└── README.md /README.md: -------------------------------------------------------------------------------- 1 | 2 | # Lambda School Machine Learning Mini Bootcamp Day 2 3 | 4 | 1. What is ML 5 | * Simple arithmetic applied in great quantities 6 | * Programming 7 | * Simple (and advanced) calculus 8 | * Linear algebra always 9 | 2. What are the basic tools of ML programming 10 | * Numerical programming languages: 11 | * Python 12 | * R 13 | * Matlab/Octave 14 | * Javascript? All the others, too! 15 | * What are the important requirements of ML languages: 16 | * Swift data manipulation 17 | * Robust data APIs 18 | * Speed 19 | * Platform independence 20 | 3. Where are ML tools going 21 | * Design local 22 | * Share live code and documentation 23 | * Run remote 24 | 4. Setting up python 25 | * Local 26 | * pipenv 27 | * colaboratory 28 | * Jupyter 29 | * Important libs 30 | 31 | # Assignment 32 | 33 | Create `yourname_day_2_mlmbc.py`. It must print the result of `54321 * 12345`. Deliver it to me via pull request. 34 | 35 | --------------------------------------------------------------------------------