├── README.md ├── dataset.py ├── get_the_metric.py ├── train_2d3d.py ├── labelflattenedp.csv └── LICENSE /README.md: -------------------------------------------------------------------------------- 1 | # Simultaneous Alignment and Surface Regression Using Hybrid 2D-3D Networks for 3DCoherent Layer Segmentation of Retina OCT Images 2 | 3 | Code for paper "Simultaneous Alignment and Surface Regression Using Hybrid 2D-3D Networks for 3DCoherent Layer Segmentation of Retina OCT Images." 4 | 5 | The codes are implemented in PyTorch 1.4 and trained on NVIDIA 2080Ti GPUs. 6 | 7 | Parts of codes are borrowed from https://github.com/Hui-Xie/DeepLearningSeg. 8 | 9 | The preprocess code: https://github.com/YufanHe/oct_preprocess 10 | 11 | ## datasets 12 | 13 | 1. public A2A OCT dataset: https://people.duke.edu/~sf59/RPEDC_Ophth_2013_dataset.htm 14 | 2. public JHU OCT dataset: http://iacl.ece.jhu.edu/index.php/Resources 15 | 16 | ## Contact 17 | 18 | If you have any questions, please do not hesitate to contact liuhong@stu.xmu.edu.cn 19 | -------------------------------------------------------------------------------- /dataset.py: -------------------------------------------------------------------------------- 1 | import os 2 | import csv 3 | import glob 4 | import torch 5 | import torch.nn.functional as F 6 | import random 7 | import torch.utils.data 8 | import scipy.io as scio 9 | import warnings 10 | warnings.filterwarnings('ignore') 11 | from numpy import * 12 | import numpy as np 13 | import scipy.ndimage 14 | 15 | from sklearn import preprocessing 16 | 17 | def getLayerLabels(surfaceLabels, height): 18 | 19 | if surfaceLabels is None: 20 | return None 21 | 22 | H = height 23 | device = surfaceLabels.device 24 | N, W, D = surfaceLabels.shape # N is the number of surface 25 | layerLabels = torch.zeros((H, W, D), dtype=torch.long, device=device) 26 | surfaceLabels = (surfaceLabels + 0.5).long() # let surface height match grid 27 | surfaceCodes = torch.tensor(range(1, N + 1), device=device).unsqueeze(dim=-1).unsqueeze(dim=-1).expand_as(surfaceLabels) 28 | layerLabels.scatter_(0, surfaceLabels, surfaceCodes) #surface 0 in its exact location marks as 1, surface N-1 mark as N. 29 | 30 | for i in range(1,H): 31 | layerLabels[i,:, :] = torch.where(0 == layerLabels[i,:, :], layerLabels[i-1,:, :], layerLabels[i,:, :]) 32 | 33 | return layerLabels 34 | 35 | 36 | class sd_oct_flattenp_align(torch.utils.data.Dataset): 37 | """ 38 | dataset for a2a_sd_oct. 39 | the train and valid sets are splited by the label.csv. 40 | """ 41 | 42 | def __init__(self, label_dir, data_name = "a2a_oct", valid_fold = 0, usage = "train", transform=None, step=40): 43 | super(sd_oct_flattenp_align, self).__init__() 44 | 45 | self.data_path = [] 46 | self.data = [] 47 | self.seg = [] 48 | self.name = [] 49 | self.step = step 50 | self.usage = usage 51 | self.valid_fold = valid_fold 52 | 53 | # load file path and split train set and valid set. 54 | label_file = "labelflattenedp.csv" 55 | label_file_path = os.path.join(label_dir, label_file) 56 | label = open(label_file_path, "r") 57 | csv_reader = csv.reader(label) 58 | 59 | for path, fold in csv_reader: 60 | path = path.replace("afterfp2","flattened") 61 | if int(fold) == valid_fold and self.usage == "valid": 62 | self.data_path.append(path) 63 | elif int(fold) != valid_fold and self.usage == "train": 64 | self.data_path.append(path) 65 | print("load " + self.usage + " " + str(len(self.data_path))) 66 | 67 | # load data and seg 68 | for l in self.data_path: 69 | try: 70 | cur_data = scio.loadmat(l) 71 | except: 72 | print(l) 73 | continue 74 | 75 | cur_img = cur_data["data"][0,0]["flat_vol"][:, 300:700, 18:58] 76 | cur_seg = cur_data["data"][0,0]["bds"][300:700, 18:58, :] 77 | 78 | if cur_img.shape[0] != 320: 79 | print(cur_img.shape[0]) 80 | continue 81 | if sum(np.isnan(cur_seg)) > 0: 82 | continue 83 | if cur_seg.min() < 5 or cur_seg.max() > 315: 84 | continue 85 | 86 | # normalization 87 | mu = np.mean(cur_img, axis=0) 88 | sigma = np.std(cur_img, axis=0) 89 | cur_img = (cur_img - mu) / sigma 90 | step = self.step 91 | 92 | for i in range((cur_img.shape[1] - 48) // step): 93 | cur_idx = i*step 94 | self.name.append(l.split("/")[-1]+str(i).zfill(3)+str(cur_idx).zfill(3)) 95 | cur_idx = i*step 96 | self.data.append(cur_img.astype(np.float32)[:,cur_idx : cur_idx + 48,:]) 97 | self.seg.append(np.round(cur_seg).astype(np.float32)[cur_idx : cur_idx + 48,:,:]) 98 | cur_idx = 400 - 48 99 | self.name.append(l.split("/")[-1]+str(i).zfill(3)+str(cur_idx).zfill(3)) 100 | self.data.append(cur_img.astype(np.float32)[:,cur_idx : cur_idx + 48,:]) 101 | self.seg.append(np.round(cur_seg).astype(np.float32)[cur_idx : cur_idx + 48,:,:]) 102 | 103 | print("load " + self.usage + " " + str(len(self.data))) 104 | 105 | def __getitem__(self, index): 106 | patch = self.data[index] 107 | name = self.name[index] 108 | seg = self.seg[index] 109 | 110 | layer_gt = getLayerLabels(torch.tensor(seg).permute(2,0,1), 320) 111 | return torch.tensor(patch).unsqueeze(0), torch.tensor(seg).permute(2,0,1), layer_gt, name 112 | 113 | def __len__(self): 114 | return len(self.data) 115 | 116 | 117 | 118 | 119 | 120 | 121 | -------------------------------------------------------------------------------- /get_the_metric.py: -------------------------------------------------------------------------------- 1 | import os 2 | import argparse 3 | import torch 4 | import cv2 5 | import sys 6 | import csv 7 | import numpy as np 8 | from numpy import * 9 | import torchvision.transforms as transforms 10 | import torch.nn as nn 11 | from torch.utils.data.sampler import WeightedRandomSampler 12 | from model2d_3d import * 13 | from sklearn.metrics import confusion_matrix,accuracy_score,f1_score,roc_auc_score,recall_score,precision_score 14 | import scipy.ndimage 15 | import scipy.io as io 16 | 17 | from dataset import * 18 | from losses import * 19 | 20 | # for visualization 21 | from torch.utils.tensorboard import SummaryWriter 22 | 23 | # Set arguments and hyper-parameters. 24 | parser = argparse.ArgumentParser(description='baseline') 25 | parser.add_argument('--data_dir', default='/data3/layer_segmentation/a2a_oct', type=str, help='Directory to load PCam data.') 26 | parser.add_argument('--label_dir', default='./label', type=str, help='Directory to load label files.') 27 | parser.add_argument('--ckpt_dir', default='./checkpoint', type=str, help='Directory to save checkpoint.') 28 | 29 | parser.add_argument('--gpu', default='0', type=str, help='GPU Devices to use.') 30 | parser.add_argument('--ck_name', default="2d3d_5_inter20_123_noncc_047_fold0_1.008%.t7", type=str, help='GPU Devices to use.') 31 | parser.add_argument('--batch_size', default=7, type=int, help='Batch size.') 32 | 33 | parser.add_argument('--lr', default=3e-4, type=float, help='Starting learning rate.') 34 | parser.add_argument('--lr_decay', default=0.9, type=float, help='Learning rate decay.') 35 | parser.add_argument('--lr_decay_step', default=1, type=int, help='Learning rate decay step.') 36 | parser.add_argument('--weight_decay', default=1e-4, type=float, help='L2 penalty for regularization.') 37 | parser.add_argument('--weight_g', default=0.3, type=float, help='L2 penalty for regularization.') 38 | 39 | 40 | parser.add_argument('--start_epoch', default=1, type=int, help='Starting epoch.') 41 | parser.add_argument('--epochs', default=20, type=int, help='Number of training epochs.') 42 | parser.add_argument('--resume', '-r', action='store_true', help='Resume from checkpoint or not.') 43 | parser.add_argument('--store_last', action='store_true', help='store the last model.') 44 | parser.add_argument('--resume_last', action='store_true', help='resume the last model.') 45 | parser.add_argument('--name', default='layers', type=str, help='The id of this train') 46 | parser.add_argument('--valid_fold', default=0, type=int, help='Starting epoch.') 47 | 48 | parser.add_argument('--norm', type=str, default='inorm', dest='norm') 49 | parser.add_argument('--ny_in', type=int, default=320, dest='ny_in') 50 | parser.add_argument('--nx_in', type=int, default=400, dest='nx_in') 51 | parser.add_argument('--nch_in', type=int, default=40, dest='nch_in') 52 | 53 | parser.add_argument('--ny_out', type=int, default=320, dest='ny_out') 54 | parser.add_argument('--nx_out', type=int, default=400, dest='nx_out') 55 | parser.add_argument('--nch_out', type=int, default=40, dest='nch_out') 56 | 57 | parser.add_argument('--nch_ker', type=int, default=64, dest='nch_ker') 58 | parser.add_argument('--image-loss', default='mse', help='image reconstruction loss - can be mse or ncc (default: mse)') 59 | 60 | args = parser.parse_args() 61 | 62 | 63 | if not os.path.exists(args.ckpt_dir): os.makedirs(args.ckpt_dir) 64 | print('==> Arguments:') 65 | print(args) 66 | 67 | # Set GPU device. 68 | os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu 69 | device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') 70 | 71 | ck_name = args.ck_name 72 | 73 | # load checkpoint 74 | checkpoint = torch.load("./checkpoint/"+ ck_name) 75 | 76 | model = checkpoint["model"].module 77 | model = model.to(device) 78 | 79 | if len(args.gpu) > 1: 80 | model = nn.DataParallel(model) 81 | 82 | 83 | 84 | def load_data(data_dir, label_dir): 85 | valid_set = sd_oct_flattenp_align(data_dir, label_dir, usage = 'valid', valid_fold = args.valid_fold, step = 20) 86 | 87 | valid_loader = torch.utils.data.DataLoader(valid_set, batch_size=args.batch_size, shuffle=False, pin_memory=True, num_workers=4) 88 | return valid_loader 89 | 90 | 91 | def valid(epoch, valid_loader): 92 | print("valid:") 93 | global best_loss 94 | 95 | model.eval() 96 | surface_ces = [] 97 | loss_sl1s = [] 98 | loss_grads = [] 99 | loss_gds = [] 100 | loss_nccs = [] 101 | 102 | flows = [] 103 | result = [] 104 | target = [] 105 | metric = [] # mean_dis 106 | 107 | store_path = "" 108 | if store_path != "" and not os.path.exists(store_path): 109 | os.mkdir(store_path) 110 | 111 | names = [] 112 | with torch.no_grad(): 113 | for idx, (data, mask, layer_gt, name) in enumerate(valid_loader): 114 | data = data.to(device) 115 | mask = mask.float() 116 | layer_gt = layer_gt.float().to(device) 117 | s, logits, layerProb, mu, x, flow = model(data) 118 | 119 | 120 | #print(flow[:, 1].abs().mean(), mean_dis) 121 | result.append(s.cpu()[:,:,:,:] + flow.detach().cpu()[:,:,:,:]) 122 | target.append(mask[:,:,:,:]) 123 | flows.append(flow.detach().cpu()[:,:,:,:]) 124 | names.extend(name) 125 | 126 | 127 | print() 128 | result = torch.cat(result).numpy() 129 | target = torch.cat(target).numpy() 130 | flows = torch.cat(flows).numpy() 131 | cat_metric(names, result, target, flows) 132 | print(mean(metric), mean(loss_nccs), mean(surface_ces), mean(loss_sl1s), np.mean(loss_grads, 0), mean(loss_gds)) 133 | 134 | 135 | def cat_metric(name, result, target, flows): 136 | 137 | # to concat the patches to original volume to calculate the final metric, each A-scan will have more than one segmentation, depend on the step of patch(dataset) 138 | 139 | name_list = list(set([l[:-6] for l in name])) 140 | 141 | n, nc, w, h = result.shape 142 | AMD_list = [] 143 | NOR_list = [] 144 | 145 | for idx,l in enumerate(name_list): 146 | if "AMD" in l: 147 | AMD_list.append(idx) 148 | else: 149 | NOR_list.append(idx) 150 | 151 | deno = np.zeros((len(name_list), nc, 400, 40)) # denominator 152 | mulo = np.zeros((len(name_list), nc, 400, 40)) # molecule 153 | 154 | denot = np.zeros((len(name_list), nc, 400, 40)) # denominator 155 | mulot = np.zeros((len(name_list), nc, 400, 40)) # molecule 156 | 157 | ft = np.zeros((len(name_list), 1, 1, 40)) # denominator 158 | mft = np.zeros((len(name_list),1,1,1)) # molecule 159 | 160 | for idx, l in enumerate(name): 161 | 162 | cname = l[:-6] 163 | widx = int(l[-3:]) 164 | 165 | nameidx = name_list.index(cname) 166 | 167 | deno[nameidx, :, widx: widx + 48, :] = deno[nameidx, :, widx: widx + 48, :] + result[idx,:,:,:] 168 | denot[nameidx, :, widx: widx + 48, :] = denot[nameidx, :, widx: widx + 48, :] + target[idx,:,:,:] 169 | 170 | mulo[nameidx, :, widx: widx + 48, :] += 1 171 | mulot[nameidx, :, widx: widx + 48, :] += 1 172 | 173 | ft[nameidx, :, :, :] += flows[idx, :,:,:] 174 | mft[nameidx, :,:,:] += 1 175 | 176 | deno = deno / mulo 177 | 178 | # this target is the same as the target in origin volume. 179 | denot = denot / mulot 180 | 181 | ft = ft / mft 182 | 183 | rmean = np.abs(np.round(deno)-np.round(denot)) 184 | print(rmean.mean() * 3.24) 185 | print(np.mean(rmean, (0,2,3)) * 3.24) 186 | AMD_mean = rmean[AMD_list] 187 | NOR_mean = rmean[NOR_list] 188 | print("AMD:") 189 | print(np.mean(AMD_mean, (0,2,3)) * 3.24) 190 | 191 | print("NOR:") 192 | print(np.mean(NOR_mean, (0,2,3)) * 3.24) 193 | 194 | means = np.mean(rmean, (2,3)) 195 | 196 | 197 | 198 | 199 | 200 | if __name__ == '__main__': 201 | valid_loader= load_data(args.data_dir, args.label_dir) 202 | valid(0, valid_loader) 203 | -------------------------------------------------------------------------------- /train_2d3d.py: -------------------------------------------------------------------------------- 1 | import os 2 | import argparse 3 | import torch 4 | import cv2 5 | import sys 6 | import csv 7 | import numpy as np 8 | from numpy import * 9 | import torchvision.transforms as transforms 10 | import torch.nn as nn 11 | from torch.utils.data.sampler import WeightedRandomSampler 12 | from model2d_3d import * 13 | from sklearn.metrics import confusion_matrix,accuracy_score,f1_score,roc_auc_score,recall_score,precision_score 14 | import scipy.ndimage 15 | import scipy.io as io 16 | 17 | from dataset import * 18 | from losses import * 19 | 20 | # for visualization 21 | from torch.utils.tensorboard import SummaryWriter 22 | 23 | 24 | # Set arguments and hyper-parameters. 25 | parser = argparse.ArgumentParser(description='baseline') 26 | parser.add_argument('--label_dir', default='./label', type=str, help='Directory to load label files.') 27 | parser.add_argument('--ckpt_dir', default='./checkpoint', type=str, help='Directory to save checkpoint.') 28 | 29 | parser.add_argument('--gpu', default='0', type=str, help='GPU Devices to use.') 30 | parser.add_argument('--batch_size', default=9, type=int, help='Batch size.') 31 | 32 | parser.add_argument('--lr', default=0.001, type=float, help='Starting learning rate.') 33 | parser.add_argument('--lr_decay', default=0.9, type=float, help='Learning rate decay.') 34 | parser.add_argument('--lr_decay_step', default=1, type=int, help='Learning rate decay step.') 35 | parser.add_argument('--weight_decay', default=1e-4, type=float, help='L2 penalty for regularization.') 36 | parser.add_argument('--weight_g', default=0.3, type=float, help='L2 penalty for regularization.') 37 | 38 | 39 | parser.add_argument('--start_epoch', default=1, type=int, help='Starting epoch.') 40 | parser.add_argument('--epochs', default=90, type=int, help='Number of training epochs.') 41 | parser.add_argument('--resume', '-r', action='store_true', help='Resume from checkpoint or not.') 42 | parser.add_argument('--store_last', action='store_true', help='store the last model.') 43 | parser.add_argument('--resume_last', action='store_true', help='resume the last model.') 44 | parser.add_argument('--test', action='store_true', help='resume the last model.') 45 | 46 | parser.add_argument('--name', default='layers', type=str, help='The id of this train') 47 | parser.add_argument('--valid_fold', default=0, type=int, help='Starting epoch.') 48 | 49 | args = parser.parse_args() 50 | 51 | if not os.path.exists(args.ckpt_dir): os.makedirs(args.ckpt_dir) 52 | print('==> Arguments:') 53 | print(args) 54 | 55 | # Set GPU device. 56 | os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu 57 | device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') 58 | 59 | if args.resume_last: 60 | check = torch.load("") 61 | model = check["model"].module 62 | 63 | else: 64 | model = UNet3D_dual_up(n_layer = 3) 65 | 66 | # set optimizer 67 | optimizer = torch.optim.Adam(model.parameters(), lr=args.lr) 68 | model = model.to(device) 69 | model = nn.DataParallel(model) 70 | 71 | # prepare image loss 72 | image_loss_func = MultiSurfaceCrossEntropyLoss() 73 | grad_loss = Grad_2d(weight = torch.tensor(np.array([0, 0.8, 1.5]).astype(np.float32)).to(device)) 74 | smoothl1loss = nn.SmoothL1Loss() 75 | meandis = nn.L1Loss() 76 | 77 | # loss for segmentation branch 78 | Gloss = GeneralizedDiceLoss() 79 | mlloss = MultiLayerCrossEntropyLoss() 80 | 81 | # loss for alignment 82 | bce_Bscan = MSE_bscan() 83 | ncc = NCC_oct().loss 84 | 85 | # set best loss 86 | best_loss = 10000 87 | 88 | # set visualization writer 89 | logpt = "./log/" + args.name 90 | if not os.path.exists(logpt): 91 | os.mkdir(logpt) 92 | writer = SummaryWriter(logpt) 93 | 94 | def load_data(label_dir): 95 | valid_set = sd_oct_flattenp_align(label_dir, usage = 'valid', valid_fold = args.valid_fold) 96 | valid_loader = torch.utils.data.DataLoader(valid_set, batch_size=args.batch_size, shuffle=False, pin_memory=True, num_workers=4) 97 | 98 | if args.test: 99 | return valid_loader, valid_loader 100 | train_set = sd_oct_flattenp_align(label_dir, usage = 'train', valid_fold = args.valid_fold) 101 | train_loader = torch.utils.data.DataLoader(train_set, batch_size=args.batch_size, shuffle = True, pin_memory=True, num_workers=4) 102 | return train_loader, valid_loader 103 | 104 | def train(epoch, train_loader): 105 | print("train:") 106 | model.train() 107 | surface_ces = [] 108 | loss_sl1s = [] 109 | loss_grads = [] 110 | loss_gds = [] 111 | 112 | loss_nccs = [] 113 | loss_mses = [] 114 | 115 | metric = [] # mean_dis 116 | 117 | for idx, (data, mask, _, _) in enumerate(train_loader): 118 | data = data.to(device) 119 | mask = mask.float().to(device) 120 | optimizer.zero_grad() 121 | 122 | s, logits, layerProb, mu, x, flow = model(data) 123 | 124 | # for the branch 2, the layer_label need to be align 125 | new_label = (mask - flow.detach()) 126 | new_label[new_label > 319] = 319 127 | new_label[new_label < 0] = 0 128 | layer_gt = [] 129 | for l in new_label: 130 | layer_gt.append(getLayerLabels(l, 320).unsqueeze(0)) 131 | layer_gt = torch.cat(layer_gt, dim = 0) 132 | 133 | lossgd = Gloss(layerProb, layer_gt.float()) # diceloss 134 | lossgd += mlloss(layerProb, layer_gt.float()) # layer_cross_entropy 135 | surface_ce = image_loss_func(logits[:,:,:,:], new_label) # surface_cross_entropy 136 | loss_grad = grad_loss.loss(mask, mu[:,:3,:,:]) # grad_loss 137 | lossmse = bce_Bscan.loss(mask - flow) 138 | 139 | ncc_loss = ncc(x) 140 | sl1loss = smoothl1loss(mu, new_label) # smooth_l1_loss # why use smooth l1 141 | main_loss = surface_ce + sl1loss + ncc_loss + lossgd + loss_grad * args.weight_g + lossmse 142 | 143 | main_loss.backward() 144 | 145 | optimizer.step() 146 | metric.append(meandis(s[:,:,:,:], mask[:,:3,:,:] - flow.detach()).detach().cpu().numpy()) 147 | loss_mses.append(lossmse.detach().cpu().numpy()) 148 | loss_sl1s.append(sl1loss.detach().cpu().numpy()) 149 | loss_grads.append(loss_grad.detach().cpu().numpy()) 150 | loss_gds.append(lossgd.detach().cpu().numpy()) 151 | surface_ces.append(surface_ce.detach().cpu().numpy()) 152 | loss_nccs.append(ncc_loss.detach().cpu().numpy()) 153 | smooth_loss = sum(loss_sl1s[-100:]) / min(len(loss_sl1s), 100) 154 | print(idx, sl1loss.item(), metric[-1], mean(surface_ces), surface_ce.item(), loss_grad.item(), ncc_loss.item(), end = "\r") 155 | 156 | loss = mean(loss_sl1s) 157 | print(mean(metric), mean(surface_ces), mean(loss_sl1s)) 158 | writer.add_scalar('loss_sl1s/train', mean(loss_sl1s), epoch) 159 | writer.add_scalar('loss_grads/train', mean(loss_grads), epoch) 160 | writer.add_scalar('loss_mses/train', mean(loss_mses), epoch) 161 | writer.add_scalar('mean_dis/train', mean(metric), epoch) 162 | writer.add_scalar('surface_ce/train', mean(surface_ces), epoch) 163 | writer.add_scalar('loss_gds/train', mean(loss_gds), epoch) 164 | writer.add_scalar('ncc/train', mean(loss_nccs), epoch) 165 | 166 | 167 | def valid(epoch, valid_loader, test = False): 168 | print("valid:") 169 | global best_loss 170 | 171 | model.eval() 172 | surface_ces = [] 173 | loss_sl1s = [] 174 | loss_grads = [] 175 | loss_gds = [] 176 | loss_nccs = [] 177 | loss_mses = [] 178 | if test: 179 | store_path = "/data3/layer_segmentation/final" 180 | if not os.path.exists(store_path): 181 | os.mkdir(store_path) 182 | metric = [] # mean_dis 183 | 184 | names = [] 185 | with torch.no_grad(): 186 | for idx, (data, mask, layer_gt, name) in enumerate(valid_loader): 187 | data = data.to(device) 188 | mask = mask.float() 189 | s, logits, layerProb, mu, x, flow = model(data) 190 | 191 | new_label = (mask - flow.detach().cpu()) 192 | new_label[new_label > 319] = 319 193 | new_label[new_label < 0] = 0 194 | 195 | surface_ce = image_loss_func(logits.detach().cpu(), new_label) # surface_cross_entropy 196 | loss_grad = grad_loss.loss(mask, mu[:,:3,:,:].detach()) # grad_loss 197 | lossmse = bce_Bscan.loss(mask - flow.detach().cpu()) 198 | 199 | ncc_loss = ncc(x) 200 | sl1loss = smoothl1loss(mu[:,:3,:,:].detach().cpu(), new_label) # smooth_l1_loss # why use smooth l1 201 | 202 | mean_dis = np.abs(s.detach().cpu().numpy()[:,:,:,:] - new_label.numpy()).mean() 203 | metric.append(mean_dis) 204 | 205 | if test: 206 | res = x.detach().cpu().numpy() 207 | out = flow.detach().cpu().numpy() 208 | cpath = os.path.join(store_path, name[0]) 209 | io.savemat(cpath, {"img":res.squeeze(), "flow" : out, "imgr": data.cpu().numpy()}) 210 | 211 | loss_sl1s.append(sl1loss.detach().numpy()) 212 | loss_grads.append(loss_grad.detach().cpu().numpy()) 213 | loss_nccs.append(ncc_loss.detach().cpu().numpy()) 214 | loss_mses.append(lossmse.detach().cpu().numpy()) 215 | surface_ces.append(surface_ce.detach().cpu().numpy()) 216 | names.append(name) 217 | 218 | smooth_loss = sum(metric[-100:]) / min(len(metric), 100) 219 | print(idx, smooth_loss, end = "\r") 220 | 221 | print(mean(metric), mean(surface_ces), mean(loss_sl1s), mean(loss_grads), mean(loss_nccs)) 222 | 223 | writer.add_scalar('loss_sl1s/valid', mean(loss_sl1s), epoch) 224 | writer.add_scalar('loss_grads/valid', mean(loss_grads), epoch) 225 | writer.add_scalar('loss_mses/valid', mean(loss_mses), epoch) 226 | writer.add_scalar('mean_dis/valid', mean(metric), epoch) 227 | writer.add_scalar('surface_ce/valid', mean(surface_ces), epoch) 228 | writer.add_scalar('ncc/valid', mean(loss_nccs), epoch) 229 | metric = mean(metric) 230 | if metric < best_loss: 231 | best_loss = metric 232 | save_checkpoint(epoch) 233 | return metric 234 | 235 | def save_checkpoint(epoch, name = None): 236 | ''' Save checkpoint if accuracy is higher than before. 237 | 238 | # Arguments 239 | epoch (int): Current epoch. 240 | ''' 241 | # Save model and global variables into checkpoint. 242 | global best_loss 243 | print('==> Saving checkpoint...') 244 | state = { 245 | 'model': model, 246 | 'epoch': epoch, 247 | 'acc': best_loss, 248 | } 249 | if name == None: 250 | checkpoint_name = args.name + "_" + str(epoch).zfill(3) + '_fold' + str(args.valid_fold) + "_"+str(round(best_loss, 3)) + '%.t7' 251 | else: 252 | checkpoint_name = args.name + "_" + name + ".t7" 253 | torch.save(state, os.path.join(args.ckpt_dir, checkpoint_name)) 254 | 255 | if __name__ == '__main__': 256 | 257 | train_loader, valid_loader= load_data(args.label_dir) 258 | 259 | if args.test: 260 | valid(0, valid_loader, True) 261 | exit(0) 262 | 263 | for epoch in range(args.start_epoch, args.epochs + 1): 264 | print('\n************** Epoch: %d **************' % epoch) 265 | train(epoch, train_loader) 266 | print() 267 | valid_loss = valid(epoch, valid_loader) 268 | -------------------------------------------------------------------------------- /labelflattenedp.csv: -------------------------------------------------------------------------------- 1 | Farsiu_Ophthalmology_2013_AMD_Subject_1072.mat,0 2 | Farsiu_Ophthalmology_2013_Control_Subject_1015.mat,1 3 | Farsiu_Ophthalmology_2013_Control_Subject_1016.mat,2 4 | Farsiu_Ophthalmology_2013_AMD_Subject_1221.mat,3 5 | Farsiu_Ophthalmology_2013_Control_Subject_1092.mat,4 6 | Farsiu_Ophthalmology_2013_AMD_Subject_1104.mat,0 7 | Farsiu_Ophthalmology_2013_AMD_Subject_1018.mat,1 8 | Farsiu_Ophthalmology_2013_Control_Subject_1028.mat,2 9 | Farsiu_Ophthalmology_2013_AMD_Subject_1107.mat,3 10 | Farsiu_Ophthalmology_2013_Control_Subject_1091.mat,4 11 | Farsiu_Ophthalmology_2013_AMD_Subject_1225.mat,0 12 | Farsiu_Ophthalmology_2013_AMD_Subject_1209.mat,1 13 | Farsiu_Ophthalmology_2013_Control_Subject_1033.mat,2 14 | Farsiu_Ophthalmology_2013_Control_Subject_1095.mat,3 15 | Farsiu_Ophthalmology_2013_AMD_Subject_1096.mat,4 16 | Farsiu_Ophthalmology_2013_AMD_Subject_1108.mat,0 17 | Farsiu_Ophthalmology_2013_Control_Subject_1080.mat,1 18 | Farsiu_Ophthalmology_2013_AMD_Subject_1234.mat,2 19 | Farsiu_Ophthalmology_2013_Control_Subject_1019.mat,3 20 | Farsiu_Ophthalmology_2013_AMD_Subject_1087.mat,4 21 | Farsiu_Ophthalmology_2013_Control_Subject_1108.mat,0 22 | Farsiu_Ophthalmology_2013_AMD_Subject_1063.mat,1 23 | Farsiu_Ophthalmology_2013_AMD_Subject_1177.mat,2 24 | Farsiu_Ophthalmology_2013_AMD_Subject_1265.mat,3 25 | Farsiu_Ophthalmology_2013_AMD_Subject_1130.mat,4 26 | Farsiu_Ophthalmology_2013_AMD_Subject_1036.mat,0 27 | Farsiu_Ophthalmology_2013_AMD_Subject_1162.mat,1 28 | Farsiu_Ophthalmology_2013_AMD_Subject_1196.mat,2 29 | Farsiu_Ophthalmology_2013_AMD_Subject_1186.mat,3 30 | Farsiu_Ophthalmology_2013_AMD_Subject_1213.mat,4 31 | Farsiu_Ophthalmology_2013_Control_Subject_1058.mat,0 32 | Farsiu_Ophthalmology_2013_Control_Subject_1002.mat,1 33 | Farsiu_Ophthalmology_2013_Control_Subject_1056.mat,2 34 | Farsiu_Ophthalmology_2013_Control_Subject_1020.mat,3 35 | Farsiu_Ophthalmology_2013_Control_Subject_1051.mat,4 36 | Farsiu_Ophthalmology_2013_AMD_Subject_1197.mat,0 37 | Farsiu_Ophthalmology_2013_Control_Subject_1093.mat,1 38 | Farsiu_Ophthalmology_2013_AMD_Subject_1085.mat,2 39 | Farsiu_Ophthalmology_2013_AMD_Subject_1078.mat,3 40 | Farsiu_Ophthalmology_2013_AMD_Subject_1156.mat,4 41 | Farsiu_Ophthalmology_2013_Control_Subject_1103.mat,0 42 | Farsiu_Ophthalmology_2013_Control_Subject_1010.mat,1 43 | Farsiu_Ophthalmology_2013_AMD_Subject_1226.mat,2 44 | Farsiu_Ophthalmology_2013_Control_Subject_1001.mat,3 45 | Farsiu_Ophthalmology_2013_AMD_Subject_1178.mat,4 46 | Farsiu_Ophthalmology_2013_Control_Subject_1057.mat,0 47 | Farsiu_Ophthalmology_2013_AMD_Subject_1115.mat,1 48 | Farsiu_Ophthalmology_2013_AMD_Subject_1022.mat,2 49 | Farsiu_Ophthalmology_2013_Control_Subject_1065.mat,3 50 | Farsiu_Ophthalmology_2013_AMD_Subject_1026.mat,4 51 | Farsiu_Ophthalmology_2013_AMD_Subject_1158.mat,0 52 | Farsiu_Ophthalmology_2013_AMD_Subject_1199.mat,1 53 | Farsiu_Ophthalmology_2013_AMD_Subject_1092.mat,2 54 | Farsiu_Ophthalmology_2013_Control_Subject_1069.mat,3 55 | Farsiu_Ophthalmology_2013_Control_Subject_1096.mat,4 56 | Farsiu_Ophthalmology_2013_AMD_Subject_1145.mat,0 57 | Farsiu_Ophthalmology_2013_AMD_Subject_1194.mat,1 58 | Farsiu_Ophthalmology_2013_AMD_Subject_1079.mat,2 59 | Farsiu_Ophthalmology_2013_AMD_Subject_1233.mat,3 60 | Farsiu_Ophthalmology_2013_AMD_Subject_1188.mat,4 61 | Farsiu_Ophthalmology_2013_Control_Subject_1045.mat,0 62 | Farsiu_Ophthalmology_2013_AMD_Subject_1163.mat,1 63 | Farsiu_Ophthalmology_2013_AMD_Subject_1262.mat,2 64 | Farsiu_Ophthalmology_2013_AMD_Subject_1172.mat,3 65 | Farsiu_Ophthalmology_2013_Control_Subject_1078.mat,4 66 | Farsiu_Ophthalmology_2013_AMD_Subject_1062.mat,0 67 | Farsiu_Ophthalmology_2013_AMD_Subject_1135.mat,1 68 | Farsiu_Ophthalmology_2013_Control_Subject_1053.mat,2 69 | Farsiu_Ophthalmology_2013_Control_Subject_1081.mat,3 70 | Farsiu_Ophthalmology_2013_AMD_Subject_1040.mat,4 71 | Farsiu_Ophthalmology_2013_AMD_Subject_1250.mat,0 72 | Farsiu_Ophthalmology_2013_AMD_Subject_1049.mat,1 73 | Farsiu_Ophthalmology_2013_AMD_Subject_1021.mat,2 74 | Farsiu_Ophthalmology_2013_AMD_Subject_1166.mat,3 75 | Farsiu_Ophthalmology_2013_AMD_Subject_1260.mat,4 76 | Farsiu_Ophthalmology_2013_AMD_Subject_1204.mat,0 77 | Farsiu_Ophthalmology_2013_Control_Subject_1013.mat,1 78 | Farsiu_Ophthalmology_2013_AMD_Subject_1143.mat,2 79 | Farsiu_Ophthalmology_2013_Control_Subject_1083.mat,3 80 | Farsiu_Ophthalmology_2013_AMD_Subject_1008.mat,4 81 | Farsiu_Ophthalmology_2013_Control_Subject_1072.mat,0 82 | Farsiu_Ophthalmology_2013_AMD_Subject_1264.mat,1 83 | Farsiu_Ophthalmology_2013_AMD_Subject_1007.mat,2 84 | Farsiu_Ophthalmology_2013_Control_Subject_1101.mat,3 85 | Farsiu_Ophthalmology_2013_AMD_Subject_1253.mat,4 86 | Farsiu_Ophthalmology_2013_AMD_Subject_1241.mat,0 87 | Farsiu_Ophthalmology_2013_AMD_Subject_1088.mat,1 88 | Farsiu_Ophthalmology_2013_AMD_Subject_1206.mat,2 89 | Farsiu_Ophthalmology_2013_Control_Subject_1082.mat,3 90 | Farsiu_Ophthalmology_2013_AMD_Subject_1218.mat,4 91 | Farsiu_Ophthalmology_2013_AMD_Subject_1045.mat,0 92 | Farsiu_Ophthalmology_2013_AMD_Subject_1013.mat,1 93 | Farsiu_Ophthalmology_2013_AMD_Subject_1077.mat,2 94 | Farsiu_Ophthalmology_2013_Control_Subject_1088.mat,3 95 | Farsiu_Ophthalmology_2013_Control_Subject_1007.mat,4 96 | Farsiu_Ophthalmology_2013_Control_Subject_1026.mat,0 97 | Farsiu_Ophthalmology_2013_Control_Subject_1031.mat,1 98 | Farsiu_Ophthalmology_2013_Control_Subject_1025.mat,2 99 | Farsiu_Ophthalmology_2013_AMD_Subject_1109.mat,3 100 | Farsiu_Ophthalmology_2013_AMD_Subject_1181.mat,4 101 | Farsiu_Ophthalmology_2013_AMD_Subject_1173.mat,0 102 | Farsiu_Ophthalmology_2013_AMD_Subject_1103.mat,1 103 | Farsiu_Ophthalmology_2013_AMD_Subject_1006.mat,2 104 | Farsiu_Ophthalmology_2013_AMD_Subject_1003.mat,3 105 | Farsiu_Ophthalmology_2013_AMD_Subject_1141.mat,4 106 | Farsiu_Ophthalmology_2013_AMD_Subject_1023.mat,0 107 | Farsiu_Ophthalmology_2013_AMD_Subject_1047.mat,1 108 | Farsiu_Ophthalmology_2013_AMD_Subject_1149.mat,2 109 | Farsiu_Ophthalmology_2013_AMD_Subject_1029.mat,3 110 | Farsiu_Ophthalmology_2013_AMD_Subject_1052.mat,4 111 | Farsiu_Ophthalmology_2013_AMD_Subject_1266.mat,0 112 | Farsiu_Ophthalmology_2013_AMD_Subject_1054.mat,1 113 | Farsiu_Ophthalmology_2013_AMD_Subject_1203.mat,2 114 | Farsiu_Ophthalmology_2013_AMD_Subject_1246.mat,3 115 | Farsiu_Ophthalmology_2013_Control_Subject_1021.mat,4 116 | Farsiu_Ophthalmology_2013_AMD_Subject_1256.mat,0 117 | Farsiu_Ophthalmology_2013_AMD_Subject_1139.mat,1 118 | Farsiu_Ophthalmology_2013_Control_Subject_1098.mat,2 119 | Farsiu_Ophthalmology_2013_AMD_Subject_1176.mat,3 120 | Farsiu_Ophthalmology_2013_Control_Subject_1061.mat,4 121 | Farsiu_Ophthalmology_2013_AMD_Subject_1208.mat,0 122 | Farsiu_Ophthalmology_2013_Control_Subject_1114.mat,1 123 | Farsiu_Ophthalmology_2013_AMD_Subject_1195.mat,2 124 | Farsiu_Ophthalmology_2013_Control_Subject_1003.mat,3 125 | Farsiu_Ophthalmology_2013_AMD_Subject_1110.mat,4 126 | Farsiu_Ophthalmology_2013_AMD_Subject_1191.mat,0 127 | Farsiu_Ophthalmology_2013_AMD_Subject_1182.mat,1 128 | Farsiu_Ophthalmology_2013_Control_Subject_1046.mat,2 129 | Farsiu_Ophthalmology_2013_AMD_Subject_1180.mat,3 130 | Farsiu_Ophthalmology_2013_Control_Subject_1063.mat,4 131 | Farsiu_Ophthalmology_2013_AMD_Subject_1210.mat,0 132 | Farsiu_Ophthalmology_2013_AMD_Subject_1121.mat,1 133 | Farsiu_Ophthalmology_2013_AMD_Subject_1171.mat,2 134 | Farsiu_Ophthalmology_2013_AMD_Subject_1066.mat,3 135 | Farsiu_Ophthalmology_2013_AMD_Subject_1132.mat,4 136 | Farsiu_Ophthalmology_2013_AMD_Subject_1120.mat,0 137 | Farsiu_Ophthalmology_2013_Control_Subject_1067.mat,1 138 | Farsiu_Ophthalmology_2013_AMD_Subject_1009.mat,2 139 | Farsiu_Ophthalmology_2013_AMD_Subject_1056.mat,3 140 | Farsiu_Ophthalmology_2013_AMD_Subject_1086.mat,4 141 | Farsiu_Ophthalmology_2013_Control_Subject_1099.mat,0 142 | Farsiu_Ophthalmology_2013_AMD_Subject_1142.mat,1 143 | Farsiu_Ophthalmology_2013_AMD_Subject_1214.mat,2 144 | Farsiu_Ophthalmology_2013_AMD_Subject_1102.mat,3 145 | Farsiu_Ophthalmology_2013_AMD_Subject_1129.mat,4 146 | Farsiu_Ophthalmology_2013_AMD_Subject_1027.mat,0 147 | Farsiu_Ophthalmology_2013_AMD_Subject_1235.mat,1 148 | Farsiu_Ophthalmology_2013_Control_Subject_1089.mat,2 149 | Farsiu_Ophthalmology_2013_Control_Subject_1034.mat,3 150 | Farsiu_Ophthalmology_2013_Control_Subject_1014.mat,4 151 | Farsiu_Ophthalmology_2013_AMD_Subject_1185.mat,0 152 | Farsiu_Ophthalmology_2013_AMD_Subject_1094.mat,1 153 | Farsiu_Ophthalmology_2013_Control_Subject_1005.mat,2 154 | Farsiu_Ophthalmology_2013_Control_Subject_1004.mat,3 155 | Farsiu_Ophthalmology_2013_AMD_Subject_1089.mat,4 156 | Farsiu_Ophthalmology_2013_AMD_Subject_1034.mat,0 157 | Farsiu_Ophthalmology_2013_AMD_Subject_1124.mat,1 158 | Farsiu_Ophthalmology_2013_AMD_Subject_1227.mat,2 159 | Farsiu_Ophthalmology_2013_AMD_Subject_1255.mat,3 160 | Farsiu_Ophthalmology_2013_AMD_Subject_1127.mat,4 161 | Farsiu_Ophthalmology_2013_Control_Subject_1054.mat,0 162 | Farsiu_Ophthalmology_2013_Control_Subject_1113.mat,1 163 | Farsiu_Ophthalmology_2013_AMD_Subject_1070.mat,2 164 | Farsiu_Ophthalmology_2013_AMD_Subject_1189.mat,3 165 | Farsiu_Ophthalmology_2013_AMD_Subject_1245.mat,4 166 | Farsiu_Ophthalmology_2013_AMD_Subject_1050.mat,0 167 | Farsiu_Ophthalmology_2013_Control_Subject_1109.mat,1 168 | Farsiu_Ophthalmology_2013_AMD_Subject_1041.mat,2 169 | Farsiu_Ophthalmology_2013_AMD_Subject_1222.mat,3 170 | Farsiu_Ophthalmology_2013_AMD_Subject_1097.mat,4 171 | Farsiu_Ophthalmology_2013_AMD_Subject_1198.mat,0 172 | Farsiu_Ophthalmology_2013_AMD_Subject_1183.mat,1 173 | Farsiu_Ophthalmology_2013_Control_Subject_1036.mat,2 174 | Farsiu_Ophthalmology_2013_AMD_Subject_1046.mat,3 175 | Farsiu_Ophthalmology_2013_Control_Subject_1048.mat,4 176 | Farsiu_Ophthalmology_2013_Control_Subject_1097.mat,0 177 | Farsiu_Ophthalmology_2013_AMD_Subject_1011.mat,1 178 | Farsiu_Ophthalmology_2013_AMD_Subject_1048.mat,2 179 | Farsiu_Ophthalmology_2013_Control_Subject_1100.mat,3 180 | Farsiu_Ophthalmology_2013_AMD_Subject_1263.mat,4 181 | Farsiu_Ophthalmology_2013_AMD_Subject_1093.mat,0 182 | Farsiu_Ophthalmology_2013_Control_Subject_1079.mat,1 183 | Farsiu_Ophthalmology_2013_AMD_Subject_1064.mat,2 184 | Farsiu_Ophthalmology_2013_AMD_Subject_1243.mat,3 185 | Farsiu_Ophthalmology_2013_AMD_Subject_1058.mat,4 186 | Farsiu_Ophthalmology_2013_AMD_Subject_1192.mat,0 187 | Farsiu_Ophthalmology_2013_AMD_Subject_1224.mat,1 188 | Farsiu_Ophthalmology_2013_Control_Subject_1110.mat,2 189 | Farsiu_Ophthalmology_2013_AMD_Subject_1012.mat,3 190 | Farsiu_Ophthalmology_2013_AMD_Subject_1202.mat,4 191 | Farsiu_Ophthalmology_2013_AMD_Subject_1251.mat,0 192 | Farsiu_Ophthalmology_2013_Control_Subject_1039.mat,1 193 | Farsiu_Ophthalmology_2013_Control_Subject_1042.mat,2 194 | Farsiu_Ophthalmology_2013_AMD_Subject_1242.mat,3 195 | Farsiu_Ophthalmology_2013_AMD_Subject_1155.mat,4 196 | Farsiu_Ophthalmology_2013_AMD_Subject_1219.mat,0 197 | Farsiu_Ophthalmology_2013_AMD_Subject_1247.mat,1 198 | Farsiu_Ophthalmology_2013_AMD_Subject_1184.mat,2 199 | Farsiu_Ophthalmology_2013_Control_Subject_1076.mat,3 200 | Farsiu_Ophthalmology_2013_AMD_Subject_1201.mat,4 201 | Farsiu_Ophthalmology_2013_Control_Subject_1068.mat,0 202 | Farsiu_Ophthalmology_2013_AMD_Subject_1057.mat,1 203 | Farsiu_Ophthalmology_2013_Control_Subject_1102.mat,2 204 | Farsiu_Ophthalmology_2013_AMD_Subject_1114.mat,3 205 | Farsiu_Ophthalmology_2013_Control_Subject_1066.mat,4 206 | Farsiu_Ophthalmology_2013_AMD_Subject_1137.mat,0 207 | Farsiu_Ophthalmology_2013_AMD_Subject_1071.mat,1 208 | Farsiu_Ophthalmology_2013_Control_Subject_1086.mat,2 209 | Farsiu_Ophthalmology_2013_AMD_Subject_1118.mat,3 210 | Farsiu_Ophthalmology_2013_AMD_Subject_1168.mat,4 211 | Farsiu_Ophthalmology_2013_Control_Subject_1044.mat,0 212 | Farsiu_Ophthalmology_2013_AMD_Subject_1232.mat,1 213 | Farsiu_Ophthalmology_2013_Control_Subject_1062.mat,2 214 | Farsiu_Ophthalmology_2013_AMD_Subject_1238.mat,3 215 | Farsiu_Ophthalmology_2013_AMD_Subject_1170.mat,4 216 | Farsiu_Ophthalmology_2013_AMD_Subject_1167.mat,0 217 | Farsiu_Ophthalmology_2013_Control_Subject_1008.mat,1 218 | Farsiu_Ophthalmology_2013_AMD_Subject_1125.mat,2 219 | Farsiu_Ophthalmology_2013_AMD_Subject_1032.mat,3 220 | Farsiu_Ophthalmology_2013_AMD_Subject_1061.mat,4 221 | Farsiu_Ophthalmology_2013_Control_Subject_1047.mat,0 222 | Farsiu_Ophthalmology_2013_AMD_Subject_1117.mat,1 223 | Farsiu_Ophthalmology_2013_AMD_Subject_1113.mat,2 224 | Farsiu_Ophthalmology_2013_Control_Subject_1060.mat,3 225 | Farsiu_Ophthalmology_2013_AMD_Subject_1133.mat,4 226 | Farsiu_Ophthalmology_2013_AMD_Subject_1031.mat,0 227 | Farsiu_Ophthalmology_2013_AMD_Subject_1152.mat,1 228 | Farsiu_Ophthalmology_2013_AMD_Subject_1015.mat,2 229 | Farsiu_Ophthalmology_2013_AMD_Subject_1207.mat,3 230 | Farsiu_Ophthalmology_2013_AMD_Subject_1160.mat,4 231 | Farsiu_Ophthalmology_2013_AMD_Subject_1028.mat,0 232 | Farsiu_Ophthalmology_2013_AMD_Subject_1126.mat,1 233 | Farsiu_Ophthalmology_2013_Control_Subject_1017.mat,2 234 | Farsiu_Ophthalmology_2013_Control_Subject_1041.mat,3 235 | Farsiu_Ophthalmology_2013_AMD_Subject_1005.mat,4 236 | Farsiu_Ophthalmology_2013_AMD_Subject_1080.mat,0 237 | Farsiu_Ophthalmology_2013_Control_Subject_1032.mat,1 238 | Farsiu_Ophthalmology_2013_AMD_Subject_1200.mat,2 239 | Farsiu_Ophthalmology_2013_Control_Subject_1040.mat,3 240 | Farsiu_Ophthalmology_2013_Control_Subject_1023.mat,4 241 | Farsiu_Ophthalmology_2013_AMD_Subject_1193.mat,0 242 | Farsiu_Ophthalmology_2013_Control_Subject_1073.mat,1 243 | Farsiu_Ophthalmology_2013_AMD_Subject_1091.mat,2 244 | Farsiu_Ophthalmology_2013_AMD_Subject_1042.mat,3 245 | Farsiu_Ophthalmology_2013_AMD_Subject_1002.mat,4 246 | Farsiu_Ophthalmology_2013_Control_Subject_1106.mat,0 247 | Farsiu_Ophthalmology_2013_AMD_Subject_1116.mat,1 248 | Farsiu_Ophthalmology_2013_AMD_Subject_1259.mat,2 249 | Farsiu_Ophthalmology_2013_AMD_Subject_1254.mat,3 250 | Farsiu_Ophthalmology_2013_AMD_Subject_1240.mat,4 251 | Farsiu_Ophthalmology_2013_Control_Subject_1037.mat,0 252 | Farsiu_Ophthalmology_2013_Control_Subject_1105.mat,1 253 | Farsiu_Ophthalmology_2013_AMD_Subject_1179.mat,2 254 | Farsiu_Ophthalmology_2013_AMD_Subject_1004.mat,3 255 | Farsiu_Ophthalmology_2013_AMD_Subject_1083.mat,4 256 | Farsiu_Ophthalmology_2013_AMD_Subject_1230.mat,0 257 | Farsiu_Ophthalmology_2013_Control_Subject_1043.mat,1 258 | Farsiu_Ophthalmology_2013_AMD_Subject_1076.mat,2 259 | Farsiu_Ophthalmology_2013_AMD_Subject_1016.mat,3 260 | Farsiu_Ophthalmology_2013_AMD_Subject_1144.mat,4 261 | Farsiu_Ophthalmology_2013_AMD_Subject_1084.mat,0 262 | Farsiu_Ophthalmology_2013_Control_Subject_1029.mat,1 263 | Farsiu_Ophthalmology_2013_Control_Subject_1022.mat,2 264 | Farsiu_Ophthalmology_2013_AMD_Subject_1025.mat,3 265 | Farsiu_Ophthalmology_2013_AMD_Subject_1112.mat,4 266 | Farsiu_Ophthalmology_2013_Control_Subject_1087.mat,0 267 | Farsiu_Ophthalmology_2013_AMD_Subject_1068.mat,1 268 | Farsiu_Ophthalmology_2013_AMD_Subject_1059.mat,2 269 | Farsiu_Ophthalmology_2013_AMD_Subject_1001.mat,3 270 | Farsiu_Ophthalmology_2013_AMD_Subject_1019.mat,4 271 | Farsiu_Ophthalmology_2013_AMD_Subject_1159.mat,0 272 | Farsiu_Ophthalmology_2013_AMD_Subject_1237.mat,1 273 | Farsiu_Ophthalmology_2013_AMD_Subject_1060.mat,2 274 | Farsiu_Ophthalmology_2013_Control_Subject_1115.mat,3 275 | Farsiu_Ophthalmology_2013_Control_Subject_1084.mat,4 276 | Farsiu_Ophthalmology_2013_AMD_Subject_1252.mat,0 277 | Farsiu_Ophthalmology_2013_Control_Subject_1070.mat,1 278 | Farsiu_Ophthalmology_2013_AMD_Subject_1069.mat,2 279 | Farsiu_Ophthalmology_2013_AMD_Subject_1010.mat,3 280 | Farsiu_Ophthalmology_2013_AMD_Subject_1099.mat,4 281 | Farsiu_Ophthalmology_2013_AMD_Subject_1024.mat,0 282 | Farsiu_Ophthalmology_2013_AMD_Subject_1090.mat,1 283 | Farsiu_Ophthalmology_2013_AMD_Subject_1119.mat,2 284 | Farsiu_Ophthalmology_2013_AMD_Subject_1044.mat,3 285 | Farsiu_Ophthalmology_2013_AMD_Subject_1261.mat,4 286 | Farsiu_Ophthalmology_2013_Control_Subject_1112.mat,0 287 | Farsiu_Ophthalmology_2013_AMD_Subject_1122.mat,1 288 | Farsiu_Ophthalmology_2013_AMD_Subject_1161.mat,2 289 | Farsiu_Ophthalmology_2013_AMD_Subject_1215.mat,3 290 | Farsiu_Ophthalmology_2013_AMD_Subject_1236.mat,4 291 | Farsiu_Ophthalmology_2013_AMD_Subject_1190.mat,0 292 | Farsiu_Ophthalmology_2013_AMD_Subject_1244.mat,1 293 | Farsiu_Ophthalmology_2013_Control_Subject_1064.mat,2 294 | Farsiu_Ophthalmology_2013_AMD_Subject_1014.mat,3 295 | Farsiu_Ophthalmology_2013_AMD_Subject_1169.mat,4 296 | Farsiu_Ophthalmology_2013_AMD_Subject_1039.mat,0 297 | Farsiu_Ophthalmology_2013_AMD_Subject_1146.mat,1 298 | Farsiu_Ophthalmology_2013_AMD_Subject_1030.mat,2 299 | Farsiu_Ophthalmology_2013_AMD_Subject_1082.mat,3 300 | Farsiu_Ophthalmology_2013_Control_Subject_1018.mat,4 301 | Farsiu_Ophthalmology_2013_AMD_Subject_1153.mat,0 302 | Farsiu_Ophthalmology_2013_AMD_Subject_1128.mat,1 303 | Farsiu_Ophthalmology_2013_AMD_Subject_1212.mat,2 304 | Farsiu_Ophthalmology_2013_AMD_Subject_1217.mat,3 305 | Farsiu_Ophthalmology_2013_AMD_Subject_1223.mat,4 306 | Farsiu_Ophthalmology_2013_AMD_Subject_1051.mat,0 307 | Farsiu_Ophthalmology_2013_AMD_Subject_1239.mat,1 308 | Farsiu_Ophthalmology_2013_Control_Subject_1085.mat,2 309 | Farsiu_Ophthalmology_2013_AMD_Subject_1205.mat,3 310 | Farsiu_Ophthalmology_2013_AMD_Subject_1123.mat,4 311 | Farsiu_Ophthalmology_2013_AMD_Subject_1157.mat,0 312 | Farsiu_Ophthalmology_2013_AMD_Subject_1095.mat,1 313 | Farsiu_Ophthalmology_2013_AMD_Subject_1053.mat,2 314 | Farsiu_Ophthalmology_2013_Control_Subject_1009.mat,3 315 | Farsiu_Ophthalmology_2013_Control_Subject_1012.mat,4 316 | Farsiu_Ophthalmology_2013_AMD_Subject_1229.mat,0 317 | Farsiu_Ophthalmology_2013_AMD_Subject_1100.mat,1 318 | Farsiu_Ophthalmology_2013_AMD_Subject_1134.mat,2 319 | Farsiu_Ophthalmology_2013_Control_Subject_1094.mat,3 320 | Farsiu_Ophthalmology_2013_Control_Subject_1027.mat,4 321 | Farsiu_Ophthalmology_2013_Control_Subject_1090.mat,0 322 | Farsiu_Ophthalmology_2013_Control_Subject_1030.mat,1 323 | Farsiu_Ophthalmology_2013_Control_Subject_1107.mat,2 324 | Farsiu_Ophthalmology_2013_AMD_Subject_1268.mat,3 325 | Farsiu_Ophthalmology_2013_AMD_Subject_1043.mat,4 326 | Farsiu_Ophthalmology_2013_Control_Subject_1071.mat,0 327 | Farsiu_Ophthalmology_2013_AMD_Subject_1248.mat,1 328 | Farsiu_Ophthalmology_2013_AMD_Subject_1035.mat,2 329 | Farsiu_Ophthalmology_2013_AMD_Subject_1017.mat,3 330 | Farsiu_Ophthalmology_2013_AMD_Subject_1098.mat,4 331 | Farsiu_Ophthalmology_2013_Control_Subject_1075.mat,0 332 | Farsiu_Ophthalmology_2013_AMD_Subject_1150.mat,1 333 | Farsiu_Ophthalmology_2013_AMD_Subject_1106.mat,2 334 | Farsiu_Ophthalmology_2013_AMD_Subject_1136.mat,3 335 | Farsiu_Ophthalmology_2013_AMD_Subject_1055.mat,4 336 | Farsiu_Ophthalmology_2013_AMD_Subject_1231.mat,0 337 | Farsiu_Ophthalmology_2013_Control_Subject_1011.mat,1 338 | Farsiu_Ophthalmology_2013_AMD_Subject_1151.mat,2 339 | Farsiu_Ophthalmology_2013_AMD_Subject_1147.mat,3 340 | Farsiu_Ophthalmology_2013_AMD_Subject_1154.mat,4 341 | Farsiu_Ophthalmology_2013_Control_Subject_1059.mat,0 342 | Farsiu_Ophthalmology_2013_AMD_Subject_1269.mat,1 343 | Farsiu_Ophthalmology_2013_AMD_Subject_1175.mat,2 344 | Farsiu_Ophthalmology_2013_AMD_Subject_1228.mat,3 345 | Farsiu_Ophthalmology_2013_Control_Subject_1006.mat,4 346 | Farsiu_Ophthalmology_2013_Control_Subject_1035.mat,0 347 | Farsiu_Ophthalmology_2013_AMD_Subject_1216.mat,1 348 | Farsiu_Ophthalmology_2013_Control_Subject_1049.mat,2 349 | Farsiu_Ophthalmology_2013_AMD_Subject_1249.mat,3 350 | Farsiu_Ophthalmology_2013_Control_Subject_1024.mat,4 351 | Farsiu_Ophthalmology_2013_AMD_Subject_1138.mat,0 352 | Farsiu_Ophthalmology_2013_AMD_Subject_1065.mat,1 353 | Farsiu_Ophthalmology_2013_AMD_Subject_1033.mat,2 354 | Farsiu_Ophthalmology_2013_AMD_Subject_1220.mat,3 355 | Farsiu_Ophthalmology_2013_Control_Subject_1077.mat,4 356 | Farsiu_Ophthalmology_2013_Control_Subject_1111.mat,0 357 | -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | GNU AFFERO GENERAL PUBLIC LICENSE 2 | Version 3, 19 November 2007 3 | 4 | Copyright (C) 2007 Free Software Foundation, Inc. 5 | Everyone is permitted to copy and distribute verbatim copies 6 | of this license document, but changing it is not allowed. 7 | 8 | Preamble 9 | 10 | The GNU Affero General Public License is a free, copyleft license for 11 | software and other kinds of works, specifically designed to ensure 12 | cooperation with the community in the case of network server software. 13 | 14 | The licenses for most software and other practical works are designed 15 | to take away your freedom to share and change the works. By contrast, 16 | our General Public Licenses are intended to guarantee your freedom to 17 | share and change all versions of a program--to make sure it remains free 18 | software for all its users. 19 | 20 | When we speak of free software, we are referring to freedom, not 21 | price. Our General Public Licenses are designed to make sure that you 22 | have the freedom to distribute copies of free software (and charge for 23 | them if you wish), that you receive source code or can get it if you 24 | want it, that you can change the software or use pieces of it in new 25 | free programs, and that you know you can do these things. 26 | 27 | Developers that use our General Public Licenses protect your rights 28 | with two steps: (1) assert copyright on the software, and (2) offer 29 | you this License which gives you legal permission to copy, distribute 30 | and/or modify the software. 31 | 32 | A secondary benefit of defending all users' freedom is that 33 | improvements made in alternate versions of the program, if they 34 | receive widespread use, become available for other developers to 35 | incorporate. Many developers of free software are heartened and 36 | encouraged by the resulting cooperation. However, in the case of 37 | software used on network servers, this result may fail to come about. 38 | The GNU General Public License permits making a modified version and 39 | letting the public access it on a server without ever releasing its 40 | source code to the public. 41 | 42 | The GNU Affero General Public License is designed specifically to 43 | ensure that, in such cases, the modified source code becomes available 44 | to the community. It requires the operator of a network server to 45 | provide the source code of the modified version running there to the 46 | users of that server. Therefore, public use of a modified version, on 47 | a publicly accessible server, gives the public access to the source 48 | code of the modified version. 49 | 50 | An older license, called the Affero General Public License and 51 | published by Affero, was designed to accomplish similar goals. This is 52 | a different license, not a version of the Affero GPL, but Affero has 53 | released a new version of the Affero GPL which permits relicensing under 54 | this license. 55 | 56 | The precise terms and conditions for copying, distribution and 57 | modification follow. 58 | 59 | TERMS AND CONDITIONS 60 | 61 | 0. Definitions. 62 | 63 | "This License" refers to version 3 of the GNU Affero General Public License. 64 | 65 | "Copyright" also means copyright-like laws that apply to other kinds of 66 | works, such as semiconductor masks. 67 | 68 | "The Program" refers to any copyrightable work licensed under this 69 | License. Each licensee is addressed as "you". "Licensees" and 70 | "recipients" may be individuals or organizations. 71 | 72 | To "modify" a work means to copy from or adapt all or part of the work 73 | in a fashion requiring copyright permission, other than the making of an 74 | exact copy. The resulting work is called a "modified version" of the 75 | earlier work or a work "based on" the earlier work. 76 | 77 | A "covered work" means either the unmodified Program or a work based 78 | on the Program. 79 | 80 | To "propagate" a work means to do anything with it that, without 81 | permission, would make you directly or secondarily liable for 82 | infringement under applicable copyright law, except executing it on a 83 | computer or modifying a private copy. Propagation includes copying, 84 | distribution (with or without modification), making available to the 85 | public, and in some countries other activities as well. 86 | 87 | To "convey" a work means any kind of propagation that enables other 88 | parties to make or receive copies. Mere interaction with a user through 89 | a computer network, with no transfer of a copy, is not conveying. 90 | 91 | An interactive user interface displays "Appropriate Legal Notices" 92 | to the extent that it includes a convenient and prominently visible 93 | feature that (1) displays an appropriate copyright notice, and (2) 94 | tells the user that there is no warranty for the work (except to the 95 | extent that warranties are provided), that licensees may convey the 96 | work under this License, and how to view a copy of this License. If 97 | the interface presents a list of user commands or options, such as a 98 | menu, a prominent item in the list meets this criterion. 99 | 100 | 1. Source Code. 101 | 102 | The "source code" for a work means the preferred form of the work 103 | for making modifications to it. "Object code" means any non-source 104 | form of a work. 105 | 106 | A "Standard Interface" means an interface that either is an official 107 | standard defined by a recognized standards body, or, in the case of 108 | interfaces specified for a particular programming language, one that 109 | is widely used among developers working in that language. 110 | 111 | The "System Libraries" of an executable work include anything, other 112 | than the work as a whole, that (a) is included in the normal form of 113 | packaging a Major Component, but which is not part of that Major 114 | Component, and (b) serves only to enable use of the work with that 115 | Major Component, or to implement a Standard Interface for which an 116 | implementation is available to the public in source code form. A 117 | "Major Component", in this context, means a major essential component 118 | (kernel, window system, and so on) of the specific operating system 119 | (if any) on which the executable work runs, or a compiler used to 120 | produce the work, or an object code interpreter used to run it. 121 | 122 | The "Corresponding Source" for a work in object code form means all 123 | the source code needed to generate, install, and (for an executable 124 | work) run the object code and to modify the work, including scripts to 125 | control those activities. However, it does not include the work's 126 | System Libraries, or general-purpose tools or generally available free 127 | programs which are used unmodified in performing those activities but 128 | which are not part of the work. For example, Corresponding Source 129 | includes interface definition files associated with source files for 130 | the work, and the source code for shared libraries and dynamically 131 | linked subprograms that the work is specifically designed to require, 132 | such as by intimate data communication or control flow between those 133 | subprograms and other parts of the work. 134 | 135 | The Corresponding Source need not include anything that users 136 | can regenerate automatically from other parts of the Corresponding 137 | Source. 138 | 139 | The Corresponding Source for a work in source code form is that 140 | same work. 141 | 142 | 2. Basic Permissions. 143 | 144 | All rights granted under this License are granted for the term of 145 | copyright on the Program, and are irrevocable provided the stated 146 | conditions are met. This License explicitly affirms your unlimited 147 | permission to run the unmodified Program. The output from running a 148 | covered work is covered by this License only if the output, given its 149 | content, constitutes a covered work. This License acknowledges your 150 | rights of fair use or other equivalent, as provided by copyright law. 151 | 152 | You may make, run and propagate covered works that you do not 153 | convey, without conditions so long as your license otherwise remains 154 | in force. You may convey covered works to others for the sole purpose 155 | of having them make modifications exclusively for you, or provide you 156 | with facilities for running those works, provided that you comply with 157 | the terms of this License in conveying all material for which you do 158 | not control copyright. Those thus making or running the covered works 159 | for you must do so exclusively on your behalf, under your direction 160 | and control, on terms that prohibit them from making any copies of 161 | your copyrighted material outside their relationship with you. 162 | 163 | Conveying under any other circumstances is permitted solely under 164 | the conditions stated below. Sublicensing is not allowed; section 10 165 | makes it unnecessary. 166 | 167 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law. 168 | 169 | No covered work shall be deemed part of an effective technological 170 | measure under any applicable law fulfilling obligations under article 171 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or 172 | similar laws prohibiting or restricting circumvention of such 173 | measures. 174 | 175 | When you convey a covered work, you waive any legal power to forbid 176 | circumvention of technological measures to the extent such circumvention 177 | is effected by exercising rights under this License with respect to 178 | the covered work, and you disclaim any intention to limit operation or 179 | modification of the work as a means of enforcing, against the work's 180 | users, your or third parties' legal rights to forbid circumvention of 181 | technological measures. 182 | 183 | 4. Conveying Verbatim Copies. 184 | 185 | You may convey verbatim copies of the Program's source code as you 186 | receive it, in any medium, provided that you conspicuously and 187 | appropriately publish on each copy an appropriate copyright notice; 188 | keep intact all notices stating that this License and any 189 | non-permissive terms added in accord with section 7 apply to the code; 190 | keep intact all notices of the absence of any warranty; and give all 191 | recipients a copy of this License along with the Program. 192 | 193 | You may charge any price or no price for each copy that you convey, 194 | and you may offer support or warranty protection for a fee. 195 | 196 | 5. Conveying Modified Source Versions. 197 | 198 | You may convey a work based on the Program, or the modifications to 199 | produce it from the Program, in the form of source code under the 200 | terms of section 4, provided that you also meet all of these conditions: 201 | 202 | a) The work must carry prominent notices stating that you modified 203 | it, and giving a relevant date. 204 | 205 | b) The work must carry prominent notices stating that it is 206 | released under this License and any conditions added under section 207 | 7. This requirement modifies the requirement in section 4 to 208 | "keep intact all notices". 209 | 210 | c) You must license the entire work, as a whole, under this 211 | License to anyone who comes into possession of a copy. This 212 | License will therefore apply, along with any applicable section 7 213 | additional terms, to the whole of the work, and all its parts, 214 | regardless of how they are packaged. This License gives no 215 | permission to license the work in any other way, but it does not 216 | invalidate such permission if you have separately received it. 217 | 218 | d) If the work has interactive user interfaces, each must display 219 | Appropriate Legal Notices; however, if the Program has interactive 220 | interfaces that do not display Appropriate Legal Notices, your 221 | work need not make them do so. 222 | 223 | A compilation of a covered work with other separate and independent 224 | works, which are not by their nature extensions of the covered work, 225 | and which are not combined with it such as to form a larger program, 226 | in or on a volume of a storage or distribution medium, is called an 227 | "aggregate" if the compilation and its resulting copyright are not 228 | used to limit the access or legal rights of the compilation's users 229 | beyond what the individual works permit. Inclusion of a covered work 230 | in an aggregate does not cause this License to apply to the other 231 | parts of the aggregate. 232 | 233 | 6. Conveying Non-Source Forms. 234 | 235 | You may convey a covered work in object code form under the terms 236 | of sections 4 and 5, provided that you also convey the 237 | machine-readable Corresponding Source under the terms of this License, 238 | in one of these ways: 239 | 240 | a) Convey the object code in, or embodied in, a physical product 241 | (including a physical distribution medium), accompanied by the 242 | Corresponding Source fixed on a durable physical medium 243 | customarily used for software interchange. 244 | 245 | b) Convey the object code in, or embodied in, a physical product 246 | (including a physical distribution medium), accompanied by a 247 | written offer, valid for at least three years and valid for as 248 | long as you offer spare parts or customer support for that product 249 | model, to give anyone who possesses the object code either (1) a 250 | copy of the Corresponding Source for all the software in the 251 | product that is covered by this License, on a durable physical 252 | medium customarily used for software interchange, for a price no 253 | more than your reasonable cost of physically performing this 254 | conveying of source, or (2) access to copy the 255 | Corresponding Source from a network server at no charge. 256 | 257 | c) Convey individual copies of the object code with a copy of the 258 | written offer to provide the Corresponding Source. This 259 | alternative is allowed only occasionally and noncommercially, and 260 | only if you received the object code with such an offer, in accord 261 | with subsection 6b. 262 | 263 | d) Convey the object code by offering access from a designated 264 | place (gratis or for a charge), and offer equivalent access to the 265 | Corresponding Source in the same way through the same place at no 266 | further charge. You need not require recipients to copy the 267 | Corresponding Source along with the object code. If the place to 268 | copy the object code is a network server, the Corresponding Source 269 | may be on a different server (operated by you or a third party) 270 | that supports equivalent copying facilities, provided you maintain 271 | clear directions next to the object code saying where to find the 272 | Corresponding Source. Regardless of what server hosts the 273 | Corresponding Source, you remain obligated to ensure that it is 274 | available for as long as needed to satisfy these requirements. 275 | 276 | e) Convey the object code using peer-to-peer transmission, provided 277 | you inform other peers where the object code and Corresponding 278 | Source of the work are being offered to the general public at no 279 | charge under subsection 6d. 280 | 281 | A separable portion of the object code, whose source code is excluded 282 | from the Corresponding Source as a System Library, need not be 283 | included in conveying the object code work. 284 | 285 | A "User Product" is either (1) a "consumer product", which means any 286 | tangible personal property which is normally used for personal, family, 287 | or household purposes, or (2) anything designed or sold for incorporation 288 | into a dwelling. In determining whether a product is a consumer product, 289 | doubtful cases shall be resolved in favor of coverage. For a particular 290 | product received by a particular user, "normally used" refers to a 291 | typical or common use of that class of product, regardless of the status 292 | of the particular user or of the way in which the particular user 293 | actually uses, or expects or is expected to use, the product. A product 294 | is a consumer product regardless of whether the product has substantial 295 | commercial, industrial or non-consumer uses, unless such uses represent 296 | the only significant mode of use of the product. 297 | 298 | "Installation Information" for a User Product means any methods, 299 | procedures, authorization keys, or other information required to install 300 | and execute modified versions of a covered work in that User Product from 301 | a modified version of its Corresponding Source. The information must 302 | suffice to ensure that the continued functioning of the modified object 303 | code is in no case prevented or interfered with solely because 304 | modification has been made. 305 | 306 | If you convey an object code work under this section in, or with, or 307 | specifically for use in, a User Product, and the conveying occurs as 308 | part of a transaction in which the right of possession and use of the 309 | User Product is transferred to the recipient in perpetuity or for a 310 | fixed term (regardless of how the transaction is characterized), the 311 | Corresponding Source conveyed under this section must be accompanied 312 | by the Installation Information. But this requirement does not apply 313 | if neither you nor any third party retains the ability to install 314 | modified object code on the User Product (for example, the work has 315 | been installed in ROM). 316 | 317 | The requirement to provide Installation Information does not include a 318 | requirement to continue to provide support service, warranty, or updates 319 | for a work that has been modified or installed by the recipient, or for 320 | the User Product in which it has been modified or installed. Access to a 321 | network may be denied when the modification itself materially and 322 | adversely affects the operation of the network or violates the rules and 323 | protocols for communication across the network. 324 | 325 | Corresponding Source conveyed, and Installation Information provided, 326 | in accord with this section must be in a format that is publicly 327 | documented (and with an implementation available to the public in 328 | source code form), and must require no special password or key for 329 | unpacking, reading or copying. 330 | 331 | 7. Additional Terms. 332 | 333 | "Additional permissions" are terms that supplement the terms of this 334 | License by making exceptions from one or more of its conditions. 335 | Additional permissions that are applicable to the entire Program shall 336 | be treated as though they were included in this License, to the extent 337 | that they are valid under applicable law. If additional permissions 338 | apply only to part of the Program, that part may be used separately 339 | under those permissions, but the entire Program remains governed by 340 | this License without regard to the additional permissions. 341 | 342 | When you convey a copy of a covered work, you may at your option 343 | remove any additional permissions from that copy, or from any part of 344 | it. (Additional permissions may be written to require their own 345 | removal in certain cases when you modify the work.) You may place 346 | additional permissions on material, added by you to a covered work, 347 | for which you have or can give appropriate copyright permission. 348 | 349 | Notwithstanding any other provision of this License, for material you 350 | add to a covered work, you may (if authorized by the copyright holders of 351 | that material) supplement the terms of this License with terms: 352 | 353 | a) Disclaiming warranty or limiting liability differently from the 354 | terms of sections 15 and 16 of this License; or 355 | 356 | b) Requiring preservation of specified reasonable legal notices or 357 | author attributions in that material or in the Appropriate Legal 358 | Notices displayed by works containing it; or 359 | 360 | c) Prohibiting misrepresentation of the origin of that material, or 361 | requiring that modified versions of such material be marked in 362 | reasonable ways as different from the original version; or 363 | 364 | d) Limiting the use for publicity purposes of names of licensors or 365 | authors of the material; or 366 | 367 | e) Declining to grant rights under trademark law for use of some 368 | trade names, trademarks, or service marks; or 369 | 370 | f) Requiring indemnification of licensors and authors of that 371 | material by anyone who conveys the material (or modified versions of 372 | it) with contractual assumptions of liability to the recipient, for 373 | any liability that these contractual assumptions directly impose on 374 | those licensors and authors. 375 | 376 | All other non-permissive additional terms are considered "further 377 | restrictions" within the meaning of section 10. If the Program as you 378 | received it, or any part of it, contains a notice stating that it is 379 | governed by this License along with a term that is a further 380 | restriction, you may remove that term. If a license document contains 381 | a further restriction but permits relicensing or conveying under this 382 | License, you may add to a covered work material governed by the terms 383 | of that license document, provided that the further restriction does 384 | not survive such relicensing or conveying. 385 | 386 | If you add terms to a covered work in accord with this section, you 387 | must place, in the relevant source files, a statement of the 388 | additional terms that apply to those files, or a notice indicating 389 | where to find the applicable terms. 390 | 391 | Additional terms, permissive or non-permissive, may be stated in the 392 | form of a separately written license, or stated as exceptions; 393 | the above requirements apply either way. 394 | 395 | 8. Termination. 396 | 397 | You may not propagate or modify a covered work except as expressly 398 | provided under this License. Any attempt otherwise to propagate or 399 | modify it is void, and will automatically terminate your rights under 400 | this License (including any patent licenses granted under the third 401 | paragraph of section 11). 402 | 403 | However, if you cease all violation of this License, then your 404 | license from a particular copyright holder is reinstated (a) 405 | provisionally, unless and until the copyright holder explicitly and 406 | finally terminates your license, and (b) permanently, if the copyright 407 | holder fails to notify you of the violation by some reasonable means 408 | prior to 60 days after the cessation. 409 | 410 | Moreover, your license from a particular copyright holder is 411 | reinstated permanently if the copyright holder notifies you of the 412 | violation by some reasonable means, this is the first time you have 413 | received notice of violation of this License (for any work) from that 414 | copyright holder, and you cure the violation prior to 30 days after 415 | your receipt of the notice. 416 | 417 | Termination of your rights under this section does not terminate the 418 | licenses of parties who have received copies or rights from you under 419 | this License. If your rights have been terminated and not permanently 420 | reinstated, you do not qualify to receive new licenses for the same 421 | material under section 10. 422 | 423 | 9. Acceptance Not Required for Having Copies. 424 | 425 | You are not required to accept this License in order to receive or 426 | run a copy of the Program. Ancillary propagation of a covered work 427 | occurring solely as a consequence of using peer-to-peer transmission 428 | to receive a copy likewise does not require acceptance. However, 429 | nothing other than this License grants you permission to propagate or 430 | modify any covered work. These actions infringe copyright if you do 431 | not accept this License. Therefore, by modifying or propagating a 432 | covered work, you indicate your acceptance of this License to do so. 433 | 434 | 10. Automatic Licensing of Downstream Recipients. 435 | 436 | Each time you convey a covered work, the recipient automatically 437 | receives a license from the original licensors, to run, modify and 438 | propagate that work, subject to this License. You are not responsible 439 | for enforcing compliance by third parties with this License. 440 | 441 | An "entity transaction" is a transaction transferring control of an 442 | organization, or substantially all assets of one, or subdividing an 443 | organization, or merging organizations. If propagation of a covered 444 | work results from an entity transaction, each party to that 445 | transaction who receives a copy of the work also receives whatever 446 | licenses to the work the party's predecessor in interest had or could 447 | give under the previous paragraph, plus a right to possession of the 448 | Corresponding Source of the work from the predecessor in interest, if 449 | the predecessor has it or can get it with reasonable efforts. 450 | 451 | You may not impose any further restrictions on the exercise of the 452 | rights granted or affirmed under this License. For example, you may 453 | not impose a license fee, royalty, or other charge for exercise of 454 | rights granted under this License, and you may not initiate litigation 455 | (including a cross-claim or counterclaim in a lawsuit) alleging that 456 | any patent claim is infringed by making, using, selling, offering for 457 | sale, or importing the Program or any portion of it. 458 | 459 | 11. Patents. 460 | 461 | A "contributor" is a copyright holder who authorizes use under this 462 | License of the Program or a work on which the Program is based. The 463 | work thus licensed is called the contributor's "contributor version". 464 | 465 | A contributor's "essential patent claims" are all patent claims 466 | owned or controlled by the contributor, whether already acquired or 467 | hereafter acquired, that would be infringed by some manner, permitted 468 | by this License, of making, using, or selling its contributor version, 469 | but do not include claims that would be infringed only as a 470 | consequence of further modification of the contributor version. For 471 | purposes of this definition, "control" includes the right to grant 472 | patent sublicenses in a manner consistent with the requirements of 473 | this License. 474 | 475 | Each contributor grants you a non-exclusive, worldwide, royalty-free 476 | patent license under the contributor's essential patent claims, to 477 | make, use, sell, offer for sale, import and otherwise run, modify and 478 | propagate the contents of its contributor version. 479 | 480 | In the following three paragraphs, a "patent license" is any express 481 | agreement or commitment, however denominated, not to enforce a patent 482 | (such as an express permission to practice a patent or covenant not to 483 | sue for patent infringement). To "grant" such a patent license to a 484 | party means to make such an agreement or commitment not to enforce a 485 | patent against the party. 486 | 487 | If you convey a covered work, knowingly relying on a patent license, 488 | and the Corresponding Source of the work is not available for anyone 489 | to copy, free of charge and under the terms of this License, through a 490 | publicly available network server or other readily accessible means, 491 | then you must either (1) cause the Corresponding Source to be so 492 | available, or (2) arrange to deprive yourself of the benefit of the 493 | patent license for this particular work, or (3) arrange, in a manner 494 | consistent with the requirements of this License, to extend the patent 495 | license to downstream recipients. "Knowingly relying" means you have 496 | actual knowledge that, but for the patent license, your conveying the 497 | covered work in a country, or your recipient's use of the covered work 498 | in a country, would infringe one or more identifiable patents in that 499 | country that you have reason to believe are valid. 500 | 501 | If, pursuant to or in connection with a single transaction or 502 | arrangement, you convey, or propagate by procuring conveyance of, a 503 | covered work, and grant a patent license to some of the parties 504 | receiving the covered work authorizing them to use, propagate, modify 505 | or convey a specific copy of the covered work, then the patent license 506 | you grant is automatically extended to all recipients of the covered 507 | work and works based on it. 508 | 509 | A patent license is "discriminatory" if it does not include within 510 | the scope of its coverage, prohibits the exercise of, or is 511 | conditioned on the non-exercise of one or more of the rights that are 512 | specifically granted under this License. You may not convey a covered 513 | work if you are a party to an arrangement with a third party that is 514 | in the business of distributing software, under which you make payment 515 | to the third party based on the extent of your activity of conveying 516 | the work, and under which the third party grants, to any of the 517 | parties who would receive the covered work from you, a discriminatory 518 | patent license (a) in connection with copies of the covered work 519 | conveyed by you (or copies made from those copies), or (b) primarily 520 | for and in connection with specific products or compilations that 521 | contain the covered work, unless you entered into that arrangement, 522 | or that patent license was granted, prior to 28 March 2007. 523 | 524 | Nothing in this License shall be construed as excluding or limiting 525 | any implied license or other defenses to infringement that may 526 | otherwise be available to you under applicable patent law. 527 | 528 | 12. No Surrender of Others' Freedom. 529 | 530 | If conditions are imposed on you (whether by court order, agreement or 531 | otherwise) that contradict the conditions of this License, they do not 532 | excuse you from the conditions of this License. If you cannot convey a 533 | covered work so as to satisfy simultaneously your obligations under this 534 | License and any other pertinent obligations, then as a consequence you may 535 | not convey it at all. For example, if you agree to terms that obligate you 536 | to collect a royalty for further conveying from those to whom you convey 537 | the Program, the only way you could satisfy both those terms and this 538 | License would be to refrain entirely from conveying the Program. 539 | 540 | 13. Remote Network Interaction; Use with the GNU General Public License. 541 | 542 | Notwithstanding any other provision of this License, if you modify the 543 | Program, your modified version must prominently offer all users 544 | interacting with it remotely through a computer network (if your version 545 | supports such interaction) an opportunity to receive the Corresponding 546 | Source of your version by providing access to the Corresponding Source 547 | from a network server at no charge, through some standard or customary 548 | means of facilitating copying of software. This Corresponding Source 549 | shall include the Corresponding Source for any work covered by version 3 550 | of the GNU General Public License that is incorporated pursuant to the 551 | following paragraph. 552 | 553 | Notwithstanding any other provision of this License, you have 554 | permission to link or combine any covered work with a work licensed 555 | under version 3 of the GNU General Public License into a single 556 | combined work, and to convey the resulting work. The terms of this 557 | License will continue to apply to the part which is the covered work, 558 | but the work with which it is combined will remain governed by version 559 | 3 of the GNU General Public License. 560 | 561 | 14. Revised Versions of this License. 562 | 563 | The Free Software Foundation may publish revised and/or new versions of 564 | the GNU Affero General Public License from time to time. Such new versions 565 | will be similar in spirit to the present version, but may differ in detail to 566 | address new problems or concerns. 567 | 568 | Each version is given a distinguishing version number. If the 569 | Program specifies that a certain numbered version of the GNU Affero General 570 | Public License "or any later version" applies to it, you have the 571 | option of following the terms and conditions either of that numbered 572 | version or of any later version published by the Free Software 573 | Foundation. If the Program does not specify a version number of the 574 | GNU Affero General Public License, you may choose any version ever published 575 | by the Free Software Foundation. 576 | 577 | If the Program specifies that a proxy can decide which future 578 | versions of the GNU Affero General Public License can be used, that proxy's 579 | public statement of acceptance of a version permanently authorizes you 580 | to choose that version for the Program. 581 | 582 | Later license versions may give you additional or different 583 | permissions. However, no additional obligations are imposed on any 584 | author or copyright holder as a result of your choosing to follow a 585 | later version. 586 | 587 | 15. Disclaimer of Warranty. 588 | 589 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY 590 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT 591 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY 592 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, 593 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 594 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM 595 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF 596 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 597 | 598 | 16. Limitation of Liability. 599 | 600 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING 601 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS 602 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY 603 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE 604 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF 605 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD 606 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), 607 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF 608 | SUCH DAMAGES. 609 | 610 | 17. Interpretation of Sections 15 and 16. 611 | 612 | If the disclaimer of warranty and limitation of liability provided 613 | above cannot be given local legal effect according to their terms, 614 | reviewing courts shall apply local law that most closely approximates 615 | an absolute waiver of all civil liability in connection with the 616 | Program, unless a warranty or assumption of liability accompanies a 617 | copy of the Program in return for a fee. 618 | 619 | END OF TERMS AND CONDITIONS 620 | 621 | How to Apply These Terms to Your New Programs 622 | 623 | If you develop a new program, and you want it to be of the greatest 624 | possible use to the public, the best way to achieve this is to make it 625 | free software which everyone can redistribute and change under these terms. 626 | 627 | To do so, attach the following notices to the program. It is safest 628 | to attach them to the start of each source file to most effectively 629 | state the exclusion of warranty; and each file should have at least 630 | the "copyright" line and a pointer to where the full notice is found. 631 | 632 | 633 | Copyright (C) 634 | 635 | This program is free software: you can redistribute it and/or modify 636 | it under the terms of the GNU Affero General Public License as published 637 | by the Free Software Foundation, either version 3 of the License, or 638 | (at your option) any later version. 639 | 640 | This program is distributed in the hope that it will be useful, 641 | but WITHOUT ANY WARRANTY; without even the implied warranty of 642 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 643 | GNU Affero General Public License for more details. 644 | 645 | You should have received a copy of the GNU Affero General Public License 646 | along with this program. If not, see . 647 | 648 | Also add information on how to contact you by electronic and paper mail. 649 | 650 | If your software can interact with users remotely through a computer 651 | network, you should also make sure that it provides a way for users to 652 | get its source. For example, if your program is a web application, its 653 | interface could display a "Source" link that leads users to an archive 654 | of the code. There are many ways you could offer source, and different 655 | solutions will be better for different programs; see section 13 for the 656 | specific requirements. 657 | 658 | You should also get your employer (if you work as a programmer) or school, 659 | if any, to sign a "copyright disclaimer" for the program, if necessary. 660 | For more information on this, and how to apply and follow the GNU AGPL, see 661 | . 662 | --------------------------------------------------------------------------------