├── .gitignore
├── CHANGELOG.md
├── LICENSE
├── Makefile
├── README.md
├── analysis
├── correlation.go
└── utils.go
├── docs
├── analysis.md
├── encoders.md
├── engine.md
├── evaluation.md
├── ideas.md
├── online.md
├── recos.md
└── textos.md
├── encoders
├── config.go
├── encoder.go
├── float_exact.go
├── float_reducer.go
├── float_reducer_test.go
├── input.go
├── scanner.go
├── string_dictionary.go
├── string_ngrams.go
├── string_split_dictionary.go
└── utils.go
├── engine
├── config.go
├── engine.go
└── train.go
├── evaluation
├── evaluation.go
├── metrics.go
└── print.go
├── examples
├── README.md
├── dictionary
│ ├── README.md
│ └── main.go
├── float-reducer
│ ├── README.md
│ └── main.go
├── ngram
│ ├── README.md
│ └── main.go
├── online-generator
│ ├── README.md
│ └── main.go
├── online-sonar
│ ├── README.md
│ └── main.go
├── sonar
│ ├── README.md
│ └── main.go
└── wine-quality
│ ├── README.md
│ └── main.go
├── learn
├── learn.go
├── samples.go
└── set.go
├── net
├── activation_func.go
├── activation_function_test.go
├── enter.go
├── layer.go
├── layer_test.go
├── network.go
├── neuron.go
├── neuron_test.go
├── synapse.go
└── type.go
├── online
├── config.go
├── online.go
└── train.go
└── persist
├── encoder.go
├── network.go
├── online.go
└── set.go
/.gitignore:
--------------------------------------------------------------------------------
1 | # Binaries for programs and plugins
2 | *.exe
3 | *.exe~
4 | *.dll
5 | *.so
6 | *.dylib
7 |
8 | # Test binary, built with `go test -c`
9 | *.test
10 |
11 | # Output of the go coverage tool, specifically when used with LiteIDE
12 | *.out
13 |
14 | # Dependency directories (remove the comment below to include it)
15 | # vendor/
16 |
17 | # specific
18 | todo
19 | *.phrase
20 | *.json
21 |
--------------------------------------------------------------------------------
/CHANGELOG.md:
--------------------------------------------------------------------------------
1 |
2 | # Change Log
3 | All notable changes to this project will be documented in this file.
4 |
5 | ## [0.3.0] 2021-06-07
6 |
7 | This version introduces a persitence layer for encoders.
8 |
9 | ### Added
10 | - Serialization for encoders
11 |
12 | ### Changed
13 | - Interface of encoders
14 | - Minor things in the library
15 |
16 | ### Fixed
17 | - Some issues with serialization of online, network
18 |
19 |
20 | ## [0.2.5] 2021-06-06
21 |
22 | With this version we introduce encoders (automatic encoders) to gopher-learn.
23 | You now can reduce large float slice inputs or encode your string input right away.
24 |
25 | ### Added
26 | - Encoders for float slices and string input.
27 | - With encoders large float input can be reduced using Spearman.
28 | - Also with encoders strings can be encoded as ngrams and dictionary (Topic modelling to come soon)
29 |
30 | ### Changed
31 | - Relocated the neural net from neural package into an own package called net
32 |
33 | ### Fixed
34 | - Nothing here
35 |
36 |
37 | ## [0.2] - 2021-05-09
38 |
39 | Introducing online learning.
40 |
41 | ### Added
42 | - Config for online learner to control learning behavior - easily inject your own config
43 | - Config for engine learner to control learning behavior - easily inject your own config
44 | - Wrote Comments to every function to make everything easier to understand
45 | - Online learner can now be serialized to disk using persist.OnlineToFile() and load using persist.OnlineFromFile()
46 |
47 | ### Changed
48 | - Refactoring of Criterion handling. It is now part of the neural package (usage e.g.: neural.Distance)
49 | - Reworked some of the examples
50 |
51 | ### Fixed
52 | - Fixed regression example, did not work correctly
53 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/Makefile:
--------------------------------------------------------------------------------
1 | test: test_neural test_persist test_learn test_engine test_evaluation
2 |
3 | test_persist:
4 | @( go test ./persist/ )
5 |
6 | test_neural:
7 | @( go test )
8 |
9 | test_learn:
10 | @( go test ./learn/ )
11 |
12 | test_engine:
13 | @( go test ./engine/ )
14 |
15 | test_engine:
16 | @( go test ./evaluation/ )
17 |
18 | goget:
19 | @( \
20 | go get github.com/breskos/gopher-learn; \
21 | go get github.com/breskos/gopher-learn/persist; \
22 | go get github.com/breskos/gopher-learn/learn; \
23 | go get github.com/breskos/gopher-learn/engine; \
24 | go get github.com/breskos/gopher-learn/evaluation; \
25 | )
26 |
27 | gogetu:
28 | @( \
29 | go get github.com/breskos/gopher-learn; \
30 | go get github.com/breskos/gopher-learn/persist; \
31 | go get github.com/breskos/gopher-learn/learn; \
32 | go get github.com/breskos/gopher-learn/engine; \
33 | go get github.com/breskos/gopher-learn/evaluation; \
34 | )
35 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # gopher-learn
2 |
3 | 
4 |
5 | ## Quickstart
6 |
7 | - See examples here: https://github.com/breskos/gopher-learn/tree/master/examples
8 |
9 | ## What is gopher-learn?
10 |
11 | - Artificial neural network written in Golang with training / testing framework
12 | - Rich measurement mechanisms to control the training
13 | - Examples for fast understanding
14 | - Can also be used for iterative online learning (using online module) for autonomous agents
15 | - Encoders can be used to encoder string data or massive float slices
16 |
17 | ## Install
18 |
19 | ```
20 | go get github.com/breskos/gopher-learn/...
21 | ```
22 |
23 | ## Examples
24 |
25 | Find the examples in the examples folder.
26 | All the data to run the examples [can be found here](https://github.com/breskos/gopher-learn-data).
27 |
28 | ## The gopher-learn engine
29 |
30 | The engine helps you with optimizing the learning process.
31 | Basically it starts with a high learning rate to make fast progress in the beginning.
32 | After some rounds of learning (epochs) the learning rate declines (decay).
33 | During the process the best network is saved.
34 | After engine finished training you receive the ready to go network.
35 |
36 | ## Modes
37 |
38 | Gopher-neural can be used to perform classification and regression. This sections helps to set up both modes. In general, you have to take care about the differences between both modes during these parts: read training data from file, start engine, use evaluation modes and perform in production.
39 |
40 | ### Classification
41 |
42 | #### Read training data from file
43 |
44 | ```go
45 | data := learn.NewSet(neural.Classification)
46 | ok, err := data.LoadFromCSV(dataFile)
47 | ```
48 |
49 | #### Start engine
50 |
51 | This uses the standard config of the engine.
52 | For finetuning use e.SetConfig() to set your own config.
53 |
54 | ```go
55 | e := engine.NewEngine(neural.Classification, []int{hiddenNeurons}, data)
56 | e.SetVerbose(true)
57 | e.Start(neural.Distance)
58 | ```
59 |
60 | #### Use evalation mode
61 |
62 | ```go
63 | evaluation.PrintSummary("name of class1")
64 | evaluation.PrintSummary("name of class2")
65 | evaluation.PrintConfusionMatrix()
66 | ```
67 |
68 | #### Perform in production
69 |
70 | ```go
71 | x := net.CalculateWinnerLabel(vector)
72 | ```
73 |
74 | ### Regression
75 |
76 | Important note: Use regression just with a target value between 0 and 1.
77 |
78 | #### Read training data from file
79 |
80 | ```go
81 | data := learn.NewSet(neural.Regression)
82 | ok, err := data.LoadFromCSV(dataFile)
83 | ```
84 |
85 | #### Start engine
86 |
87 | This uses the standard config of the engine.
88 | For finetuning use e.SetConfig() to set your own config.
89 |
90 | ```go
91 | e := engine.NewEngine(neural.Regression, []int{hiddenNeurons}, data)
92 | e.SetVerbose(true)
93 | e.Start(neural.Distance)
94 | ```
95 |
96 | #### Use evalation mode
97 |
98 | ```go
99 | evaluation.GetRegressionSummary()
100 | ```
101 |
102 | #### Perform in production
103 |
104 | ```go
105 | x := net.Calculate(vector)
106 | ```
107 |
108 | ## Criterions
109 |
110 | To let the engine decide for the best model, a few criterias were implemented. They are listed below together with a short regarding their application:
111 |
112 | - **Accuracy** - uses simple accuracy calculation to decide the best model. Not suitable with unbalanced data sets.
113 | - **BalancedAccuracy** - uses balanced accuracy. Suitable for unbalanced data sets.
114 | - **FMeasure** - uses F1 score. Suitable for unbalanced data sets.
115 | - **Simple** - uses simple correct classified divided by all classified samples. Suitable for regression with thresholding.
116 | - **Distance** - uses distance between ideal output and current output. Suitable for regression.
117 |
118 | ```go
119 | ...
120 | e := engine.NewEngine(neural.Classification, []int{100}, data)
121 | e.Start(neural.Distance, tries, epochs, trainingSplit, learningRate, decay)
122 | ...
123 | ```
124 |
125 | ## Some more basics
126 |
127 | ### Train a network using engine
128 |
129 | Using the engine makes sense for you if you want to fully use the training framework that gopher-learn offers you.
130 | With engine package the network is learned using learning rate, decay, epochs.
131 | Also in the engine you can choose between the criteria options to find the best network.
132 |
133 | ```go
134 | import (
135 | "fmt"
136 |
137 | "github.com/breskos/gopher-learn"
138 | "github.com/breskos/gopher-learn/engine"
139 | "github.com/breskos/gopher-learn/learn"
140 | "github.com/breskos/gopher-learn/persist"
141 | )
142 |
143 | const (
144 | dataFile = "data.csv"
145 | networkFile = "network.json"
146 | tries = 1
147 | epochs = 100
148 | trainingSplit = 0.7
149 | learningRate = 0.6
150 | decay = 0.005
151 | hiddenNeurons = 20
152 | )
153 |
154 | func main() {
155 | data := learn.NewSet(neural.Classification)
156 | ok, err := data.LoadFromCSV(dataFile)
157 | if !ok || nil != err {
158 | fmt.Printf("something went wrong -> %v", err)
159 | }
160 | e := engine.NewEngine(neural.Classification, []int{hiddenNeurons}, data)
161 | e.SetVerbose(true)
162 | e.SetConfig(&engine.Config{
163 | Tries: tries,
164 | Epochs: epochs,
165 | TrainingSplit: trainingSplit,
166 | LearningRate: learningRate,
167 | Decay: decay,
168 | })
169 | e.Start(neural.Distance)
170 | network, evaluation := e.GetWinner()
171 |
172 | evaluation.PrintSummary("name of class1")
173 | evaluation.PrintSummary("name of class2")
174 |
175 | err = persist.ToFile(networkFile, network)
176 | if err != nil {
177 | fmt.Printf("error while saving network: %v\n", err)
178 | }
179 | network2, err := persist.FromFile(networkFile)
180 | if err != nil {
181 | fmt.Printf("error while loading network: %v\n", err)
182 | }
183 | // check the network with the first sample
184 | w := network2.CalculateWinnerLabel(data.Samples[0].Vector)
185 | fmt.Printf("%v -> %v\n", data.Samples[0].Label, w)
186 |
187 | fmt.Println(" * Confusion Matrix *")
188 | evaluation.PrintConfusionMatrix()
189 | }
190 |
191 | ```
192 |
193 | ### Create simple network for classification
194 |
195 | ```go
196 |
197 | import "github.com/breskos/gopher-learn/net"
198 | // Network has 9 enters and 3 layers
199 | // ( 9 neurons, 9 neurons and 2 neurons).
200 | // Last layer is network output (2 neurons).
201 | // For these last neurons we need labels (like: spam, nospam, positive, negative)
202 | labels := make(map[int]string)
203 | labels[0] = "positive"
204 | labels[1] = "negative"
205 | n := net.NewNetwork(9, []int{9,9,2}, map[int])
206 | // Randomize sypaseses weights
207 | n.RandomizeSynapses()
208 |
209 | // now you can calculate on this network (of course it is not trained yet)
210 | // (for the training you can use then engine)
211 | result := n.Calculate([]float64{0,1,0,1,1,1,0,1,0})
212 |
213 | ```
214 |
--------------------------------------------------------------------------------
/analysis/correlation.go:
--------------------------------------------------------------------------------
1 | package analysis
2 |
3 | import (
4 | "math"
5 | "sort"
6 | )
7 |
8 | // Spearman returns the rank correlation coefficient between data1 and data2, and the associated p-value
9 | func Spearman(data1, data2 []float64) (rs float64, p float64) {
10 | n := len(data1)
11 | wksp1, wksp2 := make([]float64, n), make([]float64, n)
12 | copy(wksp1, data1)
13 | copy(wksp2, data2)
14 |
15 | sort.Sort(sorter{wksp1, wksp2})
16 | sf := overwrite(wksp1)
17 | sort.Sort(sorter{wksp2, wksp1})
18 | sg := overwrite(wksp2)
19 | d := 0.0
20 | for j := 0; j < n; j++ {
21 | sq := wksp1[j] - wksp2[j]
22 | d += (sq * sq)
23 | }
24 |
25 | en := float64(n)
26 | en3n := en*en*en - en
27 |
28 | fac := (1.0 - sf/en3n) * (1.0 - sg/en3n)
29 | rs = (1.0 - (6.0/en3n)*(d+(sf+sg)/12.0)) / math.Sqrt(fac)
30 |
31 | if fac = (rs + 1.0) * (1.0 - rs); fac > 0 {
32 | t := rs * math.Sqrt((en-2.0)/fac)
33 | df := en - 2.0
34 | p = betaIncomplete(df/(df+t*t), 0.5*df, 0.5)
35 | }
36 |
37 | return rs, p
38 | }
39 |
40 | func overwrite(w []float64) float64 {
41 | j, ji, jt, n := 1, 0, 0, len(w)
42 | var rank, s float64
43 | for j < n {
44 | if w[j] != w[j-1] {
45 | w[j-1] = float64(j)
46 | j++
47 | } else {
48 | for jt = j + 1; jt <= n && w[jt-1] == w[j-1]; jt++ {
49 | }
50 | rank = 0.5 * (float64(j) + float64(jt) - 1)
51 | for ji = j; ji <= (jt - 1); ji++ {
52 | w[ji-1] = rank
53 | }
54 | t := float64(jt - j)
55 | s += (t*t*t - t)
56 | j = jt
57 | }
58 | }
59 | if j == n {
60 | w[n-1] = float64(n)
61 | }
62 | return s
63 | }
64 |
65 | // betaIncomplete
66 | func betaIncomplete(x, a, b float64) float64 {
67 | if x < 0 || x > 1 {
68 | return math.NaN()
69 | }
70 | bt := 0.0
71 | if 0 < x && x < 1 {
72 | bt = math.Exp(lgamma(a+b) - lgamma(a) - lgamma(b) +
73 | a*math.Log(x) + b*math.Log(1-x))
74 | }
75 | if x < (a+1)/(a+b+2) {
76 | return bt * betaContinuedFractionComponent(x, a, b) / a
77 | } else {
78 | return 1 - bt*betaContinuedFractionComponent(1-x, b, a)/b
79 | }
80 | }
81 |
82 | func betaContinuedFractionComponent(x, a, b float64) float64 {
83 | const maxIterations = 200
84 | const epsilon = 3e-14
85 | raiseZero := func(z float64) float64 {
86 | if math.Abs(z) < math.SmallestNonzeroFloat64 {
87 | return math.SmallestNonzeroFloat64
88 | }
89 | return z
90 | }
91 | c := 1.0
92 | d := 1 / raiseZero(1-(a+b)*x/(a+1))
93 | h := d
94 | for m := 1; m <= maxIterations; m++ {
95 | mf := float64(m)
96 | numer := mf * (b - mf) * x / ((a + 2*mf - 1) * (a + 2*mf))
97 | d = 1 / raiseZero(1+numer*d)
98 | c = raiseZero(1 + numer/c)
99 | h *= d * c
100 | numer = -(a + mf) * (a + b + mf) * x / ((a + 2*mf) * (a + 2*mf + 1))
101 | d = 1 / raiseZero(1+numer*d)
102 | c = raiseZero(1 + numer/c)
103 | hfac := d * c
104 | h *= hfac
105 |
106 | if math.Abs(hfac-1) < epsilon {
107 | return h
108 | }
109 | }
110 | panic("betainc: a or b too big; failed to converge")
111 | }
112 |
113 | func lgamma(x float64) float64 {
114 | y, _ := math.Lgamma(x)
115 | return y
116 | }
117 |
--------------------------------------------------------------------------------
/analysis/utils.go:
--------------------------------------------------------------------------------
1 | package analysis
2 |
3 | type sorter struct {
4 | x []float64
5 | y []float64
6 | }
7 |
8 | func (s sorter) Len() int { return len(s.x) }
9 | func (s sorter) Less(i, j int) bool { return s.x[i] < s.x[j] }
10 | func (s sorter) Swap(i, j int) {
11 | s.x[i], s.x[j] = s.x[j], s.x[i]
12 | s.y[i], s.y[j] = s.y[j], s.y[i]
13 | }
14 |
--------------------------------------------------------------------------------
/docs/analysis.md:
--------------------------------------------------------------------------------
1 | # Analysis
2 |
3 | *State: In concept*
4 |
5 | This module acts as helper for the encoders and the for the evaluation of a data set.
6 |
7 | ## Functionalities (planned)
8 |
9 | - Correlation, *Similarities* between vectors, frames and matrixes
10 | - Statistical measures on vectors and matrixes
11 | - Information gain, entropy
12 | - Bucketization of dimensions to determine how well a feature helps with classification
--------------------------------------------------------------------------------
/docs/encoders.md:
--------------------------------------------------------------------------------
1 | # Encoders (experimental)
2 |
3 | ## Overview
4 |
5 | **Attention:** Encoders are currently not able to serialize
6 |
7 | Encoders means that the incoming data is automatically put into a data vector (processable for the neural net.)
8 | Encoding of your data into processable feature vectors is very important, because strings are initially not suitable as feature vector.
9 | This module helps to find a representation of your data set without your intervention.
10 | Although the encoders can be controlled using by Config parameters in EncoderConfig.
11 |
12 | ## EncoderConfig
13 |
14 | The encoder performs decisions during its runtime.
15 | For that reason a DefaultConfig is applied.
16 | It is possible to get the DefaultConfig, overwrite specific parameters and apply it again to the encoder.
17 |
18 | ```go
19 | e := encoders.NewEncoder("test encoder")
20 | cfg := encoders.DefaultConfig()
21 | cfg.DictionaryMaxEntries = 300
22 | e.Config = cfg
23 | ```
24 | You can find all possible options for editting the encoder config in encoders/config.go.
25 |
26 | ## Example
27 | Below you can find an example for the encoder.
28 |
29 | ```go
30 | // generating the encoder, the encoder can hold different input types and dimensions
31 | e := encoders.NewEncoder("test encoder")
32 | cfg := encoders.DefaultConfig()
33 | cfg.DictionaryMaxEntries = 300
34 | e.Config = cfg
35 | inputName := "language-classification"
36 | set := encoders.NewInput(inputName, encoders.String)
37 | for _, v := range data {
38 | // add your strings here
39 | set.AddString(someStringSample)
40 | }
41 | // scan takes the set and decides (if it is: encoders.Automatic) which encoding to apply
42 | e.Scan(inputName, set, encoders.Automatic)
43 | // transform brings the input into the choosen encoding
44 | e.Transform(inputName, set)
45 | // explain can be used to see what the encoder has done
46 | e.Explain()
47 | // using encode() and an Unified (can be string or float slice) you get the corresponding vector
48 | vector := e.Encode(inputName, encoders.Unified{String: "Hello whats up with you?", Type: encoders.String})
49 | ```
50 |
51 |
52 | ## Workflow
53 | This is the workflow. An Encoder can contain different models for encoding. In the workflow below, (namespace) means that you perform an action on a namespace within the encoder. For example, if you have a mixed input vector with strings and floats, you an put all floats together in one namespace as well as the string.
54 |
55 | 1. Collect data - The encoder needs the samples from the test or a similar set of data points to optimally fit and decide.
56 | 1. Create Encoder - create an encoder with the config (the Encoder itself can encode different inputs)
57 | 2. Scanner - (namespace) decides which Encoder to select if you choose encoders.Automatic, if not, the given Encoder will be applied
58 | 3. Transform - (namespace) After scanning the set and deciding the data is tranformed into the new vector space
59 | 4. After transformation is done, you are ready to go with your new vector representation
60 | 5. Using - Encode() (namespace) method of the encoder the encode your input.
61 |
62 | ## Encoders
63 | If you have no specific idea which encoder to use you can also run using encoders.Automatic.
64 | Using this the encoder will figure out by itself which encoding is applicable.
65 |
66 | The encoders work for different data types:
67 |
68 | 1. N-Grams (strings), encoders.StringNGrams
69 | 2. Splitted Dictionary (string), encoders.StringSplitDictionary
70 | 3. Dictionary (strings), encoders.StringDictionary
71 | 4. FloatExact (numbers), encoders.FloatExact
72 | 5. FloatReducer (numbers), encoders.FloatReducer
73 | 6. Topic Modelling coming soon (strings) - not implemented yet
74 |
75 |
76 | ## Representation (experimental)
77 |
78 | Out of the encoder activity the network generates a representation of the input space.
79 | This representation can be persisted and loaded to continue working on the network.
80 | This representation looks like this:
81 |
82 | 1. Number of feature vectors
83 | 2. Mapping of value to neuron values
84 |
--------------------------------------------------------------------------------
/docs/engine.md:
--------------------------------------------------------------------------------
1 | # Engine
2 |
3 | ## Overview
4 |
5 | Engine triggers the training of the neural network and returns the winner network.
6 | With engine you can use a training set to train the network.
7 |
8 | ## Why using an engine?
9 |
10 | If you want to successfully train a neural network you need a lot of parameters doing the right things.
11 | Engine was defined to bake your neural network based on your given data.
12 | Instead of fine tuning parameters and split data sets on your own, you can use the engine for that.
13 |
14 | See examples **sonar** and **wine-quality** for more insights on the engine.
15 |
16 | ## Config in Engine
17 | Engine comes with a default config.
18 | For classification tasks the default configuration should fit.
19 | On the other hand for regression you should set Config that fits your data set.
20 | Handling of the config is shown in the examples.
21 |
22 | ## Rough pseudo code description
23 |
24 | ```go
25 | // one epoch is defined as one forward pass and one backward pass of all the training examples
26 | for number of #try (tries)
27 | for learningRate minus decay if decay is not 0
28 | for num of #epochs the network sees the training set
29 | ```
30 |
--------------------------------------------------------------------------------
/docs/evaluation.md:
--------------------------------------------------------------------------------
1 | # Evaluation
2 |
3 | This document provides an overview of all the used meaures and the evaluation.
4 |
5 | ## Measures
6 |
--------------------------------------------------------------------------------
/docs/ideas.md:
--------------------------------------------------------------------------------
1 | # Future ideas
2 |
3 | ## Rename and batching in learning
4 |
5 | - Use term **batch** size = the number of training examples in one forward/backward pass.
6 | - Use term **iterations** = number of passes, each pass using [batch size] number of examples.
7 | - Random application of samples
8 |
--------------------------------------------------------------------------------
/docs/online.md:
--------------------------------------------------------------------------------
1 | # Online Learning
2 |
3 | ## Overview
4 |
5 | Online learning is a mechanism in gopher-learn that help to train neural networks on the fly.
6 | With the Online Learning module one can add more data points step by step and the neural net is able to adjust.
7 |
8 | ## Iterative learning
9 |
10 | The `Inject function` forwards new data points to the network.
11 | So the `Iterate function` basically uses a sampled set of know data points and iterates the training process of the neural net.
12 | After that the evaluation kicks in and looks whether the new point was sucessfully learned by the network.
13 |
14 | ## Usage
15 |
16 | ```golang
17 | // we need to define the numer of input neurons we have
18 | inputNeurons = 30
19 | // we also need to define the number of hidden neurons we need (we are using one layer here)
20 | hiddenNeurons = 100
21 | // data from file that we want to stream in
22 | // we create an empty set with correct number of inputs and classes
23 | set := learn.NewSet(neural.Classification)
24 | // we know that our data points will have 2 classes R and M
25 | set.AddClass("R")
26 | set.AddClass("M")
27 |
28 | // our onlineSet is still empty but we need to defined it
29 | o := online.NewOnline(neural.Classification, inputNeurons, []int{hiddenNeurons}, set)
30 | // we set verbose = true because we want to see the progress
31 | o.SetVerbose(true)
32 | // in case we already started with a not empty data set we run
33 | fMeasure := o.init()
34 | // this will run the previously given data to init the network
35 | // here the network tries to reach a specific overall fMeasure
36 | fmt.Printf("init fMeasure: &f\n", fMeasure)
37 | ```
38 |
39 | After this set up you can start injecting data points to the network.
40 | Dont forget to call iterate at some points to force the learning process.
41 | The `Inject()` function just runs **hot shot** which means that it tries to force the injection without retraining the network.
42 | This is kind of a tradeoff between learning speed and repeating everything in the data set.
43 |
44 | ```golang
45 | // here we get a new vector for the network
46 | vector := []float64{1.0, 3.0, 10.5, 5.0, 4.0, 3.3, 5.2}
47 | // now we apply this vector and generate a valid output vector for this class label
48 | // using: GenerateOutputVector(classLabel) function of Set
49 | sample := learn.NewClassificationSample(vector, set.GenerateOutputVector("R"), "R")
50 | // create a sample with input vector and class label
51 | // if a sample of this exists do not override it (force = false)
52 | o.Inject(sample, false)
53 | // after inserting a few points you have to iterate
54 | // Iterate returns the current fMeasure which you can use to observe the quality of the network
55 | fMeasure = o.Iterate()
56 | ```
57 |
58 |
59 | ## Config in Online
60 | Online comes with a default config.
61 | For classification tasks the default configuration should fit.
62 | On the other hand for regression you should set Config that fits your data set.
63 | Handling of the config is shown in the examples.
--------------------------------------------------------------------------------
/docs/recos.md:
--------------------------------------------------------------------------------
1 | # Recos
2 |
3 | *State: In concept*
--------------------------------------------------------------------------------
/docs/textos.md:
--------------------------------------------------------------------------------
1 | # Textos Extractor
2 |
3 | *State: In concept*
4 |
5 |
6 | This extractor can be used to extract strings and topics.
7 | In this document the nature of Textos is described.
8 |
9 | ## Analysis
10 | - Occurence of tokens
11 |
12 | ## Layers
13 |
14 | ### Structural learner
15 | The stuctural learner uses the data from the corpus to decide which part of the text is structural and which one is topic related.
16 |
17 |
18 | ### Topic Modelling
--------------------------------------------------------------------------------
/encoders/config.go:
--------------------------------------------------------------------------------
1 | package encoders
2 |
3 | type EncoderConfig struct {
4 | DelimiterToken string
5 | DimToSamplesRatio float64
6 | // Decision heuristics
7 | FloatReducerThreshold int
8 | TopicModelMinDelimiters int
9 | NGramsMaxTokens int
10 | DictionaryMaxEntries int
11 | DictionaryMaxDelimiters int
12 | SplitDictionaryMaxEntries int
13 | // Application settings
14 | FloatReducerSpearman float64
15 | FloatReducerSkewness float64
16 | FloatReducerZeroValues bool
17 | NGramMaxGrams int
18 | NGramMaxCapacity int
19 | NGramCropRatio float64
20 | DefaultStringEncoder EncoderType
21 | }
22 |
23 | func DefaultConfig() *EncoderConfig {
24 | return &EncoderConfig{
25 | DelimiterToken: " ",
26 | DimToSamplesRatio: 0.8,
27 | FloatReducerThreshold: 40,
28 | TopicModelMinDelimiters: 5,
29 | NGramsMaxTokens: 20,
30 | DictionaryMaxEntries: 50,
31 | DictionaryMaxDelimiters: 5,
32 | SplitDictionaryMaxEntries: 100,
33 | FloatReducerSpearman: 0.90,
34 | FloatReducerSkewness: 0.90,
35 | FloatReducerZeroValues: true,
36 | NGramMaxGrams: 3,
37 | NGramMaxCapacity: 100,
38 | NGramCropRatio: 0.05,
39 | DefaultStringEncoder: StringNGrams,
40 | }
41 | }
42 |
--------------------------------------------------------------------------------
/encoders/encoder.go:
--------------------------------------------------------------------------------
1 | package encoders
2 |
3 | import (
4 | "fmt"
5 | "log"
6 | )
7 |
8 | type EncoderType int
9 |
10 | const (
11 | // Automatic means that the encoder decides based on heuristics what to do
12 | Automatic EncoderType = iota
13 | // StringDictionary uses exact matches on strings as dictionary approach
14 | StringDictionary
15 | // StringSplittedDictionary
16 | StringSplitDictionary
17 | // StringTopics uses topic modelling on strings
18 | StringTopics
19 | // StringNGrams uses N-Gram modelling on strings
20 | StringNGrams
21 | // FloatExact just uses the float value it gets from input
22 | FloatExact
23 | // FloatReducer reduces a large number of floats to a smaller input space
24 | FloatReducer
25 | )
26 |
27 | func (e EncoderType) String() string {
28 | return [...]string{
29 | "Automatic",
30 | "StringDictionary",
31 | "StringSplitDictionary",
32 | "StringTopics",
33 | "StringNGrams",
34 | "FloatExact",
35 | "FloatReducer",
36 | }[e]
37 | }
38 |
39 | type EncoderModel interface {
40 | Fit(*Input, *EncoderConfig)
41 | CalculateString(string) []float64
42 | CalculateFloats([]float64) []float64
43 | GetDimensions() int
44 | GetQuality() float64
45 | Name() string
46 | ToDump() ([]byte, error)
47 | FromDump([]byte) error
48 | }
49 |
50 | type Encoder struct {
51 | // Name of the encoder
52 | Name string
53 | // Dimensions hold the EncoderModel for the dimensions
54 | Models map[string]*Dimension
55 | // Config of the Encoder
56 | Config *EncoderConfig
57 | // Scanned determines if scan was executed
58 | Scanned bool
59 | }
60 |
61 | type Dimension struct {
62 | Inputs int
63 | InputType InputType
64 | Type EncoderType
65 | Model EncoderModel
66 | }
67 |
68 | func NewEncoder(name string) *Encoder {
69 | return &Encoder{
70 | Name: name,
71 | Models: make(map[string]*Dimension),
72 | Config: DefaultConfig(),
73 | }
74 | }
75 |
76 | func (e *Encoder) Encode(name string, input Unified) []float64 {
77 | vector := make([]float64, 0)
78 | if _, ok := e.Models[name]; !ok {
79 | log.Fatalf("Model %s is not part of encoder %s", name, e.Name)
80 | }
81 | switch e.Models[name].InputType {
82 | case String:
83 | vector = append(vector, e.Models[name].Model.CalculateString(input.String)...)
84 | case Floats:
85 | vector = append(vector, e.Models[name].Model.CalculateFloats(input.Float)...)
86 | }
87 | return vector
88 | }
89 |
90 | func (e *Encoder) Scan(name string, input *Input, encoder EncoderType) {
91 | samples := len(input.Values)
92 | if samples == 0 {
93 | log.Fatalf("no data samples loaded")
94 | return
95 | }
96 | // if encoder != automatic we execute here
97 | if encoder != Automatic {
98 | e.Models[name] = &Dimension{
99 | InputType: input.Type,
100 | Type: encoder,
101 | }
102 | e.Scanned = true
103 | return
104 | }
105 | if input.Type == Floats {
106 | dims := len(input.Values[0].Float)
107 | if e.Config.FloatReducerThreshold <= dims {
108 | log.Printf("experimental (not executed): we would apply float reducer here")
109 | }
110 | e.Models[name] = &Dimension{
111 | Type: FloatExact,
112 | InputType: Floats,
113 | }
114 |
115 | } else {
116 | // input.Type == String
117 | e.Models[name] = &Dimension{
118 | InputType: String,
119 | Type: evaluateStrings(e.Config, input),
120 | }
121 | }
122 | e.Scanned = true
123 | }
124 |
125 | func (e *Encoder) Transform(name string, set *Input) {
126 | if !e.Scanned {
127 | log.Printf("no set was scanned before, running scan()")
128 | e.Scan(name, set, Automatic)
129 | }
130 | if _, ok := e.Models[name]; !ok {
131 | log.Fatalf("no model: %s available to transform", name)
132 | }
133 | model := e.Models[name]
134 | switch model.Type {
135 | case StringDictionary:
136 | model.Model = NewDictionaryModel()
137 | model.Model.Fit(set, e.Config)
138 | case StringSplitDictionary:
139 | model.Model = NewSplitDictionaryModel()
140 | model.Model.Fit(set, e.Config)
141 | case StringNGrams:
142 | model.Model = NewNGramModel()
143 | model.Model.Fit(set, e.Config)
144 | case StringTopics:
145 | log.Fatal("not implemented")
146 | case FloatReducer:
147 | model.Model = NewFloatReducerModel()
148 | model.Model.Fit(set, e.Config)
149 | case FloatExact:
150 | model.Model = NewFloatExactModel()
151 | model.Model.Fit(set, e.Config)
152 | }
153 | }
154 |
155 | // reporting of what the encoder did
156 | func (e *Encoder) Explain() {
157 | for k, v := range e.Models {
158 | fmt.Printf("[%s] => %s, %s, to: %d dimensions", k, v.InputType.String(), v.Type.String(), v.Model.GetDimensions())
159 | }
160 | }
161 |
--------------------------------------------------------------------------------
/encoders/float_exact.go:
--------------------------------------------------------------------------------
1 | package encoders
2 |
3 | import "encoding/json"
4 |
5 | type FloatExactModel struct {
6 | Dimensions int
7 | Quality float64
8 | }
9 |
10 | func NewFloatExactModel() *FloatExactModel {
11 | return &FloatExactModel{}
12 | }
13 |
14 | func (m *FloatExactModel) Fit(set *Input, config *EncoderConfig) {
15 | m.Dimensions = len(set.Values[0].Float)
16 | }
17 |
18 | func (m *FloatExactModel) CalculateString(s string) []float64 {
19 | return make([]float64, m.Dimensions)
20 | }
21 |
22 | func (m *FloatExactModel) GetDimensions() int {
23 | return m.Dimensions
24 | }
25 |
26 | func (m *FloatExactModel) CalculateFloats(value []float64) []float64 {
27 | return value
28 | }
29 |
30 | func (m *FloatExactModel) ToDump() ([]byte, error) {
31 | return json.Marshal(m)
32 | }
33 |
34 | func (m *FloatExactModel) FromDump(dump []byte) error {
35 | return json.Unmarshal(dump, m)
36 | }
37 |
38 | func (m *FloatExactModel) Name() string {
39 | return "float_exact"
40 | }
41 |
42 | func (m *FloatExactModel) GetQuality() float64 {
43 | return m.Quality
44 | }
45 |
--------------------------------------------------------------------------------
/encoders/float_reducer.go:
--------------------------------------------------------------------------------
1 | package encoders
2 |
3 | import (
4 | "encoding/json"
5 | "log"
6 | "math"
7 |
8 | "github.com/breskos/gopher-learn/analysis"
9 | )
10 |
11 | /*
12 | FloatReducer contains of threee parts.
13 | It first runs Spearman correlation. If the correlcation of two dimensions is equal or
14 | higher than the defined threshold (in config) on of the dimensions is cut away.
15 | This can be beneficial but also cause problems (in the case that a variable is despite
16 | the high correlation highly important).
17 | Also the FloatrReducer cuts away dimensions that just have one value (and therefore add no information gain).
18 | */
19 |
20 | type FloatReducerModel struct {
21 | Model map[int]bool
22 | Dimensions int
23 | Quality float64
24 | }
25 |
26 | func NewFloatReducerModel() *FloatReducerModel {
27 | return &FloatReducerModel{
28 | Model: make(map[int]bool),
29 | }
30 | }
31 |
32 | func (m *FloatReducerModel) Fit(set *Input, config *EncoderConfig) {
33 | if len(set.Values) < 1 {
34 | log.Fatalf("no values delivered for fit")
35 | }
36 | m.Model = make(map[int]bool)
37 | spearman := make(map[int]map[int]float64)
38 | dimensions := make([][]float64, len(set.Values[0].Float))
39 | for _, sample := range set.Values {
40 | for i, x := range sample.Float {
41 | dimensions[i] = append(dimensions[i], x)
42 | }
43 | }
44 | for i := range dimensions {
45 | spearman[i] = make(map[int]float64)
46 | for j := range dimensions {
47 | if i != j {
48 | rs, _ := analysis.Spearman(dimensions[i], dimensions[j])
49 | spearman[i][j] = rs
50 | if math.Abs(rs) > math.Abs(config.FloatReducerSpearman) {
51 | m.Model[i] = false
52 | }
53 | }
54 | }
55 | m.Model[i] = true
56 | if similarValues(dimensions[i]) {
57 | m.Model[i] = false
58 | }
59 | }
60 | for i := range spearman {
61 | for j := range spearman[i] {
62 | if spearman[i][j] >= config.FloatReducerSpearman && m.Model[i] && m.Model[j] {
63 | m.Model[i] = false
64 | }
65 | }
66 | }
67 | m.Dimensions = 0
68 | for i := range m.Model {
69 | if m.Model[i] {
70 | m.Dimensions++
71 | }
72 | }
73 | }
74 |
75 | func (m *FloatReducerModel) GetDimensions() int {
76 | return m.Dimensions
77 | }
78 |
79 | func (m *FloatReducerModel) CalculateFloats(value []float64) []float64 {
80 | vector := make([]float64, 0)
81 | for i := range m.Model {
82 | if m.Model[i] {
83 | vector = append(vector, value[i])
84 | }
85 | }
86 | return vector
87 | }
88 |
89 | func (m *FloatReducerModel) Name() string {
90 | return "float_reducer"
91 | }
92 |
93 | func (m *FloatReducerModel) CalculateString(s string) []float64 {
94 | return []float64{}
95 | }
96 |
97 | func (m *FloatReducerModel) GetQuality() float64 {
98 | return m.Quality
99 | }
100 |
101 | func (m *FloatReducerModel) ToDump() ([]byte, error) {
102 | return json.Marshal(m)
103 | }
104 |
105 | func (m *FloatReducerModel) FromDump(dump []byte) error {
106 | return json.Unmarshal(dump, m)
107 | }
108 |
109 | func similarValues(values []float64) bool {
110 | len := len(values)
111 | for i, v := range values {
112 | if i < len-1 {
113 | if v != values[i+1] {
114 | return false
115 | }
116 | }
117 | }
118 | return true
119 | }
120 |
--------------------------------------------------------------------------------
/encoders/float_reducer_test.go:
--------------------------------------------------------------------------------
1 | package encoders
2 |
3 | import (
4 | "fmt"
5 | "testing"
6 | )
7 |
8 | func TestFloatReder(t *testing.T) {
9 | model := "test"
10 | e := NewEncoder("float reducer test")
11 | input := NewInput(model, Floats)
12 | input.AddFloats([]float64{1.0, 0.0, 3.7})
13 | input.AddFloats([]float64{2.0, 0.9, 0.3})
14 | input.AddFloats([]float64{3.0, 1.6, 1.3})
15 | input.AddFloats([]float64{4.0, 2.9, 4.2})
16 | e.Scan(model, input, FloatReducer)
17 | e.Transform(model, input)
18 | e.Explain()
19 | vector := e.Encode(model, Unified{Float: []float64{1.0, 0.0, 3.7}, Type: Floats})
20 | if len(vector) != 2 {
21 | t.Errorf("len: %d != 2", len(vector))
22 | }
23 | fmt.Printf("encoded vector: %v", vector)
24 | }
25 |
--------------------------------------------------------------------------------
/encoders/input.go:
--------------------------------------------------------------------------------
1 | package encoders
2 |
3 | type InputType int
4 |
5 | const (
6 | String InputType = iota
7 | Floats
8 | )
9 |
10 | func (e InputType) String() string {
11 | return [...]string{"String", "Floats"}[e]
12 | }
13 |
14 | type Inputs struct {
15 | Inputs []*Input
16 | }
17 |
18 | type Input struct {
19 | Name string
20 | Values []*Unified
21 | Type InputType
22 | }
23 |
24 | type Unified struct {
25 | String string
26 | Float []float64
27 | Type InputType
28 | Label string
29 | Target float64
30 | }
31 |
32 | func NewInputs() *Inputs {
33 | return &Inputs{
34 | Inputs: make([]*Input, 0),
35 | }
36 | }
37 |
38 | func (i *Inputs) Add(input *Input) {
39 | i.Inputs = append(i.Inputs, input)
40 | }
41 |
42 | func NewInput(name string, t InputType) *Input {
43 | return &Input{
44 | Name: name,
45 | Type: t,
46 | Values: make([]*Unified, 0),
47 | }
48 | }
49 |
50 | func (i *Input) Add(unified *Unified) {
51 | i.Values = append(i.Values, unified)
52 | }
53 |
54 | func (i *Input) AddFloats(sample []float64) {
55 | i.Values = append(i.Values, &Unified{Float: sample, Type: Floats})
56 | }
57 |
58 | func (i *Input) AddString(sample string) {
59 | i.Values = append(i.Values, &Unified{String: sample, Type: String})
60 | }
61 |
--------------------------------------------------------------------------------
/encoders/scanner.go:
--------------------------------------------------------------------------------
1 | package encoders
2 |
3 | import (
4 | "strings"
5 | )
6 |
7 | // The scanner functions are used to determine whether a set is likely to fit and how many dimensions are
8 | // suitable for this set of data. Here also the decision is made for a string encoder.
9 |
10 | // Here the decision for an string encoder is made based on the provided configuration file.
11 | func evaluateStrings(config *EncoderConfig, values *Input) EncoderType {
12 | maxDelimiters := 0
13 | maxStringLength := 0
14 | samples := 0
15 | uniques := make([]string, 0)
16 | uniqueTokens := make(map[string]int)
17 | for _, v := range values.Values {
18 | tokens := strings.Split(v.String, config.DelimiterToken)
19 | for _, v := range tokens {
20 | if _, ok := uniqueTokens[v]; ok {
21 | uniqueTokens[v]++
22 | } else {
23 | uniqueTokens[v] = 1
24 | }
25 | }
26 | l := len(tokens)
27 | if l > maxDelimiters {
28 | maxDelimiters = l
29 | }
30 | l = len(v.String)
31 | if l > maxStringLength {
32 | maxStringLength = l
33 | }
34 | samples++
35 | if !contains(uniques, v.String) {
36 | uniques = append(uniques, v.String)
37 | }
38 | }
39 | uniqueEntries := len(uniques)
40 | // Dictionary makes sense if you have something like string states of something.
41 | // In this case the dictionary assignes 0,1 for each dictionary entry shown.
42 | if uniqueEntries <= config.DictionaryMaxEntries && maxDelimiters <= config.DictionaryMaxDelimiters {
43 | return StringDictionary
44 | }
45 | // SplittedDictionary make sense if there are not that much symbols but not just one token.
46 | // Also sentences in a small space are possible.
47 | if len(uniqueTokens) < config.SplitDictionaryMaxEntries {
48 | return StringSplitDictionary
49 | }
50 | // If there are too much entries to use it as a dictionary, we try to make NGrams out of it.
51 | if maxStringLength <= config.NGramsMaxTokens {
52 | return StringNGrams
53 | }
54 | // If nothing matches we default to NGrams.
55 | return config.DefaultStringEncoder
56 | }
57 |
58 | func contains(s []string, str string) bool {
59 | for _, v := range s {
60 | if v == str {
61 | return true
62 | }
63 | }
64 | return false
65 | }
66 |
--------------------------------------------------------------------------------
/encoders/string_dictionary.go:
--------------------------------------------------------------------------------
1 | package encoders
2 |
3 | import (
4 | "encoding/json"
5 | "fmt"
6 | )
7 |
8 | type DictionaryModel struct {
9 | Dimensions int
10 | Dictionary []string
11 | Quality float64
12 | }
13 |
14 | func NewDictionaryModel() *DictionaryModel {
15 | return &DictionaryModel{}
16 | }
17 |
18 | func (m *DictionaryModel) Fit(set *Input, config *EncoderConfig) {
19 | for _, sample := range set.Values {
20 | value := normalizeString(sample.String)
21 | fmt.Printf("%s", value)
22 | if !contains(m.Dictionary, value) {
23 | m.Dictionary = append(m.Dictionary, value)
24 | }
25 | }
26 | fmt.Printf("%v", m.Dictionary)
27 | m.Dimensions = len(m.Dictionary)
28 | }
29 |
30 | func (m *DictionaryModel) CalculateString(s string) []float64 {
31 | vector := make([]float64, m.Dimensions)
32 | idx := getIndex(m.Dictionary, s)
33 | if idx != -1 {
34 | vector[idx] = 1.0
35 | }
36 | return vector
37 | }
38 |
39 | func (m *DictionaryModel) GetDimensions() int {
40 | return m.Dimensions
41 | }
42 |
43 | func (m *DictionaryModel) CalculateFloats([]float64) []float64 {
44 | return []float64{}
45 | }
46 |
47 | func (m *DictionaryModel) Name() string {
48 | return "dictionary"
49 | }
50 |
51 | func (m *DictionaryModel) GetQuality() float64 {
52 | return m.Quality
53 | }
54 |
55 | func (m *DictionaryModel) ToDump() ([]byte, error) {
56 | return json.Marshal(m)
57 | }
58 |
59 | func (m *DictionaryModel) FromDump(dump []byte) error {
60 | return json.Unmarshal(dump, m)
61 | }
62 |
63 | func getIndex(s []string, value string) int {
64 | for k, v := range s {
65 | if v == value {
66 | return k
67 | }
68 | }
69 | return -1
70 | }
71 |
--------------------------------------------------------------------------------
/encoders/string_ngrams.go:
--------------------------------------------------------------------------------
1 | package encoders
2 |
3 | import (
4 | "encoding/json"
5 | "sort"
6 | )
7 |
8 | const (
9 | DefaultGram = 3
10 | )
11 |
12 | type NGramModel struct {
13 | Dimensions int
14 | // Grams to index in vector
15 | GramsLookup map[string]int
16 | // Grams to number of appearances
17 | Grams map[string]int
18 | Samples int
19 | Quality float64
20 | }
21 |
22 | func NewNGramModel() *NGramModel {
23 | return &NGramModel{
24 | Grams: make(map[string]int, 0),
25 | GramsLookup: make(map[string]int),
26 | }
27 | }
28 |
29 | func (m *NGramModel) Fit(set *Input, config *EncoderConfig) {
30 | modelIndex := 0
31 | for _, sample := range set.Values {
32 | m.Samples++
33 | value := normalizeString(sample.String)
34 | l := len(value)
35 | for k := range value {
36 | if k <= l-DefaultGram {
37 | gram := value[k : k+DefaultGram]
38 | if _, ok := m.GramsLookup[gram]; !ok {
39 | m.GramsLookup[gram] = modelIndex
40 | modelIndex++
41 | m.Grams[gram] = 1
42 | } else {
43 | m.Grams[gram]++
44 | }
45 | }
46 | }
47 | }
48 | m.Dimensions = len(m.Grams)
49 | m.optimize(config.NGramMaxCapacity, config.NGramCropRatio)
50 | }
51 |
52 | func (m *NGramModel) CalculateString(s string) []float64 {
53 | vector := make([]float64, m.Dimensions)
54 | value := normalizeString(s)
55 | ngrams := ngramize(value, DefaultGram)
56 | for _, gram := range ngrams {
57 | if index, ok := m.GramsLookup[gram]; ok {
58 | vector[index] = 1.0
59 | }
60 | }
61 | return vector
62 | }
63 |
64 | func (m *NGramModel) GetDimensions() int {
65 | return m.Dimensions
66 | }
67 |
68 | func (m *NGramModel) CalculateFloats([]float64) []float64 {
69 | return []float64{}
70 | }
71 |
72 | func (m *NGramModel) ToDump() ([]byte, error) {
73 | return json.Marshal(m)
74 | }
75 |
76 | func (m *NGramModel) FromDump(dump []byte) error {
77 | return json.Unmarshal(dump, m)
78 | }
79 |
80 | func (m *NGramModel) Name() string {
81 | return "ngrams"
82 | }
83 |
84 | func (m *NGramModel) GetQuality() float64 {
85 | return m.Quality
86 | }
87 |
88 | func (m *NGramModel) optimize(maxCapacity int, cropRatio float64) {
89 | if maxCapacity >= m.Dimensions {
90 | return
91 | }
92 |
93 | for gram, appearance := range m.Grams {
94 | if float64(appearance)/float64(m.Samples) < cropRatio {
95 | delete(m.Grams, gram)
96 | }
97 | }
98 | // reindex cropped to vector index
99 | m.GramsLookup = make(map[string]int)
100 | index := 0
101 | for gram := range m.Grams {
102 | m.GramsLookup[gram] = index
103 | index++
104 | }
105 | m.Dimensions = len(m.Grams)
106 | }
107 |
108 | func sortByValue(m map[string]int) map[string]int {
109 | type pair struct {
110 | Key string
111 | Value int
112 | }
113 | var ps []pair
114 | for k, v := range m {
115 | ps = append(ps, pair{k, v})
116 | }
117 | sort.Slice(ps, func(i, j int) bool {
118 | return ps[i].Value > ps[j].Value
119 | })
120 | sorted := make(map[string]int)
121 | for _, kv := range ps {
122 | sorted[kv.Key] = kv.Value
123 | }
124 | return sorted
125 | }
126 |
127 | func ngramize(value string, n int) []string {
128 | l := len(value)
129 | grams := make([]string, 0)
130 | for k := range value {
131 | if k <= l-n {
132 | gram := value[k : k+n]
133 | grams = append(grams, gram)
134 | }
135 | }
136 | return grams
137 | }
138 |
--------------------------------------------------------------------------------
/encoders/string_split_dictionary.go:
--------------------------------------------------------------------------------
1 | package encoders
2 |
3 | import (
4 | "encoding/json"
5 | "fmt"
6 | "strings"
7 | )
8 |
9 | const (
10 | splitDictionaryDelimiter = " "
11 | )
12 |
13 | type SplitDictionaryModel struct {
14 | Dimensions int
15 | Dictionary []string
16 | Quality float64
17 | }
18 |
19 | func NewSplitDictionaryModel() *SplitDictionaryModel {
20 | return &SplitDictionaryModel{}
21 | }
22 |
23 | func (m *SplitDictionaryModel) Fit(set *Input, config *EncoderConfig) {
24 | delimiter := config.DelimiterToken
25 | for _, sample := range set.Values {
26 | value := normalizeString(sample.String)
27 | fmt.Printf("%s", value)
28 | values := strings.Split(value, delimiter)
29 | for _, v := range values {
30 | if !contains(m.Dictionary, v) {
31 | m.Dictionary = append(m.Dictionary, v)
32 | }
33 | }
34 | }
35 | fmt.Printf("%v", m.Dictionary)
36 | m.Dimensions = len(m.Dictionary)
37 | }
38 |
39 | func (m *SplitDictionaryModel) CalculateString(s string) []float64 {
40 | vector := make([]float64, m.Dimensions)
41 | idx := getIndex(m.Dictionary, s)
42 | if idx != -1 {
43 | vector[idx] = 1.0
44 | }
45 | return vector
46 | }
47 |
48 | func (m *SplitDictionaryModel) GetDimensions() int {
49 | return m.Dimensions
50 | }
51 |
52 | func (m *SplitDictionaryModel) CalculateFloats([]float64) []float64 {
53 | return []float64{}
54 | }
55 |
56 | func (m *SplitDictionaryModel) ToDump() ([]byte, error) {
57 | return json.Marshal(m)
58 | }
59 |
60 | func (m *SplitDictionaryModel) FromDump(dump []byte) error {
61 | return json.Unmarshal(dump, m)
62 | }
63 |
64 | func (m *SplitDictionaryModel) Name() string {
65 | return "splitted_dictionary"
66 | }
67 |
68 | func (m *SplitDictionaryModel) GetQuality() float64 {
69 | return m.Quality
70 | }
71 |
--------------------------------------------------------------------------------
/encoders/utils.go:
--------------------------------------------------------------------------------
1 | package encoders
2 |
3 | import (
4 | "log"
5 | "regexp"
6 | "strings"
7 | )
8 |
9 | func normalizeString(value string) string {
10 | value = strings.ToLower(value)
11 | reg, err := regexp.Compile("[^a-zA-Z0-9]+")
12 | if err != nil {
13 | log.Fatal(err)
14 | }
15 | value = reg.ReplaceAllString(value, "")
16 | return value
17 | }
18 |
--------------------------------------------------------------------------------
/engine/config.go:
--------------------------------------------------------------------------------
1 | package engine
2 |
3 | const (
4 | dTries = 1
5 | dEpochs = 100
6 | dTrainingSplit = 0.7
7 | dLearningRate = 0.4
8 | dDecay = 0.005
9 | dRegressionThreshold = 0.05
10 | )
11 |
12 | // Config has all the learning configurations necessary to learn the netowrk in the engine
13 | type Config struct {
14 | Tries int
15 | Epochs int
16 | TrainingSplit float64
17 | LearningRate float64
18 | Decay float64
19 | RegressionThreshold float64
20 | }
21 |
22 | // DefaultConfig returns the default config for the engine learner
23 | func DefaultConfig() *Config {
24 | return &Config{
25 | Tries: dTries,
26 | Epochs: dEpochs,
27 | TrainingSplit: dTrainingSplit,
28 | LearningRate: dLearningRate,
29 | Decay: dDecay,
30 | RegressionThreshold: dRegressionThreshold,
31 | }
32 | }
33 |
--------------------------------------------------------------------------------
/engine/engine.go:
--------------------------------------------------------------------------------
1 | package engine
2 |
3 | import (
4 | "fmt"
5 |
6 | "github.com/breskos/gopher-learn/evaluation"
7 | "github.com/breskos/gopher-learn/learn"
8 | neural "github.com/breskos/gopher-learn/net"
9 | )
10 |
11 | const (
12 | runToken = ","
13 | epochToken = "."
14 | tryToken = "*"
15 | )
16 |
17 | // Engine contains every necessary for starting the engine
18 | type Engine struct {
19 | NetworkInput int
20 | NetworkLayer []int
21 | NetworkOutput int
22 | Data *learn.Set
23 | WinnerNetwork *neural.Network
24 | WinnerEvaluation evaluation.Evaluation
25 | Verbose bool
26 | Usage neural.NetworkType
27 | Config *Config
28 | }
29 |
30 | // NewEngine creates a new Engine object
31 | func NewEngine(usage neural.NetworkType, hiddenLayer []int, data *learn.Set) *Engine {
32 | var outputLength int
33 | if neural.Regression == usage {
34 | outputLength = 1
35 | } else {
36 | outputLength = len(data.Samples[0].Output)
37 | }
38 | return &Engine{
39 | NetworkInput: len(data.Samples[0].Vector),
40 | NetworkOutput: outputLength,
41 | NetworkLayer: hiddenLayer,
42 | Data: data,
43 | WinnerNetwork: neural.BuildNetwork(usage, len(data.Samples[0].Vector), hiddenLayer, data.ClassToLabel),
44 | WinnerEvaluation: *evaluation.NewEvaluation(usage, data.GetClasses()),
45 | Verbose: false,
46 | Usage: usage,
47 | Config: DefaultConfig(),
48 | }
49 | }
50 |
51 | // SetVerbose set verbose mode default = false
52 | func (e *Engine) SetVerbose(verbose bool) {
53 | e.Verbose = verbose
54 | }
55 |
56 | // SetRegressionThreshold sets the evaluation threshold for the regression
57 | func (e *Engine) SetRegressionThreshold(threshold float64) {
58 | e.Config.RegressionThreshold = threshold
59 | }
60 |
61 | // GetWinner returns the winner network from training
62 | func (e *Engine) GetWinner() (*neural.Network, *evaluation.Evaluation) {
63 | return e.WinnerNetwork, &e.WinnerEvaluation
64 | }
65 |
66 | // Start takes the paramter to start the engine and run it
67 | func (e *Engine) Start(criterion neural.Criterion) {
68 | network := neural.BuildNetwork(e.Usage, e.NetworkInput, e.NetworkLayer, e.Data.ClassToLabel)
69 | training, validation := split(e.Usage, e.Data, e.Config.TrainingSplit)
70 | for try := 0; try < e.Config.Tries; try++ {
71 | learning := e.Config.LearningRate
72 | if e.Verbose {
73 | fmt.Printf("\n> start try %v. training / test: %v / %v (%v)\n", (try + 1), len(training.Samples), len(validation.Samples), e.Config.TrainingSplit)
74 | }
75 | for ; learning > 0.0; learning -= e.Config.Decay {
76 | train(network, training, learning, e.Config.Epochs, e.Verbose)
77 | evaluation := evaluate(e.Usage, network, validation, training, e.Config.RegressionThreshold)
78 | if compare(e.Usage, criterion, &e.WinnerEvaluation, evaluation) {
79 | e.WinnerNetwork = copy(network)
80 | e.WinnerEvaluation = *evaluation
81 | if e.Verbose {
82 | print(&e.WinnerEvaluation)
83 | }
84 | }
85 | }
86 | if e.Verbose {
87 | fmt.Print(tryToken + "\n")
88 | }
89 | }
90 | }
91 |
92 | // SetConfig sets a new config from outside for the engine learner
93 | func (e *Engine) SetConfig(cfg *Config) {
94 | e.Config = cfg
95 | }
96 |
97 | // GetConfig returns the current engine learner configuration
98 | func (e *Engine) GetConfig() *Config {
99 | return e.Config
100 | }
101 |
102 | // Prints the current evaluation
103 | func print(e *evaluation.Evaluation) {
104 | fmt.Printf("\n [Best] acc: %.2f / bacc: %.2f / f1: %.2f / correct: %.2f / distance: %.2f\n", e.GetOverallAccuracy(), e.GetOverallBalancedAccuracy(), e.GetOverallFMeasure(), e.GetCorrectRatio(), e.GetDistance())
105 | }
106 |
--------------------------------------------------------------------------------
/engine/train.go:
--------------------------------------------------------------------------------
1 | package engine
2 |
3 | import (
4 | "fmt"
5 | "math/rand"
6 |
7 | "github.com/breskos/gopher-learn/evaluation"
8 | "github.com/breskos/gopher-learn/learn"
9 | neural "github.com/breskos/gopher-learn/net"
10 | "github.com/breskos/gopher-learn/persist"
11 | )
12 |
13 | // Splits a given data set by a given ratio into training and evaluation
14 | func split(usage neural.NetworkType, set *learn.Set, ratio float64) (*learn.Set, *learn.Set) {
15 | multiplier := 100
16 | normalizedRatio := int(ratio * float64(multiplier))
17 | var training, evaluation learn.Set
18 | training.ClassToLabel = set.ClassToLabel
19 | evaluation.ClassToLabel = set.ClassToLabel
20 | for i := range set.Samples {
21 | if rand.Intn(multiplier) <= normalizedRatio {
22 | training.Samples = append(training.Samples, set.Samples[i])
23 | } else {
24 | evaluation.Samples = append(evaluation.Samples, set.Samples[i])
25 | }
26 | }
27 | return &training, &evaluation
28 | }
29 |
30 | // Trains the neural network with the vgiven samples for a given epoch of time and and learning rate
31 | func train(network *neural.Network, data *learn.Set, learning float64, epochs int, verbose bool) {
32 | for e := 0; e < epochs; e++ {
33 | for sample := range data.Samples {
34 | learn.Learn(network, data.Samples[sample].Vector, data.Samples[sample].Output, learning)
35 | }
36 | if verbose {
37 | fmt.Print(epochToken)
38 | }
39 | }
40 | if verbose {
41 | fmt.Print(runToken)
42 | }
43 |
44 | }
45 |
46 | // Evaluates the neural network using the current trained versions of it by a given criterion
47 | func evaluate(usage neural.NetworkType, network *neural.Network, test *learn.Set, train *learn.Set, regressionThreshold float64) *evaluation.Evaluation {
48 | evaluation := evaluation.NewEvaluation(usage, train.GetClasses())
49 | evaluation.SetRegressionThreshold(regressionThreshold)
50 | for sample := range test.Samples {
51 | evaluation.AddDistance(network, test.Samples[sample].Vector, test.Samples[sample].Output)
52 | if neural.Classification == usage {
53 | winner := network.CalculateWinnerLabel(test.Samples[sample].Vector)
54 | evaluation.Add(test.Samples[sample].Label, winner)
55 | } else {
56 | prediction := network.Calculate(test.Samples[sample].Vector)
57 | evaluation.AddRegression(test.Samples[sample].Value, prediction[0])
58 | }
59 | }
60 | return evaluation
61 | }
62 |
63 | // Compares two networks by a their evaluation and a given criterion
64 | func compare(usage neural.NetworkType, criterion neural.Criterion, current *evaluation.Evaluation, try *evaluation.Evaluation) bool {
65 | if current.Correct+current.Wrong == 0 {
66 | return true
67 | }
68 | switch criterion {
69 | case neural.Accuracy:
70 | if current.GetOverallAccuracy() < try.GetOverallAccuracy() {
71 | return true
72 | }
73 | case neural.BalancedAccuracy:
74 | if current.GetOverallBalancedAccuracy() < try.GetOverallBalancedAccuracy() {
75 | return true
76 | }
77 | case neural.FMeasure:
78 | if current.GetOverallFMeasure() < try.GetOverallFMeasure() {
79 | return true
80 | }
81 | case neural.Simple:
82 | if current.GetCorrectRatio() < try.GetCorrectRatio() {
83 | return true
84 | }
85 | case neural.Distance:
86 | if current.GetDistance() > try.GetDistance() {
87 | return true
88 | }
89 | }
90 | return false
91 | }
92 |
93 | // Copies a neural network from another
94 | // This function is very costly.
95 | func copy(from *neural.Network) *neural.Network {
96 | return persist.FromDump(persist.ToDump(from))
97 | }
98 |
--------------------------------------------------------------------------------
/evaluation/evaluation.go:
--------------------------------------------------------------------------------
1 | package evaluation
2 |
3 | import (
4 | "math"
5 |
6 | neural "github.com/breskos/gopher-learn/net"
7 | )
8 |
9 | // Evaluation contains all the structures necessary for the evaluation
10 | type Evaluation struct {
11 | Confusion map[string]map[string]int
12 | Correct int
13 | Wrong int
14 | OverallDistance float64
15 | Usage neural.NetworkType
16 | Threshold float64
17 | }
18 |
19 | // NewEvaluation creates a new evaluation object
20 | func NewEvaluation(usage neural.NetworkType, classes []string) *Evaluation {
21 | evaluation := &Evaluation{
22 | Usage: usage,
23 | Confusion: make(map[string]map[string]int),
24 | }
25 | for i := range classes {
26 | evaluation.Confusion[classes[i]] = make(map[string]int)
27 | for j := range classes {
28 | evaluation.Confusion[classes[i]][classes[j]] = 0
29 | }
30 | }
31 | return evaluation
32 | }
33 |
34 | // SetRegressionThreshold sets the threshold if you are trying to do Pos / Neg with a regressor
35 | func (e *Evaluation) SetRegressionThreshold(threshold float64) {
36 | e.Threshold = threshold
37 | }
38 |
39 | // Add adds a new data point to the evaluation
40 | func (e *Evaluation) Add(labeledClass, predictedClass string) {
41 | if _, ok := e.Confusion[labeledClass]; ok {
42 | if _, ok := e.Confusion[labeledClass][predictedClass]; ok {
43 | e.Confusion[labeledClass][predictedClass]++
44 | } else {
45 | e.Confusion[labeledClass][predictedClass] = 1
46 | }
47 | } else {
48 | e.Confusion[labeledClass] = make(map[string]int)
49 | e.Confusion[labeledClass][predictedClass] = 1
50 | }
51 | if labeledClass == predictedClass {
52 | e.Correct++
53 | } else {
54 | e.Wrong++
55 | }
56 | }
57 |
58 | // AddRegression add a predicted regresssion value to tht set
59 | func (e *Evaluation) AddRegression(label, predicted float64) {
60 | if math.Abs(label-predicted) >= e.Threshold {
61 | e.Wrong++
62 | } else {
63 | e.Correct++
64 | }
65 | }
66 |
--------------------------------------------------------------------------------
/evaluation/metrics.go:
--------------------------------------------------------------------------------
1 | package evaluation
2 |
3 | import (
4 | "math"
5 |
6 | neural "github.com/breskos/gopher-learn/net"
7 | )
8 |
9 | // GetTruePositives returns TP
10 | func (e *Evaluation) GetTruePositives(label string) int {
11 | return e.Confusion[label][label]
12 | }
13 |
14 | // GetFalsePositives returns FP
15 | func (e *Evaluation) GetFalsePositives(label string) int {
16 | s := 0
17 | for l := range e.Confusion {
18 | if l != label {
19 | s += e.Confusion[l][label]
20 | }
21 | }
22 | return s
23 | }
24 |
25 | // GetTrueNegatives returns TN
26 | func (e *Evaluation) GetTrueNegatives(label string) int {
27 | s := 0
28 | for la := range e.Confusion {
29 | if la != label {
30 | for l := range e.Confusion[la] {
31 | if l != label {
32 | s += e.Confusion[la][l]
33 | }
34 | }
35 | }
36 | }
37 | return s
38 | }
39 |
40 | // GetFalseNegatives returns FNs
41 | func (e *Evaluation) GetFalseNegatives(label string) int {
42 | s := 0
43 | for la := range e.Confusion[label] {
44 | for l := range e.Confusion[la] {
45 | if l != label && la == label {
46 | s += e.Confusion[la][l]
47 | }
48 | }
49 | }
50 | return s
51 | }
52 |
53 | // GetPositives TP + FN
54 | func (e *Evaluation) GetPositives(label string) int {
55 | return e.GetTruePositives(label) + e.GetFalseNegatives(label)
56 | }
57 |
58 | // GetNegatives FP + TN
59 | func (e *Evaluation) GetNegatives(label string) int {
60 | return e.GetFalsePositives(label) + e.GetTrueNegatives(label)
61 | }
62 |
63 | // GetAccuracy (TP+TN) / (P+N)
64 | func (e *Evaluation) GetAccuracy(label string) float64 {
65 | if float64(e.GetPositives(label)+e.GetNegatives(label)) == 0.0 {
66 | return 0.0
67 | }
68 | return float64(e.GetTruePositives(label)+e.GetTrueNegatives(label)) / float64(e.GetPositives(label)+e.GetNegatives(label))
69 | }
70 |
71 | // GetRecall TP/P, TP/(TP + FN)
72 | func (e *Evaluation) GetRecall(label string) float64 {
73 | if float64(e.GetPositives(label)) == 0.0 {
74 | return 0.0
75 | }
76 | return float64(e.GetTruePositives(label)) / float64(e.GetPositives(label))
77 | }
78 |
79 | // GetSensitivity like recall
80 | func (e *Evaluation) GetSensitivity(label string) float64 {
81 | return e.GetRecall(label)
82 | }
83 |
84 | // GetSpecificity TN / N, TN/(FP+TN)
85 | func (e *Evaluation) GetSpecificity(label string) float64 {
86 | if float64(e.GetNegatives(label)) == 0.0 {
87 | return 0.0
88 | }
89 | return float64(e.GetTrueNegatives(label)) / float64(e.GetNegatives(label))
90 | }
91 |
92 | // GetPrecision TP/(TP+FP)
93 | func (e *Evaluation) GetPrecision(label string) float64 {
94 | if float64(e.GetTruePositives(label)+e.GetFalsePositives(label)) == 0.0 {
95 | return 0.0
96 | }
97 | return float64(e.GetTruePositives(label)) / float64(e.GetTruePositives(label)+e.GetFalsePositives(label))
98 | }
99 |
100 | // GetFallout FP / N
101 | func (e *Evaluation) GetFallout(label string) float64 {
102 | if float64(e.GetNegatives(label)) == 0.0 {
103 | return 0.0
104 | }
105 | return float64(e.GetFalsePositives(label)) / float64(e.GetNegatives(label))
106 | }
107 |
108 | // GetFalsePositiveRate same as fallout
109 | func (e *Evaluation) GetFalsePositiveRate(label string) float64 {
110 | return e.GetFallout(label)
111 | }
112 |
113 | // GetFalseDiscoveryRate FP / (FP+TP)
114 | func (e *Evaluation) GetFalseDiscoveryRate(label string) float64 {
115 | if float64(e.GetFalsePositives(label)+e.GetTruePositives(label)) == 0.0 {
116 | return 0.0
117 | }
118 | return float64(e.GetFalsePositives(label)) / float64(e.GetFalsePositives(label)+e.GetTruePositives(label))
119 | }
120 |
121 | // GetNegativePredictionValue TN/(TN+FN)
122 | func (e *Evaluation) GetNegativePredictionValue(label string) float64 {
123 | if float64(e.GetTrueNegatives(label)+e.GetFalseNegatives(label)) == 0.0 {
124 | return 0.0
125 | }
126 | return float64(e.GetTrueNegatives(label)) / float64(e.GetTrueNegatives(label)+e.GetFalseNegatives(label))
127 | }
128 |
129 | // GetFMeasure 2TP/(2TP+FP+FN)
130 | func (e *Evaluation) GetFMeasure(label string) float64 {
131 | if float64(2*e.GetTruePositives(label)+e.GetFalsePositives(label)+e.GetFalseNegatives(label)) == 0.0 {
132 | return 0.0
133 | }
134 | return 2.0 * float64(e.GetTruePositives(label)) / float64(2*e.GetTruePositives(label)+e.GetFalsePositives(label)+e.GetFalseNegatives(label))
135 | }
136 |
137 | // GetBalancedAccuracy (TP/P + TN/N) / 2
138 | func (e *Evaluation) GetBalancedAccuracy(label string) float64 {
139 | var positives, negatives float64
140 | if float64(e.GetPositives(label)) == 0.0 {
141 | positives = 0.0
142 | } else {
143 | positives = float64(e.GetTruePositives(label)) / float64(e.GetPositives(label))
144 | }
145 | if float64(e.GetNegatives(label)) == 0.0 {
146 | negatives = 0.0
147 | } else {
148 | negatives = float64(e.GetTrueNegatives(label)) / float64(e.GetNegatives(label))
149 | }
150 | return (positives + negatives) / 2.0
151 | }
152 |
153 | // GetOverallBalancedAccuracy calculates for the training evaluation
154 | func (e *Evaluation) GetOverallBalancedAccuracy() float64 {
155 | classes := float64(len(e.Confusion))
156 | sum := 0.0
157 | for k := range e.Confusion {
158 | sum += e.GetBalancedAccuracy(k)
159 | }
160 | return sum / classes
161 | }
162 |
163 | // GetOverallAccuracy calculates for the training evaluation
164 | func (e *Evaluation) GetOverallAccuracy() float64 {
165 | classes := float64(len(e.Confusion))
166 | sum := 0.0
167 | for k := range e.Confusion {
168 | sum += e.GetAccuracy(k)
169 | }
170 | return sum / classes
171 | }
172 |
173 | // GetOverallFMeasure calculates for the training evaluation
174 | func (e *Evaluation) GetOverallFMeasure() float64 {
175 | classes := float64(len(e.Confusion))
176 | sum := 0.0
177 | for k := range e.Confusion {
178 | sum += e.GetFMeasure(k)
179 | }
180 | return sum / classes
181 | }
182 |
183 | // GetInformedness = Sensitivity + Specificity − 1
184 | func (e *Evaluation) GetInformedness(label string) float64 {
185 | return e.GetSensitivity(label) + e.GetSpecificity(label) - 1.0
186 | }
187 |
188 | // GetMarkedness = Precision + NegativePredictionValue − 1
189 | func (e *Evaluation) GetMarkedness(label string) float64 {
190 | return e.GetPrecision(label) + e.GetNegativePredictionValue(label) - 1
191 | }
192 |
193 | // AddDistance adds distance between ideal output and output of the network
194 | func (e *Evaluation) AddDistance(n *neural.Network, in, ideal []float64) float64 {
195 | // This function was part of the former go-neural and moved to this package.
196 | out := n.Calculate(in)
197 | var d float64
198 | for i := range out {
199 | d += math.Pow(out[i]-ideal[i], 2)
200 | }
201 | e.OverallDistance += d / 2.0
202 | return d / 2.0
203 | }
204 |
205 | // GetDistance returns the distance from the evaluation
206 | func (e *Evaluation) GetDistance() float64 {
207 | return e.OverallDistance
208 | }
209 |
210 | // GetCorrectRatio returns correct classified samples ratio
211 | func (e *Evaluation) GetCorrectRatio() float64 {
212 | return float64(e.Correct) / float64(e.Wrong+e.Correct)
213 | }
214 |
--------------------------------------------------------------------------------
/evaluation/print.go:
--------------------------------------------------------------------------------
1 | package evaluation
2 |
3 | import "fmt"
4 |
5 | // PrintConfusionMatrix prints the confusion matrix of the evaluation
6 | func (e *Evaluation) PrintConfusionMatrix() {
7 | fmt.Printf("\t|")
8 | for k := range e.Confusion {
9 | fmt.Printf("%v\t|", k)
10 | }
11 | fmt.Print("\n")
12 | for cl := range e.Confusion {
13 | fmt.Printf("%v\t|", cl)
14 | for c := range e.Confusion[cl] {
15 | fmt.Printf("%v\t|", e.Confusion[cl][c])
16 | }
17 | fmt.Printf("\n")
18 | }
19 |
20 | }
21 |
22 | // PrintSummaries prints the summaries of all classes
23 | func (e *Evaluation) PrintSummaries() {
24 | for class := range e.Confusion {
25 | e.PrintSummary(class)
26 | }
27 | }
28 |
29 | // PrintRegressionSummary returns a summary of the evaluated regression
30 | func (e *Evaluation) PrintRegressionSummary() {
31 | fmt.Println("summary")
32 | fmt.Printf("correct: %v\n", e.Correct)
33 | fmt.Printf("wrong: %v\n", e.Wrong)
34 | fmt.Printf("ratio: %v\n", float64(e.Correct)/float64(e.Correct+e.Wrong))
35 | }
36 |
37 | // PrintSummary returns a summary
38 | func (e *Evaluation) PrintSummary(label string) {
39 | fmt.Printf("summary for class %v\n", label)
40 | fmt.Printf(" * TP: %v TN: %v FP: %v FN: %v\n", e.GetTruePositives(label), e.GetTrueNegatives(label), e.GetFalsePositives(label), e.GetFalseNegatives(label))
41 | fmt.Printf(" * Recall/Sensitivity: %.3f\n", e.GetRecall(label))
42 | fmt.Printf(" * Precision: %.3f\n", e.GetPrecision(label))
43 | fmt.Printf(" * Fallout/FalsePosRate: %.3f\n", e.GetFallout(label))
44 | fmt.Printf(" * False Discovey Rate: %.3f\n", e.GetFalseDiscoveryRate(label))
45 | fmt.Printf(" * Negative Prediction Rate: %.3f\n", e.GetNegativePredictionValue(label))
46 | fmt.Println("--")
47 | fmt.Printf(" * Accuracy: %.3f\n", e.GetAccuracy(label))
48 | fmt.Printf(" * F-Measure: %.3f\n", e.GetFMeasure(label))
49 | fmt.Printf(" * Balanced Accuracy: %.3f\n", e.GetBalancedAccuracy(label))
50 | fmt.Printf(" * Informedness: %.3f\n", e.GetInformedness(label))
51 | fmt.Printf(" * Markedness: %.3f\n", e.GetMarkedness(label))
52 |
53 | }
54 |
--------------------------------------------------------------------------------
/examples/README.md:
--------------------------------------------------------------------------------
1 | # Examples for gopher-learn
2 |
3 | 
4 |
5 | ## Important
6 | All the data needed for the examples can be found at [gopher-learn-data](https://github.com/breskos/gopher-learn-data).
7 |
8 | ## Sonar
9 |
10 | Basic example that uses the engine of gopher-neural to train a small neural network with basic parameters.
11 | More information in sonar ReadMe file.
12 | Data from: https://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+%28Sonar%2C+Mines+vs.+Rocks%29
13 |
14 | ## Wine quality
15 |
16 | In this example we train a regressor (we don't have classes but real value to determine).
17 | The quality of the wine is very important because wine is tasty (or should be).
18 | So here we have some criteria we can use to determine good from bad wine.
19 | Data from: http://archive.ics.uci.edu/ml/datasets/Wine+Quality
20 |
21 | ## Dictionary (Encoder)
22 |
23 | This example shows the encoder to a dictionary approach.
24 | The data was collected by Alexander Bresk.
25 |
26 | ## NGram (Encoder)
27 |
28 | This example shows how to encode strings via ngram encoder.
29 | The data was collected by Alexander Bresk.
30 |
31 | ## Online Generator (Online)
32 |
33 | This example shows the online learning part of gopher-learn.
34 | It shows you how to apply this functionality.
35 |
36 | ## Online Sonar (Online)
37 |
38 | Using the data from the Sonar example, this example shows you how to use it in online mode.
39 |
--------------------------------------------------------------------------------
/examples/dictionary/README.md:
--------------------------------------------------------------------------------
1 | # Dictionary
2 |
3 | This example shows how to use the encoder for strings to dictionaries.
4 | If you need more information on this encoder check: docs/encoders.md
--------------------------------------------------------------------------------
/examples/dictionary/main.go:
--------------------------------------------------------------------------------
1 | package main
2 |
3 | import (
4 | "bufio"
5 | "fmt"
6 | "log"
7 | "os"
8 | "strings"
9 |
10 | "github.com/breskos/gopher-learn/encoders"
11 | "github.com/breskos/gopher-learn/engine"
12 | "github.com/breskos/gopher-learn/learn"
13 | neural "github.com/breskos/gopher-learn/net"
14 | )
15 |
16 | const (
17 | dataFile = "data.phrase"
18 | delimiter = ","
19 | tries = 1
20 | epochs = 100
21 | trainingSplit = 0.7
22 | learningRate = 0.4
23 | decay = 0.005
24 | model = "onoff"
25 | )
26 |
27 | func main() {
28 | e := encoders.NewEncoder("answer-representation")
29 | input := encoders.NewInput(model, encoders.String)
30 | input.AddString("ON,OFF")
31 | input.AddString("OFF,ON")
32 | input.AddString("OFF,OFF")
33 | input.AddString("ON,ON")
34 | e.Scan(model, input, encoders.Automatic)
35 | e.Transform(model, input)
36 | e.Explain()
37 |
38 | // TODO(abresk) here I noticed that Sample, Set in learn are not optimized to be used in this manner
39 | // They were designed to load samples from file.
40 | // Get vectors for training
41 | output := make(map[string]int)
42 | output["ON"] = 0
43 | output["OFF"] = 1
44 | learningSet := learn.NewSet(neural.Classification)
45 | learningSet.AddClass("ON") // 0
46 | learningSet.AddClass("OFF") // 1
47 | data := []string{"ON,OFF,ON", "OFF,ON,ON", "OFF,OFF,OFF", "ON,ON,ON"}
48 | for i := 0; i < 50; i++ {
49 | for _, v := range data {
50 | splitted := strings.Split(v, delimiter)
51 | input := fmt.Sprintf("%s,%s", splitted[0], splitted[1])
52 | vector := e.Encode(model, encoders.Unified{String: input})
53 | outVec := []float64{0.0, 0.0}
54 | outVec[output[splitted[1]]] = 1.0
55 | learningSet.AddSample(learn.NewClassificationSample(vector, outVec, splitted[2]))
56 | }
57 | }
58 |
59 | // training the network
60 | en := engine.NewEngine(neural.Classification, []int{3}, learningSet)
61 | en.SetVerbose(true)
62 | en.SetConfig(&engine.Config{
63 | Tries: tries,
64 | Epochs: epochs,
65 | TrainingSplit: trainingSplit,
66 | LearningRate: learningRate,
67 | Decay: decay,
68 | })
69 | en.Start(neural.Distance)
70 | network, evaluation := en.GetWinner()
71 | evaluation.PrintSummary("ON")
72 | fmt.Println()
73 | evaluation.PrintSummary("OFF")
74 |
75 | // testing with own example
76 | for _, v := range data {
77 | splitted := strings.Split(v, delimiter)
78 | input := fmt.Sprintf("%s,%s", splitted[0], splitted[1])
79 | vector := e.Encode(model, encoders.Unified{String: input})
80 | w := network.CalculateWinnerLabel(vector)
81 | fmt.Printf("%v -> %v\n", splitted[2], w)
82 | }
83 | }
84 |
85 | func getData() []string {
86 | file, err := os.Open("data.phrase")
87 |
88 | if err != nil {
89 | log.Fatalf("failed to open")
90 |
91 | }
92 | scanner := bufio.NewScanner(file)
93 | scanner.Split(bufio.ScanLines)
94 | var text []string
95 | for scanner.Scan() {
96 | text = append(text, scanner.Text())
97 | }
98 | file.Close()
99 | return text
100 | }
101 |
--------------------------------------------------------------------------------
/examples/float-reducer/README.md:
--------------------------------------------------------------------------------
1 | # Float Reducer
2 |
3 | The FloatReducer examples shows how the encoder works for float slices.
4 | If you need more information on the FloatReducer see docs/encoders.md.
5 |
--------------------------------------------------------------------------------
/examples/float-reducer/main.go:
--------------------------------------------------------------------------------
1 | package main
2 |
3 | import (
4 | "fmt"
5 |
6 | "github.com/breskos/gopher-learn/encoders"
7 | )
8 |
9 | const (
10 | model = "floatreducer"
11 | )
12 |
13 | func main() {
14 | e := encoders.NewEncoder("float reducer test")
15 | input := encoders.NewInput(model, encoders.Floats)
16 | // here we create some data points.
17 | // As you can see dimension 0 and 1 are very much correlated.
18 | // From these data points the float reducer strips one of the dimensions of 0 and 1.
19 | // This FloatReducer is very interesting if you have large float spaces.
20 | // It also erases dimensions that are not necessary because they just deliver one value or no information gain.
21 | input.AddFloats([]float64{1.0, 0.0, 3.7})
22 | input.AddFloats([]float64{2.0, 0.9, 0.3})
23 | input.AddFloats([]float64{3.0, 1.6, 1.3})
24 | input.AddFloats([]float64{4.0, 2.9, 4.2})
25 | e.Scan(model, input, encoders.FloatReducer)
26 | e.Transform(model, input)
27 | e.Explain()
28 | vector := e.Encode(model, encoders.Unified{Float: []float64{1.0, 0.0, 3.7}, Type: encoders.Floats})
29 | fmt.Printf("encoded vector: %v", vector)
30 |
31 | }
32 |
--------------------------------------------------------------------------------
/examples/ngram/README.md:
--------------------------------------------------------------------------------
1 | # NGram
2 |
3 | This example shows you how to use the NGram encoder for srings.
4 | If you need more information on the encoders, visit: docs/encoders.md.
--------------------------------------------------------------------------------
/examples/ngram/main.go:
--------------------------------------------------------------------------------
1 | package main
2 |
3 | import (
4 | "bufio"
5 | "fmt"
6 | "log"
7 | "os"
8 | "strings"
9 |
10 | "github.com/breskos/gopher-learn/encoders"
11 | "github.com/breskos/gopher-learn/engine"
12 | "github.com/breskos/gopher-learn/learn"
13 | neural "github.com/breskos/gopher-learn/net"
14 | "github.com/breskos/gopher-learn/persist"
15 | )
16 |
17 | const (
18 | dataFile = "data.phrase"
19 | delimiter = "#"
20 | tries = 1
21 | epochs = 100
22 | trainingSplit = 0.7
23 | learningRate = 0.4
24 | decay = 0.005
25 | modelName = "answer-type"
26 | )
27 |
28 | /*
29 | Different states to test dictionary
30 |
31 | */
32 | func main() {
33 | data := getData()
34 | e := encoders.NewEncoder("dictionary")
35 | set := encoders.NewInput(modelName, encoders.String)
36 | for _, v := range data {
37 | splitted := strings.Split(v, delimiter)
38 | set.AddString(splitted[0])
39 | }
40 | e.Scan(modelName, set, encoders.Automatic)
41 | e.Transform(modelName, set)
42 | e.Explain()
43 |
44 | // this is just an example how to persist the encoders
45 | persist.EncoderToFile("encoder.json", e)
46 | e2, err := persist.EncoderFromFile("encoder.json")
47 | if err != nil {
48 | log.Fatalf("error persisting encoder: %v", err)
49 | }
50 | fmt.Println("after persisting")
51 | e2.Explain()
52 |
53 | // TODO(abresk) here I noticed that Sample, Set in learn are not optimized to be used in this manner
54 | // They were designed to load samples from file.
55 | // Get vectors for training
56 | output := make(map[string]int)
57 | output["FACT"] = 0
58 | output["PARAGRAPH"] = 1
59 | output["LIST"] = 2
60 | learningSet := learn.NewSet(neural.Classification)
61 | learningSet.AddClass("FACT") // 0
62 | learningSet.AddClass("PARAGRAPH") // 1
63 | learningSet.AddClass("LIST") // 2
64 |
65 | for _, v := range data {
66 | splitted := strings.Split(v, delimiter)
67 | input := encoders.Unified{String: splitted[0]}
68 | vector := e.Encode(modelName, input)
69 | outVec := []float64{0.0, 0.0, 0.0}
70 | outVec[output[splitted[1]]] = 1.0
71 | learningSet.AddSample(learn.NewClassificationSample(vector, outVec, splitted[1]))
72 | }
73 |
74 | // training the network
75 | en := engine.NewEngine(neural.Classification, []int{80}, learningSet)
76 | en.SetVerbose(true)
77 | en.SetConfig(&engine.Config{
78 | Tries: tries,
79 | Epochs: epochs,
80 | TrainingSplit: trainingSplit,
81 | LearningRate: learningRate,
82 | Decay: decay,
83 | })
84 | en.Start(neural.Distance)
85 | network, evaluation := en.GetWinner()
86 | evaluation.PrintSummary("FACT")
87 | fmt.Println()
88 | evaluation.PrintSummary("PARAGRAPH")
89 | fmt.Println()
90 | evaluation.PrintSummary("LIST")
91 |
92 | // testing with own example
93 | vector := e2.Encode(modelName, encoders.Unified{String: "Wieviel Saft ist drin?"})
94 | w := network.CalculateWinnerLabel(vector)
95 | fmt.Printf("%v -> %v\n", "FACT", w)
96 |
97 | vector = e2.Encode(modelName, encoders.Unified{String: "Welche Optionen gibt es um einen Org zu besiegen?"})
98 | w = network.CalculateWinnerLabel(vector)
99 | fmt.Printf("%v -> %v\n", "LIST", w)
100 |
101 | vector = e2.Encode(modelName, encoders.Unified{String: "Was ist ein Haus?"})
102 | w = network.CalculateWinnerLabel(vector)
103 | fmt.Printf("%v -> %v\n", "PARAGRAPH", w)
104 |
105 | vector = e2.Encode(modelName, encoders.Unified{String: "Woraus besteht ein Garten?"})
106 | w = network.CalculateWinnerLabel(vector)
107 | fmt.Printf("%v -> %v\n", "LIST", w)
108 |
109 | }
110 |
111 | func getData() []string {
112 | file, err := os.Open("data.phrase")
113 |
114 | if err != nil {
115 | log.Fatalf("failed to open")
116 |
117 | }
118 | scanner := bufio.NewScanner(file)
119 | scanner.Split(bufio.ScanLines)
120 | var text []string
121 | for scanner.Scan() {
122 | text = append(text, scanner.Text())
123 | }
124 | file.Close()
125 | return text
126 | }
127 |
--------------------------------------------------------------------------------
/examples/online-generator/README.md:
--------------------------------------------------------------------------------
1 | # Input generator for online Learning
2 |
3 | Abstract: In this task a generator generates random data points but with data that can easily be discriminated by the network.
4 |
5 | ## Example
6 |
7 | After starting the example, the generator runs and produces data points for a 2-class problem.
8 | With this we want to show that the network is able to learn from stream data with adapting itself.
9 |
10 | Execute the example using the following command:
11 |
12 | ```
13 | > go run main.go
14 | ```
15 |
--------------------------------------------------------------------------------
/examples/online-generator/main.go:
--------------------------------------------------------------------------------
1 | package main
2 |
3 | import (
4 | "fmt"
5 | "math/rand"
6 | "time"
7 |
8 | "github.com/breskos/gopher-learn/learn"
9 | neural "github.com/breskos/gopher-learn/net"
10 | "github.com/breskos/gopher-learn/online"
11 | )
12 |
13 | const (
14 | classLabelY = "Y"
15 | classLabelN = "N"
16 | numberOfInputs = 7
17 | hiddenNeurons = 30
18 | onlineFile = "online_learner.json"
19 | )
20 |
21 | func main() {
22 | rand.Seed(time.Now().UnixNano())
23 | set := learn.NewSet(neural.Classification)
24 | set.AddClass(classLabelY) // class on index 0
25 | set.AddClass(classLabelN) // class on index 1
26 | classes := []string{classLabelY, classLabelN}
27 | o := online.NewOnline(neural.Classification, numberOfInputs, []int{hiddenNeurons}, set)
28 | // o.SetConfig(&online.Config{}) you can also make use of the Config to fine tune the internals
29 | // you can set Verbose to true to gain more insights
30 | o.SetVerbose(true)
31 | fmt.Printf("set: %v\n", set)
32 | for i := 0; i < 2000; i++ {
33 | class := rand.Intn(2)
34 | classLabel := classes[class]
35 | vector, target := createFeatureVector(classLabel)
36 | // target could also be replaced with: set.GenerateOutputVector(classLabel)
37 | sample := learn.NewClassificationSample(vector, target, classLabel)
38 | // sample := learn.NewClassificationSample(vector, target, classLabel)
39 | // here we inject a new sample from the generator
40 | // if the data points already exists in the set (we are not forcing to override it)
41 | o.Inject(sample, false)
42 | if i%20 == 0 {
43 | o.Iterate() // this function returns the F-Measure of the current state
44 | }
45 | }
46 | // The functions below allow you to save the state of the Online learner to and to read them from file
47 | // in order to continue with the work.
48 | // persist.OnlineToFile(onlineFile, o)
49 | // o, err := persist.OnlineFromFile(onlineFile)
50 | }
51 |
52 | func createFeatureVector(class string) ([]float64, []float64) {
53 | featuresY := []float64{1.0, 3.0, 10.5, 5.0, 4.0, 3.3, 5.2}
54 | featuresN := []float64{1.0, 8.7, 1.3, 3.3, 4.0, 10.1, 5.1}
55 | target := []float64{0.0, 0.0}
56 | var vector []float64
57 | if "Y" == class {
58 | for _, v := range featuresY {
59 | vector = append(vector, (v-1)+rand.Float64()*(v+1))
60 |
61 | }
62 | target[0] = 1.0
63 | } else {
64 | for _, v := range featuresN {
65 | vector = append(vector, (v-1)+rand.Float64()*(v+1))
66 | }
67 | target[1] = 1.0
68 | }
69 | return vector, target
70 | }
71 |
--------------------------------------------------------------------------------
/examples/online-sonar/README.md:
--------------------------------------------------------------------------------
1 | # Sonar Data Set for Online Learning
2 |
3 | Abstract: The task is to train a network to discriminate between sonar signals bounced off a metal cylinder and those bounced off a roughly cylindrical rock.
4 |
5 | Connectionist Bench (Sonar, Mines vs. Rocks) Data Set
6 |
7 | Found here: https://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+%28Sonar%2C+Mines+vs.+Rocks%29
8 |
9 | ## Example
10 |
11 | The data set was also used for the simple sonar example where a basic Multi Layer Perceptron was built.
12 | This example explains the use of the Gopher-Learn online mode.
13 | In contrast to the simple example, where the data was initially given to the network, the data was given piece by piece to the network.
14 | This can be seen as the stream approach.
15 | Data is constantly flowing in and the network has to adapt.
16 |
17 | Execute the example using the following command:
18 |
19 | ```
20 | > go run main.go
21 | ```
22 |
--------------------------------------------------------------------------------
/examples/online-sonar/main.go:
--------------------------------------------------------------------------------
1 | package main
2 |
3 | import (
4 | "fmt"
5 |
6 | "github.com/breskos/gopher-learn/learn"
7 | neural "github.com/breskos/gopher-learn/net"
8 | "github.com/breskos/gopher-learn/online"
9 | "github.com/breskos/gopher-learn/persist"
10 | )
11 |
12 | const (
13 | dataFile = "data.csv"
14 | networkFile = "network.json"
15 | dataSetFile = "set.json"
16 | hiddenNeurons = 30
17 | )
18 |
19 | func main() {
20 | // data from file that we want to stream in
21 | data := learn.NewSet(neural.Classification)
22 | ok, err := data.LoadFromCSV(dataFile)
23 | if !ok || nil != err {
24 | fmt.Printf("something went wrong -> %v", err)
25 | }
26 | // we create an empty set with correct number of inputs and classes
27 | onlineSet := learn.NewSet(neural.Classification)
28 | onlineSet.AddClass("R")
29 | onlineSet.AddClass("M")
30 |
31 | o := online.NewOnline(neural.Classification, len(data.Samples[0].Vector), []int{hiddenNeurons}, onlineSet)
32 | // o.SetConfig(&online.Config{}) you can also make use of the Config to fine tune the internals
33 | o.SetVerbose(true)
34 |
35 | l := len(data.Samples)
36 | for i := 0; i < l; i++ {
37 | o.Inject(data.Samples[i], false)
38 | if i%5 == 0 {
39 | fmt.Printf("\n\nAFTER INJECTING %d samples\n", i)
40 | o.Iterate() // this function also returns the F-Measure
41 |
42 | }
43 | }
44 |
45 | err = persist.SetToFile(dataSetFile, o.Data)
46 | if err != nil {
47 | fmt.Printf("error while saving data set: %v\n", err)
48 | }
49 | err = persist.ToFile(networkFile, o.Network)
50 | if err != nil {
51 | fmt.Printf("error while saving network: %v\n", err)
52 | }
53 |
54 | network2, err := persist.FromFile(networkFile)
55 | if err != nil {
56 | fmt.Printf("error while loading network: %v\n", err)
57 | }
58 |
59 | w := network2.CalculateWinnerLabel(data.Samples[0].Vector)
60 | fmt.Printf("%v -> %v\n", data.Samples[0].Label, w)
61 | w = network2.CalculateWinnerLabel(data.Samples[70].Vector)
62 | fmt.Printf("%v -> %v\n", data.Samples[70].Label, w)
63 | w = network2.CalculateWinnerLabel(data.Samples[120].Vector)
64 | fmt.Printf("%v -> %v\n", data.Samples[120].Label, w)
65 | }
66 |
--------------------------------------------------------------------------------
/examples/sonar/README.md:
--------------------------------------------------------------------------------
1 | # Sonar Data Set
2 |
3 | Abstract: The task is to train a network to discriminate between sonar signals bounced off a metal cylinder and those bounced off a roughly cylindrical rock.
4 |
5 | Connectionist Bench (Sonar, Mines vs. Rocks) Data Set
6 |
7 | Found here: https://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+%28Sonar%2C+Mines+vs.+Rocks%29
8 |
9 | ## Example
10 |
11 | In this example a data set was used to demonstrate
12 | * a MLP with 100 hidden neurons
13 | * that uses CriterionDistance to decide for the best model
14 | * gives a summary of the training
15 | * and persists the file
16 |
17 | Below the command line output can be seen.
18 | ```
19 | > go run main.go
20 |
21 | ...
22 |
23 | summary for class R
24 | * TP: 23 TN: 30 FP: 0 FN: 8
25 | * Recall/Sensitivity: 0.7419354838709677
26 | * Precision: 1
27 | * Fallout/FalsePosRate: 0
28 | * False Discovey Rate: 0
29 | * Negative Prediction Rate: 0.7894736842105263
30 | --
31 | * Accuracy: 0.8688524590163934
32 | * F-Measure: 0.8518518518518519
33 | * Balanced Accuracy: 0.8709677419354839
34 | * Informedness: 0.7419354838709677
35 | * Markedness: 0.7894736842105263
36 |
37 | summary for class M
38 | * TP: 30 TN: 23 FP: 8 FN: 0
39 | * Recall/Sensitivity: 1
40 | * Precision: 0.7894736842105263
41 | * Fallout/FalsePosRate: 0.25806451612903225
42 | * False Discovey Rate: 0.21052631578947367
43 | * Negative Prediction Rate: 1
44 | --
45 | * Accuracy: 0.8688524590163934
46 | * F-Measure: 0.8823529411764706
47 | * Balanced Accuracy: 0.8709677419354839
48 | * Informedness: 0.7419354838709677
49 | * Markedness: 0.7894736842105263
50 | ```
51 |
--------------------------------------------------------------------------------
/examples/sonar/main.go:
--------------------------------------------------------------------------------
1 | package main
2 |
3 | import (
4 | "fmt"
5 |
6 | "github.com/breskos/gopher-learn/engine"
7 | "github.com/breskos/gopher-learn/learn"
8 | "github.com/breskos/gopher-learn/net"
9 | "github.com/breskos/gopher-learn/persist"
10 | )
11 |
12 | const (
13 | dataFile = "data.csv"
14 | networkFile = "network.json"
15 | dataSetFile = "set.json"
16 | tries = 1
17 | epochs = 100
18 | trainingSplit = 0.7
19 | learningRate = 0.4
20 | decay = 0.005
21 | )
22 |
23 | func main() {
24 | data := learn.NewSet(net.Classification)
25 | ok, err := data.LoadFromCSV(dataFile)
26 | if !ok || nil != err {
27 | fmt.Printf("something went wrong -> %v", err)
28 | }
29 | e := engine.NewEngine(net.Classification, []int{100}, data)
30 | e.SetVerbose(true)
31 | e.SetConfig(&engine.Config{
32 | Tries: tries,
33 | Epochs: epochs,
34 | TrainingSplit: trainingSplit,
35 | LearningRate: learningRate,
36 | Decay: decay,
37 | })
38 | e.Start(net.Distance)
39 | network, evaluation := e.GetWinner()
40 |
41 | evaluation.PrintSummary("R")
42 | fmt.Println()
43 | evaluation.PrintSummary("M")
44 |
45 | err = persist.SetToFile(dataSetFile, data)
46 | if err != nil {
47 | fmt.Printf("error while saving data set: %v\n", err)
48 | }
49 | err = persist.ToFile(networkFile, network)
50 | if err != nil {
51 | fmt.Printf("error while saving network: %v\n", err)
52 | }
53 |
54 | network2, err := persist.FromFile(networkFile)
55 | if err != nil {
56 | fmt.Printf("error while loading network: %v\n", err)
57 | }
58 | data2, err := persist.SetFromFile(dataSetFile)
59 | if err != nil {
60 | fmt.Printf("error while loading data set from file: %v\n", err)
61 | }
62 |
63 | w := network2.CalculateWinnerLabel(data2.Samples[0].Vector)
64 | fmt.Printf("%v -> %v\n", data2.Samples[0].Label, w)
65 | w = network2.CalculateWinnerLabel(data.Samples[70].Vector)
66 | fmt.Printf("%v -> %v\n", data2.Samples[70].Label, w)
67 | w = network2.CalculateWinnerLabel(data.Samples[120].Vector)
68 | fmt.Printf("%v -> %v\n", data2.Samples[120].Label, w)
69 |
70 | // print confusion matrix
71 | fmt.Println(" * Confusion Matrix *")
72 | evaluation.PrintConfusionMatrix()
73 | }
74 |
--------------------------------------------------------------------------------
/examples/wine-quality/README.md:
--------------------------------------------------------------------------------
1 | # Wine quality
2 |
3 | Abstract: Two datasets are included, related to red and white vinho verde wine samples, from the north of Portugal. The goal is to model wine quality based on physicochemical tests (see [Cortez et al., 2009]).
4 | http://archive.ics.uci.edu/ml/datasets/Wine+Quality
5 |
6 | ## Data
7 | |fixed acidity|volatile acidity|citric acid|residual sugar|chlorides|free sulfur dioxide|total sulfur dioxide|density|pH|sulphates|alcohol|__quality__|
8 | |-------------|----------------|-----------|--------------|---------|-------------------|--------------------|-------|--|---------|-------|-------|
9 | |7|0.27|0.36|20.7|0.045|45|170|1.001|3|0.45|8.8|6|
10 | |6.3|0.3|0.34|1.6|0.049|14|132|0.994|3.3|0.49|9.5|6|
11 | |8.1|0.28|0.4|6.9|0.05|30|97|0.9951|3.26|0.44|10.1|6|
12 |
13 |
14 |
15 | ## Example
16 | This example demonstrate the application of a regressor:
17 | * with 100 epochs, 70 percent training data, 0.9 learning with 0.001 decay
18 | * Regression threshold of 0.2
19 | * 100 hidden neurons
20 |
21 | ## Learning
22 | The learning here is that the regressor decides between correct vs. wrong classified using a threshold. You can change this threshold to bring more tolerance to the system.
23 |
24 | ## Source
25 | Paulo Cortez, University of Minho, Guimarães, Portugal, http://www3.dsi.uminho.pt/pcortez
26 | A. Cerdeira, F. Almeida, T. Matos and J. Reis, Viticulture Commission of the Vinho Verde Region(CVRVV), Porto, Portugal
27 | @2009
28 |
--------------------------------------------------------------------------------
/examples/wine-quality/main.go:
--------------------------------------------------------------------------------
1 | package main
2 |
3 | import (
4 | "fmt"
5 |
6 | "github.com/breskos/gopher-learn/engine"
7 | "github.com/breskos/gopher-learn/learn"
8 | neural "github.com/breskos/gopher-learn/net"
9 | "github.com/breskos/gopher-learn/persist"
10 | )
11 |
12 | const (
13 | dataFile = "winequality-red.csv"
14 | networkFile = "network.json"
15 | tries = 1
16 | epochs = 200
17 | trainingSplit = 0.8
18 | learningRate = 0.02
19 | decay = 0.001
20 | hiddenNeurons = 50
21 | regressionThreshold = 0.04 // helps evaluation to define between wrong or right
22 | )
23 |
24 | func main() {
25 | data := learn.NewSet(neural.Regression)
26 | ok, err := data.LoadFromCSV(dataFile)
27 | if !ok || nil != err {
28 | fmt.Printf("something went wrong -> %v", err)
29 | }
30 | e := engine.NewEngine(neural.Regression, []int{hiddenNeurons}, data)
31 | e.SetVerbose(true)
32 | e.SetConfig(&engine.Config{
33 | Tries: tries,
34 | Epochs: epochs,
35 | TrainingSplit: trainingSplit,
36 | LearningRate: learningRate,
37 | Decay: decay,
38 | RegressionThreshold: 0.04,
39 | })
40 | // here we ware choosing Distance because we want the regressor that produces the best examples
41 | e.Start(neural.Distance)
42 | network, evaluation := e.GetWinner()
43 |
44 | // regression evaluation
45 | evaluation.PrintRegressionSummary()
46 |
47 | err = persist.ToFile(networkFile, network)
48 | if err != nil {
49 | fmt.Printf("error while saving network: %v\n", err)
50 | }
51 | // persisted network
52 | network2, err := persist.FromFile(networkFile)
53 | if err != nil {
54 | fmt.Printf("error while loading network: %v\n", err)
55 | }
56 |
57 | // some examples
58 | w := network2.Calculate(data.Samples[0].Vector)
59 | fmt.Printf("%v -> %v\n", data.Samples[0].Value, w)
60 | w = network2.Calculate(data.Samples[52].Vector)
61 | fmt.Printf("%v -> %v\n", data.Samples[52].Value, w)
62 | w = network2.Calculate(data.Samples[180].Vector)
63 | fmt.Printf("%v -> %v\n", data.Samples[189].Value, w)
64 | }
65 |
--------------------------------------------------------------------------------
/learn/learn.go:
--------------------------------------------------------------------------------
1 | package learn
2 |
3 | import neural "github.com/breskos/gopher-learn/net"
4 |
5 | // Deltas holds the deltas from the learner
6 | type Deltas [][]float64
7 |
8 | // Learner learns all samples and applies backprop on the network
9 | func Learner(n *neural.Network, samples []Sample, speed float64) {
10 | for sample := range samples {
11 | Learn(n, samples[sample].Vector, samples[sample].Output, speed)
12 | }
13 | }
14 |
15 | // Learn applies backprop on the network
16 | func Learn(n *neural.Network, in, ideal []float64, speed float64) {
17 | Backpropagation(n, in, ideal, speed)
18 | }
19 |
20 | // Backpropagation uses backprop on the network
21 | func Backpropagation(n *neural.Network, in, ideal []float64, speed float64) {
22 | n.Calculate(in)
23 |
24 | deltas := make([][]float64, len(n.Layers))
25 |
26 | last := len(n.Layers) - 1
27 | l := n.Layers[last]
28 | deltas[last] = make([]float64, len(l.Neurons))
29 | for i, n := range l.Neurons {
30 | deltas[last][i] = n.Out * (1 - n.Out) * (ideal[i] - n.Out)
31 | }
32 |
33 | for i := last - 1; i >= 0; i-- {
34 | l := n.Layers[i]
35 | deltas[i] = make([]float64, len(l.Neurons))
36 | for j, n := range l.Neurons {
37 | sum := 0.0
38 | for k, s := range n.OutSynapses {
39 | sum += s.Weight * deltas[i+1][k]
40 | }
41 | deltas[i][j] = n.Out * (1 - n.Out) * sum
42 | }
43 | }
44 |
45 | for i, l := range n.Layers {
46 | for j, n := range l.Neurons {
47 | for _, s := range n.InSynapses {
48 | s.Weight += speed * deltas[i][j] * s.In
49 | }
50 | }
51 | }
52 |
53 | }
54 |
--------------------------------------------------------------------------------
/learn/samples.go:
--------------------------------------------------------------------------------
1 | package learn
2 |
3 | import (
4 | "bufio"
5 | "crypto/md5"
6 | "encoding/hex"
7 | "fmt"
8 | "math/rand"
9 | "os"
10 | "strconv"
11 | "strings"
12 | )
13 |
14 | const (
15 | hashSeperator = "#"
16 | )
17 |
18 | // Sample holds the sample data, value is just used for regression annotation
19 | type Sample struct {
20 | Vector []float64
21 | Output []float64
22 | Value float64
23 | VectorHash string
24 | OutputHash string
25 | Label string
26 | ClassNumber int
27 | }
28 |
29 | // NewClassificationSample creates a new sample data point for classification
30 | func NewClassificationSample(vector, output []float64, classLabel string) *Sample {
31 | sample := &Sample{
32 | Vector: vector,
33 | Output: output,
34 | Label: classLabel,
35 | }
36 | sample.UpdateHashes()
37 | return sample
38 | }
39 |
40 | // NewRegressionSample creates a new sample data point for classification
41 | func NewRegressionSample(vector []float64, output float64, classLabel string) *Sample {
42 | sample := &Sample{
43 | Vector: vector,
44 | Value: output,
45 | Label: classLabel,
46 | }
47 | sample.UpdateHashes()
48 | return sample
49 | }
50 |
51 | // Splits the Set based on the given ratio
52 | func splitSamples(set *Set, ratio float64) (Set, Set) {
53 | normalizedRatio := int(ratio * 100.0)
54 | firstSet := Set{
55 | Samples: make([]*Sample, 0),
56 | ClassToLabel: set.ClassToLabel,
57 | }
58 | secondSet := Set{
59 | Samples: make([]*Sample, 0),
60 | ClassToLabel: set.ClassToLabel,
61 | }
62 | for i := range set.Samples {
63 | if rand.Intn(100) <= normalizedRatio {
64 | firstSet.Samples = append(firstSet.Samples, set.Samples[i])
65 | } else {
66 | secondSet.Samples = append(secondSet.Samples, set.Samples[i])
67 | }
68 | }
69 | return firstSet, secondSet
70 | }
71 |
72 | // UpdateHashes updates hashes of vector and output vector
73 | func (s *Sample) UpdateHashes() {
74 | text := ""
75 | for k, v := range s.Vector {
76 | text += fmt.Sprintf("%v:%v;", k, v)
77 | }
78 | s.VectorHash = calculateHash(text)
79 | text = ""
80 | for k, v := range s.Label {
81 | text += fmt.Sprintf("%v:%v;", k, v)
82 |
83 | }
84 | text += fmt.Sprintf("%v", s.Value)
85 | s.OutputHash = calculateHash(text)
86 | }
87 |
88 | // GetHash calculates the has of feature vector and output and returns it
89 | func (s *Sample) GetHash() string {
90 | if s.OutputHash == "" || s.VectorHash == "" {
91 | s.UpdateHashes()
92 | }
93 | return s.VectorHash + hashSeperator + s.OutputHash
94 | }
95 |
96 | // Calculates a hash value
97 | func calculateHash(text string) string {
98 | hash := md5.Sum([]byte(text))
99 | return hex.EncodeToString(hash[:])
100 | }
101 |
102 | // Loads a SVM Problem file
103 | func problemToMap(problem string) (map[int]float64, string, error) {
104 | sliced := strings.Split(problem, " ")
105 | m := make(map[int]float64)
106 | label := sliced[0]
107 | features := sliced[1:len(sliced)]
108 | for feature := range features {
109 | if features[feature] == "" {
110 | continue
111 | }
112 | splitted := strings.Split(features[feature], ":")
113 | idx, errIdx := strconv.Atoi(splitted[0])
114 | value, errVal := strconv.ParseFloat(splitted[1], 64)
115 | if errIdx == nil && errVal == nil {
116 | m[idx] = value
117 | }
118 | }
119 | return m, label, nil
120 | }
121 |
122 | // this function returns the highest index found
123 | func scanSamples(path string) int {
124 | highest := 0
125 | file, err := os.Open(path)
126 | if err != nil {
127 | fmt.Println("error while opening file")
128 | os.Exit(-1)
129 | }
130 | defer file.Close()
131 | scanner := bufio.NewScanner(file)
132 | for scanner.Scan() {
133 | m, _, err := problemToMap(scanner.Text())
134 | if err != nil {
135 | fmt.Printf("error while scanning files: %v", err)
136 | os.Exit(-1)
137 | }
138 | for k := range m {
139 | if k > highest {
140 | highest = k
141 | }
142 | }
143 | }
144 | return highest
145 | }
146 |
--------------------------------------------------------------------------------
/learn/set.go:
--------------------------------------------------------------------------------
1 | package learn
2 |
3 | import (
4 | "bufio"
5 | "encoding/csv"
6 | "errors"
7 | "fmt"
8 | "io"
9 | "os"
10 | "strconv"
11 |
12 | neural "github.com/breskos/gopher-learn/net"
13 | )
14 |
15 | const (
16 | maxActivation = 1.0
17 | minActivation = 0.0
18 | labelRegressor = "output"
19 |
20 | errUsageTypeNotMatching = "usage type not matching"
21 | errClassLabelNotFound = "class label not found in set"
22 | )
23 |
24 | // Set holds the samples and the output labels
25 | type Set struct {
26 | Samples []*Sample
27 | VectorHashes []string
28 | OutputHashes []string
29 | ClassToLabel map[int]string
30 | Usage neural.NetworkType
31 | }
32 |
33 | // NewSet creates a new set of empty data samples
34 | func NewSet(usage neural.NetworkType) *Set {
35 | return &Set{
36 | Samples: make([]*Sample, 0),
37 | ClassToLabel: make(map[int]string),
38 | Usage: usage,
39 | }
40 | }
41 |
42 | // AddClass returns the classes in the set
43 | func (s *Set) AddClass(label string) (bool, error) {
44 | if s.Usage != neural.Classification {
45 | return false, fmt.Errorf(errUsageTypeNotMatching)
46 | }
47 | l := len(s.ClassToLabel)
48 | s.ClassToLabel[l] = label
49 | return true, nil
50 | }
51 |
52 | // GetClasses returns the classes in the set
53 | func (s *Set) GetClasses() []string {
54 | classes := make([]string, len(s.ClassToLabel))
55 | for k, v := range s.ClassToLabel {
56 | classes[k] = v
57 | }
58 | return classes
59 | }
60 |
61 | // Adds a vector with the corresponding output to the data set
62 | func (s *Set) add(vector, output []float64, label string, classNumber int, value float64) {
63 | sample := &Sample{}
64 | sample.Vector = vector
65 | sample.Output = output
66 | sample.Label = label
67 | sample.ClassNumber = classNumber
68 | sample.Value = value
69 | sample.UpdateHashes()
70 | // register hashes in data set
71 | s.VectorHashes = append(s.VectorHashes, sample.VectorHash)
72 | s.OutputHashes = append(s.OutputHashes, sample.OutputHash)
73 | s.Samples = append(s.Samples, sample)
74 | }
75 |
76 | // AddSample adds samples to the set
77 | func (s *Set) AddSample(sample *Sample) error {
78 | index, err := s.getClassIndex(sample.Label)
79 | if err != nil {
80 | return err
81 | }
82 | sample.ClassNumber = index
83 | sample.UpdateHashes()
84 | s.VectorHashes = append(s.VectorHashes, sample.VectorHash)
85 | s.OutputHashes = append(s.OutputHashes, sample.OutputHash)
86 | s.Samples = append(s.Samples, sample)
87 | return nil
88 | }
89 |
90 | // Returns the label from a given class number
91 | func (s *Set) getLabelFromClass(number int) (string, bool) {
92 | if val, ok := s.ClassToLabel[number]; ok {
93 | return val, true
94 | }
95 | return "", false
96 | }
97 |
98 | // Returns the class from the corresponding label
99 | func (s *Set) getClassFromLabel(label string) (int, bool) {
100 | for k, v := range s.ClassToLabel {
101 | if v == label {
102 | return k, true
103 | }
104 | }
105 | return -1, false
106 | }
107 |
108 | // Shows the distribution of the data set by the label
109 | func (s *Set) distributionByLabel(label string) map[string]int {
110 | if s.Usage == neural.Classification {
111 | dist := make(map[string]int)
112 | for sample := range s.Samples {
113 | c := s.Samples[sample].Label
114 | if _, ok := dist[c]; ok {
115 | dist[c]++
116 | } else {
117 | dist[c] = 1
118 | }
119 | }
120 | return dist
121 | }
122 | return nil
123 | }
124 |
125 | // Shows the distribution by class number of a the data set
126 | func (s *Set) distributionByClassNumber(number int) map[int]int {
127 | if s.Usage == neural.Classification {
128 | dist := make(map[int]int)
129 | for sample := range s.Samples {
130 | c := s.Samples[sample].ClassNumber
131 | if _, ok := dist[c]; ok {
132 | dist[c]++
133 | } else {
134 | dist[c] = 1
135 | }
136 | }
137 | return dist
138 | }
139 | return nil
140 | }
141 |
142 | // LoadFromCSV where the last dimension is the label
143 | func (s *Set) LoadFromCSV(path string) (bool, error) {
144 | classNumbers := make(map[string]int)
145 | classNumber := 0
146 | f, err := os.Open(path)
147 | if err != nil {
148 | return false, fmt.Errorf("error while open file: %v", path)
149 | }
150 | defer f.Close()
151 | r := csv.NewReader(bufio.NewReader(f))
152 | for {
153 | record, err := r.Read()
154 | if err == io.EOF {
155 | break
156 | }
157 | l := len(record)
158 | sample := &Sample{}
159 | sample.Vector = make([]float64, l-1)
160 | if s.Usage == neural.Regression {
161 | regression, err := strconv.ParseFloat(record[l-1], 64)
162 | if err == nil {
163 | sample.Value = regression
164 | }
165 | } else if s.Usage == neural.Classification {
166 | sample.Label = record[l-1]
167 | if _, ok := classNumbers[sample.Label]; !ok {
168 | classNumbers[sample.Label] = classNumber
169 | classNumber++
170 | }
171 | }
172 | for value := range record {
173 | if value < l-1 {
174 | f, err := strconv.ParseFloat(record[value], 64)
175 | if err != nil {
176 | return false, fmt.Errorf("failed to parse float %v with error: %v", record[value], err)
177 | }
178 | sample.Vector[value] = f
179 | }
180 | }
181 | sample.UpdateHashes()
182 | // register hashes in data set
183 | s.VectorHashes = append(s.VectorHashes, sample.VectorHash)
184 | s.OutputHashes = append(s.OutputHashes, sample.OutputHash)
185 | s.Samples = append(s.Samples, sample)
186 | }
187 | s.createClassToLabel(classNumbers)
188 | s.addOutputVectors()
189 | return true, nil
190 | }
191 |
192 | // Adds the output vectors for the 2 cases classification or regression
193 | func (s *Set) addOutputVectors() {
194 | if s.Usage == neural.Classification {
195 | dim := len(s.ClassToLabel)
196 | for sample := range s.Samples {
197 | v := make([]float64, dim)
198 | v[s.Samples[sample].ClassNumber] = maxActivation
199 | s.Samples[sample].Output = v
200 | }
201 | } else if s.Usage == neural.Regression {
202 | for sample := range s.Samples {
203 | s.Samples[sample].Output = make([]float64, 1)
204 | s.Samples[sample].Output[0] = s.Samples[sample].Value
205 | }
206 | }
207 | }
208 |
209 | // Creats a class to the label and adding it to the set
210 | func (s *Set) createClassToLabel(mapping map[string]int) {
211 | s.ClassToLabel = make(map[int]string)
212 | if neural.Classification == s.Usage {
213 | for k, v := range mapping {
214 | s.ClassToLabel[v] = k
215 | }
216 | for i := range s.Samples {
217 | s.Samples[i].ClassNumber = mapping[s.Samples[i].Label]
218 | }
219 | } else {
220 | s.ClassToLabel[0] = labelRegressor
221 | }
222 |
223 | }
224 |
225 | // SampleExists looks up in the set if the presented example already exists
226 | func (s *Set) SampleExists(test *Sample) bool {
227 | if test.VectorHash == "" {
228 | test.UpdateHashes()
229 | }
230 | for _, vector := range s.VectorHashes {
231 | if vector == test.VectorHash {
232 | return true
233 | }
234 | }
235 | return false
236 | }
237 |
238 | // LoadFromSVMFile load data from an svm problem file
239 | func (s *Set) LoadFromSVMFile(path string) (bool, error) {
240 | classNumbers := make(map[string]int)
241 | classNumber := 0
242 | highestIndex := scanSamples(path)
243 | file, err := os.Open(path)
244 | if err != nil {
245 | return false, fmt.Errorf("error while opening file")
246 | }
247 | defer file.Close()
248 | scanner := bufio.NewScanner(file)
249 | for scanner.Scan() {
250 | line := scanner.Text()
251 | m, label, err := problemToMap(line)
252 | if err != nil {
253 | return false, fmt.Errorf("error while scanning files: %v", err)
254 | }
255 | sample := &Sample{}
256 | sample.Vector = make([]float64, highestIndex)
257 | sample.Label = label
258 | regression, err := strconv.ParseFloat(label, 64)
259 | if err != nil {
260 | sample.Value = regression
261 | }
262 | if _, ok := classNumbers[sample.Label]; !ok {
263 | classNumbers[sample.Label] = classNumber
264 | classNumber++
265 | }
266 | for i := 0; i < highestIndex; i++ {
267 | if val, ok := m[i]; ok {
268 | sample.Vector[i] = val
269 | } else {
270 | sample.Vector[i] = 0.0
271 | }
272 | }
273 | sample.UpdateHashes()
274 | // register hashes in data set
275 | s.VectorHashes = append(s.VectorHashes, sample.VectorHash)
276 | s.OutputHashes = append(s.OutputHashes, sample.OutputHash)
277 | s.Samples = append(s.Samples, sample)
278 | }
279 | return true, nil
280 | }
281 |
282 | // GenerateOutputVector generates the output vector for a classification task and a specific label
283 | func (s *Set) GenerateOutputVector(label string) []float64 {
284 | var output []float64
285 | for _, v := range s.ClassToLabel {
286 | if v == label {
287 | output = append(output, maxActivation)
288 | } else {
289 | output = append(output, minActivation)
290 | }
291 | }
292 | return output
293 | }
294 |
295 | // Returns the class index of a string label
296 | func (s *Set) getClassIndex(label string) (int, error) {
297 | for k, v := range s.ClassToLabel {
298 | if label == v {
299 | return k, nil
300 | }
301 | }
302 | return 0, errors.New(errUsageTypeNotMatching)
303 | }
304 |
--------------------------------------------------------------------------------
/net/activation_func.go:
--------------------------------------------------------------------------------
1 | package net
2 |
3 | import "math"
4 |
5 | // ActivationFunction function definition of activation functions
6 | type ActivationFunction func(float64) float64
7 |
8 | // NewLogisticFunc applies and returns the Logistic function
9 | func NewLogisticFunc(a float64) ActivationFunction {
10 | return func(x float64) float64 {
11 | return LogisticFunc(x, a)
12 | }
13 | }
14 |
15 | // LogisticFunc returns the value of the logistic function for x and a
16 | func LogisticFunc(x, a float64) float64 {
17 | return 1 / (1 + math.Exp(-a*x))
18 | }
19 |
--------------------------------------------------------------------------------
/net/activation_function_test.go:
--------------------------------------------------------------------------------
1 | package net
2 |
3 | import (
4 | "testing"
5 | )
6 |
7 | // TestLogisticFunc tests the activation function
8 | func TestLogisticFunc(t *testing.T) {
9 | f := NewLogisticFunc(1)
10 |
11 | if f(0) != 0.5 {
12 | t.Errorf("f(0) not equal 0.5")
13 | }
14 | if 1-f(6) <= 0 {
15 | t.Errorf("1-f(6) not > 0")
16 | }
17 | if 1-f(6) >= 0.1 {
18 | t.Errorf("1-f(6) not < 0.1")
19 | }
20 | }
21 |
--------------------------------------------------------------------------------
/net/enter.go:
--------------------------------------------------------------------------------
1 | package net
2 |
3 | // Enter represents the input vector that comes into the network
4 | type Enter struct {
5 | OutSynapses []*Synapse
6 | Input float64 `json:"-"`
7 | }
8 |
9 | // NewEnter creates a new Enter
10 | func NewEnter() *Enter {
11 | return &Enter{}
12 | }
13 |
14 | // SynapseTo creates a new Synapse to a Neuron from the next layer
15 | func (e *Enter) SynapseTo(nTo *Neuron, weight float64) {
16 | syn := NewSynapse(weight)
17 |
18 | e.OutSynapses = append(e.OutSynapses, syn)
19 | nTo.InSynapses = append(nTo.InSynapses, syn)
20 | }
21 |
22 | // SetInput sets the input the specific enter
23 | func (e *Enter) SetInput(val float64) {
24 | e.Input = val
25 | }
26 |
27 | // ConnectTo connects the Enter to the next layer (to the neurons)
28 | func (e *Enter) ConnectTo(layer *Layer) {
29 | for _, n := range layer.Neurons {
30 | e.SynapseTo(n, 0)
31 | }
32 | }
33 |
34 | // Signal passes the signal into the network
35 | func (e *Enter) Signal() {
36 | for _, s := range e.OutSynapses {
37 | s.Signal(e.Input)
38 | }
39 | }
40 |
--------------------------------------------------------------------------------
/net/layer.go:
--------------------------------------------------------------------------------
1 | package net
2 |
3 | // A layer is a structure that holds the neurons with their corresponding
4 | // synapses. Here also the activation of the neurons is calculated.
5 |
6 | // NewLayer creats a new layer with the number of neurons given.
7 | func NewLayer(neurons int) *Layer {
8 | l := &Layer{}
9 | l.init(neurons)
10 | return l
11 | }
12 |
13 | // Layer holds the neurons with their synapse connections
14 | type Layer struct {
15 | Neurons []*Neuron
16 | }
17 |
18 | // ConnectTo is used to connect the neurons of one layer with the neurons of
19 | // another layer.
20 | func (l *Layer) ConnectTo(layer *Layer) {
21 | for _, n := range l.Neurons {
22 | for _, toN := range layer.Neurons {
23 | n.SynapseTo(toN, 0)
24 | }
25 | }
26 | }
27 |
28 | // Initializes the new Layer with the given number of neurons
29 | func (l *Layer) init(neurons int) {
30 | for ; neurons > 0; neurons-- {
31 | l.addNeuron()
32 | }
33 | }
34 |
35 | // Adds a new neuron to the layer
36 | func (l *Layer) addNeuron() {
37 | n := NewNeuron()
38 | l.Neurons = append(l.Neurons, n)
39 | }
40 |
41 | // Calculate the a activation of the current layer
42 | func (l *Layer) Calculate() {
43 | for _, n := range l.Neurons {
44 | n.Calculate()
45 | }
46 | }
47 |
--------------------------------------------------------------------------------
/net/layer_test.go:
--------------------------------------------------------------------------------
1 | package net
2 |
3 | import (
4 | "testing"
5 | )
6 |
7 | // TestLayer creates a layer with 5 neurons and tests if it was successful
8 | func TestLayer(t *testing.T) {
9 | l := NewLayer(5)
10 | if len(l.Neurons) != 5 {
11 | t.Errorf("len of Neurons not 5")
12 | }
13 | }
14 |
15 | // TestConnectToLayer creates two layers and tries to connect both of them
16 | func TestConnectToLayer(t *testing.T) {
17 | count := 5
18 | l := NewLayer(count)
19 | l2 := NewLayer(count)
20 |
21 | l.ConnectTo(l2)
22 |
23 | for _, n := range l.Neurons {
24 | if len(n.OutSynapses) != count {
25 | t.Errorf("out synapses are not equal %d", count)
26 | }
27 | }
28 | }
29 |
--------------------------------------------------------------------------------
/net/network.go:
--------------------------------------------------------------------------------
1 | package net
2 |
3 | import (
4 | "fmt"
5 | "math/rand"
6 | )
7 |
8 | // Criterion is needed to decide if the Engine found a better working network.
9 | // It functions as decider during the training.
10 | type Criterion int
11 |
12 | const (
13 | // Accuracy decides evaluation by accuracy
14 | Accuracy Criterion = iota
15 | // BalancedAccuracy decides evaluation by balanced accuracy
16 | BalancedAccuracy
17 | // FMeasure decides evaluation by f-measure
18 | FMeasure
19 | // Simple decides on simple wrong/correct ratio
20 | Simple
21 | // Distance decides evaluation by distance to ideal output
22 | Distance
23 | )
24 |
25 | // Network contains all the necessary information to use the neural network
26 | type Network struct {
27 | Enters []*Enter
28 | Layers []*Layer
29 | Out []float64 `json:"-"`
30 | OutLabels map[int]string
31 | }
32 |
33 | // NewNetwork creates a new neural network
34 | func NewNetwork(in int, layers []int, labels map[int]string) *Network {
35 | n := &Network{
36 | Enters: make([]*Enter, 0, in),
37 | Layers: make([]*Layer, 0, len(layers)),
38 | OutLabels: labels,
39 | }
40 | n.init(in, layers, NewLogisticFunc(1))
41 | return n
42 | }
43 |
44 | // Initializes the Network with the given layers and activation function.
45 | func (n *Network) init(in int, layers []int, aFunc ActivationFunction) {
46 | n.initLayers(layers)
47 | n.initEnters(in)
48 | n.ConnectLayers()
49 | n.ConnectEnters()
50 | n.SetActivationFunction(aFunc)
51 | }
52 |
53 | // Initializes the Layers with the given count of neurons as well as
54 | // creating all the synapses necessary.
55 | func (n *Network) initLayers(layers []int) {
56 | for _, count := range layers {
57 | layer := NewLayer(count)
58 | n.Layers = append(n.Layers, layer)
59 | }
60 | }
61 |
62 | // Intializes the Enters (size of feature vector) that enters the network.
63 | func (n *Network) initEnters(in int) {
64 | for ; in > 0; in-- {
65 | e := NewEnter()
66 | n.Enters = append(n.Enters, e)
67 | }
68 | }
69 |
70 | // ConnectLayers connects all layers with corresponding neurons
71 | func (n *Network) ConnectLayers() {
72 | for i := len(n.Layers) - 1; i > 0; i-- {
73 | n.Layers[i-1].ConnectTo(n.Layers[i])
74 | }
75 | }
76 |
77 | // ConnectEnters connects the input neurons with the first hidden layer
78 | func (n *Network) ConnectEnters() {
79 | for _, e := range n.Enters {
80 | e.ConnectTo(n.Layers[0])
81 | }
82 | }
83 |
84 | // SetActivationFunction sets the activation function for the network
85 | func (n *Network) SetActivationFunction(aFunc ActivationFunction) {
86 | for _, l := range n.Layers {
87 | for _, n := range l.Neurons {
88 | n.SetActivationFunction(aFunc)
89 | }
90 | }
91 | }
92 |
93 | // Set the current feature vector for the network
94 | func (n *Network) setEnters(v *[]float64) {
95 | values := *v
96 | if len(values) != len(n.Enters) {
97 | panic(fmt.Sprint("Enters count ( ", len(n.Enters), " ) != count of elements in SetEnters function argument ( ", len(values), " ) ."))
98 | }
99 |
100 | for i, e := range n.Enters {
101 | e.Input = values[i]
102 | }
103 |
104 | }
105 |
106 | // This function sends the current feature vector to the network
107 | func (n *Network) sendEnters() {
108 | for _, e := range n.Enters {
109 | e.Signal()
110 | }
111 | }
112 |
113 | // Used during forward calculation through the network
114 | func (n *Network) calculateLayers() {
115 | for _, l := range n.Layers {
116 | l.Calculate()
117 | }
118 | }
119 |
120 | // Generates the output from the neurons
121 | func (n *Network) generateOut() {
122 | outL := n.Layers[len(n.Layers)-1]
123 | n.Out = make([]float64, len(outL.Neurons))
124 |
125 | for i, neuron := range outL.Neurons {
126 | n.Out[i] = neuron.Out
127 | }
128 | }
129 |
130 | // Calculate calculates the result of a input vector
131 | func (n *Network) Calculate(enters []float64) []float64 {
132 | n.setEnters(&enters)
133 | n.sendEnters()
134 | n.calculateLayers()
135 | n.generateOut()
136 |
137 | return n.Out
138 | }
139 |
140 | // CalculateLabels output with all labels of output neurons
141 | func (n *Network) CalculateLabels(enters []float64) map[string]float64 {
142 | results := make(map[string]float64)
143 | out := n.Calculate(enters)
144 | for index, label := range n.OutLabels {
145 | results[label] = out[index]
146 | }
147 | return results
148 | }
149 |
150 | // CalculateWinnerLabel calculates the output and just returns the label of the winning euron
151 | func (n *Network) CalculateWinnerLabel(enters []float64) string {
152 | calculatedLabels := n.CalculateLabels(enters)
153 | winnerValue := 0.0
154 | winnerLabel := ""
155 | for label, value := range calculatedLabels {
156 | if value > winnerValue {
157 | winnerValue = value
158 | winnerLabel = label
159 | }
160 | }
161 | return winnerLabel
162 | }
163 |
164 | // RandomizeSynapses applies a random value to all synapses
165 | func (n *Network) RandomizeSynapses() {
166 | for _, l := range n.Layers {
167 | for _, n := range l.Neurons {
168 | for _, s := range n.InSynapses {
169 | s.Weight = 2 * (rand.Float64() - 0.5)
170 | }
171 | }
172 | }
173 | }
174 |
175 | // BuildNetwork builds a neural network from parameters given
176 | func BuildNetwork(usage NetworkType, input int, hidden []int, labels map[int]string) *Network {
177 | hidden = append(hidden, len(labels))
178 | network := NewNetwork(input, hidden, labels)
179 | network.RandomizeSynapses()
180 | return network
181 | }
182 |
--------------------------------------------------------------------------------
/net/neuron.go:
--------------------------------------------------------------------------------
1 | package net
2 |
3 | // Neuron holds the neuron structure with incoming synapses,
4 | // outgoing synapses, the activation function of the neuron as well as
5 | // the out value.
6 | type Neuron struct {
7 | OutSynapses []*Synapse
8 | InSynapses []*Synapse `json:"-"`
9 | ActivationFunction ActivationFunction `json:"-"`
10 | Out float64 `json:"-"`
11 | }
12 |
13 | // NewNeuron creates a new empty neuron
14 | func NewNeuron() *Neuron {
15 | return &Neuron{}
16 | }
17 |
18 | // SynapseTo creates a new synapse to a neuron
19 | func (n *Neuron) SynapseTo(nTo *Neuron, weight float64) {
20 | NewSynapseFromTo(n, nTo, weight)
21 | }
22 |
23 | // SetActivationFunction sets the activation function for the neuron
24 | func (n *Neuron) SetActivationFunction(aFunc ActivationFunction) {
25 | n.ActivationFunction = aFunc
26 | }
27 |
28 | // Calculate calculates the actual neuron activity
29 | func (n *Neuron) Calculate() {
30 | var sum float64
31 | for _, s := range n.InSynapses {
32 | sum += s.Out
33 | }
34 | n.Out = n.ActivationFunction(sum)
35 | for _, s := range n.OutSynapses {
36 | s.Signal(n.Out)
37 | }
38 | }
39 |
--------------------------------------------------------------------------------
/net/neuron_test.go:
--------------------------------------------------------------------------------
1 | package net
2 |
3 | import (
4 | "testing"
5 | )
6 |
7 | // TestAttachNeurons tries to attach new neuron to an existing neuron
8 | // with creating a new synapse between them.
9 | func TestAttachNeurons(t *testing.T) {
10 | n := NewNeuron()
11 | n2 := NewNeuron()
12 | w := 0.5
13 | n.SynapseTo(n2, w)
14 | if n.OutSynapses[0].Weight != w {
15 | t.Errorf("out synapse has wrong weights")
16 | }
17 | }
18 |
19 | // TestInputSynases takes a neuron and connects synapses to it.
20 | // It then tests if the neuron correctly stored these connections.
21 | func TestInputsSynapses(t *testing.T) {
22 | n := NewNeuron()
23 | NewSynapseFromTo(NewNeuron(), n, 0.1)
24 | NewSynapseFromTo(NewNeuron(), n, 0.1)
25 | NewSynapseFromTo(NewNeuron(), n, 0.1)
26 | if len(n.InSynapses) != 3 {
27 | t.Errorf("in synapse is not 3")
28 | }
29 | }
30 |
--------------------------------------------------------------------------------
/net/synapse.go:
--------------------------------------------------------------------------------
1 | package net
2 |
3 | // Synapse holds the synapse structure with the weight
4 | // and the In and Out neuron.
5 | type Synapse struct {
6 | Weight float64
7 | In float64 `json:"-"`
8 | Out float64 `json:"-"`
9 | }
10 |
11 | // NewSynapse creates a new synapse with the weight
12 | func NewSynapse(weight float64) *Synapse {
13 | return &Synapse{Weight: weight}
14 | }
15 |
16 | // NewSynapseFromTo creates a new synapse from neuron to neuron
17 | func NewSynapseFromTo(from, to *Neuron, weight float64) *Synapse {
18 | syn := NewSynapse(weight)
19 | from.OutSynapses = append(from.OutSynapses, syn)
20 | to.InSynapses = append(to.InSynapses, syn)
21 | return syn
22 | }
23 |
24 | // Signal activates the Synapse with an input value
25 | func (s *Synapse) Signal(value float64) {
26 | s.In = value
27 | s.Out = s.In * s.Weight
28 | }
29 |
--------------------------------------------------------------------------------
/net/type.go:
--------------------------------------------------------------------------------
1 | package net
2 |
3 | // NetworkType represents the type of the neural network in terms of
4 | // which task the network has. Classification and Regression are implemented.
5 | type NetworkType int
6 |
7 | const (
8 | // Classification describes the mode of operation: classification
9 | Classification NetworkType = iota
10 | // Regression describes the mode of operation: regression
11 | Regression
12 | )
13 |
--------------------------------------------------------------------------------
/online/config.go:
--------------------------------------------------------------------------------
1 | package online
2 |
3 | const (
4 | dFirstShots = 5
5 | dHotShotBoost = 0.5
6 | dTrainingSplit = 0.7
7 | dMinimumDataPoints = 10
8 | dMinEpochs = 10
9 | dMaxEpochs = 30
10 | dMinLearningSpeed = 0.2
11 | dMaxLearningSpeed = 0.5
12 | dInitialFMeasure = 0.70
13 | dMaxInitLoops = 5
14 | dRegressionThreshold = 0.05
15 | )
16 |
17 | // Config has all the learning configurations necessary to learn the network online
18 | type Config struct {
19 | FirstShots int
20 | HotShotBoost float64
21 | TrainingSplit float64
22 | MinimumDataPoints int
23 | MinEpochs int
24 | MaxEpochs int
25 | MinLearningSpeed float64
26 | MaxLearningSpeed float64
27 | InitialFMeasure float64
28 | MaxInitLoops int
29 | RegressionThreshold float64
30 | }
31 |
32 | // DefaultConfig returns the default config for the online learner
33 | func DefaultConfig() *Config {
34 | return &Config{
35 | FirstShots: dFirstShots,
36 | HotShotBoost: dHotShotBoost,
37 | TrainingSplit: dTrainingSplit,
38 | MinimumDataPoints: dMinimumDataPoints,
39 | MinEpochs: dMinEpochs,
40 | MaxEpochs: dMaxEpochs,
41 | MinLearningSpeed: dMinLearningSpeed,
42 | MaxLearningSpeed: dMaxLearningSpeed,
43 | InitialFMeasure: dInitialFMeasure,
44 | MaxInitLoops: dMaxInitLoops,
45 | RegressionThreshold: dRegressionThreshold,
46 | }
47 | }
48 |
--------------------------------------------------------------------------------
/online/online.go:
--------------------------------------------------------------------------------
1 | package online
2 |
3 | import (
4 | "errors"
5 | "fmt"
6 | "math/rand"
7 | "time"
8 |
9 | "github.com/breskos/gopher-learn/evaluation"
10 | learn "github.com/breskos/gopher-learn/learn"
11 | "github.com/breskos/gopher-learn/net"
12 | )
13 |
14 | const (
15 | errDataPointExists = "data point exists (force not activated)"
16 | )
17 |
18 | // Online contains every necessary for starting the engine
19 | type Online struct {
20 | NetworkInput int
21 | NetworkLayer []int
22 | NetworkOutput int
23 | Data *learn.Set
24 | Network *net.Network
25 | LastEvaluation *evaluation.Evaluation
26 | Verbose bool
27 | Usage net.NetworkType
28 | AddedPoints int
29 | Config *Config
30 | }
31 |
32 | // NewOnline creates a new Engine object
33 | func NewOnline(usage net.NetworkType, inputs int, hiddenLayer []int, data *learn.Set) *Online {
34 | var outputLength int
35 | if net.Regression == usage {
36 | outputLength = 1
37 | } else {
38 | outputLength = len(data.ClassToLabel)
39 | }
40 | return &Online{
41 | NetworkInput: inputs,
42 | NetworkOutput: outputLength,
43 | NetworkLayer: hiddenLayer,
44 | Data: data,
45 | Network: net.BuildNetwork(usage, inputs, hiddenLayer, data.ClassToLabel),
46 | Verbose: false,
47 | Usage: usage,
48 | AddedPoints: 0,
49 | Config: DefaultConfig(),
50 | }
51 | }
52 |
53 | // Init initializes the online learner with a short learning upfront
54 | func (o *Online) Init() float64 {
55 | fMeasure := 0.0
56 | for i := 0; i < o.Config.MaxInitLoops; i++ {
57 | fMeasure = o.Iterate()
58 | if fMeasure < o.Config.InitialFMeasure {
59 | return fMeasure
60 | }
61 | }
62 | return fMeasure
63 |
64 | }
65 |
66 | // Inject tries to inject a new data point into the neural net
67 | func (o *Online) Inject(sample *learn.Sample, force bool) error {
68 | exists := o.Data.SampleExists(sample)
69 | if exists && !force {
70 | return errors.New(errDataPointExists)
71 | }
72 | err := o.Data.AddSample(sample)
73 | if err != nil {
74 | return fmt.Errorf("cannot add example: %v", err)
75 | }
76 | o.hotShot(sample)
77 | return nil
78 | }
79 |
80 | // Applies a Sample with hotShot speed to the network
81 | func (o *Online) hotShot(sample *learn.Sample) {
82 | for i := 0; i < o.Config.FirstShots; i++ {
83 | learn.Learn(o.Network, sample.Vector, sample.Output, o.Config.HotShotBoost)
84 | }
85 | }
86 |
87 | // Iterate iterates over the data set and applies continous learning
88 | func (o *Online) Iterate() float64 {
89 | if len(o.Data.Samples) < o.Config.MinimumDataPoints {
90 | return 0.0
91 | }
92 | rand.Seed(time.Now().UnixNano())
93 | training, testing := split(o.Usage, o.Data, o.Config.TrainingSplit)
94 | speed := o.Config.MinLearningSpeed + rand.Float64()*(o.Config.MaxLearningSpeed-o.Config.MinLearningSpeed)
95 | epochs := rand.Intn(o.Config.MaxEpochs-o.Config.MinEpochs+1) + o.Config.MinEpochs
96 | train(o.Network, training, speed, epochs)
97 | evaluation := evaluate(o.Usage, o.Network, testing, training, o.Config.RegressionThreshold)
98 | if o.Verbose {
99 | evaluation.PrintConfusionMatrix()
100 | evaluation.PrintSummaries()
101 | }
102 | o.LastEvaluation = evaluation
103 | return evaluation.GetOverallFMeasure()
104 | }
105 |
106 | // SetVerbose sets the verbose version meaning debug and evaluation logs
107 | func (o *Online) SetVerbose(verbose bool) {
108 | o.Verbose = verbose
109 | }
110 |
111 | // checks if a sample is already in set
112 | func (o *Online) sampleExists(sample *learn.Sample) bool {
113 | if sample.VectorHash == "" {
114 | sample.UpdateHashes()
115 | }
116 | if o.Data.SampleExists(sample) {
117 | return true
118 | }
119 | return false
120 | }
121 |
122 | // Prints the current evaluation
123 | func print(e *evaluation.Evaluation) {
124 | fmt.Printf("\n [Best] acc: %.2f / bacc: %.2f / f1: %.2f / correct: %.2f / distance: %.2f\n", e.GetOverallAccuracy(), e.GetOverallBalancedAccuracy(), e.GetOverallFMeasure(), e.GetCorrectRatio(), e.GetDistance())
125 | }
126 |
127 | // SetConfig sets a new config from outside for the online learner
128 | func (o *Online) SetConfig(cfg *Config) {
129 | o.Config = cfg
130 | }
131 |
132 | // GetConfig returns the current online learner configuration
133 | func (o *Online) GetConfig() *Config {
134 | return o.Config
135 | }
136 |
--------------------------------------------------------------------------------
/online/train.go:
--------------------------------------------------------------------------------
1 | package online
2 |
3 | import (
4 | "math/rand"
5 |
6 | "github.com/breskos/gopher-learn/evaluation"
7 | learn "github.com/breskos/gopher-learn/learn"
8 | "github.com/breskos/gopher-learn/net"
9 | )
10 |
11 | // Trains the network with the given Sample set and learning rate
12 | func train(network *net.Network, data *learn.Set, learning float64, epochs int) {
13 | for e := 0; e < epochs; e++ {
14 | for sample := range data.Samples {
15 | learn.Learn(network, data.Samples[sample].Vector, data.Samples[sample].Output, learning)
16 | }
17 | }
18 | }
19 |
20 | // Splits the set into training and test set
21 | func split(usage net.NetworkType, set *learn.Set, ratio float64) (*learn.Set, *learn.Set) {
22 | multiplier := 100
23 | normalizedRatio := int(ratio * float64(multiplier))
24 | var training, evaluation learn.Set
25 | training.ClassToLabel = set.ClassToLabel
26 | evaluation.ClassToLabel = set.ClassToLabel
27 | for i := range set.Samples {
28 | if rand.Intn(multiplier) <= normalizedRatio {
29 | training.Samples = append(training.Samples, set.Samples[i])
30 | } else {
31 | evaluation.Samples = append(evaluation.Samples, set.Samples[i])
32 | }
33 | }
34 | return &training, &evaluation
35 | }
36 |
37 | // Evaluates the network and finds the winner network based on network criterion
38 | func evaluate(usage net.NetworkType, network *net.Network, test *learn.Set, train *learn.Set, regressionThreshold float64) *evaluation.Evaluation {
39 | evaluation := evaluation.NewEvaluation(usage, train.GetClasses())
40 | evaluation.SetRegressionThreshold(regressionThreshold)
41 | for sample := range test.Samples {
42 | evaluation.AddDistance(network, test.Samples[sample].Vector, test.Samples[sample].Output)
43 | if net.Classification == usage {
44 | winner := network.CalculateWinnerLabel(test.Samples[sample].Vector)
45 | evaluation.Add(test.Samples[sample].Label, winner)
46 | } else {
47 | prediction := network.Calculate(test.Samples[sample].Vector)
48 | evaluation.AddRegression(test.Samples[sample].Value, prediction[0])
49 | }
50 | }
51 | return evaluation
52 | }
53 |
--------------------------------------------------------------------------------
/persist/encoder.go:
--------------------------------------------------------------------------------
1 | package persist
2 |
3 | import (
4 | "encoding/json"
5 | "fmt"
6 | "io/ioutil"
7 |
8 | "github.com/breskos/gopher-learn/encoders"
9 | )
10 |
11 | type EncoderDump struct {
12 | // Name of the encoder
13 | Name string
14 | // Dimensions hold the EncoderModel for the dimensions
15 | Models map[string]Models
16 | // Config of the Encoder
17 | Config encoders.EncoderConfig
18 | // Scanned determines if scan was executed
19 | Scanned bool
20 | }
21 |
22 | type Models struct {
23 | Inputs int
24 | InputType encoders.InputType
25 | Type encoders.EncoderType
26 | Model []byte
27 | }
28 |
29 | // FromFile loads a NetworkDump from File and creates Network out of it
30 | func EncoderFromFile(path string) (*encoders.Encoder, error) {
31 | dump, err := encoderDumpFromFile(path)
32 | if nil != err {
33 | return nil, err
34 | }
35 | n := encoderFromDump(dump)
36 | return n, nil
37 | }
38 |
39 | // ToFile takes a network and creats a NetworkDump out of it and writes it to a file
40 | func EncoderToFile(path string, n *encoders.Encoder) error {
41 | dump := encoderToDump(n)
42 | return encoderDumpToFile(path, dump)
43 | }
44 |
45 | // encoderDrumpFromFile loads an EncoderDump from file
46 | func encoderDumpFromFile(path string) (*EncoderDump, error) {
47 | b, err := ioutil.ReadFile(path)
48 | if nil != err {
49 | return nil, err
50 | }
51 | dump := &EncoderDump{}
52 | err = json.Unmarshal(b, dump)
53 | if nil != err {
54 | return nil, err
55 | }
56 |
57 | return dump, nil
58 | }
59 |
60 | // encoderDumpFromFile writes an EncoderDump to file
61 | func encoderDumpToFile(path string, dump *EncoderDump) error {
62 | j, err := json.Marshal(dump)
63 | if err != nil {
64 | return err
65 | }
66 | err = ioutil.WriteFile(path, j, 0644)
67 | return err
68 | }
69 |
70 | // encoderToDump creates an EncoderDump out of a Encoder
71 | func encoderToDump(n *encoders.Encoder) *EncoderDump {
72 | dimensions := make(map[string]Models, 0)
73 | for k, v := range n.Models {
74 | dump, err := v.Model.ToDump()
75 | if err != nil {
76 | fmt.Printf("error serializing encoder: %s (%s, %s)", k, v.InputType.String(), v.Type.String())
77 | }
78 | dimensions[k] = Models{
79 | Inputs: v.Inputs,
80 | InputType: v.InputType,
81 | Type: v.Type,
82 | Model: dump,
83 | }
84 | }
85 | return &EncoderDump{
86 | Name: n.Name,
87 | Config: *n.Config,
88 | Models: dimensions,
89 | Scanned: n.Scanned,
90 | }
91 | }
92 |
93 | // encoderFromDump creates a Encoder out of a Encoder dump
94 | func encoderFromDump(dump *EncoderDump) *encoders.Encoder {
95 | n := &encoders.Encoder{
96 | Name: dump.Name,
97 | Scanned: dump.Scanned,
98 | Config: &dump.Config,
99 | }
100 | n.Models = make(map[string]*encoders.Dimension)
101 | for k, v := range dump.Models {
102 | n.Models[k] = &encoders.Dimension{
103 | Inputs: v.Inputs,
104 | InputType: v.InputType,
105 | Type: v.Type,
106 | }
107 |
108 | switch v.Type {
109 | case encoders.StringDictionary:
110 | n.Models[k].Model = encoders.NewDictionaryModel()
111 | n.Models[k].Model.FromDump(v.Model)
112 | case encoders.StringSplitDictionary:
113 | n.Models[k].Model = encoders.NewSplitDictionaryModel()
114 | n.Models[k].Model.FromDump(v.Model)
115 | case encoders.StringNGrams:
116 | n.Models[k].Model = encoders.NewNGramModel()
117 | n.Models[k].Model.FromDump(v.Model)
118 | case encoders.FloatExact:
119 | n.Models[k].Model = encoders.NewFloatExactModel()
120 | n.Models[k].Model.FromDump(v.Model)
121 | case encoders.FloatReducer:
122 | n.Models[k].Model = encoders.NewFloatReducerModel()
123 | n.Models[k].Model.FromDump(v.Model)
124 | }
125 |
126 | }
127 | return n
128 | }
129 |
--------------------------------------------------------------------------------
/persist/network.go:
--------------------------------------------------------------------------------
1 | package persist
2 |
3 | import (
4 | "encoding/json"
5 | "io/ioutil"
6 | "strconv"
7 |
8 | neural "github.com/breskos/gopher-learn/net"
9 | )
10 |
11 | // Weights is used to persist the weights of the network
12 | type Weights [][][]float64
13 |
14 | // NetworkDump is the json representation of the network stucture
15 | type NetworkDump struct {
16 | Enters int
17 | Weights Weights
18 | OutLabels map[string]string
19 | }
20 |
21 | // FromFile loads a NetworkDump from File and creates Network out of it
22 | func FromFile(path string) (*neural.Network, error) {
23 | dump, err := dumpFromFile(path)
24 | if nil != err {
25 | return nil, err
26 | }
27 | n := FromDump(dump)
28 | return n, nil
29 | }
30 |
31 | // ToFile takes a network and creats a NetworkDump out of it and writes it to a file
32 | func ToFile(path string, n *neural.Network) error {
33 | dump := ToDump(n)
34 | return dumpToFile(path, dump)
35 | }
36 |
37 | // dumpFromFile loads a NetworkDump from file
38 | func dumpFromFile(path string) (*NetworkDump, error) {
39 | b, err := ioutil.ReadFile(path)
40 | if nil != err {
41 | return nil, err
42 | }
43 | dump := &NetworkDump{}
44 | err = json.Unmarshal(b, dump)
45 | if nil != err {
46 | return nil, err
47 | }
48 |
49 | return dump, nil
50 | }
51 |
52 | // dumpToFile writes a NetworkDump to file
53 | func dumpToFile(path string, dump *NetworkDump) error {
54 | j, err := json.Marshal(dump)
55 | if err != nil {
56 | return err
57 | }
58 | err = ioutil.WriteFile(path, j, 0644)
59 | return err
60 | }
61 |
62 | // ToDump creates a NetworkDump out of a Network
63 | func ToDump(n *neural.Network) *NetworkDump {
64 | labels := intToStringMap(n.OutLabels)
65 | dump := &NetworkDump{Enters: len(n.Enters), Weights: make([][][]float64, len(n.Layers)), OutLabels: labels}
66 |
67 | for i, l := range n.Layers {
68 | dump.Weights[i] = make([][]float64, len(l.Neurons))
69 | for j, n := range l.Neurons {
70 | dump.Weights[i][j] = make([]float64, len(n.InSynapses))
71 | for k, s := range n.InSynapses {
72 | dump.Weights[i][j][k] = s.Weight
73 | }
74 | }
75 | }
76 | return dump
77 | }
78 |
79 | // FromDump creates a Network out of a NetworkDump
80 | func FromDump(dump *NetworkDump) *neural.Network {
81 | layers := make([]int, len(dump.Weights))
82 | for i, layer := range dump.Weights {
83 | layers[i] = len(layer)
84 | }
85 | labels := stringToIntMap(dump.OutLabels)
86 | n := neural.NewNetwork(dump.Enters, layers, labels)
87 |
88 | for i, l := range n.Layers {
89 | for j, n := range l.Neurons {
90 | for k, s := range n.InSynapses {
91 | s.Weight = dump.Weights[i][j][k]
92 | }
93 | }
94 | }
95 |
96 | return n
97 | }
98 |
99 | // Converts an int map to a string map
100 | func intToStringMap(m map[int]string) map[string]string {
101 | ms := make(map[string]string)
102 | for k, v := range m {
103 | ms[strconv.Itoa(k)] = v
104 | }
105 | return ms
106 | }
107 |
108 | // Converts a string map to an int map
109 | func stringToIntMap(m map[string]string) map[int]string {
110 | mi := make(map[int]string)
111 | for k, v := range m {
112 | index, err := strconv.Atoi(k)
113 | if err != nil {
114 | panic(err)
115 | }
116 | mi[index] = v
117 | }
118 | return mi
119 | }
120 |
--------------------------------------------------------------------------------
/persist/online.go:
--------------------------------------------------------------------------------
1 | package persist
2 |
3 | import (
4 | "encoding/json"
5 | "io/ioutil"
6 |
7 | "github.com/breskos/gopher-learn/evaluation"
8 | "github.com/breskos/gopher-learn/learn"
9 | neural "github.com/breskos/gopher-learn/net"
10 | "github.com/breskos/gopher-learn/online"
11 | )
12 |
13 | // OnlineDump is the json representation of the network stucture
14 | type OnlineDump struct {
15 | NetworkInput int
16 | NetworkLayer []int
17 | NetworkOutput int
18 | Data *learn.Set
19 | Network *NetworkDump
20 | LastEvaluation *evaluation.Evaluation
21 | Verbose bool
22 | Usage neural.NetworkType
23 | AddedPoints int
24 | Config *online.Config
25 | }
26 |
27 | // FromOnlineFile loads a OnlineDump from File and creates Online out of it
28 | func OnlineFromFile(path string) (*online.Online, error) {
29 | dump, err := onlineDumpFromFile(path)
30 | if nil != err {
31 | return nil, err
32 | }
33 | n := fromOnlineDump(dump)
34 | return n, nil
35 | }
36 |
37 | // OnlineToFile takes a network and creats a NetworkDump out of it and writes it to a file
38 | func OnlineToFile(path string, n *online.Online) error {
39 | dump := toOnlineDump(n)
40 | return dumpToOnlineFile(path, dump)
41 | }
42 |
43 | // FromOnlineDump creates a Online out of an OnlineDump
44 | func fromOnlineDump(d *OnlineDump) *online.Online {
45 | return &online.Online{
46 | NetworkInput: d.NetworkOutput,
47 | NetworkLayer: d.NetworkLayer,
48 | NetworkOutput: d.NetworkOutput,
49 | Data: d.Data,
50 | Network: FromDump(d.Network),
51 | LastEvaluation: d.LastEvaluation,
52 | Verbose: d.Verbose,
53 | Usage: d.Usage,
54 | AddedPoints: d.AddedPoints,
55 | Config: d.Config,
56 | }
57 | }
58 |
59 | // dumpToOnlineFile writes a NetworkDump to file
60 | func dumpToOnlineFile(path string, dump *OnlineDump) error {
61 | j, err := json.Marshal(dump)
62 | if err != nil {
63 | return err
64 | }
65 | err = ioutil.WriteFile(path, j, 0644)
66 | return err
67 | }
68 |
69 | // onlineDumpFromFile loads an OnlineDump from file
70 | func onlineDumpFromFile(path string) (*OnlineDump, error) {
71 | b, err := ioutil.ReadFile(path)
72 | if nil != err {
73 | return nil, err
74 | }
75 | dump := &OnlineDump{}
76 | err = json.Unmarshal(b, dump)
77 | if nil != err {
78 | return nil, err
79 | }
80 |
81 | return dump, nil
82 | }
83 |
84 | // toOnlineDump creates a OnlineDump out of an Online
85 | func toOnlineDump(d *online.Online) *OnlineDump {
86 | return &OnlineDump{
87 | NetworkInput: d.NetworkOutput,
88 | NetworkLayer: d.NetworkLayer,
89 | NetworkOutput: d.NetworkOutput,
90 | Data: d.Data,
91 | Network: ToDump(d.Network),
92 | LastEvaluation: d.LastEvaluation,
93 | Verbose: d.Verbose,
94 | Usage: d.Usage,
95 | AddedPoints: d.AddedPoints,
96 | Config: d.Config,
97 | }
98 | }
99 |
--------------------------------------------------------------------------------
/persist/set.go:
--------------------------------------------------------------------------------
1 | package persist
2 |
3 | import (
4 | "encoding/json"
5 | "io/ioutil"
6 |
7 | learn "github.com/breskos/gopher-learn/learn"
8 | )
9 |
10 | // SetFromFile reads a data set from a file
11 | func SetFromFile(path string) (*learn.Set, error) {
12 | b, err := ioutil.ReadFile(path)
13 | if nil != err {
14 | return nil, err
15 | }
16 | set := &learn.Set{}
17 | err = json.Unmarshal(b, set)
18 | if nil != err {
19 | return nil, err
20 | }
21 |
22 | return set, nil
23 | }
24 |
25 | // SetToFile writes a set to a file
26 | func SetToFile(path string, set *learn.Set) error {
27 | j, err := json.Marshal(set)
28 | if err != nil {
29 | return err
30 | }
31 | err = ioutil.WriteFile(path, j, 0644)
32 | return err
33 | }
34 |
--------------------------------------------------------------------------------