rvp5+gFLp3RscOXK2HmKeGb3ONV8yxCfI+RvABqj7m5o8hr\nFFXeYsaqy3Ws9dBcC1MbFT/XWlT5U4yNbWF+ClNb13lu2jk8y489cW2Y8kqY7c4w00TFw3rYboQG\na3+Dmatcr+1+naqXeYhm+9aQCAmpFDsnTEMRtl/kYwh5mRLWXDcftpVqgD7mcv27Zvjx2teGcnEJ\nW57mZq6O1VF9sOm6jl8b4+vsNmHN+GGExfYVJhtmq7K+fA9t8+BqbAxUGbF2+FCP5VKhsjJjeqyw\n7tD0DVHJ8Wz/Ho173L8LzdIrJx35JNITM/sTSV8HXhir3mxmD4zcsJLkJOJUUJUdS3SdAnnMtdEe\nwImjpUkkUuu3AV9qXGdmT/fdKkmS5DQlzVnH8FW6H9AmAucBTwBZLjBJkqSJsRSdJel1wNfM7PCA\nO/dCq+asHimkkq6hKdU+GTp1G3T4QEoYbqlSN35V2JqLfRywWSGTUcJUS1hrMQkUX0ipnFdkSBoq\nDQJQbPRR5a69+GXClFOd63Ibuy5yiYoZy2J7kU8Jv0Tl7AjvXBdV70q1wO0N388YS9sZDVIoQG1+\n+HwejdDQfT0rHeqsqMQXvpAtb/Rw+Jmf+C/vb577aWyq+xXaN+2Ic3G/wZGfvAxokHgp1RpLaG8J\nES7Xt8i9N2rGxVjaN/t1tSb5FxW/TQmhLvImE71d5VD8y5WQ7Pic9l/t/oqJ33rIz2Wj71+XfI/r\nWpvsY6oUmZkIDbbOuJZPuxpRW63bnlKuR/EvNNPsIyn+mLYI826PEOCurdt6bV9ou+JiAFSkWooZ\nMMKZ+2pfPt/+/Bxt37nP9+l3BCcRY2gSAV4N/GVE4X4W+KaZtXypW1Xx7YGZ3Q/8xGDaJkmSJCcP\nZvZmYAnw78AbgZWS/rHV9q36RBoz1yvANfQtCJYkSXJaM5bMWQBmdjSCpwx3WbwGeGsrbVt9Epna\n8BqP+0hGXKc+SZJkTGJq/TXKSLpe0qeAlcDPAv8InNNq+1Yd64+Z2b83Hfjn8MefZJioy0bMDtt/\nyIe33eH2YLs4cjfO6Jbh0GHfZ/tPuU19xheWAVCJPmpb3M9SOdf9BXWfSWm/OeRKZoWseuR7lNwN\nIleiLf6euWZzj/2KBHzJvSBkwIu/o166tsiFQN0fU40yrG0hb07xhdTzRkLWpPguws6vae7XmflP\n9/Y4l6Pz3Xbf/rCrXtfCP1GJHIxxIa9RbPVHzvExjns6cjl295T3qEuTRN4JQPVCV+huX+P5G/W8\nmEBFfj6OXc+PiRKw+59/PgCT7456ErF94ncf6XHOpXxu8YUUP82RGb59/ArPealLzEeOS11mveS4\nALXIjyn+mUK5LrWDB3us527/DtXaQ7q9y48xkG+k+tDyHsvtIWPStSRka/poN5CvZUwytkJ8bwPe\nAvzaYJzrrT6JvLvFdYNC0tsl1SSVQvOvlrRM0gNRoev5fbS7RtJDkp6U9JfDNZ4kSZKhIGv9dRLw\nv4B3Ad+W9JuSjkuNZCAV31cA/w2YK+mvGjZNY5gCJSTNA64F1jas/raZ3RbbLwc+j0scN/O3wFuj\n6uLXJL3czL45HONKkiQZNCfH5NASZvbHwB9LugL4BeD7ktab2bWttB/InLUR+DEeAnZfw/q9wO8e\n/3B75SPAO+hWCMbMDjRsn0IvD4eSzgammllRE/408FpgzE8iXVt6l5uoLn8SAP1Et9Jz2wF/+jzz\nmyt9RYjXHVri5qwJRW22VJsLWY266WaymzSqU9xM0lbCMkN6pDrTTT5tYY5pVgnWeW5Gq8t+hImK\nMJ9ZW4QrN5ySRUhtW6jrVuN820L9tbrFzRt2NORdos9ifilhwyU0tKzXfU/43yKfUY5XwmwjZHXb\n/3M1ALO/56a5Axf7cSeuj8p8u8OMNa/BLFxCnuvZUqFwGyG+doWbqdjssiO1kEOpLPCqjaUi4qQV\nERp8tpuGynWrqyWX6xccuNyv46QnfewTHljdoz/JjQm1kBrZ+XNXAXDm97vDdne9cSkAZ/zLXT36\nPsaMFZTrWYnKjrUNITUygNmpEuarWpjiutbE78I1a/tqcuoyhiaRBrYAm4HtwOxWGw2k4rsMWCbp\nX48nbrhVJN0ArDOzh5vqtyPptcCfArOAV/bSfC5eRrLQZzH7JBkSO3cPvE+SNHCSmKlaQtJv4E8g\ns4AvADeZ2WOtth/InPV5M/t54AHp2MtiZgMWP5H0LXoq/gqfp98LvAe4rmlb6fsW4BZJLwA+2LRf\nj30bh9TXOFbao/X3M5hFp1qeaJMkOYXZYVvYyeDEJvtkiFFXkq4H/pLuyobHlLiV9PPA+3BLzTIz\n+8VY/8vAH+D3wz8xs08PcLgFwO+Y2aCKswxkzvrt+PuqwXQOYGbNN38AJF0GLMSfdIQXo79P0lIz\n29LQ/k5JiyV1mtmOhi7WA+c2LPdXzJ7FSoWWJEmOpVOz6Wyw3qy25f3s3SJDeBKR2yg/CrwMv6fd\nK+nWxjK3kpYA7wR+0sz2RD11JM0A/gjP5RN+T73VzPp8nDazdw1+tAObs8IQztvM7J2N2yR9CD+J\nQWFmjwBnN/S3Gi98tVPSYjNbGeuvATqaJhDMbLOkPZKW4oXt3wQ0Ov9PWey/Hup+PyXCfYs5sOL+\nhgmPRdW6Ir8xw8NiV/2Ch/Iu/quwzYdcRiVChTncs7qfSthtqe43w/e3jW4nr+ztaVevh7SGfErd\nRzJtavc+kyPEN3wfRd6l1iQhUpcGCbt/19Xud+h40s+tSI5XIkS4UsKU18fXtqkyYmWD/9qc9cOw\n7e9xH8ikJ/0/3nbGNQl5Fe1x30gt/BcA7eujbYQ077/eH8anfN/9VRahuEXavYTXVuaEf6Vc3xLK\nG9fn4As9bmTSfWt6bJ90t/u6us5331ORIlGEatu+8KmEL+yMT4ffY+6c+pg7v+r3np4Bvt20neEh\n1CXEvPhKaqvW9NGid4ovJAENLcR3KfCUma0FkPRZPC+vsVb6TcDfmNkeADMrDquXA7eXSUPS7cD1\nwOeGNKJ+aDXEt7eniVcM50Dwubs8A75e0iOS7gf+Gvj5slOsK7wN+ATwJH7RvzHMY0qSJDluhhji\nOxdY17Dcm7/3AuBCSXdK+pGkl/fRdkMvbYeVgXwiv4HfqBdJeqhh01Tgh8M5EDNb1PD+w8CH+9jv\nmob39wGX97ZfkiTJqNGPOevAqhUcXN17/fmgFX9vO6539SJgPvCfki5tse2wMpBP5N+Ar+NRUo12\ns73N5qUkSZIk6Oe2Pem8JUw6b0l9eccdtzfvsh6fGAq9+XvXA3eZWQ1YI+kJ4PxY/+Kmtncc19iP\nk4F8IruB3cAbACTNBiYAUyRNyaJUo091n9vt61Ip4RuxsPfXpUMit2LxP7vN/vDl/h09PN1zLSbf\n6mlAbUVmI+RMKsWXUeRLdngeRGWOu7Nqk8O2/+hTvr4cL8ZniyL2YV1xr1EvzdtWSsZGKdl6mdRS\nKjbySIrceeUBPwYzz+x5zkW6PXwgin6LBHplW5OvpSMkXSI348icM2I87vepPOFf630/dSEAk77Z\n8BA+0/0uJex34i1r/Jhzw+cxPnwVZ3qfle2+X8lFKT6PUtq3+HMmrQ7J/vA9WZQ5VuTUVJa5z+XA\ny/zBe/IDEd1ebZL+Dxpl1duXxEN+fHbNFF9IMnwMMcT3XmCJpAXAJuBG4h7cwC2x7tPhVD8fWBWv\nP5F0Bu6uuI6eDwDDTqsqvjcAfwHMwRNSFgDLyaJUSZIkw4qZVSXdDNxOd4jvcknvB+41s6+Y2Tcl\n/bSkR3H1kLeb2U4ASR/Ak8QNeL+Z7RrJ8bYqwPhB4Lm4HMnVkl4C/OLIDStJkmQMM0QvRAQJXdi0\n7n1Ny78P/H4vbT8FfGpoI2idVieRo2a2XVJFUsXM7kjBw5OLIpVSwjXryrNFiuJMN0vpqJs/nr7W\nQ1QXf9Z/pGy8+TkAzP2UJ6rW1WTPcnNLUQsu4bjbXuD5ozO/HRbNBR6CyoGmkN+1UeFwQXfIaS3M\nSYfP8jFO/EHE5Ud1RMb5dtvubjeVUN1SJbEoExfTWyjYlpDdulkrTEn18OcIy9XWMOuEbMq4J32M\nRy70MRYz2/gdoQJcVIahW+4kaC/bytiKaa0yo8cxJt3jqr1HLvfKkB1bI3x4RU+LcL2KY3x+tTke\nXlyJc5q4LqRgwgRYwp6LcnExXXWtWFXvs/F9cmIYYojvmKLVSWSXpCnAD4B/lbQF2D9yw0qSJBnD\njCHZk6HSap7Ia4CDuOjiN/DiJTeM1KCSJEnGMmNMCn5ItPQkYmaNTx3/PEJjSZIkOTU4BSaHVhko\n2XAvvV8OAWZm00ZkVMmgKTLrJcy1SL5rsvsD7Kk1AJz/F/HRhUzJvFtCpmR+hKoeKBXyvBpgdab7\nVNpWe6julue7L2Dmlw/1HEDY9Ot+ieJDqHUbiSv73G8waUv4JiLkt1QSZFzI0UeYLEUuPSoc2uwI\nsw3fRi3a1a7yyo9tO11+Qzt29Tz21DhOrFeE+BYp+o665Iv7ZNqXRdXH8AN54whHnu6huOqKvkNq\n30o48jPRtsOvx5bXuo909tdX9+hHpeJkUQqeEecc59R1hl+/yngPZ27f5p/n0UXuk+rY4Nfg6GUL\nfej7j5CMPqfCE0arDJQnMrW/7UmSJEkv5CSSJEmSDJaMzkrGLLXDbl4qCqz1qn9tHg5biWzvemZ7\nqMjqTDcRaZubemrbw0zyPM8nHbc5wmcjg336w26msTmz6sfWHjflbHuJh/vWw38BHTlaD4OtzY02\nE8P09USMtWSDx9gUJrViIqsrAq9/BoDd117kQ/quVzRs3xwqvFMivLkoDx881OOvZner8mJG24Jz\nse07oVrDjhxxJdDx46GtrTvU9iw3D1bWR5WCDf73yBXn+bHvdWXhSlRVtEN+rKMXxbX4v1GqIUx3\nJSS7ZN3bXP987HFX7dXihX7qD3tVwJLNXxR2256GyrlzQcK276R9x656eHBflTGTE0g+iSTJ8dHf\nBALUJ5CTiuLfiAmzXnY3/ETNE8jJROVcF2YtY88J5CQjJ5EkSZJksKRjPUmSJBk8OYkkpwy1+DY/\nHSq6EfpbC7+BIox2x+Vuy++a4P6I2Xe4SWf8E6EG2x5SJBEyvO+5EW77j2620nw3rxQzlkWVuyJZ\nUkxHAF1Tve9xK923QYS51lZ721ooCLdHtT4Lpdq6FMusqOL3YPgnivJtqfp3MEKEi8JtCSGO7SWE\nt4RBKxSKq5eGf2NlnHMcr7K7u2JfLUJ47XKX8h63PsKUw6dUP884h477ouLhhQu9/aM960jUzgmf\nyAS/Tm3z/FocnhMyNWf5uXVsi9DhXREGHeMoJjfb37OqYPusbr9P19ZtJCeWfBJJkiRJBk9OIkmS\nJMlgySeRJEmSZPDkJJKcKpS8kbYiPxK2dNa7j0Rnu01+xkPxrS/5I6WyXvgVjs53G7vJ9z/vY75/\nXY49eOaVLnV+1peiCmGRDGkI8R23oUmOZFfkf1zqfob2jWHDL76L4gsp4awllyWk36vPckmRjpB8\nqe1yCRGV9iGHT0i62Kp1vrzFj6O5XqWxfU34aCIXpkjR23lz62OvlJyTjVEdusjUh6RKkVrRHJcl\nsWfiGE9FyHOMpX2qH6MWMjSVIoMf4cXj7ot+Otp7rK/Ndt9VqdbY9fR6eiP9IKPL6fQk0qqK74gh\n6e2SapI6Y/nVkpZJekDSPZKe30ubiZK+Imm5pIcl/a8TP/IkSZI+sON49YKk6yU9LulJSe/s6zCS\nfjbun9fE8gJJByTdH6+PDedp9caoPolImgdcC6xtWP1tM7sttl8OfB64uJfmf2Zm35fUDnxX0svN\n7JsjPugkSZKBGMKTiKQK8FHgZcBG4F5Jt5rZ4037TQH+B3B3UxcrzOyawY/g+Bhtc9ZHgHcAt5UV\nZtYYqzgFOEaFxswOAt+P912S7gfmjexQxzbVXW4eKZUPK+e4uaU625Vs9y1wc0x1nJuzpv3rXQC0\nn+Omno51br6pPeNhtZVSyTBMRnsu8RDXs76zGWio8HfkaLdJpm4mirDYMC8pVHq1yqVD6iG9EYJr\nk9yUQ0ToFqXiTb92NQBzb/F2dHm7ovZ7+BI3Q41/PEx3B0NOpUmapK6gOznMXtUqtc1+nlo8Hx3p\nwlb475wjS/33TEdUElTIyrDTr+/ha9wk17HHx1g5HKq8IVdSN8Ed7FkBsm1KhCmH2a+6dy+9st7P\n9TSSZhqTDNGctRR4yszWAkj6LF7T6fGm/T4AfAi/h/Y4/JCOfpyMmjlL0g3AOjN7uJdtr5W0HPgy\n8CsD9DMdL5D1nREZaDIkmieQsUDjBALUJ5AkaZmhmbPmAusaltfHujqSrgLmmdnXemm/UNJ9ku6Q\n9IKhncjAjOiTiKRvAWc1rsIv23uB9wDXNW0DwMxuAW6JC/DBpv0a+28D/g34SzNbM6yDT5IkGST9\nqfju3bCCfRtX9L1D708S9elGknArzi/30mYTMN/Mdoaf5BZJl5jZvhaHftyM6CRiZn3d/C8DFgLL\n4oLMA+6TtNTMtjS0v1PSYkmdZrajl64+DjxhZn890FhW2qP19zOYRadm97N3kiSnCztsCzsZXuHK\n/sxZ0+YsYdqcJfXlZ358e/Mu64H5DcvzcN9IYSpwKfC9uH+eDdwq6dVmdj9wBMDM7pe0ErgAuH+w\n5zIQo+ITMbNH8BMHQNJq4JqYPReb2cpYfw3Q0dsEIumDwDQze0srx1ysS4dn8GOc6m63/7dHaO9T\nN5w1eowAABTPSURBVLv660W/6yG5B56zyLfPdfmNIqfRtTh8I7WQEjkUIbvmP7mmPuk+ga6Va7z9\nBd7Ptp/048z86lP1MRTFWTb5P269GmOE2pZqjMXfwhr3AyhMYrXwP8z59PIYQvzHVsLnET6V8U+4\nf4Yio74jQoRLWO75/n+q7RFiHKa3Qy8K+ftdR6Lb7h+G45aHlaH4VbbFVzPClcev8t9A9SqNUdmw\nnMuB6y4HYMoT3q7rCf9FWt03Yj8UkwHo1Gw66f5RudqWD73ToflE7gWWSFqAP1ncCLyh3rXZHuge\nsKQ7gN8zswckzQR2mFlN0iJgCbBqSKMZgNF2rBeM7sex10t6Ez6bHgR+vuwk6X4zu0bSXNwctlzS\nA9H+o2b2Tyd43EmSJMcyhEnEzKqSbgZux/3WnzCz5ZLeD9xrZl/p5Wjl/vki4H9KOgpUgV8zs12D\nH83AnBSTiJktanj/YeDDfex3TfzdwEmQ45IkSdIbQ002NLNvABc2rXtfH/u+tOH9F4EvDu3ox8dJ\nMYkkSZKcUpxGGes5iZyuhFT5Bb/uoecWeR8T14acxoaNPXY/fKbnarTvCYny3WHDL9Ln4bdou8Qd\nhrUVLvMxM3I3LI4H0HV5SK7vjnK1m0Oio+RrhHQ7BzyXQmd4LosVOZOQCNGEkHKJ5QNXehTkxLvc\n/1KXOymS8IXwT1R27OtxLQjfzKTHPcfFJkaFw/B/ANi0KLm70SVSbJEfU0eij30x5shV6YoyxYUJ\nt3nOShfJqYzs9JlFchJJkiQZZvoL8T3VyEkkSZJkuDl9HkRyEjltKbIkQXX5kz2WKyHnUQt5jhKS\nWsJvS3VBbQ8TU6jMdk3zdpUI/a1t3Nzd56wzAehY2RR6W6r0TQjzUVHKrY/VQ21VKhiW7SX0ts3N\nWRPvfMJXnxPRj2Eeq4cQFyXcOF7bGSHDUsJxF0ZS8IZQ890DzJmNzZjaLc0Ski1dESrNA7tJkmZO\nJxXfnESSE0KZQMYUc3wyKhNIkrRMTiJJkiTJYMknkSRJkmTw5CSSnOp0haR4oX2hVyS0PU2mm/CJ\nVKd4OG2lI6RIjkbo7oxQ510XFRPDT6ELPIyX9e5faKzA1z7bpVAOXenHnLDKNd5rm3xfNUmF0Bkh\nthHyy5ln9RjD4TkeTju+iDtEdcFSVVEzItx2hof8lnDlyXet9P1KyPBO9/d0hTwK5W+SHCf5JJIk\nSZIMGtVOn1kkJ5EkSZLh5vSZQ3ISSZIkGW4y2TA57eha03/1vra1Idex1SVK9GyXNFdIoNcib6Lt\n0SgbG9IlXbuOFRDt2uIS8OPvjVyVIkMSJXuLJDt7In9jb/hbjvr+Jd+jyJWMf2iNj2Get9dU931o\nT7SLvJL2kGDhrmU+juaB7c6cj2SYyCeRJEmSZLCkYz1JkiQZPCnAmCQ9KWasUvGwFsq4B851KZLJ\nqzwMt1rMVy2Yhsq+e9/wXACmf90VhXXWTKC7qmJdRXdiqPZGqO+hS3ws4+/xfiqhoNu1cvVxnVuS\nDDenk08kCzslSZIMM7LWX722l66X9LikJyW9s5ftvybpIUkPSPqBpIsatr1b0lOSlkv66ZE7Sycn\nkSRJkuHGrPVXE5IqwEeBlwOXAm9onCSCfzWzK8zsauDPgI9E20vwkuIXA68APiYVpdKRISeRJEmS\nYWaITyJLgafMbK2ZHQU+C7ymcQcz29ewOAUoBrRXA581sy4zWwM8Ff2NGOkTSfqlbfr0Hsul4qHm\nud9i4uZSfdDlT9ojXNdC5r0avpH2i84/pu+ux70C4fSHQma+Ej+YimxJ/IBqlmKphhxJe4ylXrcw\nQ3STk4Wh+dXnAusaltfTy0Qg6W3A7wEdQKmzPhe4q2G3DbFuxMhJJEmSZJjpL8R317aV7Nq+st/m\nvaw7pkcz+xhurroR+EPgv7fadjg5KcxZkt4uqSapM5ZfLWlZOI3ukfT8AdrfJumhEzPaJEmSAahZ\nn6/pnYtYeP519VcvrAfmNyzPAzb2c7TPAa9taHvucbQdMqM+iUiaB1wLNKZMf9vMrgyn0VuAf+yn\n/evwGnRJkiQnBaq1/uqFe4ElkhZIGgfcCNzWo39pScPiq4BSmvQ24EZJ4ySdBywB7hnu82vkZDBn\nfQR4Bw0XycwONGxvdBr1QNJk4HeBXwU+P4JjPG2pNsmWFB/Jtktc1mTWHf4j58hCl3dv3+elbCtb\nvV17qWhYpEuA2k7fVn3Js3y56h9vx9MhrZIS7MlYZwjJhmZWlXQzcDv+Q/8TZrZc0vuBe83sK8DN\nkq4FjgA7gV+Oto9J+jzwGHAUeJvZyGY+juokIukGYJ2ZPdwchSbptcCfArOAV/bRxQeAPwcOjuQ4\nkyRJjoehyp6Y2TeAC5vWva/h/e/00/ZP8XvnCWHEJxFJ3wLOalyFO3reC7wHuK5pGwBmdgtwi6QX\nAB9s2g9JVwJLzOz3JC2kd4dSnZX2aP39DGbRqdmDOJskSU41dtgWdrJ1eDs9fVRPRn4SMbNePUeS\nLgMWAssiGWYecJ+kpWa2paH9nZIWS+o0sx0NXfwkcI2kVXiI22xJ3zWzl9ILi3XpMJ3R6Ull4kSg\n27w17Wk3WxXF3XFrvTohE7yaIEUx99Deeh+1vRHafvEiAMY/6earos5r0Vf7hW7u7XpixfCeRJL0\nQqdm00n3j8rVtnzIfSq1s0YeM3sEOLssS1oNXGNmOyUtNrOVsf4aoKNpAsHM/g74u9hnAfDlviaQ\nZPSpTyBJcjpwGmlnnQyO9YLRbZJ6vaQ34U6jg3gaPwCS7jeza0ZhfEmSJC2RTyKjgJktanj/YeDD\nfex3zARiZmuBK0ZudEmSJMdB1lhPkp7UDvYMgOvY4cs2oQMAHT7sG7ZHeG78E9mRCPk9s7PetvqQ\nh7RbSLur08OGdcj7sK3bh3v4SXJCyaJUSZIkyeBJc1aSJEkyWE6nolQ5iSRJkgw3+SSSJP1Te+Ax\nANo6Z/iKSZN8/R4P5a1EiVtCEt4OdCvZVCb7vsw/x3d5+PGRHm6SnFhOnzkkJ5EkSZLhJkN8kyRJ\nksFTzUkkSVqitmQeAG0bXVCgstCXS1XC6tPr+278cFYiTE5N8kkkSZIkGTw5iSRJkiSDJieRJEmS\nZNBknkiStIbd8zAAXaM8jiQ5mRiqT0TS9cBf0l3Z8ENN218Y268AfsHMvtiwrQoswwVt15rZaxlB\nchJJkiQZboYwiUiqAB8FXgZsBO6VdKuZNSZUrcVL4r69ly72n0il85xEkiRJhpvakOxZS4GnQp0c\nSZ8FXgPUJxEzezq29TZb9VvldbipnMiDJUmSnBbUjuN1LHOBdQ3L62Ndq4yXdI+kH0l6zXGP/TjJ\nJ5EkSZJhZog+kd6eJI6nw/lmtlnSecB3JT1kZquHMqD+yEkkSZJkuOlnEtm+fy07DjzdX+v1wPyG\n5Xm4b6TFQ9vm+Lta0veAq4GcRJIkScYM/VQ2PHPifM6c2D1HrNz+w+Zd7gWWSFoAbAJuBN7Qz9Hq\nTy6SpgMHzOyIpJnA84AP9dlyGEifSJIkyXBj1vrrmKZWBW4GbgceBT5rZsslvV/SqwAkPVvSOuBn\ngb+T9HA0vxj4saQHgO8Af9oU1TXs5JNIkiTJcDPEPBEz+wZwYdO69zW8/zFwbi/t7sJzR04Yo/4k\nIuntkmqSOmP51ZKWSXogIgye30e7Dkl/L+kJSY9Jet2JHXmSJEkfVGutv8Y4o/okImkecC2eOFP4\ntpndFtsvBz6PP6I18wfAM2Z2YezbOcLDTZIkaQ0b+5NDq4y2OesjwDuA28oKMzvQsH0KfavQ/AoN\nj3tmtmMkBpgkSXLcnEYCjKNmzpJ0A7DOzB7uZdtrJS0HvoxPFs3bz4i3H5R0n6TPSZo1siNOkiRp\nkZq1/hrjjOiTiKRvAWc1rsKTZt4LvAe4rmkbAGZ2C3CLpBcAH2zaD3zc84D/NLPfl/S7wP8B3tTX\nWFbao/X3M5hFp2YP5pSSJDnF2GFb2MnW4e30NHoSGdFJxMyab/4ASLoMWAgskyR8QrhP0lIz29LQ\n/k5JiyV1NpqrzGy7pP0x2QD8O708sTSyWJcO8WySJDkV6dRsOun+Ubnalg+905xERhYzewQ4uyxL\nWg1cY2Y7JS02s5Wx/hqgow9/x5clvcTM7sCd84+diLEnSZIMSLU62iM4YYy2Y71gdJuzXi/pTcAR\n4CDw82UnSfc3SBy/C/gXSR8BtgJvPoHjTZIk6Zt8EjmxmNn/3979x3pV13Ecf75UGmqAk0oKA0Ht\nByQZFVpqNMrQFqJrpPQLXXNNq/VHkrn8o5ZbG80ly7LWmLMWYCEVZKlRFFNRroBcIAwS4ocoDfAH\nYjp+vPvjfK4cvp0L3/v9cc/3fu/rsZ1xzud8Pp/zvh8OfO7n/Pic0bn1WcCsbvKNz61vAyY2Pzoz\nsx5yJ2JmZjVrg6euquVOxMyswcIvG5qZWc08EjEzs5r5noiZmdXMj/iamVmt4rDviZiZWa360eWs\n0r8nYmbWduqcgFHSZZKekrRR0s0F+98gab6kTZKWSxqR23dLSt8g6RNN/CmBftiJ7D0yNVfLcoyN\n4RgbwzHWIA5Xv1SQdAJwJzAZGAtMl/SuimxfAvZGxLnAHaQXtCWNIZvl493A5cBP0vyETdPvOpGG\nz9bZBI6xMRxjYzjGnovDUfVSYAKwKSK2RsQBYD4wtSLPVOCetL4AmJTWryD7JvvBiPg3sCnV1zT9\nrhMxM2u6OkYiwHBge257R0orzBMRh4AX09ddK8s+U1C2oXxj3cyswaK+R3yLLj9VDlm6y1NN2Ybq\nN53Ikljw+npDvhfQZI6xMRxjYzjGHtm6JBaM7EH+XRXbO4ARue0zgZ0VebYDbwd2SjoRGJI+pbEj\npR+rbEP1i04kIpp6Y8nMrEtEnFVnFR3AOZJGAs8C1wDTK/IsBmYAjwPTgL+m9EXAr9InMoYD5wAr\n6oznmPpFJ2Jm1ldExCFJXwUeIrtvPSciNkj6LtAREX8A5pB9T2kTsIesoyEi/iHp12Qf6TsA3BjR\n3JdW1OT6zcysjfXpp7MkzZG0S1Jnwb6bJB1OTywgaaKkFyStSsut3dR5lqTHJP1T0jxJdY3WmhTj\n3ZI2S1qd8o3rrRhT2kfTsddJWtpNnaW1Yw9iLK0d03bXcddKOijptIJyZZ6P1cZYZjsOlrRI0pMp\nxmu7qXO8pE5lL+/dUU98ViEi+uwCXAycD3RWpJ8JPABsAU5PaROBRVXUeS8wLa3fBXy5BWO8G7iq\npHYcAqwHhqftN7VgO1YbY2ntWLH/U8CSVmvHHsRY5vl4C/D9rr9nsks7JxXU+TgwIa3/EZjcqHj7\n+9KnRyIR8TDwfMGuHwIzC9KrucE+Cbgvrd8DXFVbdJkmxQgNHEX2MMbPAvdFxDOp7O5uqi2zHauN\nEcprx7zpwLxu9pV9PnY5VoxQXjsGMCitDwL2RMTBfAZJw4BBEdF1g/kXwJWNire/69OdSBFJU4Dt\nEbG2YPeFach9f5oeoLLsUOD5OPJZsh3A21opxpzb0hD+dkkDejHGdwCnS1oqqUPSFwrKlt2Ox40x\np6x27Np/MnAZRzqK/L6y2/G4MeaU1Y53AmMk7QTWAF8vKD6crO26FL28ZzVqq6ez0sn+beDSgt0r\ngZER8Yqky4Hfkf1nc1QVBeUa+uRBA2IE+FZE7Er/WH8O3Azc1ksxngSMJ/sN+VRguaTlEfGvfBUF\n5XqzHauJEcppx8q2mQI8HBEvFFVRkNYb7diTGKHc83EysDoiJkk6G/izpHER8XK+ioJyfqKoQdpt\nJHI2cBawRtIWsmuoqyS9JSJejohXACLiT8CA/I3YlL4bOE3ZBGjQnBd16oox7duV/jxAdj260XPj\ndBsj2W9xD0TEqxGxB1gGvLcivlLbsZoYU5xltOPKFGOXa+jmMlGJ7Vh1jCnOMs/H64CF6fhPk90v\nqZyssNdfwOtP2qETUVqIiHURMSwiRkfEKLKT530R8R9JZ7xeQJpA9njz3oL6lpK9vAPZyzy/b7UY\n0zVeJIns2u663oqRrD0ukXSipFOAC4CiV4VLa8dqYyy5HZE0hOxhimO1TZntWFWMJbfjVuDj6fhn\nkI3cN+criojngJckTUgxfvFYP4/1UNl39utZgLlkv1G8BmwDrqvYv5kjT3F8hezkXg08ClyQy3c/\nMCytjyJ7kmMj2ZMxA1owxr+QXf/tJLtJeEpvxZi2byJ7+qkT+FqrtWMPYiy7HWcAcwvqaaV2rCbG\n0toReCvwYDp2JzA9l29Vbv39wFqyWW1n1xOfl6MXv2xoZmY1a4fLWWZmVhJ3ImZmVjN3ImZmVjN3\nImZmVjN3ImZmVjN3ImZmVjN3ItbSJO1rQp1TJH0zrU+VVPmGczV1LJU0vtGxmfU17kSs1TX8RaaI\nWBwRs9LmlcDYRh/DrL9wJ2J9hqQfpA8PrZH0mZQ2MY0KfiNpg6Rf5vJ/MqV1SJotaXFKnyHpR5I+\nBFwBzFL2MaXR+RGGpKFpriYkDVT2Uaj1khYCA3PHuVTSo5KekHRvmmrFrF9oq1l8rX1J+jQwLiLO\nSxPvdUj6e9p9PjAGeA54RNKHyWZE/ilwcURskzSXo0c1ERHLJS0CFkfEwnScykN3lbkB2B8RYyWd\nB6xK+YcCtwIfi4j/pstk3wC+19AGMGtR7kSsr7iINJNsZJNV/g34ILAPWBERzwJIepJsxtf9wNMR\nsS2VnwdcX8fxPwLMTsdfK2lNSr+QrAN7JE3uNwBYXsdxzPoUdyLWV1QOEfLbr+XWD5Gd1+L/y1Tj\nIEcu8w6s2JcfySj350MR8bkajmXW5/meiLW6rv+slwFXSzpB0puBS4AV3RfjKWCUpBFp++pu8u0D\nBue2twAfSOvTcunLgM8DSHoPMC6lPwZclD6IhKSTJZ173J/KrE24E7FWFwAR8Vuyqb7XAEuAmZG+\nedFN/leBG4EHJXUALwEvFuSfD8yUtFLSKOB24AZJK4H8B8HuAt4oaT3wHeCJdJzdwLXAvHSJaznw\nznp+YLO+xFPBW9uSdGpE7E/rPwY2RsTsksMyayseiVg7u17S6jR6GAz8rOyAzNqNRyJmZlYzj0TM\nzKxm7kTMzKxm7kTMzKxm7kTMzKxm7kTMzKxm7kTMzKxm/wMD+WSIBOqyagAAAABJRU5ErkJggg==\n", 307 | "text/plain": [ 308 | "" 309 | ] 310 | }, 311 | "metadata": {}, 312 | "output_type": "display_data" 313 | } 314 | ], 315 | "source": [ 316 | "x.vv[0,::100,::100].plot()" 317 | ] 318 | }, 319 | { 320 | "cell_type": "code", 321 | "execution_count": 38, 322 | "metadata": { 323 | "collapsed": false 324 | }, 325 | "outputs": [ 326 | { 327 | "data": { 328 | "text/plain": [ 329 | "\n", 330 | "array([[ 0. , 0. , 0. , 0. , 0. ,\n", 331 | " 0. , 0. , 0. , 0. , 0. ,\n", 332 | " 0. , 0. , 0. , 0. ],\n", 333 | " [ 0. , 0. , 0. , 0. , 0. ,\n", 334 | " 0. , 0. , 0. , 0. , 0.03133055,\n", 335 | " 0.13307805, 0.17053199, 0.01937341, 0. ],\n", 336 | " [ 0. , 0. , 0. , 0. , 0. ,\n", 337 | " 0.03559732, 0.0432989 , 0.05692128, 0.02684703, 0.02553715,\n", 338 | " 0.06420372, 0.13408227, 0. , 0. ],\n", 339 | " [ 0. , 0. , 0. , 0.08255903, 0.20859727,\n", 340 | " 0.07113805, 0.1186877 , 0.11633661, 0.12248221, 0.08469804,\n", 341 | " 0.21946131, 0.07640633, 0. , 0. ],\n", 342 | " [ 0. , 0. , 0. , 0. , 0.12136722,\n", 343 | " 0.17693938, 0.07009638, 0.1718884 , 0.03588602, 0. ,\n", 344 | " 0. , 0. , 0. , 0. ],\n", 345 | " [ 0. , 0. , 0. , 0. , 0. ,\n", 346 | " 0.05092128, 0. , 0. , 0. , 0. ,\n", 347 | " 0. , 0. , 0. , 0. ],\n", 348 | " [ 0. , 0. , 0. , 0. , 0. ,\n", 349 | " 0. , 0. , 0. , 0. , 0. ,\n", 350 | " 0. , 0. , 0. , 0. ]], dtype=float32)\n", 351 | "Coordinates:\n", 352 | " time datetime64[ns] 2015-02-23T09:09:18.828457\n", 353 | " * latitude (latitude) float64 -42.2 -42.45 -42.7 -42.95 -43.2 -43.45 -43.7\n", 354 | " * longitude (longitude) float64 145.0 145.2 145.5 145.7 146.0 146.2 146.5 ...\n", 355 | "Attributes:\n", 356 | " units: 1\n", 357 | " crs: EPSG:4326\n", 358 | " nodata: 0" 359 | ] 360 | }, 361 | "execution_count": 38, 362 | "metadata": {}, 363 | "output_type": "execute_result" 364 | } 365 | ], 366 | "source": [ 367 | "x.vv[0,::1000,::1000]" 368 | ] 369 | }, 370 | { 371 | "cell_type": "code", 372 | "execution_count": null, 373 | "metadata": { 374 | "collapsed": true 375 | }, 376 | "outputs": [], 377 | "source": [] 378 | } 379 | ], 380 | "metadata": { 381 | "kernelspec": { 382 | "display_name": "Python 2", 383 | "language": "python", 384 | "name": "python2" 385 | }, 386 | "language_info": { 387 | "codemirror_mode": { 388 | "name": "ipython", 389 | "version": 2 390 | }, 391 | "file_extension": ".py", 392 | "mimetype": "text/x-python", 393 | "name": "python", 394 | "nbconvert_exporter": "python", 395 | "pygments_lexer": "ipython2", 396 | "version": "2.7.12" 397 | } 398 | }, 399 | "nbformat": 4, 400 | "nbformat_minor": 0 401 | } 402 | -------------------------------------------------------------------------------- /example_list.txt: -------------------------------------------------------------------------------- 1 | /g/data/fj7/Copernicus/Sentinel-1/C-SAR/GRD/2015/2015-02/40S145E-45S150E/S1A_IW_GRDH_1SDV_20150223T090912_20150223T090925_004748_005E1F_4B90.zip 2 | /g/data/fj7/Copernicus/Sentinel-1/C-SAR/GRD/2015/2015-10/40S140E-45S145E/S1A_IW_GRDH_1SDV_20151015T192606_20151015T192629_008167_00B798_776D.zip 3 | /g/data/fj7/Copernicus/Sentinel-1/C-SAR/GRD/2015/2015-10/40S145E-45S150E/S1A_IW_GRDH_1SDV_20151021T090921_20151021T090934_008248_00B9DC_E779.zip 4 | /g/data/fj7/Copernicus/Sentinel-1/C-SAR/GRD/2015/2015-10/40S145E-45S150E/S1A_IW_GRDH_1SDV_20151022T191805_20151022T191825_008269_00BA6E_9CCF.zip 5 | -------------------------------------------------------------------------------- /graph.xml: -------------------------------------------------------------------------------- 1 | 2 | 1.0 3 | 4 | Apply-Orbit-File 5 | 6 | ${scene} 7 | 8 | 9 | Sentinel Precise (Auto Download) 10 | 3 11 | false 12 | 13 | 14 | 15 | Remove-GRD-Border-Noise 16 | 17 | 18 | 19 | 20 | 21 | 500 22 | 0.5 23 | 24 | 25 | 26 | Calibration 27 | 28 | 29 | 30 | 31 | 32 | Product Auxiliary File 33 | 34 | false 35 | false 36 | false 37 | true 38 | 39 | false 40 | false 41 | true 42 | 43 | 44 | 45 | Terrain-Flattening 46 | 47 | 48 | 49 | 50 | 51 | Local DSM 52 | BICUBIC_INTERPOLATION 53 | subset.tif 54 | -999.5 55 | false 56 | false 57 | 58 | 59 | 60 | -------------------------------------------------------------------------------- /prep.py: -------------------------------------------------------------------------------- 1 | """ 2 | Prepare a dataset (specifically an orthorectified Sentinel 1 scene in BEAM-DIMAP format) for datacube indexing. 3 | 4 | Note, this script is only an example. For production purposes, more metadata would be harvested. 5 | 6 | The BEAM-DIMAP format (output by Sentinel Toolbox/SNAP) consists of an XML header file (.dim) 7 | and a directory (.data) which stores different polarisations (different raster bands) separately, 8 | each as ENVI format, that is, raw binary (.img) with ascii header (.hdr). GDAL can read ENVI 9 | format (that is, when provided an img it checks for an accompanying hdr). 10 | """ 11 | 12 | # get corner coords in crs of source datafile, 13 | # transform into crs of datacube index. 14 | # 15 | # TODO: datacube could perform this transformation itself rather than entrusting yamls. 16 | # This may support more careful consideration of datums, and issues such as the corner 17 | # coords failing to enclose the area due to curvature of the projected border segments. 18 | import rasterio.warp 19 | from osgeo import osr 20 | def get_geometry(path): 21 | with rasterio.open(path) as img: 22 | left, bottom, right, top = img.bounds 23 | crs = str(str(getattr(img, 'crs_wkt', None) or img.crs.wkt)) 24 | corners = { 25 | 'ul': {'x': left, 'y': top}, 26 | 'ur': {'x': right, 'y': top}, 27 | 'll': {'x': left, 'y': bottom}, 28 | 'lr': {'x': right, 'y': bottom} 29 | } 30 | projection = {'spatial_reference': crs, 'geo_ref_points': corners} 31 | 32 | spatial_ref = osr.SpatialReference(crs) 33 | t = osr.CoordinateTransformation(spatial_ref, spatial_ref.CloneGeogCS()) 34 | def transform(p): 35 | lon, lat, z = t.TransformPoint(p['x'], p['y']) 36 | return {'lon': lon, 'lat': lat} 37 | extent = {key: transform(p) for key,p in corners.items()} 38 | 39 | return projection, extent 40 | 41 | 42 | # Construct metadata dict 43 | import uuid 44 | from xml.etree import ElementTree # should use cElementTree.. 45 | from dateutil import parser 46 | import os 47 | def prep_dataset(path): 48 | # input: path = .dim filename 49 | 50 | # Read in the XML header 51 | 52 | xml = ElementTree.parse(str(path)).getroot().find( 53 | "Dataset_Sources/MDElem[@name='metadata']/MDElem[@name='Abstracted_Metadata']") 54 | scene_name = xml.find("MDATTR[@name='PRODUCT']").text 55 | platform = xml.find("MDATTR[@name='MISSION']").text.replace('-','_') 56 | t0 = parser.parse(xml.find("MDATTR[@name='first_line_time']").text) 57 | t1 = parser.parse(xml.find("MDATTR[@name='last_line_time']").text) 58 | 59 | # TODO: which time goes where in what format? 60 | # could also read processing graph, or 61 | # could read production/productscenerasterstart(stop)time 62 | 63 | # get bands 64 | 65 | # TODO: verify band info from xml 66 | 67 | bands = ['vh','vv'] 68 | bandpaths = [str(os.path.join(path[:-3]+'data','Gamma0_' + pol.upper() + '.img')) 69 | for pol in bands] 70 | 71 | # trusting bands coaligned, use one to generate spatial bounds for all 72 | 73 | projection, extent = get_geometry(bandpaths[0]) 74 | 75 | # format metadata (i.e. construct hashtable tree for syntax of file interface) 76 | 77 | return { 78 | 'id': str(uuid.uuid4()), 79 | 'processing_level': "terrain", 80 | 'product_type': "gamma0", 81 | #'creation_dt': t0, 82 | 'platform': {'code': 'SENTINEL_1'}, 83 | 'instrument': {'name': 'SAR'}, 84 | 'extent': { 'coord': extent, 'from_dt': str(t0), 'to_dt': str(t1), 'center_dt': str(t0+(t1-t0)/2) }, 85 | 'format': {'name': 'ENVI'}, # ENVI or BEAM-DIMAP ? 86 | 'grid_spatial': {'projection': projection}, 87 | 'image': { 'bands': {b: {'path': p, 'nodata': 0} for b,p in zip(bands,bandpaths)} }, 88 | 'lineage': {'source_datasets': {}, 'ga_label': scene_name} # TODO! 89 | # C band, etc... 90 | } 91 | 92 | 93 | 94 | import sys 95 | import yaml 96 | 97 | if len(sys.argv) != 2: 98 | print("Usage: python prep.py scene.dim") 99 | print("or (bulk usage): for file in *.dim; do python prep.py $file; done") 100 | else: 101 | scene = sys.argv[-1] 102 | assert scene.lower().endswith('.dim'), "Expect the BEAM-DIMAP header file as input" 103 | metadata = prep_dataset(scene) 104 | yaml_path = scene[:-3] + 'yaml' # change suffix 105 | 106 | with open(yaml_path,'w') as stream: 107 | yaml.dump(metadata,stream) 108 | -------------------------------------------------------------------------------- /prepro.sh: -------------------------------------------------------------------------------- 1 | #!/bin/env bash 2 | # 3 | # Preprocess a Sentinel 1 scene using ESA SNAP (Sentinel 1 Toolbox) Graph Processing Tool 4 | # 5 | # Expected to take ~10min for one scene, ~4x concurrency, ~10% sys versus user. 6 | 7 | if [ "$#" != "2" ]; then # validate argument count 8 | echo Usage: . prepro.sh input_scene.zip output_scene.dim 9 | else 10 | 11 | GPT=./gpt # symlinked to bin/gpt of local SNAP install 12 | 13 | scene=$1 14 | radiometriconly=temp.dim # temporary intermediate 15 | output=$2 16 | 17 | # clean workspace 18 | rm -r temp.data temp.dim 19 | 20 | ./subset.sh $scene 21 | $GPT graph.xml -Sscene=$scene -t $radiometriconly 22 | $GPT Terrain-Correction -Ssource=$radiometriconly -t $output \ 23 | -PexternalDEMFile=subset.tif -PexternalDEMNoDataValue=-999.5 -PnodataValueAtSea=false 24 | 25 | rm -r temp.data temp.dim 26 | 27 | # resample and compress (~5GB -> ~200MB) 28 | for img in ${output%.*}.data/*.img; do 29 | gdalwarp $img ${img%.*}.tif \ 30 | -t_srs EPSG:3577 -tr 25 25 -tap -r average -srcnodata 0 \ 31 | -of GTIFF -co TILED=YES -co COMPRESS=DEFLATE -co SPARSE_OK=TRUE -co NUM_THREADS=4 32 | rm $img 33 | done 34 | 35 | fi 36 | 37 | -------------------------------------------------------------------------------- /productdef.yaml: -------------------------------------------------------------------------------- 1 | # Sentinel 1 A+B SAR Product Definitions 2 | # 3 | # These are used to group together the individual scene datasets 4 | # that will be indexed into the datacube. 5 | # 6 | # Note: currently setting nodata as 0 rather than NaN 7 | 8 | 9 | name: s1_gamma0_scene 10 | description: Sentinel-1 A/B SAR Gamma0 11 | metadata_type: eo 12 | 13 | metadata: 14 | format: {name: ENVI} 15 | instrument: {name: SAR} 16 | platform: {code: SENTINEL_1} 17 | product_type: gamma0 18 | 19 | measurements: 20 | - name: vh 21 | units: '1' 22 | dtype: float32 23 | nodata: 0 24 | 25 | - name: vv 26 | units: '1' 27 | dtype: float32 28 | nodata: 0 29 | 30 | -------------------------------------------------------------------------------- /radar average.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 1, 6 | "metadata": { 7 | "collapsed": true 8 | }, 9 | "outputs": [], 10 | "source": [ 11 | "import datacube" 12 | ] 13 | }, 14 | { 15 | "cell_type": "code", 16 | "execution_count": 2, 17 | "metadata": { 18 | "collapsed": true 19 | }, 20 | "outputs": [], 21 | "source": [ 22 | "dc = datacube.Datacube()" 23 | ] 24 | }, 25 | { 26 | "cell_type": "code", 27 | "execution_count": 3, 28 | "metadata": {}, 29 | "outputs": [], 30 | "source": [ 31 | "lat1,lon1 = -16.885611, 145.900562\n", 32 | "lat2,lon2 = -16.917936, 145.944146\n", 33 | "\n", 34 | "#x = dc.load(product='s1_gamma0_scene', lat=(lat1,lat2), lon=(lon1,lon2))" 35 | ] 36 | }, 37 | { 38 | "cell_type": "code", 39 | "execution_count": 4, 40 | "metadata": {}, 41 | "outputs": [], 42 | "source": [ 43 | "from unittest.mock import patch" 44 | ] 45 | }, 46 | { 47 | "cell_type": "code", 48 | "execution_count": 5, 49 | "metadata": { 50 | "collapsed": true 51 | }, 52 | "outputs": [], 53 | "source": [ 54 | "import collections\n", 55 | "GroupBy = collections.namedtuple('GroupBy', ['dimension', 'group_by_func', 'units', 'sort_key'])\n", 56 | "# or datacube.api.query.GroupBy\n", 57 | "fixed_time_grouper = GroupBy(dimension='time',\n", 58 | " group_by_func=lambda ds: ds.time[0],\n", 59 | " units='seconds since 1970-01-01 00:00:00',\n", 60 | " sort_key=lambda ds: ds.time[0])" 61 | ] 62 | }, 63 | { 64 | "cell_type": "code", 65 | "execution_count": 6, 66 | "metadata": {}, 67 | "outputs": [], 68 | "source": [ 69 | "with patch('datacube.api.core.query_group_by', new=(lambda **x:fixed_time_grouper)):\n", 70 | " x = dc.load(product='s1_gamma0_scene', lat=(lat1,lat2), lon=(lon1,lon2), output_crs='EPSG:3577', resolution=(-25,25))" 71 | ] 72 | }, 73 | { 74 | "cell_type": "code", 75 | "execution_count": 7, 76 | "metadata": {}, 77 | "outputs": [], 78 | "source": [ 79 | "#x.vh.plot.imshow(col='time', col_wrap=3, vmin=0, vmax=0.5)" 80 | ] 81 | }, 82 | { 83 | "cell_type": "code", 84 | "execution_count": 11, 85 | "metadata": { 86 | "scrolled": false 87 | }, 88 | "outputs": [ 89 | { 90 | "name": "stdout", 91 | "output_type": "stream", 92 | "text": [ 93 | "Using matplotlib backend: Qt5Agg\n" 94 | ] 95 | }, 96 | { 97 | "data": { 98 | "text/plain": [ 99 | "" 100 | ] 101 | }, 102 | "execution_count": 11, 103 | "metadata": {}, 104 | "output_type": "execute_result" 105 | } 106 | ], 107 | "source": [ 108 | "%matplotlib\n", 109 | "x.vh.mean(dim='time').plot()" 110 | ] 111 | }, 112 | { 113 | "cell_type": "code", 114 | "execution_count": 9, 115 | "metadata": {}, 116 | "outputs": [ 117 | { 118 | "data": { 119 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbAAAAEKCAYAAABzHwA5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXnQbdlVH/Zbe+8z3OG73/imHiS1JgggClsNkqkEbIGR\nUqkC44iYEMoQmyKmkiJFyomtkDIuDCmcUCGO48JWQIBtIoFVxiixsSQSsB3MIFkISSAJDd1qdfd7\n/YZvutMZ9t4rf6w93K/1uvt199fd6tZZqq/07rln3Of2Xnut9fv9FjEzBhtssMEGG+zFZuqFvoHB\nBhtssMEGeyY2OLDBBhtssMFelDY4sMEGG2ywwV6UNjiwwQYbbLDBXpQ2OLDBBhtssMFelDY4sMEG\nG2ywwV6UNjiwwQYbbLDBXpQ2OLDBBhtssMFelDY4sMEGG2ywwV6UZl7oG3gpWEkV15i80Lfxkja3\nL+OregY5hi9k7UXM8Iag+qAoowhwDHrc8RyWauTDBr+xv99QoyECwOH/AV8QwBvHczjHhoINE4GY\ngceJ2rCicE25R92FHQhwZb5D5eTQeA1lWY6Ny0sfrx2Oj9cJp/CG4E1+NnJyn+mRHIM8wCYcwAzW\nlM7DClBdHjMmOTeHMVDWpzGP5+Bwn76gNC6q57O35s8OSLo+ABDBK0C5vI/XBN36dAJfKpCV79N1\n3Nlnj2OG+F42XzyFZwnPlN7dxrhs7s9EsGP5t243tuu4P+CLs/dAPn/WrQPWLZ5K3WiOo5vMfOFJ\nd3oSe/OfmfCtQ/fUOwL4dx9p38vMb3myfYjoLQD+DgAN4GeY+Sce9/1/A+D7AFgANwD8JWb+XPju\newD8D2HXH2PmXwjbXw/g5wGMAPwLAP81PweyT4MDOwerMcEb6Jte6Nt4yZqeTtF/9WsBAKvLJWaf\nWqC5OJLvGo/FvSV0K/9tFEsP3XiYlQUAuEpD9Q5sZKZrdwt4QzCNzGTUM7jYcCatBytKDsCXBLIM\nV8vx0YHqcLydaLQ7GsXCg8KE7Y0cr8Lk60oFVkCxkEnHF4T1vobu5BrFykP14uTkpoBumpMj1YlD\nP1EwazmfWTmwpjSpd1sargJUL/ubRvaL1yfHqK+38JXMxM1+gXZboZvJ8eUpwzSM+pYN1yewIegm\nT5J6ZdHPSriKwrgqcQDBiqWMeT8rwntxoN7D1XJN5RjwwOKeUu5xzTJewUmapYOrFSafm8v5JyXW\nl+rk0BZ3G+iG0yJA9fn5AMCOCCBKY1wsHbqZSffoKgVfUPrcTRWKlcfohk1jdPqKMo3J3id6+JKw\nuGLSeLqSQJ5x8irZZ/p5oFwwyrncY3XYQS9a+N//IzyZ/Tq/+3NPusNT2K1Dh99778vuaF995VMH\nT/Y9EWkAfw/AnwXwMIAPENF7mHnzIX4fwP3MvCKiHwDwPwH4C0S0B+BHANwPWdP8u3DsEYCfBvD9\nAH4H4sDeAuDXnsZj3pENKcTBBnuGZif6hb6Fwb4EjQH4O/zfHdjXAfg0M3+WmTsA7wLwbWeux/wb\nzLwKH38HwD3h328G8H5mPgxO6/0A3kJEVwDMmPm3Q9T1DwH8uWf94LexIQIb7Ive/FfcB1fKWqtY\nethJgWIhK2fVWoyvEdpd+SnbWkG3Hi5EG+Q83MhAtTmaKFYeZi7hChcK7digWMp/7KwIbqRSSlI3\nHr5UKeXntURX3UznqG/h4QtCtyX3WB96uJpSClH1Hv1EoQ8Ob32gQB4Yh9W/rZVEDiTHS0RFGF+X\n72NkltNrBFcr2JHsX84dWq1TRKJ6RjdTqE5CBOaB1d2j9H23pcCKUmrMG4IvkKJWEKGfFbAjne6v\n9oBeW7iqSNcgBtxG9FrcWIBpKsdMDFDrnBZdSYQVoxk7JpgVoLsQvRy1aC7UaC9KqtiOFOobbYrg\nzIrhC8DWcr2q9TArBx9+F6wkooq/k/pGC2MUull4SJY0aYy8QUB15NLY2m2TI2DI+3UloVgxRtfl\nt3LyyhJ2RCgW4Zl6SWHG30a7V+L49SNc/n08p8Zg9HxnKcQ7sLsBfH7j88MA3vAk+/9l5Ejqdsfe\nHf4evs32c7fBgQ32RWcP/MTX497/R/Jr1e98Eqcvm6A6kcm1POpAjlNK0FcG5IH6MEz2WhwHR4dT\naJilA8eamQeo91L7AmBHGrpnqV8AUJ1Ha0q4SvZ3JUH3DLOWiW+9r1GdeOg21198QVAWKOfBYbDU\nXOL3diTpq2Ip15hcYzS7OQXny3DPZ+oxSOk13THsWGFxlziPYi33U57K+chxqNPJ/v1E7ielEC2j\n3ZZtAKB7wJVAIdk6mIal7hbG1FUatlboprGGB6wvFhhf61LtEcywFaE6zvfgqyKlXot5j3a/QrMr\n+0/X4uQ3a1n1rR66kZtqD2qs93Vy2nEcq5trGcOxxuqizum8ikA+O+1y4aHX+T2DCHaUFx7ViRNn\nFmpbZuXhS0K7HZx0RSiXOaXZTyikDIHlFRn3bhvop0B3Ue5x51MKza7C/GVyTH0LWLzS472P/gEA\n4JXv+0t47fd9BGx7nLfdYXQFAAdE9MGNz29n5rdvfH58uRj4gmpu2JHouyHpwm98imPv+JzP1gYH\nNtgXnR38gU/RSvMffSXqWzZNzgDgKw0bVuYUABaxJkUEuFpBdXnyZkMpAisWFnrtJEKARBLK+gQ4\n8KWC6vwZ0Ic3BFdHZxLuociTO3mgmFvYcVztM0Y3XFr96072sePgdDWhWOe6mm48wAwVzl2dOBTL\n/LyscCZi84ZQzF06vtk3cJUAOQCgWDHKYwcfbkd5idLi9ckxdI8zUwp5pIgLLM8Tp4dui6TGhE2n\nrUCekxNmBXChodZyj6t7x+jHCtVJrhV6QxjdkMnc1QrKevRbRTghY/yYTVNfP1GYPNTBjYt0j6rn\n5OTrQ3me6DBVI3VE9PKe+60Cumf4ECWrzqNYUooYzcoDG0CW+sjBl5Te7/ogOK97GHf/K3mGk9do\n0JfPUf3hVhq01eUM+FjeBRx8iPCGD/0VAMBrPrGC3t2GvXET52kMhrtzPMRNZr7/Sb5/GMC9G5/v\nAfDo43ciom8G8MMAvpGZ241j//Tjjv3NsP2ex23/gnOehw01sMEGe4ZGd7wIHmyw8zUPvqO/O7AP\nAHgNEd1HRCWA7wTwns0diOhPAPgHAL6Vma9vfPVeAN9CRLtEtAvgWwC8l5mvApgT0RuJiAD8RQC/\n+uyf+gttiMAG+6Iy82WvRrHiVOOyVkN1HuTEW7iRgW5cgmSbuRVYeEgd6c5Dd7kGxgoAA/12QMet\nN1b9ELScHWsg1E58QbBjlRB9upP6VTRXSY2qXHBCBRYrDzvWCRJOPWN9sYCt5ZjylOEN8v7OQ689\nFvfIfZhGYO0J1ceAG0tNBwg1Fs4oRd0z2h2TUI/KMoolozr16Zn02qHdF8Sfq6Xm5nVIdR07eKNT\ntBPrSmYZxnxLkJox2tEtQ3eAbiyKuYxrv6VBHikKLOYOqu3R7wkOnZygGnUfnqFQ0A1SzcoVBOo9\n2rurdI1i4dBP5fyjGz2o7YFJmd5LOWeYUAdU1sMs83uP9+pCFKw6j26kU4SWqQ+yY7Hosb5Up/ca\nI/zF3ZE6AJg1cPDhHHVuPQCYT0zRTZGe8a7/r8Vj98szbH9G6Ar1kUSBetmi/7J7QOcegQHunDJy\nzGyJ6L+COCMN4B3M/IdE9KMAPsjM7wHwPwOYAvgn4o/wEDN/KzMfEtHfgjhBAPhRZj4M//4BZBj9\nr+E5QCACgwMb7AU20hrsckH6oW+7iL1POvhQjzFLBzvSUDakvwJHqjqUXI9MiDIZAoAdmwBh92l/\nV+ucgiSpOSFNbCpN8ABSbYeCj7O1PgPX7qcCie/H+RwC1eeUZoy1k2KVAQvl3KcUnll7UEEJkl4d\nS00uOhhXCh/KBufQjwU4EnlgrlQwrcd6L0zWVlKp0QExEdr9Mh2vekY7y8/otTit6HB1xxhft7Dj\nkDKcKiiLdH/ESAuICCRxtYKrCGYVgSJSA7NTk+4R8KAw+yvLAmaZmXRNKIIN1xhf62BHOgFhJp9b\ngKzH6pI4h2ZHYetRC9XG96xRzC1oHVKGs0K4beGZ7EihWPvk9H1BqI76tEgg59FNKTkn3QJkM+er\nugmsLwC6peTgtz/bwhcEV8qPo9nTMGsP08bfinD9YprSTSoUn7mGXNU7P7vD6OqOjJn/BQTqvrnt\nb2z8+5uf5Nh3AHjHbbZ/EMBXndtNPoENDmywF9Qe/u/egMlVTvwbV8nqWQV0WrdtpJYR9tfM6Ccm\n1bzMsgdrAuvoHASZFkm4FP5Dj/WgGDGYdQYf1DddmrzJMUpDKerSraDt+kmuAVUnjHaH0O4QisAD\nKpYeJ/fJxLb9QA9XEeb3mHCtUCeKUUJFYKXT5O9qcVDlcQj7ZgaqYziZu0FeJvzyOERIUwFZRP4R\niNBPCOsDiVaKhcPisoybXFdqbnEyX14xUD1jvR+cx3UBiUQHZxpGt5WRmN1UwVYKuqlgAjdMNx66\np3QMG0K3X6fJu1h74dQFp6w6B1frtH9x2qPdK9NnOzFgAka3wnvpLNC08DlYhisJTLmO6AsFHRY/\nZmGl1hnWQuzFmcUIsJj3UE0GU9itCsUqE7ERQDfdnuy/93FgdUmhnwCmkX1OXlVh+zMtRjflIodf\nZsBUoJvJKcZXgeUVSvXb6sRA3XUAM5OQzW0JdxEfeDeejTGA/vw5wS9Ke8FqYET0HUT0h0Tkiej+\nje0FEf0CEX2UiD5ORG/b+O6HwjEfI6J3ElEdtt9HRL9LRJ8iol8KuVwQURU+fzp8/4qNc70tbP8k\nEb15Y/tbwrZPE9Fffz7GYrAXpxWLYRIZ7Pk3BsPd4d9L3V7ICOxjAP48pDi4ad8BoGLm1xHRGMAf\nEdE7AfQAfhDAVzDzmoh+GVJw/HkAfxvATzHzu4jo70O4Cj8d/v+ImV9NRN8Z9vsLRPQV4divBHAX\ngF8noteG6z8VK32wc7TZgx6zz66wviyrU68DJLvMqSc4Tuk3feJhlm5j5UxBbijwuIyC6n1KQdqp\nAVlOkHPdioqFXgUemNGAZ+iAnrMTA90xfJFTY3akEgqvOmFBGd7kHH0oQnmrAb1CwoV2V6ObKEwe\nizUsiRjqADl3IX0YowXVA2BGsx84Vg5gxWi3cxRYH/awoT7EJBFZ4lh1Ug9qDuQ/53IOTK/agCSU\nMdiExTe7wPYDnGD1xVLGNEZc/cxI2tIHpY65h6sIq0sGo8Ow7ahDv1VsqI8ogDlRBdodA20I5UkY\nZy2p2jLQIVTn0O7UKc2qWg870Whmgcf1qAaRSqlfX+IMQNusHJhwJnL2BaXI2lUK0ITipAvXJ0Ap\ndLt1eGcS2cYxdCXBVQBT5s5Vx0CzB0wfCVD9U4d+SyeEKxtgeQ8weSSM48qjPFFo9+Tz/N4Se4dr\n4PhU3uMicoGfpXHKlH7J2wvmwJj54wAQioJnvgIwISIDKQB2AE7Dvw2AERH1AMYAHg0olzcB+K5w\n/C8A+JsQB/Zt4d8A8G4A/3vY/9sAvCvAQR8gok9DGOlAYKWHe4us9MGBnbM98t9/PQDg8m+3YMop\nu/JUHEycTItWIO/lPNfJlBUQBCCpK4Goh4mMpe6VAQpCbDZdrIl5AAq+MumzrzRUF1JRa4d+yyTe\n1+JuA9UBOskJAcqK9mGc/MoTh8V9E7iQ7uomCspxchiSkssQ7ajJxyqnFs0qp9vsSKHb1mlyNwEk\nEifzCEyJKUlvCNoyxtfEWbQ7BsXCZfL2SKO+2cFVkpM83ge6myqdv1h6EAPLu8owZoRiyQnyzoXC\nutToZoRyEZzq2sJXGt2WjGOxEFJwrFGVp06AFnN56ObyGKwIxa2l3HNdoptSkq8Sh8IZFr/uAe9Q\nnWaHqBzDLPLvoNs2aWEzfqwT7lt45qpxsNMi8brEwWn0W5HawNBtpmsoizPcvqMvU6hvARf+wGWQ\nSwPM7zGoj0NacgkUCyGuA+LQxjd8qteuLhBmsxqF25cxuBLQH5sU32dgebk22BdjDezdEKdxFeKk\nfigiW4joJwE8BGAN4H3M/D4iOgBwzMyxVrrJ+k5M8YC2OQGwH7b/zsY1N495Oqz0we7Q+N//GgDA\n1T81RnOB4S5J5bv7uEFhKInjql6iLWVlImISTb4o6goCwBwcEeBGJUjlyV+vnERNRZyYxJlFAER2\nEkHhYR3qN9MIFhBdwVjnqA99qgkBAqhgxcmZTK72WB8YnLxSYXRDbrEMqh4RlNFuK7CWor9ck9Hs\nKYxuhDrfjKA7lZQ92m0F0zLqm8GBKEKzb9Jk3k9E4SLW1nwhDjzywMgByim4NnDdghBvdBY7nyxg\nR5kGsLjboD7y6fq6ZfiS0M0yD0x3OFNwYBLyddQedCMFvfYpctZrK4K98T20HsWpS+95cd8k3GtU\nPJGFS4yU4Tx4NsH8brmHcYhmN++hvtnCjeT7dqdAeWLhwkLGnETCXhijWgOc+YJgoNvL05/XEBJ1\niOybA0J1SOjHKkXO87sMuhlALkT3I2B8jRPwo5uooO8on2ef99CNxeJVUiTb+oPHcD5GcLflCn/p\n2XPqwIjo1wFcvs1XP8zMT8QL+DoADpLa2wXwb8J5jiCO7T4AxxBI53dD4J+PtxhgP12m+O1qgk/E\nSv9+iFglaoyf4FEGeynb5Or5KywMNthTmYA4BgcGPMcO7Mngl09i3wXgXzJzD+A6Ef0WstrxA8x8\nAwCI6J8C+HoAvwhgh4hMiMI2Wd+RZf5wSEluAzjEk7PPn5KVHp7t7QDeDgAz2hsy0k9hx6+RGtfW\nI4ztBxlmnbUKvabEYfJFSCdGSaJQU6GYW2Kpp0AHFOKqhxsZFPNcawGyxp60u+AzrT2YgPJQIsDm\nygi0oQQf03tRYqhYethRRttVJx66k4is2Zf/fJaXFMaPIaU9XUFQllN9aHTTo91RCfVXH4a6V1SV\nOPKwIwVin+5hs7VIu1dAt5xg8d0WidJHiAp1n58LAHSIVjdrZsXSITZM2X6ghStUSqdJ/SdrN1Yn\nDutxRkmaRt6LWcq1AaAeG7DK0lBA0IeMbW1YozxuU4RVnEpLFjeT30E/DryuoL/IWlCPVXgv8B6+\nLnNU6VlavkSY/ERqmxGtSk6UTWKE1e9UMIs+jTE5hl52aPanYczk/UTV/6gbWRzKBatDibDsSBCj\nADB5zGJ9KaM7Y9eBWKtUljF/OaG+hfSM1++f4uAjIofFVYnzMOGBDQ4M+OJMIT4E4E1E9I8hKcQ3\nAvhfITWwNwZgxxrAN0GIdkxEvwHgrRAl5e9BZn2/J3z+7fD9/xv2fw+A/5OI/hdIpPcaAL8H+bm/\nhojuA/AIBOgRa2uDPQuLgIXq0KI5MKmNBWuCHes08TT7BuNrfVJ690b4Vt7klKDqPfotmQxEF5GA\nqHVoWThLYTbXjYWrTe4XhgAomGZiM+ssMdSPBHLej+IEoeCLLBfkwvZ2h6ADvLpYifMqFzml54rs\n9NYXRNqqCDX8dptgGiQnrTsBhDS7Wbi2vtUnB6g7hvY+ifdWx8IpizJNrIWrFH28K0lSlDdzPcqO\n9IaTFqHcyANr9kzQFgz3uydCtmYV0oO1weRqj36qU63S1RpmZTMxuVRAqVILFm9I2rJEOat1D1YK\nXWiDUyw5aUDKmCmwJnTb8l5HN4SkbEObPfKh31bMJPdCbo+k9Oqol/RkPJ9RcCOTCO/kGXY8Tpy+\n5UWTxg+IepAeRkp08AVQtECzjyTrpTuFYpHFlYtFdHDhJD0wfVgcX7xns+JMqr9wfj0D/RCBAXgB\nHRgRfTuAvwvgAoB/TkQfZuY3Q1CAPwdBKRKAn2Pmj4Rj3g3gQ5DGar+PEAEB+GsA3kVEPxa2/2zY\n/rMA/lEAaRxCHBIC0/yXIeAMC+C/ZBZ559ux0p+7UfjSsKP//E8lAINysoruA+G1mFupnWxq1AFp\n8mQ6K9kkkxgnh+ULIeQm1OGWSiK18QRm2adiPgCo3qXaSTczUL1Hsx/5YQyz8nDh/O0OwayBOnCw\n+pFCu61Qnm6swkNjxIhUJC9RVLsTUXyi2lFcC6jAscZ6T6VrtlZqXskhUSAGJ+dAaHYyh0r3Ij4b\nZ05fiN6iCjWs9b5CseQkZBudThRE9kadaRZZLjz8Ou9HRGDLqQZWnojjsCOV3k+/JaAKHVB/diR1\nueRkj3r4UkOf5ojK7o2TgwGkHsUbjUnhgGIefygK3U6J8gRnfg9xTACguVClOiNrSuotgNTkVOvT\nwkVZUaqP9z95zMKOFKrTGDEyyDKmD+da680/yZh9Wm2cQ3iK5UlcWBDqWz5xGL0h4YTFR5wDps3P\npB87wXnYEIFleyFRiL8C4Fdus30BgdLf7pgfgTRQe/z2zyKjCDe3N09yrh8H8OO32f4FrPTBBrud\nbbbfGGyw58sYBDfI2AL44kwhDvYSM7chW+RLBVDunUU21GE2ldkpI/h060EbqENAIhzVx2hFuuRq\nGxUiJHpJ/cA8gY3KKhhBSzFq7rkS6KY6IfrIIUhRyf7lqfClYq2EHFJXYBtQ0aPDUIOp4j1H7UOk\nY+Rmw/8pSYVGRGQ/xZn2J/1IwU5NkobqJwq+pATXbrcVyoVPeo2WhHYQtRNjf6/1QSwAadSHjGIZ\nW8pkvhcgCv3NlTJdXzce1Qknmaf5vQXKhdAGYgRDnsFEcFHBPipZBAX+Yu4EiRjnWQpI01gTWzhB\nh8b3qBWW9xTYvSF5Vi4MTl9RoFiG98JS90o1L5b0L+rYD0x+C1ELkRXBlwpmFSTHCo35PQWmV3MH\nZgCJ6qB6ub/4blcXFUaPElS3uVBhFPMssVWdSOQdfzuxJU1UUOknBDsCTl8lqcPdW6GR2DnYkEIU\nGxzYYM+5rQ+QmgDaWqE6smeK/3YsEzQAeK1hmiwl5QsCSEGndic6cLBCus7mFBAgpF6yPn0GpP1K\n5AfptYUvdU6FjQ36CWF0mB1kN82QduWEA5bbp4iwrSsp9f+KHK4+gFHtSDTxouNiLY6YwznKUwfV\nK3SzNLtj+mifQRiBTxUdXHnqANZYH+SGmabhlLIUbhoyB2suRN6YQgSk6WZ0LuRYuEphjOxIo5x7\nrA6CkG7rQL3H8hVSj9KNwMyVyxJcrtbotxSqWyE9tpZaZXQMqnfQJ2sgwOhZa+GNBXBMTEvGFGK3\nJQTy5i6Z7McPHId0bubKwXPWnxxJXTHpOa49uh2TUphghisVyEVyuUE19xtjIu1nIhfOlQK8SXVC\nD5SnArA5fXkQLF4TfAnsfMam38nyktogVwPri8Ak8LzsBFjeDVx+v8Dn+yvb8sWn8KyMQehicfFL\n3AYHNthzbnf92zY3W5xq9FOde1dBUH2bhFNyWWUcPihebIjx8kb+nzUFMnNwcIqg11lZo7k8llV/\nFLItBFywvCI34A1JtBHJqmvG+LE+985qgdVBrj+RF2CC7gC4wFsbEbyh1GxRdxDnEMV9TdDtCw5m\nedkkwIXsz1hdKjB+LCApKShZhNqLEIs96ls5+mh3NShEidWxh3JIwJdmJ0y4qxwZRBFiAKiPJPqL\nkUQ7Uxjd8igXQSh3pFCeWuz9kdSvjr68AmtCfZTFeMGRYxciGOvRG50aiSprQLtjqDYqnBRotzNB\nfHXZYHTLgW2IZo56AfN0G8CKdR4k5Ri2UuAN9RM2wOgRQV0sXz5N4yTfixNq9rJ4sC/y7yT1HRvn\n995P85grSyAHrC7kzgTzlxH6KVAfyjifvJIwfRhp3FxJGD+aQR3FgrH/MaSFQnF9szj7zE2IzEMK\nERgc2GCDPWPbRDYONtjzaQOIQ2xwYIOdq+mvfC2uvukAJ6+X1ft41mDvHxmUp7ISH11t0B5UKSXn\nCwWzdDAc1SsQYPNhZbz0oTdVWNnHFTrnlCIA6FAvUr0DmywVpVpRQ+gDbD5pKm6oTvRjleDe5IDV\npSJ91h2jWOV6lVl7rPe1aOaFCMaOpa2IciHKHAt3KtbRVM8wK4d10CpUVqKq0WFWxFduo+7XeFCl\nMmS9kJRbjNp8KRFfEGaHWUvUGtNjxKGHV5vrTfOXFSnaIKdQH2WJpCpwtLABSnFFTo3NHujBhrC4\nYpIyu+6Fl4Wt2D4ltJBZZLTgelJhfNWn96RcjtjKuaQDo0IKCIDKsHo4n7hi8b1TrRMsHsypRgjE\nFjB5DEwT+4aF3QlBOzHXWk3DsHWseRHKhUmp5elKUq7eEOqj8FubE8giUS62Hsq8PwDwBuhmwPiG\nbG9nBN0y2leIOGJxuMZ5GDPB8RCBAYMDG+yc7bFvOMDuJzuMbwRh2s6gmLs0MXW7paR3Uit6aSAZ\nJYT8RIMNUASH58sgzxNLGyBAIaXPVC8OirqwwQN+ZFLKT/UerBV8FSDngXsU603EIT1VZGdULHPr\n+sUVheqYN85HsLXo4MVnUl1IVwXY/PSqQ7ObtQZVx2j2TEqJtTvSpiNq5o0ON6SyAIF0e04tYEzD\ngCb0AbBga0opWAAgR3AlJRDHfJew/YDLaVDWmDxqE3F5eVmhWOXUmC9JyNE3w5gXIl0VHdzex1cg\n5zG/Z5og4/Wh1CFzT7NemlaGBcbiYgHVc+J1mZWFq1VauKhenKZZyE242sAVhPJWvCmhVuguO3nd\nuNBnDFBeQBvdvpCudMcwa5/Egu3UwBvKn8f6DHCm25J2NKmFzFpAF6qX8+989AgTZqzv3U4Lh5uv\nK0R3M9C5irn0CDt5laA2yjmf0VMkD6wuUeppNnswvLQP4VmbHyIwAIMDG+ycbXUZmD6qkxBsPxHQ\nRUQFRqBB5gOJkGx0MAgiuS5+JonSKEzOXAS1jA2FL1YElCG6WTQgXyZ0XHQyqwtZh1BW3oE/pM5y\nzaJyR3MhiAvPZRUfHUY/Jkyv+vBZ6l9mwegnlIjM/UT6kUWn1E9lstxEuI1vZKUOUbTI0WW7a1Ad\nWYxuRoBKAI/EsmChYEcqnS82vIwOsTxl9FOdmzWuLcgLPwwA7FhqO7GP1eimIC2Tc+kY4+s92u2o\n9O4Bxxjf8FhdyNw0XwCTR8N7npoQBUako0Srse7nK+lhFoEnpmGYAKiR/cUBRbQp1wV8kVGP3axA\nsbRpTH0XSyRfAAAgAElEQVQpSiKJvF0RAJV4Y6sLWqLrECHGmlhEr5pGItyEcgw91+b3yP3PPluB\neod2V6MOkbLqge0HHY5eHe55RFjeVWJ1KUaF+V0CQL8FLL+ixfjj4sBGNwLH7VmagDiGqRsYHNhg\ngz1js6NhFTzY828DiCPb4MAGO1cjB4B5g8cl9ZmYDlOEM61AuplOyDEgtAZpfYJb61ag0rqRVJCr\nIwqO0wmljhZSUVsjkHVgFVCGpYKtczoPCBFX/BhWzRECP73qsbiiROoJAoE36w2OV8epH1eMWFwp\nEPK4mm92Rb0hrsR10PCLMkvTq4TVBeFmReunCmRzfc5X6gxRWneM9X7s9OvBW1mXcPqIg7JZMZ+8\n1Hgir4tCTTHW9aYPM/pplo7qpwRXilQSAFSNSETFelZ7UEM3DsXCoZjkaEP3nPh7YE7RFpBrYfE9\nkQOavRzxxH37mQwS9V6ipFjbnNaptgcA1bwDa5U7PPceGOsU0Y9uOZilRbed64ymkfomANTHTrh8\n4YdnRwE1mlH1AAGTx+R6p68coz50MGvGzdfJPXbbQgeI/D7dSuQX6RK+lH/H1Gx1CLhPV0mGbH2x\nwnmZO0ceGBG9BcDfgagP/Qwz/8Tjvv8GiJzfVwP4TmZ+d9j+ZwD81MauXx6+/2dE9PMAvhFAlB/5\nXmb+8LnddLDBgQ12rja+KnyhODm6EUF1lJoA9hOdJiFAOFabQrKuENJpdHjeCDTaRz05LYTT5IDC\nBBeloVhJI8bEE+s9qKCsoRf9Xp+JrMox6iPZ3o8p9IYKMkunoV1GuOVi5dFua3hkuHQ59wCLEwJE\nAJgVJUCBqwR0ETlKrAlmndtwqIVHv28wvhE4VqWC35ifqsMedqSTHJcAEBR6nSWMWNPZcQ3AkXg+\nNoTpo0H2qRbqgFnJ/odfBdipx+I18sz1IyUu/25/hpS8uKtEdeoTYGF9Cdj9hM+1u0KeMTo0Vwq5\nOqZFu/0KxTIThVkFIEofQR6RtiCzv92aoFgxVC/33G2XMCubHJqrtdwLZ3pGFFGWMRLnF9O03ZYC\n2fy7VAGMUWzIRAlYKHzvkcSBo/D01sMei7sU+q3wXk4Y7TZhcjWnIfsJpfd4/fUa1a3s0CKw5Nna\neSpxEJHGUzfxfQjA9wL4q2fug/k3AHxNOM8egE8DeN/GLv9tdHbPlQ0ObLBzN28IXdA6JI+koh6N\nPBIpt5xLzSvWmJgAW2f1inLhg+J34PP0DLPwZyZreBaNRABsNMg6IPSFag4KVEcWKvCNFlcMlOXE\n2ZKDcjRTnTCmV3OtR/o/beyqJLqor8uy2tdaeotxLt4DEtVEq04ELBBTjrpjjI7cGV2/YpWjBbOW\nZ252Iq+rQjnPUWw/1VJDSrwzL3XCMD/Wpw7UZy1D3XgUJz2OvlwAD5NrFt1Mp2fe/yjj+NUa/VaI\nIC85fP6bDS7/dqxfKfRTQn3MiSdVzKVrQOR1Ra3EaIKCzAsPeBYdwVAnrG616KdFGgM7UqiObaqB\nLe+qJBKNROhCSaeBCFKsRJOyPpbP5GRRExcNxVrQq9F5NLsK45u5k3d95OSe6qyBuVknNGv5HfcT\nk5CQq4uis1mGKHJ5iTC+zljcE4Es8fcsnw/+wGN+b446o5rLeZg/PxTi1+Epmvgy84PhuyfzwG8F\n8GvMfE5tp+/MhkTqYIM9Q/P1oIYw2PNvDMBB3dHfHVhq+htss7nv07HvBPDOx237cSL6CBH9FBGd\nX/50w4YIbLBzNdNIjag8CemqiRZZn7DSLRZO2oaEtZytkVJjgKSWdM8pVcWK4PVG6q8TySAT+4Qx\nYBY9+m3576OfCN8oouHqWxbNvsl9qdY5ZQSITmOx2Ghl7yStWB/JDa73FaqTDZ3B2GX5oErRgDeE\nYu4SyqzdKwHOmnnlgs+0KynnwjGKn5eXC2x/pksw934iNbtYG1ROordYU8Na+ntFyLrXgkKMdTtb\nK0m9Rd5YQbBjg8ljIR23JRHj7CEZBN166Mag2Q3q+Hsa7Q7w6DfK/e98QglVoOeEyDNrhXaWldrZ\nS2o0pvBYSWSY26VQiHJCjasSTldq86YDV6vMNU7ynHhfriBgpFEss5ZhfCfxeqrz0FFzs1Lox5R6\ndRVLQZ7G3xoTYDq/IRGGtJ/8PhiuJvQjSh22x48x+jGlVjt2LPtthenfFUGHM7T9EmTnF/7mnq0x\nCP2dS0kdENEHNz6/PfQyjHa7YtrTYugT0RUAr8PZ5sJvA3ANQAnpGvLXAPzo0znvndjgwAY7V4sT\nWLu7AcKwnGDwQJA42pDyceXZNJ3u+Ew6Tm1wpLqZBrmcHgNJrcIE0AB5cX4xJTm/t4CrRKcOkPYW\nTFnE1azFeakwsa0uEqrjzBca3fLotlQS0u1mGsrKZJ4EgivhD6nAWRpdXcHWk9QDTXce3VSnpp39\nWIU6VGwdExx8eEzTcGjqGdJt13qoVsEGcnZ1YoMgsQljLf3O+kkEOAhfrd3J6bF+n7D7yXW4fg2Q\nEJPlgFDzC2OemjnOAqDhP1ij+tgI1ak+I7lVLnwCmuhW9CejnBUrglk4FCfiVfvZFPWtPIOr1qFs\nhXQOALYuQR7wZU49b/L1iqWDbtyG+C/Bjij13hrd8vClyr8VDs1IN+gStqb0u6tvWjn/pkQZ4Ywg\nsm4ZqtrQR3QM0wJeyzX2/8jj5D6N6pjTuLczhfH1qBdJ0E0mOm+CXJ6NiSbyHSfPbjLz/U/y/ZM1\n971T+08A/EpoQhzuka+Gf7ZE9HN4XP3svGxwYIOdn5ESVQfLoNirSksNJtY6+qmCbljUvyHOzNa0\nwcOSGkJCq3VenFMEu4XifzyfOKP8H7MvpAFlrH0USw/dEdpZRJ/J9lg/sjWJ4nxYuZslnVGxAIkw\nb7yeLwj1YX8GkFHOPWxFUCGlqHoPZYE+rMTbmYYvCKcvD519rwYViFDz8iZELLGb8DSLDQO5s3J0\neK5WiZgLCG+LfB5TX4je4tYj4jCWFzWmj/TJIeoOOHotYfuB0ER0V2FxT47w9DpEvBOZiC/uneLG\nbCQ1qlhX64JCSpjc+1LDrDPysdlRGD3mQAGE0U+kP1eMoFgruEqljsyq94mjBUjtsx+pNO4qRHOx\nEakvCNWxT5F9t6XgNTD7nNQm1wclui2CCQhA1QtoZlNNPzbRBATsUyxzRObGIuhcrPiMU+ynlDQr\n1xcKbH/WpYVCsZIa4fzeuHgDQLkeSudWt6LzJDJ/AM++ie9/Com4khHRFWa+SkQE4M9B+jueuw01\nsMHOx+hL76d0Bkgy2GDPkzEkAruTv6c8F7MFEJv4fhzAL4eGvz9KRN8KAET0tUT0MKS34j8gotTk\nl4heAYng/tXjTv2LRPRRAB8FcADgx57tc9/OhghssPMx9jCvfiUaQ4BGQsyxoqSGAAD9KKp8h3SX\nE8RX7KEEiorhIWJiheKkT9JR/ayAmffwdqPvk9EpzeMqwnqfML4RV9pAeepBXqXrQ+X6FCDQ57ig\nLecM1WOD9wWs9ylBzqcPNbBbBYiB4jgqrWuYNkdp/ayEaTxsnVUmyjmn9im2JoxuuaQ2Iit1ghvl\ndJYvKMGubZRgiqrmq5yWOvMKogr6Uq7XhyixXDDqa0vc+pM7aYy2P+sx/ZykFF05BitKNRpywPoC\nUuHx2vVtYCwtblLU13q40qSozWuCWfkE3S81nZHHUj3DlwR1FNJrVa4BAjlKN6c5l6x7Tuco5j1c\nbfKigQMdIURUuvVo9kxSfDGNhx1rhG4qIhtlc02tnxi0u/pMXarbzrVS3UnkpWxOZ+vGSy2yyn3V\nWOdsweKKwvSqT3W2fgywkXY0AFLt7DzsPBta3q6JLzP/jY1/fwCSWrzdsQ/iNqAPZn7Tud3gk9jg\nwAY7Nzt8wyVpabHmlA5rd85qzrEmrC5kUi310s8qfu+NTMBxYmQTINTpe0JzoUoOxpXA+JpNDSol\n9ZdrG0yhLnEzTowK3ZRynykt0PlYP2IlDi2mkqIwb3Rwdiwae+Q4N0/UBKdzU87q0Ir4bHjI1UWF\nnc9Y6CZPOqwpTZbSwDNHdCKMy2frS1BJjFf1ckz8XM49zNKBorwQA+V8Q3apUFi8ciZpRAiIo5sp\ndLuS4+ymBFcBXeA3TR9hmDUBy3C+rR6XfwvQyx5VAGE0ByWKhUvvoT61sCOdwDW68bDTAnopObxi\n4cCGYMfyYqXZJaUamO6ES4cN0eZuamBCEczVBt22SQ5SNx4YZVh9t61RH9rkoGytgsBydrhcqER8\n1q1HP9Ub7VUIxdymxVZ5alOqOjowX0ntcvJoVAgWh3p8X+DLLSV1GjUvXUHQy5yuLufnxwMbGlqK\nvSB5HyL6DiL6QyLyRHT/xvaCiH6BiD5KRB8nordtfPdD4ZiPEdE7iagO2+8jot8lok8R0S8RURm2\nfy8R3SCiD4e/79s41/eE/T9FRN+zsf314dqfJqL/LeRvB7tDO/n2BaoTL8g0IoAEeaZbRrOrRKHC\n5jqM7mS1zyqrp0fkFvmgKNEy7Fij3TVodw28FqdlK/kjL0CNdlt4Qd5IFEVe/nTLqZFh4githFAb\nSbXtNqXPumGYUPsoVnKO8pTz8ZFI7Rjw0rXYa4kWwJzQc2Zp0z3G43Ur0ZYdiYMyKwezcme0GAGk\nZpWqZxHE3dKhB1m4ZxKuWCQve0No9wo0OwrNjsLqgkazW4R6oAgZm7XH6lKB1aUiqHaQNL2sFKZX\nnQBTnPz5AgAD9WMa9WMa1R/XGF+TsMKOhPfWzrJaPgAsL5fQrYedaNiJhi8JZtGDSwMujURYmtJ7\nAck1XKngSgU7MVKTMvJnx6LQUp5alKciBOxqQjcz6GYG64smNaFUVqJmZRnzuwzmd0mTUt351F8O\nAHTjYMc6/dW3euhe6lbRscV30m1JjdHWgQTP4gRHhz4dX91qZbEBeRw3Cir94a8+YnTbyJHc48jm\nz9QYQM/mjv5e6vZCFS4+BuDPA/jXj9v+HQAqZn4dgNcD+C+I6BVEdDeAHwRwPzN/FUTy5DvDMX8b\nwE8x82sAHAH4yxvn+yVm/prw9zNAYoz/CIA3QEh8P0JEu2H/nwbw/QBeE/7ecp4P/VK2z7/7dS/0\nLTzvtkncHWyw588I7g7/Xur2grhoZv44ANwmwGEAEyIyAEYAOgCn4d8GwIiIegBjAI+GCOlNyKiZ\nXwDwNyGO6InszQDez8yH4R7eD+AtRPSbAGbM/Nth+z+EoGd+7dk865eK3fvWj+JTf+8NooZQIKWC\nfCEItJQSVARXI0HGVQ9UpxLJABKJCMIstFcxJLylYP1Y0GdliOTWBwqTa25DIiij8QBJyzEBuo+f\nEbQM4/1kvUUAWO9rWT0fh/pTUKFIkPelha01uMhpymIpWoRV5ETFyCj2ploJLD7JKGmCKwiuiHlU\nAnmfZJGYBKYetQ0BQRrGes/6opF6T0A5ulIFJKV8bncA0xKqoFJx+jKDyVWHKnDzVCeqGBE9N3m0\nh17rBFnXnaRVycX0nUg36WWf3qtpBS0akYPj672kLo+79B5BuV+bG2uMrjUbaE6Rt4rahfXNPkRm\nOYWoek7KHORDb67QHqXdLsAKqT+ZK2XcRocb6M2RSt2SVS/1r5iW9UYkzRL6NWYSI19w4eA1YXSz\nT3QF3YpCSkxX97MSrIHZg2FcHZ9R3F/vyTtYXgmp5eOnRa96QmOcqxLHi9q+2GLMd0NkTK5CnNQP\nbTian4Rocq0BvI+Z30dEBwCOA5IG+EIW+X8chCj/OJzr83hi5vnd4d+P335bI6Lvh0RrqDF+Zk/7\nErPqpoZuRbYp8awalvRLFyaOEpKeCk0COaSSokRRrKn4IpBqtwmTx1wGaRQyQcT9RTyVkw6h6gUO\nHnlldkTox5S4OeSl/1YmIeskOwSIA6xOfYLmVyce7bZCdRQdqoJuPRwUysD7siMF3ViUobeVai3s\ntNwQrmU0ewrlaRSelZRSFOc1DcNs1P2aHSWp2Fi/6WUyb/Zyna8+conHNXnMoR/lWo1uZUwX98gJ\nq2OP0fUWy7trAEC96KEssLwSn1n6XE0fiU0gRag4UhFsLYuA5vIoOahuS8atWOS+bbyxIBVBZZWk\npIqTDr7WCWThC0J53GF8NbwXy+BCJU1LIV9rmAhrrwXWHuuMumOMH+vBRYSwI42V/I6U8M4SV0+F\n55LPrAjNrkncvPLEASrrVZZz6dHmap1+C96Ukv6NlIuVjM0mN+705Qp7n4gEcUmbj4NAcJScOg/7\nUoiu7sSeMwdGRL8O4PJtvvphZv7VJzjs6wA4AHcB2AXwb8J5jiCO7T4AxwD+CRF9N84yv6PFZc7/\nBeCdzNwS0V+BRGdvwhMzz58WIz2w2d8OADPaO5+l1YvcVIfQhDDXl8pTh9UlkxyOnRDKee643M1k\n4oz1qepYOFIx+ihWjMXlPNFQ0C0c3eL0fT9RSbuwPmTUxy7pCpanHq7QaeLbFHgFxBlEoAcAUeVw\nItIKALojVKcsoAMA/XaBLvT3YgBm6aAJIJd1//S8wfrSVrqGKylwteRzPyHoVqWIqZ/EfmEx2pBa\nUb/RPZpKztFEJyK55SI4Ay29pijMznakAcpcuHIuDnqzW7LqgTpM+l5jA+Qi6Drpbiznr4897Fgi\nyOggyrk0zKRxVs4wa5e+96WGXnbJwajGod81aRzNClCdgwugDjYSdfWT2OE5iALXcWFy9j+x8XWL\n8rCFm8jx/czAjTI3rh0RyOk0xtIglM50IShWuYOznWgUc5vGyFUK/VRAG5ET6I0494iItWOFbisj\nXleXFKoT4PQV8gzFnGHWWTGkvnU+0mPMNERgwZ4zB8bM3/wMDvsuAP8yMLqvE9FvAbgf4kgeYOYb\nAEBE/xTA1wP4RQA7RGRCFJZY5Mx8a+O8/wekVgZIZPWnN767B8Bvhu33PG7702Wkf8nawz/89S/0\nLTzvFhF3gw32fJqAOAYdTuCLL4X4EIA3EdE/hqQQ3wjpQzMC8EYiGkNSiN8E4IPMzET0GxAl5HcB\n+B4AvwpkJng477dCSHqARG3/4wZw41sAvI2ZD4loTkRvBPC7AP4igL/73D7uS8fu+fF/i+Vb3wiz\n8oLcS+oFggRMNao+8JVivOsptFORj91UgZVPUOT1nrSvII71JkbdZ27O6iJh+kg+P2uJpuJK2zOh\nWPn0uTx1onQRVtW656A6Hnhej3ZY3F2iOs0we7P2WF0RopovCEWIhCJkWzkGFKV6jZ9UKQKNxjpD\n87stQuWQ6n6i3Uip/lMfeZh1VoVQTiJSFepwdkSo1jZFJXakwKpICDfdCnouwrbn9xrs/rFDdUsI\nSfP7JlB9hnUXKw6psfCOrKTYYs2MHGN9YKCsQ7cthTezstANSbQHETberFnptYXdqnJKb1oIAjHW\nPjsHOylTFwEg1iPz2Ppio71J58FaZzWRxsGPDMxCUpq+VMJFCz3Xxr2kYF2ROVv9lklRqatknLpZ\n5JVJTS++0/W+/EaKhWgiyrhwkDGL5xQEauJ3eWnjUobfTjcV+kbShzy3rB89HSmpl7S9IA6MiL4d\n4hwuAPjnRPRhZn4zpC/Nz0FQigTg55j5I+GYdwP4EAAL4PcR0ncQkch3EdGPhe0/G7b/YGCSWwCH\nkH42CI7qb0EkVADgR2OdDcAPAPh5iMP8NQwAjqdldiSyTAkqDakZqT43hFSOgY2+TKNboYAeJjY3\nBnSfNe6IgdGNPNEoK7ylWKzXLQIvC+EzpwaSck8KrsyTuauDfJDLn12Vyaj91GCzvcr0EYflZZMc\nUkwn6SbLGJmlk9pY7FVVnV0d21rqcLEthw68spgWtSNCs5db19vxRpsSRF1AZFAHA8oVqfayPpD+\nXlFo2LSMbgZEkPEopLii4LErpa6Y6leaQE6l+k8EssxuBtknI80fVxdNcppbDzPgAbOWe27GAsqg\nMK7U9uBZBR+ccnR0sU4mxOksMWbmHZqLucbGhqC6nEJ0tUJ50gPhd8WFgi100kaUZpYFzJE4aTUp\n0e2WG7XTwK0rIohDxjUSmeubHZqDEvOXBdmuY0Y/Ek5jJEO3MyVE93DM4i4CG8A1G/SMPvO+6lsd\num2TwT6rs4uaZ2oC4hhqYMALh0L8FQC/cpvtCwiU/nbH/AgE/v747Z+F1M4ev/1teJw+18Z37wDw\njtts/yCAr3qK2x/sCWx008KNNND4FCGRE/Rc7OsUUYZFIKQWc1FoWF4KBNLQLyo1pIwdeY+jQxLk\nWKxdlHMhIceIyayl4WSMHtYHCvVRrsn1E0GmxZU2a0J9aDMknoKy+zrfh63zxGtWEkWwFp6W8JMU\nzNLm/l5eHFwXSLHKSR0pAkGWVwy6KaFYyu6uIEyv2cSrKpZeFOmDCrorhU8XnYeyjHaWhXWjWn28\nZ90yRjezMkd1bEX9P3yujx3qx9Zo9+s0BqsLudFosw/sfTz3K2NFaPYU1gdAsZR9Zg+KluBmBOU1\nJe1DKAVlfYo6WJOoxW9GXBtkbjYqqW0AYaER+G6ARC/eZMFkVyhURy0odOruD0Ywa5c6OpN1whmM\nXQ100GOM3ZM1UK08igXSe7djhdHN8DurBQxULjKhPL2LsIgZ3eAzCvxZySSQvfcN+rFKavb18fml\nnM9TiePFbF9sKcTBXqTW/Ydf+0LfwvNurh4mkcGefxuUOLINDmywZ23633stRg+eYPWqHZTH/RlI\nNXlpK5Ggxg2jvtnn+s1Uw5UqrWqjEkRcxZLPyEMgIPI0Ja3FbiYRmYqwfE3CPwqr5vJUZK2a0N7F\nrEO9KaHRgtpG4Bc1+wW8yWkg3TPGNzxWF5/YWYlEkknK6hGOvdll2rSUHR7Lc8UIi5USzcgoFdXF\nVGRA4FlO+oiAjEc5d7ABcs4E1BscI9UzyhOX1O7dSIEsJxkm1Qb0n8r1HpD0ZgOAYg6AMs8ttnpp\nLnqst+UZx9crTD/fpHQpa4LuPXwl+Ta17qW/l45RXOBR2VjjUlBtbo/iaw3WCsVp6HRdjuT4ME8n\nnpaPEHYLte5hZ5IW7bZEZsqkFGWog4bj60OL9UFGs7pS3lF8z6srJVyR33u7TaiPGO12rqeWC0az\nS6nvGkgiu/IoIm4t2m2TImlJk+bUbswanIf5IQIDMDiwwc7B+gsTAECzK726lM3FelZnaw2uFJJv\nG8igrpYaWaxhRXJuJB6TB5rdDPKoTgFz7FLzxeqEpYlmcGirHY2tRy1WB8FhhX5ko1DPsaNwPRsd\npPzbzGXipN0CrtyoiY0UlM28NdN62EqBSSWelq2EE6Zig8lK4NzxHGBJ8cV0VrzfONGZRqS2YvFf\nnAeSU+2nAvFe3lWk/cuTnPYkT3Iv4fDVRY3x9Y3zHzpUhy3USupLblJhfblOPDRXA5NrPk3MxdJD\nr11uRmmEfM4KUEVI/S41VGtBLvC85rJoiVQCYgG2RNg8GyE92wB7N4sequ03Uo4lyPZAbEhZEoqT\nPjtAIyK6RRT7Db3D4vXMOkiYmTgmHnqdNTj7qT7TX8yOFMzKp7pibJ0SFz6Ta7Jo0I1PhG9XEsxK\nfo+AODSzyvXddsckMFB878rlHmPnhVplBno/ODBgcGCDnYN95j+TSemu94ciucoREnk6o04wuulE\niaLKEVU7o1SbqI88+umGgKoRxFisVXgjxfTUOTeQmKNSRjcVdN8mClA5JI5VP9FQfa7N6Fb6UK3v\nFidsx7IqjxGj9BNjxAKSrVSokW006PReAAmJpKtE+y8i2g40quOs5N5OZbKPCvzViQvKEGHMrPTo\nKuaRIOvRzQxGt1y6B1/kbshbn7ewY53GzDSCqIvRBiA1vH5fCPfLuyp006xCMbnqML7aYPHyURhj\nAo/1mX5lYKA6VFDXZJ9mlzG6RmgOZMWhGw8KSD4AUMv2DJjFzIV0HGtgxCzRWh0itkZWLOTDZL9w\ncLVOiwTdSEPLqOwh+2a+WLtrMH1onRwimwKrywVG1wO5XKmzDTgbQabG32nRixpLrMVGTU0Z/xgR\nA6bLna+rUw9XEFaXYm866fgcO18zZeQigNyE9VmapBAHBwYMDmywc7K73j/8BzXYYM+XDUocYoMD\nG+xpmRqN8Mmf/GoAwJV/TZj+0u+g2Glx4zuAS++sJbra4HmtD1TgGcnncm6xvFKmaMGVItcU010U\nFN5T+5JaVtpxFVysJGKL3yvLmFzt0+o2weVDhDe65VCcdEmiKLamT7BuJe1Z1ntZOkppSjW3dkdg\n+NMoeRQUHcAM3cRoQuD3PIqQcQXT+MQXqo88fAF0sSYV1ErSIpoocb0AYPa5DmCdNPfYBDknnVUp\nmn2TUlPCgULSXtQdQk0rSxytr9QoQ/+y6shi68E+R0gK6LbLVJNrdrRIL0Vtx433GXtbVcceYEZ1\nlLrIB8pEQAlOa/hK56i0VDDzPqVZmQh61cGPAkZdKVBn02e9ttBrZCSklr5ysY5HvQforHYhiBJP\nzBcK1YlLyEqzcCDnYYNySNRdNG3MBPhEF5BnkcjY1iqlteX3k6NaUfVXqTWP7gO3j6PqjEY5z33f\nmv3zWeQNMPpsgwMb7GnZybd/DV7+f4c28JbRv/lrsfee+DOKPZ1y8V1ZIXqmGlgRNOkiNFnJxBtT\njP3UwKw5HW8awuSaxWbGpFirJGzb7ugzE5dpADBj9oDUtOzUwI2yhBFVUguJYAA70egnOQUpaTWG\nkV6PWF9Q0A2wuiAT8eimC8V7SjJJthQofbu9wdPqM6zdNB7eUgJntDsapskwd3CopUTIdwCBRNj1\n6kBnAjgkzalbTk6/OnJwM5XGtFiJc8x1RQXTepS3RDuq36mxvlSllObyokG7A8w+F0ElQD/J1AFf\nyHs0i3wPviC42qRapx1pAVYEUIadFiDL0BHmvlWI89qoq4HKxBsDM9y0ghtvTEkeCRbvSunlpZeh\nplYoUO9BwUGqjkG9Bwe6hq90apEi71Vqobr36dxug+ytOw/vKNEEfID9GwgvERBSvR0plPPAfduR\nWtQYbuoAACAASURBVGdsHGoaHwjr8XfAWNxlUAfOYqqJPmsbUojRBgc22NOyxRXC5JGAZus9XCWN\nBAGZBJgkOooRke4YXFEi0zYHBu0s87ZkxZojJzsSVQyzQfrsZhr1zdCMcWZgVj7VzIplAI3EeUmH\nVXSY+FTnoVqX1fE1YbMJQj9VZ3T2lGM4lWt04+sets6f223RBCSv4EupdUGJynl0WORkRR9X+7YS\nNFrqwNyIll+qMRWiqReJzL4k1McO7XbmzrHOE6ByPvXXAmSxUKwYKiD84BjdTu5SXZ04Efd95Uye\nYUdqjBE0wgbYetijPop1KINups80W2oOgP7uNjW5XH6FwyvelTsY91sGXCiYQI5mRTCrPquDNGcB\nDKrzAXko5zMnHVRrsbpSh2cU0AP1kdvmsb5Qpm7IxdyC7IZWYgLQhAjLMrRlefcA+u1SgCThsy+0\nOK3Yn8sDunfpd0sska5Z9+hnEhWObzg0u/oMX488o9voi6bbDOoolh7e5Eg7RsTnYX5IIQJ44fqB\nDfYSswiS+FKy2HV6sMGeTxMUor6jvzsxInoLEX0yNPL967f5/huI6ENEZInorY/7zm00DX7Pxvbb\nNho+bxsisMGelv2Jt/4hHvnwqwEATukgHyR1Id16cCHRSExP2VpQfTFlR15kj1ItgQXVF1OI5Zyh\nuwynL5ZeOFKhHqQsw6w91gexR1PuJQbgjCwUICt/JulnBQDFwqI5KFP0o/rI04oKDoKki+m3KFMV\nz2lrgbjrDlBh+dePFPpJbj9iQrQVnzHWzWI0UqwY7Y5OaVV5LuQoUQG+oqSxVy4Dei7WBSuV0o0A\n0M2kVYs3UYHfwqwy9011DDvKKU7VA6MbPewkjMmSMb7aJoTf+oLG1sNZ0b/bIrR7gL5RJqj+6AEN\nX1hQRD6uHMqjDt1OGe6hh690VjCZizJ9TK/pxoIcw4b3gu0S8Ej3PLluc0QJoNs2qe8agATZj9w4\n3QBuYtL1VOfgK52lrRzDjjR4knuwsUJSn0/8spB2pKiyonIk209UULCXU7Am9EHvEJA2OKbNdAY7\nkmxA5PfFaPXZ2nkSmYlIQyT8/ixE0PwDRPQeZv6jjd0egkjx/dXbnGLNzF9zm+2x0fC7iOjvQxoN\nP1mfxmdkgwMb7GnZ7733K3FpJDNvMbdwpc61myKACUwWriUvzioCFLwRUEHs3+V10IgL6ZXVBYX6\nyEOH4npMu5QBRs8ErC4V6X50JwCQMkhH6U7SRHGi84WCqzIZ1Y10anIJiMMzG/3AoAG9dqAN3cHR\nTYvV5Q149VpqQXYsk2EEfMR2J48vTzAJeCQ6zW4qTjzWiwCg3zOoToIThRCoYyqKLEAqA1MAwKuc\n+qwPndSIwgS5ulignxBGtyJ1QKG+1WMdpKPqYwE3mA1+ki91kmmqbwmHKsl5eUZ3qNDP8vWLhbz/\nOAZQJCnVdmMMGFBWztntVZJGTFJPQsUtg5PqQoovjiEYgT+XqQlmbVMKEJDfWwSmSLpSwYZ2LLHW\n1u4Fb0OEbivTM+pDB9Vl2L8vpIYY62a+VCAn6b/4W6lOnKSDY8NUZqg+y1WNDgX0EVvzCGw/cxrj\ns5+HnWMK8esAfDpI8oGI3gVpXZUcGDM/GL67o5TDM2w0/IxscGCDPS2bPpxXkv3MyCQQBVdJJktX\nAMU668N5Q1hv9OtSfa5ZdVuiFh9nFq8pRGBhomOJbJaXQzTRc4jS4mStRUQ1rpwbhln2qRbiKgU7\n1okUDAD9OEdHdiwRY0L0GRL02GlugNnuZqHd9YEOTRHDSt8yqhMP3TOanQD0OHRwJaUIRvWiyB9F\nYRF4ZKmJpgPKZVZsAAUk4zpOpgIAiWla1XNo+BjrP9K/LHaRLlYe3UzIzzKGwOpymTT5yqNOQByx\nKWhQIok1u35CIK/SxO0LAeGQB3QAt5RzBjmPMoBf+q1CdCSj2K5WZzosm5VNSFAA6LU0AY1KHGwk\nmtFRAaUJepXReRz3AgCKJyBKdS8AoM6C62JDYWVDuDmeT6mNSFrAGOl+A9Iy9S/rGXYsCinJKVNo\nvBoc0fpAY3TLwVZxcSbo0rh46qYyBlGIeuvz55NyfpooxAMi+uDG57eHXobRbtfg9w1P43bqcH4L\n4CeY+Z8B2MeTNxo+Nxsc2GDnYptNIr9ULE5Ugw32fNvTQCHeZOb7n+T723nCp/PDfhnz/8/em8fa\nmmX1Yb+19/6mc86d3n1TvRq6i1YjAwGF0A1NRyIWdnAnimNshQQhC7CSoDhBREjYgEzAJrZFIqQE\njKKAMZOxmDomJqYxYBIixOSG7jbdTQNdPaS7ql696Y5n+Ka9V/5Ye+393cd7Va+6b1HdXXdLT1X3\nDN/5xr32Wus38PNE9FkA/m8iei+Ak09ym488LgLYOQzemQGnBuDP/Kb+1n/xHML3XQMQFcILij0B\n0c4rTwOGGU0g3KKDWN9TmaQscQTIynezn8uQi5tjLPVkTtNYSVkLiJJMVeZpFSspUbp1rNMwg13u\ntXAhmUx3qUi/pzBoQLJJ23Oy6Zg6JwMCeWebdQHrQ1HUYMqWMG7j0e0WGW1WyecV5CG9Ept1+Q5z\nZgUAPsL6p1w4X+Zj7q0VVNwEyMcR+QgArvWoDymVaSkAwywr+nM876ePx9LWscNm36C5GzO2pfqG\nRVWMkbG5YhOqcpiJQn99byL11Un5TXlfYIavbebGqZ1O5HFR1ARUvUjbeVA/ws9lg6EQNKr2pMwY\n0O8UuW8UgGI5wK5EDmvcrqX3qq4ChZUy40rug/WNRr6b+lFS3lapp/IkwPQBxZGklJvHF7HUKvtX\nHrbAfi26njbP8cFlyof0t3Ipt9s2ZykknmP/N56z/nzmcGbCeH4w+mcBPDn5+2UZ+TKzGgh/mIh+\nHcAXAvg/8BCj4fMeFwHsPAYDm698M06esukBDyXAX3gKACh+S+zlb/zaEcyztzDeu/ewLX1Kjee+\n7a1o7gDzW/JQz9/5UbzwS4/jklYGgpTodKIEZLKTHpj83S8I9RGnfss4MxhmlGSTypMAEGGYx01G\nEIg+9AJFFmIwIHpz1XFIAIhQkJTKdKKzhHFRJNAGgvSSklCuB4p1FlYt1lLK00mKTbSvj5tzmwDu\nKfXsimUElcxNFr9dySSmHmUa2LUPWKwD+q2MCKuOpXekQX6zT2jucrKAEU3JqVai/KaWKIklkOgx\ndLuFcJxkbgeTwOLLE5nMh4UTe5AoXdXtCX9LQR3DgrB4drL/BhibHNgUzo+AdF5W1w3qewbw2oMa\nEQo7scEJYHd2krVdOFNi5LrAEA0ymaLXmgJV5g6mz1qG5OU+YavUAilhhpl8P8Hoywz2mfLOxopQ\nHYe0aFD7mPKONFfNIKTk2a1YEt2u4BsrPd1iGrBoYsoZgR4TH7ZilcEzbOR35y9E37UJ8OaTHedI\nZH4ngDcS0dMAngPw1ci9qxcd0RR4zcwdEV0G8O8D+J9fzGj4vMdFADuHIcRYYPfDY3rAux0L88wc\nbAlFFPFcPb2FrTuHcE89IR8qS/CtO/Cnp6/Snr/42P/DEeXxmCal7nOfxJV/2yW0G0+AGoA84MER\n+m1Kxo+hFOCDiu+C4uSjE1OIPZhYdGh3DWyfV6vtniihK4cKiKU7RfxF7TyOE1dw0hvRAKaCt5pN\nAAA8w25ywNP9AiJYYD2mycaXEjy1JzbOTCIku1YmsWFOaNYh9UJcK9wxPQbtt2gAmh4LIFlkt5tX\n/8PCCccpHtPi+QHj3KSgzywLg+2Pyz6JoSahu6r7rNmrRCzyjPnNEb6QVUV56tFtO+w9I7Iam6sl\nhi2bModu22B+a0zZz+yOICLZ5IWJa6NAbycXIjQOw3bmhdmO4JbDmSDGhibivPlayL5Gzl7sianY\nsvK82Ip6fWi0T+dQ+hzwUn9tQg7vd2xChoJzPw4QhRbXMforC/laLx52CgJxS/FnY8r39zDLSh2A\nBKxhkQM9W4LdBBQx6xxrQeO2l7Lqy3mM81TiYOaRiL4R4lRvAfwIM7+fiL4b4nr/C0T0Zoh/4x6A\nv0xEf4+ZPw/A5wD4wQjuMJAemII/HmY0fK7jIoBdjHMZ0wf7tTLMOZWELsbFeLnjPKWkmPkdAN5x\n32vfOfn/d0LKgPd/77cAfP5DtvlhPMBo+LzHq0JkJqKvIqL3E1EgojdNXi+I6MeJ6L1E9AEi+vbJ\ne98cv/M+IvopIqrj698YCXgc01j9PBHR98f3/oCI/r3Je18XCXYfJKKvm7z+RfG3n4nffbS7hKRc\nIOoA0aqDRJFhs3+WoxSuXwLvLOTfrTsIm/ZFNvzqjpOnXJJdoiDcJu31TC3uNXiJ2oTwa3xJ8CWh\nucPSbxiR/oFFS686Ckllglj+2V7KdsNcFDl8IeVGKZnJ90L0/ELsQ/W7BXxl4SvpFQUX4fxWeipu\nHWB7+VcdjdLDcpRcmU3kfrEhuJWHb0yCcRsvauLdjkW3YxGslAarYw/XBbguYHbXS0YZ92l9RVTU\n9TzZTkqAbsMik2UJbu3TMbpWUIqhMgiV2NZrZiq9MQvXBVRHHtWRR3Pg0RwwiuWIYjkiVAbr6w62\nA2wHNPcCtj86YHPJYnPJRkTigCvvOsGVd53ArT3mL3gcf1aF48+qsLpu0O4ajDPCOJPM0W182n51\nMGJsCO1+vk6+io7Dew2GvQZ2PYiFzOmI4nQU6S4SjiB56Y+5VQ932sm/41ayNUuAVW6d9KXUudnX\nJn3fDD6eTzqDDNThZ1b6VfF9NoRiJf1KsbYJ6b/FSpToh8bIDGjkXLuW0S8M+oVBd6kQ1Ggsbdou\nQubVS47l/hpmJJkdiUN3rjDI//uKUjnZtXwuCz3lgT3Kv8/08WplYO8D8NcA/OB9r38VgIqZP5+I\nZgD+kIh+ClIw+iYAn8vMGyL6WUit9scA/CaAfwng1+/b1n8E4I3x35dAOAhfQkSXAHwXgDdBbsXf\nj8S9w/iZbwDwO5AVydsA/NJLHUxwccKusgArINyf+pBw8jp5rTpkcGHx8bftAACe+hcB/P4/eanN\nv+LDft5nAwD8ffuy+8wAuxnTRM/OiY5hKh3KpKPlnmEuNvfVUUhlrObOgPX1IvOuSgI7wLeRHBot\n15W0y062o6UhtxZvMeWDURT/TYRWo6WaWEIcZdJLpODSnMFZsaVUVgTkGk1/j4s4ASoHy0vAmTbi\ng4tQ/KV6WVGSi5LPyOTZx74ZGwm4SpIVC44i2aMMcymbKpClPPHoH3coY2XZRLCCgkLUy0o5UjTK\nIkF9q4zP2n+ACgHnPp8vDPotk/qIR58/ghjY+mOZDqpDvZ6RitAYLG4KIfzkqdzfGRrC7S8Slebr\nvx1QnAypvGx6xjjPIAy7GcVkkvIE7iube5f39ct8Y6UvtRNFmJcj+r0yAyQGuS7a++q3rOgWRuqA\njYFRqQsWwu+blhGZMpePIh1Ct1+sPMZGNCf1vJFn2A6pJeBrWWwoMIQ8RX6gkrUZvs7l9PNE6l5I\nScl4VQIYM38AAB6Q4DCAORE5AA2AHgLJbCD72hDRAGCGiGph5nc/ZFt/BcBPMDMD+B0i2iWixwD8\neQC/yswH8Xu/CuBtEUGzzcy/HV//CQBfiUcIYLIilcZ+eRK14FaKkgtwoqGKUBCWT86w82F56O69\neR/tV7wVT/zsRwEA43OvCFDnJcef/NeXAABX/82XwhfA+rrs+9Xf7xHqHJDZqMGfNsoB04U0yYyN\nrN59mUVSVe1BEXQhAOXRhCQbOTXKG1tfJdQHnNyMfUl/GslFubdlRlnVasB0Y5xwJqRRGhlmsmCf\nzKExMwpp0qFMSYvHZFAd+SSsywY4fcKhPGX4yqE8EePH5LYMySB9mblmSjJOqEBLqA99QtBp0Nff\nJY5qIgrc9CxE2yJnjMM8c5q6yw5m4CQa228ZtPtu0gsToVtfx/5O61GsLdaRm3fj1wxOXm/S75VL\nyZh0Mm93DbaelWbS3ofkQ6urmdgt+1ChWObFDiATvJo4UhDysvLzTDfKdYz3h2tD9EjTXqZwqPT7\nw5Zk/j4pb0i/TJU23DqIt9uo/UkvvmxRLiWUBLfMKJT2kvDWfKV8QyGMKxk8lLlvqVmTr03M6GPv\ncePh1vbMte+38nkEpD+mgSuBYT7JwQyMF4aWAD71tBDfDmAF4CZEvuR7mfmAmZ8D8L3xtZsAjpn5\nV15iWw8i6D3+Eq8/+4DXL8YjDIUWv5aGAjsuxsX4sx4XJUQZr1gGRkT/GsD1B7z1d5j5YZDKLwbg\nAdyAIF5+I27nEJJRPQ3gCMDPEdFfZ+affLFdeMBr/Am8/uCNE30DpNyIcr6HYsVnSlP1wYDN5RK2\nD0nlYX29QNkGnERVia3nPGYvBPgnpHXXvulJ+IJw9EbZTnuVUd0lfM/f+HEAwD/8u1+LS7/yDMbb\nd17ksF/+oDEqBXxkDfIBs9uCDw+OMM5cRhQ6gi9N5kkxwzcW/SLDjNkSxjmhi2iz8pTP+H0VsQ+k\nPC4mQrubS3Sz24zmzoB2P6LNxEQ4ldvaSxZ9kdXqyfMZGaVxZs5YyfuSMMxtyqDAsUehCvTRRVjL\ngUwAGZPKoo4Jocw8MEDKmsM8W2+4taz8NeMhBnwBUJjwhyzBKcIuCGdLs4nqWKS2Ejx7yFmB/t3t\nEsqTjJgUtfec4Un/KH5vIfqTxUoh7gHrG3U6hvJU+m/qHDzMDPod4Mq7I2x+25zpMZWnjH5L1ElU\n3aOIvzFEesBYG7jNNBMtUCwzkpEtISyKLAU1Si+z24nnIMpbTfUP1edMz0Vw2bmbmDEuXLbd2Yjf\nl5b7xtqeyQaZBDU5LWUTI2kn1kfxHu3T7qPfMqmSAEgFpd+26bzbdoTfdomO4DZCF5nyxuzAE77e\nOfHAzlEL8dN9vGIBjJn/4ifwta8B8K+YeQBwm4h+E7lX9RFmvgMARPTPAbwVwIsFsIcR9J6FlBGn\nr/96fP2JB3z+gSPKsfwQACz2nmQzSn1cyzztfincJco1cTbS+NXeAxt5iJR0W99q0V6tsPfHcSL6\nI8BuAr7vt74aAFDNPY6/7A3Y+X/jZH3n7osc/qOPS++V/4bCgGuXei2+Mui3LHhXD1oefBUvVc23\n9PeO8GbKk5B0+9pLBs0dnyZXdlGaKE5EfS22HprBqVnj6rr2EaQEplDkJLI7gXP7ikCxBFmeCAgj\nw7DtGWJykm/SuYQFKNLH/S2PZV/1OrKRSc9GWSdfGxgP8MDp+M0gwJ0yTvr9tvtTnJ/y2CfIfr8Q\naaYp+MX2nHQAux3ZZ52820vikab73u0YNAc+aykShEsXQTX1XQF26Dlv952ULSNMP5RSwqxvt/GY\nHNq9GkdvkO9vPSslSy3DipWL8OUUrj5/vkcoDRbPxVJ5XADoPlqWIKJcNO3BKU9LDSlV/3FspA9p\nNGAwSx8t2fJIX1XltfotJ5w9XZcYgt8qUk8tlAKqqA7EF669UqPbzTD/YsUIxeQa9AH9NYs69v98\nJYTlsbGJeC42PpzK3hSEhK89MDMwbMgcR+EMIv3mWJ9fwYsvAhiATz0Y/ccAfDkR/SSkz/UWAP8r\npAf2lgjs2AD4CwB+76FbkfELAL4xilN+CaTseJOIfhnAP4wkPAD4CgDfzswHRHRKRG8B8LsAvhbA\nP3qkvTZZJ23UFWBD0ljfcYnzItwgQnkaH5pB0FZJULSx8KVJD8Ts9gguCEZ7KVWBzRWDrRtXZYOf\nQAA7/tovxfIJnZxlv6++Wya21eOVTJRx8g1OJleSOSDtlwIqFGWn/KZinQVok8DpXSF2Vieq4yf6\nh6r7Z1sJiprlbfYlwyuieK/tBIyQvK8sIi9MJ43YX1KAQmPOwNt1tZz6T0ZRh/J+MOKGbGJG5xsh\nJSedPZKeRncpOj6fCOKwWHPabigIrg/JSwocVSeibmAoRE+xuRNVHk7jvisGpAuoupCyTjADnDlX\nxBIANDNbPDfARHV1QIJHeyk/yv0NF4N2njDHmmDbyE+aiVux9sTW10uUS0YRe7XFKsAMOaM0oyw6\nJLOMQfhGierIp56v8P9cuk7kGf1+3qfyqIf1krEDQHelhtv4dMxmkGulk70ZJFDo9sfGoDocU79V\nEH8ENpp5WzQvbNDtCfdNQCQWbKWa4GNAS0amM7nnUqZei8/bNPjYTkAY2udrbg/wlckcw5lFsWEM\nW7owMcIvi/dGvyV9S+WJNQfnV3K+AHHIeLVg9H+ViJ4F8KUAfjEGFUBk/RcQlOI7AfwoM/8BM/8u\npD/2LgDvhez3D8VtfVPc1hMA/oCIfjhu6x0APgzgGQD/GMB/CwARvPE/xu2/E8B3K6ADwN8E8MPx\nOx/CIwA4LoaMYmJA+VoZ50VMvRgX4+UM5osemI5XC4X48xBm9/2vLyFQ+gd957sg8Pf7X/9+AN//\ngNcZwH/3kG39CIAfecDrvwfg33mJ3X/gUKi3ZgJmEN6UGRntlC/FQBWb/3YTQGPu1ywfK1AdeYRS\nLku/bVFMaur1vR6b/RpmLSnRJ6K8ePcLga0Py//PXwho9wxOn4jZxVJ6O9nCJCRUISArcduHlAlY\nI5mQ8bHkUku/RFbPUZJnRqhOQlrFqmpJGcuUQyPq8/qb1YnoAKpyhmrk5dKRga8I1amqH8hqWdUt\ntPyXzCZJVvZTpJiquQOSKVcnnMo7bKQ0FCYK4xSQMkTTB1TH0jfSbMGthVekJTe3CSI9pa7QA4k6\nx8yk931lBNYdB9usbVieSmaulIxuW+Dn5GMWWRC6rayYLxSO7LBcLjnzk+I5AYt6ulx3yWr63ajM\ncexRrAnLGzG7Ufh9oyoYIpflWlHdByR7FCdsPUaRl1o8L9v2lcH6arYv4aIS9N4k43EbP+lhBbil\neIgBGZ2qmbCN3C6994qVx+ayg4s0SjMylk/OElXBbsKZTFutVFRKSkvRei6Um6hUhOqQ0W8LlL/U\nLN4RipPs0OzngtRU+al+YZJnGBDVRcbsfTft731yg+AvUIgAPvVKiJ+WQ4AEWUwVAOoDKYdwmSem\nUEbZmdScDxHKGx+aI59IskCEQ+/aZMvhWsbWxwaYfyy1nrs/81bMbgds/9ZHAQDjzRdecl/tmrD9\nsSxBxMalctxYEZoDD47QY+XA6ETZ7js0d0csb8gD7DoG+VzjL08jP2ieuVcUJGBo36/bFoi4WkyY\nEcnKAojSTDMDX+V99pNzCERBXbV0mcnEpHBr+dEsQZRsOeJgK414HeUywBd0hjNl25CCDw0E35hk\nZSKivDKRJrg9y0Se9B7nNpWN5BgZvsjkW50YdeEyzkR8uLkbOUyRW6fvm1EItvp73bZFdeLThGg7\nRnk04ORpKZcVtz1mJ1nAGCw6ieVyAqgwlCxmNEjPX4hyWZWQmnWSFyJvOCNgTIP8nWDnKo+lQbwN\nGJsi3Vu8JulbTQAOw8Kl0nIojXD2lP7AIuuU6BOdh69s+r1uR2H8lD5v+5AWIqaT66o2PPNbAf2C\nkl1LdSwLCt2fYM/SK4aFgJOauyEJPW+uFFisxlQqZqcLsrzN6Rgbikaayo+46IGd97gIYOc02EiA\nSf0hK4HJDpxWrWMtiLbqMK+Aq3sd/Czr+On39fNjQ2g+OqZtAsDwrVcAAIvrHsOMsHzzUwCA8uQG\nbr2pRn0gv3f6OkL/dAuKfYLmvQ34DSuY3xAB1G7XxZW6/F51LNlVtxcD2syivheE6AtB1okqRJy0\nLKFYnyXMCrmZs/vvKH0EigFMHZM1WxjmBEJG3o2NcKKKjWZwBqvHDAqdfA2BOCu3FyvJYBOfaOVh\nuoBha3JrM6d+k+3lGmlWWR0x/JwS6KM8DhIYUqYg+nYaEHVVP9VzHBb2jLeUnLusbciWpvxZWRCY\nfN5tKwuZ4jTqChZWgk6XkZEFIQsKr0J0DJ5w9CgDEsgLATgDYyCBIuQApgoRgAQl7yiBRkJJSYRZ\njjn2kMaM3gylLGzUUbm75ERFJarN93sl3EQ0eXXNormXOVHkWRYX2rusCFyYRCx2y3iOvPZ/LYa5\nOSOqXJ1wEs71lfSa9F48fapEdRSw9Wwmi0/5hIBkznof2Y4B5nSfra4ZVCfy+fKoj/eOw7BdJF1P\nGxchmx29LoxymbPSYpWfDQDZ7+2THIzzlZL6dB4XAexinMuYBt6LcTEuxis4+AxP/zU9LgLYOQ0z\nIvGhAOn92F5UFXTVp/0Bu8nuwGworSKrYy/wXi05FmI9PyQ1CwYZYPV4k77vK0olDdsG7D7j4WMw\nufKegPGPq+R/5QsP80c12MUyTxdAYWL7sQk4fr1LrruhBI4+22D+fIYN99sm9afKtSDyxkaQg/2C\nUGwY5WnA+mruIVVHAcsb6lYc4GtK5TDXSXlt5yPSzFhfqzA2GW5dLD3sxiRVcbYcS0VR0ohwprw4\nzm2U/NGSnxEL+NiTMz4qzG8yb6xY+lQCo8BgIpigcG6c1d2zBAxSllRoPTGj3StyOc1JD2+KqLPt\nmJTZfWXBzCmrk1X+kJTax4VFccqgUXsn0lvREtX6ikWxotRrGRvpEyoMv992CCWl36cgEG7NDJqb\nLfr9KpVW7doDLeAjp6vfkntWS6LqrMyW0C3yeWebM1kAmN0eErQ/OMLsTkhl9amyCiAZUX2Y+Xem\nl+xey3jDtotectkepVwG+CH3HQ//XIGdD8eMb8tKJmszt85XubyXrFq0Qmml2qH96G7HCs8sPprV\niZSEi6VPNBdfGKyvOWx9XG7GcS5qJtVJPs9myD1iRa+m+yA/9p/0uEAhyrgIYOcxomhpsQ5ntNZA\nBARON3QoDKqDIXkghYJA3qC+m63fuz2L6kAb4YRu28DFq+TWgJ1MLO2+8IO0mtBvO1THI/otNW9U\ns0kZZpR6vDa+pfeRBUbXly3mN30qeXY7FvUBJ02/cQ40d3PvZ5yJXJKWqoIjNHd6sCFsfVyOod2z\n8DWl/ktwuRGvx2hGYHMl+kI5AITU+B4WFs1BSJDydmHQ7lnxEYMEVDbZJNIXBJgc1Op7I4ZFXbMG\nVQAAIABJREFUnhh9SbDDpOzZEMxgUnnHkJg02lY5Uwa+zjJOxcoL1WGWJYPIR2JzhKG7VmD4au7I\nVgL8qDYbjRCFFWhiOp8CNpBV7odFEfdBgpVmufWBj0aiE8Jsn3lp1UmAHye910Im1+Z2hKRvFegX\nJhHs7WpEf71O/Sobe5sqmTTOpHznNiGBaQS0k0FLsxcGVLdXuP0lwk6pj2Qir45COm+hNGmfKIhV\nTtJKbAOMJxjVi4w6hHQfWGG68KgO+SwwpjGZXtEzinUuGXLUhpzatJSnIe2PLxUwlO/TmfYEZy59\nx3WcbIQAYHHTJ6DJ6ZMF5s+PSQ6r27WJOwacZwnxAsSh4yKAncNgIE5IwOqxKD66lsDQ7pkzbsPD\nVmbyIypb6+R6+mSBchmSiy0byVDqQ3mQTp9wmN3y4Cavat2GUUUvrbGWSWt2K/ZSKoPVNQcft9ft\nEGyHpB/X7xn40iRFhuo4oDzOXJuxjh5QiiCE9B4UzVasGcevc9j7oPxetyc8NpisXFGsOK6EZRu2\nO/s3eQCcARA8EEyfJ2fbMYqlT4aQbiPK4Osr8rcdsoo4kBGeQxJUFc7ZFFkpauXy+6EgdDs2BUw5\n7zkDZCOLExOPx9fiHm0j2lGQcaJIryRaExv3ilZzK4/1Y3XK5HLGpxFQ+nra06KRU+YBCKKvPB5T\nn48pOlPHc7T7oQ6r62XqubmNBxbuLBnbiBIMAFSHXhTwYzA6fboR1+h5zl4WH2vRx/3f7NvUy9XF\nEseMTO9NEHD7LXspS3RtOLNYcWsPbDx8IQuV+sCj37bp3rStADCMBpRC+Hl6zmwnKvXa2/SlLIq0\n6mFs7BffU0dnTsajes7dxmN9TX6/WAWsr7iUtboNYwRSf7d+fhA/s8Jgc6VK59GXgOnPBqKEEj4Q\n81XNrKsjL/d6DJrd/vloIQIXJUQdFwHsYpzL6PbO7+H8dBkXPLCL8WqNCxSijIsAdg6DWFbjvjJp\nBUhB6vzqjwVIRrV83GH7I5Kx2DZEa3nljTCaW0NaKcuKL6/g6kPpKSh3haLCua91PxQ5KKipUImz\nrmYn5WnuywCR19Vl24/6YES7XyTlkMWzAzZXXO5LNITN5by/wQHNAeP46SJtf1hYsBVIfvqNSXlL\nPb0SMjNCthPEvBEPMqfltT6qe+jK3wDLGyZJEBVLFsi3looMoV9kbcR+V1x5tUyaM8rMudJVOiAZ\nma9z34KizJO3mZdWno7JOkaum8DKE7zaCrdKe0zjwsLFfqGcN0H8hZhJ319ZGhYWxdJnKkAXJKuK\n5eluT/o1CkFnosg9U2V3H/3p4r04M9jsWzQHnLYHSzmji15lmhDOn+uk9K16kB2jOvKp9CkbpTP9\nx3avkKrDBD1arALq25t4Tgw212sM2ideGsxuDQkOPyzkfNbx+VlfKQAGtj4u97JbDlKtiChF20e1\nm1ia7hckLtLxvup3bJJuk2NmBGfS/h0/bTG7zamM2u5ZqWbE8r2Wf0OZy8dMQkVIVACW7duYhJan\nPnnhAaKZaQYktZH7Yfaf6GC+CGA6LgLYOQw2Uoba+dAm1cuHhQV5JTRnaD0FZM8wkiDkYnO3PpBJ\nq4plGeMZ3Y6TyQvA5rJDfRQSr8R2AZsrNgmOqjRUux/LNHd7jAuX9el6CXjtpViiJMCNSAGy35Z9\nLo9zWUh4YfLnWDmMM2DxvDapGZvL2W5ibAjdLqE+5CSbEyyh2zUIsRdXHUv/wsVy17iXyz5A5Bm5\naXYjAAKdeJaPOyyezwLJYvyYRWRFrisTlcU3K8t3+VK8upR7NzYGts2TtZTLgPrukLY/zm0W2A2x\nfGYoAUuCJaCaWOkUBv1u7mUmrpB6lFUmgkXi98vYC0oLmQjbV07VRGJJrjuDZpx+v9uTgKuLgmHL\nCVJtYthZnWZu2/p6IQEr/r6eMyVrgxkwWVhXTThFWmzKqROrFUDKycU65GOw0fKliYsxR1hdsxnI\nQAzbeswioGn5VAPjGeVxDFiXHfpFvq5mcLCdT8/COHdiwRLvk9ld0Ur0E91RCkicSuWs6efrAz7D\nxTODEI7by7K/s5ss0ldFbgEQC0FcA1GxFEscFTRuTnuAouUP9N7PWpxTse9PdpwnjJ6I3gbg+yC2\naT/MzN9z3/tfBpH0+wIAX83Mb4+v/7sQD8VtiAj7P2Dmn4nv/RiA/wDAcdzM1zPze85tp+O4CGDn\nMIjlQdlcrVKwUg20+iBzlszI2Hp2TP2ZsZGeVBv/nj8nAqnaFA4Fobnbp7q/ekil7GVm0US9RADJ\nJXn2gsxsyycr2JaTEnu7ZwHOyu7HrxOiqGZYxSoIibjOun+2Y/RR65AdsPORcQJKyW7CgATjcUYY\nmqzU7itCfZCzj35bCKL1YZwUfAy8GmQ3HoBNAId+28K1AcvYWzR9BEl0iipkmI6wmQQwAVHIPrWX\njPQm1EvLS09Jn//y1GOzb1FE5GV1nD8LCIF22twnlszFeIbxotJODNDACcnoy7N6jIAEFQVF2KjK\nkdRCeEIEhmQ1PAGymFH6ScqxAluEqxa+VL6RvD/MNGCJoOzspgSDsbEwLk/exZpjHy2iIFnVU2Tz\nZpDAoFqLZhB/M19SCsLFKgBM6V4Gc1SLz8hLXxHa/RgQnm/R3CvSuS2PR4AZ/W4E78SWoGnl3i2W\nQYw3lXROhAEuqZeYXnrFOdvxaHeLBPaxfUSUTnznxplN/VwNQkNaDMpnlbRPzOj3SgSX+3zCYcxA\nFh36nWHbYaxNIojbPmBdurSY88X5BZ3z6oERkYVI+P2HEEHzd0aD3z+cfOxjAL4ewLfc9/U1gK9l\n5g8S0Q2IOfAvM/NRfP9vabB7pcZFALsY5zLIv/RnPtOGAksuxsX4sxwMQjg/FOIXA3iGmT8MAFH8\n/K8ASAGMmT8a3zsTuZn5Tyb//zwR3QZwBWJ59WcyLgLYOQw2spo1IxLvxUQfoKkfWL8wWDzbYaxk\n1SkeSpxszw8+p8Luh4ZU3golwW18WqkzSQaivQsgWrVoacpJlpZKlIwzSgDFiuHakPpRzYF4MiUv\nrWShjrg98ZxKkPa5cNa0RNIvDOrDrKZfrDzKE8b6WoGjp2Ujl/5oEE5S3I363ggmJ9wjAEVBsSwn\n77eXC3TbhPktpN9kY9LKuj6UnlXqUbUB49xm36ggHDzl3I0zkcpStFmwgFuFdA7HSo45SRANAcVp\n1qfs9gqwzZwvJsmgyDMqfZyDoA71vFD8O/l11UbcgzXh0jJTPG9jJec5TDQnhxkl52vJtLtJr1SU\nQmz0rmr3pIysdAbXAtXBmDJ30wsnSkuOY0NnkJj1YQAI6BWxN5NjLo/lC8PCibvxkEtypgtgslli\na07AGmBSVQrJXDNsPmDxsTVO3jBP56Q88ElZY36zx+ZygVBr/1dUULTPN8yl7KoIwCjYn21cSrmO\nek6khAogJq39lo3ajfK3jzw57ffCE1yXpagAh2Eh9AqtMNg+qqbEe9ktB4Q6IynBhOpoTO93u0VU\n5oi3yXlmYOe2pQca/H7Jy90IEX0xgBIigq7jHxDRdwL4NQDfxszdJ7OjDxoXAeycRpoMDrRfJf5G\n3GbSbL9tQENIxGLl8tg4sbT7sawT73NtwichWhaIdHU4xO05+CrzeZgAeIZR6TXGmea+7aRHoaAN\nM0pvo7mXJyHb5xLJ6nqB+q7OCCLoOsxzGalcCdEzgU6cRX13xFgTilX8UhSpTYTSPqBcBiyfiKUj\nG0Ed0Rih3SPMboUUMCrgjA5gv23g1pnPE2I5UMuqIfYZVZhWhW3J60kBgstgFusZPlAqpxWeYDuf\nApzxADNPyrQklu4TQIOvhGhs++yJNVZANUFn+MrAxX4PlwbwDN/k6zDOc3nLbQJAJpezIiRce5vG\ncxIzBqSkaid6k6urBAqZGuAbKXMqgKI8CWf0J5NYsnLlotBuvxevEQmXrL47ZOmnCcBErpvD7NY4\nsbkJGGZF0rRkZ0Gjx/x5mcN8aRCabJbqS4N+y2DYzjD36jhnGbIgRCL1s5P9Wjwbt1dZNBOdQtuG\n5N0GAIYYbuXR7cn7umCYajOePOkmpGShuChVRb/jNh4hEtK5EC6gLgCLux2GnTLdq8sbFuWSE+/y\n3KoULw/EcZmIptZTPxS9DHU8aEMvKz4S0WMA/imAr2NmvTG/HcALkKD2QwC+FcB3v5ztPsq4CGDn\nMVjq4/ObHdokoCoPGI2T2jcDMAQXNe/4SgEKGXBQnopZodbn2RK6S2XqnfhavIjCpF9k24x+s30A\nUTbOC04cjHUis23A+nqBrZidLK87zO74lL3oClX16IwHuktlyp7IIyo0aA8sIh1vyvH4ymBzxaG5\n59FvK9GKUaw4Fe3HhYVb+QnPKyRjQAApGGljvDyRvp9O7iICTMmfq1h60ciLHKb5LSGWKh+PrRB7\nE1F54LPnmO47RwOLv1vc/eJ4RL9bpEw2uIhMjJPW5opL7+lkWJx62D67CatfmWbWbiUIRVZ+0LZF\nc2dI/Dti6V8N8bqSZ6yvl9kZ2xLmz7Y4+Byxq65OJOCbeM5CIcrwWx/LwJOxyu7HxVIWFJox+lJ6\nfLoI8JWRioKah1rhjtkuJKWNfq8UIrLeG0EQqDb1byVrbqOuZnulQvPcGqbNPaxh4VJ/WJGQqgd5\n8nSTRIQBWRAWS0axShEJ6ys2Z/+nvYj9qlr+IARLt1JOpDg0K8+rPBngq/ws+UrAGZrxITCWjwmy\nUhdstgsYG3tGmcXXdoJYlaCoHMXyVFRp9F7n86w4P3qIucvMb3qR9x9m/PtIg4i2AfwigO9g5t9J\nu8d8M/5vR0Q/ij/dPzuXcUHnvhjnMnz12ruVNlcu1n8X49UZzPRI/x5hvBPAG4noaSIqAXw1xAz4\nJUf8/M8D+Alm/rn73nss/pcAfCXE4/Hcx8UTeA6DTWTyNzZJ22iJZ3arw+qG1FHchtHtlwlBFxyg\nlvaAIKPIZ1RgKOgMkqo8Ei8iRSn6WpBsqtyOwNhcdilbsVGFXDMy8j6ireT9sREYtMLgbSeluW5H\n+USCTNP9BRO4NalXM1ZAucxotuCkJDM2lHlXTkpuWnYhBla6skVULuGMCquPtL8in99ccRiabHcy\nuy1yXYryM1EWSvs7/cIAlD2Z+rlBYTgh8ro9B1DuDQ5zyRRSKclz1EqMMH0fYDe5r+g6lmOirD3Y\n7hmUp4ximWHznrKHWCgJbp15YcVxi+7KLF0X20WEnMK116oQEvl5hwJRT8oZTxWwXZGWnxQkA9Fi\n0PpqCV/knotrObolIA02lDICM3IqxcoG5Tqp6np1FFCcRG5h1AWkkeG6rHEompiE5nbUCZw5+IIw\nf0H5d0B3rUH9wjreSoRQlqmnFqKu4rDImbPrMt1BlOQ59YN9LVm3qpfYdoRdj+guaWmaUCzHlPFJ\nZcHlZ6ex6LfcGVeD+t6A1Y1Yph2yHqJmbWYQhGxSTAlyXhUZGWob+5tI19W2k37rOQleM4AQzmlb\nzCMRfSOAX4bA6H+Emd9PRN8N4PeY+ReI6M2QQLUH4C8T0d9j5s8D8J8D+DIA+0T09XGTCpf/Z0R0\nBXJXvgfAf3MuO3zfuAhg5zCkXCE8LQ0+Yy0ituBM7mQrMkTBRt7I7RH9TtbpM/3ZgCHEZJPLLI7E\nEkM/7wXQkURlQ+SyXIoPWCueSMVpFDzdEW5NETlR1bH8XupDVIRh5tDuy8Ox98cjTp8sMLud6xWm\n56yRd0NkqtSLSyD5UjLJXlkymSRi8cKITxLn94s1TyDgABeUFgLkGc29gNVjmTtXnnIKotgI9Jli\nvW5sFIIe+xIkRG0T4dwUGPVhSAAJCZ5Zr9LXUhYrTmNvpXYSXLQMNLAAP/ps3WF7MZ0slnGyXXs4\nij2SOPodmyxlQunga5O4ZmbwOH5DM9EiNLAGZ8Ay5cRfbPHcCHaE+c2omVkatFeyVNXWx8WoVCfM\nIvZ7tAfjugiEmZQkTSQ3A0B12KPdL1M/1/QCd7dtiJM4UklYzxsbEcbVIOhrg9mdXEpeXRNCeXEc\ny92bUaDwMUB1uwISSRJjQUrhGiCLVRAZMqVLNAbDIivAuJWBbXO/llh+g6Iosy8LEDNIS5ylUCGU\nQ2kHPkNaLlYexAqQ0nvDRYpBPAXOoIilSABJWky3Ceao6Rj7uf6cQByMjHo6j80xvwPiYD997Tsn\n//9OSGnx/u/9JICffMg2v/zcdvBFxkUAO4dBnEVjddUsYALhkqRVZHSJHfWhve5QLHM/JRRC2E1o\ntOh6m8R6twQQkh6giGbL/RmKgquqvCH6cfoAhUqCh05U62uE5k4OTsEJz0VV0Ye5KIsk8d24atdJ\no7knE6GLgI1uR0jNZsyrTUFoEkycWyiIJqRC0IsVJw4OED3VqsnEtZQeoQakxbMDhoXF5rIGB1Fc\nUMSf7eXcK8FWzmM+xmFhzvDSbCvXJCmO14IIVABDv1Cl/bw9Gs8GfemB5Cxx2HLS54vqHQZipKhA\nln6vxMnrLPbfmxVViLNbwVgb9AuT+XUsAULBMvPnemx2i0yYLYC+tJippuXRgHa3Sr2Xbtue4aUp\n8jL5mcV7VvfP1zYi/jidv2FhEUoDF/l9IPUP0/6t9DI1w2ETtTQVXboP+BrY+Wjmdak7NyDgp9Vj\nLgWoxcdaHHxek6676eU5cKsoEn2phhmQFwWFxXBjnvp4CAxfWVDUtDR9wOZqlTI4tx7BRsSb9Tpy\nZSZ9QfHyK5ZjygpdBFUpOlN6aCa5RyunUQFGZmD0M/OKSI5daCHKeFUaF0T0VUT0fiIKRPSmyesF\nEf04Eb2XiD5ARN8+ee+b43feR0Q/RUR1fP0biegZImIiujz5/J8nomMiek/8952T995GRH8cv/dt\nk9efJqLfJaIPEtHPxBrvxXiEoXI5r6WhGdPFuBh/5oMf8d9n+Hi1Zp33AfhrAH7wvte/CkDFzJ9P\nRDMAf0hEPwVgAPBNAD6XmTdE9LOQZuOPAfhNAP8SwK8/4Hd+g5n/k+kLL8E8/58A/C/M/NNE9L8D\n+C8hUikvPjivDHW11e1IRiKrZ/lYdXTWvt6MUlrTlXK5DKAhpGAwf16QaFpCpAAUyyFBidvLFuUJ\npwyvOB3R7bmshtAH+MamUhYbQnMQsIklxuow9nTUEuPWgPW1IluVbAnCMPFXvNhs2MjFGWvpRXWX\npHTqC2SPJc4rdfK5x9TtmuiKLG/P7ngpkakcFuFMucsOjH4ry/mMc4t2L/uDbS4TqsOJ43JUE8mZ\ngWj4ccro5HcUou42wmMLceV++mQhPal4TXzksKWMqyBYSClLS73OMLqdLBGmq3i9TnZg8SVLK3Ng\ndiug31XIt8H8+SFlH8VKem6JsxStS9Tnrd91cbUfS35HHt1u5iOp7cfQ5AAr3nKKEJTjz6oZRlCS\nqth/MoJqk6gDNAhdYmxMLvltS++wuRvLyY2JCM6MuHWbbNUz3rMxG49o04VDv5Vdq/1MskRF9PkJ\nxF7OoZbhY3VhGdDu27SI8DObpNTkC4Rx7iYlyegAXSgNQBCMSmVw0e5FZdREoky84YooERYqC9OH\nhNIF8rMt/0+JIpN/M7tIh3ObbR8ZoPEZP16VAMbMHwAAoj91ERjAnIgcgAZAD+Ak/r8D0BDRAGCG\nCPVk5nc/ZFsPGw9knhPRBwB8OYCviZ/7cQB/F48UwGK5Ysz9oc2+QK9Nz+hiOWvrowNWj1fpwSxW\nQbT3Jg9qv50fOlAsRca39WHX/g0TYVhkodp2X76bwQPmzENdHfRYfW6D3Wekv3P4xgq+yDqDmytO\nuGDdpJw3Mwm63G9FyDjnibjfMhl6DIPq2MOtRvQRuMI9S7CI3ynWBggMNnIMw0x6Tsmmw9CZiXd5\nXY5JQTHLxyzqo4C8vDRR907+dksPt/ZYX5Vymy+FV2dbhZTLJJkI3gGw3YhxPwNt/IQfpDb005Ko\njwFWJ+PyNKBcZs1Ltw5wpz2KONEFizN6i74iVIfZ3bC9XKC+N57htrnNFHyTgUJyHYRArtQAdhQX\nG308RilLltFm5+QpB9shgTwoyHneRCqCGURkGamcZtHu2tR363YLVAcDypMx2by4llHfG+HjOQiO\nYFufqQQroT+cPlWkzy+eG9DFoD02AptXbUPxXMvSUeWJj/YoIX7enrlubu3h1pn+UN1t4asMsDAD\nw88srMpvERBslihjQxgWNgVxNpTEsAGgvteDSTiBCfRUOIyLTMJnKyLUCs6hPiAUJi8ol2MkcyP+\nfY4p0Wsgu3qU8alW93k7RMbkJiRIfTMzHwAAEX0vRJNrA+BXmPlXHmF7X0pE/xYS7L6Fmd+PhzPP\n9wEcMfM4ef3xR9prAoqTDuO8yG7FS+XwAPU97UGJmGlaifcMwGbEXMw0FJk1bDmUxyPMmFd8x6+v\nEiqq2Aj4QCdXCqIon8mknFRCAOH/2JaTJ5IZgNUNgttMVuoOGbBgBGiyvl7GYwpZ+w6CFGsOPFbX\nImn4NMTeh00KCXKc2ePM9AHDRBxXNfw0SJenAf1OVo3wpaDwtB+jxpWKkKsPA4YZpb6iBmRVpSgH\nAb3owiJUJhl7AtJntAdj4gNJ3xHoY4bo55IxKtm8b2RCsl3cbstwyxF2ZhKqjwno9+uUWd/fu6wO\nR1loRNPM2U3G6kaZSLnYeIyNTYr8AECcuW7BIonTAsDmkogwa69mbKTX2dwZ4zmSPqOqmRRrQcZp\nUJftGKhrtWw7GzAWS4/VjfJMtlEuQ3I1BkShgw0lF2m3DDj67FkyVK2ORLzXDDHAFBLE9fO2DbDd\nRNtw41GeuJRl6n2lPS5VQ9ERSotQ2YT4K5YeNIS0sJEvUcqsbRvAFjC6eLQEGkJyBhgbcRBAyL1C\nt86u2gDQ7RQoj8d0HdmKYWci3e8U4syelDzOaih+woMBPicU4qf7eMUCGBH9awDXH/DW32Hmf/GQ\nr30xRNX4BgSy+RtxO4eQwPY0RGfr54jor0cUzMPGuwC8jpmXRPQfA/g/AbwRD2eeP+z1Bw4i+gYA\n3wAAdbXzIrvx2hjl6Tk9nJ9GQzPfi3Ex/uzHRQADXsEAxsx/8RP42tcA+FfMPAC4TUS/CeBNkEDy\nEWa+AwBE9M8BvBUPgXDG3z+Z/P87iOh/iyCPhzHP7wLYJSIXs7AXZaRHOZYfAoCtnSfYN8pfySs8\nX4k0k67AljcKbD3bJ07U4RsL8bWK5bUh6ilqiXDnmQ3syQa2lXRgnBcYGyTJoOZI1BG6p2SZ2+0C\nZsy9E+IgSunx77GW8pvqNfZbgJmUloIj1EecVs3FUvpr2o9SeHzKJE4E5ehaQQrOb8qx+SqXJU3n\nMc5cVtY4HoUbc129qARl19zS0qsFQ1bsgGQ65WnmUGEtcG89pupoxNgU6Lc0E+BUIosnQVCEO5lf\nVJyO6K9Fd+Ijj1BkbcVgCdXaY6z10ZDSoK781aZesyEAqLzIb2n5iwsCouKHHgPbKE+EyF0bfFL9\nJxb6Qypf3d5g2JpliDoBFiHBtWW5RWBoBoUzWSUgjgOp3LYRPUtFj7IhhAKoYomw3xYPtypmt+NM\nSsHDROpKf0fvVTaEcWYzX24U7U89pn7HiY/YxzMlpNsrsvTUJQPbeQw7crP56GwwnZe7HYKLLgGm\nlww3ouLRX3Fy3HrdShN91rTHZcQhoNT+k4FtPfxWtjuyPcMttdphQcZkSooX1Cg7QiiUMAcgIPUu\nzRiVPpJNDqHftrmvV0v2nnid7hyDzsXaCcCnXgnxYwC+nIh+ElJCfAvEh6YB8JYI7NgA+AsAfu+h\nWwFARNcB3GJmjkKTBsA9SAb3RiJ6GsBzEDDI18TP/T8A/jMAPw3g6wA8LFM8+1ueMeyU6YEHIoer\nIYAsxiZOJB1jWLgsU7QS8IH2yGZ3vEDRY13fvXAEeA9sN2m7m6vAGCfP+lAmEpvKa/KZ1NiupEeg\nPlXdjoAtUqO8JtT3Muig3RW+kYI0ylOP1WNFyjTWexbNQUicrWFmgDjZATL5h0L6RwqTd7EPp7/B\nJsL4J8/y7HZIoIryVAAM2quwbUC35xJMnoL0qLRE2e044dul0k/mj8nnEX83/hhLqa06yp5nxEB9\nV8p346xBu5+vUXka4Hs6M/nYnlFvOO0TG+lBabmKCXBDwPx5lTGSiVHh1phArQHAFwbF0qcgu7kx\niwugWBaNXmOq50hEaYEEiNHo7K7PZdBRxIkTN7sisM0GnMUqwB5l25jgohfdBFXZb5ksxOs5mpf6\ndF1DwagOfTZ7dGK8un6sTPtUnYS0oAtGFl4uWo2UpxZgBkVwRmhc8vACxO+rPGV0UYpq56MDhoXD\nZj8uCvooHlBlYjVYOG4AQAPDDnlRYHoRGtBnjQIweyEDlIT7N+b9LSjpIRYn8d7YKqXv1SqXzCT6\nhV5H13IqYy5vWBQrTvZGGkzPZVwEMACvUgAjor8K4B9BpPd/kYjew8x/CYIO/FEISpEA/Cgz/0H8\nztshZcERwLsRsx8i+iYAfxtSrvwDInoHM/9XkED0N4lohAS9r2ZmBvBA5nnctW8F8NNE9Pfjb/yT\nRzkedoShyYrpgDT9fSlmjfrQ1YfSI1IUIDFj/lwH8llfrlhltXhEwrN7QdwJxjdcFoWAGKiIRWVb\nAwyto3p7nIfqo4DVNYt5nBSMFy7N+moWRK1OAsqjKA68MDh9yuDy+5RrY9HvTCINxeZ5q/wiCXiK\nEDSdZKDaxwAExOELysKylbg6q57isCBUR0NqvhfHPYZ5ziLb/QKuzYRXtxZn4nZf1RDkc9q308Cl\nnmf9tvTbkiPAlhUXgC7/zYYSf2l2s8fmWpGyZuGIUUI5+hIYZ4TZCxl1OuwUKJfhDFcMARh2csaj\nQsyATLZcZIFitx4BQ6gOoo/bEyUWz/tEQB/rUhCKCegiWbreJ/VhgFtnMMHR0yJKq6hE28txrK+o\nsgaBYuAGJHgN86x96FYeY1Oka8aWUKwlw9KFQ7tn4ep8vMVyxPpqkQAL9aGPvcispOHhKBjvAAAg\nAElEQVQLQntZ+6+MUNg0qY8z8Y3bXFZQiMXWsz3qI5fO2TCjFGTLkwBfU+rjqSN6Mh4lgJ3N53Du\nsL5qU4+6WAu3TfvJY2Vg28kiJPI4fWUxabWBDSXFlVAauY4xA+NCVHX0vDZ3pM9WnMh1ba/VOJfB\nOFci86fzeLVQiD8PkSa5//UlBEr/oO98F4DvesDr3w/g+x/w+g8A+IGHbOtPMc/j6x+G9OEuxssc\nU9DGa2W8EgTVi3ExHmVcEJllfKqVED9th68I9b0RJ09LGhYcxBvrcobqqqqGrrxtB5jeJ2TTyZMO\n2x/P8Or+xg7K545Sjb3bcQhl5t4UJyP8fpFLWY5g+6xGv75s0e0hySw196Tkoz207Y/IqlZdc83I\n2PkQY3VN7VcE8aY2HDsfHgBG0krs5xlhJZBkyYB8ac7U/ac2eBQiHy7uo+9xRuGbnYHxuZ/Tb4kz\nsGa3VdQhnFIPSBXvIShHmljHa6lFF6yaFdBSqQDKw1O1FA/bZmV2NlGXcDuXmma3pPeY/bZE2koz\nlnEmShcZbRpLTgrN7+SaZ7oEifJD1O3b/shGStIR8VlGiabkakCy38OW/FkfxswylnbHGVCd5FKy\nGYVLN7t9FmgzLYsq5UPPCZhTPyhEzza7CYk3VZ4GQSvGY9xcLs6Us0EkmpHaEz71CNaCzdnMVvux\nQkvI1kPdjoHpPCiWANfXS7AhLJ6PvdJLBuWSE9qU2GCYEcplPrbyVFCEgKjxmzFn7OoHlpwdBsnI\nUmmOICUKkm0DwodTt2q9rsPcJWUb6eOF5KxQLhnBiEYigFxZOY9xgUIEcBHAzmVID4TAxp3puZgR\n8BVQHShXpUN3ucL89oTsOATcfrOY/NkOqG9t0O4uAAgnpWjKFOCGBaE8woRPJCRJLf1o+Uwtzdk6\nUMjCusNMIOSL56LGnZceggbAUImEkQIito4DLn1gxOZqLOMEtZ2IJOB1LJ2oVUnn0e8ILSD5o93t\nsHqiTgGGvNixaPPfrc9y1Xwl2o7tYzGoeiWVyvu6CFDSrWgzZoKq2wgoI9m19LIv94NrtCQJFs5S\ne0lJxRbVQY9hR35/rA1sy5hpmZYzCTr3kCgSuWN569jf18+RAK1SRP1eeaaHIX0Vnwjn1AeYLsCl\nc0IojwZUJzGoL0RQWXlevhJyvAaP3WdC0pLUc9YvCHUsqx4/XWD+gk+k227HwQ7Z3HEs7BnQhxkj\n9H6WydiIxOcxms+ZQa6p/m556s/0PmlkkR3ToOgI5Ce6gSQebiqHVR8EbK7VmD0vKA7/WI36YEw8\nMtfymVI1IAs0fY0gAbTflevYbwlZXhdObBhwBBNL2b6U8qQS3YMjUGVgNz57x3UeobQZdLVVYJzZ\nCTcty8AB8jyyNcnHjc8xfhG/9GdeC+MigJ3DYCuBSvTd5LXmrkwo5TKLvh5+ziwGOvnM1Xe3GHfO\n8mt8U2CjYrrvX8MvKowLeQiLVSTZqpPvTGr6iQ9DEgjUK2tzyUhGphgQlgm56SbGi400+AFxAS7W\njNPPku1dfVeH48+qE79pWMjDqqtoXwuhV403231RwieeqFHslHDrianmJiQVfUAmV19l3T8mSTjn\nsfG9uSyLAl2pH7/eYucjY+o7hILARVanF0WJPFFKM4TPKMPbLutLUhCkWup9GPlOUuDXTLHKAAi2\nhKF2kYNnUB8Oki0oOGbm4AuTSb1Lf8ZVwJeCekykWkcYF26iI0hnzlF72WFsqtTHqw+EIKvH3O0Y\nEGfTUArR+SD2L/uFqPOrMghI1e6zj9zYmISSpCCvpf2tJEuujrOrNLHwD3UfiSMpPSFeDdzaw8eA\n1u849NuEQsToo+ZkPgenT5Vy7RNvS45n+Tq5eWcvCMJVsxgzisqHkq3Xly1Kztm+bT3cesTqidx3\nYkupR2Z7MXYdZvHzUY9TVW+Ck2teUAZfsBWgyv0AIe0hsyGws5jdzb3OsaHE/zL+nAzBGBcgjjgu\nAtjFOJfxWtRCHOtzXFJfjIvxyIMuQBxxvPZmnVdolKdST8+q64xi6XH0hiLZlANAsQL6bfn/fqdA\nfatFfaA26gJD1lWqWfforswSv8gMjPogJCiwGWQ1PtXg6xcZ3VYd8xkl9s0lc0abUT7jE+9sfltK\nMGaIPbTrFcwI2LWW/7ShJP/xBYlhOIscluo6NrcHnL5O+T3Ct0nK5/suagtGVGIpag4qXwUA/dwm\n6H+xEi6bluuGIBJAyaLGkJT5YlaIDYv8Vlw1DzOC7QnBadYo+nvJumSQ82GjCAY76blpJlCsAxAY\nfex3FSspJZHPNhkIYt2hXEC7HsHzAqGc1gnzMfiKYDukfpIZBaHXxNJvv1uesbovVtJvWl9WbUWg\nuTMmlKG6ISQ1+cqAA0NAtoJMdW0uETZ3A2yfeWrurvDhEo/NiKWP8p+q44B2N2aEsXy2uVLI9dbz\n2MdyrSZ5kUM1vc76u/q37QLcUTQpe6pMqFo97/1WzsxNH2DXA4yPpd2Z9LS0H6t8K+1pldE9WlGR\nWlpMepBOMnHtdbqVh68N2t1IUTmKFj+c9RqDJZiQ1TuK00H6lsqjLCTD09gyNpL5trtZE/PcxkUG\nBuAigJ3L0IBgBk7BanMpQpgHJGt5MbrjPFkamTC3PiYvLB+vUJ56NHekJHH65y5J/+Mk26ibkQFS\nwEEADCVeFlvI4mxCND55ysLGOYItgABsouX59kd6+Mamuv/dz3XY/8CI2bOx9LX28JVFdRQn1m0H\n75Bknmwfm+AKkFgHmFFAIUp+piAlLpXLsi2j2IQEKR8bmaQUtGG7gPJ4TL0KEAHR50xP2lgDQ5Mn\nLtdyOsdhITJW2iOoTiRTyuaQEW4eS5BjJfy8VHLEffYrtYEvZYGSXls4kTIatS/GaK/P8vf7IF5U\nEw/5MJEgcpsATII4BbE8wUTP0258cny2PWCGkHqnm32Lk6cK7HxUVkvsnNi6TBr7Y2Ow8yG5r05e\nX8UyZnxvJh5uCipp92wMPgp8YayvF8mY0YxikeNrMwkEPpLacx/UjAyK32GKJpUqczaqHJT2oCTI\njTuiQelrsWfRgDPMBNChtjjFpRL1nRZbH5cfWD1Wwm0yF04WQTkgETNCmblv1YmURBVgQSyLQfWy\n21xx6LfojLqK7RkgYH1NFy+yKNXFlulGgEXCCpBSo9v4VN7GIM+HBu3pPfZJj9ee8M0Dx0UAO4dh\nemB226Pdy+rYzUFAt0PwBUDRyC5M+yyQlXh3qUygC18iOuFGIdqaIp8mNv93CowNJXfhfrcAc0bg\nDQvC/PkB7eX4/YIwu53JpOu5rFqn/SIACQSy90GPk6ccZtEjrDzssbrW4PSJKMjaIfUsAGmkd9uU\nwQyFoOlcG1KQDU5Wv4ubGbgSLLCJfCCQrLaPnpZbcXYHAOWgbHshpzYHcsx2r8T6ioVRdFkUhZ1m\nLKHKvRgaApzP4sHGC3nWxGtiNTOaEFjRhqzVWAD9tklCrGMTQSyELOI6cCTS5j6e3Bcx+6gtzBhS\nxlSeSA/PjKpiEVAVlNyETReiYaZsZ/7sGsNWmT6/aD2On64ycbkXTUy9Nv2uoOdUow9Uodu1ibzd\n7RiUR2MWad4WzUH9PeXycVwFjDFwLR+z6TqOtShj6HmSIJeJyeNcgocGuKINoGGSCR16DHOX7m23\nZgEpqSuBjY7Ruo7xDOpHLG/M43WUf3pXqValBqzykDHOHWZ3fHq938ouB4xomqox20aX7bhQGeYU\nFV0yYKLfItT3zhpagii7jY8svU9HZ7apQfHclDgueGBpXASwi3EuI2WJF+NiXIxXfHymoRCJ6K0A\nXo9JTGLmn3ip771kAIuqFf+MmQ8/mR38TB7EAhGuj3xSY/AVodshVMc84f9ISUQ5TaEg0AisbsjK\nuz4UNYdk3WEJ5WGfVnxat0/qBY04FWuJz4wW/bZL2UuzCTATfTk2Fu2lvCoOhXBhtLc1NgaL533y\nLxpnDmDJJgFgdd1itsEZ3plo+Bl0u4KI5IhwU61AMwCzOzn7MEOA8cAmQvVdyxhmJtlmKC9Ly5Rg\nhms9NteqeIyM5m7eR19S8hgDIvpuO6uTlJ1IOOWeWZR20mxly0b4dywteU7nBZBj7bbMBHJuZWVt\nKKt/jBwdjPUYAsaZE4UNAG4p/Dm3VEh5kNV78m0bMWwVWY+xJAzOoY7KHN1eJVB4hfY3hOooZ9Z2\nYLjViHFLOYhyX6ku4eLZAXe/oMT8uS7un4saf7HfcyDXMGWOI8NtOF3DsSb028DsduZNdTvi/5Vk\nxq5YzG7nPmAoKaJPMxdN7we5t0xES0bY/JGH8Tbb2ES+XnUU0r0JTCZuFm6bUjpoYIQqK/aPWwUQ\nMrWAvCJ45euhIPTz7GKg98biI2Iv7heFqHdctun5qY4DyAeYyNcj74HSpUzXRsSrnnfFWiQVmf4c\no845boqI3gbg+yBN0x9m5u+57/0vg0j6fQFE0ejtk/e+DsB3xD//PjP/eHz9iyB+jQ1ENOK/j0pI\nD/r9fwrgDQDeg5xUM4BPPoBBJJreSUTvAvAjAH75YTvyWh0iY0MA5eAzLAQyPMwp3Wx0JCRTp1Di\nUkpUG5X4OYyw4FhDL09GUO9hNzLxNACWT9Y4iQCJ8pjhC4sqwZ2lRKKWIxpodFAQI8XUN4h9hsSd\nYeFtNbfl88NWIT0MVnCAQLKre1LOWz9WwbWcfKiGuWgYDlsuEUzrjZTCdGKhYLH1/7Wwe0qWFhJw\nsk+ppD+lzfv6YIigCnlf+hgmkbm1f9bHibLbJjQHuZEe1EB00lg3Yy6FFksxMszHKPykJFLLAAxS\nAA4OsdwWMMbJWjULMdHFEwBBDDDa6+q1pEcwmyF9lgsLtxpTCZFYvu/j9trLDsWEjlEsxepexX3Z\nkQSOSVm1PvQYtmX/mudWWDzv0iJg8fEW41aRggUbEp5YvG900j/VPm4PNPcY/fYkAJTA/FZeSBRr\nIbBrwGruiS9bv5VNzdlkOsQwl7KyTwaZ4j+mvcyxNsAEcGRGBpcOi4/HfvETFdggwd7LUwGY1IcZ\nwm7GfA7twHCdOdMvXjzvcfqEaiUCu8/0WL1OSpTkJUCyzeLZbiPXgFRR2MgixI7KuyQM25UI/ELE\nt7nM5Ww+rxLiOY6XMPjV8TEAXw/gW+777iWIOpIKrv9+/O4hxEfxGwD8DiSAvQ3ALz1kN94EMSt+\n2XHlJQMYM38HEf0PAL4CwN8A8APREfmfMPOHXu4PfiYO0zOqY0GKqU8VedFrC47QRl5Xu2tQnCID\nGnpGe8mgvpf7LavrFpfeL+TNYbsQ5fUjkRewdYnd9x+jPBUJhuAibyVddzqjCDHMhXiqwUBXtcoP\nIi99D+2hlcuAUNmUMYZCJjXtlfjCCYG0zkgxVSUHYk+NCG7lE5JRQSWpN3EasL5WpX6MLymqe2TN\nPCCX+Ictd0bNwxeC4Eu9OJLFQxPP4fqqiZNxRuSNM5pkmXJMeoybKw7N3TFPUhPOGiAaeWOTA7AC\nKmgIqA56sDWRX5R5U6kXpgGt8zDrPntJeenZTYOYGWzKLnyR0axA5GV1eTFi+4Bx7pJ4dHO7kwA2\nkbaikROqsCHC4mMtbn+RAE1mL0h/c309mni2AbajhCBUT6siqlpUJyKWTB5pITC/6c9kyhQC7Cag\nmHjLjbOcCWsvKaH+7mWyu+zD2QypOhwxbLm8fdbzFNLnu21CvVQkKKO9kj9fLgNolYV1mYDNvknn\n1baikqP3frFUHpgCWwzcWvREdQEqwB0PjuhM3zjYzYhgNXsPsG0WBC5OewxUwnRqgHl+tItzLCE+\n0OAXQApgzPzR+N790JG/BOBXJ56NvwrgbUT06wC2mfm34+s/AeAr8fAA9j5IonTz5e78I/XAolL7\nCwBegIjp7gF4OxH9KjP/7Zf7oxfjM2+cq1XEp8k4zwnpYlyMRx6M85SSepjB7yf63cfjv2cf8PqZ\nQUT/F+RotgD8IRH9GwCdvs/M/+lL7cCj9MC+CWItchfADwP4W8w8EJEB8EGIEvxrerBRn6ysjq2y\nS+Vp7iWUK8b6SlYjsF1c+cZ5sN8iVEecS0lB6ul2S8oaobQIizKVXVbXDIoVp4yhWAUEy1hf0QyJ\n0RfA7HbsxawDbBtg+riCrKV0pP5f/cKAvEV5JMvUri4RbM6wZnf4DCprc0lW2KoGwkbUE9bXi1SO\nGhsCmVwKKpeSlSr3rDwVu5dhHtVG1iFCjzPE3K0yLL6/VpxRG3HrAPJIWoX/P3tvHmtrltWH/dbe\n+xvOdKc31avq6u7CNLIbiKxAoG0pFgLHxggFGxmBGeJEELAVyw75J7Es0TaJklhCchIRwCQBmzTG\nwW0ISDaDUIJpWRgaEQzdtBu6u7pretOd7xm+ae+VP9Zee3/n1auu19Rtqql3t/RUde455zvfuNde\na/0GsGQKY3j1mOtGQXXw8gTALtulEAPFJmQuz5QwuxuwfEoOYHoYM7lFth4wnUDzs7ivgRkCwggW\nH6oiZWAUAqgdoTJrB/IhuUaTWoTErLE+GtDt2C0LGdUnBIDNrUpANLGEWF6IA7aqVjQ3Jpi8fAHy\nkoGdP1dj9/fWWbtxImUuRacqn0npBGxkm6tbLmVU9WEb+WqyD/2UcPG2Avu/JymQGQI21/M5Ykug\n6I4NZC3CJJ8VS3aq8t8vnHjdRZ6Xa4F+pxxB/w1m9wZM7sjD1NycgCln+mIJZNO9DYrna7TmUKUc\nuSZZSUb+EGki0TkaANyqE2j+NGpgeoHqm1b9vyQLdudt/o3NkFoCl9p3efyNXSeisfXUD0cvQx2P\nioSPu/XX+u7jbvP74n+/BOL88cJrfPc1x+NkYNcBfD0zf2prb5gDEX3tZ/Jjb9XB0eJdHvRYklh5\nrG67LbQrBUZ1ilSHB0Ur+BjgJocBvsyT6fyFNVZvm8J0MvH4qUu28YCQLYtlnpy7uXCWtIcRrASx\nsEXqzdYjtmWYKk+8F8/qPsWJhwjGZ9M/2hU/JYpPeXUuPBo/UW6NcGGEeKzHLJPT7F4Egtx0sB0n\nu/tQEto9lzhHYMRzEPuCp+KT5WLJcKhIpJDiaWASA021fXGrGASV+DwjmMGkUtEwoSSpBUS/r2Lk\nL7bvhPO0m80jySOJxDKJpFZ15pP4LvVCtlbdPdsEsM9Bu92vUJ73oCF+vpUyFHv9fhRnPou+U09N\n0M9smlyZonhvXKhUJ0Oy+wAEiNLtZCFaG4Ewuojodi2q4yJB4Je3Lfws30duLb0sBaqcv6NEeRHS\n9wG5hs0BoPPLzvNA/aDB+vYk3Svkt+8ttpR6WsU6oJ8bdLFnNbs/IFjaMs2sT0IqlW5uOjR7Lp2D\n4AhF69HdyGCe8qRDc1N+vzkQgnwxCkgiezaSntqMAlwvxzReFLR7lGTXbJO5alqu1gCVyNmVAUoD\nGmJ/tBTAh5YYFaSjJUX1e7uM8RmUEA+Z+Us/zfuvZfD7OOMlAF/x0Hd/Of79ba+3TWb+VwBARF8B\n4NsBHEO8GN/PzPceZwcepwf2PZ/mvY88zo88CUM4UJTAC2xFjb6f5wyrn1Cc5OW1O5KHOpEnSSZn\n3QYg8PTmpui5mU4CxuppmSjrE/8qoVvNMACZanyVQSTB0RZfaJgYuDaTgOsTQnNAMH3M0CrhY9km\nIsscsHihT8ix5loJLkxSiJgeeviCsL6ZlTVmd1UdPv7GacD6hoHxMQieebBnuKiQ0O4IqTaL8QaE\nlpJQ7vTQI9gcpG0bcPKuMvF7TNSf056W6SKvqYqn2HMifAOiqjAUWT2/XMoiQv3KhBOFFCxcI3wn\nDV7BGRQbcZ1WYnMCkKgfVxvQ7ZfpO456MFGa6LiwYGdTgNNzP/Tbi9GkYlHL/pp11pPEkAOcawNM\nnwWPAaDbr9N1dxuDfu7SdSeOztRlBmSwyer5w5RQMlCss4rM2edPMLk/ZNcBK2hV/Y12vwAbJFDF\nMBEu2ezekM4JaoMmAkVmd3y8TnEflgG8k9Glpmc018tEPHYNodsr0+8XqxB1B3XxJsFRs8jq1GOY\nuExIJ/mbLt76mfQdlU4YCqmotIt8/7u1F95b/IyvDdxJnzLrYWqSgowcJG2XmS+zyn556dwH8QiD\n38f87i8A+O+JaD++/nMA/jYzHxPRBRG9B8CvAfhPIP6PjxzM/PcA/D0i+vcAfCOAf0VELzHzn329\nHbgq4l+NSxkqYPokjbG6xtW4Gn+ogx/z3+tthnkAoAa/HwHwk8z8YSL6XiL6jwGAiP4DInoJ4tX4\nD4now/G7xwD+W0gQ/CCA71VAB4C/Dmk5fQzAx/HaAI7xuA/BWRwBuPkYn78iMl/KYO21iJQSICWU\nzXWpwadsQJRn0utuIRJLq6e0nMVJEgcA1k9PUZ4NiVtWXqi+nPKJBGmWvLFYtq1w66EWJYBikxUh\nQpH140IpUHwtr7moyK37R563oMy+IDQHDosXoi38+YDVbXEjHmpKqhjCF0I8D8ohi32DgbHzyR4X\n75AskoKRso9WVVmyj2Tx4oxwhjTD2nhwZdBEV+vZnRDVRuL3g2SKmsWagdFPKG2/XMrquj6MJczK\nRNUJpHOKUSZtW5EcUmkrVezX7ETOo6jLu071szKKU85jzCBDPJHzAnY1JBcAdpFbZuUcDRMjmn2K\nZjT5WAApWbKltPw0UQdwmMSS4lycsjlmcL4URGq2EtEqAaXraixnJfj4u5q9lOdaFmdUZ4i/QQi3\nHWZ35DxOHoR47eJvkHDykkNyKXw/RadWalGi2qFRnf/sj0mqPL0vyND6sIvnxGKo3ZbKBQVOp1Sy\nLyQPNdXfVKzDMJUyclIO8eKCkOgSAQBlRC4buWcmxyFzDmvC9G6HbmfkA+dMus7Fyks/VHmWpUW/\ncNmO5ZJ4YMSXS2R+lMHvuPLGzB/Edklw/LkfgdCrHv77bwD4osf5fSL665DM6waA9wP4zx+C8b/m\nuApglzEoQ4+1nDcW3E2TcwA21wmTCARo96K0U+KZiKhr5iwR3CaXGPu5BCsVF+0XFt3cYBZBGsX5\nAHBujK9ul8Kzig99fTRg+XSRLSc28iDo5O82DHAmyOoDnYwRPWN2txMTP0ifot0j1EfycabYZ+uR\nVn8C5c/cNNV/HIuqDrVJAcNtRHQ2ARSuO9THQyKyrm85VKeZL9QtxOJlUD+wRiamHIRjaTXuz1BJ\n/0PLbezUM0x7IwG2QVqIKEAnBcQ+ihgXGVQRnBF4t05cLga0EeFb+GRxG62HnznYVS43jcusk/sC\nhPARPOOtAFmSrUfsM25uFGmfTJ+lp4JD7N0poEhIy70G5Y6BSL7X4QtCfRon91XA+qbDUMfAtZFF\nwOTIJ7Hd6X2PbieX6OxmQChs4qZJQBiVjo96nL/dYhLvlTFxHJB7a/1UgclRJoz3M0qAiVASpneb\nRBIepuJdp4uF6kRErce6g0NtUoC0TYCF9APlB5CujVxn6elePKNyX3LcoQCag/j8HAPNQQamlOfS\ni9SAVp0OQODUX2z2RfC4uhiVFS9rvLUMLd8B4L9k5t/6TL/4pgQwIvoGAH8XwJ8A8GUxWoOICkja\n+e/HffsxZv4f4nvfDeA7IFPj7wD4z5i5IaIfhxDhegC/DuC7IkqSIOzyrwGwBvCfMvNvxm39VbxB\n9vh4sJV//SyrbLioil5dhNTPEQ5SrqFXpxz15OR1uyPabLqiMxcjry8gufyqdYkZophtnEjZEIrz\nDv2OrGLrwwGwhE3MVnxp4dq8zeAouijL9ruFkEdThscyGXYRzVYfB6xvFsk11605C/oienNZgDgT\nifupIDG1uV+d+Yh2jMfk+VWryWAJiDZOJipjKH8okbRjUK9OBvipTUaKmwNCsRmh3WIPMLbc0vfU\nvbg812geJ7JBiM+ajPgpgSuTAhxBMoVhZtHtyura9hGF6XLQM33IAcQzgrPZtHMi3l8UtQ391EkA\nishLuxGtRNvEhcgzE3Q7LmVgtldnb83wBLmp/ZeLZwsUa6Rzoj5b0wcjIrUfnYtKgEPZHVkAFWPP\nNOukP5X5fIzpA4/1LbnhJ/dV7DerxJQXAe1+JHvXBge/PyTwTDcndDuCugVEILk+GlKQNl4y5WGs\n2F/n6cp0DJrkxZevBMyTQBptwORBl1Rumr0CruWESmwXBosX+2TaWazkWVy8LNdgeqfDyR+vhdQu\n4hwoz/2W4r0vhQOY7yWgu1al8zhUhOk9n+4LPTeXMd5KUlLM/N/8Qb/7ZhXxPwTg6wH8ykN//wYA\nFTN/MQRa+V1E9E4iegbA3wTwpcz8RRDJk2+K3/lxAH8cwBdDAs93xL//BQDviv++E8IMH7PHvxxC\n4nvvqAmp7HH93ldf4jG/pUdCVj5BY7y4uBpX4w91XFIP7I/6eFMyMEUvEr1q0mMAMyJykGDUATiP\n/+8ATIioBzBFhGXG+i3i9n4duVb7dZAMjgH8GyLaI6LbENjnZbDH0yCfey+abblGsoekqg3JbCgA\nk9h/afcsNtdMsmDxhWQxyiULhXhf1Q+k3rF6poqwdNmeLwXlpaUmtxrQXp+k8lgopA+m++RLoNjk\nFWR96rG5ZlOPDSRZlmY7viRUp9mGwzWiaailJ9cw1gcG0wcBtmW0O1LuZEJaGlWnIl2lJb9m30Yo\nuvYNtMwl7xvPCJx7UsNEEI0KtxY7iwyPHmZWSnwRZSgyUZyyFV+KDFWRPM0ivDqWlnwVe34RPSdZ\nZHbuVTh2daxeXVbUUULOpOEZfmqTi7Nyf1Q9fphYBCs9RtkmZ6V4AG7VR33FmAH1PbguQF6+Xx/1\n2Nws4FSpnYBQm5zhcdSQrJR6EDBUJvG8fCE9PV21MwHFWQc2kW84GLDLmXQ3N9j5VJeyIQCCLC3z\nMfjSYLA5W2+uOVQnHiZSApqDAvYhFKVpAyjei5PjAGKbnBDMICVE7Z3Kdcz9V2Js+cAVqwH9wmL5\ndESn3hctR71vJvca+MpifTPLYQ1E6Oby/vxOwPJtRUKn2lb7s9GC5rkKvpL7ZYkGUT4AACAASURB\nVPeTETm5FkqH3v/FhU+VBQDw8Trr8zQ58nCNT0oc52/PljtvaFxyD+yP8vhc64G9HxJ47kCC1HeP\nAs33QYhuGwC/yMy/OP5iLD9+G4C/Ff/06Vjif2D2+Oj3vhOSraGc7ieCrj7gweXSjfoD9QsR39WH\n0jWMYYoke0SOEBwSybbbBa7/dp+IzaEgcDcCZXgp/aTJurIYJlnQ1LaMYsmg+Nz4irC6Scl6go2N\nJOT42kaejJbPSsLyGYc6ivkWZz1saTFMivh9bHOFgvTw6hOfSj8KtsjW7wbVWS7xBRtBG0lySAiu\n2ufb3HBod8xWc72fUSprFisW2Z9Nhke3e1kEloIEcjMCSY6FaxGvURJcXXkMRRa6lfMyIjoPAvSw\nIQcMhbHrNvSaUKw+20Y19GK/Jzb6UwYXglh3KMiiFGJzav43A4qVhW2z/YltsiVMiPDzBGl3WTYM\nEA4WBUrAEzZAezCGoHu0+y4vVFrG5kaReGGhELBRt8j3mlif5Hu53TWJuA8ogAMIRS5XjyW6ghPr\nHzX1pIGxvknYfX7UK6WRxNjdARfPOuz9flwkLFuYvoSLXnfEUlZMVidE4MKgPs4l4/mdIdm9tAcO\n7V4OeLaRINdcK9P+DxNZTCa+nxeempZm+4WV3reWhqMUlr5mksVMH/Ugx8HuDY+rAAbgsxjAiOiX\nIPpWD4+/w8w/8xpf+zKIGvHTELmqD8TtnEAC23MATgH8MyL6VmZ+3+i7PwDgV5j5A7oLj9g+/wH+\n/sgR2ew/DADza8+yL2SFqxzgUMSbuc1eRcTCb9K+ABtZaerk6yuKyhqyK/OXg5g5xh6XoqH0IXSD\n6AAmgMJUeDOTCOqApdTXkvflX9KbOyIU6xw8dDWtGaMZGK7J+nWrZ6qkQQeIwOvsToc2EnhDabD4\nVI9hZlGdK/9H1A3aRV4Js8FopS0Zqvo2nT7ncPDvupFbccyY1OiwkmOsj1VfTgKugiy6HdHwo/h7\noZDsSwEVw1SU6LcIt4TEMyt7UUfZck/uMpDFrcUPSkAaHv3col9YuFUmNjPJ95WzNEwdYAnVYRP3\nyaBfFCjPJA0MrgANIV1XCtIfS35tLWPyyoB+XxqDbiOoyJS1clTDH/UyfWVSFtnNxVVYdQHlN0eL\nrUJMUzXgqXv0Ohpq1iceYCEqCxleDC77ab73Zvfk+3qe1ElbzVs3BxblKqR7zMZFmAZVP5dgk5wY\njCARNYhzYeA2Wdk91EXMzmOAquV+VNWMbl8Ua+qouYkTAJ4TeGRzIAAPFdZ2TXzOdLE5ix5whATS\nKM8HlGd9AoJo1aU618WZRX0S0nWZvSAb1332Gf/xhserVAmf0PFZC2CPQ0J7xPhmAD/PzD2A+0T0\nr5GVjp9n5gcAQEQ/BeBPA3hffP1eCATzu0bbei2G+Rtij1+NR4/1Lfv6H3qLjXFG8aSMy4KCX42r\ncRnjc62E+AKArySi90FKiO+B+NBMALyHiKaQEuJXAVDk4ndAVJG/ipnH65KfBfA3orrylwM4Y+Y7\nRHQp7PHxYMSSB7AFZdYVsI5ixRiuZ2UOsChFqBpBecHo5gQbyyLnzxrYtkjoNAqyCtSVPgD0szKh\nntgCixfaVLK0rUc/qTGJjs+2jz2BuFvNNclQpvdj2UZLTFoCsVl5HRD1g/UNOyrnSdmyWHnsfsKj\n3XVYPe1iCW1cgsvZnWsEsl6d5dJOdZpLPzsveoTKJLi2KDz4pPah8HtdKbt1wOx+zsCKtWQTivii\ntZQFlXdmW0a9Drk0tWFRLIm/v36qlFU8KWxe0KSaoVFlJEMaKaBoaVCtO1QRpd+JmWmUqmr3swyS\n8Zz4VklFXhOgaNOBtH0fy4qxfDez4sKcYPKMfu7ARl6Xp14QgTEbIpaSmWodiuxTRoqaTnqGyeG5\nB7hlcCzT+kp0BOuTkDIkM0jfUe/3fmYkO9WscZCst7nu0j2gNjSA9LC63SLxBIVLl6sBviL42oy4\nb4zqNOtFhtKCDSWOWigAMCdZs/V1i8mxT9Y/w8xhcz1rOZpB6AnjErh62sk5lcyz3THp+XIrgg28\n5YjuGk6Zdu0oUkDib2xa+J0JTj/PxWO+xOB/tY4A8ObB6P8SJDjcAPAviOi3mPnPQ3xpfhSCUiQA\nP8rMvx2/834AvwlRw///EMt3AH4IwKcA/GoEhfwUM38vBAb/NRAm+BpiBYMYqJQ9DryaPf6PIAHz\n5/B47HGApIzgq9wrUU7YUCPdbKaXIKWABi3VZTkb2Vaq41ugOmqxfnqSfio4ApVakhBTQZ24bM8Y\n6mzAxzaL4gLSvynPsglhcAblRYZb14c9+rmFiV9pdgxmL3cJvuyjDmGyNqkIYE4WF8YzynOALWff\nJSPgEbeJ+xCAyWGPF/6cTO7XfieScBVevRAydJoEQGLyGbdXn2wTUIX07GHj9oeZRRhJQ2l/K5Wu\nWka3sAK1h5QOi02mOrhNgJ/YTAaPxouJX9QE+f1VD1OMrjVn+oN3hOJigOnidd2RoK4yS+wI/dTC\ntDmDox4JVs/GgCsLcxHrbyoC7PMx+NoAahLZhUxCBgCKAKJEqpfAsrkWwQWHUipT6SsKOXjpa7Wp\nAaJ318sevs4Cws2+BI9kczJw8peT65jNKQGgXDJ8AZy9U+6lg48EVIdt1mQ0Aruvj6TeHgqDdt9t\nlSRdE+Au5P3Vs5N0nPo+u7zQmN0bYHpOPLJ2z4n1T533xx6OAEuFCDynPuA6oI8ix2r9Y6L48BCD\npBkEuBSsCnOKXJwawMIYHL97lsqUJuN23ti4AnGk8WahEH8awE8/4u9LCJT+Ud95LwT+/vDfH3kM\nEX34X7zGe2+YPT4eooJgBLAxJiaQ9HxSwIoN3tQ8v5CJQwEH7a7wwLQ3UX9KJhINENpPaPZ1ZS8P\nV3sr6sndHbB8psD8ZXnIux2ZiLXU1RwY+CKLB7smiqKe66rWCAE77l95zrCrDiFq9tEAIGRip6+A\n+tikGr8ZOKHhNEBww6hPgDJmgcPUYvVUgfpBnByngvRKhNMWsfkvr7XntHhxSMfkNiGdQ7fyCM5g\ncz3rNZoBmDyIbsYHDjTqM0o/a9R7mQgXTDNGXxpUZ0NSrRjq7K8GRAX+VrhppgvRs0r8xVJA8CKg\nrEGlPO0xTG1Ci5pOABa0H1GAPaMcGEy5B0UhgOPCgYYAjHpkdjNgmJY5Y+qA4mLIvc6JBQ0MF7UV\nNeBTTDPbPYvpvSFlYM01ETDWXisY6HYzEEYWEIJ6tBEo4ZQErwCGglAuQ+IclsvofDA6r27DiXd1\n9IUlrn0YCY0ZnEHRBxy/WyLM3u93ImAcF2ubaxa7H29yVuvkPi4iR8vXkinNXolmklPZZ12IhIKi\nwLB8Xv+u58ytA0A5yJcXAeVFwOa6habGwYnRqQa5Pmamurhya0Z1PnI4360TuEsuJC5vXAUwAJ97\nJcSrcTX+yIx+8eQ9PlsLtKvx5o2rAAbgKoBdymCSMplts51DcCZxjxKHaSVKAGXk83Q7Bu2uehdJ\n1uE2OYsbpiSq30fZvdiMMrhyKaUh9fsKhdifJFXyRt5f31B1BFEUVzUCtlKS014dU0TdNVqW8Qgj\nPpLtGfM7QyoD+VpWpZVmVxOB8Y8h6KZn2DYkxYbp/QHLpy1md+Q3qvOA1S27VV7xIyh/sRywvlWg\niLJLqs+o59Q2I/QcpERZrEJCjgkMOqQscXMgMlOKHAuxN6OZhGvlu5oBlhdha9KmEEu+lJUvTNQm\n1B4YsWR4Tp14CwO3GpLdCiIsP6nWTwxaV6E6VmFASP8r8sK0xqAOzqaVHpAqslAwoIFBo1lN/L2y\nWr3pA2Z35b1232Jz3aUsVc/FmFdWLrMXV7kM6KeE+ctD8mHT3+gXscS3lD5aqdkqicWJolGbfUGP\n7j4vr9fXLVZPF5hFmFT1YI3m5hSzu/Ferw3YjK2GPHxlU4+LjVQuxs4KUjLMFyvYfI6ndzqsb5ep\n70heeoh6zK7x2Nx06b6znWxTuZuAoIDFKVr2QbNSdS7QioiW7dnFfVJ3iUsKOoQrFKKOqwB2CYNY\nbnhipIZvsNIo72cktuTIPaTV7Wj1fhQwvT+yyYg9NJ08RToKKM5jX+CglGb2Wl73c5fEZQF5KMsL\nTo1x2wrcWgETxUqCA42qJzQAbh21FXcKEWUNWm4LsOcbdO/cAxBJxQ0wPcwP6PnbLRYvyQNanYnx\nom0yB6nZMzCeEl/n9I8VKC+yXUpwJGK52uuIcPck5ltQNPaMpZ1lnpSBqDc30jp0axaNPmUS9Aw/\nyY34UMoKQCe28sILKCJWz4KVvp5+IETxZN1+PwMmDwaEkkBKjwgkZTufT6ztA/xEAwyj3yuyiG4h\n1zzRFlwGxMgx9GLDMWIeh9LCxuvOzmyRrQHxMUul6aXYhIz9p4JzcPG+MB2j6HMZlroA0wfpn8b7\nwrQBbLRHJ7SAbselxRdT7A3G62pbRrube4emY3BNifRbnQp1Qd+f3R9w/naHOl7XUDn4icn+XHsO\n5dkwMgmVc6QgjuVti+o89x3le9t9t36ejUvZFDA9p1K20hB0e74yyVIFkJL32XMlhimSlx15+V4o\nlFQv/D7lAwKyYHORHrF+2zS2AOJ7l6XcctUDS+MqgF3i8CWlidBTllfKLrGMoTbphm72DCaHARfP\nRhDFiRCBUwDrVFl9xN8pKa3kJw962E12TK5OerTXyhGQxIjyRfz6MCF0C6Tsp1yKavz6lpplyX+0\n50MDY/15ewnRZxtGeTGgD6oEL5NKt9CemgGY0c8NptH3qawIzb5NCDhiAQckhfuK0C0yAVadnTXA\ndLtWUHHxdT81CC4HMrbCDdOgW532IJ/VEoIVErMGtMmhZBOK/FQfN51Yu4UouWvPLFiW/R/1TLiI\nYJ2YRflgtgAzHIBAlIPuhQAKxkAL47I+pFt7+NqmlT0MkkmmnCOL4rTNqMWo8qHAGBhR79fth1Iy\nsj65GAT4mrLyO0uAGVIWG+Arm75PHI09R2ok9Ynsb1taVMfDloM1IAsj22b38WIAwJkkbzvph2nm\nXJ/0mByZ5B5e3w9w65DQp24TYDwnUWw9buUPLl4e0O7YrH5v5Rwof9BuAtzIC49tzJ4LRVYa1C9t\n0B3Ivd/uWsxf8SjP5OHcXBei9/yV7HTAVvqHumAEMzB6zqvzABAw7JbpXqrOPMLiIQTtZYyrAAbg\nKoBdjUsaSkR+ksbYbftJGSqpdTXe5HEVwABcBbBLG4LMyqWxYsUJpaUZCjEwfTAkhQNZ2fY4e05W\ngbqqTTwrIvg6w+yZZAWoZZxgKZX/dPvVUYd+VzK0oZY+nNbgyQPT+xmJ1exLtqHZSLHmKC2VV/Kb\ng7ziHCYGxYrSyp2C8Lq6HYPlMw7Tex6LTzVoblRo9/JKOjg5DkB4N83eqMTXMmyReWKb6xbTBz5l\nL3I+fEIZuo3sY7uT9R6LVVYr6RZO+iAK/GLkzCV+fphS4li5jQebrBs41CSuAPED07tdzBjjNYg9\ns24xdguOPdCY4aj6eELAWUGr6d+DE1kn7aHRwFKy03KaMzAAhkK5ah5c2gTXNu0AX2YtxKEyIEew\nG1UCAeAouSEDkoUl3cG1hxkCmOQcdrsObDNSk7zcM9rb8bVA3MXeJPf5yHP6jmTiJmfWsergLsac\nxQxT73ac8NWKCHO/MYFde9TqdF2YrR6Wa7O0k2xLEIZaEmRLosd4Fr9fmXjetRweOY1DzipBlHQL\nTSfX4PTz63SflBfS1+tqVZGR6sAQWS36nGo1oDgfEApCc72I70tGmbJ5d3krnqsSooyrAHYJIzXj\nC0oACduLf6GvstyN2wgsXksJw4TQzx3KpXzHV9IM136QWJMgTea2Z0yOPcqTKEFUWAxTl0qI3Y7D\n9G6THlLl/xTL+PtrQj+nkW6gkHTL+H43I8xfbJOIaxe13vpZ/LgX9QnlxYBZYORjdQZm1PcanLx7\nGr8jwWRzXY5peo8x1MD0QZx8a0K7TynIF2vG6qZLfUPyUkZUoIF+R4MHhahBpwHNCRlWg3a7K+aQ\nmwPt00Wx3ySILOXATSRKt3vS59Nr1u4X8v8KF499ymQiCiWt5wmKI1dO+yvDzIrhaQwoZB4CmnQM\n04XUz2FLQINXDdNG0EgzgAKSJBl5AeyoVFQ/FfBBApl4hvOcemxmkH5XImCXtOW5xqWRa6xi2yTl\nbqZMdndr4VAp78oMjGKdAQ/dXGxGFLqvv6PO3e6iR3OjSgHHF4Si96lvCMhCQe+D4ABQFsZWEEzy\ndTMUKSOxbHrq4WzukUn/LKS+IHkhf+t9Mn9ZOJD6bPpKetibA5vJ1QUliSwggkRsprn0C4t+ljmH\nxUp60FqKHYOb3vC4CmAArgLY5QwW7x8zMJwa5RGEaDnkZn03JxFgzfEDq6ds6okFF32QRqVyM2Tj\nweJ+LwoLkR+0ueEwe6VLE5drAta36/Tdbh7RbvEqTx5Ewm5CMTJo4LRars4D2v0C9aEcRAkJANrH\nKNaSnRUXmWzazxmrZxTlaGGGCsVySDyrzQ0CDVkHrtmX7CsRlXtgej+/bzuG24QERFGVCkXEkRfU\npAYgnTCSAoTnSJzOQbzZt5gcaUbVo99xWXPPEsoLn75fLOU6JsHlKIqb1EmijmMZJ17XyHfHQJDi\nvJfJcTbWzCOwqnn0kp0nPcDKwBd2S9nD1ybxBykwTOfBLvq6zW0Et8T3Y1NfEXlmnGUgZ/B6zoda\nFPVtzN5d47YmVzm+kPpFTIBrZTuhEJCL9UC7Y9N5sj0LTxC6zwIQGk/2xme3Bpo4LG8b7H4yXpeX\nlmBnsLmV799QjNwd1ox+nrmQtpH7NqSKR0A3z8hfcVzOmTNoW8TZDozmepH94DgCduLCqFgHbK5Z\nCf6bfF7H6NHsNhH3ceVj9h/v2X2LoZaMGhh5z73RwVcoRB1XrI6rcSmjOn79z7zVhmuevL4fXt/f\n9Wr8YQx+zH+PMYjoq4noo0T0MSJ6lbkkEVVE9H/F93+NiN4Z//4tRPRbo3+BiP5kfO+X4zb1vZtv\n+JgfMa4ysMsYJHXwYbKtc6grSD9a3VLDGGaqoCCwd/Wymp6IhXmyt48q6KkPsBpAwaYVXXUibq+q\nxeYnFt08l2mCMxhqkTYCRImDDVIZpov2Lmpd0hw4lGcepssOz9NDk/pNQ02YHw1Jnmd9q0C5DJje\nke0NU2B522F2L2vMbW7IqljLor4EpoecVsriJOy3XJ3bXYPJUSzh7VrxLYslwMmRoAInUY2+PhaX\nXEVKlmcDul2X0Gral1KFhVCU0p9MGRzBlzZZhxjetncBS+lpczP24NaSPRWrIa28fSFloi6eJ9sY\nwGRko1t6uPUo89aVe7wvgsWWEvryGSeOzMrPs8LvU18p8YRjOPUwc+K3FiIMXnlpJkmSEdiZlPEZ\nz+imBsFFJZCQfweQe3msdl+sPPp5EbmO8pmz5wwWLweYVI4mdPMR/28AQDmDEkV7JNRgKAhug4T6\nC6VDt1emsmc/s+Ayl2qlD5fV6vu58ipHfUVHYNLsU97T+8xXkgEOLl+D8QjRykjvl34iZdTN9ZxZ\ns5V7U+/tYWJS+Vb20cA2jCI+j/3MwracqhGXWUK8rB4YEVmIhN9/BBE0/yAR/Swz/+7oY98O4ISZ\nP5+IvgnA3wfwjcz84xBDYRDRFwP4GWb+rdH3viWqG33WxlUAu6QhEPlsaV4uA5qpkUbwaLJUsAcA\nrJ4iTO/xlkDtxTMZ4KC8sSp+vl8UsJsBIcLqbRvQLRzWN+X1/kcbuJXZUknf3MgT5+RQpG50Yt3E\ngNaNAlSoTDJWZGsksOhzxyKKqgTZyQMxYqzOIl1gauBrYH0ji6YWS0a5DMlT7OQLCrh12CJ3ssnk\nZ18iBTtASnh27TE5jsfcAc0+sqnmRs67lnmCizyukVlqfeJhBiWTB5Eo0vIex8lO5bB62V/ECc5H\ngqw27H0ZicqlydJOvVyH5KtmRGZKz1MozEO+bQahpPSb5EWvUQOGbYFymYO6L2P5rtI+n9laYYvn\nmUF1KsFg+UyJ8nwkrNszhoKSPxkY24uGSrhNSRD5gkGWYEc9PLfJEzEA7H3Co58a+Nko6JUmB36S\nPqLe60M8ZuX3kRe/tM2N6L+1DuBie7E3LulJKT33b4VQnikqxSo/VwDQ7rq4sIn7d+7RzTOFxVdC\nStY+YrEKyboHkH5XtyPl/STkzFFweydTNMolp15ne1CgmxtM7kbbnAiC0oWIlp0vZVxeIvxlAD7G\nzJ8AgCh+/nUAxgHs6wD83fj/7wfw/UREUa5Px18B8BOXtlePOa4C2CWNoY7OvhhlFhecHuTxZ3TF\nu/MCo1gGrG5Fv6GlcHt0FSirekK7pwAEA1+XIzFgqdHP78RexrJDv1MlwmQiWMb/NAdSr0/7M5E+\niqIai3VWNgBEc89WJqLypAc2VISqUVDIgM1TdQpw9bHoDLa7mXNUnXn42OMBRH9xfdNi8ZLs88nn\nO1RnnJU4WHonGZEZkiqDnsPqjFOGNdS05YVFgVFe+ARsGSoD14aM3CwIzcKiuTaarAOBEihEDAxV\nVcNuhF/VRA0/4yPJlwhcCnk5WEqCvoBoC9ZHQ0IdulWPYZ6JzH5iZGJNCwOCL7IWofLpNKiHgtDu\nua3JnPqAXonHynGinO3QmHdG2AraNiq0aMAcJhQV6fP+2Y6TAgtgYbuA+kRe9XMrlYUye90xAeVI\nbV3v0Ry0BQCh1QR1Flf0Zz+XfppmM8M0unvrdjohn+s5sa0sXBTdevE2Gwn7uXoxe0WcrAG5n4pV\nSKLRoSYEZ9P9bhuPcGDRR5SlGxmG6oKqnYnGp/ay+rlJxHtAs2JOQJTivEezb9PzowjKNzw+g/Lg\nY4xHGfx++Wt9hpkHIjoDcA3A4egz3wgJdOPxo0TkAfxzAP/dQwHvUsZVD+xqXMrQle6TNB4uQz0J\n40n0QPtcG4QM3Hm9fwCuE9FvjP595yM29/B4+Mb+tJ8hoi8HsGbmD43e/xZm/mIA/2H8922f4WE+\n1rjKwC5p9FNVo9dVW0T17eSyituImneyVxkY3cKgn8vrYi0rfLV84Ln0v4oIswez8KTuZzfi4nxI\nsPd+r8LmRpG270tCfZR7XuVF2FIzKNaS+aTex4VIOrkir2uaay5zqtQdV3s175hIzX8dZN+7gH5u\n0S1syhoXL0hPSsuU9bEgIU++QHai2wEWLzHWt9TqI2zZewwTgeGrwkN9HFAf9jh9lzQOXRNi9pGv\nxTAxWYnDietzyixjKU9h++WZlK+0tCWWHCb1p2x0P87ZkmR7khFGJGNhtqx0irWo0Q9x5W5mVpQy\nVHdvJSVNpTuYnreUPJpSrXfiSn9qIh0jlt96gcyrNBQTUt9F3mfYPqReKfkgMkjzjIoE5d6owv6T\nsnxJ8bjVhYDBxQjRByTVjbHauy+RS8cNo901qexoOt5CwPbz3FuScxDQHFg9sZLZFvm6hVIkmXyV\nr4MvKZV2q9OAbmG2ekPD1CSYfrtrpW8WOVveGlTLjD5t9wt5HhT9Gjlow8Rkntdq2MpstT+t0Hzj\nAdqElLkyxePQUnD9pvTADpn5Sz/N+69l/Puoz7xERA7ALoAxbOub8FD5kJlfjv+9IKJ/AilV/thj\n7/VjjqsAdgmDQi7jJAhzF/lG06y75zYSILRcVp32ABVYvKh6bMIRSzI9XiaBQShVCI7Euj2WQerD\nDu1+kcic3a54HulDXx+HLWFcX2VdNkBgvaEgFBHA0Fxz8BUwfVkMjM6+YA5fZkCGkoJVrod8hKFr\nzb+2AIt0lQZNELbKVdLzynDoyX2gjZJaQCa7aj+jWYgXmEpNrW4ZuI3NRoQsv5X6NyvpjykwptgI\nDcGmRjuBPLB4MS8qmgOLUjX1VkEg5qNSqul5y6ajW1i46PkFAHbtQXOTjrmfiqGn8qrKZZDJ9CQC\nFpyBbfoEU0dA4hLJ70Wy9JTS63G2189F8y8FFGYwUZKiMj0jjBSIh6mFW/usU9gLqCYDa+T/lS9I\ngdEvbFrolEsp/cm9tA2qSJk3qXVQXHhEeTD9DV0oKWdwc81gfidzz4KLv68Q9Z5BHafyGzHgPCdx\nYJXKGpdBi1VI50SoEASfFm9eCN/aBrTYkhAzQUrDKvrMFEWQh8wpLJYsZeH4/OoxqTnq3kdX6Paq\nVEIc0sIjXojLTNgvb1sfBPAuInoOwMuQYPTND33mZwH8VQC/CuAvA/h/tBxIRAZigfVn9MMxyO0x\n8yERFQC+FsAvXdoej8ZVALukQR6JkwLIirCfGdgu19C1/5RXrdKMtxr0WHhSixejad9TBSaH2T3Y\ndgy3HLCMXK/yPBKO96IXVpx4lcxZLANsk1d+FPAqT6RQEGBzX8FtGN2BbH96vxf+jpr+xUb8ShF5\nsZe2elakCVwj4AzbIomimk5AE4jqBb4WNJiunNvd2NNKvQ2guZb7fpNDhjvJJqCTY+GuJYXwaUQM\navYQg7v6kWnA1KALjujLtf6+cIP0HJtBwDEaUFS4Vb9vIoeLAmOY2Rhsu3g9RqLNzAnZCCL40qCP\n5o1myChI+Q1ZWKhbsYoTm1HPC0xJ3US4ctkJOFQGfsRVs21AKE1y7g6lIFe1x+YrAZWkyd5HIIgC\nHi4CTBQEBgTEkVTctXrQRwCFxlACik1Ime8wpdQfky/K8YxV/sf74CtCsQ4pACaljyaDNop1BsZk\nk9j8/vqWxfSeHKNtRDw4LQYHRhFCyoopiPi0oldXTzkUG5MyNI4AkrG+aXNgQR7putouwBcZaMJE\ncKse/aJI++g2jD4uQC/N0HJ0/G94M9LT+hsAfgGABfAjzPxhIvpeAL/BzD8L4P8A8H8S0ccgmdc3\njTbxZwC8pCCQOCoAvxCDl4UEr//tcvZ4e1wFsKtxKcONMpYnZVyRSa/GmzJyf+tyNsf8LyEO9uO/\nfc/o/xu8ttHwLwN4z0N/WwH4ksvbw9cebwqIg4i+gYg+HIlvXzr6e0FE1mt8YwAAIABJREFU/5iI\nfoeIPkJEf3v03nfH73yIiH6CiOr49x+PhLkPEdGPxKgPIvoKIjobEem+Z7StRxL3iOi5SNT7/Ujc\nKx/neNhINjJWIrBRu01X2+QlI3KNIP1sE9Duusgdk3/CiRJIt69E6812IXZtZVU5zB3KZRipsUvJ\njQJQng9br/uZlLWYED3LCO2eQNZDIVYXrhHUnW086qMevhJNueaaQ7cjahKi/hHLLxQ5SZ4TlHl9\n0+D87Q7dQiSTwEif6ecOxcWAbkboIo3ANgHFklEsWawqSLKibkFY3yC0+5LBmU4s2odarDH6edS2\ni/0JQaUB7Y7Ao00v/Z/ZKx36KaGfxnN6EVCeDyjPB9jIvSuWAcUyYJgC7KRfWZ0HdHNRpxdvM3E2\nZkK6RoCswCkI0i5YsaEhL/2SYSJZd7djt66rGUTNPZQCzw6VFSQjSYYbSpOOSTM8HcZHhGJEn8lv\nkUhUzSxMG0A9o1gFFCvpQwaLdAy6XdN6mFZ4c2YQ/chi6eX3XdQD7Fgg75XQMfq5XFPiyE+M+xCi\ns7eW2bS3a1tRnpne88nPq5+J9iMeOo/d3MCtPdzai73MaBHU7pite1nuGw/TS3YsiiBSfm73DIZa\nnh1Vxuj2RNZJnZnbPUFO6r0vCv3ii7a57lAuZb/7uUE/N/GcECbHHhSk79VPCfWpT9tc3nYpKyMv\nJXR33sJtPNzGx5K93G/lBafrcCmDH/PfW3y8WRnYhwB8PYB/+NDfvwFAxcxfTERTAL9LRD8BoAfw\nNwG8m5k3RPSTkDT2H0GIdN8av/9PAHwHgB+Mrz/AzF87/oHXIe79fQD/gJn/KRH9EITA94N4naEN\ncDapB431TRtlh+SmB+T/u7nB7I6UnHxtRDpK9d3U+0rr8Ea4QqqvuLkhkj8qstruieVF/UCK7H5i\nsb5hUr/INTIxTR5IZF097eCa3E8plyKz1E+l5OE2vKX1NigMv8okYbceEKzsUHMgenoqbroqCPM7\nwqdRkEQ/tximmQtDIfb6YrmtWxiRvIpVl34XKM5zD6zbIbh1PmaKckRNJCZXZ0HAA8pZmho011zu\nsR0O6GcmARrYiJ6e9hFnr4iYsYq6CpmVoGs7txayeLLEIZN09TiWFbs44SVytiVUZz6BNNo9CwqZ\nWmC8lPESKIMZdjOksqUZcslU7xsusqULeQHfjPtioTKpzMdGyloJlFEZUAjiMYYYeIvttWuwudRd\nrEKCk+vrUCgMPffl6uOQrpsZol+cepzFcnkY90IN0ufBEkiUasAGWN3OhpKuiRO+9rDOfDIzBaTE\nVy4DKGR+3zDN57TdtakMqeckuAzbF2pHLoGGQoJxhvXLoqibZxBHzQFuNSA11lhK2PrMb66XcCcN\naMg6nsRIZcsx5P6NjqvsX8abEsCY+SMAQPSq5QgDmMUm4ARAB+A8/r8DMCGiHsAUESkT01/E7f06\nBEXz6cYjiXtE9BEAX4ncwPzHEPLe6wYw1Tx0LVAc50lldctEXpP8zQY5wrG/lxmysno/J8xf8dgc\nqBMub4E+6qMBvjbYXFM/LuEaac29n1vM7oU0mWsmZDeygel9UVHXxvvD/2Urk5SSeMWoMzfGpVeT\nzR3Li4DNNQMnmA/M73gUF35LCePs8yzmr3CyW+knBsYzmtjP2dwg0biL3lY0CFdM+w6LFz0unpUA\noAdVXHjMvPawpA/V7SqAQYLe9H7mE4EIm+gAUJ15kM+9ESAq6i8yerRYZ9BJe1BIxhwnZtsI4Zbj\nhEc9o91xoIoSatBEbpje3gk4M1oRB0cwvQZ5h2I5oN+JKxXPgDM5YLFM2ElXMGYRSQneUgwU2t9h\n2Bh4gbiwstng0teSBSn5uz728FWRDRdJ+6F5lvRBekHlkqMSfyQuK1E5Bi8FZVTnXtwSoiixL+Xe\n055WcOrekEEcts0oxmbPYKhzD2yYCnBFn6WhMmh3c3DxFW2hV0Mh25y/EkEfnjFMbdo/MzBsn7VL\nmz2L5dMWu5+IYJ2aUG8CbJezJhGzdmkfJvd71C4r3iMAfqeCO5ODNjcqtDuZIA66vILXlRq9jM81\nHtj7AawA3AHwAoDvY+bjCMn8vvi3OwDOmPkXx1+MpcNvA/Dzoz//KSL6t0T0c0T0hfFvjyLuPQMh\n5p0y8/DQ36/GY4z5nSdPF5D6J28WUWfrq/EmjsctHz4Bt+dnLQMjol8C8NQj3vo7zPwzr/G1LwPg\nATwNYB/AB+J2TiAs7+cAnAL4Z0T0rcz8vtF3fwDArzDzB+Lr3wTwDmZeEtHXAPi/AbwLr03K+7Rk\nvUcc33cC+E4AKGf7SY9OV1tMwORYkFZpVXoygOc2KSKoVlyzL9/Ze35AtzBJ5299I9bXVZPuokco\nq7RqDKWgDlX13FfCxemnOdsYnIGN5TIaBFWl0lX9TMp3muGxYVBNSZGhWEqvR7URuz0XEXU5Y9t5\ncUhoufKoQfPUJPWMZB+BZo8SOgyesX7KJV4XQ7IuPcb6CLh4B5IKwlO/xpg+4MTnodj/GNuhVOch\nOyZDuGTjUpJAr+M56Blksor59E6Hw2eq9F23Qeq7yDkXbUhfRd1AFv6UG/GuqjMpXymCzkWlC/XO\n0r6VTv7FmrHlUeYI7X6RXisnLWcL0dFYtRENQOssp0U+l0YBKbcN8+yC/bAbNBvlLObfr059hqTX\nBsUm27vQwEIDOB4SJ3Gopb9qFRQYeWy+iqXfuXisaQYmEl/5vJpBKg6aSdhWVGfUPsV2GQUIiLTW\nw8TxyZFPz5sZhKaitjjgzK8DcokwZVMRnaq/L4o0+fOukXPWLbIuZygAzwYh2gvNX+hgTzdJomvY\nm4KGgFDK8zd9cY3uT8zTzDLWinzD4wkITo8zPmsBjJn/7B/ga98M4OeZuQdwn4j+NYAvhVyu55n5\nAQAQ0U8B+NMA3hdfvxfADQDfNfr989H//0si+gEiuo7XJu4dAtgjIhezsEcR+sbH98MAfhgApree\nZeOl7KW+V9WpgDrKTUhaan5qpdEdJyLTBizfVqA+0d6JPPgKBlnfIkzvZth9d1BJCSuW3/qZ2bKG\nD1ZKH0r2dBuRUdJ+D1uR/lHIuI/Nea37t7sCr9b+VD+zcVLKPlNunSc25d24tZRd2BkMtYHtGWXc\n5soa+CqXUYu2R31MaHfVC0v2SctsmxtyHquRSM3s5TaVwwDglS8vMYtXZtxLAwTKrr1HeT9OzHGS\n6fYsquMhTWT9jsPkkJMtvBlYjnHEbwJRKssunykwPfTgIsPWQyFAE0sKS5eemR5TBjrEAyDxmhrT\nLsa2ORpZdGEhfSeTemS+lDJsGXurXGwvZNiRADs0uDgjvb0IkqhOBrkXY0AwDwUGG3UclSDvJ3Ld\nx5YtYsNjMv0gkruTTxpJibJbbJfLkyRY5DxqT428UCiShUwEhGhvkg3BTyhRN7RcmMvg4o+n25/e\n9+jnBs1eXjSwzUTmoTaxZ5bLpsHm+8at5bkd0x3KZYBb+nReQCTrolbpCgau7VOg3Tw9x+KFNi1O\n1jcuR8WEcFVC1PG5BqN/AcBXEtH7IH2u9wD4nyA9sPdEYMcGwFcB+A0AIKLvAPDnAXwVM6eiPRE9\nBeAeMzMRfRnkVjuCZHCvIu7Fz/2/EKLeP4UQ914rU9weIfNOTBeb/V1UpWaAYjZBfUB34NJDEypZ\npWrzHxGRps306V1ZEVaRtFuc97h4e50mJteICKxmJ3btcfoFFeavyAcmhx0218st/TjyAZS8sIB2\nh+A2edVZXuRJxvYCKNFsyW2ErzV7OYNQ1jcd3EoezKIdpP+y8ejm8tCyA3yN9NBTEPSjAk36OaG4\n4GSq2U8N9j6eNfPYSI9h+VQVXwOTB8jCtJAJXhvlLvJyNANza4/VM1U+ppbhJ3YLsCCq/3FbU4Lx\n2Ysr3CxQXvgcXEa8JyC6ENttfUbhLOWAZHuOAB8NcByNQnO/yEdUnf5GddxjfbtM14U8Y2ww6VaZ\np8UEhDrzvPS3lNjsGuFX+fhaFh5IShtJf1CNU9uAfpbPUbmUyVwzTNsHNNcKue9Sf0gUSlx0hV49\nVaC4yIs1X+s50W2MSNDImVmbFmeEocpmku2OBGFSg8tSSNHJBdsQ2l1BIgLiiiBcr0zCHyaEoFy6\nVq6JZrW2Y7iRCMDymQI7L3To53mhUh+2sMsWdL6Sfbi+C787hT2XBm6/U8C2HiFep8krS1Dbo/w9\nSVsXVc703+gYZ9RP8nizYPR/iYheAvCnAPwLIvqF+Nb/CmAOQSl+EMCPMvNvM/OvQfpjvwngdyD7\n/cPxOz8E4BaAX30ILv+XAXyIiP4tgP8FwDexjAGAEvc+AuAnmfnD8Tv/NYD/KhL2rkEIfFfjMUZx\n3r7+h95i40nsB9mRYsjVeJPGVQ8sjTcLhfjTAH76EX9f4rUJc+8F8N5H/P2Rx8DM3w/g+1/jvVcR\n9+LfPwHpw31mg3QlnuHf5amPFhm5DFKssFXyqw97+MKlVV9zzYlCQbKUEISe2mR0ewWaA8LOC7Fk\nYeW3NfsIzqE+zv2fISo/6GqtPB/Q7rqkiu0LQrFByhzUB0tXxrYTdF5aNbeSCfQ7UcdwblCfCOqw\n23UwfYDbBLT7ucc1uSflHe37mYHRT00qMQpVgGBilnnw0T4pyQNRlqlzGa7dA811wK3y6j1YSkux\nfkoolxlW3y/k/GqwsSzHnRQaWLPluDGWMrAiK+tT8elStJsZTOqYaomQgyhMFCNuHlM+r9KnoXTe\nqWcYZFi16bKiPRARe7sZUm47KcUpKtA1Ink09vcyfUA/j0ofnZQTVVvRF5RKcoCUGKX0m/3FhmmG\n4YeCogp/vO6NB5vYZy2VvuC3SoYUFM2aM1VVRZHrrDJr8V61Ee6vQBjepqEME6AI+bXx21ktWOSq\nNEPzlai76H3CDrAbRj/P1QNRzM/9Rdty6jf2Cyk/ZndzQS1iVDZdvn2CyX2H8uV7sk/OoX/nASim\n78VyQLtfYfrxKBPoPWAM0MUS+6bBZY2rEqKMz7US4h/ZYQZ5/nXSWj3tYIYsmQTIwy8cqFwzDyVh\ncz32g9pMDpbPC8DBrqQZ0u466a3FgOQ6+bxOFP3MwG1GzX5LcG0ARYj6uGcDSLlscpgBEM2e9NSa\nfQ24UpJRTtXs5RZcZP25sG/QHNh0jJtrFtMHPjb0Y0lwJj05/Q011NwcxCB+ythcI6yekolj7+Oi\n2be6FYVkPVCdeqxvRVDHr27Q7k3SQqE6DVjfsik4TA89uoVJPlMc+4JaokxeYfFctDtCPNZjogBM\nHsg+yf4SiuWQRWkdRyPDLMkFihy/SIcwnbxXH+eSnva9AJkkmbIkkQSULN7bLYQfmGxvKplsNWAp\nqTzJYyFa52hZc9fBlxnezUYm+tRLncv2tK8YTNw3LUlaSpYqQNRu3ATY1qeyo1lL+dD4eMNH/mIb\n6QyLF1qsb5VbUHxwtgqSxRdncd1K+obFyNMr2JHLQcewGAW0nlEuM3dNFxN6XyQTyZGnml4nQPzB\n2GYtRPJCZFbgDRuRdbNdDmrTex3K378L1vLd6TmqTxE2n3eQ9ql+sEH79j0AQPX8EdC04E4OmnZ3\n5HsneOPjKoABuApglzKIZRXcLLJh3uppYP/3QkIGAhGdNowETyeyUh/zb4apSUHQeGD6Sg8fMynh\nhHHigZUXjM2BwfyuBLjZy9IwTkaJQZQVkj9YbbbESSeHAdVxFqzzhXhW5f4OYf5ynx6W9lqJ8nRI\nGnuukRWqTuTTQw/bBEyakHhXIEKxRppcbRMwiyoNgPS8bIckJNvtONguZEdlL6oWqq24eluN3U/0\nWD4tS+1hamA6oDrPT3R5EdJEqudef69YM6j3GCZFfJ9EHaXj9MF2z2QdP5bsSEVe7SaAKglg+h2v\nJOJ4jMOUMHkwZEK6pXQt9D4Y75MvCNXZkAwyu0UV1UDi9ymeP849NSADY4ap3SI/ayajiLr1DcL0\nAdDNtQemeo7xEvUC0FCjRlHVYCBO1MNEhIhNO8C0A9prNUwn1yr14axJah6AEKVVzUJ+M8D4zC0j\nL84KCgIByXGlhch9Qe3RSINRuWM62CBljWwpOgIgnSO35uT0YAZGMRLKbndtBJVkY1NfmQTacJ6T\nILC6RJcfuwderfPvDwPo5AyT340rvLIAiFAdXch1ffElsB+hQC4ucFnjKgOTcRXArsalDEUyXo23\n9miv1W/2LlwN4CoDi+MqgF3SaBeyAk0WFBeQ3tic0EfeiGtoy1W2WDOGOtui2z72Q7Q/E6T/kNyF\nJ4TJUchyOKXB7L6Hi+iz9e0SolOX+0PVqU8ZX3nSoble5ZW3Z2xuFamMYwZB7+0+H2WZJibClWWV\nvL5pUZ30sE20EWkKgeIPUuaSfp/D9G6fIODlmfQn1NF4cp+3soXqzINCVnRoDgxmd3J5ztcAnWVl\njm5OmNxnTA8jrP22xc4ne5y/UzKq+lQyXL0OwRGm9wfUh5LCDVMXbWfk/fok85/knDPKiwBe53Ia\nLCUV9BCV3P10bG/PcA22FBuGiUnZRrvv4NaZY2R66SVqaUo4hAQy2ieM/nI5KRTUoCInlx4+0hXk\nAxwz+XjOKjkuRfRNjhiTI4/Vzcw/NCNeWSgIbjWk+8aXBF9nt2JfGxQrAzZlyipVoUWPcXPdbcHx\nKTDKcz8qV4sWofbl2ET+4Qh5ORaptQ2joJylBisUCf39IboaaJlUnRY0C3ZrqTSMUYrdwiZZN+PD\n1jn1pfA4tdTMFnBnHkdfWOL2B5R4GUDWIoGdg2RhOIuMHRuzucgZ3Mq+LnOMsucnfVwFsMsYDNSn\nwmlRSSLTIgmYhljGOn+HQXmercWrM96emFbRzDFOdNVK+gqJXLlRU8BY3y8k6KltuluLkKuPjezJ\ncUiiwACweqaOVvHyPgUW3lYbH+KKMEwdJvelfub3DTZlgepYotHex1p0uwVspVb22/5ixgNFlLtS\nIEl1Fi1URqoVatAIiDyWbXPQNr1AqRVmnx5UJdlOpeGu56hYMVa3XSohKhhCm/sc+4TtQdZlDi73\nl/qZkf5lnCjLZUAzNekcUimzaBU911TAtjoJqYcklhuMMvqDDXMHeE6QcuF8mS3YOIpcqnWNBIN+\n1H8xPpNuh6lwA8ekW5HP0t6pcP10MhfLnNEi5izaiMQ/iexS1lZs9g2KuUV5nidcNlkyTMuoRMjH\nOLWwbeZ5uWilUvR6Xi3avdwf1UVLKjkaKVXqddQFiy7myqVY82QzSKA6oxQQtbynfbtiLdQLLa9r\n2VVvH+0t6/b6KQGUYfPdTJ6TMRl88vwJnvn1I/jTU9k3vHqY6RTm+kH+Q2Dw2fkjPnl5g3BVQtRx\nFcAuYYhzK6FYBvhSNf6A+kTQbTpZ2xboZ7kHBoo9M+0x7YlWnD7ktvPoFy4/1BceoTBZUNVLQBu7\nFxdLj/kLsuxkQ+j2y9RnqE69gA0WisCz6HZIkHWQ3lGzl7fHBrh4xmBBcptMDgf0U0roNF9KtqCm\ng65lDDesED7XqqgQRJk9cmO6PembaW8qlAbLp20KQPWxR7cz4mlFk8OU0Z0KEm16VyJnc1AmYAgQ\nRWBtngir84B2z25lGxSQABW2FU08FS7uJ7FPqL5iyyBZwwgRqNqEchIFEKBZaRqELVFmNqOeU3Q4\n1snYrT2GmU3EZgXzKAGejTgca7YToght6q2uGMUmbKFHOWY0gJwLt+GkitEtVEU+fn8jGSGnRQTD\nFDmAVucBsAS3jKsVIlhDaPfcFojCl5LtAjHojhKQ9Q25Bqq0IdUFBmmmXFJ0hlbgCG0Rn0Ogrf4w\neUGG6nUOLhp0KlDJEYaJgIQAJMNZ/Xyqfkxy3686D7Bx0TH52CH49Ox1kYNhvUZ4Yf1pP/NZGXwV\nwYCrAHY1LmmoQsITNej1P/KWG68W4L4ab8K4ysBkXAWwSxjKJSLOPBO1axDn3Lxar045lVWafZVZ\nkrfVQkIHk6wYFXbvC1nJaw9MVplZOb0+GiTD2pOluS8Jm+sWtSp5XPjs6wVZFc9eybJJTIIkVIfm\n8iJgUmRkZbcj/mWhiCjIc0GWaTZDDIBFuUCzj3bXYJhmlGEoxA1Z92lzzcC2Y/6PqGDoOVrfItRH\nWVHBNYxmz+Di7Vk7cHIYEt+nWAXxB1NBfpKVvvLSijVv9Q9sJx5QiRtXiaq6c5mfNIbAsxUFCARO\n/ZzipAEXFiFm33YtHlLNNdlHM7Do8mm2UZkRLwrgQqSakmNzL9lVKmteMOrjIe2DWw/wtUOpu6iZ\n3ErdiD02N7P6CBDtauKq3TZSBVAHaCB6aMVzWJ6JP1eSICPJgsXOJJYErWgvJkdkL2U8haGLEn1W\nlZkcecnUNXMYURnkmKU3qhSOUCg/L16XkgBm+GgDU62lZDnWR+xnlLLO+jSgDaPrZgjNAaGIQEAK\nQidQKTLbMdzao/7IHflA24LIwLeXx926tMG4AnHEcRXALmnYVkpb9ZFEo2DFgBGU7e1ty4mUDABs\npfzV7sYSIMtEk2WWbCQBZ9FWChlGDQD1SSYuq62Llp7aPZM04ADhs1RHbfKCGiY12j2D9S15f3rX\ngpgxf1mOoWg8mv0y9X98bUDeotJGeJRsCtqLaQKKC4/1UwWglhNHHuGMcPRF8pvzF2Ri1jJmfRxw\n9pzFEMuS61uEYimBXn5DYOldPEflufTLNOMrzwP6WQ7iYAl+SVTZbnOs1JhRJ3e1l0kyT50EZAW2\ntLsmBi35QrMn3L3p/Vwfs5VL5GX5DUa/cCMQBoF8Bk342iQPOSBaiQyZVKt+Xjr5M2NLSqrfLWG6\nkEEWE+FfVafxmCIVgZ3y+ULSLpQdpGhcGcusJwP8xGKsF+nWIb32ldinsKW8D3OHbpa5YtV5ADFt\n9/l8htWT53QNgMzv0vtgds+LiPAqL3RMP+qJrRimRxK6piDftZ0CnkR7VIEkQy0LpdTrNITFix7L\n2xk2Pz30aREx/b0j8NExhuNM0jLTKT5XxxWIQ8ZVALuEwSaixjwnMisFhttI1pR0+RpRS1BEGyCT\nmGY48hBSItHuPj8kwz4AyeFV+T9+YRB8VvQ2rah4NEnvLZKhQ57M/dTBriOv5UIQgNojK+KqtrkW\nbwuWbCWTQWXFqo174xmTeyH1ZoaJAXqG23ASngURyrMBO89HQdNbhOm/C2llvLrlUCwz0GWzK0hF\n7e8QA5vrSJOz2zCa/ewzVaw82t0CkyOZ2OrDFr52uHhWNlAfy+SqAapdqFZinHjXjGY/I+70ODW7\nGiaE+mRIk395wegWse+3YzC9N6BfFKgON/CzqFjfetjCQFUpfEmJqwUgkYbZ5ck3FLSVCY/Tk2FC\n6Oc2BQvx/zJpITK536Kbm3ydKkHfacBod7IPl5wzATz4WgES21nvMJGgpQLHtmOUZyH5ztlGAmK5\nEj84AOLAPLNpvynI/+riyV5wIvIDUg0YpgZ19M9rd8Tbi41J3x8rc/Q1oQoMBQAOM+Hq6TkNTq6r\nKnG0e4T6OPfQhP9oslIHyXFMYsbFyxXgt6NCWL8Jva3HHJcZwIjoqwH8zwAsgP+dmf/Hh96vAPwY\ngC+B6Ml+IzN/kojeCZHj+2j86L9h5r8Wv/MlEMPhCUT16G8xX37j7skTc7san5UxTJ68W2l671G4\ntLf2GAf6q/EmDYZkx4/z73XGyKH+LwB4N4C/QkTvfuhj3w7ghJk/H8A/gDjX6/g4M//J+O+vjf7+\ngxC7qXfFf1/9Bz3cTzeuMrBLGopyGltgUJCemK6WlrcdZveGxOsKDltoMSbCMN1u0DZ7BtMHUa9t\nGjlDhUu/Mb0/jPhHDLjsDNzPtiWJfEGgiU1yQOIKDBx8dEiviTOCkIJs4+JtsmwtV6JukLQVLwRK\n3kaOVz8RySZfEsIic9fKiyw/NXtF+nxDsskAhhnQRZWd4DhxggBg51MDls86XPvdqEf3tEnK4oCo\ndIRS+GMAYNtC7EBiha86E2pC8pW6kGwsWdCUUrrTkmQ3FwUJ/X6xYnQLm9TqizUn2P3mplyH+sQj\n1EXWIoz+W8nPq+eIfsylZF+PXaFFDUTPe3DCcQrxwtYnkuXqfdPPBPGqPa9hYmG7DCGfHPtkbyLH\nIAoUmoUSiWRSdlM2MXvJKMhhmsuDtpPz3M+yXJXpOeop5nK3/hYgyvb9PPeksGeTZ5fcW9FiRlVJ\nrMNQZZThUAFU5FIxm8iRVI4ji6amVhdCoQrzOYtd3zSoznKGNrs7oJ/ID+x+vEH5iftARBmSc2Cv\nfjef++MSQRyPdKgH8Lujz3wdxJ0eEFH17yd6bTQPEd0GsMPMvxpf/xiAvwjg5y5tr+O4CmCXNMyQ\nDSWBLOVjRot0FfZVyZ76WPo32tNq9ygBOgCZJHY+2aM6lIesf/d8iyw9uzvAdCGVt8wQ0O+4tP1i\nGTBMzKiZLwRWfcjdKsBPbDIBlIzCpEmlX7g4Gef9N54xiSTis3eWqC4CqhMFDwj/q3l7kSYuMdik\nXLK7EBi6QqyLDWOY5p5UsRRvLS15ba5ZVEdIJcn6WGgAuj3bMab3fAoWw8RgmFpMDjMoAzSaSEl6\nk1ouoxClnnrZoXIZdfp87u20OyZb3rCWowiT2AcTC5xchgylQXAGRdQ6DFWkPqgUVJxodeFRLH0i\nSMtvMFY3bZII86XB5oZLAcf0EfofidDdXMpnes5sIwsLLTWbsN33C6UQvRMAohAIuopOC6E99xFD\nwbANYokvlz37KWVz1UL6X6GIQJNNwBBsOu9jc0lA+rHNnsHsvrzuZwr1zyCPocr3iUprJSsilwMV\nINfMhfxsyGdyD212z2P68dP/v703DbItu8rEvrX3me6Q45uqXk2qkoQACYxRGdQQTbRFg9SEGXrA\nyA0WEDgwuAkcChoHMqZxYNqGNrZ7oMPd6gYhmgBEi6GLwIAkYwUdAoQKVKVSaUClmvSGevny5Xin\nM+3lH2vtvU8+5at6KmXVq6w8KyIjb557zrlnn3Nzr73W+tb3YfR2dP36AAAgAElEQVQJLzy3QLux\nCVPk4fPaI6R6esHt5h3YaSJ6sPP3O1TL0NthCvVffd05wj7M3BDRLkStAwDuJaKPANgD8D+poPAd\nep7uOV8QdfvegR2BsZEVY7lCGD/joyUKont+oqiHpKvnOLm2aXRgTQGkk9i7AiPvt0PPKo8DBMFN\nYdDRecT8TBYmH0AnlRzwy2ZZ+cfaiUtlxexBI16zKzJEAEtPzpFOoxYXDIXVtq1ZWAF8T1UtUcdi\nHYHdfXFKVovjp2N9ZnC1RnNGuQwLcfqJ7p/vSg3GqPJvMmOUp4HFVavvO7hEWPAB4bRLpw5LT4uT\nL9czzNcp9JXNTxkMN9pwj2dnpLk2TN5ESCciUCnPSJywvwflskRDPrJYrFokc0azTti7JxFmlImI\nfh4EbTBcp8fIVhyil3ok/Xr5VoygTBMj2yYXlg3f2EytOADPoTg/ZYF9HKgTiqKwOtSGBUSj1+MS\nOlCPohYYXo3MHOmclRlDnc9CrjeZRlBH+FwAoysN5qcs0klEDWYTFtCErx3mUh/0bCCemSSoUk8d\nRs80oQ6YThnzUyZkD+zCIZlFyRpbST2r0bqcsxDATkdLr1qm8D1iK5Hj4FpE4NLWDuB0kTGdgZsa\n7aTTiX9MjPB5RWCbzHz/c5zuerv+7Dfa5zKAu5n5mta8foeIXnuT5zwS6x1Yb0dinuz2JJmfHE+S\njU5g3e8lZxwXO0dgN1KoP2yfC0SUAFgBsKWgjFIuif+CiD4D4It0/zuf45xHYr0DOwIzjdQpylXb\nSW1Q6PUJKbu5rCQ9ynCwxWiLyNQxvMIoVylQ+viUTr2iVFFzPlDPSWdOkIHKKN+MbUeXSSKiYssF\nKfM2F/izl0fJdx0mtyVhFZvvOjSjSHk0vFKjXM+RX5PoplUG98Wdqn/kV827BLQMlxFmZy1WH3MR\nxk6E+Vlg5zXyGcVVgzbNIjqtYqQz2cffy7YA7BXZf3HKYP3RmM4yjag3R8Z9Pa6K3IjZpNP3NWXM\nzlkUWy7cQ1tFXSk/EfgxJ3OBp7PR/aeE+ZkkpOPIyerXVDE9BRaUn29f8OnOUKMaWlVpjlGcrdhn\nKcGpEW5Cz7e4nsLZiIR0iaTXfESWLPhAOo0tKROFjqlh2NqFa65WPCKz0XuaAI4jgz8zEqWjkmcm\nEU6qEZ8tDdqCAnoRkL6+pHTwODDPFu95M20ptUOfEmwKiboWua/jGW15iIuAQQfWXi1bFJsN6tui\ngnKbU/iuuoFXL9eDGbD6/wUAZlciTV9zKz59BWg6VFnV8Yu8DtjRxTMfxiEK9dft8wBEof5PIULB\nf6QK9mcgjqwlovsgYI3HmXmLiPaJ6A0APgTgrQD+xZFdccd6B3YERizplfFlF1Mq+9zp9YnfNtMy\n8l15LQCHONmCgGKLQ+2kXLHa76KwdQ8G0EVwNZa+M98wWy0RBtfa0CtTLkvR3RfCkxmDKRbGm4Lg\nMmC2FHt7sv2OTEhh0AwN0kn8mrCh0Os2P5tg5YkaMwUzbH0pYXRJqY50yNk+w9SE6R3yGfPbGauP\nxxXk7KyVlKHWz5sRcPqjDWYqx5LMBJbve+WcJSxWDRolSLYLkVLZ/HLRzbCVNA17h0dOGsW7sONq\n6WDjclcXyj8Hv+hoRhbzM4ThRnxPmstdh5cPSPeakHYMbRKdOrepGab0gAWLaskg72ikNQMT/hmt\nSuD4a2pzOkjEx+JwiSMwpe1wKzZDA7PHIM0zMcl31LdHJHNJJXsHC0gvWTrxOnVyLt807BLCYs1g\nfKntAE/k+7d0ITqCZmhDnU2a+11cKLA4rZBmpdijB0B779oOvyOjXrIdoIk48dDXNSDYUurGco+0\nbcTfk4nThmxdBKwuiaut9Uby8Y6ejwrEoTUtr1BvAfwiMz9KRD8F4EFmfgCiTP/vVKl+C+LkAODr\nAPwUETUAWgA/wMyq5okfRITR/z5eAAAH0DuwozEGRhsNqnFE2/kVYxdAQa2oJ/vCd+tEMdaz1buU\nML7gUIc+q+i0AFlNHtCJUtLX1DMwVFKfiiSxjGrJhMl8dLlGOo8XlEwbTO7MUXeim3KZkCsX6fT2\nBNmeC7UxO23gcotsR7yNy01AIALA6l+JM8722wMRy94r0gBmsTvS1BsmQgckM6l7yQHA3t1Jh1ld\nOO9if48JzdFhHJMWtpLrKHakx6xU1Wg2AgzwC4t8x8nk5wEPpTBxBDaUUkAx/h7a0iGZx964bK/F\n9FyCwZbqRZFEHu1QmsQBoB0m0u/nQRSNsLRMb5dBMMnk76MP04rT8KrV6bRFOjEdJW+ntVS9RY6V\nSDlGUG1uQg0MJIKUXMVIvB5GQJFTxKxnXLEL4WIMzqRmcG5Q+wzAkDC63Ia+MIm2SAmFY4QEZqS+\nWVkZ/P3iq00Ak0SVgDYTxKoHdmR7DVwSeT6tNpSbVrMV10R4dbGqvXUDHCBhTqfAQMVUAWB0cYHk\n6avgtSXZ/5FP4ni7rI4xglbbkZzuEIV6Zv5HndcLAN9+yHG/CeA3b3DOBwG87sgu8gZ2ywoXRPTt\nRPQoETkiur+zPSWidxHRI0T0CSJ6e+e9t+kxHyOiXyOiQrf/AhE9TEQfJaL3ENFYt+dE9G4ieoyI\nPqSNd/5cb9ftnyKiN3W2v1m3PUZEP/Zi3IuXg7kTuBTq0n6dFOs5+F4ixjf58zK3WzntfAzA3wHw\nr6/b/u0Acmb+MiIaAvg4Ef0agBrADwP4UmaeE9FvQELZXwLwNmbeAwAi+j8B/BCAn0GnAY+I3gJp\nwPsObdR7C4DXAjgP4P1E9EX6+f8SwDdACpEfJqIHmLnbE3GoJZMW07NJ0Lny9EZtRmGlzUZYMzzc\nuly2GG64wOY+vlSjLUzQzkpKVgkIOWe1bFWzSFfutchRpBMv9ZFgsUoYaL3HNIxkFlepbWGkd6fT\nP5TttUjmvl/JSa+NB2SwcC3u3iuFhlOP1Miu7GN+9woAGUc9tBIptl5Sw2J22mJ0Wa7JR2jl3V5L\nnkAPG8xPGx2T1AZXHo+tBLO/MUFiVeNsrwD+PMfSZxVNNnOY3J6gUqXd0QZjcToNtZHpbVaiK1+r\nUSSdr4EJXyUHVCIT0GQxJZmUmt7SFKJLADAwX9eUYm6R70uqOPAz+sh4LBEWOelv8umzZmCQzlxE\n+c0l6vPv21L6znzq0dQO2V5k/2BDByDoLiX9nvmam/AStj5SrpwyTbR6PDCYckjPNQNl5vCoxjMp\n6iHBJdpOcblEQ0nw0KYRNhm2NkTCyVwi0EAdxUrj1HHqzSCmDLN9d4BT0rPH2w7VVLMUGUPynRpt\nYWGUHWO+bmCabkpWEInjS/5/S6LK4aW5XN/TG0BZvWz5lvuFhNgtc2DM/AkAOKQfjgGMFO0yAFBB\negwGkOsdEFENYAhFtnScF+l+/vHeqAHvWwH8OjOXAJ7Q3O5X6X7P1dR3qC1OpepwIniAraQM/Zet\nyaANpjEVk+80yPa0KXdJZERiL4z8U/pmUZfKZO9rFWyEomh2zk+cAibxkwo1kpoKoI6FE70s62te\nNvQ0AUAxlQbWLJAHJ0hI0nAAUC9noEUTHFw1FtizP19TiOBmMmeU65py22/BBIwfFSDB/BzDVM2B\n1CMA7N+ltYwBkH9wHNKs9Z0Ch863xSHu3pehXAMGV7XYv0QornGgYXIJ0KxSaA0wjZAmLz8pDrRc\nSyTl1pl4yXFoXSAnE69Px1VLFumMke1FCPvuvYSVJ2INjI3RlLHWP3cqtGlsBCYnzsz/XY+MilrG\n8ZvSBR6/NrdBTBTQnirqHK9gjnxXT+AYyZwCMMbX3ny7hIg9tigUNTk7l8HULqT/vKSPT99Vq6nw\nXKqDa0YW5VqCdNr5brWaltQSWDMg5Duu05Qv+nQ+pd4MDPKd2MSfac3QL/jAojXmQSClOtvJHbqY\nmwHlGlBc8/8b8ntwZaFjcKiXMiSXtQSTJkBdA2WJl6MdIQrxWNtLMfHzHojTuAxxUm/zhUEi+jkA\nTwOYA3gvM7/XH0RE7wTwTRBn8yO6+UYNeHcA+LPOZ3Yb7Z6rqe9zjWSino6T2JS8EgXyPDoNkOZi\nz7iQLBwW60moTQjRbKd5syCQif09ZWGRqBovoLUfAnKvoaQTVuQmJKlb6He9HsvE2CVYNQ2HQjkg\n9ZbW19gScRCeuLYZGKS5RbonF0y1FfFKj1YjWXEzIQA9FqcS7N4XJ9fBFQJMBKIMN4TZYnKP/J1v\nEfLdKKaYbxGqMTA9n+p9lV45P3GyAaplOuiQOKIKAUa+40IUOjtrkO9wrDtaQr7rQn0nWQDFtTrW\nHRciEuonDDZAsQnMTnv+SEa2p0hA/cR2kCBZxHrM7GyKYqfF5LZEj3FIZ7EO6FT1mTwpc6LRjHcG\nidS7an0ubU4YbDYdxF6CNos6b9k+C0JV909mLdoiImRDxOf7D4fmAHLTpcIZ6PvOjBINO6vHBl5B\nCshK00LJfuWaqZFGa3+N6UQY+sN9tEpYrM+pXkqQ7jcg4xcmBtUyBcQsMQsfpj+/A8YXa9iZfBHM\nzhS0GKJ5qvvv+zK1E5IevBl7QWtgRPR+rVdd//Otz3LYV0EQLecB3AvgR4joPiJagzi2e/W9ERF9\nlz+Imb9Xt38CwHf4Szjk/Pw8th82tu8nogeJ6MF6MX2W4ZwMC0znJ8hCE+0JsgNozd5uiUkjM9/U\nz8vdXtAIjJn/5vM47O8D+ANmrgFsENEHAdwPcSRPMPNVACCi3wLwNQB+pfN5LRG9G8CPAngnbtCA\nh2dv3nuupj7/We8A8A4AWFq5kyUdhxBd+ZRROo2M2LaW6GhxOnLmAQhs9fXYBAg1AKBUBFvtV7EH\nU4DFbAHTWOzcXsj+JKlL55nTJw5ApP+p9PyJfp7UTDp6XkoV5RnBs50W1EbaHgOgPFVEFduaQ93D\nlg5tLqzmXWdWDyikfwD5TQ0jVaJv00hqdHhBPmP/yyucedhEKDqnaAuK0h+7wO6rGOc/6A6MaXY2\nwqmzvVj3EzVih3TPh2xZkJ8HlEaKY1q3zSVl5u8xtYzBtTb28i0YTSGIPh8plyvC0t8EuRKAnA3q\nvtIKEbWniq1amNk1FZjttQL31+jELOSZeQRfviuUYdTI35xYudeeiaMVFoxEyj+SNs5jrTPUxgLv\noDLA+EicRdnY+jJloirTnlVjaOUZFJFFBqQsJXWM6lwa+R1txTBVTLPWyxbZhMJ32feNWc0WSJTp\nML0jj+9boNBFQjp1GH96J1B8wQBUNsC+ULZwWcGU1csHafhcdmIG+uz2UkwhPg3gjUT0K5AU4hsA\n/FNIbesNCuyYA/h6AA9qTeuVzPyYvv5mAJ/Uc92oAe8BAL+qgI/zkAa8P4csbp6rqe9zjQEwq0ig\n1i0WHDSLgtTHxgJ7rxxFvkSSVNBce57SiZDQ+pqU7+/xlsydEq/6yZ1Rrmch9VNs8wHOuWYgzs5/\nXjpllKvRuZgGmK9bjC5Hqfh6FFOM7cBgdsYE8UlqBUBQaON0sleiGWeh0drWkhIqVyjUMhangGYI\nNPdqcf3xgTgnnYdcInW7RgmGz/xxCruogsOY3EkYbCBI0e/eZ7DyWOx5qpZksk6VeqrYctIMramp\nxSmCnVvku3KPhxsOtuIAnPGpSN9fZFql/2K/3QWRTcDTeTHMQlKXADC+2IYJGZB7Wuw45OrA2BJc\nGtsf6pEVaqh5nIU4oVAfAsvn2jr2YbnEBqkeuZCYGmgGCpH3KUfvjAcKYU8Jaeez2oxCQ3b4fEMh\nVd0MDTghVIWX1REHYsv4XaxzE3odAXWaKuAKIBD1egfHhkTksorQfzuPUUJrLarlNNznxTohnSKc\nb/TkPmAM6PJGuAY+5r1cX4idhOjqZuyWOTAi+tuQ7uwzAH6PiB5i5jdBUIDvhKAUCcA7mfmjesx7\nAPwlpK3zI5AIiAC8i4iW9fXDkCY64AYNeNqo9xuQelkD4B8wc6uf8TlNfTcznnLVCGu373vJFICx\nYORXJZFfrWSoRoRce2WyfaeTVSzWU8uYnhWPk+20MJ3M3OR8gtEzjQARALAZIp00GHdiRKcOBJCm\n6HoYV9rp1CHfjseXK7Lq9qAMNnSgIbcppFfHr6rzHYkU6iXlZmwc2JoYnUwatGmCYtuhUoTd0mcd\nyhWDhW/0YmB6PgvoQLadCRhSv9l5ZY4lFdVceYKxfydhoMX74hpQbLWBvWR8WTj9PPClXFFGcz/X\nOkFzJsp5196WYXo+iTpUQ0I2dcFpsxG+Sg+cMcoM78+XTRyqsfTW2VKipmaoDPa+wXwJSGcChgAE\noFGvRucjfV+xdsiJOGR/yc3QINutYoLfyT4+4rOV0zpfdMLdpuFqiQR1yXEx1WYEtPqcLcHWEf3K\nVtntvZPThYx/rtl+C6o5cCKaFoF/0d93lxDSaYtGv0uLVQszNqFGBlLNPJ13k6kQGPtImwloluwB\nQczx5QbDz4gQ3PyeFaTTBullDy9N0V66DEr0Hhc53OYWToT1NbBgtxKF+NsAfvuQ7RMc0jSn7/0k\ngJ885K2vvcH+hzbg6Xv/GMA/PmT75zT19fbc5oEdJ8lOIhLMtM+9T28vtB0pF+KxtpdiCvH4mSVk\neyIL4lMebUahJtaO5Da3A4tsGuHTHg4dkFwNY3JHGiKmZmgwfKbE5C6pceW7DtWyxWBDoolqJUG5\nmoYallHZ+YAqJDnn0meVOcMS2iIq7dZjAu1xUHBOZ4z9u7NQqzG11JLyPU8xZA6k/9hQqHuVawmG\nlxdoz6WgFgF1ODlvMD/HaJflHOPHEuR7kZKoHgr3ou/rSqfA9A7A1J7xXrYFrapKdbZ0IV53IPxy\nD0U6wzM2uJSQ7QnE2o852+OoedbG8wKammGKulUtg4FQ3yq2GmkX2IzIxsWaxWi/jbWmWj7XR0RZ\nwyi22hghKWNLrSnDcL87AAmXWbDC4esVRUHqmE0t6Tnn6bXymKbz35OkIzzZFAb5btNR1iZQG6Pe\nJhH2j6BfVjpkFWJtlLWny8XaIrWMwdU2RO/JrJVn5FGCLHU0/9zSibRTBOTkSiI1MGULmZ8SfkiP\n4l37iwXSi9tozknPYVsYDD+9A261rjiUiJ4bjayPIav8F2R9ChFA78COxBhAsV1jgTT8AycLmbRE\n2NDrNhnUo5gOS2YtylUbJh6wSth3GpFd0tG+qhmYR6qpbK/B/EwaGmobpa7yhXZbs/bueFkOPpD2\nSRasBX35+DaTyc+DSNhI+nFyu09ZAksXIijFS5D465+fK5DtSpoxUP4UQDKnMNGV68DuPQlWn/AR\nm6QYV55qwzUuPx4nQjbSB+cn28l5BRvo/+/omRamiBRe5QohmZvQzD07I4AMf8+KLUmdNX7xMHGw\ndRxTNRaeRF+PSvej5Acgi4BkLrVKLy/CVj7HX0O2L+fzFF1sEhTXGhTXar0Hskjx9c16YDDYrMKY\nkjmhXk6Qb0rqWXqcklDrTOYEl0WdN1MzFmsRJj+82go0X40Tgdp7UEc6FXBFcHJs0ObxHpLjAxRm\noiUm0jxRyscvGDSFmPl6nZyjzRB6xwCp+9mKMT2nz2FbSKa9WCtbAW34enF6eRfNuRXMz8nibemT\nW+Br23FMO3s4sabp2956B3Y0RkC1lEh+3/dcjaLirZ9o8t0Wu69MkKluXjKVJt25qgkv7zUYX2yw\nf6c8ltEzjGYpDXUDlxDm6zawiC/WZYLoChUmMxeK/aOLcyzOFkH92JbugBKvSwhNElGG16clZmcN\nVh+r0CgLvUuANo88gelU2MM9qMQuHOZnU+Q7LVaekKjPtCnmpwm1Ah7aocNgiwKXm1cTDqrSJJGB\nnxjLFaPN2XrP5sDwaiRNnp+2GG602LtHxrz36hbZvkGjrA2mlv6mLouDrWKPlWmE5d0jQvPtFvMz\nCfKdiCCU+o6SwuaxwXhwrUU1NoGtw08q89OE0TPRKfrvQKOKzcm0Rb2URPotkuO9UjYY2u+nC4dE\nmTDI1yYNUnYHGqNd0tGVU4Vl77CI7UHaK42E/DbTMqhhsDqsajlBth8jRq/FxUSoxsJNme07OAWD\ndMcYWP11kRQIjFXwMlnoPVqPquCANN3bGsh2xMnzIEO1msWFzDNXQXkGWD1uZxcn2voIDEDvwHo7\nIrOLk7ck9GS7J8k8jVlvt9h6/wWgd2BHYmwUQg4cYDuoRwbji2WMNkYJ0gkwPScT3+BqI0wPivqr\nlxMUSo0DCCOCUCVFgMSwjd9cNgaLNRP6d+zCIZ22MWLLLPKtCnv3ShrGJQbpLEYGxXaNpozouMWa\npNv85yVzqTcVKs/iORo9AtAlRlfdBm0m8P7B1QZtHlOGy09VsFUGcgprPyO0UN0+q2rJxLRnyaBh\nTJvmu8pCvu6VfYEr9xs0a3KNwycT4czTEsjwosXOaxgrf9XthUPgXmQj6MxCI6x6IBFUoF3SKNrX\nfxanE0GKzmN/n2kI+U4NpQ6EqUkkSIyP+nCAw9KWLKhD3xfGQL5Vg1pP1ZSgWokM/KZ0gjrU741d\nCJNGiGoauWf+HoEk4vGpX5cqc8eSl6RpUa1YVB49qj1n3agUAxOiXtK2kJAeTCSVvPx0Fepk1ZIV\n9KhGfdlEuRHzGIG1GQW6KpcSZqcpIC2pkWjas4cMN1qMn5yEyKI+NURxaQqzIcjCZmcHvUUj1y8k\ngN6BHYm5RHttpm3gJUynkmJhS4FU1a2SCgXKcc3QyKSl81C2W6MZpyEtwwYH6jG+gdZPLNluA3AS\nJ42Zi71EkJRUuRprMy4hOMudlKTB7IwNfV62FF5ELx2STsQJDzYbvR6ZtGanfaopRbUErH9S3i82\nK0zPF8h3mzDRkSUU2y3aVK5r8roa9SgJEjDlqvSd+bSnF25MfA+V0UhHr3l+G8NUhGxTrjHf0f60\nb5GJLv3DdXGgmnJsCgrADUBqZNUShTQuJwL88CKUwu8YAQ1sJH3om7NNLbyLu6/IkXXEGJOZCw6o\nGidgivWiaokEXDPTHVhACeS0LrgqfIte7p5a4VW0jU8RJkhmDfy/q0so8Bf68+V7LcrlTgpy3uFq\nTCS1TB2yX5d2JGMqaUL3DthWTlOl8r4HkJSrCaqxtmjsOCQLCn+3OcGl4sj8NRIjQPWTBSMpRc7G\n798MIqWYgJ0y1JpmHVzYBy5e6QONw4zRNzKr9Q7sCIwYqJalryc0MpeM6YqBXU5Q+F4XKxNrsqkr\n6VomKr9SL9dSpJM2sMs3g0waa71uU8UoV0yIZnIIuitZKBJvaFCumjBJ1EPpw/GRUzUmmNaEVS+1\nVq9B/i6XDeoxkOrkbnIdmweNKF/e+HJsbE7mFBB9bAnDZxZwaQQU7L0mQ7EVG15XHsxgmjas3KkR\nVvF0U2tMqdSW5qejzlRTxGbsfJMwv8Nh9FRkvVh+qsKVD63LNQ9E2NAjPU0LzM8Cg00PNhAQiAe2\npBNlEPHilC2HxmNAlITz7RgltzlhcLUGm1SY/WdOOCsdQqSdTRiL1VgfspVoauG050L0CxAJG7N9\nwmLNIvWMZEZ15DwPLUk0Ha6xFvYUD0TxqgRecXl+JkE9jgsZcsLu7qNM0RJzYSFDNaPNohN3lkJd\nDJCGdt/8nE1Ymsczjb7IAz0UlarPyaWkBMfyd7JQkVf9zDaVMRaKwCTHeOw7U9z7m/r3/hzI877W\ndYgRTgZN1M1Y78B6OxKz5clrEPKO+ySZX/z0doutd2AAegd2JEYOmJ4jAEmAATur8GOK9RQmYHgl\n1smqZYmAPE0SOSDZr1GekWVrtSTouXxbVurT2zNQCwy0JtXkhOp0gkJTfJRID1ixKUWxai1Dm3bk\nVEpJbVajmGoabjQoV310IbRP+/fJ+c9/QGiaAhqtFkn3AI0eG5gamNyZAkiR7TPGT07gchsm93zH\nwLQRBj87SyhXTEghEjOK7djnlcwFvu3TmvNTBoNrLtawLFBsRPCES4FyPUGuCOs2A/a/pMLyU5LK\nHWzUWKxlHTYRuRbWb75ThF/ogapxgA0i35UUrkf4AcIN2EUY+taBbs9TNU4CJZitBPFXrviUocDI\n7TxSRREjSMJUyvIeOCUNoR6bIOkitaZ4AdleK1B/vcR0ynBJ5NokBtrUhOjINAQD4VwEJMIyDYf9\n2QLpJEqbNEZ4EG0d65+2kujY1+WanFS2RT6jHgKmQkAdgoA2jcAX31PWlfa553cZyfselPOht2e1\nI3RgRPRmAP8Mwj70b5n5Z657PwfwywBeD+AagO9g5ieJ6BsguosZRPbqR5n5j/SYDwC4HUL7BwDf\nyMwbOGLrHdhRmJOJzyURHgwIAIGcFOkBqUvku7Fu4HvCPIKvWrKAIWTb4oCaQohzqZXjbcnIt9sg\nk2ErBihqb3nHslAHyCREsH5ipEZACKuPySyz/cU52BIW6wd5AUdPe8AEY7EuZLwAML5UYbGeHnA2\n8/WYKqOW4TKLZhjrbmwBM4sTX74jE2yYgFnAJ/muTFlbr8kxvOpCz1M6ZUzOx8m3XgZGFyRFK9co\nk+vKk3K8s0A6yVCpXEr9ikxSaKqdNTtjteaF8EzIMWZnYprUNLGlwFaMJqfISUkyli58vB5bUMsB\n1l4tS13Rj7lN5TyLNT8mqc2leafZet+F3ipPoGx8io9l8eAJjSXlGXXh5NnGCc2WDou1JFzP8Eoj\nDek7sddO6MRiClJSkpq2raTvzNNCuYwCbN4u/H1TIEnH6dkqLlSSudQeBz41rHW7clneH24yxpdj\n3W781BTms1d6x3UzdoQ1MCKyeG4R30OFgQFsAvhmZr5ERK+DUPDd0TnuO5n5waO50sOtd2BHYAQg\nm3gOutjo2WbCs2e1RlWtCNebL3QLA4WBGUQQxuTuAsNL4mCShcNiEOtJ2X6rzBc6Ee63wjGnEdXs\ntMVgqw0RXzMwqJaTUCj3k830DvEGg6tOEGzaFyZABxP7zNZImS3kBIL2YxTXxMGyJZBLQq9PWxg0\nI6kNkdZTbKU9UHm8BtshHM4mjLYwmOXKadfIQsCTurqB1AM7bkMAACAASURBVFV8xJPtALPzwNJT\n8vf4UoOn30wYXpCv8upjUof0gIpyVSbOgGIcSgOvv0f12KLNYt+S5470DBHOSkToJ+Z6QCh2WizW\nLKplg8HVBmwt6rEBJjGSNjWHhQobQlJyQIsK0zqFOpzTXrzQ0J4ANI/MG3WhjkLrTYtVVXiu4nO2\nNSPZF69s58BS5QKgqB5bJNOOjtzcKZs+6/eoQbWSBJAJOXFafuEzuFpjdi4NjdnpXCJKr/0Wxtwh\nFG4LYHzJBcSt541cuuB5QFssTiVYflxWR+bCBngeEbi9PbsdIQrxq/DcIr6HCgMz80c6+zwKoCCi\nXIWCXxQ7eY0svb0gdhL1wAZXT168kM6PLnXV2/M1lhTizfw8twXRX7WuuO/n7MPMDQAvDNy1vwvg\nI9c5r3cS0UNE9BOqFHLk1kdgR2Gaz08WsX5iGtFoqoeEwRW/6pSozO9TrsjK3mtjiaYSMLlbuQ93\nWrgkpgYFsUhBEoWcVSYMXUlPHLKdBovTnjlDKB58tDO93SDf5YB6nJ4zWPu0CxGYreVc09s0OlIA\nmIe4m4aFrb2OLOtUs0h/lALNrlYSDC/NMblHuOry3Ra798QeJw/NDyrOpQt8hACQmoNyJm0qq/ep\n/kuZBhhcjRFZulvjzIcLYfaHRCfVEpBq5t1TUfn9x5eEZslHo3UqMHlf/5nelgBEoUeLrUTJnq+Q\nDYKWlk+ltjlJ3SmkVgWZ6COuNpdzrzxRh/soisaKhJw6VEuxrpbMWVsiIuzdVAxnNYIqBc3ne6wC\n2lHfb7VG53vdAEFXGq07VktWoi0TYfZtHtGpwys1qI7N6c1A+DOTRdSOK1ck6vN8jW0ukW7oHUvl\n++1rjVwDy0/VgdLra3/2z/DnXxHT7SdvKfAFmPbp3aSdJqJuGu8dqmXo7TDHcv3Jn3UfInotJK34\njZ33v5OZLxLREoDfBPBfQ+poR2q9AzsKI0kZmRaYr/tGTkI6lxrSaEObOW1MLwFAsSMTq699uIyQ\n7sd+HzZCTOsnjepUAnIcYfJjbWbVr1I9MhhcdZJaBODWE5nAg0yGVVl4+dO04hQ9SKMZMKplwupj\nTTifSymk85K5AD28tD2GRptZlTdwKrUrtoTxk+JB9l45RD0GVh7XOt+y1I/8ZJzvtgBRmLzrIR2o\nH9kKmNwNuIEcP3jKgBpgsKlijYME9ZACQbGpgXYAjHTRUFzDgQbbNhfRRc9POdhsMD+dhIbnfNdp\n6lXrQ41s8xOxCHBKus+n8Ewt7OAesFAPCfmei4TFLM/JU25RwzCZSqYAWJzOwvPwxmkULk23G7SF\nCe/bksE2OnGnAA4PrfaNz/65VcsWmYmN0eQkregXPjywaArp15MxOrg8Tg3J3CGbMOanCeOLvs+L\nDwBbXAVNxcrfxZbU7Hw7w9KlBqZqke3IMX/w838d6/gT9PY87eYziJvMfP+zvP9s4r7X73O9MDCI\n6E6Iqshbmfkz/gBmvqi/94noVyGpyt6BvRTNJUBbEMyEkamwYpt7Dr0YlVErKrWLswrKqKWmEuh5\nOBLkArLyHWzUaLSnJ5k5BRD4GpoREczGAw4I8zNZQABm+6LP5B3a6qcdqhUbamj1CFismaC9Nbkt\nQXGNQ9+Y1G0YVutDbUFwSVzxJ3OJ5jyyLJ2xFPtTi/md2tA9czjzUFQ0rseJNBLvxTHYyoX6Tr4n\n49m/O6LVsu14D7M9qVd5FgomccjXvsJHdISlx+Pk32gE142MXSI9SXJPWySLqEOV7foGaj1+QOA8\nCpXme630MDmgXrJoc5JIOaXAz1hsCdu+rw9le1IzSxaR/48JMGlkcmdjUWxGlYE2M8hUBaBaEZ5N\nL1njFEjjI6Q2F5Z9q5FxtlvLffFRbib8jUENmQCAOqARwnCjCQsZXknRZnFRQA4AM2xJmJ82GF9q\nMDuboHEUkJFstHfMs87kBjAdwdBZi/JUhqWPXwMAnHnG4OQ1XhydHWEf2Ifx3CK+NxIGXgXwewDe\nzswfDNcmTm6VmTeJKAXwXwB4/1FdcNd6B9bbkdho4+RNRz6qO0k2vtQn+14SdkQOjJmbw0R8iein\nADzIzA/gBsLAAH4IwKsA/AQR/YRu+0YAUwB/qM7LQpzXvzmSC77Oegd2BEYsEHXhBZRtTFKTaooY\n8SQ1gxMKFEP1SGoEQQI+NwDHdFe+3cCWLaoVeUzNgAJCDPAUPxQh5zNJU1lFBTo2WNxmYBqvrSVa\nZK2KI6887uSzNUVZbLeolk1A3DHJ6ttfD7UCXPBw62TaoikS5PsOzYCUGZ9QrSQhast3apjKoVrR\nvqzNFsU2hfQamGEqRjOKPVF+PID0EnEGLD0p22a3a78VyT0ZPlNj6UKNalnrcrWgFHOt35WrhNEl\nDuwXXjImUFOdyQQCrhFdtWphS0blpUs0RWs68zZbiV58XWyxZuW1r9vlBtluVLZuMwLbg7RKs9MW\no8DIL2z4Ximb2NM9KXp1yWB0uQ6tB6KU7UKE1xSiGh2g/l5VgHzU2mBxKgkcl+QI6aQ9QI8Fjswe\nPi3tI23//E3FAfbuI1h/X2wlKfQg40JSe/S1ydltKVY+tQ9sy4Oh8Qi9PU9jBtqja6I/TMSXmf9R\n5/WhwsDM/NMAfvoGp339kV3gs1jvwI7AGAhlTv+PXS1LA3Cbx54itsL/FtJUiUW274IDY1LpDJ8a\nKgxqlwbY+uTOHKDo8IptncRIUz+KfPAgjsHVCqONqBvFJPWM2dlI6prOOIAB8u1GnJyfuDK5Fj/R\niRZWFCmcn0lUmyumA6kV+Lcnv6XGYXE6C/WieiSpMQ/ccAkdIK7N9h0woUBfZUvtsVPNMlMC81dW\noE8mek9SrHxmgcUZ2WH940JS64EoppVjfQ+UaUxoKAZUHLKUniZAJl1qOTinZiCAE5+S9GCLZkCw\ntdbpaiGu9ZO1dxz+OQq5LgL4xlx1GG62ge4p22vlGelxpnSApXBN6TQCOuR8ymup9yRZMJJ5XPjU\ny+kBcclkJvW4aln7EUt3UHBz3wn/pV/UMzC504SWkHJF6M6ySQTD2Jq1rzD267XKOyn3QMFH+ufy\np6XPyztX7imivjDrmTgA3CIYPRF9OxE9SkSOiO7vbE+J6F1E9AgRfYKI3t557216zMeI6NeIqNDt\nv0BEDxPRR4noPUQ01u3fQ0RXFcb5EBH9N51zfTcRfVp/vruz/fX62Y8R0T+/aegnCfOAVRSWaRj5\nrrIUcOypybcqqRtlBi4zyHakNsRWGkFdKqvt+SmL+SkrXIb7NZqBFdABSbG+GkszdLksuk/URnQY\nIP1h6b6AP9JJg3JFJu1qyWD71TpR6e7VWDjtBITCSCat8toBgyul1OXIO1dgcSpDMzCCokukNiTs\n5nLMYs0EkEA9tqhXssB2YUtB+/njm4HBYl2uy84d7NzpKt9gcQpYnAKqJe030ns0v13u6f5dBvt3\nGQyvNGiGCVzCcIlcy6lH5xheZQyvMgabjPkpg3pkUY+EjLjYbpHti6ZVNpHJPN912njOgZkEkKij\nLUy4x7mybiw/VSNX0INdcAB2sBHH0g5sGCMQFZ8BcSCAICzbVPS9hExX2SkSkqZlfU5sxdn485la\nGEr8c7Elo1w1oBaqhi0oSar1p2UMNpvQg9fkRtk5EMRMidUxprGfMZ04pBOHZCHfZ/9dd6k2W3cY\nS1xGWKzGa07mjKRkDC/OMLw4g33qMrhuwOzA7IDqhCkoH7UdHYz+WNutat75GIC/A+CPr9v+7QBy\nZv4ySAj63xLRK4joDgA/DOB+Zn4dJK/q87BvY+b/hJm/HMDTkLyst3cz81foz78FACJaB/CTAL4a\ngoz5SSJa0/3/bwDfD+DV+vPmIx31y9h8VHaSrFyzz73Ty8xcn7O59caQSPZmfl7mdku+jsz8CQA4\nJMBhACNFsQwg/Fp7+joBMCCiGsAQCvVk5j09F+l+z/XU3gTgfczsYaDvA/Bm5e5aZuY/1e2/DODb\nAPz+zYwpnQuE3vd0pTMONaSmU+xvBrH+U5RO0GMeUWek18bv7xKgXkpVSgOgNgG1EYaf74n6sqco\nGl5xIEehVmJrh2o5iQwQDli64MIktPNqg/EFFhYJANkewdYNZH0ATM8XKLZrGE2L1mOhiPLQ6Gps\n4GynRtIAw81W+4xijr4LdvDaXqazAJ+cj5pjTBKF+NpKOhdNr717VUPtMqHdyUIrwOaXp1h+yiHf\nls/YvxMYbFjMzsrf659qsFhPAgy+XDIorjUoz6bh85MFH4Dh++sABHkJRrhHthYmfeG4jPu0KUJP\nVL7XaorPtwJwYGcHpGaWTlzgtPSqAV3VZKuyLYD0yrExMSU4l+fs+wO7rPD+Hpsy1tCagT3QOyTI\nUod8L2qkNTl1FJpl/OH6SxbGmJbjmDNJUQaezVpopHykWWy1SPdr2C2l2DcGlMV73mxto7fnawzw\nySOSPsxeauup90BoSy5DnNTbOo7m5yAR1hzAe5n5vf4gInongG+C0J/8SOd8f5eIvg7AX+m5Posb\nd57foa+v336oEdH3Q6I1ZMM1UAOYTjxLrTirdMahUbhaEZolz8vXDGXi9k275YpM/G3qxRi16Veb\ncvOdVkhhV2UiaDNCkyPwzRHL5FNlEbJOLWN0UWb7etl3lcqvtb+KKTJASWXTyGM42KwEgLEmyBQ7\nd6LT5bECKmPv+5MWqwb1UCDptpSdFiODbOKQbskgbJmhHhVh4st3ZXL3VE+jiyUWp9LYFzaQBvBs\nTz8zA9K9WBOrVoD9O6IkjQGwe1+GRoEq07MJmlxSbgBQbDOq5QT5XtTmYgMwdR4eI6T+kpk7UDNr\nU6ljgjtpxhrIKncQlchRTNOUDklKQQZncrvB4Fqsu9mFOIiublsyd6Gm1qpApf+eeNCHr8uZuUO2\n14SFUTJr0YyT0AfWDAyy3TYCZ6CExN5JD6THzHiBTAVweKee7zlZVCyig2J7cGHWplKT9WNOdysk\nl64BjX7Xrxw5j+vJNcaRgjiOs71gDoyI3g/gtkPe+nFm/g83OOyrALQAzgNYA/Af9TzbEMd2L4Ad\nAP+eiL6LmX8FAJj5e5WU8l9ASCbfCeB3AfwaM5dE9AMA3gXgjbhxV/mNth9q2s3+DgAYr93FIEEi\n+kZOtrISThaMTPt3FuspyHEonlMLOIr9NvWYUI8sxhcj5K3LOr5YF1VeP7k3A0JSxmglmbaoVm0A\nRCzWDLJ9xvxMFq4JFEdFDQ40EU/uSJEqCwQgfUrlWhrACLDCUNGMxHvkO54jUcejzqDYcZEMtwSK\nKwu4oRxTrWWwJYeJrsmFZd33kg1Tg3Q/ojl9rWbpadl/ertBMwLO/oWESk+9heHSNERgIKBaRiAg\nTmdO2Nf1HjkLJC0HHsKmENYPX0MUIt3YVEwM5Huxvwks0YV/hl5PjZg6fIriYLzDcNYcUFA2jUz+\nPtozLSOdIXAR1mNhWPH3xNTCgOKfW1MA+SI+J0/k678pLpN6mneIxVYDagQBK8cbLJZjREitaK7F\n61XuRr2+wIxCEk0LSXSLemA7PYiM4lqDdEcWS/bi1b7O9ULaCahv3Yy9YA6Mmf/m8zjs7wP4A2au\nAWwQ0QcB3A/5132Cma8CABH9FoCvAfArnc9riejdAH4UwDuZ+VrnvP8GQnUCSGT1Nzrv3QngA7r9\nzuu2X9+R3tsNbLF+8upBpj55kwgftszr7cW33oEBeOmlEJ8G8EYi+hVICvENAP4ppLb1BiIaQlKI\nXw/gQa17vZKZH9PX3wzgkwBARLcz82U977cA+IS+/kMA/2sHuPGNkE7yLSLaJ6I3APgQgLdCIrrn\nNgOFwyOkddqMVIuLg+6Tp5Gan9I+qoVoa/nUUrYv1FOBE0/hz/NzQuVebLWYn45wZzYC1fayGqZl\n2EWEzTeFMK/7z3NWkJK+R8vrVfnfbACaMPbukf2HG8IDWGh0k85j9AUApmqxOJMrXZWwr3vkZdc4\noXCcXbRAa5BOZHU+f+VA0leeQ09X/6ZR2Pqq0HLlu8ousiuK0ZUiBdc/aLD1FS3Sp2x4FqaKKUaX\nKP+ksuEXWxIdtoWv2wly0d+DdMoS1dYxmhI9L03PKaSeXIfAWHvZwhgSQlsYtH6SISMUVeEz5dl6\nGH09NAeY3D260Ne4qiXhYvQRGRtBf3adSVsYSe9CUsdNbsL1mJrgCoq100WDdEoH+vlMbUJKk5wo\nNPuWkDYTVCMboFz298EgncWWi3TmkO6UsFd35BpLicR6hvkXwk4GwvBm7JY4MCL62xDncAbA7xHR\nQ8z8JoguzTshKEWCRFIf1WPeA+AvIbyfH4Gk7wjAu4hoWV8/DOAH9WN+mIi+RfffAvA9AKCO6n+B\nUKgAwE/5Opse+0sQh/n7uEkAh3dcQsoaJ0K3ItIp2Y4KTK4MYF2UNUmnDkah2QAwO2uRTGM0kxtC\nOm2DXAo5RjpzKJRPrloSHkPuyKvUIxMmvsGWA9o4yeQTh2yv7aT8DOano8PzOlS+/yffcypYKTuM\nLkstafUx1StbSqUfahEh1uSUfNbz9rUOLrcBsTe81ACZwfTOQq9RQB8esMBW6Im2v1h7pHbFmQwv\nSw1t4yvHSCcIDm731Yz1hywybQ7fu4cwmMVnkywYw41GSHohcO96ZAOAYrFm0aYUhEjLVRWOVIdF\nLClFD4SxpRDvmk6/nE/XBY0wFgkSX0ejUFOSv5efbmBrB9qLk1A7sKGR2aWEOonN1WzpgN5XOpNW\nhESLYuQEKu+/By4lJGXsL7QLleHRtCkX8sx9w/v0fCI0YCrzMz8lzik2UpNyRFIAz3hn7Ot0+eYC\n5bkBsgcfCddJSQpu+jTikRsDODo5lWNttwqF+NsQAsjrt09wSMe3vveTEPj79fa1N9j/7QDefoP3\nfhHALx6y/UEAr7vhhT+L+dpWWGXXjDZXNFehK+2RqBH7lbBpGNQwnNa58h2H+WkbFlfCch4boZ2V\nOohnXKAGQBononrJCquE1qw4FX46v1J3GR1AxzWFCA4Gzr596QEL7+dS+/AOLVkIkKBekq9NttvA\nWYtaOQBNyxhdKtHmNtSU2qHFbC0NKEMYWfn7yblcsahHhGLLhXvi0ugcylUAILCS/y49JarRgQGi\nJNRjIN+P4QuTkCDLPTdIdyvUr9KQbMpoUwqMEfPThOFGnKylMTeykSRz1m26aFgWQmXTMNAwmkIA\nJNxhuCcn4pA+AqKGUS3bEOUJ+CYJkXMzkn09r2C5ZmGrGAVmE2kmt0HEU5GaVWT0b3ODehwb1D1/\nIaDgHUZU1i7l+j2yUu4bYuS/kPfbDoqyGQi7voVE2m1GGG62KK5qzevCJoZX0gOs8r3zegGtj8AA\nvPRSiL0dUzPtyfuHak6gBpoX6eztVhr3KES13oEdgVEj6bd6iCB14jJBmSWlC4g3r07s8Y7lqkVx\nLbKAS4qQw8qblFvOp4Ky3RIVZSFa8FpifmWe7VWY3JGH889OWyxdiHBsSXM2mNwpGHMv8eFrKy6l\nAw3JppX0E5Om83ZqjChe/+ycUBYVO1GJeH42B7URgQeSFb2HmDeDFPWIApWUaRjJLMLc62GK8cUa\nS0/I4YtTwtm4/Rq55pGyps/Oyv5rnxQNNR8tDDekXuXv6ew0gdwQRlOAzYAwvtiEuuDosjtwfcWW\nqBUXWxI97N+VaTQEvWdOlLSXLTJl+ae5pF69Q2szgOYcIqRqOUE6c0GiZaH1o7nSX/mIKCgkT124\nfkDG5lIKEZtL7UEACWldrPLfPYO9u5OAZq3HKq3iI/FUVAV8xGVqLzMD3Z8wuMqh1YEtwvfSqy3I\nc2uRXNiUfeZz8NVN9PYiGEPYTHrrHdiRGHkwQOSnAyT9VC5bjJ7xPHwyufp6T7HVohkY5NsKR88N\nkMf+ocltifAKau+NS6VQ32ijcVsQklkbqI+SRXREgMDZy9UkpBjtwqFcS7H0WZmNmcTR+sl7kVgM\nNpuQ+mpUGDGkMFODfKcOnHr1kDB+pkG27TulCXuvKABEIEo6k6bZ+WklJB6KA/GAA5cY7N2TYna7\n7D/YINRji/Ezck/YJJJ29SnJVEEZep89OW9S+jQrMD2XoB7EyVd4/CIvIYAAEW+88GTosSK0BSGd\nxEVHmyKk99rcwNQOWLhAbJvvtqF5WK5J7ptPU3riXF8/qpYF1h/SlAsHU0X9sDYzyLfjczU1B0kc\nPya778I9mZ/OkJQu6pOVDqa2HZCIgDB835bnu/SwfzYq7xI+QO5TM4R+vrYbZNGRF9caFE9uA1Nt\nUmxd4OTs7UWwE8CycTPWO7AjMDbS5JvaqCS8WBNQR77dhibeajkBr0V012LNYOlCrBO4TKIujwYb\nbLVyXkXscWKwOJWFfiFyAAx1+osYg6t1nLhGPiKIIBAQgW2MmNosig5m+04K/UZrXjNpfi2uyef7\nOkvQmapkFd5FJhY7onjs6z22dKhHFqNn5Bx20aIeJbFGFtSOfQQGzM5YnHpUkBijRNCcu/fJ+6t/\nVeLaa4cYXZHj9+8izE9bjC95BKA0Ny8/qajFiUzQvgZXLUv9zfdQuSWDxaoJTB35jkO2z5icT8M9\nM00nXUjiyF0qaVNqtA+r8+yTBUvk7BWbLaFaNhhuaE1qRKiWCKPL+hwZ4NQEB5PuN3C5iQsXK7VM\nD77xjfE+MvfOy7+fThoUW20kA56xIFD1fLb+XEooW3EAICVz+U6nCupYrBOWn3ZI9Z4xAfmVKbC7\nB251DMMB2t2eoPdFs74GBqB3YL319ryNTqA0Vt8H9hIw5h6FqNY7sCMwckILxRZhZZ/MVbp+aFCe\nkVxMUxCy/cikQSz1iW76qrjWoB3EmhO1DtM7ivBZQntkw/HNICrrji6LVpeHU1tlg/CRgUtF8sNL\nnUiEQGFFP73dItuPasdUqK7V2KcMVbdKtb3SKaNcTSWlhg5qbreBaWMUSJ0ep9ltOWzp0FBsfKYm\nHmsrQjMCmqFKf0xbTF6VYemCvL/1pUMsfbbG5a9R/a8GyOYRRNJmUr9ZrEc6rmTuOlpXDtPbk9BX\nlpSMZCdOBtl2hcWZvJM+I4k8dOKuxqK9ZWqG7QBXGmWsB6SelMxjP1ybU2TTCA8yRtqmEWmVRnvV\nkplDutdgekeu99kdUFherCdAYWNEpT1aXVkbl0X2ETAjnXKowZGTCLHVCD1ZaEpx7o/XNKVmhvNd\nKFI0ZhPomU1wVQONpnq176u3F8n6CAxA78COxNh46iHGwtctWmkYJkZoGM32HRbrNgAO2kJg4B5k\nUY0timviuOS8hOkdg6gnRlLwn5+R8w2utrAlUOlEND8tEG8/UaYzp/Iacp3pRMAKlTqkfLdVHStJ\nA6VTqS35Wg2TADVCOrBiFPOYSiqXDZaerjC9I9Pza1O1iSt1apVySv+uR4Risw0Fl1Ybbj0FV1JK\nzWb/bnFQy09UaIYIJMneSZx6VK5h4/WyUMh2Y1N2MmcU2xFibtqYAty5T4Ati9WYEgRivSrfkiZo\n78DWPtWi2CwxPyvOJFkAs3MG44sRdMGJ6rxpnaweCOS9VJ21ZM7Id9pQa7SVwfyUOQB+aQog074w\nWzo0AxsWOi4hYGCRTGMdjNqYQqzG4mT9IoATSQuT7xNjYH7KhpqXqQGTAeSbtUekPV4KIpkxFqsG\nmTrMfEcIjJPdCvSUcgNYK5Oo75cr4iKrtxfaOKRuT7r1DuwojGXSTRYcagvpTBjOR880mN4eIxbP\nwgAA2JXVuZ8IsykjmUuNCJC+LmeBTFfG+3dY5HvcQR22WJxKYr8Ry2TnG5k9g8Lcq+iyIOi8uCOx\n9vx0a2Dd+lUlnIVeXJJaOacHQuS7wkrheQuLmtGMxEF7p9tmhHrJIt+OwBFTt2gHMkbfp+brgvXI\nYHjVYf9OZQ/JDKqVyHpODJgmCZNxtkewC6nTAOJg2oLgfHM1G3DLSHQyzvYMprcZrD7uZafl1+ys\nfF61kgrzujpxlxL27h2EaCeZM/Jtia7aTJyvqZw0Enu06IQP9HUBEqF7B+O/I16hebDZINtj5Lty\nTbZspa9s0ekrKwimiRHTYtWEZmxqpT8waMIxQCnDIDo4lwLZpl8oqXaY8w3r8p0KSNGCkE05LHya\ngcFoawF7+RowGIDnczSbWwcY0aln3HjxjNGDONR62FBvR2K+cfgkmWlO3iTC8/mtvoTeAFk83MzP\nTRgRvZmIPqVCvj92yPs5Eb1b3/8QEb2i897bdfuniOhNN3vOo7I+AjsCI6cciMzIO/RAbCWC8LWI\nUAvRuy6yGZEFotis4RKDyZ0SsRXbDsONJtAwpTNZ+fv0WKMKwx7a3OSyj691CP2PCStp0yjLu9eO\nYkZxtYRTlGK5kkqE1HiUm/RneedUjQUZF/W/GKZxsCWwWLVYfmKOZpRgcT6N9ZO9VrWlIiLOLNoQ\nrSxOJRhcjUhMU7kA3weA/btSLD3JB/rTip0Wm6/1tEvA8Blgcpe8N77kMDsb7zkIyK9VYczleoJ8\nOyI0k5nQRs1PyfvbX2Jx5i9jzWx+2iDfcSFaGm10eCd9yi4lZBMXYPTleoLFmsVgQ9sjBgZ2Idpt\ngEQ4+R6HmhdYoPaeMky4DiOjv0ukLSGZNnq8BbEJadF0JjD8ALDQ3z7qZCuqBJ7KipxEsj5SF/Vv\nCnyP6Vyi4sE11aFjRvLMDngyBaznfzw4OfasGy+eMQA+oghMVTz+JYBvgBCaf5iIHmDmj3d2+z4A\n28z8KiJ6C4QY/TuI6EshwsKvhSiIvJ+IvkiPea5zHon1DuwojGSyb3OKfHSJpMXaLAoFJnNJuWWa\nwuNUSGH95EgMzM9EmiVqRdTQ18wG16RXyBf/h1dqFBA4vrc2i7WYNiNUo9ibtlgzGG40oV/Ilg6m\nduDUhM+zdXRQ9cig2HYRbFCzyJWMPfVVi6awUVixbOCWU1QrhFw4XUUzrIpyJOlUPs9zIeZbDZJJ\njXJdZnNPcVRsa4/TKcLoCqMO95Bh5w5nHpIJ85k3XJLJYQAACGZJREFUpJL+0hTj9hcbrH/CKf2T\n9FzlOzbI0izOsKQdywh4MA3DaRr01Ee1KVmdy2hH7odfNLQZCX/j2MRa474Ab2LDeQuYCKM3taQU\nh8+IV995VYHpWWC4GdsfqpUktEc0QwNqYwM7tQzOTOi/swsXgRsQcE3WRJmeZmiQzBmsNbB8S66v\nS9rMJrZX+J44UnYHl5CmRuV6so0JeGsHcA40GqK3W2zMNx1d3YR9FYDHmPlxACCiX4dIV3WdzbcC\n+J/19XsA/LySp38rgF9n5hLAE0T0mJ4PN3HOI7HegfXWW2+9HTM7QhDHYQK/X32jfZi5IaJdAKd0\n+59dd6wXAX6ucx6J9Q7sCGy6fWHzw+/6kadu9XXchJ0G8MLz/dwMh/+fHNlnfX5j+t0bbP8caukX\n0D7wnHu8OM/p+dje8z7ypTum52/Pd0z3fCEfuo/tP3w/v+f0Te5eENGDnb/foWK83g7r7Ls+P3mj\nfW60/TBsxQtSMO4d2BEYM5+51ddwM0ZEDzLz/bf6Oo7S+jEdD+vHdHTGzG8+wtNdAHBX5+/DhHz9\nPheIKAGwApGoerZjn+ucR2I9CrG33nrr7eTahwG8mojuJaIMAsp44Lp9HgDw3fr67wH4I2Zm3f4W\nRSneC+DVAP78Js95JNZHYL311ltvJ9S0pvVDEKV6C+AXmflRIvopAA8y8wMAfgHAv1OQxhbEIUH3\n+w0IOKMB8A+YuQWAw875Qlw/cU9JcmKMiL7/uvz3sbd+TMfD+jH19kJY78B666233no7ltbXwHrr\nrbfeejuW1juwl6gR0S8S0QYRfeyQ9/4hETERnda/V4jod4noYSJ6lIi+V7ffQ0R/QUQP6fYf6Jzj\n9UT0iFK9/HNtTAQRrRPR+4jo0/p7TbeT7vcYEX2UiL7yVoyps/8yEV0kop9/OYyJiFp9Tg8R0QOd\n7feS0Pd8moTOJ9Ptnze9zy0Y091E9F4i+gQRfdxf43EdExH9551n9BARLYjo227VmHoDwMz9z0vw\nB8DXAfhKAB+7bvtdkOLoUwBO67b/EcDP6uszkEJrpj+5bh8DeBLAef37zwH8NUgvx+8D+Fu6/Z8A\n+DF9/WOd836T7kcA3gDgQ7diTJ1j/hmAXwXw851tx3ZMACY3OP9vAHiLvv5XAH5QX/93AP6Vvn4L\ngHfr6y8F8DCAHMC9AD4DwN6iMX0AwDd0vn/D4z6mznHruv2Wjan/4T4Ce6kaM/8x5B/kevu/APwP\nONgYyACWNOIY63ENM1csNC+A/KMYACCi2wEsM/Ofsvw3/TKAb9P9vhXAu/T1u67b/sss9mcAVvU8\nL+qY9PpfD+AcgPf6nY/7mA4z3e+NEPqew67dj+k9AL5e9w/0Psz8BIAuvc+LNiYSnryEmd+n55ww\n8+w4j+m64/4egN+/lWPqrU8hHisjom8BcJGZH77urZ8H8CWQZsFHAPz3zEKWRkR3EdFHIdQuP8vM\nlyB0Lxc6x3cpYM4x82UA0N9ndfthlDN34Au0z3dMRGQA/B8AfvS6/Y/tmPS9gogeJKI/82kpCF3P\nDjP7ybN7fQfofQB06X1eCmP6IgA7RPRbRPQRIvrfSYhjj/OYuvYWAL+mr18yYzpp1veBHRMjoiGA\nHwfwjYe8/SYAD0FWga8E8D4i+o/MvMfMnwXw5UR0HsDvENF7cHP0MZ9zCc/jmGc/4fMYE4C3Avh/\nmPmzRAcu6diOiZn3ANzNzJeI6D4Af0REj+Bw4iZ/fZ8vvc/ztuf5nBIAfx3AfwrgaQDvBvA9OLyh\n9ViMSZ+Tj/a/DJJ6fLbrfrb3jnxMJ9H6COz42CshufKHiehJCD3LXxLRbQC+F8BvaSrsMQBPAPji\n7sEaeT0KmVQu6PHeulQvV3waTX9v6PaboZx5Mcb01wD8kO7/cwDeSkQ/c8zH5J8PWBi8PwCZ+Dch\naU2/0OxeX7h2unl6nxdzTBcAfISZH9fI43cgNajjPCZv/yWA32ZmryHzUhnTibPegR0TY+ZHmPks\nM7+CmV8B+Qf4SmZ+BrLC/XoAIKJzAF4D4HEiupOIBrp9DcDXAviUptH2iegNmo9/K4D/oB/VpY35\n7uu2v5XE3gBg16flXswxMfN3MvPduv8/hNSwfuw4j4mI1ogo1+2nIc/p41rL+/8g9ZbDrv3zofd5\nUccEoRNaIyLPE/rGl8GYvP1XiOlDvFTGdCKNXwJIkv7nc38g/yCXAdSQf67vu+79JxFRU+chgIZH\nAHwMwHfp9m8A8FEI2umjAL6/c/z9uu9nIDl/39R+CsD/C+DT+ntdtxNEpO4z+jn334oxXbf/9+Ag\nCvFYjgnA1+i2h/X393WOvw8ysT0G4N8jokoL/fsxff++zjE/rmP6FBSJeSueU+f79wiAX0JEJx7n\nMb0CwEUA5rrjX/Qx9T/cM3H01ltvvfV2PK1PIfbWW2+99XYsrXdgvfXWW2+9HUvrHVhvvfXWW2/H\n0noH1ltvvfXW27G03oH11ltvvfV2LK13YL311ltvvR1L6x1Yb7311ltvx9J6B9Zbb0doRPSfkWiL\nFUQ0ItGTet2tvq7eens5Wt/I3FtvR2xE9NMQBoYBgAvM/L/d4kvqrbeXpfUOrLfejthI1Hg/DGAB\n4GuYub3Fl9Rbby9L61OIvfV29LYOEUJcgkRivfXW2wtgfQTWW29HbET0AIBfh8h13M7MP3SLL6m3\n3l6W1gta9tbbERoRvRVAw8y/qgrEf0JEb2TmP7rV19Zbby836yOw3nrrrbfejqX1NbDeeuutt96O\npfUOrLfeeuutt2NpvQPrrbfeeuvtWFrvwHrrrbfeejuW1juw3nrrrbfejqX1Dqy33nrrrbdjab0D\n66233nrr7Vha78B666233no7lvb/A9V4XF9ysZCgAAAAAElFTkSuQmCC\n", 120 | "text/plain": [ 121 | "" 122 | ] 123 | }, 124 | "metadata": {}, 125 | "output_type": "display_data" 126 | } 127 | ], 128 | "source": [ 129 | "from matplotlib import pyplot as plt\n", 130 | "plt.show()" 131 | ] 132 | }, 133 | { 134 | "cell_type": "code", 135 | "execution_count": null, 136 | "metadata": { 137 | "collapsed": true 138 | }, 139 | "outputs": [], 140 | "source": [] 141 | } 142 | ], 143 | "metadata": { 144 | "kernelspec": { 145 | "display_name": "Python 3", 146 | "language": "python", 147 | "name": "python3" 148 | }, 149 | "language_info": { 150 | "codemirror_mode": { 151 | "name": "ipython", 152 | "version": 3 153 | }, 154 | "file_extension": ".py", 155 | "mimetype": "text/x-python", 156 | "name": "python", 157 | "nbconvert_exporter": "python", 158 | "pygments_lexer": "ipython3", 159 | "version": "3.6.1" 160 | } 161 | }, 162 | "nbformat": 4, 163 | "nbformat_minor": 2 164 | } 165 | -------------------------------------------------------------------------------- /subset.sh: -------------------------------------------------------------------------------- 1 | #!/bin/env bash 2 | # 3 | # This script crops the elevation model to the expected scene extent. 4 | # 5 | # It is necessary because otherwise SNAP performs poorly using continental-scale DSM. 6 | # 7 | 8 | file=$1 9 | window=$( 10 | grep POLYGON $(echo $file | sed 's:.zip$:.xml:') | 11 | sed 's:^.*(::; s:).*$::' | 12 | awk ' 13 | BEGIN{RS=","} 14 | {for(i=1;i<3;i++) 15 | { min[i]=(min[i] && min[i]<$i ? min[i]:$i); max[i]=(max[i] && max[i]>$i ? max[i]:$i) } 16 | } 17 | END{ print min[1],max[2],max[1],min[2] }' 18 | ) 19 | #echo $window 20 | rm -f subset.tif 21 | gdal_translate -projwin $window -projwin_srs EPSG:4326 -of GTiff -co TILED=YES elevation.tif subset.tif > /dev/null && 22 | echo DSM OK $window 23 | 24 | --------------------------------------------------------------------------------