├── .github └── workflows │ └── binder-badge.yml ├── README.md └── environment.yml /.github/workflows/binder-badge.yml: -------------------------------------------------------------------------------- 1 | name: binder-badge 2 | on: 3 | pull_request_target: 4 | 5 | jobs: 6 | badge: 7 | runs-on: ubuntu-latest 8 | steps: 9 | - uses: manics/action-binderbadge@main 10 | with: 11 | githubToken: ${{ secrets.GITHUB_TOKEN }} 12 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # r-conda 2 | 3 | [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/betatim/r-conda/master?urlpath=rstudio) 4 | 5 | > R and RStudio in repo2docker without waiting for packages to compile! 6 | 7 | Jupyter+R: [![Binder](http://mybinder.org/badge_logo.svg)](http://mybinder.org/v2/gh/binder-examples/r-conda/master?filepath=index.ipynb) 8 | 9 | RStudio: [![Binder](http://mybinder.org/badge_logo.svg)](http://mybinder.org/v2/gh/binder-examples/r-conda/master?urlpath=rstudio) 10 | 11 | Binder supports using R and RStudio, with libraries pinned to a specific versions. 12 | 13 | Install R itself and your required R packages via conda packages. Installing conda packages is faster than 14 | installing CRAN packages. This is because CRAN packages need compiling during the install process and conda 15 | packages do not. 16 | 17 | For some R packages there is no corresponding conda-forge package yet, in that case take a look at https://github.com/binder-examples/r. Note that these two approaches cannot be combined, so you cannot install R packages via Conda and via an `install.R` file at the same time. You can check if a required R package is available on the Conda Forge website at https://conda-forge.org/feedstock-outputs/ by searching for `r-PACKAGENAME`. You can install R packges from other sources using a `postBuild` script. 18 | 19 | Both [RStudio](https://www.rstudio.com/) and [IRKernel](https://irkernel.github.io/) 20 | are installed by default, so you can use either the Jupyter notebook interface or 21 | the RStudio interface. 22 | -------------------------------------------------------------------------------- /environment.yml: -------------------------------------------------------------------------------- 1 | channels: 2 | - conda-forge 3 | dependencies: 4 | - r-base=4.1.0 5 | - r-tidyverse 6 | 7 | --------------------------------------------------------------------------------