├── README.md
├── .gitignore
└── PS01-labor_in_Malawi.ipynb
/README.md:
--------------------------------------------------------------------------------
1 | # Reproduction of Economic papers using python 3.0
2 | I decided to start a series of reproducing economics papers using Python.
3 | I will try to get the same results, using their data, that are shown in the paper, however, I will concentrate on how they came to the conclusion of choosing that particular model and explaining all the minor findings.
4 | The purpose of this repository is to post reproductions of the results of famous economic papers using python. In lieu of general codes, I'll concentrate on analyzing findings.
5 |
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | # Byte-compiled / optimized / DLL files
2 | __pycache__/
3 | *.py[cod]
4 | *$py.class
5 |
6 | # C extensions
7 | *.so
8 |
9 | # Distribution / packaging
10 | .Python
11 | build/
12 | develop-eggs/
13 | dist/
14 | downloads/
15 | eggs/
16 | .eggs/
17 | lib/
18 | lib64/
19 | parts/
20 | sdist/
21 | var/
22 | wheels/
23 | pip-wheel-metadata/
24 | share/python-wheels/
25 | *.egg-info/
26 | .installed.cfg
27 | *.egg
28 | MANIFEST
29 |
30 | # PyInstaller
31 | # Usually these files are written by a python script from a template
32 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
33 | *.manifest
34 | *.spec
35 |
36 | # Installer logs
37 | pip-log.txt
38 | pip-delete-this-directory.txt
39 |
40 | # Unit test / coverage reports
41 | htmlcov/
42 | .tox/
43 | .nox/
44 | .coverage
45 | .coverage.*
46 | .cache
47 | nosetests.xml
48 | coverage.xml
49 | *.cover
50 | *.py,cover
51 | .hypothesis/
52 | .pytest_cache/
53 |
54 | # Translations
55 | *.mo
56 | *.pot
57 |
58 | # Django stuff:
59 | *.log
60 | local_settings.py
61 | db.sqlite3
62 | db.sqlite3-journal
63 |
64 | # Flask stuff:
65 | instance/
66 | .webassets-cache
67 |
68 | # Scrapy stuff:
69 | .scrapy
70 |
71 | # Sphinx documentation
72 | docs/_build/
73 |
74 | # PyBuilder
75 | target/
76 |
77 | # Jupyter Notebook
78 | .ipynb_checkpoints
79 |
80 | # IPython
81 | profile_default/
82 | ipython_config.py
83 |
84 | # pyenv
85 | .python-version
86 |
87 | # pipenv
88 | # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
89 | # However, in case of collaboration, if having platform-specific dependencies or dependencies
90 | # having no cross-platform support, pipenv may install dependencies that don't work, or not
91 | # install all needed dependencies.
92 | #Pipfile.lock
93 |
94 | # PEP 582; used by e.g. github.com/David-OConnor/pyflow
95 | __pypackages__/
96 |
97 | # Celery stuff
98 | celerybeat-schedule
99 | celerybeat.pid
100 |
101 | # SageMath parsed files
102 | *.sage.py
103 |
104 | # Environments
105 | .env
106 | .venv
107 | env/
108 | venv/
109 | ENV/
110 | env.bak/
111 | venv.bak/
112 |
113 | # Spyder project settings
114 | .spyderproject
115 | .spyproject
116 |
117 | # Rope project settings
118 | .ropeproject
119 |
120 | # mkdocs documentation
121 | /site
122 |
123 | # mypy
124 | .mypy_cache/
125 | .dmypy.json
126 | dmypy.json
127 |
128 | # Pyre type checker
129 | .pyre/
130 |
--------------------------------------------------------------------------------
/PS01-labor_in_Malawi.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# Problem Solving 01\n",
8 | "_____\n",
9 | "## Replication of a paper published by Dr. Jessica Goldberg - \"Experimental Evidence about Labor Supply in Rural Malawi\"\n",
10 | "\n",
11 | "> #### Original paper, published by **_American Economic Journal_** in 2016 can be found **[here](https://drive.google.com/file/d/18QQqtV2gj5xQBtjcXm9OIFUcILiN7vYD/view?usp=sharing)**\n",
12 | "\n",
13 | "_______________________\n",
14 | "\n",
15 | "In this session, we work on a paper that analysis labor supply in Malawi in an experimental setting.\n",
16 | "\n",
17 | "_Abstract: I use a field experiment to estimate the wage elasticity of employment in the day labor market in rural Malawi. Once a week for 12 consecutive weeks, I make job offers for a workfare-type program to 529 adults. The daily wage varies from the tenth to the ninetieth percentile of the wage distribution, and individuals are entitled to work a maximum of one day per week. In this context (the low agricultural season), 74 percent of individuals worked at the lowest wage, and consequently the estimated labor supply elasticity is low (0.15), regardless of observable characteristics._\n",
18 | "\n",
19 | "The paper uses data collected by the author and her colleagues in Malawi. They randomly offered jobs with different wages to individuals in 10 villages for 12 consecutive weeks and recorded acceptance rates. They used data to estimate the elasticity of labor supply to wage. \n",
20 | "The variable of interest in this paper is acceptance rate in each village in each week and the explanatory variable is wage.\n",
21 | "\n",
22 | "The other explanatory variables may be variables that distinguish each village from the others.\n",
23 | "\n",
24 | "The main finding of the paper is that in the off-season, the majority of workers accept the job offer at the lowest wage, and the elasticity of labor is low, meaning that the main force of accepting job is probably factors beyond wage."
25 | ]
26 | },
27 | {
28 | "cell_type": "markdown",
29 | "metadata": {},
30 | "source": [
31 | "_loading all the neccessary tools needed for the project:_"
32 | ]
33 | },
34 | {
35 | "cell_type": "code",
36 | "execution_count": 1,
37 | "metadata": {},
38 | "outputs": [],
39 | "source": [
40 | "%%capture\n",
41 | "! pip install seaborn\n",
42 | "import seaborn as sns\n",
43 | "import matplotlib.pyplot as plt\n",
44 | "%matplotlib inline\n",
45 | "import numpy as np\n",
46 | "import pandas as pd\n",
47 | "from matplotlib.ticker import StrMethodFormatter"
48 | ]
49 | },
50 | {
51 | "cell_type": "markdown",
52 | "metadata": {},
53 | "source": [
54 | "## Part 1\n",
55 | "-----\n",
56 | "loading the dataset"
57 | ]
58 | },
59 | {
60 | "cell_type": "code",
61 | "execution_count": 2,
62 | "metadata": {},
63 | "outputs": [
64 | {
65 | "data": {
66 | "text/html": [
67 | "
\n",
68 | "\n",
81 | "
\n",
82 | " \n",
83 | " \n",
84 | " \n",
85 | " week \n",
86 | " village \n",
87 | " vil_labor \n",
88 | " vil_hh \n",
89 | " badshock_prev \n",
90 | " goodshock_prev \n",
91 | " badshock_prev_lnwage \n",
92 | " goodshock_prev_lnwage \n",
93 | " wage \n",
94 | " lnwage \n",
95 | " ... \n",
96 | " wagedum3 \n",
97 | " wagedum4 \n",
98 | " wagedum5 \n",
99 | " wagedum6 \n",
100 | " wagedum7 \n",
101 | " wagedum8 \n",
102 | " wagedum9 \n",
103 | " wagedum10 \n",
104 | " wagedum11 \n",
105 | " wagedum12 \n",
106 | " \n",
107 | " \n",
108 | " \n",
109 | " \n",
110 | " 0 \n",
111 | " 1 \n",
112 | " CHIMOWA \n",
113 | " 1.000000 \n",
114 | " 1.0000 \n",
115 | " NaN \n",
116 | " NaN \n",
117 | " NaN \n",
118 | " NaN \n",
119 | " 100.0 \n",
120 | " 4.605170 \n",
121 | " ... \n",
122 | " 0 \n",
123 | " 0 \n",
124 | " 0 \n",
125 | " 0 \n",
126 | " 0 \n",
127 | " 1 \n",
128 | " 0 \n",
129 | " 0 \n",
130 | " 0 \n",
131 | " 0 \n",
132 | " \n",
133 | " \n",
134 | " 1 \n",
135 | " 2 \n",
136 | " CHIMOWA \n",
137 | " 0.857143 \n",
138 | " 0.7500 \n",
139 | " 0.285714 \n",
140 | " 0.326531 \n",
141 | " 1.169813 \n",
142 | " 1.336929 \n",
143 | " 60.0 \n",
144 | " 4.094345 \n",
145 | " ... \n",
146 | " 0 \n",
147 | " 1 \n",
148 | " 0 \n",
149 | " 0 \n",
150 | " 0 \n",
151 | " 0 \n",
152 | " 0 \n",
153 | " 0 \n",
154 | " 0 \n",
155 | " 0 \n",
156 | " \n",
157 | " \n",
158 | " 2 \n",
159 | " 3 \n",
160 | " CHIMOWA \n",
161 | " 0.000000 \n",
162 | " 0.0000 \n",
163 | " 0.448980 \n",
164 | " 0.306122 \n",
165 | " 2.149486 \n",
166 | " 1.465559 \n",
167 | " 120.0 \n",
168 | " 4.787492 \n",
169 | " ... \n",
170 | " 0 \n",
171 | " 0 \n",
172 | " 0 \n",
173 | " 0 \n",
174 | " 0 \n",
175 | " 0 \n",
176 | " 0 \n",
177 | " 1 \n",
178 | " 0 \n",
179 | " 0 \n",
180 | " \n",
181 | " \n",
182 | " 3 \n",
183 | " 4 \n",
184 | " CHIMOWA \n",
185 | " 0.897959 \n",
186 | " 0.8125 \n",
187 | " 0.918367 \n",
188 | " 0.183673 \n",
189 | " 3.123549 \n",
190 | " 0.624710 \n",
191 | " 30.0 \n",
192 | " 3.401197 \n",
193 | " ... \n",
194 | " 0 \n",
195 | " 0 \n",
196 | " 0 \n",
197 | " 0 \n",
198 | " 0 \n",
199 | " 0 \n",
200 | " 0 \n",
201 | " 0 \n",
202 | " 0 \n",
203 | " 0 \n",
204 | " \n",
205 | " \n",
206 | " 4 \n",
207 | " 5 \n",
208 | " CHIMOWA \n",
209 | " 1.000000 \n",
210 | " 1.0000 \n",
211 | " 0.204082 \n",
212 | " 0.183673 \n",
213 | " 0.959282 \n",
214 | " 0.863354 \n",
215 | " 110.0 \n",
216 | " 4.700480 \n",
217 | " ... \n",
218 | " 0 \n",
219 | " 0 \n",
220 | " 0 \n",
221 | " 0 \n",
222 | " 0 \n",
223 | " 0 \n",
224 | " 1 \n",
225 | " 0 \n",
226 | " 0 \n",
227 | " 0 \n",
228 | " \n",
229 | " \n",
230 | "
\n",
231 | "
5 rows × 29 columns
\n",
232 | "
"
233 | ],
234 | "text/plain": [
235 | " week village vil_labor vil_hh badshock_prev goodshock_prev \\\n",
236 | "0 1 CHIMOWA 1.000000 1.0000 NaN NaN \n",
237 | "1 2 CHIMOWA 0.857143 0.7500 0.285714 0.326531 \n",
238 | "2 3 CHIMOWA 0.000000 0.0000 0.448980 0.306122 \n",
239 | "3 4 CHIMOWA 0.897959 0.8125 0.918367 0.183673 \n",
240 | "4 5 CHIMOWA 1.000000 1.0000 0.204082 0.183673 \n",
241 | "\n",
242 | " badshock_prev_lnwage goodshock_prev_lnwage wage lnwage ... \\\n",
243 | "0 NaN NaN 100.0 4.605170 ... \n",
244 | "1 1.169813 1.336929 60.0 4.094345 ... \n",
245 | "2 2.149486 1.465559 120.0 4.787492 ... \n",
246 | "3 3.123549 0.624710 30.0 3.401197 ... \n",
247 | "4 0.959282 0.863354 110.0 4.700480 ... \n",
248 | "\n",
249 | " wagedum3 wagedum4 wagedum5 wagedum6 wagedum7 wagedum8 wagedum9 \\\n",
250 | "0 0 0 0 0 0 1 0 \n",
251 | "1 0 1 0 0 0 0 0 \n",
252 | "2 0 0 0 0 0 0 0 \n",
253 | "3 0 0 0 0 0 0 0 \n",
254 | "4 0 0 0 0 0 0 1 \n",
255 | "\n",
256 | " wagedum10 wagedum11 wagedum12 \n",
257 | "0 0 0 0 \n",
258 | "1 0 0 0 \n",
259 | "2 1 0 0 \n",
260 | "3 0 0 0 \n",
261 | "4 0 0 0 \n",
262 | "\n",
263 | "[5 rows x 29 columns]"
264 | ]
265 | },
266 | "execution_count": 2,
267 | "metadata": {},
268 | "output_type": "execute_result"
269 | }
270 | ],
271 | "source": [
272 | "path = \"PS03.dta\"\n",
273 | "df = pd.read_stata(path)\n",
274 | "df.head(5)"
275 | ]
276 | },
277 | {
278 | "cell_type": "markdown",
279 | "metadata": {},
280 | "source": [
281 | "### 1.a) First, we have to know our variable of interest, acceptance rate, and the main explanatory variable, wage."
282 | ]
283 | },
284 | {
285 | "cell_type": "code",
286 | "execution_count": 3,
287 | "metadata": {},
288 | "outputs": [
289 | {
290 | "data": {
291 | "text/plain": [
292 | "count 120.000000\n",
293 | "mean 0.845476\n",
294 | "std 0.171205\n",
295 | "min 0.000000\n",
296 | "25% 0.809310\n",
297 | "50% 0.907692\n",
298 | "75% 0.958333\n",
299 | "max 1.000000\n",
300 | "Name: vil_labor, dtype: float64"
301 | ]
302 | },
303 | "execution_count": 3,
304 | "metadata": {},
305 | "output_type": "execute_result"
306 | }
307 | ],
308 | "source": [
309 | "df['vil_labor'].describe()"
310 | ]
311 | },
312 | {
313 | "cell_type": "markdown",
314 | "metadata": {},
315 | "source": [
316 | "By observing dependent variable 'vil_labor' we see that the average acceptance rate among the villages was **84%**"
317 | ]
318 | },
319 | {
320 | "cell_type": "code",
321 | "execution_count": 4,
322 | "metadata": {},
323 | "outputs": [
324 | {
325 | "data": {
326 | "text/plain": [
327 | "count 120.000000\n",
328 | "mean 85.000000\n",
329 | "std 34.665264\n",
330 | "min 30.000000\n",
331 | "25% 57.500000\n",
332 | "50% 85.000000\n",
333 | "75% 112.500000\n",
334 | "max 140.000000\n",
335 | "Name: wage, dtype: float64"
336 | ]
337 | },
338 | "execution_count": 4,
339 | "metadata": {},
340 | "output_type": "execute_result"
341 | }
342 | ],
343 | "source": [
344 | "df['wage'].describe()"
345 | ]
346 | },
347 | {
348 | "cell_type": "markdown",
349 | "metadata": {},
350 | "source": [
351 | "By observing independent variable 'wage' we see that the average offered wage among the villages was **85** Malawi Kwacha"
352 | ]
353 | },
354 | {
355 | "cell_type": "code",
356 | "execution_count": 5,
357 | "metadata": {},
358 | "outputs": [
359 | {
360 | "data": {
361 | "text/plain": [
362 | "Text(0.5, 1.0, 'Histogram for the A-Rate ')"
363 | ]
364 | },
365 | "execution_count": 5,
366 | "metadata": {},
367 | "output_type": "execute_result"
368 | },
369 | {
370 | "data": {
371 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEbCAYAAAA8pDgBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deZxcVZ338c+XBCKyyBKWZg1IQBlHGm2DKCOB4AYMoMMqQlDGuI2KoAKiAoLPoLLI88AjRJaggyCg7KJiBNwgAlKC7BC2QAjQhEV25Dd/nNOkUnSnq9Jdt+g+3/frVa+qu5x7f+dWd/3qnHPrXkUEZmZWpiU6HYCZmXWOk4CZWcGcBMzMCuYkYGZWMCcBM7OCOQmYmRXMSWCUkXSYpMcGWDZD0nV10/tICknLNrntDfP2VxiueF/vJH1L0oOSXpE0ow3bXyof0+6G+RPye7P9cO+znxiuyvua0kKZGblM5GMzR9JZkiYsxv5Xzceg5bI2dE4CZbsU2Bx4tsn1NwQOBYpIApJ6gMOBE4D3Ake0YTdLkY5p92ArtoOkNYF/y5N7tFj8NtLfzxbAt4DJwC8lLdXidlYlHYMJLZazYTC20wFY50TEo8CjnY5jUSQJGBcRz3dg92/JzydGxFND2ZCkpSPiuWGIabjtnp9/B/yHpM9FxItNln0mIq7Jr/8s6VngLKAH+PMwx2lt4pZAwfrrDpJ0sKS7JD0vaZ6kX0laXdJk4OK82j253L115bolzZT0rKT5ks6UtFrD/taRdJmk5yTdk/d/nqQr69Y5TNJjkraQdC3wPLCLpGUknSDp9ryPeySdKGn5hn2EpC9LOkZSb97WV/KyqZJmS3pC0mmS3rCIYzMD+EmefDJvd3Jetp6kCyQ9JelpSRdL2qCfOPaX9ANJjwI3DbCrp/Pz6XXdKxPqlr9R0smSnsxdLodLWuj/VtLbJF2aY3la0rmSVh+obg32AK4Bvktq4X2oyXL9+Vt+Xrsutq58rGfn9/0OSUf2tRZyXfuOzRV9x6Cu/Eq5/vPy3+SfJW02hBitgVsCo5Sk/t5bDVJmb+DrwIHAzcDKwNbAMsBfga8ARwMfBeYCL+RyqwBXArcCHwOWBY4CLpfUExEv5m/0F5E+aD5J+nD/JrAKcHdDKG8EzgC+B9wBPJTnjQEOIbVe1s6vzwU+2FD+AFJX1x7A9sD3Ja0KvAv4IrAOcFze9lEDHI4jgAeAb+Rj8Bxwi6RxwEzgJeBTwMukLqOrJP1rRDxet42vAr8H9mLgL1xbk76FH5ljhnRsu/Lr7wE/B3YGppC6XW4GzgHIyedPwHV5P2Ny7BdLmhSLuC6MpInAO4Ev5To9ko/ZRQOVGcQ6+fmeunnjgceB/YH5pC7Fw0jv+6dzXfcEzgQ+T/o764tvHPBb0t/MV3N8nwV+K2liRDy8mHFavYjwYxQ9SP9gsYjHdXXr7pPnLZunTwB+vohtb5/Xn9Aw/yjgCWD5unmT8rp75Ont8vSkunXWJH2YXtlP/DsOUs+xpH76ANapmx/AFXXTS5A+aOY3xHcOMGuQfSx0fPK8z5A++Nevm7cW8CJwcEMcNzTxfi2b192nYf6EPP/HDfNrwNl10z8BbgeWqps3EfgnsN0g+/5WXq8rT58IPAMs00TcM0iJZyywJPB24Abgsibet4+RvgQslee9Ldd1csO6++bjOrGh/N3A9zv9vzZaHu4OGp2eJH3rbXxcMki5GrBt7nKYJGlMk/ubBPwm6vrNI+IvwL2kQUPy/h/O8/vWeRC4vp/tBXBZ40xJe0m6QdI/SMnjj3nRhg2rzqzbxyukb6bXx8L9+neRklCrJgF/jYjZdfuYQ/o2vkXDupcydL9pmL6FlHT6bAOcD7wiaWxuAd5DOvY9g2x7d+CqiJibp88itbh26FtB0pi+7fbTunwn6X14kdQVtDwNg8tK9pN0i6Tn8vpnAuNY0HIYyDakv497GvZ/VRN1syY5CYxOL0fEdY0PoHeQcqeRuoN2BWYB8yQd0UQy6ALm9TN/HrBSfr06/Q9C9zdvfjQMTkr6CPBj4GpgF+DdwEfy4sa+/Scapl8cYN6AYwKL0Exd6+cN1WBxjyd1373U8Fifur75RkqnpL4VuETSCkqn/d5M6nqr/yC/u367DeMVt5KS+3uAr5E+1E9u2NV+wDGkRLUjKYl+Pi8b7PiPJ73PjXX7xKLqZq3xmIC9Kn9rPg44TtLapL7a7wAPAictouhc0ml+jVZjwTf9h0n9wI1WIXUNLBRKP+vtQuq++VzfDElbLiKmdpkL/Es/81cj9X3Xq+I67Y+TPmBP6WdZv78Xyfo+6I/Jj3qrSFoxIuYD/0761t7nobrXz+YvFwBX54H2b0s6NiJm5fm7AOdGxCF9hSRtvMgaLfA4qcvps/0se6HJbdgg3BKwfkXEAxFxFKnbpO+ftu/beeM3uFnAByUt1zdD0rtI/dp9XTbXAqtLmlS3zpqkLoVmLM1r//H3bLLscJoFvFPSen0zcj3ew4K6tmKgY9qsmaQ+9ev7af3d21+BPEi/G3AFsFXD42OkPv7/AIiImxq2uajTR48hJZ4D6+Y1874NdAxmAhsA9/dTt4HOtrIWuSVgr5J0Munb1zWkcYWtSIOMff/Ut+fnT0s6m/RN8CbgWNK3tV9L+i4Lzg66iXRmC8AvSf3G50g6mHS2zaGkLpNXmgjvcuBESYeQPoi3JZ0tU7UZpONxmaS+gdXDSB9+jV0hg4p05tQ9wK6S/k5qFd3YwiYOA/4CXCrptBzHmsD7gRkRcWU/Zd4DrAsc2N/y/P7sQf+tiwFFxLOSjgOOkLRhRNxBet++KGkWqWtpT9IHe737SX8PUyU9CbyUWxg/Jg3EXynpaGA26Yy1SaTxpeNaic/655aA1bsaeB9wOulD+yPApyLiAoCIuI90muhHSQOhF+f5j5ISxvOkwcUTgT8A7+/75hgRQeoTvi1v/3jgh6SBzmZ+iHUy6Zvml4BfkD7EPjbUCrcqIl4gDVjeBpxKOpX1PtKZLY3dQc36DKn/+7ekFtMaLcRzB6nf/FlgOmlA/XDSt++7Bii2B+mYD3Qq6P8AkyV1DbB8UU7I2z4gT3+b9DdxZH5+kXSabn0dniedbvtO0qDvtXXztyIlksNJg+THk76Y/AUbFkr/m2bVk/Qm0re7EyLi0E7HY1YidwdZZSR9htT1cydpQHh/0qDjaZ2My6xkTgJWpRdI/enrkM6c+QuwTe5mMrMOcHeQmVnBPDBsZlawEdcdNH78+JgwYULL5Z577jmWXnrp4Q/odazEOkOZ9XadyzCUOl9//fWPRcRrfrA54pLAhAkTuO666wZfsUGtVqO7uyP37eiYEusMZdbbdS7DUOosqd+xN3cHmZkVzEnAzKxgTgJmZgVzEjAzK5iTgJlZwZwEzMwK5iRgZlYwJwEzs4I5CZiZFWzE/WLYzKzTdLgq32cc2p6LfbolYGZWMCcBM7OCOQmYmRXMScDMrGBOAmZmBXMSMDMrmJOAmVnBnATMzArmJGBmVjAnATOzgjkJmJkVrLIkIGkFSedJuk3SrZI2l7SSpMsl3ZmfV6wqHjMzq7YlcDzwq4h4C7AJcCtwEDAzIiYCM/O0mZlVpJIkIGl54H3AqQAR8WJEPAHsCJyRVzsD2KmKeMzMLKmqJbA+8ChwuqQbJJ0iaRlgtYiYC5CfV60oHjMzo7r7CYwF3gF8ISJmSTqeFrp+JE0DpgF0dXVRq9VaDqC3t3exyo1kJdYZyqy36zz61Wq1ttS5qiQwB5gTEbPy9HmkJDBPUldEzJXUBTzSX+GImA5MB+jp6Ynu7u6WA6jVaixOuZGsxDpDmfV2nSt2YfW77O7ubkudK+kOioiHgQckbZRnTQFuAS4CpuZ5U+nIoTUzK1eVt5f8AnCmpKWA2cAnSEnoHEn7AvcDu1QYj5lZ8SpLAhFRA3r6WTSlqhjMzGxh/sWwmVnBnATMzArmJGBmVjAnATOzgjkJmJkVzEnAzKxgTgJmZgVzEjAzK5iTgJlZwZwEzMwK5iRgZlYwJwEzs4I5CZiZFcxJwMysYE4CZmYFcxIwMyuYk4CZWcGcBMzMCuYkYGZWMCcBM7OCOQmYmRXMScDMrGBOAmZmBRtb1Y4k3Qs8DfwTeDkieiStBPwMmADcC+waEfOrisnMrHRVtwS2iojuiOjJ0wcBMyNiIjAzT5uZWUU63R20I3BGfn0GsFMHYzEzK06VSSCA30i6XtK0PG+1iJgLkJ9XrTAeM7PiVTYmALw3Ih6StCpwuaTbmi2Yk8Y0gK6uLmq1Wss77+3tXaxyI1mJdYYy6+06j361Wq0tda4sCUTEQ/n5EUnnA5OAeZK6ImKupC7gkQHKTgemA/T09ER3d3fL+6/VaixOuZGsxDpDmfV2nSt2YfW77O7ubkudK+kOkrSMpOX6XgMfAP4OXARMzatNpSOH1sysXFW1BFYDzpfUt8+fRsSvJF0LnCNpX+B+YJeK4jEzMypKAhExG9ikn/m9wJQqYjAzs9fq9CmiZmbWQU4CZmYFcxIwMyuYk4CZWcGcBMzMCuYkYGZWMCcBM7OCOQmYmRXMScDMrGBOAmZmBXMSMDMrmJOAmVnBnATMzArmJGBmVjAnATOzgjkJmJkVzEnAzKxgTScBSV+UNL6dwZiZWbVaaQlsA9wr6RJJu0ka166gzMysGk0ngYjYAVgXuAzYD3hY0imS3teu4MzMrL1aGhOIiN6IODEiNge2BN4FXCHpXkmHSFq2LVGamVlbtDwwLGmKpNOBK4F5wN7AXsCmpFaCmZmNEGObXVHS0cDuwJPAj4FvRMSDdcuvAeYPe4RmZtY2TScB4A3ARyLi2v4WRsRLknoWtQFJY4DrgAcjYntJ6wFnAysBfwX2iogXW4jJzMyGoJXuoP8G7qqfIWlFSWv0TUfEbYNs40vArXXT3wWOi4iJpFbEvi3EY2ZmQ9RKErgAWKth3lrA+c0UlrQWsB1wSp4WsDVwXl7lDGCnFuIxM7MhaqU7aKOIuKl+RkTcJOktTZb/AfA1YLk8vTLwRES8nKfnAGv2V1DSNGAaQFdXF7VarYWwk97e3sUqN5KVWGcos96u8+hXq9XaUudWksAjkjaIiFe7hCRtAPQOVlDS9sAjEXG9pMl9s/tZNforHxHTgekAPT090d3d3ULYSa1WY3HKjWQl1hnKrLfrXLELq99ld3d3W+rcShI4Dfi5pEOA2cCbgSPI3TuDeC+wg6RtSQPMy5NaBitIGptbA2sBD7USvJmZDU0rSeAo4CXgaGBt4AFSAjh2sIIRcTBwMEBuCXwlIvaUdC6wM+kMoal0JL+amZWr6SQQEa8A38+P4XIgcLakI4EbgFOHcdtmZjaIVloCSNoI2ARY6PIQEXFas9uIiCtJvzYmImYDk1qJwczMhk8rvxj+OvAt4G/As3WLgjReYGZmI0wrLYH9gEkRcWO7gjEzs2q18mOx54DBfhFsZmYjSCtJ4JvA/5PUJWmJ+ke7gjMzs/ZqpTtoRn7+z7p5Io0JjBmugMzMrDqtJIH12haFmZl1RCu/E7gPIHf/rBYRc9sWlZmZVaLp/nxJK0j6KfA8+ZLSknbIP/QyM7MRqJVB3ZNIdxVbF+i78cvVwG7DHZSZmVWjlTGBKcAa+Q5iARARj0patT2hmZlZu7XSEngSGF8/Q9I6gMcGzMxGqFaSwCmkS0lvBSwhaXPS3cBOaktkZmbWdq10B32XNCh8IrAk6XpBJwPHtyEuMzOrQCuniAbpRjA/aF84ZmZWpVauIrr1QMsi4nfDE46ZmVWple6gxhu+rAIsRbpB/PrDFpGZmVWmle6ghS4bIWkM8A3g6eEOyszMqrHYVwCNiH8C3wG+NnzhmJlZlYZ6Gej3A68MRyBmZla9VgaGHyBdNrrPG4E3AJ8b7qDMzKwarQwMf7xh+hngjoh4ahjjMTOzCrUyMHxVOwMxM7PqtdId9BMW7g7qV0TsPaSIzMysMq0MDD8B7ES6leScXHbHPP/uusdrSHqDpL9I+pukmyUdnuevJ2mWpDsl/UzSUkOpjJmZtaaVMYENge0i4g99MyRtAXwzIj44SNkXgK0j4h+SlgT+KOkyYH/guIg4W9JJwL7AD1urgpmZLa5WWgLvBq5pmDcL2HywgpH8I08umR8BbA2cl+efQWppmJlZRVppCdwA/B9J34qI5yQtDRwO1JopnH9hfD2wAelKpHcDT0TEy3mVOcCaA5SdBkwD6OrqolZrapcL6e3tXaxyI1mJdYYy6+06j361Wq0tdW4lCewD/BR4UtJ8YEXgOmDPZgrnXxh3S1oBOB94a3+rDVB2OjAdoKenJ7q7u1sIO6nVaixOuZGsxDpDmfV2nSt2YfW77O7ubkudWzlF9F7gPZLWBtYA5kbE/a3uMCKekHQlqXtpBUljc2tgLeChVrdnZmaLr6XLRkhaGZgMbBkR90taQ9JaTZRbJbcAyN1I2wC3AlcAO+fVptKR/GpmVq6mk4CkLYHbSd0/38yzJ9Lc2TxdwBWSbgSuBS6PiEuAA4H9Jd0FrMxrL1dtZmZt1MqYwA+A3SJiZh4TgHR20KTBCkbEjcCm/cyf3Ux5MzNrj1a6gyZExMz8um8A90VaSyRmZvY60koSuEVS44/CtgFuGsZ4zMysQq18iz8AuETSpcDSkk4G/p106QgzMxuBmm4JRMQ1wNuBm4HTgHuASRFxbZtiMzOzNmuqJZB/7TsT+GBEfK+9IZmZWVWaagnkX/uu1+z6ZmY2MrTyoX448ENJ60oaI2mJvke7gjMzs/ZqZWD4lPy8NwtOEVV+PWY4gzIza4YOV+X7jEMHvbfWiDJoEpC0ekQ8TOoOMjOzUaSZlsAdwPIRcR+ApF9ExEfbG5aZmVWhmf78xvbW5DbEYWZmHdBMEhhdHWBmZvaqZrqDxkraigUtgsZpIuJ37QjOzMzaq5kk8AjpF8J9ehumA1h/OIMyM7NqDJoEImJCBXGYmVkH+IdeZmYFcxIwMyuYk4CZWcGcBMzMCuYkYGZWMCcBM7OCOQmYmRXMScDMrGCVJAFJa0u6QtKtkm6W9KU8fyVJl0u6Mz+vWEU8ZmaWVNUSeBk4ICLeCrwb+LykjYGDgJkRMZF0D+ODKorHzMyoKAlExNyI+Gt+/TRwK7AmsCNwRl7tDGCnKuIxM7OkldtLDgtJE4BNgVnAahExF1KikLTqAGWmAdMAurq6qNVqLe+3t7d3scqNZCXWGcqsd6l17oROHedardaW97nSJCBpWeDnwH4R8ZTU3P1BI2I6MB2gp6cnuru7W953rVZjccqNZCXWGcqsd6l17oTu7m64sDP7bcf7XNnZQZKWJCWAMyPiF3n2PEldeXkX6bLVZmZWkarODhJwKnBrRBxbt+giYGp+PZWO5Fczs3JV1R30XmAv4CZJfW24rwNHAedI2he4H9ilonjMzIyKkkBE/JHX3rC+z5QqYjAzs9fyL4bNzArmJGBmVjAnATOzgjkJmJkVzEnAzKxgTgJmZgVzEjAzK5iTgJlZwZwEzMwK5iRgZlYwJwEzs4I5CZiZFcxJwMysYE4CZmYFcxIwMyuYk4CZWcGcBMzMCuYkYGZWMCcBM7OCOQmYmRWskhvNm1n76XBVvs84NCrfpw0vtwTMzArmJGBmVrBKkoCk0yQ9IunvdfNWknS5pDvz84pVxGJmZgtU1RKYAXyoYd5BwMyImAjMzNNmZlahSpJARPweeLxh9o7AGfn1GcBOVcRiZmYLdPLsoNUiYi5ARMyVtOpAK0qaBkwD6Orqolartbyz3t7exSo3kpVYZyiz3r29vR3ZbyePc2l1rtVqbfnbHhGniEbEdGA6QE9PT3R3d7e8jVqtxuKUG8lKrDOUWe9OfTB18jh3tM4Xdma/7fjb7uTZQfMkdQHk50c6GIuZWZE6mQQuAqbm11PpSG41MytbVaeIngVcDWwkaY6kfYGjgPdLuhN4f542M7MKVTImEBF7DLBoShX7NzOz/vkXw2ZmBXMSMDMrmJOAmVnBRsTvBMzs9cuXsB7Z3BIwMyuYk4CZWcGcBMzMCuYkYGZWMCcBM7OCOQmYmRXMScDMrGBOAmZmBXMSMDMrmH8xbKPOphduWvndKfwLVhup3BIwMyuYk4CZWcHcHWQ2jHwxNRtp3BIwMyuYk4CZWcHcHWRt464Rs9c/twTMzArmJGBmVjAnATOzgnV8TEDSh4DjgTHAKRFxVNv25T5qM7OFdLQlIGkMcCLwYWBjYA9JG3cyJjOzknS6O2gScFdEzI6IF4GzgR07HJOZWTEU0bnuCkk7Ax+KiP/M03sBm0XEfzWsNw2Ylic3Am5fjN2NBx4bQrgjUYl1hjLr7TqXYSh1XjciVmmc2ekxgf466V+TlSJiOjB9SDuSrouInqFsY6Qpsc5QZr1d5zK0o86d7g6aA6xdN70W8FCHYjEzK06nk8C1wERJ60laCtgduKjDMZmZFaOj3UER8bKk/wJ+TTpF9LSIuLlNuxtSd9IIVWKdocx6u85lGPY6d3Rg2MzMOqvT3UFmZtZBTgJmZgUbdUlA0ock3S7pLkkH9bN8nKSf5eWzJE2oPsrh1USd95d0i6QbJc2UtG4n4hxOg9W5br2dJYWkUXEqYTP1lrRrfr9vlvTTqmMcbk38fa8j6QpJN+S/8W07EedwkXSapEck/X2A5ZL0f/PxuFHSO4a0w4gYNQ/S4PLdwPrAUsDfgI0b1vkccFJ+vTvws07HXUGdtwLemF9/toQ65/WWA34PXAP0dDruit7ricANwIp5etVOx11BnacDn82vNwbu7XTcQ6zz+4B3AH8fYPm2wGWk31m9G5g1lP2NtpZAM5eh2BE4I78+D5giqforyw2fQescEVdExLN58hrS7zFGsmYvN3IE8D3g+SqDa6Nm6v0p4MSImA8QEY9UHONwa6bOASyfX7+JEf5bo4j4PfD4IlbZEfhxJNcAK0jqWtz9jbYksCbwQN30nDyv33Ui4mXgSWDlSqJrj2bqXG9f0reIkWzQOkvaFFg7Ii6pMrA2a+a93hDYUNKfJF2Tr9I7kjVT58OAj0uaA/wS+EI1oXVMq//zi9Tpy0YMt2YuQ9HUpSpGkKbrI+njQA+wZVsjar9F1lnSEsBxwD5VBVSRZt7rsaQuocmkFt8fJL0tIp5oc2zt0kyd9wBmRMQxkjYHfpLr/Er7w+uIYf0MG20tgWYuQ/HqOpLGkpqPi2p6vd41dekNSdsAhwA7RMQLFcXWLoPVeTngbcCVku4l9ZteNAoGh5v9+74wIl6KiHtIF1ucWFF87dBMnfcFzgGIiKuBN5AutDZaDevldkZbEmjmMhQXAVPz652B30UebRmhBq1z7ho5mZQARnofMQxS54h4MiLGR8SEiJhAGgfZISKu60y4w6aZv+8LSCcCIGk8qXtodqVRDq9m6nw/MAVA0ltJSeDRSqOs1kXA3vksoXcDT0bE3MXd2KjqDooBLkMh6dvAdRFxEXAqqbl4F6kFsHvnIh66Juv8fWBZ4Nw8Bn5/ROzQsaCHqMk6jzpN1vvXwAck3QL8E/hqRPR2LuqhabLOBwA/kvRlUrfIPiP5i52ks0jdeePzOMehwJIAEXESadxjW+Au4FngE0Pa3wg+VmZmNkSjrTvIzMxa4CRgZlYwJwEzs4I5CZiZFcxJwMysYE4CZmYFcxKw1w1JV0qaL2lch+OYIenITsbQn3xJ7Gck/UPSg5KOlTSmybKT8znnZgtxErDXhXxfh38j/dhnxP6QrQKbRMSypOs/7QZ8ssPx2AjnJGCvF3uTLu8wgwWX9QBA0tKSjpF0n6QnJf1R0tJ52RaS/izpCUkPSNonzx8n6WhJ90uaJ+mkujKTJc2R9HVJj0m6V9Keedk0YE/ga/kb98V5/kGS7pb0dL5hy0fq4tsnx3R0bsncI+nDdctXknS6pIfy8gvqlm0vqZbj/7OktzdzsCLiLuBPQHfdtj4h6dYc42xJn87zlyFdOXaNXKd/SFpD0hJ19eqVdI6klZp8v2y06PQNFPzwIyIg/QT+c8A7gZeA1eqWnQhcSbpc7hjgPcA4YB3gadJVJJckXRK8O5f5AekaKyuRLih3MfDfedlk4GXg2LydLYFngI3y8hnAkQ3x7QKsQfritFtevysv2yfH/Kkc32dJF/Tq+0X+pcDPgBVznFvm+e8AHgE2y+WmAvcC4wY4RgFskF+/BZgLfLlu+XbAm0lXmdySdEmBd9TVeU7D9vZjwf0lxpGuL3VWp/8W/Kj20fEA/PAD2CJ/iI7P07f1fbjlD93nSN0gjeUOBs7vZ77yh/Sb6+ZtDtyTX/clgWXqlp8DfDO/fk0S6GcfNWDH/Hof0o1P+pa9MX9grw50Aa+Q7/TVsI0fAkc0zLu9L0n0s34AT+W6BXDWQAkjr38B8KW6OjcmgVuBKXXTXfl9GNvpvwk/qnu4O8heD6YCv4mIx/L0T1nQJTSedFXIu/spt/YA81chfRBfn7tZngB+lef3mR8Rz9RN30f6pt8vSXvXdds8QbpUdf3lih/uexEL7uK2bI7x8ch3+mqwLnBA3zbzdtdeVByk1sOypNbIZsAydTF+WOlGMo/nbW3Loi+pvC5wft2+byVddG61RZSxUWZUXUXURp7cT78rMEZS3wfpONIt8zYBbiLdHvLNpPvL1nuAdPvBRo+RWg//EhEPDrDrFSUtU5cI1gH6buy90FUVJa0L/Ih0ueKrI+Kfkmr0f3OPRg8AK0laIV57Y5cHgO9ExHea2M6rIiKAcyTtCHwL2C+fUfVz0tjKhRHxUh576IuxvytFPgB8MiL+1Mr+bXRxS8A6bSfSt8+NSYOc3cBbgT8Ae0e6O9RpwLF5MHOMpM3zh96ZwDaSdpU0VtLKkrpzmR8Bx0laFUDSmpI+2LDvwyUtJenfgO2Bc/P8eaQbm/dZhvQh+mje1idILYFBRbrO+2XA/5e0oqQlJb0vL/4R8BlJmylZRtJ2kpZr7tBxFDBN0uqkm7CPyzG+nAemP1C37jxgZUlvqpt3EvCdnOSQtEpOLFYQJwHrtKnA6RFxf0Q83PcATgD2VLr721dILYJrSfeA+C6wRETcT+ryOCDPrwGb5O0eSBpsvkbSU8BvgcKR5/MAAACySURBVI3q9vswMJ80gHsm8JmIuC0vOxXYOHeTXBARtwDHAFeTPkz/lXRmTrP2IvW130YaCN4PINJNbj6V6zo/x7tPsxuNiJuAq0j3DHga+CJpbGM+8DEWvtHObaQxhNm5XmsAx+d1fiPpadIg8WYt1MtGAd9PwIojaTLwPxGxVqdjMes0twTMzArmJGBmVjB3B5mZFcwtATOzgjkJmJkVzEnAzKxgTgJmZgVzEjAzK9j/Apb1Fo3gkrlNAAAAAElFTkSuQmCC\n",
372 | "text/plain": [
373 | ""
374 | ]
375 | },
376 | "metadata": {
377 | "needs_background": "light"
378 | },
379 | "output_type": "display_data"
380 | }
381 | ],
382 | "source": [
383 | "y = df['vil_labor']\n",
384 | "plt.hist(y, color='green', zorder=2, rwidth=0.95)\n",
385 | "plt.grid(axis='y', alpha=0.75)\n",
386 | "plt.grid(axis='x', alpha=0.75)\n",
387 | "plt.ylabel('Frequency',fontsize=12)\n",
388 | "plt.xlabel('Acceptance Rate',fontsize=12)\n",
389 | "plt.title('Histogram for the A-Rate ',fontsize=15)"
390 | ]
391 | },
392 | {
393 | "cell_type": "markdown",
394 | "metadata": {},
395 | "source": []
396 | },
397 | {
398 | "cell_type": "markdown",
399 | "metadata": {},
400 | "source": [
401 | "### 1.b) I'll Find the mean and standard deviation of acceptance rate for the 20 observations with the lowest wage, 20 observations with the highest wage."
402 | ]
403 | },
404 | {
405 | "cell_type": "code",
406 | "execution_count": 6,
407 | "metadata": {},
408 | "outputs": [
409 | {
410 | "data": {
411 | "text/html": [
412 | "\n",
413 | "\n",
426 | "
\n",
427 | " \n",
428 | " \n",
429 | " \n",
430 | " wage \n",
431 | " vil_labor \n",
432 | " \n",
433 | " \n",
434 | " \n",
435 | " \n",
436 | " count \n",
437 | " 20.000000 \n",
438 | " 20.000000 \n",
439 | " \n",
440 | " \n",
441 | " mean \n",
442 | " 135.000000 \n",
443 | " 0.936237 \n",
444 | " \n",
445 | " \n",
446 | " std \n",
447 | " 5.129892 \n",
448 | " 0.048356 \n",
449 | " \n",
450 | " \n",
451 | " min \n",
452 | " 130.000000 \n",
453 | " 0.836735 \n",
454 | " \n",
455 | " \n",
456 | " 25% \n",
457 | " 130.000000 \n",
458 | " 0.902071 \n",
459 | " \n",
460 | " \n",
461 | " 50% \n",
462 | " 135.000000 \n",
463 | " 0.950820 \n",
464 | " \n",
465 | " \n",
466 | " 75% \n",
467 | " 140.000000 \n",
468 | " 0.978941 \n",
469 | " \n",
470 | " \n",
471 | " max \n",
472 | " 140.000000 \n",
473 | " 1.000000 \n",
474 | " \n",
475 | " \n",
476 | "
\n",
477 | "
"
478 | ],
479 | "text/plain": [
480 | " wage vil_labor\n",
481 | "count 20.000000 20.000000\n",
482 | "mean 135.000000 0.936237\n",
483 | "std 5.129892 0.048356\n",
484 | "min 130.000000 0.836735\n",
485 | "25% 130.000000 0.902071\n",
486 | "50% 135.000000 0.950820\n",
487 | "75% 140.000000 0.978941\n",
488 | "max 140.000000 1.000000"
489 | ]
490 | },
491 | "execution_count": 6,
492 | "metadata": {},
493 | "output_type": "execute_result"
494 | }
495 | ],
496 | "source": [
497 | "df_wage_labor = df[['wage', 'vil_labor']]\n",
498 | "top20 = df_wage_labor.nlargest(20, ['wage', 'vil_labor'])\n",
499 | "top20.describe()"
500 | ]
501 | },
502 | {
503 | "cell_type": "code",
504 | "execution_count": 7,
505 | "metadata": {},
506 | "outputs": [
507 | {
508 | "data": {
509 | "text/html": [
510 | "\n",
511 | "\n",
524 | "
\n",
525 | " \n",
526 | " \n",
527 | " \n",
528 | " wage \n",
529 | " vil_labor \n",
530 | " \n",
531 | " \n",
532 | " \n",
533 | " \n",
534 | " count \n",
535 | " 20.000000 \n",
536 | " 20.000000 \n",
537 | " \n",
538 | " \n",
539 | " mean \n",
540 | " 35.000000 \n",
541 | " 0.749579 \n",
542 | " \n",
543 | " \n",
544 | " std \n",
545 | " 5.129892 \n",
546 | " 0.166202 \n",
547 | " \n",
548 | " \n",
549 | " min \n",
550 | " 30.000000 \n",
551 | " 0.302326 \n",
552 | " \n",
553 | " \n",
554 | " 25% \n",
555 | " 30.000000 \n",
556 | " 0.652975 \n",
557 | " \n",
558 | " \n",
559 | " 50% \n",
560 | " 35.000000 \n",
561 | " 0.794005 \n",
562 | " \n",
563 | " \n",
564 | " 75% \n",
565 | " 40.000000 \n",
566 | " 0.856280 \n",
567 | " \n",
568 | " \n",
569 | " max \n",
570 | " 40.000000 \n",
571 | " 0.959184 \n",
572 | " \n",
573 | " \n",
574 | "
\n",
575 | "
"
576 | ],
577 | "text/plain": [
578 | " wage vil_labor\n",
579 | "count 20.000000 20.000000\n",
580 | "mean 35.000000 0.749579\n",
581 | "std 5.129892 0.166202\n",
582 | "min 30.000000 0.302326\n",
583 | "25% 30.000000 0.652975\n",
584 | "50% 35.000000 0.794005\n",
585 | "75% 40.000000 0.856280\n",
586 | "max 40.000000 0.959184"
587 | ]
588 | },
589 | "execution_count": 7,
590 | "metadata": {},
591 | "output_type": "execute_result"
592 | }
593 | ],
594 | "source": [
595 | "bottom20 = df_wage_labor.nsmallest(20, ['wage', 'vil_labor'])\n",
596 | "bottom20.describe()"
597 | ]
598 | },
599 | {
600 | "cell_type": "markdown",
601 | "metadata": {},
602 | "source": [
603 | "It is a good idea to compare the acceptance rate for the bottom and upper 20 villages. Based on this observations, even that the mean wage for the top 20 is **286%** more than for the bottom *(avg. for the top 20 is 135 Kwacha; avg. for the bottom is 35 Kwacha)*, we see that there is a small gap of **18.66%** in acceptance rate between those two groups *(93.62% acceptance rate for the top and 74.96% for the bottom)*\n",
604 | "\n",
605 | "##### There is not enough evidence to assume that wages influence if residents of the village accept the job or not\n"
606 | ]
607 | },
608 | {
609 | "cell_type": "markdown",
610 | "metadata": {},
611 | "source": [
612 | "### 1.c.) Find the correlation coefficient between wage and acceptance rate."
613 | ]
614 | },
615 | {
616 | "cell_type": "code",
617 | "execution_count": 8,
618 | "metadata": {},
619 | "outputs": [
620 | {
621 | "name": "stdout",
622 | "output_type": "stream",
623 | "text": [
624 | "We've a WEAK POSITIVE correlation with coeficient of: 0.34560122231666063\n"
625 | ]
626 | }
627 | ],
628 | "source": [
629 | "x1_corr = df['wage'].corr(df['vil_labor'])\n",
630 | "\n",
631 | "if x1_corr > 0 and x1_corr < 0.5:\n",
632 | " print('We\\'ve a WEAK POSITIVE correlation with coeficient of:', x1_corr)\n",
633 | "elif x1_corr > 0.5 and x1_corr <= 1:\n",
634 | " print('We\\'ve a STRONG POSITIVE correlation with coeficient of:', x1_corr)\n",
635 | "elif x1_corr < 0 and x1_corr > -0.5:\n",
636 | " print('We\\'ve a WEAK NEGATIVE correlation with coeficient of:', x1_corr)\n",
637 | "else:\n",
638 | " print('We\\'ve a STRONG NEGATIVE correlation with coeficient of:', x1_corr)"
639 | ]
640 | },
641 | {
642 | "cell_type": "markdown",
643 | "metadata": {},
644 | "source": [
645 | "### 1.d) Let’s draw a scatter-graph to visualize the relationship between wage and job acceptance rate\n",
646 | "Let's see if this confirms our assumptions that despite the wage differences, people are still willing to accept the job"
647 | ]
648 | },
649 | {
650 | "cell_type": "code",
651 | "execution_count": 9,
652 | "metadata": {},
653 | "outputs": [
654 | {
655 | "data": {
656 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEZCAYAAAB4hzlwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO2de5xcVZWov1XVXf1+5J1OAnSARgWEBMLDIANX1CHDSHTGBz5GYVBmnOE6KqJwncs40fGqGWWcCzqiIIwOojijZLxkUBlJgOYtHYTw6GACdNJ5p9+Pqq5a949zqvpUdVV3dbrOqa7q9fWvfl1nn1PnrF3n1F57r732WqKqGIZhGAZAqNgCGIZhGLMHUwqGYRhGClMKhmEYRgpTCoZhGEYKUwqGYRhGClMKhmEYRgpTCsacQkQeEJGPFuhc54lIp4gMiMg7C3HOckFEWkVERaSi2LIY08OUQgkjIm8WkXYR6RWRwyLysIicNcNzXi4iD2WU3S4iX5qZtFmvFRGRG0TkRREZFJHdIrJZRN5e6Gv5xAbgJlWtV9Wf5zrIVURHRKRqspOJyIUiknCVTL/7vVyRrzAi8gUR+eE05C8KInK9iNybUdaZo+yyYKUzTCmUKCLSCPwC+L/AfGA58PfAaDHlysYkvcWfAuuBDwPzgJXAN4FLpnmeYnEc8NxkB4hIK3A+oMCleZxzj6rWA43Ap4DvisjrZibmrGMrcJ6IhAFEZClQCZyRUXaie6wRJKpqrxJ8AWuAnimO+RjwPNAPbAfOcMuvA172lL/LLX8DMALEgQGgB7gKiAFRt+w/3WOXAf8OHAB2Ap/wXPcLOA3+D4E+4KNZZHsrMAysmKIOu4DPAc/gKLyKXPK7x18OPIyjLHuBF4CLPPsfAL7oHtMP/BJYOMV3uAM4DGwClrnlLwMJtw4DQFWOz9/gXusbwC+mqOuFQFdG2X7gPZ7tbwKvud/rU8D5bvnF7j2KufJsc8ubgFuBbmA38CUgnOP6ZwOPuPe9G7gJiHj2K/CXQCdwBLgZEHdfGPhH4CDwe+Cv3eMrslwnAgwBZ7rb7wW+D2zJKNsxVb3dfTXAHa5MzwOf9X6PTPKs2ivLc1BsAex1lDfO6Ukecn8M64B5Gfvf4zYCZwGC0+s6zrNvGc5I8X3AINDi7rsceCjjXLcDX/Jsh9wf5g3uD/x4tyH4Q3f/F9zG6Z3usTVZ5P8K8EAe9dwFdADHJM+Th/xjOL3sSnd/LzDf3f8AToN+ktuYPAB8Jce13+I2cmcAVTiKZmuGbG+dQv4dwF8BZ7rfyZJJjr0w2Zi5dbsUR/Gs9hzzIWABjnK8BtgLVHu+9x9mnPPnwHeAOmAx8DjwFzmufyZwrnvuVpwG9pOe/YozOm0GjsVpZC929/0ljgI+Bmfk+htyKAX3+N8An3Lf3wT8OfAPGWW35Vnvr+AolHnACpwOhPd7zPms2ivLvSm2APaawc1zeva3A11uQ7gp2egA9wF/k+d5OoD17vvLmVopnAO8mnHM9cD33fdf8DaeOa75PeAuz/Z8nB5qLzDiKd8F/Pk05d+D24N1yx4H/sx9/wDwt559fwX8V47z3gp8zbNdj9Owt3pky6kUgDe7xy90t19INno5jr8QRwn04IyK4nga5RyfOQKc7vnef+jZt8Q9T42n7P3Ab/J8Lj4J/MyzrcCbPds/Aa5z3/838JeefW9ncqXwheS5gW1AG85ox1v2kTzrndbIAx9lXClM+qzaa+LL5hRKGFV9XlUvV9UVwKk4ved/cncfg9MjnoCIfFhEOkSkR0R63M8unMaljwOWJT/vnuN/4TRCSV7LuOaA53UsziinxVOXw6rajNNbzZyQzTzXVPLvVvfX7/IKzneTZK/n/RBOY5+NZe5nkzIOuHIvz3F8Jh8BfqmqB93tO90yRORY73fi+cwe93toBP4ZZ7SSQkSuEZHnXeeCHhzzUK57dxzOaKnb8119B2fEMAEROUlEfiEie0WkD/hylnPn+u6WkX6fXmFytgJvFpF5wCJV7QTagbVu2al45hOmqHfmtb3v83lWDQ+zbeLOOEpU9QURuR34C7foNeCEzONE5Djgu8BFwCOqGheRDhwTEzi9uwmnz9h+Ddipqm2TiZQhX1rDKyL3A/9TRFaoatck50k7Vx7yAywXEfEohmNxRlHTZQ9Oo5K8dh2OCWP3VB8UkRocu3hYRJINaRXQLCKnq+o2cisjVHVURD4HvCgi71TVn4vI+TjzKxcBz6lqQkSOkPvevYYzUlioqmN51PfbwNPA+1W1X0Q+Cbw7j8+BMwdxjGf72CmOfwSnYb8KZ84FVe0TkT1u2R5V3QmQR727ccxG291trxz5PKuGBxsplCgi8nq397TC3T4GxzTwqHvI94DPiMiZ4nCi26DW4TQeB9zPXYHTK0uyD1ghIpGMsuM9248DfSLyORGpEZGwiJw6HXdYVf0ljl355yJyjuueWolj056MqeQHpyf8CRGpFJH34JjZ7mX63AlcISKrXHfSLwOPqequPD77Thzzz8nAKvf1BuBBHG+rKVHVKPB1HHs4QAOOmfAAUCEiN+CMKJLsA1pFJOR+vhtnIv3rItIoIiEROUFELshxyQacidwBEXk98PF85HT5Cc53vsLt6V83Rd2GgSeBT+N8J0kecsu8XkdT1fsnwPUiMk9ElgNXe/bN+Fmda5hSKF36ceylj4nIII4yeBZnEg5VvRtn4u5O99if40y2bsdpaB7BaUTeiNtTc/lvHDfLvSKSNHvcCpzsDr9/rqpx4B04Dd1OnMnY7+H0/KbDn+BMXP4Qx46+E/ggjm05K3nID/AYjo36oPsdvFtVD01TNlT1fuB/43iudOOMvPL1m/8Ijt36VVXdm3zhTKB+cBrutbcBx4rIO3DmiTYDL+GYZ0ZIN5Xc7f4/JCK/dd9/GGeCdTuOHf6neMx2GXwG+ADO8/Jd4Md5yoh7/H04cwG/Bf4jj89swVHg3nUxD7plXqUwVb034Myr7QR+jVPHUYACPqtzBlHNZi0wjNJERC7HcYF9c7FlMYqDiHwcuExVc42IjEmwkYJhGCWNiLSIE3Ik5C70uwb4WbHlKlVsotkwjFInguNVtRLHDHkX8K2iSlTCmPnIMAzDSGHmI8MwDCNFSZuPFi5cqK2trcUWIy+Gh4epqakpthi+UM51g/Kun9WtdJlJ/Z566qmDqroo276SVgqtra08+eSTxRYjLzo6Oli1alWxxfCFcq4blHf9rG6ly0zqJyI5V5yb+cgwDMNIYUrBMAzDSGFKwTAMw0hhSsEwDMNIYUrBMAzDSGFKwTAMw0hhSsEwDMNIYUrBMAzDSBHI4jURuQ34Y2C/qmYmREFEBPgm8Ec4Kf4uV9XfZh5nGOVK5+ZO2je207Ozh+aVzay9di1t6/xLFpa8XvisMNs+vS2w6wVVvyDZsmELj974KKP9o1Q1VHHup87lghtKN2p3UCOF25kkcQqwDicpShtOKr5vByCTYcwKOjd3svnqzfR391M9v5r+7n42X72Zzs2dvl8vXBUO9HpB1C9ItmzYwtYvbiU6FCUUCREdirL1i1vZsmFLsUU7agJRCqq6FTg8ySHrgX9Vh0dx8tjmyg5lGGVF+8Z2QpEQkboIIkKkLkIoEqJ9Y7vv1wMCvV4Q9QuSR298FEIQrggTkhDhijCE3PISZbbEPlpOenq9LresO/NAEbkKZzRBS0sLHR0dgQg4Uw4dOlQysk6Xcq4b+F+/8FlhFlQtmFAeH437ct3wWWEaxhqIj8SRxULFORVUVVcRrgj7dr1maWZseIxEPEEoHKK2phYUX67X/dtu9j2zj5oTa+i4vYMlpy2h5Qx/+piLPrAIQuBYwB1UFRL+1A2g97Ve9m3bhywSXvrFSyw5fQlNx0ydXVQTisaVqdIlzBalIFnKskquqrcAtwCsWbNGSyXgVTkG5/Lapbue6CorOzEEV79tn95GT3dPqucOEB2M0tDSwKqvFv6ZeeBdD9C7qxeAFR9fQde3uwBoam3y5XqPfOQR9j+7P/0XLbD41MUFv96WDVt4/O8fB4UVf7mCrn/p4hV5hQv/7kJf7Pz33XkfI70jE+pW3VTNqpsL/112bu7k11f9mtG+UVquaKH7+9282vgq629bn3o2E/EE8Wic+GicsdEx4qNx4tE4mnCEDFVObiCaLd5HXcAxnu0VwJ4iyWLkQdB26aAJsn5rr11LIpogOhhFVYkORklEE6y9dm3BrwUwuHdwWuUzZbRvFBKMN5wKJNzyAvPwVx92ruUl4Zb7wJJVSyZ2X9Ut94H7r7uf4YPDTgMvjgIYOjDErz7zK/q6+jjy+yMcefkIfa/1Mbh/kNHeUcZGxlIKIR9mi1LYBHxYHM4FelV1gunImD0EbZcOmvaN7cSiMfp39zN8eJj+3f3EojFf6te2ro11N62joaWBkSMjNLQ0sO6mdb6NusZGxqZVPlMG9w4SqgwhIccgICEhVBnyRQnFhmLOG68CAmLDsYJfC2Bfx76JrWjILS8QiTGnwzB8ZJgDLx5AQ4q4fyEJQQgO7ThEbChGYixTI06foFxSfwRcCCwUkS7g74BKAFX9F+BeHHfUHTguqVcEIZdx9PTs7KF6fnVaWWVtJT27eookUWHZ/9x+RntGQRx7cTwaZ3j/MPtj+325Xtu6tsBMbxISNKFISBCRtG0/UCbasVUVzW4hnhlCDsOzP4z2jxKuciaZkyQ0wejA9EdB8Vg8ZfaJR8df3l6+qJCIJxiLOfMzY6NjEIJQuHD9+0CUgqq+f4r9Cvx1ELKUs790kDSvbKa/uz/NDh4bitHc2lxEqQpHIppAUcLhMIjzo4uPxUmMzrwnlo0gfd0bj22kd1evM/Gommp0Go9t9OV6DS0N9Owc7ywkJ2Ibjmko+LVCFSESsYn3KFThj1GkqqGK6FA0rSXVuFJVX5X1eE1oWoOfesXieSmzmkU1DOwe8JwQiEPN0sJlmJstE82BkLQThyKhNH9pbqJsFENQSm/ttWvZfPVmokQBfLeDQ7AKPVwVJtGXIDHmvGIjsVR5odmyYQtbNmxxGmeFkd6RlJ+7H4rhkm9dwk/e/RPGhsbNRRW1FVzyrUsKfi1wno3plM+EbAphsvKZcu6nzmXLhi3EYjGngRZnJHb2J84mNhQb7/27I4CZmne8Xk75lB8Ns2VOIRDK2V8agl0k5LWDx0fjvtvBg14AVbekzvmheWzTIkLdkrqCX+vhrz2Mxt0Lub9tjSsPf82fyVGAqsYqKmorkJBQUVtBVWP2nm0hGDowNK3yUkFVWbJqCZX1lWnlFbUVNK5opK+rj8F9g4wcGSE2WBh7f//u/mmVHw1zaqRQ7nbwbJO/UaK0b2wv+ZFQ0HUTHHt7qCpEqCJEuCqMjjkTfIUmNuiMQjJ93ZPlhaZ9YzvVzdU0Lm+kZn4Ni96wiOigj89JLrNIgLb/maCqJGKOm2fSxXNsdIxELMFDX36I2gW1NK0YXycQG47x9K1P03pBqw/CTLM8uTuhDB4YZKB7gIH9A5MeO6eUQjHs4EHGmAlS6XVu7uSeK+5htH+UlpNb6H6sm3uuuIf131/vS/16dvYQG4lxuPMwGlckLNQuqiU+Gi/4tcBxl2w6ronB/YNoQglXhqlbXsdof+HdKAkx0Y0yWe4DgXeOck3++jCvXVlXmVWZVtZVZjk6ncRYImXf99r7JzM99XX1ISGhZ18P8WiccCRMzfwa+nb3zageR8ORnUcY6B6gf3c//d399O8Zfw3sHcjbhDanlILXDl5ZW+m4cPloB/fOYSyoWkBPd4+vcxjNK5s52HmQaG+U+GiccFWYSFOEhW0LC36tX1/3a4YPD6c8WDSuDB8e5tfX/dqXuik67sIojnllcO8gTa1Tr+Q8GpIdiAUnLaBmfg0LTlqQWlBWaJqObUpN/GaW+0HzymYOdx5mpHeEinMrOPTSIaqbqpnfNt+X69UuqmVo/0RTUe2i2oJf67zPnscDX3hgwmKy8z57HuBZ2JXR6Oc70ZtJpD7C4R2HkbAgYSEei9O/p5/5Jxbuu1RVRo6M0L+nn1AkRCLqNO6H/utQ2nH/dvG/5XW+qqYq6M29f04phbZ1bXCTM3zu2dVDc6u/k5VBmzxaL2zl1QdfdZbdh4Wx0THG9o7R+rHWgl/r8EuHHX/zcCjlnZMgweGXJgtxdfSk7M/J3qXb+/TLLr322rXc8+f30PtqLxXnVnDg+QNUNVbxh9/4w4Jfa/UVq7M2ZKuvWF3wa0H6c4LA2OgYA3sHOONjZ/hyvYalDc59yqhfw9LCK9hlZy2jqqmK0d7R1HUiDRGaWps4/PLh8bmbAqFoKnxECmFa7rbxaJyBfQNOj757YLyH391P/26nLNsakuGdwxPKJCzUL6mnvqWehpYGGpY30NDSQP2yehqWOe+r51Vz/fHX55RnTikFCNYfPOhh+q4HdlG/tJ6R3hHio3Eqqiqobqpm1wO7Cu7Fokz0M/fF79xlbGSMUCSEjjlulCKCVDqKzzeyrFT1g10P7KJxeWPqvoWrwr7dt+T1apfWEu2NgkJFVQWRpohv1xvtG2Xe8fMY3D+Yql/d4pmb4rK5d27ZsIWKqgoStQkkJFTWVlJZU8mT33qSY849ZuqTTpOhA0POOg+PUpCQMHRwvLMy2jeataHv29PHwJ4BBg8M5v1sVdZWUlFdwUjvCLWvq2VkxwjHXXgcqz6yioZlDdQtrpux++2cUwpBEvQcRs/Ongkuk+GqsC9KaOFJCzmw/QAJcYayiUQC4rDw5MKbqmDcH7yievyRjY/Fc/qDz5T2je2EK8OpRUGhcIhwZdiXUV7Pzh5qF9emeTapqm+dh56dPVRUVaTcicFRDH5dz2uKSzIdU1w8Fk9N9KaZfbJ48yTNYhISEOezQ4eGCuL5k1W2aBwVJRwJO+sv1PktjPaMcuc77mRgzwDRgfxdb2sX1aZ69w3LnFf90nqnbFkDVY1VKYeEHd07OLHlxILXyZSCjwTty1/VWMWB7QeQCkEqHPtm7yu9LDp5UcGvddFXLuKeP7+H0b7R1GrY6oXVXPSViwp+LXD8wbd+cSvxsTgSdntmCafcDw5sP+DMmYSdFb/xmDPEj8cKP7EddOch0hjhwHMHHLNHQokORIkNxVh0SuGfE5h6Lk8TOt7wexVAzG34pzFCi0fjjjkzFHLCQIRCxNVRIkdDdDA6btJxJ28H9oxvxwacSe046edXdIIpNVwVpr6lnsZljU5j31KfpgDql9YTjhR+Hcx0mXNKIcgFUN45jKQvv5/XU3Tc0yP5mqZ9M1/a1rWx/rb1To+6LsyKc1b4WrcLbriAQy8d4rkfP0c8GidUEeKU953i26rf+Oh44wLO/3gi7ou3k3f+IhFLEKoM+TZ/ARDtj6bbwNWZuI/2F34xGTjPSuKbCdo3ttP7Si+NKxpZ8/E1LD5lccHt/KHKEDLihIJQlEQ84SiHyESTiiaUoUNDqYa+b0/fBO+d1NzENGWoWVDD6itWOw2/2+OvmV9TkEVmu7bs4ulbnyZyfoTfPfg7Vl+5uqDur3NKKRRjRXNyDqOjo8OXsMReon1RGo9tZGj/UMp2W7u41tcfe1B169zcSdcjXcw7cV6qt9n1SBedmzt9uXehSAgZchoXlPHGpconP9FkuygZ2z7Q15XdXTJXeT6oqrP62+3te7164tE4C09ayKXfvTTtM34E4FvQtoAju44QG4ihMU2tMalurOaxf36M/u70nn6+bpqhyhD1S5wGvn7Z+CTunif28OJ/vpiKP5QcfZ3ynlNYdXnhfxO7tuxi64athCIhaiI1DB4YZOuGrXADBVMMc0optG9sJx6NM3hgMG1CrxwWd8G4S6qXsdExX1xSgyZoT67Fpyym+5luoj1REnEn1EWkOcLikxcX/FrtG9upnldN44rx2EN+LiZLxJ2GMDMgXrI85+fG0s07qW1XGQRJyk3TY9Lp29NHPBZn5PAImlC6vuPkiRgbHmO0Z5Qnbn4i5/mqGqvSevXeV31LPXWL6rIGDHzpP1+idlEtsYEY8WicikgFlfWV7H58ty/1fvrWpwlFQlTWVCIIlTWVxCjsYrk5pRTS7MQV/tqJi0Hrha3s+s2u1HY8GifaH2XNx9YUT6gCEbQnV9JtM+l/LmEh1huj9cLWgl8r6LqFwiESiYQTDE/HI5hKyPHmSjbymYu5glyBHI/GGdw3OG7S8XjvDOwZoL+7n7HhPEcagjNZu2zcPbNxWeN4j39ZA5H6yNTnyUJfVx/hSJgY4wvmwpGwb4vX+rr6IASD+wap7q2mZ5fz7BTyenNKKWTaiSUkvtmJi8HT3386Z7lftveg8C648o7y/Fpw5XXvTbpt+uUmGtREs6rjwjn/pPkcfO7ghJwD806YR+8rk6xqKqAc0f5oeiO/J30V7uD+6blpZnrpNLQ00Fvdy+tPfT31S+p9i5JaWV/J4c7DqRXpiViC2HDMt+eysr6SIy8fceYmxF3j0D3AvBPmFewac0opeO3EqRjyftqJA6bvVae34B3makJT5aVMtoV5fi648rqJJlc0++UmWsiV9smorhO8eWLj4RqOf8vxHNx+ML3RFTjx7YVxb0xmA8sWbiHppz+duE61i2rTevkNyxrSevpVTVVZJ3B3dO+gscWfcOBJYoOxrJne/IpbJbhBGkOpAkhQ0Jhcc0opLD5lcWBhIIpBrpR700nFN1vxLrhKLszzc8FVkG6i+a60n+C6OZaY8Mqnd7378d3ULa4jOhB1FnjVVRKpj+RtB48NxSY09EmTTv+efgb3Dea9LiAcCaeZcVIvdyJ3trhp5mJw/yCEGU83Kjjmnf3+pDaNDkRpWNbA8OFhUAhXhqlZUlPQMORzSimsvXYt91xxT5q7msbU1xwAQZIMBqbqcU0lv2Bgs52enT3UL65HlqRHEvXL7h70GpMTLz6RE952QloDP3hgMM2jp1Cum31dfdQsqKF2YS3VTdU0tzajqvTt7ku5aabZ8ZNB1dxVuKM9+btpVjdXp5l0GpY3jIdgWNZAzYLCuGkWi+RaiFClJ/Oa66nmB40rGhk8MEhza3Pq3sWGY9QtmiSkuxuGRkKOU8FUSnZOKQVgostf6T6PEzjvs+eNJ2tJ4CT8CEsqGFgpE/QCr0KuMUl6L032KnRMnlyMjY5Ru7CWgf0DTprRrXEGdw8SH4mjqnz7tG/n76ZZEaJ+aX1aXJ2kt07jskbqW+qprC39DslkNK1s4sjLR9JM0qpK8/EFfi7dhv3MvzyTLX+3xUn65Mat0rjypmveRP3SeiQsaQpAwjJtpTunlII3jnwSX+PIB4x3gVdiLEEo7O8Cr2QKyUUfWMR9d97nawrJoCPcQn7rMLz++ZkumkezIncmZHPTTL13e/7emDwA7Ml9vkh9xGnsk0HVWjwTucsaqF1YW9DcwKXI2mvWcv/19zsjybjzm6uqq2LtNRnPpbe37q6STwaUTGvAc5QlG/Z5x8+jfkk97RvbScQSNB3TVPBFo3NKKRQjyU6Q+RSCXOC1ZcMWtn5xqzPhFYLoUNTZxp8UkkFHuIX0Hv5o/2ha459mxw+IeMxx08w053i9d6bjphmuDFOxsILQaIhlZy1jxTkr0nzzqxr8y8ZWcmRp1EPhEK9f/3oiDRGeuPkJ+l7ro+nYJs791Lm0rWvL2qgXAr8Xjc4ppRC0CSLofApBLvB69MZHIQThijAiQrgiTHwszqM3PurbaKGQEW41oTl79olYgkQ8wa4HxsMJ/PbB3xY8nEAmo/3j0TQL5qbpLshK+em7vf66JXWEK8O+BVWbtYhj9srWwE/oqYc95ZM06m+87I288bI3BlYFvzuac0opBG2CCHoVbpAjodH+0QnxZCQsjA74kJlsmkyw4Wfp3U/lkVXocAIpN80c4ZP79/RPO5pmZkPv9d7J5aZZLqTMK95XhlmmoqfCsbO7+8KVYd/WKwRFEB3NOaUUgjZBeFNIhs8Os7djr68pJIMcCSVDWXufII2rb6Gsk2EYNO7a8LNM3ib3FYLphhOIDcXSevVee/5M3TSTvf3k5G19Sz0VVWXy083wjMnsuYfCTo5sb68933mMcCRMVWN5mcDaN7YTi8aIHohSe7iW/t39RJoiBe1olsmTlT9BJtlJSyGJ/ykkgxwJeUNZqyrxsfhRhbJOmnHSXvFEmhknyMnaJH1dfU7aQsYTt6sqhzoP8fRtT49P3rq9/pGekbzPXd1cndbYe901U9E0s8TZmbUI6ROnnsY8VDFxcjXtVcajGT/Y/9x+xyVYcLzHonGG9w+zP7a/YNeYc0ohSHKlivQrhWSQI6HkvMGjNz4KCYjURjj3U+dy/ufPd4KlJXv18UQqXWFamdurnw0L65Kro73hk+PROD07e9C4cvBrB9NcRh/+6sM5zxWqCFG3pG7iIqyWcbfN2eqmKWFJ2duTvXNvA57Wo/dpEtWYnETUWWMVDodTo6z4WJzEaOEcHkwp+EguT5C8PUSOAj9GQqo6brbxvM78izNZfeVqXtj5Am3XtJGIJzjy8pGCXnumqCojPSNZF2Mle/sT3DQnoaKmgqZjmsaDqmVE1qxdNPvcNFOTphWhtFe4MkykP8K84+cdlT+7ETzhqjAMupkOcf8rEzIuzgRTCj6Siq+UEaK4mKaBZAOfjPuestV7evMp+7znfTa8yT6eefAZ371zspHNTTPNtt89QGwozzg0AnWLx3v5ibEEB188SPXqanSHsvrK1bNnPUvSiyajZ59te7LGPnmMURosOnlRKjCkJpRwZZjqhYUNDDnnlEKQmdcq6iqI9kZTqxyTppKKusJ97WkTsPH0xtw7+Zps+Atlm9+1ZVdq0c6yNcvYu20v919/Pxf9n4sKqhiiA9FUA79ryy52/WYXIz0jTsNXGWK0dzRvE1RFTUW6/b4lPSVi0k0zk0DdNt3GPukpE6r02OVD6bZ6Y+6RnDdsWO7MPTUsbyj4vOGcUgpBZ15bdsayVKIWcHplkeYILae1TPq5zN56WsOe4X0T9ARskvavtzsJ0t0QvhpXRnpHaP96e95KIRFPMHTQE01zd/rkbX93/7SyxtUurE1N4KZy4Xrs+dXN1cUxkSQ9bLwmnPBEjxpr7DFS9ZYAACAASURBVI2pCCLFb2BKQUQuBr6JE1Pwe6r6lYz9xwJ3AM3uMdep6r2FlCHodQNJrV63sI6aBTXMO2EeiWiCNX+1huHDw9My1cw2enf2IuI2ajj/E/EEvTvH4/HHhmLjvvhZEqUM7B3I34XUbVjDVWGnF10ZQlWpXVjLun9eR/3S4rlpenv0mT38pAKYiiBHsEZpUxYrmkUkDNwMvA3oAp4QkU2qut1z2N8CP1HVb4vIycC9QGsh5SjU4q5cjXnSRJPcXnDSAs677jyevvVpxkbGqJlXw+orV7P0tKXTmtycjSTUcdGUhDC0Y8gZvbiTXj/+kx9P202zqrnK6dlnuGom39/93rsn9PRVldG+UZqP82dFuhcJO9ElwxFHKSXfhyont9nnQzFyhxtGLoLqWp0N7FDV3wOIyF3AesCrFBRIRqprYtJQXUdHrsVdTcc2MTYylnXVa3IuwDsROx2TTesFrbRe0OrYpT9WOuEE4tF4qkfv7ekne/465sxPxIlz8L/S80IfeO5A2nbKTTO5GMsbP9+Nme+9J9loOqaJwQODVNaMu3OOjYylBTecCRN698lef2WIqsEq5p/gTyYtCH4EaxiTIcn8rL5eROTdwMWq+lF3+8+Ac1T1as8xLcAvgXlAHfBWVX0qy7muAq4CaGlpOfPeez0WJnUWjJHI8l+Vvq4+dj++OzVhl7TRt5zZQkNLg4/fAPQO9dJU68+itemiqsT6Y4zsG2F43zAj+0cY3uv+3zfMyL4RRg/nH64iVB0iVBuisrGSphObaDy+keol1dQsqaF6cTXVC6qR8Mx60/3d/XQ/1Z3Kl6xxnd69cxf7SEgg5KRk9frhT8ahQ4dYsGDBjOSfjGd/9GxWl8L4aJxT33+qb9cF/+tWTMq5bjCz+q1evfopVc2avD2okUK2X12mNno/cLuqfl1E3gT8QEROVdU0o7Oq3gLcArD69NXa2tya8sCZsgc/H5qONPH0rU/Tt7uPxuWNjhvlGa1HWa38CdKDJTGWYGDfQM7AajNx00ymRBw+PMwzP3iG2EiM5VcuZ8+te0BgzXvX+OOW2gLz+uflvHfJnn6yd5+y7XtW1R4tHR0drFpVeNttkm2f3kZPd0/aaCk6GKWhpcEXm7EXv+tWTMq5buBf/YJSCl3AMZ7tFUw0D10JXAygqo+ISDWwEMi5flsTTiLy6ZA05wSF15f/dw/+riC+/NGBKH27PZO3GcnPB/cN5u+mWV0x0aTjUQB1S7O7af7swz+jZkENjTWNVDdVM/+E+cSGc8cGOmo8/vive8freMO73jBhEVapL7wqRq4Iw8hFUErhCaBNRFYCu4HLgA9kHPMqcBFwu4i8AagGDlBgko10X1cfjSsafV1wdTSRNjWhDB4YzBlYbaB7gNG+/E07tQvdaJo5UiJWzzs6N01vbKAkFdUV9O3um/a5wPXNdyduvRO6hZjIne0UI1eEYeQiEKWgqmMicjVwH4676W2q+pyIbACeVNVNwDXAd0XkUziGoMu1wBMe3ka6qqlqxuGQpyJbpM1oIsrjNz1OKBzKmvx8YN9A/ukQK0PjJp2McAvJRr+i2p9bnMwVO52J32R+2KR5J9X4R8J5mXfK2W0zyECNhjEZgTl2u2sO7s0ou8HzfjvgazJhbyMNTBkOebqoKsOHhlON/MEXDiJhYejAEH239RE9EE2tQ9h05aYpz1fVXDXBpOPt9dcuqC1ayIzVV65m64atxIihKLFhx+Sx+qOr0xp7b89/JjGBzG3TMIJhTq1onqnJIx6NM7B3YmA1b7KUnHMc/embEpbxJCkZrprJXv9UbprFIlQR4sSLT6SytpIn/+VJErEEjSsaWXvtWl73x6/z5ZrmtmkYwTCnlMJkJg9VZbR3NC3EQqY9f+jgUP7pEOsqqW6qZvjwMKFIiIYzGhjePgwKb7rmTbzu0tfNumiamYQqQ1RUVaT1/L2mntM+eBqnffA0xwvia/56eRQjv7ZhzEXmjFJIjCV4/TtfzyPfeCQVT2dsZIx4NM7Y8Bi3nHHL9Nw0F9VNDKrm6fUnMz49ftPjdNzeQc3JNfQ/1c+qy1fxhne9wa9qHhVJE09KAVS5jf8smuANOr+2UVjKeT6o3JiWUhCRELBEVbt9kueoSUXT9PT0vd47k7lpDnQPpG1XVFekRc9M+uan7PpL6glHpo5fvmvLLl742QvULqqlurma2kW1vPCzF1j8xsWBh5iGLI2/qwBmU+OfC3PbLF1sPqi0yEspiEgz8C3g3UAMqBORS4GzVfVvfZRvUnpf6eWu9XfRv6d/Wm6aNQtq0rx0Gpc1pvnpH62bZibTzfNbEIQJnj3T8fCZrZjbZuli80GlRb4jhX8BjgDHMR6v6BHg6ziB7IrCaP8oB19Ij7sTqgxNiJPvzX9bv7TeNzfNTArty+9FwkJFVcUE985y9us3t83SxOaDSot8W8eLgGWqGhMRBVDVAyKy2D/RpqZ2fi1rP7o2zW2zdmHx3DQzORpf/kyS0Tkz7f2zfZLaMJLYfFBpka9S6MUJOZGaS3DzHxR1bqF+WT1nXHlGMUWYlJy+/FeuTjtOwpIWhz+t529JV4wSx+aDSot8lcL3gH8Xkc8DITdg3ZdxzEpGDlovaIUbnLmFeDRO3eI6zr76bE68+MS0UA6zZWRjGH5g80GlRb5K4avACE6inErgNuA7OJnUjAy8Xj6nvu9UTv/w6Tz7/LOs2li+ERsNYzJsPqh0yFcpLFHVfwL+yVsoIkuBvQWXykcKGRAvGcQtaedP2v2t528YRqmSr1J4ifGsaF62A/6lpCowRxsQL83OXxUuSCwfwzCM2Ui+SmFC11dEGoE8s67PDiYLiLfyLSt9y8FrGIZRKkyqFETkNZxoPzUi8mrG7gXAj/wSzA/6uvqoaq5yzDvihHKuqqxiYN+Arzl4DcMwSoWpRgofwhkl3Av8madcgX2q+qJfgs2U5OKucNW4rX9+23wG9g4Qrh4PUREdjDJv5bwiSmoYhjF7mFQpqOoWABFZqKpDwYg0TYS0hV1JRZDN3n/eZ88re3/pLRu28OiNjzLaP0pVQxXnfupcLrjhgmKLZRhGiZDXnIKqDonIKuB8nEVs4tl3Q84P+kxFpIIFbQvyPr7c/aW3bNjClg1bnMB/CiO9I2zZsAXAFINhGHmRb0C8q4AbgV8C64DNwNuBe/wTLQ+OYv63nP2lH/7aw05mNyH13WhcefhrD5tSmOVYaGljtpCvT+VngYtV9V3AsPs/GTHVmITOzZ3c8ZY7ePZHz3LHW+6gc3Onb9eKDTq3Q0RSL2+5MTtJhpbu7+5PCy3t57NiGLnIVyksVtUH3fcJEQmp6mbgHT7JVRZ4f+zhqrD/P/Zcd9OWU8xqvKGlRYRIXYRQJET7xvZii2bMQfJdp9AlIq2qugtnIdt6ETkIRH2TrAwIOo5807FN9O7qdeYUhFTq0KZjmwp+rWJQriaWnp09EIZDLx0iPhonXBWmdnGthZY2ikK+fcivAckckhuAHwL/7b43ctCzs4fK2sq0Mj/jyF/yrUvG12Gouw6juYpLvnWJL9cL0jRWziaWSGOEvlf7iEfjSFiIR+P0vdpHpCEy9YcNo8DkpRRU9XbXXIT7fx4wT1W/5adwpU7zyuYJeZ/9jCPftq6NP73zTznuguNoXtnMcRccx5/e+ae+9KaDNo2Vs4lFcJR4ykHAHeXJ0XhSGMYMOaoUZKoaFZFmEfk7Vb220EKVC9448uAslPN7XURQ3lVBm8bKOXvXaN8oTcc1Mbh/MGU+qltex2h//ilmDaNQTDpSEIcrReT/isgnRKTSVQY3AjuBk4MRszRpW9fG6R85ncG9gwwfGmZw7yCnf+T0srGDB2kaC3rUFSTNK5sJVYZYcNICFr9xMQtOWkCoMlQWdTNKj6nMR/8I/D2wGLgOuB14ElgEnKOq/hirfSRpB//mym8GYgffdsc26pbWUbOghrqldWy7Y1tZ2MGDbqTXXruWRDRBdDCKqgYy6gqKcq6bUXpMpRTeC/yBqr4PeAvwfuA6Vf2Qqj7ru3QFJujJymwmlnKxg3sbMvDfNNa2ro11N62joaWBkSMjNLQ0sO6mdWUx6irnuhmlx1RzCk2q+nsAVX1BRIZU9acByOULZgcvHN6QIfHROA0tDb67iJbzavRyrptRWkylFEREVjIeUGIsY5uk0igFgm6km1c209/dn1JCUD52cBhvyDo6Olj1VUs1ahjlwFTmozpgh+fVCLzs2S4p43gx7eAQjPeRYRjGTJhUKahqSFXD7v9sr/Bkn/ciIheLyIsiskNErstxzHtFZLuIPCcid063MlMR9ISe11acNLGYrfjoCdJJwCgsdu9Kh6NapzBdRCQM3Ay8DegCnhCRTaq63XNMG3A9cJ6qHhGRxYWWoxihs83EUhiSTgKhSCjNSYCbMCU7y7F7V1oEohSAs4EdyfkHEbkLWA9s9xzzMeBmVT0CoKr7/RDEJvRKk6CdBIzCYfeutAhKKSwHXvNsdwHnZBxzEoCIPAyEgS+o6n9lnsjN7XAVQEtLCx0dHb4IXGgOHTpUMrJOlyDqFj4rzIKqiQmV4qNx369t925mFOvelfN9A//qF5RSyBbERTO2K4A24EJgBfCgiJyqqmmuQap6C3ALwJo1a3TVqtIwyXR0dFAqsk6XIOq27dPb6OnuSfPkig5GaWhp8N0sZ/duZhTr3pXzfQP/6pd3pH03xMX5IvI+d7tOROry/HgXcIxnewWwJ8sx96hqTFV3Ai/iKImSJshIouWMrfotXezelRZ5KQUReSNOHoXvAre6xRcAt+V5nSeANhFZKSIR4DJgU8YxPwf+h3u9hTjmpJJZA5GNwJPslDG26rd0sXtXWuRrPvo2cIOq/kBEjrhlW3CUxJSo6piIXA3chzNfcJuqPiciG4AnVXWTu+/tIrIdiAPXquqh6VRmtmETbIXFnARKF7t3pUO+SuEUnMQ64M4FqOqgiNTkeyFVvRe4N6PsBs97BT7tvsqCcg5zYRhGeZLvnMIu4ExvgYicjbOq2chBOYd7NgyjPMlXKfxv4P+JyN8DERG5Hrgb+FvfJCsDLMyFYRilRl7mI1X9hYisAz6KM5dwHPAnqvqUn8KVOsWIJFrOdG7udFaj7+yheaX/q9ENYy6S9zoFVf0t8Fc+ylKWWJiLwlCMUAlJJRQ+K8y2T28zJWTMCfJ1Sf0PETk/o+x8ESnZ3ApGaeH15BIR3xMWmTuxMVfJd07hAiDz1/cI7roCw/CboHNCl3PWPMOYjHyVwghObgUv9UAsy7GGUXCC9uQKWgkZxmwhX6VwH/AdEWkEcP/fBEwIWGcYfhB0qARzJzbmKvkqhWtwsq4dFpH9wGGgCfikX4IZhpegQyWYO7ExV8nXJfUIcImILMUJbPeaqu71VTLDyCDIUAnmTmzMVaYbOjsBHAJqReR4gGTiHMMoN8yd2JiL5KUURORinOioLRm7FCfAnWEYhlEG5DuncDPwRaBOVUOelymEOYzlijCM8iNfpTAP+I6qDvspjFE62OIuwyhP8lUKtwJX+CmIUVrY4i7DKE/ynWg+F/iEiFwHpHkdqeofFFwqY9YzF3JFWOwjYy6Sr1L4nvsqeSzSZmFoXtlMf3d/WjL2clrc5Q3At6BqAT3dPb4H4DOM2UC+6xTu8FuQIChGpM1yZe21a9l89WailOfirvaN7cSjcQYPDFJ7uJb+3f1UN1VbKlWj7Ml7nYKILAHOBhYCkixX1dt8kMsXLGdy4Sj3xV0Hth9g+PAwEhYkJMRjcQb2DRCPxYstmmH4Sr7rFN6Jk6O5Eydf83PAqcBDQMkohblgBw+Scl7cFR+Ng0Ao5PhihEIh4om4U24YZUy+3kdfAq5Q1dXAoPv/KqCkMq9ZkDMjX0KREIKQiCdAIRFPIAihqnx/MoZRmuT7hB+rqndnlN0BfLjA8vhK0JE2jdJl8SmLqVlcQzgSRlUJR8LULK5h8cmLiy2aYfhKvkphvzunALBLRN4EnECJhbgIOtKmUbqsvXYtlZFKGpY3UDO/hoblDVRGKq0DYZQ9+U40fxd4M/DvwI3Ab3CC433DJ7l8I8hIm0bpUu4T6YaRi3xdUr/qef+vIvIAThyk5/0SzDCKTTlPpBtGLvIyH4nIPd5tVX1VVZ8Xkf/wRyzDMAyjGOQ7p/A/cpRfWCA5DMMwjFnApOYjEdngvo143ic5HnjFF6kMwzCMojDVnMIx7v+Q5z04yXVeA77gg0yGYRhGkZhUKajqFQAi0q6q353Jhdzsbd/EcWP9nqp+Jcdx7wbuBs5S1Sdnck3DMAxjeuTrffRdEWkD3gssA/YAP1HVvDKqiEgYJ3vb24Au4AkR2aSq2zOOawA+ATyWfxUMwzCMQpGv99EHgKeB04BB4I3Ab93yfDgb2KGqv1fVKHAXsD7LcV8EvgaM5HlewzAMo4Dku3jtS8AfqerWZIGInA/8ALgzj88vx5mDSNIFnOM9QERWA8eo6i9E5DO5TiQiV+HEXaKlpYWOjo48q1BcDh06VDKyTpdyrhuUd/2sbqWLX/XLVyk0AI9klD0K1OX5eclSpqmdIiGcldKXT3UiVb0FuAVgzZo1umpVaSwq6ujooFRknS7lXDco7/pZ3UoXv+qX7zqFbwBfFpFqABGpAf6B/MNcdJHuvbQCZ14iSQNOKO4HRGQXTvrPTSKyJs/zG4ZhGAUg35HCXwFLgb8RkSPAPJzef7eIfDx5kKoem+PzTwBtIrIS2A1cBnzA87lenOQ9ALhhND5j3keGYRjBkq9S+NBMLqKqYyJyNXAfjkvqbar6nLsg7klV3TST8xuGYRiFIV+X1C0zvZCq3gvcm1F2Q45jL5zp9QzDMIzpk69LapWI/IOI/F5Eet2yt7u9f8MwDKNMyHei+UacieAPMu419Bzw8ZyfMAzDMEqOfOcU3gWcqKqDIpIAUNXdIrLcP9EMwzCMoMl3pBAlQ4GIyCLgUMElMgzDMIpGvkrhbuAO16UUEWkBbsIJV2EYhmGUCfkqhf8F7AJ+BzQDnTiLzzJzLBiGYRglTL4uqVHgk8AnXbPRQVXVKT5mGIZhlBj5uqR+WEROA1DVA6qqInK6iPyZv+IZhmEYQZKv+eiLpEc5xd3+UmHFMQzDMIpJvkqhEejLKOvFmV8wDMMwyoR81ylsB/4U+Imn7F3A8wWXyGc6N3fSvrGdnp09NK9sZu21a2lb11ZssYw5jj2XxmwhX6XwOeBeEXkf8DJwInAR8Ed+CeYHnZs72Xz1ZkKRENXzq+nv7mfz1ZvhJuwHaBQNey6N2URe5iNVfQg4BScEdh3wOHCqqj7so2wFp31jO6FIiEhdBBEhUhchFAnRvrG92KIZcxh7Lo3ZRF4jBRGpAvaq6lc8ZZUiUqWqo75JV2B6dvZQPb86rayytpKeXT1Fksgw7Lk0Zhf5TjT/Cjgzo+xMnPwIJUPzymZiQ7G0sthQjOZWmy83ioc9l8ZsIl+l8EbgsYyyx4HTCyuOv6y9di2JaILoYBRVJToYJRFNsPbatcUWzZjD2HNpzCbyVQq9wJKMsiXAYGHF8Ze2dW2su2kdDS0NjBwZoaGlgXU3rbPJPKOo2HNpzCby9T76d+BOEfkE8HvgBOAbpLuolgRt69rsx2bMOuy5NGYL+Y4UPo+zJuFxoB94FHgRJ1CeYRiGUSbkGxBvBPhrN/3mQtyAeCKSr1IxDMMwSoBpNerqcAA4VUQ2Al3+iGUYhmEUg7yVgogsEpG/EZHfAh3A2cDf+CaZYRiGETiTmo9EpBK4FLgc+ENgB/Aj4DjgPaq6328BDcMwjOCYaqSwD/gOzqTyuap6sqp+ESdns2EYhlFmTKUUnsEJj30OcJaIzPNfJMMwDKNYTKoUVPVCnDUJvwQ+A+wVkf/ECYpX6bt0hmEYRqBMOdGsqq+o6hdVtQ0nXHY3kAC2icjX/BbQMAzDCI7puqQ+pKpXAUuB/4kTE8kwDMMoE45q8Zmqjqjqj1R1XaEFMgzDMIqHrUg2DMMwUgSmFETkYhF5UUR2iMh1WfZ/WkS2i8gzInK/iBwXlGyGYRiGQyBKQUTCwM3AOuBk4P0icnLGYU8Da1T1NOCngE1iG4ZhBExQI4WzgR2q+ntVjQJ3Aeu9B6jqb1R1yN18FFgRkGyGYRiGS775FGbKcuA1z3YXzoK4XFwJbM62Q0SuAq4CaGlpoaOjo1Ay+sqhQ4dKRtbpUs51g/Kun9WtdPGrfkEpBclSplkPFPkQsAa4INt+Vb0FuAVgzZo1umrVqkLJ6CsdHR2UiqzTpZzrBuVdP6tb6eJX/YJSCl3AMZ7tFcCezINE5K04CX0uUNXRgGQzDMMwXIKaU3gCaBORlSISAS4DNnkPEJHVOMH3LrXoq4ZhGMUhEKWgqmPA1cB9OGk9f6Kqz4nIBhG51D1sI1AP3C0iHSKyKcfpDMMwDJ8IynyEqt4L3JtRdoPn/VuDksUwDMPIjq1oNgzDMFKYUjAMwzBSmFIwDMMwUphSMAzDMFKYUjAMwzBSmFIwDMMwUphSMAzDMFKYUjAMwzBSmFIwDMMwUphSMAzDMFKYUjAMwzBSmFIwDMMwUphSMAzDMFKYUjAMwzBSmFIwDMMwUphSMAzDMFKYUjAMwzBSmFIwDMMwUphSMAzDMFKYUjAMwzBSmFIwDMMwUphSMAzDMFKYUjAMwzBSmFIwDMMwUphSMAzDMFKYUjAMwzBSmFIwDMMwUphSMAzDMFKYUjAMwzBSBKYURORiEXlRRHaIyHVZ9leJyI/d/Y+JSGtQshmGUT50bu7kjrfcwbM/epY73nIHnZs7iy1SSRGIUhCRMHAzsA44GXi/iJyccdiVwBFVPRG4EfhqELIZhlE+dG7uZPPVm+nv7idcFaa/u5/NV282xTANghopnA3sUNXfq2oUuAtYn3HMeuAO9/1PgYtERAKSzzCMMqB9YzuhSIhIXQSASF2EUCRE+8b2IktWOlQEdJ3lwGue7S7gnFzHqOqYiPQCC4CD3oNE5CrgKoCWlhY6Ojr8krmgHDp0qGRknS7lXDco7/qVW93CZ4VZULUAgMpjK2n4owYA4qPxsqon+HfvglIK2Xr8ehTHoKq3ALcArFmzRletWjVz6QKgo6ODUpF1upRz3aC861duddv26W30dPcQqYvQ8EcN9N/bT3QwSkNLA6u+Wj71BP/uXVDmoy7gGM/2CmBPrmNEpAJoAg4HIp1hGGXB2mvXkogmiA5GAYgORklEE6y9dm2RJSsdglIKTwBtIrJSRCLAZcCmjGM2AR9x378b+G9VnTBSMAzDyEXbujbW3bSOhpYG4qNxGloaWHfTOtrWtRVbtJIhEPORO0dwNXAfEAZuU9XnRGQD8KSqbgJuBX4gIjtwRgiXBSGbYRjlRdu6NtrWtTnmlTIzGQVBUHMKqOq9wL0ZZTd43o8A7wlKHsMwDGMitqLZMAzDSGFKwTAMw0hhSsEwDMNIYUrBMAzDSGFKwTAMw0hhSsEwDMNIYUrBMAzDSCGlvGhYRA4ArxRbjjxZSEZwvzKinOsG5V0/q1vpMpP6Haeqi7LtKGmlUEqIyJOquqbYcvhBOdcNyrt+VrfSxa/6mfnIMAzDSGFKwTAMw0hhSiE4bim2AD5SznWD8q6f1a108aV+NqdgGIZhpLCRgmEYhpHClIJhGIaRwpSCT4hIWESeFpFfuNsrReQxEekUkR+7GehKEhFpFpGfisgLIvK8iLxJROaLyK/c+v1KROYVW86jQUQ+JSLPicizIvIjEaku5XsnIreJyH4RedZTlvVeicM/i8gOEXlGRM4onuRTk6NuG93n8hkR+ZmINHv2Xe/W7UUR+cPiSJ0f2erm2fcZEVERWehuF/S+mVLwj78BnvdsfxW4UVXbgCPAlUWRqjB8E/gvVX09cDpOPa8D7nfrd7+7XVKIyHLgE8AaVT0VJ0vgZZT2vbsduDijLNe9Wge0ua+rgG8HJOPRcjsT6/Yr4FRVPQ14CbgeQEROxrmXp7if+ZaIhIMTddrczsS6ISLHAG8DXvUUF/S+mVLwARFZAVwCfM/dFuAtwE/dQ+4A3lkc6WaGiDQCf4CTPhVVjapqD7Aep15QwvXDyUZYIyIVQC3QTQnfO1XdipPe1kuue7Ue+Fd1eBRoFpGWYCSdPtnqpqq/VNUxd/NRYIX7fj1wl6qOqupOYAdwdmDCTpMc9w3gRuCzgNdDqKD3zZSCP/wTzo1LuNsLgB7Pw9oFLC+GYAXgeOAA8H3XPPY9EakDlqhqN4D7f3ExhTwaVHU38I84vbBuoBd4ivK5d0ly3avlwGue40q9rn8ObHbfl3zdRORSYLeqbsvYVdC6mVIoMCLyx8B+VX3KW5zl0FL1Ba4AzgC+raqrgUFK0FSUDde2vh5YCSwD6nCG5pmU6r2birJ5TkXk88AY8G/JoiyHlUzdRKQW+DxwQ7bdWcqOum6mFArPecClIrILuAvH9PBPOEO6CveYFcCe4og3Y7qALlV9zN3+KY6S2Jccsrr/9xdJvpnwVmCnqh5Q1RjwH8BayufeJcl1r7qAYzzHlWRdReQjwB8DH9TxhVilXrcTcDor29y2ZQXwWxFZSoHrZkqhwKjq9aq6QlVbcSa2/ltVPwj8Bni3e9hHgHuKJOKMUNW9wGsi8jq36CJgO7AJp15QuvV7FThXRGrdeaBk3cri3nnIda82AR92vVnOBXqTZqZSQUQuBj4HXKqqQ55dm4DLRKRKRFbiTMo+XgwZjwZV/Z2qLlbVVrdt6QLOcH+Phb1vqmovn17AhcAv3PfH4zyEO4C7gapiyzeDeq0CngSeAX4OzMOZN7kf6HT/zy+2nEdZt78HXgCeBX4AVJXyvQN+hDM/EnMbkitz3SscM8TNwMvA73C8sIpeh2nWbQeOfb3Dff2L5/jPu3V7EVhXbPmnW7eM/buAhX7cNwtzYRiGYaQw85FhGIaRO2T2uwAAApFJREFUwpSCYRiGkcKUgmEYhpHClIJhGIaRwpSCYRiGkcKUgmEYhpHClIJhZMENs3xvRllnjrLLgpXOMPzDlIJhZGcrcF4yvLIbTqASOCOj7ET3WMMoC0wpGEZ2nsBRAqvc7T/ACXfxYkbZy6q6R0S+KSKviUifiDwlIucnTyQiNSJyh4gccZMSfVZEujz7l4nIv4vIARHZKSKfCKaKhjERUwqGkQVVjQKP4TT8uP8fBB7KKEuOEp7AURbzgTuBu0Wk2t33d0ArTriMtwEfSl5HRELAfwLbcMIdXwR8crZnBjPKF1MKhpGbLYwrgPNxlMKDGWVbAFT1h6p6SFXHVPXrODGTkkED3wt8WVWPqGoX8M+ea5wFLFLVDeokLPo98F2cYIqGETgVUx9iGHOWrcBfu3kWFqlqp4jsA+5wy051j0FErgE+ipOHQYFGYKF7nmWkJ0Hxvj8OWCYiPZ6yMI7yMYzAMaVgGLl5BGjCyXv7MICq9onIHrdsj6rudOcPPodj+nlOVRMicoTx5CfdODHut7vb3tj3r+HkcGjzvTaGkQdmPjKMHKjqME6I8E+T3nN/yC1Lzic04GT5OgBUiMgNOCOFJD8BrheReSKyHLjas+9xoE9EPudOSIdF5FQROcufWhnG5JhSMIzJ2YKTw/ghT9mDbllSKdyHkwv4JeAVYIR0E9EGnJj4O4Ff42SrGwVQ1TjwDpxJ6p3AQeB7OCMUwwgcy6dgGAEjIh8HLlPVC4oti2FkYiMFw/AZEWkRkfNEJOSmMb0G+Fmx5TKMbNhEs2H4TwT4Dk7i9R7gLuBbRZXIMHJg5iPDMAwjhZmPDMMwjBSmFAzDMIwUphQMwzCMFKYUDMMwjBSmFAzDMIwU/x9QSavopoCw6QAAAABJRU5ErkJggg==\n",
657 | "text/plain": [
658 | ""
659 | ]
660 | },
661 | "metadata": {
662 | "needs_background": "light"
663 | },
664 | "output_type": "display_data"
665 | }
666 | ],
667 | "source": [
668 | "sns.regplot(x=\"wage\", y=\"vil_labor\", data=df, color='purple')\n",
669 | "plt.ylabel('Acceptance Rate', fontsize=12)\n",
670 | "plt.xlabel('Wage', fontsize=12)\n",
671 | "plt.title('Scatter-Graph of A-Rate and Wage')\n",
672 | "plt.grid(axis='y', alpha=0.75)\n",
673 | "plt.grid(axis='x', alpha=0.75)"
674 | ]
675 | },
676 | {
677 | "cell_type": "markdown",
678 | "metadata": {},
679 | "source": [
680 | "**Yes!** graph confirms that there is a small influence of the wage offered on if villager accepted the job or not."
681 | ]
682 | },
683 | {
684 | "cell_type": "markdown",
685 | "metadata": {},
686 | "source": [
687 | "## Part 2:\n",
688 | "-----------\n",
689 | "### 2.a) We run a regression of wage on acceptance rate."
690 | ]
691 | },
692 | {
693 | "cell_type": "code",
694 | "execution_count": 10,
695 | "metadata": {},
696 | "outputs": [],
697 | "source": [
698 | "from sklearn.model_selection import train_test_split \n",
699 | "from sklearn.linear_model import LinearRegression\n",
700 | "from sklearn import metrics"
701 | ]
702 | },
703 | {
704 | "cell_type": "code",
705 | "execution_count": 11,
706 | "metadata": {},
707 | "outputs": [
708 | {
709 | "data": {
710 | "text/html": [
711 | "\n",
712 | "OLS Regression Results \n",
713 | "\n",
714 | " Dep. Variable: y R-squared: 0.119 \n",
715 | " \n",
716 | "\n",
717 | " Model: OLS Adj. R-squared: 0.112 \n",
718 | " \n",
719 | "\n",
720 | " Method: Least Squares F-statistic: 16.01 \n",
721 | " \n",
722 | "\n",
723 | " Date: Mon, 16 Dec 2019 Prob (F-statistic): 0.000111 \n",
724 | " \n",
725 | "\n",
726 | " Time: 23:38:21 Log-Likelihood: 49.648 \n",
727 | " \n",
728 | "\n",
729 | " No. Observations: 120 AIC: -95.30 \n",
730 | " \n",
731 | "\n",
732 | " Df Residuals: 118 BIC: -89.72 \n",
733 | " \n",
734 | "\n",
735 | " Df Model: 1 \n",
736 | " \n",
737 | "\n",
738 | " Covariance Type: nonrobust \n",
739 | " \n",
740 | "
\n",
741 | "\n",
742 | "\n",
743 | " coef std err t P>|t| [0.025 0.975] \n",
744 | " \n",
745 | "\n",
746 | " Intercept 0.7004 0.039 17.894 0.000 0.623 0.778 \n",
747 | " \n",
748 | "\n",
749 | " x 0.0017 0.000 4.001 0.000 0.001 0.003 \n",
750 | " \n",
751 | "
\n",
752 | "\n",
753 | "\n",
754 | " Omnibus: 83.233 Durbin-Watson: 1.811 \n",
755 | " \n",
756 | "\n",
757 | " Prob(Omnibus): 0.000 Jarque-Bera (JB): 475.521 \n",
758 | " \n",
759 | "\n",
760 | " Skew: -2.436 Prob(JB): 5.52e-104 \n",
761 | " \n",
762 | "\n",
763 | " Kurtosis: 11.448 Cond. No. 244. \n",
764 | " \n",
765 | "
Warnings: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified."
766 | ],
767 | "text/plain": [
768 | "\n",
769 | "\"\"\"\n",
770 | " OLS Regression Results \n",
771 | "==============================================================================\n",
772 | "Dep. Variable: y R-squared: 0.119\n",
773 | "Model: OLS Adj. R-squared: 0.112\n",
774 | "Method: Least Squares F-statistic: 16.01\n",
775 | "Date: Mon, 16 Dec 2019 Prob (F-statistic): 0.000111\n",
776 | "Time: 23:38:21 Log-Likelihood: 49.648\n",
777 | "No. Observations: 120 AIC: -95.30\n",
778 | "Df Residuals: 118 BIC: -89.72\n",
779 | "Df Model: 1 \n",
780 | "Covariance Type: nonrobust \n",
781 | "==============================================================================\n",
782 | " coef std err t P>|t| [0.025 0.975]\n",
783 | "------------------------------------------------------------------------------\n",
784 | "Intercept 0.7004 0.039 17.894 0.000 0.623 0.778\n",
785 | "x 0.0017 0.000 4.001 0.000 0.001 0.003\n",
786 | "==============================================================================\n",
787 | "Omnibus: 83.233 Durbin-Watson: 1.811\n",
788 | "Prob(Omnibus): 0.000 Jarque-Bera (JB): 475.521\n",
789 | "Skew: -2.436 Prob(JB): 5.52e-104\n",
790 | "Kurtosis: 11.448 Cond. No. 244.\n",
791 | "==============================================================================\n",
792 | "\n",
793 | "Warnings:\n",
794 | "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n",
795 | "\"\"\""
796 | ]
797 | },
798 | "execution_count": 11,
799 | "metadata": {},
800 | "output_type": "execute_result"
801 | }
802 | ],
803 | "source": [
804 | "import statsmodels.formula.api as smf\n",
805 | "\n",
806 | "#The coefficients for wage seems to be small. Generated a new variable that is 1000 times smaller than wage (wage/1000) and use it instead of wage\n",
807 | "x = df[['wage']]\n",
808 | "y = df['vil_labor']\n",
809 | "\n",
810 | "#running regression acceptance rate on wage\n",
811 | "reg = smf.ols('y ~ x', data=df).fit()\n",
812 | "reg.summary()"
813 | ]
814 | },
815 | {
816 | "cell_type": "markdown",
817 | "metadata": {},
818 | "source": [
819 | "Our explanatory 'wage' showed to have a strong explanatory power as it's p-value is approx. **0** (which means that we are 99% confident it is statistically significant).\n",
820 | "Also, explanatory variable shows that offering of an additional 1 Kwacha increases acceptance rate by **0.0017**\n",
821 | "\n",
822 | "However, if we look that the R-squared, which is the measure of goodness of fit of our model, we see that our model is the explanation of the outcome only by approx. **12%**"
823 | ]
824 | },
825 | {
826 | "cell_type": "code",
827 | "execution_count": 12,
828 | "metadata": {},
829 | "outputs": [],
830 | "source": [
831 | "#now once again we regress acceptance rate on wages\n",
832 | "reg = LinearRegression()\n",
833 | "\n",
834 | "x = df[['wage']]\n",
835 | "y = df['vil_labor']\n",
836 | "\n",
837 | "#fitting the model\n",
838 | "reg = reg.fit(x, y)\n",
839 | "\n",
840 | "#creating yhat or the prediction line\n",
841 | "yhat = reg.predict(x)"
842 | ]
843 | },
844 | {
845 | "cell_type": "markdown",
846 | "metadata": {},
847 | "source": [
848 | "### 2.b) We visualize our results:"
849 | ]
850 | },
851 | {
852 | "cell_type": "code",
853 | "execution_count": 13,
854 | "metadata": {},
855 | "outputs": [
856 | {
857 | "data": {
858 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEJCAYAAAB7UTvrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deXwV1fn48c9DBNncABckmmC1VlwIJILKov25AVWs1ioatxabCiou9Vu1fOuCpb/WpaKtIrhUqBFsoSpabG2tyuIKzVVZpKCyRG3VqCiGCIHn+8fcXG5ubpK5yZ1zM5Pn/Xrd171z7mTmnDuTeWbOnDlHVBVjjDEGoEOuM2CMMabtsKBgjDEmwYKCMcaYBAsKxhhjEiwoGGOMSdgp1xlojV69emlhYWGus5GRzZs306VLl1xnIxBRLZuVK1yiWi7IXtmWLl36iarume67UAeFwsJClixZkutsZCQWi1FUVJTrbAQiqmWzcoVLVMsF2SubiKxr7DurPjLGGJNgQcEYY0yCBQVjjDEJFhSMMcYkWFAwxhiTYEHBGGNMgpOgICIPichHIrKske9FRO4WkTUi8qaIDHSRL2PajPJyKCyEDh289/Ly4Nc1fbq7dbkol2vjx8NOO4GI9z5+fK5zlBWurhQeBkY08f1I4KD4qwyY6iBPxrQN5eVQVgbr1oGq915WFswBNHld4G5dQZfLtfHjYepU2LbNm962zZuOQGBwEhRUdQHwaROznAbMVM8rwO4i0ttF3ozJuYkTobq6flp1tZdu62qbpk/PLD1E2soTzX2ADUnTlfG0D1NnFJEyvKsJevfuTSwWc5LBbKmqqgpdnv2KatkCL9eoUY1/l+31Jq2rql8/YuPGOVlXA0H8nosWwcqVVB1yCLH774dDDoGhQ7O/HvCueBoTRNnWrIHXXqNq//2JPfooDBoEBx6Y/fUAqKqTF1AILGvku78AQ5OmnwOKm1tmcXGxhk1FRUWus5B9jzyiWlCgFePGqRYUeNNR4KpcBQWqXgVL/VdBQfbX1a1bYvkV48btWFe3btlfV8+e6cvVs2f215VUlnrlGjcu++tSVc3LS1+2vLzsr+uRR1Q7dapftk6dWrU/Aku0keNqW2l9VAnslzSdD3yQo7yYTLiso3bJZbkmT4auXeunde3qpWdbanVOc+mtUVOTWXpr3HdfZumtdfDBmaW3xhVXwJYt9dO2bPHSA9BWgsI84IJ4K6SjgI2q2qDqyLRBUa03dlmu0lKvLrqgwGvJUlDgTZeWZn9djY3JHsRY7V99lVl6a7gsF8CqVZmlt0ZVVWbpreTknoKIzAKOA3qJSCVwI9ARQFXvA+YDo4A1QDXwAxf5Mlmwfn1m6WGxrpFOJBtLb63S0mCCgAlGXasjv+kh4qr10Tmq2ltVO6pqvqo+qKr3xQMC8WquS1X1G6p6uKq66Q87ym2oXdl//8zSwyIvL7P01nLV5r1bt8zSW6N798zSw8Tl/uFym9F2qo/ci3IbanAX8FzWh4O7crk8E3TZ5n3atMzSWyO1Hry59DBprPVRU62SWkoks/RWar9BIap14eA24CXXh0Ow9eEuy9WzZ2bpreHyQA3QqVPT09kS5aAwZEjDq4K8PC892zZtyiy9ldpvUIhqXThEN+BFtVzbt2eW3hoTJ6ZvyRL239C1iRMbXjVu2xaJ37H9BoWo1oWD24Dnsummy3J92sgD+I2lh0VUT4Y6NHIoayy9taL6O9Keg0Ku6sJddELmMuC5PHvv0SOz9NZw+Ru6vJEY1XL9+MeZpbeWy30xHtiqO6ZPz/rqAllqGLhsG+76Aa/Jk6Fjyh7UsWMwAc9l002XD0O5PGmYNq3hTUORYO4pNNb1RFNdUrTUBRdklt4a994Lxx9fP+344730kJj04iTkZmn4umE7chN0mwgD9k7qKzSggNdW+j7KDVdtw5s6mw5q/ekOMkHIy0vfIieIpnkuH4YqLYXFi3d0cJaXBxdeGNz26tixfl1/alDPlvnzM0sPy7rKy2HhwvppCxd66UFssxZUL5b+uZRH33q0Vav9dk1fyFvvnVQGFPDad1BwxXX9Y1M3E7P9DxLVh3jKy+HBB+s3E33wQa91SbZ/Q5fby+W+6HJdTXUFEURQ6NGjwRPFR4yDt/ZWuDk7J2Bzz5rLGYecUS8tFovB/y/KyvIbY0HBhf33T1+dEtRNbZdVOgUF6Zdb10Q1m3r2TP9ofxDNRF0eZFwePNMczBLp2eZyv3fQFYQkH+wvb/3yXhn7CoPzB7d+QVnWvoNCebl3NrZ+vbejTp4czFnF5Mne5V5yFVKQN7VdVum4LNtdd8FFF0Ft7Y60nXby0rPNZX8zLg+eX3+dWXpruN7vW0mydIZf550J73DAHgdkZ2F1x6pRo7zqt6COVbTnoFB387duh627+QvZ/7HrllfXIqegINCN6rRKx3XZXN0rcWnUKO8J5nTp2ebyQajkfSPoE69mriJrt9fS8Zbs3qd5dwr0/TzN+j75JKvrcXqsAkSD6kXQgZKSEl2ypIXdJBUWNl7tsXZta7LVpFgsRlFRsHWCkS2by3L16pU4yMTGjaOo7qAdxD+9y3IlBdF65YLgehR14MMZv2PftVmo00my8bqN7Lrzrum/TNo/6gl4/6i3zVqxf4jIUlUtSfdd+71ScN0LpkuTJ3vN/pKfiO3Qoc1etvvmsu79rLPSn72fdVb21xXhB6GyZfH6xQz9fXZHUav9eS15HVpYpery4UbH+0f7DQou691dW7y4YRcJ27d76WHuntll3bvL5pQuy+XyZn0Gfvvqb5nw1wlZXabeGOCVj8sb9i7XRXsOClFtSglNd7AWood5GnBZ9+7y7MzlDVmXV0BJzp5zNn9c/sesLrOxg76TKlqXN+wda79BwWVTStdcdrDmUlTP3l3ekA3oN8x2yx0I+Ey/tVzesHfcD1f7DQqTJ8MPfgBbt+5IC6orCJMdUT17B3dP17fwN2x3B/22xPFzTu03KEA0mzeC1+FYuq4fAhqpyZlcnb1D8E1tXWnkN5Qbs/ckbp1IH/Rd3ptxfILSfoOCy64FXJs2zeunJ/n+SF5ecIO2uJKrs/dYLNz3Ykg60683+vlUuKnly4z0Qb85d92VvqYhiAcpHZ+gtN+gEOVmgMmduW3b5gWEsrLggt348d66ysp2vAdxEHVZ9x4y2a7e2af7Pnz4kw+zusxIcb0vOjxBab9BwXV/RA4fU6e8HGbMqN+Z24wZwXTmVje+cJ268YUhuMDQDoNAtg/6Iw8cyS8P/WXwrXSiLKL7YvsNCi6rIhw/pu60q+66rqXTpYe8ysVVIA+iC4bpp0znR8U/anKeWCyW1XWaAFnfRw64vPxzPZ6Cy6qxqD7vkcVAvmHjBvafkt0r0DcveZPD9z48q8s0bZTjk8r2GxSgzTcDbDGXVWNRfTI8g0D+l3//hVNmnZLV1X95/Zd079Q9q8s0IeX4pLJ9BwVXunZN30Q0dbjHbHFZNVZWlv4J2bozmbBKCth3dH+JR26qm1qXlaab7brljsmM437aLCi4kBrlm0tvLZdVY3X3DZKHrQxwqMAgDPv9MBatX1Q/8cbkiTcyXqYd9E3WOL4at6DgQmNdEgfZVbHLlhH33uu92mh7fnsa14Sa4/t2FhRM67lsbptGYAf9eLlio0ZRlINyGQM476etfQcFV8NxRrXbCfB+w+QnO9et86Yha79lzs70I/REswkx6+bCEZfNvKZNSz/oTdi7nQBvIPvkR/3Bm85ggHur3sHdCYoJn6h2cyEiI4C7gDzgAVX9Vcr3+wMzgN3j81ynqgH0iRznsplXVDtXA18D3Gf7oH/oR7As+cQ94GFGA+f64UYTPlHr5kJE8oB7gBOBSuB1EZmnqiuSZvtf4I+qOlVE+gHzgcLAMuX62YEIV0XITXWfUjpYa2Ew+J9j/odbT7y14RcdOqS/OR/2/qpcP9xoTBNcXSkMAtao6rsAIjIbOA1IDgoK1I2SvRvwQaA5ct33UUipKh0mdWh8hpsyX+ac78/he/2+l/kfRnWbRblzRhM6okE2i6xbiciZwAhVvTg+fT4wWFUvS5qnN/AssAfQDThBVZemWVYZUAbQu3fv4vktHTFqzRpYsABqa3ek7bQTDB8OBx7YsmX6UFVVRc8cj4ebrGZbDUc/fXRWlzmnagzfGP697P+OUd1mjz6afsSu7t3h3HMDW21b2xezJarlguyVbcCAAUtVtSTdd66uFNLVI6RGo3OAh1X1DhE5GviDiBymqvXGkFTV6cB0gJKSEm1xL49FRd54qqk39848s2XL88nJ+LFJguh3p/pn1XTp2MWbSGp9FBs3jqKpU6HjXBh8ivcbZ1NUt9ny5elbl0yfnv3fMInrfdGVqJYL3JTNVVCoBPZLms6nYfXQWGAEgKq+LCKdgV7AR4HlyuUDXgG15V/ywRKOvP/ILGRwh+03bEf8jkI3cWL61kdB1YdHsbtiGyfCtCGugsLrwEEi0hd4HxgDpF4XrweOBx4WkUOAzsDHgebKVTPAVrQumfXWLM79c3arELLaXNPqw7MjisHOhJKToKCqtSJyGfA3vOamD6nqchGZBCxR1XnAT4D7ReQqvKqlizTIGx4umwE20brkp3u9wW0v3ZbV1Tlto5+rwYrsjNqYQDh7TiH+zMH8lLQbkj6vAIa4yo+rZoAPVTzE2B8kHzSTm22ugxYEhDb1YFaUBysyph1qv080Z6naY9KLk7jxhRubnzEDbeqg3xyXD+ZZe35jAtd+g4LPao9z557LrGWzsrban3x5DLff8dKO1iVROJi5ejDP7l8YE7j2GxTi1R5aXU2Hm5K/aN0gKvPGzOPUg09t+MX48TB9OrGy/pD3Klx4YTQCgktRfXgtyuweUOi036AQ3zE7rDkvoz97ZewrDM4fnNm6ysthxowd/Z9v2+ZNDxli/yCZcNxbpGkluwcUShkFBRHpAOytqh8GlB+3SkuZ8Mxr3P3a3Ymkdye8S989+mZ3PVYXnh3Wnj9cbL8PJV9BQUR2B+4FzgS2At1EZDQwSFX/N8D8Be6ukXdx18i7gl2J1YVnj7XnDw/b70OpiZ7O6rkP2AgUAFviaS8DZweRqchprM7b6sJNlNl+H0p+g8LxwIR4tZECqOrHwF5BZSxSJk/26r6TWV24iTrb70PJb1DYiNcPUUJ8UJxo3FsIWmmp1/y0bkzVgoLoNEc1pjHJ+72I7fch4fdG8wPAXBGZCHSI92L6S7xqJeNHhAfZMaZRdg8odPxeKfwa+CPe6GkdgYeAJ/GG1wyv8nIoLPRG9Cos9KaNMaYd83ulsLeqTgGmJCeKyD7Af7KeKxesDbUxxjTg90rh342kr2gkve1rqg21Mca0U36DQoN+H0RkV2B7mnnDwdpQG2NMA01WH4nIBrwmqF1EJPVo2RPIXk9xrlk/OsYY00BzVwrnARfgPbB2ftLrPGCgql4cbPYCFPU21OPHe4Pai3jv48fnOkfGmBBo8kpBVV8EEJFeqlrd1LyhE+V+dMaPh6lTd0xv27Zj2prDGmOa4OuegqpWi0iRiFwuIjeLyKS6V9AZDFRpKaxdC9u3e+9RCAgA06Zllm5yz5pHmzbCb4d4ZcCdwLPASOAZ4CS8ZxVMW7O9kfv/jaWb3LLm0aYN8dv66KfACFU9Hdgcf6/rMdX4UXcmOH26nQma+qx5tGlD/AaFvVR1YfzzdhHpoKrPAGmGGDMN1J0J1rV2qjsTDCowdOuWWXqYRLGaxZpHmzbEb1CoFJHC+Od/A6eJyDB2dKNtmuL6THDaNMjLq5+WlxfcPQVXV0HJwVU1+ODqSo8emaUbEyC/QeFW4JD450nAI8A/459Nc1yfCZaWesN9JvdOOWNGMPXTLq+CrJrFmMD5utGsqg8nfX5GRPYAOqnqpqAyFim5eFDOVe+ULodcjGo1y6efZpZuTID8XinUo6pbgK4icluW8xNNkydDp0710zp1isaDci4P1FEdySuq5TKh1GRQEM9YEfmtiEwQkY4isruI3Am8B/Rzk80IUG16OqxcHtCi+hR6VMtlQqm5K4XbgZvxht28DngYWALsCQxW1e8EmruguWrJMnEibE1pvbt1azTqwl0e0KI6kldUy2VCqbl7CmcBw1X1XRH5Fl5X2Wep6pzgsxYwlw8MRbUuHOp3FwLeAS3I7kKiOpJXVMtlQqe5K4XdVPVdAFV9G6iOREAAty1Zol5nXNddSFlZtLoLMaYdai4oiIj0FZEDROQAoDZ5Op4WTi7P3q3O2BgTEs0FhW7AmqTXrsA7SdOr/a5IREaIyCoRWSMi1zUyz1kiskJElovIo36X3SIuz96T64zB6oxbI4pPNEeZba/Qaa7r7BY1WU0lInnAPcCJQCXwuojMU9UVSfMcBFwPDFHVz0Rkr2ysu1GTJ9e/pwDBnr3X1RnHYtZ9dUtZx3HhYtsrlLJy0PdhELBGVd+NP+MwGzgtZZ4fAfeo6mcAqvpRoDmyFh/hY080h4ttr1Dy9URzFvQBNiRNVwKDU+b5JoCILAbygJtU9a+pC4p3410G0Lt3b2KxWMtzdeih8MQT9dNaszwfqqqqWpfnNizwso0a1fh3Aa43qtvMtlf4OCmbqgb+Ar4PPJA0fT7w25R5ngYeBzoCffECx+5NLbe4uFjDpqKiItdZCEzgZSsoUPUe+6v/KigIdLVR3Wa2vcInW2UDlmgjx1VX1UeVwH5J0/nAB2nmeVJVt6rqe8Aq4CBH+TNhYK24wsW2Vyj5DgrxLi6GicjZ8eluIuK3g/7XgYPizVk7AWOAeSnzPAF8O77sXnjVSe/6zV+bZ4PstJ7dBwoX216h5Hc4zsPxDuJf453lPwYcC1wInN3c36tqrYhcBvwN737BQ6q6PD7G8xJVnRf/7iQRWQFsA/5HVataUKa2x1phZI89+Rsutr1Cx++VwlTgBlX9FjuG4HwRGOp3Rao6X1W/qarfUNXJ8bQb4gGBeFXX1araT1UPV9XZGZSjbbNWGMaYkPAbFA7FG1gHQAFU9SugSxCZipwo931kjIkUv0FhLVCcnCAig/CeajbNiXrfR8aYyPAbFH4O/EVEbgY6icj1wJ+A/w0sZ1FirTCMMSHhKyio6tPASLxxFF4ECoAzVPXZAPMWHdb3UfZYXzrGBMp3k1RV/ZeqjlfV76jqJaq6NMiMRY51L916da241q3zHoOqa8UVVGCwZsSmHfIVFETkzyIyLCVtmIhEY2wFEw4uW3ElByAIPgAZ00b4vVI4FngpJe1l4g+bGeOEy1Zc1ozYtFN+g0IN3tgKybqz45kFY4LnshWXNSM27ZTfoPA3YJqI7AoQf/8d0KAXU2MC47IVlzUjNu2U36DwE7xR1z4VkY+AT4HdgCuDypgxDbjsS8eaEZt2ylffR+oNfPMdEdkHr7fTDar6n0BzZkw6rvrSqVtH3T2EggIvIFirMRNxmQ6ysx2oArqKyAEAqhqdnkyNSWZDqJp2yG8vqSOAB4HeKV8pXq+nxhhjIsDvPYV7gFuAbqraIellAcHYQ17GRIjf6qM9gGnxYdyM2cHGijAmUvxeKTwI/CDIjJiQsoe8jIkUv0HhKGCqiPxbRBYkv4LMnAmBKD/kZdViph3yW330QPwVLeXl3hnt+vXeQ0nW5DBz+++/o3+g1PQws2ox0075fU5hRtAZcc7+6bNj8uT6vyNE4yGvpqrFbP8wEeb7OQUR2RsYBPQCpC5dVR8KIF/Bs3/67IjqQ15RrhYzpgl+n1P4Lt4YzavxxmteDhwGLALCGRTsnz57oviQV48eUFWVPt2YCPN7o/kXwA9UdQDwVfy9DAjvQDvW4ZkxxjTgNyjsr6p/SkmbAVyQ5fy4Yx2emaZ8+mlm6cZEhN+g8FH8ngLAWhE5GvgGYe7iwmWPmyZ87ErStFN+g8L9wND45zuB54E3gKlBZMqZunGTt2+3cZNNfXYladopv01Sf530eaaIvIDXD9LKoDJmTE5FtVWVMc3wdaUgIk8mT6vqelVdKSJ/DiZbxrQBdVeSZWV2JWnaDb/VR99uJP24LOXDGGNMG9Bk9ZGITIp/7JT0uc4BQJr+DYwxxoRVc/cU9ou/d0j6DN7gOhuAmwLIkzHGmBxpMiio6g8AROQlVb3fTZaMMcbkiq97Cqp6v4gcJCITReSe+PtBmaxIREaIyCoRWSMi1zUx35kioiJSksnyjTHGtJ7f1kfnAhXAEcBXwOHAv+Lpfv4+D29Iz5FAP+AcEemXZr5dgAnAq75yb4wxJqv89pL6C2CUqiYG1RGRYcAfgEd9/P0gYI2qvhv/29nAacCKlPluAW4FrvGZL2OMMVnkNyjsAryckvYK0M3n3/fBuzFdpxIYnDyDiAwA9lPVp0Wk0aAgImV4nfHRu3dvYrGYzyy0DVVVVaHLs19RLZuVK1yiWi5wUza/QeE3wC9F5OeqWiMiXYCb4+l+SJo0TXwp0gGv+4yLmluQqk4HpgOUlJRoUVGRzyy0DbFYjLDl2a+ols3KFS5RLRe4KZvfoDAe2Ae4QkQ+A/bAO9B/KCLj6mZS1cZ6C6ukfpPWfOCDpOld8MZneEFEiK9rnoiMVtUlPvNojDGmlfwGhfNauZ7XgYNEpC/wPjAGSNykVtWNeCO6ARDvW+kaCwjGGOOW3w7xXmzNSlS1VkQuA/6G1932Q6q6PP6U9BJVndea5RtjjMkOv8Nx7gzcAJwD9FTV3UTkJOCbqvo7P8tQ1fnA/JS0GxqZ9zg/yzTGGJNdfjvEuxOvzr+UHTeIlwPjGv0LY4wxoeP3nsLpwIGq+pWIbAdQ1fdFpE9wWTPGGOOa3yuFLaQEEBHZE6jKeo6MMcbkjN+g8CdgRrz1ECLSG/gdMDuojBljjHHPb1D4GbAWeAvYHViN95xB6hgLxhhjQsxvk9QtwJXAlfFqo09UVZv5M2OMMSHjt5fUC0TkCABV/VhVVUT6i8j5wWbPGGOMS36rj26hfod2xKd/kd3sGGOMySW/QWFX4IuUtI149xeMMcZEhN+gsAL4Xkra6cDK7GbHGGNMLvkNCtcCD4jIXBG5VUT+DDwI/CS4rDlQXg6FhdChg/deXp7rHJn2yvZF00b4HaN5EXAoXm+n3YDXgMNUdXGAeQtWeTmUlcG6daDqvZeV2T+jcc/2RdOG+G19tDPwH1X9lapeqqq/Av4TTw+niROhurp+WnW1l26MS7YvmjbEb/XR34HilLRivK6ww2n9+szSjQmK7YumDfEbFA4HXk1Jew3on93sOLR/I4PENZZuTFBsXzRtiN+gsBHYOyVtb+Cr7GbHocmToWvX+mldu3rpxrhk+6JpQ/wGhbnAoyJymIh0FZHDgZnAH4PLWsBKS2H6dCgoABHvffp0L90Yl2xfNG2I3/EUJgJ34FUZ7QzUAL/H6ygvvEpL7R/PtA22L5o2wm+HeDXApfFxlnsR7xBPRPxeaRhjjAmBjA7q6vkYOExEbgMqg8mWMcaYXPAdFERkTxG5QkT+BcSAQcAVgeXMGGOMc01WH4lIR2A0cBFwMrAGmAUUAN9X1Y+CzqAxxhh3mrtS+C8wDVgFHKWq/VT1Frwxm40xxkRMc0HhTbzusQcDR4rIHsFnyRhjTK40GRRU9TjgG8CzwDV4/R09hdcpXsfAc2eMMcapZm80q+o6Vb1FVQ8Cjgc+BLYDb4jIrUFn0BhjjDuZNkldpKplwD7A5Xh9IhljjImIFj18pqo1qjpLVUdmO0PGGGNyx55INsYYk2BBwRhjTIKzoCAiI0RklYisEZHr0nx/tYisEJE3ReQ5ESlwlTdjjDEeJ0FBRPKAe4CRQD/gHBHplzJbBVCiqkcAcwBr2WSMMY65ulIYBKxR1XdVdQswGzgteQZVfV5V6waqfQXId5Q3Y4wxcX7HU2itPsCGpOlKvKekGzMWeCbdFyJSBpQB9O7dm1gslq08OlFVVRW6PPsV1bJZucIlquUCN2VzFRQkTZqmnVHkPKAEODbd96o6HZgOUFJSokVFRdnKoxOxWIyw5dmvqJbNyhUuUS0XuCmbq6BQCeyXNJ0PfJA6k4icgDfK27Gq+rWjvBljjIlzdU/hdeAgEekrIp2AMcC85BlEZABej6yjrUtuY4zJDSdBQVVrgcuAvwErgT+q6nIRmSQio+Oz3QZ0B/4kIjERmdfI4owxxgTEVfURqjofmJ+SdkPS5xNc5cUYY0x69kSzMcaYBAsKxhhjEiwoGGOMSbCgYIwxJsGCgjHGmAQLCsYYYxKcNUl1ZevWrVRWVlJTU5PrrKQlIqxcuTLX2QhENsvWuXNn8vPz6dixY1aWZ4zxJ3JBobKykl122YXCwkJE0nW5lFvV1dV07do119kIRLbKpqpUVVVRWVlJ3759s5AzY4xfkas+qqmpoWfPnm0yIBh/RISePXu22as9Y6IsckEBsIAQAbYNjcmNSAYFY4wxLWNBIQB5eXkUFRVx2GGHceqpp/L555/nOkv1jBo1Kit5uummm7j99tsbpB9zzDGtXrYxJjcsKASgS5cuxGIxli1bRo8ePbjnnnuystza2tqsLGf+/PnsvvvuWVlWOi+99FJgyzbGBCtyrY+SXfnXK4n9J7tD1xXtU8SUEVN8z3/00Ufz5ptvJqbvvPNOnnjiCb7++mtOP/10br75ZgBuueUWysvL2W+//ejVqxfFxcVcc801HHfccRxzzDEsXryY0aNHc8EFF3DJJZewfv16AKZMmcKQIUN48cUXueKKKwCvPn7BggVs2rSJs88+my+++ILa2lqmTp3KsGHDKCwsZMmSJfTq1Yvf/OY3PPTQQwBcfPHFXHnllaxdu5aRI0cydOhQXnrpJfr06cOTTz5Jly5dfJW5e/fubNq0iRdeeIGbbrqJXr16sWzZMoqLi3nkkUcQEZYuXcrVV1/Npk2b6NWrFw8//DC9e/f2/bsaY4IR6aCQa9u2beO5555j7NixADz77LO88847vPbaa6gqo0ePZsGCBXTt2pW5c+dSUVFBbW0tAwcOpLi4OLGczz//nBdffBGAc889l6uuuoqhQ4eyfv16Tj75ZFauXMntt9/OPffcw5AhQ9i0aROdO3dm+vTpnHzyyUycOJFt27ZRXV1dL39Lly7l97//PWR7vUwAABA4SURBVK+++iqqyuDBgzn22GPZY489WL16NbNmzeL+++/nrLPOYu7cuZx33nkZ/wYVFRUsX76cfffdlyFDhrB48WIGDx7M5ZdfzpNPPsmee+7JY489xsSJExPByRiTO5EOCpmc0WfT5s2bKSoqYu3atRQXF3PiiScCXlB47rnnGDBgAACbNm1i9erVfPnll5x22mmJM/FTTz213vLOPvvsxOd//OMfrFixIjH9xRdf8OWXXzJkyBCuvvpqSktLOeOMM8jPz+fII4/khz/8IVu3buW73/1ug7FdFy1axOmnn063bt0AOOOMM1i4cCGjR4+mb9++ifmLi4tZu3Zti36LQYMGkZ+fD5D4TXbffXeWLVuW+F22bdtmVwnGtBF2TyEAdfcU1q1bx5YtWxL3FFSVa665hlgsRiwWY82aNYwdOxZVbXJ5dQdtgO3bt/Pyyy8nlvH++++zyy67cN111/HAAw+wefNmjjrqKN5++22GDx/OggUL6NOnD+effz4zZ86st9ym1rvzzjsnPufl5bX4fka65agqhx56aKIMb731Fs8++2yLlm+MyS4LCgHabbfduPvuu7n99tvZunUrJ598MjNnzmTTpk0AvP/++3z00UcMHTqUp556ipqaGjZt2sRf/vKXRpd50kkn8bvf/S4xHYt590zeeecdDj/8cK699lpKSkp4++23WbduHXvttRc/+tGPGDt2LP/617/qLWv48OE88cQTVFdX89VXX/H4448zbNiwAH6J+g4++GA+/vhjXn75ZcDrmmT58uWBr9cY07xIVx+1BQMGDKB///7Mnj2b888/nzfeeIOjjz4a8G7IPvLIIxx55JGMHj2a/v37U1BQQElJCbvttlva5d19991ceumlHHHEEdTW1jJ8+HDuu+8+pkyZwvPPP09eXh79+vVj5MiRzJ49m9tuu42OHTvSvXv3BlcKAwcO5KKLLmLQoEGAd6N5wIABGVUV/eIXv2DKFK+aTlV5//33m/2bTp06MWfOHCZMmMDGjRupra3lyiuv5NBDD/W9XmNMMKS5qou2rKSkRJcsWVIvbeXKlRxyyCE5ylHzGusfaNOmTXTv3p3q6mqGDx/O9OnTGThwYA5y2HLZ7teprWzLWCzW4H5MFFi5widbZRORpapaku47u1JoI8rKylixYgU1NTVceOGFoQsIxphosKDQRjz66KO5zoIxxtiNZmOMMTtYUDDGGJNgQcEYY0yCBQVjjDEJFhQC8vjjjyMivP32283O+/DDD/PBBx+0eF0vvPACp5xyStr03XbbjQEDBnDwwQczfPhwnn76aV/Ls55OjWmfLCiUl0NhIXTo4L2Xl2dlsbNmzWLo0KHMnj272XlbGxSaMmzYMCoqKli1ahV33303l112Gc8991yTf2NBwZj2q30HhfJyKCuDdetA1XsvK2t1YNi0aROLFy/mwQcfbBAUfvOb33D44YfTv39/rrvuOubMmcOSJUsoLS2lqKiIzZs3U1hYyCeffALAkiVLOO644wB47bXXOOaYYxgwYADHHHMMq1atyihfRUVF3HDDDYluMp566ikGDx7MgAEDOOGEE/jvf//L2rVrue+++7jzzjspKipi4cKFaeczxkRT+w4KEydCSnfSVFd76a3wxBNPMGLECL75zW/So0ePRJ9DzzzzDE8//TSvvvoqb7zxBj/96U8588wzKSkpoby8nFgs1uSYBd/61rdYsGABFRUVTJo0iZ/97GcZ523gwIGJKq2hQ4fyyiuvUFFRwZgxY7j11lspLCzkkksu4aqrriIWizFs2LC08xljosnZw2siMgK4C8gDHlDVX6V8vzMwEygGqoCzVXVtoJmKD1TjO92nWbNmceWVVwIwZswYZs2axcCBA/nHP/7B+eefn+gKokePHhktd+PGjVx44YWsXr0aEWHr1q0Z5y25W5PKykrOPvtsPvzwQ7Zs2ULfvn3T/o3f+YzJqfJy74Ru1CiYPx8mT4bS0lznKnScXCmISB5wDzAS6AecIyL9UmYbC3ymqgcCdwK/Djxj+++fWboPVVVV/POf/+Tiiy+msLCQ2267jcceewxVRVURkWaXsdNOO7F9+3YAampqEuk///nP+fa3v82yZcsSvapmqqKiItGf0OWXX85ll13GW2+9xbRp0xpdnt/5jMmZ5KpgyFpVcHvkqvpoELBGVd9V1S3AbOC0lHlOA2bEP88Bjhc/R9DWmDwZUjtw69rVS2+hOXPmcMEFF7Bu3TrWrl3Lhg0b6Nu3L4sWLeKkk05i5syZiRHQPv30UwB22WUXvvzyy8QyCgsLWbp0KQBz585NpG/cuJE+ffoA3s3pTL355pvccsstXHrppQ2WN2PGjMR8qflpbD5j2oyAqoLbI1fVR32ADUnTlcDgxuZR1VoR2Qj0BD5JnklEyoAygN69eyfGE0j6vsGwk406/XTytmyh4403IpWVaH4+W2++mW2nn95wB/OpvLycq6++ul4eTj31VGbOnMldd93FiBEjKC4upmPHjpx88sncfPPNnHPOOfz4xz+mc+fOPP/881x77bWMHz+evfbai5KSErZv3051dTUTJkygrKyM22+/nWOPPRZVpbq6mpqamrTDbdbU1LBw4UL69+/P5s2b2XPPPbnttts4+uijqa6u5vrrr+fMM89k33335cgjj0ys54QTTqC0tJTHH3+cO+64o9H5UtXW1vr/7X3YsmVLg+2bC1VVVW0iH9kWqXKNGpX4WNWvH7Fx43Z8F5Uy4mib1VVrBPkCvo93H6Fu+nzgtynzLAfyk6bfAXo2tdzi4mJNtWLFigZpbclXX32V6ywEJttlayvbsqKiItdZCESkylVQoOq1IdSKceMSn7WgINc5y6psbTNgiTZyXHVVfVQJ7Jc0nQ+kNsxPzCMiOwG7AZ86yZ0xJtwCqApur1wFhdeBg0Skr4h0AsYA81LmmQdcGP98JvDPeEQzxpimlZbC9OlQUOBNFxR409b6KGNO7imod4/gMuBveE1SH1LV5SIyCe8yZh7wIPAHEVmDd4UwphXr89XKx7Rddj5gMlZa6r1iMbj33lznJrScPaegqvOB+SlpNyR9rsG799AqnTt3pqqqip49e1pgCClVpaqqis6dO+c6K8a0O5EbeS0/P5/Kyko+/vjjXGclrS1bttCpU6dcZyMQ2Sxb586dyc/Pz8qyjDH+RS4odOzYsU0/cRuLxdrEYPRBiHLZjGkv2nffR8YYY+qxoGCMMSbBgoIxxpgECXPTPxH5GFiX63xkqBcpXXdESFTLZuUKl6iWC7JXtgJV3TPdF6EOCmEkIktUtSTX+QhCVMtm5QqXqJYL3JTNqo+MMcYkWFAwxhiTYEHBvem5zkCAolo2K1e4RLVc4KBsdk/BGGNMgl0pGGOMSbCgYIwxJsGCggMikiciFSLydHy6r4i8KiKrReSx+BgToSIiu4vIHBF5W0RWisjRItJDRP4eL9ffRWSPXOczUyJylYgsF5FlIjJLRDqHdXuJyEMi8pGILEtKS7uNxHO3iKwRkTdFZGDuct60Rsp1W3xffFNEHheR3ZO+uz5erlUicnJuct28dOVK+u4aEVER6RWfDmx7WVBw4wpgZdL0r4E7VfUg4DNgbE5y1Tp3AX9V1W8B/fHKdx3wXLxcz8WnQ0NE+gATgBJVPQxv7I8xhHd7PQyMSElrbBuNBA6Kv8qAqY7y2BIP07BcfwcOU9UjgH8D1wOISD+8bXho/G/uFZE8d1nNyMM0LBcish9wIrA+KTmw7WVBIWAikg98B3ggPi3A/wPmxGeZAXw3N7lrGRHZFRiONzASqrpFVT8HTsMrD4SwXHE7AV3iQ8J2BT4kpNtLVRfQcEjbxrbRacDM+BC+rwC7i0hvNznNTLpyqeqzqlobn3wFb8hf8Mo1W1W/VtX3gDXAIGeZzUAj2wvgTuCnQHKroMC2lwWF4E3B26Db49M9gc+TduBKoE8uMtYKBwAfA7+PV4s9ICLdgL1V9UOA+PteucxkplT1feB2vDOyD4GNwFLCv72SNbaN+gAbkuYLczl/CDwT/xzqconIaOB9VX0j5avAymVBIUAicgrwkaouTU5OM2vY2gXvBAwEpqrqAOArQlZVlE68fv00oC+wL9AN7zI9Vdi2lx9R2C8RkYlALVBel5RmtlCUS0S6AhOBG9J9nSYtK+WyoBCsIcBoEVkLzMarhpiCd6lXN8BRPvBBbrLXYpVApaq+Gp+egxck/lt3CRt//yhH+WupE4D3VPVjVd0K/Bk4hvBvr2SNbaNKYL+k+UJXThG5EDgFKNUdD2CFuVzfwDtBeSN+DMkH/iUi+xBguSwoBEhVr1fVfFUtxLvZ9U9VLQWeB86Mz3Yh8GSOstgiqvofYIOIHBxPOh5YAczDKw+EsFx41UZHiUjX+L2funKFenulaGwbzQMuiLdqOQrYWFfNFAYiMgK4FhitqtVJX80DxojIziLSF+/G7Gu5yGOmVPUtVd1LVQvjx5BKYGD8/y+47aWq9nLwAo4Dno5/PgBvx1wD/AnYOdf5a0F5ioAlwJvAE8AeePdLngNWx9975DqfLSjXzcDbwDLgD8DOYd1ewCy8eyNb4weUsY1tI7zqiHuAd4C38Fpg5bwMGZRrDV4deyz+ui9p/onxcq0CRuY6/5mUK+X7tUCvoLeXdXNhjDEmwaqPjDHGJFhQMMYYk2BBwRhjTIIFBWOMMQkWFIwxxiRYUDDGGJNgQcGYNOLdLc9PSVvdSNoYt7kzJjgWFIxJbwEwpK6b5XjXAh2BgSlpB8bnNSYSLCgYk97reEGgKD49HK+7i1Upae+o6gcicpeIbBCRL0RkqYgMq1uQiHQRkRki8ll8QKKfikhl0vf7ishcEflYRN4TkQluimhMQxYUjElDVbcAr+Id+Im/LwQWpaTVXSW8jhcsegCPAn8Skc7x724ECvG6yzgROK9uPSLSAXgKeAOv6+PjgSvb8ghhJtosKBjTuBfZEQCG4QWFhSlpLwKo6iOqWqWqtap6B16fSXUdBp4F/FJVP1PVSuDupHUcCeypqpPUG6zoXeB+vA4UjXFup+ZnMabdWgBcGh9nYU9VXS0i/wVmxNMOi8+DiPwEuBhvHAYFdgV6xZezL/UHREn+XADsKyKfJ6Xl4QUfY5yzoGBM414GdsMbA3cxgKp+ISIfxNM+UNX34vcPrsWr+lmuqttF5DN2DITyIV5/9yvi08n94G/AG8PhoMBLY4wPVn1kTCNUdTNe9+BXU//MfVE8re5+wi54o319DOwkIjfgXSnU+SNwvYjsISJ9gMuSvnsN+EJEro3fkM4TkcNE5MhgSmVM0ywoGNO0F/HGMV6UlLYwnlYXFP6GNybwv4F1QA31q4gm4fWP/x7wD7yR6r4GUNVtwKl4N6nfAz4BHsC7QjHGORtPwRjHRGQcMEZVj811XoxJZVcKxgRMRHqLyBAR6RAfwvQnwOO5zpcx6diNZmOC1wmYhjcI++fAbODenObImEZY9ZExxpgEqz4yxhiTYEHBGGNMggUFY4wxCRYUjDHGJFhQMMYYk/B/kY+jg9m+I5sAAAAASUVORK5CYII=\n",
859 | "text/plain": [
860 | ""
861 | ]
862 | },
863 | "metadata": {
864 | "needs_background": "light"
865 | },
866 | "output_type": "display_data"
867 | }
868 | ],
869 | "source": [
870 | "plt.plot(x, yhat, color='green', label='Regression Line')\n",
871 | "plt.scatter(x, y, c='red', label='Actual Data')\n",
872 | "plt.ylabel('Acceptance Rate', fontsize=12)\n",
873 | "plt.xlabel('Wage', fontsize=12)\n",
874 | "plt.grid(axis='y', alpha=0.75)\n",
875 | "plt.grid(axis='x', alpha=0.75)\n",
876 | "plt.legend()\n",
877 | "plt.show()"
878 | ]
879 | },
880 | {
881 | "cell_type": "markdown",
882 | "metadata": {},
883 | "source": [
884 | "### 2.c) Coefficient for the wage is tiny. I will generate new variable 1000x smaller than wage and use it instead"
885 | ]
886 | },
887 | {
888 | "cell_type": "code",
889 | "execution_count": 14,
890 | "metadata": {},
891 | "outputs": [
892 | {
893 | "data": {
894 | "text/html": [
895 | "\n",
896 | "OLS Regression Results \n",
897 | "\n",
898 | " Dep. Variable: y R-squared: 0.119 \n",
899 | " \n",
900 | "\n",
901 | " Model: OLS Adj. R-squared: 0.112 \n",
902 | " \n",
903 | "\n",
904 | " Method: Least Squares F-statistic: 16.01 \n",
905 | " \n",
906 | "\n",
907 | " Date: Mon, 16 Dec 2019 Prob (F-statistic): 0.000111 \n",
908 | " \n",
909 | "\n",
910 | " Time: 23:38:21 Log-Likelihood: 49.648 \n",
911 | " \n",
912 | "\n",
913 | " No. Observations: 120 AIC: -95.30 \n",
914 | " \n",
915 | "\n",
916 | " Df Residuals: 118 BIC: -89.72 \n",
917 | " \n",
918 | "\n",
919 | " Df Model: 1 \n",
920 | " \n",
921 | "\n",
922 | " Covariance Type: nonrobust \n",
923 | " \n",
924 | "
\n",
925 | "\n",
926 | "\n",
927 | " coef std err t P>|t| [0.025 0.975] \n",
928 | " \n",
929 | "\n",
930 | " Intercept 0.7004 0.039 17.894 0.000 0.623 0.778 \n",
931 | " \n",
932 | "\n",
933 | " wage1000 1.7069 0.427 4.001 0.000 0.862 2.552 \n",
934 | " \n",
935 | "
\n",
936 | "\n",
937 | "\n",
938 | " Omnibus: 83.233 Durbin-Watson: 1.811 \n",
939 | " \n",
940 | "\n",
941 | " Prob(Omnibus): 0.000 Jarque-Bera (JB): 475.521 \n",
942 | " \n",
943 | "\n",
944 | " Skew: -2.436 Prob(JB): 5.52e-104 \n",
945 | " \n",
946 | "\n",
947 | " Kurtosis: 11.448 Cond. No. 29.2 \n",
948 | " \n",
949 | "
Warnings: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified."
950 | ],
951 | "text/plain": [
952 | "\n",
953 | "\"\"\"\n",
954 | " OLS Regression Results \n",
955 | "==============================================================================\n",
956 | "Dep. Variable: y R-squared: 0.119\n",
957 | "Model: OLS Adj. R-squared: 0.112\n",
958 | "Method: Least Squares F-statistic: 16.01\n",
959 | "Date: Mon, 16 Dec 2019 Prob (F-statistic): 0.000111\n",
960 | "Time: 23:38:21 Log-Likelihood: 49.648\n",
961 | "No. Observations: 120 AIC: -95.30\n",
962 | "Df Residuals: 118 BIC: -89.72\n",
963 | "Df Model: 1 \n",
964 | "Covariance Type: nonrobust \n",
965 | "==============================================================================\n",
966 | " coef std err t P>|t| [0.025 0.975]\n",
967 | "------------------------------------------------------------------------------\n",
968 | "Intercept 0.7004 0.039 17.894 0.000 0.623 0.778\n",
969 | "wage1000 1.7069 0.427 4.001 0.000 0.862 2.552\n",
970 | "==============================================================================\n",
971 | "Omnibus: 83.233 Durbin-Watson: 1.811\n",
972 | "Prob(Omnibus): 0.000 Jarque-Bera (JB): 475.521\n",
973 | "Skew: -2.436 Prob(JB): 5.52e-104\n",
974 | "Kurtosis: 11.448 Cond. No. 29.2\n",
975 | "==============================================================================\n",
976 | "\n",
977 | "Warnings:\n",
978 | "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n",
979 | "\"\"\""
980 | ]
981 | },
982 | "execution_count": 14,
983 | "metadata": {},
984 | "output_type": "execute_result"
985 | }
986 | ],
987 | "source": [
988 | "wage1000 = df['wage'] / 1000\n",
989 | "\n",
990 | "reg = smf.ols('y ~ wage1000', data=df).fit()\n",
991 | "reg.summary()"
992 | ]
993 | },
994 | {
995 | "cell_type": "markdown",
996 | "metadata": {},
997 | "source": [
998 | "Now we see that any additional _10 Kwacha_ increases acceptance rate by **1.7%**"
999 | ]
1000 | },
1001 | {
1002 | "cell_type": "markdown",
1003 | "metadata": {},
1004 | "source": [
1005 | "### 2.d) to make sure that our model is a good model we check if sum of the residuals is equal 0."
1006 | ]
1007 | },
1008 | {
1009 | "cell_type": "code",
1010 | "execution_count": 15,
1011 | "metadata": {},
1012 | "outputs": [
1013 | {
1014 | "name": "stdout",
1015 | "output_type": "stream",
1016 | "text": [
1017 | "sum of the residuals is:\t -4.5075054799781356e-14\n",
1018 | "average of the residuals is:\t -3.811765717879704e-16\n"
1019 | ]
1020 | }
1021 | ],
1022 | "source": [
1023 | "print('sum of the residuals is:\\t', np.sum(reg.resid))\n",
1024 | "print('average of the residuals is:\\t', np.mean(reg.resid))"
1025 | ]
1026 | },
1027 | {
1028 | "cell_type": "markdown",
1029 | "metadata": {},
1030 | "source": [
1031 | "in both cases we see that they are very very close to 0!"
1032 | ]
1033 | },
1034 | {
1035 | "cell_type": "markdown",
1036 | "metadata": {},
1037 | "source": [
1038 | "## 2.e) Now instead of 'wage' we will run regression using 'lnwage' which is interpreted as a percentage change in wage"
1039 | ]
1040 | },
1041 | {
1042 | "cell_type": "code",
1043 | "execution_count": 16,
1044 | "metadata": {},
1045 | "outputs": [
1046 | {
1047 | "data": {
1048 | "text/html": [
1049 | "\n",
1050 | "OLS Regression Results \n",
1051 | "\n",
1052 | " Dep. Variable: y R-squared: 0.116 \n",
1053 | " \n",
1054 | "\n",
1055 | " Model: OLS Adj. R-squared: 0.109 \n",
1056 | " \n",
1057 | "\n",
1058 | " Method: Least Squares F-statistic: 15.49 \n",
1059 | " \n",
1060 | "\n",
1061 | " Date: Mon, 16 Dec 2019 Prob (F-statistic): 0.000140 \n",
1062 | " \n",
1063 | "\n",
1064 | " Time: 23:38:21 Log-Likelihood: 49.418 \n",
1065 | " \n",
1066 | "\n",
1067 | " No. Observations: 120 AIC: -94.84 \n",
1068 | " \n",
1069 | "\n",
1070 | " Df Residuals: 118 BIC: -89.26 \n",
1071 | " \n",
1072 | "\n",
1073 | " Df Model: 1 \n",
1074 | " \n",
1075 | "\n",
1076 | " Covariance Type: nonrobust \n",
1077 | " \n",
1078 | "
\n",
1079 | "\n",
1080 | "\n",
1081 | " coef std err t P>|t| [0.025 0.975] \n",
1082 | " \n",
1083 | "\n",
1084 | " Intercept 0.3060 0.138 2.220 0.028 0.033 0.579 \n",
1085 | " \n",
1086 | "\n",
1087 | " lnwage 0.1242 0.032 3.936 0.000 0.062 0.187 \n",
1088 | " \n",
1089 | "
\n",
1090 | "\n",
1091 | "\n",
1092 | " Omnibus: 82.986 Durbin-Watson: 1.832 \n",
1093 | " \n",
1094 | "\n",
1095 | " Prob(Omnibus): 0.000 Jarque-Bera (JB): 464.288 \n",
1096 | " \n",
1097 | "\n",
1098 | " Skew: -2.439 Prob(JB): 1.52e-101 \n",
1099 | " \n",
1100 | "\n",
1101 | " Kurtosis: 11.311 Cond. No. 42.9 \n",
1102 | " \n",
1103 | "
Warnings: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified."
1104 | ],
1105 | "text/plain": [
1106 | "\n",
1107 | "\"\"\"\n",
1108 | " OLS Regression Results \n",
1109 | "==============================================================================\n",
1110 | "Dep. Variable: y R-squared: 0.116\n",
1111 | "Model: OLS Adj. R-squared: 0.109\n",
1112 | "Method: Least Squares F-statistic: 15.49\n",
1113 | "Date: Mon, 16 Dec 2019 Prob (F-statistic): 0.000140\n",
1114 | "Time: 23:38:21 Log-Likelihood: 49.418\n",
1115 | "No. Observations: 120 AIC: -94.84\n",
1116 | "Df Residuals: 118 BIC: -89.26\n",
1117 | "Df Model: 1 \n",
1118 | "Covariance Type: nonrobust \n",
1119 | "==============================================================================\n",
1120 | " coef std err t P>|t| [0.025 0.975]\n",
1121 | "------------------------------------------------------------------------------\n",
1122 | "Intercept 0.3060 0.138 2.220 0.028 0.033 0.579\n",
1123 | "lnwage 0.1242 0.032 3.936 0.000 0.062 0.187\n",
1124 | "==============================================================================\n",
1125 | "Omnibus: 82.986 Durbin-Watson: 1.832\n",
1126 | "Prob(Omnibus): 0.000 Jarque-Bera (JB): 464.288\n",
1127 | "Skew: -2.439 Prob(JB): 1.52e-101\n",
1128 | "Kurtosis: 11.311 Cond. No. 42.9\n",
1129 | "==============================================================================\n",
1130 | "\n",
1131 | "Warnings:\n",
1132 | "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n",
1133 | "\"\"\""
1134 | ]
1135 | },
1136 | "execution_count": 16,
1137 | "metadata": {},
1138 | "output_type": "execute_result"
1139 | }
1140 | ],
1141 | "source": [
1142 | "lnwage = df['lnwage']\n",
1143 | "\n",
1144 | "reg = smf.ols('y ~ lnwage', data=df).fit()\n",
1145 | "reg.summary()"
1146 | ]
1147 | },
1148 | {
1149 | "cell_type": "markdown",
1150 | "metadata": {},
1151 | "source": [
1152 | "Here we see that **1%** change in the wage changes acceptance rate by **12.42%.**"
1153 | ]
1154 | },
1155 | {
1156 | "cell_type": "markdown",
1157 | "metadata": {},
1158 | "source": [
1159 | "### 2.f) Now we just manually compute the regression which was used in the study to calculate the elasticity of the wages\n",
1160 | "#### regression used in the model is **labor = α + β\\*ln(wage) + e**"
1161 | ]
1162 | },
1163 | {
1164 | "cell_type": "code",
1165 | "execution_count": 2,
1166 | "metadata": {},
1167 | "outputs": [
1168 | {
1169 | "name": "stdout",
1170 | "output_type": "stream",
1171 | "text": [
1172 | "Elasticity of the job acceptance is based on wage: 0.4302\n"
1173 | ]
1174 | }
1175 | ],
1176 | "source": [
1177 | "x = 1\n",
1178 | "labor = 0.3060 + 0.1242*x\n",
1179 | "print('Elasticity of the job acceptance is based on wage:',labor)"
1180 | ]
1181 | },
1182 | {
1183 | "cell_type": "markdown",
1184 | "metadata": {},
1185 | "source": [
1186 | "Even though I used exactly the same model with the same variables from the same dataset my elasticity came to be a little higher than found in the original paper (0.35). This can explain by a small difference in the data. In original data, it appears they got rid of the village which had a 0% acceptance rate (probably there was something happening at that time, so nobody accepted the job), while this data is present in my analysis. However, we still can canclude that findings are somewhat **inelastic**"
1187 | ]
1188 | },
1189 | {
1190 | "cell_type": "markdown",
1191 | "metadata": {},
1192 | "source": [
1193 | "# Part 3:\n",
1194 | "-----------\n",
1195 | "### 3.a) Now in trying to reproduce the other columns of Table 4 of the paper, we would like to calculate two sets of variables called “village effects” and “week effects”. We work only on village effects. Week effects are similar. "
1196 | ]
1197 | },
1198 | {
1199 | "cell_type": "code",
1200 | "execution_count": 18,
1201 | "metadata": {},
1202 | "outputs": [
1203 | {
1204 | "data": {
1205 | "text/html": [
1206 | "\n",
1207 | "OLS Regression Results \n",
1208 | "\n",
1209 | " Dep. Variable: y R-squared: 0.202 \n",
1210 | " \n",
1211 | "\n",
1212 | " Model: OLS Adj. R-squared: 0.128 \n",
1213 | " \n",
1214 | "\n",
1215 | " Method: Least Squares F-statistic: 2.752 \n",
1216 | " \n",
1217 | "\n",
1218 | " Date: Mon, 16 Dec 2019 Prob (F-statistic): 0.00461 \n",
1219 | " \n",
1220 | "\n",
1221 | " Time: 23:38:21 Log-Likelihood: 55.524 \n",
1222 | " \n",
1223 | "\n",
1224 | " No. Observations: 120 AIC: -89.05 \n",
1225 | " \n",
1226 | "\n",
1227 | " Df Residuals: 109 BIC: -58.38 \n",
1228 | " \n",
1229 | "\n",
1230 | " Df Model: 10 \n",
1231 | " \n",
1232 | "\n",
1233 | " Covariance Type: nonrobust \n",
1234 | " \n",
1235 | "
\n",
1236 | "\n",
1237 | "\n",
1238 | " coef std err t P>|t| [0.025 0.975] \n",
1239 | " \n",
1240 | "\n",
1241 | " Intercept 0.3228 0.143 2.255 0.026 0.039 0.607 \n",
1242 | " \n",
1243 | "\n",
1244 | " C(village)[T.HASHAMU] -0.1058 0.065 -1.622 0.108 -0.235 0.023 \n",
1245 | " \n",
1246 | "\n",
1247 | " C(village)[T.KACHULE] -0.0631 0.065 -0.966 0.336 -0.192 0.066 \n",
1248 | " \n",
1249 | "\n",
1250 | " C(village)[T.KADZINJA/KHUNGWA] 0.0347 0.065 0.531 0.596 -0.095 0.164 \n",
1251 | " \n",
1252 | "\n",
1253 | " C(village)[T.KAFOTOKOZA] 0.0257 0.065 0.394 0.694 -0.104 0.155 \n",
1254 | " \n",
1255 | "\n",
1256 | " C(village)[T.KAMWENDO] 0.0128 0.065 0.195 0.845 -0.117 0.142 \n",
1257 | " \n",
1258 | "\n",
1259 | " C(village)[T.KUNFUNDA] -0.0855 0.065 -1.310 0.193 -0.215 0.044 \n",
1260 | " \n",
1261 | "\n",
1262 | " C(village)[T.MANASE] -0.0409 0.065 -0.626 0.532 -0.170 0.088 \n",
1263 | " \n",
1264 | "\n",
1265 | " C(village)[T.MSANGU/KALUTE] 0.0272 0.065 0.418 0.677 -0.102 0.157 \n",
1266 | " \n",
1267 | "\n",
1268 | " C(village)[T.NJONJA] 0.0272 0.065 0.417 0.678 -0.102 0.157 \n",
1269 | " \n",
1270 | "\n",
1271 | " lnwage 0.1242 0.031 3.980 0.000 0.062 0.186 \n",
1272 | " \n",
1273 | "
\n",
1274 | "\n",
1275 | "\n",
1276 | " Omnibus: 94.244 Durbin-Watson: 2.025 \n",
1277 | " \n",
1278 | "\n",
1279 | " Prob(Omnibus): 0.000 Jarque-Bera (JB): 715.205 \n",
1280 | " \n",
1281 | "\n",
1282 | " Skew: -2.719 Prob(JB): 4.96e-156 \n",
1283 | " \n",
1284 | "\n",
1285 | " Kurtosis: 13.652 Cond. No. 51.1 \n",
1286 | " \n",
1287 | "
Warnings: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified."
1288 | ],
1289 | "text/plain": [
1290 | "\n",
1291 | "\"\"\"\n",
1292 | " OLS Regression Results \n",
1293 | "==============================================================================\n",
1294 | "Dep. Variable: y R-squared: 0.202\n",
1295 | "Model: OLS Adj. R-squared: 0.128\n",
1296 | "Method: Least Squares F-statistic: 2.752\n",
1297 | "Date: Mon, 16 Dec 2019 Prob (F-statistic): 0.00461\n",
1298 | "Time: 23:38:21 Log-Likelihood: 55.524\n",
1299 | "No. Observations: 120 AIC: -89.05\n",
1300 | "Df Residuals: 109 BIC: -58.38\n",
1301 | "Df Model: 10 \n",
1302 | "Covariance Type: nonrobust \n",
1303 | "==================================================================================================\n",
1304 | " coef std err t P>|t| [0.025 0.975]\n",
1305 | "--------------------------------------------------------------------------------------------------\n",
1306 | "Intercept 0.3228 0.143 2.255 0.026 0.039 0.607\n",
1307 | "C(village)[T.HASHAMU] -0.1058 0.065 -1.622 0.108 -0.235 0.023\n",
1308 | "C(village)[T.KACHULE] -0.0631 0.065 -0.966 0.336 -0.192 0.066\n",
1309 | "C(village)[T.KADZINJA/KHUNGWA] 0.0347 0.065 0.531 0.596 -0.095 0.164\n",
1310 | "C(village)[T.KAFOTOKOZA] 0.0257 0.065 0.394 0.694 -0.104 0.155\n",
1311 | "C(village)[T.KAMWENDO] 0.0128 0.065 0.195 0.845 -0.117 0.142\n",
1312 | "C(village)[T.KUNFUNDA] -0.0855 0.065 -1.310 0.193 -0.215 0.044\n",
1313 | "C(village)[T.MANASE] -0.0409 0.065 -0.626 0.532 -0.170 0.088\n",
1314 | "C(village)[T.MSANGU/KALUTE] 0.0272 0.065 0.418 0.677 -0.102 0.157\n",
1315 | "C(village)[T.NJONJA] 0.0272 0.065 0.417 0.678 -0.102 0.157\n",
1316 | "lnwage 0.1242 0.031 3.980 0.000 0.062 0.186\n",
1317 | "==============================================================================\n",
1318 | "Omnibus: 94.244 Durbin-Watson: 2.025\n",
1319 | "Prob(Omnibus): 0.000 Jarque-Bera (JB): 715.205\n",
1320 | "Skew: -2.719 Prob(JB): 4.96e-156\n",
1321 | "Kurtosis: 13.652 Cond. No. 51.1\n",
1322 | "==============================================================================\n",
1323 | "\n",
1324 | "Warnings:\n",
1325 | "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n",
1326 | "\"\"\""
1327 | ]
1328 | },
1329 | "execution_count": 18,
1330 | "metadata": {},
1331 | "output_type": "execute_result"
1332 | }
1333 | ],
1334 | "source": [
1335 | "lnwage = df['lnwage']\n",
1336 | "village = df['village']\n",
1337 | "\n",
1338 | "reg = smf.ols('y ~ lnwage + C(village)', data=df).fit()\n",
1339 | "reg.summary()"
1340 | ]
1341 | },
1342 | {
1343 | "cell_type": "markdown",
1344 | "metadata": {},
1345 | "source": [
1346 | "After controlling for individual village, we see that effect of a wage on the acceptance rate didn't change, and none of the village variables is statistically significant and the effect on acceptance rate is marginally or non-existence."
1347 | ]
1348 | },
1349 | {
1350 | "cell_type": "code",
1351 | "execution_count": null,
1352 | "metadata": {},
1353 | "outputs": [],
1354 | "source": []
1355 | }
1356 | ],
1357 | "metadata": {
1358 | "kernelspec": {
1359 | "display_name": "Python 3",
1360 | "language": "python",
1361 | "name": "python3"
1362 | },
1363 | "language_info": {
1364 | "codemirror_mode": {
1365 | "name": "ipython",
1366 | "version": 3
1367 | },
1368 | "file_extension": ".py",
1369 | "mimetype": "text/x-python",
1370 | "name": "python",
1371 | "nbconvert_exporter": "python",
1372 | "pygments_lexer": "ipython3",
1373 | "version": "3.7.4"
1374 | }
1375 | },
1376 | "nbformat": 4,
1377 | "nbformat_minor": 4
1378 | }
1379 |
--------------------------------------------------------------------------------