├── README.md ├── .gitignore └── PS01-labor_in_Malawi.ipynb /README.md: -------------------------------------------------------------------------------- 1 | # Reproduction of Economic papers using python 3.0 2 | I decided to start a series of reproducing economics papers using Python. 3 | I will try to get the same results, using their data, that are shown in the paper, however, I will concentrate on how they came to the conclusion of choosing that particular model and explaining all the minor findings. 4 | The purpose of this repository is to post reproductions of the results of famous economic papers using python. In lieu of general codes, I'll concentrate on analyzing findings. 5 | -------------------------------------------------------------------------------- /.gitignore: -------------------------------------------------------------------------------- 1 | # Byte-compiled / optimized / DLL files 2 | __pycache__/ 3 | *.py[cod] 4 | *$py.class 5 | 6 | # C extensions 7 | *.so 8 | 9 | # Distribution / packaging 10 | .Python 11 | build/ 12 | develop-eggs/ 13 | dist/ 14 | downloads/ 15 | eggs/ 16 | .eggs/ 17 | lib/ 18 | lib64/ 19 | parts/ 20 | sdist/ 21 | var/ 22 | wheels/ 23 | pip-wheel-metadata/ 24 | share/python-wheels/ 25 | *.egg-info/ 26 | .installed.cfg 27 | *.egg 28 | MANIFEST 29 | 30 | # PyInstaller 31 | # Usually these files are written by a python script from a template 32 | # before PyInstaller builds the exe, so as to inject date/other infos into it. 33 | *.manifest 34 | *.spec 35 | 36 | # Installer logs 37 | pip-log.txt 38 | pip-delete-this-directory.txt 39 | 40 | # Unit test / coverage reports 41 | htmlcov/ 42 | .tox/ 43 | .nox/ 44 | .coverage 45 | .coverage.* 46 | .cache 47 | nosetests.xml 48 | coverage.xml 49 | *.cover 50 | *.py,cover 51 | .hypothesis/ 52 | .pytest_cache/ 53 | 54 | # Translations 55 | *.mo 56 | *.pot 57 | 58 | # Django stuff: 59 | *.log 60 | local_settings.py 61 | db.sqlite3 62 | db.sqlite3-journal 63 | 64 | # Flask stuff: 65 | instance/ 66 | .webassets-cache 67 | 68 | # Scrapy stuff: 69 | .scrapy 70 | 71 | # Sphinx documentation 72 | docs/_build/ 73 | 74 | # PyBuilder 75 | target/ 76 | 77 | # Jupyter Notebook 78 | .ipynb_checkpoints 79 | 80 | # IPython 81 | profile_default/ 82 | ipython_config.py 83 | 84 | # pyenv 85 | .python-version 86 | 87 | # pipenv 88 | # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control. 89 | # However, in case of collaboration, if having platform-specific dependencies or dependencies 90 | # having no cross-platform support, pipenv may install dependencies that don't work, or not 91 | # install all needed dependencies. 92 | #Pipfile.lock 93 | 94 | # PEP 582; used by e.g. github.com/David-OConnor/pyflow 95 | __pypackages__/ 96 | 97 | # Celery stuff 98 | celerybeat-schedule 99 | celerybeat.pid 100 | 101 | # SageMath parsed files 102 | *.sage.py 103 | 104 | # Environments 105 | .env 106 | .venv 107 | env/ 108 | venv/ 109 | ENV/ 110 | env.bak/ 111 | venv.bak/ 112 | 113 | # Spyder project settings 114 | .spyderproject 115 | .spyproject 116 | 117 | # Rope project settings 118 | .ropeproject 119 | 120 | # mkdocs documentation 121 | /site 122 | 123 | # mypy 124 | .mypy_cache/ 125 | .dmypy.json 126 | dmypy.json 127 | 128 | # Pyre type checker 129 | .pyre/ 130 | -------------------------------------------------------------------------------- /PS01-labor_in_Malawi.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "# Problem Solving 01\n", 8 | "_____\n", 9 | "## Replication of a paper published by Dr. Jessica Goldberg - \"Experimental Evidence about Labor Supply in Rural Malawi\"\n", 10 | "\n", 11 | "> #### Original paper, published by **_American Economic Journal_** in 2016 can be found **[here](https://drive.google.com/file/d/18QQqtV2gj5xQBtjcXm9OIFUcILiN7vYD/view?usp=sharing)**\n", 12 | "\n", 13 | "_______________________\n", 14 | "\n", 15 | "In this session, we work on a paper that analysis labor supply in Malawi in an experimental setting.\n", 16 | "\n", 17 | "_Abstract: I use a field experiment to estimate the wage elasticity of employment in the day labor market in rural Malawi. Once a week for 12 consecutive weeks, I make job offers for a workfare-type program to 529 adults. The daily wage varies from the tenth to the ninetieth percentile of the wage distribution, and individuals are entitled to work a maximum of one day per week. In this context (the low agricultural season), 74 percent of individuals worked at the lowest wage, and consequently the estimated labor supply elasticity is low (0.15), regardless of observable characteristics._\n", 18 | "\n", 19 | "The paper uses data collected by the author and her colleagues in Malawi. They randomly offered jobs with different wages to individuals in 10 villages for 12 consecutive weeks and recorded acceptance rates. They used data to estimate the elasticity of labor supply to wage. \n", 20 | "The variable of interest in this paper is acceptance rate in each village in each week and the explanatory variable is wage.\n", 21 | "\n", 22 | "The other explanatory variables may be variables that distinguish each village from the others.\n", 23 | "\n", 24 | "The main finding of the paper is that in the off-season, the majority of workers accept the job offer at the lowest wage, and the elasticity of labor is low, meaning that the main force of accepting job is probably factors beyond wage." 25 | ] 26 | }, 27 | { 28 | "cell_type": "markdown", 29 | "metadata": {}, 30 | "source": [ 31 | "_loading all the neccessary tools needed for the project:_" 32 | ] 33 | }, 34 | { 35 | "cell_type": "code", 36 | "execution_count": 1, 37 | "metadata": {}, 38 | "outputs": [], 39 | "source": [ 40 | "%%capture\n", 41 | "! pip install seaborn\n", 42 | "import seaborn as sns\n", 43 | "import matplotlib.pyplot as plt\n", 44 | "%matplotlib inline\n", 45 | "import numpy as np\n", 46 | "import pandas as pd\n", 47 | "from matplotlib.ticker import StrMethodFormatter" 48 | ] 49 | }, 50 | { 51 | "cell_type": "markdown", 52 | "metadata": {}, 53 | "source": [ 54 | "## Part 1\n", 55 | "-----\n", 56 | "loading the dataset" 57 | ] 58 | }, 59 | { 60 | "cell_type": "code", 61 | "execution_count": 2, 62 | "metadata": {}, 63 | "outputs": [ 64 | { 65 | "data": { 66 | "text/html": [ 67 | "
\n", 68 | "\n", 81 | "\n", 82 | " \n", 83 | " \n", 84 | " \n", 85 | " \n", 86 | " \n", 87 | " \n", 88 | " \n", 89 | " \n", 90 | " \n", 91 | " \n", 92 | " \n", 93 | " \n", 94 | " \n", 95 | " \n", 96 | " \n", 97 | " \n", 98 | " \n", 99 | " \n", 100 | " \n", 101 | " \n", 102 | " \n", 103 | " \n", 104 | " \n", 105 | " \n", 106 | " \n", 107 | " \n", 108 | " \n", 109 | " \n", 110 | " \n", 111 | " \n", 112 | " \n", 113 | " \n", 114 | " \n", 115 | " \n", 116 | " \n", 117 | " \n", 118 | " \n", 119 | " \n", 120 | " \n", 121 | " \n", 122 | " \n", 123 | " \n", 124 | " \n", 125 | " \n", 126 | " \n", 127 | " \n", 128 | " \n", 129 | " \n", 130 | " \n", 131 | " \n", 132 | " \n", 133 | " \n", 134 | " \n", 135 | " \n", 136 | " \n", 137 | " \n", 138 | " \n", 139 | " \n", 140 | " \n", 141 | " \n", 142 | " \n", 143 | " \n", 144 | " \n", 145 | " \n", 146 | " \n", 147 | " \n", 148 | " \n", 149 | " \n", 150 | " \n", 151 | " \n", 152 | " \n", 153 | " \n", 154 | " \n", 155 | " \n", 156 | " \n", 157 | " \n", 158 | " \n", 159 | " \n", 160 | " \n", 161 | " \n", 162 | " \n", 163 | " \n", 164 | " \n", 165 | " \n", 166 | " \n", 167 | " \n", 168 | " \n", 169 | " \n", 170 | " \n", 171 | " \n", 172 | " \n", 173 | " \n", 174 | " \n", 175 | " \n", 176 | " \n", 177 | " \n", 178 | " \n", 179 | " \n", 180 | " \n", 181 | " \n", 182 | " \n", 183 | " \n", 184 | " \n", 185 | " \n", 186 | " \n", 187 | " \n", 188 | " \n", 189 | " \n", 190 | " \n", 191 | " \n", 192 | " \n", 193 | " \n", 194 | " \n", 195 | " \n", 196 | " \n", 197 | " \n", 198 | " \n", 199 | " \n", 200 | " \n", 201 | " \n", 202 | " \n", 203 | " \n", 204 | " \n", 205 | " \n", 206 | " \n", 207 | " \n", 208 | " \n", 209 | " \n", 210 | " \n", 211 | " \n", 212 | " \n", 213 | " \n", 214 | " \n", 215 | " \n", 216 | " \n", 217 | " \n", 218 | " \n", 219 | " \n", 220 | " \n", 221 | " \n", 222 | " \n", 223 | " \n", 224 | " \n", 225 | " \n", 226 | " \n", 227 | " \n", 228 | " \n", 229 | " \n", 230 | "
weekvillagevil_laborvil_hhbadshock_prevgoodshock_prevbadshock_prev_lnwagegoodshock_prev_lnwagewagelnwage...wagedum3wagedum4wagedum5wagedum6wagedum7wagedum8wagedum9wagedum10wagedum11wagedum12
01CHIMOWA1.0000001.0000NaNNaNNaNNaN100.04.605170...0000010000
12CHIMOWA0.8571430.75000.2857140.3265311.1698131.33692960.04.094345...0100000000
23CHIMOWA0.0000000.00000.4489800.3061222.1494861.465559120.04.787492...0000000100
34CHIMOWA0.8979590.81250.9183670.1836733.1235490.62471030.03.401197...0000000000
45CHIMOWA1.0000001.00000.2040820.1836730.9592820.863354110.04.700480...0000001000
\n", 231 | "

5 rows × 29 columns

\n", 232 | "
" 233 | ], 234 | "text/plain": [ 235 | " week village vil_labor vil_hh badshock_prev goodshock_prev \\\n", 236 | "0 1 CHIMOWA 1.000000 1.0000 NaN NaN \n", 237 | "1 2 CHIMOWA 0.857143 0.7500 0.285714 0.326531 \n", 238 | "2 3 CHIMOWA 0.000000 0.0000 0.448980 0.306122 \n", 239 | "3 4 CHIMOWA 0.897959 0.8125 0.918367 0.183673 \n", 240 | "4 5 CHIMOWA 1.000000 1.0000 0.204082 0.183673 \n", 241 | "\n", 242 | " badshock_prev_lnwage goodshock_prev_lnwage wage lnwage ... \\\n", 243 | "0 NaN NaN 100.0 4.605170 ... \n", 244 | "1 1.169813 1.336929 60.0 4.094345 ... \n", 245 | "2 2.149486 1.465559 120.0 4.787492 ... \n", 246 | "3 3.123549 0.624710 30.0 3.401197 ... \n", 247 | "4 0.959282 0.863354 110.0 4.700480 ... \n", 248 | "\n", 249 | " wagedum3 wagedum4 wagedum5 wagedum6 wagedum7 wagedum8 wagedum9 \\\n", 250 | "0 0 0 0 0 0 1 0 \n", 251 | "1 0 1 0 0 0 0 0 \n", 252 | "2 0 0 0 0 0 0 0 \n", 253 | "3 0 0 0 0 0 0 0 \n", 254 | "4 0 0 0 0 0 0 1 \n", 255 | "\n", 256 | " wagedum10 wagedum11 wagedum12 \n", 257 | "0 0 0 0 \n", 258 | "1 0 0 0 \n", 259 | "2 1 0 0 \n", 260 | "3 0 0 0 \n", 261 | "4 0 0 0 \n", 262 | "\n", 263 | "[5 rows x 29 columns]" 264 | ] 265 | }, 266 | "execution_count": 2, 267 | "metadata": {}, 268 | "output_type": "execute_result" 269 | } 270 | ], 271 | "source": [ 272 | "path = \"PS03.dta\"\n", 273 | "df = pd.read_stata(path)\n", 274 | "df.head(5)" 275 | ] 276 | }, 277 | { 278 | "cell_type": "markdown", 279 | "metadata": {}, 280 | "source": [ 281 | "### 1.a) First, we have to know our variable of interest, acceptance rate, and the main explanatory variable, wage." 282 | ] 283 | }, 284 | { 285 | "cell_type": "code", 286 | "execution_count": 3, 287 | "metadata": {}, 288 | "outputs": [ 289 | { 290 | "data": { 291 | "text/plain": [ 292 | "count 120.000000\n", 293 | "mean 0.845476\n", 294 | "std 0.171205\n", 295 | "min 0.000000\n", 296 | "25% 0.809310\n", 297 | "50% 0.907692\n", 298 | "75% 0.958333\n", 299 | "max 1.000000\n", 300 | "Name: vil_labor, dtype: float64" 301 | ] 302 | }, 303 | "execution_count": 3, 304 | "metadata": {}, 305 | "output_type": "execute_result" 306 | } 307 | ], 308 | "source": [ 309 | "df['vil_labor'].describe()" 310 | ] 311 | }, 312 | { 313 | "cell_type": "markdown", 314 | "metadata": {}, 315 | "source": [ 316 | "By observing dependent variable 'vil_labor' we see that the average acceptance rate among the villages was **84%**" 317 | ] 318 | }, 319 | { 320 | "cell_type": "code", 321 | "execution_count": 4, 322 | "metadata": {}, 323 | "outputs": [ 324 | { 325 | "data": { 326 | "text/plain": [ 327 | "count 120.000000\n", 328 | "mean 85.000000\n", 329 | "std 34.665264\n", 330 | "min 30.000000\n", 331 | "25% 57.500000\n", 332 | "50% 85.000000\n", 333 | "75% 112.500000\n", 334 | "max 140.000000\n", 335 | "Name: wage, dtype: float64" 336 | ] 337 | }, 338 | "execution_count": 4, 339 | "metadata": {}, 340 | "output_type": "execute_result" 341 | } 342 | ], 343 | "source": [ 344 | "df['wage'].describe()" 345 | ] 346 | }, 347 | { 348 | "cell_type": "markdown", 349 | "metadata": {}, 350 | "source": [ 351 | "By observing independent variable 'wage' we see that the average offered wage among the villages was **85** Malawi Kwacha" 352 | ] 353 | }, 354 | { 355 | "cell_type": "code", 356 | "execution_count": 5, 357 | "metadata": {}, 358 | "outputs": [ 359 | { 360 | "data": { 361 | "text/plain": [ 362 | "Text(0.5, 1.0, 'Histogram for the A-Rate ')" 363 | ] 364 | }, 365 | "execution_count": 5, 366 | "metadata": {}, 367 | "output_type": "execute_result" 368 | }, 369 | { 370 | "data": { 371 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEbCAYAAAA8pDgBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deZxcVZ338c+XBCKyyBKWZg1IQBlHGm2DKCOB4AYMoMMqQlDGuI2KoAKiAoLPoLLI88AjRJaggyCg7KJiBNwgAlKC7BC2QAjQhEV25Dd/nNOkUnSnq9Jdt+g+3/frVa+qu5x7f+dWd/3qnHPrXkUEZmZWpiU6HYCZmXWOk4CZWcGcBMzMCuYkYGZWMCcBM7OCOQmYmRXMSWCUkXSYpMcGWDZD0nV10/tICknLNrntDfP2VxiueF/vJH1L0oOSXpE0ow3bXyof0+6G+RPye7P9cO+znxiuyvua0kKZGblM5GMzR9JZkiYsxv5Xzceg5bI2dE4CZbsU2Bx4tsn1NwQOBYpIApJ6gMOBE4D3Ake0YTdLkY5p92ArtoOkNYF/y5N7tFj8NtLfzxbAt4DJwC8lLdXidlYlHYMJLZazYTC20wFY50TEo8CjnY5jUSQJGBcRz3dg92/JzydGxFND2ZCkpSPiuWGIabjtnp9/B/yHpM9FxItNln0mIq7Jr/8s6VngLKAH+PMwx2lt4pZAwfrrDpJ0sKS7JD0vaZ6kX0laXdJk4OK82j253L115bolzZT0rKT5ks6UtFrD/taRdJmk5yTdk/d/nqQr69Y5TNJjkraQdC3wPLCLpGUknSDp9ryPeySdKGn5hn2EpC9LOkZSb97WV/KyqZJmS3pC0mmS3rCIYzMD+EmefDJvd3Jetp6kCyQ9JelpSRdL2qCfOPaX9ANJjwI3DbCrp/Pz6XXdKxPqlr9R0smSnsxdLodLWuj/VtLbJF2aY3la0rmSVh+obg32AK4Bvktq4X2oyXL9+Vt+Xrsutq58rGfn9/0OSUf2tRZyXfuOzRV9x6Cu/Eq5/vPy3+SfJW02hBitgVsCo5Sk/t5bDVJmb+DrwIHAzcDKwNbAMsBfga8ARwMfBeYCL+RyqwBXArcCHwOWBY4CLpfUExEv5m/0F5E+aD5J+nD/JrAKcHdDKG8EzgC+B9wBPJTnjQEOIbVe1s6vzwU+2FD+AFJX1x7A9sD3Ja0KvAv4IrAOcFze9lEDHI4jgAeAb+Rj8Bxwi6RxwEzgJeBTwMukLqOrJP1rRDxet42vAr8H9mLgL1xbk76FH5ljhnRsu/Lr7wE/B3YGppC6XW4GzgHIyedPwHV5P2Ny7BdLmhSLuC6MpInAO4Ev5To9ko/ZRQOVGcQ6+fmeunnjgceB/YH5pC7Fw0jv+6dzXfcEzgQ+T/o764tvHPBb0t/MV3N8nwV+K2liRDy8mHFavYjwYxQ9SP9gsYjHdXXr7pPnLZunTwB+vohtb5/Xn9Aw/yjgCWD5unmT8rp75Ont8vSkunXWJH2YXtlP/DsOUs+xpH76ANapmx/AFXXTS5A+aOY3xHcOMGuQfSx0fPK8z5A++Nevm7cW8CJwcEMcNzTxfi2b192nYf6EPP/HDfNrwNl10z8BbgeWqps3EfgnsN0g+/5WXq8rT58IPAMs00TcM0iJZyywJPB24Abgsibet4+RvgQslee9Ldd1csO6++bjOrGh/N3A9zv9vzZaHu4OGp2eJH3rbXxcMki5GrBt7nKYJGlMk/ubBPwm6vrNI+IvwL2kQUPy/h/O8/vWeRC4vp/tBXBZ40xJe0m6QdI/SMnjj3nRhg2rzqzbxyukb6bXx8L9+neRklCrJgF/jYjZdfuYQ/o2vkXDupcydL9pmL6FlHT6bAOcD7wiaWxuAd5DOvY9g2x7d+CqiJibp88itbh26FtB0pi+7fbTunwn6X14kdQVtDwNg8tK9pN0i6Tn8vpnAuNY0HIYyDakv497GvZ/VRN1syY5CYxOL0fEdY0PoHeQcqeRuoN2BWYB8yQd0UQy6ALm9TN/HrBSfr06/Q9C9zdvfjQMTkr6CPBj4GpgF+DdwEfy4sa+/Scapl8cYN6AYwKL0Exd6+cN1WBxjyd1373U8Fifur75RkqnpL4VuETSCkqn/d5M6nqr/yC/u367DeMVt5KS+3uAr5E+1E9u2NV+wDGkRLUjKYl+Pi8b7PiPJ73PjXX7xKLqZq3xmIC9Kn9rPg44TtLapL7a7wAPAictouhc0ml+jVZjwTf9h0n9wI1WIXUNLBRKP+vtQuq++VzfDElbLiKmdpkL/Es/81cj9X3Xq+I67Y+TPmBP6WdZv78Xyfo+6I/Jj3qrSFoxIuYD/0761t7nobrXz+YvFwBX54H2b0s6NiJm5fm7AOdGxCF9hSRtvMgaLfA4qcvps/0se6HJbdgg3BKwfkXEAxFxFKnbpO+ftu/beeM3uFnAByUt1zdD0rtI/dp9XTbXAqtLmlS3zpqkLoVmLM1r//H3bLLscJoFvFPSen0zcj3ew4K6tmKgY9qsmaQ+9ev7af3d21+BPEi/G3AFsFXD42OkPv7/AIiImxq2uajTR48hJZ4D6+Y1874NdAxmAhsA9/dTt4HOtrIWuSVgr5J0Munb1zWkcYWtSIOMff/Ut+fnT0s6m/RN8CbgWNK3tV9L+i4Lzg66iXRmC8AvSf3G50g6mHS2zaGkLpNXmgjvcuBESYeQPoi3JZ0tU7UZpONxmaS+gdXDSB9+jV0hg4p05tQ9wK6S/k5qFd3YwiYOA/4CXCrptBzHmsD7gRkRcWU/Zd4DrAsc2N/y/P7sQf+tiwFFxLOSjgOOkLRhRNxBet++KGkWqWtpT9IHe737SX8PUyU9CbyUWxg/Jg3EXynpaGA26Yy1SaTxpeNaic/655aA1bsaeB9wOulD+yPApyLiAoCIuI90muhHSQOhF+f5j5ISxvOkwcUTgT8A7+/75hgRQeoTvi1v/3jgh6SBzmZ+iHUy6Zvml4BfkD7EPjbUCrcqIl4gDVjeBpxKOpX1PtKZLY3dQc36DKn/+7ekFtMaLcRzB6nf/FlgOmlA/XDSt++7Bii2B+mYD3Qq6P8AkyV1DbB8UU7I2z4gT3+b9DdxZH5+kXSabn0dniedbvtO0qDvtXXztyIlksNJg+THk76Y/AUbFkr/m2bVk/Qm0re7EyLi0E7HY1YidwdZZSR9htT1cydpQHh/0qDjaZ2My6xkTgJWpRdI/enrkM6c+QuwTe5mMrMOcHeQmVnBPDBsZlawEdcdNH78+JgwYULL5Z577jmWXnrp4Q/odazEOkOZ9XadyzCUOl9//fWPRcRrfrA54pLAhAkTuO666wZfsUGtVqO7uyP37eiYEusMZdbbdS7DUOosqd+xN3cHmZkVzEnAzKxgTgJmZgVzEjAzK5iTgJlZwZwEzMwK5iRgZlYwJwEzs4I5CZiZFWzE/WLYzKzTdLgq32cc2p6LfbolYGZWMCcBM7OCOQmYmRXMScDMrGBOAmZmBXMSMDMrmJOAmVnBnATMzArmJGBmVjAnATOzgjkJmJkVrLIkIGkFSedJuk3SrZI2l7SSpMsl3ZmfV6wqHjMzq7YlcDzwq4h4C7AJcCtwEDAzIiYCM/O0mZlVpJIkIGl54H3AqQAR8WJEPAHsCJyRVzsD2KmKeMzMLKmqJbA+8ChwuqQbJJ0iaRlgtYiYC5CfV60oHjMzo7r7CYwF3gF8ISJmSTqeFrp+JE0DpgF0dXVRq9VaDqC3t3exyo1kJdYZyqy36zz61Wq1ttS5qiQwB5gTEbPy9HmkJDBPUldEzJXUBTzSX+GImA5MB+jp6Ynu7u6WA6jVaixOuZGsxDpDmfV2nSt2YfW77O7ubkudK+kOioiHgQckbZRnTQFuAS4CpuZ5U+nIoTUzK1eVt5f8AnCmpKWA2cAnSEnoHEn7AvcDu1QYj5lZ8SpLAhFRA3r6WTSlqhjMzGxh/sWwmVnBnATMzArmJGBmVjAnATOzgjkJmJkVzEnAzKxgTgJmZgVzEjAzK5iTgJlZwZwEzMwK5iRgZlYwJwEzs4I5CZiZFcxJwMysYE4CZmYFcxIwMyuYk4CZWcGcBMzMCuYkYGZWMCcBM7OCOQmYmRXMScDMrGBOAmZmBRtb1Y4k3Qs8DfwTeDkieiStBPwMmADcC+waEfOrisnMrHRVtwS2iojuiOjJ0wcBMyNiIjAzT5uZWUU63R20I3BGfn0GsFMHYzEzK06VSSCA30i6XtK0PG+1iJgLkJ9XrTAeM7PiVTYmALw3Ih6StCpwuaTbmi2Yk8Y0gK6uLmq1Wss77+3tXaxyI1mJdYYy6+06j361Wq0tda4sCUTEQ/n5EUnnA5OAeZK6ImKupC7gkQHKTgemA/T09ER3d3fL+6/VaixOuZGsxDpDmfV2nSt2YfW77O7ubkudK+kOkrSMpOX6XgMfAP4OXARMzatNpSOH1sysXFW1BFYDzpfUt8+fRsSvJF0LnCNpX+B+YJeK4jEzMypKAhExG9ikn/m9wJQqYjAzs9fq9CmiZmbWQU4CZmYFcxIwMyuYk4CZWcGcBMzMCuYkYGZWMCcBM7OCOQmYmRXMScDMrGBOAmZmBXMSMDMrmJOAmVnBnATMzArmJGBmVjAnATOzgjkJmJkVzEnAzKxgTScBSV+UNL6dwZiZWbVaaQlsA9wr6RJJu0ka166gzMysGk0ngYjYAVgXuAzYD3hY0imS3teu4MzMrL1aGhOIiN6IODEiNge2BN4FXCHpXkmHSFq2LVGamVlbtDwwLGmKpNOBK4F5wN7AXsCmpFaCmZmNEGObXVHS0cDuwJPAj4FvRMSDdcuvAeYPe4RmZtY2TScB4A3ARyLi2v4WRsRLknoWtQFJY4DrgAcjYntJ6wFnAysBfwX2iogXW4jJzMyGoJXuoP8G7qqfIWlFSWv0TUfEbYNs40vArXXT3wWOi4iJpFbEvi3EY2ZmQ9RKErgAWKth3lrA+c0UlrQWsB1wSp4WsDVwXl7lDGCnFuIxM7MhaqU7aKOIuKl+RkTcJOktTZb/AfA1YLk8vTLwRES8nKfnAGv2V1DSNGAaQFdXF7VarYWwk97e3sUqN5KVWGcos96u8+hXq9XaUudWksAjkjaIiFe7hCRtAPQOVlDS9sAjEXG9pMl9s/tZNforHxHTgekAPT090d3d3ULYSa1WY3HKjWQl1hnKrLfrXLELq99ld3d3W+rcShI4Dfi5pEOA2cCbgSPI3TuDeC+wg6RtSQPMy5NaBitIGptbA2sBD7USvJmZDU0rSeAo4CXgaGBt4AFSAjh2sIIRcTBwMEBuCXwlIvaUdC6wM+kMoal0JL+amZWr6SQQEa8A38+P4XIgcLakI4EbgFOHcdtmZjaIVloCSNoI2ARY6PIQEXFas9uIiCtJvzYmImYDk1qJwczMhk8rvxj+OvAt4G/As3WLgjReYGZmI0wrLYH9gEkRcWO7gjEzs2q18mOx54DBfhFsZmYjSCtJ4JvA/5PUJWmJ+ke7gjMzs/ZqpTtoRn7+z7p5Io0JjBmugMzMrDqtJIH12haFmZl1RCu/E7gPIHf/rBYRc9sWlZmZVaLp/nxJK0j6KfA8+ZLSknbIP/QyM7MRqJVB3ZNIdxVbF+i78cvVwG7DHZSZmVWjlTGBKcAa+Q5iARARj0patT2hmZlZu7XSEngSGF8/Q9I6gMcGzMxGqFaSwCmkS0lvBSwhaXPS3cBOaktkZmbWdq10B32XNCh8IrAk6XpBJwPHtyEuMzOrQCuniAbpRjA/aF84ZmZWpVauIrr1QMsi4nfDE46ZmVWple6gxhu+rAIsRbpB/PrDFpGZmVWmle6ghS4bIWkM8A3g6eEOyszMqrHYVwCNiH8C3wG+NnzhmJlZlYZ6Gej3A68MRyBmZla9VgaGHyBdNrrPG4E3AJ8b7qDMzKwarQwMf7xh+hngjoh4ahjjMTOzCrUyMHxVOwMxM7PqtdId9BMW7g7qV0TsPaSIzMysMq0MDD8B7ES6leScXHbHPP/uusdrSHqDpL9I+pukmyUdnuevJ2mWpDsl/UzSUkOpjJmZtaaVMYENge0i4g99MyRtAXwzIj44SNkXgK0j4h+SlgT+KOkyYH/guIg4W9JJwL7AD1urgpmZLa5WWgLvBq5pmDcL2HywgpH8I08umR8BbA2cl+efQWppmJlZRVppCdwA/B9J34qI5yQtDRwO1JopnH9hfD2wAelKpHcDT0TEy3mVOcCaA5SdBkwD6OrqolZrapcL6e3tXaxyI1mJdYYy6+06j361Wq0tdW4lCewD/BR4UtJ8YEXgOmDPZgrnXxh3S1oBOB94a3+rDVB2OjAdoKenJ7q7u1sIO6nVaixOuZGsxDpDmfV2nSt2YfW77O7ubkudWzlF9F7gPZLWBtYA5kbE/a3uMCKekHQlqXtpBUljc2tgLeChVrdnZmaLr6XLRkhaGZgMbBkR90taQ9JaTZRbJbcAyN1I2wC3AlcAO+fVptKR/GpmVq6mk4CkLYHbSd0/38yzJ9Lc2TxdwBWSbgSuBS6PiEuAA4H9Jd0FrMxrL1dtZmZt1MqYwA+A3SJiZh4TgHR20KTBCkbEjcCm/cyf3Ux5MzNrj1a6gyZExMz8um8A90VaSyRmZvY60koSuEVS44/CtgFuGsZ4zMysQq18iz8AuETSpcDSkk4G/p106QgzMxuBmm4JRMQ1wNuBm4HTgHuASRFxbZtiMzOzNmuqJZB/7TsT+GBEfK+9IZmZWVWaagnkX/uu1+z6ZmY2MrTyoX448ENJ60oaI2mJvke7gjMzs/ZqZWD4lPy8NwtOEVV+PWY4gzIza4YOV+X7jEMHvbfWiDJoEpC0ekQ8TOoOMjOzUaSZlsAdwPIRcR+ApF9ExEfbG5aZmVWhmf78xvbW5DbEYWZmHdBMEhhdHWBmZvaqZrqDxkraigUtgsZpIuJ37QjOzMzaq5kk8AjpF8J9ehumA1h/OIMyM7NqDJoEImJCBXGYmVkH+IdeZmYFcxIwMyuYk4CZWcGcBMzMCuYkYGZWMCcBM7OCOQmYmRXMScDMrGCVJAFJa0u6QtKtkm6W9KU8fyVJl0u6Mz+vWEU8ZmaWVNUSeBk4ICLeCrwb+LykjYGDgJkRMZF0D+ODKorHzMyoKAlExNyI+Gt+/TRwK7AmsCNwRl7tDGCnKuIxM7OkldtLDgtJE4BNgVnAahExF1KikLTqAGWmAdMAurq6qNVqLe+3t7d3scqNZCXWGcqsd6l17oROHedardaW97nSJCBpWeDnwH4R8ZTU3P1BI2I6MB2gp6cnuru7W953rVZjccqNZCXWGcqsd6l17oTu7m64sDP7bcf7XNnZQZKWJCWAMyPiF3n2PEldeXkX6bLVZmZWkarODhJwKnBrRBxbt+giYGp+PZWO5Fczs3JV1R30XmAv4CZJfW24rwNHAedI2he4H9ilonjMzIyKkkBE/JHX3rC+z5QqYjAzs9fyL4bNzArmJGBmVjAnATOzgjkJmJkVzEnAzKxgTgJmZgVzEjAzK5iTgJlZwZwEzMwK5iRgZlYwJwEzs4I5CZiZFcxJwMysYE4CZmYFcxIwMyuYk4CZWcGcBMzMCuYkYGZWMCcBM7OCOQmYmRWskhvNm1n76XBVvs84NCrfpw0vtwTMzArmJGBmVrBKkoCk0yQ9IunvdfNWknS5pDvz84pVxGJmZgtU1RKYAXyoYd5BwMyImAjMzNNmZlahSpJARPweeLxh9o7AGfn1GcBOVcRiZmYLdPLsoNUiYi5ARMyVtOpAK0qaBkwD6Orqolartbyz3t7exSo3kpVYZyiz3r29vR3ZbyePc2l1rtVqbfnbHhGniEbEdGA6QE9PT3R3d7e8jVqtxuKUG8lKrDOUWe9OfTB18jh3tM4Xdma/7fjb7uTZQfMkdQHk50c6GIuZWZE6mQQuAqbm11PpSG41MytbVaeIngVcDWwkaY6kfYGjgPdLuhN4f542M7MKVTImEBF7DLBoShX7NzOz/vkXw2ZmBXMSMDMrmJOAmVnBRsTvBMzs9cuXsB7Z3BIwMyuYk4CZWcGcBMzMCuYkYGZWMCcBM7OCOQmYmRXMScDMrGBOAmZmBXMSMDMrmH8xbKPOphduWvndKfwLVhup3BIwMyuYk4CZWcHcHWQ2jHwxNRtp3BIwMyuYk4CZWcHcHWRt464Rs9c/twTMzArmJGBmVjAnATOzgnV8TEDSh4DjgTHAKRFxVNv25T5qM7OFdLQlIGkMcCLwYWBjYA9JG3cyJjOzknS6O2gScFdEzI6IF4GzgR07HJOZWTEU0bnuCkk7Ax+KiP/M03sBm0XEfzWsNw2Ylic3Am5fjN2NBx4bQrgjUYl1hjLr7TqXYSh1XjciVmmc2ekxgf466V+TlSJiOjB9SDuSrouInqFsY6Qpsc5QZr1d5zK0o86d7g6aA6xdN70W8FCHYjEzK06nk8C1wERJ60laCtgduKjDMZmZFaOj3UER8bKk/wJ+TTpF9LSIuLlNuxtSd9IIVWKdocx6u85lGPY6d3Rg2MzMOqvT3UFmZtZBTgJmZgUbdUlA0ock3S7pLkkH9bN8nKSf5eWzJE2oPsrh1USd95d0i6QbJc2UtG4n4hxOg9W5br2dJYWkUXEqYTP1lrRrfr9vlvTTqmMcbk38fa8j6QpJN+S/8W07EedwkXSapEck/X2A5ZL0f/PxuFHSO4a0w4gYNQ/S4PLdwPrAUsDfgI0b1vkccFJ+vTvws07HXUGdtwLemF9/toQ65/WWA34PXAP0dDruit7ricANwIp5etVOx11BnacDn82vNwbu7XTcQ6zz+4B3AH8fYPm2wGWk31m9G5g1lP2NtpZAM5eh2BE4I78+D5giqforyw2fQescEVdExLN58hrS7zFGsmYvN3IE8D3g+SqDa6Nm6v0p4MSImA8QEY9UHONwa6bOASyfX7+JEf5bo4j4PfD4IlbZEfhxJNcAK0jqWtz9jbYksCbwQN30nDyv33Ui4mXgSWDlSqJrj2bqXG9f0reIkWzQOkvaFFg7Ii6pMrA2a+a93hDYUNKfJF2Tr9I7kjVT58OAj0uaA/wS+EI1oXVMq//zi9Tpy0YMt2YuQ9HUpSpGkKbrI+njQA+wZVsjar9F1lnSEsBxwD5VBVSRZt7rsaQuocmkFt8fJL0tIp5oc2zt0kyd9wBmRMQxkjYHfpLr/Er7w+uIYf0MG20tgWYuQ/HqOpLGkpqPi2p6vd41dekNSdsAhwA7RMQLFcXWLoPVeTngbcCVku4l9ZteNAoGh5v9+74wIl6KiHtIF1ucWFF87dBMnfcFzgGIiKuBN5AutDZaDevldkZbEmjmMhQXAVPz652B30UebRmhBq1z7ho5mZQARnofMQxS54h4MiLGR8SEiJhAGgfZISKu60y4w6aZv+8LSCcCIGk8qXtodqVRDq9m6nw/MAVA0ltJSeDRSqOs1kXA3vksoXcDT0bE3MXd2KjqDooBLkMh6dvAdRFxEXAqqbl4F6kFsHvnIh66Juv8fWBZ4Nw8Bn5/ROzQsaCHqMk6jzpN1vvXwAck3QL8E/hqRPR2LuqhabLOBwA/kvRlUrfIPiP5i52ks0jdeePzOMehwJIAEXESadxjW+Au4FngE0Pa3wg+VmZmNkSjrTvIzMxa4CRgZlYwJwEzs4I5CZiZFcxJwMysYE4CZmYFcxKw1w1JV0qaL2lch+OYIenITsbQn3xJ7Gck/UPSg5KOlTSmybKT8znnZgtxErDXhXxfh38j/dhnxP6QrQKbRMSypOs/7QZ8ssPx2AjnJGCvF3uTLu8wgwWX9QBA0tKSjpF0n6QnJf1R0tJ52RaS/izpCUkPSNonzx8n6WhJ90uaJ+mkujKTJc2R9HVJj0m6V9Keedk0YE/ga/kb98V5/kGS7pb0dL5hy0fq4tsnx3R0bsncI+nDdctXknS6pIfy8gvqlm0vqZbj/7OktzdzsCLiLuBPQHfdtj4h6dYc42xJn87zlyFdOXaNXKd/SFpD0hJ19eqVdI6klZp8v2y06PQNFPzwIyIg/QT+c8A7gZeA1eqWnQhcSbpc7hjgPcA4YB3gadJVJJckXRK8O5f5AekaKyuRLih3MfDfedlk4GXg2LydLYFngI3y8hnAkQ3x7QKsQfritFtevysv2yfH/Kkc32dJF/Tq+0X+pcDPgBVznFvm+e8AHgE2y+WmAvcC4wY4RgFskF+/BZgLfLlu+XbAm0lXmdySdEmBd9TVeU7D9vZjwf0lxpGuL3VWp/8W/Kj20fEA/PAD2CJ/iI7P07f1fbjlD93nSN0gjeUOBs7vZ77yh/Sb6+ZtDtyTX/clgWXqlp8DfDO/fk0S6GcfNWDH/Hof0o1P+pa9MX9grw50Aa+Q7/TVsI0fAkc0zLu9L0n0s34AT+W6BXDWQAkjr38B8KW6OjcmgVuBKXXTXfl9GNvpvwk/qnu4O8heD6YCv4mIx/L0T1nQJTSedFXIu/spt/YA81chfRBfn7tZngB+lef3mR8Rz9RN30f6pt8vSXvXdds8QbpUdf3lih/uexEL7uK2bI7x8ch3+mqwLnBA3zbzdtdeVByk1sOypNbIZsAydTF+WOlGMo/nbW3Loi+pvC5wft2+byVddG61RZSxUWZUXUXURp7cT78rMEZS3wfpONIt8zYBbiLdHvLNpPvL1nuAdPvBRo+RWg//EhEPDrDrFSUtU5cI1gH6buy90FUVJa0L/Ih0ueKrI+Kfkmr0f3OPRg8AK0laIV57Y5cHgO9ExHea2M6rIiKAcyTtCHwL2C+fUfVz0tjKhRHxUh576IuxvytFPgB8MiL+1Mr+bXRxS8A6bSfSt8+NSYOc3cBbgT8Ae0e6O9RpwLF5MHOMpM3zh96ZwDaSdpU0VtLKkrpzmR8Bx0laFUDSmpI+2LDvwyUtJenfgO2Bc/P8eaQbm/dZhvQh+mje1idILYFBRbrO+2XA/5e0oqQlJb0vL/4R8BlJmylZRtJ2kpZr7tBxFDBN0uqkm7CPyzG+nAemP1C37jxgZUlvqpt3EvCdnOSQtEpOLFYQJwHrtKnA6RFxf0Q83PcATgD2VLr721dILYJrSfeA+C6wRETcT+ryOCDPrwGb5O0eSBpsvkbSU8BvgcKR5/MAAACySURBVI3q9vswMJ80gHsm8JmIuC0vOxXYOHeTXBARtwDHAFeTPkz/lXRmTrP2IvW130YaCN4PINJNbj6V6zo/x7tPsxuNiJuAq0j3DHga+CJpbGM+8DEWvtHObaQxhNm5XmsAx+d1fiPpadIg8WYt1MtGAd9PwIojaTLwPxGxVqdjMes0twTMzArmJGBmVjB3B5mZFcwtATOzgjkJmJkVzEnAzKxgTgJmZgVzEjAzK9j/Apb1Fo3gkrlNAAAAAElFTkSuQmCC\n", 372 | "text/plain": [ 373 | "
" 374 | ] 375 | }, 376 | "metadata": { 377 | "needs_background": "light" 378 | }, 379 | "output_type": "display_data" 380 | } 381 | ], 382 | "source": [ 383 | "y = df['vil_labor']\n", 384 | "plt.hist(y, color='green', zorder=2, rwidth=0.95)\n", 385 | "plt.grid(axis='y', alpha=0.75)\n", 386 | "plt.grid(axis='x', alpha=0.75)\n", 387 | "plt.ylabel('Frequency',fontsize=12)\n", 388 | "plt.xlabel('Acceptance Rate',fontsize=12)\n", 389 | "plt.title('Histogram for the A-Rate ',fontsize=15)" 390 | ] 391 | }, 392 | { 393 | "cell_type": "markdown", 394 | "metadata": {}, 395 | "source": [] 396 | }, 397 | { 398 | "cell_type": "markdown", 399 | "metadata": {}, 400 | "source": [ 401 | "### 1.b) I'll Find the mean and standard deviation of acceptance rate for the 20 observations with the lowest wage, 20 observations with the highest wage." 402 | ] 403 | }, 404 | { 405 | "cell_type": "code", 406 | "execution_count": 6, 407 | "metadata": {}, 408 | "outputs": [ 409 | { 410 | "data": { 411 | "text/html": [ 412 | "
\n", 413 | "\n", 426 | "\n", 427 | " \n", 428 | " \n", 429 | " \n", 430 | " \n", 431 | " \n", 432 | " \n", 433 | " \n", 434 | " \n", 435 | " \n", 436 | " \n", 437 | " \n", 438 | " \n", 439 | " \n", 440 | " \n", 441 | " \n", 442 | " \n", 443 | " \n", 444 | " \n", 445 | " \n", 446 | " \n", 447 | " \n", 448 | " \n", 449 | " \n", 450 | " \n", 451 | " \n", 452 | " \n", 453 | " \n", 454 | " \n", 455 | " \n", 456 | " \n", 457 | " \n", 458 | " \n", 459 | " \n", 460 | " \n", 461 | " \n", 462 | " \n", 463 | " \n", 464 | " \n", 465 | " \n", 466 | " \n", 467 | " \n", 468 | " \n", 469 | " \n", 470 | " \n", 471 | " \n", 472 | " \n", 473 | " \n", 474 | " \n", 475 | " \n", 476 | "
wagevil_labor
count20.00000020.000000
mean135.0000000.936237
std5.1298920.048356
min130.0000000.836735
25%130.0000000.902071
50%135.0000000.950820
75%140.0000000.978941
max140.0000001.000000
\n", 477 | "
" 478 | ], 479 | "text/plain": [ 480 | " wage vil_labor\n", 481 | "count 20.000000 20.000000\n", 482 | "mean 135.000000 0.936237\n", 483 | "std 5.129892 0.048356\n", 484 | "min 130.000000 0.836735\n", 485 | "25% 130.000000 0.902071\n", 486 | "50% 135.000000 0.950820\n", 487 | "75% 140.000000 0.978941\n", 488 | "max 140.000000 1.000000" 489 | ] 490 | }, 491 | "execution_count": 6, 492 | "metadata": {}, 493 | "output_type": "execute_result" 494 | } 495 | ], 496 | "source": [ 497 | "df_wage_labor = df[['wage', 'vil_labor']]\n", 498 | "top20 = df_wage_labor.nlargest(20, ['wage', 'vil_labor'])\n", 499 | "top20.describe()" 500 | ] 501 | }, 502 | { 503 | "cell_type": "code", 504 | "execution_count": 7, 505 | "metadata": {}, 506 | "outputs": [ 507 | { 508 | "data": { 509 | "text/html": [ 510 | "
\n", 511 | "\n", 524 | "\n", 525 | " \n", 526 | " \n", 527 | " \n", 528 | " \n", 529 | " \n", 530 | " \n", 531 | " \n", 532 | " \n", 533 | " \n", 534 | " \n", 535 | " \n", 536 | " \n", 537 | " \n", 538 | " \n", 539 | " \n", 540 | " \n", 541 | " \n", 542 | " \n", 543 | " \n", 544 | " \n", 545 | " \n", 546 | " \n", 547 | " \n", 548 | " \n", 549 | " \n", 550 | " \n", 551 | " \n", 552 | " \n", 553 | " \n", 554 | " \n", 555 | " \n", 556 | " \n", 557 | " \n", 558 | " \n", 559 | " \n", 560 | " \n", 561 | " \n", 562 | " \n", 563 | " \n", 564 | " \n", 565 | " \n", 566 | " \n", 567 | " \n", 568 | " \n", 569 | " \n", 570 | " \n", 571 | " \n", 572 | " \n", 573 | " \n", 574 | "
wagevil_labor
count20.00000020.000000
mean35.0000000.749579
std5.1298920.166202
min30.0000000.302326
25%30.0000000.652975
50%35.0000000.794005
75%40.0000000.856280
max40.0000000.959184
\n", 575 | "
" 576 | ], 577 | "text/plain": [ 578 | " wage vil_labor\n", 579 | "count 20.000000 20.000000\n", 580 | "mean 35.000000 0.749579\n", 581 | "std 5.129892 0.166202\n", 582 | "min 30.000000 0.302326\n", 583 | "25% 30.000000 0.652975\n", 584 | "50% 35.000000 0.794005\n", 585 | "75% 40.000000 0.856280\n", 586 | "max 40.000000 0.959184" 587 | ] 588 | }, 589 | "execution_count": 7, 590 | "metadata": {}, 591 | "output_type": "execute_result" 592 | } 593 | ], 594 | "source": [ 595 | "bottom20 = df_wage_labor.nsmallest(20, ['wage', 'vil_labor'])\n", 596 | "bottom20.describe()" 597 | ] 598 | }, 599 | { 600 | "cell_type": "markdown", 601 | "metadata": {}, 602 | "source": [ 603 | "It is a good idea to compare the acceptance rate for the bottom and upper 20 villages. Based on this observations, even that the mean wage for the top 20 is **286%** more than for the bottom *(avg. for the top 20 is 135 Kwacha; avg. for the bottom is 35 Kwacha)*, we see that there is a small gap of **18.66%** in acceptance rate between those two groups *(93.62% acceptance rate for the top and 74.96% for the bottom)*\n", 604 | "\n", 605 | "##### There is not enough evidence to assume that wages influence if residents of the village accept the job or not\n" 606 | ] 607 | }, 608 | { 609 | "cell_type": "markdown", 610 | "metadata": {}, 611 | "source": [ 612 | "### 1.c.) Find the correlation coefficient between wage and acceptance rate." 613 | ] 614 | }, 615 | { 616 | "cell_type": "code", 617 | "execution_count": 8, 618 | "metadata": {}, 619 | "outputs": [ 620 | { 621 | "name": "stdout", 622 | "output_type": "stream", 623 | "text": [ 624 | "We've a WEAK POSITIVE correlation with coeficient of: 0.34560122231666063\n" 625 | ] 626 | } 627 | ], 628 | "source": [ 629 | "x1_corr = df['wage'].corr(df['vil_labor'])\n", 630 | "\n", 631 | "if x1_corr > 0 and x1_corr < 0.5:\n", 632 | " print('We\\'ve a WEAK POSITIVE correlation with coeficient of:', x1_corr)\n", 633 | "elif x1_corr > 0.5 and x1_corr <= 1:\n", 634 | " print('We\\'ve a STRONG POSITIVE correlation with coeficient of:', x1_corr)\n", 635 | "elif x1_corr < 0 and x1_corr > -0.5:\n", 636 | " print('We\\'ve a WEAK NEGATIVE correlation with coeficient of:', x1_corr)\n", 637 | "else:\n", 638 | " print('We\\'ve a STRONG NEGATIVE correlation with coeficient of:', x1_corr)" 639 | ] 640 | }, 641 | { 642 | "cell_type": "markdown", 643 | "metadata": {}, 644 | "source": [ 645 | "### 1.d) Let’s draw a scatter-graph to visualize the relationship between wage and job acceptance rate\n", 646 | "Let's see if this confirms our assumptions that despite the wage differences, people are still willing to accept the job" 647 | ] 648 | }, 649 | { 650 | "cell_type": "code", 651 | "execution_count": 9, 652 | "metadata": {}, 653 | "outputs": [ 654 | { 655 | "data": { 656 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEZCAYAAAB4hzlwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO2de5xcVZWov1XVXf1+5J1OAnSARgWEBMLDIANX1CHDSHTGBz5GYVBmnOE6KqJwncs40fGqGWWcCzqiIIwOojijZLxkUBlJgOYtHYTw6GACdNJ5p9+Pqq5a949zqvpUdVV3dbrOqa7q9fWvfl1nn1PnrF3n1F57r732WqKqGIZhGAZAqNgCGIZhGLMHUwqGYRhGClMKhmEYRgpTCoZhGEYKUwqGYRhGClMKhmEYRgpTCsacQkQeEJGPFuhc54lIp4gMiMg7C3HOckFEWkVERaSi2LIY08OUQgkjIm8WkXYR6RWRwyLysIicNcNzXi4iD2WU3S4iX5qZtFmvFRGRG0TkRREZFJHdIrJZRN5e6Gv5xAbgJlWtV9Wf5zrIVURHRKRqspOJyIUiknCVTL/7vVyRrzAi8gUR+eE05C8KInK9iNybUdaZo+yyYKUzTCmUKCLSCPwC+L/AfGA58PfAaDHlysYkvcWfAuuBDwPzgJXAN4FLpnmeYnEc8NxkB4hIK3A+oMCleZxzj6rWA43Ap4DvisjrZibmrGMrcJ6IhAFEZClQCZyRUXaie6wRJKpqrxJ8AWuAnimO+RjwPNAPbAfOcMuvA172lL/LLX8DMALEgQGgB7gKiAFRt+w/3WOXAf8OHAB2Ap/wXPcLOA3+D4E+4KNZZHsrMAysmKIOu4DPAc/gKLyKXPK7x18OPIyjLHuBF4CLPPsfAL7oHtMP/BJYOMV3uAM4DGwClrnlLwMJtw4DQFWOz9/gXusbwC+mqOuFQFdG2X7gPZ7tbwKvud/rU8D5bvnF7j2KufJsc8ubgFuBbmA38CUgnOP6ZwOPuPe9G7gJiHj2K/CXQCdwBLgZEHdfGPhH4CDwe+Cv3eMrslwnAgwBZ7rb7wW+D2zJKNsxVb3dfTXAHa5MzwOf9X6PTPKs2ivLc1BsAex1lDfO6Ukecn8M64B5Gfvf4zYCZwGC0+s6zrNvGc5I8X3AINDi7rsceCjjXLcDX/Jsh9wf5g3uD/x4tyH4Q3f/F9zG6Z3usTVZ5P8K8EAe9dwFdADHJM+Th/xjOL3sSnd/LzDf3f8AToN+ktuYPAB8Jce13+I2cmcAVTiKZmuGbG+dQv4dwF8BZ7rfyZJJjr0w2Zi5dbsUR/Gs9hzzIWABjnK8BtgLVHu+9x9mnPPnwHeAOmAx8DjwFzmufyZwrnvuVpwG9pOe/YozOm0GjsVpZC929/0ljgI+Bmfk+htyKAX3+N8An3Lf3wT8OfAPGWW35Vnvr+AolHnACpwOhPd7zPms2ivLvSm2APaawc1zeva3A11uQ7gp2egA9wF/k+d5OoD17vvLmVopnAO8mnHM9cD33fdf8DaeOa75PeAuz/Z8nB5qLzDiKd8F/Pk05d+D24N1yx4H/sx9/wDwt559fwX8V47z3gp8zbNdj9Owt3pky6kUgDe7xy90t19INno5jr8QRwn04IyK4nga5RyfOQKc7vnef+jZt8Q9T42n7P3Ab/J8Lj4J/MyzrcCbPds/Aa5z3/838JeefW9ncqXwheS5gW1AG85ox1v2kTzrndbIAx9lXClM+qzaa+LL5hRKGFV9XlUvV9UVwKk4ved/cncfg9MjnoCIfFhEOkSkR0R63M8unMaljwOWJT/vnuN/4TRCSV7LuOaA53UsziinxVOXw6rajNNbzZyQzTzXVPLvVvfX7/IKzneTZK/n/RBOY5+NZe5nkzIOuHIvz3F8Jh8BfqmqB93tO90yRORY73fi+cwe93toBP4ZZ7SSQkSuEZHnXeeCHhzzUK57dxzOaKnb8119B2fEMAEROUlEfiEie0WkD/hylnPn+u6WkX6fXmFytgJvFpF5wCJV7QTagbVu2al45hOmqHfmtb3v83lWDQ+zbeLOOEpU9QURuR34C7foNeCEzONE5Djgu8BFwCOqGheRDhwTEzi9uwmnz9h+Ddipqm2TiZQhX1rDKyL3A/9TRFaoatck50k7Vx7yAywXEfEohmNxRlHTZQ9Oo5K8dh2OCWP3VB8UkRocu3hYRJINaRXQLCKnq+o2cisjVHVURD4HvCgi71TVn4vI+TjzKxcBz6lqQkSOkPvevYYzUlioqmN51PfbwNPA+1W1X0Q+Cbw7j8+BMwdxjGf72CmOfwSnYb8KZ84FVe0TkT1u2R5V3QmQR727ccxG291trxz5PKuGBxsplCgi8nq397TC3T4GxzTwqHvI94DPiMiZ4nCi26DW4TQeB9zPXYHTK0uyD1ghIpGMsuM9248DfSLyORGpEZGwiJw6HXdYVf0ljl355yJyjuueWolj056MqeQHpyf8CRGpFJH34JjZ7mX63AlcISKrXHfSLwOPqequPD77Thzzz8nAKvf1BuBBHG+rKVHVKPB1HHs4QAOOmfAAUCEiN+CMKJLsA1pFJOR+vhtnIv3rItIoIiEROUFELshxyQacidwBEXk98PF85HT5Cc53vsLt6V83Rd2GgSeBT+N8J0kecsu8XkdT1fsnwPUiMk9ElgNXe/bN+Fmda5hSKF36ceylj4nIII4yeBZnEg5VvRtn4u5O99if40y2bsdpaB7BaUTeiNtTc/lvHDfLvSKSNHvcCpzsDr9/rqpx4B04Dd1OnMnY7+H0/KbDn+BMXP4Qx46+E/ggjm05K3nID/AYjo36oPsdvFtVD01TNlT1fuB/43iudOOMvPL1m/8Ijt36VVXdm3zhTKB+cBrutbcBx4rIO3DmiTYDL+GYZ0ZIN5Xc7f4/JCK/dd9/GGeCdTuOHf6neMx2GXwG+ADO8/Jd4Md5yoh7/H04cwG/Bf4jj89swVHg3nUxD7plXqUwVb034Myr7QR+jVPHUYACPqtzBlHNZi0wjNJERC7HcYF9c7FlMYqDiHwcuExVc42IjEmwkYJhGCWNiLSIE3Ik5C70uwb4WbHlKlVsotkwjFInguNVtRLHDHkX8K2iSlTCmPnIMAzDSGHmI8MwDCNFSZuPFi5cqK2trcUWIy+Gh4epqakpthi+UM51g/Kun9WtdJlJ/Z566qmDqroo276SVgqtra08+eSTxRYjLzo6Oli1alWxxfCFcq4blHf9rG6ly0zqJyI5V5yb+cgwDMNIYUrBMAzDSGFKwTAMw0hhSsEwDMNIYUrBMAzDSGFKwTAMw0hhSsEwDMNIYUrBMAzDSBHI4jURuQ34Y2C/qmYmREFEBPgm8Ec4Kf4uV9XfZh5nGOVK5+ZO2je207Ozh+aVzay9di1t6/xLFpa8XvisMNs+vS2w6wVVvyDZsmELj974KKP9o1Q1VHHup87lghtKN2p3UCOF25kkcQqwDicpShtOKr5vByCTYcwKOjd3svnqzfR391M9v5r+7n42X72Zzs2dvl8vXBUO9HpB1C9ItmzYwtYvbiU6FCUUCREdirL1i1vZsmFLsUU7agJRCqq6FTg8ySHrgX9Vh0dx8tjmyg5lGGVF+8Z2QpEQkboIIkKkLkIoEqJ9Y7vv1wMCvV4Q9QuSR298FEIQrggTkhDhijCE3PISZbbEPlpOenq9LresO/NAEbkKZzRBS0sLHR0dgQg4Uw4dOlQysk6Xcq4b+F+/8FlhFlQtmFAeH437ct3wWWEaxhqIj8SRxULFORVUVVcRrgj7dr1maWZseIxEPEEoHKK2phYUX67X/dtu9j2zj5oTa+i4vYMlpy2h5Qx/+piLPrAIQuBYwB1UFRL+1A2g97Ve9m3bhywSXvrFSyw5fQlNx0ydXVQTisaVqdIlzBalIFnKskquqrcAtwCsWbNGSyXgVTkG5/Lapbue6CorOzEEV79tn95GT3dPqucOEB2M0tDSwKqvFv6ZeeBdD9C7qxeAFR9fQde3uwBoam3y5XqPfOQR9j+7P/0XLbD41MUFv96WDVt4/O8fB4UVf7mCrn/p4hV5hQv/7kJf7Pz33XkfI70jE+pW3VTNqpsL/112bu7k11f9mtG+UVquaKH7+9282vgq629bn3o2E/EE8Wic+GicsdEx4qNx4tE4mnCEDFVObiCaLd5HXcAxnu0VwJ4iyWLkQdB26aAJsn5rr11LIpogOhhFVYkORklEE6y9dm3BrwUwuHdwWuUzZbRvFBKMN5wKJNzyAvPwVx92ruUl4Zb7wJJVSyZ2X9Ut94H7r7uf4YPDTgMvjgIYOjDErz7zK/q6+jjy+yMcefkIfa/1Mbh/kNHeUcZGxlIKIR9mi1LYBHxYHM4FelV1gunImD0EbZcOmvaN7cSiMfp39zN8eJj+3f3EojFf6te2ro11N62joaWBkSMjNLQ0sO6mdb6NusZGxqZVPlMG9w4SqgwhIccgICEhVBnyRQnFhmLOG68CAmLDsYJfC2Bfx76JrWjILS8QiTGnwzB8ZJgDLx5AQ4q4fyEJQQgO7ThEbChGYixTI06foFxSfwRcCCwUkS7g74BKAFX9F+BeHHfUHTguqVcEIZdx9PTs7KF6fnVaWWVtJT27eookUWHZ/9x+RntGQRx7cTwaZ3j/MPtj+325Xtu6tsBMbxISNKFISBCRtG0/UCbasVUVzW4hnhlCDsOzP4z2jxKuciaZkyQ0wejA9EdB8Vg8ZfaJR8df3l6+qJCIJxiLOfMzY6NjEIJQuHD9+0CUgqq+f4r9Cvx1ELKUs790kDSvbKa/uz/NDh4bitHc2lxEqQpHIppAUcLhMIjzo4uPxUmMzrwnlo0gfd0bj22kd1evM/Gommp0Go9t9OV6DS0N9Owc7ywkJ2Ibjmko+LVCFSESsYn3KFThj1GkqqGK6FA0rSXVuFJVX5X1eE1oWoOfesXieSmzmkU1DOwe8JwQiEPN0sJlmJstE82BkLQThyKhNH9pbqJsFENQSm/ttWvZfPVmokQBfLeDQ7AKPVwVJtGXIDHmvGIjsVR5odmyYQtbNmxxGmeFkd6RlJ+7H4rhkm9dwk/e/RPGhsbNRRW1FVzyrUsKfi1wno3plM+EbAphsvKZcu6nzmXLhi3EYjGngRZnJHb2J84mNhQb7/27I4CZmne8Xk75lB8Ns2VOIRDK2V8agl0k5LWDx0fjvtvBg14AVbekzvmheWzTIkLdkrqCX+vhrz2Mxt0Lub9tjSsPf82fyVGAqsYqKmorkJBQUVtBVWP2nm0hGDowNK3yUkFVWbJqCZX1lWnlFbUVNK5opK+rj8F9g4wcGSE2WBh7f//u/mmVHw1zaqRQ7nbwbJO/UaK0b2wv+ZFQ0HUTHHt7qCpEqCJEuCqMjjkTfIUmNuiMQjJ93ZPlhaZ9YzvVzdU0Lm+kZn4Ni96wiOigj89JLrNIgLb/maCqJGKOm2fSxXNsdIxELMFDX36I2gW1NK0YXycQG47x9K1P03pBqw/CTLM8uTuhDB4YZKB7gIH9A5MeO6eUQjHs4EHGmAlS6XVu7uSeK+5htH+UlpNb6H6sm3uuuIf131/vS/16dvYQG4lxuPMwGlckLNQuqiU+Gi/4tcBxl2w6ronB/YNoQglXhqlbXsdof+HdKAkx0Y0yWe4DgXeOck3++jCvXVlXmVWZVtZVZjk6ncRYImXf99r7JzM99XX1ISGhZ18P8WiccCRMzfwa+nb3zageR8ORnUcY6B6gf3c//d399O8Zfw3sHcjbhDanlILXDl5ZW+m4cPloB/fOYSyoWkBPd4+vcxjNK5s52HmQaG+U+GiccFWYSFOEhW0LC36tX1/3a4YPD6c8WDSuDB8e5tfX/dqXuik67sIojnllcO8gTa1Tr+Q8GpIdiAUnLaBmfg0LTlqQWlBWaJqObUpN/GaW+0HzymYOdx5mpHeEinMrOPTSIaqbqpnfNt+X69UuqmVo/0RTUe2i2oJf67zPnscDX3hgwmKy8z57HuBZ2JXR6Oc70ZtJpD7C4R2HkbAgYSEei9O/p5/5Jxbuu1RVRo6M0L+nn1AkRCLqNO6H/utQ2nH/dvG/5XW+qqYq6M29f04phbZ1bXCTM3zu2dVDc6u/k5VBmzxaL2zl1QdfdZbdh4Wx0THG9o7R+rHWgl/r8EuHHX/zcCjlnZMgweGXJgtxdfSk7M/J3qXb+/TLLr322rXc8+f30PtqLxXnVnDg+QNUNVbxh9/4w4Jfa/UVq7M2ZKuvWF3wa0H6c4LA2OgYA3sHOONjZ/hyvYalDc59yqhfw9LCK9hlZy2jqqmK0d7R1HUiDRGaWps4/PLh8bmbAqFoKnxECmFa7rbxaJyBfQNOj757YLyH391P/26nLNsakuGdwxPKJCzUL6mnvqWehpYGGpY30NDSQP2yehqWOe+r51Vz/fHX55RnTikFCNYfPOhh+q4HdlG/tJ6R3hHio3Eqqiqobqpm1wO7Cu7Fokz0M/fF79xlbGSMUCSEjjlulCKCVDqKzzeyrFT1g10P7KJxeWPqvoWrwr7dt+T1apfWEu2NgkJFVQWRpohv1xvtG2Xe8fMY3D+Yql/d4pmb4rK5d27ZsIWKqgoStQkkJFTWVlJZU8mT33qSY849ZuqTTpOhA0POOg+PUpCQMHRwvLMy2jeataHv29PHwJ4BBg8M5v1sVdZWUlFdwUjvCLWvq2VkxwjHXXgcqz6yioZlDdQtrpux++2cUwpBEvQcRs/Ongkuk+GqsC9KaOFJCzmw/QAJcYayiUQC4rDw5MKbqmDcH7yievyRjY/Fc/qDz5T2je2EK8OpRUGhcIhwZdiXUV7Pzh5qF9emeTapqm+dh56dPVRUVaTcicFRDH5dz2uKSzIdU1w8Fk9N9KaZfbJ48yTNYhISEOezQ4eGCuL5k1W2aBwVJRwJO+sv1PktjPaMcuc77mRgzwDRgfxdb2sX1aZ69w3LnFf90nqnbFkDVY1VKYeEHd07OLHlxILXyZSCjwTty1/VWMWB7QeQCkEqHPtm7yu9LDp5UcGvddFXLuKeP7+H0b7R1GrY6oXVXPSViwp+LXD8wbd+cSvxsTgSdntmCafcDw5sP+DMmYSdFb/xmDPEj8cKP7EddOch0hjhwHMHHLNHQokORIkNxVh0SuGfE5h6Lk8TOt7wexVAzG34pzFCi0fjjjkzFHLCQIRCxNVRIkdDdDA6btJxJ28H9oxvxwacSe046edXdIIpNVwVpr6lnsZljU5j31KfpgDql9YTjhR+Hcx0mXNKIcgFUN45jKQvv5/XU3Tc0yP5mqZ9M1/a1rWx/rb1To+6LsyKc1b4WrcLbriAQy8d4rkfP0c8GidUEeKU953i26rf+Oh44wLO/3gi7ou3k3f+IhFLEKoM+TZ/ARDtj6bbwNWZuI/2F34xGTjPSuKbCdo3ttP7Si+NKxpZ8/E1LD5lccHt/KHKEDLihIJQlEQ84SiHyESTiiaUoUNDqYa+b0/fBO+d1NzENGWoWVDD6itWOw2/2+OvmV9TkEVmu7bs4ulbnyZyfoTfPfg7Vl+5uqDur3NKKRRjRXNyDqOjo8OXsMReon1RGo9tZGj/UMp2W7u41tcfe1B169zcSdcjXcw7cV6qt9n1SBedmzt9uXehSAgZchoXlPHGpconP9FkuygZ2z7Q15XdXTJXeT6oqrP62+3te7164tE4C09ayKXfvTTtM34E4FvQtoAju44QG4ihMU2tMalurOaxf36M/u70nn6+bpqhyhD1S5wGvn7Z+CTunif28OJ/vpiKP5QcfZ3ynlNYdXnhfxO7tuxi64athCIhaiI1DB4YZOuGrXADBVMMc0optG9sJx6NM3hgMG1CrxwWd8G4S6qXsdExX1xSgyZoT67Fpyym+5luoj1REnEn1EWkOcLikxcX/FrtG9upnldN44rx2EN+LiZLxJ2GMDMgXrI85+fG0s07qW1XGQRJyk3TY9Lp29NHPBZn5PAImlC6vuPkiRgbHmO0Z5Qnbn4i5/mqGqvSevXeV31LPXWL6rIGDHzpP1+idlEtsYEY8WicikgFlfWV7H58ty/1fvrWpwlFQlTWVCIIlTWVxCjsYrk5pRTS7MQV/tqJi0Hrha3s+s2u1HY8GifaH2XNx9YUT6gCEbQnV9JtM+l/LmEh1huj9cLWgl8r6LqFwiESiYQTDE/HI5hKyPHmSjbymYu5glyBHI/GGdw3OG7S8XjvDOwZoL+7n7HhPEcagjNZu2zcPbNxWeN4j39ZA5H6yNTnyUJfVx/hSJgY4wvmwpGwb4vX+rr6IASD+wap7q2mZ5fz7BTyenNKKWTaiSUkvtmJi8HT3386Z7lftveg8C648o7y/Fpw5XXvTbpt+uUmGtREs6rjwjn/pPkcfO7ghJwD806YR+8rk6xqKqAc0f5oeiO/J30V7uD+6blpZnrpNLQ00Fvdy+tPfT31S+p9i5JaWV/J4c7DqRXpiViC2HDMt+eysr6SIy8fceYmxF3j0D3AvBPmFewac0opeO3EqRjyftqJA6bvVae34B3makJT5aVMtoV5fi648rqJJlc0++UmWsiV9smorhO8eWLj4RqOf8vxHNx+ML3RFTjx7YVxb0xmA8sWbiHppz+duE61i2rTevkNyxrSevpVTVVZJ3B3dO+gscWfcOBJYoOxrJne/IpbJbhBGkOpAkhQ0Jhcc0opLD5lcWBhIIpBrpR700nFN1vxLrhKLszzc8FVkG6i+a60n+C6OZaY8Mqnd7378d3ULa4jOhB1FnjVVRKpj+RtB48NxSY09EmTTv+efgb3Dea9LiAcCaeZcVIvdyJ3trhp5mJw/yCEGU83Kjjmnf3+pDaNDkRpWNbA8OFhUAhXhqlZUlPQMORzSimsvXYt91xxT5q7msbU1xwAQZIMBqbqcU0lv2Bgs52enT3UL65HlqRHEvXL7h70GpMTLz6RE952QloDP3hgMM2jp1Cum31dfdQsqKF2YS3VTdU0tzajqvTt7ku5aabZ8ZNB1dxVuKM9+btpVjdXp5l0GpY3jIdgWNZAzYLCuGkWi+RaiFClJ/Oa66nmB40rGhk8MEhza3Pq3sWGY9QtmiSkuxuGRkKOU8FUSnZOKQVgostf6T6PEzjvs+eNJ2tJ4CT8CEsqGFgpE/QCr0KuMUl6L032KnRMnlyMjY5Ru7CWgf0DTprRrXEGdw8SH4mjqnz7tG/n76ZZEaJ+aX1aXJ2kt07jskbqW+qprC39DslkNK1s4sjLR9JM0qpK8/EFfi7dhv3MvzyTLX+3xUn65Mat0rjypmveRP3SeiQsaQpAwjJtpTunlII3jnwSX+PIB4x3gVdiLEEo7O8Cr2QKyUUfWMR9d97nawrJoCPcQn7rMLz++ZkumkezIncmZHPTTL13e/7emDwA7Ml9vkh9xGnsk0HVWjwTucsaqF1YW9DcwKXI2mvWcv/19zsjybjzm6uqq2LtNRnPpbe37q6STwaUTGvAc5QlG/Z5x8+jfkk97RvbScQSNB3TVPBFo3NKKRQjyU6Q+RSCXOC1ZcMWtn5xqzPhFYLoUNTZxp8UkkFHuIX0Hv5o/2ha459mxw+IeMxx08w053i9d6bjphmuDFOxsILQaIhlZy1jxTkr0nzzqxr8y8ZWcmRp1EPhEK9f/3oiDRGeuPkJ+l7ro+nYJs791Lm0rWvL2qgXAr8Xjc4ppRC0CSLofApBLvB69MZHIQThijAiQrgiTHwszqM3PurbaKGQEW41oTl79olYgkQ8wa4HxsMJ/PbB3xY8nEAmo/3j0TQL5qbpLshK+em7vf66JXWEK8O+BVWbtYhj9srWwE/oqYc95ZM06m+87I288bI3BlYFvzuac0opBG2CCHoVbpAjodH+0QnxZCQsjA74kJlsmkyw4Wfp3U/lkVXocAIpN80c4ZP79/RPO5pmZkPv9d7J5aZZLqTMK95XhlmmoqfCsbO7+8KVYd/WKwRFEB3NOaUUgjZBeFNIhs8Os7djr68pJIMcCSVDWXufII2rb6Gsk2EYNO7a8LNM3ib3FYLphhOIDcXSevVee/5M3TSTvf3k5G19Sz0VVWXy083wjMnsuYfCTo5sb68933mMcCRMVWN5mcDaN7YTi8aIHohSe7iW/t39RJoiBe1olsmTlT9BJtlJSyGJ/ykkgxwJeUNZqyrxsfhRhbJOmnHSXvFEmhknyMnaJH1dfU7aQsYTt6sqhzoP8fRtT49P3rq9/pGekbzPXd1cndbYe901U9E0s8TZmbUI6ROnnsY8VDFxcjXtVcajGT/Y/9x+xyVYcLzHonGG9w+zP7a/YNeYc0ohSHKlivQrhWSQI6HkvMGjNz4KCYjURjj3U+dy/ufPd4KlJXv18UQqXWFamdurnw0L65Kro73hk+PROD07e9C4cvBrB9NcRh/+6sM5zxWqCFG3pG7iIqyWcbfN2eqmKWFJ2duTvXNvA57Wo/dpEtWYnETUWWMVDodTo6z4WJzEaOEcHkwp+EguT5C8PUSOAj9GQqo6brbxvM78izNZfeVqXtj5Am3XtJGIJzjy8pGCXnumqCojPSNZF2Mle/sT3DQnoaKmgqZjmsaDqmVE1qxdNPvcNFOTphWhtFe4MkykP8K84+cdlT+7ETzhqjAMupkOcf8rEzIuzgRTCj6Siq+UEaK4mKaBZAOfjPuestV7evMp+7znfTa8yT6eefAZ371zspHNTTPNtt89QGwozzg0AnWLx3v5ibEEB188SPXqanSHsvrK1bNnPUvSiyajZ59te7LGPnmMURosOnlRKjCkJpRwZZjqhYUNDDnnlEKQmdcq6iqI9kZTqxyTppKKusJ97WkTsPH0xtw7+Zps+Atlm9+1ZVdq0c6yNcvYu20v919/Pxf9n4sKqhiiA9FUA79ryy52/WYXIz0jTsNXGWK0dzRvE1RFTUW6/b4lPSVi0k0zk0DdNt3GPukpE6r02OVD6bZ6Y+6RnDdsWO7MPTUsbyj4vOGcUgpBZ15bdsayVKIWcHplkeYILae1TPq5zN56WsOe4X0T9ARskvavtzsJ0t0QvhpXRnpHaP96e95KIRFPMHTQE01zd/rkbX93/7SyxtUurE1N4KZy4Xrs+dXN1cUxkSQ9bLwmnPBEjxpr7DFS9ZYAACAASURBVI2pCCLFb2BKQUQuBr6JE1Pwe6r6lYz9xwJ3AM3uMdep6r2FlCHodQNJrV63sI6aBTXMO2EeiWiCNX+1huHDw9My1cw2enf2IuI2ajj/E/EEvTvH4/HHhmLjvvhZEqUM7B3I34XUbVjDVWGnF10ZQlWpXVjLun9eR/3S4rlpenv0mT38pAKYiiBHsEZpUxYrmkUkDNwMvA3oAp4QkU2qut1z2N8CP1HVb4vIycC9QGsh5SjU4q5cjXnSRJPcXnDSAs677jyevvVpxkbGqJlXw+orV7P0tKXTmtycjSTUcdGUhDC0Y8gZvbiTXj/+kx9P202zqrnK6dlnuGom39/93rsn9PRVldG+UZqP82dFuhcJO9ElwxFHKSXfhyont9nnQzFyhxtGLoLqWp0N7FDV3wOIyF3AesCrFBRIRqprYtJQXUdHrsVdTcc2MTYylnXVa3IuwDsROx2TTesFrbRe0OrYpT9WOuEE4tF4qkfv7ekne/465sxPxIlz8L/S80IfeO5A2nbKTTO5GMsbP9+Nme+9J9loOqaJwQODVNaMu3OOjYylBTecCRN698lef2WIqsEq5p/gTyYtCH4EaxiTIcn8rL5eROTdwMWq+lF3+8+Ac1T1as8xLcAvgXlAHfBWVX0qy7muAq4CaGlpOfPeez0WJnUWjJHI8l+Vvq4+dj++OzVhl7TRt5zZQkNLg4/fAPQO9dJU68+itemiqsT6Y4zsG2F43zAj+0cY3uv+3zfMyL4RRg/nH64iVB0iVBuisrGSphObaDy+keol1dQsqaF6cTXVC6qR8Mx60/3d/XQ/1Z3Kl6xxnd69cxf7SEgg5KRk9frhT8ahQ4dYsGDBjOSfjGd/9GxWl8L4aJxT33+qb9cF/+tWTMq5bjCz+q1evfopVc2avD2okUK2X12mNno/cLuqfl1E3gT8QEROVdU0o7Oq3gLcArD69NXa2tya8sCZsgc/H5qONPH0rU/Tt7uPxuWNjhvlGa1HWa38CdKDJTGWYGDfQM7AajNx00ymRBw+PMwzP3iG2EiM5VcuZ8+te0BgzXvX+OOW2gLz+uflvHfJnn6yd5+y7XtW1R4tHR0drFpVeNttkm2f3kZPd0/aaCk6GKWhpcEXm7EXv+tWTMq5buBf/YJSCl3AMZ7tFUw0D10JXAygqo+ISDWwEMi5flsTTiLy6ZA05wSF15f/dw/+riC+/NGBKH27PZO3GcnPB/cN5u+mWV0x0aTjUQB1S7O7af7swz+jZkENjTWNVDdVM/+E+cSGc8cGOmo8/vive8freMO73jBhEVapL7wqRq4Iw8hFUErhCaBNRFYCu4HLgA9kHPMqcBFwu4i8AagGDlBgko10X1cfjSsafV1wdTSRNjWhDB4YzBlYbaB7gNG+/E07tQvdaJo5UiJWzzs6N01vbKAkFdUV9O3um/a5wPXNdyduvRO6hZjIne0UI1eEYeQiEKWgqmMicjVwH4676W2q+pyIbACeVNVNwDXAd0XkUziGoMu1wBMe3ka6qqlqxuGQpyJbpM1oIsrjNz1OKBzKmvx8YN9A/ukQK0PjJp2McAvJRr+i2p9bnMwVO52J32R+2KR5J9X4R8J5mXfK2W0zyECNhjEZgTl2u2sO7s0ou8HzfjvgazJhbyMNTBkOebqoKsOHhlON/MEXDiJhYejAEH239RE9EE2tQ9h05aYpz1fVXDXBpOPt9dcuqC1ayIzVV65m64atxIihKLFhx+Sx+qOr0xp7b89/JjGBzG3TMIJhTq1onqnJIx6NM7B3YmA1b7KUnHMc/embEpbxJCkZrprJXv9UbprFIlQR4sSLT6SytpIn/+VJErEEjSsaWXvtWl73x6/z5ZrmtmkYwTCnlMJkJg9VZbR3NC3EQqY9f+jgUP7pEOsqqW6qZvjwMKFIiIYzGhjePgwKb7rmTbzu0tfNumiamYQqQ1RUVaT1/L2mntM+eBqnffA0xwvia/56eRQjv7ZhzEXmjFJIjCV4/TtfzyPfeCQVT2dsZIx4NM7Y8Bi3nHHL9Nw0F9VNDKrm6fUnMz49ftPjdNzeQc3JNfQ/1c+qy1fxhne9wa9qHhVJE09KAVS5jf8smuANOr+2UVjKeT6o3JiWUhCRELBEVbt9kueoSUXT9PT0vd47k7lpDnQPpG1XVFekRc9M+uan7PpL6glHpo5fvmvLLl742QvULqqlurma2kW1vPCzF1j8xsWBh5iGLI2/qwBmU+OfC3PbLF1sPqi0yEspiEgz8C3g3UAMqBORS4GzVfVvfZRvUnpf6eWu9XfRv6d/Wm6aNQtq0rx0Gpc1pvnpH62bZibTzfNbEIQJnj3T8fCZrZjbZuli80GlRb4jhX8BjgDHMR6v6BHg6ziB7IrCaP8oB19Ij7sTqgxNiJPvzX9bv7TeNzfNTArty+9FwkJFVcUE985y9us3t83SxOaDSot8W8eLgGWqGhMRBVDVAyKy2D/RpqZ2fi1rP7o2zW2zdmHx3DQzORpf/kyS0Tkz7f2zfZLaMJLYfFBpka9S6MUJOZGaS3DzHxR1bqF+WT1nXHlGMUWYlJy+/FeuTjtOwpIWhz+t529JV4wSx+aDSot8lcL3gH8Xkc8DITdg3ZdxzEpGDlovaIUbnLmFeDRO3eI6zr76bE68+MS0UA6zZWRjGH5g80GlRb5K4avACE6inErgNuA7OJnUjAy8Xj6nvu9UTv/w6Tz7/LOs2li+ERsNYzJsPqh0yFcpLFHVfwL+yVsoIkuBvQWXykcKGRAvGcQtaedP2v2t528YRqmSr1J4ifGsaF62A/6lpCowRxsQL83OXxUuSCwfwzCM2Ui+SmFC11dEGoE8s67PDiYLiLfyLSt9y8FrGIZRKkyqFETkNZxoPzUi8mrG7gXAj/wSzA/6uvqoaq5yzDvihHKuqqxiYN+Arzl4DcMwSoWpRgofwhkl3Av8madcgX2q+qJfgs2U5OKucNW4rX9+23wG9g4Qrh4PUREdjDJv5bwiSmoYhjF7mFQpqOoWABFZqKpDwYg0TYS0hV1JRZDN3n/eZ88re3/pLRu28OiNjzLaP0pVQxXnfupcLrjhgmKLZRhGiZDXnIKqDonIKuB8nEVs4tl3Q84P+kxFpIIFbQvyPr7c/aW3bNjClg1bnMB/CiO9I2zZsAXAFINhGHmRb0C8q4AbgV8C64DNwNuBe/wTLQ+OYv63nP2lH/7aw05mNyH13WhcefhrD5tSmOVYaGljtpCvT+VngYtV9V3AsPs/GTHVmITOzZ3c8ZY7ePZHz3LHW+6gc3Onb9eKDTq3Q0RSL2+5MTtJhpbu7+5PCy3t57NiGLnIVyksVtUH3fcJEQmp6mbgHT7JVRZ4f+zhqrD/P/Zcd9OWU8xqvKGlRYRIXYRQJET7xvZii2bMQfJdp9AlIq2qugtnIdt6ETkIRH2TrAwIOo5807FN9O7qdeYUhFTq0KZjmwp+rWJQriaWnp09EIZDLx0iPhonXBWmdnGthZY2ikK+fcivAckckhuAHwL/7b43ctCzs4fK2sq0Mj/jyF/yrUvG12Gouw6juYpLvnWJL9cL0jRWziaWSGOEvlf7iEfjSFiIR+P0vdpHpCEy9YcNo8DkpRRU9XbXXIT7fx4wT1W/5adwpU7zyuYJeZ/9jCPftq6NP73zTznuguNoXtnMcRccx5/e+ae+9KaDNo2Vs4lFcJR4ykHAHeXJ0XhSGMYMOaoUZKoaFZFmEfk7Vb220EKVC9448uAslPN7XURQ3lVBm8bKOXvXaN8oTcc1Mbh/MGU+qltex2h//ilmDaNQTDpSEIcrReT/isgnRKTSVQY3AjuBk4MRszRpW9fG6R85ncG9gwwfGmZw7yCnf+T0srGDB2kaC3rUFSTNK5sJVYZYcNICFr9xMQtOWkCoMlQWdTNKj6nMR/8I/D2wGLgOuB14ElgEnKOq/hirfSRpB//mym8GYgffdsc26pbWUbOghrqldWy7Y1tZ2MGDbqTXXruWRDRBdDCKqgYy6gqKcq6bUXpMpRTeC/yBqr4PeAvwfuA6Vf2Qqj7ru3QFJujJymwmlnKxg3sbMvDfNNa2ro11N62joaWBkSMjNLQ0sO6mdWUx6irnuhmlx1RzCk2q+nsAVX1BRIZU9acByOULZgcvHN6QIfHROA0tDb67iJbzavRyrptRWkylFEREVjIeUGIsY5uk0igFgm6km1c209/dn1JCUD52cBhvyDo6Olj1VUs1ahjlwFTmozpgh+fVCLzs2S4p43gx7eAQjPeRYRjGTJhUKahqSFXD7v9sr/Bkn/ciIheLyIsiskNErstxzHtFZLuIPCcid063MlMR9ISe11acNLGYrfjoCdJJwCgsdu9Kh6NapzBdRCQM3Ay8DegCnhCRTaq63XNMG3A9cJ6qHhGRxYWWoxihs83EUhiSTgKhSCjNSYCbMCU7y7F7V1oEohSAs4EdyfkHEbkLWA9s9xzzMeBmVT0CoKr7/RDEJvRKk6CdBIzCYfeutAhKKSwHXvNsdwHnZBxzEoCIPAyEgS+o6n9lnsjN7XAVQEtLCx0dHb4IXGgOHTpUMrJOlyDqFj4rzIKqiQmV4qNx369t925mFOvelfN9A//qF5RSyBbERTO2K4A24EJgBfCgiJyqqmmuQap6C3ALwJo1a3TVqtIwyXR0dFAqsk6XIOq27dPb6OnuSfPkig5GaWhp8N0sZ/duZhTr3pXzfQP/6pd3pH03xMX5IvI+d7tOROry/HgXcIxnewWwJ8sx96hqTFV3Ai/iKImSJshIouWMrfotXezelRZ5KQUReSNOHoXvAre6xRcAt+V5nSeANhFZKSIR4DJgU8YxPwf+h3u9hTjmpJJZA5GNwJPslDG26rd0sXtXWuRrPvo2cIOq/kBEjrhlW3CUxJSo6piIXA3chzNfcJuqPiciG4AnVXWTu+/tIrIdiAPXquqh6VRmtmETbIXFnARKF7t3pUO+SuEUnMQ64M4FqOqgiNTkeyFVvRe4N6PsBs97BT7tvsqCcg5zYRhGeZLvnMIu4ExvgYicjbOq2chBOYd7NgyjPMlXKfxv4P+JyN8DERG5Hrgb+FvfJCsDLMyFYRilRl7mI1X9hYisAz6KM5dwHPAnqvqUn8KVOsWIJFrOdG7udFaj7+yheaX/q9ENYy6S9zoFVf0t8Fc+ylKWWJiLwlCMUAlJJRQ+K8y2T28zJWTMCfJ1Sf0PETk/o+x8ESnZ3ApGaeH15BIR3xMWmTuxMVfJd07hAiDz1/cI7roCw/CboHNCl3PWPMOYjHyVwghObgUv9UAsy7GGUXCC9uQKWgkZxmwhX6VwH/AdEWkEcP/fBEwIWGcYfhB0qARzJzbmKvkqhWtwsq4dFpH9wGGgCfikX4IZhpegQyWYO7ExV8nXJfUIcImILMUJbPeaqu71VTLDyCDIUAnmTmzMVaYbOjsBHAJqReR4gGTiHMMoN8yd2JiL5KUURORinOioLRm7FCfAnWEYhlEG5DuncDPwRaBOVUOelymEOYzlijCM8iNfpTAP+I6qDvspjFE62OIuwyhP8lUKtwJX+CmIUVrY4i7DKE/ynWg+F/iEiFwHpHkdqeofFFwqY9YzF3JFWOwjYy6Sr1L4nvsqeSzSZmFoXtlMf3d/WjL2clrc5Q3At6BqAT3dPb4H4DOM2UC+6xTu8FuQIChGpM1yZe21a9l89WailOfirvaN7cSjcQYPDFJ7uJb+3f1UN1VbKlWj7Ml7nYKILAHOBhYCkixX1dt8kMsXLGdy4Sj3xV0Hth9g+PAwEhYkJMRjcQb2DRCPxYstmmH4Sr7rFN6Jk6O5Eydf83PAqcBDQMkohblgBw+Scl7cFR+Ng0Ao5PhihEIh4om4U24YZUy+3kdfAq5Q1dXAoPv/KqCkMq9ZkDMjX0KREIKQiCdAIRFPIAihqnx/MoZRmuT7hB+rqndnlN0BfLjA8vhK0JE2jdJl8SmLqVlcQzgSRlUJR8LULK5h8cmLiy2aYfhKvkphvzunALBLRN4EnECJhbgIOtKmUbqsvXYtlZFKGpY3UDO/hoblDVRGKq0DYZQ9+U40fxd4M/DvwI3Ab3CC433DJ7l8I8hIm0bpUu4T6YaRi3xdUr/qef+vIvIAThyk5/0SzDCKTTlPpBtGLvIyH4nIPd5tVX1VVZ8Xkf/wRyzDMAyjGOQ7p/A/cpRfWCA5DMMwjFnApOYjEdngvo143ic5HnjFF6kMwzCMojDVnMIx7v+Q5z04yXVeA77gg0yGYRhGkZhUKajqFQAi0q6q353Jhdzsbd/EcWP9nqp+Jcdx7wbuBs5S1Sdnck3DMAxjeuTrffRdEWkD3gssA/YAP1HVvDKqiEgYJ3vb24Au4AkR2aSq2zOOawA+ATyWfxUMwzCMQpGv99EHgKeB04BB4I3Ab93yfDgb2KGqv1fVKHAXsD7LcV8EvgaM5HlewzAMo4Dku3jtS8AfqerWZIGInA/8ALgzj88vx5mDSNIFnOM9QERWA8eo6i9E5DO5TiQiV+HEXaKlpYWOjo48q1BcDh06VDKyTpdyrhuUd/2sbqWLX/XLVyk0AI9klD0K1OX5eclSpqmdIiGcldKXT3UiVb0FuAVgzZo1umpVaSwq6ujooFRknS7lXDco7/pZ3UoXv+qX7zqFbwBfFpFqABGpAf6B/MNcdJHuvbQCZ14iSQNOKO4HRGQXTvrPTSKyJs/zG4ZhGAUg35HCXwFLgb8RkSPAPJzef7eIfDx5kKoem+PzTwBtIrIS2A1cBnzA87lenOQ9ALhhND5j3keGYRjBkq9S+NBMLqKqYyJyNXAfjkvqbar6nLsg7klV3TST8xuGYRiFIV+X1C0zvZCq3gvcm1F2Q45jL5zp9QzDMIzpk69LapWI/IOI/F5Eet2yt7u9f8MwDKNMyHei+UacieAPMu419Bzw8ZyfMAzDMEqOfOcU3gWcqKqDIpIAUNXdIrLcP9EMwzCMoMl3pBAlQ4GIyCLgUMElMgzDMIpGvkrhbuAO16UUEWkBbsIJV2EYhmGUCfkqhf8F7AJ+BzQDnTiLzzJzLBiGYRglTL4uqVHgk8AnXbPRQVXVKT5mGIZhlBj5uqR+WEROA1DVA6qqInK6iPyZv+IZhmEYQZKv+eiLpEc5xd3+UmHFMQzDMIpJvkqhEejLKOvFmV8wDMMwyoR81ylsB/4U+Imn7F3A8wWXyGc6N3fSvrGdnp09NK9sZu21a2lb11ZssYw5jj2XxmwhX6XwOeBeEXkf8DJwInAR8Ed+CeYHnZs72Xz1ZkKRENXzq+nv7mfz1ZvhJuwHaBQNey6N2URe5iNVfQg4BScEdh3wOHCqqj7so2wFp31jO6FIiEhdBBEhUhchFAnRvrG92KIZcxh7Lo3ZRF4jBRGpAvaq6lc8ZZUiUqWqo75JV2B6dvZQPb86rayytpKeXT1Fksgw7Lk0Zhf5TjT/Cjgzo+xMnPwIJUPzymZiQ7G0sthQjOZWmy83ioc9l8ZsIl+l8EbgsYyyx4HTCyuOv6y9di2JaILoYBRVJToYJRFNsPbatcUWzZjD2HNpzCbyVQq9wJKMsiXAYGHF8Ze2dW2su2kdDS0NjBwZoaGlgXU3rbPJPKOo2HNpzCby9T76d+BOEfkE8HvgBOAbpLuolgRt69rsx2bMOuy5NGYL+Y4UPo+zJuFxoB94FHgRJ1CeYRiGUSbkGxBvBPhrN/3mQtyAeCKSr1IxDMMwSoBpNerqcAA4VUQ2Al3+iGUYhmEUg7yVgogsEpG/EZHfAh3A2cDf+CaZYRiGETiTmo9EpBK4FLgc+ENgB/Aj4DjgPaq6328BDcMwjOCYaqSwD/gOzqTyuap6sqp+ESdns2EYhlFmTKUUnsEJj30OcJaIzPNfJMMwDKNYTKoUVPVCnDUJvwQ+A+wVkf/ECYpX6bt0hmEYRqBMOdGsqq+o6hdVtQ0nXHY3kAC2icjX/BbQMAzDCI7puqQ+pKpXAUuB/4kTE8kwDMMoE45q8Zmqjqjqj1R1XaEFMgzDMIqHrUg2DMMwUgSmFETkYhF5UUR2iMh1WfZ/WkS2i8gzInK/iBwXlGyGYRiGQyBKQUTCwM3AOuBk4P0icnLGYU8Da1T1NOCngE1iG4ZhBExQI4WzgR2q+ntVjQJ3Aeu9B6jqb1R1yN18FFgRkGyGYRiGS775FGbKcuA1z3YXzoK4XFwJbM62Q0SuAq4CaGlpoaOjo1Ay+sqhQ4dKRtbpUs51g/Kun9WtdPGrfkEpBclSplkPFPkQsAa4INt+Vb0FuAVgzZo1umrVqkLJ6CsdHR2UiqzTpZzrBuVdP6tb6eJX/YJSCl3AMZ7tFcCezINE5K04CX0uUNXRgGQzDMMwXIKaU3gCaBORlSISAS4DNnkPEJHVOMH3LrXoq4ZhGMUhEKWgqmPA1cB9OGk9f6Kqz4nIBhG51D1sI1AP3C0iHSKyKcfpDMMwDJ8IynyEqt4L3JtRdoPn/VuDksUwDMPIjq1oNgzDMFKYUjAMwzBSmFIwDMMwUphSMAzDMFKYUjAMwzBSmFIwDMMwUphSMAzDMFKYUjAMwzBSmFIwDMMwUphSMAzDMFKYUjAMwzBSmFIwDMMwUphSMAzDMFKYUjAMwzBSmFIwDMMwUphSMAzDMFKYUjAMwzBSmFIwDMMwUphSMAzDMFKYUjAMwzBSmFIwDMMwUphSMAzDMFKYUjAMwzBSmFIwDMMwUphSMAzDMFKYUjAMwzBSmFIwDMMwUphSMAzDMFKYUjAMwzBSBKYURORiEXlRRHaIyHVZ9leJyI/d/Y+JSGtQshmGUT50bu7kjrfcwbM/epY73nIHnZs7iy1SSRGIUhCRMHAzsA44GXi/iJyccdiVwBFVPRG4EfhqELIZhlE+dG7uZPPVm+nv7idcFaa/u5/NV282xTANghopnA3sUNXfq2oUuAtYn3HMeuAO9/1PgYtERAKSzzCMMqB9YzuhSIhIXQSASF2EUCRE+8b2IktWOlQEdJ3lwGue7S7gnFzHqOqYiPQCC4CD3oNE5CrgKoCWlhY6Ojr8krmgHDp0qGRknS7lXDco7/qVW93CZ4VZULUAgMpjK2n4owYA4qPxsqon+HfvglIK2Xr8ehTHoKq3ALcArFmzRletWjVz6QKgo6ODUpF1upRz3aC861duddv26W30dPcQqYvQ8EcN9N/bT3QwSkNLA6u+Wj71BP/uXVDmoy7gGM/2CmBPrmNEpAJoAg4HIp1hGGXB2mvXkogmiA5GAYgORklEE6y9dm2RJSsdglIKTwBtIrJSRCLAZcCmjGM2AR9x378b+G9VnTBSMAzDyEXbujbW3bSOhpYG4qNxGloaWHfTOtrWtRVbtJIhEPORO0dwNXAfEAZuU9XnRGQD8KSqbgJuBX4gIjtwRgiXBSGbYRjlRdu6NtrWtTnmlTIzGQVBUHMKqOq9wL0ZZTd43o8A7wlKHsMwDGMitqLZMAzDSGFKwTAMw0hhSsEwDMNIYUrBMAzDSGFKwTAMw0hhSsEwDMNIYUrBMAzDSCGlvGhYRA4ArxRbjjxZSEZwvzKinOsG5V0/q1vpMpP6Haeqi7LtKGmlUEqIyJOquqbYcvhBOdcNyrt+VrfSxa/6mfnIMAzDSGFKwTAMw0hhSiE4bim2AD5SznWD8q6f1a108aV+NqdgGIZhpLCRgmEYhpHClIJhGIaRwpSCT4hIWESeFpFfuNsrReQxEekUkR+7GehKEhFpFpGfisgLIvK8iLxJROaLyK/c+v1KROYVW86jQUQ+JSLPicizIvIjEaku5XsnIreJyH4RedZTlvVeicM/i8gOEXlGRM4onuRTk6NuG93n8hkR+ZmINHv2Xe/W7UUR+cPiSJ0f2erm2fcZEVERWehuF/S+mVLwj78BnvdsfxW4UVXbgCPAlUWRqjB8E/gvVX09cDpOPa8D7nfrd7+7XVKIyHLgE8AaVT0VJ0vgZZT2vbsduDijLNe9Wge0ua+rgG8HJOPRcjsT6/Yr4FRVPQ14CbgeQEROxrmXp7if+ZaIhIMTddrczsS6ISLHAG8DXvUUF/S+mVLwARFZAVwCfM/dFuAtwE/dQ+4A3lkc6WaGiDQCf4CTPhVVjapqD7Aep15QwvXDyUZYIyIVQC3QTQnfO1XdipPe1kuue7Ue+Fd1eBRoFpGWYCSdPtnqpqq/VNUxd/NRYIX7fj1wl6qOqupOYAdwdmDCTpMc9w3gRuCzgNdDqKD3zZSCP/wTzo1LuNsLgB7Pw9oFLC+GYAXgeOAA8H3XPPY9EakDlqhqN4D7f3ExhTwaVHU38I84vbBuoBd4ivK5d0ly3avlwGue40q9rn8ObHbfl3zdRORSYLeqbsvYVdC6mVIoMCLyx8B+VX3KW5zl0FL1Ba4AzgC+raqrgUFK0FSUDde2vh5YCSwD6nCG5pmU6r2birJ5TkXk88AY8G/JoiyHlUzdRKQW+DxwQ7bdWcqOum6mFArPecClIrILuAvH9PBPOEO6CveYFcCe4og3Y7qALlV9zN3+KY6S2Jccsrr/9xdJvpnwVmCnqh5Q1RjwH8BayufeJcl1r7qAYzzHlWRdReQjwB8DH9TxhVilXrcTcDor29y2ZQXwWxFZSoHrZkqhwKjq9aq6QlVbcSa2/ltVPwj8Bni3e9hHgHuKJOKMUNW9wGsi8jq36CJgO7AJp15QuvV7FThXRGrdeaBk3cri3nnIda82AR92vVnOBXqTZqZSQUQuBj4HXKqqQ55dm4DLRKRKRFbiTMo+XgwZjwZV/Z2qLlbVVrdt6QLOcH+Phb1vqmovn17AhcAv3PfH4zyEO4C7gapiyzeDeq0CngSeAX4OzMOZN7kf6HT/zy+2nEdZt78HXgCeBX4AVJXyvQN+hDM/EnMbkitz3SscM8TNwMvA73C8sIpeh2nWbQeOfb3Dff2L5/jPu3V7EVhXbPmnW7eM/buAhX7cNwtzYRiGYaQw85FhGIaRO2T2uwAAApFJREFUwpSCYRiGkcKUgmEYhpHClIJhGIaRwpSCYRiGkcKUgmEYhpHClIJhZMENs3xvRllnjrLLgpXOMPzDlIJhZGcrcF4yvLIbTqASOCOj7ET3WMMoC0wpGEZ2nsBRAqvc7T/ACXfxYkbZy6q6R0S+KSKviUifiDwlIucnTyQiNSJyh4gccZMSfVZEujz7l4nIv4vIARHZKSKfCKaKhjERUwqGkQVVjQKP4TT8uP8fBB7KKEuOEp7AURbzgTuBu0Wk2t33d0ArTriMtwEfSl5HRELAfwLbcMIdXwR8crZnBjPKF1MKhpGbLYwrgPNxlMKDGWVbAFT1h6p6SFXHVPXrODGTkkED3wt8WVWPqGoX8M+ea5wFLFLVDeokLPo98F2cYIqGETgVUx9iGHOWrcBfu3kWFqlqp4jsA+5wy051j0FErgE+ipOHQYFGYKF7nmWkJ0Hxvj8OWCYiPZ6yMI7yMYzAMaVgGLl5BGjCyXv7MICq9onIHrdsj6rudOcPPodj+nlOVRMicoTx5CfdODHut7vb3tj3r+HkcGjzvTaGkQdmPjKMHKjqME6I8E+T3nN/yC1Lzic04GT5OgBUiMgNOCOFJD8BrheReSKyHLjas+9xoE9EPudOSIdF5FQROcufWhnG5JhSMIzJ2YKTw/ghT9mDbllSKdyHkwv4JeAVYIR0E9EGnJj4O4Ff42SrGwVQ1TjwDpxJ6p3AQeB7OCMUwwgcy6dgGAEjIh8HLlPVC4oti2FkYiMFw/AZEWkRkfNEJOSmMb0G+Fmx5TKMbNhEs2H4TwT4Dk7i9R7gLuBbRZXIMHJg5iPDMAwjhZmPDMMwjBSmFAzDMIwUphQMwzCMFKYUDMMwjBSmFAzDMIwU/x9QSavopoCw6QAAAABJRU5ErkJggg==\n", 657 | "text/plain": [ 658 | "
" 659 | ] 660 | }, 661 | "metadata": { 662 | "needs_background": "light" 663 | }, 664 | "output_type": "display_data" 665 | } 666 | ], 667 | "source": [ 668 | "sns.regplot(x=\"wage\", y=\"vil_labor\", data=df, color='purple')\n", 669 | "plt.ylabel('Acceptance Rate', fontsize=12)\n", 670 | "plt.xlabel('Wage', fontsize=12)\n", 671 | "plt.title('Scatter-Graph of A-Rate and Wage')\n", 672 | "plt.grid(axis='y', alpha=0.75)\n", 673 | "plt.grid(axis='x', alpha=0.75)" 674 | ] 675 | }, 676 | { 677 | "cell_type": "markdown", 678 | "metadata": {}, 679 | "source": [ 680 | "**Yes!** graph confirms that there is a small influence of the wage offered on if villager accepted the job or not." 681 | ] 682 | }, 683 | { 684 | "cell_type": "markdown", 685 | "metadata": {}, 686 | "source": [ 687 | "## Part 2:\n", 688 | "-----------\n", 689 | "### 2.a) We run a regression of wage on acceptance rate." 690 | ] 691 | }, 692 | { 693 | "cell_type": "code", 694 | "execution_count": 10, 695 | "metadata": {}, 696 | "outputs": [], 697 | "source": [ 698 | "from sklearn.model_selection import train_test_split \n", 699 | "from sklearn.linear_model import LinearRegression\n", 700 | "from sklearn import metrics" 701 | ] 702 | }, 703 | { 704 | "cell_type": "code", 705 | "execution_count": 11, 706 | "metadata": {}, 707 | "outputs": [ 708 | { 709 | "data": { 710 | "text/html": [ 711 | "\n", 712 | "\n", 713 | "\n", 714 | " \n", 715 | "\n", 716 | "\n", 717 | " \n", 718 | "\n", 719 | "\n", 720 | " \n", 721 | "\n", 722 | "\n", 723 | " \n", 724 | "\n", 725 | "\n", 726 | " \n", 727 | "\n", 728 | "\n", 729 | " \n", 730 | "\n", 731 | "\n", 732 | " \n", 733 | "\n", 734 | "\n", 735 | " \n", 736 | "\n", 737 | "\n", 738 | " \n", 739 | "\n", 740 | "
OLS Regression Results
Dep. Variable: y R-squared: 0.119
Model: OLS Adj. R-squared: 0.112
Method: Least Squares F-statistic: 16.01
Date: Mon, 16 Dec 2019 Prob (F-statistic): 0.000111
Time: 23:38:21 Log-Likelihood: 49.648
No. Observations: 120 AIC: -95.30
Df Residuals: 118 BIC: -89.72
Df Model: 1
Covariance Type: nonrobust
\n", 741 | "\n", 742 | "\n", 743 | " \n", 744 | "\n", 745 | "\n", 746 | " \n", 747 | "\n", 748 | "\n", 749 | " \n", 750 | "\n", 751 | "
coef std err t P>|t| [0.025 0.975]
Intercept 0.7004 0.039 17.894 0.000 0.623 0.778
x 0.0017 0.000 4.001 0.000 0.001 0.003
\n", 752 | "\n", 753 | "\n", 754 | " \n", 755 | "\n", 756 | "\n", 757 | " \n", 758 | "\n", 759 | "\n", 760 | " \n", 761 | "\n", 762 | "\n", 763 | " \n", 764 | "\n", 765 | "
Omnibus: 83.233 Durbin-Watson: 1.811
Prob(Omnibus): 0.000 Jarque-Bera (JB): 475.521
Skew: -2.436 Prob(JB): 5.52e-104
Kurtosis: 11.448 Cond. No. 244.


Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified." 766 | ], 767 | "text/plain": [ 768 | "\n", 769 | "\"\"\"\n", 770 | " OLS Regression Results \n", 771 | "==============================================================================\n", 772 | "Dep. Variable: y R-squared: 0.119\n", 773 | "Model: OLS Adj. R-squared: 0.112\n", 774 | "Method: Least Squares F-statistic: 16.01\n", 775 | "Date: Mon, 16 Dec 2019 Prob (F-statistic): 0.000111\n", 776 | "Time: 23:38:21 Log-Likelihood: 49.648\n", 777 | "No. Observations: 120 AIC: -95.30\n", 778 | "Df Residuals: 118 BIC: -89.72\n", 779 | "Df Model: 1 \n", 780 | "Covariance Type: nonrobust \n", 781 | "==============================================================================\n", 782 | " coef std err t P>|t| [0.025 0.975]\n", 783 | "------------------------------------------------------------------------------\n", 784 | "Intercept 0.7004 0.039 17.894 0.000 0.623 0.778\n", 785 | "x 0.0017 0.000 4.001 0.000 0.001 0.003\n", 786 | "==============================================================================\n", 787 | "Omnibus: 83.233 Durbin-Watson: 1.811\n", 788 | "Prob(Omnibus): 0.000 Jarque-Bera (JB): 475.521\n", 789 | "Skew: -2.436 Prob(JB): 5.52e-104\n", 790 | "Kurtosis: 11.448 Cond. No. 244.\n", 791 | "==============================================================================\n", 792 | "\n", 793 | "Warnings:\n", 794 | "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n", 795 | "\"\"\"" 796 | ] 797 | }, 798 | "execution_count": 11, 799 | "metadata": {}, 800 | "output_type": "execute_result" 801 | } 802 | ], 803 | "source": [ 804 | "import statsmodels.formula.api as smf\n", 805 | "\n", 806 | "#The coefficients for wage seems to be small. Generated a new variable that is 1000 times smaller than wage (wage/1000) and use it instead of wage\n", 807 | "x = df[['wage']]\n", 808 | "y = df['vil_labor']\n", 809 | "\n", 810 | "#running regression acceptance rate on wage\n", 811 | "reg = smf.ols('y ~ x', data=df).fit()\n", 812 | "reg.summary()" 813 | ] 814 | }, 815 | { 816 | "cell_type": "markdown", 817 | "metadata": {}, 818 | "source": [ 819 | "Our explanatory 'wage' showed to have a strong explanatory power as it's p-value is approx. **0** (which means that we are 99% confident it is statistically significant).\n", 820 | "Also, explanatory variable shows that offering of an additional 1 Kwacha increases acceptance rate by **0.0017**\n", 821 | "\n", 822 | "However, if we look that the R-squared, which is the measure of goodness of fit of our model, we see that our model is the explanation of the outcome only by approx. **12%**" 823 | ] 824 | }, 825 | { 826 | "cell_type": "code", 827 | "execution_count": 12, 828 | "metadata": {}, 829 | "outputs": [], 830 | "source": [ 831 | "#now once again we regress acceptance rate on wages\n", 832 | "reg = LinearRegression()\n", 833 | "\n", 834 | "x = df[['wage']]\n", 835 | "y = df['vil_labor']\n", 836 | "\n", 837 | "#fitting the model\n", 838 | "reg = reg.fit(x, y)\n", 839 | "\n", 840 | "#creating yhat or the prediction line\n", 841 | "yhat = reg.predict(x)" 842 | ] 843 | }, 844 | { 845 | "cell_type": "markdown", 846 | "metadata": {}, 847 | "source": [ 848 | "### 2.b) We visualize our results:" 849 | ] 850 | }, 851 | { 852 | "cell_type": "code", 853 | "execution_count": 13, 854 | "metadata": {}, 855 | "outputs": [ 856 | { 857 | "data": { 858 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEJCAYAAAB7UTvrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deXwV1fn48c9DBNncABckmmC1VlwIJILKov25AVWs1ioatxabCiou9Vu1fOuCpb/WpaKtIrhUqBFsoSpabG2tyuIKzVVZpKCyRG3VqCiGCIHn+8fcXG5ubpK5yZ1zM5Pn/Xrd171z7mTmnDuTeWbOnDlHVBVjjDEGoEOuM2CMMabtsKBgjDEmwYKCMcaYBAsKxhhjEiwoGGOMSdgp1xlojV69emlhYWGus5GRzZs306VLl1xnIxBRLZuVK1yiWi7IXtmWLl36iarume67UAeFwsJClixZkutsZCQWi1FUVJTrbAQiqmWzcoVLVMsF2SubiKxr7DurPjLGGJNgQcEYY0yCBQVjjDEJFhSMMcYkWFAwxhiTYEHBGGNMgpOgICIPichHIrKske9FRO4WkTUi8qaIDHSRL2PajPJyKCyEDh289/Ly4Nc1fbq7dbkol2vjx8NOO4GI9z5+fK5zlBWurhQeBkY08f1I4KD4qwyY6iBPxrQN5eVQVgbr1oGq915WFswBNHld4G5dQZfLtfHjYepU2LbNm962zZuOQGBwEhRUdQHwaROznAbMVM8rwO4i0ttF3ozJuYkTobq6flp1tZdu62qbpk/PLD1E2soTzX2ADUnTlfG0D1NnFJEyvKsJevfuTSwWc5LBbKmqqgpdnv2KatkCL9eoUY1/l+31Jq2rql8/YuPGOVlXA0H8nosWwcqVVB1yCLH774dDDoGhQ7O/HvCueBoTRNnWrIHXXqNq//2JPfooDBoEBx6Y/fUAqKqTF1AILGvku78AQ5OmnwOKm1tmcXGxhk1FRUWus5B9jzyiWlCgFePGqRYUeNNR4KpcBQWqXgVL/VdBQfbX1a1bYvkV48btWFe3btlfV8+e6cvVs2f215VUlnrlGjcu++tSVc3LS1+2vLzsr+uRR1Q7dapftk6dWrU/Aku0keNqW2l9VAnslzSdD3yQo7yYTLiso3bJZbkmT4auXeunde3qpWdbanVOc+mtUVOTWXpr3HdfZumtdfDBmaW3xhVXwJYt9dO2bPHSA9BWgsI84IJ4K6SjgI2q2qDqyLRBUa03dlmu0lKvLrqgwGvJUlDgTZeWZn9djY3JHsRY7V99lVl6a7gsF8CqVZmlt0ZVVWbpreTknoKIzAKOA3qJSCVwI9ARQFXvA+YDo4A1QDXwAxf5Mlmwfn1m6WGxrpFOJBtLb63S0mCCgAlGXasjv+kh4qr10Tmq2ltVO6pqvqo+qKr3xQMC8WquS1X1G6p6uKq66Q87ym2oXdl//8zSwyIvL7P01nLV5r1bt8zSW6N798zSw8Tl/uFym9F2qo/ci3IbanAX8FzWh4O7crk8E3TZ5n3atMzSWyO1Hry59DBprPVRU62SWkoks/RWar9BIap14eA24CXXh0Ow9eEuy9WzZ2bpreHyQA3QqVPT09kS5aAwZEjDq4K8PC892zZtyiy9ldpvUIhqXThEN+BFtVzbt2eW3hoTJ6ZvyRL239C1iRMbXjVu2xaJ37H9BoWo1oWD24Dnsummy3J92sgD+I2lh0VUT4Y6NHIoayy9taL6O9Keg0Ku6sJddELmMuC5PHvv0SOz9NZw+Ru6vJEY1XL9+MeZpbeWy30xHtiqO6ZPz/rqAllqGLhsG+76Aa/Jk6Fjyh7UsWMwAc9l002XD0O5PGmYNq3hTUORYO4pNNb1RFNdUrTUBRdklt4a994Lxx9fP+344730kJj04iTkZmn4umE7chN0mwgD9k7qKzSggNdW+j7KDVdtw5s6mw5q/ekOMkHIy0vfIieIpnkuH4YqLYXFi3d0cJaXBxdeGNz26tixfl1/alDPlvnzM0sPy7rKy2HhwvppCxd66UFssxZUL5b+uZRH33q0Vav9dk1fyFvvnVQGFPDad1BwxXX9Y1M3E7P9DxLVh3jKy+HBB+s3E33wQa91SbZ/Q5fby+W+6HJdTXUFEURQ6NGjwRPFR4yDt/ZWuDk7J2Bzz5rLGYecUS8tFovB/y/KyvIbY0HBhf33T1+dEtRNbZdVOgUF6Zdb10Q1m3r2TP9ofxDNRF0eZFwePNMczBLp2eZyv3fQFYQkH+wvb/3yXhn7CoPzB7d+QVnWvoNCebl3NrZ+vbejTp4czFnF5Mne5V5yFVKQN7VdVum4LNtdd8FFF0Ft7Y60nXby0rPNZX8zLg+eX3+dWXpruN7vW0mydIZf550J73DAHgdkZ2F1x6pRo7zqt6COVbTnoFB387duh627+QvZ/7HrllfXIqegINCN6rRKx3XZXN0rcWnUKO8J5nTp2ebyQajkfSPoE69mriJrt9fS8Zbs3qd5dwr0/TzN+j75JKvrcXqsAkSD6kXQgZKSEl2ypIXdJBUWNl7tsXZta7LVpFgsRlFRsHWCkS2by3L16pU4yMTGjaOo7qAdxD+9y3IlBdF65YLgehR14MMZv2PftVmo00my8bqN7Lrzrum/TNo/6gl4/6i3zVqxf4jIUlUtSfdd+71ScN0LpkuTJ3vN/pKfiO3Qoc1etvvmsu79rLPSn72fdVb21xXhB6GyZfH6xQz9fXZHUav9eS15HVpYpery4UbH+0f7DQou691dW7y4YRcJ27d76WHuntll3bvL5pQuy+XyZn0Gfvvqb5nw1wlZXabeGOCVj8sb9i7XRXsOClFtSglNd7AWood5GnBZ9+7y7MzlDVmXV0BJzp5zNn9c/sesLrOxg76TKlqXN+wda79BwWVTStdcdrDmUlTP3l3ekA3oN8x2yx0I+Ey/tVzesHfcD1f7DQqTJ8MPfgBbt+5IC6orCJMdUT17B3dP17fwN2x3B/22xPFzTu03KEA0mzeC1+FYuq4fAhqpyZlcnb1D8E1tXWnkN5Qbs/ckbp1IH/Rd3ptxfILSfoOCy64FXJs2zeunJ/n+SF5ecIO2uJKrs/dYLNz3Ykg60683+vlUuKnly4z0Qb85d92VvqYhiAcpHZ+gtN+gEOVmgMmduW3b5gWEsrLggt348d66ysp2vAdxEHVZ9x4y2a7e2af7Pnz4kw+zusxIcb0vOjxBab9BwXV/RA4fU6e8HGbMqN+Z24wZwXTmVje+cJ268YUhuMDQDoNAtg/6Iw8cyS8P/WXwrXSiLKL7YvsNCi6rIhw/pu60q+66rqXTpYe8ysVVIA+iC4bpp0znR8U/anKeWCyW1XWaAFnfRw64vPxzPZ6Cy6qxqD7vkcVAvmHjBvafkt0r0DcveZPD9z48q8s0bZTjk8r2GxSgzTcDbDGXVWNRfTI8g0D+l3//hVNmnZLV1X95/Zd079Q9q8s0IeX4pLJ9BwVXunZN30Q0dbjHbHFZNVZWlv4J2bozmbBKCth3dH+JR26qm1qXlaab7brljsmM437aLCi4kBrlm0tvLZdVY3X3DZKHrQxwqMAgDPv9MBatX1Q/8cbkiTcyXqYd9E3WOL4at6DgQmNdEgfZVbHLlhH33uu92mh7fnsa14Sa4/t2FhRM67lsbptGYAf9eLlio0ZRlINyGQM476etfQcFV8NxRrXbCfB+w+QnO9et86Yha79lzs70I/REswkx6+bCEZfNvKZNSz/oTdi7nQBvIPvkR/3Bm85ggHur3sHdCYoJn6h2cyEiI4C7gDzgAVX9Vcr3+wMzgN3j81ynqgH0iRznsplXVDtXA18D3Gf7oH/oR7As+cQ94GFGA+f64UYTPlHr5kJE8oB7gBOBSuB1EZmnqiuSZvtf4I+qOlVE+gHzgcLAMuX62YEIV0XITXWfUjpYa2Ew+J9j/odbT7y14RcdOqS/OR/2/qpcP9xoTBNcXSkMAtao6rsAIjIbOA1IDgoK1I2SvRvwQaA5ct33UUipKh0mdWh8hpsyX+ac78/he/2+l/kfRnWbRblzRhM6okE2i6xbiciZwAhVvTg+fT4wWFUvS5qnN/AssAfQDThBVZemWVYZUAbQu3fv4vktHTFqzRpYsABqa3ek7bQTDB8OBx7YsmX6UFVVRc8cj4ebrGZbDUc/fXRWlzmnagzfGP697P+OUd1mjz6afsSu7t3h3HMDW21b2xezJarlguyVbcCAAUtVtSTdd66uFNLVI6RGo3OAh1X1DhE5GviDiBymqvXGkFTV6cB0gJKSEm1xL49FRd54qqk39848s2XL88nJ+LFJguh3p/pn1XTp2MWbSGp9FBs3jqKpU6HjXBh8ivcbZ1NUt9ny5elbl0yfnv3fMInrfdGVqJYL3JTNVVCoBPZLms6nYfXQWGAEgKq+LCKdgV7AR4HlyuUDXgG15V/ywRKOvP/ILGRwh+03bEf8jkI3cWL61kdB1YdHsbtiGyfCtCGugsLrwEEi0hd4HxgDpF4XrweOBx4WkUOAzsDHgebKVTPAVrQumfXWLM79c3arELLaXNPqw7MjisHOhJKToKCqtSJyGfA3vOamD6nqchGZBCxR1XnAT4D7ReQqvKqlizTIGx4umwE20brkp3u9wW0v3ZbV1Tlto5+rwYrsjNqYQDh7TiH+zMH8lLQbkj6vAIa4yo+rZoAPVTzE2B8kHzSTm22ugxYEhDb1YFaUBysyph1qv080Z6naY9KLk7jxhRubnzEDbeqg3xyXD+ZZe35jAtd+g4LPao9z557LrGWzsrban3x5DLff8dKO1iVROJi5ejDP7l8YE7j2GxTi1R5aXU2Hm5K/aN0gKvPGzOPUg09t+MX48TB9OrGy/pD3Klx4YTQCgktRfXgtyuweUOi036AQ3zE7rDkvoz97ZewrDM4fnNm6ysthxowd/Z9v2+ZNDxli/yCZcNxbpGkluwcUShkFBRHpAOytqh8GlB+3SkuZ8Mxr3P3a3Ymkdye8S989+mZ3PVYXnh3Wnj9cbL8PJV9BQUR2B+4FzgS2At1EZDQwSFX/N8D8Be6ukXdx18i7gl2J1YVnj7XnDw/b70OpiZ7O6rkP2AgUAFviaS8DZweRqchprM7b6sJNlNl+H0p+g8LxwIR4tZECqOrHwF5BZSxSJk/26r6TWV24iTrb70PJb1DYiNcPUUJ8UJxo3FsIWmmp1/y0bkzVgoLoNEc1pjHJ+72I7fch4fdG8wPAXBGZCHSI92L6S7xqJeNHhAfZMaZRdg8odPxeKfwa+CPe6GkdgYeAJ/GG1wyv8nIoLPRG9Cos9KaNMaYd83ulsLeqTgGmJCeKyD7Af7KeKxesDbUxxjTg90rh342kr2gkve1rqg21Mca0U36DQoN+H0RkV2B7mnnDwdpQG2NMA01WH4nIBrwmqF1EJPVo2RPIXk9xrlk/OsYY00BzVwrnARfgPbB2ftLrPGCgql4cbPYCFPU21OPHe4Pai3jv48fnOkfGmBBo8kpBVV8EEJFeqlrd1LyhE+V+dMaPh6lTd0xv27Zj2prDGmOa4OuegqpWi0iRiFwuIjeLyKS6V9AZDFRpKaxdC9u3e+9RCAgA06Zllm5yz5pHmzbCb4d4ZcCdwLPASOAZ4CS8ZxVMW7O9kfv/jaWb3LLm0aYN8dv66KfACFU9Hdgcf6/rMdX4UXcmOH26nQma+qx5tGlD/AaFvVR1YfzzdhHpoKrPAGmGGDMN1J0J1rV2qjsTDCowdOuWWXqYRLGaxZpHmzbEb1CoFJHC+Od/A6eJyDB2dKNtmuL6THDaNMjLq5+WlxfcPQVXV0HJwVU1+ODqSo8emaUbEyC/QeFW4JD450nAI8A/459Nc1yfCZaWesN9JvdOOWNGMPXTLq+CrJrFmMD5utGsqg8nfX5GRPYAOqnqpqAyFim5eFDOVe+ULodcjGo1y6efZpZuTID8XinUo6pbgK4icluW8xNNkydDp0710zp1isaDci4P1FEdySuq5TKh1GRQEM9YEfmtiEwQkY4isruI3Am8B/Rzk80IUG16OqxcHtCi+hR6VMtlQqm5K4XbgZvxht28DngYWALsCQxW1e8EmruguWrJMnEibE1pvbt1azTqwl0e0KI6kldUy2VCqbl7CmcBw1X1XRH5Fl5X2Wep6pzgsxYwlw8MRbUuHOp3FwLeAS3I7kKiOpJXVMtlQqe5K4XdVPVdAFV9G6iOREAAty1Zol5nXNddSFlZtLoLMaYdai4oiIj0FZEDROQAoDZ5Op4WTi7P3q3O2BgTEs0FhW7AmqTXrsA7SdOr/a5IREaIyCoRWSMi1zUyz1kiskJElovIo36X3SIuz96T64zB6oxbI4pPNEeZba/Qaa7r7BY1WU0lInnAPcCJQCXwuojMU9UVSfMcBFwPDFHVz0Rkr2ysu1GTJ9e/pwDBnr3X1RnHYtZ9dUtZx3HhYtsrlLJy0PdhELBGVd+NP+MwGzgtZZ4fAfeo6mcAqvpRoDmyFh/hY080h4ttr1Dy9URzFvQBNiRNVwKDU+b5JoCILAbygJtU9a+pC4p3410G0Lt3b2KxWMtzdeih8MQT9dNaszwfqqqqWpfnNizwso0a1fh3Aa43qtvMtlf4OCmbqgb+Ar4PPJA0fT7w25R5ngYeBzoCffECx+5NLbe4uFjDpqKiItdZCEzgZSsoUPUe+6v/KigIdLVR3Wa2vcInW2UDlmgjx1VX1UeVwH5J0/nAB2nmeVJVt6rqe8Aq4CBH+TNhYK24wsW2Vyj5DgrxLi6GicjZ8eluIuK3g/7XgYPizVk7AWOAeSnzPAF8O77sXnjVSe/6zV+bZ4PstJ7dBwoX216h5Hc4zsPxDuJf453lPwYcC1wInN3c36tqrYhcBvwN737BQ6q6PD7G8xJVnRf/7iQRWQFsA/5HVataUKa2x1phZI89+Rsutr1Cx++VwlTgBlX9FjuG4HwRGOp3Rao6X1W/qarfUNXJ8bQb4gGBeFXX1araT1UPV9XZGZSjbbNWGMaYkPAbFA7FG1gHQAFU9SugSxCZipwo931kjIkUv0FhLVCcnCAig/CeajbNiXrfR8aYyPAbFH4O/EVEbgY6icj1wJ+A/w0sZ1FirTCMMSHhKyio6tPASLxxFF4ECoAzVPXZAPMWHdb3UfZYXzrGBMp3k1RV/ZeqjlfV76jqJaq6NMiMRY51L916da241q3zHoOqa8UVVGCwZsSmHfIVFETkzyIyLCVtmIhEY2wFEw4uW3ElByAIPgAZ00b4vVI4FngpJe1l4g+bGeOEy1Zc1ozYtFN+g0IN3tgKybqz45kFY4LnshWXNSM27ZTfoPA3YJqI7AoQf/8d0KAXU2MC47IVlzUjNu2U36DwE7xR1z4VkY+AT4HdgCuDypgxDbjsS8eaEZt2ylffR+oNfPMdEdkHr7fTDar6n0BzZkw6rvrSqVtH3T2EggIvIFirMRNxmQ6ysx2oArqKyAEAqhqdnkyNSWZDqJp2yG8vqSOAB4HeKV8pXq+nxhhjIsDvPYV7gFuAbqraIellAcHYQ17GRIjf6qM9gGnxYdyM2cHGijAmUvxeKTwI/CDIjJiQsoe8jIkUv0HhKGCqiPxbRBYkv4LMnAmBKD/kZdViph3yW330QPwVLeXl3hnt+vXeQ0nW5DBz+++/o3+g1PQws2ox0075fU5hRtAZcc7+6bNj8uT6vyNE4yGvpqrFbP8wEeb7OQUR2RsYBPQCpC5dVR8KIF/Bs3/67IjqQ15RrhYzpgl+n1P4Lt4YzavxxmteDhwGLALCGRTsnz57oviQV48eUFWVPt2YCPN7o/kXwA9UdQDwVfy9DAjvQDvW4ZkxxjTgNyjsr6p/SkmbAVyQ5fy4Yx2emaZ8+mlm6cZEhN+g8FH8ngLAWhE5GvgGYe7iwmWPmyZ87ErStFN+g8L9wND45zuB54E3gKlBZMqZunGTt2+3cZNNfXYladopv01Sf530eaaIvIDXD9LKoDJmTE5FtVWVMc3wdaUgIk8mT6vqelVdKSJ/DiZbxrQBdVeSZWV2JWnaDb/VR99uJP24LOXDGGNMG9Bk9ZGITIp/7JT0uc4BQJr+DYwxxoRVc/cU9ou/d0j6DN7gOhuAmwLIkzHGmBxpMiio6g8AROQlVb3fTZaMMcbkiq97Cqp6v4gcJCITReSe+PtBmaxIREaIyCoRWSMi1zUx35kioiJSksnyjTHGtJ7f1kfnAhXAEcBXwOHAv+Lpfv4+D29Iz5FAP+AcEemXZr5dgAnAq75yb4wxJqv89pL6C2CUqiYG1RGRYcAfgEd9/P0gYI2qvhv/29nAacCKlPluAW4FrvGZL2OMMVnkNyjsAryckvYK0M3n3/fBuzFdpxIYnDyDiAwA9lPVp0Wk0aAgImV4nfHRu3dvYrGYzyy0DVVVVaHLs19RLZuVK1yiWi5wUza/QeE3wC9F5OeqWiMiXYCb4+l+SJo0TXwp0gGv+4yLmluQqk4HpgOUlJRoUVGRzyy0DbFYjLDl2a+ols3KFS5RLRe4KZvfoDAe2Ae4QkQ+A/bAO9B/KCLj6mZS1cZ6C6ukfpPWfOCDpOld8MZneEFEiK9rnoiMVtUlPvNojDGmlfwGhfNauZ7XgYNEpC/wPjAGSNykVtWNeCO6ARDvW+kaCwjGGOOW3w7xXmzNSlS1VkQuA/6G1932Q6q6PP6U9BJVndea5RtjjMkOv8Nx7gzcAJwD9FTV3UTkJOCbqvo7P8tQ1fnA/JS0GxqZ9zg/yzTGGJNdfjvEuxOvzr+UHTeIlwPjGv0LY4wxoeP3nsLpwIGq+pWIbAdQ1fdFpE9wWTPGGOOa3yuFLaQEEBHZE6jKeo6MMcbkjN+g8CdgRrz1ECLSG/gdMDuojBljjHHPb1D4GbAWeAvYHViN95xB6hgLxhhjQsxvk9QtwJXAlfFqo09UVZv5M2OMMSHjt5fUC0TkCABV/VhVVUT6i8j5wWbPGGOMS36rj26hfod2xKd/kd3sGGOMySW/QWFX4IuUtI149xeMMcZEhN+gsAL4Xkra6cDK7GbHGGNMLvkNCtcCD4jIXBG5VUT+DDwI/CS4rDlQXg6FhdChg/deXp7rHJn2yvZF00b4HaN5EXAoXm+n3YDXgMNUdXGAeQtWeTmUlcG6daDqvZeV2T+jcc/2RdOG+G19tDPwH1X9lapeqqq/Av4TTw+niROhurp+WnW1l26MS7YvmjbEb/XR34HilLRivK6ww2n9+szSjQmK7YumDfEbFA4HXk1Jew3on93sOLR/I4PENZZuTFBsXzRtiN+gsBHYOyVtb+Cr7GbHocmToWvX+mldu3rpxrhk+6JpQ/wGhbnAoyJymIh0FZHDgZnAH4PLWsBKS2H6dCgoABHvffp0L90Yl2xfNG2I3/EUJgJ34FUZ7QzUAL/H6ygvvEpL7R/PtA22L5o2wm+HeDXApfFxlnsR7xBPRPxeaRhjjAmBjA7q6vkYOExEbgMqg8mWMcaYXPAdFERkTxG5QkT+BcSAQcAVgeXMGGOMc01WH4lIR2A0cBFwMrAGmAUUAN9X1Y+CzqAxxhh3mrtS+C8wDVgFHKWq/VT1Frwxm40xxkRMc0HhTbzusQcDR4rIHsFnyRhjTK40GRRU9TjgG8CzwDV4/R09hdcpXsfAc2eMMcapZm80q+o6Vb1FVQ8Cjgc+BLYDb4jIrUFn0BhjjDuZNkldpKplwD7A5Xh9IhljjImIFj18pqo1qjpLVUdmO0PGGGNyx55INsYYk2BBwRhjTIKzoCAiI0RklYisEZHr0nx/tYisEJE3ReQ5ESlwlTdjjDEeJ0FBRPKAe4CRQD/gHBHplzJbBVCiqkcAcwBr2WSMMY65ulIYBKxR1XdVdQswGzgteQZVfV5V6waqfQXId5Q3Y4wxcX7HU2itPsCGpOlKvKekGzMWeCbdFyJSBpQB9O7dm1gslq08OlFVVRW6PPsV1bJZucIlquUCN2VzFRQkTZqmnVHkPKAEODbd96o6HZgOUFJSokVFRdnKoxOxWIyw5dmvqJbNyhUuUS0XuCmbq6BQCeyXNJ0PfJA6k4icgDfK27Gq+rWjvBljjIlzdU/hdeAgEekrIp2AMcC85BlEZABej6yjrUtuY4zJDSdBQVVrgcuAvwErgT+q6nIRmSQio+Oz3QZ0B/4kIjERmdfI4owxxgTEVfURqjofmJ+SdkPS5xNc5cUYY0x69kSzMcaYBAsKxhhjEiwoGGOMSbCgYIwxJsGCgjHGmAQLCsYYYxKcNUl1ZevWrVRWVlJTU5PrrKQlIqxcuTLX2QhENsvWuXNn8vPz6dixY1aWZ4zxJ3JBobKykl122YXCwkJE0nW5lFvV1dV07do119kIRLbKpqpUVVVRWVlJ3759s5AzY4xfkas+qqmpoWfPnm0yIBh/RISePXu22as9Y6IsckEBsIAQAbYNjcmNSAYFY4wxLWNBIQB5eXkUFRVx2GGHceqpp/L555/nOkv1jBo1Kit5uummm7j99tsbpB9zzDGtXrYxJjcsKASgS5cuxGIxli1bRo8ePbjnnnuystza2tqsLGf+/PnsvvvuWVlWOi+99FJgyzbGBCtyrY+SXfnXK4n9J7tD1xXtU8SUEVN8z3/00Ufz5ptvJqbvvPNOnnjiCb7++mtOP/10br75ZgBuueUWysvL2W+//ejVqxfFxcVcc801HHfccRxzzDEsXryY0aNHc8EFF3DJJZewfv16AKZMmcKQIUN48cUXueKKKwCvPn7BggVs2rSJs88+my+++ILa2lqmTp3KsGHDKCwsZMmSJfTq1Yvf/OY3PPTQQwBcfPHFXHnllaxdu5aRI0cydOhQXnrpJfr06cOTTz5Jly5dfJW5e/fubNq0iRdeeIGbbrqJXr16sWzZMoqLi3nkkUcQEZYuXcrVV1/Npk2b6NWrFw8//DC9e/f2/bsaY4IR6aCQa9u2beO5555j7NixADz77LO88847vPbaa6gqo0ePZsGCBXTt2pW5c+dSUVFBbW0tAwcOpLi4OLGczz//nBdffBGAc889l6uuuoqhQ4eyfv16Tj75ZFauXMntt9/OPffcw5AhQ9i0aROdO3dm+vTpnHzyyUycOJFt27ZRXV1dL39Lly7l97//PWR7vUwAABA4SURBVK+++iqqyuDBgzn22GPZY489WL16NbNmzeL+++/nrLPOYu7cuZx33nkZ/wYVFRUsX76cfffdlyFDhrB48WIGDx7M5ZdfzpNPPsmee+7JY489xsSJExPByRiTO5EOCpmc0WfT5s2bKSoqYu3atRQXF3PiiScCXlB47rnnGDBgAACbNm1i9erVfPnll5x22mmJM/FTTz213vLOPvvsxOd//OMfrFixIjH9xRdf8OWXXzJkyBCuvvpqSktLOeOMM8jPz+fII4/khz/8IVu3buW73/1ug7FdFy1axOmnn063bt0AOOOMM1i4cCGjR4+mb9++ifmLi4tZu3Zti36LQYMGkZ+fD5D4TXbffXeWLVuW+F22bdtmVwnGtBF2TyEAdfcU1q1bx5YtWxL3FFSVa665hlgsRiwWY82aNYwdOxZVbXJ5dQdtgO3bt/Pyyy8nlvH++++zyy67cN111/HAAw+wefNmjjrqKN5++22GDx/OggUL6NOnD+effz4zZ86st9ym1rvzzjsnPufl5bX4fka65agqhx56aKIMb731Fs8++2yLlm+MyS4LCgHabbfduPvuu7n99tvZunUrJ598MjNnzmTTpk0AvP/++3z00UcMHTqUp556ipqaGjZt2sRf/vKXRpd50kkn8bvf/S4xHYt590zeeecdDj/8cK699lpKSkp4++23WbduHXvttRc/+tGPGDt2LP/617/qLWv48OE88cQTVFdX89VXX/H4448zbNiwAH6J+g4++GA+/vhjXn75ZcDrmmT58uWBr9cY07xIVx+1BQMGDKB///7Mnj2b888/nzfeeIOjjz4a8G7IPvLIIxx55JGMHj2a/v37U1BQQElJCbvttlva5d19991ceumlHHHEEdTW1jJ8+HDuu+8+pkyZwvPPP09eXh79+vVj5MiRzJ49m9tuu42OHTvSvXv3BlcKAwcO5KKLLmLQoEGAd6N5wIABGVUV/eIXv2DKFK+aTlV5//33m/2bTp06MWfOHCZMmMDGjRupra3lyiuv5NBDD/W9XmNMMKS5qou2rKSkRJcsWVIvbeXKlRxyyCE5ylHzGusfaNOmTXTv3p3q6mqGDx/O9OnTGThwYA5y2HLZ7teprWzLWCzW4H5MFFi5widbZRORpapaku47u1JoI8rKylixYgU1NTVceOGFoQsIxphosKDQRjz66KO5zoIxxtiNZmOMMTtYUDDGGJNgQcEYY0yCBQVjjDEJFhQC8vjjjyMivP32283O+/DDD/PBBx+0eF0vvPACp5xyStr03XbbjQEDBnDwwQczfPhwnn76aV/Ls55OjWmfLCiUl0NhIXTo4L2Xl2dlsbNmzWLo0KHMnj272XlbGxSaMmzYMCoqKli1ahV33303l112Gc8991yTf2NBwZj2q30HhfJyKCuDdetA1XsvK2t1YNi0aROLFy/mwQcfbBAUfvOb33D44YfTv39/rrvuOubMmcOSJUsoLS2lqKiIzZs3U1hYyCeffALAkiVLOO644wB47bXXOOaYYxgwYADHHHMMq1atyihfRUVF3HDDDYluMp566ikGDx7MgAEDOOGEE/jvf//L2rVrue+++7jzzjspKipi4cKFaeczxkRT+w4KEydCSnfSVFd76a3wxBNPMGLECL75zW/So0ePRJ9DzzzzDE8//TSvvvoqb7zxBj/96U8588wzKSkpoby8nFgs1uSYBd/61rdYsGABFRUVTJo0iZ/97GcZ523gwIGJKq2hQ4fyyiuvUFFRwZgxY7j11lspLCzkkksu4aqrriIWizFs2LC08xljosnZw2siMgK4C8gDHlDVX6V8vzMwEygGqoCzVXVtoJmKD1TjO92nWbNmceWVVwIwZswYZs2axcCBA/nHP/7B+eefn+gKokePHhktd+PGjVx44YWsXr0aEWHr1q0Z5y25W5PKykrOPvtsPvzwQ7Zs2ULfvn3T/o3f+YzJqfJy74Ru1CiYPx8mT4bS0lznKnScXCmISB5wDzAS6AecIyL9UmYbC3ymqgcCdwK/Djxj+++fWboPVVVV/POf/+Tiiy+msLCQ2267jcceewxVRVURkWaXsdNOO7F9+3YAampqEuk///nP+fa3v82yZcsSvapmqqKiItGf0OWXX85ll13GW2+9xbRp0xpdnt/5jMmZ5KpgyFpVcHvkqvpoELBGVd9V1S3AbOC0lHlOA2bEP88Bjhc/R9DWmDwZUjtw69rVS2+hOXPmcMEFF7Bu3TrWrl3Lhg0b6Nu3L4sWLeKkk05i5syZiRHQPv30UwB22WUXvvzyy8QyCgsLWbp0KQBz585NpG/cuJE+ffoA3s3pTL355pvccsstXHrppQ2WN2PGjMR8qflpbD5j2oyAqoLbI1fVR32ADUnTlcDgxuZR1VoR2Qj0BD5JnklEyoAygN69eyfGE0j6vsGwk406/XTytmyh4403IpWVaH4+W2++mW2nn95wB/OpvLycq6++ul4eTj31VGbOnMldd93FiBEjKC4upmPHjpx88sncfPPNnHPOOfz4xz+mc+fOPP/881x77bWMHz+evfbai5KSErZv3051dTUTJkygrKyM22+/nWOPPRZVpbq6mpqamrTDbdbU1LBw4UL69+/P5s2b2XPPPbnttts4+uijqa6u5vrrr+fMM89k33335cgjj0ys54QTTqC0tJTHH3+cO+64o9H5UtXW1vr/7X3YsmVLg+2bC1VVVW0iH9kWqXKNGpX4WNWvH7Fx43Z8F5Uy4mib1VVrBPkCvo93H6Fu+nzgtynzLAfyk6bfAXo2tdzi4mJNtWLFigZpbclXX32V6ywEJttlayvbsqKiItdZCESkylVQoOq1IdSKceMSn7WgINc5y6psbTNgiTZyXHVVfVQJ7Jc0nQ+kNsxPzCMiOwG7AZ86yZ0xJtwCqApur1wFhdeBg0Skr4h0AsYA81LmmQdcGP98JvDPeEQzxpimlZbC9OlQUOBNFxR409b6KGNO7imod4/gMuBveE1SH1LV5SIyCe8yZh7wIPAHEVmDd4UwphXr89XKx7Rddj5gMlZa6r1iMbj33lznJrScPaegqvOB+SlpNyR9rsG799AqnTt3pqqqip49e1pgCClVpaqqis6dO+c6K8a0O5EbeS0/P5/Kyko+/vjjXGclrS1bttCpU6dcZyMQ2Sxb586dyc/Pz8qyjDH+RS4odOzYsU0/cRuLxdrEYPRBiHLZjGkv2nffR8YYY+qxoGCMMSbBgoIxxpgECXPTPxH5GFiX63xkqBcpXXdESFTLZuUKl6iWC7JXtgJV3TPdF6EOCmEkIktUtSTX+QhCVMtm5QqXqJYL3JTNqo+MMcYkWFAwxhiTYEHBvem5zkCAolo2K1e4RLVc4KBsdk/BGGNMgl0pGGOMSbCgYIwxJsGCggMikiciFSLydHy6r4i8KiKrReSx+BgToSIiu4vIHBF5W0RWisjRItJDRP4eL9ffRWSPXOczUyJylYgsF5FlIjJLRDqHdXuJyEMi8pGILEtKS7uNxHO3iKwRkTdFZGDuct60Rsp1W3xffFNEHheR3ZO+uz5erlUicnJuct28dOVK+u4aEVER6RWfDmx7WVBw4wpgZdL0r4E7VfUg4DNgbE5y1Tp3AX9V1W8B/fHKdx3wXLxcz8WnQ0NE+gATgBJVPQxv7I8xhHd7PQyMSElrbBuNBA6Kv8qAqY7y2BIP07BcfwcOU9UjgH8D1wOISD+8bXho/G/uFZE8d1nNyMM0LBcish9wIrA+KTmw7WVBIWAikg98B3ggPi3A/wPmxGeZAXw3N7lrGRHZFRiONzASqrpFVT8HTsMrD4SwXHE7AV3iQ8J2BT4kpNtLVRfQcEjbxrbRacDM+BC+rwC7i0hvNznNTLpyqeqzqlobn3wFb8hf8Mo1W1W/VtX3gDXAIGeZzUAj2wvgTuCnQHKroMC2lwWF4E3B26Db49M9gc+TduBKoE8uMtYKBwAfA7+PV4s9ICLdgL1V9UOA+PteucxkplT1feB2vDOyD4GNwFLCv72SNbaN+gAbkuYLczl/CDwT/xzqconIaOB9VX0j5avAymVBIUAicgrwkaouTU5OM2vY2gXvBAwEpqrqAOArQlZVlE68fv00oC+wL9AN7zI9Vdi2lx9R2C8RkYlALVBel5RmtlCUS0S6AhOBG9J9nSYtK+WyoBCsIcBoEVkLzMarhpiCd6lXN8BRPvBBbrLXYpVApaq+Gp+egxck/lt3CRt//yhH+WupE4D3VPVjVd0K/Bk4hvBvr2SNbaNKYL+k+UJXThG5EDgFKNUdD2CFuVzfwDtBeSN+DMkH/iUi+xBguSwoBEhVr1fVfFUtxLvZ9U9VLQWeB86Mz3Yh8GSOstgiqvofYIOIHBxPOh5YAczDKw+EsFx41UZHiUjX+L2funKFenulaGwbzQMuiLdqOQrYWFfNFAYiMgK4FhitqtVJX80DxojIziLSF+/G7Gu5yGOmVPUtVd1LVQvjx5BKYGD8/y+47aWq9nLwAo4Dno5/PgBvx1wD/AnYOdf5a0F5ioAlwJvAE8AeePdLngNWx9975DqfLSjXzcDbwDLgD8DOYd1ewCy8eyNb4weUsY1tI7zqiHuAd4C38Fpg5bwMGZRrDV4deyz+ui9p/onxcq0CRuY6/5mUK+X7tUCvoLeXdXNhjDEmwaqPjDHGJFhQMMYYk2BBwRhjTIIFBWOMMQkWFIwxxiRYUDDGGJNgQcGYNOLdLc9PSVvdSNoYt7kzJjgWFIxJbwEwpK6b5XjXAh2BgSlpB8bnNSYSLCgYk97reEGgKD49HK+7i1Upae+o6gcicpeIbBCRL0RkqYgMq1uQiHQRkRki8ll8QKKfikhl0vf7ishcEflYRN4TkQluimhMQxYUjElDVbcAr+Id+Im/LwQWpaTVXSW8jhcsegCPAn8Skc7x724ECvG6yzgROK9uPSLSAXgKeAOv6+PjgSvb8ghhJtosKBjTuBfZEQCG4QWFhSlpLwKo6iOqWqWqtap6B16fSXUdBp4F/FJVP1PVSuDupHUcCeypqpPUG6zoXeB+vA4UjXFup+ZnMabdWgBcGh9nYU9VXS0i/wVmxNMOi8+DiPwEuBhvHAYFdgV6xZezL/UHREn+XADsKyKfJ6Xl4QUfY5yzoGBM414GdsMbA3cxgKp+ISIfxNM+UNX34vcPrsWr+lmuqttF5DN2DITyIV5/9yvi08n94G/AG8PhoMBLY4wPVn1kTCNUdTNe9+BXU//MfVE8re5+wi54o319DOwkIjfgXSnU+SNwvYjsISJ9gMuSvnsN+EJEro3fkM4TkcNE5MhgSmVM0ywoGNO0F/HGMV6UlLYwnlYXFP6GNybwv4F1QA31q4gm4fWP/x7wD7yR6r4GUNVtwKl4N6nfAz4BHsC7QjHGORtPwRjHRGQcMEZVj811XoxJZVcKxgRMRHqLyBAR6RAfwvQnwOO5zpcx6diNZmOC1wmYhjcI++fAbODenObImEZY9ZExxpgEqz4yxhiTYEHBGGNMggUFY4wxCRYUjDHGJFhQMMYYk/B/kY+jg9m+I5sAAAAASUVORK5CYII=\n", 859 | "text/plain": [ 860 | "
" 861 | ] 862 | }, 863 | "metadata": { 864 | "needs_background": "light" 865 | }, 866 | "output_type": "display_data" 867 | } 868 | ], 869 | "source": [ 870 | "plt.plot(x, yhat, color='green', label='Regression Line')\n", 871 | "plt.scatter(x, y, c='red', label='Actual Data')\n", 872 | "plt.ylabel('Acceptance Rate', fontsize=12)\n", 873 | "plt.xlabel('Wage', fontsize=12)\n", 874 | "plt.grid(axis='y', alpha=0.75)\n", 875 | "plt.grid(axis='x', alpha=0.75)\n", 876 | "plt.legend()\n", 877 | "plt.show()" 878 | ] 879 | }, 880 | { 881 | "cell_type": "markdown", 882 | "metadata": {}, 883 | "source": [ 884 | "### 2.c) Coefficient for the wage is tiny. I will generate new variable 1000x smaller than wage and use it instead" 885 | ] 886 | }, 887 | { 888 | "cell_type": "code", 889 | "execution_count": 14, 890 | "metadata": {}, 891 | "outputs": [ 892 | { 893 | "data": { 894 | "text/html": [ 895 | "\n", 896 | "\n", 897 | "\n", 898 | " \n", 899 | "\n", 900 | "\n", 901 | " \n", 902 | "\n", 903 | "\n", 904 | " \n", 905 | "\n", 906 | "\n", 907 | " \n", 908 | "\n", 909 | "\n", 910 | " \n", 911 | "\n", 912 | "\n", 913 | " \n", 914 | "\n", 915 | "\n", 916 | " \n", 917 | "\n", 918 | "\n", 919 | " \n", 920 | "\n", 921 | "\n", 922 | " \n", 923 | "\n", 924 | "
OLS Regression Results
Dep. Variable: y R-squared: 0.119
Model: OLS Adj. R-squared: 0.112
Method: Least Squares F-statistic: 16.01
Date: Mon, 16 Dec 2019 Prob (F-statistic): 0.000111
Time: 23:38:21 Log-Likelihood: 49.648
No. Observations: 120 AIC: -95.30
Df Residuals: 118 BIC: -89.72
Df Model: 1
Covariance Type: nonrobust
\n", 925 | "\n", 926 | "\n", 927 | " \n", 928 | "\n", 929 | "\n", 930 | " \n", 931 | "\n", 932 | "\n", 933 | " \n", 934 | "\n", 935 | "
coef std err t P>|t| [0.025 0.975]
Intercept 0.7004 0.039 17.894 0.000 0.623 0.778
wage1000 1.7069 0.427 4.001 0.000 0.862 2.552
\n", 936 | "\n", 937 | "\n", 938 | " \n", 939 | "\n", 940 | "\n", 941 | " \n", 942 | "\n", 943 | "\n", 944 | " \n", 945 | "\n", 946 | "\n", 947 | " \n", 948 | "\n", 949 | "
Omnibus: 83.233 Durbin-Watson: 1.811
Prob(Omnibus): 0.000 Jarque-Bera (JB): 475.521
Skew: -2.436 Prob(JB): 5.52e-104
Kurtosis: 11.448 Cond. No. 29.2


Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified." 950 | ], 951 | "text/plain": [ 952 | "\n", 953 | "\"\"\"\n", 954 | " OLS Regression Results \n", 955 | "==============================================================================\n", 956 | "Dep. Variable: y R-squared: 0.119\n", 957 | "Model: OLS Adj. R-squared: 0.112\n", 958 | "Method: Least Squares F-statistic: 16.01\n", 959 | "Date: Mon, 16 Dec 2019 Prob (F-statistic): 0.000111\n", 960 | "Time: 23:38:21 Log-Likelihood: 49.648\n", 961 | "No. Observations: 120 AIC: -95.30\n", 962 | "Df Residuals: 118 BIC: -89.72\n", 963 | "Df Model: 1 \n", 964 | "Covariance Type: nonrobust \n", 965 | "==============================================================================\n", 966 | " coef std err t P>|t| [0.025 0.975]\n", 967 | "------------------------------------------------------------------------------\n", 968 | "Intercept 0.7004 0.039 17.894 0.000 0.623 0.778\n", 969 | "wage1000 1.7069 0.427 4.001 0.000 0.862 2.552\n", 970 | "==============================================================================\n", 971 | "Omnibus: 83.233 Durbin-Watson: 1.811\n", 972 | "Prob(Omnibus): 0.000 Jarque-Bera (JB): 475.521\n", 973 | "Skew: -2.436 Prob(JB): 5.52e-104\n", 974 | "Kurtosis: 11.448 Cond. No. 29.2\n", 975 | "==============================================================================\n", 976 | "\n", 977 | "Warnings:\n", 978 | "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n", 979 | "\"\"\"" 980 | ] 981 | }, 982 | "execution_count": 14, 983 | "metadata": {}, 984 | "output_type": "execute_result" 985 | } 986 | ], 987 | "source": [ 988 | "wage1000 = df['wage'] / 1000\n", 989 | "\n", 990 | "reg = smf.ols('y ~ wage1000', data=df).fit()\n", 991 | "reg.summary()" 992 | ] 993 | }, 994 | { 995 | "cell_type": "markdown", 996 | "metadata": {}, 997 | "source": [ 998 | "Now we see that any additional _10 Kwacha_ increases acceptance rate by **1.7%**" 999 | ] 1000 | }, 1001 | { 1002 | "cell_type": "markdown", 1003 | "metadata": {}, 1004 | "source": [ 1005 | "### 2.d) to make sure that our model is a good model we check if sum of the residuals is equal 0." 1006 | ] 1007 | }, 1008 | { 1009 | "cell_type": "code", 1010 | "execution_count": 15, 1011 | "metadata": {}, 1012 | "outputs": [ 1013 | { 1014 | "name": "stdout", 1015 | "output_type": "stream", 1016 | "text": [ 1017 | "sum of the residuals is:\t -4.5075054799781356e-14\n", 1018 | "average of the residuals is:\t -3.811765717879704e-16\n" 1019 | ] 1020 | } 1021 | ], 1022 | "source": [ 1023 | "print('sum of the residuals is:\\t', np.sum(reg.resid))\n", 1024 | "print('average of the residuals is:\\t', np.mean(reg.resid))" 1025 | ] 1026 | }, 1027 | { 1028 | "cell_type": "markdown", 1029 | "metadata": {}, 1030 | "source": [ 1031 | "in both cases we see that they are very very close to 0!" 1032 | ] 1033 | }, 1034 | { 1035 | "cell_type": "markdown", 1036 | "metadata": {}, 1037 | "source": [ 1038 | "## 2.e) Now instead of 'wage' we will run regression using 'lnwage' which is interpreted as a percentage change in wage" 1039 | ] 1040 | }, 1041 | { 1042 | "cell_type": "code", 1043 | "execution_count": 16, 1044 | "metadata": {}, 1045 | "outputs": [ 1046 | { 1047 | "data": { 1048 | "text/html": [ 1049 | "\n", 1050 | "\n", 1051 | "\n", 1052 | " \n", 1053 | "\n", 1054 | "\n", 1055 | " \n", 1056 | "\n", 1057 | "\n", 1058 | " \n", 1059 | "\n", 1060 | "\n", 1061 | " \n", 1062 | "\n", 1063 | "\n", 1064 | " \n", 1065 | "\n", 1066 | "\n", 1067 | " \n", 1068 | "\n", 1069 | "\n", 1070 | " \n", 1071 | "\n", 1072 | "\n", 1073 | " \n", 1074 | "\n", 1075 | "\n", 1076 | " \n", 1077 | "\n", 1078 | "
OLS Regression Results
Dep. Variable: y R-squared: 0.116
Model: OLS Adj. R-squared: 0.109
Method: Least Squares F-statistic: 15.49
Date: Mon, 16 Dec 2019 Prob (F-statistic): 0.000140
Time: 23:38:21 Log-Likelihood: 49.418
No. Observations: 120 AIC: -94.84
Df Residuals: 118 BIC: -89.26
Df Model: 1
Covariance Type: nonrobust
\n", 1079 | "\n", 1080 | "\n", 1081 | " \n", 1082 | "\n", 1083 | "\n", 1084 | " \n", 1085 | "\n", 1086 | "\n", 1087 | " \n", 1088 | "\n", 1089 | "
coef std err t P>|t| [0.025 0.975]
Intercept 0.3060 0.138 2.220 0.028 0.033 0.579
lnwage 0.1242 0.032 3.936 0.000 0.062 0.187
\n", 1090 | "\n", 1091 | "\n", 1092 | " \n", 1093 | "\n", 1094 | "\n", 1095 | " \n", 1096 | "\n", 1097 | "\n", 1098 | " \n", 1099 | "\n", 1100 | "\n", 1101 | " \n", 1102 | "\n", 1103 | "
Omnibus: 82.986 Durbin-Watson: 1.832
Prob(Omnibus): 0.000 Jarque-Bera (JB): 464.288
Skew: -2.439 Prob(JB): 1.52e-101
Kurtosis: 11.311 Cond. No. 42.9


Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified." 1104 | ], 1105 | "text/plain": [ 1106 | "\n", 1107 | "\"\"\"\n", 1108 | " OLS Regression Results \n", 1109 | "==============================================================================\n", 1110 | "Dep. Variable: y R-squared: 0.116\n", 1111 | "Model: OLS Adj. R-squared: 0.109\n", 1112 | "Method: Least Squares F-statistic: 15.49\n", 1113 | "Date: Mon, 16 Dec 2019 Prob (F-statistic): 0.000140\n", 1114 | "Time: 23:38:21 Log-Likelihood: 49.418\n", 1115 | "No. Observations: 120 AIC: -94.84\n", 1116 | "Df Residuals: 118 BIC: -89.26\n", 1117 | "Df Model: 1 \n", 1118 | "Covariance Type: nonrobust \n", 1119 | "==============================================================================\n", 1120 | " coef std err t P>|t| [0.025 0.975]\n", 1121 | "------------------------------------------------------------------------------\n", 1122 | "Intercept 0.3060 0.138 2.220 0.028 0.033 0.579\n", 1123 | "lnwage 0.1242 0.032 3.936 0.000 0.062 0.187\n", 1124 | "==============================================================================\n", 1125 | "Omnibus: 82.986 Durbin-Watson: 1.832\n", 1126 | "Prob(Omnibus): 0.000 Jarque-Bera (JB): 464.288\n", 1127 | "Skew: -2.439 Prob(JB): 1.52e-101\n", 1128 | "Kurtosis: 11.311 Cond. No. 42.9\n", 1129 | "==============================================================================\n", 1130 | "\n", 1131 | "Warnings:\n", 1132 | "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n", 1133 | "\"\"\"" 1134 | ] 1135 | }, 1136 | "execution_count": 16, 1137 | "metadata": {}, 1138 | "output_type": "execute_result" 1139 | } 1140 | ], 1141 | "source": [ 1142 | "lnwage = df['lnwage']\n", 1143 | "\n", 1144 | "reg = smf.ols('y ~ lnwage', data=df).fit()\n", 1145 | "reg.summary()" 1146 | ] 1147 | }, 1148 | { 1149 | "cell_type": "markdown", 1150 | "metadata": {}, 1151 | "source": [ 1152 | "Here we see that **1%** change in the wage changes acceptance rate by **12.42%.**" 1153 | ] 1154 | }, 1155 | { 1156 | "cell_type": "markdown", 1157 | "metadata": {}, 1158 | "source": [ 1159 | "### 2.f) Now we just manually compute the regression which was used in the study to calculate the elasticity of the wages\n", 1160 | "#### regression used in the model is **labor = α + β\\*ln(wage) + e**" 1161 | ] 1162 | }, 1163 | { 1164 | "cell_type": "code", 1165 | "execution_count": 2, 1166 | "metadata": {}, 1167 | "outputs": [ 1168 | { 1169 | "name": "stdout", 1170 | "output_type": "stream", 1171 | "text": [ 1172 | "Elasticity of the job acceptance is based on wage: 0.4302\n" 1173 | ] 1174 | } 1175 | ], 1176 | "source": [ 1177 | "x = 1\n", 1178 | "labor = 0.3060 + 0.1242*x\n", 1179 | "print('Elasticity of the job acceptance is based on wage:',labor)" 1180 | ] 1181 | }, 1182 | { 1183 | "cell_type": "markdown", 1184 | "metadata": {}, 1185 | "source": [ 1186 | "Even though I used exactly the same model with the same variables from the same dataset my elasticity came to be a little higher than found in the original paper (0.35). This can explain by a small difference in the data. In original data, it appears they got rid of the village which had a 0% acceptance rate (probably there was something happening at that time, so nobody accepted the job), while this data is present in my analysis. However, we still can canclude that findings are somewhat **inelastic**" 1187 | ] 1188 | }, 1189 | { 1190 | "cell_type": "markdown", 1191 | "metadata": {}, 1192 | "source": [ 1193 | "# Part 3:\n", 1194 | "-----------\n", 1195 | "### 3.a) Now in trying to reproduce the other columns of Table 4 of the paper, we would like to calculate two sets of variables called “village effects” and “week effects”. We work only on village effects. Week effects are similar. " 1196 | ] 1197 | }, 1198 | { 1199 | "cell_type": "code", 1200 | "execution_count": 18, 1201 | "metadata": {}, 1202 | "outputs": [ 1203 | { 1204 | "data": { 1205 | "text/html": [ 1206 | "\n", 1207 | "\n", 1208 | "\n", 1209 | " \n", 1210 | "\n", 1211 | "\n", 1212 | " \n", 1213 | "\n", 1214 | "\n", 1215 | " \n", 1216 | "\n", 1217 | "\n", 1218 | " \n", 1219 | "\n", 1220 | "\n", 1221 | " \n", 1222 | "\n", 1223 | "\n", 1224 | " \n", 1225 | "\n", 1226 | "\n", 1227 | " \n", 1228 | "\n", 1229 | "\n", 1230 | " \n", 1231 | "\n", 1232 | "\n", 1233 | " \n", 1234 | "\n", 1235 | "
OLS Regression Results
Dep. Variable: y R-squared: 0.202
Model: OLS Adj. R-squared: 0.128
Method: Least Squares F-statistic: 2.752
Date: Mon, 16 Dec 2019 Prob (F-statistic): 0.00461
Time: 23:38:21 Log-Likelihood: 55.524
No. Observations: 120 AIC: -89.05
Df Residuals: 109 BIC: -58.38
Df Model: 10
Covariance Type: nonrobust
\n", 1236 | "\n", 1237 | "\n", 1238 | " \n", 1239 | "\n", 1240 | "\n", 1241 | " \n", 1242 | "\n", 1243 | "\n", 1244 | " \n", 1245 | "\n", 1246 | "\n", 1247 | " \n", 1248 | "\n", 1249 | "\n", 1250 | " \n", 1251 | "\n", 1252 | "\n", 1253 | " \n", 1254 | "\n", 1255 | "\n", 1256 | " \n", 1257 | "\n", 1258 | "\n", 1259 | " \n", 1260 | "\n", 1261 | "\n", 1262 | " \n", 1263 | "\n", 1264 | "\n", 1265 | " \n", 1266 | "\n", 1267 | "\n", 1268 | " \n", 1269 | "\n", 1270 | "\n", 1271 | " \n", 1272 | "\n", 1273 | "
coef std err t P>|t| [0.025 0.975]
Intercept 0.3228 0.143 2.255 0.026 0.039 0.607
C(village)[T.HASHAMU] -0.1058 0.065 -1.622 0.108 -0.235 0.023
C(village)[T.KACHULE] -0.0631 0.065 -0.966 0.336 -0.192 0.066
C(village)[T.KADZINJA/KHUNGWA] 0.0347 0.065 0.531 0.596 -0.095 0.164
C(village)[T.KAFOTOKOZA] 0.0257 0.065 0.394 0.694 -0.104 0.155
C(village)[T.KAMWENDO] 0.0128 0.065 0.195 0.845 -0.117 0.142
C(village)[T.KUNFUNDA] -0.0855 0.065 -1.310 0.193 -0.215 0.044
C(village)[T.MANASE] -0.0409 0.065 -0.626 0.532 -0.170 0.088
C(village)[T.MSANGU/KALUTE] 0.0272 0.065 0.418 0.677 -0.102 0.157
C(village)[T.NJONJA] 0.0272 0.065 0.417 0.678 -0.102 0.157
lnwage 0.1242 0.031 3.980 0.000 0.062 0.186
\n", 1274 | "\n", 1275 | "\n", 1276 | " \n", 1277 | "\n", 1278 | "\n", 1279 | " \n", 1280 | "\n", 1281 | "\n", 1282 | " \n", 1283 | "\n", 1284 | "\n", 1285 | " \n", 1286 | "\n", 1287 | "
Omnibus: 94.244 Durbin-Watson: 2.025
Prob(Omnibus): 0.000 Jarque-Bera (JB): 715.205
Skew: -2.719 Prob(JB): 4.96e-156
Kurtosis: 13.652 Cond. No. 51.1


Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified." 1288 | ], 1289 | "text/plain": [ 1290 | "\n", 1291 | "\"\"\"\n", 1292 | " OLS Regression Results \n", 1293 | "==============================================================================\n", 1294 | "Dep. Variable: y R-squared: 0.202\n", 1295 | "Model: OLS Adj. R-squared: 0.128\n", 1296 | "Method: Least Squares F-statistic: 2.752\n", 1297 | "Date: Mon, 16 Dec 2019 Prob (F-statistic): 0.00461\n", 1298 | "Time: 23:38:21 Log-Likelihood: 55.524\n", 1299 | "No. Observations: 120 AIC: -89.05\n", 1300 | "Df Residuals: 109 BIC: -58.38\n", 1301 | "Df Model: 10 \n", 1302 | "Covariance Type: nonrobust \n", 1303 | "==================================================================================================\n", 1304 | " coef std err t P>|t| [0.025 0.975]\n", 1305 | "--------------------------------------------------------------------------------------------------\n", 1306 | "Intercept 0.3228 0.143 2.255 0.026 0.039 0.607\n", 1307 | "C(village)[T.HASHAMU] -0.1058 0.065 -1.622 0.108 -0.235 0.023\n", 1308 | "C(village)[T.KACHULE] -0.0631 0.065 -0.966 0.336 -0.192 0.066\n", 1309 | "C(village)[T.KADZINJA/KHUNGWA] 0.0347 0.065 0.531 0.596 -0.095 0.164\n", 1310 | "C(village)[T.KAFOTOKOZA] 0.0257 0.065 0.394 0.694 -0.104 0.155\n", 1311 | "C(village)[T.KAMWENDO] 0.0128 0.065 0.195 0.845 -0.117 0.142\n", 1312 | "C(village)[T.KUNFUNDA] -0.0855 0.065 -1.310 0.193 -0.215 0.044\n", 1313 | "C(village)[T.MANASE] -0.0409 0.065 -0.626 0.532 -0.170 0.088\n", 1314 | "C(village)[T.MSANGU/KALUTE] 0.0272 0.065 0.418 0.677 -0.102 0.157\n", 1315 | "C(village)[T.NJONJA] 0.0272 0.065 0.417 0.678 -0.102 0.157\n", 1316 | "lnwage 0.1242 0.031 3.980 0.000 0.062 0.186\n", 1317 | "==============================================================================\n", 1318 | "Omnibus: 94.244 Durbin-Watson: 2.025\n", 1319 | "Prob(Omnibus): 0.000 Jarque-Bera (JB): 715.205\n", 1320 | "Skew: -2.719 Prob(JB): 4.96e-156\n", 1321 | "Kurtosis: 13.652 Cond. No. 51.1\n", 1322 | "==============================================================================\n", 1323 | "\n", 1324 | "Warnings:\n", 1325 | "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n", 1326 | "\"\"\"" 1327 | ] 1328 | }, 1329 | "execution_count": 18, 1330 | "metadata": {}, 1331 | "output_type": "execute_result" 1332 | } 1333 | ], 1334 | "source": [ 1335 | "lnwage = df['lnwage']\n", 1336 | "village = df['village']\n", 1337 | "\n", 1338 | "reg = smf.ols('y ~ lnwage + C(village)', data=df).fit()\n", 1339 | "reg.summary()" 1340 | ] 1341 | }, 1342 | { 1343 | "cell_type": "markdown", 1344 | "metadata": {}, 1345 | "source": [ 1346 | "After controlling for individual village, we see that effect of a wage on the acceptance rate didn't change, and none of the village variables is statistically significant and the effect on acceptance rate is marginally or non-existence." 1347 | ] 1348 | }, 1349 | { 1350 | "cell_type": "code", 1351 | "execution_count": null, 1352 | "metadata": {}, 1353 | "outputs": [], 1354 | "source": [] 1355 | } 1356 | ], 1357 | "metadata": { 1358 | "kernelspec": { 1359 | "display_name": "Python 3", 1360 | "language": "python", 1361 | "name": "python3" 1362 | }, 1363 | "language_info": { 1364 | "codemirror_mode": { 1365 | "name": "ipython", 1366 | "version": 3 1367 | }, 1368 | "file_extension": ".py", 1369 | "mimetype": "text/x-python", 1370 | "name": "python", 1371 | "nbconvert_exporter": "python", 1372 | "pygments_lexer": "ipython3", 1373 | "version": "3.7.4" 1374 | } 1375 | }, 1376 | "nbformat": 4, 1377 | "nbformat_minor": 4 1378 | } 1379 | --------------------------------------------------------------------------------