├── Conv.lua ├── CsDis.lua ├── PaddingReshape.lua ├── README.md ├── data ├── msrvid │ ├── MSRVID_dev │ ├── MSRVID_train │ ├── dev │ │ ├── a.parents │ │ ├── a.rels │ │ ├── a.toks │ │ ├── a.txt │ │ ├── b.parents │ │ ├── b.rels │ │ ├── b.toks │ │ ├── b.txt │ │ ├── id.txt │ │ └── sim.txt │ ├── train │ │ ├── a.parents │ │ ├── a.rels │ │ ├── a.toks │ │ ├── a.txt │ │ ├── b.parents │ │ ├── b.rels │ │ ├── b.toks │ │ ├── b.txt │ │ ├── id.txt │ │ └── sim.txt │ ├── vocab-cased.txt │ └── vocab.txt └── sick │ ├── SICK_test_annotated.txt │ ├── SICK_train.txt │ ├── SICK_trial.txt │ ├── combinePredictionScoreswithAnnotationforSicData.pl │ ├── dev │ ├── a.parents │ ├── a.rels │ ├── a.toks │ ├── a.txt │ ├── b.parents │ ├── b.rels │ ├── b.toks │ ├── b.txt │ ├── id.txt │ └── sim.txt │ ├── readme.txt │ ├── sick_evaluation.R │ ├── test │ ├── a.parents │ ├── a.rels │ ├── a.toks │ ├── a.txt │ ├── b.parents │ ├── b.rels │ ├── b.toks │ ├── b.txt │ ├── id.txt │ └── sim.txt │ ├── train │ ├── a.parents │ ├── a.rels │ ├── a.toks │ ├── a.txt │ ├── b.parents │ ├── b.rels │ ├── b.toks │ ├── b.txt │ ├── id.txt │ └── sim.txt │ ├── vocab-cased.txt │ └── vocab.txt ├── fetch_and_preprocess.sh ├── models.lua ├── scripts ├── build_vocab.py ├── convert-wordvecs.lua ├── download.py └── preprocess-sick.py ├── testDeployTrainedModel.lua ├── trainMSRVID.lua ├── trainSIC.lua └── util ├── Vocab.lua └── read_data.lua /Conv.lua: -------------------------------------------------------------------------------- 1 | local Conv = torch.class('similarityMeasure.Conv') 2 | 3 | function Conv:__init(config) 4 | self.mem_dim = config.mem_dim or 150 5 | self.learning_rate = config.learning_rate or 0.01 6 | self.batch_size = config.batch_size or 1 --25 7 | self.num_layers = config.num_layers or 1 8 | self.reg = config.reg or 1e-4 9 | self.structure = config.structure or 'lstm' -- {lstm, bilstm} 10 | self.sim_nhidden = config.sim_nhidden or 150 11 | self.task = config.task or 'sic' -- or 'vid' 12 | 13 | -- word embedding 14 | self.emb_vecs = config.emb_vecs 15 | self.emb_dim = config.emb_vecs:size(2) 16 | 17 | -- number of similarity rating classes 18 | if self.task == 'sic' then 19 | self.num_classes = 5 20 | elseif self.task == 'vid' then 21 | self.num_classes = 6 22 | else 23 | error("not possible task!") 24 | end 25 | 26 | -- optimizer configuration 27 | self.optim_state = { learningRate = self.learning_rate } 28 | 29 | -- KL divergence optimization objective 30 | self.criterion = nn.DistKLDivCriterion() 31 | 32 | ----------------------------------------Combination of ConvNets. 33 | dofile 'models.lua' 34 | print(' creating a fresh model') 35 | 36 | -- Type of model; Size of vocabulary; Number of output classes 37 | local modelName = 'deepQueryRankingNgramSimilarityOnevsGroupMaxMinMeanLinearExDGpPoinPercpt' 38 | print(modelName) 39 | self.ngram = 3 40 | self.length = self.emb_dim 41 | self.convModel = createModel(modelName, 10000, self.length, self.num_classes, self.ngram) 42 | self.softMaxC = self:ClassifierOOne() 43 | 44 | ---------------------------------------- 45 | local modules = nn.Parallel() 46 | :add(self.convModel) 47 | :add(self.softMaxC) 48 | self.params, self.grad_params = modules:getParameters() 49 | --print(self.params:norm()) 50 | --print(self.convModel:parameters()[1][1]:norm()) 51 | --print(self.softMaxC:parameters()[1][1]:norm()) 52 | end 53 | 54 | function Conv:ClassifierOOne() 55 | local maxMinMean = 3 56 | local separator = (maxMinMean+1)*self.mem_dim 57 | local modelQ1 = nn.Sequential() 58 | local ngram = self.ngram 59 | local items = (ngram+1)*3 60 | --local items = (ngram+1) -- no Min and Mean 61 | local NumFilter = self.length --300 62 | local conceptFNum = 20 63 | inputNum = 2*items*items/3+NumFilter*items*items/3+6*NumFilter+(2+NumFilter)*2*ngram*conceptFNum --PoinPercpt model! 64 | modelQ1:add(nn.Linear(inputNum, self.sim_nhidden)) 65 | modelQ1:add(nn.Tanh()) 66 | modelQ1:add(nn.Linear(self.sim_nhidden, self.num_classes)) 67 | modelQ1:add(nn.LogSoftMax()) 68 | return modelQ1 69 | end 70 | 71 | function Conv:trainCombineOnly(dataset) 72 | --local classes = {1,2} 73 | --local confusion = optim.ConfusionMatrix(classes) 74 | --confusion:zero() 75 | train_looss = 0.0 76 | 77 | local indices = torch.randperm(dataset.size) 78 | local zeros = torch.zeros(self.mem_dim) 79 | for i = 1, dataset.size, self.batch_size do 80 | --if i%10 == 1 then 81 | -- xlua.progress(i, dataset.size) 82 | --end 83 | 84 | local batch_size = 1 --math.min(i + self.batch_size - 1, dataset.size) - i + 1 85 | -- get target distributions for batch 86 | local targets = torch.zeros(batch_size, self.num_classes) 87 | for j = 1, batch_size do 88 | local sim = -0.1 89 | if self.task == 'sic' or self.task == 'vid' then 90 | sim = dataset.labels[indices[i + j - 1]] * (self.num_classes - 1) + 1 91 | elseif self.task == 'others' then 92 | sim = dataset.labels[indices[i + j - 1]] + 1 93 | else 94 | error("not possible!") 95 | end 96 | local ceil, floor = math.ceil(sim), math.floor(sim) 97 | if ceil == floor then 98 | targets[{j, floor}] = 1 99 | else 100 | targets[{j, floor}] = ceil - sim 101 | targets[{j, ceil}] = sim - floor 102 | end--]] 103 | end 104 | 105 | local feval = function(x) 106 | self.grad_params:zero() 107 | local loss = 0 108 | for j = 1, batch_size do 109 | local idx = indices[i + j - 1] 110 | local lsent, rsent = dataset.lsents[idx], dataset.rsents[idx] 111 | local linputs = self.emb_vecs:index(1, lsent:long()):double() 112 | local rinputs = self.emb_vecs:index(1, rsent:long()):double() 113 | 114 | local part2 = self.convModel:forward({linputs, rinputs}) 115 | local output = self.softMaxC:forward(part2) 116 | 117 | loss = self.criterion:forward(output, targets[1]) 118 | train_looss = loss + train_looss 119 | local sim_grad = self.criterion:backward(output, targets[1]) 120 | local gErrorFromClassifier = self.softMaxC:backward(part2, sim_grad) 121 | self.convModel:backward({linputs, rinputs}, gErrorFromClassifier) 122 | end 123 | -- regularization 124 | loss = loss + 0.5 * self.reg * self.params:norm() ^ 2 125 | self.grad_params:add(self.reg, self.params) 126 | return loss, self.grad_params 127 | end 128 | _, fs = optim.sgd(feval, self.params, self.optim_state) 129 | --train_looss = train_looss + fs[#fs] 130 | end 131 | print('Loss: ' .. train_looss) 132 | end 133 | 134 | -- Predict the similarity of a sentence pair. 135 | function Conv:predictCombination(lsent, rsent) 136 | local linputs = self.emb_vecs:index(1, lsent:long()):double() 137 | local rinputs = self.emb_vecs:index(1, rsent:long()):double() 138 | 139 | local part2 = self.convModel:forward({linputs, rinputs}) 140 | local output = self.softMaxC:forward(part2) 141 | local val = -1.0 142 | if self.task == 'sic' then 143 | val = torch.range(1, 5, 1):dot(output:exp()) 144 | elseif self.task == 'vid' then 145 | val = torch.range(0, 5, 1):dot(output:exp()) 146 | else 147 | error("not possible task") 148 | end 149 | return val 150 | end 151 | 152 | -- Produce similarity predictions for each sentence pair in the dataset. 153 | function Conv:predict_dataset(dataset) 154 | local predictions = torch.Tensor(dataset.size) 155 | for i = 1, dataset.size do 156 | local lsent, rsent = dataset.lsents[i], dataset.rsents[i] 157 | predictions[i] = self:predictCombination(lsent, rsent) 158 | end 159 | return predictions 160 | end 161 | 162 | function Conv:print_config() 163 | local num_params = self.params:nElement() 164 | 165 | print('num params: ' .. num_params) 166 | print('word vector dim: ' .. self.emb_dim) 167 | print('LSTM memory dim: ' .. self.mem_dim) 168 | print('regularization strength: ' .. self.reg) 169 | print('minibatch size: ' .. self.batch_size) 170 | print('learning rate: ' .. self.learning_rate) 171 | print('LSTM structure: ' .. self.structure) 172 | print('LSTM layers: ' .. self.num_layers) 173 | print('sim module hidden dim: ' .. self.sim_nhidden) 174 | end 175 | 176 | function Conv:save(path) 177 | local config = { 178 | batch_size = self.batch_size, 179 | emb_vecs = self.emb_vecs:float(), 180 | learning_rate = self.learning_rate, 181 | num_layers = self.num_layers, 182 | mem_dim = self.mem_dim, 183 | sim_nhidden = self.sim_nhidden, 184 | reg = self.reg, 185 | structure = self.structure, 186 | } 187 | 188 | torch.save(path, { 189 | params = self.params, 190 | config = config, 191 | }) 192 | end 193 | -------------------------------------------------------------------------------- /CsDis.lua: -------------------------------------------------------------------------------- 1 | --From original cosine distance codes from nn package before modifications, this is backward compatible. 2 | 3 | local CsDis, parent = torch.class('nn.CsDis', 'nn.Module') 4 | 5 | function CsDis:__init() 6 | parent.__init(self) 7 | self.gradInput = {torch.Tensor(), torch.Tensor()} 8 | self.output=torch.Tensor(1) 9 | end 10 | 11 | function CsDis:updateOutput(input) 12 | local input1, input2 = input[1], input[2] 13 | self.w1 = input1:dot(input2) 14 | self.w22 = input1:dot(input1) 15 | self.w2 = math.sqrt(self.w22) 16 | self.w32 = input2:dot(input2) 17 | self.w3 = math.sqrt(self.w32) 18 | self.output[1] = self.w1/self.w2/self.w3 19 | return self.output 20 | end 21 | 22 | function CsDis:updateGradInput(input, gradOutput) 23 | local v1 = input[1] 24 | local v2 = input[2] 25 | local gw1 = input[1].new() 26 | local gw2 = input[2].new() 27 | gw1:resizeAs(v1) 28 | gw2:resizeAs(v1) 29 | 30 | gw1:zero() 31 | gw1:add(1/(self.w2*self.w3), v2) 32 | gw1:add(-self.w1/(self.w22*self.w2*self.w3), v1) 33 | 34 | gw2:zero() 35 | gw2:add(1/(self.w2*self.w3), v1) 36 | gw2:add(-self.w1/(self.w32*self.w2*self.w3), v2) 37 | 38 | gw1:mul(gradOutput[1]) 39 | gw2:mul(gradOutput[1]) 40 | self.gradInput = {gw1, gw2} 41 | return self.gradInput 42 | end -------------------------------------------------------------------------------- /PaddingReshape.lua: -------------------------------------------------------------------------------- 1 | local PaddingReshape, parent = torch.class('nn.PaddingReshape', 'nn.Module') 2 | 3 | function PaddingReshape:__init(...) 4 | parent.__init(self) 5 | local arg = {...} 6 | 7 | self.size = torch.LongStorage() 8 | self.batchsize = torch.LongStorage() 9 | if torch.type(arg[#arg]) == 'boolean' then 10 | self.batchMode = arg[#arg] 11 | table.remove(arg, #arg) 12 | end 13 | local n = #arg 14 | if n == 1 and torch.typename(arg[1]) == 'torch.LongStorage' then 15 | self.size:resize(#arg[1]):copy(arg[1]) 16 | else 17 | self.size:resize(n) 18 | for i=1,n do --modifed index 19 | self.size[i] = arg[i] --modified shift 20 | end 21 | end 22 | 23 | self.nelement = 1 24 | self.batchsize:resize(#self.size+1) 25 | for i=1,#self.size do 26 | self.nelement = self.nelement * self.size[i] 27 | self.batchsize[i+1] = self.size[i] 28 | end 29 | 30 | -- only used for non-contiguous input or gradOutput 31 | self._input = torch.Tensor() 32 | self._gradOutput = torch.Tensor() 33 | end 34 | 35 | function PaddingReshape:updateOutput(input) 36 | if not input:isContiguous() then 37 | self._input:resizeAs(input) 38 | self._input:copy(input) 39 | input = self._input 40 | end 41 | 42 | argsYoshi = torch.LongStorage() 43 | local nsi = #input:size() --modified 44 | argsYoshi:resize(nsi+1) 45 | argsYoshi[1] = 1 46 | for i=2,nsi+1 do --modifed index 47 | argsYoshi[i] = input:size()[i-1] --modified shift 48 | end 49 | self.batchMode = false 50 | 51 | if (self.batchMode == false) or ( 52 | (self.batchMode == nil) and 53 | (input:nElement() == self.nelement and input:size(1) ~= 1) 54 | ) then 55 | self.output:view(input, argsYoshi) --modified 56 | else 57 | self.batchsize[1] = input:size(1) 58 | self.output:view(input, self.batchsize) 59 | end 60 | return self.output 61 | end 62 | 63 | function PaddingReshape:updateGradInput(input, gradOutput) 64 | if not gradOutput:isContiguous() then 65 | self._gradOutput:resizeAs(gradOutput) 66 | self._gradOutput:copy(gradOutput) 67 | gradOutput = self._gradOutput 68 | end 69 | 70 | self.gradInput:viewAs(gradOutput, input) 71 | return self.gradInput 72 | end 73 | 74 | 75 | function PaddingReshape:__tostring__() 76 | return torch.type(self) .. '(Pad ' .. 77 | table.concat(self.size:totable(), 'x') .. ')' 78 | end -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Multi-Perspective Convolutional Neural Networks for Modeling Textual Similarity 2 | 3 | **NOTE: This repo contains code for the original Torch implementation from the EMNLP 2015 paper. The code is not being maintained anymore and has been superseded by a PyTorch reimplementation in [Castor](https://github.com/castorini/Castor). This repo exists solely for archival purposes.** 4 | 5 | This repo contains the Torch implementation of multi-perspective convolutional neural networks for modeling textual similarity, described in the following paper: 6 | 7 | + Hua He, Kevin Gimpel, and Jimmy Lin. [Multi-Perspective Sentence Similarity Modeling with Convolutional Neural Networks.](http://aclweb.org/anthology/D/D15/D15-1181.pdf) *Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (EMNLP 2015)*, pages 1576-1586. 8 | 9 | This model does not require external resources such as WordNet or parsers, does not use sparse features, and achieves good accuracy on standard public datasets. 10 | 11 | Installation and Dependencies 12 | ------------ 13 | 14 | - Please install Torch deep learning library. We recommend this local installation which includes all required packages our tool needs, simply follow the instructions here: 15 | https://github.com/torch/distro 16 | 17 | - Currently our tool only runs on CPUs, therefore it is recommended to use INTEL MKL library (or at least OpenBLAS lib) so Torch can run much faster on CPUs. 18 | 19 | - Our tool then requires Glove embeddings by Stanford. Please run fetech_and_preprocess.sh for downloading and preprocessing this data set (around 3 GBs). 20 | 21 | 22 | Running 23 | ------------ 24 | 25 | - Command to run (training, tuning and testing all included): 26 | - ``th trainSIC.lua`` or ``th trainMSRVID.lua`` 27 | 28 | The tool will output pearson scores and also write the predicted similarity scores given each pair of sentences from test data into predictions directory. 29 | 30 | Adaption to New Dataset 31 | ------------ 32 | To run our model on your own dataset, first you need to build the dataset following below format and put it under data folder: 33 | 34 | - a.toks: sentence A, each sentence per line. 35 | - b.toks: sentence B, each sentence per line. 36 | - id.txt: sentence pair ID 37 | - sim.txt: semantic relatedness gold label, can be in any scale. For binary classification, the set of labels will be {0, 1}. 38 | 39 | Then build vocabulary for your dataset which writes the vocab-cased.txt into your data folder: 40 | ``` 41 | $ python build_vocab.py 42 | ``` 43 | The last thing is to change the training and model code slightly to process your dataset: 44 | - change util/read_data.lua to handle your data. 45 | - create a new piece of training code following trainSIC.lua to read in your dataset. 46 | - change Conv.lua in Line 89-102 and 142-148 to handle your own task 47 | - more details can refer to issue https://github.com/castorini/MP-CNN-Torch/issues/6 48 | 49 | Then you should be able to run your training code. 50 | 51 | Trained Model 52 | ------------- 53 | We also porvide a model which is already trained on STS dataset. So it is easier if you just want to use the model and do not want to re-train the whole thing. 54 | 55 | The tarined model download link is [HERE](https://drive.google.com/file/d/0B-lu_eEMkpVxYVdPMldJX3JDVjg/view?usp=sharing). Model file size is 500MB. To use the trained model, then simply use codes below: 56 | ``` 57 | modelTrained = torch.load("download_local_location/modelSTS.trained.th", 'ascii') 58 | modelTrained.convModel:evaluate() 59 | modelTrained.softMaxC:evaluate() 60 | local linputs = torch.zeros(rigth_sentence_length, emd_dimension) 61 | linpus = XassignEmbeddingValuesX 62 | local rinputs = torch.zeros(left_sentence_length, emd_dimension) 63 | rinpus = XassignEmbeddingValuesX 64 | 65 | local part2 = modelTrained.convModel:forward({linputs, rinputs}) 66 | local output = modelTrained.softMaxC:forward(part2) 67 | local val = torch.range(0, 5, 1):dot(output:exp()) 68 | return val/5 69 | ``` 70 | The ouput variable 'val' contains a similarity score between [0,1]. The input linputs1/rinputs are torch tensors and you need to fill in the word embedding values for both. 71 | 72 | Example Deployment Script with Our Trained Model 73 | ------------- 74 | We provide one example file for deployment: testDeployTrainedModel.lua. So it is easier for you to directly use our model. Run: 75 | ``` 76 | $ th testDeployTrainedModel.lua 77 | ``` 78 | This deployment file will use the trained model (assume you have downloaded the trained model from the above link), and it will generate scores given all test sentences of sick dataset. Please note the trained model is not trained on SICK data. 79 | 80 | 81 | Ackowledgement 82 | ------------- 83 | We thank Kai Sheng Tai for providing the preprocessing codes. We also thank the public data providers and Torch developers. Thanks. 84 | -------------------------------------------------------------------------------- /data/msrvid/dev/a.parents: -------------------------------------------------------------------------------- 1 | 2 8 2 6 6 3 8 0 8 2 | 2 4 4 0 4 4 3 | 3 3 5 5 0 7 5 5 4 | 2 4 4 0 6 4 4 9 7 4 5 | 2 4 4 0 7 7 4 4 6 | 2 4 4 0 6 4 4 9 7 4 7 | 2 4 4 0 4 4 8 | 2 4 4 0 6 4 4 9 | 2 4 4 0 6 4 4 10 | 2 4 4 0 6 4 4 11 | 2 4 4 0 6 4 4 12 | 2 4 4 0 4 13 | 2 4 4 0 4 14 | 2 4 4 0 6 4 4 15 | 2 4 4 0 4 7 5 7 7 4 16 | 2 4 4 0 7 7 4 4 17 | 2 4 4 0 6 4 4 7 10 8 4 18 | 2 3 0 6 6 3 3 9 7 3 19 | 2 3 0 3 3 3 9 9 6 3 20 | 2 4 4 0 6 4 4 21 | 2 4 4 0 6 4 6 7 4 22 | 2 4 4 0 4 7 5 4 23 | 2 4 4 0 6 4 6 6 10 8 4 24 | 2 4 4 0 6 4 4 25 | 2 4 4 0 6 4 4 26 | 3 3 5 5 0 5 8 6 5 27 | 2 4 4 0 4 28 | 2 4 4 0 4 4 29 | 2 4 4 0 4 8 6 5 4 30 | 2 4 4 0 6 4 4 31 | 2 3 0 3 3 7 5 3 32 | 2 4 4 0 6 4 4 33 | 2 4 4 0 4 7 4 4 34 | 2 5 2 3 0 5 5 9 7 5 35 | 2 4 4 0 4 4 36 | 2 3 0 5 3 3 37 | 2 3 0 5 3 3 38 | 3 3 0 3 3 39 | 2 3 0 3 6 3 3 40 | 2 4 4 0 6 4 4 41 | 2 4 4 0 6 4 4 42 | 2 4 4 0 6 4 4 43 | 2 4 4 0 4 7 5 4 44 | 2 3 0 3 6 3 3 9 7 3 45 | 2 4 4 0 7 7 8 4 4 46 | 2 4 4 0 6 8 6 4 4 47 | 2 4 4 0 6 4 4 48 | 2 4 4 0 7 7 4 4 49 | 2 4 4 0 6 4 4 50 | 2 4 4 0 6 4 4 51 | 2 4 4 0 4 4 6 9 7 4 52 | 2 4 4 0 4 4 53 | 2 4 4 0 6 4 4 54 | 2 4 4 0 4 4 8 6 4 55 | 2 4 4 0 4 5 4 56 | 3 3 0 5 3 3 57 | 3 3 0 5 3 3 58 | 2 4 4 0 6 4 4 59 | 2 3 0 3 3 60 | 2 5 5 5 0 5 61 | 2 3 0 3 6 4 3 62 | 2 4 4 0 7 7 4 4 63 | 3 3 5 5 0 5 8 6 5 64 | 2 4 4 0 4 7 4 4 65 | 2 4 4 0 6 4 4 66 | 2 3 0 5 3 3 67 | 2 4 4 0 6 4 4 68 | 2 4 4 0 6 4 4 69 | 2 4 4 0 6 4 4 70 | 2 4 4 0 6 4 4 71 | 2 4 4 0 4 7 4 4 72 | 2 4 4 0 4 4 73 | 2 4 4 0 4 4 74 | 2 4 4 0 4 4 75 | 2 4 4 0 4 4 76 | 3 3 5 5 0 7 5 5 77 | 2 4 4 0 7 7 4 4 78 | 2 4 4 0 6 4 4 79 | 2 3 0 5 3 3 80 | 3 3 0 3 3 81 | 2 4 4 0 6 4 4 82 | 2 4 4 0 6 4 4 83 | 2 4 4 0 6 4 4 84 | 2 4 4 0 6 4 4 85 | 2 4 4 0 6 4 4 86 | 3 3 0 5 3 3 87 | 2 4 4 0 6 4 4 9 7 4 88 | 2 4 4 0 7 7 4 4 89 | 2 4 4 0 4 90 | 3 3 0 3 6 4 4 9 7 3 91 | 2 3 0 3 7 7 4 3 92 | 2 5 5 5 0 5 93 | 2 4 4 0 4 4 94 | 2 4 4 0 6 4 4 95 | 2 4 4 0 6 4 4 96 | 2 4 4 0 6 4 4 97 | 2 4 4 0 6 4 4 98 | 2 4 4 0 6 4 4 99 | 2 4 4 0 4 5 4 100 | 2 4 4 0 4 4 6 4 101 | 2 4 4 0 6 4 4 102 | 2 7 2 5 2 7 0 7 103 | 2 4 4 0 4 7 5 4 104 | 2 4 4 0 4 105 | 2 4 4 0 4 106 | 2 4 4 0 6 4 6 6 4 107 | 2 4 4 0 4 4 108 | 2 4 4 0 4 7 4 4 109 | 3 3 5 5 0 7 5 5 110 | 2 4 4 0 4 4 111 | 2 4 4 0 6 4 4 112 | 2 4 4 0 6 4 4 113 | 2 4 4 0 4 4 114 | 2 4 4 0 6 4 4 115 | 2 3 0 5 3 3 116 | 2 3 0 3 4 5 3 117 | 2 4 4 0 6 4 4 118 | 2 4 4 0 4 4 8 6 4 119 | 2 4 4 0 6 4 4 120 | 2 4 4 0 4 4 121 | 2 4 4 0 6 4 4 122 | 2 4 4 0 6 4 4 123 | 2 4 4 0 6 4 4 124 | 2 4 4 0 4 4 125 | 2 4 4 0 6 4 4 126 | 2 3 0 3 3 127 | 2 6 2 2 6 0 6 128 | 2 4 4 0 6 4 4 129 | 3 3 4 0 4 7 4 4 130 | 3 3 5 5 0 8 8 5 5 131 | 2 4 4 0 4 4 132 | 3 3 0 3 4 7 5 3 133 | 2 4 4 0 6 4 4 134 | 2 0 2 3 6 4 2 135 | 2 4 4 0 4 4 8 6 4 136 | 2 4 4 0 4 137 | 2 4 4 0 4 138 | 2 3 0 5 3 3 139 | 2 4 4 0 4 140 | 2 4 4 0 6 4 4 141 | 2 4 4 0 4 4 142 | 2 4 4 0 4 7 5 4 143 | 2 4 4 0 6 4 4 144 | 2 4 4 0 4 4 145 | 2 4 4 0 6 4 4 146 | 2 4 4 0 6 4 4 147 | 2 4 4 0 4 4 148 | 2 4 4 0 6 4 4 149 | 2 4 4 0 6 4 4 150 | 2 3 0 6 6 3 3 151 | 2 4 4 0 6 4 4 152 | 2 4 4 0 6 4 4 153 | 2 4 4 0 6 4 4 154 | 2 4 4 0 4 4 8 6 4 155 | 2 4 4 0 4 7 4 4 156 | 2 4 4 0 4 7 5 4 157 | 2 3 0 3 7 7 4 3 158 | 2 0 2 3 7 7 3 2 159 | 3 3 0 3 3 5 3 160 | 2 4 4 0 7 7 4 4 161 | 2 4 4 0 4 7 5 4 162 | 2 4 4 0 6 4 4 163 | 2 4 4 0 6 4 4 164 | 2 4 4 0 4 4 165 | 2 4 4 0 6 4 4 166 | 2 4 4 0 6 4 4 167 | 2 4 4 0 4 4 168 | 2 4 4 0 7 7 4 4 169 | 2 4 4 0 4 4 170 | 2 4 4 0 6 4 4 171 | 2 4 4 0 4 172 | 2 4 4 0 6 4 4 173 | 2 4 4 0 4 7 5 4 174 | 2 4 4 0 4 175 | 2 4 4 0 4 4 176 | 2 4 4 0 4 7 5 4 177 | 2 4 4 0 6 4 4 178 | 2 4 4 0 4 179 | 2 4 4 0 4 180 | 2 4 4 0 6 4 4 181 | 2 4 4 0 6 4 4 182 | 2 4 4 0 4 183 | 2 4 4 0 4 184 | 3 3 5 5 0 5 5 9 7 5 185 | 2 4 4 0 4 5 5 7 4 186 | 2 3 0 3 6 3 3 187 | 2 3 0 5 3 3 8 6 3 188 | 2 4 4 0 4 7 4 4 189 | 2 4 4 0 6 4 4 190 | 2 4 4 0 4 7 5 4 191 | 2 3 0 5 3 3 192 | 2 4 4 0 6 4 4 193 | 2 4 4 0 6 4 4 194 | 2 4 4 0 6 4 4 195 | 3 3 0 3 6 3 3 196 | 2 6 2 2 6 0 6 9 7 6 12 10 6 197 | 3 3 4 0 4 7 5 4 198 | 2 4 4 0 4 5 4 199 | 2 4 4 0 4 200 | 2 0 2 3 8 8 8 4 2 201 | 2 4 4 0 4 4 202 | 2 4 4 0 6 4 4 203 | 2 3 0 5 3 3 8 6 3 204 | 2 4 4 0 7 7 4 4 10 8 4 205 | 3 3 0 5 3 3 206 | 2 4 4 0 4 207 | 2 4 4 0 6 4 4 208 | 2 3 0 3 6 8 6 3 3 209 | 2 4 4 0 6 4 4 210 | 3 3 5 5 0 5 5 7 10 8 5 211 | 2 3 0 3 3 3 212 | 2 7 2 3 6 4 0 9 7 7 213 | 2 4 4 0 4 4 4 214 | 2 3 0 3 7 7 4 3 215 | 3 3 0 3 4 3 216 | 2 4 4 0 4 4 9 9 6 4 217 | 2 4 4 0 6 4 4 218 | 2 3 0 5 3 3 219 | 2 3 0 5 3 3 220 | 2 3 0 5 3 3 221 | 2 4 4 0 4 4 222 | 3 3 0 5 3 5 9 9 6 3 223 | 2 4 4 0 6 4 4 224 | 2 4 4 0 6 4 4 225 | 2 4 4 0 4 4 8 6 8 11 9 4 226 | 2 3 0 3 6 3 3 227 | 2 3 0 3 3 7 5 3 228 | 2 4 4 0 4 4 229 | 2 4 4 0 4 230 | 2 4 4 0 4 4 231 | 2 4 4 0 6 4 4 232 | 2 6 2 2 6 0 6 6 10 8 6 233 | 2 4 4 0 6 4 4 234 | 2 3 0 3 6 3 3 235 | 3 3 0 3 236 | 2 3 0 3 4 8 8 5 3 237 | 2 4 4 0 4 238 | 2 4 4 0 7 7 4 4 239 | 2 4 4 0 6 4 4 240 | 2 4 4 0 6 4 4 9 7 4 241 | 2 0 4 2 4 7 5 7 8 2 242 | 2 4 4 0 4 4 243 | 2 4 4 0 6 4 4 244 | 2 0 2 5 3 2 8 6 2 245 | 2 4 4 0 6 4 4 246 | 2 4 4 0 4 4 247 | 2 4 4 0 6 4 4 248 | 2 4 4 0 6 4 4 9 7 4 249 | 2 4 4 0 4 5 6 4 250 | 2 4 4 0 4 7 5 4 251 | 2 0 4 2 2 7 5 2 252 | 2 4 4 0 6 4 4 7 4 253 | 2 4 4 0 6 4 4 7 4 254 | 2 4 4 0 4 7 5 4 255 | 3 3 5 5 0 5 256 | 3 3 0 3 4 3 257 | 2 4 4 0 4 258 | 2 4 4 0 6 4 4 259 | 2 4 4 0 6 4 4 260 | 2 5 5 5 0 5 261 | 2 4 4 0 4 262 | 2 3 0 5 3 3 263 | 2 4 4 0 4 7 5 4 264 | 2 4 4 0 4 265 | 2 4 4 0 6 4 4 266 | 2 4 4 0 6 4 4 267 | 2 3 0 3 3 7 5 3 268 | 2 4 4 0 4 269 | 2 4 4 0 4 4 270 | 2 4 4 0 4 4 8 6 4 271 | 2 4 4 0 4 4 6 4 272 | 3 3 5 5 0 7 5 5 273 | 2 4 4 0 4 274 | 2 4 4 0 4 4 275 | 2 4 4 0 6 4 4 276 | 2 0 2 6 6 2 6 9 7 2 277 | 2 4 4 0 4 8 8 5 4 278 | 2 4 4 0 6 4 4 279 | 2 4 4 0 4 4 8 6 4 280 | 2 4 4 0 6 4 4 281 | 2 4 4 0 6 4 4 282 | 2 4 4 0 6 4 4 283 | 2 4 4 0 4 7 5 4 284 | 2 4 4 0 6 4 4 285 | 2 4 4 0 4 7 5 4 286 | 4 4 4 5 0 7 5 5 5 287 | 2 4 4 0 6 4 4 9 7 4 288 | 2 4 4 0 4 4 289 | 2 3 0 3 6 4 3 290 | 2 5 5 5 0 5 8 6 5 291 | 2 0 2 5 3 7 5 9 7 2 292 | 4 4 4 0 4 293 | 2 6 2 3 6 0 8 6 6 294 | 2 4 4 0 6 4 4 295 | 3 3 0 5 3 3 296 | 3 3 0 3 4 3 297 | 3 3 0 3 3 298 | 3 3 0 3 7 7 4 3 299 | 2 3 0 5 3 3 300 | 2 4 4 0 4 5 301 | 2 4 4 0 4 302 | 3 3 5 5 0 5 8 6 5 303 | 2 4 4 0 4 4 8 6 4 304 | 2 3 0 3 3 8 8 5 8 9 3 305 | 2 4 4 0 4 8 8 5 4 306 | 3 3 0 3 3 7 5 3 307 | 2 4 4 0 4 4 8 6 4 308 | 2 4 4 0 6 4 4 309 | 2 4 4 0 6 4 4 310 | 2 4 4 0 6 4 4 311 | 2 4 4 0 6 4 4 312 | 2 4 4 0 6 4 4 7 4 313 | 2 4 4 0 6 4 4 314 | 2 4 4 0 4 4 8 6 4 315 | 2 4 4 0 4 5 4 316 | 2 3 0 3 3 7 5 7 8 3 317 | 2 4 4 0 4 318 | 3 3 0 5 3 3 319 | 2 4 4 0 4 7 5 4 11 11 8 4 320 | 2 4 4 0 6 4 4 321 | 2 3 0 5 3 3 322 | 3 3 0 5 3 3 323 | 2 4 4 0 6 4 4 324 | 3 3 0 5 3 3 325 | 2 4 4 0 4 7 5 4 326 | 2 4 4 0 4 327 | 2 4 4 0 4 328 | 2 4 4 0 6 4 4 329 | 2 4 4 0 6 4 4 330 | 2 4 4 0 4 331 | 2 4 4 0 4 332 | 2 4 4 0 4 4 8 6 4 333 | 2 4 4 0 4 7 5 4 334 | 2 4 4 0 6 4 4 335 | 3 3 0 5 3 3 336 | 2 4 4 0 4 4 337 | 2 4 4 0 4 4 338 | 2 5 5 5 0 5 339 | 2 4 4 0 7 7 4 4 340 | 2 4 4 0 4 4 6 4 341 | 2 4 4 0 6 4 4 342 | 2 4 4 0 6 4 4 343 | 2 4 4 0 6 4 4 344 | 2 4 4 0 6 4 4 345 | 2 4 4 0 4 4 346 | 2 4 4 0 4 5 4 347 | 2 4 4 0 6 4 4 348 | 2 4 4 0 6 4 4 349 | 2 5 5 5 0 5 350 | 2 4 4 0 7 7 4 4 351 | 2 4 4 0 4 4 352 | 2 4 4 0 6 4 4 353 | 2 4 4 0 4 7 5 4 354 | 2 3 0 5 3 5 6 3 10 8 3 355 | 2 4 4 0 6 4 4 356 | 2 4 4 0 6 4 6 4 357 | 2 4 4 0 6 4 4 358 | 3 3 0 3 6 4 3 359 | 2 4 4 0 4 360 | 2 4 4 0 4 361 | 2 4 4 0 6 4 4 9 7 4 362 | 2 4 4 0 7 7 4 4 363 | 3 3 5 5 0 7 5 5 364 | 2 4 4 0 4 7 5 4 365 | 2 4 4 0 4 4 366 | 2 3 0 5 3 3 367 | 2 3 0 3 4 7 5 3 368 | 3 3 0 5 3 5 8 6 3 369 | 2 3 0 5 3 3 8 6 3 370 | 2 4 4 0 6 4 4 371 | 2 4 4 0 4 4 8 6 4 372 | 2 3 0 5 3 3 373 | 3 3 4 0 4 4 374 | 2 4 4 0 6 4 4 375 | 2 4 4 0 4 7 5 4 376 | 3 3 5 5 0 7 5 5 377 | 2 4 4 0 6 4 4 378 | 2 0 2 5 2 2 379 | 2 4 4 0 4 7 5 4 380 | 2 4 4 0 4 7 5 4 381 | 2 4 4 0 6 4 6 7 4 382 | 2 4 4 0 6 4 4 9 7 4 13 13 10 4 383 | 2 4 4 0 4 4 6 4 384 | 2 4 4 0 4 385 | 3 3 4 0 4 7 5 4 386 | 2 4 4 0 4 387 | 2 0 2 5 3 2 388 | 2 4 4 0 6 4 4 389 | 3 3 5 5 0 5 5 390 | 3 3 0 5 3 3 391 | 2 4 4 0 4 4 392 | 2 4 4 0 6 4 4 393 | 2 3 0 5 3 3 394 | 2 3 0 3 6 3 3 395 | 2 4 4 0 6 4 4 396 | 2 4 4 0 4 7 5 4 397 | 2 4 4 0 4 7 5 4 398 | 2 3 0 3 4 7 5 7 8 8 13 13 10 3 399 | 2 4 4 0 4 7 5 7 8 4 400 | 3 3 5 5 0 5 8 6 5 401 | 2 4 4 0 7 7 4 4 402 | 2 0 2 5 3 3 8 6 2 403 | 2 4 4 0 7 7 4 4 404 | 2 4 4 0 7 7 4 4 405 | 2 4 4 0 4 8 8 5 4 406 | 3 3 0 3 6 4 3 407 | 2 4 4 0 4 4 8 6 8 11 9 4 408 | 2 4 4 0 6 4 4 10 10 7 4 409 | 2 4 4 0 6 4 4 410 | 2 4 4 0 6 4 4 411 | 2 4 4 0 4 412 | 2 4 4 0 6 4 4 413 | 2 4 4 0 4 4 414 | 2 4 4 0 6 4 4 415 | 2 4 4 0 4 7 5 7 8 11 9 4 416 | 2 4 4 0 6 4 4 9 7 4 417 | 2 3 0 6 6 3 3 9 7 3 418 | 2 4 4 0 8 8 8 4 4 419 | 2 5 5 5 0 5 8 6 5 420 | 2 3 0 5 3 3 421 | 2 3 0 5 3 3 422 | 2 4 4 0 4 4 4 423 | 2 4 4 0 6 4 4 424 | 2 4 4 0 4 4 425 | 2 4 4 0 4 426 | 2 4 4 0 6 4 4 427 | 2 4 4 0 4 4 8 10 8 6 4 428 | 2 4 4 0 4 429 | 2 4 4 0 4 4 430 | 2 4 4 0 4 4 431 | 2 3 0 3 3 5 3 432 | 2 4 4 0 4 7 5 7 10 8 4 433 | 2 3 0 3 6 4 6 9 7 3 434 | 2 0 4 2 4 7 5 7 8 4 13 13 10 2 435 | 2 4 4 0 4 4 436 | 2 4 4 0 4 5 6 9 7 4 4 11 4 437 | 2 4 4 0 4 4 4 4 438 | 2 4 4 0 6 4 4 439 | 2 4 4 0 6 4 4 440 | 2 5 5 5 0 5 8 6 5 441 | 2 4 4 0 6 4 4 442 | 2 4 4 0 4 7 5 4 443 | 2 4 4 0 4 7 4 4 444 | 2 4 4 0 6 4 4 445 | 3 3 0 5 3 5 6 7 11 11 8 3 446 | 2 4 4 0 4 4 8 6 4 447 | 2 4 4 0 6 4 4 448 | 2 3 0 5 3 3 449 | 2 4 4 0 4 7 5 4 450 | 2 3 0 6 6 3 6 9 7 3 451 | 2 4 4 0 6 4 4 452 | 2 3 0 3 6 4 3 10 10 7 3 453 | 2 4 4 0 6 4 6 6 4 454 | 2 3 0 3 6 4 3 455 | 2 3 0 5 3 5 8 6 3 456 | 2 4 4 0 4 4 457 | 2 4 4 0 4 8 8 5 4 458 | 2 4 4 0 6 4 4 459 | 2 3 0 3 6 4 8 6 3 460 | 2 3 0 5 3 3 461 | 2 4 4 0 6 4 4 462 | 2 4 4 0 6 4 4 463 | 2 4 4 0 4 5 8 6 4 464 | 3 3 0 3 3 465 | 2 4 4 0 6 4 4 466 | 2 4 4 0 6 4 8 6 10 8 4 467 | 2 3 0 3 6 4 3 468 | 2 4 4 0 4 4 469 | 2 0 2 5 3 2 470 | 2 4 4 0 6 4 4 471 | 2 4 4 0 6 4 4 472 | 2 3 0 5 3 5 8 6 3 473 | 2 3 0 3 6 4 6 10 10 7 3 474 | 2 4 4 0 6 4 4 475 | 2 4 4 0 4 5 8 6 4 476 | 2 4 4 0 4 8 8 5 4 477 | 2 3 0 3 3 7 5 7 8 3 478 | 3 3 5 5 0 5 5 10 10 7 5 479 | 3 3 5 5 0 5 8 6 5 11 9 5 480 | 2 4 4 0 6 4 4 481 | 2 3 0 3 6 3 3 482 | 2 0 2 3 6 4 2 483 | 2 4 4 0 6 4 4 484 | 2 4 4 0 4 4 485 | 2 4 4 0 6 4 4 486 | 2 4 4 0 4 7 5 7 10 8 4 487 | 2 0 2 6 6 3 2 488 | 2 4 4 0 4 4 489 | 2 0 2 5 3 7 5 10 10 7 2 490 | 2 3 0 3 3 491 | 2 4 4 0 6 4 4 492 | 2 4 4 0 6 4 4 493 | 2 4 4 0 4 7 5 4 494 | 2 4 4 0 4 7 5 4 495 | 2 4 4 0 4 8 8 5 4 496 | 2 4 4 0 6 4 4 10 10 7 4 497 | 2 4 4 0 4 8 8 5 4 498 | 2 4 4 0 6 4 4 499 | 2 4 4 0 6 4 4 500 | 2 4 4 0 4 4 501 | 2 4 4 0 6 4 4 502 | 2 4 4 0 6 4 4 503 | 2 4 4 0 6 4 4 504 | 3 3 4 0 4 7 5 4 10 8 10 13 10 4 505 | 2 4 4 0 4 4 4 506 | 2 0 2 2 6 4 2 507 | 2 4 4 0 6 4 4 508 | 2 4 4 0 6 4 4 509 | 2 3 0 3 6 3 3 510 | 2 4 4 0 4 4 511 | 2 3 0 3 512 | 2 4 4 0 4 7 5 4 513 | 2 4 4 0 4 7 5 4 514 | 2 4 4 0 6 4 4 515 | 4 1 1 0 6 4 6 7 4 516 | 2 4 4 0 7 7 4 4 517 | 2 4 4 0 6 4 6 6 6 4 518 | 2 4 4 0 6 4 4 519 | 2 3 0 3 3 7 5 3 11 11 8 15 15 15 3 3 520 | 2 3 0 3 6 4 6 9 7 3 521 | 4 4 4 0 4 7 5 4 522 | 2 4 4 0 6 4 4 4 8 8 4 523 | 3 3 0 3 524 | 2 0 2 5 2 2 525 | 2 4 4 0 6 4 4 526 | 2 3 0 5 3 3 527 | 2 4 4 0 7 7 4 4 528 | 3 3 0 3 4 3 529 | 2 4 4 0 6 4 4 4 8 8 4 530 | 2 4 4 0 6 4 4 9 7 4 531 | 2 3 0 5 3 3 6 3 532 | 2 4 4 0 6 4 4 9 7 4 533 | 2 3 0 6 6 3 3 10 10 7 3 534 | 2 4 4 0 4 535 | 2 4 4 0 4 7 5 4 536 | 2 4 4 0 6 4 4 537 | 2 4 4 0 4 4 538 | 2 4 4 0 4 4 539 | 2 4 4 0 4 7 5 4 540 | 2 4 4 0 6 4 4 541 | 2 4 4 0 4 8 8 5 4 542 | 2 4 4 0 6 4 4 543 | 3 3 5 5 0 5 5 9 7 5 544 | 2 4 4 0 6 4 4 545 | 2 3 0 3 6 4 6 9 7 3 546 | 2 4 4 0 4 4 547 | 2 4 4 0 6 4 4 548 | 2 0 2 3 6 4 2 549 | 2 3 0 3 3 7 5 3 550 | 3 3 0 3 4 7 5 3 551 | 2 4 4 0 6 4 4 9 7 4 552 | 2 4 4 0 6 4 4 10 10 7 4 553 | 2 3 0 5 3 3 8 10 8 6 3 554 | 3 3 5 5 0 5 5 9 7 5 555 | 2 4 4 0 4 5 8 6 4 556 | 2 4 4 0 4 557 | 3 3 0 3 4 3 558 | 2 4 4 0 6 4 4 559 | 2 6 2 2 6 0 6 9 7 6 560 | 2 4 4 0 7 7 4 4 561 | 2 4 4 0 4 7 5 4 562 | 2 3 0 5 3 3 563 | 2 3 0 3 3 7 5 3 564 | 2 4 4 0 6 4 4 565 | 2 4 4 0 4 566 | 2 6 2 2 6 0 6 9 7 6 567 | 2 4 4 0 6 4 4 568 | 2 4 4 0 4 7 5 4 569 | 2 4 4 0 4 4 8 6 4 570 | 2 4 4 0 6 4 4 571 | 2 5 2 3 0 5 572 | 2 4 4 0 4 4 573 | 2 4 4 0 6 4 4 10 10 7 4 574 | 3 3 5 5 0 7 5 5 575 | 2 4 4 0 4 4 576 | 2 4 4 0 4 4 577 | 2 4 4 0 4 578 | 2 0 2 6 6 2 2 9 7 2 579 | 2 4 4 0 7 7 4 4 580 | 2 4 4 0 4 4 6 7 8 11 9 4 581 | 3 3 0 3 4 3 8 6 3 582 | 3 3 4 0 4 7 5 4 583 | 2 4 4 0 4 4 8 6 4 584 | 2 4 4 0 4 8 8 5 4 585 | 2 4 4 0 4 4 8 6 8 9 4 586 | 2 4 4 0 4 7 5 7 10 8 4 4 14 12 4 587 | 2 4 4 0 4 7 5 4 588 | 2 4 4 0 4 7 5 4 589 | 2 4 4 0 4 4 590 | 3 3 0 3 3 7 5 3 591 | 2 4 4 0 6 4 4 592 | 2 4 4 0 4 593 | 2 3 0 3 3 7 5 3 594 | 2 4 4 0 6 4 4 595 | 2 4 4 0 4 4 8 6 4 596 | 2 6 2 3 6 0 6 597 | 2 4 4 0 6 4 4 598 | 2 4 4 0 4 7 4 4 599 | 2 4 4 0 6 4 4 10 10 7 4 600 | 2 4 4 0 6 4 4 601 | 2 4 4 0 4 7 5 4 602 | 4 4 4 0 4 5 4 603 | 2 3 0 5 3 3 604 | 2 3 0 3 3 605 | 2 4 4 0 6 4 4 606 | 2 0 2 5 3 3 8 6 2 607 | 2 4 4 0 6 4 4 608 | 2 4 4 0 6 4 4 609 | 2 3 0 5 6 3 6 10 10 6 3 610 | 2 3 0 5 3 3 8 6 3 611 | 3 3 0 3 3 612 | 2 4 4 0 4 4 613 | 2 4 4 0 4 4 4 614 | 2 4 4 0 6 4 4 615 | 2 3 0 5 3 3 616 | 2 0 2 5 3 2 617 | 2 4 4 0 7 7 4 4 10 8 4 618 | 2 5 5 5 0 5 619 | 2 4 4 0 4 7 5 4 620 | 2 4 4 0 6 4 4 621 | 2 4 4 0 4 5 8 6 4 622 | 2 4 4 0 4 4 4 7 13 13 13 13 8 4 623 | 3 3 4 0 4 4 4 4 4 9 9 14 14 11 4 624 | 2 0 4 2 2 7 5 7 10 8 2 625 | 2 4 4 0 6 4 4 626 | 3 3 0 3 3 7 5 3 627 | 2 4 4 0 6 4 4 628 | 2 4 4 0 4 7 5 4 629 | 4 4 4 6 6 0 6 6 630 | 2 4 4 0 6 4 4 631 | 2 4 4 0 6 4 4 9 7 4 632 | 3 3 0 7 6 7 3 9 7 3 633 | 2 4 4 0 4 7 4 7 8 4 634 | 2 4 4 0 4 7 5 4 635 | 2 3 0 5 3 3 636 | 3 3 5 5 0 5 5 637 | 2 4 4 0 4 7 5 4 638 | 2 3 0 6 6 3 3 639 | 2 3 0 5 3 3 8 6 3 640 | 2 4 4 0 4 5 4 641 | 2 4 4 0 4 642 | 2 3 0 5 3 3 643 | 2 4 4 0 4 7 5 4 644 | 2 4 4 0 6 4 4 645 | 3 3 5 5 0 5 6 5 646 | 2 4 4 0 4 4 8 6 4 647 | 2 4 4 0 4 7 5 4 648 | 2 4 4 0 4 8 8 5 11 11 4 11 4 649 | 2 4 4 0 4 4 650 | 2 4 4 0 8 8 6 4 4 651 | 2 4 4 0 4 8 8 5 4 12 12 9 17 16 16 17 4 17 4 652 | 2 4 4 0 6 4 4 653 | 2 3 0 5 3 3 654 | 2 4 4 0 4 655 | 2 4 4 0 4 4 656 | 2 6 2 3 6 0 6 6 657 | 2 4 4 0 7 7 4 4 11 11 8 4 658 | 3 3 5 5 0 7 5 5 659 | 3 3 5 5 0 7 5 5 10 8 5 660 | 2 3 0 3 6 4 3 3 10 8 3 661 | 2 3 0 3 6 3 3 662 | 2 4 4 0 4 7 5 4 663 | 2 6 2 3 6 0 6 664 | 2 4 4 0 4 4 665 | 2 3 0 3 3 3 666 | 2 3 0 5 3 3 8 6 3 3 10 3 667 | 2 4 4 0 7 7 4 4 668 | 2 3 0 5 3 3 669 | 2 4 4 0 6 4 8 6 4 670 | 2 3 0 3 3 7 5 3 671 | 2 3 0 3 6 4 3 672 | 2 3 0 7 7 7 3 3 10 8 3 673 | 2 4 4 0 4 4 674 | 2 6 2 2 6 0 6 9 7 6 675 | 2 4 4 0 4 5 6 4 11 11 8 4 676 | 2 4 4 0 6 4 4 9 7 4 677 | 2 4 4 0 4 7 5 4 678 | 2 4 4 0 4 4 9 9 6 4 679 | 2 3 0 3 6 4 3 680 | 3 3 4 0 4 7 5 4 681 | 2 4 4 0 6 4 4 9 7 4 682 | 3 3 0 6 6 3 3 683 | 2 4 4 0 4 7 5 4 684 | 2 3 0 3 7 7 4 3 685 | 2 4 4 0 6 4 4 10 10 7 4 686 | 2 4 4 0 6 4 4 687 | 2 3 0 3 6 4 3 688 | 2 4 4 0 6 4 4 689 | 2 4 4 0 4 7 5 4 690 | 2 4 4 0 4 8 8 5 4 691 | 2 3 0 5 3 8 8 3 8 11 8 3 692 | 2 4 4 0 4 4 8 6 8 11 9 4 693 | 3 3 4 0 4 5 4 694 | 2 4 4 0 6 4 4 695 | 3 3 5 5 0 5 5 9 7 5 696 | 2 3 0 3 6 3 3 697 | 2 4 4 0 6 4 4 698 | 2 3 0 3 6 3 6 9 7 3 699 | 2 4 4 0 4 7 5 4 700 | 2 3 0 5 3 3 701 | 3 3 0 5 3 3 702 | 2 3 0 5 3 3 703 | 2 4 4 0 4 7 5 4 704 | 2 4 4 0 4 4 6 4 705 | 2 4 4 0 4 4 706 | 2 4 4 0 6 4 4 707 | 2 4 4 0 4 5 5 4 10 8 10 11 4 708 | 2 3 0 3 6 4 3 3 3 709 | 2 4 4 0 6 4 4 710 | 2 3 0 5 3 3 8 6 3 711 | 2 4 4 0 4 4 712 | 2 4 4 0 6 4 4 9 7 4 713 | 2 4 4 0 4 5 8 6 4 714 | 2 5 2 5 0 7 5 5 715 | 2 4 4 0 4 7 5 4 716 | 2 4 4 0 6 4 4 9 7 4 717 | 2 0 4 2 718 | 2 4 4 0 6 4 4 719 | 2 4 4 0 4 4 8 6 4 720 | 2 4 4 0 6 4 4 721 | 2 4 4 0 4 722 | 2 4 4 0 4 723 | 2 4 4 0 7 7 4 12 11 11 12 4 14 12 4 724 | 3 3 0 5 3 3 725 | 2 4 4 0 6 4 4 726 | 2 4 4 0 6 4 4 727 | 2 4 4 0 4 4 728 | 3 3 5 5 0 5 729 | 2 3 0 3 6 4 3 730 | 2 4 4 0 6 4 6 7 4 731 | 2 4 4 0 7 7 4 4 732 | 2 4 4 0 4 4 733 | 2 3 0 3 6 3 3 734 | 2 4 4 0 6 4 4 7 4 735 | 2 4 4 0 4 4 9 9 6 4 736 | 4 4 4 6 6 0 6 6 10 8 10 11 8 15 13 6 737 | 2 4 4 0 4 5 6 10 10 7 4 738 | 2 3 0 5 3 5 5 5 10 8 3 739 | 2 4 4 0 4 740 | 2 0 4 2 4 5 8 6 2 741 | 2 4 4 0 4 4 8 6 4 742 | 4 4 4 0 4 7 5 4 743 | 3 3 5 5 0 8 8 5 5 744 | 2 3 0 6 6 3 3 745 | 2 4 4 0 6 4 4 746 | 2 4 4 0 4 5 4 747 | 2 4 4 0 4 7 5 4 748 | 2 4 4 0 6 4 4 749 | 2 4 4 0 4 7 5 4 750 | 2 4 4 0 6 4 4 751 | -------------------------------------------------------------------------------- /data/msrvid/dev/b.parents: -------------------------------------------------------------------------------- 1 | 2 8 2 6 6 3 8 0 8 2 | 3 3 5 5 0 5 5 3 | 2 4 4 0 6 4 4 4 | 2 4 4 0 6 4 4 9 7 4 5 | 2 4 4 0 6 4 4 6 | 2 4 4 0 6 4 4 10 10 7 4 7 | 2 4 4 0 4 4 8 | 2 4 4 0 4 4 9 | 2 4 4 0 6 4 4 10 | 2 5 2 5 0 7 5 5 11 | 2 4 4 0 4 4 12 | 2 4 4 0 4 13 | 2 4 4 0 4 14 | 2 4 4 0 6 4 4 15 | 2 4 4 0 7 7 4 7 7 4 16 | 2 4 4 0 7 7 4 4 17 | 2 3 0 5 3 3 8 6 3 18 | 2 3 0 6 6 3 3 9 7 3 19 | 2 3 0 3 3 3 9 9 6 6 12 10 3 20 | 2 4 4 0 7 7 4 4 21 | 3 3 0 5 3 5 6 3 22 | 3 3 5 5 0 5 8 6 5 23 | 2 4 4 0 6 4 8 6 6 11 9 4 24 | 2 4 4 0 6 4 4 25 | 2 4 4 0 6 4 4 26 | 3 3 5 5 0 5 8 6 5 27 | 2 4 4 0 4 28 | 2 3 0 3 4 5 6 3 29 | 2 4 4 0 4 7 5 4 30 | 2 4 4 0 4 7 5 4 31 | 2 3 0 3 3 7 5 3 32 | 2 4 4 0 6 4 4 33 | 2 3 0 3 6 3 3 34 | 2 6 2 3 6 0 6 6 10 8 6 35 | 2 4 4 0 4 4 36 | 2 4 4 0 6 4 4 37 | 2 4 4 0 6 4 4 38 | 3 3 0 3 3 39 | 2 3 0 3 6 3 3 40 | 2 4 4 0 6 4 4 41 | 2 4 4 0 6 4 4 42 | 2 4 4 0 6 4 4 43 | 2 4 4 0 4 7 5 4 44 | 3 3 0 3 6 4 4 9 7 3 45 | 2 4 4 0 7 7 4 4 4 46 | 2 3 0 5 7 5 3 3 47 | 3 3 5 5 0 7 5 5 48 | 2 3 0 6 6 3 3 49 | 2 4 4 0 6 4 4 50 | 2 4 4 0 6 4 4 51 | 2 4 4 0 4 4 6 9 7 4 52 | 2 4 4 0 4 4 53 | 2 4 4 0 6 4 4 54 | 2 4 4 0 4 4 8 6 4 55 | 2 4 4 0 4 7 5 4 56 | 2 4 4 0 6 4 4 57 | 2 4 4 0 6 4 4 58 | 2 4 4 0 6 4 4 59 | 2 4 4 0 4 4 60 | 2 5 5 5 0 5 61 | 2 3 0 3 6 4 3 62 | 2 4 4 0 6 4 4 63 | 2 4 4 0 4 7 5 4 64 | 2 4 4 0 6 4 4 65 | 2 4 4 0 6 4 4 66 | 2 4 4 0 6 4 4 67 | 2 4 4 0 6 4 4 68 | 2 3 0 5 3 3 69 | 2 4 4 0 6 4 4 70 | 2 4 4 0 6 4 4 71 | 2 4 4 0 4 4 4 72 | 2 4 4 0 6 4 4 73 | 2 4 4 0 6 4 4 74 | 2 4 4 0 6 4 4 75 | 2 4 4 0 4 4 76 | 2 4 4 0 6 4 4 77 | 2 4 4 0 6 4 4 78 | 2 4 4 0 7 7 4 4 79 | 2 4 4 0 6 4 4 80 | 3 3 0 3 4 3 81 | 2 4 4 0 4 4 4 82 | 2 4 4 0 6 4 4 83 | 2 4 4 0 6 4 4 84 | 2 4 4 0 7 7 4 4 85 | 2 3 0 5 3 3 86 | 2 4 4 0 6 4 4 87 | 2 4 4 0 6 4 4 88 | 2 4 4 0 6 4 4 89 | 2 4 4 0 4 90 | 2 3 0 5 3 3 8 6 3 91 | 3 3 4 0 4 8 8 5 4 92 | 2 5 5 5 0 5 93 | 2 4 4 0 6 4 4 94 | 2 4 4 0 6 4 4 95 | 2 4 4 0 6 4 4 96 | 2 4 4 0 6 4 4 97 | 2 4 4 0 6 4 4 98 | 2 4 4 0 6 4 4 99 | 2 4 4 0 4 8 8 5 4 100 | 2 3 0 3 4 5 3 101 | 2 3 0 5 3 3 102 | 2 0 2 5 2 2 103 | 2 4 4 0 4 7 5 4 10 8 4 104 | 2 4 4 0 4 105 | 2 4 4 0 4 106 | 2 4 4 0 6 4 4 107 | 2 4 4 0 4 4 8 6 4 108 | 2 4 4 0 4 7 4 4 109 | 2 4 4 0 4 4 110 | 2 4 4 0 6 4 4 111 | 2 4 4 0 6 4 4 112 | 2 4 4 0 6 4 4 113 | 3 3 5 5 0 7 5 5 114 | 2 4 4 0 6 4 4 115 | 2 3 0 6 6 3 3 116 | 2 4 4 0 4 5 4 117 | 2 3 0 5 3 3 118 | 2 4 4 0 6 4 4 119 | 2 4 4 0 6 4 6 7 4 120 | 2 4 4 0 4 4 8 6 4 121 | 2 3 0 5 3 3 122 | 2 3 0 5 3 3 123 | 2 4 4 0 4 4 124 | 2 4 4 0 4 4 125 | 2 4 4 0 6 4 4 126 | 2 4 4 0 4 4 127 | 2 6 2 2 6 0 6 128 | 2 4 4 0 6 4 4 129 | 2 3 0 3 6 3 3 130 | 2 4 4 0 6 4 4 131 | 2 4 4 0 4 4 132 | 2 4 4 0 4 7 5 4 133 | 2 4 4 0 4 4 8 6 4 134 | 2 4 4 0 4 7 5 4 135 | 2 4 4 0 6 4 4 136 | 2 4 4 0 4 137 | 2 4 4 0 4 138 | 2 3 0 5 3 3 139 | 2 4 4 0 4 140 | 2 4 4 0 6 4 4 141 | 2 4 4 0 4 4 142 | 2 4 4 0 6 4 4 143 | 2 4 4 0 6 4 4 144 | 2 4 4 0 4 4 145 | 2 4 4 0 4 4 146 | 3 3 0 3 3 147 | 2 4 4 0 6 4 4 148 | 2 4 4 0 6 4 4 149 | 2 4 4 0 4 4 150 | 2 4 4 0 7 7 4 4 151 | 2 4 4 0 4 4 152 | 2 4 4 0 6 4 4 153 | 2 4 4 0 6 4 4 154 | 2 4 4 0 4 4 155 | 2 4 4 0 6 4 4 156 | 2 4 4 0 7 7 4 4 157 | 2 4 4 0 4 7 5 4 158 | 2 3 0 3 7 7 3 3 159 | 2 4 4 0 4 4 6 4 160 | 3 3 5 5 0 8 8 5 5 161 | 3 3 0 5 3 5 8 6 3 162 | 2 4 4 0 6 4 4 163 | 2 4 4 0 6 4 4 164 | 2 3 0 3 6 4 3 165 | 2 4 4 0 4 7 5 4 166 | 2 4 4 0 4 4 167 | 2 3 0 5 3 3 168 | 2 4 4 0 4 7 5 4 169 | 3 3 5 5 0 5 5 170 | 2 4 4 0 6 4 4 171 | 2 6 2 2 6 0 6 172 | 2 4 4 0 6 4 4 173 | 2 4 4 0 4 7 4 4 174 | 2 4 4 0 4 4 175 | 2 4 4 0 6 4 4 176 | 2 4 4 0 4 7 5 4 177 | 2 4 4 0 4 7 5 4 178 | 2 4 4 0 4 179 | 2 4 4 0 4 180 | 2 4 4 0 6 4 4 181 | 2 4 4 0 6 4 4 182 | 2 4 4 0 4 183 | 2 4 4 0 4 184 | 2 4 4 0 4 4 8 6 4 185 | 2 4 4 0 4 5 5 7 4 186 | 2 3 0 3 6 3 6 9 7 3 187 | 2 4 4 0 4 4 8 6 4 188 | 2 3 0 3 6 4 3 189 | 2 4 4 0 6 4 4 190 | 2 4 4 0 4 4 191 | 2 3 0 3 3 7 5 3 192 | 2 4 4 0 6 4 4 193 | 2 3 0 3 6 3 3 194 | 2 4 4 0 6 4 4 195 | 2 6 2 3 6 0 6 9 7 6 196 | 2 6 2 2 6 0 6 9 7 6 14 14 14 10 6 197 | 3 3 5 5 0 5 8 6 5 198 | 2 4 4 0 4 4 199 | 2 4 4 0 4 7 5 4 200 | 2 4 4 0 4 8 8 5 4 201 | 2 4 4 0 4 202 | 2 4 4 0 6 4 4 203 | 2 4 4 0 4 4 8 6 4 204 | 2 4 4 0 7 7 4 4 205 | 3 3 0 5 3 3 206 | 2 4 4 0 4 207 | 2 3 0 5 3 3 208 | 2 3 0 5 3 3 209 | 2 4 4 0 6 4 4 210 | 2 4 4 0 4 4 8 6 4 211 | 4 4 4 0 4 212 | 2 11 2 3 6 4 3 9 7 11 0 13 11 11 213 | 2 4 4 0 4 4 214 | 2 4 4 0 4 8 8 5 4 215 | 2 3 0 3 4 3 216 | 2 4 4 0 4 7 5 4 217 | 2 8 2 3 6 4 8 0 10 8 8 218 | 2 4 4 0 6 4 4 219 | 2 4 4 0 4 4 220 | 2 4 4 0 6 4 4 221 | 2 4 4 0 4 4 222 | 2 4 4 0 6 4 4 9 7 4 223 | 2 4 4 0 6 4 4 224 | 3 3 0 5 3 3 225 | 2 4 4 0 4 4 8 10 8 6 4 226 | 3 3 5 5 0 5 8 5 5 227 | 2 3 0 3 3 8 8 5 3 228 | 2 4 4 0 6 4 4 229 | 3 3 5 5 0 5 230 | 2 4 4 0 4 4 231 | 2 4 4 0 6 4 4 232 | 2 6 2 2 6 0 6 6 8 6 13 13 10 6 233 | 2 4 4 0 4 4 8 6 4 234 | 2 3 0 3 7 7 3 3 235 | 2 4 4 0 4 236 | 2 3 0 3 4 7 5 3 237 | 2 4 4 0 6 4 4 238 | 2 4 4 0 4 239 | 2 4 4 0 6 4 4 240 | 2 4 4 0 6 4 4 241 | 2 4 4 0 4 4 6 4 242 | 2 4 4 0 4 4 6 4 243 | 2 4 4 0 6 4 6 7 4 244 | 2 6 2 3 6 0 6 245 | 2 4 4 0 4 4 246 | 2 4 4 0 4 4 247 | 2 4 4 0 4 4 248 | 2 4 4 0 6 4 4 249 | 2 4 4 0 4 4 250 | 2 4 4 0 6 4 4 251 | 2 3 0 5 3 3 8 6 3 252 | 2 4 4 0 4 4 8 6 4 253 | 2 4 4 0 6 4 4 254 | 3 3 0 3 6 4 6 7 3 255 | 2 4 4 0 4 4 256 | 2 4 4 0 4 5 4 257 | 2 4 4 0 4 4 4 258 | 2 4 4 0 6 4 4 259 | 2 4 4 0 6 4 4 260 | 2 4 4 0 6 4 4 261 | 2 4 4 0 4 262 | 2 3 0 5 3 3 263 | 2 4 4 0 6 4 4 264 | 2 4 4 0 4 7 5 4 265 | 2 4 4 0 4 5 4 266 | 2 4 4 0 6 4 4 267 | 2 4 4 0 4 4 8 6 4 268 | 2 4 4 0 4 7 4 4 269 | 2 4 4 0 4 7 4 4 270 | 3 3 0 3 3 5 3 271 | 2 4 4 0 4 4 6 4 272 | 3 3 5 5 0 7 5 5 273 | 2 4 4 0 4 7 5 4 274 | 2 4 4 0 6 4 6 7 4 275 | 2 4 4 0 4 7 5 4 276 | 2 7 2 5 2 7 0 7 10 8 7 277 | 2 6 2 2 6 0 6 9 7 6 278 | 2 4 4 0 7 7 4 4 279 | 3 3 5 5 0 7 5 9 7 5 280 | 2 4 4 0 6 4 8 6 4 281 | 2 4 4 0 6 4 4 282 | 2 4 4 0 6 4 4 283 | 3 3 5 5 0 7 5 5 284 | 2 4 4 0 6 4 4 285 | 3 3 5 5 0 5 9 9 6 5 286 | 4 4 4 5 0 7 5 5 287 | 3 3 0 5 3 3 8 6 8 9 3 288 | 2 4 4 0 6 4 4 289 | 3 3 0 3 6 4 3 290 | 2 4 4 0 6 4 4 9 7 4 291 | 2 0 2 5 3 7 5 7 10 7 2 292 | 2 4 4 0 4 4 293 | 2 6 2 3 6 0 8 6 6 294 | 2 4 4 0 6 4 4 295 | 3 3 0 5 3 3 296 | 3 3 0 5 3 3 297 | 3 3 0 3 3 298 | 2 4 4 0 4 8 8 5 4 299 | 2 4 4 0 4 7 4 4 300 | 2 4 4 0 4 7 5 4 301 | 2 4 4 0 4 4 302 | 3 3 5 5 0 5 8 5 5 303 | 2 4 4 0 4 4 8 6 4 304 | 2 4 4 0 4 4 8 6 8 11 9 4 305 | 2 4 4 0 4 5 4 306 | 3 3 0 5 3 5 6 3 10 8 3 307 | 2 3 0 5 3 3 8 6 3 308 | 2 4 4 0 6 4 4 309 | 2 4 4 0 6 4 4 310 | 2 4 4 0 6 4 4 311 | 2 4 4 0 6 4 4 312 | 2 4 4 0 6 4 4 313 | 2 4 4 0 4 4 314 | 2 4 4 0 6 4 4 315 | 2 4 4 0 4 5 4 316 | 2 4 4 0 4 4 8 6 4 317 | 2 4 4 0 4 4 318 | 2 4 4 0 6 4 4 319 | 3 3 0 3 6 4 3 320 | 2 4 4 0 6 4 4 321 | 3 3 0 5 3 3 322 | 2 4 4 0 4 7 5 4 323 | 2 4 4 0 4 324 | 3 3 0 5 3 3 325 | 2 4 4 0 4 7 5 4 326 | 2 4 4 0 4 4 327 | 2 4 4 0 4 328 | 2 3 0 6 6 3 3 329 | 2 4 4 0 6 4 4 330 | 2 4 4 0 4 4 331 | 2 4 4 0 4 4 332 | 2 4 4 0 4 4 8 6 4 333 | 2 4 4 0 4 7 4 4 334 | 2 4 4 0 6 4 4 335 | 3 3 0 3 3 336 | 2 4 4 0 4 4 337 | 2 4 4 0 4 338 | 2 4 4 0 4 4 339 | 2 4 4 0 6 4 4 340 | 2 4 4 0 4 7 4 4 341 | 2 4 4 0 6 4 4 342 | 2 4 4 0 6 4 4 343 | 2 4 4 0 6 4 4 344 | 2 3 0 5 3 3 345 | 2 4 4 0 6 4 4 346 | 2 4 4 0 4 4 347 | 2 4 4 0 6 4 4 348 | 2 3 0 3 7 7 4 3 349 | 2 0 2 5 3 2 350 | 2 4 4 0 6 4 4 351 | 2 4 4 0 6 4 4 352 | 2 4 4 0 4 4 353 | 2 4 4 0 6 4 4 354 | 2 4 4 0 4 4 8 6 4 355 | 2 4 4 0 6 4 4 356 | 2 4 4 0 6 4 4 357 | 2 4 4 0 6 4 4 358 | 2 5 5 5 0 5 8 6 5 359 | 3 3 0 3 3 360 | 3 3 0 3 361 | 2 4 4 0 4 4 362 | 2 4 4 0 6 4 4 363 | 2 4 4 0 6 4 4 364 | 2 4 4 0 4 7 4 4 365 | 2 4 4 0 4 4 8 6 4 366 | 2 4 4 0 6 4 4 367 | 2 4 4 0 4 5 9 9 6 4 368 | 3 3 0 5 6 3 3 369 | 2 0 4 2 4 7 5 2 370 | 2 3 0 5 3 3 371 | 2 4 4 0 4 4 8 6 4 372 | 2 4 4 0 6 4 4 373 | 2 4 4 0 4 4 374 | 2 4 4 0 6 4 4 375 | 2 4 4 0 6 4 4 376 | 2 4 4 0 4 377 | 2 4 4 0 4 7 5 4 378 | 2 5 2 3 0 5 8 5 5 379 | 2 4 4 0 6 4 4 380 | 2 4 4 0 4 7 5 4 381 | 2 4 4 0 4 4 6 4 382 | 2 4 4 0 4 4 8 6 4 383 | 2 4 4 0 6 4 4 384 | 2 4 4 0 4 4 385 | 3 3 5 5 0 5 8 6 5 386 | 2 4 4 0 4 7 5 4 387 | 2 4 4 0 6 4 4 388 | 2 4 4 0 6 4 4 389 | 2 4 4 0 4 390 | 2 4 4 0 4 4 391 | 2 4 4 0 4 5 4 392 | 2 4 4 0 6 4 4 393 | 2 4 4 0 6 4 4 394 | 2 3 0 3 7 7 4 3 395 | 2 4 4 0 6 4 4 396 | 2 3 0 3 7 7 4 3 397 | 2 4 4 0 4 7 4 4 398 | 3 3 5 5 0 5 9 9 5 5 399 | 2 4 4 0 4 7 4 4 400 | 2 4 4 0 6 4 4 9 7 4 401 | 2 4 4 0 4 4 402 | 2 4 4 0 4 7 5 4 403 | 2 4 4 0 4 4 404 | 2 4 4 0 6 4 4 405 | 2 4 4 0 4 8 8 5 4 406 | 2 3 0 3 6 4 3 407 | 2 4 4 0 4 4 8 6 4 408 | 2 4 4 0 6 4 4 9 7 4 409 | 2 4 4 0 6 4 4 410 | 2 4 4 0 7 7 4 4 411 | 2 4 4 0 6 4 4 412 | 2 4 4 0 6 4 4 413 | 2 4 4 0 4 4 414 | 2 4 4 0 4 7 4 4 415 | 2 4 4 0 4 7 5 4 416 | 2 4 4 0 6 4 4 9 7 4 417 | 2 3 0 3 7 7 3 3 418 | 2 5 5 5 0 5 419 | 2 4 4 0 6 4 4 420 | 2 6 2 5 3 0 8 6 6 421 | 2 3 0 3 3 7 5 3 422 | 2 4 4 0 6 4 4 423 | 2 4 4 0 6 4 4 424 | 2 4 4 0 6 4 4 425 | 2 4 4 0 6 4 4 426 | 2 4 4 0 6 4 4 427 | 3 3 0 5 3 5 8 6 3 428 | 3 3 0 3 429 | 4 4 4 0 4 430 | 2 4 4 0 4 5 5 4 4 431 | 2 0 2 2 4 2 432 | 2 4 4 0 4 7 4 4 433 | 2 4 4 0 4 7 5 4 434 | 3 3 0 5 3 5 8 6 8 9 3 435 | 2 4 4 0 4 7 5 4 436 | 2 4 4 0 4 7 4 4 437 | 2 3 0 3 6 4 3 438 | 2 4 4 0 4 4 439 | 2 4 4 0 6 4 4 440 | 2 4 4 0 6 4 4 441 | 2 4 4 0 4 4 4 442 | 3 3 0 3 443 | 2 4 4 0 4 4 444 | 2 4 4 0 6 4 4 445 | 3 3 0 5 3 3 446 | 2 4 4 0 4 4 4 447 | 2 3 0 5 3 3 448 | 2 4 4 0 6 4 6 7 4 9 4 449 | 2 4 4 0 4 7 5 7 10 8 4 450 | 2 4 4 0 6 4 4 9 7 4 12 10 4 451 | 2 4 4 0 4 452 | 3 3 0 3 6 4 3 9 7 3 453 | 2 3 0 3 6 4 3 454 | 3 3 4 0 4 7 5 4 455 | 2 3 0 3 6 3 3 456 | 2 4 4 0 4 4 8 6 4 457 | 2 4 4 0 6 4 4 458 | 2 4 4 0 7 7 4 4 459 | 2 3 0 5 3 3 8 6 3 460 | 2 4 4 0 4 461 | 2 0 2 6 6 3 462 | 2 4 4 0 7 7 4 4 463 | 3 3 0 3 3 5 3 464 | 2 6 2 3 6 0 6 465 | 2 4 4 0 6 4 4 466 | 3 3 0 5 3 5 6 9 7 3 467 | 2 4 4 0 4 7 5 4 468 | 2 4 4 0 6 4 4 469 | 2 4 4 0 6 4 4 470 | 2 4 4 0 6 4 4 471 | 2 4 4 0 6 4 4 472 | 2 4 4 0 6 4 4 9 7 4 473 | 2 4 4 0 4 7 5 4 474 | 2 4 4 0 4 7 5 4 475 | 2 4 4 0 6 4 4 476 | 2 4 4 0 7 7 4 4 477 | 2 3 0 3 3 5 3 9 7 3 478 | 3 3 5 5 0 5 6 5 479 | 3 3 5 5 0 8 8 5 5 480 | 2 4 4 0 4 4 6 7 10 8 4 481 | 2 4 4 0 6 4 4 482 | 2 3 0 5 3 5 6 3 483 | 2 3 0 5 3 3 484 | 2 4 4 0 4 4 485 | 2 4 4 0 6 4 4 486 | 2 4 4 0 4 8 8 5 4 487 | 3 3 0 3 6 4 3 488 | 2 4 4 0 6 4 4 489 | 2 3 0 6 6 3 3 9 7 3 490 | 2 4 4 0 4 491 | 2 4 4 0 4 492 | 2 3 0 5 3 5 8 6 3 493 | 5 5 5 5 7 7 0 7 11 11 8 7 494 | 2 4 4 0 4 4 495 | 2 3 0 3 7 7 4 3 496 | 2 4 4 0 6 4 4 497 | 2 4 4 0 6 4 4 7 4 498 | 2 4 4 0 4 4 499 | 2 4 4 0 4 4 500 | 2 4 4 0 6 4 4 501 | 2 4 4 0 4 4 502 | 2 4 4 0 4 4 503 | 2 4 4 0 6 4 4 504 | 2 3 0 3 6 4 6 6 3 505 | 2 4 4 0 4 8 8 4 4 506 | 2 4 4 0 4 7 5 4 507 | 2 3 0 3 6 4 3 508 | 2 3 0 5 3 3 509 | 2 4 4 0 6 4 4 510 | 2 3 0 5 3 3 511 | 2 3 0 3 512 | 2 4 4 0 4 7 5 7 10 8 4 11 4 513 | 2 4 4 0 4 4 514 | 2 4 4 0 6 4 4 515 | 2 3 0 3 4 3 516 | 2 4 4 0 4 4 8 6 4 517 | 2 4 4 0 4 7 5 4 518 | 2 4 4 0 6 4 4 519 | 3 3 5 5 0 5 5 9 7 9 12 10 5 520 | 2 4 4 0 4 7 5 4 521 | 2 0 2 3 3 8 8 5 2 522 | 2 4 4 0 6 4 4 523 | 2 4 4 0 4 524 | 2 4 4 0 4 5 8 6 4 525 | 2 4 4 0 4 4 526 | 2 3 0 3 3 7 5 3 527 | 2 4 4 0 6 4 4 528 | 2 4 4 0 6 4 4 529 | 2 4 4 0 7 7 4 4 530 | 2 4 4 0 4 4 6 4 531 | 2 6 6 6 6 0 6 532 | 2 4 4 0 4 7 4 4 533 | 2 3 0 6 6 3 3 9 7 3 534 | 2 3 0 5 3 3 535 | 2 4 4 0 6 4 6 9 6 4 536 | 2 4 4 0 4 7 5 4 537 | 2 4 4 0 6 4 4 538 | 2 4 4 0 4 7 4 4 539 | 2 4 4 0 4 4 4 540 | 2 4 4 0 4 5 4 541 | 2 4 4 0 4 5 6 7 8 9 4 542 | 2 4 4 0 6 4 4 543 | 2 4 4 0 6 4 4 544 | 2 4 4 0 6 4 4 9 7 4 545 | 2 3 0 3 6 4 3 546 | 2 4 4 0 4 7 5 4 547 | 2 4 4 0 4 4 548 | 2 4 4 0 4 4 549 | 2 4 4 0 4 4 550 | 2 4 4 0 6 4 4 551 | 2 4 4 0 6 4 4 552 | 2 4 4 0 4 4 8 6 4 553 | 2 3 0 3 3 8 8 5 3 554 | 2 0 2 5 6 2 6 2 555 | 2 4 4 0 7 7 4 4 556 | 2 4 4 0 4 5 8 6 4 557 | 3 3 0 3 6 7 4 3 558 | 2 3 0 3 7 7 4 3 559 | 2 5 5 5 0 5 560 | 2 4 4 0 6 4 4 561 | 2 4 4 0 6 4 4 562 | 2 4 4 0 6 4 4 563 | 2 4 4 0 6 4 4 564 | 3 3 0 3 3 565 | 2 4 4 0 4 566 | 2 4 4 0 6 4 6 6 4 567 | 2 3 0 5 3 3 8 6 3 568 | 2 4 4 0 4 4 4 7 4 569 | 2 4 4 0 6 4 8 4 4 570 | 2 3 0 6 6 3 3 571 | 2 4 4 0 4 572 | 2 4 4 0 4 7 5 7 8 4 573 | 2 4 4 0 4 4 8 6 4 574 | 2 3 0 3 6 4 3 3 8 8 12 10 3 575 | 2 4 4 0 4 4 576 | 2 4 4 0 7 7 4 4 577 | 2 4 4 0 4 7 5 7 10 8 4 578 | 2 6 2 2 6 0 6 579 | 2 4 4 0 6 4 4 9 7 4 580 | 2 4 4 0 4 4 4 581 | 2 0 2 5 3 2 582 | 2 4 4 0 4 5 4 583 | 2 4 4 0 4 4 8 6 4 584 | 2 0 2 5 3 2 585 | 2 4 4 0 4 4 586 | 2 5 2 5 0 7 5 7 7 11 9 9 5 587 | 2 4 4 0 4 4 588 | 2 3 0 3 6 3 3 589 | 2 4 4 0 6 4 4 590 | 2 3 0 3 3 7 5 3 591 | 2 4 4 0 4 4 592 | 2 4 4 0 4 593 | 2 4 4 0 4 4 594 | 2 3 0 5 3 3 595 | 2 3 0 3 3 7 5 3 596 | 3 3 7 3 4 7 0 7 10 8 7 597 | 3 3 0 5 3 3 598 | 2 4 4 0 6 4 4 599 | 2 4 4 0 7 7 4 4 600 | 2 4 4 0 7 7 4 4 10 8 4 601 | 2 4 4 0 6 4 4 7 11 11 8 4 602 | 2 7 2 3 7 7 0 7 603 | 2 4 4 0 6 4 4 604 | 2 3 0 5 3 3 605 | 2 3 0 5 3 7 5 3 606 | 2 4 4 0 6 4 4 607 | 2 4 4 0 6 4 6 7 4 11 9 4 608 | 2 4 4 0 7 7 4 4 11 11 8 4 609 | 2 3 0 6 6 3 3 610 | 2 4 4 0 4 4 8 6 4 611 | 3 3 4 0 6 4 4 612 | 2 4 4 0 4 4 8 6 4 613 | 2 4 4 0 6 4 4 614 | 2 4 4 0 4 615 | 2 6 2 5 3 0 8 6 6 616 | 3 3 0 3 617 | 4 4 4 6 6 0 6 618 | 2 4 4 0 4 4 9 9 6 4 619 | 3 3 0 3 4 7 9 7 5 3 620 | 3 3 0 5 3 5 6 7 10 8 3 621 | 2 4 4 0 6 4 6 9 7 4 10 13 11 4 622 | 2 4 4 0 7 7 4 4 623 | 2 4 4 0 4 7 4 4 624 | 2 3 0 3 3 8 8 5 3 625 | 2 3 0 5 3 3 8 6 3 626 | 2 0 4 2 2 7 5 7 10 8 2 627 | 2 4 4 0 7 7 4 4 628 | 3 3 5 5 0 5 8 6 5 629 | 2 4 4 0 4 7 4 4 630 | 2 4 4 0 4 4 8 6 4 631 | 2 4 4 0 4 7 5 7 8 4 12 10 12 4 632 | 2 4 4 0 4 7 5 4 633 | 2 4 4 0 6 4 6 9 7 4 4 634 | 3 3 4 0 4 7 5 4 635 | 2 4 4 0 4 7 5 4 636 | 3 3 5 5 0 5 637 | 2 4 4 0 4 4 638 | 2 4 4 0 4 4 8 6 4 639 | 2 4 4 0 4 7 5 4 640 | 2 4 4 0 6 4 4 641 | 2 3 0 5 3 3 642 | 3 3 5 5 0 5 6 5 643 | 2 4 4 0 7 7 4 4 10 8 4 644 | 2 4 4 0 4 8 8 5 4 645 | 2 5 5 5 0 5 646 | 2 4 4 0 4 4 4 647 | 2 4 4 0 7 7 4 4 648 | 2 3 0 5 3 3 8 6 3 649 | 7 1 5 5 2 7 0 9 7 9 10 7 650 | 2 4 4 0 6 4 4 9 7 4 651 | 2 4 4 0 4 7 5 4 652 | 2 4 4 0 6 4 4 653 | 2 4 4 0 6 4 4 654 | 2 4 4 0 4 655 | 2 6 2 3 6 0 6 6 10 8 6 656 | 2 4 4 0 4 7 5 4 657 | 3 3 0 5 3 3 658 | 3 3 0 6 6 3 6 9 7 3 659 | 2 4 4 0 6 4 4 660 | 2 4 4 0 4 4 8 6 4 661 | 2 4 4 0 4 662 | 2 7 2 2 2 7 0 7 7 7 10 7 663 | 3 3 0 3 3 664 | 2 4 4 0 4 8 8 5 4 665 | 2 4 4 0 4 4 8 6 4 666 | 2 4 4 0 6 4 4 9 7 4 667 | 2 4 4 0 6 4 4 7 4 668 | 5 5 2 2 7 7 0 7 669 | 2 3 0 5 3 3 6 9 7 3 670 | 2 4 4 0 4 7 5 4 671 | 2 4 4 0 4 7 5 4 672 | 2 3 0 3 6 4 3 9 7 3 673 | 2 4 4 0 4 4 9 9 6 4 674 | 2 7 2 5 3 7 0 7 10 8 10 11 12 7 675 | 5 1 2 5 0 5 9 9 6 5 676 | 2 6 2 5 2 0 6 6 677 | 2 4 4 0 4 7 5 7 4 678 | 2 4 4 0 4 4 8 6 8 11 8 8 12 4 679 | 2 0 4 2 2 680 | 2 4 4 0 4 4 681 | 2 4 4 0 6 4 4 9 7 9 12 10 4 682 | 2 4 4 0 4 683 | 2 5 5 5 0 5 684 | 2 5 2 3 0 5 8 6 5 685 | 3 3 5 5 0 5 8 6 5 686 | 2 3 0 3 3 7 5 3 687 | 2 4 4 0 4 4 688 | 2 3 0 7 7 7 3 3 3 689 | 2 3 0 5 3 3 690 | 2 4 4 0 4 7 5 4 691 | 2 3 0 5 3 3 692 | 2 5 5 5 0 5 693 | 2 4 4 0 4 7 5 4 694 | 3 3 5 5 0 5 695 | 2 4 4 0 6 4 4 696 | 2 4 4 0 4 697 | 2 4 4 0 6 4 4 698 | 2 4 4 0 4 4 8 6 4 699 | 2 3 0 3 3 5 8 6 3 700 | 3 3 0 5 3 3 701 | 2 5 5 5 0 5 702 | 2 4 4 0 4 4 703 | 2 4 4 0 4 4 704 | 2 4 4 0 6 4 4 705 | 2 4 4 0 6 4 4 9 7 4 706 | 2 4 4 0 4 7 4 4 707 | 2 4 4 0 4 7 5 4 708 | 3 3 5 5 0 7 5 5 11 11 8 5 709 | 3 3 0 3 4 7 5 3 710 | 2 4 4 0 4 4 711 | 2 3 0 3 3 7 5 3 712 | 2 4 4 0 6 4 4 713 | 2 4 4 0 4 7 5 4 714 | 2 4 4 0 7 7 4 7 7 4 12 10 4 715 | 3 3 4 0 4 8 8 5 4 716 | 2 4 4 0 6 4 4 717 | 2 4 4 0 4 718 | 2 3 0 3 7 7 3 7 10 8 3 719 | 2 3 0 3 3 7 5 3 720 | 2 4 4 0 4 7 5 7 10 8 8 13 11 4 721 | 2 4 4 0 6 4 4 722 | 2 4 4 0 4 723 | 2 4 4 0 6 4 4 724 | 2 3 0 3 3 7 5 3 725 | 2 4 4 0 7 7 4 4 726 | 2 3 0 6 6 3 3 727 | 2 4 4 0 7 7 4 4 728 | 2 4 4 0 6 4 4 729 | 2 4 4 0 4 7 5 4 730 | 3 3 0 3 4 7 5 3 731 | 2 4 4 0 4 5 4 9 7 4 732 | 2 4 4 0 7 7 4 4 11 11 8 4 733 | 2 4 4 0 6 4 4 9 7 4 734 | 2 4 4 0 6 4 4 7 4 735 | 2 4 4 0 4 7 9 7 5 4 736 | 3 3 4 0 6 4 4 737 | 3 3 4 0 4 9 8 9 4 9 10 4 738 | 2 4 4 0 6 4 4 739 | 2 3 0 3 6 4 6 6 3 740 | 3 3 0 3 3 741 | 2 4 4 0 4 4 742 | 2 4 4 0 6 4 4 10 10 7 4 743 | 3 3 0 3 6 4 3 744 | 2 6 2 2 6 0 6 6 745 | 2 3 0 3 6 4 3 746 | 2 4 4 0 4 4 747 | 2 3 0 5 3 3 748 | 2 4 4 0 4 7 5 4 749 | 2 4 4 0 6 4 4 750 | 2 4 4 0 6 4 4 751 | -------------------------------------------------------------------------------- /data/msrvid/dev/id.txt: -------------------------------------------------------------------------------- 1 | 10001 2 | 10002 3 | 10003 4 | 10004 5 | 10005 6 | 10006 7 | 10007 8 | 10008 9 | 10009 10 | 10010 11 | 10011 12 | 10012 13 | 10013 14 | 10014 15 | 10015 16 | 10016 17 | 10017 18 | 10018 19 | 10019 20 | 10020 21 | 10021 22 | 10022 23 | 10023 24 | 10024 25 | 10025 26 | 10026 27 | 10027 28 | 10028 29 | 10029 30 | 10030 31 | 10031 32 | 10032 33 | 10033 34 | 10034 35 | 10035 36 | 10036 37 | 10037 38 | 10038 39 | 10039 40 | 10040 41 | 10041 42 | 10042 43 | 10043 44 | 10044 45 | 10045 46 | 10046 47 | 10047 48 | 10048 49 | 10049 50 | 10050 51 | 10051 52 | 10052 53 | 10053 54 | 10054 55 | 10055 56 | 10056 57 | 10057 58 | 10058 59 | 10059 60 | 10060 61 | 10061 62 | 10062 63 | 10063 64 | 10064 65 | 10065 66 | 10066 67 | 10067 68 | 10068 69 | 10069 70 | 10070 71 | 10071 72 | 10072 73 | 10073 74 | 10074 75 | 10075 76 | 10076 77 | 10077 78 | 10078 79 | 10079 80 | 10080 81 | 10081 82 | 10082 83 | 10083 84 | 10084 85 | 10085 86 | 10086 87 | 10087 88 | 10088 89 | 10089 90 | 10090 91 | 10091 92 | 10092 93 | 10093 94 | 10094 95 | 10095 96 | 10096 97 | 10097 98 | 10098 99 | 10099 100 | 10100 101 | 10101 102 | 10102 103 | 10103 104 | 10104 105 | 10105 106 | 10106 107 | 10107 108 | 10108 109 | 10109 110 | 10110 111 | 10111 112 | 10112 113 | 10113 114 | 10114 115 | 10115 116 | 10116 117 | 10117 118 | 10118 119 | 10119 120 | 10120 121 | 10121 122 | 10122 123 | 10123 124 | 10124 125 | 10125 126 | 10126 127 | 10127 128 | 10128 129 | 10129 130 | 10130 131 | 10131 132 | 10132 133 | 10133 134 | 10134 135 | 10135 136 | 10136 137 | 10137 138 | 10138 139 | 10139 140 | 10140 141 | 10141 142 | 10142 143 | 10143 144 | 10144 145 | 10145 146 | 10146 147 | 10147 148 | 10148 149 | 10149 150 | 10150 151 | 10151 152 | 10152 153 | 10153 154 | 10154 155 | 10155 156 | 10156 157 | 10157 158 | 10158 159 | 10159 160 | 10160 161 | 10161 162 | 10162 163 | 10163 164 | 10164 165 | 10165 166 | 10166 167 | 10167 168 | 10168 169 | 10169 170 | 10170 171 | 10171 172 | 10172 173 | 10173 174 | 10174 175 | 10175 176 | 10176 177 | 10177 178 | 10178 179 | 10179 180 | 10180 181 | 10181 182 | 10182 183 | 10183 184 | 10184 185 | 10185 186 | 10186 187 | 10187 188 | 10188 189 | 10189 190 | 10190 191 | 10191 192 | 10192 193 | 10193 194 | 10194 195 | 10195 196 | 10196 197 | 10197 198 | 10198 199 | 10199 200 | 10200 201 | 10201 202 | 10202 203 | 10203 204 | 10204 205 | 10205 206 | 10206 207 | 10207 208 | 10208 209 | 10209 210 | 10210 211 | 10211 212 | 10212 213 | 10213 214 | 10214 215 | 10215 216 | 10216 217 | 10217 218 | 10218 219 | 10219 220 | 10220 221 | 10221 222 | 10222 223 | 10223 224 | 10224 225 | 10225 226 | 10226 227 | 10227 228 | 10228 229 | 10229 230 | 10230 231 | 10231 232 | 10232 233 | 10233 234 | 10234 235 | 10235 236 | 10236 237 | 10237 238 | 10238 239 | 10239 240 | 10240 241 | 10241 242 | 10242 243 | 10243 244 | 10244 245 | 10245 246 | 10246 247 | 10247 248 | 10248 249 | 10249 250 | 10250 251 | 10251 252 | 10252 253 | 10253 254 | 10254 255 | 10255 256 | 10256 257 | 10257 258 | 10258 259 | 10259 260 | 10260 261 | 10261 262 | 10262 263 | 10263 264 | 10264 265 | 10265 266 | 10266 267 | 10267 268 | 10268 269 | 10269 270 | 10270 271 | 10271 272 | 10272 273 | 10273 274 | 10274 275 | 10275 276 | 10276 277 | 10277 278 | 10278 279 | 10279 280 | 10280 281 | 10281 282 | 10282 283 | 10283 284 | 10284 285 | 10285 286 | 10286 287 | 10287 288 | 10288 289 | 10289 290 | 10290 291 | 10291 292 | 10292 293 | 10293 294 | 10294 295 | 10295 296 | 10296 297 | 10297 298 | 10298 299 | 10299 300 | 10300 301 | 10301 302 | 10302 303 | 10303 304 | 10304 305 | 10305 306 | 10306 307 | 10307 308 | 10308 309 | 10309 310 | 10310 311 | 10311 312 | 10312 313 | 10313 314 | 10314 315 | 10315 316 | 10316 317 | 10317 318 | 10318 319 | 10319 320 | 10320 321 | 10321 322 | 10322 323 | 10323 324 | 10324 325 | 10325 326 | 10326 327 | 10327 328 | 10328 329 | 10329 330 | 10330 331 | 10331 332 | 10332 333 | 10333 334 | 10334 335 | 10335 336 | 10336 337 | 10337 338 | 10338 339 | 10339 340 | 10340 341 | 10341 342 | 10342 343 | 10343 344 | 10344 345 | 10345 346 | 10346 347 | 10347 348 | 10348 349 | 10349 350 | 10350 351 | 10351 352 | 10352 353 | 10353 354 | 10354 355 | 10355 356 | 10356 357 | 10357 358 | 10358 359 | 10359 360 | 10360 361 | 10361 362 | 10362 363 | 10363 364 | 10364 365 | 10365 366 | 10366 367 | 10367 368 | 10368 369 | 10369 370 | 10370 371 | 10371 372 | 10372 373 | 10373 374 | 10374 375 | 10375 376 | 10376 377 | 10377 378 | 10378 379 | 10379 380 | 10380 381 | 10381 382 | 10382 383 | 10383 384 | 10384 385 | 10385 386 | 10386 387 | 10387 388 | 10388 389 | 10389 390 | 10390 391 | 10391 392 | 10392 393 | 10393 394 | 10394 395 | 10395 396 | 10396 397 | 10397 398 | 10398 399 | 10399 400 | 10400 401 | 10401 402 | 10402 403 | 10403 404 | 10404 405 | 10405 406 | 10406 407 | 10407 408 | 10408 409 | 10409 410 | 10410 411 | 10411 412 | 10412 413 | 10413 414 | 10414 415 | 10415 416 | 10416 417 | 10417 418 | 10418 419 | 10419 420 | 10420 421 | 10421 422 | 10422 423 | 10423 424 | 10424 425 | 10425 426 | 10426 427 | 10427 428 | 10428 429 | 10429 430 | 10430 431 | 10431 432 | 10432 433 | 10433 434 | 10434 435 | 10435 436 | 10436 437 | 10437 438 | 10438 439 | 10439 440 | 10440 441 | 10441 442 | 10442 443 | 10443 444 | 10444 445 | 10445 446 | 10446 447 | 10447 448 | 10448 449 | 10449 450 | 10450 451 | 10451 452 | 10452 453 | 10453 454 | 10454 455 | 10455 456 | 10456 457 | 10457 458 | 10458 459 | 10459 460 | 10460 461 | 10461 462 | 10462 463 | 10463 464 | 10464 465 | 10465 466 | 10466 467 | 10467 468 | 10468 469 | 10469 470 | 10470 471 | 10471 472 | 10472 473 | 10473 474 | 10474 475 | 10475 476 | 10476 477 | 10477 478 | 10478 479 | 10479 480 | 10480 481 | 10481 482 | 10482 483 | 10483 484 | 10484 485 | 10485 486 | 10486 487 | 10487 488 | 10488 489 | 10489 490 | 10490 491 | 10491 492 | 10492 493 | 10493 494 | 10494 495 | 10495 496 | 10496 497 | 10497 498 | 10498 499 | 10499 500 | 10500 501 | 10501 502 | 10502 503 | 10503 504 | 10504 505 | 10505 506 | 10506 507 | 10507 508 | 10508 509 | 10509 510 | 10510 511 | 10511 512 | 10512 513 | 10513 514 | 10514 515 | 10515 516 | 10516 517 | 10517 518 | 10518 519 | 10519 520 | 10520 521 | 10521 522 | 10522 523 | 10523 524 | 10524 525 | 10525 526 | 10526 527 | 10527 528 | 10528 529 | 10529 530 | 10530 531 | 10531 532 | 10532 533 | 10533 534 | 10534 535 | 10535 536 | 10536 537 | 10537 538 | 10538 539 | 10539 540 | 10540 541 | 10541 542 | 10542 543 | 10543 544 | 10544 545 | 10545 546 | 10546 547 | 10547 548 | 10548 549 | 10549 550 | 10550 551 | 10551 552 | 10552 553 | 10553 554 | 10554 555 | 10555 556 | 10556 557 | 10557 558 | 10558 559 | 10559 560 | 10560 561 | 10561 562 | 10562 563 | 10563 564 | 10564 565 | 10565 566 | 10566 567 | 10567 568 | 10568 569 | 10569 570 | 10570 571 | 10571 572 | 10572 573 | 10573 574 | 10574 575 | 10575 576 | 10576 577 | 10577 578 | 10578 579 | 10579 580 | 10580 581 | 10581 582 | 10582 583 | 10583 584 | 10584 585 | 10585 586 | 10586 587 | 10587 588 | 10588 589 | 10589 590 | 10590 591 | 10591 592 | 10592 593 | 10593 594 | 10594 595 | 10595 596 | 10596 597 | 10597 598 | 10598 599 | 10599 600 | 10600 601 | 10601 602 | 10602 603 | 10603 604 | 10604 605 | 10605 606 | 10606 607 | 10607 608 | 10608 609 | 10609 610 | 10610 611 | 10611 612 | 10612 613 | 10613 614 | 10614 615 | 10615 616 | 10616 617 | 10617 618 | 10618 619 | 10619 620 | 10620 621 | 10621 622 | 10622 623 | 10623 624 | 10624 625 | 10625 626 | 10626 627 | 10627 628 | 10628 629 | 10629 630 | 10630 631 | 10631 632 | 10632 633 | 10633 634 | 10634 635 | 10635 636 | 10636 637 | 10637 638 | 10638 639 | 10639 640 | 10640 641 | 10641 642 | 10642 643 | 10643 644 | 10644 645 | 10645 646 | 10646 647 | 10647 648 | 10648 649 | 10649 650 | 10650 651 | 10651 652 | 10652 653 | 10653 654 | 10654 655 | 10655 656 | 10656 657 | 10657 658 | 10658 659 | 10659 660 | 10660 661 | 10661 662 | 10662 663 | 10663 664 | 10664 665 | 10665 666 | 10666 667 | 10667 668 | 10668 669 | 10669 670 | 10670 671 | 10671 672 | 10672 673 | 10673 674 | 10674 675 | 10675 676 | 10676 677 | 10677 678 | 10678 679 | 10679 680 | 10680 681 | 10681 682 | 10682 683 | 10683 684 | 10684 685 | 10685 686 | 10686 687 | 10687 688 | 10688 689 | 10689 690 | 10690 691 | 10691 692 | 10692 693 | 10693 694 | 10694 695 | 10695 696 | 10696 697 | 10697 698 | 10698 699 | 10699 700 | 10700 701 | 10701 702 | 10702 703 | 10703 704 | 10704 705 | 10705 706 | 10706 707 | 10707 708 | 10708 709 | 10709 710 | 10710 711 | 10711 712 | 10712 713 | 10713 714 | 10714 715 | 10715 716 | 10716 717 | 10717 718 | 10718 719 | 10719 720 | 10720 721 | 10721 722 | 10722 723 | 10723 724 | 10724 725 | 10725 726 | 10726 727 | 10727 728 | 10728 729 | 10729 730 | 10730 731 | 10731 732 | 10732 733 | 10733 734 | 10734 735 | 10735 736 | 10736 737 | 10737 738 | 10738 739 | 10739 740 | 10740 741 | 10741 742 | 10742 743 | 10743 744 | 10744 745 | 10745 746 | 10746 747 | 10747 748 | 10748 749 | 10749 750 | 10750 751 | -------------------------------------------------------------------------------- /data/msrvid/dev/sim.txt: -------------------------------------------------------------------------------- 1 | 5.000 2 | 5.000 3 | 4.750 4 | 5.000 5 | 3.800 6 | 3.800 7 | 2.600 8 | 2.400 9 | 2.750 10 | 4.250 11 | 2.615 12 | 4.250 13 | 0.500 14 | 1.600 15 | 2.200 16 | 5.000 17 | 5.000 18 | 4.200 19 | 4.600 20 | 3.867 21 | 4.667 22 | 1.667 23 | 3.750 24 | 2.333 25 | 2.500 26 | 5.000 27 | 0.500 28 | 3.750 29 | 3.800 30 | 5.000 31 | 3.200 32 | 2.800 33 | 4.600 34 | 3.600 35 | 3.000 36 | 5.000 37 | 5.000 38 | 3.200 39 | 4.800 40 | 1.583 41 | 5.000 42 | 5.000 43 | 4.200 44 | 5.000 45 | 4.200 46 | 5.000 47 | 4.000 48 | 4.000 49 | 4.909 50 | 4.909 51 | 3.000 52 | 0.800 53 | 2.400 54 | 4.200 55 | 3.400 56 | 5.000 57 | 3.750 58 | 2.750 59 | 5.000 60 | 4.000 61 | 2.400 62 | 3.600 63 | 1.600 64 | 4.200 65 | 1.750 66 | 5.000 67 | 1.500 68 | 5.000 69 | 1.000 70 | 1.000 71 | 2.375 72 | 3.800 73 | 3.200 74 | 3.200 75 | 1.800 76 | 4.400 77 | 3.500 78 | 3.750 79 | 4.750 80 | 4.000 81 | 3.200 82 | 1.556 83 | 2.200 84 | 3.938 85 | 5.000 86 | 5.000 87 | 4.000 88 | 1.600 89 | 0.636 90 | 4.750 91 | 3.500 92 | 3.000 93 | 2.200 94 | 1.400 95 | 1.400 96 | 1.714 97 | 1.714 98 | 1.714 99 | 3.200 100 | 4.000 101 | 5.000 102 | 5.000 103 | 3.833 104 | 0.600 105 | 0.600 106 | 2.917 107 | 4.200 108 | 4.400 109 | 2.000 110 | 2.600 111 | 1.600 112 | 2.000 113 | 4.200 114 | 2.000 115 | 4.800 116 | 4.400 117 | 5.000 118 | 3.000 119 | 4.250 120 | 4.250 121 | 3.800 122 | 2.400 123 | 2.167 124 | 1.600 125 | 2.000 126 | 2.000 127 | 1.600 128 | 1.800 129 | 4.400 130 | 4.000 131 | 2.200 132 | 4.400 133 | 3.600 134 | 3.600 135 | 3.600 136 | 0.500 137 | 0.800 138 | 3.600 139 | 0.600 140 | 1.200 141 | 1.000 142 | 2.600 143 | 2.000 144 | 2.200 145 | 2.400 146 | 3.600 147 | 2.400 148 | 1.917 149 | 2.200 150 | 4.800 151 | 0.200 152 | 1.643 153 | 1.750 154 | 4.250 155 | 2.250 156 | 4.000 157 | 4.200 158 | 4.800 159 | 3.200 160 | 3.000 161 | 4.000 162 | 4.400 163 | 4.400 164 | 4.600 165 | 3.800 166 | 4.800 167 | 4.857 168 | 5.000 169 | 2.533 170 | 2.250 171 | 2.000 172 | 0.750 173 | 1.000 174 | 1.000 175 | 2.200 176 | 1.000 177 | 2.000 178 | 0.600 179 | 0.143 180 | 2.000 181 | 1.600 182 | 0.800 183 | 1.600 184 | 2.200 185 | 3.400 186 | 4.000 187 | 2.600 188 | 4.800 189 | 2.500 190 | 5.000 191 | 1.750 192 | 1.000 193 | 5.000 194 | 1.400 195 | 4.600 196 | 4.000 197 | 3.800 198 | 3.200 199 | 4.000 200 | 4.000 201 | 4.800 202 | 0.600 203 | 4.750 204 | 2.200 205 | 3.000 206 | 0.000 207 | 5.000 208 | 2.200 209 | 0.400 210 | 4.800 211 | 4.800 212 | 4.800 213 | 4.800 214 | 3.800 215 | 3.800 216 | 3.000 217 | 4.000 218 | 5.000 219 | 5.000 220 | 5.000 221 | 4.200 222 | 3.800 223 | 1.400 224 | 3.000 225 | 4.400 226 | 3.600 227 | 3.800 228 | 3.000 229 | 2.800 230 | 1.400 231 | 0.667 232 | 4.000 233 | 4.250 234 | 3.750 235 | 4.133 236 | 4.000 237 | 1.600 238 | 3.600 239 | 1.200 240 | 1.600 241 | 4.000 242 | 4.000 243 | 3.400 244 | 3.200 245 | 0.533 246 | 1.000 247 | 1.000 248 | 0.600 249 | 0.400 250 | 0.400 251 | 3.400 252 | 1.200 253 | 3.600 254 | 5.000 255 | 3.000 256 | 3.000 257 | 4.000 258 | 1.200 259 | 0.538 260 | 0.600 261 | 1.600 262 | 1.400 263 | 2.600 264 | 3.600 265 | 0.250 266 | 0.250 267 | 3.750 268 | 3.500 269 | 3.765 270 | 2.750 271 | 2.250 272 | 2.750 273 | 3.800 274 | 4.800 275 | 3.600 276 | 1.200 277 | 3.000 278 | 0.400 279 | 2.400 280 | 3.600 281 | 0.000 282 | 0.500 283 | 3.941 284 | 0.500 285 | 3.750 286 | 4.000 287 | 4.000 288 | 3.000 289 | 4.200 290 | 4.500 291 | 2.000 292 | 5.000 293 | 3.000 294 | 3.800 295 | 0.000 296 | 0.000 297 | 0.250 298 | 4.000 299 | 3.250 300 | 0.750 301 | 1.500 302 | 0.500 303 | 1.500 304 | 3.500 305 | 3.000 306 | 3.800 307 | 4.800 308 | 0.200 309 | 0.800 310 | 0.800 311 | 0.800 312 | 4.200 313 | 3.800 314 | 0.600 315 | 0.400 316 | 5.000 317 | 0.800 318 | 1.200 319 | 2.800 320 | 3.200 321 | 5.000 322 | 4.400 323 | 0.000 324 | 1.000 325 | 0.250 326 | 0.000 327 | 1.750 328 | 3.750 329 | 0.400 330 | 0.400 331 | 0.400 332 | 0.600 333 | 4.000 334 | 1.400 335 | 0.400 336 | 0.400 337 | 0.400 338 | 0.400 339 | 1.200 340 | 4.800 341 | 0.600 342 | 0.800 343 | 0.600 344 | 2.000 345 | 0.800 346 | 0.800 347 | 0.133 348 | 3.200 349 | 3.200 350 | 0.600 351 | 0.600 352 | 0.000 353 | 1.400 354 | 4.000 355 | 3.800 356 | 2.200 357 | 0.267 358 | 3.600 359 | 3.400 360 | 3.111 361 | 0.600 362 | 0.400 363 | 0.000 364 | 1.200 365 | 3.500 366 | 4.250 367 | 3.000 368 | 4.500 369 | 5.000 370 | 5.000 371 | 5.000 372 | 3.750 373 | 2.800 374 | 0.200 375 | 0.400 376 | 3.800 377 | 1.286 378 | 4.600 379 | 0.600 380 | 2.000 381 | 5.000 382 | 3.800 383 | 1.800 384 | 0.000 385 | 2.400 386 | 2.400 387 | 0.400 388 | 0.000 389 | 4.200 390 | 3.800 391 | 0.000 392 | 0.000 393 | 4.000 394 | 0.800 395 | 1.400 396 | 1.500 397 | 0.750 398 | 2.500 399 | 2.500 400 | 3.500 401 | 3.400 402 | 3.400 403 | 3.800 404 | 3.800 405 | 4.250 406 | 2.812 407 | 1.500 408 | 0.500 409 | 0.000 410 | 0.000 411 | 0.800 412 | 0.000 413 | 0.200 414 | 0.850 415 | 3.400 416 | 0.400 417 | 1.750 418 | 3.250 419 | 0.750 420 | 4.250 421 | 3.000 422 | 4.000 423 | 0.000 424 | 0.000 425 | 1.000 426 | 0.500 427 | 3.750 428 | 4.250 429 | 1.800 430 | 3.200 431 | 3.600 432 | 0.000 433 | 2.600 434 | 3.200 435 | 0.400 436 | 3.800 437 | 2.400 438 | 2.800 439 | 4.600 440 | 0.000 441 | 0.250 442 | 3.923 443 | 2.750 444 | 0.000 445 | 3.000 446 | 3.800 447 | 4.000 448 | 4.600 449 | 2.600 450 | 3.600 451 | 3.600 452 | 2.800 453 | 4.750 454 | 3.750 455 | 1.154 456 | 1.000 457 | 2.750 458 | 1.250 459 | 2.750 460 | 0.000 461 | 0.000 462 | 0.000 463 | 2.750 464 | 3.750 465 | 2.800 466 | 2.600 467 | 2.400 468 | 2.200 469 | 0.000 470 | 0.200 471 | 0.000 472 | 2.800 473 | 4.000 474 | 0.000 475 | 0.000 476 | 0.750 477 | 5.000 478 | 0.000 479 | 3.400 480 | 3.200 481 | 3.500 482 | 1.750 483 | 1.250 484 | 0.833 485 | 0.000 486 | 3.750 487 | 2.750 488 | 0.000 489 | 5.000 490 | 3.800 491 | 0.200 492 | 3.800 493 | 3.400 494 | 1.400 495 | 3.800 496 | 0.800 497 | 0.400 498 | 0.000 499 | 0.000 500 | 0.000 501 | 0.200 502 | 0.000 503 | 0.000 504 | 3.800 505 | 2.250 506 | 2.250 507 | 2.750 508 | 4.500 509 | 2.400 510 | 2.800 511 | 3.200 512 | 1.600 513 | 0.400 514 | 0.000 515 | 2.600 516 | 0.400 517 | 0.600 518 | 1.000 519 | 3.800 520 | 4.600 521 | 4.250 522 | 0.000 523 | 1.500 524 | 3.500 525 | 2.800 526 | 0.000 527 | 0.000 528 | 0.000 529 | 0.333 530 | 0.333 531 | 3.333 532 | 4.333 533 | 1.600 534 | 0.800 535 | 0.800 536 | 0.200 537 | 0.000 538 | 0.000 539 | 0.000 540 | 1.333 541 | 3.000 542 | 2.600 543 | 2.800 544 | 0.800 545 | 1.000 546 | 0.000 547 | 0.000 548 | 0.250 549 | 1.000 550 | 3.400 551 | 0.600 552 | 0.000 553 | 0.500 554 | 3.750 555 | 5.000 556 | 1.750 557 | 2.667 558 | 2.333 559 | 0.400 560 | 0.000 561 | 0.000 562 | 1.000 563 | 0.800 564 | 1.400 565 | 0.000 566 | 3.000 567 | 4.000 568 | 0.000 569 | 0.200 570 | 3.200 571 | 5.000 572 | 4.400 573 | 0.750 574 | 2.000 575 | 2.000 576 | 0.000 577 | 2.800 578 | 3.000 579 | 3.091 580 | 3.538 581 | 2.750 582 | 2.500 583 | 2.500 584 | 2.250 585 | 3.600 586 | 1.200 587 | 0.200 588 | 1.000 589 | 0.400 590 | 2.800 591 | 0.800 592 | 0.000 593 | 3.500 594 | 3.000 595 | 3.000 596 | 2.800 597 | 0.000 598 | 0.000 599 | 2.200 600 | 2.000 601 | 3.750 602 | 4.000 603 | 4.750 604 | 3.500 605 | 0.800 606 | 0.800 607 | 4.000 608 | 1.200 609 | 1.750 610 | 3.000 611 | 0.500 612 | 0.250 613 | 0.000 614 | 0.000 615 | 0.000 616 | 4.500 617 | 3.800 618 | 3.200 619 | 3.200 620 | 0.800 621 | 1.500 622 | 2.750 623 | 1.500 624 | 3.750 625 | 3.200 626 | 0.800 627 | 0.000 628 | 0.000 629 | 2.400 630 | 1.400 631 | 3.200 632 | 2.200 633 | 2.533 634 | 3.400 635 | 0.000 636 | 0.800 637 | 0.000 638 | 3.200 639 | 0.000 640 | 0.000 641 | 0.000 642 | 3.000 643 | 2.800 644 | 0.000 645 | 0.000 646 | 0.417 647 | 0.000 648 | 0.400 649 | 2.500 650 | 1.000 651 | 2.000 652 | 0.000 653 | 0.500 654 | 0.000 655 | 2.500 656 | 2.000 657 | 2.600 658 | 0.000 659 | 3.600 660 | 0.000 661 | 0.600 662 | 2.818 663 | 3.000 664 | 0.000 665 | 1.600 666 | 1.250 667 | 3.533 668 | 3.800 669 | 3.250 670 | 4.000 671 | 4.000 672 | 0.000 673 | 1.000 674 | 3.400 675 | 3.600 676 | 2.600 677 | 1.400 678 | 2.000 679 | 3.200 680 | 3.600 681 | 0.000 682 | 0.000 683 | 0.000 684 | 2.800 685 | 0.000 686 | 0.000 687 | 0.000 688 | 3.800 689 | 0.643 690 | 0.000 691 | 2.250 692 | 1.250 693 | 3.400 694 | 0.000 695 | 0.200 696 | 0.500 697 | 0.000 698 | 1.000 699 | 4.400 700 | 4.000 701 | 0.000 702 | 1.000 703 | 0.000 704 | 0.000 705 | 0.000 706 | 0.000 707 | 0.000 708 | 0.000 709 | 1.800 710 | 2.400 711 | 1.200 712 | 0.600 713 | 0.250 714 | 3.250 715 | 3.750 716 | 1.250 717 | 0.400 718 | 1.800 719 | 4.000 720 | 3.250 721 | 2.500 722 | 0.750 723 | 3.250 724 | 2.500 725 | 1.200 726 | 0.083 727 | 0.000 728 | 3.800 729 | 3.400 730 | 0.000 731 | 0.800 732 | 0.000 733 | 1.000 734 | 1.000 735 | 0.000 736 | 3.500 737 | 3.750 738 | 4.500 739 | 4.000 740 | 0.250 741 | 0.200 742 | 0.400 743 | 0.000 744 | 0.000 745 | 0.000 746 | 0.000 747 | 0.800 748 | 0.000 749 | 0.000 750 | 0.000 751 | -------------------------------------------------------------------------------- /data/msrvid/train/a.parents: -------------------------------------------------------------------------------- 1 | 2 4 4 0 6 4 4 2 | 2 6 2 2 6 0 6 9 7 6 3 | 3 3 0 3 4 | 2 7 2 5 2 7 0 9 7 7 5 | 2 4 4 0 6 4 4 6 | 2 4 4 0 4 4 7 | 2 4 4 0 4 4 8 | 2 4 4 0 6 4 4 9 | 2 4 4 0 4 7 5 4 10 | 3 3 5 5 0 5 8 6 5 11 | 2 4 4 0 4 12 | 2 4 4 0 6 4 4 13 | 3 3 0 3 4 7 5 3 14 | 2 3 0 3 3 7 5 3 15 | 2 4 4 0 4 4 16 | 2 4 4 0 6 4 4 17 | 2 4 4 0 6 4 4 18 | 2 4 4 0 6 4 4 19 | 2 4 4 0 6 4 4 20 | 2 4 4 0 6 4 4 21 | 2 4 4 0 6 4 4 9 7 4 22 | 2 4 4 0 4 4 23 | 2 4 4 0 6 4 4 24 | 2 4 4 0 6 4 4 25 | 3 3 5 5 0 8 8 5 5 26 | 2 4 4 0 6 4 4 27 | 2 3 0 5 3 3 3 7 3 28 | 2 4 4 0 6 4 4 29 | 2 3 0 5 3 3 30 | 2 4 4 0 6 4 4 31 | 2 4 4 0 6 4 4 32 | 2 4 4 0 4 5 4 33 | 2 4 4 0 6 4 4 34 | 2 4 4 0 6 4 4 35 | 2 4 4 0 6 4 4 36 | 2 4 4 0 4 7 5 4 37 | 2 4 4 0 7 7 4 4 38 | 2 4 4 0 6 4 6 10 10 7 4 39 | 2 4 4 0 6 4 4 40 | 2 3 0 5 3 3 41 | 2 4 4 0 6 4 4 42 | 2 4 4 0 6 4 4 43 | 2 4 4 0 4 4 44 | 2 4 4 0 6 4 4 45 | 2 4 4 0 6 4 4 46 | 2 4 4 0 6 4 4 47 | 2 4 4 0 6 4 4 48 | 2 4 4 0 6 4 4 49 | 2 4 4 0 6 4 4 50 | 2 4 4 0 6 4 4 51 | 2 3 0 3 6 4 3 52 | 3 3 0 5 3 3 53 | 2 4 4 0 4 9 9 9 5 4 54 | 2 7 2 3 7 7 0 7 8 11 9 7 55 | 2 4 4 0 4 7 5 4 56 | 2 3 0 5 3 3 57 | 2 4 4 0 4 4 58 | 2 4 4 0 6 4 4 59 | 2 4 4 0 4 60 | 2 4 4 0 4 4 61 | 2 4 4 0 4 4 62 | 2 4 4 0 4 63 | 2 4 4 0 4 7 4 4 64 | 2 4 4 0 6 4 4 65 | 2 4 4 0 6 4 4 66 | 2 4 4 0 6 4 4 67 | 2 4 4 0 6 4 4 68 | 2 3 0 5 3 3 69 | 3 3 0 3 70 | 2 4 4 0 6 4 4 9 7 4 71 | 3 3 0 3 3 7 5 3 72 | 2 4 4 0 4 73 | 2 4 4 0 6 4 4 74 | 2 3 0 3 6 4 3 75 | 2 4 4 0 6 4 4 76 | 2 4 4 0 6 4 4 77 | 2 3 0 3 6 4 3 78 | 3 3 5 5 0 7 5 5 79 | 2 4 4 0 4 4 80 | 2 4 4 0 4 7 4 4 81 | 2 4 4 0 4 82 | 3 3 0 3 83 | 2 4 4 0 4 4 8 6 4 84 | 2 4 4 0 4 4 85 | 2 6 2 3 6 0 6 7 6 86 | 2 7 2 5 2 7 0 9 7 7 87 | 2 4 4 0 7 7 4 4 88 | 2 3 0 5 3 3 89 | 2 4 4 0 6 4 4 90 | 2 4 4 0 6 4 4 91 | 2 4 4 0 6 4 4 92 | 2 4 4 0 6 4 4 93 | 2 4 4 0 6 4 4 94 | 2 4 4 0 6 4 4 95 | 3 3 4 0 4 7 5 4 96 | 2 4 4 0 6 4 4 9 7 4 97 | 2 4 4 0 6 4 4 98 | 2 4 4 0 6 4 4 99 | 3 3 5 5 0 5 8 6 8 9 5 100 | 2 4 4 0 6 4 4 7 4 101 | 2 4 4 0 4 7 5 4 102 | 2 4 4 0 4 103 | 3 3 0 3 3 7 5 3 104 | 3 3 5 5 0 7 5 5 105 | 2 4 4 0 6 4 4 106 | 2 4 4 0 6 4 4 107 | 2 4 4 0 6 4 4 108 | 3 3 0 5 3 3 109 | 2 4 4 0 6 4 4 110 | 2 4 4 0 4 111 | 2 4 4 0 6 4 4 112 | 2 7 2 5 2 7 0 7 10 8 7 113 | 2 4 4 0 4 7 4 7 10 8 4 114 | 2 4 4 0 4 8 8 5 4 115 | 2 4 4 0 4 4 8 6 4 116 | 2 3 0 3 6 3 3 117 | 2 0 2 3 6 4 2 118 | 2 3 0 3 6 4 3 119 | 2 4 4 0 6 4 4 9 7 4 120 | 2 4 4 0 4 4 121 | 2 4 4 0 4 122 | 2 4 4 0 4 123 | 2 4 4 0 4 124 | 2 4 4 0 4 125 | 2 4 4 0 4 126 | 2 4 4 0 4 127 | 2 4 4 0 4 128 | 2 4 4 0 6 4 4 9 7 4 129 | 2 4 4 0 6 4 4 130 | 2 4 4 0 6 4 4 131 | 3 3 0 5 3 3 132 | 2 4 4 0 6 4 4 133 | 2 3 0 3 134 | 2 7 2 5 3 7 0 9 7 7 135 | 2 4 4 0 4 7 5 4 136 | 2 4 4 0 6 4 4 137 | 2 4 4 0 4 4 138 | 2 4 4 0 6 4 4 139 | 2 4 4 0 6 4 4 140 | 2 4 4 0 6 4 4 141 | 2 4 4 0 6 4 4 142 | 2 4 4 0 6 4 4 143 | 2 4 4 0 6 4 4 144 | 2 0 2 3 6 4 2 145 | 2 4 4 0 6 4 4 9 7 4 146 | 2 4 4 0 6 4 4 147 | 2 4 4 0 6 4 4 148 | 2 4 4 0 6 4 4 149 | 2 4 4 0 6 4 4 150 | 2 4 4 0 6 4 6 6 4 151 | 2 4 4 0 4 7 5 4 152 | 2 4 4 0 4 153 | 2 4 4 0 4 154 | 2 4 4 0 4 155 | 2 4 4 0 4 156 | 2 7 2 5 2 7 0 7 10 8 7 157 | 2 4 4 0 6 4 4 158 | 2 4 4 0 4 4 159 | 2 4 4 0 4 160 | 2 4 4 0 6 4 4 161 | 2 4 4 0 6 4 4 162 | 2 4 4 0 6 4 4 163 | 2 4 4 0 6 4 4 164 | 2 4 4 0 4 7 4 4 165 | 2 4 4 0 6 4 4 166 | 2 4 4 0 4 4 167 | 2 4 4 0 6 4 4 168 | 3 3 5 5 0 5 169 | 2 4 4 0 6 4 4 170 | 2 4 4 0 6 4 4 171 | 2 4 4 0 4 4 8 6 4 172 | 2 4 4 0 6 4 4 173 | 2 3 0 5 3 3 8 6 3 174 | 2 4 4 0 6 4 4 7 4 175 | 2 0 2 3 6 4 6 9 7 6 12 10 2 176 | 2 4 4 0 4 4 177 | 2 4 4 0 4 7 5 4 178 | 2 4 4 0 4 179 | 2 4 4 0 7 7 4 4 180 | 2 4 4 0 6 4 4 181 | 2 4 4 0 6 4 4 182 | 2 4 4 0 6 4 4 183 | 2 4 4 0 6 4 4 184 | 2 4 4 0 4 4 185 | 2 4 4 0 6 4 4 186 | 2 4 4 0 4 187 | 2 4 4 0 4 188 | 2 4 4 0 4 189 | 2 4 4 0 4 190 | 2 4 4 0 4 191 | 2 0 2 8 7 7 8 3 8 11 9 2 192 | 2 4 4 0 6 4 4 193 | 2 4 4 0 6 4 4 9 7 4 194 | 2 4 4 0 4 7 4 4 195 | 2 4 4 0 7 7 4 4 196 | 2 3 0 3 3 3 197 | 2 4 4 0 6 4 4 198 | 3 3 0 5 3 3 199 | 2 4 4 0 4 7 5 4 200 | 2 4 4 0 4 201 | 2 4 4 0 4 202 | 2 4 4 0 6 4 4 203 | 2 3 0 3 6 4 3 204 | 2 4 4 0 4 4 4 205 | 2 3 0 5 3 3 206 | 2 4 4 0 6 4 4 207 | 2 4 4 0 6 4 4 208 | 2 4 4 0 4 7 5 4 209 | 2 4 4 0 6 4 4 210 | 2 4 4 0 4 211 | 2 4 4 0 6 4 4 212 | 2 0 4 2 2 7 5 2 213 | 2 4 4 0 6 4 4 214 | 2 4 4 0 6 4 4 215 | 2 4 4 0 6 4 4 216 | 2 4 4 0 6 4 4 217 | 2 3 0 5 3 5 6 9 7 3 218 | 2 4 4 0 6 4 4 219 | 2 4 4 0 4 7 5 4 220 | 2 4 4 0 4 5 4 221 | 2 4 4 0 6 4 6 6 4 222 | 3 3 5 5 0 8 8 5 5 9 5 223 | 2 4 4 0 4 224 | 2 0 2 3 4 225 | 2 3 0 5 3 3 226 | 3 3 4 0 7 7 4 4 227 | 3 3 0 3 7 7 4 3 228 | 2 4 4 0 4 7 4 4 229 | 3 3 0 5 3 3 230 | 2 4 4 0 6 4 4 231 | 2 4 4 0 4 4 232 | 2 4 4 0 7 7 4 4 233 | 2 4 4 0 4 4 234 | 2 4 4 0 6 4 4 235 | 2 4 4 0 6 4 4 236 | 2 4 4 0 6 4 4 237 | 2 3 0 5 3 3 238 | 2 4 4 0 6 4 6 7 4 239 | 2 4 4 0 4 4 8 6 4 240 | 2 4 4 0 4 5 4 241 | 3 3 0 3 6 4 3 242 | 2 4 4 0 6 4 6 9 7 4 243 | 2 7 2 5 2 7 0 7 10 8 7 244 | 2 3 0 6 6 3 3 9 7 3 245 | 2 3 0 3 6 3 3 246 | 2 0 2 3 6 4 2 247 | 2 4 4 0 6 4 4 248 | 2 4 4 0 4 5 4 249 | 3 3 4 0 4 7 5 4 250 | 2 3 0 6 6 3 8 6 3 251 | 4 4 4 0 4 252 | 2 5 5 5 0 7 5 5 10 8 5 253 | 2 4 4 0 4 4 8 6 4 254 | 2 4 4 0 4 7 5 4 255 | 2 4 4 0 4 7 5 4 256 | 2 4 4 0 6 4 4 257 | 2 4 4 0 4 7 5 4 258 | 2 4 4 0 6 4 4 259 | 2 4 4 0 4 4 260 | 2 4 4 0 4 7 5 7 10 8 4 261 | 2 4 4 0 4 262 | 3 3 0 3 3 263 | 2 4 4 0 6 4 4 264 | 2 4 4 0 6 4 6 7 4 265 | 2 4 4 0 4 7 5 4 266 | 3 3 0 5 3 3 267 | 2 4 4 0 4 4 268 | 2 4 4 0 4 4 269 | 2 3 0 5 3 3 270 | 2 4 4 0 4 7 5 4 271 | 2 3 0 3 6 4 3 272 | 3 3 0 3 6 4 3 273 | 2 4 4 0 6 4 4 274 | 2 4 4 0 6 4 4 275 | 2 4 4 0 6 4 4 276 | 2 4 4 0 4 7 5 4 277 | 3 3 4 0 6 4 8 6 4 278 | 2 4 4 0 4 8 8 5 4 279 | 2 4 4 0 6 4 4 280 | 2 3 0 5 3 3 8 6 3 9 3 281 | 2 4 4 0 7 7 8 4 8 11 9 4 282 | 2 6 2 3 6 0 6 283 | 3 3 0 3 6 4 3 284 | 2 4 4 0 6 4 4 285 | 2 4 4 0 4 8 8 4 4 286 | 3 3 0 5 3 3 8 6 3 287 | 2 3 0 5 3 3 8 6 3 288 | 2 4 4 0 4 4 289 | 2 4 4 0 4 290 | 2 4 4 0 4 4 291 | 2 4 4 0 4 7 5 4 292 | 2 4 4 0 6 4 4 293 | 2 4 4 0 6 4 4 294 | 2 4 4 0 4 7 5 4 295 | 2 3 0 3 3 296 | 2 4 4 0 7 7 4 4 297 | 3 3 0 5 3 3 298 | 2 3 0 5 3 3 299 | 2 4 4 0 4 4 6 4 300 | 2 4 4 0 6 4 4 301 | 2 4 4 0 4 4 302 | 2 4 4 0 6 4 4 9 7 4 303 | 2 4 4 0 4 8 8 5 4 304 | 2 4 4 0 6 4 4 305 | 2 5 5 5 0 7 5 5 306 | 2 4 4 0 7 7 4 4 307 | 2 4 4 0 6 4 4 308 | 2 4 4 0 4 4 6 4 309 | 2 4 4 0 4 4 310 | 3 3 0 5 3 3 311 | 2 4 4 0 6 4 4 312 | 2 4 4 0 4 7 5 4 313 | 2 4 4 0 4 314 | 2 0 2 3 3 3 8 6 315 | 2 5 5 5 0 5 8 6 5 316 | 2 4 4 0 4 8 8 5 4 317 | 2 7 7 7 7 7 0 7 318 | 2 4 4 0 4 4 8 6 4 319 | 2 5 5 5 0 5 8 6 5 320 | 2 0 2 5 3 2 321 | 2 4 4 0 4 4 322 | 2 4 4 0 6 4 4 323 | 2 3 0 3 6 4 3 324 | 2 4 4 0 4 7 5 4 325 | 2 4 4 0 6 4 4 326 | 2 4 4 0 4 327 | 2 4 4 0 4 328 | 2 4 4 0 6 4 4 329 | 2 4 4 0 4 4 330 | 2 4 4 0 4 4 331 | 2 4 4 0 4 4 332 | 2 4 4 0 6 4 4 333 | 2 4 4 0 7 7 4 4 334 | 2 4 4 0 4 4 8 6 4 335 | 2 4 4 0 6 4 4 4 336 | 2 4 4 0 7 7 4 4 337 | 2 3 0 5 3 3 8 6 3 338 | 2 3 0 3 4 5 3 9 7 3 339 | 2 3 0 5 3 3 340 | 2 4 4 0 6 4 4 341 | 2 4 4 0 4 7 5 4 342 | 2 4 4 0 6 4 4 343 | 2 4 4 0 4 4 344 | 2 4 4 0 4 345 | 2 4 4 0 6 4 4 346 | 2 4 4 0 4 7 5 4 347 | 2 4 4 0 7 7 4 4 4 9 9 13 11 4 348 | 2 4 4 0 6 4 4 349 | 2 4 4 0 4 4 350 | 2 5 5 5 0 5 351 | 2 4 4 0 4 352 | 2 3 0 5 3 3 8 6 3 3 12 13 3 13 16 13 13 19 17 3 353 | 2 3 0 5 3 3 8 6 3 354 | 3 3 5 5 0 5 355 | 2 4 4 0 4 4 356 | 2 4 4 0 6 4 4 357 | 2 4 4 0 6 4 4 358 | 2 4 4 0 4 4 359 | 2 4 4 0 4 7 5 4 360 | 2 4 4 0 7 7 4 4 11 11 8 4 361 | 2 6 2 2 6 0 6 362 | 2 4 4 0 6 4 4 9 7 4 363 | 2 4 4 0 4 4 8 6 4 364 | 2 4 4 0 4 7 5 4 365 | 2 4 4 0 6 4 4 366 | 2 4 4 0 6 4 4 367 | 2 4 4 0 4 368 | 2 4 4 0 4 7 5 4 369 | 2 4 4 0 4 4 370 | 2 4 4 0 6 4 4 371 | 2 4 4 0 6 4 4 372 | 2 4 4 0 4 4 373 | 2 4 4 0 6 4 4 374 | 2 4 4 0 4 375 | 3 3 0 5 3 5 3 376 | 2 4 4 0 6 4 8 4 4 377 | 2 4 4 0 6 4 4 378 | 2 4 4 0 6 4 4 379 | 2 4 4 0 6 4 4 380 | 2 4 4 0 6 4 4 381 | 2 4 4 0 4 7 5 4 382 | 2 7 2 2 7 7 0 7 383 | 2 4 4 0 4 4 384 | 2 4 4 0 4 7 5 4 385 | 2 0 2 3 6 4 2 386 | 2 4 4 0 4 4 387 | 2 4 4 0 4 388 | 2 4 4 0 4 8 8 5 4 389 | 2 4 4 0 4 7 5 4 390 | 2 3 0 5 3 3 8 6 3 391 | 2 4 4 0 4 4 392 | 2 4 4 0 6 4 4 393 | 2 4 4 0 6 4 4 394 | 2 4 4 0 4 395 | 2 4 4 0 6 4 4 396 | 2 4 4 0 6 4 4 397 | 2 4 4 0 4 7 5 4 398 | 2 3 0 3 3 7 5 3 399 | 2 4 4 0 4 7 5 4 400 | 2 4 4 0 6 4 4 4 4 401 | 2 3 0 5 3 5 6 5 8 3 402 | 2 4 4 0 6 4 4 403 | 3 3 11 3 4 9 9 9 5 11 0 11 14 12 11 404 | 2 4 4 0 4 405 | 2 0 2 5 3 2 406 | 2 3 0 3 4 4 6 10 10 7 3 407 | 2 4 4 0 6 4 4 408 | 2 4 4 0 6 4 4 409 | 2 4 4 0 6 4 4 410 | 3 3 0 3 3 411 | 2 4 4 0 4 4 8 6 4 412 | 2 3 0 3 3 7 5 3 413 | 2 4 4 0 4 4 8 6 4 414 | 2 3 0 5 3 3 415 | 2 3 0 5 3 3 8 6 3 416 | 2 4 4 0 6 4 4 417 | 2 3 0 5 3 7 5 3 418 | 2 4 4 0 7 7 4 4 419 | 3 3 0 3 6 4 3 420 | 2 4 4 0 4 4 421 | 3 3 0 3 3 422 | 2 4 4 0 6 4 4 423 | 2 4 4 0 6 4 4 9 7 4 424 | 2 4 4 0 4 425 | 2 4 4 0 6 4 4 426 | 2 4 4 0 6 4 4 427 | 2 4 4 0 4 4 428 | 2 5 5 5 0 5 429 | 2 3 0 5 3 3 430 | 3 3 5 5 0 8 8 5 5 11 9 11 15 15 12 15 18 16 5 431 | 2 4 4 0 6 4 4 432 | 2 4 4 0 6 4 6 6 10 8 4 433 | 2 4 4 0 6 4 4 434 | 2 4 4 0 6 4 4 435 | 2 4 4 0 4 7 5 4 436 | 2 4 4 0 4 5 4 437 | 2 4 4 0 8 8 8 4 4 438 | 2 7 2 5 3 7 0 9 7 7 439 | 3 3 5 5 0 5 8 6 5 440 | 2 4 4 0 4 4 6 4 441 | 2 4 4 0 4 4 442 | 2 4 4 0 6 4 4 443 | 2 4 4 0 4 7 5 4 444 | 2 4 4 0 6 4 4 9 7 4 445 | 2 3 0 5 3 3 446 | 2 4 4 0 4 7 5 4 447 | 2 4 4 0 4 4 448 | 2 4 4 0 6 4 4 449 | 2 4 4 0 6 4 4 450 | 2 4 4 0 6 4 4 451 | 2 4 4 0 6 4 4 452 | 2 3 0 5 3 3 9 9 6 3 453 | 2 5 5 5 0 5 454 | 2 4 4 0 4 4 455 | 2 4 4 0 7 7 4 4 456 | 2 3 0 5 3 3 457 | 2 4 4 0 4 4 8 6 4 458 | 2 4 4 0 4 4 8 6 4 459 | 3 3 5 5 0 5 460 | 2 4 4 0 4 7 5 4 461 | 4 4 4 0 4 4 462 | 2 4 4 0 4 4 8 6 4 463 | 2 4 4 0 6 4 4 9 7 4 464 | 2 4 4 0 4 4 465 | 2 4 4 0 4 7 5 4 466 | 2 5 5 5 0 5 467 | 3 3 0 5 3 5 6 3 468 | 2 4 4 0 7 7 4 4 469 | 2 4 4 0 6 4 4 470 | 2 4 4 0 4 4 471 | 2 4 4 0 4 4 472 | 2 4 4 0 4 5 5 4 473 | 3 3 4 0 4 7 5 4 474 | 2 4 4 0 4 7 5 4 10 8 4 475 | 2 4 4 0 4 4 476 | 2 3 0 5 3 3 3 7 3 477 | 3 3 0 5 3 3 478 | 2 4 4 0 6 4 4 9 7 4 479 | 2 4 4 0 4 5 6 4 480 | 2 4 4 0 4 481 | 2 5 5 5 0 5 6 5 8 5 10 13 11 5 482 | 3 3 4 0 4 4 8 6 4 483 | 2 4 4 0 4 4 484 | 2 4 4 0 6 4 4 485 | 2 4 4 0 4 7 5 7 8 11 9 4 486 | 2 4 4 0 4 487 | 2 4 4 0 6 4 4 488 | 2 3 0 3 3 7 5 3 489 | 3 3 0 5 3 3 6 10 10 7 10 11 3 490 | 2 4 4 0 4 4 491 | 2 4 4 0 4 4 8 6 4 492 | 2 4 4 0 6 4 4 493 | 2 4 4 0 4 4 9 9 6 4 494 | 2 4 4 0 4 4 495 | 2 4 4 0 4 7 5 4 496 | 2 4 4 0 7 7 4 4 497 | 2 4 4 0 4 7 4 7 11 11 8 4 498 | 2 3 0 5 3 5 8 6 3 9 13 13 10 3 3 15 15 19 17 22 22 15 24 22 3 499 | 2 3 0 3 3 7 5 7 10 8 3 500 | 2 3 0 3 3 5 8 6 3 501 | 2 4 4 0 6 4 4 502 | 2 4 4 0 4 503 | 2 3 0 5 3 7 5 5 10 8 3 504 | 2 4 4 0 6 4 4 505 | 2 4 4 0 4 8 8 4 4 506 | 2 4 4 0 6 4 4 507 | 2 3 0 5 3 3 508 | 2 4 4 0 6 4 4 4 8 4 509 | 2 3 0 5 3 3 6 7 11 11 8 3 510 | 2 4 4 0 4 4 8 6 4 511 | 2 4 4 0 6 4 4 512 | 2 4 4 0 6 4 4 513 | 2 4 4 0 6 4 4 514 | 3 3 0 3 6 4 3 515 | 2 4 4 0 6 4 4 516 | 2 4 4 0 6 4 4 517 | 4 4 4 8 4 7 5 0 8 12 12 8 12 13 8 8 16 16 20 18 20 21 8 518 | 2 3 0 3 6 4 3 519 | 2 4 4 0 6 4 4 520 | 2 4 4 0 6 4 4 521 | 2 4 4 0 4 4 522 | 2 4 4 0 6 4 4 9 7 4 523 | 2 4 4 0 4 4 8 6 4 524 | 2 4 4 0 4 4 525 | 2 4 4 0 4 4 8 6 4 526 | 2 4 4 0 6 4 4 9 7 4 527 | 2 4 4 0 7 7 4 4 528 | 2 4 4 0 4 4 8 6 4 529 | 2 4 4 0 4 4 8 6 4 530 | 2 3 0 5 3 3 8 6 8 11 9 3 531 | 2 6 2 3 6 0 8 6 6 532 | 3 3 0 5 3 5 8 6 3 533 | 2 4 4 0 6 4 6 7 4 534 | 2 4 4 0 4 8 8 5 4 535 | 2 4 4 0 4 4 6 4 536 | 2 4 4 0 4 4 537 | 2 4 4 0 6 4 4 538 | 2 3 0 5 3 5 6 3 539 | 2 4 4 0 4 4 9 9 6 4 540 | 2 3 0 5 3 3 541 | 2 4 4 0 6 4 4 9 7 4 542 | 2 4 4 0 4 543 | 3 3 0 5 3 3 544 | 2 4 4 0 4 4 545 | 2 4 4 0 6 4 4 546 | 2 4 4 0 6 4 4 547 | 2 4 4 0 4 7 5 7 10 8 4 11 4 548 | 2 4 4 0 4 549 | 2 4 4 0 6 4 6 6 4 11 9 4 550 | 2 4 4 0 4 7 5 4 551 | 2 5 5 5 0 5 552 | 2 4 4 0 6 4 4 9 7 4 553 | 2 4 4 0 6 4 4 554 | 2 4 4 0 6 4 4 555 | 2 0 2 3 3 7 5 2 556 | 2 4 4 0 6 4 4 557 | 2 4 4 0 4 4 8 6 4 558 | 2 4 4 0 7 7 4 4 559 | 2 4 4 0 6 4 4 560 | 2 4 4 0 6 4 4 561 | 2 4 4 0 4 4 562 | 2 3 0 5 3 5 10 10 10 6 3 13 11 3 563 | 3 3 0 6 6 3 6 7 3 3 564 | 2 4 4 0 6 4 4 9 7 4 565 | 3 3 0 3 6 4 3 566 | 4 4 4 0 6 4 4 567 | 2 4 4 0 4 4 6 7 10 8 4 568 | 2 4 4 0 6 4 6 7 4 569 | 2 4 4 0 4 7 5 4 570 | 2 7 7 7 7 7 0 7 571 | 2 3 0 5 3 5 9 9 6 3 572 | 2 4 4 0 4 7 5 4 573 | 2 4 4 0 4 5 6 4 574 | 2 4 4 0 4 4 8 6 4 575 | 2 4 4 0 4 576 | 3 3 4 0 4 7 5 4 577 | 2 4 4 0 4 9 9 9 5 4 578 | 2 4 4 0 4 4 579 | 2 3 0 5 3 3 6 3 580 | 2 4 4 0 6 4 4 9 7 4 581 | 2 4 4 0 6 4 4 582 | 2 3 0 3 4 7 5 3 583 | 2 4 4 0 6 4 4 9 7 4 584 | 3 3 5 5 0 7 5 5 585 | 2 3 0 5 3 3 586 | 2 4 4 0 4 4 8 6 4 587 | 2 4 4 0 6 4 4 7 8 9 4 588 | 2 4 4 0 6 4 4 589 | 2 4 4 0 6 4 4 590 | 4 1 1 6 6 0 6 9 7 6 591 | 2 4 4 0 6 4 8 6 4 592 | 2 5 5 5 0 5 9 9 5 11 9 11 15 15 11 5 593 | 2 4 4 0 6 4 4 594 | 2 4 4 0 4 4 8 6 4 595 | 2 3 0 3 6 4 3 596 | 2 4 4 0 7 7 4 4 4 597 | 2 4 4 0 6 7 4 7 7 11 9 4 598 | 2 3 0 3 3 7 5 3 599 | 2 4 4 0 6 4 4 9 7 4 600 | 2 3 0 3 6 4 3 601 | 2 4 4 0 4 7 5 4 602 | 2 4 4 0 4 4 603 | 2 4 4 0 4 4 604 | 2 4 4 0 4 4 605 | 2 3 0 3 4 8 8 5 3 606 | 2 3 0 3 3 3 6 9 7 3 607 | 2 0 2 5 3 3 8 6 2 608 | 2 4 4 0 6 4 4 9 7 4 609 | 2 3 0 5 3 3 8 6 3 610 | 2 4 4 0 4 4 9 9 6 4 611 | 2 6 6 6 6 0 6 612 | 3 3 0 3 6 4 3 613 | 2 4 4 0 4 4 614 | 2 4 4 0 4 7 5 4 615 | 2 4 4 0 6 4 4 616 | 2 4 4 0 6 4 4 617 | 2 4 4 0 6 4 4 618 | 3 3 0 5 3 3 619 | 2 4 4 0 4 4 620 | 2 7 2 5 3 7 0 7 621 | 2 3 0 5 3 3 8 6 3 622 | 2 3 0 3 3 5 3 623 | 2 3 0 6 6 3 3 9 7 3 624 | 2 4 4 0 6 4 4 9 7 4 625 | 2 4 4 0 6 4 4 626 | 2 4 4 0 6 4 4 627 | 2 4 4 0 6 4 4 628 | 3 3 4 0 7 7 4 4 629 | 2 4 4 0 4 7 5 7 8 4 630 | 2 3 0 5 3 3 631 | 3 3 0 3 6 4 3 632 | 2 4 4 0 4 7 5 4 633 | 2 3 0 3 3 7 5 3 634 | 2 4 4 0 4 5 5 4 635 | 2 4 4 0 6 4 4 636 | 2 4 4 0 4 4 637 | 2 7 2 5 2 7 0 7 638 | 2 4 4 0 4 7 5 4 639 | 2 4 4 0 4 4 4 640 | 2 4 4 0 6 4 4 641 | 2 4 4 0 6 4 4 642 | 2 3 0 3 4 3 8 6 3 643 | 2 3 0 3 4 7 5 3 644 | 2 8 2 6 6 3 8 0 8 645 | 2 4 4 0 6 4 4 646 | 2 4 4 0 4 4 647 | 2 4 4 0 4 7 5 4 648 | 2 3 0 5 3 3 8 6 3 649 | 3 3 5 5 0 5 8 6 5 650 | 2 3 0 3 6 4 3 651 | 2 4 4 0 6 4 4 652 | 2 3 0 3 6 4 3 653 | 2 4 4 0 4 4 654 | 2 4 4 0 4 4 655 | 2 3 0 5 3 5 8 6 8 12 12 9 3 656 | 2 4 4 0 4 7 5 4 657 | 2 4 4 0 4 7 5 4 658 | 2 4 4 0 4 659 | 2 4 4 0 6 4 4 660 | 2 4 4 0 4 4 661 | 2 0 2 3 7 7 3 7 8 2 662 | 2 0 2 3 6 4 2 663 | 2 4 4 0 6 4 6 6 4 664 | 3 3 4 0 7 7 4 4 8 4 12 10 4 665 | 2 3 0 3 7 7 4 3 666 | 2 4 4 0 4 667 | 2 4 4 0 4 4 8 6 4 668 | 3 3 0 6 6 3 3 669 | 2 4 4 0 6 4 4 670 | 2 3 0 5 3 3 8 6 3 3 671 | 2 3 0 3 3 3 672 | 2 4 4 0 4 7 5 4 673 | 2 3 0 3 4 7 5 3 674 | 2 3 0 3 6 4 3 675 | 2 4 4 0 6 4 4 9 7 4 676 | 2 3 0 5 3 3 3 3 677 | 2 4 4 0 4 4 8 6 4 678 | 2 0 2 5 2 2 679 | 2 4 4 0 6 4 6 9 7 4 13 13 10 4 680 | 2 6 2 3 6 0 6 681 | 2 4 4 0 6 4 4 682 | 2 4 4 0 4 4 8 6 4 683 | 2 0 2 3 6 3 8 3 10 8 8 13 11 2 684 | 2 4 4 0 4 685 | 3 3 0 8 8 5 5 3 3 686 | 3 3 0 3 3 8 8 5 3 687 | 2 4 4 0 6 4 4 688 | 2 3 0 3 4 7 5 3 689 | 2 3 0 3 6 3 3 690 | 2 4 4 0 6 4 4 9 7 4 691 | 2 4 4 0 6 4 8 6 6 11 9 4 692 | 2 3 0 5 3 3 9 9 6 3 693 | 2 4 4 0 4 4 694 | 2 4 4 0 4 7 4 4 695 | 2 4 4 0 4 7 4 11 10 11 4 11 4 696 | 2 4 4 0 7 7 4 4 697 | 2 4 4 0 4 4 8 6 4 698 | 2 3 0 3 4 5 8 6 3 699 | 2 4 4 0 4 700 | 2 4 4 0 4 4 8 6 4 701 | 2 4 4 0 4 4 8 6 4 702 | 2 3 0 3 6 3 8 3 3 703 | 3 3 4 0 7 7 4 7 10 8 10 11 12 15 13 15 16 4 704 | 2 4 4 0 4 7 4 4 705 | 4 4 4 0 4 706 | 2 4 4 0 6 4 8 4 11 11 8 13 11 13 17 17 14 4 707 | 2 3 0 6 6 3 3 10 10 7 12 3 3 708 | 2 4 4 0 4 7 5 4 709 | 2 3 0 3 6 4 3 710 | 3 3 5 5 0 5 5 711 | 2 4 4 0 4 8 8 5 8 14 14 14 14 9 4 712 | 2 6 2 3 6 0 6 6 713 | 2 4 4 0 4 4 6 4 714 | 2 4 4 0 6 4 4 715 | 2 4 4 0 6 4 4 716 | 3 3 0 3 3 5 3 717 | 2 4 4 0 4 7 5 7 10 8 4 718 | 2 4 4 0 4 4 719 | 2 3 0 5 3 3 6 9 7 9 10 3 720 | 2 4 4 0 4 721 | 2 4 4 0 6 4 4 722 | 2 4 4 0 4 4 723 | 2 3 0 3 3 724 | 2 3 0 3 3 8 8 5 3 725 | 2 4 4 0 4 4 726 | 2 4 4 0 6 4 4 9 7 4 727 | 2 3 0 3 6 4 3 728 | 2 4 4 0 6 4 4 729 | 2 3 0 3 7 7 4 3 730 | 2 4 4 0 6 4 6 7 4 731 | 2 4 4 0 6 4 4 732 | 3 3 4 0 6 4 4 9 7 4 733 | 2 4 4 0 4 5 10 7 10 6 4 734 | 2 4 4 0 6 4 6 6 8 11 9 4 735 | 2 5 5 5 0 7 5 5 8 9 12 10 5 736 | 2 3 0 3 3 5 6 7 10 8 3 737 | 3 3 5 5 0 7 5 5 5 9 12 10 14 9 9 17 15 5 738 | 2 4 4 0 4 5 8 6 8 12 12 9 4 739 | 2 0 2 6 4 3 6 9 7 2 740 | 2 4 4 0 6 4 4 741 | 2 3 0 3 7 7 3 3 742 | 2 4 4 0 7 7 4 4 743 | 3 3 5 5 0 7 5 5 744 | 2 4 4 0 6 4 4 745 | 2 4 4 0 4 4 746 | 2 4 4 0 4 4 747 | 2 4 4 0 4 7 5 4 748 | 2 4 4 0 6 4 4 749 | 2 4 4 0 4 4 750 | 3 1 0 3 6 4 3 751 | -------------------------------------------------------------------------------- /data/msrvid/train/b.parents: -------------------------------------------------------------------------------- 1 | 2 4 4 0 6 4 4 2 | 2 6 2 2 6 0 6 7 6 3 | 3 3 0 3 4 | 2 7 2 5 2 7 0 7 10 8 7 5 | 2 4 4 0 6 4 4 6 | 2 4 4 0 4 4 7 | 2 4 4 0 4 4 8 | 2 4 4 0 6 4 4 9 | 2 0 2 3 6 4 2 10 | 2 4 4 0 4 7 5 4 11 | 2 4 4 0 4 12 | 2 4 4 0 6 4 4 13 | 3 3 5 5 0 5 8 6 5 14 | 2 4 4 0 6 4 4 15 | 2 4 4 0 4 4 16 | 2 4 4 0 6 4 4 17 | 2 4 4 0 4 4 18 | 2 4 4 0 6 4 4 19 | 2 4 4 0 4 4 20 | 2 4 4 0 6 4 4 21 | 2 4 4 0 6 4 4 9 7 4 22 | 2 4 4 0 4 4 23 | 3 3 5 5 0 7 5 5 24 | 2 4 4 0 4 7 5 4 25 | 3 3 4 0 7 7 4 4 26 | 2 4 4 0 6 4 4 27 | 2 4 4 0 6 4 6 6 8 4 28 | 2 4 4 0 6 4 4 29 | 2 4 4 0 6 4 4 30 | 2 4 4 0 6 4 4 31 | 2 4 4 0 6 4 4 32 | 2 4 4 0 4 5 4 33 | 2 4 4 0 6 4 4 34 | 2 4 4 0 6 4 4 35 | 3 3 0 5 3 3 36 | 2 4 4 0 4 7 5 7 10 8 4 37 | 2 4 4 0 7 7 4 4 38 | 2 4 4 0 4 4 9 9 6 4 39 | 2 3 0 5 3 3 40 | 2 4 4 0 6 4 4 41 | 2 3 0 5 3 3 42 | 2 4 4 0 6 4 4 43 | 2 4 4 0 4 4 44 | 2 4 4 0 6 4 4 45 | 2 4 4 0 6 4 4 46 | 2 4 4 0 6 4 4 47 | 2 4 4 0 6 4 4 48 | 2 4 4 0 6 4 4 49 | 2 4 4 0 6 4 4 50 | 2 4 4 0 6 4 4 51 | 2 4 4 0 4 7 5 4 52 | 2 4 4 0 6 4 4 53 | 2 4 4 0 4 7 5 4 54 | 4 4 4 0 4 5 8 6 4 55 | 2 4 4 0 4 7 5 4 56 | 2 3 0 5 3 3 57 | 2 4 4 0 4 4 58 | 2 4 4 0 6 4 4 59 | 2 4 4 0 4 60 | 2 4 4 0 4 4 61 | 2 4 4 0 4 4 62 | 2 4 4 0 4 63 | 2 3 0 3 4 3 64 | 2 4 4 0 4 4 65 | 2 4 4 0 6 4 4 66 | 2 4 4 0 6 4 4 67 | 2 4 4 0 4 4 68 | 2 4 4 0 6 4 4 69 | 2 4 4 0 4 70 | 2 4 4 0 6 4 4 71 | 4 4 4 0 4 7 5 4 72 | 2 4 4 0 4 73 | 2 4 4 0 4 4 74 | 2 4 4 0 4 7 5 4 75 | 2 4 4 0 6 4 4 76 | 2 4 4 0 6 4 4 77 | 2 3 0 3 7 7 4 3 78 | 2 4 4 0 4 4 79 | 2 4 4 0 6 4 4 80 | 2 4 4 0 4 4 4 81 | 2 4 4 0 4 82 | 2 4 4 0 4 83 | 2 4 4 0 4 4 8 6 4 84 | 2 4 4 0 6 4 4 85 | 2 6 2 3 6 0 6 7 6 86 | 2 7 2 5 2 7 0 7 7 11 9 7 87 | 2 4 4 0 6 4 4 88 | 2 3 0 5 3 3 89 | 3 3 0 5 3 3 90 | 2 4 4 0 4 4 91 | 2 4 4 0 6 4 4 92 | 2 4 4 0 6 4 4 93 | 2 4 4 0 6 4 4 94 | 2 4 4 0 6 4 4 95 | 2 3 0 3 6 4 3 96 | 2 4 4 0 7 7 4 4 10 8 4 97 | 2 4 4 0 7 7 4 4 98 | 2 3 0 5 3 3 99 | 3 3 5 5 0 7 5 7 8 5 100 | 2 4 4 0 6 4 4 7 4 101 | 2 4 4 0 4 7 5 4 102 | 2 4 4 0 4 103 | 3 3 0 3 3 7 5 3 104 | 2 4 4 0 4 7 5 4 105 | 2 4 4 0 6 4 4 106 | 2 4 4 0 4 4 107 | 2 4 4 0 6 4 4 108 | 3 3 0 3 3 109 | 2 4 4 0 6 4 4 110 | 2 4 4 0 4 111 | 2 4 4 0 4 4 112 | 2 6 2 2 6 0 8 6 6 113 | 2 3 0 3 3 7 5 3 114 | 2 4 4 0 4 8 8 5 4 115 | 2 4 4 0 4 4 8 6 4 116 | 3 3 4 0 6 4 4 117 | 2 4 4 0 4 7 5 4 118 | 2 4 4 0 4 7 5 4 119 | 2 4 4 0 4 4 8 6 4 120 | 2 4 4 0 6 4 4 121 | 2 4 4 0 4 122 | 2 4 4 0 4 123 | 2 4 4 0 4 124 | 2 4 4 0 4 125 | 2 4 4 0 4 126 | 2 4 4 0 4 127 | 2 4 4 0 4 128 | 2 4 4 0 4 4 8 6 4 129 | 2 4 4 0 6 4 4 130 | 2 4 4 0 6 4 4 131 | 3 3 0 5 3 3 132 | 2 4 4 0 6 4 4 133 | 2 4 4 0 4 134 | 2 4 4 0 7 7 4 4 135 | 2 4 4 0 4 7 5 4 136 | 2 4 4 0 4 4 6 9 7 4 137 | 2 4 4 0 6 4 4 138 | 2 4 4 0 4 4 139 | 2 4 4 0 6 4 4 140 | 2 4 4 0 6 4 4 141 | 2 4 4 0 6 4 4 142 | 2 4 4 0 4 4 143 | 2 4 4 0 6 4 4 144 | 2 3 0 3 6 3 3 145 | 2 4 4 0 6 4 4 146 | 2 4 4 0 6 4 4 147 | 2 4 4 0 6 4 6 6 4 148 | 2 4 4 0 6 4 4 149 | 2 4 4 0 7 7 4 4 150 | 2 4 4 0 6 4 4 151 | 2 6 2 2 6 0 6 9 7 6 152 | 2 0 2 153 | 2 4 4 0 4 154 | 2 4 4 0 4 155 | 2 4 4 0 4 156 | 2 6 2 2 6 0 6 9 7 6 157 | 2 3 0 5 3 3 158 | 2 3 0 3 3 159 | 2 4 4 0 4 160 | 2 4 4 0 6 4 4 161 | 2 4 4 0 6 4 4 162 | 2 4 4 0 6 4 4 163 | 2 4 4 0 6 4 4 164 | 2 4 4 0 6 4 4 165 | 2 4 4 0 4 4 166 | 2 4 4 0 4 4 167 | 2 4 4 0 6 4 4 168 | 3 3 4 0 6 4 4 169 | 2 4 4 0 6 4 4 170 | 2 4 4 0 6 4 4 171 | 2 4 4 0 4 4 172 | 2 4 4 0 6 4 4 173 | 2 3 0 5 3 3 9 9 6 3 174 | 2 4 4 0 6 4 4 7 4 175 | 2 4 4 0 6 4 6 9 7 4 12 10 176 | 2 3 0 5 3 3 177 | 2 4 4 0 4 7 5 4 178 | 2 4 4 0 4 179 | 2 4 4 0 7 7 4 4 180 | 2 4 4 0 7 7 4 4 181 | 2 4 4 0 4 7 5 4 182 | 2 4 4 0 6 4 4 183 | 2 4 4 0 6 4 4 184 | 2 4 4 0 4 4 185 | 2 4 4 0 6 4 4 186 | 3 3 0 3 187 | 2 4 4 0 4 188 | 2 4 4 0 4 189 | 2 4 4 0 4 190 | 2 4 4 0 4 191 | 2 3 0 5 3 5 8 6 3 192 | 2 4 4 0 6 4 4 9 7 4 193 | 2 4 4 0 6 4 4 194 | 2 4 4 0 6 4 4 195 | 2 4 4 0 6 4 4 196 | 2 4 4 0 4 4 197 | 2 4 4 0 6 4 4 198 | 3 3 0 3 3 199 | 2 4 4 0 4 200 | 2 4 4 0 4 201 | 2 4 4 0 4 202 | 2 3 0 5 3 3 203 | 2 3 0 5 3 3 204 | 2 4 4 0 4 4 6 9 7 4 205 | 2 4 4 0 6 4 4 206 | 2 3 0 5 3 3 207 | 2 4 4 0 4 4 208 | 2 4 4 0 4 7 5 4 209 | 3 3 0 5 3 3 210 | 2 4 4 0 4 211 | 3 3 5 5 0 8 8 5 5 212 | 2 3 0 5 3 3 8 6 3 213 | 2 4 4 0 6 4 4 214 | 2 4 4 0 4 4 215 | 2 3 0 5 3 3 216 | 2 4 4 0 6 4 4 217 | 2 4 4 0 6 4 6 7 10 8 4 218 | 2 4 4 0 4 7 5 4 219 | 2 4 4 0 4 7 5 4 220 | 2 4 4 0 4 7 5 4 221 | 2 4 4 0 6 4 4 222 | 3 3 5 5 0 7 5 5 223 | 2 4 4 0 4 4 224 | 2 6 2 3 6 0 6 225 | 2 4 4 0 4 4 226 | 3 3 4 0 4 8 8 5 4 227 | 2 4 4 0 4 4 9 9 6 4 228 | 2 4 4 0 6 4 4 229 | 2 4 4 0 6 4 4 230 | 2 4 4 0 6 4 4 231 | 2 4 4 0 6 4 4 232 | 3 3 0 5 3 3 233 | 3 3 0 5 3 3 234 | 2 4 4 0 6 4 4 235 | 2 4 4 0 6 4 4 236 | 2 4 4 0 6 4 4 237 | 2 4 4 0 6 4 4 238 | 2 4 4 0 4 4 239 | 2 3 0 3 4 5 8 6 3 240 | 2 4 4 0 6 4 4 241 | 2 3 0 3 6 4 3 242 | 2 4 4 0 6 4 4 9 7 4 243 | 2 6 2 2 6 0 6 9 7 6 244 | 2 3 0 6 6 3 3 9 7 3 245 | 2 3 0 3 6 3 3 246 | 2 4 4 0 6 4 4 247 | 3 3 0 5 3 3 248 | 3 3 0 3 4 5 3 249 | 3 3 5 5 0 5 8 6 5 250 | 2 3 0 5 3 3 9 9 6 3 251 | 3 3 0 3 3 252 | 2 5 5 5 0 5 5 9 7 5 253 | 2 4 4 0 6 4 4 9 7 4 254 | 3 3 0 3 7 7 4 3 255 | 2 4 4 0 4 7 5 4 256 | 2 7 2 5 3 7 0 9 7 7 257 | 2 4 4 0 6 4 4 258 | 2 4 4 0 6 4 4 259 | 2 4 4 0 6 4 4 260 | 2 4 4 0 4 4 8 6 4 261 | 2 4 4 0 4 262 | 3 3 0 6 6 3 6 9 7 3 263 | 2 4 4 0 6 4 4 264 | 2 4 4 0 6 4 4 265 | 2 4 4 0 4 7 5 4 266 | 3 3 0 5 3 3 267 | 2 4 4 0 4 4 268 | 2 4 4 0 6 4 4 269 | 2 4 4 0 6 4 4 270 | 2 4 4 0 4 271 | 2 3 0 3 7 7 4 3 272 | 2 4 4 0 4 7 5 4 273 | 2 4 4 0 4 7 5 4 274 | 2 4 4 0 4 4 275 | 2 4 4 0 6 4 4 276 | 2 4 4 0 4 4 277 | 2 3 0 5 3 5 8 6 3 278 | 2 4 4 0 4 7 5 4 279 | 2 4 4 0 6 4 4 280 | 3 3 0 3 4 5 3 281 | 2 4 4 0 7 7 4 4 8 4 282 | 2 7 2 5 3 7 0 7 283 | 2 4 4 0 6 4 4 284 | 2 4 4 0 4 4 285 | 2 4 4 0 4 7 4 4 286 | 2 4 4 0 4 4 8 6 4 287 | 2 4 4 0 6 4 4 9 7 4 288 | 2 4 4 0 4 289 | 2 4 4 0 4 290 | 2 4 4 0 6 4 4 291 | 2 3 0 3 6 4 3 292 | 2 4 4 0 4 7 5 4 293 | 2 4 4 0 6 4 4 294 | 2 4 4 0 4 4 8 6 4 295 | 2 4 4 0 4 4 296 | 2 4 4 0 4 5 9 9 6 4 297 | 3 3 0 3 6 3 3 298 | 2 4 4 0 4 7 4 4 299 | 2 4 4 0 4 4 300 | 2 4 4 0 6 4 4 301 | 2 4 4 0 4 4 302 | 3 3 5 5 0 5 8 6 5 303 | 3 3 0 3 7 7 4 3 304 | 2 4 4 0 4 4 8 6 4 305 | 2 4 4 0 6 4 4 306 | 2 4 4 0 4 4 307 | 2 4 4 0 6 4 4 308 | 2 4 4 0 6 4 4 309 | 2 4 4 0 6 7 4 4 310 | 2 4 4 0 6 4 4 311 | 2 4 4 0 6 4 4 312 | 2 4 4 0 4 313 | 2 4 4 0 6 4 4 314 | 2 4 4 0 4 7 5 7 10 8 4 315 | 2 4 4 0 4 4 8 6 4 316 | 2 4 4 0 4 7 5 4 317 | 2 3 0 5 3 3 318 | 2 4 4 0 7 7 4 4 319 | 2 5 5 5 0 5 6 5 320 | 2 4 4 0 6 4 4 321 | 2 4 4 0 6 4 4 322 | 2 4 4 0 6 4 4 9 7 4 323 | 2 4 4 0 4 7 5 4 324 | 2 4 4 0 4 7 5 4 325 | 2 4 4 0 4 326 | 2 4 4 0 4 327 | 2 4 4 0 4 328 | 2 4 4 0 6 4 4 329 | 2 4 4 0 4 7 5 4 330 | 2 4 4 0 4 7 5 4 331 | 2 4 4 0 6 4 4 332 | 2 4 4 0 6 4 4 333 | 2 4 4 0 7 7 4 4 334 | 3 3 0 3 3 7 5 3 335 | 2 4 4 0 6 4 4 336 | 2 3 0 6 6 8 6 3 3 337 | 2 4 4 0 6 4 4 9 7 4 338 | 2 3 0 3 4 5 3 10 10 7 3 339 | 2 4 4 0 6 4 4 340 | 2 4 4 0 6 4 4 341 | 2 4 4 0 6 4 4 342 | 2 4 4 0 6 4 4 343 | 2 4 4 0 6 4 4 344 | 2 4 4 0 4 4 345 | 2 4 4 0 6 4 4 10 10 7 4 346 | 2 4 4 0 4 4 6 9 7 4 347 | 2 4 4 0 8 8 8 4 4 11 9 4 348 | 2 4 4 0 6 4 4 349 | 2 4 4 0 4 4 350 | 2 4 4 0 4 351 | 2 4 4 0 4 4 352 | 2 3 0 5 3 3 8 6 3 11 3 11 14 12 3 353 | 2 3 0 5 3 3 8 6 3 354 | 2 4 4 0 4 355 | 2 0 2 3 6 4 2 356 | 2 4 4 0 6 4 4 357 | 2 4 4 0 4 358 | 2 4 4 0 4 4 6 4 359 | 2 4 4 0 7 7 4 4 360 | 2 4 4 0 4 4 8 6 4 361 | 2 6 2 5 2 0 8 6 6 362 | 2 0 2 3 7 7 4 7 10 8 2 363 | 2 4 4 0 6 4 4 364 | 2 4 4 0 6 4 4 365 | 2 4 4 0 4 4 366 | 2 4 4 0 6 4 4 367 | 2 4 4 0 4 368 | 2 4 4 0 4 7 5 4 369 | 2 4 4 0 6 4 4 370 | 2 0 2 3 2 371 | 2 4 4 0 4 5 4 372 | 2 4 4 0 6 4 4 373 | 2 4 4 0 6 4 4 374 | 2 4 4 0 4 375 | 2 4 4 0 6 4 4 376 | 2 4 4 0 4 4 377 | 2 4 4 0 4 4 378 | 2 4 4 0 6 4 4 379 | 2 6 6 6 6 0 6 380 | 2 4 4 0 6 4 4 381 | 2 4 4 0 6 4 4 382 | 2 0 4 6 6 2 6 9 7 2 383 | 2 4 4 0 6 4 4 384 | 2 4 4 0 6 4 4 385 | 2 3 0 3 6 4 3 386 | 2 4 4 0 4 387 | 3 3 5 5 0 5 8 6 5 388 | 2 4 4 0 4 4 389 | 2 3 0 3 4 3 390 | 2 4 4 0 6 4 4 9 7 9 12 10 4 391 | 2 4 4 0 6 4 4 392 | 2 4 4 0 6 4 4 393 | 2 4 4 0 4 7 5 4 394 | 2 4 4 0 4 7 5 4 395 | 2 4 4 0 6 4 4 396 | 2 4 4 0 6 4 4 397 | 2 4 4 0 4 7 5 4 398 | 2 4 4 0 4 4 9 9 6 4 399 | 2 4 4 0 4 9 9 9 5 4 400 | 2 4 4 0 6 4 4 9 7 4 401 | 2 4 4 0 6 4 6 7 4 402 | 2 4 4 0 6 4 6 7 4 11 9 4 403 | 2 9 2 2 4 7 5 2 0 9 12 9 9 404 | 2 3 0 3 3 405 | 2 4 4 0 4 406 | 3 3 5 5 0 5 6 6 11 11 8 5 407 | 2 4 4 0 6 4 4 408 | 2 4 4 0 7 7 4 4 409 | 2 4 4 0 6 4 4 9 7 4 410 | 2 4 4 0 7 7 4 4 411 | 2 4 4 0 6 4 6 9 7 4 412 | 2 3 0 5 3 3 8 6 3 413 | 2 3 0 3 3 5 8 6 3 414 | 2 4 4 0 7 7 4 4 415 | 2 4 4 0 4 4 416 | 2 8 8 8 6 4 8 0 10 8 8 417 | 2 4 4 0 6 4 6 6 10 8 4 418 | 2 4 4 0 6 4 4 419 | 2 4 4 0 4 420 | 2 4 4 0 4 4 421 | 2 3 0 3 3 422 | 2 4 4 0 6 4 4 7 4 423 | 2 4 4 0 4 7 5 4 10 8 4 424 | 2 4 4 0 6 4 4 425 | 2 4 4 0 4 4 426 | 2 4 4 0 6 4 4 427 | 2 4 4 0 4 428 | 2 4 4 0 4 429 | 3 3 0 5 3 3 430 | 3 3 4 0 6 4 4 9 7 4 431 | 2 4 4 0 6 4 6 10 10 7 4 432 | 2 3 0 5 3 5 6 9 7 3 433 | 3 3 5 5 0 8 8 5 5 9 5 434 | 2 4 4 0 4 5 6 7 8 9 4 435 | 2 0 2 3 4 3 6 2 436 | 2 4 4 0 4 7 5 4 437 | 2 3 0 5 3 5 6 3 438 | 2 0 2 5 3 2 439 | 3 3 4 0 4 7 5 4 440 | 2 4 4 0 4 4 8 6 4 441 | 2 4 4 0 6 4 4 442 | 2 4 4 0 4 4 8 6 4 443 | 2 4 4 0 4 7 5 4 444 | 2 4 4 0 6 4 4 445 | 2 4 4 0 7 7 4 4 446 | 2 4 4 0 4 7 5 4 447 | 2 4 4 0 4 4 448 | 2 4 4 0 6 4 4 449 | 2 4 4 0 7 7 4 4 450 | 2 4 4 0 4 4 6 4 451 | 2 4 4 0 6 4 4 452 | 2 4 4 0 6 4 4 9 7 4 453 | 2 5 5 5 0 5 454 | 2 4 4 0 4 455 | 2 4 4 0 6 4 4 7 4 456 | 2 4 4 0 6 4 4 7 4 457 | 2 3 0 3 4 5 3 458 | 2 3 0 3 3 7 5 3 459 | 2 4 4 0 6 4 6 9 7 4 460 | 2 4 4 0 4 7 5 4 461 | 2 3 0 5 3 3 462 | 2 4 4 0 4 4 9 9 6 9 4 463 | 2 4 4 0 6 4 4 464 | 2 4 4 0 4 4 4 465 | 2 4 4 0 4 7 5 4 466 | 2 4 4 0 6 4 4 467 | 2 4 4 0 7 7 4 7 8 4 468 | 2 4 4 0 4 4 469 | 3 3 0 3 3 470 | 2 4 4 0 6 4 4 471 | 2 4 4 0 6 4 4 472 | 2 4 4 0 4 7 5 4 473 | 2 3 0 5 3 3 8 6 3 474 | 2 4 4 0 4 4 8 6 4 475 | 4 4 4 0 4 476 | 3 3 4 0 7 7 4 4 10 8 4 13 4 13 4 477 | 2 4 4 0 7 7 4 4 478 | 2 4 4 0 6 4 4 479 | 2 4 4 0 7 7 4 4 480 | 2 5 5 5 0 5 481 | 2 4 4 0 4 5 4 7 4 482 | 2 3 0 5 3 3 483 | 2 4 4 0 4 7 5 4 484 | 3 3 0 3 6 4 3 485 | 2 3 0 3 7 7 4 3 486 | 2 4 4 0 7 7 4 4 487 | 2 4 4 0 4 7 5 5 10 8 4 488 | 4 4 4 0 4 489 | 3 3 0 5 3 3 8 6 8 9 3 490 | 2 4 4 0 8 8 6 4 4 491 | 2 4 4 0 6 4 4 492 | 2 4 4 0 6 4 4 493 | 3 3 5 5 0 5 10 10 10 6 5 494 | 2 6 6 6 6 0 6 495 | 5 5 5 5 0 5 496 | 2 5 5 5 0 5 8 6 5 497 | 3 3 0 5 3 3 9 9 6 3 498 | 2 3 0 5 3 5 8 6 3 9 12 10 3 499 | 2 4 4 0 6 4 4 10 10 7 10 11 4 500 | 2 3 0 3 6 4 3 501 | 2 5 5 5 0 7 5 5 502 | 2 4 4 0 4 4 4 503 | 2 4 4 0 6 4 4 9 7 4 504 | 2 3 0 3 3 5 3 9 7 3 505 | 2 4 4 0 4 506 | 2 4 4 0 4 4 4 507 | 2 3 0 5 3 3 508 | 2 4 4 0 7 7 4 4 509 | 4 4 4 0 4 7 5 7 10 8 4 510 | 2 4 4 0 4 4 511 | 2 4 4 0 6 4 4 512 | 2 4 4 0 6 4 4 513 | 2 4 4 0 4 4 9 9 6 4 514 | 2 4 4 0 4 7 4 4 515 | 2 4 4 0 4 7 5 4 516 | 2 4 4 0 4 517 | 2 3 0 3 7 7 3 7 10 8 8 14 14 11 14 14 18 16 16 21 19 3 518 | 2 4 4 0 4 7 5 4 519 | 2 4 4 0 7 7 4 4 520 | 2 4 4 0 4 4 521 | 2 4 4 0 6 4 4 522 | 2 4 4 0 6 4 4 523 | 2 4 4 0 6 4 4 524 | 2 4 4 7 6 4 0 7 525 | 3 3 5 5 0 5 5 9 7 5 526 | 2 3 0 5 3 3 527 | 2 4 4 0 6 4 4 7 4 528 | 2 3 0 3 4 5 5 9 5 9 12 10 3 529 | 2 4 4 0 6 4 4 9 7 4 12 10 4 530 | 2 4 4 0 4 7 5 4 531 | 3 3 0 3 4 3 8 6 3 532 | 2 3 0 5 3 3 8 6 3 533 | 2 4 4 0 6 4 6 7 4 534 | 2 4 4 0 6 4 4 9 7 4 535 | 2 4 4 0 4 4 536 | 2 4 4 0 6 4 4 537 | 2 4 4 0 6 4 4 538 | 3 3 0 3 7 7 4 3 539 | 2 4 4 0 6 4 4 9 7 4 540 | 2 5 5 5 0 5 5 541 | 2 4 4 0 4 7 5 4 542 | 2 4 4 0 4 7 5 4 543 | 2 3 0 5 7 5 3 3 544 | 3 3 0 3 3 545 | 2 4 4 0 4 4 546 | 3 3 0 5 3 5 6 3 547 | 2 3 0 3 6 4 6 9 7 3 548 | 2 4 4 0 4 549 | 2 4 4 0 7 7 4 4 550 | 2 4 4 0 6 4 4 551 | 2 4 4 0 6 4 4 552 | 2 4 4 0 6 4 4 553 | 2 4 4 0 4 4 8 6 4 554 | 2 4 4 0 7 7 4 4 555 | 4 4 4 0 4 7 5 9 7 9 4 556 | 2 3 0 3 3 557 | 2 4 4 0 6 4 4 9 7 4 558 | 2 4 4 0 4 4 559 | 2 4 4 0 6 4 4 560 | 2 4 4 0 4 4 4 561 | 2 4 4 0 6 4 4 562 | 2 4 4 0 6 4 4 9 7 4 563 | 3 3 0 5 3 5 6 3 564 | 2 4 4 0 6 4 4 565 | 2 4 4 0 4 7 5 4 566 | 3 3 4 0 6 4 4 567 | 3 3 0 3 3 7 5 3 568 | 2 4 4 0 7 7 4 4 10 8 4 569 | 2 3 0 5 3 3 8 6 3 570 | 3 3 0 5 3 3 571 | 2 4 4 0 7 7 4 4 572 | 3 3 5 5 0 5 8 6 5 573 | 2 4 4 0 4 4 574 | 2 4 4 0 4 4 4 575 | 2 3 0 3 3 576 | 2 4 4 0 4 7 5 4 577 | 2 4 4 0 4 7 5 4 578 | 3 3 5 5 0 5 5 7 5 9 12 10 5 579 | 2 4 4 0 6 4 4 580 | 2 4 4 0 6 4 4 581 | 2 5 5 5 0 8 8 5 5 582 | 2 0 2 2 6 4 2 583 | 2 4 4 0 6 4 6 7 4 584 | 2 4 4 0 4 7 4 7 10 8 4 585 | 2 4 4 0 6 4 4 586 | 2 4 4 0 6 4 4 9 7 4 13 13 10 4 587 | 2 4 4 0 4 4 8 6 4 588 | 2 4 4 0 4 7 4 4 589 | 2 4 4 0 4 7 5 4 590 | 2 4 4 0 4 7 5 4 591 | 2 4 4 0 4 5 6 7 4 592 | 2 4 4 0 6 4 6 10 10 7 4 593 | 2 3 0 6 6 3 3 594 | 2 4 4 0 6 4 4 595 | 2 4 4 0 6 4 4 596 | 2 4 4 0 6 4 4 597 | 2 3 0 5 3 3 8 6 3 598 | 2 3 0 5 3 5 8 6 3 11 9 11 12 3 599 | 2 4 4 0 6 4 4 9 7 9 12 10 12 13 4 600 | 2 4 4 0 6 4 4 9 7 4 601 | 3 3 0 3 6 4 3 602 | 2 3 0 5 3 3 603 | 3 3 4 0 4 604 | 2 4 4 0 4 605 | 2 4 4 0 4 5 6 9 7 9 12 10 4 606 | 2 4 4 0 4 4 6 9 7 4 607 | 2 4 4 0 6 4 4 608 | 2 4 4 0 4 5 6 4 609 | 2 4 4 0 6 4 4 610 | 2 4 4 0 6 4 4 611 | 2 4 4 0 6 4 4 9 7 4 612 | 2 4 4 0 4 4 8 6 4 613 | 2 3 0 3 7 7 4 3 614 | 2 4 4 0 6 4 4 615 | 2 4 4 0 6 4 4 616 | 2 4 4 0 4 5 4 617 | 2 4 4 0 6 4 4 618 | 2 4 4 0 6 4 4 619 | 2 4 4 0 6 4 4 620 | 2 4 4 0 6 4 6 9 7 4 621 | 2 4 4 0 4 622 | 2 4 4 0 4 7 5 4 623 | 2 4 4 0 6 4 4 624 | 2 4 4 0 6 4 4 625 | 2 3 0 3 7 7 4 3 626 | 2 4 4 0 4 7 5 4 627 | 2 4 4 0 6 4 4 628 | 3 3 5 5 0 5 8 6 5 629 | 2 4 4 0 6 4 4 630 | 2 4 4 0 6 4 8 6 4 631 | 2 4 4 0 4 5 9 9 6 4 632 | 2 4 4 0 4 4 633 | 2 3 0 3 3 7 5 3 634 | 2 4 4 0 6 4 4 635 | 2 4 4 0 6 4 4 636 | 2 4 4 0 6 4 4 637 | 2 0 2 2 4 5 2 638 | 2 4 4 0 6 4 4 639 | 2 4 4 0 4 640 | 2 4 4 0 4 4 641 | 2 4 4 0 4 7 5 4 642 | 2 7 2 5 3 7 0 7 10 8 10 10 7 643 | 2 4 4 0 4 4 644 | 3 3 5 5 0 5 645 | 2 4 4 0 7 7 4 4 646 | 2 4 4 0 4 7 5 4 647 | 2 4 4 0 4 7 4 4 10 8 4 648 | 2 4 4 0 6 4 4 9 7 4 649 | 2 4 4 0 4 4 8 6 4 650 | 2 4 4 0 4 4 8 6 4 651 | 2 4 4 0 6 4 4 652 | 3 3 0 5 3 3 653 | 2 4 4 0 4 5 8 6 8 8 4 654 | 2 4 4 0 6 4 4 655 | 2 3 0 3 3 7 5 3 656 | 2 4 4 0 4 657 | 2 3 0 5 3 3 658 | 2 4 4 0 6 4 4 659 | 2 4 4 0 4 660 | 2 4 4 0 6 4 4 661 | 2 4 4 0 4 4 8 6 4 662 | 3 3 0 3 6 4 3 663 | 2 4 4 0 6 4 6 7 4 664 | 2 4 4 0 7 7 4 4 4 11 4 13 11 4 665 | 2 4 4 0 4 666 | 2 4 4 0 6 4 4 667 | 2 4 4 0 4 4 4 668 | 2 4 4 0 6 4 4 669 | 2 4 4 0 6 8 6 4 4 670 | 2 3 0 5 3 3 9 9 6 3 671 | 2 4 4 0 4 4 4 672 | 2 3 0 6 6 3 3 673 | 2 4 4 0 6 4 4 674 | 2 3 0 5 3 3 6 10 10 7 3 675 | 2 4 4 0 4 7 5 4 676 | 2 4 4 0 4 4 8 6 4 677 | 2 3 0 3 6 4 3 678 | 2 4 4 0 6 4 4 679 | 2 3 0 7 7 7 3 3 680 | 5 1 1 5 0 5 5 681 | 2 3 0 6 6 3 3 9 7 3 682 | 2 4 4 0 4 7 5 4 683 | 2 4 4 0 4 5 8 6 4 684 | 2 4 4 0 4 7 5 4 685 | 2 4 4 0 6 4 4 686 | 3 3 0 7 7 7 3 3 11 11 8 3 687 | 2 3 0 5 3 3 8 6 3 688 | 2 3 0 5 3 3 689 | 2 4 4 0 6 4 4 690 | 2 4 4 0 6 4 4 691 | 2 4 4 0 4 7 5 4 692 | 3 3 0 5 3 3 693 | 2 4 4 0 7 7 4 4 694 | 4 4 4 5 0 5 6 9 7 9 12 10 5 695 | 2 4 4 0 4 7 5 7 10 7 4 13 11 4 14 14 16 4 696 | 2 4 4 0 4 4 4 4 697 | 2 4 4 0 6 4 4 9 7 4 698 | 2 4 4 0 4 7 5 7 10 8 4 699 | 2 4 4 0 4 4 700 | 2 4 4 0 4 4 701 | 2 4 4 0 6 4 4 9 7 4 702 | 2 7 2 6 6 3 0 9 7 12 12 7 7 703 | 3 3 0 3 4 5 6 3 704 | 2 4 4 0 6 4 4 705 | 2 4 4 0 4 4 706 | 2 3 0 5 3 5 6 10 10 5 10 14 14 11 14 18 18 15 3 707 | 2 3 0 5 3 5 6 3 10 8 10 11 3 708 | 2 3 0 5 3 3 709 | 2 4 4 0 4 4 4 710 | 3 3 4 0 4 7 5 4 711 | 2 3 0 6 6 3 3 7 10 8 3 712 | 2 4 4 0 4 713 | 2 4 4 0 6 4 4 714 | 2 4 4 0 4 4 8 6 4 715 | 3 3 0 5 3 7 5 3 716 | 2 3 0 5 3 3 8 6 3 717 | 2 4 4 0 4 4 8 6 4 718 | 2 4 4 0 4 719 | 2 3 0 5 3 7 5 5 10 8 3 720 | 2 4 4 0 6 4 6 4 721 | 2 4 4 0 6 4 4 722 | 2 4 4 0 6 4 4 723 | 2 3 0 5 3 3 8 6 8 9 3 724 | 2 3 0 3 3 725 | 2 4 4 0 4 4 8 6 4 726 | 2 4 4 0 4 4 727 | 3 3 0 3 6 4 3 728 | 2 4 4 0 6 4 4 7 4 729 | 2 4 4 0 6 4 4 7 4 730 | 2 4 4 0 6 4 4 731 | 2 4 4 0 6 4 6 9 7 4 732 | 2 3 0 3 6 4 3 7 3 733 | 5 5 5 5 0 5 734 | 3 3 5 5 0 7 5 5 735 | 2 4 4 0 6 4 4 736 | 2 4 4 0 6 4 6 7 4 737 | 2 4 4 0 6 4 4 738 | 2 5 5 5 0 5 8 6 5 739 | 2 3 0 3 7 7 4 3 740 | 2 4 4 0 6 4 4 9 7 4 741 | 2 4 4 0 6 4 4 742 | 3 3 5 5 0 7 5 5 743 | 2 3 0 3 6 3 3 744 | 2 4 4 0 4 8 8 5 4 745 | 2 4 4 0 6 4 4 746 | 2 3 0 5 3 3 747 | 2 4 4 0 4 7 5 4 748 | 2 0 2 5 3 2 749 | 2 3 0 6 6 3 3 750 | 2 4 4 0 4 4 751 | -------------------------------------------------------------------------------- /data/msrvid/train/id.txt: -------------------------------------------------------------------------------- 1 | 1 2 | 2 3 | 3 4 | 4 5 | 5 6 | 6 7 | 7 8 | 8 9 | 9 10 | 10 11 | 11 12 | 12 13 | 13 14 | 14 15 | 15 16 | 16 17 | 17 18 | 18 19 | 19 20 | 20 21 | 21 22 | 22 23 | 23 24 | 24 25 | 25 26 | 26 27 | 27 28 | 28 29 | 29 30 | 30 31 | 31 32 | 32 33 | 33 34 | 34 35 | 35 36 | 36 37 | 37 38 | 38 39 | 39 40 | 40 41 | 41 42 | 42 43 | 43 44 | 44 45 | 45 46 | 46 47 | 47 48 | 48 49 | 49 50 | 50 51 | 51 52 | 52 53 | 53 54 | 54 55 | 55 56 | 56 57 | 57 58 | 58 59 | 59 60 | 60 61 | 61 62 | 62 63 | 63 64 | 64 65 | 65 66 | 66 67 | 67 68 | 68 69 | 69 70 | 70 71 | 71 72 | 72 73 | 73 74 | 74 75 | 75 76 | 76 77 | 77 78 | 78 79 | 79 80 | 80 81 | 81 82 | 82 83 | 83 84 | 84 85 | 85 86 | 86 87 | 87 88 | 88 89 | 89 90 | 90 91 | 91 92 | 92 93 | 93 94 | 94 95 | 95 96 | 96 97 | 97 98 | 98 99 | 99 100 | 100 101 | 101 102 | 102 103 | 103 104 | 104 105 | 105 106 | 106 107 | 107 108 | 108 109 | 109 110 | 110 111 | 111 112 | 112 113 | 113 114 | 114 115 | 115 116 | 116 117 | 117 118 | 118 119 | 119 120 | 120 121 | 121 122 | 122 123 | 123 124 | 124 125 | 125 126 | 126 127 | 127 128 | 128 129 | 129 130 | 130 131 | 131 132 | 132 133 | 133 134 | 134 135 | 135 136 | 136 137 | 137 138 | 138 139 | 139 140 | 140 141 | 141 142 | 142 143 | 143 144 | 144 145 | 145 146 | 146 147 | 147 148 | 148 149 | 149 150 | 150 151 | 151 152 | 152 153 | 153 154 | 154 155 | 155 156 | 156 157 | 157 158 | 158 159 | 159 160 | 160 161 | 161 162 | 162 163 | 163 164 | 164 165 | 165 166 | 166 167 | 167 168 | 168 169 | 169 170 | 170 171 | 171 172 | 172 173 | 173 174 | 174 175 | 175 176 | 176 177 | 177 178 | 178 179 | 179 180 | 180 181 | 181 182 | 182 183 | 183 184 | 184 185 | 185 186 | 186 187 | 187 188 | 188 189 | 189 190 | 190 191 | 191 192 | 192 193 | 193 194 | 194 195 | 195 196 | 196 197 | 197 198 | 198 199 | 199 200 | 200 201 | 201 202 | 202 203 | 203 204 | 204 205 | 205 206 | 206 207 | 207 208 | 208 209 | 209 210 | 210 211 | 211 212 | 212 213 | 213 214 | 214 215 | 215 216 | 216 217 | 217 218 | 218 219 | 219 220 | 220 221 | 221 222 | 222 223 | 223 224 | 224 225 | 225 226 | 226 227 | 227 228 | 228 229 | 229 230 | 230 231 | 231 232 | 232 233 | 233 234 | 234 235 | 235 236 | 236 237 | 237 238 | 238 239 | 239 240 | 240 241 | 241 242 | 242 243 | 243 244 | 244 245 | 245 246 | 246 247 | 247 248 | 248 249 | 249 250 | 250 251 | 251 252 | 252 253 | 253 254 | 254 255 | 255 256 | 256 257 | 257 258 | 258 259 | 259 260 | 260 261 | 261 262 | 262 263 | 263 264 | 264 265 | 265 266 | 266 267 | 267 268 | 268 269 | 269 270 | 270 271 | 271 272 | 272 273 | 273 274 | 274 275 | 275 276 | 276 277 | 277 278 | 278 279 | 279 280 | 280 281 | 281 282 | 282 283 | 283 284 | 284 285 | 285 286 | 286 287 | 287 288 | 288 289 | 289 290 | 290 291 | 291 292 | 292 293 | 293 294 | 294 295 | 295 296 | 296 297 | 297 298 | 298 299 | 299 300 | 300 301 | 301 302 | 302 303 | 303 304 | 304 305 | 305 306 | 306 307 | 307 308 | 308 309 | 309 310 | 310 311 | 311 312 | 312 313 | 313 314 | 314 315 | 315 316 | 316 317 | 317 318 | 318 319 | 319 320 | 320 321 | 321 322 | 322 323 | 323 324 | 324 325 | 325 326 | 326 327 | 327 328 | 328 329 | 329 330 | 330 331 | 331 332 | 332 333 | 333 334 | 334 335 | 335 336 | 336 337 | 337 338 | 338 339 | 339 340 | 340 341 | 341 342 | 342 343 | 343 344 | 344 345 | 345 346 | 346 347 | 347 348 | 348 349 | 349 350 | 350 351 | 351 352 | 352 353 | 353 354 | 354 355 | 355 356 | 356 357 | 357 358 | 358 359 | 359 360 | 360 361 | 361 362 | 362 363 | 363 364 | 364 365 | 365 366 | 366 367 | 367 368 | 368 369 | 369 370 | 370 371 | 371 372 | 372 373 | 373 374 | 374 375 | 375 376 | 376 377 | 377 378 | 378 379 | 379 380 | 380 381 | 381 382 | 382 383 | 383 384 | 384 385 | 385 386 | 386 387 | 387 388 | 388 389 | 389 390 | 390 391 | 391 392 | 392 393 | 393 394 | 394 395 | 395 396 | 396 397 | 397 398 | 398 399 | 399 400 | 400 401 | 401 402 | 402 403 | 403 404 | 404 405 | 405 406 | 406 407 | 407 408 | 408 409 | 409 410 | 410 411 | 411 412 | 412 413 | 413 414 | 414 415 | 415 416 | 416 417 | 417 418 | 418 419 | 419 420 | 420 421 | 421 422 | 422 423 | 423 424 | 424 425 | 425 426 | 426 427 | 427 428 | 428 429 | 429 430 | 430 431 | 431 432 | 432 433 | 433 434 | 434 435 | 435 436 | 436 437 | 437 438 | 438 439 | 439 440 | 440 441 | 441 442 | 442 443 | 443 444 | 444 445 | 445 446 | 446 447 | 447 448 | 448 449 | 449 450 | 450 451 | 451 452 | 452 453 | 453 454 | 454 455 | 455 456 | 456 457 | 457 458 | 458 459 | 459 460 | 460 461 | 461 462 | 462 463 | 463 464 | 464 465 | 465 466 | 466 467 | 467 468 | 468 469 | 469 470 | 470 471 | 471 472 | 472 473 | 473 474 | 474 475 | 475 476 | 476 477 | 477 478 | 478 479 | 479 480 | 480 481 | 481 482 | 482 483 | 483 484 | 484 485 | 485 486 | 486 487 | 487 488 | 488 489 | 489 490 | 490 491 | 491 492 | 492 493 | 493 494 | 494 495 | 495 496 | 496 497 | 497 498 | 498 499 | 499 500 | 500 501 | 501 502 | 502 503 | 503 504 | 504 505 | 505 506 | 506 507 | 507 508 | 508 509 | 509 510 | 510 511 | 511 512 | 512 513 | 513 514 | 514 515 | 515 516 | 516 517 | 517 518 | 518 519 | 519 520 | 520 521 | 521 522 | 522 523 | 523 524 | 524 525 | 525 526 | 526 527 | 527 528 | 528 529 | 529 530 | 530 531 | 531 532 | 532 533 | 533 534 | 534 535 | 535 536 | 536 537 | 537 538 | 538 539 | 539 540 | 540 541 | 541 542 | 542 543 | 543 544 | 544 545 | 545 546 | 546 547 | 547 548 | 548 549 | 549 550 | 550 551 | 551 552 | 552 553 | 553 554 | 554 555 | 555 556 | 556 557 | 557 558 | 558 559 | 559 560 | 560 561 | 561 562 | 562 563 | 563 564 | 564 565 | 565 566 | 566 567 | 567 568 | 568 569 | 569 570 | 570 571 | 571 572 | 572 573 | 573 574 | 574 575 | 575 576 | 576 577 | 577 578 | 578 579 | 579 580 | 580 581 | 581 582 | 582 583 | 583 584 | 584 585 | 585 586 | 586 587 | 587 588 | 588 589 | 589 590 | 590 591 | 591 592 | 592 593 | 593 594 | 594 595 | 595 596 | 596 597 | 597 598 | 598 599 | 599 600 | 600 601 | 601 602 | 602 603 | 603 604 | 604 605 | 605 606 | 606 607 | 607 608 | 608 609 | 609 610 | 610 611 | 611 612 | 612 613 | 613 614 | 614 615 | 615 616 | 616 617 | 617 618 | 618 619 | 619 620 | 620 621 | 621 622 | 622 623 | 623 624 | 624 625 | 625 626 | 626 627 | 627 628 | 628 629 | 629 630 | 630 631 | 631 632 | 632 633 | 633 634 | 634 635 | 635 636 | 636 637 | 637 638 | 638 639 | 639 640 | 640 641 | 641 642 | 642 643 | 643 644 | 644 645 | 645 646 | 646 647 | 647 648 | 648 649 | 649 650 | 650 651 | 651 652 | 652 653 | 653 654 | 654 655 | 655 656 | 656 657 | 657 658 | 658 659 | 659 660 | 660 661 | 661 662 | 662 663 | 663 664 | 664 665 | 665 666 | 666 667 | 667 668 | 668 669 | 669 670 | 670 671 | 671 672 | 672 673 | 673 674 | 674 675 | 675 676 | 676 677 | 677 678 | 678 679 | 679 680 | 680 681 | 681 682 | 682 683 | 683 684 | 684 685 | 685 686 | 686 687 | 687 688 | 688 689 | 689 690 | 690 691 | 691 692 | 692 693 | 693 694 | 694 695 | 695 696 | 696 697 | 697 698 | 698 699 | 699 700 | 700 701 | 701 702 | 702 703 | 703 704 | 704 705 | 705 706 | 706 707 | 707 708 | 708 709 | 709 710 | 710 711 | 711 712 | 712 713 | 713 714 | 714 715 | 715 716 | 716 717 | 717 718 | 718 719 | 719 720 | 720 721 | 721 722 | 722 723 | 723 724 | 724 725 | 725 726 | 726 727 | 727 728 | 728 729 | 729 730 | 730 731 | 731 732 | 732 733 | 733 734 | 734 735 | 735 736 | 736 737 | 737 738 | 738 739 | 739 740 | 740 741 | 741 742 | 742 743 | 743 744 | 744 745 | 745 746 | 746 747 | 747 748 | 748 749 | 749 750 | 750 751 | -------------------------------------------------------------------------------- /data/msrvid/train/sim.txt: -------------------------------------------------------------------------------- 1 | 5.000 2 | 5.000 3 | 0.300 4 | 0.600 5 | 4.200 6 | 3.600 7 | 5.000 8 | 2.750 9 | 5.000 10 | 3.750 11 | 5.000 12 | 1.250 13 | 5.000 14 | 4.250 15 | 3.400 16 | 1.600 17 | 5.000 18 | 3.600 19 | 5.000 20 | 2.600 21 | 5.000 22 | 3.200 23 | 4.800 24 | 5.000 25 | 5.000 26 | 2.200 27 | 5.000 28 | 4.250 29 | 5.000 30 | 2.500 31 | 2.800 32 | 2.800 33 | 2.800 34 | 2.800 35 | 5.000 36 | 4.800 37 | 2.400 38 | 4.200 39 | 5.000 40 | 5.000 41 | 5.000 42 | 3.750 43 | 3.800 44 | 2.000 45 | 2.000 46 | 1.583 47 | 1.778 48 | 2.000 49 | 2.000 50 | 2.000 51 | 3.200 52 | 3.800 53 | 4.400 54 | 5.000 55 | 5.000 56 | 3.500 57 | 4.000 58 | 3.500 59 | 4.400 60 | 3.800 61 | 2.600 62 | 3.000 63 | 5.000 64 | 5.000 65 | 3.667 66 | 2.333 67 | 2.500 68 | 5.000 69 | 3.824 70 | 4.000 71 | 4.400 72 | 0.200 73 | 5.000 74 | 5.000 75 | 4.000 76 | 1.600 77 | 5.000 78 | 4.600 79 | 5.000 80 | 2.375 81 | 2.600 82 | 2.600 83 | 2.600 84 | 2.200 85 | 1.700 86 | 3.400 87 | 2.000 88 | 4.000 89 | 3.250 90 | 4.500 91 | 2.600 92 | 2.000 93 | 1.800 94 | 1.556 95 | 4.500 96 | 4.000 97 | 4.500 98 | 5.000 99 | 4.200 100 | 1.600 101 | 0.500 102 | 1.400 103 | 1.600 104 | 4.400 105 | 1.800 106 | 2.200 107 | 2.600 108 | 2.400 109 | 1.600 110 | 3.000 111 | 2.000 112 | 2.000 113 | 3.800 114 | 4.000 115 | 3.000 116 | 4.400 117 | 4.800 118 | 4.800 119 | 2.500 120 | 2.000 121 | 0.750 122 | 0.727 123 | 0.000 124 | 1.250 125 | 1.250 126 | 1.250 127 | 0.500 128 | 3.250 129 | 1.333 130 | 1.000 131 | 1.400 132 | 1.333 133 | 5.000 134 | 4.000 135 | 3.000 136 | 4.400 137 | 2.000 138 | 2.167 139 | 1.400 140 | 1.200 141 | 1.200 142 | 2.200 143 | 1.250 144 | 5.000 145 | 4.000 146 | 4.000 147 | 3.200 148 | 2.000 149 | 2.200 150 | 3.200 151 | 1.500 152 | 4.750 153 | 0.500 154 | 0.067 155 | 1.600 156 | 2.600 157 | 4.875 158 | 5.000 159 | 2.000 160 | 1.400 161 | 1.400 162 | 3.600 163 | 0.800 164 | 3.800 165 | 2.000 166 | 1.600 167 | 3.000 168 | 3.615 169 | 3.750 170 | 0.500 171 | 4.000 172 | 4.000 173 | 3.333 174 | 1.500 175 | 4.400 176 | 4.857 177 | 2.875 178 | 0.800 179 | 5.000 180 | 2.200 181 | 0.200 182 | 0.400 183 | 0.200 184 | 1.800 185 | 1.600 186 | 1.300 187 | 1.200 188 | 1.200 189 | 0.200 190 | 1.200 191 | 3.000 192 | 3.500 193 | 3.500 194 | 2.000 195 | 4.400 196 | 5.000 197 | 0.000 198 | 3.200 199 | 3.250 200 | 0.000 201 | 1.000 202 | 3.667 203 | 3.000 204 | 4.200 205 | 5.000 206 | 4.091 207 | 1.800 208 | 2.000 209 | 2.800 210 | 1.000 211 | 3.800 212 | 4.000 213 | 1.400 214 | 1.800 215 | 5.000 216 | 0.400 217 | 4.400 218 | 1.000 219 | 3.000 220 | 1.200 221 | 3.200 222 | 2.600 223 | 4.600 224 | 3.400 225 | 2.000 226 | 4.000 227 | 4.200 228 | 3.800 229 | 3.400 230 | 3.800 231 | 4.400 232 | 4.200 233 | 4.600 234 | 1.200 235 | 1.200 236 | 0.800 237 | 3.200 238 | 4.000 239 | 2.600 240 | 4.400 241 | 4.200 242 | 3.200 243 | 3.400 244 | 4.000 245 | 4.800 246 | 0.200 247 | 1.800 248 | 2.600 249 | 2.800 250 | 5.000 251 | 0.250 252 | 3.750 253 | 1.750 254 | 3.500 255 | 3.400 256 | 1.400 257 | 1.400 258 | 1.000 259 | 1.800 260 | 4.600 261 | 0.400 262 | 3.600 263 | 3.250 264 | 0.778 265 | 1.250 266 | 0.750 267 | 1.500 268 | 1.000 269 | 3.750 270 | 3.250 271 | 4.000 272 | 3.000 273 | 1.667 274 | 3.333 275 | 2.250 276 | 0.500 277 | 2.750 278 | 2.000 279 | 0.833 280 | 3.750 281 | 4.000 282 | 3.250 283 | 2.750 284 | 1.000 285 | 3.500 286 | 3.750 287 | 4.400 288 | 0.400 289 | 0.400 290 | 4.200 291 | 2.500 292 | 0.250 293 | 0.250 294 | 0.250 295 | 3.800 296 | 2.600 297 | 2.600 298 | 2.000 299 | 1.800 300 | 0.000 301 | 1.200 302 | 3.800 303 | 3.600 304 | 1.800 305 | 1.200 306 | 3.200 307 | 2.200 308 | 0.800 309 | 1.600 310 | 2.800 311 | 0.583 312 | 3.200 313 | 0.800 314 | 3.800 315 | 0.000 316 | 0.667 317 | 5.000 318 | 4.333 319 | 4.214 320 | 1.800 321 | 0.400 322 | 2.000 323 | 2.800 324 | 0.800 325 | 0.800 326 | 0.400 327 | 0.250 328 | 0.750 329 | 0.750 330 | 1.000 331 | 0.000 332 | 0.800 333 | 3.400 334 | 2.769 335 | 2.800 336 | 3.200 337 | 4.200 338 | 2.400 339 | 4.400 340 | 1.800 341 | 0.800 342 | 1.400 343 | 2.250 344 | 0.250 345 | 3.250 346 | 4.500 347 | 4.200 348 | 0.800 349 | 0.800 350 | 0.800 351 | 0.250 352 | 3.500 353 | 2.750 354 | 4.250 355 | 0.500 356 | 0.500 357 | 0.000 358 | 0.500 359 | 0.600 360 | 2.200 361 | 3.200 362 | 4.400 363 | 3.000 364 | 2.250 365 | 2.583 366 | 0.000 367 | 0.000 368 | 1.800 369 | 0.000 370 | 1.400 371 | 0.000 372 | 0.400 373 | 0.000 374 | 0.000 375 | 3.000 376 | 2.000 377 | 2.200 378 | 1.200 379 | 0.000 380 | 1.000 381 | 1.533 382 | 1.667 383 | 1.000 384 | 0.308 385 | 0.000 386 | 0.200 387 | 4.200 388 | 2.600 389 | 3.000 390 | 3.800 391 | 0.750 392 | 0.250 393 | 0.750 394 | 3.000 395 | 0.400 396 | 0.400 397 | 0.400 398 | 4.200 399 | 3.500 400 | 3.500 401 | 3.000 402 | 3.750 403 | 3.400 404 | 3.400 405 | 3.600 406 | 3.800 407 | 1.000 408 | 1.400 409 | 3.400 410 | 3.600 411 | 2.800 412 | 4.000 413 | 3.200 414 | 3.400 415 | 2.333 416 | 2.667 417 | 3.000 418 | 4.667 419 | 3.200 420 | 1.600 421 | 3.000 422 | 0.200 423 | 0.800 424 | 1.200 425 | 0.800 426 | 0.800 427 | 0.750 428 | 0.000 429 | 0.250 430 | 3.250 431 | 4.000 432 | 3.000 433 | 3.333 434 | 3.333 435 | 2.000 436 | 3.000 437 | 3.750 438 | 4.000 439 | 3.000 440 | 2.000 441 | 3.750 442 | 0.000 443 | 0.400 444 | 0.400 445 | 3.200 446 | 0.400 447 | 2.000 448 | 0.000 449 | 0.000 450 | 0.000 451 | 0.500 452 | 4.500 453 | 0.500 454 | 0.500 455 | 0.500 456 | 4.000 457 | 3.750 458 | 4.250 459 | 3.750 460 | 2.750 461 | 3.250 462 | 3.000 463 | 0.800 464 | 0.400 465 | 0.400 466 | 0.400 467 | 0.250 468 | 0.250 469 | 0.750 470 | 0.250 471 | 4.800 472 | 0.800 473 | 0.000 474 | 3.000 475 | 0.750 476 | 3.750 477 | 2.500 478 | 0.000 479 | 0.250 480 | 0.000 481 | 3.500 482 | 3.250 483 | 0.400 484 | 0.800 485 | 1.800 486 | 1.600 487 | 1.200 488 | 4.200 489 | 0.200 490 | 0.200 491 | 0.500 492 | 0.000 493 | 4.500 494 | 0.000 495 | 2.500 496 | 0.750 497 | 4.000 498 | 2.750 499 | 3.400 500 | 3.400 501 | 0.400 502 | 0.400 503 | 3.200 504 | 2.400 505 | 3.000 506 | 0.400 507 | 0.500 508 | 3.929 509 | 3.000 510 | 1.750 511 | 0.000 512 | 0.400 513 | 2.200 514 | 2.600 515 | 3.500 516 | 0.500 517 | 3.500 518 | 0.000 519 | 0.000 520 | 0.000 521 | 1.000 522 | 2.000 523 | 1.200 524 | 0.600 525 | 0.800 526 | 4.000 527 | 0.500 528 | 2.500 529 | 2.750 530 | 3.250 531 | 2.000 532 | 0.800 533 | 0.000 534 | 0.400 535 | 0.600 536 | 0.800 537 | 0.800 538 | 0.800 539 | 0.400 540 | 3.000 541 | 0.400 542 | 0.000 543 | 0.000 544 | 0.000 545 | 0.400 546 | 0.000 547 | 3.600 548 | 0.231 549 | 3.200 550 | 0.000 551 | 0.500 552 | 0.300 553 | 1.250 554 | 0.000 555 | 2.750 556 | 5.000 557 | 0.750 558 | 1.250 559 | 0.000 560 | 0.000 561 | 0.750 562 | 3.750 563 | 2.333 564 | 5.000 565 | 0.000 566 | 3.200 567 | 0.750 568 | 0.500 569 | 2.500 570 | 1.750 571 | 4.000 572 | 0.000 573 | 1.333 574 | 4.600 575 | 4.000 576 | 1.200 577 | 4.200 578 | 3.800 579 | 3.000 580 | 0.200 581 | 3.000 582 | 2.200 583 | 1.400 584 | 0.000 585 | 2.800 586 | 3.800 587 | 3.800 588 | 4.400 589 | 0.000 590 | 3.000 591 | 0.500 592 | 2.750 593 | 1.750 594 | 0.000 595 | 0.000 596 | 1.000 597 | 1.800 598 | 1.600 599 | 2.333 600 | 2.000 601 | 0.333 602 | 1.000 603 | 0.000 604 | 0.000 605 | 3.000 606 | 1.500 607 | 0.400 608 | 0.400 609 | 2.800 610 | 0.167 611 | 0.500 612 | 3.250 613 | 0.000 614 | 0.000 615 | 0.000 616 | 0.000 617 | 0.400 618 | 0.000 619 | 1.000 620 | 1.250 621 | 0.250 622 | 4.250 623 | 0.118 624 | 1.000 625 | 0.400 626 | 0.000 627 | 0.000 628 | 2.500 629 | 0.750 630 | 3.000 631 | 1.600 632 | 2.600 633 | 2.600 634 | 0.000 635 | 0.000 636 | 0.000 637 | 4.250 638 | 0.000 639 | 0.000 640 | 1.000 641 | 0.000 642 | 3.500 643 | 2.400 644 | 2.600 645 | 0.600 646 | 0.100 647 | 0.000 648 | 3.750 649 | 0.000 650 | 0.000 651 | 0.400 652 | 0.400 653 | 2.600 654 | 2.000 655 | 1.750 656 | 3.750 657 | 0.000 658 | 0.750 659 | 0.000 660 | 0.000 661 | 4.000 662 | 0.000 663 | 0.800 664 | 3.400 665 | 3.100 666 | 0.000 667 | 2.750 668 | 2.000 669 | 0.250 670 | 2.692 671 | 3.333 672 | 3.000 673 | 0.667 674 | 3.500 675 | 4.429 676 | 5.000 677 | 3.200 678 | 0.333 679 | 3.333 680 | 3.333 681 | 1.000 682 | 0.188 683 | 2.200 684 | 0.000 685 | 0.000 686 | 0.400 687 | 0.000 688 | 0.250 689 | 2.250 690 | 0.250 691 | 0.800 692 | 2.600 693 | 1.200 694 | 3.200 695 | 1.400 696 | 0.364 697 | 0.200 698 | 2.750 699 | 3.200 700 | 0.600 701 | 3.800 702 | 3.400 703 | 1.500 704 | 2.500 705 | 0.000 706 | 5.000 707 | 4.333 708 | 1.333 709 | 0.333 710 | 3.333 711 | 4.200 712 | 0.800 713 | 1.000 714 | 0.000 715 | 2.800 716 | 1.500 717 | 0.000 718 | 0.000 719 | 0.600 720 | 1.200 721 | 0.000 722 | 0.000 723 | 3.000 724 | 0.000 725 | 0.600 726 | 1.000 727 | 1.750 728 | 0.000 729 | 0.000 730 | 0.000 731 | 1.000 732 | 0.000 733 | 3.500 734 | 0.000 735 | 0.000 736 | 0.000 737 | 2.750 738 | 2.500 739 | 3.400 740 | 2.200 741 | 1.800 742 | 0.000 743 | 0.750 744 | 0.000 745 | 0.000 746 | 0.000 747 | 0.000 748 | 0.000 749 | 0.000 750 | 0.800 751 | -------------------------------------------------------------------------------- /data/msrvid/vocab.txt: -------------------------------------------------------------------------------- 1 | 's 2 | , 3 | . 4 | a 5 | aardvark 6 | about 7 | abs 8 | abulance 9 | abusing 10 | acoustic 11 | across 12 | added 13 | adding 14 | addresses 15 | adds 16 | adoring 17 | adult 18 | african 19 | after 20 | against 21 | agitating 22 | aiming 23 | aimlessly 24 | aims 25 | air 26 | airplane 27 | airways 28 | all 29 | alligator 30 | along 31 | american 32 | amount 33 | an 34 | and 35 | anger 36 | animal 37 | animals 38 | animated 39 | ankle 40 | another 41 | ant 42 | antenna 43 | anti-freeze 44 | apart 45 | apollo 46 | apple 47 | applied 48 | applies 49 | applying 50 | are 51 | area 52 | arena 53 | arm 54 | arms 55 | around 56 | arts 57 | as 58 | asian 59 | asleep 60 | assembling 61 | astro 62 | at 63 | ate 64 | attached 65 | attacks 66 | audience 67 | automatic 68 | away 69 | axe 70 | baby 71 | back 72 | backing 73 | backs 74 | backwards 75 | bacon 76 | badger 77 | bag 78 | bags 79 | balancing 80 | ball 81 | ballerina 82 | ballet 83 | balling 84 | bamboo 85 | banana 86 | band 87 | banging 88 | barbecue 89 | barbell 90 | barbells 91 | barked 92 | barking 93 | baseball 94 | basket 95 | basketball 96 | bath 97 | bath-tub 98 | bathing 99 | bathtub 100 | batman 101 | batter 102 | bays 103 | beach 104 | beak 105 | beans 106 | bear 107 | bears 108 | beating 109 | beats 110 | beauty 111 | beaver 112 | bed 113 | beef 114 | before 115 | behind 116 | being 117 | bell 118 | belly 119 | bending 120 | beside 121 | between 122 | bicycle 123 | bicycles 124 | bicyclists 125 | big 126 | bike 127 | biker 128 | bill 129 | bin 130 | bird 131 | bites 132 | biting 133 | black 134 | blades 135 | blanket 136 | blender 137 | block 138 | blocked 139 | blocks 140 | blow 141 | blowing 142 | blowtorch 143 | blue 144 | bmx 145 | board 146 | boarding 147 | boards 148 | boat 149 | body 150 | boiled 151 | boiling 152 | boils 153 | bollywood 154 | bomb 155 | bonfire 156 | bongo 157 | book 158 | booming 159 | boot 160 | bottle 161 | bottles 162 | bounces 163 | bowl 164 | bowling 165 | box 166 | boxer 167 | boxing 168 | boy 169 | boys 170 | braiding 171 | branch 172 | bread 173 | breaded 174 | breading 175 | break 176 | breaking 177 | breaks 178 | brick 179 | bridge 180 | broccoli 181 | broke 182 | broom 183 | broth 184 | brush 185 | brushes 186 | brushing 187 | bug 188 | bull 189 | bullets 190 | bun 191 | bunch 192 | bunny 193 | burning 194 | burrata 195 | burrowing 196 | bus 197 | busting 198 | butter 199 | buttered 200 | buttering 201 | buttons 202 | by 203 | cabbage 204 | cabinet 205 | cage 206 | cake 207 | calendar 208 | calender 209 | call 210 | camera 211 | cameras 212 | can 213 | canoe 214 | cantaloupe 215 | capsicum 216 | car 217 | card 218 | cards 219 | caribou 220 | carpet 221 | carries 222 | carrot 223 | carrots 224 | carrying 225 | cartoon 226 | carts 227 | carving 228 | castle 229 | cat 230 | catches 231 | catching 232 | cats 233 | cattle 234 | catwalk 235 | cd 236 | ceiling 237 | celebrating 238 | cell 239 | cello 240 | cement 241 | cereal 242 | chain 243 | chair 244 | chalk 245 | chases 246 | chasing 247 | checking 248 | checks 249 | cheese 250 | cheetah 251 | chef 252 | chess 253 | chest 254 | chewed 255 | chewing 256 | chicken 257 | child 258 | children 259 | chili 260 | chimp 261 | chimpanzee 262 | chop 263 | chopped 264 | chopper 265 | chopping 266 | chops 267 | church 268 | cigarette 269 | cilantro 270 | cinder 271 | circle 272 | circles 273 | clarinet 274 | classes 275 | clay 276 | cleaned 277 | cleaner 278 | cleaning 279 | cleans 280 | cleaver 281 | cliff 282 | climb 283 | climbing 284 | climbs 285 | clip 286 | close 287 | closes 288 | closet 289 | clove 290 | cloves 291 | clown 292 | club 293 | coating 294 | cob 295 | coke 296 | collecting 297 | colored 298 | combing 299 | come 300 | comedic 301 | coming 302 | communicating 303 | compete 304 | computer 305 | concert 306 | concrete 307 | container 308 | containing 309 | contents 310 | cook 311 | cooked 312 | cooker 313 | cooking 314 | cord 315 | coriander 316 | corn 317 | cosmetics 318 | costume 319 | costumes 320 | couch 321 | cougar 322 | could 323 | counter 324 | couple 325 | couples 326 | covers 327 | cow 328 | cowboy 329 | cracked 330 | cracking 331 | cracks 332 | crashes 333 | crawled 334 | crawling 335 | crawls 336 | cream 337 | creature 338 | creed 339 | creek 340 | cricket 341 | crochet 342 | crocodile 343 | crossing 344 | crowd 345 | crushing 346 | crying 347 | cub 348 | cubes 349 | cucumber 350 | cucumbers 351 | cup 352 | cupcake 353 | curb 354 | cut 355 | cuts 356 | cutting 357 | cycling 358 | cyclone 359 | dance 360 | danced 361 | dancer 362 | dances 363 | dancing 364 | dangling 365 | dead 366 | deboning 367 | deep 368 | deer 369 | delivering 370 | descaling 371 | desert 372 | desk 373 | deveining 374 | dices 375 | dicing 376 | did 377 | dieing 378 | different 379 | digging 380 | digital 381 | diner 382 | dips 383 | dirt 384 | dish 385 | dishes 386 | disk 387 | dives 388 | diving 389 | doctor 390 | doctors 391 | does 392 | dog 393 | doggy 394 | doghouse 395 | dogs 396 | doing 397 | doll 398 | dollar 399 | donkey 400 | door 401 | doorway 402 | dough 403 | doused 404 | down 405 | downhill 406 | dragged 407 | dragging 408 | dragon 409 | draining 410 | drawer 411 | drawing 412 | draws 413 | drew 414 | dried 415 | dries 416 | drill 417 | drilled 418 | drilling 419 | drills 420 | drinking 421 | drinks 422 | driven 423 | drives 424 | driving 425 | drivong 426 | drool 427 | dropped 428 | dropping 429 | droppped 430 | drops 431 | drove 432 | drum 433 | drums 434 | dry 435 | duck 436 | dummy 437 | dumping 438 | dunking 439 | each 440 | eagle 441 | earth 442 | eat 443 | eating 444 | eats 445 | edge 446 | egg 447 | eggplant 448 | eggs 449 | elderly 450 | electric 451 | electronic 452 | elephant 453 | elephants 454 | email 455 | emery 456 | empty 457 | emptying 458 | enclosed 459 | end 460 | erase 461 | erased 462 | erasing 463 | escalator 464 | escelator 465 | event 466 | exercise 467 | exercises 468 | exercising 469 | exiting 470 | exploded 471 | explodes 472 | explosion 473 | eye 474 | eyelid 475 | eyeliner 476 | eyes 477 | eyeshadow 478 | face 479 | fall 480 | falling 481 | falls 482 | fan 483 | faucet 484 | fed 485 | feed 486 | feeding 487 | feeds 488 | feet 489 | fell 490 | female 491 | fence 492 | ferret 493 | ferrets 494 | field 495 | fighting 496 | figure 497 | figures 498 | filing 499 | filling 500 | finding 501 | finely 502 | finger 503 | fingernails 504 | fingers 505 | fire 506 | fired 507 | fires 508 | firetruck 509 | firing 510 | fish 511 | fished 512 | fishes 513 | fishing 514 | fistfight 515 | fistfighting 516 | fitting 517 | five 518 | fixes 519 | flag 520 | flew 521 | flies 522 | flip 523 | flipped 524 | flipping 525 | flips 526 | float 527 | floating 528 | floor 529 | flour 530 | flouring 531 | flower 532 | flowers 533 | flute 534 | fly 535 | flying 536 | folding 537 | folds 538 | follow 539 | followed 540 | following 541 | fondles 542 | food 543 | foods 544 | football 545 | for 546 | fork 547 | form 548 | forth 549 | fought 550 | four 551 | foxes 552 | freezer 553 | fridge 554 | fried 555 | friend 556 | frog 557 | frogs 558 | from 559 | front 560 | fruit 561 | frying 562 | full 563 | funny 564 | furniture 565 | game 566 | gameboy 567 | games 568 | garage 569 | garden 570 | garland 571 | garlic 572 | garlics 573 | gasoline 574 | gate 575 | gel 576 | get 577 | gets 578 | getting 579 | giant 580 | gibbon 581 | giggling 582 | ginger 583 | girl 584 | girls 585 | giving 586 | glass 587 | glasses 588 | gloved 589 | gloves 590 | gnawing 591 | goal 592 | goes 593 | going 594 | golf 595 | goo 596 | gorilla 597 | got 598 | grabs 599 | grand 600 | grass 601 | grates 602 | grating 603 | gray 604 | grazed 605 | grazing 606 | greasing 607 | greating 608 | green 609 | grilling 610 | ground 611 | group 612 | guinea 613 | guitar 614 | guitars 615 | gun 616 | guns 617 | guts 618 | guy 619 | hackysack 620 | had 621 | hair 622 | haki 623 | half 624 | half-pipe 625 | hallway 626 | halter 627 | hammer 628 | hamster 629 | hand 630 | handgun 631 | handheld 632 | handling 633 | hands 634 | hanging 635 | hangs 636 | happily 637 | hard 638 | hardwood 639 | hare 640 | harp 641 | hat 642 | hay 643 | he 644 | head 645 | heading 646 | headphones 647 | heavy 648 | hedgehog 649 | helicopter 650 | helipad 651 | helping 652 | her 653 | herb 654 | herbs 655 | herd 656 | here 657 | high 658 | highway 659 | hiking 660 | hill 661 | himself 662 | his 663 | hit 664 | hitchhiking 665 | hits 666 | hitting 667 | hoe 668 | hold 669 | holding 670 | holds 671 | hole 672 | holes 673 | hopping 674 | hops 675 | horse 676 | hose 677 | hot 678 | hotel 679 | house 680 | how 681 | huge 682 | hugging 683 | hunting 684 | hurdles 685 | hurting 686 | in 687 | inflatable 688 | ingrediants 689 | ingredients 690 | inner 691 | inside 692 | insides 693 | instrument 694 | instruments 695 | int 696 | internet 697 | interview 698 | into 699 | is 700 | it 701 | items 702 | its 703 | itself 704 | jalepeno 705 | jeep 706 | jet 707 | jetski 708 | jogging 709 | joker 710 | jugs 711 | juice 712 | jump 713 | jumped 714 | jumping 715 | jumps 716 | jungle 717 | kangaroo 718 | kangroo 719 | karaoke 720 | karate 721 | kept 722 | kettle 723 | key 724 | key-board 725 | keyboard 726 | keyboards 727 | kick 728 | kicked 729 | kicking 730 | kicks 731 | kid 732 | kids 733 | kill 734 | kind 735 | kiss 736 | kissing 737 | kitchen 738 | kite 739 | kitten 740 | kittens 741 | kneading 742 | knife 743 | knives 744 | knocked 745 | knocks 746 | komodo 747 | ladies 748 | lady 749 | lake 750 | lamp 751 | landing 752 | lands 753 | lane 754 | language 755 | laptop 756 | large 757 | laughed 758 | laughing 759 | lawn 760 | lay 761 | laying 762 | lays 763 | leader 764 | leading 765 | leaf 766 | leak 767 | leather 768 | leave 769 | leaves 770 | leaving 771 | lecture 772 | leek 773 | leg 774 | legs 775 | lemon 776 | lemons 777 | lemur 778 | lense 779 | letter 780 | levitating 781 | library 782 | licking 783 | licks 784 | lid 785 | lies 786 | lifestyle 787 | lifted 788 | lifting 789 | lifts 790 | light 791 | like 792 | limb 793 | line 794 | liner 795 | lion 796 | lionel 797 | lips 798 | lipstick 799 | liquid 800 | lit 801 | little 802 | live 803 | living 804 | loading 805 | loaf 806 | loaves 807 | log 808 | logs 809 | long 810 | looking 811 | looks 812 | lori 813 | loris 814 | lorises 815 | loses 816 | lot 817 | lying 818 | machine 819 | made 820 | magazine 821 | magic 822 | make 823 | make-up 824 | makes 825 | makeup 826 | making 827 | male 828 | man 829 | mandolin 830 | maneuvering 831 | mango 832 | mans 833 | marching 834 | marsh 835 | martial 836 | masked 837 | massage 838 | mat 839 | math 840 | meal 841 | measured 842 | measures 843 | measuring 844 | meat 845 | mechanical 846 | medics 847 | meditating 848 | melon 849 | melting 850 | men 851 | metal 852 | mice 853 | microphone 854 | microwave 855 | military 856 | milk 857 | mimes 858 | mincing 859 | missile 860 | mix 861 | mixed 862 | mixer 863 | mixes 864 | mixing 865 | mixture 866 | mo-pad 867 | models 868 | monitor 869 | monkey 870 | mooing 871 | moon-walking 872 | moose 873 | mother 874 | motion 875 | motor 876 | motorcar 877 | motorcycle 878 | motorcyclist 879 | motorcyle 880 | motorized 881 | mouse 882 | mouth 883 | moves 884 | moving 885 | mowing 886 | mud 887 | mug 888 | mushrooms 889 | music 890 | musical 891 | mustard 892 | nail 893 | nails 894 | near 895 | net 896 | newspaper 897 | noodles 898 | noose 899 | nose 900 | not 901 | nuclear 902 | nunchucks 903 | object 904 | obstacles 905 | ocean 906 | octopus 907 | of 908 | off 909 | office 910 | officer 911 | oil 912 | okapi 913 | okra 914 | old 915 | older 916 | olive 917 | on 918 | one 919 | onion 920 | onions 921 | onstage 922 | onto 923 | oots 924 | open 925 | opening 926 | opens 927 | operating 928 | orange 929 | orangutan 930 | oriental 931 | other 932 | ouf 933 | out 934 | outside 935 | oven 936 | over 937 | overweight 938 | pacifier 939 | pacing 940 | package 941 | packet 942 | packing 943 | paddle 944 | paddling 945 | paino 946 | painting 947 | pan 948 | pancakes 949 | panda 950 | pandas 951 | pankda 952 | paper 953 | papers 954 | parking 955 | parrot 956 | partially 957 | parts 958 | passionately 959 | pasta 960 | paste 961 | pasture 962 | path 963 | patient 964 | patio 965 | patting 966 | paw 967 | pawing 968 | paws 969 | peas 970 | pecking 971 | pecks 972 | peddling 973 | peeled 974 | peeler 975 | peeling 976 | peels 977 | pen 978 | pencil 979 | pencilling 980 | penguins 981 | people 982 | pepper 983 | pepperoni 984 | peppers 985 | perched 986 | performed 987 | performing 988 | performs 989 | perimeter 990 | person 991 | persons 992 | pet 993 | petted 994 | petting 995 | phone 996 | piano 997 | pianos 998 | picked 999 | picking 1000 | picks 1001 | picture 1002 | pictures 1003 | piece 1004 | pieces 1005 | pig 1006 | pilots 1007 | pineapple 1008 | pineapples 1009 | ping 1010 | pink 1011 | pipe 1012 | pistol 1013 | pitcher 1014 | pizza 1015 | pizzas 1016 | place 1017 | places 1018 | placing 1019 | plane 1020 | plant 1021 | plantain 1022 | plants 1023 | plastic 1024 | plate 1025 | platform 1026 | play 1027 | played 1028 | player 1029 | players 1030 | playing 1031 | plays 1032 | podium 1033 | poking 1034 | polar 1035 | pole 1036 | policewomen 1037 | pong 1038 | pony 1039 | pool 1040 | pooping 1041 | pops 1042 | pork 1043 | pot 1044 | potato 1045 | potatoe 1046 | potatoes 1047 | potatos 1048 | pots 1049 | pouncing 1050 | poured 1051 | pouring 1052 | pours 1053 | powder 1054 | powdering 1055 | power 1056 | practicing 1057 | pratices 1058 | prawn 1059 | praying 1060 | prepared 1061 | preparing 1062 | pressing 1063 | prey 1064 | processor 1065 | prone 1066 | protective 1067 | pudding 1068 | puddle 1069 | pull-ups 1070 | pulled 1071 | pulling 1072 | pulls 1073 | pumpkin 1074 | punching 1075 | puncturing 1076 | puppies 1077 | puppy 1078 | push 1079 | push-ups 1080 | pushed 1081 | pushes 1082 | pushing 1083 | pushups 1084 | put 1085 | puts 1086 | putting 1087 | quail 1088 | quickly 1089 | rabbi 1090 | rabbit 1091 | rabbits 1092 | raccoons 1093 | race 1094 | racers 1095 | racing 1096 | rack 1097 | racks 1098 | raft 1099 | railway 1100 | rain 1101 | ran 1102 | rapidly 1103 | rat 1104 | raw 1105 | read 1106 | reading 1107 | recruits 1108 | red 1109 | reels 1110 | refrigerator 1111 | relaxes 1112 | relaxing 1113 | removes 1114 | removing 1115 | repeatedly 1116 | resting 1117 | retrieves 1118 | reverse 1119 | revive 1120 | rhino 1121 | ribs 1122 | ric-a-roni 1123 | rice 1124 | richie 1125 | ride 1126 | rider 1127 | rides 1128 | riding 1129 | ridint 1130 | rifle 1131 | rihanna 1132 | rind 1133 | ring 1134 | ringers 1135 | rinsing 1136 | rises 1137 | rising 1138 | ritchie 1139 | river 1140 | road 1141 | robin 1142 | robot 1143 | robots 1144 | rock 1145 | rocket 1146 | rocks 1147 | rocky 1148 | rod 1149 | rode 1150 | roll 1151 | rolling 1152 | roni 1153 | roof 1154 | room 1155 | rooster 1156 | roosters 1157 | rope 1158 | rowing 1159 | rubbing 1160 | rubs 1161 | run 1162 | runners 1163 | running 1164 | runs 1165 | runway 1166 | rushes 1167 | sails 1168 | sak 1169 | salt 1170 | same 1171 | sand 1172 | sang 1173 | sapling 1174 | sat 1175 | sauce 1176 | saucer 1177 | sausages 1178 | sawing 1179 | say 1180 | scales 1181 | scaling 1182 | scallions 1183 | scallop 1184 | scared 1185 | scissors 1186 | scooter 1187 | scores 1188 | scrambles 1189 | scraping 1190 | scratched 1191 | scratches 1192 | scratching 1193 | screaming 1194 | screwing 1195 | scrubbing 1196 | sea 1197 | seadoo 1198 | seafood 1199 | seasoning 1200 | seasons 1201 | seat 1202 | seated 1203 | seeds 1204 | selling 1205 | serves 1206 | serving 1207 | set 1208 | sets 1209 | several 1210 | severs 1211 | sewing 1212 | shadow 1213 | shake 1214 | shaking 1215 | shallot 1216 | shappens 1217 | share 1218 | sharpening 1219 | sharpens 1220 | shaved 1221 | she 1222 | sheet 1223 | shelf 1224 | shimmied 1225 | shimp 1226 | shirt 1227 | shirtless 1228 | shiso 1229 | shoe 1230 | shooting 1231 | shoots 1232 | shopping 1233 | short 1234 | shot 1235 | shotgun 1236 | shoulder 1237 | shoulders 1238 | shower 1239 | showing 1240 | shown 1241 | shows 1242 | shredded 1243 | shredding 1244 | shreded 1245 | shrimp 1246 | shrimps 1247 | side 1248 | sidewalk 1249 | sign 1250 | silencer 1251 | sing 1252 | singing 1253 | sings 1254 | sink 1255 | sitiing 1256 | sitring 1257 | sits 1258 | sitting 1259 | skate 1260 | skateboard 1261 | skateboarder 1262 | skateboards 1263 | skating 1264 | skewered 1265 | skewers 1266 | skiing 1267 | skillet 1268 | skin 1269 | skipping 1270 | skit 1271 | skull 1272 | skunk 1273 | sky 1274 | slab 1275 | slabs 1276 | slam 1277 | slaps 1278 | slced 1279 | sledge 1280 | sledghammer 1281 | slice 1282 | sliced 1283 | slicer 1284 | slices 1285 | slicing 1286 | slide 1287 | slides 1288 | sliding 1289 | slime 1290 | slipping 1291 | slow 1292 | slowly 1293 | small 1294 | smashing 1295 | smearing 1296 | smelling 1297 | smeone 1298 | smoked 1299 | smoking 1300 | snake 1301 | sneezed 1302 | sniffing 1303 | snow 1304 | soccer 1305 | socializing 1306 | soda 1307 | solenodon 1308 | some 1309 | someoen 1310 | someone 1311 | something 1312 | song 1313 | sound 1314 | soup 1315 | south 1316 | space 1317 | spanked 1318 | spanks 1319 | speaker 1320 | speaking 1321 | speaks 1322 | speech 1323 | spices 1324 | spinning 1325 | spins 1326 | spitting 1327 | splashes 1328 | split 1329 | splits 1330 | spoon 1331 | spray 1332 | sprayed 1333 | spraying 1334 | sprays 1335 | spread 1336 | spreading 1337 | spreads 1338 | sprinkled 1339 | sprinkler 1340 | sprinkling 1341 | spun 1342 | square 1343 | squash 1344 | squeezing 1345 | squirrel 1346 | stabbing 1347 | stage 1348 | staircase 1349 | stairs 1350 | stand 1351 | standing 1352 | stared 1353 | stares 1354 | staring 1355 | starting 1356 | station 1357 | statue 1358 | steak 1359 | stealing 1360 | stenograph 1361 | stenographers 1362 | step 1363 | steps 1364 | stick 1365 | stickers 1366 | sticky 1367 | still 1368 | stirred 1369 | stirring 1370 | stirs 1371 | stone 1372 | store 1373 | storm 1374 | stove 1375 | straightening 1376 | straining 1377 | straw 1378 | street 1379 | streets 1380 | stretcher 1381 | strikes 1382 | striking 1383 | string 1384 | strip 1385 | strips 1386 | stroking 1387 | strumming 1388 | stuck 1389 | studies 1390 | stuffed 1391 | stuffing 1392 | stunts 1393 | styling 1394 | submarine 1395 | substance 1396 | sucker 1397 | sucking 1398 | sugar 1399 | suit 1400 | suitcases 1401 | sumo 1402 | sun 1403 | sunflowers 1404 | sunglasses 1405 | sunset 1406 | surf 1407 | surfing 1408 | swamp 1409 | swats 1410 | sweeping 1411 | swept 1412 | swim 1413 | swimmers 1414 | swimming 1415 | swims 1416 | swing 1417 | swinging 1418 | swings 1419 | sword 1420 | swung 1421 | t 1422 | t-shirt 1423 | table 1424 | tables 1425 | tail 1426 | take 1427 | takes 1428 | taking 1429 | talk 1430 | talked 1431 | talking 1432 | talks 1433 | tap 1434 | tape 1435 | tapping 1436 | target 1437 | tased 1438 | taxi 1439 | teams 1440 | tearing 1441 | teased 1442 | teasing 1443 | teenage 1444 | teenager 1445 | telephone 1446 | television 1447 | tennis 1448 | that 1449 | the 1450 | their 1451 | them 1452 | themselves 1453 | then 1454 | there 1455 | thick 1456 | thin 1457 | things 1458 | thinking 1459 | thinly 1460 | three 1461 | threw 1462 | through 1463 | throwing 1464 | throws 1465 | tiding 1466 | tied 1467 | ties 1468 | tiger 1469 | tight 1470 | tiles 1471 | tiny 1472 | tire 1473 | tires 1474 | to 1475 | toad 1476 | toaster 1477 | toddler 1478 | toe 1479 | tofu 1480 | together 1481 | toilet 1482 | tomato 1483 | tomatoe 1484 | tomatoes 1485 | tomatos 1486 | too 1487 | took 1488 | top 1489 | torching 1490 | tortila 1491 | tortilla 1492 | tortoise 1493 | tosses 1494 | touch 1495 | touched 1496 | touching 1497 | touchscreen 1498 | toward 1499 | towards 1500 | towel 1501 | towels 1502 | town 1503 | toy 1504 | toys 1505 | track 1506 | tracking 1507 | tractor 1508 | traffic 1509 | trail 1510 | train 1511 | trainer 1512 | trampoline 1513 | transport 1514 | trash 1515 | trashcan 1516 | traveling 1517 | tray 1518 | trays 1519 | treatment 1520 | tree 1521 | trees 1522 | trick 1523 | tricks 1524 | tricycle 1525 | tried 1526 | tries 1527 | trotted 1528 | truck 1529 | trumpet 1530 | trunk 1531 | trying 1532 | trys 1533 | tub 1534 | tube 1535 | tuber 1536 | tummy 1537 | tuna 1538 | turf 1539 | turning 1540 | turns 1541 | turtle 1542 | tv 1543 | twice 1544 | two 1545 | tying 1546 | typed 1547 | typing 1548 | ukulele 1549 | uncooked 1550 | under 1551 | underwater 1552 | up 1553 | ups 1554 | upset 1555 | upside 1556 | upside-down 1557 | used 1558 | uses 1559 | using 1560 | vacuuming 1561 | van 1562 | vase 1563 | vegetable 1564 | vegetables 1565 | vehicle 1566 | very 1567 | vice 1568 | video 1569 | violin 1570 | vodka 1571 | volleyballs 1572 | wading 1573 | wake 1574 | waking 1575 | walk 1576 | walked 1577 | walking 1578 | walks 1579 | wall 1580 | wallaby 1581 | walruses 1582 | was 1583 | washing 1584 | washington 1585 | waste 1586 | watching 1587 | water 1588 | water-tub 1589 | watermelon 1590 | waterskiing 1591 | wave 1592 | waves 1593 | waving 1594 | way 1595 | weapon 1596 | wearing 1597 | webcam 1598 | wedges 1599 | weight 1600 | weights 1601 | were 1602 | whacks 1603 | what 1604 | wheel 1605 | wheelies 1606 | while 1607 | whipping 1608 | whisk 1609 | whisked 1610 | whisking 1611 | white 1612 | who 1613 | wilderness 1614 | wind 1615 | window 1616 | windows 1617 | winds 1618 | wine 1619 | wipes 1620 | wiping 1621 | wire 1622 | with 1623 | wok 1624 | wolves 1625 | woman 1626 | women 1627 | wood 1628 | wooded 1629 | wooden 1630 | woods 1631 | work 1632 | working 1633 | wrapping 1634 | wrestling 1635 | writing 1636 | yard 1637 | yellow 1638 | yoga 1639 | you 1640 | young 1641 | youngster 1642 | zebras 1643 | zoo 1644 | zucchini 1645 | -------------------------------------------------------------------------------- /data/sick/combinePredictionScoreswithAnnotationforSicData.pl: -------------------------------------------------------------------------------- 1 | use strict; 2 | use warnings; 3 | 4 | 5 | #20 There is no man in a black jacket doing tricks on a motorbike A person in a black jacket is doing tricks on a motorbike 3.6 CONTRADICTION 6 | 7 | my $anno = shift; 8 | my $pred = shift; 9 | 10 | open IN1, "< $anno" or die $!; 11 | open IN2, "< $pred" or die $!; 12 | 13 | my @annoo = ; 14 | my @predd = ; 15 | 16 | chomp(@annoo); 17 | chomp(@predd); 18 | 19 | if(@annoo-1 != @predd){ 20 | print("error!\n"); 21 | exit; 22 | } 23 | 24 | print "pair_ID\tsentence_A\tsentence_B\trelatedness_score\tentailment_judgment\n"; 25 | 26 | for(my $i = 0; $i < @predd; $i++){ 27 | if($annoo[$i+1] =~ /^(\d+\t(.*\t){2})(\d+\.*\d*)(\t.*)$/){ 28 | print $1.$predd[$i].$4."\n"; 29 | }else{ 30 | print "Noooooooooooooooooooooot possible\n"; 31 | print $annoo[$i+1]."\n"; 32 | exit; 33 | } 34 | } 35 | -------------------------------------------------------------------------------- /data/sick/dev/a.parents: -------------------------------------------------------------------------------- 1 | 3 3 5 5 11 5 6 9 6 11 0 11 2 | 2 8 2 6 6 3 8 0 8 8 12 10 3 | 2 4 4 0 4 4 8 6 4 | 2 4 4 0 6 4 5 | 2 4 4 0 4 5 6 10 10 7 6 | 2 4 4 0 4 7 5 4 10 8 4 11 7 | 2 0 2 8 8 5 5 3 2 11 2 11 14 12 8 | 2 4 4 0 4 7 5 9 | 2 6 2 3 6 0 10 | 2 0 4 2 4 7 5 11 | 2 11 2 3 4 9 9 9 5 11 0 12 | 2 6 2 3 6 0 13 | 2 7 2 5 3 7 0 7 7 14 | 2 3 0 3 4 5 8 6 3 11 3 14 14 11 15 | 2 4 4 0 4 7 5 16 | 3 3 5 5 0 7 5 17 | 7 7 7 5 7 7 0 7 8 18 | 2 8 2 3 4 5 8 0 8 11 9 8 14 8 16 14 16 19 17 19 | 5 5 2 2 7 7 0 7 11 11 8 20 | 5 5 2 2 7 7 0 7 13 13 10 10 8 21 | 2 4 4 0 4 7 5 4 10 4 12 10 22 | 2 6 2 3 6 0 6 9 7 23 | 2 4 4 0 6 4 6 9 7 9 13 13 10 24 | 2 4 4 0 4 4 8 6 25 | 2 14 2 5 3 5 8 5 5 12 12 5 14 0 16 14 26 | 2 14 2 5 3 5 8 5 5 12 12 5 14 0 16 14 27 | 2 4 4 0 4 8 8 5 28 | 2 4 4 0 4 7 4 7 12 12 12 7 4 4 4 18 18 15 29 | 2 4 4 0 4 7 4 9 7 9 10 11 14 11 14 17 15 30 | 2 5 5 5 0 7 5 5 11 11 8 13 11 13 16 14 31 | 2 4 4 0 6 4 4 9 7 32 | 2 4 4 0 6 4 4 9 7 9 13 13 9 33 | 3 3 5 5 0 5 9 9 6 34 | 2 8 5 5 2 5 5 0 8 12 12 9 8 15 8 17 15 15 20 18 35 | 3 3 8 3 6 4 8 0 8 36 | 3 3 8 3 6 4 8 0 8 37 | 2 5 5 5 0 5 8 6 38 | 2 8 2 6 6 2 2 0 8 12 12 9 39 | 2 6 2 3 6 0 6 9 7 40 | 3 3 9 3 7 7 3 9 0 9 9 11 12 15 13 41 | 3 3 6 3 4 0 6 11 11 11 7 42 | 2 10 2 8 8 5 5 3 10 0 43 | 2 5 5 5 0 5 8 6 44 | 2 8 2 6 6 3 8 0 10 8 45 | 2 5 5 5 0 5 8 6 10 8 10 13 11 13 18 18 18 13 46 | 2 4 4 0 4 7 5 4 10 8 10 11 14 12 47 | 2 3 0 3 6 4 3 9 3 9 12 10 48 | 2 10 2 5 3 5 8 5 10 0 10 13 11 49 | 2 5 5 5 0 5 8 6 50 | 2 4 4 0 6 4 51 | 2 4 4 0 4 7 5 7 10 8 52 | 2 5 5 5 0 5 8 6 53 | 2 4 4 0 6 4 54 | 2 4 4 0 6 4 55 | 2 7 2 5 2 7 0 7 11 11 8 56 | 2 7 2 5 2 7 0 7 7 11 9 57 | 2 4 4 0 6 4 58 | 2 4 4 0 4 4 4 59 | 2 4 4 0 4 4 60 | 2 4 4 0 4 4 6 9 7 61 | 2 4 4 0 4 7 5 62 | 2 4 4 0 4 63 | 2 4 4 0 7 7 4 64 | 2 4 4 0 4 7 5 65 | 2 4 4 0 66 | 3 3 5 5 0 67 | 2 4 4 0 4 68 | 3 3 0 3 69 | 2 4 4 0 4 7 5 70 | 3 3 5 5 0 5 5 7 7 9 13 13 10 71 | 2 4 4 0 4 7 4 72 | 2 5 5 5 0 7 5 5 10 8 73 | 2 4 4 0 7 7 4 74 | 2 4 4 0 6 4 75 | 2 8 2 5 3 8 8 0 76 | 2 4 4 0 6 4 77 | 2 4 4 0 6 4 78 | 2 5 5 5 0 5 8 6 79 | 2 5 5 5 0 7 5 5 10 8 80 | 2 5 5 5 0 5 8 6 5 11 9 81 | 2 4 4 0 4 4 8 6 82 | 2 5 5 5 0 5 8 6 83 | 2 4 4 0 6 4 6 7 8 4 84 | 2 4 4 0 6 4 6 7 8 85 | 2 5 5 5 0 5 9 9 6 5 12 10 86 | 2 4 4 0 6 4 4 87 | 2 4 4 0 6 4 4 88 | 2 10 2 6 6 2 2 10 10 0 12 10 10 16 16 13 89 | 2 4 4 0 4 7 5 90 | 2 11 2 3 4 8 8 5 11 11 0 91 | 2 8 2 5 3 8 8 0 8 9 10 13 11 92 | 2 8 2 5 3 8 8 0 8 11 9 93 | 2 4 4 0 6 4 6 6 94 | 2 5 5 5 0 5 8 6 95 | 2 5 5 5 0 5 5 9 7 96 | 2 4 4 0 4 7 4 4 97 | 2 4 4 0 6 4 98 | 2 4 4 0 6 4 99 | 3 3 5 5 0 7 5 100 | 2 6 2 5 3 0 6 10 10 6 10 13 11 13 16 14 10 19 17 101 | 2 4 4 0 4 7 5 102 | 3 3 0 3 6 3 103 | 2 4 4 0 6 4 4 9 7 104 | 2 4 4 0 6 4 105 | 2 4 4 0 4 4 8 6 106 | 2 4 4 0 4 4 8 6 107 | 2 4 4 0 6 4 4 10 10 7 108 | 2 5 5 5 0 5 8 6 8 12 12 9 109 | 2 7 2 5 3 7 0 7 11 11 8 110 | 2 4 4 0 6 4 4 7 111 | 2 5 5 5 0 7 5 112 | 3 3 0 5 3 113 | 2 4 4 0 6 4 114 | 2 4 4 0 6 4 115 | 2 4 4 0 6 4 116 | 2 4 4 0 4 7 4 117 | 2 4 4 0 118 | 2 4 4 0 6 4 119 | 3 3 5 5 0 5 8 6 120 | 3 3 0 3 3 7 5 121 | 2 0 4 2 4 5 5 9 7 122 | 2 4 4 0 6 4 123 | 3 3 0 5 3 124 | 2 4 4 0 125 | 3 3 6 6 6 0 6 9 7 126 | 2 4 4 0 7 7 4 127 | 2 5 5 5 0 7 5 7 10 8 128 | 3 3 5 5 0 5 6 9 7 129 | 2 5 5 5 0 5 8 6 5 11 9 130 | 2 6 6 6 6 0 6 9 7 131 | 2 4 4 0 6 4 6 7 4 9 132 | 4 4 4 0 4 5 4 9 7 133 | 2 0 5 5 2 5 6 9 7 12 12 9 15 15 12 134 | 2 5 5 5 0 5 8 6 135 | 2 5 5 5 0 5 8 6 136 | 2 9 2 6 6 2 2 9 0 11 9 9 9 15 13 137 | 2 7 2 5 3 7 0 7 10 8 7 7 14 12 138 | 2 5 5 5 0 8 8 5 139 | 2 6 2 2 6 0 140 | 2 4 4 0 4 4 6 4 10 8 141 | 3 3 10 3 7 7 3 3 10 0 10 10 14 12 14 15 12 19 17 142 | 4 4 4 6 6 0 6 6 10 8 10 11 8 15 13 143 | 2 4 4 0 144 | 2 4 4 0 6 4 4 7 10 8 145 | 2 4 4 0 4 5 146 | 3 3 5 5 0 8 8 5 5 9 147 | 2 4 4 0 6 4 148 | 2 4 4 0 4 149 | 2 4 4 0 4 4 150 | 2 4 4 0 6 4 151 | 2 4 4 0 4 8 8 5 152 | 4 4 4 6 6 0 8 6 153 | 4 4 4 6 6 0 8 6 154 | 4 4 4 6 6 0 8 6 155 | 4 4 4 6 6 0 8 6 156 | 2 4 4 0 6 4 157 | 2 4 4 0 7 7 4 158 | 2 5 5 5 0 5 9 9 6 159 | 2 4 4 0 6 4 4 9 4 9 12 10 15 15 12 15 16 160 | 2 4 4 0 8 8 8 4 161 | 2 4 4 0 6 4 6 7 4 11 4 13 11 11 16 14 162 | 2 0 4 2 4 8 8 5 2 2 12 10 10 15 13 163 | 2 4 4 0 4 7 9 7 5 164 | 2 4 4 0 4 7 4 165 | 2 4 4 0 4 7 5 166 | 2 0 4 5 2 5 8 6 167 | 2 4 4 0 6 4 4 9 7 9 10 168 | 2 4 4 0 6 4 169 | 2 4 4 0 4 5 5 5 10 8 10 13 11 170 | 2 4 4 0 4 4 171 | 2 4 4 0 4 172 | 2 4 4 0 6 4 4 4 8 173 | 2 0 5 5 2 5 9 9 6 5 5 13 11 174 | 2 4 4 0 6 4 175 | 2 4 4 0 7 7 4 176 | 3 3 5 5 0 7 5 177 | 3 3 0 5 3 178 | 2 4 4 0 6 4 179 | 2 5 5 5 0 5 8 6 180 | 2 4 4 0 7 7 4 4 10 8 181 | 2 4 4 0 4 7 4 4 10 8 10 13 11 182 | 2 4 4 0 6 4 183 | 2 4 4 0 4 7 4 184 | 2 5 5 5 0 185 | 4 4 4 0 4 7 5 186 | 2 4 4 0 6 4 187 | 2 4 4 0 6 4 188 | 2 4 4 0 4 4 8 6 189 | 3 3 0 5 3 3 8 6 190 | 2 4 4 0 6 4 4 7 191 | 2 4 4 0 6 4 4 9 7 4 12 10 192 | 3 3 0 3 7 7 4 193 | 3 3 0 3 6 3 194 | 3 3 5 5 0 8 8 5 195 | 2 4 4 0 4 196 | 3 3 0 3 6 4 197 | 3 3 5 5 0 7 5 198 | 2 4 4 0 6 4 199 | 2 4 4 0 6 4 9 9 6 200 | 2 4 4 0 4 7 5 7 10 8 201 | 2 6 2 5 3 0 6 10 10 7 202 | 2 4 4 0 4 7 5 7 10 8 203 | 2 4 4 0 4 7 5 7 10 8 204 | 2 0 4 2 2 205 | 2 4 4 0 4 4 8 6 206 | 2 4 4 0 6 4 207 | 4 4 4 0 4 5 6 9 7 208 | 2 4 4 0 4 7 5 209 | 2 4 4 0 6 4 210 | 2 0 4 2 4 5 5 9 7 211 | 2 5 5 5 0 7 5 212 | 2 4 4 0 6 4 213 | 2 4 4 0 6 4 214 | 2 4 4 0 4 7 4 215 | 2 4 4 0 4 4 8 6 216 | 2 4 4 0 4 4 8 6 217 | 2 4 4 0 4 7 5 218 | 2 4 4 0 4 4 8 6 219 | 2 4 4 0 4 4 8 6 220 | 2 4 4 0 6 4 221 | 2 0 4 2 4 7 5 222 | 2 0 4 2 4 5 223 | 2 4 4 0 4 7 5 224 | 2 4 4 0 4 7 5 225 | 2 4 4 0 7 7 4 226 | 2 0 4 2 4 7 5 227 | 2 4 4 0 6 4 6 9 7 228 | 2 0 4 2 4 5 8 6 229 | 2 4 4 0 6 4 230 | 2 4 4 0 231 | 2 4 4 0 6 4 232 | 2 4 4 0 233 | 2 4 4 0 234 | 2 4 4 0 6 4 235 | 2 4 4 0 6 4 236 | 2 4 4 0 6 4 237 | 2 7 2 5 3 7 0 9 7 9 12 10 238 | 2 4 4 0 239 | 2 4 4 0 7 7 4 240 | 2 4 4 0 6 4 241 | 2 0 4 2 4 7 5 242 | 2 0 4 2 4 7 5 243 | 2 5 5 5 0 5 8 6 244 | 2 4 4 0 7 7 4 4 10 8 245 | 2 4 4 0 6 4 246 | 2 6 2 3 6 0 6 6 10 8 247 | 2 4 4 0 6 4 6 9 7 248 | 2 4 4 0 4 7 5 4 10 4 249 | 2 4 4 0 6 4 250 | 2 0 4 5 2 5 251 | 2 0 4 2 4 7 5 5 10 8 252 | 2 4 4 0 6 8 6 4 253 | 2 0 4 2 4 7 5 254 | 2 4 4 0 6 4 255 | 2 4 4 0 6 4 4 7 256 | 2 4 4 0 6 4 4 9 7 257 | 2 5 5 5 0 5 8 6 258 | 2 5 5 5 0 7 5 259 | 2 4 4 0 260 | 2 4 4 0 4 261 | 2 4 4 0 4 4 8 6 262 | 3 3 0 3 6 4 263 | 4 4 4 0 4 7 5 264 | 2 4 4 0 6 4 265 | 2 4 4 0 6 4 266 | 3 3 5 5 0 8 8 5 5 11 9 5 14 5 14 267 | 2 4 4 0 4 7 5 268 | 2 4 4 0 4 269 | 2 4 4 0 6 4 270 | 2 5 5 5 0 5 8 6 271 | 2 4 4 0 6 4 272 | 2 4 4 0 6 4 273 | 3 3 5 5 0 274 | 3 3 5 5 0 275 | 2 4 4 0 6 4 6 7 276 | 2 4 4 0 4 4 8 6 277 | 2 4 4 0 7 7 4 4 8 11 9 278 | 2 0 4 2 4 7 5 279 | 3 3 6 6 6 0 6 9 7 280 | 2 4 4 0 7 7 4 281 | 2 5 5 5 0 5 8 6 282 | 2 4 4 0 6 4 283 | 2 4 4 0 6 4 284 | 2 4 4 0 6 4 285 | 2 6 2 3 6 0 6 9 7 286 | 2 5 5 5 0 5 8 6 287 | 2 4 4 0 4 7 5 288 | 2 4 4 0 4 4 8 6 289 | 2 4 4 0 6 4 290 | 3 3 5 5 0 5 8 6 291 | 2 4 4 0 4 7 5 292 | 2 4 4 0 6 4 293 | 2 4 4 0 6 4 294 | 2 7 2 5 2 7 0 7 10 8 7 13 11 295 | 2 4 4 0 4 4 8 6 296 | 2 5 5 5 0 5 8 6 297 | 2 5 5 5 0 5 8 6 298 | 2 5 5 5 0 5 299 | 2 5 5 5 0 5 300 | 4 4 4 0 4 7 5 4 10 8 301 | 2 4 4 0 6 4 4 9 7 302 | 2 0 6 6 6 2 6 9 7 303 | 3 3 9 3 7 7 4 9 0 9 12 10 9 9 14 18 18 14 304 | 3 3 5 5 0 5 8 6 5 12 12 5 12 15 13 305 | 2 6 2 5 2 0 6 9 7 6 10 11 11 16 16 13 11 19 11 6 20 23 21 306 | 2 6 2 3 6 0 6 6 10 8 10 14 14 11 307 | 5 5 2 2 7 7 0 9 7 7 12 10 308 | 3 3 9 3 7 7 4 9 0 9 14 14 14 10 309 | 2 4 4 0 4 7 5 4 4 11 9 310 | 4 4 4 6 6 0 6 6 6 11 9 9 14 12 311 | 4 4 4 6 6 0 6 6 11 11 6 13 11 11 16 14 312 | 2 4 4 0 6 4 6 9 7 4 12 10 12 13 313 | 2 4 4 0 4 7 5 4 8 9 12 10 4 4 16 14 314 | 2 4 4 0 4 7 5 7 8 9 12 10 12 15 13 315 | 7 1 5 5 2 7 0 7 8 11 9 14 14 11 14 15 18 16 316 | 2 4 4 0 4 4 8 6 317 | 2 9 2 6 6 2 2 9 0 9 12 10 318 | 3 3 5 5 0 5 8 6 8 11 8 13 5 13 319 | 3 3 5 5 0 5 8 6 5 13 12 13 9 320 | 2 4 4 0 4 4 9 9 4 9 12 9 321 | 3 3 5 5 0 9 9 9 5 5 12 5 12 16 16 13 16 19 17 322 | 2 8 2 6 6 3 8 0 8 12 12 9 8 8 16 14 323 | 2 4 4 0 4 8 8 5 324 | 2 4 4 0 6 4 6 9 7 4 13 13 10 325 | 3 3 5 5 0 9 9 9 5 5 12 5 326 | 2 5 5 5 0 5 8 6 327 | 4 4 4 6 6 0 9 9 6 6 12 6 14 12 328 | 2 4 4 0 7 7 4 4 10 4 12 10 10 16 16 13 329 | 3 3 5 5 0 5 8 6 330 | 3 3 5 5 0 5 8 6 331 | 2 4 4 0 4 8 8 5 332 | 2 0 5 5 2 5 8 6 8 9 12 10 333 | 2 5 5 5 0 5 8 6 10 8 12 10 12 15 13 334 | 3 3 5 5 0 7 5 5 10 8 335 | 2 7 2 3 4 7 0 7 7 12 12 9 12 16 16 13 336 | 2 10 2 6 6 2 2 10 10 0 10 11 12 15 13 15 16 17 337 | 3 3 9 3 7 7 4 9 0 12 12 9 338 | 2 6 2 3 6 0 6 6 10 8 339 | 2 5 5 5 0 5 8 6 5 9 10 13 11 340 | 4 4 4 11 4 9 9 9 4 11 0 11 15 15 12 341 | 2 4 4 0 4 5 6 9 7 342 | 2 0 4 2 4 5 6 7 12 12 12 8 343 | 2 9 2 6 6 2 2 9 0 9 13 13 10 9 16 14 344 | 3 3 5 5 0 5 8 6 8 11 9 345 | 2 16 2 8 8 5 5 3 3 14 14 11 11 9 16 0 18 16 18 16 16 21 22 26 26 23 26 30 30 27 346 | 2 4 4 0 6 4 4 9 7 9 10 347 | 3 3 7 3 4 7 0 7 10 8 348 | 3 3 5 5 0 7 5 5 11 11 5 349 | 2 0 4 2 4 8 8 5 8 11 9 11 16 16 16 12 350 | 2 5 5 5 0 7 5 351 | 3 3 5 5 0 5 8 6 352 | 2 14 2 3 7 7 4 10 10 7 10 13 11 0 14 353 | 2 7 2 2 7 7 0 7 10 8 354 | 3 3 5 5 0 5 355 | 2 12 2 9 9 5 5 9 3 12 12 0 14 12 356 | 2 5 5 5 0 5 8 6 8 11 9 357 | 2 7 2 5 3 7 0 7 7 11 9 358 | 2 6 2 3 6 0 6 6 6 9 12 10 359 | 3 3 5 5 0 5 8 6 5 11 9 11 14 12 360 | 2 0 5 5 2 5 6 9 7 6 12 10 12 13 13 2 361 | 2 5 5 5 0 5 8 6 8 12 12 9 362 | 2 4 4 0 7 7 4 9 7 11 9 11 11 9 16 9 18 16 18 21 19 363 | 2 4 4 0 6 4 6 9 7 364 | 2 5 5 5 0 5 6 10 10 7 365 | 2 4 4 0 4 7 5 7 10 8 10 11 12 13 366 | 2 4 4 0 4 7 5 7 7 4 367 | 3 3 5 5 0 10 10 7 7 5 368 | 3 3 5 5 0 5 8 10 10 5 10 11 369 | 3 3 5 5 0 5 5 9 7 9 10 13 11 370 | 2 4 4 0 6 4 371 | 2 6 2 3 6 0 6 10 10 7 372 | 2 11 2 5 2 2 9 9 6 11 0 11 14 12 14 15 373 | 2 11 2 5 2 2 9 9 6 11 0 11 14 12 14 15 374 | 2 19 2 6 6 3 6 6 2 11 2 11 15 15 12 15 15 19 0 19 22 20 22 25 23 25 26 375 | 2 5 5 5 0 8 8 5 5 12 12 5 14 12 14 15 16 19 17 12 23 23 20 376 | 2 4 4 0 7 7 4 4 10 4 10 10 14 12 14 17 15 377 | 2 0 5 5 2 2 9 9 6 9 10 13 11 10 16 14 378 | 3 3 5 5 0 8 8 5 11 11 8 379 | 3 3 9 3 7 7 4 9 0 9 12 10 380 | 3 3 7 3 4 7 0 7 10 8 381 | 2 6 2 3 6 0 6 6 10 8 10 11 12 382 | 2 4 4 0 4 7 5 7 8 9 13 13 10 13 16 14 4 20 20 4 20 383 | 2 0 5 5 6 2 10 10 10 6 6 6 12 15 13 384 | 2 8 2 5 3 8 8 0 10 8 8 14 14 11 8 17 15 17 20 18 385 | 3 3 5 5 0 5 8 6 5 11 9 386 | 2 4 4 0 7 7 4 4 10 8 10 13 11 387 | 2 0 4 2 4 8 8 5 5 11 9 11 14 12 388 | 2 8 2 5 3 8 8 0 8 11 9 14 14 11 17 17 14 389 | 2 8 2 5 3 8 8 0 8 11 9 14 14 11 17 17 14 390 | 2 4 4 0 4 4 8 6 8 9 10 391 | 2 4 4 0 7 7 4 7 11 11 8 392 | 3 3 5 5 0 5 8 6 393 | 2 4 4 0 4 5 9 9 6 9 12 10 394 | 2 9 2 7 7 7 3 9 0 12 12 9 395 | 3 3 5 5 0 5 9 9 6 9 13 13 9 396 | 2 8 2 6 6 3 8 0 8 11 9 397 | 2 7 2 3 6 4 0 7 10 8 10 11 7 15 7 15 398 | 3 3 5 5 0 8 8 5 399 | 2 8 2 6 6 3 8 0 8 11 9 400 | 2 4 4 0 4 7 5 4 10 8 401 | 2 8 2 6 6 3 8 0 8 11 9 402 | 2 5 5 5 0 5 6 6 10 5 10 403 | 3 3 5 5 0 5 6 7 8 9 9 17 17 13 13 17 9 9 9 22 22 19 19 25 23 404 | 3 3 5 5 0 5 8 6 8 12 12 9 405 | 2 3 0 5 3 5 5 3 10 3 10 13 11 10 16 10 16 19 17 406 | 2 3 0 5 3 5 5 3 10 3 10 13 11 10 16 10 16 19 17 407 | 2 4 4 0 6 4 4 9 11 11 4 11 14 12 14 15 408 | 2 7 2 2 7 7 0 7 12 12 12 8 409 | 2 4 4 0 4 4 8 6 410 | 2 4 4 0 4 5 411 | 2 5 2 2 0 5 9 9 6 412 | 3 3 8 3 6 4 8 0 8 9 13 13 10 413 | 2 0 5 5 8 8 8 2 8 9 10 13 11 13 14 414 | 2 4 4 0 6 4 4 9 7 415 | 2 8 2 6 6 3 8 0 10 8 10 10 15 15 10 416 | 2 8 2 6 6 3 8 0 8 12 12 8 417 | 3 3 15 3 8 8 8 3 8 12 12 8 3 15 0 15 19 19 16 418 | 2 6 2 3 6 0 6 10 10 6 419 | 3 3 5 5 0 5 6 9 7 9 13 13 10 420 | 2 7 2 5 3 7 0 7 10 8 421 | 2 7 2 5 3 7 0 10 10 7 7 13 7 13 16 14 16 20 20 17 20 23 21 422 | 2 4 4 0 4 7 5 423 | 2 4 4 0 4 8 8 5 4 12 12 9 424 | 2 4 4 0 4 4 10 10 10 6 425 | 4 4 4 6 6 0 6 9 7 9 13 13 9 15 6 15 426 | 3 3 12 3 10 10 10 7 7 3 12 0 12 12 17 17 14 427 | 2 5 5 5 0 5 6 9 6 6 12 6 5 13 16 14 428 | 2 5 5 5 0 5 5 7 7 11 7 429 | 2 6 2 3 6 0 6 9 7 9 12 10 430 | 2 6 2 3 6 0 6 6 10 8 431 | 2 4 4 0 4 7 4 432 | 5 5 2 2 7 7 0 7 10 8 433 | 3 3 6 6 6 0 6 434 | 2 6 2 3 6 0 6 11 11 11 7 435 | 2 4 4 0 4 4 8 6 436 | 2 4 4 0 4 4 8 6 8 12 12 9 437 | 2 4 4 0 4 7 5 7 8 438 | 2 4 4 0 4 7 5 7 10 8 439 | 4 4 4 6 6 0 6 9 7 440 | 2 3 0 3 6 4 3 9 3 9 12 10 441 | 2 7 2 5 3 7 0 7 11 11 8 7 14 12 7 18 18 23 18 21 19 23 7 23 24 23 28 26 442 | 3 3 7 3 4 7 0 7 11 11 7 11 14 12 443 | 3 3 8 3 6 4 8 0 8 11 9 444 | 3 3 5 5 0 5 8 5 8 8 10 13 10 445 | 2 4 4 0 4 7 5 446 | 3 3 5 5 0 8 8 5 8 11 9 447 | 3 3 5 5 0 5 5 5 11 11 8 5 448 | 2 4 4 0 4 8 8 5 8 11 9 449 | 3 3 5 5 0 5 10 10 10 6 450 | 2 8 2 6 6 3 8 0 8 11 9 8 451 | 3 3 13 3 6 4 6 6 6 11 9 13 0 13 14 452 | 2 0 2 5 3 8 8 10 10 5 10 13 11 453 | 2 8 2 6 6 3 8 0 8 11 9 454 | 6 3 6 3 3 8 8 0 8 11 9 455 | 2 4 4 0 4 7 5 4 4 13 13 13 9 456 | 2 7 2 5 3 7 0 7 8 9 12 10 12 13 7 17 19 19 15 457 | 2 4 4 0 4 7 5 4 10 4 10 13 11 458 | 2 4 4 0 4 7 5 4 8 459 | 2 4 4 0 4 7 5 460 | 2 6 2 3 6 0 6 9 7 9 10 13 11 461 | 2 4 4 0 4 7 4 4 4 12 12 9 462 | 2 4 4 0 4 7 5 463 | 2 4 4 0 4 9 9 9 4 464 | 2 6 2 3 6 0 6 9 6 6 12 17 12 16 16 13 6 17 20 18 465 | 2 4 4 0 7 7 4 466 | 2 13 2 7 7 7 3 7 11 11 7 13 0 13 17 17 14 467 | 2 4 4 0 4 8 8 5 468 | 2 12 2 3 6 4 6 10 10 6 12 0 12 13 14 17 15 469 | 2 3 0 3 7 7 4 7 10 8 14 14 14 3 14 14 18 16 18 21 18 14 22 25 23 470 | 2 3 0 3 6 4 9 9 3 9 12 10 471 | 5 5 2 2 7 7 0 7 11 11 8 472 | 2 4 4 0 4 7 5 4 10 8 473 | 2 4 4 0 4 7 5 7 10 8 474 | 2 8 2 6 6 3 8 0 8 11 9 11 14 12 475 | 7 7 7 3 3 7 9 9 0 9 12 10 12 15 13 476 | 2 9 2 7 7 7 3 9 0 11 9 9 14 20 14 18 18 15 20 9 20 477 | 3 3 5 5 0 5 8 6 5 11 5 14 14 11 14 17 14 478 | 2 4 4 0 6 4 4 7 10 12 10 8 479 | 2 4 4 0 7 7 4 4 4 9 9 14 14 11 480 | 3 3 5 5 0 5 8 6 8 11 9 5 15 15 17 17 5 17 481 | 3 3 5 5 0 5 8 6 8 11 9 5 15 15 17 17 5 17 482 | 5 5 2 2 11 5 9 9 6 11 0 11 14 12 483 | 5 5 2 2 7 7 0 10 10 7 10 14 14 11 484 | 2 4 4 0 4 7 5 485 | 3 3 5 5 0 5 5 9 7 5 13 13 5 13 16 13 486 | 3 3 5 5 16 7 5 5 5 11 9 11 14 11 16 0 16 487 | 3 3 5 5 0 8 8 5 5 11 5 11 12 488 | 2 4 4 0 6 4 489 | 3 3 5 5 0 5 9 9 6 5 12 10 490 | 2 4 4 0 7 7 4 491 | 2 8 2 3 4 4 8 0 10 8 8 492 | 2 4 4 0 6 4 493 | 2 5 5 5 0 5 8 6 494 | 2 4 4 0 4 4 9 9 6 495 | 2 5 5 5 0 5 8 6 496 | 2 4 4 0 4 4 8 6 497 | 2 4 4 0 7 7 4 498 | 2 4 4 0 4 7 5 499 | 2 4 4 0 4 7 5 7 8 500 | 3 3 5 5 0 8 8 5 5 12 12 9 501 | -------------------------------------------------------------------------------- /data/sick/dev/b.parents: -------------------------------------------------------------------------------- 1 | 2 0 4 5 2 5 5 9 5 11 9 2 2 | 3 3 5 5 0 7 5 5 10 8 3 | 2 4 4 0 4 4 4 7 4 | 2 4 4 0 4 8 8 5 5 | 2 4 4 0 4 8 8 5 6 | 3 3 8 3 6 4 8 0 8 11 9 7 | 2 4 4 0 4 5 5 9 7 9 12 10 8 | 2 4 4 0 4 7 5 9 | 2 4 4 0 6 4 4 9 4 10 | 2 6 2 3 6 0 11 | 2 6 2 3 6 0 12 | 3 3 5 5 0 5 6 7 11 11 8 13 | 3 3 5 5 0 5 8 10 10 5 14 | 2 3 0 3 4 5 8 6 3 11 3 15 | 2 4 4 0 4 8 8 5 16 | 2 0 2 7 4 4 3 3 10 3 12 10 17 | 5 5 5 5 7 7 0 7 8 18 | 2 5 2 3 0 5 8 6 19 | 5 5 2 2 7 7 0 7 11 11 8 20 | 5 5 2 2 7 7 0 7 10 8 21 | 2 4 4 0 4 7 5 4 10 4 10 14 14 11 22 | 2 6 2 3 6 0 6 9 7 23 | 2 5 2 3 0 5 8 6 8 12 12 9 24 | 3 3 5 5 0 5 8 6 25 | 2 11 2 6 6 2 11 11 11 11 0 11 12 13 16 19 16 16 14 19 26 | 3 3 5 5 0 7 5 7 10 8 10 27 | 2 6 2 3 6 0 8 6 28 | 2 4 4 0 4 7 4 7 12 12 12 7 4 4 4 18 18 15 29 | 3 3 9 3 6 3 6 3 0 9 13 13 10 9 30 | 2 4 4 0 6 4 4 10 10 7 12 10 12 15 13 31 | 2 7 2 6 6 3 0 9 7 32 | 2 4 4 0 6 4 4 9 7 33 | 2 7 2 5 3 7 0 7 10 8 7 13 11 34 | 2 15 2 3 6 4 6 12 12 12 12 6 15 15 0 17 15 35 | 3 3 8 3 6 4 8 0 8 36 | 3 3 5 5 0 5 5 37 | 2 10 2 5 3 5 6 7 10 0 13 13 10 13 17 17 13 10 20 10 20 23 21 38 | 2 7 2 5 2 7 0 7 11 11 8 39 | 2 6 2 3 6 0 6 7 8 9 10 40 | 2 15 2 5 2 8 8 5 2 2 13 13 2 15 0 15 18 16 41 | 4 4 4 5 8 5 8 0 8 9 42 | 2 4 4 0 6 4 4 12 12 9 9 7 43 | 2 0 4 6 6 2 6 9 7 44 | 3 3 5 5 0 7 5 10 10 7 45 | 2 4 4 0 4 4 8 6 8 13 13 13 8 46 | 2 4 4 0 6 4 6 7 8 13 10 10 9 47 | 2 0 4 2 2 7 5 7 8 11 9 48 | 2 3 0 3 6 4 3 9 3 9 12 10 49 | 2 0 5 5 2 7 5 7 10 8 50 | 2 4 4 0 7 7 4 9 7 9 51 | 2 3 0 3 6 4 52 | 2 4 4 0 6 4 53 | 2 4 4 0 6 4 54 | 2 0 4 2 4 7 5 55 | 2 7 2 5 2 7 0 7 7 11 9 56 | 2 7 2 5 2 7 0 7 11 11 8 57 | 2 4 4 0 6 4 58 | 2 4 4 0 4 4 6 9 7 59 | 2 4 4 0 4 4 6 9 7 60 | 2 4 4 0 4 4 6 9 7 61 | 2 4 4 0 4 62 | 2 4 4 0 6 4 4 9 7 63 | 2 5 5 5 0 5 8 6 64 | 2 4 4 0 6 4 65 | 2 4 4 0 66 | 2 4 4 0 67 | 2 4 4 0 4 4 9 9 6 68 | 3 3 0 3 69 | 2 4 4 0 70 | 2 0 4 2 4 5 5 7 7 9 13 13 10 71 | 3 3 6 6 6 0 6 6 8 8 10 14 14 11 72 | 2 4 4 0 6 4 4 9 7 73 | 2 4 4 0 4 74 | 2 4 4 0 6 4 75 | 2 7 2 5 3 7 0 76 | 2 7 2 5 3 7 0 77 | 2 4 4 0 4 78 | 2 5 5 5 0 7 5 79 | 2 5 5 5 0 7 5 5 10 8 80 | 2 5 5 5 0 5 8 6 5 11 9 81 | 2 5 5 5 0 5 8 6 82 | 2 4 4 0 6 4 83 | 2 4 4 0 6 4 6 7 8 84 | 2 5 5 5 0 7 5 85 | 2 5 5 5 0 5 8 6 86 | 2 5 5 5 0 5 8 6 87 | 2 6 6 6 6 0 6 9 7 88 | 2 9 2 6 6 2 2 9 0 11 9 9 15 15 12 9 89 | 2 9 2 6 6 2 2 9 0 11 9 90 | 2 4 4 0 4 7 5 91 | 2 8 2 5 3 8 8 0 8 11 9 92 | 3 3 5 5 0 93 | 2 4 4 0 6 4 6 6 94 | 2 4 4 0 6 4 95 | 3 3 7 3 4 7 0 9 7 7 12 10 96 | 2 5 5 5 0 5 6 5 10 8 97 | 2 4 4 0 6 4 98 | 2 5 2 5 8 8 8 0 8 99 | 3 3 5 5 0 5 8 6 100 | 2 4 4 0 4 5 8 6 101 | 2 4 4 0 6 4 6 7 8 102 | 2 5 5 5 0 5 6 9 7 103 | 2 4 4 0 6 4 4 9 7 104 | 2 4 4 0 6 4 4 9 7 105 | 2 4 4 0 4 7 5 106 | 2 4 4 0 4 7 5 107 | 3 3 5 5 0 5 5 9 7 108 | 2 4 4 0 4 4 8 6 109 | 2 4 4 0 4 4 8 6 110 | 2 4 4 0 6 4 4 7 111 | 2 4 4 0 6 4 112 | 2 4 4 0 7 7 4 113 | 2 0 4 2 4 7 5 114 | 3 3 0 5 3 115 | 2 5 5 5 0 5 8 6 8 11 9 116 | 2 4 4 0 117 | 2 6 2 3 6 0 118 | 2 4 4 0 6 4 119 | 3 3 0 3 3 7 5 120 | 2 4 4 0 4 7 5 121 | 2 4 4 0 6 4 122 | 3 3 0 5 3 123 | 3 3 0 5 3 124 | 3 3 5 5 0 125 | 2 4 4 0 7 7 4 126 | 3 3 5 5 0 7 5 127 | 2 4 4 0 4 7 4 128 | 3 3 0 3 3 7 5 129 | 2 4 4 0 4 7 5 130 | 2 4 4 0 4 7 5 131 | 2 5 5 5 0 7 5 7 8 5 10 132 | 2 4 4 0 4 4 6 133 | 3 3 5 5 0 5 8 6 11 11 8 14 14 11 134 | 2 0 5 5 2 5 6 9 7 12 12 9 15 15 12 135 | 3 3 5 5 0 5 8 6 11 11 8 14 14 11 136 | 3 3 5 5 0 7 5 5 5 11 9 137 | 2 4 4 0 4 7 4 7 8 9 10 13 11 138 | 2 4 4 0 7 7 4 139 | 2 7 2 5 2 7 0 7 140 | 2 4 4 0 6 4 4 9 7 141 | 4 4 4 6 6 0 6 6 10 8 10 11 8 15 13 142 | 3 3 5 5 0 7 5 143 | 3 3 5 5 0 5 144 | 2 4 4 0 6 4 4 9 7 145 | 2 4 4 0 4 5 146 | 2 4 4 0 6 4 147 | 2 5 5 5 0 7 5 148 | 2 4 4 0 4 149 | 2 0 4 5 2 5 6 150 | 2 5 5 5 0 5 8 6 151 | 2 3 0 3 7 7 4 152 | 4 4 4 6 6 0 8 6 153 | 5 5 5 5 7 7 0 9 7 154 | 4 4 4 6 6 0 8 6 155 | 4 4 4 6 6 0 8 6 156 | 2 4 4 0 4 7 4 157 | 2 4 4 0 4 7 4 158 | 2 4 4 0 4 8 8 5 159 | 2 0 4 2 4 7 5 2 2 9 12 10 12 13 14 160 | 2 4 4 0 4 7 5 4 10 8 4 4 14 12 161 | 2 4 4 0 4 4 8 6 162 | 2 4 4 0 4 4 8 6 163 | 2 4 4 0 6 4 164 | 3 3 5 5 0 8 8 5 165 | 2 5 5 5 0 5 8 6 166 | 2 4 4 0 4 7 5 167 | 2 4 4 0 6 4 4 9 7 9 10 168 | 3 3 0 5 3 169 | 2 4 4 0 4 5 5 7 11 11 8 170 | 2 4 4 0 6 7 4 171 | 2 4 4 0 6 7 4 172 | 2 4 4 8 7 7 4 0 173 | 2 4 4 0 4 8 8 5 4 4 12 10 174 | 2 4 4 0 6 4 175 | 2 4 4 0 6 4 4 7 176 | 2 5 5 5 0 5 9 9 6 177 | 2 5 5 5 0 5 5 9 7 178 | 3 3 5 5 0 7 5 179 | 2 4 4 0 6 4 180 | 2 4 4 0 6 4 4 9 7 181 | 2 8 2 3 6 4 8 0 8 11 8 182 | 2 4 4 0 6 4 183 | 2 4 4 0 4 4 184 | 2 4 4 0 185 | 4 4 4 0 4 7 5 186 | 2 4 4 0 6 4 187 | 2 4 4 0 4 188 | 2 0 4 5 2 5 5 9 7 189 | 2 5 5 5 0 5 8 6 190 | 2 5 5 5 0 5 6 5 10 8 191 | 2 4 4 0 6 4 4 7 192 | 2 4 4 0 4 7 5 193 | 2 0 4 2 4 5 8 5 194 | 3 3 5 5 0 8 8 5 195 | 4 4 4 0 4 7 5 196 | 2 4 4 0 4 7 5 197 | 2 4 4 0 6 4 198 | 2 4 4 0 6 4 199 | 2 4 4 0 7 7 4 200 | 2 4 4 0 4 7 4 201 | 2 4 4 0 4 7 4 202 | 2 5 5 5 0 5 8 5 203 | 2 4 4 0 4 4 8 6 204 | 2 4 4 0 205 | 2 5 5 5 0 5 8 6 206 | 2 4 4 0 4 4 8 6 207 | 3 3 0 3 4 5 8 6 208 | 2 0 4 5 2 7 5 209 | 2 4 4 0 6 4 210 | 2 4 4 0 6 4 211 | 2 4 4 0 6 4 212 | 2 4 4 0 4 7 4 213 | 2 4 4 0 4 7 4 214 | 2 4 4 0 4 7 4 215 | 2 0 4 2 4 7 5 5 10 8 216 | 2 4 4 0 4 7 5 217 | 2 4 4 0 4 4 8 6 218 | 2 4 4 0 4 4 8 6 219 | 2 4 4 0 4 4 8 6 220 | 2 4 4 0 6 4 221 | 2 4 4 0 6 4 222 | 2 4 4 0 6 4 223 | 2 4 4 0 4 7 4 224 | 2 4 4 0 4 4 6 9 7 225 | 2 0 4 2 4 8 8 5 226 | 2 4 4 0 6 4 227 | 2 4 4 0 6 4 6 9 7 228 | 2 4 4 0 6 4 229 | 2 4 4 0 4 7 5 230 | 2 4 4 0 4 231 | 2 4 4 0 4 7 4 232 | 2 0 4 2 2 233 | 2 0 4 2 2 234 | 2 4 4 0 6 4 235 | 2 4 4 0 6 4 236 | 2 0 4 2 4 7 5 237 | 2 4 4 0 4 7 5 9 7 238 | 3 3 5 5 0 239 | 2 4 4 0 6 4 6 9 7 240 | 2 4 4 0 6 4 241 | 2 4 4 0 6 4 242 | 2 4 4 0 6 4 243 | 2 4 4 0 6 4 244 | 2 0 4 2 4 7 5 5 10 8 245 | 2 4 4 0 6 4 246 | 2 6 2 3 6 0 6 6 10 8 247 | 2 4 4 0 6 4 4 9 7 248 | 2 0 4 2 4 7 5 5 10 8 249 | 2 0 4 2 7 7 4 250 | 2 4 4 0 4 251 | 2 4 4 0 6 4 4 9 7 252 | 2 4 4 0 6 4 4 9 7 253 | 2 4 4 0 6 4 254 | 2 4 4 0 6 4 255 | 2 5 5 5 0 7 5 256 | 2 0 4 2 4 7 5 5 10 8 257 | 2 4 4 0 6 4 258 | 2 4 4 0 6 4 259 | 2 4 4 0 260 | 2 4 4 0 4 4 8 6 261 | 2 4 4 0 4 4 9 9 6 262 | 2 4 4 0 4 7 5 263 | 2 4 4 0 4 264 | 2 0 4 5 2 7 5 265 | 2 5 5 5 0 5 8 6 266 | 2 4 4 0 6 4 4 4 4 267 | 2 4 4 0 4 7 5 268 | 2 4 4 0 6 4 269 | 2 0 4 2 4 7 5 270 | 2 4 4 0 6 4 271 | 2 0 4 2 4 7 5 272 | 2 4 4 0 6 4 273 | 3 3 5 5 0 274 | 2 4 4 0 7 7 4 4 10 8 275 | 2 4 4 0 6 4 6 7 276 | 4 4 4 0 4 7 5 4 10 8 277 | 2 5 5 5 0 5 5 9 7 278 | 2 4 4 0 6 4 279 | 2 4 4 0 6 4 280 | 2 0 4 2 4 7 5 281 | 2 4 4 0 6 4 282 | 2 5 5 5 0 7 5 283 | 2 4 4 0 6 4 284 | 2 4 4 0 4 285 | 2 6 2 3 6 0 286 | 2 4 4 0 6 4 287 | 2 4 4 0 6 4 288 | 2 4 4 0 4 4 8 6 289 | 2 0 2 3 6 4 290 | 2 4 4 0 4 7 5 291 | 3 3 5 5 0 5 8 6 292 | 2 5 5 5 0 5 8 6 293 | 2 4 4 0 6 4 294 | 2 7 2 5 2 7 0 7 10 8 7 14 14 11 295 | 2 4 4 0 6 4 296 | 2 4 4 0 6 4 297 | 2 4 4 0 4 298 | 2 4 4 0 4 299 | 2 4 4 0 300 | 3 3 0 3 3 7 5 301 | 2 4 4 0 6 4 4 7 302 | 2 6 2 5 3 0 6 9 7 303 | 3 3 9 3 7 7 4 9 0 9 13 13 9 9 16 9 16 19 17 304 | 3 3 5 5 0 5 8 6 305 | 2 6 2 5 2 0 6 10 10 7 6 6 15 15 12 12 18 12 12 19 22 20 306 | 2 6 2 3 6 0 6 9 7 9 12 10 307 | 5 5 2 2 7 7 0 9 7 7 12 10 308 | 2 7 2 5 3 7 0 7 11 11 8 309 | 3 3 0 3 6 4 3 3 10 8 310 | 4 4 4 6 6 0 6 6 10 6 311 | 2 8 2 6 6 3 8 0 11 11 8 312 | 2 5 5 5 0 5 8 6 8 11 9 11 12 13 16 14 313 | 2 4 4 0 4 7 5 7 8 9 12 10 12 15 13 314 | 2 3 0 3 6 4 6 7 8 11 9 315 | 2 4 4 0 7 7 4 10 10 7 13 13 10 316 | 2 4 4 0 4 4 8 6 317 | 3 3 5 5 0 5 8 6 318 | 3 3 5 5 0 5 8 6 319 | 3 3 5 5 0 5 8 6 5 12 12 9 320 | 3 3 9 3 7 7 4 9 0 9 12 10 12 15 13 321 | 3 3 7 3 6 4 0 7 11 11 8 322 | 2 9 2 6 6 3 9 9 0 9 13 13 10 9 17 17 9 19 17 323 | 2 4 4 0 4 7 5 4 11 11 8 324 | 2 4 4 0 6 4 6 9 7 4 13 13 10 325 | 3 3 4 0 4 8 8 5 4 11 4 13 11 326 | 2 4 4 0 4 8 8 5 8 11 9 327 | 2 0 5 5 2 2 9 9 6 9 12 10 328 | 2 7 7 7 7 7 0 7 10 7 10 11 12 13 329 | 3 3 5 5 0 330 | 3 3 5 5 0 331 | 2 0 6 6 6 2 6 9 7 9 12 10 332 | 3 3 5 5 0 5 8 6 333 | 2 7 2 5 2 7 0 7 10 8 334 | 2 7 2 5 3 7 0 9 7 7 12 10 335 | 2 8 2 3 4 5 8 0 8 8 12 10 12 15 13 336 | 3 3 6 6 6 0 6 6 11 11 8 337 | 3 3 6 6 6 0 6 6 11 11 8 338 | 3 3 6 6 6 0 6 9 7 339 | 2 4 4 0 4 7 5 4 11 11 8 340 | 4 4 4 11 4 9 9 9 4 11 0 11 15 15 12 341 | 2 4 4 0 4 5 6 9 7 342 | 2 7 2 3 4 7 0 11 11 11 7 343 | 2 4 4 14 6 4 4 9 7 9 12 9 14 0 344 | 2 0 5 5 2 5 6 10 10 7 345 | 2 4 4 0 7 7 4 4 11 11 8 11 15 15 11 4 18 4 18 18 346 | 3 3 0 3 6 4 3 9 7 347 | 2 0 5 5 2 5 8 6 2 9 9 11 14 12 348 | 2 8 2 6 6 3 8 0 8 8 10 349 | 2 8 2 6 6 3 8 0 10 8 10 15 15 15 11 350 | 3 3 6 6 6 0 6 9 7 351 | 3 3 5 5 0 5 8 6 352 | 2 8 2 6 6 3 8 0 8 11 9 8 12 353 | 2 6 2 2 6 0 6 10 10 7 354 | 2 15 2 6 6 3 6 9 6 6 13 13 6 15 0 15 16 15 21 21 15 355 | 2 15 2 6 6 3 6 9 6 6 13 13 6 15 0 15 16 15 21 21 15 356 | 2 4 4 0 6 4 4 9 7 357 | 2 4 4 0 7 7 4 358 | 2 6 2 3 6 0 6 6 6 9 12 10 359 | 2 0 5 5 2 5 6 9 7 6 12 10 12 15 13 360 | 2 8 2 6 6 3 8 0 8 9 12 10 361 | 2 4 4 0 7 7 4 7 7 11 7 362 | 2 4 4 0 8 8 8 4 4 4 12 10 10 15 13 363 | 2 4 4 0 4 7 5 364 | 2 4 4 0 4 7 5 7 10 8 365 | 3 3 0 3 7 7 4 366 | 2 4 4 0 4 4 8 6 367 | 3 3 5 5 0 7 5 368 | 2 9 2 6 6 2 2 9 0 9 12 14 14 9 9 369 | 2 9 2 6 6 2 2 9 0 9 12 14 14 9 9 370 | 2 4 4 0 4 7 4 7 10 8 371 | 2 6 2 3 6 0 6 9 7 12 12 9 372 | 2 6 2 3 6 0 6 10 10 7 373 | 2 7 2 5 3 7 0 7 10 8 374 | 2 19 2 6 6 3 6 6 2 11 2 11 15 15 12 15 15 19 0 19 22 20 22 26 26 23 375 | 2 4 4 0 7 7 4 4 4 11 9 376 | 2 4 4 15 6 4 4 7 10 8 10 13 10 15 0 377 | 3 3 5 5 0 5 8 6 8 11 9 378 | 3 3 9 3 7 7 4 9 0 9 12 10 9 15 13 379 | 3 3 11 3 6 4 6 7 8 11 0 11 14 12 380 | 3 3 7 3 4 7 0 7 10 8 381 | 2 4 4 0 4 382 | 3 3 5 5 0 5 8 6 8 12 12 9 383 | 3 3 5 5 0 9 9 9 5 5 12 5 12 15 13 384 | 2 4 4 0 6 4 4 10 10 7 4 13 11 13 16 14 4 19 17 385 | 3 3 5 5 0 5 8 6 5 11 9 386 | 2 0 4 2 4 8 8 5 5 11 9 11 14 12 387 | 2 4 4 0 4 4 8 6 8 12 12 9 4 16 16 13 388 | 2 13 2 6 6 2 9 9 6 2 13 13 0 13 16 14 13 19 17 389 | 2 4 4 0 7 7 4 390 | 2 4 4 0 4 7 5 391 | 2 4 4 0 7 7 4 392 | 3 3 5 5 0 5 8 6 393 | 2 5 5 5 0 5 8 6 394 | 2 6 2 3 6 0 8 6 6 12 12 9 395 | 3 3 5 5 0 5 9 9 6 9 12 9 396 | 2 3 0 3 6 4 6 10 10 7 397 | 2 7 2 3 6 4 0 7 10 8 10 11 7 15 7 15 398 | 3 3 4 0 4 7 5 7 8 4 12 4 12 399 | 2 4 4 0 4 7 5 4 10 8 400 | 2 8 2 6 6 3 8 0 8 11 9 401 | 2 4 4 0 4 7 5 4 10 8 402 | 6 1 4 2 6 0 6 9 7 403 | 3 3 5 5 0 5 6 7 8 9 9 17 17 13 13 17 9 9 9 22 22 19 19 25 23 404 | 2 4 4 0 405 | 2 3 0 5 3 5 5 3 10 3 10 13 11 13 16 13 16 19 17 406 | 2 9 2 5 3 5 8 5 0 9 10 407 | 2 4 4 0 6 4 4 9 11 11 4 11 14 12 14 15 408 | 2 7 2 2 7 7 0 7 12 12 12 8 409 | 2 4 4 0 4 7 5 4 10 4 13 13 10 13 16 13 410 | 2 4 4 0 4 7 5 411 | 2 5 2 2 0 5 10 9 10 6 412 | 4 4 4 0 4 5 4 4 10 8 413 | 3 3 5 5 0 7 5 5 8 9 12 10 12 13 414 | 2 4 4 0 6 4 4 9 7 415 | 2 8 2 6 6 3 8 0 10 8 10 10 15 15 10 416 | 2 8 2 6 6 3 8 0 8 8 10 14 14 11 417 | 2 4 4 0 4 7 5 7 7 418 | 3 3 7 3 4 7 0 9 7 419 | 3 3 5 5 0 5 6 9 7 9 13 13 10 420 | 2 8 2 6 6 3 8 0 8 11 9 421 | 2 7 2 5 3 7 0 10 10 7 7 13 7 13 16 14 16 19 17 19 22 20 422 | 2 4 4 0 4 7 5 423 | 2 4 4 0 4 8 8 5 4 12 12 9 424 | 2 4 4 0 6 4 6 11 11 11 7 425 | 3 3 5 5 0 8 8 5 8 9 13 13 10 426 | 3 3 9 3 7 7 3 9 0 9 10 14 14 11 9 17 9 427 | 2 5 5 5 0 5 8 12 8 11 8 5 12 15 13 428 | 2 5 5 5 0 5 5 7 7 11 7 429 | 2 4 4 0 4 7 5 430 | 2 6 2 3 6 0 6 6 10 8 431 | 2 4 4 0 6 4 6 9 7 432 | 3 3 9 3 7 7 4 9 0 9 13 13 10 433 | 3 3 5 5 0 5 434 | 2 4 4 0 4 7 5 435 | 2 4 4 0 4 4 6 9 7 436 | 2 4 4 0 4 4 6 9 7 437 | 2 4 4 0 4 7 5 7 8 438 | 2 4 4 0 4 7 5 7 10 8 439 | 4 4 4 6 6 0 6 9 7 440 | 3 3 8 3 6 4 8 0 8 11 9 441 | 2 4 4 0 4 8 8 5 4 12 12 4 12 15 13 442 | 2 8 2 6 6 3 8 0 8 443 | 3 3 8 3 6 4 8 0 8 11 9 444 | 2 7 2 5 3 7 0 7 10 7 10 10 12 15 12 445 | 3 3 5 5 0 5 9 9 6 9 13 13 10 446 | 2 4 4 0 4 8 8 5 447 | 2 4 4 0 4 10 6 6 6 4 448 | 2 4 4 0 4 7 5 4 8 11 9 449 | 2 4 4 0 6 4 4 9 7 4 12 10 450 | 3 3 5 5 0 8 8 5 5 11 9 11 15 15 12 451 | 2 4 4 0 7 7 4 7 10 7 10 11 452 | 2 8 2 6 6 3 8 0 8 11 9 453 | 2 4 4 0 4 7 5 4 10 4 12 10 454 | 6 3 6 3 3 8 8 0 8 11 9 455 | 3 3 5 5 0 7 5 456 | 2 4 4 0 4 7 5 4 10 4 10 13 11 457 | 2 7 2 5 3 7 0 7 8 9 12 10 12 13 7 17 19 19 15 458 | 2 4 4 0 4 7 5 4 11 11 8 459 | 3 3 5 5 0 10 10 7 7 5 5 13 11 460 | 2 4 4 0 4 7 5 7 12 12 12 8 14 12 16 14 16 16 4 461 | 2 4 4 0 4 7 4 7 10 8 462 | 2 4 4 0 4 7 5 463 | 2 4 4 0 4 4 8 6 464 | 2 4 4 0 4 8 8 5 4 11 17 11 15 15 12 17 4 17 465 | 2 4 4 0 7 7 4 466 | 2 11 2 6 6 3 6 9 6 11 0 11 15 15 12 467 | 2 6 2 3 6 0 9 9 6 6 12 18 12 13 14 14 18 6 18 468 | 2 4 4 0 7 7 4 7 11 11 7 4 14 4 14 17 15 469 | 2 3 0 3 6 4 9 9 3 9 12 10 470 | 2 3 0 3 7 7 4 7 10 8 14 14 14 3 14 14 18 16 18 21 18 14 22 25 23 471 | 5 5 2 2 7 7 0 7 472 | 2 4 4 0 4 7 5 7 10 8 473 | 2 4 4 0 4 4 8 6 4 11 9 474 | 2 5 5 5 0 5 9 9 6 475 | 2 4 4 0 6 4 6 9 7 476 | 2 7 2 3 4 7 0 9 7 7 12 10 477 | 3 3 5 5 0 5 8 6 478 | 2 4 4 0 6 4 4 7 10 12 10 8 479 | 2 4 4 0 7 7 4 4 4 9 9 14 14 11 480 | 3 3 5 5 0 5 8 6 8 11 9 5 15 15 17 17 5 17 481 | 3 3 13 3 6 3 6 10 10 7 13 13 0 13 17 17 14 482 | 5 5 2 2 11 5 9 9 6 11 0 11 14 12 483 | 5 5 2 2 11 5 9 9 6 11 0 11 14 12 484 | 2 8 2 6 6 3 8 0 8 8 13 13 10 485 | 3 3 5 5 16 7 5 5 5 11 9 11 14 11 16 0 16 486 | 2 4 4 0 4 4 8 6 4 12 12 4 12 15 12 487 | 2 8 2 6 6 3 8 0 8 13 13 13 9 488 | 2 5 5 5 0 5 8 6 489 | 2 4 4 0 4 7 5 4 10 4 12 10 490 | 2 6 2 3 6 0 6 6 6 9 12 10 491 | 2 4 4 0 4 5 4 4 10 8 492 | 3 3 5 5 0 7 9 7 5 5 12 10 493 | 5 5 5 5 7 7 0 7 8 494 | 2 7 2 5 3 7 0 7 10 8 10 10 495 | 2 4 4 0 7 7 4 4 11 11 8 496 | 2 4 4 0 4 7 5 497 | 2 4 4 0 4 498 | 2 4 4 0 4 8 8 5 499 | 2 7 2 5 3 7 0 9 7 500 | 2 4 4 0 4 8 8 5 501 | -------------------------------------------------------------------------------- /data/sick/dev/id.txt: -------------------------------------------------------------------------------- 1 | 4 2 | 24 3 | 105 4 | 116 5 | 119 6 | 185 7 | 197 8 | 211 9 | 218 10 | 219 11 | 225 12 | 228 13 | 236 14 | 253 15 | 280 16 | 285 17 | 304 18 | 317 19 | 382 20 | 384 21 | 394 22 | 402 23 | 417 24 | 450 25 | 520 26 | 526 27 | 530 28 | 592 29 | 619 30 | 630 31 | 647 32 | 651 33 | 687 34 | 698 35 | 717 36 | 718 37 | 765 38 | 780 39 | 816 40 | 860 41 | 873 42 | 882 43 | 913 44 | 933 45 | 947 46 | 980 47 | 987 48 | 988 49 | 1039 50 | 1102 51 | 1137 52 | 1170 53 | 1177 54 | 1178 55 | 1190 56 | 1192 57 | 1232 58 | 1236 59 | 1237 60 | 1241 61 | 1266 62 | 1302 63 | 1333 64 | 1390 65 | 1396 66 | 1400 67 | 1410 68 | 1412 69 | 1443 70 | 1469 71 | 1470 72 | 1487 73 | 1493 74 | 1495 75 | 1503 76 | 1506 77 | 1525 78 | 1584 79 | 1608 80 | 1628 81 | 1676 82 | 1690 83 | 1703 84 | 1711 85 | 1754 86 | 1807 87 | 1811 88 | 1839 89 | 1847 90 | 1861 91 | 1877 92 | 1881 93 | 1964 94 | 2001 95 | 2019 96 | 2058 97 | 2089 98 | 2096 99 | 2130 100 | 2157 101 | 2166 102 | 2221 103 | 2229 104 | 2231 105 | 2284 106 | 2286 107 | 2362 108 | 2364 109 | 2366 110 | 2385 111 | 2392 112 | 2402 113 | 2404 114 | 2405 115 | 2410 116 | 2430 117 | 2476 118 | 2485 119 | 2525 120 | 2527 121 | 2535 122 | 2544 123 | 2557 124 | 2566 125 | 2604 126 | 2606 127 | 2662 128 | 2668 129 | 2678 130 | 2679 131 | 2687 132 | 2704 133 | 2712 134 | 2720 135 | 2721 136 | 2722 137 | 2726 138 | 2738 139 | 2766 140 | 2772 141 | 2791 142 | 2795 143 | 2812 144 | 2822 145 | 2829 146 | 2842 147 | 2886 148 | 2898 149 | 2911 150 | 2932 151 | 2936 152 | 2965 153 | 2967 154 | 2968 155 | 2972 156 | 2996 157 | 3002 158 | 3036 159 | 3061 160 | 3107 161 | 3122 162 | 3123 163 | 3143 164 | 3174 165 | 3181 166 | 3222 167 | 3250 168 | 3258 169 | 3275 170 | 3291 171 | 3292 172 | 3322 173 | 3338 174 | 3364 175 | 3373 176 | 3384 177 | 3398 178 | 3420 179 | 3433 180 | 3459 181 | 3485 182 | 3501 183 | 3505 184 | 3518 185 | 3536 186 | 3586 187 | 3598 188 | 3625 189 | 3626 190 | 3657 191 | 3661 192 | 3670 193 | 3680 194 | 3711 195 | 3721 196 | 3733 197 | 3747 198 | 3790 199 | 3812 200 | 3855 201 | 3861 202 | 3862 203 | 3880 204 | 3897 205 | 3909 206 | 3910 207 | 3922 208 | 3941 209 | 3982 210 | 3996 211 | 4001 212 | 4006 213 | 4011 214 | 4015 215 | 4031 216 | 4054 217 | 4060 218 | 4066 219 | 4067 220 | 4079 221 | 4086 222 | 4114 223 | 4135 224 | 4140 225 | 4155 226 | 4157 227 | 4164 228 | 4187 229 | 4191 230 | 4196 231 | 4288 232 | 4321 233 | 4330 234 | 4342 235 | 4360 236 | 4376 237 | 4411 238 | 4429 239 | 4477 240 | 4505 241 | 4520 242 | 4614 243 | 4638 244 | 4650 245 | 4661 246 | 4707 247 | 4734 248 | 4755 249 | 4767 250 | 4776 251 | 4803 252 | 4814 253 | 4816 254 | 4823 255 | 4831 256 | 4843 257 | 4851 258 | 4852 259 | 4866 260 | 4891 261 | 4916 262 | 4934 263 | 4963 264 | 4966 265 | 4983 266 | 5003 267 | 5030 268 | 5047 269 | 5051 270 | 5052 271 | 5082 272 | 5110 273 | 5113 274 | 5119 275 | 5148 276 | 5203 277 | 5206 278 | 5310 279 | 5349 280 | 5352 281 | 5374 282 | 5454 283 | 5461 284 | 5498 285 | 5540 286 | 5588 287 | 5657 288 | 5698 289 | 5706 290 | 5745 291 | 5747 292 | 5799 293 | 5806 294 | 5904 295 | 5909 296 | 5914 297 | 5920 298 | 5924 299 | 5930 300 | 5938 301 | 5955 302 | 6001 303 | 6005 304 | 6042 305 | 6047 306 | 6078 307 | 6119 308 | 6131 309 | 6146 310 | 6153 311 | 6158 312 | 6203 313 | 6213 314 | 6219 315 | 6228 316 | 6231 317 | 6280 318 | 6287 319 | 6315 320 | 6330 321 | 6344 322 | 6358 323 | 6394 324 | 6396 325 | 6450 326 | 6482 327 | 6544 328 | 6568 329 | 6590 330 | 6592 331 | 6598 332 | 6625 333 | 6634 334 | 6649 335 | 6673 336 | 6705 337 | 6709 338 | 6729 339 | 6740 340 | 6756 341 | 6764 342 | 6784 343 | 6849 344 | 6866 345 | 6912 346 | 6932 347 | 6955 348 | 6961 349 | 6971 350 | 7002 351 | 7007 352 | 7018 353 | 7027 354 | 7043 355 | 7044 356 | 7064 357 | 7088 358 | 7093 359 | 7214 360 | 7228 361 | 7311 362 | 7319 363 | 7356 364 | 7363 365 | 7374 366 | 7394 367 | 7410 368 | 7445 369 | 7448 370 | 7464 371 | 7466 372 | 7471 373 | 7475 374 | 7477 375 | 7501 376 | 7533 377 | 7541 378 | 7544 379 | 7546 380 | 7548 381 | 7582 382 | 7590 383 | 7649 384 | 7667 385 | 7677 386 | 7718 387 | 7720 388 | 7726 389 | 7734 390 | 7743 391 | 7772 392 | 7795 393 | 7820 394 | 7877 395 | 7889 396 | 7932 397 | 7937 398 | 7938 399 | 7947 400 | 7950 401 | 7951 402 | 7997 403 | 8057 404 | 8122 405 | 8138 406 | 8141 407 | 8163 408 | 8193 409 | 8212 410 | 8220 411 | 8263 412 | 8313 413 | 8326 414 | 8334 415 | 8343 416 | 8362 417 | 8375 418 | 8383 419 | 8389 420 | 8461 421 | 8471 422 | 8500 423 | 8505 424 | 8548 425 | 8558 426 | 8576 427 | 8632 428 | 8633 429 | 8658 430 | 8660 431 | 8678 432 | 8700 433 | 8714 434 | 8727 435 | 8786 436 | 8792 437 | 8806 438 | 8832 439 | 8841 440 | 8855 441 | 8938 442 | 8963 443 | 8986 444 | 9014 445 | 9029 446 | 9036 447 | 9056 448 | 9069 449 | 9093 450 | 9102 451 | 9125 452 | 9132 453 | 9136 454 | 9169 455 | 9188 456 | 9198 457 | 9200 458 | 9211 459 | 9224 460 | 9242 461 | 9287 462 | 9303 463 | 9314 464 | 9336 465 | 9359 466 | 9371 467 | 9380 468 | 9401 469 | 9424 470 | 9425 471 | 9433 472 | 9452 473 | 9453 474 | 9490 475 | 9500 476 | 9545 477 | 9571 478 | 9584 479 | 9623 480 | 9669 481 | 9677 482 | 9706 483 | 9713 484 | 9722 485 | 9745 486 | 9747 487 | 9759 488 | 9763 489 | 9771 490 | 9788 491 | 9789 492 | 9822 493 | 9838 494 | 9843 495 | 9869 496 | 9880 497 | 9931 498 | 9963 499 | 9975 500 | 9988 501 | -------------------------------------------------------------------------------- /data/sick/dev/sim.txt: -------------------------------------------------------------------------------- 1 | 3.6 2 | 3.4 3 | 3.8 4 | 2.9 5 | 4.2 6 | 2.6 7 | 3.165 8 | 4.6 9 | 4.9 10 | 4.2 11 | 2.7 12 | 3.3 13 | 1.9 14 | 4.7 15 | 3.135 16 | 3.9 17 | 3.8 18 | 1.3 19 | 4.4 20 | 4.35 21 | 3.6 22 | 4.1 23 | 4 24 | 3.3 25 | 3.3 26 | 2.4 27 | 3.1 28 | 3.5 29 | 3.5 30 | 3.5 31 | 3.3 32 | 4.6 33 | 3.4 34 | 2.785 35 | 3.9 36 | 3.9 37 | 4 38 | 3.1 39 | 5 40 | 4.2 41 | 3.5 42 | 3.1 43 | 4.2 44 | 3.8 45 | 4.8 46 | 2.1 47 | 4.3 48 | 3.1 49 | 3.3 50 | 1 51 | 3.5 52 | 3 53 | 4.1 54 | 3.6 55 | 4.3 56 | 4.6 57 | 3.6 58 | 3.285 59 | 3.8 60 | 4.1 61 | 5 62 | 1.5 63 | 4.9 64 | 1.2 65 | 3.6 66 | 2.9 67 | 1.4 68 | 4.5 69 | 1.7 70 | 3.8 71 | 2.5 72 | 4 73 | 4.9 74 | 4.9 75 | 3.3 76 | 3.8 77 | 1.2 78 | 4.5 79 | 4.7 80 | 4.6 81 | 1.1 82 | 5 83 | 4.7 84 | 1.1 85 | 4.6 86 | 2.4 87 | 2.4 88 | 4.6 89 | 1 90 | 4 91 | 3.5 92 | 4.2 93 | 4.9 94 | 5 95 | 3.3 96 | 4.8 97 | 3.2 98 | 1.1 99 | 3.4 100 | 3 101 | 4.8 102 | 3.9 103 | 4.1 104 | 3.1 105 | 4.7 106 | 4.5 107 | 3.8 108 | 4.2 109 | 3.3 110 | 3.4 111 | 2.7 112 | 3.5 113 | 3 114 | 4.7 115 | 1.3 116 | 4.4 117 | 4.7 118 | 2.2 119 | 3.8 120 | 4.2 121 | 2.5 122 | 3.1 123 | 4.5 124 | 4.6 125 | 4.8 126 | 3.9 127 | 2.335 128 | 3.1 129 | 4.1 130 | 3.4 131 | 3 132 | 5 133 | 4.3 134 | 3 135 | 4 136 | 5 137 | 2.7 138 | 3 139 | 2.6 140 | 5 141 | 4.8 142 | 4.5 143 | 2.7 144 | 2.7 145 | 5 146 | 3.8 147 | 3.2 148 | 4.3 149 | 4 150 | 2.4 151 | 3 152 | 3.3 153 | 4.8 154 | 3.5 155 | 3.4 156 | 3.3 157 | 2.3 158 | 3.2 159 | 4.7 160 | 2.3 161 | 4.6 162 | 3.1 163 | 3.6 164 | 2.8 165 | 3.8 166 | 3.7 167 | 4.9 168 | 3.7 169 | 4.9 170 | 1.7 171 | 2.1 172 | 3.2 173 | 3.4 174 | 4.9 175 | 4.1 176 | 4.8 177 | 3.2 178 | 1.9 179 | 5 180 | 4.4 181 | 4.1 182 | 4.8 183 | 3.6 184 | 3.3 185 | 4.9 186 | 4.6 187 | 4.3 188 | 3.4 189 | 4.7 190 | 5 191 | 2.7 192 | 4.9 193 | 3.7 194 | 3.8 195 | 4.9 196 | 4.3 197 | 3.2 198 | 5 199 | 4.8 200 | 3.2 201 | 3.4 202 | 3.285 203 | 4.4 204 | 3.4 205 | 4.3 206 | 3.4 207 | 3.8 208 | 3.9 209 | 3.7 210 | 2.2 211 | 4.3 212 | 4.8 213 | 4.8 214 | 4.9 215 | 2.9 216 | 4.5 217 | 2.6 218 | 4.6 219 | 3.3 220 | 4.7 221 | 3.9 222 | 3.2 223 | 4.7 224 | 3.4 225 | 3.7 226 | 4 227 | 3.7 228 | 3.8 229 | 3.6 230 | 1.7 231 | 4.4 232 | 3.8 233 | 3.4 234 | 4.6 235 | 4.4 236 | 2.7 237 | 3.7 238 | 3 239 | 1.2 240 | 4.2 241 | 3.6 242 | 4.4 243 | 2.4 244 | 3.6 245 | 4.8 246 | 4.4 247 | 4.8 248 | 1.4 249 | 3.7 250 | 3.8 251 | 2.935 252 | 4.4 253 | 3.8 254 | 3 255 | 4 256 | 3.8 257 | 5 258 | 3.8 259 | 3 260 | 4 261 | 4.5 262 | 3.7 263 | 4.7 264 | 2.7 265 | 5 266 | 4.4 267 | 4.9 268 | 3.5 269 | 3.6 270 | 1.2 271 | 2.1 272 | 4.8 273 | 4 274 | 1 275 | 3.5 276 | 5 277 | 2.2 278 | 3.6 279 | 4.3 280 | 4.1 281 | 5 282 | 4.2 283 | 3.7 284 | 4.2 285 | 2.3 286 | 5 287 | 1.2 288 | 4 289 | 3.7 290 | 1.4 291 | 3.2 292 | 5 293 | 4.2 294 | 4 295 | 3.1 296 | 5 297 | 1 298 | 3.8 299 | 2.3 300 | 4 301 | 3.7 302 | 2.8 303 | 3.4 304 | 3.4 305 | 5 306 | 4.2 307 | 3.3 308 | 4 309 | 2.5 310 | 3 311 | 1.6 312 | 3.4 313 | 3.8 314 | 4.1 315 | 2.6 316 | 3.3 317 | 5 318 | 4.9 319 | 4.6 320 | 2.8 321 | 2.2 322 | 3.2 323 | 2.3 324 | 3.8 325 | 3.5 326 | 3.1 327 | 4 328 | 3.1 329 | 3.3 330 | 2.7 331 | 3.9 332 | 2.7 333 | 4.5 334 | 4.8 335 | 2.8 336 | 4.9 337 | 3.5 338 | 3.3 339 | 3.2 340 | 4.8 341 | 3.8 342 | 3.4 343 | 2.2 344 | 4 345 | 3.4 346 | 3.8 347 | 3.185 348 | 3 349 | 3.4 350 | 2.5 351 | 3.8 352 | 5 353 | 3 354 | 2.6 355 | 3.2 356 | 5 357 | 2.6 358 | 5 359 | 3.8 360 | 2.6 361 | 4.8 362 | 4.3 363 | 4.1 364 | 3.3 365 | 3.1 366 | 4.1 367 | 2.4 368 | 4.9 369 | 3.6 370 | 3.5 371 | 4.9 372 | 3.6 373 | 2.5 374 | 4.9 375 | 2.4 376 | 3 377 | 3.3 378 | 2.9 379 | 5 380 | 5 381 | 4.5 382 | 3.1 383 | 3.6 384 | 3.7 385 | 4.5 386 | 3.8 387 | 2.9 388 | 4.3 389 | 1.5 390 | 3.2 391 | 3.9 392 | 4.4 393 | 3.7 394 | 3.9 395 | 4.7 396 | 2 397 | 3.1 398 | 2.2 399 | 3.4 400 | 2.3 401 | 3.5 402 | 2.8 403 | 4.8 404 | 3 405 | 4.4 406 | 3 407 | 4.8 408 | 4.4 409 | 2.4 410 | 3.335 411 | 4.2 412 | 3.1 413 | 4.4 414 | 4.4 415 | 4.8 416 | 4.2 417 | 2.4 418 | 4.3 419 | 3.3 420 | 4 421 | 4.6 422 | 4.1 423 | 4.3 424 | 3.1 425 | 3.2 426 | 4.2 427 | 4.4 428 | 4.8 429 | 3.8 430 | 4.9 431 | 4.8 432 | 4 433 | 4.6 434 | 3.5 435 | 4.3 436 | 3.7 437 | 4.5 438 | 3.8 439 | 3.1 440 | 4.5 441 | 4 442 | 3.8 443 | 4.4 444 | 3.7 445 | 2.3 446 | 2.9 447 | 3.6 448 | 4.4 449 | 2.8 450 | 3.4 451 | 2.4 452 | 4.9 453 | 4.5 454 | 3.7 455 | 4.4 456 | 3.2 457 | 2 458 | 4.3 459 | 4 460 | 3.2 461 | 3.1 462 | 4.9 463 | 3.3 464 | 4.2 465 | 4.9 466 | 3 467 | 3.5 468 | 3.3 469 | 4.1 470 | 4 471 | 4.4 472 | 3.7 473 | 1.6 474 | 4 475 | 2.9 476 | 2.8 477 | 4.5 478 | 4.9 479 | 3.6 480 | 4.8 481 | 3.5 482 | 4.2 483 | 4.5 484 | 3.9 485 | 4.4 486 | 4.4 487 | 1.1 488 | 1 489 | 1.4 490 | 1 491 | 1 492 | 2 493 | 1 494 | 1 495 | 2.8 496 | 1.2 497 | 3 498 | 1 499 | 1 500 | 1 501 | -------------------------------------------------------------------------------- /data/sick/readme.txt: -------------------------------------------------------------------------------- 1 | ::::::::::::::::::::::: University of Trento - Italy :::::::::::::::::::::::::::::::: 2 | 3 | :::::::::::: SICK (Sentences Involving Compositional Knowledge) data set :::::::::::: 4 | 5 | 6 | The SICK data set consists of 10,000 English sentence pairs, built starting from two existing 7 | paraphrase sets: the 8K ImageFlickr data set (http://nlp.cs.illinois.edu/HockenmaierGroup/data.html) 8 | and the SEMEVAL-2012 Semantic Textual Similarity Video Descriptions data set 9 | (http://www.cs.york.ac.uk/semeval-2012/task6/index.php?id=data). Each sentence pair is annotated 10 | for relatedness in meaning and for the entailment relation between the two elements. 11 | 12 | 13 | The SICK data set is released under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 14 | Unported License (http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US) 15 | 16 | 17 | The SICK data set is used in SemEval 2014 - Task 1: Evaluation of compositional distributional 18 | semantic models on full sentences through semantic relatedness and textual entailment 19 | 20 | 21 | The current release is a subset of the data set representing Task 1 Test data (4927 sentence pairs) 22 | 23 | 24 | File Structure: tab-separated text file 25 | 26 | 27 | Fields: 28 | 29 | - sentence pair ID 30 | 31 | - sentence A 32 | 33 | - sentence B 34 | 35 | - semantic relatedness gold label (on a 1-5 continuous scale) 36 | 37 | - textual entailment gold label (NEUTRAL, ENTAILMENT, or CONTRADICTION) 38 | 39 | -------------------------------------------------------------------------------- /data/sick/sick_evaluation.R: -------------------------------------------------------------------------------- 1 | ## Use this R script as follows: 2 | 3 | ## R --no-save --slave --vanilla --args your-scores gold < sick_evaluation.R 4 | 5 | ## where your-scores is the file with your system output and gold is 6 | ## the gold standard file (for example, the SICK_trial.txt and 7 | ## SICK_train.txt files we already released). 8 | 9 | ## Your file must contain the following 3 tab-delimited columns: 10 | 11 | ## -pair_ID (the ids, that should match those in the relevant the 12 | ## -trial, train or test data), 13 | 14 | ## - entailment_judgment (predictions of your system for the 15 | ## entailment sub-task; possible values: ENTAILMENT, CONTRADICTION, 16 | ## NEUTRAL) and 17 | 18 | ## - relatedness_score (numerical predictions of your system for the 19 | ## sentence relatedness sub-task). 20 | 21 | ## Note that the first line of the file must be a "header" naming the 22 | ## 3 columns exactly with the 3 strings above (pair_ID, 23 | ## entailment_judgment and relatedness_score). 24 | 25 | ## The order of the columns and rows does not matter: of course, the 26 | ## ids must match those in the relevant data sets. 27 | 28 | ## If you do not participate in the entailment or relatedness task, 29 | ## please provide a column of NA (by that, we mean that you should 30 | ## literally enter the string NA in each row). 31 | ## Note that, for either subtask you want to evaluate, you must 32 | ## provide a value for each test pair: if your scores contain 1) NAs 33 | ## or 2) missing values, the script will either ignore the subtask 34 | ## or return an error. 35 | 36 | ## The script returns system (percentage) accuracy for the entailment 37 | ## task and Pearson and Spearman correlation scores and mean squared 38 | ## error for the relatedness task. 39 | 40 | 41 | ifile = commandArgs()[6]; 42 | gold = commandArgs()[7]; 43 | 44 | read.delim(ifile, sep="\t", header=T, stringsAsFactors=F) -> score; 45 | read.delim(gold, sep="\t", header=T) -> gold; 46 | 47 | score <- score[order(score$pair_ID), ]; 48 | gold <- gold[order(gold$pair_ID), ]; 49 | 50 | 51 | 52 | if (FALSE %in% (score$pair_ID==gold$pair_ID)){ 53 | print("ERROR: pair IDs in score set and gold set do not correspond") 54 | quit() 55 | } 56 | 57 | 58 | print(paste("Processing ", ifile, sep="")); 59 | 60 | if (TRUE %in% is.na(score$entailment_judgment)){ 61 | print("No data for the entailment task: evaluation on relatedness only") 62 | }else if (FALSE %in% (unique(score$entailment_judgment) %in% unique(gold$entailment_judgment))){ 63 | print("ERROR: wrong level(s) in entailment judgments") 64 | }else{ 65 | accuracy <- sum(score$entailment_judgment == gold$entailment_judgment) / length(score$entailment_judgment)*100 66 | print(paste(paste("Entailment: accuracy ", accuracy, sep=""),"%",sep="")) 67 | } 68 | 69 | if (TRUE %in% is.na(score$relatedness_score)){ 70 | print("No data for the relatedness task: evaluation on entailment only ") 71 | }else if (is.numeric(score$relatedness_score)==FALSE){ 72 | print("ERROR: wrong format for relatedness scores") 73 | }else{ 74 | pearson <- cor(score$relatedness_score, gold$relatedness_score) 75 | print(paste("Relatedness: Pearson correlation ", pearson, sep="")) 76 | spearman <- cor(score$relatedness_score, gold$relatedness_score, method = "spearman") 77 | print(paste("Relatedness: Spearman correlation ", spearman, sep="")) 78 | MSE <- sum((score$relatedness_score - gold$relatedness_score)^2) / length(score$relatedness_score) 79 | print(paste("Relatedness: MSE ", MSE, sep="")) 80 | } 81 | 82 | quit() 83 | -------------------------------------------------------------------------------- /fetch_and_preprocess.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | python2.7 scripts/download.py 3 | 4 | glove_dir="data/glove" 5 | glove_pre="glove.840B" 6 | glove_dim="300d" 7 | if [ ! -f $glove_dir/$glove_pre.$glove_dim.th ]; then 8 | th scripts/convert-wordvecs.lua $glove_dir/$glove_pre.$glove_dim.txt \ 9 | $glove_dir/$glove_pre.vocab $glove_dir/$glove_pre.$glove_dim.th 10 | fi 11 | -------------------------------------------------------------------------------- /models.lua: -------------------------------------------------------------------------------- 1 | 2 | function createModel(mdl, vocsize, Dsize, nout, KKw) 3 | -- define model to train 4 | local network = nn.Sequential() 5 | local featext = nn.Sequential() 6 | local classifier = nn.Sequential() 7 | 8 | local conCon1 = nn.Sequential() 9 | local conCon2 = nn.Sequential() 10 | local conCon3 = nn.Sequential() 11 | local conCon4 = nn.Sequential() 12 | 13 | local parallelConcat1 = nn.Concat(1) 14 | local parallelConcat2 = nn.Concat(1) 15 | local parallelConcat3 = nn.Concat(1) 16 | local parallelConcat4 = nn.Concat(1) 17 | local parallelConcat5 = nn.Concat(1) 18 | 19 | local D = Dsize 20 | local kW = KKw 21 | local dW = 1 22 | local noExtra = false 23 | local nhid1 = 250 24 | local nhid2 = 250 25 | local NumFilter = D 26 | local pR = 2 27 | local layers=1 28 | 29 | if mdl == 'deepQueryRankingNgramSimilarityOnevsGroupMaxMinMeanLinearExDGpPoinPercpt' then 30 | dofile "PaddingReshape.lua" 31 | 32 | deepQuery=nn.Sequential() 33 | D = Dsize 34 | local incep1max = nn.Sequential() 35 | incep1max:add(nn.TemporalConvolution(D,NumFilter,1,dw)) 36 | if pR == 1 then 37 | incep1max:add(nn.PReLU()) 38 | else 39 | incep1max:add(nn.Tanh()) 40 | end 41 | incep1max:add(nn.Max(1)) 42 | incep1max:add(nn.Reshape(NumFilter,1)) 43 | local incep2max = nn.Sequential() 44 | incep2max:add(nn.Max(1)) 45 | incep2max:add(nn.Reshape(NumFilter,1)) 46 | local combineDepth = nn.Concat(2) 47 | combineDepth:add(incep1max) 48 | combineDepth:add(incep2max) 49 | 50 | local ngram = kW 51 | for cc = 2, ngram do 52 | local incepMax = nn.Sequential() 53 | if not noExtra then 54 | incepMax:add(nn.TemporalConvolution(D,D,1,dw)) --set 55 | if pR == 1 then 56 | incepMax:add(nn.PReLU()) 57 | else 58 | incepMax:add(nn.Tanh()) 59 | end 60 | end 61 | incepMax:add(nn.TemporalConvolution(D,NumFilter,cc,dw)) 62 | if pR == 1 then 63 | incepMax:add(nn.PReLU()) 64 | else 65 | incepMax:add(nn.Tanh()) 66 | end 67 | incepMax:add(nn.Max(1)) 68 | incepMax:add(nn.Reshape(NumFilter,1)) 69 | combineDepth:add(incepMax) 70 | end 71 | 72 | local incep1min = nn.Sequential() 73 | incep1min:add(nn.TemporalConvolution(D,NumFilter,1,dw)) 74 | if pR == 1 then 75 | incep1min:add(nn.PReLU()) 76 | else 77 | incep1min:add(nn.Tanh()) 78 | end 79 | incep1min:add(nn.Min(1)) 80 | incep1min:add(nn.Reshape(NumFilter,1)) 81 | local incep2min = nn.Sequential() 82 | incep2min:add(nn.Min(1)) 83 | incep2min:add(nn.Reshape(NumFilter,1)) 84 | combineDepth:add(incep1min) 85 | combineDepth:add(incep2min) 86 | 87 | for cc = 2, ngram do 88 | local incepMin = nn.Sequential() 89 | if not noExtra then 90 | incepMin:add(nn.TemporalConvolution(D,D,1,dw)) --set 91 | if pR == 1 then 92 | incepMin:add(nn.PReLU()) 93 | else 94 | incepMin:add(nn.Tanh()) 95 | end 96 | end 97 | incepMin:add(nn.TemporalConvolution(D,NumFilter,cc,dw)) 98 | if pR == 1 then 99 | incepMin:add(nn.PReLU()) 100 | else 101 | incepMin:add(nn.Tanh()) 102 | end 103 | incepMin:add(nn.Min(1)) 104 | incepMin:add(nn.Reshape(NumFilter,1)) 105 | combineDepth:add(incepMin) 106 | end 107 | 108 | local incep1mean = nn.Sequential() 109 | incep1mean:add(nn.TemporalConvolution(D,NumFilter,1,dw)) 110 | if pR == 1 then 111 | incep1mean:add(nn.PReLU()) 112 | else 113 | incep1mean:add(nn.Tanh()) 114 | end 115 | incep1mean:add(nn.Mean(1)) 116 | incep1mean:add(nn.Reshape(NumFilter,1)) 117 | local incep2mean = nn.Sequential() 118 | incep2mean:add(nn.Mean(1)) 119 | incep2mean:add(nn.Reshape(NumFilter,1)) 120 | combineDepth:add(incep1mean) 121 | combineDepth:add(incep2mean) 122 | for cc = 2, ngram do 123 | local incepMean = nn.Sequential() 124 | if not noExtra then 125 | incepMean:add(nn.TemporalConvolution(D,D,1,dw)) --set 126 | if pR == 1 then 127 | incepMean:add(nn.PReLU()) 128 | else 129 | incepMean:add(nn.Tanh()) 130 | end 131 | end 132 | incepMean:add(nn.TemporalConvolution(D,NumFilter,cc,dw)) 133 | if pR == 1 then 134 | incepMean:add(nn.PReLU()) 135 | else 136 | incepMean:add(nn.Tanh()) 137 | end 138 | incepMean:add(nn.Mean(1)) 139 | incepMean:add(nn.Reshape(NumFilter,1)) 140 | combineDepth:add(incepMean) 141 | end 142 | 143 | local conceptFNum = 20 144 | for cc = 1, ngram do 145 | local perConcept = nn.Sequential() 146 | perConcept:add(nn.PaddingReshape(2,2)) --set 147 | perConcept:add(nn.SpatialConvolutionMM(1,conceptFNum,1,cc)) --set 148 | perConcept:add(nn.Max(2)) --set 149 | if pR == 1 then 150 | perConcept:add(nn.PReLU()) 151 | else 152 | perConcept:add(nn.Tanh()) 153 | end 154 | perConcept:add(nn.Transpose({1,2})) 155 | combineDepth:add(perConcept) 156 | end 157 | 158 | for cc = 1, ngram do 159 | local perConcept = nn.Sequential() 160 | perConcept:add(nn.PaddingReshape(2,2)) --set 161 | perConcept:add(nn.SpatialConvolutionMM(1,conceptFNum,1,cc)) --set 162 | perConcept:add(nn.Min(2)) --set 163 | if pR == 1 then 164 | perConcept:add(nn.PReLU()) 165 | else 166 | perConcept:add(nn.Tanh()) 167 | end 168 | perConcept:add(nn.Transpose({1,2})) 169 | combineDepth:add(perConcept) 170 | end 171 | 172 | featext:add(combineDepth) 173 | local items = (ngram+1)*3 174 | local separator = items+2*conceptFNum*ngram 175 | local sepModel = 0 176 | if sepModel == 1 then 177 | modelQ= featext:clone() 178 | else 179 | modelQ= featext:clone('weight','bias','gradWeight','gradBias') 180 | end 181 | paraQuery=nn.ParallelTable() 182 | paraQuery:add(modelQ) 183 | paraQuery:add(featext) 184 | deepQuery:add(paraQuery) 185 | deepQuery:add(nn.JoinTable(2)) 186 | 187 | d=nn.Concat(1) 188 | for i=1,items do 189 | if i <= items/3 then 190 | for j=1,items/3 do 191 | local connection = nn.Sequential() 192 | local minus=nn.Concat(2) 193 | local c1=nn.Sequential() 194 | local c2=nn.Sequential() 195 | c1:add(nn.Select(2,i)) -- == D, not D*1 196 | c1:add(nn.Reshape(NumFilter,1)) --D*1 here 197 | c2:add(nn.Select(2,separator+j)) 198 | c2:add(nn.Reshape(NumFilter,1)) 199 | minus:add(c1) 200 | minus:add(c2) 201 | connection:add(minus) -- D*2 202 | local similarityC=nn.Concat(1) -- multi similarity criteria 203 | local s1=nn.Sequential() 204 | s1:add(nn.SplitTable(2)) 205 | s1:add(nn.PairwiseDistance(2)) -- scalar 206 | local s2=nn.Sequential() 207 | if 1 < 3 then 208 | s2:add(nn.SplitTable(2)) 209 | else 210 | s2:add(nn.Transpose({1,2})) 211 | s2:add(nn.SoftMax()) 212 | s2:add(nn.SplitTable(1)) 213 | end 214 | s2:add(nn.CsDis()) -- scalar 215 | local s3=nn.Sequential() 216 | s3:add(nn.SplitTable(2)) 217 | s3:add(nn.CSubTable()) -- linear 218 | s3:add(nn.Abs()) -- linear 219 | similarityC:add(s1) 220 | similarityC:add(s2) 221 | similarityC:add(s3) 222 | connection:add(similarityC) -- scalar 223 | d:add(connection) 224 | end 225 | elseif i <= 2*items/3 then 226 | for j=1+items/3, 2*items/3 do 227 | local connection = nn.Sequential() 228 | local minus=nn.Concat(2) 229 | local c1=nn.Sequential() 230 | local c2=nn.Sequential() 231 | c1:add(nn.Select(2,i)) -- == NumFilter, not NumFilter*1 232 | c1:add(nn.Reshape(NumFilter,1)) --NumFilter*1 here 233 | c2:add(nn.Select(2,separator+j)) 234 | c2:add(nn.Reshape(NumFilter,1)) 235 | minus:add(c1) 236 | minus:add(c2) 237 | connection:add(minus) -- D*2 238 | local similarityC=nn.Concat(1) -- multi similarity criteria 239 | local s1=nn.Sequential() 240 | s1:add(nn.SplitTable(2)) 241 | s1:add(nn.PairwiseDistance(2)) -- scalar 242 | local s2=nn.Sequential() 243 | if 1 < 3 then 244 | s2:add(nn.SplitTable(2)) 245 | else 246 | s2:add(nn.Transpose({1,2})) -- D*2 -> 2*D 247 | s2:add(nn.SoftMax()) 248 | s2:add(nn.SplitTable(1)) 249 | end 250 | s2:add(nn.CsDis()) -- scalar 251 | local s3=nn.Sequential() 252 | s3:add(nn.SplitTable(2)) 253 | s3:add(nn.CSubTable()) -- linear 254 | s3:add(nn.Abs()) -- linear 255 | similarityC:add(s1) 256 | similarityC:add(s2) 257 | similarityC:add(s3) 258 | connection:add(similarityC) -- scalar 259 | d:add(connection) 260 | end 261 | else 262 | for j=1+2*items/3, items do 263 | local connection = nn.Sequential() 264 | local minus=nn.Concat(2) 265 | local c1=nn.Sequential() 266 | local c2=nn.Sequential() 267 | c1:add(nn.Select(2,i)) -- == D, not D*1 268 | c1:add(nn.Reshape(NumFilter,1)) --D*1 here 269 | c2:add(nn.Select(2,separator+j)) 270 | c2:add(nn.Reshape(NumFilter,1)) 271 | minus:add(c1) 272 | minus:add(c2) 273 | connection:add(minus) -- D*2 274 | local similarityC=nn.Concat(1) -- multi similarity criteria 275 | local s1=nn.Sequential() 276 | s1:add(nn.SplitTable(2)) 277 | s1:add(nn.PairwiseDistance(2)) -- scalar 278 | local s2=nn.Sequential() 279 | if 1 < 3 then 280 | s2:add(nn.SplitTable(2)) 281 | else 282 | s2:add(nn.Transpose({1,2})) -- D*2 -> 2*D 283 | s2:add(nn.SoftMax()) 284 | s2:add(nn.SplitTable(1)) 285 | end 286 | s2:add(nn.CsDis()) -- scalar 287 | local s3=nn.Sequential() 288 | s3:add(nn.SplitTable(2)) 289 | s3:add(nn.CSubTable()) -- linear 290 | s3:add(nn.Abs()) -- linear 291 | similarityC:add(s1) 292 | similarityC:add(s2) 293 | similarityC:add(s3) 294 | connection:add(similarityC) -- scalar 295 | d:add(connection) 296 | end 297 | end 298 | end 299 | 300 | for i=1,NumFilter do 301 | for j=1,3 do 302 | local connection = nn.Sequential() 303 | connection:add(nn.Select(1,i)) -- == 2items 304 | connection:add(nn.Reshape(2*separator,1)) --2items*1 here 305 | local minus=nn.Concat(2) 306 | local c1=nn.Sequential() 307 | local c2=nn.Sequential() 308 | if j == 1 then 309 | c1:add(nn.Narrow(1,1,ngram+1)) -- first half (items/3)*1 310 | c2:add(nn.Narrow(1,separator+1,ngram+1)) -- first half (items/3)*1 311 | elseif j == 2 then 312 | c1:add(nn.Narrow(1,ngram+2,ngram+1)) -- 313 | c2:add(nn.Narrow(1,separator+ngram+2,ngram+1)) 314 | else 315 | c1:add(nn.Narrow(1,2*(ngram+1)+1,ngram+1)) 316 | c2:add(nn.Narrow(1,separator+2*(ngram+1)+1,ngram+1)) --each is ngram+1 portion (max or min or mean) 317 | end 318 | 319 | minus:add(c1) 320 | minus:add(c2) 321 | connection:add(minus) -- (items/3)*2 322 | local similarityC=nn.Concat(1) 323 | local s1=nn.Sequential() 324 | s1:add(nn.SplitTable(2)) 325 | s1:add(nn.PairwiseDistance(2)) -- scalar 326 | local s2=nn.Sequential() 327 | if 1 >= 2 then 328 | s2:add(nn.Transpose({1,2})) -- (items/3)*2 -> 2*(items/3) 329 | s2:add(nn.SoftMax()) --for softmax have to do transpose from (item/3)*2 -> 2*(item/3) 330 | s2:add(nn.SplitTable(1)) --softmax only works on row 331 | else 332 | s2:add(nn.SplitTable(2)) --(items/3)*2 333 | end 334 | s2:add(nn.CsDis()) -- scalar 335 | similarityC:add(s1) 336 | similarityC:add(s2) 337 | connection:add(similarityC) -- scalar 338 | d:add(connection) 339 | end 340 | end 341 | 342 | for i=items+1,separator do 343 | local connection = nn.Sequential() 344 | local minus=nn.Concat(2) 345 | local c1=nn.Sequential() 346 | local c2=nn.Sequential() 347 | c1:add(nn.Select(2,i)) -- == D, not D*1 348 | c1:add(nn.Reshape(NumFilter,1)) --D*1 here 349 | c2:add(nn.Select(2,separator+i)) 350 | c2:add(nn.Reshape(NumFilter,1)) 351 | minus:add(c1) 352 | minus:add(c2) 353 | connection:add(minus) -- D*2 354 | local similarityC=nn.Concat(1) 355 | local s1=nn.Sequential() 356 | s1:add(nn.SplitTable(2)) 357 | s1:add(nn.PairwiseDistance(2)) -- scalar 358 | local s2=nn.Sequential() 359 | if 1 < 3 then 360 | s2:add(nn.SplitTable(2)) 361 | else 362 | s2:add(nn.Transpose({1,2})) 363 | s2:add(nn.SoftMax()) 364 | s2:add(nn.SplitTable(1)) 365 | end 366 | s2:add(nn.CsDis()) -- scalar 367 | local s3=nn.Sequential() 368 | s3:add(nn.SplitTable(2)) 369 | s3:add(nn.CSubTable()) -- linear 370 | s3:add(nn.Abs()) -- linear 371 | similarityC:add(s1) 372 | similarityC:add(s2) 373 | similarityC:add(s3) 374 | connection:add(similarityC) -- scalar 375 | d:add(connection) 376 | end 377 | 378 | deepQuery:add(d) 379 | return deepQuery 380 | end 381 | end 382 | 383 | -------------------------------------------------------------------------------- /scripts/build_vocab.py: -------------------------------------------------------------------------------- 1 | import os 2 | import glob 3 | 4 | def build_vocab(filepaths, dst_path, lowercase=True): 5 | vocab = set() 6 | for filepath in filepaths: 7 | with open(filepath) as f: 8 | for line in f: 9 | if lowercase: 10 | line = line.lower() 11 | vocab |= set(line.split()) 12 | with open(dst_path, 'w') as f: 13 | for w in sorted(vocab): 14 | f.write(w + '\n') 15 | 16 | data_dir = 'data/sick/' 17 | build_vocab( 18 | glob.glob(os.path.join(data_dir, '*/*.toks')), 19 | os.path.join(data_dir, 'vocab-cased.txt'), False) 20 | -------------------------------------------------------------------------------- /scripts/convert-wordvecs.lua: -------------------------------------------------------------------------------- 1 | -- We thank Kai Sheng Tai for providing this preprocessing codes 2 | 3 | require('torch') 4 | require('xlua') 5 | 6 | local path = arg[1] 7 | local vocabpath = arg[2] 8 | local vecpath = arg[3] 9 | local prefix_toks = stringx.split(path, '.') 10 | print('Converting ' .. path .. ' to Torch serialized format') 11 | 12 | -- get dimension and number of lines 13 | local file = io.open(path, 'r') 14 | local line 15 | local count = 0 16 | local dim = 0 17 | while true do 18 | line = file:read() 19 | if not line then break end 20 | if count == 0 then 21 | dim = #stringx.split(line) - 1 22 | end 23 | count = count + 1 24 | end 25 | 26 | print('count = ' .. count) 27 | print('dim = ' .. dim) 28 | 29 | -- convert to torch-friendly format 30 | file:seek('set') 31 | local vocab = io.open(vocabpath, 'w') 32 | local vecs = torch.FloatTensor(count, dim) 33 | for i = 1, count do 34 | xlua.progress(i, count) 35 | local tokens = stringx.split(file:read()) 36 | local word = tokens[1] 37 | vocab:write(word .. '\n') 38 | for j = 1, dim do 39 | vecs[{i, j}] = tonumber(tokens[j + 1]) 40 | end 41 | end 42 | file:close() 43 | vocab:close() 44 | torch.save(vecpath, vecs) 45 | -------------------------------------------------------------------------------- /scripts/download.py: -------------------------------------------------------------------------------- 1 | """ 2 | Downloads the following: 3 | - Glove vectors 4 | 5 | We Thank Kai Sheng Tai for providing the preprocessing/basis codes. 6 | """ 7 | 8 | from __future__ import print_function 9 | import urllib2 10 | import sys 11 | import os 12 | import shutil 13 | import zipfile 14 | import gzip 15 | 16 | def download(url, dirpath): 17 | filename = url.split('/')[-1] 18 | filepath = os.path.join(dirpath, filename) 19 | try: 20 | u = urllib2.urlopen(url) 21 | except: 22 | print("URL %s failed to open" %url) 23 | raise Exception 24 | try: 25 | f = open(filepath, 'wb') 26 | except: 27 | print("Cannot write %s" %filepath) 28 | raise Exception 29 | try: 30 | filesize = int(u.info().getheaders("Content-Length")[0]) 31 | except: 32 | print("URL %s failed to report length" %url) 33 | raise Exception 34 | print("Downloading: %s Bytes: %s" % (filename, filesize)) 35 | 36 | downloaded = 0 37 | block_sz = 8192 38 | status_width = 70 39 | while True: 40 | buf = u.read(block_sz) 41 | if not buf: 42 | print('') 43 | break 44 | else: 45 | print('', end='\r') 46 | downloaded += len(buf) 47 | f.write(buf) 48 | status = (("[%-" + str(status_width + 1) + "s] %3.2f%%") % 49 | ('=' * int(float(downloaded) / filesize * status_width) + '>', downloaded * 100. / filesize)) 50 | print(status, end='') 51 | sys.stdout.flush() 52 | f.close() 53 | return filepath 54 | 55 | def unzip(filepath): 56 | print("Extracting: " + filepath) 57 | dirpath = os.path.dirname(filepath) 58 | with zipfile.ZipFile(filepath) as zf: 59 | zf.extractall(dirpath) 60 | os.remove(filepath) 61 | 62 | def download_tagger(dirpath): 63 | tagger_dir = 'stanford-tagger' 64 | if os.path.exists(os.path.join(dirpath, tagger_dir)): 65 | print('Found Stanford POS Tagger - skip') 66 | return 67 | url = 'http://nlp.stanford.edu/software/stanford-postagger-2015-01-29.zip' 68 | filepath = download(url, dirpath) 69 | zip_dir = '' 70 | with zipfile.ZipFile(filepath) as zf: 71 | zip_dir = zf.namelist()[0] 72 | zf.extractall(dirpath) 73 | os.remove(filepath) 74 | os.rename(os.path.join(dirpath, zip_dir), os.path.join(dirpath, tagger_dir)) 75 | 76 | def download_parser(dirpath): 77 | parser_dir = 'stanford-parser' 78 | if os.path.exists(os.path.join(dirpath, parser_dir)): 79 | print('Found Stanford Parser - skip') 80 | return 81 | url = 'http://nlp.stanford.edu/software/stanford-parser-full-2015-01-29.zip' 82 | filepath = download(url, dirpath) 83 | zip_dir = '' 84 | with zipfile.ZipFile(filepath) as zf: 85 | zip_dir = zf.namelist()[0] 86 | zf.extractall(dirpath) 87 | os.remove(filepath) 88 | os.rename(os.path.join(dirpath, zip_dir), os.path.join(dirpath, parser_dir)) 89 | 90 | def download_wordvecs(dirpath): 91 | if os.path.exists(dirpath): 92 | print('Found Glove vectors - skip') 93 | return 94 | else: 95 | os.makedirs(dirpath) 96 | url = 'http://www-nlp.stanford.edu/data/glove.840B.300d.zip' 97 | unzip(download(url, dirpath)) 98 | 99 | def download_sick(dirpath): 100 | if os.path.exists(dirpath): 101 | print('Found SICK dataset - skip') 102 | return 103 | else: 104 | os.makedirs(dirpath) 105 | train_url = 'http://alt.qcri.org/semeval2014/task1/data/uploads/sick_train.zip' 106 | trial_url = 'http://alt.qcri.org/semeval2014/task1/data/uploads/sick_trial.zip' 107 | test_url = 'http://alt.qcri.org/semeval2014/task1/data/uploads/sick_test_annotated.zip' 108 | unzip(download(train_url, dirpath)) 109 | unzip(download(trial_url, dirpath)) 110 | unzip(download(test_url, dirpath)) 111 | 112 | def download_sst(dirpath): 113 | if os.path.exists(dirpath): 114 | print('Found SST dataset - skip') 115 | return 116 | url = 'http://nlp.stanford.edu/~socherr/stanfordSentimentTreebank.zip' 117 | parent_dir = os.path.dirname(dirpath) 118 | unzip(download(url, parent_dir)) 119 | os.rename( 120 | os.path.join(parent_dir, 'stanfordSentimentTreebank'), 121 | os.path.join(parent_dir, 'sst')) 122 | shutil.rmtree(os.path.join(parent_dir, '__MACOSX')) # remove extraneous dir 123 | 124 | if __name__ == '__main__': 125 | base_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) 126 | 127 | # data 128 | data_dir = os.path.join(base_dir, 'data') 129 | wordvec_dir = os.path.join(data_dir, 'glove') 130 | sick_dir = os.path.join(data_dir, 'sick') 131 | sst_dir = os.path.join(data_dir, 'sst') 132 | 133 | # libraries 134 | lib_dir = os.path.join(base_dir, 'lib') 135 | 136 | # download dependencies 137 | #download_tagger(lib_dir) 138 | #download_parser(lib_dir) 139 | download_wordvecs(wordvec_dir) 140 | #download_sick(sick_dir) 141 | #download_sst(sst_dir) 142 | -------------------------------------------------------------------------------- /scripts/preprocess-sick.py: -------------------------------------------------------------------------------- 1 | """ 2 | This file is not required to run our codes, as we have provided the preprocessed data. 3 | We Thank Kai Sheng Tai for the preprocessing script of SICK data. 4 | """ 5 | 6 | import os 7 | import glob 8 | 9 | def make_dirs(dirs): 10 | for d in dirs: 11 | if not os.path.exists(d): 12 | os.makedirs(d) 13 | 14 | def javac(filepath, cp): 15 | cmd = 'javac -cp %s %s' % (cp, filepath) 16 | print(cmd) 17 | os.system(cmd) 18 | 19 | def dependency_parse(filepath, cp='', tokenize=True): 20 | print('\nDependency parsing ' + filepath) 21 | dirpath = os.path.dirname(filepath) 22 | filepre = os.path.splitext(os.path.basename(filepath))[0] 23 | tokpath = os.path.join(dirpath, filepre + '.toks') 24 | parentpath = os.path.join(dirpath, filepre + '.parents') 25 | relpath = os.path.join(dirpath, filepre + '.rels') 26 | tokenize_flag = '-tokenize - ' if tokenize else '' 27 | cmd = ('java -cp %s DependencyParse -tokpath %s -parentpath %s -relpath %s %s < %s' 28 | % (cp, tokpath, parentpath, relpath, tokenize_flag, filepath)) 29 | os.system(cmd) 30 | 31 | def constituency_parse(filepath, cp='', tokenize=True): 32 | dirpath = os.path.dirname(filepath) 33 | filepre = os.path.splitext(os.path.basename(filepath))[0] 34 | tokpath = os.path.join(dirpath, filepre + '.toks') 35 | parentpath = os.path.join(dirpath, filepre + '.cparents') 36 | tokenize_flag = '-tokenize - ' if tokenize else '' 37 | cmd = ('java -cp %s ConstituencyParse -tokpath %s -parentpath %s %s < %s' 38 | % (cp, tokpath, parentpath, tokenize_flag, filepath)) 39 | os.system(cmd) 40 | 41 | def build_vocab(filepaths, dst_path, lowercase=True): 42 | vocab = set() 43 | for filepath in filepaths: 44 | with open(filepath) as f: 45 | for line in f: 46 | if lowercase: 47 | line = line.lower() 48 | vocab |= set(line.split()) 49 | with open(dst_path, 'w') as f: 50 | for w in sorted(vocab): 51 | f.write(w + '\n') 52 | 53 | def split(filepath, dst_dir): 54 | with open(filepath) as datafile, \ 55 | open(os.path.join(dst_dir, 'a.txt'), 'w') as afile, \ 56 | open(os.path.join(dst_dir, 'b.txt'), 'w') as bfile, \ 57 | open(os.path.join(dst_dir, 'id.txt'), 'w') as idfile, \ 58 | open(os.path.join(dst_dir, 'sim.txt'), 'w') as simfile: 59 | datafile.readline() 60 | for line in datafile: 61 | i, a, b, sim, ent = line.strip().split('\t') 62 | idfile.write(i + '\n') 63 | afile.write(a + '\n') 64 | bfile.write(b + '\n') 65 | simfile.write(sim + '\n') 66 | 67 | def parse(dirpath, cp=''): 68 | dependency_parse(os.path.join(dirpath, 'a.txt'), cp=cp, tokenize=True) 69 | dependency_parse(os.path.join(dirpath, 'b.txt'), cp=cp, tokenize=True) 70 | 71 | if __name__ == '__main__': 72 | print('=' * 80) 73 | print('Preprocessing SICK dataset') 74 | print('=' * 80) 75 | 76 | base_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) 77 | data_dir = os.path.join(base_dir, 'data') 78 | sick_dir = os.path.join(data_dir, 'sick') 79 | lib_dir = os.path.join(base_dir, 'lib') 80 | train_dir = os.path.join(sick_dir, 'train') 81 | dev_dir = os.path.join(sick_dir, 'dev') 82 | test_dir = os.path.join(sick_dir, 'test') 83 | make_dirs([train_dir, dev_dir, test_dir]) 84 | 85 | # java classpath for calling Stanford parser 86 | classpath = ':'.join([ 87 | lib_dir, 88 | os.path.join(lib_dir, 'stanford-parser/stanford-parser.jar'), 89 | os.path.join(lib_dir, 'stanford-parser/stanford-parser-3.5.1-models.jar')]) 90 | javac(os.path.join(lib_dir, 'DependencyParse.java'), cp=classpath) 91 | javac(os.path.join(lib_dir, 'CollapseUnaryTransformer.java'), cp=classpath) 92 | javac(os.path.join(lib_dir, 'ConstituencyParse.java'), cp=classpath) 93 | 94 | # split into separate files 95 | split(os.path.join(sick_dir, 'SICK_train.txt'), train_dir) 96 | split(os.path.join(sick_dir, 'SICK_trial.txt'), dev_dir) 97 | split(os.path.join(sick_dir, 'SICK_test_annotated.txt'), test_dir) 98 | 99 | # parse sentences 100 | parse(train_dir, cp=classpath) 101 | parse(dev_dir, cp=classpath) 102 | parse(test_dir, cp=classpath) 103 | 104 | # get vocabulary 105 | build_vocab( 106 | glob.glob(os.path.join(sick_dir, '*/*.toks')), 107 | os.path.join(sick_dir, 'vocab.txt')) 108 | build_vocab( 109 | glob.glob(os.path.join(sick_dir, '*/*.toks')), 110 | os.path.join(sick_dir, 'vocab-cased.txt'), 111 | lowercase=False) 112 | -------------------------------------------------------------------------------- /testDeployTrainedModel.lua: -------------------------------------------------------------------------------- 1 | --[[ 2 |   Author: Hua He 3 |   Usage: th testRun.lua 4 | Training script for semantic relatedness prediction on the SICK dataset. 5 | --]] 6 | 7 | require('torch') 8 | require('nn') 9 | require('nngraph') 10 | require('optim') 11 | require('xlua') 12 | require('sys') 13 | require('lfs') 14 | 15 | similarityMeasure = {} 16 | 17 | include('util/read_data.lua') 18 | include('util/Vocab.lua') 19 | include('Conv.lua') 20 | include('CsDis.lua') 21 | --include('PaddingReshape.lua') 22 | printf = utils.printf 23 | 24 | -- global paths (modify if desired) 25 | similarityMeasure.data_dir = 'data' 26 | similarityMeasure.models_dir = 'trained_models' 27 | similarityMeasure.predictions_dir = 'predictions' 28 | 29 | function header(s) 30 | print(string.rep('-', 80)) 31 | print(s) 32 | print(string.rep('-', 80)) 33 | end 34 | 35 | -- Pearson correlation 36 | function pearson(x, y) 37 | x = x - x:mean() 38 | y = y - y:mean() 39 | return x:dot(y) / (x:norm() * y:norm()) 40 | end 41 | 42 | -- read command line arguments 43 | local args = lapp [[ 44 | Training script for semantic relatedness prediction on the SICK dataset. 45 | -m,--model (default dependency) Model architecture: [dependency, lstm, bilstm] 46 | -l,--layers (default 1) Number of layers (ignored for Tree-LSTM) 47 | -d,--dim (default 150) LSTM memory dimension 48 | ]] 49 | 50 | local model_name, model_class, model_structure 51 | model_name = 'convOnly' 52 | model_class = similarityMeasure.Conv 53 | model_structure = model_name 54 | 55 | --torch.seed() 56 | torch.manualSeed(-3.0753778015266e+18) 57 | --print(' using the automatic seed: ' .. torch.initialSeed()) 58 | 59 | -- directory containing dataset files 60 | local data_dir = 'data/sick/' 61 | 62 | -- load vocab 63 | local vocab = similarityMeasure.Vocab(data_dir .. 'vocab-cased.txt') 64 | 65 | -- load embeddings 66 | print('loading word embeddings') 67 | 68 | local emb_dir = 'data/glove/' 69 | local emb_prefix = emb_dir .. 'glove.840B' 70 | local emb_vocab, emb_vecs = similarityMeasure.read_embedding(emb_prefix .. '.vocab', emb_prefix .. '.300d.th') 71 | 72 | local emb_dim = emb_vecs:size(2) 73 | 74 | collectgarbage() 75 | 76 | local taskD = 'sic' 77 | -- load datasets 78 | local test_dir = data_dir .. 'test/' 79 | local test_dataset = similarityMeasure.read_relatedness_dataset(test_dir, vocab, taskD) 80 | printf('num test = %d\n', test_dataset.size) 81 | 82 | -- initialize model 83 | modelTrained = torch.load("modelSTS.trained.th", 'ascii') 84 | modelTrained.convModel:evaluate() 85 | modelTrained.softMaxC:evaluate() 86 | 87 | -- Predict dataset with existing models 88 | for i = 1, test_dataset.size do 89 | local lsent, rsent = test_dataset.lsents[i], test_dataset.rsents[i] 90 | local linputs = emb_vecs:index(1, lsent:long()):double() 91 | local rinputs = emb_vecs:index(1, rsent:long()):double() 92 | local part2 = modelTrained.convModel:forward({linputs, rinputs}) 93 | local output = modelTrained.softMaxC:forward(part2) 94 | local val = torch.range(0, 5, 1):dot(output:exp()) 95 | print(val) 96 | end 97 | 98 | 99 | 100 | -------------------------------------------------------------------------------- /trainMSRVID.lua: -------------------------------------------------------------------------------- 1 | --[[ 2 | Author: Hua He 3 | Usage: th trainMSRVID.lua 4 | Training script for semantic relatedness prediction on the MSRVID dataset. 5 | --]] 6 | 7 | require('torch') 8 | require('nn') 9 | require('nngraph') 10 | require('optim') 11 | require('xlua') 12 | require('sys') 13 | require('lfs') 14 | 15 | similarityMeasure = {} 16 | 17 | include('util/read_data.lua') 18 | include('util/Vocab.lua') 19 | include('Conv.lua') 20 | include('CsDis.lua') 21 | --include('PaddingReshape.lua') 22 | printf = utils.printf 23 | 24 | -- global paths (modify if desired) 25 | similarityMeasure.data_dir = 'data' 26 | similarityMeasure.models_dir = 'trained_models' 27 | similarityMeasure.predictions_dir = 'predictions' 28 | 29 | function header(s) 30 | print(string.rep('-', 80)) 31 | print(s) 32 | print(string.rep('-', 80)) 33 | end 34 | 35 | -- Pearson correlation 36 | function pearson(x, y) 37 | x = x - x:mean() 38 | y = y - y:mean() 39 | return x:dot(y) / (x:norm() * y:norm()) 40 | end 41 | 42 | -- read command line arguments 43 | local args = lapp [[ 44 | Training script for semantic relatedness prediction on the SICK dataset. 45 | -m,--model (default dependency) Model architecture: [dependency, lstm, bilstm] 46 | -l,--layers (default 1) Number of layers (ignored for Tree-LSTM) 47 | -d,--dim (default 150) LSTM memory dimension 48 | ]] 49 | 50 | local model_name, model_class, model_structure 51 | model_name = 'convOnly' 52 | model_class = similarityMeasure.Conv 53 | model_structure = model_name 54 | 55 | torch.seed() 56 | --torch.manualSeed(123) 57 | print(' using the specified seed: ' .. torch.initialSeed()) 58 | 59 | -- directory containing dataset files 60 | local data_dir = 'data/msrvid/' 61 | 62 | -- load vocab 63 | local vocab = similarityMeasure.Vocab(data_dir .. 'vocab-cased.txt') 64 | 65 | -- load embeddings 66 | print('loading word embeddings') 67 | 68 | local emb_dir = 'data/glove/' 69 | local emb_prefix = emb_dir .. 'glove.840B' 70 | local emb_vocab, emb_vecs = similarityMeasure.read_embedding(emb_prefix .. '.vocab', emb_prefix .. '.300d.th') 71 | 72 | local emb_dim = emb_vecs:size(2) 73 | 74 | -- use only vectors in vocabulary (not necessary, but gives faster training) 75 | local num_unk = 0 76 | local vecs = torch.Tensor(vocab.size, emb_dim) 77 | for i = 1, vocab.size do 78 | local w = vocab:token(i) 79 | if emb_vocab:contains(w) then 80 | vecs[i] = emb_vecs[emb_vocab:index(w)] 81 | else 82 | num_unk = num_unk + 1 83 | vecs[i]:uniform(-0.05, 0.05) 84 | end 85 | end 86 | print('unk count = ' .. num_unk) 87 | emb_vocab = nil 88 | emb_vecs = nil 89 | collectgarbage() 90 | local taskD = 'vid' 91 | -- load datasets 92 | print('loading datasets') 93 | local train_dir = data_dir .. 'train/' 94 | local dev_dir = data_dir .. 'dev/' 95 | local test_dir = data_dir .. 'test/' 96 | local train_dataset = similarityMeasure.read_relatedness_dataset(train_dir, vocab, taskD) 97 | local dev_dataset = similarityMeasure.read_relatedness_dataset(dev_dir, vocab, taskD) 98 | printf('num train = %d\n', train_dataset.size) 99 | printf('num dev = %d\n', dev_dataset.size) 100 | 101 | -- initialize model 102 | local model = model_class{ 103 | emb_vecs = vecs, 104 | structure = model_structure, 105 | mem_dim = 150, 106 | task = taskD, 107 | } 108 | 109 | -- number of epochs to train 110 | local num_epochs = 35 111 | 112 | -- print information 113 | header('model configuration') 114 | printf('max epochs = %d\n', num_epochs) 115 | model:print_config() 116 | 117 | 118 | if lfs.attributes(similarityMeasure.predictions_dir) == nil then 119 | lfs.mkdir(similarityMeasure.predictions_dir) 120 | end 121 | 122 | -- train 123 | local train_start = sys.clock() 124 | local best_dev_score = -1.0 125 | local best_dev_model = model 126 | 127 | -- threads 128 | --torch.setnumthreads(4) 129 | --print(' number of threads in used: ' .. torch.getnumthreads()) 130 | 131 | header('Training model') 132 | 133 | local id = 2007 134 | print("Id: " .. id) 135 | for i = 1, num_epochs do 136 | local start = sys.clock() 137 | print('--------------- EPOCH ' .. i .. '--- -------------') 138 | model:trainCombineOnly(train_dataset) 139 | print('Finished epoch in ' .. ( sys.clock() - start) ) 140 | 141 | local dev_predictions = model:predict_dataset(dev_dataset) 142 | local dev_score = pearson(dev_predictions, dev_dataset.labels) 143 | printf('-- score: %.5f\n', dev_score) 144 | end 145 | print('finished training in ' .. (sys.clock() - train_start)) 146 | 147 | -------------------------------------------------------------------------------- /trainSIC.lua: -------------------------------------------------------------------------------- 1 | --[[ 2 |   Author: Hua He 3 |   Usage: th trainSIC.lua 4 | Training script for semantic relatedness prediction on the SICK dataset. 5 | --]] 6 | 7 | require('torch') 8 | require('nn') 9 | require('nngraph') 10 | require('optim') 11 | require('xlua') 12 | require('sys') 13 | require('lfs') 14 | 15 | similarityMeasure = {} 16 | 17 | include('util/read_data.lua') 18 | include('util/Vocab.lua') 19 | include('Conv.lua') 20 | include('CsDis.lua') 21 | --include('PaddingReshape.lua') 22 | printf = utils.printf 23 | 24 | -- global paths (modify if desired) 25 | similarityMeasure.data_dir = 'data' 26 | similarityMeasure.models_dir = 'trained_models' 27 | similarityMeasure.predictions_dir = 'predictions' 28 | 29 | function header(s) 30 | print(string.rep('-', 80)) 31 | print(s) 32 | print(string.rep('-', 80)) 33 | end 34 | 35 | -- Pearson correlation 36 | function pearson(x, y) 37 | x = x - x:mean() 38 | y = y - y:mean() 39 | return x:dot(y) / (x:norm() * y:norm()) 40 | end 41 | 42 | -- read command line arguments 43 | local args = lapp [[ 44 | Training script for semantic relatedness prediction on the SICK dataset. 45 | -m,--model (default dependency) Model architecture: [dependency, lstm, bilstm] 46 | -l,--layers (default 1) Number of layers (ignored for Tree-LSTM) 47 | -d,--dim (default 150) LSTM memory dimension 48 | ]] 49 | 50 | local model_name, model_class, model_structure 51 | model_name = 'convOnly' 52 | model_class = similarityMeasure.Conv 53 | model_structure = model_name 54 | 55 | torch.seed() 56 | --torch.manualSeed(-3.0753778015266e+18) 57 | print(' using the automatic seed: ' .. torch.initialSeed()) 58 | 59 | -- directory containing dataset files 60 | local data_dir = 'data/sick/' 61 | 62 | -- load vocab 63 | local vocab = similarityMeasure.Vocab(data_dir .. 'vocab-cased.txt') 64 | 65 | -- load embeddings 66 | print('loading word embeddings') 67 | 68 | local emb_dir = 'data/glove/' 69 | local emb_prefix = emb_dir .. 'glove.840B' 70 | local emb_vocab, emb_vecs = similarityMeasure.read_embedding(emb_prefix .. '.vocab', emb_prefix .. '.300d.th') 71 | 72 | local emb_dim = emb_vecs:size(2) 73 | 74 | -- use only vectors in vocabulary (not necessary, but gives faster training) 75 | local num_unk = 0 76 | local vecs = torch.Tensor(vocab.size, emb_dim) 77 | for i = 1, vocab.size do 78 | local w = vocab:token(i) 79 | if emb_vocab:contains(w) then 80 | vecs[i] = emb_vecs[emb_vocab:index(w)] 81 | else 82 | num_unk = num_unk + 1 83 | vecs[i]:uniform(-0.05, 0.05) 84 | end 85 | end 86 | print('unk count = ' .. num_unk) 87 | emb_vocab = nil 88 | emb_vecs = nil 89 | collectgarbage() 90 | local taskD = 'sic' 91 | -- load datasets 92 | print('loading datasets') 93 | local train_dir = data_dir .. 'train/' 94 | local dev_dir = data_dir .. 'dev/' 95 | local test_dir = data_dir .. 'test/' 96 | local train_dataset = similarityMeasure.read_relatedness_dataset(train_dir, vocab, taskD) 97 | local dev_dataset = similarityMeasure.read_relatedness_dataset(dev_dir, vocab, taskD) 98 | local test_dataset = similarityMeasure.read_relatedness_dataset(test_dir, vocab, taskD) 99 | printf('num train = %d\n', train_dataset.size) 100 | printf('num dev = %d\n', dev_dataset.size) 101 | printf('num test = %d\n', test_dataset.size) 102 | 103 | -- initialize model 104 | local model = model_class{ 105 | emb_vecs = vecs, 106 | structure = model_structure, 107 | num_layers = args.layers, 108 | mem_dim = args.dim, 109 | task = taskD, 110 | } 111 | 112 | -- number of epochs to train 113 | local num_epochs = 30 114 | 115 | -- print information 116 | header('model configuration') 117 | printf('max epochs = %d\n', num_epochs) 118 | model:print_config() 119 | 120 | 121 | if lfs.attributes(similarityMeasure.predictions_dir) == nil then 122 | lfs.mkdir(similarityMeasure.predictions_dir) 123 | end 124 | 125 | -- train 126 | local train_start = sys.clock() 127 | local best_dev_score = -1.0 128 | local best_dev_model = model 129 | 130 | -- threads 131 | --torch.setnumthreads(4) 132 | --print(' number of threads in used: ' .. torch.getnumthreads()) 133 | 134 | header('Training model') 135 | 136 | local id = 10005 137 | print("Id: " .. id) 138 | for i = 1, num_epochs do 139 | local start = sys.clock() 140 | print('--------------- EPOCH ' .. i .. '--- -------------') 141 | model:trainCombineOnly(train_dataset) 142 | print('Finished epoch in ' .. ( sys.clock() - start) ) 143 | 144 | local dev_predictions = model:predict_dataset(dev_dataset) 145 | local dev_score = pearson(dev_predictions, dev_dataset.labels) 146 | printf('-- dev score: %.5f\n', dev_score) 147 | 148 | if dev_score >= best_dev_score then 149 | best_dev_score = dev_score 150 | local test_predictions = model:predict_dataset(test_dataset) 151 | local test_sco = pearson(test_predictions, test_dataset.labels) 152 | printf('[[BEST DEV]]-- test score: %.4f\n', pearson(test_predictions, test_dataset.labels)) 153 | 154 | local predictions_save_path = string.format( 155 | similarityMeasure.predictions_dir .. '/results-%s.%dl.%dd.epoch-%d.%.5f.%d.pred', args.model, args.layers, args.dim, i, test_sco, id) 156 | local predictions_file = torch.DiskFile(predictions_save_path, 'w') 157 | print('writing predictions to ' .. predictions_save_path) 158 | for i = 1, test_predictions:size(1) do 159 | predictions_file:writeFloat(test_predictions[i]) 160 | end 161 | predictions_file:close() 162 | end 163 | end 164 | print('finished training in ' .. (sys.clock() - train_start)) 165 | 166 | -------------------------------------------------------------------------------- /util/Vocab.lua: -------------------------------------------------------------------------------- 1 | --[[ 2 | We Thank Kai Sheng Tai for providing the preprocessing codes. 3 | 4 | A vocabulary object. Initialized from a file with one vocabulary token per line. 5 | Maps between vocabulary tokens and indices. If an UNK token is defined in the 6 | vocabulary, returns the index to this token if queried for an out-of-vocabulary 7 | token. 8 | 9 | --]] 10 | 11 | local Vocab = torch.class('similarityMeasure.Vocab') 12 | 13 | function Vocab:__init(path) 14 | self.size = 0 15 | self._index = {} 16 | self._tokens = {} 17 | 18 | local file = io.open(path) 19 | while true do 20 | local line = file:read() 21 | if line == nil then break end 22 | self.size = self.size + 1 23 | self._tokens[self.size] = line 24 | self._index[line] = self.size 25 | end 26 | file:close() 27 | 28 | local unks = {'', '', 'UUUNKKK'} 29 | for _, tok in pairs(unks) do 30 | self.unk_index = self.unk_index or self._index[tok] 31 | if self.unk_index ~= nil then 32 | self.unk_token = tok 33 | break 34 | end 35 | end 36 | 37 | local starts = {'', ''} 38 | for _, tok in pairs(starts) do 39 | self.start_index = self.start_index or self._index[tok] 40 | if self.start_index ~= nil then 41 | self.start_token = tok 42 | break 43 | end 44 | end 45 | 46 | local ends = {'', ''} 47 | for _, tok in pairs(ends) do 48 | self.end_index = self.end_index or self._index[tok] 49 | if self.end_index ~= nil then 50 | self.end_token = tok 51 | break 52 | end 53 | end 54 | end 55 | 56 | function Vocab:contains(w) 57 | if not self._index[w] then return false end 58 | return true 59 | end 60 | 61 | function Vocab:add(w) 62 | if self._index[w] ~= nil then 63 | return self._index[w] 64 | end 65 | self.size = self.size + 1 66 | self._tokens[self.size] = w 67 | self._index[w] = self.size 68 | return self.size 69 | end 70 | 71 | function Vocab:index(w) 72 | local index = self._index[w] 73 | if index == nil then 74 | if self.unk_index == nil then 75 | error('Token not in vocabulary and no UNK token defined: ' .. w) 76 | end 77 | return self.unk_index 78 | end 79 | return index 80 | end 81 | 82 | function Vocab:token(i) 83 | if i < 1 or i > self.size then 84 | error('Index ' .. i .. ' out of bounds') 85 | end 86 | return self._tokens[i] 87 | end 88 | 89 | function Vocab:map(tokens) 90 | local len = #tokens 91 | local output = torch.IntTensor(len) 92 | for i = 1, len do 93 | output[i] = self:index(tokens[i]) 94 | end 95 | return output 96 | end 97 | 98 | function Vocab:add_unk_token() 99 | if self.unk_token ~= nil then return end 100 | self.unk_index = self:add('') 101 | end 102 | 103 | function Vocab:add_start_token() 104 | if self.start_token ~= nil then return end 105 | self.start_index = self:add('') 106 | end 107 | 108 | function Vocab:add_end_token() 109 | if self.end_token ~= nil then return end 110 | self.end_index = self:add('') 111 | end 112 | -------------------------------------------------------------------------------- /util/read_data.lua: -------------------------------------------------------------------------------- 1 | --[[ 2 | 3 | Functions for loading data from disk. 4 | 5 | --]] 6 | 7 | function similarityMeasure.read_embedding(vocab_path, emb_path) 8 | local vocab = similarityMeasure.Vocab(vocab_path) 9 | local embedding = torch.load(emb_path) 10 | return vocab, embedding 11 | end 12 | 13 | function similarityMeasure.read_sentences(path, vocab) 14 | local sentences = {} 15 | local file = io.open(path, 'r') 16 | local line 17 | 18 | local fixed = true 19 | while true do 20 | line = file:read() 21 | if line == nil then break end 22 | local tokens = stringx.split(line) 23 | local len = #tokens 24 | local padLen = len 25 | if fixed and len < 3 then 26 | padLen = 3 27 | end 28 | local sent = torch.IntTensor(padLen) 29 | for i = 1, len do 30 | local token = tokens[i] 31 | sent[i] = vocab:index(token) 32 | end 33 | if fixed and len < 3 then 34 | for i = len+1, padLen do 35 | sent[i] = vocab:index("unk") -- sent[len] 36 | end 37 | end 38 | sentences[#sentences + 1] = sent 39 | end 40 | 41 | file:close() 42 | return sentences 43 | end 44 | 45 | function similarityMeasure.read_relatedness_dataset(dir, vocab, task) 46 | local dataset = {} 47 | dataset.vocab = vocab 48 | dataset.lsents = similarityMeasure.read_sentences(dir .. 'a.toks', vocab) 49 | dataset.rsents = similarityMeasure.read_sentences(dir .. 'b.toks', vocab) 50 | dataset.size = #dataset.lsents 51 | local id_file = torch.DiskFile(dir .. 'id.txt') 52 | local sim_file = torch.DiskFile(dir .. 'sim.txt') 53 | dataset.ids = torch.IntTensor(dataset.size) 54 | dataset.labels = torch.Tensor(dataset.size) 55 | for i = 1, dataset.size do 56 | dataset.ids[i] = id_file:readInt() 57 | if task == 'sic' then 58 | dataset.labels[i] = 0.25 * (sim_file:readDouble() - 1) -- sic data 59 | elseif task == 'vid' then 60 | dataset.labels[i] = 0.2 * (sim_file:readDouble()) -- vid data 61 | else 62 | dataset.labels[i] = (sim_file:readDouble()) -- twi and msp 63 | end 64 | end 65 | id_file:close() 66 | sim_file:close() 67 | return dataset 68 | end 69 | 70 | --------------------------------------------------------------------------------