├── .gitignore └── SPARK_TASK_1_.ipynb /.gitignore: -------------------------------------------------------------------------------- 1 | # Byte-compiled / optimized / DLL files 2 | __pycache__/ 3 | *.py[cod] 4 | *$py.class 5 | 6 | # C extensions 7 | *.so 8 | 9 | # Distribution / packaging 10 | .Python 11 | build/ 12 | develop-eggs/ 13 | dist/ 14 | downloads/ 15 | eggs/ 16 | .eggs/ 17 | lib/ 18 | lib64/ 19 | parts/ 20 | sdist/ 21 | var/ 22 | wheels/ 23 | pip-wheel-metadata/ 24 | share/python-wheels/ 25 | *.egg-info/ 26 | .installed.cfg 27 | *.egg 28 | MANIFEST 29 | 30 | # PyInstaller 31 | # Usually these files are written by a python script from a template 32 | # before PyInstaller builds the exe, so as to inject date/other infos into it. 33 | *.manifest 34 | *.spec 35 | 36 | # Installer logs 37 | pip-log.txt 38 | pip-delete-this-directory.txt 39 | 40 | # Unit test / coverage reports 41 | htmlcov/ 42 | .tox/ 43 | .nox/ 44 | .coverage 45 | .coverage.* 46 | .cache 47 | nosetests.xml 48 | coverage.xml 49 | *.cover 50 | *.py,cover 51 | .hypothesis/ 52 | .pytest_cache/ 53 | 54 | # Translations 55 | *.mo 56 | *.pot 57 | 58 | # Django stuff: 59 | *.log 60 | local_settings.py 61 | db.sqlite3 62 | db.sqlite3-journal 63 | 64 | # Flask stuff: 65 | instance/ 66 | .webassets-cache 67 | 68 | # Scrapy stuff: 69 | .scrapy 70 | 71 | # Sphinx documentation 72 | docs/_build/ 73 | 74 | # PyBuilder 75 | target/ 76 | 77 | # Jupyter Notebook 78 | .ipynb_checkpoints 79 | 80 | # IPython 81 | profile_default/ 82 | ipython_config.py 83 | 84 | # pyenv 85 | .python-version 86 | 87 | # pipenv 88 | # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control. 89 | # However, in case of collaboration, if having platform-specific dependencies or dependencies 90 | # having no cross-platform support, pipenv may install dependencies that don't work, or not 91 | # install all needed dependencies. 92 | #Pipfile.lock 93 | 94 | # PEP 582; used by e.g. github.com/David-OConnor/pyflow 95 | __pypackages__/ 96 | 97 | # Celery stuff 98 | celerybeat-schedule 99 | celerybeat.pid 100 | 101 | # SageMath parsed files 102 | *.sage.py 103 | 104 | # Environments 105 | .env 106 | .venv 107 | env/ 108 | venv/ 109 | ENV/ 110 | env.bak/ 111 | venv.bak/ 112 | 113 | # Spyder project settings 114 | .spyderproject 115 | .spyproject 116 | 117 | # Rope project settings 118 | .ropeproject 119 | 120 | # mkdocs documentation 121 | /site 122 | 123 | # mypy 124 | .mypy_cache/ 125 | .dmypy.json 126 | dmypy.json 127 | 128 | # Pyre type checker 129 | .pyre/ 130 | -------------------------------------------------------------------------------- /SPARK_TASK_1_.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "nbformat": 4, 3 | "nbformat_minor": 0, 4 | "metadata": { 5 | "colab": { 6 | "name": "SPARK_TASK_1 .ipynb", 7 | "provenance": [], 8 | "collapsed_sections": [], 9 | "authorship_tag": "ABX9TyMqrE/S3DQSQkR1Eaz5PBwv", 10 | "include_colab_link": true 11 | }, 12 | "kernelspec": { 13 | "name": "python3", 14 | "display_name": "Python 3" 15 | }, 16 | "language_info": { 17 | "name": "python" 18 | } 19 | }, 20 | "cells": [ 21 | { 22 | "cell_type": "markdown", 23 | "metadata": { 24 | "id": "view-in-github", 25 | "colab_type": "text" 26 | }, 27 | "source": [ 28 | "\"Open" 29 | ] 30 | }, 31 | { 32 | "cell_type": "code", 33 | "metadata": { 34 | "id": "88dV5rGW5Baa" 35 | }, 36 | "source": [ 37 | "" 38 | ], 39 | "execution_count": null, 40 | "outputs": [] 41 | }, 42 | { 43 | "cell_type": "markdown", 44 | "metadata": { 45 | "id": "Y5KNclE35Ftj" 46 | }, 47 | "source": [ 48 | "#THE SPARKS FOUNDATION\n", 49 | "Name : BHARADWAJ S\n", 50 | "\n", 51 | "#GRIPNOVEMBER21\n", 52 | "\n", 53 | "Task-1 : Prediction Using Supervised ML\n", 54 | "\n", 55 | "Problem: Predict the percentage of a student based on the number of study hours" 56 | ] 57 | }, 58 | { 59 | "cell_type": "code", 60 | "metadata": { 61 | "id": "Gl25ERJo5QkO" 62 | }, 63 | "source": [ 64 | "#Importing the Libraries required for the problem\n", 65 | "import pandas as pd\n", 66 | "import matplotlib.pyplot as plt\n", 67 | "import seaborn as sns" 68 | ], 69 | "execution_count": 1, 70 | "outputs": [] 71 | }, 72 | { 73 | "cell_type": "code", 74 | "metadata": { 75 | "id": "cw7WpnNG5WJ-" 76 | }, 77 | "source": [ 78 | "#reading data\n", 79 | "data= pd.read_csv('https://raw.githubusercontent.com/AdiPersonalWorks/Random/master/student_scores%20-%20student_scores.csv')" 80 | ], 81 | "execution_count": 2, 82 | "outputs": [] 83 | }, 84 | { 85 | "cell_type": "code", 86 | "metadata": { 87 | "colab": { 88 | "base_uri": "https://localhost:8080/", 89 | "height": 817 90 | }, 91 | "id": "wqLPjy705WMb", 92 | "outputId": "0be25dc4-43c4-41d7-dbd5-9793df338fea" 93 | }, 94 | "source": [ 95 | "data" 96 | ], 97 | "execution_count": 3, 98 | "outputs": [ 99 | { 100 | "output_type": "execute_result", 101 | "data": { 102 | "text/html": [ 103 | "
\n", 104 | "\n", 117 | "\n", 118 | " \n", 119 | " \n", 120 | " \n", 121 | " \n", 122 | " \n", 123 | " \n", 124 | " \n", 125 | " \n", 126 | " \n", 127 | " \n", 128 | " \n", 129 | " \n", 130 | " \n", 131 | " \n", 132 | " \n", 133 | " \n", 134 | " \n", 135 | " \n", 136 | " \n", 137 | " \n", 138 | " \n", 139 | " \n", 140 | " \n", 141 | " \n", 142 | " \n", 143 | " \n", 144 | " \n", 145 | " \n", 146 | " \n", 147 | " \n", 148 | " \n", 149 | " \n", 150 | " \n", 151 | " \n", 152 | " \n", 153 | " \n", 154 | " \n", 155 | " \n", 156 | " \n", 157 | " \n", 158 | " \n", 159 | " \n", 160 | " \n", 161 | " \n", 162 | " \n", 163 | " \n", 164 | " \n", 165 | " \n", 166 | " \n", 167 | " \n", 168 | " \n", 169 | " \n", 170 | " \n", 171 | " \n", 172 | " \n", 173 | " \n", 174 | " \n", 175 | " \n", 176 | " \n", 177 | " \n", 178 | " \n", 179 | " \n", 180 | " \n", 181 | " \n", 182 | " \n", 183 | " \n", 184 | " \n", 185 | " \n", 186 | " \n", 187 | " \n", 188 | " \n", 189 | " \n", 190 | " \n", 191 | " \n", 192 | " \n", 193 | " \n", 194 | " \n", 195 | " \n", 196 | " \n", 197 | " \n", 198 | " \n", 199 | " \n", 200 | " \n", 201 | " \n", 202 | " \n", 203 | " \n", 204 | " \n", 205 | " \n", 206 | " \n", 207 | " \n", 208 | " \n", 209 | " \n", 210 | " \n", 211 | " \n", 212 | " \n", 213 | " \n", 214 | " \n", 215 | " \n", 216 | " \n", 217 | " \n", 218 | " \n", 219 | " \n", 220 | " \n", 221 | " \n", 222 | " \n", 223 | " \n", 224 | " \n", 225 | " \n", 226 | " \n", 227 | " \n", 228 | " \n", 229 | " \n", 230 | " \n", 231 | " \n", 232 | " \n", 233 | " \n", 234 | " \n", 235 | " \n", 236 | " \n", 237 | " \n", 238 | " \n", 239 | " \n", 240 | " \n", 241 | " \n", 242 | " \n", 243 | " \n", 244 | " \n", 245 | " \n", 246 | " \n", 247 | " \n", 248 | " \n", 249 | " \n", 250 | " \n", 251 | " \n", 252 | "
HoursScores
02.521
15.147
23.227
38.575
43.530
51.520
69.288
75.560
88.381
92.725
107.785
115.962
124.541
133.342
141.117
158.995
162.530
171.924
186.167
197.469
202.730
214.854
223.835
236.976
247.886
\n", 253 | "
" 254 | ], 255 | "text/plain": [ 256 | " Hours Scores\n", 257 | "0 2.5 21\n", 258 | "1 5.1 47\n", 259 | "2 3.2 27\n", 260 | "3 8.5 75\n", 261 | "4 3.5 30\n", 262 | "5 1.5 20\n", 263 | "6 9.2 88\n", 264 | "7 5.5 60\n", 265 | "8 8.3 81\n", 266 | "9 2.7 25\n", 267 | "10 7.7 85\n", 268 | "11 5.9 62\n", 269 | "12 4.5 41\n", 270 | "13 3.3 42\n", 271 | "14 1.1 17\n", 272 | "15 8.9 95\n", 273 | "16 2.5 30\n", 274 | "17 1.9 24\n", 275 | "18 6.1 67\n", 276 | "19 7.4 69\n", 277 | "20 2.7 30\n", 278 | "21 4.8 54\n", 279 | "22 3.8 35\n", 280 | "23 6.9 76\n", 281 | "24 7.8 86" 282 | ] 283 | }, 284 | "metadata": {}, 285 | "execution_count": 3 286 | } 287 | ] 288 | }, 289 | { 290 | "cell_type": "code", 291 | "metadata": { 292 | "colab": { 293 | "base_uri": "https://localhost:8080/" 294 | }, 295 | "id": "kEBfp80s5WPE", 296 | "outputId": "b4124c77-3ffb-4dee-99b5-9008fcda46d7" 297 | }, 298 | "source": [ 299 | "\n", 300 | "data.shape" 301 | ], 302 | "execution_count": 4, 303 | "outputs": [ 304 | { 305 | "output_type": "execute_result", 306 | "data": { 307 | "text/plain": [ 308 | "(25, 2)" 309 | ] 310 | }, 311 | "metadata": {}, 312 | "execution_count": 4 313 | } 314 | ] 315 | }, 316 | { 317 | "cell_type": "code", 318 | "metadata": { 319 | "colab": { 320 | "base_uri": "https://localhost:8080/" 321 | }, 322 | "id": "G7BajaN85WR2", 323 | "outputId": "20aec55f-139f-4910-952f-f49b7e49ddb6" 324 | }, 325 | "source": [ 326 | "\n", 327 | "data.info" 328 | ], 329 | "execution_count": 5, 330 | "outputs": [ 331 | { 332 | "output_type": "execute_result", 333 | "data": { 334 | "text/plain": [ 335 | "" 361 | ] 362 | }, 363 | "metadata": {}, 364 | "execution_count": 5 365 | } 366 | ] 367 | }, 368 | { 369 | "cell_type": "code", 370 | "metadata": { 371 | "colab": { 372 | "base_uri": "https://localhost:8080/", 373 | "height": 356 374 | }, 375 | "id": "KcWx4bXj5WUj", 376 | "outputId": "6dc14eb4-b3ee-4cfe-da32-106ab42403cc" 377 | }, 378 | "source": [ 379 | "data.head(10)" 380 | ], 381 | "execution_count": 6, 382 | "outputs": [ 383 | { 384 | "output_type": "execute_result", 385 | "data": { 386 | "text/html": [ 387 | "
\n", 388 | "\n", 401 | "\n", 402 | " \n", 403 | " \n", 404 | " \n", 405 | " \n", 406 | " \n", 407 | " \n", 408 | " \n", 409 | " \n", 410 | " \n", 411 | " \n", 412 | " \n", 413 | " \n", 414 | " \n", 415 | " \n", 416 | " \n", 417 | " \n", 418 | " \n", 419 | " \n", 420 | " \n", 421 | " \n", 422 | " \n", 423 | " \n", 424 | " \n", 425 | " \n", 426 | " \n", 427 | " \n", 428 | " \n", 429 | " \n", 430 | " \n", 431 | " \n", 432 | " \n", 433 | " \n", 434 | " \n", 435 | " \n", 436 | " \n", 437 | " \n", 438 | " \n", 439 | " \n", 440 | " \n", 441 | " \n", 442 | " \n", 443 | " \n", 444 | " \n", 445 | " \n", 446 | " \n", 447 | " \n", 448 | " \n", 449 | " \n", 450 | " \n", 451 | " \n", 452 | " \n", 453 | " \n", 454 | " \n", 455 | " \n", 456 | " \n", 457 | " \n", 458 | " \n", 459 | " \n", 460 | " \n", 461 | "
HoursScores
02.521
15.147
23.227
38.575
43.530
51.520
69.288
75.560
88.381
92.725
\n", 462 | "
" 463 | ], 464 | "text/plain": [ 465 | " Hours Scores\n", 466 | "0 2.5 21\n", 467 | "1 5.1 47\n", 468 | "2 3.2 27\n", 469 | "3 8.5 75\n", 470 | "4 3.5 30\n", 471 | "5 1.5 20\n", 472 | "6 9.2 88\n", 473 | "7 5.5 60\n", 474 | "8 8.3 81\n", 475 | "9 2.7 25" 476 | ] 477 | }, 478 | "metadata": {}, 479 | "execution_count": 6 480 | } 481 | ] 482 | }, 483 | { 484 | "cell_type": "code", 485 | "metadata": { 486 | "colab": { 487 | "base_uri": "https://localhost:8080/", 488 | "height": 294 489 | }, 490 | "id": "1-AaOezN5WYj", 491 | "outputId": "67b22a81-ca46-4092-b97f-a7d194df7f24" 492 | }, 493 | "source": [ 494 | "\n", 495 | "data.describe()" 496 | ], 497 | "execution_count": 7, 498 | "outputs": [ 499 | { 500 | "output_type": "execute_result", 501 | "data": { 502 | "text/html": [ 503 | "
\n", 504 | "\n", 517 | "\n", 518 | " \n", 519 | " \n", 520 | " \n", 521 | " \n", 522 | " \n", 523 | " \n", 524 | " \n", 525 | " \n", 526 | " \n", 527 | " \n", 528 | " \n", 529 | " \n", 530 | " \n", 531 | " \n", 532 | " \n", 533 | " \n", 534 | " \n", 535 | " \n", 536 | " \n", 537 | " \n", 538 | " \n", 539 | " \n", 540 | " \n", 541 | " \n", 542 | " \n", 543 | " \n", 544 | " \n", 545 | " \n", 546 | " \n", 547 | " \n", 548 | " \n", 549 | " \n", 550 | " \n", 551 | " \n", 552 | " \n", 553 | " \n", 554 | " \n", 555 | " \n", 556 | " \n", 557 | " \n", 558 | " \n", 559 | " \n", 560 | " \n", 561 | " \n", 562 | " \n", 563 | " \n", 564 | " \n", 565 | " \n", 566 | " \n", 567 | "
HoursScores
count25.00000025.000000
mean5.01200051.480000
std2.52509425.286887
min1.10000017.000000
25%2.70000030.000000
50%4.80000047.000000
75%7.40000075.000000
max9.20000095.000000
\n", 568 | "
" 569 | ], 570 | "text/plain": [ 571 | " Hours Scores\n", 572 | "count 25.000000 25.000000\n", 573 | "mean 5.012000 51.480000\n", 574 | "std 2.525094 25.286887\n", 575 | "min 1.100000 17.000000\n", 576 | "25% 2.700000 30.000000\n", 577 | "50% 4.800000 47.000000\n", 578 | "75% 7.400000 75.000000\n", 579 | "max 9.200000 95.000000" 580 | ] 581 | }, 582 | "metadata": {}, 583 | "execution_count": 7 584 | } 585 | ] 586 | }, 587 | { 588 | "cell_type": "code", 589 | "metadata": { 590 | "colab": { 591 | "base_uri": "https://localhost:8080/", 592 | "height": 300 593 | }, 594 | "id": "ImNGT6Xz5WaJ", 595 | "outputId": "d01cd333-3bf6-4baf-d49e-def08358214e" 596 | }, 597 | "source": [ 598 | "\n", 599 | "#Visualizing the data\n", 600 | "sns.set_style('darkgrid')\n", 601 | "sns.scatterplot(y=data['Scores'],x=data['Hours'])\n", 602 | "plt.title('Hours Studied vs Percentage Score',size=20)\n", 603 | "plt.xlabel('Hours Studied')\n", 604 | "plt.ylabel('Percentage Score')\n", 605 | "plt.show()" 606 | ], 607 | "execution_count": 8, 608 | "outputs": [ 609 | { 610 | "output_type": "display_data", 611 | "data": { 612 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEbCAYAAAAxukhGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deVxU9f7H8dfMgMoiIAiYy61QURQ33NcCEyw0QUO75JpG/jJxy6tmWtcyb4vlVVsuLYbmkgtLLrdU1OuK+5paLpWQC4oiICAwnN8fxCTOwAzgMAN+no+Hj4ecOXPOe2bOnM+c7/ec71EpiqIghBBC3ENt6QBCCCGsjxQHIYQQeqQ4CCGE0CPFQQghhB4pDkIIIfRIcRBCCKFHioMw2f79+2nWrBmLFi0qNn3YsGE0a9bMrOuePn06zZo1Izk52azrEUIUsrF0gCJFO5eff/65xHkCAgL4448/SEhIoGHDhpUVrVLt2bOHFStWcPz4cdLS0rCzs8PV1ZVmzZrRoUMHhg0bhkqlAiA5OZnevXsTGhrKv/71LwsnF/cXSLVajZOTE82aNSMsLIz+/ftbKFnlW7RoEYsXL2bp0qV07tzZ0nEeiBMnThAdHc2RI0e4fv06NWrUwNXVlSZNmtC+fXteeOEF7O3tLR3zgbGa4iDg888/5+OPP8bGxoaePXvy+OOPo1arSUpK4uDBg/z444+Eh4djY2NdH9t7771Hdna2pWNYjVdffRWA/Px8Ll68SEJCAvv37+fUqVPMmDHDwulEecTHxzN9+nQURaFLly489dRT1KpVi8uXL3P48GG2b99OYGAgjz76qKWjPjDWtZd5iP3xxx8sXLgQR0dHVqxYofcrtKCggD179qDRaCyUsGT169e3dASrMn78+GJ/79u3j1GjRhEdHc2wYcOq7VFvdZWdnc2cOXNQqVR8/fXXdO3aVW+eI0eOUKdOHQukM59q0+ewb98+Ro8eTadOnfD19SUoKIgPP/yQjIwMvXkDAgIICAgwuJxFixbRrFkz9u/fX2x6s2bNGDZsGNevX2fmzJn07NkTHx8fYmJiALhx4wbvvfceQUFBtG3blg4dOhAUFMT06dNJSkoymv/48eNotVo6d+5ssP1erVbTs2dPXZPSokWL6N27NwCxsbE0a9ZM968oU0xMTLG/71f0mu5348YNXn/9dbp160br1q0ZMGAAsbGxJWYvrc9h165dvPTSS3Tu3BlfX1+eeuop3nvvPdLT0w3Ov3fvXsLDw2nbti2dOnXilVde4cKFCyWu25C+ffvi6+vLzZs3DT4eFRVFs2bN+Pbbb3XTzp49y+TJkwkICMDX15cuXboQGhrK3LlzycvLK9P679e1a1e8vLxQFIWTJ0/qpl+9epU5c+bQu3dvfH196dy5M2PHjuXEiRN6y7h3u1y/fj1hYWG0a9eu2HacnZ1NVFQUAwcOpF27drRr146nn36ad955hxs3bhRbXnZ2Nv/5z38YMGAAbdu2pV27dgwZMoQNGzborfvevqYzZ84QERFBhw4daNOmDUOHDuXIkSPF5g8ICGDx4sUADB8+vNi2WeTXX3/lww8/ZODAgXTp0gVfX1/8/f2ZNWsWV69eNfg+5ubm6rZ7X19fAgIC+Pjjj8nNzS1xW87Pz2f58uUMHjwYPz8/2rRpQ0hICN9++y0FBQUG13O/c+fOkZmZSdOmTQ0WBgA/Pz+cnJz0pl+4cIEZM2botquuXbsSHh7OihUr9OYtyz6s6DuXm5vL4sWLCQoKwtfXl+nTp+vmKcv2ZUi1OHJYtWoVb731FnZ2dvTt2xc3NzcOHDjAF198wfbt21m5cqXBD66s0tLSGDJkCPb29gQGBqJSqXBzcyM7O5u///3vXLp0ie7duxMQEICiKFy+fJmEhASCgoJo1KhRqcsu+tWRlJSEVqs1eoTQqVMnhg8fztKlS2nevDlPPfWU7jEfH59yv8abN2/y/PPPk5SURPv27Wnfvj3Xr1/nzTffpHv37mVa1uLFi1m0aBEuLi48+eSTuLq68ssvv/D111+zc+dOvvvuOxwdHXXz//DDD0yaNAlbW1ueeeYZ3N3dOXz4MM8//3yZOrxDQ0P56KOP2Lhxo8EdRlxcHLa2tvTr1w8oLAyDBw9GpVIREBBAw4YNyczM5NKlS6xcuZKJEydia2tbptd+v6IhzIqK+08//cSLL77I7du36dGjB4GBgdy6dYutW7cSHh7OJ598whNPPKG3nCVLlrBnzx78/f3p3Lmzbsdx+/Zthg8fztmzZ3n88ccZNGgQtra2JCUlsW7dOvr06UPdunUBSE9PZ8SIEZw+fZqWLVsyaNAgCgoK2L17N1OmTOHcuXNMmjRJb92nTp3iyy+/pG3btoSFhXH58mU2b97MyJEjiYuLw8vLCygsCAkJCRw4cIDQ0FAaNGigt6wtW7awatUqOnfujJ+fH7a2tpw7d441a9awfft21q1bh6enZ7H3b/z48ezYsYPHHnuMoUOHkp+fT2xsLOfPnzf4nufl5TF27Fh2797N448/Tr9+/ahZsyb79+/n7bff5vjx43zwwQdGPzsXFxcAUlJSyMrKMrlfYceOHUyYMIHc3Fx69uxJcHAw6enp/Pzzz3z55ZeEh4fr5i3vPiwyMpKTJ0/Sq1cvnnrqKdzc3IDyb1/FKFbC29tb8fb2VhYuXFjiv/bt2yve3t5KUlKS7nnJyclKy5YtlXbt2innz58vtsw333xT8fb2Vt54441i0/39/RV/f3+DORYuXKh4e3sriYmJBvNNnTpVycvLK/ZYQkKC4u3trcydO1dveXfv3lUyMjKMvv47d+4o/v7+ire3txIeHq6sWbNG+eWXX5T8/PwSn5OUlKR4e3sr06ZNM/j4unXrFG9vb2XdunUGH/f29laGDh1abNobb7xh8LWcOHFCadGihe4zutfQoUMVb2/vYtP27duneHt7K0OGDFFu375tMNe968jMzFQ6deqktGjRQjlx4kSx+efOnat7/+/97Ety5coVpXnz5kpoaKjeY8ePH1e8vb2VV199VTdt3rx5ire3t7Jlyxa9+dPS0hStVmt0nYry1zZyvz179ijNmjVTmjVrpiQnJyt5eXnKU089pfj6+ir79+8vNu/Vq1eVHj16KN27d1fu3r2rm160XbZp00b56aef9NYxefJkxdvbW5k9e7Ze3szMTCU9PV3397Rp0xRvb28lKiqq2Hw5OTnKiy++qDRr1kw5ffq0bnpiYqLutd2/La1cuVLx9vZW3nzzzWLTS/oe3fs67319RXbt2qU0b95cmT17drHpsbGxuu/Gvc+7ffu2EhQUZHBbLsowZ86cYt+j/Px8ZcaMGSV+5vcrKChQBg0apHh7eyvPPvus8u233yo//fSTwfxFUlNTFT8/P6Vly5Z6n7GiFG6jRcqzDyv6zvXr109JTU0t9lh5ti9DrK5ZafHixSX+M3R49f3335OXl8fQoUNp3LhxsccmTZqEg4MD8fHx5ObmVjibra0t06ZNK7FDuFatWnrTatSoUezXcUns7e359NNP8fHx4dChQ8ycOZN+/frh5+fH0KFDWb58+QN5DaXJy8tj/fr1ODg46LWbt2rVqkxn2yxbtgyAt99+W+8Xz8CBA/Hx8WH9+vW6aQkJCaSlpdGvXz9atWpVbP7x48dTu3Ztk9ddr149unbtyk8//cS5c+eKPRYXFwdASEiI3vMMfX7Ozs6o1WX7mixatIhFixbx8ccfExkZyZgxY1AUhREjRtCgQQN27NjBpUuXGDp0KJ06dSr2XE9PT8aMGcP169fZt2+f3rIHDx5MixYtik1LTU1l06ZNuLu7M23aNL28Dg4Ouvfv1q1bfP/99/j6+vLSSy8Vm69mzZpMnToVRVGKfTZF/Pz8GDhwYLFpgwYNwsbGxuSmintfZ40aNfSm9+jRgyZNmrB79+5i04s+t4kTJxZ7npOTE6+88orecgoKCvj2229xd3dnxowZxY7ENRoN06dPR6VSGXyd91OpVCxcuJBOnTpx9uxZ5syZQ2hoKH5+foSFhREVFUVmZqZe3szMTJ5//nm9zxgKt9EiFdmHTZgwAVdX12LTKrJ93cvqmpVMOZX1XqdPnwagS5cuevM7OzvTokULDh48yMWLF2nevHmFsjVo0EB32HavTp064enpSVRUFD/99BNPPPEEfn5++Pj4lKkDuXnz5sTFxXHy5En279/P6dOnOXbsGAcPHuTgwYOsXr2apUuX4uzsXKHXUZKLFy+SnZ1Nhw4dDO6MO3XqVGrfw72OHTuGra0tP/zwAz/88IPe43l5edy8eZNbt25Rp04d3efYsWNHvXlr166Nj48PBw4cMPm1hIaGsmfPHmJjY/nHP/4BFLZZb9y4ETc3t2KH1M888wxLly5l3LhxBAUF0a1bN/z8/Pjb3/5m8vruVdTerlKpcHJyon379jz33HMMGDAAKHxvAC5fvqx3zQjAb7/9BhS2V99/6N+6dWu9+U+ePElBQQEdO3Y02uRx8uRJtFotKpXK4Lrz8/OBwm3hfr6+vnrTbG1tcXNzK7EPqSSKovD9998TGxvL2bNnSU9PR6vVFlvuvc6cOYNaraZdu3Z6y2rfvr3etF9//ZW0tDQee+wxPvvsM4MZatWqZfB1GlK/fn2WLVvGhQsX2LNnD6dOneLEiRO6fytXrmTp0qW65uOiz7hXr15Gl12RfZih7aEi29e9rK44lFXR0YS7u7vBx4uml3XjLW1Z93N0dGT16tUsXLiQbdu26X711KlTh/DwcP7v//6vTG3WrVq1Kvbr+cSJE0ybNo2zZ8+yePFiZs6cWbEXUoKi99JQAQR0bdamSEtLIz8/X7ejLElWVhZ16tTRrbukdZRl3QB9+vTB0dGR77//nilTpqDRaNixYwdpaWmMGDGi2NFf69atWb58OZ9//jk//vgj8fHxADz++OO8+uqrur4JU5X2AwcK3xvAYNG8V1ZWlt40Q+9D0bZ9bxu9sXWfPHmyWOf4/e7cuaM3raR+OxsbG5M7d4vMmzeP6Oho3N3d6dGjB56enrojt9jYWL0fgRkZGTg7Oxs8ajf0nhS9zt9++63UbdDQ6yxN48aNi/26v3DhAjNnzuTo0aPMmzePTz/9VJcXTPtMKrIPM/Scimxf96ryxaHoF+6NGzdo2rSp3uPXr18vNh8U/qIr6QyU0opIUWeiIfXq1ePdd99FURTOnz9PYmIiy5cv55NPPqGgoICJEyea9HoMad26NbNnz2bkyJEkJiaa/Lyi5oV7f5EVMfQ6i96j1NRUg8u7/4yX0jg6OqIoism/9u/9HCu6bij8Vfj000+zZs0a9uzZQ69evXRHPaGhoXrzt2vXjv/85z/k5uZy6tQpdu3axbfffsuUKVNwdXWlW7duZVp/aYpe66effqo748xUhrbBop32tWvXTF73yJEjLXbNRWpqKsuWLcPb25uVK1fqNbsaOmPK0dGR27dvk5+fr1cgDG0bRa+zT58+Rn+gVETjxo15//336dOnT7HvZtH6r127ZvRkivLsw4oY2h4qsn3dy+r6HMqq6Myc+089hcId4JkzZ6hZs2axau/s7ExqaqrBAnHq1KkK5VGpVDRt2pRhw4axZMkSoLA9vaIcHBz0phU1WRna+cNfO40rV67oPWbodXp5eWFnZ8eZM2cM9u+UpVmnbdu23L59W6/NvyRF7egHDx7UeywjI4MzZ86YvO4iRUUgLi6OmzdvsmvXLpo1a1bq2Vw1atTAz8+PCRMm6I7QHsTnd682bdoAcOjQoQeyvNatW6NWqzl48KDRX4NF8z6odZek6IeJoSOKpKQkCgoK6N69u15huHr1qsEhUnx8fCgoKODo0aN6jx0+fFhvmpeXF05OThw7dqzCpyIbU/TdVO65qWbbtm0B2Llzp9Hnl2cfVpoHtX1V+eLw7LPPYmtry7fffsvvv/9e7LF///vfZGZm8uyzzxbrxGrVqhX5+fl65//HxMTonbNtinPnzhn89VI0zVBH5/1OnDhBTEwMOTk5eo/l5eXxxRdfANChQwfddCcnJ1QqlcGdPxS2EavVajZs2FDsCua0tDSDp/DZ2trSv39/7ty5o9dWefLkSZM674qMHDkSgFmzZhn8RZuVlaVrGwXo3bs3zs7ObNiwQa+5Y9GiRQaLlTHt27fnscceIyEhgZUrV5KXl6fXoQqFFzAZet+LjqBM+fzKonfv3vztb39jxYoV/O9//zM4z9GjR02+6tzV1ZVnnnmG69ev89577+ntkO/cuVOsybB///6cOnWKTz75xOAPi0uXLpl0bU5pik7/vHz5st5jRae2Hj58uNj679y5wxtvvKHr97hX0QkECxYsKNYxm5GRoWvKuZeNjQ1Dhw7l+vXrvPPOOwY/35SUlBJPg71XUlISS5cuNbgNKoqi69O4t78sJCQER0dHVq1aZfAHz73XcpRnH1aaB7V9VflmpYYNGzJjxgzdGQRPP/00rq6uHDx4kKNHj+Ll5cVrr71W7DnDhg0jJiaGt956i3379vHII49w5swZjh07hr+/P9u3by9Thj179vDBBx/Qtm1bHnvsMdzc3Lh69SoJCQmo1WpGjx5tdBkpKSnMmDGDt99+Gz8/P5o0aULNmjW5fv06u3bt4vr16zz66KOMGzdO9xwHBwfatGnDoUOHmDJlim64jYCAAJo3b46Hhwf9+/cnPj6ekJAQnnjiCTIzM9m5cycdOnTQdYTda9KkSezbt4/o6GhOnTqlu85h06ZN9OrVi23btpn0nnTt2pUpU6bw0UcfERQURK9evWjYsCFZWVlcvnyZgwcP4ufnx1dffaV7LXPmzGHSpEm88MILxa5zOHfuHB07djT4JTNmwIAB/Pvf/+azzz7DxsbG4BlXX375JYmJiXTo0IGGDRtib2/P+fPn2blzJ87OzgwZMqTM6y2Nra0tixYtYsyYMURERNCuXTt8fHyoVasWV69e5eTJkyQlJbF7927s7OxMWubs2bM5d+4cq1at4sCBA/To0QNbW1uSk5PZvXs3n332mW6Mo9mzZ/P777+zcOFCvv/+e/z8/Khbty4pKSlcuHCBkydP8tFHHxm9Nqc0Xbp0Qa1W89FHH3Hu3DndUewrr7yCu7s7wcHBbNy4kZCQELp3705GRgZ79+6lRo0a+Pj46B0phoSEsHHjRnbt2kX//v0JCAggLy+PzZs306pVK3799Ve9JpZXXnmFs2fPsmrVKrZv306XLl3w9PQkNTWV33//nSNHjjBp0iSaNGlS6mvJzMxk7ty5vP/++/j5+eHt7Y2DgwOpqakkJiaSlJSEm5sb06ZN0z3H1dWV+fPnExkZyfDhw+nVqxfNmjUjMzOTn3/+mStXrui+S+XZh5XmQW1fVb44ALzwwgs8+uijfP3112zevJns7GweeeQRRo8ezdixY/U60po0acKSJUv4+OOP2b59OxqNhg4dOrBq1Sq2bNlS5uLQs2dPrly5wsGDB0lISCAzMxMPDw+6d+/OyJEj8fPzM7qMLl26MH/+fN2ZEKdOnSIjIwNHR0e8vLwYPnw4L7zwgl7z0vvvv8+8efPYvXs3GzduRFEU6tWrpzur4Z133sHNzY2NGzeyYsUKHnnkEYYNG8bo0aP573//q5fD1dWVlStX8tFHH7F9+3ZOnTrF448/zltvvUWDBg1MLg4AERER+Pn5sWzZMg4fPsy2bdtwdHTE09OTwYMH63X09u3bl9q1a7N48WL++9//UqNGDd3n8sUXX5SrOISEhLBo0SLy8vLw9/c32NkeHh6Os7Mzx48f1/2a9fT0JDw8nFGjRhm8iKuimjdvTnx8PEuWLGHHjh3ExMSgVqtxd3enRYsWjB8/vkzDMTg7O7Nq1Sqio6PZtGkTq1evRq1W88gjjzBo0KBiO0BHR0eWLVvG6tWr2bBhA5s3b+bu3bvUrVuXRx99lBkzZlS4j6Vx48b861//4uuvv2bFihXcvXsXQHfa6dy5c2nUqBGbNm1i+fLluLq6EhAQQGRkJJGRkXrLU6lUfPLJJ3z++efEx8ezbNkyPDw8CA0NJTw8nK1bt+o1Udna2vLpp58SHx9PbGwsO3bs0J0A0bBhQyZMmGDS6dmNGzfmk08+Yffu3Rw/fpxNmzZx+/ZtatWqxaOPPsrYsWMZMWKE3imlTz75JOvWreOLL75g37597NmzBycnJ7y8vHj55ZeLzVvWfZgxD2L7Uin3NpQJIUQVs2fPHl588UUiIiKYMmWKpeNUG1W+z0EI8XAw1Hd169Yt5s+fDxSemSQenGrRrCSEqP7+9a9/cfbsWdq1a4erqytXr15l165dujHPDF0QJspPioMQokro06cPN27cYPv27WRkZFCjRg2aNm3Kc889x3PPPWfpeNWO9DkIIYTQUyWOHAoKCtBqTathGo3K5HkrkzXmssZMILnKwhozgXXmssZMYN5ctrblvzlYlSgOWq1CWlrpV34WcXGxN3neymSNuawxE0iusrDGTGCduawxE5g3l7u76aMZ30/OVhJCCKFHioMQQgg9UhyEEELokeIghBBCjxQHIYQQeqQ4CCFEZVDB9Zx8zqRmcT1HCyXfO8wqVIlTWYUQokpTQWJyOlPXnSAnr4Batmo+GNSaLg3LNtpqZZIjByGEMLPr2fm6wgCQk1fA1HUnuJ6tf2MjayHFQQghzOzGnVxdYSiSk1fAjTu5JTzD8qQ4CCGEmdV1qEkt2+K721q2auo6mHbrT0uQ4iCEEGbmbqfhg0GtdQWiqM/B3c56u32tN5kQQlQXCnRp6ERMRBdu3MmlrkONwsJgfeMA6khxEEKIyqCAey0b3GvZ6P62ZtKsJIQQQo8UByGEEHqkOAghhNAjxUEIIYQeKQ5CCCH0mLU4REdH069fP4KDg/nmm28ASEtLY9SoUQQGBjJq1Chu375tzghCCCHKwWzF4ZdffmHNmjWsWbOG+Ph4duzYwe+//05UVBRdu3Zl8+bNdO3alaioKHNFEEIIUU5mKw4XLlygdevW2NnZYWNjQ8eOHdm8eTMJCQmEhIQAEBISwtatW80VQQghRDmZ7SI4b29vFixYwK1bt6hVqxY7d+7E19eX1NRUPDw8AHB3dyc1NdXosjQaFS4u9iatV6NRmzxvZbLGXNaYCSRXWVhjJrDOXNaYCaw3l9mKQ+PGjRkzZgyjR4/Gzs6O5s2bo1YXP1BRqVSoVMbveKHVKqSlZZm0XhcXe5PnrUzWmMsaM4HkKgtrzATWmcsaM4F5c7m71y73c83aIR0WFkZMTAzLly/H2dmZxx57DDc3N1JSUgBISUnB1dXVnBGEEKLqsYK7xpm1OBQ1GV2+fJnNmzfTv39/AgICiIuLAyAuLo7evXubM4IQQlQtf941bmBUIsO/OcTAqH0kJqdXeoEw68B748ePJy0tDRsbG958802cnJyIiIhg4sSJrF27lvr167NgwQJzRhBCiCqlpLvGxUR0+WvQvkpg1jWtWLFCb1qdOnWIjo4252qFEKLKKu2ucZVZHOQKaSGEsCLWctc4KQ5CiKrPCjpwHxRruWuc3OxHCFG1/dmBW9ROX7Qz7dLQyepvqGOQldw1To4chBBVWkkduNez8y2crAL+vGucj5t9YT+DBYqcHDkIIaoeVWFRuHEnl9wCxSo6cKsbeeeEEFXLfc1IE3o3oZatuliBsEQHbnUjzUpCiCrl/mak1YeSmdC7qcU7cKsbefeEEFXK/dcBXLmdw9J9v7NkRAfy8gss1oFb3UhxEEJUKUXXAdxbIG5l5eJc0wZ35z93aVIYKkyalYQQVYq1XAdQ3cm7KYSoWqzkOoDqToqDEKLq+fM6AN2pqlIYHjhpVhJCCKFHioMQQgg9UhyEEOJe1WgQv4qQPgchhChS3QbxqwCzHjl88803BAcH069fPyZPnszdu3dJSkoiLCyMPn36MHHiRHJzc80ZQQghTFYtB/ErJ7MVh2vXrrF06VLWrVvHhg0b0Gq1bNy4kQ8//JCRI0eyZcsWnJycWLt2rbkiCCFEmZR2F7aHjVmPHLRaLTk5OeTn55OTk4O7uzuJiYkEBQUBEBoaSkJCgjkjCCGEyazlLmzWwGx9Dp6enrz44ov4+/tTs2ZNunfvTsuWLXFycsLGpnC19erV49q1a0aXpdGocHGxN2m9Go3a5HkrkzXmssZMILnKwhozgXXmMiWTU4HC/LC2TFlzTNfnMD+sLY09aqNWm6dn2hrfKzBjcbh9+zYJCQkkJCRQu3ZtJkyYwK5du8q1LK1WIS0ty6R5XVzsTZ63MlljLmvMBJKrLKwxE1hnLlMzdarvqHf1dXp6tsVzlYe7e+1yP9dsxWHv3r00bNgQV1dXAAIDAzly5Ajp6enk5+djY2PD1atX8fT0NFcEIYQoO7n6GjBjn0P9+vU5fvw42dnZKIrCvn37aNKkCZ07d+bHH38EIDY2loCAAHNFEEIIUU5mO3Jo06YNQUFBhIaGYmNjg4+PD0OGDOHJJ59k0qRJLFiwAB8fH8LCwswVQQghRDmpFEWx+oOmvDyt9DmYgTVmAslVFtaYCawzlzVmAuvtc5DhM4QQQuiR4iCEKD8Zh6jakrGVhBDlU9o4RKLKkyMHIUS5yDhE1ZsUByFEuTyU4xA9RM1o0qwkhCiXonGI7i0Q1XocoodsOG85chBClIu7nYYPBrXWDVRXtLN0t6uevzkftma06vkpCiHMT4EuDZ30xiGqjr+iofRmNN1QG9VI9XtFQojK8xCNQ/SwNaNJs5IQQpjgYWtGq56vSgghHrSHrBlNioMQQpjqIWpGk2YlIYQQekwqDocOHWLdunUA3Lx5k6SkJLOGEkIIYVlGi8PixYv58ssviYqKAiAvL4+pU6eaPZgQQgjLMVoctmzZwmeffYadnR0Anp6e3Llzx+zBhBBCWI7RDmlbW1tUKhUqVeEgIllZpt2U4uLFi0yaNEn3d1JSEpGRkYSEhDBp0iT++OMPGjRowIIFC3B2di5nfCGEEOZg9Mjh6aefZvbs2aSnp7N69WpGjRrF4MGDjS7Yy8uL+Ph44uPjiYmJwc7Ojj59+hAVFUXXrl3ZvHkzXbt21TVXCSGEsB6lFgdFUXjmmWcICgoiMDCQX3/9lZ4S50wAAB9oSURBVMjISIYNG1amlezbt49GjRrRoEEDEhISCAkJASAkJIStW7eWP70QQgizKLVZSaVSERERwfr16+nevXu5V7Jx40b69esHQGpqKh4eHgC4u7uTmppa7uUKIaoRVeHgdoUXmNXE3U5Tra8jsHZG+xxatGjBiRMnaN26dblWkJuby7Zt25gyZYreY/f2ZZRGo1Hh4mJv0vo0GrXJ81Yma8xljZlAcpWFNWaCsucqKFDY+vN1pqw5phsOe35YW55q5o5a/WBumlBd3qvKYrQ4HD9+nPXr11O/fn3dGUsA69evN2kFO3fupGXLltStWxcANzc3UlJS8PDwICUlBVdXV6PL0GoV0tJM6wh3cbE3ed7KZI25rDETSK6ysMZMUPZc13PydYUBCkc7nbLmGDERXR7YiKfV5b0qC3f32uV+rtF3/auvvir3wqGwSSk4OFj3d0BAAHFxcURERBAXF0fv3r0rtHwhRNX3sA2HXRUYPVupQYMGZGRksH37drZv305GRgYNGjQwaeFZWVns3buXwMBA3bSIiAj27NlDYGAge/fuJSIiovzphRDVQtFw2PeqzsNhVwVGS3J0dDRr1qyhT58+AEydOpXBgwebdMaSvb09+/fvLzatTp06REdHlzOuEMKgKt6ZWzQc9v234KzOo55aO6PFYe3ataxevRp7+8IOk5deeokhQ4aU+XRWIYSZVId7Gz9kw2FXBSYNvKfRaAz+XwhhedXm3sZ/Doft42Zf2M8ghcGijB45DBw4kLCwMF2z0tatWxk0aJDZgwkhTCOducIcjG45o0aNolOnThw+fBiAefPm0aJFC7MHE0KY5mG7t7GoHEaLw7Fjx2jSpAktW7YEIDMzk+PHj9OmTRuzhxNCGCeducIcjBaHt956i9jYWN3f9vb2etOEEBYknbnCDIwWB0VRig1xoVaryc+vYh1dQlR3D9G9jUXlMHq2UqNGjVi6dCl5eXnk5eURHR1No0aNKiObEEIICzFaHP75z39y9OhRevXqRa9evThx4gRvv/12ZWQTQghhIUabldzc3Pj4448rI4sQQggrUeKRw+rVq/ntt9+Awn6HGTNm0L59e/r3789PP/1UWfmEEEJYQInFYenSpboB9jZs2MDPP//M1q1bmTFjBnPnzq20gEIIISpficVBo9Fga2sLwI4dOxgwYAB16tShW7duZGdnV1pAIQSFA+vl5HMmNYvrOVp4MPe/EaJEJfY5qNVqUlJScHZ2Zt++fYwdO1b3WE5OTqWEE0JQ+sB6QphJiUcOkZGRDBo0iICAAAICAmjatCkABw4ckFNZhahE1WZgPVGllHjk4O/vz/bt27lz5w7Ozs666b6+vnL2khCVqLSB9ZpaKJOo/ko9ldXGxqZYYQB093UQQlQOGVhPWIJJ93Mor/T0dCIjI+nbty9PP/00R48eJS0tjVGjRhEYGMioUaO4ffu2OSMIYT3K2alcNLBe0W00iw2sJ4SZmHXrmjt3Lj179mThwoXk5uaSk5PD559/TteuXYmIiCAqKoqoqCimTp1qzhhCWF5F7tYmA+sJCzB65KAoCvHx8SxevBiAy5cvc+LECaMLzsjI4ODBgzz33HMA1KhRAycnJxISEggJCQEgJCSErVu3ViS/EFVChTuV5S5popKZNGS3Wq0mMTGRV199FQcHB8aPH8+6detKfV5ycjKurq7MmDGDs2fP0rJlS2bOnElqaioeHh4AuLu7k5qaajSkRqPCxcW0vg6NRm3yvJXJGnNZYyaonrnO/X7LYKdy2l0tTeuV/5TU6vhemYs1ZgLrzWW0OJw4cYLY2Fjdr31nZ2fy8vKMLjg/P5/Tp08za9Ys2rRpwzvvvENUVFSxeVQqVbHhwEui1SqkpWUZnQ/AxcXe5HkrkzXmssZMUD1zudS0Mdip7FJTU6HXWh3fK3Oxxkxg3lzu7rXL/VyjzUo2NjZotVrdTvzmzZuo1cb7sevVq0e9evV0d4zr27cvp0+fxs3NjZSUFABSUlJwdXUtd3ghqgrpVBZVjdEtc9iwYYwbN47U1FQ+/vhjfvjhByZOnGh0we7u7tSrV4+LFy/i5eXFvn37aNy4MY0bNyYuLo6IiAji4uLo3bv3A3khQlg16VQWVYzR4vDss8/SsmVLEhMTURSFTz/9lMaNG5u08FmzZvHaa6+Rl5dHo0aNmDdvHgUFBUycOJG1a9dSv359FixYUOEXIUSVIHdrE1WISlGUUjfRtLQ0vWkODg66QfkqQ16eVvoczMAaM4HkKgtrzATWmcsaM4H19jkYPXIYOHAgV65cwcmp8IyK9PR06tatS926dXn77bfx9fUt98qFEEJYJ6PFoVu3bgQFBdGzZ08Adu/ezebNmxk4cCD//Oc/WbNmjdlDCiGEqFxGTzs6fvy4rjAA9OjRg6NHj9K2bVtyc3PNGk4IIYRlGD1ycHd3JyoqiuDgYAA2bdpE3bp10Wq1Jp3SKoQQouoxunf/8MMPuXbtGuPGjWPcuHFcuXKF+fPno9Vq5UwjIYSopoweObi6ujJr1iyDjz366KMPPJAQQgjLM1ocbt68yRdffMH58+e5e/eubvrSpUvNGkyISqMqHBiv8OK0mrjbaeQaBPHQM9qs9Nprr+Hl5UVycjKvvvoqDRo0oFWrVpWRTQjz+3Mo7YFRiQz/5hADo/aRmJxu8r0WhKiujBaHtLQ0wsLCsLGxoVOnTsybN4/ExMTKyCaE2cn9mYUwzGizko1N4SweHh7s2LEDDw8PuXubqDZKuz+zbpgLIR5CRrf+//u//yMjI4Np06bx9ttvc+fOHV5//fXKyCaE2cn9mYUwzGizkpOTE7Vr18bb25tly5YRExODs7NzZWQTwuxkKG0hDDNaHN555x2TpglRJd0zlPbSkR2Iiehi2n2dhajmSvx5dPToUY4ePcrNmzdZsmSJbnpmZiZarbZSwglRKWQobSH0lFgc8vLyyMrKQqvVcufOHd10R0dHFi5cWCnhhBBCWEaJxaFTp0506tSJ0NBQGjRoUJmZhBBCWJjRXrfc3FxmzZrFH3/8QX7+X+d+m3KFdEBAAA4ODqjVajQaDTExMaSlpTFp0iT++OMPGjRowIIFC6SDWwghrIzR4jBhwgSef/55wsLCyjUKa3R0NK6urrq/o6Ki6Nq1KxEREURFRREVFcXUqVPLvFwhhBDmY9JFcOHh4Q9shQkJCSxbtgyAkJAQhg0bJsVBCCGsjNF7SC9atAhXV1f69OlDjRp/XRjk4uJidOEBAQE4OzujUqkYMmQIQ4YMoUOHDhw6dAgARVHo2LGj7u+SFBQUoNWadgqJRqNGqy0wPmMls8Zc1pgJJFdZWGMmsM5c1pgJzJvL1lZT7ucaPXKIjY0F4KuvvtJNU6lUJCQkGF34ypUr8fT0JDU1lVGjRuHl5VXscZVKhUplfIQzrVYx+QbcD+NNxMvLGjOB5CoLa8wE1pnLGjOBeXO5u9cu93ONFodt27aVe+Genp4AuLm50adPH06cOIGbmxspKSl4eHiQkpJSrD9CCCGEdTDaw5ydnc2nn36qu+HPb7/9xvbt240uOCsri8zMTN3/9+zZQ9OmTQkICCAuLg6AuLg4evfuXZH8QgghzMDokcOMGTNo2bIlR48eBQqPBiZMmIC/v3+pz0tNTWXcuHEAaLVa+vXrR69evWjVqhUTJ05k7dq11K9fX241KoQQVshocbh06RILFixg48aNANjZ2WGkDxuARo0a8f333+tNr1OnDtHR0eWIKoQVkLvGiYeE0eJQo0YNcnJydB3Hly5dKnbWkhAPi4IChcTkdN3NgYpGcJWB+kR1ZLTPYfz48YwZM4YrV64wZcoURo4cKdcliIdSUlq23DVOPDSMHjl0796dFi1acPz4cRRFYebMmXKGkXgopWTclbvGiYeG0SOHLVu2YGNjw5NPPom/vz82NjZs3bq1MrIJYVU8atfU3RSoiNw1TlRXRovD4sWLqV37rwspnJycWLx4sVlDCWGNGrnYyV3jxEPD6FZdUKB/Wbfc7Ec8jNRqle6ucYVnK9UoLAzSGS2qIaPFwdfXl3nz5vHCCy8AsHz5clq2bGn2YEJYJblrnHhIGG1WmjVrFra2tkycOJFJkyZRs2ZNZs+eXRnZhBBCWEipRw5arZaXX35ZN8S2EEKIh0OpRw4ajQa1Wk1GRkZl5RFCCGEFjPY52Nvb079/f7p164a9vb1u+htvvGHWYEIIISzHaHEIDAwkMDCwMrIIIYSwEkaLQ2hoKDk5OVy+fFnvZj3iISGDzQnx0DF6ttK2bdsYMGAAY8aMAeDMmTOMHTvW7MGElVBBYnI6A6MSGf7NIQZG7SMxOR2M38BPCFGFmXSF9Nq1a3FycgLAx8eH5ORkswcT1uF6dn7VHGxOBddz8jmTmsX1HK0UMyHKyGizko2NTbHhMwCT7vssqocbd3Kr3mBzfx7tyNDaQpSf0SOHJk2asH79erRaLb/99htvv/027dq1M3kFWq2WkJAQXn75ZQCSkpIICwujT58+TJw4kdzc3PKnF2ZX16HqDTZXZY92hLAiJl0hff78eWrUqMGUKVNwdHRk5syZJq9g6dKlNG7cWPf3hx9+yMiRI9myZQtOTk6sXbu2fMlFpXC301S5weZKO9oRQpimxG/43bt3WblyJZcuXcLb25vvvvsOG5uy7RCuXr3Kjh07GDt2LN988w2KopCYmMj8+fOBwjOhFi9eTHh4eMVehTAfhSo32FzR0c69BcLaj3aEsDYlHjlMmzaNU6dO4e3tzc6dO3nvvffKvPB3332XqVOnolYXrubWrVs4OTnpiky9evW4du1aOaOLSvPnYHM+bvaF/QxWXBigah7tCGFtSvy2XLhwgfXr1wPw3HPPERYWVqYFb9++HVdXV3x9fdm/f3+FQmo0Klxc7I3PCGg0apPnrUzWmMsaM8GDyRVY2w6fV3uQknEXj9o1aeRih1pdsRMprPH9ssZMYJ25rDETWG+uEovDvU1IZW1OAjhy5Ajbtm1j586d3L17l8zMTObOnUt6ejr5+fnY2Nhw9epVPD09jS5Lq1VIS8syab0uLvYmz1uZrDGXNWaCB5fLWQ3OzjUBSE/PrvDyrPH9ssZMYJ25rDETmDeXu3tt4zOVoMS9/tmzZ/Hz8wNAURTu3r2Ln58fiqKgUqk4cuRIqQueMmUKU6ZMAWD//v18/fXXzJ8/n8jISH788UeCg4OJjY0lICCg3OGFEEKYR4nF4cyZM2ZZ4dSpU5k0aRILFizAx8enzM1VQgghzK9Seug6d+5M586dAWjUqJGcviqEEFbO6HUOQgghHj5SHIQQQuiR4iCEEEKPFAchhBB6pDiIyiPDaAtRZch4AqJyyDDaQlQpcuQgKoUMoy1E1SLFQVQKGUZbiKpFioOoFFXxpkFCPMykOIhKIcNoC1G1yDdTVI4qeNMgIR5mUhxE5fnzpkHutWx0fwshrJM0KwkhhNAjxUEIIYQeKQ5CCCH0SHEQQgihR4qDEEIIPWY7W+nu3bu88MIL5ObmotVqCQoKIjIykqSkJCZPnkxaWhotW7bk/fffp0YNuRDKJKrCYSgKTwWtibud5q8zfkp7zFKZhBBVltmKQ40aNYiOjsbBwYG8vDzCw8Pp1asXS5YsYeTIkQQHBzN79mzWrl1LeHi4uWJUH6UNXIeFBrWTwfSEqLbM1qykUqlwcHAAID8/n/z8fFQqFYmJiQQFBQEQGhpKQkKCuSJUK6UNXGepQe1kMD0hqi+zXgSn1WoZOHAgly5dIjw8nEaNGuHk5ISNTeFq69Wrx7Vr14wuR6NR4eJib9I6NRq1yfNWpormOvf7LYMD16Xd1er+b+ixpvWcLJKptPUaU10/Q3OwxkxgnbmsMRNYby6zFgeNRkN8fDzp6emMGzeOixcvlms5Wq1CWlqWSfO6uNibPG9lqmgul5o21LJVF9sZ17JV41JTA6hKfKy0dZozU4WWW00/Q3OwxkxgnbmsMROYN5e7e+1yP7dSzlZycnKic+fOHDt2jPT0dPLzC5sdrl69iqenZ2VEqPJKG7jOUoPayWB6QlRfZvsW37x5ExsbG5ycnMjJyWHv3r289NJLdO7cmR9//JHg4GBiY2MJCAgwV4TqxcjAdRYZ1E4G0xOi2jJbcUhJSWH69OlotVoURaFv3774+/vTpEkTJk2axIIFC/Dx8SEsLMxcEaqf0gaus9SgdjKYnhDVktmKQ/PmzYmLi9Ob3qhRI9auXWuu1YoHQa5dEOKhJ43Doji5dkEIgQyfIe4j1y4IIUCKg7jPjTu5Bq9duHEn10KJhBCWIMVBFFPXoabu1NQitWzV1HWQ8a+EeJhIcaguVHA9J58zqVlcz9GCqnyLkWsXhBAgHdLVw4PsRJZrF4QQyJHDg/eAfsGXxQPvRP7z2gUfN/vC6xekMAjx0JEjhwfJyLDa5lJaJ7Lu4jQhhCgDOXJ4gCx1Gqh0IgshHjQpDg+QpU4DlU5kIcSDJnuPB6joF/z9Q1ib/Re8dCILIR4wOXJ4gCz6C146kYUQD5AcOTxI8gteCFFNSHF40GQIayFENSDNSlWJBa6hEEI8nOTIoaqQobSFEJXIbEcOV65cYdiwYTzzzDMEBwcTHR0NQFpaGqNGjSIwMJBRo0Zx+/Ztc0UoPyv8hS5DaQshKpPZioNGo2H69Ols2rSJ7777jhUrVnD+/HmioqLo2rUrmzdvpmvXrkRFRZkrQvn8+Qt9YFQiw785xMCofSQmp1u8QMhQ2kKIymS24uDh4UHLli0BcHR0xMvLi2vXrpGQkEBISAgAISEhbN261VwRysVaf6HLVdBCiMpUKX0OycnJnDlzhjZt2pCamoqHhwcA7u7upKamGn2+RqPCxcXepHVpNGqT5zXk3O+3DP5CT7urpWm98o+RVNFcTgUK88PaMmXNMV2fw/ywtjT2qI1aXb7DmopmMhfJZTprzATWmcsaM4H15jJ7cbhz5w6RkZG8/vrrODo6FntMpVKhUhnfsWm1CmlpWSatz8XF3uR5DT6/po3Bq5xdamoqttwK5gLoVN9R7xqK9PRsi2YyB8llOmvMBNaZyxozgXlzubvXLvdzzXoqa15eHpGRkfTv35/AwEAA3NzcSElJASAlJQVXV1dzRigzqx6nSK6CFkJUErPt8RRFYebMmXh5eTFq1Cjd9ICAAOLi4oiIiCAuLo7evXubK0L5yFXOQghhvuJw+PBh4uPj8fb2ZsCAAQBMnjyZiIgIJk6cyNq1a6lfvz4LFiwwV4Tyk6uchRAPObMVhw4dOvDzzz8bfKzomgezUhWeeVT4678m7nYa2ckLIYSJrKAh3QzkamIhhKiQajm2krVeqyCEEFVFtSwOcjWxEEJUTLUsDnI1sRBCVEy1LA5Wfa2CEEJUAdVzbynXKgghRIVUz+IAcq2CEEJUQLVsVhJCCFExUhyEEELokeIghBBCjxQHIYQQeqQ4CCGE0KNSFEXO4xFCCFGMHDkIIYTQI8VBCCGEHikOQggh9EhxEEIIoUeKgxBCCD1SHIQQQuiR4iCEEEJPtRmVdcaMGezYsQM3Nzc2bNhg6TgAXLlyhX/84x+kpqaiUqkYPHgwI0aMsHQs7t69ywsvvEBubi5arZagoCAiIyMtHQsArVbLoEGD8PT05D//+Y+l4wAQEBCAg4MDarUajUZDTEyMpSMBkJ6ezhtvvMEvv/yCSqXi3XffpV27dhbLc/HiRSZNmqT7OykpicjISEaOHGmxTEW++eYb1qxZg0qlwtvbm3nz5lGzZk2LZoqOjmbNmjUoikJYWJhVvE/FKNXEgQMHlFOnTinBwcGWjqJz7do15dSpU4qiKEpGRoYSGBionDt3zsKpFKWgoEDJzMxUFEVRcnNzleeee045evSohVMV+vrrr5XJkycrERERlo6i4+/vr6Smplo6hp5//OMfyurVqxVFUZS7d+8qt2/ftnCiv+Tn5yvdunVTkpOTLR1FuXr1quLv769kZ2criqIokZGRyrp16yya6eeff1aCg4OVrKwsJS8vTxkxYoTy22+/WTTT/apNs1LHjh1xdna2dIxiPDw8aNmyJQCOjo54eXlx7do1C6cClUqFg4MDAPn5+eTn56NSqSycCq5evcqOHTt47rnnLB3F6mVkZHDw4EHde1WjRg2cnJwsnOov+/bto1GjRjRo0MDSUYDCI9KcnBzy8/PJycnBw8PDonkuXLhA69atsbOzw8bGho4dO7J582aLZrpftSkO1i45OZkzZ87Qpk0bS0cBCr8sAwYMoFu3bnTr1s0qcr377rtMnToVtdr6NsvRo0czcOBAvvvuO0tHAQq3J1dXV2bMmEFISAgzZ84kKyvL0rF0Nm7cSL9+/SwdAwBPT09efPFF/P396dGjB46OjvTo0cOimby9vTl8+DC3bt0iOzubnTt3cvXqVYtmup/1fQuroTt37hAZGcnrr7+Oo6OjpeMAoNFoiI+P53//+x8nTpzgl19+sWie7du34+rqiq+vr0VzGLJy5UpiY2P54osvWL58OQcPHrR0JPLz8zl9+jR///vfiYuLw87OjqioKEvHAiA3N5dt27bRt29fS0cB4Pbt2yQkJJCQkMCuXbvIzs4mPj7eopkaN27MmDFjGD16NGPGjKF58+ZW96PIutJUQ3l5eURGRtK/f38CAwMtHUePk5MTnTt3ZteuXRbNceTIEbZt20ZAQACTJ08mMTGR1157zaKZinh6egLg5uZGnz59OHHihIUTQb169ahXr57uiK9v376cPn3awqkK7dy5k5YtW1K3bl1LRwFg7969NGzYEFdXV2xtbQkMDOTo0aOWjkVYWBgxMTEsX74cZ2dnHnvsMUtHKkaKgxkpisLMmTPx8vJi1KhRlo6jc/PmTdLT0wHIyclh7969eHl5WTTTlClT2LlzJ9u2beOjjz6iS5cufPjhhxbNBJCVlUVmZqbu/3v27KFp06YWTgXu7u7Uq1ePixcvAoVt/I0bN7ZwqkIbN24kODjY0jF06tevz/Hjx8nOzkZRFKt5r1JTUwG4fPkymzdvpn///hZOVFy1OZV18uTJHDhwgFu3btGrVy/Gjx9PWFiYRTMdPnyY+Ph4vL29GTBggC7nE088YdFcKSkpTJ8+Ha1Wi6Io9O3bF39/f4tmslapqamMGzcOKOyn6devH7169bJwqkKzZs3itddeIy8vj0aNGjFv3jxLRyIrK4u9e/cyZ84cS0fRadOmDUFBQYSGhmJjY4OPjw9DhgyxdCzGjx9PWloaNjY2vPnmm1Z1QgHI/RyEEEIYIM1KQggh9EhxEEIIoUeKgxBCCD1SHIQQQuiR4iCEEEKPFAdRJd0/+mhMTEylnj557NgxwsLCGDBgAE8//TSLFi0CYP/+/Rw5cqTMy5s+fTo//PADADNnzuT8+fMmP3f//v28/PLLZV6nEKWpNtc5CPEg5OfnY2Nj/Gsxbdo0/v3vf9O8eXO0Wi2//vorAAcOHMDe3h4/P79yZ5g7d265nyvEgyJHDqLaSU5OZvjw4fTv358RI0Zw+fJloPivc/jr6GP//v2Eh4czduxYgoODycrKIiIigmeffZZ+/fqxadMmvXXcvHkTd3d3oHCcqiZNmpCcnMyqVav45ptvGDBgAIcOHSpxnYqiMGfOHIKCghg5cqTualmAYcOGcfLkSQB2797NkCFDCA0NJTIykjt37gCFQ1T07duX0NBQtmzZ8iDfPiEAOXIQVVROTo7uqnMoHFwtICAAgHfeeYfQ0FBCQ0NZu3Yt77zzDp9++mmpyzt9+jTr16+nUaNG/Pjjj3h4eOgGssvIyNCbf8SIEfTt25dOnTrRs2dPQkNDadiwIc8//zz29vaMHj0agLVr1xpc35YtW/j111/ZtGkTN27cIDg4mEGDBhWb5+bNm3z22WcsWbIEe3t7oqKiWLJkCS+99BKzZs0iOjqaRx99lIkTJ5r+xglhIjlyEFVSrVq1iI+P1/279052R48e1Q0XPWDAAA4fPmx0ea1ataJRo0ZA4XDKe/fu5YMPPuDQoUPUrl1bb/5XX32VdevW0b17dzZs2MCYMWPKlP/gwYMEBwej0Wjw9PSkS5cuevMcP36c8+fP8/e//50BAwYQFxfH5cuXuXjxIg0bNuSxxx5DpVLx7LPPlmndQphCjhzEQ0Oj0VBQUABAQUEBeXl5usfs7e11/3/88ceJiYnhf//7HwsWLKBLly68+uqresv729/+Rnh4OIMHD6Zr167cunWrTOs0RlEUunfvzkcffVRs+pkzZ0xehhDlJUcOotpp164dGzduBGD9+vV06NABgAYNGvDTTz8BsG3bthJ31NeuXcPOzo4BAwYwevRog0Nh79ixg6JhyX7//XfUajVOTk44ODjo+gVKW2fHjh3573//i1arJSUlhf379+uto23bthw5coTff/8dKBzU7tdff8XLy4s//viDS5cuAeheqxAPkhw5iGpn1qxZzJgxg6+++gpXV1fdaKWDBw/mlVde4dlnn6Vnz57Fjhbu9csvv/D++++jVquxsbHhrbfe0psnPj6eefPmUatWLTQaDR9++CEajQZ/f38iIyNJSEhg1qxZJa6zT58+JCYm8swzz1C/fn3atm2rt46i7JMnTyY3NxeAiRMn8vjjjzNnzhwiIiKws7Ojffv2xQqSEA+CjMoqhBBCjzQrCSGE0CPFQQghhB4pDkIIIfRIcRBCCKFHioMQQgg9UhyEEELokeIghBBCz/8DhLV6zxhjNDEAAAAASUVORK5CYII=\n", 613 | "text/plain": [ 614 | "
" 615 | ] 616 | }, 617 | "metadata": {} 618 | } 619 | ] 620 | }, 621 | { 622 | "cell_type": "code", 623 | "metadata": { 624 | "id": "RjalYNm25Wcn" 625 | }, 626 | "source": [ 627 | "\n", 628 | "#From the above graph, we can see a positive linear relation between the hours studied and the percentage obtained(score).\n", 629 | "\n", 630 | "#Training the Model\n", 631 | "\n", 632 | "#1. Preparing the Data" 633 | ], 634 | "execution_count": null, 635 | "outputs": [] 636 | }, 637 | { 638 | "cell_type": "code", 639 | "metadata": { 640 | "id": "nOmd_Sim5WfZ" 641 | }, 642 | "source": [ 643 | "X =data.iloc[:, :-1].values \n", 644 | "y =data.iloc[:, 1].values" 645 | ], 646 | "execution_count": 9, 647 | "outputs": [] 648 | }, 649 | { 650 | "cell_type": "code", 651 | "metadata": { 652 | "id": "x6nbtoJN5Wh-" 653 | }, 654 | "source": [ 655 | "#the next step is to split this data into training and test sets.\n", 656 | "from sklearn.model_selection import train_test_split\n", 657 | "X_train, X_test, y_train, y_test =train_test_split(X, y,test_size=0.2, random_state=0)" 658 | ], 659 | "execution_count": 10, 660 | "outputs": [] 661 | }, 662 | { 663 | "cell_type": "code", 664 | "metadata": { 665 | "colab": { 666 | "base_uri": "https://localhost:8080/" 667 | }, 668 | "id": "-ahPNhAi504N", 669 | "outputId": "2f7e78f8-e676-4668-f8d7-70c9371bab60" 670 | }, 671 | "source": [ 672 | "from sklearn.linear_model import LinearRegression \n", 673 | "regressor = LinearRegression() \n", 674 | "regressor.fit(X_train, y_train) \n", 675 | "print(\"Training complete.\")" 676 | ], 677 | "execution_count": 11, 678 | "outputs": [ 679 | { 680 | "output_type": "stream", 681 | "name": "stdout", 682 | "text": [ 683 | "Training complete.\n" 684 | ] 685 | } 686 | ] 687 | }, 688 | { 689 | "cell_type": "code", 690 | "metadata": { 691 | "colab": { 692 | "base_uri": "https://localhost:8080/", 693 | "height": 265 694 | }, 695 | "id": "YNn4gAiS51DG", 696 | "outputId": "c06db9d2-9ac2-4369-e1cc-eff04edfc135" 697 | }, 698 | "source": [ 699 | "\n", 700 | "# Plotting the regression line\n", 701 | "line = regressor.coef_*X+regressor.intercept_\n", 702 | "\n", 703 | "# Plotting for the test data\n", 704 | "plt.scatter(X, y)\n", 705 | "plt.plot(X, line);\n", 706 | "plt.show()" 707 | ], 708 | "execution_count": 12, 709 | "outputs": [ 710 | { 711 | "output_type": "display_data", 712 | "data": { 713 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAfYElEQVR4nO3df1xVZZ4H8M8FRFRAAvkhaiGsJEFRuyKiQkEjYGRiSq7N7vozmqxIQZ3Usdnth762FcemVz+GdizdaWdKU8gcU0MNUkRSR8fVxHSdRAWKBJTf93L2D1byXC7cc7nnnh/3ft5/dR/uPecb0ef13Od5zvMYBEEQQEREuuOmdgFERNQ/DHAiIp1igBMR6RQDnIhIpxjgREQ65aHkzTo7O2EySVv04u5ukPxeJWmxLi3WBLAuW2ixJkCbdWmxJsCxdQ0Y4G6xXdEAN5kE1Nc3S3qvn99gye9Vkhbr0mJNAOuyhRZrArRZlxZrAhxbV2Cgj8V2DqEQEekUA5yISKcY4EREOsUAJyLSKQY4EZFOKboKhYhI73afrcHbpZdQc6MNwT4DsTgxDFOjglWphT1wIiKJdp+twdq951F9ow0CgOobbVi79zx2n61RpR4GOBGRRG+XXkKrsVPU1mrsxNull1SphwFORCRRzY02m9odjQFORCRRsM9Am9odjQFORCTR4sQweHmIY9PLww2LE8NUqYerUIiIJLq12sSWVSiCIKC5w4QhnvLHLQOciMgGU6OCJS8bLP/bdTy37a8AgJKcSRjUy66C/cUAJyKSWZuxE48WlKO+pQMAcO9wX9nDG2CAExHJavvJq1j3xbfdr99/8n7EDPd1yL0Y4EREMvjhZhsS8ku6X6dHBeHlqXfDYDA47J4McCIiO63f/y0+OnG1+/WnT43HcF8vh9+XAU5E1E/fft+EOVuOdb9+dnIY5sXfqdj9GeBERDbqFAT84qOTOHGlEQBgAHBs9c9gam1XtA4GOBGRDcyHS/79sXuQMmYYfLw8UM8AJyLSnvrmDkx5p0zUVrY0ER5ujpuktIYBTkRkxcxNFfjuekv365U/+zs8HhuqYkVdGOBERL34puYG/vkPJ0RtFXlJkj/v6MMfGOBERBbE3bamGwA2zbkf94ZKfyDn1uEPt/YPv3X4AwDZQpy7ERIR3eaz/6kWhXegtycq8pJsCm9AmcMf2AMnIgJgNHUiYeNXorbPfzEBAUM8+3U9JQ5/YIATkct7bW8lCv9a3f16+r0h+FVqpF3XDPYZiGoLYS3n4Q8McCLSDKVPfK9rakf6u0dEbWVLJsPD3f7R5cWJYaIxcED+wx8Y4ESkCUpM+t3OfJLypbRITIsJke36/Tn8wVYMcCJSze09boMB6BTEP7816Sdn6O2v/B6/3HlW1GbL0kBb2HL4Q38wwIlIFeY9bkGw/D45J/3Me90bMqORGBEg2/WVxgAnIlVYWmZniRyTfmv3VWLHqWpRm6N63UpigBORKqT0rO2d9GvtMCHxt4dEbTufGo8QBfbqVgIDnIhU0dsyOzdD13CKvZN+5sMlo/y8sH3h+H5dS6sY4ESkit6W2a1KHWPXxN+Z6huY+6F4/xK5lgZqDQOciFThiGV25r3upIgA5GdG21WnljHAiUg1ci2z+6D8O7z11SVRmzNMUlrDACci3RIEAeM3lIraXnlkLNKjglSqSFkMcCLSJfNDFgDX6HXfjgFORLrS2NLRY6y7cFEcRgwdJGpTel8VNTDAiUg3zIMbsNzrVnpfFbVICvAPPvgAW7duhcFgQGRkJNatW4fa2lrk5uaivr4e0dHReP311+Hp2b99c4mI+nLySgMW/emkqK2vA4X7OkzBmQLc6sLImpoabNmyBZ988gk+++wzmEwm7Nq1C+vXr8e8efOwb98++Pr6Ytu2bUrUS0QuJi6/RBTe02NDUZGX1Odp8EocpqAFkla2m0wmtLa2wmg0orW1FYGBgThy5AjS0tIAADNmzEBxcbFDCyUi1/L2V//bY8ikIi8J62fdZ/Wzve2fIudhClpgdQglODgYCxYsQHJyMgYOHIhJkyYhOjoavr6+8PDo+nhISAhqamqs3szd3QA/v8GSCnN3d5P8XiVpsS4t1gSwLltosSZAnboEQUDkS3tEbW/NeQCp9wRLrml52t1YXXQarR23PeU5wA3L0+522L+PGr8rqwHe0NCA4uJiFBcXw8fHBy+88AJKS0utfcwik0lAfX2zpPf6+Q2W/F4labEuLdYEsC5baLEmQPm6+pqkvFWHlJqS7vLDqiljeqxCSbrLz2H/Po78XQUG+lhstxrghw8fxsiRI+Hv7w8ASE1NxfHjx9HY2Aij0QgPDw9UV1cjONh5JgaISFk/Nrcj7R3x0Wa7suMRZMeQh6MPU9ACqwEeGhqKkydPoqWlBV5eXigrK0NMTAzi4+OxZ88eZGRkYMeOHUhJSVGiXiJyMlKXBlJPVgM8NjYWaWlpmDFjBjw8PBAVFYXZs2fjoYcewtKlS7Fx40ZERUUhKytLiXqJyEn8+UwNfr37nKitPDcRbobeV5eQmEEQejvISH4dHSaOgTuAFmsCWJcttFgT4Li6zHvdkYFD8OG//IOqNdlLk2PgRERyWfjHv+DU1UZRG4dL+o8BTkQO3zekUxAQb7Zr4Jq0SDwWEyLbPVwRA5zIxfW1b8ichNF2X5+TlI7DACdycX3tG2JPgFfVt2DG7ytEbVo5UNhZdipkgBO5OEfsG6LlXrcz7VTIACdycb2dDt+ffUM2HfkO7xy6JGo7mpsIg4aWBjrTToXOd0wzEdlkcWIYvDzEUeDl4YbFiWE2XScuv0QU3mMCh6AiL0lT4Q04106F7IETuTh7T4cfn18C84dJtDJcYomc3zjUxgAnon7tG2I0dSJh41eitpVTxuDx+4bLWZrsFieGicbAgf5949ACBjgR2UzLk5TW2PuNQ0sY4EQk2bnam/in/zouavssO153ww/OslMhA5yIJNFzr9tZMcCJqE9vfHkRf/i6StSmtaWBrooBTkS9GrPmc9HrqGBvbPmnv1epGjLHACeiHjhcog8McCLq1mbsxOQ3xEsDX31kLNKiglSqiPrCACciAJZ73edfSdfk4QnUhQFO5OJOXmnAoj+dFLXtfWYC7hjsqVJFJBUDnMiFOWKs21m2atUDBjiRC3p1byWK/lotapNjktKZtmrVAwY4kYsx73VPCLsDb868V5ZrO9NWrXrAACdyEUosDXSmrVr1gAFO5OSa20148M1DorYNmdFIjAiQ/V7OtFWrHjDAiTRE7glApR/IcaatWvWAAU6kEXJOAJb/7Tqe2/ZXUdv+ZyfCx8ux/8s701atesAAJ9IIuSYA1X4M3lm2atUDBjiRRtg7AfjizjMorvxB1Mb9S5wbA5xII+yZADTvdaeNDcSrGVGy1UbaxAAn0oj+TACqPVxC6mKAE2mELROAja0dePitMlHbO1n3YdydforUStrAACfSECkTgOx10y0McCKdOHj+Byz/9IyorSRnEgYNcFepIlIbA5xIB9jrJksY4EQa9szWU/j6u3pRG4ObbmGAE2mUea97Vuxw/PJnY1SqhrSIAU6kICl7nXC4hKRigBMppK+9TuYkjEZdUzvS3z0i+sz7T96PmOG+itdK+sAAJ1JIX3udvPTncz3ez143WcMAJ1JIb3uamD8+f+iFyfD0cFOiJNI5SX8ljY2NyMnJQXp6OqZOnYoTJ06gvr4e8+fPR2pqKubPn4+GhgZH10qka1L2NKnIS2J4k2SS/lJee+01JCYm4vPPP0dRUREiIiJQUFCAhIQE7N27FwkJCSgoKHB0rUSasPtsDaYVlGN8fgmmFZRj99kaSZ9bnBgGr17C+fwr6RwyIZtZDfAbN26goqICs2bNAgB4enrC19cXxcXFyMzMBABkZmbiiy++cGylRBpwayKy+kYbBPw0ESklxNPHBvUYA0+M8GdwU79ZHQOvqqqCv78/Vq5ciW+++QbR0dFYvXo16urqEBQUBAAIDAxEXV2dw4slUlt/D13g0kByBKsBbjQacebMGaxZswaxsbF49dVXewyXGAwGGAwGqzdzdzfAz2+wpMLc3d0kv1dJWqxLizUBzllXX4cuWLrm1foWPJj/paht57OTMDbER7aaHEmLdWmxJkCduqwGeEhICEJCQhAbGwsASE9PR0FBAQICAlBbW4ugoCDU1tbC39/f6s1MJgH19c2SCvPzGyz5vUrSYl1arAlwzrr6OnTB/Jp99brN3+uMvytH0WJNgGPrCgz0sdhudQw8MDAQISEhuHjxIgCgrKwMERERSElJQWFhIQCgsLAQDz/8sIzlEmmTpYlI80MXtv3lao/wLluayCETkp2kdeBr1qzBsmXL0NHRgVGjRmHdunXo7OzEkiVLsG3bNoSGhmLjxo2OrpVIddYOXTAPbk93Aw4tSVS8TnINBkEQBKVu1tFh4hCKA2ixJsC16nq0oLzH+LgtPW5X+l3ZS4s1AeoMofBJTCI7dAoC4jeUitqeSxyNueNHqVQRuRIGOFE/cWkgqY0BTmSja42teOy9o6K2TxbE4c47BqlUEbkqBjiRDdjrJi1hgBNJUHjqGl7bd17UVp6bCDcJD7AROQoDnMgK8173348cit/NjlWpGqKfMMDJaUg5rswWczYfw7c/NInaOFxCWsIAJ6fQ13Fltoa4qVPAhN+Ilwa++shYpEUFyVMskUwY4OQU+rtLoDlOUpKeMMDJKfS1S6AUl35sRtb7X4vadj8dj2He1k/RIVILA5ycQl+7BFrDXjfpFQOcnMLixDDRGDjQc5dAc+989b/YVH5Z1HY0N1HS3vZEWsAAJ6dgbZdAc+a97gcjArA+M9rhdRLJiQFOTmNqVLDVCUsOl5AzYYCTS2g3dmLSG1+J2v5t6t145J7+rxMnUhsDnJwee93krBjg5LROX2vE/P/+i6jt819MQMQIP00eCEBkKwY4OSX2uskVMMDJqazdV4kdp6pFbQxuclYMcHIa5r3ucXf64Z2s+1SqhsjxGOCkexwuIVfFACfdam434cE3D4nauDSQXAkDnHSJvW4iBjjpTOmFOuQW/o+obd8zCfAbPMCm68h9+AORGhjgpBty9bo/PXlVtsMfiNTEACfNy/7oJE5UNYja7Bkuyd9XKcvhD0RqY4CTppn3uu8d7otNT95v1zWvNbRabJd6+AORVjDASZMcOUk5fKgXrloIcSmHPxBpiZvaBRDdrqGlo0d4r59+j6wrTPKmRMLLQ/ynb+3wByItYg+cNEOppYGPxYaiqbmNq1BI9xjgpLq939Ri9a5vRG0HnpsI74GO+/OUcvgDkdYxwElVfCCHqP8Y4KSK2R98jYt14j25GdxEtmGAk+LMe92Tw/3xmxkxKlVDpF8McFIMh0uI5MUAdyFq7f/xQ1M7pr57RNT21qx7Mf6uOxx+byJnxgB3EbvP1qiy/wd73USOwwB3EW+XXlJ0/4/tp65h3b7zorbSnEnwGuBu03W4ayBR7xjgLqK3fT4csf+HXL1utb41EOkFA9xFBPsMRLWFsJZz/4/Ut8twvaVD1GbPcInS3xqI9EbyXigmkwmZmZl4+umnAQCXL19GVlYWpkyZgiVLlqC9vd1hRZL9FieGOWz/D0EQEJdfIgrvjOhgnH8l3a7rKvmtgUiPJAf4li1bEBER0f16/fr1mDdvHvbt2wdfX19s27bNIQWSPKZGBWNV6hiE+AyEAUCIz0CsSh1jd082Lr8E4zeUitoq8pLwr+l323VdoPdvB9w1kKiLpACvrq7GwYMHMWvWLABdPa4jR44gLS0NADBjxgwUFxc7rkqSxdSoYOzMjsfRvCTszI63K7xrbrT1GOt+/8n7ZV1h4shvDUTOQNIY+Nq1a7F8+XI0NTUBAK5fvw5fX194eHR9PCQkBDU1NVav4+5ugJ/fYEmFubu7SX6vkrRYl9I1jVnzeY82S8Ml9tY1J2E0hgweiPx9lbjW0IrhQ72QNyUSj8WG9vuactTlCFqsCdBmXVqsCVCnLqsBfuDAAfj7+yMmJgbl5eV23cxkElBf32z9jQD8/AZLfq+StFiXUjVZWhpYtmQyPNzdLN5fjrqS7vJD0qLxojZ7r+nK/w1tpcW6tFgT4Ni6AgN9LLZbDfDjx49j//79KCkpQVtbG27evInXXnsNjY2NMBqN8PDwQHV1NYKDuSrAmZkPlxgAHOUDOUSqshrgeXl5yMvLAwCUl5dj06ZNyM/PR05ODvbs2YOMjAzs2LEDKSkpDi+WlDf9vXJcbRSv+uCTlETa0O8j1ZYvX473338fU6ZMQX19PbKysuSsi1TW+f9LA28P72cmhTG8iTTEpgd54uPjER8fDwAYNWoUlw46Ke5fQqQPfBKTulXVt2DG7ytEbVvnj0OYv/Zm/ImIAU7/j71uIv1hgLu4P3xdhTe+vChqK89NhJvBoFJFRCQVA9yFmfe6/QcPwJ5nEqx+jlu8EmkDA9wFPfTmITS1m0RtUodLuMUrkXb0exkh6Y+ps2tp4O3hvSw5wqax7r62eCUiZbEH7iLkmqTkFq9E2sEAd3IXfmjCP24+Jmr79KnxGO7r1a/rKXEwBBFJwwB3Yo5YGrg4MUw0Bg5wi1citTDAndCfjl9B/oELorajuYkwyLA08NZEJVehEKmPAe5kzHvdk0b7Y+PjMbLeY2pUMAObSAMY4E5i+n8exdWGVlEbn6Qkcm4McJ0zmjp7nJDz+mP3IHnMMJUqIiKlMMB1jPuXELk2BrgOfft9E+ZsES8N3PvMBNwx2FOliohIDQxwFfS1l4i1fUYs9brPv5Ju91l83N+ESH8Y4Array8RAL3+7GpDK9499DfRteRaGsj9TYj0iQGuMGt7iVj62Ut/PidqS48KwiuPjFWkJgY4kXYxwBVm714ijpik5P4mRPrEAFeYtb1ELP0MAN6cGYMJYf6q1ERE2sTtZBW2ODEMXh7iX/utvUR620/k5Ufudlh4W6uJiLSLPXCF9baXyL3DfXscKBzk7YnnkkY7fBya+5sQ6RMDXAXme4mYLw1MighAfma03fexZWkg9zch0h8GuIr2flOL1bu+EbXJNUnJpYFEzo8BrhLzXvdLaZGYFhMi2/W5NJDI+THAFfabgxfw38euiNq4NJCI+oMBrpB2YycmvfGVqG3r/HEI8x/skPtxaSCR82OAKyD93SOoa2rvfj1siCd2/2KCxffKtScJjz4jcn4McAeqqm/psTTw0AuT4elhefm9nBOPXBpI5PwY4L2wtydsPkn55D+MwNKHIvr8jNwTj1waSOTcGOAW9NUTnpMwus/P7q/8Hr/ceVbUJnWSkhOPRGQLBrgFffWE+wpw8173b2ZEY3J4gOT7cuKRiGzBvVAssLUnvHZfZY/wrshLsim8Ae5JQkS2YQ/cAqk94dYOExJ/e0jUtvOp8Qjx9erXfTnxSES2YIBbIGUJXtJvv0JLx08/v/OOQfhkQZzd9+bEIxFJxQC3oK+e8MXvbyLtt+IHcsqWTIaHO0ejiEhZDPBeWOoJm49zL4gfhWcm970qxRIeIExEcmCAS/D52Vqs+bM8uwZyl0AikgsDvA+CIGD8hlJR2+Z5cbgnYFC/r8ldAolILlYD/Nq1a1ixYgXq6upgMBjwxBNPYO7cuaivr8fSpUtx5coVjBgxAhs3bsTQoUOVqFkye4YqPjp+BesPXBC1VeQlwc9vMOrrm/tdEx/WISK5WA1wd3d3vPjii4iOjsbNmzcxc+ZMTJo0Cdu3b0dCQgKys7NRUFCAgoICLF++XImaJenvUEWbsROTzXYN3P10PIZ5y/MwDR/WISK5WF06ERQUhOjoruO9vL29ER4ejpqaGhQXFyMzMxMAkJmZiS+++MKxldqor6GK3vzy0zOi8P6XuJGoyEuSLbwBPqxDRPKxaQy8qqoKZ8+eRWxsLOrq6hAUFAQACAwMRF1dndXPu7sb4Ocnbf9rd3c3ye+1pK+hCvPrXq1vwYP5X4razv1bGtzcDLLXNSdhNIYMHoj8fZW41tCK4UO9kDclEo/Fhvb7mvbW5CisSzot1gRosy4t1gSoU5fkAG9qakJOTg5WrVoFb29v0c8MBgMMhp5hZ85kEiSPH9s71tzXUMXt1524sRQdJqH79euP3YPkMcPQ2NjikLoAIOkuPyQtGi9qs+eactTkCKxLOi3WBGizLi3WBDi2rsBAH4vtkp4+6ejoQE5ODqZNm4bU1FQAQEBAAGprawEAtbW18Pf3l6lUeVgbqqj47jri8ktE4V2Rl4TkMcOULJOIqN+s9sAFQcDq1asRHh6O+fPnd7enpKSgsLAQ2dnZKCwsxMMPP+zQQm3V29OU6WODejyQ8/G8cRgdoL2vZEREfbEa4MeOHUNRUREiIyMxffp0AEBubi6ys7OxZMkSbNu2DaGhodi4caNDCrRnKaD505T/VXFZtK47NtQX/znnftlrJiJSgtUAHzduHM6dO2fxZ5s3b5a9oNvJ9dSipV0DDzw3Ed4D+RwTEemXpndg6s9SQHPr9p0XhfeiCXeiIi+J4U1EuqfpFLPnqcXG1g48/FaZqO1obqKk1TJERHqg6QDv71OL7x66hN8f+a779dZ54xDGSUoicjKaDnApByvc7vL1Fjy+qaL79bzxo/Bsou3bvRIR6YGmA1zqEWOCIGBZ0RmUXPjpadAvFidg6KABitZLRKQkTQc4YP2IseNV9Xj6o1Pdr/81/W5kRHNbViJyfpoP8N60Gzvx+KaK7gnNEUO9sHX+OAzg0WZE5CJ0GeA7T1fj5T2V3a8LZsfigZHa2ouciMjRdBXg9c0dmPLOT0sDk8cMw79Pi+LSQCJySboJ8DdLLmJLRVX36x0L4zDSr/9HmxER6Z0uAvw/ir/Fx3+5CgDITrgLT028S+WKiIjUp4sAnxjuj8rvb2JDZgx8vHRRMhGRw+kiDSeN9sek0drab5yISG1cc0dEpFMMcCIinWKAExHpFAOciEinGOBERDrFACci0ikGOBGRTjHAiYh0yiAIgqB2EUREZDv2wImIdIoBTkSkUwxwIiKdYoATEekUA5yISKcY4EREOsUAJyLSKc0d6LBy5UocPHgQAQEB+Oyzz9QuBwBw7do1rFixAnV1dTAYDHjiiScwd+5ctctCW1sbfv7zn6O9vR0mkwlpaWnIyclRuywAgMlkwsyZMxEcHIzf/e53apcDAEhJScGQIUPg5uYGd3d3bN++Xe2SAACNjY341a9+hcrKShgMBqxduxYPPPCAavVcvHgRS5cu7X59+fJl5OTkYN68earVdMsHH3yArVu3wmAwIDIyEuvWrcPAgQNVrWnz5s3YunUrBEFAVlaWsr8nQWOOHj0qnD59WsjIyFC7lG41NTXC6dOnBUEQhBs3bgipqanC+fPnVa5KEDo7O4WbN28KgiAI7e3twqxZs4QTJ06oXFWXTZs2Cbm5uUJ2drbapXRLTk4W6urq1C6jhxUrVggff/yxIAiC0NbWJjQ0NKhc0U+MRqMwceJEoaqqSu1ShOrqaiE5OVloaWkRBEEQcnJyhE8++UTVms6dOydkZGQIzc3NQkdHhzB37lzh0qVLit1fc0MocXFxGDp0qNpliAQFBSE6OhoA4O3tjfDwcNTU1KhcFWAwGDBkyBAAgNFohNFohMFgULkqoLq6GgcPHsSsWbPULkXzbty4gYqKiu7flaenJ3x9fVWu6idlZWUYNWoURowYoXYpALq+2bW2tsJoNKK1tRVBQUGq1nPhwgXcd999GDRoEDw8PBAXF4e9e/cqdn/NBbjWVVVV4ezZs4iNjVW7FABdf9DTp0/HxIkTMXHiRE3UtXbtWixfvhxubtr781q4cCEef/xxfPTRR2qXAqDr78nf3x8rV65EZmYmVq9ejebmZrXL6rZr1y48+uijapcBAAgODsaCBQuQnJyMyZMnw9vbG5MnT1a1psjISBw7dgzXr19HS0sLSkpKUF1drdj9tfd/mIY1NTUhJycHq1atgre3t9rlAADc3d1RVFSEL7/8EqdOnUJlZaWq9Rw4cAD+/v6IiYlRtQ5L/vjHP2LHjh1477338OGHH6KiokLtkmA0GnHmzBnMmTMHhYWFGDRoEAoKCtQuCwDQ3t6O/fv3Iz09Xe1SAAANDQ0oLi5GcXExSktL0dLSgqKiIlVrioiIwKJFi7Bw4UIsWrQIY8eOVbTjwgCXqKOjAzk5OZg2bRpSU1PVLqcHX19fxMfHo7S0VNU6jh8/jv379yMlJQW5ubk4cuQIli1bpmpNtwQHBwMAAgICMGXKFJw6dUrlioCQkBCEhIR0f3NKT0/HmTNnVK6qS0lJCaKjozFs2DC1SwEAHD58GCNHjoS/vz8GDBiA1NRUnDhxQu2ykJWVhe3bt+PDDz/E0KFDERYWpti9GeASCIKA1atXIzw8HPPnz1e7nG4//vgjGhsbAQCtra04fPgwwsPDVa0pLy8PJSUl2L9/PzZs2IAJEyZg/fr1qtYEAM3Nzbh582b3Px86dAhjxoxRuSogMDAQISEhuHjxIoCuMeeIiAiVq+qya9cuZGRkqF1Gt9DQUJw8eRItLS0QBEEzv6u6ujoAwNWrV7F3715MmzZNsXtrbhlhbm4ujh49iuvXryMpKQnPP/88srKyVK3p2LFjKCoqQmRkJKZPn95d54MPPqhqXbW1tXjxxRdhMpkgCALS09ORnJysak1aVVdXh2effRZA17zBo48+iqSkJJWr6rJmzRosW7YMHR0dGDVqFNatW6d2SWhubsbhw4fx8ssvq11Kt9jYWKSlpWHGjBnw8PBAVFQUZs+erXZZeP7551FfXw8PDw/8+te/VnQSmvuBExHpFIdQiIh0igFORKRTDHAiIp1igBMR6RQDnIhIpxjgREQ6xQAnItKp/wPdLOjAaHEjywAAAABJRU5ErkJggg==\n", 714 | "text/plain": [ 715 | "
" 716 | ] 717 | }, 718 | "metadata": {} 719 | } 720 | ] 721 | }, 722 | { 723 | "cell_type": "code", 724 | "metadata": { 725 | "colab": { 726 | "base_uri": "https://localhost:8080/", 727 | "height": 302 728 | }, 729 | "id": "z1CXd5Hl51Fx", 730 | "outputId": "f122cd18-6248-4cfa-80a0-3419a82152b8" 731 | }, 732 | "source": [ 733 | "data.plot.bar(x=\"Hours\",y=\"Scores\")" 734 | ], 735 | "execution_count": 13, 736 | "outputs": [ 737 | { 738 | "output_type": "execute_result", 739 | "data": { 740 | "text/plain": [ 741 | "" 742 | ] 743 | }, 744 | "metadata": {}, 745 | "execution_count": 13 746 | }, 747 | { 748 | "output_type": "display_data", 749 | "data": { 750 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAEMCAYAAADd+e2FAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de1RU5cI/8O8wAyoiEgYihpWcXBJe0kg0TRJFK/BCirdKKdNl5z1R6sHjvfNziZqGL7nsxspL+LMsFXF5STRQsVexLFMLOYYe01RAUe4gzPC8f/g6B3D2zLCZGXjw+1mLtYbZ8+zn2c+z95fNnn3RCCEEiIhIOk5N3QAiIlKHAU5EJCkGOBGRpBjgRESSYoATEUlK58jKampqYDCYPulFq9UoTlPiqDKOrKu5t8+RdTX39jmyrubePkfW1dzbZ4+6nJ21Jt93aIAbDAKFheUmp3l4uCpOU+KoMo6sq7m3z5F1Nff2ObKu5t4+R9bV3Ntnj7q8vNqZfJ+HUIiIJMUAJyKSFAOciEhSDj0GTkRUm15fjZs3r0Ovr7K6TF6eBmruAKKmnCPrys93gpOTDg895AWt1rpoZoATUZO5evUqWrd2Rdu2PtBoNFaV0WqdYDDUNLguNeUcWZeTkwbFxYW4ffsGHn64k3VlGtwyIiIbuXPnDtq2dbc6vFsyjUaDtm3dG/TfCAOciJqMEILhXUtD+4IBTkQkKR4DJ6Jmw829Ddq0sl0sVdzRo7S4wuxnvvhiPQ4eTIVW6wSNxgmxsQsQGNjDZm2wJwY4UTNVP8xqX41nTTDJqE0rHR6bt9dm87u0MhylZqb/+usZHDv2PTZs+P9wcXFBYWEh9Ppq1fXp9XrodI6LVQY4UTNlLswsBRNZp6DgJtq394CLiwsAwMPDAwBw7txv+PDDeFRWVsDZ2RkffvgJtFod4uNXIjs7C1qtFm+/PRt9+wZh377dOHIkHRUVFaipqcHq1R8iIWE1Ll7MgV6vxxtvzMBzzz2PixcvYMWK/4fqaj2EqMGyZavg59elUe1ngBPRA+uZZ/pj48bPMXHiywgK6oehQ8PQo0cvLFmyAEuXLkePHj1RXFwMF5dW2LZtKwAgKelr/PHHJcya9V/46qtkAMD58//CF198BXf39vjss48QFPQM5s9fgpKSEkyfPhVBQcHYtWsHoqImYfjwF1FdXY2aGkOj288AJ6IHlqurK9av34zTp0/h1Kmf8N57CzBlyut4+OEOCAgIBAC0besGADhz5heMGzcBAPDoo4/Bx6cTrly5DAB45plguLu3BwD88EMm/ud/MrBly2YAQFXVHeTl5SIwsBeSkjYgPz8PISGhjd77BhjgRPSA02q16Ns3CH37BqFrV38kJ29r8Dxat25tfC2EwPLlq/HII3UD+rHHHkdgYA8cO/Y9YmPfQWzsAjz99DONajtPIySiB9bly5eMe9EA8Pvv5/Hoo4/j5s0CnDv3GwCgvLwMer0evXs/hQMHvv2/cn8gLy8XXbo8et88g4MHYNu2rcZL6c+fzwYAXL36J3x9OyMqaiIGDQrBhQu/N7r93AMnomaj4o4el1aG23R+5pSXVyAhYTVKS0ug1WrRubMf5s5diPDwkfjv/16Nqqo7cHFphYSEjxEZGYX4+JWYMmUCtFotFi78p/HLz9qio6dh7do1mDp1ImpqBHx9fbFqVQLS079Dauo+6HQ6eHp2wJQprzd6+TRCzZ1aVKquNvCBDnYo01Lrau7ts3ddXl7tzJ6FcuNGSZO2zxbl8vIuo2PHhh0Lbqn3QrlXJjf3D/j41N2z5wMdiIhaGAY4EZGkGOBE1GQ0GnX3226pGtoXDHAiajKtWrVCWVkxQxx3w7usrBg63f1fjCrhWShE1GQ6d+6MS5cuo7S00Ooyavfa1ZRzZF1OTv95Io+1GOBE1GR0Omernz5zT3M8Y6ip6uIhFCIiSXEPXGJKtxttqbcaJaK6GOASU7rdKG81SvRg4CEUIiJJMcCJiCTFQyhERE2ksd9jMcCJiJpIY7/H4iEUIiJJcQ+cmpUH8UnsRGoxwKlZ4ZPYiazHQyhERJJigBMRSYoBTkQkKQY4EZGkGOBERJKy6iyUTZs2Ydu2bdBoNOjWrRtWrFiB/Px8zJ49G4WFhQgMDMSqVavg4mL9kySIiKhxLO6B5+XlISkpCTt27MCePXtgMBiwd+9efPDBB4iOjsbBgwfh7u6O7du3O6K91ATc3NvAy6ud8cfZWWt87ebepqmbR/TAsmoP3GAwoLKyEjqdDpWVlfDy8kJmZibi4+MBAJGRkVi3bh0mT55s18ZS0+C52UTNk8UA79ixI9544w0MGTIErVq1wsCBAxEYGAh3d3fodHeL+/j4IC8vz2JlWq0GHh6uCtOcFKcpz88xZRxZl9r21WfNPFhX48o4uq76HtS+aO7ta0y52qwpbzHAi4qKkJaWhrS0NLRr1w7vvPMOjh49qqpBBoNQfOabo54h19yfcdeQMrUvM6/PmnlYW5e5emSuq7Fl7F0X+8J2ZZprXdZuw0qfsxjgx44dwyOPPAJPT08AwPDhw/Hzzz+juLgYer0eOp0Oubm56Nixo8XGEhGR7Vj8EtPX1xenT59GRUUFhBA4fvw4/vKXvyA4OBipqakAgJ07dyI0NNTujSUiov+wuAfeu3dvjBgxApGRkdDpdAgICMCECRPw/PPPY9asWUhISEBAQACioqIc0V4iIvo/Vp2FEhMTg5iYmDrv+fn58dRBIqImxCsxiYgkxQAnIpIUA5yISFJ8Ig8RUSPVfxQg0PAnzKvBACciaqSmut0EA1xBU/1FJSKyFgNcAW/gRETNHb/EJCKSFAOciEhSDHAiIkkxwImIJMUAJyKSFAOciEhSDHAiIkkxwImIJMUAJyKSFAOciEhSDHAiIknxXihE5FD1bxTHm8SpxwAnIodSulEcbxLXcDyEQkQkKQY4EZGkGOBERJLiMXAiUoVPrWp6DHAiUoVPrWp6PIRCRCQpBjgRkaQY4EREkmKAExFJigFORCQpBjgRkaQY4EREkmKAExFJigFORCQpXolJ0uMl3fSgsirAi4uLsWjRIpw/fx4ajQbLly/H448/jlmzZuHq1avo3LkzEhIS0L59e3u3l+g+vKSbHlRWHUKJi4vDc889h/3792PXrl3w9/dHYmIiBgwYgAMHDmDAgAFITEy0d1uJiKgWiwFeUlKCH3/8EePGjQMAuLi4wN3dHWlpaRgzZgwAYMyYMfjuu+/s21IiIqrD4iGUP//8E56enpg/fz6ys7MRGBiIhQsXoqCgAN7e3gAALy8vFBQUWKxMq9XAw8NVYZqT4jTl+TmmjCnWzKM5ts8AoLWz1vj7vWPFAFBZbYDWRBm1ddXmyH5XU0Zt+5rjGDe2Lo5V4+uqz159YTHA9Xo9srKysHjxYvTu3RvLli2773CJRqOBRqOxWJnBIFBYWK7YWKVpSuxZpnawmWLNPOy9TObaqDQPL692Zo8X37hR0qB6zNVVmz37vanGSm25lrIOqm2fmvW2tpY0Vtb2hdLnLB5C8fHxgY+PD3r37g0AeOGFF5CVlYUOHTogPz8fAJCfnw9PT09LsyIiIhuyGOBeXl7w8fHBxYsXAQDHjx+Hv78/QkNDkZKSAgBISUnB0KFD7dtSIiKqw6rTCBcvXoy///3vqK6uhp+fH1asWIGamhq8++672L59O3x9fZGQkGDvthIRUS1WBXhAQACSk5Pve/+LL76weYOIiMg6vJSeiEhSDHAiIkkxwImIJMUAJyKSFAOciEhSDHAiIkkxwImIJMUHOhBRi/QgPOiDAU5ELdKD8KAPHkIhIpIUA5yISFIMcCIiSTHAiYgkxQAnIpIUA5yISFIMcCIiSTHAiYgkxQAnIpIUA5yISFIMcCIiSTHAiYgkxQAnIpKUdHcjrH+LyJZ2e0giImtJF+BKt4hsKbeHJCKyFg+hEBFJigFORCQpBjgRkaQY4EREkmKAExFJigFORCQpBjgRkaQY4EREkmKAExFJSrorMYmaUv1bOQC8nQM1HasD3GAwYOzYsejYsSM+++wzXLlyBbNnz0ZhYSECAwOxatUquLi42LOtRE1O6VYOAG/nQI5n9SGUpKQk+Pv7G3//4IMPEB0djYMHD8Ld3R3bt2+3SwOJ7MXNvQ28vNrBy6sdnJ21xtdeXu3g5t6mqZtHZJFVe+C5ubk4fPgwZs6ciU2bNkEIgczMTMTHxwMAIiMjsW7dOkyePNmujSWyJe5Nk+ys2gNfvnw5YmNj4eR09+O3b9+Gu7s7dLq7+e/j44O8vDz7tZKIiO5jcQ/80KFD8PT0RI8ePXDixIlGVabVauDh4aowzUlxmrWsKW+LeuxZlyPbZ6tyza3fbVHGnnVxHWxcmebef2rrUlPGYoD//PPPSE9PR0ZGBu7cuYPS0lLExcWhuLgYer0eOp0Oubm56Nixo8XKDAaBwsJyxcYqTavt3jf+plhT3hb12LoutWXU9IWa5XJkXziyfS2xL9TWpaaMPfpd1v6zd18ofc7iIZQ5c+YgIyMD6enpWLNmDfr374/4+HgEBwcjNTUVALBz506EhoZamhUREdmQ6gt5YmNjsXHjRoSFhaGwsBBRUVG2bBcREVnQoAt5goODERwcDADw8/PjqYNERE2Il9ITEUmKAU5EJCkGOBGRpBjgRESSYoATEUmKAU5EJCneD5yIqJb693xvzvd7Z4ATEdWidJfK5niHSh5CISKSFAOciEhSDHAiIkkxwImIJMUAJyKSFAOciEhSDHAiIkkxwImIJMULeWxMpqu4qOWpv/4BLWMdVNquALmXq7EY4DYm01Vc1PIorX+A3OtgS12uxuIhFCIiSTHAiYgkxQAnIpIUA5yISFIMcCIiST0QZ6HwFCQiaokeiADnKUhE1BLxEAoRkaQY4EREknogDqFQ0+BtBYjsiwFOdsPbChDZFwOciHimlqQY4ETEM7UkxS8xiYgkxQAnIpIUA5yISFIMcCIiSVn8EvP69euYO3cuCgoKoNFoMH78eEydOhWFhYWYNWsWrl69is6dOyMhIQHt27d3RJuJiAhW7IFrtVrMmzcP+/btw9dff40vv/wSOTk5SExMxIABA3DgwAEMGDAAiYmJDarYzb0NvLzaGX+cnbXG127ubVQvEBHRg8LiHri3tze8vb0BAG5ubujatSvy8vKQlpaGzZs3AwDGjBmD1157DbGxsVZXzNOWiIgap0Hngf/55584d+4cevfujYKCAmOwe3l5oaCgwGJ5rVYDDw9Xq+qy9nONLePIupTKGAC0dtYaf699EUVltQFaE2XU1mWPci1xrOxZl1brpLpNDa3LFmUcWRfb17AyVgd4WVkZYmJisGDBAri5udWZptFooNFoLM7DYBAoLCwHUDekTLn3ufrMlVNTRqmco9tn7r+RGzdKbFqXOc2hLxpalz3aZ+u6avPwcLXqcy21L2ReL2zZvobUpfQ5q85Cqa6uRkxMDEaOHInhw4cDADp06ID8/HwAQH5+Pjw9Pa2ZFRER2YjFABdCYOHChejatStef/114/uhoaFISUkBAKSkpGDo0KH2ayUREd3H4iGUn376Cbt27UK3bt0wevRoAMDs2bMxY8YMvPvuu9i+fTt8fX2RkJBg98YSEdF/WAzwoKAg/Otf/zI57YsvvrB5g4iIyDq8EpOISFK8nSyRA/DpRGQPDHAiB+DTicgeeAiFiEhSDHAiIkkxwImIJMUAJyKSFAOciEhSDHAiIkkxwImIJMUAJyKSFAOciEhSDHAiIkkxwImIJMUAJyKSFAOciEhSDHAiIkkxwImIJMUAJyKSFAOciEhSDHAiIkkxwImIJMUAJyKSFAOciEhSDHAiIkkxwImIJMUAJyKSFAOciEhSDHAiIkkxwImIJMUAJyKSFAOciEhSDHAiIkkxwImIJMUAJyKSVKMCPCMjAyNGjEBYWBgSExNt1SYiIrKC6gA3GAxYunQpPv/8c+zduxd79uxBTk6OLdtGRERmqA7wM2fO4NFHH4Wfnx9cXFwQHh6OtLQ0W7aNiIjM0AghhJqC+/fvx9GjRxEXFwcASElJwZkzZ7BkyRKbNpCIiEzjl5hERJJSHeAdO3ZEbm6u8fe8vDx07NjRJo0iIiLLVAd4z549cenSJVy5cgVVVVXYu3cvQkNDbdk2IiIyQ6e6oE6HJUuW4M0334TBYMDYsWPxxBNP2LJtRERkhuovMYmIqGnxS0wiIkkxwImIJMUAJyKSFAOciFq8W7duObScozSLAC8sLGxU+bKyMhu15MFiqd8vXLiAN998EzNmzMDly5cxb948BAUFYdy4cbhw4YJiueLi4ga3RU2Z2m7duoWsrCxkZ2fbZX1Q2xeNVVRUhNLSUtXlG7ttNVRD+97S7TfUrBdHjhxBaGgoJk2ahKysLISHh2P8+PEYPHgwjh8/bvNygLr1T6/XG1+XlZXh7NmzDR8v4WAfffSR8fXvv/8uhg8fLoYMGSKGDBkifvnlF1XzDAkJMfn+tWvXxLvvvismTZokPvnkE1FVVWWc9tZbb5kss23bNuPr69eviylTpoinn35aTJgwQVy8eFGxDWrLmXL79m3FadnZ2SIqKkoMHjxYLFq0SBQWFhqnjR07VrGcmn6fPHmySEtLE7t37xbPP/+82LNnj6ipqRFpaWliypQpinUFBASIqVOnim+++UYUFRWZW9RGlbm3LFOnThXDhg0TgYGBYty4cWLIkCHiH//4hyguLjZZRs1Yqe0Lc0pLS02+n5ubK2JjY0Xfvn1F9+7dRUhIiAgJCRFr166tsw7X15htq6CgQPz222/i3Llziu2yhtK2KIQQqampdX72798vnn32WePvpqhZL0aNGiVycnLEzz//LPr16ydOnTolhBAiJydHjBkzxqbl1Kx/QgixY8cO0a9fPzF8+HBx+PBhERoaKqZMmSIGDx4sdu/ebdVyCiGEwwO8dkdMnz5dHD58WAghxOnTp8WECRMUy23YsMHkz/r168Uzzzxjskx0dLT48ssvRVZWlli6dKmYMGGCuHXrlhBCiNGjR1tsX0xMjNi6daswGAziwIEDZjdUteUautFNnDhRHDlyRBQVFYnPP/9cvPTSS+KPP/4wu0z122dtv9ee37BhwxTnV19ERIRIT08Xs2fPFv369RMzZ84Ue/bsERUVFTYtI4QQUVFR4sKFC8ZlmTt3rhBCiK+//lq8/fbbJsuoGSu1fWGOUti99tprIjMzUwhxN/Ti4uJEWVmZWLNmjVi0aJHi/NSMsZoAUrMtCiHEk08+KWbMmCHmzZtn/HnqqaeMr01Rs17U7ofBgwfXmTZq1CibllOz/glxd7kKCgrE5cuXRZ8+fYzb8I0bN0RERIRiufqa9BBKfn4+QkJCAAC9evVCZWWl4mfXrFmDoqIilJWV1fkpLy9HTU2NyTK3bt3CpEmTEBAQgMWLF2PSpEl49dVXcfnyZWg0Govtu3TpEiZMmAAnJyeEhYWhqKjIquVqSLmDBw8aX69atQoLFixAeno6EhISsGLFivs+X1ZWhsGDB8Pd3R3Tpk3D4sWL8eabb+KXX36xapkA6/vdYDAYX0dHR9eZVl1drTh/nU6HIUOGID4+HkeOHMHIkSPx7bffIiQkBHPmzLFZGQCorKxE165djcty/vx5AMD48ePx+++/K5a7x9qxUtsXGzduNPmzYcMGlJeXmyxTWFiI4OBgAMDw4cNx8uRJuLq6YtasWfjxxx8tLhNg/RgvWLAAS5YswcGDB/Hll1+ia9euSE9PR9++fbFw4UKTZdRsiwDw1VdfobKyEj179sSKFSuwYsUKPPTQQ8bXpqhZL9q1a4etW7fi888/h7u7OzZt2oS8vDzs3LkTrq6uiu1TU07t+ufk5ARPT0/4+fnB1dUVXbp0AQA8/PDDimVMUX0lplpXrlzBzJkzAQC5ubmoqKhAmzZtANQ9JlRfYGAghg0bhh49etw3bdu2bSbL6PV63LlzB61atQIAjB49Gl5eXpg2bRoqKipMlsnNzcWyZcsghMCtW7dQXV0NZ2dni+1TW642aze6kpIStGvXDgDQv39/rF27FjExMWb/UKjp91deeQVlZWVo27YtXnnlFeP7f/zxBwYMGKBYl6h1bVjr1q3x0ksv4aWXXkJJSQm+++47m5UBgC5duuCjjz5C//79cfDgQXTv3h3A3VBVChM1Y6W2L9asWYNp06ZBp7t/U1Nqn6enJ3bt2oX+/fvjwIED6Ny5M4C7fSTMXHenZozrB9B7770H4G4Abdy40WQZNdvivflv3LgRmzdvxmuvvYbY2FiLOx1q1ov3338fn3zyCTQaDTZs2IC9e/di2rRp8PX1xbJlyxTrUlNOzfoHAJ06dUJ8fDzKysrQtWtXrFy5EmFhYTh+/Di8vb3N9kltDr8S84cffqjze2BgINq2bYubN28iNTW1zsZR28WLF+Hh4QFPT8/7pt28edPkX65NmzbhySefRL9+/eq8n5WVhdWrV5tcQXfu3Fnn99DQULRv3x43btzA5s2bMXv2bJPtU1suKCgIQUFBAIBffvkFhw4dMm50ERER2LNnT53P7969G35+fnjqqafqvH/t2jV8/PHHiiua2n5XY/369Zg2bZrdywB3v+T69NNPceHCBXTv3h3Tp0+Hm5sbSkpKcOHChfv6CVA/VmpMnDgRixYtMhl2ISEhOHLkyH3vX7t2De+//75xmebOnQtvb2/cvn0bP/zwA0aMGGGyLjVj/Le//Q0BAQHGACoqKsKKFStQXV2NiIgIpKam3ldGzbZYX15eHpYvX45ff/3V7BeZatcLR1Gz/gFAaWkptmzZAo1Gg1deeQXff/89kpOT4evri7feesvqEOel9E3MkcFqS4cOHcKQIUOauhnNgrm+sEXY2ZPaAJKV2vW22a7vVh8td4CtW7c6rFx6erpDyjSmXEM5sv8+/PBDh9XV3NcLtX2hhtp1SW0fOqoeR60XasdKTTlH9EWzOA/8HqHynwE15c6ePeuQMo0p9/XXXzfo87buv6qqKqSkpODYsWMA7h6+Wbp0KbZs2YK33nrLpnXZuozacubG6syZMzhz5gwAICcnBxs3bsSRI0cQExOjqn0NHV9L7TNHTV+oaZ8jx6ohZebOnQsAFsfKlmPsiL5w+JeYwN2LIvLz89GrVy+0bdvW+L6vr6/V8zh58iTOnj2LJ554AhMnTlT83L3B6NWrF3JycnD06FF07dpVcUCqqqqwb98+eHt749lnn8Xu3btx6tQp+Pv7WwythtZlidJAXrlyBQcOHMD169eh1Wrx2GOPYeTIkWb7oT5r+m/+/PkwGAyorKzEzp07UV5ejrCwMGRmZuLs2bNYuXKl4vwbOsZJSUkICwtDp06d7ptm6+UyZe7cuVi1apXiWK1btw4ZGRnQ6/UYOHAgTp8+jeDgYCQmJiIrK0vVHzRzfzjVroO22LYste/06dPw9/eHm5sbKisrjX3g7+9v/BLVFLVj3NBlMtWGEydOGN//9NNPTZZTM8aO7ov6HH4MPCkpCVu2bIG/vz+ys7OxYMECDBs2DAAQGRl53xdM94wbNw7bt28HAHzzzTfYsmULwsLC8P333yM0NBQzZsy4r4zSgBw7dgyDBg0yOSBz5swxhla7du3qhBYAxdBSU5clO3bswNixY+u8l5SUhMOHDyMoKAgZGRkICAiAu7s7Dh48iPfee894+ll9avpv5MiR2L17N/R6PQYPHoyjR49Cq9VCCIFRo0Zh9+7dJutSM8ZPP/002rRpgy5duiA8PBwvvviiyePGtlgupQ38Xt+Z2sBHjhyJlJQUVFVVYeDAgcjIyDButFFRUYp9YY6p8QXUr4Nqt62Gti88PBy7du2CTqfD4sWL0bp1a4wYMQKZmZnIzs7GunXrTM5PzRirWabIyEj4+/sjKioKGo0GQgjMmTMHa9asAYD7Tmq4R80YO7IvTFJ1kKYRIiIijFd6XblyRURGRopNmzYJIcxfiFJ72ssvvywKCgqEEEKUlZUpnvgeEREh9Hq9KC8vF3369BElJSVCCCEqKirMlhFCiOrqajFgwACh1+uFEELU1NSYPcFeTV2WmLrQ4149QghRXl4uXn31VSGEEFevXrV5/4WHh4s7d+6IwsJC8dRTTxmvEK2srBQvvPCCYl1qxnj06NHCYDCIo0ePivnz54vg4GDxxhtviOTkZGNf2mq5xowZI+bMmSMyMzPFiRMnRGZmphg4cKA4ceKEOHHihMV66i+DuYtDzFG6kKcx66Cabauh7as99vUvYjLXF2rGWM0yGQwGsXHjRhEdHS2ysrKEEEKEhoYqtqt2+0y9NrdcjuwLUxx+CKWmpsb4b9AjjzyCzZs3IyYmBteuXTN77KempgZFRUWoqamBEML418rV1RVardZkGa1WC61Wa/xL5+bmBuDu+aROTqYP/wshUFVVhYqKClRUVKCkpAQeHh6oqqoyez63mrqAu3/1ldy8edPk+waDAVqtFlVVVcb7Lvj6+pptn5r+GzduHF588UXU1NRg1qxZeOedd+Dn54fTp08jPDzcbF0NHWONRgMnJycMGjQIgwYNQnV1NTIyMrB37168//77xr1PWyzXjh07kJSUhE8//RRz585FQEAAWrVqpbhnBgDOzs7G86qTk5ON75eUlNh8fNWug2r6XU37nnjiCePeeffu3XH27Fn07NkT//73v02e736PmjFWs0xOTk6Ijo7GCy+8gOXLl+Phhx+ucyGWEjVj7Mi+MMXhAd6hQwecO3cOAQEBAIC2bdvis88+w4IFC4xXMZlSWlqKl19+GUIIaDQa5Ofnw9vbG2VlZYoDqWZA1IaW2g28oKAA69evh7u7e533hRAmj4WNGzcOY8eORe/evXHy5ElMnz4dwN2rTtu3b69Yj5r+i46Oxosvvgjg7kOsx4wZg2PHjmH8+PHo1auXYl1qxrh+G5ydnTF06FAMHTpU8aIrtculZgPfsmULXFxcjOXvqa6uNvtdQEPHF1C/DqrpdzXti4uLQ1xcHD755BM89NBDmDhxInx8fNCpUyfExcUptk/NGKvNCwDw8fHB2rVrcfjwYeMOlTlqxtiRfaE0I4e6fv26yM/PN1plOQwAAAJ3SURBVDnt5MmTDZ5feXm5uHz5sslpd+7cMfl+QUGByM7OVpxnbm6uyM3NFUIIUVRUJL799ltx+vRps+1QW9f8+fPFjz/+aHLa7NmzTb5//vx58e2334qcnByzbbKGuf5TS80YN/SGX5Y0ZLkOHTok4uPjbVr/PWrGVwh166CaflfbPiGEKCkpEefOnRNnz54VN27cMPtZIdSNsa3zwl4c0Rem8EIeIiJJNavzwImIyHoMcCIiSTHAqcXp06dPnd+Tk5OxdOnSJmoNkf0wwImsZO1tgYkchQFOD5Q///wTU6ZMwciRIzF16lRcu3YNADBv3jzs37/f+Ll7e/EnTpzA5MmTMXPmTISHh6O8vBwzZszAqFGjEBERgX379jXJchABTXQvFCJ7qqysxOjRo42/FxUVITQ0FACwbNkyREZGIjIyEtu3b8eyZcvw8ccfm51fVlaW8T7sqamp8Pb2RmJiIoC75/kTNRXugVOL07p1a+zatcv4U/sGVadOnUJERASAu09o+umnnyzOr2fPnvDz8wMAdOvWDceOHcPq1atx8uRJ45ORiJoCA5wId2+FcO8RWDU1NXWec1n7eYiPP/44kpOT0a1bNyQkJCjerIjIERjg9EDp06cP9u7dC+Du/c3vPc6uc+fO+O233wAA6enpig8qzsvLQ5s2bTB69GhMmzYNWVlZjmk4kQk8Bk4PlMWLF2P+/PlYv349PD09jU9DHz9+PP76179i1KhReO655xSfQn7+/HmsWrUKTk5O0Ol0+Oc//+nA1hPVxUvpiYgkxUMoRESSYoATEUmKAU5EJCkGOBGRpBjgRESSYoATEUmKAU5EJKn/BXZwCf7c9CtnAAAAAElFTkSuQmCC\n", 751 | "text/plain": [ 752 | "
" 753 | ] 754 | }, 755 | "metadata": {} 756 | } 757 | ] 758 | }, 759 | { 760 | "cell_type": "code", 761 | "metadata": { 762 | "colab": { 763 | "base_uri": "https://localhost:8080/", 764 | "height": 302 765 | }, 766 | "id": "5FvwAFfZ51Ia", 767 | "outputId": "6b497b2d-77af-43e9-a187-b5514cb7d9c0" 768 | }, 769 | "source": [ 770 | "\n", 771 | "#sorting the data\n", 772 | "data.sort_values([\"Hours\"], axis=0, ascending=[True],inplace=True)\n", 773 | "\n", 774 | "#plotting the data\n", 775 | "data.plot.bar(x=\"Hours\",y=\"Scores\")" 776 | ], 777 | "execution_count": 14, 778 | "outputs": [ 779 | { 780 | "output_type": "execute_result", 781 | "data": { 782 | "text/plain": [ 783 | "" 784 | ] 785 | }, 786 | "metadata": {}, 787 | "execution_count": 14 788 | }, 789 | { 790 | "output_type": "display_data", 791 | "data": { 792 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAEMCAYAAADd+e2FAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de1RU5f4/8PcwIwoiIgoihhWcXBKpaSSaJomiGaCS4q1SynTZ+Z1DqQeP987XJWoWHurYjZWX9GtpKeLykmigYkuxLFMLOQpmmgooyh2EmXl+f/h1Ap3NDNthz2x4v9ZiLZg9n/15ZtrzdrdnP3trhBACRESkOk72HgAREcnDACciUikGOBGRSjHAiYhUigFORKRSOiWbGY1GGAzmT3rRajWSy6QoVaNkL0cfn5K9HH18SvZy9PEp2cvRx9cUvVq10pp9XNEANxgEiosrzS7z8HCVXCZFqRolezn6+JTs5ejjU7KXo49PyV6OPr6m6OXl1c7s4zyEQkSkUgxwIiKVYoATEamUosfAzTEY9Lh16zoKC/UwGo2Nqi0o0KCxVwKQU6Nkr5ISF7i5eUKrtft/GiJycHZPiVu3rqNNG1e4u3vAaGzst7ZOMBgaF/pyapTqJYRAVVUZbt26jk6dujR2iETUwtj9EIpeX4O2bd2h0WjsPRS702g0cHNrD72+xt5DISIVsHuAA2B418H3gois5RABTkREjWf3Y+D3cnN3gUtr2w2r6rYe5aVVDT7n88/X4sCBNGi1TtBonBAfvwBBQU/YbAxERE3B4QLcpbUOj8zbY7P1XVwZgfIGlv/yy2kcPfod1q37Xzg7O6O4uBh6fa3sfnq9Hjqdw72tRNSEzO143p09ac1OpFwtPmmKim6gfXsPODs7AwA8PDwAAGfP/or3309EVVUVnJ1b4T//+RQajRMSE1ciJycbWq0Wf//7bPTtG4y9e3fh8OEMVFVVwWg04t1338e//70Kv/12AXp9LV57bQaeffY5XLiQhxUr/ge1tXoIYcSyZavg59fNni+fiGygoR1PSzuRD6LFB/jTT/fH+vWfYeLEFxEc3A9Dh4bjiSd6YcmSBVi6dDkCA4NQUVGO1q1bY8uWLwAAGzduxe+/X8SsWf8PX36ZAgA4d+6/+PzzL+Hu3h6ffvohnnrqaSxe/D8oLi7B9OlTERwcgp07tyMmZhKGDx+J2tpaGI0Ge750IlK5Fh/grq6uWLt2E06dOomTJ3/E228vwJQpr6JTp44IDAwCALRt6wat1gmnT/+MceMmAAAefvgR+Ph0weXLlwAATz8dAnf39gCA77/PwnffHcaWLf8LIYCamtsoKMhHUFAvbNy4DoWFBQgNDePeNxE9kBYf4ACg1WrRt28w+vYNhr9/AFJSvm70Otq0aWP6XQiBhIRVePRR/3oTeR555FEEBT2Bo0e/Q3z8m4iPX4CnnnraJq+BiFqeFn8a4aVLF0170QBw/vw5PPzwo7hxowhnz/4KAKisrIBer0fv3k9i//5v/q/udxQU5KNbt4fvW2dIyABs27bVNI3+3LkcAMCVK3/A17crYmImYtCgUOTlnW/ql0dEzZjD7YFX3dbj4soIm66vIZWVVUhKehfl5WXQarXo2tUPc+cuREREFP7973dx+/ZttG7dGv/5zyeIjo5BYuJKTJkyAVqtFgsX/sv05WddsbHT8P77iXj55QkwGo3w9fXFqlVJyMj4Fmlpe6HT6eDp2RFTprxqs9dJRC2PRsi5spNMtbWG+y5Ynp//O3x8HlbsuiaOfC2UuzVXrvwGH5/79+wbouaL1duyprn2cvTxKdnLEcfn5dWuwbNQrl8ve6BevKEDEVEzwwAnIlIphwhwBY/iODy+F0RkLbsHuE7njIqKUgYX7oR3eXkJdLr7vxglIrqX3c9C6dDBC7duXUdlZWmj78ij0TT+jjdyapTs5eLigg4dvBpVQ0Qtk90DXKvVoVOnLi36G+wHrSGilsnuh1CIiEgeu++BExG1VPdehraxl6BlgBMR2YnUZWitvQQtD6EQEakUA5yISKV4CIWIHJ7UsWKgaW9Z5ugY4ETk8Ox1yzJHx0MoREQqxT1wIlLUg546R39igBORoh701Dn6Ew+hEBGpFAOciEilGOBERCrFACciUikGOBGRSll1FsqGDRvw9ddfQ6PRoHv37lixYgUKCwsxe/ZsFBcXIygoCKtWrYKzM+8kQ0SkFIt74AUFBdi4cSO2b9+O3bt3w2AwYM+ePXjvvfcQGxuLAwcOwN3dHdu2bVNivEREVnFzd4GXVzvTT6tWWtPvbu4u9h6eTVi1B24wGFBdXQ2dTofq6mp4eXkhKysLiYmJAIDo6GisWbMGkydPbtLBEhFZqyVMv7cY4J07d8Zrr72GIUOGoHXr1hg4cCCCgoLg7u4One5OuY+PDwoKCiw202o18PBwlVjmJLlMen3K1CjZy9HHp2QvRx+fkr0cfXwPUleX3Ho5ddbU2OI1WdtLTo3FAC8pKUF6ejrS09PRrl07vPnmmzhy5EijBwMABoOQvN+jo99zkuNTvpejj0/JXo4+vsbU1b2S4L2k6huqkaqTU3MvW7ymhnpZ+15IPc9igB89ehQPPfQQPD09AQDDhw/HTz/9hNLSUuj1euh0OuTn56Nz586WVkVERDZk8UtMX19fnDp1ClVVVRBC4NixY/jLX/6CkJAQpKWlAQB27NiBsLCwJh8sERH9yeIeeO/evTFixAhER0dDp9MhMDAQEyZMwHPPPYdZs2YhKSkJgYGBiImJUWK8RET0f6w6CyUuLg5xcXH1HvPz8+Opg0REdsSZmEREKsUAJyJSKQY4EZFK8Y48RMS7vqsUA5yIWsS08+aIAU5EVIeabrrMACciqkNNN13ml5hERCrFACciUikGOBGRSjHAiYhUigFORKRSDHAiIpVigBMRqRQDnIhIpRjgREQqxQAnIlIpBjgRkUrxWihEJMu9F30CHPvCT80RA5yIZOElaO2Ph1CIiFSKAU5EpFIMcCIileIxcKJmhF8stiwMcKJmhF8stiw8hEJEpFIMcCIilWKAExGpFAOciEilGOBERCrFACciUikGOBGRSjHAiYhUigFORKRSnIlJ5KDunRZ/d0o8wGnxdIdVAV5aWopFixbh3Llz0Gg0WL58OR599FHMmjULV65cQdeuXZGUlIT27ds39XiJWgxOiydLrDqEkpCQgGeffRb79u3Dzp07ERAQgOTkZAwYMAD79+/HgAEDkJyc3NRjJSKiOiwGeFlZGX744QeMGzcOAODs7Ax3d3ekp6djzJgxAIAxY8bg22+/bdqREhFRPRYPofzxxx/w9PTE/PnzkZOTg6CgICxcuBBFRUXw9vYGAHh5eaGoqMhiM61WAw8PV4llTpLLpNenTI2SvRx9fEr2cvTxNabOAKBNK63p77vHs6trDdBK1FgiZ7xyapTsxfE1rsZigOv1emRnZ2Px4sXo3bs3li1bdt/hEo1GA41GY7GZwSBQXFwpOVipZVKUqlGyl6OPT8lejj6+xtR5ebUzezz74soIXL9eJlnTEHN95dQ4Uq+WNL7G9JJ6nsVDKD4+PvDx8UHv3r0BAM8//zyys7PRsWNHFBYWAgAKCwvh6elpaVVERGRDFgPcy8sLPj4+uHDhAgDg2LFjCAgIQFhYGFJTUwEAqampGDp0aNOOlIiI6rHqNMLFixfjH//4B2pra+Hn54cVK1bAaDTirbfewrZt2+Dr64ukpKSmHisREdVhVYAHBgYiJSXlvsc///xzmw+IiIisw6n0REQqxQAnIlIpBjgRkUoxwImIVIoBTkSkUgxwIiKVYoATEakUb+hALRZvmEBqxwCnFos3TCC14yEUIiKVYoATEakUA5yISKUY4EREKsUAJyJSKQY4EZFKMcCJiFSKAU5EpFIMcCIilWKAExGpFAOciEilGOBERCrFACciUilejZCoEe69BC3w52VoeQlaUhoDnKgReAlaciQ8hEJEpFIMcCIilWKAExGpFAOciEilGOBERCrFACciUikGOBGRSjHAiYhUigFORKRSnIlJFnH6OJFjsjrADQYDxo4di86dO+PTTz/F5cuXMXv2bBQXFyMoKAirVq2Cs7NzU46V7ITTx4kck9WHUDZu3IiAgADT3++99x5iY2Nx4MABuLu7Y9u2bU0yQCJL3Nxd4OXVzvTTqpXW9Lubu4u9h0fUZKzaA8/Pz8ehQ4cwc+ZMbNiwAUIIZGVlITExEQAQHR2NNWvWYPLkyU06WCJz+H8I1FJZtQe+fPlyxMfHw8npztNv3boFd3d36HR38t/HxwcFBQVNN0oiIrqPxT3wgwcPwtPTE0888QSOHz/+QM20Wg08PFwlljlJLpNenzI1SvZy9PGZY806HH18tqpTqqa59uL4GldjMcB/+uknZGRkIDMzE7dv30Z5eTkSEhJQWloKvV4PnU6H/Px8dO7c2WIzg0GguLhScrBSy6QoVaNkL0cc390zTqRYsw5HHJ+cuqbo5ejjU7JXSxpfY3pJPc/iIZQ5c+YgMzMTGRkZWL16Nfr374/ExESEhIQgLS0NALBjxw6EhYVZWhUREdmQ7Ik88fHxWL9+PcLDw1FcXIyYmBhbjouIiCxo1ESekJAQhISEAAD8/Px46iARkR1xKj0RkUoxwImIVIoBTkSkUgxwIiKVYoATEakUA5yISKV4PXByKPdee7zuDDRee5yoPgY4ORReWZDIejyEQkSkUgxwIiKVYoATEakUA5yISKUY4EREKsUAJyJSKQY4EZFKMcCJiFSKE3lsTGomYUOzCJvr7EM57wURWY8BbmNSMwkbmkXYXGcfynkviMh6PIRCRKRSDHAiIpVigBMRqRQDnIhIpRjgREQqxbNQWpjmesoiUUvEAG9hmuspi0QtEQ+hEBGpFAOciEileAhFxThVnahlY4CrGKeqE7VsLSLAeeYFETVHLSLAeeYFETVH/BKTiEilGOBERCrFACciUikGOBGRSln8EvPatWuYO3cuioqKoNFoMH78eEydOhXFxcWYNWsWrly5gq5duyIpKQnt27dXYsxERAQr9sC1Wi3mzZuHvXv3YuvWrfjiiy+Qm5uL5ORkDBgwAPv378eAAQOQnJysxHgV4+buAi+vdqafVq20pt/d3F3sPTwiIst74N7e3vD29gYAuLm5wd/fHwUFBUhPT8emTZsAAGPGjMErr7yC+Pj4ph2tgnjqIRE5ukadB/7HH3/g7Nmz6N27N4qKikzB7uXlhaKiIov1Wq0GHh6uEsucJJfVZQDQppXW9PfdSTnVtQZoJWossaavvWqaay9HH5+SvRx9fEr24vgaV2N1gFdUVCAuLg4LFiyAm5tbvWUajQYajcbiOgwGgeLiSrPLPDxcJZfV5eXVTnL6+PXrZZI1DTHXV06NpTo5NY7QqyWOT8lejj4+JXu1pPE1ppfU86w6C6W2thZxcXGIiorC8OHDAQAdO3ZEYWEhAKCwsBCenp7WrIqIiGzEYoALIbBw4UL4+/vj1VdfNT0eFhaG1NRUAEBqaiqGDh3adKMkIqL7WDyE8uOPP2Lnzp3o3r07Ro8eDQCYPXs2ZsyYgbfeegvbtm2Dr68vkpKSmnywRET0J4sBHhwcjP/+979ml33++ec2HxAREVmHMzGJiFTKbpeTvfca3QDvKENE1Bh2C3BOlCEiejA8hEJEpFIMcCIilWKAExGpFAOciEilGOBERCrFACciUikGOBGRSjHAiYhUigFORKRSDHAiIpVigBMRqRQDnIhIpRjgREQqxQAnIlIpBjgRkUoxwImIVIoBTkSkUgxwIiKVYoATEakUA5yISKUY4EREKsUAJyJSKQY4EZFKMcCJiFSKAU5EpFIMcCIilWKAExGpFAOciEilGOBERCrFACciUikGOBGRSjHAiYhU6oECPDMzEyNGjEB4eDiSk5NtNSYiIrKC7AA3GAxYunQpPvvsM+zZswe7d+9Gbm6uLcdGREQNkB3gp0+fxsMPPww/Pz84OzsjIiIC6enpthwbERE1QCOEEHIK9+3bhyNHjiAhIQEAkJqaitOnT2PJkiU2HSAREZnHLzGJiFRKdoB37twZ+fn5pr8LCgrQuXNnmwyKiIgskx3gPXv2xMWLF3H58mXU1NRgz549CAsLs+XYiIioATrZhTodlixZgtdffx0GgwFjx47FY489ZsuxERFRA2R/iUlERPbFLzGJiFSKAU5EpFIMcCIilWKAk8O6efNms+xFZCsMcCsUFxc3SV1paams9cqta6y8vDy8/vrrmDFjBi5duoR58+YhODgY48aNQ15enk17HT58GGFhYZg0aRKys7MRERGB8ePHY/DgwTh27JhD96qoqGjU863dnm7evIns7Gzk5OQ0use9LNU/aC9rLqMhd7vV6/Wm3ysqKnDmzJkG30Mlt9u6SkpKUF5e3mTrN0s4mPLycqufe+vWLaueV1RUJH799Vdx9uxZi+v/8MMPTb+fP39eDB8+XAwZMkQMGTJE/PzzzzatCwwMFFOnThVfffWVKCkpseq1yK27evWqeOutt8SkSZPExx9/LGpqakzL3njjDbM1kydPFunp6WLXrl3iueeeE7t37xZGo1Gkp6eLKVOmSPb6+uuvTb9fu3ZNTJkyRTz11FNiwoQJ4sKFC2ZrRo0aJXJzc8VPP/0k+vXrJ06ePCmEECI3N1eMGTPGZn3k9mpIaGio5DI528X58+fF1KlTxbBhw0RQUJAYN26cGDJkiPjnP/8pSktLGz2+hsYop1daWlq9n3379olnnnnG9LcUOdvt9u3bRb9+/cTw4cPFoUOHRFhYmJgyZYoYPHiw2LVrl9kaJbfb/Px8ER8fL/r27St69OghQkNDRWhoqPjggw/qfcbulZOTI2JiYsTgwYPFokWLRHFxsWnZ2LFjLb0tJg4X4FIbmlIfhLof4OnTp4tDhw4JIYQ4deqUmDBhguS45dRFRkaKjIwMMXv2bNGvXz8xc+ZMsXv3blFVVSXZR25dbGys+OKLL0R2drZYunSpmDBhgrh586YQQojRo0ebran7+LBhwyRf773qLouLixNbtmwRBoNB7N+/X/IDVLdm8ODB9ZaNGjXKZn3k9lq3bp3Zn7Vr14qnn37aql7WbhcxMTEiLy/P9Ly5c+cKIYTYunWr+Pvf/y7ZS84Y5fR6/PHHxYwZM8S8efNMP08++aTpdylyttvIyEhRVFQkLl26JPr06SN+//13IYQQ169fF5GRkWZrlNxuX3nlFZGVlSWEuPMPW0JCgqioqBCrV68WixYtkuw1ceJEcfjwYVFSUiI+++wz8cILL5hem9Tn0Ry7HEJZv3692Z9169ahsrLSbM2BAwdMv69atQoLFixARkYGkpKSsGLFCrM1CxYswJIlS3DgwAF88cUX8Pf3R0ZGBvr27YuFCxdaHGdhYSFCQ0MBAL169UJ1dbVVr8/aOp1OhyFDhiAxMRGHDx9GVFQUvvnmG4SGhmLOnDmS65dTd/PmTUyaNAmBgYFYvHgxJk2ahJdffhmXLl2CRqMxW2MwGEy/x8bG1ltWW1vb0FtgcvHiRUyYMAFOTk4IDw9HSUmJ2ee1a9cOW7ZswWeffQZ3d3ds2LABBQUF2LFjB1xdXW3WR26v1atXo6SkBBUVFfV+KisrYTQarXovrN0uqqur4e/vb3reuXPnAADjx4/H+fPnJdcvZ4xyen355Zeorq5Gz549sWLFCqxYsQIdOnQw/S5Fznbr5OQET09P+Pn5wdXVFd26dQMAdOrUSbKPktttcXExQkJCAADDhw/HiRMn4OrqilmzZuGHH36QXH9FRQUGDx4Md3d3TJs2DYsXL8brr7+On3/+WfLzaI7smZgPYvXq1Zg2bRp0uvvbW/NhkPtBePvttwHc2TjXr19vtuby5cuYOXMmACA/Px9VVVVwcXEBUP9YnC3qRJ05VG3atMELL7yAF154AWVlZfj2228le8mp0+v1uH37Nlq3bg0AGD16NLy8vDBt2jRUVVWZrXnppZdQUVGBtm3b4qWXXjI9/vvvv2PAgAGS48vPz8eyZcsghMDNmzdRW1uLVq1amcZhzjvvvIOPP/4YGo0G69atw549ezBt2jT4+vpi2bJlNusjt1dQUBCGDRuGJ5544r5lX3/9tWQvOdtFt27d8OGHH6J///44cOAAevToAeBO+DT0+ZAzRjm9evXqhfXr12PTpk145ZVXEB8fb1XoyNluu3TpgsTERFRUVMDf3x8rV65EeHg4jh07Bm9vb7M1Sm63np6e2LlzJ/r374/9+/eja9euptcqLMyRLCsrQ7t27QAA/fv3xwcffIC4uLgGdz7uZZeZmBMnTsSiRYvMbmihoaE4fPjwfY8HBwcjODgYAPDzzz/j4MGDpg9CZGQkdu/efV/N3/72NwQGBpo2zpKSEqxYsQK1tbWIjIxEWlrafTXff/99vb+DgoLQtm1b3LhxA2lpafU2iAetW7t2LaZNm2Z2fQ2RU7dhwwY8/vjj6NevX73Hs7Oz8e6770r+gybHjh076v0dFhaG9u3b4/r169i0aRNmz56tqj4AcOHCBXh4eMDT0/O+ZTdu3JDcI5SzXZSWluKTTz5BXl4eevTogenTp8PNzQ1lZWXIy8vDk08+abMxyu11V0FBAZYvX45ffvnF4heZcrbb8vJybN68GRqNBi+99BK+++47pKSkwNfXF2+88YZkiMshZ3u6evUq3nnnHdP7N3fuXHh7e+PWrVv4/vvvMWLECLO9du3aBT8/v/ve36tXr+Kjjz6S3JG4l10CXM6GpuQHgSw7ePAghgwZwl6kKs3uv6/VR8tJbNmyRbE6JXtlZGQ0uub9999vdI2SveT0kduruW4XzXF8Sm63crfBxrwuhzsPfOvWrQ5bI2T+z4qcOiV7nTlzRnLZ6dOncfr0aQBAbm4u1q9fj8OHDyMuLk7W+JTq1VAfc+bOnQsAsno11+1CreOrqalBamoqjh49CuDO4YqlS5di8+bNeOONN2SNr7Hbk9waoHHvhV2+xGyII2xoeXl5KCwsRK9evdC2bVvT476+vg2uU06dkr3uhmOvXr2Qm5uLI0eOwN/fXzK01qxZg8zMTOj1egwcOBCnTp1CSEgIkpOTkZ2d3eCHQcledc2dOxerVq1qMIjvfqlY1/Hjx02Pf/LJJxb7nDhxAmfOnMFjjz2GiRMnWjU2uXXW1pw6dQoBAQFwc3NDdXW16b0LCAgw+5rl1mzcuBHh4eHo0qXLfcsaGp+cOjk18+fPh8FgQHV1NXbs2IHKykqEh4cjKysLZ86cwcqVK83W1dTUYO/evfD29sYzzzyDXbt24eTJkwgICJDc/uTU3HX58mXs378f165dg1arxSOPPIKoqKhGbU8OdznZ7du3Y+zYsXar2bhxIzZv3oyAgADk5ORgwYIFGDZsGAAgOjr6vi86HqROyV5SAXn06FEMGjTI7MYWFRWF1NRU1NTUYODAgcjMzDR90GNiYrBr1y6z41Oql1QQ3z2tSyqIo6OjERAQgJiYGGg0GgghMGfOHKxevRoA7vuiFwDGjRuHbdu2AQC++uorbN68GeHh4fjuu+8QFhaGGTNmmO0lp05ur4iICOzcuRM6nQ6LFy9GmzZtMGLECGRlZSEnJwdr1qyxSc1TTz0FFxcXdOvWDRERERg5cqTZ77NsUSenJioqCrt27YJer8fgwYNx5MgRaLVaCCEwatQoye12zpw5puBv165dveAHYDb45dQAdz7Dhw4dQnBwMDIzMxEYGAh3d3ccOHAAb7/9tmkbtkjWQZom1NCsNiVqIiMjTbM1L1++LKKjo8WGDRuEEA2fYC+nTuleer1eVFZWij59+oiysjIhhBBVVVVWTYi4d71SE16U7DVmzBgxZ84ckZWVJY4fPy6ysrLEwIEDxfHjx8Xx48clx2cwGMT69etFbGysyM7OFkIIERYWJvn8e8f04osviqKiIiGEEBUVFZKvSW6d3F7PP/+86fd7J6xIvYdyakaPHi0MBoM4cuSImD9/vggJCRGvvfaaSElJMf23tlWdnJqIiAhx+/ZtUVxcLJ588knTjO3q6up6r/ded9/b2tpaMWDAAKHX64UQQhiNRsn3XU7N3bq7z62srBQvv/yyEEKIK1euNGoij10OoURFRUkuu3Hjhl1rjEaj6ZDEQw89hE2bNiEuLg5Xr15t8LCLnDole2m1Wmi1WtPejJubG4A75+M6OZn/KqRVq1am85ZTUlJMj5eVlUnWKNlr+/bt2LhxIz755BPMnTsXgYGBaN26tdk96LqcnJwQGxuL559/HsuXL0enTp3qTf4wx2g0oqSkBEajEUII016gq6srtFqtTevk9nrsscdM/2fZo0cPnDlzBj179sRvv/1mds6F3BqNRgMnJycMGjQIgwYNQm1tLTIzM7Fnzx688847pr1PW9TJqRk3bhxGjhwJo9GIWbNm4c0334Sfnx9OnTqFiIgIyfdPCIGamhpUVVWhqqoKZWVl8PDwQE1NTYNzORpbc5fBYIBWq0VNTY3p+jO+vr4W6+qyS4AXFRVh7dq1cHd3r/e4EELy+I9SNR07dsTZs2cRGBgIAGjbti0+/fRTLFiwwDRLzVZ1SvaSE5CbN2+Gs7MzANR7Tm1treT/GirZS04Q1+Xj44MPPvgAhw4dMv0jI6W8vBwvvvgihBDQaDQoLCyEt7c3KioqGvzHVk6d3F4JCQlISEjAxx9/jA4dOmDixInw8fFBly5dkJCQYLOae8fQqlUrDB06FEOHDpWcFCa3Tk5NbGwsRo4cCeDOzdfHjBmDo0ePYvz48ejVq5fk+OQEv9x/LMaNG4exY8eid+/eOHHiBKZPnw7gzozp9u3bS9bdx+p9dRuaP3+++OGHH8wumz17tl1rrl27JgoLC80uO3HihNnH5dYp2ev27dtmHy8qKhI5OTmSveRQslddBw8eFImJiU22fnMqKyvFpUuXFKmztqasrEycPXtWnDlzRly/ft2qdTempqELhdm6Tm4vufLz80V+fr4QQoiSkhLxzTffiFOnTtm8Rgghzp07J7755huRm5sre7wO9yUmERFZx+HOAyciIuswwImIVIoBTs1Onz596v2dkpKCpTQOF3QAAAG2SURBVEuX2mk0RE2HAU5kpcac3kWkBAY4tSh//PEHpkyZgqioKEydOhVXr14FAMybNw/79u0zPe/uXvzx48cxefJkzJw5ExEREaisrMSMGTMwatQoREZGYu/evXZ5HUSAA14LhehBVVdXY/To0aa/S0pKEBYWBgBYtmwZoqOjER0djW3btmHZsmX46KOPGlxfdna26frNaWlp8Pb2RnJyMoA757YT2Qv3wKnZadOmDXbu3Gn6qXthq5MnTyIyMhLAnbsS/fjjjxbX17NnT/j5+QEAunfvjqNHj+Ldd9/FiRMnTHdUIbIHBjgR7kz/v3sLMaPRWO/eiXXvk/noo48iJSUF3bt3R1JSktmLPREphQFOLUqfPn2wZ88eAHeuE333Nn1du3bFr7/+CgDIyMiQvPltQUEBXFxcMHr0aEybNg3Z2dnKDJzIDB4DpxZl8eLFmD9/PtauXQtPT0/TXdTHjx+Pv/71rxg1ahSeffZZybvTnzt3DqtWrYKTkxN0Oh3+9a9/KTh6ovo4lZ6ISKV4CIWISKUY4EREKsUAJyJSKQY4EZFKMcCJiFSKAU5EpFIMcCIilfr/UZMbF01tIKEAAAAASUVORK5CYII=\n", 793 | "text/plain": [ 794 | "
" 795 | ] 796 | }, 797 | "metadata": {} 798 | } 799 | ] 800 | }, 801 | { 802 | "cell_type": "code", 803 | "metadata": { 804 | "id": "5pXdqEP251LW" 805 | }, 806 | "source": [ 807 | "x = data.iloc[:,:-1].values\n", 808 | "y = data.iloc[:,1].values" 809 | ], 810 | "execution_count": 15, 811 | "outputs": [] 812 | }, 813 | { 814 | "cell_type": "code", 815 | "metadata": { 816 | "colab": { 817 | "base_uri": "https://localhost:8080/" 818 | }, 819 | "id": "4UR7d3ob51N_", 820 | "outputId": "6858c395-5c8f-458e-c24e-e5b3519ff6c1" 821 | }, 822 | "source": [ 823 | "print(x)" 824 | ], 825 | "execution_count": 16, 826 | "outputs": [ 827 | { 828 | "output_type": "stream", 829 | "name": "stdout", 830 | "text": [ 831 | "[[1.1]\n", 832 | " [1.5]\n", 833 | " [1.9]\n", 834 | " [2.5]\n", 835 | " [2.5]\n", 836 | " [2.7]\n", 837 | " [2.7]\n", 838 | " [3.2]\n", 839 | " [3.3]\n", 840 | " [3.5]\n", 841 | " [3.8]\n", 842 | " [4.5]\n", 843 | " [4.8]\n", 844 | " [5.1]\n", 845 | " [5.5]\n", 846 | " [5.9]\n", 847 | " [6.1]\n", 848 | " [6.9]\n", 849 | " [7.4]\n", 850 | " [7.7]\n", 851 | " [7.8]\n", 852 | " [8.3]\n", 853 | " [8.5]\n", 854 | " [8.9]\n", 855 | " [9.2]]\n" 856 | ] 857 | } 858 | ] 859 | }, 860 | { 861 | "cell_type": "code", 862 | "metadata": { 863 | "id": "IBi8Pv-A6FTs" 864 | }, 865 | "source": [ 866 | "\n", 867 | "#Now , we are dividing the data for training and testing the model\n", 868 | "#importing the train_test_split\n", 869 | "\n", 870 | "from sklearn.model_selection import train_test_split\n", 871 | "\n", 872 | "# splitting the data into X_train, X_test, y_train, y_test\n", 873 | "\n", 874 | "X_train, X_test, y_train, y_test = train_test_split(x,y, test_size=0.2,random_state=0)" 875 | ], 876 | "execution_count": 17, 877 | "outputs": [] 878 | }, 879 | { 880 | "cell_type": "code", 881 | "metadata": { 882 | "colab": { 883 | "base_uri": "https://localhost:8080/" 884 | }, 885 | "id": "gxf_gHRR6FX6", 886 | "outputId": "5fb82b3f-b186-46bd-c117-71f0e6a6eff5" 887 | }, 888 | "source": [ 889 | "print(X_train.shape)" 890 | ], 891 | "execution_count": 18, 892 | "outputs": [ 893 | { 894 | "output_type": "stream", 895 | "name": "stdout", 896 | "text": [ 897 | "(20, 1)\n" 898 | ] 899 | } 900 | ] 901 | }, 902 | { 903 | "cell_type": "code", 904 | "metadata": { 905 | "colab": { 906 | "base_uri": "https://localhost:8080/" 907 | }, 908 | "id": "7Wx3imgI6KST", 909 | "outputId": "5a9cdfdf-8186-4658-fec5-75e2d3d0a3d0" 910 | }, 911 | "source": [ 912 | "print(X_test.shape)" 913 | ], 914 | "execution_count": 19, 915 | "outputs": [ 916 | { 917 | "output_type": "stream", 918 | "name": "stdout", 919 | "text": [ 920 | "(5, 1)\n" 921 | ] 922 | } 923 | ] 924 | }, 925 | { 926 | "cell_type": "code", 927 | "metadata": { 928 | "colab": { 929 | "base_uri": "https://localhost:8080/" 930 | }, 931 | "id": "ZVEJ_C406KVg", 932 | "outputId": "22c6158f-8401-4e2b-c335-82e5fa79149c" 933 | }, 934 | "source": [ 935 | "print(y_train.shape)\n" 936 | ], 937 | "execution_count": 20, 938 | "outputs": [ 939 | { 940 | "output_type": "stream", 941 | "name": "stdout", 942 | "text": [ 943 | "(20,)\n" 944 | ] 945 | } 946 | ] 947 | }, 948 | { 949 | "cell_type": "code", 950 | "metadata": { 951 | "colab": { 952 | "base_uri": "https://localhost:8080/" 953 | }, 954 | "id": "ehp8x_Fv6KY5", 955 | "outputId": "2ef1525c-d88d-4217-9ec4-fc6ca772be26" 956 | }, 957 | "source": [ 958 | "print(y_test.shape)" 959 | ], 960 | "execution_count": 21, 961 | "outputs": [ 962 | { 963 | "output_type": "stream", 964 | "name": "stdout", 965 | "text": [ 966 | "(5,)\n" 967 | ] 968 | } 969 | ] 970 | }, 971 | { 972 | "cell_type": "code", 973 | "metadata": { 974 | "colab": { 975 | "base_uri": "https://localhost:8080/" 976 | }, 977 | "id": "MB0M8cKb6Kbf", 978 | "outputId": "ec5a6976-2214-42f7-d6c1-79572f26c634" 979 | }, 980 | "source": [ 981 | "#Predicting the % score\n", 982 | "print(X_test)\n", 983 | "y_pred = regressor.predict(X_test)\n" 984 | ], 985 | "execution_count": 22, 986 | "outputs": [ 987 | { 988 | "output_type": "stream", 989 | "name": "stdout", 990 | "text": [ 991 | "[[2.7]\n", 992 | " [1.9]\n", 993 | " [7.7]\n", 994 | " [6.1]\n", 995 | " [4.5]]\n" 996 | ] 997 | } 998 | ] 999 | }, 1000 | { 1001 | "cell_type": "code", 1002 | "metadata": { 1003 | "colab": { 1004 | "base_uri": "https://localhost:8080/", 1005 | "height": 202 1006 | }, 1007 | "id": "CtvWYggA51Qm", 1008 | "outputId": "76f97010-77ad-4f31-a32a-4582867917c3" 1009 | }, 1010 | "source": [ 1011 | "#Comparing the result with acutal data\n", 1012 | "df= pd.DataFrame({'ACTUAL' : y_test, 'PREDICTION' : y_pred})\n", 1013 | "df" 1014 | ], 1015 | "execution_count": 23, 1016 | "outputs": [ 1017 | { 1018 | "output_type": "execute_result", 1019 | "data": { 1020 | "text/html": [ 1021 | "
\n", 1022 | "\n", 1035 | "\n", 1036 | " \n", 1037 | " \n", 1038 | " \n", 1039 | " \n", 1040 | " \n", 1041 | " \n", 1042 | " \n", 1043 | " \n", 1044 | " \n", 1045 | " \n", 1046 | " \n", 1047 | " \n", 1048 | " \n", 1049 | " \n", 1050 | " \n", 1051 | " \n", 1052 | " \n", 1053 | " \n", 1054 | " \n", 1055 | " \n", 1056 | " \n", 1057 | " \n", 1058 | " \n", 1059 | " \n", 1060 | " \n", 1061 | " \n", 1062 | " \n", 1063 | " \n", 1064 | " \n", 1065 | " \n", 1066 | " \n", 1067 | " \n", 1068 | " \n", 1069 | " \n", 1070 | "
ACTUALPREDICTION
03028.776933
12420.848407
28578.330215
36762.473165
44146.616114
\n", 1071 | "
" 1072 | ], 1073 | "text/plain": [ 1074 | " ACTUAL PREDICTION\n", 1075 | "0 30 28.776933\n", 1076 | "1 24 20.848407\n", 1077 | "2 85 78.330215\n", 1078 | "3 67 62.473165\n", 1079 | "4 41 46.616114" 1080 | ] 1081 | }, 1082 | "metadata": {}, 1083 | "execution_count": 23 1084 | } 1085 | ] 1086 | }, 1087 | { 1088 | "cell_type": "code", 1089 | "metadata": { 1090 | "colab": { 1091 | "base_uri": "https://localhost:8080/" 1092 | }, 1093 | "id": "xOVpPyP-6agJ", 1094 | "outputId": "f8c47533-ebb8-4049-ce9e-244d9293eb5a" 1095 | }, 1096 | "source": [ 1097 | "\n", 1098 | "#Custom input(9.25 hours) and the prediction of percentage\n", 1099 | "hours = [9.25]\n", 1100 | "own_pred = regressor.predict([hours])\n", 1101 | "print(\"No of Hours = {}\".format(hours))\n", 1102 | "print(\"Predicted Score = {}\".format(own_pred[0]))" 1103 | ], 1104 | "execution_count": 24, 1105 | "outputs": [ 1106 | { 1107 | "output_type": "stream", 1108 | "name": "stdout", 1109 | "text": [ 1110 | "No of Hours = [9.25]\n", 1111 | "Predicted Score = 93.69173248737539\n" 1112 | ] 1113 | } 1114 | ] 1115 | }, 1116 | { 1117 | "cell_type": "code", 1118 | "metadata": { 1119 | "colab": { 1120 | "base_uri": "https://localhost:8080/" 1121 | }, 1122 | "id": "TDBgWdNA6aji", 1123 | "outputId": "8f671470-3050-4f85-a3d8-587d512d9d9e" 1124 | }, 1125 | "source": [ 1126 | "#Evaluating the Model(Accuracy)\n", 1127 | "from sklearn import metrics \n", 1128 | "print('Mean Absolute Error:', \n", 1129 | " metrics.mean_absolute_error(y_test, y_pred))" 1130 | ], 1131 | "execution_count": 25, 1132 | "outputs": [ 1133 | { 1134 | "output_type": "stream", 1135 | "name": "stdout", 1136 | "text": [ 1137 | "Mean Absolute Error: 4.237478958953777\n" 1138 | ] 1139 | } 1140 | ] 1141 | }, 1142 | { 1143 | "cell_type": "code", 1144 | "metadata": { 1145 | "colab": { 1146 | "base_uri": "https://localhost:8080/" 1147 | }, 1148 | "id": "GvFLQgy76amW", 1149 | "outputId": "5f185206-ce13-4026-defb-51936d891f61" 1150 | }, 1151 | "source": [ 1152 | "# importing LinearRegression\n", 1153 | "from sklearn.linear_model import LinearRegression\n", 1154 | "\n", 1155 | "#creating an object for LinearRegression\n", 1156 | "model = LinearRegression()\n", 1157 | "\n", 1158 | "# fitting the model\n", 1159 | "model.fit(X_train, y_train)" 1160 | ], 1161 | "execution_count": 26, 1162 | "outputs": [ 1163 | { 1164 | "output_type": "execute_result", 1165 | "data": { 1166 | "text/plain": [ 1167 | "LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)" 1168 | ] 1169 | }, 1170 | "metadata": {}, 1171 | "execution_count": 26 1172 | } 1173 | ] 1174 | }, 1175 | { 1176 | "cell_type": "code", 1177 | "metadata": { 1178 | "colab": { 1179 | "base_uri": "https://localhost:8080/", 1180 | "height": 265 1181 | }, 1182 | "id": "ZyM0-n6j6apS", 1183 | "outputId": "75c8b0d9-77f2-4e82-dc9f-f85ff25e12ba" 1184 | }, 1185 | "source": [ 1186 | "#Fitting The Regression Line\n", 1187 | "# plotting the regression line\n", 1188 | "line = model.coef_ * x + model.intercept_\n", 1189 | "\n", 1190 | "#plotting for test data\n", 1191 | "plt.scatter(x,y,c=\"g\")\n", 1192 | "plt.plot(x,line,c=\"r\")\n", 1193 | "plt.show()" 1194 | ], 1195 | "execution_count": 27, 1196 | "outputs": [ 1197 | { 1198 | "output_type": "display_data", 1199 | "data": { 1200 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deXxU1cHG8d9kJvskhFCWYrAWLErR8rogiwsQSkABBSFYa6sgVquWGELCFhERAoJsilXBQgELyk6suKAgywtGQFRKUXGpFayADdkm68zkvn9QeIsEMllm7p3k+f6lkzv3PiTk+RzOvXOOzTAMAxERCTohZgcQEZHaUYGLiAQpFbiISJBSgYuIBCkVuIhIkHIE8mKVlZV4vb499GK323w+NpCsmMuKmUC5asKKmcCauayYCfybKzTUXuXrAS1wr9cgP7/Ep2Pj4qJ8PjaQrJjLiplAuWrCipnAmrmsmAn8m6t585gqX9cUiohIkFKBi4gEKRW4iEiQUoGLiAQpFbiISJBSgYuI1MC6w6u5enlHWj7XhKuXd2Td4dWmZQnoY4QiIsFs3eHVpG0bRamnFICjriOkbRsFwMjrhgc8j0bgIiI+ysqZcqa8Tyv1lJKVM8WUPCpwEREffes6WqPX/U0FLiLio4ucCTV63d9U4CIiPsrsOplIR+RZr0U6IsnsOtmUPCpwEREfDWk/jLk9F5DgbIMNGwnONsztuYAh7YeZkkdPoYiI1MCQ9sNMK+wf0ghcRCRIqcBFRIKUClxEJEipwEVE/MXjIXLhH2lyx2Aoqf/NHlTgIiJ+4PjwA+L69sI5aQJGeARERNT7NVTgIiL1yFZYgHNCOnH9Egk5cZyCxcspXLYSQuq/bvUYoYhIfTAMwl7dgDNzHCEnjlN27+8onjAJI7aJ3y6pAhcRqaOQf36NfdJYmrz5Ju4rO1G4/GU8V13j9+uqwEVEasvtJvL5BUTPmQl2O66pMygd+QA4AlOtmgMXEakFx/s5NO19A85pj1OR2AfPgYOUPvDwWeXt780fVOAiIjVgyzuJM20UTQcmYXO5KPjLKgr//BdIOHtFwtObPxx1HcHAOLP5Q32WuApcRMQXhkH46peJv/5aIl7+CyUPpXBy5x4qkm6u8vBAbP6gOXARkWrYv/wc59g0wnZux31NZ4pWZ+O94soLvicQmz9oBC4icj5lZUTNmk7THt1wfPwRRbPmkb/p7WrLGwKz+YMKXEQsw0o7vofu3E7Tnt2Inv0k5QNu5eSufZQNH+nzB3ICsfmDplBExBIutON7INfftn3/Pc7JE4lYuwrvJT8lf9UG3L161/g8pzNn5UzhW9dRLnImkNl1cr3+WVTgImKadYdXnym4EFsIXsN71tdP3/QLSIFXVhKxYjnRUx/DVlxMcdpYSh4ZA5GR1b/3PPy9+YMKXERM8cMR9w/L+7RA7Phu/+QQMRmphO7JoaL7DbhmzcPb/jK/X7euVOAiYoqqHrOril93fC8pIXrOTCKfX4ARG0vhM89TfsevwWbz3zXrkQpcREzhy8janzu+h73zFs7x6di/+Seld/6G4semYjRr5pdr+YueQhERU5xvZG232f2643vIse+IHXk3TX6djBERQX72G7iefi7oyhs0AhcRk2R2nXzWHDicGnH7o7QB8HqJ+POLRE+fis3jpnjCJEoefgTCwur/WgGiAhcRUwTiMbvTHB9/iDM9ldCPP6SiZyJFM+dS+dO29X6dQFOBi4hp/P2Ync1VRNST04j800KMZj+icOESygcNCZqblNVRgYtIw2MYhG36K87MsYQc+46ye+6lOHMyRpM4s5PVKxW4iDQoIUe+wTkhnfDNb+L5+RXkL3kJzzWdzY7lF3oKRUQaBrebyGefJv7G6wj7353sfjiZS+/Jp9n7vzR9XRV/0QhcRIKeY+/7xKSn4vjk75T368+a+27i/k8fp7TU3HVV/M2nEfjSpUvp378/AwYMIC0tjfLyco4cOUJycjJ9+vQhNTWViooKf2cVETmLLT8PZ3oqcQOSsBXkU7B0JYXLX2bC18/6fTMFK6i2wI8fP87y5ctZt24dr732Gl6vl02bNjF79myGDx/O22+/TWxsLGvXrg1EXhGRU7vjrFtNfPdrifjLUkrvf4i8/91DxS0DgMBspmAFPo3AvV4vZWVleDweysrKaN68OTk5OfTt2xeAwYMHs2XLFr8GFREB4IsvaJI8iNgH78N78cXkv72d4qkzMJwxZw4JxGYKVlDtHHjLli2599576dWrF+Hh4Vx//fV07NiR2NhYHP/ZfblVq1YcP3682ovZ7Tbi4qJ8Cma3h/h8bCBZMZcVM4Fy1YQVM4HFcpWXEzL7KUKenAHh4XifWQC/ux+n3X7OoVmJWTz4+u8p8ZSceS3KEUVWYpbf/jxmfK+qLfCCggK2bNnCli1biImJ4ZFHHmHnzp21upjXa5CfX1L9gUBcXJTPxwaSFXNZMRMoV01YMRNYJ1forp04M1Kxf/E5lcnDyHtsGpUtW0FReZXH35wwiDk9K875lOfNCYP89ufx5/eqefOYKl+vtsB3795NQkIC8fHxACQlJbF//34KCwvxeDw4HA6OHTtGy5Yt6zexiDR6ttxcnI9nErFqJd6LLyH/lXVE334blT4Upb8/5WkF1c6Bt27dmo8//pjS0lIMw+C9997j0ksvpUuXLrz11lsAbNiwgcTERL+HFZFGorKSiJUvEd/9asLXr6E4NZ2TO3JwJ/YxO5mlVDsC79SpE3379mXw4ME4HA46dOjAHXfcQc+ePRk9ejTz58+nQ4cOJCcnByKviDRw9s8+xZmRSljObiq6dsf11Hy8l11udixLshmGYQTqYm63V3PgfmDFTKBcNWHFTBDgXKWlRM17iqg/Po3hdFI8eRplv7rrnF3gG+P3qtZz4CIi/ha69W1ixo3B/s+vKbvj17gmT8P40Y/MjmV5WgtFRFh3eDVXL+9Iy+eaBHTdkJDjx4i5fzhxvxqCERpK/oZNFC14QeXtI43ARRq5H+4O/9/rhoy8brh/Lur1ErF0MdHTn8BWUU7x2ImUjBoN4eH+uV4DpRG4SCNX1e7w/lw3xP63A8T1/yUxE9Lx/M/V5G1/j5L08SrvWlCBizRyAVs3xOUi+rGJNE3qgf2bbyh87kUK1mbjbXtp/V7HB2ZNGdU3TaGINHIXORM46jpS5ev1JeyNTTgnZmD/9iilvx1B8aTHMeKa1tv5a+JCU0bB9sEfjcBFGrnMrpOJdESe9VqkI5LMrpPrfO6Qb48Se/edNLnnTozYWPJeexvXnKdNK28I/JSRP2kELtLI+WV3eI+HyBdfIHpmFhiVuCY9QenvH4bQ0HpKXXsNaalZFbiI1Ou6IY79+3CmpxJ68ADlffrimjGbyot/Ui/nrg+BmDIKFE2hiEi9sBUW4ByXRtzNvQn59/cULH6Jwr+stlR5g3+njAJNI3ARqRvDIDx7PdGPjifk399Tet8DlIx/FCMm1uxkVfLLlJFJVOAiUmshX/+DmHFphL27BXenqyhcsRpPp6vMjlWthrLUrApcRGquooKo554hau4sDEcorqyZlN57P1SxO474jwpcRGokNGc3zoxUHJ99SvmA23BlzaTyx63NjtUoqcBFxCe2k7lET5lE5Mt/wdvmYgpWrKaiTz+zYzVqKnARuTDDIHzVSpxTHsVWUEDJH1IpHjMOoqPNTtboqcBF5Pw+/ZQmDz5I2K6duK+9jqLZT+P9eUezU8l/qMBF5FylpUQ9PQfHgnkYUdEUzXmGsrvuPmd3HDGXfhoicpbQbVuJ79GV6LmzMJKHcXL3B5T9drjP5d1QVvoLBipwEQHAduIEMb8fSdywQRghIeSvyca7dBlG8+Y+n+P0Sn9HXUcwMM6s9KcS9w8VuEhjV1lJxLIlxHe/hvDXsikeM468be/h7tGrxqdqSCv9BQPNgYs0Yva/HyQmI5XQfXuouOEmXLPm4b30Z7U+X0Na6S8YaAQu0hgVFxM9ZRJNf3kj9n98SeGzCylY99c6lTecf0W/YFzpLxiowEUsJBA3AMPeeoP4G68j6o9PU3bnbzi5+wPKh90JNludz92QVvoLBppCEbEIf2/1FfKvb3FOHEv463/Fc3kH8l59C0/XbnU+739rSCv9BQMVuIhFXOgGYJ13x1m8kKgns7BVenE9+jilv/8DhIXVMXHVGspKf8FABS5iEf64Aej48AOcGaMJPfAR5b374HpyDpU/uaTW5xNr0Ry4iEXU5w1AW2EBzgnpxPVLJOT4MQr+tIzClWtV3g2MClzEIurlBqBhEPbqBppe35mIJS9Sdu/vyNu1l4pbB9fLTUqxFk2hiFhEXW8Ahvzza5zjxxC+5W3cV3aicPnLeK66xp+RxWQqcBELqdUNQLebyOcXED1nJkaIHdfUGZSOfAAc+vVu6PQTFglijvdziMl4BMenn1B+y0Bc02dR2fois2NJgKjARYKQLe8k0VMnE/mXZXgT2lDw0ioq+t5sdiwJMBW4SDAxDMLXvILz8UxseXmUPJRCcfp4cDrNTiYmUIGLBAn7l5/jHJtG2M7tuK/pTNHqbLxXXGl2LDGRHiMUCaBarXVSVkbUrOk07dENx8cfUTRrHvmb3lZ5i0bgIoFyobVORl43vMr3hO7cjnPsaBxffkHZ7UNxTZmB0bJloCKLxWkELhIgNdnswPb998Q89DvihgzE5vWSv2oDRS8sUXnLWTQCFwkQn9Y6qawkYsVyoqc+hq24mOK0sZQ8MgYiI6t8rzRuKnCRALnImcBR15EqXwewf3Lo1O44e3Ko6H7Dqd1x2l8W6JgSRHyaQiksLCQlJYV+/fpx88038+GHH5Kfn8+IESNISkpixIgRFBQU+DuriCXUdtOF8611Mvl/xhMycQJNe9+A/YvDFD7zPAUbNqm8pVo+FXhWVhY33ngjb775JtnZ2bRr145FixbRrVs3Nm/eTLdu3Vi0aJG/s4qYri67rg9pP4y5PReQ4GyDDRsJzjasDf8dI+6dhX32U5QNu5OTuz6g/Fd3aeEp8Um1BV5UVMTevXsZOnQoAGFhYcTGxrJlyxYGDRoEwKBBg3jnnXf8m1TEAuq66/qQ9sPYf/ff+f72T/li+zXckvEMRkQEni1bcc3/I0azZv6ILQ1UtXPgR48eJT4+ngkTJvDpp5/SsWNHMjMzyc3NpUWLFgA0b96c3Nzcai9mt9uIi4vyKZjdHuLzsYFkxVxWzAQNM9eFbkT6dE6vl5AXnifksUngduN9YipG2hjskRHEeStrlcmfrPgztGImMCdXtQXu8Xg4dOgQkyZNolOnTkybNu2c6RKbzYbNh3/yeb0G+fklPgWLi4vy+dhAsmIuK2aChpnrQjciqzun48BHONMfwf7Rh1T0TKRo5lwqf9oWSjzEhVU2uO+Vv1gxE/g3V/PmMVW+Xu0USqtWrWjVqhWdOnUCoF+/fhw6dIhmzZpx4sQJAE6cOEF8fHw9xhWxptpsumBzFRH96Djiknpi//ZbChcuoWDVhlPlLVIH1RZ48+bNadWqFV999RUA7733Hu3atSMxMZGNGzcCsHHjRnr37u3fpCIWUNWNyLk9F1S9hrdhEPbaqzS9vjORL75A2d0jOLl7H+WDh+ompdQLn54DnzRpEunp6bjdbtq0acOMGTOorKwkNTWVtWvX0rp1a+bPn+/vrCKW4MumCyFHvsE5IZ3wzW/i6Xgl+UtewnNN5wAllMbCpwLv0KED69evP+f1ZcuW1XsgkaDmdhO58DmiZ88AwPV4FqX3P6jdccQv9LdKpJ449r5PTHoqjk/+Tnm/W3BNf4rKhDZmx5IGTAUuUke2/Dyip00h4qU/U/nj1hQsXUnFLQPMjiWNgApcpLYMg/D1a3BOmoDtZC6l9z9EybiJGM6qH/kSqW8qcJFaCPnqS2LGpRG2/V3cV12Na9V6PFd2MjuWNDIqcJGaKC8n6tn5RM2fjREWTtGM2ZQNHwl2u9nJpBHShg7SYNR2lUBfhe7aSdNe3YmemUV5v/7k7dpL2cj7Vd5iGo3ApUG40HZl1T2zXR1bbi7OxzOJWLUS78WXkP/KOtyJfeqcWaSuNAKXBqGuqwRWqbKSiJUvEd/9asLXrabkkTGc3JGj8hbL0AhcGgSftiurAftnn+LMSCUsZzfuLt0oemo+3ss71CWiSL3TCFwahNPbkvn6+nmVlhI1/QmaJl6P49NDFM17lvzsN1TeYkkqcGkQarNK4A+Fbn2b+Ju6ED1/NuWDh3Jy937K7robQvRrItakKRRpEE7fqMzKmcK3rqNc5Ewgs+tkn25ghhw/RvSj44nIXo+n3aXkr38N9w03+TuySJ2pwKXB8GWVwLN4vUQsXUz09CewVZRTPHYiJaNGQ3i4/0KK1CMVuDRK9r8dICbjEUL3f0DFjT1xPTUXb9tLzY4lUiOa3JPGxeUiZGw6TZN6YP/mGwr/uIiCtdkqbwlKGoFLoxH2xiacEzOwf3uU0t+OoHjS4xhxTc2OJVJrKnBp8EK+PYpzQgbhb27C0+HneFbuwNXhf8yOJVJnmkKRhsvjIfL5Z4m/vjNh27fimvQEee/sxOjW3exkIvVCI3BpkBz79+FMTyX04AHK+/TFNWM2lRf/xOxYIvVKBS4Niq2wgOisKUQsXUxly1YULH6JigG3ahd4aZBU4NIwGAbh2euJfnQ8If/+ntL7HqBk/KMYMbFmJxPxGxW4BL2Qr/9BzPgxhG19B3enqyhcsRpPp6vMjiXid7qJKcGrooKo+bOJv6kLjj3v48qaSf6bW30qb39v/iASCBqBS1AKzdmNMyMVx2efUj5wEK5pT1L549Y+vfflgyv9tvmDSCBpBC5BxXYyF2fqw8Td2g9bSQkFK1ZTuHi5z+UNMGnbo/W/+YOICTQCl+BgGISvWolzyqPYCgooGTWa4rSxEB1d41MdKTxS5eu13fxBxCwqcLE8++eHcY4dTdiunbg7dzm1O87PO9b6fG1i2/BN4TfnvF7jzR9ETKYpFLGusjKinpxG057dcBz8G0VzniH/r2/VqbwBpvacVufNH0SsQCNwsaTQ7e/iHDsaxz++omzoHbgez8Jo0aJezn3nFb+mpKSiVps/iFiJClwsxXbiBM7HJhCxfg2etu3IX5ONu0ever9OjTd/ELEgFbhYQ2UlES8tJXrqZGxlpRSnj6ckJQ0iIsxOJmJZKnAxnf3vB4nJSCV03x4qbrgJ16x5eC/9mdmxRCxPBS7mKS4mevaTRL7wLEZcHIXPLqQ8+VdaeErERypwMUXY5jdwTsjAfuQbSn9zD8WTpmA0jTc7lkhQ0WOEjYgV1v8I+de3xI74DU1+cwdGdDR5r76Fa+4ClbdILWgE3kisO7za3PU/PB4iFy8k6sksbF4PrszJlD44CsLC/H9tkQZKI/BGIitnimnrfzg+2k9cv0Sckybg7tqNkzvep/SRMSpvkTpSgTcS51vnw6/rfxQWEj0xg7h+iYQcP0bBn5ZRuHItlZf81OdTWGHaR8SqVOCNxPnW+fDL+h+GQdirG3Bc2ZHIxYsoG3Efebv2UnHr4Bo9YXJ62ueo6wgGxplpH5W4yCk+F7jX62XQoEE88MADABw5coTk5GT69OlDamoqFRUVfgspdZfZdXJA1v8I+efXxP56KE3uuwdatiL/za24ZszGiG1S43OZOe0jEgx8LvDly5fTrl27M/8/e/Zshg8fzttvv01sbCxr1671S0CpH0PaD2NuzwUkONtgw0aCsw1zey6ovxuYbjeRz8wl/qYuhL23G9fUGXh2v4fnqmtqfUpTpn1EgohPBX7s2DG2bdvG0KFDATAMg5ycHPr27QvA4MGD2bJli/9SSr0Y0n4Y++/+O8cfKmD/3X+vt/J2vJ9D09434Jz2OBU9e3Ny115KH3gYHHV7yCmg0z4iQcin37Dp06eTkZFBcXExAHl5ecTGxuL4zy9oq1atOH78eLXnsdttxMVF+RTMbg/x+dhAsmIu0zKdPIk9cyIhi/+EcfHFeNZtIGTgQE7vA1/XXFmJWTz4+u8p8ZSceS3KEUVWYladzqufoe+smMuKmcCcXNUW+Lvvvkt8fDxXXHEF77//fp0u5vUa5OeXVH8gEBcX5fOxgWTFXAHPZBiEr12Fc/JEbHl5lDyUQnH6eHA64b9y1DXXzQmDmNPz3GVfb04YVKfz6mfoOyvmsmIm8G+u5s1jqny92gLfv38/W7duZceOHZSXl+NyucjKyqKwsBCPx4PD4eDYsWO0bNmy3kOL9di//Bzn2DTCdm7Hfc21FK3OxnvFlX67npZ9FTm/aufAx4wZw44dO9i6dStz586la9euzJkzhy5duvDWW28BsGHDBhITE/0eVkxUVkbUrOk07dENx8cfUTRrHvmb3vFreYvIhdX6OfCMjAz+/Oc/06dPH/Lz80lOTq7PXGIhoTu307RXd6JnP0n5gFs5uWsfZcNHQog+RiBipho9JtClSxe6dOkCQJs2bfToYANn+/57nJMnErF2Fd5Lfkr+qg24e/U2O5aI/IcWs5JzVVYSsWI50VMfw1ZcTHFaBiWPpENkZPXvFZGAUYHLWeyfHDq1O86eHCq6XY/rqfl4219mdiwRqYIKXE4pKSF6zkwin1+AERtL4TPPU37Hr7U7joiF6S6UEPbOW8Tf1IWoBfMoS/4VJ3d9QPmv7jpveWuFQBFr0Ai8EQs59h3OzHGE/3UjnvaXkZ/9Bu5u11/wPaZvDCEiZ2gE3hh5vUT86QWadr+WsLffpHjCJPK27qq2vEErBIpYiUbgjYzjwEc40x8h9KMPqeiZSNHMuVT+tK3P79cKgSLWoRF4I2FzFRH96Djiknpi//ZbChcuoWDVhhqVN2iFQBErUYE3dIZB2Guv0vT6zkS++AJld4/g5O59lA8eWqsnTAK1MYSIVE9TKA1YyJFvcE7MIPytN/D8/AryFy/Hc+11dTrn6RuVP1whUDcwRQJPBd4Qud1ELnyO6NkzAHBNnkbp/Q9CaGi9nF4rBIpYgwq8gXHs20NMeiqOQwcp73cLrulPUZnQxuxYIuIHKvAGwlaQT/S0KUQsX0Llj1tTsHQlFbcMMDuWiPiRCjzYGQa2V14hfkwattx/U3r/Q5SMm4jhrHoHDxFpOFTgQSzkqy+JGZeGY/u7uK+6Gtcr6/Bc2cnsWCISIHqM0AQXWkvEp3VGysuJmjOT+B5dcXywD+/Tz5D/+pY6lbfWNxEJPhqBB9iF1hIBql1nJHT3/+LMSMXx+WHKbrud4qkziL283VmbCddnJj1tImJdGoEH2IXWErnQ12y5ucSkPEjcoFuwlVeQ/8o6il5cSmWrH/s1k4hYl0bgAVbjtUQM6LPzCPHTr8FWWEjJI2MoHp0BUVHmZRIRS9AIPMAutJbID792+fewbSksyQbvzy4jb+suijMn12t5V5dJRKxLBR5gF1pL5PTXItwwdQt8/DxccQK2jb+H/Ow38F7eIeCZRMS6NIUSYNWtJZLw/kGunLeAn+R6WXNNFMWPZ9G/y0hTM4mINdkMwzACdTG320u+j09LxMVF+XxsIPkrl+34cZyPjSdiwzo87S7F9dR83DfcVKdM6w6vNrWUG9vPsC6smAmsmcuKmcC/uZo3r/qDeRqBm62ykohlS4jOmoKtvIzisRMpGTUawsPrdFo9GijS8GkO3ET2g38jrv8viRmXhqfTVeRtf4+S9PF1Lm/Qo4EijYFG4GZwuYh+agaRi57DaBpP4XMvUj5kWK02WDgfPRoo0vBpBB5gYW9sIv7G64h6fgFlv/4tJ3ftpXzoHfVa3qBHA0UaAxV4gIR8e5TYu++kyT13YsTGkvfXzbjmPIPRNP6s4+prTRI9GijS8GkKxd88HiL/9ALRT2aBUYnr0SmUPviHKnfHqc8bj3o0UKThU4H7kWP/PpzpqYQePED5L5NwzZhN5U8uOe/xF7rxWJvi1dZnIg2bplDOoy5TGbbCApzj0oi7uTch//6egsUvUbhizQXLG3TjUURqRgVehdNTGUddRzAwzkxlVFvihkH4xnU07X4tEcuWUHrfA+Tt2kvFwNt8ukmpG48iUhMq8CrU5hnqkK//QZM7hxB7/wgqf9ya/De3Upw1CyMm1ufr6sajiNSE5sCrUKOpjIoKop57hqi5szAcobiyZlJ67/1gt9f4urrxKCI1oQKvwkXOBI66jlT5+n8Lzdl9aneczz6lfMBtuLJmUvnj1nW6tm48ioivNIVSheqmMmwnc3GmPkzcrf2wlZRQsGI1hUteqnN5i4jUhEbgVTjvVMbPkrEtX078uAxsBQWU/CGV4jHjIDra5MQi0hipwM/jh1MZ9s8P47x9AI5dO3Ffex1Fs5/G+/OOtTq32cu8ikjDoAKvTlkZUfNnE7VgHkZUNJ7nnif/9jshpHazT1rmVUTqS7Ut9N133/Hb3/6WW265hf79+7Ns2TIA8vPzGTFiBElJSYwYMYKCggK/h62puq4rErr9XZr26Er03FmU33Y7J3ftw7jvd7Uub9AyryJSf6ptIrvdzvjx43n99ddZtWoVK1eu5IsvvmDRokV069aNzZs3061bNxYtWhSIvD6r9YdxANuJE8T8fiRxybcBkL8mm6LnXsRo0aLOufRpSxGpL9UWeIsWLejY8dRcr9PppG3bthw/fpwtW7YwaNAgAAYNGsQ777zj36Q1VKuR7n92x4nvfg3hr2VTPGYcedtzcPfoVW+59GlLEakvNZoDP3r0KJ988gmdOnUiNzeXFv8ZkTZv3pzc3Nxq32+324iLi/LpWnZ7iM/HVuVCI90qz3vgAPY/PERITg6VPXrgefY5wi67jLB6zpWVmMWDr/+eEs//750X5YgiKzGr1uetayZ/US7fWTETWDOXFTOBObl8LvDi4mJSUlKYOHEiTqfzrK/ZbDZsPqz14fUaAdvU+EIfxjnrvMXFRM9+ksgXnsWIi6NwwQuUD7vz1NolVVy/rrluThjEnJ4V5zyFcnPCoFqftzFu8loXVsxlxUxgzVxWzAQW3tTY7XaTkpLCwIEDSUpKAqBZs2acOHGCFi1acOLECeLj46s5S2Bldp181tMecO66ImGb38A5IQP7kW8ovetuiidNwe1CL9QAAAgrSURBVIhv5vds+rSliNSHaufADcMgMzOTtm3bMmLEiDOvJyYmsnHjRgA2btxI7969/ZeyFoa0H8bcngtIcLbBho0EZxvm9lzAkPbDCPnXt8SO+A1NfnMHRlQU+a++iWveswEpbxGR+mIzDMO40AH79u3jrrvuon379oT85/G5tLQ0fvGLX5Camsp3331H69atmT9/PnFxcRe8mNvtDdgUSpW8XiIXLyRqxjRsXg/FY8ZR+uAoCPvhTHeAc9WRFTOBctWEFTOBNXNZMRNYdArl2muv5bPPPqvya6efCfen+vrUouOj/ad2xznwERWJv6ToyTlUXvJTPyQWEQkMS38Ssz4+tWgrKiRqxlQil7xI5Y+aU/jiUspvHVzvu8CLiASapVcjrNOnFg2DsL9upOn1nYlcvIiy4SPJ272P8ttuV3mLSINg6RF4bT+1GPLNP3GOH0P4O5txX/ELCpeuwHP1tf6IKCJiGkuPwGv8qUW3m8hn5hF/43WE7d6Fa+oM8jdvU3mLSINk6QKvyR6Rjj3v0/SXN+KcNpmKnr05uWsvpQ88DA5L/yNDRKTWLF3gF3qW+zRb3kmcY1JoOqAPtsJCCpa/QuGylVRepLVFRKRhs/zw9LyfWjQMwteuwjl5Ira8PEoeHEVxxgT4wcf8RUQaKssXeFXsX36Oc+wYwnZuw33NtRStzsZ7xZVmxxIRCajgKvCyMqIWzCPq6TkYEZEUzZxL2d0jwG43O5mISMAFTYGH7tyOc+xoHF9+QdntQ3FNmYHRsqXZsURETGPpm5inRS56jrghA7F5POSv2kDRC0tU3iLS6AXFCNzb7lJck56g9L4HIDKy+jeIiDQCQVHgFb2ToHeS2TFERCwlKKZQRETkXCpwEZEgpQIXEQlSKnARkSClAhcRCVIqcBGRIKUCFxEJUipwEZEgZTMMwzA7hIiI1JxG4CIiQUoFLiISpFTgIiJBSgUuIhKkVOAiIkFKBS4iEqRU4CIiQcpyGzpMmDCBbdu20axZM1577TWz4wDw3XffMXbsWHJzc7HZbAwbNox77rnH7FiUl5dz1113UVFRgdfrpW/fvqSkpJgdCwCv18uQIUNo2bIlCxcuNDsOAImJiURHRxMSEoLdbmf9+vVmRwKgsLCQRx99lMOHD2Oz2Zg+fTpXXXWVaXm++uorRo8efeb/jxw5QkpKCsOHDzct02lLly5lzZo12Gw22rdvz4wZMwgPDzc107Jly1izZg2GYZCcnBzY75NhMXv27DEOHjxo9O/f3+woZxw/ftw4ePCgYRiGUVRUZCQlJRmff/65yakMo7Ky0nC5XIZhGEZFRYUxdOhQ48MPPzQ51SlLliwx0tLSjPvvv9/sKGf06tXLyM3NNTvGOcaOHWusXr3aMAzDKC8vNwoKCkxO9P88Ho/RvXt34+jRo2ZHMY4dO2b06tXLKC0tNQzDMFJSUox169aZmumzzz4z+vfvb5SUlBhut9u45557jK+//jpg17fcFErnzp1p0qSJ2THO0qJFCzp27AiA0+mkbdu2HD9+3ORUYLPZiI6OBsDj8eDxeLDZbCangmPHjrFt2zaGDh1qdhTLKyoqYu/evWe+V2FhYcTGxpqc6v+99957tGnThosuusjsKMCpf9mVlZXh8XgoKyujRYsWpub58ssv+cUvfkFkZCQOh4POnTuzefPmgF3fcgVudUePHuWTTz6hU6dOZkcBTv2Fvu222+jevTvdu3e3RK7p06eTkZFBSIj1/nqNHDmS22+/nVWrVpkdBTj19yk+Pp4JEyYwaNAgMjMzKSkpMTvWGZs2bWLAgAFmxwCgZcuW3HvvvfTq1YsbbrgBp9PJDTfcYGqm9u3b88EHH5CXl0dpaSk7duzg2LFjAbu+9X7DLKy4uJiUlBQmTpyI0+k0Ow4Adrud7Oxstm/fzoEDBzh8+LCped59913i4+O54oorTM1RlZdffpkNGzbw4osvsmLFCvbu3Wt2JDweD4cOHeLOO+9k48aNREZGsmjRIrNjAVBRUcHWrVvp16+f2VEAKCgoYMuWLWzZsoWdO3dSWlpKdna2qZnatWvHfffdx8iRI7nvvvu4/PLLAzpwUYH7yO12k5KSwsCBA0lKSjI7zjliY2Pp0qULO3fuNDXH/v372bp1K4mJiaSlpZGTk0N6erqpmU5r2bIlAM2aNaNPnz4cOHDA5ETQqlUrWrVqdeZfTv369ePQoUMmpzplx44ddOzYkR/96EdmRwFg9+7dJCQkEB8fT2hoKElJSXz44YdmxyI5OZn169ezYsUKmjRpwiWXXBKwa6vAfWAYBpmZmbRt25YRI0aYHeeMkydPUlhYCEBZWRm7d++mbdu2pmYaM2YMO3bsYOvWrcydO5euXbsye/ZsUzMBlJSU4HK5zvz3rl27+NnPfmZyKmjevDmtWrXiq6++Ak7NObdr187kVKds2rSJ/v37mx3jjNatW/Pxxx9TWlqKYRiW+V7l5uYC8K9//YvNmzczcODAgF3bco8RpqWlsWfPHvLy8rjpppsYNWoUycnJpmb64IMPyM7Opn379tx2221ncvbo0cPUXCdOnGD8+PF4vV4Mw6Bfv3706tXL1ExWlZuby8MPPwycum8wYMAAbrrpJpNTnTJp0iTS09Nxu920adOGGTNmmB2JkpISdu/ezRNPPGF2lDM6depE3759GTx4MA6Hgw4dOnDHHXeYHYtRo0aRn5+Pw+Fg8uTJAb0JrfXARUSClKZQRESClApcRCRIqcBFRIKUClxEJEipwEVEgpQKXEQkSKnARUSC1P8Bt873lMDriDgAAAAASUVORK5CYII=\n", 1201 | "text/plain": [ 1202 | "
" 1203 | ] 1204 | }, 1205 | "metadata": {} 1206 | } 1207 | ] 1208 | }, 1209 | { 1210 | "cell_type": "code", 1211 | "metadata": { 1212 | "colab": { 1213 | "base_uri": "https://localhost:8080/" 1214 | }, 1215 | "id": "FtxSRQ316asF", 1216 | "outputId": "979e1428-1195-4d07-b6b3-c35e6f69dad2" 1217 | }, 1218 | "source": [ 1219 | "#Making Predictions\n", 1220 | "# testing the model\n", 1221 | "y_pred = model.predict(X_test)\n", 1222 | "\n", 1223 | "#checking accuracy of our model\n", 1224 | "data = pd.DataFrame({\"Actual\" : y_test,\"Predicted\":y_pred})\n", 1225 | "print(data)" 1226 | ], 1227 | "execution_count": 28, 1228 | "outputs": [ 1229 | { 1230 | "output_type": "stream", 1231 | "name": "stdout", 1232 | "text": [ 1233 | " Actual Predicted\n", 1234 | "0 30 28.617714\n", 1235 | "1 24 20.888033\n", 1236 | "2 85 76.928222\n", 1237 | "3 67 61.468859\n", 1238 | "4 41 46.009497\n" 1239 | ] 1240 | } 1241 | ] 1242 | }, 1243 | { 1244 | "cell_type": "code", 1245 | "metadata": { 1246 | "colab": { 1247 | "base_uri": "https://localhost:8080/" 1248 | }, 1249 | "id": "Umd2Wep96oqJ", 1250 | "outputId": "05d3bee2-5e64-488b-8301-9307bff3f73d" 1251 | }, 1252 | "source": [ 1253 | "#Evaluating the model\n", 1254 | "from sklearn import metrics as mts\n", 1255 | "\n", 1256 | "#mean abolute error\n", 1257 | "mean_abs_error = mts.mean_absolute_error(y_test,y_pred)\n", 1258 | "\n", 1259 | "print(\"Mean Absolute Error : \",mean_abs_error)" 1260 | ], 1261 | "execution_count": 29, 1262 | "outputs": [ 1263 | { 1264 | "output_type": "stream", 1265 | "name": "stdout", 1266 | "text": [ 1267 | "Mean Absolute Error : 4.621333622532767\n" 1268 | ] 1269 | } 1270 | ] 1271 | }, 1272 | { 1273 | "cell_type": "code", 1274 | "metadata": { 1275 | "id": "Af7BR4H46xjK" 1276 | }, 1277 | "source": [ 1278 | "" 1279 | ], 1280 | "execution_count": null, 1281 | "outputs": [] 1282 | } 1283 | ] 1284 | } --------------------------------------------------------------------------------