├── README.md
├── dataset.py
├── get_the_metric.py
├── train_2d3d.py
├── labelflattenedp.csv
└── LICENSE
/README.md:
--------------------------------------------------------------------------------
1 | # Simultaneous Alignment and Surface Regression Using Hybrid 2D-3D Networks for 3DCoherent Layer Segmentation of Retina OCT Images
2 |
3 | Code for paper "Simultaneous Alignment and Surface Regression Using Hybrid 2D-3D Networks for 3DCoherent Layer Segmentation of Retina OCT Images."
4 |
5 | The codes are implemented in PyTorch 1.4 and trained on NVIDIA 2080Ti GPUs.
6 |
7 | Parts of codes are borrowed from https://github.com/Hui-Xie/DeepLearningSeg.
8 |
9 | The preprocess code: https://github.com/YufanHe/oct_preprocess
10 |
11 | ## datasets
12 |
13 | 1. public A2A OCT dataset: https://people.duke.edu/~sf59/RPEDC_Ophth_2013_dataset.htm
14 | 2. public JHU OCT dataset: http://iacl.ece.jhu.edu/index.php/Resources
15 |
16 | ## Contact
17 |
18 | If you have any questions, please do not hesitate to contact liuhong@stu.xmu.edu.cn
19 |
--------------------------------------------------------------------------------
/dataset.py:
--------------------------------------------------------------------------------
1 | import os
2 | import csv
3 | import glob
4 | import torch
5 | import torch.nn.functional as F
6 | import random
7 | import torch.utils.data
8 | import scipy.io as scio
9 | import warnings
10 | warnings.filterwarnings('ignore')
11 | from numpy import *
12 | import numpy as np
13 | import scipy.ndimage
14 |
15 | from sklearn import preprocessing
16 |
17 | def getLayerLabels(surfaceLabels, height):
18 |
19 | if surfaceLabels is None:
20 | return None
21 |
22 | H = height
23 | device = surfaceLabels.device
24 | N, W, D = surfaceLabels.shape # N is the number of surface
25 | layerLabels = torch.zeros((H, W, D), dtype=torch.long, device=device)
26 | surfaceLabels = (surfaceLabels + 0.5).long() # let surface height match grid
27 | surfaceCodes = torch.tensor(range(1, N + 1), device=device).unsqueeze(dim=-1).unsqueeze(dim=-1).expand_as(surfaceLabels)
28 | layerLabels.scatter_(0, surfaceLabels, surfaceCodes) #surface 0 in its exact location marks as 1, surface N-1 mark as N.
29 |
30 | for i in range(1,H):
31 | layerLabels[i,:, :] = torch.where(0 == layerLabels[i,:, :], layerLabels[i-1,:, :], layerLabels[i,:, :])
32 |
33 | return layerLabels
34 |
35 |
36 | class sd_oct_flattenp_align(torch.utils.data.Dataset):
37 | """
38 | dataset for a2a_sd_oct.
39 | the train and valid sets are splited by the label.csv.
40 | """
41 |
42 | def __init__(self, label_dir, data_name = "a2a_oct", valid_fold = 0, usage = "train", transform=None, step=40):
43 | super(sd_oct_flattenp_align, self).__init__()
44 |
45 | self.data_path = []
46 | self.data = []
47 | self.seg = []
48 | self.name = []
49 | self.step = step
50 | self.usage = usage
51 | self.valid_fold = valid_fold
52 |
53 | # load file path and split train set and valid set.
54 | label_file = "labelflattenedp.csv"
55 | label_file_path = os.path.join(label_dir, label_file)
56 | label = open(label_file_path, "r")
57 | csv_reader = csv.reader(label)
58 |
59 | for path, fold in csv_reader:
60 | path = path.replace("afterfp2","flattened")
61 | if int(fold) == valid_fold and self.usage == "valid":
62 | self.data_path.append(path)
63 | elif int(fold) != valid_fold and self.usage == "train":
64 | self.data_path.append(path)
65 | print("load " + self.usage + " " + str(len(self.data_path)))
66 |
67 | # load data and seg
68 | for l in self.data_path:
69 | try:
70 | cur_data = scio.loadmat(l)
71 | except:
72 | print(l)
73 | continue
74 |
75 | cur_img = cur_data["data"][0,0]["flat_vol"][:, 300:700, 18:58]
76 | cur_seg = cur_data["data"][0,0]["bds"][300:700, 18:58, :]
77 |
78 | if cur_img.shape[0] != 320:
79 | print(cur_img.shape[0])
80 | continue
81 | if sum(np.isnan(cur_seg)) > 0:
82 | continue
83 | if cur_seg.min() < 5 or cur_seg.max() > 315:
84 | continue
85 |
86 | # normalization
87 | mu = np.mean(cur_img, axis=0)
88 | sigma = np.std(cur_img, axis=0)
89 | cur_img = (cur_img - mu) / sigma
90 | step = self.step
91 |
92 | for i in range((cur_img.shape[1] - 48) // step):
93 | cur_idx = i*step
94 | self.name.append(l.split("/")[-1]+str(i).zfill(3)+str(cur_idx).zfill(3))
95 | cur_idx = i*step
96 | self.data.append(cur_img.astype(np.float32)[:,cur_idx : cur_idx + 48,:])
97 | self.seg.append(np.round(cur_seg).astype(np.float32)[cur_idx : cur_idx + 48,:,:])
98 | cur_idx = 400 - 48
99 | self.name.append(l.split("/")[-1]+str(i).zfill(3)+str(cur_idx).zfill(3))
100 | self.data.append(cur_img.astype(np.float32)[:,cur_idx : cur_idx + 48,:])
101 | self.seg.append(np.round(cur_seg).astype(np.float32)[cur_idx : cur_idx + 48,:,:])
102 |
103 | print("load " + self.usage + " " + str(len(self.data)))
104 |
105 | def __getitem__(self, index):
106 | patch = self.data[index]
107 | name = self.name[index]
108 | seg = self.seg[index]
109 |
110 | layer_gt = getLayerLabels(torch.tensor(seg).permute(2,0,1), 320)
111 | return torch.tensor(patch).unsqueeze(0), torch.tensor(seg).permute(2,0,1), layer_gt, name
112 |
113 | def __len__(self):
114 | return len(self.data)
115 |
116 |
117 |
118 |
119 |
120 |
121 |
--------------------------------------------------------------------------------
/get_the_metric.py:
--------------------------------------------------------------------------------
1 | import os
2 | import argparse
3 | import torch
4 | import cv2
5 | import sys
6 | import csv
7 | import numpy as np
8 | from numpy import *
9 | import torchvision.transforms as transforms
10 | import torch.nn as nn
11 | from torch.utils.data.sampler import WeightedRandomSampler
12 | from model2d_3d import *
13 | from sklearn.metrics import confusion_matrix,accuracy_score,f1_score,roc_auc_score,recall_score,precision_score
14 | import scipy.ndimage
15 | import scipy.io as io
16 |
17 | from dataset import *
18 | from losses import *
19 |
20 | # for visualization
21 | from torch.utils.tensorboard import SummaryWriter
22 |
23 | # Set arguments and hyper-parameters.
24 | parser = argparse.ArgumentParser(description='baseline')
25 | parser.add_argument('--data_dir', default='/data3/layer_segmentation/a2a_oct', type=str, help='Directory to load PCam data.')
26 | parser.add_argument('--label_dir', default='./label', type=str, help='Directory to load label files.')
27 | parser.add_argument('--ckpt_dir', default='./checkpoint', type=str, help='Directory to save checkpoint.')
28 |
29 | parser.add_argument('--gpu', default='0', type=str, help='GPU Devices to use.')
30 | parser.add_argument('--ck_name', default="2d3d_5_inter20_123_noncc_047_fold0_1.008%.t7", type=str, help='GPU Devices to use.')
31 | parser.add_argument('--batch_size', default=7, type=int, help='Batch size.')
32 |
33 | parser.add_argument('--lr', default=3e-4, type=float, help='Starting learning rate.')
34 | parser.add_argument('--lr_decay', default=0.9, type=float, help='Learning rate decay.')
35 | parser.add_argument('--lr_decay_step', default=1, type=int, help='Learning rate decay step.')
36 | parser.add_argument('--weight_decay', default=1e-4, type=float, help='L2 penalty for regularization.')
37 | parser.add_argument('--weight_g', default=0.3, type=float, help='L2 penalty for regularization.')
38 |
39 |
40 | parser.add_argument('--start_epoch', default=1, type=int, help='Starting epoch.')
41 | parser.add_argument('--epochs', default=20, type=int, help='Number of training epochs.')
42 | parser.add_argument('--resume', '-r', action='store_true', help='Resume from checkpoint or not.')
43 | parser.add_argument('--store_last', action='store_true', help='store the last model.')
44 | parser.add_argument('--resume_last', action='store_true', help='resume the last model.')
45 | parser.add_argument('--name', default='layers', type=str, help='The id of this train')
46 | parser.add_argument('--valid_fold', default=0, type=int, help='Starting epoch.')
47 |
48 | parser.add_argument('--norm', type=str, default='inorm', dest='norm')
49 | parser.add_argument('--ny_in', type=int, default=320, dest='ny_in')
50 | parser.add_argument('--nx_in', type=int, default=400, dest='nx_in')
51 | parser.add_argument('--nch_in', type=int, default=40, dest='nch_in')
52 |
53 | parser.add_argument('--ny_out', type=int, default=320, dest='ny_out')
54 | parser.add_argument('--nx_out', type=int, default=400, dest='nx_out')
55 | parser.add_argument('--nch_out', type=int, default=40, dest='nch_out')
56 |
57 | parser.add_argument('--nch_ker', type=int, default=64, dest='nch_ker')
58 | parser.add_argument('--image-loss', default='mse', help='image reconstruction loss - can be mse or ncc (default: mse)')
59 |
60 | args = parser.parse_args()
61 |
62 |
63 | if not os.path.exists(args.ckpt_dir): os.makedirs(args.ckpt_dir)
64 | print('==> Arguments:')
65 | print(args)
66 |
67 | # Set GPU device.
68 | os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
69 | device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
70 |
71 | ck_name = args.ck_name
72 |
73 | # load checkpoint
74 | checkpoint = torch.load("./checkpoint/"+ ck_name)
75 |
76 | model = checkpoint["model"].module
77 | model = model.to(device)
78 |
79 | if len(args.gpu) > 1:
80 | model = nn.DataParallel(model)
81 |
82 |
83 |
84 | def load_data(data_dir, label_dir):
85 | valid_set = sd_oct_flattenp_align(data_dir, label_dir, usage = 'valid', valid_fold = args.valid_fold, step = 20)
86 |
87 | valid_loader = torch.utils.data.DataLoader(valid_set, batch_size=args.batch_size, shuffle=False, pin_memory=True, num_workers=4)
88 | return valid_loader
89 |
90 |
91 | def valid(epoch, valid_loader):
92 | print("valid:")
93 | global best_loss
94 |
95 | model.eval()
96 | surface_ces = []
97 | loss_sl1s = []
98 | loss_grads = []
99 | loss_gds = []
100 | loss_nccs = []
101 |
102 | flows = []
103 | result = []
104 | target = []
105 | metric = [] # mean_dis
106 |
107 | store_path = ""
108 | if store_path != "" and not os.path.exists(store_path):
109 | os.mkdir(store_path)
110 |
111 | names = []
112 | with torch.no_grad():
113 | for idx, (data, mask, layer_gt, name) in enumerate(valid_loader):
114 | data = data.to(device)
115 | mask = mask.float()
116 | layer_gt = layer_gt.float().to(device)
117 | s, logits, layerProb, mu, x, flow = model(data)
118 |
119 |
120 | #print(flow[:, 1].abs().mean(), mean_dis)
121 | result.append(s.cpu()[:,:,:,:] + flow.detach().cpu()[:,:,:,:])
122 | target.append(mask[:,:,:,:])
123 | flows.append(flow.detach().cpu()[:,:,:,:])
124 | names.extend(name)
125 |
126 |
127 | print()
128 | result = torch.cat(result).numpy()
129 | target = torch.cat(target).numpy()
130 | flows = torch.cat(flows).numpy()
131 | cat_metric(names, result, target, flows)
132 | print(mean(metric), mean(loss_nccs), mean(surface_ces), mean(loss_sl1s), np.mean(loss_grads, 0), mean(loss_gds))
133 |
134 |
135 | def cat_metric(name, result, target, flows):
136 |
137 | # to concat the patches to original volume to calculate the final metric, each A-scan will have more than one segmentation, depend on the step of patch(dataset)
138 |
139 | name_list = list(set([l[:-6] for l in name]))
140 |
141 | n, nc, w, h = result.shape
142 | AMD_list = []
143 | NOR_list = []
144 |
145 | for idx,l in enumerate(name_list):
146 | if "AMD" in l:
147 | AMD_list.append(idx)
148 | else:
149 | NOR_list.append(idx)
150 |
151 | deno = np.zeros((len(name_list), nc, 400, 40)) # denominator
152 | mulo = np.zeros((len(name_list), nc, 400, 40)) # molecule
153 |
154 | denot = np.zeros((len(name_list), nc, 400, 40)) # denominator
155 | mulot = np.zeros((len(name_list), nc, 400, 40)) # molecule
156 |
157 | ft = np.zeros((len(name_list), 1, 1, 40)) # denominator
158 | mft = np.zeros((len(name_list),1,1,1)) # molecule
159 |
160 | for idx, l in enumerate(name):
161 |
162 | cname = l[:-6]
163 | widx = int(l[-3:])
164 |
165 | nameidx = name_list.index(cname)
166 |
167 | deno[nameidx, :, widx: widx + 48, :] = deno[nameidx, :, widx: widx + 48, :] + result[idx,:,:,:]
168 | denot[nameidx, :, widx: widx + 48, :] = denot[nameidx, :, widx: widx + 48, :] + target[idx,:,:,:]
169 |
170 | mulo[nameidx, :, widx: widx + 48, :] += 1
171 | mulot[nameidx, :, widx: widx + 48, :] += 1
172 |
173 | ft[nameidx, :, :, :] += flows[idx, :,:,:]
174 | mft[nameidx, :,:,:] += 1
175 |
176 | deno = deno / mulo
177 |
178 | # this target is the same as the target in origin volume.
179 | denot = denot / mulot
180 |
181 | ft = ft / mft
182 |
183 | rmean = np.abs(np.round(deno)-np.round(denot))
184 | print(rmean.mean() * 3.24)
185 | print(np.mean(rmean, (0,2,3)) * 3.24)
186 | AMD_mean = rmean[AMD_list]
187 | NOR_mean = rmean[NOR_list]
188 | print("AMD:")
189 | print(np.mean(AMD_mean, (0,2,3)) * 3.24)
190 |
191 | print("NOR:")
192 | print(np.mean(NOR_mean, (0,2,3)) * 3.24)
193 |
194 | means = np.mean(rmean, (2,3))
195 |
196 |
197 |
198 |
199 |
200 | if __name__ == '__main__':
201 | valid_loader= load_data(args.data_dir, args.label_dir)
202 | valid(0, valid_loader)
203 |
--------------------------------------------------------------------------------
/train_2d3d.py:
--------------------------------------------------------------------------------
1 | import os
2 | import argparse
3 | import torch
4 | import cv2
5 | import sys
6 | import csv
7 | import numpy as np
8 | from numpy import *
9 | import torchvision.transforms as transforms
10 | import torch.nn as nn
11 | from torch.utils.data.sampler import WeightedRandomSampler
12 | from model2d_3d import *
13 | from sklearn.metrics import confusion_matrix,accuracy_score,f1_score,roc_auc_score,recall_score,precision_score
14 | import scipy.ndimage
15 | import scipy.io as io
16 |
17 | from dataset import *
18 | from losses import *
19 |
20 | # for visualization
21 | from torch.utils.tensorboard import SummaryWriter
22 |
23 |
24 | # Set arguments and hyper-parameters.
25 | parser = argparse.ArgumentParser(description='baseline')
26 | parser.add_argument('--label_dir', default='./label', type=str, help='Directory to load label files.')
27 | parser.add_argument('--ckpt_dir', default='./checkpoint', type=str, help='Directory to save checkpoint.')
28 |
29 | parser.add_argument('--gpu', default='0', type=str, help='GPU Devices to use.')
30 | parser.add_argument('--batch_size', default=9, type=int, help='Batch size.')
31 |
32 | parser.add_argument('--lr', default=0.001, type=float, help='Starting learning rate.')
33 | parser.add_argument('--lr_decay', default=0.9, type=float, help='Learning rate decay.')
34 | parser.add_argument('--lr_decay_step', default=1, type=int, help='Learning rate decay step.')
35 | parser.add_argument('--weight_decay', default=1e-4, type=float, help='L2 penalty for regularization.')
36 | parser.add_argument('--weight_g', default=0.3, type=float, help='L2 penalty for regularization.')
37 |
38 |
39 | parser.add_argument('--start_epoch', default=1, type=int, help='Starting epoch.')
40 | parser.add_argument('--epochs', default=90, type=int, help='Number of training epochs.')
41 | parser.add_argument('--resume', '-r', action='store_true', help='Resume from checkpoint or not.')
42 | parser.add_argument('--store_last', action='store_true', help='store the last model.')
43 | parser.add_argument('--resume_last', action='store_true', help='resume the last model.')
44 | parser.add_argument('--test', action='store_true', help='resume the last model.')
45 |
46 | parser.add_argument('--name', default='layers', type=str, help='The id of this train')
47 | parser.add_argument('--valid_fold', default=0, type=int, help='Starting epoch.')
48 |
49 | args = parser.parse_args()
50 |
51 | if not os.path.exists(args.ckpt_dir): os.makedirs(args.ckpt_dir)
52 | print('==> Arguments:')
53 | print(args)
54 |
55 | # Set GPU device.
56 | os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
57 | device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
58 |
59 | if args.resume_last:
60 | check = torch.load("")
61 | model = check["model"].module
62 |
63 | else:
64 | model = UNet3D_dual_up(n_layer = 3)
65 |
66 | # set optimizer
67 | optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
68 | model = model.to(device)
69 | model = nn.DataParallel(model)
70 |
71 | # prepare image loss
72 | image_loss_func = MultiSurfaceCrossEntropyLoss()
73 | grad_loss = Grad_2d(weight = torch.tensor(np.array([0, 0.8, 1.5]).astype(np.float32)).to(device))
74 | smoothl1loss = nn.SmoothL1Loss()
75 | meandis = nn.L1Loss()
76 |
77 | # loss for segmentation branch
78 | Gloss = GeneralizedDiceLoss()
79 | mlloss = MultiLayerCrossEntropyLoss()
80 |
81 | # loss for alignment
82 | bce_Bscan = MSE_bscan()
83 | ncc = NCC_oct().loss
84 |
85 | # set best loss
86 | best_loss = 10000
87 |
88 | # set visualization writer
89 | logpt = "./log/" + args.name
90 | if not os.path.exists(logpt):
91 | os.mkdir(logpt)
92 | writer = SummaryWriter(logpt)
93 |
94 | def load_data(label_dir):
95 | valid_set = sd_oct_flattenp_align(label_dir, usage = 'valid', valid_fold = args.valid_fold)
96 | valid_loader = torch.utils.data.DataLoader(valid_set, batch_size=args.batch_size, shuffle=False, pin_memory=True, num_workers=4)
97 |
98 | if args.test:
99 | return valid_loader, valid_loader
100 | train_set = sd_oct_flattenp_align(label_dir, usage = 'train', valid_fold = args.valid_fold)
101 | train_loader = torch.utils.data.DataLoader(train_set, batch_size=args.batch_size, shuffle = True, pin_memory=True, num_workers=4)
102 | return train_loader, valid_loader
103 |
104 | def train(epoch, train_loader):
105 | print("train:")
106 | model.train()
107 | surface_ces = []
108 | loss_sl1s = []
109 | loss_grads = []
110 | loss_gds = []
111 |
112 | loss_nccs = []
113 | loss_mses = []
114 |
115 | metric = [] # mean_dis
116 |
117 | for idx, (data, mask, _, _) in enumerate(train_loader):
118 | data = data.to(device)
119 | mask = mask.float().to(device)
120 | optimizer.zero_grad()
121 |
122 | s, logits, layerProb, mu, x, flow = model(data)
123 |
124 | # for the branch 2, the layer_label need to be align
125 | new_label = (mask - flow.detach())
126 | new_label[new_label > 319] = 319
127 | new_label[new_label < 0] = 0
128 | layer_gt = []
129 | for l in new_label:
130 | layer_gt.append(getLayerLabels(l, 320).unsqueeze(0))
131 | layer_gt = torch.cat(layer_gt, dim = 0)
132 |
133 | lossgd = Gloss(layerProb, layer_gt.float()) # diceloss
134 | lossgd += mlloss(layerProb, layer_gt.float()) # layer_cross_entropy
135 | surface_ce = image_loss_func(logits[:,:,:,:], new_label) # surface_cross_entropy
136 | loss_grad = grad_loss.loss(mask, mu[:,:3,:,:]) # grad_loss
137 | lossmse = bce_Bscan.loss(mask - flow)
138 |
139 | ncc_loss = ncc(x)
140 | sl1loss = smoothl1loss(mu, new_label) # smooth_l1_loss # why use smooth l1
141 | main_loss = surface_ce + sl1loss + ncc_loss + lossgd + loss_grad * args.weight_g + lossmse
142 |
143 | main_loss.backward()
144 |
145 | optimizer.step()
146 | metric.append(meandis(s[:,:,:,:], mask[:,:3,:,:] - flow.detach()).detach().cpu().numpy())
147 | loss_mses.append(lossmse.detach().cpu().numpy())
148 | loss_sl1s.append(sl1loss.detach().cpu().numpy())
149 | loss_grads.append(loss_grad.detach().cpu().numpy())
150 | loss_gds.append(lossgd.detach().cpu().numpy())
151 | surface_ces.append(surface_ce.detach().cpu().numpy())
152 | loss_nccs.append(ncc_loss.detach().cpu().numpy())
153 | smooth_loss = sum(loss_sl1s[-100:]) / min(len(loss_sl1s), 100)
154 | print(idx, sl1loss.item(), metric[-1], mean(surface_ces), surface_ce.item(), loss_grad.item(), ncc_loss.item(), end = "\r")
155 |
156 | loss = mean(loss_sl1s)
157 | print(mean(metric), mean(surface_ces), mean(loss_sl1s))
158 | writer.add_scalar('loss_sl1s/train', mean(loss_sl1s), epoch)
159 | writer.add_scalar('loss_grads/train', mean(loss_grads), epoch)
160 | writer.add_scalar('loss_mses/train', mean(loss_mses), epoch)
161 | writer.add_scalar('mean_dis/train', mean(metric), epoch)
162 | writer.add_scalar('surface_ce/train', mean(surface_ces), epoch)
163 | writer.add_scalar('loss_gds/train', mean(loss_gds), epoch)
164 | writer.add_scalar('ncc/train', mean(loss_nccs), epoch)
165 |
166 |
167 | def valid(epoch, valid_loader, test = False):
168 | print("valid:")
169 | global best_loss
170 |
171 | model.eval()
172 | surface_ces = []
173 | loss_sl1s = []
174 | loss_grads = []
175 | loss_gds = []
176 | loss_nccs = []
177 | loss_mses = []
178 | if test:
179 | store_path = "/data3/layer_segmentation/final"
180 | if not os.path.exists(store_path):
181 | os.mkdir(store_path)
182 | metric = [] # mean_dis
183 |
184 | names = []
185 | with torch.no_grad():
186 | for idx, (data, mask, layer_gt, name) in enumerate(valid_loader):
187 | data = data.to(device)
188 | mask = mask.float()
189 | s, logits, layerProb, mu, x, flow = model(data)
190 |
191 | new_label = (mask - flow.detach().cpu())
192 | new_label[new_label > 319] = 319
193 | new_label[new_label < 0] = 0
194 |
195 | surface_ce = image_loss_func(logits.detach().cpu(), new_label) # surface_cross_entropy
196 | loss_grad = grad_loss.loss(mask, mu[:,:3,:,:].detach()) # grad_loss
197 | lossmse = bce_Bscan.loss(mask - flow.detach().cpu())
198 |
199 | ncc_loss = ncc(x)
200 | sl1loss = smoothl1loss(mu[:,:3,:,:].detach().cpu(), new_label) # smooth_l1_loss # why use smooth l1
201 |
202 | mean_dis = np.abs(s.detach().cpu().numpy()[:,:,:,:] - new_label.numpy()).mean()
203 | metric.append(mean_dis)
204 |
205 | if test:
206 | res = x.detach().cpu().numpy()
207 | out = flow.detach().cpu().numpy()
208 | cpath = os.path.join(store_path, name[0])
209 | io.savemat(cpath, {"img":res.squeeze(), "flow" : out, "imgr": data.cpu().numpy()})
210 |
211 | loss_sl1s.append(sl1loss.detach().numpy())
212 | loss_grads.append(loss_grad.detach().cpu().numpy())
213 | loss_nccs.append(ncc_loss.detach().cpu().numpy())
214 | loss_mses.append(lossmse.detach().cpu().numpy())
215 | surface_ces.append(surface_ce.detach().cpu().numpy())
216 | names.append(name)
217 |
218 | smooth_loss = sum(metric[-100:]) / min(len(metric), 100)
219 | print(idx, smooth_loss, end = "\r")
220 |
221 | print(mean(metric), mean(surface_ces), mean(loss_sl1s), mean(loss_grads), mean(loss_nccs))
222 |
223 | writer.add_scalar('loss_sl1s/valid', mean(loss_sl1s), epoch)
224 | writer.add_scalar('loss_grads/valid', mean(loss_grads), epoch)
225 | writer.add_scalar('loss_mses/valid', mean(loss_mses), epoch)
226 | writer.add_scalar('mean_dis/valid', mean(metric), epoch)
227 | writer.add_scalar('surface_ce/valid', mean(surface_ces), epoch)
228 | writer.add_scalar('ncc/valid', mean(loss_nccs), epoch)
229 | metric = mean(metric)
230 | if metric < best_loss:
231 | best_loss = metric
232 | save_checkpoint(epoch)
233 | return metric
234 |
235 | def save_checkpoint(epoch, name = None):
236 | ''' Save checkpoint if accuracy is higher than before.
237 |
238 | # Arguments
239 | epoch (int): Current epoch.
240 | '''
241 | # Save model and global variables into checkpoint.
242 | global best_loss
243 | print('==> Saving checkpoint...')
244 | state = {
245 | 'model': model,
246 | 'epoch': epoch,
247 | 'acc': best_loss,
248 | }
249 | if name == None:
250 | checkpoint_name = args.name + "_" + str(epoch).zfill(3) + '_fold' + str(args.valid_fold) + "_"+str(round(best_loss, 3)) + '%.t7'
251 | else:
252 | checkpoint_name = args.name + "_" + name + ".t7"
253 | torch.save(state, os.path.join(args.ckpt_dir, checkpoint_name))
254 |
255 | if __name__ == '__main__':
256 |
257 | train_loader, valid_loader= load_data(args.label_dir)
258 |
259 | if args.test:
260 | valid(0, valid_loader, True)
261 | exit(0)
262 |
263 | for epoch in range(args.start_epoch, args.epochs + 1):
264 | print('\n************** Epoch: %d **************' % epoch)
265 | train(epoch, train_loader)
266 | print()
267 | valid_loss = valid(epoch, valid_loader)
268 |
--------------------------------------------------------------------------------
/labelflattenedp.csv:
--------------------------------------------------------------------------------
1 | Farsiu_Ophthalmology_2013_AMD_Subject_1072.mat,0
2 | Farsiu_Ophthalmology_2013_Control_Subject_1015.mat,1
3 | Farsiu_Ophthalmology_2013_Control_Subject_1016.mat,2
4 | Farsiu_Ophthalmology_2013_AMD_Subject_1221.mat,3
5 | Farsiu_Ophthalmology_2013_Control_Subject_1092.mat,4
6 | Farsiu_Ophthalmology_2013_AMD_Subject_1104.mat,0
7 | Farsiu_Ophthalmology_2013_AMD_Subject_1018.mat,1
8 | Farsiu_Ophthalmology_2013_Control_Subject_1028.mat,2
9 | Farsiu_Ophthalmology_2013_AMD_Subject_1107.mat,3
10 | Farsiu_Ophthalmology_2013_Control_Subject_1091.mat,4
11 | Farsiu_Ophthalmology_2013_AMD_Subject_1225.mat,0
12 | Farsiu_Ophthalmology_2013_AMD_Subject_1209.mat,1
13 | Farsiu_Ophthalmology_2013_Control_Subject_1033.mat,2
14 | Farsiu_Ophthalmology_2013_Control_Subject_1095.mat,3
15 | Farsiu_Ophthalmology_2013_AMD_Subject_1096.mat,4
16 | Farsiu_Ophthalmology_2013_AMD_Subject_1108.mat,0
17 | Farsiu_Ophthalmology_2013_Control_Subject_1080.mat,1
18 | Farsiu_Ophthalmology_2013_AMD_Subject_1234.mat,2
19 | Farsiu_Ophthalmology_2013_Control_Subject_1019.mat,3
20 | Farsiu_Ophthalmology_2013_AMD_Subject_1087.mat,4
21 | Farsiu_Ophthalmology_2013_Control_Subject_1108.mat,0
22 | Farsiu_Ophthalmology_2013_AMD_Subject_1063.mat,1
23 | Farsiu_Ophthalmology_2013_AMD_Subject_1177.mat,2
24 | Farsiu_Ophthalmology_2013_AMD_Subject_1265.mat,3
25 | Farsiu_Ophthalmology_2013_AMD_Subject_1130.mat,4
26 | Farsiu_Ophthalmology_2013_AMD_Subject_1036.mat,0
27 | Farsiu_Ophthalmology_2013_AMD_Subject_1162.mat,1
28 | Farsiu_Ophthalmology_2013_AMD_Subject_1196.mat,2
29 | Farsiu_Ophthalmology_2013_AMD_Subject_1186.mat,3
30 | Farsiu_Ophthalmology_2013_AMD_Subject_1213.mat,4
31 | Farsiu_Ophthalmology_2013_Control_Subject_1058.mat,0
32 | Farsiu_Ophthalmology_2013_Control_Subject_1002.mat,1
33 | Farsiu_Ophthalmology_2013_Control_Subject_1056.mat,2
34 | Farsiu_Ophthalmology_2013_Control_Subject_1020.mat,3
35 | Farsiu_Ophthalmology_2013_Control_Subject_1051.mat,4
36 | Farsiu_Ophthalmology_2013_AMD_Subject_1197.mat,0
37 | Farsiu_Ophthalmology_2013_Control_Subject_1093.mat,1
38 | Farsiu_Ophthalmology_2013_AMD_Subject_1085.mat,2
39 | Farsiu_Ophthalmology_2013_AMD_Subject_1078.mat,3
40 | Farsiu_Ophthalmology_2013_AMD_Subject_1156.mat,4
41 | Farsiu_Ophthalmology_2013_Control_Subject_1103.mat,0
42 | Farsiu_Ophthalmology_2013_Control_Subject_1010.mat,1
43 | Farsiu_Ophthalmology_2013_AMD_Subject_1226.mat,2
44 | Farsiu_Ophthalmology_2013_Control_Subject_1001.mat,3
45 | Farsiu_Ophthalmology_2013_AMD_Subject_1178.mat,4
46 | Farsiu_Ophthalmology_2013_Control_Subject_1057.mat,0
47 | Farsiu_Ophthalmology_2013_AMD_Subject_1115.mat,1
48 | Farsiu_Ophthalmology_2013_AMD_Subject_1022.mat,2
49 | Farsiu_Ophthalmology_2013_Control_Subject_1065.mat,3
50 | Farsiu_Ophthalmology_2013_AMD_Subject_1026.mat,4
51 | Farsiu_Ophthalmology_2013_AMD_Subject_1158.mat,0
52 | Farsiu_Ophthalmology_2013_AMD_Subject_1199.mat,1
53 | Farsiu_Ophthalmology_2013_AMD_Subject_1092.mat,2
54 | Farsiu_Ophthalmology_2013_Control_Subject_1069.mat,3
55 | Farsiu_Ophthalmology_2013_Control_Subject_1096.mat,4
56 | Farsiu_Ophthalmology_2013_AMD_Subject_1145.mat,0
57 | Farsiu_Ophthalmology_2013_AMD_Subject_1194.mat,1
58 | Farsiu_Ophthalmology_2013_AMD_Subject_1079.mat,2
59 | Farsiu_Ophthalmology_2013_AMD_Subject_1233.mat,3
60 | Farsiu_Ophthalmology_2013_AMD_Subject_1188.mat,4
61 | Farsiu_Ophthalmology_2013_Control_Subject_1045.mat,0
62 | Farsiu_Ophthalmology_2013_AMD_Subject_1163.mat,1
63 | Farsiu_Ophthalmology_2013_AMD_Subject_1262.mat,2
64 | Farsiu_Ophthalmology_2013_AMD_Subject_1172.mat,3
65 | Farsiu_Ophthalmology_2013_Control_Subject_1078.mat,4
66 | Farsiu_Ophthalmology_2013_AMD_Subject_1062.mat,0
67 | Farsiu_Ophthalmology_2013_AMD_Subject_1135.mat,1
68 | Farsiu_Ophthalmology_2013_Control_Subject_1053.mat,2
69 | Farsiu_Ophthalmology_2013_Control_Subject_1081.mat,3
70 | Farsiu_Ophthalmology_2013_AMD_Subject_1040.mat,4
71 | Farsiu_Ophthalmology_2013_AMD_Subject_1250.mat,0
72 | Farsiu_Ophthalmology_2013_AMD_Subject_1049.mat,1
73 | Farsiu_Ophthalmology_2013_AMD_Subject_1021.mat,2
74 | Farsiu_Ophthalmology_2013_AMD_Subject_1166.mat,3
75 | Farsiu_Ophthalmology_2013_AMD_Subject_1260.mat,4
76 | Farsiu_Ophthalmology_2013_AMD_Subject_1204.mat,0
77 | Farsiu_Ophthalmology_2013_Control_Subject_1013.mat,1
78 | Farsiu_Ophthalmology_2013_AMD_Subject_1143.mat,2
79 | Farsiu_Ophthalmology_2013_Control_Subject_1083.mat,3
80 | Farsiu_Ophthalmology_2013_AMD_Subject_1008.mat,4
81 | Farsiu_Ophthalmology_2013_Control_Subject_1072.mat,0
82 | Farsiu_Ophthalmology_2013_AMD_Subject_1264.mat,1
83 | Farsiu_Ophthalmology_2013_AMD_Subject_1007.mat,2
84 | Farsiu_Ophthalmology_2013_Control_Subject_1101.mat,3
85 | Farsiu_Ophthalmology_2013_AMD_Subject_1253.mat,4
86 | Farsiu_Ophthalmology_2013_AMD_Subject_1241.mat,0
87 | Farsiu_Ophthalmology_2013_AMD_Subject_1088.mat,1
88 | Farsiu_Ophthalmology_2013_AMD_Subject_1206.mat,2
89 | Farsiu_Ophthalmology_2013_Control_Subject_1082.mat,3
90 | Farsiu_Ophthalmology_2013_AMD_Subject_1218.mat,4
91 | Farsiu_Ophthalmology_2013_AMD_Subject_1045.mat,0
92 | Farsiu_Ophthalmology_2013_AMD_Subject_1013.mat,1
93 | Farsiu_Ophthalmology_2013_AMD_Subject_1077.mat,2
94 | Farsiu_Ophthalmology_2013_Control_Subject_1088.mat,3
95 | Farsiu_Ophthalmology_2013_Control_Subject_1007.mat,4
96 | Farsiu_Ophthalmology_2013_Control_Subject_1026.mat,0
97 | Farsiu_Ophthalmology_2013_Control_Subject_1031.mat,1
98 | Farsiu_Ophthalmology_2013_Control_Subject_1025.mat,2
99 | Farsiu_Ophthalmology_2013_AMD_Subject_1109.mat,3
100 | Farsiu_Ophthalmology_2013_AMD_Subject_1181.mat,4
101 | Farsiu_Ophthalmology_2013_AMD_Subject_1173.mat,0
102 | Farsiu_Ophthalmology_2013_AMD_Subject_1103.mat,1
103 | Farsiu_Ophthalmology_2013_AMD_Subject_1006.mat,2
104 | Farsiu_Ophthalmology_2013_AMD_Subject_1003.mat,3
105 | Farsiu_Ophthalmology_2013_AMD_Subject_1141.mat,4
106 | Farsiu_Ophthalmology_2013_AMD_Subject_1023.mat,0
107 | Farsiu_Ophthalmology_2013_AMD_Subject_1047.mat,1
108 | Farsiu_Ophthalmology_2013_AMD_Subject_1149.mat,2
109 | Farsiu_Ophthalmology_2013_AMD_Subject_1029.mat,3
110 | Farsiu_Ophthalmology_2013_AMD_Subject_1052.mat,4
111 | Farsiu_Ophthalmology_2013_AMD_Subject_1266.mat,0
112 | Farsiu_Ophthalmology_2013_AMD_Subject_1054.mat,1
113 | Farsiu_Ophthalmology_2013_AMD_Subject_1203.mat,2
114 | Farsiu_Ophthalmology_2013_AMD_Subject_1246.mat,3
115 | Farsiu_Ophthalmology_2013_Control_Subject_1021.mat,4
116 | Farsiu_Ophthalmology_2013_AMD_Subject_1256.mat,0
117 | Farsiu_Ophthalmology_2013_AMD_Subject_1139.mat,1
118 | Farsiu_Ophthalmology_2013_Control_Subject_1098.mat,2
119 | Farsiu_Ophthalmology_2013_AMD_Subject_1176.mat,3
120 | Farsiu_Ophthalmology_2013_Control_Subject_1061.mat,4
121 | Farsiu_Ophthalmology_2013_AMD_Subject_1208.mat,0
122 | Farsiu_Ophthalmology_2013_Control_Subject_1114.mat,1
123 | Farsiu_Ophthalmology_2013_AMD_Subject_1195.mat,2
124 | Farsiu_Ophthalmology_2013_Control_Subject_1003.mat,3
125 | Farsiu_Ophthalmology_2013_AMD_Subject_1110.mat,4
126 | Farsiu_Ophthalmology_2013_AMD_Subject_1191.mat,0
127 | Farsiu_Ophthalmology_2013_AMD_Subject_1182.mat,1
128 | Farsiu_Ophthalmology_2013_Control_Subject_1046.mat,2
129 | Farsiu_Ophthalmology_2013_AMD_Subject_1180.mat,3
130 | Farsiu_Ophthalmology_2013_Control_Subject_1063.mat,4
131 | Farsiu_Ophthalmology_2013_AMD_Subject_1210.mat,0
132 | Farsiu_Ophthalmology_2013_AMD_Subject_1121.mat,1
133 | Farsiu_Ophthalmology_2013_AMD_Subject_1171.mat,2
134 | Farsiu_Ophthalmology_2013_AMD_Subject_1066.mat,3
135 | Farsiu_Ophthalmology_2013_AMD_Subject_1132.mat,4
136 | Farsiu_Ophthalmology_2013_AMD_Subject_1120.mat,0
137 | Farsiu_Ophthalmology_2013_Control_Subject_1067.mat,1
138 | Farsiu_Ophthalmology_2013_AMD_Subject_1009.mat,2
139 | Farsiu_Ophthalmology_2013_AMD_Subject_1056.mat,3
140 | Farsiu_Ophthalmology_2013_AMD_Subject_1086.mat,4
141 | Farsiu_Ophthalmology_2013_Control_Subject_1099.mat,0
142 | Farsiu_Ophthalmology_2013_AMD_Subject_1142.mat,1
143 | Farsiu_Ophthalmology_2013_AMD_Subject_1214.mat,2
144 | Farsiu_Ophthalmology_2013_AMD_Subject_1102.mat,3
145 | Farsiu_Ophthalmology_2013_AMD_Subject_1129.mat,4
146 | Farsiu_Ophthalmology_2013_AMD_Subject_1027.mat,0
147 | Farsiu_Ophthalmology_2013_AMD_Subject_1235.mat,1
148 | Farsiu_Ophthalmology_2013_Control_Subject_1089.mat,2
149 | Farsiu_Ophthalmology_2013_Control_Subject_1034.mat,3
150 | Farsiu_Ophthalmology_2013_Control_Subject_1014.mat,4
151 | Farsiu_Ophthalmology_2013_AMD_Subject_1185.mat,0
152 | Farsiu_Ophthalmology_2013_AMD_Subject_1094.mat,1
153 | Farsiu_Ophthalmology_2013_Control_Subject_1005.mat,2
154 | Farsiu_Ophthalmology_2013_Control_Subject_1004.mat,3
155 | Farsiu_Ophthalmology_2013_AMD_Subject_1089.mat,4
156 | Farsiu_Ophthalmology_2013_AMD_Subject_1034.mat,0
157 | Farsiu_Ophthalmology_2013_AMD_Subject_1124.mat,1
158 | Farsiu_Ophthalmology_2013_AMD_Subject_1227.mat,2
159 | Farsiu_Ophthalmology_2013_AMD_Subject_1255.mat,3
160 | Farsiu_Ophthalmology_2013_AMD_Subject_1127.mat,4
161 | Farsiu_Ophthalmology_2013_Control_Subject_1054.mat,0
162 | Farsiu_Ophthalmology_2013_Control_Subject_1113.mat,1
163 | Farsiu_Ophthalmology_2013_AMD_Subject_1070.mat,2
164 | Farsiu_Ophthalmology_2013_AMD_Subject_1189.mat,3
165 | Farsiu_Ophthalmology_2013_AMD_Subject_1245.mat,4
166 | Farsiu_Ophthalmology_2013_AMD_Subject_1050.mat,0
167 | Farsiu_Ophthalmology_2013_Control_Subject_1109.mat,1
168 | Farsiu_Ophthalmology_2013_AMD_Subject_1041.mat,2
169 | Farsiu_Ophthalmology_2013_AMD_Subject_1222.mat,3
170 | Farsiu_Ophthalmology_2013_AMD_Subject_1097.mat,4
171 | Farsiu_Ophthalmology_2013_AMD_Subject_1198.mat,0
172 | Farsiu_Ophthalmology_2013_AMD_Subject_1183.mat,1
173 | Farsiu_Ophthalmology_2013_Control_Subject_1036.mat,2
174 | Farsiu_Ophthalmology_2013_AMD_Subject_1046.mat,3
175 | Farsiu_Ophthalmology_2013_Control_Subject_1048.mat,4
176 | Farsiu_Ophthalmology_2013_Control_Subject_1097.mat,0
177 | Farsiu_Ophthalmology_2013_AMD_Subject_1011.mat,1
178 | Farsiu_Ophthalmology_2013_AMD_Subject_1048.mat,2
179 | Farsiu_Ophthalmology_2013_Control_Subject_1100.mat,3
180 | Farsiu_Ophthalmology_2013_AMD_Subject_1263.mat,4
181 | Farsiu_Ophthalmology_2013_AMD_Subject_1093.mat,0
182 | Farsiu_Ophthalmology_2013_Control_Subject_1079.mat,1
183 | Farsiu_Ophthalmology_2013_AMD_Subject_1064.mat,2
184 | Farsiu_Ophthalmology_2013_AMD_Subject_1243.mat,3
185 | Farsiu_Ophthalmology_2013_AMD_Subject_1058.mat,4
186 | Farsiu_Ophthalmology_2013_AMD_Subject_1192.mat,0
187 | Farsiu_Ophthalmology_2013_AMD_Subject_1224.mat,1
188 | Farsiu_Ophthalmology_2013_Control_Subject_1110.mat,2
189 | Farsiu_Ophthalmology_2013_AMD_Subject_1012.mat,3
190 | Farsiu_Ophthalmology_2013_AMD_Subject_1202.mat,4
191 | Farsiu_Ophthalmology_2013_AMD_Subject_1251.mat,0
192 | Farsiu_Ophthalmology_2013_Control_Subject_1039.mat,1
193 | Farsiu_Ophthalmology_2013_Control_Subject_1042.mat,2
194 | Farsiu_Ophthalmology_2013_AMD_Subject_1242.mat,3
195 | Farsiu_Ophthalmology_2013_AMD_Subject_1155.mat,4
196 | Farsiu_Ophthalmology_2013_AMD_Subject_1219.mat,0
197 | Farsiu_Ophthalmology_2013_AMD_Subject_1247.mat,1
198 | Farsiu_Ophthalmology_2013_AMD_Subject_1184.mat,2
199 | Farsiu_Ophthalmology_2013_Control_Subject_1076.mat,3
200 | Farsiu_Ophthalmology_2013_AMD_Subject_1201.mat,4
201 | Farsiu_Ophthalmology_2013_Control_Subject_1068.mat,0
202 | Farsiu_Ophthalmology_2013_AMD_Subject_1057.mat,1
203 | Farsiu_Ophthalmology_2013_Control_Subject_1102.mat,2
204 | Farsiu_Ophthalmology_2013_AMD_Subject_1114.mat,3
205 | Farsiu_Ophthalmology_2013_Control_Subject_1066.mat,4
206 | Farsiu_Ophthalmology_2013_AMD_Subject_1137.mat,0
207 | Farsiu_Ophthalmology_2013_AMD_Subject_1071.mat,1
208 | Farsiu_Ophthalmology_2013_Control_Subject_1086.mat,2
209 | Farsiu_Ophthalmology_2013_AMD_Subject_1118.mat,3
210 | Farsiu_Ophthalmology_2013_AMD_Subject_1168.mat,4
211 | Farsiu_Ophthalmology_2013_Control_Subject_1044.mat,0
212 | Farsiu_Ophthalmology_2013_AMD_Subject_1232.mat,1
213 | Farsiu_Ophthalmology_2013_Control_Subject_1062.mat,2
214 | Farsiu_Ophthalmology_2013_AMD_Subject_1238.mat,3
215 | Farsiu_Ophthalmology_2013_AMD_Subject_1170.mat,4
216 | Farsiu_Ophthalmology_2013_AMD_Subject_1167.mat,0
217 | Farsiu_Ophthalmology_2013_Control_Subject_1008.mat,1
218 | Farsiu_Ophthalmology_2013_AMD_Subject_1125.mat,2
219 | Farsiu_Ophthalmology_2013_AMD_Subject_1032.mat,3
220 | Farsiu_Ophthalmology_2013_AMD_Subject_1061.mat,4
221 | Farsiu_Ophthalmology_2013_Control_Subject_1047.mat,0
222 | Farsiu_Ophthalmology_2013_AMD_Subject_1117.mat,1
223 | Farsiu_Ophthalmology_2013_AMD_Subject_1113.mat,2
224 | Farsiu_Ophthalmology_2013_Control_Subject_1060.mat,3
225 | Farsiu_Ophthalmology_2013_AMD_Subject_1133.mat,4
226 | Farsiu_Ophthalmology_2013_AMD_Subject_1031.mat,0
227 | Farsiu_Ophthalmology_2013_AMD_Subject_1152.mat,1
228 | Farsiu_Ophthalmology_2013_AMD_Subject_1015.mat,2
229 | Farsiu_Ophthalmology_2013_AMD_Subject_1207.mat,3
230 | Farsiu_Ophthalmology_2013_AMD_Subject_1160.mat,4
231 | Farsiu_Ophthalmology_2013_AMD_Subject_1028.mat,0
232 | Farsiu_Ophthalmology_2013_AMD_Subject_1126.mat,1
233 | Farsiu_Ophthalmology_2013_Control_Subject_1017.mat,2
234 | Farsiu_Ophthalmology_2013_Control_Subject_1041.mat,3
235 | Farsiu_Ophthalmology_2013_AMD_Subject_1005.mat,4
236 | Farsiu_Ophthalmology_2013_AMD_Subject_1080.mat,0
237 | Farsiu_Ophthalmology_2013_Control_Subject_1032.mat,1
238 | Farsiu_Ophthalmology_2013_AMD_Subject_1200.mat,2
239 | Farsiu_Ophthalmology_2013_Control_Subject_1040.mat,3
240 | Farsiu_Ophthalmology_2013_Control_Subject_1023.mat,4
241 | Farsiu_Ophthalmology_2013_AMD_Subject_1193.mat,0
242 | Farsiu_Ophthalmology_2013_Control_Subject_1073.mat,1
243 | Farsiu_Ophthalmology_2013_AMD_Subject_1091.mat,2
244 | Farsiu_Ophthalmology_2013_AMD_Subject_1042.mat,3
245 | Farsiu_Ophthalmology_2013_AMD_Subject_1002.mat,4
246 | Farsiu_Ophthalmology_2013_Control_Subject_1106.mat,0
247 | Farsiu_Ophthalmology_2013_AMD_Subject_1116.mat,1
248 | Farsiu_Ophthalmology_2013_AMD_Subject_1259.mat,2
249 | Farsiu_Ophthalmology_2013_AMD_Subject_1254.mat,3
250 | Farsiu_Ophthalmology_2013_AMD_Subject_1240.mat,4
251 | Farsiu_Ophthalmology_2013_Control_Subject_1037.mat,0
252 | Farsiu_Ophthalmology_2013_Control_Subject_1105.mat,1
253 | Farsiu_Ophthalmology_2013_AMD_Subject_1179.mat,2
254 | Farsiu_Ophthalmology_2013_AMD_Subject_1004.mat,3
255 | Farsiu_Ophthalmology_2013_AMD_Subject_1083.mat,4
256 | Farsiu_Ophthalmology_2013_AMD_Subject_1230.mat,0
257 | Farsiu_Ophthalmology_2013_Control_Subject_1043.mat,1
258 | Farsiu_Ophthalmology_2013_AMD_Subject_1076.mat,2
259 | Farsiu_Ophthalmology_2013_AMD_Subject_1016.mat,3
260 | Farsiu_Ophthalmology_2013_AMD_Subject_1144.mat,4
261 | Farsiu_Ophthalmology_2013_AMD_Subject_1084.mat,0
262 | Farsiu_Ophthalmology_2013_Control_Subject_1029.mat,1
263 | Farsiu_Ophthalmology_2013_Control_Subject_1022.mat,2
264 | Farsiu_Ophthalmology_2013_AMD_Subject_1025.mat,3
265 | Farsiu_Ophthalmology_2013_AMD_Subject_1112.mat,4
266 | Farsiu_Ophthalmology_2013_Control_Subject_1087.mat,0
267 | Farsiu_Ophthalmology_2013_AMD_Subject_1068.mat,1
268 | Farsiu_Ophthalmology_2013_AMD_Subject_1059.mat,2
269 | Farsiu_Ophthalmology_2013_AMD_Subject_1001.mat,3
270 | Farsiu_Ophthalmology_2013_AMD_Subject_1019.mat,4
271 | Farsiu_Ophthalmology_2013_AMD_Subject_1159.mat,0
272 | Farsiu_Ophthalmology_2013_AMD_Subject_1237.mat,1
273 | Farsiu_Ophthalmology_2013_AMD_Subject_1060.mat,2
274 | Farsiu_Ophthalmology_2013_Control_Subject_1115.mat,3
275 | Farsiu_Ophthalmology_2013_Control_Subject_1084.mat,4
276 | Farsiu_Ophthalmology_2013_AMD_Subject_1252.mat,0
277 | Farsiu_Ophthalmology_2013_Control_Subject_1070.mat,1
278 | Farsiu_Ophthalmology_2013_AMD_Subject_1069.mat,2
279 | Farsiu_Ophthalmology_2013_AMD_Subject_1010.mat,3
280 | Farsiu_Ophthalmology_2013_AMD_Subject_1099.mat,4
281 | Farsiu_Ophthalmology_2013_AMD_Subject_1024.mat,0
282 | Farsiu_Ophthalmology_2013_AMD_Subject_1090.mat,1
283 | Farsiu_Ophthalmology_2013_AMD_Subject_1119.mat,2
284 | Farsiu_Ophthalmology_2013_AMD_Subject_1044.mat,3
285 | Farsiu_Ophthalmology_2013_AMD_Subject_1261.mat,4
286 | Farsiu_Ophthalmology_2013_Control_Subject_1112.mat,0
287 | Farsiu_Ophthalmology_2013_AMD_Subject_1122.mat,1
288 | Farsiu_Ophthalmology_2013_AMD_Subject_1161.mat,2
289 | Farsiu_Ophthalmology_2013_AMD_Subject_1215.mat,3
290 | Farsiu_Ophthalmology_2013_AMD_Subject_1236.mat,4
291 | Farsiu_Ophthalmology_2013_AMD_Subject_1190.mat,0
292 | Farsiu_Ophthalmology_2013_AMD_Subject_1244.mat,1
293 | Farsiu_Ophthalmology_2013_Control_Subject_1064.mat,2
294 | Farsiu_Ophthalmology_2013_AMD_Subject_1014.mat,3
295 | Farsiu_Ophthalmology_2013_AMD_Subject_1169.mat,4
296 | Farsiu_Ophthalmology_2013_AMD_Subject_1039.mat,0
297 | Farsiu_Ophthalmology_2013_AMD_Subject_1146.mat,1
298 | Farsiu_Ophthalmology_2013_AMD_Subject_1030.mat,2
299 | Farsiu_Ophthalmology_2013_AMD_Subject_1082.mat,3
300 | Farsiu_Ophthalmology_2013_Control_Subject_1018.mat,4
301 | Farsiu_Ophthalmology_2013_AMD_Subject_1153.mat,0
302 | Farsiu_Ophthalmology_2013_AMD_Subject_1128.mat,1
303 | Farsiu_Ophthalmology_2013_AMD_Subject_1212.mat,2
304 | Farsiu_Ophthalmology_2013_AMD_Subject_1217.mat,3
305 | Farsiu_Ophthalmology_2013_AMD_Subject_1223.mat,4
306 | Farsiu_Ophthalmology_2013_AMD_Subject_1051.mat,0
307 | Farsiu_Ophthalmology_2013_AMD_Subject_1239.mat,1
308 | Farsiu_Ophthalmology_2013_Control_Subject_1085.mat,2
309 | Farsiu_Ophthalmology_2013_AMD_Subject_1205.mat,3
310 | Farsiu_Ophthalmology_2013_AMD_Subject_1123.mat,4
311 | Farsiu_Ophthalmology_2013_AMD_Subject_1157.mat,0
312 | Farsiu_Ophthalmology_2013_AMD_Subject_1095.mat,1
313 | Farsiu_Ophthalmology_2013_AMD_Subject_1053.mat,2
314 | Farsiu_Ophthalmology_2013_Control_Subject_1009.mat,3
315 | Farsiu_Ophthalmology_2013_Control_Subject_1012.mat,4
316 | Farsiu_Ophthalmology_2013_AMD_Subject_1229.mat,0
317 | Farsiu_Ophthalmology_2013_AMD_Subject_1100.mat,1
318 | Farsiu_Ophthalmology_2013_AMD_Subject_1134.mat,2
319 | Farsiu_Ophthalmology_2013_Control_Subject_1094.mat,3
320 | Farsiu_Ophthalmology_2013_Control_Subject_1027.mat,4
321 | Farsiu_Ophthalmology_2013_Control_Subject_1090.mat,0
322 | Farsiu_Ophthalmology_2013_Control_Subject_1030.mat,1
323 | Farsiu_Ophthalmology_2013_Control_Subject_1107.mat,2
324 | Farsiu_Ophthalmology_2013_AMD_Subject_1268.mat,3
325 | Farsiu_Ophthalmology_2013_AMD_Subject_1043.mat,4
326 | Farsiu_Ophthalmology_2013_Control_Subject_1071.mat,0
327 | Farsiu_Ophthalmology_2013_AMD_Subject_1248.mat,1
328 | Farsiu_Ophthalmology_2013_AMD_Subject_1035.mat,2
329 | Farsiu_Ophthalmology_2013_AMD_Subject_1017.mat,3
330 | Farsiu_Ophthalmology_2013_AMD_Subject_1098.mat,4
331 | Farsiu_Ophthalmology_2013_Control_Subject_1075.mat,0
332 | Farsiu_Ophthalmology_2013_AMD_Subject_1150.mat,1
333 | Farsiu_Ophthalmology_2013_AMD_Subject_1106.mat,2
334 | Farsiu_Ophthalmology_2013_AMD_Subject_1136.mat,3
335 | Farsiu_Ophthalmology_2013_AMD_Subject_1055.mat,4
336 | Farsiu_Ophthalmology_2013_AMD_Subject_1231.mat,0
337 | Farsiu_Ophthalmology_2013_Control_Subject_1011.mat,1
338 | Farsiu_Ophthalmology_2013_AMD_Subject_1151.mat,2
339 | Farsiu_Ophthalmology_2013_AMD_Subject_1147.mat,3
340 | Farsiu_Ophthalmology_2013_AMD_Subject_1154.mat,4
341 | Farsiu_Ophthalmology_2013_Control_Subject_1059.mat,0
342 | Farsiu_Ophthalmology_2013_AMD_Subject_1269.mat,1
343 | Farsiu_Ophthalmology_2013_AMD_Subject_1175.mat,2
344 | Farsiu_Ophthalmology_2013_AMD_Subject_1228.mat,3
345 | Farsiu_Ophthalmology_2013_Control_Subject_1006.mat,4
346 | Farsiu_Ophthalmology_2013_Control_Subject_1035.mat,0
347 | Farsiu_Ophthalmology_2013_AMD_Subject_1216.mat,1
348 | Farsiu_Ophthalmology_2013_Control_Subject_1049.mat,2
349 | Farsiu_Ophthalmology_2013_AMD_Subject_1249.mat,3
350 | Farsiu_Ophthalmology_2013_Control_Subject_1024.mat,4
351 | Farsiu_Ophthalmology_2013_AMD_Subject_1138.mat,0
352 | Farsiu_Ophthalmology_2013_AMD_Subject_1065.mat,1
353 | Farsiu_Ophthalmology_2013_AMD_Subject_1033.mat,2
354 | Farsiu_Ophthalmology_2013_AMD_Subject_1220.mat,3
355 | Farsiu_Ophthalmology_2013_Control_Subject_1077.mat,4
356 | Farsiu_Ophthalmology_2013_Control_Subject_1111.mat,0
357 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU AFFERO GENERAL PUBLIC LICENSE
2 | Version 3, 19 November 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU Affero General Public License is a free, copyleft license for
11 | software and other kinds of works, specifically designed to ensure
12 | cooperation with the community in the case of network server software.
13 |
14 | The licenses for most software and other practical works are designed
15 | to take away your freedom to share and change the works. By contrast,
16 | our General Public Licenses are intended to guarantee your freedom to
17 | share and change all versions of a program--to make sure it remains free
18 | software for all its users.
19 |
20 | When we speak of free software, we are referring to freedom, not
21 | price. Our General Public Licenses are designed to make sure that you
22 | have the freedom to distribute copies of free software (and charge for
23 | them if you wish), that you receive source code or can get it if you
24 | want it, that you can change the software or use pieces of it in new
25 | free programs, and that you know you can do these things.
26 |
27 | Developers that use our General Public Licenses protect your rights
28 | with two steps: (1) assert copyright on the software, and (2) offer
29 | you this License which gives you legal permission to copy, distribute
30 | and/or modify the software.
31 |
32 | A secondary benefit of defending all users' freedom is that
33 | improvements made in alternate versions of the program, if they
34 | receive widespread use, become available for other developers to
35 | incorporate. Many developers of free software are heartened and
36 | encouraged by the resulting cooperation. However, in the case of
37 | software used on network servers, this result may fail to come about.
38 | The GNU General Public License permits making a modified version and
39 | letting the public access it on a server without ever releasing its
40 | source code to the public.
41 |
42 | The GNU Affero General Public License is designed specifically to
43 | ensure that, in such cases, the modified source code becomes available
44 | to the community. It requires the operator of a network server to
45 | provide the source code of the modified version running there to the
46 | users of that server. Therefore, public use of a modified version, on
47 | a publicly accessible server, gives the public access to the source
48 | code of the modified version.
49 |
50 | An older license, called the Affero General Public License and
51 | published by Affero, was designed to accomplish similar goals. This is
52 | a different license, not a version of the Affero GPL, but Affero has
53 | released a new version of the Affero GPL which permits relicensing under
54 | this license.
55 |
56 | The precise terms and conditions for copying, distribution and
57 | modification follow.
58 |
59 | TERMS AND CONDITIONS
60 |
61 | 0. Definitions.
62 |
63 | "This License" refers to version 3 of the GNU Affero General Public License.
64 |
65 | "Copyright" also means copyright-like laws that apply to other kinds of
66 | works, such as semiconductor masks.
67 |
68 | "The Program" refers to any copyrightable work licensed under this
69 | License. Each licensee is addressed as "you". "Licensees" and
70 | "recipients" may be individuals or organizations.
71 |
72 | To "modify" a work means to copy from or adapt all or part of the work
73 | in a fashion requiring copyright permission, other than the making of an
74 | exact copy. The resulting work is called a "modified version" of the
75 | earlier work or a work "based on" the earlier work.
76 |
77 | A "covered work" means either the unmodified Program or a work based
78 | on the Program.
79 |
80 | To "propagate" a work means to do anything with it that, without
81 | permission, would make you directly or secondarily liable for
82 | infringement under applicable copyright law, except executing it on a
83 | computer or modifying a private copy. Propagation includes copying,
84 | distribution (with or without modification), making available to the
85 | public, and in some countries other activities as well.
86 |
87 | To "convey" a work means any kind of propagation that enables other
88 | parties to make or receive copies. Mere interaction with a user through
89 | a computer network, with no transfer of a copy, is not conveying.
90 |
91 | An interactive user interface displays "Appropriate Legal Notices"
92 | to the extent that it includes a convenient and prominently visible
93 | feature that (1) displays an appropriate copyright notice, and (2)
94 | tells the user that there is no warranty for the work (except to the
95 | extent that warranties are provided), that licensees may convey the
96 | work under this License, and how to view a copy of this License. If
97 | the interface presents a list of user commands or options, such as a
98 | menu, a prominent item in the list meets this criterion.
99 |
100 | 1. Source Code.
101 |
102 | The "source code" for a work means the preferred form of the work
103 | for making modifications to it. "Object code" means any non-source
104 | form of a work.
105 |
106 | A "Standard Interface" means an interface that either is an official
107 | standard defined by a recognized standards body, or, in the case of
108 | interfaces specified for a particular programming language, one that
109 | is widely used among developers working in that language.
110 |
111 | The "System Libraries" of an executable work include anything, other
112 | than the work as a whole, that (a) is included in the normal form of
113 | packaging a Major Component, but which is not part of that Major
114 | Component, and (b) serves only to enable use of the work with that
115 | Major Component, or to implement a Standard Interface for which an
116 | implementation is available to the public in source code form. A
117 | "Major Component", in this context, means a major essential component
118 | (kernel, window system, and so on) of the specific operating system
119 | (if any) on which the executable work runs, or a compiler used to
120 | produce the work, or an object code interpreter used to run it.
121 |
122 | The "Corresponding Source" for a work in object code form means all
123 | the source code needed to generate, install, and (for an executable
124 | work) run the object code and to modify the work, including scripts to
125 | control those activities. However, it does not include the work's
126 | System Libraries, or general-purpose tools or generally available free
127 | programs which are used unmodified in performing those activities but
128 | which are not part of the work. For example, Corresponding Source
129 | includes interface definition files associated with source files for
130 | the work, and the source code for shared libraries and dynamically
131 | linked subprograms that the work is specifically designed to require,
132 | such as by intimate data communication or control flow between those
133 | subprograms and other parts of the work.
134 |
135 | The Corresponding Source need not include anything that users
136 | can regenerate automatically from other parts of the Corresponding
137 | Source.
138 |
139 | The Corresponding Source for a work in source code form is that
140 | same work.
141 |
142 | 2. Basic Permissions.
143 |
144 | All rights granted under this License are granted for the term of
145 | copyright on the Program, and are irrevocable provided the stated
146 | conditions are met. This License explicitly affirms your unlimited
147 | permission to run the unmodified Program. The output from running a
148 | covered work is covered by this License only if the output, given its
149 | content, constitutes a covered work. This License acknowledges your
150 | rights of fair use or other equivalent, as provided by copyright law.
151 |
152 | You may make, run and propagate covered works that you do not
153 | convey, without conditions so long as your license otherwise remains
154 | in force. You may convey covered works to others for the sole purpose
155 | of having them make modifications exclusively for you, or provide you
156 | with facilities for running those works, provided that you comply with
157 | the terms of this License in conveying all material for which you do
158 | not control copyright. Those thus making or running the covered works
159 | for you must do so exclusively on your behalf, under your direction
160 | and control, on terms that prohibit them from making any copies of
161 | your copyrighted material outside their relationship with you.
162 |
163 | Conveying under any other circumstances is permitted solely under
164 | the conditions stated below. Sublicensing is not allowed; section 10
165 | makes it unnecessary.
166 |
167 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
168 |
169 | No covered work shall be deemed part of an effective technological
170 | measure under any applicable law fulfilling obligations under article
171 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
172 | similar laws prohibiting or restricting circumvention of such
173 | measures.
174 |
175 | When you convey a covered work, you waive any legal power to forbid
176 | circumvention of technological measures to the extent such circumvention
177 | is effected by exercising rights under this License with respect to
178 | the covered work, and you disclaim any intention to limit operation or
179 | modification of the work as a means of enforcing, against the work's
180 | users, your or third parties' legal rights to forbid circumvention of
181 | technological measures.
182 |
183 | 4. Conveying Verbatim Copies.
184 |
185 | You may convey verbatim copies of the Program's source code as you
186 | receive it, in any medium, provided that you conspicuously and
187 | appropriately publish on each copy an appropriate copyright notice;
188 | keep intact all notices stating that this License and any
189 | non-permissive terms added in accord with section 7 apply to the code;
190 | keep intact all notices of the absence of any warranty; and give all
191 | recipients a copy of this License along with the Program.
192 |
193 | You may charge any price or no price for each copy that you convey,
194 | and you may offer support or warranty protection for a fee.
195 |
196 | 5. Conveying Modified Source Versions.
197 |
198 | You may convey a work based on the Program, or the modifications to
199 | produce it from the Program, in the form of source code under the
200 | terms of section 4, provided that you also meet all of these conditions:
201 |
202 | a) The work must carry prominent notices stating that you modified
203 | it, and giving a relevant date.
204 |
205 | b) The work must carry prominent notices stating that it is
206 | released under this License and any conditions added under section
207 | 7. This requirement modifies the requirement in section 4 to
208 | "keep intact all notices".
209 |
210 | c) You must license the entire work, as a whole, under this
211 | License to anyone who comes into possession of a copy. This
212 | License will therefore apply, along with any applicable section 7
213 | additional terms, to the whole of the work, and all its parts,
214 | regardless of how they are packaged. This License gives no
215 | permission to license the work in any other way, but it does not
216 | invalidate such permission if you have separately received it.
217 |
218 | d) If the work has interactive user interfaces, each must display
219 | Appropriate Legal Notices; however, if the Program has interactive
220 | interfaces that do not display Appropriate Legal Notices, your
221 | work need not make them do so.
222 |
223 | A compilation of a covered work with other separate and independent
224 | works, which are not by their nature extensions of the covered work,
225 | and which are not combined with it such as to form a larger program,
226 | in or on a volume of a storage or distribution medium, is called an
227 | "aggregate" if the compilation and its resulting copyright are not
228 | used to limit the access or legal rights of the compilation's users
229 | beyond what the individual works permit. Inclusion of a covered work
230 | in an aggregate does not cause this License to apply to the other
231 | parts of the aggregate.
232 |
233 | 6. Conveying Non-Source Forms.
234 |
235 | You may convey a covered work in object code form under the terms
236 | of sections 4 and 5, provided that you also convey the
237 | machine-readable Corresponding Source under the terms of this License,
238 | in one of these ways:
239 |
240 | a) Convey the object code in, or embodied in, a physical product
241 | (including a physical distribution medium), accompanied by the
242 | Corresponding Source fixed on a durable physical medium
243 | customarily used for software interchange.
244 |
245 | b) Convey the object code in, or embodied in, a physical product
246 | (including a physical distribution medium), accompanied by a
247 | written offer, valid for at least three years and valid for as
248 | long as you offer spare parts or customer support for that product
249 | model, to give anyone who possesses the object code either (1) a
250 | copy of the Corresponding Source for all the software in the
251 | product that is covered by this License, on a durable physical
252 | medium customarily used for software interchange, for a price no
253 | more than your reasonable cost of physically performing this
254 | conveying of source, or (2) access to copy the
255 | Corresponding Source from a network server at no charge.
256 |
257 | c) Convey individual copies of the object code with a copy of the
258 | written offer to provide the Corresponding Source. This
259 | alternative is allowed only occasionally and noncommercially, and
260 | only if you received the object code with such an offer, in accord
261 | with subsection 6b.
262 |
263 | d) Convey the object code by offering access from a designated
264 | place (gratis or for a charge), and offer equivalent access to the
265 | Corresponding Source in the same way through the same place at no
266 | further charge. You need not require recipients to copy the
267 | Corresponding Source along with the object code. If the place to
268 | copy the object code is a network server, the Corresponding Source
269 | may be on a different server (operated by you or a third party)
270 | that supports equivalent copying facilities, provided you maintain
271 | clear directions next to the object code saying where to find the
272 | Corresponding Source. Regardless of what server hosts the
273 | Corresponding Source, you remain obligated to ensure that it is
274 | available for as long as needed to satisfy these requirements.
275 |
276 | e) Convey the object code using peer-to-peer transmission, provided
277 | you inform other peers where the object code and Corresponding
278 | Source of the work are being offered to the general public at no
279 | charge under subsection 6d.
280 |
281 | A separable portion of the object code, whose source code is excluded
282 | from the Corresponding Source as a System Library, need not be
283 | included in conveying the object code work.
284 |
285 | A "User Product" is either (1) a "consumer product", which means any
286 | tangible personal property which is normally used for personal, family,
287 | or household purposes, or (2) anything designed or sold for incorporation
288 | into a dwelling. In determining whether a product is a consumer product,
289 | doubtful cases shall be resolved in favor of coverage. For a particular
290 | product received by a particular user, "normally used" refers to a
291 | typical or common use of that class of product, regardless of the status
292 | of the particular user or of the way in which the particular user
293 | actually uses, or expects or is expected to use, the product. A product
294 | is a consumer product regardless of whether the product has substantial
295 | commercial, industrial or non-consumer uses, unless such uses represent
296 | the only significant mode of use of the product.
297 |
298 | "Installation Information" for a User Product means any methods,
299 | procedures, authorization keys, or other information required to install
300 | and execute modified versions of a covered work in that User Product from
301 | a modified version of its Corresponding Source. The information must
302 | suffice to ensure that the continued functioning of the modified object
303 | code is in no case prevented or interfered with solely because
304 | modification has been made.
305 |
306 | If you convey an object code work under this section in, or with, or
307 | specifically for use in, a User Product, and the conveying occurs as
308 | part of a transaction in which the right of possession and use of the
309 | User Product is transferred to the recipient in perpetuity or for a
310 | fixed term (regardless of how the transaction is characterized), the
311 | Corresponding Source conveyed under this section must be accompanied
312 | by the Installation Information. But this requirement does not apply
313 | if neither you nor any third party retains the ability to install
314 | modified object code on the User Product (for example, the work has
315 | been installed in ROM).
316 |
317 | The requirement to provide Installation Information does not include a
318 | requirement to continue to provide support service, warranty, or updates
319 | for a work that has been modified or installed by the recipient, or for
320 | the User Product in which it has been modified or installed. Access to a
321 | network may be denied when the modification itself materially and
322 | adversely affects the operation of the network or violates the rules and
323 | protocols for communication across the network.
324 |
325 | Corresponding Source conveyed, and Installation Information provided,
326 | in accord with this section must be in a format that is publicly
327 | documented (and with an implementation available to the public in
328 | source code form), and must require no special password or key for
329 | unpacking, reading or copying.
330 |
331 | 7. Additional Terms.
332 |
333 | "Additional permissions" are terms that supplement the terms of this
334 | License by making exceptions from one or more of its conditions.
335 | Additional permissions that are applicable to the entire Program shall
336 | be treated as though they were included in this License, to the extent
337 | that they are valid under applicable law. If additional permissions
338 | apply only to part of the Program, that part may be used separately
339 | under those permissions, but the entire Program remains governed by
340 | this License without regard to the additional permissions.
341 |
342 | When you convey a copy of a covered work, you may at your option
343 | remove any additional permissions from that copy, or from any part of
344 | it. (Additional permissions may be written to require their own
345 | removal in certain cases when you modify the work.) You may place
346 | additional permissions on material, added by you to a covered work,
347 | for which you have or can give appropriate copyright permission.
348 |
349 | Notwithstanding any other provision of this License, for material you
350 | add to a covered work, you may (if authorized by the copyright holders of
351 | that material) supplement the terms of this License with terms:
352 |
353 | a) Disclaiming warranty or limiting liability differently from the
354 | terms of sections 15 and 16 of this License; or
355 |
356 | b) Requiring preservation of specified reasonable legal notices or
357 | author attributions in that material or in the Appropriate Legal
358 | Notices displayed by works containing it; or
359 |
360 | c) Prohibiting misrepresentation of the origin of that material, or
361 | requiring that modified versions of such material be marked in
362 | reasonable ways as different from the original version; or
363 |
364 | d) Limiting the use for publicity purposes of names of licensors or
365 | authors of the material; or
366 |
367 | e) Declining to grant rights under trademark law for use of some
368 | trade names, trademarks, or service marks; or
369 |
370 | f) Requiring indemnification of licensors and authors of that
371 | material by anyone who conveys the material (or modified versions of
372 | it) with contractual assumptions of liability to the recipient, for
373 | any liability that these contractual assumptions directly impose on
374 | those licensors and authors.
375 |
376 | All other non-permissive additional terms are considered "further
377 | restrictions" within the meaning of section 10. If the Program as you
378 | received it, or any part of it, contains a notice stating that it is
379 | governed by this License along with a term that is a further
380 | restriction, you may remove that term. If a license document contains
381 | a further restriction but permits relicensing or conveying under this
382 | License, you may add to a covered work material governed by the terms
383 | of that license document, provided that the further restriction does
384 | not survive such relicensing or conveying.
385 |
386 | If you add terms to a covered work in accord with this section, you
387 | must place, in the relevant source files, a statement of the
388 | additional terms that apply to those files, or a notice indicating
389 | where to find the applicable terms.
390 |
391 | Additional terms, permissive or non-permissive, may be stated in the
392 | form of a separately written license, or stated as exceptions;
393 | the above requirements apply either way.
394 |
395 | 8. Termination.
396 |
397 | You may not propagate or modify a covered work except as expressly
398 | provided under this License. Any attempt otherwise to propagate or
399 | modify it is void, and will automatically terminate your rights under
400 | this License (including any patent licenses granted under the third
401 | paragraph of section 11).
402 |
403 | However, if you cease all violation of this License, then your
404 | license from a particular copyright holder is reinstated (a)
405 | provisionally, unless and until the copyright holder explicitly and
406 | finally terminates your license, and (b) permanently, if the copyright
407 | holder fails to notify you of the violation by some reasonable means
408 | prior to 60 days after the cessation.
409 |
410 | Moreover, your license from a particular copyright holder is
411 | reinstated permanently if the copyright holder notifies you of the
412 | violation by some reasonable means, this is the first time you have
413 | received notice of violation of this License (for any work) from that
414 | copyright holder, and you cure the violation prior to 30 days after
415 | your receipt of the notice.
416 |
417 | Termination of your rights under this section does not terminate the
418 | licenses of parties who have received copies or rights from you under
419 | this License. If your rights have been terminated and not permanently
420 | reinstated, you do not qualify to receive new licenses for the same
421 | material under section 10.
422 |
423 | 9. Acceptance Not Required for Having Copies.
424 |
425 | You are not required to accept this License in order to receive or
426 | run a copy of the Program. Ancillary propagation of a covered work
427 | occurring solely as a consequence of using peer-to-peer transmission
428 | to receive a copy likewise does not require acceptance. However,
429 | nothing other than this License grants you permission to propagate or
430 | modify any covered work. These actions infringe copyright if you do
431 | not accept this License. Therefore, by modifying or propagating a
432 | covered work, you indicate your acceptance of this License to do so.
433 |
434 | 10. Automatic Licensing of Downstream Recipients.
435 |
436 | Each time you convey a covered work, the recipient automatically
437 | receives a license from the original licensors, to run, modify and
438 | propagate that work, subject to this License. You are not responsible
439 | for enforcing compliance by third parties with this License.
440 |
441 | An "entity transaction" is a transaction transferring control of an
442 | organization, or substantially all assets of one, or subdividing an
443 | organization, or merging organizations. If propagation of a covered
444 | work results from an entity transaction, each party to that
445 | transaction who receives a copy of the work also receives whatever
446 | licenses to the work the party's predecessor in interest had or could
447 | give under the previous paragraph, plus a right to possession of the
448 | Corresponding Source of the work from the predecessor in interest, if
449 | the predecessor has it or can get it with reasonable efforts.
450 |
451 | You may not impose any further restrictions on the exercise of the
452 | rights granted or affirmed under this License. For example, you may
453 | not impose a license fee, royalty, or other charge for exercise of
454 | rights granted under this License, and you may not initiate litigation
455 | (including a cross-claim or counterclaim in a lawsuit) alleging that
456 | any patent claim is infringed by making, using, selling, offering for
457 | sale, or importing the Program or any portion of it.
458 |
459 | 11. Patents.
460 |
461 | A "contributor" is a copyright holder who authorizes use under this
462 | License of the Program or a work on which the Program is based. The
463 | work thus licensed is called the contributor's "contributor version".
464 |
465 | A contributor's "essential patent claims" are all patent claims
466 | owned or controlled by the contributor, whether already acquired or
467 | hereafter acquired, that would be infringed by some manner, permitted
468 | by this License, of making, using, or selling its contributor version,
469 | but do not include claims that would be infringed only as a
470 | consequence of further modification of the contributor version. For
471 | purposes of this definition, "control" includes the right to grant
472 | patent sublicenses in a manner consistent with the requirements of
473 | this License.
474 |
475 | Each contributor grants you a non-exclusive, worldwide, royalty-free
476 | patent license under the contributor's essential patent claims, to
477 | make, use, sell, offer for sale, import and otherwise run, modify and
478 | propagate the contents of its contributor version.
479 |
480 | In the following three paragraphs, a "patent license" is any express
481 | agreement or commitment, however denominated, not to enforce a patent
482 | (such as an express permission to practice a patent or covenant not to
483 | sue for patent infringement). To "grant" such a patent license to a
484 | party means to make such an agreement or commitment not to enforce a
485 | patent against the party.
486 |
487 | If you convey a covered work, knowingly relying on a patent license,
488 | and the Corresponding Source of the work is not available for anyone
489 | to copy, free of charge and under the terms of this License, through a
490 | publicly available network server or other readily accessible means,
491 | then you must either (1) cause the Corresponding Source to be so
492 | available, or (2) arrange to deprive yourself of the benefit of the
493 | patent license for this particular work, or (3) arrange, in a manner
494 | consistent with the requirements of this License, to extend the patent
495 | license to downstream recipients. "Knowingly relying" means you have
496 | actual knowledge that, but for the patent license, your conveying the
497 | covered work in a country, or your recipient's use of the covered work
498 | in a country, would infringe one or more identifiable patents in that
499 | country that you have reason to believe are valid.
500 |
501 | If, pursuant to or in connection with a single transaction or
502 | arrangement, you convey, or propagate by procuring conveyance of, a
503 | covered work, and grant a patent license to some of the parties
504 | receiving the covered work authorizing them to use, propagate, modify
505 | or convey a specific copy of the covered work, then the patent license
506 | you grant is automatically extended to all recipients of the covered
507 | work and works based on it.
508 |
509 | A patent license is "discriminatory" if it does not include within
510 | the scope of its coverage, prohibits the exercise of, or is
511 | conditioned on the non-exercise of one or more of the rights that are
512 | specifically granted under this License. You may not convey a covered
513 | work if you are a party to an arrangement with a third party that is
514 | in the business of distributing software, under which you make payment
515 | to the third party based on the extent of your activity of conveying
516 | the work, and under which the third party grants, to any of the
517 | parties who would receive the covered work from you, a discriminatory
518 | patent license (a) in connection with copies of the covered work
519 | conveyed by you (or copies made from those copies), or (b) primarily
520 | for and in connection with specific products or compilations that
521 | contain the covered work, unless you entered into that arrangement,
522 | or that patent license was granted, prior to 28 March 2007.
523 |
524 | Nothing in this License shall be construed as excluding or limiting
525 | any implied license or other defenses to infringement that may
526 | otherwise be available to you under applicable patent law.
527 |
528 | 12. No Surrender of Others' Freedom.
529 |
530 | If conditions are imposed on you (whether by court order, agreement or
531 | otherwise) that contradict the conditions of this License, they do not
532 | excuse you from the conditions of this License. If you cannot convey a
533 | covered work so as to satisfy simultaneously your obligations under this
534 | License and any other pertinent obligations, then as a consequence you may
535 | not convey it at all. For example, if you agree to terms that obligate you
536 | to collect a royalty for further conveying from those to whom you convey
537 | the Program, the only way you could satisfy both those terms and this
538 | License would be to refrain entirely from conveying the Program.
539 |
540 | 13. Remote Network Interaction; Use with the GNU General Public License.
541 |
542 | Notwithstanding any other provision of this License, if you modify the
543 | Program, your modified version must prominently offer all users
544 | interacting with it remotely through a computer network (if your version
545 | supports such interaction) an opportunity to receive the Corresponding
546 | Source of your version by providing access to the Corresponding Source
547 | from a network server at no charge, through some standard or customary
548 | means of facilitating copying of software. This Corresponding Source
549 | shall include the Corresponding Source for any work covered by version 3
550 | of the GNU General Public License that is incorporated pursuant to the
551 | following paragraph.
552 |
553 | Notwithstanding any other provision of this License, you have
554 | permission to link or combine any covered work with a work licensed
555 | under version 3 of the GNU General Public License into a single
556 | combined work, and to convey the resulting work. The terms of this
557 | License will continue to apply to the part which is the covered work,
558 | but the work with which it is combined will remain governed by version
559 | 3 of the GNU General Public License.
560 |
561 | 14. Revised Versions of this License.
562 |
563 | The Free Software Foundation may publish revised and/or new versions of
564 | the GNU Affero General Public License from time to time. Such new versions
565 | will be similar in spirit to the present version, but may differ in detail to
566 | address new problems or concerns.
567 |
568 | Each version is given a distinguishing version number. If the
569 | Program specifies that a certain numbered version of the GNU Affero General
570 | Public License "or any later version" applies to it, you have the
571 | option of following the terms and conditions either of that numbered
572 | version or of any later version published by the Free Software
573 | Foundation. If the Program does not specify a version number of the
574 | GNU Affero General Public License, you may choose any version ever published
575 | by the Free Software Foundation.
576 |
577 | If the Program specifies that a proxy can decide which future
578 | versions of the GNU Affero General Public License can be used, that proxy's
579 | public statement of acceptance of a version permanently authorizes you
580 | to choose that version for the Program.
581 |
582 | Later license versions may give you additional or different
583 | permissions. However, no additional obligations are imposed on any
584 | author or copyright holder as a result of your choosing to follow a
585 | later version.
586 |
587 | 15. Disclaimer of Warranty.
588 |
589 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
590 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
591 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
592 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
593 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
594 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
595 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
596 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
597 |
598 | 16. Limitation of Liability.
599 |
600 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
601 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
602 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
603 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
604 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
605 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
606 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
607 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
608 | SUCH DAMAGES.
609 |
610 | 17. Interpretation of Sections 15 and 16.
611 |
612 | If the disclaimer of warranty and limitation of liability provided
613 | above cannot be given local legal effect according to their terms,
614 | reviewing courts shall apply local law that most closely approximates
615 | an absolute waiver of all civil liability in connection with the
616 | Program, unless a warranty or assumption of liability accompanies a
617 | copy of the Program in return for a fee.
618 |
619 | END OF TERMS AND CONDITIONS
620 |
621 | How to Apply These Terms to Your New Programs
622 |
623 | If you develop a new program, and you want it to be of the greatest
624 | possible use to the public, the best way to achieve this is to make it
625 | free software which everyone can redistribute and change under these terms.
626 |
627 | To do so, attach the following notices to the program. It is safest
628 | to attach them to the start of each source file to most effectively
629 | state the exclusion of warranty; and each file should have at least
630 | the "copyright" line and a pointer to where the full notice is found.
631 |
632 |
633 | Copyright (C)
634 |
635 | This program is free software: you can redistribute it and/or modify
636 | it under the terms of the GNU Affero General Public License as published
637 | by the Free Software Foundation, either version 3 of the License, or
638 | (at your option) any later version.
639 |
640 | This program is distributed in the hope that it will be useful,
641 | but WITHOUT ANY WARRANTY; without even the implied warranty of
642 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
643 | GNU Affero General Public License for more details.
644 |
645 | You should have received a copy of the GNU Affero General Public License
646 | along with this program. If not, see .
647 |
648 | Also add information on how to contact you by electronic and paper mail.
649 |
650 | If your software can interact with users remotely through a computer
651 | network, you should also make sure that it provides a way for users to
652 | get its source. For example, if your program is a web application, its
653 | interface could display a "Source" link that leads users to an archive
654 | of the code. There are many ways you could offer source, and different
655 | solutions will be better for different programs; see section 13 for the
656 | specific requirements.
657 |
658 | You should also get your employer (if you work as a programmer) or school,
659 | if any, to sign a "copyright disclaimer" for the program, if necessary.
660 | For more information on this, and how to apply and follow the GNU AGPL, see
661 | .
662 |
--------------------------------------------------------------------------------