├── .github └── FUNDING.yml ├── .gitignore ├── LICENSE ├── README.md └── bert_summarizer_notebook.ipynb /.github/FUNDING.yml: -------------------------------------------------------------------------------- 1 | custom: ['https://www.buymeacoffee.com/bhattbhavesh91'] 2 | -------------------------------------------------------------------------------- /.gitignore: -------------------------------------------------------------------------------- 1 | MANIFEST 2 | build 3 | dist 4 | _build 5 | docs/man/*.gz 6 | docs/source/api/generated 7 | docs/source/config.rst 8 | docs/gh-pages 9 | notebook/i18n/*/LC_MESSAGES/*.mo 10 | notebook/i18n/*/LC_MESSAGES/nbjs.json 11 | notebook/static/components 12 | notebook/static/style/*.min.css* 13 | notebook/static/*/js/built/ 14 | notebook/static/*/built/ 15 | notebook/static/built/ 16 | notebook/static/*/js/main.min.js* 17 | notebook/static/lab/*bundle.js 18 | node_modules 19 | *.py[co] 20 | __pycache__ 21 | *.egg-info 22 | *~ 23 | *.bak 24 | .ipynb_checkpoints 25 | .tox 26 | .DS_Store 27 | \#*# 28 | .#* 29 | .coverage 30 | .pytest_cache 31 | src 32 | 33 | *.swp 34 | *.map 35 | .idea/ 36 | Read the Docs 37 | config.rst 38 | 39 | /.project 40 | /.pydevproject 41 | 42 | package-lock.json 43 | geckodriver.log 44 | -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | Apache License 2 | Version 2.0, January 2004 3 | http://www.apache.org/licenses/ 4 | 5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 6 | 7 | 1. Definitions. 8 | 9 | "License" shall mean the terms and conditions for use, reproduction, 10 | and distribution as defined by Sections 1 through 9 of this document. 11 | 12 | "Licensor" shall mean the copyright owner or entity authorized by 13 | the copyright owner that is granting the License. 14 | 15 | "Legal Entity" shall mean the union of the acting entity and all 16 | other entities that control, are controlled by, or are under common 17 | control with that entity. For the purposes of this definition, 18 | "control" means (i) the power, direct or indirect, to cause the 19 | direction or management of such entity, whether by contract or 20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the 21 | outstanding shares, or (iii) beneficial ownership of such entity. 22 | 23 | "You" (or "Your") shall mean an individual or Legal Entity 24 | exercising permissions granted by this License. 25 | 26 | "Source" form shall mean the preferred form for making modifications, 27 | including but not limited to software source code, documentation 28 | source, and configuration files. 29 | 30 | "Object" form shall mean any form resulting from mechanical 31 | transformation or translation of a Source form, including but 32 | not limited to compiled object code, generated documentation, 33 | and conversions to other media types. 34 | 35 | "Work" shall mean the work of authorship, whether in Source or 36 | Object form, made available under the License, as indicated by a 37 | copyright notice that is included in or attached to the work 38 | (an example is provided in the Appendix below). 39 | 40 | "Derivative Works" shall mean any work, whether in Source or Object 41 | form, that is based on (or derived from) the Work and for which the 42 | editorial revisions, annotations, elaborations, or other modifications 43 | represent, as a whole, an original work of authorship. For the purposes 44 | of this License, Derivative Works shall not include works that remain 45 | separable from, or merely link (or bind by name) to the interfaces of, 46 | the Work and Derivative Works thereof. 47 | 48 | "Contribution" shall mean any work of authorship, including 49 | the original version of the Work and any modifications or additions 50 | to that Work or Derivative Works thereof, that is intentionally 51 | submitted to Licensor for inclusion in the Work by the copyright owner 52 | or by an individual or Legal Entity authorized to submit on behalf of 53 | the copyright owner. For the purposes of this definition, "submitted" 54 | means any form of electronic, verbal, or written communication sent 55 | to the Licensor or its representatives, including but not limited to 56 | communication on electronic mailing lists, source code control systems, 57 | and issue tracking systems that are managed by, or on behalf of, the 58 | Licensor for the purpose of discussing and improving the Work, but 59 | excluding communication that is conspicuously marked or otherwise 60 | designated in writing by the copyright owner as "Not a Contribution." 61 | 62 | "Contributor" shall mean Licensor and any individual or Legal Entity 63 | on behalf of whom a Contribution has been received by Licensor and 64 | subsequently incorporated within the Work. 65 | 66 | 2. Grant of Copyright License. Subject to the terms and conditions of 67 | this License, each Contributor hereby grants to You a perpetual, 68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable 69 | copyright license to reproduce, prepare Derivative Works of, 70 | publicly display, publicly perform, sublicense, and distribute the 71 | Work and such Derivative Works in Source or Object form. 72 | 73 | 3. Grant of Patent License. Subject to the terms and conditions of 74 | this License, each Contributor hereby grants to You a perpetual, 75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable 76 | (except as stated in this section) patent license to make, have made, 77 | use, offer to sell, sell, import, and otherwise transfer the Work, 78 | where such license applies only to those patent claims licensable 79 | by such Contributor that are necessarily infringed by their 80 | Contribution(s) alone or by combination of their Contribution(s) 81 | with the Work to which such Contribution(s) was submitted. If You 82 | institute patent litigation against any entity (including a 83 | cross-claim or counterclaim in a lawsuit) alleging that the Work 84 | or a Contribution incorporated within the Work constitutes direct 85 | or contributory patent infringement, then any patent licenses 86 | granted to You under this License for that Work shall terminate 87 | as of the date such litigation is filed. 88 | 89 | 4. Redistribution. You may reproduce and distribute copies of the 90 | Work or Derivative Works thereof in any medium, with or without 91 | modifications, and in Source or Object form, provided that You 92 | meet the following conditions: 93 | 94 | (a) You must give any other recipients of the Work or 95 | Derivative Works a copy of this License; and 96 | 97 | (b) You must cause any modified files to carry prominent notices 98 | stating that You changed the files; and 99 | 100 | (c) You must retain, in the Source form of any Derivative Works 101 | that You distribute, all copyright, patent, trademark, and 102 | attribution notices from the Source form of the Work, 103 | excluding those notices that do not pertain to any part of 104 | the Derivative Works; and 105 | 106 | (d) If the Work includes a "NOTICE" text file as part of its 107 | distribution, then any Derivative Works that You distribute must 108 | include a readable copy of the attribution notices contained 109 | within such NOTICE file, excluding those notices that do not 110 | pertain to any part of the Derivative Works, in at least one 111 | of the following places: within a NOTICE text file distributed 112 | as part of the Derivative Works; within the Source form or 113 | documentation, if provided along with the Derivative Works; or, 114 | within a display generated by the Derivative Works, if and 115 | wherever such third-party notices normally appear. The contents 116 | of the NOTICE file are for informational purposes only and 117 | do not modify the License. You may add Your own attribution 118 | notices within Derivative Works that You distribute, alongside 119 | or as an addendum to the NOTICE text from the Work, provided 120 | that such additional attribution notices cannot be construed 121 | as modifying the License. 122 | 123 | You may add Your own copyright statement to Your modifications and 124 | may provide additional or different license terms and conditions 125 | for use, reproduction, or distribution of Your modifications, or 126 | for any such Derivative Works as a whole, provided Your use, 127 | reproduction, and distribution of the Work otherwise complies with 128 | the conditions stated in this License. 129 | 130 | 5. Submission of Contributions. Unless You explicitly state otherwise, 131 | any Contribution intentionally submitted for inclusion in the Work 132 | by You to the Licensor shall be under the terms and conditions of 133 | this License, without any additional terms or conditions. 134 | Notwithstanding the above, nothing herein shall supersede or modify 135 | the terms of any separate license agreement you may have executed 136 | with Licensor regarding such Contributions. 137 | 138 | 6. Trademarks. This License does not grant permission to use the trade 139 | names, trademarks, service marks, or product names of the Licensor, 140 | except as required for reasonable and customary use in describing the 141 | origin of the Work and reproducing the content of the NOTICE file. 142 | 143 | 7. Disclaimer of Warranty. Unless required by applicable law or 144 | agreed to in writing, Licensor provides the Work (and each 145 | Contributor provides its Contributions) on an "AS IS" BASIS, 146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or 147 | implied, including, without limitation, any warranties or conditions 148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A 149 | PARTICULAR PURPOSE. You are solely responsible for determining the 150 | appropriateness of using or redistributing the Work and assume any 151 | risks associated with Your exercise of permissions under this License. 152 | 153 | 8. Limitation of Liability. In no event and under no legal theory, 154 | whether in tort (including negligence), contract, or otherwise, 155 | unless required by applicable law (such as deliberate and grossly 156 | negligent acts) or agreed to in writing, shall any Contributor be 157 | liable to You for damages, including any direct, indirect, special, 158 | incidental, or consequential damages of any character arising as a 159 | result of this License or out of the use or inability to use the 160 | Work (including but not limited to damages for loss of goodwill, 161 | work stoppage, computer failure or malfunction, or any and all 162 | other commercial damages or losses), even if such Contributor 163 | has been advised of the possibility of such damages. 164 | 165 | 9. Accepting Warranty or Additional Liability. While redistributing 166 | the Work or Derivative Works thereof, You may choose to offer, 167 | and charge a fee for, acceptance of support, warranty, indemnity, 168 | or other liability obligations and/or rights consistent with this 169 | License. However, in accepting such obligations, You may act only 170 | on Your own behalf and on Your sole responsibility, not on behalf 171 | of any other Contributor, and only if You agree to indemnify, 172 | defend, and hold each Contributor harmless for any liability 173 | incurred by, or claims asserted against, such Contributor by reason 174 | of your accepting any such warranty or additional liability. 175 | 176 | END OF TERMS AND CONDITIONS 177 | 178 | APPENDIX: How to apply the Apache License to your work. 179 | 180 | To apply the Apache License to your work, attach the following 181 | boilerplate notice, with the fields enclosed by brackets "[]" 182 | replaced with your own identifying information. (Don't include 183 | the brackets!) The text should be enclosed in the appropriate 184 | comment syntax for the file format. We also recommend that a 185 | file or class name and description of purpose be included on the 186 | same "printed page" as the copyright notice for easier 187 | identification within third-party archives. 188 | 189 | Copyright [yyyy] [name of copyright owner] 190 | 191 | Licensed under the Apache License, Version 2.0 (the "License"); 192 | you may not use this file except in compliance with the License. 193 | You may obtain a copy of the License at 194 | 195 | http://www.apache.org/licenses/LICENSE-2.0 196 | 197 | Unless required by applicable law or agreed to in writing, software 198 | distributed under the License is distributed on an "AS IS" BASIS, 199 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 200 | See the License for the specific language governing permissions and 201 | limitations under the License. 202 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Text summarization with BERT using bert-extractive-summarizer 2 | 3 | **If you like my work, you can support me by buying me a coffee by clicking the link below** 4 | 5 | Buy Me A Coffee 6 | 7 | ## To view the video 8 | 9 | 10 | 11 | 12 | 13 |
14 | 15 | Or click on the image below 16 | 17 | [![Text summarization with BERT using bert-extractive-summarizer](http://img.youtube.com/vi/pTHBZ6AyzOg/0.jpg)](http://www.youtube.com/watch?v=pTHBZ6AyzOg) 18 | 19 | ### Want to know more about me? 20 | ## Follow Me 21 | 22 | 23 | 24 | 25 | 26 | 27 |

Show your support by starring the repository 🙂

28 | -------------------------------------------------------------------------------- /bert_summarizer_notebook.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "nbformat": 4, 3 | "nbformat_minor": 0, 4 | "metadata": { 5 | "colab": { 6 | "name": "bert-summarizer-notebook.ipynb", 7 | "provenance": [] 8 | }, 9 | "kernelspec": { 10 | "name": "python3", 11 | "display_name": "Python 3" 12 | }, 13 | "accelerator": "GPU", 14 | "widgets": { 15 | "application/vnd.jupyter.widget-state+json": { 16 | "1ddea2fadcf54f54af27b06de3f6bfbb": { 17 | "model_module": "@jupyter-widgets/controls", 18 | "model_name": "HBoxModel", 19 | "state": { 20 | "_view_name": "HBoxView", 21 | "_dom_classes": [], 22 | "_model_name": "HBoxModel", 23 | "_view_module": "@jupyter-widgets/controls", 24 | "_model_module_version": "1.5.0", 25 | "_view_count": null, 26 | "_view_module_version": "1.5.0", 27 | "box_style": "", 28 | "layout": "IPY_MODEL_d3c0f66b77244bef9490b1abb203194d", 29 | "_model_module": "@jupyter-widgets/controls", 30 | "children": [ 31 | "IPY_MODEL_2cdf125675094fde8c360a73f8a22496", 32 | "IPY_MODEL_72dcaad2fb604c16962dfd021e75728b" 33 | ] 34 | } 35 | }, 36 | "d3c0f66b77244bef9490b1abb203194d": { 37 | "model_module": "@jupyter-widgets/base", 38 | "model_name": "LayoutModel", 39 | "state": { 40 | "_view_name": "LayoutView", 41 | "grid_template_rows": null, 42 | "right": null, 43 | "justify_content": null, 44 | "_view_module": "@jupyter-widgets/base", 45 | "overflow": null, 46 | "_model_module_version": "1.2.0", 47 | "_view_count": null, 48 | "flex_flow": null, 49 | "width": null, 50 | "min_width": null, 51 | "border": null, 52 | "align_items": null, 53 | "bottom": null, 54 | "_model_module": "@jupyter-widgets/base", 55 | "top": null, 56 | "grid_column": null, 57 | "overflow_y": null, 58 | "overflow_x": null, 59 | "grid_auto_flow": null, 60 | "grid_area": null, 61 | "grid_template_columns": null, 62 | "flex": null, 63 | "_model_name": "LayoutModel", 64 | "justify_items": null, 65 | "grid_row": null, 66 | "max_height": null, 67 | "align_content": null, 68 | "visibility": null, 69 | "align_self": null, 70 | "height": null, 71 | "min_height": null, 72 | "padding": null, 73 | "grid_auto_rows": null, 74 | "grid_gap": null, 75 | "max_width": null, 76 | "order": null, 77 | "_view_module_version": "1.2.0", 78 | "grid_template_areas": null, 79 | "object_position": null, 80 | "object_fit": null, 81 | "grid_auto_columns": null, 82 | "margin": null, 83 | "display": null, 84 | "left": null 85 | } 86 | }, 87 | "2cdf125675094fde8c360a73f8a22496": { 88 | "model_module": "@jupyter-widgets/controls", 89 | "model_name": "FloatProgressModel", 90 | "state": { 91 | "_view_name": "ProgressView", 92 | "style": "IPY_MODEL_156cc1a1dd494b6fa3872e801619a0d0", 93 | "_dom_classes": [], 94 | "description": "Downloading: 100%", 95 | "_model_name": "FloatProgressModel", 96 | "bar_style": "success", 97 | "max": 434, 98 | "_view_module": "@jupyter-widgets/controls", 99 | "_model_module_version": "1.5.0", 100 | "value": 434, 101 | "_view_count": null, 102 | "_view_module_version": "1.5.0", 103 | "orientation": "horizontal", 104 | "min": 0, 105 | "description_tooltip": null, 106 | "_model_module": "@jupyter-widgets/controls", 107 | "layout": "IPY_MODEL_26e8689652c84532ab352e23bfa7b993" 108 | } 109 | }, 110 | "72dcaad2fb604c16962dfd021e75728b": { 111 | "model_module": "@jupyter-widgets/controls", 112 | "model_name": "HTMLModel", 113 | "state": { 114 | "_view_name": "HTMLView", 115 | "style": "IPY_MODEL_c372a837b7114fe8a8cb82b1a7917942", 116 | "_dom_classes": [], 117 | "description": "", 118 | "_model_name": "HTMLModel", 119 | "placeholder": "​", 120 | "_view_module": "@jupyter-widgets/controls", 121 | "_model_module_version": "1.5.0", 122 | "value": " 434/434 [00:45<00:00, 9.57B/s]", 123 | "_view_count": null, 124 | "_view_module_version": "1.5.0", 125 | "description_tooltip": null, 126 | "_model_module": "@jupyter-widgets/controls", 127 | "layout": "IPY_MODEL_0fe7ee5433f545e29058ba5d1bb2f901" 128 | } 129 | }, 130 | "156cc1a1dd494b6fa3872e801619a0d0": { 131 | "model_module": "@jupyter-widgets/controls", 132 | "model_name": "ProgressStyleModel", 133 | "state": { 134 | "_view_name": "StyleView", 135 | "_model_name": "ProgressStyleModel", 136 | "description_width": "initial", 137 | "_view_module": "@jupyter-widgets/base", 138 | "_model_module_version": "1.5.0", 139 | "_view_count": null, 140 | "_view_module_version": "1.2.0", 141 | "bar_color": null, 142 | "_model_module": "@jupyter-widgets/controls" 143 | } 144 | }, 145 | "26e8689652c84532ab352e23bfa7b993": { 146 | "model_module": "@jupyter-widgets/base", 147 | "model_name": "LayoutModel", 148 | "state": { 149 | "_view_name": "LayoutView", 150 | "grid_template_rows": null, 151 | "right": null, 152 | "justify_content": null, 153 | "_view_module": "@jupyter-widgets/base", 154 | "overflow": null, 155 | "_model_module_version": "1.2.0", 156 | "_view_count": null, 157 | "flex_flow": null, 158 | "width": null, 159 | "min_width": null, 160 | "border": null, 161 | "align_items": null, 162 | "bottom": null, 163 | "_model_module": "@jupyter-widgets/base", 164 | "top": null, 165 | "grid_column": null, 166 | "overflow_y": null, 167 | "overflow_x": null, 168 | "grid_auto_flow": null, 169 | "grid_area": null, 170 | "grid_template_columns": null, 171 | "flex": null, 172 | "_model_name": "LayoutModel", 173 | "justify_items": null, 174 | "grid_row": null, 175 | "max_height": null, 176 | "align_content": null, 177 | "visibility": null, 178 | "align_self": null, 179 | "height": null, 180 | "min_height": null, 181 | "padding": null, 182 | "grid_auto_rows": null, 183 | "grid_gap": null, 184 | "max_width": null, 185 | "order": null, 186 | "_view_module_version": "1.2.0", 187 | "grid_template_areas": null, 188 | "object_position": null, 189 | "object_fit": null, 190 | "grid_auto_columns": null, 191 | "margin": null, 192 | "display": null, 193 | "left": null 194 | } 195 | }, 196 | "c372a837b7114fe8a8cb82b1a7917942": { 197 | "model_module": "@jupyter-widgets/controls", 198 | "model_name": "DescriptionStyleModel", 199 | "state": { 200 | "_view_name": "StyleView", 201 | "_model_name": "DescriptionStyleModel", 202 | "description_width": "", 203 | "_view_module": "@jupyter-widgets/base", 204 | "_model_module_version": "1.5.0", 205 | "_view_count": null, 206 | "_view_module_version": "1.2.0", 207 | "_model_module": "@jupyter-widgets/controls" 208 | } 209 | }, 210 | "0fe7ee5433f545e29058ba5d1bb2f901": { 211 | "model_module": "@jupyter-widgets/base", 212 | "model_name": "LayoutModel", 213 | "state": { 214 | "_view_name": "LayoutView", 215 | "grid_template_rows": null, 216 | "right": null, 217 | "justify_content": null, 218 | "_view_module": "@jupyter-widgets/base", 219 | "overflow": null, 220 | "_model_module_version": "1.2.0", 221 | "_view_count": null, 222 | "flex_flow": null, 223 | "width": null, 224 | "min_width": null, 225 | "border": null, 226 | "align_items": null, 227 | "bottom": null, 228 | "_model_module": "@jupyter-widgets/base", 229 | "top": null, 230 | "grid_column": null, 231 | "overflow_y": null, 232 | "overflow_x": null, 233 | "grid_auto_flow": null, 234 | "grid_area": null, 235 | "grid_template_columns": null, 236 | "flex": null, 237 | "_model_name": "LayoutModel", 238 | "justify_items": null, 239 | "grid_row": null, 240 | "max_height": null, 241 | "align_content": null, 242 | "visibility": null, 243 | "align_self": null, 244 | "height": null, 245 | "min_height": null, 246 | "padding": null, 247 | "grid_auto_rows": null, 248 | "grid_gap": null, 249 | "max_width": null, 250 | "order": null, 251 | "_view_module_version": "1.2.0", 252 | "grid_template_areas": null, 253 | "object_position": null, 254 | "object_fit": null, 255 | "grid_auto_columns": null, 256 | "margin": null, 257 | "display": null, 258 | "left": null 259 | } 260 | }, 261 | "6325df1ce8864fb3b5d0bff032da05a1": { 262 | "model_module": "@jupyter-widgets/controls", 263 | "model_name": "HBoxModel", 264 | "state": { 265 | "_view_name": "HBoxView", 266 | "_dom_classes": [], 267 | "_model_name": "HBoxModel", 268 | "_view_module": "@jupyter-widgets/controls", 269 | "_model_module_version": "1.5.0", 270 | "_view_count": null, 271 | "_view_module_version": "1.5.0", 272 | "box_style": "", 273 | "layout": "IPY_MODEL_a646da07b54441f9be91881d5d9fad80", 274 | "_model_module": "@jupyter-widgets/controls", 275 | "children": [ 276 | "IPY_MODEL_dd3df885e3b747f3b73dd83128df1ec4", 277 | "IPY_MODEL_4ae4e62c04214b2897d1e1bf10291bf8" 278 | ] 279 | } 280 | }, 281 | "a646da07b54441f9be91881d5d9fad80": { 282 | "model_module": "@jupyter-widgets/base", 283 | "model_name": "LayoutModel", 284 | "state": { 285 | "_view_name": "LayoutView", 286 | "grid_template_rows": null, 287 | "right": null, 288 | "justify_content": null, 289 | "_view_module": "@jupyter-widgets/base", 290 | "overflow": null, 291 | "_model_module_version": "1.2.0", 292 | "_view_count": null, 293 | "flex_flow": null, 294 | "width": null, 295 | "min_width": null, 296 | "border": null, 297 | "align_items": null, 298 | "bottom": null, 299 | "_model_module": "@jupyter-widgets/base", 300 | "top": null, 301 | "grid_column": null, 302 | "overflow_y": null, 303 | "overflow_x": null, 304 | "grid_auto_flow": null, 305 | "grid_area": null, 306 | "grid_template_columns": null, 307 | "flex": null, 308 | "_model_name": "LayoutModel", 309 | "justify_items": null, 310 | "grid_row": null, 311 | "max_height": null, 312 | "align_content": null, 313 | "visibility": null, 314 | "align_self": null, 315 | "height": null, 316 | "min_height": null, 317 | "padding": null, 318 | "grid_auto_rows": null, 319 | "grid_gap": null, 320 | "max_width": null, 321 | "order": null, 322 | "_view_module_version": "1.2.0", 323 | "grid_template_areas": null, 324 | "object_position": null, 325 | "object_fit": null, 326 | "grid_auto_columns": null, 327 | "margin": null, 328 | "display": null, 329 | "left": null 330 | } 331 | }, 332 | "dd3df885e3b747f3b73dd83128df1ec4": { 333 | "model_module": "@jupyter-widgets/controls", 334 | "model_name": "FloatProgressModel", 335 | "state": { 336 | "_view_name": "ProgressView", 337 | "style": "IPY_MODEL_9e64745ad1c24886bb41cd83e60d97cd", 338 | "_dom_classes": [], 339 | "description": "Downloading: 100%", 340 | "_model_name": "FloatProgressModel", 341 | "bar_style": "success", 342 | "max": 1344997306, 343 | "_view_module": "@jupyter-widgets/controls", 344 | "_model_module_version": "1.5.0", 345 | "value": 1344997306, 346 | "_view_count": null, 347 | "_view_module_version": "1.5.0", 348 | "orientation": "horizontal", 349 | "min": 0, 350 | "description_tooltip": null, 351 | "_model_module": "@jupyter-widgets/controls", 352 | "layout": "IPY_MODEL_2550e787808642b28c9e694c20b682ad" 353 | } 354 | }, 355 | "4ae4e62c04214b2897d1e1bf10291bf8": { 356 | "model_module": "@jupyter-widgets/controls", 357 | "model_name": "HTMLModel", 358 | "state": { 359 | "_view_name": "HTMLView", 360 | "style": "IPY_MODEL_30506f8609f74724859b617810b79416", 361 | "_dom_classes": [], 362 | "description": "", 363 | "_model_name": "HTMLModel", 364 | "placeholder": "​", 365 | "_view_module": "@jupyter-widgets/controls", 366 | "_model_module_version": "1.5.0", 367 | "value": " 1.34G/1.34G [00:43<00:00, 31.2MB/s]", 368 | "_view_count": null, 369 | "_view_module_version": "1.5.0", 370 | "description_tooltip": null, 371 | "_model_module": "@jupyter-widgets/controls", 372 | "layout": "IPY_MODEL_24143e15fe744a6d92c526e19a17b0d4" 373 | } 374 | }, 375 | "9e64745ad1c24886bb41cd83e60d97cd": { 376 | "model_module": "@jupyter-widgets/controls", 377 | "model_name": "ProgressStyleModel", 378 | "state": { 379 | "_view_name": "StyleView", 380 | "_model_name": "ProgressStyleModel", 381 | "description_width": "initial", 382 | "_view_module": "@jupyter-widgets/base", 383 | "_model_module_version": "1.5.0", 384 | "_view_count": null, 385 | "_view_module_version": "1.2.0", 386 | "bar_color": null, 387 | "_model_module": "@jupyter-widgets/controls" 388 | } 389 | }, 390 | "2550e787808642b28c9e694c20b682ad": { 391 | "model_module": "@jupyter-widgets/base", 392 | "model_name": "LayoutModel", 393 | "state": { 394 | "_view_name": "LayoutView", 395 | "grid_template_rows": null, 396 | "right": null, 397 | "justify_content": null, 398 | "_view_module": "@jupyter-widgets/base", 399 | "overflow": null, 400 | "_model_module_version": "1.2.0", 401 | "_view_count": null, 402 | "flex_flow": null, 403 | "width": null, 404 | "min_width": null, 405 | "border": null, 406 | "align_items": null, 407 | "bottom": null, 408 | "_model_module": "@jupyter-widgets/base", 409 | "top": null, 410 | "grid_column": null, 411 | "overflow_y": null, 412 | "overflow_x": null, 413 | "grid_auto_flow": null, 414 | "grid_area": null, 415 | "grid_template_columns": null, 416 | "flex": null, 417 | "_model_name": "LayoutModel", 418 | "justify_items": null, 419 | "grid_row": null, 420 | "max_height": null, 421 | "align_content": null, 422 | "visibility": null, 423 | "align_self": null, 424 | "height": null, 425 | "min_height": null, 426 | "padding": null, 427 | "grid_auto_rows": null, 428 | "grid_gap": null, 429 | "max_width": null, 430 | "order": null, 431 | "_view_module_version": "1.2.0", 432 | "grid_template_areas": null, 433 | "object_position": null, 434 | "object_fit": null, 435 | "grid_auto_columns": null, 436 | "margin": null, 437 | "display": null, 438 | "left": null 439 | } 440 | }, 441 | "30506f8609f74724859b617810b79416": { 442 | "model_module": "@jupyter-widgets/controls", 443 | "model_name": "DescriptionStyleModel", 444 | "state": { 445 | "_view_name": "StyleView", 446 | "_model_name": "DescriptionStyleModel", 447 | "description_width": "", 448 | "_view_module": "@jupyter-widgets/base", 449 | "_model_module_version": "1.5.0", 450 | "_view_count": null, 451 | "_view_module_version": "1.2.0", 452 | "_model_module": "@jupyter-widgets/controls" 453 | } 454 | }, 455 | "24143e15fe744a6d92c526e19a17b0d4": { 456 | "model_module": "@jupyter-widgets/base", 457 | "model_name": "LayoutModel", 458 | "state": { 459 | "_view_name": "LayoutView", 460 | "grid_template_rows": null, 461 | "right": null, 462 | "justify_content": null, 463 | "_view_module": "@jupyter-widgets/base", 464 | "overflow": null, 465 | "_model_module_version": "1.2.0", 466 | "_view_count": null, 467 | "flex_flow": null, 468 | "width": null, 469 | "min_width": null, 470 | "border": null, 471 | "align_items": null, 472 | "bottom": null, 473 | "_model_module": "@jupyter-widgets/base", 474 | "top": null, 475 | "grid_column": null, 476 | "overflow_y": null, 477 | "overflow_x": null, 478 | "grid_auto_flow": null, 479 | "grid_area": null, 480 | "grid_template_columns": null, 481 | "flex": null, 482 | "_model_name": "LayoutModel", 483 | "justify_items": null, 484 | "grid_row": null, 485 | "max_height": null, 486 | "align_content": null, 487 | "visibility": null, 488 | "align_self": null, 489 | "height": null, 490 | "min_height": null, 491 | "padding": null, 492 | "grid_auto_rows": null, 493 | "grid_gap": null, 494 | "max_width": null, 495 | "order": null, 496 | "_view_module_version": "1.2.0", 497 | "grid_template_areas": null, 498 | "object_position": null, 499 | "object_fit": null, 500 | "grid_auto_columns": null, 501 | "margin": null, 502 | "display": null, 503 | "left": null 504 | } 505 | }, 506 | "9b2a34fac4414e58bd3c7440de663661": { 507 | "model_module": "@jupyter-widgets/controls", 508 | "model_name": "HBoxModel", 509 | "state": { 510 | "_view_name": "HBoxView", 511 | "_dom_classes": [], 512 | "_model_name": "HBoxModel", 513 | "_view_module": "@jupyter-widgets/controls", 514 | "_model_module_version": "1.5.0", 515 | "_view_count": null, 516 | "_view_module_version": "1.5.0", 517 | "box_style": "", 518 | "layout": "IPY_MODEL_995478437b39417fbbaefdb4f8ed8c31", 519 | "_model_module": "@jupyter-widgets/controls", 520 | "children": [ 521 | "IPY_MODEL_a068918d9ed642aebedd4f69b1117110", 522 | "IPY_MODEL_6e390e78d1a34628b3d1e371cba6cdb8" 523 | ] 524 | } 525 | }, 526 | "995478437b39417fbbaefdb4f8ed8c31": { 527 | "model_module": "@jupyter-widgets/base", 528 | "model_name": "LayoutModel", 529 | "state": { 530 | "_view_name": "LayoutView", 531 | "grid_template_rows": null, 532 | "right": null, 533 | "justify_content": null, 534 | "_view_module": "@jupyter-widgets/base", 535 | "overflow": null, 536 | "_model_module_version": "1.2.0", 537 | "_view_count": null, 538 | "flex_flow": null, 539 | "width": null, 540 | "min_width": null, 541 | "border": null, 542 | "align_items": null, 543 | "bottom": null, 544 | "_model_module": "@jupyter-widgets/base", 545 | "top": null, 546 | "grid_column": null, 547 | "overflow_y": null, 548 | "overflow_x": null, 549 | "grid_auto_flow": null, 550 | "grid_area": null, 551 | "grid_template_columns": null, 552 | "flex": null, 553 | "_model_name": "LayoutModel", 554 | "justify_items": null, 555 | "grid_row": null, 556 | "max_height": null, 557 | "align_content": null, 558 | "visibility": null, 559 | "align_self": null, 560 | "height": null, 561 | "min_height": null, 562 | "padding": null, 563 | "grid_auto_rows": null, 564 | "grid_gap": null, 565 | "max_width": null, 566 | "order": null, 567 | "_view_module_version": "1.2.0", 568 | "grid_template_areas": null, 569 | "object_position": null, 570 | "object_fit": null, 571 | "grid_auto_columns": null, 572 | "margin": null, 573 | "display": null, 574 | "left": null 575 | } 576 | }, 577 | "a068918d9ed642aebedd4f69b1117110": { 578 | "model_module": "@jupyter-widgets/controls", 579 | "model_name": "FloatProgressModel", 580 | "state": { 581 | "_view_name": "ProgressView", 582 | "style": "IPY_MODEL_061d2049dd2e4b8da89f632ea0ec964d", 583 | "_dom_classes": [], 584 | "description": "Downloading: 100%", 585 | "_model_name": "FloatProgressModel", 586 | "bar_style": "success", 587 | "max": 231508, 588 | "_view_module": "@jupyter-widgets/controls", 589 | "_model_module_version": "1.5.0", 590 | "value": 231508, 591 | "_view_count": null, 592 | "_view_module_version": "1.5.0", 593 | "orientation": "horizontal", 594 | "min": 0, 595 | "description_tooltip": null, 596 | "_model_module": "@jupyter-widgets/controls", 597 | "layout": "IPY_MODEL_fb8c6afe56dd4295b30c6a09d541f921" 598 | } 599 | }, 600 | "6e390e78d1a34628b3d1e371cba6cdb8": { 601 | "model_module": "@jupyter-widgets/controls", 602 | "model_name": "HTMLModel", 603 | "state": { 604 | "_view_name": "HTMLView", 605 | "style": "IPY_MODEL_e5abd3a72c93427986159fe62d2c8161", 606 | "_dom_classes": [], 607 | "description": "", 608 | "_model_name": "HTMLModel", 609 | "placeholder": "​", 610 | "_view_module": "@jupyter-widgets/controls", 611 | "_model_module_version": "1.5.0", 612 | "value": " 232k/232k [00:00<00:00, 756kB/s]", 613 | "_view_count": null, 614 | "_view_module_version": "1.5.0", 615 | "description_tooltip": null, 616 | "_model_module": "@jupyter-widgets/controls", 617 | "layout": "IPY_MODEL_904e25aae6394be0baaa20cdfcc412f0" 618 | } 619 | }, 620 | "061d2049dd2e4b8da89f632ea0ec964d": { 621 | "model_module": "@jupyter-widgets/controls", 622 | "model_name": "ProgressStyleModel", 623 | "state": { 624 | "_view_name": "StyleView", 625 | "_model_name": "ProgressStyleModel", 626 | "description_width": "initial", 627 | "_view_module": "@jupyter-widgets/base", 628 | "_model_module_version": "1.5.0", 629 | "_view_count": null, 630 | "_view_module_version": "1.2.0", 631 | "bar_color": null, 632 | "_model_module": "@jupyter-widgets/controls" 633 | } 634 | }, 635 | "fb8c6afe56dd4295b30c6a09d541f921": { 636 | "model_module": "@jupyter-widgets/base", 637 | "model_name": "LayoutModel", 638 | "state": { 639 | "_view_name": "LayoutView", 640 | "grid_template_rows": null, 641 | "right": null, 642 | "justify_content": null, 643 | "_view_module": "@jupyter-widgets/base", 644 | "overflow": null, 645 | "_model_module_version": "1.2.0", 646 | "_view_count": null, 647 | "flex_flow": null, 648 | "width": null, 649 | "min_width": null, 650 | "border": null, 651 | "align_items": null, 652 | "bottom": null, 653 | "_model_module": "@jupyter-widgets/base", 654 | "top": null, 655 | "grid_column": null, 656 | "overflow_y": null, 657 | "overflow_x": null, 658 | "grid_auto_flow": null, 659 | "grid_area": null, 660 | "grid_template_columns": null, 661 | "flex": null, 662 | "_model_name": "LayoutModel", 663 | "justify_items": null, 664 | "grid_row": null, 665 | "max_height": null, 666 | "align_content": null, 667 | "visibility": null, 668 | "align_self": null, 669 | "height": null, 670 | "min_height": null, 671 | "padding": null, 672 | "grid_auto_rows": null, 673 | "grid_gap": null, 674 | "max_width": null, 675 | "order": null, 676 | "_view_module_version": "1.2.0", 677 | "grid_template_areas": null, 678 | "object_position": null, 679 | "object_fit": null, 680 | "grid_auto_columns": null, 681 | "margin": null, 682 | "display": null, 683 | "left": null 684 | } 685 | }, 686 | "e5abd3a72c93427986159fe62d2c8161": { 687 | "model_module": "@jupyter-widgets/controls", 688 | "model_name": "DescriptionStyleModel", 689 | "state": { 690 | "_view_name": "StyleView", 691 | "_model_name": "DescriptionStyleModel", 692 | "description_width": "", 693 | "_view_module": "@jupyter-widgets/base", 694 | "_model_module_version": "1.5.0", 695 | "_view_count": null, 696 | "_view_module_version": "1.2.0", 697 | "_model_module": "@jupyter-widgets/controls" 698 | } 699 | }, 700 | "904e25aae6394be0baaa20cdfcc412f0": { 701 | "model_module": "@jupyter-widgets/base", 702 | "model_name": "LayoutModel", 703 | "state": { 704 | "_view_name": "LayoutView", 705 | "grid_template_rows": null, 706 | "right": null, 707 | "justify_content": null, 708 | "_view_module": "@jupyter-widgets/base", 709 | "overflow": null, 710 | "_model_module_version": "1.2.0", 711 | "_view_count": null, 712 | "flex_flow": null, 713 | "width": null, 714 | "min_width": null, 715 | "border": null, 716 | "align_items": null, 717 | "bottom": null, 718 | "_model_module": "@jupyter-widgets/base", 719 | "top": null, 720 | "grid_column": null, 721 | "overflow_y": null, 722 | "overflow_x": null, 723 | "grid_auto_flow": null, 724 | "grid_area": null, 725 | "grid_template_columns": null, 726 | "flex": null, 727 | "_model_name": "LayoutModel", 728 | "justify_items": null, 729 | "grid_row": null, 730 | "max_height": null, 731 | "align_content": null, 732 | "visibility": null, 733 | "align_self": null, 734 | "height": null, 735 | "min_height": null, 736 | "padding": null, 737 | "grid_auto_rows": null, 738 | "grid_gap": null, 739 | "max_width": null, 740 | "order": null, 741 | "_view_module_version": "1.2.0", 742 | "grid_template_areas": null, 743 | "object_position": null, 744 | "object_fit": null, 745 | "grid_auto_columns": null, 746 | "margin": null, 747 | "display": null, 748 | "left": null 749 | } 750 | } 751 | } 752 | } 753 | }, 754 | "cells": [ 755 | { 756 | "cell_type": "code", 757 | "metadata": { 758 | "colab": { 759 | "base_uri": "https://localhost:8080/" 760 | }, 761 | "id": "pdu6HdnKsaZR", 762 | "outputId": "cac0e0c8-f139-466d-b5e7-ee4d8fc46fd9" 763 | }, 764 | "source": [ 765 | "!pip install -q bert-extractive-summarizer\r\n", 766 | "!pip install -q spacy==2.1.3\r\n", 767 | "!pip install -q transformers==2.2.2\r\n", 768 | "!pip install -q neuralcoref" 769 | ], 770 | "execution_count": 1, 771 | "outputs": [ 772 | { 773 | "output_type": "stream", 774 | "text": [ 775 | "\u001b[K |████████████████████████████████| 1.8MB 10.4MB/s \n", 776 | "\u001b[K |████████████████████████████████| 3.2MB 36.3MB/s \n", 777 | "\u001b[K |████████████████████████████████| 890kB 59.0MB/s \n", 778 | "\u001b[?25h Building wheel for sacremoses (setup.py) ... \u001b[?25l\u001b[?25hdone\n", 779 | "\u001b[K |████████████████████████████████| 27.7MB 113kB/s \n", 780 | "\u001b[K |████████████████████████████████| 3.2MB 51.2MB/s \n", 781 | "\u001b[K |████████████████████████████████| 92kB 15.2MB/s \n", 782 | "\u001b[K |████████████████████████████████| 2.1MB 51.6MB/s \n", 783 | "\u001b[31mERROR: en-core-web-sm 2.2.5 has requirement spacy>=2.2.2, but you'll have spacy 2.1.3 which is incompatible.\u001b[0m\n", 784 | "\u001b[K |████████████████████████████████| 389kB 7.6MB/s \n", 785 | "\u001b[K |████████████████████████████████| 1.2MB 14.8MB/s \n", 786 | "\u001b[K |████████████████████████████████| 102kB 13.3MB/s \n", 787 | "\u001b[K |████████████████████████████████| 7.2MB 28.2MB/s \n", 788 | "\u001b[K |████████████████████████████████| 71kB 12.2MB/s \n", 789 | "\u001b[?25h Building wheel for boto3 (setup.py) ... \u001b[?25l\u001b[?25hdone\n", 790 | "\u001b[31mERROR: botocore 1.20.12 has requirement urllib3<1.27,>=1.25.4, but you'll have urllib3 1.24.3 which is incompatible.\u001b[0m\n", 791 | "\u001b[K |████████████████████████████████| 296kB 9.1MB/s \n", 792 | "\u001b[?25h" 793 | ], 794 | "name": "stdout" 795 | } 796 | ] 797 | }, 798 | { 799 | "cell_type": "code", 800 | "metadata": { 801 | "id": "CF88ZdxOtAIG" 802 | }, 803 | "source": [ 804 | "from summarizer import Summarizer\r\n", 805 | "from pprint import pprint" 806 | ], 807 | "execution_count": 2, 808 | "outputs": [] 809 | }, 810 | { 811 | "cell_type": "code", 812 | "metadata": { 813 | "id": "edfIarrYtxYG" 814 | }, 815 | "source": [ 816 | "with open(\"The Present by Spencer Johnson.txt\", 'r') as file:\r\n", 817 | " data = file.read().replace('\\n', '')" 818 | ], 819 | "execution_count": 3, 820 | "outputs": [] 821 | }, 822 | { 823 | "cell_type": "code", 824 | "metadata": { 825 | "id": "uurP1DJUzqpN" 826 | }, 827 | "source": [ 828 | "data = data.replace(\"\\ufeff\", \"\")" 829 | ], 830 | "execution_count": 4, 831 | "outputs": [] 832 | }, 833 | { 834 | "cell_type": "code", 835 | "metadata": { 836 | "colab": { 837 | "base_uri": "https://localhost:8080/", 838 | "height": 52 839 | }, 840 | "id": "tBHeKCkYtxap", 841 | "outputId": "43c440d4-b2df-49fc-b3a6-8bd1f75a41e2" 842 | }, 843 | "source": [ 844 | "data[0:100]" 845 | ], 846 | "execution_count": 5, 847 | "outputs": [ 848 | { 849 | "output_type": "execute_result", 850 | "data": { 851 | "application/vnd.google.colaboratory.intrinsic+json": { 852 | "type": "string" 853 | }, 854 | "text/plain": [ 855 | "'LATE ONE AFTERNOON, Bill Green received an urgent phone call from Liz Michaels, who he used to work '" 856 | ] 857 | }, 858 | "metadata": { 859 | "tags": [] 860 | }, 861 | "execution_count": 5 862 | } 863 | ] 864 | }, 865 | { 866 | "cell_type": "code", 867 | "metadata": { 868 | "id": "_mz1CUQ-tcxw", 869 | "colab": { 870 | "base_uri": "https://localhost:8080/", 871 | "height": 165, 872 | "referenced_widgets": [ 873 | "1ddea2fadcf54f54af27b06de3f6bfbb", 874 | "d3c0f66b77244bef9490b1abb203194d", 875 | "2cdf125675094fde8c360a73f8a22496", 876 | "72dcaad2fb604c16962dfd021e75728b", 877 | "156cc1a1dd494b6fa3872e801619a0d0", 878 | "26e8689652c84532ab352e23bfa7b993", 879 | "c372a837b7114fe8a8cb82b1a7917942", 880 | "0fe7ee5433f545e29058ba5d1bb2f901", 881 | "6325df1ce8864fb3b5d0bff032da05a1", 882 | "a646da07b54441f9be91881d5d9fad80", 883 | "dd3df885e3b747f3b73dd83128df1ec4", 884 | "4ae4e62c04214b2897d1e1bf10291bf8", 885 | "9e64745ad1c24886bb41cd83e60d97cd", 886 | "2550e787808642b28c9e694c20b682ad", 887 | "30506f8609f74724859b617810b79416", 888 | "24143e15fe744a6d92c526e19a17b0d4", 889 | "9b2a34fac4414e58bd3c7440de663661", 890 | "995478437b39417fbbaefdb4f8ed8c31", 891 | "a068918d9ed642aebedd4f69b1117110", 892 | "6e390e78d1a34628b3d1e371cba6cdb8", 893 | "061d2049dd2e4b8da89f632ea0ec964d", 894 | "fb8c6afe56dd4295b30c6a09d541f921", 895 | "e5abd3a72c93427986159fe62d2c8161", 896 | "904e25aae6394be0baaa20cdfcc412f0" 897 | ] 898 | }, 899 | "outputId": "aaea8e17-b1a2-451a-f3cb-eb8686ac99c8" 900 | }, 901 | "source": [ 902 | "model = Summarizer()" 903 | ], 904 | "execution_count": 6, 905 | "outputs": [ 906 | { 907 | "output_type": "display_data", 908 | "data": { 909 | "application/vnd.jupyter.widget-view+json": { 910 | "model_id": "1ddea2fadcf54f54af27b06de3f6bfbb", 911 | "version_minor": 0, 912 | "version_major": 2 913 | }, 914 | "text/plain": [ 915 | "HBox(children=(FloatProgress(value=0.0, description='Downloading', max=434.0, style=ProgressStyle(description_…" 916 | ] 917 | }, 918 | "metadata": { 919 | "tags": [] 920 | } 921 | }, 922 | { 923 | "output_type": "stream", 924 | "text": [ 925 | "\n" 926 | ], 927 | "name": "stdout" 928 | }, 929 | { 930 | "output_type": "display_data", 931 | "data": { 932 | "application/vnd.jupyter.widget-view+json": { 933 | "model_id": "6325df1ce8864fb3b5d0bff032da05a1", 934 | "version_minor": 0, 935 | "version_major": 2 936 | }, 937 | "text/plain": [ 938 | "HBox(children=(FloatProgress(value=0.0, description='Downloading', max=1344997306.0, style=ProgressStyle(descr…" 939 | ] 940 | }, 941 | "metadata": { 942 | "tags": [] 943 | } 944 | }, 945 | { 946 | "output_type": "stream", 947 | "text": [ 948 | "\n" 949 | ], 950 | "name": "stdout" 951 | }, 952 | { 953 | "output_type": "display_data", 954 | "data": { 955 | "application/vnd.jupyter.widget-view+json": { 956 | "model_id": "9b2a34fac4414e58bd3c7440de663661", 957 | "version_minor": 0, 958 | "version_major": 2 959 | }, 960 | "text/plain": [ 961 | "HBox(children=(FloatProgress(value=0.0, description='Downloading', max=231508.0, style=ProgressStyle(descripti…" 962 | ] 963 | }, 964 | "metadata": { 965 | "tags": [] 966 | } 967 | }, 968 | { 969 | "output_type": "stream", 970 | "text": [ 971 | "\n" 972 | ], 973 | "name": "stdout" 974 | } 975 | ] 976 | }, 977 | { 978 | "cell_type": "code", 979 | "metadata": { 980 | "id": "wkqAhTfpuQ25" 981 | }, 982 | "source": [ 983 | "result = model(data, num_sentences=5, min_length=60)" 984 | ], 985 | "execution_count": 13, 986 | "outputs": [] 987 | }, 988 | { 989 | "cell_type": "code", 990 | "metadata": { 991 | "id": "kM0e8Qko0EMs" 992 | }, 993 | "source": [ 994 | "full = ''.join(result)" 995 | ], 996 | "execution_count": 14, 997 | "outputs": [] 998 | }, 999 | { 1000 | "cell_type": "code", 1001 | "metadata": { 1002 | "colab": { 1003 | "base_uri": "https://localhost:8080/" 1004 | }, 1005 | "id": "Avej5YzWuW7x", 1006 | "outputId": "65d3178c-ba62-4277-ff03-68c6da9b3c8e" 1007 | }, 1008 | "source": [ 1009 | "pprint(full)" 1010 | ], 1011 | "execution_count": 15, 1012 | "outputs": [ 1013 | { 1014 | "output_type": "stream", 1015 | "text": [ 1016 | "('LATE ONE AFTERNOON, Bill Green received an urgent phone call from Liz '\n", 1017 | " 'Michaels, who he used to work with. When you do not use your feelings about '\n", 1018 | " 'The Past to learn from your experiences, you lose the joy of The Present. '\n", 1019 | " 'That day, he worked hard at staying fully engaged in the present moment, and '\n", 1020 | " 'he looked for opportunities to learn from The Past. ”The young man asked, '\n", 1021 | " '“So, when do I help create The Future?”The old man said, “After you first '\n", 1022 | " 'appreciate The Present, and respect what you have now. And he had never felt '\n", 1023 | " 'happier, and more in command of his life. The young man now went to work '\n", 1024 | " 'each day, using what he had learned: to be in The Present often, learn from '\n", 1025 | " 'The Past, and help create The Future.')\n" 1026 | ], 1027 | "name": "stdout" 1028 | } 1029 | ] 1030 | }, 1031 | { 1032 | "cell_type": "code", 1033 | "metadata": { 1034 | "id": "bGmJEChzvS6U" 1035 | }, 1036 | "source": [ 1037 | "" 1038 | ], 1039 | "execution_count": null, 1040 | "outputs": [] 1041 | } 1042 | ] 1043 | } --------------------------------------------------------------------------------