├── 04 ├── Clk_tb.v ├── led.hack ├── tangnano4k-com.cst ├── led.asm ├── Not.v ├── Btn.v ├── Nand.v ├── DFFusr.v ├── Or.v ├── And.v ├── Computer_tb.v ├── Led.v ├── Xor.v ├── HalfAdder.v ├── DMux.v ├── Mux.v ├── Bit.v ├── RAM.v ├── ROM.v ├── Clk.v ├── FullAdder.v ├── Makefile ├── Or8Way.v ├── Memory.cmp ├── PC.v ├── Not16.v ├── Computer.v ├── And16.v ├── Memory_tb.v ├── Register.v ├── Mux16.v ├── Memory.v ├── CPU.cmp ├── Add16.v ├── ALUusr.v ├── CPU_tb.v ├── CPU.v └── README.md ├── .vscode ├── settings.json ├── configurationCache.log ├── dryrun.log └── targets.log ├── 00 ├── Xor.cmp ├── tangnano4k.cst ├── Not.v ├── Nand.v ├── Or.v ├── And.v ├── Makefile ├── Xor.v ├── Xor_tb.v └── README.md ├── 01 ├── Or8Way.cmp ├── Mux.cmp ├── tangnano4k-dmux.cst ├── DMux4Way.cmp ├── Not16.cmp ├── Not.v ├── Nand.v ├── And16.cmp ├── Or.v ├── And.v ├── DMux8Way.cmp ├── Mux16.cmp ├── Xor.v ├── DMux.v ├── Mux.v ├── Or8Way_tb.v ├── DMux_tb.v ├── DMux4Way.v ├── Not16_tb.v ├── Mux_tb.v ├── DMux4Way_tb.v ├── DMux8Way.v ├── And16_tb.v ├── Or8Way.v ├── Mux16_tb.v ├── Not16.v ├── Makefile ├── DMux8Way_tb.v ├── And16.v ├── Mux16.v └── README.md ├── 03 ├── tangnano4k-d.cst ├── Bit.cmp ├── Not.v ├── Nand.v ├── Register.cmp ├── DFF.v ├── PC.cmp ├── Or.v ├── And.v ├── RAM.cmp ├── HalfAdder.v ├── Xor.v ├── Mux.v ├── RAM.v ├── Bit.v ├── FullAdder.v ├── Makefile ├── Bit_tb.v ├── Register_tb.v ├── PC_tb.v ├── RAM_tb.v ├── PC.v ├── Mux16.v ├── Register.v ├── README.md └── Add16.v ├── 02 ├── FullAdder.cmp ├── tangnano4k-2i2o.cst ├── Not.v ├── Nand.v ├── Add16.cmp ├── Or.v ├── And.v ├── HalfAdder.v ├── Xor.v ├── Mux.v ├── Makefile ├── FullAdder.v ├── FullAdder_tb.v ├── Or8Way.v ├── Add16_tb.v ├── Not16.v ├── And16.v ├── Mux16.v ├── ALU.cmp ├── Add16.v ├── ALU_tb.v ├── ALU.v └── README.md ├── README.md ├── .gitignore └── LICENSE /04/Clk_tb.v: -------------------------------------------------------------------------------- 1 | -------------------------------------------------------------------------------- /.vscode/settings.json: -------------------------------------------------------------------------------- 1 | { 2 | "makefile.extensionOutputFolder": "./.vscode" 3 | } -------------------------------------------------------------------------------- /00/Xor.cmp: -------------------------------------------------------------------------------- 1 | | a | b |out| 2 | | 0 | 0 | 0 | 3 | | 0 | 1 | 1 | 4 | | 1 | 0 | 1 | 5 | | 1 | 1 | 0 | 6 | -------------------------------------------------------------------------------- /00/tangnano4k.cst: -------------------------------------------------------------------------------- 1 | // these are the HDMI pins! 2 | IO_LOC "out" 10; 3 | IO_LOC "a" 15; 4 | IO_LOC "b" 14; 5 | -------------------------------------------------------------------------------- /01/Or8Way.cmp: -------------------------------------------------------------------------------- 1 | |in|out| 2 | |00000000|0| 3 | |11111111|1| 4 | |00010000|1| 5 | |00000001|1| 6 | |00100110|1| 7 | -------------------------------------------------------------------------------- /03/tangnano4k-d.cst: -------------------------------------------------------------------------------- 1 | // these are the HDMI pins! 2 | IO_LOC "out" 10; // red 3 | IO_LOC "in" 15; 4 | IO_LOC "clk" 45; 5 | -------------------------------------------------------------------------------- /04/led.hack: -------------------------------------------------------------------------------- 1 | 0010000000000000 2 | 1111110000010000 3 | 0010000000000001 4 | 1110001100001000 5 | 0000000000000000 6 | 1110101010000111 -------------------------------------------------------------------------------- /01/Mux.cmp: -------------------------------------------------------------------------------- 1 | |a|b|sel|out| 2 | |0|0|0|0| 3 | |0|0|1|0| 4 | |0|1|0|0| 5 | |0|1|1|1| 6 | |1|0|0|1| 7 | |1|0|1|0| 8 | |1|1|0|1| 9 | |1|1|1|1| 10 | -------------------------------------------------------------------------------- /04/tangnano4k-com.cst: -------------------------------------------------------------------------------- 1 | // these are the HDMI pins! 2 | IO_LOC "led" 10; // red 3 | IO_LOC "btn" 15; 4 | IO_LOC "reset" 14; 5 | IO_LOC "clk_in" 45; 6 | -------------------------------------------------------------------------------- /.vscode/configurationCache.log: -------------------------------------------------------------------------------- 1 | {"buildTargets":[],"launchTargets":[],"customConfigurationProvider":{"workspaceBrowse":{"browsePath":[],"compilerArgs":[]},"fileIndex":[]}} -------------------------------------------------------------------------------- /01/tangnano4k-dmux.cst: -------------------------------------------------------------------------------- 1 | // these are the HDMI pins! 2 | IO_LOC "a" 10; // red 3 | IO_LOC "in" 15; 4 | IO_LOC "sel" 14; // right hand default 1 5 | IO_LOC "b" 2; // blue 6 | -------------------------------------------------------------------------------- /02/FullAdder.cmp: -------------------------------------------------------------------------------- 1 | |a|b|c|sum|carry| 2 | |0|0|0|0|0| 3 | |0|0|1|1|0| 4 | |0|1|0|1|0| 5 | |0|1|1|0|1| 6 | |1|0|0|1|0| 7 | |1|0|1|0|1| 8 | |1|1|0|0|1| 9 | |1|1|1|1|1| 10 | -------------------------------------------------------------------------------- /02/tangnano4k-2i2o.cst: -------------------------------------------------------------------------------- 1 | // these are the HDMI pins! 2 | IO_LOC "sum" 10; // red 3 | IO_LOC "a" 15; 4 | IO_LOC "b" 14; // right hand default 1 5 | IO_LOC "carry" 2; // blue 6 | -------------------------------------------------------------------------------- /01/DMux4Way.cmp: -------------------------------------------------------------------------------- 1 | |in|sel|a|b|c|d| 2 | |0|00|0|0|0|0| 3 | |0|01|0|0|0|0| 4 | |0|10|0|0|0|0| 5 | |0|11|0|0|0|0| 6 | |1|00|1|0|0|0| 7 | |1|01|0|1|0|0| 8 | |1|10|0|0|1|0| 9 | |1|11|0|0|0|1| 10 | -------------------------------------------------------------------------------- /01/Not16.cmp: -------------------------------------------------------------------------------- 1 | |in|out| 2 | |0000000000000000|1111111111111111| 3 | |1111111111111111|0000000000000000| 4 | |1010101010101010|0101010101010101| 5 | |0011110011000011|1100001100111100| 6 | |0001001000110100|1110110111001011| 7 | -------------------------------------------------------------------------------- /.vscode/dryrun.log: -------------------------------------------------------------------------------- 1 | make: Entering directory `/Users/buhe/code/gitHub/bugu-computer' 2 | make: Leaving directory `/Users/buhe/code/gitHub/bugu-computer' 3 | 4 | make: *** No targets specified and no makefile found. Stop. 5 | 6 | -------------------------------------------------------------------------------- /03/Bit.cmp: -------------------------------------------------------------------------------- 1 | |time|in|load|out| 2 | | 0|0|0|x| 3 | | 1|0|0|x| 4 | | 1|0|1|x| 5 | | 2|0|1|x| 6 | | 2|1|0|x| 7 | | 3|1|0|x| 8 | | 3|1|1|x| 9 | | 4|1|1|x| 10 | | 4|0|0|x| 11 | | 5|0|0|x| 12 | | 5|1|0|x| 13 | -------------------------------------------------------------------------------- /04/led.asm: -------------------------------------------------------------------------------- 1 | // led.asm 2 | // execute an infinite loop to 3 | // read the button state and write the result 4 | 5 | (LOOP) 6 | @8192 //read BUT 7 | D=M 8 | 9 | @8193 //write LED 10 | M=D 11 | 12 | @LOOP 13 | 0;JMP 14 | -------------------------------------------------------------------------------- /00/Not.v: -------------------------------------------------------------------------------- 1 | /** 2 | * Not gate: 3 | * out = not in 4 | */ 5 | `include "Nand.v" 6 | `default_nettype none 7 | 8 | module Not( 9 | input in, 10 | output out 11 | ); 12 | Nand NAND(.a(in), .b(1'b1), .out(out)); 13 | endmodule 14 | -------------------------------------------------------------------------------- /01/Not.v: -------------------------------------------------------------------------------- 1 | /** 2 | * Not gate: 3 | * out = not in 4 | */ 5 | `include "Nand.v" 6 | `default_nettype none 7 | 8 | module Not( 9 | input in, 10 | output out 11 | ); 12 | Nand NAND(.a(in), .b(1'b1), .out(out)); 13 | endmodule 14 | -------------------------------------------------------------------------------- /02/Not.v: -------------------------------------------------------------------------------- 1 | /** 2 | * Not gate: 3 | * out = not in 4 | */ 5 | `include "Nand.v" 6 | `default_nettype none 7 | 8 | module Not( 9 | input in, 10 | output out 11 | ); 12 | Nand NAND(.a(in), .b(1'b1), .out(out)); 13 | endmodule 14 | -------------------------------------------------------------------------------- /03/Not.v: -------------------------------------------------------------------------------- 1 | /** 2 | * Not gate: 3 | * out = not in 4 | */ 5 | `include "Nand.v" 6 | `default_nettype none 7 | 8 | module Not( 9 | input in, 10 | output out 11 | ); 12 | Nand NAND(.a(in), .b(1'b1), .out(out)); 13 | endmodule 14 | -------------------------------------------------------------------------------- /04/Not.v: -------------------------------------------------------------------------------- 1 | /** 2 | * Not gate: 3 | * out = not in 4 | */ 5 | `include "Nand.v" 6 | `default_nettype none 7 | 8 | module Not( 9 | input in, 10 | output out 11 | ); 12 | Nand NAND(.a(in), .b(1'b1), .out(out)); 13 | endmodule 14 | -------------------------------------------------------------------------------- /04/Btn.v: -------------------------------------------------------------------------------- 1 | `default_nettype none 2 | module Btn( 3 | input btn, 4 | output wire[15:0] out 5 | ); 6 | Mux16 MUX161( 7 | .a(16'b0000000000000000), 8 | .b(16'b0000000000000001), 9 | .sel(btn), 10 | .out(out) 11 | ); 12 | endmodule -------------------------------------------------------------------------------- /00/Nand.v: -------------------------------------------------------------------------------- 1 | /** 2 | * Nand gate: 3 | * out = 0 if (a == 1 and b == 1) 4 | * 1 otherwise 5 | * 6 | * This module is implemented using verilog primitives 7 | */ 8 | 9 | `default_nettype none 10 | 11 | module Nand( 12 | input a, 13 | input b, 14 | output out 15 | ); 16 | nand(out,a,b); 17 | endmodule 18 | -------------------------------------------------------------------------------- /01/Nand.v: -------------------------------------------------------------------------------- 1 | /** 2 | * Nand gate: 3 | * out = 0 if (a == 1 and b == 1) 4 | * 1 otherwise 5 | * 6 | * This module is implemented using verilog primitives 7 | */ 8 | 9 | `default_nettype none 10 | 11 | module Nand( 12 | input a, 13 | input b, 14 | output out 15 | ); 16 | nand(out,a,b); 17 | endmodule 18 | -------------------------------------------------------------------------------- /02/Nand.v: -------------------------------------------------------------------------------- 1 | /** 2 | * Nand gate: 3 | * out = 0 if (a == 1 and b == 1) 4 | * 1 otherwise 5 | * 6 | * This module is implemented using verilog primitives 7 | */ 8 | 9 | `default_nettype none 10 | 11 | module Nand( 12 | input a, 13 | input b, 14 | output out 15 | ); 16 | nand(out,a,b); 17 | endmodule 18 | -------------------------------------------------------------------------------- /03/Nand.v: -------------------------------------------------------------------------------- 1 | /** 2 | * Nand gate: 3 | * out = 0 if (a == 1 and b == 1) 4 | * 1 otherwise 5 | * 6 | * This module is implemented using verilog primitives 7 | */ 8 | 9 | `default_nettype none 10 | 11 | module Nand( 12 | input a, 13 | input b, 14 | output out 15 | ); 16 | nand(out,a,b); 17 | endmodule 18 | -------------------------------------------------------------------------------- /04/Nand.v: -------------------------------------------------------------------------------- 1 | /** 2 | * Nand gate: 3 | * out = 0 if (a == 1 and b == 1) 4 | * 1 otherwise 5 | * 6 | * This module is implemented using verilog primitives 7 | */ 8 | 9 | `default_nettype none 10 | 11 | module Nand( 12 | input a, 13 | input b, 14 | output out 15 | ); 16 | nand(out,a,b); 17 | endmodule 18 | -------------------------------------------------------------------------------- /03/Register.cmp: -------------------------------------------------------------------------------- 1 | |time|in|load|out| 2 | | 0| 0|0| x| 3 | | 1| 0|0| 0| 4 | | 1| 0|1| 0| 5 | | 2| 0|1| 0| 6 | | 2|-32123|0| 0| 7 | | 3|-32123|0| 0| 8 | | 3| 11111|0| 0| 9 | | 4| 11111|0| 0| 10 | | 4|-32123|1| 0| 11 | | 5|-32123|1|-32123| 12 | | 5|-32123|1|-32123| 13 | -------------------------------------------------------------------------------- /01/And16.cmp: -------------------------------------------------------------------------------- 1 | |a|b|out| 2 | |0000000000000000|0000000000000000|0000000000000000| 3 | |0000000000000000|1111111111111111|0000000000000000| 4 | |1111111111111111|1111111111111111|1111111111111111| 5 | |1010101010101010|0101010101010101|0000000000000000| 6 | |0011110011000011|0000111111110000|0000110011000000| 7 | |0001001000110100|1001100001110110|0001000000110100| 8 | -------------------------------------------------------------------------------- /02/Add16.cmp: -------------------------------------------------------------------------------- 1 | |a|b|out| 2 | |0000000000000000|0000000000000000|0000000000000000| 3 | |0000000000000000|1111111111111111|1111111111111111| 4 | |1111111111111111|1111111111111111|1111111111111110| 5 | |1010101010101010|0101010101010101|1111111111111111| 6 | |0011110011000011|0000111111110000|0100110010110011| 7 | |0001001000110100|1001100001110110|1010101010101010| 8 | -------------------------------------------------------------------------------- /03/DFF.v: -------------------------------------------------------------------------------- 1 | /** 2 | * Data-Flip-Flop 3 | * out[t+1] = in[t] 4 | * 5 | * This module is implemented using reg-variables in verilog 6 | */ 7 | 8 | `default_nettype none 9 | module DFFusr( 10 | input wire clk, 11 | input wire in, 12 | output reg out 13 | ); 14 | always @(negedge clk) 15 | if (in) out <= 1'b1; 16 | else out <= 1'b0; 17 | 18 | endmodule 19 | 20 | -------------------------------------------------------------------------------- /04/DFFusr.v: -------------------------------------------------------------------------------- 1 | /** 2 | * Data-Flip-Flop 3 | * out[t+1] = in[t] 4 | * 5 | * This module is implemented using reg-variables in verilog 6 | */ 7 | 8 | `default_nettype none 9 | module DFFusr( 10 | input wire clk, 11 | input wire in, 12 | output reg out 13 | ); 14 | always @(negedge clk) 15 | if (in) out <= 1'b1; 16 | else out <= 1'b0; 17 | 18 | endmodule 19 | 20 | -------------------------------------------------------------------------------- /03/PC.cmp: -------------------------------------------------------------------------------- 1 | |time|in|reset|load|inc|out| 2 | | 0| 0|0|0|0| x| 3 | | 1| 0|0|0|0| 0| 4 | | 1| 0|0|0|1| 0| 5 | | 2| 0|0|0|1| 1| 6 | | 2|-32123|0|0|1| 1| 7 | | 3|-32123|0|0|1| 2| 8 | | 3|-32123|0|1|1| 2| 9 | | 4|-32123|0|1|1|-32123| 10 | | 4|-32123|0|0|1|-32123| 11 | | 5|-32123|0|0|1|-32122| 12 | | 5|-32123|0|0|1|-32122| 13 | -------------------------------------------------------------------------------- /00/Or.v: -------------------------------------------------------------------------------- 1 | /** 2 | * Or gate: 3 | * out = 1 if (a == 1 or b == 1) 4 | * 0 otherwise 5 | */ 6 | `default_nettype none 7 | module Or( 8 | input a, 9 | input b, 10 | output out 11 | ); 12 | wire nota; 13 | wire notb; 14 | Not NOT1(.in(a), .out(nota)); 15 | Not NOT2(.in(b), .out(notb)); 16 | Nand NAND(.a(nota), .b(notb), .out(out)); 17 | 18 | 19 | endmodule 20 | -------------------------------------------------------------------------------- /01/Or.v: -------------------------------------------------------------------------------- 1 | /** 2 | * Or gate: 3 | * out = 1 if (a == 1 or b == 1) 4 | * 0 otherwise 5 | */ 6 | `default_nettype none 7 | module Or( 8 | input a, 9 | input b, 10 | output out 11 | ); 12 | wire nota; 13 | wire notb; 14 | Not NOT1(.in(a), .out(nota)); 15 | Not NOT2(.in(b), .out(notb)); 16 | Nand NAND(.a(nota), .b(notb), .out(out)); 17 | 18 | 19 | endmodule 20 | -------------------------------------------------------------------------------- /02/Or.v: -------------------------------------------------------------------------------- 1 | /** 2 | * Or gate: 3 | * out = 1 if (a == 1 or b == 1) 4 | * 0 otherwise 5 | */ 6 | `default_nettype none 7 | module Or( 8 | input a, 9 | input b, 10 | output out 11 | ); 12 | wire nota; 13 | wire notb; 14 | Not NOT1(.in(a), .out(nota)); 15 | Not NOT2(.in(b), .out(notb)); 16 | Nand NAND(.a(nota), .b(notb), .out(out)); 17 | 18 | 19 | endmodule 20 | -------------------------------------------------------------------------------- /03/Or.v: -------------------------------------------------------------------------------- 1 | /** 2 | * Or gate: 3 | * out = 1 if (a == 1 or b == 1) 4 | * 0 otherwise 5 | */ 6 | `default_nettype none 7 | module Or( 8 | input a, 9 | input b, 10 | output out 11 | ); 12 | wire nota; 13 | wire notb; 14 | Not NOT1(.in(a), .out(nota)); 15 | Not NOT2(.in(b), .out(notb)); 16 | Nand NAND(.a(nota), .b(notb), .out(out)); 17 | 18 | 19 | endmodule 20 | -------------------------------------------------------------------------------- /04/Or.v: -------------------------------------------------------------------------------- 1 | /** 2 | * Or gate: 3 | * out = 1 if (a == 1 or b == 1) 4 | * 0 otherwise 5 | */ 6 | `default_nettype none 7 | module Or( 8 | input a, 9 | input b, 10 | output out 11 | ); 12 | wire nota; 13 | wire notb; 14 | Not NOT1(.in(a), .out(nota)); 15 | Not NOT2(.in(b), .out(notb)); 16 | Nand NAND(.a(nota), .b(notb), .out(out)); 17 | 18 | 19 | endmodule 20 | -------------------------------------------------------------------------------- /00/And.v: -------------------------------------------------------------------------------- 1 | /** 2 | * And gate: 3 | * out = 1 if (a == 1 and b == 1) 4 | * 0 otherwise 5 | */ 6 | 7 | `default_nettype none 8 | 9 | module And( 10 | input a, 11 | input b, 12 | output out 13 | ); 14 | wire notaandb; 15 | 16 | // your implementation comes here: 17 | Nand NAND(.a(a), .b(b), .out(notaandb)); 18 | Not NOT(.in(notaandb), .out(out)); 19 | 20 | 21 | endmodule 22 | -------------------------------------------------------------------------------- /01/And.v: -------------------------------------------------------------------------------- 1 | /** 2 | * And gate: 3 | * out = 1 if (a == 1 and b == 1) 4 | * 0 otherwise 5 | */ 6 | 7 | `default_nettype none 8 | 9 | module And( 10 | input a, 11 | input b, 12 | output out 13 | ); 14 | wire notaandb; 15 | 16 | // your implementation comes here: 17 | Nand NAND(.a(a), .b(b), .out(notaandb)); 18 | Not NOT(.in(notaandb), .out(out)); 19 | 20 | 21 | endmodule 22 | -------------------------------------------------------------------------------- /02/And.v: -------------------------------------------------------------------------------- 1 | /** 2 | * And gate: 3 | * out = 1 if (a == 1 and b == 1) 4 | * 0 otherwise 5 | */ 6 | 7 | `default_nettype none 8 | 9 | module And( 10 | input a, 11 | input b, 12 | output out 13 | ); 14 | wire notaandb; 15 | 16 | // your implementation comes here: 17 | Nand NAND(.a(a), .b(b), .out(notaandb)); 18 | Not NOT(.in(notaandb), .out(out)); 19 | 20 | 21 | endmodule 22 | -------------------------------------------------------------------------------- /03/And.v: -------------------------------------------------------------------------------- 1 | /** 2 | * And gate: 3 | * out = 1 if (a == 1 and b == 1) 4 | * 0 otherwise 5 | */ 6 | 7 | `default_nettype none 8 | 9 | module And( 10 | input a, 11 | input b, 12 | output out 13 | ); 14 | wire notaandb; 15 | 16 | // your implementation comes here: 17 | Nand NAND(.a(a), .b(b), .out(notaandb)); 18 | Not NOT(.in(notaandb), .out(out)); 19 | 20 | 21 | endmodule 22 | -------------------------------------------------------------------------------- /04/And.v: -------------------------------------------------------------------------------- 1 | /** 2 | * And gate: 3 | * out = 1 if (a == 1 and b == 1) 4 | * 0 otherwise 5 | */ 6 | 7 | `default_nettype none 8 | 9 | module And( 10 | input a, 11 | input b, 12 | output out 13 | ); 14 | wire notaandb; 15 | 16 | // your implementation comes here: 17 | Nand NAND(.a(a), .b(b), .out(notaandb)); 18 | Not NOT(.in(notaandb), .out(out)); 19 | 20 | 21 | endmodule 22 | -------------------------------------------------------------------------------- /03/RAM.cmp: -------------------------------------------------------------------------------- 1 | |time|in|load|address|out| 2 | | 0| 0|0| 0| x| 3 | | 1| 0|0| 0| x| 4 | | 1| 0|1| 0| x| 5 | | 2| 0|1| 0| 0| 6 | | 2| 4321|0| 0| 0| 7 | | 3| 4321|0| 0| 0| 8 | | 3| 4321|1| 4321| x| 9 | | 4| 4321|1| 4321| 4321| 10 | | 4| 4321|0| 0| 0| 11 | | 5| 4321|0| 0| 0| 12 | | 5| 12345|0| 12345| x| 13 | -------------------------------------------------------------------------------- /00/Makefile: -------------------------------------------------------------------------------- 1 | compile: 2 | iverilog -o Xor_tb.vvp Xor_tb.v 3 | 4 | sim: 5 | vvp Xor_tb.vvp 6 | 7 | diff: 8 | diff Xor.out Xor.cmp 9 | 10 | sym: 11 | yosys -p "read_verilog Xor.v; synth_gowin -json Xor.json" 12 | nextpnr-gowin --json Xor.json --write pnrXor.json --device GW1NSR-LV4CQN48PC6/I5 --cst tangnano4k.cst 13 | gowin_pack -d GW1NSR-LV4CQN48PC6/I5 -o pack.fs pnrXor.json 14 | 15 | flash: 16 | openFPGALoader -b tangnano4k pack.fs -------------------------------------------------------------------------------- /04/Computer_tb.v: -------------------------------------------------------------------------------- 1 | `include "Computer.v" 2 | module Computer_tb(); 3 | 4 | reg clk_in = 0; 5 | reg btn = 1; 6 | wire led; 7 | reg reset = 1; 8 | 9 | Computer 10 | HACK1( 11 | .clk_in(clk_in), 12 | .btn(btn), 13 | .led(led), 14 | .reset(reset) 15 | ); 16 | 17 | always #1 clk_in = ~clk_in; 18 | 19 | initial begin 20 | $dumpfile("Computer_tb.vcd"); 21 | $dumpvars(0, Computer_tb); 22 | #150 23 | $finish; 24 | end 25 | 26 | endmodule 27 | -------------------------------------------------------------------------------- /01/DMux8Way.cmp: -------------------------------------------------------------------------------- 1 | |in|sel|a|b|c|d|e|f|g|h| 2 | |0|000|0|0|0|0|0|0|0|0| 3 | |0|001|0|0|0|0|0|0|0|0| 4 | |0|010|0|0|0|0|0|0|0|0| 5 | |0|011|0|0|0|0|0|0|0|0| 6 | |0|100|0|0|0|0|0|0|0|0| 7 | |0|101|0|0|0|0|0|0|0|0| 8 | |0|110|0|0|0|0|0|0|0|0| 9 | |0|111|0|0|0|0|0|0|0|0| 10 | |1|000|1|0|0|0|0|0|0|0| 11 | |1|001|0|1|0|0|0|0|0|0| 12 | |1|010|0|0|1|0|0|0|0|0| 13 | |1|011|0|0|0|1|0|0|0|0| 14 | |1|100|0|0|0|0|1|0|0|0| 15 | |1|101|0|0|0|0|0|1|0|0| 16 | |1|110|0|0|0|0|0|0|1|0| 17 | |1|111|0|0|0|0|0|0|0|1| 18 | -------------------------------------------------------------------------------- /01/Mux16.cmp: -------------------------------------------------------------------------------- 1 | |a|b|sel|out| 2 | |0000000000000000|0000000000000000|0|0000000000000000| 3 | |0000000000000000|0000000000000000|1|0000000000000000| 4 | |0000000000000000|0001001000110100|0|0000000000000000| 5 | |0000000000000000|0001001000110100|1|0001001000110100| 6 | |1001100001110110|0000000000000000|0|1001100001110110| 7 | |1001100001110110|0000000000000000|1|0000000000000000| 8 | |1010101010101010|0101010101010101|0|1010101010101010| 9 | |1010101010101010|0101010101010101|1|0101010101010101| 10 | -------------------------------------------------------------------------------- /04/Led.v: -------------------------------------------------------------------------------- 1 | `default_nettype none 2 | 3 | module Led( 4 | input clk, 5 | input wire load, 6 | output wire led, 7 | output wire[15:0] out, 8 | input wire[15:0] in 9 | ); 10 | wire prev; 11 | Mux MUX(.a(outLow),.b(in[0]),.sel(load),.out(prev)); 12 | assign led = prev; 13 | wire outLow; 14 | DFFusr DFF1(.clk(clk),.in(prev),.out(outLow)); 15 | Mux16 MUX161( 16 | .a(16'b0000000000000000), 17 | .b(16'b0000000000000001), 18 | .sel(outLow), 19 | .out(out) 20 | ); 21 | 22 | endmodule -------------------------------------------------------------------------------- /04/Xor.v: -------------------------------------------------------------------------------- 1 | /** 2 | * Xor (exclusive or) gate: 3 | * If a<>b out=1 else out=0. 4 | */ 5 | 6 | `default_nettype none 7 | 8 | module Xor( 9 | input wire a, 10 | input wire b, 11 | output wire out 12 | ); 13 | wire nota; //new wire must be declared 14 | wire notb; 15 | Not NOT1(.in(a), .out(nota)); //NOT1 is instance name 16 | Not NOT2(.in(b), .out(notb)); 17 | 18 | wire w1; 19 | wire w2; 20 | And AND1(.a(a),.b(notb),.out(w1)); 21 | And AND2(.a(nota),.b(b),.out(w2)); 22 | 23 | Or OR(.a(w1),.b(w2),.out(out)); 24 | endmodule 25 | -------------------------------------------------------------------------------- /02/HalfAdder.v: -------------------------------------------------------------------------------- 1 | /** 2 | * Computes the sum of two bits. 3 | */ 4 | `include "Xor.v" 5 | `default_nettype none 6 | module HalfAdder( 7 | input wire a, //1-bit input 8 | input wire b, //1-bit inpur 9 | output wire sum, //Right bit of a + b 10 | output wire carry //Lef bit of a + b 11 | ); 12 | 13 | // your implementation comes here: 14 | // Xor(a=a, b=b, out=sum); 15 | // And(a=a, b=b, out=carry); 16 | 17 | Xor XOR(.a(a),.b(b),.out(sum)); 18 | And AND(.a(a),.b(b),.out(carry)); 19 | 20 | endmodule 21 | -------------------------------------------------------------------------------- /03/HalfAdder.v: -------------------------------------------------------------------------------- 1 | /** 2 | * Computes the sum of two bits. 3 | */ 4 | `include "Xor.v" 5 | `default_nettype none 6 | module HalfAdder( 7 | input wire a, //1-bit input 8 | input wire b, //1-bit inpur 9 | output wire sum, //Right bit of a + b 10 | output wire carry //Lef bit of a + b 11 | ); 12 | 13 | // your implementation comes here: 14 | // Xor(a=a, b=b, out=sum); 15 | // And(a=a, b=b, out=carry); 16 | 17 | Xor XOR(.a(a),.b(b),.out(sum)); 18 | And AND(.a(a),.b(b),.out(carry)); 19 | 20 | endmodule 21 | -------------------------------------------------------------------------------- /04/HalfAdder.v: -------------------------------------------------------------------------------- 1 | /** 2 | * Computes the sum of two bits. 3 | */ 4 | `include "Xor.v" 5 | `default_nettype none 6 | module HalfAdder( 7 | input wire a, //1-bit input 8 | input wire b, //1-bit inpur 9 | output wire sum, //Right bit of a + b 10 | output wire carry //Lef bit of a + b 11 | ); 12 | 13 | // your implementation comes here: 14 | // Xor(a=a, b=b, out=sum); 15 | // And(a=a, b=b, out=carry); 16 | 17 | Xor XOR(.a(a),.b(b),.out(sum)); 18 | And AND(.a(a),.b(b),.out(carry)); 19 | 20 | endmodule 21 | -------------------------------------------------------------------------------- /04/DMux.v: -------------------------------------------------------------------------------- 1 | /** 2 | * Demultiplexor: 3 | * {a, b} = {in, 0} if sel == 0 4 | * {0, in} if sel == 1 5 | */ 6 | `default_nettype none 7 | 8 | module DMux( 9 | input wire in, 10 | input wire sel, 11 | output wire a, 12 | output wire b 13 | ); 14 | 15 | // your implementation comes here: 16 | // Not(in=sel, out=notsel); 17 | // And(a=in, b=notsel, out=a); 18 | // And(a=in, b=sel, out=b); 19 | wire notsel; 20 | Not NOT2(.in(sel), .out(notsel)); 21 | And AND1(.a(in),.b(notsel),.out(a)); 22 | And AND2(.a(in),.b(sel),.out(b)); 23 | 24 | endmodule 25 | -------------------------------------------------------------------------------- /00/Xor.v: -------------------------------------------------------------------------------- 1 | /** 2 | * Xor (exclusive or) gate: 3 | * If a<>b out=1 else out=0. 4 | */ 5 | `include "Not.v" 6 | `include "And.v" 7 | `include "Or.v" 8 | `default_nettype none 9 | 10 | module Xor( 11 | input wire a, 12 | input wire b, 13 | output wire out 14 | ); 15 | wire nota; //new wire must be declared 16 | wire notb; 17 | Not NOT1(.in(a), .out(nota)); //NOT1 is instance name 18 | Not NOT2(.in(b), .out(notb)); 19 | 20 | wire w1; 21 | wire w2; 22 | And AND1(.a(a),.b(notb),.out(w1)); 23 | And AND2(.a(nota),.b(b),.out(w2)); 24 | 25 | Or OR(.a(w1),.b(w2),.out(out)); 26 | endmodule 27 | -------------------------------------------------------------------------------- /01/Xor.v: -------------------------------------------------------------------------------- 1 | /** 2 | * Xor (exclusive or) gate: 3 | * If a<>b out=1 else out=0. 4 | */ 5 | `include "Not.v" 6 | `include "And.v" 7 | `include "Or.v" 8 | `default_nettype none 9 | 10 | module Xor( 11 | input wire a, 12 | input wire b, 13 | output wire out 14 | ); 15 | wire nota; //new wire must be declared 16 | wire notb; 17 | Not NOT1(.in(a), .out(nota)); //NOT1 is instance name 18 | Not NOT2(.in(b), .out(notb)); 19 | 20 | wire w1; 21 | wire w2; 22 | And AND1(.a(a),.b(notb),.out(w1)); 23 | And AND2(.a(nota),.b(b),.out(w2)); 24 | 25 | Or OR(.a(w1),.b(w2),.out(out)); 26 | endmodule 27 | -------------------------------------------------------------------------------- /02/Xor.v: -------------------------------------------------------------------------------- 1 | /** 2 | * Xor (exclusive or) gate: 3 | * If a<>b out=1 else out=0. 4 | */ 5 | `include "Not.v" 6 | `include "And.v" 7 | `include "Or.v" 8 | `default_nettype none 9 | 10 | module Xor( 11 | input wire a, 12 | input wire b, 13 | output wire out 14 | ); 15 | wire nota; //new wire must be declared 16 | wire notb; 17 | Not NOT1(.in(a), .out(nota)); //NOT1 is instance name 18 | Not NOT2(.in(b), .out(notb)); 19 | 20 | wire w1; 21 | wire w2; 22 | And AND1(.a(a),.b(notb),.out(w1)); 23 | And AND2(.a(nota),.b(b),.out(w2)); 24 | 25 | Or OR(.a(w1),.b(w2),.out(out)); 26 | endmodule 27 | -------------------------------------------------------------------------------- /03/Xor.v: -------------------------------------------------------------------------------- 1 | /** 2 | * Xor (exclusive or) gate: 3 | * If a<>b out=1 else out=0. 4 | */ 5 | `include "Not.v" 6 | `include "And.v" 7 | `include "Or.v" 8 | `default_nettype none 9 | 10 | module Xor( 11 | input wire a, 12 | input wire b, 13 | output wire out 14 | ); 15 | wire nota; //new wire must be declared 16 | wire notb; 17 | Not NOT1(.in(a), .out(nota)); //NOT1 is instance name 18 | Not NOT2(.in(b), .out(notb)); 19 | 20 | wire w1; 21 | wire w2; 22 | And AND1(.a(a),.b(notb),.out(w1)); 23 | And AND2(.a(nota),.b(b),.out(w2)); 24 | 25 | Or OR(.a(w1),.b(w2),.out(out)); 26 | endmodule 27 | -------------------------------------------------------------------------------- /03/Mux.v: -------------------------------------------------------------------------------- 1 | /** 2 | * Multiplexor: 3 | * out = a if sel == 0 4 | * b otherwise 5 | */ 6 | `default_nettype none 7 | module Mux( 8 | input a, 9 | input b, 10 | input sel, 11 | output out 12 | ); 13 | // Not(in=sel, out=notsel); 14 | // And(a=a, b=notsel, out=outa); 15 | // And(a=b, b=sel, out=outb); 16 | // Or(a=outa, b=outb, out=out); 17 | 18 | wire notsel; 19 | Not NOT(.in(sel), .out(notsel)); 20 | 21 | wire w1; 22 | wire w2; 23 | And AND1(.a(a),.b(notsel),.out(w1)); 24 | And AND2(.a(b),.b(sel),.out(w2)); 25 | 26 | Or OR(.a(w1),.b(w2),.out(out)); 27 | 28 | endmodule 29 | -------------------------------------------------------------------------------- /04/Mux.v: -------------------------------------------------------------------------------- 1 | /** 2 | * Multiplexor: 3 | * out = a if sel == 0 4 | * b otherwise 5 | */ 6 | `default_nettype none 7 | module Mux( 8 | input a, 9 | input b, 10 | input sel, 11 | output out 12 | ); 13 | // Not(in=sel, out=notsel); 14 | // And(a=a, b=notsel, out=outa); 15 | // And(a=b, b=sel, out=outb); 16 | // Or(a=outa, b=outb, out=out); 17 | 18 | wire notsel; 19 | Not NOT(.in(sel), .out(notsel)); 20 | 21 | wire w1; 22 | wire w2; 23 | And AND1(.a(a),.b(notsel),.out(w1)); 24 | And AND2(.a(b),.b(sel),.out(w2)); 25 | 26 | Or OR(.a(w1),.b(w2),.out(out)); 27 | 28 | endmodule 29 | -------------------------------------------------------------------------------- /04/Bit.v: -------------------------------------------------------------------------------- 1 | /** 2 | * 1-bit register: 3 | * If load[t] == 1 then out[t+1] = in[t] 4 | * else out does not change (out[t+1] = out[t]) 5 | */ 6 | `include "DFFusr.v" 7 | `default_nettype none 8 | module Bit( 9 | input wire clk, 10 | input wire in, 11 | input wire load, 12 | output wire out 13 | ); 14 | 15 | // your implementation comes here: 16 | 17 | // Mux(a=muxb, b=in, sel=load, out=muxo); 18 | // DFF(in=muxo, out=out, out=muxb); 19 | // reg muxb; 20 | wire muxo; 21 | Mux MUX(.a(out),.b(in),.sel(load),.out(muxo)); 22 | DFFusr DFF1(.clk(clk),.in(muxo),.out(out)); 23 | 24 | endmodule 25 | -------------------------------------------------------------------------------- /02/Mux.v: -------------------------------------------------------------------------------- 1 | /** 2 | * Multiplexor: 3 | * out = a if sel == 0 4 | * b otherwise 5 | */ 6 | `default_nettype none 7 | 8 | module Mux( 9 | input a, 10 | input b, 11 | input sel, 12 | output out 13 | ); 14 | // Not(in=sel, out=notsel); 15 | // And(a=a, b=notsel, out=outa); 16 | // And(a=b, b=sel, out=outb); 17 | // Or(a=outa, b=outb, out=out); 18 | 19 | wire notsel; 20 | Not NOT(.in(sel), .out(notsel)); 21 | 22 | wire w1; 23 | wire w2; 24 | And AND1(.a(a),.b(notsel),.out(w1)); 25 | And AND2(.a(b),.b(sel),.out(w2)); 26 | 27 | Or OR(.a(w1),.b(w2),.out(out)); 28 | 29 | endmodule 30 | -------------------------------------------------------------------------------- /03/RAM.v: -------------------------------------------------------------------------------- 1 | /** 2 | * BlockRAM of iCE40 3 | * implements 2048 words of RAM addressed from 0000 - 2047 4 | * out = M[address] (continuosly assigned using combinatorial logic) 5 | * if (load =i= 1) M[address][t+1] = in[t] (clocked using sequential logic) 6 | */ 7 | 8 | `default_nettype none 9 | module RAM( 10 | input wire clk, 11 | input wire [15:0] address, 12 | input wire [15:0] in, 13 | input wire load, 14 | output wire [15:0] out 15 | ); 16 | 17 | reg [15:0] regRAM [0:2047]; 18 | always @(negedge clk) 19 | if (load) regRAM[address[10:0]] <= in; 20 | 21 | assign out = regRAM[address[10:0]]; 22 | endmodule 23 | -------------------------------------------------------------------------------- /01/DMux.v: -------------------------------------------------------------------------------- 1 | /** 2 | * Demultiplexor: 3 | * {a, b} = {in, 0} if sel == 0 4 | * {0, in} if sel == 1 5 | */ 6 | `include "Not.v" 7 | `include "And.v" 8 | `default_nettype none 9 | 10 | module DMux( 11 | input wire in, 12 | input wire sel, 13 | output wire a, 14 | output wire b 15 | ); 16 | 17 | // your implementation comes here: 18 | // Not(in=sel, out=notsel); 19 | // And(a=in, b=notsel, out=a); 20 | // And(a=in, b=sel, out=b); 21 | wire notsel; 22 | Not NOT2(.in(sel), .out(notsel)); 23 | And AND1(.a(in),.b(notsel),.out(a)); 24 | And AND2(.a(in),.b(sel),.out(b)); 25 | 26 | endmodule 27 | -------------------------------------------------------------------------------- /04/RAM.v: -------------------------------------------------------------------------------- 1 | /** 2 | * tangnano4k not support block ram https://github.com/YosysHQ/yosys/wiki/FPGA-family-feature-matrix 3 | * out = M[address] (continuosly assigned using combinatorial logic) 4 | * if (load =i= 1) M[address][t+1] = in[t] (clocked using sequential logic) 5 | */ 6 | 7 | `default_nettype none 8 | module RAM( 9 | input wire clk, 10 | input wire [15:0] address, 11 | input wire [15:0] in, 12 | input wire load, 13 | output wire [15:0] out 14 | ); 15 | 16 | reg [15:0] regRAM [0:10]; 17 | always @(negedge clk) 18 | if (load) regRAM[address[3:0]] <= in; 19 | 20 | assign out = regRAM[address[3:0]]; 21 | endmodule 22 | -------------------------------------------------------------------------------- /03/Bit.v: -------------------------------------------------------------------------------- 1 | /** 2 | * 1-bit register: 3 | * If load[t] == 1 then out[t+1] = in[t] 4 | * else out does not change (out[t+1] = out[t]) 5 | */ 6 | `include "Mux.v" 7 | `include "DFF.v" 8 | `default_nettype none 9 | module Bit( 10 | input wire clk, 11 | input wire in, 12 | input wire load, 13 | output wire out 14 | ); 15 | 16 | // your implementation comes here: 17 | 18 | // Mux(a=muxb, b=in, sel=load, out=muxo); 19 | // DFF(in=muxo, out=out, out=muxb); 20 | // reg muxb; 21 | wire muxo; 22 | Mux MUX(.a(out),.b(in),.sel(load),.out(muxo)); 23 | DFFusr DFF1(.clk(clk),.in(muxo),.out(out)); 24 | 25 | endmodule 26 | -------------------------------------------------------------------------------- /04/ROM.v: -------------------------------------------------------------------------------- 1 | /** 2 | * instruction memory at boot time 3 | * The instruction memory is read only (ROM) and 4 | * preloaded with 2048 x 16bit of Hackcode holding the bootloader. 5 | * 6 | * instruction = ROM[pc] 7 | * tangnano4k not support block ram https://github.com/YosysHQ/yosys/wiki/FPGA-family-feature-matrix 8 | */ 9 | `default_nettype none 10 | 11 | module ROM( 12 | input wire [15:0] pc, 13 | output wire [15:0] instruction 14 | ); 15 | 16 | // ROM file of hack 17 | parameter ROMFILE = "./led.hack"; 18 | 19 | reg [15:0] mem [0:10]; 20 | assign instruction = mem[pc[3:0]]; 21 | 22 | initial begin 23 | $readmemb(ROMFILE,mem); 24 | end 25 | 26 | endmodule 27 | -------------------------------------------------------------------------------- /01/Mux.v: -------------------------------------------------------------------------------- 1 | /** 2 | * Multiplexor: 3 | * out = a if sel == 0 4 | * b otherwise 5 | */ 6 | `include "Not.v" 7 | `include "And.v" 8 | `include "Or.v" 9 | `default_nettype none 10 | 11 | module Mux( 12 | input a, 13 | input b, 14 | input sel, 15 | output out 16 | ); 17 | // Not(in=sel, out=notsel); 18 | // And(a=a, b=notsel, out=outa); 19 | // And(a=b, b=sel, out=outb); 20 | // Or(a=outa, b=outb, out=out); 21 | 22 | wire notsel; 23 | Not NOT(.in(sel), .out(notsel)); 24 | 25 | wire w1; 26 | wire w2; 27 | And AND1(.a(a),.b(notsel),.out(w1)); 28 | And AND2(.a(b),.b(sel),.out(w2)); 29 | 30 | Or OR(.a(w1),.b(w2),.out(out)); 31 | 32 | endmodule 33 | -------------------------------------------------------------------------------- /00/Xor_tb.v: -------------------------------------------------------------------------------- 1 | `include "Xor.v" 2 | `default_nettype none 3 | module Xor_tb(); 4 | 5 | integer file; 6 | 7 | reg a = 0; 8 | reg b = 0; 9 | wire out; 10 | 11 | Xor XOR( 12 | .a(a), 13 | .b(b), 14 | .out(out) 15 | ); 16 | 17 | task display; 18 | #1 $fwrite(file, "| %1b | %1b | %1b |\n", a,b,out); 19 | endtask 20 | 21 | initial begin 22 | $dumpfile("Xor_tb.vcd"); 23 | $dumpvars(0, Xor_tb); 24 | file = $fopen("Xor.out","w"); 25 | $fwrite(file, "| a | b |out|\n"); 26 | 27 | a=0;b=0; 28 | display(); 29 | 30 | a=0;b=1; 31 | display(); 32 | 33 | a=1;b=0; 34 | display(); 35 | 36 | a=1;b=1; 37 | display(); 38 | $finish(); 39 | end 40 | 41 | endmodule 42 | -------------------------------------------------------------------------------- /01/Or8Way_tb.v: -------------------------------------------------------------------------------- 1 | `include "Or8Way.v" 2 | `default_nettype none 3 | module Or8Way_tb(); 4 | 5 | integer file; 6 | 7 | reg[7:0] in = 8'b00000000; 8 | wire out; 9 | 10 | Or8Way OR8WAY( 11 | .in(in), 12 | .out(out) 13 | ); 14 | 15 | task display; 16 | #1 $fwrite(file, "|%8b|%1b|\n", in,out); 17 | endtask 18 | 19 | initial begin 20 | $dumpfile("Or8Way_tb.vcd"); 21 | $dumpvars(0, Or8Way_tb); 22 | file = $fopen("Or8Way.out","w"); 23 | $fwrite(file, "|in|out|\n"); 24 | 25 | in=8'b00000000; 26 | display(); 27 | 28 | in=8'b11111111; 29 | display(); 30 | 31 | in=8'b00010000; 32 | display(); 33 | 34 | in=8'b00000001; 35 | display(); 36 | 37 | in=8'b00100110; 38 | display(); 39 | $finish(); 40 | end 41 | 42 | endmodule 43 | -------------------------------------------------------------------------------- /04/Clk.v: -------------------------------------------------------------------------------- 1 | /** 2 | * input clk_in: clock input 100 MHz 3 | * output clk: clock output 33.333333 MHz 4 | * 5 | * Implementation with 2 bit DFF-counter: 6 | * counter | 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 .... 7 | * clk | 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 .... 8 | */ 9 | 10 | `default_nettype none 11 | 12 | module Clk( 13 | input wire in, //external clock 100Mz 14 | output reg out = 1'b0 //Hack clock 33.333333 MHz 15 | ); 16 | 17 | // your implementation comes here: 18 | parameter NUM_DIV = 5; 19 | reg [15:0] cnt = 16'd0; 20 | // assign out <= 1'b0; 21 | 22 | always @(posedge in) 23 | if(cnt < NUM_DIV) begin 24 | cnt <= cnt + 1'b1; 25 | out <= out; 26 | end 27 | else begin 28 | cnt <= 16'd0; 29 | out <= ~out; 30 | end 31 | 32 | endmodule 33 | -------------------------------------------------------------------------------- /01/DMux_tb.v: -------------------------------------------------------------------------------- 1 | `include "DMux.v" 2 | `default_nettype none 3 | module DMux_tb(); 4 | 5 | integer file; 6 | 7 | reg in = 1'b0; 8 | reg sel = 1'b0; 9 | wire a; 10 | wire b; 11 | 12 | DMux DMUX( 13 | .in(in), 14 | .sel(sel), 15 | .a(a), 16 | .b(b) 17 | ); 18 | 19 | task display; 20 | #1 $fwrite(file, "|%1b|%1b|%1b|%1b|\n", in,sel,a,b); 21 | endtask 22 | 23 | initial begin 24 | $dumpfile("DMux_tb.vcd"); 25 | $dumpvars(0, DMux_tb); 26 | file = $fopen("DMux.out","w"); 27 | $fwrite(file, "|in|sel|a|b|\n"); 28 | 29 | sel = 1'b0; 30 | display(); 31 | sel = 1'b1; 32 | display(); 33 | 34 | in = 1'b1; 35 | sel = 1'b0; 36 | display(); 37 | sel = 1'b1; 38 | display(); 39 | 40 | $finish(); 41 | end 42 | 43 | endmodule 44 | -------------------------------------------------------------------------------- /02/Makefile: -------------------------------------------------------------------------------- 1 | sym-half: 2 | yosys -p "read_verilog HalfAdder.v; synth_gowin -json HalfAdder.json" 3 | nextpnr-gowin --json HalfAdder.json --write pnrHalfAdder.json --device GW1NSR-LV4CQN48PC6/I5 --cst tangnano4k-2i2o.cst 4 | gowin_pack -d GW1NSR-LV4CQN48PC6/I5 -o pack.fs pnrHalfAdder.json 5 | 6 | flash: 7 | openFPGALoader -b tangnano4k pack.fs 8 | 9 | compile-full: 10 | iverilog -o FullAdder_tb.vvp FullAdder_tb.v 11 | 12 | sim-full: 13 | vvp FullAdder_tb.vvp 14 | 15 | diff-full: 16 | diff FullAdder.out FullAdder.cmp 17 | 18 | compile-add16: 19 | iverilog -o Add16_tb.vvp Add16_tb.v 20 | 21 | sim-add16: 22 | vvp Add16_tb.vvp 23 | 24 | diff-add16: 25 | diff Add16.out Add16.cmp 26 | 27 | compile-alu: 28 | iverilog -o ALU_tb.vvp ALU_tb.v 29 | 30 | sim-alu: 31 | vvp ALU_tb.vvp 32 | 33 | diff-alu: 34 | diff ALU.out ALU.cmp -------------------------------------------------------------------------------- /01/DMux4Way.v: -------------------------------------------------------------------------------- 1 | /** 2 | * 4-way demultiplexor: 3 | * {a, b, c, d} = {in, 0, 0, 0} if sel == 00 4 | * {0, in, 0, 0} if sel == 01 5 | * {0, 0, in, 0} if sel == 10 6 | * {0, 0, 0, in} if sel == 11 7 | */ 8 | `include "DMux.v" 9 | module DMux4Way( 10 | input wire in, 11 | input wire [1:0] sel, 12 | output wire a, 13 | output wire b, 14 | output wire c, 15 | output wire d 16 | ); 17 | // your implementation comes here: 18 | // DMux(in=in, sel=sel[1], a=ab, b=cd); 19 | // DMux(in=ab, sel=sel[0], a=a, b=b); 20 | // DMux(in=cd, sel=sel[0], a=c, b=d); 21 | wire ab; 22 | wire cd; 23 | DMux DMUX1(.in(in), .sel(sel[1]), .a(ab), .b(cd)); 24 | DMux DMUX2(.in(ab), .sel(sel[0]), .a(a), .b(b)); 25 | DMux DMUX3(.in(cd), .sel(sel[0]), .a(c), .b(d)); 26 | 27 | 28 | endmodule 29 | -------------------------------------------------------------------------------- /01/Not16_tb.v: -------------------------------------------------------------------------------- 1 | `include "Not16.v" 2 | `default_nettype none 3 | module Not16_tb(); 4 | 5 | integer file; 6 | 7 | reg[15:0] in = 16'b0000000000000000; 8 | wire[15:0] out; 9 | 10 | Not16 NOT16( 11 | .in(in), 12 | .out(out) 13 | ); 14 | 15 | task display; 16 | #1 $fwrite(file, "|%16b|%16b|\n", in,out); 17 | endtask 18 | 19 | initial begin 20 | $dumpfile("Not16_tb.vcd"); 21 | $dumpvars(0, Not16_tb); 22 | file = $fopen("Not16.out","w"); 23 | $fwrite(file, "|in|out|\n"); 24 | 25 | in=16'b0000000000000000; 26 | display(); 27 | 28 | in=16'b1111111111111111; 29 | display(); 30 | 31 | in=16'b1010101010101010; 32 | display(); 33 | 34 | in=16'b0011110011000011; 35 | display(); 36 | 37 | in=16'b0001001000110100; 38 | display(); 39 | $finish(); 40 | end 41 | 42 | endmodule 43 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | ## bugu computer 2 | 3 | ![Untitled (3)](https://tva1.sinaimg.cn/large/008i3skNgy1gyomf2sm6zj30pm0be74x.jpg) 4 | 5 | 从与或非门开始构建一个计算机的教程(写给软件工程师) 6 | 7 | 作为一个软件工程师一定想过自己构建计算机,自己构建计算机是不是要连电路呀?得益于科技的发展,现在使用 verilog + Fpga 就可以了。本教程采用 verilog + Fpga 来从头构建一个最简单的计算机。 8 | 9 | 指令集采用 nand2tetris 的 Hack 。目标是运行如下汇编,不过也可以运行其他汇编因为是通用计算机。 10 | 11 | ```asm 12 | // led.asm 13 | // execute an infinite loop to 14 | // read the button state and write the result 15 | 16 | (LOOP) 17 | @8193 //read BUT 18 | D=M 19 | 20 | @8192 //write LED 21 | M=D 22 | 23 | @LOOP 24 | 0;JMP 25 | ``` 26 | 27 | 28 | 29 | - [00 准备](00/README.md) 30 | - [01 布尔逻辑](01/README.md) 31 | - [02 算术(ALU)](02/README.md) 32 | - [03 时序电路(存储)](03/README.md) 33 | - [04 组装](04/README.md) 34 | 35 | 参考 36 | 37 | - https://gitlab.com/x653/nand2tetris-fpga 38 | - https://www.nand2tetris.org/ 39 | -------------------------------------------------------------------------------- /02/FullAdder.v: -------------------------------------------------------------------------------- 1 | /** 2 | * Computes the sum of three bits. 3 | */ 4 | `include "HalfAdder.v" 5 | `default_nettype none 6 | 7 | module FullAdder( 8 | input wire a, //1-bit input 9 | input wire b, //1-bit input 10 | input wire c, //1-bit input 11 | output wire sum, //Right bit of a + b + c 12 | output wire carry //Left bit of a + b + c 13 | ); 14 | // your implementation comes here: 15 | 16 | // HalfAdder(a=a, b=b, sum=hsum, carry=hcarry); 17 | // HalfAdder(a=c, b=hsum, sum=sum, carry=hcarry2); 18 | // Or(a=hcarry, b=hcarry2, out=carry); 19 | wire hsum; 20 | wire hcarry; 21 | HalfAdder HalfAdder1(.a(a),.b(b),.sum(hsum),.carry(hcarry)); 22 | wire hcarry2; 23 | HalfAdder HalfAdder2(.a(c),.b(hsum),.sum(sum),.carry(hcarry2)); 24 | Or OR(.a(hcarry),.b(hcarry2),.out(carry)); 25 | 26 | endmodule 27 | -------------------------------------------------------------------------------- /03/FullAdder.v: -------------------------------------------------------------------------------- 1 | /** 2 | * Computes the sum of three bits. 3 | */ 4 | `include "HalfAdder.v" 5 | `default_nettype none 6 | 7 | module FullAdder( 8 | input wire a, //1-bit input 9 | input wire b, //1-bit input 10 | input wire c, //1-bit input 11 | output wire sum, //Right bit of a + b + c 12 | output wire carry //Left bit of a + b + c 13 | ); 14 | // your implementation comes here: 15 | 16 | // HalfAdder(a=a, b=b, sum=hsum, carry=hcarry); 17 | // HalfAdder(a=c, b=hsum, sum=sum, carry=hcarry2); 18 | // Or(a=hcarry, b=hcarry2, out=carry); 19 | wire hsum; 20 | wire hcarry; 21 | HalfAdder HalfAdder1(.a(a),.b(b),.sum(hsum),.carry(hcarry)); 22 | wire hcarry2; 23 | HalfAdder HalfAdder2(.a(c),.b(hsum),.sum(sum),.carry(hcarry2)); 24 | Or OR(.a(hcarry),.b(hcarry2),.out(carry)); 25 | 26 | endmodule 27 | -------------------------------------------------------------------------------- /04/FullAdder.v: -------------------------------------------------------------------------------- 1 | /** 2 | * Computes the sum of three bits. 3 | */ 4 | `include "HalfAdder.v" 5 | `default_nettype none 6 | 7 | module FullAdder( 8 | input wire a, //1-bit input 9 | input wire b, //1-bit input 10 | input wire c, //1-bit input 11 | output wire sum, //Right bit of a + b + c 12 | output wire carry //Left bit of a + b + c 13 | ); 14 | // your implementation comes here: 15 | 16 | // HalfAdder(a=a, b=b, sum=hsum, carry=hcarry); 17 | // HalfAdder(a=c, b=hsum, sum=sum, carry=hcarry2); 18 | // Or(a=hcarry, b=hcarry2, out=carry); 19 | wire hsum; 20 | wire hcarry; 21 | HalfAdder HalfAdder1(.a(a),.b(b),.sum(hsum),.carry(hcarry)); 22 | wire hcarry2; 23 | HalfAdder HalfAdder2(.a(c),.b(hsum),.sum(sum),.carry(hcarry2)); 24 | Or OR(.a(hcarry),.b(hcarry2),.out(carry)); 25 | 26 | endmodule 27 | -------------------------------------------------------------------------------- /04/Makefile: -------------------------------------------------------------------------------- 1 | compile-cpu: 2 | iverilog -o CPU_tb.vvp CPU_tb.v 3 | 4 | sim-cpu: 5 | vvp CPU_tb.vvp 6 | 7 | diff-cpu: 8 | diff CPU.out CPU.cmp 9 | 10 | compile-mem: 11 | iverilog -o Memory_tb.vvp Memory_tb.v 12 | 13 | sim-mem: 14 | vvp Memory_tb.vvp 15 | 16 | diff-mem: 17 | diff Memory.out Memory.cmp 18 | 19 | compile-rom: 20 | iverilog -o ROM.vvp ROM.v 21 | 22 | compile-com: 23 | iverilog -o Computer_tb.vvp Computer_tb.v 24 | 25 | sim-com: 26 | vvp Computer_tb.vvp 27 | 28 | diff-com: 29 | diff Computer.out Computer.cmp 30 | 31 | sym-com: 32 | yosys -p "read_verilog Computer.v; synth_gowin -json Computer.json" 33 | nextpnr-gowin --json Computer.json --write pnrComputer.json --device GW1NSR-LV4CQN48PC6/I5 --cst tangnano4k-com.cst 34 | gowin_pack -d GW1NSR-LV4CQN48PC6/I5 -o pack.fs pnrComputer.json 35 | 36 | flash: 37 | openFPGALoader -b tangnano4k pack.fs -------------------------------------------------------------------------------- /03/Makefile: -------------------------------------------------------------------------------- 1 | sym-d: 2 | yosys -p "read_verilog DFF.v; synth_gowin -json DFF.json" 3 | nextpnr-gowin --json DFF.json --write pnrDFF.json --device GW1NSR-LV4CQN48PC6/I5 --cst tangnano4k-d.cst 4 | gowin_pack -d GW1NSR-LV4CQN48PC6/I5 -o pack.fs pnrDFF.json 5 | 6 | flash: 7 | openFPGALoader -b tangnano4k pack.fs 8 | 9 | compile-d: 10 | iverilog -o DFF.vvp DFF.v 11 | 12 | compile-bit: 13 | iverilog -o Bit_tb.vvp Bit_tb.v 14 | 15 | sim-bit: 16 | vvp Bit_tb.vvp 17 | 18 | diff-bit: 19 | diff Bit.out Bit.cmp 20 | 21 | compile-reg: 22 | iverilog -o Register_tb.vvp Register_tb.v 23 | 24 | sim-reg: 25 | vvp Register_tb.vvp 26 | 27 | diff-reg: 28 | diff Register.out Register.cmp 29 | 30 | compile-pc: 31 | iverilog -o PC_tb.vvp PC_tb.v 32 | 33 | sim-pc: 34 | vvp PC_tb.vvp 35 | 36 | diff-pc: 37 | diff PC.out PC.cmp 38 | 39 | compile-ram: 40 | iverilog -o RAM_tb.vvp RAM_tb.v 41 | 42 | sim-ram: 43 | vvp RAM_tb.vvp 44 | 45 | diff-ram: 46 | diff RAM.out RAM.cmp -------------------------------------------------------------------------------- /01/Mux_tb.v: -------------------------------------------------------------------------------- 1 | `include "Mux.v" 2 | `default_nettype none 3 | module Mux_tb(); 4 | 5 | integer file; 6 | 7 | reg a = 0; 8 | reg b = 0; 9 | reg sel = 0; 10 | wire out; 11 | 12 | Mux MUX( 13 | .a(a), 14 | .b(b), 15 | .sel(sel), 16 | .out(out) 17 | ); 18 | 19 | task display; 20 | #1 $fwrite(file, "|%1b|%1b|%1b|%1b|\n", a,b,sel,out); 21 | endtask 22 | 23 | initial begin 24 | $dumpfile("Mux_tb.vcd"); 25 | $dumpvars(0, Mux_tb); 26 | file = $fopen("Mux.out","w"); 27 | $fwrite(file, "|a|b|sel|out|\n"); 28 | 29 | a=0;b=0;sel=0; 30 | display(); 31 | 32 | a=0;b=0;sel=1; 33 | display(); 34 | 35 | a=0;b=1;sel=0; 36 | display(); 37 | 38 | a=0;b=1;sel=1; 39 | display(); 40 | 41 | a=1;b=0;sel=0; 42 | display(); 43 | 44 | a=1;b=0;sel=1; 45 | display(); 46 | 47 | a=1;b=1;sel=0; 48 | display(); 49 | 50 | a=1;b=1;sel=1; 51 | display(); 52 | $finish(); 53 | end 54 | 55 | endmodule 56 | -------------------------------------------------------------------------------- /03/Bit_tb.v: -------------------------------------------------------------------------------- 1 | `include "Bit.v" 2 | module Bit_tb(); 3 | 4 | integer file; 5 | 6 | reg clk = 1; 7 | wire out; 8 | reg load = 0; 9 | reg in=0; 10 | reg[9:0] t = 10'b0; 11 | 12 | Bit BIT( 13 | .clk(clk), 14 | .load(load), 15 | .in(in), 16 | .out(out) 17 | ); 18 | 19 | always #1 clk = ~clk; 20 | 21 | task display; 22 | #1 $fwrite(file, "|%4d|%1b|%1b|%1b|\n", t,in,load,out); 23 | endtask 24 | 25 | initial begin 26 | $dumpfile("Bit_tb.vcd"); 27 | $dumpvars(0, Bit_tb); 28 | file = $fopen("Bit.out","w"); 29 | $fwrite(file, "|time|in|load|out|\n"); 30 | display(); 31 | 32 | t=1;display(); 33 | 34 | in=0;load=1;display(); 35 | 36 | t=2;display(); 37 | 38 | in=1;load=0;display(); 39 | 40 | t=3;display(); 41 | 42 | in=1;load=1;display(); 43 | 44 | t=4;display(); 45 | 46 | in=0;load=0;display(); 47 | 48 | t=5;display(); 49 | 50 | in=1;load=0;display(); 51 | $finish; 52 | end 53 | 54 | endmodule 55 | -------------------------------------------------------------------------------- /01/DMux4Way_tb.v: -------------------------------------------------------------------------------- 1 | `include "DMux4Way.v" 2 | `default_nettype none 3 | module DMux4Way_tb(); 4 | 5 | integer file; 6 | 7 | reg in = 1'b0; 8 | reg[1:0] sel = 2'b00; 9 | wire a; 10 | wire b; 11 | wire c; 12 | wire d; 13 | 14 | DMux4Way DMUX4WAY( 15 | .in(in), 16 | .sel(sel), 17 | .a(a), 18 | .b(b), 19 | .c(c), 20 | .d(d) 21 | ); 22 | 23 | task display; 24 | #1 $fwrite(file, "|%1b|%2b|%1b|%1b|%1b|%1b|\n", in,sel,a,b,c,d); 25 | endtask 26 | 27 | initial begin 28 | $dumpfile("DMux4Way_tb.vcd"); 29 | $dumpvars(0, DMux4Way_tb); 30 | file = $fopen("DMux4Way.out","w"); 31 | $fwrite(file, "|in|sel|a|b|c|d|\n"); 32 | 33 | sel = 2'b00; 34 | display(); 35 | sel = 2'b01; 36 | display(); 37 | sel = 2'b10; 38 | display(); 39 | sel = 2'b11; 40 | display(); 41 | in = 1'b1; 42 | sel = 2'b00; 43 | display(); 44 | sel = 2'b01; 45 | display(); 46 | sel = 2'b10; 47 | display(); 48 | sel = 2'b11; 49 | display(); 50 | $finish(); 51 | end 52 | 53 | endmodule 54 | -------------------------------------------------------------------------------- /02/FullAdder_tb.v: -------------------------------------------------------------------------------- 1 | `include "FullAdder.v" 2 | `default_nettype none 3 | module FullAdder_tb(); 4 | 5 | integer file; 6 | 7 | reg a = 0; 8 | reg b = 0; 9 | reg c = 0; 10 | wire sum; 11 | wire carry; 12 | 13 | FullAdder FullAdder1( 14 | .a(a), 15 | .b(b), 16 | .c(c), 17 | .sum(sum), 18 | .carry(carry) 19 | ); 20 | 21 | task display; 22 | #1 $fwrite(file, "|%1b|%1b|%1b|%1b|%1b|\n", a,b,c,sum,carry); 23 | endtask 24 | 25 | initial begin 26 | $dumpfile("FullAdder_tb.vcd"); 27 | $dumpvars(0, FullAdder_tb); 28 | file = $fopen("FullAdder.out","w"); 29 | $fwrite(file, "|a|b|c|sum|carry|\n"); 30 | 31 | a=0;b=0;c=0; 32 | display(); 33 | 34 | c=1; 35 | display(); 36 | 37 | b=1;c=0; 38 | display(); 39 | 40 | c=1; 41 | display(); 42 | 43 | a=1;b=0;c=0; 44 | display(); 45 | 46 | c=1; 47 | display(); 48 | 49 | b=1;c=0; 50 | display(); 51 | 52 | c=1; 53 | display(); 54 | $finish(); 55 | end 56 | 57 | endmodule 58 | -------------------------------------------------------------------------------- /02/Or8Way.v: -------------------------------------------------------------------------------- 1 | /** 2 | * 8-way Or: 3 | * out = (in[0] or in[1] or ... or in[7]) 4 | */ 5 | `default_nettype none 6 | 7 | module Or8Way( 8 | input [7:0] in, 9 | output out 10 | ); 11 | 12 | // Or(a=in[0], b=in[1], out=temp01); 13 | // Or(a=temp01, b=in[2], out=temp012); 14 | // Or(a=temp012, b=in[3], out=temp0123); 15 | // Or(a=temp0123, b=in[4], out=temp01234); 16 | // Or(a=temp01234, b=in[5], out=temp012345); 17 | // Or(a=temp012345, b=in[6], out=temp0123456); 18 | // Or(a=temp0123456, b=in[7], out=out); 19 | wire temp01; 20 | wire temp012; 21 | wire temp0123; 22 | wire temp01234; 23 | wire temp012345; 24 | wire temp0123456; 25 | 26 | Or OR1(.a(in[0]),.b(in[1]),.out(temp01)); 27 | Or OR2(.a(temp01),.b(in[2]),.out(temp012)); 28 | Or OR3(.a(temp012),.b(in[3]),.out(temp0123)); 29 | Or OR4(.a(temp0123),.b(in[4]),.out(temp01234)); 30 | Or OR5(.a(temp01234),.b(in[5]),.out(temp012345)); 31 | Or OR6(.a(temp012345),.b(in[6]),.out(temp0123456)); 32 | Or OR7(.a(temp0123456),.b(in[7]),.out(out)); 33 | endmodule 34 | -------------------------------------------------------------------------------- /04/Or8Way.v: -------------------------------------------------------------------------------- 1 | /** 2 | * 8-way Or: 3 | * out = (in[0] or in[1] or ... or in[7]) 4 | */ 5 | `default_nettype none 6 | 7 | module Or8Way( 8 | input [7:0] in, 9 | output out 10 | ); 11 | 12 | // Or(a=in[0], b=in[1], out=temp01); 13 | // Or(a=temp01, b=in[2], out=temp012); 14 | // Or(a=temp012, b=in[3], out=temp0123); 15 | // Or(a=temp0123, b=in[4], out=temp01234); 16 | // Or(a=temp01234, b=in[5], out=temp012345); 17 | // Or(a=temp012345, b=in[6], out=temp0123456); 18 | // Or(a=temp0123456, b=in[7], out=out); 19 | wire temp01; 20 | wire temp012; 21 | wire temp0123; 22 | wire temp01234; 23 | wire temp012345; 24 | wire temp0123456; 25 | 26 | Or OR1(.a(in[0]),.b(in[1]),.out(temp01)); 27 | Or OR2(.a(temp01),.b(in[2]),.out(temp012)); 28 | Or OR3(.a(temp012),.b(in[3]),.out(temp0123)); 29 | Or OR4(.a(temp0123),.b(in[4]),.out(temp01234)); 30 | Or OR5(.a(temp01234),.b(in[5]),.out(temp012345)); 31 | Or OR6(.a(temp012345),.b(in[6]),.out(temp0123456)); 32 | Or OR7(.a(temp0123456),.b(in[7]),.out(out)); 33 | endmodule 34 | -------------------------------------------------------------------------------- /01/DMux8Way.v: -------------------------------------------------------------------------------- 1 | /** 2 | * 8-way demultiplexor: 3 | * {a, b, c, d, e, f, g, h} = {in, 0, 0, 0, 0, 0, 0, 0} if sel == 000 4 | * {0, in, 0, 0, 0, 0, 0, 0} if sel == 001 5 | * etc. 6 | * {0, 0, 0, 0, 0, 0, 0, in} if sel == 111 7 | */ 8 | `include "DMux4Way.v" 9 | module DMux8Way( 10 | input wire in, 11 | input wire [2:0] sel, 12 | output wire a, 13 | output wire b, 14 | output wire c, 15 | output wire d, 16 | output wire e, 17 | output wire f, 18 | output wire g, 19 | output wire h 20 | ); 21 | 22 | // your implementation comes here: 23 | // DMux(in=in, sel=sel[2], a=abcd, b=efgh); 24 | // DMux4Way(in=abcd, sel=sel[0..1], a=a, b=b, c=c, d=d); 25 | // DMux4Way(in=efgh, sel=sel[0..1], a=e, b=f, c=g, d=h); 26 | wire abcd; 27 | wire efgh; 28 | DMux DMUX1(.in(in), .sel(sel[2]), .a(abcd), .b(efgh)); 29 | DMux4Way DMUX2(.in(abcd), .sel(sel[1:0]), .a(a), .b(b),.c(c), .d(d)); 30 | DMux4Way DMUX3(.in(efgh), .sel(sel[1:0]), .a(e), .b(f),.c(g), .d(h)); 31 | 32 | 33 | endmodule 34 | -------------------------------------------------------------------------------- /01/And16_tb.v: -------------------------------------------------------------------------------- 1 | `include "And16.v" 2 | `default_nettype none 3 | module And16_tb(); 4 | 5 | integer file; 6 | 7 | reg[15:0] a = 16'b0000000000000000; 8 | reg[15:0] b = 16'b0000000000000000; 9 | wire[15:0] out; 10 | 11 | And16 AND16( 12 | .a(a), 13 | .b(b), 14 | .out(out) 15 | ); 16 | 17 | task display; 18 | #1 $fwrite(file, "|%16b|%16b|%16b|\n", a,b,out); 19 | endtask 20 | 21 | initial begin 22 | $dumpfile("And16_tb.vcd"); 23 | $dumpvars(0, And16_tb); 24 | file = $fopen("And16.out","w"); 25 | $fwrite(file, "|a|b|out|\n"); 26 | 27 | a=16'b0000000000000000;b=16'b0000000000000000; 28 | display(); 29 | 30 | a=16'b0000000000000000;b=16'b1111111111111111; 31 | display(); 32 | 33 | a=16'b1111111111111111;b=16'b1111111111111111; 34 | display(); 35 | 36 | a=16'b1010101010101010;b=16'b0101010101010101; 37 | display(); 38 | 39 | a=16'b0011110011000011;b=16'b0000111111110000; 40 | display(); 41 | 42 | a=16'b0001001000110100;b=16'b1001100001110110; 43 | display(); 44 | $finish(); 45 | end 46 | 47 | endmodule 48 | -------------------------------------------------------------------------------- /02/Add16_tb.v: -------------------------------------------------------------------------------- 1 | `include "Add16.v" 2 | `default_nettype none 3 | module Add16_tb(); 4 | 5 | integer file; 6 | 7 | reg[15:0] a = 16'b0000000000000000; 8 | reg[15:0] b = 16'b0000000000000000; 9 | wire[15:0] out; 10 | 11 | Add16 ADD16( 12 | .a(a), 13 | .b(b), 14 | .out(out) 15 | ); 16 | 17 | task display; 18 | #1 $fwrite(file, "|%16b|%16b|%16b|\n", a,b,out); 19 | endtask 20 | 21 | initial begin 22 | $dumpfile("Add16_tb.vcd"); 23 | $dumpvars(0, Add16_tb); 24 | file = $fopen("Add16.out","w"); 25 | $fwrite(file, "|a|b|out|\n"); 26 | 27 | a=16'b0000000000000000;b=16'b0000000000000000; 28 | display(); 29 | 30 | a=16'b0000000000000000;b=16'b1111111111111111; 31 | display(); 32 | 33 | a=16'b1111111111111111;b=16'b1111111111111111; 34 | display(); 35 | 36 | a=16'b1010101010101010;b=16'b0101010101010101; 37 | display(); 38 | 39 | a=16'b0011110011000011;b=16'b0000111111110000; 40 | display(); 41 | 42 | a=16'b0001001000110100;b=16'b1001100001110110; 43 | display(); 44 | $finish(); 45 | end 46 | 47 | endmodule 48 | -------------------------------------------------------------------------------- /03/Register_tb.v: -------------------------------------------------------------------------------- 1 | `include "Register.v" 2 | module Register_tb(); 3 | 4 | integer file; 5 | 6 | reg clk = 1; 7 | wire signed [15:0] out; 8 | reg load = 0; 9 | reg signed [15:0] in=0; 10 | reg[9:0] t = 10'b0; 11 | 12 | Register REGISTER( 13 | .clk(clk), 14 | .load(load), 15 | .in(in), 16 | .out(out) 17 | ); 18 | 19 | always #1 clk = ~clk; 20 | 21 | task display; 22 | #1 $fwrite(file, "|%4d|%6d|%1b|%6d|\n", t,in,load,out); 23 | endtask 24 | 25 | initial begin 26 | $dumpfile("Register_tb.vcd"); 27 | $dumpvars(0, Register_tb); 28 | file = $fopen("Register.out","w"); 29 | $fwrite(file, "|time|in|load|out|\n"); 30 | display(); 31 | 32 | t=1;display(); 33 | 34 | in=0;load=1;display(); 35 | 36 | t=2;display(); 37 | 38 | in=-32123;load=0;display(); 39 | 40 | t=3;display(); 41 | 42 | in=11111;load=0;display(); 43 | 44 | t=4;display(); 45 | 46 | in=-32123;load=1;display(); 47 | 48 | t=5;display(); 49 | 50 | in=-32123;load=1;display(); 51 | $finish; 52 | end 53 | 54 | endmodule 55 | -------------------------------------------------------------------------------- /01/Or8Way.v: -------------------------------------------------------------------------------- 1 | /** 2 | * 8-way Or: 3 | * out = (in[0] or in[1] or ... or in[7]) 4 | */ 5 | `include "Or.v" 6 | `include "Not.v" 7 | `default_nettype none 8 | 9 | module Or8Way( 10 | input [7:0] in, 11 | output out 12 | ); 13 | 14 | // Or(a=in[0], b=in[1], out=temp01); 15 | // Or(a=temp01, b=in[2], out=temp012); 16 | // Or(a=temp012, b=in[3], out=temp0123); 17 | // Or(a=temp0123, b=in[4], out=temp01234); 18 | // Or(a=temp01234, b=in[5], out=temp012345); 19 | // Or(a=temp012345, b=in[6], out=temp0123456); 20 | // Or(a=temp0123456, b=in[7], out=out); 21 | wire temp01; 22 | wire temp012; 23 | wire temp0123; 24 | wire temp01234; 25 | wire temp012345; 26 | wire temp0123456; 27 | 28 | Or OR1(.a(in[0]),.b(in[1]),.out(temp01)); 29 | Or OR2(.a(temp01),.b(in[2]),.out(temp012)); 30 | Or OR3(.a(temp012),.b(in[3]),.out(temp0123)); 31 | Or OR4(.a(temp0123),.b(in[4]),.out(temp01234)); 32 | Or OR5(.a(temp01234),.b(in[5]),.out(temp012345)); 33 | Or OR6(.a(temp012345),.b(in[6]),.out(temp0123456)); 34 | Or OR7(.a(temp0123456),.b(in[7]),.out(out)); 35 | endmodule 36 | -------------------------------------------------------------------------------- /03/PC_tb.v: -------------------------------------------------------------------------------- 1 | `include "PC.v" 2 | module PC_tb(); 3 | 4 | integer file; 5 | 6 | reg clk = 1; 7 | wire signed [15:0] out; 8 | reg reset = 0; 9 | reg load = 0; 10 | reg inc = 0; 11 | reg signed [15:0] in=0; 12 | reg[9:0] t = 10'b0; 13 | 14 | PC PC1( 15 | .clk(clk), 16 | .reset(reset), 17 | .load(load), 18 | .inc(inc), 19 | .in(in), 20 | .out(out) 21 | ); 22 | 23 | always #1 clk = ~clk; 24 | 25 | task display; 26 | #1 $fwrite(file, "|%4d|%6d|%1b|%1b|%1b|%6d|\n", t,in,reset,load,inc,out); 27 | endtask 28 | 29 | initial begin 30 | $dumpfile("PC_tb.vcd"); 31 | $dumpvars(0, PC_tb); 32 | file = $fopen("PC.out","w"); 33 | $fwrite(file, "|time|in|reset|load|inc|out|\n"); 34 | display(); 35 | 36 | t=1;display(); 37 | 38 | inc=1;display(); 39 | 40 | t=2;display(); 41 | 42 | in=-32123;display(); 43 | 44 | t=3;display(); 45 | 46 | load=1;display(); 47 | 48 | t=4;display(); 49 | 50 | load=0;display(); 51 | 52 | t=5;display(); 53 | 54 | display(); 55 | $finish; 56 | end 57 | 58 | endmodule 59 | -------------------------------------------------------------------------------- /03/RAM_tb.v: -------------------------------------------------------------------------------- 1 | `include "RAM.v" 2 | module RAM_tb(); 3 | 4 | integer file; 5 | 6 | reg clk = 1; 7 | wire signed [15:0] out; 8 | reg signed [15:0] address=0; 9 | reg load = 0; 10 | reg signed [15:0] in=0; 11 | reg[9:0] t = 10'b0; 12 | 13 | RAM RAM1( 14 | .clk(clk), 15 | .address(address), 16 | .load(load), 17 | .in(in), 18 | .out(out) 19 | ); 20 | 21 | always #1 clk = ~clk; 22 | 23 | task display; 24 | #1 $fwrite(file, "|%4d|%6d|%1b|%6d|%6d|\n", t,in,load,address,out); 25 | endtask 26 | 27 | initial begin 28 | $dumpfile("RAM_tb.vcd"); 29 | $dumpvars(0, RAM_tb); 30 | file = $fopen("RAM.out","w"); 31 | $fwrite(file, "|time|in|load|address|out|\n"); 32 | display(); 33 | 34 | t=1;display(); 35 | 36 | load=1;display(); 37 | 38 | t=2;display(); 39 | 40 | in=4321;load=0;display(); 41 | 42 | t=3;display(); 43 | 44 | address=4321;load=1;display(); 45 | 46 | t=4;display(); 47 | 48 | address=0;load=0;display(); 49 | 50 | t=5;display(); 51 | 52 | in=12345;address=12345;display(); 53 | $finish; 54 | end 55 | 56 | endmodule 57 | -------------------------------------------------------------------------------- /01/Mux16_tb.v: -------------------------------------------------------------------------------- 1 | `include "Mux16.v" 2 | `default_nettype none 3 | module Mux16_tb(); 4 | 5 | integer file; 6 | 7 | reg[15:0] a = 16'b0000000000000000; 8 | reg[15:0] b = 16'b0000000000000000; 9 | reg sel = 0; 10 | wire[15:0] out; 11 | 12 | Mux16 MUX16( 13 | .a(a), 14 | .b(b), 15 | .sel(sel), 16 | .out(out) 17 | ); 18 | 19 | task display; 20 | #1 $fwrite(file, "|%16b|%16b|%1b|%16b|\n", a,b,sel,out); 21 | endtask 22 | 23 | initial begin 24 | $dumpfile("Mux16_tb.vcd"); 25 | $dumpvars(0, Mux16_tb); 26 | file = $fopen("Mux16.out","w"); 27 | $fwrite(file, "|a|b|sel|out|\n"); 28 | 29 | display(); 30 | 31 | sel = 1; 32 | display(); 33 | 34 | a=16'b0000000000000000; 35 | b=16'b0001001000110100; 36 | sel=0; 37 | display(); 38 | 39 | sel = 1; 40 | display(); 41 | 42 | a=16'b1001100001110110; 43 | b=16'b0000000000000000; 44 | sel=0; 45 | display(); 46 | 47 | sel=1; 48 | display(); 49 | 50 | a=16'b1010101010101010; 51 | b=16'b0101010101010101; 52 | sel=0; 53 | display(); 54 | 55 | sel=1; 56 | display(); 57 | $finish(); 58 | end 59 | 60 | endmodule 61 | -------------------------------------------------------------------------------- /04/Memory.cmp: -------------------------------------------------------------------------------- 1 | | in |load | address | out | led | btn | 2 | | 12345| 0 |0010000000000000| 1| x | 1 | 3 | | 12345| 0 |0010000000000000| 1| 0 | 1 | 4 | | 1| 1 |0010000000000001| 0| 1 | 1 | 5 | | 1| 1 |0010000000000001| 1| 1 | 1 | 6 | | -1| 1 |0000000000000000| x| 1 | 1 | 7 | | -1| 1 |0000000000000000| -1| 1 | 1 | 8 | | 9999| 0 |0000000000000000| -1| 1 | 1 | 9 | | 9999| 0 |0000000000000000| -1| 1 | 1 | 10 | | 9999| 0 |0000001111101000| x| 1 | 1 | 11 | | 9999| 0 |0000010010110000| x| 1 | 1 | 12 | | 12345| 1 |0000000000000000| -1| 1 | 1 | 13 | | 12345| 1 |0000000000000000| 12345| 1 | 1 | 14 | | 12345| 1 |0010000000000001| 1| 1 | 1 | 15 | | 12345| 1 |0010000000000001| 1| 1 | 1 | 16 | | 2222| 1 |0000001111101000| x| 1 | 1 | 17 | | 2222| 1 |0000001111101000| 2222| 1 | 1 | 18 | | 9999| 0 |0000001111101000| 2222| 1 | 1 | 19 | | 9999| 0 |0000001111101000| 2222| 1 | 1 | 20 | | 9999| 0 |0000000000000000| 12345| 1 | 1 | 21 | | 9999| 0 |0000010010110000| x| 1 | 1 | 22 | | 9999| 0 |0000000000000001| x| 1 | 1 | 23 | | 9999| 0 |0000000000000010| x| 1 | 1 | 24 | -------------------------------------------------------------------------------- /04/PC.v: -------------------------------------------------------------------------------- 1 | /** 2 | * A 16-bit counter with load control bit. 3 | * if (load[t] == 1) out[t+1] = in[t] 4 | * else if (inc[t] == 1) out[t+1] = out[t] + 1 (integer addition) 5 | * else out[t+1] = out[t] 6 | */ 7 | 8 | `default_nettype none 9 | module PC( 10 | input wire clk, 11 | input wire reset, 12 | input wire [15:0] in, 13 | input wire load, 14 | input wire inc, 15 | output wire [15:0] out 16 | ); 17 | // Mux16(a=oldstate, b=op1, sel=inc, out=nextout1); 18 | // Mux16(a=nextout1, b=in, sel=load, out=nextout2); 19 | // Mux16(a=nextout2, b=false, sel=reset, out=nextout3); 20 | // Register(in=nextout3, load=true, out=oldstate, out=out); 21 | // Inc16(in=oldstate, out=op1); 22 | 23 | wire[15:0] nextout1; 24 | wire[15:0] nextout2; 25 | wire[15:0] nextout3; 26 | 27 | wire[15:0] op1; 28 | Mux16 MUX161(.a(oldstate),.b(op1),.sel(inc), .out(nextout1)); 29 | Mux16 MUX162(.a(nextout1),.b(in),.sel(load), .out(nextout2)); 30 | Mux16 MUX163(.a(nextout2),.b(16'b0000000000000000),.sel(reset), .out(nextout3)); 31 | 32 | Register REGISTER1(.in(nextout3),.load(1'b1),.out(out), .clk(clk)); 33 | wire[15:0] oldstate = out; 34 | Add16 ADD161(.a(oldstate),.b(16'b0000000000000001),.out(op1)); 35 | 36 | endmodule 37 | -------------------------------------------------------------------------------- /03/PC.v: -------------------------------------------------------------------------------- 1 | /** 2 | * A 16-bit counter with load control bit. 3 | * if (load[t] == 1) out[t+1] = in[t] 4 | * else if (inc[t] == 1) out[t+1] = out[t] + 1 (integer addition) 5 | * else out[t+1] = out[t] 6 | */ 7 | 8 | `default_nettype none 9 | `include "Mux16.v" 10 | `include "Register.v" 11 | `include "Add16.v" 12 | 13 | module PC( 14 | input wire clk, 15 | input wire reset, 16 | input wire [15:0] in, 17 | input wire load, 18 | input wire inc, 19 | output wire [15:0] out 20 | ); 21 | // Mux16(a=oldstate, b=op1, sel=inc, out=nextout1); 22 | // Mux16(a=nextout1, b=in, sel=load, out=nextout2); 23 | // Mux16(a=nextout2, b=false, sel=reset, out=nextout3); 24 | // Register(in=nextout3, load=true, out=oldstate, out=out); 25 | // Inc16(in=oldstate, out=op1); 26 | 27 | wire[15:0] nextout1; 28 | wire[15:0] nextout2; 29 | wire[15:0] nextout3; 30 | 31 | wire[15:0] op1; 32 | Mux16 MUX161(.a(oldstate),.b(op1),.sel(inc), .out(nextout1)); 33 | Mux16 MUX162(.a(nextout1),.b(in),.sel(load), .out(nextout2)); 34 | Mux16 MUX163(.a(nextout2),.b(16'b0000000000000000),.sel(reset), .out(nextout3)); 35 | 36 | Register REGISTER1(.in(nextout3),.load(1'b1),.out(out), .clk(clk)); 37 | wire[15:0] oldstate = out; 38 | Add16 ADD161(.a(oldstate),.b(16'b0000000000000001),.out(op1)); 39 | 40 | endmodule 41 | -------------------------------------------------------------------------------- /02/Not16.v: -------------------------------------------------------------------------------- 1 | /** 2 | * 16-bit Not: 3 | * for i=0..15: out[i] = not in[i] 4 | */ 5 | `default_nettype none 6 | 7 | module Not16( 8 | input [15:0] in, 9 | output [15:0] out 10 | ); 11 | 12 | // Not(in=in[0], out=out[0]); 13 | // Not(in=in[1], out=out[1]); 14 | // Not(in=in[2], out=out[2]); 15 | // Not(in=in[3], out=out[3]); 16 | // Not(in=in[4], out=out[4]); 17 | // Not(in=in[5], out=out[5]); 18 | // Not(in=in[6], out=out[6]); 19 | // Not(in=in[7], out=out[7]); 20 | // Not(in=in[8], out=out[8]); 21 | // Not(in=in[9], out=out[9]); 22 | // Not(in=in[10], out=out[10]); 23 | // Not(in=in[11], out=out[11]); 24 | // Not(in=in[12], out=out[12]); 25 | // Not(in=in[13], out=out[13]); 26 | // Not(in=in[14], out=out[14]); 27 | // Not(in=in[15], out=out[15]); 28 | 29 | Not NOT1(.in(in[0]), .out(out[0])); 30 | Not NOT2(.in(in[1]), .out(out[1])); 31 | Not NOT3(.in(in[2]), .out(out[2])); 32 | Not NOT4(.in(in[3]), .out(out[3])); 33 | Not NOT5(.in(in[4]), .out(out[4])); 34 | Not NOT6(.in(in[5]), .out(out[5])); 35 | Not NOT7(.in(in[6]), .out(out[6])); 36 | Not NOT8(.in(in[7]), .out(out[7])); 37 | Not NOT9(.in(in[8]), .out(out[8])); 38 | Not NOT10(.in(in[9]), .out(out[9])); 39 | Not NOT11(.in(in[10]), .out(out[10])); 40 | Not NOT12(.in(in[11]), .out(out[11])); 41 | Not NOT13(.in(in[12]), .out(out[12])); 42 | Not NOT14(.in(in[13]), .out(out[13])); 43 | Not NOT15(.in(in[14]), .out(out[14])); 44 | Not NOT16(.in(in[15]), .out(out[15])); 45 | endmodule 46 | -------------------------------------------------------------------------------- /04/Not16.v: -------------------------------------------------------------------------------- 1 | /** 2 | * 16-bit Not: 3 | * for i=0..15: out[i] = not in[i] 4 | */ 5 | `default_nettype none 6 | 7 | module Not16( 8 | input [15:0] in, 9 | output [15:0] out 10 | ); 11 | 12 | // Not(in=in[0], out=out[0]); 13 | // Not(in=in[1], out=out[1]); 14 | // Not(in=in[2], out=out[2]); 15 | // Not(in=in[3], out=out[3]); 16 | // Not(in=in[4], out=out[4]); 17 | // Not(in=in[5], out=out[5]); 18 | // Not(in=in[6], out=out[6]); 19 | // Not(in=in[7], out=out[7]); 20 | // Not(in=in[8], out=out[8]); 21 | // Not(in=in[9], out=out[9]); 22 | // Not(in=in[10], out=out[10]); 23 | // Not(in=in[11], out=out[11]); 24 | // Not(in=in[12], out=out[12]); 25 | // Not(in=in[13], out=out[13]); 26 | // Not(in=in[14], out=out[14]); 27 | // Not(in=in[15], out=out[15]); 28 | 29 | Not NOT1(.in(in[0]), .out(out[0])); 30 | Not NOT2(.in(in[1]), .out(out[1])); 31 | Not NOT3(.in(in[2]), .out(out[2])); 32 | Not NOT4(.in(in[3]), .out(out[3])); 33 | Not NOT5(.in(in[4]), .out(out[4])); 34 | Not NOT6(.in(in[5]), .out(out[5])); 35 | Not NOT7(.in(in[6]), .out(out[6])); 36 | Not NOT8(.in(in[7]), .out(out[7])); 37 | Not NOT9(.in(in[8]), .out(out[8])); 38 | Not NOT10(.in(in[9]), .out(out[9])); 39 | Not NOT11(.in(in[10]), .out(out[10])); 40 | Not NOT12(.in(in[11]), .out(out[11])); 41 | Not NOT13(.in(in[12]), .out(out[12])); 42 | Not NOT14(.in(in[13]), .out(out[13])); 43 | Not NOT15(.in(in[14]), .out(out[14])); 44 | Not NOT16(.in(in[15]), .out(out[15])); 45 | endmodule 46 | -------------------------------------------------------------------------------- /01/Not16.v: -------------------------------------------------------------------------------- 1 | /** 2 | * 16-bit Not: 3 | * for i=0..15: out[i] = not in[i] 4 | */ 5 | `include "Not.v" 6 | `default_nettype none 7 | 8 | module Not16( 9 | input [15:0] in, 10 | output [15:0] out 11 | ); 12 | 13 | // Not(in=in[0], out=out[0]); 14 | // Not(in=in[1], out=out[1]); 15 | // Not(in=in[2], out=out[2]); 16 | // Not(in=in[3], out=out[3]); 17 | // Not(in=in[4], out=out[4]); 18 | // Not(in=in[5], out=out[5]); 19 | // Not(in=in[6], out=out[6]); 20 | // Not(in=in[7], out=out[7]); 21 | // Not(in=in[8], out=out[8]); 22 | // Not(in=in[9], out=out[9]); 23 | // Not(in=in[10], out=out[10]); 24 | // Not(in=in[11], out=out[11]); 25 | // Not(in=in[12], out=out[12]); 26 | // Not(in=in[13], out=out[13]); 27 | // Not(in=in[14], out=out[14]); 28 | // Not(in=in[15], out=out[15]); 29 | 30 | Not NOT1(.in(in[0]), .out(out[0])); 31 | Not NOT2(.in(in[1]), .out(out[1])); 32 | Not NOT3(.in(in[2]), .out(out[2])); 33 | Not NOT4(.in(in[3]), .out(out[3])); 34 | Not NOT5(.in(in[4]), .out(out[4])); 35 | Not NOT6(.in(in[5]), .out(out[5])); 36 | Not NOT7(.in(in[6]), .out(out[6])); 37 | Not NOT8(.in(in[7]), .out(out[7])); 38 | Not NOT9(.in(in[8]), .out(out[8])); 39 | Not NOT10(.in(in[9]), .out(out[9])); 40 | Not NOT11(.in(in[10]), .out(out[10])); 41 | Not NOT12(.in(in[11]), .out(out[11])); 42 | Not NOT13(.in(in[12]), .out(out[12])); 43 | Not NOT14(.in(in[13]), .out(out[13])); 44 | Not NOT15(.in(in[14]), .out(out[14])); 45 | Not NOT16(.in(in[15]), .out(out[15])); 46 | endmodule 47 | -------------------------------------------------------------------------------- /01/Makefile: -------------------------------------------------------------------------------- 1 | sym-dmux: 2 | yosys -p "read_verilog DMux.v; synth_gowin -json DMux.json" 3 | nextpnr-gowin --json DMux.json --write pnrDMux.json --device GW1NSR-LV4CQN48PC6/I5 --cst tangnano4k-dmux.cst 4 | gowin_pack -d GW1NSR-LV4CQN48PC6/I5 -o pack.fs pnrDMux.json 5 | 6 | flash: 7 | openFPGALoader -b tangnano4k pack.fs 8 | 9 | compile-mux: 10 | iverilog -o Mux_tb.vvp Mux_tb.v 11 | 12 | sim-mux: 13 | vvp Mux_tb.vvp 14 | 15 | diff-mux: 16 | diff Mux.out Mux.cmp 17 | 18 | compile-and16: 19 | iverilog -o And16_tb.vvp And16_tb.v 20 | 21 | sim-and16: 22 | vvp And16_tb.vvp 23 | 24 | diff-and16: 25 | diff And16.out And16.cmp 26 | 27 | compile-dmux4way: 28 | iverilog -o DMux4Way_tb.vvp DMux4Way_tb.v 29 | 30 | sim-dmux4way: 31 | vvp DMux4Way_tb.vvp 32 | 33 | diff-dmux4way: 34 | diff DMux4Way.out DMux4Way.cmp 35 | 36 | 37 | compile-dmux8way: 38 | iverilog -o DMux8Way_tb.vvp DMux8Way_tb.v 39 | 40 | sim-dmux8way: 41 | vvp DMux8Way_tb.vvp 42 | 43 | diff-dmux8way: 44 | diff DMux8Way.out DMux8Way.cmp 45 | 46 | compile-not16: 47 | iverilog -o Not16_tb.vvp Not16_tb.v 48 | 49 | sim-not16: 50 | vvp Not16_tb.vvp 51 | 52 | diff-not16: 53 | diff Not16.out Not16.cmp 54 | 55 | compile-mux16: 56 | iverilog -o Mux16_tb.vvp Mux16_tb.v 57 | 58 | sim-mux16: 59 | vvp Mux16_tb.vvp 60 | 61 | diff-mux16: 62 | diff Mux16.out Mux16.cmp 63 | 64 | compile-or8way: 65 | iverilog -o Or8Way_tb.vvp Or8Way_tb.v 66 | 67 | sim-or8way: 68 | vvp Or8Way_tb.vvp 69 | 70 | diff-or8way: 71 | diff Or8Way.out Or8Way.cmp -------------------------------------------------------------------------------- /.gitignore: -------------------------------------------------------------------------------- 1 | 00/Xor_tb.vvp 2 | 00/pack.fs 3 | 00/pnrXor.json 4 | 00/Xor.json 5 | 00/Xor.out 6 | 01/DMux.json 7 | 01/pack.fs 8 | 01/pnrDMux.json 9 | 01/Mux.vvp 10 | 01/Mux_tb.vvp 11 | 01/Mux_tb.vcd 12 | 01/Mux.out 13 | 01/And16.out 14 | 01/And16_tb.vvp 15 | 01/And16_tb.vcd 16 | 01/DMux4Way_tb.vcd 17 | 01/DMux4Way_tb.vvp 18 | 01/DMux4Way.out 19 | 01/DMux_tb.vcd 20 | 01/DMux_tb.vvp 21 | 01/DMux.out 22 | 01/DMux8Way_tb.vcd 23 | 01/DMux8Way_tb.vvp 24 | 01/DMux8Way.out 25 | 01/Not16_tb.vcd 26 | 01/Not16_tb.vvp 27 | 01/Not16.out 28 | 01/Mux16_tb.vcd 29 | 01/Mux16_tb.vvp 30 | 01/Mux16.out 31 | 01/Or8Way.out 32 | 01/Or8Way_tb.vcd 33 | 01/Or8Way_tb.vvp 34 | 02/Add16.out 35 | 02/ALU.out 36 | 02/FullAdder.out 37 | 02/HalfAdder.out 38 | 02/Inc16.out 39 | 03/Bit.out 40 | 03/PC.out 41 | 03/Register.out 42 | 04/CPU.out 43 | 04/Memory.out 44 | 02/HalfAdder.json 45 | 02/pack.fs 46 | 02/pnrHalfAdder.json 47 | 02/FullAdder_tb.vcd 48 | 02/FullAdder_tb.vvp 49 | 02/Add16_tb.vcd 50 | 02/Add16_tb.vvp 51 | 02/ALU.vvp 52 | 02/ALU_tb.vvp 53 | 02/ALU_tb.vcd 54 | 03/DFF.json 55 | 03/DFF.vvp 56 | 03/pack.fs 57 | 03/pnrDFF.json 58 | 03/Bit.vvp 59 | 03/Bit_tb.vcd 60 | 03/Bit_tb.vvp 61 | 03/Register_tb.vcd 62 | 03/Register_tb.vvp 63 | 03/PC.vvp 64 | 03/PC_tb.vcd 65 | 03/PC_tb.vvp 66 | 03/RAM.out 67 | 03/RAM_tb.vvp 68 | 03/RAM_tb.vcd 69 | 04/CPU.vvp 70 | 04/CPU_tb.vvp 71 | 04/CPU_tb.vcd 72 | 04/Memory.vvp 73 | 04/Memory_tb.vcd 74 | 04/Memory_tb.vvp 75 | 04/ROM.vvp 76 | 04/Computer_tb.vvp 77 | 04/Computer_tb.vcd 78 | 04/Computer.json 79 | 04/pnrComputer.json 80 | 04/pack.fs 81 | -------------------------------------------------------------------------------- /01/DMux8Way_tb.v: -------------------------------------------------------------------------------- 1 | `include "DMux8Way.v" 2 | `default_nettype none 3 | module DMux8Way_tb(); 4 | 5 | integer file; 6 | 7 | reg in = 1'b0; 8 | reg[2:0] sel = 3'b000; 9 | wire a; 10 | wire b; 11 | wire c; 12 | wire d; 13 | wire e; 14 | wire f; 15 | wire g; 16 | wire h; 17 | 18 | DMux8Way DMUX8WAY( 19 | .in(in), 20 | .sel(sel), 21 | .a(a), 22 | .b(b), 23 | .c(c), 24 | .d(d), 25 | .e(e), 26 | .f(f), 27 | .g(g), 28 | .h(h) 29 | ); 30 | 31 | task display; 32 | #1 $fwrite(file, "|%1b|%3b|%1b|%1b|%1b|%1b|%1b|%1b|%1b|%1b|\n", in,sel,a,b,c,d,e,f,g,h); 33 | endtask 34 | 35 | initial begin 36 | $dumpfile("DMux8Way_tb.vcd"); 37 | $dumpvars(0, DMux8Way_tb); 38 | file = $fopen("DMux8Way.out","w"); 39 | $fwrite(file, "|in|sel|a|b|c|d|e|f|g|h|\n"); 40 | 41 | sel = 3'b000; 42 | display(); 43 | sel = 3'b001; 44 | display(); 45 | sel = 3'b010; 46 | display(); 47 | sel = 3'b011; 48 | display(); 49 | sel = 3'b100; 50 | display(); 51 | sel = 3'b101; 52 | display(); 53 | sel = 3'b110; 54 | display(); 55 | sel = 3'b111; 56 | display(); 57 | 58 | in = 1'b1; 59 | sel = 3'b000; 60 | display(); 61 | sel = 3'b001; 62 | display(); 63 | sel = 3'b010; 64 | display(); 65 | sel = 3'b011; 66 | display(); 67 | sel = 3'b100; 68 | display(); 69 | sel = 3'b101; 70 | display(); 71 | sel = 3'b110; 72 | display(); 73 | sel = 3'b111; 74 | display(); 75 | $finish(); 76 | end 77 | 78 | endmodule 79 | -------------------------------------------------------------------------------- /04/Computer.v: -------------------------------------------------------------------------------- 1 | `default_nettype none 2 | `include "Mux16.v" 3 | `include "DMux.v" 4 | `include "Btn.v" 5 | `include "Led.v" 6 | 7 | `include "Not.v" 8 | `include "And.v" 9 | `include "Or.v" 10 | `include "RAM.v" 11 | `include "Register.v" 12 | `include "ALUusr.v" 13 | `include "PC.v" 14 | `include "Not16.v" 15 | `include "And16.v" 16 | `include "Add16.v" 17 | `include "Or8Way.v" 18 | 19 | `include "Memory.v" 20 | `include "CPU.v" 21 | `include "ROM.v" 22 | `include "Clk.v" 23 | module Computer( 24 | input clk_in, // external clock 100 MHz 25 | input btn, // buttons (0 if pressed, 1 if released) 26 | output led, // leds (0 off, 1 on) 27 | input reset 28 | ); 29 | 30 | // ROM32K(address=pc ,out=instruction ); 31 | // CPU(inM=Mout ,instruction=instruction ,reset=reset ,outM=outM ,writeM=writeM ,addressM=addressM ,pc=pc ); 32 | // Memory(in=outM ,load=writeM ,address=addressM ,out=Mout ); 33 | wire clk_out; 34 | Clk CLK( 35 | .in(clk_in), 36 | .out(clk_out) 37 | ); 38 | 39 | wire [15:0] addressM; 40 | wire [15:0] outM; 41 | wire [15:0] instruction; 42 | wire [15:0] pc; 43 | wire [15:0] Mout; 44 | 45 | wire writeM; 46 | 47 | ROM ROM( 48 | .instruction(instruction), 49 | .pc(pc) 50 | ); 51 | CPU CPU( 52 | .clk(clk_out), 53 | .inM(Mout), 54 | .instruction(instruction), 55 | .reset(~reset), 56 | .outM(outM), 57 | .writeM(writeM), 58 | .addressM(addressM), 59 | .pc(pc) 60 | ); 61 | 62 | Memory MEMORY( 63 | .clk(clk_out), 64 | .address(addressM), 65 | .in(outM), 66 | .out(Mout), 67 | .load(writeM), 68 | .btn(btn), 69 | .led(led) 70 | ); 71 | 72 | endmodule 73 | -------------------------------------------------------------------------------- /02/And16.v: -------------------------------------------------------------------------------- 1 | /** 2 | * Adds two 16-bit values. 3 | * The most significant carry bit is ignored. 4 | * out = a + b (16 bit) 5 | */ 6 | 7 | `default_nettype none 8 | module And16( 9 | input wire [15:0] a, 10 | input wire [15:0] b, 11 | output wire [15:0] out 12 | ); 13 | // your implementation comes here: 14 | // And(a=a[0], b=b[0], out=out[0]); 15 | // And(a=a[1], b=b[1], out=out[1]); 16 | // And(a=a[2], b=b[2], out=out[2]); 17 | // And(a=a[3], b=b[3], out=out[3]); 18 | // And(a=a[4], b=b[4], out=out[4]); 19 | // And(a=a[5], b=b[5], out=out[5]); 20 | // And(a=a[6], b=b[6], out=out[6]); 21 | // And(a=a[7], b=b[7], out=out[7]); 22 | // And(a=a[8], b=b[8], out=out[8]); 23 | // And(a=a[9], b=b[9], out=out[9]); 24 | // And(a=a[10], b=b[10], out=out[10]); 25 | // And(a=a[11], b=b[11], out=out[11]); 26 | // And(a=a[12], b=b[12], out=out[12]); 27 | // And(a=a[13], b=b[13], out=out[13]); 28 | // And(a=a[14], b=b[14], out=out[14]); 29 | // And(a=a[15], b=b[15], out=out[15]); 30 | 31 | And AND1(.a(a[0]),.b(b[0]),.out(out[0])); 32 | And AND2(.a(a[1]),.b(b[1]),.out(out[1])); 33 | And AND3(.a(a[2]),.b(b[2]),.out(out[2])); 34 | And AND4(.a(a[3]),.b(b[3]),.out(out[3])); 35 | And AND5(.a(a[4]),.b(b[4]),.out(out[4])); 36 | And AND6(.a(a[5]),.b(b[5]),.out(out[5])); 37 | And AND7(.a(a[6]),.b(b[6]),.out(out[6])); 38 | And AND8(.a(a[7]),.b(b[7]),.out(out[7])); 39 | And AND9(.a(a[8]),.b(b[8]),.out(out[8])); 40 | And AND10(.a(a[9]),.b(b[9]),.out(out[9])); 41 | And AND11(.a(a[10]),.b(b[10]),.out(out[10])); 42 | And AND12(.a(a[11]),.b(b[11]),.out(out[11])); 43 | And AND13(.a(a[12]),.b(b[12]),.out(out[12])); 44 | And AND14(.a(a[13]),.b(b[13]),.out(out[13])); 45 | And AND15(.a(a[14]),.b(b[14]),.out(out[14])); 46 | And AND16(.a(a[15]),.b(b[15]),.out(out[15])); 47 | 48 | endmodule 49 | -------------------------------------------------------------------------------- /04/And16.v: -------------------------------------------------------------------------------- 1 | /** 2 | * Adds two 16-bit values. 3 | * The most significant carry bit is ignored. 4 | * out = a + b (16 bit) 5 | */ 6 | 7 | `default_nettype none 8 | module And16( 9 | input wire [15:0] a, 10 | input wire [15:0] b, 11 | output wire [15:0] out 12 | ); 13 | // your implementation comes here: 14 | // And(a=a[0], b=b[0], out=out[0]); 15 | // And(a=a[1], b=b[1], out=out[1]); 16 | // And(a=a[2], b=b[2], out=out[2]); 17 | // And(a=a[3], b=b[3], out=out[3]); 18 | // And(a=a[4], b=b[4], out=out[4]); 19 | // And(a=a[5], b=b[5], out=out[5]); 20 | // And(a=a[6], b=b[6], out=out[6]); 21 | // And(a=a[7], b=b[7], out=out[7]); 22 | // And(a=a[8], b=b[8], out=out[8]); 23 | // And(a=a[9], b=b[9], out=out[9]); 24 | // And(a=a[10], b=b[10], out=out[10]); 25 | // And(a=a[11], b=b[11], out=out[11]); 26 | // And(a=a[12], b=b[12], out=out[12]); 27 | // And(a=a[13], b=b[13], out=out[13]); 28 | // And(a=a[14], b=b[14], out=out[14]); 29 | // And(a=a[15], b=b[15], out=out[15]); 30 | 31 | And AND1(.a(a[0]),.b(b[0]),.out(out[0])); 32 | And AND2(.a(a[1]),.b(b[1]),.out(out[1])); 33 | And AND3(.a(a[2]),.b(b[2]),.out(out[2])); 34 | And AND4(.a(a[3]),.b(b[3]),.out(out[3])); 35 | And AND5(.a(a[4]),.b(b[4]),.out(out[4])); 36 | And AND6(.a(a[5]),.b(b[5]),.out(out[5])); 37 | And AND7(.a(a[6]),.b(b[6]),.out(out[6])); 38 | And AND8(.a(a[7]),.b(b[7]),.out(out[7])); 39 | And AND9(.a(a[8]),.b(b[8]),.out(out[8])); 40 | And AND10(.a(a[9]),.b(b[9]),.out(out[9])); 41 | And AND11(.a(a[10]),.b(b[10]),.out(out[10])); 42 | And AND12(.a(a[11]),.b(b[11]),.out(out[11])); 43 | And AND13(.a(a[12]),.b(b[12]),.out(out[12])); 44 | And AND14(.a(a[13]),.b(b[13]),.out(out[13])); 45 | And AND15(.a(a[14]),.b(b[14]),.out(out[14])); 46 | And AND16(.a(a[15]),.b(b[15]),.out(out[15])); 47 | 48 | endmodule 49 | -------------------------------------------------------------------------------- /01/And16.v: -------------------------------------------------------------------------------- 1 | /** 2 | * Adds two 16-bit values. 3 | * The most significant carry bit is ignored. 4 | * out = a + b (16 bit) 5 | */ 6 | 7 | `include "Not.v" 8 | `include "And.v" 9 | `default_nettype none 10 | module And16( 11 | input wire [15:0] a, 12 | input wire [15:0] b, 13 | output wire [15:0] out 14 | ); 15 | // your implementation comes here: 16 | // And(a=a[0], b=b[0], out=out[0]); 17 | // And(a=a[1], b=b[1], out=out[1]); 18 | // And(a=a[2], b=b[2], out=out[2]); 19 | // And(a=a[3], b=b[3], out=out[3]); 20 | // And(a=a[4], b=b[4], out=out[4]); 21 | // And(a=a[5], b=b[5], out=out[5]); 22 | // And(a=a[6], b=b[6], out=out[6]); 23 | // And(a=a[7], b=b[7], out=out[7]); 24 | // And(a=a[8], b=b[8], out=out[8]); 25 | // And(a=a[9], b=b[9], out=out[9]); 26 | // And(a=a[10], b=b[10], out=out[10]); 27 | // And(a=a[11], b=b[11], out=out[11]); 28 | // And(a=a[12], b=b[12], out=out[12]); 29 | // And(a=a[13], b=b[13], out=out[13]); 30 | // And(a=a[14], b=b[14], out=out[14]); 31 | // And(a=a[15], b=b[15], out=out[15]); 32 | 33 | And AND1(.a(a[0]),.b(b[0]),.out(out[0])); 34 | And AND2(.a(a[1]),.b(b[1]),.out(out[1])); 35 | And AND3(.a(a[2]),.b(b[2]),.out(out[2])); 36 | And AND4(.a(a[3]),.b(b[3]),.out(out[3])); 37 | And AND5(.a(a[4]),.b(b[4]),.out(out[4])); 38 | And AND6(.a(a[5]),.b(b[5]),.out(out[5])); 39 | And AND7(.a(a[6]),.b(b[6]),.out(out[6])); 40 | And AND8(.a(a[7]),.b(b[7]),.out(out[7])); 41 | And AND9(.a(a[8]),.b(b[8]),.out(out[8])); 42 | And AND10(.a(a[9]),.b(b[9]),.out(out[9])); 43 | And AND11(.a(a[10]),.b(b[10]),.out(out[10])); 44 | And AND12(.a(a[11]),.b(b[11]),.out(out[11])); 45 | And AND13(.a(a[12]),.b(b[12]),.out(out[12])); 46 | And AND14(.a(a[13]),.b(b[13]),.out(out[13])); 47 | And AND15(.a(a[14]),.b(b[14]),.out(out[14])); 48 | And AND16(.a(a[15]),.b(b[15]),.out(out[15])); 49 | 50 | endmodule 51 | -------------------------------------------------------------------------------- /04/Memory_tb.v: -------------------------------------------------------------------------------- 1 | `include "Mux16.v" 2 | `include "DMux.v" 3 | `include "Btn.v" 4 | `include "Led.v" 5 | 6 | `include "Not.v" 7 | `include "And.v" 8 | `include "Or.v" 9 | `include "DFFusr.v" 10 | `include "RAM.v" 11 | `include "Memory.v" 12 | module Memory_tb(); 13 | 14 | integer file; 15 | reg clk = 1; 16 | reg [15:0] address = 16'h1FFC; 17 | reg load = 1; 18 | wire signed [15:0] out; 19 | reg btn = 1; 20 | wire led; 21 | reg signed [15:0] in= 16'h0000; 22 | 23 | Memory 24 | Memory1( 25 | .address(address), 26 | .load(load), 27 | .in(in), 28 | .led(led), 29 | .btn(btn), 30 | .out(out), 31 | .clk(clk) 32 | ); 33 | 34 | // always #1 address = address+1; 35 | always #1 clk = ~clk; 36 | 37 | task display; 38 | #1 $fwrite(file, "|%6d| %1b |%16b|%6d| %1b | %1b |\n",in,load,address,out,led,btn); 39 | endtask 40 | 41 | initial begin 42 | $dumpfile("Memory_tb.vcd"); 43 | $dumpvars(0, Memory_tb); 44 | file = $fopen("Memory.out","w"); 45 | $fwrite(file, "| in |load | address | out | led | btn |\n"); 46 | in = 12345;load=0;address=16'd8192; 47 | display(); 48 | display(); 49 | 50 | in=1;load=1;address=16'd8193; 51 | display(); 52 | display(); 53 | 54 | in=-1;load=1;address=16'h0000; 55 | display(); 56 | display(); 57 | 58 | in=9999;load=0; 59 | display(); 60 | display(); 61 | 62 | address=16'd1000; 63 | display(); 64 | address=16'd1200; 65 | display(); 66 | 67 | in=12345;load=1;address=16'h0000; 68 | display(); 69 | display(); 70 | 71 | address=16'd8193; 72 | display(); 73 | display(); 74 | 75 | in=2222;load=1;address=16'd1000; 76 | display(); 77 | display(); 78 | 79 | in=9999;load=0; 80 | display(); 81 | display(); 82 | 83 | address=16'h0000; 84 | display(); 85 | address=16'd1200; 86 | display(); 87 | 88 | load=0;address=16'h0001; 89 | display(); 90 | address=16'h0002; 91 | display(); 92 | 93 | 94 | 95 | $finish; 96 | end 97 | 98 | endmodule 99 | -------------------------------------------------------------------------------- /03/Mux16.v: -------------------------------------------------------------------------------- 1 | /** 2 | * 16-bit multiplexor: 3 | * for i = 0..15 out[i] = a[i] if sel == 0 4 | * b[i] if sel == 1 5 | */ 6 | `default_nettype none 7 | 8 | module Mux16( 9 | input [15:0] a, 10 | input [15:0] b, 11 | input sel, 12 | output [15:0] out 13 | ); 14 | // your implementation comes here: 15 | 16 | // Mux(a=a[0], b=b[0], sel=sel, out=out[0]); 17 | // Mux(a=a[1], b=b[1], sel=sel, out=out[1]); 18 | // Mux(a=a[2], b=b[2], sel=sel, out=out[2]); 19 | // Mux(a=a[3], b=b[3], sel=sel, out=out[3]); 20 | // Mux(a=a[4], b=b[4], sel=sel, out=out[4]); 21 | // Mux(a=a[5], b=b[5], sel=sel, out=out[5]); 22 | // Mux(a=a[6], b=b[6], sel=sel, out=out[6]); 23 | // Mux(a=a[7], b=b[7], sel=sel, out=out[7]); 24 | // Mux(a=a[8], b=b[8], sel=sel, out=out[8]); 25 | // Mux(a=a[9], b=b[9], sel=sel, out=out[9]); 26 | // Mux(a=a[10], b=b[10], sel=sel, out=out[10]); 27 | // Mux(a=a[11], b=b[11], sel=sel, out=out[11]); 28 | // Mux(a=a[12], b=b[12], sel=sel, out=out[12]); 29 | // Mux(a=a[13], b=b[13], sel=sel, out=out[13]); 30 | // Mux(a=a[14], b=b[14], sel=sel, out=out[14]); 31 | // Mux(a=a[15], b=b[15], sel=sel, out=out[15]); 32 | Mux MUX1(.a(a[0]),.b(b[0]),.sel(sel),.out(out[0])); 33 | Mux MUX2(.a(a[1]),.b(b[1]),.sel(sel),.out(out[1])); 34 | Mux MUX3(.a(a[2]),.b(b[2]),.sel(sel),.out(out[2])); 35 | Mux MUX4(.a(a[3]),.b(b[3]),.sel(sel),.out(out[3])); 36 | Mux MUX5(.a(a[4]),.b(b[4]),.sel(sel),.out(out[4])); 37 | Mux MUX6(.a(a[5]),.b(b[5]),.sel(sel),.out(out[5])); 38 | Mux MUX7(.a(a[6]),.b(b[6]),.sel(sel),.out(out[6])); 39 | Mux MUX8(.a(a[7]),.b(b[7]),.sel(sel),.out(out[7])); 40 | Mux MUX9(.a(a[8]),.b(b[8]),.sel(sel),.out(out[8])); 41 | Mux MUX10(.a(a[9]),.b(b[9]),.sel(sel),.out(out[9])); 42 | Mux MUX11(.a(a[10]),.b(b[10]),.sel(sel),.out(out[10])); 43 | Mux MUX12(.a(a[11]),.b(b[11]),.sel(sel),.out(out[11])); 44 | Mux MUX13(.a(a[12]),.b(b[12]),.sel(sel),.out(out[12])); 45 | Mux MUX14(.a(a[13]),.b(b[13]),.sel(sel),.out(out[13])); 46 | Mux MUX15(.a(a[14]),.b(b[14]),.sel(sel),.out(out[14])); 47 | Mux MUX16(.a(a[15]),.b(b[15]),.sel(sel),.out(out[15])); 48 | 49 | endmodule 50 | -------------------------------------------------------------------------------- /03/Register.v: -------------------------------------------------------------------------------- 1 | /** 2 | * 16-bit register: 3 | * If load[t] == 1 then out[t+1] = in[t] 4 | * else out does not change 5 | */ 6 | `include "Bit.v" 7 | `default_nettype none 8 | 9 | module Register( 10 | input clk, 11 | input [15:0] in, 12 | input load, 13 | output [15:0] out 14 | ); 15 | // Bit(in=in[0], load=load, out=out[0]); 16 | // Bit(in=in[1], load=load, out=out[1]); 17 | // Bit(in=in[2], load=load, out=out[2]); 18 | // Bit(in=in[3], load=load, out=out[3]); 19 | // Bit(in=in[4], load=load, out=out[4]); 20 | // Bit(in=in[5], load=load, out=out[5]); 21 | // Bit(in=in[6], load=load, out=out[6]); 22 | // Bit(in=in[7], load=load, out=out[7]); 23 | // Bit(in=in[8], load=load, out=out[8]); 24 | // Bit(in=in[9], load=load, out=out[9]); 25 | // Bit(in=in[10], load=load, out=out[10]); 26 | // Bit(in=in[11], load=load, out=out[11]); 27 | // Bit(in=in[12], load=load, out=out[12]); 28 | // Bit(in=in[13], load=load, out=out[13]); 29 | // Bit(in=in[14], load=load, out=out[14]); 30 | // Bit(in=in[15], load=load, out=out[15]); 31 | Bit BIT1(.in(in[0]),.load(load),.out(out[0]), .clk(clk)); 32 | Bit BIT2(.in(in[1]),.load(load),.out(out[1]), .clk(clk)); 33 | Bit BIT3(.in(in[2]),.load(load),.out(out[2]), .clk(clk)); 34 | Bit BIT4(.in(in[3]),.load(load),.out(out[3]), .clk(clk)); 35 | Bit BIT5(.in(in[4]),.load(load),.out(out[4]), .clk(clk)); 36 | Bit BIT6(.in(in[5]),.load(load),.out(out[5]), .clk(clk)); 37 | Bit BIT7(.in(in[6]),.load(load),.out(out[6]), .clk(clk)); 38 | Bit BIT8(.in(in[7]),.load(load),.out(out[7]), .clk(clk)); 39 | Bit BIT9(.in(in[8]),.load(load),.out(out[8]), .clk(clk)); 40 | Bit BIT10(.in(in[9]),.load(load),.out(out[9]), .clk(clk)); 41 | Bit BIT11(.in(in[10]),.load(load),.out(out[10]), .clk(clk)); 42 | Bit BIT12(.in(in[11]),.load(load),.out(out[11]), .clk(clk)); 43 | Bit BIT13(.in(in[12]),.load(load),.out(out[12]), .clk(clk)); 44 | Bit BIT14(.in(in[13]),.load(load),.out(out[13]), .clk(clk)); 45 | Bit BIT15(.in(in[14]),.load(load),.out(out[14]), .clk(clk)); 46 | Bit BIT16(.in(in[15]),.load(load),.out(out[15]), .clk(clk)); 47 | 48 | 49 | endmodule 50 | -------------------------------------------------------------------------------- /04/Register.v: -------------------------------------------------------------------------------- 1 | /** 2 | * 16-bit register: 3 | * If load[t] == 1 then out[t+1] = in[t] 4 | * else out does not change 5 | */ 6 | `include "Bit.v" 7 | `default_nettype none 8 | 9 | module Register( 10 | input clk, 11 | input [15:0] in, 12 | input load, 13 | output [15:0] out 14 | ); 15 | // Bit(in=in[0], load=load, out=out[0]); 16 | // Bit(in=in[1], load=load, out=out[1]); 17 | // Bit(in=in[2], load=load, out=out[2]); 18 | // Bit(in=in[3], load=load, out=out[3]); 19 | // Bit(in=in[4], load=load, out=out[4]); 20 | // Bit(in=in[5], load=load, out=out[5]); 21 | // Bit(in=in[6], load=load, out=out[6]); 22 | // Bit(in=in[7], load=load, out=out[7]); 23 | // Bit(in=in[8], load=load, out=out[8]); 24 | // Bit(in=in[9], load=load, out=out[9]); 25 | // Bit(in=in[10], load=load, out=out[10]); 26 | // Bit(in=in[11], load=load, out=out[11]); 27 | // Bit(in=in[12], load=load, out=out[12]); 28 | // Bit(in=in[13], load=load, out=out[13]); 29 | // Bit(in=in[14], load=load, out=out[14]); 30 | // Bit(in=in[15], load=load, out=out[15]); 31 | Bit BIT1(.in(in[0]),.load(load),.out(out[0]), .clk(clk)); 32 | Bit BIT2(.in(in[1]),.load(load),.out(out[1]), .clk(clk)); 33 | Bit BIT3(.in(in[2]),.load(load),.out(out[2]), .clk(clk)); 34 | Bit BIT4(.in(in[3]),.load(load),.out(out[3]), .clk(clk)); 35 | Bit BIT5(.in(in[4]),.load(load),.out(out[4]), .clk(clk)); 36 | Bit BIT6(.in(in[5]),.load(load),.out(out[5]), .clk(clk)); 37 | Bit BIT7(.in(in[6]),.load(load),.out(out[6]), .clk(clk)); 38 | Bit BIT8(.in(in[7]),.load(load),.out(out[7]), .clk(clk)); 39 | Bit BIT9(.in(in[8]),.load(load),.out(out[8]), .clk(clk)); 40 | Bit BIT10(.in(in[9]),.load(load),.out(out[9]), .clk(clk)); 41 | Bit BIT11(.in(in[10]),.load(load),.out(out[10]), .clk(clk)); 42 | Bit BIT12(.in(in[11]),.load(load),.out(out[11]), .clk(clk)); 43 | Bit BIT13(.in(in[12]),.load(load),.out(out[12]), .clk(clk)); 44 | Bit BIT14(.in(in[13]),.load(load),.out(out[13]), .clk(clk)); 45 | Bit BIT15(.in(in[14]),.load(load),.out(out[14]), .clk(clk)); 46 | Bit BIT16(.in(in[15]),.load(load),.out(out[15]), .clk(clk)); 47 | 48 | 49 | endmodule 50 | -------------------------------------------------------------------------------- /02/Mux16.v: -------------------------------------------------------------------------------- 1 | /** 2 | * 16-bit multiplexor: 3 | * for i = 0..15 out[i] = a[i] if sel == 0 4 | * b[i] if sel == 1 5 | */ 6 | `default_nettype none 7 | `include "Mux.v" 8 | module Mux16( 9 | input [15:0] a, 10 | input [15:0] b, 11 | input sel, 12 | output [15:0] out 13 | ); 14 | // your implementation comes here: 15 | 16 | // Mux(a=a[0], b=b[0], sel=sel, out=out[0]); 17 | // Mux(a=a[1], b=b[1], sel=sel, out=out[1]); 18 | // Mux(a=a[2], b=b[2], sel=sel, out=out[2]); 19 | // Mux(a=a[3], b=b[3], sel=sel, out=out[3]); 20 | // Mux(a=a[4], b=b[4], sel=sel, out=out[4]); 21 | // Mux(a=a[5], b=b[5], sel=sel, out=out[5]); 22 | // Mux(a=a[6], b=b[6], sel=sel, out=out[6]); 23 | // Mux(a=a[7], b=b[7], sel=sel, out=out[7]); 24 | // Mux(a=a[8], b=b[8], sel=sel, out=out[8]); 25 | // Mux(a=a[9], b=b[9], sel=sel, out=out[9]); 26 | // Mux(a=a[10], b=b[10], sel=sel, out=out[10]); 27 | // Mux(a=a[11], b=b[11], sel=sel, out=out[11]); 28 | // Mux(a=a[12], b=b[12], sel=sel, out=out[12]); 29 | // Mux(a=a[13], b=b[13], sel=sel, out=out[13]); 30 | // Mux(a=a[14], b=b[14], sel=sel, out=out[14]); 31 | // Mux(a=a[15], b=b[15], sel=sel, out=out[15]); 32 | Mux MUX1(.a(a[0]),.b(b[0]),.sel(sel),.out(out[0])); 33 | Mux MUX2(.a(a[1]),.b(b[1]),.sel(sel),.out(out[1])); 34 | Mux MUX3(.a(a[2]),.b(b[2]),.sel(sel),.out(out[2])); 35 | Mux MUX4(.a(a[3]),.b(b[3]),.sel(sel),.out(out[3])); 36 | Mux MUX5(.a(a[4]),.b(b[4]),.sel(sel),.out(out[4])); 37 | Mux MUX6(.a(a[5]),.b(b[5]),.sel(sel),.out(out[5])); 38 | Mux MUX7(.a(a[6]),.b(b[6]),.sel(sel),.out(out[6])); 39 | Mux MUX8(.a(a[7]),.b(b[7]),.sel(sel),.out(out[7])); 40 | Mux MUX9(.a(a[8]),.b(b[8]),.sel(sel),.out(out[8])); 41 | Mux MUX10(.a(a[9]),.b(b[9]),.sel(sel),.out(out[9])); 42 | Mux MUX11(.a(a[10]),.b(b[10]),.sel(sel),.out(out[10])); 43 | Mux MUX12(.a(a[11]),.b(b[11]),.sel(sel),.out(out[11])); 44 | Mux MUX13(.a(a[12]),.b(b[12]),.sel(sel),.out(out[12])); 45 | Mux MUX14(.a(a[13]),.b(b[13]),.sel(sel),.out(out[13])); 46 | Mux MUX15(.a(a[14]),.b(b[14]),.sel(sel),.out(out[14])); 47 | Mux MUX16(.a(a[15]),.b(b[15]),.sel(sel),.out(out[15])); 48 | 49 | endmodule 50 | -------------------------------------------------------------------------------- /04/Mux16.v: -------------------------------------------------------------------------------- 1 | /** 2 | * 16-bit multiplexor: 3 | * for i = 0..15 out[i] = a[i] if sel == 0 4 | * b[i] if sel == 1 5 | */ 6 | `default_nettype none 7 | `include "Mux.v" 8 | module Mux16( 9 | input [15:0] a, 10 | input [15:0] b, 11 | input sel, 12 | output [15:0] out 13 | ); 14 | // your implementation comes here: 15 | 16 | // Mux(a=a[0], b=b[0], sel=sel, out=out[0]); 17 | // Mux(a=a[1], b=b[1], sel=sel, out=out[1]); 18 | // Mux(a=a[2], b=b[2], sel=sel, out=out[2]); 19 | // Mux(a=a[3], b=b[3], sel=sel, out=out[3]); 20 | // Mux(a=a[4], b=b[4], sel=sel, out=out[4]); 21 | // Mux(a=a[5], b=b[5], sel=sel, out=out[5]); 22 | // Mux(a=a[6], b=b[6], sel=sel, out=out[6]); 23 | // Mux(a=a[7], b=b[7], sel=sel, out=out[7]); 24 | // Mux(a=a[8], b=b[8], sel=sel, out=out[8]); 25 | // Mux(a=a[9], b=b[9], sel=sel, out=out[9]); 26 | // Mux(a=a[10], b=b[10], sel=sel, out=out[10]); 27 | // Mux(a=a[11], b=b[11], sel=sel, out=out[11]); 28 | // Mux(a=a[12], b=b[12], sel=sel, out=out[12]); 29 | // Mux(a=a[13], b=b[13], sel=sel, out=out[13]); 30 | // Mux(a=a[14], b=b[14], sel=sel, out=out[14]); 31 | // Mux(a=a[15], b=b[15], sel=sel, out=out[15]); 32 | Mux MUX1(.a(a[0]),.b(b[0]),.sel(sel),.out(out[0])); 33 | Mux MUX2(.a(a[1]),.b(b[1]),.sel(sel),.out(out[1])); 34 | Mux MUX3(.a(a[2]),.b(b[2]),.sel(sel),.out(out[2])); 35 | Mux MUX4(.a(a[3]),.b(b[3]),.sel(sel),.out(out[3])); 36 | Mux MUX5(.a(a[4]),.b(b[4]),.sel(sel),.out(out[4])); 37 | Mux MUX6(.a(a[5]),.b(b[5]),.sel(sel),.out(out[5])); 38 | Mux MUX7(.a(a[6]),.b(b[6]),.sel(sel),.out(out[6])); 39 | Mux MUX8(.a(a[7]),.b(b[7]),.sel(sel),.out(out[7])); 40 | Mux MUX9(.a(a[8]),.b(b[8]),.sel(sel),.out(out[8])); 41 | Mux MUX10(.a(a[9]),.b(b[9]),.sel(sel),.out(out[9])); 42 | Mux MUX11(.a(a[10]),.b(b[10]),.sel(sel),.out(out[10])); 43 | Mux MUX12(.a(a[11]),.b(b[11]),.sel(sel),.out(out[11])); 44 | Mux MUX13(.a(a[12]),.b(b[12]),.sel(sel),.out(out[12])); 45 | Mux MUX14(.a(a[13]),.b(b[13]),.sel(sel),.out(out[13])); 46 | Mux MUX15(.a(a[14]),.b(b[14]),.sel(sel),.out(out[14])); 47 | Mux MUX16(.a(a[15]),.b(b[15]),.sel(sel),.out(out[15])); 48 | 49 | endmodule 50 | -------------------------------------------------------------------------------- /01/Mux16.v: -------------------------------------------------------------------------------- 1 | /** 2 | * 16-bit multiplexor: 3 | * for i = 0..15 out[i] = a[i] if sel == 0 4 | * b[i] if sel == 1 5 | */ 6 | `default_nettype none 7 | `include "Mux.v" 8 | module Mux16( 9 | input [15:0] a, 10 | input [15:0] b, 11 | input sel, 12 | output [15:0] out 13 | ); 14 | 15 | // your implementation comes here: 16 | 17 | // Mux(a=a[0], b=b[0], sel=sel, out=out[0]); 18 | // Mux(a=a[1], b=b[1], sel=sel, out=out[1]); 19 | // Mux(a=a[2], b=b[2], sel=sel, out=out[2]); 20 | // Mux(a=a[3], b=b[3], sel=sel, out=out[3]); 21 | // Mux(a=a[4], b=b[4], sel=sel, out=out[4]); 22 | // Mux(a=a[5], b=b[5], sel=sel, out=out[5]); 23 | // Mux(a=a[6], b=b[6], sel=sel, out=out[6]); 24 | // Mux(a=a[7], b=b[7], sel=sel, out=out[7]); 25 | // Mux(a=a[8], b=b[8], sel=sel, out=out[8]); 26 | // Mux(a=a[9], b=b[9], sel=sel, out=out[9]); 27 | // Mux(a=a[10], b=b[10], sel=sel, out=out[10]); 28 | // Mux(a=a[11], b=b[11], sel=sel, out=out[11]); 29 | // Mux(a=a[12], b=b[12], sel=sel, out=out[12]); 30 | // Mux(a=a[13], b=b[13], sel=sel, out=out[13]); 31 | // Mux(a=a[14], b=b[14], sel=sel, out=out[14]); 32 | // Mux(a=a[15], b=b[15], sel=sel, out=out[15]); 33 | Mux MUX1(.a(a[0]),.b(b[0]),.sel(sel),.out(out[0])); 34 | Mux MUX2(.a(a[1]),.b(b[1]),.sel(sel),.out(out[1])); 35 | Mux MUX3(.a(a[2]),.b(b[2]),.sel(sel),.out(out[2])); 36 | Mux MUX4(.a(a[3]),.b(b[3]),.sel(sel),.out(out[3])); 37 | Mux MUX5(.a(a[4]),.b(b[4]),.sel(sel),.out(out[4])); 38 | Mux MUX6(.a(a[5]),.b(b[5]),.sel(sel),.out(out[5])); 39 | Mux MUX7(.a(a[6]),.b(b[6]),.sel(sel),.out(out[6])); 40 | Mux MUX8(.a(a[7]),.b(b[7]),.sel(sel),.out(out[7])); 41 | Mux MUX9(.a(a[8]),.b(b[8]),.sel(sel),.out(out[8])); 42 | Mux MUX10(.a(a[9]),.b(b[9]),.sel(sel),.out(out[9])); 43 | Mux MUX11(.a(a[10]),.b(b[10]),.sel(sel),.out(out[10])); 44 | Mux MUX12(.a(a[11]),.b(b[11]),.sel(sel),.out(out[11])); 45 | Mux MUX13(.a(a[12]),.b(b[12]),.sel(sel),.out(out[12])); 46 | Mux MUX14(.a(a[13]),.b(b[13]),.sel(sel),.out(out[13])); 47 | Mux MUX15(.a(a[14]),.b(b[14]),.sel(sel),.out(out[14])); 48 | Mux MUX16(.a(a[15]),.b(b[15]),.sel(sel),.out(out[15])); 49 | 50 | endmodule 51 | -------------------------------------------------------------------------------- /04/Memory.v: -------------------------------------------------------------------------------- 1 | /** 2 | * Memory mapped IO 3 | * 4 | * Big Multiplexer/Demultiplexer to address Memory. 5 | * 6 | * if (load==1) and (address[13]==0) loadRAM=1 7 | * if (load==1) and (address[13]==1 and address[3:0]==0000) load0000=1 8 | * if (load==1) and (address[13]==1 and address[3:0]==0001) load0001=1 9 | * if (load==1) and (address[13]==1 and address[3:0]==0010) load0010=1 10 | * ... 11 | * if (address[13]==0) data = dataRAM 12 | * if (address[13]==1 and address[3:0]=0000) data = data0000 13 | * if (address[13]==1 and address[3:0]=0001) data = data0001 14 | * if (address[13]==1 and address[3:0]=0010) data = data0010 15 | */ 16 | 17 | `default_nettype none 18 | module Memory( 19 | input clk, 20 | input wire [15:0] address, 21 | input wire load, 22 | input wire btn, 23 | output wire led, 24 | output wire [15:0] out, 25 | input wire [15:0] in 26 | ); 27 | 28 | //your implementation comes here: 29 | // DMux(in=load ,sel=address[14] ,a=load1 ,b=load2 ); 30 | // DMux(in=load2,sel=address[13] ,a=load21,b=load22); 31 | // RAM16K(in=in ,load=load1 ,address=address[0..13] ,out=out1 ); 32 | // Screen(in=in ,load=load21 ,address=address[0..12] ,out=out2 ); 33 | // Keyboard(out= out3); 34 | // Mux16(a=out2 ,b=out3 ,sel=address[13] ,out=tmp); 35 | // Mux16(a=out1 ,b=tmp ,sel=address[14] ,out=out ); 36 | 37 | wire loadRAM; 38 | wire loadIO; 39 | wire loadBtn; 40 | wire loadLed; 41 | DMux DMUX1( 42 | .in(load), 43 | .sel(address[13]), 44 | .a(loadRAM), 45 | .b(loadIO) 46 | ); 47 | DMux DMUX2( 48 | .in(loadIO), 49 | .sel(address[0]), 50 | .a(loadBtn), 51 | .b(loadLed) 52 | ); 53 | 54 | wire[15:0] outRAM; 55 | RAM RAM1( 56 | .clk(clk), 57 | .address(address), 58 | .load(loadRAM), 59 | .in(in), 60 | .out(outRAM) 61 | ); 62 | 63 | // button - only read 64 | wire[15:0] outBtn; 65 | Btn BTN(.out(outBtn), .btn(btn)); 66 | // led - only write 67 | wire[15:0] outLed; 68 | Led LED(.clk(clk), .in(in), .out(outLed), .load(loadLed), .led(led)); 69 | 70 | wire[15:0] tmp; 71 | Mux16 MUX161( 72 | .a(outBtn), 73 | .b(outLed), 74 | .sel(address[0]), 75 | .out(tmp) 76 | ); 77 | 78 | Mux16 MUX162( 79 | .a(outRAM), 80 | .b(tmp), 81 | .sel(address[13]), 82 | .out(out) 83 | ); 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | endmodule 92 | -------------------------------------------------------------------------------- /02/ALU.cmp: -------------------------------------------------------------------------------- 1 | |x|y|zx|nx|zy|ny|f|no|out|zr|ng| 2 | |0000000000000000|1111111111111111|1|0|1|0|1|0|0000000000000000|1|0| 3 | |0000000000000000|1111111111111111|1|1|1|1|1|1|0000000000000001|0|0| 4 | |0000000000000000|1111111111111111|1|1|1|0|1|0|1111111111111111|0|1| 5 | |0000000000000000|1111111111111111|0|0|1|1|0|0|0000000000000000|1|0| 6 | |0000000000000000|1111111111111111|1|1|0|0|0|0|1111111111111111|0|1| 7 | |0000000000000000|1111111111111111|0|0|1|1|0|1|1111111111111111|0|1| 8 | |0000000000000000|1111111111111111|1|1|0|0|0|1|0000000000000000|1|0| 9 | |0000000000000000|1111111111111111|0|0|1|1|1|1|0000000000000000|1|0| 10 | |0000000000000000|1111111111111111|1|1|0|0|1|1|0000000000000001|0|0| 11 | |0000000000000000|1111111111111111|0|1|1|1|1|1|0000000000000001|0|0| 12 | |0000000000000000|1111111111111111|1|1|0|1|1|1|0000000000000000|1|0| 13 | |0000000000000000|1111111111111111|0|0|1|1|1|0|1111111111111111|0|1| 14 | |0000000000000000|1111111111111111|1|1|0|0|1|0|1111111111111110|0|1| 15 | |0000000000000000|1111111111111111|0|0|0|0|1|0|1111111111111111|0|1| 16 | |0000000000000000|1111111111111111|0|1|0|0|1|1|0000000000000001|0|0| 17 | |0000000000000000|1111111111111111|0|0|0|1|1|1|1111111111111111|0|1| 18 | |0000000000000000|1111111111111111|0|0|0|0|0|0|0000000000000000|1|0| 19 | |0000000000000000|1111111111111111|0|1|0|1|0|1|1111111111111111|0|1| 20 | |0000000000010001|0000000000000011|1|0|1|0|1|0|0000000000000000|1|0| 21 | |0000000000010001|0000000000000011|1|1|1|1|1|1|0000000000000001|0|0| 22 | |0000000000010001|0000000000000011|1|1|1|0|1|0|1111111111111111|0|1| 23 | |0000000000010001|0000000000000011|0|0|1|1|0|0|0000000000010001|0|0| 24 | |0000000000010001|0000000000000011|1|1|0|0|0|0|0000000000000011|0|0| 25 | |0000000000010001|0000000000000011|0|0|1|1|0|1|1111111111101110|0|1| 26 | |0000000000010001|0000000000000011|1|1|0|0|0|1|1111111111111100|0|1| 27 | |0000000000010001|0000000000000011|0|0|1|1|1|1|1111111111101111|0|1| 28 | |0000000000010001|0000000000000011|1|1|0|0|1|1|1111111111111101|0|1| 29 | |0000000000010001|0000000000000011|0|1|1|1|1|1|0000000000010010|0|0| 30 | |0000000000010001|0000000000000011|1|1|0|1|1|1|0000000000000100|0|0| 31 | |0000000000010001|0000000000000011|0|0|1|1|1|0|0000000000010000|0|0| 32 | |0000000000010001|0000000000000011|1|1|0|0|1|0|0000000000000010|0|0| 33 | |0000000000010001|0000000000000011|0|0|0|0|1|0|0000000000010100|0|0| 34 | |0000000000010001|0000000000000011|0|1|0|0|1|1|0000000000001110|0|0| 35 | |0000000000010001|0000000000000011|0|0|0|1|1|1|1111111111110010|0|1| 36 | |0000000000010001|0000000000000011|0|0|0|0|0|0|0000000000000001|0|0| 37 | |0000000000010001|0000000000000011|0|1|0|1|0|1|0000000000010011|0|0| 38 | -------------------------------------------------------------------------------- /04/CPU.cmp: -------------------------------------------------------------------------------- 1 | | time | inM | instruction |reset| outM |writeM|addres| pc | 2 | | 0| 0|0011000000111001| 0 | 0| 0 | x| x| 3 | | 1| 0|0011000000111001| 0 | 0| 0 | 12345| 0| 4 | | 1| 0|1110110000010000| 0 | 12345| 0 | 12345| 0| 5 | | 2| 0|1110110000010000| 0 | 12345| 0 | 12345| 1| 6 | | 2| 0|0101101110100000| 0 | -1| 0 | 12345| 1| 7 | | 3| 0|0101101110100000| 0 | -1| 0 | 23456| 2| 8 | | 3| 11111|1110000111110000| 0 | 11111| 0 | 23456| 2| 9 | | 4| 11111|1110000111110000| 0 | 0| 0 | 11111| 3| 10 | | 4| 11111|0000001111101011| 0 |-11111| 0 | 11111| 3| 11 | | 5| 11111|0000001111101011| 0 |-11111| 0 | 1003| 4| 12 | | 5| 11111|1110001100001000| 0 | 11111| 1 | 1003| 4| 13 | | 6| 11111|1110001100001000| 0 | 11111| 1 | 1003| 5| 14 | | 6| 11111|0000001111101100| 0 |-11111| 0 | 1003| 5| 15 | | 7| 11111|0000001111101100| 0 |-11111| 0 | 1004| 6| 16 | | 7| 11111|1110001110011000| 0 | 11110| 1 | 1004| 6| 17 | | 8| 11111|1110001110011000| 0 | 11109| 1 | 1004| 7| 18 | | 8| 11111|0000001111101000| 0 |-11110| 0 | 1004| 7| 19 | | 9| 11111|0000001111101000| 0 |-11110| 0 | 1000| 8| 20 | | 9| 11111|1111010011110000| 0 | -1| 0 | 1000| 8| 21 | | 10| 11111|1111010011110000| 0 |-11112| 0 | 32767| 9| 22 | | 10| 11111|0000000000001110| 0 | -1| 0 | 32767| 9| 23 | | 11| 11111|0000000000001110| 0 | 14| 0 | 14| 10| 24 | | 11| 11111|1110001100000100| 0 | -1| 0 | 14| 10| 25 | | 12| 11111|1110001100000100| 0 | -1| 0 | 14| 14| 26 | | 12| 11111|0000001111100111| 0 | 1| 0 | 14| 14| 27 | | 13| 11111|0000001111100111| 0 | 1| 0 | 999| 15| 28 | | 13| 11111|1111110111100000| 0 | 11112| 0 | 999| 15| 29 | | 14| 11111|1111110111100000| 0 | 11112| 0 | 11112| 16| 30 | | 14| 11111|1110001100101000| 0 | -1| 1 | 11112| 16| 31 | | 15| 11111|1110001100101000| 0 | -1| 1 | 32767| 17| 32 | | 15| 11111|0000000000010101| 0 | -1| 0 | 32767| 17| 33 | | 16| 11111|0000000000010101| 0 | 21| 0 | 21| 18| 34 | | 16| 11111|1110011111000010| 0 | 0| 0 | 21| 18| 35 | | 17| 11111|1110011111000010| 0 | 0| 0 | 21| 21| 36 | | 17| 11111|0000000000000010| 0 | 21| 0 | 21| 21| 37 | | 18| 11111|0000000000000010| 0 | 2| 0 | 2| 22| 38 | | 18| 11111|1110000010111000| 0 | 1| 1 | 2| 22| 39 | | 19| 11111|1110000010111000| 0 | 2| 1 | 1| 23| 40 | -------------------------------------------------------------------------------- /03/README.md: -------------------------------------------------------------------------------- 1 | ## 时序电路(存储) 2 | 3 | ### 时序电路 4 | 5 | 所谓时序电路就是含有时钟信号的电路,时钟信号上下翻转 6 | 7 | ### D 触发器 8 | 9 | 因为 D 触发器只有一个输入和一个输出,可以用硬件测试。因为 D 触发器是时钟触发的,所以约束文件一定要带上时钟。 10 | 11 | ``` 12 | IO_LOC "out" 10; // red 13 | IO_LOC "in" 15; 14 | IO_LOC "clk" 45; 15 | ``` 16 | 17 | D 触发器具有存储功能,其实是通过反馈实现的,所以我们用它来实现存储电路。 18 | 19 | ### Bit 20 | 21 | bit 是一位存储,由 D 触发器实现。和单纯的 D 触发器不同,额外使用了数据选择器实现数据的改变。 22 | 23 | ```verilog 24 | wire muxo; 25 | Mux MUX(.a(out),.b(in),.sel(load),.out(muxo)); 26 | DFFusr DFF1(.clk(clk),.in(muxo),.out(out)); 27 | ``` 28 | 29 | 当 load = 1 时,D 触发器的输入被改变,所以 D 触发器的下一个状态改变。 30 | 31 | 因为时序电路用到了 clk ,所以仿真时 clk 不会自动变化,需要添加 always #1 clk = ~clk; 来使 clk 每隔一个时钟周期翻转一次。 32 | 33 | ### 寄存器 34 | 35 | 因为我们要构建的计算机是 16 位的,所以寄存器是 16 位的,寄存器由 16 个 Bit 组成。 36 | 37 | ```verilog 38 | Bit BIT1(.in(in[0]),.load(load),.out(out[0]), .clk(clk)); 39 | Bit BIT2(.in(in[1]),.load(load),.out(out[1]), .clk(clk)); 40 | Bit BIT3(.in(in[2]),.load(load),.out(out[2]), .clk(clk)); 41 | Bit BIT4(.in(in[3]),.load(load),.out(out[3]), .clk(clk)); 42 | Bit BIT5(.in(in[4]),.load(load),.out(out[4]), .clk(clk)); 43 | Bit BIT6(.in(in[5]),.load(load),.out(out[5]), .clk(clk)); 44 | Bit BIT7(.in(in[6]),.load(load),.out(out[6]), .clk(clk)); 45 | Bit BIT8(.in(in[7]),.load(load),.out(out[7]), .clk(clk)); 46 | Bit BIT9(.in(in[8]),.load(load),.out(out[8]), .clk(clk)); 47 | Bit BIT10(.in(in[9]),.load(load),.out(out[9]), .clk(clk)); 48 | Bit BIT11(.in(in[10]),.load(load),.out(out[10]), .clk(clk)); 49 | Bit BIT12(.in(in[11]),.load(load),.out(out[11]), .clk(clk)); 50 | Bit BIT13(.in(in[12]),.load(load),.out(out[12]), .clk(clk)); 51 | Bit BIT14(.in(in[13]),.load(load),.out(out[13]), .clk(clk)); 52 | Bit BIT15(.in(in[14]),.load(load),.out(out[14]), .clk(clk)); 53 | Bit BIT16(.in(in[15]),.load(load),.out(out[15]), .clk(clk)); 54 | ``` 55 | 56 | ### PC 57 | 58 | PC 又称程序计数器,主要由寄存器实现。PC 有三个条件,分别为 reset load inc 。由三个二选一数据选择器实现,先后次序决定优先级,加 1 由加法器实现。 59 | 60 | 有三个功能: 61 | 62 | - 当 inc = 1 时,加 1 63 | - 当 load = 1 时,把 in 的值赋给 PC 64 | - 当 reset = 1 时,复位 65 | 66 | ### RAM 67 | 68 | 现代体系结构中 RAM + io 映射等于所谓的主存,本节我们先实现 RAM 。根据 nand2tetris ,RAM 用寄存器实现,让 verilog 自己生成。当然更正确的做法是使用 Fpga 的 block RAM ,但是开源工具不支持: https://github.com/YosysHQ/yosys/wiki/FPGA-family-feature-matrix 。 69 | 70 | ```verilog 71 | module RAM( 72 | input wire clk, 73 | input wire [15:0] address, 74 | input wire [15:0] in, 75 | input wire load, 76 | output wire [15:0] out 77 | ); 78 | 79 | reg [15:0] regRAM [0:10]; 80 | always @(negedge clk) 81 | if (load) regRAM[address[3:0]] <= in; 82 | 83 | assign out = regRAM[address[3:0]]; 84 | endmodule 85 | ``` 86 | 87 | 低 4 位都用来访问 RAM ,regRAM 代表 10 个 16 位空间。 88 | 89 | > 关于 BlockRAM:http://xilinx.eetrend.com/blog/2020/100049862.html 90 | 91 | > 关于 LUT:https://cloud.tencent.com/developer/article/1794053 92 | 93 | > 代码:https://github.com/buhe/bugu-computer/tree/master/03 -------------------------------------------------------------------------------- /01/README.md: -------------------------------------------------------------------------------- 1 | ## 布尔逻辑 2 | 大部分电路输入都大于两个,如 Mux 有三个输入,And16 甚至有 16 个输入。只有 DMux 有两个输入两个输出。 3 | 4 | 虽然 tangnaono 只有一个 led 能被程序控制,但 tangnano 有很多 gpio ,gpio 是通用接口,程序可以控制它产生高低电平(也就是 0 1 )。可以把一个 led 接在 gpio 上(这里一端接到 2 一端接地)这样控制 gpio 的电平可以间接控制 led 的灯亮灭。 5 | 6 | IMG_1879 7 | 8 | ### DMux 9 | 10 | DMux 又称数据分配器。根据 sel 的信号分配 in 的信号,如果 sel 等于 0 则 a 等于 in 的信号,如果 sel 等于 1 则 b 等于 in 的信号。 11 | 12 | ```verilog 13 | `include "Not.v" 14 | `include "And.v" 15 | `default_nettype none 16 | 17 | module DMux( 18 | input wire in, 19 | input wire sel, 20 | output wire a, 21 | output wire b 22 | ); 23 | wire notsel; 24 | Not NOT2(.in(sel), .out(notsel)); 25 | And AND1(.a(in),.b(notsel),.out(a)); 26 | And AND2(.a(in),.b(sel),.out(b)); 27 | 28 | endmodule 29 | ``` 30 | 31 | 约束文件如下: 32 | 33 | ``` 34 | IO_LOC "a" 10; // red 35 | IO_LOC "in" 15; 36 | IO_LOC "sel" 14; // right hand default 1 37 | IO_LOC "b" 2; // blue 38 | ``` 39 | 40 | 执行以下命令写入 Fpga 41 | 42 | ```bash 43 | make sym-dmux 44 | 45 | make flash 46 | ``` 47 | 48 | 因为开关(14 也就是右边那个按钮)松开默认是 1 ,所以当写入 Fpga 后什么都不做,sel 等于 1 ,b 的信号等于 in 的信号,此时因为 in 绑定到按钮上(15 左边的按钮)也默认为 1 ,所以 b 为 1 ,连接到 gpio 2 的 led 发光(因为是 1 也就是高电平)。按下右边的按钮(sel),sel 等于 0 ,in 分配给了 a,红灯(10)亮,外接的 led(2)灭。 49 | 50 | ### 其他 51 | 52 | 这次的其他电路输入都大于 2 个,我们的 Fpga 只有两个按钮,在其上很难测试,虽然也可以连接额外的按钮,可 And16 有 16 个输入,同时按不现实,所以选择用仿真测试,以 And16 为例,其他同理。 53 | 54 | And16 其实就是 16 个与门按位与: 55 | 56 | ```verilog 57 | `include "Not.v" 58 | `include "And.v" 59 | `default_nettype none 60 | module And16( 61 | input wire [15:0] a, 62 | input wire [15:0] b, 63 | output wire [15:0] out 64 | ); 65 | And AND1(.a(a[0]),.b(b[0]),.out(out[0])); 66 | And AND2(.a(a[1]),.b(b[1]),.out(out[1])); 67 | And AND3(.a(a[2]),.b(b[2]),.out(out[2])); 68 | And AND4(.a(a[3]),.b(b[3]),.out(out[3])); 69 | And AND5(.a(a[4]),.b(b[4]),.out(out[4])); 70 | And AND6(.a(a[5]),.b(b[5]),.out(out[5])); 71 | And AND7(.a(a[6]),.b(b[6]),.out(out[6])); 72 | And AND8(.a(a[7]),.b(b[7]),.out(out[7])); 73 | And AND9(.a(a[8]),.b(b[8]),.out(out[8])); 74 | And AND10(.a(a[9]),.b(b[9]),.out(out[9])); 75 | And AND11(.a(a[10]),.b(b[10]),.out(out[10])); 76 | And AND12(.a(a[11]),.b(b[11]),.out(out[11])); 77 | And AND13(.a(a[12]),.b(b[12]),.out(out[12])); 78 | And AND14(.a(a[13]),.b(b[13]),.out(out[13])); 79 | And AND15(.a(a[14]),.b(b[14]),.out(out[14])); 80 | And AND16(.a(a[15]),.b(b[15]),.out(out[15])); 81 | endmodule 82 | ``` 83 | 84 | 很简单,可以看到创建了 16 个与门,a b 每一位相与的结果放在 out 的对应位。 85 | 86 | 编译,执行测试(仿真,激励)。 87 | 88 | ```bash 89 | iverilog -o And16_tb.vvp And16_tb.v 90 | 91 | vvp And16_tb.vvp 92 | ``` 93 | 94 | 测试会把结果写入 *.out 文件里,然后和提供的 *.cmp 比较就可以了,如果一样就代表通过了。 95 | 96 | ```bash 97 | diff And16.out And16.cmp 98 | ``` 99 | 100 | 其他逻辑电路相同。 101 | 102 | > 代码:https://github.com/buhe/bugu-computer/tree/master/01 -------------------------------------------------------------------------------- /02/Add16.v: -------------------------------------------------------------------------------- 1 | /** 2 | * Adds two 16-bit values. 3 | * The most significant carry bit is ignored. 4 | * out = a + b (16 bit) 5 | */ 6 | `include "FullAdder.v" 7 | `default_nettype none 8 | module Add16( 9 | input wire [15:0] a, 10 | input wire [15:0] b, 11 | output wire [15:0] out 12 | ); 13 | // your implementation comes here: 14 | // HalfAdder(a=a[0], b=b[0], sum=out[0], carry=carry); 15 | // FullAdder(a=a[1], b=b[1], c=carry, sum=out[1], carry=carry1); 16 | // FullAdder(a=a[2], b=b[2], c=carry1, sum=out[2], carry=carry2); 17 | // FullAdder(a=a[3], b=b[3], c=carry2, sum=out[3], carry=carry3); 18 | // FullAdder(a=a[4], b=b[4], c=carry3, sum=out[4], carry=carry4); 19 | // FullAdder(a=a[5], b=b[5], c=carry4, sum=out[5], carry=carry5); 20 | // FullAdder(a=a[6], b=b[6], c=carry5, sum=out[6], carry=carry6); 21 | // FullAdder(a=a[7], b=b[7], c=carry6, sum=out[7], carry=carry7); 22 | // FullAdder(a=a[8], b=b[8], c=carry7, sum=out[8], carry=carry8); 23 | // FullAdder(a=a[9], b=b[9], c=carry8, sum=out[9], carry=carry9); 24 | // FullAdder(a=a[10], b=b[10], c=carry9, sum=out[10], carry=carry10); 25 | // FullAdder(a=a[11], b=b[11], c=carry10, sum=out[11], carry=carry11); 26 | // FullAdder(a=a[12], b=b[12], c=carry11, sum=out[12], carry=carry12); 27 | // FullAdder(a=a[13], b=b[13], c=carry12, sum=out[13], carry=carry13); 28 | // FullAdder(a=a[14], b=b[14], c=carry13, sum=out[14], carry=carry14); 29 | // FullAdder(a=a[15], b=b[15], c=carry14, sum=out[15], carry=carry15); 30 | 31 | wire carry; 32 | wire carry1; 33 | wire carry2; 34 | wire carry3; 35 | wire carry4; 36 | wire carry5; 37 | wire carry6; 38 | wire carry7; 39 | wire carry8; 40 | wire carry9; 41 | wire carry10; 42 | wire carry11; 43 | wire carry12; 44 | wire carry13; 45 | wire carry14; 46 | wire carry15; 47 | HalfAdder HalfAdder1(.a(a[0]),.b(b[0]),.sum(out[0]),.carry(carry)); 48 | FullAdder FullAdder1(.a(a[1]),.b(b[1]),.c(carry),.sum(out[1]),.carry(carry1)); 49 | FullAdder FullAdder2(.a(a[2]),.b(b[2]),.c(carry1),.sum(out[2]),.carry(carry2)); 50 | FullAdder FullAdder3(.a(a[3]),.b(b[3]),.c(carry2),.sum(out[3]),.carry(carry3)); 51 | FullAdder FullAdder4(.a(a[4]),.b(b[4]),.c(carry3),.sum(out[4]),.carry(carry4)); 52 | FullAdder FullAdder5(.a(a[5]),.b(b[5]),.c(carry4),.sum(out[5]),.carry(carry5)); 53 | FullAdder FullAdder6(.a(a[6]),.b(b[6]),.c(carry5),.sum(out[6]),.carry(carry6)); 54 | FullAdder FullAdder7(.a(a[7]),.b(b[7]),.c(carry6),.sum(out[7]),.carry(carry7)); 55 | FullAdder FullAdder8(.a(a[8]),.b(b[8]),.c(carry7),.sum(out[8]),.carry(carry8)); 56 | FullAdder FullAdder9(.a(a[9]),.b(b[9]),.c(carry8),.sum(out[9]),.carry(carry9)); 57 | FullAdder FullAdder10(.a(a[10]),.b(b[10]),.c(carry9),.sum(out[10]),.carry(carry10)); 58 | FullAdder FullAdder11(.a(a[11]),.b(b[11]),.c(carry10),.sum(out[11]),.carry(carry11)); 59 | FullAdder FullAdder12(.a(a[12]),.b(b[12]),.c(carry11),.sum(out[12]),.carry(carry12)); 60 | FullAdder FullAdder13(.a(a[13]),.b(b[13]),.c(carry12),.sum(out[13]),.carry(carry13)); 61 | FullAdder FullAdder14(.a(a[14]),.b(b[14]),.c(carry13),.sum(out[14]),.carry(carry14)); 62 | FullAdder FullAdder15(.a(a[15]),.b(b[15]),.c(carry14),.sum(out[15]),.carry(carry15)); 63 | 64 | endmodule 65 | -------------------------------------------------------------------------------- /03/Add16.v: -------------------------------------------------------------------------------- 1 | /** 2 | * Adds two 16-bit values. 3 | * The most significant carry bit is ignored. 4 | * out = a + b (16 bit) 5 | */ 6 | `include "FullAdder.v" 7 | 8 | `default_nettype none 9 | module Add16( 10 | input wire [15:0] a, 11 | input wire [15:0] b, 12 | output wire [15:0] out 13 | ); 14 | // your implementation comes here: 15 | // HalfAdder(a=a[0], b=b[0], sum=out[0], carry=carry); 16 | // FullAdder(a=a[1], b=b[1], c=carry, sum=out[1], carry=carry1); 17 | // FullAdder(a=a[2], b=b[2], c=carry1, sum=out[2], carry=carry2); 18 | // FullAdder(a=a[3], b=b[3], c=carry2, sum=out[3], carry=carry3); 19 | // FullAdder(a=a[4], b=b[4], c=carry3, sum=out[4], carry=carry4); 20 | // FullAdder(a=a[5], b=b[5], c=carry4, sum=out[5], carry=carry5); 21 | // FullAdder(a=a[6], b=b[6], c=carry5, sum=out[6], carry=carry6); 22 | // FullAdder(a=a[7], b=b[7], c=carry6, sum=out[7], carry=carry7); 23 | // FullAdder(a=a[8], b=b[8], c=carry7, sum=out[8], carry=carry8); 24 | // FullAdder(a=a[9], b=b[9], c=carry8, sum=out[9], carry=carry9); 25 | // FullAdder(a=a[10], b=b[10], c=carry9, sum=out[10], carry=carry10); 26 | // FullAdder(a=a[11], b=b[11], c=carry10, sum=out[11], carry=carry11); 27 | // FullAdder(a=a[12], b=b[12], c=carry11, sum=out[12], carry=carry12); 28 | // FullAdder(a=a[13], b=b[13], c=carry12, sum=out[13], carry=carry13); 29 | // FullAdder(a=a[14], b=b[14], c=carry13, sum=out[14], carry=carry14); 30 | // FullAdder(a=a[15], b=b[15], c=carry14, sum=out[15], carry=carry15); 31 | 32 | wire carry; 33 | wire carry1; 34 | wire carry2; 35 | wire carry3; 36 | wire carry4; 37 | wire carry5; 38 | wire carry6; 39 | wire carry7; 40 | wire carry8; 41 | wire carry9; 42 | wire carry10; 43 | wire carry11; 44 | wire carry12; 45 | wire carry13; 46 | wire carry14; 47 | wire carry15; 48 | HalfAdder HalfAdder1(.a(a[0]),.b(b[0]),.sum(out[0]),.carry(carry)); 49 | FullAdder FullAdder1(.a(a[1]),.b(b[1]),.c(carry),.sum(out[1]),.carry(carry1)); 50 | FullAdder FullAdder2(.a(a[2]),.b(b[2]),.c(carry1),.sum(out[2]),.carry(carry2)); 51 | FullAdder FullAdder3(.a(a[3]),.b(b[3]),.c(carry2),.sum(out[3]),.carry(carry3)); 52 | FullAdder FullAdder4(.a(a[4]),.b(b[4]),.c(carry3),.sum(out[4]),.carry(carry4)); 53 | FullAdder FullAdder5(.a(a[5]),.b(b[5]),.c(carry4),.sum(out[5]),.carry(carry5)); 54 | FullAdder FullAdder6(.a(a[6]),.b(b[6]),.c(carry5),.sum(out[6]),.carry(carry6)); 55 | FullAdder FullAdder7(.a(a[7]),.b(b[7]),.c(carry6),.sum(out[7]),.carry(carry7)); 56 | FullAdder FullAdder8(.a(a[8]),.b(b[8]),.c(carry7),.sum(out[8]),.carry(carry8)); 57 | FullAdder FullAdder9(.a(a[9]),.b(b[9]),.c(carry8),.sum(out[9]),.carry(carry9)); 58 | FullAdder FullAdder10(.a(a[10]),.b(b[10]),.c(carry9),.sum(out[10]),.carry(carry10)); 59 | FullAdder FullAdder11(.a(a[11]),.b(b[11]),.c(carry10),.sum(out[11]),.carry(carry11)); 60 | FullAdder FullAdder12(.a(a[12]),.b(b[12]),.c(carry11),.sum(out[12]),.carry(carry12)); 61 | FullAdder FullAdder13(.a(a[13]),.b(b[13]),.c(carry12),.sum(out[13]),.carry(carry13)); 62 | FullAdder FullAdder14(.a(a[14]),.b(b[14]),.c(carry13),.sum(out[14]),.carry(carry14)); 63 | FullAdder FullAdder15(.a(a[15]),.b(b[15]),.c(carry14),.sum(out[15]),.carry(carry15)); 64 | 65 | endmodule 66 | -------------------------------------------------------------------------------- /04/Add16.v: -------------------------------------------------------------------------------- 1 | /** 2 | * Adds two 16-bit values. 3 | * The most significant carry bit is ignored. 4 | * out = a + b (16 bit) 5 | */ 6 | `include "FullAdder.v" 7 | 8 | `default_nettype none 9 | module Add16( 10 | input wire [15:0] a, 11 | input wire [15:0] b, 12 | output wire [15:0] out 13 | ); 14 | // your implementation comes here: 15 | // HalfAdder(a=a[0], b=b[0], sum=out[0], carry=carry); 16 | // FullAdder(a=a[1], b=b[1], c=carry, sum=out[1], carry=carry1); 17 | // FullAdder(a=a[2], b=b[2], c=carry1, sum=out[2], carry=carry2); 18 | // FullAdder(a=a[3], b=b[3], c=carry2, sum=out[3], carry=carry3); 19 | // FullAdder(a=a[4], b=b[4], c=carry3, sum=out[4], carry=carry4); 20 | // FullAdder(a=a[5], b=b[5], c=carry4, sum=out[5], carry=carry5); 21 | // FullAdder(a=a[6], b=b[6], c=carry5, sum=out[6], carry=carry6); 22 | // FullAdder(a=a[7], b=b[7], c=carry6, sum=out[7], carry=carry7); 23 | // FullAdder(a=a[8], b=b[8], c=carry7, sum=out[8], carry=carry8); 24 | // FullAdder(a=a[9], b=b[9], c=carry8, sum=out[9], carry=carry9); 25 | // FullAdder(a=a[10], b=b[10], c=carry9, sum=out[10], carry=carry10); 26 | // FullAdder(a=a[11], b=b[11], c=carry10, sum=out[11], carry=carry11); 27 | // FullAdder(a=a[12], b=b[12], c=carry11, sum=out[12], carry=carry12); 28 | // FullAdder(a=a[13], b=b[13], c=carry12, sum=out[13], carry=carry13); 29 | // FullAdder(a=a[14], b=b[14], c=carry13, sum=out[14], carry=carry14); 30 | // FullAdder(a=a[15], b=b[15], c=carry14, sum=out[15], carry=carry15); 31 | 32 | wire carry; 33 | wire carry1; 34 | wire carry2; 35 | wire carry3; 36 | wire carry4; 37 | wire carry5; 38 | wire carry6; 39 | wire carry7; 40 | wire carry8; 41 | wire carry9; 42 | wire carry10; 43 | wire carry11; 44 | wire carry12; 45 | wire carry13; 46 | wire carry14; 47 | wire carry15; 48 | HalfAdder HalfAdder1(.a(a[0]),.b(b[0]),.sum(out[0]),.carry(carry)); 49 | FullAdder FullAdder1(.a(a[1]),.b(b[1]),.c(carry),.sum(out[1]),.carry(carry1)); 50 | FullAdder FullAdder2(.a(a[2]),.b(b[2]),.c(carry1),.sum(out[2]),.carry(carry2)); 51 | FullAdder FullAdder3(.a(a[3]),.b(b[3]),.c(carry2),.sum(out[3]),.carry(carry3)); 52 | FullAdder FullAdder4(.a(a[4]),.b(b[4]),.c(carry3),.sum(out[4]),.carry(carry4)); 53 | FullAdder FullAdder5(.a(a[5]),.b(b[5]),.c(carry4),.sum(out[5]),.carry(carry5)); 54 | FullAdder FullAdder6(.a(a[6]),.b(b[6]),.c(carry5),.sum(out[6]),.carry(carry6)); 55 | FullAdder FullAdder7(.a(a[7]),.b(b[7]),.c(carry6),.sum(out[7]),.carry(carry7)); 56 | FullAdder FullAdder8(.a(a[8]),.b(b[8]),.c(carry7),.sum(out[8]),.carry(carry8)); 57 | FullAdder FullAdder9(.a(a[9]),.b(b[9]),.c(carry8),.sum(out[9]),.carry(carry9)); 58 | FullAdder FullAdder10(.a(a[10]),.b(b[10]),.c(carry9),.sum(out[10]),.carry(carry10)); 59 | FullAdder FullAdder11(.a(a[11]),.b(b[11]),.c(carry10),.sum(out[11]),.carry(carry11)); 60 | FullAdder FullAdder12(.a(a[12]),.b(b[12]),.c(carry11),.sum(out[12]),.carry(carry12)); 61 | FullAdder FullAdder13(.a(a[13]),.b(b[13]),.c(carry12),.sum(out[13]),.carry(carry13)); 62 | FullAdder FullAdder14(.a(a[14]),.b(b[14]),.c(carry13),.sum(out[14]),.carry(carry14)); 63 | FullAdder FullAdder15(.a(a[15]),.b(b[15]),.c(carry14),.sum(out[15]),.carry(carry15)); 64 | 65 | endmodule 66 | -------------------------------------------------------------------------------- /02/ALU_tb.v: -------------------------------------------------------------------------------- 1 | `include "ALU.v" 2 | `default_nettype none 3 | module ALU_tb(); 4 | 5 | integer file; 6 | 7 | reg[15:0] x = 16'b0000000000000000; 8 | reg[15:0] y = 16'b1111111111111111; 9 | reg zx = 0; 10 | reg nx = 0; 11 | reg zy = 0; 12 | reg ny = 0; 13 | reg f = 0; 14 | reg no = 0; 15 | 16 | wire[15:0] out; 17 | wire zr; 18 | wire ng; 19 | 20 | ALU ALU( 21 | .x(x), 22 | .y(y), 23 | .zx(zx), 24 | .nx(nx), 25 | .zy(zy), 26 | .ny(ny), 27 | .f(f), 28 | .no(no), 29 | .out(out), 30 | .zr(zr), 31 | .ng(ng) 32 | ); 33 | 34 | task display; 35 | #1 $fwrite(file, "|%16b|%16b|%1b|%1b|%1b|%1b|%1b|%1b|%16b|%1b|%1b|\n", x,y,zx,nx,zy,ny,f,no,out,zr,ng); 36 | endtask 37 | 38 | initial begin 39 | $dumpfile("ALU_tb.vcd"); 40 | $dumpvars(0, ALU_tb); 41 | file = $fopen("ALU.out","w"); 42 | $fwrite(file, "|x|y|zx|nx|zy|ny|f|no|out|zr|ng|\n"); 43 | 44 | zx=1;nx=0;zy=1;ny=0;f=1;no=0; 45 | display(); 46 | 47 | zx=1;nx=1;zy=1;ny=1;f=1;no=1; 48 | display(); 49 | 50 | zx=1;nx=1;zy=1;ny=0;f=1;no=0; 51 | display(); 52 | 53 | zx=0;nx=0;zy=1;ny=1;f=0;no=0; 54 | display(); 55 | 56 | zx=1;nx=1;zy=0;ny=0;f=0;no=0; 57 | display(); 58 | 59 | zx=0;nx=0;zy=1;ny=1;f=0;no=1; 60 | display(); 61 | 62 | zx=1;nx=1;zy=0;ny=0;f=0;no=1; 63 | display(); 64 | 65 | zx=0;nx=0;zy=1;ny=1;f=1;no=1; 66 | display(); 67 | 68 | zx=1;nx=1;zy=0;ny=0;f=1;no=1; 69 | display(); 70 | 71 | zx=0;nx=1;zy=1;ny=1;f=1;no=1; 72 | display(); 73 | 74 | zx=1;nx=1;zy=0;ny=1;f=1;no=1; 75 | display(); 76 | 77 | zx=0;nx=0;zy=1;ny=1;f=1;no=0; 78 | display(); 79 | 80 | zx=1;nx=1;zy=0;ny=0;f=1;no=0; 81 | display(); 82 | 83 | zx=0;nx=0;zy=0;ny=0;f=1;no=0; 84 | display(); 85 | 86 | zx=0;nx=1;zy=0;ny=0;f=1;no=1; 87 | display(); 88 | 89 | zx=0;nx=0;zy=0;ny=1;f=1;no=1; 90 | display(); 91 | 92 | zx=0;nx=0;zy=0;ny=0;f=0;no=0; 93 | display(); 94 | 95 | zx=0;nx=1;zy=0;ny=1;f=0;no=1; 96 | display(); 97 | 98 | x = 16'b000000000010001; 99 | y = 16'b000000000000011; 100 | zx=1;nx=0;zy=1;ny=0;f=1;no=0; 101 | display(); 102 | 103 | zx=1;nx=1;zy=1;ny=1;f=1;no=1; 104 | display(); 105 | 106 | zx=1;nx=1;zy=1;ny=0;f=1;no=0; 107 | display(); 108 | 109 | zx=0;nx=0;zy=1;ny=1;f=0;no=0; 110 | display(); 111 | 112 | zx=1;nx=1;zy=0;ny=0;f=0;no=0; 113 | display(); 114 | 115 | zx=0;nx=0;zy=1;ny=1;f=0;no=1; 116 | display(); 117 | 118 | zx=1;nx=1;zy=0;ny=0;f=0;no=1; 119 | display(); 120 | 121 | zx=0;nx=0;zy=1;ny=1;f=1;no=1; 122 | display(); 123 | 124 | zx=1;nx=1;zy=0;ny=0;f=1;no=1; 125 | display(); 126 | 127 | zx=0;nx=1;zy=1;ny=1;f=1;no=1; 128 | display(); 129 | 130 | zx=1;nx=1;zy=0;ny=1;f=1;no=1; 131 | display(); 132 | 133 | zx=0;nx=0;zy=1;ny=1;f=1;no=0; 134 | display(); 135 | 136 | zx=1;nx=1;zy=0;ny=0;f=1;no=0; 137 | display(); 138 | 139 | zx=0;nx=0;zy=0;ny=0;f=1;no=0; 140 | display(); 141 | 142 | zx=0;nx=1;zy=0;ny=0;f=1;no=1; 143 | display(); 144 | 145 | zx=0;nx=0;zy=0;ny=1;f=1;no=1; 146 | display(); 147 | 148 | zx=0;nx=0;zy=0;ny=0;f=0;no=0; 149 | display(); 150 | 151 | zx=0;nx=1;zy=0;ny=1;f=0;no=1; 152 | display(); 153 | $finish(); 154 | end 155 | 156 | endmodule 157 | -------------------------------------------------------------------------------- /04/ALUusr.v: -------------------------------------------------------------------------------- 1 | /** 2 | * The ALU (Arithmetic Logic Unit). 3 | * Computes one of the following functions: 4 | * x+y, x-y, y-x, 0, 1, -1, x, y, -x, -y, !x, !y, 5 | * x+1, y+1, x-1, y-1, x&y, x|y on two 16-bit inputs, 6 | * according to 6 input bits denoted zx,nx,zy,ny,f,no. 7 | * In addition, the ALU computes two 1-bit outputs: 8 | * if the ALU output == 0, zr is set to 1; otherwise zr is set to 0; 9 | * if the ALU output < 0, ng is set to 1; otherwise ng is set to 0. 10 | */ 11 | 12 | // Implementation: the ALU logic manipulates the x and y inputs 13 | // and operates on the resulting values, as follows: 14 | // if (zx == 1) set x = 0 // 16-bit constant 15 | // if (nx == 1) set x = !x // bitwise not 16 | // if (zy == 1) set y = 0 // 16-bit constant 17 | // if (ny == 1) set y = !y // bitwise not 18 | // if (f == 1) set out = x + y // integer 2's complement addition 19 | // if (f == 0) set out = x & y // bitwise and 20 | // if (no == 1) set out = !out // bitwise not 21 | // if (out == 0) set zr = 1 22 | // if (out < 0) set ng = 1 23 | 24 | `default_nettype none 25 | 26 | module ALUusr( 27 | input wire [15:0] x, // input x (16 bit) 28 | input wire [15:0] y, // input y (16 bit) 29 | input wire zx, // zero the x input? 30 | input wire nx, // negate the x input? 31 | input wire zy, // zero the y input? 32 | input wire ny, // negate the y input? 33 | input wire f, // compute out = x + y (if 1) or x & y (if 0) 34 | input wire no, // negate the out output? 35 | output wire [15:0] out, // 16-bit output 36 | output wire zr, // 1 if (out == 0), 0 otherwise 37 | output wire ng // 1 if (out < 0), 0 otherwise 38 | ); 39 | 40 | // your implementation comes here: 41 | 42 | // Mux16(a=x ,b=false ,sel=zx ,out=x1 ); 43 | // Not16(in=x1, out=notx1); 44 | // Mux16(a=x1,b=notx1,sel=nx ,out=x2 ); 45 | 46 | // Mux16(a=y ,b=false ,sel=zy ,out=y1 ); 47 | // Not16(in=y1,out=noty1); 48 | // Mux16(a=y1,b=noty1,sel=ny ,out=y2 ); 49 | 50 | // And16(a=x2 ,b=y2 ,out=andxy ); 51 | // Add16(a=x2 ,b=y2 ,out=addxy ); 52 | // Mux16(a=andxy,b=addxy,sel=f,out=xy); 53 | 54 | // Not16(in=xy,out=notxy); 55 | // Mux16(a=xy,b=notxy,sel=no,out[15]=tmp,out[0..7]=out07,out[8..15]=out815,out=out); 56 | 57 | // And(a=tmp,b=true,out=ng); 58 | // Or8Way(in=out07,out=tmp1); 59 | // Or8Way(in=out815,out=tmp2); 60 | // Or(a=tmp1,b=tmp2,out=tmp3); 61 | // Not(in=tmp3,out=zr); 62 | 63 | wire[15:0] x1; 64 | wire[15:0] x2; 65 | wire[15:0] notx1; 66 | Mux16 MUX16x(.a(x),.b(16'b0000000000000000),.sel(zx),.out(x1)); 67 | Not16 NOT16x(.in(x1),.out(notx1)); 68 | Mux16 MUX16x1(.a(x1),.b(notx1),.sel(nx),.out(x2)); 69 | 70 | wire[15:0] y1; 71 | wire[15:0] y2; 72 | wire[15:0] noty1; 73 | Mux16 MUX16y(.a(y),.b(16'b0000000000000000),.sel(zy),.out(y1)); 74 | Not16 NOT16y(.in(y1),.out(noty1)); 75 | Mux16 MUX16y1(.a(y1),.b(noty1),.sel(ny),.out(y2)); 76 | 77 | wire[15:0] andxy; 78 | wire[15:0] addxy; 79 | wire[15:0] xy; 80 | And16 AND16xy(.a(x2),.b(y2),.out(andxy)); 81 | Add16 ADD16xy(.a(x2),.b(y2),.out(addxy)); 82 | Mux16 MUX16andadd(.a(andxy),.b(addxy),.sel(f),.out(xy)); 83 | 84 | wire[15:0] notxy; 85 | Not16 NOT16xy(.in(xy),.out(notxy)); 86 | Mux16 MUX16xy(.a(xy),.b(notxy),.sel(no),.out(out)); 87 | wire tmp = out[15]; 88 | wire[7:0] out07= out[7:0]; 89 | wire[7:0] out815 = out[15:8]; 90 | 91 | wire tmp1; 92 | wire tmp2; 93 | wire tmp3; 94 | And AND(.a(tmp),.b(1'b1),.out(ng)); 95 | Or8Way OR8WAY07(.in(out07),.out(tmp1)); 96 | Or8Way OR8WAY815(.in(out815),.out(tmp2)); 97 | Or OR(.a(tmp1),.b(tmp2),.out(tmp3)); 98 | Not NOT(.in(tmp3),.out(zr)); 99 | 100 | endmodule 101 | -------------------------------------------------------------------------------- /02/ALU.v: -------------------------------------------------------------------------------- 1 | /** 2 | * The ALU (Arithmetic Logic Unit). 3 | * Computes one of the following functions: 4 | * x+y, x-y, y-x, 0, 1, -1, x, y, -x, -y, !x, !y, 5 | * x+1, y+1, x-1, y-1, x&y, x|y on two 16-bit inputs, 6 | * according to 6 input bits denoted zx,nx,zy,ny,f,no. 7 | * In addition, the ALU computes two 1-bit outputs: 8 | * if the ALU output == 0, zr is set to 1; otherwise zr is set to 0; 9 | * if the ALU output < 0, ng is set to 1; otherwise ng is set to 0. 10 | */ 11 | 12 | // Implementation: the ALU logic manipulates the x and y inputs 13 | // and operates on the resulting values, as follows: 14 | // if (zx == 1) set x = 0 // 16-bit constant 15 | // if (nx == 1) set x = !x // bitwise not 16 | // if (zy == 1) set y = 0 // 16-bit constant 17 | // if (ny == 1) set y = !y // bitwise not 18 | // if (f == 1) set out = x + y // integer 2's complement addition 19 | // if (f == 0) set out = x & y // bitwise and 20 | // if (no == 1) set out = !out // bitwise not 21 | // if (out == 0) set zr = 1 22 | // if (out < 0) set ng = 1 23 | 24 | `default_nettype none 25 | `include "Mux16.v" 26 | `include "Not16.v" 27 | `include "And16.v" 28 | `include "Add16.v" 29 | `include "Or8Way.v" 30 | module ALU( 31 | input wire [15:0] x, // input x (16 bit) 32 | input wire [15:0] y, // input y (16 bit) 33 | input wire zx, // zero the x input? 34 | input wire nx, // negate the x input? 35 | input wire zy, // zero the y input? 36 | input wire ny, // negate the y input? 37 | input wire f, // compute out = x + y (if 1) or x & y (if 0) 38 | input wire no, // negate the out output? 39 | output wire [15:0] out, // 16-bit output 40 | output wire zr, // 1 if (out == 0), 0 otherwise 41 | output wire ng // 1 if (out < 0), 0 otherwise 42 | ); 43 | 44 | // your implementation comes here: 45 | 46 | // Mux16(a=x ,b=false ,sel=zx ,out=x1 ); 47 | // Not16(in=x1, out=notx1); 48 | // Mux16(a=x1,b=notx1,sel=nx ,out=x2 ); 49 | 50 | // Mux16(a=y ,b=false ,sel=zy ,out=y1 ); 51 | // Not16(in=y1,out=noty1); 52 | // Mux16(a=y1,b=noty1,sel=ny ,out=y2 ); 53 | 54 | // And16(a=x2 ,b=y2 ,out=andxy ); 55 | // Add16(a=x2 ,b=y2 ,out=addxy ); 56 | // Mux16(a=andxy,b=addxy,sel=f,out=xy); 57 | 58 | // Not16(in=xy,out=notxy); 59 | // Mux16(a=xy,b=notxy,sel=no,out[15]=tmp,out[0..7]=out07,out[8..15]=out815,out=out); 60 | 61 | // And(a=tmp,b=true,out=ng); 62 | // Or8Way(in=out07,out=tmp1); 63 | // Or8Way(in=out815,out=tmp2); 64 | // Or(a=tmp1,b=tmp2,out=tmp3); 65 | // Not(in=tmp3,out=zr); 66 | 67 | wire[15:0] x1; 68 | wire[15:0] x2; 69 | wire[15:0] notx1; 70 | Mux16 MUX16x(.a(x),.b(16'b0000000000000000),.sel(zx),.out(x1)); 71 | Not16 NOT16x(.in(x1),.out(notx1)); 72 | Mux16 MUX16x1(.a(x1),.b(notx1),.sel(nx),.out(x2)); 73 | 74 | wire[15:0] y1; 75 | wire[15:0] y2; 76 | wire[15:0] noty1; 77 | Mux16 MUX16y(.a(y),.b(16'b0000000000000000),.sel(zy),.out(y1)); 78 | Not16 NOT16y(.in(y1),.out(noty1)); 79 | Mux16 MUX16y1(.a(y1),.b(noty1),.sel(ny),.out(y2)); 80 | 81 | wire[15:0] andxy; 82 | wire[15:0] addxy; 83 | wire[15:0] xy; 84 | And16 AND16xy(.a(x2),.b(y2),.out(andxy)); 85 | Add16 ADD16xy(.a(x2),.b(y2),.out(addxy)); 86 | Mux16 MUX16andadd(.a(andxy),.b(addxy),.sel(f),.out(xy)); 87 | 88 | wire[15:0] notxy; 89 | Not16 NOT16xy(.in(xy),.out(notxy)); 90 | Mux16 MUX16xy(.a(xy),.b(notxy),.sel(no),.out(out)); 91 | wire tmp = out[15]; 92 | wire[7:0] out07= out[7:0]; 93 | wire[7:0] out815 = out[15:8]; 94 | 95 | wire tmp1; 96 | wire tmp2; 97 | wire tmp3; 98 | And AND(.a(tmp),.b(1'b1),.out(ng)); 99 | Or8Way OR8WAY07(.in(out07),.out(tmp1)); 100 | Or8Way OR8WAY815(.in(out815),.out(tmp2)); 101 | Or OR(.a(tmp1),.b(tmp2),.out(tmp3)); 102 | Not NOT(.in(tmp3),.out(zr)); 103 | 104 | endmodule 105 | -------------------------------------------------------------------------------- /02/README.md: -------------------------------------------------------------------------------- 1 | ## 算术(ALU) 2 | 3 | ### 半加器 4 | 5 | 半加器是不考虑来自进位的一位加法器。用二进制表示: 6 | 7 | - 0 + 0 =00 8 | - 1 + 0 = 01 9 | - 0 + 1 = 01 10 | - 1 + 1 = 10 11 | 12 | 因为有两个输入和两个输出,可以写入 Fpga 进行测试。两个输入对应两个按钮,两个输出对应两个 led ,执行: 13 | 14 | ```bash 15 | yosys -p "read_verilog HalfAdder.v; synth_gowin -json HalfAdder.json" 16 | nextpnr-gowin --json HalfAdder.json --write pnrHalfAdder.json --device GW1NSR-LV4CQN48PC6/I5 --cst tangnano4k-2i2o.cst 17 | gowin_pack -d GW1NSR-LV4CQN48PC6/I5 -o pack.fs pnrHalfAdder.json 18 | 19 | openFPGALoader -b tangnano4k pack.fs 20 | ``` 21 | 22 | 然后按下按钮测试,注意按钮松开的时候为 1 。 23 | 24 | ### 全加器 25 | 26 | 全加器是考虑来自进位的一位加法器。简单的说就是三个一位相加。真值表如: 27 | 28 | | 输入 | 输出 | | | | 29 | | ---- | ---- | ---- | ---- | ----- | 30 | | C | A | B | sum | carry | 31 | | 0 | 0 | 0 | 0 | 0 | 32 | | 0 | 0 | 1 | 1 | 0 | 33 | | 0 | 1 | 0 | 1 | 0 | 34 | | 0 | 1 | 1 | 0 | 1 | 35 | | 1 | 0 | 0 | 1 | 0 | 36 | | 1 | 0 | 1 | 0 | 1 | 37 | | 1 | 1 | 0 | 0 | 1 | 38 | | 1 | 1 | 1 | 1 | 1 | 39 | 40 | 全加器可以用两个半加器和一个或门实现。 41 | 42 | ```verilog 43 | wire hsum; 44 | wire hcarry; 45 | HalfAdder HalfAdder1(.a(a),.b(b),.sum(hsum),.carry(hcarry)); 46 | wire hcarry2; 47 | HalfAdder HalfAdder2(.a(c),.b(hsum),.sum(sum),.carry(hcarry2)); 48 | Or OR(.a(hcarry),.b(hcarry2),.out(carry)); 49 | ``` 50 | 51 | - sum 很简单和 a + b + c 的 sum 相同。 52 | - carry 则有点麻烦,a + b 和 a + b 的 sum + c,有一个进位则 carry 为 1。 53 | 54 | ### 16 进制加法器 55 | 56 | 其实就是 15 个全加器和 1 个半加器,因为最低位没有进位故采用半加器,其余各位都有低一位来自的进位,最高位的进位舍弃,我们称为溢出。 57 | 58 | ### 算术器 59 | 60 | 先看看注释: 61 | 62 | ``` 63 | // if (zx == 1) set x = 0 // 16-bit constant 64 | // if (nx == 1) set x = !x // bitwise not 65 | // if (zy == 1) set y = 0 // 16-bit constant 66 | // if (ny == 1) set y = !y // bitwise not 67 | // if (f == 1) set out = x + y // integer 2's complement addition 68 | // if (f == 0) set out = x & y // bitwise and 69 | // if (no == 1) set out = !out // bitwise not 70 | // if (out == 0) set zr = 1 71 | // if (out < 0) set ng = 1 72 | ``` 73 | 74 | - 当 zx 等于 1 ,x 常为 16 进制的 0 75 | - 当 nx 等于 1,x 取反。 76 | - 当 zy 等于 1 ,y 常为 16 进制的 0 77 | - 当 ny 等于 1,y 取反。 78 | - 当 f 等于 1,输出 x + y 79 | - 当 f 等于 0,输出 x & y 80 | - 当 no 等于 1,输出取反。 81 | - 当输出等于 0,zr 设为 1 82 | - 当输出小于 0,ng 设为 1 83 | 84 | 减法、乘除法都可以转化成加法。逻辑运算也都可以转化为与非门(!(x & y) 就是与非门,可以通过设 f=0,no=1 来构建)。所以实现上述电路就可以计算所以算术。 85 | 86 | ```verilog 87 | wire[15:0] x1; 88 | wire[15:0] x2; 89 | wire[15:0] notx1; 90 | Mux16 MUX16x(.a(x),.b(16'b0000000000000000),.sel(zx),.out(x1)); 91 | Not16 NOT16x(.in(x1),.out(notx1)); 92 | Mux16 MUX16x1(.a(x1),.b(notx1),.sel(nx),.out(x2)); 93 | 94 | wire[15:0] y1; 95 | wire[15:0] y2; 96 | wire[15:0] noty1; 97 | Mux16 MUX16y(.a(y),.b(16'b0000000000000000),.sel(zy),.out(y1)); 98 | Not16 NOT16y(.in(y1),.out(noty1)); 99 | Mux16 MUX16y1(.a(y1),.b(noty1),.sel(ny),.out(y2)); 100 | 101 | wire[15:0] andxy; 102 | wire[15:0] addxy; 103 | wire[15:0] xy; 104 | And16 AND16xy(.a(x2),.b(y2),.out(andxy)); 105 | Add16 ADD16xy(.a(x2),.b(y2),.out(addxy)); 106 | Mux16 MUX16andadd(.a(andxy),.b(addxy),.sel(f),.out(xy)); 107 | 108 | wire[15:0] notxy; 109 | Not16 NOT16xy(.in(xy),.out(notxy)); 110 | Mux16 MUX16xy(.a(xy),.b(notxy),.sel(no),.out(out)); 111 | wire tmp = out[15]; 112 | wire[7:0] out07= out[7:0]; 113 | wire[7:0] out815 = out[15:8]; 114 | 115 | wire tmp1; 116 | wire tmp2; 117 | wire tmp3; 118 | And AND(.a(tmp),.b(1'b1),.out(ng)); 119 | Or8Way OR8WAY07(.in(out07),.out(tmp1)); 120 | Or8Way OR8WAY815(.in(out815),.out(tmp2)); 121 | Or OR(.a(tmp1),.b(tmp2),.out(tmp3)); 122 | Not NOT(.in(tmp3),.out(zr)); 123 | ``` 124 | 125 | 25 行之前很好理解,按部就班实现,不过要注意优先级。 126 | 127 | ```verilog 128 | wire tmp = out[15]; 129 | wire[7:0] out07= out[7:0]; 130 | wire[7:0] out815 = out[15:8]; 131 | 132 | wire tmp1; 133 | wire tmp2; 134 | wire tmp3; 135 | /*line 8*/ And AND(.a(tmp),.b(1'b1),.out(ng)); 136 | Or8Way OR8WAY07(.in(out07),.out(tmp1)); 137 | Or8Way OR8WAY815(.in(out815),.out(tmp2)); 138 | Or OR(.a(tmp1),.b(tmp2),.out(tmp3)); 139 | Not NOT(.in(tmp3),.out(zr)); 140 | ``` 141 | 142 | 1. 按补码规定,最高位为 1 则整个数小于 0,所以第 8 行通过判断最高位是否为 1 来判断整个数是否小于 0。 143 | 2. 9、10、11 其实判断每位是否不为 0,如果每一位都为 0 则 tmp3 为 0。zr 是 tmp3 取反。 144 | 145 | > 代码:https://github.com/buhe/bugu-computer/tree/master/02 -------------------------------------------------------------------------------- /04/CPU_tb.v: -------------------------------------------------------------------------------- 1 | `include "Mux16.v" 2 | `include "Register.v" 3 | `include "ALU.v" 4 | `include "PC.v" 5 | `include "Not16.v" 6 | `include "And16.v" 7 | `include "Add16.v" 8 | `include "Or8Way.v" 9 | `include "And.v" 10 | `include "Not.v" 11 | `include "Or.v" 12 | 13 | `include "CPU.v" 14 | `default_nettype none 15 | module CPU_tb(); 16 | 17 | integer file; 18 | reg clk = 1; 19 | reg [15:0] inM=0; 20 | reg [15:0] instruction=0; 21 | reg reset=0; 22 | wire signed [15:0] outM; 23 | wire writeM; 24 | wire [15:0] addressM; 25 | wire [15:0] pc; 26 | reg[9:0] t = 10'b0; 27 | 28 | CPU CPU( 29 | .clk(clk), 30 | .inM(inM), 31 | .instruction(instruction), 32 | .reset(reset), 33 | .outM(outM), 34 | .writeM(writeM), 35 | .addressM(addressM), 36 | .pc(pc) 37 | ); 38 | 39 | 40 | always #1 clk = ~clk; 41 | 42 | task display; 43 | #1 $fwrite(file, "|%6d|%6d|%16b| %1b |%6d| %1b |%6d|%6d|\n",t,inM,instruction,reset,outM,writeM,addressM[14:0],pc); 44 | endtask 45 | 46 | initial begin 47 | $dumpfile("CPU_tb.vcd"); 48 | $dumpvars(0, CPU_tb); 49 | file = $fopen("CPU.out","w"); 50 | $fwrite(file, "| time | inM | instruction |reset| outM |writeM|addres| pc |\n"); 51 | 52 | 53 | instruction = 16'b0011000000111001; // @12345 54 | display(); 55 | t=1;display(); 56 | 57 | instruction = 16'b1110110000010000; // D=A 58 | display(); 59 | t=2;display(); 60 | 61 | instruction = 16'b0101101110100000; // @23456 62 | display(); 63 | t=3;display(); 64 | 65 | instruction = 16'b1110000111110000; // AD=A-D 66 | inM = 11111; 67 | display(); 68 | t=4;display(); 69 | 70 | instruction = 16'b0000001111101011; // @1003 71 | display(); 72 | t=5;display(); 73 | 74 | instruction = 16'b1110001100001000; // M=D 75 | display(); 76 | t=6;display(); 77 | 78 | instruction = 16'b0000001111101100; // @1004 79 | display(); 80 | t=7;display(); 81 | 82 | instruction = 16'b1110001110011000; // MD=D-1 83 | display(); 84 | t=8;display(); 85 | 86 | instruction = 16'b0000001111101000; // @1000 87 | display(); 88 | t=9;display(); 89 | 90 | instruction = 16'b1111010011110000; // AD=D-M 91 | display(); 92 | t=10;display(); 93 | 94 | instruction = 16'b0000000000001110; // @14 95 | display(); 96 | t=11;display(); 97 | 98 | instruction = 16'b1110001100000100; // D;jlt 99 | display(); 100 | t=12;display(); 101 | 102 | instruction = 16'b0000001111100111; // @999 103 | display(); 104 | t=13;display(); 105 | 106 | instruction = 16'b1111110111100000; // A=M+1 107 | display(); 108 | t=14;display(); 109 | 110 | instruction = 16'b1110001100101000; // AM=D 111 | display(); 112 | t=15;display(); 113 | 114 | instruction = 16'b0000000000010101; // @21 115 | display(); 116 | t=16;display(); 117 | 118 | instruction = 16'b1110011111000010; // D+1;jeq 119 | display(); 120 | t=17;display(); 121 | 122 | instruction = 16'b0000000000000010; // @2 123 | display(); 124 | t=18;display(); 125 | 126 | instruction = 16'b1110000010111000; // AMD=D+A 127 | display(); 128 | t=19;display(); 129 | 130 | // #2 instruction = 16'b0000001111101000; // @1000 131 | // display(); 132 | 133 | // #2 instruction = 16'b1110111010010000; // D=-1 134 | // display(); 135 | 136 | // #2 instruction = 16'b1110001100000001; // D;JGT 137 | // display(); 138 | 139 | // #2 instruction = 16'b1110001100000010; // D;JEQ 140 | // display(); 141 | 142 | // #2 instruction = 16'b1110001100000011; // D;JGE 143 | // display(); 144 | 145 | // #2 instruction = 16'b1110001100000100; // D;JLT 146 | // display(); 147 | 148 | // #2 instruction = 16'b1110001100000101; // D;JNE 149 | // display(); 150 | 151 | // #2 instruction = 16'b1110001100000110; // D;JLE 152 | // display(); 153 | 154 | // #2 instruction = 16'b1110001100000111; // D;JMP 155 | // display(); 156 | 157 | // #2 instruction = 16'b1110101010010000; // D=0 158 | // display(); 159 | 160 | // #2 instruction = 16'b1110001100000001; // D;JGT 161 | // display(); 162 | 163 | // #2 instruction = 16'b1110001100000010; // D;JEQ 164 | // display(); 165 | 166 | // #2 instruction = 16'b1110001100000011; // D;JGE 167 | // display(); 168 | 169 | // #2 instruction = 16'b1110001100000100; // D;JLT 170 | // display(); 171 | 172 | // #2 instruction = 16'b1110001100000101; // D;JNE 173 | // display(); 174 | 175 | // #2 instruction = 16'b1110001100000110; // D;JLE 176 | // display(); 177 | 178 | // #2 instruction = 16'b1110001100000111; // D;JMP 179 | // display(); 180 | 181 | // #2 instruction = 16'b1110111111010000; // D=1 182 | // display(); 183 | 184 | // #2 instruction = 16'b1110001100000001; // D;JGT 185 | // display(); 186 | 187 | // #2 instruction = 16'b1110001100000010; // D;JEQ 188 | // display(); 189 | 190 | // #2 instruction = 16'b1110001100000011; // D;JGE 191 | // display(); 192 | 193 | // #2 instruction = 16'b1110001100000100; // D;JLT 194 | // display(); 195 | 196 | // #2 instruction = 16'b1110001100000101; // D;JNE 197 | // display(); 198 | 199 | // #2 instruction = 16'b1110001100000110; // D;JLE 200 | // display(); 201 | 202 | // #2 instruction = 16'b1110001100000111; // D;JMP 203 | // display(); 204 | 205 | // #2 reset=1; 206 | // display(); 207 | 208 | // #2 instruction = 16'b0111111111111111; // @32767 209 | // #2 reset=0; 210 | // display(); 211 | 212 | 213 | $finish; 214 | end 215 | endmodule 216 | -------------------------------------------------------------------------------- /04/CPU.v: -------------------------------------------------------------------------------- 1 | /** 2 | * The Hack CPU (Central Processing unit), consisting of an ALU, 3 | * two registers named A and D, and a program counter named PC. 4 | * The CPU is designed to fetch and execute instructions written in 5 | * the Hack machine language. In particular, functions as follows: 6 | * Executes the inputted instruction according to the Hack machine 7 | * language specification. The D and A in the language specification 8 | * refer to CPU-resident registers, while M refers to the external 9 | * memory location addressed by A, i.e. to Memory[A]. The inM input 10 | * holds the value of this location. If the current instruction needs 11 | * to write a value to M, the value is placed in outM, the address 12 | * of the target location is placed in the addressM output, and the 13 | * writeM control bit is asserted. (When writeM==0, any value may 14 | * appear in outM). The outM and writeM outputs are combinational: 15 | * they are affected instantaneously by the execution of the current 16 | * instruction. The addressM and pc outputs are clocked: although they 17 | * are affected by the execution of the current instruction, they commit 18 | * to their new values only in the next time step. If reset==1 then the 19 | * CPU jumps to address 0 (i.e. pc is set to 0 in next time step) rather 20 | * than to the address resulting from executing the current instruction. 21 | */ 22 | 23 | `default_nettype none 24 | module CPU( 25 | input clk, 26 | input [15:0] inM, // M value input (M = contents of RAM[A]) 27 | input [15:0] instruction, // Instruction for execution 28 | input reset, // Signals whether to re-start the current 29 | // program (reset==1) or continue executing 30 | // the current program (reset==0). 31 | 32 | output [15:0] outM, // M value output 33 | output writeM, // Write to M? 34 | output [15:0] addressM, // Address in data memory (of M) to read 35 | output [15:0] pc // address of next instruction 36 | ); 37 | 38 | // your implementation comes here: 39 | 40 | // And(a=instruction[15] ,b=instruction[5] ,out=d1 ); A 41 | // And(a=instruction[15] ,b=instruction[4] ,out=d2 ); D 42 | // And(a=instruction[15] ,b=instruction[3] ,out=d3,out=writeM ); M 43 | // And(a=instruction[15] ,b=instruction[2] ,out=j1 ); 44 | // And(a=instruction[15] ,b=instruction[1] ,out=j2 ); 45 | // And(a=instruction[15] ,b=instruction[0] ,out=j3 ); 46 | 47 | // //A Register 48 | // Mux16(a=instruction ,b=outputM ,sel=instruction[15] ,out=Ainput ); 49 | // Not(in=instruction[15],out=Aload1); 50 | // Or(a=d1,b=Aload1,out=Aload); 51 | // ARegister(in=Ainput ,load=Aload ,out=Areg, out[0..14]= addressM ); 52 | 53 | // //D Register 54 | // DRegister(in=outputM ,load=d2 ,out=Dreg ); 55 | 56 | // //ALU 57 | // Mux16(a=Areg,b=inM,sel=instruction[12],out=y); when a == 1 opr M else opr A 58 | // ALU(x=Dreg ,y=y ,zx=instruction[11] ,nx=instruction[10] ,zy=instruction[9] ,ny=instruction[8] ,f=instruction[7] ,no=instruction[6] ,out=outputM ,out=outM,zr=zr ,ng=ng ); 59 | 60 | // //PC 61 | // And(a=ng,b=j1,out=tmp1); < 0 62 | // And(a=zr,b=j2,out=tmp2); == 0 63 | // Not(in=zr,out=notzr); 64 | // Not(in=ng,out=notng); 65 | // And(a=notzr,b=notng,out=ps); > 0 66 | // And(a=ps,b=j3,out=tmp3); 67 | // Or(a=tmp1,b=tmp2,out=tmp); 68 | // Or(a=tmp,b=tmp3,out=jump); when != 000 jump 69 | // Not(in=jump,out=inc); 70 | // PC(in=Areg ,load=jump ,inc=inc ,reset=reset ,out[0..14]=pc ); 71 | 72 | wire d1; 73 | wire d2; 74 | wire d3; 75 | wire j1; 76 | wire j2; 77 | wire j3; 78 | And AND1(.a(instruction[15]),.b(instruction[5]),.out(d1)); 79 | And AND2(.a(instruction[15]),.b(instruction[4]),.out(d2)); 80 | And AND3(.a(instruction[15]),.b(instruction[3]),.out(d3)); 81 | assign writeM = d3; 82 | And AND4(.a(instruction[15]),.b(instruction[2]),.out(j1)); 83 | And AND5(.a(instruction[15]),.b(instruction[1]),.out(j2)); 84 | And AND6(.a(instruction[15]),.b(instruction[0]),.out(j3)); 85 | 86 | // A reg 87 | wire[15:0] outputM; 88 | wire[15:0] Ainput; 89 | wire Aload1; 90 | wire Aload; 91 | wire[15:0] Areg; 92 | Mux16 MUX16a(.a(instruction),.b(outputM),.sel(instruction[15]),.out(Ainput)); 93 | Not NOT1(.in(instruction[15]), .out(Aload1)); 94 | Or OR1(.a(Aload1),.b(d1),.out(Aload)); 95 | Register REGISTERa(.in(Ainput),.load(Aload),.out(Areg), .clk(clk)); 96 | assign addressM = Areg; 97 | 98 | // D reg 99 | wire[15:0] Dreg; 100 | Register REGISTER1d(.in(outputM),.load(d2),.out(Dreg), .clk(clk)); 101 | 102 | // ALU 103 | wire[15:0] y; 104 | wire zr; 105 | wire ng; 106 | Mux16 MUX16alu(.a(Areg),.b(inM),.sel(instruction[12]),.out(y)); 107 | 108 | ALUusr ALU( 109 | .x(Dreg), 110 | .y(y), 111 | .zx(instruction[11]), 112 | .nx(instruction[10]), 113 | .zy(instruction[9]), 114 | .ny(instruction[8]), 115 | .f(instruction[7]), 116 | .no(instruction[6]), 117 | .out(outputM), 118 | .zr(zr), 119 | .ng(ng) 120 | ); 121 | assign outM = outputM; 122 | 123 | // PC 124 | wire tmp1; 125 | wire tmp2; 126 | wire tmp3; 127 | wire notzr; 128 | wire notng; 129 | wire ps; 130 | wire tmp; 131 | wire jump; 132 | wire inc; 133 | And ANDpc1(.a(ng),.b(j1),.out(tmp1)); 134 | And ANDpc2(.a(zr),.b(j2),.out(tmp2)); 135 | Not NOTpc1(.in(zr), .out(notzr)); 136 | Not NOTpc2(.in(ng), .out(notng)); 137 | And ANDpc3(.a(notzr),.b(notng),.out(ps)); 138 | And ANDpc4(.a(ps),.b(j3),.out(tmp3)); 139 | Or ORpc1(.a(tmp1),.b(tmp2),.out(tmp)); 140 | Or ORpc2(.a(tmp),.b(tmp3),.out(jump)); 141 | Not NOTpc3(.in(jump), .out(inc)); 142 | PC PC1( 143 | .clk(clk), 144 | .reset(reset), 145 | .load(jump), 146 | .inc(inc), 147 | .in(Areg), 148 | .out(pc) 149 | ); 150 | 151 | endmodule 152 | -------------------------------------------------------------------------------- /00/README.md: -------------------------------------------------------------------------------- 1 | ## 准备 2 | 3 | 作为一个软件工程师,计算机是我们赖以生存的工具,所有我们开发的软件都在计算机上执行,那么通过与或非等最基础的门电路构建一个计算机一方面可以更深入的了解计算机,一方面也可以更好的开发软件。 4 | 5 | 基于门电路从头开始当然可以,但连接电路比较费劲,所以这里采用了 verilog + Fpga 的形式。verilog + Fpga 本质就是自己设计连接电路,和自己从头基于门电路连接一样。 6 | 7 | 第一个项目来搭建开发环境和构建最基础的几个电路。 8 | 9 | ### 硬件 10 | 11 | - tangnano 4k 12 | 13 | 硬件采用国产的 tangnano 而没有采用国外大厂的。一方面为了支持国产 IC 一方面中国是以制造业为主的国家、国产的 Fpga 性价比较高。 14 | 15 | ### 搭建环境 16 | 17 | 常见的 EDA 工具一般仅支持 windows 和 linux 不支持 macos,这里不对专有和开源软件的优劣做对比,以免引战。在本教程中我尽量使用开源软件而不使用厂家的专有软件。 18 | 19 | ```bash 20 | # 安装综合的工具 21 | brew install yosys 22 | pip install apycula 23 | brew install eigen 24 | 25 | # 安装 gowin 的布线工具 26 | git clone git@github.com:YosysHQ/nextpnr.git 27 | cmake . -DARCH=gowin 28 | make -j$(nproc) 29 | sudo make install 30 | # 参考 https://github.com/YosysHQ/nextpnr#nextpnr-gowin 31 | 32 | # 安装刷入 Fpga 的工具 33 | brew install openfpgaloader --HEAD 34 | 35 | # 安装编译成可仿真的文件 36 | brew install icarus-verilog 37 | 38 | # 安装查看波形的软件 39 | brew install --cask gtkwave 40 | ``` 41 | 42 | > 综合和布线其实就是生成电路,和物理的连接电路一样,具体的 Fpga 的原理请参考 https://zh.wikipedia.org/zh-tw/%E7%8E%B0%E5%9C%BA%E5%8F%AF%E7%BC%96%E7%A8%8B%E9%80%BB%E8%BE%91%E9%97%A8%E9%98%B5%E5%88%97 。 43 | 44 | ### Nand 45 | 46 | Nand 又称为与非门,其他门一般通过它来构建,是基本门电路,原因如下: 47 | 48 | 1. 考虑电子元件的成本,也许从逻辑上来看与非门和或非门比与门和非门更复杂,但是实际上由于Mos管的物理结构,实现与非门和或非门需要的元件其实更少,成本更低,而简单的与门和或门其实在结构上比前者更复杂。 49 | 2. 或非门和与非门具有逻辑完备性,任何一个门通过组合可以实现任意电路,而与门和或门不具有这样的能力 50 | 3. 仍然和电子元件的物理结构有关,与非门和或非门实际运行效率比与门和或门更高。 51 | 52 | 与非门的真值表: 53 | 54 | | A | B | A NAND B | 55 | | ---- | ---- | -------- | 56 | | 0 | 0 | 1 | 57 | | 0 | 1 | 1 | 58 | | 1 | 0 | 1 | 59 | | 1 | 1 | 0 | 60 | 61 | ### 非 62 | 63 | 非门是用 Nand(与非门)实现的,代码如下: 64 | 65 | ```verilog 66 | /** 67 | * Not gate: 68 | * out = not in 69 | */ 70 | `include "Nand.v" 71 | `default_nettype none 72 | 73 | module Not( 74 | input in, 75 | output out 76 | ); 77 | Nand NAND(.a(in), .b(1'b1), .out(out)); 78 | endmodule 79 | ``` 80 | 81 | 非门顾名思义就是取反操作,0 转成 1 , 1 转成 0 。所以只要输入和 1 与然后取反就可以了,利用与非门很容易做到。 82 | 83 | ### 或 84 | 85 | 或门利用非门和与非门实现,a or b == not (not a and not b),如果想了解这个公式怎么来的,请查阅“德摩根定律”。 86 | 87 | ```verilog 88 | /** 89 | * Or gate: 90 | * out = 1 if (a == 1 or b == 1) 91 | * 0 otherwise 92 | */ 93 | `default_nettype none 94 | module Or( 95 | input a, 96 | input b, 97 | output out 98 | ); 99 | wire nota; 100 | wire notb; 101 | Not NOT1(.in(a), .out(nota)); 102 | Not NOT2(.in(b), .out(notb)); 103 | Nand NAND(.a(nota), .b(notb), .out(out)); 104 | 105 | 106 | endmodule 107 | ``` 108 | 109 | ### 与 110 | 111 | 与门很简单,与非门的结果取反就行了。 112 | 113 | ```verilog 114 | /** 115 | * And gate: 116 | * out = 1 if (a == 1 and b == 1) 117 | * 0 otherwise 118 | */ 119 | 120 | `default_nettype none 121 | 122 | module And( 123 | input a, 124 | input b, 125 | output out 126 | ); 127 | wire notaandb; 128 | 129 | // your implementation comes here: 130 | Nand NAND(.a(a), .b(b), .out(notaandb)); 131 | Not NOT(.in(notaandb), .out(out)); 132 | 133 | 134 | endmodule 135 | ``` 136 | 137 | ### 异或 138 | 139 | 异或门是第一个有挑战的门电路,异或门的意义是两个输入不同结果为 1 ,w1 和 w2 分别断言 a = 1, b = 0 和 a = 0 , b = 1 ,w1 or w2 是上述有一个成立结果就为 1。因为 a b 只有两种取指,上述描述就覆盖了所有情况。 140 | 141 | ```verilog 142 | /** 143 | * Xor (exclusive or) gate: 144 | * If a<>b out=1 else out=0. 145 | */ 146 | `include "Not.v" 147 | `include "And.v" 148 | `include "Or.v" 149 | `default_nettype none 150 | 151 | module Xor( 152 | input wire a, 153 | input wire b, 154 | output wire out 155 | ); 156 | wire nota; //new wire must be declared 157 | wire notb; 158 | Not NOT1(.in(a), .out(nota)); //NOT1 is instance name 159 | Not NOT2(.in(b), .out(notb)); 160 | 161 | wire w1; 162 | wire w2; 163 | And AND1(.a(a),.b(notb),.out(w1)); 164 | And AND2(.a(nota),.b(b),.out(w2)); 165 | 166 | Or OR(.a(w1),.b(w2),.out(out)); 167 | endmodule 168 | ``` 169 | 170 | 真值表如下: 171 | 172 | | A | B | A XOR B | 173 | | ---- | ---- | ------- | 174 | | 0 | 0 | 0 | 175 | | 0 | 1 | 1 | 176 | | 1 | 0 | 1 | 177 | | 1 | 1 | 0 | 178 | 179 | ### 激励 180 | 181 | 所谓激励和软件工程师的单元测试差不多,以下激励就是用来测试异或门的,很好理解。 182 | 183 | a = ... b= ... 就是给 a b 赋值来测试在不同取值下的结果。结果通过 display 写入Xor.out 文件中,波形写入 Xor_tb.vcd 中,待会介绍波形。 184 | 185 | ```verilog 186 | `include "Xor.v" 187 | `default_nettype none 188 | module Xor_tb(); 189 | 190 | integer file; 191 | 192 | reg a = 0; 193 | reg b = 0; 194 | wire out; 195 | 196 | Xor XOR( 197 | .a(a), 198 | .b(b), 199 | .out(out) 200 | ); 201 | 202 | task display; 203 | #1 $fwrite(file, "| %1b | %1b | %1b |\n", a,b,out); 204 | endtask 205 | 206 | initial begin 207 | $dumpfile("Xor_tb.vcd"); 208 | $dumpvars(0, Xor_tb); 209 | file = $fopen("Xor.out","w"); 210 | $fwrite(file, "| a | b |out|\n"); 211 | 212 | a=0;b=0; 213 | display(); 214 | 215 | a=0;b=1; 216 | display(); 217 | 218 | a=1;b=0; 219 | display(); 220 | 221 | a=1;b=1; 222 | display(); 223 | $finish(); 224 | end 225 | 226 | endmodule 227 | ``` 228 | 229 | 230 | 231 | ### 编译 232 | 233 | 编译 Xor_tb.v,有编译错误在这步就会打印出来。 234 | 235 | ```bash 236 | iverilog -o Xor_tb.vvp Xor_tb.v 237 | ``` 238 | 239 | ### 仿真(模拟) 240 | 241 | 所谓仿真其实就是模拟,仿真其实就是模拟硬件,在不同的输入(信号)下展现不同的波形。 242 | 243 | ```bash 244 | vvp sample_tb.vvp 245 | open -a gtkwave 246 | ``` 247 | 248 | 使用 gtkwave 查看波形,右键点击Xor_tb ,选择 a b out ,然后 append ,删除内部变量。可以看到当 a b 不同结果为 1 (高电平)。 249 | 250 | #### ![Xor](https://tva1.sinaimg.cn/large/e6c9d24egy1h2sll4iicfj20x40abgmv.jpg) 251 | 252 | #### 比较 253 | 254 | *.cmp 是提供的比较文件, *.out 是我们执行仿真产生的结果文件。二者应该是相同的,采用这种方式来断言我们的程序写的对不对。 255 | 256 | ```bash 257 | diff Xor.out Xor.cmp 258 | ``` 259 | 260 | 如果程序写的对什么也不输出,否则输出不同的地方。 261 | 262 | ### 上传到 tangnano 263 | 264 | #### 综合和布线 265 | 266 | 综合和布线就是通过 verilog 产生电路的过程。 267 | 268 | ```bash 269 | yosys -p "read_verilog Xor.v; synth_gowin -json Xor.json" 270 | ``` 271 | 272 | 综合比较简单,布线需要引入所谓的约束文件: 273 | 274 | ``` 275 | IO_LOC "out" 10; 276 | IO_LOC "a" 15; 277 | IO_LOC "b" 14; 278 | ``` 279 | 280 | 14 和 15 是 tangnano 的两个按钮,分别被绑定到了 a b ,10 是 led 灯。需要注意的是按钮松开的时候是 1 ,按下是 0 。约束文件把程序中的变量绑定到了实际的物理硬件,改变物理量就改变了变量。 281 | 282 | ```bash 283 | nextpnr-gowin --json Xor.json --write pnrXor.json --device GW1NSR-LV4CQN48PC6/I5 --cst tangnano4k.cst 284 | ``` 285 | 286 | 最后生成二进制文件。 287 | 288 | ```bash 289 | gowin_pack -d GW1NSR-LV4CQN48PC6/I5 -o pack.fs pnrXor.json 290 | ``` 291 | 292 | #### 写入硬件 293 | 294 | 刷入 Fpga 。 295 | 296 | ```bash 297 | openFPGALoader -b tangnano4k pack.fs 298 | ``` 299 | 300 | #### 测试 301 | 302 | 实际按下按钮试试。当按钮的状态不同时,结果为 1 ,反之结果为 0。完成了异或门。下面是视频,点击即可。 303 | 304 | ### 结果 305 | [](https://youtube.com/shorts/S9ERI2q2dWQ?feature=share) 306 | 307 | 308 | 309 | > 代码:https://github.com/buhe/bugu-computer/tree/master/00 310 | -------------------------------------------------------------------------------- /04/README.md: -------------------------------------------------------------------------------- 1 | ## 组装 2 | 3 | ### CPU 4 | 5 | 硬件和机器语言某种程度上是一一对应的,先确定机器语言再根据机器语言设计对应的硬件。 6 | 7 | nand2tetris 的机器语言很简单,分为 A 指令和 C 指令,A 指令主要用来指定数字放进 A 寄存器中,C 指令用来访存,计算等。规范如下: 8 | 9 | ![n2t_4_4](https://tva1.sinaimg.cn/large/e6c9d24egy1h2yslot438j20gl03pglu.jpg) 10 | 11 | 12 | 13 | ![n2t_4_5](https://tva1.sinaimg.cn/large/e6c9d24egy1h2ysm1labhj20hb04jaae.jpg) 14 | 15 | 规范没有什么特别的,人为设计的,指令等长、精简。 16 | 17 | #### 操作目标和跳转规范 18 | 19 | 20 | ![n2t_4_7](https://tva1.sinaimg.cn/large/e6c9d24egy1h2ysnb6oboj20gy0620te.jpg) 21 | 22 | ![n2t_4_8](https://tva1.sinaimg.cn/large/e6c9d24egy1h2ysnji2tij20eq06kwev.jpg) 23 | 24 | 操作目标和跳转规则如上 25 | 26 | 27 | ```verilog 28 | wire d1; 29 | wire d2; 30 | wire d3; 31 | wire j1; 32 | wire j2; 33 | wire j3; 34 | And AND1(.a(instruction[15]),.b(instruction[5]),.out(d1)); 35 | And AND2(.a(instruction[15]),.b(instruction[4]),.out(d2)); 36 | And AND3(.a(instruction[15]),.b(instruction[3]),.out(d3)); 37 | assign writeM = d3; 38 | And AND4(.a(instruction[15]),.b(instruction[2]),.out(j1)); 39 | And AND5(.a(instruction[15]),.b(instruction[1]),.out(j2)); 40 | And AND6(.a(instruction[15]),.b(instruction[0]),.out(j3)); 41 | ``` 42 | 43 | 通过这些简单的 verilog 来确定操作目标和跳转规则,d1 ~ d3 指定操作目标,j1 ~ j3 指定跳转规则,额外的 d3 付给 writeM 指定是否写内存。 44 | 45 | #### A 寄存器 46 | 47 | ```verilog 48 | wire[15:0] outputM; 49 | wire[15:0] Ainput; 50 | wire Aload1; 51 | wire Aload; 52 | wire[15:0] Areg; 53 | Mux16 MUX16a(.a(instruction),.b(outputM),.sel(instruction[15]),.out(Ainput)); 54 | Not NOT1(.in(instruction[15]), .out(Aload1)); 55 | Or OR1(.a(Aload1),.b(d1),.out(Aload)); 56 | Register REGISTERa(.in(Ainput),.load(Aload),.out(Areg), .clk(clk)); 57 | assign addressM = Areg; 58 | ``` 59 | 60 | 首先判断是 A 还是 C 指令,A 指令就按原本写入 A 寄存器,C 指令则操作目标是否含有 A 寄存器,如果含有把 ALU 的计算结果写入 A 寄存器。 61 | 62 | #### D 寄存器 63 | 64 | ```verilog 65 | wire[15:0] Dreg; 66 | Register REGISTER1d(.in(outputM),.load(d2),.out(Dreg), .clk(clk)); 67 | ``` 68 | 69 | 如果操作目标含有 D 寄存器,则 ALU 的计算结果赋给 D 寄存器。 70 | 71 | #### ALU 72 | 73 | ```verilog 74 | wire[15:0] y; 75 | wire zr; 76 | wire ng; 77 | Mux16 MUX16alu(.a(Areg),.b(inM),.sel(instruction[12]),.out(y)); 78 | ALU ALU( 79 | .x(Dreg), 80 | .y(y), 81 | .zx(instruction[11]), 82 | .nx(instruction[10]), 83 | .zy(instruction[9]), 84 | .ny(instruction[8]), 85 | .f(instruction[7]), 86 | .no(instruction[6]), 87 | .out(outputM), 88 | .zr(zr), 89 | .ng(ng) 90 | ); 91 | assign outM = outputM; 92 | ``` 93 | 94 | ![n2t_4_6](https://tva1.sinaimg.cn/large/e6c9d24egy1h2yt9ep6r9j20fa0d7aas.jpg) 95 | 96 | 根据指令的 12 ~ 6 位,决定 ALU 的计算规则。 97 | 98 | #### PC 99 | 100 | ```verilog 101 | wire tmp1; 102 | wire tmp2; 103 | wire tmp3; 104 | wire notzr; 105 | wire notng; 106 | wire ps; 107 | wire tmp; 108 | wire jump; 109 | wire inc; 110 | And ANDpc1(.a(ng),.b(j1),.out(tmp1)); 111 | And ANDpc2(.a(zr),.b(j2),.out(tmp2)); 112 | Not NOTpc1(.in(zr), .out(notzr)); 113 | Not NOTpc2(.in(ng), .out(notng)); 114 | And ANDpc3(.a(notzr),.b(notng),.out(ps)); 115 | And ANDpc4(.a(ps),.b(j3),.out(tmp3)); 116 | Or ORpc1(.a(tmp1),.b(tmp2),.out(tmp)); 117 | Or ORpc2(.a(tmp),.b(tmp3),.out(jump)); 118 | Not NOTpc3(.in(jump), .out(inc)); 119 | PC PC1( 120 | .clk(clk), 121 | .reset(reset), 122 | .load(jump), 123 | .inc(inc), 124 | .in(Areg), 125 | .out(pc) 126 | ); 127 | ``` 128 | 129 | 使用 PC 的逻辑看似复杂,其实理解了想要干什么就简单了。当判断大于 0 的时候结果刚好大于 0,判断等于 0 时刚好等于 0,判断小于 0 时刚好小于 0 ,有一种情况满足则赋值 jump 为 1 ,否则 inc 为 1,然后通通给 PC ,结果就是:跳转的时候给 PC 赋值,其他情况 PC 加 1 。 130 | 131 | ### 内存 132 | 133 | #### 布局 134 | 135 | 136 | |address | memory|R/W|function| 137 | |-|-|-|-| 138 | |0-2047| RAM|R/W|R0--R15, static, stack, heap| 139 | | 8192 - 第 14 位 | but - 16 位 |R/W|0 = button pressed, 1 = button released| 140 | | 8193 - 第 14,1 位 | led - 16 位 |R/W|0 = led off, 1 = led on| 141 | 142 | 通过判断第 14 位,确定是访问 RAM 还是映射 IO 。 143 | 144 | ```verilog 145 | DMux DMUX1( 146 | .in(load), 147 | .sel(address[13]), 148 | .a(loadRAM), 149 | .b(loadIO) 150 | ); 151 | ``` 152 | 153 | 进而判断第 1 位,确定是访问按钮还是 LED 。 154 | 155 | ```verilog 156 | DMux DMUX2( 157 | .in(loadIO), 158 | .sel(address[0]), 159 | .a(loadBtn), 160 | .b(loadLed) 161 | ); 162 | ``` 163 | 164 | 通过抽象按钮和 LED 简化逻辑 165 | 166 | ```verilog 167 | // button - only read 168 | wire[15:0] outBtn; 169 | Btn BTN(.out(outBtn), .btn(btn)); 170 | // led - only write 171 | wire[15:0] outLed; 172 | Led LED(.clk(clk), .in(in), .out(outLed), .load(loadLed), .led(led)); 173 | ``` 174 | 175 | 按钮的 verilog,当 btn 设为 0 则 out 为 16'b0000000000000000,反之为 16'b0000000000000001 。可见返回值依赖 btn 的值。 176 | 177 | ```verilog 178 | `default_nettype none 179 | module Btn( 180 | input btn, 181 | output wire[15:0] out 182 | ); 183 | Mux16 MUX161( 184 | .a(16'b0000000000000000), 185 | .b(16'b0000000000000001), 186 | .sel(btn), 187 | .out(out) 188 | ); 189 | endmodule 190 | ``` 191 | 192 | LED 的 verilog ,如果 load 为 1 则 in 的第一位替换 out 的第一位,反之则保留上一个状态,这里有个副作用是 assign led = prev; ,把当前的状态赋给 led 变量,进而改变 led 。然后把当前状态保存在 DFF 中。最后根据 out 的第一位返回 out 。 193 | 194 | ```verilog 195 | `default_nettype none 196 | module Led( 197 | input clk, 198 | input wire load, 199 | output wire led, 200 | output wire[15:0] out, 201 | input wire[15:0] in 202 | ); 203 | wire prev; 204 | Mux MUX(.a(outLow),.b(in[0]),.sel(load),.out(prev)); 205 | assign led = prev; 206 | wire outLow; 207 | DFFusr DFF1(.clk(clk),.in(prev),.out(outLow)); 208 | 209 | Mux16 MUX161( 210 | .a(16'b0000000000000000), 211 | .b(16'b0000000000000001), 212 | .sel(outLow), 213 | .out(out) 214 | ); 215 | endmodule 216 | ``` 217 | 218 | 最后根据地址的第 14 位和第一位确定 memory 的最终返回值 219 | 220 | ```verilog 221 | Mux16 MUX161( 222 | .a(outBtn), 223 | .b(outLed), 224 | .sel(address[0]), 225 | .out(tmp) 226 | ); 227 | 228 | Mux16 MUX162( 229 | .a(outRAM), 230 | .b(tmp), 231 | .sel(address[13]), 232 | .out(out) 233 | ); 234 | ``` 235 | 236 | ### ROM 237 | 238 | ROM 和 RAM 差不多,不同的是加载了 led.hack 的二进制到 mem 中。然后根据 pc 返回 instruction ,由于开源的综合工具不能生成 block RAM ,所以这里只声明了 3 位 mem 以免使用过多 LUT 综合不了。 239 | 240 | ```verilog 241 | `default_nettype none 242 | 243 | module ROM( 244 | input wire [15:0] pc, 245 | output wire [15:0] instruction 246 | ); 247 | 248 | // ROM file of hack 249 | parameter ROMFILE = "./led.hack"; 250 | 251 | reg [15:0] mem [0:10]; 252 | assign instruction = mem[pc[3:0]]; 253 | 254 | initial begin 255 | $readmemb(ROMFILE,mem); 256 | end 257 | 258 | endmodule 259 | ``` 260 | 261 | ### 组装 262 | 263 | 最后把 CPU、Memory、ROM 组装起来。 264 | 265 | ```verilog 266 | wire [15:0] addressM; 267 | wire [15:0] outM; 268 | wire [15:0] instruction; 269 | wire [15:0] pc; 270 | wire [15:0] Mout; 271 | 272 | wire writeM; 273 | 274 | ROM ROM( 275 | .instruction(instruction), 276 | .pc(pc) 277 | ); 278 | CPU CPU( 279 | .clk(clk_out), 280 | .inM(Mout), 281 | .instruction(instruction), 282 | .reset(~reset), 283 | .outM(outM), 284 | .writeM(writeM), 285 | .addressM(addressM), 286 | .pc(pc) 287 | ); 288 | 289 | Memory MEMORY( 290 | .clk(clk_out), 291 | .address(addressM), 292 | .in(outM), 293 | .out(Mout), 294 | .load(writeM), 295 | .btn(btn), 296 | .led(led) 297 | ); 298 | ``` 299 | 300 | 1. ROM 根据 CPU 返回的 pc 产生指令 301 | 2. CPU 负责计算指令,通过 pc 指定下一条指令 302 | 3. CPU 如果要操作内存则把 address 提供给 Memory 303 | 304 | ### 降低频率 305 | 306 | 仿真正确,烧录到硬件上指令执行的太快了,需要降低频率。 307 | 308 | ```verilog 309 | `default_nettype none 310 | 311 | module Clk( 312 | input wire in, //external clock 100Mz 313 | output reg out = 1'b0 //Hack clock 33.333333 MHz 314 | ); 315 | 316 | // your implementation comes here: 317 | parameter NUM_DIV = 5; 318 | reg [15:0] cnt = 16'd0; 319 | // assign out <= 1'b0; 320 | 321 | always @(posedge in) 322 | if(cnt < NUM_DIV) begin 323 | cnt <= cnt + 1'b1; 324 | out <= out; 325 | end 326 | else begin 327 | cnt <= 16'd0; 328 | out <= ~out; 329 | end 330 | 331 | endmodule 332 | ``` 333 | 334 | 时钟频率降低 5 倍后,再烧录到硬件就可以了,最后看看我们完整的结果--可以执行任意汇编的计算机。 335 | 336 | [](https://youtube.com/shorts/UHfUUAZkFgE?feature=share) 337 | 338 | 339 | > 代码:https://github.com/buhe/bugu-computer/tree/master/04 340 | -------------------------------------------------------------------------------- /.vscode/targets.log: -------------------------------------------------------------------------------- 1 | make all --print-data-base --no-builtin-variables --no-builtin-rules --question 2 | # GNU Make 3.81 3 | # Copyright (C) 2006 Free Software Foundation, Inc. 4 | # This is free software; see the source for copying conditions. 5 | # There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A 6 | # PARTICULAR PURPOSE. 7 | 8 | # This program built for i386-apple-darwin11.3.0 9 | 10 | make: *** No rule to make target `all'. Stop. 11 | 12 | 13 | # Make data base, printed on Tue May 31 19:25:41 2022 14 | 15 | # Variables 16 | 17 | # automatic 18 | 5 | Everyone is permitted to copy and distribute verbatim copies 6 | of this license document, but changing it is not allowed. 7 | 8 | Preamble 9 | 10 | The GNU General Public License is a free, copyleft license for 11 | software and other kinds of works. 12 | 13 | The licenses for most software and other practical works are designed 14 | to take away your freedom to share and change the works. By contrast, 15 | the GNU General Public License is intended to guarantee your freedom to 16 | share and change all versions of a program--to make sure it remains free 17 | software for all its users. We, the Free Software Foundation, use the 18 | GNU General Public License for most of our software; it applies also to 19 | any other work released this way by its authors. You can apply it to 20 | your programs, too. 21 | 22 | When we speak of free software, we are referring to freedom, not 23 | price. Our General Public Licenses are designed to make sure that you 24 | have the freedom to distribute copies of free software (and charge for 25 | them if you wish), that you receive source code or can get it if you 26 | want it, that you can change the software or use pieces of it in new 27 | free programs, and that you know you can do these things. 28 | 29 | To protect your rights, we need to prevent others from denying you 30 | these rights or asking you to surrender the rights. Therefore, you have 31 | certain responsibilities if you distribute copies of the software, or if 32 | you modify it: responsibilities to respect the freedom of others. 33 | 34 | For example, if you distribute copies of such a program, whether 35 | gratis or for a fee, you must pass on to the recipients the same 36 | freedoms that you received. You must make sure that they, too, receive 37 | or can get the source code. And you must show them these terms so they 38 | know their rights. 39 | 40 | Developers that use the GNU GPL protect your rights with two steps: 41 | (1) assert copyright on the software, and (2) offer you this License 42 | giving you legal permission to copy, distribute and/or modify it. 43 | 44 | For the developers' and authors' protection, the GPL clearly explains 45 | that there is no warranty for this free software. For both users' and 46 | authors' sake, the GPL requires that modified versions be marked as 47 | changed, so that their problems will not be attributed erroneously to 48 | authors of previous versions. 49 | 50 | Some devices are designed to deny users access to install or run 51 | modified versions of the software inside them, although the manufacturer 52 | can do so. This is fundamentally incompatible with the aim of 53 | protecting users' freedom to change the software. The systematic 54 | pattern of such abuse occurs in the area of products for individuals to 55 | use, which is precisely where it is most unacceptable. Therefore, we 56 | have designed this version of the GPL to prohibit the practice for those 57 | products. If such problems arise substantially in other domains, we 58 | stand ready to extend this provision to those domains in future versions 59 | of the GPL, as needed to protect the freedom of users. 60 | 61 | Finally, every program is threatened constantly by software patents. 62 | States should not allow patents to restrict development and use of 63 | software on general-purpose computers, but in those that do, we wish to 64 | avoid the special danger that patents applied to a free program could 65 | make it effectively proprietary. To prevent this, the GPL assures that 66 | patents cannot be used to render the program non-free. 67 | 68 | The precise terms and conditions for copying, distribution and 69 | modification follow. 70 | 71 | TERMS AND CONDITIONS 72 | 73 | 0. Definitions. 74 | 75 | "This License" refers to version 3 of the GNU General Public License. 76 | 77 | "Copyright" also means copyright-like laws that apply to other kinds of 78 | works, such as semiconductor masks. 79 | 80 | "The Program" refers to any copyrightable work licensed under this 81 | License. Each licensee is addressed as "you". "Licensees" and 82 | "recipients" may be individuals or organizations. 83 | 84 | To "modify" a work means to copy from or adapt all or part of the work 85 | in a fashion requiring copyright permission, other than the making of an 86 | exact copy. The resulting work is called a "modified version" of the 87 | earlier work or a work "based on" the earlier work. 88 | 89 | A "covered work" means either the unmodified Program or a work based 90 | on the Program. 91 | 92 | To "propagate" a work means to do anything with it that, without 93 | permission, would make you directly or secondarily liable for 94 | infringement under applicable copyright law, except executing it on a 95 | computer or modifying a private copy. Propagation includes copying, 96 | distribution (with or without modification), making available to the 97 | public, and in some countries other activities as well. 98 | 99 | To "convey" a work means any kind of propagation that enables other 100 | parties to make or receive copies. Mere interaction with a user through 101 | a computer network, with no transfer of a copy, is not conveying. 102 | 103 | An interactive user interface displays "Appropriate Legal Notices" 104 | to the extent that it includes a convenient and prominently visible 105 | feature that (1) displays an appropriate copyright notice, and (2) 106 | tells the user that there is no warranty for the work (except to the 107 | extent that warranties are provided), that licensees may convey the 108 | work under this License, and how to view a copy of this License. If 109 | the interface presents a list of user commands or options, such as a 110 | menu, a prominent item in the list meets this criterion. 111 | 112 | 1. Source Code. 113 | 114 | The "source code" for a work means the preferred form of the work 115 | for making modifications to it. "Object code" means any non-source 116 | form of a work. 117 | 118 | A "Standard Interface" means an interface that either is an official 119 | standard defined by a recognized standards body, or, in the case of 120 | interfaces specified for a particular programming language, one that 121 | is widely used among developers working in that language. 122 | 123 | The "System Libraries" of an executable work include anything, other 124 | than the work as a whole, that (a) is included in the normal form of 125 | packaging a Major Component, but which is not part of that Major 126 | Component, and (b) serves only to enable use of the work with that 127 | Major Component, or to implement a Standard Interface for which an 128 | implementation is available to the public in source code form. A 129 | "Major Component", in this context, means a major essential component 130 | (kernel, window system, and so on) of the specific operating system 131 | (if any) on which the executable work runs, or a compiler used to 132 | produce the work, or an object code interpreter used to run it. 133 | 134 | The "Corresponding Source" for a work in object code form means all 135 | the source code needed to generate, install, and (for an executable 136 | work) run the object code and to modify the work, including scripts to 137 | control those activities. However, it does not include the work's 138 | System Libraries, or general-purpose tools or generally available free 139 | programs which are used unmodified in performing those activities but 140 | which are not part of the work. For example, Corresponding Source 141 | includes interface definition files associated with source files for 142 | the work, and the source code for shared libraries and dynamically 143 | linked subprograms that the work is specifically designed to require, 144 | such as by intimate data communication or control flow between those 145 | subprograms and other parts of the work. 146 | 147 | The Corresponding Source need not include anything that users 148 | can regenerate automatically from other parts of the Corresponding 149 | Source. 150 | 151 | The Corresponding Source for a work in source code form is that 152 | same work. 153 | 154 | 2. Basic Permissions. 155 | 156 | All rights granted under this License are granted for the term of 157 | copyright on the Program, and are irrevocable provided the stated 158 | conditions are met. This License explicitly affirms your unlimited 159 | permission to run the unmodified Program. The output from running a 160 | covered work is covered by this License only if the output, given its 161 | content, constitutes a covered work. This License acknowledges your 162 | rights of fair use or other equivalent, as provided by copyright law. 163 | 164 | You may make, run and propagate covered works that you do not 165 | convey, without conditions so long as your license otherwise remains 166 | in force. You may convey covered works to others for the sole purpose 167 | of having them make modifications exclusively for you, or provide you 168 | with facilities for running those works, provided that you comply with 169 | the terms of this License in conveying all material for which you do 170 | not control copyright. Those thus making or running the covered works 171 | for you must do so exclusively on your behalf, under your direction 172 | and control, on terms that prohibit them from making any copies of 173 | your copyrighted material outside their relationship with you. 174 | 175 | Conveying under any other circumstances is permitted solely under 176 | the conditions stated below. Sublicensing is not allowed; section 10 177 | makes it unnecessary. 178 | 179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law. 180 | 181 | No covered work shall be deemed part of an effective technological 182 | measure under any applicable law fulfilling obligations under article 183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or 184 | similar laws prohibiting or restricting circumvention of such 185 | measures. 186 | 187 | When you convey a covered work, you waive any legal power to forbid 188 | circumvention of technological measures to the extent such circumvention 189 | is effected by exercising rights under this License with respect to 190 | the covered work, and you disclaim any intention to limit operation or 191 | modification of the work as a means of enforcing, against the work's 192 | users, your or third parties' legal rights to forbid circumvention of 193 | technological measures. 194 | 195 | 4. Conveying Verbatim Copies. 196 | 197 | You may convey verbatim copies of the Program's source code as you 198 | receive it, in any medium, provided that you conspicuously and 199 | appropriately publish on each copy an appropriate copyright notice; 200 | keep intact all notices stating that this License and any 201 | non-permissive terms added in accord with section 7 apply to the code; 202 | keep intact all notices of the absence of any warranty; and give all 203 | recipients a copy of this License along with the Program. 204 | 205 | You may charge any price or no price for each copy that you convey, 206 | and you may offer support or warranty protection for a fee. 207 | 208 | 5. Conveying Modified Source Versions. 209 | 210 | You may convey a work based on the Program, or the modifications to 211 | produce it from the Program, in the form of source code under the 212 | terms of section 4, provided that you also meet all of these conditions: 213 | 214 | a) The work must carry prominent notices stating that you modified 215 | it, and giving a relevant date. 216 | 217 | b) The work must carry prominent notices stating that it is 218 | released under this License and any conditions added under section 219 | 7. This requirement modifies the requirement in section 4 to 220 | "keep intact all notices". 221 | 222 | c) You must license the entire work, as a whole, under this 223 | License to anyone who comes into possession of a copy. This 224 | License will therefore apply, along with any applicable section 7 225 | additional terms, to the whole of the work, and all its parts, 226 | regardless of how they are packaged. This License gives no 227 | permission to license the work in any other way, but it does not 228 | invalidate such permission if you have separately received it. 229 | 230 | d) If the work has interactive user interfaces, each must display 231 | Appropriate Legal Notices; however, if the Program has interactive 232 | interfaces that do not display Appropriate Legal Notices, your 233 | work need not make them do so. 234 | 235 | A compilation of a covered work with other separate and independent 236 | works, which are not by their nature extensions of the covered work, 237 | and which are not combined with it such as to form a larger program, 238 | in or on a volume of a storage or distribution medium, is called an 239 | "aggregate" if the compilation and its resulting copyright are not 240 | used to limit the access or legal rights of the compilation's users 241 | beyond what the individual works permit. Inclusion of a covered work 242 | in an aggregate does not cause this License to apply to the other 243 | parts of the aggregate. 244 | 245 | 6. Conveying Non-Source Forms. 246 | 247 | You may convey a covered work in object code form under the terms 248 | of sections 4 and 5, provided that you also convey the 249 | machine-readable Corresponding Source under the terms of this License, 250 | in one of these ways: 251 | 252 | a) Convey the object code in, or embodied in, a physical product 253 | (including a physical distribution medium), accompanied by the 254 | Corresponding Source fixed on a durable physical medium 255 | customarily used for software interchange. 256 | 257 | b) Convey the object code in, or embodied in, a physical product 258 | (including a physical distribution medium), accompanied by a 259 | written offer, valid for at least three years and valid for as 260 | long as you offer spare parts or customer support for that product 261 | model, to give anyone who possesses the object code either (1) a 262 | copy of the Corresponding Source for all the software in the 263 | product that is covered by this License, on a durable physical 264 | medium customarily used for software interchange, for a price no 265 | more than your reasonable cost of physically performing this 266 | conveying of source, or (2) access to copy the 267 | Corresponding Source from a network server at no charge. 268 | 269 | c) Convey individual copies of the object code with a copy of the 270 | written offer to provide the Corresponding Source. This 271 | alternative is allowed only occasionally and noncommercially, and 272 | only if you received the object code with such an offer, in accord 273 | with subsection 6b. 274 | 275 | d) Convey the object code by offering access from a designated 276 | place (gratis or for a charge), and offer equivalent access to the 277 | Corresponding Source in the same way through the same place at no 278 | further charge. You need not require recipients to copy the 279 | Corresponding Source along with the object code. If the place to 280 | copy the object code is a network server, the Corresponding Source 281 | may be on a different server (operated by you or a third party) 282 | that supports equivalent copying facilities, provided you maintain 283 | clear directions next to the object code saying where to find the 284 | Corresponding Source. Regardless of what server hosts the 285 | Corresponding Source, you remain obligated to ensure that it is 286 | available for as long as needed to satisfy these requirements. 287 | 288 | e) Convey the object code using peer-to-peer transmission, provided 289 | you inform other peers where the object code and Corresponding 290 | Source of the work are being offered to the general public at no 291 | charge under subsection 6d. 292 | 293 | A separable portion of the object code, whose source code is excluded 294 | from the Corresponding Source as a System Library, need not be 295 | included in conveying the object code work. 296 | 297 | A "User Product" is either (1) a "consumer product", which means any 298 | tangible personal property which is normally used for personal, family, 299 | or household purposes, or (2) anything designed or sold for incorporation 300 | into a dwelling. In determining whether a product is a consumer product, 301 | doubtful cases shall be resolved in favor of coverage. For a particular 302 | product received by a particular user, "normally used" refers to a 303 | typical or common use of that class of product, regardless of the status 304 | of the particular user or of the way in which the particular user 305 | actually uses, or expects or is expected to use, the product. A product 306 | is a consumer product regardless of whether the product has substantial 307 | commercial, industrial or non-consumer uses, unless such uses represent 308 | the only significant mode of use of the product. 309 | 310 | "Installation Information" for a User Product means any methods, 311 | procedures, authorization keys, or other information required to install 312 | and execute modified versions of a covered work in that User Product from 313 | a modified version of its Corresponding Source. The information must 314 | suffice to ensure that the continued functioning of the modified object 315 | code is in no case prevented or interfered with solely because 316 | modification has been made. 317 | 318 | If you convey an object code work under this section in, or with, or 319 | specifically for use in, a User Product, and the conveying occurs as 320 | part of a transaction in which the right of possession and use of the 321 | User Product is transferred to the recipient in perpetuity or for a 322 | fixed term (regardless of how the transaction is characterized), the 323 | Corresponding Source conveyed under this section must be accompanied 324 | by the Installation Information. But this requirement does not apply 325 | if neither you nor any third party retains the ability to install 326 | modified object code on the User Product (for example, the work has 327 | been installed in ROM). 328 | 329 | The requirement to provide Installation Information does not include a 330 | requirement to continue to provide support service, warranty, or updates 331 | for a work that has been modified or installed by the recipient, or for 332 | the User Product in which it has been modified or installed. Access to a 333 | network may be denied when the modification itself materially and 334 | adversely affects the operation of the network or violates the rules and 335 | protocols for communication across the network. 336 | 337 | Corresponding Source conveyed, and Installation Information provided, 338 | in accord with this section must be in a format that is publicly 339 | documented (and with an implementation available to the public in 340 | source code form), and must require no special password or key for 341 | unpacking, reading or copying. 342 | 343 | 7. Additional Terms. 344 | 345 | "Additional permissions" are terms that supplement the terms of this 346 | License by making exceptions from one or more of its conditions. 347 | Additional permissions that are applicable to the entire Program shall 348 | be treated as though they were included in this License, to the extent 349 | that they are valid under applicable law. If additional permissions 350 | apply only to part of the Program, that part may be used separately 351 | under those permissions, but the entire Program remains governed by 352 | this License without regard to the additional permissions. 353 | 354 | When you convey a copy of a covered work, you may at your option 355 | remove any additional permissions from that copy, or from any part of 356 | it. (Additional permissions may be written to require their own 357 | removal in certain cases when you modify the work.) You may place 358 | additional permissions on material, added by you to a covered work, 359 | for which you have or can give appropriate copyright permission. 360 | 361 | Notwithstanding any other provision of this License, for material you 362 | add to a covered work, you may (if authorized by the copyright holders of 363 | that material) supplement the terms of this License with terms: 364 | 365 | a) Disclaiming warranty or limiting liability differently from the 366 | terms of sections 15 and 16 of this License; or 367 | 368 | b) Requiring preservation of specified reasonable legal notices or 369 | author attributions in that material or in the Appropriate Legal 370 | Notices displayed by works containing it; or 371 | 372 | c) Prohibiting misrepresentation of the origin of that material, or 373 | requiring that modified versions of such material be marked in 374 | reasonable ways as different from the original version; or 375 | 376 | d) Limiting the use for publicity purposes of names of licensors or 377 | authors of the material; or 378 | 379 | e) Declining to grant rights under trademark law for use of some 380 | trade names, trademarks, or service marks; or 381 | 382 | f) Requiring indemnification of licensors and authors of that 383 | material by anyone who conveys the material (or modified versions of 384 | it) with contractual assumptions of liability to the recipient, for 385 | any liability that these contractual assumptions directly impose on 386 | those licensors and authors. 387 | 388 | All other non-permissive additional terms are considered "further 389 | restrictions" within the meaning of section 10. If the Program as you 390 | received it, or any part of it, contains a notice stating that it is 391 | governed by this License along with a term that is a further 392 | restriction, you may remove that term. If a license document contains 393 | a further restriction but permits relicensing or conveying under this 394 | License, you may add to a covered work material governed by the terms 395 | of that license document, provided that the further restriction does 396 | not survive such relicensing or conveying. 397 | 398 | If you add terms to a covered work in accord with this section, you 399 | must place, in the relevant source files, a statement of the 400 | additional terms that apply to those files, or a notice indicating 401 | where to find the applicable terms. 402 | 403 | Additional terms, permissive or non-permissive, may be stated in the 404 | form of a separately written license, or stated as exceptions; 405 | the above requirements apply either way. 406 | 407 | 8. Termination. 408 | 409 | You may not propagate or modify a covered work except as expressly 410 | provided under this License. Any attempt otherwise to propagate or 411 | modify it is void, and will automatically terminate your rights under 412 | this License (including any patent licenses granted under the third 413 | paragraph of section 11). 414 | 415 | However, if you cease all violation of this License, then your 416 | license from a particular copyright holder is reinstated (a) 417 | provisionally, unless and until the copyright holder explicitly and 418 | finally terminates your license, and (b) permanently, if the copyright 419 | holder fails to notify you of the violation by some reasonable means 420 | prior to 60 days after the cessation. 421 | 422 | Moreover, your license from a particular copyright holder is 423 | reinstated permanently if the copyright holder notifies you of the 424 | violation by some reasonable means, this is the first time you have 425 | received notice of violation of this License (for any work) from that 426 | copyright holder, and you cure the violation prior to 30 days after 427 | your receipt of the notice. 428 | 429 | Termination of your rights under this section does not terminate the 430 | licenses of parties who have received copies or rights from you under 431 | this License. If your rights have been terminated and not permanently 432 | reinstated, you do not qualify to receive new licenses for the same 433 | material under section 10. 434 | 435 | 9. Acceptance Not Required for Having Copies. 436 | 437 | You are not required to accept this License in order to receive or 438 | run a copy of the Program. Ancillary propagation of a covered work 439 | occurring solely as a consequence of using peer-to-peer transmission 440 | to receive a copy likewise does not require acceptance. However, 441 | nothing other than this License grants you permission to propagate or 442 | modify any covered work. These actions infringe copyright if you do 443 | not accept this License. Therefore, by modifying or propagating a 444 | covered work, you indicate your acceptance of this License to do so. 445 | 446 | 10. Automatic Licensing of Downstream Recipients. 447 | 448 | Each time you convey a covered work, the recipient automatically 449 | receives a license from the original licensors, to run, modify and 450 | propagate that work, subject to this License. You are not responsible 451 | for enforcing compliance by third parties with this License. 452 | 453 | An "entity transaction" is a transaction transferring control of an 454 | organization, or substantially all assets of one, or subdividing an 455 | organization, or merging organizations. If propagation of a covered 456 | work results from an entity transaction, each party to that 457 | transaction who receives a copy of the work also receives whatever 458 | licenses to the work the party's predecessor in interest had or could 459 | give under the previous paragraph, plus a right to possession of the 460 | Corresponding Source of the work from the predecessor in interest, if 461 | the predecessor has it or can get it with reasonable efforts. 462 | 463 | You may not impose any further restrictions on the exercise of the 464 | rights granted or affirmed under this License. For example, you may 465 | not impose a license fee, royalty, or other charge for exercise of 466 | rights granted under this License, and you may not initiate litigation 467 | (including a cross-claim or counterclaim in a lawsuit) alleging that 468 | any patent claim is infringed by making, using, selling, offering for 469 | sale, or importing the Program or any portion of it. 470 | 471 | 11. Patents. 472 | 473 | A "contributor" is a copyright holder who authorizes use under this 474 | License of the Program or a work on which the Program is based. The 475 | work thus licensed is called the contributor's "contributor version". 476 | 477 | A contributor's "essential patent claims" are all patent claims 478 | owned or controlled by the contributor, whether already acquired or 479 | hereafter acquired, that would be infringed by some manner, permitted 480 | by this License, of making, using, or selling its contributor version, 481 | but do not include claims that would be infringed only as a 482 | consequence of further modification of the contributor version. For 483 | purposes of this definition, "control" includes the right to grant 484 | patent sublicenses in a manner consistent with the requirements of 485 | this License. 486 | 487 | Each contributor grants you a non-exclusive, worldwide, royalty-free 488 | patent license under the contributor's essential patent claims, to 489 | make, use, sell, offer for sale, import and otherwise run, modify and 490 | propagate the contents of its contributor version. 491 | 492 | In the following three paragraphs, a "patent license" is any express 493 | agreement or commitment, however denominated, not to enforce a patent 494 | (such as an express permission to practice a patent or covenant not to 495 | sue for patent infringement). To "grant" such a patent license to a 496 | party means to make such an agreement or commitment not to enforce a 497 | patent against the party. 498 | 499 | If you convey a covered work, knowingly relying on a patent license, 500 | and the Corresponding Source of the work is not available for anyone 501 | to copy, free of charge and under the terms of this License, through a 502 | publicly available network server or other readily accessible means, 503 | then you must either (1) cause the Corresponding Source to be so 504 | available, or (2) arrange to deprive yourself of the benefit of the 505 | patent license for this particular work, or (3) arrange, in a manner 506 | consistent with the requirements of this License, to extend the patent 507 | license to downstream recipients. "Knowingly relying" means you have 508 | actual knowledge that, but for the patent license, your conveying the 509 | covered work in a country, or your recipient's use of the covered work 510 | in a country, would infringe one or more identifiable patents in that 511 | country that you have reason to believe are valid. 512 | 513 | If, pursuant to or in connection with a single transaction or 514 | arrangement, you convey, or propagate by procuring conveyance of, a 515 | covered work, and grant a patent license to some of the parties 516 | receiving the covered work authorizing them to use, propagate, modify 517 | or convey a specific copy of the covered work, then the patent license 518 | you grant is automatically extended to all recipients of the covered 519 | work and works based on it. 520 | 521 | A patent license is "discriminatory" if it does not include within 522 | the scope of its coverage, prohibits the exercise of, or is 523 | conditioned on the non-exercise of one or more of the rights that are 524 | specifically granted under this License. You may not convey a covered 525 | work if you are a party to an arrangement with a third party that is 526 | in the business of distributing software, under which you make payment 527 | to the third party based on the extent of your activity of conveying 528 | the work, and under which the third party grants, to any of the 529 | parties who would receive the covered work from you, a discriminatory 530 | patent license (a) in connection with copies of the covered work 531 | conveyed by you (or copies made from those copies), or (b) primarily 532 | for and in connection with specific products or compilations that 533 | contain the covered work, unless you entered into that arrangement, 534 | or that patent license was granted, prior to 28 March 2007. 535 | 536 | Nothing in this License shall be construed as excluding or limiting 537 | any implied license or other defenses to infringement that may 538 | otherwise be available to you under applicable patent law. 539 | 540 | 12. No Surrender of Others' Freedom. 541 | 542 | If conditions are imposed on you (whether by court order, agreement or 543 | otherwise) that contradict the conditions of this License, they do not 544 | excuse you from the conditions of this License. If you cannot convey a 545 | covered work so as to satisfy simultaneously your obligations under this 546 | License and any other pertinent obligations, then as a consequence you may 547 | not convey it at all. For example, if you agree to terms that obligate you 548 | to collect a royalty for further conveying from those to whom you convey 549 | the Program, the only way you could satisfy both those terms and this 550 | License would be to refrain entirely from conveying the Program. 551 | 552 | 13. Use with the GNU Affero General Public License. 553 | 554 | Notwithstanding any other provision of this License, you have 555 | permission to link or combine any covered work with a work licensed 556 | under version 3 of the GNU Affero General Public License into a single 557 | combined work, and to convey the resulting work. The terms of this 558 | License will continue to apply to the part which is the covered work, 559 | but the special requirements of the GNU Affero General Public License, 560 | section 13, concerning interaction through a network will apply to the 561 | combination as such. 562 | 563 | 14. Revised Versions of this License. 564 | 565 | The Free Software Foundation may publish revised and/or new versions of 566 | the GNU General Public License from time to time. Such new versions will 567 | be similar in spirit to the present version, but may differ in detail to 568 | address new problems or concerns. 569 | 570 | Each version is given a distinguishing version number. If the 571 | Program specifies that a certain numbered version of the GNU General 572 | Public License "or any later version" applies to it, you have the 573 | option of following the terms and conditions either of that numbered 574 | version or of any later version published by the Free Software 575 | Foundation. If the Program does not specify a version number of the 576 | GNU General Public License, you may choose any version ever published 577 | by the Free Software Foundation. 578 | 579 | If the Program specifies that a proxy can decide which future 580 | versions of the GNU General Public License can be used, that proxy's 581 | public statement of acceptance of a version permanently authorizes you 582 | to choose that version for the Program. 583 | 584 | Later license versions may give you additional or different 585 | permissions. However, no additional obligations are imposed on any 586 | author or copyright holder as a result of your choosing to follow a 587 | later version. 588 | 589 | 15. Disclaimer of Warranty. 590 | 591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY 592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT 593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY 594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, 595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM 597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF 598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 599 | 600 | 16. Limitation of Liability. 601 | 602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING 603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS 604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY 605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE 606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF 607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD 608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), 609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF 610 | SUCH DAMAGES. 611 | 612 | 17. Interpretation of Sections 15 and 16. 613 | 614 | If the disclaimer of warranty and limitation of liability provided 615 | above cannot be given local legal effect according to their terms, 616 | reviewing courts shall apply local law that most closely approximates 617 | an absolute waiver of all civil liability in connection with the 618 | Program, unless a warranty or assumption of liability accompanies a 619 | copy of the Program in return for a fee. 620 | 621 | END OF TERMS AND CONDITIONS 622 | 623 | How to Apply These Terms to Your New Programs 624 | 625 | If you develop a new program, and you want it to be of the greatest 626 | possible use to the public, the best way to achieve this is to make it 627 | free software which everyone can redistribute and change under these terms. 628 | 629 | To do so, attach the following notices to the program. It is safest 630 | to attach them to the start of each source file to most effectively 631 | state the exclusion of warranty; and each file should have at least 632 | the "copyright" line and a pointer to where the full notice is found. 633 | 634 | 635 | Copyright (C) 636 | 637 | This program is free software: you can redistribute it and/or modify 638 | it under the terms of the GNU General Public License as published by 639 | the Free Software Foundation, either version 3 of the License, or 640 | (at your option) any later version. 641 | 642 | This program is distributed in the hope that it will be useful, 643 | but WITHOUT ANY WARRANTY; without even the implied warranty of 644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 645 | GNU General Public License for more details. 646 | 647 | You should have received a copy of the GNU General Public License 648 | along with this program. If not, see . 649 | 650 | Also add information on how to contact you by electronic and paper mail. 651 | 652 | If the program does terminal interaction, make it output a short 653 | notice like this when it starts in an interactive mode: 654 | 655 | Copyright (C) 656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. 657 | This is free software, and you are welcome to redistribute it 658 | under certain conditions; type `show c' for details. 659 | 660 | The hypothetical commands `show w' and `show c' should show the appropriate 661 | parts of the General Public License. Of course, your program's commands 662 | might be different; for a GUI interface, you would use an "about box". 663 | 664 | You should also get your employer (if you work as a programmer) or school, 665 | if any, to sign a "copyright disclaimer" for the program, if necessary. 666 | For more information on this, and how to apply and follow the GNU GPL, see 667 | . 668 | 669 | The GNU General Public License does not permit incorporating your program 670 | into proprietary programs. If your program is a subroutine library, you 671 | may consider it more useful to permit linking proprietary applications with 672 | the library. If this is what you want to do, use the GNU Lesser General 673 | Public License instead of this License. But first, please read 674 | . --------------------------------------------------------------------------------