├── Makefile ├── README.md ├── content ├── Mixture Density Networks for Galaxy distance determination in TensorFlow .ipynb ├── Mixture Density Networks for Galaxy distance determination in TensorFlow .ipynb-meta └── images │ ├── MDN_drawing_small.png │ └── plot_sdss_filters_2.png ├── develop_server.sh ├── fabfile.py ├── pelicanconf.py ├── pelicanconf.pyc ├── plugins └── ipynb │ ├── LICENSE │ ├── README.md │ ├── __init__.py │ ├── __init__.pyc │ ├── core.py │ ├── core.pyc │ ├── ipynb.py │ ├── ipynb.pyc │ ├── liquid.py │ ├── markup.py │ ├── markup.pyc │ ├── requirements.txt │ └── tests │ └── pelican │ ├── content │ ├── with-liquid-tag.ipynb │ ├── with-liquid-tag.md │ ├── with-meta-file.ipynb │ ├── with-meta-file.ipynb-meta │ └── with-metadata.ipynb │ ├── pelicanconf_liquid.py │ ├── pelicanconf_markup.py │ └── theme │ └── templates │ └── base.html └── publishconf.py /Makefile: -------------------------------------------------------------------------------- 1 | PY?=python 2 | PELICAN?=pelican 3 | PELICANOPTS= 4 | 5 | BASEDIR=$(CURDIR) 6 | INPUTDIR=$(BASEDIR)/content 7 | OUTPUTDIR=$(BASEDIR)/output 8 | CONFFILE=$(BASEDIR)/pelicanconf.py 9 | PUBLISHCONF=$(BASEDIR)/publishconf.py 10 | 11 | FTP_HOST=localhost 12 | FTP_USER=anonymous 13 | FTP_TARGET_DIR=/ 14 | 15 | SSH_HOST=localhost 16 | SSH_PORT=22 17 | SSH_USER=root 18 | SSH_TARGET_DIR=/var/www 19 | 20 | S3_BUCKET=my_s3_bucket 21 | 22 | CLOUDFILES_USERNAME=my_rackspace_username 23 | CLOUDFILES_API_KEY=my_rackspace_api_key 24 | CLOUDFILES_CONTAINER=my_cloudfiles_container 25 | 26 | DROPBOX_DIR=~/Dropbox/Public/ 27 | 28 | GITHUB_PAGES_BRANCH=master 29 | 30 | DEBUG ?= 0 31 | ifeq ($(DEBUG), 1) 32 | PELICANOPTS += -D 33 | endif 34 | 35 | RELATIVE ?= 0 36 | ifeq ($(RELATIVE), 1) 37 | PELICANOPTS += --relative-urls 38 | endif 39 | 40 | help: 41 | @echo 'Makefile for a pelican Web site ' 42 | @echo ' ' 43 | @echo 'Usage: ' 44 | @echo ' make html (re)generate the web site ' 45 | @echo ' make clean remove the generated files ' 46 | @echo ' make regenerate regenerate files upon modification ' 47 | @echo ' make publish generate using production settings ' 48 | @echo ' make serve [PORT=8000] serve site at http://localhost:8000' 49 | @echo ' make serve-global [SERVER=0.0.0.0] serve (as root) to $(SERVER):80 ' 50 | @echo ' make devserver [PORT=8000] start/restart develop_server.sh ' 51 | @echo ' make stopserver stop local server ' 52 | @echo ' make ssh_upload upload the web site via SSH ' 53 | @echo ' make rsync_upload upload the web site via rsync+ssh ' 54 | @echo ' make dropbox_upload upload the web site via Dropbox ' 55 | @echo ' make ftp_upload upload the web site via FTP ' 56 | @echo ' make s3_upload upload the web site via S3 ' 57 | @echo ' make cf_upload upload the web site via Cloud Files' 58 | @echo ' make github upload the web site via gh-pages ' 59 | @echo ' ' 60 | @echo 'Set the DEBUG variable to 1 to enable debugging, e.g. make DEBUG=1 html ' 61 | @echo 'Set the RELATIVE variable to 1 to enable relative urls ' 62 | @echo ' ' 63 | 64 | html: 65 | $(PELICAN) $(INPUTDIR) -o $(OUTPUTDIR) -s $(CONFFILE) $(PELICANOPTS) 66 | 67 | clean: 68 | [ ! -d $(OUTPUTDIR) ] || rm -rf $(OUTPUTDIR) 69 | 70 | regenerate: 71 | $(PELICAN) -r $(INPUTDIR) -o $(OUTPUTDIR) -s $(CONFFILE) $(PELICANOPTS) 72 | 73 | serve: 74 | ifdef PORT 75 | cd $(OUTPUTDIR) && $(PY) -m pelican.server $(PORT) 76 | else 77 | cd $(OUTPUTDIR) && $(PY) -m pelican.server 78 | endif 79 | 80 | serve-global: 81 | ifdef SERVER 82 | cd $(OUTPUTDIR) && $(PY) -m pelican.server 80 $(SERVER) 83 | else 84 | cd $(OUTPUTDIR) && $(PY) -m pelican.server 80 0.0.0.0 85 | endif 86 | 87 | 88 | devserver: 89 | ifdef PORT 90 | $(BASEDIR)/develop_server.sh restart $(PORT) 91 | else 92 | $(BASEDIR)/develop_server.sh restart 93 | endif 94 | 95 | stopserver: 96 | $(BASEDIR)/develop_server.sh stop 97 | @echo 'Stopped Pelican and SimpleHTTPServer processes running in background.' 98 | 99 | publish: 100 | $(PELICAN) $(INPUTDIR) -o $(OUTPUTDIR) -s $(PUBLISHCONF) $(PELICANOPTS) 101 | 102 | ssh_upload: publish 103 | scp -P $(SSH_PORT) -r $(OUTPUTDIR)/* $(SSH_USER)@$(SSH_HOST):$(SSH_TARGET_DIR) 104 | 105 | rsync_upload: publish 106 | rsync -e "ssh -p $(SSH_PORT)" -P -rvzc --delete $(OUTPUTDIR)/ $(SSH_USER)@$(SSH_HOST):$(SSH_TARGET_DIR) --cvs-exclude 107 | 108 | dropbox_upload: publish 109 | cp -r $(OUTPUTDIR)/* $(DROPBOX_DIR) 110 | 111 | ftp_upload: publish 112 | lftp ftp://$(FTP_USER)@$(FTP_HOST) -e "mirror -R $(OUTPUTDIR) $(FTP_TARGET_DIR) ; quit" 113 | 114 | s3_upload: publish 115 | s3cmd sync $(OUTPUTDIR)/ s3://$(S3_BUCKET) --acl-public --delete-removed --guess-mime-type 116 | 117 | cf_upload: publish 118 | cd $(OUTPUTDIR) && swift -v -A https://auth.api.rackspacecloud.com/v1.0 -U $(CLOUDFILES_USERNAME) -K $(CLOUDFILES_API_KEY) upload -c $(CLOUDFILES_CONTAINER) . 119 | 120 | github: publish 121 | ghp-import -m "Generate Pelican site" -b $(GITHUB_PAGES_BRANCH) $(OUTPUTDIR) 122 | git push origin $(GITHUB_PAGES_BRANCH) 123 | 124 | .PHONY: html help clean regenerate serve serve-global devserver publish ssh_upload rsync_upload dropbox_upload ftp_upload s3_upload cf_upload github 125 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # cbonnett.github.io -------------------------------------------------------------------------------- /content/Mixture Density Networks for Galaxy distance determination in TensorFlow .ipynb-meta: -------------------------------------------------------------------------------- 1 | title: Mixture Density Networks for Galaxy distance determination in TensorFlow 2 | date: 2016-04-25 10:20 3 | modified: 2016-05-25 18:40 4 | tags: TensorFlow, redshift, MDN 5 | category: 6 | slug: MDN -------------------------------------------------------------------------------- /content/images/MDN_drawing_small.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cbonnett/blog/ceef4f85d3e2a5c61233647812be5bfa94938d19/content/images/MDN_drawing_small.png -------------------------------------------------------------------------------- /content/images/plot_sdss_filters_2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cbonnett/blog/ceef4f85d3e2a5c61233647812be5bfa94938d19/content/images/plot_sdss_filters_2.png -------------------------------------------------------------------------------- /develop_server.sh: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env bash 2 | ## 3 | # This section should match your Makefile 4 | ## 5 | PY=${PY:-python} 6 | PELICAN=${PELICAN:-pelican} 7 | PELICANOPTS= 8 | 9 | BASEDIR=$(pwd) 10 | INPUTDIR=$BASEDIR/content 11 | OUTPUTDIR=$BASEDIR/output 12 | CONFFILE=$BASEDIR/pelicanconf.py 13 | 14 | ### 15 | # Don't change stuff below here unless you are sure 16 | ### 17 | 18 | SRV_PID=$BASEDIR/srv.pid 19 | PELICAN_PID=$BASEDIR/pelican.pid 20 | 21 | function usage(){ 22 | echo "usage: $0 (stop) (start) (restart) [port]" 23 | echo "This starts Pelican in debug and reload mode and then launches" 24 | echo "an HTTP server to help site development. It doesn't read" 25 | echo "your Pelican settings, so if you edit any paths in your Makefile" 26 | echo "you will need to edit your settings as well." 27 | exit 3 28 | } 29 | 30 | function alive() { 31 | kill -0 $1 >/dev/null 2>&1 32 | } 33 | 34 | function shut_down(){ 35 | PID=$(cat $SRV_PID) 36 | if [[ $? -eq 0 ]]; then 37 | if alive $PID; then 38 | echo "Stopping HTTP server" 39 | kill $PID 40 | else 41 | echo "Stale PID, deleting" 42 | fi 43 | rm $SRV_PID 44 | else 45 | echo "HTTP server PIDFile not found" 46 | fi 47 | 48 | PID=$(cat $PELICAN_PID) 49 | if [[ $? -eq 0 ]]; then 50 | if alive $PID; then 51 | echo "Killing Pelican" 52 | kill $PID 53 | else 54 | echo "Stale PID, deleting" 55 | fi 56 | rm $PELICAN_PID 57 | else 58 | echo "Pelican PIDFile not found" 59 | fi 60 | } 61 | 62 | function start_up(){ 63 | local port=$1 64 | echo "Starting up Pelican and HTTP server" 65 | shift 66 | $PELICAN --debug --autoreload -r $INPUTDIR -o $OUTPUTDIR -s $CONFFILE $PELICANOPTS & 67 | pelican_pid=$! 68 | echo $pelican_pid > $PELICAN_PID 69 | cd $OUTPUTDIR 70 | $PY -m pelican.server $port & 71 | srv_pid=$! 72 | echo $srv_pid > $SRV_PID 73 | cd $BASEDIR 74 | sleep 1 75 | if ! alive $pelican_pid ; then 76 | echo "Pelican didn't start. Is the Pelican package installed?" 77 | return 1 78 | elif ! alive $srv_pid ; then 79 | echo "The HTTP server didn't start. Is there another service using port" $port "?" 80 | return 1 81 | fi 82 | echo 'Pelican and HTTP server processes now running in background.' 83 | } 84 | 85 | ### 86 | # MAIN 87 | ### 88 | [[ ($# -eq 0) || ($# -gt 2) ]] && usage 89 | port='' 90 | [[ $# -eq 2 ]] && port=$2 91 | 92 | if [[ $1 == "stop" ]]; then 93 | shut_down 94 | elif [[ $1 == "restart" ]]; then 95 | shut_down 96 | start_up $port 97 | elif [[ $1 == "start" ]]; then 98 | if ! start_up $port; then 99 | shut_down 100 | fi 101 | else 102 | usage 103 | fi 104 | -------------------------------------------------------------------------------- /fabfile.py: -------------------------------------------------------------------------------- 1 | from fabric.api import * 2 | import fabric.contrib.project as project 3 | import os 4 | import shutil 5 | import sys 6 | import SocketServer 7 | 8 | from pelican.server import ComplexHTTPRequestHandler 9 | 10 | # Local path configuration (can be absolute or relative to fabfile) 11 | env.deploy_path = 'output' 12 | DEPLOY_PATH = env.deploy_path 13 | 14 | # Remote server configuration 15 | production = 'root@localhost:22' 16 | dest_path = '/var/www' 17 | 18 | # Rackspace Cloud Files configuration settings 19 | env.cloudfiles_username = 'my_rackspace_username' 20 | env.cloudfiles_api_key = 'my_rackspace_api_key' 21 | env.cloudfiles_container = 'my_cloudfiles_container' 22 | 23 | # Github Pages configuration 24 | env.github_pages_branch = "gh-pages" 25 | 26 | # Port for `serve` 27 | PORT = 8000 28 | 29 | def clean(): 30 | """Remove generated files""" 31 | if os.path.isdir(DEPLOY_PATH): 32 | shutil.rmtree(DEPLOY_PATH) 33 | os.makedirs(DEPLOY_PATH) 34 | 35 | def build(): 36 | """Build local version of site""" 37 | local('pelican -s pelicanconf.py') 38 | 39 | def rebuild(): 40 | """`clean` then `build`""" 41 | clean() 42 | build() 43 | 44 | def regenerate(): 45 | """Automatically regenerate site upon file modification""" 46 | local('pelican -r -s pelicanconf.py') 47 | 48 | def serve(): 49 | """Serve site at http://localhost:8000/""" 50 | os.chdir(env.deploy_path) 51 | 52 | class AddressReuseTCPServer(SocketServer.TCPServer): 53 | allow_reuse_address = True 54 | 55 | server = AddressReuseTCPServer(('', PORT), ComplexHTTPRequestHandler) 56 | 57 | sys.stderr.write('Serving on port {0} ...\n'.format(PORT)) 58 | server.serve_forever() 59 | 60 | def reserve(): 61 | """`build`, then `serve`""" 62 | build() 63 | serve() 64 | 65 | def preview(): 66 | """Build production version of site""" 67 | local('pelican -s publishconf.py') 68 | 69 | def cf_upload(): 70 | """Publish to Rackspace Cloud Files""" 71 | rebuild() 72 | with lcd(DEPLOY_PATH): 73 | local('swift -v -A https://auth.api.rackspacecloud.com/v1.0 ' 74 | '-U {cloudfiles_username} ' 75 | '-K {cloudfiles_api_key} ' 76 | 'upload -c {cloudfiles_container} .'.format(**env)) 77 | 78 | @hosts(production) 79 | def publish(): 80 | """Publish to production via rsync""" 81 | local('pelican -s publishconf.py') 82 | project.rsync_project( 83 | remote_dir=dest_path, 84 | exclude=".DS_Store", 85 | local_dir=DEPLOY_PATH.rstrip('/') + '/', 86 | delete=True, 87 | extra_opts='-c', 88 | ) 89 | 90 | def gh_pages(): 91 | """Publish to GitHub Pages""" 92 | rebuild() 93 | local("ghp-import -b {github_pages_branch} {deploy_path}".format(**env)) 94 | local("git push origin {github_pages_branch}".format(**env)) 95 | -------------------------------------------------------------------------------- /pelicanconf.py: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env python 2 | # -*- coding: utf-8 -*- # 3 | from __future__ import unicode_literals 4 | 5 | AUTHOR = u'Christopher Bonnett' 6 | SITENAME = u'Adventures in Machine Learning' 7 | SITESUBTITLE = u'' 8 | SITEURL = 'http://cbonnett.github.io' 9 | 10 | PATH = 'content' 11 | STATIC_PATHS = ['images', 'pdfs'] 12 | MARKUP = ('md', 'ipynb') 13 | 14 | PLUGIN_PATHS = ['./plugins'] 15 | PLUGINS = ['ipynb.markup'] 16 | 17 | TIMEZONE = 'Europe/Paris' 18 | 19 | DEFAULT_LANG = u'en' 20 | 21 | THEME = '/Users/Christopher_old/ice/github_code/pelican-themes/octopress' 22 | 23 | MENUITEMS = [('LinkedIn', 'https://www.linkedin.com/in/cbonnett')] 24 | NEWEST_FIRST_ARCHIVES = False 25 | 26 | # Feed generation is usually not desired when developing 27 | FEED_ALL_ATOM = None 28 | CATEGORY_FEED_ATOM = None 29 | TRANSLATION_FEED_ATOM = None 30 | AUTHOR_FEED_ATOM = None 31 | AUTHOR_FEED_RSS = None 32 | 33 | # Blogroll 34 | # Social widget 35 | #SOCIAL = ('https://twitter.com/cbonnett', '#') 36 | TWITTER_USER = 'cbonnett' 37 | TWITTER_TWEET_BUTTON = True 38 | TWITTER_LATEST_TWEETS = True 39 | TWITTER_FOLLOW_BUTTON = True 40 | DEFAULT_PAGINATION = 10 41 | DISQUS_SITENAME = "mk49" 42 | 43 | # RSS/Atom feeds 44 | FEED_DOMAIN = SITEURL 45 | FEED_ATOM = 'atom.xml' 46 | 47 | # Uncomment following line if you want document-relative URLs when developing 48 | #RELATIVE_URLS = True -------------------------------------------------------------------------------- /pelicanconf.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cbonnett/blog/ceef4f85d3e2a5c61233647812be5bfa94938d19/pelicanconf.pyc -------------------------------------------------------------------------------- /plugins/ipynb/LICENSE: -------------------------------------------------------------------------------- 1 | 2 | Apache License 3 | Version 2.0, January 2004 4 | http://www.apache.org/licenses/ 5 | 6 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 7 | 8 | 1. Definitions. 9 | 10 | "License" shall mean the terms and conditions for use, reproduction, 11 | and distribution as defined by Sections 1 through 9 of this document. 12 | 13 | "Licensor" shall mean the copyright owner or entity authorized by 14 | the copyright owner that is granting the License. 15 | 16 | "Legal Entity" shall mean the union of the acting entity and all 17 | other entities that control, are controlled by, or are under common 18 | control with that entity. For the purposes of this definition, 19 | "control" means (i) the power, direct or indirect, to cause the 20 | direction or management of such entity, whether by contract or 21 | otherwise, or (ii) ownership of fifty percent (50%) or more of the 22 | outstanding shares, or (iii) beneficial ownership of such entity. 23 | 24 | "You" (or "Your") shall mean an individual or Legal Entity 25 | exercising permissions granted by this License. 26 | 27 | "Source" form shall mean the preferred form for making modifications, 28 | including but not limited to software source code, documentation 29 | source, and configuration files. 30 | 31 | "Object" form shall mean any form resulting from mechanical 32 | transformation or translation of a Source form, including but 33 | not limited to compiled object code, generated documentation, 34 | and conversions to other media types. 35 | 36 | "Work" shall mean the work of authorship, whether in Source or 37 | Object form, made available under the License, as indicated by a 38 | copyright notice that is included in or attached to the work 39 | (an example is provided in the Appendix below). 40 | 41 | "Derivative Works" shall mean any work, whether in Source or Object 42 | form, that is based on (or derived from) the Work and for which the 43 | editorial revisions, annotations, elaborations, or other modifications 44 | represent, as a whole, an original work of authorship. For the purposes 45 | of this License, Derivative Works shall not include works that remain 46 | separable from, or merely link (or bind by name) to the interfaces of, 47 | the Work and Derivative Works thereof. 48 | 49 | "Contribution" shall mean any work of authorship, including 50 | the original version of the Work and any modifications or additions 51 | to that Work or Derivative Works thereof, that is intentionally 52 | submitted to Licensor for inclusion in the Work by the copyright owner 53 | or by an individual or Legal Entity authorized to submit on behalf of 54 | the copyright owner. For the purposes of this definition, "submitted" 55 | means any form of electronic, verbal, or written communication sent 56 | to the Licensor or its representatives, including but not limited to 57 | communication on electronic mailing lists, source code control systems, 58 | and issue tracking systems that are managed by, or on behalf of, the 59 | Licensor for the purpose of discussing and improving the Work, but 60 | excluding communication that is conspicuously marked or otherwise 61 | designated in writing by the copyright owner as "Not a Contribution." 62 | 63 | "Contributor" shall mean Licensor and any individual or Legal Entity 64 | on behalf of whom a Contribution has been received by Licensor and 65 | subsequently incorporated within the Work. 66 | 67 | 2. Grant of Copyright License. Subject to the terms and conditions of 68 | this License, each Contributor hereby grants to You a perpetual, 69 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable 70 | copyright license to reproduce, prepare Derivative Works of, 71 | publicly display, publicly perform, sublicense, and distribute the 72 | Work and such Derivative Works in Source or Object form. 73 | 74 | 3. Grant of Patent License. Subject to the terms and conditions of 75 | this License, each Contributor hereby grants to You a perpetual, 76 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable 77 | (except as stated in this section) patent license to make, have made, 78 | use, offer to sell, sell, import, and otherwise transfer the Work, 79 | where such license applies only to those patent claims licensable 80 | by such Contributor that are necessarily infringed by their 81 | Contribution(s) alone or by combination of their Contribution(s) 82 | with the Work to which such Contribution(s) was submitted. If You 83 | institute patent litigation against any entity (including a 84 | cross-claim or counterclaim in a lawsuit) alleging that the Work 85 | or a Contribution incorporated within the Work constitutes direct 86 | or contributory patent infringement, then any patent licenses 87 | granted to You under this License for that Work shall terminate 88 | as of the date such litigation is filed. 89 | 90 | 4. Redistribution. You may reproduce and distribute copies of the 91 | Work or Derivative Works thereof in any medium, with or without 92 | modifications, and in Source or Object form, provided that You 93 | meet the following conditions: 94 | 95 | (a) You must give any other recipients of the Work or 96 | Derivative Works a copy of this License; and 97 | 98 | (b) You must cause any modified files to carry prominent notices 99 | stating that You changed the files; and 100 | 101 | (c) You must retain, in the Source form of any Derivative Works 102 | that You distribute, all copyright, patent, trademark, and 103 | attribution notices from the Source form of the Work, 104 | excluding those notices that do not pertain to any part of 105 | the Derivative Works; and 106 | 107 | (d) If the Work includes a "NOTICE" text file as part of its 108 | distribution, then any Derivative Works that You distribute must 109 | include a readable copy of the attribution notices contained 110 | within such NOTICE file, excluding those notices that do not 111 | pertain to any part of the Derivative Works, in at least one 112 | of the following places: within a NOTICE text file distributed 113 | as part of the Derivative Works; within the Source form or 114 | documentation, if provided along with the Derivative Works; or, 115 | within a display generated by the Derivative Works, if and 116 | wherever such third-party notices normally appear. The contents 117 | of the NOTICE file are for informational purposes only and 118 | do not modify the License. You may add Your own attribution 119 | notices within Derivative Works that You distribute, alongside 120 | or as an addendum to the NOTICE text from the Work, provided 121 | that such additional attribution notices cannot be construed 122 | as modifying the License. 123 | 124 | You may add Your own copyright statement to Your modifications and 125 | may provide additional or different license terms and conditions 126 | for use, reproduction, or distribution of Your modifications, or 127 | for any such Derivative Works as a whole, provided Your use, 128 | reproduction, and distribution of the Work otherwise complies with 129 | the conditions stated in this License. 130 | 131 | 5. Submission of Contributions. Unless You explicitly state otherwise, 132 | any Contribution intentionally submitted for inclusion in the Work 133 | by You to the Licensor shall be under the terms and conditions of 134 | this License, without any additional terms or conditions. 135 | Notwithstanding the above, nothing herein shall supersede or modify 136 | the terms of any separate license agreement you may have executed 137 | with Licensor regarding such Contributions. 138 | 139 | 6. Trademarks. This License does not grant permission to use the trade 140 | names, trademarks, service marks, or product names of the Licensor, 141 | except as required for reasonable and customary use in describing the 142 | origin of the Work and reproducing the content of the NOTICE file. 143 | 144 | 7. Disclaimer of Warranty. Unless required by applicable law or 145 | agreed to in writing, Licensor provides the Work (and each 146 | Contributor provides its Contributions) on an "AS IS" BASIS, 147 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or 148 | implied, including, without limitation, any warranties or conditions 149 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A 150 | PARTICULAR PURPOSE. You are solely responsible for determining the 151 | appropriateness of using or redistributing the Work and assume any 152 | risks associated with Your exercise of permissions under this License. 153 | 154 | 8. Limitation of Liability. In no event and under no legal theory, 155 | whether in tort (including negligence), contract, or otherwise, 156 | unless required by applicable law (such as deliberate and grossly 157 | negligent acts) or agreed to in writing, shall any Contributor be 158 | liable to You for damages, including any direct, indirect, special, 159 | incidental, or consequential damages of any character arising as a 160 | result of this License or out of the use or inability to use the 161 | Work (including but not limited to damages for loss of goodwill, 162 | work stoppage, computer failure or malfunction, or any and all 163 | other commercial damages or losses), even if such Contributor 164 | has been advised of the possibility of such damages. 165 | 166 | 9. Accepting Warranty or Additional Liability. While redistributing 167 | the Work or Derivative Works thereof, You may choose to offer, 168 | and charge a fee for, acceptance of support, warranty, indemnity, 169 | or other liability obligations and/or rights consistent with this 170 | License. However, in accepting such obligations, You may act only 171 | on Your own behalf and on Your sole responsibility, not on behalf 172 | of any other Contributor, and only if You agree to indemnify, 173 | defend, and hold each Contributor harmless for any liability 174 | incurred by, or claims asserted against, such Contributor by reason 175 | of your accepting any such warranty or additional liability. 176 | 177 | END OF TERMS AND CONDITIONS 178 | 179 | APPENDIX: How to apply the Apache License to your work. 180 | 181 | To apply the Apache License to your work, attach the following 182 | boilerplate notice, with the fields enclosed by brackets "[]" 183 | replaced with your own identifying information. (Don't include 184 | the brackets!) The text should be enclosed in the appropriate 185 | comment syntax for the file format. We also recommend that a 186 | file or class name and description of purpose be included on the 187 | same "printed page" as the copyright notice for easier 188 | identification within third-party archives. 189 | 190 | Copyright [yyyy] [name of copyright owner] 191 | 192 | Licensed under the Apache License, Version 2.0 (the "License"); 193 | you may not use this file except in compliance with the License. 194 | You may obtain a copy of the License at 195 | 196 | http://www.apache.org/licenses/LICENSE-2.0 197 | 198 | Unless required by applicable law or agreed to in writing, software 199 | distributed under the License is distributed on an "AS IS" BASIS, 200 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 201 | See the License for the specific language governing permissions and 202 | limitations under the License. 203 | -------------------------------------------------------------------------------- /plugins/ipynb/README.md: -------------------------------------------------------------------------------- 1 | # Pelican plugin for Jupyter/IPython Notebooks 2 | 3 | This plugin provides two modes to use Jupyter/IPython notebooks in pelican: 4 | 5 | 1. As a new markup language so `.ipynb` files are recognized as a valid filetype for an article 6 | 2. As a liquid tag based on the [liquid tags plugin](https://github.com/getpelican/pelican-plugins/tree/master/liquid_tags) so notebooks can be 7 | included in a regular post using Markdown (`.md`) files. 8 | 9 | ## Requirements 10 | 11 | Python 2.7 and 3.4 are supported 12 | 13 | The main objective is to run with the latest version of Jupyter/IPython 14 | but there is a good chance the plugin will work correctly with older versions of Pelican and Jupyter/IPython. 15 | The recommended version of libraries are: 16 | 17 | - `pelican>=3.5` 18 | - `jupyter>=1.0` 19 | - `ipython>=4.0` 20 | - `nbconvert>=4.0` 21 | - `beautifulsoup4` 22 | 23 | 24 | ## Installation 25 | 26 | Download this repo and put all the `.py` files it into an `ipynb` directory 27 | into your `plugins` directory. The structure should look like this: 28 | 29 | ``` 30 | content 31 | plugins 32 | ipynb 33 | __init__.py 34 | core.py 35 | ipynb.py 36 | liquid.py 37 | markup.py 38 | ... other files are optional ... 39 | ``` 40 | 41 | See specific modes notes for settings in the `pelicanconf.py`: 42 | 43 | If you host your site on git (i.e. github pages) you could use it as a submodule: 44 | 45 | ``` 46 | git submodule add git://github.com/danielfrg/pelican-ipynb.git plugins/ipynb 47 | ``` 48 | 49 | ## Mode A: Markup Mode 50 | 51 | In the `pelicanconf.py`: 52 | ``` 53 | MARKUP = ('md', 'ipynb') 54 | 55 | PLUGIN_PATH = './plugins' 56 | PLUGINS = ['ipynb.markup'] 57 | ``` 58 | 59 | ### Option 1 (recommended) 60 | 61 | Write the post using the Jupyter Notebook interface, using markdown, equations, etc. 62 | 63 | Place the `.ipynb` file in the content folder and create a new file with the 64 | same name as the ipython notebook with extension `.ipynb-meta`. 65 | For example if you have `my_post.ipynb` create a `my_post.ipynb-meta`. 66 | 67 | The `.ipynb-meta` should have the markdown metadata (note the empty line at the end, you need that) 68 | of a regular pelican article: 69 | 70 | ``` 71 | Title: 72 | Slug: 73 | Date: 74 | Category: 75 | Tags: 76 | Author: 77 | Summary: 78 | 79 | ``` 80 | 81 | ### Option 2 82 | 83 | Open the `.ipynb` file in a text editor and look for the `metadata` tag should see. 84 | 85 | ``` 86 | { 87 | "metadata": { 88 | "name": "My notebook" 89 | ... { A_LOT_OF_OTHER_STUFF } ... 90 | }, 91 | { A_LOT_OF_OTHER_STUFF } 92 | ``` 93 | 94 | Edit this the `metadata` tag to have the required markdown metadata: 95 | 96 | ``` 97 | { 98 | "metadata": { 99 | "name": "My notebook", 100 | "Title": "Notebook using internal metadata", 101 | "Date": "2100-12-31", 102 | "Category": "Category", 103 | "Tags": "tag1,tag2", 104 | "slug": "with-metadata", 105 | "Author": "Me" 106 | 107 | ... { A_LOT_OF_OTHER_STUFF } ... 108 | }, 109 | { A_LOT_OF_OTHER_STUFF } 110 | ``` 111 | 112 | ## Mode B: Liquid Tags 113 | 114 | Install the [liquid_tags plugin](https://github.com/getpelican/pelican-plugins/tree/master/liquid_tags). 115 | Only the base `liquid_tags.py` and `mdx_liquid_tags.py` files are needed. 116 | 117 | In the `pelicanconf.py`: 118 | ``` 119 | MARKUP = ('md', ) 120 | 121 | PLUGIN_PATH = './plugins' 122 | PLUGINS = ['ipynb.liquid'] 123 | ``` 124 | 125 | After this you can use a liquid tag to include a notebook in any regular markdown article, 126 | for example `mypost.md`: 127 | 128 | ``` 129 | Title: 130 | Slug: 131 | Date: 132 | Category: 133 | Tags: 134 | Author: 135 | Summary: 136 | 137 | {% notebook path/from/content/dir/to/notebook.ipynb %} 138 | 139 | ``` 140 | 141 | ## Recommend mode? 142 | 143 | The only problem with the liquid tag mode is that it doesn't generate a summary for the article 144 | automatically from the notebook so you have to write it in the `.md` file that includes 145 | the notebook liquid tag. 146 | 147 | So you end up writing two files, one `.md` with some text content 148 | and the `.ipynb` with the code/plots/equations that makes it a little bit annoying but can 149 | be useful in some cases. 150 | 151 | You can use both modes at the same time but you are probably going to see a exception that 152 | prevents conflicts, ignore it. 153 | 154 | ## Note on CSS 155 | 156 | There might be some issues/conflicts regarding the CSS that the Jupyter Notebook requires and the pelican theme. 157 | 158 | I do my best to make the plugin work with every theme but for obvious reasons I cannot guarantee that it will look good in any pelican theme. 159 | 160 | I only try this plugin on the pelican theme for [my blog](https://github.com/danielfrg/danielfrg.github.io-source) 161 | while trying to make it the most general and useful out of the box as possible, a difficult compromise sometimes. 162 | 163 | Jupyter Notebook is based on bootstrap so you probably will need your theme to be based on that it if you want the html and css to render nicely. 164 | 165 | I try to inject only the necessary CSS, removing Jupyter's bootstrap but fixes are needed in some cases, 166 | if you find this issues I recommend looking at how my theme fixes them. 167 | 168 | 169 | ## Options 170 | 171 | You can include an `#ignore` comment anywhere in a cell of the Jupyter notebook 172 | to ignore it, removing it from the post content. 173 | 174 | On the `pelicanconf.py` you can set: 175 | 176 | - `IPYNB_USE_META_SUMMARY`: boolean variable to use the summary provided in the `.ipynb-meta` file instead of creating it from the notebook. 177 | - `IPYNB_STOP_SUMMARY_TAGS`: list of tuple with the html tag and attribute (python HTMLParser format) 178 | when the summary creation should stop, this is usefull to generate valid/shorter summaries. 179 | `default = [('div', ('class', 'input')), ('div', ('class', 'output'))]` 180 | - `IPYNB_EXTEND_STOP_SUMMARY_TAGS`: list of tuples to extend the default `IPYNB_STOP_SUMMARY_TAGS` 181 | -------------------------------------------------------------------------------- /plugins/ipynb/__init__.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cbonnett/blog/ceef4f85d3e2a5c61233647812be5bfa94938d19/plugins/ipynb/__init__.py -------------------------------------------------------------------------------- /plugins/ipynb/__init__.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/cbonnett/blog/ceef4f85d3e2a5c61233647812be5bfa94938d19/plugins/ipynb/__init__.pyc -------------------------------------------------------------------------------- /plugins/ipynb/core.py: -------------------------------------------------------------------------------- 1 | """ 2 | Core module that handles the conversion from notebook to HTML 3 | Plus some utilities 4 | """ 5 | from __future__ import absolute_import, print_function, division 6 | 7 | import os 8 | import re 9 | import json 10 | 11 | 12 | import IPython 13 | try: 14 | # Jupyter 15 | from traitlets.config import Config 16 | except ImportError: 17 | # IPython < 4.0 18 | from IPython.config import Config 19 | 20 | try: 21 | # Jupyter 22 | import nbconvert 23 | except ImportError: 24 | # IPython < 4.0 25 | import IPython.nbconvert as nbconvert 26 | 27 | from nbconvert.exporters import HTMLExporter 28 | try: 29 | from nbconvert.filters.highlight import _pygment_highlight 30 | except ImportError: 31 | # IPython < 2.0 32 | from nbconvert.filters.highlight import _pygments_highlight 33 | 34 | try: 35 | from bs4 import BeautifulSoup 36 | except: 37 | BeautifulSoup = None 38 | 39 | from pygments.formatters import HtmlFormatter 40 | 41 | 42 | LATEX_CUSTOM_SCRIPT = """ 43 | 70 | """ 71 | 72 | 73 | def get_html_from_filepath(filepath): 74 | """Convert ipython notebook to html 75 | Return: html content of the converted notebook 76 | """ 77 | config = Config({'CSSHTMLHeaderTransformer': {'enabled': True, 78 | 'highlight_class': '.highlight-ipynb'}}) 79 | exporter = HTMLExporter(config=config, template_file='basic', 80 | filters={'highlight2html': custom_highlighter}) 81 | 82 | content, info = exporter.from_filename(filepath) 83 | 84 | if BeautifulSoup: 85 | soup = BeautifulSoup(content,"html.parser") 86 | for i in soup.findAll("div", {"class" : "input"}): 87 | if i.findChildren()[1].find(text='#ignore') is not None: 88 | i.extract() 89 | content = soup 90 | 91 | return content, info 92 | 93 | 94 | def fix_css(content, info): 95 | """ 96 | General fixes for the notebook generated html 97 | """ 98 | def filter_css(style_text): 99 | """ 100 | HACK: IPython returns a lot of CSS including its own bootstrap. 101 | Get only the IPython Notebook CSS styles. 102 | """ 103 | index = style_text.find('/*!\n*\n* IPython notebook\n*\n*/') 104 | if index > 0: 105 | style_text = style_text[index:] 106 | index = style_text.find('/*!\n*\n* IPython notebook webapp\n*\n*/') 107 | if index > 0: 108 | style_text = style_text[:index] 109 | 110 | style_text = re.sub(r'color\:\#0+(;)?', '', style_text) 111 | style_text = re.sub(r'\.rendered_html[a-z0-9,._ ]*\{[a-z0-9:;%.#\-\s\n]+\}', '', style_text) 112 | return ''.format(style_text) 113 | 114 | ipython_css = '\n'.join(filter_css(css_style) for css_style in info['inlining']['css']) 115 | content = ipython_css + content + LATEX_CUSTOM_SCRIPT 116 | return content 117 | 118 | 119 | def custom_highlighter(source, language='python', metadata=None): 120 | """ 121 | Makes the syntax highlighting from pygments have prefix(`highlight-ipynb`) 122 | So it doesn't break the theme pygments 123 | 124 | This modifies both css prefixes and html tags 125 | 126 | Returns new html content 127 | """ 128 | if not language: 129 | language = 'python' 130 | 131 | formatter = HtmlFormatter(cssclass='highlight-ipynb') 132 | output = _pygments_highlight(source, formatter, language, metadata) 133 | output = output.replace('
', '
')
134 |     return output
135 | 


--------------------------------------------------------------------------------
/plugins/ipynb/core.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cbonnett/blog/ceef4f85d3e2a5c61233647812be5bfa94938d19/plugins/ipynb/core.pyc


--------------------------------------------------------------------------------
/plugins/ipynb/ipynb.py:
--------------------------------------------------------------------------------
1 | """
2 | This file is needed to make pelican work :)
3 | """
4 | from .core import *
5 | 


--------------------------------------------------------------------------------
/plugins/ipynb/ipynb.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cbonnett/blog/ceef4f85d3e2a5c61233647812be5bfa94938d19/plugins/ipynb/ipynb.pyc


--------------------------------------------------------------------------------
/plugins/ipynb/liquid.py:
--------------------------------------------------------------------------------
 1 | import os
 2 | import re
 3 | 
 4 | from liquid_tags.mdx_liquid_tags import LiquidTags
 5 | 
 6 | from .core import get_html_from_filepath, fix_css
 7 | 
 8 | 
 9 | SYNTAX = "{% notebook ~/absolute/path/to/notebook.ipynb %}"
10 | FORMAT = re.compile(r"""^(\s+)?(?P\S+)(\s+)?((cells\[)(?P-?[0-9]*):(?P-?[0-9]*)(\]))?(\s+)?((language\[)(?P-?[a-z0-9\+\-]*)(\]))?(\s+)?$""")
11 | 
12 | @LiquidTags.register('notebook')
13 | def notebook(preprocessor, tag, markup):
14 |     match = FORMAT.search(markup)
15 |     if match:
16 |         argdict = match.groupdict()
17 |         src = argdict['src']
18 |         start = argdict['start']
19 |         end = argdict['end']
20 |         language = argdict['language']
21 |     else:
22 |         raise ValueError("Error processing input, "
23 |                          "expected syntax: {0}".format(SYNTAX))
24 | 
25 |     # nb_dir =  preprocessor.configs.getConfig('NOTEBOOK_DIR')
26 |     nb_path = os.path.join('content', src)
27 |     content, info = get_html_from_filepath(nb_path)
28 |     content = fix_css(content, info)
29 |     content = preprocessor.configs.htmlStash.store(content, safe=True)
30 |     return content
31 | 
32 | 
33 | # ---------------------------------------------------
34 | # This import allows notebook tag to be a Pelican plugin
35 | from liquid_tags import register  # noqa
36 | 


--------------------------------------------------------------------------------
/plugins/ipynb/markup.py:
--------------------------------------------------------------------------------
  1 | from __future__ import absolute_import, print_function, division
  2 | 
  3 | import os
  4 | import json
  5 | 
  6 | try:
  7 |     # Py3k
  8 |     from html.parser import HTMLParser
  9 | except ImportError:
 10 |     # Py2.7
 11 |     from HTMLParser import HTMLParser
 12 | 
 13 | from pelican import signals
 14 | from pelican.readers import MarkdownReader, HTMLReader, BaseReader
 15 | 
 16 | from .ipynb import get_html_from_filepath, fix_css
 17 | 
 18 | 
 19 | def register():
 20 |     """
 21 |     Register the new "ipynb" reader
 22 |     """
 23 |     def add_reader(arg):
 24 |         arg.settings["READERS"]["ipynb"] = IPythonNB
 25 |     signals.initialized.connect(add_reader)
 26 | 
 27 | 
 28 | class IPythonNB(BaseReader):
 29 |     """
 30 |     Extend the Pelican.BaseReader to `.ipynb` files can be recognized
 31 |     as a markup language:
 32 | 
 33 |     Setup:
 34 | 
 35 |     `pelicanconf.py`:
 36 |     ```
 37 |     MARKUP = ('md', 'ipynb')
 38 |     ```
 39 |     """
 40 |     enabled = True
 41 |     file_extensions = ['ipynb']
 42 | 
 43 |     def read(self, filepath):
 44 |         metadata = {}
 45 |         metadata['ipython'] = True
 46 | 
 47 |         # Files
 48 |         filedir = os.path.dirname(filepath)
 49 |         filename = os.path.basename(filepath)
 50 |         metadata_filename = filename.split('.')[0] + '.ipynb-meta'
 51 |         metadata_filepath = os.path.join(filedir, metadata_filename)
 52 | 
 53 |         if os.path.exists(metadata_filepath):
 54 |             # Metadata is on a external file, process using Pelican MD Reader
 55 |             md_reader = MarkdownReader(self.settings)
 56 |             _content, metadata = md_reader.read(metadata_filepath)
 57 |         else:
 58 |             # Load metadata from ipython notebook file
 59 |             ipynb_file = open(filepath)
 60 |             notebook_metadata = json.load(ipynb_file)['metadata']
 61 | 
 62 |             # Change to standard pelican metadata
 63 |             for key, value in notebook_metadata.items():
 64 |                 key = key.lower()
 65 |                 if key in ("title", "date", "category", "tags", "slug", "author"):
 66 |                     metadata[key] = self.process_metadata(key, value)
 67 | 
 68 |         keys = [k.lower() for k in metadata.keys()]
 69 |         if not set(['title', 'date', 'slug']).issubset(set(keys)):
 70 |             # Probably using ipynb.liquid mode
 71 |             md_filename = filename.split('.')[0] + '.md'
 72 |             md_filepath = os.path.join(filedir, md_filename)
 73 |             if not os.path.exists(md_filepath):
 74 |                 raise Exception("Could not find metadata in `.ipynb-meta`, inside `.ipynb` or external `.md` file.")
 75 |             else:
 76 |                 raise Exception("Could not find metadata in `.ipynb-meta` or inside `.ipynb` but found `.md` file, "
 77 |                       "assuming that this notebook is for liquid tag usage if true ignore this error")
 78 | 
 79 |         content, info = get_html_from_filepath(filepath)
 80 | 
 81 |         # Generate Summary: Do it before cleaning CSS
 82 |         if 'summary' not in [key.lower() for key in self.settings.keys()]:
 83 |             content = '{0}'.format(content)    # So Pelican HTMLReader works
 84 |             parser = MyHTMLParser(self.settings, filename)
 85 |             parser.feed(content.decode("utf-8"))
 86 |             parser.close()
 87 |             content = parser.body
 88 |             metadata['summary'] = parser.summary
 89 | 
 90 |         content = fix_css(content, info)
 91 |         return content, metadata
 92 | 
 93 | 
 94 | class MyHTMLParser(HTMLReader._HTMLParser):
 95 |     """
 96 |     Custom Pelican `HTMLReader._HTMLParser` to create the summary of the content
 97 |     based on settings['SUMMARY_MAX_LENGTH'].
 98 | 
 99 |     Summary is stoped if founds any div containing ipython notebook code cells.
100 |     This is needed in order to generate valid HTML for the summary,
101 |     a simple string split will break the html generating errors on the theme.
102 |     The downside is that the summary length is not exactly the specified, it stops at
103 |     completed div/p/li/etc tags.
104 |     """
105 |     def __init__(self, settings, filename):
106 |         HTMLReader._HTMLParser.__init__(self, settings, filename)
107 |         self.settings = settings
108 |         self.filename = filename
109 |         self.wordcount = 0
110 |         self.summary = None
111 | 
112 |         self.stop_tags = [('div', ('class', 'input')), ('div', ('class', 'output')), ('h2', ('id', 'Header-2'))]
113 |         if 'IPYNB_STOP_SUMMARY_TAGS' in self.settings.keys():
114 |             self.stop_tags = self.settings['IPYNB_STOP_SUMMARY_TAGS']
115 |         if 'IPYNB_EXTEND_STOP_SUMMARY_TAGS' in self.settings.keys():
116 |             self.stop_tags.extend(self.settings['IPYNB_EXTEND_STOP_SUMMARY_TAGS'])
117 | 
118 |     def handle_starttag(self, tag, attrs):
119 |         HTMLReader._HTMLParser.handle_starttag(self, tag, attrs)
120 | 
121 |         if self.wordcount < self.settings['SUMMARY_MAX_LENGTH']:
122 |             mask = [stoptag[0] == tag and (stoptag[1] is None or stoptag[1] in attrs) for stoptag in self.stop_tags]
123 |             if any(mask):
124 |                 self.summary = self._data_buffer
125 |                 self.wordcount = self.settings['SUMMARY_MAX_LENGTH']
126 | 
127 |     def handle_endtag(self, tag):
128 |         HTMLReader._HTMLParser.handle_endtag(self, tag)
129 | 
130 |         if self.wordcount < self.settings['SUMMARY_MAX_LENGTH']:
131 |             self.wordcount = len(strip_tags(self._data_buffer).split(' '))
132 |             if self.wordcount >= self.settings['SUMMARY_MAX_LENGTH']:
133 |                 self.summary = self._data_buffer
134 | 
135 | 
136 | def strip_tags(html):
137 |     """
138 |     Strip html tags from html content (str)
139 |     Useful for summary creation
140 |     """
141 |     s = HTMLTagStripper()
142 |     s.feed(html)
143 |     return s.get_data()
144 | 
145 | 
146 | class HTMLTagStripper(HTMLParser):
147 |     """
148 |     Custom HTML Parser to strip HTML tags
149 |     Useful for summary creation
150 |     """
151 |     def __init__(self):
152 |         HTMLParser.__init__(self)
153 |         self.reset()
154 |         self.fed = []
155 | 
156 |     def handle_data(self, html):
157 |         self.fed.append(html)
158 | 
159 |     def get_data(self):
160 |         return ''.join(self.fed)
161 | 


--------------------------------------------------------------------------------
/plugins/ipynb/markup.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/cbonnett/blog/ceef4f85d3e2a5c61233647812be5bfa94938d19/plugins/ipynb/markup.pyc


--------------------------------------------------------------------------------
/plugins/ipynb/requirements.txt:
--------------------------------------------------------------------------------
1 | pelican>=3.5
2 | jupyter
3 | nbconvert>=4.0
4 | ipython>=4.0
5 | markdown>=2.6.1
6 | beautifulsoup4
7 | 


--------------------------------------------------------------------------------
/plugins/ipynb/tests/pelican/content/with-liquid-tag.ipynb:
--------------------------------------------------------------------------------
  1 | {
  2 |  "cells": [
  3 |   {
  4 |    "cell_type": "markdown",
  5 |    "metadata": {},
  6 |    "source": [
  7 |     "Lorem ipsum dolor sit amet, consectetur adipiscing elit. Curabitur purus mi, sollicitudin ac justo a, dapibus ultrices dolor. Curabitur id eros mattis, tincidunt ligula at, condimentum urna. Morbi accumsan, risus eget porta consequat, tortor nibh blandit dui, in sodales quam elit non erat. Aenean lorem dui, lacinia a metus eu, accumsan dictum urna. Sed a egestas mauris, non porta nisi. Suspendisse eu lacinia neque. Morbi gravida eros non augue pharetra, condimentum auctor purus porttitor."
  8 |    ]
  9 |   },
 10 |   {
 11 |    "cell_type": "markdown",
 12 |    "metadata": {},
 13 |    "source": [
 14 |     "## Header 2"
 15 |    ]
 16 |   },
 17 |   {
 18 |    "cell_type": "code",
 19 |    "execution_count": 1,
 20 |    "metadata": {
 21 |     "collapsed": true
 22 |    },
 23 |    "outputs": [],
 24 |    "source": [
 25 |     "a = 1"
 26 |    ]
 27 |   },
 28 |   {
 29 |    "cell_type": "code",
 30 |    "execution_count": 2,
 31 |    "metadata": {
 32 |     "collapsed": false
 33 |    },
 34 |    "outputs": [
 35 |     {
 36 |      "data": {
 37 |       "text/plain": [
 38 |        "1"
 39 |       ]
 40 |      },
 41 |      "execution_count": 2,
 42 |      "metadata": {},
 43 |      "output_type": "execute_result"
 44 |     }
 45 |    ],
 46 |    "source": [
 47 |     "a"
 48 |    ]
 49 |   },
 50 |   {
 51 |    "cell_type": "code",
 52 |    "execution_count": 3,
 53 |    "metadata": {
 54 |     "collapsed": true
 55 |    },
 56 |    "outputs": [],
 57 |    "source": [
 58 |     "b = 'pew'"
 59 |    ]
 60 |   },
 61 |   {
 62 |    "cell_type": "code",
 63 |    "execution_count": 4,
 64 |    "metadata": {
 65 |     "collapsed": false
 66 |    },
 67 |    "outputs": [
 68 |     {
 69 |      "data": {
 70 |       "text/plain": [
 71 |        "'pew'"
 72 |       ]
 73 |      },
 74 |      "execution_count": 4,
 75 |      "metadata": {},
 76 |      "output_type": "execute_result"
 77 |     }
 78 |    ],
 79 |    "source": [
 80 |     "b"
 81 |    ]
 82 |   },
 83 |   {
 84 |    "cell_type": "code",
 85 |    "execution_count": 5,
 86 |    "metadata": {
 87 |     "collapsed": false
 88 |    },
 89 |    "outputs": [],
 90 |    "source": [
 91 |     "%matplotlib inline"
 92 |    ]
 93 |   },
 94 |   {
 95 |    "cell_type": "code",
 96 |    "execution_count": 6,
 97 |    "metadata": {
 98 |     "collapsed": false
 99 |    },
100 |    "outputs": [],
101 |    "source": [
102 |     "import matplotlib.pyplot as plt"
103 |    ]
104 |   },
105 |   {
106 |    "cell_type": "code",
107 |    "execution_count": 7,
108 |    "metadata": {
109 |     "collapsed": true
110 |    },
111 |    "outputs": [],
112 |    "source": [
113 |     "from pylab import *"
114 |    ]
115 |   },
116 |   {
117 |    "cell_type": "code",
118 |    "execution_count": 8,
119 |    "metadata": {
120 |     "collapsed": false
121 |    },
122 |    "outputs": [],
123 |    "source": [
124 |     "x = linspace(0, 5, 10)\n",
125 |     "y = x ** 2"
126 |    ]
127 |   },
128 |   {
129 |    "cell_type": "code",
130 |    "execution_count": 9,
131 |    "metadata": {
132 |     "collapsed": false
133 |    },
134 |    "outputs": [
135 |     {
136 |      "data": {
137 |       "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEZCAYAAAB7HPUdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGABJREFUeJzt3Xu4ZGV5pvH7ATkIoogiEOQUhTFxUIhiQBQ6jiAOqBij\noBGICYrGA/E0ghjtieMlakzQOOMQQAU0ENSgoqOCh1YUBWVAUDDojApRaFSUiGfgnT9W9fRms7u7\ndveu+lZV3b/r2ldX1a7a9VJ0P/32t9b7rVQVkqTZsFHrAiRJ42PoS9IMMfQlaYYY+pI0Qwx9SZoh\nhr4kzRBDX1pAkp2T/CxJ1vKcO5P87jjrkjaUoS8NJPlukscBVNX1VbVVDQZZkqxI8hdtK5Q2nKEv\nrVbAmjp7pxg1FQx9CUhyNrAzcMFgWeeVg+WbjZO8AXgs8I7B996+wOs3S/K3Sb6X5KYk70yy+bj/\nO6R1MfQloKqOAq4HDquqrYD3r/5WnQRcDLxwsOTzkgV+xMnAg4GHD37dEXjt6CuXFsfQl4a34NLP\n4GDvc4GXVdVPq+o24I3AkeMsThrGPVoXIE2QNa3rbwtsAVw+52SfYFOlHjL0pdXWdrB2bd/7EfBL\n4Per6salLUlaWnYi0morgQct9ntVdSdwGnBKkm0BkuyY5OCRVCltAENfWu2NwGuS3AI8jbt2928D\n/iTJLUlOWeC1rwK+DXw5ya3ARcAeoy5YWqyM6iIqSXYCzgIeQPeH5x+r6u1JlgPHAj8cPPXEqvrE\nSIqQJN3FKEN/e2D7qroyyb2Ay4HDgWcAP6uqvxvJG0uS1mhkB3Kr6ibgpsHt25JcS3fuMqx56lGS\nNEJjWdNPsiuwN/DlwUMvTvK1JGck2XocNUiSxhD6g6WdDwDHD4ZW3gnsBuwF3Ai8ddQ1SJI6I1vT\nB0iyCfBR4ONVdbczHgb/Arigqvac97ibW0nSeqiqtS6fj2xNfzCafgZwzdzAT7LDnAGWpwJXL/T6\ndRU+K5Isr6rlrevoAz+L1fwsVpv5zyK5D3AZcHLgXet6+igncvcHng1cleSKwWOvBp6ZZC+60zi/\nAxw3whokaXolG9GdGv9pqt5N0i70q+oLLHzM4OOjek9JmjEnAfcHnj7sC9x7p/9WtC6gR1a0LqBH\nVrQuoEdWtC6gieRQupWSfaj6zdAvG+WB3PWVpFzTl6Q1SHYHvggcTtUlqx9ed3a6944kTZLuNPjz\ngdfNDfyhX26nL0kTojsr8jzg34FjmRfgw2Sna/qSNDleCewCHDA/8Idl6EvSJEgOAl4KPIqqX63v\njzH0Janvkt2As4EjqbphQ36UB3Ilqc+SLYB/AU6masUG/zgP5EpST3UHbs+ia9Cfva51fA/kStJk\nezGwJ/Do9T1wO5+hL0l9lBxIt83CvlT9Yql+rGv6ktQ3yQOBc4CjqPrOUv5oQ1+S+iTZDPgg8Haq\nLlzyH++BXEnqie7A7WnAfYBnLHYd3wO5kjRZngfsR7eOP5KO3E5fkvog2Q/4MPAYqq5bvx/hLpuS\n1H/JDsD7gT9f38AflqEvSS0lm9IF/mlUfXTkb+fyjiQ1lLwD2Jnugih3btiP8kCuJPVXcgxwMN0l\nDzco8Idl6EtSC8kjgL8FDqTq1nG9rWv6kjRuybZ0O2c+n6prxvnWhr4kjVNyD+Bc4J+o+uC4397Q\nl6TxOhm4HXhNizd3TV+SxiV5JvDHwCOpuqNFCYa+JI1D8jDg7cDjqbqlVRku70jSqCXbAOcDx1P1\ntaalOJwlSSOUbAx8DLiGqpeN9q3ce0eSWvsbYDPgv7QuBFzTl6TRSZ4KPJtu4vb21uWAoS9Jo5H8\nHnAqcChVN7cuZxWXdyRpqSX3AT4EvIqqr7QuZy4P5ErSUko2ojtT5/tU/eV439pdNiVp3E4C7g88\nvXUhCzH0JWmpJIcCx9EduP1N63IWYuhL0lJIdgfeTXcxlBtbl7MmIzuQm2SnJJ9N8o0kX0/yksHj\n2yS5KMl1SS5MsvWoapCksUjuRbeO/zqqLmldztqM7EBuku2B7avqynQfyOXA4cBzgB9V1ZuTvAq4\nb1WdMO+1HsiVNBmSAP8M/Aw4loZnxzSdyK2qm6rqysHt24BrgR2BJwNnDp52Jt1fBJI0qV4J7Aq8\nsGXgD2ssa/pJdgX2Bi4FtquqlYNvrQS2G0cNkrTkkoOAlwKPoupXrcsZxshDf7C080Hg+Kr6Wfcv\noU5VVZIF/2ZMsnzO3RVVtWKUdUrSoiS7AWcDR1J1Q5sSsgxYtqjXjPJfI0k2AT4KfLyqThk89k1g\nWVXdlGQH4LNV9ZB5r3NNX1J/JVsAXwTOZJBtfdB0TT9dS38GcE3d9UP5CHDM4PYxdKPKkjQZuq2S\nzwS+AbytcTWLNsqzdx4DfB64Clj1JicClwHnATsD3wWeUVU/nfdaO31J/dM1s/8APBR4Yt/W8YfJ\nTvfekaRhJa8GjgAOoOrW1uXM5947krRUkucAzwX272PgD8vQl6R1SQ4D3ggcSNUPWpezIQx9SVqb\nZF+6PXUOo+pfW5ezobyIiiStSfIQujMM/4yqS1uXsxQMfUlaSPI7wMeBE6j6WOtyloqhL0nzdbv/\nfgL4R6re07iaJeUpm5I0V7I5XeBfBRw/CZuoreJ5+pK0GN207bl0A6XPpOqOxhUtiufpS9Kwumnb\nt9Fd3/aJkxb4wzL0JalzIvBYumnbXm2vsJQMfUmakmnbYRj6kmZbcihTMm07DENf0uzqpm3fw5RM\n2w7D8/QlzaYpnLYdhqEvafZM6bTtMAx9SbNliqdth+FwlqTZMcHTtsNwIleSVpnwadthOJErSTAz\n07bDMPQlzYKZmLYdhqEvabrN0LTtMAx9SdNrxqZth2HoS5pOMzhtOwzP05c0fWZ02nYYhr6k6TLD\n07bDMPQlTY/kPnSBP5PTtsNwOEvSdJjyadthOJEraTbMwLTtMJzIlTT9nLZdFENf0qQ7Aadth2bo\nS5pc3bTt83DadmiGvqTJ5LTtejH0JU0ep23Xm+fpS5osTttuEENf0uRw2naDjTT0k7wrycokV895\nbHmSf0tyxeDrkFHWIGlKOG27JEbd6b8bmB/qBfxdVe09+PrEiGuQNOm6adsPA58DTm5czUQbaehX\n1cXATxb4ltO2kobTTdueDdwMvHQWt1dYSq3W9F+c5GtJzkiydaMaJPVdshHw3+mmbY922nbDtQj9\ndwK7AXsBNwJvbVCDpL7rOvzTgP8IPMVp26Ux9vP0q+rmVbeTnA5csNDzkiyfc3dFVa0YbWWSeiPZ\nBDgT2A44hKrbGlfUS0mWAcsW9ZpRL48l2RW4oKr2HNzfoapuHNx+KbBPVT1r3mvcZVOaVcmmdDtm\nbg48japfNq5oYjTfZTPJOcCBwP2T3AC8DliWZC+6s3i+Axw3yhokTZDknsAHgF8DT6Xq140rmjru\npy+pH5ItgY8AK4FjqPpt44omzjDZ6USupPaSe9Nd9ep7wFEG/ugY+pLaSrYBPgVcDRzraZmjZehL\naifZFvgMcDHwQqrubFzR1DP0JbWR7EC3rcIFwCuctB0PQ1/S+CU7A58H3kvVXxv44+NFVCSNV/Ig\nujX8t1F1SutyZo2dvqTx6S6AsgI42cBvw05f0ngkewKfBE6k6szW5cwqQ1/S6CWPAD4GvISq81qX\nM8sMfUmjlTya7pq2z6Xqw63LmXWGvqTR6XaBPI9uL3yvktcDHsiVNBrJE+gC/wgDvz8MfUlLL3kK\n3SUOD6fqs63L0WqGvqSllTwDOBV4IlWXtC5Hd2XoS1o6ydHAKcDBVF3euhzdnQdyJS2N5DjgNcDj\nqPpm63K0sHV2+klekuS+4yhG0oRK/go4AVhm4PfbMMs72wFfSXJekkOSeEUrSaslJwIvBA6k6v+0\nLkdrN9TlEpNsBBwM/BnwSLrTsM6oEf0P9nKJ0gToGsC/AZ4GPJ6qHzSuaOYt2eUSq7uwwU101668\nA7gv8IEkb9ngKiVNni7w3wI8iW5Jx8CfEOvs9JMcDxwN/Bg4HTi/qn476P6/VVUPWvKi7PSl/ur+\n7P8DsA9wCFW3NK5IA8Nk5zBn72wD/HFVfW/ug1V1Z5InbUiBkiZMsjFwGrA73ZLOvzeuSIs01Jr+\nuNnpSz2UbAKcSXdyx5Op+nnjijTPUnX6kmZdsilwLrAZcBhVv2xckdaTE7mS1i65J3A+UMBTDfzJ\nZuhLWrNkS+CjwK10u2X+pnFF2kCGvqSFJfemu7zh94CjqLq9cUVaAoa+pLtLtgE+BXwNOJaqOxpX\npCVi6Eu6q2Rb4DPA54EX0Q1nakoY+pJWS3YAPgd8BHglfTynWxvE0JfUSR4KfAE4m6rXGvjTyfP0\nJa26vOHpwMupOqt1ORodQ1+aZd3GaScBzwcOpeqyxhVpxAx9aVZ15+C/G9gZeJQ7Zc4G1/SlWZTs\nAnwR+DlujTxTDH1p1iQHAF8G3gP8OVW/aluQxmmkoZ/kXUlWJrl6zmPbJLkoyXVJLkyy9ShrkDRH\n8gLg/XQTtqd4hs7sGXWn/27gkHmPnQBcVFV7AJ8e3Jc0SsmmJP8TeBGwP1Wfal2S2hhp6FfVxcBP\n5j38ZLo9uRn8evgoa5BmXvIAui0VdgD2o+rbjStSQy3W9LerqpWD2yvpLsggaRSSvYHLgBV02yJ7\npasZ1/SUzaqqJK4pSqOQHAG8A/hLqt7fuhz1Q4vQX5lk+6q6Kd0+Hzcv9KQky+fcXVFVK8ZRnDTx\nuguXvx54FnAQVVc2rkgjkmQZsGxRrxn1wfskuwIXVNWeg/tvBn5cVW9KcgKwdVWdMO81XiNXWh/d\nHvjvA7YCnk7VDxtXpDEaJjtHfcrmOcAlwH9IckOS5wAnAwcluQ543OC+pA2V7E53/v0NdB2+ga+7\nGXmnvz7s9KVFSg4GzgZeS9WprctRG8Nkp3vvSJOs2zDtpcArgD+hO01aWiNDX5pUyebAqcCewL5U\nXd+4Ik0A996RJlGyI93lDDcDHmPga1iGvjRpkn2BS4HzgWdS9YvGFWmCuLwjTZLkGOAtwF9QdUHr\ncjR5DH1pEiT3oAv7Q4EDqbq2cUWaUIa+1HfJNsC5QAF/SNX8TQylobmmL/VZ8lC6DdOuoruGrYGv\nDWKnL/VV8hTgdODlVJ3VuhxNB0Nf6ptu4Ook4Pl03f1ljSvSFDH0pT5JtqS74tzOwKO8YLmWmmv6\nUl8kuwBfBH4BLDPwNQqGvtQHyYF0O2S+B3gOVb9qW5Cmlcs7UmvJC4DlwJ96wXKNmqEvtZJsCrwd\neCywvxcs1zgY+lILyc7Ae4GfAPt5wXKNi2v60jglIXkucDnwCeCpBr7GyU5fGpeuuz8NuB/wR1R9\nvXFFmkF2+tKo3bW7/zzdco6Brybs9KVRsrtXz9jpS6Ngd6+estOXlprdvXrMTl9aKnb3mgB2+tJS\nsLvXhLDTlzaE3b0mjJ2+tL7s7jWB7PSlxbK71wSz05cWw+5eE85OXxqG3b2mhJ2+tC5295oidvrS\nmtjdawrZ6UsLsbvXlLLTl+ayu9eUs9OXVrG71wyw05fs7jVD7PQ12+zuNWOadfpJvpvkqiRXJLms\nVR2aUXb3mlEtO/0CllXVLQ1r0Cyyu9cMa72mn8bvr1lidy817/Q/leQO4NSqOq1hLZp2dvcS0Db0\n96+qG5NsC1yU5JtVdfGqbyZZPue5K6pqxbgL1BRItgReBLwCOAV4M1W/bVuUtDSSLAOWLeo1VTWS\nYhZVRPI64LaqeuvgflWVSz9af8lmwHHAicDFwGup+mbboqTRGiY7m6zpJ9kiyVaD21sCBwNXt6hF\nUybZhORY4DrgIOCJVD3DwJc6rZZ3tgPOT7KqhvdV1YWNatE0SDYGjgSWA9cDR1L1paY1ST3Ui+Wd\n+Vze0dC6zuFw4PXAz4CTqPpM26KkNobJTidyNZm6sH8C8N+AjYFXAf+LPnYxUo8Y+po8yQHAG+hO\nv3wt8C9U3dm2KGkyGPqaHMk+dGH/YLq1+/dRdUfTmqQJ03oiV1q3ZE+SDwHnAx8EHkLVWQa+tHiG\nvvor2YPkHOAi4HPA7lSdStVvGlcmTSxDX/2T7EJyBvBF4OvAg6n6e6p+2bgyaeIZ+uqPZAeSdwD/\nG7gR2IOqN1B1W+PKpKlh6Ku95H4kb6br6n8N/B5Vr6HqJ40rk6aOoa92kvuQ/Fe6LRO2Ah5G1cup\nurlxZdLUMvQ1fsmWJCcA3wJ2Afah6gVUfb9xZdLU8zx9jc/dd748kKpr2xYlzRZDX6OXbAIcA/w1\ncBXdzpdXti1Kmk2GvkbHnS+l3jH0tfTuvvPlce58KfWDoa+lk2wOPIlux0t3vpR6yNDXhum6+n2B\no4GnA1cCJ+POl1IvGfpaP8nOwFF0YQ9wJvAHVF3frihJ62Loa3jJvYCn0QX9w4HzBrcvcwlHmgyG\nvtYu2QhYRnfK5VPozq9/J3ABVb9uWJmk9eA1crWwZA+6oD8K+DHd8s05VK1sWpekNfIauVqc5L7A\nEXRhvxvwPuAwqq5qWpekJWOnP+u6adkn0AX9QcAn6br6C6m6vWVpkhbHTl9rluxFdxD2WcD/pQv6\n57mdsTTdDP1ZkmwH/CldV781cBZwAFXXNa1L0tgY+tNu9ZTsMcD+wIeBvwI+5/CUNHsM/Wm0ekr2\nGLop2Svolm+OoOrnLUuT1JahP02SXVg9JVt0Qb+3U7KSVjH0J93qKdljgIfRTckehVOykhZg6E+a\n7upTe9Mt3zwaOJhuSvZ/4JSspHXwPP2+S3YE9pvz9XC6a8t+afD1SadkJcFw2Wno98ldu/hVIb8F\nqwP+S8BXqLqtWY2SesvQ77t1d/FfAr7t2rykYRj6fWIXL2nEDP2W7OIljZmhPy528ZJ6oLehn+QQ\n4BS6i2efXlVvmvf9foe+XbykHupl6CfZGPhX4PHA94GvAM+sqmvnPKdd6Hf1bQPcb97XA4A/YMxd\nfJJlVbViFD970vhZrOZnsZqfxWp93Vr5UcC3q+q7AEnOpbsM37Vre9GidfvPbMHdw3tdX1sBt9Jd\nLWru14+AjwGvYbxd/DJgxZjeq++W4WexyjL8LFZZhp/F0FqE/o7ADXPu/xvwh2t9Rdd935fFB3hx\n9/Be9XU93UZk8x//KVV3bPB/pST1UIvQH65DTr7M6vC+N3fvvm+Zc/sGFgr2ql8sce2SNNFarOnv\nCyyvqkMG908E7px7MDeJB0AlaT308UDuPegO5P4n4AfAZcw7kCtJGo2xL+9U1e1JXkR3Ae6NgTMM\nfEkaj14OZ0mSRmOj1gXMl+SQJN9M8q0kr2pdTytJ3pVkZZKrW9fSWpKdknw2yTeSfD3JS1rX1EqS\nzZNcmuTKJNckeWPrmlpLsnGSK5Jc0LqWlpJ8N8lVg8/isjU+r0+d/jCDW7MiyWOB24CzqmrP1vW0\nlGR7YPuqujLdlcIuBw6fxd8XAEm2qKpfDI6PfQF4RVV9oXVdrSR5GfAIYKuqenLrelpJ8h3gEVV1\ny9qe17dO//8PblXVb4FVg1szp6ouBn7Suo4+qKqbqurKwe3b6Ab5fqdtVe3U6lORN6U7LrbWP+TT\nLMkDgf8MnA70d+uW8VnnZ9C30F9ocGvHRrWoh5LsSre53aVtK2knyUZJrgRWAp+tqmta19TQ3wOv\nBO5sXUgPFPCpJF9N8tw1Palvod+ftSb1zmBp5wPA8TXDO5ZW1Z1VtRfwQOCAJMsal9REksOAm6vq\nCuzyAfavqr2BJwIvHCwR303fQv/7wE5z7u9E1+1rxiXZBPgg8N6q+lDrevqgqm6l2w/qka1raeTR\nwJMHa9nnAI9LclbjmpqpqhsHv/4QOJ9uufxu+hb6XwV2T7Jrkk2BI4CPNK5JjaXbPO8M4JqqOqV1\nPS0luX+SrQe37wkcRLeH1MypqldX1U5VtRtwJPCZqjq6dV0tJNkiyVaD21sCBwMLnvnXq9CvqtuB\nVYNb1wD/PMNnaJwDXALskeSGJM9pXVND+wPPBv5ocDraFYNrMsyiHYDPDNb0LwUuqKpPN66pL2Z5\neXg74OI5vy8+WlUXLvTEXp2yKUkarV51+pKk0TL0JWmGGPqSNEMMfUmaIYa+JM0QQ1+SZoihL0kz\nxNCXpBli6EtDSLJPkq8l2SzJloOLufx+67qkxXIiVxpSktcDmwP3BG6oqjc1LklaNENfGtJgp8+v\nAr8E9iv/8GgCubwjDe/+wJbAvei6fWni2OlLQ0ryEeCfgN8FdqiqFzcuSVq0e7QuQJoESY4Gfl1V\n5ybZCLgkybKqWtG4NGlR7PQlaYa4pi9JM8TQl6QZYuhL0gwx9CVphhj6kjRDDH1JmiGGviTNEENf\nkmbI/wO++s1oab2u0AAAAABJRU5ErkJggg==\n",
138 |       "text/plain": [
139 |        ""
140 |       ]
141 |      },
142 |      "metadata": {},
143 |      "output_type": "display_data"
144 |     }
145 |    ],
146 |    "source": [
147 |     "figure()\n",
148 |     "plot(x, y, 'r')\n",
149 |     "xlabel('x')\n",
150 |     "ylabel('y')\n",
151 |     "title('title')\n",
152 |     "show()"
153 |    ]
154 |   },
155 |   {
156 |    "cell_type": "code",
157 |    "execution_count": 10,
158 |    "metadata": {
159 |     "collapsed": true
160 |    },
161 |    "outputs": [],
162 |    "source": [
163 |     "import numpy as np"
164 |    ]
165 |   },
166 |   {
167 |    "cell_type": "code",
168 |    "execution_count": 11,
169 |    "metadata": {
170 |     "collapsed": false
171 |    },
172 |    "outputs": [
173 |     {
174 |      "data": {
175 |       "text/plain": [
176 |        "[]"
177 |       ]
178 |      },
179 |      "execution_count": 11,
180 |      "metadata": {},
181 |      "output_type": "execute_result"
182 |     },
183 |     {
184 |      "data": {
185 |       "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEACAYAAAC57G0KAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztvXu0bVdd5/n55Zxz33k/ICSBQAg0QZ7yKqrUtGVjZFjg\naB2F8dGKXcrorlh2j7JEsC0YLWrbrVWlRYMpC6gajpZUD4tWqAEidpOhYomAEB5JioQkkJAXeefe\n3Mc5987+Y6559txzz+dac6299r7rO8YZ55y1155rrtd3fdf39/vNKUopJkyYMGHC+uGMZXdgwoQJ\nEyb0g4ngJ0yYMGFNMRH8hAkTJqwpJoKfMGHChDXFRPATJkyYsKaYCH7ChAkT1hRJgheR94vIAyLy\npcg6vyMit4nITSLysrpdnDBhwoQJbZCj4D8AXBP6UEReDzxXKXUl8DPAeyv1bcKECRMmdECS4JVS\nfwE8GlnlDcC/b9b9NHCOiDytTvcmTJgwYUJb1PDgLwHutv6/B7i0QrsTJkyYMKEDagVZxfl/Gv9g\nwoQJE5aMzQptfBO4zPr/0mbZHERkIv0JEyZMaAGllCuis1CD4D8MXAfcICKvAR5TSj3gW7FtJ8cA\nEXmnUuqdy+5HW7Tpvwj/G/AtpfitfnqV24/T79iPCVP/l4su4jhJ8CLyQeC7gAtE5G7gHcAWgFLq\neqXUR0Xk9SJyO3AEeHPbzkwYHfYDFyy7ExMmTGiHJMErpa7NWOe6Ot2ZYCDCAaV4asnd2ATOWXIf\nJkxYKkR4CfAlpTi17L6UYtSVrCKICJcsux8NbhxqQyIcAr5RudkbW3xnLAR/47I70BE3LrsDHXHj\nsjvQETd2/P4NwFUV+jE4Rk3wwEuB/2fZnQBQSt044OauAM4XqRIjAVr3fxM4u1Yf2qLPYy/CPhF+\npK/2YfBrpzqm/rMFHKrQlcExdoLfz4oe2I54TvN731J7MR4F3yeeDbxr2Z2YMGpssqI8NHaC32T5\nJLcMGILfv9RejETB94wtYO+yOzGhDCJcKsJfDrS5DeDgQNuqilUg+GWT3DJwRfO79cNNhGeJ8FMd\n+3E6KPhNYM+yO1EDIvy6yHrsSwaeDoPF5zaZCL4XjE7BiyxU7faBGgr+RcCPduzHFutP8Ouk4H+W\n9T9fBmdRp44nB5OC7wmjIngRrkFH1PvGc4DjdNv3DeBAx35sAgdEdN3DmmKT9SH4PbDW58rGWQy3\nrxPB94RNYN9AqjkH5wHf3Wd/RNgAngl8lW4KvhbBw3r78FvAnhFdY60gwhk0+7LsvgyEIRX8FGTt\nCeYEjkVhbaErO5/b4zYuBR4CHmMcCh7W+7Xf7OOqE6NRs6PdDxHOEeHqSs1NFk0GVoXgx2LTmJvo\n7/S4jecAdwBHmRT8EBg9MWbCiKAxWzTfAfxSpbaGVvATwfeAMRL8DvDaHrdhCP4Y3fb7DOoQ/A4V\nFHxTlTzG621sb4ltscf5PUYcoh4pTx58BsZ4w9kYG8FvAp+jX4K/Avga41HwD1HHovkJ4DcqtFMb\nhiRWneBN/08ngp9rS4RniPCaSu3b2GDy4HuBOYFjyYXfAj4DPEeEs3raRi0Fv4EOHna5oQzB17Bo\nLqrUDiLsEeFZNdpifRT8Klg0tQn+DOet8HXoVNEoRLgoN6jetC9MCr4XjE3BbwFPAX8LvLqnbdT0\n4OnYxhbwMHUU/AHq3dzfQ73J3ddFwa+KRVPrAWQE1oa1bIu8a+w/AS/O3I5pfyL4HjBGgt8G/jP9\nBVprE3wXm6amRXOA+ZuxC86iHpGtSxbN6ajgYX5/NzPbP5f8e8u0NxF8Dxgrwf8VPfjwIpyN3tcH\nqWPRQHeCf5g61spB6t3cB6n3sJgU/HDog+Dt9rbIe8CV9MNcZ5MH3wPG6MEbBf+aHrJCngPcoRSK\n9VTwE8H3h9MxyIrTXq6CP0T+9TNZND1ibAp+E9hRigeb/2sXABl7Bsaj4Ned4Kcg63A4k7oevGJR\nwUevsSa4WvI2OVk0PcJcDGMheKPgQeeH1yIZg8uBrzd/j0nB17Boanrwp4WCF+HdzexeOTgdLZrH\nKPfg96OzYkoU/BEmgu8FY1PwfRP8xcA3m7/XTcFnqSYRPibCMxOrlbxipzDmIOsPAhdmrnvaWDQi\n7EWf/8OUe/DmgVmi4A+jU45r3++9Y1UIfmwePMBJ6pdKPwO4r/m7q4I353ZMCj7neL0UPdRxDDUD\ntqNV8Oh93CUsEQ6J8LuBdQ2xj9miqaXgzwSeQN+LpR68IfgSBb+DTo9eORW/KgR/Oin4e5u/x6Dg\nl5EHfwi4MrHO6eLBzxE8eqC7Hwise9ooeLQ98wT6Hizy4ClX8BtoMbeSNs1Qg/W0hRkLZYwEP3YF\nX8uieQQ4S4QzlOJUh7aSBN9kJR0iPVrnaeHBs0jwW4T3e1UUfI3+GYLfoNyDL1XwhoO2WUGCXwUF\nf5jxELw52XB6KPjNph9H6J4HnBNkNTfQkAQ/dgXvKtTQfk8KPs+DN9fYaaHgV4Xg196Db7IltoDH\nm0VjUfA7TZ+62jQ5vvmZze+URVMzyLouCn7UBN8EKPfTL8GXKPiSIOsOdUTO4FgFgn+S8Sj4Pj34\ni4F7myInqKPgj9KS4Jt8YaNeHqM7wed48GcC3wAuTUweXVvBH2VkxNgc/3WyaA6iSXIsHnxJkHVS\n8D1hbBZNnx78M5jZM1BHwT9JewW/gS7qUmgF3zqTppnTNUddnYkO6n4ToqNF1vbgDzM+BW/uTZfg\nQ8dwL1oUjOpBZcFkvqgK6YaG4Ldp78GXWjSHmQi+OoyCH6NF04eCv8/6/yjdFXwXgrfjDV0VvOlD\n6ngdQvf5NuI2TW0Ff4TxEbwhoBIFf5jxEvwhdP9c1d0GXTz4tkHWScH3gLFZNDbp9a3gj7FcBW9m\nr4LuBJ8b2DoT3efbiQdaTwcFX0rwe9H7MVaLZgiCz1HwXYKskwdfGWO2aIZQ8MskePth1smisfpQ\nQvBeBd+kUp7OCl4Ck1WsioJ3i5PaYEgPflLwPWLMBF+k4EWSJec+Be/dbxF+UiRJ/mcwLovmKfIJ\n/jbCCt7sd00Ff4TxEWOI4MG/76uk4Lv2sasHfzxjPYPJg+8RY06TzFbwjeK6I5EZ4ir4bfSUZL4L\n8ZfRI0/GMDYP/gnyCP4wcYvmIHVe8w3GruBdheouM9iLPt9je1AZmPjKGDz4x5iyaEaBsXnwbRX8\nJvrCipHtnIJvsldCKn4jsNxdZ0wWjak8jMEo+DuBZzbZNy4OZraVi149eBGeK8Jvt/hqqYJfFYtm\n2R78IfT1POXBjwBjtmhKPHjT/9ibiKvgIezDD0XwZl9rBFlzFPwh4EmlOI5+2PlSJWsTfN8K/lLg\nVS2+t84WzTI9+IOUEfyk4HvE2Ai+bRZNlOBFOIhWXo85H4UU/GZguY3aFk1XBZ9zUxkFD2Gbxtyg\nK6Hg0f1s09d1VfA1g6w+D14SefZGwZcGWScPvg1EeI4I3x342Nx8K+3Bk1bwFwP3WVWsBjEFnzom\nZrzsWhZNVw/+ScoJ3pdJc4h+FHxfxLhBO0JbZwVfK8jqU/AQP97Gg58UPICIXCMit4rIbSLyVs/n\nF4jIn4jIF0TkyyLyk4V9+B4g9J118eBzCP5ez/JlevB2HvwTzObAbINSDx701IWXe9YxFs0ZgXTB\nUpgsmr4U/CbtHkZbzm/Tlv3bxh7GHWQ1AfS+PXhIE3yJgl/fPHgR2QDeDVwDXAVcKyIvcFa7Dvi8\nUuqlwNXAb4lIyQncT/hgj82iqargm5lpYH6YYBshBZ9r0RwGDrQkQlvBd32tzvXgDQmAHrLgvEBb\nh9HzcdZ4A+3bgx9awY+V4Kt48NagZUc8beUo+FIPfq3z4F8F3K6UuksptQ3cALzRWec+ZuruLOBh\npdQO+dhH+GDv3nyV1FpXVFPwIrwQuEuEc2mn4HMsmhPoi7PNTV+zarckTdIo+EeIE/xJ6tg06+LB\nr4pFMycWRNh0s6VEuCiQHgyNCGjmJnDtHt8x8/WjTZrkWnrwlwB3W//f0yyz8XvAC0XkXuAm4OcK\n+xAbQnQTTVLbjCNPuaaCvwB4OvDrlCv4XIvmJLrAqI1N4xJ8FzLdtWgSD2qTKw1xgj9SoU8GfSv4\nnNS90PegLMg6Zosm5MH/U+DXnHX/E/D6QDvGnoHFN8uogm/U/z7y4kEGK63gUzvpBv18eDvwBaXU\n1SJyBfAJEXmJUupJd0UReaf1741KqRtJWzQ7zAbeOpbRnz5RM4vmAPBp4A1oMvvfPd8LDTiWQ/Bn\nME/wj2b21cDe167DMhxADwN8itkclz7YCv5R4FzPOoeoS/B9V7J2VfA+Alsni+Ys9D3wz0Crd+CV\n6PRSH2yCL/XgjTjYZsQevIhcjba7OyNFUN8ELrP+vwyt4m28FvhVAKXU10TkTuD5wGfdxpRS7/Rs\nI6Xgd+g+Nnot1FTwB9C2zG8Df4BfwYcGHMv14Lsq+FpDIx9s+mGOWQ7B5yj4GtWsq+jBh4KsY7do\nfJWsW8DzRHiOUtwBvK5ZfnGgnRjBb6FFqW0BvRm4Ryk+wewhU3LtDJ5F0wjfG83/IvKOtm2lLJrP\nAleKyOUisgd4E/BhZ51b0ZkwiMjT0OR+R0Ef9pFW8Esn+Ob1TlnzktZQ8E+h4xq/BnzB870FBd9Y\nHEKeBz8mi8YQfOj1+YxmvSPNokeA8zyWTm2Lpm8Pvm0WzboGWV1bZQ/6ze77mv+vAT6Hti19cAne\n9eCPOsteA/y95m8TvykJ9Jr74AQ6x36sD1AvogTfBEuvAz4O3Az8B6XULSLyFhF5S7ParwGvEJGb\ngD8DfkEp9UhBH1IKfpvuQ+fWgK3eoY6Cf0oplFL8klJ8y/M9336bbQ7pwXdNbTPEHWvnEPp4nAJQ\niqPNcnf/OxG8CFc4i1ZRwa9ykNUl5S3gU8A1zUP+dcD7yVPwPg/+KIsPEPOwaGPvbQAnmxqVlfPh\nkxeeUupjwMecZddbfz8E/IMOfcixaLpOflEDLsHXUvAx+IKsZpt9E7ydB19LwceOmW3PGDyC9uHt\n49Q1i+ZvRHiuUrsxiSwF38yZe0IpThRub6pk1Qh58FvAR4G3oe3eh9CxqZ8OtJPy4N0A6hZwUaIP\nMdhCxxC8W3E+Wiy9kpW8IOvSLRp6UvCJ7/n2u0TBn6Kegq9l0ey2I8IbRDB1FXYGjYHPh+8aZN3L\n/LHbRB/nMxIl7r8G/HcttjdUFs1oR5O07DefTbcHeAD4MjqW9yfo2FRbD95V8FvMK/hScWCEEqxg\nsdMYCD6VB28IftkWjU14UK7gTzFPLG0VvLkwh/bgawVZ7XbehPZcIazgXYI3Fk3bh84m82rdPLhP\nECfHs2h3c/eh4OfORUOgm+hjPEaL5iAz+81Hyttol+A70QT/IHB+IBc+5sFvobnCXraHWWp3GwVv\nE/zK5cIPSvAinCPCO53Fq5JF01XBP04dBT+URTNEkHWLWZaWj+B9qZJdg6ybzBO5Oa/Hids0MSGS\n2l7fCn4Ps6K21JvIMmCIFfy++Qm0TXMU+HOlOIm2ap7macucf19bJsjqtn9hMxeDHWQtHWwMVtCD\nH1rBXwr8hLOsJA9+mejqwT9KHQ9+GUHWU+gMgrbXiwmyusfMJfjDzvdiCr6Y4JuMnA3midzsZw7B\nt1HHXRS8j6xMmzb2AMebQKA7wuIYYBO8q7r3ANtK8bfAtym1W+sSsmns9N1dwdA81ITF2ZrMtp7O\nvL3XRsFPBJ/AJotkc7oo+DYEH/Pgh7BotmF38pEuKj6k4DeZFbSUWDRtg6xmfZ9F0yfBt1Xwrt0Q\nIvi9sBv8PcH4Cd5n0dDkwRvcR5jgfdld5nr1pWGC9uFti6atgp88+Ag2WXwC5ubBL9uDXzUF71ay\nlsIXc2hL8G6hk0Ebi6ZLkNWsvwd2vWsaS6BPi4YWbz++nO4YwR9v/t5mfIHWFMH7MpPuw58Lb2d3\n2W8DZrnPl3+YeYJvq+AnDz6BDRZHN/QqeOt1+iTjUfA24ZUq+EdYXQ8eWgY1m8IQQROP7+a+uAmm\n5WbRdPHgzbYNkdvnNBVk7aLg7W3nooTgjQcP41Xw5tz6FPb2wjfyFLzdllHwviydu2iv4CeLpgCb\n6JvdJqeQRbPJrMBgDB687f3B+BV8zTx4aJ9JcwA40pxHH8Gfgb6RkxZNo4L3oY9Lm/6Y9fdY/5tz\n2qdFY//ORYjgT7G437aCTz2oloGYB+++GRsUefDMrldfEPfraIK37b0uefArg2UoeJgnnFCQ1T6w\nY1HwQ3vwvgebGcvFHnr4oAif8qw3BovG3k9fkPUU2qbJsWgOAEebdLvaCr4vgt90fpd8z0fwxwgE\nWZu/18miaePB+x4gd7Go4NsGWScPPgJzUA+CHguacBqZS/Dr6MEf8a++C99+b7I4Ccp5wIuc9fqw\naNooeOO/mzZsctpED153KXlZNHaKXGcPnjIFv5d2+19bwR/1tDX2IKt9bn0WSsii8XnwLsHbHnzI\novk6Ohe+TfxmUvAFcBW8Iakcgp8UvMYG+kKzlx9i8RjWrGSFOgrep97uIKzgXYK3leCqKPjaHvw6\nKvgSi8Y+Z64Hb4Ksbvt3UUfBnyj43iiwVAXPjPBSFs0YPPhlZNGEBhs74iwPEXyt4YKhG8Eb1e27\n+e4kn+BtBd8m6OsSvL2PfQVZzTZrKXgfwbsKfswE7+bphyyaB9AFSu6+hiwac3/GPPiuQdaug+4N\njmURvK3g3WIOe92xKfguWTQ1FfxTwJZ18fdF8DUsmhwFfyn+LJrHgUPWfna1aNwg6yooePd4HfO0\n5QZZx2bRxBS816JRim30oF4XOh+Fgqy2gncLqR5A33sX0i3IOhF8AvaNCvqgHyat4MfgwVfLomlS\nQA/A7pC4IYQ8eFMbYAjpEIuVpqsQZN0kYtE0wdQngHOaRbU8eJ+CDxJ8c77a5sG3JXjfuCqnk0UD\n/kBrSsH72j+OtnyeyaTge4XPognNj2jffGO0aNqMRWNU9x5gR6k5AvUhlCZ5kvljcsj6zF2vVppk\n28G9YkFWY9GEgqwwb9MsS8Hb65eii0XjDh62qkHWNlk04PfhXQ/eHoDN58GbN4R70SnapUMVTAq+\nAG6QNUXwY7Nouij4o8z2I8eegfBQBW51ryF4uz99VLL2YdHcjX51PpdFiwbmUyVrB1lzs2jMOViF\nIOsYPfizKC90gnYK3ufBG4KH7gp+bA/PKJat4PeRb9GMjeBLFfwxZoo8l+C30aMDuraGW93rI/gx\nWTSxIOsxtEd6Pn6CH0rBx4gxlu2VQu00yVSQdYwWzZnEh/iNEbybKpntwTfWmk3wO+jj1HaogknB\nJ+AGWXc9eM/cm2Pz4Lsq+GKCb6o/3Yebb/iGPiwaX5C1j0KnbbSKB39dQB8EP6SC33R+l3zPJfhN\nBg6yirBfZGE8oFLY8ZWuFk2JB7+JroY/1bR1OFBRHcNk0RTAF2Q9is7XjqVDjcWDLyY8K0B3nHIF\nD4s+vLFo7GNijqdPwR8D9rYc7KqGRZMqdNpGFzsdtiY0t2Gm7TNt2QRf2h+30CnXg69h0fSp4O2x\naGor+B8D3tWxDe8sTI7C9uEBZtPtGdjXpc+Dty0au+17aWfvTQq+AD4FfxQ/WY7NommbRWNUhAmM\nlhK8u++2RRPz4DeYH8un9A2oZh58zIM3Ct5nz4D24FdCwYtwhghvdxbX9uBDQda+PPgDtHsDtBFS\n8JvoZAMV+J7vnLijScYUvP3gswm+rYJ3/f3RY9kK3lgXPrIcG8G39eDNPkI9BV/iwUM7m6amRbPg\nwTfqzWzjbvwZNDBv0ZhScxi2kjXXg78C+JXANtv09Tg6BmPu09wga81A4BYdHhjNeXaDrO7wAiH4\nJi8JWSa+PHi7/b8F/rX1vUnB9wBz0bZR8KvqwdcgeJ8H70uTdAneWB7HKX9A9p1FY95sFNqiCSl4\n16KpkUXjG4vmBHGCP0KaOF/MPCFDNwW/q0gtO+M4fgXfl0Wz2bG9vcAppXYfQK7CjhG8j1BDQVaf\ngt/195XiMaV4T7N8CrL2hE20F+d68KETOTYPvquCNw+qUovG58H7LJoN2FVNJk0S2r1a+oYLrhlk\ntY/n3wB/GPi+bdFcQLehCtxCJ1fBx7JoDpMmeDPgmxvsdpflwPaUt5g9sH3ncrQKnsUCNi8BB5BS\n8CkPPvQAKbl2piBrATbQBO8q+NFYNCL8qAg/7PnIR3i7fRbhbBHe4flebQWfkyZpZioyCr5N/q7P\noqkZZN1VYkrxDaX49cD3HwHOE+ENwEuBTzTLayv4lEUTqtew8WJnO/bfbRS8TfC2Qh1yLBqz7baw\nA6zgV90h+Ai+xIMPtT8p+J6wia7odD1430Xrqqt9nlTKPvAa4CWe5SkF/0zgOs/3uhK8T8GnCN6+\nKKGdgvdZNDWDrKmb2+AR4Erg3wL/UCke7tAfs0+lHvxeNMHnKnjXKrN/5yJE8L797nPKvtoK3ibt\nlEVTw4P3vSFMCr4nhBR81KJplGjMI62J8/G/LaSyaLaAC0QWboY+PHg3TfIQ8wNT2fYM1FPwNQud\n3DeiEB5Fp8r9ilL8tbW8LcE/RXsFHzyGIhxEjzl+GH8spJaC9+13n1P2dSV4O8AKZRZNVw8+9AA5\nySyukcKk4AsQ8uBTFg0M58Ofhz+gm1Lw5qZ6uvO92go+lCb5GPNqsYaCb1vYZWM/s/0PefAx3Ae8\nAXi3s7ztYGNHmFfwuUHWlAf/QuBWFguRTGLBqir4rkFWu4oVuls0JR68t/0msH+KPP6bCL4AhuBL\ns2hgOB/+fPII3jcyIiyWVncleFdZ+iyag2jrK2TR1FDwbS0aV3GZNrIIXimUUnzEkyvdRcHbefC5\nQdaUB/9i4EssksAG7SaKiBF8Ksg6ZoumJIsmRfAnmVXBp/LgXeReP5NFUwBj0ZTmwcNwqZK5BB9S\n8G5pdVeC9xHGbppkk5J3AH1c+/Tg21o0Mc80R8GH0HbSbduisc9pJ4sG7b9/kcWH6QZ1FXxOkHVs\nFk1MwZdm0exae81D3xB1yIMPXWO5ZD0p+AKsuoKP5YX3RfAuObtpkuYY2iqxLwXf5uIOEXyuRRNC\nHwq+i0UTUvDGoumi4DdJe/CrGGRNXQOp9Gl7nWgevAe514+530L9GTWWreBTQVb75PdO8CJsoRWH\nj+Dd/oQUfG2LxkcYtkVjqjvt/tRQ8LXy4GNpbTlB1hDaEvwRKiv4xiKwFbz7QO6i4M3D2RyvkAc/\nZgVfxaJp3lbdBAKzjrk/c/Lg3X7EYO63ku+MBstQ8EcBmmyTkiBrzCOtBVNQ43uQpDz4oS0am+Dd\nacjsKlbTxrKyaFzPdJkKfoOwgk8FWWMe/MWAQg+O5Xvj6qrgS4KsY8uDTwVZSyyaDVgYu8ZW8KUW\nTa6Cn8aDz4S5aM3YKLE8eJdghpjI4Pzmd1sP/hhpBV8y4YfZzsJFbrXlmym+rzz4thZN6yBrBDXS\nJF0FHwuyPsXitIgGLwK+GBiKto8sGl+QdaxDFaQqWUuCrO41abfXxqLJVfCTRZMJQ05H0DZN7lAF\nMBzBP067LJot4Bv078G7aZI5BL/sLJo+gqxt3ihcDz630MkWIr7j+Hx0iqTpV58KPhRkHetQBW6Q\ntaTQyT2WPlvPrGNbWrkWTRsFPxF8BIacjIIvsWiGIPjz0ANftVXw36B/Dz5k0dT24FMxh5J2xhRk\ntfPg7X3MIfjQcbwIbc9AfQ8+t9BpVYKsXSwan4J3j08yD75BroJf7yCriFwjIreKyG0i8tbAOleL\nyOdF5MsicmOkuZiCH4tFEyP4VBbNvcC5TbDWoA+C91k0dn/6qGStkUXjevBDB1mNB7/Hyp0uUfC+\ntD3Qc8p+q/m7VhaN6VuuB9/nWDR9VrImLRqr4tT31udT8PYbQugBkitY1jfIKiIb6ArCa4CrgGtF\n5AXOOucA/yfwD5RS3wb8UKRJV8GX5MEvm+BzsmiOoW90u5q1BsG7KsZW8GYI3b49+LYKPpZFswwF\nf4LZMW2j4EME/1Dz97IVfB8WzRkirc49xIOsUYvGyXOHdh58DQXfZVTWpSKl4F8F3K6UuksptQ3c\nALzRWedHgP+olLoHQCn1EGGsuoJPefDbLM4j2adFM7QHvw5B1pPMAqr2w+cEM2XvIuXBX0BYwS94\n8CJ8rwi/lNHX3CBr3+PB06FNn0VjZ7nELBqzfuytz1XwuRZNSZqk7w10JZAi+EuYTYgMmvwucda5\nEjhPRD4pIp8VkR+PtGdn0RxCX5jmxhmLgr8P2PQolhwPfrv5fk2C96XdhTz4mgq+cx68yThxhi2u\nFWT19keETRF+JPAdc02ZlMjdPjRTKoYGBTPXaeg4piyaE05fXw68S4SfD/TTfM9WpMsMskL7e88X\nZM1S8Nb6pg85Hrz7hlCj0Okk7F7HqsX8xktDqqOhuRJtbKEv2NcD3wv8sohcGVjXKKgj6IDmces1\nbCwE/zD+oqoSBW8HWl2CP8iMMHKQ48GnCp1qKPi2WStuGzUtGh/ZXgb8y8B3zLHzKXgI2zRdPHhf\nFs0W8O+AnxUhJIhKLZrWHrwIrxUhdM92JfguaZKwSPAlHnwNBW8HWUu+NwqkOvpN9A1jcBlaxdu4\nG3hIKXUUOCoif44eT/22xeb+h6vgyz8Ez30+fPvjcN3R5oMxWTQPM1PaR6zPfAS/IYI0D6lcBX8e\ncDQy0bALnyJ0LZp7WCx0GkMefKyNvoKsBwlXPAcVfAND8O78sEGLpnnTOwd2x6nP8eC3gDvRo2R+\nEvj9SF9tglsg+EZNblj70caieRvw18Cvej7bcn5nQ4S9aBF53FpckkUDaQWf8uCLgqwivAK4Vynu\ntbbpiiXzVtYLRORq4OoabaVu2M8CV4rI5Whl+ibgWmedPwbe3QRk9wKvBv6Fv7n3fg34v4DXocnO\nJni3Ly4BLIPgg/1RilMiKGYZK7aCf5X1PZ9FE4tTuHBJJdeiqVHJuvBAK2zDPYdDePAm/daHmAcP\n7RT8+cBjjcUDeVk0W2iL7svA2ZZIcPuaJPhmP05Y3y+yaJqYwyvQYs6HLgr+TOAJZ9/sESBzLBrX\n1ivx4Pc9t5DMAAAgAElEQVQwL9JshATLPwH+HD3BDPjfhntV8EqpG4Ebzf8i4pspLgvRjiqldkTk\nOuDj6B19n1LqFhF5S/P59UqpW0XkT9DjcJwCfk8pdXOgSTvIehEzgh+LRXMeYYIPvR6aC2ALvV8p\nBQ/5/jvEBxvrxYNvbj7fQ6LrxN29e/BoBb8lwoZFum5/Qgo+NFxBLA/etmcgX8HvKMVJEY6jrzX3\nmogRvN2+HWA165TcJ89AZ31dFvh8E30dtCX4ucnUlUKJLKjuGOz99731xTz4lEXju372ND++uY3N\n99bGokEp9THgY86y653/fxP4zcztmSDr+cyIb+kWTXMyUwrevVjMzXaCeQXv9eCVYqe5uEsIPmTR\nmNEjzyZd6FSq4H1jfrS1aNzAdE0PPqTgQRNfiDSNUvcpeN81FlPwFzD/RhYiePvBYe/7YfRDOpfg\n3XvFDrBC+X1i1HuI4M3bRpt7zw2wGtgEn7oXci0anwefCrL6ructZudqAzgVGPtmJbCsStYjaDId\nk4I/iCa1Y/hnj/IRks9yiCl4mra7EPwGcLK56I6hj6NvsLEuHrzvRmqblhjz4PsYqsAQvO9tw7z9\nmGsp5MG7iKVJphS8L4vGR/C7cLKPDMGZvnotGuv/0iyaVwB/hJ5T2AfzZlpFwTcwx6hNFk0oyFpL\nwduFXW6A1d7eSmBZY9EYBT+mIKtR7+CfXCSm4O3PHwTOF9ldXoPgfR686ecFLFo0XStZQ/nGtbNo\n+gqyQrhYLaXg5wi+ebPb13zWxaJxST9I8Mwft1QWjavgSy2aVwJ/iq4BONPzeReCz1HwfXrwbQqd\nbAXvBljd/owey1TwFxAPsvr80b4J/pHm72SQtcGCgleKHfQr+9Oa5V0J3iUV+yI/ip/g+1LwpRf2\nsoKsEJ443Q6y+hS8+71N9Gu6a5cYBAm+UeJCXME/SZrgbTL0KXjXosl6mFsB1s+ix1Hy2TR9KHj7\noVWSRVPqwaeGKggRvK3gJ4IvgKvgfZMxGyxTwZd68O7n9zIrCOvFomn+PkY/HnxfFs1QQVYIE7wd\nZHUJ4z4WC/ns81dE8MzOQ6hmAvS5c5WzfdzMubMJPhlkDVTkungWuhblXnS6s4/gNxmXRVPiwacU\nfCjI6psvwN5ezUKyXrGs8eCPNNseq0VTmkUD8xfT14DnNn/3TfAwjIJva9EsK8jqs2jcQie3f18F\nnud8xz5/pR682Z577KIePHGLxm1rTsE3vn3u25ZR7xAm+L6DrH178JOCHxDmFdkQXMqiGRPBlyj4\nWwAzKFsfHrw5LqbdI05faij42L6WtNNXkDXUn5RF4yr4HIK3h+J1t+nLojHHOlfBd/XgXRLLtWlc\ngp8LtFojbj6V2Z6LlILPsWiKPHhnOIE248G7WTRTkLUAdh48LCmLRoQfEOFZzmKTA2/6tc9afwNQ\n1pgqBiEFfwvwAidAZ9BVwduBHzNQ2wkWleNYFHzMg+8zyJry4E0evN2HlIIvtWjM9moq+FSQ1Xwn\n516xCd7nwZtaiGOZ7bmIKXijlLtaNO7xsdtvG2Q1+zoFWQvhKvhl5cFfB7zWWRbLogldKCFFeita\nwW+iUxrti6RrkNW1aA5bU8XZHnyXStZaQdZUFs0ygqzmgWgqWRcUvONf17Bo+lTwvkBi7r3ycuBz\nzd8+i8Zss+29FwuytrFoQokORsFvO8vajAfvKviJ4AswCgWPrqI94CyLWTQhtRlS8P8FuAJ947qD\nitXw4G2L5rBnvbHkwfuyaPoOsuZ68AsKXikeatq90PpOUME3DwJ7qGDwn4faCj4WZIUMi0aE/ei3\nHdN3H8Gbc9T23nMn+zAosWhyg6z2tZbj8YcEy24la2J7K4FlK/hlBVkvYvYqb5Ai+GwFrxRH0Zk0\nL6Q+wbsWjSH4mh58zTz4oYOsB9Gk0kbBw6JNY4/86T4ozwaOKbWQh+5aNDUVvO9h0caiORd41KrS\nvBu4zHl7MddBFwUfC7LmjkWTE2S1P8t5Q5gUfA+ws2hgCUHWJvhyIWUEH1KbIQUP2od/GYsE/03Y\nHakuB74g65xFY63Xt4LfbUOEjWa0wJJ2hqpkfZh2HjwsEnzMg3ftGdOvkiyanDz4lEXjHsecIOu5\nzOo+UIrDzCqj3X7WtmhKs2hiQVb7+NgK3njpbYYqiFWylt5LS8XQHbUHyjKl9jCsRXMe+sHWm4Jv\n4CV4pXh7YX+THnzzt00sXStZcyyaHwL+PvAzBe0MFWSNEbyxaHIVfMyDzyH4Ggp+0/rb3W/fPuQo\n+POwCL6BsWlMVlBXgg8FWWsWOsU8+JSCDxH8VMnaEiboqNA2xTIsGlNh6hL82cDjzd/uWDShC6WN\ngi9FiQcfKnTyZX/EkJNFczbafy5pZ6gg68PEhyqwR5MsVfD2uXBTJCE/i8Zst02hU40g67nAo84y\n14fvW8HXLHSyj6k5T7H2Q9fPlAffATY5HWE548Ff1Px2Cf4Qs4uxaxYNaIL3efClqOXBl1o0qTz4\nLRaPoYtlBVkfIT7YWFsF39aiqZ1FE2rLIMeiiSl4ux99B1lLPfhSBV9a6JRTyToRfAA2OT3Fciwa\nQ/C7WTTNwGB7rP50zaIBTfBb1CH4Gh58bYsmh+D79OBjFk2I4HMU/O3AFdacvF0Jvk0WjatGU0FW\nl8S6WjRuP0qvH4NUkDXXoomJAvsNJ/TW40MsyDop+JaIKfihLJqL0EFOm5wOMssnhwoevFI8CjxA\nd4L3efC2RWMC1n0HWX3EkkPwbhbNEION5QZZF/qgFEfQtoshui4efB9ZNDWDrK5F8w3mq1lbWzQi\nu0NB+K5/Owhaq9DJtbWMaMsOsjYZRJusUSXr0B21T4LtwQ+t4O9knpzMrEgGbbJofBffLfRr0fzf\nzIgs5sHXCrLa/djDIjGl2nE9+K5BVt/1awj+Qs9ntoLfg38/QdcxPA+4i0UFb2cOXQh8yfluThaN\nfT3lEryQH2TNuVfOQ1+fNmp68K5oslG70GkvesTPU9Z3coKsPlEJUyVra9gH7K3AZ5q/h1bwpQTf\nxoOHfgh+l7yV4nal+LJnPbeStVTB5+TBt7Foeg2yNqoRwnnwbqFT6CFj+/BdLJouCt7O6Y4p+C4W\njavgH0FPIO72s8295w5jbKPEosnx4Pfhr7eIXWM+gWC2M+XBd9ieIadPNq/D4D9ofWbR3IXHorH+\nr5FFA/AVwpP+5sLnwftIqfZgYzU8eJdATwFnNLUIfQRZD6CPt5mv1oWt4Pczr/psfBV4fvN3zKK5\ngFlqLdY6xR68U2BUEmStkgffwJ3wpEuQ1Vdha1CaRZPy4PezKCRSefA+UbnH+T0FWQvhzm9oELJo\n7JNZW8HbQxUcYp6IfVk0KVL1EfwHgF/s0lkW1bfvtRH69+C9WTSJccfn2mnOvSHmPjz4g8ysv5QH\nfzCy/VuB/6r5O6bgTdWsjaIsGmsiEZdY3ZS/WJC1Vh68O+GJue7bKvgYuaaCoAY5Hvx+6il4e+L1\nkIJvE3BeCoYm+JDnuqoWTVTBK8VTSvFAx/4GLZpIX2ooeJ9Scollg/g5ibXTB8HbCj6VB3+I8PV4\nM3BV83csD34/sziSgc+iSZGymwvvBgx3s0SaNw6xHqw+m6NtHvwx/JOD17Zo7IdWjUInV8GbB1zo\nbdd8z0fw9uQmKx9kHRPBRy0aMyKjlb7WFkN68DVwEtiwbugYwZu+uJWsfSl4iAdaY6+4XYOsPlFw\ngFn6baqSNabg7wbOEuEc4go+RfA5layw6MPHLBqYf7i1tWhCCr4WwdeyaHI8eJ+C3w9sBxwD8AuE\nXYK3MmomD74APmIyy1MePHRU8c0IenvRU7PVzqLpheAtW8N97XcxtAdvzkPMh08RfF8WTYjg7SDr\nQU/fgN1jfgtaxcc8+ByCn8uiMQLFGUK6C8EXWzRNDORs4DHno5oEn2PR5MRhXA8+R8HvoB/2sbZD\nCt5Mrm7eUCeCL0AXiwa62zQXAg827YiVdeES/Alg03pbiCr45oZxVXNN+F77Y+sMlQcPcYL3qXTz\nIOozyBrz4I1FE1PwoAPkVzE/oUZbiyb1pteG4O32SocLPgs40vj/No4De623RTvIWuo7p7Jo9qEt\np5DCNnA9eN/DzKfgDxC3f3zXj3mjiBXCTQQfwVIVPDqD5oHmojrCjJzmCL753CaJlAe/Rfx1sCts\nYhnKg8+1aNoo+L6DrDEP3g6yxiwi48N7LZqm+nmTRRJJZdHUIviURRMb6dNnz9jzubqed07Q1kXK\nokkpbINUkHX3YeF8xyV9Xx98Cn6b2VAWk4IvRJaCbxSE7+B2JfiL0AoeNMGbTBpXwcM8SaSyaPry\n3w18r/2pdboo+JDy9in4lAfvC7L2ZdHkevAmTTK2/SjBN98/6nmohywaW3G7x7aU4FMPjND+G/hy\n4O3vmodDXxbNNvkEb4uTWJDVp+BTBO/z4G0FPwVZC5EbZN1gNuqkjdoEb9SnmwcP8z58loLv0K8U\nulo0NRR8G4umzyBrmzx424M3fQnhZvRgcSEP3mfPuOvYFk1fCt5n0fgmjbfhy4E3sH34Pgud9pPO\noIFuHnzKogmlSRoFPwVZC5Fr0fhOJPRH8D4Fn0PwtXK6U7BJI2TRxIKsfWTRmBu4LcHX8ODdfbLz\n4OcIznkrNDd+bPtfRyvdi/CnScYI3mfRdPXg7eOVsmhCFpWB16JpkCR4EX5QhBdF2of+LJpcDz7H\nopkUfGXkBlmXQfBuxalNErEsmiEsmlwP3l5nt0LTVGsWpJj69tdn0TxKOcHXsrVKFfwGs0I7O2jq\nRXPMbgGuJGLReL7qs2hSCt6d1cnNg3ePVyrIGgoyG8QsGrvYKaTg/yHwnZH2IZ1FkyJgg7YefOoB\n4hMI5mEZU/ClYmmpGIuCd5+K1QhehOeL8O3NvzbBP8VqKfgcDz4UZIWyCzPXonmM8iyaPoOsxoM/\nAWw5DzR7nwzxpCyim9GDfIUsGt/cuj47LUfBewudmgfNKebPe0rBd7FobA/ejlnY992hpo0YUoVO\nKQvFwLW8fNeTewxyLKBcBT9ZNAUI3VC+DI1aCv5NwB80WQ9PIz/ImuvBDx1kbePBm89zffjcLJrH\naFfotBdQgXFgcnGS+YpOaCyaRqW7VZk2QeZYNKAJHropeNeD970dxSwas107pTAVZE0RfCeLpunr\nOcRR06KJBahtK6uk/ZAH72bRTBZNAZZh0ZyJHhnwJynz4O3X/FgWzWAefJNvT4AY7QvWl5O/DAUf\nyqJxg2LFaMhOOX0yFg34i9WMKjakm6PgocyDd+00XxZNG4K3v1MjyBqzaHIIPkfBpyya3CBrTMHb\nmUX2sraFTieYz4NfaQU/dEeXEWQ9C/h3wDvQhF0zyDq0B587tkZXBR8rULLXaevBu8O7toV56Jht\nmCArLPrwbl9MxWIMX7HagnIF3yWLxia/beaHf+5q0aQUvM+Dt6+dM0kr+FQWTa0ga0jBpx4goaEK\nJgXfActQ8GcBnwA+ix7etQ3Bh4KsQ3vwIXvGrNOnB+8bqqANwZugWI3j5fbJePDgJ3j7mBz39M3F\nXcBfMT/zWFuLpraCj7WXQ/AlCt4tdMpR8LUsmhwPHmd5Tvs+ovZVsq60gl/7ICuzmd3/F+ALSu1e\ndDWCrEN78KEMGnsdAut19eBrBllzMyhS8BG8bdHEFPyJVB+U4qRS/F2rpN9+SB4gM4umsdRUY7GN\nxaLpGmTNUfCxQqc2efClHnzbIGuqkrV02IalYSwK3mfR+G6+tgr+CaX4CvBya/kRZuOZHySeJjmG\nLBoz+FHOMcxW8CK8oBmEzYbv+JvJOuxhatsGWfsieNeisffLPXY5Ct5FW4vGXl6D4G1y6sOi8Sn4\nLZHdoHbXLJqSa6CtB59qPxZkPX3y4EXkGhG5VURuE5G3RtZ7pYjsiMh/G2luWUHWJ2A3MGdgsmj2\nAtuegZfGpOANOacsmjYK/t3A33eWLRz/5tiZdD3I9+B7CbI2iCn4lAefVPAetM2isfuakwfvKtWU\ngnfb6zJUwQLBN+fe7Pt+dOroHMGL8AERLrIWDTkWjVmvpP2Qgj99KllFZANNANegx+W4VkReEFjv\nN4A/gegMP8uwaM5icdYdmHnwviInGF8WTcqiMRNBnBFYL+TBn0V80me3Hzax5GTR9BlkdVVYKsha\n6sG7aOPB7zjLl2rRiLCvaT80laQvyAqze+9M9MPhTJPV1eD7gWdY/9fKonE9+FCQ1fXgc4KsKQ9+\n7RX8q4DblVJ3KaW2gRuAN3rW+1ngD1mcgNhFiUVTXcE7sAne9d9hXAo+SfCNyjIEPFfJarXhU/Bn\nkk/wbnCvDcEPFWTt7MF7kJMmGbJoYmIgNqOTaTMUZC21aM4FHomMfOobbAxm994h4HG0aDobdkfW\nPJ/5450qdMqZ7MOsax/PvhW87cGvt4IHLkHPbmNwT7NsFyJyCZr039ssig2Zm5MBAsMr+BTBjyWL\nJubBu+vlKvhSgre930c937WxzCDrEB58qpLVPg+2GHC3e4T5ibdLFXwpwYfsGZi3aOx+2AT/JPrh\nbgKt56Pf3G2CT1k0ePrtg33MfceubR58rge/1gSfM775vwJ+USml0Cc5ZtEMquCbCT02mOUx2zBZ\nNKui4M2AU6GHJMyOY4kHf4hFkg5ZUjUsmiGDrLUVfI5FcxJ2p1h0hxfwXitNZtcpZtd2SZDVZ9G4\nE9bYiAVYwR9kNW0agj+MfkgYH/7C5rer4FMEX6PQKaTg3VoCXx9CBL82efCpjn4TuMz6/zK0irfx\n7cANIgI6z/z7RGRbKfXhxebecqXIv3ln88+NSqkbm7/7UvBnAk8GXkdrWDRDKXi70ClG8LZFk1Tw\nVkZEW4umTZDVePBVg6zNvtik24cHnwyyKoUS2e3XJvNDE8euFePDH2fxuG0zL8bMQ8Qbb2n6YK5f\n99qOBVgh7sFvMbtfjjNT8Ca4mmvRlCj4th58qv1QoZM5p0vLgxeRq4Gra7SV6uhngStF5HLgXvS4\nLtfaKyilnmN17APAR/zkDnD9l5W6/p2eD/oKsp6F33+HWRZNLsGHFO3QHnyOReMbqsCn4A80657p\nLI8GWS11+gRwQAQJPESH9OD3AcetuU5THnxOJatve2c0xBpS8OC3ylKjaBqCf9jTVy/BN22dCBz7\nEMGfw+JcrDaO03jrTl+Nb27fLzEFX9OiaePBE9m+WScUZFXo47QUBd8I3xvN/yLyjrZtRTuqlNoR\nkeuAj6N39n1KqVtE5C3N59cXbq+GRXNWwfZCAVaYKXjfZB+wmEUzBg8+ZdGUevCG2H0KPrW/O0qx\nI8I2+jj5yK5vi8Z+87PtGUh78Cc8fYuiUcbmOIYKnUy/3AdyroKHPIJPCYuQD78Pf+zA4BgzRR7K\nojnc9C+l4GOFTkQ+d9eNefA+Bb/t/PYhFmQ9xZpUsiY7qpT6GPAxZ5mX2JVSb040l0zxa6r+aip4\nX4AVMi0aEfYC38aiNQXDe/Api6bUg48RfMyisW9eQ0xHRXgX8CWl+A/NZ6Eb8hD1FbwdYIU6Y9H4\nYI5jjoJ3s2jMshoEv0E8EyWUC2/PUOVDbpD1GDMF36dFE/XgleKUCKfwK/i2QdYdpjlZW8GrmJwU\nP6jrwacUfMqi+Rngi0pxk2edMXrwtRR8LMhq7689ps/LmM+Fjin4qh48fgWfCrK26YM5jqUWTUrB\n28VOuUFWX4DVIKbgQ8QL6Tx4c7/YWTQXNp/3YdHsoAPGQvy69HnwNcaD92XtrAzBD93R2A1lnqjm\nAPat4J9Cq74z8Rd9HEWnf70NeH2gjVjqW03YijDlwYeCrCEFf5JyBR8i+EuJk6ppI2TplMJV8DbB\nm/Nn98UNsrZ5KNsVnSUWTY4Hbx64vjx4OzstR8HHCD5XwaeyaEzR40XodOrqWTSeoHUom62Wgj+B\n9uD3EI5lrQzBj2WwMVhM/eo1yNoE406gM39CCv75wF8qxRcC7Y+pkjW1XkjBP0B5HnyI4C9jfpKN\nUNZDH0FWn0XjHQ++QRcFn0PwblprSsE/ziy4mZsH39aDjxF8TqGTq+AvAr5BWaGT/TuFbdOnwFwI\nxlYpad+n4E+7StbayFHwMIxFA5oQnoaf4J9Cxwb+eeT7trIegwdvE3xOJeuZwH2U58HbN/5h9KBt\nB9GerEvwfQZZ7WsmZdG4N+sDwEMttlniwZco+EfQKYyQR/CmrTYWTRcFb4Ksbh68q+BrWTRmvZit\nF1LwpUMVrF0l69AdzVXwrQhehEPAK5Xik82imEUDcYL/OvAdSnFr5PvL8OBzHpK5Cv4QmuAvc5bn\nWDTm5jnStHNp8//QBB+zaIJ2kVK8q+U2bQ8+lI2S8uB930sRfC2LZi/dg6whBW+n29YqdDLrHyBO\n8D4PPqXgQwRv3hgUK07wY1Lw9oFrq+BfA/ym9X9rBa8USin+KvJdGDaLJjdNstSD9yn4lEVjE4ux\naAzB26QayqKpXujE4pDPqUKntijx4H1ZNDUUfMrugW4KPlXo9CSNgm+qxQ8B99NPFo1ZL2bruQo+\nx6IJFTrlVLL6KsJHiTERvGvR+E5OiuAPARdb/6cU/FNo9eFT8DlYFw9+n1PWHgtmhTx48xaQUvAn\nGUbBpzz4tmhr0aRIudSiycmi6ZommTNUwQVoq+sp8i2aNh58zKLxPQBNn0MIKfi1mpN1rEHWtgr+\nEHCRRVaxSlbQ5HQO7Ql+aAVfu5LVvOGYjCKDNlk0l6JrBcYUZI158G1hXt+3iCtU90Fb24PPyYOv\nGWTdxm/RmIns3eNd06LJ8eDbWDShIOvajEUzJgVfw6I5iD4pJj3OTNcXgiGEVVDwXQcbCyn4w6TH\nI7f74Q2yogn+dtJpkjU9ePsmdYOsqaEK2mIbLRyORYbcNcc6lEXj60eK4O3/lxlkPQQcVmr37eWZ\nhAm+lkWT48HXDLJOCr4lcsgJuil4mNk0OQoexq/gSwqdSj34J0mPR24QSpM8hLZobicvyNqXgrct\nk74smm30sYrl8Q+RRdPFg88tdPIFWY0oAK3in4eeB2KX4JuxemLHu60Hn6vgkxaQmaHMmbTE58FP\nBF+AlILvatGYfOynN79zgqz271KsgwdvCD5HwfuGKrAtml2Cb26cM1hM1zyJzgipHWR1PfG+gqw7\naOGQS/C5efCPEib4G4APOu0vs9DJvBU/iq4VeZD5N6Y9hAdBM/03bebAWDShfQ158Kl70lXxOZWs\nE8FHUBJkraXg+7RoxurBt1HwNsHvpV2Q9Ws4KXaem7xUvcVQQvA1Pfhcgi/JonkcPQ2eqdjc7atS\n3NxMGm+QG2StXei0l/lsJaPgXYsmZs9AhsL2rN/Gg089QFwf3hzPtcmDH5NFUyvIeoR8Bf8UOte1\nbdn8OnjwcwQvspsh4jtuvv09jA607UfPH2C/3oceEgQ+K4VN8O7wB3168G0smqiCbyqrn0AHLlN9\n7WLRlOTBuwR/NlqZm749iseiIZ5BA+08+DaFTqUKPlnJaippHWtntBiTgq8VZL0deHozOFGOgj8c\neZVMYYwefEklq3ndtge6Oh94OHBMQlk0z0dn0NjqLxaoNfvUFSkF35cHfxbxIXdjWTShBx/MfPjU\n2Ea2VTZkHvy5zL/tPoYWUz4FHyT4hiRVbB0HKQX/Debng859Q/Ap+FQlq/neSqj4MVWy1rJobkdb\nNHsBpVT0VfEI7e0ZWI4HnxPH6OLBX0i4hD9k0VwB/CXhKki3DdOfrrCvmTF68KEsmhjBn0uZgq+d\nB7+DntRkCx0rMULhBPrhY98vZmaoUovGbKeKRaMUP+xpG9IPkBwPPkbwuQ+opWFsCr6GRXM7WlWk\n7BnoTvBDe/A5laxdPfgLmFdDNkIKfpOZgrfVXyhQS+CzUsQUvDsvaW0FXzuLBmYKPtXXnIdFKwXf\nvLkdR78Nb1tvcifQb3eugodyiwYWA6OpdUtSa3NFhKvEcypZfd8bLcbmwdeyaC4mbc/Aain40sHG\nogq+8RBNwMwl+JCCtwts7Cwa0INNLUPBewm+ISbbMlpGkLUkiwbyCb7PQifzXXdSlu2mb/Y9FVPw\nOQHOkrFoSuYQ6BRktaZ93MuKWzRjUvA1LZp1U/C2B59zDHMqWQ8CR5uLOZfgfSRljt89jIjgG9gk\nV0vBt7Voair4PrNoQJ/HM51++iyax5p1zQxPS7FoAuvbv0MIBVlB9z9UXDURfAC5Fk2oGGMb2NME\nUH04hJ4cfAtN8ikFf3+zflsM7cHnWDS5Hrxd5ZvrwYcsGvAr+CGzaEIEb2f11BpsrI1Fk6vgL8D/\ngLaR87BYIHgRNgGxsmBCOM6igg958N+ybB1zb+ZYNH0SfIlF4wuygu7/AfznwRfPGiXGZNHYT1Pv\nNHpN9D329DyIJq370elbUQWvFH/hCdCUYGgPvotF4yr4EMHnWDQ+gnc9+FixFNQ5XvYN6iN4O9C4\nLA++VMFfiL9+wEaOReNT8DnqHWYEbx8vE3h0Cf5B2LXEzDq5Fk3fHnx2kLV5MNnnxij4yaIpQK6C\nP0jYOonZNCYP/j40wacUfFesrAdPnOBDQVafCjXpgnczy8CIjbmy4/zughIFX9ODz82DL82ieRRd\nU5Dqp91WiUWTyoE3OEYTZLWW2ZOsG3wKeIvzvX3kWTQ/hZ5zIQdFHryVhlmi4DeAU9aMUeZhNVk0\nBcgNshqi9sFL8M0T2IwomKXgK2CsHnwbBW/GosmxaHYVWnND/CCz3Hlj00we/KJFY66VUD8eIY/g\nh1DwPg8eLNGkFMeV4rPWOobgkxaNUnw8MP2eD6UWDehrOPWQsV0D92F53FrHhS8jbZQYk4JPWjQN\nQgp+P3C8CRoaBd83wY/Rg98C79yVroK3xxTpEmRFKT5kWQrmJh8Lwfdh0Rz0bMtGyKLJ8eBLCL40\nD77UokkpeBe2gq+ZI96G4J+TqIGBeQXvPixPWOv4vjcpeA9KLJoiBc+86r8fPYxp3xbNGD34vSxW\nsceenmkAABUwSURBVJrP+vDgXdgKfpAgqzV+i0sqrgdfK8gK6UpWd2iJnGulhOCLg6wMS/Apci1B\nMcErlZUd5yp4e39TCn4ieA9KLJpSBW/79vejq/DWTcHnVLKGcneTHnxjc6UIPkUsKYumZpDV9Gc/\nOuXTDUw+xWyE0ZoePLQrdMrNg69h0Zh4iH3OuwZZIY/gc7JoSmA8+Nr3mM057nkx/Z8IvgC5Fk2b\nIKv9ULiv+d2rgrdskNiNVgM+RRhab09gHZ+CN8fLjEVzEB1oik0mnSIpU1yUsmhqBllD0+fZbyY1\nPXgC27PX8RU6pR6Oj1rrpvoQtWiah52r4nMJPlToBKtj0eTAtvhCCn6yaAqQzOFuVGRxkJVFiwb6\nV/Cg96kPdWEjd7Cxk3RQ8MTVu2k/x6LZRzqLpqYHHyL4J5kFj2t68AS2ZxAqdIoeO6U4gT4XJR58\n7Dj6CD7HOll5iyYTroK3H0qTgm+BHAW/Bz1IWEgB5Fg0RsEPQfA71JuhKLaNXA++RMEbgjdzsl5E\nmuDnsmg8WEYWTUzB2wRf04Nvm0UTik0YPEI+wafeHNsq+BjBx96K+7Jo+iT4UJB1UvAtkBNkjdkz\nkKfgH2x+9x1kBX2zCSvswTeZR8fQk3bECD7HokkFWWt78CkFPxaLJld15xK8sXtiROoSfG4e/Niy\naPry4GNB1knBt0BOkDVmz0CGB68U22iiGkrBw3g8+NgASSEFD/rYPZtwkRPkBVmXkSaZY9EsI8jq\nZtHsgd0HagglCj7HorFTJUs9+LZB1lWyaGIevApUFE8EH0CORdNWwbvf+2X0FHJ94yRwssOkITko\n8eBDFk3Mgwd97C6njgc/VJDV3KBDBlm7ZNHkqNBHSffT7PcyLJplZNFsU28eXxspBR/a3kTwAeQM\nlNVFwe9+Tyl+N5INUhM71L/wfNvoatG4Ct4udII8gi+xaE7nIKvvgZwbqylV8CUWzSoXOkH/Ct6t\nZA3x1UTwAaTIyVg0NRT8UDhJv/YM+F/5Q+u1yaKBmUWTE2StkSa5DIKvEWQt8eDdLJocBV/TonHH\nhF/VQqeab302bAXvq2SdFHwh+rRoUg+GvrDDMASfO9hYFw/+cvIUfCqLJubBDxlktS2a2h58TiVr\nnwreZDMNZdEcB34+MdRwnxaN/bsWYoVOk4JvgcEsmgExhIIvGWxsD/6hCnwK3n4gHkanSqaCrKMb\nqoDxWTQmoKqsYri+FHwfFs0xnMHGlEIpxW9lfG+VLJpYodMJJoIvxpBB1qEwlILvatHkKHgYzqKp\ncbOa/uwjLw++JsGnJq52z4NR8Kk+5BB8TiwEuhU6tcla6TOLhhb9SSGl4EPbc8XSaJFF8CJyjYjc\nKiK3ichbPZ//qIjcJCJfFJFPiciLA031reDX3YPvYtHsXpTN4Fz7mT/OOQSfG2QdUyWrnUVTy4M/\nlsiaMufB3v9cBf+XwL9OrGMXOvWVBw/l56jPsWjs3zXbPb0VvIhsAO8GrgGuAq4VkRc4q90BfKdS\n6sXArwD/JtBcn0HWZVk0vSt46zV/izqVrIeAI86QwkbNPxJpv0aa5NCFTn3kwcfsGZipdZ+Cj+63\nUjyoFB9OtN93HnxXgl8li8YOsrpZNLEg69qMB/8q4Hal1F1KqW3gBuCN9gpKqf+slHq8+ffTwKWB\nttbRohlCwdNsI/WKHyN4+7XStWdAH7vHmiKxEGoOVVBDTacI/ghwQIQzIv0pRS7Bu29SNccs6jvI\natbpQvB9WDR9BFlPbwUPXIKejs3gnmZZCP898NHAZ+sYZB3CgzfbcVWhi9hgYzvAljUk8MPO54eJ\nB1hNGyWjSfrWOQHcW6kwLErw1hAMB6g7VEEuwe84y2qNWTREHjyMx6IZQsGvZRZNTiezb0QR+a/R\ncy3+Xf8aZ/+8yBPm4rlRKXWj9aE5aPtYPQWfO/VYF8T89eQ6SnFKhFPoh7pv3tXDxP13KBtN0kuo\nSrEjwrMS28mFTfAh4jI2TS2CP0E7i6a2gm8bZC0h+C5B1nXw4JeSBy8iVwNX12grp5PfRA9CZXAZ\nWsW7nXox8HvANUqpR93PNR7/1chMK7ZFk1LwhzzLl5kHP9R2QpMAu+vElMcWet5Vl+AfZzZIWwg5\nWTR2Jav3NT2RS10Cc4OGLBqY5cLXCrJ+EfjpjH6FsmhqELxdj9BXoROJtmPbW5UsmlEq+Eb43mj+\nF5F3tG0rp5OfBa4UkcuBe4E3AdfaK4jIM4EPAT+mlLo90laKnIxFs0pB1iEVfMqiiXnwMPPhfQT/\nEeBTGX0osWj6Ph8pDx5mCr5KkLWJUfx1YrVQFs2qWDRdPfhVKnSyhwt2x4Nf+UrWZCeVUjsich3w\ncfTBeJ9S6hYReUvz+fXAPwfOBd4rIgDbSqlXeZqrEWQ9ApxjL2h85QMsz4OvoQxTMEHWtoONQUTB\nK8Ux9AM8hlwFH6tkrQmb6GIKvqZFk4NQFg3UDbL2bdGcTlk0o1HwNZHVSaXUx4CPOcuut/7+R8A/\nymiqRpD1JuB/dJbtB44nhmHtC0Nl0eR68BB+o7AV/Bdb9CEn/zpVyVoTpj+hQieY5cIPTfB7mc9U\nqp0eugVI4pr35cHnFjrBeLJo+vTgY6NJxgh+X+CzUWHQStaM4pCcPPibgOeJcMBatix7BobPoknZ\nXJBW8Kmp+WLtd52TtSaMAsuxaGp58DnwnavaCn4faZXcNQ++bZB1VbJoYkHWVB78Sij4oYcqiCEr\nyNpYCTcDL7UWLyuDBsap4Nt48DkYq0WTE2StVeiUg1AWDdQLsuZk5EwWTRwxi+ZW4IOB700E3wK5\nQVaAzwCvtP5fVgYNDKfgczz4XAXfluBNEPeUUwVrIzUefE2UBFmHtmjcquPaCn4/eQp+KnQKIxhk\nVYr7leJ3It+bCL4Q5qDlqPHPoCtsDZZp0Qyt4FOBavu3ixoKPqUcU5WsNTFmgrd/Qz8efKotM5m6\nwaoWOvXlwccUfKo/E8EX4iT6YhSlkheHq+CXadEM6cFDdwW/F53x5Fay5iCH4If24IfOg8+B7zzU\nJKnch8XD6Ie5QS7Bm/uvSx78Klg0MQ8+9b2J4AuxA5xNHlHfDFwsspsuebooeLO9tutsAxcBT7Qs\nNjLecuzmtT34obJochT8GSyX4GsreEiT6KPAQRH2NqnEWdZJY79tU06ox2msuYiF1wbL8OBjmAi+\nBU6iCT5J1E1q2OeBVzSLTgcFn3OR5xD8xbSzZ0y7Y7JocitZz4XeJ0Z3+2X/tv+uFWRNttWQ7LfQ\nD/U9wImCY3As1b5newp9/muqd+jPgz+BvlZhIvjeUaLgYd6HX2aQdUwKPuXB7wDPoBvBp6oxjUUz\nVJB1P1oxhvb5SXRh3FD+Owyn4HPaegB4Gvn2jMHxzPZdHKM+wfflwX+T2ci3JbbSRPAt0IbgjQ9/\nuuTBQ3eLpouCz0nPGzpN8hDxwb+eRCv4IQneHJ8+s2ggj5Bsgi/JbOlC8DUzaKA/i+YO4DnN3yUK\nfps1Gg9+KJgy+1yi/hvg1SJscfrkwZvtpdYJ+Z87dLdoUgp+6CyaFMEfRiv4Iauch8iiyW1raAV/\nlNVR8HcBz2rmC5gsmp5hTl4uUd8JfA64nsUJpIfE0Aq+hgffporVbjd2A2+TN9JhDZxEn/uUgh+D\nRVNTwZsHeE5b99Oe4Nscs+oWTePt77TsT6zdo+hMo2cwEXzvMCcvS8E3J/1a4MXAm3O/1wOGUvC+\n135fX2LrdPXgkyRlBdoOMoyC32R8Fk2vHnxzjE9SbtGUEPwTtBNNfVg00J+QMjbNRPA9w9wA2RdV\nM7b89zffaZPXXQOnkwefS1LH0dbJEAQPaYtmiICvjb6zaCBfWLQl+NcDX2rRrz6CrNAubTMHd6IJ\nfi2DrGPqZKlFA+iSYhFeSD+qIQfvR1cM9o0aFs0OupisNwXfYGwEb687BHxvUjU9eNNeLsE/nUKC\nVyo6+XoMx+hHOP4x+q2iNtZawY+pk+YGKLZalFqaPYNSfHmgTdVS8NC/gj+G9saXTvBKcUIkOnlD\ndVjTI/blwUO5RbOXMgXfFseYVYdWg1L8eO02G9wBvI41JfgxWTStFPxphKQH3xS2qMg65hgPZdEM\nEWSF9BypTzKsRQOLQcFlKvg2Fk1b9GXR9IW1VvBjJPilqfGRI0fBm89TCr5tFo3pQ+oG3i1Zb7md\nXIyd4Pu0aHbII9KHgbPQb1QTwS/CEHxJ1tfKEPyYOlkcZD3NkJsL7BKL+9mRJj2sDUosGrO9PmHa\nT+3PYRhsmAKDOQVv2Ta1jkmWgm+2+xDwTIaJU5kRJVcF96MLLM9gDYOsY1TwE8H7kavgYwS/TXt7\nxt52jkVj+tInShT8kEFW8J+Hmim1JW09ADyLScEvoLE170SPurl2Cn6MBD9ZNH5sAypjsKgd4pWs\nXQi+JIvGXr8vrJJFY5YNHWSFieBTuLP5PRF8j5gsmjhyK/lSHvwQCn4oiyaX4A8P0BcXvvN1uij4\nZaUst8Udze+J4HvEpODjiFkvuevt0D7ACuUWzemeRdOngi9pa1LwcUwEPwAmBR9HDYLvpOAbe+gU\neVk0pi99okTBr6MHX2LRHGAi+BAMwa9dkHVMnZyCrHHklmrHCP7DFfqRQ1JDEbyJNYxVwbvbrO3B\nlyh4GIbgb2B+ou9VQBsFvxLDBY+J4FtXsp4myFXwQQ9eKT5TqR+j8OCVQjWph2Ml+DFl0cAABK8U\nX+97Gz3gTuBwZNIYFyuj4Edj0TTpSseYFHwINSyaGhiTggfdn7EGWceURQPDKPiVQzNo4eUFX9lm\nIvhWuEqplYvAD4VVJPghfO8cgh+LRVNTwZcGWWH1slsGg1JFo9EONYJsZ4zqKaTUbj7qhEXkpkn2\nTfA5JfLHgJ2BJrnOIfi70RWLQ2IIBZ/b1rdg9w15QkcoxRPo8X1Gj1ER/IQotlktBT+UYt4hQfBK\n8WfAnw3TnV34zsM/Br5aqf1si0YpTjbDFUwEf5phIvjVQUmQNVTJWgNjI/gcBb8MLLxxKcUnKrZf\navc8wETwpx3G5sFPCGNMFk1OFs3pTvC5b1xtURJkBXgPcHNPfZkwUkwKfnWwakHWoYJQYyX4MTxo\nd6EUv9tjXyaMFJOCXx1MHrwf1wP3DbStEuS+cbXFUJO9T1hhTAp+dVBjsLFa/cgZqmAQgleKdw6x\nnRbo+0H7x0yWy4QEJoJfHaySRTOkBz9W9HoelOI9fbU9YX2QtGhE5BoRuVVEbhORtwbW+Z3m85tE\n5GX1uzmB1SL4IS2asaJvi2bChCSiBC8iG8C7gWuAq4BrReQFzjqvB56rlLoS+BngvT31dakQkauX\n3IVOHnzF/ucE96oS/AiOfRvsnocV7f8upv6vLlIK/lXA7Uqpu5RS2+iR4t7orPMG4N8DKKU+DZwj\nIitR5VWIq5e8/SebnxT+V+D/9Sy/ulI/ci2amgHAqyu2NRQ+BPxN8/fVS+xHDVy97A50xNXL7sCy\nkPLgL0GXeRvcA7w6Y51LmY1/MaEOPgP8QGolpfh8z/3IUfD3MCO30xJK8aFl92HChBTB544lIi2/\nNyETzbguY8j3fgx4JLaCUtwN/PQw3ZkwYUIIolSYi0XkNcA7lVLXNP+/DTillPoNa53fBW5USt3Q\n/H8r8F1KqQectibSnzBhwoQWUEq5IjoLKQX/WeBKEbkcuBd4E3Cts86HgeuAG5oHwmMuuXfp4IQJ\nEyZMaIcowSuldkTkOuDjwAbwPqXULSLylubz65VSHxWR14vI7ejZmN7ce68nTJgwYUISUYtmwoQJ\nEyasLnofiyanUGpMEJHLROSTIvIVEfmyiPyTZvl5IvIJEfmqiPypiJyz7L7GICIbIvJ5EflI8//K\n9F9EzhGRPxSRW0TkZhF59Yr1/23N9fMlEfkDEdk71v6LyPtF5AER+ZK1LNjXZt9ua+7p1y2n1zME\n+v9/NNfOTSLyIRE52/ps9P23PvunInJKRM6zlhX1v1eCzymUGiG2gf9ZKfVC4DXAP276/IvAJ5RS\nz0Pnmf/iEvuYg59Dj1ViXtFWqf+/DXxUKfUC4MXAraxI/5t41U8DL1dKvQhtbf4w4+3/B9D3pw1v\nX0XkKnQc7qrmO+8RkWUPWOjr/58CL1RKvQQ9wcrbYKX6j4hcBvw3MJvEvE3/+965nEKpUUEpdb9S\n6gvN34eBW9C5/rsFXc3vZE76siAilwKvB/4tsxTWleh/o7a+Qyn1ftBxIKXU46xI/4En0CLhgIhs\nAgfQCQqj7L9S6i+AR53Fob6+EfigUmpbKXUXcDv6Hl8afP1XSn1CKWUmvfk0ui4HVqT/Df4F8AvO\nsuL+903wviKoS3reZjU0auxl6IvkaVZ20AOMe07Gfwn8M+ZndlqV/j8b+JaIfEBE/lZEfk9EDrIi\n/VdKPQL8FvANNLE/ppT6BCvS/wahvj4DfQ8brML9/FPAR5u/V6L/IvJG4B6l1Bedj4r73zfBr2wE\nV0QOAf8R+Dml1NwQAUpHpke5byLy/cCDSqnPs1iABoy7/+jMrpcD71FKvRydmTVnZ4y5/yJyBfA/\nAZejb8hDIvJj9jpj7r+LjL6Odj9E5JeAE0qpP4isNqr+i8gB4O3AO+zFka9E+983wX8TuMz6/zLm\nn0CjhIhsocn995VSf9QsfkBEnt58fjHw4LL6l8BrgTeIyJ3AB4HvFpHfZ3X6fw9avXym+f8P0YR/\n/4r0/xXAXymlHlZK7aDHpPk7rE7/IXytuPfzpc2y0UFEfhJtU/6otXgV+n8FWhzc1NzDlwKfEz2+\nV3H/+yb43UIpEdmDDhB8uOdtdoKICPA+4Gal1L+yPvow8BPN3z8B/JH73TFAKfV2pdRlSqlno4N7\n/59S6sdZnf7fD9wtIs9rFn0P8BXgI6xA/9EB4deIyP7mWvoedLB7VfoP4Wvlw8APi8geEXk2cCUj\nHHNIRK5BW5RvVErZE42Pvv9KqS8ppZ6mlHp2cw/fgw7YP0Cb/iulev0Bvg/4L+iAwNv63l6F/v49\ntHf9BeDzzc81wHnAn6Gj8n8KnLPsvmbsy3cBH27+Xpn+Ay9BD652E1oBn71i/f8F9EPpS+gg5dZY\n+49+y7sXPUvX3ehCxWBf0fbB7egH2feOsP8/BdyGzj4x9+97VqD/x83xdz6/Azivbf+nQqcJEyZM\nWFMsOwd0woQJEyb0hIngJ0yYMGFNMRH8hAkTJqwpJoKfMGHChDXFRPATJkyYsKaYCH7ChAkT1hQT\nwU+YMGHCmmIi+AkTJkxYU/z/F9GIVkYSWSEAAAAASUVORK5CYII=\n",
186 |       "text/plain": [
187 |        ""
188 |       ]
189 |      },
190 |      "metadata": {},
191 |      "output_type": "display_data"
192 |     }
193 |    ],
194 |    "source": [
195 |     "num_points = 130\n",
196 |     "y = np.random.random(num_points)\n",
197 |     "plt.plot(y)"
198 |    ]
199 |   },
200 |   {
201 |    "cell_type": "markdown",
202 |    "metadata": {},
203 |    "source": [
204 |     "This is some text, here comes some latex"
205 |    ]
206 |   },
207 |   {
208 |    "cell_type": "code",
209 |    "execution_count": 12,
210 |    "metadata": {
211 |     "collapsed": false
212 |    },
213 |    "outputs": [
214 |     {
215 |      "data": {
216 |       "text/latex": [
217 |        "\\begin{align}\n",
218 |        "\\nabla \\times \\vec{\\mathbf{B}} -\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{E}}}{\\partial t} & = \\frac{4\\pi}{c}\\vec{\\mathbf{j}} \\\\\n",
219 |        "\\nabla \\cdot \\vec{\\mathbf{E}} & = 4 \\pi \\rho \\\\\n",
220 |        "\\nabla \\times \\vec{\\mathbf{E}}\\, +\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{B}}}{\\partial t} & = \\vec{\\mathbf{0}} \\\\\n",
221 |        "\\nabla \\cdot \\vec{\\mathbf{B}} & = 0\n",
222 |        "\\end{align}"
223 |       ],
224 |       "text/plain": [
225 |        ""
226 |       ]
227 |      },
228 |      "metadata": {},
229 |      "output_type": "display_data"
230 |     }
231 |    ],
232 |    "source": [
233 |     "%%latex\n",
234 |     "\\begin{align}\n",
235 |     "\\nabla \\times \\vec{\\mathbf{B}} -\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{E}}}{\\partial t} & = \\frac{4\\pi}{c}\\vec{\\mathbf{j}} \\\\\n",
236 |     "\\nabla \\cdot \\vec{\\mathbf{E}} & = 4 \\pi \\rho \\\\\n",
237 |     "\\nabla \\times \\vec{\\mathbf{E}}\\, +\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{B}}}{\\partial t} & = \\vec{\\mathbf{0}} \\\\\n",
238 |     "\\nabla \\cdot \\vec{\\mathbf{B}} & = 0\n",
239 |     "\\end{align}"
240 |    ]
241 |   },
242 |   {
243 |    "cell_type": "markdown",
244 |    "metadata": {
245 |     "collapsed": true
246 |    },
247 |    "source": [
248 |     "Apos?"
249 |    ]
250 |   },
251 |   {
252 |    "cell_type": "code",
253 |    "execution_count": 1,
254 |    "metadata": {
255 |     "collapsed": true
256 |    },
257 |    "outputs": [],
258 |    "source": [
259 |     "import re"
260 |    ]
261 |   },
262 |   {
263 |    "cell_type": "code",
264 |    "execution_count": 2,
265 |    "metadata": {
266 |     "collapsed": true
267 |    },
268 |    "outputs": [],
269 |    "source": [
270 |     "text = 'foo bar\\t baz \\tqux'"
271 |    ]
272 |   },
273 |   {
274 |    "cell_type": "code",
275 |    "execution_count": 3,
276 |    "metadata": {
277 |     "collapsed": false
278 |    },
279 |    "outputs": [
280 |     {
281 |      "data": {
282 |       "text/plain": [
283 |        "['foo', 'bar', 'baz', 'qux']"
284 |       ]
285 |      },
286 |      "execution_count": 3,
287 |      "metadata": {},
288 |      "output_type": "execute_result"
289 |     }
290 |    ],
291 |    "source": [
292 |     "re.split('\\s+', text)"
293 |    ]
294 |   },
295 |   {
296 |    "cell_type": "code",
297 |    "execution_count": null,
298 |    "metadata": {
299 |     "collapsed": true
300 |    },
301 |    "outputs": [],
302 |    "source": []
303 |   }
304 |  ],
305 |  "metadata": {
306 |   "kernelspec": {
307 |    "display_name": "Python 3",
308 |    "language": "python",
309 |    "name": "python3"
310 |   },
311 |   "language_info": {
312 |    "codemirror_mode": {
313 |     "name": "ipython",
314 |     "version": 3
315 |    },
316 |    "file_extension": ".py",
317 |    "mimetype": "text/x-python",
318 |    "name": "python",
319 |    "nbconvert_exporter": "python",
320 |    "pygments_lexer": "ipython3",
321 |    "version": "3.4.3"
322 |   }
323 |  },
324 |  "nbformat": 4,
325 |  "nbformat_minor": 0
326 | }
327 | 


--------------------------------------------------------------------------------
/plugins/ipynb/tests/pelican/content/with-liquid-tag.md:
--------------------------------------------------------------------------------
1 | Title: With Liquid Tag
2 | Slug: with-liquid-tag
3 | Date: 2100-12-31
4 | Tags: Test
5 | Author: Daniel Rodriguez
6 | 
7 | {% notebook with-liquid-tag.ipynb %}
8 | 


--------------------------------------------------------------------------------
/plugins/ipynb/tests/pelican/content/with-meta-file.ipynb:
--------------------------------------------------------------------------------
  1 | {
  2 |  "cells": [
  3 |   {
  4 |    "cell_type": "markdown",
  5 |    "metadata": {},
  6 |    "source": [
  7 |     "Lorem ipsum dolor sit amet, consectetur adipiscing elit. Curabitur purus mi, sollicitudin ac justo a, dapibus ultrices dolor. Curabitur id eros mattis, tincidunt ligula at, condimentum urna. Morbi accumsan, risus eget porta consequat, tortor nibh blandit dui, in sodales quam elit non erat. Aenean lorem dui, lacinia a metus eu, accumsan dictum urna. Sed a egestas mauris, non porta nisi. Suspendisse eu lacinia neque. Morbi gravida eros non augue pharetra, condimentum auctor purus porttitor."
  8 |    ]
  9 |   },
 10 |   {
 11 |    "cell_type": "markdown",
 12 |    "metadata": {},
 13 |    "source": [
 14 |     "## Header 2"
 15 |    ]
 16 |   },
 17 |   {
 18 |    "cell_type": "code",
 19 |    "execution_count": 1,
 20 |    "metadata": {
 21 |     "collapsed": true
 22 |    },
 23 |    "outputs": [],
 24 |    "source": [
 25 |     "a = 1"
 26 |    ]
 27 |   },
 28 |   {
 29 |    "cell_type": "code",
 30 |    "execution_count": 2,
 31 |    "metadata": {
 32 |     "collapsed": false
 33 |    },
 34 |    "outputs": [
 35 |     {
 36 |      "data": {
 37 |       "text/plain": [
 38 |        "1"
 39 |       ]
 40 |      },
 41 |      "execution_count": 2,
 42 |      "metadata": {},
 43 |      "output_type": "execute_result"
 44 |     }
 45 |    ],
 46 |    "source": [
 47 |     "a"
 48 |    ]
 49 |   },
 50 |   {
 51 |    "cell_type": "code",
 52 |    "execution_count": 3,
 53 |    "metadata": {
 54 |     "collapsed": true
 55 |    },
 56 |    "outputs": [],
 57 |    "source": [
 58 |     "b = 'pew'"
 59 |    ]
 60 |   },
 61 |   {
 62 |    "cell_type": "code",
 63 |    "execution_count": 4,
 64 |    "metadata": {
 65 |     "collapsed": false
 66 |    },
 67 |    "outputs": [
 68 |     {
 69 |      "data": {
 70 |       "text/plain": [
 71 |        "'pew'"
 72 |       ]
 73 |      },
 74 |      "execution_count": 4,
 75 |      "metadata": {},
 76 |      "output_type": "execute_result"
 77 |     }
 78 |    ],
 79 |    "source": [
 80 |     "b"
 81 |    ]
 82 |   },
 83 |   {
 84 |    "cell_type": "code",
 85 |    "execution_count": 5,
 86 |    "metadata": {
 87 |     "collapsed": false
 88 |    },
 89 |    "outputs": [],
 90 |    "source": [
 91 |     "%matplotlib inline"
 92 |    ]
 93 |   },
 94 |   {
 95 |    "cell_type": "code",
 96 |    "execution_count": 6,
 97 |    "metadata": {
 98 |     "collapsed": false
 99 |    },
100 |    "outputs": [],
101 |    "source": [
102 |     "import matplotlib.pyplot as plt"
103 |    ]
104 |   },
105 |   {
106 |    "cell_type": "code",
107 |    "execution_count": 7,
108 |    "metadata": {
109 |     "collapsed": true
110 |    },
111 |    "outputs": [],
112 |    "source": [
113 |     "from pylab import *"
114 |    ]
115 |   },
116 |   {
117 |    "cell_type": "code",
118 |    "execution_count": 8,
119 |    "metadata": {
120 |     "collapsed": false
121 |    },
122 |    "outputs": [],
123 |    "source": [
124 |     "x = linspace(0, 5, 10)\n",
125 |     "y = x ** 2"
126 |    ]
127 |   },
128 |   {
129 |    "cell_type": "code",
130 |    "execution_count": 9,
131 |    "metadata": {
132 |     "collapsed": false
133 |    },
134 |    "outputs": [
135 |     {
136 |      "data": {
137 |       "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEZCAYAAAB7HPUdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGABJREFUeJzt3Xu4ZGV5pvH7ATkIoogiEOQUhTFxUIhiQBQ6jiAOqBij\noBGICYrGA/E0ghjtieMlakzQOOMQQAU0ENSgoqOCh1YUBWVAUDDojApRaFSUiGfgnT9W9fRms7u7\ndveu+lZV3b/r2ldX1a7a9VJ0P/32t9b7rVQVkqTZsFHrAiRJ42PoS9IMMfQlaYYY+pI0Qwx9SZoh\nhr4kzRBDX1pAkp2T/CxJ1vKcO5P87jjrkjaUoS8NJPlukscBVNX1VbVVDQZZkqxI8hdtK5Q2nKEv\nrVbAmjp7pxg1FQx9CUhyNrAzcMFgWeeVg+WbjZO8AXgs8I7B996+wOs3S/K3Sb6X5KYk70yy+bj/\nO6R1MfQloKqOAq4HDquqrYD3r/5WnQRcDLxwsOTzkgV+xMnAg4GHD37dEXjt6CuXFsfQl4a34NLP\n4GDvc4GXVdVPq+o24I3AkeMsThrGPVoXIE2QNa3rbwtsAVw+52SfYFOlHjL0pdXWdrB2bd/7EfBL\n4Per6salLUlaWnYi0morgQct9ntVdSdwGnBKkm0BkuyY5OCRVCltAENfWu2NwGuS3AI8jbt2928D\n/iTJLUlOWeC1rwK+DXw5ya3ARcAeoy5YWqyM6iIqSXYCzgIeQPeH5x+r6u1JlgPHAj8cPPXEqvrE\nSIqQJN3FKEN/e2D7qroyyb2Ay4HDgWcAP6uqvxvJG0uS1mhkB3Kr6ibgpsHt25JcS3fuMqx56lGS\nNEJjWdNPsiuwN/DlwUMvTvK1JGck2XocNUiSxhD6g6WdDwDHD4ZW3gnsBuwF3Ai8ddQ1SJI6I1vT\nB0iyCfBR4ONVdbczHgb/Arigqvac97ibW0nSeqiqtS6fj2xNfzCafgZwzdzAT7LDnAGWpwJXL/T6\ndRU+K5Isr6rlrevoAz+L1fwsVpv5zyK5D3AZcHLgXet6+igncvcHng1cleSKwWOvBp6ZZC+60zi/\nAxw3whokaXolG9GdGv9pqt5N0i70q+oLLHzM4OOjek9JmjEnAfcHnj7sC9x7p/9WtC6gR1a0LqBH\nVrQuoEdWtC6gieRQupWSfaj6zdAvG+WB3PWVpFzTl6Q1SHYHvggcTtUlqx9ed3a6944kTZLuNPjz\ngdfNDfyhX26nL0kTojsr8jzg34FjmRfgw2Sna/qSNDleCewCHDA/8Idl6EvSJEgOAl4KPIqqX63v\njzH0Janvkt2As4EjqbphQ36UB3Ilqc+SLYB/AU6masUG/zgP5EpST3UHbs+ia9Cfva51fA/kStJk\nezGwJ/Do9T1wO5+hL0l9lBxIt83CvlT9Yql+rGv6ktQ3yQOBc4CjqPrOUv5oQ1+S+iTZDPgg8Haq\nLlzyH++BXEnqie7A7WnAfYBnLHYd3wO5kjRZngfsR7eOP5KO3E5fkvog2Q/4MPAYqq5bvx/hLpuS\n1H/JDsD7gT9f38AflqEvSS0lm9IF/mlUfXTkb+fyjiQ1lLwD2Jnugih3btiP8kCuJPVXcgxwMN0l\nDzco8Idl6EtSC8kjgL8FDqTq1nG9rWv6kjRuybZ0O2c+n6prxvnWhr4kjVNyD+Bc4J+o+uC4397Q\nl6TxOhm4HXhNizd3TV+SxiV5JvDHwCOpuqNFCYa+JI1D8jDg7cDjqbqlVRku70jSqCXbAOcDx1P1\ntaalOJwlSSOUbAx8DLiGqpeN9q3ce0eSWvsbYDPgv7QuBFzTl6TRSZ4KPJtu4vb21uWAoS9Jo5H8\nHnAqcChVN7cuZxWXdyRpqSX3AT4EvIqqr7QuZy4P5ErSUko2ojtT5/tU/eV439pdNiVp3E4C7g88\nvXUhCzH0JWmpJIcCx9EduP1N63IWYuhL0lJIdgfeTXcxlBtbl7MmIzuQm2SnJJ9N8o0kX0/yksHj\n2yS5KMl1SS5MsvWoapCksUjuRbeO/zqqLmldztqM7EBuku2B7avqynQfyOXA4cBzgB9V1ZuTvAq4\nb1WdMO+1HsiVNBmSAP8M/Aw4loZnxzSdyK2qm6rqysHt24BrgR2BJwNnDp52Jt1fBJI0qV4J7Aq8\nsGXgD2ssa/pJdgX2Bi4FtquqlYNvrQS2G0cNkrTkkoOAlwKPoupXrcsZxshDf7C080Hg+Kr6Wfcv\noU5VVZIF/2ZMsnzO3RVVtWKUdUrSoiS7AWcDR1J1Q5sSsgxYtqjXjPJfI0k2AT4KfLyqThk89k1g\nWVXdlGQH4LNV9ZB5r3NNX1J/JVsAXwTOZJBtfdB0TT9dS38GcE3d9UP5CHDM4PYxdKPKkjQZuq2S\nzwS+AbytcTWLNsqzdx4DfB64Clj1JicClwHnATsD3wWeUVU/nfdaO31J/dM1s/8APBR4Yt/W8YfJ\nTvfekaRhJa8GjgAOoOrW1uXM5947krRUkucAzwX272PgD8vQl6R1SQ4D3ggcSNUPWpezIQx9SVqb\nZF+6PXUOo+pfW5ezobyIiiStSfIQujMM/4yqS1uXsxQMfUlaSPI7wMeBE6j6WOtyloqhL0nzdbv/\nfgL4R6re07iaJeUpm5I0V7I5XeBfBRw/CZuoreJ5+pK0GN207bl0A6XPpOqOxhUtiufpS9Kwumnb\nt9Fd3/aJkxb4wzL0JalzIvBYumnbXm2vsJQMfUmakmnbYRj6kmZbcihTMm07DENf0uzqpm3fw5RM\n2w7D8/QlzaYpnLYdhqEvafZM6bTtMAx9SbNliqdth+FwlqTZMcHTtsNwIleSVpnwadthOJErSTAz\n07bDMPQlzYKZmLYdhqEvabrN0LTtMAx9SdNrxqZth2HoS5pOMzhtOwzP05c0fWZ02nYYhr6k6TLD\n07bDMPQlTY/kPnSBP5PTtsNwOEvSdJjyadthOJEraTbMwLTtMJzIlTT9nLZdFENf0qQ7Aadth2bo\nS5pc3bTt83DadmiGvqTJ5LTtejH0JU0ep23Xm+fpS5osTttuEENf0uRw2naDjTT0k7wrycokV895\nbHmSf0tyxeDrkFHWIGlKOG27JEbd6b8bmB/qBfxdVe09+PrEiGuQNOm6adsPA58DTm5czUQbaehX\n1cXATxb4ltO2kobTTdueDdwMvHQWt1dYSq3W9F+c5GtJzkiydaMaJPVdshHw3+mmbY922nbDtQj9\ndwK7AXsBNwJvbVCDpL7rOvzTgP8IPMVp26Ux9vP0q+rmVbeTnA5csNDzkiyfc3dFVa0YbWWSeiPZ\nBDgT2A44hKrbGlfUS0mWAcsW9ZpRL48l2RW4oKr2HNzfoapuHNx+KbBPVT1r3mvcZVOaVcmmdDtm\nbg48japfNq5oYjTfZTPJOcCBwP2T3AC8DliWZC+6s3i+Axw3yhokTZDknsAHgF8DT6Xq140rmjru\npy+pH5ItgY8AK4FjqPpt44omzjDZ6USupPaSe9Nd9ep7wFEG/ugY+pLaSrYBPgVcDRzraZmjZehL\naifZFvgMcDHwQqrubFzR1DP0JbWR7EC3rcIFwCuctB0PQ1/S+CU7A58H3kvVXxv44+NFVCSNV/Ig\nujX8t1F1SutyZo2dvqTx6S6AsgI42cBvw05f0ngkewKfBE6k6szW5cwqQ1/S6CWPAD4GvISq81qX\nM8sMfUmjlTya7pq2z6Xqw63LmXWGvqTR6XaBPI9uL3yvktcDHsiVNBrJE+gC/wgDvz8MfUlLL3kK\n3SUOD6fqs63L0WqGvqSllTwDOBV4IlWXtC5Hd2XoS1o6ydHAKcDBVF3euhzdnQdyJS2N5DjgNcDj\nqPpm63K0sHV2+klekuS+4yhG0oRK/go4AVhm4PfbMMs72wFfSXJekkOSeEUrSaslJwIvBA6k6v+0\nLkdrN9TlEpNsBBwM/BnwSLrTsM6oEf0P9nKJ0gToGsC/AZ4GPJ6qHzSuaOYt2eUSq7uwwU101668\nA7gv8IEkb9ngKiVNni7w3wI8iW5Jx8CfEOvs9JMcDxwN/Bg4HTi/qn476P6/VVUPWvKi7PSl/ur+\n7P8DsA9wCFW3NK5IA8Nk5zBn72wD/HFVfW/ug1V1Z5InbUiBkiZMsjFwGrA73ZLOvzeuSIs01Jr+\nuNnpSz2UbAKcSXdyx5Op+nnjijTPUnX6kmZdsilwLrAZcBhVv2xckdaTE7mS1i65J3A+UMBTDfzJ\nZuhLWrNkS+CjwK10u2X+pnFF2kCGvqSFJfemu7zh94CjqLq9cUVaAoa+pLtLtgE+BXwNOJaqOxpX\npCVi6Eu6q2Rb4DPA54EX0Q1nakoY+pJWS3YAPgd8BHglfTynWxvE0JfUSR4KfAE4m6rXGvjTyfP0\nJa26vOHpwMupOqt1ORodQ1+aZd3GaScBzwcOpeqyxhVpxAx9aVZ15+C/G9gZeJQ7Zc4G1/SlWZTs\nAnwR+DlujTxTDH1p1iQHAF8G3gP8OVW/aluQxmmkoZ/kXUlWJrl6zmPbJLkoyXVJLkyy9ShrkDRH\n8gLg/XQTtqd4hs7sGXWn/27gkHmPnQBcVFV7AJ8e3Jc0SsmmJP8TeBGwP1Wfal2S2hhp6FfVxcBP\n5j38ZLo9uRn8evgoa5BmXvIAui0VdgD2o+rbjStSQy3W9LerqpWD2yvpLsggaRSSvYHLgBV02yJ7\npasZ1/SUzaqqJK4pSqOQHAG8A/hLqt7fuhz1Q4vQX5lk+6q6Kd0+Hzcv9KQky+fcXVFVK8ZRnDTx\nuguXvx54FnAQVVc2rkgjkmQZsGxRrxn1wfskuwIXVNWeg/tvBn5cVW9KcgKwdVWdMO81XiNXWh/d\nHvjvA7YCnk7VDxtXpDEaJjtHfcrmOcAlwH9IckOS5wAnAwcluQ543OC+pA2V7E53/v0NdB2+ga+7\nGXmnvz7s9KVFSg4GzgZeS9WprctRG8Nkp3vvSJOs2zDtpcArgD+hO01aWiNDX5pUyebAqcCewL5U\nXd+4Ik0A996RJlGyI93lDDcDHmPga1iGvjRpkn2BS4HzgWdS9YvGFWmCuLwjTZLkGOAtwF9QdUHr\ncjR5DH1pEiT3oAv7Q4EDqbq2cUWaUIa+1HfJNsC5QAF/SNX8TQylobmmL/VZ8lC6DdOuoruGrYGv\nDWKnL/VV8hTgdODlVJ3VuhxNB0Nf6ptu4Ook4Pl03f1ljSvSFDH0pT5JtqS74tzOwKO8YLmWmmv6\nUl8kuwBfBH4BLDPwNQqGvtQHyYF0O2S+B3gOVb9qW5Cmlcs7UmvJC4DlwJ96wXKNmqEvtZJsCrwd\neCywvxcs1zgY+lILyc7Ae4GfAPt5wXKNi2v60jglIXkucDnwCeCpBr7GyU5fGpeuuz8NuB/wR1R9\nvXFFmkF2+tKo3bW7/zzdco6Brybs9KVRsrtXz9jpS6Ngd6+estOXlprdvXrMTl9aKnb3mgB2+tJS\nsLvXhLDTlzaE3b0mjJ2+tL7s7jWB7PSlxbK71wSz05cWw+5eE85OXxqG3b2mhJ2+tC5295oidvrS\nmtjdawrZ6UsLsbvXlLLTl+ayu9eUs9OXVrG71wyw05fs7jVD7PQ12+zuNWOadfpJvpvkqiRXJLms\nVR2aUXb3mlEtO/0CllXVLQ1r0Cyyu9cMa72mn8bvr1lidy817/Q/leQO4NSqOq1hLZp2dvcS0Db0\n96+qG5NsC1yU5JtVdfGqbyZZPue5K6pqxbgL1BRItgReBLwCOAV4M1W/bVuUtDSSLAOWLeo1VTWS\nYhZVRPI64LaqeuvgflWVSz9af8lmwHHAicDFwGup+mbboqTRGiY7m6zpJ9kiyVaD21sCBwNXt6hF\nUybZhORY4DrgIOCJVD3DwJc6rZZ3tgPOT7KqhvdV1YWNatE0SDYGjgSWA9cDR1L1paY1ST3Ui+Wd\n+Vze0dC6zuFw4PXAz4CTqPpM26KkNobJTidyNZm6sH8C8N+AjYFXAf+LPnYxUo8Y+po8yQHAG+hO\nv3wt8C9U3dm2KGkyGPqaHMk+dGH/YLq1+/dRdUfTmqQJ03oiV1q3ZE+SDwHnAx8EHkLVWQa+tHiG\nvvor2YPkHOAi4HPA7lSdStVvGlcmTSxDX/2T7EJyBvBF4OvAg6n6e6p+2bgyaeIZ+uqPZAeSdwD/\nG7gR2IOqN1B1W+PKpKlh6Ku95H4kb6br6n8N/B5Vr6HqJ40rk6aOoa92kvuQ/Fe6LRO2Ah5G1cup\nurlxZdLUMvQ1fsmWJCcA3wJ2Afah6gVUfb9xZdLU8zx9jc/dd748kKpr2xYlzRZDX6OXbAIcA/w1\ncBXdzpdXti1Kmk2GvkbHnS+l3jH0tfTuvvPlce58KfWDoa+lk2wOPIlux0t3vpR6yNDXhum6+n2B\no4GnA1cCJ+POl1IvGfpaP8nOwFF0YQ9wJvAHVF3frihJ62Loa3jJvYCn0QX9w4HzBrcvcwlHmgyG\nvtYu2QhYRnfK5VPozq9/J3ABVb9uWJmk9eA1crWwZA+6oD8K+DHd8s05VK1sWpekNfIauVqc5L7A\nEXRhvxvwPuAwqq5qWpekJWOnP+u6adkn0AX9QcAn6br6C6m6vWVpkhbHTl9rluxFdxD2WcD/pQv6\n57mdsTTdDP1ZkmwH/CldV781cBZwAFXXNa1L0tgY+tNu9ZTsMcD+wIeBvwI+5/CUNHsM/Wm0ekr2\nGLop2Svolm+OoOrnLUuT1JahP02SXVg9JVt0Qb+3U7KSVjH0J93qKdljgIfRTckehVOykhZg6E+a\n7upTe9Mt3zwaOJhuSvZ/4JSspHXwPP2+S3YE9pvz9XC6a8t+afD1SadkJcFw2Wno98ldu/hVIb8F\nqwP+S8BXqLqtWY2SesvQ77t1d/FfAr7t2rykYRj6fWIXL2nEDP2W7OIljZmhPy528ZJ6oLehn+QQ\n4BS6i2efXlVvmvf9foe+XbykHupl6CfZGPhX4PHA94GvAM+sqmvnPKdd6Hf1bQPcb97XA4A/YMxd\nfJJlVbViFD970vhZrOZnsZqfxWp93Vr5UcC3q+q7AEnOpbsM37Vre9GidfvPbMHdw3tdX1sBt9Jd\nLWru14+AjwGvYbxd/DJgxZjeq++W4WexyjL8LFZZhp/F0FqE/o7ADXPu/xvwh2t9Rdd935fFB3hx\n9/Be9XU93UZk8x//KVV3bPB/pST1UIvQH65DTr7M6vC+N3fvvm+Zc/sGFgr2ql8sce2SNNFarOnv\nCyyvqkMG908E7px7MDeJB0AlaT308UDuPegO5P4n4AfAZcw7kCtJGo2xL+9U1e1JXkR3Ae6NgTMM\nfEkaj14OZ0mSRmOj1gXMl+SQJN9M8q0kr2pdTytJ3pVkZZKrW9fSWpKdknw2yTeSfD3JS1rX1EqS\nzZNcmuTKJNckeWPrmlpLsnGSK5Jc0LqWlpJ8N8lVg8/isjU+r0+d/jCDW7MiyWOB24CzqmrP1vW0\nlGR7YPuqujLdlcIuBw6fxd8XAEm2qKpfDI6PfQF4RVV9oXVdrSR5GfAIYKuqenLrelpJ8h3gEVV1\ny9qe17dO//8PblXVb4FVg1szp6ouBn7Suo4+qKqbqurKwe3b6Ab5fqdtVe3U6lORN6U7LrbWP+TT\nLMkDgf8MnA70d+uW8VnnZ9C30F9ocGvHRrWoh5LsSre53aVtK2knyUZJrgRWAp+tqmta19TQ3wOv\nBO5sXUgPFPCpJF9N8tw1Palvod+ftSb1zmBp5wPA8TXDO5ZW1Z1VtRfwQOCAJMsal9REksOAm6vq\nCuzyAfavqr2BJwIvHCwR303fQv/7wE5z7u9E1+1rxiXZBPgg8N6q+lDrevqgqm6l2w/qka1raeTR\nwJMHa9nnAI9LclbjmpqpqhsHv/4QOJ9uufxu+hb6XwV2T7Jrkk2BI4CPNK5JjaXbPO8M4JqqOqV1\nPS0luX+SrQe37wkcRLeH1MypqldX1U5VtRtwJPCZqjq6dV0tJNkiyVaD21sCBwMLnvnXq9CvqtuB\nVYNb1wD/PMNnaJwDXALskeSGJM9pXVND+wPPBv5ocDraFYNrMsyiHYDPDNb0LwUuqKpPN66pL2Z5\neXg74OI5vy8+WlUXLvTEXp2yKUkarV51+pKk0TL0JWmGGPqSNEMMfUmaIYa+JM0QQ1+SZoihL0kz\nxNCXpBli6EtDSLJPkq8l2SzJloOLufx+67qkxXIiVxpSktcDmwP3BG6oqjc1LklaNENfGtJgp8+v\nAr8E9iv/8GgCubwjDe/+wJbAvei6fWni2OlLQ0ryEeCfgN8FdqiqFzcuSVq0e7QuQJoESY4Gfl1V\n5ybZCLgkybKqWtG4NGlR7PQlaYa4pi9JM8TQl6QZYuhL0gwx9CVphhj6kjRDDH1JmiGGviTNEENf\nkmbI/wO++s1oab2u0AAAAABJRU5ErkJggg==\n",
138 |       "text/plain": [
139 |        ""
140 |       ]
141 |      },
142 |      "metadata": {},
143 |      "output_type": "display_data"
144 |     }
145 |    ],
146 |    "source": [
147 |     "figure()\n",
148 |     "plot(x, y, 'r')\n",
149 |     "xlabel('x')\n",
150 |     "ylabel('y')\n",
151 |     "title('title')\n",
152 |     "show()"
153 |    ]
154 |   },
155 |   {
156 |    "cell_type": "code",
157 |    "execution_count": 10,
158 |    "metadata": {
159 |     "collapsed": true
160 |    },
161 |    "outputs": [],
162 |    "source": [
163 |     "import numpy as np"
164 |    ]
165 |   },
166 |   {
167 |    "cell_type": "code",
168 |    "execution_count": 11,
169 |    "metadata": {
170 |     "collapsed": false
171 |    },
172 |    "outputs": [
173 |     {
174 |      "data": {
175 |       "text/plain": [
176 |        "[]"
177 |       ]
178 |      },
179 |      "execution_count": 11,
180 |      "metadata": {},
181 |      "output_type": "execute_result"
182 |     },
183 |     {
184 |      "data": {
185 |       "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEACAYAAAC57G0KAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztvXu0bVdd5/n55Zxz33k/ICSBQAg0QZ7yKqrUtGVjZFjg\naB2F8dGKXcrorlh2j7JEsC0YLWrbrVWlRYMpC6gajpZUD4tWqAEidpOhYomAEB5JioQkkJAXeefe\n3Mc5987+Y6559txzz+dac6299r7rO8YZ55y1155rrtd3fdf39/vNKUopJkyYMGHC+uGMZXdgwoQJ\nEyb0g4ngJ0yYMGFNMRH8hAkTJqwpJoKfMGHChDXFRPATJkyYsKaYCH7ChAkT1hRJgheR94vIAyLy\npcg6vyMit4nITSLysrpdnDBhwoQJbZCj4D8AXBP6UEReDzxXKXUl8DPAeyv1bcKECRMmdECS4JVS\nfwE8GlnlDcC/b9b9NHCOiDytTvcmTJgwYUJb1PDgLwHutv6/B7i0QrsTJkyYMKEDagVZxfl/Gv9g\nwoQJE5aMzQptfBO4zPr/0mbZHERkIv0JEyZMaAGllCuis1CD4D8MXAfcICKvAR5TSj3gW7FtJ8cA\nEXmnUuqdy+5HW7Tpvwj/G/AtpfitfnqV24/T79iPCVP/l4su4jhJ8CLyQeC7gAtE5G7gHcAWgFLq\neqXUR0Xk9SJyO3AEeHPbzkwYHfYDFyy7ExMmTGiHJMErpa7NWOe6Ot2ZYCDCAaV4asnd2ATOWXIf\nJkxYKkR4CfAlpTi17L6UYtSVrCKICJcsux8NbhxqQyIcAr5RudkbW3xnLAR/47I70BE3LrsDHXHj\nsjvQETd2/P4NwFUV+jE4Rk3wwEuB/2fZnQBQSt044OauAM4XqRIjAVr3fxM4u1Yf2qLPYy/CPhF+\npK/2YfBrpzqm/rMFHKrQlcExdoLfz4oe2I54TvN731J7MR4F3yeeDbxr2Z2YMGpssqI8NHaC32T5\nJLcMGILfv9RejETB94wtYO+yOzGhDCJcKsJfDrS5DeDgQNuqilUg+GWT3DJwRfO79cNNhGeJ8FMd\n+3E6KPhNYM+yO1EDIvy6yHrsSwaeDoPF5zaZCL4XjE7BiyxU7faBGgr+RcCPduzHFutP8Ouk4H+W\n9T9fBmdRp44nB5OC7wmjIngRrkFH1PvGc4DjdNv3DeBAx35sAgdEdN3DmmKT9SH4PbDW58rGWQy3\nrxPB94RNYN9AqjkH5wHf3Wd/RNgAngl8lW4KvhbBw3r78FvAnhFdY60gwhk0+7LsvgyEIRX8FGTt\nCeYEjkVhbaErO5/b4zYuBR4CHmMcCh7W+7Xf7OOqE6NRs6PdDxHOEeHqSs1NFk0GVoXgx2LTmJvo\n7/S4jecAdwBHmRT8EBg9MWbCiKAxWzTfAfxSpbaGVvATwfeAMRL8DvDaHrdhCP4Y3fb7DOoQ/A4V\nFHxTlTzG621sb4ltscf5PUYcoh4pTx58BsZ4w9kYG8FvAp+jX4K/Avga41HwD1HHovkJ4DcqtFMb\nhiRWneBN/08ngp9rS4RniPCaSu3b2GDy4HuBOYFjyYXfAj4DPEeEs3raRi0Fv4EOHna5oQzB17Bo\nLqrUDiLsEeFZNdpifRT8Klg0tQn+DOet8HXoVNEoRLgoN6jetC9MCr4XjE3BbwFPAX8LvLqnbdT0\n4OnYxhbwMHUU/AHq3dzfQ73J3ddFwa+KRVPrAWQE1oa1bIu8a+w/AS/O3I5pfyL4HjBGgt8G/jP9\nBVprE3wXm6amRXOA+ZuxC86iHpGtSxbN6ajgYX5/NzPbP5f8e8u0NxF8Dxgrwf8VPfjwIpyN3tcH\nqWPRQHeCf5g61spB6t3cB6n3sJgU/HDog+Dt9rbIe8CV9MNcZ5MH3wPG6MEbBf+aHrJCngPcoRSK\n9VTwE8H3h9MxyIrTXq6CP0T+9TNZND1ibAp+E9hRigeb/2sXABl7Bsaj4Ned4Kcg63A4k7oevGJR\nwUevsSa4WvI2OVk0PcJcDGMheKPgQeeH1yIZg8uBrzd/j0nB17Boanrwp4WCF+HdzexeOTgdLZrH\nKPfg96OzYkoU/BEmgu8FY1PwfRP8xcA3m7/XTcFnqSYRPibCMxOrlbxipzDmIOsPAhdmrnvaWDQi\n7EWf/8OUe/DmgVmi4A+jU45r3++9Y1UIfmwePMBJ6pdKPwO4r/m7q4I353ZMCj7neL0UPdRxDDUD\ntqNV8Oh93CUsEQ6J8LuBdQ2xj9miqaXgzwSeQN+LpR68IfgSBb+DTo9eORW/KgR/Oin4e5u/x6Dg\nl5EHfwi4MrHO6eLBzxE8eqC7Hwise9ooeLQ98wT6Hizy4ClX8BtoMbeSNs1Qg/W0hRkLZYwEP3YF\nX8uieQQ4S4QzlOJUh7aSBN9kJR0iPVrnaeHBs0jwW4T3e1UUfI3+GYLfoNyDL1XwhoO2WUGCXwUF\nf5jxELw52XB6KPjNph9H6J4HnBNkNTfQkAQ/dgXvKtTQfk8KPs+DN9fYaaHgV4Xg196Db7IltoDH\nm0VjUfA7TZ+62jQ5vvmZze+URVMzyLouCn7UBN8EKPfTL8GXKPiSIOsOdUTO4FgFgn+S8Sj4Pj34\ni4F7myInqKPgj9KS4Jt8YaNeHqM7wed48GcC3wAuTUweXVvBH2VkxNgc/3WyaA6iSXIsHnxJkHVS\n8D1hbBZNnx78M5jZM1BHwT9JewW/gS7qUmgF3zqTppnTNUddnYkO6n4ToqNF1vbgDzM+BW/uTZfg\nQ8dwL1oUjOpBZcFkvqgK6YaG4Ldp78GXWjSHmQi+OoyCH6NF04eCv8/6/yjdFXwXgrfjDV0VvOlD\n6ngdQvf5NuI2TW0Ff4TxEbwhoBIFf5jxEvwhdP9c1d0GXTz4tkHWScH3gLFZNDbp9a3gj7FcBW9m\nr4LuBJ8b2DoT3efbiQdaTwcFX0rwe9H7MVaLZgiCz1HwXYKskwdfGWO2aIZQ8MskePth1smisfpQ\nQvBeBd+kUp7OCl4Ck1WsioJ3i5PaYEgPflLwPWLMBF+k4EWSJec+Be/dbxF+UiRJ/mcwLovmKfIJ\n/jbCCt7sd00Ff4TxEWOI4MG/76uk4Lv2sasHfzxjPYPJg+8RY06TzFbwjeK6I5EZ4ir4bfSUZL4L\n8ZfRI0/GMDYP/gnyCP4wcYvmIHVe8w3GruBdheouM9iLPt9je1AZmPjKGDz4x5iyaEaBsXnwbRX8\nJvrCipHtnIJvsldCKn4jsNxdZ0wWjak8jMEo+DuBZzbZNy4OZraVi149eBGeK8Jvt/hqqYJfFYtm\n2R78IfT1POXBjwBjtmhKPHjT/9ibiKvgIezDD0XwZl9rBFlzFPwh4EmlOI5+2PlSJWsTfN8K/lLg\nVS2+t84WzTI9+IOUEfyk4HvE2Ai+bRZNlOBFOIhWXo85H4UU/GZguY3aFk1XBZ9zUxkFD2Gbxtyg\nK6Hg0f1s09d1VfA1g6w+D14SefZGwZcGWScPvg1EeI4I3x342Nx8K+3Bk1bwFwP3WVWsBjEFnzom\nZrzsWhZNVw/+ScoJ3pdJc4h+FHxfxLhBO0JbZwVfK8jqU/AQP97Gg58UPICIXCMit4rIbSLyVs/n\nF4jIn4jIF0TkyyLyk4V9+B4g9J118eBzCP5ez/JlevB2HvwTzObAbINSDx701IWXe9YxFs0ZgXTB\nUpgsmr4U/CbtHkZbzm/Tlv3bxh7GHWQ1AfS+PXhIE3yJgl/fPHgR2QDeDVwDXAVcKyIvcFa7Dvi8\nUuqlwNXAb4lIyQncT/hgj82iqargm5lpYH6YYBshBZ9r0RwGDrQkQlvBd32tzvXgDQmAHrLgvEBb\nh9HzcdZ4A+3bgx9awY+V4Kt48NagZUc8beUo+FIPfq3z4F8F3K6UuksptQ3cALzRWec+ZuruLOBh\npdQO+dhH+GDv3nyV1FpXVFPwIrwQuEuEc2mn4HMsmhPoi7PNTV+zarckTdIo+EeIE/xJ6tg06+LB\nr4pFMycWRNh0s6VEuCiQHgyNCGjmJnDtHt8x8/WjTZrkWnrwlwB3W//f0yyz8XvAC0XkXuAm4OcK\n+xAbQnQTTVLbjCNPuaaCvwB4OvDrlCv4XIvmJLrAqI1N4xJ8FzLdtWgSD2qTKw1xgj9SoU8GfSv4\nnNS90PegLMg6Zosm5MH/U+DXnHX/E/D6QDvGnoHFN8uogm/U/z7y4kEGK63gUzvpBv18eDvwBaXU\n1SJyBfAJEXmJUupJd0UReaf1741KqRtJWzQ7zAbeOpbRnz5RM4vmAPBp4A1oMvvfPd8LDTiWQ/Bn\nME/wj2b21cDe167DMhxADwN8itkclz7YCv5R4FzPOoeoS/B9V7J2VfA+Alsni+Ys9D3wz0Crd+CV\n6PRSH2yCL/XgjTjYZsQevIhcjba7OyNFUN8ELrP+vwyt4m28FvhVAKXU10TkTuD5wGfdxpRS7/Rs\nI6Xgd+g+Nnot1FTwB9C2zG8Df4BfwYcGHMv14Lsq+FpDIx9s+mGOWQ7B5yj4GtWsq+jBh4KsY7do\nfJWsW8DzRHiOUtwBvK5ZfnGgnRjBb6FFqW0BvRm4Ryk+wewhU3LtDJ5F0wjfG83/IvKOtm2lLJrP\nAleKyOUisgd4E/BhZ51b0ZkwiMjT0OR+R0Ef9pFW8Esn+Ob1TlnzktZQ8E+h4xq/BnzB870FBd9Y\nHEKeBz8mi8YQfOj1+YxmvSPNokeA8zyWTm2Lpm8Pvm0WzboGWV1bZQ/6ze77mv+vAT6Hti19cAne\n9eCPOsteA/y95m8TvykJ9Jr74AQ6x36sD1AvogTfBEuvAz4O3Az8B6XULSLyFhF5S7ParwGvEJGb\ngD8DfkEp9UhBH1IKfpvuQ+fWgK3eoY6Cf0oplFL8klJ8y/M9336bbQ7pwXdNbTPEHWvnEPp4nAJQ\niqPNcnf/OxG8CFc4i1ZRwa9ykNUl5S3gU8A1zUP+dcD7yVPwPg/+KIsPEPOwaGPvbQAnmxqVlfPh\nkxeeUupjwMecZddbfz8E/IMOfcixaLpOflEDLsHXUvAx+IKsZpt9E7ydB19LwceOmW3PGDyC9uHt\n49Q1i+ZvRHiuUrsxiSwF38yZe0IpThRub6pk1Qh58FvAR4G3oe3eh9CxqZ8OtJPy4N0A6hZwUaIP\nMdhCxxC8W3E+Wiy9kpW8IOvSLRp6UvCJ7/n2u0TBn6Kegq9l0ey2I8IbRDB1FXYGjYHPh+8aZN3L\n/LHbRB/nMxIl7r8G/HcttjdUFs1oR5O07DefTbcHeAD4MjqW9yfo2FRbD95V8FvMK/hScWCEEqxg\nsdMYCD6VB28IftkWjU14UK7gTzFPLG0VvLkwh/bgawVZ7XbehPZcIazgXYI3Fk3bh84m82rdPLhP\nECfHs2h3c/eh4OfORUOgm+hjPEaL5iAz+81Hyttol+A70QT/IHB+IBc+5sFvobnCXraHWWp3GwVv\nE/zK5cIPSvAinCPCO53Fq5JF01XBP04dBT+URTNEkHWLWZaWj+B9qZJdg6ybzBO5Oa/Hids0MSGS\n2l7fCn4Ps6K21JvIMmCIFfy++Qm0TXMU+HOlOIm2ap7macucf19bJsjqtn9hMxeDHWQtHWwMVtCD\nH1rBXwr8hLOsJA9+mejqwT9KHQ9+GUHWU+gMgrbXiwmyusfMJfjDzvdiCr6Y4JuMnA3midzsZw7B\nt1HHXRS8j6xMmzb2AMebQKA7wuIYYBO8q7r3ANtK8bfAtym1W+sSsmns9N1dwdA81ITF2ZrMtp7O\nvL3XRsFPBJ/AJotkc7oo+DYEH/Pgh7BotmF38pEuKj6k4DeZFbSUWDRtg6xmfZ9F0yfBt1Xwrt0Q\nIvi9sBv8PcH4Cd5n0dDkwRvcR5jgfdld5nr1pWGC9uFti6atgp88+Ag2WXwC5ubBL9uDXzUF71ay\nlsIXc2hL8G6hk0Ebi6ZLkNWsvwd2vWsaS6BPi4YWbz++nO4YwR9v/t5mfIHWFMH7MpPuw58Lb2d3\n2W8DZrnPl3+YeYJvq+AnDz6BDRZHN/QqeOt1+iTjUfA24ZUq+EdYXQ8eWgY1m8IQQROP7+a+uAmm\n5WbRdPHgzbYNkdvnNBVk7aLg7W3nooTgjQcP41Xw5tz6FPb2wjfyFLzdllHwviydu2iv4CeLpgCb\n6JvdJqeQRbPJrMBgDB687f3B+BV8zTx4aJ9JcwA40pxHH8Gfgb6RkxZNo4L3oY9Lm/6Y9fdY/5tz\n2qdFY//ORYjgT7G437aCTz2oloGYB+++GRsUefDMrldfEPfraIK37b0uefArg2UoeJgnnFCQ1T6w\nY1HwQ3vwvgebGcvFHnr4oAif8qw3BovG3k9fkPUU2qbJsWgOAEebdLvaCr4vgt90fpd8z0fwxwgE\nWZu/18miaePB+x4gd7Go4NsGWScPPgJzUA+CHguacBqZS/Dr6MEf8a++C99+b7I4Ccp5wIuc9fqw\naNooeOO/mzZsctpED153KXlZNHaKXGcPnjIFv5d2+19bwR/1tDX2IKt9bn0WSsii8XnwLsHbHnzI\novk6Ohe+TfxmUvAFcBW8Iakcgp8UvMYG+kKzlx9i8RjWrGSFOgrep97uIKzgXYK3leCqKPjaHvw6\nKvgSi8Y+Z64Hb4Ksbvt3UUfBnyj43iiwVAXPjPBSFs0YPPhlZNGEBhs74iwPEXyt4YKhG8Eb1e27\n+e4kn+BtBd8m6OsSvL2PfQVZzTZrKXgfwbsKfswE7+bphyyaB9AFSu6+hiwac3/GPPiuQdaug+4N\njmURvK3g3WIOe92xKfguWTQ1FfxTwJZ18fdF8DUsmhwFfyn+LJrHgUPWfna1aNwg6yooePd4HfO0\n5QZZx2bRxBS816JRim30oF4XOh+Fgqy2gncLqR5A33sX0i3IOhF8AvaNCvqgHyat4MfgwVfLomlS\nQA/A7pC4IYQ8eFMbYAjpEIuVpqsQZN0kYtE0wdQngHOaRbU8eJ+CDxJ8c77a5sG3JXjfuCqnk0UD\n/kBrSsH72j+OtnyeyaTge4XPognNj2jffGO0aNqMRWNU9x5gR6k5AvUhlCZ5kvljcsj6zF2vVppk\n28G9YkFWY9GEgqwwb9MsS8Hb65eii0XjDh62qkHWNlk04PfhXQ/eHoDN58GbN4R70SnapUMVTAq+\nAG6QNUXwY7Nouij4o8z2I8eegfBQBW51ryF4uz99VLL2YdHcjX51PpdFiwbmUyVrB1lzs2jMOViF\nIOsYPfizKC90gnYK3ufBG4KH7gp+bA/PKJat4PeRb9GMjeBLFfwxZoo8l+C30aMDuraGW93rI/gx\nWTSxIOsxtEd6Pn6CH0rBx4gxlu2VQu00yVSQdYwWzZnEh/iNEbybKpntwTfWmk3wO+jj1HaogknB\nJ+AGWXc9eM/cm2Pz4Lsq+GKCb6o/3Yebb/iGPiwaX5C1j0KnbbSKB39dQB8EP6SC33R+l3zPJfhN\nBg6yirBfZGE8oFLY8ZWuFk2JB7+JroY/1bR1OFBRHcNk0RTAF2Q9is7XjqVDjcWDLyY8K0B3nHIF\nD4s+vLFo7GNijqdPwR8D9rYc7KqGRZMqdNpGFzsdtiY0t2Gm7TNt2QRf2h+30CnXg69h0fSp4O2x\naGor+B8D3tWxDe8sTI7C9uEBZtPtGdjXpc+Dty0au+17aWfvTQq+AD4FfxQ/WY7NommbRWNUhAmM\nlhK8u++2RRPz4DeYH8un9A2oZh58zIM3Ct5nz4D24FdCwYtwhghvdxbX9uBDQda+PPgDtHsDtBFS\n8JvoZAMV+J7vnLijScYUvP3gswm+rYJ3/f3RY9kK3lgXPrIcG8G39eDNPkI9BV/iwUM7m6amRbPg\nwTfqzWzjbvwZNDBv0ZhScxi2kjXXg78C+JXANtv09Tg6BmPu09wga81A4BYdHhjNeXaDrO7wAiH4\nJi8JWSa+PHi7/b8F/rX1vUnB9wBz0bZR8KvqwdcgeJ8H70uTdAneWB7HKX9A9p1FY95sFNqiCSl4\n16KpkUXjG4vmBHGCP0KaOF/MPCFDNwW/q0gtO+M4fgXfl0Wz2bG9vcAppXYfQK7CjhG8j1BDQVaf\ngt/195XiMaV4T7N8CrL2hE20F+d68KETOTYPvquCNw+qUovG58H7LJoN2FVNJk0S2r1a+oYLrhlk\ntY/n3wB/GPi+bdFcQLehCtxCJ1fBx7JoDpMmeDPgmxvsdpflwPaUt5g9sH3ncrQKnsUCNi8BB5BS\n8CkPPvQAKbl2piBrATbQBO8q+NFYNCL8qAg/7PnIR3i7fRbhbBHe4flebQWfkyZpZioyCr5N/q7P\noqkZZN1VYkrxDaX49cD3HwHOE+ENwEuBTzTLayv4lEUTqtew8WJnO/bfbRS8TfC2Qh1yLBqz7baw\nA6zgV90h+Ai+xIMPtT8p+J6wia7odD1430Xrqqt9nlTKPvAa4CWe5SkF/0zgOs/3uhK8T8GnCN6+\nKKGdgvdZNDWDrKmb2+AR4Erg3wL/UCke7tAfs0+lHvxeNMHnKnjXKrN/5yJE8L797nPKvtoK3ibt\nlEVTw4P3vSFMCr4nhBR81KJplGjMI62J8/G/LaSyaLaAC0QWboY+PHg3TfIQ8wNT2fYM1FPwNQud\n3DeiEB5Fp8r9ilL8tbW8LcE/RXsFHzyGIhxEjzl+GH8spJaC9+13n1P2dSV4O8AKZRZNVw8+9AA5\nySyukcKk4AsQ8uBTFg0M58Ofhz+gm1Lw5qZ6uvO92go+lCb5GPNqsYaCb1vYZWM/s/0PefAx3Ae8\nAXi3s7ztYGNHmFfwuUHWlAf/QuBWFguRTGLBqir4rkFWu4oVuls0JR68t/0msH+KPP6bCL4AhuBL\ns2hgOB/+fPII3jcyIiyWVncleFdZ+iyag2jrK2TR1FDwbS0aV3GZNrIIXimUUnzEkyvdRcHbefC5\nQdaUB/9i4EssksAG7SaKiBF8Ksg6ZoumJIsmRfAnmVXBp/LgXeReP5NFUwBj0ZTmwcNwqZK5BB9S\n8G5pdVeC9xHGbppkk5J3AH1c+/Tg21o0Mc80R8GH0HbSbduisc9pJ4sG7b9/kcWH6QZ1FXxOkHVs\nFk1MwZdm0exae81D3xB1yIMPXWO5ZD0p+AKsuoKP5YX3RfAuObtpkuYY2iqxLwXf5uIOEXyuRRNC\nHwq+i0UTUvDGoumi4DdJe/CrGGRNXQOp9Gl7nWgevAe514+530L9GTWWreBTQVb75PdO8CJsoRWH\nj+Dd/oQUfG2LxkcYtkVjqjvt/tRQ8LXy4GNpbTlB1hDaEvwRKiv4xiKwFbz7QO6i4M3D2RyvkAc/\nZgVfxaJp3lbdBAKzjrk/c/Lg3X7EYO63ku+MBstQ8EcBmmyTkiBrzCOtBVNQ43uQpDz4oS0am+Dd\nacjsKlbTxrKyaFzPdJkKfoOwgk8FWWMe/MWAQg+O5Xvj6qrgS4KsY8uDTwVZSyyaDVgYu8ZW8KUW\nTa6Cn8aDz4S5aM3YKLE8eJdghpjI4Pzmd1sP/hhpBV8y4YfZzsJFbrXlmym+rzz4thZN6yBrBDXS\nJF0FHwuyPsXitIgGLwK+GBiKto8sGl+QdaxDFaQqWUuCrO41abfXxqLJVfCTRZMJQ05H0DZN7lAF\nMBzBP067LJot4Bv078G7aZI5BL/sLJo+gqxt3ihcDz630MkWIr7j+Hx0iqTpV58KPhRkHetQBW6Q\ntaTQyT2WPlvPrGNbWrkWTRsFPxF8BIacjIIvsWiGIPjz0ANftVXw36B/Dz5k0dT24FMxh5J2xhRk\ntfPg7X3MIfjQcbwIbc9AfQ8+t9BpVYKsXSwan4J3j08yD75BroJf7yCriFwjIreKyG0i8tbAOleL\nyOdF5MsicmOkuZiCH4tFEyP4VBbNvcC5TbDWoA+C91k0dn/6qGStkUXjevBDB1mNB7/Hyp0uUfC+\ntD3Qc8p+q/m7VhaN6VuuB9/nWDR9VrImLRqr4tT31udT8PYbQugBkitY1jfIKiIb6ArCa4CrgGtF\n5AXOOucA/yfwD5RS3wb8UKRJV8GX5MEvm+BzsmiOoW90u5q1BsG7KsZW8GYI3b49+LYKPpZFswwF\nf4LZMW2j4EME/1Dz97IVfB8WzRkirc49xIOsUYvGyXOHdh58DQXfZVTWpSKl4F8F3K6UuksptQ3c\nALzRWedHgP+olLoHQCn1EGGsuoJPefDbLM4j2adFM7QHvw5B1pPMAqr2w+cEM2XvIuXBX0BYwS94\n8CJ8rwi/lNHX3CBr3+PB06FNn0VjZ7nELBqzfuytz1XwuRZNSZqk7w10JZAi+EuYTYgMmvwucda5\nEjhPRD4pIp8VkR+PtGdn0RxCX5jmxhmLgr8P2PQolhwPfrv5fk2C96XdhTz4mgq+cx68yThxhi2u\nFWT19keETRF+JPAdc02ZlMjdPjRTKoYGBTPXaeg4piyaE05fXw68S4SfD/TTfM9WpMsMskL7e88X\nZM1S8Nb6pg85Hrz7hlCj0Okk7F7HqsX8xktDqqOhuRJtbKEv2NcD3wv8sohcGVjXKKgj6IDmces1\nbCwE/zD+oqoSBW8HWl2CP8iMMHKQ48GnCp1qKPi2WStuGzUtGh/ZXgb8y8B3zLHzKXgI2zRdPHhf\nFs0W8O+AnxUhJIhKLZrWHrwIrxUhdM92JfguaZKwSPAlHnwNBW8HWUu+NwqkOvpN9A1jcBlaxdu4\nG3hIKXUUOCoif44eT/22xeb+h6vgyz8Ez30+fPvjcN3R5oMxWTQPM1PaR6zPfAS/IYI0D6lcBX8e\ncDQy0bALnyJ0LZp7WCx0GkMefKyNvoKsBwlXPAcVfAND8O78sEGLpnnTOwd2x6nP8eC3gDvRo2R+\nEvj9SF9tglsg+EZNblj70caieRvw18Cvej7bcn5nQ4S9aBF53FpckkUDaQWf8uCLgqwivAK4Vynu\ntbbpiiXzVtYLRORq4OoabaVu2M8CV4rI5Whl+ibgWmedPwbe3QRk9wKvBv6Fv7n3fg34v4DXocnO\nJni3Ly4BLIPgg/1RilMiKGYZK7aCf5X1PZ9FE4tTuHBJJdeiqVHJuvBAK2zDPYdDePAm/daHmAcP\n7RT8+cBjjcUDeVk0W2iL7svA2ZZIcPuaJPhmP05Y3y+yaJqYwyvQYs6HLgr+TOAJZ9/sESBzLBrX\n1ivx4Pc9t5DMAAAgAElEQVQwL9JshATLPwH+HD3BDPjfhntV8EqpG4Ebzf8i4pspLgvRjiqldkTk\nOuDj6B19n1LqFhF5S/P59UqpW0XkT9DjcJwCfk8pdXOgSTvIehEzgh+LRXMeYYIPvR6aC2ALvV8p\nBQ/5/jvEBxvrxYNvbj7fQ6LrxN29e/BoBb8lwoZFum5/Qgo+NFxBLA/etmcgX8HvKMVJEY6jrzX3\nmogRvN2+HWA165TcJ89AZ31dFvh8E30dtCX4ucnUlUKJLKjuGOz99731xTz4lEXju372ND++uY3N\n99bGokEp9THgY86y653/fxP4zcztmSDr+cyIb+kWTXMyUwrevVjMzXaCeQXv9eCVYqe5uEsIPmTR\nmNEjzyZd6FSq4H1jfrS1aNzAdE0PPqTgQRNfiDSNUvcpeN81FlPwFzD/RhYiePvBYe/7YfRDOpfg\n3XvFDrBC+X1i1HuI4M3bRpt7zw2wGtgEn7oXci0anwefCrL6ructZudqAzgVGPtmJbCsStYjaDId\nk4I/iCa1Y/hnj/IRks9yiCl4mra7EPwGcLK56I6hj6NvsLEuHrzvRmqblhjz4PsYqsAQvO9tw7z9\nmGsp5MG7iKVJphS8L4vGR/C7cLKPDMGZvnotGuv/0iyaVwB/hJ5T2AfzZlpFwTcwx6hNFk0oyFpL\nwduFXW6A1d7eSmBZY9EYBT+mIKtR7+CfXCSm4O3PHwTOF9ldXoPgfR686ecFLFo0XStZQ/nGtbNo\n+gqyQrhYLaXg5wi+ebPb13zWxaJxST9I8Mwft1QWjavgSy2aVwJ/iq4BONPzeReCz1HwfXrwbQqd\nbAXvBljd/owey1TwFxAPsvr80b4J/pHm72SQtcGCgleKHfQr+9Oa5V0J3iUV+yI/ip/g+1LwpRf2\nsoKsEJ443Q6y+hS8+71N9Gu6a5cYBAm+UeJCXME/SZrgbTL0KXjXosl6mFsB1s+ix1Hy2TR9KHj7\noVWSRVPqwaeGKggRvK3gJ4IvgKvgfZMxGyxTwZd68O7n9zIrCOvFomn+PkY/HnxfFs1QQVYIE7wd\nZHUJ4z4WC/ns81dE8MzOQ6hmAvS5c5WzfdzMubMJPhlkDVTkungWuhblXnS6s4/gNxmXRVPiwacU\nfCjI6psvwN5ezUKyXrGs8eCPNNseq0VTmkUD8xfT14DnNn/3TfAwjIJva9EsK8jqs2jcQie3f18F\nnud8xz5/pR682Z577KIePHGLxm1rTsE3vn3u25ZR7xAm+L6DrH178JOCHxDmFdkQXMqiGRPBlyj4\nWwAzKFsfHrw5LqbdI05faij42L6WtNNXkDXUn5RF4yr4HIK3h+J1t+nLojHHOlfBd/XgXRLLtWlc\ngp8LtFojbj6V2Z6LlILPsWiKPHhnOIE248G7WTRTkLUAdh48LCmLRoQfEOFZzmKTA2/6tc9afwNQ\n1pgqBiEFfwvwAidAZ9BVwduBHzNQ2wkWleNYFHzMg+8zyJry4E0evN2HlIIvtWjM9moq+FSQ1Xwn\n516xCd7nwZtaiGOZ7bmIKXijlLtaNO7xsdtvG2Q1+zoFWQvhKvhl5cFfB7zWWRbLogldKCFFeita\nwW+iUxrti6RrkNW1aA5bU8XZHnyXStZaQdZUFs0ygqzmgWgqWRcUvONf17Bo+lTwvkBi7r3ycuBz\nzd8+i8Zss+29FwuytrFoQokORsFvO8vajAfvKviJ4AswCgWPrqI94CyLWTQhtRlS8P8FuAJ947qD\nitXw4G2L5rBnvbHkwfuyaPoOsuZ68AsKXikeatq90PpOUME3DwJ7qGDwn4faCj4WZIUMi0aE/ei3\nHdN3H8Gbc9T23nMn+zAosWhyg6z2tZbj8YcEy24la2J7K4FlK/hlBVkvYvYqb5Ai+GwFrxRH0Zk0\nL6Q+wbsWjSH4mh58zTz4oYOsB9Gk0kbBw6JNY4/86T4ozwaOKbWQh+5aNDUVvO9h0caiORd41KrS\nvBu4zHl7MddBFwUfC7LmjkWTE2S1P8t5Q5gUfA+ws2hgCUHWJvhyIWUEH1KbIQUP2od/GYsE/03Y\nHakuB74g65xFY63Xt4LfbUOEjWa0wJJ2hqpkfZh2HjwsEnzMg3ftGdOvkiyanDz4lEXjHsecIOu5\nzOo+UIrDzCqj3X7WtmhKs2hiQVb7+NgK3njpbYYqiFWylt5LS8XQHbUHyjKl9jCsRXMe+sHWm4Jv\n4CV4pXh7YX+THnzzt00sXStZcyyaHwL+PvAzBe0MFWSNEbyxaHIVfMyDzyH4Ggp+0/rb3W/fPuQo\n+POwCL6BsWlMVlBXgg8FWWsWOsU8+JSCDxH8VMnaEiboqNA2xTIsGlNh6hL82cDjzd/uWDShC6WN\ngi9FiQcfKnTyZX/EkJNFczbafy5pZ6gg68PEhyqwR5MsVfD2uXBTJCE/i8Zst02hU40g67nAo84y\n14fvW8HXLHSyj6k5T7H2Q9fPlAffATY5HWE548Ff1Px2Cf4Qs4uxaxYNaIL3efClqOXBl1o0qTz4\nLRaPoYtlBVkfIT7YWFsF39aiqZ1FE2rLIMeiiSl4ux99B1lLPfhSBV9a6JRTyToRfAA2OT3Fciwa\nQ/C7WTTNwGB7rP50zaIBTfBb1CH4Gh58bYsmh+D79OBjFk2I4HMU/O3AFdacvF0Jvk0WjatGU0FW\nl8S6WjRuP0qvH4NUkDXXoomJAvsNJ/TW40MsyDop+JaIKfihLJqL0EFOm5wOMssnhwoevFI8CjxA\nd4L3efC2RWMC1n0HWX3EkkPwbhbNEION5QZZF/qgFEfQtoshui4efB9ZNDWDrK5F8w3mq1lbWzQi\nu0NB+K5/Owhaq9DJtbWMaMsOsjYZRJusUSXr0B21T4LtwQ+t4O9knpzMrEgGbbJofBffLfRr0fzf\nzIgs5sHXCrLa/djDIjGl2nE9+K5BVt/1awj+Qs9ntoLfg38/QdcxPA+4i0UFb2cOXQh8yfluThaN\nfT3lEryQH2TNuVfOQ1+fNmp68K5oslG70GkvesTPU9Z3coKsPlEJUyVra9gH7K3AZ5q/h1bwpQTf\nxoOHfgh+l7yV4nal+LJnPbeStVTB5+TBt7Foeg2yNqoRwnnwbqFT6CFj+/BdLJouCt7O6Y4p+C4W\njavgH0FPIO72s8295w5jbKPEosnx4Pfhr7eIXWM+gWC2M+XBd9ieIadPNq/D4D9ofWbR3IXHorH+\nr5FFA/AVwpP+5sLnwftIqfZgYzU8eJdATwFnNLUIfQRZD6CPt5mv1oWt4Pczr/psfBV4fvN3zKK5\ngFlqLdY6xR68U2BUEmStkgffwJ3wpEuQ1Vdha1CaRZPy4PezKCRSefA+UbnH+T0FWQvhzm9oELJo\n7JNZW8HbQxUcYp6IfVk0KVL1EfwHgF/s0lkW1bfvtRH69+C9WTSJccfn2mnOvSHmPjz4g8ysv5QH\nfzCy/VuB/6r5O6bgTdWsjaIsGmsiEZdY3ZS/WJC1Vh68O+GJue7bKvgYuaaCoAY5Hvx+6il4e+L1\nkIJvE3BeCoYm+JDnuqoWTVTBK8VTSvFAx/4GLZpIX2ooeJ9Scollg/g5ibXTB8HbCj6VB3+I8PV4\nM3BV83csD34/sziSgc+iSZGymwvvBgx3s0SaNw6xHqw+m6NtHvwx/JOD17Zo7IdWjUInV8GbB1zo\nbdd8z0fw9uQmKx9kHRPBRy0aMyKjlb7WFkN68DVwEtiwbugYwZu+uJWsfSl4iAdaY6+4XYOsPlFw\ngFn6baqSNabg7wbOEuEc4go+RfA5layw6MPHLBqYf7i1tWhCCr4WwdeyaHI8eJ+C3w9sBxwD8AuE\nXYK3MmomD74APmIyy1MePHRU8c0IenvRU7PVzqLpheAtW8N97XcxtAdvzkPMh08RfF8WTYjg7SDr\nQU/fgN1jfgtaxcc8+ByCn8uiMQLFGUK6C8EXWzRNDORs4DHno5oEn2PR5MRhXA8+R8HvoB/2sbZD\nCt5Mrm7eUCeCL0AXiwa62zQXAg827YiVdeES/Alg03pbiCr45oZxVXNN+F77Y+sMlQcPcYL3qXTz\nIOozyBrz4I1FE1PwoAPkVzE/oUZbiyb1pteG4O32SocLPgs40vj/No4De623RTvIWuo7p7Jo9qEt\np5DCNnA9eN/DzKfgDxC3f3zXj3mjiBXCTQQfwVIVPDqD5oHmojrCjJzmCL753CaJlAe/Rfx1sCts\nYhnKg8+1aNoo+L6DrDEP3g6yxiwi48N7LZqm+nmTRRJJZdHUIviURRMb6dNnz9jzubqed07Q1kXK\nokkpbINUkHX3YeF8xyV9Xx98Cn6b2VAWk4IvRJaCbxSE7+B2JfiL0AoeNMGbTBpXwcM8SaSyaPry\n3w18r/2pdboo+JDy9in4lAfvC7L2ZdHkevAmTTK2/SjBN98/6nmohywaW3G7x7aU4FMPjND+G/hy\n4O3vmodDXxbNNvkEb4uTWJDVp+BTBO/z4G0FPwVZC5EbZN1gNuqkjdoEb9SnmwcP8z58loLv0K8U\nulo0NRR8G4umzyBrmzx424M3fQnhZvRgcSEP3mfPuOvYFk1fCt5n0fgmjbfhy4E3sH34Pgud9pPO\noIFuHnzKogmlSRoFPwVZC5Fr0fhOJPRH8D4Fn0PwtXK6U7BJI2TRxIKsfWTRmBu4LcHX8ODdfbLz\n4OcIznkrNDd+bPtfRyvdi/CnScYI3mfRdPXg7eOVsmhCFpWB16JpkCR4EX5QhBdF2of+LJpcDz7H\nopkUfGXkBlmXQfBuxalNErEsmiEsmlwP3l5nt0LTVGsWpJj69tdn0TxKOcHXsrVKFfwGs0I7O2jq\nRXPMbgGuJGLReL7qs2hSCt6d1cnNg3ePVyrIGgoyG8QsGrvYKaTg/yHwnZH2IZ1FkyJgg7YefOoB\n4hMI5mEZU/ClYmmpGIuCd5+K1QhehOeL8O3NvzbBP8VqKfgcDz4UZIWyCzPXonmM8iyaPoOsxoM/\nAWw5DzR7nwzxpCyim9GDfIUsGt/cuj47LUfBewudmgfNKebPe0rBd7FobA/ejlnY992hpo0YUoVO\nKQvFwLW8fNeTewxyLKBcBT9ZNAUI3VC+DI1aCv5NwB80WQ9PIz/ImuvBDx1kbePBm89zffjcLJrH\naFfotBdQgXFgcnGS+YpOaCyaRqW7VZk2QeZYNKAJHropeNeD970dxSwas107pTAVZE0RfCeLpunr\nOcRR06KJBahtK6uk/ZAH72bRTBZNAZZh0ZyJHhnwJynz4O3X/FgWzWAefJNvT4AY7QvWl5O/DAUf\nyqJxg2LFaMhOOX0yFg34i9WMKjakm6PgocyDd+00XxZNG4K3v1MjyBqzaHIIPkfBpyya3CBrTMHb\nmUX2sraFTieYz4NfaQU/dEeXEWQ9C/h3wDvQhF0zyDq0B587tkZXBR8rULLXaevBu8O7toV56Jht\nmCArLPrwbl9MxWIMX7HagnIF3yWLxia/beaHf+5q0aQUvM+Dt6+dM0kr+FQWTa0ga0jBpx4goaEK\nJgXfActQ8GcBnwA+ix7etQ3Bh4KsQ3vwIXvGrNOnB+8bqqANwZugWI3j5fbJePDgJ3j7mBz39M3F\nXcBfMT/zWFuLpraCj7WXQ/AlCt4tdMpR8LUsmhwPHmd5Tvs+ovZVsq60gl/7ICuzmd3/F+ALSu1e\ndDWCrEN78KEMGnsdAut19eBrBllzMyhS8BG8bdHEFPyJVB+U4qRS/F2rpN9+SB4gM4umsdRUY7GN\nxaLpGmTNUfCxQqc2efClHnzbIGuqkrV02IalYSwK3mfR+G6+tgr+CaX4CvBya/kRZuOZHySeJjmG\nLBoz+FHOMcxW8CK8oBmEzYbv+JvJOuxhatsGWfsieNeisffLPXY5Ct5FW4vGXl6D4G1y6sOi8Sn4\nLZHdoHbXLJqSa6CtB59qPxZkPX3y4EXkGhG5VURuE5G3RtZ7pYjsiMh/G2luWUHWJ2A3MGdgsmj2\nAtuegZfGpOANOacsmjYK/t3A33eWLRz/5tiZdD3I9+B7CbI2iCn4lAefVPAetM2isfuakwfvKtWU\ngnfb6zJUwQLBN+fe7Pt+dOroHMGL8AERLrIWDTkWjVmvpP2Qgj99KllFZANNANegx+W4VkReEFjv\nN4A/gegMP8uwaM5icdYdmHnwviInGF8WTcqiMRNBnBFYL+TBn0V80me3Hzax5GTR9BlkdVVYKsha\n6sG7aOPB7zjLl2rRiLCvaT80laQvyAqze+9M9MPhTJPV1eD7gWdY/9fKonE9+FCQ1fXgc4KsKQ9+\n7RX8q4DblVJ3KaW2gRuAN3rW+1ngD1mcgNhFiUVTXcE7sAne9d9hXAo+SfCNyjIEPFfJarXhU/Bn\nkk/wbnCvDcEPFWTt7MF7kJMmGbJoYmIgNqOTaTMUZC21aM4FHomMfOobbAxm994h4HG0aDobdkfW\nPJ/5450qdMqZ7MOsax/PvhW87cGvt4IHLkHPbmNwT7NsFyJyCZr039ssig2Zm5MBAsMr+BTBjyWL\nJubBu+vlKvhSgre930c937WxzCDrEB58qpLVPg+2GHC3e4T5ibdLFXwpwYfsGZi3aOx+2AT/JPrh\nbgKt56Pf3G2CT1k0ePrtg33MfceubR58rge/1gSfM775vwJ+USml0Cc5ZtEMquCbCT02mOUx2zBZ\nNKui4M2AU6GHJMyOY4kHf4hFkg5ZUjUsmiGDrLUVfI5FcxJ2p1h0hxfwXitNZtcpZtd2SZDVZ9G4\nE9bYiAVYwR9kNW0agj+MfkgYH/7C5rer4FMEX6PQKaTg3VoCXx9CBL82efCpjn4TuMz6/zK0irfx\n7cANIgI6z/z7RGRbKfXhxebecqXIv3ln88+NSqkbm7/7UvBnAk8GXkdrWDRDKXi70ClG8LZFk1Tw\nVkZEW4umTZDVePBVg6zNvtik24cHnwyyKoUS2e3XJvNDE8euFePDH2fxuG0zL8bMQ8Qbb2n6YK5f\n99qOBVgh7sFvMbtfjjNT8Ca4mmvRlCj4th58qv1QoZM5p0vLgxeRq4Gra7SV6uhngStF5HLgXvS4\nLtfaKyilnmN17APAR/zkDnD9l5W6/p2eD/oKsp6F33+HWRZNLsGHFO3QHnyOReMbqsCn4A80657p\nLI8GWS11+gRwQAQJPESH9OD3AcetuU5THnxOJatve2c0xBpS8OC3ylKjaBqCf9jTVy/BN22dCBz7\nEMGfw+JcrDaO03jrTl+Nb27fLzEFX9OiaePBE9m+WScUZFXo47QUBd8I3xvN/yLyjrZtRTuqlNoR\nkeuAj6N39n1KqVtE5C3N59cXbq+GRXNWwfZCAVaYKXjfZB+wmEUzBg8+ZdGUevCG2H0KPrW/O0qx\nI8I2+jj5yK5vi8Z+87PtGUh78Cc8fYuiUcbmOIYKnUy/3AdyroKHPIJPCYuQD78Pf+zA4BgzRR7K\nojnc9C+l4GOFTkQ+d9eNefA+Bb/t/PYhFmQ9xZpUsiY7qpT6GPAxZ5mX2JVSb040l0zxa6r+aip4\nX4AVMi0aEfYC38aiNQXDe/Api6bUg48RfMyisW9eQ0xHRXgX8CWl+A/NZ6Eb8hD1FbwdYIU6Y9H4\nYI5jjoJ3s2jMshoEv0E8EyWUC2/PUOVDbpD1GDMF36dFE/XgleKUCKfwK/i2QdYdpjlZW8GrmJwU\nP6jrwacUfMqi+Rngi0pxk2edMXrwtRR8LMhq7689ps/LmM+Fjin4qh48fgWfCrK26YM5jqUWTUrB\n28VOuUFWX4DVIKbgQ8QL6Tx4c7/YWTQXNp/3YdHsoAPGQvy69HnwNcaD92XtrAzBD93R2A1lnqjm\nAPat4J9Cq74z8Rd9HEWnf70NeH2gjVjqW03YijDlwYeCrCEFf5JyBR8i+EuJk6ppI2TplMJV8DbB\nm/Nn98UNsrZ5KNsVnSUWTY4Hbx64vjx4OzstR8HHCD5XwaeyaEzR40XodOrqWTSeoHUom62Wgj+B\n9uD3EI5lrQzBj2WwMVhM/eo1yNoE406gM39CCv75wF8qxRcC7Y+pkjW1XkjBP0B5HnyI4C9jfpKN\nUNZDH0FWn0XjHQ++QRcFn0PwblprSsE/ziy4mZsH39aDjxF8TqGTq+AvAr5BWaGT/TuFbdOnwFwI\nxlYpad+n4E+7StbayFHwMIxFA5oQnoaf4J9Cxwb+eeT7trIegwdvE3xOJeuZwH2U58HbN/5h9KBt\nB9GerEvwfQZZ7WsmZdG4N+sDwEMttlniwZco+EfQKYyQR/CmrTYWTRcFb4Ksbh68q+BrWTRmvZit\nF1LwpUMVrF0l69AdzVXwrQhehEPAK5Xik82imEUDcYL/OvAdSnFr5PvL8OBzHpK5Cv4QmuAvc5bn\nWDTm5jnStHNp8//QBB+zaIJ2kVK8q+U2bQ8+lI2S8uB930sRfC2LZi/dg6whBW+n29YqdDLrHyBO\n8D4PPqXgQwRv3hgUK07wY1Lw9oFrq+BfA/ym9X9rBa8USin+KvJdGDaLJjdNstSD9yn4lEVjE4ux\naAzB26QayqKpXujE4pDPqUKntijx4H1ZNDUUfMrugW4KPlXo9CSNgm+qxQ8B99NPFo1ZL2bruQo+\nx6IJFTrlVLL6KsJHiTERvGvR+E5OiuAPARdb/6cU/FNo9eFT8DlYFw9+n1PWHgtmhTx48xaQUvAn\nGUbBpzz4tmhr0aRIudSiycmi6ZommTNUwQVoq+sp8i2aNh58zKLxPQBNn0MIKfi1mpN1rEHWtgr+\nEHCRRVaxSlbQ5HQO7Ql+aAVfu5LVvOGYjCKDNlk0l6JrBcYUZI158G1hXt+3iCtU90Fb24PPyYOv\nGWTdxm/RmIns3eNd06LJ8eDbWDShIOvajEUzJgVfw6I5iD4pJj3OTNcXgiGEVVDwXQcbCyn4w6TH\nI7f74Q2yogn+dtJpkjU9ePsmdYOsqaEK2mIbLRyORYbcNcc6lEXj60eK4O3/lxlkPQQcVmr37eWZ\nhAm+lkWT48HXDLJOCr4lcsgJuil4mNk0OQoexq/gSwqdSj34J0mPR24QSpM8hLZobicvyNqXgrct\nk74smm30sYrl8Q+RRdPFg88tdPIFWY0oAK3in4eeB2KX4JuxemLHu60Hn6vgkxaQmaHMmbTE58FP\nBF+AlILvatGYfOynN79zgqz271KsgwdvCD5HwfuGKrAtml2Cb26cM1hM1zyJzgipHWR1PfG+gqw7\naOGQS/C5efCPEib4G4APOu0vs9DJvBU/iq4VeZD5N6Y9hAdBM/03bebAWDShfQ158Kl70lXxOZWs\nE8FHUBJkraXg+7RoxurBt1HwNsHvpV2Q9Ws4KXaem7xUvcVQQvA1Pfhcgi/JonkcPQ2eqdjc7atS\n3NxMGm+QG2StXei0l/lsJaPgXYsmZs9AhsL2rN/Gg089QFwf3hzPtcmDH5NFUyvIeoR8Bf8UOte1\nbdn8OnjwcwQvspsh4jtuvv09jA607UfPH2C/3oceEgQ+K4VN8O7wB3168G0smqiCbyqrn0AHLlN9\n7WLRlOTBuwR/NlqZm749iseiIZ5BA+08+DaFTqUKPlnJaippHWtntBiTgq8VZL0deHozOFGOgj8c\neZVMYYwefEklq3ndtge6Oh94OHBMQlk0z0dn0NjqLxaoNfvUFSkF35cHfxbxIXdjWTShBx/MfPjU\n2Ea2VTZkHvy5zL/tPoYWUz4FHyT4hiRVbB0HKQX/Debng859Q/Ap+FQlq/neSqj4MVWy1rJobkdb\nNHsBpVT0VfEI7e0ZWI4HnxPH6OLBX0i4hD9k0VwB/CXhKki3DdOfrrCvmTF68KEsmhjBn0uZgq+d\nB7+DntRkCx0rMULhBPrhY98vZmaoUovGbKeKRaMUP+xpG9IPkBwPPkbwuQ+opWFsCr6GRXM7WlWk\n7BnoTvBDe/A5laxdPfgLmFdDNkIKfpOZgrfVXyhQS+CzUsQUvDsvaW0FXzuLBmYKPtXXnIdFKwXf\nvLkdR78Nb1tvcifQb3eugodyiwYWA6OpdUtSa3NFhKvEcypZfd8bLcbmwdeyaC4mbc/Aain40sHG\nogq+8RBNwMwl+JCCtwts7Cwa0INNLUPBewm+ISbbMlpGkLUkiwbyCb7PQifzXXdSlu2mb/Y9FVPw\nOQHOkrFoSuYQ6BRktaZ93MuKWzRjUvA1LZp1U/C2B59zDHMqWQ8CR5uLOZfgfSRljt89jIjgG9gk\nV0vBt7Voair4PrNoQJ/HM51++iyax5p1zQxPS7FoAuvbv0MIBVlB9z9UXDURfAC5Fk2oGGMb2NME\nUH04hJ4cfAtN8ikFf3+zflsM7cHnWDS5Hrxd5ZvrwYcsGvAr+CGzaEIEb2f11BpsrI1Fk6vgL8D/\ngLaR87BYIHgRNgGxsmBCOM6igg958N+ybB1zb+ZYNH0SfIlF4wuygu7/AfznwRfPGiXGZNHYT1Pv\nNHpN9D329DyIJq370elbUQWvFH/hCdCUYGgPvotF4yr4EMHnWDQ+gnc9+FixFNQ5XvYN6iN4O9C4\nLA++VMFfiL9+wEaOReNT8DnqHWYEbx8vE3h0Cf5B2LXEzDq5Fk3fHnx2kLV5MNnnxij4yaIpQK6C\nP0jYOonZNCYP/j40wacUfFesrAdPnOBDQVafCjXpgnczy8CIjbmy4/zughIFX9ODz82DL82ieRRd\nU5Dqp91WiUWTyoE3OEYTZLWW2ZOsG3wKeIvzvX3kWTQ/hZ5zIQdFHryVhlmi4DeAU9aMUeZhNVk0\nBcgNshqi9sFL8M0T2IwomKXgK2CsHnwbBW/GosmxaHYVWnND/CCz3Hlj00we/KJFY66VUD8eIY/g\nh1DwPg8eLNGkFMeV4rPWOobgkxaNUnw8MP2eD6UWDehrOPWQsV0D92F53FrHhS8jbZQYk4JPWjQN\nQgp+P3C8CRoaBd83wY/Rg98C79yVroK3xxTpEmRFKT5kWQrmJh8Lwfdh0Rz0bMtGyKLJ8eBLCL40\nD77UokkpeBe2gq+ZI96G4J+TqIGBeQXvPixPWOv4vjcpeA9KLJoiBc+86r8fPYxp3xbNGD34vSxW\nsceenmkAABUwSURBVJrP+vDgXdgKfpAgqzV+i0sqrgdfK8gK6UpWd2iJnGulhOCLg6wMS/Apci1B\nMcErlZUd5yp4e39TCn4ieA9KLJpSBW/79vejq/DWTcHnVLKGcneTHnxjc6UIPkUsKYumZpDV9Gc/\nOuXTDUw+xWyE0ZoePLQrdMrNg69h0Zh4iH3OuwZZIY/gc7JoSmA8+Nr3mM057nkx/Z8IvgC5Fk2b\nIKv9ULiv+d2rgrdskNiNVgM+RRhab09gHZ+CN8fLjEVzEB1oik0mnSIpU1yUsmhqBllD0+fZbyY1\nPXgC27PX8RU6pR6Oj1rrpvoQtWiah52r4nMJPlToBKtj0eTAtvhCCn6yaAqQzOFuVGRxkJVFiwb6\nV/Cg96kPdWEjd7Cxk3RQ8MTVu2k/x6LZRzqLpqYHHyL4J5kFj2t68AS2ZxAqdIoeO6U4gT4XJR58\n7Dj6CD7HOll5iyYTroK3H0qTgm+BHAW/Bz1IWEgB5Fg0RsEPQfA71JuhKLaNXA++RMEbgjdzsl5E\nmuDnsmg8WEYWTUzB2wRf04Nvm0UTik0YPEI+wafeHNsq+BjBx96K+7Jo+iT4UJB1UvAtkBNkjdkz\nkKfgH2x+9x1kBX2zCSvswTeZR8fQk3bECD7HokkFWWt78CkFPxaLJld15xK8sXtiROoSfG4e/Niy\naPry4GNB1knBt0BOkDVmz0CGB68U22iiGkrBw3g8+NgASSEFD/rYPZtwkRPkBVmXkSaZY9EsI8jq\nZtHsgd0HagglCj7HorFTJUs9+LZB1lWyaGIevApUFE8EH0CORdNWwbvf+2X0FHJ94yRwssOkITko\n8eBDFk3Mgwd97C6njgc/VJDV3KBDBlm7ZNHkqNBHSffT7PcyLJplZNFsU28eXxspBR/a3kTwAeQM\nlNVFwe9+Tyl+N5INUhM71L/wfNvoatG4Ct4udII8gi+xaE7nIKvvgZwbqylV8CUWzSoXOkH/Ct6t\nZA3x1UTwAaTIyVg0NRT8UDhJv/YM+F/5Q+u1yaKBmUWTE2StkSa5DIKvEWQt8eDdLJocBV/TonHH\nhF/VQqeab302bAXvq2SdFHwh+rRoUg+GvrDDMASfO9hYFw/+cvIUfCqLJubBDxlktS2a2h58TiVr\nnwreZDMNZdEcB34+MdRwnxaN/bsWYoVOk4JvgcEsmgExhIIvGWxsD/6hCnwK3n4gHkanSqaCrKMb\nqoDxWTQmoKqsYri+FHwfFs0xnMHGlEIpxW9lfG+VLJpYodMJJoIvxpBB1qEwlILvatHkKHgYzqKp\ncbOa/uwjLw++JsGnJq52z4NR8Kk+5BB8TiwEuhU6tcla6TOLhhb9SSGl4EPbc8XSaJFF8CJyjYjc\nKiK3ichbPZ//qIjcJCJfFJFPiciLA031reDX3YPvYtHsXpTN4Fz7mT/OOQSfG2QdUyWrnUVTy4M/\nlsiaMufB3v9cBf+XwL9OrGMXOvWVBw/l56jPsWjs3zXbPb0VvIhsAO8GrgGuAq4VkRc4q90BfKdS\n6sXArwD/JtBcn0HWZVk0vSt46zV/izqVrIeAI86QwkbNPxJpv0aa5NCFTn3kwcfsGZipdZ+Cj+63\nUjyoFB9OtN93HnxXgl8li8YOsrpZNLEg69qMB/8q4Hal1F1KqW3gBuCN9gpKqf+slHq8+ffTwKWB\nttbRohlCwdNsI/WKHyN4+7XStWdAH7vHmiKxEGoOVVBDTacI/ghwQIQzIv0pRS7Bu29SNccs6jvI\natbpQvB9WDR9BFlPbwUPXIKejs3gnmZZCP898NHAZ+sYZB3CgzfbcVWhi9hgYzvAljUk8MPO54eJ\nB1hNGyWjSfrWOQHcW6kwLErw1hAMB6g7VEEuwe84y2qNWTREHjyMx6IZQsGvZRZNTiezb0QR+a/R\ncy3+Xf8aZ/+8yBPm4rlRKXWj9aE5aPtYPQWfO/VYF8T89eQ6SnFKhFPoh7pv3tXDxP13KBtN0kuo\nSrEjwrMS28mFTfAh4jI2TS2CP0E7i6a2gm8bZC0h+C5B1nXw4JeSBy8iVwNX12grp5PfRA9CZXAZ\nWsW7nXox8HvANUqpR93PNR7/1chMK7ZFk1LwhzzLl5kHP9R2QpMAu+vElMcWet5Vl+AfZzZIWwg5\nWTR2Jav3NT2RS10Cc4OGLBqY5cLXCrJ+EfjpjH6FsmhqELxdj9BXoROJtmPbW5UsmlEq+Eb43mj+\nF5F3tG0rp5OfBa4UkcuBe4E3AdfaK4jIM4EPAT+mlLo90laKnIxFs0pB1iEVfMqiiXnwMPPhfQT/\nEeBTGX0osWj6Ph8pDx5mCr5KkLWJUfx1YrVQFs2qWDRdPfhVKnSyhwt2x4Nf+UrWZCeVUjsich3w\ncfTBeJ9S6hYReUvz+fXAPwfOBd4rIgDbSqlXeZqrEWQ9ApxjL2h85QMsz4OvoQxTMEHWtoONQUTB\nK8Ux9AM8hlwFH6tkrQmb6GIKvqZFk4NQFg3UDbL2bdGcTlk0o1HwNZHVSaXUx4CPOcuut/7+R8A/\nymiqRpD1JuB/dJbtB44nhmHtC0Nl0eR68BB+o7AV/Bdb9CEn/zpVyVoTpj+hQieY5cIPTfB7mc9U\nqp0eugVI4pr35cHnFjrBeLJo+vTgY6NJxgh+X+CzUWHQStaM4pCcPPibgOeJcMBatix7BobPoknZ\nXJBW8Kmp+WLtd52TtSaMAsuxaGp58DnwnavaCn4faZXcNQ++bZB1VbJoYkHWVB78Sij4oYcqiCEr\nyNpYCTcDL7UWLyuDBsap4Nt48DkYq0WTE2StVeiUg1AWDdQLsuZk5EwWTRwxi+ZW4IOB700E3wK5\nQVaAzwCvtP5fVgYNDKfgczz4XAXfluBNEPeUUwVrIzUefE2UBFmHtmjcquPaCn4/eQp+KnQKIxhk\nVYr7leJ3It+bCL4Q5qDlqPHPoCtsDZZp0Qyt4FOBavu3ixoKPqUcU5WsNTFmgrd/Qz8efKotM5m6\nwaoWOvXlwccUfKo/E8EX4iT6YhSlkheHq+CXadEM6cFDdwW/F53x5Fay5iCH4If24IfOg8+B7zzU\nJKnch8XD6Ie5QS7Bm/uvSx78Klg0MQ8+9b2J4AuxA5xNHlHfDFwsspsuebooeLO9tutsAxcBT7Qs\nNjLecuzmtT34obJochT8GSyX4GsreEiT6KPAQRH2NqnEWdZJY79tU06ox2msuYiF1wbL8OBjmAi+\nBU6iCT5J1E1q2OeBVzSLTgcFn3OR5xD8xbSzZ0y7Y7JocitZz4XeJ0Z3+2X/tv+uFWRNttWQ7LfQ\nD/U9wImCY3As1b5newp9/muqd+jPgz+BvlZhIvjeUaLgYd6HX2aQdUwKPuXB7wDPoBvBp6oxjUUz\nVJB1P1oxhvb5SXRh3FD+Owyn4HPaegB4Gvn2jMHxzPZdHKM+wfflwX+T2ci3JbbSRPAt0IbgjQ9/\nuuTBQ3eLpouCz0nPGzpN8hDxwb+eRCv4IQneHJ8+s2ggj5Bsgi/JbOlC8DUzaKA/i+YO4DnN3yUK\nfps1Gg9+KJgy+1yi/hvg1SJscfrkwZvtpdYJ+Z87dLdoUgp+6CyaFMEfRiv4Iauch8iiyW1raAV/\nlNVR8HcBz2rmC5gsmp5hTl4uUd8JfA64nsUJpIfE0Aq+hgffporVbjd2A2+TN9JhDZxEn/uUgh+D\nRVNTwZsHeE5b99Oe4Nscs+oWTePt77TsT6zdo+hMo2cwEXzvMCcvS8E3J/1a4MXAm3O/1wOGUvC+\n135fX2LrdPXgkyRlBdoOMoyC32R8Fk2vHnxzjE9SbtGUEPwTtBNNfVg00J+QMjbNRPA9w9wA2RdV\nM7b89zffaZPXXQOnkwefS1LH0dbJEAQPaYtmiICvjb6zaCBfWLQl+NcDX2rRrz6CrNAubTMHd6IJ\nfi2DrGPqZKlFA+iSYhFeSD+qIQfvR1cM9o0aFs0OupisNwXfYGwEb687BHxvUjU9eNNeLsE/nUKC\nVyo6+XoMx+hHOP4x+q2iNtZawY+pk+YGKLZalFqaPYNSfHmgTdVS8NC/gj+G9saXTvBKcUIkOnlD\ndVjTI/blwUO5RbOXMgXfFseYVYdWg1L8eO02G9wBvI41JfgxWTStFPxphKQH3xS2qMg65hgPZdEM\nEWSF9BypTzKsRQOLQcFlKvg2Fk1b9GXR9IW1VvBjJPilqfGRI0fBm89TCr5tFo3pQ+oG3i1Zb7md\nXIyd4Pu0aHbII9KHgbPQb1QTwS/CEHxJ1tfKEPyYOlkcZD3NkJsL7BKL+9mRJj2sDUosGrO9PmHa\nT+3PYRhsmAKDOQVv2Ta1jkmWgm+2+xDwTIaJU5kRJVcF96MLLM9gDYOsY1TwE8H7kavgYwS/TXt7\nxt52jkVj+tInShT8kEFW8J+Hmim1JW09ADyLScEvoLE170SPurl2Cn6MBD9ZNH5sAypjsKgd4pWs\nXQi+JIvGXr8vrJJFY5YNHWSFieBTuLP5PRF8j5gsmjhyK/lSHvwQCn4oiyaX4A8P0BcXvvN1uij4\nZaUst8Udze+J4HvEpODjiFkvuevt0D7ACuUWzemeRdOngi9pa1LwcUwEPwAmBR9HDYLvpOAbe+gU\neVk0pi99okTBr6MHX2LRHGAi+BAMwa9dkHVMnZyCrHHklmrHCP7DFfqRQ1JDEbyJNYxVwbvbrO3B\nlyh4GIbgb2B+ou9VQBsFvxLDBY+J4FtXsp4myFXwQQ9eKT5TqR+j8OCVQjWph2Ml+DFl0cAABK8U\nX+97Gz3gTuBwZNIYFyuj4Edj0TTpSseYFHwINSyaGhiTggfdn7EGWceURQPDKPiVQzNo4eUFX9lm\nIvhWuEqplYvAD4VVJPghfO8cgh+LRVNTwZcGWWH1slsGg1JFo9EONYJsZ4zqKaTUbj7qhEXkpkn2\nTfA5JfLHgJ2BJrnOIfi70RWLQ2IIBZ/b1rdg9w15QkcoxRPo8X1Gj1ER/IQotlktBT+UYt4hQfBK\n8WfAnw3TnV34zsM/Br5aqf1si0YpTjbDFUwEf5phIvjVQUmQNVTJWgNjI/gcBb8MLLxxKcUnKrZf\navc8wETwpx3G5sFPCGNMFk1OFs3pTvC5b1xtURJkBXgPcHNPfZkwUkwKfnWwakHWoYJQYyX4MTxo\nd6EUv9tjXyaMFJOCXx1MHrwf1wP3DbStEuS+cbXFUJO9T1hhTAp+dVBjsLFa/cgZqmAQgleKdw6x\nnRbo+0H7x0yWy4QEJoJfHaySRTOkBz9W9HoelOI9fbU9YX2QtGhE5BoRuVVEbhORtwbW+Z3m85tE\n5GX1uzmB1SL4IS2asaJvi2bChCSiBC8iG8C7gWuAq4BrReQFzjqvB56rlLoS+BngvT31dakQkauX\n3IVOHnzF/ucE96oS/AiOfRvsnocV7f8upv6vLlIK/lXA7Uqpu5RS2+iR4t7orPMG4N8DKKU+DZwj\nIitR5VWIq5e8/SebnxT+V+D/9Sy/ulI/ci2amgHAqyu2NRQ+BPxN8/fVS+xHDVy97A50xNXL7sCy\nkPLgL0GXeRvcA7w6Y51LmY1/MaEOPgP8QGolpfh8z/3IUfD3MCO30xJK8aFl92HChBTB544lIi2/\nNyETzbguY8j3fgx4JLaCUtwN/PQw3ZkwYUIIolSYi0XkNcA7lVLXNP+/DTillPoNa53fBW5USt3Q\n/H8r8F1KqQectibSnzBhwoQWUEq5IjoLKQX/WeBKEbkcuBd4E3Cts86HgeuAG5oHwmMuuXfp4IQJ\nEyZMaIcowSuldkTkOuDjwAbwPqXULSLylubz65VSHxWR14vI7ejZmN7ce68nTJgwYUISUYtmwoQJ\nEyasLnofiyanUGpMEJHLROSTIvIVEfmyiPyTZvl5IvIJEfmqiPypiJyz7L7GICIbIvJ5EflI8//K\n9F9EzhGRPxSRW0TkZhF59Yr1/23N9fMlEfkDEdk71v6LyPtF5AER+ZK1LNjXZt9ua+7p1y2n1zME\n+v9/NNfOTSLyIRE52/ps9P23PvunInJKRM6zlhX1v1eCzymUGiG2gf9ZKfVC4DXAP276/IvAJ5RS\nz0Pnmf/iEvuYg59Dj1ViXtFWqf+/DXxUKfUC4MXAraxI/5t41U8DL1dKvQhtbf4w4+3/B9D3pw1v\nX0XkKnQc7qrmO+8RkWUPWOjr/58CL1RKvQQ9wcrbYKX6j4hcBvw3MJvEvE3/+965nEKpUUEpdb9S\n6gvN34eBW9C5/rsFXc3vZE76siAilwKvB/4tsxTWleh/o7a+Qyn1ftBxIKXU46xI/4En0CLhgIhs\nAgfQCQqj7L9S6i+AR53Fob6+EfigUmpbKXUXcDv6Hl8afP1XSn1CKWUmvfk0ui4HVqT/Df4F8AvO\nsuL+903wviKoS3reZjU0auxl6IvkaVZ20AOMe07Gfwn8M+ZndlqV/j8b+JaIfEBE/lZEfk9EDrIi\n/VdKPQL8FvANNLE/ppT6BCvS/wahvj4DfQ8brML9/FPAR5u/V6L/IvJG4B6l1Bedj4r73zfBr2wE\nV0QOAf8R+Dml1NwQAUpHpke5byLy/cCDSqnPs1iABoy7/+jMrpcD71FKvRydmTVnZ4y5/yJyBfA/\nAZejb8hDIvJj9jpj7r+LjL6Odj9E5JeAE0qpP4isNqr+i8gB4O3AO+zFka9E+983wX8TuMz6/zLm\nn0CjhIhsocn995VSf9QsfkBEnt58fjHw4LL6l8BrgTeIyJ3AB4HvFpHfZ3X6fw9avXym+f8P0YR/\n/4r0/xXAXymlHlZK7aDHpPk7rE7/IXytuPfzpc2y0UFEfhJtU/6otXgV+n8FWhzc1NzDlwKfEz2+\nV3H/+yb43UIpEdmDDhB8uOdtdoKICPA+4Gal1L+yPvow8BPN3z8B/JH73TFAKfV2pdRlSqlno4N7\n/59S6sdZnf7fD9wtIs9rFn0P8BXgI6xA/9EB4deIyP7mWvoedLB7VfoP4Wvlw8APi8geEXk2cCUj\nHHNIRK5BW5RvVErZE42Pvv9KqS8ppZ6mlHp2cw/fgw7YP0Cb/iulev0Bvg/4L+iAwNv63l6F/v49\ntHf9BeDzzc81wHnAn6Gj8n8KnLPsvmbsy3cBH27+Xpn+Ay9BD652E1oBn71i/f8F9EPpS+gg5dZY\n+49+y7sXPUvX3ehCxWBf0fbB7egH2feOsP8/BdyGzj4x9+97VqD/x83xdz6/Azivbf+nQqcJEyZM\nWFMsOwd0woQJEyb0hIngJ0yYMGFNMRH8hAkTJqwpJoKfMGHChDXFRPATJkyYsKaYCH7ChAkT1hQT\nwU+YMGHCmmIi+AkTJkxYU/z/F9GIVkYSWSEAAAAASUVORK5CYII=\n",
186 |       "text/plain": [
187 |        ""
188 |       ]
189 |      },
190 |      "metadata": {},
191 |      "output_type": "display_data"
192 |     }
193 |    ],
194 |    "source": [
195 |     "num_points = 130\n",
196 |     "y = np.random.random(num_points)\n",
197 |     "plt.plot(y)"
198 |    ]
199 |   },
200 |   {
201 |    "cell_type": "markdown",
202 |    "metadata": {},
203 |    "source": [
204 |     "This is some text, here comes some latex"
205 |    ]
206 |   },
207 |   {
208 |    "cell_type": "code",
209 |    "execution_count": 12,
210 |    "metadata": {
211 |     "collapsed": false
212 |    },
213 |    "outputs": [
214 |     {
215 |      "data": {
216 |       "text/latex": [
217 |        "\\begin{align}\n",
218 |        "\\nabla \\times \\vec{\\mathbf{B}} -\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{E}}}{\\partial t} & = \\frac{4\\pi}{c}\\vec{\\mathbf{j}} \\\\\n",
219 |        "\\nabla \\cdot \\vec{\\mathbf{E}} & = 4 \\pi \\rho \\\\\n",
220 |        "\\nabla \\times \\vec{\\mathbf{E}}\\, +\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{B}}}{\\partial t} & = \\vec{\\mathbf{0}} \\\\\n",
221 |        "\\nabla \\cdot \\vec{\\mathbf{B}} & = 0\n",
222 |        "\\end{align}"
223 |       ],
224 |       "text/plain": [
225 |        ""
226 |       ]
227 |      },
228 |      "metadata": {},
229 |      "output_type": "display_data"
230 |     }
231 |    ],
232 |    "source": [
233 |     "%%latex\n",
234 |     "\\begin{align}\n",
235 |     "\\nabla \\times \\vec{\\mathbf{B}} -\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{E}}}{\\partial t} & = \\frac{4\\pi}{c}\\vec{\\mathbf{j}} \\\\\n",
236 |     "\\nabla \\cdot \\vec{\\mathbf{E}} & = 4 \\pi \\rho \\\\\n",
237 |     "\\nabla \\times \\vec{\\mathbf{E}}\\, +\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{B}}}{\\partial t} & = \\vec{\\mathbf{0}} \\\\\n",
238 |     "\\nabla \\cdot \\vec{\\mathbf{B}} & = 0\n",
239 |     "\\end{align}"
240 |    ]
241 |   },
242 |   {
243 |    "cell_type": "markdown",
244 |    "metadata": {
245 |     "collapsed": true
246 |    },
247 |    "source": [
248 |     "Apos?"
249 |    ]
250 |   },
251 |   {
252 |    "cell_type": "code",
253 |    "execution_count": 1,
254 |    "metadata": {
255 |     "collapsed": true
256 |    },
257 |    "outputs": [],
258 |    "source": [
259 |     "import re"
260 |    ]
261 |   },
262 |   {
263 |    "cell_type": "code",
264 |    "execution_count": 2,
265 |    "metadata": {
266 |     "collapsed": true
267 |    },
268 |    "outputs": [],
269 |    "source": [
270 |     "text = 'foo bar\\t baz \\tqux'"
271 |    ]
272 |   },
273 |   {
274 |    "cell_type": "code",
275 |    "execution_count": 3,
276 |    "metadata": {
277 |     "collapsed": false
278 |    },
279 |    "outputs": [
280 |     {
281 |      "data": {
282 |       "text/plain": [
283 |        "['foo', 'bar', 'baz', 'qux']"
284 |       ]
285 |      },
286 |      "execution_count": 3,
287 |      "metadata": {},
288 |      "output_type": "execute_result"
289 |     }
290 |    ],
291 |    "source": [
292 |     "re.split('\\s+', text)"
293 |    ]
294 |   },
295 |   {
296 |    "cell_type": "code",
297 |    "execution_count": null,
298 |    "metadata": {
299 |     "collapsed": true
300 |    },
301 |    "outputs": [],
302 |    "source": []
303 |   }
304 |  ],
305 |  "metadata": {
306 |   "kernelspec": {
307 |    "display_name": "Python 3",
308 |    "language": "python",
309 |    "name": "python3"
310 |   },
311 |   "language_info": {
312 |    "codemirror_mode": {
313 |     "name": "ipython",
314 |     "version": 3
315 |    },
316 |    "file_extension": ".py",
317 |    "mimetype": "text/x-python",
318 |    "name": "python",
319 |    "nbconvert_exporter": "python",
320 |    "pygments_lexer": "ipython3",
321 |    "version": "3.4.3"
322 |   }
323 |  },
324 |  "nbformat": 4,
325 |  "nbformat_minor": 0
326 | }
327 | 


--------------------------------------------------------------------------------
/plugins/ipynb/tests/pelican/content/with-meta-file.ipynb-meta:
--------------------------------------------------------------------------------
1 | Title: With .meta File
2 | Slug: with-meta-file
3 | Date: 2100-12-31
4 | Tags: Test
5 | Author: Daniel Rodriguez
6 | 


--------------------------------------------------------------------------------
/plugins/ipynb/tests/pelican/content/with-metadata.ipynb:
--------------------------------------------------------------------------------
  1 | {
  2 |  "cells": [
  3 |   {
  4 |    "cell_type": "markdown",
  5 |    "metadata": {},
  6 |    "source": [
  7 |     "Lorem ipsum dolor sit amet, consectetur adipiscing elit. Curabitur purus mi, sollicitudin ac justo a, dapibus ultrices dolor. Curabitur id eros mattis, tincidunt ligula at, condimentum urna. Morbi accumsan, risus eget porta consequat, tortor nibh blandit dui, in sodales quam elit non erat. Aenean lorem dui, lacinia a metus eu, accumsan dictum urna. Sed a egestas mauris, non porta nisi. Suspendisse eu lacinia neque. Morbi gravida eros non augue pharetra, condimentum auctor purus porttitor."
  8 |    ]
  9 |   },
 10 |   {
 11 |    "cell_type": "markdown",
 12 |    "metadata": {},
 13 |    "source": [
 14 |     "## Header 2"
 15 |    ]
 16 |   },
 17 |   {
 18 |    "cell_type": "code",
 19 |    "execution_count": 1,
 20 |    "metadata": {
 21 |     "collapsed": true
 22 |    },
 23 |    "outputs": [],
 24 |    "source": [
 25 |     "a = 1"
 26 |    ]
 27 |   },
 28 |   {
 29 |    "cell_type": "code",
 30 |    "execution_count": 2,
 31 |    "metadata": {
 32 |     "collapsed": false
 33 |    },
 34 |    "outputs": [
 35 |     {
 36 |      "data": {
 37 |       "text/plain": [
 38 |        "1"
 39 |       ]
 40 |      },
 41 |      "execution_count": 2,
 42 |      "metadata": {},
 43 |      "output_type": "execute_result"
 44 |     }
 45 |    ],
 46 |    "source": [
 47 |     "a"
 48 |    ]
 49 |   },
 50 |   {
 51 |    "cell_type": "code",
 52 |    "execution_count": 3,
 53 |    "metadata": {
 54 |     "collapsed": true
 55 |    },
 56 |    "outputs": [],
 57 |    "source": [
 58 |     "b = 'pew'"
 59 |    ]
 60 |   },
 61 |   {
 62 |    "cell_type": "code",
 63 |    "execution_count": 4,
 64 |    "metadata": {
 65 |     "collapsed": false
 66 |    },
 67 |    "outputs": [
 68 |     {
 69 |      "data": {
 70 |       "text/plain": [
 71 |        "'pew'"
 72 |       ]
 73 |      },
 74 |      "execution_count": 4,
 75 |      "metadata": {},
 76 |      "output_type": "execute_result"
 77 |     }
 78 |    ],
 79 |    "source": [
 80 |     "b"
 81 |    ]
 82 |   },
 83 |   {
 84 |    "cell_type": "code",
 85 |    "execution_count": 5,
 86 |    "metadata": {
 87 |     "collapsed": false
 88 |    },
 89 |    "outputs": [],
 90 |    "source": [
 91 |     "%matplotlib inline"
 92 |    ]
 93 |   },
 94 |   {
 95 |    "cell_type": "code",
 96 |    "execution_count": 6,
 97 |    "metadata": {
 98 |     "collapsed": false
 99 |    },
100 |    "outputs": [],
101 |    "source": [
102 |     "import matplotlib.pyplot as plt"
103 |    ]
104 |   },
105 |   {
106 |    "cell_type": "code",
107 |    "execution_count": 7,
108 |    "metadata": {
109 |     "collapsed": true
110 |    },
111 |    "outputs": [],
112 |    "source": [
113 |     "from pylab import *"
114 |    ]
115 |   },
116 |   {
117 |    "cell_type": "code",
118 |    "execution_count": 8,
119 |    "metadata": {
120 |     "collapsed": false
121 |    },
122 |    "outputs": [],
123 |    "source": [
124 |     "x = linspace(0, 5, 10)\n",
125 |     "y = x ** 2"
126 |    ]
127 |   },
128 |   {
129 |    "cell_type": "code",
130 |    "execution_count": 9,
131 |    "metadata": {
132 |     "collapsed": false
133 |    },
134 |    "outputs": [
135 |     {
136 |      "data": {
137 |       "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEZCAYAAAB7HPUdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGABJREFUeJzt3Xu4ZGV5pvH7ATkIoogiEOQUhTFxUIhiQBQ6jiAOqBij\noBGICYrGA/E0ghjtieMlakzQOOMQQAU0ENSgoqOCh1YUBWVAUDDojApRaFSUiGfgnT9W9fRms7u7\ndveu+lZV3b/r2ldX1a7a9VJ0P/32t9b7rVQVkqTZsFHrAiRJ42PoS9IMMfQlaYYY+pI0Qwx9SZoh\nhr4kzRBDX1pAkp2T/CxJ1vKcO5P87jjrkjaUoS8NJPlukscBVNX1VbVVDQZZkqxI8hdtK5Q2nKEv\nrVbAmjp7pxg1FQx9CUhyNrAzcMFgWeeVg+WbjZO8AXgs8I7B996+wOs3S/K3Sb6X5KYk70yy+bj/\nO6R1MfQloKqOAq4HDquqrYD3r/5WnQRcDLxwsOTzkgV+xMnAg4GHD37dEXjt6CuXFsfQl4a34NLP\n4GDvc4GXVdVPq+o24I3AkeMsThrGPVoXIE2QNa3rbwtsAVw+52SfYFOlHjL0pdXWdrB2bd/7EfBL\n4Per6salLUlaWnYi0morgQct9ntVdSdwGnBKkm0BkuyY5OCRVCltAENfWu2NwGuS3AI8jbt2928D\n/iTJLUlOWeC1rwK+DXw5ya3ARcAeoy5YWqyM6iIqSXYCzgIeQPeH5x+r6u1JlgPHAj8cPPXEqvrE\nSIqQJN3FKEN/e2D7qroyyb2Ay4HDgWcAP6uqvxvJG0uS1mhkB3Kr6ibgpsHt25JcS3fuMqx56lGS\nNEJjWdNPsiuwN/DlwUMvTvK1JGck2XocNUiSxhD6g6WdDwDHD4ZW3gnsBuwF3Ai8ddQ1SJI6I1vT\nB0iyCfBR4ONVdbczHgb/Arigqvac97ibW0nSeqiqtS6fj2xNfzCafgZwzdzAT7LDnAGWpwJXL/T6\ndRU+K5Isr6rlrevoAz+L1fwsVpv5zyK5D3AZcHLgXet6+igncvcHng1cleSKwWOvBp6ZZC+60zi/\nAxw3whokaXolG9GdGv9pqt5N0i70q+oLLHzM4OOjek9JmjEnAfcHnj7sC9x7p/9WtC6gR1a0LqBH\nVrQuoEdWtC6gieRQupWSfaj6zdAvG+WB3PWVpFzTl6Q1SHYHvggcTtUlqx9ed3a6944kTZLuNPjz\ngdfNDfyhX26nL0kTojsr8jzg34FjmRfgw2Sna/qSNDleCewCHDA/8Idl6EvSJEgOAl4KPIqqX63v\njzH0Janvkt2As4EjqbphQ36UB3Ilqc+SLYB/AU6masUG/zgP5EpST3UHbs+ia9Cfva51fA/kStJk\nezGwJ/Do9T1wO5+hL0l9lBxIt83CvlT9Yql+rGv6ktQ3yQOBc4CjqPrOUv5oQ1+S+iTZDPgg8Haq\nLlzyH++BXEnqie7A7WnAfYBnLHYd3wO5kjRZngfsR7eOP5KO3E5fkvog2Q/4MPAYqq5bvx/hLpuS\n1H/JDsD7gT9f38AflqEvSS0lm9IF/mlUfXTkb+fyjiQ1lLwD2Jnugih3btiP8kCuJPVXcgxwMN0l\nDzco8Idl6EtSC8kjgL8FDqTq1nG9rWv6kjRuybZ0O2c+n6prxvnWhr4kjVNyD+Bc4J+o+uC4397Q\nl6TxOhm4HXhNizd3TV+SxiV5JvDHwCOpuqNFCYa+JI1D8jDg7cDjqbqlVRku70jSqCXbAOcDx1P1\ntaalOJwlSSOUbAx8DLiGqpeN9q3ce0eSWvsbYDPgv7QuBFzTl6TRSZ4KPJtu4vb21uWAoS9Jo5H8\nHnAqcChVN7cuZxWXdyRpqSX3AT4EvIqqr7QuZy4P5ErSUko2ojtT5/tU/eV439pdNiVp3E4C7g88\nvXUhCzH0JWmpJIcCx9EduP1N63IWYuhL0lJIdgfeTXcxlBtbl7MmIzuQm2SnJJ9N8o0kX0/yksHj\n2yS5KMl1SS5MsvWoapCksUjuRbeO/zqqLmldztqM7EBuku2B7avqynQfyOXA4cBzgB9V1ZuTvAq4\nb1WdMO+1HsiVNBmSAP8M/Aw4loZnxzSdyK2qm6rqysHt24BrgR2BJwNnDp52Jt1fBJI0qV4J7Aq8\nsGXgD2ssa/pJdgX2Bi4FtquqlYNvrQS2G0cNkrTkkoOAlwKPoupXrcsZxshDf7C080Hg+Kr6Wfcv\noU5VVZIF/2ZMsnzO3RVVtWKUdUrSoiS7AWcDR1J1Q5sSsgxYtqjXjPJfI0k2AT4KfLyqThk89k1g\nWVXdlGQH4LNV9ZB5r3NNX1J/JVsAXwTOZJBtfdB0TT9dS38GcE3d9UP5CHDM4PYxdKPKkjQZuq2S\nzwS+AbytcTWLNsqzdx4DfB64Clj1JicClwHnATsD3wWeUVU/nfdaO31J/dM1s/8APBR4Yt/W8YfJ\nTvfekaRhJa8GjgAOoOrW1uXM5947krRUkucAzwX272PgD8vQl6R1SQ4D3ggcSNUPWpezIQx9SVqb\nZF+6PXUOo+pfW5ezobyIiiStSfIQujMM/4yqS1uXsxQMfUlaSPI7wMeBE6j6WOtyloqhL0nzdbv/\nfgL4R6re07iaJeUpm5I0V7I5XeBfBRw/CZuoreJ5+pK0GN207bl0A6XPpOqOxhUtiufpS9Kwumnb\nt9Fd3/aJkxb4wzL0JalzIvBYumnbXm2vsJQMfUmakmnbYRj6kmZbcihTMm07DENf0uzqpm3fw5RM\n2w7D8/QlzaYpnLYdhqEvafZM6bTtMAx9SbNliqdth+FwlqTZMcHTtsNwIleSVpnwadthOJErSTAz\n07bDMPQlzYKZmLYdhqEvabrN0LTtMAx9SdNrxqZth2HoS5pOMzhtOwzP05c0fWZ02nYYhr6k6TLD\n07bDMPQlTY/kPnSBP5PTtsNwOEvSdJjyadthOJEraTbMwLTtMJzIlTT9nLZdFENf0qQ7Aadth2bo\nS5pc3bTt83DadmiGvqTJ5LTtejH0JU0ep23Xm+fpS5osTttuEENf0uRw2naDjTT0k7wrycokV895\nbHmSf0tyxeDrkFHWIGlKOG27JEbd6b8bmB/qBfxdVe09+PrEiGuQNOm6adsPA58DTm5czUQbaehX\n1cXATxb4ltO2kobTTdueDdwMvHQWt1dYSq3W9F+c5GtJzkiydaMaJPVdshHw3+mmbY922nbDtQj9\ndwK7AXsBNwJvbVCDpL7rOvzTgP8IPMVp26Ux9vP0q+rmVbeTnA5csNDzkiyfc3dFVa0YbWWSeiPZ\nBDgT2A44hKrbGlfUS0mWAcsW9ZpRL48l2RW4oKr2HNzfoapuHNx+KbBPVT1r3mvcZVOaVcmmdDtm\nbg48japfNq5oYjTfZTPJOcCBwP2T3AC8DliWZC+6s3i+Axw3yhokTZDknsAHgF8DT6Xq140rmjru\npy+pH5ItgY8AK4FjqPpt44omzjDZ6USupPaSe9Nd9ep7wFEG/ugY+pLaSrYBPgVcDRzraZmjZehL\naifZFvgMcDHwQqrubFzR1DP0JbWR7EC3rcIFwCuctB0PQ1/S+CU7A58H3kvVXxv44+NFVCSNV/Ig\nujX8t1F1SutyZo2dvqTx6S6AsgI42cBvw05f0ngkewKfBE6k6szW5cwqQ1/S6CWPAD4GvISq81qX\nM8sMfUmjlTya7pq2z6Xqw63LmXWGvqTR6XaBPI9uL3yvktcDHsiVNBrJE+gC/wgDvz8MfUlLL3kK\n3SUOD6fqs63L0WqGvqSllTwDOBV4IlWXtC5Hd2XoS1o6ydHAKcDBVF3euhzdnQdyJS2N5DjgNcDj\nqPpm63K0sHV2+klekuS+4yhG0oRK/go4AVhm4PfbMMs72wFfSXJekkOSeEUrSaslJwIvBA6k6v+0\nLkdrN9TlEpNsBBwM/BnwSLrTsM6oEf0P9nKJ0gToGsC/AZ4GPJ6qHzSuaOYt2eUSq7uwwU101668\nA7gv8IEkb9ngKiVNni7w3wI8iW5Jx8CfEOvs9JMcDxwN/Bg4HTi/qn476P6/VVUPWvKi7PSl/ur+\n7P8DsA9wCFW3NK5IA8Nk5zBn72wD/HFVfW/ug1V1Z5InbUiBkiZMsjFwGrA73ZLOvzeuSIs01Jr+\nuNnpSz2UbAKcSXdyx5Op+nnjijTPUnX6kmZdsilwLrAZcBhVv2xckdaTE7mS1i65J3A+UMBTDfzJ\nZuhLWrNkS+CjwK10u2X+pnFF2kCGvqSFJfemu7zh94CjqLq9cUVaAoa+pLtLtgE+BXwNOJaqOxpX\npCVi6Eu6q2Rb4DPA54EX0Q1nakoY+pJWS3YAPgd8BHglfTynWxvE0JfUSR4KfAE4m6rXGvjTyfP0\nJa26vOHpwMupOqt1ORodQ1+aZd3GaScBzwcOpeqyxhVpxAx9aVZ15+C/G9gZeJQ7Zc4G1/SlWZTs\nAnwR+DlujTxTDH1p1iQHAF8G3gP8OVW/aluQxmmkoZ/kXUlWJrl6zmPbJLkoyXVJLkyy9ShrkDRH\n8gLg/XQTtqd4hs7sGXWn/27gkHmPnQBcVFV7AJ8e3Jc0SsmmJP8TeBGwP1Wfal2S2hhp6FfVxcBP\n5j38ZLo9uRn8evgoa5BmXvIAui0VdgD2o+rbjStSQy3W9LerqpWD2yvpLsggaRSSvYHLgBV02yJ7\npasZ1/SUzaqqJK4pSqOQHAG8A/hLqt7fuhz1Q4vQX5lk+6q6Kd0+Hzcv9KQky+fcXVFVK8ZRnDTx\nuguXvx54FnAQVVc2rkgjkmQZsGxRrxn1wfskuwIXVNWeg/tvBn5cVW9KcgKwdVWdMO81XiNXWh/d\nHvjvA7YCnk7VDxtXpDEaJjtHfcrmOcAlwH9IckOS5wAnAwcluQ543OC+pA2V7E53/v0NdB2+ga+7\nGXmnvz7s9KVFSg4GzgZeS9WprctRG8Nkp3vvSJOs2zDtpcArgD+hO01aWiNDX5pUyebAqcCewL5U\nXd+4Ik0A996RJlGyI93lDDcDHmPga1iGvjRpkn2BS4HzgWdS9YvGFWmCuLwjTZLkGOAtwF9QdUHr\ncjR5DH1pEiT3oAv7Q4EDqbq2cUWaUIa+1HfJNsC5QAF/SNX8TQylobmmL/VZ8lC6DdOuoruGrYGv\nDWKnL/VV8hTgdODlVJ3VuhxNB0Nf6ptu4Ook4Pl03f1ljSvSFDH0pT5JtqS74tzOwKO8YLmWmmv6\nUl8kuwBfBH4BLDPwNQqGvtQHyYF0O2S+B3gOVb9qW5Cmlcs7UmvJC4DlwJ96wXKNmqEvtZJsCrwd\neCywvxcs1zgY+lILyc7Ae4GfAPt5wXKNi2v60jglIXkucDnwCeCpBr7GyU5fGpeuuz8NuB/wR1R9\nvXFFmkF2+tKo3bW7/zzdco6Brybs9KVRsrtXz9jpS6Ngd6+estOXlprdvXrMTl9aKnb3mgB2+tJS\nsLvXhLDTlzaE3b0mjJ2+tL7s7jWB7PSlxbK71wSz05cWw+5eE85OXxqG3b2mhJ2+tC5295oidvrS\nmtjdawrZ6UsLsbvXlLLTl+ayu9eUs9OXVrG71wyw05fs7jVD7PQ12+zuNWOadfpJvpvkqiRXJLms\nVR2aUXb3mlEtO/0CllXVLQ1r0Cyyu9cMa72mn8bvr1lidy817/Q/leQO4NSqOq1hLZp2dvcS0Db0\n96+qG5NsC1yU5JtVdfGqbyZZPue5K6pqxbgL1BRItgReBLwCOAV4M1W/bVuUtDSSLAOWLeo1VTWS\nYhZVRPI64LaqeuvgflWVSz9af8lmwHHAicDFwGup+mbboqTRGiY7m6zpJ9kiyVaD21sCBwNXt6hF\nUybZhORY4DrgIOCJVD3DwJc6rZZ3tgPOT7KqhvdV1YWNatE0SDYGjgSWA9cDR1L1paY1ST3Ui+Wd\n+Vze0dC6zuFw4PXAz4CTqPpM26KkNobJTidyNZm6sH8C8N+AjYFXAf+LPnYxUo8Y+po8yQHAG+hO\nv3wt8C9U3dm2KGkyGPqaHMk+dGH/YLq1+/dRdUfTmqQJ03oiV1q3ZE+SDwHnAx8EHkLVWQa+tHiG\nvvor2YPkHOAi4HPA7lSdStVvGlcmTSxDX/2T7EJyBvBF4OvAg6n6e6p+2bgyaeIZ+uqPZAeSdwD/\nG7gR2IOqN1B1W+PKpKlh6Ku95H4kb6br6n8N/B5Vr6HqJ40rk6aOoa92kvuQ/Fe6LRO2Ah5G1cup\nurlxZdLUMvQ1fsmWJCcA3wJ2Afah6gVUfb9xZdLU8zx9jc/dd748kKpr2xYlzRZDX6OXbAIcA/w1\ncBXdzpdXti1Kmk2GvkbHnS+l3jH0tfTuvvPlce58KfWDoa+lk2wOPIlux0t3vpR6yNDXhum6+n2B\no4GnA1cCJ+POl1IvGfpaP8nOwFF0YQ9wJvAHVF3frihJ62Loa3jJvYCn0QX9w4HzBrcvcwlHmgyG\nvtYu2QhYRnfK5VPozq9/J3ABVb9uWJmk9eA1crWwZA+6oD8K+DHd8s05VK1sWpekNfIauVqc5L7A\nEXRhvxvwPuAwqq5qWpekJWOnP+u6adkn0AX9QcAn6br6C6m6vWVpkhbHTl9rluxFdxD2WcD/pQv6\n57mdsTTdDP1ZkmwH/CldV781cBZwAFXXNa1L0tgY+tNu9ZTsMcD+wIeBvwI+5/CUNHsM/Wm0ekr2\nGLop2Svolm+OoOrnLUuT1JahP02SXVg9JVt0Qb+3U7KSVjH0J93qKdljgIfRTckehVOykhZg6E+a\n7upTe9Mt3zwaOJhuSvZ/4JSspHXwPP2+S3YE9pvz9XC6a8t+afD1SadkJcFw2Wno98ldu/hVIb8F\nqwP+S8BXqLqtWY2SesvQ77t1d/FfAr7t2rykYRj6fWIXL2nEDP2W7OIljZmhPy528ZJ6oLehn+QQ\n4BS6i2efXlVvmvf9foe+XbykHupl6CfZGPhX4PHA94GvAM+sqmvnPKdd6Hf1bQPcb97XA4A/YMxd\nfJJlVbViFD970vhZrOZnsZqfxWp93Vr5UcC3q+q7AEnOpbsM37Vre9GidfvPbMHdw3tdX1sBt9Jd\nLWru14+AjwGvYbxd/DJgxZjeq++W4WexyjL8LFZZhp/F0FqE/o7ADXPu/xvwh2t9Rdd935fFB3hx\n9/Be9XU93UZk8x//KVV3bPB/pST1UIvQH65DTr7M6vC+N3fvvm+Zc/sGFgr2ql8sce2SNNFarOnv\nCyyvqkMG908E7px7MDeJB0AlaT308UDuPegO5P4n4AfAZcw7kCtJGo2xL+9U1e1JXkR3Ae6NgTMM\nfEkaj14OZ0mSRmOj1gXMl+SQJN9M8q0kr2pdTytJ3pVkZZKrW9fSWpKdknw2yTeSfD3JS1rX1EqS\nzZNcmuTKJNckeWPrmlpLsnGSK5Jc0LqWlpJ8N8lVg8/isjU+r0+d/jCDW7MiyWOB24CzqmrP1vW0\nlGR7YPuqujLdlcIuBw6fxd8XAEm2qKpfDI6PfQF4RVV9oXVdrSR5GfAIYKuqenLrelpJ8h3gEVV1\ny9qe17dO//8PblXVb4FVg1szp6ouBn7Suo4+qKqbqurKwe3b6Ab5fqdtVe3U6lORN6U7LrbWP+TT\nLMkDgf8MnA70d+uW8VnnZ9C30F9ocGvHRrWoh5LsSre53aVtK2knyUZJrgRWAp+tqmta19TQ3wOv\nBO5sXUgPFPCpJF9N8tw1Palvod+ftSb1zmBp5wPA8TXDO5ZW1Z1VtRfwQOCAJMsal9REksOAm6vq\nCuzyAfavqr2BJwIvHCwR303fQv/7wE5z7u9E1+1rxiXZBPgg8N6q+lDrevqgqm6l2w/qka1raeTR\nwJMHa9nnAI9LclbjmpqpqhsHv/4QOJ9uufxu+hb6XwV2T7Jrkk2BI4CPNK5JjaXbPO8M4JqqOqV1\nPS0luX+SrQe37wkcRLeH1MypqldX1U5VtRtwJPCZqjq6dV0tJNkiyVaD21sCBwMLnvnXq9CvqtuB\nVYNb1wD/PMNnaJwDXALskeSGJM9pXVND+wPPBv5ocDraFYNrMsyiHYDPDNb0LwUuqKpPN66pL2Z5\neXg74OI5vy8+WlUXLvTEXp2yKUkarV51+pKk0TL0JWmGGPqSNEMMfUmaIYa+JM0QQ1+SZoihL0kz\nxNCXpBli6EtDSLJPkq8l2SzJloOLufx+67qkxXIiVxpSktcDmwP3BG6oqjc1LklaNENfGtJgp8+v\nAr8E9iv/8GgCubwjDe/+wJbAvei6fWni2OlLQ0ryEeCfgN8FdqiqFzcuSVq0e7QuQJoESY4Gfl1V\n5ybZCLgkybKqWtG4NGlR7PQlaYa4pi9JM8TQl6QZYuhL0gwx9CVphhj6kjRDDH1JmiGGviTNEENf\nkmbI/wO++s1oab2u0AAAAABJRU5ErkJggg==\n",
138 |       "text/plain": [
139 |        ""
140 |       ]
141 |      },
142 |      "metadata": {},
143 |      "output_type": "display_data"
144 |     }
145 |    ],
146 |    "source": [
147 |     "figure()\n",
148 |     "plot(x, y, 'r')\n",
149 |     "xlabel('x')\n",
150 |     "ylabel('y')\n",
151 |     "title('title')\n",
152 |     "show()"
153 |    ]
154 |   },
155 |   {
156 |    "cell_type": "code",
157 |    "execution_count": 10,
158 |    "metadata": {
159 |     "collapsed": true
160 |    },
161 |    "outputs": [],
162 |    "source": [
163 |     "import numpy as np"
164 |    ]
165 |   },
166 |   {
167 |    "cell_type": "code",
168 |    "execution_count": 11,
169 |    "metadata": {
170 |     "collapsed": false
171 |    },
172 |    "outputs": [
173 |     {
174 |      "data": {
175 |       "text/plain": [
176 |        "[]"
177 |       ]
178 |      },
179 |      "execution_count": 11,
180 |      "metadata": {},
181 |      "output_type": "execute_result"
182 |     },
183 |     {
184 |      "data": {
185 |       "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEACAYAAAC57G0KAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztvXu0bVdd5/n55Zxz33k/ICSBQAg0QZ7yKqrUtGVjZFjg\naB2F8dGKXcrorlh2j7JEsC0YLWrbrVWlRYMpC6gajpZUD4tWqAEidpOhYomAEB5JioQkkJAXeefe\n3Mc5987+Y6559txzz+dac6299r7rO8YZ55y1155rrtd3fdf39/vNKUopJkyYMGHC+uGMZXdgwoQJ\nEyb0g4ngJ0yYMGFNMRH8hAkTJqwpJoKfMGHChDXFRPATJkyYsKaYCH7ChAkT1hRJgheR94vIAyLy\npcg6vyMit4nITSLysrpdnDBhwoQJbZCj4D8AXBP6UEReDzxXKXUl8DPAeyv1bcKECRMmdECS4JVS\nfwE8GlnlDcC/b9b9NHCOiDytTvcmTJgwYUJb1PDgLwHutv6/B7i0QrsTJkyYMKEDagVZxfl/Gv9g\nwoQJE5aMzQptfBO4zPr/0mbZHERkIv0JEyZMaAGllCuis1CD4D8MXAfcICKvAR5TSj3gW7FtJ8cA\nEXmnUuqdy+5HW7Tpvwj/G/AtpfitfnqV24/T79iPCVP/l4su4jhJ8CLyQeC7gAtE5G7gHcAWgFLq\neqXUR0Xk9SJyO3AEeHPbzkwYHfYDFyy7ExMmTGiHJMErpa7NWOe6Ot2ZYCDCAaV4asnd2ATOWXIf\nJkxYKkR4CfAlpTi17L6UYtSVrCKICJcsux8NbhxqQyIcAr5RudkbW3xnLAR/47I70BE3LrsDHXHj\nsjvQETd2/P4NwFUV+jE4Rk3wwEuB/2fZnQBQSt044OauAM4XqRIjAVr3fxM4u1Yf2qLPYy/CPhF+\npK/2YfBrpzqm/rMFHKrQlcExdoLfz4oe2I54TvN731J7MR4F3yeeDbxr2Z2YMGpssqI8NHaC32T5\nJLcMGILfv9RejETB94wtYO+yOzGhDCJcKsJfDrS5DeDgQNuqilUg+GWT3DJwRfO79cNNhGeJ8FMd\n+3E6KPhNYM+yO1EDIvy6yHrsSwaeDoPF5zaZCL4XjE7BiyxU7faBGgr+RcCPduzHFutP8Ouk4H+W\n9T9fBmdRp44nB5OC7wmjIngRrkFH1PvGc4DjdNv3DeBAx35sAgdEdN3DmmKT9SH4PbDW58rGWQy3\nrxPB94RNYN9AqjkH5wHf3Wd/RNgAngl8lW4KvhbBw3r78FvAnhFdY60gwhk0+7LsvgyEIRX8FGTt\nCeYEjkVhbaErO5/b4zYuBR4CHmMcCh7W+7Xf7OOqE6NRs6PdDxHOEeHqSs1NFk0GVoXgx2LTmJvo\n7/S4jecAdwBHmRT8EBg9MWbCiKAxWzTfAfxSpbaGVvATwfeAMRL8DvDaHrdhCP4Y3fb7DOoQ/A4V\nFHxTlTzG621sb4ltscf5PUYcoh4pTx58BsZ4w9kYG8FvAp+jX4K/Avga41HwD1HHovkJ4DcqtFMb\nhiRWneBN/08ngp9rS4RniPCaSu3b2GDy4HuBOYFjyYXfAj4DPEeEs3raRi0Fv4EOHna5oQzB17Bo\nLqrUDiLsEeFZNdpifRT8Klg0tQn+DOet8HXoVNEoRLgoN6jetC9MCr4XjE3BbwFPAX8LvLqnbdT0\n4OnYxhbwMHUU/AHq3dzfQ73J3ddFwa+KRVPrAWQE1oa1bIu8a+w/AS/O3I5pfyL4HjBGgt8G/jP9\nBVprE3wXm6amRXOA+ZuxC86iHpGtSxbN6ajgYX5/NzPbP5f8e8u0NxF8Dxgrwf8VPfjwIpyN3tcH\nqWPRQHeCf5g61spB6t3cB6n3sJgU/HDog+Dt9rbIe8CV9MNcZ5MH3wPG6MEbBf+aHrJCngPcoRSK\n9VTwE8H3h9MxyIrTXq6CP0T+9TNZND1ibAp+E9hRigeb/2sXABl7Bsaj4Ned4Kcg63A4k7oevGJR\nwUevsSa4WvI2OVk0PcJcDGMheKPgQeeH1yIZg8uBrzd/j0nB17Boanrwp4WCF+HdzexeOTgdLZrH\nKPfg96OzYkoU/BEmgu8FY1PwfRP8xcA3m7/XTcFnqSYRPibCMxOrlbxipzDmIOsPAhdmrnvaWDQi\n7EWf/8OUe/DmgVmi4A+jU45r3++9Y1UIfmwePMBJ6pdKPwO4r/m7q4I353ZMCj7neL0UPdRxDDUD\ntqNV8Oh93CUsEQ6J8LuBdQ2xj9miqaXgzwSeQN+LpR68IfgSBb+DTo9eORW/KgR/Oin4e5u/x6Dg\nl5EHfwi4MrHO6eLBzxE8eqC7Hwise9ooeLQ98wT6Hizy4ClX8BtoMbeSNs1Qg/W0hRkLZYwEP3YF\nX8uieQQ4S4QzlOJUh7aSBN9kJR0iPVrnaeHBs0jwW4T3e1UUfI3+GYLfoNyDL1XwhoO2WUGCXwUF\nf5jxELw52XB6KPjNph9H6J4HnBNkNTfQkAQ/dgXvKtTQfk8KPs+DN9fYaaHgV4Xg196Db7IltoDH\nm0VjUfA7TZ+62jQ5vvmZze+URVMzyLouCn7UBN8EKPfTL8GXKPiSIOsOdUTO4FgFgn+S8Sj4Pj34\ni4F7myInqKPgj9KS4Jt8YaNeHqM7wed48GcC3wAuTUweXVvBH2VkxNgc/3WyaA6iSXIsHnxJkHVS\n8D1hbBZNnx78M5jZM1BHwT9JewW/gS7qUmgF3zqTppnTNUddnYkO6n4ToqNF1vbgDzM+BW/uTZfg\nQ8dwL1oUjOpBZcFkvqgK6YaG4Ldp78GXWjSHmQi+OoyCH6NF04eCv8/6/yjdFXwXgrfjDV0VvOlD\n6ngdQvf5NuI2TW0Ff4TxEbwhoBIFf5jxEvwhdP9c1d0GXTz4tkHWScH3gLFZNDbp9a3gj7FcBW9m\nr4LuBJ8b2DoT3efbiQdaTwcFX0rwe9H7MVaLZgiCz1HwXYKskwdfGWO2aIZQ8MskePth1smisfpQ\nQvBeBd+kUp7OCl4Ck1WsioJ3i5PaYEgPflLwPWLMBF+k4EWSJec+Be/dbxF+UiRJ/mcwLovmKfIJ\n/jbCCt7sd00Ff4TxEWOI4MG/76uk4Lv2sasHfzxjPYPJg+8RY06TzFbwjeK6I5EZ4ir4bfSUZL4L\n8ZfRI0/GMDYP/gnyCP4wcYvmIHVe8w3GruBdheouM9iLPt9je1AZmPjKGDz4x5iyaEaBsXnwbRX8\nJvrCipHtnIJvsldCKn4jsNxdZ0wWjak8jMEo+DuBZzbZNy4OZraVi149eBGeK8Jvt/hqqYJfFYtm\n2R78IfT1POXBjwBjtmhKPHjT/9ibiKvgIezDD0XwZl9rBFlzFPwh4EmlOI5+2PlSJWsTfN8K/lLg\nVS2+t84WzTI9+IOUEfyk4HvE2Ai+bRZNlOBFOIhWXo85H4UU/GZguY3aFk1XBZ9zUxkFD2Gbxtyg\nK6Hg0f1s09d1VfA1g6w+D14SefZGwZcGWScPvg1EeI4I3x342Nx8K+3Bk1bwFwP3WVWsBjEFnzom\nZrzsWhZNVw/+ScoJ3pdJc4h+FHxfxLhBO0JbZwVfK8jqU/AQP97Gg58UPICIXCMit4rIbSLyVs/n\nF4jIn4jIF0TkyyLyk4V9+B4g9J118eBzCP5ez/JlevB2HvwTzObAbINSDx701IWXe9YxFs0ZgXTB\nUpgsmr4U/CbtHkZbzm/Tlv3bxh7GHWQ1AfS+PXhIE3yJgl/fPHgR2QDeDVwDXAVcKyIvcFa7Dvi8\nUuqlwNXAb4lIyQncT/hgj82iqargm5lpYH6YYBshBZ9r0RwGDrQkQlvBd32tzvXgDQmAHrLgvEBb\nh9HzcdZ4A+3bgx9awY+V4Kt48NagZUc8beUo+FIPfq3z4F8F3K6UuksptQ3cALzRWec+ZuruLOBh\npdQO+dhH+GDv3nyV1FpXVFPwIrwQuEuEc2mn4HMsmhPoi7PNTV+zarckTdIo+EeIE/xJ6tg06+LB\nr4pFMycWRNh0s6VEuCiQHgyNCGjmJnDtHt8x8/WjTZrkWnrwlwB3W//f0yyz8XvAC0XkXuAm4OcK\n+xAbQnQTTVLbjCNPuaaCvwB4OvDrlCv4XIvmJLrAqI1N4xJ8FzLdtWgSD2qTKw1xgj9SoU8GfSv4\nnNS90PegLMg6Zosm5MH/U+DXnHX/E/D6QDvGnoHFN8uogm/U/z7y4kEGK63gUzvpBv18eDvwBaXU\n1SJyBfAJEXmJUupJd0UReaf1741KqRtJWzQ7zAbeOpbRnz5RM4vmAPBp4A1oMvvfPd8LDTiWQ/Bn\nME/wj2b21cDe167DMhxADwN8itkclz7YCv5R4FzPOoeoS/B9V7J2VfA+Alsni+Ys9D3wz0Crd+CV\n6PRSH2yCL/XgjTjYZsQevIhcjba7OyNFUN8ELrP+vwyt4m28FvhVAKXU10TkTuD5wGfdxpRS7/Rs\nI6Xgd+g+Nnot1FTwB9C2zG8Df4BfwYcGHMv14Lsq+FpDIx9s+mGOWQ7B5yj4GtWsq+jBh4KsY7do\nfJWsW8DzRHiOUtwBvK5ZfnGgnRjBb6FFqW0BvRm4Ryk+wewhU3LtDJ5F0wjfG83/IvKOtm2lLJrP\nAleKyOUisgd4E/BhZ51b0ZkwiMjT0OR+R0Ef9pFW8Esn+Ob1TlnzktZQ8E+h4xq/BnzB870FBd9Y\nHEKeBz8mi8YQfOj1+YxmvSPNokeA8zyWTm2Lpm8Pvm0WzboGWV1bZQ/6ze77mv+vAT6Hti19cAne\n9eCPOsteA/y95m8TvykJ9Jr74AQ6x36sD1AvogTfBEuvAz4O3Az8B6XULSLyFhF5S7ParwGvEJGb\ngD8DfkEp9UhBH1IKfpvuQ+fWgK3eoY6Cf0oplFL8klJ8y/M9336bbQ7pwXdNbTPEHWvnEPp4nAJQ\niqPNcnf/OxG8CFc4i1ZRwa9ykNUl5S3gU8A1zUP+dcD7yVPwPg/+KIsPEPOwaGPvbQAnmxqVlfPh\nkxeeUupjwMecZddbfz8E/IMOfcixaLpOflEDLsHXUvAx+IKsZpt9E7ydB19LwceOmW3PGDyC9uHt\n49Q1i+ZvRHiuUrsxiSwF38yZe0IpThRub6pk1Qh58FvAR4G3oe3eh9CxqZ8OtJPy4N0A6hZwUaIP\nMdhCxxC8W3E+Wiy9kpW8IOvSLRp6UvCJ7/n2u0TBn6Kegq9l0ey2I8IbRDB1FXYGjYHPh+8aZN3L\n/LHbRB/nMxIl7r8G/HcttjdUFs1oR5O07DefTbcHeAD4MjqW9yfo2FRbD95V8FvMK/hScWCEEqxg\nsdMYCD6VB28IftkWjU14UK7gTzFPLG0VvLkwh/bgawVZ7XbehPZcIazgXYI3Fk3bh84m82rdPLhP\nECfHs2h3c/eh4OfORUOgm+hjPEaL5iAz+81Hyttol+A70QT/IHB+IBc+5sFvobnCXraHWWp3GwVv\nE/zK5cIPSvAinCPCO53Fq5JF01XBP04dBT+URTNEkHWLWZaWj+B9qZJdg6ybzBO5Oa/Hids0MSGS\n2l7fCn4Ps6K21JvIMmCIFfy++Qm0TXMU+HOlOIm2ap7macucf19bJsjqtn9hMxeDHWQtHWwMVtCD\nH1rBXwr8hLOsJA9+mejqwT9KHQ9+GUHWU+gMgrbXiwmyusfMJfjDzvdiCr6Y4JuMnA3midzsZw7B\nt1HHXRS8j6xMmzb2AMebQKA7wuIYYBO8q7r3ANtK8bfAtym1W+sSsmns9N1dwdA81ITF2ZrMtp7O\nvL3XRsFPBJ/AJotkc7oo+DYEH/Pgh7BotmF38pEuKj6k4DeZFbSUWDRtg6xmfZ9F0yfBt1Xwrt0Q\nIvi9sBv8PcH4Cd5n0dDkwRvcR5jgfdld5nr1pWGC9uFti6atgp88+Ag2WXwC5ubBL9uDXzUF71ay\nlsIXc2hL8G6hk0Ebi6ZLkNWsvwd2vWsaS6BPi4YWbz++nO4YwR9v/t5mfIHWFMH7MpPuw58Lb2d3\n2W8DZrnPl3+YeYJvq+AnDz6BDRZHN/QqeOt1+iTjUfA24ZUq+EdYXQ8eWgY1m8IQQROP7+a+uAmm\n5WbRdPHgzbYNkdvnNBVk7aLg7W3nooTgjQcP41Xw5tz6FPb2wjfyFLzdllHwviydu2iv4CeLpgCb\n6JvdJqeQRbPJrMBgDB687f3B+BV8zTx4aJ9JcwA40pxHH8Gfgb6RkxZNo4L3oY9Lm/6Y9fdY/5tz\n2qdFY//ORYjgT7G437aCTz2oloGYB+++GRsUefDMrldfEPfraIK37b0uefArg2UoeJgnnFCQ1T6w\nY1HwQ3vwvgebGcvFHnr4oAif8qw3BovG3k9fkPUU2qbJsWgOAEebdLvaCr4vgt90fpd8z0fwxwgE\nWZu/18miaePB+x4gd7Go4NsGWScPPgJzUA+CHguacBqZS/Dr6MEf8a++C99+b7I4Ccp5wIuc9fqw\naNooeOO/mzZsctpED153KXlZNHaKXGcPnjIFv5d2+19bwR/1tDX2IKt9bn0WSsii8XnwLsHbHnzI\novk6Ohe+TfxmUvAFcBW8Iakcgp8UvMYG+kKzlx9i8RjWrGSFOgrep97uIKzgXYK3leCqKPjaHvw6\nKvgSi8Y+Z64Hb4Ksbvt3UUfBnyj43iiwVAXPjPBSFs0YPPhlZNGEBhs74iwPEXyt4YKhG8Eb1e27\n+e4kn+BtBd8m6OsSvL2PfQVZzTZrKXgfwbsKfswE7+bphyyaB9AFSu6+hiwac3/GPPiuQdaug+4N\njmURvK3g3WIOe92xKfguWTQ1FfxTwJZ18fdF8DUsmhwFfyn+LJrHgUPWfna1aNwg6yooePd4HfO0\n5QZZx2bRxBS816JRim30oF4XOh+Fgqy2gncLqR5A33sX0i3IOhF8AvaNCvqgHyat4MfgwVfLomlS\nQA/A7pC4IYQ8eFMbYAjpEIuVpqsQZN0kYtE0wdQngHOaRbU8eJ+CDxJ8c77a5sG3JXjfuCqnk0UD\n/kBrSsH72j+OtnyeyaTge4XPognNj2jffGO0aNqMRWNU9x5gR6k5AvUhlCZ5kvljcsj6zF2vVppk\n28G9YkFWY9GEgqwwb9MsS8Hb65eii0XjDh62qkHWNlk04PfhXQ/eHoDN58GbN4R70SnapUMVTAq+\nAG6QNUXwY7Nouij4o8z2I8eegfBQBW51ryF4uz99VLL2YdHcjX51PpdFiwbmUyVrB1lzs2jMOViF\nIOsYPfizKC90gnYK3ufBG4KH7gp+bA/PKJat4PeRb9GMjeBLFfwxZoo8l+C30aMDuraGW93rI/gx\nWTSxIOsxtEd6Pn6CH0rBx4gxlu2VQu00yVSQdYwWzZnEh/iNEbybKpntwTfWmk3wO+jj1HaogknB\nJ+AGWXc9eM/cm2Pz4Lsq+GKCb6o/3Yebb/iGPiwaX5C1j0KnbbSKB39dQB8EP6SC33R+l3zPJfhN\nBg6yirBfZGE8oFLY8ZWuFk2JB7+JroY/1bR1OFBRHcNk0RTAF2Q9is7XjqVDjcWDLyY8K0B3nHIF\nD4s+vLFo7GNijqdPwR8D9rYc7KqGRZMqdNpGFzsdtiY0t2Gm7TNt2QRf2h+30CnXg69h0fSp4O2x\naGor+B8D3tWxDe8sTI7C9uEBZtPtGdjXpc+Dty0au+17aWfvTQq+AD4FfxQ/WY7NommbRWNUhAmM\nlhK8u++2RRPz4DeYH8un9A2oZh58zIM3Ct5nz4D24FdCwYtwhghvdxbX9uBDQda+PPgDtHsDtBFS\n8JvoZAMV+J7vnLijScYUvP3gswm+rYJ3/f3RY9kK3lgXPrIcG8G39eDNPkI9BV/iwUM7m6amRbPg\nwTfqzWzjbvwZNDBv0ZhScxi2kjXXg78C+JXANtv09Tg6BmPu09wga81A4BYdHhjNeXaDrO7wAiH4\nJi8JWSa+PHi7/b8F/rX1vUnB9wBz0bZR8KvqwdcgeJ8H70uTdAneWB7HKX9A9p1FY95sFNqiCSl4\n16KpkUXjG4vmBHGCP0KaOF/MPCFDNwW/q0gtO+M4fgXfl0Wz2bG9vcAppXYfQK7CjhG8j1BDQVaf\ngt/195XiMaV4T7N8CrL2hE20F+d68KETOTYPvquCNw+qUovG58H7LJoN2FVNJk0S2r1a+oYLrhlk\ntY/n3wB/GPi+bdFcQLehCtxCJ1fBx7JoDpMmeDPgmxvsdpflwPaUt5g9sH3ncrQKnsUCNi8BB5BS\n8CkPPvQAKbl2piBrATbQBO8q+NFYNCL8qAg/7PnIR3i7fRbhbBHe4flebQWfkyZpZioyCr5N/q7P\noqkZZN1VYkrxDaX49cD3HwHOE+ENwEuBTzTLayv4lEUTqtew8WJnO/bfbRS8TfC2Qh1yLBqz7baw\nA6zgV90h+Ai+xIMPtT8p+J6wia7odD1430Xrqqt9nlTKPvAa4CWe5SkF/0zgOs/3uhK8T8GnCN6+\nKKGdgvdZNDWDrKmb2+AR4Erg3wL/UCke7tAfs0+lHvxeNMHnKnjXKrN/5yJE8L797nPKvtoK3ibt\nlEVTw4P3vSFMCr4nhBR81KJplGjMI62J8/G/LaSyaLaAC0QWboY+PHg3TfIQ8wNT2fYM1FPwNQud\n3DeiEB5Fp8r9ilL8tbW8LcE/RXsFHzyGIhxEjzl+GH8spJaC9+13n1P2dSV4O8AKZRZNVw8+9AA5\nySyukcKk4AsQ8uBTFg0M58Ofhz+gm1Lw5qZ6uvO92go+lCb5GPNqsYaCb1vYZWM/s/0PefAx3Ae8\nAXi3s7ztYGNHmFfwuUHWlAf/QuBWFguRTGLBqir4rkFWu4oVuls0JR68t/0msH+KPP6bCL4AhuBL\ns2hgOB/+fPII3jcyIiyWVncleFdZ+iyag2jrK2TR1FDwbS0aV3GZNrIIXimUUnzEkyvdRcHbefC5\nQdaUB/9i4EssksAG7SaKiBF8Ksg6ZoumJIsmRfAnmVXBp/LgXeReP5NFUwBj0ZTmwcNwqZK5BB9S\n8G5pdVeC9xHGbppkk5J3AH1c+/Tg21o0Mc80R8GH0HbSbduisc9pJ4sG7b9/kcWH6QZ1FXxOkHVs\nFk1MwZdm0exae81D3xB1yIMPXWO5ZD0p+AKsuoKP5YX3RfAuObtpkuYY2iqxLwXf5uIOEXyuRRNC\nHwq+i0UTUvDGoumi4DdJe/CrGGRNXQOp9Gl7nWgevAe514+530L9GTWWreBTQVb75PdO8CJsoRWH\nj+Dd/oQUfG2LxkcYtkVjqjvt/tRQ8LXy4GNpbTlB1hDaEvwRKiv4xiKwFbz7QO6i4M3D2RyvkAc/\nZgVfxaJp3lbdBAKzjrk/c/Lg3X7EYO63ku+MBstQ8EcBmmyTkiBrzCOtBVNQ43uQpDz4oS0am+Dd\nacjsKlbTxrKyaFzPdJkKfoOwgk8FWWMe/MWAQg+O5Xvj6qrgS4KsY8uDTwVZSyyaDVgYu8ZW8KUW\nTa6Cn8aDz4S5aM3YKLE8eJdghpjI4Pzmd1sP/hhpBV8y4YfZzsJFbrXlmym+rzz4thZN6yBrBDXS\nJF0FHwuyPsXitIgGLwK+GBiKto8sGl+QdaxDFaQqWUuCrO41abfXxqLJVfCTRZMJQ05H0DZN7lAF\nMBzBP067LJot4Bv078G7aZI5BL/sLJo+gqxt3ihcDz630MkWIr7j+Hx0iqTpV58KPhRkHetQBW6Q\ntaTQyT2WPlvPrGNbWrkWTRsFPxF8BIacjIIvsWiGIPjz0ANftVXw36B/Dz5k0dT24FMxh5J2xhRk\ntfPg7X3MIfjQcbwIbc9AfQ8+t9BpVYKsXSwan4J3j08yD75BroJf7yCriFwjIreKyG0i8tbAOleL\nyOdF5MsicmOkuZiCH4tFEyP4VBbNvcC5TbDWoA+C91k0dn/6qGStkUXjevBDB1mNB7/Hyp0uUfC+\ntD3Qc8p+q/m7VhaN6VuuB9/nWDR9VrImLRqr4tT31udT8PYbQugBkitY1jfIKiIb6ArCa4CrgGtF\n5AXOOucA/yfwD5RS3wb8UKRJV8GX5MEvm+BzsmiOoW90u5q1BsG7KsZW8GYI3b49+LYKPpZFswwF\nf4LZMW2j4EME/1Dz97IVfB8WzRkirc49xIOsUYvGyXOHdh58DQXfZVTWpSKl4F8F3K6UuksptQ3c\nALzRWedHgP+olLoHQCn1EGGsuoJPefDbLM4j2adFM7QHvw5B1pPMAqr2w+cEM2XvIuXBX0BYwS94\n8CJ8rwi/lNHX3CBr3+PB06FNn0VjZ7nELBqzfuytz1XwuRZNSZqk7w10JZAi+EuYTYgMmvwucda5\nEjhPRD4pIp8VkR+PtGdn0RxCX5jmxhmLgr8P2PQolhwPfrv5fk2C96XdhTz4mgq+cx68yThxhi2u\nFWT19keETRF+JPAdc02ZlMjdPjRTKoYGBTPXaeg4piyaE05fXw68S4SfD/TTfM9WpMsMskL7e88X\nZM1S8Nb6pg85Hrz7hlCj0Okk7F7HqsX8xktDqqOhuRJtbKEv2NcD3wv8sohcGVjXKKgj6IDmces1\nbCwE/zD+oqoSBW8HWl2CP8iMMHKQ48GnCp1qKPi2WStuGzUtGh/ZXgb8y8B3zLHzKXgI2zRdPHhf\nFs0W8O+AnxUhJIhKLZrWHrwIrxUhdM92JfguaZKwSPAlHnwNBW8HWUu+NwqkOvpN9A1jcBlaxdu4\nG3hIKXUUOCoif44eT/22xeb+h6vgyz8Ez30+fPvjcN3R5oMxWTQPM1PaR6zPfAS/IYI0D6lcBX8e\ncDQy0bALnyJ0LZp7WCx0GkMefKyNvoKsBwlXPAcVfAND8O78sEGLpnnTOwd2x6nP8eC3gDvRo2R+\nEvj9SF9tglsg+EZNblj70caieRvw18Cvej7bcn5nQ4S9aBF53FpckkUDaQWf8uCLgqwivAK4Vynu\ntbbpiiXzVtYLRORq4OoabaVu2M8CV4rI5Whl+ibgWmedPwbe3QRk9wKvBv6Fv7n3fg34v4DXocnO\nJni3Ly4BLIPgg/1RilMiKGYZK7aCf5X1PZ9FE4tTuHBJJdeiqVHJuvBAK2zDPYdDePAm/daHmAcP\n7RT8+cBjjcUDeVk0W2iL7svA2ZZIcPuaJPhmP05Y3y+yaJqYwyvQYs6HLgr+TOAJZ9/sESBzLBrX\n1ivx4Pc9t5DMAAAgAElEQVQwL9JshATLPwH+HD3BDPjfhntV8EqpG4Ebzf8i4pspLgvRjiqldkTk\nOuDj6B19n1LqFhF5S/P59UqpW0XkT9DjcJwCfk8pdXOgSTvIehEzgh+LRXMeYYIPvR6aC2ALvV8p\nBQ/5/jvEBxvrxYNvbj7fQ6LrxN29e/BoBb8lwoZFum5/Qgo+NFxBLA/etmcgX8HvKMVJEY6jrzX3\nmogRvN2+HWA165TcJ89AZ31dFvh8E30dtCX4ucnUlUKJLKjuGOz99731xTz4lEXju372ND++uY3N\n99bGokEp9THgY86y653/fxP4zcztmSDr+cyIb+kWTXMyUwrevVjMzXaCeQXv9eCVYqe5uEsIPmTR\nmNEjzyZd6FSq4H1jfrS1aNzAdE0PPqTgQRNfiDSNUvcpeN81FlPwFzD/RhYiePvBYe/7YfRDOpfg\n3XvFDrBC+X1i1HuI4M3bRpt7zw2wGtgEn7oXci0anwefCrL6ructZudqAzgVGPtmJbCsStYjaDId\nk4I/iCa1Y/hnj/IRks9yiCl4mra7EPwGcLK56I6hj6NvsLEuHrzvRmqblhjz4PsYqsAQvO9tw7z9\nmGsp5MG7iKVJphS8L4vGR/C7cLKPDMGZvnotGuv/0iyaVwB/hJ5T2AfzZlpFwTcwx6hNFk0oyFpL\nwduFXW6A1d7eSmBZY9EYBT+mIKtR7+CfXCSm4O3PHwTOF9ldXoPgfR686ecFLFo0XStZQ/nGtbNo\n+gqyQrhYLaXg5wi+ebPb13zWxaJxST9I8Mwft1QWjavgSy2aVwJ/iq4BONPzeReCz1HwfXrwbQqd\nbAXvBljd/owey1TwFxAPsvr80b4J/pHm72SQtcGCgleKHfQr+9Oa5V0J3iUV+yI/ip/g+1LwpRf2\nsoKsEJ443Q6y+hS8+71N9Gu6a5cYBAm+UeJCXME/SZrgbTL0KXjXosl6mFsB1s+ix1Hy2TR9KHj7\noVWSRVPqwaeGKggRvK3gJ4IvgKvgfZMxGyxTwZd68O7n9zIrCOvFomn+PkY/HnxfFs1QQVYIE7wd\nZHUJ4z4WC/ns81dE8MzOQ6hmAvS5c5WzfdzMubMJPhlkDVTkungWuhblXnS6s4/gNxmXRVPiwacU\nfCjI6psvwN5ezUKyXrGs8eCPNNseq0VTmkUD8xfT14DnNn/3TfAwjIJva9EsK8jqs2jcQie3f18F\nnud8xz5/pR682Z577KIePHGLxm1rTsE3vn3u25ZR7xAm+L6DrH178JOCHxDmFdkQXMqiGRPBlyj4\nWwAzKFsfHrw5LqbdI05faij42L6WtNNXkDXUn5RF4yr4HIK3h+J1t+nLojHHOlfBd/XgXRLLtWlc\ngp8LtFojbj6V2Z6LlILPsWiKPHhnOIE248G7WTRTkLUAdh48LCmLRoQfEOFZzmKTA2/6tc9afwNQ\n1pgqBiEFfwvwAidAZ9BVwduBHzNQ2wkWleNYFHzMg+8zyJry4E0evN2HlIIvtWjM9moq+FSQ1Xwn\n516xCd7nwZtaiGOZ7bmIKXijlLtaNO7xsdtvG2Q1+zoFWQvhKvhl5cFfB7zWWRbLogldKCFFeita\nwW+iUxrti6RrkNW1aA5bU8XZHnyXStZaQdZUFs0ygqzmgWgqWRcUvONf17Bo+lTwvkBi7r3ycuBz\nzd8+i8Zss+29FwuytrFoQokORsFvO8vajAfvKviJ4AswCgWPrqI94CyLWTQhtRlS8P8FuAJ947qD\nitXw4G2L5rBnvbHkwfuyaPoOsuZ68AsKXikeatq90PpOUME3DwJ7qGDwn4faCj4WZIUMi0aE/ei3\nHdN3H8Gbc9T23nMn+zAosWhyg6z2tZbj8YcEy24la2J7K4FlK/hlBVkvYvYqb5Ai+GwFrxRH0Zk0\nL6Q+wbsWjSH4mh58zTz4oYOsB9Gk0kbBw6JNY4/86T4ozwaOKbWQh+5aNDUVvO9h0caiORd41KrS\nvBu4zHl7MddBFwUfC7LmjkWTE2S1P8t5Q5gUfA+ws2hgCUHWJvhyIWUEH1KbIQUP2od/GYsE/03Y\nHakuB74g65xFY63Xt4LfbUOEjWa0wJJ2hqpkfZh2HjwsEnzMg3ftGdOvkiyanDz4lEXjHsecIOu5\nzOo+UIrDzCqj3X7WtmhKs2hiQVb7+NgK3njpbYYqiFWylt5LS8XQHbUHyjKl9jCsRXMe+sHWm4Jv\n4CV4pXh7YX+THnzzt00sXStZcyyaHwL+PvAzBe0MFWSNEbyxaHIVfMyDzyH4Ggp+0/rb3W/fPuQo\n+POwCL6BsWlMVlBXgg8FWWsWOsU8+JSCDxH8VMnaEiboqNA2xTIsGlNh6hL82cDjzd/uWDShC6WN\ngi9FiQcfKnTyZX/EkJNFczbafy5pZ6gg68PEhyqwR5MsVfD2uXBTJCE/i8Zst02hU40g67nAo84y\n14fvW8HXLHSyj6k5T7H2Q9fPlAffATY5HWE548Ff1Px2Cf4Qs4uxaxYNaIL3efClqOXBl1o0qTz4\nLRaPoYtlBVkfIT7YWFsF39aiqZ1FE2rLIMeiiSl4ux99B1lLPfhSBV9a6JRTyToRfAA2OT3Fciwa\nQ/C7WTTNwGB7rP50zaIBTfBb1CH4Gh58bYsmh+D79OBjFk2I4HMU/O3AFdacvF0Jvk0WjatGU0FW\nl8S6WjRuP0qvH4NUkDXXoomJAvsNJ/TW40MsyDop+JaIKfihLJqL0EFOm5wOMssnhwoevFI8CjxA\nd4L3efC2RWMC1n0HWX3EkkPwbhbNEION5QZZF/qgFEfQtoshui4efB9ZNDWDrK5F8w3mq1lbWzQi\nu0NB+K5/Owhaq9DJtbWMaMsOsjYZRJusUSXr0B21T4LtwQ+t4O9knpzMrEgGbbJofBffLfRr0fzf\nzIgs5sHXCrLa/djDIjGl2nE9+K5BVt/1awj+Qs9ntoLfg38/QdcxPA+4i0UFb2cOXQh8yfluThaN\nfT3lEryQH2TNuVfOQ1+fNmp68K5oslG70GkvesTPU9Z3coKsPlEJUyVra9gH7K3AZ5q/h1bwpQTf\nxoOHfgh+l7yV4nal+LJnPbeStVTB5+TBt7Foeg2yNqoRwnnwbqFT6CFj+/BdLJouCt7O6Y4p+C4W\njavgH0FPIO72s8295w5jbKPEosnx4Pfhr7eIXWM+gWC2M+XBd9ieIadPNq/D4D9ofWbR3IXHorH+\nr5FFA/AVwpP+5sLnwftIqfZgYzU8eJdATwFnNLUIfQRZD6CPt5mv1oWt4Pczr/psfBV4fvN3zKK5\ngFlqLdY6xR68U2BUEmStkgffwJ3wpEuQ1Vdha1CaRZPy4PezKCRSefA+UbnH+T0FWQvhzm9oELJo\n7JNZW8HbQxUcYp6IfVk0KVL1EfwHgF/s0lkW1bfvtRH69+C9WTSJccfn2mnOvSHmPjz4g8ysv5QH\nfzCy/VuB/6r5O6bgTdWsjaIsGmsiEZdY3ZS/WJC1Vh68O+GJue7bKvgYuaaCoAY5Hvx+6il4e+L1\nkIJvE3BeCoYm+JDnuqoWTVTBK8VTSvFAx/4GLZpIX2ooeJ9Scollg/g5ibXTB8HbCj6VB3+I8PV4\nM3BV83csD34/sziSgc+iSZGymwvvBgx3s0SaNw6xHqw+m6NtHvwx/JOD17Zo7IdWjUInV8GbB1zo\nbdd8z0fw9uQmKx9kHRPBRy0aMyKjlb7WFkN68DVwEtiwbugYwZu+uJWsfSl4iAdaY6+4XYOsPlFw\ngFn6baqSNabg7wbOEuEc4go+RfA5layw6MPHLBqYf7i1tWhCCr4WwdeyaHI8eJ+C3w9sBxwD8AuE\nXYK3MmomD74APmIyy1MePHRU8c0IenvRU7PVzqLpheAtW8N97XcxtAdvzkPMh08RfF8WTYjg7SDr\nQU/fgN1jfgtaxcc8+ByCn8uiMQLFGUK6C8EXWzRNDORs4DHno5oEn2PR5MRhXA8+R8HvoB/2sbZD\nCt5Mrm7eUCeCL0AXiwa62zQXAg827YiVdeES/Alg03pbiCr45oZxVXNN+F77Y+sMlQcPcYL3qXTz\nIOozyBrz4I1FE1PwoAPkVzE/oUZbiyb1pteG4O32SocLPgs40vj/No4De623RTvIWuo7p7Jo9qEt\np5DCNnA9eN/DzKfgDxC3f3zXj3mjiBXCTQQfwVIVPDqD5oHmojrCjJzmCL753CaJlAe/Rfx1sCts\nYhnKg8+1aNoo+L6DrDEP3g6yxiwi48N7LZqm+nmTRRJJZdHUIviURRMb6dNnz9jzubqed07Q1kXK\nokkpbINUkHX3YeF8xyV9Xx98Cn6b2VAWk4IvRJaCbxSE7+B2JfiL0AoeNMGbTBpXwcM8SaSyaPry\n3w18r/2pdboo+JDy9in4lAfvC7L2ZdHkevAmTTK2/SjBN98/6nmohywaW3G7x7aU4FMPjND+G/hy\n4O3vmodDXxbNNvkEb4uTWJDVp+BTBO/z4G0FPwVZC5EbZN1gNuqkjdoEb9SnmwcP8z58loLv0K8U\nulo0NRR8G4umzyBrmzx424M3fQnhZvRgcSEP3mfPuOvYFk1fCt5n0fgmjbfhy4E3sH34Pgud9pPO\noIFuHnzKogmlSRoFPwVZC5Fr0fhOJPRH8D4Fn0PwtXK6U7BJI2TRxIKsfWTRmBu4LcHX8ODdfbLz\n4OcIznkrNDd+bPtfRyvdi/CnScYI3mfRdPXg7eOVsmhCFpWB16JpkCR4EX5QhBdF2of+LJpcDz7H\nopkUfGXkBlmXQfBuxalNErEsmiEsmlwP3l5nt0LTVGsWpJj69tdn0TxKOcHXsrVKFfwGs0I7O2jq\nRXPMbgGuJGLReL7qs2hSCt6d1cnNg3ePVyrIGgoyG8QsGrvYKaTg/yHwnZH2IZ1FkyJgg7YefOoB\n4hMI5mEZU/ClYmmpGIuCd5+K1QhehOeL8O3NvzbBP8VqKfgcDz4UZIWyCzPXonmM8iyaPoOsxoM/\nAWw5DzR7nwzxpCyim9GDfIUsGt/cuj47LUfBewudmgfNKebPe0rBd7FobA/ejlnY992hpo0YUoVO\nKQvFwLW8fNeTewxyLKBcBT9ZNAUI3VC+DI1aCv5NwB80WQ9PIz/ImuvBDx1kbePBm89zffjcLJrH\naFfotBdQgXFgcnGS+YpOaCyaRqW7VZk2QeZYNKAJHropeNeD970dxSwas107pTAVZE0RfCeLpunr\nOcRR06KJBahtK6uk/ZAH72bRTBZNAZZh0ZyJHhnwJynz4O3X/FgWzWAefJNvT4AY7QvWl5O/DAUf\nyqJxg2LFaMhOOX0yFg34i9WMKjakm6PgocyDd+00XxZNG4K3v1MjyBqzaHIIPkfBpyya3CBrTMHb\nmUX2sraFTieYz4NfaQU/dEeXEWQ9C/h3wDvQhF0zyDq0B587tkZXBR8rULLXaevBu8O7toV56Jht\nmCArLPrwbl9MxWIMX7HagnIF3yWLxia/beaHf+5q0aQUvM+Dt6+dM0kr+FQWTa0ga0jBpx4goaEK\nJgXfActQ8GcBnwA+ix7etQ3Bh4KsQ3vwIXvGrNOnB+8bqqANwZugWI3j5fbJePDgJ3j7mBz39M3F\nXcBfMT/zWFuLpraCj7WXQ/AlCt4tdMpR8LUsmhwPHmd5Tvs+ovZVsq60gl/7ICuzmd3/F+ALSu1e\ndDWCrEN78KEMGnsdAut19eBrBllzMyhS8BG8bdHEFPyJVB+U4qRS/F2rpN9+SB4gM4umsdRUY7GN\nxaLpGmTNUfCxQqc2efClHnzbIGuqkrV02IalYSwK3mfR+G6+tgr+CaX4CvBya/kRZuOZHySeJjmG\nLBoz+FHOMcxW8CK8oBmEzYbv+JvJOuxhatsGWfsieNeisffLPXY5Ct5FW4vGXl6D4G1y6sOi8Sn4\nLZHdoHbXLJqSa6CtB59qPxZkPX3y4EXkGhG5VURuE5G3RtZ7pYjsiMh/G2luWUHWJ2A3MGdgsmj2\nAtuegZfGpOANOacsmjYK/t3A33eWLRz/5tiZdD3I9+B7CbI2iCn4lAefVPAetM2isfuakwfvKtWU\ngnfb6zJUwQLBN+fe7Pt+dOroHMGL8AERLrIWDTkWjVmvpP2Qgj99KllFZANNANegx+W4VkReEFjv\nN4A/gegMP8uwaM5icdYdmHnwviInGF8WTcqiMRNBnBFYL+TBn0V80me3Hzax5GTR9BlkdVVYKsha\n6sG7aOPB7zjLl2rRiLCvaT80laQvyAqze+9M9MPhTJPV1eD7gWdY/9fKonE9+FCQ1fXgc4KsKQ9+\n7RX8q4DblVJ3KaW2gRuAN3rW+1ngD1mcgNhFiUVTXcE7sAne9d9hXAo+SfCNyjIEPFfJarXhU/Bn\nkk/wbnCvDcEPFWTt7MF7kJMmGbJoYmIgNqOTaTMUZC21aM4FHomMfOobbAxm994h4HG0aDobdkfW\nPJ/5450qdMqZ7MOsax/PvhW87cGvt4IHLkHPbmNwT7NsFyJyCZr039ssig2Zm5MBAsMr+BTBjyWL\nJubBu+vlKvhSgre930c937WxzCDrEB58qpLVPg+2GHC3e4T5ibdLFXwpwYfsGZi3aOx+2AT/JPrh\nbgKt56Pf3G2CT1k0ePrtg33MfceubR58rge/1gSfM775vwJ+USml0Cc5ZtEMquCbCT02mOUx2zBZ\nNKui4M2AU6GHJMyOY4kHf4hFkg5ZUjUsmiGDrLUVfI5FcxJ2p1h0hxfwXitNZtcpZtd2SZDVZ9G4\nE9bYiAVYwR9kNW0agj+MfkgYH/7C5rer4FMEX6PQKaTg3VoCXx9CBL82efCpjn4TuMz6/zK0irfx\n7cANIgI6z/z7RGRbKfXhxebecqXIv3ln88+NSqkbm7/7UvBnAk8GXkdrWDRDKXi70ClG8LZFk1Tw\nVkZEW4umTZDVePBVg6zNvtik24cHnwyyKoUS2e3XJvNDE8euFePDH2fxuG0zL8bMQ8Qbb2n6YK5f\n99qOBVgh7sFvMbtfjjNT8Ca4mmvRlCj4th58qv1QoZM5p0vLgxeRq4Gra7SV6uhngStF5HLgXvS4\nLtfaKyilnmN17APAR/zkDnD9l5W6/p2eD/oKsp6F33+HWRZNLsGHFO3QHnyOReMbqsCn4A80657p\nLI8GWS11+gRwQAQJPESH9OD3AcetuU5THnxOJatve2c0xBpS8OC3ylKjaBqCf9jTVy/BN22dCBz7\nEMGfw+JcrDaO03jrTl+Nb27fLzEFX9OiaePBE9m+WScUZFXo47QUBd8I3xvN/yLyjrZtRTuqlNoR\nkeuAj6N39n1KqVtE5C3N59cXbq+GRXNWwfZCAVaYKXjfZB+wmEUzBg8+ZdGUevCG2H0KPrW/O0qx\nI8I2+jj5yK5vi8Z+87PtGUh78Cc8fYuiUcbmOIYKnUy/3AdyroKHPIJPCYuQD78Pf+zA4BgzRR7K\nojnc9C+l4GOFTkQ+d9eNefA+Bb/t/PYhFmQ9xZpUsiY7qpT6GPAxZ5mX2JVSb040l0zxa6r+aip4\nX4AVMi0aEfYC38aiNQXDe/Api6bUg48RfMyisW9eQ0xHRXgX8CWl+A/NZ6Eb8hD1FbwdYIU6Y9H4\nYI5jjoJ3s2jMshoEv0E8EyWUC2/PUOVDbpD1GDMF36dFE/XgleKUCKfwK/i2QdYdpjlZW8GrmJwU\nP6jrwacUfMqi+Rngi0pxk2edMXrwtRR8LMhq7689ps/LmM+Fjin4qh48fgWfCrK26YM5jqUWTUrB\n28VOuUFWX4DVIKbgQ8QL6Tx4c7/YWTQXNp/3YdHsoAPGQvy69HnwNcaD92XtrAzBD93R2A1lnqjm\nAPat4J9Cq74z8Rd9HEWnf70NeH2gjVjqW03YijDlwYeCrCEFf5JyBR8i+EuJk6ppI2TplMJV8DbB\nm/Nn98UNsrZ5KNsVnSUWTY4Hbx64vjx4OzstR8HHCD5XwaeyaEzR40XodOrqWTSeoHUom62Wgj+B\n9uD3EI5lrQzBj2WwMVhM/eo1yNoE406gM39CCv75wF8qxRcC7Y+pkjW1XkjBP0B5HnyI4C9jfpKN\nUNZDH0FWn0XjHQ++QRcFn0PwblprSsE/ziy4mZsH39aDjxF8TqGTq+AvAr5BWaGT/TuFbdOnwFwI\nxlYpad+n4E+7StbayFHwMIxFA5oQnoaf4J9Cxwb+eeT7trIegwdvE3xOJeuZwH2U58HbN/5h9KBt\nB9GerEvwfQZZ7WsmZdG4N+sDwEMttlniwZco+EfQKYyQR/CmrTYWTRcFb4Ksbh68q+BrWTRmvZit\nF1LwpUMVrF0l69AdzVXwrQhehEPAK5Xik82imEUDcYL/OvAdSnFr5PvL8OBzHpK5Cv4QmuAvc5bn\nWDTm5jnStHNp8//QBB+zaIJ2kVK8q+U2bQ8+lI2S8uB930sRfC2LZi/dg6whBW+n29YqdDLrHyBO\n8D4PPqXgQwRv3hgUK07wY1Lw9oFrq+BfA/ym9X9rBa8USin+KvJdGDaLJjdNstSD9yn4lEVjE4ux\naAzB26QayqKpXujE4pDPqUKntijx4H1ZNDUUfMrugW4KPlXo9CSNgm+qxQ8B99NPFo1ZL2bruQo+\nx6IJFTrlVLL6KsJHiTERvGvR+E5OiuAPARdb/6cU/FNo9eFT8DlYFw9+n1PWHgtmhTx48xaQUvAn\nGUbBpzz4tmhr0aRIudSiycmi6ZommTNUwQVoq+sp8i2aNh58zKLxPQBNn0MIKfi1mpN1rEHWtgr+\nEHCRRVaxSlbQ5HQO7Ql+aAVfu5LVvOGYjCKDNlk0l6JrBcYUZI158G1hXt+3iCtU90Fb24PPyYOv\nGWTdxm/RmIns3eNd06LJ8eDbWDShIOvajEUzJgVfw6I5iD4pJj3OTNcXgiGEVVDwXQcbCyn4w6TH\nI7f74Q2yogn+dtJpkjU9ePsmdYOsqaEK2mIbLRyORYbcNcc6lEXj60eK4O3/lxlkPQQcVmr37eWZ\nhAm+lkWT48HXDLJOCr4lcsgJuil4mNk0OQoexq/gSwqdSj34J0mPR24QSpM8hLZobicvyNqXgrct\nk74smm30sYrl8Q+RRdPFg88tdPIFWY0oAK3in4eeB2KX4JuxemLHu60Hn6vgkxaQmaHMmbTE58FP\nBF+AlILvatGYfOynN79zgqz271KsgwdvCD5HwfuGKrAtml2Cb26cM1hM1zyJzgipHWR1PfG+gqw7\naOGQS/C5efCPEib4G4APOu0vs9DJvBU/iq4VeZD5N6Y9hAdBM/03bebAWDShfQ158Kl70lXxOZWs\nE8FHUBJkraXg+7RoxurBt1HwNsHvpV2Q9Ws4KXaem7xUvcVQQvA1Pfhcgi/JonkcPQ2eqdjc7atS\n3NxMGm+QG2StXei0l/lsJaPgXYsmZs9AhsL2rN/Gg089QFwf3hzPtcmDH5NFUyvIeoR8Bf8UOte1\nbdn8OnjwcwQvspsh4jtuvv09jA607UfPH2C/3oceEgQ+K4VN8O7wB3168G0smqiCbyqrn0AHLlN9\n7WLRlOTBuwR/NlqZm749iseiIZ5BA+08+DaFTqUKPlnJaippHWtntBiTgq8VZL0deHozOFGOgj8c\neZVMYYwefEklq3ndtge6Oh94OHBMQlk0z0dn0NjqLxaoNfvUFSkF35cHfxbxIXdjWTShBx/MfPjU\n2Ea2VTZkHvy5zL/tPoYWUz4FHyT4hiRVbB0HKQX/Debng859Q/Ap+FQlq/neSqj4MVWy1rJobkdb\nNHsBpVT0VfEI7e0ZWI4HnxPH6OLBX0i4hD9k0VwB/CXhKki3DdOfrrCvmTF68KEsmhjBn0uZgq+d\nB7+DntRkCx0rMULhBPrhY98vZmaoUovGbKeKRaMUP+xpG9IPkBwPPkbwuQ+opWFsCr6GRXM7WlWk\n7BnoTvBDe/A5laxdPfgLmFdDNkIKfpOZgrfVXyhQS+CzUsQUvDsvaW0FXzuLBmYKPtXXnIdFKwXf\nvLkdR78Nb1tvcifQb3eugodyiwYWA6OpdUtSa3NFhKvEcypZfd8bLcbmwdeyaC4mbc/Aain40sHG\nogq+8RBNwMwl+JCCtwts7Cwa0INNLUPBewm+ISbbMlpGkLUkiwbyCb7PQifzXXdSlu2mb/Y9FVPw\nOQHOkrFoSuYQ6BRktaZ93MuKWzRjUvA1LZp1U/C2B59zDHMqWQ8CR5uLOZfgfSRljt89jIjgG9gk\nV0vBt7Voair4PrNoQJ/HM51++iyax5p1zQxPS7FoAuvbv0MIBVlB9z9UXDURfAC5Fk2oGGMb2NME\nUH04hJ4cfAtN8ikFf3+zflsM7cHnWDS5Hrxd5ZvrwYcsGvAr+CGzaEIEb2f11BpsrI1Fk6vgL8D/\ngLaR87BYIHgRNgGxsmBCOM6igg958N+ybB1zb+ZYNH0SfIlF4wuygu7/AfznwRfPGiXGZNHYT1Pv\nNHpN9D329DyIJq370elbUQWvFH/hCdCUYGgPvotF4yr4EMHnWDQ+gnc9+FixFNQ5XvYN6iN4O9C4\nLA++VMFfiL9+wEaOReNT8DnqHWYEbx8vE3h0Cf5B2LXEzDq5Fk3fHnx2kLV5MNnnxij4yaIpQK6C\nP0jYOonZNCYP/j40wacUfFesrAdPnOBDQVafCjXpgnczy8CIjbmy4/zughIFX9ODz82DL82ieRRd\nU5Dqp91WiUWTyoE3OEYTZLWW2ZOsG3wKeIvzvX3kWTQ/hZ5zIQdFHryVhlmi4DeAU9aMUeZhNVk0\nBcgNshqi9sFL8M0T2IwomKXgK2CsHnwbBW/GosmxaHYVWnND/CCz3Hlj00we/KJFY66VUD8eIY/g\nh1DwPg8eLNGkFMeV4rPWOobgkxaNUnw8MP2eD6UWDehrOPWQsV0D92F53FrHhS8jbZQYk4JPWjQN\nQgp+P3C8CRoaBd83wY/Rg98C79yVroK3xxTpEmRFKT5kWQrmJh8Lwfdh0Rz0bMtGyKLJ8eBLCL40\nD77UokkpeBe2gq+ZI96G4J+TqIGBeQXvPixPWOv4vjcpeA9KLJoiBc+86r8fPYxp3xbNGD34vSxW\nsceenmkAABUwSURBVJrP+vDgXdgKfpAgqzV+i0sqrgdfK8gK6UpWd2iJnGulhOCLg6wMS/Apci1B\nMcErlZUd5yp4e39TCn4ieA9KLJpSBW/79vejq/DWTcHnVLKGcneTHnxjc6UIPkUsKYumZpDV9Gc/\nOuXTDUw+xWyE0ZoePLQrdMrNg69h0Zh4iH3OuwZZIY/gc7JoSmA8+Nr3mM057nkx/Z8IvgC5Fk2b\nIKv9ULiv+d2rgrdskNiNVgM+RRhab09gHZ+CN8fLjEVzEB1oik0mnSIpU1yUsmhqBllD0+fZbyY1\nPXgC27PX8RU6pR6Oj1rrpvoQtWiah52r4nMJPlToBKtj0eTAtvhCCn6yaAqQzOFuVGRxkJVFiwb6\nV/Cg96kPdWEjd7Cxk3RQ8MTVu2k/x6LZRzqLpqYHHyL4J5kFj2t68AS2ZxAqdIoeO6U4gT4XJR58\n7Dj6CD7HOll5iyYTroK3H0qTgm+BHAW/Bz1IWEgB5Fg0RsEPQfA71JuhKLaNXA++RMEbgjdzsl5E\nmuDnsmg8WEYWTUzB2wRf04Nvm0UTik0YPEI+wafeHNsq+BjBx96K+7Jo+iT4UJB1UvAtkBNkjdkz\nkKfgH2x+9x1kBX2zCSvswTeZR8fQk3bECD7HokkFWWt78CkFPxaLJld15xK8sXtiROoSfG4e/Niy\naPry4GNB1knBt0BOkDVmz0CGB68U22iiGkrBw3g8+NgASSEFD/rYPZtwkRPkBVmXkSaZY9EsI8jq\nZtHsgd0HagglCj7HorFTJUs9+LZB1lWyaGIevApUFE8EH0CORdNWwbvf+2X0FHJ94yRwssOkITko\n8eBDFk3Mgwd97C6njgc/VJDV3KBDBlm7ZNHkqNBHSffT7PcyLJplZNFsU28eXxspBR/a3kTwAeQM\nlNVFwe9+Tyl+N5INUhM71L/wfNvoatG4Ct4udII8gi+xaE7nIKvvgZwbqylV8CUWzSoXOkH/Ct6t\nZA3x1UTwAaTIyVg0NRT8UDhJv/YM+F/5Q+u1yaKBmUWTE2StkSa5DIKvEWQt8eDdLJocBV/TonHH\nhF/VQqeab302bAXvq2SdFHwh+rRoUg+GvrDDMASfO9hYFw/+cvIUfCqLJubBDxlktS2a2h58TiVr\nnwreZDMNZdEcB34+MdRwnxaN/bsWYoVOk4JvgcEsmgExhIIvGWxsD/6hCnwK3n4gHkanSqaCrKMb\nqoDxWTQmoKqsYri+FHwfFs0xnMHGlEIpxW9lfG+VLJpYodMJJoIvxpBB1qEwlILvatHkKHgYzqKp\ncbOa/uwjLw++JsGnJq52z4NR8Kk+5BB8TiwEuhU6tcla6TOLhhb9SSGl4EPbc8XSaJFF8CJyjYjc\nKiK3ichbPZ//qIjcJCJfFJFPiciLA031reDX3YPvYtHsXpTN4Fz7mT/OOQSfG2QdUyWrnUVTy4M/\nlsiaMufB3v9cBf+XwL9OrGMXOvWVBw/l56jPsWjs3zXbPb0VvIhsAO8GrgGuAq4VkRc4q90BfKdS\n6sXArwD/JtBcn0HWZVk0vSt46zV/izqVrIeAI86QwkbNPxJpv0aa5NCFTn3kwcfsGZipdZ+Cj+63\nUjyoFB9OtN93HnxXgl8li8YOsrpZNLEg69qMB/8q4Hal1F1KqW3gBuCN9gpKqf+slHq8+ffTwKWB\nttbRohlCwdNsI/WKHyN4+7XStWdAH7vHmiKxEGoOVVBDTacI/ghwQIQzIv0pRS7Bu29SNccs6jvI\natbpQvB9WDR9BFlPbwUPXIKejs3gnmZZCP898NHAZ+sYZB3CgzfbcVWhi9hgYzvAljUk8MPO54eJ\nB1hNGyWjSfrWOQHcW6kwLErw1hAMB6g7VEEuwe84y2qNWTREHjyMx6IZQsGvZRZNTiezb0QR+a/R\ncy3+Xf8aZ/+8yBPm4rlRKXWj9aE5aPtYPQWfO/VYF8T89eQ6SnFKhFPoh7pv3tXDxP13KBtN0kuo\nSrEjwrMS28mFTfAh4jI2TS2CP0E7i6a2gm8bZC0h+C5B1nXw4JeSBy8iVwNX12grp5PfRA9CZXAZ\nWsW7nXox8HvANUqpR93PNR7/1chMK7ZFk1LwhzzLl5kHP9R2QpMAu+vElMcWet5Vl+AfZzZIWwg5\nWTR2Jav3NT2RS10Cc4OGLBqY5cLXCrJ+EfjpjH6FsmhqELxdj9BXoROJtmPbW5UsmlEq+Eb43mj+\nF5F3tG0rp5OfBa4UkcuBe4E3AdfaK4jIM4EPAT+mlLo90laKnIxFs0pB1iEVfMqiiXnwMPPhfQT/\nEeBTGX0osWj6Ph8pDx5mCr5KkLWJUfx1YrVQFs2qWDRdPfhVKnSyhwt2x4Nf+UrWZCeVUjsich3w\ncfTBeJ9S6hYReUvz+fXAPwfOBd4rIgDbSqlXeZqrEWQ9ApxjL2h85QMsz4OvoQxTMEHWtoONQUTB\nK8Ux9AM8hlwFH6tkrQmb6GIKvqZFk4NQFg3UDbL2bdGcTlk0o1HwNZHVSaXUx4CPOcuut/7+R8A/\nymiqRpD1JuB/dJbtB44nhmHtC0Nl0eR68BB+o7AV/Bdb9CEn/zpVyVoTpj+hQieY5cIPTfB7mc9U\nqp0eugVI4pr35cHnFjrBeLJo+vTgY6NJxgh+X+CzUWHQStaM4pCcPPibgOeJcMBatix7BobPoknZ\nXJBW8Kmp+WLtd52TtSaMAsuxaGp58DnwnavaCn4faZXcNQ++bZB1VbJoYkHWVB78Sij4oYcqiCEr\nyNpYCTcDL7UWLyuDBsap4Nt48DkYq0WTE2StVeiUg1AWDdQLsuZk5EwWTRwxi+ZW4IOB700E3wK5\nQVaAzwCvtP5fVgYNDKfgczz4XAXfluBNEPeUUwVrIzUefE2UBFmHtmjcquPaCn4/eQp+KnQKIxhk\nVYr7leJ3It+bCL4Q5qDlqPHPoCtsDZZp0Qyt4FOBavu3ixoKPqUcU5WsNTFmgrd/Qz8efKotM5m6\nwaoWOvXlwccUfKo/E8EX4iT6YhSlkheHq+CXadEM6cFDdwW/F53x5Fay5iCH4If24IfOg8+B7zzU\nJKnch8XD6Ie5QS7Bm/uvSx78Klg0MQ8+9b2J4AuxA5xNHlHfDFwsspsuebooeLO9tutsAxcBT7Qs\nNjLecuzmtT34obJochT8GSyX4GsreEiT6KPAQRH2NqnEWdZJY79tU06ox2msuYiF1wbL8OBjmAi+\nBU6iCT5J1E1q2OeBVzSLTgcFn3OR5xD8xbSzZ0y7Y7JocitZz4XeJ0Z3+2X/tv+uFWRNttWQ7LfQ\nD/U9wImCY3As1b5newp9/muqd+jPgz+BvlZhIvjeUaLgYd6HX2aQdUwKPuXB7wDPoBvBp6oxjUUz\nVJB1P1oxhvb5SXRh3FD+Owyn4HPaegB4Gvn2jMHxzPZdHKM+wfflwX+T2ci3JbbSRPAt0IbgjQ9/\nuuTBQ3eLpouCz0nPGzpN8hDxwb+eRCv4IQneHJ8+s2ggj5Bsgi/JbOlC8DUzaKA/i+YO4DnN3yUK\nfps1Gg9+KJgy+1yi/hvg1SJscfrkwZvtpdYJ+Z87dLdoUgp+6CyaFMEfRiv4Iauch8iiyW1raAV/\nlNVR8HcBz2rmC5gsmp5hTl4uUd8JfA64nsUJpIfE0Aq+hgffporVbjd2A2+TN9JhDZxEn/uUgh+D\nRVNTwZsHeE5b99Oe4Nscs+oWTePt77TsT6zdo+hMo2cwEXzvMCcvS8E3J/1a4MXAm3O/1wOGUvC+\n135fX2LrdPXgkyRlBdoOMoyC32R8Fk2vHnxzjE9SbtGUEPwTtBNNfVg00J+QMjbNRPA9w9wA2RdV\nM7b89zffaZPXXQOnkwefS1LH0dbJEAQPaYtmiICvjb6zaCBfWLQl+NcDX2rRrz6CrNAubTMHd6IJ\nfi2DrGPqZKlFA+iSYhFeSD+qIQfvR1cM9o0aFs0OupisNwXfYGwEb687BHxvUjU9eNNeLsE/nUKC\nVyo6+XoMx+hHOP4x+q2iNtZawY+pk+YGKLZalFqaPYNSfHmgTdVS8NC/gj+G9saXTvBKcUIkOnlD\ndVjTI/blwUO5RbOXMgXfFseYVYdWg1L8eO02G9wBvI41JfgxWTStFPxphKQH3xS2qMg65hgPZdEM\nEWSF9BypTzKsRQOLQcFlKvg2Fk1b9GXR9IW1VvBjJPilqfGRI0fBm89TCr5tFo3pQ+oG3i1Zb7md\nXIyd4Pu0aHbII9KHgbPQb1QTwS/CEHxJ1tfKEPyYOlkcZD3NkJsL7BKL+9mRJj2sDUosGrO9PmHa\nT+3PYRhsmAKDOQVv2Ta1jkmWgm+2+xDwTIaJU5kRJVcF96MLLM9gDYOsY1TwE8H7kavgYwS/TXt7\nxt52jkVj+tInShT8kEFW8J+Hmim1JW09ADyLScEvoLE170SPurl2Cn6MBD9ZNH5sAypjsKgd4pWs\nXQi+JIvGXr8vrJJFY5YNHWSFieBTuLP5PRF8j5gsmjhyK/lSHvwQCn4oiyaX4A8P0BcXvvN1uij4\nZaUst8Udze+J4HvEpODjiFkvuevt0D7ACuUWzemeRdOngi9pa1LwcUwEPwAmBR9HDYLvpOAbe+gU\neVk0pi99okTBr6MHX2LRHGAi+BAMwa9dkHVMnZyCrHHklmrHCP7DFfqRQ1JDEbyJNYxVwbvbrO3B\nlyh4GIbgb2B+ou9VQBsFvxLDBY+J4FtXsp4myFXwQQ9eKT5TqR+j8OCVQjWph2Ml+DFl0cAABK8U\nX+97Gz3gTuBwZNIYFyuj4Edj0TTpSseYFHwINSyaGhiTggfdn7EGWceURQPDKPiVQzNo4eUFX9lm\nIvhWuEqplYvAD4VVJPghfO8cgh+LRVNTwZcGWWH1slsGg1JFo9EONYJsZ4zqKaTUbj7qhEXkpkn2\nTfA5JfLHgJ2BJrnOIfi70RWLQ2IIBZ/b1rdg9w15QkcoxRPo8X1Gj1ER/IQotlktBT+UYt4hQfBK\n8WfAnw3TnV34zsM/Br5aqf1si0YpTjbDFUwEf5phIvjVQUmQNVTJWgNjI/gcBb8MLLxxKcUnKrZf\navc8wETwpx3G5sFPCGNMFk1OFs3pTvC5b1xtURJkBXgPcHNPfZkwUkwKfnWwakHWoYJQYyX4MTxo\nd6EUv9tjXyaMFJOCXx1MHrwf1wP3DbStEuS+cbXFUJO9T1hhTAp+dVBjsLFa/cgZqmAQgleKdw6x\nnRbo+0H7x0yWy4QEJoJfHaySRTOkBz9W9HoelOI9fbU9YX2QtGhE5BoRuVVEbhORtwbW+Z3m85tE\n5GX1uzmB1SL4IS2asaJvi2bChCSiBC8iG8C7gWuAq4BrReQFzjqvB56rlLoS+BngvT31dakQkauX\n3IVOHnzF/ucE96oS/AiOfRvsnocV7f8upv6vLlIK/lXA7Uqpu5RS2+iR4t7orPMG4N8DKKU+DZwj\nIitR5VWIq5e8/SebnxT+V+D/9Sy/ulI/ci2amgHAqyu2NRQ+BPxN8/fVS+xHDVy97A50xNXL7sCy\nkPLgL0GXeRvcA7w6Y51LmY1/MaEOPgP8QGolpfh8z/3IUfD3MCO30xJK8aFl92HChBTB544lIi2/\nNyETzbguY8j3fgx4JLaCUtwN/PQw3ZkwYUIIolSYi0XkNcA7lVLXNP+/DTillPoNa53fBW5USt3Q\n/H8r8F1KqQectibSnzBhwoQWUEq5IjoLKQX/WeBKEbkcuBd4E3Cts86HgeuAG5oHwmMuuXfp4IQJ\nEyZMaIcowSuldkTkOuDjwAbwPqXULSLylubz65VSHxWR14vI7ejZmN7ce68nTJgwYUISUYtmwoQJ\nEyasLnofiyanUGpMEJHLROSTIvIVEfmyiPyTZvl5IvIJEfmqiPypiJyz7L7GICIbIvJ5EflI8//K\n9F9EzhGRPxSRW0TkZhF59Yr1/23N9fMlEfkDEdk71v6LyPtF5AER+ZK1LNjXZt9ua+7p1y2n1zME\n+v9/NNfOTSLyIRE52/ps9P23PvunInJKRM6zlhX1v1eCzymUGiG2gf9ZKfVC4DXAP276/IvAJ5RS\nz0Pnmf/iEvuYg59Dj1ViXtFWqf+/DXxUKfUC4MXAraxI/5t41U8DL1dKvQhtbf4w4+3/B9D3pw1v\nX0XkKnQc7qrmO+8RkWUPWOjr/58CL1RKvQQ9wcrbYKX6j4hcBvw3MJvEvE3/+965nEKpUUEpdb9S\n6gvN34eBW9C5/rsFXc3vZE76siAilwKvB/4tsxTWleh/o7a+Qyn1ftBxIKXU46xI/4En0CLhgIhs\nAgfQCQqj7L9S6i+AR53Fob6+EfigUmpbKXUXcDv6Hl8afP1XSn1CKWUmvfk0ui4HVqT/Df4F8AvO\nsuL+903wviKoS3reZjU0auxl6IvkaVZ20AOMe07Gfwn8M+ZndlqV/j8b+JaIfEBE/lZEfk9EDrIi\n/VdKPQL8FvANNLE/ppT6BCvS/wahvj4DfQ8brML9/FPAR5u/V6L/IvJG4B6l1Bedj4r73zfBr2wE\nV0QOAf8R+Dml1NwQAUpHpke5byLy/cCDSqnPs1iABoy7/+jMrpcD71FKvRydmTVnZ4y5/yJyBfA/\nAZejb8hDIvJj9jpj7r+LjL6Odj9E5JeAE0qpP4isNqr+i8gB4O3AO+zFka9E+983wX8TuMz6/zLm\nn0CjhIhsocn995VSf9QsfkBEnt58fjHw4LL6l8BrgTeIyJ3AB4HvFpHfZ3X6fw9avXym+f8P0YR/\n/4r0/xXAXymlHlZK7aDHpPk7rE7/IXytuPfzpc2y0UFEfhJtU/6otXgV+n8FWhzc1NzDlwKfEz2+\nV3H/+yb43UIpEdmDDhB8uOdtdoKICPA+4Gal1L+yPvow8BPN3z8B/JH73TFAKfV2pdRlSqlno4N7\n/59S6sdZnf7fD9wtIs9rFn0P8BXgI6xA/9EB4deIyP7mWvoedLB7VfoP4Wvlw8APi8geEXk2cCUj\nHHNIRK5BW5RvVErZE42Pvv9KqS8ppZ6mlHp2cw/fgw7YP0Cb/iulev0Bvg/4L+iAwNv63l6F/v49\ntHf9BeDzzc81wHnAn6Gj8n8KnLPsvmbsy3cBH27+Xpn+Ay9BD652E1oBn71i/f8F9EPpS+gg5dZY\n+49+y7sXPUvX3ehCxWBf0fbB7egH2feOsP8/BdyGzj4x9+97VqD/x83xdz6/Azivbf+nQqcJEyZM\nWFMsOwd0woQJEyb0hIngJ0yYMGFNMRH8hAkTJqwpJoKfMGHChDXFRPATJkyYsKaYCH7ChAkT1hQT\nwU+YMGHCmmIi+AkTJkxYU/z/F9GIVkYSWSEAAAAASUVORK5CYII=\n",
186 |       "text/plain": [
187 |        ""
188 |       ]
189 |      },
190 |      "metadata": {},
191 |      "output_type": "display_data"
192 |     }
193 |    ],
194 |    "source": [
195 |     "num_points = 130\n",
196 |     "y = np.random.random(num_points)\n",
197 |     "plt.plot(y)"
198 |    ]
199 |   },
200 |   {
201 |    "cell_type": "markdown",
202 |    "metadata": {},
203 |    "source": [
204 |     "This is some text, here comes some latex"
205 |    ]
206 |   },
207 |   {
208 |    "cell_type": "code",
209 |    "execution_count": 12,
210 |    "metadata": {
211 |     "collapsed": false
212 |    },
213 |    "outputs": [
214 |     {
215 |      "data": {
216 |       "text/latex": [
217 |        "\\begin{align}\n",
218 |        "\\nabla \\times \\vec{\\mathbf{B}} -\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{E}}}{\\partial t} & = \\frac{4\\pi}{c}\\vec{\\mathbf{j}} \\\\\n",
219 |        "\\nabla \\cdot \\vec{\\mathbf{E}} & = 4 \\pi \\rho \\\\\n",
220 |        "\\nabla \\times \\vec{\\mathbf{E}}\\, +\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{B}}}{\\partial t} & = \\vec{\\mathbf{0}} \\\\\n",
221 |        "\\nabla \\cdot \\vec{\\mathbf{B}} & = 0\n",
222 |        "\\end{align}"
223 |       ],
224 |       "text/plain": [
225 |        ""
226 |       ]
227 |      },
228 |      "metadata": {},
229 |      "output_type": "display_data"
230 |     }
231 |    ],
232 |    "source": [
233 |     "%%latex\n",
234 |     "\\begin{align}\n",
235 |     "\\nabla \\times \\vec{\\mathbf{B}} -\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{E}}}{\\partial t} & = \\frac{4\\pi}{c}\\vec{\\mathbf{j}} \\\\\n",
236 |     "\\nabla \\cdot \\vec{\\mathbf{E}} & = 4 \\pi \\rho \\\\\n",
237 |     "\\nabla \\times \\vec{\\mathbf{E}}\\, +\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{B}}}{\\partial t} & = \\vec{\\mathbf{0}} \\\\\n",
238 |     "\\nabla \\cdot \\vec{\\mathbf{B}} & = 0\n",
239 |     "\\end{align}"
240 |    ]
241 |   },
242 |   {
243 |    "cell_type": "markdown",
244 |    "metadata": {
245 |     "collapsed": true
246 |    },
247 |    "source": [
248 |     "Apos?"
249 |    ]
250 |   },
251 |   {
252 |    "cell_type": "code",
253 |    "execution_count": 1,
254 |    "metadata": {
255 |     "collapsed": true
256 |    },
257 |    "outputs": [],
258 |    "source": [
259 |     "import re"
260 |    ]
261 |   },
262 |   {
263 |    "cell_type": "code",
264 |    "execution_count": 2,
265 |    "metadata": {
266 |     "collapsed": true
267 |    },
268 |    "outputs": [],
269 |    "source": [
270 |     "text = 'foo bar\\t baz \\tqux'"
271 |    ]
272 |   },
273 |   {
274 |    "cell_type": "code",
275 |    "execution_count": 3,
276 |    "metadata": {
277 |     "collapsed": false
278 |    },
279 |    "outputs": [
280 |     {
281 |      "data": {
282 |       "text/plain": [
283 |        "['foo', 'bar', 'baz', 'qux']"
284 |       ]
285 |      },
286 |      "execution_count": 3,
287 |      "metadata": {},
288 |      "output_type": "execute_result"
289 |     }
290 |    ],
291 |    "source": [
292 |     "re.split('\\s+', text)"
293 |    ]
294 |   },
295 |   {
296 |    "cell_type": "code",
297 |    "execution_count": null,
298 |    "metadata": {
299 |     "collapsed": true
300 |    },
301 |    "outputs": [],
302 |    "source": []
303 |   }
304 |  ],
305 |  "metadata": {
306 |    "name": "IPython NB",
307 |    "Title": "With Metdata inside the .ipynb",
308 |    "Date": "2013-2-16",
309 |    "Category": "Category",
310 |    "Tags": "tag1,tag2",
311 |    "Slug": "with-metadata",
312 |    "Author": "Me",
313 | 
314 |   "kernelspec": {
315 |    "display_name": "Python 3",
316 |    "language": "python",
317 |    "name": "python3"
318 |   },
319 |   "language_info": {
320 |    "codemirror_mode": {
321 |     "name": "ipython",
322 |     "version": 3
323 |    },
324 |    "file_extension": ".py",
325 |    "mimetype": "text/x-python",
326 |    "name": "python",
327 |    "nbconvert_exporter": "python",
328 |    "pygments_lexer": "ipython3",
329 |    "version": "3.4.3"
330 |   }
331 |  },
332 |  "nbformat": 4,
333 |  "nbformat_minor": 0
334 | }
335 | 


--------------------------------------------------------------------------------
/plugins/ipynb/tests/pelican/pelicanconf_liquid.py:
--------------------------------------------------------------------------------
 1 | from __future__ import unicode_literals
 2 | 
 3 | LOAD_CONTENT_CACHE = False
 4 | 
 5 | SITEURL = ''
 6 | SITENAME = u'ipynb-test'
 7 | 
 8 | TIMEZONE = 'UTC'
 9 | DEFAULT_LANG = 'en'
10 | 
11 | MARKUP = ('md', )
12 | 
13 | # PLUGINS SETTINGS
14 | PLUGIN_PATHS = ['../../../../plugins']
15 | PLUGINS = ['ipynb.markup', 'ipynb.liquid']
16 | 
17 | THEME = 'theme'
18 | 


--------------------------------------------------------------------------------
/plugins/ipynb/tests/pelican/pelicanconf_markup.py:
--------------------------------------------------------------------------------
 1 | from __future__ import unicode_literals
 2 | 
 3 | LOAD_CONTENT_CACHE = False
 4 | 
 5 | SITEURL = ''
 6 | SITENAME = u'ipynb-test'
 7 | 
 8 | TIMEZONE = 'UTC'
 9 | DEFAULT_LANG = 'en'
10 | 
11 | MARKUP = ('md', 'ipynb')
12 | 
13 | # PLUGINS SETTINGS
14 | PLUGIN_PATHS = ['../../../../plugins']
15 | PLUGINS = ['ipynb.markup']
16 | 
17 | THEME = 'theme'
18 | 


--------------------------------------------------------------------------------
/plugins/ipynb/tests/pelican/theme/templates/base.html:
--------------------------------------------------------------------------------
 1 | 
 2 | 
 3 |     
 4 |         {% block title %}{% endblock %} | {{ SITENAME }}
 5 |     
 6 | 
 7 |     
 8 |         {% block content %}{% endblock %}
 9 |     
10 | 
11 | 


--------------------------------------------------------------------------------
/publishconf.py:
--------------------------------------------------------------------------------
 1 | #!/usr/bin/env python
 2 | # -*- coding: utf-8 -*- #
 3 | from __future__ import unicode_literals
 4 | 
 5 | # This file is only used if you use `make publish` or
 6 | # explicitly specify it as your config file.
 7 | 
 8 | import os
 9 | import sys
10 | sys.path.append(os.curdir)
11 | from pelicanconf import *
12 | 
13 | SITEURL = 'http://cbonnett.github.io'
14 | RELATIVE_URLS = False
15 | 
16 | FEED_ALL_ATOM = 'feeds/all.atom.xml'
17 | CATEGORY_FEED_ATOM = 'feeds/%s.atom.xml'
18 | 
19 | DELETE_OUTPUT_DIRECTORY = True
20 | 
21 | # Following items are often useful when publishing
22 | 
23 | 
24 | #DISQUS_SITENAME = ""
25 | GOOGLE_ANALYTICS = "UA-9853651"
26 | 


--------------------------------------------------------------------------------