├── output.png
├── README.md
├── analysis.R
└── analysis.ipynb
/output.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/bot13956/weather_pattern/HEAD/output.png
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # weather_pattern
2 |
3 | created on Monday July 9, 2018
4 |
5 | @author: Benjamin O. Tayo
6 |
7 | This code performs the following:
8 | It returns a line graph of the record high and record low temperatures by day of the year over the period 2005-2014.
9 | Overlays a scatter plot of the 2015 data for any points (highs and lows) for which the ten year record (2005-2014) record high or record low was broken in 2015.
10 |
11 | weather_data.csv: This NOAA dataset contains weather data from several data stations near Ann Arbor, Michigan, United States . This data comes from a subset of The National Centers for Environmental Information (NCEI) Daily Global Historical Climatology Network (GHCN-Daily). The GHCN-Daily is comprised of daily climate records from thousands of land surface stations across the globe.
12 |
13 | analysis.ipynb: Jupiter notebook that imports the dataset, performs elementary data exploration and analysis, and then plots the weather pattern for visualization.
14 |
15 | analysis.R: R script that performs a similar calculation as the python analysis.ipynb file.
16 |
17 | output.png: Output generated from R code.
18 |
--------------------------------------------------------------------------------
/analysis.R:
--------------------------------------------------------------------------------
1 | #IMPORT NECESSARY LIBRARY AND THE DATASET
2 |
3 | library(tidyverse)
4 | library(readr)
5 | df<-read.csv("weather_data.csv")
6 |
7 | #DATA PREPARATION AND ANALYSIS
8 |
9 | #convert temperature from tenths of degree C to degree C
10 | df$Data_Value = 0.1*df$Data_Value
11 |
12 | #functions to split date
13 |
14 | split_function<-function(x)unlist(strsplit(x,'-'))
15 | year_function<-function(x)split_function(x)[1]
16 | day_function<-function(x)paste(split_function(x)[2],split_function(x)[3],sep='-')
17 |
18 | #create Day and Year columns
19 |
20 | day<-sapply(as.vector(df$Date),day_function)
21 | year<-sapply(as.vector(df$Date),year_function)
22 | df<-df%>%mutate(Day=day,Year=year )
23 |
24 | #filter leap year and select 10 year observation period: 2005-2014
25 |
26 | df_2005_to_2014<-df%>%filter((df$Day!='02-29')&(df$Year!='2015'))
27 | df_2015<-df%>%filter((df$Day!='02-29')&(df$Year=='2015'))
28 |
29 | #record min and max for each day of the year for the 2005-2014 period
30 |
31 | record_max<-df_2005_to_2014%>%group_by(Day)%>%summarize(Max = max(Data_Value),Min=min(Data_Value))%>%.$Max
32 | record_min<-df_2005_to_2014%>%group_by(Day)%>%summarize(Max = max(Data_Value),Min=min(Data_Value))%>%.$Min
33 |
34 | #record min and max for each day of the year for 2015
35 |
36 | record_2015_max<-df_2015%>%group_by(Day)%>%summarize(Max = max(Data_Value),Min=min(Data_Value))%>%.$Max
37 | record_2015_min<-df_2015%>%group_by(Day)%>%summarize(Max = max(Data_Value),Min=min(Data_Value))%>%.$Min
38 |
39 |
40 | #PREPARE DATA FOR VISUALIZATION
41 |
42 | #data frame for the 2005-2014 temperatures
43 |
44 | y<-c(seq(1,1,length=365),seq(2,2,length=365))
45 | y<-replace(replace(y, seq(1,365),'max'),seq(366,730),'min')
46 | values<-data.frame(day=c(seq(1,365), seq(1,365)),element=sort(y),Temp=c(record_max,record_min))
47 | q<-values%>%mutate(element=factor(element))
48 |
49 | #data frame for the 2015 temperatures
50 |
51 | max_index<-which(record_2015_max>record_max)
52 | min_index<-which(record_2015_min < record_min)
53 | dat15_max<-data.frame(max_index=max_index, Tmax=record_2015_max[max_index])
54 | dat15_min<-data.frame(min_ndex=min_index, Tmin=record_2015_min[min_index])
55 |
56 | #GENERATE DATA VISUALIZATION
57 |
58 | q%>%ggplot(aes(day,Temp,color=element))+geom_line(size=1,show.legend = TRUE)+
59 | geom_point(data=dat15_max,aes(max_index,Tmax,color='max_index'),size=2,show.legend = TRUE)+
60 | geom_point(data=dat15_min,aes(min_index,Tmin,color='min_index'),size=2,show.legend = TRUE)+
61 | scale_colour_manual(labels=c("record high","2015 break high","record low","2015 break low"),values=c('red','purple','blue','green'))+
62 | xlab('Month')+ ylab('Temperature (C)')+
63 | scale_x_continuous(breaks = as.integer(seq(1,335,length=12)), labels = c('Jan','Feb', 'Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec'))+
64 | ggtitle("Record temperatures between 2005-2014")+
65 | theme(
66 | plot.title = element_text(color="black", size=12, hjust=0.5, face="bold"),
67 | axis.title.x = element_text(color="black", size=12, face="bold"),
68 | axis.title.y = element_text(color="black", size=12, face="bold"),
69 | legend.title = element_blank()
70 | )
71 |
--------------------------------------------------------------------------------
/analysis.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "\n",
8 | "# Weather Pattern\n",
9 | "\n",
10 | "created on Monday July 9, 2018\n",
11 | "@author: Benjamin O. Tayo\n",
12 | "\n",
13 | "This code performs the following:\n",
14 | "\n",
15 | "1. It returns a line graph of the record high and record low temperatures by day of the year over the period 2005-2014. The area between the record high and record low temperatures for each day of the year.\n",
16 | "2. Overlays a scatter of the 2015 data for any points (highs and lows) for which the ten year record (2005-2014) record high or record low was broken in 2015.\n",
17 | "\n",
18 | "Dataset: The NOAA dataset used for this project is stored in the file `weather_data.csv`. This data comes from a subset of The National Centers for Environmental Information (NCEI) [Daily Global Historical Climatology Network](https://www1.ncdc.noaa.gov/pub/data/ghcn/daily/readme.txt) (GHCN-Daily). The GHCN-Daily is comprised of daily climate records from thousands of land surface stations across the globe.The data was collected from data stations near **Ann Arbor, Michigan, United States**.\n",
19 | "\n",
20 | "Each row in the assignment datafile corresponds to a single observation.\n",
21 | "\n",
22 | "The following variables are provided to you:\n",
23 | "\n",
24 | "* **id** : station identification code\n",
25 | "* **date** : date in YYYY-MM-DD format (e.g. 2012-01-24 = January 24, 2012)\n",
26 | "* **element** : indicator of element type\n",
27 | " * TMAX : Maximum temperature (tenths of degrees C)\n",
28 | " * TMIN : Minimum temperature (tenths of degrees C)\n",
29 | "* **value** : data value for element (tenths of degrees C)\n",
30 | "\n",
31 | "\n"
32 | ]
33 | },
34 | {
35 | "cell_type": "markdown",
36 | "metadata": {},
37 | "source": [
38 | "## Import necessary libraries and dataset"
39 | ]
40 | },
41 | {
42 | "cell_type": "code",
43 | "execution_count": 19,
44 | "metadata": {},
45 | "outputs": [],
46 | "source": [
47 | "import matplotlib.pyplot as plt\n",
48 | "import pandas as pd\n",
49 | "import numpy as np\n",
50 | "df=pd.read_csv('weather_data.csv')"
51 | ]
52 | },
53 | {
54 | "cell_type": "code",
55 | "execution_count": 20,
56 | "metadata": {},
57 | "outputs": [
58 | {
59 | "data": {
60 | "text/html": [
61 | "
\n",
62 | "\n",
75 | "
\n",
76 | " \n",
77 | " \n",
78 | " | \n",
79 | " ID | \n",
80 | " Date | \n",
81 | " Element | \n",
82 | " Data_Value | \n",
83 | "
\n",
84 | " \n",
85 | " \n",
86 | " \n",
87 | " | 0 | \n",
88 | " USW00094889 | \n",
89 | " 2014-11-12 | \n",
90 | " TMAX | \n",
91 | " 22 | \n",
92 | "
\n",
93 | " \n",
94 | " | 1 | \n",
95 | " USC00208972 | \n",
96 | " 2009-04-29 | \n",
97 | " TMIN | \n",
98 | " 56 | \n",
99 | "
\n",
100 | " \n",
101 | " | 2 | \n",
102 | " USC00200032 | \n",
103 | " 2008-05-26 | \n",
104 | " TMAX | \n",
105 | " 278 | \n",
106 | "
\n",
107 | " \n",
108 | " | 3 | \n",
109 | " USC00205563 | \n",
110 | " 2005-11-11 | \n",
111 | " TMAX | \n",
112 | " 139 | \n",
113 | "
\n",
114 | " \n",
115 | " | 4 | \n",
116 | " USC00200230 | \n",
117 | " 2014-02-27 | \n",
118 | " TMAX | \n",
119 | " -106 | \n",
120 | "
\n",
121 | " \n",
122 | "
\n",
123 | "
"
124 | ],
125 | "text/plain": [
126 | " ID Date Element Data_Value\n",
127 | "0 USW00094889 2014-11-12 TMAX 22\n",
128 | "1 USC00208972 2009-04-29 TMIN 56\n",
129 | "2 USC00200032 2008-05-26 TMAX 278\n",
130 | "3 USC00205563 2005-11-11 TMAX 139\n",
131 | "4 USC00200230 2014-02-27 TMAX -106"
132 | ]
133 | },
134 | "execution_count": 20,
135 | "metadata": {},
136 | "output_type": "execute_result"
137 | }
138 | ],
139 | "source": [
140 | "df.head()"
141 | ]
142 | },
143 | {
144 | "cell_type": "markdown",
145 | "metadata": {},
146 | "source": [
147 | "## Data preparation and analysis"
148 | ]
149 | },
150 | {
151 | "cell_type": "code",
152 | "execution_count": 21,
153 | "metadata": {},
154 | "outputs": [],
155 | "source": [
156 | "#convert temperature from tenths of degree C to degree C\n",
157 | "df['Data_Value']=0.1*df.Data_Value"
158 | ]
159 | },
160 | {
161 | "cell_type": "code",
162 | "execution_count": 22,
163 | "metadata": {},
164 | "outputs": [],
165 | "source": [
166 | "days=list(map(lambda x: x.split('-')[-2]+'-'+x.split('-')[-1], df.Date))\n",
167 | "years=list(map(lambda x: x.split('-')[0], df.Date))"
168 | ]
169 | },
170 | {
171 | "cell_type": "code",
172 | "execution_count": 23,
173 | "metadata": {},
174 | "outputs": [],
175 | "source": [
176 | "df['Days']=days\n",
177 | "df['Years']=years"
178 | ]
179 | },
180 | {
181 | "cell_type": "code",
182 | "execution_count": 24,
183 | "metadata": {},
184 | "outputs": [],
185 | "source": [
186 | "df_2005_to_2014=df[(df.Days!='02-29')&(df.Years!='2015')]\n",
187 | "df_2015=df[(df.Days!='02-29')&(df.Years=='2015')]\n"
188 | ]
189 | },
190 | {
191 | "cell_type": "code",
192 | "execution_count": 25,
193 | "metadata": {},
194 | "outputs": [],
195 | "source": [
196 | "df_max=df_2005_to_2014.groupby(['Element','Days']).max()\n",
197 | "df_min = df_2005_to_2014.groupby(['Element','Days']).min()\n",
198 | "df_2015_max=df_2015.groupby(['Element','Days']).max()\n",
199 | "df_2015_min = df_2015.groupby(['Element','Days']).min()"
200 | ]
201 | },
202 | {
203 | "cell_type": "code",
204 | "execution_count": 26,
205 | "metadata": {},
206 | "outputs": [],
207 | "source": [
208 | "record_max=df_max.loc['TMAX'].Data_Value\n",
209 | "record_min=df_min.loc['TMIN'].Data_Value\n",
210 | "record_2015_max=df_2015_max.loc['TMAX'].Data_Value\n",
211 | "record_2015_min=df_2015_min.loc['TMIN'].Data_Value"
212 | ]
213 | },
214 | {
215 | "cell_type": "markdown",
216 | "metadata": {},
217 | "source": [
218 | "## Generate Data Visualization"
219 | ]
220 | },
221 | {
222 | "cell_type": "code",
223 | "execution_count": 33,
224 | "metadata": {},
225 | "outputs": [
226 | {
227 | "data": {
228 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnEAAAG+CAYAAAD821LEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsnXd4VMXXgN9JIYX0Dim00HvvRaSoVJUioIigIIp+gIpUFRR/IqgIVgQUFREEQTCCUhUEUap0CCWU9EaAJJByvz/m7rK72U2jJMR5n2ef5M6cOzO3zT33zJkzQtM0FAqFQqFQKBT3FnYl3QCFQqFQKBQKRdFRSpxCoVAoFArFPYhS4hQKhUKhUCjuQZQSp1AoFAqFQnEPopQ4hUKhUCgUinsQpcQpFAqFQqFQ3IMoJU5RKhBCvCyEOFfS7VAUHiGEnRDicyFEkhBCE0J0ugt1XhVCDDPZ1oQQ/Uy2awkhdgkhMg33k7U0RfEQQmwTQnx0m8s0u4YKhaLwKCWuDCKE+ErvGDUhRLYQ4rwQ4lMhhHdJt624CCEq68fTrKTbcjcQQrwhhDhc0u0ogIeAp4BeQAVgZwm0oQKwzmT7LSAdqAU0zyetxBBCdNLvZb+Sbost7oU2mnKPPC9WEUI4CiFmCSH+FUJcE0LECCG+E0KEWcg5CSHmCyESdbm1QogQC5kwIcQ6PT9RCDFPCFHOJN9wXS1/tQpo4yQhxD9CiDQhRIJeRz0LGaFfh2ghRIau8Ne1kJkihPhTb1++QWqFEH5CiEv30n1YEiglruyyCfmCqww8jXzRflKSDQLZYZV0G0oS0w61DNQZDsRomrZT07RYTdNuFKeQW7kn9HqvW7Rph6Zp5zRNS8gnrahtdBBCiOK2U6HIB1egCTBT/9sHCAU2CCEcTOTmAo8Cg4D2gAfwsxDCHkD/GwG46/mDgH7Ae1bqrIt8Pxh+pwpoYyfk+6MN0BnIBjYJIXxMZCYALwEvID+W4oGNQgh3Exkn4Ef9WAriS+BAIeT+22iapn5l7Ad8BfxskfYekGSR5gksQD5sV4DfgWYWMq2ALcA14DKwGaio5zkhH8Y4IBP4C2hnsm8nQENabP4GbgA99bwJQCxwFfgaeAM4l88xaRa/bSZ5TwFH9TacBMYBdhb7jgZ+QlpkTgL3ASHAr/qxHQCamOwzTG9bL10+E9gKVLVoVy9gr55/FtkRlzPJP6cf22IgFfhBT38HOAFk6DLvAs4mdVse7zCTY+ln0YZzwMsWx/s8srO8BszR0+sgO/kr+jVfBgSZ7Fdfv75pusxB4L587jHT9p271XvCSh3hwDa9nBNAT/2aDLM41n427pE3rKXpssHA90CK/osAqpuU+wZwWL8Wp4EcwA0QyHv3tH7tDgGPm+xXWa/nUWAj8n47CnS1yDf9fWXj+A3n6kHkPZYBbEfetx3163MV+BnwNdnPDpgGXACu623sczvaqF+PT4C3gUTkfTQH8+ftEeBfvb3JyH4lsIBne4x+DdKBKNNzWtD1wsbzAswC1puU8YyeN9Ak7U9gShGe53J6uReRz9Y/QHcr1+x+YLd+PHsw6VsK2YfX0cupb9JX3wCGmMiEArmG+vX7JBcINZF5XD8WD4v2+RX3/aKX44Z8Jnrp2wKIsTiXLsh+ZJSV/fsBWj7l/x+yL+p8O9pbln8l3gD1uwMX1UKJA6oCR4BYkzQB7NA7wxbIF+abyBd4BV2mod4RLwAaAbWBUUCYnv+h/uD20PO+QL5UDPsbOoxDQDe9Hf7AAL1DGgXUAKbo9Z7L55ia62V1B4IAHz39Gb0N/YAqeiccC4wx2VcDLiG/TKsD3+kyvyK/emsAvwD/muwzDMjSO+C2QGPgD+SLU+gy3fV2PwVUQyqGJ9CVJl3mnC4zQT/HhhfPNL3cykiF5jzwpp7ngnwxHtePNQhwMTmWwihx8UgLbFX9vFRAvnRn6deqAXIY8m/0F7B+nb5FDjuGAw8DrW1cD09gOlJRCAL8b+WesFK+nS7zh37u2+rXIgvbSlyQfs7m6P+72UhzRSrmX+nnoRawEKk8uOplvYF8Sf+GtI7UAxyQL/UTwAP6eR2sy/XQ96ust+k48l6sDiwBkvS67ZFKjoZ8UQcBnjbOseFc/Y20rDRAKpZ/Il9wLYFmSGVjvsl+45D33GDkvT0D+cJtdKttRCpxl/UyayCf5WxgkMk1uIG0yFTWz9vTFKzEJWHeH+Sif1AWdL2w8bwglZorgINezlIgAfjMpNwbQNsiPM9LkR8mHZD37hi9jIZWrtl9elt/BY6h9xuF7MNb6eWE6NsGZcbfQu4IMF3/fwZwxCLfX9/vPov2nUM+p5ux8aFWQPsq6OW0M3nHaEBzC7kIYImV/W0qccjnPRqpuBvaq5Q4W9eipBugfnfgosrOLhv58szg5tfpOBOZznq+i8W+B4AJ+v9Lgb9s1FFe77yGmqTZIy0Ub+nbhgfwUYt9dwJfWKRtIn8lrrJelqWl8DzwhEXaWOCoybYG/M9ku56eNt4kzayz4ObXfVsTmUrIl2EXffsPYJpF3X3182pQ9M4B6wpxzZ4FIk223wAOW5ErrBI330JmBrDZIs1bl22hb6cBTxbhPnvZ9Jrdyj1hpexu+rkOM0lrh4lV0tr5QCo5b1iUZZYGDEcOHwmLdiYBA0zOfxYmyod+fBlAe4vy5wK/WNyno0zygzF/4Znda/mcA4OcqaVnjJ5majU2u1eQHyyvWZS1Dfj2Vtuol7PLIm0jsFD/v4m+X6Ui3Eca1vsDQ3sLe70OW5Thpl/D1vr2RWAicELf7opUwB0L8zwjFbtcTO5JXWYN8Ek+16wtJgpZIc5HOaSivtYkbTCyTxcWsluAz/X/FwBbLPIF5kp2TWRf0xRojbSq5gIdCnu99HJWAPsBe327jX6MludmMfCrlf2tKnHIZ+w4ev9g6z5Uv5s/0/F2RdniD2Ak8ov0GWQHNM8kvynySzTBwtXHWZcF+UW02kb51QBHZGcDgKZpOUKIXcivd1P2WGzXRn5Jm7ILaf0pNEIIf+SQwudCiE9NshyQnZcp/5r8H6f/PWQlLQBpsQLZuf1tENA0LUoIEY08vk3Ic9hCCPGqSTl2yHMehPzShbzHjz4bbyzymA3WD3tbx1oMLOtsCnQQQly1IlsNeZzvAwuFEE8iv9BXaZp2vAh13so9YUlt4JKmaedN0nYjr8mt0hRpRbtice+7cvPeB7ioaVqcyXYd5POxwcIp2xGpSJtier9F638Ditnewty7AQBCCA+gIibXQGcH0uJ7O9r4r8V2tMl+B5HPxmEhxG/6/yu1gn0Rd1nZ7qH/X9jrZYamaVeFEPuATkKIRKQP2UfA60KIikgFYaemaVkm9eT3PDdB9itHLdrhhFSmTLF1bi/aai9I30ukNdwL6J2frGEXpJJjQLMhJ7VlTTuBtC4a2CWEqIz8IPtDCNEeWG+SP0rTtKUWbXwf+UHVTtO0HGv15NO+gpgH/Klp2qoi7POfRilxZZd0TdMi9f9fFEJsRQ7hvaGn2SE7//ZW9k3T/+bnyG3Is/aAWqZdK7C1xcMwMedZCp4ZmWXyv5ZPWlEm+9ghhxR/sJJn+tIyO34hRCukf8905NBXKrLDnlOIOjXyXhdrEwMsz7kdcmjjZSuycQCapr0hhFiKHIbqjnzZPatp2uJCtAtu7z1xJycR2CEtzo9ZyUs2+d/aOQQ5BHneIi/L1ramaZr+0i/uRLI896mJ4mFIsyy7MNeguG20PFZj/brS3g05HNgNGAH8TwjRUdO0g4Uo2xqFvV7W2IYc1kwEtuuK3d9IBa4T0o3CtJ78nmc79CFD8p6DDIvtIvctugK3DOmb2knTtCST7FjkR54f5n1LAPKD3SDT1qJYP32/OGyzm5vndg/SdcaA2X5CiA902fs0TTtj0T6Qyu4Fi/blV7cl9wOh+ock3OwHYoUQszRNm1KEsv4TKCXuv8N0YL0QYoGmadHAPiAQyLV4GE3Zhxx2tUYkcuisHXAGjLOjWiN9zvLjGLKTN1UOWhWwj2Hmo9FapWlanBDiElBN07SvC9i/ONghO+ydIKfvI60cx/T8fUAtE2W5sLRFWpneNCQIISpZyNzAumUuAemPYtgv0HQ7H/Yh/ZeiLBQAMzRNO4UcupqnWzefxvw65cet3BOWHAWChRChmqYZXgotuD0z6vch/SMTNU1LLWKbriOHCi0tL0Uhz718u9A0LU23FrfD3DrUDtn+wlLsNmpyHGwX0sozA+m3NRBppbOFtf7A9Dkr6HrZel62IYegU/X/DWk9kM/2BBPZfJ9nIcR+pFIRpGna1nyOpcjoM7S/R7p6dNI0LdZCZC9SMeyK/izp4UVqc/MDdhcwVQgRommaweLXFXnP7s2n+kboowaapmUgn2NrbfwQqcB1smKhP4tU5LoiJ3sghHBGGgleyaduS7ohh5MNNEfeF50oeAbtfxKlxP1H0DRtmxDiCDAVeA45zPEn8JMQYgI3nYIfADZpmrYdmA38JYRYAHyMnOXUHvhN07Tz+kv+HX2o4izSqhRIwaFMPgS+FkL8g+xQ+yGdtPP7qo5Hfu12FzJga6amaZeRlsX5QohU5Fe1I3LYI1jTtP8V8vTYIhuYK4T4P73uD5AvpE16/gzkFP8opI9INrITbqFp2gQr5Rk4iVRQhiA73u7Il5Qp54BKQogmSKvPFU2G0tgCPC+E2In0GXsbeV0K4mPksPpyIcQspDJYFanYvaS3fQ7SCnEOeR3bIb/SC4Wmaddu4Z6wZBPynvxaCDEOOaT1gd7OW2Up0iL5kxDiNeT5DUVOcvlMV2TzoGnaFSHEHGCOHm7kD+RQeCvkx9CCQtYfhbTO9BBCrAMyNE2zNsxdXGYDM4QQp5Av78eRz23TIpRRrDbqVuYuSGf+OKRLRigFK5CPWPQH9yP7BCjc9TqH9edlO1IpeAQ5Axy9jilI5cboLkEBz7OmaSd1S/VXQoiXkEqfD1LBOKNp2o8FnR9r6Ba4H5AKSy9AE0IE6dmXNU3L0DTtshBiETBbCBGP9Ad8Hzlsa+iPfkP2T1/r7fNF3gtfaJqWptc1Vj9XR/Tz8jjS7+/RAtr4MfCELpti0r6rmqZd1S25c4EpQojjyD5uKtKf8DuTcsKQ56yyvm2w+kXq5Zy0qNcQH+64pmmJKPJS0k556nf7f1gJMaKnD+amJQFkPKEPkX4aN5Bm8O+Rli3DPu2QL6sM5NfsJm7ONDQNJ3Ed2+Ek8jilApOQipnhIX+DfCY26Ps8jeygczAPMTII2aFmIsMP7AAeM8m3dH7309M6maTV0tPq6dvD9Lb1QX4BXkeGSgi3aFM35IsiHTkMvQfzmbHnMJl0YJL+P6QidRUZCmQ0Jo6++rldqR+P0ZkfaQlcr+93Gtn5mtVhebwm6dVNysxA+sbMR3bm5fTrEKUfazTSUdojn+thNrHhVu8JK+XX0M/5df0a9CafECP6doETG/S0QGQcqni9/LPIL37DxJY3sD6xRCDjYBmscglIx37L8ByWE3As2zkNaf3IpeAQI34maXkcwpHuBIkm26YhRm4g/ef6muQXu41IBegjW/0N0jK03uT6R6JPlMrnOmtIa9kG/b48j8UEm0JcL6vPi573F3JGrcEJ3xnZV2y00paCnmdH/d44o5/bWGAt0DSfa2b1fFvJt/YzPQ5n5POapLdvHSbhRHSZMGTImXRdbj7gZJI/Qb8mhvAv24GHCvEs2mrfGyYyQj83Mfr5/R29P7W4V6yV08lGvXnOp/qZ/wwz6BQKhQlCLu30kaZpbiXdFoVCoVAorKFWbFAoFAqFQqG4Byn1SpwQwl4IsV8I8bO+XUUIsVsIcUoIsbwkljFSKBQKhUKhKGlKvRKHXH7jmMn2LOADTdOqI/0fRpRIqxRlGk3TvlJDqQqFQqEozZRqJU6fQt0DPTCsPiOsM9KBFeRSMX1LpnUKhUKhUCgUJUdpDzEyFzmbxl3f9gVSNU0zhBm4iFwuJg9CiJHIFQsoX75801q1at3hpioUirLGxYsXSUu7Rp06NW3KpKSkcObMGcLDw/H09LzlOk+fPk1qaioeHh5Ur17dLO/UqbN4epYnIKC4iz8oFIp7gb179yZqmuZfkFypVeKEED2BeE3T9gohOhmSrYhanV6ryZhNCwCaNWum7dlT0Co/CoVCkZfffkvH2/skzZs3spr/zTffMHToUH755Zc8SldxaNOmDbt27cLVtTym/ZamaezaJWjZEuxve5hghUJRmtDjFRZIaR5ObQv01gO7fo8cRp0LeOnBEQFCuLkunUKhUNxWcnJg+fL3adGiMVeuXLEqk5BgWAXJmZwcuZTkb7/9xvDhwxk9ejQxMTFW97NFTIwM1h8bG0Nc3M0Vizp37syECX1ITzfG0FIoFP9xSq0Sp2naJE3TQjRNq4xc6mOLpmlDgK3IgJcATwI/lVATFQpFGad//37s27cZgH//tVz3XWJQ4urUqWq0nE2YMIEvv/ySzz77jKKOAiQnJ1Gjhlxc4cCBA8b0S5ei+fPPtQQFuZkojgqF4r9MqVXi8uFVYLwQIhLpI7eohNujUCjKKFu2bMLd3QeA/fv3W5VJSEigXDkncnNziYiI4OLFixw8eJCRI2dx8KBGr169ilRnZGQKs2f/xjff7KJDhw7G9Li4WIKDw0lPTycysqjL9SoUirLIPaHEaZq2TdO0nvr/ZzRNa6FpWrimaf01uT6eQqFQ3Fays7O5fPky1ao1wNPTl4MHra/fPmrUKF5//Xvq1m3DsmXLWLt2LQCtWvXgxg2ruxRQrx0eHj5Uq9YKFxcXANLT00lLS6N+/XYASolTKBTAPaLEKRQKxd0mJSUFAA8PX0JDa3Lq1Cmrck2bNqdNm74MHPgKkZGRxMTEMHHiQipXrsPUqU8wceLEQtd56NAhxo17hujoM2zfvp5FixYDGH3j6tRpjZ2dnVLiFAoFUIpnpyoUCoWBXbt2Ubt2bby8vO5ancnJyQC4u/vw1FNv0rCh9cVhfv11M0lJYbRp04v69dvy9dffsnhxJEIILlyIJCcnttB1Hj16lOXLF9K9+1g2bfqO48f/YMSI4ZQrV45hw16gVq3mBAVV4vTp07flGBUKxb2NssQpFIpSTXx8PG3atGHo0KF3td7c3FwaNmyOv38ITZp0pnHjdsa8pKQkvvhiMVFRUQwa9CirV3+EEILx4xfw3nvbsNdjgHh5+RMfX/hJCLGxUuHz9a1AQEAY0dGXyMnJITg4mClT5lG9emOqV29Kly4jiC28bqhQKMooSolTKBSlmvXr1wNQu3adu1pv7dq1WbXqbxo27MDVq6msWrXaqGTFx8czcuQINm/ezOXLl/HykjE5K1eug59fJWMZXl4BxMfHF7rOmJgYHBwccXf3JiAglJycHGJiYrh27RpXr0oHu6lTv6NixdZMmjSB1atX38YjVigU9xpKiVMoFKWaiIgI/PwqMG3a/+5KfevWrePkSen/lq2vDRMbG8XIkY/wxx9/APDtt0sB2LlzJwCentYDq3t5BZCYmFDouG6xsbH4+gYhhMDfPxSACxcuMGvWLJo1cyUnJwcHB0ecnFz46aclREREFPs4FQrFvY9S4hQKRaklKyuL3377jRYtHuLs2XiuXbt2R+tLSUlh6NChPP/8eL788ksefrgJGRlXCQ4OB+DUqVPk5OQwd+4HwE0lzmCJs6Ry5Tq0bt2BjIyMQtWfk5NDQIC05AUGhgFw/vx5YmNj8fLyNw7TAoSE1LA52UKhUPw3UEqcQqEotWRmZjJ06AuEhdWiQYMgNm7ceEfrmzVrFpcvX+aFF97i9OnTnDhxECcnV1xcyuPvH8zJkyc5ceIE6enpABw7dgywrcR17fo433+/GVdX10LV/+WX3zBv3nYAwsJqsWVLDP379yc2NhYfnyAz2eDg6pw4cbK4hwpwx5XiO0Fubq7N1TMUiv8aSolTKBSlFnd3d4YPf5O+fZ/H3t6effv23bG6Tp8+zYcffkjnzoMYO3YQM2fOxN3dGzs72U0GB1fn1KlT7N27F4DGje8DYNGiX6latb7NcrOyCt+G6yZRL6VvXBB2dnacPXsOH58KZrKhoTWIi4sttkIze/Zs/Pz8iryiREkzc+ZMPDw8uHjxYkk3RaEocZQSp1AoSi1nz54lOjoBJycXwsJq3TElTtM0Ro4cib19OUaNehcnp/IAeHj4GGUMw5d79+7F2dmVSZO+4ejReJo374qbm/XQJ5cuRdKpU41C+a7t3buX++/vSFTUMWPa8uWfM3XqVA4fPkSDBh3M5IODq+Pl5cOlS5eKfLwnTpxg2rRpZGZm8vTTT5NVFE2zhPnxxx8BmDHjzRJuiUJR8iglTqFQlFqGDh3K5MlyqeTw8Cbs3Vs8JS41NZUnnniCtLQ0Ll++zKBBgzhx4oQxPysri8qVGzBq1Gz8/YOpVq0xAG5u3kaZQYNeZe3aHSQnp1CzZjN9ePUsGzfaXr7ZycmVc+dOFcpqtG7dOv75ZwdeXgHGtD/+WMN3333Hq6++R4cOj5rJt2//MH//nUStWrUKfR4MbNq0GSen8owb9ykHDx7kk08+KXIZJUV2dg4uLm68/PL7Rdrv3XffZcGCBXeoVQpFyaCC/SoUijvKhQtx+Pp64erqVOR9z5+/QM2a7QGoUaMJGzd+Q2xsLEFBQQXsac6PP/7Izp1/k5iYxNy5H/D9999TqVIl3nnnHQDKlSvHyJEfYJh/EB7eCIAKFaoay6hYsSrXr8Pw4UvIzc0lMzOdvn1bArB1q/XZp56efgCFCjMSERFBnTqt8PT0Nab5+4dy9uw++vQZbzbUCmBnZ4fummedpUthyhQ4fx7CwmDmTBgyBIABA54jLGwQ7u7edOr0CL16WffpK23k5uZy+nQkPXuOJi6uPCEhWTg6gqOjY777HTlyhFdffRWAkSNH3o2mKhR3BWWJUygUd5SwsCDKl3cm2xCvo5Dk5ORw6dJFY6iNVq16MGvWV4WeJGDK+vXrSUu7ypUrzsyfPx+AHj16GPNPnTpFXFyicdugxHXuPMhqeXZ2djg6Wl/BwRRHx3J4eHgXqMTFxsayZ88eWrZ8yCzdxyeIhIR4YmKsR/Z9++3/Y/r06Xkzli6FkSMhKgo0Tf4dORKWLiU7O5ukJHB3l1ZGD48AcnJEgcdSGtA0jYULV/HAA8NITIynTp06fPHFFwXuN3nyZADGjn3lTjdRobirKCVOoVDcMXJycoz/mw5fWuPatWs0atSILVu2AFKxkSE3pBIXElKdbt2exMPDo0htMIQpadnyIXr16gjA0qWnaN++vVGmV6/evP/+aON2tWoN6NNnFH5+FW2Wa29fuIEMT09/Dh8+TNu2bVm3bp1VmV9//RWQiqophkkVO3da3+/UqUPGYMhmTJlCHjNdejpMmUK/fv0YPbqfMXnXrp959tmbx37y5EnCwsKIiooq8NjuFgsXLuThhx/G3t6eNm0epGrV+nh5+ePlVZEZM2aQmppqc9/9+/ezdu1aRoyYyWuvvXsXW61Q3HmUEqdQKO4YhkXkAQ4cOJCvbEZGBgcPHmTSpEmAjI8GEBAQZpQ5fPgYmzdvLlIbduzYQVpaGq1a9WDixG94883V+PoGc+iQVCo1TePChfNGix+Ai4sbY8d+Rs2azfIte9asDXz44R/5yrRu3ZNt27axc+dORowYQVJSUh4ZX19fOnd+lKpVG5il9+8/nlGj3uWBB4ZZLbty5XocPnyY3Nxcs/TVUVEsI6+lMDMqio0bN+LldXM4+uzZwyxa9Jkx3Eh8fDwXLlwwKtMGkpKSqFmzNkuWLMn3eO8EzzzzDGvWrGH16tVs2BBBTk42QghGj36fhIQE41CpNRwdHRk6dCwPPvgUcXEpXLccl1Yo7mGUEqdQKO4YhkXkoWAlzs/Pjwcf7MeFCxfQNI0qVaowc+ZCatRoYpRZvHg6I0Y8XaQ2/Prrrzg4ONK0aRfq1GlJu3Z9Wbr0fzRqVIcbN26QkpJCenq60eJXFFq06E6DBu3zlXn22Tm8+ebH9O79LCkpKYwfPz6PTM+ePZk+faXR8magfHkPHnvsFRwcrPt8hYc34tq1a0RGRpqlP2dnz2BucNpCfltAAOnp6WYWP4OSfOHCBQAaNmwI3FzH1UBKSgonTx7nzJkz+R7v7cZ0tYv58+czdmw/hJDnqWbNpvTrN44FCxbw+++/W92/Xr16jBv3AVFRx6hd28cYoFmhKAsoJU6hUNwxTJW4/fv35yubmJhIpUo1iYmJ4cCBAwQFBdG79wh8fW/GR6tevQlRUefMyi2I8eOnMGnSElxc3IxpwcHh5ObmEhUVZVReTC1+txMhBO3bP8e4cZ8yYMArbN36O2lpaWYyV65kUkSXQeCm756lghybK4exzebyuroyL6gCHh7eNGrUyZhsUF4Nls/du3cD5FkN4pVXpD9ZTExM0RuaD6tWreXiRdvX0xBCZdy4j3BzcyM4uLqZsvvUUzPw9g7g66+/lr6AlSuDnZ38u3QpCQkJXL6cgb9/CHBTWVUoygJKiVMoFHeM4OBgJkyYRZs2vcnNzd95/rvvvuOzz2YCcqbmoUOHOHjQXDmpXl2G/ihIITQlMdE9zwQFwzJakZGRJsO2RbfEFRaDMemJJ6aydOkJ3N1v+vVlZ2fj5+fJN9+8VeRyK1euS40aDc2sVaZ+iKe8vEAIqFSJ7ePHs/7fgwwaNAknJxejjKUl7ssvvwSkb5wp+/fLa2FpobsVTp8+Tb9+fZg16xM2bNhgVaZ8+fLMnLmAJk26sWvXX3mUbWdnVz7/fB/z2nSxOpljcOfOjB7dyXh9lRKnKEsoJU6hUNwxQkNDGT58AjNn/sT3329ky5YtLF++3KpsQkICdnZ29Ov3f9SpU4/XX3+dqVMHm8kYlLjXX3+9wLrj4+Np0qQ527btzpNnqsQ1bNiQGTMWEhpas6iHV2ScnV3JyXHizJlMzp49C0gL2I0bN/D1tT2JwhblyjmxaNEBBg4caEwztZSd7NMHcnPh3DmaTZ7KK698ysMPjzErw8+vIs7OrsaVHwz7Jyff9GdMSUkhKupcnvJvlU2bNgGwffsmHn74YaKjo/PIeHt707Put4XWAAAgAElEQVTnM6SlJZOYmMDly4l5ZPz9g0l9fa7VyRxRx08QEBCGk5MLXl5+RqVdoSgLKCVOoVDcMeLj4zlz5gyapnH8OKxY8TfDhg0jMjKStDSNGzduyiYkJODp6cvzz8+ldeu+XLhwAX9/c6uLp6cf3bs/yZUrgri4/Ov+8ccf2b9/D87OeUOSeHn54+rqRmRkJGFhYfToMQI3N8/bcciFol+/7jz66KPk5uYaLV4hIdWLVVZ2NqSn37TEmSoppkOiCQlOPPTQs2ZWOJDLe23depWxY8cCEB0dQ9u2fdi+/YhR5uDBgwA0a9aVFi3aFKud1ti4cSOBgaGMH/85mZmZrFq1Ko/MH3/8wbFjp6hevTGdOz/GCy/MyyOTk5PNi5dOsdAiXQMuZmcZJ634+4cqS5yiTKGUOIVCccf4+OOP6dFD+p/l5kKnTo+Rk5NLkyZN8PS0o27dmsahQKnEyaCz//6bzJ49e4x+TKZMnPgVH364nYwM8szKNCUiIoKKFatQpUq9PHlCCMaP/5QhQ4awZ88ejh49fJuOuHA8+ODT7N+/nxUrVhgVreIqcb//vorQUH/jMGerVq3Yvv0SXboMITU1jezsbLp27ca3366xWcaNGzeHumNjYwgICDUGPoabPneTJn3D229/WKx2WpKTk8OWLVto0qQrYWE1CQ21vjzZsGFP8dlnU3F0LMe0acuoXbtFHhl7ewcOOORgaeNNBjKAwED5MdCv3zgef3zYbWm/QlEaUEqcQqG4YyQlJeHu7oW9vT0AQUGV6d17tHHoLjLypDHkhqkS99tvKwHzmYmmxMZGUb++J0uXLrWan5GRwebNm2nZsgdCWPfFu//+x2nUqAXjx49nzpwxVmXuFPffP5hq1RowZcoUDh06RPny7nh7BxarLE9PP5KTk2jTpg2j7r8fu6pV8Wz/ABP/vcEfL7zGokWL2LRpI/nou6xe/SlDhw4jIyODy5cvY2/vyMiRA1m2bBk3buTw4IO9mTZtCT4+gdy4Yfu6FIVLl+JxdXWnadMuALRs2YNt27YZQ50sXLiQOnXqcvbsGeMEjvxo0vh+tgJ1gK/0NINN0mCJ69btCXr3HnDLbVcoSgtKiVMoFHeM5ORkPDx8zdKefPJ1hgyZzEsvyXUsDcN/L700kccemwDAQw8NZ8iQyQwaZD3+l7d3AFevptn0b9q2bRsZGRl5guda8uWXa9i+ffsdndRgDXt7e0aPfo8zZ87w119/8fjjU2wqmwVRp04revUahUOGPV9s2cL8qCgWkYJ9fDxnx77KxPEv0ahRR9q27WOzjEuXIlm5cgVOTk4cPBjDwIEvs2HDDzzxxBPcd18voqOr0LnzUHbvXk/lym78+++/xT10MjIyOHkyjjNnKtCr1wu0bt0TgFatHuL69ev8/fffgJzoEhubyP33D6Zz58cKLLfXmP/RMbgxiTgxV08LBCY5BFIzXvrKZWams3//IRUrTlFmUEqcQqEoEuvWrTML4psfycnJuLv7mKW5u3vz9NMzjdYVg49Sly4P0aqVXHbK3t6Bp5+eSWhoDavlOjm54O3tb9O/ydXVlfbte5mF0rBE0zQWLPgIAEfHoq/reqs0bdqF7t2fxMPDj/79Xy52OeXKOTF+/Ge8fKMKGvAisJYkLpNF8+tnSU2/xvjxC/JVEuXwaQbJycl4eQXh51eRgIBQcnJyaNmyj3FfV1cP0tOvFTi54fr16/zwww9W8zZs2EDNmkEcP/4PAwe+jKurOwANG3Zk/foY7rvvPgBq1KhNz56jmDp1KRUqVCnwPISF1WRadg1mUIdP8AKgIvB4tg9Bq+Qw7c6da+nQoUGe8CkKxb2KUuIUirKOldhZxSUxMZHevXszY8aMQsknJeVV4gyYhrbIyclh69ZtJCcXMFvBBH//UJuWuNatOzJjxlrKlXO2ub/0i/sMOzs7ozXobjN27Ce89dYm43DzrVA9+QZraUwTwB9nXLDHB0eGUdmmMmwgOFj64y1ZsoQ5c94gLS2Zhg070aJFd3r2fMYoZ4jZl58Sl5gIq1cfYsCAAcRZmX0SERGBm5tnniFSBwdHnJ2DyMqS22+//THDhxfuPjMSF0ctPPAlAIDTwCkEhlkwlSvXBeDnn38uWrkWpKamkpqaU7CgQnGHUUqcQlGWyWch9OJgWE+zbdsOhZJ/9dUpPPro/1nN8/Lyp23bBwkKCiIxMZFeve7j99+tW2+sIZW4vJa45ORkTp7Mf8F5A8HB4WzalE27dn0LXe/tRM6cvT3dsAgMwh0PziMIwJly2LGS1jwZ2LLAfRs16oijYzmmTp3K/PnTyc7OYtKkJbzzznqzwLr5KXGaptGvXz9mz/6MmBjp82gZhFjTNCIifqFp025WV6E4ePAP+vTpy9WrV80mVhSaQOlXuA47PgCmAc9x2phetWp9WrfuyTvvvFOkgNGWPPfcczRoUIvPP/+azMzMYpejUNwqSolTKMoIc+fONcYeM5LPQujFwTB86e4eYtWvKCoqihdffJGRI0eyY8cOHnigDy1aPGC1LDs7O2bP/oV+/fqRkJAAYJzYUBjat3+Ehx/O66S+ePFiGjQIKrRVr7i+aKWOESM475hNIhrJyNgtwskFRowocFcXFzc6dHiUzMxM7O3t8fKS18Hy3Dg5ueDm5sn58+eZOXMmly5dQtM03nrrLYYMGcKqVatIT79htLJZBmU+cOAAsbExNn0Vr127zPr1P/H666/TsGEgFy6ctCqX3znAyZkdpDEF+B0IEK5m5+Dpp98mLS2Nnj2LZ33dv38/y5Ytw9nZnWeffdLmcl8Kxd3AoaQboFAobp24uDjGjRvH7NmzjcsUAWArsGkxA54alLgHHmjBxx9/zHPPPWfMy83NZdCgQezZsxchBMeOHWPy5P+RmVkDb+8Aq+XduAG5uZpRiTMoD4Whe/eh1K+fNz0iIoIqVerh41O82Z73LF274nc9nbrzjjMkKwwCg6Ty0rVroXafOvU7/P2d2bz51zxruJrSp8+zbN++jqNHjwLw2GOPMW3aNDw8vGnZ8gF69RpFuXJOBHkGcODNN2HyZAgLg5kzidA/Mmwp9gblb8WKFSQlxZstuVYo9GPt9tm77E5O4oYdtL6vv9k5qFq1PkOHvsbu3T9z5gxUrVr44nNychg16lm8vf15551fGDy4KhEREXTv3r1o7VQobhPKEqdQlAEMw5zR0dHm4R/CbKwHaisduHLlis2JCxcuXKBcOSeCg6sZY3plZWWRmppKdHQ0sbFJvPzyQvr3f4kdO3bw0EPt2bLle5t1ffzxS9SoUcOoxNlS9myRmJhmtAgmJCSwbds2duzYUeCs1LKKa88+fPRbInW27oPvvy+0Amfg4sUYXFzc85V59NHxnDlzBoC9e/eyd+9eAGbP3sQ776ynXDkn2LiR8CuwLz3dbBh/qLsHb7yx3KaC7e8fgoeHDxcvXsTPr4Jx0kOR6NqVOqs2smxrJj9szmTA1M/ziAwb9gaffrqHyMhozp07V+ii3377bf7552/GjJmHj08QjRt3JiIi4raEXDlz5gy7du1i165d7N69W82gVRQKpcQpFGUAg4P/vHlfm2fMnAmuFisWuLrKdBu0bNkSHx/rkxGGDRvG9Onf06pVT7Zs2UJ6ejpz5szh66/XkpUVzOef/0vXro/Tu/ezfPqpDC5rGWLEFCcnF86dO2sMVFuU4dQjR3ZRq5YnW7duJT4eli3byH333Ud2djatW/cqdDmKm+zYsYEbN/JXHry9A3jvvQ00btyZPXv20q9fP1avPkHVqiZm0UWL6J0byCuY3Hvp6bjNWUTHjrbjtAkhCA+XS6sZJlvcSUaM6MiECRMKJRsXBwcORNKqVQ/uu08uc9aqVQ/OnDmTZ53ZopKSkkLdunVp06YNbdq0oVWrVrz99tu3VKbiv4EaTlUoygA1atTg6acn0bx5H3M/piFD5N8pU+QQqj6sZUy3wrFjxwBp3atUqZJZXq1adYiPr4O9vSurVn3I1q1bWbNmDVlZ5WnQYKgxVEdAQChXrshhXQ8P6wohyMkJOTk5NGnShNmzV+LpaVvhy7uvXM3hwQcfZNmyMwQH38esWRsoX96DunVbF7ocxU1WrYrBwaFcgXJ16nTkuefeIyzsBiDw9a1Bjulkzbg4muNDNVIA6ZP5O7DzYizNsm7g6Gi7jrp127Bv3+a7osQFB9colAJ28OBBIiPd6d17IhUqVDU+Yy1bypA427dvp2bN4q+9q2kazz//Go6OwXh7BzJ37mjjc6hQ5IdS4hSKMkCDBg0YNaoBf/65lS1b/mLy5Ek3M4cMyVdps2TZsrUMGtSbX375hdGjR5vlrVy5huvX69CwYUdcXMrz5Zdf8s8//zBs2PQ85fz+uxxudXPzslmXYTmkAwcO0LHjGPRg/YXC1F/q6tXLhIdXKboPlcIMH5+gQsuGhzciNDSXZ58dQ926A2nY0GTGcmAgWlwMf+LAMaAq8CVwyO4yP9jn/9p58snXEeIa1aq1LdYxFIWQkOqsX78NTdPyneAyatQosrLceO+9TWbpQUGVWLkyikcese2ekB+///47zZo1w8fHh/79Jxln5C5YsI9u3e7eWr6Kexc1nKpQlAGioqJITLzMX39t4LXXppGTU7QYVpmZkJMj/Xo6duxp5vNmiDOXLQSDBj7Mxs+nU66cE8899wEeHl5ommbVB83PT1rK8lsNoVKl2tjZ2fHFF99Q1EgN9vYO+PpWoEGD9oValklx+/nww3f44otPuHjRwpo1YgSUc2Ys0cwAhiEtce0adc130gTI1SxGjHiPDh0euUOtvklISA3S09OJjo7ON57iyZMnba5t6+sbxuXLRa87JiaGTp060a1bN5YvX0NS0hVjnpubF5mZZWTWtOKOoixxCkUZ4OGHH6ZcuSCaNetOTk4Oqamp+PoWbmjyq6++4p9/LrB8+Tw2b97E6tXbee65D+jVq/7NOHPp6cQAuUDA7gOwcSM9ez7D++9vxNc3yKoS1bv3KLp3H4qTk4vNuoOCKvPjj3FkZd2giHonAN99dwZ7+7zxxhR3h/nzZaiamjWbmWd07YoAvvzCjdSES+DnBwMGEPBI4SzC+a3zejsxBEE+9cknBM+dezMcjyGeIpD0wAOkpKQQEmI9YHJqagKDBz/P888/SY8ehZ9QU6FCBZ566mW+/HIOO3c+zNSp33H//YMAiIw8wGeffcj778+kYsWKt3CEirKOssQpygRHjx4lICCAI0eOlHRTSoSoqCgCAysZ/c8sA5lu3rwZZ2dnhBC89dZbxvT9+/fz1FNPERGxjKSkRD788EOmT3+B2rVb4u5e2SzOnCEoSUC2PSxapNdzjZYte9i0ruSnwBnw9PTDz694L6py5Zxvy2oHiuLh4uIG3FwJwYyuXXFZsYoKW/+iwg8/U6H/0FJ3rcLDG/POO19T6+uvbcZTNPjM2bLEubl5sX37b/z0009FqlvT4PHH3zJao5s3vxmm5OrVVJYv/+o/258pCo9S4hRlgk8//ZSEhAQ+++yzkm7KXefq1askJycTEBBmnAmalJRkJnPokFz029PTzyxS/p49ewB44YV5ACxbtozy5T3w8vJn0aLP+UUPXQJgWBvBHyfjMkZdugxj6NDX7tShKUo5Cxbs4+23f7a6+sK9gKenL127PkHQxYvWBc6fN66zassS5+DgSGhoTWOYn8Jw5coVWrZsw759f/Dmm2t47bUVZhOADJM61BqvioJQw6mKMsFff/0FlMxC5iWNIbyItMRZV+LS0tIAOfuwbdubj31kZCSOjuVo1KgTbm6eXL16mVq16iGE4Kuv5nDU1ZWHdAuFQYkLwMm4jFGnTv3v5KEpSjkhIdVtWqjuFf79/DPSgE4W6blARkgIXbt2Zc6cVVSoUMVmGZ6e/iQkRBeqvoSEBNasWcM//+xi8OByhIbWyLO2rZ9fRZydXTl16hTXrl3D2VlZnBXWUZY4xT3P5cuXOXz4MCNGvMWUKXNKujl3nZtKXBg1azZl794rPPSQDH1gcNb2fP11qju4Y79lK+npGtq330Llypx+910q5jphv2Ur1as3AaBiRflSrlatMfvLuxnjzA0DPqcm5Z3cCrWUk0JxL7BwyVs8byX9LcBNX6GkdetH8rU2enn5Ex+fUGBd0dHRVKxYkZEjR+Lu7kW9em2sygkhCAmpzl9//YWbmxsTJ04szKEo/oMoJU5xz+Pp6cmuXYn07fs8SUmQnZ1d0k26q9SpU4fXXvuESpXqYG/vQLlybjJcgmFSQlQU/wd8m12LXe++SmigE8eeeQaiojgFVMxxhPfeo1OgDNZqsAqEhzfibEI8l+fOhUqV8BeC2oH14aWXirwSgEJRWvG/rhFjJX2d/rdixYocPXog3zLCwmoRGlopXxmAf//9l+zsbJ588nVmz96Ur2JYqVJd4wjDp59+WmDZiv8mSolT3PNomkZGRnnc3LwYMaI3Q4oQE620cv78eQYOHJhnWNQaYWFh9O072uhT8957r7J69WqzSQkA2TjgmQ3p2Vmc1uN5bKA8L1EDrmfSe38c27ZdoV+/sQBUry4j5x+sWRPOnePDD+Zz6LWXlQKnKFP4lvclBbCMcPN7aE2eeGIaAEuW5I2DaMqgQa/y8887Cqyrbdu2fP31DgYOfJmaNZvmKztlyrccP67RocOjAEUOG6T4b1BqlTghhLMQ4m8hxEEhxBEhxHQ9vYoQYrcQ4pQQYrkQouDw4ooyy5EjR6hZsw6HD+8HwN7emT179pZwq26dJ554ghUrVrBixYoCZffu3WsWdf7HHxeyadMms0XuxwLvcIZg5GzRSD3dHld80f0I4+LQNDdjcF5D2JBTp05x48YNxo9/kb/+irj1g1MoShE+neRHSaxpohBcvZDM0F+P07tJTwYNerXAcrKyCq7L3d2d2rXbGmf15ocQgpgYubTXtWvXOH36dMEVKP5zlFolDrgOdNY0rSHQCHhACNEKmAV8oGladSAFUM45/2EmT55MdHQ0AQEyYnpISHXOn48iqzA9ainmzTc/BmDbtm0Fyo4ePZo5c8YYtz09faUFz2SR+/3ABTLxwAF37IkEjgGvk0kC+lqZgeaLkvv6VmDTplRGjBjBmTNnyM3NzeOArVDc6/i27wJATJC+WoUQ/K5pDOUaKfEXGHckizqXruRTAhw//g9duzZl//79+cotXbqU33//rUjtq1evLY8/PgZHx3tzBrDizlJqlThNclXfdNR/GtAZWKmnLwH6lkDzFKWA/fv3s3btWh57bIJxzc3g4HCys7ONzv53A03TbnN54Oxcj27dhrJ582ZyC4h8GhkZScWK4cZtd3dfGSdu5kzjpITLgCsOCCcXKnpW4LSdHX8Dn3GF6+SAk7PVyQr29p5kZ2O09N2N9SwVirtJnTqtWLr0d+qeOAGVKoGmsQP4lXRcsYfrmca4iPlx+PA+LtoKVaIzbdprREQsLlL7QkNrMH78fKpUsT07VvHfpdQqcQBCCHshxAEgHtgInAZSNU0zeK5fBIJt7DtSCLFHCLEnIaHgWUOKe4+DBw8CcN99jxnTgoOlMnM3hh5ycnLo2PF+3njjjdta7oQJk9mxYwtNm3ZB0wQXLlywKZucnExKSorxuAHc3X2kJW7IEFiwACpVIg1wcS4PL71E1ydeoevAIUR6emIPBAZUsjlZ4fjxf+je/QG2b98O2A54qlDcq7i7e9OwYQc8PDyMLgj7gRCcKW+IwqXHRbSFl5c/AAnr1tlcuuvGjRtERZ2zGW8uP1JTs4oUh07x36FUK3GapuVomtYICAFaALWtidnYd4Gmac00TWvm7+9/J5upKCFiYuScMtNFz0NDa/LII8MLveTUrZCRkUFkZCQ//PDDbSszLS2NOXP+x4kT/9C582Ns3RpHhQoVuHLlCleuXMljlYuMlN5tFStWM6Z5evqRmakPkQ4ZAufOccXPn/LdHoKuXXn00RcZ+uEijnftSmDFqjgu/8HmZAV7ewe2bPmV+fPn4+npaxaQVKEoK/z88wr+/PNPowvCfqAaJn5rFq4Glnh66krcV1/JJbs07ebSXboiZ3BJKM6H0OzZz9KyZasi76co+5RqJc6ApmmpwDagFeAlhDBEKw0BChdhUVHmaNOmDSNGTMPZ2dWY5u0dwOTJi2jaNP+ZX7eDzZs3Ex19nmPHjhU4jFJYDBHag4Or4+DgSFqaHbNnf4KHhwceHh707NnLTN6gxJla4l599Ut27z5sJle/fiNCQ2sZt5ct+5GVK1cWODwaHt4IP7+KPPjggyxcmH+YBYXiXuW998axaNEimDmTM87OnAHCDUqcDVcDU1xcyuOEHQmWvrj60l2AyfJdRbfEVavWkLi4WA4fPlywsOI/RalV4oQQ/kIIL/1/F6AL0hd7K9BPF3sSKNqCdYoyQ8eOHRk+fEae9PR0jZSUlDtef7pJ+I5ffvnltpR5c4kfqVxlZ4OfX3tGj55Dw4Yd+fPPHWY+eF26dGHevHVmSpydnV2emXKrVv1Gv37/Z9z28mrI6NFzGD06/+DIQghatnyIzZu34OWVvzVCobhX8fGpIC37Q4aQNGkyNR086E4QBAYVOi5iKzwJsZahD9EaPriKY4nr3PkxPDx8GDVqVIE+sor/FqVWiQMqAFuFEP8C/wAbNU37GXgVGC+EiAR8gYI9ThVlknPnokhJScuT/tprj9GmTds7Xr9BiRNCEBGRN/TG9u3b6d+/PwMHDuTQoUOFKvPmBIKbSlnNmk0ZMOAl2rd/hLS0NEx9PAMCAmjevCflyt1cbuzff7czfPggsxhzlvGPw8JqMWDAS1SpUq/ANjVu3JkrV9JYt25BoY5BobjXMCpxQMCT0/j0t1T8t+6C778vdFzENwPvZ6y1DH2IduzYsfz0U1SxXBK8vQN47rkP2Llzpwr8qzCj1Cpxmqb9q2laY03TGmiaVk/TtBl6+hlN01pomhauaVp/TdOul3RbFSVD586d+eCD0XnSAwMrcfbsmTv+xWpQ4p555n+0a9cpT/5XXy1h5cqVrFixgpUr5YRqTdMYMeJpPvlkC2+/vZLJk6eY7RMXF0dQUBhOTi55yqtevTGdOj3ItWvXjGkrVqzkwIG/zeQSE6NZs+Z7YmNl5KuLFy/SunUtdu5cR3Fo27YPbdv2oX79dsXaX6Eo7fj4BBEdHcMPP6zin3/OyxVPikjOiJHkWMZ/EwL0JfCEsMPLK8zKnoWjW7cnaNKkM+vW3R6rv6JsUGqVOIUiPzRNIzY2xmxSg4GKFatx/fp1Ll26dEfbYFDiHn74BZ57blye/A8+WMi6dSl4eHgbh3fXrl3L4sWLOHPmNIcO/cPs2e8aF6cHmD//Y5YsOWG1vgYN2vPpp7+YhRoYM+b5PBYyQ7gVgyUuJSWF06dPkJVVvO8dZ2dX3nprDeHhDYu1v0JR2vHxqUBCQjwDBvRjzZrPi1XGwqhttHRzlYqbAU2DJUvI/eYbhg8fyb5924rdRiEEb7yxkvfe+7nYZSjKHkqJU9yTpKWlkZGRYVWJMwxFGnxQbheWa7J26dKFCRPm4eDgSGxsYh7LX1ISuLl54W7vTNKiRWBnx9T+AwjzDeHBB5+iVaseZGdns3HjRuM+GRlQrpyzzTZkZNyMS5eYmEhCQrzZ0CuAh4dU4pYvX07//v1JTU0FwNXVo/gHr1CUYfr2fY7Jk98G5AoJxSEr6zrHEhOk4mZKejqnJ07kq6++4NKlWwt95O7uTUKCICUlWy3DpQCUEqe4RzH4r/j45FXi/PwqAnJo8nYxcuR4+vXrZzapoGnTpgwY8AJr1nxCeLi/2WSKiRMnMm7cM7BxI+9crcL76elc1zQOZ93g/lRn7LdspV69Nri7exn96ZKTkxk48FEOHbK9BuPIkV0ZNGgQAJMmTcLe3p6WLR8yk3F3lz43n3zyCStXruTYsWMAuLq6356ToVCUMXx8gjhx4hienr7Urt2yWGV4efmTrmlEEsjXuLPLJO9AtAyiYFjK7lbYu3cTvr7l2L179y2Xpbj3UUqc4p7EWow4A76+FRkzZgZ169a9LXVFR0dz44YDP/30k1lMuKioKE6fPmZ0VE5OTgakpezbb5eSnJwEixYRkuWIPwLDdASvHAGLFmFv70CzZt355ZdfyM3N5cSJE0RE/MjVq6k22+Lg4MTRo8fYunUrCxcuZMCAl6lWrYGZjKenL97e/nTtKidxG8ISKEucQmGd1NQEVq36hoCAMOzt7YtVhrOz9IcbTQ6vcoNhwAfAYeCAhwcODg5UqXLrfZKbmzeaplGYIPZnz56V8e8UZRalxCnuScLDw3nttY+oVKlOnjw3N0+eeWYa9evXL1KZs2fPZuvWPXnSJ02aRETEUkJCwlm8+OaSOdOnT+fFF7sbLV8GJe6XX37h0qWLtG3bF+Li2EsKH2FHLtAFZ8JwNUaAb9euLwEBISQlJbFmzRqEEFSt2iBPGwyEhFTn9OlIzp+/RO3azXnyydfzyLi4uLFmTTyPP/4mIH332rV7wOgrp1AozDFMZOjff3yxy6hVqzkADzpW5iVqEIVgPNAJwe9BQYSF1c7XVaKwGFeHyE+JW7oUKlemX9WqtGvXjgvz5t1yvYrSiVLiFPckoaGh9O//PD4+1mOXRUdfKtJw6sGDB3n11VdZvHgViYkpZv5tUVFRVKhQlYoVw42KGkjlyMnJ1WwiQU5ODhMnTiIkJJz77x8EgYH8SSJvkEMYsIAgGuFljADfsWN/Pvrob65du868efPo0uVxAgNtz2ALCalBeno61at34uOPd1udxQqQmwsBAbKcqlWr8umn6/HxCSr0+VAo/kt4evqxZUsuXbs+XuwyatduwebNOTR55W2aBdbhJ9oxz7szSWj8efIkNWrcngDkBSpxS5fKlSKiomiuJ70+frzZEmCKsoNS4hT3JKdOneLYsaM28/gppYYAACAASURBVB9/vBlTp041S8vJyWHOnDlWV1eYMmUK7u5etGzZi2rVqloMm54nMLASbm5eJCff9HvLyMjAycnVzBK3bNkyDh8+xFNPvYWDgyOMGIG7vQupQA6QhaNZBHh7e3tyc+14991PyMzMtBq82BTDJIa//z5RYBgEZ2dXevceQa1atfLEiVMoFOYUJ6yIJXZ2djKu3Pff47T1D+r/uJk331zN4cPXmDChaAvf28LJyQUXl/K2lbgpU+RKEcBnwACCWZKTw5FXXjGKHDlyhI8//vi2tEdRsiglTnFPMn36dMaO7Wkz383Nyzgr8/JluHYtnVmzZvHKK6/k6bxyc3PZsGEDDzwwnNq1W+Lq6sny5csBqfhdvHiBgIAwunQZwosvvmzcz2CJ8/WtwJgxM2jQoAF169Zl8uTFdOrUXwp17Yr7fd3QgLeB9nbnufr8s3kCiMbEXGb06DkEBVXO97hr1mxGjRpNcXIq3CSFl19eyMGDB+nbt1bBwgqF4rbTrl1fEhNdb4uSaGDw4Ffo2LGj9Ux9hQiAbOwZTCXcsGe57kecmZlJvXr1GDNmDImJibetTYqSwaFgEYWi5EhISMDX11d+4ZoQExNjdWaqATc3GZtt3759DB48jBMnDhk70aefftpMNiUlhZycHKNTc506rdmzZycAsbGxZGdnExgYRuvWPWnc+OZ+6enpODuXx9XVnREjptGggRzGvHy5sVn5Hs1bw6ZPOTxgAEmrVuHao3ee9v7f/xXuq9jd3ZvPP8/rt2eLnByIjDzDlSu2J0soFIo7i2XUkVtl6NDX6dAhb/qlS5cIDguDqCgA2pBLFc6zgGY0r2BPUlISb731llE+Li4Ob29v4uPjqVDBdn+qKL0oS5yi1BIfD/PmLWHkyJF58s6fv4Cvb0Wb+xoscadPn+bEiUOUL++Bi0t51q6Nolq1amay6enp1K3byGgFq1mzGRcunCchIQE3NzfefXcRjRt3JiPjKseOnTDGi5sy5TUee2wCIGewRkdHExHxG7GxUWblG+K2HT9+HE9PvzwK6Z3k889f5bvvvlXhRRSKMkRm5nWio819frdv305ISAgrevUCV1cATqNxnVwCnby4MPwNvvtuI3PnzqVr1yc4eFDTRw4mU7FixYJnu+qTJRACHBzk38qVla9dCaOUOEWpZOfOnSxd+jOnTsWzePFis7VHr127xunTkfmu+1m+vPRfM3RMCxbsZ/HiI0RHX8gTXyk0NJSIiP20bSstZAYH5L179+Lp6UmfPsMJDa3B5s3LaN26lnE5qy5dutO0aRcAnnmmPePGjaNPnwdYv97c96Vx4/vYvTuOSpUqGZ2S7xbe3nIChWWgYoVCce/ywQfP0rJlc7O0Bg3krPZV8fGwYAFaWBhpQHlXT3jpJbQuXalQoQPvvvsrEyYs4upVuV9CghxS3bBhg+0KTSZLANLED3J75EilyJUgSolTlEo+/vhj5sz5PwYPnoibmycvvvgiS5cuJTY2lkOHDqFpGtWq2Q6c+dBDw5kyZbpRiQsICCUwMIz333+RN998M498VtbN/6tXb8KYMW8RHh7OyZMn2bdvD5qm4ebmBWD0tdux409jBHZ3dx8OHz6MpmkEBISale3k5IKnZwDJycl4et5dJS4wsBIAV66kFCCpUCjuFTw9/UlIiDcLPu7m5knHjv34888/0QYPJuPYMbIBt8efNPrg+vlVpHnzbjg4OLJw4f+zd+ZxUVVtHP9eBoZ9l0WRRUFwF1fcMs2sXFIzs1wyc8u218wyDVPTLE1tMbPUzLLMLM0yNQ3T0sw0FfcFVGQTBUH2nbnvH5cZGGaGXaQ838/n/QDnnnvuM7zG/OY55/k9C2jTpi1LlqzBxcWDnTvL6claqljCgOxs5brgjiBEnKBekpSUhJOTGw4OLowdO4/ff/+dMWPGsHLlSpo3b86KFT+V25C9Y8f7GT58DElJSTg4OCuVoigZOq0I07Jx40aGDQvRCR1bWweeeCKUgIAAPvzwQ5555gEkScLe3hlA15nhsccGs2XLB4CyZXrunFItq7X20JKfn8cHH8xBpTKvdkuf6qK1K/HxEYUNAsF/BScnN/Ly8sgsTqfFx8cza9abBAQEEx8fz8mTJ3U9mU2ZfFtaWnPmzGkuXrxBly792bVrl+mMfaliCaNER5d/XXDbECJOUC9JTEzSZa2GD5/Kt99G8/XXkcyYMR8nJyc6dx5crnltenoKR478g42NDc2alRQalLUJAaXH6unTR7CystWNpaTcYvfufURHR+tEWdlMXHZ2Nmq14tOmtRkBDDJxKpU5n366gB49ejNixPQq/y5qgjYT17fvqDp9rkAguH2U9YrbsWMHS5bMo2XLboBiOC5JEoMHP46vbwujawQFdQKgR49G9OgxlDZtOpuuVvUx7V0JKOfjxJbqHUGIOEG9JDExUW/r0cPDBy+vAFJS4KuvNnDqVHi59x84sJUHHujCCy+8wLJlv+nG7e2d9XqcAsUFDI5YWKh1Y7/8so6HHrqPHTt24OHhBygVr6Bk4jQaDbm5uVhZKQeISwtKQxGnws7OkcTEitvk1DZOTm6MGvUagYEd6vzZAoHg9qD926gVcbt27cLT05f27fvw8ccHmTZtOh4eHqxY8S3Bwb2NrtGsmfI3wdnZg549h7B8+a94epowBF+4UFcsYRRZ1m2pLliwgObNRea/rhAWI4J6hyzL3LyZZFAEIMsyTzzRn0OHdvPYYy8TENDexAolWbOkpFRk2UdvPC1NfztVu3VbmgcfHEt2djoFBfnce6/Sg9TFxZM33viEkJAQcnJyALC0VP6w9enzOC1beuDu3hlrazuDeAoLC1i7diUuLh0ZMGB8ZX8VNUaSJCZNWlRnzxMIBLefpk3bMGPGYho1Uir0z5w5S1BQZyRJomXL7rp55dUz2do6MHfud7qMXPGfNOOMHq18DQ01vXVavOU6Z84cQPHYrG4fWkHlEZk4Qb1k795wHnnkBb0xSZKIjFSauQcEmC5qAHTn17p27cjmzR/qxgcPnsIPP+zROxCsiDh3vfsdHRswbtw8Jk16W5fFsra2ZdiwKQQFBZFdfMhXm4lr06YnU6fOpkOHB43Go9Eo1Vy2tqIJvUAgqBkeHj48/fQMvL29KSoq4urVKF03l3PnDjNv3ly2bNlCmzYOREefN7lO796P0bBhEwCmTn2QYcOG6a4VFBTotRlk9Gi4ehV8fY0vVrzl+tFHKwCEkXAdIUScoN4hSRL+/q0MtiUB7rlH+SPj79+u3DW0mbjCwkLS0kq2Mb28AujQobuee3rz5i1p1apHpWK7cOE0ly5dwt7eni+/3EZIyAAAsrLSCQ2dzj//7DN6X1FxSX5dV6cKBIL/HrIsc+XKZRISErh+/TpmZmY0aqT4X54/f5h3353PpUuXyMrK0O0WVIRGoyGhuKtDURH8+ecF3N3diY2N1Z+4cCEaa1v9MRsbZcsVcHVVTIO1VkyC24sQcYJ6R0xMDKtXf0RycoLBteeeW8Z77+3F379tuWtoM3GgL5ySkuLYuHG93ifMJUuWM2XKu5WK7aWXBvLWW29hZWXF/fc/TKNGTQE4deoAa9a8x6efvmr0vldeWQNQ5z5xAoHgv8mwYa1ZtmwZXl5enD2bzQMPjAVKRNTFixeBymf/HRxcSU5W/i5mZ8v8/XcMRUVFXLhwQW/en76+vHJvf5IbN1YKGnx9YfVqGD2agoICRo16FBAirq4QIk5Q7wgPD2fevP9x82a8wTVzcwvat+9T4RouLp5Mnjwb0BdOV66c5qWXniIiIkI3lp9f+di07bxSUlLYvXs7qalKlk+ttgJKtlfLkp2dYRCLQCAQVAdJknByctMVNuTlmekKs1xclOIErYgzZTFSFnt7F1JSUsjLy8PV1ZJ//tkNYJCJCwsL4/1dm+lkbo5cVKRssRafmYuPV/5mP/zwaLp06VKzFymoFELECeod2j9MNdl6tLS0JiTkAUBfOJW1CUlNTaVFi8b8+utXlVpX6zN39uxZxo9/mMuXTwLg5tYYgB49hhi9z8xMhVptpWdFIhAIBNXFxaUhUVFRrFq1ijfffLHUuCLiIiIisLGxq3RxgYODC7dupZCUlERBQQHe3oFIkkRMGY+4yMhIAK5evUrE0qVK6y0zM/DzI3btWgAGDBiLs7Nz2UcIbgOiOlVQ79CKuJpmrc6cOYa9vaNOYIGhiEtMTCQhIV7vjFx5KBYlUbrCBu15Ex+fIDZtitF7VmkGDpxIr17DRLWWQCCoFYKD+/D998swNzfn6tVEnn1WGdeKOB8fHwIDe1V6vZYtuzF27GSuXbsGgKtrIxo0aGiQiYuIiMDbO5DY2Ah2hIYSpG13Ex1NzLvKsZTTp4/yxx+W3HvvvTV8lYKKEJk4Qb0jKSkJa2tbk1uTlWXjxg/o02ewntml9qxccnIyDzzwAJ9++ilQ+ayf1meubHUqKP5wpsSghYVa98dVIBAIakpIyAAKCwvZt28fjRoF6MZtbOzZs+cm//zzDy+88H6l1+vWbSDvvPMJaWlpgPIhun//CXTvXmJZIssykZGRdOzYDz+VPVtL9ysEYovPpnz33cd88sknNXl5gkoiRJyg3mHMt6062Ns7G3jCaTNxR44cUc52vK/8kavs8wYPfpb33//UwCdOIBAI6pLWrbszf77SJUFbmarFxsaVwsJCCgtlY7eaJDe3SFeQ4OTkxtNPz+fJJyforqemplJYWIiXVzP6F7nzJ1C6Ht8d6IoDXl4BukpXwe1FiDhBvWPlypUsX76/xutERp7gjz9+1htTq634+utjdO7cGYBRo54DKi/iWrToQt++A4xm4gQCgaCuUKnMad5c2a7UesRp+eGHz7C0tOS11yrfq/ncucM0bWrBlStXGDFiCi4uSpXrzZsZOl9NZ2dnzp3LZOjQ5xjq3p4X8aVTqTXGA0s8+uHs7ElCgqhOrQuEiBPUO2xs7GnQwNAjrrYICOhAXFwc5uYWtGz5APfe+0ilRVxycgK7d/9C3759Wbt2r/B9EwgEd4xbt24A4Onppzd+5MguAKyt7Su9lp2dI7IsExgYyMyZn2Bn58jWrSvw8nIgxcdHV7yQ8912zM0tUE+czDDL5qTggzbfV2htT+GEZ3Bx8eTGDSHi6gIh4gT1jrfffkf3R6gmrF9/kZUrDxuM//rr9yxevJgmTVrTo8cQ5s37QWcRUhFHj4YxcuQANBoNnTr1Qa22rHGcAoFAUB38/dsSGrqBzp31O8VoveKq0iFGWzkfExNDbq5iTu4SlwhAbFwcyDKro6MJnTURwsKgXz+YPp3tzk3pjERy48YE2lnz1fXDuLh4kp6ertuxENw+hIgT1CtkWebtt+dz/PhvFU+uAG/vQFq0MPQq2rRJOQf3+OPGjXnLQ1sY8dtvv7Fz56aaBSgQCAQ1QKUy5/77R2Fmpv9Wri2isrCo/IdM7d+2mTNnMmaM0tbQ4/dDAGjrU38F/ilKh2IrEfr1w2rJh5w0V9HPzY2opERUKnP69x/PX39FYmlZ8vyLFy+yYMECvZaHgpojRJygXpGcnExubi6uro1u2zPs7Jxo27YjffuOrPK9DRsqHRpmzJjB/PkTKpgtEAgEdY+DQwMA8vLK62qvj7m5Bba29nr3u6dkAaB1ijsD+GALN27o7vP3b8uLL35EcnI2TZu2oWPH+3Fx8cDLK0DPUmnOnDnMmTOHqKioGrwyQVmEiBPUK7RGko0bB962Z+TkZHLq1DGKigqrfK+fX0s8PLxJS0sTRQ0CgaBeoj3j6+fXqkr3jRw5HSixXHJy98YCiVggC4gAmmEHHh569w0ePIUvv7zA2rWnCArqRGZmKp98sozTp0/r5kyf/goAJ06cqN6LEhhFiDhBvULbDqtx42a37RkXLx4FICcnq8r3SpJESIhS8aVSCa9sgUBQ/+jZcyj792sYMeLlKt03duxcnJ2ddSLQbOJEJqj8uA84DciAv7kLTCh/FyI/P5dFi15h0KBBjBw5ElmWadq0NSqVSoi4WkaIOEG9Ii4uDpVKRcOGTW7bM957bx+TJr2DnZ1jte4fOfI12rfviq1t9e4XCASC24mZmRlFRZXrQlOazMxMbt26hbOzuzLQrx+Pv7aKe32akQ74qqwJeOZlpaihHJydPXjkkRexsfHk22+/ZefOnbRrF0hRUZEQcbWMSCUI6hWhoaGEhEzF3Nzitj2jZcsQWrYMqfb9np5+2Nq6kpWVX4tRCQQCwZ1l4cIxALRvf59uTNO3L7/3+pY2bTz5Pr4RWZXYwJAkif/9bzk3b17jsce8WLhwIdeuxdG0aRugaq0HIyMjyc3NpU2bNlW6725BiDjg1KlTnD8fwbBhQ7CwuH3iQVAxRUVgbm53p8OokOef/4jc3MofGhYIBIL6jqtrI5ydG9C27T26sVu3bjB8eEcWLnybHj1mVWm9Bg0aMWHCAqKj9yNJEitWHKJzZ9sqrREYqJyPFlWtxhHbqcCmTZsYM2akQZm2oG6RZZmRI0dz6ND2Ox1KhXh6NsHPr+WdDkMgEAhqDQsLNbdu3aSwsKQnqqtrQwIC2hEa+jrbtq2u8ppjxsxGrbbB2zsQa2tbMjNrM2KBUC0o6drCwkJ+/PHHOx3Kf5qcnBwWLVrErVu3jF5PSEjg+++/4fr16DqOTCAQCARnzyq+cBcu/KM37uWlFJrl5+dWeU1Zltm58yfMzS3Jz89lyJBurFixosrrFBQUVDzpLkSIOCAxUXGl/v333+9sIP9xXnvtNWbNmsXKlSuNXi+xF7l9lakCgUAgMM6kSe/g6tqw+OxaCU8/PZ8mTVrTq9ewKq+p0Who27YXTz45G7XaiqysbJYuXUpmJVNy4eERbNmyF0mqeqHG3YAQcUBMjOJHffny5TscyX+X8PBwnXhr1sy4B5xWxHl73z6POIFAIBAYp0OH+9i8+Ro2Nvo9V319W/D556dxc2tc5TVVKhUffvgHvXs/BsDUqR8THR3NG2+8Uan7/fya0aVLH8zNxRF+Y9RbESdJkrckSfskSTovSdJZSZKmFo+7SJIUJklSZPFX55o8R6PREBeniLjIyEu1ELnAGAsXLsTBwYVt21J44IHHjM45cOAAlpbWuLl513F0AoFAIKgL2rTpyeDBz/Lhhx8SFxenDG7YAH5+YGamfN2wAYDU1FQeeKAH06ZNqLDTQ1xcHLNmzSYtLa12AjURU32j3oo4oBCYLstyC6Ar8LwkSS2BmcBvsiw3A34r/rnaSJLEH3+coV+/J7l6NYrCwqq7+Asqxs3Nne7dh2Jv78zVq6kl//EWo9FoSE3N5uGHp+i1ahEIBALBf4vBg6cgyzJ79uxRxNHkyRAdDbKsfJ08GTZsIDExkX/++YvNmz9n79695a45b948li1bYvLMdZUoJ6b6Rr0VcbIsJ8iyfLz4+wzgPOAFDAG+LJ72JTC0Js+RJInGjQPp2PF+fHyakJycXJPlBCZYvnwlr7yyGo1GQ58+zZg7d67edUkyY/bs75kyZckdilAgEAgEdUHTpm1Ytmw7w4YNg9BQyM7Wn5CdDaGhpKSk6IauX79ucr3z58+zbt06+vcfT2JiLWTiyompvlFvRVxpJEnyA9oDhwEPWZYTQBF6gLuJeyZLknRUkqSjSUlJJtc+deoUn376Pj16DGHPngg8yvSEE9QO2sIiMzMzgoPvY+fOnWg0GgBSUlL455/LZGUhsnACgUDwH0eSJDp0GIiFhQPExBifFBNTaRG3Zs0aLCzUWFvbExISrHdftTAVU3T9c06o9yJOkiQ7YAvwkizL6ZW9T5bl1bIsd5JluZObm5vJeXv37uXtt19GoykiR3i33jZCQtqxdatSVt6160CuX79OeHg4ABs3biQkJIBr167cyRAFAoFAUEfcupXI3LlvEdGwofEJPj46MaZSqcoVccePH8ffP5hOnZR2YDVu7eXjY3xckurdlmq9FnGSJFmgCLgNsiz/UDx8Q5KkhsXXGwKJNXlGbGwsVlY22Ns789xzQ1m0aFHNgq5n5OTk8M0339xRt+vc3FzOnDlFdnYGAF26PIQkSezYsQOAHTt20LhxAI0aNb1jMQoEAoGg7igszGfJkjd4rWFD3rKw4C0gXHvRxgYWLsTCwgI/v0B8fVuRkJAAKL5zq1ev5q233mLbtm0AeHs3oXPnBwkICAZqQcQtXKgItrLIcr3bUq23NbuSYgqzFjgvy/J7pS5tA54CFhV//akmz4mJicHd3RtJkoiLi+KPP/KYObNGtRL1imnTprFq1Sp8fX3p0aPHHYlBe9DU3l4pJHZ2dqd5887s3LmTV155hX379jFw4DN3JDaBQCAQ1D1ubo1p2/Yefjx2AK3N/llgo6+vIqJGj+ZxICjocU6dukCXLpYARERE8MwzyvuFWq0mJSWFpUvXcf68dl0v3S5PtRk9GsaMMX7N1FZrFUlNTWXcuAm89dbbtG4dVO116q2IA3oATwKnJUnSyurXUcTbd5IkTQBiAON+FZUkNjYWd3clddqsWQeOHt2BLMv/GWPBU6dOAejOn90JUlNTAbCzc9KNPf/8B3Ts6MzPP/9Mbm4uXbsOvFPhCQQCgeAO8MEHf6DRFAFKN4h77rGDMq2zCwrAx6c5Xl7KzxcvXgRg9uxv6NmzLdbW1hQn6QDw9w8mPLyGmTgAX1/jZ+BMbbVWkRkzZvDzzz/y6quv12iderudKsvyn7IsS7Ist5VlObj4fztlWU6WZbmvLMvNir/W6ARjbGwcDRooBoaBgZ24eTPJwP7i30z79u0B7mhfWGMirlWrbtjaNufPP8OxsbGjbdtedyo8gUAgENwBJElCpTJHpTLH2trOoK/qrFmzeOONJ7l69Rwffvg+OTk5OlP4zp0fxNW1FfPmzaNPH3+KihR7sFGjZvH22x/VPLiFC5Vt3bJkZlbuXFw5PnNXrlxhzZo1uLl5s3r1JzUKsz5n4uqEI0fOER6unBcLCuoIwNGjR/H2/m8Yzr722mu4ujbF19f3jsVgbW3NPfc8YOD2nZwMHTqMIShoMGq15R2KTiAQCAR3mrS0m4wdO5n//W88gwYNApROPzExt7h48SiLFr3ME088zPDhwyko8MPBwYW///6LBQsW4OvbApVKkTNt2vTAuUYtAIoZPVr5OnWq8malJTlZ8YwrPacsWp85rU2J1meu+B5tkYaLiydfffU5X3yxptq7f/U2E1dX2No6YGfnCIC/fzs6d+6DlZXVHY0pIiKi1goR3N09GDduOo0bV71dSm0RHBzMZ5/tpkmT1gbXmjRpTevW3e9AVAKBQCCoL9jaOrJ//y96PcxTUlKwt3fBxcUTUGxGfHx86d79UQBiYi4AYGamb0118WIsQ4eO0GXtYmJi2LdvX9ULHkaPBjs7w/GKPOMq8JnLLr7m7OyOLMu6n6vDXS3isrKymD37Vc6d+xsAS0tr3ntvL/37979jMb3//vsEBQVV6E5dWQIDAxk+vHvttSKpJlqfOIFAIBAIymJuboG/fzuOHj2qG0tOVkScdhfn8uXLfPHFBq5eVcRbly4PARicqTY3V/PLL9tYtWoVAPfddx/33Xcf7du35+zZs1ULrBwfu+re06BBAwYNGomXVzMAMsvuI1eBu1rEpaSk8PHHS4mKOqMbKyyEW7fy7oglR2JiIi+//DKgfHKoKbIsExsbQ3j4IbZv317j9arLe++9R79+fhQWCiUnEAgEAuM0a9aR48ePlzKCT8bBwQUfn+a4uHjwww8/MH78GPbv3wJAgwaN2LjxKuPHL9Bbx8XFAy+vAC5fvkx+fj5XrlyhW7dBzJu3pupHi0wVMpRX4FDBPcHBwSxb9g3+/u0AyMjIqFpMpbirRVx6uuIdbG1trxvbu3cTHh72xMbG1nk8b7zxBgDDh08mJCSkxuuV/oeRcwedjBMSEkhJScTc3OKOxSAQCASC+k1QUCcyMjJ0R4ratGmPr29LzMzM6NKlv84XTpvBAvD09DX63uLu7kNMTAxxcXHIskzPno9w330TsbExsj1aHsYKHIp97GpyT1GRYrvl4tKAvLy8qsVUirtaxGlFjq2tg27M2tqWgoICbty4UefxeHo2ZOzYOcyatYqWLVvWeL2EUnXXubm5NV6vuty6dQsHh9o4aSoQCASC/ypt2/aiZcsOpKWlIUkSW7bsZciQZwGYMmUpH330DQDe3oEVruXh4cvVq4pFyMCBI2jatA03blxjwYJ3dd6llWL0aFi9WrEckSTl6+rVposayt4DoFKVnInbsIGVK1fSqZM9rVp15/jxJFq1alX5eMpwV1enajNxNjYlmThLS0U91+SgYXUJDZ3HX3/BlSuXsLPTEBhY8T/U8qgvIi41NRVbW6eKJwoEAoHgrsXLy5/Vq4/RpYvyc2FhyTVHR1f27IkqnhdQ4Vre3s3x8GhI48aNWbZsEwkJcO7c38yb9xpBQT488cQTlQ9s9OjyRZupe8BolWrm4MFkZ2diaWlNUVHVli3LXZ2Jy8rKAsDGpiQTZ2Vlq3etLtH+g501azjTp0+v8XoNGzZk3LhpwJ3PxNnZiUycQCAQCMqnoABu3Mjh559/pmfPIM6ePaS7duDArwBYW1e8JTp8+FT27DmNSqVC+/YXFNQZR0dXdu/efVtiN8BElWr2L78AkJGRwpQpw9i/f3+1H3FXZ+IeeeQRTp3KJymppDzZ2vrOiThfX3cGDXoeR0c3kpKSarxeUFAQ06e/R6NGQQwY0LkWIqwePXrcQ1ycquKJAoFAILiruXTpJP37d0OlMsPevgFNm7bVXXv55U9JTa38e2NeHkyZMoXffvuLzz8/i0qlwsurWd0Z+psoUMxOS8PS0oqioiLCwrbyxBOD6NWreob3d7WIAzAzs6B0MwMnJ3dGjXqeJk2a1GkcBQUF3LyZhCSZ4eTkzpUrV2q85s2bN0lJUTNs2DN0MqVCcQAAIABJREFU6FALQVaT0NB5HDpU8TyBQCAQ3N1ojXuzsjKYO/cHXWIFlPZbPj7NK7VOenoKw4cP5vjxg7Ro0UU37uDgSkpKQjl31iI+PkZbd2Xb22MpWegyisJipJps27aNN998Tq+vqLOzO6GhK+jUqZPB/KtX00lMTLwtsZScz3PAycmNmzdrnombNm0aTzzRjgsXTtaKKKwupc81CAQCgUBgCgsLNcOHv8zIka/RufMD1V7H1taBkycVD1htf3QAe3sXbt5MNnWbacppo2USE1Wq3Z98kkGDxutEnLAYqSYHDx7kp58+N+grmptbQH5+vu7nhIQEhg8fSZMmjixYsKDsMrWCVsTZ2Tni5ORGRkZGjc+xJSQk4OLSkJdfHsTC8sqhbyMajQY3Nxu++WbRHXm+QCAQCP5djBs3j8mTa/aeoVKZ06BBI0CpVNXy0ksfc+zYxaotpm2jFR0NslzSRqsiIWeisnXUxx/z/PNLUKstMTe3EJm46pKenq5XmQpQVFREx45q3nnnHd3YvHnz+Omnzbi4eFS9bUcl0XZUsLFxoGfPR1i9+rtqN60/deoUPXv25NChQ7i4NESttqpTn7iLFy8ycuRI4uPjycjIICcnB3NzdZ09XyAQCAQCtVrJgpXOxNnY2KNSldOr21jGrYI2WuUyejRcvQoajfJ19GgKCgooLFQaCvj5tcDOWGuvSnJXi7iMjAy9ylQAlUqFWm2psxj5888/Wb16NUOHvsg99zzKyZMn9bZfawsHBweeeGISjRs3w8+vJf37P4ZaXT3hc/ToUQ4ePIivbxv69x+PWm1dZ9WpRUVFjBw5km+//ZacnFydH4+9vahOFQgEAkHdoc3AtWzZVTd28eJRXn31f8a94kxl3IycawPKb71VDv379+f55+8B4KuvThJaGTFogrtaxBnLxIFiM5KdnU1eXh6TJk3C09OX8ePn06xZezIyMm7L+bKmTZvy1luradq0DTk5Wfz++296Pm9VYfz48Zw8KbNy5d906zYQtdrKpIi7dOkSp0+frknoeqxcuZLw8HBef/1rrKz82bVrFwB2dsInTiAQCAR1R9euA+nVazDNm5e4M8THX2bt2o+Mv7+ayripTLgr+Phw6NAhvbPyeXl5FVqYZGdnY2lpDSB84ipDZGSk3hk3LZIk4eDgajBuZWVDVlYWf/75JxcuXGDKlKVYW9sREBAMcFu2VAsLC8nPVzJ8N2/G8+ST97N3795qr1c6WVieiGvfvj1t27attV6xn3zyKW3b3sP9948iKgq++OJ7zMzMaNTIv1bWFwgEAoGgMjz66P+YP/8nJEnSjTk4uACQnGykuMFUxq2oyLBAAcjMyKB79+4MHTpUN7ZixQoeeughrl+/bjKurKxsXWOBDz54iWnTplXm5RjlrhBx6enpnD9/3mD8hx9+Ytmy3wzGtZm4wMBA5s9fRbt29wLQpElrZs362Gjlak1ZtWoVrVqZc+tWIk5ObgDVroRdt24dr78+Rvfz2LFzCQ19w+jcuXMXA3D58uVqPassN25cp0mTNkiSRFERhIZu5qefUvD3b1vxzQKBQCAQ1CJl8xPaxE1KSor+hQ0blOIDY2hbbbnqJ33+KF6ju3PJcaEbN25gaWmJu7u7yZiys7OxslJE3JUrZzh8+HBlXopR7goRB8azZ6bSmEOGPMuQIUPw9vZm+PDJOlGlVlsxYMBz+Pn51Xp86enpyLKMra0DdnZOmJubc+3aNT744ANSU1OrtNaxY8f4669dup87duzLvff2MTq3ffv7AdizZ0/1gy/F+++v5qGHxul+trd3xs7OsVbWFggEAoGgJmgzcQYiLjTUUPGBIuwWLlQKFMoUIOwBLJFYcPqMbuzSpUu4unqU259V2U5VRJyNjT0ZGaI6tVwkSSI8PNxgfNKkCeza9YXB+KOPTmXkyJHExMRw8uRRvUKGy5fP8/vvf9Z6jGlpaVhYqFGrrZAkCUfHBixdupRp06axfv36Kq2Vk5OjU/kA0dHnOXDAMOa5c+eyYsUSPDx8CAsLq/FrAHjooUf1zh8IBAKBQFBfsLd3QZIkQ1sPU0UKsqzrg7o9OpqTWOsuhQH+2HE1tuR83aVLl7l2LYY5c+aYjGHChCmEhAwAlBZiwieuAiwtbYxm4jZv/paoqDMG49nZmdy4kcRnn33GqFFd9K59880ixo17stZjTEtLw9a2pFLW0dFN931RFU8+llb5ABs2vMPTTxvG/O23m0hIiKdDh/s5cODPGp+LS01NZe/ePWRkmP4EIhAIBALBncLGxp4jRwp58cUX9S/4+Bi/wVepcC0oKGC0ZMZczLkOFAF9sCKOHLpKynu0LMtcvnwJUDJypnjlldnce++jAFhb2wufuIqwtbXXpVC1FBUVkZ2dbbQ69Z13xtK373266tXSfm1WVjY6+5HaJD09HVvbkm3Hl176hM2bT2BmZmaY9q2AsiLO0tLQYiQ2NpaIiIt06HA/Eycu5MCBy3qHP6tDeHg4I0f249Kl2+OlJxAIBAJBTVDOaxuRPia6K1BslH/w4EHSZQ0/kcGLgAp4EW8eVzUhXdaQnZ1Nbm4uw4aNxtLSmkuXjJ8zl2WZpKSbFBQoxZZeXgEEBbWo9uu5K0Scu7sXa9b8oDemTV+W9YkDJXOXlZVFWlqawXkuS0sbcnJqX8QNGDCAwYOf0f3cpk0PXF3bYW/vXGUR5+Ligqenn+5npTpV3+xXayvSsmVXXFw8KSysvtmglqQkpVWY9gyhQCAQCAT1jdWr32TZsmX6gya6K2i3Unfs2IG5uQW9W9zLr5IZn6PiunsbXPoPAeD69etYW1vz1lureeyxl4mOvkpBQYHBs7OzswkIcGPLlg8BGDHiZbZv31/t13JXiDiAstnKEhFn2icuLS3NQORpM3G1ZcmhZdSo0YwY8arB+OefH2PRoqq1H/n883XMn18iWo1ZjMQU7/9rzRA/+WQJ7777blXD1kNbTVt6K1ggEAgEgvrEkSNh7Nixw/CCke4KWnbu3Enbtr24b+RU0mUNEyji4luzcbmnL6CIuJycHLKyNHh5BVBUVER0sWVJdHQ08fHxALqdvNK7ZTXxirsrRJwsw5AhIUycOFE3lpeXR6NG3iZ94rKzswy2OAHUams0Go1R37makJiYTH6+oZdbgwa+2NsbCs3yKPsPwtLSmry8PD3h6eLiQqdOvXFx8QQgPPwAn3++ruqBl0KbiXN0NPydCgQCgUBQH3BwcCU5ufI7XDdv3uTcuXN06vQAHTvej62tA4888gLNmrXXvYdev36dhQsX0rmzI61adWfOnOU4OjqSk5ODn58fM2fOBEpEnLb48K+/fqZ372CuXbtGUlISU6e+VCUD/rtCxEkStGzZk3Xr1nH27FkAAgICOHQohnvuecRgvjYTFxo6h6ef1m9436fPCDZt2oXKlINzNenSpSPLlj1jMP7HH1v54IPlVVpr7Ngxeg3n+/Ydxfff79ITcSNGjGD58n261xEY2JGIiIs1qpJJSkrCwcEFlcq82msIBAKBQHA7cXBwMW72awJXV1dOn05h8OAp2NjYs2HDZV54QdkO9fRswuzZH9OuXTsuXbqEs7MH3t6BjBjxIm5ubnz00UcAPP20kkQqm4nLzc3i7NmTpKWlcfbsWZYv/7Bco+Cy3DXvtqNHv87OnZ/x+uuv89NPPwGmU5hdujxEYKAz3br1RJL0da6XVwAtWgRgXs5vLj4+nq+//hqAkSNH4mOq6qUU6en61ala/vzzR86f/52XXvpfhWto2b//D9q0Kem76u0dSOvWgZSqz0CWoXQyMTCwE7IsEx4eTq9evSr9rNJMnTqV5s0frda9AoFAIBDUBQ4OrqSklC/iNBoNGzdu5OGHH8bBwQErK2dsbZVrjo4NdPPs7Bx59NHn8PdXKlIbNQoA4OLFSL74YjWfffYZXbsOoFs3pWlAiYhTrEqsrZWdtoyMDCIjIwFo1qxZpV/LXZGJA2WLb8iQ59i2bRtZWVn8/vvvPPVUf27cMPSGadOmJ88+O52wsN+Ii4vUu3bz5jW2b/+B9PR03VjZndWPPvqImTNnMnPmTBYvXlxhbLIsG926BeUf261bVStsyMnJ1vOJu3Ejhm3btuhV1bZq1YrVq1/X/RwU1BFQjIKrS1BQEO3a9a32/QKBQCAQ3G5cXRvi6OhMXl6eyTlXr15lzJgxfPLJJ/z6668sXvw6+fnG50dEXCA8PJxz587h66tUmi5e/D+WLl2KLKtwcvKgWTNvZFnG09OTV19diJ9fS0DxiQPIzMwkMjIStVqNt7d3pV/LXSPiAPz8WgOKvUZUVBQHDuxCljUG83JyMomIiGDo0IfYvn2N3rVz5/5m4sRHiYqKApR98ODgdnTt2k03p2fPnkyYMI927e7l6NGjgGJpYqoYIisrC41GY0LEuZCZmVnhGTxZlnV+cmUtRsLD9zFhwnBu3LgBKH43Fy9e0Nv2dHHxpGnT1uTk6FexVoXNm3/k4sXj1b5fIBAIBILbzYgR0zlxIh5LS0uTc9zcmqBWW3Lt2jXCwsL46qv3sbBQG507e/ZIunTpQk5ODp07PwTAokU72b07ly1brtOkSSvi4+PIyMjAy8uLKVNex8tLydhpRVxGRgYRERH4+ARU6bjWXSXi2rfvw5o1P+Pl5aVrZWXMYuSvv36mR4+gYmFlWJ0KJSnREydOcP78KQ4f/puEBMW1ecCAQYwZM5egoE5cuRKFRqNh3LinCQ0NNRpXWlqayVi0hRcV7d/PmzcPc3NzcnNzyc3N1cvEqdVWALoK1WvXrqHRaHSVqVrWrj3Nq6++TnV59tnJbN++utr3CwQCgUBQFxhx/9Bx8OBBwsIi8PFpzqVLl4iNjcXd3dukl6qzsyf29vZMmjSH4GBl21SSJNRqS1Qqc51jQ2JiIhkZGcTGRlNYqARgZ+dEu3Zd8fLyIiXlFj4+ld9KhbtMxDVo0IgePQZhb29PVFQUNjZ22Ns7G8wrncUqmx3TXtOKOG1FJsAvv/wCQETEVQoK8hk37k2OH7+OmZkZ164ls2nTJqPZOBsbG2bNeoeWLbsaXKusiFu5ciUACQkJtG3bATe3knRsWRGnLXv28DA8q1ddH2ONRkNKSrLwiBMIBAJBvSY6+jxPPfVwSTvODRvAzw/MzMDPj8kjHmfp0lfw8gokIiKSmJgYGjQwvcXp4uKJjY0to0a9qXu/LY32fTEpKYmff/6Z3r39SEhQdvO8vPxZteoQnTp1Yvv2P3jvvc1Vei1VFnGSJFlKktREkqSWkiT9696x9+7dzZEjR4iMjMTLq5lRZW1tbav7vqyIK5uJ04o4a2tbduzYQX5+Pi1bNuWbb97B2tqWrCwzMjIy6Np1IFeuXCEiIsLgec7OzkyZMpOAgHYG13r0GML581m0bt263Ne1aJFSAZOTk8OePccYOHCC7lpZEaf1iHN31xdxx4/vpUePYN1WcUUUFhbq5qakpKDRaIRHnEAgEAjqNQUFeezdu115/9qwASZPhuhokGVyoqO5cC2eADMHGjduRlTUFaKionB3Ny3iCgsLiI+PIy/P+HGk0iKurMUIQE4OJCZmkplZhHl5VZNGqJSIkyTJXpKkZyVJ2g+kAZeAM8B1SZJiJUlaI0nSv6Lr+VtvTWbFihU4OzegVavuRufoZ+IcjF4rLeLMzc25776R7Nmzh5iYGGRZ1gmkhQtfxcHBgR9//ArAqMFgeno6UVFRuvRqadRqS8zNbQzGs7PRCcKioiIkyQlQ+peWrbrVijjteTcvLy8GDBhlkIkzN7fg7NmTXLx40eB5eXlFFBYW6o2tWrWKgIAADh48KLo1CAQCgeBfgXaHKyUlBUJD9bagzgAaIOBMNP37P83mzfvIzMw0SHqURnu+LTk5weh1N7fGPPTQCNyOHyd7xgwALJ9/EcLCAOXcuoeHPe3bexMXV7kkipYKRZwkSdOAq8B4IAwYAgQDgUA3YC6KVUmYJEm7JEmq2oZuHePm5kN0dDQrV37F1KkrjM7RKuQxY541EHqenn58/fUB+vZVqjCTkpJwcnKje/fBDBgwnHPnzgElnRAOHtwFQEjIAJo0aWVUxG3fvp3evZty7Zphr7WsrHQWLJjGH3/8AShFCSdPnuG9976jefPmHDhwgGeeeYYXXhiOubk5p06d4sEHO3Hs2G+6NQICgvn22wN06NABgD59+jB37gZdibOWxo0DAQyyhadPn8HT051du3bpjW/duhWNRsPEiROJi4sDhIgTCAQCQf3G3l7ppZ6cnAwx+g4VxRusBKQV4uUVQNu29xAZmc5TT80xud6YMaF8880VGjVqavS6i4sni3uNpduSJWTfugWAVVIyLFsGYWEEBAQDkJiYgFptutjCGJXJxHUH7pVlubMsywtkWd4ty/JpWZYvybJ8RJblz2VZfhrwALYB91YpgjrG3d2H6OgYyivCdHf3Ye7clTz99Cs4O7vrXbOysiE4uCcNGig+MW+//Tbvv/8b3bs/zJtvruVW8f9B2iyX9sxdSEh/unYdRGxsvEE/Ne15N2PdI8zMzFi//gMOHz4MKNmvjh2DcXNrSsOGfgwcOJCvv/6akJCBnD6dT+fOnTl16hi5uVm6NezsHOnQoSdOTkq2LjExEWOV1c7O7tja2uu8agBdUUZqago7d+7UjWdkZLB//35atepGRkYu9vaubN58lObNu5j+xQoEAoFAcIexsrJBrbZUMnFlfFxPALao8HT3RaPRsGXLRg4dOlyuib25uQUNGzYp95kFyz9Bzs4mG5AACyTIy4W1a/XO5ru5NazSa6lQxMmy/Jgsy2cqMS9PluWVsix/VqUI6hgPD1+io6/Ss2dzYmMNz6eBYusREnI/p08fIzdX/6R/UVERP/64npMnTwLg5uZO48aKL0xGhlxqXNk/nzHjcyZMeIvAwI5MmvQOYWEXsLCw0FtT2+DeWJGFlZUtFhZqndD766+/8PDwISioE2+++QPduj1Cr14jGDnyNYqKJKP77dnZGfzww3oiIyPJz8/H39+fVasMK2UlSaJx40C9TNzly5c5flyxSdm+fYeuMMPS0pJPP/2JGTPWsW7dRXJzO+Dq2tGoYbFAIBAIBPUFSZIIDGyvtLRcuBBsSt4vZwOLLTpiNnEikiQxY8Yohg3rRmpqkukFKyIsjJHX9/EUMAB4hcZIFJ/HL7b+Wr78AK+88pnJClhT3DUdG7RoM2RXrlzUc10ujUajYc2aRWzd+jlbtybqCSKA2bOfoqjoTdq1a8fy5R9TWNicjh378swzD3Du3EGmT/9IlxL18gpgzJgSwZSZafi85ORk7OwcjSp9SZJwdHTVibiYmBjc3ZWt2oCAYGbN+lIX8+uvP427u7JG6XN9GRm3mDnzKRo0+Aw/Pz8yMzNp0SLE6Gvv3PkhnJ1Lsnha898hQ57jp59WcvbsWVq3bo1araZNm/5kZRldRiAQCASCessnnxyiZ89SA6GhEBODfeMWtHryLejXj9JyyljVaaUIC4Nly1BhRiLQFTCjIbr0kIcHoDQZaNOmp4lFTHNXWYwA3HPPMDp06IatrT0ODi5G52g0RWzd+jlg6N2mUqlQqy11Ga+5c0M5eFBp4+Xj0xyVSsWgQc+ZfP7MmeN1jXC1JCcnG91K1WJv76LL1sXExOrZh2gxMzPj11+/Y9++fYB+Jk579i03N5cdO3agVlvSoYPxzgoTJrzF/Pnv634+evQoarUlTzzxKqDYqMiyzIIF73D+/AWTMQsEAoFAUF8pLFTaTwIwejRcvUp8bCzvPjWOpOCWBvNtbOyr96C1ayEvF0fUJKEUGERTbN5vaQUTJpRzc8XcdSLO2dkdtdoaX99WJueYm5dsdxo7ZGhlZUN2djb5+fmkpaXpDvMHBnYkMzOTEyf2m1z7+vV4du/erTc2fvx4xo9fYPIeR0c38vLyKCoq4tq1eKP+bgD29k5oNBo6dboHO7uSrdnS1anbt++gXbveejYqZcnORrdteuzYMfz92+Hp6cdzzy2mV69eXL9+nTlzXufIkd0m1xAIBAKBoL7y5ZdvMmLE43pjZ86c4a23ZnD9ekmF6NdfR7J0aVj1H1S8XeqEBYnADOBVio8sTZ8O/fpVf23uQhEnyzJ//73XZClwZbC0VERcWVuNwECl/+jChaNN3hsQEMzZs2f12mj16dOXvn1Hmbznvff28uOPO9BoNHz66bf07j3C6Dw7O2fat2/P+vX78fQs6cagFXFnzpwhMjKCkJABJp8VFXWWVq1c+eknJbvYpEkg3bo9DMBjj82gQ4cQnUFis2btTa4jEAgEAkF9JTExloMH/9QbM+ah6uUVQMeO91f/QcXbpU5YcBPIBiwxAw/PGgs4qLxPXJtiLzinGj+xCkiS9LkkSYmSJJ0pNeYiSVKYJEmRxV8NqwHKX5PevUfw7LPLqh2XpaW1nojTGtz6+raga9eBzJr1lcl7mzVrT0FBgc6KBODw4WMkJcWXG3NeHlhYWPDAA8Px929rdJ6trZNRnzhzcwtUKhUODg4sWfINvXo9avJZnp6+FBQUsm7dOgDeeGMVTz45G4CcnCzCwv7k0KFDAPj7G5oTCwQCgUBQ37FPSSclIQFZksDcHCSJ2FdfxUwyo0GDRrX3oAkTwNKKdjjxMGr2At5mDjXeRtVS2UzcDMBSluXUshckSbKWJKm7JEnGO8PWjC+Ah8qMzQR+k2W5GfBb8c9VYu7cTdx7r2khA4rwadLE+JbrokU/s2TJEoNMnEplzjvvbKdDh/tMrqv1gzlx4oRubMCA+9m4cZHJeyIjw3nssUfYt28fv/++l/x8I/4gKIaCe/fuZfDgFgZzvvrqGKGhoXTvPhI3Ny+Tz7K2tuOJJ15j27ZtzJnzJrGxJW3CwsP3MnDgPaxbt45GjZpiZ+doch2BQCAQCOolYWE4/nOCPGSlwKA48xGbloarbI5q777ae1a/fjB9Ot08WuGAOXnA2IkLaiULB5UXcT0Ao53NZVnOAeYBs2olIv219wMpZYaHAF8Wf/8lMLS2nwuwYMEWXn7ZeDN3b+/meHl5cd9993Hw4HWTlZ7G8PJqRqdOfbCzswOU1lWpqanlFjZoNBp27fqRmTNn8tRTfcnPzzU6b86cb5k16w2uXr2IhYW+pvbza8X69ZuIjY0xem9pHn10KgALFszjzJkjunGtAI2Pj8ffP7jCdQSCfzuXL59iyZKJFBUVVjy5HpCfn8c77zxFVNTZOx2KQFB/WbsWhyKl9rS0wIgF3LFUihFqk379yF//BceCgxkwaDI+I2snCweVF3ENUYoqTPEZMKjG0VQOD1mWEwCKv7obmyRJ0mRJko5KknT01q2q+7t07fowrVsbb8v1558/s3Hjt6hUKhwdParksKxSqVi6dC9Dhw4H0JkDlyfimjRphbm5OUeOHMHW1qHcDFhmZjaWltYGXjPLlk1lxoypnDv3d4UxWlvbsnRpGOPGvUnLliUC1c2tMY6OrowcOY7p01dVuI5A8G/n0KHt7Ny5lvh4w24q9ZHw8L38+ut6/vlnV8WTBYK7lRs38MSKzqgp/fHsB8xZQGtdMUJtkp+fi6dnEE8//WatrltZn7ibgDcQZ+L6McB4v4k7hCzLqynOHrZs2UmuYHqV2L59NXl517Czs2XnznAef9x0Ow7jscG1azm4ump01iHliTi12gofnxZcuXK63Ca8v//+PR99tMyodcqWLSsByt3qLU3HjvcbHOaUJAl//2DOnDnD5MnGPfYEgv8SaWnKB8C4uAh8fILucDQV8/ffSlu/GhmTCgT/dTw86HhDZhiNaKKXn7LGGbWuGKE2sbNz4rXXPq/1dSubifsDpXeqKSTgdpyJM8YNSZIaAhR/Tayj5+qwtLQhKyub7du3s2mT8f6r5ZGUFE9QkCvr168v1XLLuGedloAApRLUmEeclsTEWIByt35MGRxXFgsLS06fPmryXJ5A8F/i1i3lz0tcXGQFM03z448rGTq0AY895sXBg9tqKzQDZFnm8GFFxGnjFggERiguNigslcdKBV6lgEiL/ForOqgLKivilgLjJEn6n4nrPYC62m/YBjxV/P1TwE919FwdWp+4uLg4GjQwXSRgigYNGuHi4snOnTtp1qwZH364SSfSTNGqVTeg/Iydtm1XixaG/UvfeWcHy5cfqHKsZXnppZVMm/ZplZv0CgT/Rkpn4qrLiRO/o1LJuLk5snTpBNLSbtZWeHrExFwgIeEqUBK3QCAwQr9+pD07kf7mCXwNoFJxBVhNLtcH96u1ooO6oFIiTpblE8AkYJkkSfslSXpMkqSmkiS5S5L0GLAYlN9FbSJJ0kbgEBAkSVKcJEkTgEVAP0mSIoF+xT/XKVqfuOjokhZYVUGSJEJCBvLbb79hZ2fHAw+MwMWl/PTt4MFT+OKLv/VaeJXFzk5xgJky5V2Da127DqhWS4+yeHr6MnjwMzVeRyD4N6AVQ/Hx1c/Epacn07x5czZt2kRmZipz5jzK6tUzuX49utprFhTks379Aj799FUOHVKyb9qt1KCgoBqJuJycLNatm8unn77K6dMlPloajYatWz8mJ8dI70CB4F+Gdf9BXC7MIvbtt6GwkNgffwTAvd/gOxxZ1ai02a8sy18AvVDO0W0CIoGE4u+PAh/WdnCyLI+UZbmhLMsWsiw3lmV5rSzLybIs95VluVnx17LVq7cdJROXRUxMNB4eVRdxAF27DiQnJ4c1a9Zw8OBeNBpNhff4+obg69vC5HX7i0oyNGPiOHjiCaVnm0AgqDbas2U1ycRlZCTj6upKmzZtePfdd7ly5TgbNy7m11/XV3vN8PC9rFs3h+++W8Ynn0wD4Pz5IzRt6k+HDh1qdCbuyJFfWL9+Pps3v8/rrw8iPV35E3vhwj8sX/4Ce/duqvbaAkF9Qa22wsrKRq8vOVDuufP6SJU6NsiyfEjNBuy/AAAgAElEQVSW5e5AIDASmAB0kWV5kCzLBbcjwPrIyJEz2bfvGHl5eSZbYFVEcHBvrKxsmDp1Ks8884BBNWmVCQvD8Tvlk8RCLsCN67BsmRByAkE1kWWZ1NQkVCoViYlx5OZmV3yTEdLTFREHMG3aNDIyMrCzsyMjo/qfPy9dUnwmJ06cyI0bMciyTFJSLE2bNsHNza1GmbjYWEWwHjx4kKysdL755h2gRMjWJCspENQnHBxK+pLHxsaiVlvqfF//LVSr7ZYsy5dkWf5OluUvZFk+WttB1XccHV1p1qwFly7l8MgjL1ZrDbXaiunT1xAS0hUHB5eai7i1a2lSYE4gVjSnuFFvXm7t+90IBP9yiooKWblyerldUgCyszMoKMinfXvlvOq1a9U79puenqITcVqcnJzJzDTwTgeUs23Ll79IQUFJa76dOz/nzz9/1P0cGRmOn18T2rRpQ35+HqmpSSQlxeDt7Y27uztZWRkVFh9FR59n+fL/UVio//k7Li6Chg0bERISwtixY9m69SOSkuJ1Iq4mWUmBoD7h4OCqy8Slpqbi4eFT8/fiOuau651aG0REHGfx4vncupVtYKpbFe6/fxRubo3LLVaoNMW+NjnIWKIyGBcIBAoxMRf4/vv39ESRMbRbkt27K36R2gxVVcjPzyU3NxsXF/3qcycnJzIybhnMLyoq5O23x7B16wpOnPgdgMLCAlaunMbmzR/o5l2+fIL27YPx9la2fhISrnDzZgLe3t64uSmZhPKycUVFhSxcOJqtWz/i5Mn9etfi4yMJDGwGwIwZM8jPz+Off3brKnRFJk7wXyE4uA/t2ik9z1esWM26decquKP+IURcNYiMDOfdd+fy7LOPVnuLBZTtmu3bNxMdfaHmQXl4ICMTSx6/lXZduQ1+NwLBvxmt/UZKSoLBtatXz+n+m9aKIK2IMyZekpLiSEm5bjCemprEjRsxpKUpn/LLZuJcXIxn4jZv/oCLF48hSZKuUOHMGWVbUxtvTk4mcXGRtG/fXifizp37G1mW8fHx0Ym48s7FfffdMiIjw/WeoyUuLoLAwEAAmjdvjr29PRERx3SvPz7+EhqNhsuXTxlk8SpCo9HotoIrIi3tJgkJUVVaXyCoCs8//z5Tpig+r8nJSuvMfxtCxFUDS0trAP7661fUaqtqr6NN2wYGdqx5UBMmIBXHFULxp35Lq3+V341AUBdoxU1Z8ZWWdpPJk9uzZYtSo6UVe/7+/nh6NiQ6+rze/LAwGD16JI8+OtKgjmjx4nG88cYQ0tONizgnJycyM/UzcSkp1/nii7kMHjyY/v37c/jwDmRZ1oksrYi7fPkUsiwTHByMj49yJvfMmYMAepk4UyLu5s1rfPnlmwwdOpQHH3xQ5y0HkJFxi9TUmzRrpmTizMzM6NChAxERR4mLi8DOzo68vFzCw/cyaVIwe/ZsMP5LNsG+fZuYNKl9pcTZ0qWTeOmlXshyrXq1CwR6JCUVMXv2bMaMGap3hOHfQoWyU5Ikc0p82b6SZfnf9yprGSsrG933ZmY108E7dqTXjvov9rXZvsYWddJN8PBUBNy/yO9GIKgLtBm25GT9TNyRI7soKMgnKuoMUCKC3NzcCA5ux6VLJ3Vzw8KUuqGCgigggRs3Uli2TPnw1LNnJseO7cHc3MKkiHN2diYrSz8j9eWX8ykszGfZsmX8+uuv7Ny5k9jYCJ2Iy8rKICcni8jIcADat29PgwYNsLKy0ok4H5+SMz2pqcYNf9evn49GU8iyZcvYsWMHu3b9j/j4S3h5Bei2TLWZOICOHTvywQcfoNFoeOSRR9i6dSvff/8esixX2QRZ2/YvMTGWhg2bmJyXl5fDP//sJi8vh8jIcAIDO1TpOQJBZZkw4UGOHfsNf/+2NToedaeojAJ5F6XtVhKKH9xdj6WlTfFX6xqvZWNjXyvrANCvH7bfbcFi3x/w7bdCwAkERijJxOmLOK1Y0h7c14o9RcQFc/XqOd0n9bVrIS9PA9wANMBu8vKU8WPHfqOgIJ+cnCxdMURFZ+Li4y+xc+caJk2aREBAAAMHDgRg1apXiY4+T3BwsC7my5dP4OrqipeXF5Ik0bixt06QVpSJi42NYOfOz3jmmWdo2rSp7jlr185m9+71xMQoRzu0mTiATp066SyQtPMPH/4FgMTEGINnHD0aRkqKchY3PHyfrpMMKGf5tLEVFhawb993RjNtJ078Tl5eDoDBdq9AUJv4+LQEoGXLbnc4kupRGREnAdbF//t3lW3cJrSZuJq2sBIIBHWPMRFXVFSoaxofHx+psxexsbHBxsaG4OBgCgsLuHr1LKCtF0oGXfvsHbrxw4d36tbVZs2MbadmZWXoWuTt2bOBoqIi3njjDQB8fX3p3r0Hf/31M9bW1kyZMgVQsodRUadp27atLuPm46Oci3N2dsbW1hYnJyfMzc0NRJwsyyxf/gI2NjbMnj0bgKZNmxIS0pV9+zaxaNFTfPnlvOIeyf66+zp2LDnu0bt3b6ytSz50lhZoAFlZ6bz22kNs2fIBsiwTGvown376qu752vNwaWlJHDmyi/nzH+fUKcNOMocP78Ta2pp27drp/T4FgtpmwAClo+jAgRPvcCTVozIibgZgCdgAr93ecP4dBAV1wsmpAQMHTrrToQgEdxVFRUU1XkObYbt1K1G33tmzh8jISKVnz55kZqaRmppEamoSDRooWS2tzYhWhCj1QtozdU7ALqAId3eZI0d24uvrqzff2HYqKKIHlIr35s2b07BhQ92cAwf2k5mZSWpqKt26KVmC5OQE4uIiCQoK0s3TFjd4eyvn48zMzHB1bWBQnbp793qOHg1j8eLFeJQqePrrr4NkZmYycOBAEhKi8PHxxdKypK1eQEAA9vb2WFhY4Ovri79/AKAIzaQkfRF36dIJNBoN169fJS3tJjk5WRw9upuiokISEqJ0rzc1NUknAGNjL+qtoe0B27dvX4YNG8b584eNZhXz83NJS7tJfn6uwTWBoLIEBASzb59MUFCnOx1KtahQxMmyXCDL8peyLK+TZVl0PUfxePvppyTGjn3jTociENw1bNq0lBEjvCr0P6sIrSDQaDS6c2NHj4ahUql4/vnnAaXhfVpaEu7uiogLCAjA1tZWl1mbMAEsLLQibhSQjIXFUQYPPktiYhyTJikf8C5fPomVlZVe9gqUTByg21K9dOk4HTron/syMzPD1tYWtVqtE3dXr54lPT1Fb7tTW9ygzciBsgVcWvhoNBpWr36VHj168Mwz+m3ztM9ZuXIldnZ2tPg/e+cdH1WV9//3yaRBGimkkgKkUAQSqoIUUVDBFQRXWFlZuyvu+ujiuuu6uj76sOuyP9fCYse6lmVtWEDBAqJCKCHUkAak90md9Mn5/XG5NzPJBDKQhHber9e8zNxy7rmY3PnM53zL8GGd9k+YMIH4+HhcXV0ZMWI4/v7+LFy4kNLSPLtuM5mZKYDm0Okirba2igMHfrLLSq2qKjOc0Pz8THJzD3Pllf3IytpLQUEWhYVHmTNnDnPmzEFKSUrKN3Zzam5uZPHiaObPH8jixdFOZ8kqFOcLKjv1FOlGlyyFQtFDVFWV8fbbj2M2lxhLmqdKdXUZ7u5aALMeS1ZQkEVUVLSxdFhQoIk4Pb7MxcWFMWPGGDFds2bBVVfpIm4BADNn7iYwcDcA1113HW5ubjQ2WggI6FwHUnfi6uqqjrtS+Z1EnC2BgYG4urqyb59W08028aDdiWsXccHB9l0bKiqKqKwsY8mSJV0mY0VFRbF582aee+65Tvteeukl3n33XQBWrlzJxo0bGTx4MK2tLXYJFBkZmogrK8u1W2rdvv0LsrJSMZlMDBo0iOrqMuPfPj8/g9TUzTQ3N5Ka+h3p6Vr9+ClTpjBsmCYoS0rsY+9SUzdTWVnKxRdfTGVlKdXV5V3+2ykU5zNKxCkUirOed975KxZLLUC364yB1pXgwIGf7D7kq6vLGDFCC2bWhURZWR5RUZHExMTg6upKXl4GVVWlhogDSExMJDs7lQMHfqK+vpbw8OLj403A398fV9dUsrL20L9/fxISEoiIGAR0XkqFdieurq7SLtu0K1xcXAgJCTWyOx07ce0tADu23iooyAI0R/FEjBs3zm5sndjYWEaPHg1oy6jjx483rmcrsLKyNBFXXl5IcbFWRuSiiy7ip5/WsW/f9wwbNozIyEiqqspsBHSm8f80KyuVrKxU3N3dGTZsGN7e3nh7eztIQtFi5nTn9HR6xSoU5zInFXFCiK7zwDsfK4QQ51b3WIVCcVZjtbby6acvcNNNN+Ht7d1tEbdx49vcfPMIfvvbKTzyyHXHx7JSVVVuCBJdHGgiLgo3NzdiYgaTkvINFRVFREREGONNnDgRi6WW3/52Cs88s4yKiiL69++Pj48PSUlJZGXtISsrldGjR2MymYzlzaCgEztx+hLkiUQcQHh4GM3Njbi4uDB4cPtjOT4+HiGE4VoBhIWFUVZWYCwzdlfEOYPu/OmOW2NjPTk5aYSGhmK1WklL24GHhwe33XYbubnp7N27hQkTJhgCU/+3LyzMJiNDczCzsvaQnLwHKUfi6elOTAz07x9qV9NPj5mbOXOmMQcl4hQXKt1x4rYJIdYIIbrMvxVC+Ash7gYOAfN6bHYKheKCp7a2kubmJiZMmMCYMWPIytpz0nPM5hJWr/4fJk+ezOLFi8nI2IXV2kptrRkppSHiKiqKsFqtlJXlG4IgISGew4d30K9fP5YtW2aMuWTJEr777jtmzJjB4cPJmM3FhIaGIYQgMTGRo0f3k52dapQD0Z2qjuVFwD4mLiMjhSFDhhjbukKPi4uJGWwsBwMMHjyYtLQ0rr32WmPbtGnTaGysN+rHFRZm4+bmZrfkerro96cnNxw5sp+2tjZ+9rOfAXDw4E8MGhTJsmXL+Pbbb/nqq694+umn7UScu7s7zc1NZGTsxmQycfToIY4e3U1LSxJSQk4OlJeHkZ3dLuLy8tIpLDzC3Llzu9ViTKE4n+mOiBsGmIEvhBBlQogvhRCvCyFeEEK8L4TYB5QCvwTuk1L+qzcnrFAoLixsC+YmJiZy5Mheu2B6R7zyyh9pbLSwZs0a5s6dS1NTI7m56YZjExERQUBAAGZzMWZzMVar1RAl+nLik08+yaBBg4wxXV1dmTFjBpdffjl5eZkUFGQSFhYKaC5ac3MTdXXVhqOmCyZHy6m2Tlx2duekBkfoIk7va2pLQkKCXazbFVdcgZubm1FjraAgi+hobam4pwgICKBfv37GcqruKM6fPx+AkpIcoqIicXd357LLLmP27NkMGDCA4OBgqqrKqKwsZdKkSYDmrl199dW0tbWifdwkGtdpawslP79dxG3frpUcsRVxyolTXKh0Jzu1Skr5eyACuBs4jJZTPxitSNKbQJKUcoqU8qvenKxCobjwsO0/mpiYiMVSe9K2TTt3fsmiRYsYNmyY4YxlZaXadWEIDQ3DbC4yCtbqouvWW2/lL3/5i1GbrSP6eBkZuwkNDbXbZvvziUScl5cXJpOJ4uJj5OdnOyni4k9yJPj4+DB9+nSjxlphYRZxcT23lAoYhYZ1Jy4zM4XAwECmTJliHGMbp6czcOBAWltbaWtrY9q0acb2m2++2eaoRJufQ7Fa20Xcrl0bGT58OFFRUQQEBCCEUCJOccHS7a9lUsoG4IPjL4VCoegTamvNgOb8BAVpBbazsvYQETHU4fFmczEVFcVGpumwYcPw8PAgK2sP7u5a/bOBAwcSHh5GYWGREdOli65Ro0YxatSoLuejO21SSkPE6ddoaWkxztUFjCMRJ4RgwAB/UlO/A3BKxDlKPHDEnDlz+N3vfkdx8TEKC7O46qpLu3WeM0RHR1FY2C7ixo4di5+fH76+vtTU1DhcvrVNFhk7dixeXl60tLRwzTXXIIQXUlqAMTZnhAJVNDU1IIRg377vuesurYSLyWQiMDCwyxZjCsX5jspOVSgUZzW2y6kjR47EZDLZJTccOPATS5YMpaZGE3v6Pt0Rc3V1ZdSoUZ2cOC34P89wkhy5Ro4IDw83xKQu4lxdXRk9ejTDhg0zasLpBX/1YzsyYMAAcnLSgJMnNQBGkkV3nDhob5G1bt0LWCy1PZrUoBMVFUVR0VGam5s4cmS/IUYHDepc9kTHVsSFh4cTHx/PRRddhIeHB7GxiQgxFPA1jnF31/6NKytLOHhwG01NDVxxxRXG/qCggV06cX/5y/W88cZjp3ubCsVZi9MiTghxtRDiCyHEIT0TVQhxuxDi8p6fnkKhuNCxFXGenp4MHjzErsp/cvJ6CguPGOJNL9kxZky7m5OYmEhW1h7jwz4oKIhJkyZRVlZASso3+Pj44Ofn16356IkMgF2HhdWrV/Pqq68a70eOHMkbb7zBwoULHY4TEKDFxUVERBAcHHzS686ePZtXXnmFyy/v3qM2Pj6eGTNm8N//PgVg10qrp9DrtG3Z8l9aW1sMMRod3bnsiY6tiAsNDeX555/nxRdfBOD995/jz39+g+hoEAKio+HeezURZzYXG0WZZ8yYYYwREhLsMLHBbC7h++8/ZM+eb3vsfhWKsw2nRJwQYgmwFshAi4lzO77LhNaeS6FQKLpFa2tLt1om1dSYMZlM+Ppq7kxCQrzRpB7aRVt+fiagOXExMYPtsj2TkpKoqTFz6NA2BgwYgJubG3PmzAFgx44vDeeou+hiRXfiACZMmGC0xwJN7P3qV7/C29vb4Rj6/LqzlArg5ubG7bffjslk6vY8n3zySaO1WG84cfq/4b//vQJovxdHBYh1Ooq4iy++mAkTJhjnP/74pRw7phVUP3YMfvGLdhGXkvI1F198MT4+PnbjVVeXIaWkpCSXwsIjSCnZsWMDgBHz2NLSfNrdPhSKsw1nnbgHgTuklPfT3vkZYDv2kagKhUJxQlauvI0//OHqkx5XU1OBv3+A0fA9Li6OgoIspJQARheFgoLM4+/3kJRk/zjS4+N27PjSWJYcPHgww4cPR0ppOEfdRRcd3V2CdYSzIu5UmDRpEgsXLsTd3Z2YmJgeHz8iIoIxY8aQm3sYHx8fw+2LjY3Fzc3thE6cv78/np6eJ72Gbcux9PRdzJo1q9N4VVVlbNz4NosXR7NkyVCeeGKxkZlbXl6A1Wrl0UevY/nymT3Sf1ehOFtwVsTFAdscbK/DNohBoVAoTsLhw8mkpm62K+TqiJqaCrvkgPj4eBob6ykvL6SyspTy8kJAa99UX19Lfn5WpxiziRMnsm7dOt566y3ee+89Y7seN+Zs/bSFCxeyZcuWEyZAnAy9zEhvijiANWvWsHXrVrum9j2J/m+YlJRklDlZtmwZ27Zts3PMdDw9PfH29iY0NKzTPkcMHDgQIQRfffWmUYqk4/6aGjN79nyLv78/y5Yt47vv1vLDDx/Tv39/WltbMZuLSU/fyYEDP/Hxx6tO844VirMHZ0VcIeAoqnYakH3601EoFBcCVmsrRUVHAEhO3nDCY2tqzHZdD/TszPz8DCMOLigoiIKCTLKz9yGltCv5AdrS5rXXXstNN91kJ7xOVcS5uLjYlcc4FfrCiQPw8/Nj4sSJvTa+/m9oex9eXl6G++kIPTu4O7i6uhIUNJD8/EwGDhzI+PHjO40lpWT37k1MnDiRZ599lqSkJKxWK7/4xS8AOHr0AJWVZXh6erJmzcOUlRU4e5sKxVmJsyLuZeA5IYReCChSCPErYCXwQo/OTKFQnLcUFx+jtVWLyNBrmXVFbW2FXdeDdhHX3nPzuuuuo6Agm927NwEYRWRPxqWXXsrdd9/NggULnL6H02XhwoU88MADdq29zkUmTZrEPffcw9KlS7t9zgMPPNBlHT5H6LGHV199tV1RY2hfni0vL2TcuHG4urry9ttvs3TpUu64QytFkpLyDQC///3v7TpZKBTnOk6V75ZSrhRC+AGbAE/gO6AJ+H9SytW9MD+FQnEeoichDB8+nF27NtLa2oKrq5vDY7Xl1Pbl0cjISDw8PMjPz6C8vJCoqGgmTZrEK6+8wvr1rzJhwoRuZXuC5vI8//zzp39Dp8DEiRN71SHrK0wmE//6l3ONemzbmXWHsLBQ9u/fZ7h+ttgmSugu3ciRI3nzzTeprKwEMDJUf/azn/HEE08Y8ZMKxbmO0yVGpJQPA0HAROBiYKCU8pGenphCoTj/WLPmz7z22iPk5WnZpffddx8WSw0HDvxIfX0tv/nNFNLTd9mdU11tHxPn4uJCbGwsOTlppKVtJzFxjOHOlZUVOPygV5zbhIWFYTKZmD17dqd9tiKu4xLugAED8Pb2JjMzBSEEo0aNIiwsnIKCrB6fY15eBnffPcnoMKJQ9AXdFnFCCDchRLIQIkFKWS+l3CWl3CGlrOvNCSoUivOHH374iI8+eo6cnEP4+vry85//HIBDh7Zz6NB2Dh78iZ0727v3NTU10NTU0KmJfHx8PMnJ6ykqOsrSpUvtCuAqEXf+cd999/H666/blY3R0UVcUNDATrGNemswKSWRkVF4enoSHx/XK05caupmDh/eYfSQVSj6AmfabrUIIQYDshfno1AozmMqKoqwWGrYvHktCQlx+Pv7M3jwEDIydhslQ3SX7ssv32DoUK1gb8fWVbrzNm/ePCOezdvbGy8vr15PFFD0PYmJiZ2SVXT0343x48cZZWhsiY6O4vDhNOLjtd+Z2NhYPvrosx6fo16PrqQkp8fHVii6wqmYOLRm93cAv++FuSgUivOYpqYGamurAKirqzLcswkTxrN16w5DxBUUZFJYeIS///0Wxo/XaoJ1FHEzZ87k008/ZfXq1cYH9/z58xk8eHCnwHfF+Y2bmxuzZs3qsjOG7s7pv29xcXFUVpZisdTg5dVzlbF08VZSkttjYyoUJ8NZEecFLBFCzAJ2AxbbnVLKe3tqYgqF4vxCrwcnhEBKabhp48aNY+3atdTX1wL2pUP0rMKOy6lXXnklaWlpdtvefvvtXp2/4uxl48aNXe7TRZz++6Z3rigoyCI+vudcW+XEKc4Ezn5lHQ6kAJXAEGBUh5dCoTjH2b59PV9//e4Jjzlw4CfefPNxp8atqCgCMILTdWdEzyisrq4gLCyM6uoKI5uwra0N6OzEKRTdRe8aYevEAT2e3KCLN13MKRR9gbMlRi7rrYkoFIqzgw8/fIby8gKuuOJGh/stlhqeeGIRpaX5zJ+/DD+/oG6Nq4u4++67DyEEl12mPU5sY9huuOEGnn32Wb7//kMCAgIwm82AEnGKU2fmzJnMnTuXyZMnAxitwXoyucFqtVJWlg9Aaaly4hR9h1NOnBDi0xO81vXWJBUKRd9RW1uJxVLd5f6XX/4jpaXaB1Z6+u5uj6svpyYlJbFhwwbCw8MBrQzE0KHaEtfixYuNY6+++mri4jT3pONyqkLRXaKiovj888+NzFYvLy/Cw3u2zEhFRSFWq5WAgABKS/NVf1ZFn+HscmpFh1cNMBit7ZYqjqNQnAdYLFVdijiLpYbPPnuRJUuWAJCR4YyIK8JkMtnV9dKZMWM6Y8aMseu/mZSUxM9/fj2hoaH079//FO5EoXBMbGxsjzpxejLD1KlTaW1tOWk/YIWip3BKxEkpb+nw+qWUchSwBlCBAArFeUBtbSX19XUO3YTy8gKklMydO5fY2DinRFxFRRHBwSEOs0dXrVrF5s2b8fDwICoqGtDKSjz22GPs37//1G9GoXBAXFzP1orT4+GmTp0KqLg4Rd/RU7n4LwHO9VFRKBRnHVJK6uq0MiD19TWd9utxbWFhYYwfP46MjF2djukKs7moy6bn/fr1M5a7EhK0JdTExETc3NwICupezJ1C0V1iY2Mxm7UyI47Yvn09dXWaG71r1yaqq8uNfRZLDdu2fWF3vC7aLr30UkBlqCr6jp4ScQk9NI5CoTiDNDS0O3COllTtRdx4Skpyqaoq69bYZnMRYWGORZwt06dPZ8KECSqZQdFrnChDtbg4h4cemsvnn7+MxVLDH/5wFe+//w9j//vvr+RPf7oGs7nE2FZSkkNAQADDhw8//l45cYq+wdnEhuc6vFYJIT4A3gf+0ztTVCgUfYXuwmk/dxZxZrMm4kJDQ40+ld1dUq2oKCI0NPSkxz300EPs2LGjW2MqFKfCiURcVtYeAHJyDpGXl05bWxvp6TuN/du3fw5ooQU6JSU5REdH4+vry4ABA5QTp+gznHXiOtaFGwG0Avcff/UZQoirhBDpQogsIcQf+/LaCsX5Sm1tpfFzV05cv3798PX1NUqDZGScvFek1dpKZWVpt5w4haK3sS0zsmrV/7B8+eXGPr3QdF5eOnl56QBkZqbQ1tZGWVkBWVl7AS0jFbTf7WPHDhIdrcVyRkdHq5g4RZ9xTtaJE0KYgNXALCAf2CmE+FRKeejMzkyhOLexdeIcibiDB4toaQnDZBJERfni6xtCcfGxk45bWVmKlFKJOMVZgZeXF2Fh4eTnZ7Jr11dUVZXR2FiPp2d/MjM1Jy4vL53c3MOA5koXFmaTmrrZGKO8XBNxX331FiUlufzyl/8EtJImBw8e69P7UVy4OLucGiUcdBgWGlE9N62TMhHIklIekVI2oy3nzuvD6ysU5xRtbW1GPNuJOJETt2kTpKUV0doahpSQkwO1tZGkpWmuQ3V1Oc3NTcbxUkqjAKptLJ1CcTYQFxfLjh0bqKgoxmq1kp2tOWzZ2akIIaipMXPw4E+4ubkBWtjA9u1fEBERAWihBU1NDbz55l+YOHEiCxYsAJQTp+hbnF1OPQp0LvIEAcf39RURQJ7N+/zj2xQKhQM2b17LjTcOPmn9Knsnzj5zb80akLIIaBdiUkaSk5OHlJI77kjkzTf/19j37bfvs3hxNLm5hykqOgLAoEGDeuBuFIrTJy4ujsrKUuN9RsZuamrMlJTkMn36dAD27fuemTNn4uHhwffff8Tu3RuZN28eQUEDKS8v5PvvP6K0NBoPH+oAACAASURBVJ+//vWv6P5GVFQUdXXVDmNKFYqexlkRJwDpYLs30Hj603FqHh2xm5cQ4k4hxC4hxK7Kyu5lzykU5ytHjx6gubmJ9PQTlwQ50XJqSQmAvYiDKKzWXCorSykrK+DAgR+MPd988y5tbW38+OOn7Nq1ET8/P8aMGXP6N6NQ9ACxsVqXkLi4eIKDg0lP32XEw+mdQ6xWKxdddBFjxoxhy5b/YjK58OCDDxIeHk5FRSHHjh3Azc3NEH3Q3qtVuXGKvqBbIk7PRkUTSn/rkKG6GvgASO3NiXYgH4i0eT8IKLQ9QEr5spRyvJRyvL+/I/NQobhwKC3VjGv9Q6or6uq05VQ3N7dOIi44uB6tSYutiIsE6gxxmJ2dSltbG/X1tezatRHQsvmSk9cze/ZsY2lKoTjT6Bmqs2fPYvz48WRm7jb+PubNm4eHhwcACQkJRib23/72N6Kjo4mI0ERcXl46Q4YMxdW1PbxcT3DoKkN1//4faW1t6bQ9LW1Hl3XrFIqu6K4Tp2ejCmA49hmqsUAKcHMvzK8rdgJxQojBQgh3YDHwaR9eX6E4pygr00ScHrTdFXV1Vfj6+uLnN6CTiFu4UF+KbRdx7u7ad6mUlG8AsFhqKS4+xvbt62lpaWb69Ons27eV8vJC5s6d20N3o1CcPklJSbi6ujJ//nzGjRvHsWOH+PzzlxgyZCihoaGGU5eQkMBdd93Fww8/zLJlWk378PBwzOYi8vLSGT58mN24uhPnqFZcRkYK9957Kd98857d9tTULSxbNonPPnupN25VcR7TrexUPStVCPE68D9SyjP6dUFK2SqE+A3wFWACXpNSHjyTc1Iozmb0pZ3s7BM7cbW1lfj5DcDd3Z26umoKCrKpri5jxIiLGT5cS04IDg6lrAyiouCWW6J47LF2EQeaUPz++w8JCQnhiSeeYNq0aQBcddVVvXNzCsUpMGTIEMxmMz4+PtTX19PW1kZR0RG++Ub7XU5ISODgwYMkJCQQEhJiFwoQFhaG2VxCdXUFixb9zG7c0NBQ3NzcHDpx27Z9BmjhDTrNzY089dQdAFRVlXY6R6E4EafSO/Ws8HullOullPFSyqFSyhVnej4KxdmKVt8qHw8PDwoLj1BXV42Ukj//eT5r1vzZ7ti6uir8/f0ZMMAPi6WaV155iEcemY+U0ij0u3FjGG1tcOwY3H675sQdObKPqKgoTCYTu3ZtZPv2z1i4cCGTJ08mICCA8eMnEBIS0te3rlCcEB8fHwAuueQSAgICWLVqlfGlY+bMmYwaNYrg4OBO54WHh9PW1kZLSzMJCfYNi1xcXBg0KJLS0lxWrfofnn76bmPf9u1auy69/hzABx88Q35+Jq6urioZQuE0TtWJAxBCuKKV+IgC3G33SSnf6qF5KRSKHqKqqozm5ibmzJnD+vXryc7eS11dFT/+uI7KymJuu+3/jGPr6irx9x+AyWSitLSaiooCzOYSKiqKHJYJCQ0NxdXVldbWVkaNGoWPjy9ffPEKAPfeey8mk4n//Oc/+Pv79+1NKxROMHDgQMrKynBxafc17rnnHu655x6Hx4eHhxs/dxRxADEx0eTmpvHjj+vw8fHn/vtfwGwu4fBhrfNDfn67iNuy5b9MnjyZsrJyh7UZFYoT4WyduGFAGvA98A7wKvAG8Arwr56enEKhOHWklDQ1NRjxcNdeey0AqanfsWbNn4DOGXS6E+fn54fFUmW0JcrKSqWioghXV1e7hvQmk4nwcK26T3x8PElJiUgpmTdvnvHhdsUVVxiB4QrF2YqtgDsZtl9kHIm4qKgosrL20tTUQHl5IfX1tezYsQGAq6++msLCbFpbW6ioKCIjI4VrrrnGcL8VCmdwtsTIM8BuwA+oR0tyGI+WmbqwZ6emUChOhw0bXuf668ON+JsJEyYQFhbGG288xtGjB0lKSqK8vMiuQG9dXSUDBgzAz8+PwsIjNDRYAK2fZGZmCkOGDO30YRcVpS2pxsXFMX78eAB+//vf98UtKhRnBN2JCwwMJDAwsNN+PUNVJy8vg507vyI0NIxFixbR2tpKYeERkpM1YTd37tzjX5yUiFM4h7PLqROA6VJKixCiDXCVUqYIIR4EVgGje3yGCoXilEhJ+Ya6uirWr18DaO7A559/zr59+wgPD6ewsJBbbrmFsrJ8IiK0XpK6E2e1WmlqajDGOnDgR/bu3cyyZXd3uo6ejRcfH88ll1xCUlISkydP7oM7VCjODCEhIQghHLpw0P43MWnSJJKTk8nLS+fQoW1MmzaVYcO0bNa8vPTjHSAGMWrUKPz8/MjKKuize1CcH5xKsd/64z+X0d4lIR+t1IhCoThLyMjQarft3/8Dnp6eBAYGMnbsWG6++WZmz55tuAX6kqrV2kp9fZ3hxOmMGTOG5OQNNDc3OSwTEhnZ7sT179/fCAxXKM5X3NzcGDx4MElJSQ73Dx8+HICHH34YFxcX9u7dQnFxDpMmTTKEX1bWHlJSNnHNNXMRQignTnFKOOvEHQDGAEeAHcAfhBBW4A4gq4fnplAoThGLpYa8vAxcXFxoa2tj0KBIOrY9bq9npZVC0Ls1DBgwgJYWrRipyWRi/vz57N27F29vb4cC7YYbbsBisaiWWooLii1btuDr6+tw3yWXXMKBAwcYOXIkMTGD2bx5LaA5cwMGDGDgwGDeffdJmpsbWbp0KQB+fn4qO1XhNM46cbalPP6MVq79O2A2cG9PTUqhUJwemZkpANx4440AREdHdTpm0KBBCCGMoqS6iNMTGwCioqKZMGECALNmzcLd3b3TOGPHjmXVqlVOBYYrFOc6gwYN6lLECSEYOXIkAMOGJVBXV4XJZGLs2LHGtubmRu68804j9MDPz4+GBgtWa2uPzC8l5Vu7eFfF+Um3n7pCCDfgceAQgJTyiJRyBBAEhEgpN/fKDBWK84hHH13Ili0f9uiYn3zyPI899nO7bRkZuwFtOUcIYSx52uLh4UFISKjhxNXWai23bJdT4+JimTBhAv379zf6SSoUiu6jL5+OHj2afv36AZojFxUVxd///nfjOP1vridab2Vn72P58st56aUHT3ssxdlNt5dTpZQtQojBdGg0L6U09/isFIrzEKu1la1bP6K21sz06T2TzJ2be5jnn7+flpZmqqsr8PPTMuXS03cTGRnFsGHDePXVVw0HoCMxMdFGTFxlZQkAwcHBVFdryzqxsbEEBwdTWlqKl5dXj8xZobiQ0EXcpEmTjG1///vfefzxxw1RB7Yirhpf34DTumZaWjIAH3+8issv/wUjRlx8WuMpzl6cXf94Ey3+TaFQOElDQx0ABw78cMLYl9TULRw6lHzS8aSU/L//d4fRTDsrq70vambmLsaP12qz3XrrrSQmJjocIyoqitJSzYnTi/mGh4cbHyhDh2pZq0rAKRSnhp7kYCviXFxc7AQc2Iu4jtTVVfPll28ipZ2HQktLM5999rLxDNDJyNiNn58fERERrF59X4/ch+LsxFkR5wXcKYRIFUKsEUI8Z/vqjQkqFOcL+jJJa2sru3dv6vK4p5++i0cfnW/UaOuKnJw09u//gUcffRRob27f3NxEfn6WXa/HroiOjqakJBcpJRUVhQBG8+/Y2FhmzJjRnVtTKBRdcOmll/Lyyy+fNBxBF3GOvuB98827/P3vN5Obe9hu+65dG/nnP+/i++8/6rB9N42N48jPv5FDh/bw1VfW07wLxdmKsyJuOJACVAJDgFE2r4t6dmoKxflFfX2t8bPeQ7EjVquVwsIjVFQU8+GHz5xwvPR0rYTIDTfcQHR0tJHMUF5egJSyU8FRR0RFRdHc3ERlZSnl5YUMHBiMm5sbgYGBZGZmdrkMq1AouoeLiwt33HEHnp6eJzzuRE6cHreqd1DRKS7Wtts+T778spmion00NY0HhgLN/POfBWzq+nuj4hzGqRIjUsrLemsiCsX5Tn295sQFBQWRnLweq7UVk8n+T7CsLI/W1ha8vLx4//2VXHvt3bi5ebB69X1YLDWMG3cF11yjRTSkp+/Cy8uLhIQEkpKSSEnRRJwe4+YomaEjutArLj6G2Vxk105IoVD0HScWcdrfdEcRp/+t79y5AavVislk4pVXDgDNwDhAi61rbj7CmjVRzJrVa9O3Y+NGyXPPrcBiWURISBy33UafXftCQ9UEUCj6CN2Ju/3226msLGXt2n92OkZ/SC9fvhyLpYbDh3dw8OBPfPHFq+zatZ4XX1xOS0szAJmZu0lKSjJKF+TmZmCx1FBaqvVK1evAnQg95q2gIIuKikIiIsJPcoZCoegNTiTi9P7HnUWctr2qqpz09J0AmM27j+8dj7ZgBnCEkpIen7JDNm2Cp57Kw2J5BHiXkhJ46imUE9hLOC3ihBBXCyG+EEKkCSEij2+7XQhxec9PT6E4f9CduMWLFzN//nzefPMvnR7K+vurrroK0JZL9KWUFStWYLHUsn//D1itrWRm7jF6lerLntnZe41v590pvjt06FCEEBQUZFJRUWj0hFQoFH1LRxHX2tpCbm46AGVl7U6clJKjRw8CmhM3evRoXFxcjCVVT89kwB8YDEQBJiCbkJC+uY81a6C5Of34uzIAmpq07YqexykRJ4RYAqwFMoAYwO34LhOgCtIoFCdAd+L8/PxYvXo1JpMLH3xgH/dWUJCFm5snixePB0y8/HIu27bl4uLiwtKlS3F3d2f79i/IzT1MU1MD48ZpGai6iMvISKG0NI+goKBO2W+O8PDwICoqmpycNMzmErWcqlCcITw8PPDw8DASGz788Fluu20UZnMJZWVaT9Wiomw2b/4vt956EUePHqC8PI8xY8YwdepUNm58k/z8TKzW9zCZ5qJ1yXQFonFxOcJtt/XNfWiOX8bxd2Udtit6GmeduAeBO6SU9wO2ZaW3A45rGCgUCqA9O9XHx4fw8HASEhIoKjpid0xqajatrUPIzXUDBmGx5LBtWw5+fuEMGDCAGTNmkJz8hZHUoIu4sLAwQkNDycraQ2lpbreWUnXi4+M4ePBH2tralBOnUJxBfH39DMd++/YvaG1tYccOLd5t4MCBFBcf48cf1wFw8OA2ysoKiIyM5K9//Sulpfncc88lSNnMypWPER0NQoCn5xBCQ4/0WUya5vjpIq60w3ZFT+OsiIsDtjnYXgc47j+iUFxAlJTkkpa2w+G+hgbNifPx8QG0xAM91iUtbQcFBdkcOZKFlLHHz4gGcmlry6W+XktAmDt3Lrm56fz73yvw8vIiPj7eGH/s2LFkZaVQVpbXraQGnfj4eOObvhJxCsWZw8/PD4ulmoYGCwcP/gTATz99CsCMGTOwWq1s3ap1fNHFXWRkJJMnT2bZsmXU1FRw11138bvfDeXYMWhrg1/9aij19e1fFnfu3MhHH63io49W8fHHq436kAcO/GQ8B06H224DIeydOA8P+swJvNBwVsQVAvEOtk8Dsk9/OgrFuc2rr/6Jhx6a06koJ2hOnIeHh9F/VCu0q4m4//3f63nkkXm0tmYDuoiLAnKAHJqaNGdt3rx59OvXjwEDPHnxxRcxmUzG+GPHjuXYsUMUFR11SsTFxcUZPysRp1CcOQYM0ETc/v0/GAlMO3duBOCyy7TiEHo/VH17dnYUMTGwevWTCPEPVq9+gpgYeOcdbcwhQ4ZQVVWOxVLD/v0/8OCDV7Jq1b2sWnUvzz33G15//VEaGiwsX345b775v6d9D7NmgZ+fHhNXSkgILF+uslN7C6dKjAAvA88JIW4//j5SCDEVWAk81pMTUyjORXJz06iurqCkJIfQ0Bi7fQ0Ntfj4tBvWkZGR1NVVU1FRRElJns2Rtk5cAeCCr6/mxEVHR1NbW2sn3nTGjh2L1WqlocHi1HKqrYhTMXEKxZnDz8+PkpJqdu/ehLu7O9OnT2fT8bTOmTNnGsddc801fP755wD861+RNDYCeCPlAwDk5MCdd2rHDhmiZagWFmbz8st/ICwsjF27duHh4cHtt9/ODz+s55JLfkZzcyN5efbFhE+F5uYmqquP4ebmRmtrOe+8Y3X4vFL0DE45cVLKlcBHwCa07g3fAS8CL0opV/f89BSKcwcpJQUFmYCWYNARi6XGWEqF9hIge/Z8B2iBzdp/h+pHAFaghQUL2kVZVw9E28K8zi6nAgghCFGBKwrFGUNfTt29exNTpkxh8uTJgBaCER8fj5eXF7GxscyfP984p7HR8d96fT08/HB7GaFVq+7lwIGfeOyxxwgPDycwMJB58+ZRXl7Iu+/+DcB4fp0OhYXZSCkZN24cUkpqa1V79d7E6RIjUsqHgSBgInAxMFBK+UhPT0yhONeorCzBYtHi3vTuCbY0NNTi62vvxAGkpHwDwNNPP83o0aN55plxaDV424Xbz3/eve4LAQEBdmN3h5iYGFxdXY1uDQqF4szg5+dHTk4a2dn7WLBggdHzeNCgSIQQLFq0iLvuusumF7I34NfleDk5kJCQwMiRIykoOMSVV17Frbfeauy/+uqrATh0aDsAFRXFRgLWqZKfr8XDXXrppQBUVpae6HDFaXJKxX6llPXAYeCQlLKuZ6ekUJyb5Oe3f4t1JOIslhp8fTs7cbqIW7p0KXv37uXXvw7k2DE4dCi607EnQghhuHHOLKe6uroSEzNYFfpVKM4wfn5+tLW1kZiYaCfWoqO1v+c1a9bwwAMPMHLkSEwmE25uUWilRBwjBHz8cX8OHDhARUUFX365AVfX9iiqkJAQo9bknDlzgPZalVJKzGbn64Lk5WnxcFOmTAGgqkqJuN7kVIr93ieEyAWqgWohRJ4Q4n4hRNe/SQrFBYAu4qZOnUpGxu5OyQ0dnbiwsDBcXFwoKckhLCwcLy8vu+NthVh3RdnFF1+Ml5eX07Ftv/71XSxdutSpcxQKRc8SGhqKyWRizZo1uLm5ER0dTUhIiF0WOoCnpydJSUmMHh1P//5djyeltqR6IubNm4erqyv33nsv0O6k7djxJTfcEMHRowecuoe8vAxCQkKJjdVie6uqyk5yhuJ0cCqxQQixErgT+AftpUYuAR4FwlAFfxUXMPn5Gbi5uTF//ny2bl1ORUURQUHt7lZ9fQ0+Pu0PY1dXV8LDI8jPzyMhoXPSt5eXFwEBgbS1We3E34n44x//yE033WT3bbs7LF++3KnjFQpFz/Ob3/yGa6+9luHDhwOau75t2zYjTMKWTz75BDc3NzZt0oRaTo7jMXNzT3zNBx54gPnz5xuxc/qX0fT0XVitVr77bi2DB1/U7XvIz88gISGe4OBgQDlxvY2zTtztwO1SyhVSym+Pv1YAdwCqCozigqG0NI/iYu2pWV5eSF5eBvn5mQwePISJEycCnZdU6+trO4mxqCgtdk3PEH3nHYiJARcX7b8+PlFERnZ/abRj7TiFQnHu4OXlZQg4ncGDBxstuWyJiIggODiYJUvg2DGOx9F25mQmvqenJxdddBH9+vVj0KBIw4nLzdUyVX/44aOTzruystRoEZafn0F8fDyBgYEIIZQT18ucSkzcvi62nVJ8nUJxLrJy5a088cQiAJ5++tfcc88kMjJ2kZAQz5gxYxBCdMpQ7ZidCu0JCPHx8bzzjlYWICdHWwbJyYGioj8xffqf+uamFArFOcuKFXRaWu3fX9veXRIS4o0M1fz8dIQQHD160BBoXfH007/mgQcup66uisrKUhISEjCZTAQGBionrpdxVni9BdzjYPvdwNunPx2F4tzg2LEDZGSk0NzcRFpaMrW1VZSU5BIXF4ePjw9xcfF2TpzV2kpTU4MDJ077mhwXF8fDD2tlAWxpbr6ezz5b1Ov3o1Aozm2WLIGXX8ZotxUdrb1fsqT7Y8TFxZGfn4GUkry8dKOUydatXbtxzc2N7Nz5FWVlBeze/TXQXrZo4MBglZ3ayzgr4jyAm4UQh4UQbxx/pQG3Aq5CiOf0V89PVaHoex5/fBHvvvuk3bb6+loqKoqNvoaVlaXGEoj+8Bo3bixZWXvszgE6OXHRx9dA4uPju4xdOVlMi0KhUADG0mpbm/ZfZwQcaM+hmppKsrJSqa+v4/LLL2f06NHs3buly3NSU7fQ2Kh9+9y48W1jHIDg4IFUV6vl1N7E2Y4NwwDdXtBX4IuPv2wX8jv3HFIozjEqKor47ru1lJcXcuONfzS26yn4AJ999hIAL730Env37uWGG24AtMK77733HtXV5fj5BRkirqMTd+ONN+Lh4cGwYcOIinIcnOxEtRCFQqE4ZaZOnQrABx88A2g15mJjY0lJSevynO3bv8DT0xMpJcnJ6zGZTEaXiODgYI4edRSBpegpnBJxUsrLemsiCsXZQFNTAx4e/QBITt4AtKfc6+Tltb/fufMrTCYT48aNMx6AAElJSQBkZu5h/PhZ1NdrBTQ7OnH+/v7cfrvWxW7FCi0mznZJ1dmYFoVCoThVxo0bR1RUFF9/rTVeTUhIIDIykg0bvkJKiW0lMavVitlcRHLyF1x++eWYzWa2bdvG0KGxRn/o4ODgE8bEtba2YDK5oiqUnTqnUicuVAixQAjxayHEMpvX3b0xQYWir3jvvb+zYEEINTVam5jt278AtMyrurpq4zg98HfKlClIKRk+fAT9O0QUt4s4zbjuyomzpSdiWhQKheJUEUKwYMEC2tqseHl5ERERQWRkJA0NFurqquyOXbnyVm64IZLCwiNcc801TJo0CcCuXFJkZCQ1NZWdztX57W+n8OqrKnHrdHBKxAkhfgkcA95Da3j/SIeXQnFOkpOTxuuvP0p9fS07dnxJS0szKSmbCA/X6rzZ9hTMy8sgImIQ06ZNA2D8+HGdxgsICCA6OsbIUNVb2XR04jpyujEtCoVCcTosWLAA0OLaXFxcjOSr0tI8u+NSUr5m6tSpvPXWW9x8881GaSXbEkdjxowBICtrb6fr1NSYOXx4J8eOHeqV+7hQcNaJWwGsBLyklKFSyjCbl+rZozjn2L//R37/+yv54x+vxtvbi4CAAJKT17N37xYsllp+85vfAFoBzI8//hfr179GQUEm8fFxjBuniTe9bU1HtOQGTcQ1NJzciVMoFIozzeTJkwkPDzcEmF4GqbS0PcOqrCyf8vJCrr/+em666SY8PT2ZPHkyLi4ujB492jhOX5GwTfLS0Vcpamoqeu1eLgScTWzwBd6QUrb2xmQUir7mww+fJS3tR8aOHctDDz3Ee++9x7p1X1BRUUhQUBB33XUXDz/8MMeOHeTjj58zYjimTl3CFVdcweLFi400/I4MGzaMdevW0dbW1m0nTqFQKM4kJpOJbdu2Gc8qR05cWtoOAGMJFbRM+/3799s5cSEhIYSEhJKVldrpOhkZuwGoqzP3/E1cQDgr4t4B5gKremEuCkWf0trawq5dX7F48WJeffVVAGpqanj77bfZs+c7nnnmGQICAoiMjGLjxrewWGqNc+Pi4vDz8+O9997rcvywsDCsVis1NRXdiolTKBSKswHbXs0hISG4urraOXFpacm4u7uTmJhod96IESM6jZWUlOhQxKWn7wKgulo5caeDsyLud8AnQojLgf1Ai+1OKeXjPTUxhaK3OXDgRyyWGubOnWtsmz17NiaTiUGDIvn1r38NQHx8HF9//TXu7u7cdNNNrFmzxmiTdSJCQ0MBMJuLu8xOVSgUirMZk8lERMQgSkvzeOutJ6itNZOZmUJiYiIeHh4nPT8pKYmvv/6a5uYm3N3bj8/M1Jy42lpzp8xXRfdxVsTdBVwFlAOx2NeDk4AScYpzhu3b1+Pm5sYVV1xhbPP39+f5559nxIgRxgMqPj6er7/+munTp/OPf/yDkJAQu3O6QhdxFRVFmM3F+Pv74+bm1js3o1AoFL1EVJTWU/WHHz42Cvvq8cInIzExkdbWVnJyDhEXp8XI1dSYKSw8SnBwMKWlpdTX1+LlpVYpTgVnExseAZZLKYOllBdJKUfZvEaf9GyF4iwiOfkLpk2b1skdu/POO7n00kuN97rrNnfuXPz9/VmxYkWnkiKOsHXiysryGDQosgdnr1AoFH1DVFQUhw/vpLGxnlGjRgH28XAnoj25QVtS3bLlQ1566UFAW/kAldxwOjgr4kzAp70xEVuEED8XQhwUQrQJIcZ32PeQECJLCJEuhLiyt+eiOD9JSfmWY8cOGen0J2L69OlERkZy3XXXOXUNWxFXWppLdLRqvaBQKM499AxVf39/tm7dyrPPPtutZyfA0KFD8fb2JjNzDy0tzaxYcSPr168hJCSEK6/UPsKViDt1nBVxrwN9UbnqALAA+N52oxBiBLAYGIm2rPu8EMLUB/NRnEdIKXnllT8SGRnJrbfeetLjk5KSyM3NtQv27Q7e3t54eXkdF3F5xoNQoVAoziX0Z9e8efPw8/Pj3nvv7dZqBICLiwtjxowhOzuVnJw0WlqaeffddykuLiYmJgZQyQ2ng7Mxcf2B2487YPvonNhwb09MSkqZBjgKdJwHvC+lbAKOCiGygInAtp64ruLcYePGt/HzC2LSpKudPvf77z/k8OGdvPbaa3h6evbC7NoJDQ2jsDCbmhqzEnEKheKcZOjQoQAsXLjwlM5PTEzkjTfeMmrD6UusgYGBgJbc0Jts2PA6gwbFM2rUlF69zpnAWRE3HNCr9g3rsK8vmt5HANtt3ucf39YJIcSdwJ0AoaFqGet84+23H6emxsw77xzB29uv2+dZra2sWfMwI0eOZOnSpb04Q42wsFAOHdJqKjnr5CkUCsXZwKxZs9i0aROXX375KZ2fmJiIxbKarVs/on///kacsS7iens59YUXljNmzHQl4qSUl/XUhYUQXwOhDnY9LKVc19Vpjqbl6EAp5cvAywAjRozvC4Gp6EMslhpqasz85z//4Lbb/q/b561f/xp5eRmsW7cOk6n3V+JDQ0P54YcfAJQTp1AozklcXFy6lZHfFbrzlpy8gYkTJxjP3oCAAKB3RVxzcyO1tZV2rRPPJ5yNixuhJwAAIABJREFUiesxpJRXHM9w7fjqSsCB5rzZfhIOAgp7d6aKM8kLLzzArl2bOm2vr69BCMEHHzxNdXV5t8ZqbW3hlVf+Fw+PKcyb9zNiYuCdd3p4wh3QkxtAiTiFQnFhMnLkSEwmE21tVrsCwa6urvj6+lJT03PLqQcPbmPlyttoa2sDtMQygIKCLGPb+YTTIk4IcbUQ4gshRJoQIvL4ttuPFwDubT4FFgshPIQQg4E4YEcfXFdxhvjkk3+xefNau22trS00NTUyffp0GhvrHTZXdsS6dcXU1hbS1LQUEOTkwJ139q6Q00WcEIKICIcr/wqFQnFe4+npyfDhWjcH3ZXTCQgI7FEnbsOG19iw4TVDvFVUFAHQ3Nxk1zrsfMEpESeEWAKsBTKAGECvXGoCHuypSQkhrhNC5AOXAF8IIb4CkFIePH79Q8CXwD1SSmtPXVdxdtHW1kZzc5PxR6ijt7DSGy3btoM5Ee++W3n8p0CbseDhh09/rl0RFhYGQEhIKO7u7r13IYVCoTiLSUrSHLiOrbqCgk5PxO3e/Y3Rmxq0lmAAJSU5AHafH+fjkqqzTtyDwB1SyvuBVpvt24FEx6c4j5TyYynlICmlh5QyREp5pc2+FVLKoVLKBCnlhp66puLso6WlCQCz2bGIGzFiBEII44/1ZJjNVcd/8rfbnts9DXhK6E6cqhGnUCguZK644gqCg4ONYsE6gYGnLuIKCrJ44IEr+PTTFwFoaKjj2LGDABQXHwPsRVxeXsYpXedsxlkRF4fjch51gOqZoehRmpsbAUciTvvWFRgYSGhoGCUl3VNhfn66EzfAbntvJo3qIk7FwykUiguZm266iaKiIvr162e3PSAg4JRLjGzb9gUAubmHAUhP32XEvekirrKyGBcXF/r376+cOLQkgngH26cB2ac/HYWinXYRV4LV2r5qrjtxPj4+xMREU1raPSdu6lTdiWsXcf37w4oVPTNfRygRp1AoFFpcsItLZ8lxOk7cjh3rAcjP1xw2fSm1f//+dsupwcEhDB0aS36+EnEvA88JIfRiK5FCiF8BK4EXenRmigseXcS1tbVRXV1mbNedOF9fX6KiorodE9fYqDtx2nKqi0t7TFxvJTeEhIQwbdq000rPVygUivOVwMBAamursFpbT36wDQ0NdaSmbgbaY93S0pIZMmQoI0aMsFtODQ8PIyEhnoKCC3w5VUq5EvgI2AR4Ad8BLwIvSilX9/z0FBcKtbWVndK/m5oajJ9t4xpsnbjo6GhKSnJpa2ujqqqMrti0Cb77TnfitJV//XK9maVqMpnYsmULc+bM6fnBFQqF4hxHL/hbV1dlbGtosNg9/x2xe/c3tLQ0c9VVV1FZWUpdXTVpaclcfPEkYmJijBUas7mIsLAw4uLiKCo6SmtrywnHPddwNjs1CngECEJrd3UxMBB49Pg+hcJp6utrWbQoio0b37bbrjtxYC/i9Ewk3YlraWlm69aPWbAghP37f3R4jTVrwGqtBPzQkqk7zqF3s1QVCoVC0RldxFVWlgLaysv9909nxYpfnvC8PXu+pX///txyyy0A7NixgfLyQiZPnkx0dDTFxceQUtqJuNbW1m7HUJ8rOLucehQIklLWSyl3SSl3SCnrgIDj+xQKpykry6ehoY709J12221FnF7zB6Chwd6JA/jvf/+JlJLvv//Q4TVKSgCq6JjUYEtvZqkqFAqFojNDhgwBoLBQC6v/5pt3SU/ffdIwmbKyPGJiBjNy5EgA1q17HtBahMXExNDU1EhFRRGVlaWEhYUZdTorKs6v/gDOijiB4zZX3kCjg+0KxUnRBVrHoFN7EdfZifPx8TH6kR48+BMAyclfOLxGSAhAJR3Li9iiWpsqFApF36L3Uc3Pz6S5uYnXXvsz0B773BVmczFhYaEMHToUIQT79m1l0KBI4uLijC/3hw/vpK2tjbCwMKNmZ8e6o+c63eqdKoR47viPEvibEKLeZrcJbWk1tYfnprhAaG+LYh902lVMXENDLf369cPV1dWuqfzw4cNJS0ujoCCLiIhYu7Fuuw3+9rcqpHTsxPV2lqpCoVAoOhMYGEhAQAAFBZkkJ6+nuDiHmJgY6upqT3heZWUxiYmT8fT0JDIyitzcHGbPnoUQgpiYGAAOHdIqop3PIq67Ttyo4y8BDLd5PwqIBVKAm3thfooLAF3EFRfn0NzcZGzXnTgXF5dOMXE+PlpywoABA/D11X5+9tlnAdi+fX2na8yaBUFBlfTrNwAhIDBQewkB0dHw8suwZEnv3J9CoVAouiYuLo78/AwOH96Jq6src+bMsevC0BEpJRUVRUYJp/h4zc2bNWsWgOHE7dnzLaCJuMDAQNzc3DrVHT3X6ZYTJ6W8DEAI8TrwP1LKE/ucCoUT6AJNSklhYTYxMVqPPV3ERURE2P3h1dfX4uPjY7yPioqmpaWFWbNmER+fwI4dG1i48N5O1xGiisWL/Xnttd68G4VCoVA4Q1xcHJs2bcHFxZWLLrqI4OBgGhosWK1WTKbOiWgWSw1NTY02Ii6er7/+mpkzZwJa0ltsbCyHD2tx1uHh4QghCAkJPe+cuG6JOB0p5S29NRHFhYtt0kJ+fmYnETd48GAyM9uDXOvra/Dza28Q8uyzzxh9SadPn8batR8hpUQIYXeduroqBgzoOrFBoVAoFH1PfHw8//73v7FYali06HrjS3pDQx3e3n6djtc/M/Ql0vvvv58pU6YQHBxsHLNnzx6+/PJLSktLGTRoEADh4WHnnRPnbGKDQtHjVFYWEx+vNQKxbYvS3KzFxA0ZMoSKiiKk1HJqGhrsnbiZM2dy6aWXAlpz5erqCsrK8mlrazNqz7W2tlBfX4e/f9eJDQqFQqHoe/Tkhrq6asaPH2+EyOjJDVarlbVrn6KurhpoF3G6ExcbG8uNN95oN6a3tzfXX389y5YtM77Qh4WdHSLOam1l7dqnaGiwnPZYSsQpzjhmczHDhw8nKCjIrkGxrRPX3NxkFIOsr68x/sg7kpiYCEBWVirPPLOM5cs1e91i0f74lROnUCgUZxe6iAMYN26c8XzX4+KysvbwwgsP8OWXrwPt1Qp0EdddQkPPjuXU1NTNvPDCA2zb9tlpj6VEnOKMYzZrAapxcXEdnDhNxOkZqHpHho4xcbaMHj0aIQSHD+9k8+b/cODAjzQ3N1Jbq7XcUk6cQqFQnF3oIs7NzY3Ro0cbIk6vCaoLr127NgGdnbjuEhYWRnV1BS0tzT0y71MlO3sfQI8UHlYiTnFGaG1t4emnl5Gbm05VVTlhYWHEx9v3tmtubsRkMhEeHg7YiriaLkWct7c3sbFxbNjwGrW1VbS2tnL06EHDxVNOnEKhUJxd+Pr6EhwcwkUXXYSHh4fxfNedOF3E7du3hZaWZszmYtzc3AgICHDqOnoMXWVlSQ/O3nmOHNFEnG1B4x07vuLdd590eiynEhsUip4iO3sfn376Ag0NdYD2jaqpqQmzucRISmhubsTT05OBAwcCUF3d7sR1tZwKkJSUyNq1a433WVmpBAdHAkrEKRQKxdnI8uW/M5y1jjFxuvPW0GDh0KHtmM3FhISEdkpeOxm2teL0z4QzwdGj+wEoLc0DtM+0J5+8icrKMiZPvoSRI6d3eyzlxCnOCAUFWQD88MNHgCbivLy8sFqthtXd1NSAp2c/Q8RVVZXR2tpCU1Njl04cQFJSEgDTp0/Hx8eHrKw9hhOnllMVCoXi7OPBBx9k6dKlAJ1i4szmYry8vHBxcWH37k1UVBQRFubcUipwVhT8tVpbOXbsIABlZZoT99///pPKyjL8/f15+uk/GEl83eGCFHGbNsHChclcdtl1LFrUyqZNZ3pGFx56nzw9O0cXcQBNTVpDkI5OXFVVKfX1WozEiZw4PbnhmmuuYcyYMWRnpxoxccqJUygUirObdidOe95XVhYTHR3DxIkTSU5eb8RRO4su4s5khqreXszX15fS0jzq6qpZu/b/sXDhQlauXMm+fcl88skn3R7vghNxmzbBU0+B2bwV+ITS0kqeegol5PqYgoIsOys8NDSU/v37A9DYqAk7XcTpMRJVVWWGvX4iJ+6yyy7joYce4pZbbiExMZHs7L3U1poB5cQpFArF2Y7+fNef97rzdtNNN5GRkcKxYwdPScSFhIQghDijTtyRI9pS6pVXXkl1dQV79nxLfX0dd999NzfffDMLFy506nPqghNxa9ZAUxOA3ly9kaYmbbui7ygszOLiiy82vnHZOnGNjfZOHEBQ0MDjIu7kTpyHhwd//etfCQwMJDExkfr6OtLTd+Hm5ka/fv1687YUCoVCcZq4urrSr18/Q8RVVhYTGhrK7bffzpAhQ4ym9qcyblDQwDMs4vZhMpmYPXs2AD/+uA6A8ePH4+rqygcffMCMGTO6Pd4FJ+JKjKSUJrv/lpzZZJULjsLCLBISEpg5cyaBgYF4eHg4cOIaDNEVHDyQ6uoyI0biRE6cLWPHjgVg69aPCAwMdDoQVqFQKBR9j4+PL/X1tUgpMZuLCQsLw93dnf/7v/8DOCURBxAREU5FRWFPTtUpsrJSSUhIMMqqbNv2GUOHxuLn17kzRXe4ILJTbWvChITogk134pqM7Yq+oaHBQnl5EbGxsSxatIijR48COHTivL01J27gwIGkp+cbdYNO5MTZkpiYyOrVqykvL2fcuHE9fSsKhUKh6AV8fHywWGo69UldtGgRra2t/Oz/t3fn8VFWZ+P/PycLWUkgG4QlASRhEwgQlrSCIgYVUEsVlfJ6hJbWBZfWpc/Tlv5q9dHWp27It1iLFaGWKuKuqCCCssguAQqEBDCSQEhCErLvOb8/7rnvzGRmspGVXO/Xi1dm7m3ODJPMNdc55zo33dSi6w4cOJBjx75vzaY2WWVlBYcOfcWiRXcxcKAxO7awMI9Zs2a2+JrdIhN3+vRR6/bixeDjA/aZOB8fY7toH5mZpwFjqZShQ4eSmJgI4HZMHBhB3MWLzc/EKaVYsmQJf/jDH5g9e3arPg8hhBBtIzg4iNLSQqfCvh4eHvzXf/1XiyepRUVFOdRnawqtNWvWPMmZMydc7s/M/I41a56kpqa6wescPryNsrISZs+eTf/+/a2eoUtJMHSLIM5+um5iIjz6KPj5GZm43r0rePRRY7toH2Z5kaFDhzpsdzc7FeqCOPOXryWDWoUQQnQNQUFBlJUVtXiJLXcGDhxIUdFFa3x1U6Snn2D16sd5+umfuAzUtm5dx+rVj7Nx4z8bvM7u3Rvw9fVl+vTp+Pj4EBFhdAHGx8c370nY6TZBnLkQOhgB29SpRibuD3+okACunZlB3BVXXOGw3czEmWVHKivLHIK4qqpKDh/eRr9+/QkLC2vHFgshhGhPQUGuM3GXyuzGNAvtNsXJk0kApKR8y9tvv+C035wosWbN49Zyka7s2bOB6dOnW591UVFGW8zapi3RLYI4gKqqCpf3KysrXB0u2tDZsycJCwtzSoe7ysSZExvMWnEHD25l/PiWv+GFEEJ0fuaYODOIa+lEhvrMtbgbCuI2bHiNf/7zf637qakH8fb25vrrr+fNN//sdHxubia+vr5kZ2fw0Ud/d9q/bt1zLFkymYyMkw7DekaOHMnYsWNbPKkBunEQZ0bL9beLtnfkyDaX3zwaGhMXEREBQFlZsVXMVwghxOWprjvVWCe1tWp81mXiXI+LS0s7xrJl97Fhw0pr26lTSVx55ZX84Ac/oKjoolOXal5eJpMnT2bo0BiOHNnudM3PPnuN/Pwz/OhHP+L222+3ti9fvpwvLrFIbbcJ4uqnOM3gTYK4hh08uJXi4gLrfnFxAUeO7Gzx9c6dO8333ye7nGTQUJ04MxMHl5Z6FkII0fkFBQVRUlJIbm5mi9ZJdadfv354eHi4zMTV1tby3HM/p7q6ioKCXMAYjnXy5EHi4uKcVpIw5eVlEhkZyZAhg10Gh7m5mdx22228//77Dp9lQUFBDvdbotsGcZKJa9zhw9t55JFr+fzz1da2jz/+Ow8/fHWzBoXa2717A4DLIK5Hjx54enq6nZ1qkkycEEJc3oKCgqisrODUqSQGDYputet6e3vTt2+ky2Dr+PE9HD26ixEjRlBRUUZFRRm5uZnk5+cwbtw4u5Uk6j7/tNa2FSUiiYqKIivLsXxJRUUZxcUFrdYdXF83CuJkTFxzaK1ZufJ/ACgsvGBtz8nJoKamhqys5k3RNu3Z8ylDh8Y4zUwFoxyIv78/FRWlaK2pqHAeExcUFMTgwYNb9NhCCCG6BjNgOnXqMHPmzGnVa0dHR7nMxKWmHgRg3rx5ABQW5lqTGuLi4lwGcaWlRZSXlxIZGUl0dDT5+dlUVJRZ+81JD20VxHWLYr/gvju1oZkk3VFtbS1vv/08339/nKNHdwE4dKcWFOQAxniCwYNHNfm6SUlfs3v3JyQlbWXJkvvcHufvH0BZWYn1/2Nm4vz9/fH39ycuLk5WXRBCiMucfUH3uXPntuq1Bw4cyK5dB522nzx5kNDQUMaOHQtAQcEFTp40jhs7dizFxcVA3Zqu4BikmVUwsrPTGTgwFqDVJ2bU122DOOlOde3w4e38/e//ja+vLzNmXMfx48cpKakL4i5eNIO4pk/PBnjppSWkp58gODiYn/zkJ26PMzNx5v+PGcQBzJkzh6lTpzbrcYUQQnQ9ZhA3atSVxMbGtuq1Bw4cyIcffoTW2iEpcOpUEnFxcYSGhgJQUJDLmTMnGDBgIEFBQS7HxJl17CIjI/HyMkKq7OwzVhAnmbhW4q7ESGNBXHHxRQIDW1YZuivavv09fH19ycnJITAwkNGjxzh86zAzcTk5roO4rVvfplevcMaNm25tO38+jbS0Y7zwwgs8/PDDDT5+QEAA5eUlLoO4devWtfh5CSGE6DrMrsvbbru11a8dFRVFRUU5BQUX6NXLGKpTU1PN6dNHmDPnQSuIKyzMJTf3HAMHDnBok30QZx+kmRUWzp+vGxdnH+S1hW40Jq75mbiTJ5O45ZZQjh3b3aZt6yxqa2vZseM9rr/+egIDAwHo1SvYIRNnBnHuxsStXv0469c7FkPcvftTAGbNmtVoGwIC/CkvL7XGFNgHcUIIIbqHsWPHMn36dBYtWtTq146ONiZKpKenWNvOnEmmsrLCIRNXWJhLXl4m/fr1A+qCOHMNb3DsLu3fv79t5mvd52NubiZeXl5tVqC+2wZxTcnEnT//PbW1tWze/O82bVtnceLEfrKzM7j11rpvPsHBdUGc1pqLF41JDu4ycZWVpU4zV/fs2cAVV1zRpJR4/UycObFBCCFE9xEeHs6WLVsYNGhQq1/7hz/8IUop9u/fZG0zJzCMGzfOKRNnZtHM7lRzDW8wgjQfHx969eqFt7c3kZH9HGao5uZmEhHRBw+Ptgm3un0Q19DsVLPUxY4d7zks23W52rHjfby8vBxmAhm1eowgrqSkgOrqKsB9ocTy8lKHbynl5aUcPLiF2bNnN2lCgjEmznV3qhBCCHGpwsLCmDJlCnv3fmptS009iK+vL7GxsfTo0YPAwEBycjIoKrrYSCbOsY6dMfP1jMP+fv3apisVulEQVz/jVlHReHeqGcTl5JzlxIn9bde4TiIt7SgjR45yqIwdHBxsjYkzJzVERkaSk5OB1trpGvWDuNTUb6moKCexiQvUGpk41xMbhBBCiNYwe/ZskpP3W92hx4/vZuzYsdbkhJCQUL777j8AVhDXo0cPevTo4TQmzj5Ii46OdsjEmYWA20q3CeLsM3G1tbVWRqkpQRzAtm3vtl3jOglX3xiCg4OtEiNmEDd+/HgqKyus+yajtluZQ6rZrHrdv3//JrXB7E6VMXFCCCHaillwfs+ezygszOPYsd3MnDnT2h8WFsp33x0BHCclBAb2dJqdar8/KsqoQWf23uXmZtK3b982ex7dMoizD9waCuLKyoyaMJMnT3a5Hlpb+ve/n+HFF5e062Pm5Z13erMFBQVRVVVJZWU5Fy9mA0YQB85dqlVVFWitHd7gxcX5AE6L3btTv8SIjIkTQgjR2saOHUu/fv3Yvv099u3bSG1trcNKQmFhYVZCwszEgfGZaF+xoX4QFx0dTXV1FZmZp6mpqebixZzul4lTSj2rlEpWSh1WSr2vlOplt++3SqmTSqkTSqnrm3pNd4GbuzFxX3wBb71VAnhx5MgAsrMLXB7XVvbu/ZzNm99ot7F4tbW15OVlOQVxwcHBgDGQ08y8TZgwAXCuFWeueVpeXkpNTQ1glGiBpgdxAQFGsV/pThVCCNFWlFL8/Oc/Z9euT1i37lnCwsKIj4+39puTG8AxiOvZsy4TV1ZWQmFhPgMGDLD233jjjXh7e/Pmm38hLy8LrXX3C+KAL4ArtdZjgBTgtwBKqZHAncAo4AbgZaWUZ1MuaJ+Jc5eVsx78C3j+eSgtLQECKS0NIienkC++aPHzabaCghxKS4s5d+5UuzxeUVE+1dVVTm+2uiCuwKE7FZzLjFRUlFq3zSxmUVE+SinrOo3x9/enqqrSOl+COCGEEG3h0UcfJSwsjNTUg9x44414etaFE2YQ5+Pj4zBOPCioLogzqzQMHDjQ2j9o0CDuvfdePv98Ffv2bQTarkYcdNIgTmu9SWtdbbu7GzDD3FuAt7TWFVrr74CTwKSmXNMxiGu4O/W116CiAqAECACCgQJee625z6TlzHps5rTntmYO7nSfiSugoCCHgIAABgwYYCsI7JiJs18vzkw3FxdfJCgoqMnTqwMCAgAoKsoDJIgTQgjRNoKCgli6dCmA0/qsZhDXt2+kQ2WFoKAga/Ke2RsVFRXlcO7vf/97/Pz8ePbZxQAOmbrW1hVWbPgZYJbq748R1JkybNucKKXuBu623W6gO9V57dSsLPNWMUYQFwQUkZVVS3vEvbW1tdaEgNTUg1xzzbw2f0yzqrSrMXFgrJ968WIO4eERKKXo06cv+fnZDsea3alQV9G6qCifXr1601RmxevCQuP5y5g4IYQQbeWBBx4gOjqam2++2WG7GcT179/PYbvRnXoaqAvi7DNxABEREWzfvp0dO3bQq1cvq/eqLXRYEKeU2gy4mrKxVGv9oe2YpUA1sNY8zcXxznUuAK31SmAlgJeXl25Od2qfPmYgZ3SnGpk4CA8vsm63paKiPGss3KlTnSMTV1pqjImLiDCWKImICLcmOpjsu1PNIK6k5GKTx8NBXSbODGIlEyeEEKKteHl5MXfuXKftZhBXvyu0Z8+edpm4MyilXFZfiIuLIy4urg1a7KjDgjit9XUN7VdKLQTmADN0XUGyDMA+5B0AnGvssTw8PFwGbvUzdKbFi40xcRUVZneqkY26445C2iOIM8eeBQQEcPLkwTZ/PGh6d2psrPGtJCIigpQUx5fevjvVfJMXF18kNLT5mbi8vEyUUhLECSGEaHdmEGc/qQEcJzZkZ6fTp09fevTo0e7tM3XKMXFKqRuA/wFu1lqX2u36CLhTKeWjlBoMxAB7m3A9lxMbjPIZzkFcYiI8+ih4eRndqWFhRiAzfnz7zFA1g7hrrrmG3NzzVoDVFBkZqdaM0ObIyzuPv7+/VZHaZN+dWlCQQ3i4mYmLsMbtmewzcebU7OLi/BZl4o4e3UVs7DC8vb2b/VyEEEKIS+EuiDNKjBRTW1tLdvYZoqOjXJ3ebjplEAf8FegJfKGUSlJKvQKgtT4KvA0cAz4H7tda1zR2MSMT5zwmLjg42G2duMREGDCghFtvDeBf/3JeL60tmd2U5ioHS5ZM5sUX72v0vNraWu6/fwr/+tfTzX7MvLzzDkuHmOrWijPHxIWzdi28+2442dnZ3HGHtmbtuhoTV1x80WFmT2PMTFx+fhbx8ROa/TyEEEKISxUdHY2Pjw+jRo1y2N6zZ0+01pSXl5CTk+40Hq69dcqJDVrroQ3sexpoVpRidJs6z04NCgoiO9t91qq8vITAwEArkLEv8NeWzEzcLbfcQkpKCl9//TUbN67ml79c0eAsz8zM7ygszCMn52yzHzM3N5PISOchit7e3vj7+3P69GEqKyt4+eUhlJQARACVZGcX8fzzxutTU+PcnWpMbGh+Jg5wqNkjhBBCtJfw8HAyMzOdPr/M3qrS0iKys9MZOHBWRzTP0lkzca2q/pi4xrpTTWVlJQQEBFjjwszlp9qaGcT179+fFStW8NBDD1FRUe520XmTuUSIWZ6jOfLznVdrMPXsGcT+/dsAKCkZZ9sabvuZTUWFWZbFMRNXXV1FWVlJszJx9kGcWVRYCCGEaG+9e/d26p0yg7isrO8pLy91Ki/S3rpFEGeMiXPdnepuxQYwCtYGBAS0eyauoCCHXr16WePBhg8fDsCZMycaPO/UqcNA3VJX9aWnpzB//mCXmTpXS26ZgoODKS3NwXi7jLZtjbD9NLp+s7LqB3GF1ti8F17ohYcHhIUZ/zw8YNAgWLsWJ2Z3qlKKcePGOR8ghBBCdBAzHkhLOwo4lxdpb90iiPPw8KjXnWrcbmhMXE1NDZWVFQQGBjrM0GwPFy/mEBYWbt0fNmwYAOnpDQdxp08bQZy7TNypU4c4fz7NytiZKisrKCzMc1tVulcvc0buMMDfdtsM4oysYZ8+dbNTzdk7GzcaQVx+fm+0htxc45/W8P33cPfdzoGcmYkbNmw4gYGBDT5fIYQQoj2ZmTgziJNMXDuoPzu1fiauroJJnfLyEsAIKgICAlBKtePEhrp6bGDMBA0ODubMmeQGzzODs8JC10GcGYRevJhDZWUFa9Y8QVlZiTWRwl0mzvzmAfY1b+q6U318jLIs5eWleHl50bt3CKWlRbz9tpkRdD0mrrQUbMWyLWYmbuJEGQ8nhBCic6kfxEkmrh0YmTjn7lQzOKmurnI6xz6I8/DwsE0rbr/uVLOUBxhB6LBhw8jIcJ+JKy8vJSMjlR49elBUlG8VC7ZnH8QdObKd1av/yK5dn3D+fBrgfmkQMxPp7W1XyrjsAAAgAElEQVTfvWm0z8cnm0cfNWbzVlSUWmVKysqKyMszJ424n9hwpt4wPz8/P2655Rbmz5/v9hwhhBCiI5hxw8GDW+nffwARERGNnNG2uk0Q525ig/19e+YC7GaXXs+eQe3WnVo/iAOjS7Wh7tS0tKNorZk8eTJaa5dtNSdmFBTkWLXn0tNPWNc1u23rM4O4Rx6JIzoalILoaF/8/IKYMycHWyUUKirK8PPzJzg4iJKSQoKDzUyc+4kN9TPRSik++OADbrzxRrfnCCGEEB3BzMTV1FTzxBN/bPK64G2lWwRx7rpTzSDO1bg4+0wcGIFMe3Sn1tbWWvXY7A0fPpycnLNWcFlfSsq3gFEgGFx3qdpn4nJzjbVSzSDOx8fHbd+++To9+mgcaWlQWwtpaRAZGe6wfmpFRSl+fn5WJi4hoeFMnL8/PN38knZCCCFEhzCDuOHDh7Nw4cIObk0nrRPX2jw8PCgvd8zE9ejRw1rSyVUQV1ZWP4hrn0xccfFFampqXGbiwJhhGhvruJhuaWkR//7304wcOdKqrWZMbrjC4Tj7IC4gwMiuZWScoLS0kKFDY/D09HTZpttvvx0/Pz+nNvXp47hqQ3m5fXfqGQYONDJxAwf2JiMDQkKM4/LyjAzc00/DggVNfWWEEEKIjuXn58evfvUrbrvtNry8Oj6E6vgWtIP6a6RWVlbg4+ODj4+Pdb8+M+NlBnFBQUHk5eW2eVvNGnH1+9ntZ6jWD+L+8Y/fkZ2dwfvv77QmaRQVOZcZMYO4goIc/PwCreuVlhYyadIYt21KSEggISHBaXtERAT/+c931v3KyjL8/f1t4weLKC6+SI8ePfj+e1/qldoRQgghuhylFC+++GJHN8PSLbpTPTw8qKgotwIcIxNXF8Q11J1qjokzaqW1fXdqQcEFAMLCwhy279kzGICnnkrjzjuxlrqqrq7io49e4Wc/+xkJCQlWYd36ZUa++AL27DGCuOTkbE6eNMbElZYWk56eatWia47w8HBrZiuYmTijO7WkpNC2WoNzsUQhhBBCXLpuk4kDqKqqpEcPH6qqKvD19W1SEGefiWuP7lQz+DIX3wWjltpDDwVgTBDIICsLnn/e2Dd69FlqaqqtTFmIrc/SfkzcF18Yx1dVGe2vqcnhzBkfAgJ6U1JiZOzcTWpoSEREBAUFF6itrbUFyqX4+4faulOLm73klhBCCCGarttk4qAuWKuqcuxObe2JDdnZ6Xz11foGj/nmm4+ZMyeY3/52NocPb7e2FxYaXbZmMAZGLbXSUoCBQAaAtdRVdnY6UFerxlUmzlgSC8AMQgvR+gy1tdOsY1oaxFVXV1tdt5WVZdbEhtraWnJzzxES0vQlt4QQQgjRdN0qiDNnqFZWluPr62tNbGhoTJzZnRoUFER5eanLmnL1ffzx33niidvdBn3FxRd58cV7CA8P4dixHfz733+29pkZNPtMXF0ttQFAurU9K8s5iOvRoweBgYEOmbisLPNWAXXJ12LKyibYrZDQ/CCuT58+AFa5EnNigzmb9fjx3S26rhBCCCEa1y2COLM71QzijO7UpmXizBUEzFpppaVFjT6euWZoRkaKy/0rV/6G/Pxs3n33XSZNmmQdD0YGzdPT026VBPtaagMwM3FgLHWVnW1EePZVo3v3DnHIxBmxlsYI4gZb20NCIomNjSUioo/1/JrDXKYrL88oV2Jf7BeM1+6pp55q9nWFEEII0bhuEcTV706trCxvtDu1rKwEX19fq+yGGVQ1ZVycGei5W7B++/Z3mT9/PuPHj7d109Zds7Awz2kywNNPGzXVjO7UHKDcWuoqOzud3r17O6wzGhLiGMQtXgw9epQDVcBQa/tPf9qXu+66i8WLf9boc3KlLogzMnFGsd+6UiT/93//53YVCCGEEEJcmm41scE+ExcU1PjEBn//AOt+XRDX+Lg4cxarqxUWSkoKuXjxAqNHjwZwEcTlOoyHg7paar/85QBycyE09Cz33HMFiYmwdesZBgxwXLstNDSE7Oy6IC4xEYqLC1m+HCAG+AyAO+/sS3z8nEafjztmEGcWDja7U2fMmMG2bdu46qqrWnxtIYQQQjSsW2Xi7IM4xzpxrpfdss9u1XWnNiWIMzJx9kFcZuZ3lJQUkpl5GoAhQ4ZY17UP4oqK8ggLC6W+BQvgrbeMrNbvf59hLXWVk5NOdLTjSgu9e/emuNixTlx8vPEYy5fXZeLMIKylevbsSUBAALm5mVRXV1FdXYW/vz+enp5MnTpVSosIIYQQbahbBHH1M3HmxIaGiv2Wl5dYg/6hbrZofn6W07H1mYGe/YL1Dz10Ff/4x+84d845iCstLaampgYwgrj6mTiTOe4tJ6duXFx2drrDeDizrfXrxJmBYnR0tNVF3BoL9/btG0leXiYVFWWAUc26vrVrYdAg8PAwfq5de8kPK4QQQnR73SKIa2mJkcDAuiBu+PDheHl5kZp6sNHHKyszM3Ep1NbWUlpaxIUL50hO3sO5c6eAuiDO7KY1A7+Ggrj+/fsDRvbNeJwSCgvzXAZxhYV5VnFjqAvievfuTUhIKKGhYXh7ezf6XBrTr18kubl1QZw5EcS0di3cfTd8/z1obfy8+24J5IQQQohL1a2COPtMXOMTGxy7U/38/Bg1ahQpKQcafbzS0iK8vLyoqCgjOzudrCxjBunp00fIyEghJCTEKoJrdtOaQZarMXGmwMBAevXqZWXizGCu/sL1ISEhVFVV8vOfj+WDD14GoLjYuP6OHcFcvBhObm5fh6xYS7Nlffv2tWXiSgHnIK6uxp3962NsF0IIIUTLdYsgznWJkYYnNhQV5TmtNhAfH09Kyn6HDJcrpaWFXHnllYAxLs4sA1JZWcGePZ9ZWTioC+KKiwuorq6ipKTIoUZcfQMGDLRqw5nBYf1M3OjRo/Hx8eHs2RT27fscqAsSn3wymKqqScBkKyu2ZEnLs2WRkUZ3anm5EanV706tq3FHk7YLIYQQomm6xezUukxc07pTa2pqOHfuFPPmzXbYPmHCBF577TWyss7Qt2+0y8cyuk+LmThxIklJSaSnn8DLq67b8sKFs1x77Q+t+/aZOHPlA3eZOICBAwdw6pSRiatf6Nd04403UlZWxqxZs0hLy7SuD1BeHgSsso4tLYWVK8E2JM9h+9KldTNj3YmMjKSkpMha87V+Ji4qyggK66uXPBRCCNGIqqoqMjIyKC93nownuiZfX18GDBjQ4uFN3SKIs8/ElZQUUlpabM2i9PLycprYkJOTTmVlBTExMQ7b4+PjAThxYr/bIK68vAStNTExMfTq1YvvvvsPQUGheHl54enpSUVFBVdccYV1vGMQZ0xGaCiIGzBgALt27QOMQr9KKWusXP3nHBkZyYEDR6zrG4Kcjq0fwJmaki0zZ7iaY/3qB3FPP21k9ey7VP39je1CCCGaLiMjg549ezJo0CCZ/X8Z0FqTm5tLRkYGgwcPbvwEF7pFd6r9mLi3336e6uoqbr31VgB8fHycMnEZGakAxMbGOmwfPXo0Xl5eDY6LM8uLBAUFERcXx+nTh8jK+p4BAwZateFcdaeWlBRQUGCsm9pQd+rQoUO5ePECxcUXychIISoqmh49erg8NjIykvz8LGpraykpKUCpQMDT6ThP502AkS1rbKycGcSZpVPqd6cuWGBk+qKjQSnj58qVjWf4hBBCOCovLyc0NFQCuMuEUorQ0NBLyqx2iyDOfMOfPn2Y9eufZ968eUycOBFoOIirn4nz9fVl9OjRJCfvdftY5ixTM4g7deow589/x6BB0YwbNw5wHcQVFzctE2euRXrmzAnS008wfLj7tUkjIyOprq6moOACxcUF9OoVTL1EGf7+RqbM1fZZsxofK9dYJg6MgC0tDWprjZ8SwAkhRMtIAHd5udT/z24RxHl4eODj48Mnn6ykurrSYT3PwMCeTqswZGSkEBAQ4LIY7vXXX8/Bg1v47rv/uHwsMxPXs2dP4uLiqKgoIzl5H1FRUUyZMgUPDw+GDx9uHW+fiTMXrW8oiDPPPXMmmYyMFIdr1We/okJJSQF9+wY7ZMVCQ8HPD155xfgZGuqYLfv0U9czSxcurAvkdu40HmPLlq8B+Prr3m7bI4QQQojW0y2COKUU+/btY8OGDRw9etShmzQ8PIzCwgsOx2dkpBITE+MyQn7sscfo2bMn//jH71w+lhkQBgUFWZm3mppqoqKiWLhwIUeOHKFfv37W8b6+vvTo0cMWxBndqQ0FcUOGDMHLy4ukpK2UlZVYmTlX+vbtCxgL1JeUGJk4Myv2xhtQVga5uUaWLTfXuP/GG3XZMndj4mpq6ma1PvJIKOANZAL38bvfRUsNOCGEEK1m0aJFvPPOO07br7nmGvbv3++0ff/+/Tz00EMNXjMtLc2qItGVdYsgDozxbLNmzXLqIg0PD+fixRyHbefOpTodZwoNDeV//ud/+Oabjzl+3Llb1Sz027NnT0aMGGGNVzNXShg5cqTTOUFBwdbEBk9PTys754q3tzeDBw9h165PABoM4uwzcaWlBQ7XbUr9toZmkJqzWsvKFMZ6rFOBZVIDTgghugGtNbW1ta1+3erq6ku+Rnx8PMuNxcIve90miHMnLMwxE1ddXcW5c6edJjXYu/vuuwE4cmSH0z77TJy3t7cV6dcvyGvPXD+1sDCPXr16N9pHPnz4MCtr17Qg7hzp6SccZr80pX7b0087j5WzVzerdTuwGejR4LWFEEK0nmuuucbp38svGwXeS0tLXe5fvXo1ABcuXHDa15i0tDRGjBjBkiVLGD9+POnp6WzatImEhATGjx/PvHnzKC4uBmDfvn384Ac/YOzYsUyaNImioiLKy8v56U9/yujRoxk3bhxbt24FYPXq1cybN4+bbrqJmTNnorXmgQceYOTIkcyePZvs7Gy3bVq/fj2TJk0iNjaW7du3A/DVV18xZ84cAHJyckhMTGT8+PHcc889REdHc+GC8ZlfU1PDL37xC0aNGsXMmTMpKytr0f9DR+r2QVz9TNz582nU1NS4zcSBEfiFhIRw9myq0z77MXEAcXFxQMNBXK9edZm4hrpSTWbgFhgY6NA1W5+fnx/BwcEcOrSNkpIiq0SK0R7X59hvN2eWupu9Wrc9BDOAa+jaQgghurYTJ05w1113cfDgQQICAnjqqafYvHkz3377LfHx8bzwwgtUVlZyxx138NJLL3Ho0CE2b96Mn58fK1asAODIkSO8+eabLFy40JqZuWvXLtasWcOWLVt4//33OXHiBEeOHOHVV1/lm2++cdue6upq9u7dy7Jly3jiiSec9j/xxBNce+21fPvtt8ydO5czdlmG1NRU7r//fo4ePUqvXr149913W/nVanvdok5cQ8LCwigrK6GiogwfHz/S041F6xsK4sz9GRkpTtvtZ6eCUXj3yy+/ZNCgQW6vFRwcTHZ2AVVVlYSGNh7EmZMZhg0b1mjWrm/fSA4d+gowihWbmlq/zZxJ6urYhQthzRqpASeEEB3hq6++crvP39+/wf1hYWEN7ncnOjqaKVOmALB7926OHTvGD39oFLCvrKwkISGBEydOEBkZaVWBMD8Pd+zYwYMPPggYn2PR0dGkpBifo4mJiVYSY9u2bcyfPx9PT0/69evHtdde67Y9P/7xjwHj8y0tLc1p/44dO3j//fcBuOGGG+jdu27y3eDBg61Ei7vzOzvJxIWHA1grDpw8mQTQ6IDHmJgYt5k4Ly8vazWI2267jbS0NHx9fd1ey+xO/e67Iw12j5rMY5pybL9+kVRVVeLr6+swHq859dvcHfvyy1IDTgghupOAgADrttaaxMREkpKSSEpK4tixY7z22mtorV0mGBpastL+utD00hvmZ62np6fL8XQNPaZ5bkPnd3bdPogLCwsDsLpUU1IOEBMTa31zcCc2NpasrHRrzVBTaWkhQUFBzar9EhwczNmzp8jPz3bo8nRn+PDhKKVcTpKozxwXN3bsWKdlPZpTv83dsVIDTgghuqcpU6awc+dOTp48CRjj8FJSjNJX586dY98+Y3WhoqIiqqurmTZtGmtt5QtSUlI4c+aMy2TEtGnTeOutt6ipqSEzM9MaO9cSV111FW+//TYAmzZtIj8/v8XX6oy6fRBXPxOXkrKfiRMbD6TM7lazyK2ptLSIwMCezWpDUFAQlZXGuAD7Lk93wsLC+OKLL3jggQcaPdYM4ppy3eZobCUHIYQQl7fw8HBWr17N/PnzGTNmDFOmTCE5OZkePXqwbt06HnzwQcaOHUtiYiLl5eUsWbKEmpoaRo8ezR133MHq1asdsmGmuXPnEhMTw+jRo7nvvvu4+uqrW9zGxx9/nE2bNjF+/Hg+++wzIiMjrTHrl4NuPybODOIuXswhLy+L7OyMJgU85uzVjIxUhgwZbW03M3HNYZb+8PT0ZOzYsU06Z8aMGU06zgzimpLha6q1ax3HyJkrOYBk4oQQ4nI1aNAg/vMfx0L31157rZVxszdx4kR2797ttN2cHWtv0aJFLFq0yLqvlOKvf/1ro+2xH9MXFhZmjWmzn20bHBzMxo0b8fLyYteuXWzduhUfHx+n5/LYY481+nidUbfPxJndqQUFF6w1UZsSxJmZOHNywzfffMwrr/ya0tIigoKaF+WbQdyIESNdLlt1KYYOHYpSioSEBIftl5JJa0qNOSGEEKKjnTlzhokTJzJ27FgeeughXn311Y5uUqvq9pm43r174+HhQUFBDqWlhSilrJUWGtKzZ0/69OlLRkYqeXnneeaZuygqukhoaCQTJzYtm2Yyg7imdOM210033cSxY8cclue61ExaU2rMCSGEEB0tJiaGgwcPdnQz2ky3z8R5eHgQEhLKxYs5TZ7UYIqNjeH48d383//9lLIyo8Bhbm5ms/vbzSCutcetAU5rtcKlZ9KaUmNOCCGEEG2rUwZxSqn/VUodVkolKaU2KaX62bYrpdRypdRJ2/7xrfF44eHhFBTkcPz4biZNmtjk8+Lj40lLO8bevZ/z5z//mUGDjBURmjsmLiYmBi8vryZVzG4Nl5pJc7WSg9SHE0IIIdpXpwzigGe11mO01nHAJ8AfbNtvxFioMwa4G/hbazxYREQ4hw9vJy8vq8Gigk6NfPZZTp06RUZGBo899hhz5swGaHYmLi4ujsLCQkaNGtWs81rqUjNpzakxJ4QQQoi20SmDOK11od3dAMCs1ncL8E9t2A30UkpFXurjhYWFWSVGrrvuuiaf5+npyZAhQ+jfvz8As2bNApqfiQNjiaz20hqZNKkPJ4QQQnSsThnEASilnlZKpQMLqMvE9QfS7Q7LsG1zdf7dSqn9Sqn9OTk5rg6xmGVGYmOHMXDgwBa3+ZprriEuLq5Nxra1JsmkCSGE6CoWLVrEO++80+Tt3UmHzU5VSm0G+rrYtVRr/aHWeimwVCn1W+AB4HHA1TIILtfU0FqvBFYCxMfHu193g7oyIzNnJja5/a74+fl1mVkwCxZI0CaEEKJltNZorfHwaN1cUHV1NV5e3b5wRpN12CultW5qv+W/gQ0YQVwGYJ8qGwCcu9S2mJm4xMRLC+KEEEKI9vCrX/2KpKSkVr1mXFwcy5Ytc7s/LS2NG2+8kenTp7Nr1y4++OADTpw4weOPP05FRQVXXHEFr7/+OoGBgezbt49f/vKXlJSU4OPjw5dffom3tzf33Xcf+/fvx8vLixdeeIHp06ezevVqNmzYQHl5OSUlJXz55Zc8+OCDbNmyhcGDBze4/qnpyy+/5LHHHqO6upqJEyfyt7/9jUOHDvHMM8/w3nvv8eGHH3LnnXdSUFBAbW0tI0eO5PTp06358nWITtmdqpSKsbt7M5Bsu/0RcJdtluoUoEBrnXmpjzd9+nTmzJnTrEkNQgghRHdz4sQJ7rrrLg4ePEhAQABPPfUUmzdv5ttvvyU+Pp4XXniByspK7rjjDl566SUOHTrE5s2b8fPzY8WKFQAcOXKEN998k4ULF1Jebiw5uWvXLtasWcOWLVt4//33OXHiBEeOHOHVV1/lm2++abBN5eXlLFq0iHXr1nHkyBGqq6v529/+xvjx463ese3bt3PllVeyb98+9uzZw+TJk9v2hWonnTVn+YxSahhQC3wP3Gvb/ikwCzgJlAI/bY0HGz16NB9//HFrXEoIIYRocw1lzNpSdHQ0U6ZMAWD37t0cO3aMH/7whwBUVlaSkJDAiRMniIyMZOJEo2SXOdlvx44dPPjggwAMHz6c6OhoUlKMVY8SExMJCQkBYNu2bcyfPx9PT0/69evXaILlxIkTDB482FoOc+HChaxYsYJf/epXDB06lOPHj7N3714eeeQRtm3bRk1NDVOnTm3lV6ZjdMogTmt9q5vtGri/nZsjhBBCCCAgIMC6rbUmMTGRN9980+GYw4cPo5TzEPaGukXtrwu4PN+dhq47depUPvvsM7y9vbnuuutYtGgRNTU1PPfcc02+fmfWKbtThRBCCNG5TZkyhZ07d3Ly5EkASktLSUlJYfjw4Zw7d459+/YBUFRURHV1NdOmTWOtbaHulJQUzpw5w7Bhw5yuO23aNN566y1qamrIzMxk69atDbZj+PDhpKWlWe144403uPrqq61rLVu2jISEBMLDw8nNzSU5Obnd6rK2tU6ZiRNCCCFE5xYeHs7q1auZP38+FRUVADz11FPExsaybt06HnzwQcrKyvDz82Pz5s0sWbKEe++9l9GjR+Pl5cXq1avx8fFxuu7cuXPZsmULo0ePJjY21grI3PH19eX1119n3rx51sSGe+81RmFNnjyZrKwspk2bBsCYMWOIiIhoVqavM1NNmfXR1cXHx+v9+/d3dDO6jLVrjXVUz5wxVnF4+mkpRyKEEB3t+PHjjBgxoqObIVqZq/9XpdQBrXV8Y+dKJk44WLsW7r4bSkuN+99/b9wHCeSEEEKIzkTGxAkHS5fWBXCm0lJjuxBCCCE6DwnihIMzZ5q3XQghhBAdQ4I44SAqqnnbhRBCCNExJIgTDp5+Gvz9Hbf5+xvbhRBCCNF5SBAnHCxYACtXQnQ0KGX8XLlSJjUIIYQQnY0EccLJggWQlga1tcZPCeCEEEKkp6czffp0RowYwahRo3jppZesfXl5eSQmJhITE0NiYiL5+fkAJCcnk5CQgI+Pj9MqCYMGDWL06NHExcURH++6msaiRYt455132uT5BAYGtsoxHUmCOCGEEOIytHYtDBoEHh7GT9tiCS3m5eXF888/z/Hjx9m9ezcrVqzg2LFjADzzzDPMmDGD1NRUZsyYwTPPPANASEgIy5cv57HHHnN5za1bt5KUlMSl1HKtrq5u8bldnQRxQgghxGXGrPn5/fegdV3Nz0sJ5CIjIxk/fjwAPXv2ZMSIEZw9exaADz/8kIULFwLGAvQffPABABEREUycOBFvb+8WP+7mzZuZOnUqsbGxfPLJJwCsXr2aefPmcdNNNzFz5kwAnn32WSZOnMiYMWN4/PHHrfN/9KMfMWHCBEaNGsXKlSudrn/hwgUSEhLYsGGD2zZorfn1r3/NlVdeyejRo1m3bh0AS5Ys4aOPPgKMlSZ+9rOfAfDaa6/x+9//vsXPuakkiBMOWvubmxBCiPbX1jU/09LSOHjwIJMnTwYgKyuLyMhIwAj2srOzG72GUoqZM2cyYcIEl8GV/WN9/fXXbNiwgXvvvZfy8nIAdu3axZo1a9iyZQubNm0iNTWVvXv3kpSUxIEDB9i2bRsAq1at4sCBA+zfv5/ly5eTm5trXTsrK4vZs2fz5JNPMnv2bLdteO+990hKSuLQoUNs3ryZX//612RmZjJt2jS2b98OwNmzZ63M5I4dO5g6dWqjr8GlkhUbhEVWaxBCiMtDW9b8LC4u5tZbb2XZsmUEBQW1+Do7d+6kX79+ZGdnk5iYyPDhw601Tu3dfvvteHh4EBMTw5AhQ0hOTgYgMTGRkJAQADZt2sSmTZsYN26c1cbU1FSmTZvG8uXLef/99wFjXF9qaiqhoaFUVVUxY8YMVqxY0ej6rDt27GD+/Pl4enrSp08frr76avbt28fUqVNZtmwZx44dY+TIkeTn55OZmcmuXbtYvnx5i1+bppJMnLDIag1CCHF5aKuan1VVVdx6660sWLCAH//4x9b2Pn36kJmZCUBmZiYRERGNXqtfv36A0eU6d+5c9u7d6/K4+ovVm/cDAgKsbVprfvvb35KUlERSUhInT55k8eLFfPXVV2zevJldu3Zx6NAhxo0bZ2XyvLy8mDBhAhs3bmy0re7Wme/fvz/5+fl8/vnnTJs2jalTp/L2228TGBhIz549G73upZIgTlhktQYhhLg8tEXNT601ixcvZsSIETzyyCMO+26++WbWrFkDwJo1a7jlllsavFZJSQlFRUXW7U2bNnHllVe6PHb9+vXU1tZy6tQpTp8+zbBhw5yOuf7661m1ahXFxcWA0bWZnZ1NQUEBvXv3xt/fn+TkZHbv3m2do5Ri1apVJCcnWxMx3Jk2bRrr1q2jpqaGnJwctm3bxqRJkwBISEhg2bJlVhD33HPPtUtXKkh3qrATFWV0obraLoQQouswh8AsXWp8EY+KMgK4Sxkas3PnTt544w2rLAjAn/70J2bNmsVvfvMbbr/9dl577TWioqJYv349AOfPnyc+Pp7CwkI8PDysrscLFy4wd+5cwJhd+pOf/IQbbrjB5eMOGzaMq6++mqysLF555RV8fX2djpk5cybHjx8nISEBMEqD/Otf/+KGG27glVdeYcyYMQwbNowpU6Y4nOfp6clbb73FTTfdRFBQEEuWLHHZhrlz57Jr1y7Gjh2LUoq//OUv9O3bF4CpU6eyadMmhg4dSnR0NHl5ee0WxCl3KcLLSXx8vL6U6cvdRf0xcWB8c5Niv0II0fGOHz/OiBEjOroZopW5+n9VSh3QWrsunmdHulOFRVZrEEIIIboO6U4VDhYskKBNCCGE6AokEyeEEDUUY5AAABJqSURBVEII0QVJECeEEEII0QVJECeEEEII0QVJECeEEEII0QVJECeEEEKIRqWnpzN9+nRGjBjBqFGjeOmll6x9eXl5JCYmEhMTQ2JiIvn5+QAkJyeTkJCAj48Pzz33nMP1Bg0aZNWci493XU1j0aJFvPPOO23yfAIDAxvcn5aW5rYA8R/+8Ac2b97c4Pl//OMfnZ5za5MgTgghhLgcrV0LgwaBh4fxc+3aS7qcl5cXzz//PMePH2f37t2sWLHCWvD9mWeeYcaMGaSmpjJjxgxrBYSQkBCWL1/OY4895vKaW7duJSkpiUup5VpdXd3ic1vqySef5Lrrrmv3x61PgjghhBDicmNWb//+e9Da+Hn33ZcUyEVGRjJ+/HgAevbsyYgRIzh79iwAH374IQsXLgRg4cKFfPDBB4CxLurEiRPx9vZu8eNu3ryZqVOnEhsbyyeffALA6tWrmTdvHjfddBMzZ84E4Nlnn2XixImMGTOGxx9/3Dr/Rz/6ERMmTGDUqFGsXLnS6foXLlwgISGBDRs2OO2rqanhF7/4BaNGjWLmzJmUlZUBjhnCTz/9lOHDh3PVVVfx0EMPMWfOHOv8Y8eOcc011zBkyBCWL1/e4tfAHQnihBBCiMvN0qWOy++AcX/p0la5fFpaGgcPHmTy5MkAZGVlERkZCRjBXnZ2dqPXUEoxc+ZMJkyY4DK4sn+sr7/+mg0bNnDvvfdaC9jv2rWLNWvWsGXLFjZt2kRqaip79+4lKSmJAwcOsG3bNgBWrVrFgQMH2L9/P8uXLyc3N9e6dlZWFrNnz+bJJ59k9uzZTo+dmprK/fffz9GjR+nVqxfvvvuuw/7y8nLuuecePvvsM3bs2EFOTo7D/uTkZDZu3MjevXt54oknqKqqavR1aQ4J4oQQQojLzZkzzdveDMXFxdx6660sW7aMoKCgFl9n586dfPvtt3z22WesWLHCCrrqu/322/Hw8CAmJoYhQ4aQnJwMQGJiIiEhIQBs2rSJTZs2MW7cOMaPH09ycjKpqakALF++nLFjxzJlyhTS09Ot7VVVVcyYMYO//OUvJCYmunzswYMHW+vETpgwgbS0NIf9ycnJDBkyhMGDBwMwf/58h/2zZ8/Gx8eHsLAwIiIiyMrKasEr5Z4EcUIIIcTlJiqqedubqKqqiltvvZUFCxbw4x//2Nrep08fMjMzAcjMzCQiIqLRa/Xr1w8wulznzp3L3r17XR6nlHJ5PyAgwNqmtea3v/0tSUlJJCUlcfLkSRYvXsxXX33F5s2b2bVrF4cOHWLcuHFWJs/Ly4sJEyawceNGt2308fGxbnt6ejqNv2ts/fnGzr9UEsQJIYQQl5unnwZ/f8dt/v7G9hbSWrN48WJGjBjBI4884rDv5ptvZs2aNQCsWbOGW265pcFrlZSUUFRUZN3etGmT25mg69evp7a2llOnTnH69GmGDRvmdMz111/PqlWrKC4uBuDs2bNkZ2dTUFBA79698ff3Jzk5md27d1vnKKVYtWoVycnJ1kSM5ho+fDinT5+2MnTr1q1r0XVaStZOFUIIIS435iLYS5caXahRUUYAdwmLY+/cuZM33njDKgsC8Kc//YlZs2bxm9/8httvv53XXnuNqKgo1q9fD8D58+eJj4+nsLAQDw8Pli1bxrFjx7hw4QJz584FjNmlP/nJT7jhhhtcPu6wYcO4+uqrycrK4pVXXsHX19fpmJkzZ3L8+HESEhIAo3zIv/71L2644QZeeeUVxowZw7Bhw5gyZYrDeZ6enrz11lvcdNNNBAUFsWTJkma9Jn5+frz88svccMMNhIWFMWnSpGadf6lUY6nAy0F8fLy+lOnLQgghREc7fvw4I0aM6OhmiHqKi4sJDAxEa839999PTEwMDz/8cJPPd/X/qpQ6oLV2XTzPjnSnCiGEEEK00KuvvkpcXByjRo2ioKCAe+65p90eW7pThRBCCCFa6OGHH25W5q01SSZOCCGE6CK6wxCo7uRS/z8liBNCCCG6AF9fX3JzcyWQu0xorcnNzXU5UaOppDtVCCGE6AIGDBhARkaG06oAouvy9fVlwIABLT5fgjghhBCiC/D29rZWBhACOnl3qlLqMaWUVkqF2e4rpdRypdRJpdRhpdT4jm6jEEIIIURH6LRBnFJqIJAI2C/0diMQY/t3N/C3DmiaEEIIIUSH67RBHPAi8N+A/QjOW4B/asNuoJdSKrJDWieEEEII0YE65Zg4pdTNwFmt9aF6C9/2B9Lt7mfYtmW6uMbdGNk6gAql1H/aqLntIQy40NGNaCFpe8fpyu3vym2Hrt1+aXvH6crt78pth87X/uimHNRhQZxSajPQ18WupcDvgJmuTnOxzeVca631SmCl7bH2N2X5is6qK7df2t5xunL7u3LboWu3X9recbpy+7ty26Hrtr/Dgjit9XWutiulRgODATMLNwD4Vik1CSPzNtDu8AHAuTZuqhBCCCFEp9PpxsRprY9orSO01oO01oMwArfxWuvzwEfAXbZZqlOAAq21U1eqEEIIIcTlrlOOiWvAp8As4CRQCvy0ieetbLMWtY+u3H5pe8fpyu3vym2Hrt1+aXvH6crt78pthy7afiXLdwghhBBCdD2drjtVCCGEEEI0ToI4IYQQQogu6LIK4pRSxR3dhpZQStUopZLs/g1q4NhrlFKftF/rGmZbFu0Nu/teSqmcztTGxiil5tqex/CObktTXA6vuamr/s7aa+w5KKW+Ukp1mtIFXe39Xp9SaqlS6qht6cUkpdTkjm5TcyilBiilPlRKpSqlTimlXlJK9Wjg+F8ppfzbs40u2qCVUs/b3X9MKfXHDmxSs9h9xh5VSh1SSj2ilLos4p/L4klcBsq01nF2/9I6ukHNUAJcqZTys91PBM425wJKqY6eYDMf2AHc2ZyTlFKebdOcRl3yay66tRa93zsDpVQCMAejYsEY4DocC8B3asqom/Ue8IHWOgaIBQKBpxs47VdAhwZxQAXwY3Md8y7I/IwdhfH3chbweAe3qVVcdkGcUipQKfWlUupbpdQRpdQttu2DlFLHlVKv2qLxTXYfgp2OUspTKfWsUmqf7RvnPXa7g5RS7yuljimlXukE3yg+A2bbbs8H3jR3KKUmKaW+UUodtP0cZtu+SCm1Xin1MbCp/ZtstS8Q+CGwGNuHmi3buc3Va6yUKlZKPamU2gMkdFS7adlrvl0pFWd33E6l1Jh2bbUL9bPLSqm/KqUW2W6nKaWesPt97pTZo4aeQ2fSwPvd3es/SymVrJTaoZRa3gmyvZHABa11BYDW+oLW+pxSaoJS6mul1AGl1EZlW47RlgVdZvs9+I8y6o12pGuBcq316wBa6xrgYeBnSqkApdRztvf5YaXUg0qph4B+wFal1NYObHc1xuzNh+vvUEpF2z5zD9t+Rimlgm2/u+bfTX+lVLpSyru9G16f1jobYzWnB5TB7WetUuq/bf8fh5RSz3Rcq93r6A//tlAOzNVajwemA8/bvv0AxAArbNH4ReDWDmpjfX6qriv1fdu2xRh18CYCE4FfKKUG2/ZNAh4FRgNXAD9u9xY7egu4UynlC4wB9tjtSwamaa3HAX8A/mS3LwFYqLW+tt1a6uxHwOda6xQgTyk13rbd3WscAPxHaz1Za72j3VtbpyWv+T+ARQBKqVjAR2t9uN1a3HIXbL/PfwMe6+jGdHHu3u9ObO+tvwM3aq2vAsLbqY0N2QQMVEqlKKVeVkpdbQsM/h9wm9Z6ArAKx8xWgNb6B8AS276ONAo4YL9Ba10InAF+jlHofpwty7hWa70co6D9dK319PZubD0rgAVKqeB62/+Ksab5GGAtsFxrXQAcAq62HXMTsFFrXdVurW2A1vo0RvwTgZvPWqXUjRi/L5O11mOBv3RYgxtwOQZxCviTUuowsBljbdU+tn3faa2TbLcPAIPav3ku2XenzrVtm4lR2DgJ4wM6FCMIBdirtT5t+xb3JnBV+ze5ji0QGISREfq03u5gYL0y1q59EeOPmOkLrXVeuzTSvfkYARG2n/Ntt929xjXAu+3bRGctfM3XA3NsH3o/A1a3S2Mv3Xu2n53pd7arcvd+d2U4cFpr/Z3t/psNHNsutNbFwASMTEoOsA64B7gS+ML29/L3GKv5mN60nbsNoxejV7s22pHC9VKRCpgGvKK1rgboBH8bHdiCzX8CD9XblQD823b7Der+Vq4D7rDdvtN2vzMxkzvuPmuvA17XWpdC5/v/MHX0WKS2sADjG+MErXWVUioN8LXtq7A7rgbotN2pGG+wB7XWGx02KnUNzn8EOkOxv4+A54BrMH4JTP8LbNVaz1XGhI2v7PaVtFPbXFJKhWJ0b1yplNKAJ8Zr+SnuX+NyW2DXGTTrNddalyqlvgBuAW4HOstg+2ocv1D61ttv/t7W0Hn/ZjX2HDpcA+/3j3DddldrVXc42+/fV8BXSqkjwP3AUa21u+ENnenv5VHq9QAppYIwlpM8Tef4W96QZcC3wOsNHGM+h4+APyulQjAC7y1t3LYmU0oNwfh7ko37z9ob6Pz/H5dlJi4YyLYFcNOB6I5uUAttBO4zxxAopWKVUgG2fZNs6V4PjG86HdmtZ1oFPKm1PlJvezB1g+4XtWuLGncbRjdAtG2Zt4HAdxjfJDvja1xfS17zfwDLgX2d6Jvl98BIpZSPratmRkc3qAW6wnNw934H121PBoaoutnyd9DBlFLDlFIxdpvigONAuDImPaCU8lZK2Wf877Btvwqj26yg3Rrs7EvAXyl1l61NnsDzGFnxTcC9yjbRyxb8ABQBPdu/qc5sfzPexuiCNH1D3SSZBdj+VtqypnuBl4BPOsuXX6VUOPAK8FdtrHbg7rN2E8ZYRX/b9hB31+xInfVbbbPZ3vgVGH3yHyul9gNJGH+IuqJ/YHQdfWsb05eD0T8PsAt4BmO81jbgfVcXaE9a6wyMX9b6/gKsUUo9Qif6JmYzH+N1tPcucB+d8DWuryWvudb6gFKqkIa/SbcL83dWa52ulHobOAykAgc7tmVN18Weg7v3+08wPpgd2q61LlNKLQE+V0pdwPhA7miBwP+zdYlWYyzBeDfGoPvltiDUCyNjdNR2Tr5S6hsgCGMYQYfRWmul1FzgZaXU/4eRSPkU+B1GZigWOKyUqgJexRhvthL4TCmV2QnGxYERdD5gd/8hYJVS6tcYn1P2y2GuwxjGcU27tc41P1t3qTfG++YN4AXbPpeftVrrz5UxEWy/UqqSuv+nTuWyWXZLKTUWeFVr3dGzj0QXZ+uyfkxrPaej29LalFL9MLqihmutazu4LV3+d/ZyeA4NUUoFaq2LbR9uK4BUrfWLHd2uplJKfYXxu7y/o9siRFu4LLpTlVL3Ygxe/X1Ht0WIzsrWhbMHWNoJArgu/zt7OTyHJviFLYNxFKOb/u8d3B4hhJ3LJhMnhBBCCNGdXBaZOCGEEEKI7kaCOCGEEEKILkiCOCGEEEKILkiCOCGEaGfKWK9Uq667oLgQohOQIE4IIdqQMhZh/2tHt0MIcfmRIE4IIYQQoguSIE4I0S3YMmJ/U0o9r5TKU0rlKKV+aVtuaoVS6qJS6oxS6r/szhmtlNqslCqznbPatiqAuX+1UuoT23XOKqXylVKv2y3Vsxq4Grjf1n2q7ZaxAhirlNqjlCpVSu1XSo1vn1dDCHE5kCBOCNGdLMBYi3IyxhJUy4APgBQgHlgD/EMp1c8WiH0OFAOTgLnADzDWrLU3FbgSuA5jnc65wC9t+36JsYTb60Ck7V+63bl/Bn4DjAdygbW21RGEEKJRUuxXCNEt2JZg8tFamwulKyAb2KW1vtm2zRsowVhPtDfwHDBAa11k238NsBWI0VqftGXaZgCDtdbVtmNetd2/zu5x/6O1ttabtLvODVrrjbZtP8RYPHygbV1cIYRokGTihBDdyWHzhja+wWYDR+y2VQH5QAQwAjhsBnA23wC1wEi7bcfMAM7mnO38ZrXHdh7NOFcI0c1JECeE6E6q6t3XbrZ5AMp22xX77e7Ob257zGvK32UhRJPIHwshhHDtGMbEg552236A8XfzeDOuUwl4tmbDhBACJIgTQgh31mKMj/unbZbqNODvwHta65PNuE4aMEkpNUgpFaaUkr+7QohWIX9MhBDCBa11KXA9EATsBT7EmGn6s2Ze6jmMbNwxIAeIasVmCiG6MZmdKoQQQgjRBUkmTgghhBCiC5IgTgghhBCiC5IgTgghhBCiC5IgTgghhBCiC5IgTgghhBCiC5IgTgghhBCiC5IgTgghhBCiC5IgTgghhBCiC/r/AdsBrjsZuhgMAAAAAElFTkSuQmCC\n",
229 | "text/plain": [
230 | ""
231 | ]
232 | },
233 | "metadata": {},
234 | "output_type": "display_data"
235 | }
236 | ],
237 | "source": [
238 | "plt.figure(figsize=(10,7))\n",
239 | "plt.plot(np.arange(len(record_max)),record_max, '--k', label=\"record high\")\n",
240 | "plt.plot(np.arange(len(record_max)),record_min, '-k',label=\"record low\")\n",
241 | "plt.scatter(np.where(record_2015_min < record_min.values),\n",
242 | " record_2015_min[record_2015_min < record_min].values,c='b',label='2015 break low')\n",
243 | "plt.scatter(np.where(record_2015_max > record_max.values),\n",
244 | " record_2015_max[record_2015_max > record_max].values,c='r',label='2015 break high')\n",
245 | "plt.xlabel('month',size=14)\n",
246 | "plt.ylabel('temperature($^\\circ C$ )',size=14)\n",
247 | "plt.xticks(np.arange(0,365,31), ['Jan','Feb', 'Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec'])\n",
248 | "ax=plt.gca()\n",
249 | "ax.axis([0,365,-40,40])\n",
250 | "plt.gca().fill_between(np.arange(0,365), \n",
251 | " record_min, record_max, \n",
252 | " facecolor='blue', \n",
253 | " alpha=0.25)\n",
254 | "plt.title('Record temperatures for different months between 2005-2014',size=14)\n",
255 | "plt.legend(loc=0)\n",
256 | "\n",
257 | "plt.show()"
258 | ]
259 | },
260 | {
261 | "cell_type": "code",
262 | "execution_count": null,
263 | "metadata": {},
264 | "outputs": [],
265 | "source": []
266 | }
267 | ],
268 | "metadata": {
269 | "kernelspec": {
270 | "display_name": "Python 3",
271 | "language": "python",
272 | "name": "python3"
273 | },
274 | "language_info": {
275 | "codemirror_mode": {
276 | "name": "ipython",
277 | "version": 3
278 | },
279 | "file_extension": ".py",
280 | "mimetype": "text/x-python",
281 | "name": "python",
282 | "nbconvert_exporter": "python",
283 | "pygments_lexer": "ipython3",
284 | "version": "3.6.4"
285 | }
286 | },
287 | "nbformat": 4,
288 | "nbformat_minor": 1
289 | }
290 |
--------------------------------------------------------------------------------