├── templates
├── template.footer.html
├── style.docx
├── requirements-proposal.docx
├── template.header.html
├── template.docx
├── no-sectionnumbers.lua
└── pagebreak.lua
├── glossary
├── lut.yaml
├── vis.yaml
├── ar.yaml
├── nir.yaml
├── slc.yaml
├── dem.yaml
├── dsm.yaml
├── ecr.yaml
├── orb.yaml
├── pol.yaml
├── rmse.yaml
├── sar.yaml
├── sr.yaml
├── st.yaml
├── tir.yaml
├── ale.yaml
├── crs.yaml
├── ecef.yaml
├── egm.yaml
├── enl.yaml
├── gis.yaml
├── insar.yaml
├── lst.yaml
├── mtf.yaml
├── swir.yaml
├── ups.yaml
├── utc.yaml
├── utm.yaml
├── doi.yaml
├── nrb.yaml
├── rrmse.yaml
├── stac.yaml
├── wgs84.yaml
├── atbd.yaml
├── gslc.yaml
├── islr.yaml
├── nlsr.yaml
├── prd.yaml
├── rtc.yaml
├── sbt.yaml
├── pslr.yaml
├── covmat.yaml
├── pixel-spacing.yaml
├── ceos-ard.yaml
├── spatial-resolution.yaml
├── cep.yaml
├── spectral-resolution.yaml
├── si.yaml
├── url.yaml
├── epsg-code.yaml
├── spectral-sampling-distance.yaml
├── spatial-sampling-distance.yaml
├── metadata.yaml
├── auxiliary-data.yaml
├── ancillary-data.yaml
└── wkt.yaml
├── .github
├── ISSUE_TEMPLATE
│ ├── config.yml
│ ├── z-other.md
│ ├── all-pfs.md
│ ├── sar-all.yml
│ ├── optical-all.yml
│ ├── sar-pol.yml
│ ├── optical-st.yml
│ ├── sar-orb.yml
│ ├── sar-nrb.yml
│ ├── optical-ar.yml
│ ├── sar-glsc.yml
│ ├── optical-sr.yml
│ └── optical-nlsr.yml
├── CODEOWNERS
└── workflows
│ └── ci.yaml
├── CEOS-ARD Strategy 2021.pdf
├── assets
├── CEOS_ARD_Logo_for_PFS.png
├── sar-gslc-example
│ ├── S1-GSLC1.jpeg
│ ├── S1-GSLC2.jpeg
│ ├── S1-GSLC-x-component.png
│ ├── S1-GSLC-y-component.png
│ ├── S1-GSLC-z-component.png
│ ├── S1-InSAR-coherence.png
│ └── S1-InSAR-differential-phase.png
├── sar-orb-examples
│ ├── S1-ORB-VH.png
│ ├── S1-ORB-VV.png
│ ├── S1-ORB-data-mask.png
│ ├── S1-ORB-sigma-nought.png
│ ├── S1-ORB-intesity-compensated.png
│ └── S1-ORB-local-indicident-angle.png
├── CEOS_logo_colour_black_text_right.png
└── sar-pol-examples
│ ├── pol-decomposition.jpeg
│ └── m-chi-decomposition.jpeg
├── CEOS-ARD Governance Framework 2021.pdf
├── CEOS-ARD Self-Assessment Guide 2023.pdf
├── sections
├── annexes
│ ├── st-metadata-examples.yaml
│ ├── sar-topographic-phase-removal.yaml
│ ├── sar-pol-examples.yaml
│ ├── sar-pol-covmat.yaml
│ ├── sar-orb-example.yaml
│ ├── sar-gslc-example.yaml
│ ├── sar-pol-prd.yaml
│ ├── sar-general-processing-roadmap.yaml
│ ├── sar-orb-example.md
│ ├── sar-pol-examples.md
│ ├── sar-pol-prd.md
│ ├── sar-gslc-example.md
│ ├── sar-general-processing-roadmap.md
│ └── sar-pol-covmat.md
├── requirement-categories
│ ├── product-metadata.yaml
│ ├── source-metadata.yaml
│ ├── general-metadata.yaml
│ ├── radiometric-atmospheric-corrections.yaml
│ ├── geometric-corrections.yaml
│ ├── per-pixel-metadata.yaml
│ └── radiometrically-corrected-measurements.yaml
└── introduction
│ ├── when-is-a-product-ceos-ard.yaml
│ ├── what-are-ceos-ard-products.yaml
│ └── difference-threshold-goal.yaml
├── .gitignore
├── requirements
├── cloud-optimized-formats.yaml
├── empty.yaml
├── metadata
│ ├── crs-st.yaml
│ ├── pfs-url.yaml
│ ├── acquisition-id.yaml
│ ├── enl.yaml
│ ├── product-type-sar.yaml
│ ├── map-projection.yaml
│ ├── data-access-st.yaml
│ ├── mean-faraday-rotation-angle.yaml
│ ├── polarimetric-calibration-matrices.yaml
│ ├── sensor-calibration.yaml
│ ├── radiometric-accuracy.yaml
│ ├── time-source.yaml
│ ├── machine-readability-st2.yaml
│ ├── pol-filtering.yaml
│ ├── license.yaml
│ ├── slant-range.yaml
│ ├── resolution.yaml
│ ├── auxiliary-data.yaml
│ ├── data-quality.yaml
│ ├── sample-spacing.yaml
│ ├── instrument-st.yaml
│ ├── instrument.yaml
│ ├── traceability.yaml
│ ├── traceability-sar.yaml
│ ├── geometric-correction-methods.yaml
│ ├── time-st.yaml
│ ├── acquisition-parameters-sar.yaml
│ ├── processing-chain-prov.yaml
│ ├── scaling-conversion.yaml
│ ├── pixel-coordinate-convention.yaml
│ ├── product-type.yaml
│ ├── machine-readability-st.yaml
│ ├── crs.yaml
│ ├── data-access-source.yaml
│ ├── radiometric-accuracy-st.yaml
│ ├── sensor-calibration-st.yaml
│ ├── geo-area.yaml
│ ├── geo-bbox.yaml
│ ├── noise-removal.yaml
│ ├── ionosphere-indicator.yaml
│ ├── radar-unit-look-vector.yaml
│ ├── time.yaml
│ ├── geo-area-st.yaml
│ ├── auxiliary-data-st.yaml
│ ├── geometric-accuracy.yaml
│ ├── orbit-reference-nrb-pol.yaml
│ ├── algorithms.yaml
│ ├── machine-readability.yaml
│ ├── data-access-product.yaml
│ ├── spectral-bands.yaml
│ ├── processing-parameters.yaml
│ ├── image-size.yaml
│ ├── image-attributes-sar.yaml
│ ├── orbit-reference-gslc.yaml
│ ├── speckle-filtering.yaml
│ ├── geometric-correction-algorithm.yaml
│ ├── traceability-st.yaml
│ ├── orbit.yaml
│ ├── performance-indicators.yaml
│ ├── speckle-filtering-pol.yaml
│ └── look-direction-polynomials.yaml
├── per-pixel
│ ├── nodata.yaml
│ ├── snow-ice.yaml
│ ├── saturation.yaml
│ ├── cloud.yaml
│ ├── cloud-shadow.yaml
│ ├── solar-view-angles.yaml
│ ├── incomplete-testing.yaml
│ ├── atmospheric-phase-correction.yaml
│ ├── ionospheric-phase-correction.yaml
│ ├── slant-range.yaml
│ ├── look-direction.yaml
│ ├── gamma-sigma-ratio.yaml
│ ├── noise-power.yaml
│ ├── geoid.yaml
│ ├── local-incident-angle.yaml
│ ├── radar-unit-look-vector-grid.yaml
│ ├── ellipsoidal-incident-angle.yaml
│ ├── insar-phase-uncertainty.yaml
│ ├── scattering-area.yaml
│ ├── dem.yaml
│ ├── data-mask.yaml
│ └── acquisition-id.yaml
├── corrections
│ ├── atmosphere-emissivity.yaml
│ ├── geometric-refined-accuracy.yaml
│ ├── dem.yaml
│ ├── radiometric-terrain-algo.yaml
│ ├── radiometric-terrain-algo-gslc.yaml
│ ├── gridding-convention.yaml
│ ├── geometric.yaml
│ └── geometric-accuracy-radar.yaml
├── example.yaml
├── measurements
│ ├── measurement-st.yaml
│ ├── uncertainty-st.yaml
│ ├── uncertainty.yaml
│ ├── backscatter-nrb.yaml
│ ├── backscatter-gslc.yaml
│ ├── mean-wind-normalised-backscatter.yaml
│ ├── backscatter-orb.yaml
│ ├── flattened-phase.yaml
│ └── backscatter-pol.yaml
└── README.md
├── pfs
├── ST
│ ├── authors.yaml
│ ├── requirements.yaml
│ └── document.yaml
├── NLSR
│ ├── authors.yaml
│ ├── requirements.yaml
│ └── document.yaml
├── SR
│ ├── authors.yaml
│ ├── document.yaml
│ └── requirements.yaml
├── SAR-ORB
│ ├── document.yaml
│ ├── requirements.yaml
│ └── authors.yaml
├── SAR-NRB
│ ├── document.yaml
│ ├── requirements.yaml
│ └── authors.yaml
├── SAR-GSLC
│ ├── document.yaml
│ ├── requirements.yaml
│ └── authors.yaml
└── SAR-POL
│ ├── requirements.yaml
│ ├── authors.yaml
│ └── document.yaml
├── references
├── krogager1993.bib
├── zebker2017.bib
├── freeman1998.bib
├── gens2013.bib
├── vachon2000.bib
├── mills2014.bib
├── quilfen1998.bib
├── raney2012.bib
├── iso19115_2_2009.bib
├── toutin2013.bib
├── zheng2017.bib
├── yamaguchi2011.bib
├── small2011.bib
├── cloude1996.bib
├── cameron1996.bib
├── wang2021.bib
├── cook2014.bib
├── li2012.bib
├── li2013.bib
├── ryan2019.bib
├── zebker2010.bib
├── lee2009.bib
├── shiroma2022.bib
└── roman2018.bib
└── CONTRIBUTING.md
/templates/template.footer.html:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/glossary/lut.yaml:
--------------------------------------------------------------------------------
1 | term: LUT
2 | description: Look-Up Table
--------------------------------------------------------------------------------
/glossary/vis.yaml:
--------------------------------------------------------------------------------
1 | term: VIS
2 | description: Visible
3 |
--------------------------------------------------------------------------------
/.github/ISSUE_TEMPLATE/config.yml:
--------------------------------------------------------------------------------
1 | blank_issues_enabled: false
--------------------------------------------------------------------------------
/glossary/ar.yaml:
--------------------------------------------------------------------------------
1 | term: AR
2 | description: Aquatic Reflectance
--------------------------------------------------------------------------------
/glossary/nir.yaml:
--------------------------------------------------------------------------------
1 | term: NIR
2 | description: Near Infrared
3 |
--------------------------------------------------------------------------------
/glossary/slc.yaml:
--------------------------------------------------------------------------------
1 | term: SLC
2 | description: Single-Look Complex
--------------------------------------------------------------------------------
/glossary/dem.yaml:
--------------------------------------------------------------------------------
1 | term: DEM
2 | description: Digital Elevation Model
--------------------------------------------------------------------------------
/glossary/dsm.yaml:
--------------------------------------------------------------------------------
1 | term: DSM
2 | description: Digital Surface Model
--------------------------------------------------------------------------------
/glossary/ecr.yaml:
--------------------------------------------------------------------------------
1 | term: ECR
2 | description: Earth-Centred Rotating
--------------------------------------------------------------------------------
/glossary/orb.yaml:
--------------------------------------------------------------------------------
1 | term: ORB
2 | description: Ocean Radar Backscatter
--------------------------------------------------------------------------------
/glossary/pol.yaml:
--------------------------------------------------------------------------------
1 | term: POL
2 | description: Polarimetric Radar
3 |
--------------------------------------------------------------------------------
/glossary/rmse.yaml:
--------------------------------------------------------------------------------
1 | term: RMSE
2 | description: Root Mean Square Error
--------------------------------------------------------------------------------
/glossary/sar.yaml:
--------------------------------------------------------------------------------
1 | term: SAR
2 | description: Synthetic Aperture Radar
--------------------------------------------------------------------------------
/glossary/sr.yaml:
--------------------------------------------------------------------------------
1 | term: SR
2 | description: Surface Reflectance
3 |
--------------------------------------------------------------------------------
/glossary/st.yaml:
--------------------------------------------------------------------------------
1 | term: ST
2 | description: Surface Temperature
3 |
--------------------------------------------------------------------------------
/glossary/tir.yaml:
--------------------------------------------------------------------------------
1 | term: TIR
2 | description: Thermal Infrared
3 |
--------------------------------------------------------------------------------
/glossary/ale.yaml:
--------------------------------------------------------------------------------
1 | term: ALE
2 | description: Absolute Geolocation Error
--------------------------------------------------------------------------------
/glossary/crs.yaml:
--------------------------------------------------------------------------------
1 | term: CRS
2 | description: Coordinate Reference System
--------------------------------------------------------------------------------
/glossary/ecef.yaml:
--------------------------------------------------------------------------------
1 | term: ECEF
2 | description: Earth-Centred Earth-Fixed
--------------------------------------------------------------------------------
/glossary/egm.yaml:
--------------------------------------------------------------------------------
1 | term: EGM
2 | description: Earth Gravitational Model
--------------------------------------------------------------------------------
/glossary/enl.yaml:
--------------------------------------------------------------------------------
1 | term: ENL
2 | description: Equivalent Number of Looks
--------------------------------------------------------------------------------
/glossary/gis.yaml:
--------------------------------------------------------------------------------
1 | term: GIS
2 | description: Geographic Information System
--------------------------------------------------------------------------------
/glossary/insar.yaml:
--------------------------------------------------------------------------------
1 | term: InSAR
2 | description: Interferometric Radar
--------------------------------------------------------------------------------
/glossary/lst.yaml:
--------------------------------------------------------------------------------
1 | term: LST
2 | description: Land Surface Temperature
3 |
--------------------------------------------------------------------------------
/glossary/mtf.yaml:
--------------------------------------------------------------------------------
1 | term: MTF
2 | description: Modulation Transfer Function
--------------------------------------------------------------------------------
/glossary/swir.yaml:
--------------------------------------------------------------------------------
1 | term: SWIR
2 | description: Shortwave Infrared
3 |
--------------------------------------------------------------------------------
/glossary/ups.yaml:
--------------------------------------------------------------------------------
1 | term: UPS
2 | description: Universal Polar Stereographic
--------------------------------------------------------------------------------
/glossary/utc.yaml:
--------------------------------------------------------------------------------
1 | term: UTC
2 | description: Coordinated Universal Time
--------------------------------------------------------------------------------
/glossary/utm.yaml:
--------------------------------------------------------------------------------
1 | term: UTM
2 | description: Universal Transverse Mercator
--------------------------------------------------------------------------------
/glossary/doi.yaml:
--------------------------------------------------------------------------------
1 | term: DOI
2 | description: Digital Object Identifier
3 |
--------------------------------------------------------------------------------
/glossary/nrb.yaml:
--------------------------------------------------------------------------------
1 | term: NRB
2 | description: Normalised Radar Backscatter
3 |
--------------------------------------------------------------------------------
/glossary/rrmse.yaml:
--------------------------------------------------------------------------------
1 | term: rRMSE
2 | description: Radial Root Mean Square Error
--------------------------------------------------------------------------------
/glossary/stac.yaml:
--------------------------------------------------------------------------------
1 | term: STAC
2 | description: SpatioTemporal Asset Catalog
--------------------------------------------------------------------------------
/glossary/wgs84.yaml:
--------------------------------------------------------------------------------
1 | term: WGS84
2 | description: World Geodetic System 1984
--------------------------------------------------------------------------------
/glossary/atbd.yaml:
--------------------------------------------------------------------------------
1 | term: ATBD
2 | description: Algorithm Theoretical Basis Document
--------------------------------------------------------------------------------
/glossary/gslc.yaml:
--------------------------------------------------------------------------------
1 | term: GSLC
2 | description: Geocoded Single-Look Complex
3 |
--------------------------------------------------------------------------------
/glossary/islr.yaml:
--------------------------------------------------------------------------------
1 | term: ISLR
2 | description: Intensity Signal-to-Noise Level Ratio
--------------------------------------------------------------------------------
/glossary/nlsr.yaml:
--------------------------------------------------------------------------------
1 | term: NLSR
2 | description: Nighttime Light Surface Radiance
3 |
--------------------------------------------------------------------------------
/glossary/prd.yaml:
--------------------------------------------------------------------------------
1 | term: PRD
2 | description: Polarimetric Radar Decomposition
3 |
--------------------------------------------------------------------------------
/glossary/rtc.yaml:
--------------------------------------------------------------------------------
1 | term: RTC
2 | description: Radiometrically Terrain Corrected
3 |
--------------------------------------------------------------------------------
/glossary/sbt.yaml:
--------------------------------------------------------------------------------
1 | term: SBT
2 | description: Surface Brightness Temperature
3 |
--------------------------------------------------------------------------------
/glossary/pslr.yaml:
--------------------------------------------------------------------------------
1 | term: PSLR
2 | description: Polarimetric Signal-to-Noise Level Ratio
--------------------------------------------------------------------------------
/glossary/covmat.yaml:
--------------------------------------------------------------------------------
1 | term: CovMat
2 | description: Normalised Radar Covariance Matrix
3 |
--------------------------------------------------------------------------------
/glossary/pixel-spacing.yaml:
--------------------------------------------------------------------------------
1 | term: Pixel Spacing
2 | description: Processed sample distance
--------------------------------------------------------------------------------
/templates/style.docx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ceos-org/ceos-ard/HEAD/templates/style.docx
--------------------------------------------------------------------------------
/.github/CODEOWNERS:
--------------------------------------------------------------------------------
1 | /.github/ @m-mohr
2 | /templates/ @m-mohr
3 | /pfs/SAR-* @akerosenqvist
4 |
--------------------------------------------------------------------------------
/CEOS-ARD Strategy 2021.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ceos-org/ceos-ard/HEAD/CEOS-ARD Strategy 2021.pdf
--------------------------------------------------------------------------------
/assets/CEOS_ARD_Logo_for_PFS.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ceos-org/ceos-ard/HEAD/assets/CEOS_ARD_Logo_for_PFS.png
--------------------------------------------------------------------------------
/glossary/ceos-ard.yaml:
--------------------------------------------------------------------------------
1 | term: CEOS-ARD
2 | description: Committee on Earth Observation Satellites - Analysis Ready Data
3 |
--------------------------------------------------------------------------------
/assets/sar-gslc-example/S1-GSLC1.jpeg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ceos-org/ceos-ard/HEAD/assets/sar-gslc-example/S1-GSLC1.jpeg
--------------------------------------------------------------------------------
/assets/sar-gslc-example/S1-GSLC2.jpeg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ceos-org/ceos-ard/HEAD/assets/sar-gslc-example/S1-GSLC2.jpeg
--------------------------------------------------------------------------------
/assets/sar-orb-examples/S1-ORB-VH.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ceos-org/ceos-ard/HEAD/assets/sar-orb-examples/S1-ORB-VH.png
--------------------------------------------------------------------------------
/assets/sar-orb-examples/S1-ORB-VV.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ceos-org/ceos-ard/HEAD/assets/sar-orb-examples/S1-ORB-VV.png
--------------------------------------------------------------------------------
/templates/requirements-proposal.docx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ceos-org/ceos-ard/HEAD/templates/requirements-proposal.docx
--------------------------------------------------------------------------------
/CEOS-ARD Governance Framework 2021.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ceos-org/ceos-ard/HEAD/CEOS-ARD Governance Framework 2021.pdf
--------------------------------------------------------------------------------
/CEOS-ARD Self-Assessment Guide 2023.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ceos-org/ceos-ard/HEAD/CEOS-ARD Self-Assessment Guide 2023.pdf
--------------------------------------------------------------------------------
/glossary/spatial-resolution.yaml:
--------------------------------------------------------------------------------
1 | term: Spatial Resolution
2 | description: The highest magnification of the sensor at the ground surface.
--------------------------------------------------------------------------------
/assets/CEOS_logo_colour_black_text_right.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ceos-org/ceos-ard/HEAD/assets/CEOS_logo_colour_black_text_right.png
--------------------------------------------------------------------------------
/assets/sar-orb-examples/S1-ORB-data-mask.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ceos-org/ceos-ard/HEAD/assets/sar-orb-examples/S1-ORB-data-mask.png
--------------------------------------------------------------------------------
/assets/sar-gslc-example/S1-GSLC-x-component.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ceos-org/ceos-ard/HEAD/assets/sar-gslc-example/S1-GSLC-x-component.png
--------------------------------------------------------------------------------
/assets/sar-gslc-example/S1-GSLC-y-component.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ceos-org/ceos-ard/HEAD/assets/sar-gslc-example/S1-GSLC-y-component.png
--------------------------------------------------------------------------------
/assets/sar-gslc-example/S1-GSLC-z-component.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ceos-org/ceos-ard/HEAD/assets/sar-gslc-example/S1-GSLC-z-component.png
--------------------------------------------------------------------------------
/assets/sar-gslc-example/S1-InSAR-coherence.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ceos-org/ceos-ard/HEAD/assets/sar-gslc-example/S1-InSAR-coherence.png
--------------------------------------------------------------------------------
/assets/sar-orb-examples/S1-ORB-sigma-nought.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ceos-org/ceos-ard/HEAD/assets/sar-orb-examples/S1-ORB-sigma-nought.png
--------------------------------------------------------------------------------
/assets/sar-pol-examples/pol-decomposition.jpeg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ceos-org/ceos-ard/HEAD/assets/sar-pol-examples/pol-decomposition.jpeg
--------------------------------------------------------------------------------
/assets/sar-pol-examples/m-chi-decomposition.jpeg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ceos-org/ceos-ard/HEAD/assets/sar-pol-examples/m-chi-decomposition.jpeg
--------------------------------------------------------------------------------
/glossary/cep.yaml:
--------------------------------------------------------------------------------
1 | term: CEP
2 | description: |-
3 | Circular Error Probability, often provided with an additional percentage (e.g. CEP90 for 90% probability)
--------------------------------------------------------------------------------
/glossary/spectral-resolution.yaml:
--------------------------------------------------------------------------------
1 | term: Spectral Resolution
2 | description: Defines the narrowest spectral feature that can be resolved by a spectrometer.
--------------------------------------------------------------------------------
/assets/sar-gslc-example/S1-InSAR-differential-phase.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ceos-org/ceos-ard/HEAD/assets/sar-gslc-example/S1-InSAR-differential-phase.png
--------------------------------------------------------------------------------
/assets/sar-orb-examples/S1-ORB-intesity-compensated.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ceos-org/ceos-ard/HEAD/assets/sar-orb-examples/S1-ORB-intesity-compensated.png
--------------------------------------------------------------------------------
/assets/sar-orb-examples/S1-ORB-local-indicident-angle.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ceos-org/ceos-ard/HEAD/assets/sar-orb-examples/S1-ORB-local-indicident-angle.png
--------------------------------------------------------------------------------
/glossary/si.yaml:
--------------------------------------------------------------------------------
1 | term: SI
2 | description: |-
3 | International System of Units, internationally known by the abbreviation SI (from French Système international d'unités)
--------------------------------------------------------------------------------
/sections/annexes/st-metadata-examples.yaml:
--------------------------------------------------------------------------------
1 | title: CEOS-ARD Requirement Examples (Surface Temperature)
2 | description: include:st-metadata-examples
3 | glossary:
4 | references:
5 |
--------------------------------------------------------------------------------
/glossary/url.yaml:
--------------------------------------------------------------------------------
1 | term: URL
2 | description: Uniform Resource Locator, a reference to a web resource that specifies its location on a computer network and a mechanism for retrieving it.
--------------------------------------------------------------------------------
/.github/ISSUE_TEMPLATE/z-other.md:
--------------------------------------------------------------------------------
1 | ---
2 | name: Other Issues or Proposals
3 | about: All other issues or proposals should be reported here.
4 | labels:
5 | - needs discussion
6 |
7 | ---
8 |
--------------------------------------------------------------------------------
/sections/annexes/sar-topographic-phase-removal.yaml:
--------------------------------------------------------------------------------
1 | title: Topographic phase removal
2 | description: include:sar-topographic-phase-removal
3 | glossary:
4 | references:
5 | - zebker2010
6 |
--------------------------------------------------------------------------------
/sections/annexes/sar-pol-examples.yaml:
--------------------------------------------------------------------------------
1 | title: Polarimetric Radar Decomposition Product Examples
2 | description: include:sar-pol-examples
3 | glossary:
4 | - prd
5 | - dem
6 | references:
7 |
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | package-lock.json
2 | node_modules/
3 |
4 | .DS_Store
5 | Thumbs.db
6 |
7 | /NLSR.*
8 | /SAR-GSLC.*
9 | /SAR-NRB.*
10 | /SAR-ORB.*
11 | /SAR-POL.*
12 | /SR.*
13 | /ST.*
14 | /build*
15 |
--------------------------------------------------------------------------------
/sections/annexes/sar-pol-covmat.yaml:
--------------------------------------------------------------------------------
1 | title: Normalised Covariance Matrices (CovMat)
2 | description: include:sar-pol-covmat
3 | glossary:
4 | - covmat
5 | references:
6 | - yamaguchi2011
7 | - raney2012
--------------------------------------------------------------------------------
/glossary/epsg-code.yaml:
--------------------------------------------------------------------------------
1 | term: EPSG Code
2 | description: |-
3 | An EPSG code is a unique identifier assigned to e.g. a specific coordinate reference system (CRS) by the European Petroleum Survey Group (EPSG).
--------------------------------------------------------------------------------
/glossary/spectral-sampling-distance.yaml:
--------------------------------------------------------------------------------
1 | term: Spectral Sampling Distance
2 | description: |-
3 | Spectral sampling is the interval, in wavelength units, between discrete data points in the measured spectrum.
4 |
--------------------------------------------------------------------------------
/glossary/spatial-sampling-distance.yaml:
--------------------------------------------------------------------------------
1 | term: Spatial Sampling Distance
2 | description: |-
3 | Spatial sampling distance is the barycentre-to-barycentre distance between adjacent spatial samples on the Earth's surface.
4 |
--------------------------------------------------------------------------------
/sections/annexes/sar-orb-example.yaml:
--------------------------------------------------------------------------------
1 | title: Ocean Radar Backscatter example
2 | description: include:sar-orb-example
3 | glossary:
4 | - orb
5 | - pol
6 | - nrb
7 | references:
8 | - quilfen1998
9 | - vachon2000
10 |
--------------------------------------------------------------------------------
/sections/requirement-categories/product-metadata.yaml:
--------------------------------------------------------------------------------
1 | id: prd
2 | title: Product Metadata
3 | description: |-
4 | Information related to the CEOS-ARD product generation procedure and geographic parameters.
5 | glossary:
6 | references:
7 |
--------------------------------------------------------------------------------
/sections/annexes/sar-gslc-example.yaml:
--------------------------------------------------------------------------------
1 | title: Geocoded Single-Look Complex example
2 | description: include:sar-gslc-example
3 | glossary:
4 | - gslc
5 | - nrb
6 | - pol
7 | - insar
8 | references:
9 | - zebker2010
10 | - zebker2017
--------------------------------------------------------------------------------
/templates/template.header.html:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
--------------------------------------------------------------------------------
/requirements/cloud-optimized-formats.yaml:
--------------------------------------------------------------------------------
1 | title: Cloud Optimized Formats
2 | description:
3 | threshold: null
4 | goal:
5 | description: |-
6 | All files are provided using cloud-optimized file formats.
7 | dependencies:
8 | glossary:
9 | references:
10 |
--------------------------------------------------------------------------------
/requirements/empty.yaml:
--------------------------------------------------------------------------------
1 | title:
2 | description:
3 | threshold:
4 | description: |-
5 |
6 | notes:
7 | goal:
8 | description: |-
9 |
10 | notes:
11 | dependencies:
12 | glossary:
13 | references:
14 | metadata:
15 | legacy:
16 | sar:
17 | optical:
18 |
--------------------------------------------------------------------------------
/glossary/metadata.yaml:
--------------------------------------------------------------------------------
1 | term: Metadata
2 | description: |-
3 | Structured information that describes other information or information services. With well-defined metadata, users should be able to get basic information about data, without the need to have knowledge about its entire content.
4 |
--------------------------------------------------------------------------------
/pfs/ST/authors.yaml:
--------------------------------------------------------------------------------
1 | - name: Geoscience Australia
2 | country: Australia
3 | members:
4 | - Adam Lewis
5 | - Jonathon Ross
6 | - Andreia Siqueira
7 | - name: USGS
8 | country: USA
9 | members:
10 | - Darcie Bontje
11 | - Steve Labahn
12 | - Mary Metzger
13 |
--------------------------------------------------------------------------------
/sections/annexes/sar-pol-prd.yaml:
--------------------------------------------------------------------------------
1 | title: Polarimetric Radar Decomposition (PRD)
2 | description: include:sar-pol-prd
3 | glossary:
4 | - prd
5 | references:
6 | - krogager1993
7 | - cameron1996
8 | - freeman1998
9 | - yamaguchi2011
10 | - raney2012
11 | - cloude1996
12 |
--------------------------------------------------------------------------------
/.github/ISSUE_TEMPLATE/all-pfs.md:
--------------------------------------------------------------------------------
1 | ---
2 | name: All Product Family Specifications
3 | about: Report an issue or propose a change for all sensor types, i.e. which applies for all Product Family Specifications.
4 | labels:
5 | - Optical
6 | - SAR
7 | - needs discussion
8 |
9 | ---
10 |
--------------------------------------------------------------------------------
/references/krogager1993.bib:
--------------------------------------------------------------------------------
1 | @book{krogager1993,
2 | title={Aspects of Polarimetric Radar Imaging},
3 | author={Krogager, E. and Danmarks Tekniske Hojskole (Lingby, Dinamarca) and Danish Defence Research Establishment},
4 | year={1993},
5 | publisher={Danish Defence Research Establishment}
6 | }
7 |
--------------------------------------------------------------------------------
/pfs/NLSR/authors.yaml:
--------------------------------------------------------------------------------
1 | - name: NASA
2 | country: USA
3 | members:
4 | - Brian Killough
5 | - Bhaskar Ramachandran
6 | - name: Leidos Inc.
7 | country: USA
8 | members:
9 | - Miguel Román
10 | - name: University of Maryland
11 | country: USA
12 | members:
13 | - Zhuosen Wang
--------------------------------------------------------------------------------
/sections/requirement-categories/source-metadata.yaml:
--------------------------------------------------------------------------------
1 | id: src
2 | title: Source Metadata
3 | description: |-
4 | These are metadata records describing (detailing) **each** acquisition (source data) used to generate the ARD product.
5 | This may be one or mutliple acquisitions.
6 | glossary:
7 | references:
8 |
--------------------------------------------------------------------------------
/glossary/auxiliary-data.yaml:
--------------------------------------------------------------------------------
1 | term: Auxiliary Data
2 | description: |-
3 | The data required for instrument processing, which does not originate in the instrument itself or from the satellite. Some auxiliary data will be generated in the ground segment, whilst other data will be provided from external sources, e.g., DEM, aerosols.
--------------------------------------------------------------------------------
/requirements/metadata/crs-st.yaml:
--------------------------------------------------------------------------------
1 | title: Coordinate Reference System
2 | description:
3 | threshold:
4 | description: |-
5 | The metadata lists the coordinate reference system that has been used.
6 | notes:
7 | goal: null
8 | dependencies:
9 | references:
10 | metadata:
11 | legacy:
12 | sar:
13 | optical: 1.5
14 |
--------------------------------------------------------------------------------
/requirements/per-pixel/nodata.yaml:
--------------------------------------------------------------------------------
1 | title: No Data
2 | description:
3 | threshold:
4 | description: |-
5 | Pixels that do not correspond to an observation (‘empty pixels’) are flagged.
6 | notes:
7 | goal: null
8 | dependencies:
9 | glossary:
10 | references:
11 | metadata:
12 | legacy:
13 | sar:
14 | optical: 2.2
15 |
--------------------------------------------------------------------------------
/requirements/metadata/pfs-url.yaml:
--------------------------------------------------------------------------------
1 | # todo: The title is a bit misleading
2 | title: Document Identifier
3 | description:
4 | threshold:
5 | description: Reference to CEOS-ARD PFS document as URL.
6 | goal: null
7 | dependencies:
8 | glossary:
9 | - url
10 | references:
11 | metadata:
12 | legacy:
13 | sar: 1.4
14 | optical:
15 |
--------------------------------------------------------------------------------
/pfs/SR/authors.yaml:
--------------------------------------------------------------------------------
1 | - name: Geoscience Australia
2 | country: Australia
3 | members:
4 | - Adam Lewis
5 | - Jonathon Ross
6 | - Andreia Siqueira
7 | - name: USGS
8 | country: USA
9 | members:
10 | - Darcie Bontje
11 | - Steve Labahn
12 | - Mary Metzger
13 | - name: LSI-VC Secretariat
14 | members:
15 | - Matt Steventon
--------------------------------------------------------------------------------
/references/zebker2017.bib:
--------------------------------------------------------------------------------
1 | @article{zebker2017,
2 | author = {Zebker, Howard},
3 | year = {2017},
4 | month = {10},
5 | pages = {1-5},
6 | title = {User-Friendly InSAR Data Products: Fast and Simple Timeseries Processing},
7 | volume = {14},
8 | journal = {IEEE Geoscience and Remote Sensing Letters},
9 | doi = {10.1109/LGRS.2017.2753580}
10 | }
--------------------------------------------------------------------------------
/requirements/metadata/acquisition-id.yaml:
--------------------------------------------------------------------------------
1 | title: Acquisition ID
2 | description:
3 | threshold:
4 | description: |-
5 | Each acquisition is identified through a sequential identifier in the metadata, e.g. acqID = 1, 2, 3.
6 | notes:
7 | goal: null
8 | dependencies:
9 | glossary:
10 | references:
11 | metadata:
12 | legacy:
13 | sar: 1.6
14 | optical: null
--------------------------------------------------------------------------------
/glossary/ancillary-data.yaml:
--------------------------------------------------------------------------------
1 | term: Ancillary Data
2 | description: |-
3 | Data other than instrument measurements, originating in the instrument itself or from the satellite, required to perform processing of the data. They include orbit data, attitude data, time information, spacecraft engineering data, calibration data, data quality information, and data from other instruments.
--------------------------------------------------------------------------------
/sections/annexes/sar-general-processing-roadmap.yaml:
--------------------------------------------------------------------------------
1 | title: General Processing Map
2 | description: include:sar-general-processing-roadmap
3 | glossary:
4 | - dem
5 | - wgs84
6 | - slc
7 | - nrb
8 | - orb
9 | - pol
10 | - gslc
11 | - stac
12 | references:
13 | - zebker2010
14 | - zebker2017
15 | - shiroma2022
16 | - small2011
17 | - lee2009
18 |
--------------------------------------------------------------------------------
/references/freeman1998.bib:
--------------------------------------------------------------------------------
1 | @article{freeman1998,
2 | author = {Freeman, Anthony and Durden, S.L.},
3 | year = {1998},
4 | month = {06},
5 | pages = {963 - 973},
6 | title = {A three-component scattering model for polarimetric SAR data},
7 | volume = {36},
8 | journal = {Geoscience and Remote Sensing, IEEE Transactions on},
9 | doi = {10.1109/36.673687}
10 | }
--------------------------------------------------------------------------------
/references/gens2013.bib:
--------------------------------------------------------------------------------
1 | @article{gens2013,
2 | author = {Gens, R. and Atwood, Donald and Pottier, Eric},
3 | year = {2013},
4 | month = {01},
5 | pages = {38-44},
6 | title = {Geocoding of polarimetric processing results: Alternative processing strategies},
7 | volume = {4},
8 | journal = {Remote Sensing Letters},
9 | doi = {10.1080/2150704X.2012.687470}
10 | }
--------------------------------------------------------------------------------
/requirements/metadata/enl.yaml:
--------------------------------------------------------------------------------
1 | # todo: remove product data mentions to be resuable in other products
2 | title: Product Equivalent Number of Looks
3 | description:
4 | threshold: null
5 | goal:
6 | description: Equivalent Number of Looks (ENL)
7 | notes:
8 | dependencies:
9 | glossary:
10 | - enl
11 | references:
12 | metadata:
13 | legacy:
14 | sar: 1.7.4
15 | optical:
16 |
--------------------------------------------------------------------------------
/references/vachon2000.bib:
--------------------------------------------------------------------------------
1 | @article{vachon2000,
2 | author = {Vachon, P. and Dobson, F.},
3 | year = {2000},
4 | month = {08},
5 | pages = {306-313},
6 | title = {Wind retrieval from RADARSAT SAR images: Selection of a suitable C-band HH polarization wind retrieval model},
7 | volume = {26},
8 | journal = {Can. J. Remote Sens.},
9 | doi = {10.1080/07038992.2000.10874781}
10 | }
--------------------------------------------------------------------------------
/references/mills2014.bib:
--------------------------------------------------------------------------------
1 | @article{mills2014,
2 | author = {Mills, Stephen and Miller, Steven},
3 | year = {2014},
4 | month = {10},
5 | pages = {921809},
6 | title = {VIIRS Day-Night Band (DNB) calibration methods for improved uniformity},
7 | volume = {9218},
8 | journal = {Proceedings of SPIE - The International Society for Optical Engineering},
9 | doi = {10.1117/12.2060143}
10 | }
--------------------------------------------------------------------------------
/references/quilfen1998.bib:
--------------------------------------------------------------------------------
1 | @article{quilfen1998,
2 | author = {Yves, Quilfen and Chapron, B. and Elfouhaily, T. and Katsaros, Kristina and Tournadre, Jean},
3 | year = {1998},
4 | month = {04},
5 | pages = {7,767-7,786},
6 | title = {Observation of tropical cyclones by high-resolution scatterometry},
7 | volume = {103},
8 | journal = {J. Geophys. Res.},
9 | doi = {10.1029/97JC01911}
10 | }
--------------------------------------------------------------------------------
/requirements/metadata/product-type-sar.yaml:
--------------------------------------------------------------------------------
1 | title: Product Type
2 | description:
3 | threshold:
4 | description: |-
5 | CEOS-ARD product type name – or names in case of compliance with more than one product type – and, if required by the data provider, copyright.
6 | notes:
7 | goal: null
8 | dependencies:
9 | glossary:
10 | references:
11 | metadata:
12 | legacy:
13 | sar: 1.3
14 | optical:
15 |
--------------------------------------------------------------------------------
/glossary/wkt.yaml:
--------------------------------------------------------------------------------
1 | term: WKT
2 | description: |-
3 | Well-Known Text (WKT) is a text markup language for representing vector geometry objects on a map, spatial reference systems of spatial objects, and transformations between spatial reference systems.
4 | The formats were originally defined by the Open Geospatial Consortium (OGC) and described in their Simple Feature Access and Coordinate Transformation Service specifications.
--------------------------------------------------------------------------------
/requirements/metadata/map-projection.yaml:
--------------------------------------------------------------------------------
1 | title: Map Projection
2 | description:
3 | threshold: null
4 | goal:
5 | description: |-
6 | The metadata lists the map projection that has been used, if any, and any relevant parameters required in relation to use of data in that map projection.
7 | notes:
8 | dependencies:
9 | glossary:
10 | references:
11 | metadata:
12 | legacy:
13 | sar:
14 | optical: 1.6
15 |
--------------------------------------------------------------------------------
/references/raney2012.bib:
--------------------------------------------------------------------------------
1 | @article{raney2012,
2 | author = {Raney, Russell and Cahill, Joshua and Patterson, G. and Bussey, D.},
3 | year = {2012},
4 | month = {05},
5 | pages = {},
6 | title = {The m-chi decomposition of hybrid dual-polarimetric radar data with application to lunar craters},
7 | volume = {117},
8 | journal = {Journal of Geophysical Research (Planets)},
9 | doi = {10.1029/2011JE003986}
10 | }
--------------------------------------------------------------------------------
/references/iso19115_2_2009.bib:
--------------------------------------------------------------------------------
1 | @techreport{iso19115_2_2009,
2 | type = {Standard},
3 | key = {ISO 19115-2:2009},
4 | month = feb,
5 | year = {2009},
6 | title = {{Geographic information — Metadata — Part 2: Extensions for imagery and gridded data}},
7 | address = {Geneva, CH},
8 | institution = {International Organization for Standardization},
9 | author = {{International Organization for Standardization}}
10 | }
--------------------------------------------------------------------------------
/references/toutin2013.bib:
--------------------------------------------------------------------------------
1 | @article{toutin2013,
2 | author = {Toutin, Thierry and Wang, Huili and Chomaz, Pierre and Pottier, Eric},
3 | year = {2013},
4 | month = {12},
5 | pages = {5252-5258},
6 | title = {Orthorectification of Full-Polarimetric Radarsat-2 Data Using Accurate LIDAR DSM},
7 | volume = {51},
8 | journal = {Geoscience and Remote Sensing, IEEE Transactions on},
9 | doi = {10.1109/TGRS.2012.2233206}
10 | }
--------------------------------------------------------------------------------
/sections/requirement-categories/general-metadata.yaml:
--------------------------------------------------------------------------------
1 | id: meta
2 | title: General Metadata
3 | description: |-
4 | These are metadata records describing a distributed collection of pixels.
5 | The collection of pixels referred to must be contiguous in space and time.
6 | General metadata should allow the user to assess the _overall_ suitability of the dataset, and must meet the requirements listed below.
7 | glossary:
8 | references:
9 |
--------------------------------------------------------------------------------
/references/zheng2017.bib:
--------------------------------------------------------------------------------
1 | @article{zheng2017,
2 | author = {Zheng, Yujie and Zebker, Howard},
3 | year = {2017},
4 | month = {05},
5 | pages = {1-8},
6 | title = {Phase Correction of Single-Look Complex Radar Images for User-Friendly Efficient Interferogram Formation},
7 | volume = {PP},
8 | journal = {IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing},
9 | doi = {10.1109/JSTARS.2017.2697861}
10 | }
--------------------------------------------------------------------------------
/requirements/per-pixel/snow-ice.yaml:
--------------------------------------------------------------------------------
1 | title: Snow/Ice mask
2 | description:
3 | threshold: null
4 | goal:
5 | description: |-
6 | The metadata indicates whether a pixel is assessed as being snow/ice or not. Information on snow/ice mask should be available in the metadata as a single DOI landing page.
7 | notes:
8 | dependencies:
9 | glossary:
10 | - doi
11 | references:
12 | metadata:
13 | legacy:
14 | sar:
15 | optical: 2.7
16 |
--------------------------------------------------------------------------------
/sections/requirement-categories/radiometric-atmospheric-corrections.yaml:
--------------------------------------------------------------------------------
1 | id: rac
2 | title: Radiometric and Atmospheric Corrections
3 | description: |-
4 | The following requirements must be met for all pixels in a collection.
5 | The requirements indicate both the necessary outcomes and the minimum steps necessary to be deemed to have achieved those outcomes. Radiometric corrections must lead to a valid measurement.
6 | glossary:
7 | references:
8 |
--------------------------------------------------------------------------------
/requirements/metadata/data-access-st.yaml:
--------------------------------------------------------------------------------
1 | title: Data Access
2 | description:
3 | threshold:
4 | description: |-
5 | Information on data access should be available in the metadata as a single DOI landing page.
6 | notes:
7 | - Manual and offline interaction action (e.g., login) may be required.
8 | goal: null
9 | dependencies:
10 | glossary:
11 | - doi
12 | references:
13 | metadata:
14 | legacy:
15 | sar:
16 | optical: 1.16
17 |
--------------------------------------------------------------------------------
/requirements/metadata/mean-faraday-rotation-angle.yaml:
--------------------------------------------------------------------------------
1 | title: Mean Faraday Rotation Angle
2 | description:
3 | threshold: null
4 | goal:
5 | description: |-
6 | The mean Faraday rotation angle estimated from the polarimetric data and/or from models with reference to the method or paper used to derive the estimate.
7 | notes:
8 | dependencies:
9 | glossary:
10 | references:
11 | metadata:
12 | legacy:
13 | sar: 1.6.11
14 | optical:
15 |
--------------------------------------------------------------------------------
/requirements/metadata/polarimetric-calibration-matrices.yaml:
--------------------------------------------------------------------------------
1 | title: Polarimetric Calibration Matrices
2 | description:
3 | threshold: null
4 | goal:
5 | description: |-
6 | The complex-valued polarimetric distortion matrices with the channel imbalance and the cross-talk applied for the polarimetric calibration.
7 | notes:
8 | dependencies:
9 | glossary:
10 | references:
11 | metadata:
12 | legacy:
13 | sar: 1.6.10
14 | optical:
15 |
--------------------------------------------------------------------------------
/requirements/per-pixel/saturation.yaml:
--------------------------------------------------------------------------------
1 | title: Saturation
2 | description:
3 | threshold:
4 | description: |-
5 | Metadata indicates where one or more pixel in the input spectral bands are saturated.
6 | notes:
7 | goal:
8 | description: |-
9 | Metadata indicates which pixels are saturated for each spectral band.
10 | notes:
11 | dependencies:
12 | glossary:
13 | references:
14 | metadata:
15 | legacy:
16 | sar:
17 | optical: 2.4
18 |
--------------------------------------------------------------------------------
/requirements/metadata/sensor-calibration.yaml:
--------------------------------------------------------------------------------
1 | title: Sensor Calibration
2 | description:
3 | threshold: null
4 | goal:
5 | description: |-
6 | Sensor calibration parameters are identified in the metadata or can be accessed using details included in the metadata.
7 | Ideally this would support machine-to-machine access.
8 | notes:
9 | dependencies:
10 | glossary:
11 | references:
12 | metadata:
13 | legacy:
14 | sar: 1.6.8
15 | optical:
16 |
--------------------------------------------------------------------------------
/requirements/metadata/radiometric-accuracy.yaml:
--------------------------------------------------------------------------------
1 | title: Radiometric Accuracy
2 | description:
3 | threshold: null
4 | goal:
5 | description: |-
6 | Uncertainty (e.g., bounds on $\gamma^0$ or $\sigma^0$) information is provided as document referenced as URL or DOI.
7 | SI traceability is achieved.
8 | notes:
9 | dependencies:
10 | glossary:
11 | - doi
12 | - si
13 | - url
14 | references:
15 | metadata:
16 | legacy:
17 | sar: 3.5
18 | optical:
19 |
--------------------------------------------------------------------------------
/requirements/metadata/time-source.yaml:
--------------------------------------------------------------------------------
1 | # todo: this seems to be a duplicate of time?!
2 | title: Source Data Acquisition Time
3 | description:
4 | threshold:
5 | description: |-
6 | The start date and time of source data is identified in the metadata, expressed in UTC in date and time, at least to the second.
7 | notes:
8 | goal: null
9 | dependencies:
10 | glossary:
11 | - utc
12 | references:
13 | metadata:
14 | legacy:
15 | sar: 1.6.3
16 | optical:
17 |
--------------------------------------------------------------------------------
/references/yamaguchi2011.bib:
--------------------------------------------------------------------------------
1 | @article{yamaguchi2011,
2 | author = {Yamaguchi, Yoshio and Sato, Akinobu and Boerner, Wolfgang-Martin and Sato, Ryoichi and Yamada, Hiroyoshi},
3 | year = {2011},
4 | month = {07},
5 | pages = {2251 - 2258},
6 | title = {Four-Component Scattering Power Decomposition With Rotation of Coherency Matrix},
7 | volume = {49},
8 | journal = {Geoscience and Remote Sensing, IEEE Transactions on},
9 | doi = {10.1109/TGRS.2010.2099124}
10 | }
--------------------------------------------------------------------------------
/requirements/per-pixel/cloud.yaml:
--------------------------------------------------------------------------------
1 | title: Cloud
2 | description:
3 | threshold:
4 | description: |-
5 | Metadata indicates whether a pixel is assessed as being cloud.
6 | notes:
7 | goal:
8 | description: |-
9 | As threshold, but information on cloud detection should be available in the metadata as a single DOI landing page.
10 | notes:
11 | dependencies:
12 | glossary:
13 | - doi
14 | references:
15 | metadata:
16 | legacy:
17 | sar:
18 | optical: 2.5
19 |
--------------------------------------------------------------------------------
/requirements/metadata/machine-readability-st2.yaml:
--------------------------------------------------------------------------------
1 | title: Metadata Machine Readability
2 | description:
3 | threshold:
4 | description: |-
5 | Metadata is provided in a structure that enables a computer algorithm to be used to consistently and automatically identify and extract each component part for further use.
6 | notes:
7 | goal: null
8 | dependencies:
9 | glossary:
10 | references:
11 | - iso19115_2_2009
12 | metadata:
13 | legacy:
14 | sar:
15 | optical: 2.1
16 |
--------------------------------------------------------------------------------
/sections/requirement-categories/geometric-corrections.yaml:
--------------------------------------------------------------------------------
1 | id: gcor
2 | title: Geometric Corrections
3 | description: |-
4 | The geometric corrections are steps that are taken to place the measurement accurately on the surface of the Earth (that is, to geolocate the measurement) allowing measurements taken through time to be compared.
5 | This section specifies any geometric correction requirements that must be met in order for the data to be analysis ready.
6 | glossary:
7 | references:
8 |
--------------------------------------------------------------------------------
/requirements/corrections/atmosphere-emissivity.yaml:
--------------------------------------------------------------------------------
1 | title: Corrections for Atmosphere and Emissivity
2 | description:
3 | threshold:
4 | description: |-
5 | Retrieval methods for estimating surface temperature are provided.
6 | notes:
7 | - The metadata references (may be through a single DOI landing page) a citable peer-reviewed algorithm.
8 | goal: null
9 | dependencies:
10 | glossary:
11 | - doi
12 | references:
13 | metadata:
14 | legacy:
15 | sar:
16 | optical: 3.2
17 |
--------------------------------------------------------------------------------
/references/small2011.bib:
--------------------------------------------------------------------------------
1 | @article{small2011,
2 | author={Small, David},
3 | journal={IEEE Transactions on Geoscience and Remote Sensing},
4 | title={Flattening Gamma: Radiometric Terrain Correction for SAR Imagery},
5 | year={2011},
6 | volume={49},
7 | number={8},
8 | pages={3081-3093},
9 | keywords={Geometry;Backscatter;Radar imaging;Sensors;Spaceborne radar;Radiometry;Radar cross sections;radar scattering;radar terrain factors},
10 | doi={10.1109/TGRS.2011.2120616}
11 | }
12 |
--------------------------------------------------------------------------------
/requirements/example.yaml:
--------------------------------------------------------------------------------
1 | # todo: remove once the example is no longer needed
2 | title: Example Requirement
3 | description: This is an example requirement.
4 | threshold:
5 | description: |-
6 | This is a threshold requirement.
7 | notes:
8 | goal:
9 | description: |-
10 | This is a goal requirement.
11 | notes:
12 | - This is a note.
13 | dependencies:
14 | glossary:
15 | - doi
16 | references:
17 | - iso19115_2_2009
18 | metadata:
19 | legacy:
20 | sar:
21 | optical:
--------------------------------------------------------------------------------
/requirements/metadata/pol-filtering.yaml:
--------------------------------------------------------------------------------
1 | title: Polarimetric Filtering
2 | description:
3 | threshold:
4 | # todo: The "should" in the last sentence is not a requirement, it is a recommendation, but it's listed as threshold requirement.
5 | description: |-
6 | Advanced polarimetric filter preserving covariance matrix properties should be applied.
7 | notes:
8 | goal: null
9 | dependencies:
10 | glossary:
11 | references:
12 | metadata:
13 | legacy:
14 | sar: 1.7.6 (partially)
15 | optical:
16 |
--------------------------------------------------------------------------------
/requirements/per-pixel/cloud-shadow.yaml:
--------------------------------------------------------------------------------
1 | title: Cloud Shadow
2 | description:
3 | threshold:
4 | description: |-
5 | Metadata indicates whether a pixel is assessed as being cloud shadow.
6 | notes:
7 | goal:
8 | description: |-
9 | As threshold, but information on cloud shadow detection should be available in the metadata as a single DOI landing page.
10 | notes:
11 | dependencies:
12 | glossary:
13 | - doi
14 | references:
15 | metadata:
16 | legacy:
17 | sar:
18 | optical: 2.6
19 |
--------------------------------------------------------------------------------
/requirements/metadata/license.yaml:
--------------------------------------------------------------------------------
1 | title: License / Copyright
2 | description:
3 | threshold:
4 | # todo: The license terms are added by me. Copyright is a pretty US-centric term and may not apply in all juridictions.
5 | description: |-
6 | The license terms are provided.
7 | If required by the data provider, copyright is indicated in the metadata.
8 | notes:
9 | goal: null
10 | dependencies:
11 | glossary:
12 | references:
13 | metadata:
14 | legacy:
15 | sar: 1.3 (edited)
16 | optical:
17 |
--------------------------------------------------------------------------------
/requirements/metadata/slant-range.yaml:
--------------------------------------------------------------------------------
1 | title: Slant Range Sensor to Surface
2 | description:
3 | threshold:
4 | description: |-
5 | Slant range distance from the sensor to the surface, specified at centre of scene.
6 |
7 | Only required if a Slant Range Sensor to Surface Image (see [@per-pixel/slant-range]) is **not** provided.
8 | notes:
9 | goal: null
10 | dependencies:
11 | - per-pixel/slant-range
12 | glossary:
13 | references:
14 | metadata:
15 | legacy:
16 | sar: 1.7.14
17 | optical:
18 |
--------------------------------------------------------------------------------
/requirements/metadata/resolution.yaml:
--------------------------------------------------------------------------------
1 | # todo: remove product data mentions to be resuable in other products
2 | # todo: remove mention of CEOS-ARD to be reusable outside of CEOS
3 | title: Product Resolution
4 | description:
5 | threshold: null
6 | goal:
7 | description: |-
8 | Average spatial resolution of the CEOS-ARD product along:
9 |
10 | - Columns
11 | - Rows
12 | notes:
13 | dependencies:
14 | glossary:
15 | - ceos-ard
16 | references:
17 | metadata:
18 | legacy:
19 | sar: 1.7.5
20 | optical:
21 |
--------------------------------------------------------------------------------
/references/cloude1996.bib:
--------------------------------------------------------------------------------
1 | @article{cloude1996,
2 | author={Cloude, S.R. and Pottier, E.},
3 | journal={IEEE Transactions on Geoscience and Remote Sensing},
4 | title={A review of target decomposition theorems in radar polarimetry},
5 | year={1996},
6 | volume={34},
7 | number={2},
8 | pages={498-518},
9 | keywords={Radar polarimetry;Radar scattering;Particle scattering;Rayleigh scattering;Light scattering;Matrix decomposition;Radar remote sensing;Covariance matrix;Speckle;Clouds},
10 | doi={10.1109/36.485127}
11 | }
12 |
--------------------------------------------------------------------------------
/requirements/measurements/measurement-st.yaml:
--------------------------------------------------------------------------------
1 | title: Measurement
2 | description:
3 | threshold:
4 | description: |-
5 | Pixel values are expressed as a measurement of the Surface Temperature of the land, expressed as Kelvin
6 | notes:
7 | goal:
8 | description: |-
9 | Surface temperature measurements are SI traceable (see also [@metadata/traceability-st]).
10 | notes:
11 | dependencies:
12 | - metadata/traceability-st
13 | glossary:
14 | - si
15 | references:
16 | metadata:
17 | legacy:
18 | sar:
19 | optical: 3.1
20 |
--------------------------------------------------------------------------------
/requirements/metadata/auxiliary-data.yaml:
--------------------------------------------------------------------------------
1 | title: Auxiliary Data
2 | description:
3 | threshold: null
4 | goal:
5 | description: |-
6 | The metadata identifies the sources of auxiliary data used in the generation process, ideally expressed as DOIs.
7 | notes:
8 | - Auxiliary data includes DEMs, etc., and any additional data sources used in the generation of the product.
9 | dependencies:
10 | glossary:
11 | - auxiliary-data
12 | - dem
13 | - doi
14 | references:
15 | metadata:
16 | legacy:
17 | sar: 1.7.2
18 | optical:
19 |
--------------------------------------------------------------------------------
/requirements/metadata/data-quality.yaml:
--------------------------------------------------------------------------------
1 | title: Overall Data Quality
2 | description:
3 | threshold: null
4 | goal:
5 | description: |-
6 | The metadata includes details of the quality of the product based on quantitative assessment of the product with respect to high quality reference data with full traceability of the uncertainties. Validation and intercomparison statistics can provide the necessary quantification.
7 | notes:
8 | dependencies:
9 | glossary:
10 | references:
11 | metadata:
12 | legacy:
13 | sar:
14 | optical: 1.17
15 |
--------------------------------------------------------------------------------
/requirements/metadata/sample-spacing.yaml:
--------------------------------------------------------------------------------
1 | # todo: remove product data mentions to be resuable in other products
2 | # todo: remove mention of CEOS-ARD to be reusable outside of CEOS
3 | title: Product Sample Spacing
4 | description:
5 | threshold:
6 | description: |-
7 | CEOS-ARD product processing parameters details:
8 |
9 | - Pixel (column) spacing
10 | - Line (row) spacing
11 | notes:
12 | goal: null
13 | dependencies:
14 | glossary:
15 | - ceos-ard
16 | references:
17 | metadata:
18 | legacy:
19 | sar: 1.7.3
20 | optical:
21 |
--------------------------------------------------------------------------------
/requirements/per-pixel/solar-view-angles.yaml:
--------------------------------------------------------------------------------
1 | title: Solar and Viewing Geometry
2 | description:
3 | threshold:
4 | # This is general metadata - todo: split?
5 | description: |-
6 | Provide average solar and sensor viewing azimuth and zenith angles.
7 | notes:
8 | goal:
9 | # This is per-pixel metadata - todo: split?
10 | description: |-
11 | Provide per-pixel solar and sensor viewing azimuth and zenith angles.
12 | notes:
13 | dependencies:
14 | glossary:
15 | references:
16 | metadata:
17 | legacy:
18 | sar:
19 | optical: 2.8
20 |
--------------------------------------------------------------------------------
/references/cameron1996.bib:
--------------------------------------------------------------------------------
1 | @article{cameron1996,
2 | author={Cameron, W.L. and Youssef, N.N. and Leung, L.K.},
3 | journal={IEEE Transactions on Geoscience and Remote Sensing},
4 | title={Simulated polarimetric signatures of primitive geometrical shapes},
5 | year={1996},
6 | volume={34},
7 | number={3},
8 | pages={793-803},
9 | keywords={Solid modeling;Shape;Radar scattering;Light scattering;Matrix decomposition;Electromagnetic scattering;Symmetric matrices;Polarization;Scattering parameters;Statistics},
10 | doi={10.1109/36.499784}
11 | }
12 |
--------------------------------------------------------------------------------
/requirements/metadata/instrument-st.yaml:
--------------------------------------------------------------------------------
1 | title: Instrument
2 | description:
3 | threshold:
4 | description: |-
5 | The instrument used to collect the data is identified in the metadata.
6 | notes:
7 | goal:
8 | description: |-
9 | As threshold, but information on instrument should be available in the metadata as a single DOI landing page with references to the relevant CEOS Missions, Instruments and Measurements Database record.
10 | notes:
11 | dependencies:
12 | glossary:
13 | - doi
14 | references:
15 | metadata:
16 | legacy:
17 | sar:
18 | optical: 1.9
--------------------------------------------------------------------------------
/requirements/metadata/instrument.yaml:
--------------------------------------------------------------------------------
1 | title: Instrument
2 | description:
3 | threshold:
4 | description: |-
5 | The instrument used to collect the data is identified in the metadata:
6 |
7 | - Satellite name
8 | - Instrument name
9 | notes:
10 | goal:
11 | description: |-
12 | As threshold, but including a reference to the relevant [CEOS Missions, Instruments and Measurements Database](https://ceos.org/mim-database/) record.
13 | notes:
14 | dependencies:
15 | glossary:
16 | references:
17 | metadata:
18 | legacy:
19 | sar: 1.6.2
20 | optical:
--------------------------------------------------------------------------------
/requirements/metadata/traceability.yaml:
--------------------------------------------------------------------------------
1 | title: Traceability
2 | description:
3 | threshold: null
4 | goal:
5 | description: Data must be traceable to SI reference standard.
6 | notes:
7 | - Relationship to [@measurements/uncertainty]. Traceability requires an estimate of measurement uncertainty.
8 | - Information on traceability should be available in the metadata as a single DOI landing page.
9 | dependencies:
10 | - measurements/uncertainty
11 | glossary:
12 | - doi
13 | - si
14 | references:
15 | metadata:
16 | legacy:
17 | sar: null
18 | optical: 1.1
19 |
--------------------------------------------------------------------------------
/references/wang2021.bib:
--------------------------------------------------------------------------------
1 | @article{wang2021,
2 | title = {Quantifying uncertainties in nighttime light retrievals from Suomi-NPP and NOAA-20 VIIRS Day/Night Band data},
3 | journal = {Remote Sensing of Environment},
4 | volume = {263},
5 | pages = {112557},
6 | year = {2021},
7 | issn = {0034-4257},
8 | doi = {https://doi.org/10.1016/j.rse.2021.112557},
9 | url = {https://www.sciencedirect.com/science/article/pii/S0034425721002777},
10 | author = {Zhuosen Wang and Miguel O. Román and Virginia L. Kalb and Steven D. Miller and Jianglong Zhang and Ranjay M. Shrestha}
11 | }
--------------------------------------------------------------------------------
/requirements/per-pixel/incomplete-testing.yaml:
--------------------------------------------------------------------------------
1 | title: Incomplete Testing
2 | description:
3 | threshold:
4 | description: |-
5 | The metadata identifies pixels for which the per-pixel tests (below) have not all been successfully completed.
6 | notes:
7 | - e.g., due to missing ancillary data for some pixels.
8 | goal:
9 | description: |-
10 | The metadata identifies which tests have, and have not, been successfully completed for each pixel.
11 | notes:
12 | dependencies:
13 | glossary:
14 | references:
15 | metadata:
16 | legacy:
17 | sar:
18 | optical: 2.3
19 |
--------------------------------------------------------------------------------
/requirements/metadata/traceability-sar.yaml:
--------------------------------------------------------------------------------
1 | title: Traceability
2 | description:
3 | threshold: null
4 | goal:
5 | description: Data must be traceable to SI reference standard.
6 | notes:
7 | - Relationship to [@metadata/radiometric-accuracy]. Traceability requires an estimate of measurement uncertainty.
8 | - Information on traceability should be available in the metadata as a single DOI landing page.
9 | dependencies:
10 | - metadata/radiometric-accuracy
11 | glossary:
12 | - doi
13 | - si
14 | references:
15 | metadata:
16 | legacy:
17 | sar: 1.1
18 | optical:
19 |
--------------------------------------------------------------------------------
/requirements/metadata/geometric-correction-methods.yaml:
--------------------------------------------------------------------------------
1 | title: Geometric Correction Methods
2 | description:
3 | threshold: null
4 | goal:
5 | description: |-
6 | Information on geometric correction methods should be available in the metadata as a single DOI landing page containing information on geodetic correction methods used, including reference database and auxiliary data such as elevation model(s) and reference chip-sets.
7 | notes:
8 | dependencies:
9 | glossary:
10 | - auxiliary-data
11 | - doi
12 | references:
13 | metadata:
14 | legacy:
15 | sar:
16 | optical: 1.7
17 |
--------------------------------------------------------------------------------
/requirements/metadata/time-st.yaml:
--------------------------------------------------------------------------------
1 | title: Data Collection Time
2 | description:
3 | threshold:
4 | description: |-
5 | The start and stop time of data collection is identified in the metadata, expressed in date/time, to the second, with the time offset from UTC unambiguously identified.
6 | notes:
7 | goal:
8 | description: |-
9 | Acquisition time for each pixel is identified (or can be reliably determined) in the metadata, expressed in date/time at UTC, to the second.
10 | notes:
11 | glossary:
12 | - utc
13 | references:
14 | metadata:
15 | legacy:
16 | sar:
17 | optical: 1.3
18 |
--------------------------------------------------------------------------------
/requirements/metadata/acquisition-parameters-sar.yaml:
--------------------------------------------------------------------------------
1 | title: Source Data Acquisition Parameters
2 | description:
3 | threshold:
4 | description: |-
5 | Acquisition parameters related to the SAR antenna:
6 |
7 | - Radar band
8 | - Centre frequency
9 | - Observation mode (i.e., beam mode name)
10 | - Polarization(s) (listed as in original product)
11 | - Antenna pointing (right/left)
12 | - Beam ID (i.e., beam mode mnemonic)
13 | notes:
14 | goal: null
15 | dependencies:
16 | glossary:
17 | - sar
18 | references:
19 | metadata:
20 | legacy:
21 | sar: 1.6.4
22 | optical:
23 |
--------------------------------------------------------------------------------
/requirements/metadata/processing-chain-prov.yaml:
--------------------------------------------------------------------------------
1 | title: Processing Chain Provenance
2 | description:
3 | threshold: null
4 | goal:
5 | description: |-
6 | Information on processing chain provenance should be available in the metadata as a single DOI landing page containing description of the processing chain used to generate the product, including the versions of the software used and information on the data collection baseline, giving full transparency to the users.
7 | notes:
8 | dependencies:
9 | glossary:
10 | - doi
11 | references:
12 | metadata:
13 | legacy:
14 | sar:
15 | optical: 1.15
16 |
--------------------------------------------------------------------------------
/requirements/metadata/scaling-conversion.yaml:
--------------------------------------------------------------------------------
1 | title: Scaling Conversion
2 | description:
3 | threshold:
4 | description: |-
5 | If applicable, indicate the equation to convert pixel linear amplitude/power to logarithmic decibel scale, including, if applicable, the associated calibration (dB offset) factor, and/or the equation used to convert compressed data (int8/int16/float16) to float32.
6 | notes:
7 | goal:
8 | description: |-
9 | As threshold, but use of float32.
10 | notes:
11 | dependencies:
12 | glossary:
13 | references:
14 | metadata:
15 | legacy:
16 | sar: 3.2
17 | optical:
18 |
--------------------------------------------------------------------------------
/references/cook2014.bib:
--------------------------------------------------------------------------------
1 | @article{cook2014,
2 | author = {Cook, Monica and Schott, John R. and Mandel, John and Raqueno, Nina},
3 | title = {Development of an Operational Calibration Methodology for the Landsat Thermal Data Archive and Initial Testing of the Atmospheric Compensation Component of a Land Surface Temperature (LST) Product from the Archive},
4 | journal = {Remote Sensing},
5 | volume = {6},
6 | year = {2014},
7 | number = {11},
8 | pages = {11244--11266},
9 | url = {https://www.mdpi.com/2072-4292/6/11/11244},
10 | issn = {2072-4292},
11 | doi = {10.3390/rs61111244}
12 | }
13 |
14 |
15 |
16 |
--------------------------------------------------------------------------------
/requirements/metadata/pixel-coordinate-convention.yaml:
--------------------------------------------------------------------------------
1 | # todo: remove product data mentions to be resuable in other products
2 | title: Product Pixel Coordinate Convention
3 | description:
4 | threshold:
5 | # todo: The given values are specific to the XML metadata encoding, the last sentence should be removed.
6 | description: |-
7 | Coordinate referring to the centre, the upper left corner, or the lower left corner of a pixel.
8 | Values are [pixel centre, pixel ULC or pixel LLC].
9 | notes:
10 | goal: null
11 | dependencies:
12 | glossary:
13 | references:
14 | metadata:
15 | legacy:
16 | sar: 1.7.10
17 | optical:
18 |
--------------------------------------------------------------------------------
/requirements/metadata/product-type.yaml:
--------------------------------------------------------------------------------
1 | title: Product Type
2 | description:
3 | threshold:
4 | # todo: split into product-type and copyright as two requirements were mixed into one requirement before.
5 | # todo: Merged 1.3 and 1.4 into one as they seem closely related, especially given that we don't create combined PFSes any longer.
6 | description: CEOS-ARD product type name
7 | notes:
8 | - In case of compliance with more than one product type, multiple product type names must be provided.
9 | goal: null
10 | dependencies:
11 | glossary:
12 | references:
13 | metadata:
14 | legacy:
15 | sar: 1.3 (edited)
16 | optical:
17 |
--------------------------------------------------------------------------------
/pfs/SR/document.yaml:
--------------------------------------------------------------------------------
1 | id: SR
2 | title: Surface Reflectance
3 | version: 5.1-draft
4 | type: Optical
5 | applies_to: |-
6 | Data collected with multispectral optical sensors operating in the VIS/NIR/SWIR wavelengths at all ground sample distances and resolutions.
7 |
8 | introduction:
9 | - what-are-ceos-ard-products
10 | - when-is-a-product-ceos-ard
11 | - difference-threshold-goal
12 |
13 | # Only glossary entries that are not specific to certain requirements or sections are listed here.
14 | glossary:
15 | - sr
16 | - vis
17 | - nir
18 | - swir
19 |
20 | references:
21 | - li2012 # todo: move to req. 3.3
22 |
23 | annexes:
24 |
--------------------------------------------------------------------------------
/references/li2012.bib:
--------------------------------------------------------------------------------
1 | @article{li2012,
2 | title = {A physics-based atmospheric and BRDF correction for Landsat data over mountainous terrain},
3 | journal = {Remote Sensing of Environment},
4 | volume = {124},
5 | pages = {756-770},
6 | year = {2012},
7 | issn = {0034-4257},
8 | doi = {https://doi.org/10.1016/j.rse.2012.06.018},
9 | url = {https://www.sciencedirect.com/science/article/pii/S0034425712002544},
10 | author = {Fuqin Li and David L.B. Jupp and Medhavy Thankappan and Leo Lymburner and Norman Mueller and Adam Lewis and Alex Held},
11 | keywords = {Landsat, BRDF, Atmospheric correction, Terrain illumination correction}
12 | }
--------------------------------------------------------------------------------
/requirements/metadata/machine-readability-st.yaml:
--------------------------------------------------------------------------------
1 | title: Metadata Machine Readability
2 | description:
3 | threshold:
4 | description: |-
5 | Metadata is provided in a structure that enables a computer algorithm to be used to consistently and automatically identify and extract each component part for further use.
6 | notes:
7 | goal:
8 | description: |-
9 | As threshold, but metadata should be provided in a community endorsed standard that facilitates machine-readability, such as ISO 19115-2.
10 | notes:
11 | dependencies:
12 | glossary:
13 | references:
14 | - iso19115_2_2009
15 | metadata:
16 | legacy:
17 | sar:
18 | optical: 1.1
19 |
--------------------------------------------------------------------------------
/references/li2013.bib:
--------------------------------------------------------------------------------
1 | @article{li2013,
2 | title = {Satellite-derived land surface temperature: Current status and perspectives},
3 | journal = {Remote Sensing of Environment},
4 | volume = {131},
5 | pages = {14-37},
6 | year = {2013},
7 | issn = {0034-4257},
8 | doi = {https://doi.org/10.1016/j.rse.2012.12.008},
9 | url = {https://www.sciencedirect.com/science/article/pii/S0034425712004749},
10 | author = {Zhao-Liang Li and Bo-Hui Tang and Hua Wu and Huazhong Ren and Guangjian Yan and Zhengming Wan and Isabel F. Trigo and José A. Sobrino},
11 | keywords = {Land surface temperature, Land surface emissivity, Retrieval, Thermal infrared}
12 | }
--------------------------------------------------------------------------------
/references/ryan2019.bib:
--------------------------------------------------------------------------------
1 | @article{ryan2019,
2 | author = {Ryan, Robert E. and Pagnutti, Mary and Burch, Kara and Leigh, Larry and Ruggles, Timothy and Cao, Changyong and Aaron, David and Blonski, Slawomir and Helder, Dennis},
3 | title = {The Terra Vega Active Light Source: A First Step in a New Approach to Perform Nighttime Absolute Radiometric Calibrations and Early Results Calibrating the VIIRS DNB},
4 | journal = {Remote Sensing},
5 | volume = {11},
6 | year = {2019},
7 | number = {6},
8 | article-number = {710},
9 | url = {https://www.mdpi.com/2072-4292/11/6/710},
10 | issn = {2072-4292},
11 | doi = {10.3390/rs11060710}
12 | }
13 |
14 |
15 |
16 |
--------------------------------------------------------------------------------
/requirements/metadata/crs.yaml:
--------------------------------------------------------------------------------
1 | # todo: remove product data mentions to be resuable in other products
2 | title: Product Coordinate Reference System
3 | description:
4 | threshold:
5 | description: |-
6 | The metadata lists the map projection (or geographical coordinates, if applicable) that was used and any relevant parameters required to geolocate data in that map projection, expressed in a standardised format (e.g., WKT).
7 | Indicate EPSG code, if defined for the CRS.
8 | notes:
9 | goal: null
10 | dependencies:
11 | glossary:
12 | - crs
13 | - epsg-code
14 | - wkt
15 | references:
16 | metadata:
17 | legacy:
18 | sar: 1.7.11
19 | optical:
20 |
--------------------------------------------------------------------------------
/requirements/metadata/data-access-source.yaml:
--------------------------------------------------------------------------------
1 | # todo: make generic for source and product
2 | title: Source Data Access
3 | description:
4 | threshold:
5 | description: |-
6 | The metadata identifies the location from where the source data can be retrieved, expressed as a URL or DOI.
7 | notes:
8 | goal:
9 | description: |-
10 | The metadata identifies an online location from where the data can be consistently and reliably retrieved by a computer algorithm without any manual intervention being required.
11 | notes:
12 | dependencies:
13 | glossary:
14 | - url
15 | - doi
16 | references:
17 | metadata:
18 | legacy:
19 | sar: 1.6.1
20 | optical:
21 |
--------------------------------------------------------------------------------
/requirements/metadata/radiometric-accuracy-st.yaml:
--------------------------------------------------------------------------------
1 | title: Radiometric Accuracy
2 | description:
3 | threshold: null
4 | goal:
5 | description: |-
6 | Information on radiometric accuracy should be available in the metadata as a single DOI landing page providing information on metrics describing the assessed absolute radiometric accuracy of the data, expressed as absolute radiometric uncertainty relative to a known reference standard.
7 | notes:
8 | - For example, this may come from comparison with routine and rigorously collected in situ measurements.
9 | dependencies:
10 | glossary:
11 | - doi
12 | references:
13 | metadata:
14 | legacy:
15 | sar:
16 | optical: 1.12
17 |
--------------------------------------------------------------------------------
/requirements/metadata/sensor-calibration-st.yaml:
--------------------------------------------------------------------------------
1 | title: Sensor Calibration
2 | description:
3 | threshold: null
4 | goal:
5 | description: |-
6 | Sensor calibration parameters are identified in the metadata or can be accessed using details included in the metadata.
7 | Ideally this would support machine-to-machine access.
8 | notes:
9 | - Information on sensory calibration should be available in the metadata as a single DOI landing page.
10 | # This is exactly the same as sensor-calibration.yaml except for the note added above. Can we align?
11 | dependencies:
12 | glossary:
13 | - doi
14 | references:
15 | metadata:
16 | legacy:
17 | sar:
18 | optical: 1.11
19 |
--------------------------------------------------------------------------------
/sections/requirement-categories/per-pixel-metadata.yaml:
--------------------------------------------------------------------------------
1 | # todo: remove cloud-optimized requirement and enable the cloud-optimized-formats requirement instead.
2 | id: pxl
3 | title: Per-Pixel Metadata
4 | description: |-
5 | The following minimum metadata specifications apply to each pixel.
6 | Whether the metadata are provided in a single record relevant to all pixels or separately for each pixel is at the discretion of the data provider.
7 | Per-pixel metadata should allow users to discriminate between (choose) observations on the basis of their individual suitability for applications.
8 |
9 | *Cloud optimized file formats are recommended.*
10 | glossary:
11 | references:
12 |
--------------------------------------------------------------------------------
/requirements/metadata/geo-area.yaml:
--------------------------------------------------------------------------------
1 | # todo: remove product data mentions to be resuable in other products
2 | # todo: remove SAR mentions to be resuable in other products
3 | # todo: extent is misleading and usually a synonym for the bbox,
4 | # the requirement should probably be renamed to "Geographical Area" or similar
5 | title: Product Geographical Extent
6 | description:
7 | threshold:
8 | description: |-
9 | The geometry of the SAR image footprint expressed in WGS84, in a standardised format (e.g., WKT Polygon).
10 | notes:
11 | goal: null
12 | dependencies:
13 | glossary:
14 | - wgs84
15 | - wkt
16 | references:
17 | metadata:
18 | legacy:
19 | sar: 1.7.8
20 | optical:
--------------------------------------------------------------------------------
/requirements/per-pixel/atmospheric-phase-correction.yaml:
--------------------------------------------------------------------------------
1 | title: Atmospheric Phase Correction Image
2 | description:
3 | threshold: null
4 | goal:
5 | description: |-
6 | Phase correction value at each pixel, if applied.
7 | DOI/URL reference to algorithm or brief description is provided.
8 |
9 | File format specifications/contents provided in metadata:
10 |
11 | - Sample Type (Angle)
12 | - Data Format (GeoTIFF, HDF5, NetCDF, …)
13 | - Data Type (Int, Float, …)
14 | - Bits per Sample
15 | - Byte Order
16 | notes:
17 | dependencies:
18 | glossary:
19 | - doi
20 | - url
21 | references:
22 | metadata:
23 | legacy:
24 | sar: 2.15
25 | optical:
26 |
--------------------------------------------------------------------------------
/requirements/per-pixel/ionospheric-phase-correction.yaml:
--------------------------------------------------------------------------------
1 | title: Ionospheric Phase Correction Image
2 | description:
3 | threshold: null
4 | goal:
5 | description: |-
6 | Phase correction value at each pixel, if applied.
7 | DOI/URL reference to algorithm or brief description is provided.
8 |
9 | File format specifications/contents provided in metadata:
10 |
11 | - Sample Type (Angle)
12 | - Data Format (GeoTIFF, HDF5, NetCDF, …)
13 | - Data Type (Int, Float, …)
14 | - Bits per Sample
15 | - Byte Order
16 | notes:
17 | dependencies:
18 | glossary:
19 | - doi
20 | - url
21 | references:
22 | metadata:
23 | legacy:
24 | sar: 2.16
25 | optical:
26 |
--------------------------------------------------------------------------------
/requirements/measurements/uncertainty-st.yaml:
--------------------------------------------------------------------------------
1 | title: Measurement Uncertainty
2 | description:
3 | threshold: null
4 | goal:
5 | description: |-
6 | Uncertainty, in Kelvin, of the surface temperature measurement for each pixel is provided.
7 | notes:
8 | - |-
9 | Some of the intent of the initial wording (below), which refers to atmospheric windows, may have been lost: Uncertainty, in units Kelvin, of the surface temperature for each pixel is also accompanied by distance from cloud (above) and atmospheric transmission (intervals, i.e., 0.4 - 0.55, 0.55 - 0.7, etc.).
10 | dependencies:
11 | glossary:
12 | references:
13 | metadata:
14 | legacy:
15 | sar:
16 | optical: 3.3
17 |
--------------------------------------------------------------------------------
/requirements/metadata/geo-bbox.yaml:
--------------------------------------------------------------------------------
1 | # todo: remove product data mentions (or replace with measurement) to be resuable in other products
2 | title: Product Bounding Box
3 | description:
4 | threshold:
5 | description: |-
6 | Two opposite corners of the product file (bounding box, including any zero-fill values) are identified,
7 | expressed in the coordinate reference system defined in [@metadata/crs].
8 | notes:
9 | - Four corners of the product file are recommended for scenes crossing the Antemeridian, or the North or the South Pole.
10 | goal: null
11 | dependencies:
12 | - metadata/crs
13 | glossary:
14 | references:
15 | metadata:
16 | legacy:
17 | sar: 1.7.7
18 | optical:
19 |
--------------------------------------------------------------------------------
/pfs/NLSR/requirements.yaml:
--------------------------------------------------------------------------------
1 | - category: general-metadata
2 | requirements:
3 | - metadata/traceability
4 | # todo: the following should probably be added to the requirements
5 | # - metadata/license
6 | - category: source-metadata
7 | requirements:
8 | - example
9 | - category: product-metadata
10 | requirements:
11 | # todo: the following should probably be added to the requirements
12 | # - metadata/product-type
13 | - example
14 | - category: per-pixel-metadata
15 | requirements:
16 | - example
17 | - category: radiometric-atmospheric-corrections
18 | requirements:
19 | - measurements/uncertainty # 3.2
20 | - category: geometric-corrections
21 | requirements:
22 | - example
--------------------------------------------------------------------------------
/pfs/SR/requirements.yaml:
--------------------------------------------------------------------------------
1 | - category: general-metadata
2 | requirements:
3 | - metadata/traceability
4 | # todo: the following should probably be added to the requirements
5 | # - metadata/license
6 | - category: source-metadata
7 | requirements:
8 | - example
9 | - category: product-metadata
10 | requirements:
11 | # todo: the following should probably be added to the requirements
12 | # - metadata/product-type
13 | - example
14 | - category: per-pixel-metadata
15 | requirements:
16 | - example
17 | - category: radiometric-atmospheric-corrections
18 | requirements:
19 | - measurements/uncertainty # 3.2
20 | - category: geometric-corrections
21 | requirements:
22 | - example
--------------------------------------------------------------------------------
/requirements/metadata/noise-removal.yaml:
--------------------------------------------------------------------------------
1 | title: Noise Removal
2 | description:
3 | threshold:
4 | # todo: The "(Y/N)" is implementation (and metadata language) specific, should not be listed here.
5 | # See also ionosphere-indicator.yaml
6 | description: |-
7 | Flag if noise removal has been applied (Y/N).
8 | Metadata should include the noise removal algorithm and reference to the algorithm as URL or DOI.
9 | notes:
10 | - Thermal noise removal and image border noise removal to remove overall scene noise and scene edge artefacts, respectively.
11 | goal: null
12 | dependencies:
13 | glossary:
14 | - doi
15 | - url
16 | references:
17 | metadata:
18 | legacy:
19 | sar: 3.3
20 | optical:
21 |
--------------------------------------------------------------------------------
/references/zebker2010.bib:
--------------------------------------------------------------------------------
1 | @article{zebker2010,
2 | author={Zebker, Howard A. and Hensley, Scott and Shanker, Piyush and Wortham, Cody},
3 | journal={IEEE Transactions on Geoscience and Remote Sensing},
4 | title={Geodetically Accurate InSAR Data Processor},
5 | year={2010},
6 | volume={48},
7 | number={12},
8 | pages={4309-4321},
9 | keywords={Synthetic aperture radar interferometry;Radar imaging;Focusing;Radar tracking;Synthetic aperture radar;Satellites;Equations;Motion compensation;Frequency domain analysis;Instruments;Interferometric synthetic aperture radar (InSAR);motion compensation;radar interferometry;SAR processing;synthetic aperture radar (SAR)},
10 | doi={10.1109/TGRS.2010.2051333}
11 | }
12 |
--------------------------------------------------------------------------------
/references/lee2009.bib:
--------------------------------------------------------------------------------
1 | @article{lee2009,
2 | author={Jong-Sen Lee and Jen-Hung Wen and Ainsworth, T.L. and Kun-Shan Chen and Chen, A.J.},
3 | journal={IEEE Transactions on Geoscience and Remote Sensing},
4 | title={Improved Sigma Filter for Speckle Filtering of SAR Imagery},
5 | year={2009},
6 | volume={47},
7 | number={1},
8 | pages={202-213},
9 | keywords={Filters;Speckle;Synthetic aperture radar;Filtering algorithms;Remote sensing;Radar scattering;Laboratories;Computational efficiency;Probability density function;Spaceborne radar;Sigma filter;speckle;speckle filtering;synthetic aperture radar (SAR);Sigma filter;speckle;speckle filtering;synthetic aperture radar (SAR)},
10 | doi={10.1109/TGRS.2008.2002881}
11 | }
12 |
--------------------------------------------------------------------------------
/requirements/per-pixel/slant-range.yaml:
--------------------------------------------------------------------------------
1 | title: Slant Range Sensor to Surface Image
2 | description:
3 | threshold: null
4 | goal:
5 | description: |-
6 | Slant range distance from the sensor to the surface, specified at each pixel in an Earth-Centred Earth-Fixed (ECEF) coordinate system (also called Earth Centred Rotating – ECR) is provided.
7 |
8 | File format specifications/contents provided in metadata:
9 |
10 | - Sample Type (Distance)
11 | - Data Format (GeoTIFF, HDF5, NetCDF, …)
12 | - Data Type (Int, Float, …)
13 | - Bits per Sample
14 | - Byte Order
15 | notes:
16 | dependencies:
17 | glossary:
18 | - ecef
19 | - ecr
20 | references:
21 | metadata:
22 | legacy:
23 | sar: 2.13
24 | optical:
25 |
--------------------------------------------------------------------------------
/requirements/per-pixel/look-direction.yaml:
--------------------------------------------------------------------------------
1 | title: Look Direction Image
2 | description:
3 | threshold: null
4 | goal:
5 | # todo: the list of file format specifications below comes up more often and should be a separate building block
6 | description: |-
7 | Look Direction Image is provided.
8 | It represents the planar angle between north and each range direction.
9 |
10 | File format specifications/contents provided in metadata:
11 |
12 | - Sample Type (Angle)
13 | - Data Format (GeoTIFF, HDF5, NetCDF, …)
14 | - Data Type (Int, Float, …)
15 | - Bits per Sample
16 | - Byte Order
17 | notes:
18 | dependencies:
19 | glossary:
20 | references:
21 | metadata:
22 | legacy:
23 | sar: 2.11
24 | optical:
25 |
--------------------------------------------------------------------------------
/requirements/per-pixel/gamma-sigma-ratio.yaml:
--------------------------------------------------------------------------------
1 | title: Gamma-to-Sigma Ratio Image
2 | description:
3 | threshold: null
4 | goal:
5 | description: |-
6 | Ratio of the integrated area in the Gamma projection over the integrated area
7 | in the Sigma projection (ground). Multiplying RTC $\gamma^0_T$ by this ratio results in an
8 | estimate of RTC $\sigma^0_T$.
9 |
10 | File format specifications/contents provided in metadata:
11 |
12 | - Sample Type (Ratio)
13 | - Data Format (GeoTIFF, HDF5, NetCDF, …)
14 | - Data Type (Int, Float, …)
15 | - Bits per Sample
16 | - Byte Order
17 | notes:
18 | dependencies:
19 | glossary:
20 | - rtc
21 | references:
22 | metadata:
23 | legacy:
24 | sar: 2.7
25 | optical:
26 |
--------------------------------------------------------------------------------
/requirements/metadata/ionosphere-indicator.yaml:
--------------------------------------------------------------------------------
1 | title: Ionosphere Indicator
2 | description:
3 | threshold: null
4 | goal:
5 | # todo: The "(0 – false, 1 – true)" is implementation specific, it is also not clear whether 0 or 1 should be used of the boolean values (which may be T, True, WAHR, ... or F, False, UNWAHR, ... in other contexts).
6 | description: |-
7 | Flag indicating whether the backscatter imagery is “significantly impacted” by the ionosphere (0 – false, 1 – true).
8 | Significant impact would imply that the ionospheric impact on the backscatter exceeds the radiometric calibration requirement or goal for the imagery.
9 | notes:
10 | dependencies:
11 | glossary:
12 | references:
13 | metadata:
14 | legacy:
15 | sar: 1.6.12
16 | optical:
17 |
--------------------------------------------------------------------------------
/requirements/metadata/radar-unit-look-vector.yaml:
--------------------------------------------------------------------------------
1 | title: Radar Unit Look Vector
2 | description:
3 | threshold:
4 | description: |-
5 | 3-D components radar unit look vector, specified at centre of scene, in an Earth-Centred Earth-Fixed (ECEF) coordinate system (also called Earth Centred Rotating - ECR) is provided.
6 | It consists of unit vectors from antenna to surface pixel (i.e., positive Z component).
7 |
8 | Only required if a Radar Unit Look Vector Grid Image (see [@per-pixel/radar-unit-look-vector-grid]) is **not** provided.
9 | notes:
10 | goal: null
11 | dependencies:
12 | - per-pixel/radar-unit-look-vector-grid
13 | glossary:
14 | - ecef
15 | - ecr
16 | references:
17 | metadata:
18 | legacy:
19 | sar: 1.7.13
20 | optical:
21 |
--------------------------------------------------------------------------------
/requirements/metadata/time.yaml:
--------------------------------------------------------------------------------
1 | title: Data Collection Time
2 | description:
3 | threshold:
4 | # todo: the number of source data acquisitions has nothing to do with the time requirements, should be separate.
5 | description: |-
6 | Number of source data acquisitions of the data collection is identified.
7 | The start and stop UTC time of data collection is identified in the metadata, expressed in date/time.
8 | In case of composite products, the dates/times of the first and last data takes and the per-pixel metadata [@per-pixel/acquisition-id] is provided with the product.
9 | notes:
10 | goal: null
11 | dependencies:
12 | - per-pixel/acquisition-id
13 | glossary:
14 | - utc
15 | references:
16 | metadata:
17 | legacy:
18 | sar: 1.5
19 | optical:
20 |
--------------------------------------------------------------------------------
/requirements/metadata/geo-area-st.yaml:
--------------------------------------------------------------------------------
1 | title: Geographical Area
2 | description:
3 | threshold:
4 | description: |-
5 | The surface location to which the data relate is identified, typically as a series of four corner points, expressed in an accepted coordinate reference system (e.g., WGS84 coordinates).
6 | notes:
7 | goal:
8 | description: |-
9 | The geographic area covered by the observations is identified specifically, such as through a set of coordinates of a closely bounding polygon. The location to which each pixel refers is identified (or can be reliably determined) expressed in projection coordinates with reference datum.
10 | notes:
11 | dependencies:
12 | glossary:
13 | - wgs84
14 | references:
15 | metadata:
16 | legacy:
17 | sar:
18 | optical: 1.4
--------------------------------------------------------------------------------
/requirements/per-pixel/noise-power.yaml:
--------------------------------------------------------------------------------
1 | title: Noise Power Image
2 | description:
3 | threshold: null
4 | goal:
5 | description: |-
6 | Estimated Noise Equivalent $\sigma^0$ (or $\beta^0$ or $\gamma^0$, as applicable) used for noise removal, if applied, for each channel.
7 | $\text{NE}\sigma^0$ and $\text{NE}\gamma^0$ are both based on a simplified ellipsoid Earth model.
8 |
9 | File format specifications/contents provided in metadata:
10 |
11 | - Sample Type (Gamma-Nought, Sigma-Nought, Beta-Nought)
12 | - Data Format (GeoTIFF, HDF5, NetCDF, …)
13 | - Data Type (Int, Float, …)
14 | - Bits per Sample
15 | - Byte Order
16 | notes:
17 | dependencies:
18 | glossary:
19 | references:
20 | metadata:
21 | legacy:
22 | sar: 2.6
23 | optical:
24 |
--------------------------------------------------------------------------------
/references/shiroma2022.bib:
--------------------------------------------------------------------------------
1 | @article{shiroma2022,
2 | author={Shiroma, Gustavo H. X. and Lavalle, Marco and Buckley, Sean M.},
3 | journal={IEEE Transactions on Geoscience and Remote Sensing},
4 | title={An Area-Based Projection Algorithm for SAR Radiometric Terrain Correction and Geocoding},
5 | year={2022},
6 | volume={60},
7 | number={},
8 | pages={1-23},
9 | keywords={Radar;Spaceborne radar;Synthetic aperture radar;Projection algorithms;Radar polarimetry;Interpolation;Radiometry;C-band;covariance matrix;geocoded polarimetric covariance matrix (GCOV);interferometric synthetic aperture radar (SAR) (InSAR);L-band;NASA-ISRO SAR (NISAR);polarimetric SAR (PolSAR);radiometric terrain correction (RTC);SAR;SAR interferometry},
10 | doi={10.1109/TGRS.2022.3147472}
11 | }
12 |
--------------------------------------------------------------------------------
/requirements/metadata/auxiliary-data-st.yaml:
--------------------------------------------------------------------------------
1 | title: Auxiliary Data
2 | description:
3 | threshold:
4 | description: |-
5 | The metadata identifies the sources of auxiliary data used in the generation process, ideally expressed as a single DOI landing page.
6 | notes:
7 | - Auxiliary data includes DEMs, aerosols, etc. data sources.
8 | goal:
9 | description: |-
10 | As threshold, but information on auxiliary data should be available in the metadata as a single DOI landing page and is also available for free online download, contemporaneously with the product or through a link to the source.
11 | notes:
12 | dependencies:
13 | glossary:
14 | - auxiliary-data
15 | - dem
16 | - doi
17 | references:
18 | metadata:
19 | legacy:
20 | sar:
21 | optical: 1.14
22 |
--------------------------------------------------------------------------------
/requirements/measurements/uncertainty.yaml:
--------------------------------------------------------------------------------
1 | title: Measurement Uncertainty
2 | description: |-
3 | Note: In current practice, users determine fitness for purpose based on knowledge of the lineage of the data, rather than on a specific estimate of measurement uncertainty.
4 | threshold: null
5 | goal:
6 | description: |-
7 | An estimate of the certainty of the values is provided in measurement units.
8 | notes:
9 | - This is a requirement for SI traceability. See also [@metadata/traceability].
10 | - Information on measurement uncertainty should be available in the metadata as a single DOI landing page.
11 | dependencies:
12 | - metadata/traceability
13 | glossary:
14 | - si
15 | references:
16 | metadata:
17 | legacy:
18 | sar: null
19 | optical: 3.2 (SR, NLSR)
20 |
--------------------------------------------------------------------------------
/requirements/per-pixel/geoid.yaml:
--------------------------------------------------------------------------------
1 | # Remove "Per-Pixel" from the title, it's inconsistent with other requirements.
2 | title: Per-Pixel Geoid
3 | description:
4 | threshold: null
5 | goal:
6 | description: |-
7 | Provide Geoid as used during the geometric and radiometric processing of the SAR data, resampled to an exact geometric match in extent and resolution with the image product.
8 |
9 | File format specifications/contents provided in metadata:
10 |
11 | - Sample Type (Height)
12 | - Data Format (GeoTIFF, HDF5, NetCDF, …)
13 | - Data Type (Int, Float, …)
14 | - Bits per Sample
15 | - Byte Order
16 | - Ground Sampling Distance
17 | notes:
18 | dependencies:
19 | glossary:
20 | references:
21 | metadata:
22 | legacy:
23 | sar: 2.10
24 | optical:
25 |
--------------------------------------------------------------------------------
/requirements/metadata/geometric-accuracy.yaml:
--------------------------------------------------------------------------------
1 | title: Geometric Accuracy of the Data
2 | description:
3 | threshold: null
4 | goal:
5 | description: |-
6 | The metadata includes metrics describing the assessed geodetic accuracy of the data, expressed units of the coordinate system of the data.
7 | Accuracy is assessed by independent verification (as well as internal model-fit where applicable).
8 | Uncertainties are expressed as root mean square error (RMSE) or Circular Error 90% Probability (CEP90).
9 | notes:
10 | - Information on geometric accuracy of the data should be available in the metadata as a single DOI landing page.
11 | dependencies:
12 | glossary:
13 | - cep
14 | - doi
15 | - rmse
16 | references:
17 | metadata:
18 | legacy:
19 | sar:
20 | optical: 1.8
21 |
--------------------------------------------------------------------------------
/requirements/metadata/orbit-reference-nrb-pol.yaml:
--------------------------------------------------------------------------------
1 | title: Reference Orbit
2 | description: |-
3 | **Usage: Only when Flattened phase per-pixel metadata (see [@measurements/flattened-phase]) is provided.**
4 | threshold: null
5 | goal:
6 | description: |-
7 | Provide the absolute orbit number used as reference for topographic phase flattening.
8 | In case a virtual orbit has been used, provide orbit parameters or orbit state vectors as DOI or URL.
9 |
10 | Provide scene-centred perpendicular baseline for the for the source data relative to the reference orbit used (for approximate use only).
11 | notes:
12 | dependencies:
13 | - measurements/flattened-phase
14 | glossary:
15 | - doi
16 | - url
17 | references:
18 | metadata:
19 | legacy:
20 | sar: 1.7.15
21 | optical:
22 |
--------------------------------------------------------------------------------
/requirements/corrections/geometric-refined-accuracy.yaml:
--------------------------------------------------------------------------------
1 | title: Geometric Refined Accuracy
2 | description:
3 | threshold: null
4 | goal:
5 | description: |-
6 | Values provided under [@corrections/geometric-accuracy-radar] are provided by the SAR mission Cal/Val team.
7 |
8 | CEOS-ARD processing steps could include method refining the geometric accuracy, such as cross-correlation of the SAR data in slant range with a SAR scene simulated from a DSM or DEM.
9 |
10 | Methodology used (name and reference), quality flag, geometric standard deviation values should be provided.
11 | notes:
12 | dependencies:
13 | - corrections/geometric-accuracy-radar
14 | glossary:
15 | - ceos-ard
16 | - dsm
17 | - dem
18 | references:
19 | metadata:
20 | legacy:
21 | sar: 4.4
22 | optical:
23 |
--------------------------------------------------------------------------------
/requirements/metadata/algorithms.yaml:
--------------------------------------------------------------------------------
1 | title: Algorithms
2 | description:
3 | threshold:
4 | description: |-
5 | All algorithms and versions, and the sequence in which they were applied in the generation process, are identified in the metadata.
6 | notes:
7 | goal:
8 | description: |-
9 | As threshold, but only algorithms that have been published in a peer-reviewed journal.
10 | notes:
11 | - It is possible that high-quality corrections are applied through non-disclosed processes. CEOS-ARD does not per-se require full and open data and methods.
12 | - Information on algorithms should be available in the metadata as a single DOI landing page.
13 | dependencies:
14 | glossary:
15 | - ceos-ard
16 | - doi
17 | references:
18 | metadata:
19 | legacy:
20 | sar:
21 | optical: 1.13
22 |
--------------------------------------------------------------------------------
/requirements/metadata/machine-readability.yaml:
--------------------------------------------------------------------------------
1 | title: Metadata Machine Readability
2 | description:
3 | threshold:
4 | description: |-
5 | Metadata is provided in a structure that enables a computer algorithm to be used to consistently and automatically identify and extract each component/variable/layer for further use.
6 | notes:
7 | goal:
8 | description: |-
9 | As threshold, but metadata is formatted in accordance with CEOS-ARD SAR Metadata Specifications, v.1.1, or in a community endorsed standard that facilitates machine-readability, such as ISO 19115-2, Climate and Forecast (CF) convention, the Attribute Convention for Data Discovery (ACDD), etc.
10 | notes:
11 | dependencies:
12 | glossary:
13 | references:
14 | - iso19115_2_2009
15 | metadata:
16 | legacy:
17 | sar: 1.2
18 | optical:
19 |
--------------------------------------------------------------------------------
/requirements/per-pixel/local-incident-angle.yaml:
--------------------------------------------------------------------------------
1 | title: Local Incident Angle Image
2 | description:
3 | threshold:
4 | description: |-
5 | DEM-based Local Incident angle image is provided.
6 |
7 | File format specifications/contents provided in metadata:
8 |
9 | - Sample Type (Angle)
10 | - Data Format (GeoTIFF, HDF5, NetCDF, …)
11 | - Data Type (Int, Float, …)
12 | - Bits per Sample
13 | - Byte Order
14 | # todo: The note seems ORB specific, should only be visible in ORB PFS
15 | notes:
16 | - For maritime ORB scenes when no land areas are covered, a geoid model could be used for the calculation of the local incident angle.
17 | goal: null
18 | dependencies:
19 | glossary:
20 | - dem
21 | - orb
22 | references:
23 | metadata:
24 | legacy:
25 | sar: 2.4
26 | optical:
27 |
--------------------------------------------------------------------------------
/requirements/metadata/data-access-product.yaml:
--------------------------------------------------------------------------------
1 | # todo: make generic for source and product
2 | title: Product Data Access
3 | description:
4 | threshold:
5 | description: |-
6 | Processing parameters details of the CEOS-ARD product:
7 |
8 | - Processing facility
9 | - Processing date
10 | - Software version
11 | - Location from where CEOS-ARD product can be retrieved, expressed as a URL or DOI.
12 | notes:
13 | goal:
14 | description: |-
15 | The metadata identifies an online location from where the data can be consistently and reliably retrieved by a computer algorithm without any manual intervention being required.
16 | notes:
17 | dependencies:
18 | glossary:
19 | - ceos-ard
20 | - url
21 | - doi
22 | references:
23 | metadata:
24 | legacy:
25 | sar: 1.7.1
26 | optical:
27 |
--------------------------------------------------------------------------------
/sections/introduction/when-is-a-product-ceos-ard.yaml:
--------------------------------------------------------------------------------
1 | title: When can a product be called CEOS-ARD?
2 | description: |-
3 | The CEOS-ARD branding is applied to a particular product once:
4 |
5 | - that product has been assessed as meeting CEOS-ARD requirements by the agency responsible for production and distribution of the product, and
6 | - that the assessment has been peer reviewed by the relevant CEOS team(s).
7 |
8 | Agencies or other entities considering undertaking an assessment process should consult the [CEOS-ARD Governance Framework](https://ceos.org/ard/files/CEOS_ARD_Governance_Framework_18-October-2021.pdf).
9 |
10 | A product can continue to use CEOS-ARD branding as long as its generation and distribution remain consistent with the peer-reviewed assessment.
11 | glossary:
12 | - ceos-ard
13 | references:
14 |
--------------------------------------------------------------------------------
/requirements/metadata/spectral-bands.yaml:
--------------------------------------------------------------------------------
1 | title: Spectral Bands
2 | description:
3 | threshold:
4 | description: |-
5 | The central wavelength for each band for which data is included is identified in the metadata, expressed in SI units.
6 | notes:
7 | goal:
8 | description: |-
9 | As threshold, with instrument spectral response details (e.g., full spectral response function) also included or directly accessible using details in the metadata.
10 | Central wavelength and bandwidth at full-width half maximum value of the relative spectral response function are provided at least.
11 | notes:
12 | - Information on spectral bands should be available in the metadata as a single DOI landing page.
13 | dependencies:
14 | glossary:
15 | - si
16 | references:
17 | metadata:
18 | legacy:
19 | sar:
20 | optical: 1.10
21 |
--------------------------------------------------------------------------------
/requirements/metadata/processing-parameters.yaml:
--------------------------------------------------------------------------------
1 | # todo: remove source data mentions to be resuable in other products
2 | title: Source Data Processing Parameters
3 | description:
4 | threshold:
5 | description: |-
6 | Processing parameters details of the source data:
7 |
8 | - Processing facility
9 | - Processing date
10 | - Software version
11 | - Product level
12 | - Product ID (file name)
13 | - Azimuth number of looks
14 | - Range number of looks (separate values for each beam, as necessary)
15 | notes:
16 | goal:
17 | description: |-
18 | As threshold, plus additional relevant processing parameters, e.g., range- and azimuth look bandwidth and LUT applied.
19 | notes:
20 | dependencies:
21 | glossary:
22 | - lut
23 | references:
24 | metadata:
25 | legacy:
26 | sar: 1.6.6
27 | optical:
28 |
--------------------------------------------------------------------------------
/sections/requirement-categories/radiometrically-corrected-measurements.yaml:
--------------------------------------------------------------------------------
1 | # todo: remove cloud-optimized requirement and enable the cloud-optimized-formats requirement instead.
2 | id: rcm
3 | title: Radiometrically Corrected Measurements
4 | description: |-
5 | The requirements indicate the necessary outcomes and, to some degree, the minimum steps necessary to be deemed to have achieved those outcomes.
6 | Radiometric corrections must lead to normalised measurement(s) of backscatter intensity and/or decomposed polarimetric parameters.
7 | As for the per-pixel metadata, information regarding data format specification needs to be provided for each record.
8 | The requirements below must be met for all pixels/samples/observations in a collection.
9 |
10 | *Cloud optimized file formats are recommended.*
11 | glossary:
12 | references:
13 |
--------------------------------------------------------------------------------
/requirements/metadata/image-size.yaml:
--------------------------------------------------------------------------------
1 | # todo: remove product data mentions to be resuable in other products
2 | # todo: remove mention of CEOS-ARD to be reusable outside of CEOS
3 | title: Product Image Size
4 | description:
5 | threshold:
6 | # todo: this is a mixture of requirements.
7 | # file header size seems obsolete, handled by tooling.
8 | # number of no-data border pixels has not really a direct relation with the image size?!
9 | description: |-
10 | Image attributes of the CEOS-ARD product:
11 |
12 | - Number of lines
13 | - Number of pixels per line
14 | - File header size (if applicable)
15 | - Number of no-data border pixels (if applicable)
16 | notes:
17 | goal: null
18 | dependencies:
19 | glossary:
20 | - ceos-ard
21 | references:
22 | metadata:
23 | legacy:
24 | sar: 1.7.9 (edited)
25 | optical:
26 |
--------------------------------------------------------------------------------
/requirements/per-pixel/radar-unit-look-vector-grid.yaml:
--------------------------------------------------------------------------------
1 | title: Radar Unit Look Vector Grid Image
2 | description:
3 | threshold: null
4 | goal:
5 | description: |-
6 | 3-D components radar unit look vector, specified at each pixel in an Earth-Centred Earth-Fixed (ECEF) coordinate system (also called Earth Centred Rotating – ECR) is provided.
7 | It consists of unit vectors from the antenna to the surface pixel (i.e., positive Z component).
8 |
9 | File format specifications/contents provided in metadata:
10 |
11 | - Sample Type (3D unit vector)
12 | - Data Format (GeoTIFF, HDF5, NetCDF, …)
13 | - Data Type (Int, Float, …)
14 | - Bits per Sample
15 | - Byte Order
16 | notes:
17 | dependencies:
18 | glossary:
19 | - ecef
20 | - ecr
21 | references:
22 | metadata:
23 | legacy:
24 | sar: 2.12
25 | optical:
26 |
--------------------------------------------------------------------------------
/requirements/per-pixel/ellipsoidal-incident-angle.yaml:
--------------------------------------------------------------------------------
1 | title: Ellipsoidal Incident Angle Image
2 | description:
3 | threshold: null
4 | goal:
5 | description: |-
6 | Ellipsoidal incident angle is provided.
7 |
8 | File format specifications/contents provided in metadata:
9 |
10 | - Sample Type (Angle)
11 | - Data Format (GeoTIFF, HDF5, NetCDF, …)
12 | - Data Type (Int, Float, …)
13 | - Bits per Sample
14 | - Byte Order
15 | - Reference Ellipsoid Name
16 | # todo: The note seems ORB specific, should only be visible in ORB PFS
17 | notes:
18 | - For maritime ORB scenes when no land areas are covered, the ellipsoidal incident angle is nearly identical to the geoid based local incident angle.
19 | dependencies:
20 | glossary:
21 | - orb
22 | references:
23 | metadata:
24 | legacy:
25 | sar: 2.5
26 | optical:
27 |
--------------------------------------------------------------------------------
/requirements/metadata/image-attributes-sar.yaml:
--------------------------------------------------------------------------------
1 | title: Source Data Image Attributes
2 | description:
3 | threshold:
4 | description: |-
5 | Image attributes related to the source data:
6 |
7 | - Source Data geometry (slant range/ground range)
8 | - Azimuth pixel spacing \[m] (alternatively, Azimuth pixel spacing can be provided in second \[s], equivalent to the azimuth time sample interval)
9 | - Range pixel spacing
10 | - Azimuth resolution
11 | - Range resolution
12 | - Near range incident angle
13 | - Far range incident angle
14 | notes:
15 | goal:
16 | description: |-
17 | Geometry of the image footprint expressed in WGS84 in a standardised format (e.g., WKT).
18 | notes:
19 | dependencies:
20 | glossary:
21 | - wgs84
22 | - wkt
23 | references:
24 | metadata:
25 | legacy:
26 | sar: 1.6.7
27 | optical:
28 |
--------------------------------------------------------------------------------
/requirements/metadata/orbit-reference-gslc.yaml:
--------------------------------------------------------------------------------
1 | title: Reference Orbit
2 | description: |-
3 | **Usage: When a reference orbit is used instead of a virtual orbit (see [@sec:annex-sar-topographic-phase-removal]).**
4 | threshold: null
5 | goal:
6 | description: |-
7 | Provide the absolute orbit number used as reference for topographic phase flattening.
8 | In case a virtual orbit has been used, provide orbit parameters or orbit state vectors as DOI or URL.
9 |
10 | Provide scene-centred perpendicular baseline for the for the source data relative to the reference orbit used (for approximate use only).
11 | notes:
12 | dependencies:
13 | # todo: implement dependencies on other sections
14 | # - sec:annex-sar-topographic-phase-removal
15 | glossary:
16 | - doi
17 | - url
18 | references:
19 | metadata:
20 | legacy:
21 | sar: 1.7.15
22 | optical:
23 |
--------------------------------------------------------------------------------
/requirements/metadata/speckle-filtering.yaml:
--------------------------------------------------------------------------------
1 | # todo: should be named "Speckle Filtering" not "Product Filtering" to allow for other filtering types in the future.
2 | title: Product Filtering
3 | description:
4 | threshold:
5 | # todo: The "(True/False)" is implementation (and metadata language) specific, should not be listed here.
6 | # See also ionosphere-indicator.yaml
7 | description: |-
8 | Flag if speckle filter has been applied (True/False).
9 |
10 | Metadata should include:
11 |
12 | - Reference to algorithm as DOI or URL
13 | - Input filtering parameters
14 | - Type
15 | - Window size in pixel units
16 | - Any other parameters defining the speckle filter used
17 | notes:
18 | goal: null
19 | dependencies:
20 | glossary:
21 | - doi
22 | - url
23 | references:
24 | metadata:
25 | legacy:
26 | sar: 1.7.6
27 | optical:
28 |
--------------------------------------------------------------------------------
/pfs/NLSR/document.yaml:
--------------------------------------------------------------------------------
1 | id: NLSR
2 | title: Nighttime Light Surface Radiance
3 | version: 1.1-draft
4 | type: Optical
5 | applies_to: |-
6 | Data collected with nighttime light sensors operating in the VIS/NIR wavelengths.
7 | These typically operate with ground sample distance and resolution in the order of 10-1000m;
8 | however, the Specification is not inherently limited to this resolution.
9 |
10 | introduction:
11 | - what-are-ceos-ard-products
12 | - when-is-a-product-ceos-ard
13 | - difference-threshold-goal
14 |
15 | # Only glossary entries that are not specific to certain requirements or sections are listed here.
16 | glossary:
17 | - nlsr
18 | - vis
19 | - nir
20 |
21 | references:
22 | - roman2018
23 | - wang2021 # todo: move to req. 3.2?
24 | - mills2014 # todo: move to req. 1.11?
25 | - ryan2019 # todo: move to requirements
26 |
27 | annexes:
28 |
--------------------------------------------------------------------------------
/requirements/per-pixel/insar-phase-uncertainty.yaml:
--------------------------------------------------------------------------------
1 | title: InSAR Phase Uncertainty Image
2 | description:
3 | threshold: null
4 | goal:
5 | description: |-
6 | Estimate of uncertainty in InSAR phase is provided, such as finite signal to noise ratio, quantization noise, or DEM error.
7 | Identification of which error sources are included will be provided as DOI/URL reference or brief description.
8 | It represents statistical variation from known noise sources only.
9 |
10 | File format specifications/contents provided in metadata:
11 |
12 | - Sample Type (Angle)
13 | - Data Format (GeoTIFF, HDF5, NetCDF, …)
14 | - Data Type (Int, Float, …)
15 | - Bits per Sample
16 | - Byte Order
17 | notes:
18 | dependencies:
19 | glossary:
20 | - dem
21 | - doi
22 | - insar
23 | - url
24 | references:
25 | metadata:
26 | legacy:
27 | sar: 2.14
28 | optical:
29 |
--------------------------------------------------------------------------------
/requirements/metadata/geometric-correction-algorithm.yaml:
--------------------------------------------------------------------------------
1 | title: Geometric Correction Algorithm
2 | description:
3 | threshold: null
4 | goal:
5 | description: |-
6 | Metadata references, e.g.:
7 |
8 | - A metadata citable peer-reviewed algorithm
9 | - Technical documentation regarding the implementation of that algorithm expressed as URLs or DOIs
10 | - The sources of auxiliary data used to make corrections
11 | - Resampling method used for geometric processing of the source data
12 | notes:
13 | - Examples of technical documentation can include e.g., an Algorithm Theoretical Basis Document (ATBD) or a product user guide.
14 | dependencies:
15 | glossary:
16 | - auxiliary-data
17 | - atbd
18 | - url
19 | - doi
20 | references:
21 | metadata:
22 | legacy:
23 | # todo: This is product metadata, but is listed in section 4.1?!
24 | sar: 4.1
25 | optical:
26 |
--------------------------------------------------------------------------------
/.github/ISSUE_TEMPLATE/sar-all.yml:
--------------------------------------------------------------------------------
1 | name: SAR - All Products
2 | description: Report an issue or propose a change for the SAR PFS, which applies to more than one product type.
3 | labels:
4 | - SAR
5 | - needs discussion
6 | body:
7 | - type: input
8 | id: version
9 | attributes:
10 | label: PFS Version(s)
11 | description: What version(s) of the PFSes are you referring to?
12 | placeholder: "e.g. 1.0"
13 | - type: input
14 | id: req-no
15 | attributes:
16 | label: Requirement number(s)
17 | description: Which requirement number(s) are you referring to?
18 | placeholder: "e.g. 1.6"
19 | - type: textarea
20 | id: description
21 | attributes:
22 | label: Description
23 | description: Please describe the issue or proposal.
24 | placeholder: Add your description here...
25 | validations:
26 | required: true
27 |
28 |
--------------------------------------------------------------------------------
/.github/ISSUE_TEMPLATE/optical-all.yml:
--------------------------------------------------------------------------------
1 | name: Optical - All Products
2 | description: Report an issue or propose a change for the Optical PFSes, which applies to more than one product type.
3 | labels:
4 | - Optical
5 | - needs discussion
6 | body:
7 | - type: input
8 | id: version
9 | attributes:
10 | label: PFS Version(s)
11 | description: What version(s) of the PFSes are you referring to?
12 | placeholder: "e.g. 5.0.1"
13 | - type: input
14 | id: req-no
15 | attributes:
16 | label: Requirement number(s)
17 | description: Which requirement number(s) are you referring to?
18 | placeholder: "e.g. 1.6"
19 | - type: textarea
20 | id: description
21 | attributes:
22 | label: Description
23 | description: Please describe the issue or proposal.
24 | placeholder: Add your description here...
25 | validations:
26 | required: true
27 |
28 |
--------------------------------------------------------------------------------
/requirements/per-pixel/scattering-area.yaml:
--------------------------------------------------------------------------------
1 | title: Scattering Area Image
2 | description: |-
3 | **Usage: Recommended for scenes that include land areas.**
4 | threshold: null
5 | goal:
6 | description: |-
7 | DEM-based scattering area image used for Gamma-Nought terrain normalisation is provided.
8 | This quantifies the local scattering area used to normalise for radiometric distortions induced by terrain to the measured $\beta^0$ backscatter.
9 | The terrain-flattened $\gamma^0_T$ is best understood as $\beta^0$ divided by the local scattering area.
10 |
11 | File format specifications/contents provided in metadata:
12 |
13 | - Sample Type (Scattering Area)
14 | - Data Format (GeoTIFF, HDF5, NetCDF, …)
15 | - Data Type (Int, Float, …)
16 | - Bits per Sample
17 | - Byte Order
18 | notes:
19 | dependencies:
20 | glossary:
21 | references:
22 | metadata:
23 | legacy:
24 | sar: 2.3
25 | optical:
26 |
--------------------------------------------------------------------------------
/requirements/metadata/traceability-st.yaml:
--------------------------------------------------------------------------------
1 | title: Traceability
2 | description:
3 | threshold: null
4 | goal:
5 | description: |-
6 | Data must be traceable to SI reference standard.
7 | Information on traceability should be available in the metadata as a single DOI landing page.
8 |
9 | - [Policy on measurement traceability](https://anab.qualtraxcloud.com/ShowDocument.aspx?ID=6536)
10 | - [Guidance on measurement traceability](https://anab.qualtraxcloud.com/ShowDocument.aspx?ID=6532)
11 | # todo: the two links above are additions only in ST - can we align this with tracability.yaml?
12 | # todo: both documents lead to an error message only: "You do not have permission to view this document." which makes them useless.
13 | notes:
14 | - SI Traceability requires an estimate of measurement uncertainty.
15 | glossary:
16 | - doi
17 | - si
18 | references:
19 | metadata:
20 | legacy:
21 | sar: null
22 | optical: 1.1
23 |
--------------------------------------------------------------------------------
/templates/template.docx:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 | $for(include-before)$
5 | $include-before$
6 | $endfor$
7 | $if(toc)$
8 | $toc$
9 | $endif$
10 | $if(lof)$
11 | $lof$
12 | $endif$
13 | $if(lot)$
14 | $lot$
15 | $endif$
16 | $body$
17 | $for(include-after)$
18 | $include-after$
19 | $endfor$
20 | $sectpr$
21 |
22 |
23 |
--------------------------------------------------------------------------------
/.github/ISSUE_TEMPLATE/sar-pol.yml:
--------------------------------------------------------------------------------
1 | name: SAR - Polarimetric Radar [POL]
2 | description: Report an issue or propose a change for the SAR PFS, which applies for the Polarimetric Radar \[POL] products.
3 | labels:
4 | - SAR
5 | - 'SAR: GLSC'
6 | - needs discussion
7 | body:
8 | - type: input
9 | id: version
10 | attributes:
11 | label: PFS Version
12 | description: What version of the PFS are you referring to?
13 | placeholder: "e.g. 1.0"
14 | validations:
15 | required: true
16 | - type: input
17 | id: req-no
18 | attributes:
19 | label: Requirement number(s)
20 | description: Which requirement number(s) are you referring to?
21 | placeholder: "e.g. 1.6"
22 | - type: textarea
23 | id: description
24 | attributes:
25 | label: Description
26 | description: Please describe the issue or proposal.
27 | placeholder: Add your description here...
28 | validations:
29 | required: true
30 |
31 |
--------------------------------------------------------------------------------
/.github/ISSUE_TEMPLATE/optical-st.yml:
--------------------------------------------------------------------------------
1 | name: 'Optical: Surface Temperature [ST]'
2 | description: Report an issue or propose a change for the Optical PFSes, which applies for Surface Temperature \[ST] products.
3 | labels:
4 | - 'Optical: ST'
5 | - needs discussion
6 | body:
7 | - type: input
8 | id: version
9 | attributes:
10 | label: PFS Version(s)
11 | description: What version(s) of the PFSes are you referring to?
12 | placeholder: "e.g. 5.0.1"
13 | validations:
14 | required: true
15 | - type: input
16 | id: req-no
17 | attributes:
18 | label: Requirement number(s)
19 | description: Which requirement number(s) are you referring to?
20 | placeholder: "e.g. 1.6"
21 | - type: textarea
22 | id: description
23 | attributes:
24 | label: Description
25 | description: Please describe the issue or proposal.
26 | placeholder: Add your description here...
27 | validations:
28 | required: true
29 |
30 |
--------------------------------------------------------------------------------
/.github/ISSUE_TEMPLATE/sar-orb.yml:
--------------------------------------------------------------------------------
1 | name: SAR - Ocean Radar Backscatter [ORB]
2 | description: Report an issue or propose a change for the SAR PFS, which applies for the Ocean Radar Backscatter \[ORB] products.
3 | labels:
4 | - SAR
5 | - 'SAR: ORB'
6 | - needs discussion
7 | body:
8 | - type: input
9 | id: version
10 | attributes:
11 | label: PFS Version
12 | description: What version of the PFS are you referring to?
13 | placeholder: "e.g. 1.0"
14 | validations:
15 | required: true
16 | - type: input
17 | id: req-no
18 | attributes:
19 | label: Requirement number(s)
20 | description: Which requirement number(s) are you referring to?
21 | placeholder: "e.g. 1.6"
22 | - type: textarea
23 | id: description
24 | attributes:
25 | label: Description
26 | description: Please describe the issue or proposal.
27 | placeholder: Add your description here...
28 | validations:
29 | required: true
30 |
31 |
--------------------------------------------------------------------------------
/.github/ISSUE_TEMPLATE/sar-nrb.yml:
--------------------------------------------------------------------------------
1 | name: SAR - Normalised Radar Backscatter [NRB]
2 | description: Report an issue or propose a change for the SAR PFS, which applies for the Normalised Radar Backscatter \[NRB] products.
3 | labels:
4 | - SAR
5 | - 'SAR: NRB'
6 | - needs discussion
7 | body:
8 | - type: input
9 | id: version
10 | attributes:
11 | label: PFS Version
12 | description: What version of the PFS are you referring to?
13 | placeholder: "e.g. 1.0"
14 | validations:
15 | required: true
16 | - type: input
17 | id: req-no
18 | attributes:
19 | label: Requirement number(s)
20 | description: Which requirement number(s) are you referring to?
21 | placeholder: "e.g. 1.6"
22 | - type: textarea
23 | id: description
24 | attributes:
25 | label: Description
26 | description: Please describe the issue or proposal.
27 | placeholder: Add your description here...
28 | validations:
29 | required: true
30 |
31 |
--------------------------------------------------------------------------------
/.github/ISSUE_TEMPLATE/optical-ar.yml:
--------------------------------------------------------------------------------
1 | name: 'Optical: Aquatic Reflectance [AR]'
2 | description: Report an issue or propose a change for the Optical PFSes, which applies for Aquatic Reflectance \[AR] products.
3 | labels:
4 | - Optical
5 | - 'Optical: AR'
6 | - needs discussion
7 | body:
8 | - type: input
9 | id: version
10 | attributes:
11 | label: PFS Version(s)
12 | description: What version(s) of the PFSes are you referring to?
13 | placeholder: "e.g. 5.0.1"
14 | validations:
15 | required: true
16 | - type: input
17 | id: req-no
18 | attributes:
19 | label: Requirement number(s)
20 | description: Which requirement number(s) are you referring to?
21 | placeholder: "e.g. 1.6"
22 | - type: textarea
23 | id: description
24 | attributes:
25 | label: Description
26 | description: Please describe the issue or proposal.
27 | placeholder: Add your description here...
28 | validations:
29 | required: true
30 |
31 |
--------------------------------------------------------------------------------
/.github/ISSUE_TEMPLATE/sar-glsc.yml:
--------------------------------------------------------------------------------
1 | name: SAR - Geocoded Single-Look Complex [GSLC]
2 | description: Report an issue or propose a change for the SAR PFS, which applies for the Geocoded Single-Look Complex \[GSLC] products.
3 | labels:
4 | - SAR
5 | - 'SAR: GLSC'
6 | - needs discussion
7 | body:
8 | - type: input
9 | id: version
10 | attributes:
11 | label: PFS Version
12 | description: What version of the PFS are you referring to?
13 | placeholder: "e.g. 1.0"
14 | validations:
15 | required: true
16 | - type: input
17 | id: req-no
18 | attributes:
19 | label: Requirement number(s)
20 | description: Which requirement number(s) are you referring to?
21 | placeholder: "e.g. 1.6"
22 | - type: textarea
23 | id: description
24 | attributes:
25 | label: Description
26 | description: Please describe the issue or proposal.
27 | placeholder: Add your description here...
28 | validations:
29 | required: true
30 |
31 |
--------------------------------------------------------------------------------
/requirements/corrections/dem.yaml:
--------------------------------------------------------------------------------
1 | title: Digital Elevation Model
2 | description: |-
3 | **Usage: For products including land areas.**
4 | threshold:
5 | description: |-
6 | - During ortho-rectification, the data provider shall use the same DEM that was used for the radiometric terrain flattening to ensure consistency of the data stack.
7 | - Provide reference to Digital Elevation Model used for geometric terrain correction.
8 | - Provide reference to Earth Gravitational Model (EGM) used for geometric correction.
9 | notes:
10 | goal:
11 | description: |-
12 | - A DEM with comparable or better resolution to the resolution of the output CEOS-ARD product shall be used if available.
13 | Else, the upsampled DEM is identified.
14 | - Resampling method used for preparation of the DEM.
15 | - Method used for resampling the EGM.
16 | notes:
17 | dependencies:
18 | glossary:
19 | - dem
20 | - egm
21 | references:
22 | metadata:
23 | legacy:
24 | sar: 4.2
25 | optical: null
26 |
--------------------------------------------------------------------------------
/.github/ISSUE_TEMPLATE/optical-sr.yml:
--------------------------------------------------------------------------------
1 | name: 'Optical: Surface Reflectance [SR]'
2 | description: Report an issue or propose a change for the Optical PFSes, which applies for Surface Reflaectance \[SR] products.
3 | labels:
4 | - Optical
5 | - 'Optical: SR'
6 | - needs discussion
7 | body:
8 | - type: input
9 | id: version
10 | attributes:
11 | label: PFS Version(s)
12 | description: What version(s) of the PFSes are you referring to?
13 | placeholder: "e.g. 5.0.1"
14 | validations:
15 | required: true
16 | - type: input
17 | id: req-no
18 | attributes:
19 | label: Requirement number(s)
20 | description: Which requirement number(s) are you referring to?
21 | placeholder: "e.g. 1.6"
22 | - type: textarea
23 | id: description
24 | attributes:
25 | label: Description
26 | description: Please describe the issue or proposal.
27 | placeholder: Add your description here...
28 | validations:
29 | required: true
30 |
31 |
--------------------------------------------------------------------------------
/.github/ISSUE_TEMPLATE/optical-nlsr.yml:
--------------------------------------------------------------------------------
1 | name: 'Optical: Nighttime Lights Surface Radiance [NLSR]'
2 | description: Report an issue or propose a change for the Optical PFSes, which applies for Nighttime Lights Surface Radiance \[NLSR] products.
3 | labels:
4 | - Optical
5 | - 'Optical: NLSR'
6 | - needs discussion
7 | body:
8 | - type: input
9 | id: version
10 | attributes:
11 | label: PFS Version(s)
12 | description: What version(s) of the PFSes are you referring to?
13 | placeholder: "e.g. 5.0.1"
14 | validations:
15 | required: true
16 | - type: input
17 | id: req-no
18 | attributes:
19 | label: Requirement number(s)
20 | description: Which requirement number(s) are you referring to?
21 | placeholder: "e.g. 1.6"
22 | - type: textarea
23 | id: description
24 | attributes:
25 | label: Description
26 | description: Please describe the issue or proposal.
27 | placeholder: Add your description here...
28 | validations:
29 | required: true
30 |
31 |
--------------------------------------------------------------------------------
/sections/introduction/what-are-ceos-ard-products.yaml:
--------------------------------------------------------------------------------
1 | title: What is CEOS Analysis Ready Data?
2 | description: |-
3 | CEOS-ARD are products that have been processed to a minimum set of requirements and organized into a form that allows immediate analysis with a minimum of additional user effort.
4 | In general, these products would be resampled onto a common geometric grid (for a given product) and would provide baseline data for further interoperability both through time and with other datasets.
5 |
6 | CEOS-ARD products are intended to be flexible and accessible products suitable for a wide range of users for a wide variety of applications, including particularly time series analysis and multi-sensor application development.
7 | They are also intended to support rapid ingestion and exploitation via high-performance computing, cloud computing and other future data architectures.
8 | They may not be suitable for all purposes and are not intended as a _replacement_ for other types of satellite products.
9 | glossary:
10 | - ceos-ard
11 | references:
12 |
--------------------------------------------------------------------------------
/requirements/metadata/orbit.yaml:
--------------------------------------------------------------------------------
1 | # todo: remove source data mentions to be resuable in other products
2 | title: Source Data Orbit Information
3 | description:
4 | threshold:
5 | description: |-
6 | Information related to the platform orbit used for data processing:
7 |
8 | - Pass direction (asc/desc)[^orbit-pass-direction]
9 | - Orbit data source (e.g., predicted, definite, precise, downlinked, etc.)
10 |
11 | [^orbit-pass-direction]: For data crossing the North or South Pole, it is recommended to produce two distinct products and to use the appropriate “Pass direction” in each.
12 | notes:
13 | goal:
14 | description: |-
15 | As threshold, including also:
16 |
17 | - Platform heading angle expressed in degrees (0-360) from North
18 | - Orbit data file containing state vectors (minimum of 5 state vectors, from 10% of scene length before start time to 10% of scene length after stop time)
19 | - Platform (mean) altitude
20 | notes:
21 | dependencies:
22 | glossary:
23 | references:
24 | metadata:
25 | legacy:
26 | sar: 1.6.5
27 | optical:
28 |
--------------------------------------------------------------------------------
/requirements/per-pixel/dem.yaml:
--------------------------------------------------------------------------------
1 | # Remove "Per-Pixel" from the title, it's inconsistent with other requirements.
2 | title: Per-Pixel DEM
3 | description:
4 | threshold: null
5 | goal:
6 | # todo: there's an ORB specific part, which could be removed as the requirment doesn't apply to ORB?!
7 | # todo: remove mention of CEOS-ARD and SAR to be reusable outside of CEOS
8 | description: |-
9 | Provide DEM or DSM as used during the geometric and radiometric processing of the SAR data, resampled to an exact geometric match in extent and resolution with the CEOS-ARD SAR image product.
10 |
11 | Can also be provided with ORB products containing land areas.
12 |
13 | File format specifications/contents provided in metadata:
14 |
15 | - Sample Type (Height)
16 | - Data Format (GeoTIFF, HDF5, NetCDF, …)
17 | - Data Type (Int, Float, …)
18 | - Bits per Sample
19 | - Byte Order
20 | notes:
21 | dependencies:
22 | glossary:
23 | - ceos-ard
24 | - sar
25 | - dem
26 | - dsm
27 | - orb
28 | references:
29 | metadata:
30 | legacy:
31 | sar: 2.9
32 | optical:
33 |
--------------------------------------------------------------------------------
/requirements/metadata/performance-indicators.yaml:
--------------------------------------------------------------------------------
1 | title: Performance Indicators
2 | description:
3 | threshold:
4 | # todo: remove source data mentions to be resuable in other products
5 | description: |-
6 | Provide performance indicators on data intensity noise level ($\text{NE}\sigma^0$ and/or $\text{NE}\beta^0$ and/or $\text{NE}\gamma^0$, i.e., noise equivalent Sigma- and/or Beta- and/or Gamma-Nought).
7 | Provided for each polarization channel when available.
8 |
9 | Parameter may be expressed as the mean and/or minimum and maximum noise equivalent values of the source data.
10 |
11 | Values do not need to be estimated individually for each product, but may be estimated once for each acquisition mode, and annotated on all products.
12 | notes:
13 | goal:
14 | description: |-
15 | Provide additional relevant performance indicators (e.g., ENL, PSLR, ISLR, and performance reference DOI or URL).
16 | notes:
17 | dependencies:
18 | glossary:
19 | - enl
20 | - pslr
21 | - islr
22 | - doi
23 | - url
24 | references:
25 | metadata:
26 | legacy:
27 | sar: 1.6.9
28 | optical:
29 |
--------------------------------------------------------------------------------
/requirements/metadata/speckle-filtering-pol.yaml:
--------------------------------------------------------------------------------
1 | # todo: should be named "Speckle Filtering" not "Product Filtering" to allow for other filtering types in the future.
2 | title: Product Filtering
3 | description:
4 | threshold:
5 | # todo: The "(True/False)" is implementation (and metadata language) specific, should not be listed here.
6 | # See also ionosphere-indicator.yaml
7 | # todo: The "should" in the last sentence is not a requirement, it is a recommendation, but it's listed as threshold requirement.
8 | description: |-
9 | Flag if speckle filter has been applied (True/False).
10 |
11 | Metadata should include:
12 |
13 | - Reference to algorithm as DOI or URL
14 | - Input filtering parameters
15 | - Type
16 | - Window size in pixel units
17 | - Any other parameters defining the speckle filter used
18 |
19 | Advanced polarimetric filter preserving covariance matrix properties should be applied.
20 | notes:
21 | goal: null
22 | dependencies:
23 | glossary:
24 | - doi
25 | - url
26 | references:
27 | metadata:
28 | legacy:
29 | sar: 1.7.6
30 | optical:
31 |
--------------------------------------------------------------------------------
/templates/no-sectionnumbers.lua:
--------------------------------------------------------------------------------
1 | -- See also: https://github.com/lierdakil/pandoc-crossref/issues/230#issuecomment-2677186070
2 |
3 | function remove_section_identifiers(str)
4 | local parts = {}
5 | for part in string.gmatch(str, "[^|]+") do
6 | table.insert(parts, part)
7 | end
8 | return parts[#parts] or str
9 | end
10 |
11 | function Link(el)
12 | -- pandoc-crossref adds section identifiers (e.g. A.B.C) in front of the section reference link texts.
13 | -- We add a | in front of section labels to be able to remove them.
14 | -- This filter splits labels at the | char and returns only the last part for all links that
15 | -- start with #sec:, which is the default prefix for section references.
16 | if el.target:match("#sec:") then
17 | for i, content in ipairs(el.content) do
18 | if type(content) == "string" then
19 | el.content[i] = remove_section_identifiers(content)
20 | elseif content.t == "Str" then
21 | content.text = remove_section_identifiers(content.text)
22 | end
23 | end
24 | end
25 | return el
26 | end
27 |
28 | return {
29 | { Link = Link }
30 | }
31 |
--------------------------------------------------------------------------------
/requirements/measurements/backscatter-nrb.yaml:
--------------------------------------------------------------------------------
1 | title: Backscatter Measurements (NRB)
2 | description:
3 | threshold:
4 | # todo: the list of file format specifications below comes up more often and should be a separate building block
5 | # todo: is the * behind linar power pointing to the note? Should be a footnote then?
6 | description: |-
7 | “Terrain-flattened” Radiometrically Terrain Corrected (RTC) Gamma-Nought backscatter coefficient ($\gamma^0_T$) is provided for each polarization.
8 |
9 | File format specifications/contents provided in metadata:
10 |
11 | - Measurement Type (Gamma-Nought)
12 | - Backscatter Expression Convention (linear amplitude, linear power\*)
13 | - Polarization (HH, HV, VV, VH)
14 | - Data Format (GeoTIFF, HDF5, NetCDF, …)
15 | - Data Type (Int, Float, …)
16 | - Bits per Sample
17 | - Byte Order
18 | notes:
19 | - Transformation to the logarithm decibel scale is not required or desired as this step can be easily completed by the user if necessary.
20 | goal: null
21 | dependencies:
22 | glossary:
23 | - rtc
24 | references:
25 | metadata:
26 | legacy:
27 | sar: 3.1
28 | optical: null
29 |
--------------------------------------------------------------------------------
/requirements/per-pixel/data-mask.yaml:
--------------------------------------------------------------------------------
1 | title: Data Mask Image
2 | description:
3 | threshold:
4 | description: |-
5 | Mask image indicating:
6 |
7 | - Valid data
8 | - Invalid data
9 | - No data
10 |
11 | File format specifications/contents provided in metadata:
12 |
13 | - Sample Type (Mask)
14 | - Data Format (GeoTIFF, HDF5, NetCDF, …)
15 | - Data Type (Int, …)
16 | - Bits per Sample
17 | - Byte Order
18 | - Bit Value Representation
19 | notes:
20 | goal:
21 | # todo: Land recommendation for ORB shows up in non-ORB PFS
22 | description: |-
23 | As threshold, including additional bit value representations, e.g.:
24 |
25 | - Layover (masked as invalid data in threshold)
26 | - Radar shadow (masked as invalid data in threshold)
27 | - Ocean water
28 | - Land (recommended for ORB)
29 | - RTC applied (e.g., for maritime scenes with land samples for which RTC has been applied)
30 | - DEM gap filling (i.e., interpolated DEM over gaps)
31 | notes:
32 | dependencies:
33 | glossary:
34 | - orb
35 | - rtc
36 | - dem
37 | references:
38 | metadata:
39 | legacy:
40 | sar:
41 | optical:
42 |
--------------------------------------------------------------------------------
/requirements/corrections/radiometric-terrain-algo.yaml:
--------------------------------------------------------------------------------
1 | title: Radiometric Terrain Correction Algorithm
2 | description:
3 | # todo: check whether this was converted correctly, also radiometric-terrain-algo-gslc.yaml.
4 | # The "Goal for [GSLC] product type" comments are confusing and ambiguous.
5 | threshold:
6 | description: |-
7 | Adjustments were made for terrain by modelling the local contributing scattering area using the preferred choice of a published peer-reviewed algorithm to produce radiometrically terrain corrected (RTC) $\gamma^0_T$ backscatter estimates.
8 |
9 | Metadata references, e.g.
10 |
11 | - a citable peer-reviewed algorithm
12 | - technical documentation regarding the algorithm used to generate the backscatter estimates is expressed as URLs or DOIs
13 | - the sources of auxiliary data used to make corrections
14 | notes:
15 | - Examples of technical documentation include an Algorithm, Theoretical Basis Document, product user guide, etc.
16 | goal: null
17 | dependencies:
18 | glossary:
19 | - rtc
20 | - url
21 | - doi
22 | - dem
23 | references:
24 | metadata:
25 | legacy:
26 | sar: 3.4
27 | optical:
28 |
--------------------------------------------------------------------------------
/references/roman2018.bib:
--------------------------------------------------------------------------------
1 | @article{roman2018,
2 | title = {NASA's Black Marble nighttime lights product suite},
3 | journal = {Remote Sensing of Environment},
4 | volume = {210},
5 | pages = {113-143},
6 | year = {2018},
7 | issn = {0034-4257},
8 | doi = {https://doi.org/10.1016/j.rse.2018.03.017},
9 | url = {https://www.sciencedirect.com/science/article/pii/S003442571830110X},
10 | author = {Miguel O. Román and Zhuosen Wang and Qingsong Sun and Virginia Kalb and Steven D. Miller and Andrew Molthan and Lori Schultz and Jordan Bell and Eleanor C. Stokes and Bhartendu Pandey and Karen C. Seto and Dorothy Hall and Tomohiro Oda and Robert E. Wolfe and Gary Lin and Navid Golpayegani and Sadashiva Devadiga and Carol Davidson and Sudipta Sarkar and Cid Praderas and Jeffrey Schmaltz and Ryan Boller and Joshua Stevens and Olga M. {Ramos González} and Elizabeth Padilla and José Alonso and Yasmín Detrés and Roy Armstrong and Ismael Miranda and Yasmín Conte and Nitza Marrero and Kytt MacManus and Thomas Esch and Edward J. Masuoka},
11 | keywords = {Suomi-NPP, JPSS, NASA black marble, VIIRS, Night lights, NTL, Urban dynamics, Long-term monitoring, Lunar BRDF, Albedo, Atmospheric correction}
12 | }
--------------------------------------------------------------------------------
/requirements/measurements/backscatter-gslc.yaml:
--------------------------------------------------------------------------------
1 | title: Backscatter Measurements (GSLC)
2 | description:
3 | threshold:
4 | # todo: the list of file format specifications below comes up more often and should be a separate building block
5 | # todo: is the * behind linar power pointing to the note? Should be a footnote then?
6 | description: |-
7 | Radiometric and Phase Terrain-flattened Gamma-Nought backscatter coefficient ($\gamma^0_T$), in complex number format, is provided for each polarization (e.g., HH, HV, VV, VH).
8 |
9 | File format specifications/contents provided in metadata:
10 |
11 | - Measurement Type (Gamma-Nought)
12 | - Backscatter Expression Convention (linear amplitude, linear power\*)
13 | - Polarization (HH, HV, VV, VH)
14 | - Data Format (GeoTIFF, HDF5, NetCDF, …)
15 | - Data Type (Int, Float, …)
16 | - Bits per Sample
17 | - Byte Order
18 | notes:
19 | - Transformation to the logarithm decibel scale is not required or desired as this step can be easily completed by the user if necessary.
20 | goal: null
21 | dependencies:
22 | glossary:
23 | - rtc
24 | references:
25 | metadata:
26 | legacy:
27 | sar: 3.1
28 | optical: null
29 |
--------------------------------------------------------------------------------
/sections/introduction/difference-threshold-goal.yaml:
--------------------------------------------------------------------------------
1 | title: What is the difference between Threshold and Goal?
2 | description: |-
3 | **Threshold** (Minimum) requirements are the **minimum** that is needed for the data to be analysis ready.
4 | This must be practical and accepted by the data producers.
5 |
6 | **Goal** (Desired) requirements (previously referred to as “Target”) are the ideal; where we would like to be.
7 | Some providers may already meet these.
8 |
9 | Products that meet all _threshold_ requirements should be immediately useful for scientific analysis or decision-making.
10 |
11 | Products that meet _goal_ requirements will reduce the overall product uncertainties and enhance broad-scale applications.
12 | For example, the products may enhance interoperability or provide increased accuracy through additional corrections that are not reasonable at the _threshold_ level.
13 |
14 | Goal requirements anticipate continuous improvement of methods and evolution of community expectations, which are both normal and inevitable in a developing field.
15 | Over time, _goal_ specifications may (and subject to due process) become accepted as _threshold_ requirements.
16 | glossary:
17 | references:
18 |
--------------------------------------------------------------------------------
/requirements/measurements/mean-wind-normalised-backscatter.yaml:
--------------------------------------------------------------------------------
1 | title: Mean Wind-Normalised Backscatter Measurements
2 | description: |-
3 | **Usage:** Only for Maritime scenes.
4 | threshold: null
5 | goal:
6 | description: |-
7 | Mean wind-normalised (over ocean) backscatter coefficient is provided for each available polarization.
8 | It is calculated as the ratio between the backscatter intensity and a simulated backscatter intensity image generated using an ocean surface wind model such as, e.g., [@quilfen1998] or [@vachon2000] for VV and HH polarization respectively.
9 |
10 | File format specifications/contents provided in metadata:
11 |
12 | - Measurement Type (Wind-Normalised Backscatter)
13 | - Backscatter Expression Convention (intensity ratio)
14 | - Polarization (HH, HV, VV, VH)
15 | - Data Format (GeoTIFF, HDF5, NetCDF, …)
16 | - Data Type (Int, Float, …)
17 | - Bits per Sample
18 | - Byte Order
19 | notes:
20 | - Reference wind model, wind speed and direction used for reference backscattering coefficient should be provided.
21 | dependencies:
22 | glossary:
23 | references:
24 | - quilfen1998
25 | - vachon2000
26 | metadata:
27 | legacy:
28 | sar: 3.6
29 | optical: null
30 |
31 |
32 |
33 |
--------------------------------------------------------------------------------
/pfs/ST/requirements.yaml:
--------------------------------------------------------------------------------
1 | - category: general-metadata
2 | requirements:
3 | - metadata/traceability-st
4 | - metadata/machine-readability-st
5 | - metadata/time-st
6 | - metadata/geo-area-st
7 | - metadata/crs-st
8 | - metadata/map-projection
9 | - metadata/geometric-correction-methods
10 | - metadata/geometric-accuracy
11 | - metadata/instrument-st
12 | - metadata/spectral-bands
13 | - metadata/sensor-calibration-st
14 | - metadata/radiometric-accuracy-st
15 | - metadata/algorithms
16 | - metadata/auxiliary-data-st
17 | - metadata/processing-chain-prov
18 | - metadata/data-access-st
19 | - metadata/data-quality
20 | - category: per-pixel-metadata
21 | requirements:
22 | - metadata/machine-readability-st2
23 | - per-pixel/nodata
24 | - per-pixel/incomplete-testing
25 | - per-pixel/saturation
26 | - per-pixel/cloud
27 | - per-pixel/cloud-shadow
28 | - per-pixel/snow-ice
29 | - per-pixel/solar-view-angles
30 | - category: radiometric-atmospheric-corrections
31 | requirements:
32 | - measurements/measurement-st
33 | - corrections/atmosphere-emissivity
34 | - measurements/uncertainty-st
35 | - category: geometric-corrections
36 | requirements:
37 | - corrections/geometric
--------------------------------------------------------------------------------
/requirements/corrections/radiometric-terrain-algo-gslc.yaml:
--------------------------------------------------------------------------------
1 | title: Radiometric Terrain Correction Algorithm
2 | description:
3 | # todo: check whether this was converted correctly, also radiometric-terrain-algo.yaml.
4 | # The "Goal for [GSLC] product type" comments are confusing and ambiguous.
5 | threshold: null
6 | goal:
7 | description: |-
8 | Adjustments were made for terrain by modelling the local contributing scattering area using the preferred choice of a published peer-reviewed algorithm to produce radiometrically terrain corrected (RTC) $\gamma^0_T$ backscatter estimates.
9 |
10 | Metadata references, e.g.
11 |
12 | - a citable peer-reviewed algorithm
13 | - technical documentation regarding the algorithm used to generate the backscatter estimates is expressed as URLs or DOIs
14 | - the sources of auxiliary data used to make corrections
15 |
16 | Require resolution of DEM better than the output product resolution when applying terrain corrections.
17 | notes:
18 | - Examples of technical documentation include an Algorithm, Theoretical Basis Document, product user guide, etc.
19 | dependencies:
20 | glossary:
21 | - rtc
22 | - url
23 | - doi
24 | - dem
25 | references:
26 | metadata:
27 | legacy:
28 | sar: 3.4
29 | optical:
30 |
--------------------------------------------------------------------------------
/requirements/measurements/backscatter-orb.yaml:
--------------------------------------------------------------------------------
1 | title: Backscatter Measurements (ORB)
2 | description:
3 | threshold:
4 | # todo: the list of file format specifications below comes up more often and should be a separate building block
5 | # todo: is the * behind linar power pointing to the note? Should be a footnote then?
6 | description: |-
7 | Geoid-corrected Sigma-Nought backscatter coefficient ($\sigma^0$) is provided for each polarization.
8 |
9 | File format specifications/contents provided in metadata:
10 |
11 | - Measurement Type (Sigma-Nought)
12 | - Backscatter Expression Convention (linear amplitude, linear power\*)
13 | - Backscatter Conversion Equation
14 | - Polarization (HH, HV, VV, VH)
15 | - Data Format (GeoTIFF, HDF5, NetCDF, …)
16 | - Data Type (Int, Float, …)
17 | - Bits per Sample
18 | - Byte Order
19 | notes:
20 | - Transformation to the logarithm decibel scale is not required or desired as this step can be easily completed by the user if necessary.
21 | goal:
22 | description: |-
23 | Radiometrically Terrain-corrected Sigma-Nought backscatter coefficient ($\sigma^0_T$) is provided for each polarization.
24 | notes:
25 | dependencies:
26 | glossary:
27 | references:
28 | metadata:
29 | legacy:
30 | sar: 3.1
31 | optical: null
32 |
--------------------------------------------------------------------------------
/pfs/ST/document.yaml:
--------------------------------------------------------------------------------
1 | id: ST
2 | title: Surface Temperature
3 | version: 5.0-draft
4 | type: Optical
5 | applies_to: |-
6 | Applies to data collected with multispectral sensors operating in the thermal infrared (TIR) wavelengths.
7 | These typically operate with ground sample distance and resolution in the order of 10-100m;
8 | however, the Specification is not inherently limited to this resolution.
9 |
10 | At present, surface temperature measurements tend to be provided as either surface brightness temperature (SBT) or as land surface temperatures (LST) requiring the SBT to be modified according to the emissivity of the target.
11 | This specification identifies the Surface Temperature (ST) as being the minimum or Threshold requirement for analysis ready land surface data. Nevertheless, both SBT and LST are land measurements, requiring atmospheric corrections.
12 |
13 | introduction:
14 | - what-are-ceos-ard-products
15 | - when-is-a-product-ceos-ard
16 | - difference-threshold-goal
17 |
18 | # Only glossary entries that are not specific to certain requirements or sections are listed here.
19 | glossary:
20 | - st
21 | - tir
22 | - sbt
23 | - lst
24 |
25 | references:
26 | - cook2014
27 | - li2013
28 |
29 | annexes:
30 | - st-metadata-examples # todo: these should be part of the requirements as examples
31 |
--------------------------------------------------------------------------------
/requirements/metadata/look-direction-polynomials.yaml:
--------------------------------------------------------------------------------
1 | title: Look Direction Polynomials
2 | description:
3 | threshold:
4 | # todo: reference item 2.11
5 | # todo: [m, deg, arcsec] seem XML encoding specific, should be described in general (e.g., meters, degree, arcsecond).
6 | description: |-
7 | In case the Look Direction Image (see [@per-pixel/look-direction]) is **not** provided, then a list of the polynomial coefficients are necessary to reconstruct the look direction angle[^look-direction-angle], together with an estimate of the added error from use of polynomial vs. per-pixel more accurate values, shall be provided.
8 |
9 | Example polynomial:
10 |
11 | $$
12 | \text{LookDir} = a_{1}\text{Lat}^2 + a_{2}\text{Lon}^2 + a_{3}\text{LatLon} + a_{4}\text{Lat} + a_{5}\text{Lon} + a_6
13 | $$
14 |
15 | where:
16 |
17 | - $a_i$ = polynomial coefficients
18 | - $\text{Lat}$ = latitude
19 | - $\text{Lon}$ = longitude
20 |
21 | Lat and Lon are the related coordinates in the product map units (m, deg, arcsec).
22 |
23 | [^look-direction-angle]: The look direction angle represents the planar angle between north and each range direction. It is not constant in range, especially close to the poles.
24 | notes:
25 | goal: null
26 | dependencies:
27 | - per-pixel/look-direction
28 | glossary:
29 | references:
30 | metadata:
31 | legacy:
32 | sar: 1.7.12
33 | optical:
34 |
--------------------------------------------------------------------------------
/requirements/corrections/gridding-convention.yaml:
--------------------------------------------------------------------------------
1 | title: Gridding Convention
2 | description:
3 | threshold:
4 | description: |-
5 | A consistent gridding/sampling frame is used. The origin is chosen to minimise any need for subsequent resampling between multiple products (be they from the same or different providers).
6 | This is typically accomplished via a “snap to grid” in relation to the most proximate grid tile in a global system.
7 | notes:
8 | - If a product hierarchy of resolutions exists (or is planned), the multiple resolutions should nest within each other (e.g., 12.5m, 25m, 50m, 100m, etc.), and not be disjoint.
9 | goal:
10 | description: |-
11 | Provide DOI or URL to gridding convention used.
12 |
13 | When multiple providers share a common map projection, providers are encouraged to standardise the origins of their products among each other.
14 |
15 | In the case of UTM/UPS coordinates, the upper left corner coordinates should be set to an integer multiple of sample intervals from a 100 km by 100 km grid tile of the Military Grid Reference System's 100k coordinates (“snap to grid”).
16 |
17 | For products presented in geographic coordinates (latitude and longitude), the origin should be set to an integer multiple of samples in relation to the closest integer degree.
18 | notes:
19 | dependencies:
20 | glossary:
21 | - doi
22 | - url
23 | - utm
24 | - ups
25 | references:
26 | metadata:
27 | legacy:
28 | sar: 4.5
29 | optical:
30 |
--------------------------------------------------------------------------------
/requirements/per-pixel/acquisition-id.yaml:
--------------------------------------------------------------------------------
1 | title: Acquisition ID Image
2 | description:
3 | threshold:
4 | # todo: this mixes per-pixel metadata with general metadata (see last paragraphs)
5 | # todo: the list of file format specifications below comes up more often and should be a separate building block
6 | description: |-
7 | **Required for multi-source product only.**
8 |
9 | Acquisition ID, or acquisition date, for each pixel is identified.
10 |
11 | In case of multi-temporal image stacks, use a source acquisition ID (i.e., [@metadata/acquisition-id]) to list contributing images.
12 |
13 | In case of date, data represent (integer or fractional) day offset to reference observation date (in UTC). Date used as reference (“Day 0”) is provided in the metadata.
14 |
15 | Pixels not representing a unique date (e.g., pixels averaged in image overlap zones) are flagged with a pre-set pixel value that is provided in the metadata.
16 |
17 | File format specifications/contents provided in metadata:
18 |
19 | - Sample type (Day, Time, ID)
20 | - Data Format (GeoTIFF, HDF5, NetCDF, …)
21 | - Data Type (Int, Float, …)
22 | - Bits per sample
23 | - Byte Order
24 | notes:
25 | goal:
26 | description: |-
27 | In case of image composites, the sources for each pixel are uniquely identified.
28 | notes:
29 | dependencies:
30 | - metadata/acquisition-id
31 | glossary:
32 | - utc
33 | references:
34 | metadata:
35 | legacy:
36 | sar: 2.8
37 | optical: null
38 |
--------------------------------------------------------------------------------
/requirements/measurements/flattened-phase.yaml:
--------------------------------------------------------------------------------
1 | title: Flattened Phase
2 | # todo: what does this usage instruction mean?
3 | description: |-
4 | **Usage: Alternative to GSLC product for NRB and POL products**
5 | threshold: null
6 | goal:
7 | # todo: the list of file format specifications below comes up more often and should be a separate building block
8 | description: |-
9 | The Flattened Phase is the interferometric phase for which the topographic phase contribution is removed.
10 | It is derived from the range-Doppler SLC product using a DEM and the orbital state vectors with respect to a reference orbit (see [@sec:annex-sar-topographic-phase-removal]).
11 | The use of the Flattened Phase with the NRB or POL intensity ([@sec:rcm]) provides the GSLC equivalent, as follows:
12 |
13 | $$
14 | \text{GSLC} = \sqrt{NRB} \times \exp(j \cdot \text{FlattenPhase})
15 | $$
16 |
17 | File format specifications/contents provided in metadata:
18 |
19 | - Measurement Type (Flattened Phase)
20 | - Reference Polarization (HH/HV/VV/VH)
21 | - Data Format (GeoTIFF, HDF5, NetCDF, …)
22 | - Data Type (Int, Float, …)
23 | - Bits per Sample
24 | - Byte Order
25 |
26 | In case of polarimetric data, indicate the reference polarization.
27 | notes:
28 | dependencies:
29 | # todo: implement dependencies on other sections
30 | # - sec:annex-sar-topographic-phase-removal
31 | # - sec:rcm
32 | glossary:
33 | - dem
34 | - slc
35 | - gslc
36 | - nrb
37 | - orb
38 | references:
39 | metadata:
40 | legacy:
41 | sar: 3.7
42 | optical: null
43 |
--------------------------------------------------------------------------------
/pfs/SAR-ORB/document.yaml:
--------------------------------------------------------------------------------
1 | id: SAR-ORB
2 | title: Ocean Radar Backscatter
3 | version: 1.2-draft
4 | type: Synthetic Aperture Radar
5 | applies_to: |-
6 | This PFS is specifically aimed at users interested in exploring the potential of SAR but who may lack the expertise or facilities for SAR processing.
7 |
8 | The CEOS-ARD Ocean Radar Backscatter (ORB) product specification describes products that have been projected on a geoid and are provided in the Sigma-Nought ($\sigma^0$) backscatter convention, which is recommended for most ocean applications.
9 | Backscatter may be calibrated to the ellipsoid ($\sigma^0_E$) or radiometrically terrain corrected ($\sigma^0_T$) prior to geometric terrain correction.
10 | As the basic ORB product contains backscatter values only, it _cannot_ be directly used for SAR polarimetry or interferometric applications that require local phase estimates.
11 | Nonetheless, an advanced ORB product could include the upper diagonal of the polarimetric $\sigma^0$ covariance matrix for enabling advanced polarimetric analysis (similar to the POL product).
12 |
13 | introduction:
14 | - what-are-ceos-ard-products
15 | - when-is-a-product-ceos-ard
16 | - difference-threshold-goal
17 |
18 | # Only glossary entries that are not specific to certain requirements or sections are listed here.
19 | glossary:
20 | - orb
21 | - pol
22 |
23 | references:
24 | - iso19115_2_2009
25 |
26 | annexes:
27 | - sar-general-processing-roadmap
28 | - sar-topographic-phase-removal
29 | - sar-pol-covmat # todo: not specific to ORB, but added to fix broken cross references
30 | - sar-orb-example
31 |
--------------------------------------------------------------------------------
/CONTRIBUTING.md:
--------------------------------------------------------------------------------
1 | # Contributing
2 |
3 | Pull Requests are the primary method of contributing to CEOS-ARD, and everyone is welcome to submit proposals.
4 |
5 | We consider everyone using the Product Family Specifications to enrich their data to be a 'contributor',
6 | as CEOS-ARD is really about the end result of more interoperable data, not just creating a specification for the sake of it.
7 | So if you want to help then the best thing you can do is make new ARD available, build software that uses the specification, or give feedback.
8 |
9 | ## Submitting Pull Requests
10 |
11 | Any proposed changes to the specification should be done as pull requests,
12 | ideally after discussing the changes in an issue before.
13 |
14 | All pull requests additionally require a review of a CEOS-ARD team members.
15 |
16 | ## Development / Authoring
17 |
18 | 1. [Install the CEOS-ARD CLI](https://github.com/ceos-org/ceos-ard-cli?tab=readme-ov-file#installation)
19 | 2. Validate building blocks: `ceos-ard validate`
20 | 3. Generate the documents for a specific PFS (e.g. `SR`): `ceos-ard generate SR`
21 | 4. Generate all documents: `ceos-ard generate-all`
22 |
23 | ## Release Process
24 |
25 | The CI already already creates Editor's Drafts. These can be used to create releases.
26 |
27 | Use that file, check whether everything looks good and then create PDF from it.
28 |
29 | These two files can then be uploaded to the CEOS-ARD website.
30 |
31 | Also make sure to update the tables in the README files and on the CEOS-ARD website.
32 | In the README files make sure to add the now outdated version version to the
33 | "Older Versions" table at the top. Also update the links and version number in
34 | the "Released Version" section.
35 |
--------------------------------------------------------------------------------
/requirements/measurements/backscatter-pol.yaml:
--------------------------------------------------------------------------------
1 | title: Backscatter Measurements (POL)
2 | description:
3 | threshold:
4 | # todo: the list of file format specifications below comes up more often and should be a separate building block
5 | description: |-
6 | Measurements can be one of the following types or both:
7 |
8 | - **Normalised Radar Covariance Matrix (CovMat)**
9 | Diagonal (equivalent to NRB) and upper diagonal elements of the terrain-flattened Gamma-Nought ($\gamma^0_T$) Covariance Matrix are provided for coherent dual (e.g., HH-HV, VV-VH, or …) and fully polarimetric (e.g., HH-HV-VH-VV) acquisitions.
10 | - **Polarimetric Radar Decomposition (PRD)**
11 | The individual components of the polarimetric decomposition obtained from the terrain-flattened (Gamma-Nought, $\gamma^0_T$) covariance matrix.
12 |
13 | File format specifications/contents provided in metadata:
14 |
15 | - Measurement Type (CovMat, PRD)
16 | - Measurement convention unit (linear amplitude, linear power, angle)
17 | - Individual covariance matrix element or/and Individual component of the decomposition (C3m11, C3m12, … or H, A, alpha, or …)
18 | - Data Format (GeoTIFF, HDF5, NetCDF, …)
19 | - Data Type (Int, Float, Complex, …)
20 | - Bits per Sample
21 | - Byte Order
22 | notes:
23 | # todo: add glossary entries for BIP, BIL, BSQ?
24 | - |-
25 | It is recommended to keep CovMat or PRD measurement files separated.
26 | Otherwise, specify the multi-channel format order (BIP, BIL, BSQ).
27 | goal: null
28 | dependencies:
29 | glossary:
30 | - covmat
31 | - nrb
32 | - prd
33 | references:
34 | metadata:
35 | legacy:
36 | sar: 3.1
37 | optical: null
38 |
--------------------------------------------------------------------------------
/requirements/corrections/geometric.yaml:
--------------------------------------------------------------------------------
1 | title: Geometric Correction
2 | description:
3 | threshold:
4 | description: |-
5 | Sub-pixel accuracy is achieved in **relative** geolocation, that is, the pixels from the same instrument and platform are consistently located, and in thus comparable, through time.
6 |
7 | Sub-pixel accuracy is taken to be less than or equal to 0.5 pixel radial root mean square error (rRMSE) or equivalent in Circular Error Probability (CEP) relative to a defined reference image.
8 |
9 | A consistent gridding/sampling frame is necessary to meet this requirement.
10 |
11 | Relevant metadata must be provided under [@metadata/geometric-accuracy] and [@metadata/instrument-st].
12 | notes:
13 | - |-
14 | The threshold level will not necessarily enable interoperability between data from different sources as the geometric corrections for each of the sources may differ.
15 | goal:
16 | # todo: The last two paragraphs already a threshold req. -> remove below?
17 | description: |-
18 | Sub-pixel accuracy is achieved relative to an identified absolute independent terrestrial referencing system (such as a national map grid).
19 |
20 | A consistent gridding/sampling frame is necessary to meet this requirement.
21 |
22 | Relevant metadata must be provided under [@metadata/geometric-accuracy] and [@metadata/instrument-st].
23 | notes:
24 | - |-
25 | This requirement is intended to enable interoperability between imagery from different platforms that meet this level of correction, and with non-image spatial data such as GIS layers and terrain models.
26 | dependencies:
27 | - metadata/geometric-accuracy
28 | - metadata/instrument-st
29 | glossary:
30 | - cep
31 | - gis
32 | - rrmse
33 | references:
34 | metadata:
35 | legacy:
36 | sar:
37 | optical: 4.1
38 |
--------------------------------------------------------------------------------
/pfs/SAR-NRB/document.yaml:
--------------------------------------------------------------------------------
1 | id: SAR-NRB
2 | title: Normalised Radar Backscatter
3 | version: 1.2-draft
4 | type: Synthetic Aperture Radar
5 | applies_to: |-
6 | This PFS is specifically aimed at users interested in exploring the potential of SAR but who may lack the expertise or facilities for SAR processing.
7 |
8 | The CEOS-ARD Normalised Radar Backscatter (NRB) specification describes products that have been subject to Radiometric Terrain Correction (RTC) and are provided in the Gamma-Nought ($\gamma^0_T$) backscatter convention [@small2011], which mitigates the variations from diverse observation geometries and is recommended for most land applications.
9 | An additional metadata layer can be optionally provided for conversion of $\gamma^0_T$ to Sigma-Nought ($\sigma^0_T$) backscatter layer for compatibility with legacy software or numerical models.
10 | As the NRB product contains backscatter values only, it cannot be directly used for SAR polarimetry or interferometric applications that require relative polarization phase or local phase estimates respectively.
11 | However, as an option, a “flattened” phase data layer can be provided with an NRB product for enabling InSAR analysis.
12 | The flattened phase is the interferometric phase, with respect to a reference orbit and to a DEM, for which the topographic phase contribution is removed.
13 |
14 | introduction:
15 | - what-are-ceos-ard-products
16 | - when-is-a-product-ceos-ard
17 | - difference-threshold-goal
18 |
19 | # Only glossary entries that are not specific to certain requirements or sections are listed here.
20 | glossary:
21 | - metadata
22 | - nrb
23 | - rtc
24 | - insar
25 | - dem
26 |
27 | references:
28 | - iso19115_2_2009
29 |
30 | annexes:
31 | - sar-general-processing-roadmap
32 | - sar-topographic-phase-removal
33 | - sar-pol-covmat # todo: not specific to NRB, but added to fix broken cross references
34 |
--------------------------------------------------------------------------------
/requirements/corrections/geometric-accuracy-radar.yaml:
--------------------------------------------------------------------------------
1 | title: Geometric Accuracy
2 | description:
3 | threshold:
4 | # todo: remove mention of CEOS-ARD to be reusable outside of CEOS
5 | description: |-
6 | Accurate geolocation is a prerequisite to radar processing to correct for terrain and to enable interoperability between radar sensors.
7 |
8 | The absolute geolocation error (ALE) for a sensor is typically assessed through analysis of Single Look Complex (SLC) imagery and measured along the slant range and azimuth directions (case A: SLC ALE).
9 |
10 | The end-to-end “ARD” ALE of the final CEOS-ARD product could be measured directly in the final image product in the chosen map projection, i.e., in the map coordinate directions: e.g., Northing and Easting (case B: ARD ALE).
11 |
12 | Providing accuracy estimates based on measurements following at least one scheme (A or B or both) meets the threshold requirement.
13 |
14 | Estimates of the ALE is provided as a bias and a standard deviation, with (Case A) SLC ALE expressed in slant range and azimuth, and (Case B) ARD ALE expressed in map projection dimensions.
15 | notes:
16 | - This assessment is often made through comparison of measured corner reflector positions with their projected location in the imagery. In some cases, other mission calibration/validation results may be used.
17 | - The ALE is not typically assessed for every processed image, but through an ALE assessment by the data processing team characterizing all or (usually a subset) of the generated products.
18 | goal:
19 | description: |-
20 | Output product sub-sample accuracy should be less than or equal to 0.1 (slant range) pixel radial root mean square error (rRMSE).
21 |
22 | Provide documentation of estimates of ALE as DOI or URL.
23 | notes:
24 | dependencies:
25 | glossary:
26 | - ale
27 | - doi
28 | - rrmse
29 | - slc
30 | - url
31 | references:
32 | metadata:
33 | legacy:
34 | sar: 4.3
35 | optical:
36 |
--------------------------------------------------------------------------------
/pfs/SAR-GSLC/document.yaml:
--------------------------------------------------------------------------------
1 | id: SAR-GSLC
2 | title: Geocoded Single-Look Complex
3 | version: 1.2-draft
4 | type: Synthetic Aperture Radar
5 | applies_to: |-
6 | This PFS is specifically aimed at users interested in exploring the potential of SAR but who may lack the expertise or facilities for SAR processing.
7 |
8 | The CEOS-ARD Geocoded Single-Look Complex (GSLC) product is relevant to interferometric studies.
9 | The GSLC product is derived from the range-Doppler (i.e. slant range) Single-Look Complex (SLC) product using a DEM and the orbital state vectors and output in the map projected system.
10 | The phase of a geocoded SLC is “flattened” with respect to a reference orbit and to a DEM, to eliminate topographic phase contributions [@zebker2017; @zheng2017].
11 | The sample spacing of the GSLC product in the map coordinate directions is comparable to the full resolution original SLC product.
12 | The GSLC product can be directly overlaid on a map or combined with other similar GSLC products to derive interferograms and create change maps, for example.
13 | Since the GSLC phase is flattened, the phase difference between two GSLC products acquired on a same relative orbit produces an interferogram referring only to surface displacement and noise (i.e., no topographic fringes).
14 | The GSLC product may optionally be radiometrically terrain corrected such that the squared amplitude yields $\gamma^0_T$.
15 |
16 | introduction:
17 | - what-are-ceos-ard-products
18 | - when-is-a-product-ceos-ard
19 | - difference-threshold-goal
20 |
21 | # Only glossary entries that are not specific to certain requirements or sections are listed here.
22 | glossary:
23 | - dem
24 | - gslc
25 | - sar
26 | - slc
27 |
28 | references:
29 | - iso19115_2_2009
30 | - zebker2017
31 | - zheng2017
32 |
33 | annexes:
34 | - sar-general-processing-roadmap
35 | - sar-topographic-phase-removal
36 | - sar-pol-covmat # todo: not specific to GSLC, but added to fix broken cross references
37 | - sar-gslc-example
38 |
--------------------------------------------------------------------------------
/sections/annexes/sar-orb-example.md:
--------------------------------------------------------------------------------
1 | In contrast to NRB and POL, CEOS-ARD Ocean Radar Backscatter ORB products are geoid corrected and are provided in the Sigma-Nought (σE0) backscatter convention ([@fig:sar-orb-example-fig1a]), which is recommended for most ocean applications. In addition, availability of the “Local (or Ellipsoidal) Incidence Angle Image” ([@fig:sar-orb-example-fig1d]) and “Look Direction Image” per-pixel metadata are highly recommended (otherwise the general metadata “Look Direction Polynomials”) since they required for operational applications like ocean wind field estimates.
2 |
3 | The following figures show Sentinel-1 ORB products of the Tropical Cyclone Harold passing Vanuatu on April 6, 2020:
4 |
5 | {#fig:sar-orb-example-fig1a}
6 |
7 | {#fig:sar-orb-example-fig1b}
8 |
9 | {#fig:sar-orb-example-fig1c}
10 |
11 | {#fig:sar-orb-example-fig1d}
12 |
13 | Another useful file is the “Mean Wind-Normalised Backscatter Measurements” ([@fig:sar-orb-example-fig2b]) which efficiently attenuates intensity variation along range and visually enhances oceanic features. This file is calculated as the ratio between the backscatter intensity and a simulated backscatter intensity image generated using an ocean surface wind model, like CMOD\_IRF2 [@quilfen1998] for VV polarization or CMOD\_IRF2K [@vachon2000] for HH polarization, and the SAR local incidence angle and the look direction information.
14 |
15 | The following figures show Sentinel-1 EW ORB products:
16 |
17 | {#fig:sar-orb-example-fig2a}
18 |
19 | {#fig:sar-orb-example-fig2b}
20 |
--------------------------------------------------------------------------------
/pfs/SAR-ORB/requirements.yaml:
--------------------------------------------------------------------------------
1 | - category: general-metadata
2 | requirements:
3 | # todo: most of the general metadata is product metadata - this should potentially be merged.
4 | - metadata/traceability-sar
5 | - metadata/machine-readability
6 | - metadata/product-type-sar
7 | - metadata/pfs-url
8 | - metadata/time
9 | - category: source-metadata
10 | requirements:
11 | - metadata/acquisition-id # todo: this is new from the category description
12 | - metadata/data-access-source
13 | - metadata/instrument
14 | - metadata/time-source
15 | - metadata/acquisition-parameters-sar
16 | - metadata/orbit
17 | - metadata/processing-parameters
18 | - metadata/image-attributes-sar
19 | - metadata/sensor-calibration
20 | - metadata/performance-indicators
21 | - metadata/polarimetric-calibration-matrices
22 | - metadata/mean-faraday-rotation-angle
23 | - metadata/ionosphere-indicator
24 | - category: product-metadata
25 | requirements:
26 | - metadata/data-access-product
27 | - metadata/auxiliary-data
28 | - metadata/sample-spacing
29 | - metadata/enl
30 | - metadata/resolution
31 | - metadata/speckle-filtering
32 | - metadata/geo-bbox
33 | - metadata/geo-area
34 | - metadata/image-size
35 | - metadata/pixel-coordinate-convention
36 | - metadata/crs
37 | - metadata/look-direction-polynomials
38 | - category: per-pixel-metadata
39 | requirements:
40 | # - cloud-optimized-formats
41 | - metadata/machine-readability
42 | - per-pixel/data-mask
43 | - per-pixel/scattering-area
44 | - per-pixel/local-incident-angle
45 | - per-pixel/ellipsoidal-incident-angle
46 | - per-pixel/noise-power
47 | - per-pixel/acquisition-id
48 | - per-pixel/geoid
49 | - per-pixel/look-direction
50 | - category: radiometrically-corrected-measurements
51 | requirements:
52 | # - cloud-optimized-formats
53 | - measurements/backscatter-orb
54 | - metadata/scaling-conversion
55 | - metadata/noise-removal
56 | - metadata/radiometric-accuracy
57 | - measurements/mean-wind-normalised-backscatter
58 | - category: geometric-corrections
59 | requirements:
60 | - metadata/geometric-correction-algorithm
61 | - corrections/dem
62 | - corrections/geometric-accuracy-radar
63 | - corrections/geometric-refined-accuracy
64 | - corrections/gridding-convention
--------------------------------------------------------------------------------
/sections/annexes/sar-pol-examples.md:
--------------------------------------------------------------------------------
1 | From fully polarimetric covariance matrix ARD format POL (Level-2a), it is possible to apply any version of the popular Yamaguchi methodology, which decomposes the polarimetric information under relative intensities of 4 scattering types: Odd bounce, Even bounce, Random (volume) and helix. [@fig:sar-pol-examples-fig1]b shows HH intensity of a RADARSAT fully polarimetric acquired over a Spanish area. Decomposition using Yamaguchi methodology [@yamaguchi2011] can be expressed in RGB colour composite ([@fig:sar-pol-examples-fig1]c) where Red channel refers to even bounce scattering like urban area; Green channel is random scattering like vegetation; and Blue channel is odd bounce scattering like bare soil. [@fig:sar-pol-examples-fig1]d is equivalent to c) where radiometric normalisation (terrain flattening) has been applied with the help of the DEM of the scene ([@fig:sar-pol-examples-fig1]a).
2 |
3 | {#fig:sar-pol-examples-fig1}
4 |
5 | [@fig:sar-pol-examples-fig2] is a PRD compact polarimetric m-chi decomposition [@raney2012] simulated from two Canadian prairies Radarsat-2 fully polarimetric scenes acquired in May and June 2012. In May, before the growing season [@fig:sar-pol-examples-fig2]a, m-chi shows mainly surface scattering from bare soil (blue channel) and vegetation interaction from forested areas (green channel), while in June [@fig:sar-pol-examples-fig2]b growth of vegetation modifies the radar signal with interacting media function of the vegetation density and geometry which increase the amount of even bounce (red channel) and random scattering.
6 |
7 | {#fig:sar-pol-examples-fig2}
8 |
--------------------------------------------------------------------------------
/pfs/SAR-NRB/requirements.yaml:
--------------------------------------------------------------------------------
1 | - category: general-metadata
2 | requirements:
3 | # todo: most of the general metadata is product metadata - this should potentially be merged.
4 | - metadata/traceability-sar
5 | - metadata/machine-readability
6 | - metadata/product-type-sar
7 | - metadata/pfs-url
8 | - metadata/time
9 | - category: source-metadata
10 | requirements:
11 | - metadata/acquisition-id # todo: this is new from the category description
12 | - metadata/data-access-source
13 | - metadata/instrument
14 | - metadata/time-source
15 | - metadata/acquisition-parameters-sar
16 | - metadata/orbit
17 | - metadata/processing-parameters
18 | - metadata/image-attributes-sar
19 | - metadata/sensor-calibration
20 | - metadata/performance-indicators
21 | - metadata/polarimetric-calibration-matrices
22 | - metadata/mean-faraday-rotation-angle
23 | - metadata/ionosphere-indicator
24 | - category: product-metadata
25 | requirements:
26 | - metadata/data-access-product
27 | - metadata/auxiliary-data
28 | - metadata/sample-spacing
29 | - metadata/enl
30 | - metadata/resolution
31 | - metadata/speckle-filtering
32 | - metadata/geo-bbox
33 | - metadata/geo-area
34 | - metadata/image-size
35 | - metadata/pixel-coordinate-convention
36 | - metadata/crs
37 | - metadata/orbit-reference-nrb-pol
38 | - category: per-pixel-metadata
39 | requirements:
40 | # - cloud-optimized-formats
41 | - metadata/machine-readability
42 | - per-pixel/data-mask
43 | - per-pixel/scattering-area
44 | - per-pixel/local-incident-angle
45 | - per-pixel/ellipsoidal-incident-angle
46 | - per-pixel/noise-power
47 | - per-pixel/gamma-sigma-ratio
48 | - per-pixel/acquisition-id
49 | - per-pixel/dem
50 | - category: radiometrically-corrected-measurements
51 | requirements:
52 | # - cloud-optimized-formats
53 | - measurements/backscatter-nrb
54 | - metadata/scaling-conversion
55 | - metadata/noise-removal
56 | - corrections/radiometric-terrain-algo
57 | - metadata/radiometric-accuracy
58 | - measurements/flattened-phase
59 | - category: geometric-corrections
60 | requirements:
61 | - metadata/geometric-correction-algorithm
62 | - corrections/dem
63 | - corrections/geometric-accuracy-radar
64 | - corrections/geometric-refined-accuracy
65 | - corrections/gridding-convention
--------------------------------------------------------------------------------
/pfs/SAR-POL/requirements.yaml:
--------------------------------------------------------------------------------
1 | - category: general-metadata
2 | requirements:
3 | # todo: most of the general metadata is product metadata - this should potentially be merged.
4 | - metadata/traceability-sar
5 | - metadata/machine-readability
6 | - metadata/product-type-sar
7 | - metadata/pfs-url
8 | - metadata/time
9 | - category: source-metadata
10 | requirements:
11 | - metadata/acquisition-id # todo: this is new from the category description
12 | - metadata/data-access-source
13 | - metadata/instrument
14 | - metadata/time-source
15 | - metadata/acquisition-parameters-sar
16 | - metadata/orbit
17 | - metadata/processing-parameters
18 | - metadata/image-attributes-sar
19 | - metadata/sensor-calibration
20 | - metadata/performance-indicators
21 | - metadata/polarimetric-calibration-matrices
22 | - metadata/mean-faraday-rotation-angle
23 | - metadata/ionosphere-indicator
24 | - category: product-metadata
25 | requirements:
26 | - metadata/data-access-product
27 | - metadata/auxiliary-data
28 | - metadata/sample-spacing
29 | - metadata/enl
30 | - metadata/resolution
31 | # todo: speckle-filtering-pol should be just be speckle-filtering and instead add pol-filtering
32 | - metadata/speckle-filtering-pol
33 | # - metadata/pol-filtering
34 | - metadata/geo-bbox
35 | - metadata/geo-area
36 | - metadata/image-size
37 | - metadata/pixel-coordinate-convention
38 | - metadata/crs
39 | - metadata/orbit-reference-nrb-pol
40 | - category: per-pixel-metadata
41 | requirements:
42 | # - cloud-optimized-formats
43 | - metadata/machine-readability
44 | - per-pixel/data-mask
45 | - per-pixel/scattering-area
46 | - per-pixel/local-incident-angle
47 | - per-pixel/ellipsoidal-incident-angle
48 | - per-pixel/noise-power
49 | - per-pixel/gamma-sigma-ratio
50 | - per-pixel/acquisition-id
51 | - per-pixel/dem
52 | - category: radiometrically-corrected-measurements
53 | requirements:
54 | # - cloud-optimized-formats
55 | - measurements/backscatter-pol
56 | - metadata/scaling-conversion
57 | - metadata/noise-removal
58 | - corrections/radiometric-terrain-algo
59 | - metadata/radiometric-accuracy
60 | - measurements/flattened-phase
61 | - category: geometric-corrections
62 | requirements:
63 | - metadata/geometric-correction-algorithm
64 | - corrections/dem
65 | - corrections/geometric-accuracy-radar
66 | - corrections/geometric-refined-accuracy
67 | - corrections/gridding-convention
--------------------------------------------------------------------------------
/pfs/SAR-GSLC/requirements.yaml:
--------------------------------------------------------------------------------
1 | - category: general-metadata
2 | requirements:
3 | # todo: most of the general metadata is product metadata - this should potentially be merged.
4 | - metadata/traceability-sar
5 | - metadata/machine-readability
6 | - metadata/product-type-sar
7 | - metadata/pfs-url
8 | - metadata/time
9 | - category: source-metadata
10 | requirements:
11 | - metadata/acquisition-id # todo: this is new from the category description
12 | - metadata/data-access-source
13 | - metadata/instrument
14 | - metadata/time-source
15 | - metadata/acquisition-parameters-sar
16 | - metadata/orbit
17 | - metadata/processing-parameters
18 | - metadata/image-attributes-sar
19 | - metadata/sensor-calibration
20 | - metadata/performance-indicators
21 | - metadata/polarimetric-calibration-matrices
22 | - metadata/mean-faraday-rotation-angle
23 | - metadata/ionosphere-indicator
24 | - category: product-metadata
25 | requirements:
26 | - metadata/data-access-product
27 | - metadata/auxiliary-data
28 | - metadata/sample-spacing
29 | - metadata/resolution
30 | - metadata/geo-bbox
31 | - metadata/geo-area
32 | - metadata/image-size
33 | - metadata/pixel-coordinate-convention
34 | - metadata/crs
35 | - metadata/radar-unit-look-vector
36 | - metadata/slant-range
37 | - metadata/orbit-reference-gslc
38 | - category: per-pixel-metadata
39 | requirements:
40 | # - cloud-optimized-formats
41 | - metadata/machine-readability
42 | - per-pixel/data-mask
43 | - per-pixel/scattering-area
44 | - per-pixel/local-incident-angle
45 | - per-pixel/ellipsoidal-incident-angle
46 | - per-pixel/noise-power
47 | - per-pixel/gamma-sigma-ratio
48 | - per-pixel/acquisition-id
49 | - per-pixel/dem
50 | - per-pixel/radar-unit-look-vector-grid
51 | - per-pixel/slant-range
52 | - per-pixel/insar-phase-uncertainty
53 | - per-pixel/atmospheric-phase-correction
54 | - per-pixel/ionospheric-phase-correction
55 | - category: radiometrically-corrected-measurements
56 | requirements:
57 | # - cloud-optimized-formats
58 | - measurements/backscatter-gslc
59 | - metadata/scaling-conversion
60 | - metadata/noise-removal
61 | - corrections/radiometric-terrain-algo-gslc
62 | - metadata/radiometric-accuracy
63 | - category: geometric-corrections
64 | requirements:
65 | - metadata/geometric-correction-algorithm
66 | - corrections/dem
67 | - corrections/geometric-accuracy-radar
68 | - corrections/geometric-refined-accuracy
69 | - corrections/gridding-convention
--------------------------------------------------------------------------------
/pfs/SAR-GSLC/authors.yaml:
--------------------------------------------------------------------------------
1 | - name: Natural Resources Canada
2 | country: Canada
3 | members:
4 | - François Charbonneau
5 | - name: soloEO / Japan Aerospace Exploration Agency (JAXA)
6 | country: Japan
7 | members:
8 | - Ake Rosenqvist
9 | - name: German Aerospace Centre (DLR)
10 | country: Germany
11 | members:
12 | - John Truckenbrodt
13 | - name: European Space Agency (ESA)
14 | country: Italy
15 | members:
16 | - Clément Albinet
17 | - name: University of Zurich
18 | country: Switzerland
19 | members:
20 | - David Small
21 | - name: Jet Propulsion Laboratory
22 | country: USA
23 | members:
24 | - Bruce Chapman
25 | - name: Stanford University
26 | country: USA
27 | members:
28 | - Howard Zebker
29 | - name: CSIRO
30 | country: Australia
31 | members:
32 | - Zheng-Shu Zhou
33 | - name: Jet Propulsion Laboratory
34 | country: USA
35 | members:
36 | - Virginia Brancato
37 | - name: CONAE
38 | country: Argentina
39 | members:
40 | - Danilo Dadamia
41 | - name: Environment and Climate Change
42 | country: Canada
43 | members:
44 | - Benjamin Deschamps
45 | - name: Collecte Localisation Satellites
46 | country: France
47 | members:
48 | - Guillaume Hajduch
49 | - name: Earth Big Data
50 | country: USA
51 | members:
52 | - Josef Kellndorfer
53 | - name: Jet Propulsion Laboratory
54 | country: USA
55 | members:
56 | - Marco Lavalle
57 | - name: Geoscience Australia
58 | country: Australia
59 | members:
60 | - Adam Lewis
61 | - name: Alaska Satellite Facility
62 | country: USA
63 | members:
64 | - Thomas Logan
65 | - Franz Meyer
66 | - name: European Space Agency (ESA)
67 | country: Italy
68 | members:
69 | - Nuno Miranda
70 | - Muriel Pinheiro
71 | - name: Sinergise
72 | country: Slovenia
73 | members:
74 | - Marko Repse
75 | - name: ISRO
76 | country: India
77 | members:
78 | - HariPriya Sakethapuram
79 | - name: Geoscience Australia
80 | country: Australia
81 | members:
82 | - Andreia Siqueira
83 | - name: Jet Propulsion Laboratory
84 | country: USA
85 | members:
86 | - Gustavo Shiroma
87 | - name: Japan Aerospace Exploration Agency
88 | country: Japan
89 | members:
90 | - Takeo Tadono
91 | - name: Geoscience Australia
92 | country: Australia
93 | members:
94 | - Medhavy Thankappan
95 | - name: RHEA for European Space Agency (ESA)
96 | country: Italy
97 | members:
98 | - Antonio Valentino
99 | - name: German Aerospace Centre (DLR)
100 | country: Germany
101 | members:
102 | - Anna Wendleder
103 | - name: Digital Earth Africa
104 | country: Australia
105 | members:
106 | - Fang Yuan
107 |
--------------------------------------------------------------------------------
/pfs/SAR-NRB/authors.yaml:
--------------------------------------------------------------------------------
1 | - name: Natural Resources Canada
2 | country: Canada
3 | members:
4 | - François Charbonneau
5 | - name: soloEO / Japan Aerospace Exploration Agency (JAXA)
6 | country: Japan
7 | members:
8 | - Ake Rosenqvist
9 | - name: German Aerospace Centre (DLR)
10 | country: Germany
11 | members:
12 | - John Truckenbrodt
13 | - name: European Space Agency (ESA)
14 | country: Italy
15 | members:
16 | - Clément Albinet
17 | - name: University of Zurich
18 | country: Switzerland
19 | members:
20 | - David Small
21 | - name: Jet Propulsion Laboratory
22 | country: USA
23 | members:
24 | - Bruce Chapman
25 | - name: Stanford University
26 | country: USA
27 | members:
28 | - Howard Zebker
29 | - name: CSIRO
30 | country: Australia
31 | members:
32 | - Zheng-Shu Zhou
33 | - name: Jet Propulsion Laboratory
34 | country: USA
35 | members:
36 | - Virginia Brancato
37 | - name: CONAE
38 | country: Argentina
39 | members:
40 | - Danilo Dadamia
41 | - name: Environment and Climate Change
42 | country: Canada
43 | members:
44 | - Benjamin Deschamps
45 | - name: Collecte Localisation Satellites
46 | country: France
47 | members:
48 | - Guillaume Hajduch
49 | - name: Earth Big Data
50 | country: USA
51 | members:
52 | - Josef Kellndorfer
53 | - name: Jet Propulsion Laboratory
54 | country: USA
55 | members:
56 | - Marco Lavalle
57 | - name: Geoscience Australia
58 | country: Australia
59 | members:
60 | - Adam Lewis
61 | - name: Alaska Satellite Facility
62 | country: USA
63 | members:
64 | - Thomas Logan
65 | - Franz Meyer
66 | - name: European Space Agency (ESA)
67 | country: Italy
68 | members:
69 | - Nuno Miranda
70 | - Muriel Pinheiro
71 | - name: Sinergise
72 | country: Slovenia
73 | members:
74 | - Marko Repse
75 | - name: ISRO
76 | country: India
77 | members:
78 | - HariPriya Sakethapuram
79 | - name: Geoscience Australia
80 | country: Australia
81 | members:
82 | - Andreia Siqueira
83 | - name: Jet Propulsion Laboratory
84 | country: USA
85 | members:
86 | - Gustavo Shiroma
87 | - name: Japan Aerospace Exploration Agency
88 | country: Japan
89 | members:
90 | - Takeo Tadono
91 | - name: Geoscience Australia
92 | country: Australia
93 | members:
94 | - Medhavy Thankappan
95 | - name: RHEA for European Space Agency (ESA)
96 | country: Italy
97 | members:
98 | - Antonio Valentino
99 | - name: German Aerospace Centre (DLR)
100 | country: Germany
101 | members:
102 | - Anna Wendleder
103 | - name: Digital Earth Africa
104 | country: Australia
105 | members:
106 | - Fang Yuan
107 |
--------------------------------------------------------------------------------
/pfs/SAR-ORB/authors.yaml:
--------------------------------------------------------------------------------
1 | - name: Natural Resources Canada
2 | country: Canada
3 | members:
4 | - François Charbonneau
5 | - name: soloEO / Japan Aerospace Exploration Agency (JAXA)
6 | country: Japan
7 | members:
8 | - Ake Rosenqvist
9 | - name: German Aerospace Centre (DLR)
10 | country: Germany
11 | members:
12 | - John Truckenbrodt
13 | - name: European Space Agency (ESA)
14 | country: Italy
15 | members:
16 | - Clément Albinet
17 | - name: University of Zurich
18 | country: Switzerland
19 | members:
20 | - David Small
21 | - name: Jet Propulsion Laboratory
22 | country: USA
23 | members:
24 | - Bruce Chapman
25 | - name: Stanford University
26 | country: USA
27 | members:
28 | - Howard Zebker
29 | - name: CSIRO
30 | country: Australia
31 | members:
32 | - Zheng-Shu Zhou
33 | - name: Jet Propulsion Laboratory
34 | country: USA
35 | members:
36 | - Virginia Brancato
37 | - name: CONAE
38 | country: Argentina
39 | members:
40 | - Danilo Dadamia
41 | - name: Environment and Climate Change
42 | country: Canada
43 | members:
44 | - Benjamin Deschamps
45 | - name: Collecte Localisation Satellites
46 | country: France
47 | members:
48 | - Guillaume Hajduch
49 | - name: Earth Big Data
50 | country: USA
51 | members:
52 | - Josef Kellndorfer
53 | - name: Jet Propulsion Laboratory
54 | country: USA
55 | members:
56 | - Marco Lavalle
57 | - name: Geoscience Australia
58 | country: Australia
59 | members:
60 | - Adam Lewis
61 | - name: Alaska Satellite Facility
62 | country: USA
63 | members:
64 | - Thomas Logan
65 | - Franz Meyer
66 | - name: European Space Agency (ESA)
67 | country: Italy
68 | members:
69 | - Nuno Miranda
70 | - Muriel Pinheiro
71 | - name: Sinergise
72 | country: Slovenia
73 | members:
74 | - Marko Repse
75 | - name: ISRO
76 | country: India
77 | members:
78 | - HariPriya Sakethapuram
79 | - name: Geoscience Australia
80 | country: Australia
81 | members:
82 | - Andreia Siqueira
83 | - name: Jet Propulsion Laboratory
84 | country: USA
85 | members:
86 | - Gustavo Shiroma
87 | - name: Japan Aerospace Exploration Agency
88 | country: Japan
89 | members:
90 | - Takeo Tadono
91 | - name: Geoscience Australia
92 | country: Australia
93 | members:
94 | - Medhavy Thankappan
95 | - name: RHEA for European Space Agency (ESA)
96 | country: Italy
97 | members:
98 | - Antonio Valentino
99 | - name: German Aerospace Centre (DLR)
100 | country: Germany
101 | members:
102 | - Anna Wendleder
103 | - name: Digital Earth Africa
104 | country: Australia
105 | members:
106 | - Fang Yuan
107 |
--------------------------------------------------------------------------------
/pfs/SAR-POL/authors.yaml:
--------------------------------------------------------------------------------
1 | - name: Natural Resources Canada
2 | country: Canada
3 | members:
4 | - François Charbonneau
5 | - name: soloEO / Japan Aerospace Exploration Agency (JAXA)
6 | country: Japan
7 | members:
8 | - Ake Rosenqvist
9 | - name: German Aerospace Centre (DLR)
10 | country: Germany
11 | members:
12 | - John Truckenbrodt
13 | - name: European Space Agency (ESA)
14 | country: Italy
15 | members:
16 | - Clément Albinet
17 | - name: University of Zurich
18 | country: Switzerland
19 | members:
20 | - David Small
21 | - name: Jet Propulsion Laboratory
22 | country: USA
23 | members:
24 | - Bruce Chapman
25 | - name: Stanford University
26 | country: USA
27 | members:
28 | - Howard Zebker
29 | - name: CSIRO
30 | country: Australia
31 | members:
32 | - Zheng-Shu Zhou
33 | - name: Jet Propulsion Laboratory
34 | country: USA
35 | members:
36 | - Virginia Brancato
37 | - name: CONAE
38 | country: Argentina
39 | members:
40 | - Danilo Dadamia
41 | - name: Environment and Climate Change
42 | country: Canada
43 | members:
44 | - Benjamin Deschamps
45 | - name: Collecte Localisation Satellites
46 | country: France
47 | members:
48 | - Guillaume Hajduch
49 | - name: Earth Big Data
50 | country: USA
51 | members:
52 | - Josef Kellndorfer
53 | - name: Jet Propulsion Laboratory
54 | country: USA
55 | members:
56 | - Marco Lavalle
57 | - name: Geoscience Australia
58 | country: Australia
59 | members:
60 | - Adam Lewis
61 | - name: Alaska Satellite Facility
62 | country: USA
63 | members:
64 | - Thomas Logan
65 | - Franz Meyer
66 | - name: European Space Agency (ESA)
67 | country: Italy
68 | members:
69 | - Nuno Miranda
70 | - Muriel Pinheiro
71 | - name: Sinergise
72 | country: Slovenia
73 | members:
74 | - Marko Repse
75 | - name: ISRO
76 | country: India
77 | members:
78 | - HariPriya Sakethapuram
79 | - name: Geoscience Australia
80 | country: Australia
81 | members:
82 | - Andreia Siqueira
83 | - name: Jet Propulsion Laboratory
84 | country: USA
85 | members:
86 | - Gustavo Shiroma
87 | - name: Japan Aerospace Exploration Agency
88 | country: Japan
89 | members:
90 | - Takeo Tadono
91 | - name: Geoscience Australia
92 | country: Australia
93 | members:
94 | - Medhavy Thankappan
95 | - name: RHEA for European Space Agency (ESA)
96 | country: Italy
97 | members:
98 | - Antonio Valentino
99 | - name: German Aerospace Centre (DLR)
100 | country: Germany
101 | members:
102 | - Anna Wendleder
103 | - name: Digital Earth Africa
104 | country: Australia
105 | members:
106 | - Fang Yuan
107 |
--------------------------------------------------------------------------------
/templates/pagebreak.lua:
--------------------------------------------------------------------------------
1 | --[[
2 | pagebreak – convert raw LaTeX page breaks to other formats
3 |
4 | Copyright © 2017-2023 Benct Philip Jonsson, Albert Krewinkel
5 |
6 | Permission to use, copy, modify, and/or distribute this software for any
7 | purpose with or without fee is hereby granted, provided that the above
8 | copyright notice and this permission notice appear in all copies.
9 |
10 | THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 | WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 | MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 | ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 | WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 | ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 | OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 | ]]
18 | local stringify = (require 'pandoc.utils').stringify
19 |
20 | --- configs – these are populated in the Meta filter.
21 | local default_pagebreaks = {
22 | html = '',
23 | latex = '\\newpage{}',
24 | ooxml = '',
25 | }
26 |
27 | --- Return a block element causing a page break in the given format.
28 | local function newpage(format, pagebreak)
29 | if format == 'docx' then
30 | return pandoc.RawBlock('openxml', pagebreak.ooxml)
31 | elseif format:match 'html.*' then
32 | return pandoc.RawBlock('html', pagebreak.html)
33 | elseif format:match 'latex' then
34 | return pandoc.RawBlock('tex', pagebreak.latex)
35 | else
36 | -- fall back to insert a form feed character
37 | return pandoc.Para{pandoc.Str '\f'}
38 | end
39 | end
40 |
41 | --- Checks whether the given string contains a LaTeX pagebreak or
42 | --- newpage command.
43 | local function is_newpage_command(command)
44 | return command:match '^\\newpage%{?%}?$'
45 | or command:match '^\\pagebreak%{?%}?$'
46 | end
47 |
48 | --- Checks if a paragraph contains nothing but a form feed character.
49 | local formfeed_check = function (para)
50 | return #para.content == 1 and para.content[1].text == '\f'
51 | end
52 |
53 | --- Replaces a paragraph with a pagebreak if on of the `checks` returns true.
54 | local function para_pagebreak(raw_pagebreak, checks)
55 | local is_pb = function (para)
56 | return checks:find_if(function (pred) return pred(para) end)
57 | end
58 | return function (para)
59 | if is_pb(para) then
60 | return raw_pagebreak
61 | end
62 | end
63 | end
64 |
65 | --- Filter function; this is the entrypoint when used as a filter.
66 | function Pandoc (doc)
67 | local raw_pagebreak = newpage(FORMAT, default_pagebreaks)
68 | local paragraph_checks = pandoc.List{}
69 | paragraph_checks:insert(formfeed_check)
70 | return doc:walk {
71 | -- Replace paragraphs that contain just a form feed char.
72 | Para = #paragraph_checks > 0
73 | and para_pagebreak(raw_pagebreak, paragraph_checks)
74 | or nil
75 | }
76 | end
77 |
--------------------------------------------------------------------------------
/sections/annexes/sar-pol-prd.md:
--------------------------------------------------------------------------------
1 | Different methodologies allow decomposition of coherent dual-polarization data or fully polarimetric data to meaningful components summarizing the scattering processing with the interacting media. Decomposition techniques are divided in two categories: Coherent and incoherent.
2 |
3 | #### Coherent decompositions
4 |
5 | Coherent decompositions express the scattering matrix by the summation of elementary objects of known signature (ex.: a sphere, a diplane, a cylinder, a helix, …). They are used mainly to describe point targets which are coherent. As for examples, coherent PRD could be (but not limited to):
6 |
7 | 1. Pauli decomposition (3 layers)
8 | - $|\alpha|^2$: sphere (odd-bounce interaction) \[Intensity]
9 | - $|\beta|^2$: 0° diplane (even-bounce interaction) \[Intensity]
10 | - $|\gamma|^2$: 45° diplane (volumetric interaction) \[Intensity]
11 | 2. Krogager decomposition (5 layers) [@krogager1993]
12 | - $|\kappa_\sigma|^2$ : sphere (odd-bounce interaction) \[Intensity]
13 | - $|\kappa_\delta|^2$ : diplane (odd-bounce interaction) \[Intensity]
14 | - $|\kappa_\eta|^2$ : helix \[Intensity]
15 | - $\theta$: orientation angle \[degrees]
16 | - $\Phi_s$: sphere to diplane angle \[degrees]
17 | 3. Cameron (nine classes) – non-dimensional layers [@cameron1996]
18 |
19 | | Classes | ID |
20 | | :-------------- | :--: |
21 | | Trihedral | 1 |
22 | | Dihedral | 2 |
23 | | Narrow Dihedral | 3 |
24 | | Dipole | 4 |
25 | | Cylinder | 5 |
26 | | ¼ wave | 6 |
27 | | Right Helix | 7 |
28 | | Left Helix | 8 |
29 | | Asymmetrical | 9 |
30 |
31 | : Elementary objects of known scattering signature {#tbl:sar-pol-prd-tbl1}
32 |
33 | #### Incoherent decompositions
34 |
35 | Incoherent decompositions describe distributed targets in terms of scattering mechanisms and their diversity. They are generated from averaged Covariance, Coherence or Kennaugh matrices. As for examples, incoherent PRD could be (but not limited to):
36 |
37 | 1. Based and saved on intensity of scattering mechanisms can be [@freeman1998; @yamaguchi2011; @raney2012]
38 |
39 | | Level 2b - Layers [Intensity] | Freeman-Durden | Yamaguchi | m-chi |
40 | | :----------------------------- | :------------: | :-------: | :---: |
41 | | Odd-bounce (surface/trihedral) | X | X | X |
42 | | Even-bounce (dihedral) | X | X | X |
43 | | Random (volumetric) | X | X | X |
44 | | Helix | | X | |
45 |
46 | : Incoherent Decompositions: Freeman-Durden, Yamaguchi, m-chi {#tbl:sar-pol-prd-tbl2}
47 |
48 | 2. Based on eigenvector-eigenvalue decomposition expressing the diversity of scattering mechanisms [@cloude1996] and types:
49 |
50 | - $H$ : Entropy \[ \] is the polarization diversity
51 | - $A$ : Anisotropy \[ \] is weighted difference between the 2ⁿᵈ and 3ʳᵈ eigenvalues
52 | - $\alpha$ : Odd-even bounce angle \[Degrees]
53 | - $\beta$ : orientation angle \[Degrees]
54 |
--------------------------------------------------------------------------------
/requirements/README.md:
--------------------------------------------------------------------------------
1 | # Requirements
2 |
3 | This is the folder that contains requirements for CEOS-ARD as building blocks.
4 | The requirements are structured into folders and are described through YAML files.
5 |
6 | ## YAML file structure
7 |
8 | The YAML files consist of the following components:
9 |
10 | - `title` (required): A short title for the requirement
11 | - `description`: An introduction for the requirement that sets the context.
12 | Due to historical reasons, most requirements don't provide such an introduction yet.
13 | - `threshold` (required): The threshold requirement(s). Can be set to `null` to indicate that the there is no threshold requirement.
14 | - `description` (required): The requirements with Markdown formatting
15 | - `notes`: A list of additional notes. A note should be short and not be longer than one paragraph. Limited Markdown formatting is available.
16 | - `goal` (required): The goal requirement(s). Can be set to `null` to indicate that the there are no additional goal requirements.
17 | - `description` (required): See `description` in `threshold` above for further details.
18 | - `notes`: See `notes` in `threshold` above for further details.
19 | - `dependencies`: A list of requirement IDs. See section [Dependencies](#dependencies).
20 | - `glossary`: Any terms that are relevant for this requirement (e.g. are used in the text). Use any file name (without extension) from the [glossary](../glossary/) folder.
21 | - `glossary`: Any relevant references for this requirement and are referred to in the text using the @ notation (see [Markdown](#markdown)). Use any file name (without extension) from the [references](../references/) folder.
22 | - `metadata`: Placeholder for future use.
23 | - `legacy`: A temporary way to refer to the old requirement numbers in the combined SAR and/or Optical PFS. Set to `null` if not applicable.
24 |
25 | todo: Remove goal/threshold from requirements and make each part a separate requirement where the requirements.yaml in the PFS can then choose whether a requirement is goal or threshold.
26 |
27 | ## Markdown
28 |
29 | The flavor of Markdown that is implemented here has some additional features.
30 | You can reference to other sections of the document or other requirements using the @ notation.
31 | For example, `[@example/other-requirement]`.
32 |
33 | todo: add more details
34 |
35 | ## Dependencies
36 |
37 | Dependencies are requirements that must be met for this requirement and are usually mentioned in the text using the @ notation.
38 |
39 | Dependencies are identified by the requirement ID but without the category ID.
40 | The requirement ID is the folder name (if applicable) and the file name (without file extension). For example, `metadata/time` for the file [metadata/time.yaml](metadata/time.yaml).
41 |
42 | Due to the fact that requirements don't include the category ID and could be ambiguous, the sependencies are resolved as follows:
43 |
44 | 1. The dependency will refer to the requirement with the given ID in the same requirement category if it exists.
45 | 2. Otherwise, the dependency will refer to the requirement with the given ID in any other category.
46 |
47 | This means if a requirement is used both in the same requirement category and in another category, you can't refer to the requirement that is used in the other requirement category.
48 |
49 | A full example:
50 |
51 | ```yaml
52 | title: Example
53 | description: This introduces the requirement or describes the context of this requirement.
54 | threshold:
55 | description: |-
56 | This is a threshold requirement.
57 | notes:
58 | goal:
59 | description: |-
60 | This is a goal requirement.
61 | notes:
62 | - This is a note.
63 | dependencies:
64 | glossary:
65 | - doi
66 | references:
67 | - iso19115_2_2009
68 | metadata:
69 | legacy:
70 | sar:
71 | optical:
72 | ```
73 |
--------------------------------------------------------------------------------
/sections/annexes/sar-gslc-example.md:
--------------------------------------------------------------------------------
1 | In contrast to basic NRB and **POL products**, CEOS-ARD Geocoded SLC GSLC products are kept close to the native resolution in complex data format for which local topographic InSAR phases, relative to a reference orbit [@zebker2010; @zebker2017], have been removed. Having a volume of GSLC products acquired over repeat cycles, already radiometric and phase terrain corrected and geocoded ([@fig:sar-gslc-example-fig1a; @fig:sar-gslc-example-fig1b]), allows user-friendly production of a first iteration of the InSAR coherence ([@eq:sar-gslc-example-eq1; @fig:sar-gslc-example-fig1c]) and differential phases ([@eq:sar-gslc-example-eq2; @fig:sar-gslc-example-fig1d]) in between GSLC pairs, simply by applying local averaging window over the product of a GSLC product (GSLC1) with the complex conjugate of a second GSLC (GSLC2) divided by their local averaged intensities. These intermediate files could be used for coherent change detection analysis and surface displacement monitoring.
2 |
3 | $$
4 | \text{Complex coherence:} \quad \rho = \frac{\sum [ GSLC_1 * conj (GSLC_2)]}{ \sqrt{ \sum |GSLC_1|^2 * \sum |GSLC_2|^2}}
5 | $$ {#eq:sar-gslc-example-eq1}
6 |
7 | The InSAR differential phase ([@eq:sar-gslc-example-eq2]) is the argument of the complex coherence estimated with [@eq:sar-gslc-example-eq1].
8 |
9 | $$
10 | \text{InSAR differential phase:} \quad \varphi =\arg(\rho)
11 | $$ {#eq:sar-gslc-example-eq2}
12 |
13 | Some advanced NRB or POL products could include per-pixel “Flattened Phase” data ([@sec:rcm.measurements-flattened-phase]). This “Flattened Phase” enables the possibility to perform InSAR analysis as with two GSLC products. As for example, from two different NRB products (NRB1) and (NRB2), acquired over repeat cycles (i.e., on the same relative orbit), containing $\gamma_T^0$ and their corresponding “Flattened Phase” (FPh1) and (FPh2) per-pixel data, the complex InSAR coherence ([@eq:sar-gslc-example-eq3]) can be estimated in the similar manner as [@eq:sar-gslc-example-eq1] for GSLC products.
14 |
15 | $$
16 | \text{Complex coherence:} \quad \rho_{NRB} = \frac{\sum [ (\sqrt{NRB_1} \cdot e^{i\cdot FPh1}) \cdot conj (\sqrt{NRB_2} \cdot e^{i\cdot FPh2})]}{ \sqrt{ \sum NRB_1 * \sum NRB_2}}
17 | $$ {#eq:sar-gslc-example-eq3}
18 |
19 | The following figures show Sentinel-1 GSLC product examples over Death Valley National Park, California, US:
20 |
21 | {#fig:sar-gslc-example-fig1a}
22 |
23 | {#fig:sar-gslc-example-fig1b}
24 |
25 | ![InSAR coherence map generated directly from [@fig:sar-gslc-example-fig1a] and [@fig:sar-gslc-example-fig1b]](assets/sar-gslc-example/S1-InSAR-coherence.png){#fig:sar-gslc-example-fig1c}
26 |
27 | ![InSAR differential phase map generated directly from [@fig:sar-gslc-example-fig1a] and [@fig:sar-gslc-example-fig1b]](assets/sar-gslc-example/S1-InSAR-differential-phase.png){#fig:sar-gslc-example-fig1d}
28 |
29 | Some advanced GSLC product can be provided with “Radar Unit Look Vector Grid Image” per-pixel metadata ([@fig:sar-gslc-example-fig2a; @fig:sar-gslc-example-fig2b; @fig:sar-gslc-example-fig2c]) which gives the accurate 3-D components radar unit look vector used as for example in decomposing the vertical and horizontal component of an InSAR surface displacement estimate.
30 |
31 | The following figures show 3-D components radar unit look vector of the GSLC product:
32 |
33 | {#fig:sar-gslc-example-fig2a}
34 |
35 | {#fig:sar-gslc-example-fig2b}
36 |
37 | {#fig:sar-gslc-example-fig2c}
38 |
--------------------------------------------------------------------------------
/sections/annexes/sar-general-processing-roadmap.md:
--------------------------------------------------------------------------------
1 | The radiometric interoperability of CEOS-ARD SAR products is ensured by a common processing chain during production. The recommended processing roadmap involves the following steps:
2 |
3 | - Apply the best possible orbit parameters to give the most accurate product possible. These will have been projected to an ellipsoidal model such as WGS84. To achieve the level of geometric accuracy required for the DEM-based correction, precise orbit determination will be required.
4 | - Apply instrument calibration to produce Beta-Nought values with high fidelity.
5 | - Convert Single-Look-Complex (SLC) radiometric channel(s) to intensity NRB, ORB and POL and in addition for POL, the cross-product element(s) of the covariance as shown in [@sec:annex-sar-pol-covmat].
6 | - Perform radiometric terrain correction (gamma backscatter convention terrain-flattening) on the covariance matrix by applying the local surface normalisation factor to each backscatter measurement element [@small2011; @shiroma2022].
7 | - Perform polarimetric speckle filtering (optional for NRB and ORB), before geocoding, to optimally preserve the polarimetric information. Most popular polarimetric decomposition methodologies are incoherent in nature, which requires averaging the covariance matrix for stationarity. Depending on the application, a polarimetric filter that preserves local point targets and locally average extended targets may be used, e.g., Sigma Lee filter with 7x7 window and 3-point target [@lee2009]. Multi-looking could be performed to meet optimal output sample spacing before the geometric correction step. No speckle filtering or multi-looking is performed for GSLC products.
8 | - For GSLC products, the topographic phase is estimated relative to a reference orbit and removed from the SLC data [@zebker2010; @zebker2017] (see [@sec:annex-sar-topographic-phase-removal])
9 | - Geometric terrain correction (relative to geoid for ORB) is applied to the normalized backscatter measurement data. For POL, the resampling methodology should be nearest-neighbour, bilinear or average in order to preserve integrity of the covariance matrix as other resampling functions can introduce artefacts due to the mix of intensity and complex number elements in the matrix. Geocoding to a common grid structure with specified pixel spacings for true data cube format.
10 | - Generate CEOS format metadata to accompany product layers.
11 | - Optionally, a SpatioTemporal Asset Catalog (STAC) file is added to the product.
12 |
13 | [@tbl:sar-general-processing-roadmap-tbl1] lists possible sequential steps and existing software tools (e.g., Gamma software (GAMMA, 2018)) and scripting tasks that can be used to form the CEOS-ARD SAR processing roadmap.
14 |
15 | | Step | Implementation option |
16 | | :----------------------------------------------------------- | :----------------------------------------------------------- |
17 | | 1. Orbital data refinement | Check xml date and delivered format. RADARSAT-2, pre EDOT (July 2015) replace. Post July 2015, check if ‘DEF’, otherwise replace. (Gamma - RSAT2\_vec) |
18 | | 2. Apply radiometric scaling Look-Up Table (LUT) to Beta-Nought | Specification of LUT on ingest.
(Gamma - par_RSAT2_SLC/SG) |
19 | | 3. Generate covariance matrix elements | Gamma – COV_MATRIX |
20 | | 4. Radiometric terrain normalisation | Gamma - geo_radcal2 |
21 | | 5. Speckle filtering (Boxcar or Sigma Lee) | Custom scripting |
22 | | 6. Geometric terrain correction/Geocoding | Gamma – gc_map and geocode_back |
23 | | 7. Create metadata | Custom scripting |
24 |
25 | : SAR ARD processing roadmap and software options. RADARSAT-2 Example {#tbl:sar-general-processing-roadmap-tbl1}
26 |
--------------------------------------------------------------------------------
/sections/annexes/sar-pol-covmat.md:
--------------------------------------------------------------------------------
1 | In order to preserve the inter-channel polarimetric phase and thus the full information content of coherent dual-pol and fully polarimetric data, the covariance matrix is proposed as the data storage format. Covariance matrices are generated from the complex cross product of polarimetric channels, as shown in [@eq:sar-pol-covmat-eq1] for fully polarimetric data (C3) and in [@eq:sar-pol-covmat-eq3] for dual polarization data (C2). Since these matrices are complex symmetrical, only the upper diagonal elements (bold elements) need to be stored in the ARD database.
2 |
3 | **Fully polarimetric**
4 |
5 | $$
6 | C3 = \begin{bmatrix}
7 | | \mathbf{H} \mathbf{H} |^2 & \sqrt{2} \cdot \mathbf{H}\mathbf{H} \cdot \mathbf{H}\mathbf{V}^* & \mathbf{H}\mathbf{H} \cdot \mathbf{V}\mathbf{V}^* \\
8 | \sqrt{2} \cdot HV \cdot HH^* & 2 \cdot |\mathbf{H}\mathbf{V}|^2 & \sqrt{2} \cdot \mathbf{H}\mathbf{V} \cdot \mathbf{H}\mathbf{V}^* \\
9 | VV \cdot HH^* & \sqrt{2} \cdot VV \cdot HV^* & |\mathbf{V}\mathbf{V}|^2
10 | \end{bmatrix}
11 | $$ {#eq:sar-pol-covmat-eq1}
12 |
13 | Where HV = VH, under the reciprocity assumption. \| \| and \* mean respectively complex modulus and the complex conjugate.
14 |
15 | **Dual polarization**
16 |
17 | $$
18 | \text{HH-HV:} \quad C2 = \begin{bmatrix}
19 | | \mathbf{H} \mathbf{H} |^2 & \mathbf{H}\mathbf{H} \cdot \mathbf{H}\mathbf{V}^* \\
20 | HV \cdot HH^* & |\mathbf{H}\mathbf{V}|^2
21 | \end{bmatrix}
22 | $$ {#eq:sar-pol-covmat-eq2}
23 |
24 | $$
25 | \text{VV-VH:} \quad C2 = \begin{bmatrix}
26 | | \mathbf{V} \mathbf{H} |^2 & \mathbf{V}\mathbf{H} \cdot \mathbf{V}\mathbf{H}^* \\
27 | VH \cdot VH^* & |\mathbf{V}\mathbf{V}|^2
28 | \end{bmatrix}
29 | $$ {#eq:sar-pol-covmat-eq3}
30 |
31 | $$
32 | \text{CH-CV:} \quad C2 = \begin{bmatrix}
33 | | \mathbf{C} \mathbf{H} |^2 & \mathbf{C}\mathbf{H} \cdot \mathbf{C}\mathbf{V}^* \\
34 | CV \cdot CH^* & |\mathbf{C}\mathbf{V}|^2
35 | \end{bmatrix}
36 | $$ {#eq:eq:sar-pol-covmat-eq4}
37 |
38 | Where CH and CV refer to dual polarization transmitting a circular polarized signal. \[CH, CV] can be replaced by \[LH, LV] or \[RH, RV] for left (L) or right (R) hand circular transmission respectively, although RCM will offer only right-hand circular transmission. The coherent HH-VV configuration available on TerraSAR-X could also be represented as C2 format.
39 |
40 | Polarimetric decomposition methods like [@yamaguchi2011] for fully polarimetric, or m-chi [@raney2012] for compact polarimetric data, can be applied directly on averaged (speckle filtered) C3 and C2 matrices respectively. These decompositions enhance scattering information, bring it to a more comprehensible level to end-users, and raise the performance of thematic classification methodologies. For SAR products that were acquired with single polarization the use of the covariance matrix does not result in superfluous storage requirements, since only the matrix elements that are populated are retained and the diagonal matrix elements are the backscatter intensities. Thus, a single channel intensity product would yield only one matrix element and the storage needs would not change.
41 |
42 | In order to ease the data structure and the metadata in between C3 and C2, [@eq:sar-pol-covmat-eq1] should be redefined as [@eq:sar-pol-covmat-eq5]. Users will have to take care of this non-standard representation when applying their polarimetric analytic tools. “\< \>” means that ARD matrix elements are speckle filtered. [@eq:sar-pol-covmat-eq5] is valid both for dual-linear and quad polarization.
43 |
44 | $$
45 | \text{C3 modified:} \quad C3_m = \begin{bmatrix}
46 | | \langle \mathbf{H} \mathbf{H} |^2 \rangle & \langle\mathbf{H}\mathbf{H} \cdot \mathbf{H}\mathbf{V}^* \rangle & \langle\mathbf{H}\mathbf{H} \cdot \mathbf{V}\mathbf{V}^* \rangle\\
47 | \langle HV \cdot HH^* \rangle & \langle|\mathbf{H}\mathbf{V}|^2 \rangle & \langle\mathbf{H}\mathbf{V} \cdot \mathbf{V}\mathbf{V}^* \rangle \\
48 | \langle VV \cdot HH^* \rangle& \langle VV \cdot HV^* \rangle & \langle|\mathbf{V}\mathbf{V}|^2 \rangle
49 | \end{bmatrix}
50 | $$ {#eq:sar-pol-covmat-eq5}
51 |
52 | Furthermore, for compact polarimetric data, it is recommended to store them, by simple transformation, under the circular-circular basis, since RR and RL polarizations ([@eq:sar-pol-covmat-eq6]) permit faster and more intuitive RGB visualizations (R=RR, G=RR/(RR+RL), B= RL).
53 |
54 | $$
55 | \text{CH-CV (C2 circular):} \quad C2_c = \begin{bmatrix}
56 | \langle | \mathbf{R} \mathbf{R} |^2 \rangle & \langle\mathbf{R}\mathbf{R} \cdot \mathbf{R}\mathbf{¬}^* \rangle \\
57 | \langle RL \cdot RR^* \rangle & \langle|\mathbf{R}\mathbf{L}|^2\rangle
58 | \end{bmatrix}
59 | $$ {#eq:sar-pol-covmat-eq6}
60 |
--------------------------------------------------------------------------------
/pfs/SAR-POL/document.yaml:
--------------------------------------------------------------------------------
1 | id: SAR-POL
2 | title: Polarimetric Radar
3 | version: 1.2-draft
4 | type: Synthetic Aperture Radar
5 | applies_to: |-
6 | This PFS is specifically aimed at users interested in exploring the potential of SAR but who may lack the expertise or facilities for SAR processing.
7 |
8 | The CEOS-ARD Polarimetric Radar (POL) product format is an extension of the CEOS-ARD Normalised Radar Backscatter (NRB) format.
9 | This extension is required in order to better support Level-1 SLC polarimetric data, including full-polarimetric modes (e.g., RADARSAT-2, ALOS-2/4, SAOCOM-1 and future missions), and hybrid or linear dual-polarimetric modes (i.e., Compact Polarimetric mode available on RCM, SAOCOM and the upcoming NISAR mission).The POL product can be defined in two processing levels:
10 |
11 | The **normalised covariance matrix (CovMat)** representation (C2 or C3) which preserves the inter-channel polarimetric phase(s) and maximizes the available information for users.
12 | Interoperability within current CEOS-ARD SAR backscatter definition is preserved, since diagonal elements of the covariance matrix are backscatter intensities.
13 | Scattering information enhancement can be achieved by applying incoherent polarimetric decomposition techniques (e.g., Freeman-Durden, van Zyl, Cloude-Pottier, Yamaguchi-based) directly on the C2 or C3 matrix.
14 |
15 | **Polarimetric Radar Decomposition (PRD)** refers to ARD products where polarimetric information is broken down into simplified parameters to facilitate user interpretation of the data.
16 | They are derived from coherent or incoherent polarimetric decomposition techniques.
17 |
18 | ### Notice and Limitations
19 |
20 | For Polarimetric Radar (POL) products, optimal incoherent Polarimetric Radar Decomposition (PRD) should be performed under the slant range projection [@gens2013; @toutin2013].
21 | In order to minimise bias in the CEOS-ARD SAR Level-2A covariance matrix product, speckle filtering and averaging of the covariance matrix should be applied in the slant range projection, and geocoding should be performed using nearest-neighbour resampling.
22 | Specifically, nearest-neighbour resampling ensures that the averaged covariance matrix elements in slant range and in geocoded ground projection are exactly the same.
23 | Consequently, the polarimetrically derived parameters are exactly equal in both approaches (assuming that no further averaging is performed on the ARD product for decomposing the polarimetric information).
24 | Bilinear and average resampling methods are also suitable for resampling the covariance matrix, but some differences with polarimetric parameters generated in slant range and then resampled (bilinear) might be observed on sloped terrains.
25 | Even if Sinc interpolation may be more robust for spatial resampling, it does not preserve covariance matrix integrity, and should consequently not be used for this ARD product.
26 |
27 | It is recommended that ARD providers who desire to distribute PRD products decompose the polarimetric information starting from Level-1 SLC data and then geocode the derived parameters rather than use the CovMat ARD product.
28 | Resampling can be performed using any of the supported methods (nearest-neighbour, bilinear, average, bi-cubic spline or Lanczos are recommended), which need to be indicated in the product metadata.
29 | Note that coherent decomposition techniques cannot be performed on CovMat ARD products.
30 |
31 | Covariance matrix products contain a variable number of layers (or bands) with different data types depending on the polarimetric mode (full or dual) and decomposition technique.
32 | The CovMat products for the C2 matrix have 3 layers (2 real-valued diagonal elements and 1 complex-valued off-diagonal element).
33 | CovMat products for the C3 matrix have 6 layers (3 real-valued diagonal elements and 3 complex-valued off-diagonal elements).
34 | Layers that can be obtained via a complex conjugation of other layers are not provided within the product.
35 | Polarimetric Decomposition products contain typically 2 to 4 (or more) real-valued layers depending on the particular decomposition algorithm.
36 | Within the CovMat product files, ARD layers are organized in order to reduce access delays and maximize efficiency in extracting the desired information.
37 | In CovMat products, geographically contiguous samples for each layer may be stored next to each other and organized “layer by layer”.
38 | Alternatively, samples belonging to the same covariance matrix might be stored next to each other and organized “matrix by matrix”.
39 | PRD products are organized “layer by layer”, i.e., with bands corresponding to the output of the polarimetric decomposition stored next to each other.
40 |
41 | introduction:
42 | - what-are-ceos-ard-products
43 | - when-is-a-product-ceos-ard
44 | - difference-threshold-goal
45 |
46 | # Only glossary entries that are not specific to certain requirements or sections are listed here.
47 | glossary:
48 | - pol
49 | - nrb
50 | - slc
51 | - prd
52 | - covmat
53 | - metadata
54 |
55 | references:
56 | - gens2013
57 | - toutin2013
58 | - iso19115_2_2009
59 |
60 | annexes:
61 | - sar-general-processing-roadmap
62 | - sar-topographic-phase-removal
63 | - sar-pol-covmat
64 | - sar-pol-prd
65 | - sar-pol-examples
66 |
--------------------------------------------------------------------------------
/.github/workflows/ci.yaml:
--------------------------------------------------------------------------------
1 | name: CI
2 | on:
3 | push:
4 | branches:
5 | - main
6 | paths:
7 | - 'assets/**'
8 | - 'glossary/**'
9 | - 'pfs/**'
10 | - 'references/**'
11 | - 'requirements/**'
12 | - 'sections/**'
13 | - 'templates/**'
14 | pull_request_target:
15 | types:
16 | - opened
17 | - synchronize
18 | paths:
19 | - 'assets/**'
20 | - 'glossary/**'
21 | - 'pfs/**'
22 | - 'references/**'
23 | - 'requirements/**'
24 | - 'sections/**'
25 | - 'templates/**'
26 | jobs:
27 | validate:
28 | runs-on: ubuntu-latest
29 | steps:
30 | - uses: actions/checkout@v4
31 | with:
32 | ref: ${{ github.event.pull_request.head.ref }}
33 | repository: ${{ github.event.pull_request.head.repo.full_name }}
34 | token: ${{ secrets.GITHUB_TOKEN }}
35 | - uses: actions/setup-python@v5
36 | with:
37 | python-version: '3.x'
38 | - name: Install ceos-ard-cli
39 | run: pip install ceos-ard-cli
40 | - name: Run validation
41 | run: ceos-ard validate
42 | generate:
43 | # run once, see https://github.com/orgs/community/discussions/57827
44 | runs-on: ubuntu-latest
45 | needs: validate
46 | steps:
47 | - uses: actions/checkout@v4
48 | with:
49 | ref: ${{ github.event.pull_request.head.ref }}
50 | repository: ${{ github.event.pull_request.head.repo.full_name }}
51 | token: ${{ secrets.GITHUB_TOKEN }}
52 | - uses: actions/setup-python@v5
53 | with:
54 | python-version: '3.x'
55 | - name: Install ceos-ard-cli
56 | run: pip install ceos-ard-cli
57 | # Validate to ensure we only build when it has a chance to succeed
58 | - name: Install pandoc
59 | run: |
60 | curl https://github.com/jgm/pandoc/releases/download/3.6.2/pandoc-3.6.2-1-amd64.deb -L -o pandoc.deb
61 | sudo dpkg -i pandoc.deb
62 | pandoc --version
63 | - name: Install pandoc-crossref
64 | run: |
65 | curl https://github.com/lierdakil/pandoc-crossref/releases/download/v0.3.18.1a/pandoc-crossref-Linux-X64.tar.xz -L -o pandoc-crossref.tar.xz
66 | tar -xf pandoc-crossref.tar.xz
67 | sudo mv pandoc-crossref /usr/local/bin
68 | pandoc-crossref --version
69 | - name: Install browser for PDF generation
70 | run: python -m playwright install chromium --with-deps
71 | - name: Generate all PFS
72 | run: ceos-ard generate-all -o build --self-contained
73 | - name: Archive generated PFS artifacts
74 | uses: actions/upload-artifact@v4
75 | with:
76 | name: documents
77 | path: build
78 | - name: PR number
79 | run: echo ${{ github.event.number }}
80 | deploy-latest:
81 | if: >
82 | github.event_name == 'push' && github.ref == 'refs/heads/main'
83 | runs-on: ubuntu-latest
84 | needs: generate
85 | steps:
86 | - name: Download PFS artifacts
87 | uses: actions/download-artifact@v4
88 | with:
89 | name: documents
90 | github-token: ${{ secrets.GITHUB_TOKEN }}
91 | path: documents/
92 | - name: Deploy to gh-pages
93 | uses: peaceiris/actions-gh-pages@v4
94 | with:
95 | github_token: ${{ secrets.GITHUB_TOKEN }}
96 | publish_dir: documents
97 | destination_dir: latest
98 | commit_message: Deploy latest version of PFS documents
99 | exclude_assets: '{assets/**,*.{md,bib}}'
100 | deploy-pr:
101 | if: github.event.number
102 | runs-on: ubuntu-latest
103 | needs: generate
104 | steps:
105 | - name: Download PFS artifacts
106 | uses: actions/download-artifact@v4
107 | with:
108 | name: documents
109 | github-token: ${{ secrets.GITHUB_TOKEN }}
110 | path: documents/
111 | - name: Deploy via FTP
112 | uses: SamKirkland/FTP-Deploy-Action@v4.3.5
113 | with:
114 | server: ftp.ceos-ard-preview.moregeo.it
115 | username: ${{ secrets.FTP_USERNAME }}
116 | password: ${{ secrets.FTP_PASSWORD }}
117 | local-dir: documents/
118 | server-dir: pr-${{ github.event.number }}/
119 | exclude: '{assets/**,*.{md,bib}}'
120 | dangerous-clean-slate: true
121 | - name: Add comment to pull request
122 | uses: actions/github-script@v7
123 | with:
124 | script: |
125 | const pullRequestNumber = ${{ github.event.number }};
126 | const start = '⚠️';
127 | const author = 'github-actions[bot]';
128 |
129 | const comments = await github.rest.issues.listComments({
130 | owner: context.repo.owner,
131 | repo: context.repo.repo,
132 | issue_number: pullRequestNumber
133 | });
134 |
135 | const commentExists = comments.data.some(
136 | comment => comment.user.login === author && comment.body.startsWith(start)
137 | );
138 |
139 | if (!commentExists) {
140 | await github.rest.issues.createComment({
141 | owner: context.repo.owner,
142 | repo: context.repo.repo,
143 | issue_number: pullRequestNumber,
144 | body: `${start} A preview for all PFS has been generated and can be accessed here: `
145 | });
146 | } else {
147 | console.log(`Preview URL comment already added to PR #${pullRequestNumber}`);
148 | }
149 |
--------------------------------------------------------------------------------