├── .gitignore
├── RNN
├── data
│ └── linux_input.txt
├── optimizer.py
├── linux.py
├── warpeace.py
└── lab.py
├── README.md
├── FNN
├── batch_norm.py
├── mnist.py
├── optimizer.py
├── lab.py
├── svhn.py
└── cifar10.py
└── license
/.gitignore:
--------------------------------------------------------------------------------
1 | *~
2 | *.sw[op]
3 |
--------------------------------------------------------------------------------
/RNN/data/linux_input.txt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cafe/Loss-aware-Binarization/master/RNN/data/linux_input.txt
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Loss-Aware-Binarization
2 | Implementation of ICLR 2017 paper "Loss aware Binarization of Deep Networks", tested with GTX TITAN X, python 2.7, theano 0.9.0 and lasagne 0.2.dev1.
3 |
4 | This repository is divided in two subrepositories:
5 |
6 | - FNN: enables the reproduction of the FNN results(on MNIST, CIFAR-10, SVHN)reported in the article
7 |
8 | - RNN: enables the reproduction of the RNN results(on War and Peace, Linux Kernel) reported in the article
9 |
10 | Requirements
11 | This software is implemented on top of the implementation of [BinaryConnect](https://github.com/MatthieuCourbariaux/BinaryConnect) and has all the same requirements.
12 |
13 |
14 | Example training command on *War and Peace* dataset:
15 | - training LAB
16 | ```sh
17 | python warpeace.py --method="LAB" --lr_start=0.002 --w="w" --len=100
18 | ```
19 | - training LAB2
20 | ```sh
21 | python warpeace.py --method="LAB" --lr_start=0.002 --w="wa" --len=100
22 | ```
23 |
--------------------------------------------------------------------------------
/FNN/batch_norm.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 |
3 | """
4 | Preliminary implementation of batch normalization for Lasagne.
5 | Does not include a way to properly compute the normalization factors over the
6 | full training set for testing, but can be used as a drop-in for training and
7 | validation.
8 |
9 | Author: Jan Schlüter
10 | """
11 |
12 | import numpy as np
13 | import lasagne
14 | import theano
15 | import theano.tensor as T
16 |
17 | class BatchNormLayer(lasagne.layers.Layer):
18 |
19 | def __init__(self, incoming, axes=None, epsilon=0.01, alpha=0.5,
20 | nonlinearity=None, **kwargs):
21 | """
22 | Instantiates a layer performing batch normalization of its inputs,
23 | following Ioffe et al. (http://arxiv.org/abs/1502.03167).
24 |
25 | @param incoming: `Layer` instance or expected input shape
26 | @param axes: int or tuple of int denoting the axes to normalize over;
27 | defaults to all axes except for the second if omitted (this will
28 | do the correct thing for dense layers and convolutional layers)
29 | @param epsilon: small constant added to the standard deviation before
30 | dividing by it, to avoid numeric problems
31 | @param alpha: coefficient for the exponential moving average of
32 | batch-wise means and standard deviations computed during training;
33 | the larger, the more it will depend on the last batches seen
34 | @param nonlinearity: nonlinearity to apply to the output (optional)
35 | """
36 | super(BatchNormLayer, self).__init__(incoming, **kwargs)
37 | if axes is None:
38 | # default: normalize over all but the second axis
39 | axes = (0,) + tuple(range(2, len(self.input_shape)))
40 | elif isinstance(axes, int):
41 | axes = (axes,)
42 | self.axes = axes
43 | self.epsilon = epsilon
44 | self.alpha = alpha
45 | if nonlinearity is None:
46 | nonlinearity = lasagne.nonlinearities.identity
47 | self.nonlinearity = nonlinearity
48 | shape = list(self.input_shape)
49 | broadcast = [False] * len(shape)
50 | for axis in self.axes:
51 | shape[axis] = 1
52 | broadcast[axis] = True
53 | if any(size is None for size in shape):
54 | raise ValueError("BatchNormLayer needs specified input sizes for "
55 | "all dimensions/axes not normalized over.")
56 | dtype = theano.config.floatX
57 | self.mean = self.add_param(lasagne.init.Constant(0), shape, 'mean',
58 | trainable=False, regularizable=False)
59 | self.std = self.add_param(lasagne.init.Constant(1), shape, 'std',
60 | trainable=False, regularizable=False)
61 | self.beta = self.add_param(lasagne.init.Constant(0), shape, 'beta',
62 | trainable=True, regularizable=True)
63 | self.gamma = self.add_param(lasagne.init.Constant(1), shape, 'gamma',
64 | trainable=True, regularizable=False)
65 |
66 | def get_output_for(self, input, deterministic=False, **kwargs):
67 | if deterministic:
68 | # use stored mean and std
69 | mean = self.mean
70 | std = self.std
71 | else:
72 | # use this batch's mean and std
73 | mean = input.mean(self.axes, keepdims=True)
74 | std = input.std(self.axes, keepdims=True)
75 | # and update the stored mean and std:
76 | # we create (memory-aliased) clones of the stored mean and std
77 | running_mean = theano.clone(self.mean, share_inputs=False)
78 | running_std = theano.clone(self.std, share_inputs=False)
79 | # set a default update for them
80 | running_mean.default_update = ((1 - self.alpha) * running_mean +
81 | self.alpha * mean)
82 | running_std.default_update = ((1 - self.alpha) * running_std +
83 | self.alpha * std)
84 | # and include them in the graph so their default updates will be
85 | # applied (although the expressions will be optimized away later)
86 | mean += 0 * running_mean
87 | std += 0 * running_std
88 | std += self.epsilon
89 | mean = T.addbroadcast(mean, *self.axes)
90 | std = T.addbroadcast(std, *self.axes)
91 | beta = T.addbroadcast(self.beta, *self.axes)
92 | gamma = T.addbroadcast(self.gamma, *self.axes)
93 | normalized = (input - mean) * (gamma / std) + beta
94 | return self.nonlinearity(normalized)
95 |
96 | def batch_norm(layer):
97 | """
98 | Convenience function to apply batch normalization to a given layer's output.
99 | Will steal the layer's nonlinearity if there is one (effectively introducing
100 | the normalization right before the nonlinearity), and will remove the
101 | layer's bias if there is one (because it would be redundant).
102 |
103 | @param layer: The `Layer` instance to apply the normalization to; note that
104 | it will be irreversibly modified as specified above
105 | @return: A `BatchNormLayer` instance stacked on the given `layer`
106 | """
107 | nonlinearity = getattr(layer, 'nonlinearity', None)
108 | if nonlinearity is not None:
109 | layer.nonlinearity = lasagne.nonlinearities.identity
110 | if hasattr(layer, 'b'):
111 | del layer.params[layer.b]
112 | layer.b = None
113 | return BatchNormLayer(layer, nonlinearity=nonlinearity)
114 |
--------------------------------------------------------------------------------
/FNN/mnist.py:
--------------------------------------------------------------------------------
1 | from __future__ import print_function
2 |
3 | import sys
4 | import os
5 | import time
6 | import ipdb
7 | import numpy as np
8 | np.random.seed(1234)
9 | from argparse import ArgumentParser
10 |
11 | import theano
12 | import theano.tensor as T
13 |
14 | import lasagne
15 |
16 | import cPickle as pickle
17 | import gzip
18 |
19 | import batch_norm
20 | import lab
21 | import optimizer
22 |
23 | from pylearn2.datasets.mnist import MNIST
24 | from pylearn2.utils import serial
25 |
26 | from collections import OrderedDict
27 |
28 |
29 | def main(method,LR_start,Binarize_weight_only):
30 |
31 | # BN parameters
32 | name = "mnist"
33 | print("dataset = "+str(name))
34 |
35 | print("Binarize_weight_only="+str(Binarize_weight_only))
36 |
37 | print("Method = "+str(method))
38 |
39 | # alpha is the exponential moving average factor
40 | alpha = .1
41 | print("alpha = "+str(alpha))
42 | epsilon = 1e-4
43 | print("epsilon = "+str(epsilon))
44 |
45 | batch_size = 100
46 | print("batch_size = "+str(batch_size))
47 |
48 | num_epochs = 50
49 | print("num_epochs = "+str(num_epochs))
50 |
51 | # network structure
52 | num_units = 2048
53 | print("num_units = "+str(num_units))
54 | n_hidden_layers = 3
55 | print("n_hidden_layers = "+str(n_hidden_layers))
56 |
57 | print("LR_start = "+str(LR_start))
58 | LR_decay = 0.1
59 | print("LR_decay="+str(LR_decay))
60 |
61 | if Binarize_weight_only =="w":
62 | activation = lasagne.nonlinearities.rectify
63 | else:
64 | activation = lab.binary_tanh_unit
65 | print("activation = "+ str(activation))
66 |
67 |
68 | print('Loading MNIST dataset...')
69 |
70 | train_set = MNIST(which_set= 'train', start=0, stop = 50000, center = True)
71 | valid_set = MNIST(which_set= 'train', start=50000, stop = 60000, center = True)
72 | test_set = MNIST(which_set= 'test', center = True)
73 |
74 | # bc01 format
75 | train_set.X = train_set.X.reshape(-1, 1, 28, 28)
76 | valid_set.X = valid_set.X.reshape(-1, 1, 28, 28)
77 | test_set.X = test_set.X.reshape(-1, 1, 28, 28)
78 |
79 | # flatten targets
80 | train_set.y = np.hstack(train_set.y)
81 | valid_set.y = np.hstack(valid_set.y)
82 | test_set.y = np.hstack(test_set.y)
83 |
84 | # Onehot the targets
85 | train_set.y = np.float32(np.eye(10)[train_set.y])
86 | valid_set.y = np.float32(np.eye(10)[valid_set.y])
87 | test_set.y = np.float32(np.eye(10)[test_set.y])
88 |
89 | # for hinge loss
90 | train_set.y = 2* train_set.y - 1.
91 | valid_set.y = 2* valid_set.y - 1.
92 | test_set.y = 2* test_set.y - 1.
93 |
94 | print('Building the MLP...')
95 |
96 | # Prepare Theano variables for inputs and targets
97 | input = T.tensor4('inputs')
98 | target = T.matrix('targets')
99 | LR = T.scalar('LR', dtype=theano.config.floatX)
100 |
101 | mlp = lasagne.layers.InputLayer(
102 | shape=(None, 1, 28, 28),
103 | input_var=input)
104 |
105 | for k in range(n_hidden_layers):
106 | mlp = lab.DenseLayer(
107 | mlp,
108 | nonlinearity=lasagne.nonlinearities.identity,
109 | num_units=num_units,
110 | method = method)
111 | mlp = batch_norm.BatchNormLayer(
112 | mlp,
113 | epsilon=epsilon,
114 | alpha=alpha)
115 | mlp = lasagne.layers.NonlinearityLayer(
116 | mlp,
117 | nonlinearity = activation)
118 |
119 | mlp = lab.DenseLayer(
120 | mlp,
121 | nonlinearity=lasagne.nonlinearities.identity,
122 | num_units=10,
123 | method = method)
124 |
125 | mlp = batch_norm.BatchNormLayer(
126 | mlp,
127 | epsilon=epsilon,
128 | alpha=alpha)
129 |
130 | train_output = lasagne.layers.get_output(mlp, deterministic=False)
131 |
132 | # squared hinge loss
133 | loss = T.mean(T.sqr(T.maximum(0.,1.-target*train_output)))
134 |
135 | if method!="FPN":
136 |
137 | # W updates
138 | W = lasagne.layers.get_all_params(mlp, binary=True)
139 | W_grads = lab.compute_grads(loss,mlp)
140 | updates = optimizer.adam(loss_or_grads=W_grads, params=W, learning_rate=LR)
141 | updates = lab.clipping_scaling(updates,mlp)
142 |
143 | # other parameters updates
144 | params = lasagne.layers.get_all_params(mlp, trainable=True, binary=False)
145 | updates = OrderedDict(updates.items() + optimizer.adam(loss_or_grads=loss, params=params, learning_rate=LR).items())
146 |
147 | ## update 2nd moment, can get from the adam optimizer also
148 | updates3 = OrderedDict()
149 | acc_tag = lasagne.layers.get_all_params(mlp, acc=True)
150 | idx = 0
151 | beta2 = 0.999
152 | for acc_tag_temp in acc_tag:
153 | updates3[acc_tag_temp]= acc_tag_temp*beta2 + W_grads[idx]*W_grads[idx]*(1-beta2)
154 | idx = idx+1
155 |
156 | updates = OrderedDict(updates.items() + updates3.items())
157 |
158 | else:
159 | params = lasagne.layers.get_all_params(mlp, trainable=True)
160 | updates = optimizer.adam(loss_or_grads=loss, params=params, learning_rate=LR)
161 |
162 | test_output = lasagne.layers.get_output(mlp, deterministic=True)
163 | test_loss = T.mean(T.sqr(T.maximum(0.,1.-target*test_output)))
164 | test_err = T.mean(T.neq(T.argmax(test_output, axis=1), T.argmax(target, axis=1)),dtype=theano.config.floatX)
165 |
166 | # Compile a function performing a training step on a mini-batch (by giving the updates dictionary)
167 | # and returning the corresponding training loss:
168 | train_fn = theano.function([input, target, LR], loss, updates=updates)
169 | val_fn = theano.function([input, target], [test_loss, test_err])
170 |
171 | print('Training...')
172 |
173 | lab.train(
174 | name, method,
175 | train_fn,val_fn,
176 | batch_size,
177 | LR_start,LR_decay,
178 | num_epochs,
179 | train_set.X,train_set.y,
180 | valid_set.X,valid_set.y,
181 | test_set.X,test_set.y)
182 |
183 |
184 | if __name__ == "__main__":
185 | parser = ArgumentParser()
186 | parser.add_argument("--method", type=str, dest="method",
187 | default="LAB", help="Method used")
188 | parser.add_argument("--lr_start", type=float, dest="LR_start",
189 | default=0.01, help="Learning rate")
190 | parser.add_argument("--w", type=str, dest="Binarize_weight_only",
191 | default="w", help="true:only binzrize w, false: binarize w and a")
192 | args = parser.parse_args()
193 |
194 | main(**vars(args))
--------------------------------------------------------------------------------
/FNN/optimizer.py:
--------------------------------------------------------------------------------
1 |
2 | from collections import OrderedDict
3 |
4 | import numpy as np
5 |
6 | import theano
7 | import theano.tensor as T
8 | # from . import utils
9 |
10 |
11 | def get_or_compute_grads(loss_or_grads, params):
12 | if any(not isinstance(p, theano.compile.SharedVariable) for p in params):
13 | raise ValueError("params must contain shared variables only. If it "
14 | "contains arbitrary parameter expressions, then "
15 | "lasagne.utils.collect_shared_vars() may help you.")
16 | if isinstance(loss_or_grads, list):
17 | if not len(loss_or_grads) == len(params):
18 | raise ValueError("Got %d gradient expressions for %d parameters" %
19 | (len(loss_or_grads), len(params)))
20 | return loss_or_grads
21 | else:
22 | return theano.grad(loss_or_grads, params)
23 |
24 |
25 | def sgd(loss_or_grads, params, learning_rate):
26 | grads = get_or_compute_grads(loss_or_grads, params)
27 | updates = OrderedDict()
28 |
29 | for param, grad in zip(params, grads):
30 | updates[param] = param - learning_rate * grad
31 |
32 | return updates
33 |
34 |
35 | def apply_momentum(updates, params=None, momentum=0.9):
36 | if params is None:
37 | params = updates.keys()
38 | updates = OrderedDict(updates)
39 |
40 | for param in params:
41 | value = param.get_value(borrow=True)
42 | velocity = theano.shared(np.zeros(value.shape, dtype=value.dtype),
43 | broadcastable=param.broadcastable)
44 | x = momentum * velocity + updates[param]
45 | updates[velocity] = x - param
46 | updates[param] = x
47 |
48 | return updates
49 |
50 |
51 | def momentum(loss_or_grads, params, learning_rate, momentum=0.9):
52 | updates = sgd(loss_or_grads, params, learning_rate)
53 | return apply_momentum(updates, momentum=momentum)
54 |
55 |
56 | def apply_nesterov_momentum(updates, params=None, momentum=0.9):
57 | if params is None:
58 | params = updates.keys()
59 | updates = OrderedDict(updates)
60 |
61 | for param in params:
62 | value = param.get_value(borrow=True)
63 | velocity = theano.shared(np.zeros(value.shape, dtype=value.dtype),
64 | broadcastable=param.broadcastable)
65 | x = momentum * velocity + updates[param] - param
66 | updates[velocity] = x
67 | updates[param] = momentum * x + updates[param]
68 |
69 | return updates
70 |
71 |
72 | def nesterov_momentum(loss_or_grads, params, learning_rate, momentum=0.9):
73 | updates = sgd(loss_or_grads, params, learning_rate)
74 | return apply_nesterov_momentum(updates, momentum=momentum)
75 |
76 |
77 | def adagrad(loss_or_grads, params, learning_rate=1.0, epsilon=1e-6):
78 | grads = get_or_compute_grads(loss_or_grads, params)
79 | updates = OrderedDict()
80 |
81 | for param, grad in zip(params, grads):
82 | value = param.get_value(borrow=True)
83 | accu = theano.shared(np.zeros(value.shape, dtype=value.dtype),
84 | broadcastable=param.broadcastable)
85 | accu_new = accu + grad ** 2
86 | updates[accu] = accu_new
87 | updates[param] = param - (learning_rate * grad /
88 | T.sqrt(accu_new + epsilon))
89 |
90 | return updates
91 |
92 |
93 | def rmsprop(loss_or_grads, params, learning_rate=1.0, rho=0.9, epsilon=1e-6):
94 | grads = get_or_compute_grads(loss_or_grads, params)
95 | updates = OrderedDict()
96 |
97 | # Using theano constant to prevent upcasting of float32
98 | one = T.constant(1)
99 |
100 | for param, grad in zip(params, grads):
101 | value = param.get_value(borrow=True)
102 | accu = theano.shared(np.zeros(value.shape, dtype=value.dtype),
103 | broadcastable=param.broadcastable)
104 | accu_new = rho * accu + (one - rho) * grad ** 2
105 | updates[accu] = accu_new
106 | updates[param] = param - (learning_rate * grad /
107 | T.sqrt(accu_new + epsilon))
108 |
109 | return updates
110 |
111 |
112 | def adadelta(loss_or_grads, params, learning_rate=1.0, rho=0.95, epsilon=1e-6):
113 | grads = get_or_compute_grads(loss_or_grads, params)
114 | updates = OrderedDict()
115 |
116 | # Using theano constant to prevent upcasting of float32
117 | one = T.constant(1)
118 |
119 | for param, grad in zip(params, grads):
120 | value = param.get_value(borrow=True)
121 | # accu: accumulate gradient magnitudes
122 | accu = theano.shared(np.zeros(value.shape, dtype=value.dtype),
123 | broadcastable=param.broadcastable)
124 | # delta_accu: accumulate update magnitudes (recursively!)
125 | delta_accu = theano.shared(np.zeros(value.shape, dtype=value.dtype),
126 | broadcastable=param.broadcastable)
127 |
128 | # update accu (as in rmsprop)
129 | accu_new = rho * accu + (one - rho) * grad ** 2
130 | updates[accu] = accu_new
131 |
132 | # compute parameter update, using the 'old' delta_accu
133 | update = (grad * T.sqrt(delta_accu + epsilon) /
134 | T.sqrt(accu_new + epsilon))
135 | updates[param] = param - learning_rate * update
136 |
137 | # update delta_accu (as accu, but accumulating updates)
138 | delta_accu_new = rho * delta_accu + (one - rho) * update ** 2
139 | updates[delta_accu] = delta_accu_new
140 |
141 | return updates
142 |
143 |
144 | def adam(loss_or_grads, params, learning_rate=0.001, beta1=0.9,
145 | beta2=0.999, epsilon=1e-8):
146 | # if isinstance(loss_or_grads, list):
147 | # if not len(loss_or_grads) == len(params):
148 | # raise ValueError("Got %d gradient expressions for %d parameters" %
149 | # (len(loss_or_grads), len(params)))
150 | # all_grads = loss_or_grads
151 | # else:
152 | # all_grads = theano.grad(loss_or_grads, params)
153 | all_grads = get_or_compute_grads(loss_or_grads, params)
154 | # t_prev = theano.shared(lasagne.utils.floatX(0.))
155 | t_prev = theano.shared(np.float32(0.))
156 | updates = OrderedDict()
157 |
158 | t = t_prev + 1
159 | a_t = learning_rate*T.sqrt(1-beta2**t)/(1-beta1**t)
160 |
161 | for param, g_t in zip(params, all_grads):
162 | value = param.get_value(borrow=True)
163 | m_prev = theano.shared(np.zeros(value.shape, dtype=value.dtype),
164 | broadcastable=param.broadcastable)
165 | v_prev = theano.shared(np.zeros(value.shape, dtype=value.dtype),
166 | broadcastable=param.broadcastable)
167 |
168 | m_t = beta1*m_prev + (1-beta1)*g_t
169 | v_t = beta2*v_prev + (1-beta2)*g_t**2
170 | step = a_t*m_t/(T.sqrt(v_t) + epsilon)
171 |
172 | updates[m_prev] = m_t
173 | updates[v_prev] = v_t
174 | updates[param] = param - step
175 |
176 | updates[t_prev] = t
177 | return updates
--------------------------------------------------------------------------------
/RNN/optimizer.py:
--------------------------------------------------------------------------------
1 |
2 | from collections import OrderedDict
3 |
4 | import numpy as np
5 |
6 | import theano
7 | import theano.tensor as T
8 | # from . import utils
9 |
10 |
11 | def get_or_compute_grads(loss_or_grads, params):
12 | if any(not isinstance(p, theano.compile.SharedVariable) for p in params):
13 | raise ValueError("params must contain shared variables only. If it "
14 | "contains arbitrary parameter expressions, then "
15 | "lasagne.utils.collect_shared_vars() may help you.")
16 | if isinstance(loss_or_grads, list):
17 | if not len(loss_or_grads) == len(params):
18 | raise ValueError("Got %d gradient expressions for %d parameters" %
19 | (len(loss_or_grads), len(params)))
20 | return loss_or_grads
21 | else:
22 | return theano.grad(loss_or_grads, params)
23 |
24 |
25 | def sgd(loss_or_grads, params, learning_rate):
26 | grads = get_or_compute_grads(loss_or_grads, params)
27 | updates = OrderedDict()
28 |
29 | for param, grad in zip(params, grads):
30 | updates[param] = param - learning_rate * grad
31 |
32 | return updates
33 |
34 |
35 | def apply_momentum(updates, params=None, momentum=0.9):
36 | if params is None:
37 | params = updates.keys()
38 | updates = OrderedDict(updates)
39 |
40 | for param in params:
41 | value = param.get_value(borrow=True)
42 | velocity = theano.shared(np.zeros(value.shape, dtype=value.dtype),
43 | broadcastable=param.broadcastable)
44 | x = momentum * velocity + updates[param]
45 | updates[velocity] = x - param
46 | updates[param] = x
47 |
48 | return updates
49 |
50 |
51 | def momentum(loss_or_grads, params, learning_rate, momentum=0.9):
52 | updates = sgd(loss_or_grads, params, learning_rate)
53 | return apply_momentum(updates, momentum=momentum)
54 |
55 |
56 | def apply_nesterov_momentum(updates, params=None, momentum=0.9):
57 | if params is None:
58 | params = updates.keys()
59 | updates = OrderedDict(updates)
60 |
61 | for param in params:
62 | value = param.get_value(borrow=True)
63 | velocity = theano.shared(np.zeros(value.shape, dtype=value.dtype),
64 | broadcastable=param.broadcastable)
65 | x = momentum * velocity + updates[param] - param
66 | updates[velocity] = x
67 | updates[param] = momentum * x + updates[param]
68 |
69 | return updates
70 |
71 |
72 | def nesterov_momentum(loss_or_grads, params, learning_rate, momentum=0.9):
73 | updates = sgd(loss_or_grads, params, learning_rate)
74 | return apply_nesterov_momentum(updates, momentum=momentum)
75 |
76 |
77 | def adagrad(loss_or_grads, params, learning_rate=1.0, epsilon=1e-6):
78 | grads = get_or_compute_grads(loss_or_grads, params)
79 | updates = OrderedDict()
80 |
81 | for param, grad in zip(params, grads):
82 | value = param.get_value(borrow=True)
83 | accu = theano.shared(np.zeros(value.shape, dtype=value.dtype),
84 | broadcastable=param.broadcastable)
85 | accu_new = accu + grad ** 2
86 | updates[accu] = accu_new
87 | updates[param] = param - (learning_rate * grad /
88 | T.sqrt(accu_new + epsilon))
89 |
90 | return updates
91 |
92 |
93 | def rmsprop(loss_or_grads, params, learning_rate=1.0, rho=0.9, epsilon=1e-6):
94 | grads = get_or_compute_grads(loss_or_grads, params)
95 | updates = OrderedDict()
96 |
97 | # Using theano constant to prevent upcasting of float32
98 | one = T.constant(1)
99 |
100 | for param, grad in zip(params, grads):
101 | value = param.get_value(borrow=True)
102 | accu = theano.shared(np.zeros(value.shape, dtype=value.dtype),
103 | broadcastable=param.broadcastable)
104 | accu_new = rho * accu + (one - rho) * grad ** 2
105 | updates[accu] = accu_new
106 | updates[param] = param - (learning_rate * grad /
107 | T.sqrt(accu_new + epsilon))
108 |
109 | return updates
110 |
111 |
112 | def adadelta(loss_or_grads, params, learning_rate=1.0, rho=0.95, epsilon=1e-6):
113 | grads = get_or_compute_grads(loss_or_grads, params)
114 | updates = OrderedDict()
115 |
116 | # Using theano constant to prevent upcasting of float32
117 | one = T.constant(1)
118 |
119 | for param, grad in zip(params, grads):
120 | value = param.get_value(borrow=True)
121 | # accu: accumulate gradient magnitudes
122 | accu = theano.shared(np.zeros(value.shape, dtype=value.dtype),
123 | broadcastable=param.broadcastable)
124 | # delta_accu: accumulate update magnitudes (recursively!)
125 | delta_accu = theano.shared(np.zeros(value.shape, dtype=value.dtype),
126 | broadcastable=param.broadcastable)
127 |
128 | # update accu (as in rmsprop)
129 | accu_new = rho * accu + (one - rho) * grad ** 2
130 | updates[accu] = accu_new
131 |
132 | # compute parameter update, using the 'old' delta_accu
133 | update = (grad * T.sqrt(delta_accu + epsilon) /
134 | T.sqrt(accu_new + epsilon))
135 | updates[param] = param - learning_rate * update
136 |
137 | # update delta_accu (as accu, but accumulating updates)
138 | delta_accu_new = rho * delta_accu + (one - rho) * update ** 2
139 | updates[delta_accu] = delta_accu_new
140 |
141 | return updates
142 |
143 |
144 | def adam(loss_or_grads, params, learning_rate=0.001, beta1=0.9,
145 | beta2=0.999, epsilon=1e-8):
146 | # if isinstance(loss_or_grads, list):
147 | # if not len(loss_or_grads) == len(params):
148 | # raise ValueError("Got %d gradient expressions for %d parameters" %
149 | # (len(loss_or_grads), len(params)))
150 | # all_grads = loss_or_grads
151 | # else:
152 | # all_grads = theano.grad(loss_or_grads, params)
153 | all_grads = get_or_compute_grads(loss_or_grads, params)
154 | # t_prev = theano.shared(lasagne.utils.floatX(0.))
155 | t_prev = theano.shared(np.float32(0.))
156 | updates = OrderedDict()
157 |
158 | t = t_prev + 1
159 | a_t = learning_rate*T.sqrt(1-beta2**t)/(1-beta1**t)
160 |
161 | for param, g_t in zip(params, all_grads):
162 | value = param.get_value(borrow=True)
163 | m_prev = theano.shared(np.zeros(value.shape, dtype=value.dtype),
164 | broadcastable=param.broadcastable)
165 | v_prev = theano.shared(np.zeros(value.shape, dtype=value.dtype),
166 | broadcastable=param.broadcastable)
167 |
168 | m_t = beta1*m_prev + (1-beta1)*g_t
169 | v_t = beta2*v_prev + (1-beta2)*g_t**2
170 | step = a_t*m_t/(T.sqrt(v_t) + epsilon)
171 |
172 | updates[m_prev] = m_t
173 | updates[v_prev] = v_t
174 | updates[param] = param - step
175 |
176 | updates[t_prev] = t
177 | return updates
--------------------------------------------------------------------------------
/RNN/linux.py:
--------------------------------------------------------------------------------
1 | from __future__ import print_function
2 |
3 | import sys
4 | import os
5 | import time
6 |
7 | import numpy as np
8 | np.random.seed(1234)
9 |
10 |
11 | import theano
12 | import theano.tensor as T
13 |
14 | import lasagne
15 |
16 | import cPickle as pickle
17 | import gzip
18 |
19 | import lab
20 |
21 | from pylearn2.datasets.mnist import MNIST
22 | from pylearn2.utils import serial
23 |
24 | from collections import OrderedDict
25 | import ipdb
26 | from argparse import ArgumentParser
27 | import optimizer
28 |
29 |
30 | def main(method,LR_start,Binarize_weight_only, SEQ_LENGTH):
31 |
32 | lasagne.random.set_rng(np.random.RandomState(1))
33 |
34 | name = "linux"
35 | print("dataset = "+str(name))
36 |
37 | print("Binarize_weight_only="+str(Binarize_weight_only))
38 |
39 | print("Method = "+str(method))
40 |
41 | # Sequence Length
42 | SEQ_LENGTH = SEQ_LENGTH
43 | # SEQ_LENGTH = 100 #can have diffvalues 50, 100, 200
44 | print("SEQ_LENGTH = "+str(SEQ_LENGTH))
45 |
46 | # Number of units in the two hidden (LSTM) layers
47 | N_HIDDEN = 512
48 | print("N_HIDDEN = "+str(N_HIDDEN))
49 |
50 | # All gradients above this will be clipped
51 | GRAD_CLIP=5. #### this clip the gradients at every time step, while T.clip clips the sum of gradients as a whole
52 | print("GRAD_CLIP ="+str(GRAD_CLIP))
53 |
54 | # Number of epochs to train the net
55 | num_epochs = 200
56 | print("num_epochs = "+str(num_epochs))
57 |
58 | # Batch Size
59 | batch_size = 100
60 | print("batch_size = "+str(batch_size))
61 |
62 | print("LR_start = "+str(LR_start))
63 | LR_decay = 0.98
64 | print("LR_decay="+str(LR_decay))
65 |
66 | if Binarize_weight_only =="w":
67 | activation = lasagne.nonlinearities.tanh
68 | else:
69 | activation = lab.binary_tanh_unit
70 | print("activation = "+ str(activation))
71 |
72 | name = name+"_"+Binarize_weight_only
73 |
74 | ## load data, change data file dir
75 | with open('data/linux_input.txt', 'r') as f:
76 | in_text = f.read()
77 |
78 | generation_phrase = "Copyright (C) 1992, 1998-2004 Linus Torvalds, Ingo Molnar\n *\n * This file contains the interrupt probing code and driver APIs.\n */\n\n#include"
79 | #This snippet loads the text file and creates dictionaries to
80 | #encode characters into a vector-space representation and vice-versa.
81 | chars = list(set(in_text))
82 | data_size, vocab_size = len(in_text), len(chars)
83 | char_to_ix = { ch:i for i,ch in enumerate(chars) }
84 | ix_to_char = { i:ch for i,ch in enumerate(chars) }
85 |
86 | num_splits = [0.9, 0.05, 0.05]
87 | num_splits_all = np.floor(data_size/batch_size/SEQ_LENGTH)
88 | num_train = np.floor(num_splits_all*num_splits[0])
89 | num_val = np.floor(num_splits_all*num_splits[1])
90 | num_test = num_splits_all - num_train - num_val
91 |
92 | train_X = in_text[0:(num_train*batch_size*SEQ_LENGTH+1).astype('int32')]
93 | val_X = in_text[(num_train*batch_size*SEQ_LENGTH).astype('int32'):((num_train+num_val)*batch_size*SEQ_LENGTH+1).astype('int32')]
94 | test_X = in_text[((num_train+num_val)*batch_size*SEQ_LENGTH).astype('int32'):(num_splits_all*batch_size*SEQ_LENGTH+1).astype('int32')]
95 |
96 |
97 | ## build model
98 | print('Building the model...')
99 |
100 | # input = T.tensor3('inputs')
101 | target = T.imatrix('target')
102 | LR = T.scalar('LR', dtype=theano.config.floatX)
103 |
104 | # (batch size, SEQ_LENGTH, num_features)
105 | l_in = lasagne.layers.InputLayer(shape=(None, None, vocab_size))
106 | l_forward_2 = lab.LSTMLayer(
107 | l_in,
108 | num_units=N_HIDDEN,
109 | grad_clipping=GRAD_CLIP,
110 | peepholes=False,
111 | nonlinearity=activation, ### change this activation can change the hidden layer to binary
112 | method=method) ### batch_size*SEQ_LENGTH*N_HIDDEN
113 |
114 | l_shp = lasagne.layers.ReshapeLayer(l_forward_2, (-1, N_HIDDEN)) ## (batch_size*SEQ_LENGTH, N_HIDDEN)
115 | l_out = lasagne.layers.DenseLayer(l_shp, num_units=vocab_size, W = lasagne.init.Normal(), nonlinearity=lasagne.nonlinearities.softmax)
116 | batchsize, seqlen, _ = l_in.input_var.shape
117 | l_shp1 = lasagne.layers.ReshapeLayer(l_out, (batchsize, seqlen, vocab_size))
118 | l_out1 = lasagne.layers.SliceLayer(l_shp1, -1, 1)
119 |
120 | train_output = lasagne.layers.get_output(l_out, deterministic=False)
121 | loss = T.nnet.categorical_crossentropy(train_output,target.flatten()).mean()
122 |
123 |
124 | if method!= "FPN":
125 | # W updates
126 | W = lasagne.layers.get_all_params(l_out, binary=True)
127 | W_grads = lab.compute_grads(loss,l_out)
128 | updates = optimizer.adam(loss_or_grads=W_grads, params=W, learning_rate=LR, epsilon = 1e-8) ### can choose different methods to update
129 | updates = lab.clipping_scaling(updates,l_out)
130 |
131 | # other parameters updates
132 | params = lasagne.layers.get_all_params(l_out, trainable=True, binary=False)
133 | updates = OrderedDict(updates.items() + optimizer.adam(loss_or_grads=loss, params=params, learning_rate=LR, epsilon = 1e-8).items())
134 |
135 | ## update 2 momentum
136 | updates3 = OrderedDict()
137 | acc_tag = lasagne.layers.get_all_params(l_out, acc=True)
138 | idx = 0
139 | beta2 = 0.999
140 | for acc_tag_temp in acc_tag:
141 | # updates3[acc_tag_temp]=updates.keys()[idx]
142 | updates3[acc_tag_temp]= acc_tag_temp*beta2 + W_grads[idx]*W_grads[idx]*(1-beta2)
143 | idx = idx+1
144 |
145 | updates = OrderedDict(updates.items() + updates3.items())
146 |
147 | else:
148 | params_other = lasagne.layers.get_all_params(l_out, trainable=True)
149 |
150 | W_grads = [theano.grad(loss, wrt=l_forward_2.W_in_to_ingate), theano.grad(loss, wrt=l_forward_2.W_hid_to_ingate),
151 | theano.grad(loss, wrt=l_forward_2.W_in_to_fotgetgate),theano.grad(loss, wrt=l_forward_2.W_hid_to_forgetgate),
152 | theano.grad(loss, wrt=l_forward_2.W_in_to_cell),theano.grad(loss, wrt=l_forward_2.W_hid_to_cell),
153 | theano.grad(loss, wrt=l_forward_2.W_in_to_outgate),theano.grad(loss, wrt=l_forward_2.W_hid_to_outgate)]
154 |
155 | updates = optimizer.adam(loss_or_grads=loss, params=params_other, learning_rate=LR)
156 |
157 | test_output = lasagne.layers.get_output(l_out, deterministic=True)
158 | test_loss = T.nnet.categorical_crossentropy(test_output,target.flatten()).mean()
159 |
160 |
161 |
162 | train_fn = theano.function([l_in.input_var, target, LR], [loss, W_grads[5]], updates=updates, allow_input_downcast=True)
163 | val_fn = theano.function([l_in.input_var, target], test_loss, allow_input_downcast=True)
164 | probs = theano.function([l_in.input_var],lasagne.layers.get_output(l_out1), allow_input_downcast=True)
165 |
166 |
167 | print('Training...')
168 |
169 | lab.train(
170 | name, method,
171 | train_fn,val_fn,
172 | batch_size,
173 | SEQ_LENGTH,
174 | N_HIDDEN,
175 | LR_start,LR_decay,
176 | num_epochs,
177 | train_X,
178 | val_X,
179 | test_X)
180 |
181 |
182 | if __name__ == "__main__":
183 | parser = ArgumentParser()
184 | parser.add_argument("--method", type=str, dest="method",
185 | default="LAB", help="Method used")
186 | parser.add_argument("--lr_start", type=float, dest="LR_start",
187 | default=2e-3, help="Learning rate")
188 | parser.add_argument("--w", type=str, dest="Binarize_weight_only",
189 | default="w", help="true:only binzrize w, false: binarize w and a")
190 | parser.add_argument("--len", type=int, dest="SEQ_LENGTH",
191 | default=100, help="unrolled timesteps for LSTM")
192 | args = parser.parse_args()
193 |
194 | main(**vars(args))
195 |
--------------------------------------------------------------------------------
/RNN/warpeace.py:
--------------------------------------------------------------------------------
1 | from __future__ import print_function
2 |
3 | import sys
4 | import os
5 | import time
6 |
7 | import numpy as np
8 | np.random.seed(1234)
9 |
10 |
11 | import theano
12 | import theano.tensor as T
13 |
14 | import lasagne
15 |
16 | import cPickle as pickle
17 | import gzip
18 |
19 | import lab
20 | import optimizer
21 |
22 | # from pylearn2.datasets.mnist import MNIST
23 | from pylearn2.utils import serial
24 |
25 | from collections import OrderedDict
26 | import ipdb
27 | from argparse import ArgumentParser
28 |
29 |
30 | def main(method,LR_start,Binarize_weight_only, SEQ_LENGTH):
31 |
32 | lasagne.random.set_rng(np.random.RandomState(1))
33 |
34 | name = "warpeace"
35 | print("dataset = "+str(name))
36 |
37 | print("Binarize_weight_only="+str(Binarize_weight_only))
38 |
39 | print("Method = "+str(method))
40 |
41 | SEQ_LENGTH = SEQ_LENGTH
42 | # Sequence Length
43 | # SEQ_LENGTH = 50 #can have diffvalues 50, 100, 200
44 | print("SEQ_LENGTH = "+str(SEQ_LENGTH))
45 |
46 | # Number of units in the two hidden (LSTM) layers
47 | N_HIDDEN = 512
48 | print("N_HIDDEN = "+str(N_HIDDEN))
49 |
50 | # All gradients above this will be clipped
51 | GRAD_CLIP=5. #### this clip the gradients at every time step, while T.clip clip the sum of gradients as a whole
52 | print("GRAD_CLIP ="+str(GRAD_CLIP))
53 |
54 | # Number of epochs to train the net
55 | num_epochs = 200
56 | print("num_epochs = "+str(num_epochs))
57 |
58 | # Batch Size
59 | batch_size = 100
60 | print("batch_size = "+str(batch_size))
61 |
62 | print("LR_start = "+str(LR_start))
63 | LR_decay = 0.98
64 | print("LR_decay="+str(LR_decay))
65 |
66 | if Binarize_weight_only == "w":
67 | activation = lasagne.nonlinearities.tanh
68 | else:
69 | activation = lab.binary_tanh_unit
70 | print("activation = "+ str(activation))
71 |
72 | name = name+"_"+Binarize_weight_only
73 |
74 | ## load data, change the data file dir
75 | with open('data/warpeace_input.txt', 'r') as f:
76 | in_text = f.read()
77 | # generation_phrase = "Anna Pavlovna's drawing room was gradually filling. The highest Petersburg society was assembled there: people differing widely in"
78 | generation_phrase = "With\r\nthese words she greeted Prince Vasili Kuragin, a man of high rank and\r\nimportance, who was the first to arrive at her reception. Anna Pavlovna\r\nhad had a cough for some days. She was, as sh"
79 | #This snippet loads the text file and creates dictionaries to
80 | #encode characters into a vector-space representation and vice-versa.
81 | chars = list(set(in_text))
82 | data_size, vocab_size = len(in_text), len(chars)
83 | char_to_ix = { ch:i for i,ch in enumerate(chars) }
84 | ix_to_char = { i:ch for i,ch in enumerate(chars) }
85 |
86 | num_splits = [0.8, 0.1, 0.1]
87 | num_splits_all = np.floor(data_size/batch_size/SEQ_LENGTH)
88 | num_train = np.floor(num_splits_all*num_splits[0])
89 | num_val = np.floor(num_splits_all*num_splits[1])
90 | num_test = num_splits_all - num_train - num_val
91 |
92 | train_X = in_text[0:(num_train*batch_size*SEQ_LENGTH+1).astype('int32')]
93 | val_X = in_text[(num_train*batch_size*SEQ_LENGTH).astype('int32'):((num_train+num_val)*batch_size*SEQ_LENGTH+1).astype('int32')]
94 | test_X = in_text[((num_train+num_val)*batch_size*SEQ_LENGTH).astype('int32'):(num_splits_all*batch_size*SEQ_LENGTH+1).astype('int32')]
95 |
96 | ## build model
97 | print('Building the model...')
98 | # input = T.tensor3('inputs')
99 | target = T.imatrix('target')
100 | LR = T.scalar('LR', dtype=theano.config.floatX)
101 |
102 | # (batch size, SEQ_LENGTH, num_features)
103 | l_in = lasagne.layers.InputLayer(shape=(None, None, vocab_size))
104 | l_forward_2 = lab.LSTMLayer(
105 | l_in,
106 | num_units=N_HIDDEN,
107 | grad_clipping=GRAD_CLIP,
108 | peepholes=False,
109 | nonlinearity=activation,
110 | method=method) ### batch_size*SEQ_LENGTH*N_HIDDEN
111 |
112 | l_shp = lasagne.layers.ReshapeLayer(l_forward_2, (-1, N_HIDDEN)) ## (batch_size*SEQ_LENGTH, N_HIDDEN)
113 | l_out = lasagne.layers.DenseLayer(l_shp, num_units=vocab_size, W = lasagne.init.Normal(), nonlinearity=lasagne.nonlinearities.softmax)
114 | batchsize, seqlen, _ = l_in.input_var.shape
115 | l_shp1 = lasagne.layers.ReshapeLayer(l_out, (batchsize, seqlen, vocab_size))
116 | l_out1 = lasagne.layers.SliceLayer(l_shp1, -1, 1)
117 |
118 | train_output = lasagne.layers.get_output(l_out, deterministic=False)
119 | loss = T.nnet.categorical_crossentropy(train_output,target.flatten()).mean()
120 |
121 |
122 | if method!= "FPN":
123 | # W updates
124 | W = lasagne.layers.get_all_params(l_out, binary=True)
125 | W_grads = lab.compute_grads(loss,l_out)
126 | updates = optimizer.adam(loss_or_grads=W_grads, params=W, learning_rate=LR, epsilon = 1e-8) ### can choose different methods to update
127 | updates = lab.clipping_scaling(updates,l_out)
128 |
129 | # other parameters updates
130 | params = lasagne.layers.get_all_params(l_out, trainable=True, binary=False)
131 | updates = OrderedDict(updates.items() + optimizer.adam(loss_or_grads=loss, params=params, learning_rate=LR, epsilon = 1e-8).items())
132 |
133 | ## update 2nd momentum
134 | updates3 = OrderedDict()
135 | acc_tag = lasagne.layers.get_all_params(l_out, acc=True)
136 | idx = 0
137 | beta2 = 0.999
138 | for acc_tag_temp in acc_tag:
139 | updates3[acc_tag_temp]= acc_tag_temp*beta2 + W_grads[idx]*W_grads[idx]*(1-beta2)
140 | idx = idx+1
141 |
142 | updates = OrderedDict(updates.items() + updates3.items())
143 |
144 | else:
145 | params_other = lasagne.layers.get_all_params(l_out, trainable=True)
146 |
147 | W_grads = [theano.grad(loss, wrt=l_forward_2.W_in_to_ingate), theano.grad(loss, wrt=l_forward_2.W_hid_to_ingate),
148 | theano.grad(loss, wrt=l_forward_2.W_in_to_forgetgate),theano.grad(loss, wrt=l_forward_2.W_hid_to_forgetgate),
149 | theano.grad(loss, wrt=l_forward_2.W_in_to_cell),theano.grad(loss, wrt=l_forward_2.W_hid_to_cell),
150 | theano.grad(loss, wrt=l_forward_2.W_in_to_outgate),theano.grad(loss, wrt=l_forward_2.W_hid_to_outgate)]
151 |
152 | updates = optimizer.adam(loss_or_grads=loss, params=params_other, learning_rate=LR)
153 |
154 | test_output = lasagne.layers.get_output(l_out, deterministic=True)
155 | test_loss = T.nnet.categorical_crossentropy(test_output,target.flatten()).mean()
156 |
157 | train_fn = theano.function([l_in.input_var, target, LR], [loss, W_grads[5]], updates=updates, allow_input_downcast=True)
158 | val_fn = theano.function([l_in.input_var, target], test_loss, allow_input_downcast=True)
159 | probs = theano.function([l_in.input_var],lasagne.layers.get_output(l_out1), allow_input_downcast=True)
160 |
161 |
162 | print('Training...')
163 |
164 | lab.train(
165 | name, method,
166 | train_fn,val_fn,
167 | batch_size,
168 | SEQ_LENGTH,
169 | N_HIDDEN,
170 | LR_start,LR_decay,
171 | num_epochs,
172 | train_X,
173 | val_X,
174 | test_X)
175 |
176 |
177 | if __name__ == "__main__":
178 | parser = ArgumentParser()
179 | parser.add_argument("--method", type=str, dest="method",
180 | default="LAB", help="Method used")
181 | parser.add_argument("--lr_start", type=float, dest="LR_start",
182 | default=2e-3, help="Learning rate")
183 | parser.add_argument("--w", type=str, dest="Binarize_weight_only",
184 | default="w", help="w:only binzrize w, wa: binarize w and a")
185 | parser.add_argument("--len", type=int, dest="SEQ_LENGTH",
186 | default=100, help="unrolled timesteps for LSTM")
187 | args = parser.parse_args()
188 |
189 | main(**vars(args))
--------------------------------------------------------------------------------
/FNN/lab.py:
--------------------------------------------------------------------------------
1 | import time
2 |
3 | from collections import OrderedDict
4 |
5 | import numpy as np
6 | np.random.seed(1234)
7 |
8 | import ipdb
9 |
10 | import theano
11 | import theano.tensor as T
12 |
13 | import lasagne
14 | from theano.scalar.basic import UnaryScalarOp, same_out_nocomplex
15 | from theano.tensor.elemwise import Elemwise
16 | from theano.sandbox.rng_mrg import MRG_RandomStreams as RandomStreams
17 |
18 | class Round3(UnaryScalarOp):
19 |
20 | def c_code(self, node, name, (x,), (z,), sub):
21 | return "%(z)s = round(%(x)s);" % locals()
22 |
23 | def grad(self, inputs, gout):
24 | (gz,) = gout
25 | return gz,
26 |
27 | round3_scalar = Round3(same_out_nocomplex, name='round3')
28 | round3 = Elemwise(round3_scalar)
29 |
30 | def hard_sigmoid(x):
31 | return T.clip((x+1.)/2.,0,1)
32 |
33 | def binary_tanh_unit(x):
34 | return 2.*round3(hard_sigmoid(x))-1.
35 |
36 | def binary_sigmoid_unit(x):
37 | return round3(hard_sigmoid(x))
38 |
39 |
40 | # The binarization function
41 | def binarization(W,Wacc,method):
42 |
43 | if method == "FPN":
44 | Wb = W
45 |
46 | elif method == "LAB":
47 | L = (T.sqrt(Wacc) + 1e-8)
48 | Wb = hard_sigmoid(W)
49 | Wb = round3(Wb)
50 | Wb = T.cast(T.switch(Wb,1.,-1.), theano.config.floatX)
51 |
52 | alpha = (T.abs_(L*W).sum()/L.sum()).astype('float32')
53 | Wb = alpha*Wb
54 |
55 | return Wb
56 |
57 |
58 | # This class extends the Lasagne DenseLayer to support LAB
59 | class DenseLayer(lasagne.layers.DenseLayer):
60 |
61 | def __init__(self, incoming, num_units, method, **kwargs):
62 |
63 | self.method = method
64 | num_inputs = int(np.prod(incoming.output_shape[1:]))
65 | g_init = np.float32(np.sqrt(1.5/ (num_inputs + num_units)))
66 | if self.method !="FPN":
67 | super(DenseLayer, self).__init__(incoming, num_units, W=lasagne.init.Uniform((-g_init,g_init)), **kwargs)
68 | # add the binary tag to weights
69 | self.params[self.W]=set(['binary'])
70 | else:
71 | super(DenseLayer, self).__init__(incoming, num_units, **kwargs)
72 | # add the acc tag to 2nd momentum
73 | self.acc_W = theano.shared(np.zeros((self.W.get_value(borrow=True)).shape, dtype='float32'))
74 | self.params[self.acc_W]=set(['acc'])
75 |
76 | def get_output_for(self, input, deterministic=False, **kwargs):
77 |
78 | self.Wb = binarization(self.W, self.acc_W, self.method)
79 | Wr = self.W
80 | self.W = self.Wb
81 |
82 | rvalue = super(DenseLayer, self).get_output_for(input, **kwargs)
83 |
84 | self.W = Wr
85 |
86 | return rvalue
87 |
88 | # This class extends the Lasagne Conv2DLayer to support LAB
89 | class Conv2DLayer(lasagne.layers.Conv2DLayer):
90 |
91 | def __init__(self, incoming, num_filters, filter_size, method, **kwargs):
92 |
93 | self.method = method
94 |
95 | num_inputs = int(np.prod(filter_size)*incoming.output_shape[1])
96 | num_units = int(np.prod(filter_size)*num_filters) # theoretically, I should divide num_units by the pool_shape
97 | g_init = np.float32(np.sqrt(1.5/ (num_inputs + num_units)))
98 |
99 | if self.method!="FPN":
100 | super(Conv2DLayer, self).__init__(incoming, num_filters, filter_size, W=lasagne.init.Uniform((-g_init,g_init)), **kwargs)
101 | # add the binary tag to weights
102 | self.params[self.W]=set(['binary'])
103 | else:
104 | super(Conv2DLayer, self).__init__(incoming, num_filters, filter_size, **kwargs)
105 |
106 | self.acc_W = theano.shared(np.zeros((self.W.get_value(borrow=True)).shape, dtype='float32'))
107 | self.params[self.acc_W]=set(['acc'])
108 |
109 |
110 | def get_output_for(self, input, deterministic=False, **kwargs):
111 |
112 | self.Wb = binarization(self.W, self.acc_W, self.method)
113 | Wr = self.W
114 | self.W = self.Wb
115 | rvalue = super(Conv2DLayer, self).get_output_for(input, **kwargs)
116 | self.W = Wr
117 |
118 | return rvalue
119 |
120 | def compute_grads(loss,network):
121 |
122 | layers = lasagne.layers.get_all_layers(network)
123 | grads = []
124 |
125 | for layer in layers:
126 | params = layer.get_params(binary=True)
127 | if params:
128 | grads.append(theano.grad(loss, wrt=layer.Wb))
129 |
130 | return grads
131 |
132 | # This functions clips the weights after the parameter update
133 | def clipping_scaling(updates,network):
134 |
135 | layers = lasagne.layers.get_all_layers(network)
136 | updates = OrderedDict(updates)
137 |
138 | for layer in layers:
139 | params = layer.get_params(binary=True)
140 | for param in params:
141 | updates[param] = T.clip(updates[param],-1.,1.)
142 | return updates
143 |
144 | # Given a dataset and a model, this function trains the model on the dataset for several epochs
145 | # (There is no default train function in Lasagne yet)
146 | def train(name,method,train_fn,val_fn,
147 | batch_size,
148 | LR_start,LR_decay,
149 | num_epochs,
150 | X_train,y_train,
151 | X_val,y_val,
152 | X_test,y_test):
153 |
154 | # This function trains the model a full epoch (on the whole dataset)
155 | def train_epoch(X,y,LR):
156 |
157 | loss = 0
158 | batches = len(X)/batch_size
159 | # move shuffle here to save memory
160 | shuffled_range = range(len(X))
161 | np.random.shuffle(shuffled_range)
162 |
163 | for i in range(batches):
164 | tmp_ind = shuffled_range[i*batch_size:(i+1)*batch_size]
165 | newloss = train_fn(X[tmp_ind],y[tmp_ind],LR)
166 | loss +=newloss
167 | loss/=batches
168 |
169 | return loss
170 |
171 | # This function tests the model a full epoch (on the whole dataset)
172 | def val_epoch(X,y):
173 |
174 | err = 0
175 | loss = 0
176 | batches = len(X)/batch_size
177 |
178 | for i in range(batches):
179 | new_loss, new_err = val_fn(X[i*batch_size:(i+1)*batch_size], y[i*batch_size:(i+1)*batch_size])
180 | err += new_err
181 | loss += new_loss
182 |
183 | err = err / batches * 100
184 | loss /= batches
185 |
186 | return err, loss
187 |
188 |
189 | best_val_err = 100
190 | best_epoch = 1
191 | LR = LR_start
192 | # We iterate over epochs:
193 | for epoch in range(1, num_epochs+1):
194 |
195 | start_time = time.time()
196 | train_loss = train_epoch(X_train,y_train,LR)
197 |
198 | val_err, val_loss = val_epoch(X_val,y_val)
199 |
200 | # test if validation error went down
201 | if val_err <= best_val_err:
202 |
203 | best_val_err = val_err
204 | best_epoch = epoch+1
205 |
206 | test_err, test_loss = val_epoch(X_test,y_test)
207 |
208 | epoch_duration = time.time() - start_time
209 |
210 | # Then we print the results for this epoch:
211 | print("Epoch "+str(epoch)+" of "+str(num_epochs)+" took "+str(epoch_duration)+"s")
212 | print(" LR: "+str(LR))
213 | print(" training loss: "+str(train_loss))
214 | print(" validation loss: "+str(val_loss))
215 | print(" validation error rate: "+str(val_err)+"%")
216 | print(" best epoch: "+str(best_epoch))
217 | print(" best validation error rate: "+str(best_val_err)+"%")
218 | print(" test loss: "+str(test_loss))
219 | print(" test error rate: "+str(test_err)+"%")
220 |
221 |
222 | with open("{0}_lr{1}_{2}.txt".format(name, LR_start, method), "a") as myfile:
223 | myfile.write("{0} {1:.5f} {2:.5f} {3:.5f} {4:.5f} {5:.5f} {6:.5f} {7:.5f}\n".format(epoch,
224 | train_loss, val_loss, test_loss, val_err, test_err, epoch_duration, LR))
225 |
226 |
227 | ## Learning rate update scheme
228 | if name=="mnist":
229 | if epoch == 15 or epoch==25:
230 | LR*=LR_decay
231 | elif name=="cifar":
232 | if epoch % 15 ==0:
233 | LR*=LR_decay
234 | elif name=="svhn":
235 | if epoch == 15 or epoch==25:
236 | LR *=LR_decay
--------------------------------------------------------------------------------
/FNN/svhn.py:
--------------------------------------------------------------------------------
1 | from __future__ import print_function
2 |
3 | import sys
4 | import os
5 | import time
6 | import ipdb
7 |
8 | import numpy as np
9 | np.random.seed(1234)
10 |
11 | import theano
12 | import theano.tensor as T
13 |
14 | import lasagne
15 |
16 | import cPickle as pickle
17 | import gzip
18 |
19 | import batch_norm
20 | import lab
21 | import optimizer
22 |
23 | from pylearn2.datasets.svhn import SVHN
24 | from pylearn2.utils import serial
25 |
26 | from pylearn2.datasets.zca_dataset import ZCA_Dataset
27 | from pylearn2.utils import serial
28 |
29 | from collections import OrderedDict
30 | from argparse import ArgumentParser
31 |
32 | def main(method,LR_start,Binarize_weight_only):
33 |
34 | name = "svhn"
35 | print("dataset = "+str(name))
36 |
37 | print("Binarize_weight_only="+str(Binarize_weight_only))
38 |
39 | print("Method = "+str(method))
40 |
41 | # alpha is the exponential moving average factor
42 | alpha = .1
43 | print("alpha = "+str(alpha))
44 | epsilon = 1e-4
45 | print("epsilon = "+str(epsilon))
46 |
47 | # Training parameters
48 | batch_size = 50
49 | print("batch_size = "+str(batch_size))
50 |
51 | num_epochs = 50
52 | print("num_epochs = "+str(num_epochs))
53 |
54 | print("LR_start = "+str(LR_start))
55 | LR_decay = 0.1
56 | print("LR_decay="+str(LR_decay))
57 | # BTW, LR decay might good for the BN moving average...
58 |
59 | if Binarize_weight_only =="w":
60 | activation = lasagne.nonlinearities.rectify
61 | else:
62 | activation = lab.binary_tanh_unit
63 | print("activation = "+ str(activation))
64 |
65 | ## number of filters in the first convolutional layer
66 | K = 64
67 | print("K="+str(K))
68 |
69 | print('Building the CNN...')
70 |
71 | # Prepare Theano variables for inputs and targets
72 | input = T.tensor4('inputs')
73 | target = T.matrix('targets')
74 | LR = T.scalar('LR', dtype=theano.config.floatX)
75 |
76 | l_in = lasagne.layers.InputLayer(
77 | shape=(None, 3, 32, 32),
78 | input_var=input)
79 |
80 | # 128C3-128C3-P2
81 | l_cnn1 = lab.Conv2DLayer(
82 | l_in,
83 | num_filters=K,
84 | filter_size=(3, 3),
85 | pad=1,
86 | nonlinearity=lasagne.nonlinearities.identity,
87 | method = method)
88 |
89 | l_bn1 = batch_norm.BatchNormLayer(
90 | l_cnn1,
91 | epsilon=epsilon,
92 | alpha=alpha)
93 |
94 | l_nl1 = lasagne.layers.NonlinearityLayer(
95 | l_bn1,
96 | nonlinearity = activation)
97 |
98 | l_cnn2 = lab.Conv2DLayer(
99 | l_nl1,
100 | num_filters=K,
101 | filter_size=(3, 3),
102 | pad=1,
103 | nonlinearity=lasagne.nonlinearities.identity,
104 | method = method)
105 |
106 | l_mp1 = lasagne.layers.MaxPool2DLayer(l_cnn2, pool_size=(2, 2))
107 |
108 | l_bn2 = batch_norm.BatchNormLayer(
109 | l_mp1,
110 | epsilon=epsilon,
111 | alpha=alpha)
112 |
113 | l_nl2 = lasagne.layers.NonlinearityLayer(
114 | l_bn2,
115 | nonlinearity = activation)
116 | # 256C3-256C3-P2
117 | l_cnn3 = lab.Conv2DLayer(
118 | l_nl2,
119 | num_filters=2*K,
120 | filter_size=(3, 3),
121 | pad=1,
122 | nonlinearity=lasagne.nonlinearities.identity,
123 | method = method)
124 |
125 | l_bn3 = batch_norm.BatchNormLayer(
126 | l_cnn3,
127 | epsilon=epsilon,
128 | alpha=alpha)
129 |
130 | l_nl3 = lasagne.layers.NonlinearityLayer(
131 | l_bn3,
132 | nonlinearity = activation)
133 |
134 | l_cnn4 = lab.Conv2DLayer(
135 | l_nl3,
136 | num_filters=2*K,
137 | filter_size=(3, 3),
138 | pad=1,
139 | nonlinearity=lasagne.nonlinearities.identity,
140 | method = method)
141 |
142 | l_mp2 = lasagne.layers.MaxPool2DLayer(l_cnn4, pool_size=(2, 2))
143 |
144 | l_bn4 = batch_norm.BatchNormLayer(
145 | l_mp2,
146 | epsilon=epsilon,
147 | alpha=alpha)
148 |
149 | l_nl4 = lasagne.layers.NonlinearityLayer(
150 | l_bn4,
151 | nonlinearity = activation)
152 |
153 | # 512C3-512C3-P2
154 | l_cnn5 = lab.Conv2DLayer(
155 | l_nl4,
156 | num_filters=4*K,
157 | filter_size=(3, 3),
158 | pad=1,
159 | nonlinearity=lasagne.nonlinearities.identity,
160 | method = method)
161 |
162 | l_bn5 = batch_norm.BatchNormLayer(
163 | l_cnn5,
164 | epsilon=epsilon,
165 | alpha=alpha)
166 |
167 | l_nl5 = lasagne.layers.NonlinearityLayer(
168 | l_bn5,
169 | nonlinearity = activation)
170 |
171 | l_cnn6 = lab.Conv2DLayer(
172 | l_nl5,
173 | num_filters=4*K,
174 | filter_size=(3, 3),
175 | pad=1,
176 | nonlinearity=lasagne.nonlinearities.identity,
177 | method = method)
178 |
179 | l_mp3 = lasagne.layers.MaxPool2DLayer(l_cnn6, pool_size=(2, 2))
180 |
181 | l_bn6 = batch_norm.BatchNormLayer(
182 | l_mp3,
183 | epsilon=epsilon,
184 | alpha=alpha)
185 |
186 | l_nl6 = lasagne.layers.NonlinearityLayer(
187 | l_bn6,
188 | nonlinearity = activation)
189 |
190 | # print(cnn.output_shape)
191 |
192 | # 1024FP-1024FP-10FP
193 | l_dn1 = lab.DenseLayer(
194 | l_nl6,
195 | nonlinearity=lasagne.nonlinearities.identity,
196 | num_units=1024,
197 | method = method)
198 |
199 | l_bn7 = batch_norm.BatchNormLayer(
200 | l_dn1,
201 | epsilon=epsilon,
202 | alpha=alpha)
203 |
204 | l_nl7 = lasagne.layers.NonlinearityLayer(
205 | l_bn7,
206 | nonlinearity = activation)
207 |
208 | l_dn2 = lab.DenseLayer(
209 | l_nl7,
210 | nonlinearity=lasagne.nonlinearities.identity,
211 | num_units=1024,
212 | method = method)
213 |
214 | l_bn8 = batch_norm.BatchNormLayer(
215 | l_dn2,
216 | epsilon=epsilon,
217 | alpha=alpha)
218 |
219 | l_nl8 = lasagne.layers.NonlinearityLayer(
220 | l_bn8,
221 | nonlinearity = activation)
222 |
223 | l_dn3 = lab.DenseLayer(
224 | l_nl8,
225 | nonlinearity=lasagne.nonlinearities.identity,
226 | num_units=10,
227 | method = method)
228 |
229 | l_out = batch_norm.BatchNormLayer(
230 | l_dn3,
231 | epsilon=epsilon,
232 | alpha=alpha)
233 |
234 | train_output = lasagne.layers.get_output(l_out, deterministic=False)
235 |
236 |
237 | # squared hinge loss
238 | loss = T.mean(T.sqr(T.maximum(0.,1.-target*train_output)))
239 |
240 | if method!="FPN":
241 | # W updates
242 | W = lasagne.layers.get_all_params(l_out, binary=True)
243 | W_grads = lab.compute_grads(loss,l_out)
244 | updates = optimizer.adam(loss_or_grads=W_grads, params=W, learning_rate=LR)
245 | updates = lab.clipping_scaling(updates,l_out)
246 |
247 | # other parameters updates
248 | params = lasagne.layers.get_all_params(l_out, trainable=True, binary=False)
249 | updates = OrderedDict(updates.items() + optimizer.adam(loss_or_grads=loss, params=params, learning_rate=LR).items())
250 |
251 | ## update 2nd moment, can get from the adam optimizer also
252 | updates3 = OrderedDict()
253 | acc_tag = lasagne.layers.get_all_params(l_out, acc=True)
254 | idx = 0
255 | beta2 = 0.999
256 | for acc_tag_temp in acc_tag:
257 | updates3[acc_tag_temp]= acc_tag_temp*beta2 + W_grads[idx]*W_grads[idx]*(1-beta2)
258 | idx = idx+1
259 |
260 | updates = OrderedDict(updates.items() + updates3.items())
261 | else:
262 | params = lasagne.layers.get_all_params(l_out, trainable=True)
263 | updates = optimizer.adam(loss_or_grads=loss, params=params, learning_rate=LR)
264 |
265 | test_output = lasagne.layers.get_output(l_out, deterministic=True)
266 | test_loss = T.mean(T.sqr(T.maximum(0.,1.-target*test_output)))
267 | test_err = T.mean(T.neq(T.argmax(test_output, axis=1), T.argmax(target, axis=1)),dtype=theano.config.floatX)
268 |
269 | # Compile a function performing a training step on a mini-batch (by giving the updates dictionary)
270 | # and returning the corresponding training loss:
271 | train_fn = theano.function([input, target, LR], loss, updates=updates)
272 | val_fn = theano.function([input, target], [test_loss, test_err])
273 |
274 |
275 | ## load data
276 | print('Loading SVHN dataset')
277 |
278 | train_set = SVHN(
279 | which_set= 'splitted_train',
280 | # which_set= 'valid',
281 | path= "${SVHN_LOCAL_PATH}",
282 | axes= ['b', 'c', 0, 1])
283 |
284 | valid_set = SVHN(
285 | which_set= 'valid',
286 | path= "${SVHN_LOCAL_PATH}",
287 | axes= ['b', 'c', 0, 1])
288 |
289 | test_set = SVHN(
290 | which_set= 'test',
291 | path= "${SVHN_LOCAL_PATH}",
292 | axes= ['b', 'c', 0, 1])
293 |
294 | # bc01 format
295 | # print train_set.X.shape
296 | train_set.X = np.reshape(train_set.X,(-1,3,32,32))
297 | valid_set.X = np.reshape(valid_set.X,(-1,3,32,32))
298 | test_set.X = np.reshape(test_set.X,(-1,3,32,32))
299 |
300 | train_set.y = np.array(train_set.y).flatten()
301 | valid_set.y = np.array(valid_set.y).flatten()
302 | test_set.y = np.array(test_set.y).flatten()
303 |
304 | # Onehot the targets
305 | train_set.y = np.float32(np.eye(10)[train_set.y])
306 | valid_set.y = np.float32(np.eye(10)[valid_set.y])
307 | test_set.y = np.float32(np.eye(10)[test_set.y])
308 |
309 | # for hinge loss
310 | train_set.y = 2* train_set.y - 1.
311 | valid_set.y = 2* valid_set.y - 1.
312 | test_set.y = 2* test_set.y - 1.
313 |
314 |
315 | print('Training...')
316 |
317 | # ipdb.set_trace()
318 | lab.train(
319 | name, method,
320 | train_fn,val_fn,
321 | batch_size,
322 | LR_start,LR_decay,
323 | num_epochs,
324 | train_set.X,train_set.y,
325 | valid_set.X,valid_set.y,
326 | test_set.X,test_set.y)
327 |
328 |
329 | if __name__ == "__main__":
330 | parser = ArgumentParser()
331 | parser.add_argument("--method", type=str, dest="method",
332 | default="LAB", help="Method used")
333 | parser.add_argument("--lr_start", type=float, dest="LR_start",
334 | default=0.001, help="Learning rate")
335 | parser.add_argument("--w", type=str, dest="Binarize_weight_only",
336 | default="w", help="true:only binzrize w, false: binarize w and a")
337 | args = parser.parse_args()
338 |
339 | main(**vars(args))
--------------------------------------------------------------------------------
/FNN/cifar10.py:
--------------------------------------------------------------------------------
1 | from __future__ import print_function
2 |
3 | import sys
4 | import os
5 | import time
6 |
7 | import numpy as np
8 | np.random.seed(1234)
9 |
10 | import theano
11 | import theano.tensor as T
12 | import ipdb
13 |
14 | import lasagne
15 |
16 | import cPickle as pickle
17 | import gzip
18 |
19 | import batch_norm
20 | import lab
21 | import optimizer
22 |
23 | from pylearn2.datasets.zca_dataset import ZCA_Dataset
24 | from pylearn2.utils import serial
25 |
26 | from collections import OrderedDict
27 | from argparse import ArgumentParser
28 |
29 |
30 | def main(method,LR_start,Binarize_weight_only):
31 |
32 | name = "cifar"
33 | print("dataset = "+str(name))
34 |
35 | print("Binarize_weight_only="+str(Binarize_weight_only))
36 |
37 | print("Method = "+str(method))
38 |
39 | # alpha is the exponential moving average factor
40 | alpha = .1
41 | print("alpha = "+str(alpha))
42 | epsilon = 1e-4
43 | print("epsilon = "+str(epsilon))
44 |
45 | # Training parameters
46 | batch_size = 50
47 | print("batch_size = "+str(batch_size))
48 |
49 | num_epochs = 200
50 | print("num_epochs = "+str(num_epochs))
51 |
52 | print("LR_start = "+str(LR_start))
53 | LR_decay = 0.5
54 | print("LR_decay="+str(LR_decay))
55 |
56 | if Binarize_weight_only =="w":
57 | activation = lasagne.nonlinearities.rectify
58 | else:
59 | activation = lab.binary_tanh_unit
60 | print("activation = "+ str(activation))
61 |
62 |
63 | train_set_size = 45000
64 | print("train_set_size = "+str(train_set_size))
65 |
66 | print('Loading CIFAR-10 dataset...')
67 |
68 | preprocessor = serial.load("${PYLEARN2_DATA_PATH}/cifar10/pylearn2_gcn_whitened/preprocessor.pkl")
69 | train_set = ZCA_Dataset(
70 | preprocessed_dataset=serial.load("${PYLEARN2_DATA_PATH}/cifar10/pylearn2_gcn_whitened/train.pkl"),
71 | preprocessor = preprocessor,
72 | start=0, stop = train_set_size)
73 | valid_set = ZCA_Dataset(
74 | preprocessed_dataset= serial.load("${PYLEARN2_DATA_PATH}/cifar10/pylearn2_gcn_whitened/train.pkl"),
75 | preprocessor = preprocessor,
76 | start=45000, stop = 50000)
77 | test_set = ZCA_Dataset(
78 | preprocessed_dataset= serial.load("${PYLEARN2_DATA_PATH}/cifar10/pylearn2_gcn_whitened/test.pkl"),
79 | preprocessor = preprocessor)
80 |
81 | # bc01 format
82 | train_set.X = train_set.X.reshape(-1,3,32,32)
83 | valid_set.X = valid_set.X.reshape(-1,3,32,32)
84 | test_set.X = test_set.X.reshape(-1,3,32,32)
85 |
86 | # flatten targets
87 | train_set.y = np.hstack(train_set.y)
88 | valid_set.y = np.hstack(valid_set.y)
89 | test_set.y = np.hstack(test_set.y)
90 |
91 |
92 | # Onehot the targets
93 | train_set.y = np.float32(np.eye(10)[train_set.y])
94 | valid_set.y = np.float32(np.eye(10)[valid_set.y])
95 | test_set.y = np.float32(np.eye(10)[test_set.y])
96 |
97 | # for hinge loss
98 | train_set.y = 2* train_set.y - 1.
99 | valid_set.y = 2* valid_set.y - 1.
100 | test_set.y = 2* test_set.y - 1.
101 |
102 | print('Building the CNN...')
103 |
104 | # Prepare Theano variables for inputs and targets
105 | input = T.tensor4('inputs')
106 | target = T.matrix('targets')
107 | LR = T.scalar('LR', dtype=theano.config.floatX)
108 |
109 | l_in = lasagne.layers.InputLayer(
110 | shape=(None, 3, 32, 32),
111 | input_var=input)
112 |
113 | # 128C3-128C3-P2
114 | l_cnn1 = lab.Conv2DLayer(
115 | l_in,
116 | num_filters=128,
117 | filter_size=(3, 3),
118 | pad=1,
119 | nonlinearity=lasagne.nonlinearities.identity,
120 | method = method)
121 |
122 | l_bn1 = batch_norm.BatchNormLayer(
123 | l_cnn1,
124 | epsilon=epsilon,
125 | alpha=alpha)
126 |
127 | l_nl1 = lasagne.layers.NonlinearityLayer(
128 | l_bn1,
129 | nonlinearity = activation)
130 |
131 | l_cnn2 = lab.Conv2DLayer(
132 | l_nl1,
133 | num_filters=128,
134 | filter_size=(3, 3),
135 | pad=1,
136 | nonlinearity=lasagne.nonlinearities.identity,
137 | method = method)
138 |
139 | l_mp1 = lasagne.layers.MaxPool2DLayer(l_cnn2, pool_size=(2, 2))
140 |
141 | l_bn2 = batch_norm.BatchNormLayer(
142 | l_mp1,
143 | epsilon=epsilon,
144 | alpha=alpha)
145 |
146 | l_nl2 = lasagne.layers.NonlinearityLayer(
147 | l_bn2,
148 | nonlinearity = activation)
149 | # 256C3-256C3-P2
150 | l_cnn3 = lab.Conv2DLayer(
151 | l_nl2,
152 | num_filters=256,
153 | filter_size=(3, 3),
154 | pad=1,
155 | nonlinearity=lasagne.nonlinearities.identity,
156 | method = method)
157 |
158 | l_bn3 = batch_norm.BatchNormLayer(
159 | l_cnn3,
160 | epsilon=epsilon,
161 | alpha=alpha)
162 |
163 | l_nl3 = lasagne.layers.NonlinearityLayer(
164 | l_bn3,
165 | nonlinearity = activation)
166 |
167 | l_cnn4 = lab.Conv2DLayer(
168 | l_nl3,
169 | num_filters=256,
170 | filter_size=(3, 3),
171 | pad=1,
172 | nonlinearity=lasagne.nonlinearities.identity,
173 | method = method)
174 |
175 | l_mp2 = lasagne.layers.MaxPool2DLayer(l_cnn4, pool_size=(2, 2))
176 |
177 | l_bn4 = batch_norm.BatchNormLayer(
178 | l_mp2,
179 | epsilon=epsilon,
180 | alpha=alpha)
181 |
182 | l_nl4 = lasagne.layers.NonlinearityLayer(
183 | l_bn4,
184 | nonlinearity = activation)
185 |
186 | # 512C3-512C3-P2
187 | l_cnn5 = lab.Conv2DLayer(
188 | l_nl4,
189 | num_filters=512,
190 | filter_size=(3, 3),
191 | pad=1,
192 | nonlinearity=lasagne.nonlinearities.identity,
193 | method = method)
194 |
195 | l_bn5 = batch_norm.BatchNormLayer(
196 | l_cnn5,
197 | epsilon=epsilon,
198 | alpha=alpha)
199 |
200 | l_nl5 = lasagne.layers.NonlinearityLayer(
201 | l_bn5,
202 | nonlinearity = activation)
203 |
204 | l_cnn6 = lab.Conv2DLayer(
205 | l_nl5,
206 | num_filters=512,
207 | filter_size=(3, 3),
208 | pad=1,
209 | nonlinearity=lasagne.nonlinearities.identity,
210 | method = method)
211 |
212 | l_mp3 = lasagne.layers.MaxPool2DLayer(l_cnn6, pool_size=(2, 2))
213 |
214 | l_bn6 = batch_norm.BatchNormLayer(
215 | l_mp3,
216 | epsilon=epsilon,
217 | alpha=alpha)
218 |
219 | l_nl6 = lasagne.layers.NonlinearityLayer(
220 | l_bn6,
221 | nonlinearity = activation)
222 |
223 | # print(cnn.output_shape)
224 |
225 | # 1024FP-1024FP-10FP
226 | l_dn1 = lab.DenseLayer(
227 | l_nl6,
228 | nonlinearity=lasagne.nonlinearities.identity,
229 | num_units=1024,
230 | method = method)
231 |
232 | l_bn7 = batch_norm.BatchNormLayer(
233 | l_dn1,
234 | epsilon=epsilon,
235 | alpha=alpha)
236 |
237 | l_nl7 = lasagne.layers.NonlinearityLayer(
238 | l_bn7,
239 | nonlinearity = activation)
240 |
241 | l_dn2 = lab.DenseLayer(
242 | l_nl7,
243 | nonlinearity=lasagne.nonlinearities.identity,
244 | num_units=1024,
245 | method = method)
246 |
247 | l_bn8 = batch_norm.BatchNormLayer(
248 | l_dn2,
249 | epsilon=epsilon,
250 | alpha=alpha)
251 |
252 | l_nl8 = lasagne.layers.NonlinearityLayer(
253 | l_bn8,
254 | nonlinearity = activation)
255 |
256 | l_dn3 = lab.DenseLayer(
257 | l_nl8,
258 | nonlinearity=lasagne.nonlinearities.identity,
259 | num_units=10,
260 | method = method)
261 |
262 | l_out = batch_norm.BatchNormLayer(
263 | l_dn3,
264 | epsilon=epsilon,
265 | alpha=alpha)
266 |
267 | train_output = lasagne.layers.get_output(l_out, deterministic=False)
268 |
269 | # squared hinge loss
270 | loss = T.mean(T.sqr(T.maximum(0.,1.-target*train_output)))
271 |
272 | if method!="FPN":
273 | # W updates
274 | W = lasagne.layers.get_all_params(l_out, binary=True)
275 | W_grads = lab.compute_grads(loss,l_out)
276 | updates = optimizer.adam(loss_or_grads=W_grads, params=W, learning_rate=LR)
277 | updates = lab.clipping_scaling(updates,l_out)
278 |
279 | # other parameters updates
280 | params = lasagne.layers.get_all_params(l_out, trainable=True, binary=False)
281 | updates = OrderedDict(updates.items() + optimizer.adam(loss_or_grads=loss, params=params, learning_rate=LR).items())
282 |
283 | ## update 2nd moment, can get from the adam optimizer also
284 | updates3 = OrderedDict()
285 | acc_tag = lasagne.layers.get_all_params(l_out, acc=True)
286 | idx = 0
287 | beta2 = 0.999
288 | for acc_tag_temp in acc_tag:
289 | updates3[acc_tag_temp]= acc_tag_temp*beta2 + W_grads[idx]*W_grads[idx]*(1-beta2)
290 | idx = idx+1
291 |
292 | updates = OrderedDict(updates.items() + updates3.items())
293 | else:
294 | params = lasagne.layers.get_all_params(l_out, trainable=True)
295 | updates = optimizer.adam(loss_or_grads=loss, params=params, learning_rate=LR)
296 |
297 | test_output = lasagne.layers.get_output(l_out, deterministic=True)
298 | test_loss = T.mean(T.sqr(T.maximum(0.,1.-target*test_output)))
299 | test_err = T.mean(T.neq(T.argmax(test_output, axis=1), T.argmax(target, axis=1)),dtype=theano.config.floatX)
300 |
301 | # Compile a function performing a training step on a mini-batch (by giving the updates dictionary)
302 | # and returning the corresponding training loss:
303 | train_fn = theano.function([input, target, LR], loss, updates=updates)
304 | val_fn = theano.function([input, target], [test_loss, test_err])
305 |
306 | print('Training...')
307 |
308 | lab.train(
309 | name, method,
310 | train_fn,val_fn,
311 | batch_size,
312 | LR_start,LR_decay,
313 | num_epochs,
314 | train_set.X,train_set.y,
315 | valid_set.X,valid_set.y,
316 | test_set.X,test_set.y)
317 |
318 |
319 | if __name__ == "__main__":
320 | parser = ArgumentParser()
321 | parser.add_argument("--method", type=str, dest="method",
322 | default="LAB", help="Method used")
323 | parser.add_argument("--lr_start", type=float, dest="LR_start",
324 | default=0.02, help="Learning rate")
325 | parser.add_argument("--w", type=str, dest="Binarize_weight_only",
326 | default="w", help="true:only binzrize w, false: binarize w and a")
327 | args = parser.parse_args()
328 |
329 | main(**vars(args))
--------------------------------------------------------------------------------
/RNN/lab.py:
--------------------------------------------------------------------------------
1 | import time
2 |
3 | from collections import OrderedDict
4 |
5 | import numpy as np
6 | np.random.seed(1234)
7 | import ipdb
8 |
9 | import theano
10 | import theano.tensor as T
11 |
12 | import lasagne
13 | from theano.scalar.basic import UnaryScalarOp, same_out_nocomplex
14 | from theano.tensor.elemwise import Elemwise
15 | from theano.sandbox.rng_mrg import MRG_RandomStreams as RandomStreams
16 | class Round3(UnaryScalarOp):
17 |
18 | def c_code(self, node, name, (x,), (z,), sub):
19 | return "%(z)s = round(%(x)s);" % locals()
20 |
21 | def grad(self, inputs, gout):
22 | (gz,) = gout
23 | return gz,
24 |
25 | round3_scalar = Round3(same_out_nocomplex, name='round3')
26 | round3 = Elemwise(round3_scalar)
27 |
28 | def hard_sigmoid(x):
29 | return T.clip((x+1.)/2.,0,1)
30 |
31 | # The neurons' activations binarization function
32 | # It behaves like the sign function during forward propagation
33 | # And like:
34 | # hard_tanh(x) = 2*hard_sigmoid(x)-1
35 | # during back propagation
36 | def binary_tanh_unit(x):
37 | return 2.*round3(hard_sigmoid(x))-1.
38 |
39 | def binary_sigmoid_unit(x):
40 | return round3(hard_sigmoid(x))
41 |
42 | # The binarization function
43 | def binarization(W,Wacc,method):
44 |
45 | if method == "FPN":
46 | Wb = W
47 |
48 | elif method == "LAB":
49 | L = (T.sqrt(Wacc) + 1e-8)
50 | Wb = hard_sigmoid(W)
51 | Wb = round3(Wb)
52 | Wb = T.cast(T.switch(Wb,1.,-1.), theano.config.floatX)
53 |
54 | alpha = (T.abs_(L*W).sum()/L.sum()).astype('float32')
55 | Wb = alpha*Wb
56 |
57 | return Wb
58 |
59 | ### binarize LSTM
60 | class LSTMLayer(lasagne.layers.LSTMLayer):
61 |
62 | def __init__(self, incoming, num_units, method, **kwargs):
63 |
64 | self.method = method
65 | g_init = 0.08
66 | if self.method!="FPN":
67 | super(LSTMLayer, self).__init__(incoming, num_units,
68 | ingate=lasagne.layers.Gate(W_in=lasagne.init.Uniform((-g_init, g_init)),
69 | W_hid=lasagne.init.Uniform((-g_init, g_init)),
70 | W_cell=lasagne.init.Uniform((-g_init, g_init))),
71 | forgetgate=lasagne.layers.Gate(W_in=lasagne.init.Uniform((-g_init, g_init)),
72 | W_hid=lasagne.init.Uniform((-g_init, g_init)),
73 | W_cell=lasagne.init.Uniform((-g_init, g_init)),
74 | b=lasagne.init.Constant(1.)),
75 | cell=lasagne.layers.Gate(W_in=lasagne.init.Uniform((-g_init, g_init)),
76 | W_hid=lasagne.init.Uniform((-g_init, g_init)),
77 | W_cell=None, nonlinearity=lasagne.nonlinearities.tanh),
78 | outgate=lasagne.layers.Gate(W_in=lasagne.init.Uniform((-g_init, g_init)),
79 | W_hid=lasagne.init.Uniform((-g_init, g_init)),
80 | W_cell=lasagne.init.Uniform((-g_init, g_init))),
81 | **kwargs)
82 | # super(LSTMLayer, self).__init__(incoming, num_units,
83 | # **kwargs)
84 | # add the binary tag to weights
85 | self.params[self.W_in_to_ingate]=set(['binary'])
86 | self.params[self.W_hid_to_ingate]=set(['binary'])
87 |
88 | self.params[self.W_in_to_forgetgate]=set(['binary'])
89 | self.params[self.W_hid_to_forgetgate]=set(['binary'])
90 |
91 | self.params[self.W_in_to_cell]=set(['binary'])
92 | self.params[self.W_hid_to_cell]=set(['binary'])
93 |
94 | self.params[self.W_in_to_outgate]=set(['binary'])
95 | self.params[self.W_hid_to_outgate]=set(['binary'])
96 |
97 | else:
98 | # super(LSTMLayer, self).__init__(incoming, num_units, **kwargs)
99 | super(LSTMLayer, self).__init__(incoming, num_units,
100 | ingate=lasagne.layers.Gate(W_in=lasagne.init.Uniform((-g_init, g_init)),
101 | W_hid=lasagne.init.Uniform((-g_init, g_init)),
102 | W_cell=lasagne.init.Uniform((-g_init, g_init))),
103 | forgetgate=lasagne.layers.Gate(W_in=lasagne.init.Uniform((-g_init, g_init)),
104 | W_hid=lasagne.init.Uniform((-g_init, g_init)),
105 | W_cell=lasagne.init.Uniform((-g_init, g_init)),
106 | b=lasagne.init.Constant(1.)),
107 | cell=lasagne.layers.Gate(W_in=lasagne.init.Uniform((-g_init, g_init)),
108 | W_hid=lasagne.init.Uniform((-g_init, g_init)),
109 | W_cell=None, nonlinearity=lasagne.nonlinearities.tanh),
110 | outgate=lasagne.layers.Gate(W_in=lasagne.init.Uniform((-g_init, g_init)),
111 | W_hid=lasagne.init.Uniform((-g_init, g_init)),
112 | W_cell=lasagne.init.Uniform((-g_init, g_init))),
113 | **kwargs)
114 |
115 |
116 | # initialize 2nd moment
117 | self.acc_W_in_to_ingate = theano.shared(np.zeros((self.W_in_to_ingate.get_value(borrow=True)).shape, dtype='float32'))
118 | self.acc_W_hid_to_ingate = theano.shared(np.zeros((self.W_hid_to_ingate.get_value(borrow=True)).shape, dtype='float32'))
119 | self.acc_W_in_to_forgetgate = theano.shared(np.zeros((self.W_in_to_forgetgate.get_value(borrow=True)).shape, dtype='float32'))
120 | self.acc_W_hid_to_forgetgate = theano.shared(np.zeros((self.W_hid_to_forgetgate.get_value(borrow=True)).shape, dtype='float32'))
121 | self.acc_W_in_to_cell = theano.shared(np.zeros((self.W_in_to_cell.get_value(borrow=True)).shape, dtype='float32'))
122 | self.acc_W_hid_to_cell = theano.shared(np.zeros((self.W_hid_to_cell.get_value(borrow=True)).shape, dtype='float32'))
123 | self.acc_W_in_to_outgate = theano.shared(np.zeros((self.W_in_to_outgate.get_value(borrow=True)).shape, dtype='float32'))
124 | self.acc_W_hid_to_outgate = theano.shared(np.zeros((self.W_hid_to_outgate.get_value(borrow=True)).shape, dtype='float32'))
125 |
126 | self.params[self.acc_W_in_to_ingate]=set(['acc'])
127 | self.params[self.acc_W_hid_to_ingate]=set(['acc'])
128 |
129 | self.params[self.acc_W_in_to_forgetgate]=set(['acc'])
130 | self.params[self.acc_W_hid_to_forgetgate]=set(['acc'])
131 |
132 | self.params[self.acc_W_in_to_cell]=set(['acc'])
133 | self.params[self.acc_W_hid_to_cell]=set(['acc'])
134 |
135 | self.params[self.acc_W_in_to_outgate]=set(['acc'])
136 | self.params[self.acc_W_hid_to_outgate]=set(['acc'])
137 |
138 | def get_output_for(self, input, deterministic=False, **kwargs):
139 | # self.Wb = binarization(self.W,self.H,self.binary,deterministic,self.stochastic,self._srng)
140 | self.bW_in_to_ingate = binarization(self.W_in_to_ingate, self.acc_W_in_to_ingate, self.method)
141 | self.bW_hid_to_ingate = binarization(self.W_hid_to_ingate, self.acc_W_hid_to_ingate, self.method)
142 |
143 | self.bW_in_to_forgetgate = binarization(self.W_in_to_forgetgate, self.acc_W_in_to_forgetgate, self.method)
144 | self.bW_hid_to_forgetgate = binarization(self.W_hid_to_forgetgate, self.acc_W_hid_to_forgetgate, self.method)
145 |
146 | self.bW_in_to_cell = binarization(self.W_in_to_cell, self.acc_W_in_to_cell, self.method)
147 | self.bW_hid_to_cell = binarization(self.W_hid_to_cell, self.acc_W_hid_to_cell, self.method)
148 |
149 | self.bW_in_to_outgate = binarization(self.W_in_to_outgate, self.acc_W_in_to_outgate, self.method)
150 | self.bW_hid_to_outgate = binarization(self.W_hid_to_outgate, self.acc_W_hid_to_outgate, self.method)
151 |
152 | # Wr = self.W
153 | rW_in_to_ingate = self.W_in_to_ingate
154 | rW_hid_to_ingate = self.W_hid_to_ingate
155 |
156 | rW_in_to_forgetgate = self.W_in_to_forgetgate
157 | rW_hid_to_forgetgate = self.W_hid_to_forgetgate
158 |
159 | rW_in_to_cell = self.W_in_to_cell
160 | rW_hid_to_cell = self.W_hid_to_cell
161 |
162 | rW_in_to_outgate = self.W_in_to_outgate
163 | rW_hid_to_outgate = self.W_hid_to_outgate
164 |
165 | #self.W = bW
166 | self.W_in_to_ingate = self.bW_in_to_ingate
167 | self.W_hid_to_ingate = self.bW_hid_to_ingate
168 |
169 | self.W_in_to_forgetgate = self.bW_in_to_forgetgate
170 | self.W_hid_to_forgetgate = self.bW_hid_to_forgetgate
171 |
172 | self.W_in_to_cell = self.bW_in_to_cell
173 | self.W_hid_to_cell = self.bW_hid_to_cell
174 |
175 | self.W_in_to_outgate = self.bW_in_to_outgate
176 | self.W_hid_to_outgate = self.bW_hid_to_outgate
177 |
178 | rvalue = super(LSTMLayer, self).get_output_for(input, **kwargs)
179 |
180 | self.W_in_to_ingate = rW_in_to_ingate
181 | self.W_hid_to_ingate = rW_hid_to_ingate
182 |
183 | self.W_in_to_forgetgate = rW_in_to_forgetgate
184 | self.W_hid_to_forgetgate = rW_hid_to_forgetgate
185 |
186 | self.W_in_to_cell = rW_in_to_cell
187 | self.W_hid_to_cell = rW_hid_to_cell
188 |
189 | self.W_in_to_outgate = rW_in_to_outgate
190 | self.W_hid_to_outgate = rW_hid_to_outgate
191 |
192 | return rvalue
193 |
194 |
195 |
196 | def compute_grads(loss,network):
197 |
198 | layers = lasagne.layers.get_all_layers(network)
199 | grads = []
200 |
201 | for layer in layers:
202 |
203 | params = layer.get_params(binary=True)
204 | if params:
205 | # print(params[0].name)
206 | grads.append(theano.grad(loss, wrt=layer.bW_in_to_ingate))
207 | grads.append(theano.grad(loss, wrt=layer.bW_hid_to_ingate))
208 |
209 | grads.append(theano.grad(loss, wrt=layer.bW_in_to_forgetgate))
210 | grads.append(theano.grad(loss, wrt=layer.bW_hid_to_forgetgate))
211 |
212 | grads.append(theano.grad(loss, wrt=layer.bW_in_to_cell))
213 | grads.append(theano.grad(loss, wrt=layer.bW_hid_to_cell))
214 |
215 | grads.append(theano.grad(loss, wrt=layer.bW_in_to_outgate))
216 | grads.append(theano.grad(loss, wrt=layer.bW_hid_to_outgate))
217 |
218 | return grads
219 |
220 |
221 | def clipping_scaling(updates,network):
222 |
223 | layers = lasagne.layers.get_all_layers(network)
224 | updates = OrderedDict(updates)
225 |
226 | for layer in layers:
227 | params = layer.get_params(binary=True)
228 | for param in params:
229 | updates[param] = T.clip(updates[param], -1.,1.)
230 | return updates
231 |
232 | # Given a dataset and a model, this function trains the model on the dataset for several epochs
233 | def train(name,method,train_fn,val_fn,
234 | batch_size,
235 | SEQ_LENGTH,
236 | N_HIDDEN,
237 | LR_start,LR_decay,
238 | num_epochs,
239 | X_train,
240 | X_val,
241 | X_test):
242 |
243 | def gen_data(pp, batch_size,SEQ_LENGTH, data, return_target=True):
244 |
245 | x = np.zeros((batch_size,SEQ_LENGTH,vocab_size)) ###### 128*100*85
246 | y = np.zeros((batch_size, SEQ_LENGTH))
247 |
248 | for n in range(batch_size):
249 | # ptr = n
250 | for i in range(SEQ_LENGTH):
251 | x[n,i,char_to_ix[data[pp[n]*SEQ_LENGTH+i]]] = 1.
252 | y[n,i] = char_to_ix[data[pp[n]*SEQ_LENGTH+i+1]]
253 | return x, np.array(y,dtype='int32')
254 |
255 | in_text = X_train+X_val+X_test
256 | chars = list(set(in_text))
257 | data_size, vocab_size = len(in_text), len(chars)
258 | char_to_ix = { ch:i for i,ch in enumerate(chars) }
259 | ix_to_char = { i:ch for i,ch in enumerate(chars) }
260 |
261 | def train_epoch(X,LR):
262 |
263 | loss = 0
264 | batches = len(X)/batch_size/SEQ_LENGTH
265 | # shuffle
266 | num_seq = len(X)/SEQ_LENGTH
267 | shuffled_ind = range(num_seq)
268 |
269 | np.random.shuffle(shuffled_ind)
270 | for i in range(batches):
271 | # shuffle
272 | tmp_ind = shuffled_ind[i*batch_size:(i+1)*batch_size]
273 | xx,yy = gen_data(tmp_ind,batch_size,SEQ_LENGTH, X)
274 | new_loss, Wg = train_fn(xx,yy,LR)
275 | loss+=new_loss
276 |
277 | loss=loss/batches
278 |
279 | return loss
280 |
281 | # This function tests the model a full epoch (on the whole dataset)
282 | def val_epoch(X):
283 |
284 | # err = 0
285 | loss = 0
286 | batches = len(X)/batch_size/SEQ_LENGTH
287 |
288 | num_seq = len(X)/SEQ_LENGTH
289 | ind = range(num_seq)
290 | for i in range(batches):
291 | tmp_ind = ind[i*batch_size:(i+1)*batch_size]
292 | xx, yy = gen_data(tmp_ind, batch_size, SEQ_LENGTH, X)
293 | new_loss = val_fn(xx,yy)
294 | loss += new_loss
295 |
296 | loss = loss/batches
297 |
298 | return loss
299 |
300 | best_val_loss=100
301 | best_epoch = 1
302 | LR = LR_start
303 | # hello= False
304 | # We iterate over epochs:
305 | for epoch in range(1,num_epochs+1):
306 | start_time = time.time()
307 | train_loss = train_epoch(X_train, LR)
308 | # try_it_out()
309 |
310 | val_loss = val_epoch(X_val)
311 |
312 | # test if validation error went down
313 | if val_loss <= best_val_loss:
314 |
315 | best_val_loss = val_loss
316 | best_epoch = epoch+1
317 |
318 | test_loss = val_epoch(X_test)
319 |
320 | epoch_duration = time.time() - start_time
321 | # Then we print the results for this epoch:
322 | print(" Epoch "+str(epoch)+" of "+str(num_epochs)+" took "+str(epoch_duration)+"s")
323 | print(" LR: "+str(LR))
324 | print(" training loss: "+str(train_loss))
325 | print(" validation loss: "+str(val_loss))
326 | print(" best epoch: "+str(best_epoch))
327 | print(" test loss: "+str(test_loss))
328 |
329 | with open("{0}_seq{1}_lr{2}_hid{3}_{4}.txt".format(name, SEQ_LENGTH, LR_start, N_HIDDEN, method), "a") as myfile:
330 | myfile.write("{0} {1:.3f} {2:.3f} {3:.3f} {4:.3f}\n".format(epoch, train_loss, val_loss, test_loss, epoch_duration))
331 |
332 | # learning rate update scheme
333 | if epoch>10:
334 | LR *= LR_decay
335 |
336 |
--------------------------------------------------------------------------------
/license:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 | {one line to give the program's name and a brief idea of what it does.}
635 | Copyright (C) {year} {name of author}
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | {project} Copyright (C) {year} {fullname}
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------