"
812 | ],
813 | "text/plain": [
814 | " strategy return index return diff\n",
815 | "2018-01-31 00:00:00 -4.74539 -2.676606 -2.06879\n",
816 | "2018-02-28 00:00:00 33.2852 1.511721 31.7735\n",
817 | "2018-03-30 00:00:00 -4.34367 -4.149885 -0.193786\n",
818 | "2018-04-27 00:00:00 1.93191 -1.817255 3.74917\n",
819 | "2018-05-31 00:00:00 -12.3262 -9.326834 -2.99934\n",
820 | "2018-06-29 00:00:00 2.82897 -0.556708 3.38568\n",
821 | "2018-07-31 00:00:00 -7.71601 -7.205884 -0.510125\n",
822 | "2018-08-31 00:00:00 -0.880618 -0.292742 -0.587877\n",
823 | "2018-09-28 00:00:00 -11.5399 -11.002015 -0.537933\n",
824 | "2018-10-31 00:00:00 10.327 2.436467 7.89052\n",
825 | "2018-11-30 00:00:00 -2.58421 -4.766539 2.18233\n",
826 | "2018-12-28 00:00:00 0.598739 0.202436 0.396303\n",
827 | "2019-01-31 00:00:00 26.7696 20.323781 6.44582\n",
828 | "2019-02-28 00:00:00 9.21462 10.394717 -1.1801\n",
829 | "2019-03-29 00:00:00 1.56049 2.581818 -1.02133"
830 | ]
831 | },
832 | "execution_count": 47,
833 | "metadata": {},
834 | "output_type": "execute_result"
835 | }
836 | ],
837 | "source": [
838 | "comp"
839 | ]
840 | },
841 | {
842 | "cell_type": "code",
843 | "execution_count": 46,
844 | "metadata": {},
845 | "outputs": [
846 | {
847 | "data": {
848 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7gAAAJTCAYAAAAizbquAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3Xl81NW9//H3yUoghGTYCUsWSKwKiCxqVRRFwLrh3G7aW229Xu/tr3ZTW/VW29pqW/eu3tveW63e69Xe1l1rAghYrTJsIopKyCaQsGdjCVnP749vBgPZZpKZ+c5MXs/HI4+Bme/M92MLmnfOOZ+PsdYKAAAAAIBYl+B2AQAAAAAAhAIBFwAAAAAQFwi4AAAAAIC4QMAFAAAAAMQFAi4AAAAAIC4QcAEAAAAAcYGACwAAAACICwRcAAAAAEBcIOACAAAAAOJCktsFhMKoUaNsTk6O22UAAAAAAMJgw4YN+621o/u6Li4Cbk5OjtavX+92GQAAAACAMDDGfBzIdWxRBgAAAADEBQIuAAAAACAuEHABAAAAAHGBgAsAAAAAiAsEXAAAAABAXCDgAgAAAADiAgEXAAAAABAXCLgAAAAAgLhAwAUAAAAAxAUCLgAAAAAgLhBwAQAAAABxgYALAAAAAIgLBFwAAAAAQFwg4AIAAAAA4gIBFwAAAAAQFwi4AAAAAIC4QMAFAAAAAMQFAi4AAAAAIC4QcAEAAAAAcYGAi+j00UeStW5XAQAAACCGEHARfd5/X/rUp6TiYrcrAQAAABBDCLiIPps3O4+bNrlbBwAAAICYQsBF9CkpOf4RAAAAAAJAwEX0IeACAAAA6AcCLqKPP9hu3epuHQAAAABiCgEX0cVaJ+AmJ0v790s1NW5XBAAAACBGEHARXfbskQ4elM47z/n9tm3u1gMAAAAgZhBwEV38gfayy5xHzuECAAAACBABF9HFH2gXL5YSEzmHCwAAACBgBFxEl5ISKSVFmjpVys1lBRcAAABAwAi4iC4lJU64TUyUCgsJuAAAAAACRsBFdCkpkaZNc35dUOCcyW1vd7cmAAAAADGBgIvo0dYmlZY6wVZyHo8ckaqq3K0LAAAAQEwg4CJ6bN8uNTcfH3AltikDAAAACAgBF9HDPyLIH2wLC51HAi4AAACAACS5XQBiX85tr4Tkc67Z8JJ+LGnu/23Xvr++IlmrD5JT9dSjxfrJx5NDco/Kn18Sks8BAAAAEH1YwUXUyK2t1sGUNO0bluk8YYwqsrKVV7PT3cIAAAAAxAQCLqJGXk2VKjzZkjHHnqvwZCu3ptrFqgAAAADECgIuokZuTZUqsyYc91yZJ1uT6vcoua3FpaoAAAAAxAoCLqJCSmuLJtbvVUVW9nHPV3iylWjbNbl2t0uVAQAAAIgVBFxEhcl1u5Qgq3LP8Su4FR0runm1zMIFAAAA0DsCLqJCbq1zzrbC03UFV3K2LwMAAABAbwi4iAr+AHviGdyGIenaNzSTgAsAAACgTwRcRIXcmirtG5qphiHpXV6r8ExQHgEXAAAAQB8IuIgKebXVqjjh/K1fRVY2Z3ABAAAA9ImAi6jQ3YggvwpPtkYfrtPwpsMRrgoAAABALCHgwnXpTUc05nBtlwZTfuUdz+fUVEeyLAAAAAAxhoAL1+V0dFAuz+o94ObV7IxYTQAAAABiDwEXrvN3SO7pDO72zPFql1EeK7gAAAAAeuFawDXGDDHGrDXGvGuM2WKMuavj+VxjjM8Ys80Y8ydjTIpbNSIycmur1S6jjzPHd/t6c1Kydo4Yo1waTQEAAADohZsruE2SLrDWzpR0mqQlxpgzJd0r6WFr7TRJtZL+ycUaEQG5NVWqzhitpuTUHq8p90xkFi4AAACAXrkWcK3jUMdvkzu+rKQLJP2l4/nHJS11oTxEUG5t1bFztj2p8ExQbm21ZG2EqgIAAAAQa1w9g2uMSTTGbJK0V9JySWWS6qy1rR2X7JTUe/JBbLNWeTXVPY4I8iv3ZCu9uVFjDtVEqDAAAAAAsSbJzZtba9sknWaMyZT0nKRPdXdZd+81xtwg6QZJGjt2rFavXh2uMtGHm6e39n1RD9Lq65TRdFg5p4zr9XMmmfHScum2zO2qOnlEv+/HnxMAAAAgfrkacP2stXXGmNWSzpSUaYxJ6ljFnSip29a51trfS/q9JM2ZM8eef/75EaoWJ/rKba/0+71zdu7R9ZIePTpJq9/r+Y/jhIZJWipp3YY9eqptVr/vV/ml8/v9XgAAAADRzc0uyqM7Vm5ljEmTtFDSh5JWSfpsx2XXSnrBnQoRCbkdo3/6OoO7a/goHU1KYRYuAAAAgB65uYI7XtLjxphEOUH7/6y1LxtjPpD0tDHmbknvSPqDizUizHJrq9SckKSqEWN6vc6aBFVkTaCTMgAAAIAeuRZwrbWbJXXZa2qtLZc0L/IVwQ25NdXanjlObQmJfV5b7snWSfsqw18UAAAAgJjkahdlILemShV9bE/2q/Bka3LdbiW19b+pFQAAAID4RcCFa4xtV25ttSr6GBHkV5GVreT2Nk2q3xPmygAAAADEIgIuXDOhYb9S21qCWMF1gjDncAEAAAB0h4AL1/iDqj+49qXMM/G49wEAAABAZwRcuCantmNEUFZgK7j1acNVk5ahfAIuAAAAgG4QcOGavJoqHU4eor3pnoDfU5E1Qbm1BFwAAAAAXRFw4Zrc2o4OysYE/J4KTzZblAEAAAB0i4AL1+TWBN5B2a/ck61xh2o0tLkxTFUBAAAAiFUEXLgiua1Fk+r39CvgSjSaAgAAANAVAReumFy3W4m2PeARQX7+6/MIuAAAAABOQMCFK3JrnA7KwQbcyszxapdRbkcHZgAAAADwI+DCFTkdnZCD3aLclJyq6ozRbFEGAAAA0AUBF67Iq6nWgbQM1acND/q95Z5stigDAAAA6IKAC1ccGxHUDxWeCc4KrrUhrgoAAABALCPgwhW5NVWqyOpfwC33TFRG8xGNOlIX4qoAAAAAxDICLiJuaHOjxh2qUYUnuPO3fv5zu5zDBQAAANAZARcR5++AHGyDKb9yRgUBAAAA6AYBFxHnX3nt7xnc6ozRakpMZgUXAAAAwHEIuIi4nI4V3Mqs8f16f3tCoiqzxiuPWbgAAAAAOiHgIuJya6pUNXy0jiYP6fdnVHiylXdgZwirAgAAABDrCLiIuLya6n43mPKryMrW5LrdSmxvC1FVAAAAAGIdAReRZa3yanb2+/ytX7lnglLaW5VdvzdEhQEAAACIdQRcRFRWY4NGNB1WZT87KPuVeyZKopMyAAAAgE8QcBFRuTVOY6jyAa7gVjAqCAAAAMAJCLiIqLzajhFBA1zBrUnLUH3qMOXWEnABAAAAOAi4iKic2mq1JCRq54ixA/sgY1ThyWYWLgAAQH98//vSypVuVwGEHAEXEZVbU6XtmePUmpg04M8q82Qf2/IMAACAAO3fL/30p9Ldd7tdCRByBFxEVF5N1YC3J/tVeLKVfXCf0pqPhuTzAAAABoW1a53H1193wi4QRwi4iBhj25VTu2vAI4L8KrKcz8mpYxUXAAAgYD6f89jeLr34oru1ACFGwEXEjDt4QGmtTQMeEeTnD8psUwYAAAiCzydNny7l5EjPPut2NUBIEXARMf6GUAMdEeTn3+pMoykAAIAAWetsUT7jDMnrlZYvlxoa3K4KCBkCLiImr9ZZafVvLR6oxpQhqh4+Snk1O0PyeQAAAHFv2zaptvaTgNvcLP31r25XBYQMARcRk1NTpSPJqdoz3BOyz6zwTFAeW5QBAAAC4z9/e8YZ0llnSePGsU0ZcYWAi4jJra1WZdYEWRO6P3YVWdnOCq61IftMAACAuOXzSenp0sknSwkJ0tKlzgpuY6PblQEhQcBFxOTWVKk8RNuT/co9EzWi6bCyGjk7AgAA0CefT5ozR0pMdH7v9UqHDztncYE4QMBFRCS1tWpy3e6QjQjyK/c4jabyaDQFAADQu6NHpXffdbYn+51/vpSZyTZlxA0CLiJiUv0eJdn2kI0I8vMHZgIuAABAH955R2ppOT7gJidLl1/uzMNtaXGvNiBECLiICP8onwpPaAPuzhFj1ZyQpNxaAi4AAECvOjeY6szrdTorv/565GsCQoyAi4gI9Qxcv7aERG3PHKdcOikDAAD0zueTJk6UJpyw4LBokTR0KNuUERcIuIiI3Npq1Q4Zrrq0jJB/doUnm1m4AAAAffH5uq7eSlJamvSZz0jPPSe1t0e+LiCECLiIiNzaqpBvT/Yr92Qrp3aXEtrbwvL5AAAAMW/fPqmiovuAKznblHfvltasiWxdQIgRcBERuTXVIe+g7FfuyVZqW4smHNwfls8HAACIeT2dv/W75BIpJYVtyoh5BFyEXVrzUU04uD/kM3D9jnVSPsA2ZQAAgG75fM7s29mzu389I0NauNAJuNZGtjYghAi4CLucOqcBVKhHBPlVdATn3FoaTQEAAHTL55NOPVUaNqzna7xeZxvzu+9Gri4gxAi4CDt/h+NwbVHeNyxTB1PSjnVqBgAAQCft7dLatT1vT/a7/HIpIYFtyohpBFyEnT94VmaND88NjFG5Z6LyCLgAAABdlZRI9fV9B9zRo6X58wm4iGkEXIRdbm21dqWP1JGUtLDdo8IzgYALAADQnb4aTHXm9Upbtkhbt4a3JiBMCLgIu9yaqrBtT/aryMrWhIZ9Sm1pCut9AAAAYs6aNdLw4dJJJ/V97dKlzuNzz4W3JiBMCLgIu9za6rDNwPWr8GQrQVZT6naF9T4AAAAxx+eT5s51uij3ZdIkad48tikjZhFwEVaZjQ3yNDaEbUSQX1nHCrG/oRUAAAAkHTkibd4c2PZkP69XWrdO2r49fHUBYULARVj5A2dlmFdw/SOI8muYhQsAAHDMxo1SW1twAffKK53H558PT01AGBFwEVa5tU7jp4owr+AeTh2qPekeVnABAAA6C6bBlF9BgTMz95lnwlMTEEYEXIRVbk21Wk2CdmSODfu9KrImHAvUAAAAkBNwJ0+Wxo0L7n1er/TGG9KePeGpCwgTAi7CKre2Wjsyx6olMTns9yr3TDw2cxcAAAByAm4wq7d+Xq9krfTii6GvCQgjAi7CKremKuzbk/3KPRM0srFBIxoPRuR+AAAAUW33bqdRVH8C7owZUl4e3ZQRcwi4CB9rlVsb/hm4fv775LGKCwAA0L/zt37GOKu4r70m1dWFti4gjAi4CJuxhw5oaEtT5AJux0ox53ABAADkBNzEROn00/v3fq9XammRXnkltHUBYUTARdjkdXQ0rsgK74ggv+2Z49RqEuikDAAAIDkBd8YMaejQ/r3/jDOk8ePZpoyYQsBF2BwbERTmGbh+rYlJ2p45TnnMwgUAAINdW5u0bl3/tif7JSQ4M3FffVU6ciR0tQFhRMBF2OTWVOloUop2DR8VsXtWeLI5gwsAAPDRR9LBgwMLuJKzTbmxUSouDk1dQJgRcBE2ObXVqsiaIGsi98es3JOtnNpdMrY9YvcEAACIOgNpMNXZ/PmSx8M2ZcQMAi7CJq+mOmLnb/0qPNlKa23S+IP7I3pfAACAqOLzSSNGSIWFA/uc5GTp8sull16SmptDUxsQRgRchEVie5sm1+2KWAdlv2OdlGk0BQAABjOfT5o71zlHO1Ber1RfL61aNfDPAsKMgIuwmFi/R8ntbREPuOUdDa1yOYcLAAAGq8OHpffeG/j2ZL+LLpKGDWObMmICARdh4Q+Ykd6ivCd9pA4nD6HRFAAAGLw2bJDa20MXcIcMkS65RHr+eac7MxDFCLgIi2MzcCO8gitj6KQMAAAGt1A1mOrM65X27pXeeit0nwmEAQEXYZFbW6X61GGqScuI+L0rsiYcm8ELAAAw6Ph8Uk6ONGZM6D7zM5+RUlLYpoyoR8BFWOTUVDurt8ZE/N7lnmxNrN+rlNaWiN8bAADAdT5faFdvJWn4cGnRIifgWhvazwZCiICLsMitrVJ5pLcndyj3ZCvRtmtS3W5X7g8AAOCa6mpp587QB1zJ2aa8fbu0cWPoPxsIEQIuQi61pUkTG/ZFvMGUn//cb37NTlfuDwAA4JpwnL/1u+wyKTGRbcqIagRchFxO3S5JLjSY6lDZEaw5hwsAAAYdn09KSpJmzQr9Z48aJZ13HgEXUY2Ai5Bza0SQX8OQdO0bmqncjk7OAAAAg4bPJ82cKaWlhefzvV7po4+kDz8Mz+cDA0TARcj5R/RUuhRwJeccbi6jggAAwGDS1iatXx+e7cl+S5c6j6ziIkoRcBFyuTXV2pPu0eHUoa7VwCxcAAAw6HzwgXToUHgDbna2dOaZBFxELQIuQi6nttq17cl+FZ4JGn2kThlHD7laBwAAQMSEs8FUZ16v00m5sjK89wH6gYCLkHNzRJBfRZZz/5xazuECAIBBwueTMjOladPCe58rr3Qen3suvPcB+oGAi5DKOHpIo47UHwuYbinzTJQkzuECAIDBw+eT5s2TEsL8Lf7UqdKMGWxTRlQi4CKkjnVQdnkFd0fmOLWZBM7hAgCAweHQIWnLlvBvT/bzeqW//13avTsy9wMCRMBFSOV2bAl2+wxuc1Kydo4YQ8AFAACDw/r1Unt7ZAOutdILL0TmfkCACLgIqdyaKrWZBO3IHOd2KarIyj4WuAEAAOKav8HUvHmRud+ppzpbldmmjChDwEVI5dVUaeeIMWpOSna7lE9m4VrrdikAAADh5fNJeXnS6NGRuZ8xziruypVSbW1k7gkEgICLkHJGBLl7/tav3JOtYS1HNfbQAbdLAQAACC+fL3Lbk/28Xqm1VXr55cjeF+gFARehY61ya6tV4XH3/K2fv9FVXg3blAEAQBzbuVOqrpbOPDOy9507V8rOZpsyogoBFyEz+nCt0psbXZ+B6+evI7eWRlMAACCO+c/fRnoFNyHBmYlbVCQdPhzZewM9IOAiZPwdi6Nli/Lu4SPVmJSqvAM73S4FAAAgfHw+KSVFOu20yN/b65WOHnVCLhAFCLgIGf8M3Moo2aJsTYIqs8bTSRkAAMQ3n88Jt6mpkb/3uedKI0eyTRlRg4CLkMmtrVZTYrKqh49yu5RjjnVSBgAAiEetrc4M3EhvT/ZLSpKuuMJpNNXU5E4NQCcEXIRMXk2VKrPGqz0h0e1Sjin3TNTkut1Kamt1uxQAAIDQ27JFOnLEvYArOduUGxqckUGAy1wLuMaYScaYVcaYD40xW4wx3+p43mOMWW6M2dbxmOVWjQhOTm31sc7F0aLCM0FJtl2T63a7XQoAAEDo9aPBlLVW3j959dg7j4WmhoULpeHD2aaMqODmCm6rpJuttZ+SdKakrxtjTpZ0m6TXrLXTJL3W8XtEuYT2Nk2p3RU1Dab8/PXQSRkAAMQln885A5ufH/Bbth7Yquc+ek7fLv629h3eN/AaUlOlSy+Vnn9eamsb+OcBA+BawLXW7rLWbuz49UFJH0rKlnSFpMc7Lntc0lJ3KkQwshv2KaW9VeVR0mDK79ioIM7hAgCAeOTzSfPmScYE/JaiUqfj8aHmQ/rh6h+Gpg6vV9q/X3rzzdB8HtBPUXEG1xiTI2mWJJ+ksdbaXZITgiWNca8yBOrYiKAo26JcnzZcB9IylFdDJ2UAABBnGhqkDz4I+vxtcVmxCkcW6v/N+X/63YbfacveLQOvZckSacgQtinDdUluF2CMSZf0jKRvW2sbTIA/fTLG3CDpBkkaO3asVq9eHbYa0bubp7dqRvUOSdKST4/VeSOiq6FT08QJmt+0QzdPb+XPCQAAiBuZGzfqNGu1OS1NNQF+j9PU1qSV5St16fhLtTB5of6Y+Ed99emv6r4Z9w24nlNnz1b6U09pzdKlQa0oA6HkasA1xiTLCbdPWmv9P+7ZY4wZb63dZYwZL2lvd++11v5e0u8lac6cOfb888+PRMnoxldue0V3bdmlWSlDdffHI6PuX2jjUidqfuVGPfhekiq/dL7b5QAAAITG229LkmZcf73k8QT0lmVly9T8ZrOuP+96XTztYv04/ce6adlNasxu1MXTLh5YPTfcIF17rc5PT5fmzh3YZwH95GYXZSPpD5I+tNY+1OmlFyVd2/HrayW9EOnaELzcmo4OylEWbiWnk/LYQzUa1nTE7VIAAABCx+eTpk0LONxKzvnb1MRUnZdzniTp6/O+rmmeabp52c1qaWsZWD2XXurMxWWbMlzk5hncsyV9WdIFxphNHV+fkfRzSRcZY7ZJuqjj94hyubXVqoiyBlN+ZZ6JkpwxRgAAAHHBWifgBnn+tqi0SPOnzNfQ5KGSpJTEFN1/0f36cP+H+v2G3w+sJo9HWrBAeuYZpz7ABW52UX7TWmustTOstad1fP3VWnvAWnuhtXZax2ONWzUiMKmtzcqu3xt1I4L8/ME7n07KAAAgXuzYIe3eHVTA3V6/XR/u/1BLpi457vnLCy/XgpwF+uHqH6q2sXZgdXm90rZtTvMrwAVR0UUZsW1y7S4lyEZdB2W/jzPHq12GUUEAACB++HzOYxABt7i0WJK0OH/xcc8bY/TQ4odU01iju/9298DquuIK58ga25ThEgIuBiyv1gmO5VEacJuSU1WdMVq5tQRcAAAQJ3w+KTVVmjkz4LcUlxVrYsZEnTz65C6vnTbuNF036zr9eu2vte3Atv7XNX689OlPE3DhGgIuBiy3Y8ZsZVZ0nsGVnPCdyyxcAAAQL3w+adYsKSUloMtb21u1onyFFucvVk9jOe++4G6lJqXqeyu+N7DavF5p0yapvHxgnwP0AwEXA5ZbU6V9wzJ1KHWo26X0qNyTrbyanTQ8AAAAsa+lRdqwIajtyb6dPtU31Xc5f9vZuPRxuv2c2/X8R89rVcWq/td35ZXO43PP9f8zgH4i4GLAcmurVB6lDab8KjzZGt7cKO3Z43YpAAAAA/P++1JjY1ABt6i0SAkmQRfmXtjrdd858zuaPGKyblp2k9ra2/pXX26us7rMNmW4gICLAXNGBEV5wPVvny4pcbcQAACAgepPg6myYp058UxlpWX1el1acpruXXivNu3epMfffbz/NXq90ltvSbt29f8zgH4g4GJg6us1+nBd1M7A9Ssf6czC1dat7hYCAAAwUD6fNGqUs1IagH2H92l99fou3ZN78oVTvqCzJp6l76/8vg42HexfjV6v8/j88/17P9BPBFwMzDany160zsD1qx4+Sk2JyazgAgCA2OfzOau3PTSLOtHy8uWysr2ev+3MGKOHFz+s3Yd2696/39u/Gj/1KamwkG3KiDgCLgamIzBG64ggv/aERFVmjSfgAgCA2FZfL330UdDbk0emjdTs8bMDfs8ZE8/Q1dOv1oNvP6jt9duDr9MYZxV31Sqppib49wP9RMDFwJSUqF1GOzLHuV1Jn8o9Ewm4AAAgtq1b50yFCDDgttt2FZcW66L8i5SYkBjUrX524c8kSbetuC3oMiU5AbetTXrppf69H+gHAi4GpqREVSPGqCkpsBlsbqrwTJDKyqTWVrdLAQAA6B9/g6l58wK6fPOezdpzeI+W5Ae2PbmzySMm65azbtFT7z+lNTvXBP1+zZ4tTZrENmVEFAEXA1NS8kmH4ihXkZXtzI2rrHS7FAAAgP7x+ZyzrZmZAV1eVFokSVqUv6hft7v1nFs1Pn28vlP8HVlrg3uzf5tycbF06FC/7g8Ei4CL/rNW2rYt6s/f+h2rk23KAAAgFln7SYOpABWXFWvm2JkaP3x8v26ZnpKuey64R2t2rtHT7z8d/Ad4vVJTk/Tqq/26PxAsAi76b+9eqaEh6mfg+hFwAQBATPv4Y+f7rwAD7sGmg3pz+5sBjwfqybWnXatZ42bp1hW3qrGlMbg3n322NHo025QRMQRc9F9HUIyVLcq1aRlSVhazcAEAQGzyn78NMOCuqlyl1vbWgMcD9STBJOjhxQ9rR8MOPfT2Q8G9OTFRWrpUevll6ejRAdUBBIKAi/6LkRFBxxgjFRSwggsAAGKTzycNGSLNmBHQ5UWlRRqWPExnTz57wLc+L+c8XXnSlfrZmz/TroO7gnuz1+ucwX3ttQHXAfSFgIv+KymRUlJUnTHa7UoCR8AFAACxyueTTj9dSk7u81JrrYpKi3RB7gVKSQzNtIv7LrpPzW3NumPlHcG98YILpIwMtikjIgi46L+SEik/X+1BzlRzVWGhtHOndPiw25UAAAAErqVF2rgx4O3JpTWlqqirGPD5286meqbqm2d8U49tekzv7Hon8DempEiXXSa98ALjGhF2BFz0X0mJsyIaS/z1btvmbh0AAADB2LzZOcMaYMD1jwca6PnbE90x/w6NHDpSNy27KbixQV6vdOCA9MYbIa0HOBEBF/3T1iaVlcVuwGWbMgAAiCVBNpgqLivWVM9U5XvyQ1pG5pBM3XX+XVpduVovbH0h8DcuXiylpbFNGWFHwEX/7NjhzDSLtYA7darzSMAFAACxxOeTxoyRpkzp89Km1iatqlwV0u3Jnd0w+wadPPpkfXf5d9Xc1hzYm4YNk5YskZ57TmpvD0tdgETARX/5A2KsBdxhw6RJkwi4AAAgtvh8zuqtMX1e+ub2N3Wk5UjItyf7JSUk6cFFD6q0plS/WfubwN/o9UpVVdLatWGpC5AIuOivWA24klMzs3ABAECsqK11vncJ4vxtckKyzs85P2wlLZm6REumLtGPX/+x9h/ZH9ibLr1USkpimzLCioCL/ikpkdLTpbFj3a4keP5RQcE0RgAAAHDLunXOYxDnb8+dcq7SU9LDWJT04KIHdaj5kH60+keBvSEzU7rwQifg8n0YwoSAi/7xd1AOYJtM1CkokOrqpP0B/rQRAADATT6f8z3X3Ll9XlrVUKX39r4XtvO3nZ08+mT9y+x/0X+s/w99sO+DwN7k9TqNSt97L7zFYdAi4KJ/YnFEkF9hofPINmUAABALfD7ppJOkESP6vLS4rFhS6McD9eSuBXcpPSVdtyy7JbA3XHGFE9bZpowwIeAieE1N0scfx27AZVQQAACIFdZ+0mAqAMVlxRqfPl7Tx0wPc2GOUUNH6c75d+rV0ldVXFrc9xvGjpXOOYeAi7Ah4CJ45eVOe/dYDbhTpkjJyQRcAAAQ/crLnWNVAQTctvY2LS/2lB72AAAgAElEQVRbrsVTF8tE8BjZjfNuVH5Wvm5adpNa21v7foPX62xR3rYt/MVh0CHgInix3EFZcrr35ecTcAEAQPTz+ZzHAALuuup1qj1aqyX5kdme7JealKr7L7pfH+z7QP+54T/7fsOVVzqPzz0X3sIwKBFwETx/MJw2zd06BqKwkDO4AAAg+vl8UlqaNL3vLcdFpUUyMlqYtzAChR1v6UlLdd6U8/SD1T9Q3dG63i+eMkWaPZttyggLAi6CV1IijR7ttHqPVQUFUmmp1NbmdiUAAAA98/mcMJiU1OelxWXFmpc9TyOHjoxAYcczxujhxQ/rwJEDuudv9/T9Bq/X+WfbuTP8xWFQIeAieLHcQdmvoEBqbpa2b3e7EgAAgO41NUnvvBPQ9uSaxhqtrVobkfFAPZk1fpa+ctpX9EvfL1VWU9b7xV6v8/j88+EvDIMKARfBi4eA6x8VxDlcAAAQrd591/mBfAABd0X5CrXb9oiNB+rJPRfco5TEFH1vxfd6v/Ckk6RPfYptygg5Ai6Cc/CgtHt37Adcf/2cwwUAANEqiAZTRaVFyhySqbnZc8NcVO/GDx+v2865Tc9++Kxer3y994u9Xun1150u0UCIEHARHH8791gPuGPGSBkZrOACAIDo5fNJ48ZJkyb1epm1VsVlxboo7yIlJfR9Vjfcbj7rZk3KmKSblt2kdtve84VerzN68sUXI1cc4h4BF8GJ9RFBfsY4/wwEXAAAEK18Pmf1to+Ztu/vfV/VB6tdPX/bWVpymn6+8OfauGujnnj3iZ4vnDXL6ajMNmWEEAEXwSkpcf4lm5/vdiUDV1hIwAUAANHpwAFn4kOA25MlafHU6Ai4knTVqVfpjOwz9G+v/ZsONR/q/iJjnFXc5culhobIFoi4RcBFcEpKnG0yaWluVzJwBQVOF+XGRrcrAQAAON7atc5jAAG3uKxYp445VRMzJoa5qMD5xwbtOrRL9/39vp4v9HqdRlp//WvkikNcI+AiOPHQQdmvoECy1vnpKAAAQDTx+ZwVzjlzer3scPNhvbH9jajZntzZWZPO0hdP/aIeeOsB7ajf0cNFZ0ljx7JNGSFDwEXgrI2/gCuxTRkAAEQfn086+WSnKWYvVleuVnNbs+vjgXry8wt/Liur21+7vfsLEhOlpUudFVx21SEECLgI3P79Un09ARcAACCcrHW2KAd4/jYtKU3nTD4nAoUFb0rmFN105k168r0ntbZqbfcXeb3S4cPOWVxggAi4CFy8dFD2S0+XJkxgFi4AAIgupaVSTU3A528X5C7QkKQhESisf2475zaNSx+n7xR/R9barhecf76Umck2ZYQEAReBi7eAKzEqCAAARB+fz3nsI+CW1ZRpW822qDx/29nw1OG6e8HdemvHW/q/Lf/X9YKUFOmyy5x5uC0tkS8QcYWAi8CVlEjJyc68snhBwAUAANHG55OGDpVOOaXXy4rLiiUpas/fdvaV076i08adpltX3KqjrUe7XuD1SrW10uuvR744xBUCLgJXUiLl5UlJSW5XEjqFhc6cuQMH3K4EAADA4fM53ZP7+J6ruKxYOZk5muaZFqHC+i8xIVEPLXpIH9d/rIfffrjrBYsWOaGebcoYIAIuAhdPHZT9aDQFAACiydGj0qZNfW5Pbm5r1sqKlVqSv0TGmAgVNzALchfoisIr9NM3f6rdh3Yf/+LQodLFF0vPPSe1t7tTIOICAReBaW93Gh4QcAEAAMJn0ybnHGofAfetHW/pUPOhmNie3Nn9F92vptYm3bnyzq4ver3S7t3SmjWRLwxxg4CLwOzc6fxEMd4Cbm6us/2HgAsAAKJBgA2mikqLlJSQpAW5CyJQVOhMGzlNN867UX945w96d/e7x794ySVOvxe2KWMACLgITDx2UJacf4nm5TEqCAAARAefzxljOHFir5cVlxXr7ElnKyM1I0KFhc6d8++UJ82jm5bddPzYoBEjpIULnYDb3TghIAAEXAQmXgOuRCdlAAAQPXy+Pldvdx/arU27N0X9eKCeZKVl6Ufn/0grK1bqpZKXjn/R65UqKqR33+3+zUAfCLgITEmJNGyYNH6825WEXkGBtG0bDQ0AAIC79u2Tysv7DLjLypZJio3xQD35l9n/opNGnaRblt2i5rbmT164/HIpIYFtyug3Ai4CU1IiTZsmxUiXvqAUFjrni3fudLsSAAAwmK1d6zwGcP52zLAxmjluZgSKCo/kxGQ9uOhBbavZpkfWPfLJC2PGSOeeS8BFvxFwEZh4HBHk5//n4hwuAABwk8/nrF7OmdPjJW3tbVpWtkyL8xcrwcT2t/IXT71Yi/IX6a7X79KBIwc+ecHrlbZs4Xsz9Ets/61AZDQ3O2ch4j3gcg4XAAC4yeeTTjlFSk/v8ZKNuzbqQOOBmD1/25kxRg8uelANTQ266/W7Pnnhyiudx+eec6cwxDQCLvpWUeGcT43XgDt+vPMfEgIuAABwS3u7s0U5gO3JRkaL8hdFqLDwOnXMqbrh9Bv0yLpH9NH+j5wnJ02S5s5lmzL6hYCLvsVzB2XJOVdMJ2UAAOCmbdukuro+A25xWbFmT5it0cNGR6iw8Pvxgh9rWMow3bLslk+e9Hqldeuk7dvdKwwxiYCLvvmD37Rp7tYRTgUFnPMAAADu8fmcx14Cbt3ROq3ZuSYutid3NnrYaN1x7h16ZdsrWl623HnS63Uen3/evcIQkwi46FtJiTRqlOTxuF1J+BQUSJWVUlOT25UAAIDByOdzjkydfHKPl7xW/prabFtMjwfqyTfP+KbysvJ007Kb1Nre6nxvdsopbFNG0Ai46Jt/RFA8KyiQrJXKytyuBAAADEY+n9M9OTGxx0uKSouUkZqhM7J738Yci1KTUnXfwvv0/t739YeNf3Ce9HqlN96Q9u51tzjEFAIu+hbPI4L8CgudR87hAgCASGtslN59t9ftydZaFZcVa2HeQiUnJkewuMjxfsqr+VPm685Vd6r+aL0TcNvbpRdfdLs0xBACLnp36JBUXR3/Ade/Qs05XAAAEGnvvCO1tvYacD/c/6F2NOyIu/O3nRlj9NCih7T/yH799I2fSjNnSrm5bFNGUAi46F1pqfMY7wF3xAhp7FhWcAEAQOQF0GCquLRYkuI64ErS7Amzdc3Ma/QL3y9UXlfhrOKuWCHV17tdGmIEARe9i/cRQZ0xKggAALjB53Nmv06Y0OMlRWVFOmnUSZqSOSWChbnjpxf+VEkJSbp1xa1OwG1pkV55xe2yECMIuOidP/BNnepuHZFQWEjABQAAkefz9bp6e6TliF6vfF1L8uOve3J3JgyfoFvPvlV/+eAvemNCizRuHNuUETACLnpXUuL8RHHoULcrCb+CAqdLX12d25UAAIDBYu9eZ1RhLwH3bx//TU1tTXE5Hqgnt3z6Fk3MmKjvLLtZ7VculV59VTpyxO2yEAOCDrjGmGHGmJ77lyO+DIYRQX7+bdis4gIAgEgJ4PxtUWmRhiQN0fwp8yNUlPuGJg/Vzy78mTbs2qD/OSfDCbfLlrldFmJAnwHXGJNgjLnaGPOKMWavpI8k7TLGbDHG3G+MGSTpZ5AaDCOC/Ai4AAAg0nw+Z/bt7Nk9XlJcVqzzppyntOS0CBbmvqunX625E+bq9l3/o8OjM9mmjIAEsoK7SlK+pNsljbPWTrLWjpF0rqQ1kn5ujPnHMNYItxw4INXWDp6Am58vJSQwKggAAESOzydNn97jcbCP6z7WR/s/ivvuyd1JMAl6ePHDqj5UrfuvniK99JLU3Ox2WYhygQTchdban1hrN1tr2/1PWmtrrLXPWGv/QdKfwlciXDOYOihLUkqKM2uNFVwAABAJ7e3S2rW9jwcqc8YDDabzt52dPflsff6Uz+s+z4fa2V4nrV7tdkmIcn0GXGttS+ffG2OGGGOuN8Z8wxgzsrtrECcGW8CVGBUEAAAiZ+tWqaGhz/O3kzIm6aRRJ0WwsOhy78J71Z5g9G+Lk9imjD71p4vyLyUlSjoq6fnQloOoUlIiJSVJOTluVxI5/oBrrduVAACAeNdHg6mWtha9VvGalkxdImNMBAuLLjmZOfrOmd/Rf5/SqnV//7PU1uZ2SYhigTSZ+l9jTH6npzySnpT0lKSscBWGKFBSIuXlScnJblcSOYWFTpe+qiq3KwEAAPHO55MyMqSTul+dXbNzjRqaGgbl+dsT3X7u7RqTmKHvzKuRfestt8tBFAtkBfcOST8xxjxgjBkh6QFJL0paJulHYawNbhtMI4L86KQMAAAixeeT5s51mlx2o6i0SIkmURfmXRjhwqJPRmqG7l7wE/19svSXl+51uxxEsUDO4JZba6+Wsx35T5LmSbrIWvtpa+1fwl0gXNLeLm3bNrjO30oEXAAAEBlHjkibN/fZYOqsSWcpc0hmBAuLXted9XXNODJc32sv0tGWRrfLQZQKZItyljHm65JOlvR5SfWSio0xl4a7OLioulpqbBx8ATc722nTT8AFAADhtHGjc5a0h4C79/Bebdi1ge3JnSQmJOqhKTeocnibfvncrW6XgygVyBbl5yU1SRoi6b+ttU9IukzSbGPMi+EsDi4ajB2UJWeL0LRpzMIFAADh1UeDqeVlyyUN3vFAPbnw87fpsq3SPR/8TnsO7XG7HEShQALuSEn/K6exVLYkWWsbrbV3SfqXMNYGNw3WgCsxKggAAISfzydNmSKNHdvty0VlRRo1dJROH396hAuLcqNG6YH6M9Rom/WDVT9wuxpEoUAC7g8lLZf0nKTbOr9grd0VjqIQBUpKnK26Eya4XUnkFRRIFRVSc7PblQAAgHjl8/W4ettu27WsbJkW5S9SgunPVM/4VnDxP+rra6X/eue/9N6e99wuB1EmkCZTz1hrz7bWzrfWrohEUYgCJSXS1Kk9dvWLa4WFzpmYigq3KwEAAPFo925p+/YeA+6m3Zu09/Bezt/2ZOlS/eB1aYRN1U3LbpK11u2KEEUCaTL1e2PMqT28NswYc50x5kuhLw2uKikZnNuTpU/+uTmHCwAAwqGP87fFpcWSpEX5iyJVUWyZOFGeGWfoR++P0oryFXpl2ytuV4QoEsjy3COSfmCM+dAY82djzCPGmEeNMW9IekvScEmMC4onLS1SefngDbj+2b+cwwUAAOHg80lJSdLp3Z+vLSor0mnjTtO49HERLiyGeL362rM7VJiRp1uW3aKWtha3K0KUCGSL8iZr7eclzZX0W0lvSHpR0vXW2pnW2l9aa5vCXCciqbLS2aI7WAOuxyONGkXABQAA4eHzSTNmSGlpXV5qaGrQWzve0pJ8uif36sorldwuPdB6gbYe2Kp/X//vbleEKBHwAUtr7SFr7Wpr7VPW2uettezfjFeDuYOyX2EhARcAAIReW5u0bl2P25NXVqxUa3urFk/l/G2vpk2Tpk/XJS99pIV5C/Wj1T9STWON21UhCgQccI0xZxtjlhtjSowx5caYCmNMeTiLg0sIuM4/O2dwAQBAqH30kXTwYI8Bt6i0SOkp6fr0pE9HuLAY5PXKvPl3PTT7+6pvqtePX/+x2xUhCgTTIvcPkh6SdI6c7cpzOh4Rb0pKnG26I0e6XYl7CgqcDocNDW5XAgAA4kkvDaastSouK9aFuRcqJTElwoXFIK9XslbT3yzR9bOu12/X/VZb97NAMdgFE3DrrbWvWmv3WmsP+L/CVhncU1LySaOlwcq/er1tm7t1AACA+OLzSSNGdLtTruRAiSrrKhkPFKjp06X8fOnZZ/XjBT9WWlKavrv8u25XBZcFE3BXGWPuN8acZYw53f8VtsrgnsE8IsivsNB5ZJsyAAAIJZ9PmjdPSuj6bXhxmTMeiPO3ATLGWcV97TWNbU3V98/9vl4qeUmvlb/mdmVwUTAB9ww525J/KunBjq8HwlEUXHTkiLRzJwE3P9/5lyaNpgAAQKgcPiy9916v52+neaYpLysvwoXFMK9Xam2VXn5Z3zrzW8rJzNFNy25SW3ub25XBJQEFXGNMgqR/t9YuOOHrgjDXh0grLXUeB3vAHTJEmjKFgAsACI26Omn1arergNs2bJDa27sNuEdbj2p15Wotmcp4oKDMmydNmCA984yGJA3RfQvv0+Y9m/Wbtb9xuzK4JKCAa61tl3RjqG9ujHnUGLPXGPN+p+c8Hd2at3U8ZoX6vugFHZQ/UVBAwAUAhMa990oLFkhbtrhdCdzUS4OpNz5+Q42tjZy/DVZCgnTllVJRkXT4sD578md1ybRLdOuKW7V5z2a3q4MLgtmivNwYc4sxZlJHCPUYYzwDvP8fJZ34Y6rbJL1mrZ0m6bWO3yNS/IFu6lR364gGhYXOGVxr3a4EABDrVqxwHn/1K3frgLt8Pik3Vxo9ustLRaVFSklM0fk550e+rljn9UpHj0pFRTLG6LErHlNWWpaueuYqHWk54nZ1iLBgAu51kr4u6W+SNnR8rR/Iza21f5N04kTmKyQ93vHrxyUtHcg9EKSSEik7W0pPd7sS9xUUSIcOOeOCAADor7o6aeNGaehQ6YknpAMMoRi0fL4ez98WlxXr3MnnaljKsAgXFQfmz3fGWz77rCRp9LDRenzp4/pg3we6ZdktLheHSAs44Fprc7v5CscJ+LHW2l0d99wlaUwY7oGeMCLoE/5t2mxTBgAMxN/+5py7vP9+Z5XpP//T7Yrghupqp5FnNwF3R/0Obdm3hfO3/ZWUJF1xhfTyy1JTkyRpUf4i3XLWLfr39f+uFz56weUCEUlJgV5ojLmmu+ettU+ErpzAGWNukHSDJI0dO1aradwQEmdv2aJ98+erJIj/PW+e3hq+gkIsmD8nQ2pqdKakrS+9pF1sUwYA9NPUJ57Q+JQUvTl1qqbPnq1hDz6oNXPmyCYF/G0Y4sCoN97QqZI2Jier4YTvR17Z9YokaWTtSL6n7SfP1Kma0dCgzb/4hWo6foiwKGmRXkh/Qdc8c43+a85/aXRq163hiD/GBviNuzHm151+O0TShZI2Wms/O6ACjMmR9LK19tSO32+VdL61dpcxZryk1dbawt4+Y86cOXb9+gHtloYk1dQ42zseeEC6+eaA35Zz2ythLCq0Kn9+SeAXt7c728luvNH53wQAgP6YMUMaO1ZavtxZYbrsMunpp6UvfMHtyhBJt90mPfSQ1NDgTGvo5HN//pze3vG2dnxnh4wxLhUY444elcaMcf5eddolsXX/Vp3++9N1RvYZWv7l5UpMSHSxSAyEMWaDtXZOX9cFs0X5G52+/lnSLEkpAymyBy9Kurbj19dKYk9BpGzb5jzSQdmRkOBs12aLMgCgv/budeaeXtAxWfEzn3EaOf7iF+7Whcjz+aSZM7uE29b2Vq0oX6HF+YsJtwMxZIh0ySXS889LbZ/MwC0cVahfLfmVVlWu0gNvsWAxGATTZOpERyQN6LCmMeYpSW9LKjTG7DTG/JOkn0u6yBizTdJFHb9HJDAiqCtGBQEABsK/3dQfcBMSpG9+U1qz5pORMYh/bW3S+vXdnr9dW7VWdUfrtHgq44EGzOuV9u+X3nzzuKevm3WdPnfy53THqju0rmqdS8UhUgIOuMaYl4wxL3Z8vSxpq5zV1n6z1l5lrR1vrU221k601v7BWnvAWnuhtXZax+OJXZYRLiUlUmKi074ejsJCqaxMao2dc8YAgCiyapU0fLg0e/Ynz33lK1JGhvTLX7pWFiLsgw+cyQzdBNzi0mIlmAQtzFvoQmFx5uKLpdTUY92U/Ywx+t2lv9P49PG66pmrdLDpoEsFIhKCWcF9QNKDHV8/kzTfWntrWKqCO0pKnHCbEo6d5zGqoMAJtxUVblcCAIhFK1dK553ndHn1Gz5c+qd/kv78Z6mqyr3aEDn+1fpuAm5RWZHmZc+TJ80T4aLiUHq6tHixE3BP6DOUlZalJ71PqqKuQt949RsuFYhICCbgfsZa+3rH19+ttTuNMfeGrTJEHiOCumJUEACgv3budP77sWBB19e+8Q2nmeEjj0S+LkSezydlZXX5Pmv/kf1aV7VOS/IZDxQyXq/zd2/t2i4vnTvlXN1x7h16/N3H9dR7T7lQHCIhmIB7UTfPXRyqQuAya53/CHP+9ngEXABAf61a5Tz6z992lpsrXX659LvfSY2Nka0LkefzSfPmSSc0kVpRvkJWlvO3oXT55dKIEdK3vy21tHR5+c7z7tRZE8/Sv77yr6qsq4x8fQi7PgOuMeZrxpj35DSC2tzpq0LS5vCXiIiorpaOHCHgnmjUKMnjIeACAIK3cqXz35AZM7p//dvflg4ckJ58MrJ1IbIOHZK2bOl+e3JpkbKGZGnuhLkuFBansrKcMUFr1kh33tnl5aSEJD3pdf7OXf3M1Wptp89KvAlkBfd/JV0mp6HUZZ2+Zltr/zGMtSGSGBHUs4ICaetWt6sAAMQSa52Au2CB0zm5O/PnO2NjfvnLLucFEUfWr3e2o58QcK21Ki4r1qL8RcxmDbXPfU664Qbp3nulZcu6vJyblav/uOQ/9PbOt/WT13/iQoEIpz4DrrW23lpbaa29StIkSRdYaz+WlGCMod1uvGBEUM8YFQQACFZFhbR9e/fbk/2McVZx33/fCcOIT/4GU/PmHff05j2btfvQbi3OZ3tyWDz8sHTKKdKXvyzt3t3l5aumX6VrZ16ru9+4W298/IYLBSJcghkT9ENJt0q6veOpFEn/E46i4IKSEmdA9sSJblcSfQoKnC6Xhw65XQkAIFb4A2tvAVeSvvhFafRoRgbFszVrpPx859hTJ8VlxZLE+dtwGTpU+tOfpIMHnZDb3t7lkl9f/GvlZubqS89+SbWNtS4UiXAIpsnUlZIul3RYkqy11ZKGh6MouMDfQbmnbVSDWWGh81ha6m4dAIDYsXKlNG7cJ/8N6cmQIdLXvia9/PInx4UQP6x1VnB7OH87fcx0TRg+wYXCBolTTnF+eLRihXTffV1eHp46XE/9w1PadWiXbnj5BlmOCsSFYNJMs3X+X7eSZIwZFp6S4ApGBPXMv22bc7gAgED4z99ecEGXrrnd+trXnDm5v/51+GtDZO3cKe3a1SXgHmo+pDe3v6klUxkPFHbXXy994QvSHXdIb7/d5eW52XN194K79ZcP/qLHNj3mQoEItWAC7v8ZY34nKdMY88+SVkj6r/CUhYhqbZXKyjh/25OpU51HzuECAALx4YfSnj19b0/2GzfO2ar82GNSfX14a0Nk+c/fnhBwV1WsUkt7C+dvI8EYZxzX5MnSVVdJtV23In/37O/qgtwL9I1Xv6Gt+1nQiHUBB1xr7QOS/iLpGUmFkn5grf1VuApDBFVWOiGXgNu9oUOlSZMIuACAwAR6/razb33L6fXw6KPhqQnu8PmklBTptNOOe7qotEhDk4fqnMnnuFTYIDNihPT0005PlX/+5y5dyxNMgp5Y+oSGJA3R1c9erabWJpcKRSgEdeDSWrvcWvtda+0tklYaY74UproQSYwI6lthIVuUAQCBWbVKysmRcoMYNjF7tnTOOc425ba2sJWGCPP5nHCbmnrc08VlxVqQs0CpSak9vBEhN2+e9LOfSc8846zoniA7I1uPXv6oNu7aqDtW3uFCgQiVPgOuMSbDGHO7MeY3xphFxnGjpHJJnw9/iQg7RgT1zT8qiOYDAIDetLc7ATeY1Vu/b33LGS/00kuhrwuR19oqbdjQZXtyaU2pymrLOH/rhptukpYsccZzbd7c5eUrTrpCX5vzNT3w9gNaXrbchQIRCoGs4P63nC3J70m6XtIySZ+TdIW19oow1oZIKSmRMjO7tK9HJwUFzrmoffvcrgQAEM3efdc547dgQfDvXbrUOSfIyKD48P770pEjXQJucakzHoiA64KEBOnxx6WsLKfx1OHDXS55YNEDOnn0ybrm+Wu07zDf98WiQAJunrX2K9ba30m6StIcSZdaazeFtzRETEmJE+AC6fQ4WPlXtzmHCwDojf/8bX8CblKSdOON0urV0ia+zYp5PTSYKiorUl5WnqZ6prpQFDRmjPQ//+McPfvmN7u8PDR5qJ76h6dU21irr77wVUYHxaCkAK5p8f/CWttmjKmw1h4MY02ItJIS6dxz3a4iuvnnGG7d6pyRAgDErZzbXun3ex/989Oa4pmoC3+9SVLwITXj6GStSU7Vy9d8V9/7zLcDek/lzy8J+j6IAJ9PGjlSys8/9lRTa5NWVazStTOvdbEw6MILpX/7N+mee5xfX331cS/PGDtD9190v75Z9E39dt1vdeO8G10qFP0RyAruTGNMQ8fXQUkz/L82xjSEu0CEWWOjtH0752/7MmWKlJzMCi4AoEdJba2at3OL3poyo9+f0TAkXc+ceqGu+GC1Rh6uC2F1iDifz2ls1GmH3N93/F2HWw5r8VTGA7nuRz+Szj5b+td/lUpLu7x847wb9Zlpn9Ety27Re3vei3x96Lc+A661NtFam9HxNdxam9Tp1xmRKBJh5P8LTcDtXWKiMw+XgAsA6MGM3duU3tyotyb3P+BK0h9nX6bUtlZdvenVEFWGiGtocOYhd3P+NjkhWQty+rGFHaGVlCT97/863+N98YtSc/NxLxtj9NgVjylzSKaueuYqNbY0ulQoghXUmCDEIUYEBc7fSRkAgG6cud1Z5VkzefqAPqds5CStzp2tL7/zVyW3tfT9BkSfdeucyQvdnL89e/LZGp463KXCcJzJk53Z0xs2SLff3uXlMcPG6Ikrn9CWfVt0y7JbXCgQ/UHAHez8gW3aNHfriAWFhc6KN/MJAQDd+PTH7+rD0TmqHTpiwJ/16JzLNeZwrS756M0QVIaI8zeYmjfv2FPVB6u1ec9mLcmne3JUufJK6etflx56SHql6/n7RfmLdPNZN+uR9Y/oxa0vulAggkXAHexKSqTx46Xh/CSxTwUFzvaVjz92uxIAQJRJbW3WnKoP9daUmSH5vL/lnq5Sz0Rdt/4FZrDHIp/PWZeXtq0AACAASURBVDzweI49taxsmSRx/jYaPfCANHOm9JWvSFVVXV6+54J7NGvcLF33wnWqPlgd+foQFALuYOcfEYS+MSoIANCDWdUfaUhr84AaTB3HGD0253LN2F2q2VUfhuYzERnWOgH3xO3JpUUalz5OM8eG5ocgCKEhQ6Q//clpvvqP/9hlt15qUqqe+oen1NjaqGueu0bttt2lQhEIAu5gV1LC9uRA+UcFEXABACc46+PNajMJWjvp1JB95rOnXKC6IenOKi5ix/bt0p49xwXctvY2LS9frsX5i2U6dVVGFCkslH77W2cO9T33dH15VKF+teRXeq3iNT3w1gORrw8BI+AOZrW10r59rOAGavRoacQIZxYuAACdfPrjzXpv3FQdTB0Wss9sTBmip2cu1pKSt5Vdvzdkn4sw85+/7RRw11evV01jjRbnsz05ql1zjbOCe9dd0t/+1uXl62Zdp8+e/Fl9f+X3tb56vQsFIhAE3MGMDsrBMYZOygCALtKaj+q0XVtDtz25kydOv0RW0pc3vhzyz0aY+HxSaqpzprNDcVmxjIwuyr/IxcLQJ2OkRx6R8vKkq6+WDhw44WWj31/6e41PH6+rnrlKh5oPuVQoekPAHcwIuMEj4AIATjB35xYlt7fprcmhP1tZnTFGRQWf1lXvFiut+WjIPx9h4PNJs2ZJKSnHnioqLdKcCXM0augoFwtDQIYPd87j7t0rffWrXZq8ZaVl6UnvkyqvLdc3Xv2GS0WiNwTcwaykREpIcH5KhcAUFjpnaxoZ9g0AcHx6+2Y1JyRp/cRPheXzH51zhUY0HdY/bFkZls9HCLW0ODNVO21Prm2sla/KpyVTGQ8UM04/Xbr/fumll6Rf/7rLy+dOOVffP/f7+uOmP+rp9592oUD0hoA7mJWUSDk5zjYaBMa/2u1f/f7/7N11dBTXF8Dx7+zGCO4ePKG4a7HiLe5SrDhFCpRSoLi0RQoUKBSXUqw4FIIEl+BB2xDcCSFAQnx3fn886A9nk+zurLzPOT05ZXbf3GSzm7nz3rtXkiRJcnrlb5zldBYfolw9LDL+qaz5CciUj44nNqHI6q227dw5iIp6LcHddXUXRtUo99/am759oV49GDQITp166/CIKiMon608Pbb04PqT69aPT3ovmeA6M9kiKP5kqyBJkiTpFSmiwin04ApHLLD/9j+KwsJSDcj7+DaVr5223HmkxHtHgSnfK76kdE9J2Wxl3/MkySYpCixaJIqMtmoFYWGvHXbRubC8yXJUVNqua0ucMU6jQKU3uWgdgKQRVRVJWsWKWkdiX162VJIJriRJkgSUvXUevWrkcA7L9jb9O/+nDN27iE4nNrEvd0mLnktKBH9/SJcOcuUCQFVVtgdtp0buGrjoEn7ZnfP7reaK0Cqu//SF1iGYR7p0sHw5fPYZfP01LF362uFcqXMx54s5tFnXhnH7xzGq6iht4pReI2dwndX9+xAeLmdw4ytZMsiaVbYKkiRJkgCxPDnSxZ0zmX0sep5YvSvLin9O1WsnyRNyy6LnkhLB31/M3r7odXsh+AJ3wu7I/bf2rEoVGDECli17K8EFaF24Ne2Ltmfs/rEcvHlQgwClN8kE11m9nIGUCW78yUrKkiRJ0gvlb57leLYCxLi4WvxcfxarS7TelY4nN1v8XFICPHkC//zz+vLkIF8Auf/W3v3wg0h0e/V65yTHzLozyZUqF23XteVJ1BMNApReJRNcZyVbBCWcTHAlSZIkIO3zJ3wSfJ2jXoWtcr7HninZUKAqTc/vJkWU7L9pc44fF19fSXC3X9lOgfQFyJ4yu0ZBSWah14ulyh4e0LKlKCT2iuTuyfmz6Z/cDbtL9y3dUd9oLSRZl0xwnVVgoKienF1+4Mabtzc8fvxW829JkiTJuZS7eQ7A4vtvX7WoVAM8Y6NpFeBrtXNKJnpZYKpMGQCexzxn/4391Mkjlyc7hKxZYckSCAgQlZXfUCZrGcZWG8vqC6tZfGax9eOT/iMTXGcVGAh584o7UlL8+LzYZyX34UqSJDm1CjcDCHNLwrlMea12zn8y5OKwVxE6nNyC3miw2nklE/j7i2uEVKkA2HdjHzGGGGrnlcuTHcYXX0D//jBzJmzY8NbhQRUGUS1nNfps60NgiFztpxWZ4Dor2SIo4WSrIEmSJAlRYMo/eyEMOuveLF5UqgFZw4KpFXjEqueVPkBV/19g6gXfIF+SuCShco7KGgYmmd2PP0LJkvDVV3Dz5muH9Do9yxovw93FnTZr2xBjiNEoSOcmE1xnZDBAUND/W95I8ZMzJ7i4yARXkiTJiWV69ojcoXc5YsXlyS/tzlOaG6ky8dWJTVY/t/Qe169DcPBb+2+r5KyCh4uHdnFJ5ufuDitXQmwstGkDca/3v82aIisLGizg5L2T/OD3g0ZBOjeZ4DqjGzfEm1LO4CaMqyvkzi0TXEmSJCdW/uZZAA7nKGL1cxt1epaUqE/pOxcpfO+y1c8vvcPL/bcvEtxrodcIDAmU+28dVd688PvvcOgQjB791uFG+RvRo2QPJh2exK6ruzQI0LnJBNcZyRZBiefjI/fgSpIkObEKN87yOEkK/kmfU5Pzry5SkzC3JHQ6KWdxbYK/v6iwW0Tc8PC98qI9kNx/67jatIFOnWD8ePDze+vwlNpTKJC+AO3Xtyf4ebAGATovmeA6I9kiKPG8vcXP0WjUOhJJkiTJ2lSV8jcDOJq9EKqizaVUuLsnfxWuQb1LB+DePU1ikF7h7w8lSohVXsD2oO3kSJkDn7Q+GgcmWdSMGeKasG1bePjwtUOerp6saLqCx5GP6byps2wdZEUywXVGgYGQIgVkyKB1JPbL2xuio+HWLa0jkSRJkqzM68l9sj0Ltmp7oHdZXLI+LkYDzJ6taRxOLyYGTp36b3lyjCEGv2t+1MlbB0VRNA5OsqikSWHVKggNhY4d35r4KJKxCBNrTmRz4GZ+O/6bNjE6IZngOqOXFZTlh27CyUrKkiRJTqvCjQAAjmiw//ZVN1JnYXfe0jBnDkRFaRqLUzt7Vtz0LlcOgCO3jhAWE0btPHJ5slMoWhR++QW2bYOpU9863KdMH+rmrcvAHQM5//C8BgE6H5ngOiPZIijxZC9cSZIkp1Xh5lkeJEvDlTTZtA6FhaUaiuq9K1ZoHYrzeqPAlO8VX1x0LnyW6zMNg5KsqmdPaNwYvv8ejh177ZCiKCxutJhUHqlovbY1kbGRGgXpPGSC62yiokQVZdkiKHEyZYJkyeQMriRJkrNRVcrfPMthryI2sRLqiFcRKFQIpk8XvVgl6/P3h4wZwcsLEPtvy2crT0qPlBoHJlmNosCCBZAlC7RqBU+fvnY4Q9IMLGm0hPMPzzNo5yCNgnQeMsF1NleuiD+AcgY3cRRF/AxlgitJkuRU8obcIv3zJyKxtAWKAt98AwEBsG+f1tE4J39/MXurKDwIf8Dp+6epk1e2B3I6qVOLlRQ3b0K3bm/dcKqdtzYDyg1g1vFZbP53s0ZBOgeZ4Dob2SLIfHx8ZIIrSZLkZF7uv9Wi/+17tWkDadOKWVzJukJDxbXAi+XJO67sAJD7b51VhQowdiysXi1mdN8wofoEimcqTqeNnbgbdleDAJ2DTHCdzcsWQXKJcuJ5e8P167KwhyRJkhOpcPMst1Jm5HaqTFqH8n9JkkCPHrBxI1y9qnU0zuXlfstX9t+m90xP8czFNQxK0tTgwVCjBvTtCxcuvHbI3cWdFU1XEBkXSYcNHTCqst2kJcgE19kEBop9IinlvpBE8/YWy0+uXNE6EkmSJMkKdEYD5W6eE/tvbU2vXqDXw8yZWkfiXPz9xTLx0qUxqkZ8r/hSK08tdBr1R5ZsgE4Hy5ZB8uTQsiVEvl5UyiedD9PrTGfX1V1MOTxFoyAdm3z3ORtZQdl8ZKsgSZIkp/LJw2ukigq3reXJL2XJAi1aiGWRYWFaR+M8/P3hk08gRQpO3TvFo4hHcv+tJIqRLl0qZnD793/rcOfinWn6SVOG+g3lxN0TGgTo2GSC62xkgms+MsGVJElyKuVvngWwnQJTb+rXD549g8WLtY7EOajq/wtMAb5BvgDUylNLy6gkW1G7Nnz3Hfz+O6xZ89ohRVGYW38umZJlos3aNoTHhGsUpGOSCa4zefoUHjyQ+2/NJUUKcYdO9sKVJElyChVunCUoTTYeJk+rdSjvVqYMlC8Pv/4KRrm3z+KuXoWQkP8S3O1XtlMicwkyJM2gcWCSzRg3Tvx+dO0K1669dihNkjQsb7KcoMdB9N3WV6MAHZNMcJ3JywJTcgbXfGSrIEmSJKfgYoijzO0LHLHF5cmv6tcPgoLg77+1jsTx+fuLr2XL8jTqKUduHaFOHrk8WXqFq6toHaSq0Lo1xMa+drhyjsoMqzSMRWcWser8Ko2CdDwywXUmskWQ+ckEV5IkySkUuX+ZZDGRtllg6lVNmkC2bDBtmtaROD5/f/D0hEKF2H1tNwbVQO28sj2Q9IZcuWD+fPH78sMPbx0eUWUE5bKVo/uW7tx4ckODAB2PTHCdyeXLotJfnjxaR+I4fHwgOFj0wZMkSZIcVvkbYv/tUa/CGkfyEa6u8PXXsHs3nD+vdTSOzd8fSpYEFxd8g3xJ7pac8tnKax2VZIuaN4du3WDiRPD1fe2Qq96VP5v8iVE10nZdW+KMcRoF6ThkgutMAgMhRw7w8NA6EschC01JkiQ5hQo3A7iYIRehnnbQZq9rV9Ebd/p0rSNxXNHRcPo0lC2Lqqpsv7Kd6rmr46p31ToyyVZNnQoFC0K7dnDv3muHcqXOxZx6czh06xDj94/XKEDH4aJ1AJIVyQrK5vdqgvuiyIQ9yPn9Vq1DiJfrP32hdQiSJDkx97gYSt75hz+K1dU6FNOkTSsuopcuhR9/hHTptI7I8QQEQEwMlC3LvyH/cvPpTYZ+OlTrqCRb5ukJq1ZB6dLi/bljh+iZ+0Kbwm3YHrSdMfvHUCN3DSp6VdQwWPsmZ3CdharKBNcScucGvV7O4EqSJDmw4nf/wSMuhsM5imodiun69YOoKJg7V+tIHNMrBaa2B20HkPtvpY8rWFBUOd+9G37++a3DMz+fSc5UOWm7ri1Pop5oEKBjkAmus3j4UPTGky2CzMvNTRQPkK2CJEmSHFb5G2cxKDqOZy+odSimK1AAataEWbPeqtwqmYG/P2TODNmysT1oOz5pfciZKqfWUUn2oHNnaNkShg+Hw4dfO5TCPQUrmq7gTtgdemzpgaqqGgVp32SC6yxkBWXLkZWUJUmSHFqFG2c5lykvYe5JtQ4lfr75Bu7ehb/+0joSx+PvD2XLEhkXxb4b+6idR87eSiZSFPj9d/DyEq2D3ihUWiZrGcZUHcOqC6tYErBEoyDtm9yD6yxkgms53t6wdy8Yja/tpZAkc5N7pyXJ+jxjIil271/mlWmsdSjxV6eO+Bs1bZq4kJbMIyRE9Bru3Jn9N/YTFRdFnbyy/60UDylTwsqVULEidOkibkIpyn+Hv6v4HTuu7qD3372pmL0i+dLKFZjxIa/GncXly6J1QI4cWkfieLy9ISJC3CWXJEmSHErp2xdxNRo47GVH+29f0umgb184dgyOHtU6Gsdx7Jj4WrYsvld8cde7UyVnFW1jkuxPmTKiCNy6dTBnzmuH9Do9yxovw93FnTbr2hBjiNEoSPskE1xnERgIefOKgkiSefn4iK9yH64kSZLDKX/zLDE6F05k+0TrUBKmQwcxWzRtmtaROA5/fzHbVqoU24O2UzlHZTxdPbWOSrJHAwaIlRb9+8PZs68dypYiG/Prz+fE3RMM9xuuUYD2SSa4zkJWULYc2QtXkiTJYZW/cZbTWfMT5WqnPeSTJfv/Esjbt7WOxjH4+0PBgtw0hnLp0SW5PFlKOJ0OliyB1KlF4annz1873PiTxnQv2Z2Jhyey6+oujYK0PzLBdQYGg9grIhNcy8iSRfQ2kwmuZIcyPwsmVeQzrcOQJJuUIiqcQg+ucMSrsNahJE7v3qJd4KxZWkdi/1RVLFEuWxbfIF8AWWBKSpwMGeCPP8RKwD593jr8S+1f+CTdJ7Rf355HEY80CND+yATXGdy6BdHRskWQpeh04mcrE1zJzuiMBtYs/47Fa0aJizZJkl5T9tZ59KrRvvrfvkvOnNCokeiJGxGhdTT2LSgIHj/+b/9tthTZKJC+gNZRSfauenUYOhQWLYLly1875OnqyYqmKwiJDKHzps6ydZAJZILrDGQFZcvz8ZF7cCW7U+HGWbI9C6bYvUBqBx7ROhxJsjkVbgQQ6eLOmcw+WoeSeP36icTsjz+0jsS++fsDEFu6BDuv7qR2ntoor1S/laQEGzVKVFXu0UPcSHlF0UxFmVhjIpv+3cTsE7O1ic+OyATXGcgE1/K8veHaNYiRVe4k+9H0/G6euiclKE02vtu/FL3RoHVIkmRTyt84y/FsBYhxcdU6lMSrVAmKF4fp0+WKjcTw94ekSfFPGc6z6Gdy/61kPi4u8OefoutJy5Zi9eUr+pbtS928dRm4YyDnH57XKEj7IBNcZ3D5sigykSmT1pE4Lm9v0Qf36lWtI5EkkySLjqBO4BG2fFKJiVU6kOfxbZqe2611WJJkM9I+f0L+Rzc4kqOIWcYzEE6E7phZxkoQRRGzuBcvwi5ZrCbB/P2hVCl8r+1Cp+ionqu61hFJjsTLCxYuhFOnYMiQ1w4pisLiRoupk7cOydySaRSgfZAJrjN4WUFZLqGxnJetguQ+XMlO1P33IEniollbqDo78pXjVBYf+h9cjnts9MefLElOoNzNcwAc9jJPghvqOp9g9zGE6X3NMl6CtGolCtpMn65dDPYsKgrOnIGyZdl+ZTvlspUjdZLUWkclOZpGjURhuKlTYcuW1w5lSJqB9S3XkzNVTm1isxMywXUGskWQ5b0s4CX34Up2otl5P66mzsKpLPlBUfi5Skcyh4fQ/tRWrUOTJJtQ4WYAz9w8OZ8pb6LHMvCMCP1+UF157DqbaEWjm6Hu7tCrF2zdKm/IJsSZMxAbS3DJ/Jy8e5I6eeTyZMlCJk2CokWhY0e4c0fraOyOTHAdXXQ0XL8uE1xLS50a0qeXFwySXcj25D5lb51nbaHq/63s8PcqzN5cJfn66GpSRIVrHKEkaa/8jbMcy14Qg06f6LHCXXaiKjFkjBmLXk1DsNuPGHhqhigToEcPcHODGTO0Ob89e1FgamfG56io1M4r2wNJFuLhAatWiVUDbduKlp+SyVy0DkCysKtXxd5Q2SLI8ry9ZYIr2YWm5/0worC+ULXX/n1ilQ78vbgv3Y6tY3Ll9hpFJ0nay/wsmNyhd1le/PNEj6ViIFz/N+6GQngYC5E+Zgj33b/jkdtkMsSMQiHxCXR85Jx6gsnelaj7+3zK6z/lmYdt7+W7/tMXWofwf/7+kDUrvqHHSZskLSUzl9Q6IsmR+fiI3tUdO8L48TBihNYR2Q05g+voZAVl63HyVkG5Q25T/+I+rcOQPkZVaXLBjyM5CnM3RYbXDl3MmJuNn1Sh8/GNpA9/rFGAkqS98jfPAnDYDAWmInUnidM9IHlcPQDc1Xykie1JlP40T1z+TPT4CbGoVAOSxkbR/OxOTc5vt/z9MZYtg2+QLzXz1ERvhtl9Sfqg9u3hyy9h9GjYJ6+xTCUTXEf3MsGVM7iW5+0NDx7AU42WnWko25P7rFrxPTM2TyLvo5tahyN9QOnbF8jx5L5YnvwOUyp9iYsxjr6HV1o5MkmyHRVunOVxkhT8kz5noscKc9mKXk2Dp7Hcf/+W3FCLZHG1eOa6igidf6LPEV8XMubBP3shOp7agk62BzNNcDBcvcrZ0l48eP5A7r+VrENR4LffIHdusVT50SOtI7ILMsF1dJcvi72hqWWVP4t7OUt++bK2cVhZmoinLF09Are4WGJ0LrQK0LBCqPRRTc/78dzVg+3eFd55/GbqzKwoWodWAb7kCL1r5egkyQaoKuVunuWIV2FUJXGXSbHKXaL0J0kWVxfljV1haWJ74GbMyyO3X4hVrP9eW1iyAdmfPqBmkPUTbLt0TLR42p4lAoBaeWppGY3kTJInF/txHz6ETp1kH2sTyATX0ckKytbz8ufsRPtwk8REsfCv0WQJe8RXzUayM19ZmlzYg1tcrNahSe/gERvFF/8cYJtPRSLckrz3cTMqtCJW78LAA39YMTpJshFXr5LtWTBHchRN9FBh+r9B1ZMs7u1iRApupI8ZioKOYLcJGIlK9PniY2e+stxKmZGvTmyy6nntlr8/6HRsj71E0YxFyZw8s9YRSc6kRAlRWXnLFvj1V62jsXkywXV0dpjgqsTwXL8PI5FahxI/efOKpSROsg9XbzQwc9PPFL4fRN/6gziZrQAri9YmTeQzagce1jo86R1qXT5K8pjI9y5Pfik4WWoWlGpEg0v7KXg/yErRSZKN8PMD4IhX4UQNYySK5y478TRUwIU073yMi5qBdDHfEqvc4LHrLFSsNzNj1OlZUuILyt46T8EHV6x2Xrvl709YsU84dPcotfPI6smSBvr2hXr1YNAgOHlS62hsmkxwHVlYGNy7Z1cJbqxyh3vuA3nkNomHbqPsK8l1d4ecOZ1jBldVmbB9JtWvHGdEzR7s8C4PwMGcxbiVMiOtzsplyrao2bnd3E6RgaNehT762LllmxDqkZzB+5ZYITJJsiF+fjxIloYrabIlapjn+v0YleckN3y4CnASY0lSxrXlucsewvXW7UO9ukgtnrt60EnO4n6Y0QjHjuFXMQtxxjjq5JX7byUNKAosWgTNm0NmuYLgQ2SC68he7gW1kwJT4fo93HPvh0F5RIrY5kTrLvHQbbR9JblO0ipowIE/aHluJ9MrtHqtjYaq6FhVpCYVb5zFK/SehhFKb8oY9oiKNwJYV7CaSfsKw9yTMqt8cypfP035GwFWiFCSbICqgp8fh72K/NcjOkHDoBLmsgVXY07cjQU/+viUcS1IYijNY9d5ROkuJfi88fXMIxl/Fa5O/Uv7SPc81GrntTuXL8OTJ/h6xZLUNSkVvSpqHZHkrNKlg+XLIUsWrSOxaTLBdWR20iLISBQhrr8S4jYFN2NuMkfNIHVcB9LFfku07uKLJNe6e5MS7GWC68AFAL48/Td9j6xiZZFaTP207VvH1xSugUHRyVlcG9P4wl70qpF1hT4z+TnLStTjbvJ0YhbXgX+nJek/Fy/Cw4eJbg8UrfuHWN1Vksd9gcLHE2UFHeliBuKiZuCR248YsF6yubhkA9wNcbQ9vc1q57Q7/v6owHb1Mp/l+gw3vZvWEUmS9AEywXVkLxPcvHm1jeMDYpSb3HcfQLjLDlLENidjzI+4kA6ApIbKpIsdaF9Jro8PhIeLpeEOqHbgYcbsmM2uPKUZVvvrd85wPEieDr88pWh+bhcuhjgNopTeoqo0Pb+bE1k/4XqarCY/LdrFjamftqHYvUBqBx6xYICSZCP27AFIdIGpMP0WFNWTpIaqJj9HRzLSxwzByHOC3X5GxTrte66lyYpf7lJ8eeZvWSDwffz9CcrmybWIO3J5siTZAZngOrLLl8HLC5K8v1qqlsL1u7jv3h+D8pQM0aNJHdcBhdebpic1VCFd7ACidRd46DbG9pNcB66kXOr2BX7dNImAzN70aTAYwwca3K8sWpv0z59Q/coxK0YovU+R+5fJF3Lro8Wl3mVdoepcTpud7/YvRS/7ZUqOzs8PcuXidsqMCR7CQCgR+kMkM9RAR/z+/rqpuUkT25to/XmeuFhv//vCUg1J//wJ9f7Zb7Vz2hV/f7ZXETcHZYEpSbJ9MsF1ZDZaQdlIJI9cfyHEbRpuRm8yR/1KEmPJ9z4+qaEqaWP7E607T7CtJ7kOmuDmC77Bgr/GcDtlBr5qNoJIN48PPn5v7lLcT5ZG9sS1EU3P7yZa78rW/J/G+7kGnZ5JlduT5/Ftmp7bbYHoJMlGGAywdy9Uq5aoYcJddoASR/K4DxeXep9khmokj/uCZ67reK47lKhYTHUwZzEC03qJlkFyO8LrIiMhIADf3EbypslLnjR5tI5IkqSPkAmuo1JVm0xwY5Tr3HPvz3P9HlLGtiZjzDhcSPvR5yUzVCNt7DdE6c4R7DYOI9FWiDYBsmcHDw+HSnAzPXvEkjUjiXZxo0OLMYR6pvzocww6PasL16TK1VNkefbQClFK7+MWF0uDi/vZka8czzySJWiMHfnKcSqLD/0PLsc91kbfe5KUWAEBEBoKn5m+T/1NKgbC9NvwMBTHVTV9O8CbUsd2wc3oQ4jbNGKVWwkex2SKwqJSDSj04Aqlb1+w/PnsyalTRKtx7HG9LWdvJclOyATXUT16BE+e2EyCq6ISpt/OffcBqMpzMsSMI1Vc27eWJH9IMsNnL5LcANtNcnU6UbXaQXrhpogKZ/GakSSPfk7H5qPjtWxvddFaALQ4u9NS4UkmqHblOKmjwhK0PPk/isLPVTqSOTyE9qes28ZEkqzmRf/bxMzgRur8MegeJXj29iUFV9JHD0HBjWC3CRiJSNR4plhfsCqhHslly6A3+ftz0AsijNFy/60k2QmZ4DqqlzOINtAiyEgEj1wn8dhtJu7Ggi+WJCesgEcyQ3XSxvYjSneGYLdxqMSYOVozcJBWQe5xMcxbN47cj+/QrckPXMyYO17Pv50yIwdzFqP52V3o5N5NzTQ7v5uHSVNzIFfxRI3j71WYvblK8vXR1aSICjdTdJJkQ/z8IH/+RLXfCHPZit6YniTG0okOx4V0pI8ZTKxyhxDXX1Gx7NLhKFcPVhSrTe3LR8n29IFFz2U3DAbYvZvtxZPjqnOlas6qWkckSZIJZILrqGykRVCMcoV77v2I0B8kVWw7MsSMRk/qRI2ZzFCDtLF9idKd4aHbeNtLcr294epViLXfapQ6o4GpmydT9tZ5Bn7RP8EVRVcUrU3WsGAqXztl5gglU6SJeErVqydYqhV6gwAAIABJREFUX7DaB4uCmWpilQ6kigqn27F1ZohOkmxIbCwcOJCo5cmxyi2i9AEkN9SN1+qkD/EwFiFVXAciXA4S5rLBLGN+yLLiX6AC7eRKDdi9G0qUgL//ZntBNyrlqEQyt4Rt85AkybpkguuoAgPBxQVy5tTk9GJJ8hbuuQ9EVWLIGDOBlHEtUcz0K5fMUJM0sX2I0p98keTaUDLp7Q1xcXD9utaRJIyqMnL3XD4PPMzYz7qwuUCVBA+1K19ZHnmmpNXZHWYMUDJVw4t7cTUaWBuP3rcfcjFjbjZ+UoXOxzeSPvyxWcaUJJtw4oRo8ZaIBDfMZSuoLiSLM+8+zRRxTfA0VCDUZRFRunNmHftN91KkZ5tPRVoH+OIZE2nRc9mswEBo0ABq1IBnz7izfA7n9SHUySOXJ0uSvXDROgDJQi5fhjx5RJJrZUbCCXGbQYT+EB6GkqSLGYCejxcmiq/khloQo/LYbQbBbuNJHzMMBVeznyfefHzE13//tYkl4vHV6+gaOpzaytzSjVlQulGixorVu/JXoep0PrGR9OGhBCdL3Oy9FD9Nz/txLmMeAtPnNNuYUyp9yef/HqTv4ZUMr9XLbONKkqZe7r+tkrAbekYiCNfvJqmhktn/3ikopI35hhj3AQS7/UzmqGn/9Yu3hEWlGlD/nwM0Oe/HHyUSt5fY2nJ+n/CZ55SRYfQ7tIJ2p7cS5eLGrCodWVSqASEX9oIbTN2ShFmbzTuzff0n+/r5SpK9sNkZXEVR6iiK8q+iKEGKonyvdTx2R6MKytFKoFiSrDtCqthOZIgZaZHk9qXkhtqkielNpP4EwW4TbGMm145bBTU7t4vv9i9lQ4Eq/Fitk1nGXFW0Nq5GA83O7zLLeJJpfIKvU+jBlcQVl3qHm6kzs6JoHVoF+JIj9K5Zx5Ykzfj5QdGikC5hieNz/V5UJZLkcfXMHJigw5P0MUNRieKR288W/Vt3Kkt+zmT2ptPJTSiq0WLnsRUuhjg6ntjEvrld6XBqC2sK16Rat7nMKdeMKBdXIvSH0atpcFVzah2qJEkmsskEV1EUPTALqAsUAForilJA26jsiNEoZnCtmOCqqDzTb+S++3eoGMkU8zMp45qabUnyhyQ31CFNzNdE6o8T7Paj9klu2rSQJo3dJbhVr5zgp22/ciBHMQZ9/g2qYp7X7lqarBzNXoiWATuc4mLJVjQ9t5tYnZ5NiVhi/j4zKrQiVu/Ct/uXmX1sSbK6qCg4dCjBy5NVVMJctuBmzIubarm/u26qF2lj+xGtv0So60KLnQdFYWGpBuR5fIcqVx24foKqUj3IH9+FXzNq91zOZczL551+ZWid3jxKmhqVWEJcfyFSf4JkcXVQULSOWJIkE9lkgguUAYJUVb2qqmoMsBJoqHFM9uP2bfEH20oJroEwgt3GEeo2jyTGkmSO/hV34ydWOfdLyQ11SRPTi0j9MYLdftI+yfXxsatWQUXuBfLbxh/5J0MuejYeSqzevEu9VxStTc4n9yh307L7xyRBbzTQ+OIe9uQpzWMT+hbHV3Cy1Cwo1Yj6/xyg4P0gs48vSVZ15AhERyc4wY3WnSdWd5PkcV9YPAlKaqhE8thGhLls5rl+r8XOs82nIveTpeGrExstdg4t5X94jT9W/cCCtWMBhU7NRtKu5Vj+fbGdw8hzHrqN4rnLHlLFtidlXGtN45UkKX4UVbVs2fmEUBSlGVBHVdUuL/6/HVBWVdXerzymG9ANIGPGjCVXrlypSaymOnfnqdXOlf18AI1+Gsm6oWO5U6BwgsYonNW0i+ILTy8w9tJYQmJC6J67O02zNkVRtLvLuf7Oen4N+pWKaSsyssBIXHUJT9QS85rV+H062c8HsGiGBe+yv8HU1+xNSW7fpnifPhiSJOH0zJnEpElj5shAFxND+WbNeFy6NJeGDzf7+K+y5nvNHBL6un1ImqNHKTJkCOfHjOFRpUpmHx9AHx5OubZtCfP25uykSYkez5FfN/m92Yb3fV85Fy4kx/LlHNy0CUPSpPEed9TFUZwOPc3qcqtx17snNsyPijPGMfDsQALDAplVfBa5k8WvhZupvP74g9wLFnBs0SIiNCpYaW6ujx+Ta+FCMm/bRlyyZFzv0IG7DRqgvlKvJDg6mO/Pfc+NiBsM8h5E7UzmLRomvc2ePkfA+T4jbUm1atVOqqpa6mOPs9UEtzlQ+40Et4yqqn3e9fhSpUqpJ06csGaI8ZaYwgfx9eWprYzbOZuyvRbzIHnC9hN9rPCBUTUy+fBkhu4eildKL1Y1W0XprInv+2cOM4/NpM+2PjTO35hVzVbhmsDZyMS8Zr2OrOa7/Usp0H8NEW5JEjxOfCSoWMWDB1C+PISFiSV6lpz179cP5syBO3cSvM/NFNZ8r5mDRYqMtGwpWlzcvQtubuYf/6UpU+Dbb8W5ElF9Fhz7dZPfm2147/f16aei8v3Ro/Ee886zO+SYloP+5fozqVbib/SY6n74fUr8XoKkbkk50fUEKT0scGEaHAxeXtChg/jstmdRUTBtGkyYAJGR0Ls3DB8uthO94vzD89RdXpenUU9Z22ItNfPU1Chg52JPnyPghJ+RNkRRFJMSXFutonwbyP7K/2cDZDUTE+V+fIcIV3ceJEtrkfGDnwfTYUMHtgVto+knTZnfYD6pPFJZ5FwJ0btMb4yqkX7b+9FqbStWNl2ZoCQ3UW/0vyJh/1IutssDxYsnfBxLCguDzz8XSa6fn+WXtHftCr/+CsuWQf/+lj2XMwsNhY0bxc/bksktwNdfi4vGIUNEcqDh6g1nEqc8IMT1N1LFtsNdzat1OPYtPBz8/WHQoAQ9fe7JuRhVIz1L9zRzYB+WKVkmVjdfTbUl1eiwoQPrWq5DZ6a6Cf9Jnx7atoWlS0ViaIHVPRanqrB6NQweDDduiPY/kya98+/d3ut7abSyEZ6unuzvtJ9imYppELAkSeZgq3twjwP5FEXJpSiKG9AK2KRxTHYjZ+hdrqXOapGLzQM3DlDs92LsvrabWZ/PYk3zNTaV3L7Ut2xfptWexrpL62i9tjWxBivvyX21VZAtiomBpk0hIADWrIGyZS1/zkKFoFw5mDdPXHRIlrF6tdhP2KGD5c/l4QGjR8OxY7B+veXPJ2EkioduY4nSnyTUdS4q8r2UKAcPitnbatXi/dQYQwxzT82lbr665E5tmWXCH/Kp16dMqTWFjf9u5OeDP1vmJP36iRnPefMsM74lHTsmZudbtYKUKcVKk40b35ncrjy/ktp/1CZL8iwc7XJUJreSZOdsMsFVVTUO6A34ApeA1aqqXtA2KvuRK/QO19JkNeuYRtXI+P3jqbqkKp6unhztfJRepXtput/2Y/qV68cvtX5h7aW1tF3XljhjnPVOnvfFrIotVlI2GqFzZ9i5U1y0fP659c7dtStcugSHD1vvnM5myRIoUABKljTp4ffD7/Ms+lnCz9e+PXzyCQwdKhIFyWJUVELcphKr3MAzrgrR+otE6U5qHZZ98/MDV1eoWDHeT11/aT33w+/Tu3Tvjz/YQvqU6UPrQq35Yc8P7Lyy0/wnKFxYbD+YORNibaANnylu3YIvvxQ3bq9cEX/nTp165zYKVVWZfHgyrde2ply2chz66hBeKb00CFqSJHOy1SXKqKr6N/C31nHYG1dDLNmfPGBz/spmG/NB+AParW/Hzqs7aV2oNb/X+53k7snNNr4l9S/fHxWVgTsGoigKy5ssx0VnhV/7JEnE3iVbTHCHDIE//oBx46CTeXrdmqxlS/jmG3HBkYALSukjAgNFRdiffzZpBUdIRAhF5xQlpXtKjnY5SpokCViC6OIC48dDkyYiue7cOQGB28feH609c1lNhP4QqWI7kSKuAXd1/xDquhSP6BJWacn2Lnb/uvn5iToEnp7xfuqs47PIkzoPtfNqV4RIURTm1Z/HuYfnaL22Nae6nzJ/gvbNN2Jp7/r10KKFecc2p/BwmDgRJk8WN3KHDoXvv4fk775eMRgN9Pftz4xjM2hRsAVLGi3Bw8XDykFLkmQJNpvgSgmT/ckDXFSj2WZw/a750XZdW55EPWFuvbl0KdHFpmdt32VA+QEYVSODdg5Cp+hY1niZdZJcb2/bS3CnTxcXAL16iT/+1pY0KbRpI/Z0TZsGqWxvebtdW7oUdDoxe2GCATsG8DjyMU+intBsdTO2f7kdN30C9u02aiSWn48cKV7fJNYprGYvzJEEbvp3Ew1XLqNt4bYsa7wARVFYFhBG+w3tmdQukhYFbTjxsFWhoWJmb+TIeD/13INzHLh5gMk1J5t/72s8JXVLytoWayk9rzRNVzflQKcD5k3UvvgC8uQRfz9sMcE1GsVn39ChcO+eWJL800+QI8d7nxIZG0nbdW1Z/896BpYfyMSaEzV/HSVJMh/5bnYwuULvAHA9dZZEjWMwGhi5ZyQ1ltYglUcqjnU5RteSXe0uuX3p2wrfMrHGRFaeX0n79e2ts1z5ZS9cW9lvumqVKO7UpIko9qTVa9m1q9jT9eef2pzfURmNooBXzZqQ5ePv/x1XdrA0YCmDKw5mYYOF7Lm+h15be5GgyvqKIi4o79yBWbMSELz0IReDL/Llui8pmbkk8+rPE5/D0dG0KdyGgukLMnzPcOtuwXAU+/eLz+cEVACfdXwWHi4edCpu5VUw7+Gd1puljZZy4u4J+m3rZ97BdTro21dsLTl+3LxjJ9a+fVC6tFiN5OUlYlyx4oPJbUhECDWW1WDDPxuYVnsak2tpf5NCkiTzku9oB5PrsUhwryZiBjcO8eE/Zv8Y2hVtx/GuxymcMWH9dG3JoIqD+Kn6T6w4v4KOGzpiMBose0Jvb3j2DB4+tOx5TLFnj9grWbGiWJ6s12sXS8mSorK0LDZlXnv3ws2bJhWXeh7znO5buuOT1ocfKv9A2yJtGV55OAtOL2Dy4ckJO3+VKlCnjqi2+uRJwsaQ3vI48jENVjTA09WTDa02kMQ1Cfj6Qpo06FevYdxn4wgMCWTJmSVah2p//PzEaoN4Ftl7EvWEZWeX0aZQm4Qt67eQhvkbMuTTIcw9NZdFpxeZd/COHcVS3+nTzTtuQl25Im7WVq0q2hktXy6S2/LlP/i0a6HXqLCwAifvnmR189X0K2fmmwGSJNkEmeA6mNyP7/I4SQqeJknYHtlI3SnuefTl2J1jLG64mCWNlpDMLZmZo9TO4E8HM+GzCSw/t5yOGy2c5L6s1Kj1MuWAALGENF8+2LTJNpaPdu0KZ87ASVkgx2yWLIEUKcRr/REj9ozg+pPrzKs/77+ljKOqjqJFwRYM3jWYDf9sSFgMP/4oln1Osl4/UEcWZ4yj1V+tuPn0JmtbrCVbimxiVUjLlhARAYMH0zBnHcpkLcPofaOJiovSOmT74ucnquzGs53WkjNLiIiN4OsyX1sosIQbW20s1XNVp+fWnpy6d8p8A6dIIfbXr1ol+mtr5ckT0Xv7k09gxw5RS+Lff8XWCN2HL2lP3D1BuQXlCH4ezK72u2hWoJmVgpYkydrkHlwHI1oExX95soqBJy5/8Mx1Da7GHBzv+jcF0hewQITaG1JpCCoqw/yGoaCwqOEi9DoLzGi+muBWqmT+8U1x/TrUrSvuvG/bBqlTaxPHm9q0ERcp8+ZBqY/265Y+Jjwc1q6F1q0/egPj+J3jTPOfRo+SPaiU4/+/lzpFx+KGi7n+5Dpt17XlQKcDlMhcIn5xFCsmYpg6FXr3hsyZE/LdSC98v+t7dl7dyfz686noVVHcPGjQQCRk8+ZB164oc+cyod4EaiyrwZwTc/im3Ddah20fHjyA8+dFn9d4MKpGfjvxG+WylYv/+8MK9Do9K5quoMTcEjRd3ZST3U6ab5a5Tx8xgzt7Nowda54xTRUXB3Pniv3SISFiSfK4cSZ/xmy7vI3ma5qTzjMd+zruI3+6/BYOWJIEuy/EZ6fkDK6DyfU4/i2C4njEA7chPHNdQ7K4WmSKnuKwye1LQysNZWy1sSw7u4zOmzpbZiY3Rw5xIapVL9yQELFkNDJSLGnMnl2bON4lZUpRrOTPP0VyJiXO2rXw/PlHlyfHGmLpsrkLmZJl4qcaP711PIlrEja22kg6z3TUX1GfO8/uxD+WsWNFO5ExY+L/XOk/SwOWMuXIFHqX7k3nEp3FBX7r1nDtmni9O3cWvVvHjaN6hrJ8luszJhyYQFh0mNah24e9e8XXeO6/3X11N4EhgXxd2vZmb19KnzQ9a1us5W7YXdqua4tRNZpn4Ny5xQ2WOXMgyoqrBbZvh6JF4euvRT/1kydhwQKTk9sFpxZQf0V9vNN6c7TLUZncSpITkDO4DsQzJpLM4SHx2n8boTtOiNtUVGJJF/MtSQ1VLRegjfmh8g8YVSMj945Ep+iY32C+eQtN6PWiH64WS5QjIqB+fTGDu3MnFCxo/Rg+pksXWLxYLHlLYGsZ6YUlS0SV04+0Xpp0eBJnH5xlQ8sNpPRI+c7HZEqWic2tN1NxYUUarGzA/o77SeqW1PRY8uSBbt3g999hwACxNF6Kl2N3jtFtczeq5qzKL7V/Ef/43XfiRtW8ef9fETJhgthzOG0aEzpOoNyCckw7Oo3hVYZrF7y98PMTy25LxG8WdtbxWaT3TE/zAs0tFJh5lMlahl/r/EqPrT0Ys28Mo6qOMs/A/frBxo3i5uRXX5lnzPe5eBEGDhQJbt68ok1Rw4YmF0hUVZVRe0cxZv8YauepzZrma+ymxaGzkbOckrnJGVwHkjP0HoBJS5RV4gh1WUiw+2j0aloyR09zquT2pRFVRjCqyigWnVlE101dzXen+yUtWgXFxYk2CUePiosQrZZHf0yFCmIf1bx5Wkdi327c+H8RsQ9c+P376F/G7BtDswLNaJi/4QeHLJKxCCubruTM/TO0W98u/u+L4cPB3V18leLlXtg9Gq9qTObkmVnTfA2ueldYuFAs++7bV9wYeqlcOXHBP2kSZZPkpaFPQyYfmUxIRIh234C92LNHFEZzMf0+/82nN9kcuJmuJbri7uJuweDMo1vJbnQs1pHR+0azNXCreQatWhWKFBFt3ixVJDA4WMzWFiki+npPmQIXLoj6AiYmt7GGWDpv6syY/WPoVKwTm1tvlsmtJDkRmeA6kJcVlK+n+XCCG6c84L77YJ65riNZ3Bdkjp6Cq2qevrn2aGTVkYyoPIKFZxbSfXN38ya53t4QFAQGC1dsfklVRY/bzZth5kxRZdJWKYooNuXvD+fOaR2N/Vq2THxt3/69DzGqRrpt6UYS1yTMqDvDpGG/8P6CX2r9wvp/1jN0dzx7JmfKJFpSrVol+oxKJomOi6bJ6iY8iXry31JxDh2CHj2gRg1xof+mceMgLAx+/plxn40jLDqMnw/9bP3g7cmtW3D5cryXJ885MQeA7qW6WyIqs1MUhd8+/41imYrx5fovuRp61RyDilncc+f+v8zbXKKjYfJkserj99/F731QkFgJEo9CYGHRYdRfUZ9FZxYxsspIFjRYIG4USZLkNGSC60D+64Gb6v0JboTuCPfc+xKr3CJd9Pekje2JQvwqSDqiUVVH8UOlH5h/ej49tvQwX5Lr4yP2I16/bp7xPmb0aDEjOnSoSHRtXbt2/y+YI8WfqsLSpWImKmfO9z5s/qn57L+xnym1ppApWSaTh+9bti89Svbg50M/x7/tyKBBkCYNDBkSv+c5KVVV6bm1J0dvH2Vpo6UUyVhEtH1q0kTs51+16t2zjYUKwZdfwowZFIpNTdsibZlxbAZ3wzSsdGvr9uwRX6tVM/kpUXFRzDs1jwY+DfBK6WWhwMwviWsS1rZYi4JCk1VNiIiNSPygbdpAunRiFtccVBXWrRNbaQYNElstzp4VN2nTpYvXUPfC7lFlcRV2Xd3F/PrzGVV1lOgbLUmSU5EJrgPJ9fgOd5OnI9LN461jKrE8dp1LsPt4XNTMZI6eTlLjpxpEaZsURWFMtTEMqzSMeafm0XNLT/MkudZsFTR3rkhwO3YUszr2IF06cQG/bJkohiXFz5EjYibqA8Wl7obdZdDOQXyW6zM6FesUr+EVReHXur9SM3dNum/pzr7r+0x/csqU4kbLjh1iv6P0QTOOzWDRmUUMrzycpgWaiqJhDRuKYj6bNombBe8zerRYJTJ2LKOrjibOGMe4/XbyGaAFPz9ImxYKm97ffc2FNTyKeGTTxaXeJ3fq3CxvspyzD87Sa2sv1MQuLfbwELOrmzeLfrSJceqUuNHQtKkY19cXtm6FAvEvdHkp+BLlF5QnMCSQza03i+JskiQ5JZngOpBcoXe59o7lybHKPe67DyLMZRPJ4xqQKXoSrqps3/EmRVEYW20sQz4dwtxTc/l669eJvxCwVoK7aRP07ClaAs2da/I+JXOIM8ax7tI6aiytQcHfChL8PDh+A3TtKnobrl1rmQAd2ZIl4OkJzd7fz7H3372JMcTwe73fEzST4ap3ZXXz1eRNk5cmq5twOeSy6U/++mvIlk3M4lpqv54D2H11NwN8B9DQp6EoBqSqog1KQACsWCH2qn9IrlyisNeCBeQOMdK1RFfmnZrHlceJTD4ckaqKBLdatY/2TX3VrOOz8EnrQ/Vc1S0YnOXUzVeXEVVGsCRgCXNPzk38gD17ihUFM0zb8vCWu3fF73ipUmJ/7ezZojd6rVoJGu7gzYNUXFiRqLgo9nXcR918dRMWlyRJDkEmuA4k1+O7XEv9+l7a57qD3HPvR5xyj/TRw0gT2w0FuRflfRRFYfxn4xlccTBzTs6h99+9E5fkpk8PqVJZNsE9fBhatoSSJWHNGnC1zut7L+weY/aNIce0HDRd3ZTLjy9z5fGV+BclqlpVVN6Vy5TjJzJSLFtt0kT0OX6HtRfXsv6f9YyuOpq8afIm+FSpPFKxpc0WFBTqrajH48jHpj3Rw0PMLh47JiqgSm+5GnqVFn+1IH+6/CxrvExUch87VryXJ06Ezz83baAffhDL/UeMYHjl4bjqXBm1b5RFY7dLV66IPbjx2H978u5J/O/406t0L7te7jqiygjq5q1Ln2198L/tn7jBsmQRrd4WLoRnz0x/XkSEaCGWL58ogvjtt2KfbY8e8Sr49aq1F9dSY2kNMiTNwJHORyiZpWSCxpEkyXHIBNdBpIp8RuqosP964KrEEOL6G4/cf8JVzU7m6Bl4GstrHKV9UBSFH6v/yHcVvuO3E7/RZ1ufhCe5iiJmcS3VC/fSJdEOKHt2sawraTzauSSAqqrsvb6XFmta4DXNi5F7R1IkYxE2tdrE1b5XmVZnGr5XfPn5YDyK3Oh0ojLs/v3a9Qy2R5s2wdOn712eHBoZSu9tvSmeqTgDyg9I9Olyp87NhlYbuP7kOs1WNyPWEGvaE9u3FzOQQ4eKCt/Sf8Kiw2i4siGqqrKx1UZR5XXdOhg5UuxPHzjQ9MEyZRLFf1asIPPVh/Qp04flZ5dz7oEs4Paal/tv45Hgzjo+i6SuSelQ9MN9pm2dTtHxR5M/yJoiK83WNIv/aps3ffONKHC2yIT9+UYj/PGHqEsxcqRYbXTpkriJk/LdLctMMf3odJqvaU7JLCU59NUhcqXOleCxJElyHEqil2DagFKlSqknTpzQOgxtHTki2q5s2UJguXy0WNOCgAcBfFv+WyZUnyArCCaAqqp8t/M7Jh+ZTJ8yfZheZ3rC7t63awf79omCMeZ0967ogRkdLWZxc+c27/iveBb9jGUBy/jtxG9cDL5Iao/UfFX8K3qU6vHazKCqqrRe25q/Lv7Fng57qJTDxBZF9++LJP2bb2DSpETFmvN7M7XDsJIE9//7/HNRyfT6ddFz+Q1dN3Vl0ZlFHOt6jBKZ49fr80OWBSyj/Yb2dCnehbn155r2nli/Xsw0z58vex6/YFSNNFvdjI3/bmR72+3UzFNTLEmuUEG0R9mzR8yAx0doqPgcqFiRkNVLyP1rbqrlrMaGVhss803Yo9atxc2027dN2soREhFCtqnZ6Fi0I7PrzbZCgJZ3+t5pKiysQIXsFfD90hcXXcJmTgFREOr+fbFK6R2fQ4CoBD5ggFjJUbIk/PILVK6c8HMi3j+Ddgzil6O/0Dh/Y5Y3WU4S1ySJGlOSJNunKMpJVVVLfexxcgbXUbxYAvun6z+UnFuS289us6X1FibVmiST2wRSFIWJNScyoNwAZhybQX/f/gmbyfX2FkviIsxQvfKlp0/FHfDHj2HbNoslt+cenKPnlp5kmZKF3tt64+nqyaKGi7gz4A6Ta01+a9mroijMrT+XXKlz0Xpta9NnCDJlEjPRS5ZATIwFvhMHc++eKMbSrt07Lyr3XNvD/NPzGVh+oFmTW4B2RdsxrNIw5p+ez5Qj72hb8y6NGkHZsmLmRhYTA2DsvrGs/2c9U2pNEcntw4fQoAGkTi1mceOb3IJ47uDBsHUraU9dYlCFQWz8dyNHbx81/zdgj17df2vizcpFZxYRFRfF12Xsr7jU+xTPXJzZX8zG75ofw/0S2av6m2/g6lWxguhN16+L7TOffipuKCxeLJLcRCa3UXFRtF7bml+O/kKfMn1Y03yNTG4lSXqNTHAdRETgBbo0VGh75FuKZSrGmR5n+MI7gTND0n8URWFyrcn0L9ef6f7TGeA7IP5Jro+P+Ho5HsV5PiQ6WiQMFy+KC+Hixc0z7gsxhhhWnFtBpUWVKDKnCIsDFtO8YHOOdTnG8a7H6Vis4wcvJlK4p2B1s9UERwTTfkN70/fjdu0KwcGwcaOZvhMHtny5WPL3juXJkbGRdNvSjTyp8zCy6kiLnH5MtTE0L9Cc73Z+x8Z/THi9FAV++gnu3IFZsywSkz1Zf2k9o/aNokPRDvQr20/c1GnaVCS5GzZA5kQUAezbVzx/yBD6lelLes/0DPMbZr7g7dnFi+JnbOLyZIPRwOwTs6mcozKFMhSycHDW1bFYR7qX7M5Ph35i/aVE7I9v3Fisvnm1ZdCzZ6K3T0EbAAAgAElEQVSwXP78otLyyJHiJnyHDvEq7PUuoZGh1P6jNqsvrGZyzclMrzMdve49M8eSJDktmeA6gEvBlyhr/J2FxVSGfjqUPR32kC1FNq3DchiKojCl1hT6le3HNP9pDNwxMH5JrjkrKRuNYk/j3r3ibnjNmokf84WbT2/yg98PZJ+anTbr2nAv7B6Ta07mdv/bLGq4iNJZS5s8VvHMxZlWexrbg7Yz6ZCJS45r1QIvL1ls6mNUVcx0ly37/5snrxizbwxBj4OYW38unq6eFglBp+hY0mgJpbOWps26Npy+d/rjT6paFerUgQkTRNVsJ3XuwTnarW9HmaxlmFNvDgqIatMHD4r3dKmPrrz6ME9PGD4cDh4kud9BhlUaht81P3Zf3W2G6O3cy3ZVJia424O2czX0ql22BjLF9DrTKZ2lNB02dCAwJIF/n1xcoHdvsaT+9Gnx+Z0vn7ih1aKF+Ls3apRZ6kPceHKDigsrcvT2UVY0XcHACgPtuuiXJEmWIxNcO7fkzBJKzSvFAyWC7YFlGF99fOL200jvpCgKU2tPpU+ZPkw9OpVBOweZnuTmfbGMN7EJrqpC//6werXYp9q2beLGQ+xj2nFlB41WNiLX9FxMODCBslnLsq3tNgL7BDKwwkDSeqZN0Ng9SvWgRcEWDPMbxsGbBz/+BL0evvoKdu6Ea9cSdE6ncPo0nD//ztnb0/dOM+nwJL4q9hWf5TK9iE5CJHFNwsZWG0mbJC31V9Tnbtjdjz/pxx/FPtGJEy0am60KiQih4cqGpHBPwfqW6/Fw8YCZM8Xe5GHDxHJOc+jcWWxbGDqU7iW6kj1Fdob6DU182zN75+cnWirlzGnSw2cdn0XmZJlpnL+xZePSiLuLO3+1+At3F3earGpCeEx4wgbq0kXcWKlQQbSrypdPLEVeulS0CTODM/fPUH5Bee6G3cX3S19aFWpllnElSXJMMsG1U89jntNhQwc6buxImSxlOLPAhVqZKmodlkNTFIXpdabTu3RvphyZwuBdg027YEyWDLJmTXyCO2kS/PqrSHLjU131HUIjQ5l6ZCr5Z+an9h+1OXzrMIMrDuZqv6tsar2JOnnriHYliaAoCvPqzyNnqpy0+qsVjyIeffxJX30llrAtWJCoczu0JUtEO5g3kqE4YxxdNnchnWc6JteabJVQMiXLxJY2W3ga/ZQGKxrwPOb5h59QrJgo8jNtmthH7ETijHG0+KsFd8LusL7lerIkzwK7don3c8OGonWKubi5ifECAvBYt4lRVUdx7M4xNv7rxMv/DQZR7M/E2dsrj6+wPWg73Up2c+g6Fl4pvVjZdCWXHl2i6+auCbsJkiaN2IubI4e4AXvgAJQ2fcXPx+y8spPKiyrjonPh0FeHqJqzqtnGliTJMckE105FxUWx7/o+RlYZya7PFpPlYdT/l8JKFqMoCr/W/ZVepXox6fAkvt/1vWkXBD4+iWuBs2yZKB7TqhVMnmxygZQ3nbx7ks4bO5P1l6wM2DGA9EnTs7zJcm71v8WE6hPImSpnwmN8hxTuKVjTfI3Yj7vehP242bOLZayLFsmWMu8SEyN6RzZoIC4qXzHt6DRO3TvFzM9nkjpJaquFVCRjEVY0XcHp+6dN23M9dizExpo3obMD3+74Fr9rfsytN5ey2cqKPfnNm4sWSsuWJXpv4ltat4bChWH4cNoXaI1PWh+G+Q3DYDSY9zz2IiBArB4wMcGdfWI2ep2ebiW7WTgw7VXPXZ1x1cax8vxKZhybkbBBxo+Hf/4Rv9NmXDa8NGApn//5OblS5+JI5yMUzFDQbGNLkuS4ZIJrp9J6puVCrwuMqjoKfdAV8Y8ywbUKRVGY+flMepbqycTDExm624Slfy974Sbk7viOHWJm87PPxB69eF4IR8ZGsuTMEsrOL0upeaVYeWEl7Yq043T30xz66hBtCrfB3cU9/nGZqHjm4kytPZVtQduYfNiEmcWuXUULpL//tlhMdmvbNnj06K3lyVceX2HEnhE09GlI00+aWj2set71mFJrCusurWPY7o8UNMqTRyxjnDfPfIXXbNyi04uY7j+db8p+Q4diHUQV9AYNxLL8TZsgeXLzn1SnE0lHUBAuS5YxttpYLgZf5M9zf5r/XPbg5f7batU++tCI2AgWnl5Ik0+aiJl2JzD408E09GnIwB0DTdtSYmGqqjJ+/3g6bOhAlRxVONDpAFlTZNU6LEmS7IRMcO1YUrcXRRteLn3Nl0+7YJzMyyT3ZRXKH/x++HCS6+0tCuuEhMTvRCdPiv6hBQuKXqLupieiV0Ov8t3O70QPx40deRr1lOl1pnN3wF1+r/87xTIVi18sidCzVE+aF2jO0N1DOXTz0Icf/MUXom2QLDb1tiVLIEMGqF37v39SVZXuW7rjqndl1uezNCu60q9sv//eD4vPLP7wg4cPF7/LwxPZosQOHLl1hB5be1Ajdw0m1Zoklsq2bg1BQbB2rdgTain16ole2aNH0zTX5xTPVJyRe0cSY3DCVlx+fqKqrwkVqleeX0loVKjDFpd6l5eF43KmyknzNc25F6bdFoI4Yxw9t/bkhz0/8GWRL/m77d+kcE+hWTySJNkhVVXt/r+SJUuqTq1/f1VNkkRVDQatI3E6BqNB7bapm8oo1GG7h6lGo/HdD9yyRVVBVQ8dMn3woCBVzZBBVXPkUNW7d016SpwhTt3872a17h91VWWUoupH69Wmq5qqu6/ufn9sVvIk8omae3puNdsv2dRHzx99+MFDhqiqTqeqt25ZJzh78OiRqrq6ivf7KxadXqQyCnX28dkaBfZ/MXExao2lNVTXMa7q3mt7P/zgYcPEe+LkSesEp4HbT2+rmSZnUnNPz62GRISIf/z2W/F9z5ljnSD27hXnmzRJ/Tvwb5VRqLOOzbLOuW1FTIyqJk2qqr16ffShRqNRLT6nuFrot0Kaf2Zq4ez9s6rneE+10sJKakxcjNXPHx4drtb7s57KKNShu4Y65WsgSdL7ASdUE3JDOYPrCAIDxeytufdwSR+lU3TMrjebLsW7MP7AeEbtHfXuB75s52LqPtyHD8UsncEAvr4fnXUIfh7Mzwd/Ju+MvNRfUZ8z988wosoIbnxzg79a/MVnuT7TvJ1CSo+UrG62mofPH9JhQ4cP79Xs3Fm0RFq0yHoB2roVK8Te1VeWJz8If8AA3wF86vWpTewVdNW7sqb5GvKkyUOT1U0Iehz0/gcPGiT2EQ8ZYr0ArSgqLorGqxoTHhPOplabSJMkjagqO3ky9OoF3btbJ5AqVcRnyY8/Uid9eSp5VWLs/rFExEZY5/y24PhxeP7cpP23R28f5fT903xd+mvNPzO1UDhjYebXn8+BmwcYvGuwVc/98PlDqi2pxt+X/2b2F7MZX328U74GkiQlnsyIHMHly3L/rYZ0io7f6/9O5+Kd+R97dx5Xc/Y/cPx1K22k7FsGYycJiazZsmeXfRkyxhgzmOxrKD+DMUaMdWSQFLKOMZRtbMVk38mIMLJVKi2f3x+f0Uxfla263Xo/Hw8P7v2czznve1W87znnfdwOuzHz4Mw3G5Utq54X+C6VlKOi1GW69+/Drl2pnnUK6uqL43eP039bfyy/t2TCgQmUtSjL5u6bufPNHWY4zMh2e5bqlKzDQseF7L6+mwXHFqTdsHx5aNFCraac9JaiRbmFlxfUrKn++seovaOIjo9mZceVH131OqNYGFuwq/cuNGhov7E9T2Oept7Q3BwmTVL3mL/eH5lDKIrCsJ3DCLofxPou69XCOCdOqPvLmzVTq0hnJXd3ePIEzcKFuLdw50HUA348+YHFhHRRYKD6u4PDW5t6BnmS3yg//az7ZW5M2VjvGr0ZZTeK7098j88FnywZ83rEdexX23Ph0QX8nf0Zbjs8S8YVQuRQ7zLNm91/5eolyq9eKYqBgaJMmqTtSHK9xKREZbD/YIUZKDMPznyzQeXKitK1a/qdvHqlKG3aKIq+vqLs3Jlqk6i4KGVF8ArF5icbhRkoZu5mysjdI5WLjy5mwKvIfElJSUr3zd0V/Zn6yh9/pbNke9MmdWnl3r1ZF1x2dfGi+l4sXJj81PYr2xVmoMw+NFuLgaXtcOhhJY9bHqW5V/O0lzrGxCiKpaWi2NkpSg5airjg2AKFGShuB93UJ+7eVZTixRXl00/Vpeba0KOHukz34UOl3YZ2SoG5BZSnMU+1E0tWa95cUWxs3trsYdRDxXCWofLVnq+yIKjsLS4hTmm4uqGSd05e5cLDC5k61vG7x5XC8worhecVVk7cPZGpYwkhdBuyRDmXCA1Vj1ORGVyt09PoscppFYNsBjH94HRmHZqVskGlSunP4CoKDB0Ke/fCTz+pBWL+4+rjq3yz9xtKLSzFsF3DSExKZFn7Zdwbc48f2/1ItSLVMuFVZTyNRsOqjqsoY1EGZz9nIl6mUXirc2coVEiKTYE6e6uvD336APAi7gUjdo+gRtEauDZ01XJwqWtcpjGrnFYRcDuAEbtHpF6EzdgYZs6EU6fUImo5wL6b+3D93ZVuVbsxuclkePlS/VqOjlYrJhcqpJ3AZs2C2Fhwd2d2s9k8jX36blXNdV1sLPzxxzstT151ZhWvEl8xou6ILAgsezPUN2Rzj83kM8xH181deRH3IlPG2X5lO829mmNuZM7xIcfVI7SEEOJjvUsWnN1/5eoZ3NfFi44d03Yk4h8JiQnKgG0D3pxd+/ZbRTEyUpSEhNRvnDhR/bt0c0t+Kj4xXtlyaYvSwquFwgyUPG55lN5+vZUjd47ofPGN4HvBiuEsQ6X9hvZKYlIaBdLGjFFXKDx4kLXBZScJCYpSsqSidOiQ/NSIXSMUzQyNcjLspBYDezeT9k9SmIEy/4/5qTeIj1eUqlXVFQ7x8VkbXAa7HnFdsZhroVgvs1Yi4yLVWelevRRFo1GUHTu0HZ6iDBmiKIaGihIaqjj7Oit55+RVHkTm8O+tgAD152oaK2Jei0+MV0ovLK20XNcyiwLTDYdCDyn6M/WVrj5dM/zfnKWnlip6M/UUu5V2yqOoRxnatxAiZ0JmcHMJOSIo29HX02eN0xr6W/dnSuAUPI54qBcqVYK4OLh7982bliwBDw+18MyUKYRHhjPr0CzKLipLt83duBZxjdnNZvPX6L/Y2G0jjT5ppPPFN+qUrMMCxwXsvr6bhccXpt5o6FB1hYKXV9YGl53s36/ux/6nuNQff/3B0uClfF3va+xK2Wk5uLeb1XwW3at1x/V3V3Zc3fFmAwMD9bzWq1fVc5511Iu4Fzh5O6Gv0cff2Z98hvnU7+lNm9Q9sB07ajtEmD4dNBqYMQO3Zm7EJsTifsRd21FlroAAdfVDkybpNtt1bRd3X9zNVUcDvYsmZZowr9U8tl7emmEz/klKEhP3T2TEnhG0r9iewIGBFMlbJEP6FkIIQGZwdd7w4YpSoECO2r+WUyQkJih9t/RVmIHiccTj3+M6fvstZUNfX0XRaJSkTk7KwZsHlJ6+PRUDNwOFGSiOvzgq/pf9lfhE3Z7ZSktSUpLSzaeboj9TXzn2VxqrEBo1UpSKFXPv13jv3ur3eGysEhMfo1RZUkUp830ZdYZQR0S/ilbqrqir5J2TV/kz/M83GyQlKUq9eopSqpSivHyZ9QF+pMSkRKXjxo6K/kx9JeBWgPqkv7/6/d63b/b62h0zRj2C6+JFZej2oYrhLEMl9GmotqPKPA0aqF9bb9FyXUul9MLSOfZn7cdISkpSemzuoejN1FMO3DrwUX3FJcQl/7s4fOdweb+FEO8FmcHNJa5dU2cGdXw2LyfS19PHq7MXfWr0YeKBicx7+bt64b/7cA8d4sXgPnj2LItVy+s4/NKCfTf38ZXdV1wbeY3f+v1GpyqdMNAz0M6LyGQajYbVTqv5xPwTnP2ceRLz5M1GLi5qpfBDh7I+QG17/lzdm9qrFxgZ4X7EnSuPr7C8w3J1hlBHmOYxZXuv7RQwKUCHjR24H3k/ZQONBubOhXv31NUMOmZ64HR2XtvJojaLaFauGZw/D337Qt266h7y7PTzeeJEyJsXpk5lWtNpALgdctNyUJkkKkrd3/2W/bdXHl9h/639DLcdnmN/1n6M1z+nKxeqTC+/XoS9CPugfp7HPqfthrZsOL8BjxYeLG2/VN5vIUSmkARX18kRQdna6yS3t1Vvxp+aw/xmRsln4Z4/uoURPzhS6utERla9jbGhCaudVnNvzD0Wtl5IxUK5Y9m5ubE5m3ts5kHUAwb6D3yzGFH37uqRMrmx2JSvr1okZ+BAzj88j8dRD/pb96d1hdbajuy9lTArwa7eu3gW+4xOmzq9eQ6rgwO0aaMu6332TCsxfgjfi77MPjKbIbWGqMtbHz8GJyfIn1/9cMLERNshplS4MIwdC1u3UvraA0bYjmDt2bVceXxF25FlvKNH1S0Ob0lwlwYtxVDfkKG1h2ZRYLrHzMiMrc5biUmIofvm7sQlxL3X/WEvwmj8c2OO3DnCL11+YUKjCTq/zUYIkX1JgqvLXr5U93NKgputGegZsK7LOpyrO+PaNI6R8dtp8lM9rA90Z031V3St0oWTQ08S7BLMZ7U+wzSPqbZDznK2JW1Z4LiAXdd2vbkf19QU+vWDLVvgSSozvDmZlxdUrkyibR1cdrpgYWzBwtZp7FfWATWL18S7mzen759mwLYBJCn/c8axuzs8fQrz5mknwPcU8iCEQdsH0aB0AzzbeaKJj1c/kAkPB39/KJW9zqFONmaMmuhOmsSkxpMwzWPKtMBp2o4q4wUEgKEhNGiQZpOoV1F4nfWiR7UeFM1bNAuD0z1VCldhbae1nLx3kjG/jXnn+y48uoD9antCn4Xya99fc/UZw0KIrCEJri67cUP9XRLcbM9Az4D1XdfT88UneJa4S9jNP5l32JiwTofw6ueHXSm7XP9p9ki7kXSt2pUJByZwIuxEyosuLmqBrl9+0U5w2nDzpjoDNXAgnsFLOXnvJD+0+YHCpoW1HdlH6Vi5I/Md57Pl8hamBExJebFWLejdGxYtUpPEbOzv6L/pvKkzBYwLsKXnFowMjODrr9Wl9KtXg102LgBmZgaTJsH+/RQ5eZ7R9Ufje8mXM+FntB1ZxgoIgPr11Q/J0rD+3HpexL2Q4lLvqFu1brg2cGVp8FLWnV331vaBtwNptKYRSUoSRwYfocWnLbIgSiFEbicJri57vZdTElydYKBnwMb8gzjzE9xYDK7T9lLYNv3KnrnJ631epfOXfnM/bs2a/+5nTO081Zxo3TrQaLjTuRmTDkyibYW29Lbqre2oMsTo+qMZVnsYHkc98Ar5nwrZs2ZBfDy4Zd99ofGJ8fTw7cHD6If49/KneL7isHSpen71+PHq/tvs7osvoHRpmDiRsfXHUNCkIJMDJms7qozz9CmcOZPu8mRFUfAM8qRW8VrUt6yfhcHpNvcW7jiUdeDzXZ8T8iAkzXbe571pvb41lvktOTHkBDWL18zCKIUQuZkkuLrsdYJboYJ24xDvTL9OXWo90kNvw0Zo2lTb4WQ7FsYW+HT3ITwynEH+g1Lux3VxgYsX4eRJ7QWYVZKSYN06lBbNGX5mJgDL2i/LMbP8Go2GJe2W0KJcC1x2unD4zuF/L5YvD8OGqR9mXL+uvSDT8c3ebzh05xCrOq7CtqStOlM4ahR06KAeeaQLjI3VY4NOncL8t4NMaDiBvTf2pvy70GWHDqkfhqWT4B756wgXHl1gpN3IHPO9lRUM9AzY1G0ThUwK0W1zN57GPE1xXVEUvvvjO/ps7UOD0g04+tlRSpuX1lK0QojcSBJcXXbtGpQsCfl0p5pqrte+PUREqPv0RKrqlqrLfMf57Ly2k+9PfP/vhV691OqvuaHY1JEjEBrKxq4V2XtjL+4t3CljUUbbUWWoPPp58O3hy6cFPqWLTxduPLnx78WpU8HISP09m1lxegVLg5fi2sCVvtZ91aXkPXpA5cqwYYN65qquGDhQjXvyZEbW+YKSZiWZdGDSm4XedFFAgFrgq169NJt4BnlSwLgAvax6ZWFgOUOxfMXw7eHL3ed3GeD/7376xKRERv06inH7x9HLqhe/9fsNC2MLLUcrhMhtJMHVZa+PCBK6Q6MBC/nH/m2+svuKLlW6MH7/eE6G/TNja2am7s/ctAlevNBugJnNy4u/i+Tl68jN1Lesn2P3BxYwKcDuPrvRoKHDxg7/zgQVLw6jR4OPj7rMNJs4+tdRRu4ZSZsKbfBo4aF+HTo5qRd37FArJ+sSAwN1SfilS5hs3srUJlP54+4f/HrjV21H9vECA6FxY7XIVCruR95n6+WtubawX0awL23P962/Z9e1XbgfcScmPobuvt1ZErQE1waubOi6Qd2bLoQQWUwSXF0mRwSJHOr1flzL/JYp9+O6uKjVw729tRtgZoqOBl9fxgwszou4SFZ1XIW+ng7NCr6n8gXLs9V5K7ee3qK7b3fiE+PVC66uULCgem5rNnD3+V26be5GWYuybOy6EX0Fda/t1avqcU7ly2s7xA/TrRvUrg3TpzOken8+LfApkw5MerPCtS55+BAuXEh3efKK0ytITErkC9svsjCwnGdE3RH0s+7HtMBp2K2yY/uV7Sxus5h5reahp5H/YgohtEN++uiqZ8/U8xYlwRU5VAGTAvh09+F+5H0Gbx+sLpusWxesrXP2MuVt29hbPIr1+W4ysdFEqhetru2IMl2TMk1Y2XElAbcDGLlnpPp3bW6uVvrdt09dbqpFL+Nf0tmnM7EJsezovYMCJgVgyhTYtQt++OGt56xma3p66vFMoaHkWf0zbg5unH14Ft+LvtqO7MMdPKj+3qxZqpfjE+NZcXoFbSq0oXxBHf1gIpvQaDQs77CcGsVqcOPJDfx6+vFVva+0HZYQIpeTBFdXWVjA8+fqjJYQOZRdKTu+a/UdO67u4IeTP6hLvF1c4PRp+PNPbYeXKaJ+Wc3wzvpUKVSFSY0naTucLDPQZiATG01kxZkV/+69/vJLsLRUZ3G1tC9UURSG7hjKn+F/sqHrBqoUrqLutZ07Fz7/HEaM0EpcGcrRUS16N3s2vcp2wKqoFVMDp/47m65rAgLU5eK1a6d6eduVbYRHhefYpf9ZzTSPKYcHHebyl5fpWrWrtsMRQghJcHVa/vy6t+dLiPc0qt4oOlfpzLjfx3Hq3il1Waixcc6cxb17lyl6B7mTL5FVTqty3f612c1n061qN77d9y07r+5U/55nzoRTp2DrVq3E9N2x7/C+4M2c5nPoUKkDBAXBkCHQpAksXqx+6KLrNBrw8ICHD9H/cQlzms/h+pPreJ31evu92VFAgJqwGxiketkzyJNyFuVoU6FNFgeWc5kbm1PWoqy2wxBCCEASXCFENqfRaFjjtIaSZiXp6duTp8aoVWs3bFD3q+YgJ9d5sLgejKjUl4afNNR2OFlOT6PHui7rqFOyDr239FbP2BwwAKpWhcmTISEhS+PZc30PE/ZPwLm6MxMaTYD796FTJyhRArZsSbOAkU6yt4eOHeG77+hYuCH1Lesz89BMYhNitR3Z+7l7F27cSHPZ+PmH5zl85zBf2H6Ro/e2CyFEbiYJrhAi2ytgUoDNPTb/ux936FC1gq2vDu8T/B+vEuIY+ng1peIM8ei6VNvhaI1pHlN29FL3uXb07kh4zN/q2bJXr8LatVkWx9XHV+mzpQ82xW1Y02kNmthY6NxZ/brbsQMKF86yWLLMnDnw4gWaefNwb+5O2IswlgUt03ZU7ycwUP09jQR3adBSjA2M+azWZ1kYlBBCiKwkCa4QQifYlbJjXqt5bL+6ncWGZ6BKlRy1THne5lFcsHjFspLDyG+Uu7celDArwc7eO3ka8xSnTU68bO+onmc6YwbExGT6+M9in+G0yQlDfUP8e/ljamCi7v0OCoL166FGjUyPQStq1FC3ACxeTDOjyrT8tCXuR92JjIvUdmTvLiBA/fDByuqNS89jn/PLuV/obdWbQqaFtBCcEEKIrCAJrhBCZ3xd72s6Ve6E6+/jODXYEY4dg4sXtR3WR7vy+Aqzrq3C+ZIeHQbM1nY42YJNcRs2dtvI6funGbh9EEke7nDvHixZkqnjJiYl0ndrX249vYVfTz8+Mf8E5s1Tl8TPnq3O4uZkM2eqS8FnzcK9uTuPXz7+t+hXdqcoaoLbrJlaHfp/eJ31Ijo+WopLCSFEDicJrhBCZ2g0GtZ0UvfjOhv48yyfAaxape2wPkqSkoTL9iHkjVP4wdBJPR5HAOBU2YnvWn2H3yU/piYdgDZt1GJIz55l2phTAqaw5/oefmz7I03KNIGdO9Uqzs7O6rFFOd2nn8KwYbBqFXVjC9KlShfmH5tPxMsIbUf2djdvqntwUzkeSFEUlgYtpV6petQpWUcLwQkhhMgqkuAKIXRKQZOC+HT3ISz6Pp8NK4ayzgtidawQzn8sD17O0bBjLNyrUKzfcG2Hk+2MsR+DS20X3I+6s+6LBvD0qTqjmgm8z3sz94+5DK8znOG2w9XVAX36qMfNrFmTMyomv4spUyBPHpg2jdnNZxP1Koq5R+dqO6q3e31ecir7bw/cPsDViKsyeyuEELmAJLhCCJ1Tz7Ie/9fy/9iW/x4/VnwK27ZpO6QPEvYijPH7x9PyRWEGPioBLVtqO6RsR6PR4NnOk+blmjP07CyOfNYCFi2C8PAMHef0/dN8tuMzGn/SmB/a/gAREeDkBHnzgr8/mJpm6HjZWokS8PXX4O1NtfAE+tfsz5KgJdx7cU/bkaUvIABKloRKld645BnkSWHTwvSo3kMLgQkhhMhKkuAKIXTS6Pqj6VixA986QtCmBdoO570pisKI3SNISEpgudcTNP36g74cW5KaPPp58OvhR7kC5ehS8Qw38r0CN7cM6/9h1EM6+3SmaN6i+PX0wzBJox5FFRamJreWlhk2ls4YN05dLj95MjOaziAxKZFZh2dpO/1lHRcAACAASURBVKq0KYpaQbl58zdm2v96/hc7ru5gaK2hGBsYaylAIYQQWUUSXCGETtJoNKzt4kUJfXN6ljvNs0tntB3Se/G75MfOazuZpd+KTyOSYOBAbYeUrRUwKcDuPrtR9DR0+NyMp7+sgOvXP7rfV4mv6O7bnYiXEfg7+1M0b1EYPVpNllauhPr1MyB6HVSggJrk7tpFuUv3GVZnGKv/XM2NJze0HVnqLl2CR49SXZ68PHg5gLrsXAghRI4nCa4QQmcVNCmIj9MvhOWHIZt6oyiKtkN6J09injDy15HUKVGHr31CwdYWqlXTdljZXoWCFdjacyu3DKPp0QPip07+qP4UReGrPV9x9K+j/NzpZ2qVqAXLl4OnJ3z7LQwYkEGR66hRo6BYMZg0icmNJpFHLw8zDs7QdlSpS2P/bVxCHCvPrKRjpY6UsSijhcCEEEJkNUlwhRA6rX6tjswNr8ZW/WssOf6DtsN5J677XIl4GcGqyq4YhJyT2dv30LRsU1Z0XMGBskmMjPZFOX36g/v6KfgnVpxZwcRGE3G2coZDh2DkSGjbFubqQFGlzJY3L0ydCocPU+LYOb6u9zUbz2/k/MPz2o7sTQEBUK4clEmZxPpe8uXvl39LcSkhhMhFJMEVQui8MU5z6XgVxu53Jfh+sLbDSdeBWwdYE7IG1wau2Gw/qVar7d1b22HplEE2g5hgO5oVtrDox74f1Meh0EOM2juK9hXbM6vZLLh9G7p1gwoVwNtb9kO/5uKiJo6TJjHO/lvyG+VnSuAUbUeVUmIiHDyY6vJkzyBPKhWqRItPW2R9XEIIIbRCElwhhM7TtG3L2pMlKBFrQE/fnjyLzbxzUj/Gy/iXDNs1jIoFKzKtwUTYsAE6dIBChbQdms6Z024+XfVrMLbsVXb6zn6ve+88u0N33+5UKFiBDV03oB/9Uq2YnJgIO3bIWcT/ZWgIM2fCn39SYNd+xjUcx46rOzh+97i2I/tXSIh6NvL/JLhnws9wIuwEI2xHoKeR/+4IIURuIT/xhRC6z8CAgn2Hsml9LHef32XojqHZcj/ujIMzuPX0Fis7rsQk4LBaFEeWJ38QPY0e60YFUvtxHnqfm87Z8JB3ui/6VTSdNnUiPjGe7b22Y25oBv37w+XLsHkzVKyYyZHroD59oHp1mDqVUbW/oGjeokwKmJR9vsde779t1izF056nPDHNY8pAG/keE0KI3EQSXCFEzjBkCPZhGjwSHdhyeQueQZ7ajiiFM+FnWHB8AS61XWhatil4eUHhwup+T/FB8uYvxI6aHli8TKLjz60Ij0z/bFxFURi8fTDnH51nU/dNVCpUCaZNg+3bYeFCaNUqiyLXMfr6MGcOXL9Ovo1+TGk8hYOhB9l/a7+2I1MFBkLVqur5vf94EvOEjRc20q9GPyyMLbQYnBBCiKwmCa4QImcoUwYcHRmz5jIdKrZn7L6xnL7/4QWIMlJ8YjxDdgyhaN6izGs1D548UZfC9umjLgEVH6zk4K/ZebwcETERdPJ24mX8yzTbehz1wPeSL//X8v9oU6EN+PioiduQIfDVV1kYtQ5yclKPTJo5k2HV+vOJ+SfZYxY3Ph4OH35jefLPf/5MbEIsX9pJcSkhhMhtJMEVQuQcLi7ohd1jbd6+FMtbjJ5+PXke+1zbUfH9ie8JeRCCZztPdTbJxwdevZLlyRnBwIBargvY6KsQHH6agf4DSVKS3mi28+pOpgRMoW+Nvoy1HwunT8OgQdCoESxdChpN1seuSzQa8PCAe/cwWrGaGU1nEHw/mG1Xtmk3rqAgiI5OsTw5SUliafBSGn/SGOti1loMTgghhDZIgiuEyDk6doSiRSn0sw8+3X346/lfDN2p3f241yOuM/3gdLpU6ULXql3VJ728wMoKatXSWlw5SufOdLKox7wTZvhd8mNa4LQUly/9fYm+W/tSu0RtVnZciebBA+jUCYoWhS1bZBb9XTk4gKMjeHjQv1wnqhSuwpSAKSQmJWovptf7bx0ckp/ae2Mvt57ekqOBhBAil5IEVwiRcxgaqrNyu3Zhb1AW9+bu+F3yY2nQUq2EoygKw3YNw0jfiCXtlqhPXr0KJ0+qs7cya5gxNBqYO5exe18wVN+OOUfmsO7sOgCexjyl06ZOmOYxxb+XPyaJGujSBZ4+VffeFi2q5eB1jLs7RERg8P0PzGo2i8uPL7Ph/AbtxRMQADY2KSqRewZ5UjxfcbpU7aK9uIQQQmiNJLhCiJxl6FD1uJeff2Zsg7G0r9ieMfvGcCb8TJaHsubPNRwMPch3rb6jpFlJ9UkvL9DTg74fdn6rSIODA5o2bfBcdI1mlo0ZumMoB0MP0mtLL+48u8NW561YmpWCzz9XP2D45Rc1MRLvp04d6N4dFi6kW+Em1ClRh+kHp/Mq8VXWxxIbC8eOpdh/e+vpLX69/ivDag/DUF9m5oUQIjeSBFcIkbNUrKguV1y1Cj0FvDp7UTRvUXr6Zu1+3PDIcL79/VualmnKkNpD1CcTE9XEqnXrFBVfRQZxd8cw4hlbbtahXIFytFzXkn0397Gs/TIalG4ACxbAunXqua5du2o7Wt01axa8fInGw4M5zecQ+iyUladXZn0cx49DXFyKBHdZ0DL0NHoMqzMs6+MRQgiRLUiCK4TIeVxc4PZtCAigkGkhfLr7EPosFJedLlm2H3fU3lHExMewouMK9DT//KgNDISwMCkulVlq1YLevSmwaDm7Wq6haN6ijKk/Rv2AYc8eGDdOnX2cMkXbkeq2KlXUrQBLl+KYpwpNyzRl1uFZRL+Kzto4AgLUI4waNwYgJj6GNSFr6FK1C6Xyl8raWIQQQmQbkuAKIXKerl2hYEFYqc4qNSjdAPcW7vhe8mVZ8LJMH97/ij9+l/yY3nS6etbqa15eYG6uFjgSmcPNDeLjqfjDeu6OvsuC1gvg8mXo3Rtq1oS1a9Ul4uLjTJ8OgMbNDfcW7jyMfsiPp37M2hgCAsDWFvLnB2DThU08iXkixaWEECKXk3/lhRA5j7Ex9O8P27bB338D8G2Db2lXsR2jfxvNn+F/ZtrQz2Of8+WeL7EuZs23Db7990JkJGzdCs7Oanwic1SoAMOGwcqV6N+8pRaTcnJS3/Pt2yFvXm1HmDN88gmMGAFr19IguiAdKnXg//74P57GPM2a8SMj4dSp5OXJiqKwJGgJ1YtUp2mZplkTgxBCiGxJElwhRM7k4gLx8eqeS0BPo5e8H7eHbw9exL3IlGHH7x/Pg6gHrHZaTR79PP9e8PODly9leXJWmDoVjIxg0iT1A4U7d9QPFz75RNuR5SyTJoGpKUyZwuxms3kW+4z5x+ZnzdhHj0JCQnKCe/LeSc6En+HLul+ikerkQgiRq0mCK4TImapXB3t7dZnyP/tuC5sWZlO3TZm2H/fwncMsP72c0fVHY1vSNuVFLy+1AJa9fYaOKVJRvDiMHq1+qPD77/DTT9CwobajynmKFIExY2DLFmqGxdPLqheLTi7iYdTDzB87IEA9FqxBA0A9GsjM0Ix+1v0yf2whhBDZmiS4Qoicy8VFPXf26NHkpxp+0pA5zeew+eJmlp9enmFDxSbE4rLThXIW5ZjpMDPlxdu34dAhGDBAzr7NKq6u6gcKEybAZ59pO5qca+xY9QzaSZNwc3AjLiGOOUfmZP64gYHqh0WmpjyKfsTmi5sZWHMgZkZmmT+2EEKIbE0SXCFEztWzp1qAZmXKI0xcG7rStkJbvtn7TYbtx519eDbXIq6xvMNy8hr+zz7PX35Rf+/fP0PGEu/A3Fz9cMPDQ9uR5Gz588PEifD771Q8F8ZntT7jp+CfuPPsTuaN+fQpnDmTvDx59ZnVvEp8xYi6IzJvTCGEEDpDElwhRM6VNy/06QO+vup/iv+hp9FjXZd1FDYtTE+/nh+9H/fcw3P83x//x8CaA2lVvlXKi4qi7gNu1gzKlPmoccR7ktnyrDFiBJQqBRMnMq3JVPQ0esw4NCPzxjt0SP2+at6cxKREfjr9E83LNadqkaqZN6YQQgidIQmuECJnc3GB2FjYsCHF04VNC7Op+yZuP73NsJ3DPng/bmJSIkN3DKWAcQEWOC54s8Eff8DNm1JcSuRcJiYwYwacPInlQbXQ07qz67j89+XMGS8gQC1uZWfHrmu7+Ov5X3I0kBBCiGSS4AohcrbatdVf/yk29VqjTxoxu/lsfC76sOL0ig/qfvHJxQTdD2Jx28UUMi30ZgMvL3UmuVu3D+pfCJ0waBBUqgSTJzOxwThM85gyNXBq5owVEACNGoGhIZ5Bnljmt8SpslPmjCWEEELnSIIrhMj5XFzg3DkICnrj0riG42hToQ1f7/2akAch79Xt7ae3mRI4hQ6VOuBc3fnNBjExsHmzmtzmy/eh0QuR/RkYwKxZcPEihf33MdZ+LFsubyH4fnDGjvPwIVy8CM2bc/XxVX6/9TvD6wzHQM8gY8cRQgihsyTBFULkfH36qEsa/6fYFPyzH7fzP/txfXsSGRf5Tl0qisLw3cPR0+ixtN3S1M/e9PeHFy9kebLIHbp3h1q1YPp0xtQZSSGTQkwJmJKxYxw8qP7evDlLg5aSRy8PQ2sPzdgxhBBC6DRJcIUQOV/+/ODsDN7eEPlmAlskbxG8u3lz6+ktPt/1+Tvtx11/bj37bu5jbou5lDYvnXojLy/45BNwcPjIFyCEDtDTA3d3uH2b/Ot8mNhoIr/d/I1DoYcyboyAADA3J6p6RdaeXUuP6j0olq9YxvUvhBBC50mCK4TIHVxcIDoaNm1K9XLjMo2Z1WwW3he8WXnmzZne/3oU/YhvfvsGe0t7vqj7ReqN7t+H339XjwbSkx+1Ipdo3RqaNIFZsxhRbSClzEoxKWDSBxdxe0NAADRtyoZLPryIeyHFpYQQQrxB/tclhMgd6teH6tVTXab82vhG42ldvjWjfh3F2Qdn02z3zd5viIyLZJXTKvQ0afwYXb8ekpJgwICPjVwI3aHRqGcPP3yIybKVTGs6jWN3j7H7+u6P7/uvv+DGDRQHBzyDPLEpboO9pf3H9yuEECJHkQRXCJE7aDTqLG5QEJxNPXnV0+jxS5dfKGRaiB6+PVLdj7v72m68L3gzufFkqhWplvpYiqIuT7a3VyvLCpGbNGgAHTrAvHkMLtOZCgUrMDlgMklK0sf1GxgIwNGaBTj/6Dxf1v0y9b3vQgghcjVJcIUQuUf//mBklO4s7uv9uDef3nxjP25kXCRf7P6C6kWqM7HxxLTHOX0aLl2S4lIi95ozB54/J8/8hbg5uHHu4Tl8Lvh8XJ8BAVC4MJ4Rv2JhbEGfGn0yJlYhhBA5iiS4Qojco2BB9cie9evh5cs0mzUp0yR5P+6qM6uSn58cMJmwF2Gs7LgSQ33DtMfx8lITaedUjg4SIjewtobevWHxYpwLNcG6mDXTDk4jPjH+w/pTFAgIILxVfbZc2cpgm8GY5jHN2JiFEELkCJLgCiFyFxcXeP4c/PzSbTah0QQcyzsyau8ozj08x/G7x1lyagkj7UZiXzqdfX+vXqnVmjt3BguLDA5eCB3i5gbx8ejNnsOc5nO48eQGa0PWflhfN29CWBgraiskJCUwou6IDA1VCCFEzqHJsMqGWmRra6sEB2fwYfJCiJxJUaByZSheHA4fTrfpo+hH2Pxkg5mRGQZ6BkTGRXJxxEXMjMzSvmnbNujaFfbsgbZtMzh4IXTMF1/AqlUoly/T8NAA/nr+F9e/uo5JHpP362fFCuK/+JwyHkWoWaoOv/b9NXPiFUK8t/j4eMLCwoiNjdV2KCKHMDY2xtLSkjx58qR4XqPRnFYUxfZt9xtkWmRCCJEdaTQwdCiMHw9XrkCVKmk2LZq3KN7dvGm+rjlJShK7eu9KP7kFdXly8eLQqlUGBy6EDpo6Fby80MyYgcdsDxy8HFgWvIwx9mPer5+AAPztCxAe8zcr5GggIbKVsLAwzMzMKFu2rBR+Ex9NURQiIiIICwujXLlyH9SHLFEWQuQ+AweCgQGsWvXWpk3LNmWN0xrmNJ9D+0rt02/899+wezf066f2L0RuV7IkfPUVbNxI08iCOJZ3xP2IOy/iXrx7H//sv/VslIeyFmVpW0FWRgiRncTGxlKoUCFJbkWG0Gg0FCpU6KNWBEiCK4TIfYoVg06d1NnWuLi3Nh9oM5BJjSe9vV9vb0hIkOrJQvzX+PGQPz9Mnsyc5nOIiIng++Pfv/v9Fy9yQfM3h0we8YXtF+jr6WderEKIDyLJrchIH/v1JAmuECJ3cnGBx49h+/aM69PLC2rXBiurjOtTCF1XsCCMGwc7d2Ib+opuVbux4PgCHr98/G73BwSwtC4Y6RnyWa3PMjdWIYQQOk8rCa5Go+mh0WguajSaJI1GY/s/1yZqNJobGo3mqkajaa2N+IQQuUCrVlCmTLpn4r6XCxfgzBmZvRUiNV9/ra6cmDSJWQ5uRMdHM/fo3He69fmhfayz0dCrRm8KmxbO5ECFELpozpw5VK9eHWtra2xsbDh58iQAixYt4mU6xwKmZe3atdy/fz+jw2Tt2rXMmDHjndqGhoZiYmKCjY0N1apVY8CAAcTHp3/UWmhoKBs3bsyASHWbtmZwLwBdgRQlTDUaTTWgF1AdaAMs1Wg0shZJCJHx9PRgyBDYvx9u3fr4/ry81H23vXt/fF9C5DR588KUKXDoEFX/vMuAmgNYcmoJYS/C0r8vMZF1EQFE51EYaTcya2IVQuiU48ePs2vXLs6cOcO5c+fYv38/pUuXBtJPcBMTE9PsM7MS3PdVvnx5QkJCOH/+PGFhYWzevDnd9h+a4Kb3XugirSS4iqJcVhTlaiqXOgGbFEWJUxTlNnADsMva6IQQucbgwWqiu3r1x/WTkADr10P79lCkSMbEJkROM2wYlC0LkyYxvfFUkpQkZh2ale4typ9/stQqBjuj8tiWfOvJEEKIXCg8PJzChQtjZGQEQOHChSlZsiSLFy/m/v37NGvWjGbNmgGQL18+pk2bRr169Th+/Dhubm7UrVsXKysrhg0bhqIo+Pn5ERwcTN++fbGxsSEmJobTp0/TtGlT6tSpQ+vWrQkPDwcgKCgIa2tr7O3tcXV1xeqfLUqNGzcmJCQkOcaGDRty7tw5TExMyJcvHwC+vr5YWVlRs2ZNmjRpku5r1NfXx87Ojnv37gFqQurq6krdunWxtrZm+fLlAEyYMIEjR45gY2PD999/z9q1axk58t8PBzt06MDBgwdTfS/Kli3L9OnTqV27NjVq1ODKlSsf+1ejNdmtzGcp4MR/Hof985wQQmQ8S0to1w5+/hlmzvzwyse//w4PHsjyZCHSY2iofp8NHEjZA6cZbjucpUFLcW3oSoWCFVK9JWD/Cq4UAS/7UVkcrBDig3zzDfwnscsQNjawaFGalx0dHXFzc6NSpUq0bNkSZ2dnmjZtyqhRo1i4cCGBgYEULqxub4iOjsbKygo3NzcAqlWrxrRp0wDo378/u3btonv37ixZsoT58+dja2tLfHw8X331Fdu3b6dIkSL4+PgwefJk1qxZw+DBg1mxYgUNGjRgwoQJyTENHTqUtWvXsmjRIq5du0ZcXBzW1tZYW1snt3Fzc+O3336jVKlSPHv2LN23IDY2lpMnT/LDDz8AsHr1aszNzQkKCiIuLo6GDRvi6OjI3LlzmT9/Prt27QLUmei0/O97AeqHA2fOnGHp0qXMnz+fVe9w2kR2lGkJrkaj2Q8UT+XSZEVR0qrqklrJLCWN/ocBwwCKFSuW/GmEEEK8j0L161Nj1y7Oz51LRKNGH9RHte++o0D+/BzLlw9FfhYJkbZSpahbtiyasWNptnwhKzUr+dznc6ZWnZpq8+/v+FHIQo/iiVXk33khsilzc3MiIyMBMHr1Cr0MXu6a9OoVcf/0n5aDBw9y7NgxDh8+TM+ePZk5cyZ9+/ZFURSioqKSZ3f19fVxdHRMjnfPnj0sWrSImJgYnj59SoUKFXBwcCAxMZHo6GgiIyO5dOkSFy5coEWLFoA6e1qsWDHu3r3LixcvqFGjBpGRkXTq1IkdO3YQGRlJmzZtmDlzJtOmTeOnn36iV69eyWO+ZmdnR//+/enSpQsdO3ZEXz/lrsyoqChu3ryJtbU1N2/epFOnTpQrV47IyEj27NnDhQsXkpcsv3jxgrNnz2JoaEhCQkLyWLGxsbx69Sr5cUJCAi9fviQyMvKN90JRlOTHVapUwdfX942Ys1JsbOwH/9zPtARXUZSWH3BbGFD6P48tgVQXwCuKsgJYAWBra6s4ODh8wHBCiFyvUSPw9KTGiRPqHsH39ewZHDsGLi40bdUq4+MTIqf5/nvo0oUu954xpsEY3I+6s7DLQmoWr5mi2d2IW/wa+BTX2No4NnfUUrBCiLe5fPkyZmZm6oOlSzNlDMN3aNOuXTvatWuHra0tXl5eDB8+HI1GQ758+ZLjMzY2xsLCAlATqLFjxxIcHEzp0qWZMWMGiqJgZmaGvr4+efPmxczMDFNTU6pXr87x48dTjPf06VM0Gk1y33nz5kVPTw8zMzPMzMxo3bo1AQEB+Pv7Exwc/O979I/Vq1dz8uRJdu/enbykuVChQsnX8+XLR/ny5Tl37hzh4eE4ODgQGBiIk5MT+vr6eHp60rp1ynq8Bw8exMDAIHmsfPnypXickJCAqakpZmZmKd4L+Pf8WTMzM/Lnz5/8XmiLsbExtWrV+qB7s9sxQTuAXhqNxkij0ZQDKgKntByTECInMzBQ9+L++iuEvaXgTWo2b1bP0pXlyUK8m06doF49mDmTb+uMxMLYgimBb364tHy3G4oGhtdy0UKQQghdcfXqVa5fv578OCQkhDJlygBgZmaW5ixkbGwsoC7LjYqKws/PL/naf++rXLkyf//9d3KCGx8fz8WLFylQoABmZmacOKHurty0aVOK/ocOHcqoUaOoW7cuBQsWfGP8mzdvUq9ePdzc3ChcuDB3795N8zWWKFGCuXPn4uHhAUDr1q1ZtmxZclXla9euER0d/cbrLVu2LCEhISQlJXH37l1OncodaZW2jgnqotFowgB7YLdGo/kNQFGUi8Bm4BKwF/hSUZScVdZLCJH9DBkCSUmwZs373+vlBdWqQZ06GR+XEDmRRgPu7hAWRoE13oxrMI5d13Zx7O6x5CZxCXGsvO1Hh2tQtlUPLQYrhMjuoqKiGDhwINWqVcPa2ppLly4lH8UzbNgw2rZtm1xk6r8sLCxwcXGhRo0adO7cmbp16yZfGzRoEMOHD8fGxobExET8/PwYP348NWvWxMbGhmPH1J9Xq1evZtiwYdjb26MoCubm5sl91KlTh/z58zN48OBU43Z1daVGjRpYWVnRpEkTatasmWq71zp37szLly85cuQIQ4cOpVq1atSuXRsrKys+//xzEhISsLa2xsDAgJo1a/L999/TsGFDypUrR40aNfj222+pXbv2+769OkmjKKlucdUptra2SnBwsLbDEELoslat4No19cgg/Xc8nez6dahUCf7v/2DcuMyNT4icplUr+PNPoq+ep/zPtahSuAqBAwPRaDRsOLeBftv6sfdYeVr/dkPbkQoh0nH58mWqVq2q7TC0IioqKrkq8ty5cwkPD08uBHX//n0cHBy4cuUKenrZbdFs9pfa15VGozmtKMpbS+rLuy2EEAAuLvDXX2pF5He1bp16zFC/fpkXlxA5lbs7RESQ98flTGkyhUN3DvH7LfX7z/Pkj1R8oqGVlZOWgxRCiLTt3r0bGxsbrKysOHLkCFP+qeWxbt066tWrx5w5cyS51QKZwRVCCFD30VpaQpMmsGXL29snJUG5clC1Kuzdm/nxCZETdesG+/bx6voVKvs0opBJIVZ0XEGdFXX4fi98M2WXer60ECLbys0zuCLzyAyuEEJ8LCMjtVDUjh3w8OHb2x86pM74SnEpIT7c7Nnw8iWG8xYwo+kMToefpveW3pgqeRh0Tg8aN9Z2hEIIIXSMJLhCCPHa0KGQkADpHIyezMsL8ueHzp0zPSwhcqyqVdUPiZYupV+BplQtXJVrEdfoe68gFtZ26veYEEII8R4kwRVCiNeqVFFnjFatgvS2b0RFgZ8f9OwJJiZZF58QOdGMGaAo6M+azbxW8zAxMGHU7sfQvLm2IxNCCKGDJMEVQoj/cnGBGzfg4MG022zdCtHRsjxZiIzwySfwxRfw8890UCry3MYHq/BESXCFEEJ8EElwhRDiv7p3BwsLWLky7TZeXlC+PDRsmHVxCZGTTZqkroaYOpU8Bw+DoSE0aKDtqIQQOuLBgwf06tWL8uXLU61aNdq1a8e1a9dISkpi1KhRWFlZUaNGDerWrcvt27cBKFu2LI8fP36jLwcHBypXroyNjQ02NjY8evQIgLi4OJydnalQoQL16tUjNDQ0+R4PDw8qVKhA5cqV+e2331KNMa3x0hIaGoqVldV7vAv/OnjwIIMGDXrn9vr6+snVoDt27MizZ8/Sbf/s2TOWLl36QbFlBUlwhRDiv0xM1GN/tmyBiIg3r//1FwQGwoABoNFkfXxC5ERFi8KYMeDrC7/8Avb2svxfCPFOFEWhS5cuODg4cPPmTS5duoS7uzsPHz7Ex8eH+/fvc+7cOc6fP8+2bduwsLB4a58bNmwgJCSEkJAQihYtCsDq1aspUKAAN27cYPTo0YwfPx6AS5cusWnTJi5evMjevXsZMWIEiYmJmfqaM5qJiQkhISFcuHCBggUL4unpmW77D01ws+p9kQRXCCH+l4sLvHql/kf7f/3yi7o/d8CArI9LiJxs7FgoWFCtYi7Lk4UQ7ygwMJA8efIwfPjw5OdsbGxo3Lgx4eHhlChRIvksWktLSwoUKPBB42zfvp2B/2xN6t69OwcOHEBRFLZv306vXr0wMjKiXLlyVKhQgVOnTqXZT2hoKFWrVsXFxYXq1avj6OhITEwMAKdPn6ZmzZrY29unSDITExNxdXWlABPW2QAAIABJREFUbt26WFtbs3z5cgC2bdtGy5YtURSF8PBwKlWqxIMHDzA0NMTc3ByAQ4cOJc9G16pVi8jIyHRfp729Pffu3Ut+/N133yWPO336dAAmTJjAzZs3sbGxwdXVlYMHD9KhQ4fke0aOHMnafwp2li1bFjc3Nxo1aoSvry8ODg6MHz8eOzs7KlWqxJEjR971r+CdGWR4j0IIoeusrcHOTl2m/PXX/87UKoq6PLlpUyhbVqshCpHjmJurS5W//RZatdJ2NEKID/DN3m8IeRCSoX3aFLdhUZtFaV6/cOECderUSfVaz549adSoEUeOHKFFixb069ePWrVqvXXMwYMHo6+vT7du3ZgyZQoajYZ79+5RunRpAAwMDDA3NyciIoJ79+5Rv3795HstLS1TJIipuX79Ot7e3qxcuZKePXuyZcsW+vXrx+DBg/nxxx9p2rQprq6uye1Xr16Nubk5QUFBxMXF0bBhQxwdHenSpQtbtmzB09OTvXv3MnPmTIoXL07x4sVp8M82j/nz5+Pp6UnDhg2JiorC2Ng4zbgSExM5cOAAQ4YMAWDfvn1cv36dU6dOoSgKTk5OHD58mLlz53LhwgVCQtS/64Pp1S0BjI2NOXr0KAA//fQTCQkJnDp1ij179jBz5kz279+f7v3vS2ZwhRAiNS4ucOkSHD/+73MnTsD161JcSojMMno0HDumLlEWQoiPZGlpydWrV/Hw8EBPT48WLVpw4MCBdO/ZsGED58+f58iRIxw5coRf/lnNpaRyuoJGo0nz+fSUK1cOGxsbAOrUqUNoaCjPnz/n2bNnNG3aFID+/fsnt9+3bx/r1q3DxsaGevXqERERwfXr1wH48ccf8fDwwMjIiN69e78xVsOGDRkzZgyLFy/m2bNnGBi8Ob8ZExODjY0NhQoV4smTJ7T650PGffv2sW/fPmrVqkXt2rW5cuVK8rjvw9nZOcXjrl27pnjtGU1mcIUQIjW9eqn/2V658t9iN15eYGqqFqISQmQ8PT1JboXQYenNtGaW6tWr4+fnl+Z1IyMj2rZtS9u2bSlWrBj+/v60aNEizfalSpUCwMzMjD59+nDq1CkGDBiApaUld+/exdLSkoSEBJ4/f07BggWTn38tLCyMkiVLphuzkZFR8p/19fWJiYlBUZQ0E2NFUfjxxx9p3br1G9fu3buHnp4eDx8+JCkpKXk59msTJkygffv27Nmzh/r167N//36qVKmSos3rPbjPnz+nQ4cOeHp6MmrUKBRFYeLEiXz++ecp2v9vUmpgYEBSUlLy49jY2BTX8+bNm+rr19fXJyEhIdXX/DFkBlcIIVKTLx/07g0+PvD8OcTGqn/u2hXMzLQdnRBCCCGA5s2bExcXx8r/nH4QFBTEoUOHOHPmDPfv3wcgKSmJc+fOUaZMmTT7SkhISK50HB8fz65du5IrGTs5OeHl5QWAn58fzZs3R6PR4OTkxKZNm4iLi+P27dtcv34dOzu7934dFhYWmJubJy/l3bBhQ/K11q1bs2zZMuLj4wG4du0a0dHRJCQkMHjwYDZu3EjVqlVZuHDhG/3evHmTGjVqMH78eGxtbbly5UqaMZibm7N48WLmz59PfHw8rVu3Zs2aNURFRQFqMv3o0SPMzMxS7OUtU6YMly5dIi4ujufPn791ljyzyQyuEEKkxcVFncHduBEKFYJnz2R5shBCCJGNaDQatm3bxjfffMPcuXMxNjambNmyLFq0iJs3b+Li4kJcXBwAdnZ2jBw5Ms2+4uLiaN26NfHx8SQmJtKyZUtcXFwAGDJkCP3796dChQoULFiQTZs2AeoMcs+ePalWrRoGBgZ4enqir6//Qa/l559/5rPPPsPU1DTFbO3QoUMJDQ2ldu3aKIpCkSJF8Pf3Z8GCBTRu3JjGjRtjY2ND3bp1ad++PVWrVk2+d9GiRQQGBqKvr0+1atVo27ZtujHUqlWLmjVrsmnTJvr378/ly5ex/2dlTb58+Vi/fj3ly5enYcOGWFlZ0bZtW7777jt69uyJtbU1FStWfKd9zplJk9q6cV1ja2urBAcHazsMIUROoyhQq5a6bLJECTh3DkJD4QP/4RJCCCFymsuXL6dIqITICKl9XWk0mtOKoti+7V5ZoiyEEGnRaNRZ3D//hF9/hf79JbkVQgghhMjGJMEVQoj09O0LJibqbK4sTxZCCCGEyNZkD64QQqTHwgJGjFCPB6pcWdvRCCGEEEKIdEiCK4QQbzN/vrYjEEIIIYQQ70CWKAshhBBCCCGEyBEkwRVCCCGEEEIIkSPIEmUhhBBCCCFEhig7YXeG9hc6t/07tdu2bRtdu3bl8uXLVKlSJd22a9euxdHRkZIlSwLqObNjxoyhWrVqHxWrg4MD4eHhGBsbY2hoyMqVK7GxsUn3nkWLFjFs2DBMTU0/amzxL5nBFUIIIYQQQug0b29vGjVqxKZNm97adu3atdy/fz/58apVqz46uX1tw4YNnD17lhEjRuDq6vrW9osWLeLly5fvNUZCQsKHhpcrSIIrhBBCCCGE0FlRUVH88ccfrF69+o0Ed968edSoUYOaNWsyYcIE/Pz8CA4Opm/fvtjY2BATE4ODgwPBwcEsW7aMcePGJd+7du1avvrqKwDWr1+PnZ0dNjY2fP755yQmJqYbk729Pffu3Ut+vG/fPuzt7alduzY9evQgKiqKxYsXc//+fZo1a0azZs0AyJcvX/I9fn5+DBo0CIBBgwYxZswYmjVrxvjx45kxYwafffYZDg4OfPrppyxevPij3sOcRBJcIYQQQgghhM7y9/enTZs2VKpUiYIFC3LmzBkAfv31V/z9/Tl58iRnz55l3LhxdO/eHVtbWzZs2EBISAgmJibJ/XTv3p2tW7cmP/bx8cHZ2ZnLly/j4+PDH3/8QUhICPr6+mzYsCHdmPbu3Uvnzp0BePz4MbNnz2b//v2cOXMGW1tbFi5cyKhRoyhZsiSBgYEEBga+9XVeu3aN/fv3s2DBAgCuXLnCb7/9xqlTp5g5cybx8fHv/d7lRLIHVwghhBBCCKGzvL29+eabbwDo1asX3t7e1K5dm/379zN48ODk/a0FCxZMt58iRYrw6aefcuLECSpWrMjVq1dp2LAhnp6enD59mrp16wIQExND0aJFU+2jb9++REdHk5iYmJxonzhxgkuXLtGwYUMAXr16hb29/Xu/zh49eqCvr5/8uH379hgZGWFkZETRokV5+PAhlpaW791vTiMJrhBCCCGEEEInRUREEBAQwIULF9BoNCQmJqLRaJg3bx6KoqDRaN6rP2dnZzZv3kyVKlXo0qULGo0GRVEYOHAgHh4eb71/w4YNycuhv/zyS7Zu3YqiKLRq1Qpvb++33v/feGNjY1Ncy5s3b4rHRkZGyX/W19eXvbn/kCXKQgghhBBCCJ3k5+fHgAEDuHPnDqGhody9e5dy5cpx9OhRHB0dWbNmTXIRpydPngBgZmZGZGRkqv117doVf39/vL29cXZ2BqBFixb4+fnx6NGj5H7u3LmTZkx58uRh9uzZnDhxgsuXL1O/fn3++OMPbty4AcDLly+5du1aqrEUK1aMy5cvk5SUxLZt2z7y3cmdZAZXCCGEEEIIkSHe9VifjOLt7c2ECRNSPNetWzc2btzIsmXLCAkJwdbWFkNDQ9q1a4e7uzuDBg1i+PDhmJiYcPz48RT3FihQgGrVqnHp0iXs7OwAqFatGrNnz8bR0ZGkpCTy5MmDp6cnZcqUSTMuExMTxo4dy/z581m9ejVr166ld+/exMXFATB79mwqVarEsGHDaNu2LSVKlCAwMJC5c+fSoUMHSpcujZWVFVFRURn8juV8GkVRtB3DR7O1tVWCg4O1HYYQQgghhBC5yuXLl6lataq2wxA5TGpfVxqN5rSiKLZvu1eWKAshhBBCCCGEyBEkwRVCCCGEEEIIkSNIgiuEEEIIIYT4YDlhy6PIPj7260kSXCGEEEIIIcQHMTY2JiIi4v/bO+9oS4pqD3+/GQYYovDIOaggSZIgYchBMipBQAETKqgPERWe+B5BFEWCD0GSSlDhoRIEFQMGUERBQQQlCIKAIllynN/7Y9cZDuPMcO8doE/V3d9aZ82c082s+tjd1V3dVXvnIDd5SbDN/fffz8wzzzzifyOzKCdJkiRJkiRJMiIWWWQR7rzzTu69996um5I0wswzz8wiiywy4v8+B7hJkiRJkiRJkoyIcePGseSSS3bdjCSZRE5RTpIkSZIkSZIkSZogB7hJkiRJkiRJkiRJE+QAN0mSJEmSJEmSJGkCtZDxTNK9wO1dt6Mj5gHu67oRLxOturXqBelWK+lWJ626teoF6VYr6VYnrbq16jUUFrc974vt1MQAdzQj6Srbq3fdjpeDVt1a9YJ0q5V0q5NW3Vr1gnSrlXSrk1bdWvV6KckpykmSJEmSJEmSJEkT5AA3SZIkSZIkSZIkaYIc4NbPyV034GWkVbdWvSDdaiXd6qRVt1a9IN1qJd3qpFW3Vr1eMnINbpIkSZIkSZIkSdIE+QY3SZIkSZIkSZIkaYIc4CZJkiRJkiRJkiRNkAPc5CVBkrpuw8tFa26t+UyJlh3TrU5ac2vNZ0q07JhudZJuddKq2yB75QA3GTGS5pI0G4AbW8zdshswU/+XQe6ghkPLMWvcbX5JC0KTbs3GDZi1/0v2I4NPutVJ431kulVGLV45wE1GhKQ3Az8BTpN0gqSZu27TS0XjblsC50o6WNKHIDqo2m9OG49Zy25vBS4BviHpa5KWlzRD1+16KWg8btsCF0v6kqTDYbBvdIZK4zFLtwppvI9Mt8qoySsHuMmwkbQEcCCwD7AXsDhwrKSlO2zWS0LjbqsCXwS+AlwF7CLpVKh7kNt4zJagXbf5gA8CuwObAI8C7wfWH9QL5lBpPG7LAZ8BDgW+DLxJ0lckjSnbsx8ZMNKtThrvI9OtMmrzygFuMhKeAB4G7rX9ALAtIODjg3iQD5OW3Z4DLrP9HdsXARsAq0s6Bap+A9NyzFp2ewaYERhveyKwL3A3sD2wFNQ7WKLtuD0B3AT8yvb1wJrAIkD2I4NLutVJy31kutVHVV45wE2Gje1/Ar8H1pA0u+3ngL2BJYCju2zb9NKyG/A0sJCkJQFsP03cnL5O0l6dtmw6aDlmjbs9CHwbWEfSosXtCOICekDZp8rBUstxIwYTjwCrAth+FtgSWEXS/3TZsOmh5ZilW5003kemW2XU5pUD3GRISNpE0kGSdpW0AHABsCuwtqQ5y4G+JzCXpHFdtnW4NO62uqSdJS1t+8/AD4EfS5oLwPZTwHHAq7ps53BpPGYtu20p6QuSDpT0auBC4NXAZpIWK24fAhboHaO10Hjc1pW0t6T1gCeB7wFHlunKFLf3MVniqUGn8ZilW51uLfeR6VaZW81eOcBNXhRJGwLHl68rAz8F7gJOINa9vFnSssDGwNJANdOCGnfbBjgb2AY4RNJxwInA14DfSlqm7LoQsKakGQZpesnUaDxmLbutDRwL3AiMAy4FZgf+j5hJsIekDYA3AwsAz3bT0uHTeNzeBHwVeC2wC3AO8DNiSvJXy2DjVcQb3VUkzTTVf2yAaDxm6VanW8t9ZLpV5la7VzUnftIpKwHfsv1pAEm3Ab8G1gIOJwZQuwHjgb1tP9FRO0dCy24bAZ+w/R1JKxHrJE4jnmw/QryBeQJYEdipTDWsgZZj1rLb0sDPbJ8CIOkO4njcnXDbGvgUMZX+3bYf6aidI6HluL0ROM72ceUJ/buB7wNbAA8BOwP/CSwM7FlmhdRAyzFLtzrdWu4j060+t6q9coCbDIU7iSkJANg+obzouwDYzPZB5cZnjO37O2rjSGnZbRywCvAd29dKug94D3C47f0kXUisnXjC9t+6bOgwaTlmLbvdDKwraV7b99r+WnH7PrCe7eMlnQ5g+9EuGzoCWo7bv4Deuv0HgS8Ut1OJN7o/AuYAnrN9d1eNHAEtxyzd6nRruY9MN6pzq9orpygnQ+EXwARJB/d+sH0CUQtrjfL9wQovJtC229FECY89AWz/neiYFpK0sO2/2r6xssEttB2zlt3+BMxPvO1Dkmx/jShbtTnERXIQL5RDoOW4fZOY9vmxvt/OAO4FlrP9iO27KhvcQtsxS7c63VruI9OtPreqvfINbjJFylpM2Z5o+z5JWwFXxPHtQ8pu44h1WVXRshuApLG2n7N9q6RPAftIGmP7q7avkjQjsV7uro6bOmRajtkocMPBw5LeA1woaSJwMvE2BmDBrto4UlqOG0DpMyba/qdiPf/pkrB9pO17Sj+yEvC7jps6ZFqOWbpV7dZyH5luFdGSlzw4GZ2TAUDSeOAZl/WYkuYBtrB9pqRFgXOBK4mHI+sCb7F9Q2cNHgYtu02OpIWBxW1fLmlT4HPAj4F7gL2IqVy3d9nGodByzBp3mwt43GU9Zvm+i2M64YLAF4lyM7Pz/Brw6zpr8DBoPG5jKPc25fsCwOq2L5K0PJFB8yLgcWJN/9a2/9JZg4dI4zFLtzrdWu4j060ytxa9coCbTELSm4GdiJIxnwduAmYCXm/7vLLP3MBqRI25S23f2E1rh0fjblsDE4j1tEfbvkOR2W4F218q+yxOrL8VcI7ta7tq71BpPGatu72XeKNyBvAHYrbAKrZ/UvaZHVgcWBb4ve1bO2rusGg8btsTiaNeBRxGrL9aDljJ9ulln/mArYB5gO/bvr6j5g6ZxmOWbvW6tdxHpltFbs165QA3AVDUt/oRUUtuNWB54B/AmbZv67Bp003jbm8gSgEdQKw/2gA4sNcpTbavXMkJ33jMWnZbFPg5kVl3ccJtIeBU21f17TebB3TdztRoPG4rAN8lbnLWIZYwXEBkq60qTv00HrN0q5DG+8h0q8ytVS/IJFPJ87wKuMn2FbaPJxKLzALsImkhAEW9w10lje2yoSOgZbdlgMtsf8v2x4jMpvtKWr+3g6TdJK1Xy+C20HLMWnabEbjR9lW2v0PUy7sBeGcZRCHpjcBuqqReah8tx20R4Frbl9g+FDidmBWyvaSZASRtV2aL1ETLMUu3Ot1a7iPTrT63Vr1ygJsE5UmNJb23fP8lkXF3aUqJCOA+4Fe2n+umlSOjZTfK+qNeR2T7JGKN3NG9GwFi3e19HbVvRLQcs8bdbgGQdFj5fiNwMfAgMd0V4AHgQtdTLxVoO27A5cQkjzcBlCmgFwFvI57qQ2RNrmIKaI+WY5Zu1bq13EemW2VurXpBTlEe1UiaQDwpHWf7XEk7A28Afmn7/LLPfsAbgV1dEj3UQONuKxOFtZ+xfbOkLwN/A75q+59ln2OAh4BDa3lz23jMWnbbiFgDN8b2qZLWJArB32D7uLLPrsRg6a22n+msscOk8bitSamkYPtXkj4BzAZc0JuaJunTwHzAB2oZSDQes3Sr063lPjLdKnNr1Wty8g3uKEXSxsC3iGxoh0k6BPgjkQJ8gqR9yq73AI8QyYmqoHG3LQm3/YHjJL0f+Dix/vZdklYtu94FkQ61k4YOk8Zj1rLbesA5wHhgb0mfJaYSXgIsJ+mIsutE4BkiiUUVNB63zYFvA28BviTpQKK24WzEtORty663A48S8Rt4Go9ZutXp1nIfmW6VubXqNSXyDe4oQ5KIBxvHAH+yfaIi9f6pwFXERWY54AOAgaWAHW1f01GTh8wocBsPnA+cYPt8ScsSU0m+SDgeThTlHgu8niiZ8MeOmjwkRkHMmnSDSX4HAM/aPlJRVuAg4AkiQcyjwGeIi+RrgZ1rcGs5bsVtHHAmMeXs64pSQD8EvgGcAuwJbEIMIl5DBW6jIGbpVpkbtNtHQrpRoVurXlPFdn5G4Qd4J/C/wDzl+zxEFs1D+vZZHpi367am2wvcPg1s3vd9AeCvwF7l++LAm4Elum5rxmxUuG1HrNVcvHyfk7hZ/WzfPgsCc3Xd1ozbC9z2Az4EzFS+L0C8MTugfJ+FSDK1UNdtzZilW+VuLfeR6VaZW6teU/rkFOXRy01EweZlJc1k+z6iTuoOZfoatq+3fW+XjRwhLbs9BPxXeRKH7buBbYGtJS1q+3bb57m+Ugotx6xlt6sJvwmS5rH9L6KG6taS3gZg+x+2H+yykSOk5bjdBWxMrK/t9SNbAG+WtKrtx21fZvvvXTZyBLQcs3Sr063lPjLd6nNr1evfyAHuKKA3GCp/HwuRVITIwPsRYA1J89q+h5jyWs2C8pbd+ulz+wKxLu63ksaU3/4IPE4layVajtkodPsb8DOi/vIWkpa0/QBwHlBFUiJoO2799Ln1SkGcLmkxSTPbvhO4rtMGDoOWY5ZuTbm13Eem2wDTqtdQmaHrBiSvCOOIrLvYfk7SfMAatk+QNAux5gpJdxBZ077cVUNHQMtuk+hzw/bukr4OXCLpOKKG5UrUcyPQcsxadhtPPEjpuc1LrPM+SdLswKpE7bwriSmHE7pr6rBpNm6SxrpkQO5zW9j2AZKOAo4lHpgZ2JBYBlEDzcaMdKvVreU+Mt3qc2vVa0hkkqnGkbQZsDOxvup62z+WtAGx9uqHZZ/ViAXlKwJn2L6hq/YOh8bd1gdWAP4J/MD2Y5I+Rnh+v+zzQWL9xBrAJ20P/NuXxmPWstubgH2A3wJ32z5F0muAJW3/qOwzP7AKUavyR7Zv7qzBw6DxuG0EbESs07/M9k2SdgMesP2Dss/2xJqr1YGjbP+pswYPkcZjlm51urXcR6ZbZW6teg2HHOA2jKQ3AhcQ035WAuYG7rR9aNk+g+1nJY2xPVGSXMkB0bjbBsC5wKHEE+xLgB/avrRsn8F9NQAljXMFdcoaj1nLbqsS2bv/k6hTuTHwlO13l+09txltP91hU4dN43GbQMTtAGBz4A7gattnlO2T9yOT3vQOMo3HLN3qdGu5j0y3ytxa9RouuQa3bcYDp9j+JpH6+yTg1ZIOAygH+JrAjtLzc/UroWW3FYGDbR8L7Egkltpe0hYwyW1tSUuV/WspeN9yzFp2exY43/Z5RCmZDwOvknQaTHJbA9hH0pjK/FqO24LAF2yfAuwN/ApYW9L7YJLbWpLWLftXUeuWtmOWbnW6tdxHplt9bq16DYsc4LaNgF0kvc72w8C1RCr+ecvTfYi6qZe60FVDR0DLbg8Cb5O0sO07gNOBu4F1JM2gSC61GfAkQEVuLcesdbeNJK1s+2lHQoq9gLGS3lH2MXCW7YkVurUat6eAPSQt5UjY8yNiNsgyisRSIt6k3QLZjwwI6VavW8t9ZLrV5daq17DIAW5jSFpO0nqSZrH9U+Ao4BhJr3FMY72JSEa0PIDt79r+R4dNHjKNuy0maUEA218HfkEMcnvZJP8P2AbYonRIB7uCEh6Nx6xlt1Uk7SBpEdt/AD4HnCNpxbLLw8BviLeE2L7SUWpm4Gk8bksXP9m+gHg4tr+ihNjDRL/yOmBCGUOcVINb4zFLtzrdWu4j060yt1a9pofMotwQkrYDjgd+DcxfpiNcRsT5BEn72r5e0t+IenNjgSqe3jTuti2RyfRySYsCuxOe6xJvYM62fbuki4j1FJQb2IF2azxmLbttS7j9DHi3IsPiqcQD0fMk7Wz7d2UmwaqSZgSeqcSt5bhtB3yJuIlZWNJ/EdOS1yNqZx9l+y+SLgcWKfEb+DdloyBm6VafW8t9ZLpV5taq1/SSA9xGKAfsNsButn8haWciK+Y8wPeIOfkXSLoYeAuwsStIKALNu81HJN3YzfavFWU7jgaOBC4F1gYuLIPb9wFrweBPJ2w8Zs26FdYDPmD7IknrEaUDDiDWzT0HnCzpD0QdvW1cSZKKluMmaQ5gD2Cn0o98BNgN+DHwc+Jh2Q8lnVf2m2B74NfcNh6zdKvQrdBkH1lIt/rcWvWaLjKLckNIOhu4yfZ/l++bAZsC19o+U5HF8DngPtt/7bCpw6ZVt/JE7RzgK36+bMcngDcCH7J9p6S3ArMDl9u+qbvWDo9WYwbNu50MPGt77/J9BWA7YIztwyQtQyQketKxRrwaGo/buUSphxPL9z2IG53TbV9WXMcCN9v+S4dNHRaNxyzd6nRruY9Mt8rcWvWabmznp/IPzz+oWBU4Adi8b9vbgSuIOnOdtzXdXuhWPvsRb3Hn69t2LPDTrtuYMRs9bn0eCxMPXd7Z99vGRIKi+btuX8Ztqm7bAYcBK/Vt+zjwm67bmDFLtxbc+jya6yPTrV63Vr2m95NJphrA5Wgm6hzeAmysKPKMI2HR3cAKHTVvumjdrfj9DNiQKAU0f9m2L3CXpFd12cbhoqhh2HTMyl+bc+vjPiKp2dqS3gVg+xIiu/cqXTZspLQctz6364g1+ltKen3Z9nngTkmLd9W+kTJKYpZuddJcH9lHutVHq17TRU5RboxyI7MDsCxxcP8ZOBhY05VkTCvrd7D9tKSxLmtzWnDrR31JXiStQ7xt+RWRWXI24CBgLdsPdtjMISFpbeAeTzb1sbWY9dOaW3k4MbH8fS5gI2Id5wPA1cTxua4rn+LUWtz6UWTMfC/wBPAP4sbnMGAN2/d22bahMFr6/n5ac2stbpJmJ67Tj07m1nIfWb3baIjbaLlmj5Qc4FaIpKWAf9p+bCrb/4OoJ/cR4HHgq4604QOPpK2BdwBzAp+yfeVk22t2mwC8nnjTcpPtv6svc6SklYB1iIQBcwIH1uAmaVPgbOBc4IO2n5pse80xa/lc25xIOnE/cLHt6ya7YM4AzEVcJB8DzrV9bVftHQ6Nx20hT6NEmKQlgdcS/aiBL9Tg1njf3/LxuCWwCfEw5bulH5mU5b9yt22J+qHzAh93JMzqd6u5j1wOeMr2LVPZXrNbk3Fr+Zr9cpAD3MooJ+75wCeBE2z/60X2n/TkatCRtBGRPfhjxEBwDWDXMvibdBL37V+T2+ZECY8LgXHAMsD+tq/VFMojSJrd9iPdtHboFK/PAhcASwL72n5oSvEq+9cUs9bPtWOI2M1OZO5+q+0ZFeJ7AAAa5UlEQVQf9WLXf0NQE43HbTvgPGBvl2RSL7L/zLaffPlbNn003ve3fDyuRdRa/jwxmNiXiNslDcRtAvC/wHuAlYk3Y29yXwbaqV3nBh1JWxH3Il8gktBdP4V9au3/m4xby9fsl4tcg1sRkuYGtiJSf68JvEdRHmKq1HIxKbwBOMdREP6nwMzAJyStU07eFxyvlbmtARxnez/gv4mLyxmSViwegknTlqlkcLsKcSzubfsQYD6i02VqF49aYjYKzrXVgDNsn237FOBbwNckrdU712q8ULYcN0kLArsCnwP2kbTXNPYVQA2D20KTfX/Lx2NhKeAXtk+1/VniLe3/Stqw5rgVliMSPf4OuJjI+PxZSVtJGg9Tv84NMpJmI2aJHUZkVd+xvM19ATX2/4Um40aj1+yXkxzg1sUjwJdtHwR8CtiCuGC+IBHR5BeVingQWF7SPsSC+VuIzuk0SetV2in1eBh4DYDtB20fRxTi/qykBXpulTneArzd9hXl+/7AzIoU9bXT+rn2DLB4mT0AcDPwI+BsSUtWdhz203LcHiTeAB5IrLP9xJQGuZU+xW+172/5eAS4ARijqOeO7W8ChwNnSVq+4rgB3A4sKulwopb0r4k1xB8FtuywXdPL48CJtv8HOJ7IwLujYv3+JCo+JluNW6vX7JeNnKJcAZKWLX+9z/Z9fb+vRLwx+4Hto8q0k+ts395FO0eCpCXKX28HZiGmlcwNLGd7x7LPPsD6wC41PQGWtBjxIPSO8iT/SuAU20eU7fMRT1FP9WTrzQaZ0u4ZPNk6wOJ4CvBL28d00rjpZDSca7ZvKzfY5xOZTscDs9reQtLnibU9P+2soSOg8bgtRlyrb5/s9zcC3wA+Z/tkSRsAN7ie5D1LlL+22Pe3fDyuAsxADN7/ApxF5JT4ZO/hiqT/Bu63fXyXbR0u5U2miDWO9wLbAIsDG9revuyzC7AHsJ0nyzcxyJS4jQMetf2nvt+XBg4E7gS+SNQqvtr2zZ00dAS0GreWr9mvBDN03YBk2pQL4KHETcBdko4kDnA51m/uBxwqaX0i9f6m3bV2eEjahliX9DTwW+JJ9xcVCTn26luv8wTwLyJhShWUuB0EPCbpCtsHlbVYZ5SpJJ+xfY+kmYCViMHvwFNi9lFgFknfAk6zfW+5sXlA0tHAqZIuLVOEqmG0nGuSriTWXm1PlBCYmaiXB1FmZr5OGjlCGo9bfz/yS+AI4ClgjO0rJO1GnG+bEomltu6utUNnFPT9rR6PWxLTrX9PPJT4L+CDwHmSjiDyTNxJTH1dqKt2joRyTB5MZB//J/B12+dLmpN4I7iU7VuBZ4kZBzUdk/1xm0nSsbavLNftW0rs3k8ki1wNmNBhc4dFq3Fr+Zr9iuEBKMabnyl/iMyEfyA6nNmIpzcrTmG/zxFPrVbous3DcFsf+BNxgV+CKAi/T9k2B3AZ8TbwaOCqKXkP6oeYhnZtidsSwKXA0mXba4Ebi+/niCler+66zUP02rjEbOXyuYhIKNLbPqb8+WXgXb3vNXxG4bn24Sns9x5iKtdSXbc54zbVfmSJKex3NJHBtoo+svG+v+XjcR1igLRG+X4qsEFf3M4ATgPO6cW36zYPw22t0ubliSzenyAyeUMM5E8HvlY+vwNW6rrN0xm3dYAZJ9vvMGKAuHzXbR7tcWv5mv1KfmqdYz9amJ1Icf474onNSsCnJR0qaVeYlHhkQWBT29d119RhMx+xDuQ627cB3wE2lzSr7YeBtxJ1vP5JrPP8Y3dNHTbzAweUuD1GuB4uaX9i3fsbgN8Qbm/xZLVjB5hXA0fZvsb2NcRFY2OYtO6vtwbk58CPXdeakNF2rm0iaWZJYxQsA6xLTAW9tcvGDpOW4zZ5PzIvcISkj5TpyEh6LXFeblxRH9ly39/y8TgT8BHbvy3LUTYH9pd0ArCj7d2JgftZwNaVuc1OLBW63pHl+hJgU0n/YftxIjv0+cAVwNtcV+mVKcXtQOALkj4GkxJPzUVkG/63jMoDTKtxa/ma/YqRa3ArQFHb6kTibd9ZxKBiQ6LW1YPATJ5Kfb1BRtJcth8sfisSpQY2s21J420/0XETpwtJ44BvEzdr3wbeAsxte99OGzZCypQfbP9LkehgE6Is0BZl+xzlBrVaRum59ipHaadZyk1BdbQaN/i3fuRbxABwDuAAYiroLLYf7K6Fw2cU9P0tH49jgUOAu4AzgVWJ8k4ftX1Tl22bHiTN7VhmMwOwAPBVYEvbz0qax31rqWtkKnHbjxjs3gCMc18pnVpoNW6tX7NfCXINbgWUE3Vf248CSPoesDMw3va9xNqC6ujdlBW/u4ii45b0DmA5SYfWfKNj+xlJu5cni0h6EvhyrZ2u++o32n5O0q1A75h8OzCvpC/ZfqarNk4vo/RcW17SwTVdKMuMgUlPZ1uNG0yxH3mKWAYwt+17iDW5VTEK+v6Wj8fnJH2m119Iuhx4ksrvJ20/UP58VtKD8Vc/K2l3YD1JH3EF5fumxlTi9iFiKZGJ9fDV0WrcWrtmd0HVHdJooHcjZ/vRvpu6CcTC8lpqHAIvWr7iOeAJSQcCuxDTSaq5wZmaW3nb2du2EjFFuZqbG027IPqTRMz2AT4A7FTz4LaVc03STJ52lsgpnWtV+PWe1vefa63ErZ8pDOCn1I9Uc0M6Gvr+yf9s6Xjs0ef2eJ/bVsBiRDKwapha3MrmMcDjiuRLbyJyTVQ3SOrxInF7qOPmDYvW4zaVvrLaa3aX5BTlAUPPZ4+cNLiQtCSR2v1eSfsSqc7f4UrWuEhamMiG+VjvxrvPbaneNmJR/QPEep4bO2vwMFCk2H8MeLr3JLHPbSEibg9L2puoXbm7K1hTJmkN4B5HevqeT7/Xk8CswPVEqYhdKorZRsC/3JfluaFzbTNgGeBM2w+V31o51zYmMn3uZ/uO8lsrcVsFmEj0I38uv7XQjyxGzPJ4pPfwS9IM5a1E7cfj64i2P+l4k46kcY437lUfjz36b7b7jsfXEfG8U9IniBvut9fiJuk1RC3YZ23/s/w21vGGsxfTO4hkYTMA27uyqdcZt3riJmkFYhbORNu3lN+auGZ3TSaZGgAkbSfpJJg0jWRs+ftERTKRk4D5FYW3n6CuTmkbYg3St4mEFK+GSW7rE+uU5nas3fwacRNQxcmrKAdxFlEsfT9J85ULy0RJGxLTCOdVJHaYnXCr5ab0XOBcSUsXn7GTec1ZBhnfAPaoKGabAScTCWB6v43pc6v5XNuEOIf+3De47R2PG1H3ubY5kf1zNWDp8tuYvn6k5rhtTWT73I/oRxbrc9uIevuR7Yi1fscDH1OUSetNuav9eNyGyBZ8LPBZSe+HSdPJN6bu4/Etks4pg/X+WQQTJa1LrHFcsPz8V+ItWS1uWxPXrBOBT0laGybdd/Xc5i/eXyXcBn6QBBk3KoybonzTmUS5rU9Ket1k95DV9pEDgQcglfNo/hAZdW8D7gHO6/t9RiLN+WVEpt3O2zoCt42Ip04rAWsSN6hvLdtmq9xtM+AaYHXijdn5wGJl2/jitmPf/tWUzCntPZYo1fF7YLny25xEqZK39u03ruu2DsNpfaJE00bl+6xEhsnx5fsvgB26bucIvEQkGzoReGf57T+I6WevK99/3n881vQBtiUSLC0D7ABcR9zM9GJYcz+yaOlHViamsJ4GLFn6xzHlfKuuHwEWKTFbHliKWOt3GTG1rneuvbXLNk6H2xzA5UT92jlKv/Jr4MCy/ec19iOl7SuWPvI24JvADOX3scRDwe8A23TdzhG6TSBKqqxQzrGDgb3Ltlkqd8u4DUBbh+m1Xukj1yj9yGnAcpR7qtJHVnnNHpRPrsHtnjmJ7IPfkfRrSefb3t6Rze5pSVu7ZK11mbpcEa8DTnBJzS5pWWAHSRc41idt5Zh2V6PbUsQNzVWS5iU6ps9L+j1xw7q5Y73LGNsTXUnJHEXGPohB01nEdJ9TJR1HTKPZ3pGxsOdV05rb1xPrja4qUwg/R0xlulXSOcCGjien01ovOHCUtj4n6TbgNknjge8DNxGF7s+0vQG86JrqQWUV4GO2b5T0dyJ79yrAxbYfk7Sl7Udqi1thNuAh29cospSvS9R/fQz4IbCJ7adr60cIr4ddSo5I+hWRRXgnSTcS5UieqDRmjxJ9/B2ONyu/kLQXcJKkG4h+ZPK1gbUwjsiM/wNJFwFnSdrF9rNEH7NnOdfGElMqa/JbBDjZ5a2lpN8BH5L0tXKt3qPcl4whutWa3GYmSgF9v8G4LUabcVuAuPf/raT/IF4IzQ7cLumntteHF81fkEyDnKLcEX3TkH8C/Kz8fS1iWtMFfbvOVrZVMwDsczse+KaCMcDtwMyl04V4ulir24nlJmA88ebsVOAI4ubnLcBMNQ0mSnyw/WyJz8+Jt39fIp6engbM2z+47ayxw6QvZv9LvGk/n5iCfQlwJPHUew9gztouJr24FZ4iBu37E8fk7kQdwHdJWh1iutor3sgR0he3Q2z/pDwIe4Qos/KBvl0fL/vVFLee25+BxyT9hjjPTgH2Bv4PeDOwSG/KWmeNHQZ9XjcAd0o6TdJcRGmj24h+ZXWXJFI1xQxeUO/7UeAMSQJwTBk/mKgxOldt/UgP278naoZie2tiNtLZilJVEDNDsP1cbX62zyKmufb6zZuJNe+9hGa9e61qBoCSZgawfSUx26OZuJV7K2x/g7j/aCJufV7n2P5p+X4IUQbow0QfuZekpWrtRwaFfIPbAZLeBKwrycT6pEk1DG2vVd7kfh24kEhzvr8rySrZ5zaRWDvWy3hqSXcQbwZ7ZWUWlXSUK6m9NlncTiDcnpC0j+27yz6PE9n7XNFNac/rOWLt2H3AvcA6ktYhptJ8E/hPST9zBWtbevS5CTjK9mclPURMSz6p7PMAcWNaxQWyx2TH4zG2j1EkJNqPqANo4BpJf6KijLswyW1COSZPBO7385mhPwn8XNL7y4Omah6Qwb8dk0fa3krSIoTXMeWN7aXEA4pqbnD6vACOAz4NfJQYtE+0vZNivdxHytuXmrLJr0wkjfoLgO2PSzoNuIjIRgtwFfBBYMZaYgZTdHuwb8bA1uWN4EmSrgC2UJSsqiIz7RTc7il/TpR0PzEQRFFSZjVJB1R0r7UlsL2kR4j14H/qbWsgbj23R4mHfX+C+uM2Wcy+BVxf3qwf4igf1ruHfDsxiK+mHxlE8g3uK4ykNxCLyq8GliWKbO8qaZbePuVN7hbEIOqkGk5c+De35YADeKGbiWnX+5Rt51c0uJ08bgcAu0mazfbdfW/SliemmVRxbk0lZjsBfySe+v4A+LjtdxLJmaqZkjyZ22uBwyTtBpxi++je2xciZrNSZhTUwBSOx57bYUTMTpW0sKR3EomZqikF0ef2e2KZwyeIfmRWmPQW+ivAqztr5AiZLG7LAIcrptjdCdxPPBQE2ICYmldFKYip9I+rAe+zvQOwa9l1aeKNu6b07wwiioRSPwFOkLRi36a9gPskXSlpVWJ9+MJdtHGkTMmt95ZaZblKeSO4CdG3/E9Fg6QpuvXvAjyqyCj8UeDEiu61ViYS051H3GvsSCRye1Vvn4rj1u8m/t1tLBXGbQox2wH4uKS5HNnWe/eM6xPT6au51xpUskzQK4ykHYC1be9XLiBvJ5IwXQOcXZ7eb0BkgtvGZQ1TDUzD7Q/EU7i5y9//SpS5uKGzxg6TF4sb0RntW37fw/VkJ5yS1+uJAe7TwF9sX1HjVJmpuK1MDJx659q+wDuoKGYwTbcrbJ8t6XDigdJqwP6N9CP9feSqRB+5gUvG6BqYitsqwG+IweFngHmJBy5VlAKCaXr9judjthcx/XoP23/osLlDogyGZiRuSq8lEkFuA3zKJa9E2e/TxBullYl1kNdO4Z8bKKbhdpDtP6pvGYqkNYkZPNvV0EcOxY3oG2chEtY9RJS5q+l+ZD1gZ9v7lPNtAvFS5HFiVshjtcWtx4u4HUUsxbmBqLtcTdyGGLPeC4bda4rZoFLFW6bGuAHYQNJaZYrWGcRg4g2UtQREoodNa7opLUzNbXVgJtt/J6Z0vbeWTqmPF4vb2PJnVQMlpux1HfE29+IyuK21n5iS2x944bk2HtizspjB1N3WlzSL7U/aPohICtZKPzIpbo61gmvXNLgtTMntGiLL/N9tvxl4N5FcqorBbWFqXm8gBusAjwA71TC4hZKtJqbFf4CYvXIh8EtitsTKffsdZPujwFY1DG5hmm6flvR6v3B5zRNE4qwq+sihuJV9HiOmib6rwvuRvwGbSdrCz+fMuJjIxvuass+zVBS3PqbltlSZ9fddomJATXGblldvNtITVFgve1DJN7ivIOXJoohpFXMQT7avVyTmuAC4zPbnumzjSBmC2y9tH1Hpm8BpuX0X+IXtz3fZxpEwBK9LGz4emz/XumzjSBmC26W9c622vmQI59tlNcat5XNtciQtQMz4WBd4FzGF/jHbV9d2PE7OFNyWBR6pZdA+LabgthxwnyPJW1Xo+RrZuxOZd0+1/cvyIPrLwD22P9VtK0fGENzus/3Jbls5fIbgdW95IJ28hNT6ZqYKJlvv0XuyOJHImjwWeJukCY4kKT+Z0n8zqIzUrYYbgGG6/RgYU0PcRuDV/PH4yrd0+IzAzQ27qfffDHpfMoLzrYq4jaZzbXIcyQS/TgzcryQeTPyrbKvqeJycKbhdSGSLHnhG4HYBlSXe69H3dv1nxCyJ90ratvx+NTCrni/3VxVDcBsvaVwt/UmPIXjNouczXicvEVWeBBUxO/Bw74tKvVdH7dSZgFWBEyVdDmwLbDToF8k+0q0+t1a9IN3SbfBo1a1VL/h3t0kPUyTNZPsp2/+QNA9x/zTB9q0dtXW4pNsL3W7pqK3DQtI499Wb7zvf7pB0MXAncKyk7YEtieUNVWQoH6HbwCdfatWrNnKK8suEpM2BjxBJDn5o+5LeQS5pDWAF4onikuXzZ9u3d9fioZNu9bm16gXpRroNHK26teoFL+q2JjFwP7Ps/nUiM20V64nTrVq3TYANiQHRpcT51J/8azPbh0laFJiHmOp6Z2cNHgaturXqVSM5RfllQNIEor7tSUSmvvUgimxLeg3wPSKhyNO2b7R9cUU3AelWmVurXpBupNvA0apbq14wJLfvAn+1/ajtR4EdKxokpVudbusS5dB+TySO+iBRmgpJSxBTyK8CsH2H7atrGSi16taqV63kG9yXmDI15qPE/9sjJb0R+G8iW9rfgduBZ2xfI9WxJrVHutXn1qoXpBvpNnC06taqF4zMrRbHdKvTDUDSfsAY219Q1AA/FZiTqERxHrCo7d/W5NSjVbdWvWol1+C+xJRO9Cbgm5IeBY4AvgTMTxS5n9v2yeqrM1cL6VafW6tekG7pNni06taqF4zMrZab03Sr061wJ5GM6AeOrOR3ArcRbg9XPlBq1a1VryrJN7gvEZJmddRV633fkViDtLTt9ymSb+wFLGj7v7pq50hIt/rcWvWCdCPdBo5W3Vr1gnQj3QaOfjdJCwF7Am8HfkcM3HciaveeZPvbXbVzJLTq1qpXC+Qa3JcASVsBx0haq/eb7W8RqeiXkrS8o/D4s+X7TGV6zcCTbvW5teoF6ZZug0erbq16Qbql2+DR57Y2gO2/A8cQdXu/Amxt+yHgcuDJzho6Alp1a9WrFXKK8nQiaUUiM9/Pgc0lYfvXZfPNwE+BkxUlE7YHtisd8MCTbvW5teoF6Ua6DRyturXqBelGug0ck7ltVtwut/0EcEXffh8Adi77VkGrbq16tUROUR4h0qSkBUsAywF/JaYlCPiu7SvKfosBawKLAxfYvrmbFg+ddKvPrVUvSLeyX7oNEK26teoF6Vb2S7cB4kXcLuwN4CWNBRYCTgc+bPu6blo8dFp1a9WrRXKAO0IkzeBSTFvSjLaflrQMcaDPAFxk+1eSZnOkp6+GdKvPrVUvSLd0GzxadWvVC9It3QaPIbh91/avJc1u+xFJs9h+vNNGD5FW3Vr1apEc4I4ASVsA7yYWkd9h++t925YDdgUeARYjCt9vSqSrH/j/2elWn1urXpBupNvA0apbq16QbqTbwDEMt0WBFUm3zmnVq1ls52cYH2ANYr3HbsAuwB+Az0y2z2zEepDbgFW6bnO6tevWqle6pdsgflp1a9Ur3dJtED/pVp9bq14tfzpvQG0fYF3glL7vCwC3Aof3/bYe8DiwQtftTbe23Vr1Srd0G8RPq26teqVbug3iJ93qc2vVq+VPlgkaPk8CC0iaG8D23cDawBaSdir7XAMs7/oWladbfW6tekG6pdvg0apbq16Qbuk2eKRbfW6tejVLDnCHgKRXS1pd0jjbVxHTDy7ubS8H+vFEUWdsP2z7r500dpikW31urXpBupFuA0erbq16QbqRbgNHutXn1qrXaCEHuC+CpK2Bc4EjgW9IWtr2h4BbJf1G0gJl13mBN0iq5v9pugGVubXqBelWdk23AaJVt1a9IN3Kruk2QKQbUJlbq16jicyiPA0krQ18FdjF9tWSTgBmt/2Osv04YGHgaeD1wA62r++swcMg3epza9UL0o10GzhadWvVC9KNdBs40q0+t1a9Rhs5wJ0G5SB/re3Tyvd5gVOAt7vUW1PUv5oDuNf2bR01ddikW31urXpBuqXb4NGqW6tekG7pNnikW31urXqNNmbougEDzm+A6wAkjQVmAhYHxgOPSpoHuMWl6HNlpFt9bq16Qbql2+DRqlurXpBu6TZ4pFt9bq16jSpyzvg0sP2c7YfLVwEPAQ/YvlfSbsBhwIydNXA6SLf63Fr1gnQj3QaOVt1a9YJ0I90GjnSrz61Vr9FGTlEeJpJOA/4BbAbsafuP3bbopSPd6qNVL0i3Wkm3+mjVC9KtVtKtTlp1a9WrZXKAO0QkCRgH/Ln8ubHtm7tt1UtDutVHq16QbrWSbvXRqhekW62kW5206taq12ggB7jDRNKewJVuMGNautVHq16QbrWSbvXRqhekW62kW5206taqV8vkAHeYSJIb/Z+WbvXRqhekW62kW3206gXpVivpVieturXq1TI5wE2SJEmSJEmSJEmaILMoJ0mSJEmSJEmSJE2QA9wkSZIkSZIkSZKkCXKAmyRJkiRJkiRJkjRBDnCTJEmSJEmSJEmSJsgBbpIkSZIkSZIkSdIEOcBNkiRJkiRJkiRJmuD/AZNSrI2vtxayAAAAAElFTkSuQmCC\n",
849 | "text/plain": [
850 | ""
851 | ]
852 | },
853 | "metadata": {
854 | "needs_background": "light"
855 | },
856 | "output_type": "display_data"
857 | }
858 | ],
859 | "source": [
860 | "fig, ax = plt.subplots(figsize=(16, 9))\n",
861 | "plt.plot(comp[\"strategy return\"], \"r-\", label=\"Strategy's Return\")\n",
862 | "plt.plot(comp[\"index return\"], \"g-\", label=\"CSI 500 Index's Return\")\n",
863 | "plt.bar(comp.index, comp[\"diff\"], width=0.8, label=\"Active Return\")\n",
864 | "plt.legend(loc=\"lower right\")\n",
865 | "plt.grid(axis=\"y\")\n",
866 | "plt.ylabel(\"Return(%)\")\n",
867 | "plt.xticks(rotation=45)\n",
868 | "plt.savefig(\"backtesting_noncumulative.png\")"
869 | ]
870 | }
871 | ],
872 | "metadata": {
873 | "kernelspec": {
874 | "display_name": "Python 3",
875 | "language": "python",
876 | "name": "python3"
877 | },
878 | "language_info": {
879 | "codemirror_mode": {
880 | "name": "ipython",
881 | "version": 3
882 | },
883 | "file_extension": ".py",
884 | "mimetype": "text/x-python",
885 | "name": "python",
886 | "nbconvert_exporter": "python",
887 | "pygments_lexer": "ipython3",
888 | "version": "3.7.3"
889 | }
890 | },
891 | "nbformat": 4,
892 | "nbformat_minor": 2
893 | }
894 |
--------------------------------------------------------------------------------
/Final Project.pptx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/chichihua/Multi-Factor-Model/f5cbcf0f7d65b11810e1d71523506a395fc44c2c/Final Project.pptx
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Final Project: Multi-Factor Model (Regression Method)
2 |
3 | ### Objectives:
4 | Use Multi-Factor Model to build an enhanced indexing strategy for CSI 500 Index;
5 | Capture a relatively high active return.
6 |
7 | ### Outlines:
8 | 1. Get data of CSI 500 constituent stocks from Chinese local information server, Wind, and preprocess the data;
9 | 2. Select factors such as size (market cap), value (P/E, P/B, P/S, P/CF, EV/EBITDA), profitability (net profit margin, ROE, ROIC), growth (year-on-year revenue growth rate, year-on-year net income growth rate), trade (turnover rate);
10 | 3. Use OLS (or LASSO which might be more optimal) to define factor's sensitivity, test each factor’s effectiveness and eliminate redundant factors with multicollinearity and low r-square;
11 | 4. Build an algo to allocate active weights on different constituent stocks on the basis of the expected next month's return predicted by the regression model (give more weights on stocks with relatively higher expected return and vice versa);
12 | 5. Backtesting: test the effectiveness of the model and check the portfolio’s alpha over the benchmark.
13 |
--------------------------------------------------------------------------------
/backtesting.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/chichihua/Multi-Factor-Model/f5cbcf0f7d65b11810e1d71523506a395fc44c2c/backtesting.png
--------------------------------------------------------------------------------
/backtesting_noncumulative.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/chichihua/Multi-Factor-Model/f5cbcf0f7d65b11810e1d71523506a395fc44c2c/backtesting_noncumulative.png
--------------------------------------------------------------------------------
/comparison1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/chichihua/Multi-Factor-Model/f5cbcf0f7d65b11810e1d71523506a395fc44c2c/comparison1.png
--------------------------------------------------------------------------------
/comparison2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/chichihua/Multi-Factor-Model/f5cbcf0f7d65b11810e1d71523506a395fc44c2c/comparison2.png
--------------------------------------------------------------------------------
/csi_500_constituent_info.gz:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/chichihua/Multi-Factor-Model/f5cbcf0f7d65b11810e1d71523506a395fc44c2c/csi_500_constituent_info.gz
--------------------------------------------------------------------------------
/csi_500_data_preprocessed.gz:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/chichihua/Multi-Factor-Model/f5cbcf0f7d65b11810e1d71523506a395fc44c2c/csi_500_data_preprocessed.gz
--------------------------------------------------------------------------------
/csi_500_data_raw.gz:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/chichihua/Multi-Factor-Model/f5cbcf0f7d65b11810e1d71523506a395fc44c2c/csi_500_data_raw.gz
--------------------------------------------------------------------------------
/factor_data.gz:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/chichihua/Multi-Factor-Model/f5cbcf0f7d65b11810e1d71523506a395fc44c2c/factor_data.gz
--------------------------------------------------------------------------------
/factors_corr.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/chichihua/Multi-Factor-Model/f5cbcf0f7d65b11810e1d71523506a395fc44c2c/factors_corr.png
--------------------------------------------------------------------------------
/final_project.py:
--------------------------------------------------------------------------------
1 | import matplotlib
2 | import matplotlib.pyplot as plt
3 | import numpy as np
4 | import pandas as pd
5 | import tushare as ts
6 | from WindPy import *
7 | import datetime
8 | import time
9 | import math
10 | from statsmodels import regression, stats
11 | import statsmodels.api as sm
12 |
13 | matplotlib.rcParams["figure.figsize"] = (14, 6)
14 |
15 |
16 | def show_time(label_string):
17 | t = time.time()
18 | st = datetime.datetime.fromtimestamp(t).strftime("%Y-%m-%d %H:%M:%S:%f")
19 | print(label_string + ": " + st)
20 |
21 |
22 | def apidata_to_df(apidata):
23 | df = pd.DataFrame(apidata.Data, index=apidata.Fields, columns=apidata.Times)
24 | df = df.T
25 | return df
26 |
27 |
28 | def to_industry_df(apidata):
29 | df1 = pd.DataFrame(apidata.Data[0], index=apidata.Times, columns=apidata.Fields)
30 | df1["INDUSTRY_SW"] = "银行"
31 | df2 = pd.DataFrame(apidata.Data[1], index=apidata.Times, columns=apidata.Fields)
32 | df2["INDUSTRY_SW"] = "非银金融"
33 | df = pd.concat([df1, df2], axis=0, join="outer")
34 | return df
35 |
36 |
--------------------------------------------------------------------------------
/industry_data.gz:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/chichihua/Multi-Factor-Model/f5cbcf0f7d65b11810e1d71523506a395fc44c2c/industry_data.gz
--------------------------------------------------------------------------------
/pvalues.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/chichihua/Multi-Factor-Model/f5cbcf0f7d65b11810e1d71523506a395fc44c2c/pvalues.png
--------------------------------------------------------------------------------
/test_return.gz:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/chichihua/Multi-Factor-Model/f5cbcf0f7d65b11810e1d71523506a395fc44c2c/test_return.gz
--------------------------------------------------------------------------------
/winsorized_factors.gz:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/chichihua/Multi-Factor-Model/f5cbcf0f7d65b11810e1d71523506a395fc44c2c/winsorized_factors.gz
--------------------------------------------------------------------------------
/workflow.md:
--------------------------------------------------------------------------------
1 | # Final Project: Enhanced Indexing Strategy with Multi-Factor Model
2 |
3 | Group: 4
4 |
5 | Members: Jiahua Jiang, Bo Sun, Baowen Cao
6 |
7 | Date: 2019/04/30
8 |
9 | ## Project Introduction
10 |
11 | In this project, we built up an Enhanced Indexing Strategy of China Securities Index (CSI) 500 on the basis of Arbitrage Pricing Theory (APT), by applying the Multi-Factor Model with regression method to predict the expected return of CSI 500 constituent stocks and determining the active weights in accord with our prediction.
12 |
13 | ## Dataset
14 |
15 | The stock price and financial data were retrieved from Chinese information server Wind and Tushare.
16 |
17 | ## Workflow
18 |
19 | * Collect and Preprocess Data
20 | - Get current CSI 500 constituent stocks and weights from Wind (csi_500_constituent_info.gz)
21 | - Get monthly price and factor information of 500 constituent stocks from 2015-01-01 to 2019-04-26 (csi_500_data_raw.gz)
22 | - Size
23 | - Market Capitalization: "EV"
24 | - Value
25 | - Trailing Twelve Months P/E Ratio: "PE_TTM"
26 | - Most Resent Quarter P/B Ratio: "PB_MRQ"
27 | - Trailing Twelve Months P/S Ratio: "PS_TTM"
28 | - Trailing Twelve Months P/CF(Operating Cash Flow) Ratio: "PCF_OCF_TTM"
29 | - EV/EBITDA Ratio: "EV2_TO_EBITDA"
30 | - Profitability
31 | - Return on Equity: "ROE"
32 | - Return on Invested Capital: "ROIC"
33 | - Net Profit Margin: "PROFITTOGR"
34 | - Growth
35 | - Year-over-Year Net Income Growth Rate: "YOYPROFIT"
36 | - Year-over-Year Revenue Growth Rate: "YOY_TR"
37 | - Trading
38 | - Turnover Rate: "TURN"
39 | - Preprocess data (csi_500_data_preprocessed.gz)
40 | - Fill nans with data of the nearest month
41 | - Check if there're any nans left and locate them
42 | - EV/EBITDA and ROIC of 10 companies in banking and non-bank financial industries are missing
43 | - Fill nans remaining with industry's average
44 | * Preprocess Factors
45 | - Calculate next month's return as dependent variable for future regression
46 | - Winsorize, standardize and neutralize factor values (factor_data.gz)
47 | - Winsorize: Trim the outliers at the tail (2.5 percentile) to avoid anomalies
48 | - Standardize: Convert factor values into z-scores to eliminate discrepancies in number scale
49 | - Neutralize: Eliminate the impact of industrial betas to avoid concentration of our stock selection model, by extracting residual in multiple linear regression between factor value and dummy variables of industries
50 | * Factor Modeling and Strategy Construction
51 | - Separate the data into training and testing
52 | - Training data: 2015-01-01 to 2017-12-31
53 | - Testing Data: 2018-01-01 to 2019-04-26
54 | - Multiple linear regression (OLS) between next month's return and factor values
55 | - Improve the regression model
56 | - Sort the p-values to check the significance level of each factor's exposure (slope coefficient)
57 | -
58 | - Plot a heatmap of the correlation matrix of factors to tell if there's multicollinearity
59 | -
60 | - Remove redundant factors of high correlation with other factors and high p-values (low significance level)
61 | - Factor remaining: "EV", "PB_MRQ", "EV2_TO_EBITDA", "ROE", "YOYPROFIT", "YOY_TR", "TURN"
62 | - Rerun multiple linear regression and compare the results
63 | -
64 | -
65 | - Build up an enhanced indexing strategy on the basis of model prediction
66 | - Clearing all positions and opening new positions at the end of each month
67 | - Using the multi-factor model to generate the score (prediction of expected return) of each constituent stock
68 | - Sort the constituent stocks by their scores and separate them into 10 groups
69 | - Set a multiplier for each group to put more weight on high-score stocks and vice versa
70 | - Clean up if there's still weight remaining
71 | - Evenly separated into 10 parts to buy top 10 stocks
72 | - Record the weighted return
73 | * Backtesting
74 | - Get CSI 500 price information from Tushare
75 | - Check the active return: compare the return of the index and our enhanced indexing strategy
76 | - Cumulative Monthly Return
77 |
78 | - Noncumulative Monthly Return
79 |
80 | - Performance evaluation
81 | - Cumulative return of the testing period: 42.38%
82 | - Cumulative active return: 46.72%
83 | - Information ratio: 0.36
84 |
85 | ## Summary
86 | * Benefits:
87 | - The enhanced indexing strategy outperforms the benchmark index to a considerable extent in 7 among 15 months, and has low drawbacks the month it performs worse than the benchmark
88 | - The model is meaningful on both statistical and economic aspects given the predictions are made on the basis of different catogories of factors
89 | - Since CSI 500 has a large sample size and the testing period is long, the multi-factor model tends to be more effective
90 | - Algorithmic model can be better than subjective judgment when dealing with stock selection in a large stock pool such as CSI 500
91 | * Limitations:
92 | - The model ignores trading cost which will narrower the active return
93 | - The model ignores free-float market capitalization which may lead to problems in stock trading
94 | - The model ignores specific investment amount when using 1 as total weight, not taking liquidity need and market impact in consideration
95 | - The OLS method might not be optimal given it has a low r-squared and the process of removing redundant factors is subjective, though the slope coefficients are significant, using LASSO (Least Absolute Shrinkage and Selection Operator) instead might be better
96 | - The effectiveness of the model might be changing over time
--------------------------------------------------------------------------------