├── .github
└── workflows
│ └── update_readme.yml
└── README.md
/.github/workflows/update_readme.yml:
--------------------------------------------------------------------------------
1 | name: Update README on New Issues
2 |
3 | on:
4 | schedule:
5 | # Run every Thursday at 00:00 UTC
6 | - cron: '0 0 * * 4'
7 | issues:
8 | types: [opened]
9 | workflow_dispatch: # Allow manual trigger
10 |
11 | jobs:
12 | update-readme:
13 | runs-on: ubuntu-latest
14 | permissions:
15 | contents: write
16 | issues: read
17 |
18 | steps:
19 | - name: Checkout repository
20 | uses: actions/checkout@v4
21 | with:
22 | fetch-depth: 0
23 |
24 | - name: Setup Python
25 | uses: actions/setup-python@v4
26 | with:
27 | python-version: '3.x'
28 |
29 | - name: Check for new issues and update README
30 | env:
31 | GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
32 | run: |
33 | python - <<'EOF'
34 | import os
35 | import re
36 | import json
37 | import subprocess
38 | from datetime import datetime, timedelta
39 |
40 | # GitHub API setup
41 | github_token = os.environ['GITHUB_TOKEN']
42 | repo = os.environ['GITHUB_REPOSITORY']
43 |
44 | # Function to get issues from the last week
45 | def get_recent_issues():
46 | # Check if triggered by issue event
47 | event_name = os.environ.get('GITHUB_EVENT_NAME')
48 |
49 | if event_name == 'issues':
50 | # Get the issue that triggered this workflow
51 | with open(os.environ['GITHUB_EVENT_PATH'], 'r') as f:
52 | event_data = json.load(f)
53 | issue = event_data.get('issue', {})
54 | if issue:
55 | return [issue]
56 | else:
57 | # For scheduled runs, get issues from the last week
58 | one_week_ago = (datetime.now() - timedelta(days=7)).isoformat()
59 | cmd = f'''curl -s -H "Authorization: token {github_token}" \
60 | "https://api.github.com/repos/{repo}/issues?state=all&since={one_week_ago}&sort=created&direction=desc"'''
61 | result = subprocess.run(cmd, shell=True, capture_output=True, text=True)
62 | issues = json.loads(result.stdout)
63 |
64 | # Filter for issues created in the last week
65 | recent_issues = []
66 | for issue in issues:
67 | created_at = datetime.strptime(issue['created_at'], '%Y-%m-%dT%H:%M:%SZ')
68 | if created_at > datetime.now() - timedelta(days=7):
69 | recent_issues.append(issue)
70 | return recent_issues
71 |
72 | return []
73 |
74 | # Function to parse issue title
75 | def parse_issue_title(title):
76 | # Expected format: "2025.08.27 - #48 - WALL-OSS, ORB-SLAM-Python, Robix, ..."
77 | # More strict pattern matching to ensure exact format
78 | pattern = r'^(\d{4}\.\d{2}\.\d{2})\s*-\s*#(\d+)\s*-\s*(.+)$'
79 | match = re.match(pattern, title)
80 |
81 | if match:
82 | date_str = match.group(1)
83 | issue_num = match.group(2)
84 | topics_str = match.group(3).strip()
85 |
86 | # Keep date format as is (YYYY.MM.DD)
87 | formatted_date = date_str
88 |
89 | # Clean up topics - preserve the comma-separated format
90 | topics = ', '.join([t.strip() for t in topics_str.split(',')])
91 |
92 | return formatted_date, topics, issue_num
93 | return None, None, None
94 |
95 | # Function to update README
96 | def update_readme(new_entries):
97 | if not new_entries:
98 | print("No new issues to add to README")
99 | return False
100 |
101 | # Read current README
102 | with open('README.md', 'r') as f:
103 | content = f.read()
104 |
105 | # Find the table - match table with proper row endings
106 | table_pattern = r'(\|Date\|Topics\|Link\|Video\|\n\|[-]+\|[-]+\|[-]+\|[-]+\|(?:\n\|[^\n]+\|)*)'
107 | match = re.search(table_pattern, content)
108 |
109 | if not match:
110 | print("Could not find the table in README.md")
111 | return False
112 |
113 | table_content = match.group(1)
114 |
115 | # Parse existing entries to check for duplicates and maintain order
116 | existing_entries = []
117 | lines = table_content.strip().split('\n')
118 | for line in lines[2:]: # Skip header lines
119 | if line.strip() and line.startswith('|'):
120 | existing_entries.append(line)
121 |
122 | # Check for duplicates and add new entries
123 | added_count = 0
124 | new_rows = []
125 | for entry in new_entries:
126 | # Check if this issue is already in the table
127 | issue_link = f"[meeting log]({entry['link']})"
128 | if not any(issue_link in row for row in existing_entries):
129 | new_row = f"|{entry['date']}| {entry['topics']} |{issue_link}| |"
130 | new_rows.append(new_row)
131 | added_count += 1
132 | print(f"Added new entry: {entry['date']} - {entry['topics']}")
133 |
134 | if added_count == 0:
135 | print("All issues already exist in the table")
136 | return False
137 |
138 | # Combine all entries and sort by date
139 | all_rows = existing_entries + new_rows
140 |
141 | # Sort entries by date (assuming YYYY.MM.DD format)
142 | def get_date_key(row):
143 | date_match = re.search(r'\|(\d{4}\.\d{2}\.\d{2})\|', row)
144 | if date_match:
145 | return date_match.group(1)
146 | return '9999.99.99' # Put malformed rows at the end
147 |
148 | all_rows.sort(key=get_date_key)
149 |
150 | # Rebuild the table with proper formatting
151 | header = "|Date|Topics|Link|Video|\n|------|---|---|---|"
152 | sorted_rows = '\n'.join(all_rows)
153 | new_table = f"{header}\n{sorted_rows}"
154 |
155 | # Replace old table with new table
156 | new_content = content.replace(table_content, new_table)
157 |
158 | # Write updated README
159 | with open('README.md', 'w') as f:
160 | f.write(new_content)
161 |
162 | print(f"Successfully added {added_count} new entries to README.md")
163 | return True
164 |
165 | # Main execution
166 | recent_issues = get_recent_issues()
167 |
168 | if not recent_issues:
169 | print("No new issues found")
170 | exit(0)
171 |
172 | new_entries = []
173 | for issue in recent_issues:
174 | # Skip pull requests
175 | if 'pull_request' in issue:
176 | continue
177 |
178 | date, topics, issue_num = parse_issue_title(issue['title'])
179 | if date and topics:
180 | new_entries.append({
181 | 'date': date,
182 | 'topics': topics,
183 | 'link': issue['html_url']
184 | })
185 | print(f"Processing issue #{issue_num}: {date} - {topics}")
186 | else:
187 | print(f"Issue '{issue['title']}' does not match expected format, skipping")
188 |
189 | if new_entries:
190 | if update_readme(new_entries):
191 | print("README.md has been updated")
192 | else:
193 | print("No updates needed for README.md")
194 | else:
195 | print("No valid issues to process")
196 | EOF
197 |
198 | - name: Commit and push changes
199 | run: |
200 | git config --local user.email "action@github.com"
201 | git config --local user.name "GitHub Action"
202 |
203 | # Check if there are changes
204 | if git diff --quiet; then
205 | echo "No changes to commit"
206 | else
207 | git add README.md
208 | git commit -m "Update README.md with new issue information"
209 | git push
210 | echo "Changes pushed to repository"
211 | fi
212 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # WeeklySpatialAI 🥳
2 |
3 | `Weekly Spatial AI`는 매주 [Spatial AI KR](https://www.facebook.com/groups/spatialaikr/) 커뮤니티 멤버들이 온라인 모임을 통해 최신 Spatial AI 뉴스 및 자료를 공유하는 모임입니다.
4 |
5 | `Weekly Spatial AI` is a weekly online meetup amongst the members of the [Spatial AI KR](https://www.facebook.com/groups/spatialaikr/) community to share the latest news on Spatial AI.
6 |
7 | ## Vision
8 |
9 | Spatial AI 분야의 현업자, 대학원생, 교수님들간의 정보교환 -> 최신 논문, 업계 현황, 신기술/신제품, 개발 노하우, 채용 공고, 유용한 테크 블로그 등...
10 |
11 | Information exchange between experts in Spatial AI field from industry to academia -> latest papers, industry news, tips for development, latest technologies/products, job postings, useful tech blogs...
12 |
13 | ## Meeting history
14 |
15 | 미팅 영상은 [YouTube 채널](https://www.youtube.com/@slam_slam_/)에, 미팅 로그는 [Issue 페이지](https://github.com/changh95/WeeklySpatialAI/issues)에 남깁니다.
16 |
17 | We post our meeting videos on our [YouTube Channel](https://www.youtube.com/@slam_slam_/), and our meeting logs on the [issue page](https://github.com/changh95/WeeklySpatialAI/issues).
18 |
19 | 아래 이미지를 클릭하시면 재생목록으로 이동합니다.
20 |
21 | Click the image below, and you'll be directed to the YouTube playlist.
22 |
23 |
24 |
25 |
26 |
27 | |Date|Topics|Link|Video|
28 | |------|---|---|---|
29 | |2024.07.24| FutureMapping, GLIM, DeepSLAM, Co-RAL, SOLiD, ETPNav, GeFF |[meeting log](https://github.com/changh95/WeeklySpatialAI/issues/1)| [YouTube](https://youtu.be/3QUdewSpPr8?si=qKQ9an-odCd8EvoU)|
30 | |2024.07.31| MASt3R, GLOMAP, ACE 0, VGGSfM, SAM v2, fVDB, Clio, MeshAnything, RT-2 |[meeting log](https://github.com/changh95/WeeklySpatialAI/issues/4)| [YouTube](https://youtu.be/dH_LWuV0o4M?si=s6zG8TGcdM1PFQCI)|
31 | |2024.08.07| Figure 02, InstantSplat, BADROBOT, COIN-LIO, Universal Manipulation Interface |[meeting log](https://github.com/changh95/WeeklySpatialAI/issues/5)| [YouTube](https://youtu.be/tJ5_WKULmVQ?si=Bx6ddkifa_KQKWKi)|
32 | |2024.08.14| DeepMind table tennis robot, FLUX, CppCon, MoAI, CoLLaVO, Hydra-MDP, NPU overview |[meeting log](https://github.com/changh95/WeeklySpatialAI/issues/6)| [YouTube](https://youtu.be/MDvD_JEv9SY?si=wCYA2n5kpxQHx6Gn)|
33 | |2024.08.21| Tenstorrent NPU, ROS LLM agent, Industrial 3D scanner review, Skydio X10 |[meeting log](https://github.com/changh95/WeeklySpatialAI/issues/7)| [YouTube](https://youtu.be/Pi-DYBK3bxs?si=b8tK8BkpSvUXir2A)|
34 | |2024.08.28| Sapiens, GaussianOcc, FAST-LIVO2, SOLiD-ALOAM, Berkeley Humanoid, NavGPT-2 |[meeting log](https://github.com/changh95/WeeklySpatialAI/issues/8)| [YouTube](https://youtu.be/gaRviiuPdGI?si=fLppi_C_v_ouU-Ix)|
35 | |2024.09.11| GenWarp, ReconX, OmniRe, FIT3D, NVIDIA GPU Overview |[meeting log](https://github.com/changh95/WeeklySpatialAI/issues/9)| [YouTube](https://youtu.be/Rr45MAeHJz0?si=GyfyW_m92NpRUynt)|
36 | |2024.09.25| World models (Wayve, 1X, World Labs), MaskBEV, RockChip micro-NPU, M2-Mapping |[meeting log](https://github.com/changh95/WeeklySpatialAI/issues/10)| [YouTube](https://youtu.be/bX2iCM1sJ1g?si=yx2Su5E3r_9sTaoh)|
37 | |2024.10.01| MASt3R-SfM, Hyperion, latentSplat, RL meets VO, Aria dataset, NVIDIA GPU overview part 2 |[meeting log](https://github.com/changh95/WeeklySpatialAI/issues/11)| [YouTube](https://youtu.be/ZTtJc_nhQro?si=FoWj25RuUcPGzqDn)|
38 | |2024.10.09| MonST3R, Depth Pro, EVER, KISS-Matcher, Nano-PGO, ST-P3 |[meeting log](https://github.com/changh95/WeeklySpatialAI/issues/12)| [YouTube](https://youtu.be/6XjZGPOmF40?si=h3WpdM2FBMWaVbos)|
39 | |2024.10.15| CLIP-Clique, FoundPose, Tesla CyberCab/Robovan, MEVIUS, WildFusion, 𝛼LiDAR |[meeting log](https://github.com/changh95/WeeklySpatialAI/issues/13)| [YouTube](https://youtu.be/RbpVLH6ckwc?si=0M6muWJn14dFKyll)||2024.10.23| PROSAC, Efficient descriptors, PhD/professor hiring, UniTR, DSVT, BEVFusion, MaskBEV |[meeting log](https://github.com/changh95/WeeklySpatialAI/issues/14)| [YouTube](https://youtu.be/pkiOuSHlIWw?si=cmMDz0_IboiMHZRn)|
40 | |2024.10.30| Vision-Language Model (VLM), Large Spatial Model, PLGS, Niantic Scaniverse |[meeting log](https://github.com/changh95/WeeklySpatialAI/issues/15)| [YouTube](https://youtu.be/8VwFxTfgpxk?si=i38h8Nh52_0ZtyFm)|
41 | |2024.11.06| MAC-VO, KISS-Matcher, PyTorch Mobile, Metal API, Neural fields in robotics, Visual SLAM roadmap |[meeting log](https://github.com/changh95/WeeklySpatialAI/issues/16)| [YouTube](https://youtu.be/x5c6wS6ID2M?si=LulbiZsAyNrQ9AlH)|
42 | |2024.11.13| CoVLA, Accelerated image processing for VSLAM, 2024 3D object & view generation overview |[meeting log](https://github.com/changh95/WeeklySpatialAI/issues/17)| [YouTube](https://youtu.be/1C76hyMirmQ?si=he4Ke1cLe9VXLGTM)|
43 | |2024.11.20| SLAM Handbook, Oxford Spires dataset, llava-o1, llama-mesh, Figure-02 |[meeting log](https://github.com/changh95/WeeklySpatialAI/issues/18)| [YouTube](https://youtu.be/76HkebJ9aSc?si=danO1n0Wi5tKatQE)|
44 | |2024.11.27| MAGiC-SLAM, DROID-Splat, Splat-AD, OVO-SLAM, YOLO-cpp, ALIKED-cpp |[meeting log](https://github.com/changh95/WeeklySpatialAI/issues/19)| [YouTube](https://youtu.be/lGrnMPWbjeE) |
45 | |2024.12.04| L3DG, IG-SLAM, ULSR-GS, ROVER, World Labs demo, MVD2, FastSR-NeRF, Zero-to-Hero |[meeting log](https://github.com/changh95/WeeklySpatialAI/issues/20)| [YouTube](https://youtu.be/3zzVfLuvUNU) |
46 | |2024.12.11| RL tutorial, NaVILA, GS-LIVM, Bonsai, MEVIUS, DiTer++, MOANA dataset, MAN TruckScenes |[meeting log](https://github.com/changh95/WeeklySpatialAI/issues/21)| [YouTube](https://youtu.be/Y0UjnuuzlQY) |
47 | |2024.12.18| MASt3R-SLAM, DiTER++, CAT4D, pixelSplat, LiveScene, Talking to DINO, MV-DUSt3R, Diorama, MegaSaM, NaVILA |[meeting log](https://github.com/changh95/WeeklySpatialAI/issues/22)| [YouTube](https://youtu.be/F3o9R2UdG6Q) |
48 | |2025.01.08| Gaussian Belief Propgation paper, NVIDIA 50xx GPU, Open X-embodiment, DROID, Genesis, Robogen, Foundation model survey |[meeting log](https://github.com/changh95/WeeklySpatialAI/issues/23)| [YouTube](https://youtu.be/hjKomzqTX4o) |
49 | |2025.01.22| NVIDIA NIM, Cosmos, new Hesai/Robosense LiDAR, MatchAnything, HF smolagents, DeepSeek-R1 |[meeting log](https://github.com/changh95/WeeklySpatialAI/issues/24)| [YouTube](https://youtu.be/m9aV90PEyB0) |
50 | |2025.02.05| Pi0, AnyTeleop, Paper list for Object SLAM / Semantic SLAM / SLAM with scene graph representation |[meeting log](https://github.com/changh95/WeeklySpatialAI/issues/25)| [YouTube](https://youtu.be/wjucr9R48OQ) |
51 | |2025.02.19| Latent radiance field, robust autonomy from self-play, COLMAP-free 3DGS, LightGaussian, Compact 3DGS |[meeting log](https://github.com/changh95/WeeklySpatialAI/issues/26)| [YouTube](https://www.youtube.com/watch?v=YakL5eFvARY)|
52 | |2025.02.26| MASt3r-SLAM, CUT3R, PointMamba, Human demonstration data, 3D Gaussian Splatting overview |[meeting log](https://github.com/changh95/WeeklySpatialAI/issues/27)| [YouTube](https://www.youtube.com/watch?v=YFq3yMsERWI)|
53 | |2025.03.05| SfM survey, Embodied AI simulator survey, PINGS, ESAM, Hier-SLAM++, S-Graphs 2.0, Fast3r |[meeting log](https://github.com/changh95/WeeklySpatialAI/issues/28)| [YouTube](https://youtu.be/TJMmPrAIC84?si=kP9frnmZ4pLKYnKc) |
54 | |2025.03.12| CURB-OSG, GigaSLAM, QLIO, Hennessy & Patterson, 딥러닝 & SLAM 강의 추천 |[meeting log](https://github.com/changh95/WeeklySpatialAI/issues/29)| [YouTube](https://www.youtube.com/watch?v=2F3voDCiF2k)|
55 | |2025.03.19| KISS-SLAM, NVIDIA Spark, RoboSense E1R review, VGGT, RelationField, CUDA study |[meeting log](https://github.com/changh95/WeeklySpatialAI/issues/30)| [YouTube](https://www.youtube.com/watch?v=lYpOOG3l7u4)|
56 | |2025.03.26| MS Cooperative vector, Map-free visual localization, CoCreatAR, HOMIE, low-cost manipulation |[meeting log](https://github.com/changh95/WeeklySpatialAI/issues/31)| [YouTube](https://www.youtube.com/watch?v=J00xVp7C4FA)|
57 | |2025.04.09| Figure AI 투어, Tesla 투어, Llama 4, LLM + JSON, GIL in Python |[meeting log](https://github.com/changh95/WeeklySpatialAI/issues/32)| [YouTube](https://www.youtube.com/watch?v=rwQATGq2Z4k)|
58 | |2025.04.16| Tenstorrent Blackhole, SKiD-SLAM, 4D radar review |[meeting log](https://github.com/changh95/WeeklySpatialAI/issues/33)| [YouTube](https://www.youtube.com/watch?v=GSvK99HHt_4)|
59 | |2025.04.23| EDGS, RoMa |[meeting log](https://github.com/changh95/WeeklySpatialAI/issues/34)| [YouTube](https://www.youtube.com/watch?v=RJi4yTu_PcU)|
60 | |2025.04.30| Qwen3, LiteGS, GenZ-ICP improved, MambaGlue, OpenLiDARMap |[meeting log](https://github.com/changh95/WeeklySpatialAI/issues/35)| [YouTube](https://www.youtube.com/watch?v=TgeMjnDHtfI)|
61 | |2025.05.07| NVIDIA/AMD/Google/Furiosa GPU NPU TPU 리뷰, Differentiable rendering 리뷰 |[meeting log](https://github.com/changh95/WeeklySpatialAI/issues/36)| [YouTube](https://www.youtube.com/watch?v=Z1Q3t-Mgn5U)|
62 | |2025.05.15| SceneScript, GLIM-CPU, Google's 3D generation, PyRoki, VINS-Multi, ForceMimic |[meeting log](https://github.com/changh95/WeeklySpatialAI/issues/37)| [YouTube](https://www.youtube.com/watch?v=ayQXDSy2j5k)|
63 | |2025.05.28| VGGT-SLAM, ASHiTA, 3DGUT, CLAMP, XLeRobot |[meeting log](https://github.com/changh95/WeeklySpatialAI/issues/38)| [YouTube](https://www.youtube.com/watch?v=DLNzV-Z42Lc)|
64 | |2025.06.04| E3D-Bench, On-the-fly-reconstruction 3D Gaussian Splatting |[meeting log](https://github.com/changh95/WeeklySpatialAI/issues/39)| [YouTube](https://www.youtube.com/watch?v=pMSNRaNFyb8)|
65 | |2025.06.11| FreeTimeGS, PartCrafter, SuperRANSAC, 4DGT, STORM, LocoTouch, SuperLoc |[meeting log](https://github.com/changh95/WeeklySpatialAI/issues/40)| [YouTube](https://www.youtube.com/watch?v=-JGBxXqHqmE)|
66 | |2025.06.18| UFM, Pow3r, OpenGS-SLAM, DGN |[meeting log](https://github.com/changh95/WeeklySpatialAI/issues/41)| [YouTube](https://www.youtube.com/watch?v=jViCwEvJ8UI)|
67 | |2025.06.25| 3D-GRUT, On-the-Fly-NVS, XFeat, VLMgineer, IMLE Policy |[meeting log](https://github.com/changh95/WeeklySpatialAI/issues/42)| [YouTube](https://www.youtube.com/watch?v=mbA7FiJYwaI)|
68 | |2025.07.09| PanoGS, SpatialTrackerV2, LiteReality, WildGS-SLAM, HI-SLAM2, MASt3r-SLAM, MAGiC-SLAM, MNE-SLAM |[meeting log](https://github.com/changh95/WeeklySpatialAI/issues/43)| [YouTube](https://www.youtube.com/watch?v=MYATKJHADtg)|
69 | |2025.07.16| PRoPE, VGGT-Long, Pangu Ultra MoE, GPU/NPU Simulator, WorldVLA |[meeting log](https://github.com/changh95/WeeklySpatialAI/issues/44)| [YouTube](https://youtu.be/l48QRQioBAE?si=C_frqOBVEDUd3miA) |
70 | |2025.07.23| Claude code, Qwen3-Coder, Gemma3n, EXAONE 4.0, RL math, OpenAI에서 일한 경험 |[meeting log](https://github.com/changh95/WeeklySpatialAI/issues/45)| [YouTube](https://www.youtube.com/watch?v=HK7TQcJB2z0)|
71 | |2025.07.30| Feed-forward 3D recon survey, ThinkAct, ROMAN, UA-MPC, TurboClique |[meeting log](https://github.com/changh95/WeeklySpatialAI/issues/46)| [YouTube](https://youtu.be/LhLPtGk1PjA) |
72 | |2025.08.06| Google Genie3, OpenAI gpt-oss, Ollama Turbo, Anthropic Claude Opus-4.1 |[meeting log](https://github.com/changh95/WeeklySpatialAI/issues/47)| [YouTube](https://youtu.be/zISMxNVb7dc) |
73 | |2025.08.20| Context as Memory, GameFactory, ReMEmbR, Anything 시리즈 리뷰, ECoT |[meeting log](https://github.com/changh95/WeeklySpatialAI/issues/48)| [YouTube](https://youtu.be/9nSInpXR0tY?si=NS86ZCjc-m3xEuMF) |
74 | |2025.08.27| Transformer-based SLAM, MineCraft ROS2 mod, Orin vs Thor benchmark, World Models in Autonomous Driving |[meeting log](https://github.com/changh95/WeeklySpatialAI/issues/49)| [YouTube](https://youtu.be/M2j4BzS7pDk?si=8kelMwQA7kLBNQvU) |
75 | |2025.09.10| WALL-OSS, ORB-SLAM-Python, Robix, TunedLens, Gemma Scope, Logit Prisms, Manim, TransformerLens, SAELens |[meeting log](https://github.com/changh95/WeeklySpatialAI/issues/50)| [YouTube](https://youtu.be/GKCrY7VUp-Y?si=SrSQw6YS-8KEd67k) |
76 | |2025.09.17| ViPE, Maps for Autonomous Driving survey, TeraSim-World |[meeting log](https://github.com/changh95/WeeklySpatialAI/issues/51)| [YouTube](https://youtu.be/PHTlXSLVlH4?si=DxutB6S6AA3tsGnM) |
77 | |2025.09.24| MapAnything, GMT, Any2Track, Behavior foundation model, EchoScene, SG Aligner |[meeting log](https://github.com/changh95/WeeklySpatialAI/issues/52)| [YouTube](https://youtu.be/4UmiSg4NgfI?si=ZtezSi3KFHEnKHdU) |
78 | |2025.10.15| OKVIS2-X, Open-YOLO 3D, CoT-VLA, π0.5, RND1, SuperDec |[meeting log](https://github.com/changh95/WeeklySpatialAI/issues/53) | [YouTube](https://youtu.be/1NcVS6CFOqw?si=TlxFmVd2VaYo0m-6) |
79 | |2025.10.22| SLAM 강의, WorldVLA, SceneDINO, VoT, InstantSfM, SAM3 |[meeting log](https://github.com/changh95/WeeklySpatialAI/issues/54)| [YouTube](https://youtu.be/UL1hbEma9GE?si=-fL6QvaRjMYHBwwF) |
80 | |2025.10.29| Unitree 탐방기, From Masks to Worlds: A Hitchhiker's Guide to World Models |[meeting log](https://github.com/changh95/WeeklySpatialAI/issues/55)| [YouTube](https://youtu.be/ZfReAetf8xk?si=8XZm2wTrioNvmdA6) |
81 | |2025.11.05| GPU 26만장, Online-monocular-3DGS, ActiveSplat, Align3r |[meeting log](https://github.com/changh95/WeeklySpatialAI/issues/56)| |
82 | |2025.11.12| Vulkan shader, Human Characters to Humanoid, Egocentric-10K, NVIDIA AD dataset, LiteTracker |[meeting log](https://github.com/changh95/WeeklySpatialAI/issues/57)| |
83 | |2025.11.26| VLM review, SAM 3D, Nano Banana Pro, C++ rant |[meeting log](https://github.com/changh95/WeeklySpatialAI/issues/58)| |
84 | |2025.12.03| MASt3R-Fusion, EGG-Fusion, AMB3R, LEGS, D-NeRF, DreamerV3, ENACT, GigaBrain-0 |[meeting log](https://github.com/changh95/WeeklySpatialAI/issues/59)| |
85 | |2025.12.10| Alpamayo-R1, MobileVLA-R1, VLA-based Safe AI by Waymo |[meeting log](https://github.com/changh95/WeeklySpatialAI/issues/60)| |
86 |
87 | ## Our wonderful contributors 😃
88 |
89 |
90 |
91 |
92 |
Hyunggi Chang :octocat: |
95 | Hyunwoo Joo :octocat: |
96 | Juwon Kim :octocat: |
97 | Jiyeon Lim :octocat: |
98 | Chaeyoung Lee :octocat: |
99 | Sunbin Kim :octocat: |
100 | Minkyung Lee :octocat: |
101 |