├── DiffMopher.ipynb ├── 240522facefusion_new.ipynb ├── My_Stable_Diffusion.ipynb ├── My_img2img.ipynb ├── clip_interrogator.ipynb ├── fast_stable_diffusion_AUTOMATIC1111.ipynb └── My_iPERCore.ipynb /DiffMopher.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": { 6 | "id": "view-in-github", 7 | "colab_type": "text" 8 | }, 9 | "source": [ 10 | "\"Open" 11 | ] 12 | }, 13 | { 14 | "cell_type": "code", 15 | "execution_count": null, 16 | "metadata": { 17 | "id": "6FZD9IdB5HNV" 18 | }, 19 | "outputs": [], 20 | "source": [ 21 | "%cd /content/\n", 22 | "!git lfs install\n", 23 | "!git clone https://huggingface.co/spaces/microsoft/HuggingGPT\n", 24 | "%cd /content/HuggingGPT/\n", 25 | "\n", 26 | "!pip install -r requirements.txt\n", 27 | "!pip install gradio\n", 28 | "\n", 29 | "!pip install --upgrade pyngrok\n", 30 | "import os\n", 31 | "from pyngrok import ngrok, conf\n", 32 | "\n", 33 | "# ngrokトークンを設定\n", 34 | "conf.get_default().auth_token = \"1ooR0mbvnaIetot2hIRcaZGLtJT_4hrSyR972wYZBfAp9Wbzi\"\n", 35 | "public_url = ngrok.connect(7860)\n", 36 | "print(f\"ngrok URL: {public_url}\")\n" 37 | ] 38 | }, 39 | { 40 | "cell_type": "code", 41 | "execution_count": null, 42 | "metadata": { 43 | "id": "-rQS8b284zmS" 44 | }, 45 | "outputs": [], 46 | "source": [ 47 | "! git clone https://github.com/cedro3/DiffMorpher.git\n", 48 | "%cd DiffMorpher\n", 49 | "! pip install -r requirements.txt\n", 50 | "! python app.py" 51 | ] 52 | } 53 | ], 54 | "metadata": { 55 | "accelerator": "GPU", 56 | "colab": { 57 | "machine_shape": "hm", 58 | "provenance": [], 59 | "authorship_tag": "ABX9TyMWvRgG4F2IPFDWaj4VfFWv", 60 | "include_colab_link": true 61 | }, 62 | "kernelspec": { 63 | "display_name": "Python 3", 64 | "name": "python3" 65 | }, 66 | "language_info": { 67 | "name": "python" 68 | } 69 | }, 70 | "nbformat": 4, 71 | "nbformat_minor": 0 72 | } -------------------------------------------------------------------------------- /240522facefusion_new.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "nbformat": 4, 3 | "nbformat_minor": 0, 4 | "metadata": { 5 | "colab": { 6 | "provenance": [], 7 | "machine_shape": "hm", 8 | "gpuType": "T4", 9 | "authorship_tag": "ABX9TyNtyzgGbUVuSOYpQZUAptAs", 10 | "include_colab_link": true 11 | }, 12 | "kernelspec": { 13 | "name": "python3", 14 | "display_name": "Python 3" 15 | }, 16 | "language_info": { 17 | "name": "python" 18 | }, 19 | "accelerator": "GPU" 20 | }, 21 | "cells": [ 22 | { 23 | "cell_type": "markdown", 24 | "metadata": { 25 | "id": "view-in-github", 26 | "colab_type": "text" 27 | }, 28 | "source": [ 29 | "\"Open" 30 | ] 31 | }, 32 | { 33 | "cell_type": "code", 34 | "execution_count": null, 35 | "metadata": { 36 | "id": "uKVj7Agr1Q4_" 37 | }, 38 | "outputs": [], 39 | "source": [ 40 | "!wget https://archive.creativaier.com/comfyui/scripts/setup_script001\n", 41 | "!mv setup_script001 setup_script.sh\n", 42 | "!chmod +x setup_script.sh\n", 43 | "!./setup_script.sh\n", 44 | "!rm -rf setup_script.sh\n", 45 | "\n", 46 | "%cd /content/source_code\n", 47 | "!python install.py --torch cuda-12.1 --onnxruntime cuda-12.1 --skip-venv\n", 48 | "\n", 49 | "!wget https://github.com/cloudflare/cloudflared/releases/latest/download/cloudflared-linux-amd64.deb\n", 50 | "!dpkg -i cloudflared-linux-amd64.deb\n", 51 | "\n", 52 | "import subprocess\n", 53 | "import threading\n", 54 | "import time\n", 55 | "import socket\n", 56 | "\n", 57 | "def iframe_thread(port):\n", 58 | " while True:\n", 59 | " time.sleep(0.5)\n", 60 | " sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)\n", 61 | " result = sock.connect_ex(('127.0.0.1', port))\n", 62 | " if result == 0:\n", 63 | " break\n", 64 | " sock.close()\n", 65 | "\n", 66 | " p = subprocess.Popen([\"cloudflared\", \"tunnel\", \"--url\", f\"http://127.0.0.1:{port}\"], stdout=subprocess.PIPE, stderr=subprocess.PIPE)\n", 67 | " for line in p.stderr:\n", 68 | " l = line.decode()\n", 69 | " if \"trycloudflare.com \" in l:\n", 70 | " print(\"This is the URL to access:\", l[l.find(\"http\"):], end='')\n", 71 | "\n", 72 | "\n", 73 | "# スレッドの開始\n", 74 | "threading.Thread(target=iframe_thread, daemon=True, args=(7860,)).start()\n", 75 | "\n", 76 | "# コードの実行\n", 77 | "%cd /content/source_code\n", 78 | "!python run.py --execution-providers cuda" 79 | ] 80 | } 81 | ] 82 | } -------------------------------------------------------------------------------- /My_Stable_Diffusion.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": { 6 | "id": "view-in-github", 7 | "colab_type": "text" 8 | }, 9 | "source": [ 10 | "\"Open" 11 | ] 12 | }, 13 | { 14 | "cell_type": "code", 15 | "execution_count": null, 16 | "metadata": { 17 | "id": "RrqY6TqCNWNo" 18 | }, 19 | "outputs": [], 20 | "source": [ 21 | "#@title セットアップ\n", 22 | "\n", 23 | "# ライブラリのインストール\n", 24 | "!pip install diffusers==0.8.0 transformers scipy ftfy\n", 25 | "\n", 26 | "# トークン設定\n", 27 | "YOUR_TOKEN=\"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\"#@param {type:\"string\"}\n", 28 | "\n", 29 | "# パイプライン構築\n", 30 | "from diffusers import StableDiffusionPipeline\n", 31 | "pipe = StableDiffusionPipeline.from_pretrained(\"CompVis/stable-diffusion-v1-4\", use_auth_token=YOUR_TOKEN)\n", 32 | "pipe.to(\"cuda\")" 33 | ] 34 | }, 35 | { 36 | "cell_type": "code", 37 | "execution_count": null, 38 | "metadata": { 39 | "id": "ppaduE-0O9gT" 40 | }, 41 | "outputs": [], 42 | "source": [ 43 | "#@title 画像生成\n", 44 | "\n", 45 | "# 設定\n", 46 | "import os\n", 47 | "out_dir = \"test\" #@param {type:\"string\"} \n", 48 | "os.makedirs(out_dir, exist_ok=True)\n", 49 | "\n", 50 | "# 生成\n", 51 | "prompt = \"An astronaut riding a horse in a photorealistic style\" #@param {type:\"string\"}\n", 52 | "image = pipe(prompt)[\"images\"][0]\n", 53 | "\n", 54 | "# 保存\n", 55 | "sentence = prompt.replace(' ','_')\n", 56 | "out_path = out_dir+'/'+sentence+'.png'\n", 57 | "image.save(out_path)\n", 58 | "\n", 59 | "# 表示\n", 60 | "from IPython.display import Image,display\n", 61 | "display(Image(out_path))" 62 | ] 63 | }, 64 | { 65 | "cell_type": "code", 66 | "execution_count": null, 67 | "metadata": { 68 | "id": "QrXp6dv8Twyx" 69 | }, 70 | "outputs": [], 71 | "source": [ 72 | "#@title 画像のダウンロード\n", 73 | "from google.colab import files\n", 74 | "files.download(out_path)" 75 | ] 76 | }, 77 | { 78 | "cell_type": "code", 79 | "execution_count": null, 80 | "metadata": { 81 | "id": "yAx77SNWcSko" 82 | }, 83 | "outputs": [], 84 | "source": [ 85 | "#@title 連続画像生成\n", 86 | "\n", 87 | "# 設定\n", 88 | "import os\n", 89 | "out_dir = \"01\" #@param {type:\"string\"} \n", 90 | "os.makedirs(out_dir, exist_ok=True)\n", 91 | "repeat = 1000 #@param {type:\"integer\"}\n", 92 | "\n", 93 | "for i in range(repeat):\n", 94 | " # 生成\n", 95 | " prompt = \"An astronaut riding a horse in a photorealistic style\" #@param {type:\"string\"}\n", 96 | " image = pipe(prompt)[\"images\"][0]\n", 97 | "\n", 98 | " # 保存\n", 99 | " sentence = prompt.replace(' ','_')\n", 100 | " out_path = out_dir+'/'+str(i)+'_'+sentence+'.png'\n", 101 | " image.save(out_path)\n", 102 | "\n", 103 | " # 表示\n", 104 | " print(i)\n", 105 | " from IPython.display import Image,display\n", 106 | " display(Image(out_path))" 107 | ] 108 | }, 109 | { 110 | "cell_type": "code", 111 | "execution_count": null, 112 | "metadata": { 113 | "id": "pzDidkSldluW" 114 | }, 115 | "outputs": [], 116 | "source": [ 117 | "#@title 画像のダウンロード\n", 118 | "\n", 119 | "if os.path.isfile('data.zip'):\n", 120 | " os.remove('data.zip')\n", 121 | "\n", 122 | "! zip -r data.zip $out_dir\n", 123 | "from google.colab import files\n", 124 | "files.download('data.zip')" 125 | ] 126 | } 127 | ], 128 | "metadata": { 129 | "accelerator": "GPU", 130 | "colab": { 131 | "provenance": [], 132 | "authorship_tag": "ABX9TyOcRpok1pAcGGpwwFDaXyfa", 133 | "include_colab_link": true 134 | }, 135 | "gpuClass": "standard", 136 | "kernelspec": { 137 | "display_name": "Python 3", 138 | "name": "python3" 139 | }, 140 | "language_info": { 141 | "name": "python" 142 | } 143 | }, 144 | "nbformat": 4, 145 | "nbformat_minor": 0 146 | } -------------------------------------------------------------------------------- /My_img2img.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "nbformat": 4, 3 | "nbformat_minor": 0, 4 | "metadata": { 5 | "colab": { 6 | "provenance": [], 7 | "private_outputs": true, 8 | "include_colab_link": true 9 | }, 10 | "kernelspec": { 11 | "name": "python3", 12 | "display_name": "Python 3" 13 | }, 14 | "language_info": { 15 | "name": "python" 16 | }, 17 | "accelerator": "GPU" 18 | }, 19 | "cells": [ 20 | { 21 | "cell_type": "markdown", 22 | "metadata": { 23 | "id": "view-in-github", 24 | "colab_type": "text" 25 | }, 26 | "source": [ 27 | "\"Open" 28 | ] 29 | }, 30 | { 31 | "cell_type": "code", 32 | "source": [ 33 | "#@title **Setup**\n", 34 | "\n", 35 | "!nvidia-smi -L\n", 36 | "!pip install diffusers transformers ftfy accelerate\n", 37 | "\n", 38 | "import torch\n", 39 | "from torch import autocast\n", 40 | "from diffusers import StableDiffusionImg2ImgPipeline\n", 41 | "\n", 42 | "YOUR_TOKEN = \"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\"\n", 43 | "model_id = \"CompVis/stable-diffusion-v1-4\"\n", 44 | "device = \"cuda\"\n", 45 | "\n", 46 | "# make pipeline\n", 47 | "pipe = StableDiffusionImg2ImgPipeline.from_pretrained(model_id, revision=\"fp16\", torch_dtype=torch.float16, use_auth_token=YOUR_TOKEN)\n", 48 | "pipe = pipe.to(device)" 49 | ], 50 | "metadata": { 51 | "id": "aPaGiubnWmsp" 52 | }, 53 | "execution_count": null, 54 | "outputs": [] 55 | }, 56 | { 57 | "cell_type": "code", 58 | "source": [ 59 | "#@title **inital image setting**\n", 60 | "from PIL import Image\n", 61 | "\n", 62 | "pic = 'test.jpg' #@param {type:\"string\"}\n", 63 | "init_img = Image.open(pic)\n", 64 | "init_img = init_img.resize((512, 512))\n", 65 | "init_img" 66 | ], 67 | "metadata": { 68 | "id": "_WLViXFzJpB6" 69 | }, 70 | "execution_count": null, 71 | "outputs": [] 72 | }, 73 | { 74 | "cell_type": "code", 75 | "execution_count": null, 76 | "metadata": { 77 | "id": "ZHHenrs4EKFM" 78 | }, 79 | "outputs": [], 80 | "source": [ 81 | "#@title **img2img(Single)**\n", 82 | "\n", 83 | "# setting\n", 84 | "folder = 'single' #@param {type:\"string\"}\n", 85 | "prompt = \"the style of Gogh\" #@param {type:\"string\"}\n", 86 | "strength = 0.5 #@param {type:\"slider\", min:0, max:1, step:0.01}\n", 87 | "rand_num = 5 #@param {type:\"integer\"}\n", 88 | "os.makedirs(folder, exist_ok=True)\n", 89 | "\n", 90 | "# Pipeline execution\n", 91 | "generator = torch.Generator(device).manual_seed(rand_num) # 再現できるようにseedを設定\n", 92 | "with autocast(device):\n", 93 | " image = pipe(prompt, init_image=init_img, guidance_scale=7.5, strength=strength, generator=generator).images[0] \n", 94 | " \n", 95 | "# save & display\n", 96 | "import os\n", 97 | "save_name = folder+'/'+os.path.splitext(pic)[0]+'_'+str(strength)+'_'+str(rand_num)+os.path.splitext(pic)[1]\n", 98 | "image.save(save_name)\n", 99 | "print(save_name)\n", 100 | "image" 101 | ] 102 | }, 103 | { 104 | "cell_type": "code", 105 | "source": [ 106 | "#@title **img2img(Multiple-random)**\n", 107 | "import os\n", 108 | "from IPython.display import Image,display\n", 109 | "import random\n", 110 | "\n", 111 | "# setting\n", 112 | "folder = '04' #@param {type:\"string\"}\n", 113 | "prompt = \"the style of Gogh\" #@param {type:\"string\"}\n", 114 | "strength = 0.4 #@param {type:\"slider\", min:0, max:1, step:0.05}\n", 115 | "num = 10 #@param {type:\"slider\", min:1, max:100, step:1}\n", 116 | "os.makedirs(folder, exist_ok=True)\n", 117 | "\n", 118 | "# random\n", 119 | "rand_list = random.sample(range(1000), num)\n", 120 | "\n", 121 | "# Pipeline execution\n", 122 | "for i, rand_num in enumerate(rand_list):\n", 123 | " generator = torch.Generator(device).manual_seed(rand_num) # 再現できるようにseedを設定\n", 124 | " with autocast(device):\n", 125 | " image = pipe(prompt, init_image=init_img, guidance_scale=7.5, strength=strength, generator=generator).images[0] \n", 126 | " save_name = folder+'/'+os.path.splitext(pic)[0]+'_'+str(strength)+'_'+str(rand_num)+os.path.splitext(pic)[1]\n", 127 | " image.save(save_name)\n", 128 | " print('No=', i+1, save_name)\n", 129 | " display(Image(save_name))" 130 | ], 131 | "metadata": { 132 | "id": "OpI9NHjfSINl" 133 | }, 134 | "execution_count": null, 135 | "outputs": [] 136 | }, 137 | { 138 | "cell_type": "code", 139 | "source": [ 140 | "#@title **img2img(Search strength)**\n", 141 | "import os\n", 142 | "from IPython.display import Image,display\n", 143 | "import numpy as np\n", 144 | "\n", 145 | "# setting\n", 146 | "folder = 'serach' #@param {type:\"string\"}\n", 147 | "prompt = \"the style of Gogh\" #@param {type:\"string\"}\n", 148 | "rand_num = 2 #@param {type:\"integer\"}\n", 149 | "os.makedirs(folder, exist_ok=True)\n", 150 | "\n", 151 | "# strength_list\n", 152 | "strength_list = np.arange(0.2, 0.9, 0.1)\n", 153 | "print(strength_list)\n", 154 | "\n", 155 | "# Pipeline execution\n", 156 | "for strength in strength_list:\n", 157 | " generator = torch.Generator(device).manual_seed(rand_num) # 再現できるようにseedを設定\n", 158 | " with autocast(device):\n", 159 | " image = pipe(prompt, init_image=init_img, guidance_scale=7.5, strength=strength, generator=generator).images[0] \n", 160 | " save_name = folder+'/'+os.path.splitext(pic)[0]+'_'+str(strength)[:4]+'_'+str(rand_num)+os.path.splitext(pic)[1]\n", 161 | " image.save(save_name)\n", 162 | " print(save_name)\n", 163 | " display(Image(save_name))" 164 | ], 165 | "metadata": { 166 | "id": "_1_vUb8-rDlz" 167 | }, 168 | "execution_count": null, 169 | "outputs": [] 170 | }, 171 | { 172 | "cell_type": "code", 173 | "source": [ 174 | "#@title **img2img(Multiple-sequential)**\n", 175 | "import os\n", 176 | "from IPython.display import Image,display\n", 177 | "\n", 178 | "# setting\n", 179 | "prompt = \"the style of Gogh\" #@param {type:\"string\"}\n", 180 | "strength = 0.75 #@param {type:\"slider\", min:0, max:1, step:0.01}\n", 181 | "num = 2 #@param {type:\"slider\", min:1, max:100, step:1}\n", 182 | "\n", 183 | "# Pipeline execution\n", 184 | "for i in range(num):\n", 185 | " generator = torch.Generator(device).manual_seed(i) # 再現できるようにseedを設定\n", 186 | " with autocast(device):\n", 187 | " image = pipe(prompt, init_image=init_img, guidance_scale=7.5, strength=strength, generator=generator).images[0] \n", 188 | " save_name = os.path.splitext(pic)[0]+'_'+str(strength)+'_'+str(i)+os.path.splitext(pic)[1]\n", 189 | " image.save(save_name)\n", 190 | " print('No=', i, save_name)\n", 191 | " display(Image(save_name))" 192 | ], 193 | "metadata": { 194 | "id": "5dLjk5uPzslT" 195 | }, 196 | "execution_count": null, 197 | "outputs": [] 198 | } 199 | ] 200 | } -------------------------------------------------------------------------------- /clip_interrogator.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": { 6 | "id": "view-in-github", 7 | "colab_type": "text" 8 | }, 9 | "source": [ 10 | "\"Open" 11 | ] 12 | }, 13 | { 14 | "cell_type": "markdown", 15 | "metadata": { 16 | "id": "ytxkysgmrJEi" 17 | }, 18 | "source": [ 19 | "# CLIP Interrogator by [@pharmapsychotic](https://twitter.com/pharmapsychotic) \n", 20 | "\n", 21 | "
\n", 22 | "\n", 23 | "What do the different OpenAI CLIP models see in an image? What might be a good text prompt to create similar images using CLIP guided diffusion or another text to image model? The CLIP Interrogator is here to get you answers!\n", 24 | "\n", 25 | "
\n", 26 | "\n", 27 | "If this notebook is helpful to you please consider buying me a coffee via [ko-fi](https://ko-fi.com/pharmapsychotic) or following me on [twitter](https://twitter.com/pharmapsychotic) for more cool Ai stuff. 🙂\n", 28 | "\n", 29 | "And if you're looking for more Ai art tools check out my [Ai generative art tools list](https://pharmapsychotic.com/tools.html).\n" 30 | ] 31 | }, 32 | { 33 | "cell_type": "code", 34 | "execution_count": null, 35 | "metadata": { 36 | "cellView": "form", 37 | "id": "YQk0eemUrSC7" 38 | }, 39 | "outputs": [], 40 | "source": [ 41 | "#@title Check GPU\n", 42 | "!nvidia-smi -L" 43 | ] 44 | }, 45 | { 46 | "cell_type": "code", 47 | "execution_count": null, 48 | "metadata": { 49 | "cellView": "form", 50 | "id": "30xPxDSDrJEl" 51 | }, 52 | "outputs": [], 53 | "source": [ 54 | "#@title Setup\n", 55 | "!pip3 install ftfy regex tqdm transformers==4.15.0 timm==0.4.12 fairscale==0.4.4\n", 56 | "!pip3 install git+https://github.com/openai/CLIP.git\n", 57 | "!git clone -b v1 https://github.com/pharmapsychotic/clip-interrogator.git\n", 58 | "!git clone https://github.com/salesforce/BLIP\n", 59 | "%cd /content/BLIP\n", 60 | "\n", 61 | "import clip\n", 62 | "import gc\n", 63 | "import numpy as np\n", 64 | "import os\n", 65 | "import pandas as pd\n", 66 | "import requests\n", 67 | "import torch\n", 68 | "import torchvision.transforms as T\n", 69 | "import torchvision.transforms.functional as TF\n", 70 | "\n", 71 | "from IPython.display import display\n", 72 | "from PIL import Image\n", 73 | "from torch import nn\n", 74 | "from torch.nn import functional as F\n", 75 | "from torchvision import transforms\n", 76 | "from torchvision.transforms.functional import InterpolationMode\n", 77 | "from models.blip import blip_decoder\n", 78 | "\n", 79 | "device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')\n", 80 | "\n", 81 | "blip_image_eval_size = 384\n", 82 | "blip_model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model*_base_caption.pth' \n", 83 | "blip_model = blip_decoder(pretrained=blip_model_url, image_size=blip_image_eval_size, vit='base')\n", 84 | "blip_model.eval()\n", 85 | "blip_model = blip_model.to(device)\n", 86 | "\n", 87 | "def generate_caption(pil_image):\n", 88 | " gpu_image = transforms.Compose([\n", 89 | " transforms.Resize((blip_image_eval_size, blip_image_eval_size), interpolation=InterpolationMode.BICUBIC),\n", 90 | " transforms.ToTensor(),\n", 91 | " transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))\n", 92 | " ])(image).unsqueeze(0).to(device)\n", 93 | "\n", 94 | " with torch.no_grad():\n", 95 | " caption = blip_model.generate(gpu_image, sample=False, num_beams=3, max_length=20, min_length=5)\n", 96 | " return caption[0]\n", 97 | "\n", 98 | "def load_list(filename):\n", 99 | " with open(filename, 'r', encoding='utf-8', errors='replace') as f:\n", 100 | " items = [line.strip() for line in f.readlines()]\n", 101 | " return items\n", 102 | "\n", 103 | "def rank(model, image_features, text_array, top_count=1):\n", 104 | " top_count = min(top_count, len(text_array))\n", 105 | " text_tokens = clip.tokenize([text for text in text_array]).cuda()\n", 106 | " with torch.no_grad():\n", 107 | " text_features = model.encode_text(text_tokens).float()\n", 108 | " text_features /= text_features.norm(dim=-1, keepdim=True)\n", 109 | "\n", 110 | " similarity = torch.zeros((1, len(text_array))).to(device)\n", 111 | " for i in range(image_features.shape[0]):\n", 112 | " similarity += (100.0 * image_features[i].unsqueeze(0) @ text_features.T).softmax(dim=-1)\n", 113 | " similarity /= image_features.shape[0]\n", 114 | "\n", 115 | " top_probs, top_labels = similarity.cpu().topk(top_count, dim=-1) \n", 116 | " return [(text_array[top_labels[0][i].numpy()], (top_probs[0][i].numpy()*100)) for i in range(top_count)]\n", 117 | "\n", 118 | "def interrogate(image, models):\n", 119 | " caption = generate_caption(image)\n", 120 | " if len(models) == 0:\n", 121 | " print(f\"\\n\\n{caption}\")\n", 122 | " return\n", 123 | "\n", 124 | " table = []\n", 125 | " bests = [[('',0)]]*5\n", 126 | " for model_name in models:\n", 127 | " print(f\"Interrogating with {model_name}...\")\n", 128 | " model, preprocess = clip.load(model_name)\n", 129 | " model.cuda().eval()\n", 130 | "\n", 131 | " images = preprocess(image).unsqueeze(0).cuda()\n", 132 | " with torch.no_grad():\n", 133 | " image_features = model.encode_image(images).float()\n", 134 | " image_features /= image_features.norm(dim=-1, keepdim=True)\n", 135 | "\n", 136 | " ranks = [\n", 137 | " rank(model, image_features, mediums),\n", 138 | " rank(model, image_features, [\"by \"+artist for artist in artists]),\n", 139 | " rank(model, image_features, trending_list),\n", 140 | " rank(model, image_features, movements),\n", 141 | " rank(model, image_features, flavors, top_count=3)\n", 142 | " ]\n", 143 | "\n", 144 | " for i in range(len(ranks)):\n", 145 | " confidence_sum = 0\n", 146 | " for ci in range(len(ranks[i])):\n", 147 | " confidence_sum += ranks[i][ci][1]\n", 148 | " if confidence_sum > sum(bests[i][t][1] for t in range(len(bests[i]))):\n", 149 | " bests[i] = ranks[i]\n", 150 | "\n", 151 | " row = [model_name]\n", 152 | " for r in ranks:\n", 153 | " row.append(', '.join([f\"{x[0]} ({x[1]:0.1f}%)\" for x in r]))\n", 154 | "\n", 155 | " table.append(row)\n", 156 | "\n", 157 | " del model\n", 158 | " gc.collect()\n", 159 | " display(pd.DataFrame(table, columns=[\"Model\", \"Medium\", \"Artist\", \"Trending\", \"Movement\", \"Flavors\"]))\n", 160 | "\n", 161 | " flaves = ', '.join([f\"{x[0]}\" for x in bests[4]])\n", 162 | " medium = bests[0][0][0]\n", 163 | " if caption.startswith(medium):\n", 164 | " print(f\"\\n\\n{caption} {bests[1][0][0]}, {bests[2][0][0]}, {bests[3][0][0]}, {flaves}\")\n", 165 | " else:\n", 166 | " print(f\"\\n\\n{caption}, {medium} {bests[1][0][0]}, {bests[2][0][0]}, {bests[3][0][0]}, {flaves}\")\n", 167 | "\n", 168 | "data_path = \"../clip-interrogator/data/\"\n", 169 | "\n", 170 | "artists = load_list(os.path.join(data_path, 'artists.txt'))\n", 171 | "flavors = load_list(os.path.join(data_path, 'flavors.txt'))\n", 172 | "mediums = load_list(os.path.join(data_path, 'mediums.txt'))\n", 173 | "movements = load_list(os.path.join(data_path, 'movements.txt'))\n", 174 | "\n", 175 | "sites = ['Artstation', 'behance', 'cg society', 'cgsociety', 'deviantart', 'dribble', 'flickr', 'instagram', 'pexels', 'pinterest', 'pixabay', 'pixiv', 'polycount', 'reddit', 'shutterstock', 'tumblr', 'unsplash', 'zbrush central']\n", 176 | "trending_list = [site for site in sites]\n", 177 | "trending_list.extend([\"trending on \"+site for site in sites])\n", 178 | "trending_list.extend([\"featured on \"+site for site in sites])\n", 179 | "trending_list.extend([site+\" contest winner\" for site in sites])\n" 180 | ] 181 | }, 182 | { 183 | "cell_type": "code", 184 | "execution_count": null, 185 | "metadata": { 186 | "cellView": "form", 187 | "id": "rbDEMDGJrJEo" 188 | }, 189 | "outputs": [], 190 | "source": [ 191 | "#@title Interrogate!\n", 192 | "\n", 193 | "#@markdown \n", 194 | "\n", 195 | "#@markdown #####**Image:**\n", 196 | "\n", 197 | "image_path_or_url = \"\" #@param {type:\"string\"}\n", 198 | "\n", 199 | "#@markdown \n", 200 | "\n", 201 | "#@markdown #####**CLIP models:**\n", 202 | "\n", 203 | "#@markdown For [StableDiffusion](https://stability.ai/blog/stable-diffusion-announcement) you can just use ViTL14
\n", 204 | "#@markdown For [DiscoDiffusion](https://colab.research.google.com/github/alembics/disco-diffusion/blob/main/Disco_Diffusion.ipynb) and \n", 205 | "#@markdown [JAX](https://colab.research.google.com/github/huemin-art/jax-guided-diffusion/blob/v2.7/Huemin_Jax_Diffusion_2_7.ipynb) enable all the same models here as you intend to use when generating your images\n", 206 | "\n", 207 | "ViTB32 = False #@param{type:\"boolean\"}\n", 208 | "ViTB16 = False #@param{type:\"boolean\"}\n", 209 | "ViTL14 = True #@param{type:\"boolean\"}\n", 210 | "ViTL14_336px = False #@param{type:\"boolean\"}\n", 211 | "RN101 = False #@param{type:\"boolean\"}\n", 212 | "RN50 = False #@param{type:\"boolean\"}\n", 213 | "RN50x4 = False #@param{type:\"boolean\"}\n", 214 | "RN50x16 = False #@param{type:\"boolean\"}\n", 215 | "RN50x64 = False #@param{type:\"boolean\"}\n", 216 | "\n", 217 | "models = []\n", 218 | "if ViTB32: models.append('ViT-B/32')\n", 219 | "if ViTB16: models.append('ViT-B/16')\n", 220 | "if ViTL14: models.append('ViT-L/14')\n", 221 | "if ViTL14_336px: models.append('ViT-L/14@336px')\n", 222 | "if RN101: models.append('RN101')\n", 223 | "if RN50: models.append('RN50')\n", 224 | "if RN50x4: models.append('RN50x4')\n", 225 | "if RN50x16: models.append('RN50x16')\n", 226 | "if RN50x64: models.append('RN50x64')\n", 227 | "\n", 228 | "if str(image_path_or_url).startswith('http://') or str(image_path_or_url).startswith('https://'):\n", 229 | " image = Image.open(requests.get(image_path_or_url, stream=True).raw).convert('RGB')\n", 230 | "else:\n", 231 | " image = Image.open(image_path_or_url).convert('RGB')\n", 232 | "\n", 233 | "thumb = image.copy()\n", 234 | "thumb.thumbnail([blip_image_eval_size, blip_image_eval_size])\n", 235 | "display(thumb)\n", 236 | "\n", 237 | "interrogate(image, models=models)\n" 238 | ] 239 | } 240 | ], 241 | "metadata": { 242 | "accelerator": "GPU", 243 | "colab": { 244 | "provenance": [], 245 | "include_colab_link": true 246 | }, 247 | "gpuClass": "standard", 248 | "kernelspec": { 249 | "display_name": "Python 3.9.7 ('pytorch')", 250 | "language": "python", 251 | "name": "python3" 252 | }, 253 | "language_info": { 254 | "name": "python", 255 | "version": "3.9.7" 256 | }, 257 | "orig_nbformat": 4, 258 | "vscode": { 259 | "interpreter": { 260 | "hash": "d4dd9c310c32a31bb53615812f2f2c6cba010b7aa4dfb14e2b192e650667fecd" 261 | } 262 | } 263 | }, 264 | "nbformat": 4, 265 | "nbformat_minor": 0 266 | } -------------------------------------------------------------------------------- /fast_stable_diffusion_AUTOMATIC1111.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": { 6 | "id": "view-in-github", 7 | "colab_type": "text" 8 | }, 9 | "source": [ 10 | "\"Open" 11 | ] 12 | }, 13 | { 14 | "cell_type": "markdown", 15 | "metadata": { 16 | "id": "47kV9o1Ni8GH" 17 | }, 18 | "source": [ 19 | "# **Colab From https://github.com/TheLastBen/fast-stable-diffusion, if you face any issues, feel free to discuss them.** [Support](https://ko-fi.com/thelastben)\n", 20 | "\n", 21 | "\n", 22 | "\n", 23 | "\n", 24 | "\n", 25 | "\n", 26 | "\n" 27 | ] 28 | }, 29 | { 30 | "cell_type": "code", 31 | "execution_count": null, 32 | "metadata": { 33 | "id": "Y9EBc437WDOs", 34 | "cellView": "form" 35 | }, 36 | "outputs": [], 37 | "source": [ 38 | "#@title **connect google drive**\n", 39 | "from google.colab import drive\n", 40 | "drive.mount('/content/gdrive')" 41 | ] 42 | }, 43 | { 44 | "cell_type": "code", 45 | "execution_count": null, 46 | "metadata": { 47 | "cellView": "form", 48 | "id": "CFWtw-6EPrKi" 49 | }, 50 | "outputs": [], 51 | "source": [ 52 | "#@title **Install AUTOMATIC1111 repo**\n", 53 | "from IPython.utils import capture\n", 54 | "from IPython.display import clear_output\n", 55 | "from google.colab import runtime\n", 56 | "from IPython.display import display_markdown\n", 57 | "import time\n", 58 | "\n", 59 | "\n", 60 | "with capture.capture_output() as cap:\n", 61 | " fgitclone = \"git clone --depth 1\" \n", 62 | " %cd /content/gdrive/MyDrive/\n", 63 | " %mkdir sd\n", 64 | " %cd sd\n", 65 | " !$fgitclone https://github.com/Stability-AI/stablediffusion\n", 66 | " !$fgitclone https://github.com/AUTOMATIC1111/stable-diffusion-webui\n", 67 | " %cd /content/gdrive/MyDrive/sd/stable-diffusion-webui/\n", 68 | " !mkdir -p cache/{huggingface,torch}\n", 69 | " %cd /content/\n", 70 | " !ln -s /content/gdrive/MyDrive/sd/stable-diffusion-webui/cache/huggingface ../root/.cache/\n", 71 | " !ln -s /content/gdrive/MyDrive/sd/stable-diffusion-webui/cache/torch ../root/.cache/\n", 72 | " !pip install -q -U gdown\n", 73 | "\n", 74 | "Update_repo = True\n", 75 | "if Update_repo: \n", 76 | " !rm /content/gdrive/MyDrive/sd/stable-diffusion-webui/webui.sh \n", 77 | " !rm /content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/paths.py\n", 78 | " !rm /content/gdrive/MyDrive/sd/stable-diffusion-webui/webui.py \n", 79 | " !rm /content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/ui.py\n", 80 | " !rm /content/gdrive/MyDrive/sd/stable-diffusion-webui/style.css\n", 81 | " %cd /content/gdrive/MyDrive/sd/stable-diffusion-webui/\n", 82 | " clear_output()\n", 83 | " print('\u001b[1;32m')\n", 84 | " !git pull\n", 85 | " clear_output()\n", 86 | " print('\u001b[1;32mDONE !')" 87 | ] 88 | }, 89 | { 90 | "cell_type": "code", 91 | "execution_count": null, 92 | "metadata": { 93 | "cellView": "form", 94 | "id": "ZGV_5H4xrOSp" 95 | }, 96 | "outputs": [], 97 | "source": [ 98 | "#@title **Install Requirements Library**\n", 99 | "\n", 100 | "import os\n", 101 | "import time\n", 102 | "from IPython.utils import capture\n", 103 | "from IPython.display import clear_output\n", 104 | "from subprocess import getoutput\n", 105 | "from re import search\n", 106 | "\n", 107 | "with capture.capture_output() as cap:\n", 108 | " \n", 109 | " if not os.path.exists('/content/gdrive/MyDrive/sd/stablediffusion/src/k-diffusion/k_diffusion'):\n", 110 | " !mkdir /content/gdrive/MyDrive/sd/stablediffusion/src\n", 111 | " %cd /content/gdrive/MyDrive/sd/stablediffusion/src\n", 112 | " !$fgitclone https://github.com/CompVis/taming-transformers\n", 113 | " !$fgitclone https://github.com/openai/CLIP\n", 114 | " !$fgitclone https://github.com/salesforce/BLIP\n", 115 | " !$fgitclone https://github.com/sczhou/CodeFormer\n", 116 | " !$fgitclone https://github.com/crowsonkb/k-diffusion\n", 117 | " !mv /content/gdrive/MyDrive/sd/stablediffusion/src/CLIP /content/gdrive/MyDrive/sd/stablediffusion/src/clip\n", 118 | " !mv /content/gdrive/MyDrive/sd/stablediffusion/src/BLIP /content/gdrive/MyDrive/sd/stablediffusion/src/blip \n", 119 | " !mv /content/gdrive/MyDrive/sd/stablediffusion/src/CodeFormer /content/gdrive/MyDrive/sd/stablediffusion/src/codeformer \n", 120 | " !cp -r /content/gdrive/MyDrive/sd/stablediffusion/src/k-diffusion/k_diffusion /content/gdrive/MyDrive/sd/stable-diffusion-webui/\n", 121 | "\n", 122 | "\n", 123 | " %cd /content/\n", 124 | " for i in range(1,7):\n", 125 | " !wget \"https://github.com/TheLastBen/fast-stable-diffusion/raw/main/Dependencies/Dependencies_AUT.{i}\"\n", 126 | " !mv \"Dependencies_AUT.{i}\" \"Dependencies_AUT.7z.00{i}\"\n", 127 | " !7z x Dependencies_AUT.7z.001\n", 128 | " time.sleep(2)\n", 129 | " !cp -r /content/usr/local/lib/python3.8/dist-packages /usr/local/lib/python3.8/\n", 130 | " !rm -r /content/usr\n", 131 | " for i in range(1,7):\n", 132 | " !rm \"Dependencies_AUT.7z.00{i}\"\n", 133 | " !pip install -U -q pillow\n", 134 | " \n", 135 | " %cd /content/gdrive/MyDrive/sd/stable-diffusion-webui/modules\n", 136 | " !wget -O paths.py https://raw.githubusercontent.com/TheLastBen/fast-stable-diffusion/main/AUTOMATIC1111_files/paths.py\n", 137 | "\n", 138 | " if os.path.exists('/content/gdrive/MyDrive/sd/stable-diffusion-webui/extensions/deforum-for-automatic1111-webui/scripts/deforum_helpers/src/infer.py'):\n", 139 | " %cd /content/gdrive/MyDrive/sd/stable-diffusion-webui/extensions/deforum-for-automatic1111-webui/scripts/deforum_helpers\n", 140 | " !wget -O animation.py https://raw.githubusercontent.com/TheLastBen/fast-stable-diffusion/main/AUTOMATIC1111_files/deforum/animation.py\n", 141 | " !wget -O depth.py https://raw.githubusercontent.com/TheLastBen/fast-stable-diffusion/main/AUTOMATIC1111_files/deforum/depth.py \n", 142 | " %cd /content/gdrive/MyDrive/sd/stable-diffusion-webui/extensions/deforum-for-automatic1111-webui/scripts/deforum_helpers/src \n", 143 | " !wget -O infer.py https://raw.githubusercontent.com/TheLastBen/fast-stable-diffusion/main/AUTOMATIC1111_files/deforum/infer.py\n", 144 | "\n", 145 | " if not os.path.exists('/content/gdrive/MyDrive/sd/stablediffusion/repositories/midas'):\n", 146 | " %cd /content/gdrive/MyDrive/sd/stablediffusion\n", 147 | " !mkdir repositories\n", 148 | " %cd repositories\n", 149 | " !git clone https://github.com/isl-org/MiDaS.git midas\n", 150 | " !git clone https://github.com/compphoto/BoostingMonocularDepth.git\n", 151 | " \n", 152 | " %cd /content\n", 153 | " s = getoutput('nvidia-smi')\n", 154 | " if \"A100\" in s:\n", 155 | " !wget https://github.com/TheLastBen/fast-stable-diffusion/raw/main/precompiled/A100/A100\n", 156 | " %cd /usr/local/lib/python3.8/dist-packages/xformers\n", 157 | " !7z x -y /content/A100\n", 158 | " !rm /content/A100\n", 159 | " if not (\"T4\" in s or \"A100\" in s):\n", 160 | " !pip uninstall -q -y xformers\n", 161 | "\n", 162 | "\n", 163 | "base = '/content/gdrive/MyDrive/sd/stable-diffusion'\n", 164 | "dirs = [base, f'{base}/src/taming-transformers', f'{base}/src/clip',\n", 165 | " f'{base}/src/GFPGAN', f'{base}/src/blip', f'{base}/src/codeformer',\n", 166 | " f'{base}/src/realesrgan', f'{base}/src/k-diffusion', f'{base}/src/ldm']\n", 167 | "for d in dirs:\n", 168 | " !rm -rf {d + '/.git'}\n", 169 | "clear_output()\n", 170 | "print('\u001b[1;32mDone!')" 171 | ] 172 | }, 173 | { 174 | "cell_type": "code", 175 | "execution_count": null, 176 | "metadata": { 177 | "cellView": "form", 178 | "id": "p4wj_txjP3TC" 179 | }, 180 | "outputs": [], 181 | "source": [ 182 | "#@title **Model Download/Load**\n", 183 | "import os\n", 184 | "from IPython.display import clear_output\n", 185 | "import time\n", 186 | "\n", 187 | "Model_Version = \"1.5\" #@param [ \"1.5\", \"V2-512px\", \"V2-768px\"]\n", 188 | "\n", 189 | "RunwayML_Inpainting_Model = False #@param {type:\"boolean\"}\n", 190 | "\n", 191 | "token = \"\" #@param {type:\"string\"}\n", 192 | "\n", 193 | "Redownload_the_original_model = False #@param {type:\"boolean\"}\n", 194 | "\n", 195 | "if Redownload_the_original_model:\n", 196 | " if os.path.exists('/content/mainmodel.ckpt'):\n", 197 | " !rm /content/mainmodel.ckpt\n", 198 | " %cd /content/gdrive/MyDrive/sd/stable-diffusion-webui/models/Stable-diffusion \n", 199 | " !wget -q -O model.ckpt https://raw.githubusercontent.com/TheLastBen/fast-stable-diffusion/main/precompiled/attention.py\n", 200 | " !mv /content/gdrive/MyDrive/sd/stable-diffusion-webui/models/Stable-diffusion/model.ckpt /content/gdrive/MyDrive/sd/stable-diffusion-webui/models/Stable-diffusion/trashfile.f \n", 201 | " time.sleep(2)\n", 202 | " !rm /content/gdrive/MyDrive/sd/stable-diffusion-webui/models/Stable-diffusion/trashfile.f\n", 203 | " time.sleep(2)\n", 204 | " clear_output()\n", 205 | "\n", 206 | "#@markdown Or\n", 207 | "Path_to_CKPT = \"/content/gdrive/MyDrive/AUTOMATIC1111/nakata.ckpt\" #@param {type:\"string\"}\n", 208 | "#@markdown - Insert the full path of your trained model (eg: /content/gdrive/MyDrive/zarathustra.ckpt) or to a folder containing multiple models.\n", 209 | "\n", 210 | "#@markdown Or\n", 211 | "Link_CKPT = \"\" #@param {type:\"string\"}\n", 212 | "#@markdown - A direct link to a CKPT or a shared gdrive link.\n", 213 | "\n", 214 | "def newmdl(token):\n", 215 | "\n", 216 | " if not os.path.exists('/content/gdrive/MyDrive/sd/stable-diffusion-webui/models/Stable-diffusion/model.ckpt'):\n", 217 | " if token==\"\":\n", 218 | " token=input(\"Insert your huggingface token :\")\n", 219 | " %cd /content/\n", 220 | " clear_output()\n", 221 | " !git init\n", 222 | " !git lfs install --system --skip-repo\n", 223 | " !$fgitclone --branch fp16 \"https://USER:{token}@huggingface.co/runwayml/stable-diffusion-v1-5\"\n", 224 | " if os.path.exists('/content/stable-diffusion-v1-5'):\n", 225 | " !$fgitclone \"https://USER:{token}@huggingface.co/stabilityai/sd-vae-ft-mse\"\n", 226 | " !rm -r /content/stable-diffusion-v1-5/vae\n", 227 | " !mv /content/sd-vae-ft-mse /content/stable-diffusion-v1-5/vae \n", 228 | " !wget -O convertosd.py https://github.com/TheLastBen/fast-stable-diffusion/raw/main/Dreambooth/convertosd.py\n", 229 | " !sed -i '201s@.*@ model_path = \"/content/stable-diffusion-v1-5\"@' /content/convertosd.py\n", 230 | " !sed -i '202s@.*@ checkpoint_path= \"/content/gdrive/MyDrive/sd/stable-diffusion-webui/models/Stable-diffusion/model.ckpt\"@' /content/convertosd.py\n", 231 | " clear_output() \n", 232 | " !python /content/convertosd.py \n", 233 | " if os.path.exists('/content/gdrive/MyDrive/sd/stable-diffusion-webui/models/Stable-diffusion/model.ckpt'):\n", 234 | " model='/content/gdrive/MyDrive/sd/stable-diffusion-webui/models/Stable-diffusion/model.ckpt'\n", 235 | " clear_output()\n", 236 | " print('\u001b[1;32mDONE !')\n", 237 | " else:\n", 238 | " print('\u001b[1;31mSomething went wrong, try again')\n", 239 | " else:\n", 240 | " print('\u001b[1;31mMake sure you accept the terms at https://huggingface.co/runwayml/stable-diffusion-v1-5')\n", 241 | "\n", 242 | " else:\n", 243 | " model='/content/gdrive/MyDrive/sd/stable-diffusion-webui/models/Stable-diffusion/model.ckpt'\n", 244 | " clear_output()\n", 245 | " print('\u001b[1;32mModel already exists, check the box \"Redownload_the_original_model\" to redownload/download the V1.5')\n", 246 | "\n", 247 | " if os.path.exists('/content/.git'):\n", 248 | " !rm -r /content/.git\n", 249 | "\n", 250 | " if os.path.exists('/content/stable-diffusion-v1-5'):\n", 251 | " !rm -r /content/stable-diffusion-v1-5 \n", 252 | "\n", 253 | "\n", 254 | "def V2(token):\n", 255 | "\n", 256 | " if not os.path.exists('/content/gdrive/MyDrive/sd/stable-diffusion-webui/models/Stable-diffusion/model.ckpt'):\n", 257 | " %cd /content/\n", 258 | " clear_output()\n", 259 | " !mkdir \"/content/stable-diffusion-V2\"\n", 260 | " %cd \"/content/stable-diffusion-V2\"\n", 261 | " !git init\n", 262 | " !git lfs install --system --skip-repo\n", 263 | " if Model_Version == \"V2-768px\":\n", 264 | " !git remote add -f origin \"https://USER:{token}@huggingface.co/stabilityai/stable-diffusion-2-1\"\n", 265 | " elif Model_Version == \"V2-512px\":\n", 266 | " !git remote add -f origin \"https://USER:{token}@huggingface.co/stabilityai/stable-diffusion-2-1-base\" \n", 267 | " !git config core.sparsecheckout true\n", 268 | " !echo -e \"scheduler\\ntext_encoder\\ntokenizer\\nunet\\nvae\\nmodel_index.json\" > .git/info/sparse-checkout\n", 269 | " !git pull origin main\n", 270 | " %cd /content\n", 271 | " !wget -O convertosdv2.py https://github.com/TheLastBen/fast-stable-diffusion/raw/main/Dreambooth/convertosdv2.py\n", 272 | " clear_output()\n", 273 | " !python /content/convertosdv2.py --fp16 /content/stable-diffusion-V2 /content/gdrive/MyDrive/sd/stable-diffusion-webui/models/Stable-diffusion/model.ckpt\n", 274 | " if os.path.exists('/content/gdrive/MyDrive/sd/stable-diffusion-webui/models/Stable-diffusion/model.ckpt'):\n", 275 | " model='/content/gdrive/MyDrive/sd/stable-diffusion-webui/models/Stable-diffusion/model.ckpt'\n", 276 | " clear_output()\n", 277 | " print('\u001b[1;32mDONE !')\n", 278 | " else:\n", 279 | " print('\u001b[1;31mSomething went wrong, try again')\n", 280 | "\n", 281 | " else:\n", 282 | " model='/content/gdrive/MyDrive/sd/stable-diffusion-webui/models/Stable-diffusion/model.ckpt'\n", 283 | " clear_output()\n", 284 | " print('\u001b[1;32mModel already exists, check the box \"Redownload_the_original_model\" to redownload/download the V2.')\n", 285 | "\n", 286 | " if os.path.exists('/content/.git'):\n", 287 | " !rm -r /content/.git\n", 288 | " !rm -r /content/convertosdv2.py\n", 289 | " if os.path.exists('/content/stable-diffusion-V2'):\n", 290 | " !rm -r /content/stable-diffusion-V2\n", 291 | "\n", 292 | "def inpmdl(token):\n", 293 | "\n", 294 | " if not os.path.exists('/content/gdrive/MyDrive/sd/stable-diffusion-webui/models/Stable-diffusion/sd-v1-5-inpainting.ckpt'):\n", 295 | " if token==\"\":\n", 296 | " token=input(\"Insert your huggingface token :\")\n", 297 | " %cd /content/\n", 298 | " clear_output()\n", 299 | " !git init\n", 300 | " !git lfs install --system --skip-repo\n", 301 | " !$fgitclone --branch fp16 \"https://USER:{token}@huggingface.co/runwayml/stable-diffusion-inpainting\"\n", 302 | " if os.path.exists('/content/stable-diffusion-inpainting'):\n", 303 | " !$fgitclone \"https://USER:{token}@huggingface.co/stabilityai/sd-vae-ft-mse\"\n", 304 | " !rm -r /content/stable-diffusion-inpainting/vae\n", 305 | " !mv /content/sd-vae-ft-mse /content/stable-diffusion-inpainting/vae \n", 306 | " !wget -O convertosd.py https://github.com/TheLastBen/fast-stable-diffusion/raw/main/Dreambooth/convertosd.py\n", 307 | " !sed -i '201s@.*@ model_path = \"/content/stable-diffusion-inpainting\"@' /content/convertosd.py\n", 308 | " !sed -i '202s@.*@ checkpoint_path= \"/content/gdrive/MyDrive/sd/stable-diffusion-webui/models/Stable-diffusion/sd-v1-5-inpainting.ckpt\"@' /content/convertosd.py\n", 309 | " clear_output() \n", 310 | " !python /content/convertosd.py \n", 311 | " if os.path.exists('/content/gdrive/MyDrive/sd/stable-diffusion-webui/models/Stable-diffusion/sd-v1-5-inpainting.ckpt'):\n", 312 | " clear_output()\n", 313 | " print('\u001b[1;32mDONE !')\n", 314 | " else:\n", 315 | " print('\u001b[1;31mSomething went wrong, try again')\n", 316 | " else:\n", 317 | " print('\u001b[1;31mMake sure you have accepted the terms at https://huggingface.co/runwayml/stable-diffusion-inpainting')\n", 318 | "\n", 319 | " else:\n", 320 | " clear_output()\n", 321 | " print('\u001b[1;32mModel already exists.')\n", 322 | "\n", 323 | " if os.path.exists('/content/.git'):\n", 324 | " !rm -r /content/.git\n", 325 | "\n", 326 | " if os.path.exists('/content/stable-diffusion-inpainting'):\n", 327 | " !rm -r /content/stable-diffusion-inpainting \n", 328 | "\n", 329 | "\n", 330 | "if (Path_to_CKPT !=''):\n", 331 | " if os.path.exists(str(Path_to_CKPT)):\n", 332 | " print('\u001b[1;32mUsing the trained model.')\n", 333 | " else:\n", 334 | " while not os.path.exists(str(Path_to_CKPT)):\n", 335 | " print('\u001b[1;31mWrong path, use the colab file explorer to copy the path : ')\n", 336 | " Path_to_CKPT=input()\n", 337 | " if os.path.exists(str(Path_to_CKPT)):\n", 338 | " print('\u001b[1;32mUsing the trained model.')\n", 339 | "\n", 340 | " model=Path_to_CKPT\n", 341 | "\n", 342 | "elif Link_CKPT != \"\":\n", 343 | " if os.path.exists('/content/mainmodel.ckpt'):\n", 344 | " !rm /content/mainmodel.ckpt\n", 345 | " %cd /content/gdrive/MyDrive/sd/stable-diffusion-webui/models/Stable-diffusion\n", 346 | " !wget -q -O model.ckpt https://raw.githubusercontent.com/TheLastBen/fast-stable-diffusion/main/precompiled/attention.py\n", 347 | " !mv /content/gdrive/MyDrive/sd/stable-diffusion-webui/models/Stable-diffusion/model.ckpt /content/gdrive/MyDrive/sd/stable-diffusion-webui/models/Stable-diffusion/trashfile.f \n", 348 | " time.sleep(2)\n", 349 | " !rm /content/gdrive/MyDrive/sd/stable-diffusion-webui/models/Stable-diffusion/trashfile.f\n", 350 | " time.sleep(2)\n", 351 | " clear_output()\n", 352 | " !gdown --fuzzy -O model.ckpt $Link_CKPT\n", 353 | " if os.path.exists('/content/gdrive/MyDrive/sd/stable-diffusion-webui/models/Stable-diffusion/model.ckpt'):\n", 354 | " if os.path.getsize(\"/content/gdrive/MyDrive/sd/stable-diffusion-webui/models/Stable-diffusion/model.ckpt\") > 1810671599:\n", 355 | " model='/content/gdrive/MyDrive/sd/stable-diffusion-webui/models/Stable-diffusion/model.ckpt'\n", 356 | " clear_output()\n", 357 | " print('\u001b[1;32mModel downloaded, using the trained model.')\n", 358 | " else:\n", 359 | " print('\u001b[1;31mWrong link, check that the link is valid')\n", 360 | " else:\n", 361 | " print('\u001b[1;31mWrong link, check that the link is valid')\n", 362 | "\n", 363 | "\n", 364 | "elif Model_Version==\"1.5\":\n", 365 | " newmdl(token)\n", 366 | "\n", 367 | "elif Model_Version==\"V2-512px\" or Model_Version==\"V2-768px\":\n", 368 | " V2(token)\n", 369 | "\n", 370 | "if RunwayML_Inpainting_Model:\n", 371 | " inpmdl(token)" 372 | ] 373 | }, 374 | { 375 | "cell_type": "code", 376 | "execution_count": null, 377 | "metadata": { 378 | "cellView": "form", 379 | "id": "PjzwxTkPSPHf" 380 | }, 381 | "outputs": [], 382 | "source": [ 383 | "#@title **Start stable-diffusion**\n", 384 | "from IPython.utils import capture\n", 385 | "import time\n", 386 | "import sys\n", 387 | "import fileinput\n", 388 | "\n", 389 | "Model_Version = \"1.5\" #@param [\"1.5\", \"V2-512\", \"V2-768\"]\n", 390 | "#@markdown - Important! Choose the correct version and resolution of the model\n", 391 | "\n", 392 | "Use_Gradio_Server = False #@param {type:\"boolean\"}\n", 393 | "#@markdown - Only if you have trouble connecting to the local server\n", 394 | "\n", 395 | "Enable_API = False #@param {type:\"boolean\"}\n", 396 | "#@markdown - You can find the docs in the [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/API)\n", 397 | " \n", 398 | "with capture.capture_output() as cap: \n", 399 | " if not os.path.exists('/tools/node/bin/lt'):\n", 400 | " !npm install -g localtunnel\n", 401 | "\n", 402 | "with capture.capture_output() as cap: \n", 403 | " %cd /content/gdrive/MyDrive/sd/stable-diffusion-webui/\n", 404 | " time.sleep(1)\n", 405 | " !wget -O webui.py https://raw.githubusercontent.com/AUTOMATIC1111/stable-diffusion-webui/master/webui.py\n", 406 | " !sed -i 's@ui.create_ui().*@ui.create_ui();shared.demo.queue(concurrency_count=111500)@' /content/gdrive/MyDrive/sd/stable-diffusion-webui/webui.py\n", 407 | " %cd /content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/\n", 408 | " !wget -O ui.py https://raw.githubusercontent.com/AUTOMATIC1111/stable-diffusion-webui/master/modules/ui.py\n", 409 | " !sed -i 's@css = \"\".*@with open(os.path.join(script_path, \"style.css\"), \"r\", encoding=\"utf8\") as file:\\n css = file.read()@' /content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/ui.py\n", 410 | " %cd /content/gdrive/MyDrive/sd/stable-diffusion-webui\n", 411 | " !wget -O style.css https://raw.githubusercontent.com/AUTOMATIC1111/stable-diffusion-webui/master/style.css\n", 412 | " !sed -i 's@min-height: 4.*@min-height: 5.5em;@g' /content/gdrive/MyDrive/sd/stable-diffusion-webui/style.css\n", 413 | " !sed -i \"s@'extensions/depthmap2mask/scripts/depthmap_for_depth2img.py'@\\\"/content/gdrive/MyDrive/sd/stable-diffusion-webui/extensions/depthmap2mask/scripts/depthmap_for_depth2img.py\\\"@\" /content/gdrive/MyDrive/sd/stable-diffusion-webui/extensions/depthmap2mask/scripts/depth2image_depthmask.py\n", 414 | " !sed -i 's@\"repositories/BoostingMonocularDepth\"@\\\"/content/gdrive/MyDrive/sd/stablediffusion/repositories/BoostingMonocularDepth\\\"@' /content/gdrive/MyDrive/sd/stable-diffusion-webui/extensions/stable-diffusion-webui-depthmap-script/scripts/depthmap.py\n", 415 | " %cd /content\n", 416 | "\n", 417 | "\n", 418 | "share=''\n", 419 | "if Use_Gradio_Server:\n", 420 | " share='--share'\n", 421 | " for line in fileinput.input('/usr/local/lib/python3.8/dist-packages/gradio/blocks.py', inplace=True):\n", 422 | " if line.strip().startswith('self.server_name ='):\n", 423 | " line = ' self.server_name = server_name\\n'\n", 424 | " if line.strip().startswith('self.server_port ='):\n", 425 | " line = ' self.server_port = server_port\\n'\n", 426 | " sys.stdout.write(line)\n", 427 | " clear_output()\n", 428 | " \n", 429 | "else:\n", 430 | " share=''\n", 431 | " !nohup lt --port 7860 > srv.txt 2>&1 &\n", 432 | " time.sleep(2)\n", 433 | " !grep -o 'https[^ ]*' /content/srv.txt >srvr.txt\n", 434 | " time.sleep(2)\n", 435 | " srv= getoutput('cat /content/srvr.txt')\n", 436 | "\n", 437 | " for line in fileinput.input('/usr/local/lib/python3.8/dist-packages/gradio/blocks.py', inplace=True):\n", 438 | " if line.strip().startswith('self.server_name ='):\n", 439 | " line = f' self.server_name = \"{srv[8:]}\"\\n'\n", 440 | " if line.strip().startswith('self.server_port ='):\n", 441 | " line = ' self.server_port = 443\\n'\n", 442 | " if line.strip().startswith('self.protocol = \"https\"'):\n", 443 | " line = ' self.protocol = \"https\"\\n'\n", 444 | " if line.strip().startswith('if self.local_url.startswith(\"https\") or self.is_colab'):\n", 445 | " line = '' \n", 446 | " if line.strip().startswith('else \"http\"'):\n", 447 | " line = '' \n", 448 | " sys.stdout.write(line)\n", 449 | " \n", 450 | " !sed -i '13s@.*@ \"PUBLIC_SHARE_TRUE\": \"\u001b[32mConnected\",@' /usr/local/lib/python3.8/dist-packages/gradio/strings.py\n", 451 | " \n", 452 | " !rm /content/srv.txt\n", 453 | " !rm /content/srvr.txt\n", 454 | "\n", 455 | "with capture.capture_output() as cap: \n", 456 | " %cd /content/gdrive/MyDrive/sd/stablediffusion\n", 457 | "\n", 458 | "api = '--api' if Enable_API else ''\n", 459 | "\n", 460 | "if Model_Version == \"V2-768\":\n", 461 | " configf=\"--config /content/gdrive/MyDrive/sd/stablediffusion/configs/stable-diffusion/v2-inference-v.yaml\"\n", 462 | " !sed -i 's@def load_state_dict(checkpoint_path: str, map_location.*@def load_state_dict(checkpoint_path: str, map_location=\"cuda\"):@' /usr/local/lib/python3.8/dist-packages/open_clip/factory.py \n", 463 | "elif Model_Version == \"V2-512\":\n", 464 | " configf=\"--config /content/gdrive/MyDrive/sd/stablediffusion/configs/stable-diffusion/v2-inference.yaml\"\n", 465 | " !sed -i 's@def load_state_dict(checkpoint_path: str, map_location.*@def load_state_dict(checkpoint_path: str, map_location=\"cuda\"):@' /usr/local/lib/python3.8/dist-packages/open_clip/factory.py \n", 466 | "else:\n", 467 | " configf=\"\"\n", 468 | " !sed -i 's@def load_state_dict(checkpoint_path: str, map_location.*@def load_state_dict(checkpoint_path: str, map_location=\"cpu\"):@' /usr/local/lib/python3.8/dist-packages/open_clip/factory.py \n", 469 | "\n", 470 | "if os.path.exists('/usr/local/lib/python3.8/dist-packages/xformers'):\n", 471 | " xformers=\"--xformers\" \n", 472 | "else:\n", 473 | " xformers=\"\"\n", 474 | "\n", 475 | "try:\n", 476 | " model\n", 477 | " if os.path.isfile(model):\n", 478 | " !python /content/gdrive/MyDrive/sd/stable-diffusion-webui/webui.py $share $api --disable-safe-unpickle --no-half-vae --ckpt \"$model\" $configf $xformers\n", 479 | " else:\n", 480 | " !python /content/gdrive/MyDrive/sd/stable-diffusion-webui/webui.py $share $api --disable-safe-unpickle --no-half-vae --ckpt-dir \"$model\" $configf $xformers\n", 481 | "except:\n", 482 | " !python /content/gdrive/MyDrive/sd/stable-diffusion-webui/webui.py $share $api --disable-safe-unpickle --no-half-vae $configf $xformers" 483 | ] 484 | } 485 | ], 486 | "metadata": { 487 | "accelerator": "GPU", 488 | "colab": { 489 | "provenance": [], 490 | "include_colab_link": true 491 | }, 492 | "kernelspec": { 493 | "display_name": "Python 3", 494 | "name": "python3" 495 | }, 496 | "language_info": { 497 | "name": "python" 498 | } 499 | }, 500 | "nbformat": 4, 501 | "nbformat_minor": 0 502 | } -------------------------------------------------------------------------------- /My_iPERCore.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": { 6 | "id": "view-in-github", 7 | "colab_type": "text" 8 | }, 9 | "source": [ 10 | "\"Open" 11 | ] 12 | }, 13 | { 14 | "cell_type": "markdown", 15 | "metadata": { 16 | "id": "rTjLpNgipXPR" 17 | }, 18 | "source": [ 19 | "![000.jpg]()" 20 | ] 21 | }, 22 | { 23 | "cell_type": "code", 24 | "execution_count": null, 25 | "metadata": { 26 | "id": "aqBT7r7G_pCL" 27 | }, 28 | "outputs": [], 29 | "source": [ 30 | "#@title 1-1.セットアップ\n", 31 | "\n", 32 | "# ffmpegインストール\n", 33 | "!apt-get install ffmpeg\n", 34 | "\n", 35 | "# CUDAセッティング\n", 36 | "import os\n", 37 | "os.environ[\"CUDA_HOME\"] = \"/usr/local/cuda-11\"\n", 38 | "!echo $CUDA_HOME\n", 39 | "\n", 40 | "# githubからコードをコピー\n", 41 | "!git clone https://github.com/sugi-san/iPERCore.git\n", 42 | "%cd /content/iPERCore/\n", 43 | "\n", 44 | "# python3.8の導入\n", 45 | "!update-alternatives --install /usr/local/bin/python3 python3 /usr/bin/python3.8 2 \n", 46 | "!update-alternatives --install /usr/local/bin/python3 python3 /usr/bin/python3.9 1 \n", 47 | "!python --version \n", 48 | "!apt-get update\n", 49 | "!apt install software-properties-common\n", 50 | "!sudo dpkg --remove --force-remove-reinstreq python3-pip python3-setuptools python3-wheel\n", 51 | "!apt-get install python3-pip\n", 52 | "\n", 53 | "# ライブラリのインストール\n", 54 | "! python3.8 -m pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio==0.7.1 -f https://download.pytorch.org/whl/torch_stable.html\n", 55 | "! python3.8 -m pip install mmcv-full==1.2.2\n", 56 | "! python3.8 -m pip install git+https://github.com/open-mmlab/mmdetection.git@8179440ec5f75fe95484854af61ce6f6279f3bbc\n", 57 | "! python3.8 -m pip install git+https://github.com/open-mmlab/mmediting@d4086aaf8a36ae830f1714aad585900d24ad1156\n", 58 | "! python3.8 -m pip install git+https://github.com/iPERDance/neural_renderer.git@e5f54f71a8941acf372514eb92e289872f272653\n", 59 | "! python3.8 -m pip install tensorboardX>=2.1\n", 60 | "! python3.8 -m pip install toml\n", 61 | "! python3.8 -m pip install easydict\n", 62 | "! python3.8 -m pip install numpy==1.23.5\n", 63 | "\n", 64 | "# 重みのダウンロード\n", 65 | "#! pip install --upgrade gdown\n", 66 | "import gdown\n", 67 | "gdown.download('https://drive.google.com/uc?id=1jpp_KytMplNNFA_IJSzzSWhvyqIdmnJv', 'assets/checkpoints.zip', quiet=False)\n", 68 | "!unzip -o assets/checkpoints.zip -d assets/\n", 69 | "!rm assets/checkpoints.zip\n", 70 | "\n", 71 | "# サンプルのダウンロード\n", 72 | "!wget -O assets/samples.zip \"https://download.impersonator.org/iper_plus_plus_latest_samples.zip\"\n", 73 | "!unzip -o assets/samples.zip -d assets\n", 74 | "!rm assets/samples.zip\n", 75 | "\n", 76 | "# ディレクトリ移動\n", 77 | "%cd /content/iPERCore/\n", 78 | "\n", 79 | "# ライブラリーのインポート\n", 80 | "import os\n", 81 | "import os.path as osp\n", 82 | "import platform\n", 83 | "import argparse\n", 84 | "import time\n", 85 | "import sys\n", 86 | "import subprocess\n", 87 | "from IPython.display import HTML\n", 88 | "from base64 import b64encode\n" 89 | ] 90 | }, 91 | { 92 | "cell_type": "code", 93 | "execution_count": null, 94 | "metadata": { 95 | "id": "98ZXnpcmhZQI" 96 | }, 97 | "outputs": [], 98 | "source": [ 99 | "#@title 1-2.初期設定&関数定義\n", 100 | "\n", 101 | "#--- 初期設定 ---\n", 102 | "# the gpu ids\n", 103 | "gpu_ids = \"0\"\n", 104 | "\n", 105 | "# the image size\n", 106 | "image_size = 512\n", 107 | "\n", 108 | "# the default number of source images, it will be updated if the actual number of sources <= num_source\n", 109 | "num_source = 2\n", 110 | "\n", 111 | "# the assets directory. This is very important, please download it from `one_drive_url` firstly.\n", 112 | "assets_dir = \"/content/iPERCore/assets\"\n", 113 | "\n", 114 | "# the output directory.\n", 115 | "output_dir = \"./results\"\n", 116 | "\n", 117 | "# the model id of this case. This is a random model name.\n", 118 | "# model_id = \"model_\" + str(time.time())\n", 119 | "\n", 120 | "# # This is a specific model name, and it will be used if you do not change it.\n", 121 | "# model_id = \"axing_1\"\n", 122 | "\n", 123 | "# symlink from the actual assets directory to this current directory\n", 124 | "work_asserts_dir = os.path.join(\"./assets\")\n", 125 | "if not os.path.exists(work_asserts_dir):\n", 126 | " os.symlink(osp.abspath(assets_dir), osp.abspath(work_asserts_dir),\n", 127 | " target_is_directory=(platform.system() == \"Windows\"))\n", 128 | "\n", 129 | "cfg_path = osp.join(work_asserts_dir, \"configs\", \"deploy.toml\")\n", 130 | "\n", 131 | "\n", 132 | "#---関数定義---\n", 133 | "import matplotlib.pyplot as plt\n", 134 | "from PIL import Image\n", 135 | "import os\n", 136 | "import numpy as np\n", 137 | "import glob\n", 138 | "\n", 139 | "# 汎用画像ファイル表示\n", 140 | "def display_pic(folder):\n", 141 | " fig = plt.figure(figsize=(20, 20))\n", 142 | " files = os.listdir(folder)\n", 143 | " files.sort()\n", 144 | " for i, file in enumerate(files):\n", 145 | " if file == '.ipynb_checkpoints':\n", 146 | " continue\n", 147 | " if file == '.DS_Store':\n", 148 | " continue \n", 149 | " img = Image.open(folder+'/'+file) \n", 150 | " images = np.asarray(img)\n", 151 | " ax = fig.add_subplot(5, 5, i+1, xticks=[], yticks=[])\n", 152 | " image_plt = np.array(images)\n", 153 | " ax.imshow(image_plt)\n", 154 | " ax.set_xlabel(file, fontsize=20) \n", 155 | " plt.show()\n", 156 | " plt.close()\n", 157 | "\n", 158 | "# movie表示(専用画像使用)\n", 159 | "def display_movie(folder):\n", 160 | " fig = plt.figure(figsize=(20, 20))\n", 161 | " files = os.listdir(folder)\n", 162 | " files.sort()\n", 163 | " for i, file in enumerate(files):\n", 164 | " if file == '.ipynb_checkpoints':\n", 165 | " continue\n", 166 | " if file == '.DS_Store':\n", 167 | " continue \n", 168 | " img = Image.open(folder+'/'+file) \n", 169 | " images = np.asarray(img)\n", 170 | " ax = fig.add_subplot(5, 5, i+1, xticks=[], yticks=[])\n", 171 | " image_plt = np.array(images)\n", 172 | " ax.imshow(image_plt)\n", 173 | " ax.set_xlabel(file[:-4]+'.mp4', fontsize=20) \n", 174 | " plt.show()\n", 175 | " plt.close()\n", 176 | "\n", 177 | "# フォルダー名+ペア画像表示用サブ\n", 178 | "def display_pic_mini(folder):\n", 179 | " fig = plt.figure(figsize=(20, 20))\n", 180 | " files = os.listdir(folder)\n", 181 | " files.sort()\n", 182 | " for i, file in enumerate(files):\n", 183 | " if file == '.ipynb_checkpoints':\n", 184 | " continue\n", 185 | " if file == '.DS_Store':\n", 186 | " continue \n", 187 | " img = Image.open(folder+'/'+file) \n", 188 | " images = np.asarray(img)\n", 189 | " ax = fig.add_subplot(5, 5, i+1, xticks=[], yticks=[])\n", 190 | " image_plt = np.array(images)\n", 191 | " ax.imshow(image_plt)\n", 192 | " #ax.set_xlabel(file, fontsize=20) \n", 193 | " plt.show()\n", 194 | " plt.close()\n", 195 | "\n", 196 | "# フォルダー名+ペア画像表示用メイン\n", 197 | "def display_pic_double(folder):\n", 198 | " folders = glob.glob(os.path.join(folder,'*'))\n", 199 | " folders.sort()\n", 200 | " for folder in folders:\n", 201 | " print(folder[11:])\n", 202 | " display_pic_mini(folder)" 203 | ] 204 | }, 205 | { 206 | "cell_type": "markdown", 207 | "metadata": { 208 | "id": "_omzBcxz6ADw" 209 | }, 210 | "source": [ 211 | "![001.jpg]()" 212 | ] 213 | }, 214 | { 215 | "cell_type": "code", 216 | "execution_count": null, 217 | "metadata": { 218 | "id": "iPRpgw8oL2bc" 219 | }, 220 | "outputs": [], 221 | "source": [ 222 | "#@title 2.画像と動画の表示\n", 223 | "print('===== pic =====')\n", 224 | "display_pic('single/pic')\n", 225 | "\n", 226 | "print('===== movie =====')\n", 227 | "display_movie('single/pic_movie')" 228 | ] 229 | }, 230 | { 231 | "cell_type": "code", 232 | "execution_count": null, 233 | "metadata": { 234 | "id": "9mcgrtu1qkFL" 235 | }, 236 | "outputs": [], 237 | "source": [ 238 | "#@title 3.動画の生成(5〜10分かかります)\n", 239 | "from pathlib import Path\n", 240 | "pic = '04.jpg'#@param {type:\"string\"}\n", 241 | "movie = 'd1.mp4'#@param {type:\"string\"}\n", 242 | "pic_name = Path(pic).stem\n", 243 | "movie_name = Path(movie).stem\n", 244 | "\n", 245 | "# This is a specific model name, and it will be used if you do not change it. This is the case of `trump`\n", 246 | "#model_id = \"donald_trump_2\"\n", 247 | "model_id = \"test01\"\n", 248 | "\n", 249 | "# the source input information, here \\\" is escape character of double duote \"\n", 250 | "#src_path = \"\\\"path?=/content/iPERCore/assets/samples/sources/donald_trump_2/00000.PNG,name?=donald\\\"\"\n", 251 | "src_path = \"\\\"path?=/content/iPERCore/single/pic/\"+pic+\",name?=\"+pic_name+\"\\\"\"\n", 252 | "\n", 253 | "#ref_path = \"\\\"path?=/content/iPERCore/movie/d1.mp4,\" \\\n", 254 | "ref_path = \"\\\"path?=/content/iPERCore/single/movie/\"+movie+\",\" \\\n", 255 | " \"name?=\"+movie_name+\",\" \\\n", 256 | " \"pose_fc?=300\\\"\"\n", 257 | "\n", 258 | "print(ref_path)\n", 259 | "\n", 260 | "#!python -m iPERCore.services.run_imitator \\\n", 261 | "!python3.8 -m iPERCore.services.run_imitator \\\n", 262 | " --gpu_ids $gpu_ids \\\n", 263 | " --num_source $num_source \\\n", 264 | " --image_size $image_size \\\n", 265 | " --output_dir $output_dir \\\n", 266 | " --model_id $model_id \\\n", 267 | " --cfg_path $cfg_path \\\n", 268 | " --src_path $src_path \\\n", 269 | " --ref_path $ref_path" 270 | ] 271 | }, 272 | { 273 | "cell_type": "code", 274 | "execution_count": null, 275 | "metadata": { 276 | "cellView": "form", 277 | "colab": { 278 | "background_save": true 279 | }, 280 | "id": "xUaUmeJbrtOC" 281 | }, 282 | "outputs": [], 283 | "source": [ 284 | "#@title 4.動画の再生\n", 285 | "mp4 = open('results/primitives/'+pic_name+'/synthesis/imitations/'+pic_name+'-'+movie, 'rb').read()\n", 286 | "data_url = \"data:video/mp4;base64,\" + b64encode(mp4).decode()\n", 287 | "HTML(f\"\"\"\n", 288 | "\"\"\")" 291 | ] 292 | }, 293 | { 294 | "cell_type": "code", 295 | "execution_count": null, 296 | "metadata": { 297 | "cellView": "form", 298 | "id": "zqVA6Wwp2Has" 299 | }, 300 | "outputs": [], 301 | "source": [ 302 | "#@title 5.動画のダウンロード\n", 303 | "from google.colab import files\n", 304 | "files.download('results/primitives/'+pic_name+'/synthesis/imitations/'+pic_name+'-'+movie)" 305 | ] 306 | }, 307 | { 308 | "cell_type": "markdown", 309 | "metadata": { 310 | "id": "TqATbZ7151FC" 311 | }, 312 | "source": [ 313 | "![002.jpg]()" 314 | ] 315 | }, 316 | { 317 | "cell_type": "code", 318 | "execution_count": null, 319 | "metadata": { 320 | "cellView": "form", 321 | "id": "ylnUxfE7qlHO" 322 | }, 323 | "outputs": [], 324 | "source": [ 325 | "#@title 6.画像のアップロード\n", 326 | "import os\n", 327 | "import shutil\n", 328 | "from google.colab import files\n", 329 | "\n", 330 | "# ルートへ画像をアップロード\n", 331 | "uploaded = files.upload() \n", 332 | "uploaded = list(uploaded.keys()) \n", 333 | "\n", 334 | "# ルートからpicフォルダーへ移動\n", 335 | "for i in range(len(uploaded)):\n", 336 | " shutil.move(uploaded[i], './single/pic/'+uploaded[i])" 337 | ] 338 | }, 339 | { 340 | "cell_type": "code", 341 | "execution_count": null, 342 | "metadata": { 343 | "cellView": "form", 344 | "id": "uLF5hYM2sN9w" 345 | }, 346 | "outputs": [], 347 | "source": [ 348 | "#@title 7.画像と動画の表示\n", 349 | "print('===== pic =====')\n", 350 | "display_pic('single/pic')\n", 351 | "\n", 352 | "print('===== movie =====')\n", 353 | "display_movie('single/pic_movie')" 354 | ] 355 | }, 356 | { 357 | "cell_type": "code", 358 | "execution_count": null, 359 | "metadata": { 360 | "id": "Z9jqD67fsbqU" 361 | }, 362 | "outputs": [], 363 | "source": [ 364 | "#@title 8.動画の生成(5〜10分かかります)\n", 365 | "from pathlib import Path\n", 366 | "pic = '126.jpg'#@param {type:\"string\"}\n", 367 | "movie = 'd2.mp4'#@param {type:\"string\"}\n", 368 | "pic_name = Path(pic).stem\n", 369 | "movie_name = Path(movie).stem\n", 370 | "\n", 371 | "# This is a specific model name, and it will be used if you do not change it. This is the case of `trump`\n", 372 | "#model_id = \"donald_trump_2\"\n", 373 | "model_id = \"test01\"\n", 374 | "\n", 375 | "# the source input information, here \\\" is escape character of double duote \"\n", 376 | "#src_path = \"\\\"path?=/content/iPERCore/assets/samples/sources/donald_trump_2/00000.PNG,name?=donald\\\"\"\n", 377 | "src_path = \"\\\"path?=/content/iPERCore/single/pic/\"+pic+\",name?=\"+pic_name+\"\\\"\"\n", 378 | "\n", 379 | "#ref_path = \"\\\"path?=/content/iPERCore/movie/d1.mp4,\" \\\n", 380 | "ref_path = \"\\\"path?=/content/iPERCore/single/movie/\"+movie+\",\" \\\n", 381 | " \"name?=\"+movie_name+\",\" \\\n", 382 | " \"pose_fc?=300\\\"\"\n", 383 | "\n", 384 | "print(ref_path)\n", 385 | "\n", 386 | "!python3.8 -m iPERCore.services.run_imitator \\\n", 387 | " --gpu_ids $gpu_ids \\\n", 388 | " --num_source $num_source \\\n", 389 | " --image_size $image_size \\\n", 390 | " --output_dir $output_dir \\\n", 391 | " --model_id $model_id \\\n", 392 | " --cfg_path $cfg_path \\\n", 393 | " --src_path $src_path \\\n", 394 | " --ref_path $ref_path" 395 | ] 396 | }, 397 | { 398 | "cell_type": "code", 399 | "execution_count": null, 400 | "metadata": { 401 | "cellView": "form", 402 | "id": "WIGGsdBKsqUM" 403 | }, 404 | "outputs": [], 405 | "source": [ 406 | "#@title 9.動画の再生\n", 407 | "mp4 = open('results/primitives/'+pic_name+'/synthesis/imitations/'+pic_name+'-'+movie, 'rb').read()\n", 408 | "data_url = \"data:video/mp4;base64,\" + b64encode(mp4).decode()\n", 409 | "HTML(f\"\"\"\n", 410 | "\"\"\")" 413 | ] 414 | }, 415 | { 416 | "cell_type": "code", 417 | "execution_count": null, 418 | "metadata": { 419 | "cellView": "form", 420 | "id": "2p2uBg9Pswrf" 421 | }, 422 | "outputs": [], 423 | "source": [ 424 | "#@title 10.動画のダウンロード\n", 425 | "from google.colab import files\n", 426 | "files.download('results/primitives/'+pic_name+'/synthesis/imitations/'+pic_name+'-'+movie)" 427 | ] 428 | }, 429 | { 430 | "cell_type": "markdown", 431 | "metadata": { 432 | "id": "l7PZuUISa3S-" 433 | }, 434 | "source": [ 435 | "![003.jpg]()\n" 436 | ] 437 | }, 438 | { 439 | "cell_type": "code", 440 | "execution_count": null, 441 | "metadata": { 442 | "cellView": "form", 443 | "id": "dT9RXYUNWftz" 444 | }, 445 | "outputs": [], 446 | "source": [ 447 | "#@title 11.フォルダーと動画の表示\n", 448 | "print('===== folder =====')\n", 449 | "display_pic_double('double/pic')\n", 450 | "\n", 451 | "print('===== movie =====')\n", 452 | "display_movie('double/pic_movie')" 453 | ] 454 | }, 455 | { 456 | "cell_type": "code", 457 | "execution_count": null, 458 | "metadata": { 459 | "id": "8ZAAoSX1zM3b" 460 | }, 461 | "outputs": [], 462 | "source": [ 463 | "#@title 12.動画の生成(5〜10分かかります)\n", 464 | "from pathlib import Path\n", 465 | "folder = 'f01'#@param {type:\"string\"}\n", 466 | "movie = 'd01.mp4'#@param {type:\"string\"}\n", 467 | "movie_name = Path(movie).stem\n", 468 | "\n", 469 | "# This is a specific model name, and it will be used if you do not change it. This is the case of `trump`\n", 470 | "#model_id = \"axing_1\"\n", 471 | "model_id = \"test02\"\n", 472 | "\n", 473 | "# the source input information, here \\\" is escape character of double duote \"\n", 474 | "src_path = \"\\\"path?=/content/iPERCore/double/pic/\"+folder+\",name?=\"+folder+\"\\\"\"\n", 475 | "\n", 476 | "\n", 477 | "## the reference input information. There are three reference videos in this case.\n", 478 | "# here \\\" is escape character of double duote \"\n", 479 | "ref_path = \"\\\"path?=/content/iPERCore/double/movie/\"+movie+\",\" \\\n", 480 | " \"name?=\"+movie_name+\",\" \\\n", 481 | " \"pose_fc?=300\\\"\"\n", 482 | "\n", 483 | "print(ref_path)\n", 484 | "\n", 485 | "!python3.8 -m iPERCore.services.run_imitator \\\n", 486 | " --gpu_ids $gpu_ids \\\n", 487 | " --num_source $num_source \\\n", 488 | " --image_size $image_size \\\n", 489 | " --output_dir $output_dir \\\n", 490 | " --model_id $model_id \\\n", 491 | " --cfg_path $cfg_path \\\n", 492 | " --src_path $src_path \\\n", 493 | " --ref_path $ref_path" 494 | ] 495 | }, 496 | { 497 | "cell_type": "code", 498 | "execution_count": null, 499 | "metadata": { 500 | "cellView": "form", 501 | "id": "0zzxmdsvzz_o" 502 | }, 503 | "outputs": [], 504 | "source": [ 505 | "#@title 13.動画の再生\n", 506 | "mp4 = open(\"./results/primitives/\"+folder+\"/synthesis/imitations/\"+folder+\"-\"+movie, \"rb\").read()\n", 507 | "data_url = \"data:video/mp4;base64,\" + b64encode(mp4).decode()\n", 508 | "HTML(f\"\"\"\n", 509 | "\"\"\")" 512 | ] 513 | }, 514 | { 515 | "cell_type": "code", 516 | "execution_count": null, 517 | "metadata": { 518 | "cellView": "form", 519 | "id": "yHPx0n5YLBEC" 520 | }, 521 | "outputs": [], 522 | "source": [ 523 | "#@title 14.動画のダウンロード\n", 524 | "from google.colab import files\n", 525 | "files.download('results/primitives/'+folder+'/synthesis/imitations/'+folder+'-'+movie)" 526 | ] 527 | }, 528 | { 529 | "cell_type": "markdown", 530 | "metadata": { 531 | "id": "bQytTKnb6ey_" 532 | }, 533 | "source": [ 534 | "![004.jpg]()" 535 | ] 536 | }, 537 | { 538 | "cell_type": "code", 539 | "execution_count": null, 540 | "metadata": { 541 | "cellView": "form", 542 | "id": "b_mGU0BCFWLW" 543 | }, 544 | "outputs": [], 545 | "source": [ 546 | "#@title 15.前後画像のアップロード\n", 547 | "#@markdown ・前を向いた画像(000.jpg)と後ろを向いた画像(001.jpg)をペアでアップロードして下さい\n", 548 | "import os\n", 549 | "import shutil\n", 550 | "\n", 551 | "# フォルダ内のフォルダ数(ファイル数)をカウント\n", 552 | "# 但し、'.ipynb_checkpoints' はカウントしない\n", 553 | "def count_folder(path):\n", 554 | " folders = os.listdir(path)\n", 555 | " offset = 0 \n", 556 | " for folder in folders:\n", 557 | " if folder == '.ipynb_checkpoints':\n", 558 | " offset = 1\n", 559 | " num = len(os.listdir(path))-offset\n", 560 | " return num\n", 561 | "\n", 562 | "# ファイル数が2でないフォルダは削除\n", 563 | "folders = os.listdir('double/pic')\n", 564 | "for folder in folders:\n", 565 | " num = count_folder('double/pic/'+folder) # ファイル数カウント \n", 566 | " if num != 2: \n", 567 | " shutil.rmtree('double/pic/'+folder) # 削除\n", 568 | "\n", 569 | "# 新規フォルダの作成\n", 570 | "number = count_folder('double/pic') # フォルダ数カウント\n", 571 | "folder_path = 'double/pic/f'+str(number+1).zfill(2) # フォルダ名設定\n", 572 | "os.makedirs(folder_path, exist_ok=True)\n", 573 | "\n", 574 | "# 画像をルートへアップロード\n", 575 | "from google.colab import files\n", 576 | "uploaded = files.upload() \n", 577 | "uploaded = list(uploaded.keys()) \n", 578 | "\n", 579 | "# ルートから新規フォルダへ移動\n", 580 | "for i in range(len(uploaded)):\n", 581 | " shutil.move(uploaded[i], folder_path+'/'+uploaded[i])" 582 | ] 583 | }, 584 | { 585 | "cell_type": "code", 586 | "execution_count": null, 587 | "metadata": { 588 | "cellView": "form", 589 | "id": "kkEbSlgu0x1Y" 590 | }, 591 | "outputs": [], 592 | "source": [ 593 | "#@title 16.フォルダーと動画の表示\n", 594 | "print('===== folder =====')\n", 595 | "display_pic_double('double/pic')\n", 596 | "\n", 597 | "print('===== movie =====')\n", 598 | "display_movie('double/pic_movie')" 599 | ] 600 | }, 601 | { 602 | "cell_type": "code", 603 | "execution_count": null, 604 | "metadata": { 605 | "id": "2ge4pssC01hR" 606 | }, 607 | "outputs": [], 608 | "source": [ 609 | "#@title 17.動画の生成(5〜10分かかります)\n", 610 | "from pathlib import Path\n", 611 | "folder = ''#@param {type:\"string\"}\n", 612 | "movie = ''#@param {type:\"string\"}\n", 613 | "movie_name = Path(movie).stem\n", 614 | "\n", 615 | "# This is a specific model name, and it will be used if you do not change it. This is the case of `trump`\n", 616 | "#model_id = \"axing_1\"\n", 617 | "model_id = \"test02\"\n", 618 | "\n", 619 | "# the source input information, here \\\" is escape character of double duote \"\n", 620 | "src_path = \"\\\"path?=/content/iPERCore/double/pic/\"+folder+\",name?=\"+folder+\"\\\"\"\n", 621 | "\n", 622 | "\n", 623 | "## the reference input information. There are three reference videos in this case.\n", 624 | "# here \\\" is escape character of double duote \"\n", 625 | "ref_path = \"\\\"path?=/content/iPERCore/double/movie/\"+movie+\",\" \\\n", 626 | " \"name?=\"+movie_name+\",\" \\\n", 627 | " \"pose_fc?=300\\\"\"\n", 628 | "\n", 629 | "print(ref_path)\n", 630 | "\n", 631 | "!python3.8 -m iPERCore.services.run_imitator \\\n", 632 | " --gpu_ids $gpu_ids \\\n", 633 | " --num_source $num_source \\\n", 634 | " --image_size $image_size \\\n", 635 | " --output_dir $output_dir \\\n", 636 | " --model_id $model_id \\\n", 637 | " --cfg_path $cfg_path \\\n", 638 | " --src_path $src_path \\\n", 639 | " --ref_path $ref_path" 640 | ] 641 | }, 642 | { 643 | "cell_type": "code", 644 | "execution_count": null, 645 | "metadata": { 646 | "cellView": "form", 647 | "id": "vRoCYIid01o_" 648 | }, 649 | "outputs": [], 650 | "source": [ 651 | "#@title 18.動画の再生\n", 652 | "mp4 = open(\"./results/primitives/\"+folder+\"/synthesis/imitations/\"+folder+\"-\"+movie, \"rb\").read()\n", 653 | "data_url = \"data:video/mp4;base64,\" + b64encode(mp4).decode()\n", 654 | "HTML(f\"\"\"\n", 655 | "\"\"\")" 658 | ] 659 | }, 660 | { 661 | "cell_type": "code", 662 | "execution_count": null, 663 | "metadata": { 664 | "cellView": "form", 665 | "id": "RrMHTdd_1DLj" 666 | }, 667 | "outputs": [], 668 | "source": [ 669 | "#@title 19.動画のダウンロード\n", 670 | "from google.colab import files\n", 671 | "files.download('results/primitives/'+folder+'/synthesis/imitations/'+folder+'-'+movie)" 672 | ] 673 | }, 674 | { 675 | "cell_type": "markdown", 676 | "metadata": { 677 | "id": "oc5AM9tBgk9c" 678 | }, 679 | "source": [ 680 | "###【備考】\n", 681 | "・動作がおかしくなった場合は、右上にある「ランタイム/ランタイムを出荷時設定にリセット」をクリックして、再度1番から順番に操作を行います。\n", 682 | "\n", 683 | "・このノートを実行して閉じてから、すぐ再度実行する場合は、前の記憶が不完全に残っていて上手く動かないことがあります。その場合は、右上にある「ランタイム/ランタイムを出荷時設定にリセット」をクリックして、再度1番から操作を行います。\n", 684 | "\n", 685 | "・長時間使用するとgoogleから使用制限を受ける場合がありますが、12h〜24h程度経つと使用制限が解除されます。" 686 | ] 687 | } 688 | ], 689 | "metadata": { 690 | "accelerator": "GPU", 691 | "colab": { 692 | "provenance": [], 693 | "include_colab_link": true 694 | }, 695 | "kernelspec": { 696 | "display_name": "Python 3", 697 | "name": "python3" 698 | } 699 | }, 700 | "nbformat": 4, 701 | "nbformat_minor": 0 702 | } --------------------------------------------------------------------------------