├── .gitignore ├── files ├── image │ ├── bee.jpg │ ├── cat.jpg │ ├── dog.jpeg │ ├── arc.jpeg │ ├── berries.jpeg │ ├── concert.jpeg │ ├── einstein.jpg │ ├── food.jpeg │ ├── glasses.jpeg │ ├── house.jpg │ ├── lake.jpeg │ ├── marigold.jpeg │ ├── puzzle.jpeg │ ├── road.jpg │ ├── surfer.jpeg │ ├── swings.jpg │ ├── teamwork.jpeg │ ├── wave.jpeg │ ├── butterfly.jpeg │ ├── doughnuts.jpeg │ ├── portrait_1.jpeg │ ├── portrait_2.jpeg │ ├── pumpkins.jpg │ ├── scientists.jpg │ ├── surfboards.jpeg │ └── switzerland.jpeg ├── video │ ├── cab.mp4 │ ├── elephant.mp4 │ └── obama.mp4 └── basrelief │ ├── coin.jpg │ ├── einstein.jpg │ └── food.jpeg ├── marigold_logo_square.jpg ├── gradio_cached_examples ├── 18 │ ├── Depth outputs │ │ ├── 299ab3ef0144ff335248 │ │ │ └── cat_depth_fp32.npy │ │ ├── 9a9aecb6bc451b000cc3 │ │ │ └── arc_depth_fp32.npy │ │ ├── c99982e80e8d9c0b50a9 │ │ │ └── dog_depth_fp32.npy │ │ ├── 08a115340ea524934177 │ │ │ └── einstein_depth_fp32.npy │ │ ├── 1112b1ca9f107132c5ff │ │ │ └── berries_depth_fp32.npy │ │ ├── 13cfd7cd0acfd90c3608 │ │ │ └── glasses_depth_fp32.npy │ │ ├── 2456fcca77a17345e260 │ │ │ └── road_depth_colored.png │ │ ├── 26b0eacc0203a3b721be │ │ │ └── surfer_depth_colored.png │ │ ├── 2847b2df4b1c235f7651 │ │ │ └── dog_depth_colored.png │ │ ├── 2a35fc317380d4737290 │ │ │ └── glasses_depth_16bit.png │ │ ├── 2de7e7ec84f177bb092d │ │ │ └── food_depth_fp32.npy │ │ ├── 2f5832324077dab185ef │ │ │ └── swings_depth_colored.png │ │ ├── 357b353412dd9759ad6a │ │ │ └── lake_depth_colored.png │ │ ├── 3b9f1c0a73b1eb66b3dc │ │ │ └── puzzle_depth_colored.png │ │ ├── 3c6ba7efdd300e7b7764 │ │ │ └── lake_depth_fp32.npy │ │ ├── 3d61175e3f24234c9eca │ │ │ └── arc_depth_colored.png │ │ ├── 4cb13fd8b9ec9608e19f │ │ │ └── swings_depth_16bit.png │ │ ├── 550e81d9c69c40fa22b0 │ │ │ └── wave_depth_16bit.png │ │ ├── 565217320fe1057733c9 │ │ │ └── road_depth_fp32.npy │ │ ├── 58f4bc0302114565854f │ │ │ └── concert_depth_fp32.npy │ │ ├── 5ef3eed2059133180232 │ │ │ └── lake_depth_16bit.png │ │ ├── 6a0860f054b0406feef5 │ │ │ └── wave_depth_fp32.npy │ │ ├── 6d5d27b6ae03d7a40b7c │ │ │ └── surfer_depth_16bit.png │ │ ├── 8c492010216806b7c84c │ │ │ └── teamwork_depth_fp32.npy │ │ ├── 8e97f11903b9b898c2f3 │ │ │ └── arc_depth_16bit.png │ │ ├── 9faf8f227f90f70bbdaa │ │ │ └── marigold_depth_fp32.npy │ │ ├── a4dcdec4a501e723b211 │ │ │ └── dog_depth_16bit.png │ │ ├── a639dbc49c03860c86a7 │ │ │ └── food_depth_colored.png │ │ ├── b264a159bd653f1548e3 │ │ │ └── berries_depth_16bit.png │ │ ├── b42b9d9b1dd973751204 │ │ │ └── surfer_depth_fp32.npy │ │ ├── b58afb3c3ab61448a7dd │ │ │ └── puzzle_depth_fp32.npy │ │ ├── ca3ffeaccc005c6fd5ee │ │ │ └── cat_depth_16bit.png │ │ ├── d0a4e40b24fa717ffabb │ │ │ └── road_depth_16bit.png │ │ ├── de994c47587fcbb3e990 │ │ │ └── house_depth_fp32.npy │ │ ├── e0911d2e7a4a5debfbab │ │ │ └── food_depth_16bit.png │ │ ├── e29c660ea20526461142 │ │ │ └── cat_depth_colored.png │ │ ├── e747489c970c86200120 │ │ │ └── puzzle_depth_16bit.png │ │ ├── ed486427beaead8e6d4d │ │ │ └── house_depth_16bit.png │ │ ├── ee9d905b3a5337c2db21 │ │ │ └── concert_depth_16bit.png │ │ ├── ef56552b1f18d14a2c19 │ │ │ └── swings_depth_fp32.npy │ │ ├── ef827c6d4ffc7d48c85a │ │ │ └── wave_depth_colored.png │ │ ├── f53efcc50ebfeaac3b8f │ │ │ └── house_depth_colored.png │ │ ├── 068c389756186ef0ec21 │ │ │ └── portrait_1_depth_colored.png │ │ ├── 099bb138bf851d8de112 │ │ │ └── scientists_depth_colored.png │ │ ├── 0fb09ff06177b86b75cc │ │ │ └── portrait_2_depth_colored.png │ │ ├── 115d14d955de41ae1e33 │ │ │ └── switzerland_depth_colored.png │ │ ├── 1ab135c405036a016085 │ │ │ └── teamwork_depth_16bit.png │ │ ├── 2b8e100af28995f679f3 │ │ │ └── switzerland_depth_fp32.npy │ │ ├── 3fea61e86ad657759143 │ │ │ └── doughnuts_depth_colored.png │ │ ├── 4256ccd86bcb885f93a6 │ │ │ └── surfboards_depth_colored.png │ │ ├── 4758b54d8928c9860970 │ │ │ └── butterfly_depth_colored.png │ │ ├── 534e159c4967aec56bcd │ │ │ └── portrait_1_depth_fp32.npy │ │ ├── 67a09b9fd46c50fb1a30 │ │ │ └── scientists_depth_16bit.png │ │ ├── 6b7fa86ff307ce280458 │ │ │ └── glasses_depth_colored.png │ │ ├── 6eeb531b1c22dd97fae4 │ │ │ └── portrait_2_depth_16bit.png │ │ ├── 70a6ecd79155c8fb213b │ │ │ └── einstein_depth_colored.png │ │ ├── 743f28023ee74ec7ba8a │ │ │ └── butterfly_depth_fp32.npy │ │ ├── 7b1d5a7cecd449b13a5e │ │ │ └── berries_depth_colored.png │ │ ├── 7fce16f173010012f6b6 │ │ │ └── portrait_2_depth_fp32.npy │ │ ├── 8c1f452606cac27a66c0 │ │ │ └── scientists_depth_fp32.npy │ │ ├── 8d6952f2bb813c899fb0 │ │ │ └── marigold_depth_16bit.png │ │ ├── a20cbbb5b772a7b1763e │ │ │ └── pumpkins_depth_colored.png │ │ ├── a5db29c9ded284668775 │ │ │ └── einstein_depth_16bit.png │ │ ├── a7486302ab044e374c04 │ │ │ └── butterfly_depth_16bit.png │ │ ├── af5de30ca8186879928b │ │ │ └── teamwork_depth_colored.png │ │ ├── bf0a2b7b9d7d20d3fba4 │ │ │ └── portrait_1_depth_16bit.png │ │ ├── c28a0efd69ada6c1de17 │ │ │ └── doughnuts_depth_16bit.png │ │ ├── c9d2b99fd4995c01c932 │ │ │ └── concert_depth_colored.png │ │ ├── d8b07ff54e7a206832a0 │ │ │ └── switzerland_depth_16bit.png │ │ ├── dbc8049901349d03b961 │ │ │ └── pumpkins_depth_16bit.png │ │ ├── eb7676ae3737abdd8b33 │ │ │ └── surfboards_depth_fp32.npy │ │ ├── ed2db910fdec870cb513 │ │ │ └── marigold_depth_colored.png │ │ ├── f024df95b9f9d82cd10b │ │ │ └── pumpkins_depth_fp32.npy │ │ ├── f6b17b1b9adbe5433e03 │ │ │ └── surfboards_depth_16bit.png │ │ └── fd79bd61b90eb3c8750e │ │ │ └── doughnuts_depth_fp32.npy │ ├── Predicted depth red-near blue-far │ │ ├── 04f54e1ce435ff6459b9 │ │ │ └── arc_depth_colored.png │ │ ├── 19eb29bd0e44aa61bd6f │ │ │ └── road_depth_colored.png │ │ ├── 295edcd8c90a1d58bff5 │ │ │ └── cat_depth_16bit.png │ │ ├── 313712cc25c7afeec5e2 │ │ │ └── swings_depth_16bit.png │ │ ├── 432db43f24ab254cdc77 │ │ │ └── glasses_depth_16bit.png │ │ ├── 45e324d0b847afbbc4c7 │ │ │ └── arc_depth_16bit.png │ │ ├── 478e837f6ca2f7737dc5 │ │ │ └── wave_depth_16bit.png │ │ ├── 71ea41371688664fd898 │ │ │ └── house_depth_colored.png │ │ ├── 7b90e60f0490de180bc9 │ │ │ └── wave_depth_colored.png │ │ ├── 879cfd69d9c554f83d96 │ │ │ └── dog_depth_16bit.png │ │ ├── 983c2e26ef549272c897 │ │ │ └── swings_depth_colored.png │ │ ├── 9c492b4a05b0c27418e7 │ │ │ └── concert_depth_16bit.png │ │ ├── a1e0b4145b283feacb69 │ │ │ └── food_depth_16bit.png │ │ ├── b56ad8cd93517abd7a57 │ │ │ └── food_depth_colored.png │ │ ├── b82a8e2c9968943eaf37 │ │ │ └── surfer_depth_16bit.png │ │ ├── bf130ca9410ab692b150 │ │ │ └── road_depth_16bit.png │ │ ├── c80da87c39169644afa1 │ │ │ └── house_depth_16bit.png │ │ ├── cab7bd5be8a912541996 │ │ │ └── berries_depth_16bit.png │ │ ├── ccbf8e60d9ee20e4e70b │ │ │ └── cat_depth_colored.png │ │ ├── d22944415f5ee905e9e0 │ │ │ └── puzzle_depth_16bit.png │ │ ├── d28b5d4dcd878e6c5daf │ │ │ └── lake_depth_colored.png │ │ ├── db15ec0fec292ce702f3 │ │ │ └── puzzle_depth_colored.png │ │ ├── edb434ab1e157595210a │ │ │ └── surfer_depth_colored.png │ │ ├── f10d9f52ef10b6ce2819 │ │ │ └── dog_depth_colored.png │ │ ├── f8bc9d03bcb924e64306 │ │ │ └── lake_depth_16bit.png │ │ ├── 0968bcc549dace8031f8 │ │ │ └── butterfly_depth_colored.png │ │ ├── 18e6abaa75c6b4266122 │ │ │ └── marigold_depth_colored.png │ │ ├── 1cb720d1f47690df2bf2 │ │ │ └── surfboards_depth_colored.png │ │ ├── 2345a66ea597f0724ac6 │ │ │ └── teamwork_depth_16bit.png │ │ ├── 24ec8180e34432fcb5d3 │ │ │ └── marigold_depth_16bit.png │ │ ├── 25947e3f3a07b767d2e3 │ │ │ └── doughnuts_depth_16bit.png │ │ ├── 2e503f2592bb798b7d75 │ │ │ └── portrait_2_depth_16bit.png │ │ ├── 37a744be12464174a9fe │ │ │ └── pumpkins_depth_colored.png │ │ ├── 3b7e23ac2f10ff0acd40 │ │ │ └── portrait_1_depth_colored.png │ │ ├── 66dedd2f9b9a56204b8a │ │ │ └── pumpkins_depth_16bit.png │ │ ├── 6d576b810915984be5d9 │ │ │ └── butterfly_depth_16bit.png │ │ ├── 88870588e2c8198c46db │ │ │ └── concert_depth_colored.png │ │ ├── 8d5b5a9cc5bde83ad215 │ │ │ └── scientists_depth_16bit.png │ │ ├── 9f9ad00dda4a8b76a9d3 │ │ │ └── doughnuts_depth_colored.png │ │ ├── ace9fc12e651074b9ffe │ │ │ └── berries_depth_colored.png │ │ ├── adf7d8a23971611c0c2c │ │ │ └── surfboards_depth_16bit.png │ │ ├── b019af76a770991b9f05 │ │ │ └── switzerland_depth_16bit.png │ │ ├── bb1b89e55f54f6ad11a4 │ │ │ └── glasses_depth_colored.png │ │ ├── d3d1aea16f58fa4e9c34 │ │ │ └── teamwork_depth_colored.png │ │ ├── dfced8fb6c3b5b3cdd85 │ │ │ └── switzerland_depth_colored.png │ │ ├── e14a6d59396caef161db │ │ │ └── portrait_1_depth_16bit.png │ │ ├── e58db2a94f058c3cbda5 │ │ │ └── portrait_2_depth_colored.png │ │ ├── e9c962c7d4300842fbd2 │ │ │ └── einstein_depth_colored.png │ │ ├── f74d13a60bda9b080432 │ │ │ └── einstein_depth_16bit.png │ │ └── f9fb6b3768c97d11bf63 │ │ │ └── scientists_depth_colored.png │ └── log.csv ├── 29 │ ├── Depth outputs │ │ ├── 5f96f60f0b5af752e271 │ │ │ └── cab_depth_colored.mp4 │ │ ├── 63df77111c5982e3d501 │ │ │ └── cab_depth_16bit.zip │ │ ├── 8209c6d80711c2b193b6 │ │ │ └── obama_depth_colored.mp4 │ │ ├── d7825cd99c31975cb780 │ │ │ └── obama_depth_16bit.zip │ │ ├── bce9827dbf145c2cd2e5 │ │ │ └── elephant_depth_colored.mp4 │ │ └── d49d367de8bff332fa2e │ │ │ └── elephant_depth_16bit.zip │ ├── Output video depth red-near blue-far │ │ ├── b1a647fc7fb469eb9c90 │ │ │ └── cab_depth_colored.mp4 │ │ ├── 315c7361216ee7b38070 │ │ │ └── elephant_depth_colored.mp4 │ │ └── ee3bed949e6cdc9413a9 │ │ │ └── obama_depth_colored.mp4 │ └── log.csv └── 58 │ ├── 3D model outputs high-res │ ├── 409aac8c714a19097c19 │ │ └── coin_depth_512.glb │ ├── 789054453156abfa3dac │ │ └── coin_depth_512.stl │ ├── a4a4773a0122b3417297 │ │ └── food_depth_512.glb │ ├── c56ef4018e4584940192 │ │ └── food_depth_512.stl │ ├── 1b5111a9ba7be9778d37 │ │ └── einstein_depth_512.glb │ └── bee443acba581914a3e5 │ │ └── einstein_depth_512.stl │ ├── 3D preview low-res relief highlight │ ├── 4237fcd0dad8ff3298f3 │ │ └── coin_depth_256.glb │ ├── 4756f7e8f07d8445b1df │ │ └── food_depth_256.glb │ └── 9cfc51ac897aa0a455f2 │ │ └── einstein_depth_256.glb │ └── log.csv ├── requirements.txt ├── README.md ├── .gitattributes ├── extrude.py ├── marigold_depth_estimation_lcm.py └── app.py /.gitignore: -------------------------------------------------------------------------------- 1 | .idea 2 | .DS_Store 3 | __pycache__ 4 | -------------------------------------------------------------------------------- /files/image/bee.jpg: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:7643ccdbc9550e2bf6ebdd5c768db5bc829ef719b0d1a91b4f6f9184b52f4751 3 | size 146201 4 | -------------------------------------------------------------------------------- /files/image/cat.jpg: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:794796a86e56a4b372287661dc934daa2d15e988d01afe88afc50b32644c007a 3 | size 236008 4 | -------------------------------------------------------------------------------- /files/image/dog.jpeg: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:c932a965dfe63c8c6dbc1bb48f7ea245a6a6dd2fb40fd243545e908b3aa7aa62 3 | size 672127 4 | -------------------------------------------------------------------------------- /files/video/cab.mp4: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:e7857328de30257e2985e0218e18e35f0dbc6ca9dd9f89b28687881f13ca0a4a 3 | size 3268179 4 | -------------------------------------------------------------------------------- /files/basrelief/coin.jpg: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:d5295c5cb301ef73099e3dd91f80916e7b013f6b04d75759df57081b16a18adc 3 | size 632342 4 | -------------------------------------------------------------------------------- /files/image/arc.jpeg: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:f888e3770134e2073459026f58c568f7cf30524dd26a9182413c84b709e1b63e 3 | size 1010127 4 | -------------------------------------------------------------------------------- /files/image/berries.jpeg: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:dac1411ea48cf83b7a59c6424032f95b2ff496b3a98cdccf168bbed1c8f0aed4 3 | size 940276 4 | -------------------------------------------------------------------------------- /files/image/concert.jpeg: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:fc746e234cb8a3e483999ee4c4f4d22b4e6c48cb2655eaa47c0936f3a37b61dc 3 | size 420401 4 | -------------------------------------------------------------------------------- /files/image/einstein.jpg: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:d4a4543c0fffb2ca5ea3c17e23e88fcfcf66eae8b487173fbc5c25d0d614bdb6 3 | size 366986 4 | -------------------------------------------------------------------------------- /files/image/food.jpeg: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:a26151050a574b0dc0014e9c4806da3d6f6bc1297ee1035a16b9ace007a179af 3 | size 1041165 4 | -------------------------------------------------------------------------------- /files/image/glasses.jpeg: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:de8c0c20adb7c187357c21e467d3f178888574962027cdd366c390b63913ffec 3 | size 677382 4 | -------------------------------------------------------------------------------- /files/image/house.jpg: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:4087027e84a6323099fc839fd0b6816fd614814e92d12df21051cff3ed472819 3 | size 14934360 4 | -------------------------------------------------------------------------------- /files/image/lake.jpeg: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:181dc0f684f0f3b94bc4bec829becd3dec817f69032731edf55ee8370c6898f0 3 | size 1026470 4 | -------------------------------------------------------------------------------- /files/image/marigold.jpeg: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:575c1a7bc1199d86b5ec305b4efc12286842dee4a189e8699dcf8a6d0276807c 3 | size 416411 4 | -------------------------------------------------------------------------------- /files/image/puzzle.jpeg: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:60b66432124a0936c6143301a9f9b793af4184bc9340c567d11fdd5a22cc98cc 3 | size 373654 4 | -------------------------------------------------------------------------------- /files/image/road.jpg: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:58bb01aea37f6e1206260eddb6d003589d779e8b3fb3ef0a0f1e2e38a8fa3925 3 | size 13088652 4 | -------------------------------------------------------------------------------- /files/image/surfer.jpeg: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:52827abf2c3951b752d4e58c88fff7ab907672c58fda70b813df3922650c7495 3 | size 1007262 4 | -------------------------------------------------------------------------------- /files/image/swings.jpg: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:cae2ac669c948313eae8aca53017f10b64b42f87c53b9c34639962b218fdf1f1 3 | size 353138 4 | -------------------------------------------------------------------------------- /files/image/teamwork.jpeg: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:3cd48af8f3db4d89760cd6f40f2716570e697ae74a9bd88ed1ba36c0e68326b3 3 | size 699825 4 | -------------------------------------------------------------------------------- /files/image/wave.jpeg: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:7f14e77f7990d75104d6e3447077eb176d6437c58f5fb0fffcdb6015193b2d03 3 | size 1073936 4 | -------------------------------------------------------------------------------- /files/video/elephant.mp4: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:7d198ec2e3e5a308c5eeb18c9f3a882f6c5812d329d9e8497e1bf79ff466dd84 3 | size 3078416 4 | -------------------------------------------------------------------------------- /files/video/obama.mp4: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:4aa0ac19460e0966139247cc180f98398fb11a35e3ca5c90cb70f0c4704904de 3 | size 955458 4 | -------------------------------------------------------------------------------- /marigold_logo_square.jpg: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:bd5f1e527678fc913aee17ab69831551cfdb2934f673e9e97a7f011103b63c9e 3 | size 76006 4 | -------------------------------------------------------------------------------- /files/basrelief/einstein.jpg: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:d4a4543c0fffb2ca5ea3c17e23e88fcfcf66eae8b487173fbc5c25d0d614bdb6 3 | size 366986 4 | -------------------------------------------------------------------------------- /files/basrelief/food.jpeg: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:a26151050a574b0dc0014e9c4806da3d6f6bc1297ee1035a16b9ace007a179af 3 | size 1041165 4 | -------------------------------------------------------------------------------- /files/image/butterfly.jpeg: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:e0364b8eec31d2c113c15c2b6c892754130765e8e2c960adc87d51ca5c0ea8f9 3 | size 877657 4 | -------------------------------------------------------------------------------- /files/image/doughnuts.jpeg: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:2ede4170b4a17f0c076c1a336eb4d3c03d64688997a986e3a8101972016b799a 3 | size 606606 4 | -------------------------------------------------------------------------------- /files/image/portrait_1.jpeg: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:76e3ad74311975f0db43cdebd4202d1464e19b6950cc3e7c5aa0a160f95493c3 3 | size 506148 4 | -------------------------------------------------------------------------------- /files/image/portrait_2.jpeg: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:805ad1127b0d9d09068df70e3ab7aa7450ff802fa5464db8430787dfee1ec6a0 3 | size 525467 4 | -------------------------------------------------------------------------------- /files/image/pumpkins.jpg: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:92f03bc05dc882231bce735f2afb8c27eb9d0616166abe3794b39ff24314fd0a 3 | size 11260012 4 | -------------------------------------------------------------------------------- /files/image/scientists.jpg: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:7b164dfbc4ab6e491ce81972b8c0e076fdc4af622289d0aa3cb43ee3c2be4030 3 | size 444241 4 | -------------------------------------------------------------------------------- /files/image/surfboards.jpeg: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:326f9ffd3b85b29b971205eb87c2d0c9b5e4409b496be1eb961b46d5f7c5d6c6 3 | size 1158169 4 | -------------------------------------------------------------------------------- /files/image/switzerland.jpeg: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:81e35ba90f7736167ea3e8a0a58f932ecded07b00b012a5bd7df5dabbe0eb3ce 3 | size 846710 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/299ab3ef0144ff335248/cat_depth_fp32.npy: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:c044f1c9887648e376fcecba0ab7c842bc6883a7b3153f1ca6c46e05254b44e6 3 | size 5237888 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/9a9aecb6bc451b000cc3/arc_depth_fp32.npy: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:32c608321e04a95cd7ab56712041cf4f62baf4952764e1a1f3ad3660a3503cd4 3 | size 4377728 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/c99982e80e8d9c0b50a9/dog_depth_fp32.npy: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:108268dd0ecc12630ada4ea195937be23111106c6dbed7c80cc14a36c991d206 3 | size 6291584 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/08a115340ea524934177/einstein_depth_fp32.npy: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:47312a4edd16d84c631982bbdc7fe8d666146d0df6c70ee09285dde07e8bc036 3 | size 4194432 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/1112b1ca9f107132c5ff/berries_depth_fp32.npy: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:7c4a044cb2730b35833967b4963b52c0e8f66de9cf76209206f937409b1d49a2 3 | size 6291584 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/13cfd7cd0acfd90c3608/glasses_depth_fp32.npy: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:0bd3ee73cdf541e63e6e2913f01474fa9cbec5000c20e149b409bc1b480956f9 3 | size 6283392 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/2456fcca77a17345e260/road_depth_colored.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:a60241a8bde8ddcbc35add52633d1e0068c799971160092946825c04b0284984 3 | size 4683563 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/26b0eacc0203a3b721be/surfer_depth_colored.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:838d1f2b6b476f04f7817da84290eea83f0d635283519b79f78243bab9a9cc07 3 | size 622703 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/2847b2df4b1c235f7651/dog_depth_colored.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:aff95907eb238fcb609ca68d7dfffd45e882ffd5bd8761f82a09a6c9e0ea28af 3 | size 842692 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/2a35fc317380d4737290/glasses_depth_16bit.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:cbfb1d3c3353501f18e1eeb68265e7d9740b0a49149c24251a65d75ea2cc6452 3 | size 1703574 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/2de7e7ec84f177bb092d/food_depth_fp32.npy: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:de2a4248f8a5c26591846ce1372aa8dfa997b4ec1a2f075785cda9cac689f52f 3 | size 6291584 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/2f5832324077dab185ef/swings_depth_colored.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:bd47a9bb15a77f551edff4c4f2731e3422b5a07be845e7e7b8d4d69265f5ba25 3 | size 291481 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/357b353412dd9759ad6a/lake_depth_colored.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:78337d31f1c119dd60027a0cb96ba19eccf12566a2fba0a69f2b3e02b132ff61 3 | size 550204 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/3b9f1c0a73b1eb66b3dc/puzzle_depth_colored.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:74567b099a5a40da030739d8ceb5e273cdb3179612257a80ec202f732a3a22ea 3 | size 405008 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/3c6ba7efdd300e7b7764/lake_depth_fp32.npy: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:8f114e79de81a27a4ab8cf16819459cb4e1fafe7267af4868c9757011e25ca71 3 | size 6291584 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/3d61175e3f24234c9eca/arc_depth_colored.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:97c1f5eb53d82ca407ed9e0d00651baaaa850c3db9aec2854738fb8e6b9ae0fc 3 | size 756097 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/4cb13fd8b9ec9608e19f/swings_depth_16bit.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:f6e9f6922669d429fd4ad1db192fd0d14171f10f8b9631e35b2a107bbe34e05b 3 | size 520701 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/550e81d9c69c40fa22b0/wave_depth_16bit.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:e8bb3cdcf1d3778ce59c9a0b107fe52278ba13ebfefab872cfbbb9bc833e9415 3 | size 1790462 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/565217320fe1057733c9/road_depth_fp32.npy: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:fa3d9094f6127c390009dbe02062925e03d52eb50dfa6a1c0597c69e5e51eef0 3 | size 41809728 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/58f4bc0302114565854f/concert_depth_fp32.npy: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:65e88d7d193b732218f442c4cdd4f07f096c993cc10934068f12432278a0cc2a 3 | size 6291584 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/5ef3eed2059133180232/lake_depth_16bit.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:239419b77e2265b59e545b176442c1d854b3322644b6c7b86a8c9e0d3a6a557c 3 | size 1896565 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/6a0860f054b0406feef5/wave_depth_fp32.npy: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:a8ed7fbba0a80c0b96817c98e23adf1f8f5733cd60915575f9f6c2864eacd9f6 3 | size 6291584 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/6d5d27b6ae03d7a40b7c/surfer_depth_16bit.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:bc73a374fd33a86fa071422bce34a9193bac71344247274cf166620d2020f0d9 3 | size 2080093 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/8c492010216806b7c84c/teamwork_depth_fp32.npy: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:99b330b19ded761a4e11b56794baac487ca8137d46035dbb01270a23c00cc4c7 3 | size 8388736 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/8e97f11903b9b898c2f3/arc_depth_16bit.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:efa3f99a2f3eb941782122205879b814a0931b7aff0501f2de51cf7414ab79a7 3 | size 1490869 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/9faf8f227f90f70bbdaa/marigold_depth_fp32.npy: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:903fc45c106d2468008012090663908e1fa0f3dcfde2795a6e85750d231a4de5 3 | size 4616740 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/a4dcdec4a501e723b211/dog_depth_16bit.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:5ed7e4976f6cdd1323a0f808797e283ff557f287c0ff1fa7a01e4a28b0874d85 3 | size 2190077 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/a639dbc49c03860c86a7/food_depth_colored.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:68e8aae96f126f6f5e67048ca1bf631d87466f60209a132899c2cea0be078e5a 3 | size 617833 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/b264a159bd653f1548e3/berries_depth_16bit.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:3a0709360a684682620b1d576c10bc0ec92e6530e22ff47442a727b0d35f510e 3 | size 2150087 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/b42b9d9b1dd973751204/surfer_depth_fp32.npy: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:18774c86e3ac46bf5d8ac751c595ab5c504cf35c764b104d98cbb4bf26017d2f 3 | size 6291584 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/b58afb3c3ab61448a7dd/puzzle_depth_fp32.npy: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:9ce74482958e46658d2026f1d13598aa85f081bdba984933d0b147f4e104845e 3 | size 6291584 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/ca3ffeaccc005c6fd5ee/cat_depth_16bit.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:f8f99b74628f236d2201d2637e62d773689fa4491522b58d58467df81e093108 3 | size 1736687 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/d0a4e40b24fa717ffabb/road_depth_16bit.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:da76dedb7ac05812682a23ecfa52f5f830ea3528983f68f9988038eee8cdc858 3 | size 11871381 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/de994c47587fcbb3e990/house_depth_fp32.npy: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:065f1c4391ac8b5c80f5dae0092c0d8b5d86972cc3b8965f594b4d7defd64e92 3 | size 57509536 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/e0911d2e7a4a5debfbab/food_depth_16bit.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:088282ff1b355aeb57a4d77a1ca3f483e9a7d7ba4fe721437a086a580b10b6e8 3 | size 2009101 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/e29c660ea20526461142/cat_depth_colored.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:2bdafad5960fe85f771470dd04f3da901481cf94014027ccda26493f555b7f5c 3 | size 540541 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/e747489c970c86200120/puzzle_depth_16bit.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:df59abe9d997b2a003b1df44b91901a3fd53b83e1bb143f7acc43c613bd5d01c 3 | size 1746321 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/ed486427beaead8e6d4d/house_depth_16bit.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:e5297467fccdb41c6a7bc45cc41a912fb558a4aa4eee231a1a3c76873ed3128b 3 | size 16604424 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/ee9d905b3a5337c2db21/concert_depth_16bit.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:70ae0247810df3b870013a13005f8a2100ca1c8a9027cde39e1b9ea2bbfbe18e 3 | size 1725191 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/ef56552b1f18d14a2c19/swings_depth_fp32.npy: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:073205298320622b01de97e23bc99e84e869b7a0d052d5b1b74cca6f63edda11 3 | size 1398912 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/ef827c6d4ffc7d48c85a/wave_depth_colored.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:455466d3c556cde893b07d91e68cb44c7a1ff3e69cc64a3e5a961941b3da3c46 3 | size 353870 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/f53efcc50ebfeaac3b8f/house_depth_colored.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:0a5fba37ae8f6ef2ec704d5ea036fcf2c4c40f2ec9305ffbfd455212a1332a74 3 | size 3921236 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/29/Depth outputs/5f96f60f0b5af752e271/cab_depth_colored.mp4: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:81b3d4916e5b594174a49a7b064e4490b39dbed443f9d8ecea347c433284ff54 3 | size 473925 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/29/Depth outputs/63df77111c5982e3d501/cab_depth_16bit.zip: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:efda0f0ba879b63e0f8b7dc60a2eaabef9f0b85e203e0df9cd598dad3ee371d1 3 | size 39185578 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/29/Depth outputs/8209c6d80711c2b193b6/obama_depth_colored.mp4: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:86a007b675d5e294a7e8b036dea45a1034a0580f387353feec599920eb560ba7 3 | size 430863 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/29/Depth outputs/d7825cd99c31975cb780/obama_depth_16bit.zip: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:e58cae1afa395b8d260814ad23b59c7dab9a659e39ee27e05b4fc48c4203e7f0 3 | size 38156752 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/068c389756186ef0ec21/portrait_1_depth_colored.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:d5f4c46c08d27c87c61fdf0383189e2ee6b570e48f154474d114cb18f615dd95 3 | size 499699 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/099bb138bf851d8de112/scientists_depth_colored.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:24f43de7775ac97a9485d0b018fa27be5557dc6bd4d6b1a873456791910a8f46 3 | size 631879 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/0fb09ff06177b86b75cc/portrait_2_depth_colored.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:f4d3caec2a68ca8b5fbedb42441bf12d27da401ae53629f102548f07680db5e2 3 | size 304975 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/115d14d955de41ae1e33/switzerland_depth_colored.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:a599aebb989cfa5d5b9ffb900dd0e221fe94f10a99d06a7b1b1b08c2d855ecc7 3 | size 296596 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/1ab135c405036a016085/teamwork_depth_16bit.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:49febeb62c3cd72df6d2173c4225483838be90f89a13db4f1e751ed0d4e76bfc 3 | size 2243230 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/2b8e100af28995f679f3/switzerland_depth_fp32.npy: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:c61928f8e05758e93b08cec04a0e5a0f077ba347ae6a179975ff72a74e0b43af 3 | size 4593728 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/3fea61e86ad657759143/doughnuts_depth_colored.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:af3ab93de2dd66ec5ac25d59d8095411bdd243f67eba8bf3bf1cda99d915c85f 3 | size 347441 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/4256ccd86bcb885f93a6/surfboards_depth_colored.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:729848e7097fd3d92d2c8cd646185883948b8b42e554bedc73f36b9c93512708 3 | size 1098012 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/4758b54d8928c9860970/butterfly_depth_colored.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:446e540807ab6a0f88b3904f3c56899fc7167378564577647da8269ea291083b 3 | size 1089045 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/534e159c4967aec56bcd/portrait_1_depth_fp32.npy: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:e88991beac17c8f27448f31f702bef7d02f7ac5556324855bb1025a87d435b0b 3 | size 4194432 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/67a09b9fd46c50fb1a30/scientists_depth_16bit.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:37d4a6e3e9ad9b931b7210cdd96ce3504c25ed7c1382361990a6be51ea0fea2f 3 | size 3187383 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/6b7fa86ff307ce280458/glasses_depth_colored.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:6fa2fb4c244664f3efc759f742f11c51a1c82f091eb8ec30b88a1b32af9a5c01 3 | size 332572 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/6eeb531b1c22dd97fae4/portrait_2_depth_16bit.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:e7e4adbe7c0e4e075b548f8d546b4c81c4c9a7c4413f316536a81eec6dfc369c 3 | size 1248383 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/70a6ecd79155c8fb213b/einstein_depth_colored.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:8e12862876cc4752e18cb2b5f3b4bd38f2fe62bf72267275f06681aa2ea1abd8 3 | size 693251 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/743f28023ee74ec7ba8a/butterfly_depth_fp32.npy: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:91df242eb97d167b481310c18ffaf2d6dfa28a3f51c053674c2718a85c16b456 3 | size 6701184 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/7b1d5a7cecd449b13a5e/berries_depth_colored.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:9915cb2dfe8a586e030e115181b3b29292819b59743cd4a64a894c33388a8585 3 | size 880971 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/7fce16f173010012f6b6/portrait_2_depth_fp32.npy: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:573b944207767549ca2bc29e8bffca084b895c505608ce670cfbf2c080a18809 3 | size 4194432 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/8c1f452606cac27a66c0/scientists_depth_fp32.npy: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:527e0cdb078addb324360119faea09135c7f13708febe8ae3eb9a70aa4ae2fd7 3 | size 12441480 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/8d6952f2bb813c899fb0/marigold_depth_16bit.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:71afa70070c58ce421c17bc5fc98ed86443abfc5654502fc88a6ec049d5aafc6 3 | size 1413951 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/a20cbbb5b772a7b1763e/pumpkins_depth_colored.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:f2c1d352923415414fdb1f729f412779f4c9972c8a270d00400751f820d91dc8 3 | size 5383025 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/a5db29c9ded284668775/einstein_depth_16bit.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:410ff615dbbadf27f9679a495a8e747009a4958b86aa10559470af816075b016 3 | size 1492165 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/a7486302ab044e374c04/butterfly_depth_16bit.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:9def44f3b150223741a599037024f7580751e958509ee600c0bc17233f8ffe67 3 | size 2182986 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/af5de30ca8186879928b/teamwork_depth_colored.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:67ce7be73b140701112ee47ac229ea33aa6d27de7ac9dbd2ea26993fdd909aea 3 | size 659822 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/bf0a2b7b9d7d20d3fba4/portrait_1_depth_16bit.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:9d5a4bd282660e4e900b23f7de06fdce00f35516507c201e6bbf44b865cd419a 3 | size 1368255 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/c28a0efd69ada6c1de17/doughnuts_depth_16bit.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:4643d2b313796d995bf39a712cb7a0a48c458c320c6c4a0b90b1d926db6477cd 3 | size 1768092 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/c9d2b99fd4995c01c932/concert_depth_colored.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:3491aebbd2191ec11f1dffe5cc85c419011ba1860ad41a4c04284fb021d3bbdd 3 | size 544306 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/d8b07ff54e7a206832a0/switzerland_depth_16bit.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:fb145e24cb8d87aff79086d7000d02c9280b553f47d694802d0bc8dd1ba62dde 3 | size 1344029 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/dbc8049901349d03b961/pumpkins_depth_16bit.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:4fd195e60914b4d948dda5957c233b12f81941c4f9c4ec9f6b931018968c3381 3 | size 16880885 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/eb7676ae3737abdd8b33/surfboards_depth_fp32.npy: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:5a8e23a17fb50b8939357cc5c2452114a0f0bdedb62a0771e31cf0354bd60df6 3 | size 6291584 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/ed2db910fdec870cb513/marigold_depth_colored.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:878e1dd4ee12be5185c62c8feded1fed766ccc75f50afe63b365bf5de47de528 3 | size 335290 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/f024df95b9f9d82cd10b/pumpkins_depth_fp32.npy: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:5282193bd7064bce759ba0f2b2f7edfe5217e358c16ffe602b1c94277f42f7d2 3 | size 63701120 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/f6b17b1b9adbe5433e03/surfboards_depth_16bit.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:411ead23a9fbfe0853a43605ca4074210464bc9f788e4088c0fd22e8bfe1bad0 3 | size 2196782 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Depth outputs/fd79bd61b90eb3c8750e/doughnuts_depth_fp32.npy: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:876ad2bd67faf6f605cef2943d1aaad166dc86417cd7094224648d35c27bebd3 3 | size 6291584 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/29/Depth outputs/bce9827dbf145c2cd2e5/elephant_depth_colored.mp4: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:9dfb3689c97f04cabf39b4aa8a06ad4ce8fb424a353bf30d1641fb28f79c4d48 3 | size 755285 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/29/Depth outputs/d49d367de8bff332fa2e/elephant_depth_16bit.zip: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:ee959afea87d7a2e184ca9749fead1fbf820af579eb70b3b579d190a71afa4e2 3 | size 41877515 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/58/3D model outputs high-res/409aac8c714a19097c19/coin_depth_512.glb: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:119ddcac09a8be5bf2015bad1b0549a774649f2910479e88b0dbae19911850da 3 | size 10465944 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/58/3D model outputs high-res/789054453156abfa3dac/coin_depth_512.stl: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:0c8a12b4ee58679b68119ebfdbd55e02fce399019df42728fa5ddfdca7a0ded9 3 | size 26162484 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/58/3D model outputs high-res/a4a4773a0122b3417297/food_depth_512.glb: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:614cffc305abd442a3e540a42d4d71c2da61d5d9f44217a23726f49af50fc642 3 | size 7053036 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/58/3D model outputs high-res/c56ef4018e4584940192/food_depth_512.stl: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:6cd19b87a5ff3377295dc22d0021a8946ef0e3cf7905f3d99b0f09b92bbd5cf1 3 | size 17630084 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/58/3D model outputs high-res/1b5111a9ba7be9778d37/einstein_depth_512.glb: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:c2b798467b1bbd8e3d82400cb43441edc5c0a8275705a138bd6ab309c0705298 3 | size 10568768 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/58/3D model outputs high-res/bee443acba581914a3e5/einstein_depth_512.stl: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:345d0881a93dba3e5b5768405399fa1578d30da549fcc937c78267706acdc8ac 3 | size 26419484 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Predicted depth red-near blue-far/04f54e1ce435ff6459b9/arc_depth_colored.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:97c1f5eb53d82ca407ed9e0d00651baaaa850c3db9aec2854738fb8e6b9ae0fc 3 | size 756097 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Predicted depth red-near blue-far/19eb29bd0e44aa61bd6f/road_depth_colored.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:a60241a8bde8ddcbc35add52633d1e0068c799971160092946825c04b0284984 3 | size 4683563 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Predicted depth red-near blue-far/295edcd8c90a1d58bff5/cat_depth_16bit.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:f8f99b74628f236d2201d2637e62d773689fa4491522b58d58467df81e093108 3 | size 1736687 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Predicted depth red-near blue-far/313712cc25c7afeec5e2/swings_depth_16bit.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:f6e9f6922669d429fd4ad1db192fd0d14171f10f8b9631e35b2a107bbe34e05b 3 | size 520701 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Predicted depth red-near blue-far/432db43f24ab254cdc77/glasses_depth_16bit.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:cbfb1d3c3353501f18e1eeb68265e7d9740b0a49149c24251a65d75ea2cc6452 3 | size 1703574 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Predicted depth red-near blue-far/45e324d0b847afbbc4c7/arc_depth_16bit.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:efa3f99a2f3eb941782122205879b814a0931b7aff0501f2de51cf7414ab79a7 3 | size 1490869 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Predicted depth red-near blue-far/478e837f6ca2f7737dc5/wave_depth_16bit.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:e8bb3cdcf1d3778ce59c9a0b107fe52278ba13ebfefab872cfbbb9bc833e9415 3 | size 1790462 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Predicted depth red-near blue-far/71ea41371688664fd898/house_depth_colored.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:0a5fba37ae8f6ef2ec704d5ea036fcf2c4c40f2ec9305ffbfd455212a1332a74 3 | size 3921236 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Predicted depth red-near blue-far/7b90e60f0490de180bc9/wave_depth_colored.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:455466d3c556cde893b07d91e68cb44c7a1ff3e69cc64a3e5a961941b3da3c46 3 | size 353870 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Predicted depth red-near blue-far/879cfd69d9c554f83d96/dog_depth_16bit.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:5ed7e4976f6cdd1323a0f808797e283ff557f287c0ff1fa7a01e4a28b0874d85 3 | size 2190077 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Predicted depth red-near blue-far/983c2e26ef549272c897/swings_depth_colored.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:bd47a9bb15a77f551edff4c4f2731e3422b5a07be845e7e7b8d4d69265f5ba25 3 | size 291481 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Predicted depth red-near blue-far/9c492b4a05b0c27418e7/concert_depth_16bit.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:70ae0247810df3b870013a13005f8a2100ca1c8a9027cde39e1b9ea2bbfbe18e 3 | size 1725191 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Predicted depth red-near blue-far/a1e0b4145b283feacb69/food_depth_16bit.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:088282ff1b355aeb57a4d77a1ca3f483e9a7d7ba4fe721437a086a580b10b6e8 3 | size 2009101 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Predicted depth red-near blue-far/b56ad8cd93517abd7a57/food_depth_colored.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:68e8aae96f126f6f5e67048ca1bf631d87466f60209a132899c2cea0be078e5a 3 | size 617833 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Predicted depth red-near blue-far/b82a8e2c9968943eaf37/surfer_depth_16bit.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:bc73a374fd33a86fa071422bce34a9193bac71344247274cf166620d2020f0d9 3 | size 2080093 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Predicted depth red-near blue-far/bf130ca9410ab692b150/road_depth_16bit.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:da76dedb7ac05812682a23ecfa52f5f830ea3528983f68f9988038eee8cdc858 3 | size 11871381 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Predicted depth red-near blue-far/c80da87c39169644afa1/house_depth_16bit.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:e5297467fccdb41c6a7bc45cc41a912fb558a4aa4eee231a1a3c76873ed3128b 3 | size 16604424 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Predicted depth red-near blue-far/cab7bd5be8a912541996/berries_depth_16bit.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:3a0709360a684682620b1d576c10bc0ec92e6530e22ff47442a727b0d35f510e 3 | size 2150087 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Predicted depth red-near blue-far/ccbf8e60d9ee20e4e70b/cat_depth_colored.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:2bdafad5960fe85f771470dd04f3da901481cf94014027ccda26493f555b7f5c 3 | size 540541 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Predicted depth red-near blue-far/d22944415f5ee905e9e0/puzzle_depth_16bit.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:df59abe9d997b2a003b1df44b91901a3fd53b83e1bb143f7acc43c613bd5d01c 3 | size 1746321 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Predicted depth red-near blue-far/d28b5d4dcd878e6c5daf/lake_depth_colored.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:78337d31f1c119dd60027a0cb96ba19eccf12566a2fba0a69f2b3e02b132ff61 3 | size 550204 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Predicted depth red-near blue-far/db15ec0fec292ce702f3/puzzle_depth_colored.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:74567b099a5a40da030739d8ceb5e273cdb3179612257a80ec202f732a3a22ea 3 | size 405008 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Predicted depth red-near blue-far/edb434ab1e157595210a/surfer_depth_colored.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:838d1f2b6b476f04f7817da84290eea83f0d635283519b79f78243bab9a9cc07 3 | size 622703 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Predicted depth red-near blue-far/f10d9f52ef10b6ce2819/dog_depth_colored.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:aff95907eb238fcb609ca68d7dfffd45e882ffd5bd8761f82a09a6c9e0ea28af 3 | size 842692 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Predicted depth red-near blue-far/f8bc9d03bcb924e64306/lake_depth_16bit.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:239419b77e2265b59e545b176442c1d854b3322644b6c7b86a8c9e0d3a6a557c 3 | size 1896565 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/29/Output video depth red-near blue-far/b1a647fc7fb469eb9c90/cab_depth_colored.mp4: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:81b3d4916e5b594174a49a7b064e4490b39dbed443f9d8ecea347c433284ff54 3 | size 473925 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/58/3D preview low-res relief highlight/4237fcd0dad8ff3298f3/coin_depth_256.glb: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:ddc7b500a38b5841e5e183261b98cb6b275e26163578b4483929ced3105f1388 3 | size 2369860 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/58/3D preview low-res relief highlight/4756f7e8f07d8445b1df/food_depth_256.glb: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:f6a0e0654315d7288795f90c6c02fb0da6f3cf440dcbf11e5581fd92f30fe005 3 | size 1598964 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Predicted depth red-near blue-far/0968bcc549dace8031f8/butterfly_depth_colored.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:446e540807ab6a0f88b3904f3c56899fc7167378564577647da8269ea291083b 3 | size 1089045 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Predicted depth red-near blue-far/18e6abaa75c6b4266122/marigold_depth_colored.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:878e1dd4ee12be5185c62c8feded1fed766ccc75f50afe63b365bf5de47de528 3 | size 335290 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Predicted depth red-near blue-far/1cb720d1f47690df2bf2/surfboards_depth_colored.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:729848e7097fd3d92d2c8cd646185883948b8b42e554bedc73f36b9c93512708 3 | size 1098012 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Predicted depth red-near blue-far/2345a66ea597f0724ac6/teamwork_depth_16bit.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:49febeb62c3cd72df6d2173c4225483838be90f89a13db4f1e751ed0d4e76bfc 3 | size 2243230 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Predicted depth red-near blue-far/24ec8180e34432fcb5d3/marigold_depth_16bit.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:71afa70070c58ce421c17bc5fc98ed86443abfc5654502fc88a6ec049d5aafc6 3 | size 1413951 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Predicted depth red-near blue-far/25947e3f3a07b767d2e3/doughnuts_depth_16bit.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:4643d2b313796d995bf39a712cb7a0a48c458c320c6c4a0b90b1d926db6477cd 3 | size 1768092 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Predicted depth red-near blue-far/2e503f2592bb798b7d75/portrait_2_depth_16bit.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:e7e4adbe7c0e4e075b548f8d546b4c81c4c9a7c4413f316536a81eec6dfc369c 3 | size 1248383 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Predicted depth red-near blue-far/37a744be12464174a9fe/pumpkins_depth_colored.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:f2c1d352923415414fdb1f729f412779f4c9972c8a270d00400751f820d91dc8 3 | size 5383025 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Predicted depth red-near blue-far/3b7e23ac2f10ff0acd40/portrait_1_depth_colored.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:d5f4c46c08d27c87c61fdf0383189e2ee6b570e48f154474d114cb18f615dd95 3 | size 499699 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Predicted depth red-near blue-far/66dedd2f9b9a56204b8a/pumpkins_depth_16bit.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:4fd195e60914b4d948dda5957c233b12f81941c4f9c4ec9f6b931018968c3381 3 | size 16880885 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Predicted depth red-near blue-far/6d576b810915984be5d9/butterfly_depth_16bit.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:9def44f3b150223741a599037024f7580751e958509ee600c0bc17233f8ffe67 3 | size 2182986 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Predicted depth red-near blue-far/88870588e2c8198c46db/concert_depth_colored.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:3491aebbd2191ec11f1dffe5cc85c419011ba1860ad41a4c04284fb021d3bbdd 3 | size 544306 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Predicted depth red-near blue-far/8d5b5a9cc5bde83ad215/scientists_depth_16bit.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:37d4a6e3e9ad9b931b7210cdd96ce3504c25ed7c1382361990a6be51ea0fea2f 3 | size 3187383 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Predicted depth red-near blue-far/9f9ad00dda4a8b76a9d3/doughnuts_depth_colored.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:af3ab93de2dd66ec5ac25d59d8095411bdd243f67eba8bf3bf1cda99d915c85f 3 | size 347441 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Predicted depth red-near blue-far/ace9fc12e651074b9ffe/berries_depth_colored.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:9915cb2dfe8a586e030e115181b3b29292819b59743cd4a64a894c33388a8585 3 | size 880971 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Predicted depth red-near blue-far/adf7d8a23971611c0c2c/surfboards_depth_16bit.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:411ead23a9fbfe0853a43605ca4074210464bc9f788e4088c0fd22e8bfe1bad0 3 | size 2196782 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Predicted depth red-near blue-far/b019af76a770991b9f05/switzerland_depth_16bit.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:fb145e24cb8d87aff79086d7000d02c9280b553f47d694802d0bc8dd1ba62dde 3 | size 1344029 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Predicted depth red-near blue-far/bb1b89e55f54f6ad11a4/glasses_depth_colored.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:6fa2fb4c244664f3efc759f742f11c51a1c82f091eb8ec30b88a1b32af9a5c01 3 | size 332572 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Predicted depth red-near blue-far/d3d1aea16f58fa4e9c34/teamwork_depth_colored.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:67ce7be73b140701112ee47ac229ea33aa6d27de7ac9dbd2ea26993fdd909aea 3 | size 659822 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Predicted depth red-near blue-far/dfced8fb6c3b5b3cdd85/switzerland_depth_colored.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:a599aebb989cfa5d5b9ffb900dd0e221fe94f10a99d06a7b1b1b08c2d855ecc7 3 | size 296596 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Predicted depth red-near blue-far/e14a6d59396caef161db/portrait_1_depth_16bit.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:9d5a4bd282660e4e900b23f7de06fdce00f35516507c201e6bbf44b865cd419a 3 | size 1368255 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Predicted depth red-near blue-far/e58db2a94f058c3cbda5/portrait_2_depth_colored.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:f4d3caec2a68ca8b5fbedb42441bf12d27da401ae53629f102548f07680db5e2 3 | size 304975 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Predicted depth red-near blue-far/e9c962c7d4300842fbd2/einstein_depth_colored.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:8e12862876cc4752e18cb2b5f3b4bd38f2fe62bf72267275f06681aa2ea1abd8 3 | size 693251 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Predicted depth red-near blue-far/f74d13a60bda9b080432/einstein_depth_16bit.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:410ff615dbbadf27f9679a495a8e747009a4958b86aa10559470af816075b016 3 | size 1492165 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/Predicted depth red-near blue-far/f9fb6b3768c97d11bf63/scientists_depth_colored.png: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:24f43de7775ac97a9485d0b018fa27be5557dc6bd4d6b1a873456791910a8f46 3 | size 631879 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/29/Output video depth red-near blue-far/315c7361216ee7b38070/elephant_depth_colored.mp4: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:9dfb3689c97f04cabf39b4aa8a06ad4ce8fb424a353bf30d1641fb28f79c4d48 3 | size 755285 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/29/Output video depth red-near blue-far/ee3bed949e6cdc9413a9/obama_depth_colored.mp4: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:86a007b675d5e294a7e8b036dea45a1034a0580f387353feec599920eb560ba7 3 | size 430863 4 | -------------------------------------------------------------------------------- /gradio_cached_examples/58/3D preview low-res relief highlight/9cfc51ac897aa0a455f2/einstein_depth_256.glb: -------------------------------------------------------------------------------- 1 | version https://git-lfs.github.com/spec/v1 2 | oid sha256:fcb511d580a765ace266bfb5a0591803dbe9b6524cddba487db3d8a8859f99b6 3 | size 2397704 4 | -------------------------------------------------------------------------------- /requirements.txt: -------------------------------------------------------------------------------- 1 | gradio==4.22.0 2 | gradio-imageslider==0.0.16 3 | pygltflib==1.16.1 4 | trimesh==4.0.5 5 | imageio 6 | imageio-ffmpeg 7 | Pillow 8 | 9 | accelerate==0.28.0 10 | diffusers==0.27.2 11 | matplotlib==3.8.2 12 | scipy==1.11.4 13 | torch==2.0.1 14 | transformers==4.39.1 15 | xformers==0.0.21 16 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | --- 2 | title: Marigold-LCM Depth Estimation 3 | emoji: 🏵️ 4 | colorFrom: blue 5 | colorTo: red 6 | sdk: gradio 7 | sdk_version: 4.22.0 8 | app_file: app.py 9 | pinned: true 10 | license: cc-by-sa-4.0 11 | models: 12 | - prs-eth/marigold-v1-0 13 | - prs-eth/marigold-lcm-v1-0 14 | --- 15 | 16 | This is a demo of Marigold-LCM, the state-of-the-art depth estimator for images in the wild. 17 | It combines the power of the original Marigold 10-step estimator and the Latent Consistency Models, delivering high-quality results in as little as one step. 18 | Find out more in our paper titled ["Repurposing Diffusion-Based Image Generators for Monocular Depth Estimation"](https://arxiv.org/abs/2312.02145) 19 | 20 | ``` 21 | @misc{ke2023repurposing, 22 | title={Repurposing Diffusion-Based Image Generators for Monocular Depth Estimation}, 23 | author={Bingxin Ke and Anton Obukhov and Shengyu Huang and Nando Metzger and Rodrigo Caye Daudt and Konrad Schindler}, 24 | year={2023}, 25 | eprint={2312.02145}, 26 | archivePrefix={arXiv}, 27 | primaryClass={cs.CV} 28 | } 29 | ``` 30 | -------------------------------------------------------------------------------- /.gitattributes: -------------------------------------------------------------------------------- 1 | *.7z filter=lfs diff=lfs merge=lfs -text 2 | *.arrow filter=lfs diff=lfs merge=lfs -text 3 | *.bin filter=lfs diff=lfs merge=lfs -text 4 | *.bz2 filter=lfs diff=lfs merge=lfs -text 5 | *.ckpt filter=lfs diff=lfs merge=lfs -text 6 | *.ftz filter=lfs diff=lfs merge=lfs -text 7 | *.gz filter=lfs diff=lfs merge=lfs -text 8 | *.h5 filter=lfs diff=lfs merge=lfs -text 9 | *.joblib filter=lfs diff=lfs merge=lfs -text 10 | *.lfs.* filter=lfs diff=lfs merge=lfs -text 11 | *.mlmodel filter=lfs diff=lfs merge=lfs -text 12 | *.model filter=lfs diff=lfs merge=lfs -text 13 | *.msgpack filter=lfs diff=lfs merge=lfs -text 14 | *.npy filter=lfs diff=lfs merge=lfs -text 15 | *.npz filter=lfs diff=lfs merge=lfs -text 16 | *.onnx filter=lfs diff=lfs merge=lfs -text 17 | *.ot filter=lfs diff=lfs merge=lfs -text 18 | *.parquet filter=lfs diff=lfs merge=lfs -text 19 | *.pb filter=lfs diff=lfs merge=lfs -text 20 | *.pickle filter=lfs diff=lfs merge=lfs -text 21 | *.pkl filter=lfs diff=lfs merge=lfs -text 22 | *.pt filter=lfs diff=lfs merge=lfs -text 23 | *.pth filter=lfs diff=lfs merge=lfs -text 24 | *.rar filter=lfs diff=lfs merge=lfs -text 25 | *.safetensors filter=lfs diff=lfs merge=lfs -text 26 | saved_model/**/* filter=lfs diff=lfs merge=lfs -text 27 | *.tar.* filter=lfs diff=lfs merge=lfs -text 28 | *.tar filter=lfs diff=lfs merge=lfs -text 29 | *.tflite filter=lfs diff=lfs merge=lfs -text 30 | *.tgz filter=lfs diff=lfs merge=lfs -text 31 | *.wasm filter=lfs diff=lfs merge=lfs -text 32 | *.xz filter=lfs diff=lfs merge=lfs -text 33 | *.zip filter=lfs diff=lfs merge=lfs -text 34 | *.zst filter=lfs diff=lfs merge=lfs -text 35 | *tfevents* filter=lfs diff=lfs merge=lfs -text 36 | *.stl filter=lfs diff=lfs merge=lfs -text 37 | *.glb filter=lfs diff=lfs merge=lfs -text 38 | *.jpg filter=lfs diff=lfs merge=lfs -text 39 | *.jpeg filter=lfs diff=lfs merge=lfs -text 40 | *.png filter=lfs diff=lfs merge=lfs -text 41 | *.mp4 filter=lfs diff=lfs merge=lfs -text 42 | -------------------------------------------------------------------------------- /gradio_cached_examples/58/log.csv: -------------------------------------------------------------------------------- 1 | "3D preview (low-res, relief highlight)",3D model outputs (high-res),flag,username,timestamp 2 | "{""path"": ""gradio_cached_examples/58/3D preview low-res relief highlight/4237fcd0dad8ff3298f3/coin_depth_256.glb"", ""url"": ""/file=/tmp/gradio/867147083b9e6dbc7da5aae5aa65a25eda49c925/coin_output/coin_depth_256.glb"", ""size"": null, ""orig_name"": ""coin_depth_256.glb"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}","[{""path"": ""gradio_cached_examples/58/3D model outputs high-res/409aac8c714a19097c19/coin_depth_512.glb"", ""url"": ""/file=/tmp/gradio/867147083b9e6dbc7da5aae5aa65a25eda49c925/coin_output/coin_depth_512.glb"", ""size"": 10465944, ""orig_name"": ""coin_depth_512.glb"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/58/3D model outputs high-res/789054453156abfa3dac/coin_depth_512.stl"", ""url"": ""/file=/tmp/gradio/867147083b9e6dbc7da5aae5aa65a25eda49c925/coin_output/coin_depth_512.stl"", ""size"": 26162484, ""orig_name"": ""coin_depth_512.stl"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}]",,,2024-03-22 11:03:44.094538 3 | "{""path"": ""gradio_cached_examples/58/3D preview low-res relief highlight/9cfc51ac897aa0a455f2/einstein_depth_256.glb"", ""url"": ""/file=/tmp/gradio/ea36dd96d126ddf35c2b3652ba451b133ce44d8c/einstein_output/einstein_depth_256.glb"", ""size"": null, ""orig_name"": ""einstein_depth_256.glb"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}","[{""path"": ""gradio_cached_examples/58/3D model outputs high-res/1b5111a9ba7be9778d37/einstein_depth_512.glb"", ""url"": ""/file=/tmp/gradio/ea36dd96d126ddf35c2b3652ba451b133ce44d8c/einstein_output/einstein_depth_512.glb"", ""size"": 10568768, ""orig_name"": ""einstein_depth_512.glb"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/58/3D model outputs high-res/bee443acba581914a3e5/einstein_depth_512.stl"", ""url"": ""/file=/tmp/gradio/ea36dd96d126ddf35c2b3652ba451b133ce44d8c/einstein_output/einstein_depth_512.stl"", ""size"": 26419484, ""orig_name"": ""einstein_depth_512.stl"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}]",,,2024-03-22 11:03:46.478981 4 | "{""path"": ""gradio_cached_examples/58/3D preview low-res relief highlight/4756f7e8f07d8445b1df/food_depth_256.glb"", ""url"": ""/file=/tmp/gradio/a69b5239bc9b0d955739849b83ae54ed33bb7b4d/food_output/food_depth_256.glb"", ""size"": null, ""orig_name"": ""food_depth_256.glb"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}","[{""path"": ""gradio_cached_examples/58/3D model outputs high-res/a4a4773a0122b3417297/food_depth_512.glb"", ""url"": ""/file=/tmp/gradio/a69b5239bc9b0d955739849b83ae54ed33bb7b4d/food_output/food_depth_512.glb"", ""size"": 7053036, ""orig_name"": ""food_depth_512.glb"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/58/3D model outputs high-res/c56ef4018e4584940192/food_depth_512.stl"", ""url"": ""/file=/tmp/gradio/a69b5239bc9b0d955739849b83ae54ed33bb7b4d/food_output/food_depth_512.stl"", ""size"": 17630084, ""orig_name"": ""food_depth_512.stl"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}]",,,2024-03-22 11:03:49.626119 5 | -------------------------------------------------------------------------------- /gradio_cached_examples/29/log.csv: -------------------------------------------------------------------------------- 1 | "Output video depth (red-near, blue-far)",Depth outputs,flag,username,timestamp 2 | "{""video"": {""path"": ""gradio_cached_examples/29/Output video depth red-near blue-far/b1a647fc7fb469eb9c90/cab_depth_colored.mp4"", ""url"": ""/file=/tmp/gradio/dcb7ac3b468a001ba8a3deaf15f49765331b0746/cab_output/cab_depth_colored.mp4"", ""size"": null, ""orig_name"": ""cab_depth_colored.mp4"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, ""subtitles"": null}","[{""path"": ""gradio_cached_examples/29/Depth outputs/5f96f60f0b5af752e271/cab_depth_colored.mp4"", ""url"": ""/file=/tmp/gradio/dcb7ac3b468a001ba8a3deaf15f49765331b0746/cab_output/cab_depth_colored.mp4"", ""size"": 473925, ""orig_name"": ""cab_depth_colored.mp4"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/29/Depth outputs/63df77111c5982e3d501/cab_depth_16bit.zip"", ""url"": ""/file=/tmp/gradio/dcb7ac3b468a001ba8a3deaf15f49765331b0746/cab_output/cab_depth_16bit.zip"", ""size"": 39185578, ""orig_name"": ""cab_depth_16bit.zip"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}]",,,2024-03-22 11:02:13.904822 3 | "{""video"": {""path"": ""gradio_cached_examples/29/Output video depth red-near blue-far/315c7361216ee7b38070/elephant_depth_colored.mp4"", ""url"": ""/file=/tmp/gradio/fc2aed651bf530fc1d0b9cc911f81c5eb63ed149/elephant_output/elephant_depth_colored.mp4"", ""size"": null, ""orig_name"": ""elephant_depth_colored.mp4"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, ""subtitles"": null}","[{""path"": ""gradio_cached_examples/29/Depth outputs/bce9827dbf145c2cd2e5/elephant_depth_colored.mp4"", ""url"": ""/file=/tmp/gradio/fc2aed651bf530fc1d0b9cc911f81c5eb63ed149/elephant_output/elephant_depth_colored.mp4"", ""size"": 755285, ""orig_name"": ""elephant_depth_colored.mp4"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/29/Depth outputs/d49d367de8bff332fa2e/elephant_depth_16bit.zip"", ""url"": ""/file=/tmp/gradio/fc2aed651bf530fc1d0b9cc911f81c5eb63ed149/elephant_output/elephant_depth_16bit.zip"", ""size"": 41877515, ""orig_name"": ""elephant_depth_16bit.zip"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}]",,,2024-03-22 11:02:53.650304 4 | "{""video"": {""path"": ""gradio_cached_examples/29/Output video depth red-near blue-far/ee3bed949e6cdc9413a9/obama_depth_colored.mp4"", ""url"": ""/file=/tmp/gradio/3a35ca3cac43e275139bd3e94c2aa0da9ce82011/obama_output/obama_depth_colored.mp4"", ""size"": null, ""orig_name"": ""obama_depth_colored.mp4"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, ""subtitles"": null}","[{""path"": ""gradio_cached_examples/29/Depth outputs/8209c6d80711c2b193b6/obama_depth_colored.mp4"", ""url"": ""/file=/tmp/gradio/3a35ca3cac43e275139bd3e94c2aa0da9ce82011/obama_output/obama_depth_colored.mp4"", ""size"": 430863, ""orig_name"": ""obama_depth_colored.mp4"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/29/Depth outputs/d7825cd99c31975cb780/obama_depth_16bit.zip"", ""url"": ""/file=/tmp/gradio/3a35ca3cac43e275139bd3e94c2aa0da9ce82011/obama_output/obama_depth_16bit.zip"", ""size"": 38156752, ""orig_name"": ""obama_depth_16bit.zip"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}]",,,2024-03-22 11:03:38.092138 5 | -------------------------------------------------------------------------------- /extrude.py: -------------------------------------------------------------------------------- 1 | import math 2 | import os 3 | 4 | import numpy as np 5 | import pygltflib 6 | import trimesh 7 | from PIL import Image, ImageFilter 8 | 9 | 10 | def quaternion_multiply(q1, q2): 11 | x1, y1, z1, w1 = q1 12 | x2, y2, z2, w2 = q2 13 | return [ 14 | w1 * x2 + x1 * w2 + y1 * z2 - z1 * y2, 15 | w1 * y2 - x1 * z2 + y1 * w2 + z1 * x2, 16 | w1 * z2 + x1 * y2 - y1 * x2 + z1 * w2, 17 | w1 * w2 - x1 * x2 - y1 * y2 - z1 * z2, 18 | ] 19 | 20 | 21 | def glb_add_lights(path_input, path_output): 22 | """ 23 | Adds directional lights in the horizontal plane to the glb file. 24 | :param path_input: path to input glb 25 | :param path_output: path to output glb 26 | :return: None 27 | """ 28 | glb = pygltflib.GLTF2().load(path_input) 29 | 30 | N = 3 # default max num lights in Babylon.js is 4 31 | angle_step = 2 * math.pi / N 32 | elevation_angle = math.radians(75) 33 | 34 | light_colors = [ 35 | [1.0, 0.0, 0.0], 36 | [0.0, 1.0, 0.0], 37 | [0.0, 0.0, 1.0], 38 | ] 39 | 40 | lights_extension = { 41 | "lights": [ 42 | {"type": "directional", "color": light_colors[i], "intensity": 2.0} 43 | for i in range(N) 44 | ] 45 | } 46 | 47 | if "KHR_lights_punctual" not in glb.extensionsUsed: 48 | glb.extensionsUsed.append("KHR_lights_punctual") 49 | glb.extensions["KHR_lights_punctual"] = lights_extension 50 | 51 | light_nodes = [] 52 | for i in range(N): 53 | angle = i * angle_step 54 | 55 | pos_rot = [0.0, 0.0, math.sin(angle / 2), math.cos(angle / 2)] 56 | elev_rot = [ 57 | math.sin(elevation_angle / 2), 58 | 0.0, 59 | 0.0, 60 | math.cos(elevation_angle / 2), 61 | ] 62 | rotation = quaternion_multiply(pos_rot, elev_rot) 63 | 64 | node = { 65 | "rotation": rotation, 66 | "extensions": {"KHR_lights_punctual": {"light": i}}, 67 | } 68 | light_nodes.append(node) 69 | 70 | light_node_indices = list(range(len(glb.nodes), len(glb.nodes) + N)) 71 | glb.nodes.extend(light_nodes) 72 | 73 | root_node_index = glb.scenes[glb.scene].nodes[0] 74 | root_node = glb.nodes[root_node_index] 75 | if hasattr(root_node, "children"): 76 | root_node.children.extend(light_node_indices) 77 | else: 78 | root_node.children = light_node_indices 79 | 80 | glb.save(path_output) 81 | 82 | 83 | def extrude_depth_3d( 84 | path_rgb, 85 | path_depth, 86 | output_model_scale=100, 87 | filter_size=3, 88 | coef_near=0.0, 89 | coef_far=1.0, 90 | emboss=0.3, 91 | f_thic=0.05, 92 | f_near=-0.15, 93 | f_back=0.01, 94 | vertex_colors=True, 95 | scene_lights=True, 96 | prepare_for_3d_printing=False, 97 | ): 98 | f_far_inner = -emboss 99 | f_far_outer = f_far_inner - f_back 100 | 101 | f_near = max(f_near, f_far_inner) 102 | 103 | depth_image = Image.open(path_depth) 104 | assert depth_image.mode == "I", depth_image.mode 105 | depth_image = depth_image.filter(ImageFilter.MedianFilter(size=filter_size)) 106 | 107 | w, h = depth_image.size 108 | d_max = max(w, h) 109 | depth_image = np.array(depth_image).astype(np.double) 110 | z_min, z_max = np.min(depth_image), np.max(depth_image) 111 | depth_image = (depth_image.astype(np.double) - z_min) / (z_max - z_min) 112 | depth_image[depth_image < coef_near] = coef_near 113 | depth_image[depth_image > coef_far] = coef_far 114 | depth_image = emboss * (depth_image - coef_near) / (coef_far - coef_near) 115 | rgb_image = np.array( 116 | Image.open(path_rgb).convert("RGB").resize((w, h), Image.Resampling.LANCZOS) 117 | ) 118 | 119 | w_norm = w / float(d_max - 1) 120 | h_norm = h / float(d_max - 1) 121 | w_half = w_norm / 2 122 | h_half = h_norm / 2 123 | 124 | x, y = np.meshgrid(np.arange(w), np.arange(h)) 125 | x = x / float(d_max - 1) - w_half # [-w_half, w_half] 126 | y = -y / float(d_max - 1) + h_half # [-h_half, h_half] 127 | z = -depth_image # -depth_emboss (far) - 0 (near) 128 | vertices_2d = np.stack((x, y, z), axis=-1) 129 | vertices = vertices_2d.reshape(-1, 3) 130 | colors = rgb_image[:, :, :3].reshape(-1, 3) / 255.0 131 | 132 | faces = [] 133 | for y in range(h - 1): 134 | for x in range(w - 1): 135 | idx = y * w + x 136 | faces.append([idx, idx + w, idx + 1]) 137 | faces.append([idx + 1, idx + w, idx + 1 + w]) 138 | 139 | # OUTER frame 140 | 141 | nv = len(vertices) 142 | vertices = np.append( 143 | vertices, 144 | [ 145 | [-w_half - f_thic, -h_half - f_thic, f_near], # 00 146 | [-w_half - f_thic, -h_half - f_thic, f_far_outer], # 01 147 | [w_half + f_thic, -h_half - f_thic, f_near], # 02 148 | [w_half + f_thic, -h_half - f_thic, f_far_outer], # 03 149 | [w_half + f_thic, h_half + f_thic, f_near], # 04 150 | [w_half + f_thic, h_half + f_thic, f_far_outer], # 05 151 | [-w_half - f_thic, h_half + f_thic, f_near], # 06 152 | [-w_half - f_thic, h_half + f_thic, f_far_outer], # 07 153 | ], 154 | axis=0, 155 | ) 156 | faces.extend( 157 | [ 158 | [nv + 0, nv + 1, nv + 2], 159 | [nv + 2, nv + 1, nv + 3], 160 | [nv + 2, nv + 3, nv + 4], 161 | [nv + 4, nv + 3, nv + 5], 162 | [nv + 4, nv + 5, nv + 6], 163 | [nv + 6, nv + 5, nv + 7], 164 | [nv + 6, nv + 7, nv + 0], 165 | [nv + 0, nv + 7, nv + 1], 166 | ] 167 | ) 168 | colors = np.append(colors, [[0.5, 0.5, 0.5]] * 8, axis=0) 169 | 170 | # INNER frame 171 | 172 | nv = len(vertices) 173 | vertices_left_data = vertices_2d[:, 0] # H x 3 174 | vertices_left_frame = vertices_2d[:, 0].copy() # H x 3 175 | vertices_left_frame[:, 2] = f_near 176 | vertices = np.append(vertices, vertices_left_data, axis=0) 177 | vertices = np.append(vertices, vertices_left_frame, axis=0) 178 | colors = np.append(colors, [[0.5, 0.5, 0.5]] * (2 * h), axis=0) 179 | for i in range(h - 1): 180 | nvi_d = nv + i 181 | nvi_f = nvi_d + h 182 | faces.append([nvi_d, nvi_f, nvi_d + 1]) 183 | faces.append([nvi_d + 1, nvi_f, nvi_f + 1]) 184 | 185 | nv = len(vertices) 186 | vertices_right_data = vertices_2d[:, -1] # H x 3 187 | vertices_right_frame = vertices_2d[:, -1].copy() # H x 3 188 | vertices_right_frame[:, 2] = f_near 189 | vertices = np.append(vertices, vertices_right_data, axis=0) 190 | vertices = np.append(vertices, vertices_right_frame, axis=0) 191 | colors = np.append(colors, [[0.5, 0.5, 0.5]] * (2 * h), axis=0) 192 | for i in range(h - 1): 193 | nvi_d = nv + i 194 | nvi_f = nvi_d + h 195 | faces.append([nvi_d, nvi_d + 1, nvi_f]) 196 | faces.append([nvi_d + 1, nvi_f + 1, nvi_f]) 197 | 198 | nv = len(vertices) 199 | vertices_top_data = vertices_2d[0, :] # H x 3 200 | vertices_top_frame = vertices_2d[0, :].copy() # H x 3 201 | vertices_top_frame[:, 2] = f_near 202 | vertices = np.append(vertices, vertices_top_data, axis=0) 203 | vertices = np.append(vertices, vertices_top_frame, axis=0) 204 | colors = np.append(colors, [[0.5, 0.5, 0.5]] * (2 * w), axis=0) 205 | for i in range(w - 1): 206 | nvi_d = nv + i 207 | nvi_f = nvi_d + w 208 | faces.append([nvi_d, nvi_d + 1, nvi_f]) 209 | faces.append([nvi_d + 1, nvi_f + 1, nvi_f]) 210 | 211 | nv = len(vertices) 212 | vertices_bottom_data = vertices_2d[-1, :] # H x 3 213 | vertices_bottom_frame = vertices_2d[-1, :].copy() # H x 3 214 | vertices_bottom_frame[:, 2] = f_near 215 | vertices = np.append(vertices, vertices_bottom_data, axis=0) 216 | vertices = np.append(vertices, vertices_bottom_frame, axis=0) 217 | colors = np.append(colors, [[0.5, 0.5, 0.5]] * (2 * w), axis=0) 218 | for i in range(w - 1): 219 | nvi_d = nv + i 220 | nvi_f = nvi_d + w 221 | faces.append([nvi_d, nvi_f, nvi_d + 1]) 222 | faces.append([nvi_d + 1, nvi_f, nvi_f + 1]) 223 | 224 | # FRONT frame 225 | 226 | nv = len(vertices) 227 | vertices = np.append( 228 | vertices, 229 | [ 230 | [-w_half - f_thic, -h_half - f_thic, f_near], 231 | [-w_half - f_thic, h_half + f_thic, f_near], 232 | ], 233 | axis=0, 234 | ) 235 | vertices = np.append(vertices, vertices_left_frame, axis=0) 236 | colors = np.append(colors, [[0.5, 0.5, 0.5]] * (2 + h), axis=0) 237 | for i in range(h - 1): 238 | faces.append([nv, nv + 2 + i + 1, nv + 2 + i]) 239 | faces.append([nv, nv + 2, nv + 1]) 240 | 241 | nv = len(vertices) 242 | vertices = np.append( 243 | vertices, 244 | [ 245 | [w_half + f_thic, h_half + f_thic, f_near], 246 | [w_half + f_thic, -h_half - f_thic, f_near], 247 | ], 248 | axis=0, 249 | ) 250 | vertices = np.append(vertices, vertices_right_frame, axis=0) 251 | colors = np.append(colors, [[0.5, 0.5, 0.5]] * (2 + h), axis=0) 252 | for i in range(h - 1): 253 | faces.append([nv, nv + 2 + i, nv + 2 + i + 1]) 254 | faces.append([nv, nv + h + 1, nv + 1]) 255 | 256 | nv = len(vertices) 257 | vertices = np.append( 258 | vertices, 259 | [ 260 | [w_half + f_thic, h_half + f_thic, f_near], 261 | [-w_half - f_thic, h_half + f_thic, f_near], 262 | ], 263 | axis=0, 264 | ) 265 | vertices = np.append(vertices, vertices_top_frame, axis=0) 266 | colors = np.append(colors, [[0.5, 0.5, 0.5]] * (2 + w), axis=0) 267 | for i in range(w - 1): 268 | faces.append([nv, nv + 2 + i, nv + 2 + i + 1]) 269 | faces.append([nv, nv + 1, nv + 2]) 270 | 271 | nv = len(vertices) 272 | vertices = np.append( 273 | vertices, 274 | [ 275 | [-w_half - f_thic, -h_half - f_thic, f_near], 276 | [w_half + f_thic, -h_half - f_thic, f_near], 277 | ], 278 | axis=0, 279 | ) 280 | vertices = np.append(vertices, vertices_bottom_frame, axis=0) 281 | colors = np.append(colors, [[0.5, 0.5, 0.5]] * (2 + w), axis=0) 282 | for i in range(w - 1): 283 | faces.append([nv, nv + 2 + i + 1, nv + 2 + i]) 284 | faces.append([nv, nv + 1, nv + w + 1]) 285 | 286 | # BACK frame 287 | 288 | nv = len(vertices) 289 | vertices = np.append( 290 | vertices, 291 | [ 292 | [-w_half - f_thic, -h_half - f_thic, f_far_outer], # 00 293 | [w_half + f_thic, -h_half - f_thic, f_far_outer], # 01 294 | [w_half + f_thic, h_half + f_thic, f_far_outer], # 02 295 | [-w_half - f_thic, h_half + f_thic, f_far_outer], # 03 296 | ], 297 | axis=0, 298 | ) 299 | faces.extend( 300 | [ 301 | [nv + 0, nv + 2, nv + 1], 302 | [nv + 2, nv + 0, nv + 3], 303 | ] 304 | ) 305 | colors = np.append(colors, [[0.5, 0.5, 0.5]] * 4, axis=0) 306 | 307 | trimesh_kwargs = {} 308 | if vertex_colors: 309 | trimesh_kwargs["vertex_colors"] = colors 310 | mesh = trimesh.Trimesh(vertices=vertices, faces=faces, **trimesh_kwargs) 311 | 312 | mesh.merge_vertices() 313 | 314 | current_max_dimension = max(mesh.extents) 315 | scaling_factor = output_model_scale / current_max_dimension 316 | mesh.apply_scale(scaling_factor) 317 | 318 | if prepare_for_3d_printing: 319 | rotation_mat = trimesh.transformations.rotation_matrix(np.radians(90), [-1, 0, 0]) 320 | mesh.apply_transform(rotation_mat) 321 | 322 | path_out_base = os.path.splitext(path_depth)[0].replace("_16bit", "") 323 | path_out_glb = path_out_base + ".glb" 324 | path_out_stl = path_out_base + ".stl" 325 | 326 | mesh.export(path_out_glb, file_type="glb") 327 | if scene_lights: 328 | glb_add_lights(path_out_glb, path_out_glb) 329 | 330 | mesh.export(path_out_stl, file_type="stl") 331 | 332 | return path_out_glb, path_out_stl 333 | -------------------------------------------------------------------------------- /marigold_depth_estimation_lcm.py: -------------------------------------------------------------------------------- 1 | # Copyright 2024 Anton Obukhov, Bingxin Ke, ETH Zurich and The HuggingFace Team. All rights reserved. 2 | # 3 | # Licensed under the Apache License, Version 2.0 (the "License"); 4 | # you may not use this file except in compliance with the License. 5 | # You may obtain a copy of the License at 6 | # 7 | # http://www.apache.org/licenses/LICENSE-2.0 8 | # 9 | # Unless required by applicable law or agreed to in writing, software 10 | # distributed under the License is distributed on an "AS IS" BASIS, 11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 | # See the License for the specific language governing permissions and 13 | # limitations under the License. 14 | # -------------------------------------------------------------------------- 15 | # If you find this code useful, we kindly ask you to cite our paper in your work. 16 | # Please find bibtex at: https://github.com/prs-eth/Marigold#-citation 17 | # More information about the method can be found at https://marigoldmonodepth.github.io 18 | # -------------------------------------------------------------------------- 19 | 20 | 21 | import math 22 | from typing import Dict, Union, Tuple 23 | 24 | import matplotlib 25 | import numpy as np 26 | import torch 27 | from PIL import Image 28 | from scipy.optimize import minimize 29 | from torch.utils.data import DataLoader, TensorDataset 30 | from tqdm.auto import tqdm 31 | from transformers import CLIPTextModel, CLIPTokenizer 32 | 33 | from diffusers import ( 34 | AutoencoderKL, 35 | DDIMScheduler, 36 | DiffusionPipeline, 37 | UNet2DConditionModel, 38 | ) 39 | from diffusers.utils import BaseOutput, check_min_version 40 | 41 | 42 | # Will error if the minimal version of diffusers is not installed. Remove at your own risks. 43 | check_min_version("0.27.0.dev0") 44 | 45 | 46 | class MarigoldDepthConsistencyOutput(BaseOutput): 47 | """ 48 | Output class for Marigold monocular depth prediction pipeline. 49 | 50 | Args: 51 | depth_np (`np.ndarray`): 52 | Predicted depth map, with depth values in the range of [0, 1]. 53 | depth_colored (`None` or `PIL.Image.Image`): 54 | Colorized depth map, with the shape of [3, H, W] and values in [0, 1]. 55 | depth_latent (`torch.Tensor`): 56 | Depth map's latent, with the shape of [4, h, w]. 57 | uncertainty (`None` or `np.ndarray`): 58 | Uncalibrated uncertainty(MAD, median absolute deviation) coming from ensembling. 59 | """ 60 | 61 | depth_np: np.ndarray 62 | depth_colored: Union[None, Image.Image] 63 | depth_latent: torch.Tensor 64 | uncertainty: Union[None, np.ndarray] 65 | 66 | 67 | class MarigoldDepthConsistencyPipeline(DiffusionPipeline): 68 | """ 69 | Pipeline for monocular depth estimation using Marigold: https://marigoldmonodepth.github.io. 70 | 71 | This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the 72 | library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) 73 | 74 | Args: 75 | unet (`UNet2DConditionModel`): 76 | Conditional U-Net to denoise the depth latent, conditioned on image latent. 77 | vae (`AutoencoderKL`): 78 | Variational Auto-Encoder (VAE) Model to encode and decode images and depth maps 79 | to and from latent representations. 80 | scheduler (`DDIMScheduler`): 81 | A scheduler to be used in combination with `unet` to denoise the encoded image latents. 82 | text_encoder (`CLIPTextModel`): 83 | Text-encoder, for empty text embedding. 84 | tokenizer (`CLIPTokenizer`): 85 | CLIP tokenizer. 86 | """ 87 | 88 | rgb_latent_scale_factor = 0.18215 89 | depth_latent_scale_factor = 0.18215 90 | 91 | def __init__( 92 | self, 93 | unet: UNet2DConditionModel, 94 | vae: AutoencoderKL, 95 | scheduler: DDIMScheduler, 96 | text_encoder: CLIPTextModel, 97 | tokenizer: CLIPTokenizer, 98 | ): 99 | super().__init__() 100 | 101 | self.register_modules( 102 | unet=unet, 103 | vae=vae, 104 | scheduler=scheduler, 105 | text_encoder=text_encoder, 106 | tokenizer=tokenizer, 107 | ) 108 | 109 | self.empty_text_embed = None 110 | 111 | @torch.no_grad() 112 | def __call__( 113 | self, 114 | input_image: Image, 115 | denoising_steps: int = 1, 116 | ensemble_size: int = 1, 117 | processing_res: int = 768, 118 | match_input_res: bool = True, 119 | batch_size: int = 0, 120 | depth_latent_init: torch.Tensor = None, 121 | depth_latent_init_strength: float = 0.1, 122 | seed: int = None, 123 | color_map: str = "Spectral", 124 | show_progress_bar: bool = True, 125 | ensemble_kwargs: Dict = None, 126 | ) -> MarigoldDepthConsistencyOutput: 127 | """ 128 | Function invoked when calling the pipeline. 129 | 130 | Args: 131 | input_image (`Image`): 132 | Input RGB (or gray-scale) image. 133 | processing_res (`int`, *optional*, defaults to `768`): 134 | Maximum resolution of processing. 135 | If set to 0: will not resize at all. 136 | match_input_res (`bool`, *optional*, defaults to `True`): 137 | Resize depth prediction to match input resolution. 138 | Only valid if `limit_input_res` is not None. 139 | denoising_steps (`int`, *optional*, defaults to `1`): 140 | Number of diffusion denoising steps (consistency) during inference. 141 | ensemble_size (`int`, *optional*, defaults to `1`): 142 | Number of predictions to be ensembled. 143 | batch_size (`int`, *optional*, defaults to `0`): 144 | Inference batch size, no bigger than `num_ensemble`. 145 | If set to 0, the script will automatically decide the proper batch size. 146 | depth_latent_init (`torch.Tensor`, *optional*, defaults to `None`): 147 | Initial depth map latent for better temporal consistency. 148 | depth_latent_init_strength (`float`, *optional*, defaults to `0.1`) 149 | Degree of initial depth latent influence, must be between 0 and 1. 150 | seed (`int`, *optional*, defaults to `None`) 151 | Reproducibility seed. 152 | show_progress_bar (`bool`, *optional*, defaults to `True`): 153 | Display a progress bar of diffusion denoising. 154 | color_map (`str`, *optional*, defaults to `"Spectral"`, pass `None` to skip colorized depth map generation): 155 | Colormap used to colorize the depth map. 156 | ensemble_kwargs (`dict`, *optional*, defaults to `None`): 157 | Arguments for detailed ensembling settings. 158 | Returns: 159 | `MarigoldDepthConsistencyOutput`: Output class for Marigold monocular depth prediction pipeline, including: 160 | - **depth_np** (`np.ndarray`) Predicted depth map, with depth values in the range of [0, 1] 161 | - **depth_colored** (`None` or `PIL.Image.Image`) Colorized depth map, with the shape of [3, H, W] and 162 | values in [0, 1]. None if `color_map` is `None` 163 | - **depth_latent** (`torch.Tensor`) Predicted depth map latent 164 | - **uncertainty** (`None` or `np.ndarray`) Uncalibrated uncertainty(MAD, median absolute deviation) 165 | coming from ensembling. None if `ensemble_size = 1` 166 | """ 167 | 168 | device = self.device 169 | input_size = input_image.size 170 | 171 | if not match_input_res: 172 | assert ( 173 | processing_res is not None 174 | ), "Value error: `resize_output_back` is only valid with " 175 | assert processing_res >= 0, "Value error: `processing_res` must be non-negative" 176 | assert ( 177 | 1 <= denoising_steps <= 10 178 | ), "Value error: This model degrades with large number of steps" 179 | assert ensemble_size >= 1 180 | 181 | # ----------------- Image Preprocess ----------------- 182 | # Resize image 183 | if processing_res > 0: 184 | input_image = self.resize_max_res( 185 | input_image, max_edge_resolution=processing_res 186 | ) 187 | # Convert the image to RGB, to 1.remove the alpha channel 2.convert B&W to 3-channel 188 | input_image = input_image.convert("RGB") 189 | image = np.asarray(input_image) 190 | 191 | # Normalize rgb values 192 | rgb = np.transpose(image, (2, 0, 1)) # [H, W, rgb] -> [rgb, H, W] 193 | rgb_norm = rgb / 255.0 * 2.0 - 1.0 # [0, 255] -> [-1, 1] 194 | rgb_norm = torch.from_numpy(rgb_norm).to(self.dtype) 195 | rgb_norm = rgb_norm.to(device) 196 | assert rgb_norm.min() >= -1.0 and rgb_norm.max() <= 1.0 197 | 198 | # ----------------- Predicting depth ----------------- 199 | # Batch repeated input image 200 | duplicated_rgb = torch.stack([rgb_norm] * ensemble_size) 201 | batch_dataset = TensorDataset(duplicated_rgb) 202 | if batch_size > 0: 203 | _bs = batch_size 204 | else: 205 | _bs = self._find_batch_size( 206 | ensemble_size=ensemble_size, 207 | input_res=max(duplicated_rgb.shape[-2:]), 208 | dtype=self.dtype, 209 | ) 210 | 211 | batch_loader = DataLoader(batch_dataset, batch_size=_bs, shuffle=False) 212 | 213 | # Predict depth maps (batched) 214 | depth_pred_ls = [] 215 | if show_progress_bar: 216 | iterable = tqdm( 217 | batch_loader, desc=" " * 2 + "Inference batches", leave=False 218 | ) 219 | else: 220 | iterable = batch_loader 221 | depth_latent = None 222 | for batch in iterable: 223 | (batched_img,) = batch 224 | depth_pred_raw, depth_latent = self.single_infer( 225 | rgb_in=batched_img, 226 | num_inference_steps=denoising_steps, 227 | depth_latent_init=depth_latent_init, 228 | depth_latent_init_strength=depth_latent_init_strength, 229 | seed=seed, 230 | show_pbar=show_progress_bar, 231 | ) 232 | depth_pred_ls.append(depth_pred_raw.detach()) 233 | depth_preds = torch.concat(depth_pred_ls, dim=0).squeeze() 234 | torch.cuda.empty_cache() # clear vram cache for ensembling 235 | 236 | # ----------------- Test-time ensembling ----------------- 237 | if ensemble_size > 1: 238 | depth_pred, pred_uncert = self.ensemble_depths( 239 | depth_preds, **(ensemble_kwargs or {}) 240 | ) 241 | else: 242 | depth_pred = depth_preds 243 | pred_uncert = None 244 | 245 | # ----------------- Post processing ----------------- 246 | # Scale prediction to [0, 1] 247 | min_d = torch.min(depth_pred) 248 | max_d = torch.max(depth_pred) 249 | depth_pred = (depth_pred - min_d) / (max_d - min_d) 250 | if ensemble_size > 1: 251 | depth_latent = self._encode_depth(2 * depth_pred - 1) 252 | 253 | # Convert to numpy 254 | depth_pred = depth_pred.cpu().numpy().astype(np.float32) 255 | 256 | # Resize back to original resolution 257 | if match_input_res: 258 | pred_img = Image.fromarray(depth_pred) 259 | pred_img = pred_img.resize(input_size) 260 | depth_pred = np.asarray(pred_img) 261 | 262 | # Clip output range 263 | depth_pred = depth_pred.clip(0, 1) 264 | 265 | # Colorize 266 | if color_map is not None: 267 | depth_colored = self.colorize_depth_maps( 268 | depth_pred, 0, 1, cmap=color_map 269 | ).squeeze() # [3, H, W], value in (0, 1) 270 | depth_colored = (depth_colored * 255).astype(np.uint8) 271 | depth_colored_hwc = self.chw2hwc(depth_colored) 272 | depth_colored_img = Image.fromarray(depth_colored_hwc) 273 | else: 274 | depth_colored_img = None 275 | return MarigoldDepthConsistencyOutput( 276 | depth_np=depth_pred, 277 | depth_colored=depth_colored_img, 278 | depth_latent=depth_latent, 279 | uncertainty=pred_uncert, 280 | ) 281 | 282 | def _encode_empty_text(self): 283 | """ 284 | Encode text embedding for empty prompt. 285 | """ 286 | prompt = "" 287 | text_inputs = self.tokenizer( 288 | prompt, 289 | padding="do_not_pad", 290 | max_length=self.tokenizer.model_max_length, 291 | truncation=True, 292 | return_tensors="pt", 293 | ) 294 | text_input_ids = text_inputs.input_ids.to(self.text_encoder.device) 295 | self.empty_text_embed = self.text_encoder(text_input_ids)[0].to(self.dtype) 296 | 297 | @torch.no_grad() 298 | def single_infer( 299 | self, 300 | rgb_in: torch.Tensor, 301 | num_inference_steps: int, 302 | depth_latent_init: torch.Tensor, 303 | depth_latent_init_strength: float, 304 | seed: int, 305 | show_pbar: bool, 306 | ) -> Tuple[torch.Tensor, torch.Tensor]: 307 | """ 308 | Perform an individual depth prediction without ensembling. 309 | 310 | Args: 311 | rgb_in (`torch.Tensor`): 312 | Input RGB image. 313 | num_inference_steps (`int`): 314 | Number of diffusion denoisign steps (DDIM) during inference. 315 | depth_latent_init (`torch.Tensor`, `optional`): 316 | Initial depth latent 317 | depth_latent_init_strength (`float`, `optional`): 318 | Degree of initial depth latent influence, must be between 0 and 1 319 | seed (`int`, *optional*, defaults to `None`) 320 | Reproducibility seed. 321 | show_pbar (`bool`): 322 | Display a progress bar of diffusion denoising. 323 | Returns: 324 | `torch.Tensor`: Predicted depth map. 325 | """ 326 | device = rgb_in.device 327 | 328 | # Set timesteps 329 | self.scheduler.set_timesteps(num_inference_steps, device=device) 330 | timesteps = self.scheduler.timesteps # [T] 331 | 332 | # Encode image 333 | rgb_latent = self._encode_rgb(rgb_in) 334 | 335 | # Initial depth map (noise) 336 | if seed is None: 337 | rng = None 338 | else: 339 | rng = torch.Generator(device=device) 340 | rng.manual_seed(seed) 341 | depth_latent = torch.randn( 342 | rgb_latent.shape, device=device, dtype=self.dtype, generator=rng 343 | ) # [B, 4, h, w] 344 | 345 | if depth_latent_init is not None: 346 | assert 0.0 <= depth_latent_init_strength <= 1.0 347 | assert ( 348 | depth_latent_init.dim() == 4 349 | and depth_latent.dim() == 4 350 | and depth_latent_init.shape[0] == 1 351 | ) 352 | if depth_latent.shape[0] != 1: 353 | depth_latent_init = depth_latent_init.repeat( 354 | depth_latent.shape[0], 1, 1, 1 355 | ) 356 | depth_latent *= 1.0 - depth_latent_init_strength 357 | depth_latent = depth_latent + depth_latent_init * depth_latent_init_strength 358 | 359 | # Batched empty text embedding 360 | if self.empty_text_embed is None: 361 | self._encode_empty_text() 362 | batch_empty_text_embed = self.empty_text_embed.repeat( 363 | (rgb_latent.shape[0], 1, 1) 364 | ) # [B, 2, 1024] 365 | 366 | # Denoising loop 367 | if show_pbar: 368 | iterable = tqdm( 369 | enumerate(timesteps), 370 | total=len(timesteps), 371 | leave=False, 372 | desc=" " * 4 + "Diffusion denoising", 373 | ) 374 | else: 375 | iterable = enumerate(timesteps) 376 | 377 | for i, t in iterable: 378 | unet_input = torch.cat( 379 | [rgb_latent, depth_latent], dim=1 380 | ) # this order is important 381 | 382 | # predict the noise residual 383 | noise_pred = self.unet( 384 | unet_input, t, encoder_hidden_states=batch_empty_text_embed 385 | ).sample # [B, 4, h, w] 386 | 387 | # compute the previous noisy sample x_t -> x_t-1 388 | depth_latent = self.scheduler.step(noise_pred, t, depth_latent).prev_sample 389 | 390 | depth = self._decode_depth(depth_latent) 391 | 392 | # clip prediction 393 | depth = torch.clip(depth, -1.0, 1.0) 394 | # shift to [0, 1] 395 | depth = (depth + 1.0) / 2.0 396 | 397 | return depth, depth_latent 398 | 399 | def _encode_depth(self, depth_in: torch.Tensor) -> torch.Tensor: 400 | """ 401 | Encode depth image into latent. 402 | 403 | Args: 404 | depth_in (`torch.Tensor`): 405 | Input Depth image to be encoded. 406 | 407 | Returns: 408 | `torch.Tensor`: Depth latent. 409 | """ 410 | # encode 411 | dims = depth_in.squeeze().shape 412 | h = self.vae.encoder(depth_in.reshape(1, 1, *dims).repeat(1, 3, 1, 1)) 413 | moments = self.vae.quant_conv(h) 414 | mean, _ = torch.chunk(moments, 2, dim=1) 415 | depth_latent = mean * self.depth_latent_scale_factor 416 | return depth_latent 417 | 418 | def _encode_rgb(self, rgb_in: torch.Tensor) -> torch.Tensor: 419 | """ 420 | Encode RGB image into latent. 421 | 422 | Args: 423 | rgb_in (`torch.Tensor`): 424 | Input RGB image to be encoded. 425 | 426 | Returns: 427 | `torch.Tensor`: Image latent. 428 | """ 429 | # encode 430 | h = self.vae.encoder(rgb_in) 431 | moments = self.vae.quant_conv(h) 432 | mean, logvar = torch.chunk(moments, 2, dim=1) 433 | # scale latent 434 | rgb_latent = mean * self.rgb_latent_scale_factor 435 | return rgb_latent 436 | 437 | def _decode_depth(self, depth_latent: torch.Tensor) -> torch.Tensor: 438 | """ 439 | Decode depth latent into depth map. 440 | 441 | Args: 442 | depth_latent (`torch.Tensor`): 443 | Depth latent to be decoded. 444 | 445 | Returns: 446 | `torch.Tensor`: Decoded depth map. 447 | """ 448 | # scale latent 449 | depth_latent = depth_latent / self.depth_latent_scale_factor 450 | # decode 451 | z = self.vae.post_quant_conv(depth_latent) 452 | stacked = self.vae.decoder(z) 453 | # mean of output channels 454 | depth_mean = stacked.mean(dim=1, keepdim=True) 455 | return depth_mean 456 | 457 | @staticmethod 458 | def resize_max_res(img: Image.Image, max_edge_resolution: int) -> Image.Image: 459 | """ 460 | Resize image to limit maximum edge length while keeping aspect ratio. 461 | 462 | Args: 463 | img (`Image.Image`): 464 | Image to be resized. 465 | max_edge_resolution (`int`): 466 | Maximum edge length (pixel). 467 | 468 | Returns: 469 | `Image.Image`: Resized image. 470 | """ 471 | original_width, original_height = img.size 472 | downscale_factor = min( 473 | max_edge_resolution / original_width, max_edge_resolution / original_height 474 | ) 475 | 476 | new_width = int(original_width * downscale_factor) 477 | new_height = int(original_height * downscale_factor) 478 | 479 | resized_img = img.resize((new_width, new_height)) 480 | return resized_img 481 | 482 | @staticmethod 483 | def colorize_depth_maps( 484 | depth_map, min_depth, max_depth, cmap="Spectral", valid_mask=None 485 | ): 486 | """ 487 | Colorize depth maps. 488 | """ 489 | assert len(depth_map.shape) >= 2, "Invalid dimension" 490 | 491 | if isinstance(depth_map, torch.Tensor): 492 | depth = depth_map.detach().squeeze().numpy() 493 | elif isinstance(depth_map, np.ndarray): 494 | depth = depth_map.copy().squeeze() 495 | # reshape to [ (B,) H, W ] 496 | if depth.ndim < 3: 497 | depth = depth[np.newaxis, :, :] 498 | 499 | # colorize 500 | cm = matplotlib.colormaps[cmap] 501 | depth = ((depth - min_depth) / (max_depth - min_depth)).clip(0, 1) 502 | img_colored_np = cm(depth, bytes=False)[:, :, :, 0:3] # value from 0 to 1 503 | img_colored_np = np.rollaxis(img_colored_np, 3, 1) 504 | 505 | if valid_mask is not None: 506 | if isinstance(depth_map, torch.Tensor): 507 | valid_mask = valid_mask.detach().numpy() 508 | valid_mask = valid_mask.squeeze() # [H, W] or [B, H, W] 509 | if valid_mask.ndim < 3: 510 | valid_mask = valid_mask[np.newaxis, np.newaxis, :, :] 511 | else: 512 | valid_mask = valid_mask[:, np.newaxis, :, :] 513 | valid_mask = np.repeat(valid_mask, 3, axis=1) 514 | img_colored_np[~valid_mask] = 0 515 | 516 | if isinstance(depth_map, torch.Tensor): 517 | img_colored = torch.from_numpy(img_colored_np).float() 518 | elif isinstance(depth_map, np.ndarray): 519 | img_colored = img_colored_np 520 | 521 | return img_colored 522 | 523 | @staticmethod 524 | def chw2hwc(chw): 525 | assert 3 == len(chw.shape) 526 | if isinstance(chw, torch.Tensor): 527 | hwc = torch.permute(chw, (1, 2, 0)) 528 | elif isinstance(chw, np.ndarray): 529 | hwc = np.moveaxis(chw, 0, -1) 530 | return hwc 531 | 532 | @staticmethod 533 | def _find_batch_size(ensemble_size: int, input_res: int, dtype: torch.dtype) -> int: 534 | """ 535 | Automatically search for suitable operating batch size. 536 | 537 | Args: 538 | ensemble_size (`int`): 539 | Number of predictions to be ensembled. 540 | input_res (`int`): 541 | Operating resolution of the input image. 542 | 543 | Returns: 544 | `int`: Operating batch size. 545 | """ 546 | # Search table for suggested max. inference batch size 547 | bs_search_table = [ 548 | # tested on A100-PCIE-80GB 549 | {"res": 768, "total_vram": 79, "bs": 35, "dtype": torch.float32}, 550 | {"res": 1024, "total_vram": 79, "bs": 20, "dtype": torch.float32}, 551 | # tested on A100-PCIE-40GB 552 | {"res": 768, "total_vram": 39, "bs": 15, "dtype": torch.float32}, 553 | {"res": 1024, "total_vram": 39, "bs": 8, "dtype": torch.float32}, 554 | {"res": 768, "total_vram": 39, "bs": 30, "dtype": torch.float16}, 555 | {"res": 1024, "total_vram": 39, "bs": 15, "dtype": torch.float16}, 556 | # tested on RTX3090, RTX4090 557 | {"res": 512, "total_vram": 23, "bs": 20, "dtype": torch.float32}, 558 | {"res": 768, "total_vram": 23, "bs": 7, "dtype": torch.float32}, 559 | {"res": 1024, "total_vram": 23, "bs": 3, "dtype": torch.float32}, 560 | {"res": 512, "total_vram": 23, "bs": 40, "dtype": torch.float16}, 561 | {"res": 768, "total_vram": 23, "bs": 18, "dtype": torch.float16}, 562 | {"res": 1024, "total_vram": 23, "bs": 10, "dtype": torch.float16}, 563 | # tested on GTX1080Ti 564 | {"res": 512, "total_vram": 10, "bs": 5, "dtype": torch.float32}, 565 | {"res": 768, "total_vram": 10, "bs": 2, "dtype": torch.float32}, 566 | {"res": 512, "total_vram": 10, "bs": 10, "dtype": torch.float16}, 567 | {"res": 768, "total_vram": 10, "bs": 5, "dtype": torch.float16}, 568 | {"res": 1024, "total_vram": 10, "bs": 3, "dtype": torch.float16}, 569 | ] 570 | 571 | if not torch.cuda.is_available(): 572 | return 1 573 | 574 | total_vram = torch.cuda.mem_get_info()[1] / 1024.0**3 575 | filtered_bs_search_table = [s for s in bs_search_table if s["dtype"] == dtype] 576 | for settings in sorted( 577 | filtered_bs_search_table, 578 | key=lambda k: (k["res"], -k["total_vram"]), 579 | ): 580 | if input_res <= settings["res"] and total_vram >= settings["total_vram"]: 581 | bs = settings["bs"] 582 | if bs > ensemble_size: 583 | bs = ensemble_size 584 | elif bs > math.ceil(ensemble_size / 2) and bs < ensemble_size: 585 | bs = math.ceil(ensemble_size / 2) 586 | return bs 587 | 588 | return 1 589 | 590 | @staticmethod 591 | def ensemble_depths( 592 | input_images: torch.Tensor, 593 | regularizer_strength: float = 0.02, 594 | max_iter: int = 2, 595 | tol: float = 1e-3, 596 | reduction: str = "median", 597 | max_res: int = None, 598 | ): 599 | """ 600 | To ensemble multiple affine-invariant depth images (up to scale and shift), 601 | by aligning estimating the scale and shift 602 | """ 603 | 604 | def inter_distances(tensors: torch.Tensor): 605 | """ 606 | To calculate the distance between each two depth maps. 607 | """ 608 | distances = [] 609 | for i, j in torch.combinations(torch.arange(tensors.shape[0])): 610 | arr1 = tensors[i : i + 1] 611 | arr2 = tensors[j : j + 1] 612 | distances.append(arr1 - arr2) 613 | dist = torch.concatenate(distances, dim=0) 614 | return dist 615 | 616 | device = input_images.device 617 | dtype = input_images.dtype 618 | np_dtype = np.float32 619 | 620 | original_input = input_images.clone() 621 | n_img = input_images.shape[0] 622 | ori_shape = input_images.shape 623 | 624 | if max_res is not None: 625 | scale_factor = torch.min(max_res / torch.tensor(ori_shape[-2:])) 626 | if scale_factor < 1: 627 | downscaler = torch.nn.Upsample( 628 | scale_factor=scale_factor, mode="nearest" 629 | ) 630 | input_images = downscaler(torch.from_numpy(input_images)).numpy() 631 | 632 | # init guess 633 | _min = np.min(input_images.reshape((n_img, -1)).cpu().numpy(), axis=1) 634 | _max = np.max(input_images.reshape((n_img, -1)).cpu().numpy(), axis=1) 635 | s_init = 1.0 / (_max - _min).reshape((-1, 1, 1)) 636 | t_init = (-1 * s_init.flatten() * _min.flatten()).reshape((-1, 1, 1)) 637 | x = np.concatenate([s_init, t_init]).reshape(-1).astype(np_dtype) 638 | 639 | input_images = input_images.to(device) 640 | 641 | # objective function 642 | def closure(x): 643 | l = len(x) 644 | s = x[: int(l / 2)] 645 | t = x[int(l / 2) :] 646 | s = torch.from_numpy(s).to(dtype=dtype).to(device) 647 | t = torch.from_numpy(t).to(dtype=dtype).to(device) 648 | 649 | transformed_arrays = input_images * s.view((-1, 1, 1)) + t.view((-1, 1, 1)) 650 | dists = inter_distances(transformed_arrays) 651 | sqrt_dist = torch.sqrt(torch.mean(dists**2)) 652 | 653 | if "mean" == reduction: 654 | pred = torch.mean(transformed_arrays, dim=0) 655 | elif "median" == reduction: 656 | pred = torch.median(transformed_arrays, dim=0).values 657 | else: 658 | raise ValueError 659 | 660 | near_err = torch.sqrt((0 - torch.min(pred)) ** 2) 661 | far_err = torch.sqrt((1 - torch.max(pred)) ** 2) 662 | 663 | err = sqrt_dist + (near_err + far_err) * regularizer_strength 664 | err = err.detach().cpu().numpy().astype(np_dtype) 665 | return err 666 | 667 | res = minimize( 668 | closure, 669 | x, 670 | method="BFGS", 671 | tol=tol, 672 | options={"maxiter": max_iter, "disp": False}, 673 | ) 674 | x = res.x 675 | l = len(x) 676 | s = x[: int(l / 2)] 677 | t = x[int(l / 2) :] 678 | 679 | # Prediction 680 | s = torch.from_numpy(s).to(dtype=dtype).to(device) 681 | t = torch.from_numpy(t).to(dtype=dtype).to(device) 682 | transformed_arrays = original_input * s.view(-1, 1, 1) + t.view(-1, 1, 1) 683 | if "mean" == reduction: 684 | aligned_images = torch.mean(transformed_arrays, dim=0) 685 | std = torch.std(transformed_arrays, dim=0) 686 | uncertainty = std 687 | elif "median" == reduction: 688 | aligned_images = torch.median(transformed_arrays, dim=0).values 689 | # MAD (median absolute deviation) as uncertainty indicator 690 | abs_dev = torch.abs(transformed_arrays - aligned_images) 691 | mad = torch.median(abs_dev, dim=0).values 692 | uncertainty = mad 693 | else: 694 | raise ValueError(f"Unknown reduction method: {reduction}") 695 | 696 | # Scale and shift to [0, 1] 697 | _min = torch.min(aligned_images) 698 | _max = torch.max(aligned_images) 699 | aligned_images = (aligned_images - _min) / (_max - _min) 700 | uncertainty /= _max - _min 701 | 702 | return aligned_images, uncertainty 703 | -------------------------------------------------------------------------------- /app.py: -------------------------------------------------------------------------------- 1 | import functools 2 | import os 3 | import shutil 4 | import zipfile 5 | from io import BytesIO 6 | 7 | import spaces 8 | import gradio as gr 9 | import imageio as imageio 10 | import numpy as np 11 | import torch as torch 12 | from PIL import Image 13 | from diffusers import UNet2DConditionModel, LCMScheduler 14 | from gradio_imageslider import ImageSlider 15 | from huggingface_hub import login 16 | from tqdm import tqdm 17 | 18 | from extrude import extrude_depth_3d 19 | from marigold_depth_estimation_lcm import MarigoldDepthConsistencyPipeline 20 | 21 | default_seed = 2024 22 | 23 | default_image_denoise_steps = 4 24 | default_image_ensemble_size = 1 25 | default_image_processing_res = 768 26 | default_image_reproducuble = True 27 | 28 | default_video_depth_latent_init_strength = 0.1 29 | default_video_denoise_steps = 1 30 | default_video_ensemble_size = 1 31 | default_video_processing_res = 768 32 | default_video_out_fps = 15 33 | default_video_out_max_frames = 100 34 | 35 | default_bas_plane_near = 0.0 36 | default_bas_plane_far = 1.0 37 | default_bas_embossing = 20 38 | default_bas_denoise_steps = 4 39 | default_bas_ensemble_size = 1 40 | default_bas_processing_res = 768 41 | default_bas_size_longest_px = 512 42 | default_bas_size_longest_cm = 10 43 | default_bas_filter_size = 3 44 | default_bas_frame_thickness = 5 45 | default_bas_frame_near = 1 46 | default_bas_frame_far = 1 47 | 48 | 49 | @spaces.GPU 50 | def process_image( 51 | pipe, 52 | path_input, 53 | denoise_steps=default_image_denoise_steps, 54 | ensemble_size=default_image_ensemble_size, 55 | processing_res=default_image_processing_res, 56 | reproducible=default_image_reproducuble, 57 | ): 58 | input_image = Image.open(path_input) 59 | 60 | pipe_out = pipe( 61 | input_image, 62 | denoising_steps=denoise_steps, 63 | ensemble_size=ensemble_size, 64 | processing_res=processing_res, 65 | batch_size=1 if processing_res == 0 else 0, 66 | seed=default_seed if reproducible else None, 67 | show_progress_bar=False, 68 | ) 69 | 70 | depth_pred = pipe_out.depth_np 71 | depth_colored = pipe_out.depth_colored 72 | depth_16bit = (depth_pred * 65535.0).astype(np.uint16) 73 | 74 | path_output_dir = os.path.splitext(path_input)[0] + "_output" 75 | os.makedirs(path_output_dir, exist_ok=True) 76 | 77 | name_base = os.path.splitext(os.path.basename(path_input))[0] 78 | path_out_fp32 = os.path.join(path_output_dir, f"{name_base}_depth_fp32.npy") 79 | path_out_16bit = os.path.join(path_output_dir, f"{name_base}_depth_16bit.png") 80 | path_out_vis = os.path.join(path_output_dir, f"{name_base}_depth_colored.png") 81 | 82 | np.save(path_out_fp32, depth_pred) 83 | Image.fromarray(depth_16bit).save(path_out_16bit, mode="I;16") 84 | depth_colored.save(path_out_vis) 85 | 86 | return ( 87 | [path_out_16bit, path_out_vis], 88 | [path_out_16bit, path_out_fp32, path_out_vis], 89 | ) 90 | 91 | 92 | @spaces.GPU 93 | def process_video( 94 | pipe, 95 | path_input, 96 | depth_latent_init_strength=default_video_depth_latent_init_strength, 97 | denoise_steps=default_video_denoise_steps, 98 | ensemble_size=default_video_ensemble_size, 99 | processing_res=default_video_processing_res, 100 | out_fps=default_video_out_fps, 101 | out_max_frames=default_video_out_max_frames, 102 | progress=gr.Progress(), 103 | ): 104 | path_output_dir = os.path.splitext(path_input)[0] + "_output" 105 | os.makedirs(path_output_dir, exist_ok=True) 106 | 107 | name_base = os.path.splitext(os.path.basename(path_input))[0] 108 | path_out_vis = os.path.join(path_output_dir, f"{name_base}_depth_colored.mp4") 109 | path_out_16bit = os.path.join(path_output_dir, f"{name_base}_depth_16bit.zip") 110 | 111 | reader = imageio.get_reader(path_input) 112 | 113 | meta_data = reader.get_meta_data() 114 | fps = meta_data["fps"] 115 | size = meta_data["size"] 116 | duration_sec = meta_data["duration"] 117 | 118 | if fps <= out_fps: 119 | frame_interval, out_fps = 1, fps 120 | else: 121 | frame_interval = round(fps / out_fps) 122 | out_fps = fps / frame_interval 123 | 124 | out_duration_sec = out_max_frames / out_fps 125 | if duration_sec > out_duration_sec: 126 | gr.Warning( 127 | f"Only the first ~{int(out_duration_sec)} seconds will be processed; " 128 | f"use alternative setups for full processing" 129 | ) 130 | 131 | writer = imageio.get_writer(path_out_vis, fps=out_fps) 132 | zipf = zipfile.ZipFile(path_out_16bit, "w", zipfile.ZIP_DEFLATED) 133 | prev_depth_latent = None 134 | 135 | pbar = tqdm(desc="Processing Video", total=out_max_frames) 136 | 137 | out_frame_id = 0 138 | for frame_id, frame in enumerate(reader): 139 | if not (frame_id % frame_interval == 0): 140 | continue 141 | out_frame_id += 1 142 | pbar.update(1) 143 | if out_frame_id > out_max_frames: 144 | break 145 | 146 | frame_pil = Image.fromarray(frame) 147 | 148 | pipe_out = pipe( 149 | frame_pil, 150 | denoising_steps=denoise_steps, 151 | ensemble_size=ensemble_size, 152 | processing_res=processing_res, 153 | match_input_res=False, 154 | batch_size=0, 155 | depth_latent_init=prev_depth_latent, 156 | depth_latent_init_strength=depth_latent_init_strength, 157 | seed=default_seed, 158 | show_progress_bar=False, 159 | ) 160 | 161 | prev_depth_latent = pipe_out.depth_latent 162 | 163 | processed_frame = pipe_out.depth_colored 164 | processed_frame = imageio.core.util.Array(np.array(processed_frame)) 165 | writer.append_data(processed_frame) 166 | 167 | processed_frame = (65535 * np.clip(pipe_out.depth_np, 0.0, 1.0)).astype( 168 | np.uint16 169 | ) 170 | processed_frame = Image.fromarray(processed_frame, mode="I;16") 171 | 172 | archive_path = os.path.join( 173 | f"{name_base}_depth_16bit", f"{out_frame_id:05d}.png" 174 | ) 175 | img_byte_arr = BytesIO() 176 | processed_frame.save(img_byte_arr, format="png") 177 | img_byte_arr.seek(0) 178 | zipf.writestr(archive_path, img_byte_arr.read()) 179 | 180 | reader.close() 181 | writer.close() 182 | zipf.close() 183 | 184 | return ( 185 | path_out_vis, 186 | [path_out_vis, path_out_16bit], 187 | ) 188 | 189 | 190 | @spaces.GPU 191 | def process_bas( 192 | pipe, 193 | path_input, 194 | plane_near=default_bas_plane_near, 195 | plane_far=default_bas_plane_far, 196 | embossing=default_bas_embossing, 197 | denoise_steps=default_bas_denoise_steps, 198 | ensemble_size=default_bas_ensemble_size, 199 | processing_res=default_bas_processing_res, 200 | size_longest_px=default_bas_size_longest_px, 201 | size_longest_cm=default_bas_size_longest_cm, 202 | filter_size=default_bas_filter_size, 203 | frame_thickness=default_bas_frame_thickness, 204 | frame_near=default_bas_frame_near, 205 | frame_far=default_bas_frame_far, 206 | ): 207 | if plane_near >= plane_far: 208 | raise gr.Error("NEAR plane must have a value smaller than the FAR plane") 209 | 210 | path_output_dir = os.path.splitext(path_input)[0] + "_output" 211 | os.makedirs(path_output_dir, exist_ok=True) 212 | 213 | name_base, name_ext = os.path.splitext(os.path.basename(path_input)) 214 | 215 | input_image = Image.open(path_input) 216 | 217 | pipe_out = pipe( 218 | input_image, 219 | denoising_steps=denoise_steps, 220 | ensemble_size=ensemble_size, 221 | processing_res=processing_res, 222 | seed=default_seed, 223 | show_progress_bar=False, 224 | ) 225 | 226 | depth_pred = pipe_out.depth_np * 65535 227 | 228 | def _process_3d( 229 | size_longest_px, 230 | filter_size, 231 | vertex_colors, 232 | scene_lights, 233 | output_model_scale=None, 234 | prepare_for_3d_printing=False, 235 | ): 236 | image_rgb_w, image_rgb_h = input_image.width, input_image.height 237 | image_rgb_d = max(image_rgb_w, image_rgb_h) 238 | image_new_w = size_longest_px * image_rgb_w // image_rgb_d 239 | image_new_h = size_longest_px * image_rgb_h // image_rgb_d 240 | 241 | image_rgb_new = os.path.join( 242 | path_output_dir, f"{name_base}_rgb_{size_longest_px}{name_ext}" 243 | ) 244 | image_depth_new = os.path.join( 245 | path_output_dir, f"{name_base}_depth_{size_longest_px}.png" 246 | ) 247 | input_image.resize((image_new_w, image_new_h), Image.LANCZOS).save( 248 | image_rgb_new 249 | ) 250 | Image.fromarray(depth_pred).convert(mode="F").resize( 251 | (image_new_w, image_new_h), Image.BILINEAR 252 | ).convert("I").save(image_depth_new) 253 | 254 | path_glb, path_stl = extrude_depth_3d( 255 | image_rgb_new, 256 | image_depth_new, 257 | output_model_scale=size_longest_cm * 10 258 | if output_model_scale is None 259 | else output_model_scale, 260 | filter_size=filter_size, 261 | coef_near=plane_near, 262 | coef_far=plane_far, 263 | emboss=embossing / 100, 264 | f_thic=frame_thickness / 100, 265 | f_near=frame_near / 100, 266 | f_back=frame_far / 100, 267 | vertex_colors=vertex_colors, 268 | scene_lights=scene_lights, 269 | prepare_for_3d_printing=prepare_for_3d_printing, 270 | ) 271 | 272 | return path_glb, path_stl 273 | 274 | path_viewer_glb, _ = _process_3d( 275 | 256, filter_size, vertex_colors=False, scene_lights=True, output_model_scale=1 276 | ) 277 | path_files_glb, path_files_stl = _process_3d( 278 | size_longest_px, filter_size, vertex_colors=True, scene_lights=False, prepare_for_3d_printing=True 279 | ) 280 | 281 | return path_viewer_glb, [path_files_glb, path_files_stl] 282 | 283 | 284 | def run_demo_server(pipe): 285 | process_pipe_image = functools.partial(process_image, pipe) 286 | process_pipe_video = functools.partial(process_video, pipe) 287 | process_pipe_bas = functools.partial(process_bas, pipe) 288 | os.environ["GRADIO_ALLOW_FLAGGING"] = "never" 289 | 290 | gradio_theme = gr.themes.Default() 291 | 292 | with gr.Blocks( 293 | theme=gradio_theme, 294 | title="Marigold-LCM Depth Estimation", 295 | css=""" 296 | #download { 297 | height: 118px; 298 | } 299 | .slider .inner { 300 | width: 5px; 301 | background: #FFF; 302 | } 303 | .viewport { 304 | aspect-ratio: 4/3; 305 | } 306 | .tabs button.selected { 307 | font-size: 20px !important; 308 | color: crimson !important; 309 | } 310 | """, 311 | head=""" 312 | 313 | 319 | """, 320 | ) as demo: 321 | gr.Markdown( 322 | """ 323 |

Marigold-LCM Depth Estimation

324 |

325 | 326 | 327 | 328 | 329 | 330 | 331 | 332 | badge-github-stars 333 | 334 | 335 | social 336 | 337 |

338 |

339 | Marigold-LCM is the fast version of Marigold, the state-of-the-art depth estimator for images in the wild. 340 | It combines the power of the original Marigold 10-step estimator and the Latent Consistency Models, delivering high-quality results in as little as one step. 341 | We provide three functions in this demo: Image, Video, and Bas-relief 3D processing — see the tabs below. 342 | Upload your content into the left side, or click any of the examples below. 343 | Wait a second (for images and 3D) or a minute (for videos), and interact with the result in the right side. 344 | To avoid queuing, fork the demo into your profile. 345 |

346 | """ 347 | ) 348 | 349 | with gr.Tabs(elem_classes=["tabs"]): 350 | with gr.Tab("Image"): 351 | with gr.Row(): 352 | with gr.Column(): 353 | image_input = gr.Image( 354 | label="Input Image", 355 | type="filepath", 356 | ) 357 | with gr.Row(): 358 | image_submit_btn = gr.Button( 359 | value="Compute Depth", variant="primary" 360 | ) 361 | image_reset_btn = gr.Button(value="Reset") 362 | with gr.Accordion("Advanced options", open=False): 363 | image_denoise_steps = gr.Slider( 364 | label="Number of denoising steps", 365 | minimum=1, 366 | maximum=4, 367 | step=1, 368 | value=default_image_denoise_steps, 369 | ) 370 | image_ensemble_size = gr.Slider( 371 | label="Ensemble size", 372 | minimum=1, 373 | maximum=10, 374 | step=1, 375 | value=default_image_ensemble_size, 376 | ) 377 | image_processing_res = gr.Radio( 378 | [ 379 | ("Native", 0), 380 | ("Recommended", 768), 381 | ], 382 | label="Processing resolution", 383 | value=default_image_processing_res, 384 | ) 385 | with gr.Column(): 386 | image_output_slider = ImageSlider( 387 | label="Predicted depth (red-near, blue-far)", 388 | type="filepath", 389 | show_download_button=True, 390 | show_share_button=True, 391 | interactive=False, 392 | elem_classes="slider", 393 | position=0.25, 394 | ) 395 | image_output_files = gr.Files( 396 | label="Depth outputs", 397 | elem_id="download", 398 | interactive=False, 399 | ) 400 | gr.Examples( 401 | fn=process_pipe_image, 402 | examples=[ 403 | os.path.join("files", "image", name) 404 | for name in [ 405 | "arc.jpeg", 406 | "berries.jpeg", 407 | "butterfly.jpeg", 408 | "cat.jpg", 409 | "concert.jpeg", 410 | "dog.jpeg", 411 | "doughnuts.jpeg", 412 | "einstein.jpg", 413 | "food.jpeg", 414 | "glasses.jpeg", 415 | "house.jpg", 416 | "lake.jpeg", 417 | "marigold.jpeg", 418 | "portrait_1.jpeg", 419 | "portrait_2.jpeg", 420 | "pumpkins.jpg", 421 | "puzzle.jpeg", 422 | "road.jpg", 423 | "scientists.jpg", 424 | "surfboards.jpeg", 425 | "surfer.jpeg", 426 | "swings.jpg", 427 | "switzerland.jpeg", 428 | "teamwork.jpeg", 429 | "wave.jpeg", 430 | ] 431 | ], 432 | inputs=[image_input], 433 | outputs=[image_output_slider, image_output_files], 434 | cache_examples=True, 435 | ) 436 | 437 | with gr.Tab("Video"): 438 | with gr.Row(): 439 | with gr.Column(): 440 | video_input = gr.Video( 441 | label="Input Video", 442 | sources=["upload"], 443 | ) 444 | with gr.Row(): 445 | video_submit_btn = gr.Button( 446 | value="Compute Depth", variant="primary" 447 | ) 448 | video_reset_btn = gr.Button(value="Reset") 449 | with gr.Column(): 450 | video_output_video = gr.Video( 451 | label="Output video depth (red-near, blue-far)", 452 | interactive=False, 453 | ) 454 | video_output_files = gr.Files( 455 | label="Depth outputs", 456 | elem_id="download", 457 | interactive=False, 458 | ) 459 | gr.Examples( 460 | fn=process_pipe_video, 461 | examples=[ 462 | os.path.join("files", "video", name) 463 | for name in [ 464 | "cab.mp4", 465 | "elephant.mp4", 466 | "obama.mp4", 467 | ] 468 | ], 469 | inputs=[video_input], 470 | outputs=[video_output_video, video_output_files], 471 | cache_examples=True, 472 | ) 473 | 474 | with gr.Tab("Bas-relief (3D)"): 475 | gr.Markdown( 476 | """ 477 |

478 | This part of the demo uses Marigold-LCM to create a bas-relief model. 479 | The models are watertight, with correct normals, and exported in the STL format, which makes them 3D-printable. 480 | Start by uploading the image and click "Create" with the default parameters. 481 | To improve the result, click "Clear", adjust the geometry sliders below, and click "Create" again. 482 |

483 | """, 484 | ) 485 | with gr.Row(): 486 | with gr.Column(): 487 | bas_input = gr.Image( 488 | label="Input Image", 489 | type="filepath", 490 | ) 491 | with gr.Row(): 492 | bas_submit_btn = gr.Button(value="Create 3D", variant="primary") 493 | bas_clear_btn = gr.Button(value="Clear") 494 | bas_reset_btn = gr.Button(value="Reset") 495 | with gr.Accordion("3D printing demo: Main options", open=True): 496 | bas_plane_near = gr.Slider( 497 | label="Relative position of the near plane (between 0 and 1)", 498 | minimum=0.0, 499 | maximum=1.0, 500 | step=0.001, 501 | value=default_bas_plane_near, 502 | ) 503 | bas_plane_far = gr.Slider( 504 | label="Relative position of the far plane (between near and 1)", 505 | minimum=0.0, 506 | maximum=1.0, 507 | step=0.001, 508 | value=default_bas_plane_far, 509 | ) 510 | bas_embossing = gr.Slider( 511 | label="Embossing level", 512 | minimum=0, 513 | maximum=100, 514 | step=1, 515 | value=default_bas_embossing, 516 | ) 517 | with gr.Accordion("3D printing demo: Advanced options", open=False): 518 | bas_denoise_steps = gr.Slider( 519 | label="Number of denoising steps", 520 | minimum=1, 521 | maximum=4, 522 | step=1, 523 | value=default_bas_denoise_steps, 524 | ) 525 | bas_ensemble_size = gr.Slider( 526 | label="Ensemble size", 527 | minimum=1, 528 | maximum=10, 529 | step=1, 530 | value=default_bas_ensemble_size, 531 | ) 532 | bas_processing_res = gr.Radio( 533 | [ 534 | ("Native", 0), 535 | ("Recommended", 768), 536 | ], 537 | label="Processing resolution", 538 | value=default_bas_processing_res, 539 | ) 540 | bas_size_longest_px = gr.Slider( 541 | label="Size (px) of the longest side", 542 | minimum=256, 543 | maximum=1024, 544 | step=256, 545 | value=default_bas_size_longest_px, 546 | ) 547 | bas_size_longest_cm = gr.Slider( 548 | label="Size (cm) of the longest side", 549 | minimum=1, 550 | maximum=100, 551 | step=1, 552 | value=default_bas_size_longest_cm, 553 | ) 554 | bas_filter_size = gr.Slider( 555 | label="Size (px) of the smoothing filter", 556 | minimum=1, 557 | maximum=5, 558 | step=2, 559 | value=default_bas_filter_size, 560 | ) 561 | bas_frame_thickness = gr.Slider( 562 | label="Frame thickness", 563 | minimum=0, 564 | maximum=100, 565 | step=1, 566 | value=default_bas_frame_thickness, 567 | ) 568 | bas_frame_near = gr.Slider( 569 | label="Frame's near plane offset", 570 | minimum=-100, 571 | maximum=100, 572 | step=1, 573 | value=default_bas_frame_near, 574 | ) 575 | bas_frame_far = gr.Slider( 576 | label="Frame's far plane offset", 577 | minimum=1, 578 | maximum=10, 579 | step=1, 580 | value=default_bas_frame_far, 581 | ) 582 | with gr.Column(): 583 | bas_output_viewer = gr.Model3D( 584 | camera_position=(75.0, 90.0, 1.25), 585 | elem_classes="viewport", 586 | label="3D preview (low-res, relief highlight)", 587 | interactive=False, 588 | ) 589 | bas_output_files = gr.Files( 590 | label="3D model outputs (high-res)", 591 | elem_id="download", 592 | interactive=False, 593 | ) 594 | gr.Examples( 595 | fn=process_pipe_bas, 596 | examples=[ 597 | [ 598 | "files/basrelief/coin.jpg", # input 599 | 0.0, # plane_near 600 | 0.66, # plane_far 601 | 15, # embossing 602 | 4, # denoise_steps 603 | 4, # ensemble_size 604 | 768, # processing_res 605 | 512, # size_longest_px 606 | 10, # size_longest_cm 607 | 3, # filter_size 608 | 5, # frame_thickness 609 | 0, # frame_near 610 | 1, # frame_far 611 | ], 612 | [ 613 | "files/basrelief/einstein.jpg", # input 614 | 0.0, # plane_near 615 | 0.5, # plane_far 616 | 50, # embossing 617 | 2, # denoise_steps 618 | 1, # ensemble_size 619 | 768, # processing_res 620 | 512, # size_longest_px 621 | 10, # size_longest_cm 622 | 3, # filter_size 623 | 5, # frame_thickness 624 | -15, # frame_near 625 | 1, # frame_far 626 | ], 627 | [ 628 | "files/basrelief/food.jpeg", # input 629 | 0.0, # plane_near 630 | 1.0, # plane_far 631 | 20, # embossing 632 | 2, # denoise_steps 633 | 4, # ensemble_size 634 | 768, # processing_res 635 | 512, # size_longest_px 636 | 10, # size_longest_cm 637 | 3, # filter_size 638 | 5, # frame_thickness 639 | -5, # frame_near 640 | 1, # frame_far 641 | ], 642 | ], 643 | inputs=[ 644 | bas_input, 645 | bas_plane_near, 646 | bas_plane_far, 647 | bas_embossing, 648 | bas_denoise_steps, 649 | bas_ensemble_size, 650 | bas_processing_res, 651 | bas_size_longest_px, 652 | bas_size_longest_cm, 653 | bas_filter_size, 654 | bas_frame_thickness, 655 | bas_frame_near, 656 | bas_frame_far, 657 | ], 658 | outputs=[bas_output_viewer, bas_output_files], 659 | cache_examples=True, 660 | ) 661 | 662 | image_submit_btn.click( 663 | fn=process_pipe_image, 664 | inputs=[ 665 | image_input, 666 | image_denoise_steps, 667 | image_ensemble_size, 668 | image_processing_res, 669 | ], 670 | outputs=[image_output_slider, image_output_files], 671 | concurrency_limit=1, 672 | ) 673 | 674 | image_reset_btn.click( 675 | fn=lambda: ( 676 | None, 677 | None, 678 | None, 679 | default_image_ensemble_size, 680 | default_image_denoise_steps, 681 | default_image_processing_res, 682 | ), 683 | inputs=[], 684 | outputs=[ 685 | image_input, 686 | image_output_slider, 687 | image_output_files, 688 | image_ensemble_size, 689 | image_denoise_steps, 690 | image_processing_res, 691 | ], 692 | concurrency_limit=1, 693 | ) 694 | 695 | video_submit_btn.click( 696 | fn=process_pipe_video, 697 | inputs=[video_input], 698 | outputs=[video_output_video, video_output_files], 699 | concurrency_limit=1, 700 | ) 701 | 702 | video_reset_btn.click( 703 | fn=lambda: (None, None, None), 704 | inputs=[], 705 | outputs=[video_input, video_output_video, video_output_files], 706 | concurrency_limit=1, 707 | ) 708 | 709 | def wrapper_process_pipe_bas(*args, **kwargs): 710 | out = list(process_pipe_bas(*args, **kwargs)) 711 | out = [gr.Button(interactive=False), gr.Image(interactive=False)] + out 712 | return out 713 | 714 | bas_submit_btn.click( 715 | fn=wrapper_process_pipe_bas, 716 | inputs=[ 717 | bas_input, 718 | bas_plane_near, 719 | bas_plane_far, 720 | bas_embossing, 721 | bas_denoise_steps, 722 | bas_ensemble_size, 723 | bas_processing_res, 724 | bas_size_longest_px, 725 | bas_size_longest_cm, 726 | bas_filter_size, 727 | bas_frame_thickness, 728 | bas_frame_near, 729 | bas_frame_far, 730 | ], 731 | outputs=[bas_submit_btn, bas_input, bas_output_viewer, bas_output_files], 732 | concurrency_limit=1, 733 | ) 734 | 735 | bas_clear_btn.click( 736 | fn=lambda: (gr.Button(interactive=True), None, None), 737 | inputs=[], 738 | outputs=[ 739 | bas_submit_btn, 740 | bas_output_viewer, 741 | bas_output_files, 742 | ], 743 | concurrency_limit=1, 744 | ) 745 | 746 | bas_reset_btn.click( 747 | fn=lambda: ( 748 | gr.Button(interactive=True), 749 | None, 750 | None, 751 | None, 752 | default_bas_plane_near, 753 | default_bas_plane_far, 754 | default_bas_embossing, 755 | default_bas_denoise_steps, 756 | default_bas_ensemble_size, 757 | default_bas_processing_res, 758 | default_bas_size_longest_px, 759 | default_bas_size_longest_cm, 760 | default_bas_filter_size, 761 | default_bas_frame_thickness, 762 | default_bas_frame_near, 763 | default_bas_frame_far, 764 | ), 765 | inputs=[], 766 | outputs=[ 767 | bas_submit_btn, 768 | bas_input, 769 | bas_output_viewer, 770 | bas_output_files, 771 | bas_plane_near, 772 | bas_plane_far, 773 | bas_embossing, 774 | bas_denoise_steps, 775 | bas_ensemble_size, 776 | bas_processing_res, 777 | bas_size_longest_px, 778 | bas_size_longest_cm, 779 | bas_filter_size, 780 | bas_frame_thickness, 781 | bas_frame_near, 782 | bas_frame_far, 783 | ], 784 | concurrency_limit=1, 785 | ) 786 | 787 | demo.queue( 788 | api_open=False, 789 | ).launch( 790 | server_name="0.0.0.0", 791 | server_port=7860, 792 | ) 793 | 794 | 795 | def prefetch_hf_cache(pipe): 796 | process_image(pipe, "files/image/bee.jpg", 1, 1, 64) 797 | shutil.rmtree("files/image/bee_output") 798 | 799 | 800 | def main(): 801 | CHECKPOINT = "prs-eth/marigold-v1-0" 802 | CHECKPOINT_UNET_LCM = "prs-eth/marigold-lcm-v1-0" 803 | 804 | if "HF_TOKEN_LOGIN" in os.environ: 805 | login(token=os.environ["HF_TOKEN_LOGIN"]) 806 | 807 | device = torch.device("cuda" if torch.cuda.is_available() else "cpu") 808 | 809 | pipe = MarigoldDepthConsistencyPipeline.from_pretrained( 810 | CHECKPOINT, 811 | unet=UNet2DConditionModel.from_pretrained( 812 | CHECKPOINT_UNET_LCM, subfolder="unet", use_auth_token=True 813 | ), 814 | ) 815 | pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) 816 | try: 817 | import xformers 818 | 819 | pipe.enable_xformers_memory_efficient_attention() 820 | except: 821 | pass # run without xformers 822 | 823 | pipe = pipe.to(device) 824 | prefetch_hf_cache(pipe) 825 | run_demo_server(pipe) 826 | 827 | 828 | if __name__ == "__main__": 829 | main() 830 | -------------------------------------------------------------------------------- /gradio_cached_examples/18/log.csv: -------------------------------------------------------------------------------- 1 | "Predicted depth (red-near, blue-far)",Depth outputs,flag,username,timestamp 2 | "[{""path"": ""gradio_cached_examples/18/Predicted depth red-near blue-far/45e324d0b847afbbc4c7/arc_depth_16bit.png"", ""url"": ""/file=/tmp/gradio/46a79bd0c5a0464662a5b7a52e59e9da300fbada/arc_output/arc_depth_16bit.png"", ""size"": null, ""orig_name"": null, ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Predicted depth red-near blue-far/04f54e1ce435ff6459b9/arc_depth_colored.png"", ""url"": ""/file=/tmp/gradio/46a79bd0c5a0464662a5b7a52e59e9da300fbada/arc_output/arc_depth_colored.png"", ""size"": null, ""orig_name"": null, ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}]","[{""path"": ""gradio_cached_examples/18/Depth outputs/8e97f11903b9b898c2f3/arc_depth_16bit.png"", ""url"": ""/file=/tmp/gradio/46a79bd0c5a0464662a5b7a52e59e9da300fbada/arc_output/arc_depth_16bit.png"", ""size"": 1490869, ""orig_name"": ""arc_depth_16bit.png"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Depth outputs/9a9aecb6bc451b000cc3/arc_depth_fp32.npy"", ""url"": ""/file=/tmp/gradio/46a79bd0c5a0464662a5b7a52e59e9da300fbada/arc_output/arc_depth_fp32.npy"", ""size"": 4377728, ""orig_name"": ""arc_depth_fp32.npy"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Depth outputs/3d61175e3f24234c9eca/arc_depth_colored.png"", ""url"": ""/file=/tmp/gradio/46a79bd0c5a0464662a5b7a52e59e9da300fbada/arc_output/arc_depth_colored.png"", ""size"": 756097, ""orig_name"": ""arc_depth_colored.png"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}]",,,2024-03-22 11:00:44.101614 3 | "[{""path"": ""gradio_cached_examples/18/Predicted depth red-near blue-far/cab7bd5be8a912541996/berries_depth_16bit.png"", ""url"": ""/file=/tmp/gradio/360706859b4f497804cdd1bc742077f6a912e9fa/berries_output/berries_depth_16bit.png"", ""size"": null, ""orig_name"": null, ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Predicted depth red-near blue-far/ace9fc12e651074b9ffe/berries_depth_colored.png"", ""url"": ""/file=/tmp/gradio/360706859b4f497804cdd1bc742077f6a912e9fa/berries_output/berries_depth_colored.png"", ""size"": null, ""orig_name"": null, ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}]","[{""path"": ""gradio_cached_examples/18/Depth outputs/b264a159bd653f1548e3/berries_depth_16bit.png"", ""url"": ""/file=/tmp/gradio/360706859b4f497804cdd1bc742077f6a912e9fa/berries_output/berries_depth_16bit.png"", ""size"": 2150087, ""orig_name"": ""berries_depth_16bit.png"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Depth outputs/1112b1ca9f107132c5ff/berries_depth_fp32.npy"", ""url"": ""/file=/tmp/gradio/360706859b4f497804cdd1bc742077f6a912e9fa/berries_output/berries_depth_fp32.npy"", ""size"": 6291584, ""orig_name"": ""berries_depth_fp32.npy"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Depth outputs/7b1d5a7cecd449b13a5e/berries_depth_colored.png"", ""url"": ""/file=/tmp/gradio/360706859b4f497804cdd1bc742077f6a912e9fa/berries_output/berries_depth_colored.png"", ""size"": 880971, ""orig_name"": ""berries_depth_colored.png"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}]",,,2024-03-22 11:00:45.426994 4 | "[{""path"": ""gradio_cached_examples/18/Predicted depth red-near blue-far/6d576b810915984be5d9/butterfly_depth_16bit.png"", ""url"": ""/file=/tmp/gradio/e8fb619b1a79383f61006553ba3a44c0796ac97b/butterfly_output/butterfly_depth_16bit.png"", ""size"": null, ""orig_name"": null, ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Predicted depth red-near blue-far/0968bcc549dace8031f8/butterfly_depth_colored.png"", ""url"": ""/file=/tmp/gradio/e8fb619b1a79383f61006553ba3a44c0796ac97b/butterfly_output/butterfly_depth_colored.png"", ""size"": null, ""orig_name"": null, ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}]","[{""path"": ""gradio_cached_examples/18/Depth outputs/a7486302ab044e374c04/butterfly_depth_16bit.png"", ""url"": ""/file=/tmp/gradio/e8fb619b1a79383f61006553ba3a44c0796ac97b/butterfly_output/butterfly_depth_16bit.png"", ""size"": 2182986, ""orig_name"": ""butterfly_depth_16bit.png"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Depth outputs/743f28023ee74ec7ba8a/butterfly_depth_fp32.npy"", ""url"": ""/file=/tmp/gradio/e8fb619b1a79383f61006553ba3a44c0796ac97b/butterfly_output/butterfly_depth_fp32.npy"", ""size"": 6701184, ""orig_name"": ""butterfly_depth_fp32.npy"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Depth outputs/4758b54d8928c9860970/butterfly_depth_colored.png"", ""url"": ""/file=/tmp/gradio/e8fb619b1a79383f61006553ba3a44c0796ac97b/butterfly_output/butterfly_depth_colored.png"", ""size"": 1089045, ""orig_name"": ""butterfly_depth_colored.png"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}]",,,2024-03-22 11:00:46.715558 5 | "[{""path"": ""gradio_cached_examples/18/Predicted depth red-near blue-far/295edcd8c90a1d58bff5/cat_depth_16bit.png"", ""url"": ""/file=/tmp/gradio/0eb46afdf6eda566f3240443388cfa5360203ddc/cat_output/cat_depth_16bit.png"", ""size"": null, ""orig_name"": null, ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Predicted depth red-near blue-far/ccbf8e60d9ee20e4e70b/cat_depth_colored.png"", ""url"": ""/file=/tmp/gradio/0eb46afdf6eda566f3240443388cfa5360203ddc/cat_output/cat_depth_colored.png"", ""size"": null, ""orig_name"": null, ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}]","[{""path"": ""gradio_cached_examples/18/Depth outputs/ca3ffeaccc005c6fd5ee/cat_depth_16bit.png"", ""url"": ""/file=/tmp/gradio/0eb46afdf6eda566f3240443388cfa5360203ddc/cat_output/cat_depth_16bit.png"", ""size"": 1736687, ""orig_name"": ""cat_depth_16bit.png"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Depth outputs/299ab3ef0144ff335248/cat_depth_fp32.npy"", ""url"": ""/file=/tmp/gradio/0eb46afdf6eda566f3240443388cfa5360203ddc/cat_output/cat_depth_fp32.npy"", ""size"": 5237888, ""orig_name"": ""cat_depth_fp32.npy"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Depth outputs/e29c660ea20526461142/cat_depth_colored.png"", ""url"": ""/file=/tmp/gradio/0eb46afdf6eda566f3240443388cfa5360203ddc/cat_output/cat_depth_colored.png"", ""size"": 540541, ""orig_name"": ""cat_depth_colored.png"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}]",,,2024-03-22 11:00:48.087808 6 | "[{""path"": ""gradio_cached_examples/18/Predicted depth red-near blue-far/9c492b4a05b0c27418e7/concert_depth_16bit.png"", ""url"": ""/file=/tmp/gradio/9edb0689265a2e2ec95890233d3511566980abc4/concert_output/concert_depth_16bit.png"", ""size"": null, ""orig_name"": null, ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Predicted depth red-near blue-far/88870588e2c8198c46db/concert_depth_colored.png"", ""url"": ""/file=/tmp/gradio/9edb0689265a2e2ec95890233d3511566980abc4/concert_output/concert_depth_colored.png"", ""size"": null, ""orig_name"": null, ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}]","[{""path"": ""gradio_cached_examples/18/Depth outputs/ee9d905b3a5337c2db21/concert_depth_16bit.png"", ""url"": ""/file=/tmp/gradio/9edb0689265a2e2ec95890233d3511566980abc4/concert_output/concert_depth_16bit.png"", ""size"": 1725191, ""orig_name"": ""concert_depth_16bit.png"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Depth outputs/58f4bc0302114565854f/concert_depth_fp32.npy"", ""url"": ""/file=/tmp/gradio/9edb0689265a2e2ec95890233d3511566980abc4/concert_output/concert_depth_fp32.npy"", ""size"": 6291584, ""orig_name"": ""concert_depth_fp32.npy"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Depth outputs/c9d2b99fd4995c01c932/concert_depth_colored.png"", ""url"": ""/file=/tmp/gradio/9edb0689265a2e2ec95890233d3511566980abc4/concert_output/concert_depth_colored.png"", ""size"": 544306, ""orig_name"": ""concert_depth_colored.png"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}]",,,2024-03-22 11:00:49.352419 7 | "[{""path"": ""gradio_cached_examples/18/Predicted depth red-near blue-far/879cfd69d9c554f83d96/dog_depth_16bit.png"", ""url"": ""/file=/tmp/gradio/462945ded9e98ca6abb38493b252d119a5069c53/dog_output/dog_depth_16bit.png"", ""size"": null, ""orig_name"": null, ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Predicted depth red-near blue-far/f10d9f52ef10b6ce2819/dog_depth_colored.png"", ""url"": ""/file=/tmp/gradio/462945ded9e98ca6abb38493b252d119a5069c53/dog_output/dog_depth_colored.png"", ""size"": null, ""orig_name"": null, ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}]","[{""path"": ""gradio_cached_examples/18/Depth outputs/a4dcdec4a501e723b211/dog_depth_16bit.png"", ""url"": ""/file=/tmp/gradio/462945ded9e98ca6abb38493b252d119a5069c53/dog_output/dog_depth_16bit.png"", ""size"": 2190077, ""orig_name"": ""dog_depth_16bit.png"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Depth outputs/c99982e80e8d9c0b50a9/dog_depth_fp32.npy"", ""url"": ""/file=/tmp/gradio/462945ded9e98ca6abb38493b252d119a5069c53/dog_output/dog_depth_fp32.npy"", ""size"": 6291584, ""orig_name"": ""dog_depth_fp32.npy"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Depth outputs/2847b2df4b1c235f7651/dog_depth_colored.png"", ""url"": ""/file=/tmp/gradio/462945ded9e98ca6abb38493b252d119a5069c53/dog_output/dog_depth_colored.png"", ""size"": 842692, ""orig_name"": ""dog_depth_colored.png"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}]",,,2024-03-22 11:00:50.686283 8 | "[{""path"": ""gradio_cached_examples/18/Predicted depth red-near blue-far/25947e3f3a07b767d2e3/doughnuts_depth_16bit.png"", ""url"": ""/file=/tmp/gradio/1ea9f3a9aff1df4f2f9df1b2148c2b9e75fc174e/doughnuts_output/doughnuts_depth_16bit.png"", ""size"": null, ""orig_name"": null, ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Predicted depth red-near blue-far/9f9ad00dda4a8b76a9d3/doughnuts_depth_colored.png"", ""url"": ""/file=/tmp/gradio/1ea9f3a9aff1df4f2f9df1b2148c2b9e75fc174e/doughnuts_output/doughnuts_depth_colored.png"", ""size"": null, ""orig_name"": null, ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}]","[{""path"": ""gradio_cached_examples/18/Depth outputs/c28a0efd69ada6c1de17/doughnuts_depth_16bit.png"", ""url"": ""/file=/tmp/gradio/1ea9f3a9aff1df4f2f9df1b2148c2b9e75fc174e/doughnuts_output/doughnuts_depth_16bit.png"", ""size"": 1768092, ""orig_name"": ""doughnuts_depth_16bit.png"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Depth outputs/fd79bd61b90eb3c8750e/doughnuts_depth_fp32.npy"", ""url"": ""/file=/tmp/gradio/1ea9f3a9aff1df4f2f9df1b2148c2b9e75fc174e/doughnuts_output/doughnuts_depth_fp32.npy"", ""size"": 6291584, ""orig_name"": ""doughnuts_depth_fp32.npy"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Depth outputs/3fea61e86ad657759143/doughnuts_depth_colored.png"", ""url"": ""/file=/tmp/gradio/1ea9f3a9aff1df4f2f9df1b2148c2b9e75fc174e/doughnuts_output/doughnuts_depth_colored.png"", ""size"": 347441, ""orig_name"": ""doughnuts_depth_colored.png"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}]",,,2024-03-22 11:00:51.980768 9 | "[{""path"": ""gradio_cached_examples/18/Predicted depth red-near blue-far/f74d13a60bda9b080432/einstein_depth_16bit.png"", ""url"": ""/file=/tmp/gradio/ea36dd96d126ddf35c2b3652ba451b133ce44d8c/einstein_output/einstein_depth_16bit.png"", ""size"": null, ""orig_name"": null, ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Predicted depth red-near blue-far/e9c962c7d4300842fbd2/einstein_depth_colored.png"", ""url"": ""/file=/tmp/gradio/ea36dd96d126ddf35c2b3652ba451b133ce44d8c/einstein_output/einstein_depth_colored.png"", ""size"": null, ""orig_name"": null, ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}]","[{""path"": ""gradio_cached_examples/18/Depth outputs/a5db29c9ded284668775/einstein_depth_16bit.png"", ""url"": ""/file=/tmp/gradio/ea36dd96d126ddf35c2b3652ba451b133ce44d8c/einstein_output/einstein_depth_16bit.png"", ""size"": 1492165, ""orig_name"": ""einstein_depth_16bit.png"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Depth outputs/08a115340ea524934177/einstein_depth_fp32.npy"", ""url"": ""/file=/tmp/gradio/ea36dd96d126ddf35c2b3652ba451b133ce44d8c/einstein_output/einstein_depth_fp32.npy"", ""size"": 4194432, ""orig_name"": ""einstein_depth_fp32.npy"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Depth outputs/70a6ecd79155c8fb213b/einstein_depth_colored.png"", ""url"": ""/file=/tmp/gradio/ea36dd96d126ddf35c2b3652ba451b133ce44d8c/einstein_output/einstein_depth_colored.png"", ""size"": 693251, ""orig_name"": ""einstein_depth_colored.png"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}]",,,2024-03-22 11:00:53.546064 10 | "[{""path"": ""gradio_cached_examples/18/Predicted depth red-near blue-far/a1e0b4145b283feacb69/food_depth_16bit.png"", ""url"": ""/file=/tmp/gradio/a69b5239bc9b0d955739849b83ae54ed33bb7b4d/food_output/food_depth_16bit.png"", ""size"": null, ""orig_name"": null, ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Predicted depth red-near blue-far/b56ad8cd93517abd7a57/food_depth_colored.png"", ""url"": ""/file=/tmp/gradio/a69b5239bc9b0d955739849b83ae54ed33bb7b4d/food_output/food_depth_colored.png"", ""size"": null, ""orig_name"": null, ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}]","[{""path"": ""gradio_cached_examples/18/Depth outputs/e0911d2e7a4a5debfbab/food_depth_16bit.png"", ""url"": ""/file=/tmp/gradio/a69b5239bc9b0d955739849b83ae54ed33bb7b4d/food_output/food_depth_16bit.png"", ""size"": 2009101, ""orig_name"": ""food_depth_16bit.png"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Depth outputs/2de7e7ec84f177bb092d/food_depth_fp32.npy"", ""url"": ""/file=/tmp/gradio/a69b5239bc9b0d955739849b83ae54ed33bb7b4d/food_output/food_depth_fp32.npy"", ""size"": 6291584, ""orig_name"": ""food_depth_fp32.npy"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Depth outputs/a639dbc49c03860c86a7/food_depth_colored.png"", ""url"": ""/file=/tmp/gradio/a69b5239bc9b0d955739849b83ae54ed33bb7b4d/food_output/food_depth_colored.png"", ""size"": 617833, ""orig_name"": ""food_depth_colored.png"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}]",,,2024-03-22 11:00:54.884463 11 | "[{""path"": ""gradio_cached_examples/18/Predicted depth red-near blue-far/432db43f24ab254cdc77/glasses_depth_16bit.png"", ""url"": ""/file=/tmp/gradio/d3dfd6042cf590254b63e08246c48f6e4080a351/glasses_output/glasses_depth_16bit.png"", ""size"": null, ""orig_name"": null, ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Predicted depth red-near blue-far/bb1b89e55f54f6ad11a4/glasses_depth_colored.png"", ""url"": ""/file=/tmp/gradio/d3dfd6042cf590254b63e08246c48f6e4080a351/glasses_output/glasses_depth_colored.png"", ""size"": null, ""orig_name"": null, ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}]","[{""path"": ""gradio_cached_examples/18/Depth outputs/2a35fc317380d4737290/glasses_depth_16bit.png"", ""url"": ""/file=/tmp/gradio/d3dfd6042cf590254b63e08246c48f6e4080a351/glasses_output/glasses_depth_16bit.png"", ""size"": 1703574, ""orig_name"": ""glasses_depth_16bit.png"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Depth outputs/13cfd7cd0acfd90c3608/glasses_depth_fp32.npy"", ""url"": ""/file=/tmp/gradio/d3dfd6042cf590254b63e08246c48f6e4080a351/glasses_output/glasses_depth_fp32.npy"", ""size"": 6283392, ""orig_name"": ""glasses_depth_fp32.npy"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Depth outputs/6b7fa86ff307ce280458/glasses_depth_colored.png"", ""url"": ""/file=/tmp/gradio/d3dfd6042cf590254b63e08246c48f6e4080a351/glasses_output/glasses_depth_colored.png"", ""size"": 332572, ""orig_name"": ""glasses_depth_colored.png"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}]",,,2024-03-22 11:00:56.147658 12 | "[{""path"": ""gradio_cached_examples/18/Predicted depth red-near blue-far/c80da87c39169644afa1/house_depth_16bit.png"", ""url"": ""/file=/tmp/gradio/31fe791c82956ded6a72d25a0bc7c398545442cd/house_output/house_depth_16bit.png"", ""size"": null, ""orig_name"": null, ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Predicted depth red-near blue-far/71ea41371688664fd898/house_depth_colored.png"", ""url"": ""/file=/tmp/gradio/31fe791c82956ded6a72d25a0bc7c398545442cd/house_output/house_depth_colored.png"", ""size"": null, ""orig_name"": null, ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}]","[{""path"": ""gradio_cached_examples/18/Depth outputs/ed486427beaead8e6d4d/house_depth_16bit.png"", ""url"": ""/file=/tmp/gradio/31fe791c82956ded6a72d25a0bc7c398545442cd/house_output/house_depth_16bit.png"", ""size"": 16604424, ""orig_name"": ""house_depth_16bit.png"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Depth outputs/de994c47587fcbb3e990/house_depth_fp32.npy"", ""url"": ""/file=/tmp/gradio/31fe791c82956ded6a72d25a0bc7c398545442cd/house_output/house_depth_fp32.npy"", ""size"": 57509536, ""orig_name"": ""house_depth_fp32.npy"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Depth outputs/f53efcc50ebfeaac3b8f/house_depth_colored.png"", ""url"": ""/file=/tmp/gradio/31fe791c82956ded6a72d25a0bc7c398545442cd/house_output/house_depth_colored.png"", ""size"": 3921236, ""orig_name"": ""house_depth_colored.png"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}]",,,2024-03-22 11:01:02.007949 13 | "[{""path"": ""gradio_cached_examples/18/Predicted depth red-near blue-far/f8bc9d03bcb924e64306/lake_depth_16bit.png"", ""url"": ""/file=/tmp/gradio/6b204bfbf1d0e8e51b8b4887df9b97e1acbaef25/lake_output/lake_depth_16bit.png"", ""size"": null, ""orig_name"": null, ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Predicted depth red-near blue-far/d28b5d4dcd878e6c5daf/lake_depth_colored.png"", ""url"": ""/file=/tmp/gradio/6b204bfbf1d0e8e51b8b4887df9b97e1acbaef25/lake_output/lake_depth_colored.png"", ""size"": null, ""orig_name"": null, ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}]","[{""path"": ""gradio_cached_examples/18/Depth outputs/5ef3eed2059133180232/lake_depth_16bit.png"", ""url"": ""/file=/tmp/gradio/6b204bfbf1d0e8e51b8b4887df9b97e1acbaef25/lake_output/lake_depth_16bit.png"", ""size"": 1896565, ""orig_name"": ""lake_depth_16bit.png"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Depth outputs/3c6ba7efdd300e7b7764/lake_depth_fp32.npy"", ""url"": ""/file=/tmp/gradio/6b204bfbf1d0e8e51b8b4887df9b97e1acbaef25/lake_output/lake_depth_fp32.npy"", ""size"": 6291584, ""orig_name"": ""lake_depth_fp32.npy"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Depth outputs/357b353412dd9759ad6a/lake_depth_colored.png"", ""url"": ""/file=/tmp/gradio/6b204bfbf1d0e8e51b8b4887df9b97e1acbaef25/lake_output/lake_depth_colored.png"", ""size"": 550204, ""orig_name"": ""lake_depth_colored.png"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}]",,,2024-03-22 11:01:03.320847 14 | "[{""path"": ""gradio_cached_examples/18/Predicted depth red-near blue-far/24ec8180e34432fcb5d3/marigold_depth_16bit.png"", ""url"": ""/file=/tmp/gradio/2241b3fd1273451981e6b1ed8a6d510ecc98d190/marigold_output/marigold_depth_16bit.png"", ""size"": null, ""orig_name"": null, ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Predicted depth red-near blue-far/18e6abaa75c6b4266122/marigold_depth_colored.png"", ""url"": ""/file=/tmp/gradio/2241b3fd1273451981e6b1ed8a6d510ecc98d190/marigold_output/marigold_depth_colored.png"", ""size"": null, ""orig_name"": null, ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}]","[{""path"": ""gradio_cached_examples/18/Depth outputs/8d6952f2bb813c899fb0/marigold_depth_16bit.png"", ""url"": ""/file=/tmp/gradio/2241b3fd1273451981e6b1ed8a6d510ecc98d190/marigold_output/marigold_depth_16bit.png"", ""size"": 1413951, ""orig_name"": ""marigold_depth_16bit.png"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Depth outputs/9faf8f227f90f70bbdaa/marigold_depth_fp32.npy"", ""url"": ""/file=/tmp/gradio/2241b3fd1273451981e6b1ed8a6d510ecc98d190/marigold_output/marigold_depth_fp32.npy"", ""size"": 4616740, ""orig_name"": ""marigold_depth_fp32.npy"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Depth outputs/ed2db910fdec870cb513/marigold_depth_colored.png"", ""url"": ""/file=/tmp/gradio/2241b3fd1273451981e6b1ed8a6d510ecc98d190/marigold_output/marigold_depth_colored.png"", ""size"": 335290, ""orig_name"": ""marigold_depth_colored.png"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}]",,,2024-03-22 11:01:04.763173 15 | "[{""path"": ""gradio_cached_examples/18/Predicted depth red-near blue-far/e14a6d59396caef161db/portrait_1_depth_16bit.png"", ""url"": ""/file=/tmp/gradio/49f19b622ea5564b11e67e743094c750dca25f12/portrait_1_output/portrait_1_depth_16bit.png"", ""size"": null, ""orig_name"": null, ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Predicted depth red-near blue-far/3b7e23ac2f10ff0acd40/portrait_1_depth_colored.png"", ""url"": ""/file=/tmp/gradio/49f19b622ea5564b11e67e743094c750dca25f12/portrait_1_output/portrait_1_depth_colored.png"", ""size"": null, ""orig_name"": null, ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}]","[{""path"": ""gradio_cached_examples/18/Depth outputs/bf0a2b7b9d7d20d3fba4/portrait_1_depth_16bit.png"", ""url"": ""/file=/tmp/gradio/49f19b622ea5564b11e67e743094c750dca25f12/portrait_1_output/portrait_1_depth_16bit.png"", ""size"": 1368255, ""orig_name"": ""portrait_1_depth_16bit.png"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Depth outputs/534e159c4967aec56bcd/portrait_1_depth_fp32.npy"", ""url"": ""/file=/tmp/gradio/49f19b622ea5564b11e67e743094c750dca25f12/portrait_1_output/portrait_1_depth_fp32.npy"", ""size"": 4194432, ""orig_name"": ""portrait_1_depth_fp32.npy"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Depth outputs/068c389756186ef0ec21/portrait_1_depth_colored.png"", ""url"": ""/file=/tmp/gradio/49f19b622ea5564b11e67e743094c750dca25f12/portrait_1_output/portrait_1_depth_colored.png"", ""size"": 499699, ""orig_name"": ""portrait_1_depth_colored.png"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}]",,,2024-03-22 11:01:06.328852 16 | "[{""path"": ""gradio_cached_examples/18/Predicted depth red-near blue-far/2e503f2592bb798b7d75/portrait_2_depth_16bit.png"", ""url"": ""/file=/tmp/gradio/f8582d9f6e1c9a70b9bdd7ddcc142abfdb808cdd/portrait_2_output/portrait_2_depth_16bit.png"", ""size"": null, ""orig_name"": null, ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Predicted depth red-near blue-far/e58db2a94f058c3cbda5/portrait_2_depth_colored.png"", ""url"": ""/file=/tmp/gradio/f8582d9f6e1c9a70b9bdd7ddcc142abfdb808cdd/portrait_2_output/portrait_2_depth_colored.png"", ""size"": null, ""orig_name"": null, ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}]","[{""path"": ""gradio_cached_examples/18/Depth outputs/6eeb531b1c22dd97fae4/portrait_2_depth_16bit.png"", ""url"": ""/file=/tmp/gradio/f8582d9f6e1c9a70b9bdd7ddcc142abfdb808cdd/portrait_2_output/portrait_2_depth_16bit.png"", ""size"": 1248383, ""orig_name"": ""portrait_2_depth_16bit.png"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Depth outputs/7fce16f173010012f6b6/portrait_2_depth_fp32.npy"", ""url"": ""/file=/tmp/gradio/f8582d9f6e1c9a70b9bdd7ddcc142abfdb808cdd/portrait_2_output/portrait_2_depth_fp32.npy"", ""size"": 4194432, ""orig_name"": ""portrait_2_depth_fp32.npy"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Depth outputs/0fb09ff06177b86b75cc/portrait_2_depth_colored.png"", ""url"": ""/file=/tmp/gradio/f8582d9f6e1c9a70b9bdd7ddcc142abfdb808cdd/portrait_2_output/portrait_2_depth_colored.png"", ""size"": 304975, ""orig_name"": ""portrait_2_depth_colored.png"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}]",,,2024-03-22 11:01:07.888284 17 | "[{""path"": ""gradio_cached_examples/18/Predicted depth red-near blue-far/66dedd2f9b9a56204b8a/pumpkins_depth_16bit.png"", ""url"": ""/file=/tmp/gradio/26fc68ecac60d48462f24dee8fea4a2be9bb6b0d/pumpkins_output/pumpkins_depth_16bit.png"", ""size"": null, ""orig_name"": null, ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Predicted depth red-near blue-far/37a744be12464174a9fe/pumpkins_depth_colored.png"", ""url"": ""/file=/tmp/gradio/26fc68ecac60d48462f24dee8fea4a2be9bb6b0d/pumpkins_output/pumpkins_depth_colored.png"", ""size"": null, ""orig_name"": null, ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}]","[{""path"": ""gradio_cached_examples/18/Depth outputs/dbc8049901349d03b961/pumpkins_depth_16bit.png"", ""url"": ""/file=/tmp/gradio/26fc68ecac60d48462f24dee8fea4a2be9bb6b0d/pumpkins_output/pumpkins_depth_16bit.png"", ""size"": 16880885, ""orig_name"": ""pumpkins_depth_16bit.png"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Depth outputs/f024df95b9f9d82cd10b/pumpkins_depth_fp32.npy"", ""url"": ""/file=/tmp/gradio/26fc68ecac60d48462f24dee8fea4a2be9bb6b0d/pumpkins_output/pumpkins_depth_fp32.npy"", ""size"": 63701120, ""orig_name"": ""pumpkins_depth_fp32.npy"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Depth outputs/a20cbbb5b772a7b1763e/pumpkins_depth_colored.png"", ""url"": ""/file=/tmp/gradio/26fc68ecac60d48462f24dee8fea4a2be9bb6b0d/pumpkins_output/pumpkins_depth_colored.png"", ""size"": 5383025, ""orig_name"": ""pumpkins_depth_colored.png"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}]",,,2024-03-22 11:01:13.567507 18 | "[{""path"": ""gradio_cached_examples/18/Predicted depth red-near blue-far/d22944415f5ee905e9e0/puzzle_depth_16bit.png"", ""url"": ""/file=/tmp/gradio/e16c8cc18655d240a547b949aa54d12ec4bcd563/puzzle_output/puzzle_depth_16bit.png"", ""size"": null, ""orig_name"": null, ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Predicted depth red-near blue-far/db15ec0fec292ce702f3/puzzle_depth_colored.png"", ""url"": ""/file=/tmp/gradio/e16c8cc18655d240a547b949aa54d12ec4bcd563/puzzle_output/puzzle_depth_colored.png"", ""size"": null, ""orig_name"": null, ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}]","[{""path"": ""gradio_cached_examples/18/Depth outputs/e747489c970c86200120/puzzle_depth_16bit.png"", ""url"": ""/file=/tmp/gradio/e16c8cc18655d240a547b949aa54d12ec4bcd563/puzzle_output/puzzle_depth_16bit.png"", ""size"": 1746321, ""orig_name"": ""puzzle_depth_16bit.png"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Depth outputs/b58afb3c3ab61448a7dd/puzzle_depth_fp32.npy"", ""url"": ""/file=/tmp/gradio/e16c8cc18655d240a547b949aa54d12ec4bcd563/puzzle_output/puzzle_depth_fp32.npy"", ""size"": 6291584, ""orig_name"": ""puzzle_depth_fp32.npy"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Depth outputs/3b9f1c0a73b1eb66b3dc/puzzle_depth_colored.png"", ""url"": ""/file=/tmp/gradio/e16c8cc18655d240a547b949aa54d12ec4bcd563/puzzle_output/puzzle_depth_colored.png"", ""size"": 405008, ""orig_name"": ""puzzle_depth_colored.png"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}]",,,2024-03-22 11:01:14.850407 19 | "[{""path"": ""gradio_cached_examples/18/Predicted depth red-near blue-far/bf130ca9410ab692b150/road_depth_16bit.png"", ""url"": ""/file=/tmp/gradio/a83a653227be3d8a2069b7f154d816f97376c887/road_output/road_depth_16bit.png"", ""size"": null, ""orig_name"": null, ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Predicted depth red-near blue-far/19eb29bd0e44aa61bd6f/road_depth_colored.png"", ""url"": ""/file=/tmp/gradio/a83a653227be3d8a2069b7f154d816f97376c887/road_output/road_depth_colored.png"", ""size"": null, ""orig_name"": null, ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}]","[{""path"": ""gradio_cached_examples/18/Depth outputs/d0a4e40b24fa717ffabb/road_depth_16bit.png"", ""url"": ""/file=/tmp/gradio/a83a653227be3d8a2069b7f154d816f97376c887/road_output/road_depth_16bit.png"", ""size"": 11871381, ""orig_name"": ""road_depth_16bit.png"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Depth outputs/565217320fe1057733c9/road_depth_fp32.npy"", ""url"": ""/file=/tmp/gradio/a83a653227be3d8a2069b7f154d816f97376c887/road_output/road_depth_fp32.npy"", ""size"": 41809728, ""orig_name"": ""road_depth_fp32.npy"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Depth outputs/2456fcca77a17345e260/road_depth_colored.png"", ""url"": ""/file=/tmp/gradio/a83a653227be3d8a2069b7f154d816f97376c887/road_output/road_depth_colored.png"", ""size"": 4683563, ""orig_name"": ""road_depth_colored.png"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}]",,,2024-03-22 11:01:19.006979 20 | "[{""path"": ""gradio_cached_examples/18/Predicted depth red-near blue-far/8d5b5a9cc5bde83ad215/scientists_depth_16bit.png"", ""url"": ""/file=/tmp/gradio/98fa537b95bea2aa76bef351e5cdf1801d25af1a/scientists_output/scientists_depth_16bit.png"", ""size"": null, ""orig_name"": null, ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Predicted depth red-near blue-far/f9fb6b3768c97d11bf63/scientists_depth_colored.png"", ""url"": ""/file=/tmp/gradio/98fa537b95bea2aa76bef351e5cdf1801d25af1a/scientists_output/scientists_depth_colored.png"", ""size"": null, ""orig_name"": null, ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}]","[{""path"": ""gradio_cached_examples/18/Depth outputs/67a09b9fd46c50fb1a30/scientists_depth_16bit.png"", ""url"": ""/file=/tmp/gradio/98fa537b95bea2aa76bef351e5cdf1801d25af1a/scientists_output/scientists_depth_16bit.png"", ""size"": 3187383, ""orig_name"": ""scientists_depth_16bit.png"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Depth outputs/8c1f452606cac27a66c0/scientists_depth_fp32.npy"", ""url"": ""/file=/tmp/gradio/98fa537b95bea2aa76bef351e5cdf1801d25af1a/scientists_output/scientists_depth_fp32.npy"", ""size"": 12441480, ""orig_name"": ""scientists_depth_fp32.npy"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Depth outputs/099bb138bf851d8de112/scientists_depth_colored.png"", ""url"": ""/file=/tmp/gradio/98fa537b95bea2aa76bef351e5cdf1801d25af1a/scientists_output/scientists_depth_colored.png"", ""size"": 631879, ""orig_name"": ""scientists_depth_colored.png"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}]",,,2024-03-22 11:01:20.793540 21 | "[{""path"": ""gradio_cached_examples/18/Predicted depth red-near blue-far/adf7d8a23971611c0c2c/surfboards_depth_16bit.png"", ""url"": ""/file=/tmp/gradio/9baa0dbd53217426fb6a431cdb38f8c43520a602/surfboards_output/surfboards_depth_16bit.png"", ""size"": null, ""orig_name"": null, ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Predicted depth red-near blue-far/1cb720d1f47690df2bf2/surfboards_depth_colored.png"", ""url"": ""/file=/tmp/gradio/9baa0dbd53217426fb6a431cdb38f8c43520a602/surfboards_output/surfboards_depth_colored.png"", ""size"": null, ""orig_name"": null, ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}]","[{""path"": ""gradio_cached_examples/18/Depth outputs/f6b17b1b9adbe5433e03/surfboards_depth_16bit.png"", ""url"": ""/file=/tmp/gradio/9baa0dbd53217426fb6a431cdb38f8c43520a602/surfboards_output/surfboards_depth_16bit.png"", ""size"": 2196782, ""orig_name"": ""surfboards_depth_16bit.png"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Depth outputs/eb7676ae3737abdd8b33/surfboards_depth_fp32.npy"", ""url"": ""/file=/tmp/gradio/9baa0dbd53217426fb6a431cdb38f8c43520a602/surfboards_output/surfboards_depth_fp32.npy"", ""size"": 6291584, ""orig_name"": ""surfboards_depth_fp32.npy"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Depth outputs/4256ccd86bcb885f93a6/surfboards_depth_colored.png"", ""url"": ""/file=/tmp/gradio/9baa0dbd53217426fb6a431cdb38f8c43520a602/surfboards_output/surfboards_depth_colored.png"", ""size"": 1098012, ""orig_name"": ""surfboards_depth_colored.png"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}]",,,2024-03-22 11:01:22.105430 22 | "[{""path"": ""gradio_cached_examples/18/Predicted depth red-near blue-far/b82a8e2c9968943eaf37/surfer_depth_16bit.png"", ""url"": ""/file=/tmp/gradio/2750467aff3db899fd1651196d2632ad30d86156/surfer_output/surfer_depth_16bit.png"", ""size"": null, ""orig_name"": null, ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Predicted depth red-near blue-far/edb434ab1e157595210a/surfer_depth_colored.png"", ""url"": ""/file=/tmp/gradio/2750467aff3db899fd1651196d2632ad30d86156/surfer_output/surfer_depth_colored.png"", ""size"": null, ""orig_name"": null, ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}]","[{""path"": ""gradio_cached_examples/18/Depth outputs/6d5d27b6ae03d7a40b7c/surfer_depth_16bit.png"", ""url"": ""/file=/tmp/gradio/2750467aff3db899fd1651196d2632ad30d86156/surfer_output/surfer_depth_16bit.png"", ""size"": 2080093, ""orig_name"": ""surfer_depth_16bit.png"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Depth outputs/b42b9d9b1dd973751204/surfer_depth_fp32.npy"", ""url"": ""/file=/tmp/gradio/2750467aff3db899fd1651196d2632ad30d86156/surfer_output/surfer_depth_fp32.npy"", ""size"": 6291584, ""orig_name"": ""surfer_depth_fp32.npy"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Depth outputs/26b0eacc0203a3b721be/surfer_depth_colored.png"", ""url"": ""/file=/tmp/gradio/2750467aff3db899fd1651196d2632ad30d86156/surfer_output/surfer_depth_colored.png"", ""size"": 622703, ""orig_name"": ""surfer_depth_colored.png"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}]",,,2024-03-22 11:01:23.430815 23 | "[{""path"": ""gradio_cached_examples/18/Predicted depth red-near blue-far/313712cc25c7afeec5e2/swings_depth_16bit.png"", ""url"": ""/file=/tmp/gradio/6fbbe1e4b4d648584e32090b1ca47847997f8ffe/swings_output/swings_depth_16bit.png"", ""size"": null, ""orig_name"": null, ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Predicted depth red-near blue-far/983c2e26ef549272c897/swings_depth_colored.png"", ""url"": ""/file=/tmp/gradio/6fbbe1e4b4d648584e32090b1ca47847997f8ffe/swings_output/swings_depth_colored.png"", ""size"": null, ""orig_name"": null, ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}]","[{""path"": ""gradio_cached_examples/18/Depth outputs/4cb13fd8b9ec9608e19f/swings_depth_16bit.png"", ""url"": ""/file=/tmp/gradio/6fbbe1e4b4d648584e32090b1ca47847997f8ffe/swings_output/swings_depth_16bit.png"", ""size"": 520701, ""orig_name"": ""swings_depth_16bit.png"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Depth outputs/ef56552b1f18d14a2c19/swings_depth_fp32.npy"", ""url"": ""/file=/tmp/gradio/6fbbe1e4b4d648584e32090b1ca47847997f8ffe/swings_output/swings_depth_fp32.npy"", ""size"": 1398912, ""orig_name"": ""swings_depth_fp32.npy"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Depth outputs/2f5832324077dab185ef/swings_depth_colored.png"", ""url"": ""/file=/tmp/gradio/6fbbe1e4b4d648584e32090b1ca47847997f8ffe/swings_output/swings_depth_colored.png"", ""size"": 291481, ""orig_name"": ""swings_depth_colored.png"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}]",,,2024-03-22 11:01:24.401264 24 | "[{""path"": ""gradio_cached_examples/18/Predicted depth red-near blue-far/b019af76a770991b9f05/switzerland_depth_16bit.png"", ""url"": ""/file=/tmp/gradio/698e53b1ecf5d7a4b25ec7119890921dd1d16dbd/switzerland_output/switzerland_depth_16bit.png"", ""size"": null, ""orig_name"": null, ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Predicted depth red-near blue-far/dfced8fb6c3b5b3cdd85/switzerland_depth_colored.png"", ""url"": ""/file=/tmp/gradio/698e53b1ecf5d7a4b25ec7119890921dd1d16dbd/switzerland_output/switzerland_depth_colored.png"", ""size"": null, ""orig_name"": null, ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}]","[{""path"": ""gradio_cached_examples/18/Depth outputs/d8b07ff54e7a206832a0/switzerland_depth_16bit.png"", ""url"": ""/file=/tmp/gradio/698e53b1ecf5d7a4b25ec7119890921dd1d16dbd/switzerland_output/switzerland_depth_16bit.png"", ""size"": 1344029, ""orig_name"": ""switzerland_depth_16bit.png"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Depth outputs/2b8e100af28995f679f3/switzerland_depth_fp32.npy"", ""url"": ""/file=/tmp/gradio/698e53b1ecf5d7a4b25ec7119890921dd1d16dbd/switzerland_output/switzerland_depth_fp32.npy"", ""size"": 4593728, ""orig_name"": ""switzerland_depth_fp32.npy"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Depth outputs/115d14d955de41ae1e33/switzerland_depth_colored.png"", ""url"": ""/file=/tmp/gradio/698e53b1ecf5d7a4b25ec7119890921dd1d16dbd/switzerland_output/switzerland_depth_colored.png"", ""size"": 296596, ""orig_name"": ""switzerland_depth_colored.png"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}]",,,2024-03-22 11:01:25.565142 25 | "[{""path"": ""gradio_cached_examples/18/Predicted depth red-near blue-far/2345a66ea597f0724ac6/teamwork_depth_16bit.png"", ""url"": ""/file=/tmp/gradio/2ea4d118ae672ebcc547ee0e8fbb335d8e8c0410/teamwork_output/teamwork_depth_16bit.png"", ""size"": null, ""orig_name"": null, ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Predicted depth red-near blue-far/d3d1aea16f58fa4e9c34/teamwork_depth_colored.png"", ""url"": ""/file=/tmp/gradio/2ea4d118ae672ebcc547ee0e8fbb335d8e8c0410/teamwork_output/teamwork_depth_colored.png"", ""size"": null, ""orig_name"": null, ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}]","[{""path"": ""gradio_cached_examples/18/Depth outputs/1ab135c405036a016085/teamwork_depth_16bit.png"", ""url"": ""/file=/tmp/gradio/2ea4d118ae672ebcc547ee0e8fbb335d8e8c0410/teamwork_output/teamwork_depth_16bit.png"", ""size"": 2243230, ""orig_name"": ""teamwork_depth_16bit.png"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Depth outputs/8c492010216806b7c84c/teamwork_depth_fp32.npy"", ""url"": ""/file=/tmp/gradio/2ea4d118ae672ebcc547ee0e8fbb335d8e8c0410/teamwork_output/teamwork_depth_fp32.npy"", ""size"": 8388736, ""orig_name"": ""teamwork_depth_fp32.npy"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Depth outputs/af5de30ca8186879928b/teamwork_depth_colored.png"", ""url"": ""/file=/tmp/gradio/2ea4d118ae672ebcc547ee0e8fbb335d8e8c0410/teamwork_output/teamwork_depth_colored.png"", ""size"": 659822, ""orig_name"": ""teamwork_depth_colored.png"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}]",,,2024-03-22 11:01:26.825845 26 | "[{""path"": ""gradio_cached_examples/18/Predicted depth red-near blue-far/478e837f6ca2f7737dc5/wave_depth_16bit.png"", ""url"": ""/file=/tmp/gradio/5e596f88b8edb682aedad4a6f83067a9dee2fd0e/wave_output/wave_depth_16bit.png"", ""size"": null, ""orig_name"": null, ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Predicted depth red-near blue-far/7b90e60f0490de180bc9/wave_depth_colored.png"", ""url"": ""/file=/tmp/gradio/5e596f88b8edb682aedad4a6f83067a9dee2fd0e/wave_output/wave_depth_colored.png"", ""size"": null, ""orig_name"": null, ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}]","[{""path"": ""gradio_cached_examples/18/Depth outputs/550e81d9c69c40fa22b0/wave_depth_16bit.png"", ""url"": ""/file=/tmp/gradio/5e596f88b8edb682aedad4a6f83067a9dee2fd0e/wave_output/wave_depth_16bit.png"", ""size"": 1790462, ""orig_name"": ""wave_depth_16bit.png"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Depth outputs/6a0860f054b0406feef5/wave_depth_fp32.npy"", ""url"": ""/file=/tmp/gradio/5e596f88b8edb682aedad4a6f83067a9dee2fd0e/wave_output/wave_depth_fp32.npy"", ""size"": 6291584, ""orig_name"": ""wave_depth_fp32.npy"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}, {""path"": ""gradio_cached_examples/18/Depth outputs/ef827c6d4ffc7d48c85a/wave_depth_colored.png"", ""url"": ""/file=/tmp/gradio/5e596f88b8edb682aedad4a6f83067a9dee2fd0e/wave_output/wave_depth_colored.png"", ""size"": 353870, ""orig_name"": ""wave_depth_colored.png"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}]",,,2024-03-22 11:01:28.105115 27 | --------------------------------------------------------------------------------