└── README.md /README.md: -------------------------------------------------------------------------------- 1 | # A Survey on 3D Deep Learning 2 | 3 | * Dataset 4 | * Paper 5 | * Tutorial 6 | * Packages 7 | 8 | ## Background 9 | 10 | #### Data Representation 11 | The 3D data can be represented in the following forms: 12 | * multi-view RGB(D) images 13 | * volumetric 14 | * polygonal mesh 15 | * point cloud 16 | * primitive-based CAD models 17 | 18 | ## Dataset 19 | 20 | * [Princeton Segmentation Benchmark dataset (PSB)](http://segeval.cs.princeton.edu/) 21 | 22 | * [Labeled PSB dataset (L-PSB)](https://people.cs.umass.edu/~kalo/papers/LabelMeshes/) 23 | 24 | * [Shape COSEG dataset](http://irc.cs.sdu.edu.cn/~yunhai/public_html/ssl/ssd.htm) 25 | 26 | ## Packages 27 | 28 | * Geometric Deep Learning Extension Library for PyTorch ([Github](https://github.com/rusty1s/pytorch_geometric)) 29 | 30 | * Pytorch implementation of Graph Convolution Networks & Graph Attention Convolutional Networks ([Github](https://github.com/meliketoy/graph-cnn.pytorch)) 31 | 32 | * PyTorch implementation of Graph Convolutional Networks for semi-supervised classification ([Github](https://github.com/tkipf/pygcn), [paper](https://arxiv.org/abs/1609.02907), [blog](http://tkipf.github.io/graph-convolutional-networks/)) 33 | 34 | * Point cloud semantic segmentation via Deep 3D Convolutional Neural Network ([Github](https://github.com/nsavinov/semantic3dnet), [slides](https://drive.google.com/file/d/0B2SXn94m2RhEbnFMbHVZNVJ3bzA/view)) 35 | 36 | ## Tutorial 37 | 38 | * A Tutorial on 3D Deep Learning (CVPR 2017) ([web](http://3ddl.stanford.edu/), [video](https://www.youtube.com/watch?v=8CenT_4HWyY)) 39 | 40 | * Machine Learning for 3D Data (Stanford CS468 - Spring 2017) ([web](http://graphics.stanford.edu/courses/cs468-17-spring/schedule.html)) 41 | 42 | * Machine Learning for 3D Data (CSE291-I00 - Winter 2018)([web](https://cse291-i.github.io/schedule.html)) 43 | 44 | * Data-Driven Shape Analysis and Processing ([original version](https://people.cs.umass.edu/~kalo/papers/EGstar16/data_driven_shape.pdf), [latest version](https://people.cs.umass.edu/~kalo/datadrivenshape/data_driven_shape.pdf)) 45 | 46 | * Polygon Mesh Processing ([web](http://www.pmp-book.org/)) 47 | 48 | A free online book about mesh representation 49 | 50 | * Udacity Interactive 3D Graphics [web](https://classroom.udacity.com/courses/cs291) 51 | 52 | ## Papers 53 | 54 | ### Feature based methods 55 | 56 | * [2015] 3D Mesh Labeling via Deep Convolutional Neural Networks ([paper](https://dl.acm.org/citation.cfm?id=2835487)) 57 | 58 | * 3D Shape Segmentation via Shape Fully Convolutional Networks ([paper](https://arxiv.org/abs/1702.08675)) 59 | 60 | * 3D Mesh Segmentation via Multi-branch 1D Convolutional Neural Networks ([paper](https://arxiv.org/abs/1705.11050)) 61 | 62 | ### Octree 63 | 64 | * [2017] O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis ([paper](https://wang-ps.github.io/O-CNN.html), [code](https://github.com/Microsoft/O-CNN)) 65 | 66 | ### Projection 67 | 68 | * [2017] 3D Shape Segmentation with Projective Convolutional Networks ([paper](https://arxiv.org/abs/1612.02808), [web](https://people.cs.umass.edu/~kalo/papers/shapepfcn/), [code](https://github.com/kalov/ShapePFCN)) 69 | --------------------------------------------------------------------------------