├── .gitattributes
├── LICENSE.md
├── Makefile
├── Pipfile
├── Pipfile.lock
├── README.md
├── draft-irtf-cfrg-ristretto255-decaf448.html
├── draft-irtf-cfrg-ristretto255-decaf448.md
├── draft-irtf-cfrg-ristretto255-decaf448.txt
└── draft-irtf-cfrg-ristretto255-decaf448.xml
/.gitattributes:
--------------------------------------------------------------------------------
1 | draft-irtf-cfrg-ristretto255-decaf448.html linguist-generated=true
2 | draft-irtf-cfrg-ristretto255-decaf448.txt linguist-generated=true
3 | draft-irtf-cfrg-ristretto255-decaf448.xml linguist-generated=true
4 |
--------------------------------------------------------------------------------
/LICENSE.md:
--------------------------------------------------------------------------------
1 | This repository relates to activities in the Internet Engineering Task Force
2 | ([IETF](https://www.ietf.org/)). All material in this repository is considered
3 | Contributions to the IETF Standards Process, as defined in the intellectual
4 | property policies of IETF currently designated as
5 | [BCP 78](https://www.rfc-editor.org/info/bcp78),
6 | [BCP 79](https://www.rfc-editor.org/info/bcp79) and the
7 | [IETF Trust Legal Provisions (TLP) Relating to IETF Documents](http://trustee.ietf.org/trust-legal-provisions.html).
8 |
9 | Any edit, commit, pull request, issue, comment or other change made to this
10 | repository constitutes Contributions to the IETF Standards Process
11 | (https://www.ietf.org/).
12 |
13 | You agree to comply with all applicable IETF policies and procedures, including,
14 | BCP 78, 79, the TLP, and the TLP rules regarding code components (e.g. being
15 | subject to a Simplified BSD License) in Contributions.
16 |
--------------------------------------------------------------------------------
/Makefile:
--------------------------------------------------------------------------------
1 | .PHONY: all
2 | all: draft-irtf-cfrg-ristretto255-decaf448.txt draft-irtf-cfrg-ristretto255-decaf448.html
3 |
4 | draft-irtf-cfrg-ristretto255-decaf448.txt: draft-irtf-cfrg-ristretto255-decaf448.xml
5 | xml2rfc --v3 -q --no-pagination draft-irtf-cfrg-ristretto255-decaf448.xml
6 |
7 | draft-irtf-cfrg-ristretto255-decaf448.html: draft-irtf-cfrg-ristretto255-decaf448.xml
8 | xml2rfc --v3 -q --html --no-external-js draft-irtf-cfrg-ristretto255-decaf448.xml
9 |
10 | draft-irtf-cfrg-ristretto255-decaf448.xml: draft-irtf-cfrg-ristretto255-decaf448.md
11 | mmark draft-irtf-cfrg-ristretto255-decaf448.md > draft-irtf-cfrg-ristretto255-decaf448.xml
12 |
--------------------------------------------------------------------------------
/Pipfile:
--------------------------------------------------------------------------------
1 | [[source]]
2 | url = "https://pypi.org/simple"
3 | verify_ssl = true
4 | name = "pypi"
5 |
6 | [packages]
7 | xml2rfc = "*"
8 |
9 | [requires]
10 | python_version = "3.9"
11 |
--------------------------------------------------------------------------------
/Pipfile.lock:
--------------------------------------------------------------------------------
1 | {
2 | "_meta": {
3 | "hash": {
4 | "sha256": "3b5c09020f590b9a738155ebe477a8418d06a4e3b851a679d5b1c4a8f5d9a946"
5 | },
6 | "pipfile-spec": 6,
7 | "requires": {
8 | "python_version": "3.9"
9 | },
10 | "sources": [
11 | {
12 | "name": "pypi",
13 | "url": "https://pypi.org/simple",
14 | "verify_ssl": true
15 | }
16 | ]
17 | },
18 | "default": {
19 | "appdirs": {
20 | "hashes": [
21 | "sha256:7d5d0167b2b1ba821647616af46a749d1c653740dd0d2415100fe26e27afdf41",
22 | "sha256:a841dacd6b99318a741b166adb07e19ee71a274450e68237b4650ca1055ab128"
23 | ],
24 | "version": "==1.4.4"
25 | },
26 | "certifi": {
27 | "hashes": [
28 | "sha256:35824b4c3a97115964b408844d64aa14db1cc518f6562e8d7261699d1350a9e3",
29 | "sha256:4ad3232f5e926d6718ec31cfc1fcadfde020920e278684144551c91769c7bc18"
30 | ],
31 | "markers": "python_version >= '3.6'",
32 | "version": "==2022.12.7"
33 | },
34 | "charset-normalizer": {
35 | "hashes": [
36 | "sha256:04afa6387e2b282cf78ff3dbce20f0cc071c12dc8f685bd40960cc68644cfea6",
37 | "sha256:04eefcee095f58eaabe6dc3cc2262f3bcd776d2c67005880894f447b3f2cb9c1",
38 | "sha256:0be65ccf618c1e7ac9b849c315cc2e8a8751d9cfdaa43027d4f6624bd587ab7e",
39 | "sha256:0c95f12b74681e9ae127728f7e5409cbbef9cd914d5896ef238cc779b8152373",
40 | "sha256:0ca564606d2caafb0abe6d1b5311c2649e8071eb241b2d64e75a0d0065107e62",
41 | "sha256:10c93628d7497c81686e8e5e557aafa78f230cd9e77dd0c40032ef90c18f2230",
42 | "sha256:11d117e6c63e8f495412d37e7dc2e2fff09c34b2d09dbe2bee3c6229577818be",
43 | "sha256:11d3bcb7be35e7b1bba2c23beedac81ee893ac9871d0ba79effc7fc01167db6c",
44 | "sha256:12a2b561af122e3d94cdb97fe6fb2bb2b82cef0cdca131646fdb940a1eda04f0",
45 | "sha256:12d1a39aa6b8c6f6248bb54550efcc1c38ce0d8096a146638fd4738e42284448",
46 | "sha256:1435ae15108b1cb6fffbcea2af3d468683b7afed0169ad718451f8db5d1aff6f",
47 | "sha256:1c60b9c202d00052183c9be85e5eaf18a4ada0a47d188a83c8f5c5b23252f649",
48 | "sha256:1e8fcdd8f672a1c4fc8d0bd3a2b576b152d2a349782d1eb0f6b8e52e9954731d",
49 | "sha256:20064ead0717cf9a73a6d1e779b23d149b53daf971169289ed2ed43a71e8d3b0",
50 | "sha256:21fa558996782fc226b529fdd2ed7866c2c6ec91cee82735c98a197fae39f706",
51 | "sha256:22908891a380d50738e1f978667536f6c6b526a2064156203d418f4856d6e86a",
52 | "sha256:3160a0fd9754aab7d47f95a6b63ab355388d890163eb03b2d2b87ab0a30cfa59",
53 | "sha256:322102cdf1ab682ecc7d9b1c5eed4ec59657a65e1c146a0da342b78f4112db23",
54 | "sha256:34e0a2f9c370eb95597aae63bf85eb5e96826d81e3dcf88b8886012906f509b5",
55 | "sha256:3573d376454d956553c356df45bb824262c397c6e26ce43e8203c4c540ee0acb",
56 | "sha256:3747443b6a904001473370d7810aa19c3a180ccd52a7157aacc264a5ac79265e",
57 | "sha256:38e812a197bf8e71a59fe55b757a84c1f946d0ac114acafaafaf21667a7e169e",
58 | "sha256:3a06f32c9634a8705f4ca9946d667609f52cf130d5548881401f1eb2c39b1e2c",
59 | "sha256:3a5fc78f9e3f501a1614a98f7c54d3969f3ad9bba8ba3d9b438c3bc5d047dd28",
60 | "sha256:3d9098b479e78c85080c98e1e35ff40b4a31d8953102bb0fd7d1b6f8a2111a3d",
61 | "sha256:3dc5b6a8ecfdc5748a7e429782598e4f17ef378e3e272eeb1340ea57c9109f41",
62 | "sha256:4155b51ae05ed47199dc5b2a4e62abccb274cee6b01da5b895099b61b1982974",
63 | "sha256:49919f8400b5e49e961f320c735388ee686a62327e773fa5b3ce6721f7e785ce",
64 | "sha256:53d0a3fa5f8af98a1e261de6a3943ca631c526635eb5817a87a59d9a57ebf48f",
65 | "sha256:5f008525e02908b20e04707a4f704cd286d94718f48bb33edddc7d7b584dddc1",
66 | "sha256:628c985afb2c7d27a4800bfb609e03985aaecb42f955049957814e0491d4006d",
67 | "sha256:65ed923f84a6844de5fd29726b888e58c62820e0769b76565480e1fdc3d062f8",
68 | "sha256:6734e606355834f13445b6adc38b53c0fd45f1a56a9ba06c2058f86893ae8017",
69 | "sha256:6baf0baf0d5d265fa7944feb9f7451cc316bfe30e8df1a61b1bb08577c554f31",
70 | "sha256:6f4f4668e1831850ebcc2fd0b1cd11721947b6dc7c00bf1c6bd3c929ae14f2c7",
71 | "sha256:6f5c2e7bc8a4bf7c426599765b1bd33217ec84023033672c1e9a8b35eaeaaaf8",
72 | "sha256:6f6c7a8a57e9405cad7485f4c9d3172ae486cfef1344b5ddd8e5239582d7355e",
73 | "sha256:7381c66e0561c5757ffe616af869b916c8b4e42b367ab29fedc98481d1e74e14",
74 | "sha256:73dc03a6a7e30b7edc5b01b601e53e7fc924b04e1835e8e407c12c037e81adbd",
75 | "sha256:74db0052d985cf37fa111828d0dd230776ac99c740e1a758ad99094be4f1803d",
76 | "sha256:75f2568b4189dda1c567339b48cba4ac7384accb9c2a7ed655cd86b04055c795",
77 | "sha256:78cacd03e79d009d95635e7d6ff12c21eb89b894c354bd2b2ed0b4763373693b",
78 | "sha256:80d1543d58bd3d6c271b66abf454d437a438dff01c3e62fdbcd68f2a11310d4b",
79 | "sha256:830d2948a5ec37c386d3170c483063798d7879037492540f10a475e3fd6f244b",
80 | "sha256:891cf9b48776b5c61c700b55a598621fdb7b1e301a550365571e9624f270c203",
81 | "sha256:8f25e17ab3039b05f762b0a55ae0b3632b2e073d9c8fc88e89aca31a6198e88f",
82 | "sha256:9a3267620866c9d17b959a84dd0bd2d45719b817245e49371ead79ed4f710d19",
83 | "sha256:a04f86f41a8916fe45ac5024ec477f41f886b3c435da2d4e3d2709b22ab02af1",
84 | "sha256:aaf53a6cebad0eae578f062c7d462155eada9c172bd8c4d250b8c1d8eb7f916a",
85 | "sha256:abc1185d79f47c0a7aaf7e2412a0eb2c03b724581139193d2d82b3ad8cbb00ac",
86 | "sha256:ac0aa6cd53ab9a31d397f8303f92c42f534693528fafbdb997c82bae6e477ad9",
87 | "sha256:ac3775e3311661d4adace3697a52ac0bab17edd166087d493b52d4f4f553f9f0",
88 | "sha256:b06f0d3bf045158d2fb8837c5785fe9ff9b8c93358be64461a1089f5da983137",
89 | "sha256:b116502087ce8a6b7a5f1814568ccbd0e9f6cfd99948aa59b0e241dc57cf739f",
90 | "sha256:b82fab78e0b1329e183a65260581de4375f619167478dddab510c6c6fb04d9b6",
91 | "sha256:bd7163182133c0c7701b25e604cf1611c0d87712e56e88e7ee5d72deab3e76b5",
92 | "sha256:c36bcbc0d5174a80d6cccf43a0ecaca44e81d25be4b7f90f0ed7bcfbb5a00909",
93 | "sha256:c3af8e0f07399d3176b179f2e2634c3ce9c1301379a6b8c9c9aeecd481da494f",
94 | "sha256:c84132a54c750fda57729d1e2599bb598f5fa0344085dbde5003ba429a4798c0",
95 | "sha256:cb7b2ab0188829593b9de646545175547a70d9a6e2b63bf2cd87a0a391599324",
96 | "sha256:cca4def576f47a09a943666b8f829606bcb17e2bc2d5911a46c8f8da45f56755",
97 | "sha256:cf6511efa4801b9b38dc5546d7547d5b5c6ef4b081c60b23e4d941d0eba9cbeb",
98 | "sha256:d16fd5252f883eb074ca55cb622bc0bee49b979ae4e8639fff6ca3ff44f9f854",
99 | "sha256:d2686f91611f9e17f4548dbf050e75b079bbc2a82be565832bc8ea9047b61c8c",
100 | "sha256:d7fc3fca01da18fbabe4625d64bb612b533533ed10045a2ac3dd194bfa656b60",
101 | "sha256:dd5653e67b149503c68c4018bf07e42eeed6b4e956b24c00ccdf93ac79cdff84",
102 | "sha256:de5695a6f1d8340b12a5d6d4484290ee74d61e467c39ff03b39e30df62cf83a0",
103 | "sha256:e0ac8959c929593fee38da1c2b64ee9778733cdf03c482c9ff1d508b6b593b2b",
104 | "sha256:e1b25e3ad6c909f398df8921780d6a3d120d8c09466720226fc621605b6f92b1",
105 | "sha256:e633940f28c1e913615fd624fcdd72fdba807bf53ea6925d6a588e84e1151531",
106 | "sha256:e89df2958e5159b811af9ff0f92614dabf4ff617c03a4c1c6ff53bf1c399e0e1",
107 | "sha256:ea9f9c6034ea2d93d9147818f17c2a0860d41b71c38b9ce4d55f21b6f9165a11",
108 | "sha256:f645caaf0008bacf349875a974220f1f1da349c5dbe7c4ec93048cdc785a3326",
109 | "sha256:f8303414c7b03f794347ad062c0516cee0e15f7a612abd0ce1e25caf6ceb47df",
110 | "sha256:fca62a8301b605b954ad2e9c3666f9d97f63872aa4efcae5492baca2056b74ab"
111 | ],
112 | "markers": "python_full_version >= '3.7.0'",
113 | "version": "==3.1.0"
114 | },
115 | "configargparse": {
116 | "hashes": [
117 | "sha256:18f6535a2db9f6e02bd5626cc7455eac3e96b9ab3d969d366f9aafd5c5c00fe7",
118 | "sha256:1b0b3cbf664ab59dada57123c81eff3d9737e0d11d8cf79e3d6eb10823f1739f"
119 | ],
120 | "markers": "python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3, 3.4'",
121 | "version": "==1.5.3"
122 | },
123 | "google-i18n-address": {
124 | "hashes": [
125 | "sha256:44ef2ba987b4258ed5248ff0ce818e99807bda2599db99f97a4d549aae83e739",
126 | "sha256:97c5a40e96cdd6000a1cf29ed45903557aece3a91755cfcb5dced14005fbd93c"
127 | ],
128 | "version": "==2.5.2"
129 | },
130 | "html5lib": {
131 | "hashes": [
132 | "sha256:0d78f8fde1c230e99fe37986a60526d7049ed4bf8a9fadbad5f00e22e58e041d",
133 | "sha256:b2e5b40261e20f354d198eae92afc10d750afb487ed5e50f9c4eaf07c184146f"
134 | ],
135 | "markers": "python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3, 3.4'",
136 | "version": "==1.1"
137 | },
138 | "idna": {
139 | "hashes": [
140 | "sha256:814f528e8dead7d329833b91c5faa87d60bf71824cd12a7530b5526063d02cb4",
141 | "sha256:90b77e79eaa3eba6de819a0c442c0b4ceefc341a7a2ab77d7562bf49f425c5c2"
142 | ],
143 | "markers": "python_version >= '3.5'",
144 | "version": "==3.4"
145 | },
146 | "intervaltree": {
147 | "hashes": [
148 | "sha256:902b1b88936918f9b2a19e0e5eb7ccb430ae45cde4f39ea4b36932920d33952d"
149 | ],
150 | "version": "==3.1.0"
151 | },
152 | "jinja2": {
153 | "hashes": [
154 | "sha256:31351a702a408a9e7595a8fc6150fc3f43bb6bf7e319770cbc0db9df9437e852",
155 | "sha256:6088930bfe239f0e6710546ab9c19c9ef35e29792895fed6e6e31a023a182a61"
156 | ],
157 | "markers": "python_version >= '3.7'",
158 | "version": "==3.1.2"
159 | },
160 | "lxml": {
161 | "hashes": [
162 | "sha256:01d36c05f4afb8f7c20fd9ed5badca32a2029b93b1750f571ccc0b142531caf7",
163 | "sha256:04876580c050a8c5341d706dd464ff04fd597095cc8c023252566a8826505726",
164 | "sha256:05ca3f6abf5cf78fe053da9b1166e062ade3fa5d4f92b4ed688127ea7d7b1d03",
165 | "sha256:090c6543d3696cbe15b4ac6e175e576bcc3f1ccfbba970061b7300b0c15a2140",
166 | "sha256:0dc313ef231edf866912e9d8f5a042ddab56c752619e92dfd3a2c277e6a7299a",
167 | "sha256:0f2b1e0d79180f344ff9f321327b005ca043a50ece8713de61d1cb383fb8ac05",
168 | "sha256:13598ecfbd2e86ea7ae45ec28a2a54fb87ee9b9fdb0f6d343297d8e548392c03",
169 | "sha256:16efd54337136e8cd72fb9485c368d91d77a47ee2d42b057564aae201257d419",
170 | "sha256:1ab8f1f932e8f82355e75dda5413a57612c6ea448069d4fb2e217e9a4bed13d4",
171 | "sha256:223f4232855ade399bd409331e6ca70fb5578efef22cf4069a6090acc0f53c0e",
172 | "sha256:2455cfaeb7ac70338b3257f41e21f0724f4b5b0c0e7702da67ee6c3640835b67",
173 | "sha256:2899456259589aa38bfb018c364d6ae7b53c5c22d8e27d0ec7609c2a1ff78b50",
174 | "sha256:2a29ba94d065945944016b6b74e538bdb1751a1db6ffb80c9d3c2e40d6fa9894",
175 | "sha256:2a87fa548561d2f4643c99cd13131acb607ddabb70682dcf1dff5f71f781a4bf",
176 | "sha256:2e430cd2824f05f2d4f687701144556646bae8f249fd60aa1e4c768ba7018947",
177 | "sha256:36c3c175d34652a35475a73762b545f4527aec044910a651d2bf50de9c3352b1",
178 | "sha256:3818b8e2c4b5148567e1b09ce739006acfaa44ce3156f8cbbc11062994b8e8dd",
179 | "sha256:3ab9fa9d6dc2a7f29d7affdf3edebf6ece6fb28a6d80b14c3b2fb9d39b9322c3",
180 | "sha256:3efea981d956a6f7173b4659849f55081867cf897e719f57383698af6f618a92",
181 | "sha256:4c8f293f14abc8fd3e8e01c5bd86e6ed0b6ef71936ded5bf10fe7a5efefbaca3",
182 | "sha256:5344a43228767f53a9df6e5b253f8cdca7dfc7b7aeae52551958192f56d98457",
183 | "sha256:58bfa3aa19ca4c0f28c5dde0ff56c520fbac6f0daf4fac66ed4c8d2fb7f22e74",
184 | "sha256:5b4545b8a40478183ac06c073e81a5ce4cf01bf1734962577cf2bb569a5b3bbf",
185 | "sha256:5f50a1c177e2fa3ee0667a5ab79fdc6b23086bc8b589d90b93b4bd17eb0e64d1",
186 | "sha256:63da2ccc0857c311d764e7d3d90f429c252e83b52d1f8f1d1fe55be26827d1f4",
187 | "sha256:6749649eecd6a9871cae297bffa4ee76f90b4504a2a2ab528d9ebe912b101975",
188 | "sha256:6804daeb7ef69e7b36f76caddb85cccd63d0c56dedb47555d2fc969e2af6a1a5",
189 | "sha256:689bb688a1db722485e4610a503e3e9210dcc20c520b45ac8f7533c837be76fe",
190 | "sha256:699a9af7dffaf67deeae27b2112aa06b41c370d5e7633e0ee0aea2e0b6c211f7",
191 | "sha256:6b418afe5df18233fc6b6093deb82a32895b6bb0b1155c2cdb05203f583053f1",
192 | "sha256:76cf573e5a365e790396a5cc2b909812633409306c6531a6877c59061e42c4f2",
193 | "sha256:7b515674acfdcadb0eb5d00d8a709868173acece5cb0be3dd165950cbfdf5409",
194 | "sha256:7b770ed79542ed52c519119473898198761d78beb24b107acf3ad65deae61f1f",
195 | "sha256:7d2278d59425777cfcb19735018d897ca8303abe67cc735f9f97177ceff8027f",
196 | "sha256:7e91ee82f4199af8c43d8158024cbdff3d931df350252288f0d4ce656df7f3b5",
197 | "sha256:821b7f59b99551c69c85a6039c65b75f5683bdc63270fec660f75da67469ca24",
198 | "sha256:822068f85e12a6e292803e112ab876bc03ed1f03dddb80154c395f891ca6b31e",
199 | "sha256:8340225bd5e7a701c0fa98284c849c9b9fc9238abf53a0ebd90900f25d39a4e4",
200 | "sha256:85cabf64adec449132e55616e7ca3e1000ab449d1d0f9d7f83146ed5bdcb6d8a",
201 | "sha256:880bbbcbe2fca64e2f4d8e04db47bcdf504936fa2b33933efd945e1b429bea8c",
202 | "sha256:8d0b4612b66ff5d62d03bcaa043bb018f74dfea51184e53f067e6fdcba4bd8de",
203 | "sha256:8e20cb5a47247e383cf4ff523205060991021233ebd6f924bca927fcf25cf86f",
204 | "sha256:925073b2fe14ab9b87e73f9a5fde6ce6392da430f3004d8b72cc86f746f5163b",
205 | "sha256:998c7c41910666d2976928c38ea96a70d1aa43be6fe502f21a651e17483a43c5",
206 | "sha256:9b22c5c66f67ae00c0199f6055705bc3eb3fcb08d03d2ec4059a2b1b25ed48d7",
207 | "sha256:9f102706d0ca011de571de32c3247c6476b55bb6bc65a20f682f000b07a4852a",
208 | "sha256:a08cff61517ee26cb56f1e949cca38caabe9ea9fbb4b1e10a805dc39844b7d5c",
209 | "sha256:a0a336d6d3e8b234a3aae3c674873d8f0e720b76bc1d9416866c41cd9500ffb9",
210 | "sha256:a35f8b7fa99f90dd2f5dc5a9fa12332642f087a7641289ca6c40d6e1a2637d8e",
211 | "sha256:a38486985ca49cfa574a507e7a2215c0c780fd1778bb6290c21193b7211702ab",
212 | "sha256:a5da296eb617d18e497bcf0a5c528f5d3b18dadb3619fbdadf4ed2356ef8d941",
213 | "sha256:a6e441a86553c310258aca15d1c05903aaf4965b23f3bc2d55f200804e005ee5",
214 | "sha256:a82d05da00a58b8e4c0008edbc8a4b6ec5a4bc1e2ee0fb6ed157cf634ed7fa45",
215 | "sha256:ab323679b8b3030000f2be63e22cdeea5b47ee0abd2d6a1dc0c8103ddaa56cd7",
216 | "sha256:b1f42b6921d0e81b1bcb5e395bc091a70f41c4d4e55ba99c6da2b31626c44892",
217 | "sha256:b23e19989c355ca854276178a0463951a653309fb8e57ce674497f2d9f208746",
218 | "sha256:b264171e3143d842ded311b7dccd46ff9ef34247129ff5bf5066123c55c2431c",
219 | "sha256:b26a29f0b7fc6f0897f043ca366142d2b609dc60756ee6e4e90b5f762c6adc53",
220 | "sha256:b64d891da92e232c36976c80ed7ebb383e3f148489796d8d31a5b6a677825efe",
221 | "sha256:b9cc34af337a97d470040f99ba4282f6e6bac88407d021688a5d585e44a23184",
222 | "sha256:bc718cd47b765e790eecb74d044cc8d37d58562f6c314ee9484df26276d36a38",
223 | "sha256:be7292c55101e22f2a3d4d8913944cbea71eea90792bf914add27454a13905df",
224 | "sha256:c83203addf554215463b59f6399835201999b5e48019dc17f182ed5ad87205c9",
225 | "sha256:c9ec3eaf616d67db0764b3bb983962b4f385a1f08304fd30c7283954e6a7869b",
226 | "sha256:ca34efc80a29351897e18888c71c6aca4a359247c87e0b1c7ada14f0ab0c0fb2",
227 | "sha256:ca989b91cf3a3ba28930a9fc1e9aeafc2a395448641df1f387a2d394638943b0",
228 | "sha256:d02a5399126a53492415d4906ab0ad0375a5456cc05c3fc0fc4ca11771745cda",
229 | "sha256:d17bc7c2ccf49c478c5bdd447594e82692c74222698cfc9b5daae7ae7e90743b",
230 | "sha256:d5bf6545cd27aaa8a13033ce56354ed9e25ab0e4ac3b5392b763d8d04b08e0c5",
231 | "sha256:d6b430a9938a5a5d85fc107d852262ddcd48602c120e3dbb02137c83d212b380",
232 | "sha256:da248f93f0418a9e9d94b0080d7ebc407a9a5e6d0b57bb30db9b5cc28de1ad33",
233 | "sha256:da4dd7c9c50c059aba52b3524f84d7de956f7fef88f0bafcf4ad7dde94a064e8",
234 | "sha256:df0623dcf9668ad0445e0558a21211d4e9a149ea8f5666917c8eeec515f0a6d1",
235 | "sha256:e5168986b90a8d1f2f9dc1b841467c74221bd752537b99761a93d2d981e04889",
236 | "sha256:efa29c2fe6b4fdd32e8ef81c1528506895eca86e1d8c4657fda04c9b3786ddf9",
237 | "sha256:f1496ea22ca2c830cbcbd473de8f114a320da308438ae65abad6bab7867fe38f",
238 | "sha256:f49e52d174375a7def9915c9f06ec4e569d235ad428f70751765f48d5926678c"
239 | ],
240 | "markers": "python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3, 3.4'",
241 | "version": "==4.9.2"
242 | },
243 | "markupsafe": {
244 | "hashes": [
245 | "sha256:0576fe974b40a400449768941d5d0858cc624e3249dfd1e0c33674e5c7ca7aed",
246 | "sha256:085fd3201e7b12809f9e6e9bc1e5c96a368c8523fad5afb02afe3c051ae4afcc",
247 | "sha256:090376d812fb6ac5f171e5938e82e7f2d7adc2b629101cec0db8b267815c85e2",
248 | "sha256:0b462104ba25f1ac006fdab8b6a01ebbfbce9ed37fd37fd4acd70c67c973e460",
249 | "sha256:137678c63c977754abe9086a3ec011e8fd985ab90631145dfb9294ad09c102a7",
250 | "sha256:1bea30e9bf331f3fef67e0a3877b2288593c98a21ccb2cf29b74c581a4eb3af0",
251 | "sha256:22152d00bf4a9c7c83960521fc558f55a1adbc0631fbb00a9471e097b19d72e1",
252 | "sha256:22731d79ed2eb25059ae3df1dfc9cb1546691cc41f4e3130fe6bfbc3ecbbecfa",
253 | "sha256:2298c859cfc5463f1b64bd55cb3e602528db6fa0f3cfd568d3605c50678f8f03",
254 | "sha256:28057e985dace2f478e042eaa15606c7efccb700797660629da387eb289b9323",
255 | "sha256:2e7821bffe00aa6bd07a23913b7f4e01328c3d5cc0b40b36c0bd81d362faeb65",
256 | "sha256:2ec4f2d48ae59bbb9d1f9d7efb9236ab81429a764dedca114f5fdabbc3788013",
257 | "sha256:340bea174e9761308703ae988e982005aedf427de816d1afe98147668cc03036",
258 | "sha256:40627dcf047dadb22cd25ea7ecfe9cbf3bbbad0482ee5920b582f3809c97654f",
259 | "sha256:40dfd3fefbef579ee058f139733ac336312663c6706d1163b82b3003fb1925c4",
260 | "sha256:4cf06cdc1dda95223e9d2d3c58d3b178aa5dacb35ee7e3bbac10e4e1faacb419",
261 | "sha256:50c42830a633fa0cf9e7d27664637532791bfc31c731a87b202d2d8ac40c3ea2",
262 | "sha256:55f44b440d491028addb3b88f72207d71eeebfb7b5dbf0643f7c023ae1fba619",
263 | "sha256:608e7073dfa9e38a85d38474c082d4281f4ce276ac0010224eaba11e929dd53a",
264 | "sha256:63ba06c9941e46fa389d389644e2d8225e0e3e5ebcc4ff1ea8506dce646f8c8a",
265 | "sha256:65608c35bfb8a76763f37036547f7adfd09270fbdbf96608be2bead319728fcd",
266 | "sha256:665a36ae6f8f20a4676b53224e33d456a6f5a72657d9c83c2aa00765072f31f7",
267 | "sha256:6d6607f98fcf17e534162f0709aaad3ab7a96032723d8ac8750ffe17ae5a0666",
268 | "sha256:7313ce6a199651c4ed9d7e4cfb4aa56fe923b1adf9af3b420ee14e6d9a73df65",
269 | "sha256:7668b52e102d0ed87cb082380a7e2e1e78737ddecdde129acadb0eccc5423859",
270 | "sha256:7df70907e00c970c60b9ef2938d894a9381f38e6b9db73c5be35e59d92e06625",
271 | "sha256:7e007132af78ea9df29495dbf7b5824cb71648d7133cf7848a2a5dd00d36f9ff",
272 | "sha256:835fb5e38fd89328e9c81067fd642b3593c33e1e17e2fdbf77f5676abb14a156",
273 | "sha256:8bca7e26c1dd751236cfb0c6c72d4ad61d986e9a41bbf76cb445f69488b2a2bd",
274 | "sha256:8db032bf0ce9022a8e41a22598eefc802314e81b879ae093f36ce9ddf39ab1ba",
275 | "sha256:99625a92da8229df6d44335e6fcc558a5037dd0a760e11d84be2260e6f37002f",
276 | "sha256:9cad97ab29dfc3f0249b483412c85c8ef4766d96cdf9dcf5a1e3caa3f3661cf1",
277 | "sha256:a4abaec6ca3ad8660690236d11bfe28dfd707778e2442b45addd2f086d6ef094",
278 | "sha256:a6e40afa7f45939ca356f348c8e23048e02cb109ced1eb8420961b2f40fb373a",
279 | "sha256:a6f2fcca746e8d5910e18782f976489939d54a91f9411c32051b4aab2bd7c513",
280 | "sha256:a806db027852538d2ad7555b203300173dd1b77ba116de92da9afbc3a3be3eed",
281 | "sha256:abcabc8c2b26036d62d4c746381a6f7cf60aafcc653198ad678306986b09450d",
282 | "sha256:b8526c6d437855442cdd3d87eede9c425c4445ea011ca38d937db299382e6fa3",
283 | "sha256:bb06feb762bade6bf3c8b844462274db0c76acc95c52abe8dbed28ae3d44a147",
284 | "sha256:c0a33bc9f02c2b17c3ea382f91b4db0e6cde90b63b296422a939886a7a80de1c",
285 | "sha256:c4a549890a45f57f1ebf99c067a4ad0cb423a05544accaf2b065246827ed9603",
286 | "sha256:ca244fa73f50a800cf8c3ebf7fd93149ec37f5cb9596aa8873ae2c1d23498601",
287 | "sha256:cf877ab4ed6e302ec1d04952ca358b381a882fbd9d1b07cccbfd61783561f98a",
288 | "sha256:d9d971ec1e79906046aa3ca266de79eac42f1dbf3612a05dc9368125952bd1a1",
289 | "sha256:da25303d91526aac3672ee6d49a2f3db2d9502a4a60b55519feb1a4c7714e07d",
290 | "sha256:e55e40ff0cc8cc5c07996915ad367fa47da6b3fc091fdadca7f5403239c5fec3",
291 | "sha256:f03a532d7dee1bed20bc4884194a16160a2de9ffc6354b3878ec9682bb623c54",
292 | "sha256:f1cd098434e83e656abf198f103a8207a8187c0fc110306691a2e94a78d0abb2",
293 | "sha256:f2bfb563d0211ce16b63c7cb9395d2c682a23187f54c3d79bfec33e6705473c6",
294 | "sha256:f8ffb705ffcf5ddd0e80b65ddf7bed7ee4f5a441ea7d3419e861a12eaf41af58"
295 | ],
296 | "markers": "python_version >= '3.7'",
297 | "version": "==2.1.2"
298 | },
299 | "pycountry": {
300 | "hashes": [
301 | "sha256:b2163a246c585894d808f18783e19137cb70a0c18fb36748dc01fc6f109c1646"
302 | ],
303 | "markers": "python_version >= '3.6' and python_version < '4'",
304 | "version": "==22.3.5"
305 | },
306 | "pyyaml": {
307 | "hashes": [
308 | "sha256:01b45c0191e6d66c470b6cf1b9531a771a83c1c4208272ead47a3ae4f2f603bf",
309 | "sha256:0283c35a6a9fbf047493e3a0ce8d79ef5030852c51e9d911a27badfde0605293",
310 | "sha256:055d937d65826939cb044fc8c9b08889e8c743fdc6a32b33e2390f66013e449b",
311 | "sha256:07751360502caac1c067a8132d150cf3d61339af5691fe9e87803040dbc5db57",
312 | "sha256:0b4624f379dab24d3725ffde76559cff63d9ec94e1736b556dacdfebe5ab6d4b",
313 | "sha256:0ce82d761c532fe4ec3f87fc45688bdd3a4c1dc5e0b4a19814b9009a29baefd4",
314 | "sha256:1e4747bc279b4f613a09eb64bba2ba602d8a6664c6ce6396a4d0cd413a50ce07",
315 | "sha256:213c60cd50106436cc818accf5baa1aba61c0189ff610f64f4a3e8c6726218ba",
316 | "sha256:231710d57adfd809ef5d34183b8ed1eeae3f76459c18fb4a0b373ad56bedcdd9",
317 | "sha256:277a0ef2981ca40581a47093e9e2d13b3f1fbbeffae064c1d21bfceba2030287",
318 | "sha256:2cd5df3de48857ed0544b34e2d40e9fac445930039f3cfe4bcc592a1f836d513",
319 | "sha256:40527857252b61eacd1d9af500c3337ba8deb8fc298940291486c465c8b46ec0",
320 | "sha256:432557aa2c09802be39460360ddffd48156e30721f5e8d917f01d31694216782",
321 | "sha256:473f9edb243cb1935ab5a084eb238d842fb8f404ed2193a915d1784b5a6b5fc0",
322 | "sha256:48c346915c114f5fdb3ead70312bd042a953a8ce5c7106d5bfb1a5254e47da92",
323 | "sha256:50602afada6d6cbfad699b0c7bb50d5ccffa7e46a3d738092afddc1f9758427f",
324 | "sha256:68fb519c14306fec9720a2a5b45bc9f0c8d1b9c72adf45c37baedfcd949c35a2",
325 | "sha256:77f396e6ef4c73fdc33a9157446466f1cff553d979bd00ecb64385760c6babdc",
326 | "sha256:81957921f441d50af23654aa6c5e5eaf9b06aba7f0a19c18a538dc7ef291c5a1",
327 | "sha256:819b3830a1543db06c4d4b865e70ded25be52a2e0631ccd2f6a47a2822f2fd7c",
328 | "sha256:897b80890765f037df3403d22bab41627ca8811ae55e9a722fd0392850ec4d86",
329 | "sha256:98c4d36e99714e55cfbaaee6dd5badbc9a1ec339ebfc3b1f52e293aee6bb71a4",
330 | "sha256:9df7ed3b3d2e0ecfe09e14741b857df43adb5a3ddadc919a2d94fbdf78fea53c",
331 | "sha256:9fa600030013c4de8165339db93d182b9431076eb98eb40ee068700c9c813e34",
332 | "sha256:a80a78046a72361de73f8f395f1f1e49f956c6be882eed58505a15f3e430962b",
333 | "sha256:afa17f5bc4d1b10afd4466fd3a44dc0e245382deca5b3c353d8b757f9e3ecb8d",
334 | "sha256:b3d267842bf12586ba6c734f89d1f5b871df0273157918b0ccefa29deb05c21c",
335 | "sha256:b5b9eccad747aabaaffbc6064800670f0c297e52c12754eb1d976c57e4f74dcb",
336 | "sha256:bfaef573a63ba8923503d27530362590ff4f576c626d86a9fed95822a8255fd7",
337 | "sha256:c5687b8d43cf58545ade1fe3e055f70eac7a5a1a0bf42824308d868289a95737",
338 | "sha256:cba8c411ef271aa037d7357a2bc8f9ee8b58b9965831d9e51baf703280dc73d3",
339 | "sha256:d15a181d1ecd0d4270dc32edb46f7cb7733c7c508857278d3d378d14d606db2d",
340 | "sha256:d4b0ba9512519522b118090257be113b9468d804b19d63c71dbcf4a48fa32358",
341 | "sha256:d4db7c7aef085872ef65a8fd7d6d09a14ae91f691dec3e87ee5ee0539d516f53",
342 | "sha256:d4eccecf9adf6fbcc6861a38015c2a64f38b9d94838ac1810a9023a0609e1b78",
343 | "sha256:d67d839ede4ed1b28a4e8909735fc992a923cdb84e618544973d7dfc71540803",
344 | "sha256:daf496c58a8c52083df09b80c860005194014c3698698d1a57cbcfa182142a3a",
345 | "sha256:dbad0e9d368bb989f4515da330b88a057617d16b6a8245084f1b05400f24609f",
346 | "sha256:e61ceaab6f49fb8bdfaa0f92c4b57bcfbea54c09277b1b4f7ac376bfb7a7c174",
347 | "sha256:f84fbc98b019fef2ee9a1cb3ce93e3187a6df0b2538a651bfb890254ba9f90b5"
348 | ],
349 | "markers": "python_version >= '3.6'",
350 | "version": "==6.0"
351 | },
352 | "requests": {
353 | "hashes": [
354 | "sha256:64299f4909223da747622c030b781c0d7811e359c37124b4bd368fb8c6518baa",
355 | "sha256:98b1b2782e3c6c4904938b84c0eb932721069dfdb9134313beff7c83c2df24bf"
356 | ],
357 | "markers": "python_version >= '3.7' and python_version < '4'",
358 | "version": "==2.28.2"
359 | },
360 | "setuptools": {
361 | "hashes": [
362 | "sha256:257de92a9d50a60b8e22abfcbb771571fde0dbf3ec234463212027a4eeecbe9a",
363 | "sha256:e728ca814a823bf7bf60162daf9db95b93d532948c4c0bea762ce62f60189078"
364 | ],
365 | "markers": "python_version >= '3.7'",
366 | "version": "==67.6.1"
367 | },
368 | "six": {
369 | "hashes": [
370 | "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926",
371 | "sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254"
372 | ],
373 | "markers": "python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3'",
374 | "version": "==1.16.0"
375 | },
376 | "sortedcontainers": {
377 | "hashes": [
378 | "sha256:25caa5a06cc30b6b83d11423433f65d1f9d76c4c6a0c90e3379eaa43b9bfdb88",
379 | "sha256:a163dcaede0f1c021485e957a39245190e74249897e2ae4b2aa38595db237ee0"
380 | ],
381 | "version": "==2.4.0"
382 | },
383 | "urllib3": {
384 | "hashes": [
385 | "sha256:8a388717b9476f934a21484e8c8e61875ab60644d29b9b39e11e4b9dc1c6b305",
386 | "sha256:aa751d169e23c7479ce47a0cb0da579e3ede798f994f5816a74e4f4500dcea42"
387 | ],
388 | "markers": "python_version >= '2.7' and python_version not in '3.0, 3.1, 3.2, 3.3, 3.4, 3.5'",
389 | "version": "==1.26.15"
390 | },
391 | "wcwidth": {
392 | "hashes": [
393 | "sha256:795b138f6875577cd91bba52baf9e445cd5118fd32723b460e30a0af30ea230e",
394 | "sha256:a5220780a404dbe3353789870978e472cfe477761f06ee55077256e509b156d0"
395 | ],
396 | "version": "==0.2.6"
397 | },
398 | "webencodings": {
399 | "hashes": [
400 | "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78",
401 | "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923"
402 | ],
403 | "version": "==0.5.1"
404 | },
405 | "xml2rfc": {
406 | "hashes": [
407 | "sha256:33a4a11178c791db25fdf733e04fdc28c3660c94d0fe83b3b2799ef23f547003"
408 | ],
409 | "index": "pypi",
410 | "version": "==3.17.0"
411 | }
412 | },
413 | "develop": {}
414 | }
415 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # The ristretto255 and decaf448 Groups
2 |
3 | This is the working area for the CFRG Internet-Draft,
4 | "The ristretto255 and decaf448 Groups".
5 |
6 | ## Building the Draft
7 |
8 | The formatted text version of the draft is built from Markdown.
9 |
10 | ```sh
11 | $ go install github.com/mmarkdown/mmark/v2@08b8fbb35701dab9a4972e1e29774a13f196ff53
12 | $ pipenv install
13 | $ pipenv run make
14 | ```
15 |
16 | This requires that you have [`pipenv`](https://pipenv.pypa.io/en/latest/) and
17 | [`mmark`](https://github.com/mmarkdown/mmark) 2.2.5.
18 |
--------------------------------------------------------------------------------
/draft-irtf-cfrg-ristretto255-decaf448.md:
--------------------------------------------------------------------------------
1 | %%%
2 |
3 | Title = "The ristretto255 and decaf448 Groups"
4 | abbrev = "ristretto255-decaf448"
5 | ipr = "trust200902"
6 | category = "info"
7 | area = "Internet"
8 | workgroup = "Crypto Forum Research Group"
9 |
10 | [seriesInfo]
11 | status = "informational"
12 | name = "Internet-Draft"
13 | value = "draft-irtf-cfrg-ristretto255-decaf448-08"
14 | stream = "IETF"
15 |
16 | [[author]]
17 | initials = "H."
18 | surname = "de Valence"
19 | fullname = "Henry de Valence"
20 | [author.address]
21 | email = "ietf@hdevalence.ca"
22 |
23 | [[author]]
24 | initials = "J."
25 | surname = "Grigg"
26 | fullname = "Jack Grigg"
27 | [author.address]
28 | email = "ietf@jackgrigg.com"
29 |
30 | [[author]]
31 | initials = "M."
32 | surname = "Hamburg"
33 | fullname = "Mike Hamburg"
34 | [author.address]
35 | email = "ietf@shiftleft.org"
36 |
37 | [[author]]
38 | initials = "I."
39 | surname = "Lovecruft"
40 | fullname = "Isis Lovecruft"
41 | [author.address]
42 | email = "ietf@en.ciph.re"
43 |
44 | [[author]]
45 | initials = "G."
46 | surname = "Tankersley"
47 | fullname = "George Tankersley"
48 | [author.address]
49 | email = "ietf@gtank.cc"
50 |
51 | [[author]]
52 | initials = "F."
53 | surname = "Valsorda"
54 | fullname = "Filippo Valsorda"
55 | [author.address]
56 | email = "ietf@filippo.io"
57 |
58 | %%%
59 |
60 | .# Abstract
61 | This memo specifies two prime-order groups, ristretto255 and decaf448,
62 | suitable for safely implementing higher-level and complex
63 | cryptographic protocols. The ristretto255 group can be implemented
64 | using Curve25519, allowing existing Curve25519 implementations to be
65 | reused and extended to provide a prime-order group. Likewise, the
66 | decaf448 group can be implemented using edwards448.
67 |
68 | This document is a product of the Crypto Forum Research Group (CFRG) in the IRTF.
69 |
70 | {mainmatter}
71 |
72 | # Introduction
73 |
74 | Decaf [@?Decaf] is a technique for constructing prime-order groups
75 | with non-malleable encodings from non-prime-order elliptic curves.
76 | Ristretto extends this technique to support cofactor-8 curves such as
77 | Curve25519 [@?RFC7748]. In particular, this allows an existing
78 | Curve25519 library to provide a prime-order group with only a thin
79 | abstraction layer.
80 |
81 |
82 |
83 |
84 | Decaf: Eliminating cofactors through point
85 | compression
86 |
87 | Rambus Cryptography Research
88 |
89 |
90 |
91 |
92 |
93 | Many group-based cryptographic protocols require the number of
94 | elements in the group (the group order) to be prime. Prime-order
95 | groups are useful because every non-identity element of the group
96 | is a generator of the entire group. This means the group has a
97 | cofactor of 1, and all elements are equivalent from the perspective
98 | of Discrete Log Hardness.
99 |
100 | Edwards curves provide a number of implementation benefits for
101 | cryptography, such as complete addition formulas with no exceptional
102 | points and formulas among the fastest known for curve operations.
103 | However, the group of points on the curve is not of prime order,
104 | i.e., it has a cofactor larger than 1.
105 | This abstraction mismatch is usually handled by means of ad-hoc
106 | protocol tweaks, such as multiplying by the cofactor in an
107 | appropriate place, or not at all.
108 |
109 | Even for simple protocols such as signatures, these tweaks can cause
110 | subtle issues. For instance, Ed25519 implementations may have
111 | different validation behavior between batched and singleton
112 | verification, and at least as specified in [@RFC8032], the set of
113 | valid signatures is not defined by the standard.
114 |
115 | For more complex protocols, careful analysis is required as the
116 | original security proofs may no longer apply, and the tweaks for one
117 | protocol may have disastrous effects when applied to another (for
118 | instance, the octuple-spend vulnerability in [@MoneroVuln]).
119 |
120 | Decaf and Ristretto fix this abstraction mismatch in one place for
121 | all protocols, providing an abstraction to protocol implementors that
122 | matches the abstraction commonly assumed in protocol specifications,
123 | while still allowing the use of high-performance curve
124 | implementations internally. The abstraction layer imposes minor
125 | overhead, and only in the encoding and decoding phases.
126 |
127 | While Ristretto is a general method, and can be used in conjunction
128 | with any Edwards curve with cofactor 4 or 8, this document specifies
129 | the ristretto255 group, which can be implemented using Curve25519,
130 | and the decaf448 group, which can be implemented using edwards448.
131 |
132 | There are other elliptic curves that can be used internally to
133 | implement ristretto255 or decaf448, and those implementations would be
134 | interoperable with a Curve25519- or edwards448-based one, but those
135 | constructions are out-of-scope for this document.
136 |
137 | The Ristretto construction is described and justified in detail at
138 | [@RistrettoGroup].
139 |
140 | This document represents the consensus of the Crypto Forum Research Group (CFRG).
141 | This document is not an IETF product and is not a standard.
142 |
143 |
144 |
145 | The Ristretto Group
146 |
147 |
148 |
149 |
150 |
151 |
152 |
153 |
154 |
155 |
156 | Exploiting Low Order Generators in One-Time Ring Signatures
157 |
158 |
159 |
160 |
161 |
162 | # Notation and Conventions Used In This Document
163 |
164 | The key words "**MUST**", "**MUST NOT**", "**REQUIRED**", "**SHALL**",
165 | "**SHALL NOT**", "**SHOULD**", "**SHOULD NOT**", "**RECOMMENDED**",
166 | "**NOT RECOMMENDED**", "**MAY**", and "**OPTIONAL**" in this document
167 | are to be interpreted as described in BCP 14 [@!RFC2119] [@!RFC8174]
168 | when, and only when, they appear in all capitals, as shown here.
169 |
170 | Readers are cautioned that the term "Curve25519" has varying
171 | interpretations in the literature, and that the canonical meaning of the
172 | term has shifted over time. Originally it referred to a specific
173 | Diffie-Hellman key exchange mechanism. Over time, use shifted, and
174 | "Curve25519" has been used to refer to either the abstract underlying
175 | curve, or its concrete representation in Montgomery form, or the
176 | specific Diffie-Hellman mechanism. This document uses the term
177 | "Curve25519" to refer to the abstract underlying curve, as recommended
178 | in [@Naming]. The abstract Edwards form of the curve we refer to here
179 | as "Curve25519" is in [@?RFC7748] referred to as "edwards25519"
180 | and its isogenous Montgomery form is referred to as "curve25519".
181 |
182 | Elliptic curve points in this document are represented in extended
183 | Edwards coordinates in the `(x, y, z, t)` format [@Twisted], also called
184 | extended homogeneous coordinates in Section 5.1.4 of [@?RFC8032]. Field
185 | elements are values modulo p, the Curve25519 prime 2^255 - 19 or the
186 | edwards448 prime 2^448 - 2^224 - 1, as specified in Sections 4.1 and
187 | 4.2 of [@RFC7748], respectively. All formulas specify field operations
188 | unless otherwise noted. The symbol ^ denotes exponentiation.
189 |
190 | The `|` symbol represents a constant-time logical OR.
191 |
192 | The notation `array[A:B]` means the elements of `array` from `A`
193 | to `B-1`. That is, it is exclusive of `B`. Arrays are indexed
194 | starting from 0.
195 |
196 | A byte is an 8-bit entity (also known as "octet") and a byte string
197 | is an ordered sequence of bytes. An N-byte string is a byte string of
198 | N bytes in length.
199 |
200 | Element encodings are presented as hex encoded byte strings with
201 | whitespace added for readability.
202 |
203 |
204 |
205 | Twisted Edwards Curves Revisited
206 |
207 |
208 |
209 |
210 |
211 |
212 |
213 |
214 |
215 |
216 | [Cfrg] 25519 naming
217 |
218 |
219 |
220 |
221 |
222 | ## Negative field elements
223 |
224 | As in [@RFC8032], given a field element e, define `IS_NEGATIVE(e)` as
225 | TRUE if the least non-negative integer representing e is odd, and
226 | FALSE if it is even. This **SHOULD** be implemented in constant time.
227 |
228 | ## Constant time operations
229 |
230 | We assume that the field element implementation supports the following
231 | operations, which **SHOULD** be implemented in constant time:
232 |
233 | * `CT_EQ(u, v)`: return TRUE if u = v, FALSE otherwise.
234 | * `CT_SELECT(v IF cond ELSE u)`: return v if cond is TRUE, else return u.
235 | * `CT_ABS(u)`: return -u if IS_NEGATIVE(u), else return u.
236 |
237 | Note that `CT_ABS` **MAY** be implemented as:
238 |
239 | CT_SELECT(-u IF IS_NEGATIVE(u) ELSE u)
240 |
241 | # The group abstraction {#interface}
242 |
243 | Ristretto and Decaf implement an abstract prime-order group interface
244 | that exposes only the behavior that is useful to higher-level protocols,
245 | without leaking curve-related details and pitfalls.
246 |
247 | Each abstract group exposes operations on abstract element and abstract
248 | scalar types. The operations defined on these types include: decoding, encoding,
249 | equality, addition, negation, subtraction and (multi-)scalar multiplication.
250 | Each abstract group also exposes a deterministic function to derive abstract
251 | elements from fixed-length byte strings. A description of each of these
252 | operations is below.
253 |
254 | Decoding is a function from byte strings to abstract elements with
255 | built-in validation, so that only the canonical encodings of valid
256 | elements are accepted. The built-in validation avoids the need for
257 | explicit invalid curve checks.
258 |
259 | Encoding is a function from abstract elements to byte strings. Internally,
260 | an abstract element might have more than one possible representation -- for
261 | example, the implementation might use projective coordinates. When encoding,
262 | all equivalent representations of the same element are encoded as identical
263 | byte strings. Decoding the output of the encoding function always
264 | succeeds and returns an equivalent element to the encoding input.
265 |
266 | The equality check reports whether two representations of an abstract
267 | element are equivalent.
268 |
269 | The element derivation function maps deterministically from byte strings of
270 | a fixed length to abstract elements. It has two important properties. First,
271 | if the input is a uniformly random byte string, then the output is (within
272 | a negligible statistical distance of) a uniformly random abstract group
273 | element. This means the function is suitable for selecting random group
274 | elements.
275 |
276 | Second, although the element derivation function is many-to-one and therefore
277 | not strictly invertible, it is not pre-image resistent. On the contrary,
278 | given an arbitrary abstract group element `P`, there is an efficient algorithm
279 | to randomly sample from byte strings that map to `P`. In some contexts this
280 | property would be a weakness, but it is important in some contexts: in particular,
281 | it means that a combination of a cryptographic hash function and the element
282 | derivation function is suitable for use in algorithms such as
283 | `hash_to_curve` [@?draft-irtf-cfrg-hash-to-curve-16].
284 |
285 |
286 |
288 |
289 | Hashing to Elliptic Curves
290 |
291 |
292 |
293 |
294 |
295 |
296 |
297 |
298 |
299 | Addition is the group operation. The group has an identity element and
300 | prime order l. Adding together l copies of the same element gives the
301 | identity. Adding the identity element to
302 | any element returns that element unchanged. Negation returns an element
303 | that added to the negation input returns the identity element.
304 | Subtraction is the addition of a negated element, and scalar
305 | multiplication is the repeated addition of an element.
306 |
307 | # ristretto255 {#ristretto255}
308 |
309 | ristretto255 is an instantiation of the abstract prime-order group
310 | interface defined in (#interface). This document describes how to
311 | implement the ristretto255 prime-order group using Curve25519 points as
312 | internal representations.
313 |
314 | A "ristretto255 group element" is the abstract element of the prime
315 | order group. An "element encoding" is the unique reversible encoding
316 | of a group element. An "internal representation" is a point on the
317 | curve used to implement ristretto255. Each group element can have
318 | multiple equivalent internal representations.
319 |
320 | Encoding, decoding, equality, and the element derivation function are defined in
321 | (#functions255). Element addition, subtraction, negation, and scalar
322 | multiplication are implemented by applying the corresponding operations
323 | directly to the internal representation.
324 |
325 | The group order is the same as the order of the Curve25519 prime-order subgroup:
326 |
327 | l = 2^252 + 27742317777372353535851937790883648493
328 |
329 | Since ristretto255 is a prime-order group, every element except the
330 | identity is a generator, but for interoperability a canonical generator
331 | is selected, which can be internally represented by the Curve25519
332 | basepoint, enabling reuse of existing precomputation for scalar
333 | multiplication. This is its encoding as produced by the function
334 | specified in (#encoding255):
335 |
336 | ```
337 | e2f2ae0a 6abc4e71 a884a961 c500515f 58e30b6a a582dd8d b6a65945 e08d2d76
338 | ```
339 |
340 | ## Implementation constants {#constants255}
341 |
342 | This document references the following constant field element values
343 | that are used for the implementation of group operations.
344 |
345 | * `D` = 37095705934669439343138083508754565189542113879843219016388785533085940283555
346 | * This is the Edwards d parameter for Curve25519, as specified in Section 4.1 of [@RFC7748].
347 | * `SQRT_M1` = 19681161376707505956807079304988542015446066515923890162744021073123829784752
348 | * `SQRT_AD_MINUS_ONE` = 25063068953384623474111414158702152701244531502492656460079210482610430750235
349 | * `INVSQRT_A_MINUS_D` = 54469307008909316920995813868745141605393597292927456921205312896311721017578
350 | * `ONE_MINUS_D_SQ` = 1159843021668779879193775521855586647937357759715417654439879720876111806838
351 | * `D_MINUS_ONE_SQ` = 40440834346308536858101042469323190826248399146238708352240133220865137265952
352 |
353 | ## Square root of a ratio of field elements {#sqrtratio255}
354 |
355 | The following function is defined on field elements, and is used to
356 | implement other ristretto255 functions. This function is only used internally
357 | to implement some of the group operations.
358 |
359 | On input field elements u and v, the function `SQRT_RATIO_M1(u, v)` returns:
360 |
361 | * `(TRUE, +sqrt(u/v))` if u and v are non-zero, and u/v is square;
362 | * `(TRUE, zero)` if u is zero;
363 | * `(FALSE, zero)` if v is zero and u is non-zero;
364 | * `(FALSE, +sqrt(SQRT_M1*(u/v)))` if u and v are non-zero, and u/v is
365 | non-square (so `SQRT_M1*(u/v)` is square),
366 |
367 | where `+sqrt(x)` indicates the non-negative square root of x in the
368 | field.
369 |
370 | The computation is similar to Section 5.1.3 of [@RFC8032], with the
371 | difference that if the input is non-square, the function returns a
372 | result with a defined relationship to the inputs. This result is used
373 | for efficient implementation of the derivation function. The function
374 | can be refactored from an existing Ed25519 implementation.
375 |
376 | `SQRT_RATIO_M1(u, v)` is defined as follows:
377 |
378 | ```
379 | r = (u * v^3) * (u * v^7)^((p-5)/8) // Note: (p - 5) / 8 is an integer.
380 | check = v * r^2
381 |
382 | correct_sign_sqrt = CT_EQ(check, u)
383 | flipped_sign_sqrt = CT_EQ(check, -u)
384 | flipped_sign_sqrt_i = CT_EQ(check, -u*SQRT_M1)
385 |
386 | r_prime = SQRT_M1 * r
387 | r = CT_SELECT(r_prime IF flipped_sign_sqrt | flipped_sign_sqrt_i ELSE r)
388 |
389 | // Choose the nonnegative square root.
390 | r = CT_ABS(r)
391 |
392 | was_square = correct_sign_sqrt | flipped_sign_sqrt
393 |
394 | return (was_square, r)
395 | ```
396 |
397 | ## ristretto255 group operations {#functions255}
398 |
399 | This section describes the implementation of the external functions
400 | exposed by the ristretto255 prime-order group.
401 |
402 | ### Decode {#decoding255}
403 |
404 | All elements are encoded as 32-byte strings. Decoding proceeds as follows:
405 |
406 | 1. First, interpret the string as an unsigned integer s in little-endian
407 | representation. If the length of the string is not 32 bytes, or if
408 | the resulting value is >= p, decoding fails.
409 | * Note: unlike [@RFC7748] field element decoding, the most significant
410 | bit is not masked, and non-canonical values are rejected.
411 | The test vectors in (#invalid255) exercise these edge cases.
412 | 2. If `IS_NEGATIVE(s)` returns TRUE, decoding fails.
413 | 3. Process s as follows:
414 |
415 | ```
416 | ss = s^2
417 | u1 = 1 - ss
418 | u2 = 1 + ss
419 | u2_sqr = u2^2
420 |
421 | v = -(D * u1^2) - u2_sqr
422 |
423 | (was_square, invsqrt) = SQRT_RATIO_M1(1, v * u2_sqr)
424 |
425 | den_x = invsqrt * u2
426 | den_y = invsqrt * den_x * v
427 |
428 | x = CT_ABS(2 * s * den_x)
429 | y = u1 * den_y
430 | t = x * y
431 | ```
432 |
433 | 4. If was\_square is FALSE, or `IS_NEGATIVE(t)` returns TRUE, or y =
434 | 0, decoding fails. Otherwise, return the group element represented
435 | by the internal representation `(x, y, 1, t)` as the result of
436 | decoding.
437 |
438 | ### Encode {#encoding255}
439 |
440 | A group element with internal representation `(x0, y0, z0, t0)` is
441 | encoded as follows:
442 |
443 | 1. Process the internal representation into a field element s as follows:
444 |
445 | ```
446 | u1 = (z0 + y0) * (z0 - y0)
447 | u2 = x0 * y0
448 |
449 | // Ignore was_square since this is always square.
450 | (_, invsqrt) = SQRT_RATIO_M1(1, u1 * u2^2)
451 |
452 | den1 = invsqrt * u1
453 | den2 = invsqrt * u2
454 | z_inv = den1 * den2 * t0
455 |
456 | ix0 = x0 * SQRT_M1
457 | iy0 = y0 * SQRT_M1
458 | enchanted_denominator = den1 * INVSQRT_A_MINUS_D
459 |
460 | rotate = IS_NEGATIVE(t0 * z_inv)
461 |
462 | // Conditionally rotate x and y.
463 | x = CT_SELECT(iy0 IF rotate ELSE x0)
464 | y = CT_SELECT(ix0 IF rotate ELSE y0)
465 | z = z0
466 | den_inv = CT_SELECT(enchanted_denominator IF rotate ELSE den2)
467 |
468 | y = CT_SELECT(-y IF IS_NEGATIVE(x * z_inv) ELSE y)
469 |
470 | s = CT_ABS(den_inv * (z - y))
471 | ```
472 |
473 | 2. Return the 32-byte little-endian encoding of s. More specifically,
474 | this is the encoding of the canonical representation of s as an integer
475 | between 0 and p-1, inclusive.
476 |
477 | Note that decoding and then re-encoding a valid group element will
478 | yield an identical byte string.
479 |
480 | ### Equals {#equals255}
481 |
482 | The equality function returns TRUE when two internal representations
483 | correspond to the same group element. Note that internal representations
484 | **MUST NOT** be compared in any other way than specified here.
485 |
486 | For two internal representations `(x1, y1, z1, t1)` and `(x2, y2, z2, t2)`,
487 | if
488 |
489 | (x1 * y2 == y1 * x2) | (y1 * y2 == x1 * x2)
490 |
491 | evaluates to TRUE, then return TRUE. Otherwise, return FALSE.
492 |
493 | Note that the equality function always returns TRUE when applied to an
494 | internal representation and to the internal representation obtained by
495 | encoding and then re-decoding it. However, the internal
496 | representations themselves might not be identical.
497 |
498 | Implementations **MAY** also perform byte comparisons on the encodings
499 | of group elements (produced by (#encoding255)) for an equivalent, although
500 | less efficient, result.
501 |
502 | ### Element derivation {#from_bytes_uniform255}
503 |
504 | The element derivation function operates on 64-byte strings.
505 | To obtain such an input from an arbitrary-length byte string, applications
506 | should use a domain-separated hash construction, the choice of which
507 | is out-of-scope for this document.
508 |
509 | The element derivation function on an input string b proceeds as follows:
510 |
511 | 1. Compute P1 as `MAP(b[0:32])`.
512 | 2. Compute P2 as `MAP(b[32:64])`.
513 | 3. Return P1 + P2.
514 |
515 | The MAP function is defined on 32-byte strings as:
516 |
517 | 1. First, mask the most significant bit in the final byte of the string,
518 | and interpret the string as an unsigned integer r in little-endian
519 | representation. Reduce r modulo p to obtain a field element t.
520 | * Masking the most significant bit is equivalent to interpreting the
521 | whole string as an unsigned integer in little-endian representation and then
522 | reducing it modulo 2^255.
523 | * Note: similarly to [@RFC7748] field element decoding, and unlike
524 | field element decoding in (#decoding255), the most significant bit
525 | is masked, and non-canonical values are accepted.
526 |
527 | 2. Process t as follows:
528 |
529 | ```
530 | r = SQRT_M1 * t^2
531 | u = (r + 1) * ONE_MINUS_D_SQ
532 | v = (-1 - r*D) * (r + D)
533 |
534 | (was_square, s) = SQRT_RATIO_M1(u, v)
535 | s_prime = -CT_ABS(s*t)
536 | s = CT_SELECT(s IF was_square ELSE s_prime)
537 | c = CT_SELECT(-1 IF was_square ELSE r)
538 |
539 | N = c * (r - 1) * D_MINUS_ONE_SQ - v
540 |
541 | w0 = 2 * s * v
542 | w1 = N * SQRT_AD_MINUS_ONE
543 | w2 = 1 - s^2
544 | w3 = 1 + s^2
545 | ```
546 |
547 | 3. Return the group element represented by the internal representation
548 | `(w0*w3, w2*w1, w1*w3, w0*w2)`.
549 |
550 | ## Scalar field
551 |
552 | The scalars for the ristretto255 group are integers modulo the order l
553 | of the ristretto255 group. Note that this is the same scalar field as
554 | Curve25519, allowing existing implementations to be reused.
555 |
556 | Scalars are encoded as 32-byte strings in little-endian order.
557 | Implementations **SHOULD** check that any scalar s falls in the range
558 | 0 <= s < l when parsing them and reject non-canonical scalar
559 | encodings. Implementations **SHOULD** reduce scalars modulo l when
560 | encoding them as byte strings. Omitting these strict range checks is
561 | **NOT RECOMMENDED** but is allowed to enable reuse of scalar
562 | arithmetic implementations in existing Curve25519 libraries.
563 |
564 | Given a uniformly distributed 64-byte string b, implementations can
565 | obtain a uniformly distributed scalar by interpreting the 64-byte
566 | string as a 512-bit unsigned integer in little-endian order and reducing the
567 | integer modulo l, as in [@RFC8032]. To obtain such an input from an
568 | arbitrary-length byte string, applications should use a domain-separated
569 | hash construction, the choice of which is out-of-scope for this document.
570 |
571 | # decaf448 {#decaf448}
572 |
573 | decaf448 is an instantiation of the abstract prime-order group
574 | interface defined in (#interface). This document describes how to
575 | implement the decaf448 prime-order group using edwards448 points as
576 | internal representations.
577 |
578 | A "decaf448 group element" is the abstract element of the prime order
579 | group. An "element encoding" is the unique reversible encoding of a
580 | group element. An "internal representation" is a point on the curve
581 | used to implement decaf448. Each group element can have multiple
582 | equivalent internal representations.
583 |
584 | Encoding, decoding, equality, and the element derivation functions are defined in
585 | (#functions448). Element addition, subtraction, negation, and scalar
586 | multiplication are implemented by applying the corresponding operations
587 | directly to the internal representation.
588 |
589 | The group order is the same as the order of the edwards448 prime-order subgroup:
590 |
591 | l = 2^446 -
592 | 13818066809895115352007386748515426880336692474882178609894547503885
593 |
594 | Since decaf448 is a prime-order group, every element except the
595 | identity is a generator, but for interoperability a canonical generator
596 | is selected. This generator can be internally represented by 2*`B`, where `B` is the edwards448
597 | basepoint, enabling reuse of existing precomputation for scalar
598 | multiplication. This is its encoding as produced by the function
599 | specified in (#encoding448):
600 |
601 | ```
602 | 66666666 66666666 66666666 66666666 66666666 66666666 66666666
603 | 33333333 33333333 33333333 33333333 33333333 33333333 33333333
604 | ```
605 |
606 | This repetitive constant is equal to `1/sqrt(5)` in decaf448's field,
607 | corresponding to the curve448 base point with x = 5.
608 |
609 | ## Implementation constants {#constants448}
610 |
611 | This document references the following constant field element values
612 | that are used for the implementation of group operations.
613 |
614 | * `D` = 726838724295606890549323807888004534353641360687318060281490199180612328166730772686396383698676545930088884461843637361053498018326358
615 | * This is the Edwards d parameter for edwards448, as specified in
616 | Section 4.2 of [@RFC7748], and is equal to -39081 in the field.
617 | * `ONE_MINUS_D` = 39082
618 | * `ONE_MINUS_TWO_D` = 78163
619 | * `SQRT_MINUS_D` = 98944233647732219769177004876929019128417576295529901074099889598043702116001257856802131563896515373927712232092845883226922417596214
620 | * `INVSQRT_MINUS_D` = 315019913931389607337177038330951043522456072897266928557328499619017160722351061360252776265186336876723201881398623946864393857820716
621 |
622 | ## Square root of a ratio of field elements {#sqrtratio448}
623 |
624 | The following function is defined on field elements, and is used to
625 | implement other decaf448 functions. This function is only used internally
626 | to implement some of the group operations.
627 |
628 | On input field elements u and v, the function `SQRT_RATIO_M1(u, v)` returns:
629 |
630 | * `(TRUE, +sqrt(u/v))` if u and v are non-zero, and u/v is square;
631 | * `(TRUE, zero)` if u is zero;
632 | * `(FALSE, zero)` if v is zero and u is non-zero;
633 | * `(FALSE, +sqrt(-u/v))` if u and v are non-zero, and u/v is
634 | non-square (so `-(u/v)` is square),
635 |
636 | where `+sqrt(x)` indicates the non-negative square root of x in
637 | the field.
638 |
639 | The computation is similar to Section 5.2.3 of [@RFC8032], with the
640 | difference that if the input is non-square, the function returns a
641 | result with a defined relationship to the inputs. This result is used
642 | for efficient implementation of the derivation function. The function
643 | can be refactored from an existing edwards448 implementation.
644 |
645 | `SQRT_RATIO_M1(u, v)` is defined as follows:
646 |
647 | ```
648 | r = u * (u * v)^((p - 3) / 4) // Note: (p - 3) / 4 is an integer.
649 |
650 | check = v * r^2
651 | was_square = CT_EQ(check, u)
652 |
653 | // Choose the nonnegative square root.
654 | r = CT_ABS(r)
655 |
656 | return (was_square, r)
657 | ```
658 |
659 | ## decaf448 group operations {#functions448}
660 |
661 | This section describes the implementation of the external functions
662 | exposed by the decaf448 prime-order group.
663 |
664 | ### Decode {#decoding448}
665 |
666 | All elements are encoded as 56-byte strings. Decoding proceeds as follows:
667 |
668 | 1. First, interpret the string as an unsigned integer s in little-endian
669 | representation. If the length of the string is not 56 bytes, or if
670 | the resulting value is >= p, decoding fails.
671 | * Note: unlike [@RFC7748] field element decoding, non-canonical
672 | values are rejected. The test vectors in (#invalid448) exercise
673 | these edge cases.
674 | 2. If `IS_NEGATIVE(s)` returns TRUE, decoding fails.
675 | 3. Process s as follows:
676 |
677 | ```
678 | ss = s^2
679 | u1 = 1 + ss
680 | u2 = u1^2 - 4 * D * ss
681 | (was_square, invsqrt) = SQRT_RATIO_M1(1, u2 * u1^2)
682 | u3 = CT_ABS(2 * s * invsqrt * u1 * SQRT_MINUS_D)
683 | x = u3 * invsqrt * u2 * INVSQRT_MINUS_D
684 | y = (1 - ss) * invsqrt * u1
685 | t = x * y
686 | ```
687 |
688 | 4. If was\_square is FALSE then decoding fails. Otherwise,
689 | return the group element represented by the internal representation
690 | `(x, y, 1, t)` as the result of decoding.
691 |
692 | ### Encode {#encoding448}
693 |
694 | A group element with internal representation `(x0, y0, z0, t0)` is
695 | encoded as follows:
696 |
697 | 1. Process the internal representation into a field element s as follows:
698 |
699 | ```
700 | u1 = (x0 + t0) * (x0 - t0)
701 |
702 | // Ignore was_square since this is always square.
703 | (_, invsqrt) = SQRT_RATIO_M1(1, u1 * ONE_MINUS_D * x0^2)
704 |
705 | ratio = CT_ABS(invsqrt * u1 * SQRT_MINUS_D)
706 | u2 = INVSQRT_MINUS_D * ratio * z0 - t0
707 | s = CT_ABS(ONE_MINUS_D * invsqrt * x0 * u2)
708 | ```
709 |
710 | 2. Return the 56-byte little-endian encoding of s. More specifically,
711 | this is the encoding of the canonical representation of s as an integer
712 | between 0 and p-1, inclusive.
713 |
714 | Note that decoding and then re-encoding a valid group element will
715 | yield an identical byte string.
716 |
717 | ### Equals {#equals448}
718 |
719 | The equality function returns TRUE when two internal representations
720 | correspond to the same group element. Note that internal representations
721 | **MUST NOT** be compared in any other way than specified here.
722 |
723 | For two internal representations `(x1, y1, z1, t1)` and `(x2, y2, z2, t2)`,
724 | if
725 |
726 | x1 * y2 == y1 * x2
727 |
728 | evaluates to TRUE, then return TRUE. Otherwise, return FALSE.
729 |
730 | Note that the equality function always returns TRUE when applied to an
731 | internal representation and to the internal representation obtained by
732 | encoding and then re-decoding it. However, the internal
733 | representations themselves might not be identical.
734 |
735 | Implementations **MAY** also perform byte comparisons on the encodings
736 | of group elements (produced by (#encoding448)) for an equivalent, although
737 | less efficient, result.
738 |
739 | ### Element derivation {#from_bytes_uniform448}
740 |
741 | The element derivation function operates on 112-byte strings.
742 | To obtain such an input from an arbitrary-length byte string, applications
743 | should use a domain-separated hash construction, the choice of which
744 | is out-of-scope for this document.
745 |
746 | The element derivation function on an input string b proceeds as follows:
747 |
748 | 1. Compute P1 as `MAP(b[0:56])`.
749 | 2. Compute P2 as `MAP(b[56:112])`.
750 | 3. Return P1 + P2.
751 |
752 | The MAP function is defined on 56-byte strings as:
753 |
754 | 1. Interpret the string as an unsigned integer r in little-endian representation.
755 | Reduce r modulo p to obtain a field element t.
756 | * Note: similarly to [@RFC7748] field element decoding, and unlike
757 | field element decoding in (#decoding448), non-canonical values are
758 | accepted.
759 |
760 | 2. Process t as follows:
761 |
762 | ```
763 | r = -t^2
764 | u0 = d * (r-1)
765 | u1 = (u0 + 1) * (u0 - r)
766 |
767 | (was_square, v) = SQRT_RATIO_M1(ONE_MINUS_TWO_D, (r + 1) * u1)
768 | v_prime = CT_SELECT(v IF was_square ELSE t * v)
769 | sgn = CT_SELECT(1 IF was_square ELSE -1)
770 | s = v_prime * (r + 1)
771 |
772 | w0 = 2 * CT_ABS(s)
773 | w1 = s^2 + 1
774 | w2 = s^2 - 1
775 | w3 = v_prime * s * (r - 1) * ONE_MINUS_TWO_D + sgn
776 | ```
777 |
778 | 3. Return the group element represented by the internal representation
779 | `(w0*w3, w2*w1, w1*w3, w0*w2)`.
780 |
781 | ## Scalar field
782 |
783 | The scalars for the decaf448 group are integers modulo the order l
784 | of the decaf448 group. Note that this is the same scalar field as
785 | edwards448, allowing existing implementations to be reused.
786 |
787 | Scalars are encoded as 56-byte strings in little-endian order.
788 | Implementations **SHOULD** check that any scalar s falls in the range
789 | 0 <= s < l when parsing them and reject non-canonical scalar
790 | encodings. Implementations **SHOULD** reduce scalars modulo l when
791 | encoding them as byte strings. Omitting these strict range checks is
792 | **NOT RECOMMENDED** but is allowed to enable reuse of scalar
793 | arithmetic implementations in existing edwards448 libraries.
794 |
795 | Given a uniformly distributed 64-byte string b, implementations can
796 | obtain a uniformly distributed scalar by interpreting the 64-byte
797 | string as a 512-bit unsigned integer in little-endian order and reducing the
798 | integer modulo l. To obtain such an input from an arbitrary-length
799 | byte string, applications should use a domain-separated hash
800 | construction, the choice of which is out-of-scope for this document.
801 |
802 | # API Considerations {#api}
803 |
804 | ristretto255 and decaf448 are abstractions which implement two prime-order
805 | groups, and their elements are represented by curve points, but they are
806 | not curve points. Implementations **SHOULD** reflect that: the type
807 | representing an element of the group **SHOULD** be opaque to the caller,
808 | meaning they do not expose the underlying curve point or field elements.
809 | Moreover, implementations **SHOULD NOT** expose any internal constants
810 | or functions used in the implementation of the group operations.
811 |
812 | The reason for this encapsulation is that ristretto255 and decaf448 implementations
813 | can change their underlying curve without causing any breaking change. The ristretto255
814 | and decaf448 constructions are carefully designed so that this will be the
815 | case, as long as implementations do not expose internal representations or
816 | operate on them except as described in this document. In particular,
817 | implementations **SHOULD NOT** define any external ristretto255 or decaf448
818 | interface as operating on arbitrary curve points, and they **SHOULD NOT**
819 | construct group elements except via decoding, the element derivation function,
820 | or group operations on other valid group elements per (#interface). They are
821 | however allowed to apply any optimization strategy to the internal
822 | representations as long as it doesn't change the exposed behavior of the
823 | API.
824 |
825 | It is **RECOMMENDED** that implementations do not perform a decoding and
826 | encoding operation for each group operation, as it is inefficient and
827 | unnecessary. Implementations **SHOULD** instead provide an opaque type
828 | to hold the internal representation through multiple operations.
829 |
830 | # IANA Considerations
831 |
832 | This document has no IANA actions.
833 |
834 | # Security Considerations
835 |
836 | The ristretto255 and decaf448 groups provide higher-level protocols with
837 | the abstraction they expect: a prime-order group. Therefore, it's expected
838 | to be safer for use in any situation where Curve25519 or edwards448 is used
839 | to implement a protocol requiring a prime-order group. Note that the safety
840 | of the abstraction can be defeated by implementations that do not follow
841 | the guidance in (#api).
842 |
843 | There is no function to test whether an elliptic curve point is a
844 | valid internal representation of a group element. The decoding
845 | function always returns a valid internal representation, or an error, and
846 | allowed operations on valid internal representations return valid
847 | internal representations. In this way, an implementation can maintain
848 | the invariant that an internal representation is always valid, so that
849 | checking is never necessary, and invalid states are unrepresentable.
850 |
851 | # Acknowledgements
852 |
853 | The authors would like to thank Daira Hopwood, Riad S. Wahby, Christopher Wood,
854 | and Thomas Pornin for their comments on the draft.
855 |
856 | {backmatter}
857 |
858 | # Test vectors for ristretto255
859 |
860 | This section contains test vectors for ristretto255. The octets are
861 | hex encoded, and whitespace is inserted for readability.
862 |
863 | ## Multiples of the generator
864 |
865 | The following are the encodings of the multiples 0 to 15 of the
866 | canonical generator, represented as an array of elements. That is,
867 | the first entry is the encoding of the identity element, and each
868 | successive entry is obtained by adding the generator to the previous entry.
869 |
870 | ```
871 | B[ 0]: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
872 | B[ 1]: e2f2ae0a 6abc4e71 a884a961 c500515f 58e30b6a a582dd8d b6a65945 e08d2d76
873 | B[ 2]: 6a493210 f7499cd1 7fecb510 ae0cea23 a110e8d5 b901f8ac add3095c 73a3b919
874 | B[ 3]: 94741f5d 5d52755e ce4f23f0 44ee27d5 d1ea1e2b d196b462 166b1615 2a9d0259
875 | B[ 4]: da808627 73358b46 6ffadfe0 b3293ab3 d9fd53c5 ea6c9553 58f56832 2daf6a57
876 | B[ 5]: e882b131 016b52c1 d3337080 187cf768 423efccb b517bb49 5ab812c4 160ff44e
877 | B[ 6]: f64746d3 c92b1305 0ed8d802 36a7f000 7c3b3f96 2f5ba793 d19a601e bb1df403
878 | B[ 7]: 44f53520 926ec81f bd5a3878 45beb7df 85a96a24 ece18738 bdcfa6a7 822a176d
879 | B[ 8]: 903293d8 f2287ebe 10e2374d c1a53e0b c887e592 699f02d0 77d5263c dd55601c
880 | B[ 9]: 02622ace 8f7303a3 1cafc63f 8fc48fdc 16e1c8c8 d234b2f0 d6685282 a9076031
881 | B[10]: 20706fd7 88b2720a 1ed2a5da d4952b01 f413bcf0 e7564de8 cdc81668 9e2db95f
882 | B[11]: bce83f8b a5dd2fa5 72864c24 ba1810f9 522bc600 4afe9587 7ac73241 cafdab42
883 | B[12]: e4549ee1 6b9aa030 99ca208c 67adafca fa4c3f3e 4e5303de 6026e3ca 8ff84460
884 | B[13]: aa52e000 df2e16f5 5fb1032f c33bc427 42dad6bd 5a8fc0be 0167436c 5948501f
885 | B[14]: 46376b80 f409b29d c2b5f6f0 c5259199 0896e571 6f41477c d30085ab 7f10301e
886 | B[15]: e0c418f7 c8d9c4cd d7395b93 ea124f3a d99021bb 681dfc33 02a9d99a 2e53e64e
887 | ```
888 |
889 | Note that because
890 |
891 | B[i+1] = B[i] + B[1]
892 |
893 | these test vectors allow testing the encoding function and
894 | the implementation of addition simultaneously.
895 |
896 | ## Invalid encodings {#invalid255}
897 |
898 | These are examples of encodings that **MUST** be rejected according to
899 | (#decoding255).
900 |
901 | ```
902 | # Non-canonical field encodings.
903 | 00ffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
904 | ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffff7f
905 | f3ffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffff7f
906 | edffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffff7f
907 |
908 | # Negative field elements.
909 | 01000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
910 | 01ffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffff7f
911 | ed57ffd8 c914fb20 1471d1c3 d245ce3c 746fcbe6 3a3679d5 1b6a516e bebe0e20
912 | c34c4e18 26e5d403 b78e246e 88aa051c 36ccf0aa febffe13 7d148a2b f9104562
913 | c940e5a4 404157cf b1628b10 8db051a8 d439e1a4 21394ec4 ebccb9ec 92a8ac78
914 | 47cfc549 7c53dc8e 61c91d17 fd626ffb 1c49e2bc a94eed05 2281b510 b1117a24
915 | f1c6165d 33367351 b0da8f6e 4511010c 68174a03 b6581212 c71c0e1d 026c3c72
916 | 87260f7a 2f124951 18360f02 c26a470f 450dadf3 4a413d21 042b43b9 d93e1309
917 |
918 | # Non-square x^2.
919 | 26948d35 ca62e643 e26a8317 7332e6b6 afeb9d08 e4268b65 0f1f5bbd 8d81d371
920 | 4eac077a 713c57b4 f4397629 a4145982 c661f480 44dd3f96 427d40b1 47d9742f
921 | de6a7b00 deadc788 eb6b6c8d 20c0ae96 c2f20190 78fa604f ee5b87d6 e989ad7b
922 | bcab477b e20861e0 1e4a0e29 5284146a 510150d9 817763ca f1a6f4b4 22d67042
923 | 2a292df7 e32cabab bd9de088 d1d1abec 9fc0440f 637ed2fb a145094d c14bea08
924 | f4a9e534 fc0d216c 44b218fa 0c42d996 35a0127e e2e53c71 2f706096 49fdff22
925 | 8268436f 8c412619 6cf64b3c 7ddbda90 746a3786 25f9813d d9b84570 77256731
926 | 2810e5cb c2cc4d4e ece54f61 c6f69758 e289aa7a b440b3cb eaa21995 c2f4232b
927 |
928 | # Negative xy value.
929 | 3eb858e7 8f5a7254 d8c97311 74a94f76 755fd394 1c0ac937 35c07ba1 4579630e
930 | a45fdc55 c76448c0 49a1ab33 f17023ed fb2be358 1e9c7aad e8a61252 15e04220
931 | d483fe81 3c6ba647 ebbfd3ec 41adca1c 6130c2be eee9d9bf 065c8d15 1c5f396e
932 | 8a2e1d30 050198c6 5a544831 23960ccc 38aef684 8e1ec8f5 f780e852 3769ba32
933 | 32888462 f8b486c6 8ad7dd96 10be5192 bbeaf3b4 43951ac1 a8118419 d9fa097b
934 | 22714250 1b9d4355 ccba2904 04bde415 75b03769 3cef1f43 8c47f8fb f35d1165
935 | 5c37cc49 1da847cf eb9281d4 07efc41e 15144c87 6e0170b4 99a96a22 ed31e01e
936 | 44542511 7cb8c90e dcbc7c1c c0e74f74 7f2c1efa 5630a967 c64f2877 92a48a4b
937 |
938 | # s = -1, which causes y = 0.
939 | ecffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffff7f
940 | ```
941 |
942 | ## Group elements from byte strings
943 |
944 | The following pairs are inputs to the element derivation function of
945 | (#from_bytes_uniform255), and their encoded outputs.
946 |
947 | ```
948 | I: 5d1be09e3d0c82fc538112490e35701979d99e06ca3e2b5b54bffe8b4dc772c1
949 | 4d98b696a1bbfb5ca32c436cc61c16563790306c79eaca7705668b47dffe5bb6
950 | O: 3066f82a 1a747d45 120d1740 f1435853 1a8f04bb ffe6a819 f86dfe50 f44a0a46
951 |
952 | I: f116b34b8f17ceb56e8732a60d913dd10cce47a6d53bee9204be8b44f6678b27
953 | 0102a56902e2488c46120e9276cfe54638286b9e4b3cdb470b542d46c2068d38
954 | O: f26e5b6f 7d362d2d 2a94c5d0 e7602cb4 773c95a2 e5c31a64 f133189f a76ed61b
955 |
956 | I: 8422e1bbdaab52938b81fd602effb6f89110e1e57208ad12d9ad767e2e25510c
957 | 27140775f9337088b982d83d7fcf0b2fa1edffe51952cbe7365e95c86eaf325c
958 | O: 006ccd2a 9e6867e6 a2c5cea8 3d3302cc 9de128dd 2a9a57dd 8ee7b9d7 ffe02826
959 |
960 | I: ac22415129b61427bf464e17baee8db65940c233b98afce8d17c57beeb7876c2
961 | 150d15af1cb1fb824bbd14955f2b57d08d388aab431a391cfc33d5bafb5dbbaf
962 | O: f8f0c87c f237953c 5890aec3 99816900 5dae3eca 1fbb0454 8c635953 c817f92a
963 |
964 | I: 165d697a1ef3d5cf3c38565beefcf88c0f282b8e7dbd28544c483432f1cec767
965 | 5debea8ebb4e5fe7d6f6e5db15f15587ac4d4d4a1de7191e0c1ca6664abcc413
966 | O: ae81e7de df20a497 e10c304a 765c1767 a42d6e06 029758d2 d7e8ef7c c4c41179
967 |
968 | I: a836e6c9a9ca9f1e8d486273ad56a78c70cf18f0ce10abb1c7172ddd605d7fd2
969 | 979854f47ae1ccf204a33102095b4200e5befc0465accc263175485f0e17ea5c
970 | O: e2705652 ff9f5e44 d3e841bf 1c251cf7 dddb77d1 40870d1a b2ed64f1 a9ce8628
971 |
972 | I: 2cdc11eaeb95daf01189417cdddbf95952993aa9cb9c640eb5058d09702c7462
973 | 2c9965a697a3b345ec24ee56335b556e677b30e6f90ac77d781064f866a3c982
974 | O: 80bd0726 2511cdde 4863f8a7 434cef69 6750681c b9510eea 557088f7 6d9e5065
975 | ```
976 |
977 | The following element derivation function inputs all produce the same encoded
978 | output.
979 |
980 | ```
981 | I: edffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
982 | 1200000000000000000000000000000000000000000000000000000000000000
983 | I: edffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff7f
984 | ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
985 | I: 0000000000000000000000000000000000000000000000000000000000000080
986 | ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff7f
987 | I: 0000000000000000000000000000000000000000000000000000000000000000
988 | 1200000000000000000000000000000000000000000000000000000000000080
989 |
990 | O: 30428279 1023b731 28d277bd cb5c7746 ef2eac08 dde9f298 3379cb8e 5ef0517f
991 | ```
992 |
993 | ## Square root of a ratio of field elements
994 |
995 | The following are inputs and outputs of `SQRT_RATIO_M1(u, v)` defined
996 | in (#sqrtratio255). The values are little-endian encodings of field
997 | elements.
998 |
999 | ```
1000 | u: 0000000000000000000000000000000000000000000000000000000000000000
1001 | v: 0000000000000000000000000000000000000000000000000000000000000000
1002 | was_square: TRUE
1003 | r: 0000000000000000000000000000000000000000000000000000000000000000
1004 |
1005 | u: 0000000000000000000000000000000000000000000000000000000000000000
1006 | v: 0100000000000000000000000000000000000000000000000000000000000000
1007 | was_square: TRUE
1008 | r: 0000000000000000000000000000000000000000000000000000000000000000
1009 |
1010 | u: 0100000000000000000000000000000000000000000000000000000000000000
1011 | v: 0000000000000000000000000000000000000000000000000000000000000000
1012 | was_square: FALSE
1013 | r: 0000000000000000000000000000000000000000000000000000000000000000
1014 |
1015 | u: 0200000000000000000000000000000000000000000000000000000000000000
1016 | v: 0100000000000000000000000000000000000000000000000000000000000000
1017 | was_square: FALSE
1018 | r: 3c5ff1b5d8e4113b871bd052f9e7bcd0582804c266ffb2d4f4203eb07fdb7c54
1019 |
1020 | u: 0400000000000000000000000000000000000000000000000000000000000000
1021 | v: 0100000000000000000000000000000000000000000000000000000000000000
1022 | was_square: TRUE
1023 | r: 0200000000000000000000000000000000000000000000000000000000000000
1024 |
1025 | u: 0100000000000000000000000000000000000000000000000000000000000000
1026 | v: 0400000000000000000000000000000000000000000000000000000000000000
1027 | was_square: TRUE
1028 | r: f6ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff3f
1029 | ```
1030 |
1031 | # Test vectors for decaf448
1032 |
1033 | This section contains test vectors for decaf448. The octets are
1034 | hex encoded, and whitespace is inserted for readability.
1035 |
1036 | ## Multiples of the generator
1037 |
1038 | The following are the encodings of the multiples 0 to 15 of the
1039 | canonical generator, represented as an array of elements. That is,
1040 | the first entry is the encoding of the identity element, and each
1041 | successive entry is obtained by adding the generator to the previous entry.
1042 |
1043 | ```
1044 | B[ 0]: 00000000 00000000 00000000 00000000 00000000 00000000 00000000
1045 | 00000000 00000000 00000000 00000000 00000000 00000000 00000000
1046 | B[ 1]: 66666666 66666666 66666666 66666666 66666666 66666666 66666666
1047 | 33333333 33333333 33333333 33333333 33333333 33333333 33333333
1048 | B[ 2]: c898eb4f 87f97c56 4c6fd61f c7e49689 314a1f81 8ec85eeb 3bd5514a
1049 | c816d387 78f69ef3 47a89fca 817e66de fdedce17 8c7cc709 b2116e75
1050 | B[ 3]: a0c09bf2 ba7208fd a0f4bfe3 d0f5b29a 54301230 6d43831b 5adc6fe7
1051 | f8596fa3 08763db1 5468323b 11cf6e4a eb8c18fe 44678f44 545a69bc
1052 | B[ 4]: b46f1836 aa287c0a 5a5653f0 ec5ef9e9 03f436e2 1c1570c2 9ad9e5f5
1053 | 96da97ee af17150a e30bcb31 74d04bc2 d712c8c7 789d7cb4 fda138f4
1054 | B[ 5]: 1c5bbecf 4741dfaa e79db72d face00ea aac502c2 060934b6 eaaeca6a
1055 | 20bd3da9 e0be8777 f7d02033 d1b15884 232281a4 1fc7f80e ed04af5e
1056 | B[ 6]: 86ff0182 d40f7f9e db786251 5821bd67 bfd6165a 3c44de95 d7df79b8
1057 | 779ccf64 60e3c68b 70c16aaa 280f2d7b 3f22d745 b97a8990 6cfc476c
1058 | B[ 7]: 502bcb68 42eb06f0 e49032ba e87c554c 031d6d4d 2d7694ef bf9c468d
1059 | 48220c50 f8ca2884 3364d70c ee92d6fe 246e6144 8f9db980 8b3b2408
1060 | B[ 8]: 0c9810f1 e2ebd389 caa78937 4d780079 74ef4d17 227316f4 0e578b33
1061 | 6827da3f 6b482a47 94eb6a39 75b971b5 e1388f52 e91ea2f1 bcb0f912
1062 | B[ 9]: 20d41d85 a18d5657 a2964032 1563bbd0 4c2ffbd0 a37a7ba4 3a4f7d26
1063 | 3ce26faf 4e1f74f9 f4b590c6 9229ae57 1fe37fa6 39b5b8eb 48bd9a55
1064 | B[10]: e6b4b8f4 08c7010d 0601e7ed a0c309a1 a42720d6 d06b5759 fdc4e1ef
1065 | e22d076d 6c44d42f 508d67be 462914d2 8b8edce3 2e709430 5164af17
1066 | B[11]: be88bbb8 6c59c13d 8e9d09ab 98105f69 c2d1dd13 4dbcd3b0 863658f5
1067 | 3159db64 c0e139d1 80f3c89b 8296d0ae 324419c0 6fa87fc7 daaf34c1
1068 | B[12]: a456f936 9769e8f0 8902124a 0314c7a0 6537a06e 32411f4f 93415950
1069 | a17badfa 7442b621 7434a3a0 5ef45be5 f10bd7b2 ef8ea00c 431edec5
1070 | B[13]: 186e452c 4466aa43 83b4c002 10d52e79 22dbf977 1e8b47e2 29a9b7b7
1071 | 3c8d10fd 7ef0b6e4 1530f91f 24a3ed9a b71fa38b 98b2fe47 46d51d68
1072 | B[14]: 4ae7fdca e9453f19 5a8ead5c be1a7b96 99673b52 c40ab279 27464887
1073 | be53237f 7f3a21b9 38d40d0e c9e15b1d 5130b13f fed81373 a53e2b43
1074 | B[15]: 841981c3 bfeec3f6 0cfeca75 d9d8dc17 f46cf010 6f2422b5 9aec580a
1075 | 58f34227 2e3a5e57 5a055ddb 051390c5 4c24c6ec b1e0aceb 075f6056
1076 | ```
1077 |
1078 | ## Invalid encodings {#invalid448}
1079 |
1080 | These are examples of encodings that **MUST** be rejected according to
1081 | (#decoding448).
1082 |
1083 | ```
1084 | # Non-canonical field encodings.
1085 | 8e24f838 059ee9fe f1e20912 6defe53d cd74ef9b 6304601c 6966099e
1086 | ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
1087 |
1088 | 86fcc721 2bd4a0b9 80928666 dc28c444 a605ef38 e09fb569 e28d4443
1089 | ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
1090 |
1091 | 866d54bd 4c4ff41a 55d4eefd beca73cb d653c7bd 3135b383 708ec0bd
1092 | ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
1093 |
1094 | 4a380ccd ab9c8636 4a89e77a 464d64f9 157538cf dfa686ad c0d5ece4
1095 | ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
1096 |
1097 | f22d9d4c 945dd44d 11e0b1d3 d3d358d9 59b4844d 83b08c44 e659d79f
1098 | ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
1099 |
1100 | 8cdffc68 1aa99e9c 818c8ef4 c3808b58 e86acdef 1ab68c84 77af185b
1101 | ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
1102 |
1103 | 0e1c12ac 7b5920ef fbd044e8 97c57634 e2d05b5c 27f8fa3d f8a086a1
1104 | ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
1105 |
1106 | # Negative field elements.
1107 | 15141bd2 121837ef 71a0016b d11be757 507221c2 6542244f 23806f3f
1108 | d3496b7d 4c368262 76f3bf5d eea2c60c 4fa4cec6 9946876d a497e795
1109 |
1110 | 455d3802 38434ab7 40a56267 f4f46b7d 2eb2dd8e e905e51d 7b0ae8a6
1111 | cb2bae50 1e67df34 ab21fa45 946068c9 f233939b 1d9521a9 98b7cb93
1112 |
1113 | 810b1d8e 8bf3a9c0 23294bbf d3d905a9 7531709b dc0f4239 0feedd70
1114 | 10f77e98 686d400c 9c86ed25 0ceecd9d e0a18888 ffecda0f 4ea1c60d
1115 |
1116 | d3af9cc4 1be0e5de 83c0c627 3bedcb93 51970110 044a9a41 c7b9b226
1117 | 7cdb9d7b f4dc9c2f db8bed32 87818460 4f1d9944 305a8df4 274ce301
1118 |
1119 | 9312bcab 09009e43 30ff89c4 bc1e9e00 0d863efc 3c863d3b 6c507a40
1120 | fd2cdefd e1bf0892 b4b5ed97 80b91ed1 398fb4a7 344c605a a5efda74
1121 |
1122 | 53d11bce 9e62a29d 63ed82ae 93761bdd 76e38c21 e2822d6e bee5eb1c
1123 | 5b8a03ea f9df749e 2490eda9 d8ac27d1 f71150de 93668074 d18d1c3a
1124 |
1125 | 697c1aed 3cd88585 15d4be8a c158b229 fe184d79 cb2b06e4 9210a6f3
1126 | a7cd537b cd9bd390 d96c4ab6 a4406da5 d9364072 6285370c fa95df80
1127 |
1128 | # Non-square x^2.
1129 | 58ad4871 5c9a1025 69b68b88 362a4b06 45781f5a 19eb7e59 c6a4686f
1130 | d0f0750f f42e3d7a f1ab38c2 9d69b670 f3125891 9c9fdbf6 093d06c0
1131 |
1132 | 8ca37ee2 b15693f0 6e910cf4 3c4e32f1 d5551dda 8b1e48cb 6ddd55e4
1133 | 40dbc7b2 96b60191 9a4e4069 f59239ca 247ff693 f7daa42f 086122b1
1134 |
1135 | 982c0ec7 f43d9f97 c0a74b36 db0abd9c a6bfb981 23a90782 787242c8
1136 | a523cdc7 6df14a91 0d544711 27e7662a 1059201f 902940cd 39d57af5
1137 |
1138 | baa9ab82 d07ca282 b968a911 a6c3728d 74bf2fe2 58901925 787f03ee
1139 | 4be7e3cb 6684fd1b cfe5071a 9a974ad2 49a4aaa8 ca812642 16c68574
1140 |
1141 | 2ed9ffe2 ded67a37 2b181ac5 24996402 c4297062 9db03f5e 8636cbaf
1142 | 6074b523 d154a7a8 c4472c4c 353ab88c d6fec7da 7780834c c5bd5242
1143 |
1144 | f063769e 4241e76d 815800e4 933a3a14 4327a30e c40758ad 3723a788
1145 | 388399f7 b3f5d45b 6351eb8e ddefda7d 5bff4ee9 20d338a8 b89d8b63
1146 |
1147 | 5a0104f1 f55d152c eb68bc13 81824998 91d90ee8 f09b4003 8ccc1e07
1148 | cb621fd4 62f781d0 45732a4f 0bda73f0 b2acf943 55424ff0 388d4b9c
1149 | ```
1150 |
1151 | ## Group elements from uniform byte strings
1152 |
1153 | The following pairs are inputs to the element derivation function of
1154 | (#from_bytes_uniform448), and their encoded outputs.
1155 |
1156 | ```
1157 | I: cbb8c991fd2f0b7e1913462d6463e4fd2ce4ccdd28274dc2ca1f4165
1158 | d5ee6cdccea57be3416e166fd06718a31af45a2f8e987e301be59ae6
1159 | 673e963001dbbda80df47014a21a26d6c7eb4ebe0312aa6fffb8d1b2
1160 | 6bc62ca40ed51f8057a635a02c2b8c83f48fa6a2d70f58a1185902c0
1161 | O: 0c709c96 07dbb01c 94513358 745b7c23 953d03b3 3e39c723 4e268d1d
1162 | 6e24f340 14ccbc22 16b965dd 231d5327 e591dc3c 0e8844cc fd568848
1163 |
1164 | I: b6d8da654b13c3101d6634a231569e6b85961c3f4b460a08ac4a5857
1165 | 069576b64428676584baa45b97701be6d0b0ba18ac28d443403b4569
1166 | 9ea0fbd1164f5893d39ad8f29e48e399aec5902508ea95e33bc1e9e4
1167 | 620489d684eb5c26bc1ad1e09aba61fabc2cdfee0b6b6862ffc8e55a
1168 | O: 76ab794e 28ff1224 c727fa10 16bf7f1d 329260b7 218a39ae a2fdb17d
1169 | 8bd91190 17b093d6 41cedf74 328c3271 84dc6f2a 64bd90ed dccfcdab
1170 |
1171 | I: 36a69976c3e5d74e4904776993cbac27d10f25f5626dd45c51d15dcf
1172 | 7b3e6a5446a6649ec912a56895d6baa9dc395ce9e34b868d9fb2c1fc
1173 | 72eb6495702ea4f446c9b7a188a4e0826b1506b0747a6709f37988ff
1174 | 1aeb5e3788d5076ccbb01a4bc6623c92ff147a1e21b29cc3fdd0e0f4
1175 | O: c8d7ac38 4143500e 50890a1c 25d64334 3accce58 4caf2544 f9249b2b
1176 | f4a69210 82be0e7f 3669bb5e c24535e6 c45621e1 f6dec676 edd8b664
1177 |
1178 | I: d5938acbba432ecd5617c555a6a777734494f176259bff9dab844c81
1179 | aadcf8f7abd1a9001d89c7008c1957272c1786a4293bb0ee7cb37cf3
1180 | 988e2513b14e1b75249a5343643d3c5e5545a0c1a2a4d3c685927c38
1181 | bc5e5879d68745464e2589e000b31301f1dfb7471a4f1300d6fd0f99
1182 | O: 62beffc6 b8ee11cc d79dbaac 8f0252c7 50eb052b 192f41ee ecb12f29
1183 | 79713b56 3caf7d22 588eca5e 80995241 ef963e7a d7cb7962 f343a973
1184 |
1185 | I: 4dec58199a35f531a5f0a9f71a53376d7b4bdd6bbd2904234a8ea65b
1186 | bacbce2a542291378157a8f4be7b6a092672a34d85e473b26ccfbd4c
1187 | dc6739783dc3f4f6ee3537b7aed81df898c7ea0ae89a15b5559596c2
1188 | a5eeacf8b2b362f3db2940e3798b63203cae77c4683ebaed71533e51
1189 | O: f4ccb31d 263731ab 88bed634 304956d2 603174c6 6da38742 053fa37d
1190 | d902346c 3862155d 68db63be 87439e3d 68758ad7 268e239d 39c4fd3b
1191 |
1192 | I: df2aa1536abb4acab26efa538ce07fd7bca921b13e17bc5ebcba7d1b
1193 | 6b733deda1d04c220f6b5ab35c61b6bcb15808251cab909a01465b8a
1194 | e3fc770850c66246d5a9eae9e2877e0826e2b8dc1bc08009590bc677
1195 | 8a84e919fbd28e02a0f9c49b48dc689eb5d5d922dc01469968ee81b5
1196 | O: 7e79b00e 8e0a76a6 7c0040f6 2713b8b8 c6d6f05e 9c6d0259 2e8a22ea
1197 | 896f5dea cc7c7df5 ed42beae 6fedb900 0285b482 aa504e27 9fd49c32
1198 |
1199 | I: e9fb440282e07145f1f7f5ecf3c273212cd3d26b836b41b02f108431
1200 | 488e5e84bd15f2418b3d92a3380dd66a374645c2a995976a015632d3
1201 | 6a6c2189f202fc766e1c82f50ad9189be190a1f0e8f9b9e69c9c18cc
1202 | 98fdd885608f68bf0fdedd7b894081a63f70016a8abf04953affbefa
1203 | O: 20b171cb 16be977f 15e013b9 752cf86c 54c631c4 fc8cbf7c 03c4d3ac
1204 | 9b8e8640 e7b0e930 0b987fe0 ab504466 9314f6ed 1650ae03 7db853f1
1205 | ```
1206 |
--------------------------------------------------------------------------------
/draft-irtf-cfrg-ristretto255-decaf448.txt:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 | Crypto Forum Research Group H. de Valence
6 | Internet-Draft
7 | Intended status: Informational J. Grigg
8 | Expires: 29 February 2024
9 | M. Hamburg
10 |
11 | I. Lovecruft
12 |
13 | G. Tankersley
14 |
15 | F. Valsorda
16 | 28 August 2023
17 |
18 |
19 | The ristretto255 and decaf448 Groups
20 | draft-irtf-cfrg-ristretto255-decaf448-08
21 |
22 | Abstract
23 |
24 | This memo specifies two prime-order groups, ristretto255 and
25 | decaf448, suitable for safely implementing higher-level and complex
26 | cryptographic protocols. The ristretto255 group can be implemented
27 | using Curve25519, allowing existing Curve25519 implementations to be
28 | reused and extended to provide a prime-order group. Likewise, the
29 | decaf448 group can be implemented using edwards448.
30 |
31 | This document is a product of the Crypto Forum Research Group (CFRG)
32 | in the IRTF.
33 |
34 | Status of This Memo
35 |
36 | This Internet-Draft is submitted in full conformance with the
37 | provisions of BCP 78 and BCP 79.
38 |
39 | Internet-Drafts are working documents of the Internet Engineering
40 | Task Force (IETF). Note that other groups may also distribute
41 | working documents as Internet-Drafts. The list of current Internet-
42 | Drafts is at https://datatracker.ietf.org/drafts/current/.
43 |
44 | Internet-Drafts are draft documents valid for a maximum of six months
45 | and may be updated, replaced, or obsoleted by other documents at any
46 | time. It is inappropriate to use Internet-Drafts as reference
47 | material or to cite them other than as "work in progress."
48 |
49 | This Internet-Draft will expire on 29 February 2024.
50 |
51 | Copyright Notice
52 |
53 | Copyright (c) 2023 IETF Trust and the persons identified as the
54 | document authors. All rights reserved.
55 |
56 | This document is subject to BCP 78 and the IETF Trust's Legal
57 | Provisions Relating to IETF Documents (https://trustee.ietf.org/
58 | license-info) in effect on the date of publication of this document.
59 | Please review these documents carefully, as they describe your rights
60 | and restrictions with respect to this document. Code Components
61 | extracted from this document must include Revised BSD License text as
62 | described in Section 4.e of the Trust Legal Provisions and are
63 | provided without warranty as described in the Revised BSD License.
64 |
65 | Table of Contents
66 |
67 | 1. Introduction
68 | 2. Notation and Conventions Used In This Document
69 | 2.1. Negative field elements
70 | 2.2. Constant time operations
71 | 3. The group abstraction
72 | 4. ristretto255
73 | 4.1. Implementation constants
74 | 4.2. Square root of a ratio of field elements
75 | 4.3. ristretto255 group operations
76 | 4.3.1. Decode
77 | 4.3.2. Encode
78 | 4.3.3. Equals
79 | 4.3.4. Element derivation
80 | 4.4. Scalar field
81 | 5. decaf448
82 | 5.1. Implementation constants
83 | 5.2. Square root of a ratio of field elements
84 | 5.3. decaf448 group operations
85 | 5.3.1. Decode
86 | 5.3.2. Encode
87 | 5.3.3. Equals
88 | 5.3.4. Element derivation
89 | 5.4. Scalar field
90 | 6. API Considerations
91 | 7. IANA Considerations
92 | 8. Security Considerations
93 | 9. Acknowledgements
94 | 10. Normative References
95 | 11. Informative References
96 | Appendix A. Test vectors for ristretto255
97 | A.1. Multiples of the generator
98 | A.2. Invalid encodings
99 | A.3. Group elements from byte strings
100 | A.4. Square root of a ratio of field elements
101 | Appendix B. Test vectors for decaf448
102 | B.1. Multiples of the generator
103 | B.2. Invalid encodings
104 | B.3. Group elements from uniform byte strings
105 | Authors' Addresses
106 |
107 | 1. Introduction
108 |
109 | Decaf [Decaf] is a technique for constructing prime-order groups with
110 | non-malleable encodings from non-prime-order elliptic curves.
111 | Ristretto extends this technique to support cofactor-8 curves such as
112 | Curve25519 [RFC7748]. In particular, this allows an existing
113 | Curve25519 library to provide a prime-order group with only a thin
114 | abstraction layer.
115 |
116 | Many group-based cryptographic protocols require the number of
117 | elements in the group (the group order) to be prime. Prime-order
118 | groups are useful because every non-identity element of the group is
119 | a generator of the entire group. This means the group has a cofactor
120 | of 1, and all elements are equivalent from the perspective of
121 | Discrete Log Hardness.
122 |
123 | Edwards curves provide a number of implementation benefits for
124 | cryptography, such as complete addition formulas with no exceptional
125 | points and formulas among the fastest known for curve operations.
126 | However, the group of points on the curve is not of prime order,
127 | i.e., it has a cofactor larger than 1. This abstraction mismatch is
128 | usually handled by means of ad-hoc protocol tweaks, such as
129 | multiplying by the cofactor in an appropriate place, or not at all.
130 |
131 | Even for simple protocols such as signatures, these tweaks can cause
132 | subtle issues. For instance, Ed25519 implementations may have
133 | different validation behavior between batched and singleton
134 | verification, and at least as specified in [RFC8032], the set of
135 | valid signatures is not defined by the standard.
136 |
137 | For more complex protocols, careful analysis is required as the
138 | original security proofs may no longer apply, and the tweaks for one
139 | protocol may have disastrous effects when applied to another (for
140 | instance, the octuple-spend vulnerability in [MoneroVuln]).
141 |
142 | Decaf and Ristretto fix this abstraction mismatch in one place for
143 | all protocols, providing an abstraction to protocol implementors that
144 | matches the abstraction commonly assumed in protocol specifications,
145 | while still allowing the use of high-performance curve
146 | implementations internally. The abstraction layer imposes minor
147 | overhead, and only in the encoding and decoding phases.
148 |
149 | While Ristretto is a general method, and can be used in conjunction
150 | with any Edwards curve with cofactor 4 or 8, this document specifies
151 | the ristretto255 group, which can be implemented using Curve25519,
152 | and the decaf448 group, which can be implemented using edwards448.
153 |
154 | There are other elliptic curves that can be used internally to
155 | implement ristretto255 or decaf448, and those implementations would
156 | be interoperable with a Curve25519- or edwards448-based one, but
157 | those constructions are out-of-scope for this document.
158 |
159 | The Ristretto construction is described and justified in detail at
160 | [RistrettoGroup].
161 |
162 | This document represents the consensus of the Crypto Forum Research
163 | Group (CFRG). This document is not an IETF product and is not a
164 | standard.
165 |
166 | 2. Notation and Conventions Used In This Document
167 |
168 | The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
169 | "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
170 | "OPTIONAL" in this document are to be interpreted as described in BCP
171 | 14 [RFC2119] [RFC8174] when, and only when, they appear in all
172 | capitals, as shown here.
173 |
174 | Readers are cautioned that the term "Curve25519" has varying
175 | interpretations in the literature, and that the canonical meaning of
176 | the term has shifted over time. Originally it referred to a specific
177 | Diffie-Hellman key exchange mechanism. Over time, use shifted, and
178 | "Curve25519" has been used to refer to either the abstract underlying
179 | curve, or its concrete representation in Montgomery form, or the
180 | specific Diffie-Hellman mechanism. This document uses the term
181 | "Curve25519" to refer to the abstract underlying curve, as
182 | recommended in [Naming]. The abstract Edwards form of the curve we
183 | refer to here as "Curve25519" is in [RFC7748] referred to as
184 | "edwards25519" and its isogenous Montgomery form is referred to as
185 | "curve25519".
186 |
187 | Elliptic curve points in this document are represented in extended
188 | Edwards coordinates in the (x, y, z, t) format [Twisted], also called
189 | extended homogeneous coordinates in Section 5.1.4 of [RFC8032].
190 | Field elements are values modulo p, the Curve25519 prime 2^255 - 19
191 | or the edwards448 prime 2^448 - 2^224 - 1, as specified in Sections
192 | 4.1 and 4.2 of [RFC7748], respectively. All formulas specify field
193 | operations unless otherwise noted. The symbol ^ denotes
194 | exponentiation.
195 |
196 | The | symbol represents a constant-time logical OR.
197 |
198 | The notation array[A:B] means the elements of array from A to B-1.
199 | That is, it is exclusive of B. Arrays are indexed starting from 0.
200 |
201 | A byte is an 8-bit entity (also known as "octet") and a byte string
202 | is an ordered sequence of bytes. An N-byte string is a byte string
203 | of N bytes in length.
204 |
205 | Element encodings are presented as hex encoded byte strings with
206 | whitespace added for readability.
207 |
208 | 2.1. Negative field elements
209 |
210 | As in [RFC8032], given a field element e, define IS_NEGATIVE(e) as
211 | TRUE if the least non-negative integer representing e is odd, and
212 | FALSE if it is even. This SHOULD be implemented in constant time.
213 |
214 | 2.2. Constant time operations
215 |
216 | We assume that the field element implementation supports the
217 | following operations, which SHOULD be implemented in constant time:
218 |
219 | * CT_EQ(u, v): return TRUE if u = v, FALSE otherwise.
220 | * CT_SELECT(v IF cond ELSE u): return v if cond is TRUE, else return
221 | u.
222 | * CT_ABS(u): return -u if IS_NEGATIVE(u), else return u.
223 |
224 | Note that CT_ABS MAY be implemented as:
225 |
226 | CT_SELECT(-u IF IS_NEGATIVE(u) ELSE u)
227 |
228 | 3. The group abstraction
229 |
230 | Ristretto and Decaf implement an abstract prime-order group interface
231 | that exposes only the behavior that is useful to higher-level
232 | protocols, without leaking curve-related details and pitfalls.
233 |
234 | Each abstract group exposes operations on abstract element and
235 | abstract scalar types. The operations defined on these types
236 | include: decoding, encoding, equality, addition, negation,
237 | subtraction and (multi-)scalar multiplication. Each abstract group
238 | also exposes a deterministic function to derive abstract elements
239 | from fixed-length byte strings. A description of each of these
240 | operations is below.
241 |
242 | Decoding is a function from byte strings to abstract elements with
243 | built-in validation, so that only the canonical encodings of valid
244 | elements are accepted. The built-in validation avoids the need for
245 | explicit invalid curve checks.
246 |
247 | Encoding is a function from abstract elements to byte strings.
248 | Internally, an abstract element might have more than one possible
249 | representation -- for example, the implementation might use
250 | projective coordinates. When encoding, all equivalent
251 | representations of the same element are encoded as identical byte
252 | strings. Decoding the output of the encoding function always
253 | succeeds and returns an equivalent element to the encoding input.
254 |
255 | The equality check reports whether two representations of an abstract
256 | element are equivalent.
257 |
258 | The element derivation function maps deterministically from byte
259 | strings of a fixed length to abstract elements. It has two important
260 | properties. First, if the input is a uniformly random byte string,
261 | then the output is (within a negligible statistical distance of) a
262 | uniformly random abstract group element. This means the function is
263 | suitable for selecting random group elements.
264 |
265 | Second, although the element derivation function is many-to-one and
266 | therefore not strictly invertible, it is not pre-image resistent. On
267 | the contrary, given an arbitrary abstract group element P, there is
268 | an efficient algorithm to randomly sample from byte strings that map
269 | to P. In some contexts this property would be a weakness, but it is
270 | important in some contexts: in particular, it means that a
271 | combination of a cryptographic hash function and the element
272 | derivation function is suitable for use in algorithms such as
273 | hash_to_curve [draft-irtf-cfrg-hash-to-curve-16].
274 |
275 | Addition is the group operation. The group has an identity element
276 | and prime order l. Adding together l copies of the same element
277 | gives the identity. Adding the identity element to any element
278 | returns that element unchanged. Negation returns an element that
279 | added to the negation input returns the identity element.
280 | Subtraction is the addition of a negated element, and scalar
281 | multiplication is the repeated addition of an element.
282 |
283 | 4. ristretto255
284 |
285 | ristretto255 is an instantiation of the abstract prime-order group
286 | interface defined in Section 3. This document describes how to
287 | implement the ristretto255 prime-order group using Curve25519 points
288 | as internal representations.
289 |
290 | A "ristretto255 group element" is the abstract element of the prime
291 | order group. An "element encoding" is the unique reversible encoding
292 | of a group element. An "internal representation" is a point on the
293 | curve used to implement ristretto255. Each group element can have
294 | multiple equivalent internal representations.
295 |
296 | Encoding, decoding, equality, and the element derivation function are
297 | defined in Section 4.3. Element addition, subtraction, negation, and
298 | scalar multiplication are implemented by applying the corresponding
299 | operations directly to the internal representation.
300 |
301 | The group order is the same as the order of the Curve25519 prime-
302 | order subgroup:
303 |
304 | l = 2^252 + 27742317777372353535851937790883648493
305 |
306 | Since ristretto255 is a prime-order group, every element except the
307 | identity is a generator, but for interoperability a canonical
308 | generator is selected, which can be internally represented by the
309 | Curve25519 basepoint, enabling reuse of existing precomputation for
310 | scalar multiplication. This is its encoding as produced by the
311 | function specified in Section 4.3.2:
312 |
313 | e2f2ae0a 6abc4e71 a884a961 c500515f 58e30b6a a582dd8d b6a65945 e08d2d76
314 |
315 | 4.1. Implementation constants
316 |
317 | This document references the following constant field element values
318 | that are used for the implementation of group operations.
319 |
320 | * D = 37095705934669439343138083508754565189542113879843219016388785
321 | 533085940283555
322 | - This is the Edwards d parameter for Curve25519, as specified in
323 | Section 4.1 of [RFC7748].
324 | * SQRT_M1 = 19681161376707505956807079304988542015446066515923890162
325 | 744021073123829784752
326 | * SQRT_AD_MINUS_ONE = 2506306895338462347411141415870215270124453150
327 | 2492656460079210482610430750235
328 | * INVSQRT_A_MINUS_D = 5446930700890931692099581386874514160539359729
329 | 2927456921205312896311721017578
330 | * ONE_MINUS_D_SQ = 1159843021668779879193775521855586647937357759715
331 | 417654439879720876111806838
332 | * D_MINUS_ONE_SQ = 4044083434630853685810104246932319082624839914623
333 | 8708352240133220865137265952
334 |
335 | 4.2. Square root of a ratio of field elements
336 |
337 | The following function is defined on field elements, and is used to
338 | implement other ristretto255 functions. This function is only used
339 | internally to implement some of the group operations.
340 |
341 | On input field elements u and v, the function SQRT_RATIO_M1(u, v)
342 | returns:
343 |
344 | * (TRUE, +sqrt(u/v)) if u and v are non-zero, and u/v is square;
345 | * (TRUE, zero) if u is zero;
346 | * (FALSE, zero) if v is zero and u is non-zero;
347 | * (FALSE, +sqrt(SQRT_M1*(u/v))) if u and v are non-zero, and u/v is
348 | non-square (so SQRT_M1*(u/v) is square),
349 |
350 | where +sqrt(x) indicates the non-negative square root of x in the
351 | field.
352 |
353 | The computation is similar to Section 5.1.3 of [RFC8032], with the
354 | difference that if the input is non-square, the function returns a
355 | result with a defined relationship to the inputs. This result is
356 | used for efficient implementation of the derivation function. The
357 | function can be refactored from an existing Ed25519 implementation.
358 |
359 | SQRT_RATIO_M1(u, v) is defined as follows:
360 |
361 | r = (u * v^3) * (u * v^7)^((p-5)/8) // Note: (p - 5) / 8 is an integer.
362 | check = v * r^2
363 |
364 | correct_sign_sqrt = CT_EQ(check, u)
365 | flipped_sign_sqrt = CT_EQ(check, -u)
366 | flipped_sign_sqrt_i = CT_EQ(check, -u*SQRT_M1)
367 |
368 | r_prime = SQRT_M1 * r
369 | r = CT_SELECT(r_prime IF flipped_sign_sqrt | flipped_sign_sqrt_i ELSE r)
370 |
371 | // Choose the nonnegative square root.
372 | r = CT_ABS(r)
373 |
374 | was_square = correct_sign_sqrt | flipped_sign_sqrt
375 |
376 | return (was_square, r)
377 |
378 | 4.3. ristretto255 group operations
379 |
380 | This section describes the implementation of the external functions
381 | exposed by the ristretto255 prime-order group.
382 |
383 | 4.3.1. Decode
384 |
385 | All elements are encoded as 32-byte strings. Decoding proceeds as
386 | follows:
387 |
388 | 1. First, interpret the string as an unsigned integer s in little-
389 | endian representation. If the length of the string is not 32
390 | bytes, or if the resulting value is >= p, decoding fails.
391 | * Note: unlike [RFC7748] field element decoding, the most
392 | significant bit is not masked, and non-canonical values are
393 | rejected. The test vectors in Appendix A.2 exercise these
394 | edge cases.
395 | 2. If IS_NEGATIVE(s) returns TRUE, decoding fails.
396 | 3. Process s as follows:
397 |
398 | ss = s^2
399 | u1 = 1 - ss
400 | u2 = 1 + ss
401 | u2_sqr = u2^2
402 |
403 | v = -(D * u1^2) - u2_sqr
404 |
405 | (was_square, invsqrt) = SQRT_RATIO_M1(1, v * u2_sqr)
406 |
407 | den_x = invsqrt * u2
408 | den_y = invsqrt * den_x * v
409 |
410 | x = CT_ABS(2 * s * den_x)
411 | y = u1 * den_y
412 | t = x * y
413 |
414 | 4. If was_square is FALSE, or IS_NEGATIVE(t) returns TRUE, or y = 0,
415 | decoding fails. Otherwise, return the group element represented
416 | by the internal representation (x, y, 1, t) as the result of
417 | decoding.
418 |
419 | 4.3.2. Encode
420 |
421 | A group element with internal representation (x0, y0, z0, t0) is
422 | encoded as follows:
423 |
424 | 1. Process the internal representation into a field element s as
425 | follows:
426 |
427 | u1 = (z0 + y0) * (z0 - y0)
428 | u2 = x0 * y0
429 |
430 | // Ignore was_square since this is always square.
431 | (_, invsqrt) = SQRT_RATIO_M1(1, u1 * u2^2)
432 |
433 | den1 = invsqrt * u1
434 | den2 = invsqrt * u2
435 | z_inv = den1 * den2 * t0
436 |
437 | ix0 = x0 * SQRT_M1
438 | iy0 = y0 * SQRT_M1
439 | enchanted_denominator = den1 * INVSQRT_A_MINUS_D
440 |
441 | rotate = IS_NEGATIVE(t0 * z_inv)
442 |
443 | // Conditionally rotate x and y.
444 | x = CT_SELECT(iy0 IF rotate ELSE x0)
445 | y = CT_SELECT(ix0 IF rotate ELSE y0)
446 | z = z0
447 | den_inv = CT_SELECT(enchanted_denominator IF rotate ELSE den2)
448 |
449 | y = CT_SELECT(-y IF IS_NEGATIVE(x * z_inv) ELSE y)
450 |
451 | s = CT_ABS(den_inv * (z - y))
452 |
453 | 2. Return the 32-byte little-endian encoding of s. More
454 | specifically, this is the encoding of the canonical
455 | representation of s as an integer between 0 and p-1, inclusive.
456 |
457 | Note that decoding and then re-encoding a valid group element will
458 | yield an identical byte string.
459 |
460 | 4.3.3. Equals
461 |
462 | The equality function returns TRUE when two internal representations
463 | correspond to the same group element. Note that internal
464 | representations MUST NOT be compared in any other way than specified
465 | here.
466 |
467 | For two internal representations (x1, y1, z1, t1) and (x2, y2, z2,
468 | t2), if
469 |
470 | (x1 * y2 == y1 * x2) | (y1 * y2 == x1 * x2)
471 |
472 | evaluates to TRUE, then return TRUE. Otherwise, return FALSE.
473 |
474 | Note that the equality function always returns TRUE when applied to
475 | an internal representation and to the internal representation
476 | obtained by encoding and then re-decoding it. However, the internal
477 | representations themselves might not be identical.
478 |
479 | Implementations MAY also perform byte comparisons on the encodings of
480 | group elements (produced by Section 4.3.2) for an equivalent,
481 | although less efficient, result.
482 |
483 | 4.3.4. Element derivation
484 |
485 | The element derivation function operates on 64-byte strings. To
486 | obtain such an input from an arbitrary-length byte string,
487 | applications should use a domain-separated hash construction, the
488 | choice of which is out-of-scope for this document.
489 |
490 | The element derivation function on an input string b proceeds as
491 | follows:
492 |
493 | 1. Compute P1 as MAP(b[0:32]).
494 | 2. Compute P2 as MAP(b[32:64]).
495 | 3. Return P1 + P2.
496 |
497 | The MAP function is defined on 32-byte strings as:
498 |
499 | 1. First, mask the most significant bit in the final byte of the
500 | string, and interpret the string as an unsigned integer r in
501 | little-endian representation. Reduce r modulo p to obtain a
502 | field element t.
503 |
504 | * Masking the most significant bit is equivalent to interpreting
505 | the whole string as an unsigned integer in little-endian
506 | representation and then reducing it modulo 2^255.
507 | * Note: similarly to [RFC7748] field element decoding, and
508 | unlike field element decoding in Section 4.3.1, the most
509 | significant bit is masked, and non-canonical values are
510 | accepted.
511 |
512 | 2. Process t as follows:
513 |
514 | r = SQRT_M1 * t^2
515 | u = (r + 1) * ONE_MINUS_D_SQ
516 | v = (-1 - r*D) * (r + D)
517 |
518 | (was_square, s) = SQRT_RATIO_M1(u, v)
519 | s_prime = -CT_ABS(s*t)
520 | s = CT_SELECT(s IF was_square ELSE s_prime)
521 | c = CT_SELECT(-1 IF was_square ELSE r)
522 |
523 | N = c * (r - 1) * D_MINUS_ONE_SQ - v
524 |
525 | w0 = 2 * s * v
526 | w1 = N * SQRT_AD_MINUS_ONE
527 | w2 = 1 - s^2
528 | w3 = 1 + s^2
529 |
530 | 3. Return the group element represented by the internal
531 | representation (w0*w3, w2*w1, w1*w3, w0*w2).
532 |
533 | 4.4. Scalar field
534 |
535 | The scalars for the ristretto255 group are integers modulo the order
536 | l of the ristretto255 group. Note that this is the same scalar field
537 | as Curve25519, allowing existing implementations to be reused.
538 |
539 | Scalars are encoded as 32-byte strings in little-endian order.
540 | Implementations SHOULD check that any scalar s falls in the range 0
541 | <= s < l when parsing them and reject non-canonical scalar encodings.
542 | Implementations SHOULD reduce scalars modulo l when encoding them as
543 | byte strings. Omitting these strict range checks is NOT RECOMMENDED
544 | but is allowed to enable reuse of scalar arithmetic implementations
545 | in existing Curve25519 libraries.
546 |
547 | Given a uniformly distributed 64-byte string b, implementations can
548 | obtain a uniformly distributed scalar by interpreting the 64-byte
549 | string as a 512-bit unsigned integer in little-endian order and
550 | reducing the integer modulo l, as in [RFC8032]. To obtain such an
551 | input from an arbitrary-length byte string, applications should use a
552 | domain-separated hash construction, the choice of which is out-of-
553 | scope for this document.
554 |
555 | 5. decaf448
556 |
557 | decaf448 is an instantiation of the abstract prime-order group
558 | interface defined in Section 3. This document describes how to
559 | implement the decaf448 prime-order group using edwards448 points as
560 | internal representations.
561 |
562 | A "decaf448 group element" is the abstract element of the prime order
563 | group. An "element encoding" is the unique reversible encoding of a
564 | group element. An "internal representation" is a point on the curve
565 | used to implement decaf448. Each group element can have multiple
566 | equivalent internal representations.
567 |
568 | Encoding, decoding, equality, and the element derivation functions
569 | are defined in Section 5.3. Element addition, subtraction, negation,
570 | and scalar multiplication are implemented by applying the
571 | corresponding operations directly to the internal representation.
572 |
573 | The group order is the same as the order of the edwards448 prime-
574 | order subgroup:
575 |
576 | l = 2^446 -
577 | 13818066809895115352007386748515426880336692474882178609894547503885
578 |
579 | Since decaf448 is a prime-order group, every element except the
580 | identity is a generator, but for interoperability a canonical
581 | generator is selected. This generator can be internally represented
582 | by 2*B, where B is the edwards448 basepoint, enabling reuse of
583 | existing precomputation for scalar multiplication. This is its
584 | encoding as produced by the function specified in Section 5.3.2:
585 |
586 | 66666666 66666666 66666666 66666666 66666666 66666666 66666666
587 | 33333333 33333333 33333333 33333333 33333333 33333333 33333333
588 |
589 | This repetitive constant is equal to 1/sqrt(5) in decaf448's field,
590 | corresponding to the curve448 base point with x = 5.
591 |
592 | 5.1. Implementation constants
593 |
594 | This document references the following constant field element values
595 | that are used for the implementation of group operations.
596 |
597 | * D = 72683872429560689054932380788800453435364136068731806028149019
598 | 918061232816673077268639638369867654593008888446184363736105349801
599 | 8326358
600 | - This is the Edwards d parameter for edwards448, as specified in
601 | Section 4.2 of [RFC7748], and is equal to -39081 in the field.
602 | * ONE_MINUS_D = 39082
603 | * ONE_MINUS_TWO_D = 78163
604 | * SQRT_MINUS_D = 989442336477322197691770048769290191284175762955299
605 | 010740998895980437021160012578568021315638965153739277122320928458
606 | 83226922417596214
607 | * INVSQRT_MINUS_D = 315019913931389607337177038330951043522456072897
608 | 266928557328499619017160722351061360252776265186336876723201881398
609 | 623946864393857820716
610 |
611 | 5.2. Square root of a ratio of field elements
612 |
613 | The following function is defined on field elements, and is used to
614 | implement other decaf448 functions. This function is only used
615 | internally to implement some of the group operations.
616 |
617 | On input field elements u and v, the function SQRT_RATIO_M1(u, v)
618 | returns:
619 |
620 | * (TRUE, +sqrt(u/v)) if u and v are non-zero, and u/v is square;
621 | * (TRUE, zero) if u is zero;
622 | * (FALSE, zero) if v is zero and u is non-zero;
623 | * (FALSE, +sqrt(-u/v)) if u and v are non-zero, and u/v is non-
624 | square (so -(u/v) is square),
625 |
626 | where +sqrt(x) indicates the non-negative square root of x in the
627 | field.
628 |
629 | The computation is similar to Section 5.2.3 of [RFC8032], with the
630 | difference that if the input is non-square, the function returns a
631 | result with a defined relationship to the inputs. This result is
632 | used for efficient implementation of the derivation function. The
633 | function can be refactored from an existing edwards448
634 | implementation.
635 |
636 | SQRT_RATIO_M1(u, v) is defined as follows:
637 |
638 | r = u * (u * v)^((p - 3) / 4) // Note: (p - 3) / 4 is an integer.
639 |
640 | check = v * r^2
641 | was_square = CT_EQ(check, u)
642 |
643 | // Choose the nonnegative square root.
644 | r = CT_ABS(r)
645 |
646 | return (was_square, r)
647 |
648 | 5.3. decaf448 group operations
649 |
650 | This section describes the implementation of the external functions
651 | exposed by the decaf448 prime-order group.
652 |
653 | 5.3.1. Decode
654 |
655 | All elements are encoded as 56-byte strings. Decoding proceeds as
656 | follows:
657 |
658 | 1. First, interpret the string as an unsigned integer s in little-
659 | endian representation. If the length of the string is not 56
660 | bytes, or if the resulting value is >= p, decoding fails.
661 | * Note: unlike [RFC7748] field element decoding, non-canonical
662 | values are rejected. The test vectors in Appendix B.2
663 | exercise these edge cases.
664 | 2. If IS_NEGATIVE(s) returns TRUE, decoding fails.
665 | 3. Process s as follows:
666 |
667 | ss = s^2
668 | u1 = 1 + ss
669 | u2 = u1^2 - 4 * D * ss
670 | (was_square, invsqrt) = SQRT_RATIO_M1(1, u2 * u1^2)
671 | u3 = CT_ABS(2 * s * invsqrt * u1 * SQRT_MINUS_D)
672 | x = u3 * invsqrt * u2 * INVSQRT_MINUS_D
673 | y = (1 - ss) * invsqrt * u1
674 | t = x * y
675 |
676 | 4. If was_square is FALSE then decoding fails. Otherwise, return
677 | the group element represented by the internal representation (x,
678 | y, 1, t) as the result of decoding.
679 |
680 | 5.3.2. Encode
681 |
682 | A group element with internal representation (x0, y0, z0, t0) is
683 | encoded as follows:
684 |
685 | 1. Process the internal representation into a field element s as
686 | follows:
687 |
688 | u1 = (x0 + t0) * (x0 - t0)
689 |
690 | // Ignore was_square since this is always square.
691 | (_, invsqrt) = SQRT_RATIO_M1(1, u1 * ONE_MINUS_D * x0^2)
692 |
693 | ratio = CT_ABS(invsqrt * u1 * SQRT_MINUS_D)
694 | u2 = INVSQRT_MINUS_D * ratio * z0 - t0
695 | s = CT_ABS(ONE_MINUS_D * invsqrt * x0 * u2)
696 |
697 | 2. Return the 56-byte little-endian encoding of s. More
698 | specifically, this is the encoding of the canonical
699 | representation of s as an integer between 0 and p-1, inclusive.
700 |
701 | Note that decoding and then re-encoding a valid group element will
702 | yield an identical byte string.
703 |
704 | 5.3.3. Equals
705 |
706 | The equality function returns TRUE when two internal representations
707 | correspond to the same group element. Note that internal
708 | representations MUST NOT be compared in any other way than specified
709 | here.
710 |
711 | For two internal representations (x1, y1, z1, t1) and (x2, y2, z2,
712 | t2), if
713 |
714 | x1 * y2 == y1 * x2
715 |
716 | evaluates to TRUE, then return TRUE. Otherwise, return FALSE.
717 |
718 | Note that the equality function always returns TRUE when applied to
719 | an internal representation and to the internal representation
720 | obtained by encoding and then re-decoding it. However, the internal
721 | representations themselves might not be identical.
722 |
723 | Implementations MAY also perform byte comparisons on the encodings of
724 | group elements (produced by Section 5.3.2) for an equivalent,
725 | although less efficient, result.
726 |
727 | 5.3.4. Element derivation
728 |
729 | The element derivation function operates on 112-byte strings. To
730 | obtain such an input from an arbitrary-length byte string,
731 | applications should use a domain-separated hash construction, the
732 | choice of which is out-of-scope for this document.
733 |
734 | The element derivation function on an input string b proceeds as
735 | follows:
736 |
737 | 1. Compute P1 as MAP(b[0:56]).
738 | 2. Compute P2 as MAP(b[56:112]).
739 | 3. Return P1 + P2.
740 |
741 | The MAP function is defined on 56-byte strings as:
742 |
743 | 1. Interpret the string as an unsigned integer r in little-endian
744 | representation. Reduce r modulo p to obtain a field element t.
745 |
746 | * Note: similarly to [RFC7748] field element decoding, and
747 | unlike field element decoding in Section 5.3.1, non-canonical
748 | values are accepted.
749 |
750 | 2. Process t as follows:
751 |
752 | r = -t^2
753 | u0 = d * (r-1)
754 | u1 = (u0 + 1) * (u0 - r)
755 |
756 | (was_square, v) = SQRT_RATIO_M1(ONE_MINUS_TWO_D, (r + 1) * u1)
757 | v_prime = CT_SELECT(v IF was_square ELSE t * v)
758 | sgn = CT_SELECT(1 IF was_square ELSE -1)
759 | s = v_prime * (r + 1)
760 |
761 | w0 = 2 * CT_ABS(s)
762 | w1 = s^2 + 1
763 | w2 = s^2 - 1
764 | w3 = v_prime * s * (r - 1) * ONE_MINUS_TWO_D + sgn
765 |
766 | 3. Return the group element represented by the internal
767 | representation (w0*w3, w2*w1, w1*w3, w0*w2).
768 |
769 | 5.4. Scalar field
770 |
771 | The scalars for the decaf448 group are integers modulo the order l of
772 | the decaf448 group. Note that this is the same scalar field as
773 | edwards448, allowing existing implementations to be reused.
774 |
775 | Scalars are encoded as 56-byte strings in little-endian order.
776 | Implementations SHOULD check that any scalar s falls in the range 0
777 | <= s < l when parsing them and reject non-canonical scalar encodings.
778 | Implementations SHOULD reduce scalars modulo l when encoding them as
779 | byte strings. Omitting these strict range checks is NOT RECOMMENDED
780 | but is allowed to enable reuse of scalar arithmetic implementations
781 | in existing edwards448 libraries.
782 |
783 | Given a uniformly distributed 64-byte string b, implementations can
784 | obtain a uniformly distributed scalar by interpreting the 64-byte
785 | string as a 512-bit unsigned integer in little-endian order and
786 | reducing the integer modulo l. To obtain such an input from an
787 | arbitrary-length byte string, applications should use a domain-
788 | separated hash construction, the choice of which is out-of-scope for
789 | this document.
790 |
791 | 6. API Considerations
792 |
793 | ristretto255 and decaf448 are abstractions which implement two prime-
794 | order groups, and their elements are represented by curve points, but
795 | they are not curve points. Implementations SHOULD reflect that: the
796 | type representing an element of the group SHOULD be opaque to the
797 | caller, meaning they do not expose the underlying curve point or
798 | field elements. Moreover, implementations SHOULD NOT expose any
799 | internal constants or functions used in the implementation of the
800 | group operations.
801 |
802 | The reason for this encapsulation is that ristretto255 and decaf448
803 | implementations can change their underlying curve without causing any
804 | breaking change. The ristretto255 and decaf448 constructions are
805 | carefully designed so that this will be the case, as long as
806 | implementations do not expose internal representations or operate on
807 | them except as described in this document. In particular,
808 | implementations SHOULD NOT define any external ristretto255 or
809 | decaf448 interface as operating on arbitrary curve points, and they
810 | SHOULD NOT construct group elements except via decoding, the element
811 | derivation function, or group operations on other valid group
812 | elements per Section 3. They are however allowed to apply any
813 | optimization strategy to the internal representations as long as it
814 | doesn't change the exposed behavior of the API.
815 |
816 | It is RECOMMENDED that implementations do not perform a decoding and
817 | encoding operation for each group operation, as it is inefficient and
818 | unnecessary. Implementations SHOULD instead provide an opaque type
819 | to hold the internal representation through multiple operations.
820 |
821 | 7. IANA Considerations
822 |
823 | This document has no IANA actions.
824 |
825 | 8. Security Considerations
826 |
827 | The ristretto255 and decaf448 groups provide higher-level protocols
828 | with the abstraction they expect: a prime-order group. Therefore,
829 | it's expected to be safer for use in any situation where Curve25519
830 | or edwards448 is used to implement a protocol requiring a prime-order
831 | group. Note that the safety of the abstraction can be defeated by
832 | implementations that do not follow the guidance in Section 6.
833 |
834 | There is no function to test whether an elliptic curve point is a
835 | valid internal representation of a group element. The decoding
836 | function always returns a valid internal representation, or an error,
837 | and allowed operations on valid internal representations return valid
838 | internal representations. In this way, an implementation can
839 | maintain the invariant that an internal representation is always
840 | valid, so that checking is never necessary, and invalid states are
841 | unrepresentable.
842 |
843 | 9. Acknowledgements
844 |
845 | The authors would like to thank Daira Hopwood, Riad S. Wahby,
846 | Christopher Wood, and Thomas Pornin for their comments on the draft.
847 |
848 | 10. Normative References
849 |
850 | [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
851 | Requirement Levels", BCP 14, RFC 2119,
852 | DOI 10.17487/RFC2119, March 1997,
853 | .
854 |
855 | [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
856 | 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
857 | May 2017, .
858 |
859 | 11. Informative References
860 |
861 | [Decaf] Hamburg, M., "Decaf: Eliminating cofactors through point
862 | compression", 2015,
863 | .
864 |
865 | [MoneroVuln]
866 | Nick, J., "Exploiting Low Order Generators in One-Time
867 | Ring Signatures", 2017,
868 | .
870 |
871 | [Naming] Bernstein, D. J., "[Cfrg] 25519 naming", 2014,
872 | .
874 |
875 | [RFC7748] Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
876 | for Security", RFC 7748, DOI 10.17487/RFC7748, January
877 | 2016, .
878 |
879 | [RFC8032] Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital
880 | Signature Algorithm (EdDSA)", RFC 8032,
881 | DOI 10.17487/RFC8032, January 2017,
882 | .
883 |
884 | [RistrettoGroup]
885 | de Valence, H., Lovecruft, I., Arcieri, T., and M.
886 | Hamburg, "The Ristretto Group", 2018,
887 | .
888 |
889 | [Twisted] Hisil, H., Wong, K. K., Carter, G., and E. Dawson,
890 | "Twisted Edwards Curves Revisited", 2008,
891 | .
892 |
893 | [draft-irtf-cfrg-hash-to-curve-16]
894 | Faz-Hernández, A., Scott, S., Sullivan, N., Wahby, R.S.,
895 | and C.A. Wood, "Hashing to Elliptic Curves", 2022,
896 | .
898 |
899 | Appendix A. Test vectors for ristretto255
900 |
901 | This section contains test vectors for ristretto255. The octets are
902 | hex encoded, and whitespace is inserted for readability.
903 |
904 | A.1. Multiples of the generator
905 |
906 | The following are the encodings of the multiples 0 to 15 of the
907 | canonical generator, represented as an array of elements. That is,
908 | the first entry is the encoding of the identity element, and each
909 | successive entry is obtained by adding the generator to the previous
910 | entry.
911 |
912 | B[ 0]: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
913 | B[ 1]: e2f2ae0a 6abc4e71 a884a961 c500515f 58e30b6a a582dd8d b6a65945 e08d2d76
914 | B[ 2]: 6a493210 f7499cd1 7fecb510 ae0cea23 a110e8d5 b901f8ac add3095c 73a3b919
915 | B[ 3]: 94741f5d 5d52755e ce4f23f0 44ee27d5 d1ea1e2b d196b462 166b1615 2a9d0259
916 | B[ 4]: da808627 73358b46 6ffadfe0 b3293ab3 d9fd53c5 ea6c9553 58f56832 2daf6a57
917 | B[ 5]: e882b131 016b52c1 d3337080 187cf768 423efccb b517bb49 5ab812c4 160ff44e
918 | B[ 6]: f64746d3 c92b1305 0ed8d802 36a7f000 7c3b3f96 2f5ba793 d19a601e bb1df403
919 | B[ 7]: 44f53520 926ec81f bd5a3878 45beb7df 85a96a24 ece18738 bdcfa6a7 822a176d
920 | B[ 8]: 903293d8 f2287ebe 10e2374d c1a53e0b c887e592 699f02d0 77d5263c dd55601c
921 | B[ 9]: 02622ace 8f7303a3 1cafc63f 8fc48fdc 16e1c8c8 d234b2f0 d6685282 a9076031
922 | B[10]: 20706fd7 88b2720a 1ed2a5da d4952b01 f413bcf0 e7564de8 cdc81668 9e2db95f
923 | B[11]: bce83f8b a5dd2fa5 72864c24 ba1810f9 522bc600 4afe9587 7ac73241 cafdab42
924 | B[12]: e4549ee1 6b9aa030 99ca208c 67adafca fa4c3f3e 4e5303de 6026e3ca 8ff84460
925 | B[13]: aa52e000 df2e16f5 5fb1032f c33bc427 42dad6bd 5a8fc0be 0167436c 5948501f
926 | B[14]: 46376b80 f409b29d c2b5f6f0 c5259199 0896e571 6f41477c d30085ab 7f10301e
927 | B[15]: e0c418f7 c8d9c4cd d7395b93 ea124f3a d99021bb 681dfc33 02a9d99a 2e53e64e
928 |
929 | Note that because
930 |
931 | B[i+1] = B[i] + B[1]
932 |
933 | these test vectors allow testing the encoding function and the
934 | implementation of addition simultaneously.
935 |
936 | A.2. Invalid encodings
937 |
938 | These are examples of encodings that MUST be rejected according to
939 | Section 4.3.1.
940 |
941 | # Non-canonical field encodings.
942 | 00ffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
943 | ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffff7f
944 | f3ffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffff7f
945 | edffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffff7f
946 |
947 | # Negative field elements.
948 | 01000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
949 | 01ffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffff7f
950 | ed57ffd8 c914fb20 1471d1c3 d245ce3c 746fcbe6 3a3679d5 1b6a516e bebe0e20
951 | c34c4e18 26e5d403 b78e246e 88aa051c 36ccf0aa febffe13 7d148a2b f9104562
952 | c940e5a4 404157cf b1628b10 8db051a8 d439e1a4 21394ec4 ebccb9ec 92a8ac78
953 | 47cfc549 7c53dc8e 61c91d17 fd626ffb 1c49e2bc a94eed05 2281b510 b1117a24
954 | f1c6165d 33367351 b0da8f6e 4511010c 68174a03 b6581212 c71c0e1d 026c3c72
955 | 87260f7a 2f124951 18360f02 c26a470f 450dadf3 4a413d21 042b43b9 d93e1309
956 |
957 | # Non-square x^2.
958 | 26948d35 ca62e643 e26a8317 7332e6b6 afeb9d08 e4268b65 0f1f5bbd 8d81d371
959 | 4eac077a 713c57b4 f4397629 a4145982 c661f480 44dd3f96 427d40b1 47d9742f
960 | de6a7b00 deadc788 eb6b6c8d 20c0ae96 c2f20190 78fa604f ee5b87d6 e989ad7b
961 | bcab477b e20861e0 1e4a0e29 5284146a 510150d9 817763ca f1a6f4b4 22d67042
962 | 2a292df7 e32cabab bd9de088 d1d1abec 9fc0440f 637ed2fb a145094d c14bea08
963 | f4a9e534 fc0d216c 44b218fa 0c42d996 35a0127e e2e53c71 2f706096 49fdff22
964 | 8268436f 8c412619 6cf64b3c 7ddbda90 746a3786 25f9813d d9b84570 77256731
965 | 2810e5cb c2cc4d4e ece54f61 c6f69758 e289aa7a b440b3cb eaa21995 c2f4232b
966 |
967 | # Negative xy value.
968 | 3eb858e7 8f5a7254 d8c97311 74a94f76 755fd394 1c0ac937 35c07ba1 4579630e
969 | a45fdc55 c76448c0 49a1ab33 f17023ed fb2be358 1e9c7aad e8a61252 15e04220
970 | d483fe81 3c6ba647 ebbfd3ec 41adca1c 6130c2be eee9d9bf 065c8d15 1c5f396e
971 | 8a2e1d30 050198c6 5a544831 23960ccc 38aef684 8e1ec8f5 f780e852 3769ba32
972 | 32888462 f8b486c6 8ad7dd96 10be5192 bbeaf3b4 43951ac1 a8118419 d9fa097b
973 | 22714250 1b9d4355 ccba2904 04bde415 75b03769 3cef1f43 8c47f8fb f35d1165
974 | 5c37cc49 1da847cf eb9281d4 07efc41e 15144c87 6e0170b4 99a96a22 ed31e01e
975 | 44542511 7cb8c90e dcbc7c1c c0e74f74 7f2c1efa 5630a967 c64f2877 92a48a4b
976 |
977 | # s = -1, which causes y = 0.
978 | ecffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffff7f
979 |
980 | A.3. Group elements from byte strings
981 |
982 | The following pairs are inputs to the element derivation function of
983 | Section 4.3.4, and their encoded outputs.
984 |
985 | I: 5d1be09e3d0c82fc538112490e35701979d99e06ca3e2b5b54bffe8b4dc772c1
986 | 4d98b696a1bbfb5ca32c436cc61c16563790306c79eaca7705668b47dffe5bb6
987 | O: 3066f82a 1a747d45 120d1740 f1435853 1a8f04bb ffe6a819 f86dfe50 f44a0a46
988 |
989 | I: f116b34b8f17ceb56e8732a60d913dd10cce47a6d53bee9204be8b44f6678b27
990 | 0102a56902e2488c46120e9276cfe54638286b9e4b3cdb470b542d46c2068d38
991 | O: f26e5b6f 7d362d2d 2a94c5d0 e7602cb4 773c95a2 e5c31a64 f133189f a76ed61b
992 |
993 | I: 8422e1bbdaab52938b81fd602effb6f89110e1e57208ad12d9ad767e2e25510c
994 | 27140775f9337088b982d83d7fcf0b2fa1edffe51952cbe7365e95c86eaf325c
995 | O: 006ccd2a 9e6867e6 a2c5cea8 3d3302cc 9de128dd 2a9a57dd 8ee7b9d7 ffe02826
996 |
997 | I: ac22415129b61427bf464e17baee8db65940c233b98afce8d17c57beeb7876c2
998 | 150d15af1cb1fb824bbd14955f2b57d08d388aab431a391cfc33d5bafb5dbbaf
999 | O: f8f0c87c f237953c 5890aec3 99816900 5dae3eca 1fbb0454 8c635953 c817f92a
1000 |
1001 | I: 165d697a1ef3d5cf3c38565beefcf88c0f282b8e7dbd28544c483432f1cec767
1002 | 5debea8ebb4e5fe7d6f6e5db15f15587ac4d4d4a1de7191e0c1ca6664abcc413
1003 | O: ae81e7de df20a497 e10c304a 765c1767 a42d6e06 029758d2 d7e8ef7c c4c41179
1004 |
1005 | I: a836e6c9a9ca9f1e8d486273ad56a78c70cf18f0ce10abb1c7172ddd605d7fd2
1006 | 979854f47ae1ccf204a33102095b4200e5befc0465accc263175485f0e17ea5c
1007 | O: e2705652 ff9f5e44 d3e841bf 1c251cf7 dddb77d1 40870d1a b2ed64f1 a9ce8628
1008 |
1009 | I: 2cdc11eaeb95daf01189417cdddbf95952993aa9cb9c640eb5058d09702c7462
1010 | 2c9965a697a3b345ec24ee56335b556e677b30e6f90ac77d781064f866a3c982
1011 | O: 80bd0726 2511cdde 4863f8a7 434cef69 6750681c b9510eea 557088f7 6d9e5065
1012 |
1013 | The following element derivation function inputs all produce the same
1014 | encoded output.
1015 |
1016 | I: edffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
1017 | 1200000000000000000000000000000000000000000000000000000000000000
1018 | I: edffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff7f
1019 | ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
1020 | I: 0000000000000000000000000000000000000000000000000000000000000080
1021 | ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff7f
1022 | I: 0000000000000000000000000000000000000000000000000000000000000000
1023 | 1200000000000000000000000000000000000000000000000000000000000080
1024 |
1025 | O: 30428279 1023b731 28d277bd cb5c7746 ef2eac08 dde9f298 3379cb8e 5ef0517f
1026 |
1027 | A.4. Square root of a ratio of field elements
1028 |
1029 | The following are inputs and outputs of SQRT_RATIO_M1(u, v) defined
1030 | in Section 4.2. The values are little-endian encodings of field
1031 | elements.
1032 |
1033 | u: 0000000000000000000000000000000000000000000000000000000000000000
1034 | v: 0000000000000000000000000000000000000000000000000000000000000000
1035 | was_square: TRUE
1036 | r: 0000000000000000000000000000000000000000000000000000000000000000
1037 |
1038 | u: 0000000000000000000000000000000000000000000000000000000000000000
1039 | v: 0100000000000000000000000000000000000000000000000000000000000000
1040 | was_square: TRUE
1041 | r: 0000000000000000000000000000000000000000000000000000000000000000
1042 |
1043 | u: 0100000000000000000000000000000000000000000000000000000000000000
1044 | v: 0000000000000000000000000000000000000000000000000000000000000000
1045 | was_square: FALSE
1046 | r: 0000000000000000000000000000000000000000000000000000000000000000
1047 |
1048 | u: 0200000000000000000000000000000000000000000000000000000000000000
1049 | v: 0100000000000000000000000000000000000000000000000000000000000000
1050 | was_square: FALSE
1051 | r: 3c5ff1b5d8e4113b871bd052f9e7bcd0582804c266ffb2d4f4203eb07fdb7c54
1052 |
1053 | u: 0400000000000000000000000000000000000000000000000000000000000000
1054 | v: 0100000000000000000000000000000000000000000000000000000000000000
1055 | was_square: TRUE
1056 | r: 0200000000000000000000000000000000000000000000000000000000000000
1057 |
1058 | u: 0100000000000000000000000000000000000000000000000000000000000000
1059 | v: 0400000000000000000000000000000000000000000000000000000000000000
1060 | was_square: TRUE
1061 | r: f6ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff3f
1062 |
1063 | Appendix B. Test vectors for decaf448
1064 |
1065 | This section contains test vectors for decaf448. The octets are hex
1066 | encoded, and whitespace is inserted for readability.
1067 |
1068 | B.1. Multiples of the generator
1069 |
1070 | The following are the encodings of the multiples 0 to 15 of the
1071 | canonical generator, represented as an array of elements. That is,
1072 | the first entry is the encoding of the identity element, and each
1073 | successive entry is obtained by adding the generator to the previous
1074 | entry.
1075 |
1076 | B[ 0]: 00000000 00000000 00000000 00000000 00000000 00000000 00000000
1077 | 00000000 00000000 00000000 00000000 00000000 00000000 00000000
1078 | B[ 1]: 66666666 66666666 66666666 66666666 66666666 66666666 66666666
1079 | 33333333 33333333 33333333 33333333 33333333 33333333 33333333
1080 | B[ 2]: c898eb4f 87f97c56 4c6fd61f c7e49689 314a1f81 8ec85eeb 3bd5514a
1081 | c816d387 78f69ef3 47a89fca 817e66de fdedce17 8c7cc709 b2116e75
1082 | B[ 3]: a0c09bf2 ba7208fd a0f4bfe3 d0f5b29a 54301230 6d43831b 5adc6fe7
1083 | f8596fa3 08763db1 5468323b 11cf6e4a eb8c18fe 44678f44 545a69bc
1084 | B[ 4]: b46f1836 aa287c0a 5a5653f0 ec5ef9e9 03f436e2 1c1570c2 9ad9e5f5
1085 | 96da97ee af17150a e30bcb31 74d04bc2 d712c8c7 789d7cb4 fda138f4
1086 | B[ 5]: 1c5bbecf 4741dfaa e79db72d face00ea aac502c2 060934b6 eaaeca6a
1087 | 20bd3da9 e0be8777 f7d02033 d1b15884 232281a4 1fc7f80e ed04af5e
1088 | B[ 6]: 86ff0182 d40f7f9e db786251 5821bd67 bfd6165a 3c44de95 d7df79b8
1089 | 779ccf64 60e3c68b 70c16aaa 280f2d7b 3f22d745 b97a8990 6cfc476c
1090 | B[ 7]: 502bcb68 42eb06f0 e49032ba e87c554c 031d6d4d 2d7694ef bf9c468d
1091 | 48220c50 f8ca2884 3364d70c ee92d6fe 246e6144 8f9db980 8b3b2408
1092 | B[ 8]: 0c9810f1 e2ebd389 caa78937 4d780079 74ef4d17 227316f4 0e578b33
1093 | 6827da3f 6b482a47 94eb6a39 75b971b5 e1388f52 e91ea2f1 bcb0f912
1094 | B[ 9]: 20d41d85 a18d5657 a2964032 1563bbd0 4c2ffbd0 a37a7ba4 3a4f7d26
1095 | 3ce26faf 4e1f74f9 f4b590c6 9229ae57 1fe37fa6 39b5b8eb 48bd9a55
1096 | B[10]: e6b4b8f4 08c7010d 0601e7ed a0c309a1 a42720d6 d06b5759 fdc4e1ef
1097 | e22d076d 6c44d42f 508d67be 462914d2 8b8edce3 2e709430 5164af17
1098 | B[11]: be88bbb8 6c59c13d 8e9d09ab 98105f69 c2d1dd13 4dbcd3b0 863658f5
1099 | 3159db64 c0e139d1 80f3c89b 8296d0ae 324419c0 6fa87fc7 daaf34c1
1100 | B[12]: a456f936 9769e8f0 8902124a 0314c7a0 6537a06e 32411f4f 93415950
1101 | a17badfa 7442b621 7434a3a0 5ef45be5 f10bd7b2 ef8ea00c 431edec5
1102 | B[13]: 186e452c 4466aa43 83b4c002 10d52e79 22dbf977 1e8b47e2 29a9b7b7
1103 | 3c8d10fd 7ef0b6e4 1530f91f 24a3ed9a b71fa38b 98b2fe47 46d51d68
1104 | B[14]: 4ae7fdca e9453f19 5a8ead5c be1a7b96 99673b52 c40ab279 27464887
1105 | be53237f 7f3a21b9 38d40d0e c9e15b1d 5130b13f fed81373 a53e2b43
1106 | B[15]: 841981c3 bfeec3f6 0cfeca75 d9d8dc17 f46cf010 6f2422b5 9aec580a
1107 | 58f34227 2e3a5e57 5a055ddb 051390c5 4c24c6ec b1e0aceb 075f6056
1108 |
1109 | B.2. Invalid encodings
1110 |
1111 | These are examples of encodings that MUST be rejected according to
1112 | Section 5.3.1.
1113 |
1114 | # Non-canonical field encodings.
1115 | 8e24f838 059ee9fe f1e20912 6defe53d cd74ef9b 6304601c 6966099e
1116 | ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
1117 |
1118 | 86fcc721 2bd4a0b9 80928666 dc28c444 a605ef38 e09fb569 e28d4443
1119 | ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
1120 |
1121 | 866d54bd 4c4ff41a 55d4eefd beca73cb d653c7bd 3135b383 708ec0bd
1122 | ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
1123 |
1124 | 4a380ccd ab9c8636 4a89e77a 464d64f9 157538cf dfa686ad c0d5ece4
1125 | ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
1126 |
1127 | f22d9d4c 945dd44d 11e0b1d3 d3d358d9 59b4844d 83b08c44 e659d79f
1128 | ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
1129 |
1130 | 8cdffc68 1aa99e9c 818c8ef4 c3808b58 e86acdef 1ab68c84 77af185b
1131 | ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
1132 |
1133 | 0e1c12ac 7b5920ef fbd044e8 97c57634 e2d05b5c 27f8fa3d f8a086a1
1134 | ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
1135 |
1136 | # Negative field elements.
1137 | 15141bd2 121837ef 71a0016b d11be757 507221c2 6542244f 23806f3f
1138 | d3496b7d 4c368262 76f3bf5d eea2c60c 4fa4cec6 9946876d a497e795
1139 |
1140 | 455d3802 38434ab7 40a56267 f4f46b7d 2eb2dd8e e905e51d 7b0ae8a6
1141 | cb2bae50 1e67df34 ab21fa45 946068c9 f233939b 1d9521a9 98b7cb93
1142 |
1143 | 810b1d8e 8bf3a9c0 23294bbf d3d905a9 7531709b dc0f4239 0feedd70
1144 | 10f77e98 686d400c 9c86ed25 0ceecd9d e0a18888 ffecda0f 4ea1c60d
1145 |
1146 | d3af9cc4 1be0e5de 83c0c627 3bedcb93 51970110 044a9a41 c7b9b226
1147 | 7cdb9d7b f4dc9c2f db8bed32 87818460 4f1d9944 305a8df4 274ce301
1148 |
1149 | 9312bcab 09009e43 30ff89c4 bc1e9e00 0d863efc 3c863d3b 6c507a40
1150 | fd2cdefd e1bf0892 b4b5ed97 80b91ed1 398fb4a7 344c605a a5efda74
1151 |
1152 | 53d11bce 9e62a29d 63ed82ae 93761bdd 76e38c21 e2822d6e bee5eb1c
1153 | 5b8a03ea f9df749e 2490eda9 d8ac27d1 f71150de 93668074 d18d1c3a
1154 |
1155 | 697c1aed 3cd88585 15d4be8a c158b229 fe184d79 cb2b06e4 9210a6f3
1156 | a7cd537b cd9bd390 d96c4ab6 a4406da5 d9364072 6285370c fa95df80
1157 |
1158 | # Non-square x^2.
1159 | 58ad4871 5c9a1025 69b68b88 362a4b06 45781f5a 19eb7e59 c6a4686f
1160 | d0f0750f f42e3d7a f1ab38c2 9d69b670 f3125891 9c9fdbf6 093d06c0
1161 |
1162 | 8ca37ee2 b15693f0 6e910cf4 3c4e32f1 d5551dda 8b1e48cb 6ddd55e4
1163 | 40dbc7b2 96b60191 9a4e4069 f59239ca 247ff693 f7daa42f 086122b1
1164 |
1165 | 982c0ec7 f43d9f97 c0a74b36 db0abd9c a6bfb981 23a90782 787242c8
1166 | a523cdc7 6df14a91 0d544711 27e7662a 1059201f 902940cd 39d57af5
1167 |
1168 | baa9ab82 d07ca282 b968a911 a6c3728d 74bf2fe2 58901925 787f03ee
1169 | 4be7e3cb 6684fd1b cfe5071a 9a974ad2 49a4aaa8 ca812642 16c68574
1170 |
1171 | 2ed9ffe2 ded67a37 2b181ac5 24996402 c4297062 9db03f5e 8636cbaf
1172 | 6074b523 d154a7a8 c4472c4c 353ab88c d6fec7da 7780834c c5bd5242
1173 |
1174 | f063769e 4241e76d 815800e4 933a3a14 4327a30e c40758ad 3723a788
1175 | 388399f7 b3f5d45b 6351eb8e ddefda7d 5bff4ee9 20d338a8 b89d8b63
1176 |
1177 | 5a0104f1 f55d152c eb68bc13 81824998 91d90ee8 f09b4003 8ccc1e07
1178 | cb621fd4 62f781d0 45732a4f 0bda73f0 b2acf943 55424ff0 388d4b9c
1179 |
1180 | B.3. Group elements from uniform byte strings
1181 |
1182 | The following pairs are inputs to the element derivation function of
1183 | Section 5.3.4, and their encoded outputs.
1184 |
1185 | I: cbb8c991fd2f0b7e1913462d6463e4fd2ce4ccdd28274dc2ca1f4165
1186 | d5ee6cdccea57be3416e166fd06718a31af45a2f8e987e301be59ae6
1187 | 673e963001dbbda80df47014a21a26d6c7eb4ebe0312aa6fffb8d1b2
1188 | 6bc62ca40ed51f8057a635a02c2b8c83f48fa6a2d70f58a1185902c0
1189 | O: 0c709c96 07dbb01c 94513358 745b7c23 953d03b3 3e39c723 4e268d1d
1190 | 6e24f340 14ccbc22 16b965dd 231d5327 e591dc3c 0e8844cc fd568848
1191 |
1192 | I: b6d8da654b13c3101d6634a231569e6b85961c3f4b460a08ac4a5857
1193 | 069576b64428676584baa45b97701be6d0b0ba18ac28d443403b4569
1194 | 9ea0fbd1164f5893d39ad8f29e48e399aec5902508ea95e33bc1e9e4
1195 | 620489d684eb5c26bc1ad1e09aba61fabc2cdfee0b6b6862ffc8e55a
1196 | O: 76ab794e 28ff1224 c727fa10 16bf7f1d 329260b7 218a39ae a2fdb17d
1197 | 8bd91190 17b093d6 41cedf74 328c3271 84dc6f2a 64bd90ed dccfcdab
1198 |
1199 | I: 36a69976c3e5d74e4904776993cbac27d10f25f5626dd45c51d15dcf
1200 | 7b3e6a5446a6649ec912a56895d6baa9dc395ce9e34b868d9fb2c1fc
1201 | 72eb6495702ea4f446c9b7a188a4e0826b1506b0747a6709f37988ff
1202 | 1aeb5e3788d5076ccbb01a4bc6623c92ff147a1e21b29cc3fdd0e0f4
1203 | O: c8d7ac38 4143500e 50890a1c 25d64334 3accce58 4caf2544 f9249b2b
1204 | f4a69210 82be0e7f 3669bb5e c24535e6 c45621e1 f6dec676 edd8b664
1205 |
1206 | I: d5938acbba432ecd5617c555a6a777734494f176259bff9dab844c81
1207 | aadcf8f7abd1a9001d89c7008c1957272c1786a4293bb0ee7cb37cf3
1208 | 988e2513b14e1b75249a5343643d3c5e5545a0c1a2a4d3c685927c38
1209 | bc5e5879d68745464e2589e000b31301f1dfb7471a4f1300d6fd0f99
1210 | O: 62beffc6 b8ee11cc d79dbaac 8f0252c7 50eb052b 192f41ee ecb12f29
1211 | 79713b56 3caf7d22 588eca5e 80995241 ef963e7a d7cb7962 f343a973
1212 |
1213 | I: 4dec58199a35f531a5f0a9f71a53376d7b4bdd6bbd2904234a8ea65b
1214 | bacbce2a542291378157a8f4be7b6a092672a34d85e473b26ccfbd4c
1215 | dc6739783dc3f4f6ee3537b7aed81df898c7ea0ae89a15b5559596c2
1216 | a5eeacf8b2b362f3db2940e3798b63203cae77c4683ebaed71533e51
1217 | O: f4ccb31d 263731ab 88bed634 304956d2 603174c6 6da38742 053fa37d
1218 | d902346c 3862155d 68db63be 87439e3d 68758ad7 268e239d 39c4fd3b
1219 |
1220 | I: df2aa1536abb4acab26efa538ce07fd7bca921b13e17bc5ebcba7d1b
1221 | 6b733deda1d04c220f6b5ab35c61b6bcb15808251cab909a01465b8a
1222 | e3fc770850c66246d5a9eae9e2877e0826e2b8dc1bc08009590bc677
1223 | 8a84e919fbd28e02a0f9c49b48dc689eb5d5d922dc01469968ee81b5
1224 | O: 7e79b00e 8e0a76a6 7c0040f6 2713b8b8 c6d6f05e 9c6d0259 2e8a22ea
1225 | 896f5dea cc7c7df5 ed42beae 6fedb900 0285b482 aa504e27 9fd49c32
1226 |
1227 | I: e9fb440282e07145f1f7f5ecf3c273212cd3d26b836b41b02f108431
1228 | 488e5e84bd15f2418b3d92a3380dd66a374645c2a995976a015632d3
1229 | 6a6c2189f202fc766e1c82f50ad9189be190a1f0e8f9b9e69c9c18cc
1230 | 98fdd885608f68bf0fdedd7b894081a63f70016a8abf04953affbefa
1231 | O: 20b171cb 16be977f 15e013b9 752cf86c 54c631c4 fc8cbf7c 03c4d3ac
1232 | 9b8e8640 e7b0e930 0b987fe0 ab504466 9314f6ed 1650ae03 7db853f1
1233 |
1234 | Authors' Addresses
1235 |
1236 | Henry de Valence
1237 | Email: ietf@hdevalence.ca
1238 |
1239 |
1240 | Jack Grigg
1241 | Email: ietf@jackgrigg.com
1242 |
1243 |
1244 | Mike Hamburg
1245 | Email: ietf@shiftleft.org
1246 |
1247 |
1248 | Isis Lovecruft
1249 | Email: ietf@en.ciph.re
1250 |
1251 |
1252 | George Tankersley
1253 | Email: ietf@gtank.cc
1254 |
1255 |
1256 | Filippo Valsorda
1257 | Email: ietf@filippo.io
1258 |
--------------------------------------------------------------------------------
/draft-irtf-cfrg-ristretto255-decaf448.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 | The ristretto255 and decaf448 Groups
7 |
8 | ietf@hdevalence.ca
9 |
10 | ietf@jackgrigg.com
11 |
12 | ietf@shiftleft.org
13 |
14 | ietf@en.ciph.re
15 |
16 | ietf@gtank.cc
17 |
18 | ietf@filippo.io
19 |
20 | Internet
21 | Crypto Forum Research Group
22 |
23 |
24 | This memo specifies two prime-order groups, ristretto255 and decaf448,
25 | suitable for safely implementing higher-level and complex
26 | cryptographic protocols. The ristretto255 group can be implemented
27 | using Curve25519, allowing existing Curve25519 implementations to be
28 | reused and extended to provide a prime-order group. Likewise, the
29 | decaf448 group can be implemented using edwards448.
30 | This document is a product of the Crypto Forum Research Group (CFRG) in the IRTF.
31 |
32 |
33 |
34 |
35 |
36 |
37 | Introduction
38 | Decaf is a technique for constructing prime-order groups
39 | with non-malleable encodings from non-prime-order elliptic curves.
40 | Ristretto extends this technique to support cofactor-8 curves such as
41 | Curve25519 . In particular, this allows an existing
42 | Curve25519 library to provide a prime-order group with only a thin
43 | abstraction layer.
44 | Many group-based cryptographic protocols require the number of
45 | elements in the group (the group order) to be prime. Prime-order
46 | groups are useful because every non-identity element of the group
47 | is a generator of the entire group. This means the group has a
48 | cofactor of 1, and all elements are equivalent from the perspective
49 | of Discrete Log Hardness.
50 | Edwards curves provide a number of implementation benefits for
51 | cryptography, such as complete addition formulas with no exceptional
52 | points and formulas among the fastest known for curve operations.
53 | However, the group of points on the curve is not of prime order,
54 | i.e., it has a cofactor larger than 1.
55 | This abstraction mismatch is usually handled by means of ad-hoc
56 | protocol tweaks, such as multiplying by the cofactor in an
57 | appropriate place, or not at all.
58 | Even for simple protocols such as signatures, these tweaks can cause
59 | subtle issues. For instance, Ed25519 implementations may have
60 | different validation behavior between batched and singleton
61 | verification, and at least as specified in , the set of
62 | valid signatures is not defined by the standard.
63 | For more complex protocols, careful analysis is required as the
64 | original security proofs may no longer apply, and the tweaks for one
65 | protocol may have disastrous effects when applied to another (for
66 | instance, the octuple-spend vulnerability in ).
67 | Decaf and Ristretto fix this abstraction mismatch in one place for
68 | all protocols, providing an abstraction to protocol implementors that
69 | matches the abstraction commonly assumed in protocol specifications,
70 | while still allowing the use of high-performance curve
71 | implementations internally. The abstraction layer imposes minor
72 | overhead, and only in the encoding and decoding phases.
73 | While Ristretto is a general method, and can be used in conjunction
74 | with any Edwards curve with cofactor 4 or 8, this document specifies
75 | the ristretto255 group, which can be implemented using Curve25519,
76 | and the decaf448 group, which can be implemented using edwards448.
77 | There are other elliptic curves that can be used internally to
78 | implement ristretto255 or decaf448, and those implementations would be
79 | interoperable with a Curve25519- or edwards448-based one, but those
80 | constructions are out-of-scope for this document.
81 | The Ristretto construction is described and justified in detail at
82 | .
83 | This document represents the consensus of the Crypto Forum Research Group (CFRG).
84 | This document is not an IETF product and is not a standard.
85 |
86 |
87 | Notation and Conventions Used In This Document
88 | The key words "MUST", "MUST NOT", "REQUIRED", "SHALL",
89 | "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED",
90 | "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document
91 | are to be interpreted as described in BCP 14
92 | when, and only when, they appear in all capitals, as shown here.
93 | Readers are cautioned that the term "Curve25519" has varying
94 | interpretations in the literature, and that the canonical meaning of the
95 | term has shifted over time. Originally it referred to a specific
96 | Diffie-Hellman key exchange mechanism. Over time, use shifted, and
97 | "Curve25519" has been used to refer to either the abstract underlying
98 | curve, or its concrete representation in Montgomery form, or the
99 | specific Diffie-Hellman mechanism. This document uses the term
100 | "Curve25519" to refer to the abstract underlying curve, as recommended
101 | in . The abstract Edwards form of the curve we refer to here
102 | as "Curve25519" is in referred to as "edwards25519"
103 | and its isogenous Montgomery form is referred to as "curve25519".
104 | Elliptic curve points in this document are represented in extended
105 | Edwards coordinates in the (x, y, z, t) format , also called
106 | extended homogeneous coordinates in Section 5.1.4 of . Field
107 | elements are values modulo p, the Curve25519 prime 2^255 - 19 or the
108 | edwards448 prime 2^448 - 2^224 - 1, as specified in Sections 4.1 and
109 | 4.2 of , respectively. All formulas specify field operations
110 | unless otherwise noted. The symbol ^ denotes exponentiation.
111 | The | symbol represents a constant-time logical OR.
112 | The notation array[A:B] means the elements of array from A
113 | to B-1. That is, it is exclusive of B. Arrays are indexed
114 | starting from 0.
115 | A byte is an 8-bit entity (also known as "octet") and a byte string
116 | is an ordered sequence of bytes. An N-byte string is a byte string of
117 | N bytes in length.
118 | Element encodings are presented as hex encoded byte strings with
119 | whitespace added for readability.
120 |
121 | Negative field elements
122 | As in , given a field element e, define IS_NEGATIVE(e) as
123 | TRUE if the least non-negative integer representing e is odd, and
124 | FALSE if it is even. This SHOULD be implemented in constant time.
125 |
126 |
127 | Constant time operations
128 | We assume that the field element implementation supports the following
129 | operations, which SHOULD be implemented in constant time:
130 |
131 |
132 | - CT_EQ(u, v): return TRUE if u = v, FALSE otherwise.
133 | - CT_SELECT(v IF cond ELSE u): return v if cond is TRUE, else return u.
134 | - CT_ABS(u): return -u if IS_NEGATIVE(u), else return u.
135 |
136 | Note that CT_ABS MAY be implemented as:
137 |
138 |
140 |
141 |
142 |
143 |
144 | The group abstraction
145 | Ristretto and Decaf implement an abstract prime-order group interface
146 | that exposes only the behavior that is useful to higher-level protocols,
147 | without leaking curve-related details and pitfalls.
148 | Each abstract group exposes operations on abstract element and abstract
149 | scalar types. The operations defined on these types include: decoding, encoding,
150 | equality, addition, negation, subtraction and (multi-)scalar multiplication.
151 | Each abstract group also exposes a deterministic function to derive abstract
152 | elements from fixed-length byte strings. A description of each of these
153 | operations is below.
154 | Decoding is a function from byte strings to abstract elements with
155 | built-in validation, so that only the canonical encodings of valid
156 | elements are accepted. The built-in validation avoids the need for
157 | explicit invalid curve checks.
158 | Encoding is a function from abstract elements to byte strings. Internally,
159 | an abstract element might have more than one possible representation -- for
160 | example, the implementation might use projective coordinates. When encoding,
161 | all equivalent representations of the same element are encoded as identical
162 | byte strings. Decoding the output of the encoding function always
163 | succeeds and returns an equivalent element to the encoding input.
164 | The equality check reports whether two representations of an abstract
165 | element are equivalent.
166 | The element derivation function maps deterministically from byte strings of
167 | a fixed length to abstract elements. It has two important properties. First,
168 | if the input is a uniformly random byte string, then the output is (within
169 | a negligible statistical distance of) a uniformly random abstract group
170 | element. This means the function is suitable for selecting random group
171 | elements.
172 | Second, although the element derivation function is many-to-one and therefore
173 | not strictly invertible, it is not pre-image resistent. On the contrary,
174 | given an arbitrary abstract group element P, there is an efficient algorithm
175 | to randomly sample from byte strings that map to P. In some contexts this
176 | property would be a weakness, but it is important in some contexts: in particular,
177 | it means that a combination of a cryptographic hash function and the element
178 | derivation function is suitable for use in algorithms such as
179 | hash_to_curve .
180 | Addition is the group operation. The group has an identity element and
181 | prime order l. Adding together l copies of the same element gives the
182 | identity. Adding the identity element to
183 | any element returns that element unchanged. Negation returns an element
184 | that added to the negation input returns the identity element.
185 | Subtraction is the addition of a negated element, and scalar
186 | multiplication is the repeated addition of an element.
187 |
188 |
189 | ristretto255
190 | ristretto255 is an instantiation of the abstract prime-order group
191 | interface defined in . This document describes how to
192 | implement the ristretto255 prime-order group using Curve25519 points as
193 | internal representations.
194 | A "ristretto255 group element" is the abstract element of the prime
195 | order group. An "element encoding" is the unique reversible encoding
196 | of a group element. An "internal representation" is a point on the
197 | curve used to implement ristretto255. Each group element can have
198 | multiple equivalent internal representations.
199 | Encoding, decoding, equality, and the element derivation function are defined in
200 | . Element addition, subtraction, negation, and scalar
201 | multiplication are implemented by applying the corresponding operations
202 | directly to the internal representation.
203 | The group order is the same as the order of the Curve25519 prime-order subgroup:
204 |
205 |
207 |
208 | Since ristretto255 is a prime-order group, every element except the
209 | identity is a generator, but for interoperability a canonical generator
210 | is selected, which can be internally represented by the Curve25519
211 | basepoint, enabling reuse of existing precomputation for scalar
212 | multiplication. This is its encoding as produced by the function
213 | specified in :
214 |
215 |
217 |
218 |
219 | Implementation constants
220 | This document references the following constant field element values
221 | that are used for the implementation of group operations.
222 |
223 |
224 | - D = 37095705934669439343138083508754565189542113879843219016388785533085940283555
225 |
226 |
227 | - This is the Edwards d parameter for Curve25519, as specified in Section 4.1 of .
228 |
229 | - SQRT_M1 = 19681161376707505956807079304988542015446066515923890162744021073123829784752
230 | - SQRT_AD_MINUS_ONE = 25063068953384623474111414158702152701244531502492656460079210482610430750235
231 | - INVSQRT_A_MINUS_D = 54469307008909316920995813868745141605393597292927456921205312896311721017578
232 | - ONE_MINUS_D_SQ = 1159843021668779879193775521855586647937357759715417654439879720876111806838
233 | - D_MINUS_ONE_SQ = 40440834346308536858101042469323190826248399146238708352240133220865137265952
234 |
235 |
236 |
237 | Square root of a ratio of field elements
238 | The following function is defined on field elements, and is used to
239 | implement other ristretto255 functions. This function is only used internally
240 | to implement some of the group operations.
241 | On input field elements u and v, the function SQRT_RATIO_M1(u, v) returns:
242 |
243 |
244 | - (TRUE, +sqrt(u/v)) if u and v are non-zero, and u/v is square;
245 | - (TRUE, zero) if u is zero;
246 | - (FALSE, zero) if v is zero and u is non-zero;
247 | - (FALSE, +sqrt(SQRT_M1*(u/v))) if u and v are non-zero, and u/v is
248 | non-square (so SQRT_M1*(u/v) is square),
249 |
250 | where +sqrt(x) indicates the non-negative square root of x in the
251 | field.
252 | The computation is similar to Section 5.1.3 of , with the
253 | difference that if the input is non-square, the function returns a
254 | result with a defined relationship to the inputs. This result is used
255 | for efficient implementation of the derivation function. The function
256 | can be refactored from an existing Ed25519 implementation.
257 | SQRT_RATIO_M1(u, v) is defined as follows:
258 |
259 |
276 |
277 |
278 |
279 | ristretto255 group operations
280 | This section describes the implementation of the external functions
281 | exposed by the ristretto255 prime-order group.
282 |
283 | Decode
284 | All elements are encoded as 32-byte strings. Decoding proceeds as follows:
285 |
286 |
287 | - First, interpret the string as an unsigned integer s in little-endian
288 | representation. If the length of the string is not 32 bytes, or if
289 | the resulting value is >= p, decoding fails.
290 |
291 |
292 | - Note: unlike field element decoding, the most significant
293 | bit is not masked, and non-canonical values are rejected.
294 | The test vectors in exercise these edge cases.
295 |
296 | - If IS_NEGATIVE(s) returns TRUE, decoding fails.
297 | - Process s as follows:
298 |
299 |
300 |
316 |
317 |
318 |
319 | - If was_square is FALSE, or IS_NEGATIVE(t) returns TRUE, or y =
320 | 0, decoding fails. Otherwise, return the group element represented
321 | by the internal representation (x, y, 1, t) as the result of
322 | decoding.
323 |
324 |
325 |
326 | Encode
327 | A group element with internal representation (x0, y0, z0, t0) is
328 | encoded as follows:
329 |
330 |
331 | - Process the internal representation into a field element s as follows:
332 |
333 |
334 |
360 |
361 |
362 |
363 | - Return the 32-byte little-endian encoding of s. More specifically,
364 | this is the encoding of the canonical representation of s as an integer
365 | between 0 and p-1, inclusive.
366 |
367 | Note that decoding and then re-encoding a valid group element will
368 | yield an identical byte string.
369 |
370 |
371 | Equals
372 | The equality function returns TRUE when two internal representations
373 | correspond to the same group element. Note that internal representations
374 | MUST NOT be compared in any other way than specified here.
375 | For two internal representations (x1, y1, z1, t1) and (x2, y2, z2, t2),
376 | if
377 |
378 |
380 |
381 | evaluates to TRUE, then return TRUE. Otherwise, return FALSE.
382 | Note that the equality function always returns TRUE when applied to an
383 | internal representation and to the internal representation obtained by
384 | encoding and then re-decoding it. However, the internal
385 | representations themselves might not be identical.
386 | Implementations MAY also perform byte comparisons on the encodings
387 | of group elements (produced by ) for an equivalent, although
388 | less efficient, result.
389 |
390 |
391 | Element derivation
392 | The element derivation function operates on 64-byte strings.
393 | To obtain such an input from an arbitrary-length byte string, applications
394 | should use a domain-separated hash construction, the choice of which
395 | is out-of-scope for this document.
396 | The element derivation function on an input string b proceeds as follows:
397 |
398 |
399 | - Compute P1 as MAP(b[0:32]).
400 | - Compute P2 as MAP(b[32:64]).
401 | - Return P1 + P2.
402 |
403 | The MAP function is defined on 32-byte strings as:
404 |
405 |
406 | - First, mask the most significant bit in the final byte of the string,
407 | and interpret the string as an unsigned integer r in little-endian
408 | representation. Reduce r modulo p to obtain a field element t.
409 |
410 |
411 | - Masking the most significant bit is equivalent to interpreting the
412 | whole string as an unsigned integer in little-endian representation and then
413 | reducing it modulo 2^255.
414 | - Note: similarly to field element decoding, and unlike
415 | field element decoding in , the most significant bit
416 | is masked, and non-canonical values are accepted.
417 |
418 | - Process t as follows:
419 |
420 |
421 |
422 |
438 |
439 |
440 |
441 | - Return the group element represented by the internal representation
442 | (w0*w3, w2*w1, w1*w3, w0*w2).
443 |
444 |
445 |
446 |
447 | Scalar field
448 | The scalars for the ristretto255 group are integers modulo the order l
449 | of the ristretto255 group. Note that this is the same scalar field as
450 | Curve25519, allowing existing implementations to be reused.
451 | Scalars are encoded as 32-byte strings in little-endian order.
452 | Implementations SHOULD check that any scalar s falls in the range
453 | 0 <= s < l when parsing them and reject non-canonical scalar
454 | encodings. Implementations SHOULD reduce scalars modulo l when
455 | encoding them as byte strings. Omitting these strict range checks is
456 | NOT RECOMMENDED but is allowed to enable reuse of scalar
457 | arithmetic implementations in existing Curve25519 libraries.
458 | Given a uniformly distributed 64-byte string b, implementations can
459 | obtain a uniformly distributed scalar by interpreting the 64-byte
460 | string as a 512-bit unsigned integer in little-endian order and reducing the
461 | integer modulo l, as in . To obtain such an input from an
462 | arbitrary-length byte string, applications should use a domain-separated
463 | hash construction, the choice of which is out-of-scope for this document.
464 |
465 |
466 |
467 | decaf448
468 | decaf448 is an instantiation of the abstract prime-order group
469 | interface defined in . This document describes how to
470 | implement the decaf448 prime-order group using edwards448 points as
471 | internal representations.
472 | A "decaf448 group element" is the abstract element of the prime order
473 | group. An "element encoding" is the unique reversible encoding of a
474 | group element. An "internal representation" is a point on the curve
475 | used to implement decaf448. Each group element can have multiple
476 | equivalent internal representations.
477 | Encoding, decoding, equality, and the element derivation functions are defined in
478 | . Element addition, subtraction, negation, and scalar
479 | multiplication are implemented by applying the corresponding operations
480 | directly to the internal representation.
481 | The group order is the same as the order of the edwards448 prime-order subgroup:
482 |
483 |
486 |
487 | Since decaf448 is a prime-order group, every element except the
488 | identity is a generator, but for interoperability a canonical generator
489 | is selected. This generator can be internally represented by 2*B, where B is the edwards448
490 | basepoint, enabling reuse of existing precomputation for scalar
491 | multiplication. This is its encoding as produced by the function
492 | specified in :
493 |
494 |
497 |
498 | This repetitive constant is equal to 1/sqrt(5) in decaf448's field,
499 | corresponding to the curve448 base point with x = 5.
500 |
501 | Implementation constants
502 | This document references the following constant field element values
503 | that are used for the implementation of group operations.
504 |
505 |
506 | - D = 726838724295606890549323807888004534353641360687318060281490199180612328166730772686396383698676545930088884461843637361053498018326358
507 |
508 |
509 | - This is the Edwards d parameter for edwards448, as specified in
510 | Section 4.2 of , and is equal to -39081 in the field.
511 |
512 | - ONE_MINUS_D = 39082
513 | - ONE_MINUS_TWO_D = 78163
514 | - SQRT_MINUS_D = 98944233647732219769177004876929019128417576295529901074099889598043702116001257856802131563896515373927712232092845883226922417596214
515 | - INVSQRT_MINUS_D = 315019913931389607337177038330951043522456072897266928557328499619017160722351061360252776265186336876723201881398623946864393857820716
516 |
517 |
518 |
519 | Square root of a ratio of field elements
520 | The following function is defined on field elements, and is used to
521 | implement other decaf448 functions. This function is only used internally
522 | to implement some of the group operations.
523 | On input field elements u and v, the function SQRT_RATIO_M1(u, v) returns:
524 |
525 |
526 | - (TRUE, +sqrt(u/v)) if u and v are non-zero, and u/v is square;
527 | - (TRUE, zero) if u is zero;
528 | - (FALSE, zero) if v is zero and u is non-zero;
529 | - (FALSE, +sqrt(-u/v)) if u and v are non-zero, and u/v is
530 | non-square (so -(u/v) is square),
531 |
532 | where +sqrt(x) indicates the non-negative square root of x in
533 | the field.
534 | The computation is similar to Section 5.2.3 of , with the
535 | difference that if the input is non-square, the function returns a
536 | result with a defined relationship to the inputs. This result is used
537 | for efficient implementation of the derivation function. The function
538 | can be refactored from an existing edwards448 implementation.
539 | SQRT_RATIO_M1(u, v) is defined as follows:
540 |
541 |
551 |
552 |
553 |
554 | decaf448 group operations
555 | This section describes the implementation of the external functions
556 | exposed by the decaf448 prime-order group.
557 |
558 | Decode
559 | All elements are encoded as 56-byte strings. Decoding proceeds as follows:
560 |
561 |
562 | - First, interpret the string as an unsigned integer s in little-endian
563 | representation. If the length of the string is not 56 bytes, or if
564 | the resulting value is >= p, decoding fails.
565 |
566 |
567 | - Note: unlike field element decoding, non-canonical
568 | values are rejected. The test vectors in exercise
569 | these edge cases.
570 |
571 | - If IS_NEGATIVE(s) returns TRUE, decoding fails.
572 | - Process s as follows:
573 |
574 |
575 |
584 |
585 |
586 |
587 | - If was_square is FALSE then decoding fails. Otherwise,
588 | return the group element represented by the internal representation
589 | (x, y, 1, t) as the result of decoding.
590 |
591 |
592 |
593 | Encode
594 | A group element with internal representation (x0, y0, z0, t0) is
595 | encoded as follows:
596 |
597 |
598 | - Process the internal representation into a field element s as follows:
599 |
600 |
601 |
610 |
611 |
612 |
613 | - Return the 56-byte little-endian encoding of s. More specifically,
614 | this is the encoding of the canonical representation of s as an integer
615 | between 0 and p-1, inclusive.
616 |
617 | Note that decoding and then re-encoding a valid group element will
618 | yield an identical byte string.
619 |
620 |
621 | Equals
622 | The equality function returns TRUE when two internal representations
623 | correspond to the same group element. Note that internal representations
624 | MUST NOT be compared in any other way than specified here.
625 | For two internal representations (x1, y1, z1, t1) and (x2, y2, z2, t2),
626 | if
627 |
628 |
630 |
631 | evaluates to TRUE, then return TRUE. Otherwise, return FALSE.
632 | Note that the equality function always returns TRUE when applied to an
633 | internal representation and to the internal representation obtained by
634 | encoding and then re-decoding it. However, the internal
635 | representations themselves might not be identical.
636 | Implementations MAY also perform byte comparisons on the encodings
637 | of group elements (produced by ) for an equivalent, although
638 | less efficient, result.
639 |
640 |
641 | Element derivation
642 | The element derivation function operates on 112-byte strings.
643 | To obtain such an input from an arbitrary-length byte string, applications
644 | should use a domain-separated hash construction, the choice of which
645 | is out-of-scope for this document.
646 | The element derivation function on an input string b proceeds as follows:
647 |
648 |
649 | - Compute P1 as MAP(b[0:56]).
650 | - Compute P2 as MAP(b[56:112]).
651 | - Return P1 + P2.
652 |
653 | The MAP function is defined on 56-byte strings as:
654 |
655 |
656 | - Interpret the string as an unsigned integer r in little-endian representation.
657 | Reduce r modulo p to obtain a field element t.
658 |
659 |
660 | - Note: similarly to field element decoding, and unlike
661 | field element decoding in , non-canonical values are
662 | accepted.
663 |
664 | - Process t as follows:
665 |
666 |
667 |
668 |
682 |
683 |
684 |
685 | - Return the group element represented by the internal representation
686 | (w0*w3, w2*w1, w1*w3, w0*w2).
687 |
688 |
689 |
690 |
691 | Scalar field
692 | The scalars for the decaf448 group are integers modulo the order l
693 | of the decaf448 group. Note that this is the same scalar field as
694 | edwards448, allowing existing implementations to be reused.
695 | Scalars are encoded as 56-byte strings in little-endian order.
696 | Implementations SHOULD check that any scalar s falls in the range
697 | 0 <= s < l when parsing them and reject non-canonical scalar
698 | encodings. Implementations SHOULD reduce scalars modulo l when
699 | encoding them as byte strings. Omitting these strict range checks is
700 | NOT RECOMMENDED but is allowed to enable reuse of scalar
701 | arithmetic implementations in existing edwards448 libraries.
702 | Given a uniformly distributed 64-byte string b, implementations can
703 | obtain a uniformly distributed scalar by interpreting the 64-byte
704 | string as a 512-bit unsigned integer in little-endian order and reducing the
705 | integer modulo l. To obtain such an input from an arbitrary-length
706 | byte string, applications should use a domain-separated hash
707 | construction, the choice of which is out-of-scope for this document.
708 |
709 |
710 |
711 | API Considerations
712 | ristretto255 and decaf448 are abstractions which implement two prime-order
713 | groups, and their elements are represented by curve points, but they are
714 | not curve points. Implementations SHOULD reflect that: the type
715 | representing an element of the group SHOULD be opaque to the caller,
716 | meaning they do not expose the underlying curve point or field elements.
717 | Moreover, implementations SHOULD NOT expose any internal constants
718 | or functions used in the implementation of the group operations.
719 | The reason for this encapsulation is that ristretto255 and decaf448 implementations
720 | can change their underlying curve without causing any breaking change. The ristretto255
721 | and decaf448 constructions are carefully designed so that this will be the
722 | case, as long as implementations do not expose internal representations or
723 | operate on them except as described in this document. In particular,
724 | implementations SHOULD NOT define any external ristretto255 or decaf448
725 | interface as operating on arbitrary curve points, and they SHOULD NOT
726 | construct group elements except via decoding, the element derivation function,
727 | or group operations on other valid group elements per . They are
728 | however allowed to apply any optimization strategy to the internal
729 | representations as long as it doesn't change the exposed behavior of the
730 | API.
731 | It is RECOMMENDED that implementations do not perform a decoding and
732 | encoding operation for each group operation, as it is inefficient and
733 | unnecessary. Implementations SHOULD instead provide an opaque type
734 | to hold the internal representation through multiple operations.
735 |
736 |
737 | IANA Considerations
738 | This document has no IANA actions.
739 |
740 |
741 | Security Considerations
742 | The ristretto255 and decaf448 groups provide higher-level protocols with
743 | the abstraction they expect: a prime-order group. Therefore, it's expected
744 | to be safer for use in any situation where Curve25519 or edwards448 is used
745 | to implement a protocol requiring a prime-order group. Note that the safety
746 | of the abstraction can be defeated by implementations that do not follow
747 | the guidance in .
748 | There is no function to test whether an elliptic curve point is a
749 | valid internal representation of a group element. The decoding
750 | function always returns a valid internal representation, or an error, and
751 | allowed operations on valid internal representations return valid
752 | internal representations. In this way, an implementation can maintain
753 | the invariant that an internal representation is always valid, so that
754 | checking is never necessary, and invalid states are unrepresentable.
755 |
756 |
757 | Acknowledgements
758 | The authors would like to thank Daira Hopwood, Riad S. Wahby, Christopher Wood,
759 | and Thomas Pornin for their comments on the draft.
760 |
761 |
762 |
763 |
764 |
765 | Normative References
766 |
767 |
768 |
769 | Informative References
770 |
771 |
772 | Decaf: Eliminating cofactors through point
compression
773 |
774 | Rambus Cryptography Research
775 |
776 |
777 |
778 |
779 |
780 |
781 | Exploiting Low Order Generators in One-Time Ring Signatures
782 |
783 |
784 |
785 |
786 |
787 |
788 | [Cfrg] 25519 naming
789 |
790 |
791 |
792 |
793 |
794 |
795 |
796 |
797 | The Ristretto Group
798 |
799 |
800 |
801 |
802 |
803 |
804 |
805 |
806 |
807 | Twisted Edwards Curves Revisited
808 |
809 |
810 |
811 |
812 |
813 |
814 |
815 |
816 |
817 | Hashing to Elliptic Curves
818 |
819 |
820 |
821 |
822 |
823 |
824 |
825 |
826 |
827 |
828 | Test vectors for ristretto255
829 | This section contains test vectors for ristretto255. The octets are
830 | hex encoded, and whitespace is inserted for readability.
831 |
832 | Multiples of the generator
833 | The following are the encodings of the multiples 0 to 15 of the
834 | canonical generator, represented as an array of elements. That is,
835 | the first entry is the encoding of the identity element, and each
836 | successive entry is obtained by adding the generator to the previous entry.
837 |
838 |
855 |
856 | Note that because
857 |
858 |
860 |
861 | these test vectors allow testing the encoding function and
862 | the implementation of addition simultaneously.
863 |
864 |
865 | Invalid encodings
866 | These are examples of encodings that MUST be rejected according to
867 | .
868 |
869 |
908 |
909 |
910 |
911 | Group elements from byte strings
912 | The following pairs are inputs to the element derivation function of
913 | , and their encoded outputs.
914 |
915 |
943 |
944 | The following element derivation function inputs all produce the same encoded
945 | output.
946 |
947 |
958 |
959 |
960 |
961 | Square root of a ratio of field elements
962 | The following are inputs and outputs of SQRT_RATIO_M1(u, v) defined
963 | in . The values are little-endian encodings of field
964 | elements.
965 |
966 |
996 |
997 |
998 |
999 |
1000 | Test vectors for decaf448
1001 | This section contains test vectors for decaf448. The octets are
1002 | hex encoded, and whitespace is inserted for readability.
1003 |
1004 | Multiples of the generator
1005 | The following are the encodings of the multiples 0 to 15 of the
1006 | canonical generator, represented as an array of elements. That is,
1007 | the first entry is the encoding of the identity element, and each
1008 | successive entry is obtained by adding the generator to the previous entry.
1009 |
1010 |
1043 |
1044 |
1045 |
1046 | Invalid encodings
1047 | These are examples of encodings that MUST be rejected according to
1048 | .
1049 |
1050 |
1116 |
1117 |
1118 |
1119 | Group elements from uniform byte strings
1120 | The following pairs are inputs to the element derivation function of
1121 | , and their encoded outputs.
1122 |
1123 |
1172 |
1173 |
1174 |
1175 |
1176 |
1177 |
1178 |
1179 |
--------------------------------------------------------------------------------