├── CHANGELOG
├── INSTALL
├── LICENSE
├── Makefile.in
├── README
├── README.md
├── bitfield-internals.h
├── bitfield.c
├── bitfield.h
├── config.h.in
├── configure
├── configure.ac
├── examples
├── Makefile.in
├── bfand.c
├── bfcat.c
├── bfnormalize.c
├── bfor.c
├── bfxor.c
├── int2bf.c
├── random.c
└── rule30.c
├── libbitfield.pc.in
├── man
├── Makefile.in
├── bf_converters.3.in
├── bfand.3.in
├── bfcat.3.in
├── bfclone.3.in
├── bfcmp.3.in
├── bfcpy.3.in
├── bfhamming.3.in
├── bfisempty.3.in
├── bfnew.3.in
├── bfnormalize.3.in
├── bfpopcount.3.in
├── bfpos.3.in
├── bfprint.3.in
├── bfresize.3.in
├── bfrev.3.in
├── bfsetall.3.in
├── bfsetbit.3.in
├── bfshift.3.in
├── bfsize.3.in
├── bfsub.3.in
└── bitfield.3.in
└── tests
├── Makefile.in
├── test1.c
├── test10.c
├── test11.c
├── test12.c
├── test13.c
├── test14.c
├── test15.c
├── test16.c
├── test17.c
├── test18.c
├── test19.c
├── test2.c
├── test20.c
├── test21.c
├── test22.c
├── test23.c
├── test24.c
├── test25.c
├── test26.c
├── test27.c
├── test28.c
├── test29.c
├── test3.c
├── test30.c
├── test31.c
├── test32.c
├── test33.c
├── test34.c
├── test35.c
├── test36.c
├── test37.c
├── test38.c
├── test39.c
├── test4.c
├── test40.c
├── test41.c
├── test42.c
├── test43.c
├── test44.c
├── test5.c
├── test6.c
├── test7.c
├── test8.c
└── test9.c
/CHANGELOG:
--------------------------------------------------------------------------------
1 | Changelog
2 |
3 | 1.0.1
4 | * Minor bugfixes.
5 |
6 | 1.0.0
7 | * Stabilized API.
8 | * Minor bugfixes.
9 |
10 | 0.6.3
11 | * Rewrote bfand(), bfor() and bfxor() to accept variable number of arguments.
12 |
13 | 0.6.2
14 | * Fixed memory leaks in shift_ip() and bfnormalize().
15 | * Fixed bugs in uint64tobf() and bftouint64().
16 | * Rewrote uint**tobf(), uint**tobf_ip(), bftouint**(), bftouint**_ip(),
17 | long2bf(), long2bf_ip(), bf2long(), bf2long_ip().
18 | * Replaced ll2bf(), ll2bf_ip(), bf2ll() and bf2ll_ip() with macros (assume
19 | long long is always same length as uint64_t).
20 | * Minor optimization in shift_ip() and bftouint32().
21 | * Removed internal functions from the list of exported symbols.
22 | * Rewrote tests so they do not rely on internat functions from bitfield library.
23 |
24 | 0.6.1
25 | * Fixed a bug (memory-corruption in bfcat())
26 | * Added some magic to makefiles ('make test' as alias to 'make check', 'make
27 | distclean' to also run 'make clean')
28 | * Fixed some compile-time warnings (explicitly added 'endian.h', rewrote
29 | always-false "uint < 0")
30 |
31 | 0.6
32 | * Completed converters to/from common data types. New functions: bf2char(),
33 | bf2char_ip(), bf2short(), bf2short_ip(), bf2int_ip(), bf2long_ip(), bf2ll(),
34 | bf2ll_ip(), char2bf(), char2bf_ip(), short2bf(), short2bf_ip(), int2bf_ip(),
35 | long2bf_ip(), ll2bf(), ll2bf_ip().
36 | * Added converters to/from fixed-width data types: bftouint8(), bftouint8_ip(),
37 | bftouint16(), bftouint16_ip(), bftouint32(), bftouint32_ip(), bftouint64(),
38 | bftouint64_ip(), uint8tobf(), uint8tobf_ip(), uint16tobf(), uint16tobf_ip(),
39 | uint32tobf(), uint32tobf_ip(), uint64tobf(), uint64tobf_ip().
40 | * bfprint() splitted into bfprint_lsb() and bfrint_msb().
41 | * Minor optimization in bfshift().
42 | * bfcat() modified to accept variable number of arguments.
43 | * Fixed some memory leaks.
44 | * Added some magic to makefiles to rebuild on change only.
45 | * Cleanup in man pages.
46 | * Added support for big-endian architectures.
47 |
48 | 0.5.1
49 | * Fixed error in bfnormalize().
50 |
51 | 0.5
52 | * Added bf2int(), int2bf() and bfnormalize().
53 |
54 | 0.4
55 | * Added bfpos(), long2bf().
56 | * Minor change in bfcmp(). Now it's safe to pass NULL as err_msg argument.
57 |
58 | 0.3
59 | * Renamed str2bf() to str2bf_ip() and bf2str() to bf2str_ip().
60 | * Added new str2bf(), bf2str().
61 | * Changed the algo of bfrev() to a quicker one.
62 |
63 | 0.2
64 | * Added bfcmp(), bfsub(), bfshift(), bfclearall(), bfsetall(), bfresize(),
65 | bfsetbit(), bfclearbit(), bfrev(), bfrev_ip(), bfsize(), bfgetbit(),
66 | bftogglebit(), bfpopcount(), bfhamming(), bf2long() and bfisempty().
67 | * Renamed char2bf() to str2bf() and bf2char() to bf2str() (thus incompatible
68 | with versions 0.1.x).
69 |
70 | 0.1.1
71 | * Added bfnew_quick(), bfnew_ones(), bfclone(), bfcat(), bfshift_ip(),
72 | bfnot_ip(), bfcleartail(), bfcpy().
73 |
74 | 0.1
75 | * Initial release.
76 |
--------------------------------------------------------------------------------
/INSTALL:
--------------------------------------------------------------------------------
1 | INSTALLATION
2 | ------------
3 |
4 | To compile bitfield from source code:
5 |
6 | $ autoconf
7 | $ ./configure --prefix=DIRECTORY
8 | $ make
9 |
10 | This will build both a static and a shared version. To build just one of them,
11 | replace "make" with "make static" or "make shared".
12 |
13 | To test the compiled library:
14 |
15 | $ make check
16 |
17 | The generic way to install the compiled files is:
18 |
19 | $ make install
20 | $ ldconfig
21 |
22 | However, one might prefer to use distro-specific installation mechanism (like
23 | "checkinstall") instead.
24 |
25 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
--------------------------------------------------------------------------------
/Makefile.in:
--------------------------------------------------------------------------------
1 | CC=@CC@
2 | export CC
3 | datarootdir=@datarootdir@
4 | prefix=@prefix@
5 | exec_prefix=@prefix@
6 | libdir=@libdir@
7 | mandir=@mandir@
8 | includedir=@includedir@
9 | AR=ar
10 | LIBS=-I.
11 | CFLAGS=@CFLAGS@
12 | export CFLAGS
13 | VERSION=@PACKAGE_VERSION@
14 | export VERSION
15 | RELEASE_DATE=August 19, 2017
16 | export RELEASE_DATE
17 | TESTDIR=tests
18 | EXAMPLEDIR=examples
19 | LD_LIBRARY_PATH := $(shell pwd):$(LD_LIBRARY_PATH)
20 | export LD_LIBRARY_PATH
21 |
22 | .PHONY: test check man shared static install install-lib install-man install-header clean distclean uninstall uninstall-lib uninstall-man uninstall-header example examples
23 |
24 | all: shared static man
25 |
26 | shared: libbitfield.so.$(VERSION)
27 | libbitfield.so.$(VERSION): bitfield.c
28 | $(CC) $(CFLAGS) -c -fpic bitfield.c -o bf-shared.o -I. $(LIBS)
29 | $(CC) $(CFLAGS) -shared -Wl,-soname,libbitfield.so.1 -o libbitfield.so.$(VERSION) bf-shared.o $(LIBS)
30 | for i in libbitfield.so.1 libbitfield.so; do ln -svf libbitfield.so.$(VERSION) $$i; done
31 |
32 | static: libbitfield.a
33 | libbitfield.a: bitfield.c
34 | $(CC) $(CFLAGS) -c bitfield.c -o bf-static.o $(LIBS)
35 | $(AR) rcs libbitfield.a bf-static.o
36 |
37 | man:
38 | $(MAKE) -C man
39 |
40 | test: check
41 |
42 | check:
43 | $(MAKE) -C $(TESTDIR)
44 |
45 | examples: example
46 |
47 | example:
48 | $(MAKE) -C $(EXAMPLEDIR)
49 |
50 | install: install-lib install-man install-header install-pc
51 |
52 | install-lib:
53 | mkdir -p $(DESTDIR)$(libdir)
54 | for i in libbitfield.so.1 libbitfield.so libbitfield.so.$(VERSION) libbitfield.a; do if [ -e $(DESTDIR)$(libdir)/$$i ]; then rm -v $(DESTDIR)$(libdir)/$$i; fi; done
55 | install -m 0644 libbitfield.so.$(VERSION) $(DESTDIR)$(libdir)
56 | ln -sv libbitfield.so.$(VERSION) $(DESTDIR)$(libdir)/libbitfield.so.1
57 | ln -sv libbitfield.so.$(VERSION) $(DESTDIR)$(libdir)/libbitfield.so
58 | install -m 0644 libbitfield.a $(DESTDIR)$(libdir)
59 |
60 | install-man:
61 | $(MAKE) -C man install
62 |
63 | install-header:
64 | mkdir -p $(DESTDIR)$(includedir)
65 | install -m 644 bitfield.h $(DESTDIR)$(includedir)/bitfield.h
66 |
67 | install-pc: libbitfield.pc
68 | install -d $(DESTDIR)$(libdir)/pkgconfig
69 | install -m 0644 $< $(DESTDIR)$(libdir)/pkgconfig
70 |
71 | clean:
72 | rm -rvf *.a *.o *.so*
73 | $(MAKE) -C examples clean
74 | $(MAKE) -C $(TESTDIR) clean
75 | $(MAKE) -C man clean
76 |
77 | distclean: clean
78 | rm config.log config.status config.h Makefile libbitfield.pc
79 | $(MAKE) -C man distclean
80 | $(MAKE) -C examples distclean
81 | $(MAKE) -C $(TESTDIR) distclean
82 |
83 | uninstall: uninstall-lib uninstall-man uninstall-header uninstall-pc
84 |
85 | uninstall-lib:
86 | for i in libbitfield.so.1 libbitfield.so libbitfield.so.$(VERSION) libbitfield.a; do if [ -e $(DESTDIR)$(libdir)/$$i ]; then rm -v $(DESTDIR)$(libdir)/$$i; fi; done
87 |
88 | uninstall-man:
89 | $(MAKE) -C man uninstall
90 |
91 | uninstall-header:
92 | if [ -e $(DESTDIR)$(includedir)/bitfield.h ]; then rm -v $(DESTDIR)$(includedir)/bitfield.h; fi
93 |
94 | uninstall-pc:
95 | if [ -e $(DESTDIR)$(libdir)/pkgconfig/libbitfield.pc ]; then rm -v $(DESTDIR)$(libdir)/pkgconfig/libbitfield.pc; fi
96 |
--------------------------------------------------------------------------------
/README:
--------------------------------------------------------------------------------
1 | bitfield
2 | ========
3 |
4 | Version 1.0.1 (August, 2017)
5 |
6 | bitfield is a library of functions for creating, modifying and destroying bit
7 | fields (or bit arrays), i.e. series of zeroes and ones spread across an array
8 | of storage units (unsigned long integers).
9 |
10 | Installation
11 | ------------
12 |
13 | To compile bitfield from source code:
14 |
15 | $ autoconf
16 | $ ./configure --prefix=DIRECTORY
17 | $ make
18 |
19 | This will build both a static and a shared version. To build just one of them,
20 | replace "make" with "make static" or "make shared".
21 |
22 | To test the compiled library:
23 |
24 | $ make test
25 |
26 | To build and run some example applications:
27 |
28 | $ make example
29 |
30 | The generic way to install the compiled files is:
31 |
32 | $ make install
33 | $ ldconfig
34 |
35 | However, one might prefer to use distro-specific installation mechanism (like
36 | "checkinstall") instead.
37 |
38 | Usage
39 | -----
40 |
41 | Using the functions provided by bitfield library in a project is
42 | straightforward.
43 | If bitfield library files are installed system-wide in standard locations, then
44 | one needs to (1) include a system version of the header file to the source
45 |
46 | #include
47 |
48 | and (2) add the "-lbitfield" flag to compiler instructions
49 |
50 | gcc ... -lbitfield
51 |
52 | Alternatively, if bitfield library is integrated into a project, then one needs
53 | to (1) include a local version of the header file to the source
54 |
55 | #include "PATH_TO_HEADER/bitfield.h"
56 |
57 | and (2) add the "-lbitfield" flag, along with the path to the header and path
58 | to the library to compiler instructions
59 |
60 | gcc ... -I$(PATH_TO_HEADER) -L$(PATH_TO_LIBRARY) -lbitfield
61 |
62 | Bitfield structure
63 | ------------------
64 |
65 | Bit arrays are stored in data structures called 'bitfield'. A bitfield structure
66 | has two elements: an array of unsigned long integers 'field' for storing the bits
67 | and an integer 'size' for storing the number of bits in the array. This library
68 | provides APIs for accessing and modifying bit arrays (see 'Functions').
69 |
70 | Functions
71 | ---------
72 |
73 | For function syntax, see "bitfield.h". For details on every function, see its
74 | manual page.
75 |
76 | Creating and deleting bit arrays:
77 |
78 | bfnew() creates an empty bitfield structure, and returns a pointer to it
79 |
80 | bfnew_ones() creates a bitfield structure, sets all its bits and returns a
81 | pointer to it
82 |
83 | bfnew_quick() creates a bitfield structure and returns a pointer to it
84 |
85 | bfdel() destroys a bitfield structure and frees memory
86 |
87 | Operations with bit arrays:
88 |
89 | bfresize() resizes an existing bitfield
90 |
91 | bfcat() concatenates several bitfields into one
92 |
93 | bfclearall() clears all bits in a bitfield (i.e. fills it with zeroes)
94 |
95 | bfclone() creates a copy of an existing bitfield
96 |
97 | bfcpy() copies the contents of a bitfield into another pre-existing bitfield
98 |
99 | bfhamming() counts the Hamming distance between two bitfields
100 |
101 | bfisempty() checks whether all bit of an array are unset
102 |
103 | bfnormalize() represents a bitfield as a smallest value of a closed ring
104 |
105 | bfpopcount() counts the set bits in a bitfield
106 |
107 | bfpos() checks whether an array of bits contains a sub-array
108 |
109 | bfrev() reverses the order of bits in a bitfield and returns result in new
110 | bitfield
111 |
112 | bfrev_ip() reverses the order of bits in an existing bitfield
113 |
114 | bfsetall() sets all bits in a bitfield (i.e. fills it with ones)
115 |
116 | bfshift() circular-shifts the contents of a bitfield and returns the result in
117 | new bitfield
118 |
119 | bfshift_ip() circular-shifts the contents of an existing bitfield
120 |
121 | bfsub() extracts a sub-bitfield in a new bitfield
122 |
123 | Operations with individual bits:
124 |
125 | bfgetbit() checks the state of a bit in a bitfield
126 |
127 | bfsetbit() sets one bit in a bitfield
128 |
129 | bfclearbit() clears one bit in a bitfield
130 |
131 | bftogglebit() toggles (i.e. reverses the state of) a bit in a bitfield
132 |
133 | Printing bit arrays:
134 |
135 | bfprint_lsb() prints a bitfield as a series of ones and zeroes, left to right, the
136 | least significant bit first
137 |
138 | bfprint_msb() prints a bitfield as a series of ones and zeroes, left to right, the
139 | most significant bit first
140 |
141 | Logical operations with bit arrays:
142 |
143 | bfand() performs bitwise AND over a pair of bitfields
144 |
145 | bfnot() reverses all bits in a bitfield and return the result in a new bitfield
146 |
147 | bfnot_ip() reverses all bits in an existing bitfield
148 |
149 | bfor() performs bitwise inclusive OR over a pair of bitfields
150 |
151 | bfxor() performs bitwise exclusive OR over a pair of bitfields
152 |
153 | bfcmp() compares two bitfields and returns 0 if same or non-zero and error
154 | message if different
155 |
156 | Converting between different data types:
157 |
158 | These functions convert between bitfield structure and standard data types.
159 | Supported data types are: unsigned char, unsigned short, unsigned int, unsigned
160 | long, unsigned long long, uint8_t, uint16_t, uint32_t and uint64_t. Unsigned
161 | chars can be treated in two ways. Functions with "str" in their name treat each
162 | char as a storage of one character, '0' or '1', while functions with "char" in
163 | their name treat each char as a storage of several (usually 8) bits.
164 |
165 | Bitfield-to-something functions:
166 |
167 | bf2char() converts a bitfield structure into an array of unsigned chars
168 |
169 | bf2str() converts into a character string of '1's and '0's
170 |
171 | bf2short() converts into an array of short integers
172 |
173 | bf2int() converts into an array of integers
174 |
175 | bf2long() converts into an array of long integers
176 |
177 | bf2ll() converts into an array of long long integers
178 |
179 | bftouint8() converts into an array of uint8_t
180 |
181 | bftouint16() converts into an array of uint16_t
182 |
183 | bftouint32() converts into an array of uint32_t
184 |
185 | bftouint64() converts into an array of uin64_t
186 |
187 | "In-place" bitfield-to-something functions are same as above, except that
188 | instead of creating a new array, these functions fill an existing one:
189 |
190 | bf2char_ip()
191 |
192 | bf2str_ip()
193 |
194 | bf2short_ip()
195 |
196 | bf2int_ip()
197 |
198 | bf2long_ip()
199 |
200 | bf2ll_ip()
201 |
202 | bftouint8_ip()
203 |
204 | bftouint16_ip()
205 |
206 | bftouint32_ip()
207 |
208 | bftouint64_ip()
209 |
210 | "Something-to-bitfield" functions:
211 |
212 | char2bf() converts an array of unsigned chars into a bitfield structure
213 |
214 | str2bf() converts a character string of '1's and '0's
215 |
216 | short2bf() converts an array of short integers
217 |
218 | int2bf() converts an array of integers
219 |
220 | long2bf() converts an array of long integers
221 |
222 | ll2bf() converts an array of long long integers
223 |
224 | uint8tobf() converts an array of uint8_t
225 |
226 | uint16tobf() converts an array of uint16_t
227 |
228 | uint32tobf() converts an array of uint32_t
229 |
230 | uint64tobf() converts an array of uint64_t
231 |
232 | "In-place" something-to-bitfield functions are same as above, except that
233 | instead of creating a new bitfield, these functions fill an existing one:
234 |
235 | char2bf_ip()
236 |
237 | str2bf_ip()
238 |
239 | short2bf_ip()
240 |
241 | int2bf_ip()
242 |
243 | long2bf_ip()
244 |
245 | ll2bf_ip()
246 |
247 | uint8tobf_ip()
248 |
249 | uint16tobf_ip()
250 |
251 | uint32tobf_ip()
252 |
253 | uint64tobf_ip()
254 |
255 | Miscellaneous functions:
256 |
257 | bfsize() obtains the number of bits of a bitfield
258 |
259 | Please, see "examples" directory for working examples.
260 |
261 | Versioning
262 | ----------
263 |
264 | The versioning scheme is MAJOR.MINOR.PATCH, where
265 | * MAJOR version changes with incompatible API/ABI changes,
266 | * MINOR version changes with backwards-compatible changes (like adding new functionality),
267 | * PATCH version changes with backwards-compatible bug fixes.
268 |
269 | Licensing
270 | ---------
271 |
272 | bitfield is free software, and is released under the terms of the GNU General
273 | Public License version 3 or any later version. Please see the file called
274 | LICENSE.
275 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | bitfield
2 | ========
3 |
4 | Version 1.0.1 (August, 2017)
5 |
6 | bitfield is a library of functions for creating, modifying and destroying bit
7 | fields (or bit arrays), i.e. series of zeroes and ones spread across an array
8 | of storage units (unsigned long integers).
9 |
10 | Installation
11 | ------------
12 |
13 | To compile bitfield from source code:
14 |
15 | $ autoconf
16 | $ ./configure --prefix=DIRECTORY
17 | $ make
18 |
19 | This will build both a static and a shared version. To build just one of them,
20 | replace "make" with "make static" or "make shared".
21 |
22 | To test the compiled library:
23 |
24 | $ make test
25 |
26 | To build and run some example applications:
27 |
28 | $ make example
29 |
30 | The generic way to install the compiled files is:
31 |
32 | $ make install
33 | $ ldconfig
34 |
35 | However, one might prefer to use distro-specific installation mechanism (like
36 | "checkinstall") instead.
37 |
38 | Usage
39 | -----
40 |
41 | Using the functions provided by bitfield library in a project is
42 | straightforward.
43 | If bitfield library files are installed system-wide in standard locations, then
44 | one needs to (1) include a system version of the header file to the source
45 |
46 | #include
47 |
48 | and (2) add the "-lbitfield" flag to compiler instructions
49 |
50 | gcc ... -lbitfield
51 |
52 | Alternatively, if bitfield library is integrated into a project, then one needs
53 | to (1) include a local version of the header file to the source
54 |
55 | #include "PATH_TO_HEADER/bitfield.h"
56 |
57 | and (2) add the "-lbitfield" flag, along with the path to the header and path
58 | to the library to compiler instructions
59 |
60 | gcc ... -I$(PATH_TO_HEADER) -L$(PATH_TO_LIBRARY) -lbitfield
61 |
62 | Bitfield structure
63 | ------------------
64 |
65 | Bit arrays are stored in data structures called 'bitfield'. A bitfield structure
66 | has two elements: an array of unsigned long integers 'field' for storing the bits
67 | and an integer 'size' for storing the number of bits in the array. This library
68 | provides APIs for accessing and modifying bit arrays (see 'Functions').
69 |
70 | Functions
71 | ---------
72 |
73 | For function syntax, see "bitfield.h". For details on every function, see its
74 | manual page.
75 |
76 | Creating and deleting bit arrays:
77 |
78 | bfnew() creates an empty bitfield structure, and returns a pointer to it
79 |
80 | bfnew_ones() creates a bitfield structure, sets all its bits and returns a
81 | pointer to it
82 |
83 | bfnew_quick() creates a bitfield structure and returns a pointer to it
84 |
85 | bfdel() destroys a bitfield structure and frees memory
86 |
87 | Operations with bit arrays:
88 |
89 | bfresize() resizes an existing bitfield
90 |
91 | bfcat() concatenates several bitfields into one
92 |
93 | bfclearall() clears all bits in a bitfield (i.e. fills it with zeroes)
94 |
95 | bfclone() creates a copy of an existing bitfield
96 |
97 | bfcpy() copies the contents of a bitfield into another pre-existing bitfield
98 |
99 | bfhamming() counts the Hamming distance between two bitfields
100 |
101 | bfisempty() checks whether all bit of an array are unset
102 |
103 | bfnormalize() represents a bitfield as a smallest value of a closed ring
104 |
105 | bfpopcount() counts the set bits in a bitfield
106 |
107 | bfpos() checks whether an array of bits contains a sub-array
108 |
109 | bfrev() reverses the order of bits in a bitfield and returns result in new
110 | bitfield
111 |
112 | bfrev_ip() reverses the order of bits in an existing bitfield
113 |
114 | bfsetall() sets all bits in a bitfield (i.e. fills it with ones)
115 |
116 | bfshift() circular-shifts the contents of a bitfield and returns the result in
117 | new bitfield
118 |
119 | bfshift_ip() circular-shifts the contents of an existing bitfield
120 |
121 | bfsub() extracts a sub-bitfield in a new bitfield
122 |
123 | Operations with individual bits:
124 |
125 | bfgetbit() checks the state of a bit in a bitfield
126 |
127 | bfsetbit() sets one bit in a bitfield
128 |
129 | bfclearbit() clears one bit in a bitfield
130 |
131 | bftogglebit() toggles (i.e. reverses the state of) a bit in a bitfield
132 |
133 | Printing bit arrays:
134 |
135 | bfprint_lsb() prints a bitfield as a series of ones and zeroes, left to right, the
136 | least significant bit first
137 |
138 | bfprint_msb() prints a bitfield as a series of ones and zeroes, left to right, the
139 | most significant bit first
140 |
141 | Logical operations with bit arrays:
142 |
143 | bfand() performs bitwise AND over a pair of bitfields
144 |
145 | bfnot() reverses all bits in a bitfield and return the result in a new bitfield
146 |
147 | bfnot_ip() reverses all bits in an existing bitfield
148 |
149 | bfor() performs bitwise inclusive OR over a pair of bitfields
150 |
151 | bfxor() performs bitwise exclusive OR over a pair of bitfields
152 |
153 | bfcmp() compares two bitfields and returns 0 if same or non-zero and error
154 | message if different
155 |
156 | Converting between different data types:
157 |
158 | These functions convert between bitfield structure and standard data types.
159 | Supported data types are: unsigned char, unsigned short, unsigned int, unsigned
160 | long, unsigned long long, uint8_t, uint16_t, uint32_t and uint64_t. Unsigned
161 | chars can be treated in two ways. Functions with "str" in their name treat each
162 | char as a storage of one character, '0' or '1', while functions with "char" in
163 | their name treat each char as a storage of several (usually 8) bits.
164 |
165 | Bitfield-to-something functions:
166 |
167 | bf2char() converts a bitfield structure into an array of unsigned chars
168 |
169 | bf2str() converts into a character string of '1's and '0's
170 |
171 | bf2short() converts into an array of short integers
172 |
173 | bf2int() converts into an array of integers
174 |
175 | bf2long() converts into an array of long integers
176 |
177 | bf2ll() converts into an array of long long integers
178 |
179 | bftouint8() converts into an array of uint8_t
180 |
181 | bftouint16() converts into an array of uint16_t
182 |
183 | bftouint32() converts into an array of uint32_t
184 |
185 | bftouint64() converts into an array of uin64_t
186 |
187 | "In-place" bitfield-to-something functions are same as above, except that
188 | instead of creating a new array, these functions fill an existing one:
189 |
190 | bf2char_ip()
191 |
192 | bf2str_ip()
193 |
194 | bf2short_ip()
195 |
196 | bf2int_ip()
197 |
198 | bf2long_ip()
199 |
200 | bf2ll_ip()
201 |
202 | bftouint8_ip()
203 |
204 | bftouint16_ip()
205 |
206 | bftouint32_ip()
207 |
208 | bftouint64_ip()
209 |
210 | "Something-to-bitfield" functions:
211 |
212 | char2bf() converts an array of unsigned chars into a bitfield structure
213 |
214 | str2bf() converts a character string of '1's and '0's
215 |
216 | short2bf() converts an array of short integers
217 |
218 | int2bf() converts an array of integers
219 |
220 | long2bf() converts an array of long integers
221 |
222 | ll2bf() converts an array of long long integers
223 |
224 | uint8tobf() converts an array of uint8_t
225 |
226 | uint16tobf() converts an array of uint16_t
227 |
228 | uint32tobf() converts an array of uint32_t
229 |
230 | uint64tobf() converts an array of uint64_t
231 |
232 | "In-place" something-to-bitfield functions are same as above, except that
233 | instead of creating a new bitfield, these functions fill an existing one:
234 |
235 | char2bf_ip()
236 |
237 | str2bf_ip()
238 |
239 | short2bf_ip()
240 |
241 | int2bf_ip()
242 |
243 | long2bf_ip()
244 |
245 | ll2bf_ip()
246 |
247 | uint8tobf_ip()
248 |
249 | uint16tobf_ip()
250 |
251 | uint32tobf_ip()
252 |
253 | uint64tobf_ip()
254 |
255 | Miscellaneous functions:
256 |
257 | bfsize() obtains the number of bits of a bitfield
258 |
259 | Please, see "examples" directory for working examples.
260 |
261 | Versioning
262 | ----------
263 |
264 | The versioning scheme is MAJOR.MINOR.PATCH, where
265 | * MAJOR version changes with incompatible API/ABI changes,
266 | * MINOR version changes with backwards-compatible changes (like adding new functionality),
267 | * PATCH version changes with backwards-compatible bug fixes.
268 |
269 | Licensing
270 | ---------
271 |
272 | bitfield is free software, and is released under the terms of the GNU General
273 | Public License version 3 or any later version. Please see the file called
274 | LICENSE.
275 |
--------------------------------------------------------------------------------
/bitfield-internals.h:
--------------------------------------------------------------------------------
1 | #ifndef CHAR_BIT
2 | #include
3 | #endif
4 | #ifndef SHORT_BIT
5 | #define SHORT_BIT (unsigned int) (sizeof(unsigned short) * CHAR_BIT)
6 | #endif
7 | #ifndef INT_BIT
8 | #define INT_BIT (unsigned int) (sizeof(unsigned int) * CHAR_BIT)
9 | #endif
10 | #ifndef LONG_BIT
11 | #define LONG_BIT (unsigned int) (sizeof(unsigned long) * CHAR_BIT)
12 | #endif
13 | #ifndef LONG_LONG_BIT
14 | #define LONG_LONG_BIT (unsigned int) (sizeof(unsigned long long) * CHAR_BIT)
15 | #endif
16 | #define BITMASK(b) (1UL << ((b) % LONG_BIT))
17 | #define BITSLOT(b) ((b) / LONG_BIT)
18 | #define BITGET(a, b) (((a)->field[BITSLOT(b)] >> ((b) % LONG_BIT)) & 1UL)
19 | #define BITSET(a, b) ((a)->field[BITSLOT(b)] |= BITMASK(b))
20 | #define BITCLEAR(a, b) ((a)->field[BITSLOT(b)] &= ~BITMASK(b))
21 | #define BITTEST(a, b) ((a)->field[BITSLOT(b)] & BITMASK(b))
22 | #define BITTOGGLE(a, b) ((a)->field[BITSLOT(b)] ^= BITMASK(b))
23 | #define BITNSLOTS(nb) ((nb + LONG_BIT - 1) / LONG_BIT)
24 |
25 | struct bitfield { /* defines a bitfield */
26 | unsigned long *field;
27 | unsigned int size;
28 | };
29 |
--------------------------------------------------------------------------------
/bitfield.h:
--------------------------------------------------------------------------------
1 | /**
2 | * File name: bitfield.h
3 | * Project name: bitfield, a bit array manipulation library written in C
4 | * URL: https://github.com/ciubotaru/bitfield
5 | * Author: Vitalie Ciubotaru
6 | * License: General Public License, version 3 or later
7 | * Copyright 2015, 2016, 2017
8 | **/
9 |
10 | #include
11 |
12 | #ifndef BITFIELD_H
13 | #define BITFIELD_H
14 |
15 | struct bitfield;
16 |
17 | /*
18 | * Convert integer data types, all unsigned, to bitfield structures, with
19 | * in-place equivalents:
20 | * char as a character (each char storing '0' or '1')
21 | * char as an integer
22 | * int
23 | * long
24 | */
25 |
26 | struct bitfield *str2bf(const char *input); /* converts a null-terminated character string of ones and zeroes into a bitfield and returns the result in a new bitfield */
27 |
28 | #define char2bf(X, Y) (struct bitfield *) uint8tobf((const uint8_t *) X, Y) /* write the contents of an array of chars into a bitfield structure */
29 |
30 | struct bitfield *short2bf(const unsigned short *input, unsigned int size); /* write the contents of an array of short integers into a bitfield structure */
31 |
32 | #define int2bf(X, Y) (struct bitfield *) uint32tobf((const uint32_t *) X, Y) /* write the contents of an array of integers into a bitfield structure */
33 |
34 | struct bitfield *long2bf(const unsigned long *input, unsigned int size); /* write the contents of an array of long integers into a bitfield structure */
35 |
36 | #define ll2bf(x, y) (struct bitfield *) uint64tobf((uint64_t *) x, y) /* write the contents of an array of longlong integers into a bitfield structure */
37 |
38 | struct bitfield *uint8tobf(const uint8_t * input, unsigned int size);
39 |
40 | struct bitfield *uint16tobf(const uint16_t * input, unsigned int size);
41 |
42 | struct bitfield *uint32tobf(const uint32_t * input, unsigned int size);
43 |
44 | struct bitfield *uint64tobf(const uint64_t * input, unsigned int size);
45 |
46 | void str2bf_ip(const char *input, struct bitfield *output); /* converts a character string of ones and zeroes into a bitfield */
47 |
48 | #define char2bf_ip(X, Y) uint8tobf_ip((const uint8_t *) X, Y) /* convert an array of chars into a bitfield structure */
49 |
50 | void short2bf_ip(const unsigned short *intput, struct bitfield *output); /* convert an array of short integers into a bitfield structure */
51 |
52 | #define int2bf_ip(X, Y) uint32tobf_ip((const uint32_t *) X, Y) /* convert an array of integers into a bitfield structure */
53 |
54 | void long2bf_ip(const unsigned long *input, struct bitfield *output); /* convert an array of long integers into a bitfield structure */
55 |
56 | #define ll2bf_ip(x, y) uint64tobf_ip((uint64_t *) x, y); /* convert an array of longlong integers into a bitfield structure */
57 |
58 | void uint8tobf_ip(const uint8_t * input, struct bitfield *output);
59 |
60 | void uint16tobf_ip(const uint16_t * input, struct bitfield *output);
61 |
62 | void uint32tobf_ip(const uint32_t * input, struct bitfield *output);
63 |
64 | void uint64tobf_ip(const uint64_t * input, struct bitfield *output);
65 |
66 | /*
67 | * Convert bitfield structures to integer data types, all unsigned, with
68 | * in-place equivalents:
69 | * char as a character (each char storing '0' or '1')
70 | * char as an integer
71 | * int
72 | * long
73 | */
74 |
75 | char *bf2str(const struct bitfield *input); /* converts a bitfield into a character string of ones and zeroes and returns the result in a new character string */
76 |
77 | #define bf2char(X) (unsigned char *) bftouint8(X) /* return the bitfield as an array of unsigned chars */
78 |
79 | unsigned short *bf2short(const struct bitfield *input); /* return the bitfield as an array of unsigned short integers */
80 |
81 | #define bf2int(X) (unsigned int *) bftouint32(X) /* return the bitfield as an array of unsigned integers */
82 |
83 | unsigned long *bf2long(const struct bitfield *input); /* return the bitfield as an array of unsigned long integers */
84 |
85 | #define bf2ll(x) (unsigned long long *) bftouint64(x); /* return the bitfield as an array of unsigned longlong integers */
86 |
87 | uint8_t *bftouint8(const struct bitfield *input);
88 |
89 | uint16_t *bftouint16(const struct bitfield *input);
90 |
91 | uint32_t *bftouint32(const struct bitfield *input);
92 |
93 | uint64_t *bftouint64(const struct bitfield *input);
94 |
95 | void bf2str_ip(const struct bitfield *input, char *output); /* converts a bitfield into a character string of ones and zeroes */
96 |
97 | #define bf2char_ip(X, Y) bftouint8_ip(X, (uint8_t *) Y) /* converts a bitfield into an array of unsigned chars */
98 |
99 | void bf2short_ip(const struct bitfield *input, unsigned short *output); /* converts a bitfield into an array of unsigned short integers */
100 |
101 | #define bf2int_ip(X, Y) bftouint32_ip(X, (uint32_t *) Y) /* converts a bitfield into an array of unsigned integers */
102 |
103 | void bf2long_ip(const struct bitfield *input, unsigned long *output); /* converts a bitfield into an array of unsigned long integers */
104 |
105 | #define bf2ll_ip(x, y) bftouint64_ip(x, (uint64_t *) y); /* converts a bitfield into an array of unsigned longlong integers */
106 |
107 | void bftouint8_ip(const struct bitfield *input, uint8_t * output);
108 |
109 | void bftouint16_ip(const struct bitfield *input, uint16_t * output);
110 |
111 | void bftouint32_ip(const struct bitfield *input, uint32_t * output);
112 |
113 | void bftouint64_ip(const struct bitfield *input, uint64_t * output);
114 |
115 | /*
116 | * Create and delete bitfields
117 | */
118 |
119 | struct bitfield *bfnew_ones(const unsigned int size); /* creates a bitfield structure, sets all its bits to true with and returns a pointer to it */
120 |
121 | struct bitfield *bfnew_quick(const unsigned int size); /* creates a bitfield structure and returns a pointer to it */
122 |
123 | struct bitfield *bfnew(const unsigned int size); /* creates a bitfield structure, sets all its bits to false and returns a pointer to it */
124 |
125 | void bfdel(struct bitfield *instance); /* destroys a bitfield structure and frees memory */
126 |
127 | /*
128 | * Operations with single bits
129 | */
130 |
131 | unsigned int bfgetbit(const struct bitfield *instance, const unsigned int bit); /* checks whether a bit in a bitfield is set */
132 |
133 | void bfsetbit(struct bitfield *instance, const unsigned int bit); /* sets one bit in a bitfield */
134 |
135 | void bfclearbit(struct bitfield *instance, const unsigned int bit); /* clears one bit in a bitfield */
136 |
137 | void bftogglebit(struct bitfield *instance, const unsigned int bit); /* toggles a bit in a bitfield */
138 |
139 | /*
140 | * Logical operations with bitfields
141 | */
142 |
143 | struct bitfield *_bfand(unsigned int count, ...);
144 |
145 | #define bfand(...) (struct bitfield *) _bfand( count_arguments(#__VA_ARGS__), __VA_ARGS__) /* performs bitwise AND over a pair of bitfields */
146 |
147 | struct bitfield *bfnot(const struct bitfield *input); /* reverses all bits in a bitfield and return the result in new bitfield */
148 |
149 | void bfnot_ip(struct bitfield *instance); /* reverses all bits in a bitfield */
150 |
151 | struct bitfield *_bfor(unsigned int count, ...);
152 |
153 | #define bfor(...) (struct bitfield *) _bfor( count_arguments(#__VA_ARGS__), __VA_ARGS__) /* performs bitwise inclusive OR over a pair of bitfields */
154 |
155 | struct bitfield *_bfxor(unsigned int count, ...);
156 |
157 | #define bfxor(...) (struct bitfield *) _bfxor( count_arguments(#__VA_ARGS__), __VA_ARGS__) /* performs bitwise exclusive OR over a pair of bitfields */
158 |
159 | /*
160 | * Manipulate bitfields
161 | */
162 | struct bitfield *_bfcat(unsigned int count, ...);
163 |
164 | unsigned int count_arguments(char *s);
165 |
166 | #define bfcat(...) (struct bitfield *) _bfcat( count_arguments(#__VA_ARGS__), __VA_ARGS__) /* concatenates two bitfields into one */
167 |
168 | void bfclearall(struct bitfield *instance); /* fills a bitfield with zeroes */
169 |
170 | struct bitfield *bfclone(const struct bitfield *input); /* creates a copy of an existing bitfield */
171 |
172 | unsigned int bfcmp(const struct bitfield *input1, const struct bitfield *input2, char **errmsg); /* compares two bitfields and returns 0 if same or non-zero and error message if different */
173 |
174 | unsigned int bfcpy(const struct bitfield *src, struct bitfield *dest); /* copies the contents of a bitfield into another pre-existing bitfield */
175 |
176 | unsigned int bfhamming(const struct bitfield *input1, const struct bitfield *input2); /* counts the Hamming distance between two bitfields */
177 |
178 | unsigned int bfisempty(const struct bitfield *instance); /* checks whether all bits of an array are unset */
179 |
180 | struct bitfield *bfnormalize(const struct bitfield *input); /* treats the bitfield as a closed ring and represents it as a smallest value */
181 |
182 | unsigned int bfpopcount(const struct bitfield *instance); /* counts the set bits in a bitfield */
183 |
184 | int bfpos(const struct bitfield *haystack, const struct bitfield *needle); /* check whether an array of bits contains a sub-array */
185 |
186 | void bfprint_lsb(const struct bitfield *instance); /* prints a bitfield as a series of ones and zeroes, least significant bit first */
187 |
188 | void bfprint_msb(const struct bitfield *instance); /* prints a bitfield as a series of ones and zeroes, most significant bit first */
189 |
190 | void bfresize(struct bitfield *instance, const unsigned int new_size); /* resizes an existing bitfield */
191 |
192 | void bfrev_ip(struct bitfield *instance); /* reverses the order of bits in a bitfield */
193 |
194 | struct bitfield *bfrev(const struct bitfield *input); /* reverses the order of bits in a bitfield and return result in new bitfield */
195 |
196 | void bfsetall(struct bitfield *instance); /* fills a bitfield with ones */
197 |
198 | void bfshift_ip(struct bitfield *input, const int offset); /* circular-shifts the contents of a bitfield */
199 |
200 | struct bitfield *bfshift(const struct bitfield *input, const int offset); /* circular-shifts the contents of a bitfield and return the result in new bitfield */
201 |
202 | unsigned int bfsize(const struct bitfield *instance); /* obtains the number of bits of a bitfield */
203 |
204 | struct bitfield *bfsub(const struct bitfield *input, const unsigned int start, const unsigned int end); /* extracts a slice of a bitfield */
205 |
206 | #endif
207 |
--------------------------------------------------------------------------------
/config.h.in:
--------------------------------------------------------------------------------
1 | /* config.h.in. Generated from configure.ac by autoheader. */
2 |
3 | /* Define to 1 if you have the header file. */
4 | #undef HAVE_INTTYPES_H
5 |
6 | /* Define to 1 if you have the `m' library (-lm). */
7 | #undef HAVE_LIBM
8 |
9 | /* Define to 1 if you have the `rt' library (-lrt). */
10 | #undef HAVE_LIBRT
11 |
12 | /* Define to 1 if you have the header file. */
13 | #undef HAVE_LIMITS_H
14 |
15 | /* Define to 1 if your system has a GNU libc compatible `malloc' function, and
16 | to 0 otherwise. */
17 | #undef HAVE_MALLOC
18 |
19 | /* Define to 1 if you have the header file. */
20 | #undef HAVE_MEMORY_H
21 |
22 | /* Define to 1 if you have the header file. */
23 | #undef HAVE_STDINT_H
24 |
25 | /* Define to 1 if you have the header file. */
26 | #undef HAVE_STDLIB_H
27 |
28 | /* Define to 1 if you have the header file. */
29 | #undef HAVE_STRINGS_H
30 |
31 | /* Define to 1 if you have the header file. */
32 | #undef HAVE_STRING_H
33 |
34 | /* Define to 1 if you have the header file. */
35 | #undef HAVE_SYS_STAT_H
36 |
37 | /* Define to 1 if you have the header file. */
38 | #undef HAVE_SYS_TYPES_H
39 |
40 | /* Define to 1 if you have the header file. */
41 | #undef HAVE_UNISTD_H
42 |
43 | /* Define to the address where bug reports for this package should be sent. */
44 | #undef PACKAGE_BUGREPORT
45 |
46 | /* Define to the full name of this package. */
47 | #undef PACKAGE_NAME
48 |
49 | /* Define to the full name and version of this package. */
50 | #undef PACKAGE_STRING
51 |
52 | /* Define to the one symbol short name of this package. */
53 | #undef PACKAGE_TARNAME
54 |
55 | /* Define to the home page for this package. */
56 | #undef PACKAGE_URL
57 |
58 | /* Define to the version of this package. */
59 | #undef PACKAGE_VERSION
60 |
61 | /* Define to 1 if you have the ANSI C header files. */
62 | #undef STDC_HEADERS
63 |
64 | /* Define to `__inline__' or `__inline' if that's what the C compiler
65 | calls it, or to nothing if 'inline' is not supported under any name. */
66 | #ifndef __cplusplus
67 | #undef inline
68 | #endif
69 |
70 | /* Define to rpl_malloc if the replacement function should be used. */
71 | #undef malloc
72 |
--------------------------------------------------------------------------------
/configure.ac:
--------------------------------------------------------------------------------
1 | # -*- Autoconf -*-
2 | # Process this file with autoconf to produce a configure script.
3 |
4 | AC_PREREQ([2.68])
5 | AC_INIT([bitfield], [1.0.1], [vitalie@ciubotaru.tk])
6 | AC_CONFIG_SRCDIR([bitfield.c])
7 | AC_CONFIG_HEADERS([config.h])
8 | AC_CONFIG_FILES([libbitfield.pc])
9 |
10 | # Checks for programs.
11 | AC_PROG_CC
12 | AC_PROG_LN_S
13 |
14 | # Checks for libraries.
15 | # FIXME: Replace `main' with a function in `-lm':
16 | #AC_CHECK_LIB([m], [main])
17 | # FIXME: Replace `main' with a function in `-lrt':
18 | #AC_CHECK_LIB([rt], [main])
19 |
20 | # Checks for header files.
21 | AC_CHECK_HEADERS([limits.h stdlib.h string.h endian.h])
22 |
23 | # Checks for typedefs, structures, and compiler characteristics.
24 | AC_C_INLINE
25 |
26 | # Checks for library functions.
27 | AC_FUNC_MALLOC
28 |
29 | #AC_CONFIG_FILES([Makefile])
30 | AC_OUTPUT([Makefile] [tests/Makefile] [man/Makefile] [examples/Makefile])
31 |
--------------------------------------------------------------------------------
/examples/Makefile.in:
--------------------------------------------------------------------------------
1 | EXAMPLES=bfnormalize int2bf random rule30 bfcat bfand bfor bfxor
2 | LIBS=-L.. -I..
3 |
4 | all: build-examples run-examples
5 | build-examples: $(EXAMPLES)
6 | $(EXAMPLES): %: %.c
7 | $(CC) $(CFLAGS) -Wl,-rpath=$(CURDIR) -o $@ $< $(LIBS) -lbitfield
8 |
9 | run-examples:
10 | for i in $(EXAMPLES); do \
11 | ./$$i; \
12 | done
13 |
14 | clean:
15 | rm -rvf $(EXAMPLES)
16 |
17 | distclean:
18 | rm Makefile
19 |
20 | .PHONY: build-tests run-tests clean distclean
21 |
--------------------------------------------------------------------------------
/examples/bfand.c:
--------------------------------------------------------------------------------
1 | #include
2 | #include
3 | #include
4 | #include
5 | #include
6 | #include
7 | #include
8 |
9 | int main()
10 | {
11 | printf("Running logical AND over three bit arrays...\n");
12 | printf("Inputs:\n");
13 | struct bitfield *input1 = str2bf("1110111");
14 | bfprint_lsb(input1);
15 | printf("\n");
16 | struct bitfield *input2 = str2bf("101010100");
17 | bfprint_lsb(input2);
18 | printf("\n");
19 | struct bitfield *input3 = str2bf("10100111111");
20 | bfprint_lsb(input3);
21 | printf("\n");
22 | struct bitfield *output = bfand(input1, input2, input3);
23 | printf("Output:\n");
24 | bfprint_lsb(output);
25 | printf("\n");
26 | printf("---\n");
27 | return 0;
28 | }
29 |
--------------------------------------------------------------------------------
/examples/bfcat.c:
--------------------------------------------------------------------------------
1 | #include
2 | #include
3 | #include
4 | #include
5 | #include
6 | #include
7 | #include
8 |
9 | int main()
10 | {
11 | printf("Joining three bit arrays into one...\n");
12 | printf("Inputs:\n");
13 | struct bitfield *input1 = str2bf("1010101");
14 | bfprint_lsb(input1);
15 | printf("\n");
16 | struct bitfield *input2 = str2bf("101010100");
17 | bfprint_lsb(input2);
18 | printf("\n");
19 | struct bitfield *input3 = str2bf("1010101111111");
20 | bfprint_lsb(input3);
21 | printf("\n");
22 | struct bitfield *output =
23 | bfcat(input1, input2, input3, input1, input2, input3);
24 | printf("Output:\n");
25 | bfprint_lsb(output);
26 | printf("\n");
27 | printf("---\n");
28 | return 0;
29 | }
30 |
--------------------------------------------------------------------------------
/examples/bfnormalize.c:
--------------------------------------------------------------------------------
1 | /**
2 | * File name: examples/int2bf.c
3 | * Project name: bitfield, a bit array manipulation library written in C
4 | * URL: https://github.com/ciubotaru/bitfield
5 | * Author: Vitalie Ciubotaru
6 | * License: General Public License, version 3 or later
7 | * Copyright 2016
8 | **/
9 |
10 | /* Convert a random non-negative integer number to a bit array */
11 |
12 | #include
13 | #include
14 | #include
15 | #include
16 | #include
17 | #include
18 | #ifdef RAND_MAX
19 | #undef RAND_MAX
20 | #define RAND_MAX UINT_MAX
21 | #endif
22 |
23 | int main()
24 | {
25 | printf
26 | ("Representing a random array of bits as the least binary number...\n");
27 | srand(time(NULL));
28 | int len = 80; /* terminal width */
29 | int len_chars = (len - 2) / 2; /* fit 2 strings and a '->' in one line */
30 | int int_size = sizeof(unsigned int) * CHAR_BIT; /* equal to the number of bits in an unsigned int */
31 | int len_ints = (len_chars - 1) / int_size + 1; /* nr of ints to hold one len_str */
32 | int i, j;
33 | unsigned int *input_ints = malloc(sizeof(unsigned int) * len_ints);
34 | struct bitfield *input, *output;
35 | for (i = 0; i < 50; i++) {
36 | for (j = 0; j < len_ints; j++)
37 | input_ints[j] = rand();
38 | input = int2bf(input_ints, len_chars);
39 | output = bfnormalize(input);
40 | bfprint_msb(input);
41 | printf("->");
42 | bfprint_msb(output);
43 | printf("\n");
44 | }
45 | bfdel(input);
46 | bfdel(output);
47 | printf("---\n");
48 | return 0;
49 | }
50 |
--------------------------------------------------------------------------------
/examples/bfor.c:
--------------------------------------------------------------------------------
1 | #include
2 | #include
3 | #include
4 | #include
5 | #include
6 | #include
7 | #include
8 |
9 | int main()
10 | {
11 | printf("Running logical OR over three bit arrays...\n");
12 | printf("Inputs:\n");
13 | struct bitfield *input1 = str2bf("1111011");
14 | bfprint_lsb(input1);
15 | printf("\n");
16 | struct bitfield *input2 = str2bf("101000100");
17 | bfprint_lsb(input2);
18 | printf("\n");
19 | struct bitfield *input3 = str2bf("1010100111");
20 | bfprint_lsb(input3);
21 | printf("\n");
22 | struct bitfield *output = bfor(input1, input2, input3);
23 | printf("Output:\n");
24 | bfprint_lsb(output);
25 | printf("\n");
26 | printf("---\n");
27 | return 0;
28 | }
29 |
--------------------------------------------------------------------------------
/examples/bfxor.c:
--------------------------------------------------------------------------------
1 | #include
2 | #include
3 | #include
4 | #include
5 | #include
6 | #include
7 | #include
8 |
9 | int main()
10 | {
11 | printf("Running logical XOR over three bit arrays...\n");
12 | printf("Inputs:\n");
13 | struct bitfield *input1 = str2bf("10111111");
14 | bfprint_lsb(input1);
15 | printf("\n");
16 | struct bitfield *input2 = str2bf("10100000");
17 | bfprint_lsb(input2);
18 | printf("\n");
19 | struct bitfield *input3 = str2bf("0010101111111");
20 | bfprint_lsb(input3);
21 | printf("\n");
22 | struct bitfield *output = bfxor(input1, input2, input3);
23 | printf("Output:\n");
24 | bfprint_lsb(output);
25 | printf("\n");
26 | printf("---\n");
27 | return 0;
28 | }
29 |
--------------------------------------------------------------------------------
/examples/int2bf.c:
--------------------------------------------------------------------------------
1 | /**
2 | * File name: examples/int2bf.c
3 | * Project name: bitfield, a bit array manipulation library written in C
4 | * URL: https://github.com/ciubotaru/bitfield
5 | * Author: Vitalie Ciubotaru
6 | * License: General Public License, version 3 or later
7 | * Copyright 2016
8 | **/
9 |
10 | /* Convert a random non-negative integer number to a bit array */
11 |
12 | #include
13 | #include
14 | #include
15 | #include
16 | #include
17 | #include
18 | #ifdef RAND_MAX
19 | #undef RAND_MAX
20 | #define RAND_MAX UINT_MAX
21 | #endif
22 |
23 | int main()
24 | {
25 | printf
26 | ("Converting a random integer into a bit array of fixed length...\n");
27 | srand(time(NULL));
28 | int bitfield_size = sizeof(unsigned int) * CHAR_BIT; /* equal to the number of bits in an unsigned int */
29 | int i;
30 | unsigned int input;
31 | struct bitfield *output = bfnew(bitfield_size);
32 | for (i = 0; i < 50; i++) {
33 | input = rand();
34 | /**
35 | * create an array long enough to hold all bits from an unsigned int
36 | * because we have one int, not an array of ints, we pass it by pointer
37 | **/
38 | output = int2bf(&input, bitfield_size);
39 | printf("%u -> %s\n", input, bf2str(output));
40 | }
41 | printf("---\n");
42 | return 0;
43 | }
44 |
--------------------------------------------------------------------------------
/examples/random.c:
--------------------------------------------------------------------------------
1 | /**
2 | * File name: examples/random.c
3 | * Project name: bitfield, a bit array manipulation library written in C
4 | * URL: https://github.com/ciubotaru/bitfield
5 | * Author: Vitalie Ciubotaru
6 | * License: General Public License, version 3 or later
7 | * Date: September 9, 2015
8 | **/
9 |
10 | #include
11 | #include
12 | #include
13 | //#include
14 | //#include
15 | #include
16 |
17 | int main()
18 | {
19 | printf
20 | ("Generating a long random sequence and storing it in a bit array...\n");
21 | srand(time(NULL));
22 | int size = 80;
23 | int i;
24 | struct bitfield *input = bfnew(size);
25 | for (i = 0; i < size; i++) {
26 | if (rand() % 2)
27 | bfsetbit(input, i);
28 | }
29 | bfprint_msb(input);
30 | printf("\n");
31 | printf("---\n");
32 | return 0;
33 | }
34 |
--------------------------------------------------------------------------------
/examples/rule30.c:
--------------------------------------------------------------------------------
1 | /**
2 | * File name: examples/rule30.c
3 | * Project name: bitfield, a bit array manipulation library written in C
4 | * URL: https://github.com/ciubotaru/bitfield
5 | * Author: Vitalie Ciubotaru
6 | * License: General Public License, version 3 or later
7 | * Date: September 1, 2015
8 | **/
9 |
10 | #include
11 | #include
12 | #include
13 | #include
14 |
15 | int main()
16 | {
17 | printf("Wolfram's Rule30 cellular automaton...\n");
18 | srand(time(NULL));
19 | int size = 78;
20 | int i;
21 | /* create an array of parent generation cells with 2 extra cells */
22 | struct bitfield *input = bfnew(size + 2);
23 | /* randomly assign "dead" (0) or "alive" (1) status to parent generation */
24 | for (i = 0; i < bfsize(input); i++)
25 | if (rand() % 2 == 1)
26 | bfsetbit(input, i);
27 | /* show it */
28 | bfprint_lsb(input);
29 | printf("\n");
30 | /* Because the state of every cell depends on its parent and the parent's neighbours from right and left,
31 | * we need three arrays: neighbours from left, parents (center) and neighbours from right.
32 | */
33 | struct bitfield *left = bfsub(input, 0, bfsize(input) - 2);
34 | struct bitfield *center = bfsub(input, 1, bfsize(input) - 1);
35 | struct bitfield *right = bfsub(input, 2, bfsize(input));
36 | /* compute the child generation by Rule 30:
37 | * Child(i) = Parent(i-1) XOR ( Parent(i) OR Parent(i+1) )
38 | */
39 | struct bitfield *tmp = bfor(center, right);
40 | struct bitfield *output = bfxor(left, tmp);
41 | /* show it */
42 | printf(" ");
43 | bfprint_lsb(output);
44 | printf("\n");
45 | printf("---\n");
46 | return 0;
47 | }
48 |
--------------------------------------------------------------------------------
/libbitfield.pc.in:
--------------------------------------------------------------------------------
1 | prefix=@prefix@
2 | exec_prefix=@exec_prefix@
3 | libdir=@libdir@
4 | includedir=@includedir@
5 |
6 | Name: @PACKAGE_NAME@
7 | Description: A bit array manipulation library written in C
8 | URL: https://github.com/ciubotaru/bitfield
9 | Version: @PACKAGE_VERSION@
10 | Requires:
11 | Libs: -L${libdir} -lbitfield
12 | Cflags: -I${includedir}
13 |
--------------------------------------------------------------------------------
/man/Makefile.in:
--------------------------------------------------------------------------------
1 | datarootdir=@datarootdir@
2 | prefix=@prefix@
3 | mandir=@mandir@
4 | man_MANS=bf_converters.3 bfand.3 bfcat.3 bfclone.3 bfcmp.3 bfcpy.3 bfhamming.3 bfisempty.3 bfnew.3 bfnormalize.3 bfpopcount.3 bfpos.3 bfprint.3 bfresize.3 bfrev.3 bfsetall.3 bfsetbit.3 bfshift.3 bfsize.3 bfsub.3 bitfield.3
5 |
6 | all: $(man_MANS)
7 |
8 | $(man_MANS): %: %.in
9 | sed -e 's/%RELEASE_DATE%/$(RELEASE_DATE)/g' -e 's/%VERSION%/$(VERSION)/g' $< > $@
10 |
11 | install:
12 | mkdir -p $(DESTDIR)$(mandir)/man3
13 | for i in $(man_MANS); do install -m 644 $$i $(DESTDIR)$(mandir)/man3/$$i; done
14 | ln -s bf_converters.3 $(DESTDIR)$(mandir)/man3/bf2str.3
15 | ln -s bf_converters.3 $(DESTDIR)$(mandir)/man3/bf2char.3
16 | ln -s bf_converters.3 $(DESTDIR)$(mandir)/man3/bf2int.3
17 | ln -s bf_converters.3 $(DESTDIR)$(mandir)/man3/bf2short.3
18 | ln -s bf_converters.3 $(DESTDIR)$(mandir)/man3/bf2long.3
19 | ln -s bf_converters.3 $(DESTDIR)$(mandir)/man3/bf2ll.3
20 | ln -s bf_converters.3 $(DESTDIR)$(mandir)/man3/bftouint8.3
21 | ln -s bf_converters.3 $(DESTDIR)$(mandir)/man3/bftouint16.3
22 | ln -s bf_converters.3 $(DESTDIR)$(mandir)/man3/bftouint32.3
23 | ln -s bf_converters.3 $(DESTDIR)$(mandir)/man3/bftouint64.3
24 | ln -s bf_converters.3 $(DESTDIR)$(mandir)/man3/bf2str_ip.3
25 | ln -s bf_converters.3 $(DESTDIR)$(mandir)/man3/bf2char_ip.3
26 | ln -s bf_converters.3 $(DESTDIR)$(mandir)/man3/bf2int_ip.3
27 | ln -s bf_converters.3 $(DESTDIR)$(mandir)/man3/bf2short_ip.3
28 | ln -s bf_converters.3 $(DESTDIR)$(mandir)/man3/bf2long_ip.3
29 | ln -s bf_converters.3 $(DESTDIR)$(mandir)/man3/bf2ll_ip.3
30 | ln -s bf_converters.3 $(DESTDIR)$(mandir)/man3/bftouint8_ip.3
31 | ln -s bf_converters.3 $(DESTDIR)$(mandir)/man3/bftouint16_ip.3
32 | ln -s bf_converters.3 $(DESTDIR)$(mandir)/man3/bftouint32_ip.3
33 | ln -s bf_converters.3 $(DESTDIR)$(mandir)/man3/bftouint64_ip.3
34 | ln -s bf_converters.3 $(DESTDIR)$(mandir)/man3/str2bf.3
35 | ln -s bf_converters.3 $(DESTDIR)$(mandir)/man3/char2bf.3
36 | ln -s bf_converters.3 $(DESTDIR)$(mandir)/man3/short2bf.3
37 | ln -s bf_converters.3 $(DESTDIR)$(mandir)/man3/int2bf.3
38 | ln -s bf_converters.3 $(DESTDIR)$(mandir)/man3/long2bf.3
39 | ln -s bf_converters.3 $(DESTDIR)$(mandir)/man3/ll2bf.3
40 | ln -s bf_converters.3 $(DESTDIR)$(mandir)/man3/uint8tobf.3
41 | ln -s bf_converters.3 $(DESTDIR)$(mandir)/man3/uint16tobf.3
42 | ln -s bf_converters.3 $(DESTDIR)$(mandir)/man3/uint32tobf.3
43 | ln -s bf_converters.3 $(DESTDIR)$(mandir)/man3/uint64tobf.3
44 | ln -s bf_converters.3 $(DESTDIR)$(mandir)/man3/str2bf_ip.3
45 | ln -s bf_converters.3 $(DESTDIR)$(mandir)/man3/char2bf_ip.3
46 | ln -s bf_converters.3 $(DESTDIR)$(mandir)/man3/short2bf_ip.3
47 | ln -s bf_converters.3 $(DESTDIR)$(mandir)/man3/int2bf_ip.3
48 | ln -s bf_converters.3 $(DESTDIR)$(mandir)/man3/long2bf_ip.3
49 | ln -s bf_converters.3 $(DESTDIR)$(mandir)/man3/ll2bf_ip.3
50 | ln -s bf_converters.3 $(DESTDIR)$(mandir)/man3/uint8tobf_ip.3
51 | ln -s bf_converters.3 $(DESTDIR)$(mandir)/man3/uint16tobf_ip.3
52 | ln -s bf_converters.3 $(DESTDIR)$(mandir)/man3/uint32tobf_ip.3
53 | ln -s bf_converters.3 $(DESTDIR)$(mandir)/man3/uint64tobf_ip.3
54 | ln -s bfand.3 $(DESTDIR)$(mandir)/man3/bfnot.3
55 | ln -s bfand.3 $(DESTDIR)$(mandir)/man3/bfnot_ip.3
56 | ln -s bfand.3 $(DESTDIR)$(mandir)/man3/bfor.3
57 | ln -s bfand.3 $(DESTDIR)$(mandir)/man3/bfxor.3
58 | ln -s bfnew.3 $(DESTDIR)$(mandir)/man3/bfdel.3
59 | ln -s bfnew.3 $(DESTDIR)$(mandir)/man3/bfnew_ones.3
60 | ln -s bfnew.3 $(DESTDIR)$(mandir)/man3/bfnew_quick.3
61 | ln -s bfprint.3 $(DESTDIR)$(mandir)/man3/bfprint_lsb.3
62 | ln -s bfprint.3 $(DESTDIR)$(mandir)/man3/bfprint_msb.3
63 | ln -s bfrev.3 $(DESTDIR)$(mandir)/man3/bfrev_ip.3
64 | ln -s bfsetall.3 $(DESTDIR)$(mandir)/man3/bfclearall.3
65 | ln -s bfsetbit.3 $(DESTDIR)$(mandir)/man3/bfclearbit.3
66 | ln -s bfsetbit.3 $(DESTDIR)$(mandir)/man3/bfgetbit.3
67 | ln -s bfsetbit.3 $(DESTDIR)$(mandir)/man3/bftogglebit.3
68 | ln -s bfshift.3 $(DESTDIR)$(mandir)/man3/bfshift_ip.3
69 |
70 | uninstall:
71 | for i in bf2str.3 bf2char.3 bf2int.3 bf2short.3 bf2long.3 bf2ll.3 bftouint8.3 bftouint16.3 bftouint32.3 bftouint64.3 bf2str_ip.3 bf2char_ip.3 bf2int_ip.3 bf2short_ip.3 bf2long_ip.3 bf2ll_ip.3 bftouint8_ip.3 bftouint16_ip.3 bftouint32_ip.3 bftouint64_ip.3 str2bf.3 char2bf.3 short2bf.3 int2bf.3 long2bf.3 ll2bf.3 uint8tobf.3 uint16tobf.3 uint32tobf.3 uint64tobf.3 str2bf_ip.3 char2bf_ip.3 short2bf_ip.3 int2bf_ip.3 long2bf_ip.3 ll2bf_ip.3 uint8tobf_ip.3 uint16tobf_ip.3 uint32tobf_ip.3 uint64tobf_ip.3 bfnot.3 bfnot_ip.3 bfor.3 bfxor.3 bfdel.3 bfnew_ones.3 bfnew_quick.3 bfprint_lsb.3 bfprint_msb.3 bfrev_ip.3 bfclearall.3 bfclearbit.3 bfgetbit.3 bftogglebit.3 bfshift_ip.3; do if [ -e $(DESTDIR)$(mandir)/man3/$$i ]; then rm -v $(DESTDIR)$(mandir)/man3/$$i; fi; done
72 | for i in $(man_MANS); do if [ -e $(DESTDIR)$(mandir)/man3/$$i ]; then rm -v $(DESTDIR)$(mandir)/man3/$$i; fi; done
73 |
74 | distclean:
75 | rm Makefile
76 |
77 | clean:
78 | rm -rvf $(man_MANS)
79 |
--------------------------------------------------------------------------------
/man/bf_converters.3.in:
--------------------------------------------------------------------------------
1 | .TH bitfield_converters 3 "%RELEASE_DATE%" "bitfield %VERSION%" "Bit array manipulation library"
2 | .SH NAME
3 | bf2str, bf2char, bf2short, bf2int, bf2long, bf2ll, bftouint8, bftouint16, bftouint32, bftouint64 \- convert bit arrays to arrays of standard data types
4 | .sp
5 | bf2str_ip, bf2char_ip, bf2short_ip, bf2int_ip, bf2long_ip, bf2ll_ip, bftouint8_ip, bftouint16_ip, bftouint32_ip, bftouint64_ip \- convert bit arrays to arrays of standard data types "in place"
6 | .sp
7 | str2bf, char2bf, short2bf, int2bf, long2bf, ll2bf, uint8tobf, uint16tobf, uint32tobf, uint64tobf \- convert arrays of standard data types to bit arrays
8 | .sp
9 | str2bf_ip, char2bf_ip, short2bf_ip, int2bf_ip, long2bf_ip, ll2bf_ip, uint8tobf_ip, uint16tobf_ip, uint32tobf_ip, uint64tobf_ip \- convert arrays of standard data types to bit arrays "in place"
10 | .SH SYNOPSIS
11 | .nf
12 | .B "#include
13 | .sp
14 | .BI "char *bf2str(const struct bitfield *"input ");
15 | .BI "char *bf2char(const struct bitfield *"input ");
16 | .BI "unsigned short *bf2short(const struct bitfield *"input ");
17 | .BI "unsigned int *bf2int(const struct bitfield *"input ");
18 | .BI "unsigned long *bf2long(const struct bitfield *"input ");
19 | .BI "unsigned long long *bf2ll(const struct bitfield *"input ");
20 | .BI "uint8_t *bftouint8(const struct bitfield *"input ");
21 | .BI "uint16_t *bftouint16(const struct bitfield *"input ");
22 | .BI "uint32_t *bftouint32(const struct bitfield *"input ");
23 | .BI "uint64_t *bftouint64(const struct bitfield *"input ");
24 | .sp
25 | .BI "void bf2str_ip(const struct bitfield *"input ", char *"output ");
26 | .BI "void bf2char_ip(const struct bitfield *"input ", char *"output ");
27 | .BI "void bf2short_ip(const struct bitfield *"input ", unsigned short *"output ");
28 | .BI "void bf2int_ip(const struct bitfield *"input ", unsigned int *"output ");
29 | .BI "void bf2long_ip(const struct bitfield *"input ", unsigned long *"output ");
30 | .BI "void bf2ll_ip(const struct bitfield *"input ", unsigned long long *"output ");
31 | .BI "void bftouint8_ip(const struct bitfield *"input ", uint8_t *"output ");
32 | .BI "void bftouint16_ip(const struct bitfield *"input ", uint16_t *"output ");
33 | .BI "void bftouint32_ip(const struct bitfield *"input ", uint32_t *"output ");
34 | .BI "void bftouint64_ip(const struct bitfield *"input ", uint64_t *"output ");
35 | .sp
36 | .BI "struct bitfield *str2bf(const char *"input ");
37 | .BI "struct bitfield *char2bf(const char *"input ", unsigned int size);
38 | .BI "struct bitfield *short2bf(const unsigned short *"input ", unsigned int size);
39 | .BI "struct bitfield *int2bf(const unsigned int *"input ", unsigned int size);
40 | .BI "struct bitfield *long2bf(const unsigned long *"input ", unsigned int size);
41 | .BI "struct bitfield *ll2bf(const unsigned long long *"input ", unsigned int size);
42 | .BI "struct bitfield *uint8tobf(const uint8_t *"input ", unsigned int size);
43 | .BI "struct bitfield *uint16tobf(const uint16_t *"input ", unsigned int size);
44 | .BI "struct bitfield *uint32tobf(const uint32_t *"input ", unsigned int size);
45 | .BI "struct bitfield *uint64tobf(const uint64_t *"input ", unsigned int size);
46 | .sp
47 | .BI "void str2bf_ip(const char *"input ", struct bitfield *"output ");
48 | .BI "void char2bf_ip(const char *"input ", struct bitfield *"output ");
49 | .BI "void short2bf_ip(const unsigned short *"input ", struct bitfield *"output ");
50 | .BI "void int2bf_ip(const unsigned int *"input ", struct bitfield *"output ");
51 | .BI "void long2bf_ip(const unsigned long *"input ", struct bitfield *"output ");
52 | .BI "void ll2bf_ip(const unsigned long long *"input ", struct bitfield *"output ");
53 | .BI "void uint8tobf_ip(const uint8_t *"input ", struct bitfield *"output ");
54 | .BI "void uint16tobf_ip(const uint16_t *"input ", struct bitfield *"output ");
55 | .BI "void uint32tobf_ip(const uint32_t *"input ", struct bitfield *"output ");
56 | .BI "void uint64tobf_ip(const uint64_t *"input ", struct bitfield *"output ");
57 | .fi
58 | .SH DESCRIPTION
59 | A bit array is represented by a "struct bitfield". It has two elements: an array of unsigned long integers \fIfield\fR and an unsigned integer \fIsize\fR.
60 | .sp
61 | This family of functions convert between bitfield structure and standard data types. Supported data types are: unsigned char, unsigned short, unsigned int, unsigned long, unsigned long long, uint8_t, uint16_t, uint32_t and uint64_t.
62 | .sp
63 | The "_ip" suffix stands for "in-place" conversion, i.e. instead of creating a new array, the function fills an existing, properly initialized one. The no-prefix functions return the result of conversion on success or NULL on failure.
64 | .sp
65 | Unsigned chars can be treated in two ways. Functions with "str" in their name treat each char as a storage of one character, '0' or '1'. Functions with "char" in their name treat each char as a storage of several (usually 8) bits.
66 | .sp
67 | .SH "SEE ALSO"
68 | For the full list of bitfield functions and their descriptions, see manual page for
69 | .BR bitfield (3).
70 | .SH AUTHOR
71 | Vitalie CIUBOTARU
72 |
73 |
--------------------------------------------------------------------------------
/man/bfand.3.in:
--------------------------------------------------------------------------------
1 | .TH bfand 3 "%RELEASE_DATE%" "bitfield %VERSION%" "Bit array manipulation library"
2 | .SH NAME
3 | bfand, bfnot, bfnot_ip, bfor, bfxor \- perform logical operations over bit arrays.
4 | .SH SYNOPSIS
5 | .nf
6 | .B "#include
7 | .sp
8 | .BI "struct bitfield *bfand(const struct bitfield *"input1 ", const struct bitfield *"input2 ", ...);
9 | .BI "struct bitfield *bfnot(const struct bitfield *"input ");
10 | .BI "void bfnot_ip(const struct bitfield *"instance ");
11 | .BI "struct bitfield *bfor(const struct bitfield *"input1 ", const struct bitfield *"input2 ", ...);
12 | .BI "struct bitfield *bfxor(const struct bitfield *"input1 ", const struct bitfield *"input2 ", ...);
13 | .fi
14 | .SH DESCRIPTION
15 | A bit array is represented by a "struct bitfield". It has two elements: an array of unsigned long integers \fIfield\fR and an unsigned integer \fIsize\fR.
16 | .sp
17 | The \fBbfand()\fR function takes pointers to two or more arguments, all of them pointers to bitfields, performs logical AND over each pairs of bits from the first two (and iteratively with each additional argument, if any) and stores the result in a new bitfield. The function returns a pointer to the new bitfield or NULL on failure.
18 | .sp
19 | The following table illustrates inputs and results of logical AND:
20 | .sp
21 | .nf
22 | input1 input2 output
23 | --------------------
24 | 0 0 0
25 | 0 1 0
26 | 1 0 0
27 | 1 1 1
28 | .fi
29 | .sp
30 | The \fBbfnot()\fR function takes pointer to a bitfield, \fIinput\fR, reverses all its bits and stores the result in a new bitfield, \fIoutput\fR. The function returns a pointer to the new bitfield or NULL on failure. The following table illustrates input and result of logical NOT:
31 | .sp
32 | .nf
33 | input output
34 | ------------
35 | 0 1
36 | 1 0
37 | .fi
38 | .sp
39 | The \fBbfnot_ip()\fR function is an "in-place" version of the \fBbnot()\fR.
40 | .sp
41 | The \fBbfor()\fR function takes pointers to two or more arguments, all pointers to bitfields, and performs bitwise inclusive OR over pairs of bits from the first two arguments (then iteratively with every additional argument, if any) and stores the result in a new bitfield. The function returns a pointer to the new bitfield or NULL on failure.
42 | .sp
43 | The following table illustrates inputs and results of logical inclusive OR:
44 | .sp
45 | .nf
46 | input1 input2 output
47 | --------------------
48 | 0 0 0
49 | 0 1 1
50 | 1 0 1
51 | 1 1 1
52 | .fi
53 | .sp
54 | The \fBbfxor()\fR function takes pointers to two arguments, all pointers to bitfields, and performs bitwise eXclusive OR (XOR) over pairs of bits from the first two arguments (then iteratively with every additional argument, if any) and stores the result in a new bitfield. The function returns a pointer to the new bitfield or NULL on failure.
55 | .sp
56 | The following table illustrates inputs and results of logical eXclusive OR (XOR):
57 | .sp
58 | .nf
59 | input1 input2 output
60 | --------------------
61 | 0 0 0
62 | 0 1 0
63 | 1 0 1
64 | 1 1 0
65 | .fi
66 | .sp
67 | .SH "SEE ALSO"
68 | For the full list of bitfield functions and their descriptions, see manual page for
69 | .BR bitfield (3).
70 | .SH AUTHOR
71 | Vitalie CIUBOTARU
72 |
73 |
--------------------------------------------------------------------------------
/man/bfcat.3.in:
--------------------------------------------------------------------------------
1 | .TH bfcat 3 "%RELEASE_DATE%" "bitfield %VERSION%" "Bit array manipulation library"
2 | .SH NAME
3 | bfcat \- join several bit arrays into one.
4 | .SH SYNOPSIS
5 | .nf
6 | .B "#include
7 | .sp
8 | .BI "struct bitfield *bfcat(const struct bitfield *"input1 ", ...);
9 | .fi
10 | .SH DESCRIPTION
11 | A bit array is represented by a "struct bitfield". It has two elements: an array of unsigned long integers \fIfield\fR and an unsigned integer \fIsize\fR.
12 | .sp
13 | The \fBbfcat()\fR function takes one or more arguments, all of them pointers to bitfields, and creates a new bitfield that contains all bits from all bitfields, consecutively. The function returns a pointer to the new bitfield or NULL on failure.
14 | .sp
15 | .SH "SEE ALSO"
16 | For the full list of bitfield functions and their descriptions, see manual page for
17 | .BR bitfield (3).
18 | .SH AUTHOR
19 | Vitalie CIUBOTARU
20 |
21 |
--------------------------------------------------------------------------------
/man/bfclone.3.in:
--------------------------------------------------------------------------------
1 | .TH bfclone 3 "%RELEASE_DATE%" "bitfield %VERSION%" "Bit array manipulation library"
2 | .SH NAME
3 | bfclone \- create a copy of an existing bit array.
4 | .SH SYNOPSIS
5 | .nf
6 | .B "#include
7 | .sp
8 | .BI "struct bitfield *bfclone(struct bitfield *"input ");
9 | .fi
10 | .SH DESCRIPTION
11 | A bit array is represented by a "struct bitfield". It has two elements: an array of unsigned long integers \fIfield\fR and an unsigned integer \fIsize\fR.
12 | .sp
13 | The \fBbfclone()\fR function initializes a bitfield of the same \fIsize\fR as \fIinput\fR, copies the content of \fIinput\fR into the new bitfield and returns a pointer to it or NULL on failure.
14 | .SH EXAMPLES
15 | The following code
16 | .sp
17 | struct bitfield * my_new_bitfield = bfclone(my_old_bitfield);
18 | .sp
19 | creates a bitfield called \fImy_new_bitfield\fR, whose size and contents are identical to \fImy_old_bitfield\fR.
20 | .sp
21 | .SH "SEE ALSO"
22 | For the full list of bitfield functions and their descriptions, see manual page for
23 | .BR bitfield (3).
24 | .SH AUTHOR
25 | Vitalie CIUBOTARU
26 |
27 |
--------------------------------------------------------------------------------
/man/bfcmp.3.in:
--------------------------------------------------------------------------------
1 | .TH bfcmp 3 "%RELEASE_DATE%" "bitfield %VERSION%" "Bit array manipulation library"
2 | .SH NAME
3 | bfcmp \- compare two bit arrays.
4 | .SH SYNOPSIS
5 | .nf
6 | .B "#include
7 | .sp
8 | .BI "unsigned int bfcmp(const struct bitfield *"input1 ", const struct bitfield *"input2 ", char **"errmsg ");
9 | .fi
10 | .SH DESCRIPTION
11 | A bit array is represented by a "struct bitfield". It has two elements: an array of unsigned long integers \fIfield\fR and an unsigned integer \fIsize\fR.
12 | .sp
13 | The \fBbfcmp()\fR function takes pointers to two bitfields, \fIinput1\fR and \fIinput2\fR, and a pointer to a string \fIerrmsg\fR, and compares them bit-to-bit. The function returns 0 if the two bitfields are identical, 1 if they differ or 2 if they have different size. In case the bitfields are different or have different size, the function also returns an error message \fIerrmsg\fR.
14 | .sp
15 | .SH "SEE ALSO"
16 | For the full list of bitfield functions and their descriptions, see manual page for
17 | .BR bitfield (3).
18 | .SH AUTHOR
19 | Vitalie CIUBOTARU
20 |
21 |
--------------------------------------------------------------------------------
/man/bfcpy.3.in:
--------------------------------------------------------------------------------
1 | .TH bfcpy 3 "%RELEASE_DATE%" "bitfield %VERSION%" "Bit array manipulation library"
2 | .SH NAME
3 | bfcpy \- copies the contents of a bit array into another bit array.
4 | .SH SYNOPSIS
5 | .nf
6 | .B "#include
7 | .sp
8 | .BI "unsigned int bfcpy(const struct bitfield *"src ", struct bitfield *"dest ");
9 | .fi
10 | .SH DESCRIPTION
11 | A bit array is represented by a "struct bitfield". It has two elements: an array of unsigned long integers \fIfield\fR and an unsigned integer \fIsize\fR.
12 | .sp
13 | The \fBbfcpy()\fR function takes pointers to bitfields \fIsrc\fR and \fIdest\fR, and copies the bits from \fIsrc\fR to a properly initialized \fIdest\fR bit. The function returns 0 on success and 1 otherwise.
14 | .sp
15 | .SH "SEE ALSO"
16 | For the full list of bitfield functions and their descriptions, see manual page for
17 | .BR bitfield (3).
18 | .SH AUTHOR
19 | Vitalie CIUBOTARU
20 |
21 |
--------------------------------------------------------------------------------
/man/bfhamming.3.in:
--------------------------------------------------------------------------------
1 | .TH bfhamming 3 "%RELEASE_DATE%" "bitfield %VERSION%" "Bit array manipulation library"
2 | .SH NAME
3 | bfhamming \- counts the Humming distance between two bitfields.
4 | .SH SYNOPSIS
5 | .nf
6 | .B "#include
7 | .sp
8 | .BI "unsigned int bfhamming(const struct bitfield *"input1 ", const struct bitfield *"input2 ");
9 | .fi
10 | .SH DESCRIPTION
11 | A bitfield is represented by a "struct bitfield". It has two elements: an array of unsigned long integers \fIfield\fR and an unsigned integer \fIsize\fR.
12 | .sp
13 | The \fBbfhamming()\fR function is an implementation of Hamming distance between two bitfields. It takes pointers to bitfields \fIinput1\fR and \fIinput2\fR, and returns the number of bits that are different between the two bitfields.
14 | .sp
15 | .SH "SEE ALSO"
16 | For the full list of bitfield functions and their descriptions, see manual page for
17 | .BR bitfield (3).
18 | .SH AUTHOR
19 | Vitalie CIUBOTARU
20 |
21 |
--------------------------------------------------------------------------------
/man/bfisempty.3.in:
--------------------------------------------------------------------------------
1 | .TH bfisempty 3 "%RELEASE_DATE%" "bitfield %VERSION%" "Bit array manipulation library"
2 | .SH NAME
3 | bfisempty \- checks whether all bit of an array are unset.
4 | .SH SYNOPSIS
5 | .nf
6 | .B "#include
7 | .sp
8 | .BI "unsigned int bfisempty(const struct bitfield *"instance ");
9 | .fi
10 | .SH DESCRIPTION
11 | A bit array is represented by a "struct bitfield". It has two elements: an array of unsigned long integers \fIfield\fR and an unsigned integer \fIsize\fR.
12 | .sp
13 | The \fBbfisempty()\fR function takes a pointer to bitfield \fIinstance\fR and returns 0 if all bits are unset or 1 otherwise.
14 | .sp
15 | .SH "SEE ALSO"
16 | For the full list of bitfield functions and their descriptions, see manual page for
17 | .BR bitfield (3).
18 | .SH AUTHOR
19 | Vitalie CIUBOTARU
20 |
21 |
--------------------------------------------------------------------------------
/man/bfnew.3.in:
--------------------------------------------------------------------------------
1 | .TH bfnew 3 "%RELEASE_DATE%" "bitfield %VERSION%" "Bit array manipulation library"
2 | .SH NAME
3 | bfnew, bfnew_quick, bfnew_ones, bfdel \- create and delete bit arrays.
4 | .SH SYNOPSIS
5 | .nf
6 | .B "#include
7 | .sp
8 | .BI "struct bitfield *bfnew(const unsigned int "size ");
9 | .BI "struct bitfield *bfnew_quick(const unsigned int "size ");
10 | .BI "struct bitfield *bfnew_ones(const unsigned int "size ");
11 | .BI "void bfdel(struct bitfield *"instance ");
12 | .fi
13 | .SH DESCRIPTION
14 | A bit array is represented by a "struct bitfield". It has two elements: an array of unsigned long integers \fIfield\fR and an unsigned integer \fIsize\fR.
15 | .sp
16 | The \fBbfnew()\fR function initializes a bitfield of specified \fIsize\fR (i.e. long enough to host a series of bits of length equal to \fIsize\fR) and returns a pointer to it or NULL on failure. This pointer can later be successfully passed to \fBbfdel()\fR. The bitfield is guaranteed to be empty (i.e. contain only zeroes).
17 | .sp
18 | The \fBbfnew_quick()\fR function does the same thing as \fBbfnew()\fR, except that it does not clear the bits.
19 | .sp
20 | The \fBbfnew_quick()\fR function does the same thing as \fBbfnew()\fR, except that it sets the bits to true (i.e. it contains only ones).
21 | .sp
22 | The \fBbfdel()\fR function frees the memory space pointed to by \fIinstance\fR, which must have been returned by a previous call to \fBbfnew()\fR or another similar function.
23 | .SH EXAMPLES
24 | The following code
25 | .sp
26 | struct bitfield * mybitfield = bfnew(80);
27 | .sp
28 | will create a bitfield called \fImybitfield\fR with \fIsize\fR equal to 3 and a \fIfield\fR, long enough to host 80 bits. The number of longs in \fIfield\fR depends on \fIsize\fR and machine architecture. On machines with 32-bit longs, that will be 3 longs.
29 | .sp
30 | The following code
31 | .sp
32 | bfdel(mybitfield);
33 | .sp
34 | will delete the memory taken by a bitfield called \fImybitfield\fR, effectively deleting the bitfield and making it unavailable for subsequent calls.
35 | .sp
36 | .SH "SEE ALSO"
37 | For the full list of bitfield functions and their descriptions, see manual page for
38 | .BR bitfield (3).
39 | .SH AUTHOR
40 | Vitalie CIUBOTARU
41 |
42 |
--------------------------------------------------------------------------------
/man/bfnormalize.3.in:
--------------------------------------------------------------------------------
1 | .TH bfnormalize 3 "%RELEASE_DATE%" "bitfield %VERSION%" "Bit array manipulation library"
2 | .SH NAME
3 | bfnormalize \- find the smallest value of a bit array as a ring.
4 | .SH SYNOPSIS
5 | .nf
6 | .B "#include
7 | .sp
8 | .BI "struct bitfield *bfnormalize(const struct bitfield *"input ");
9 | .fi
10 | .SH DESCRIPTION
11 | A bit array is represented by a "struct bitfield". It has two elements: an array of unsigned long integers \fIfield\fR and an unsigned integer \fIsize\fR.
12 | .sp
13 | The \fBbfnormalize()\fR function takes a pointer to a bitfield, \fIinput\fR, and creates a new bitfield, which represents the original array of bits loop-shifted in such a way as to produce the smallest binary number. The function returns a pointer to the new bitfield or NULL on failure.
14 | .sp
15 | .SH EXAMPLE
16 | Suppose we have a bit array with the following content:
17 | .sp
18 | 1001010110001101
19 | .sp
20 | The bfnormalize() function treats it as a loop and shifts it until it represents the smallest possible binary number. In this case, the normalized version will be:
21 | .sp
22 | 0001101100101011
23 | .sp
24 | .SH "SEE ALSO"
25 | For the full list of bitfield functions and their descriptions, see manual page for
26 | .BR bitfield (3).
27 | .SH AUTHOR
28 | Vitalie CIUBOTARU
29 |
30 |
--------------------------------------------------------------------------------
/man/bfpopcount.3.in:
--------------------------------------------------------------------------------
1 | .TH bfpopcount 3 "%RELEASE_DATE%" "bitfield %VERSION%" "Bit array manipulation library"
2 | .SH NAME
3 | bfpopcount \- counts the set bits in a bit array.
4 | .SH SYNOPSIS
5 | .nf
6 | .B "#include
7 | .sp
8 | .BI "unsigned int bfpopcount(const struct bitfield *"instance ");
9 | .fi
10 | .SH DESCRIPTION
11 | A bit array is represented by a "struct bitfield". It has two elements: an array of unsigned long integers \fIfield\fR and an unsigned integer \fIsize\fR.
12 | .sp
13 | The \fBbfpopcount()\fR function is an implementation of population count (known as the Hamming weight) of a bitfield. It takes pointers to bitfield \fIinstance\fR and returns the number of set bits in it.
14 | .sp
15 | .SH "SEE ALSO"
16 | For the full list of bitfield functions and their descriptions, see manual page for
17 | .BR bitfield (3).
18 | .SH AUTHOR
19 | Vitalie CIUBOTARU
20 |
21 |
--------------------------------------------------------------------------------
/man/bfpos.3.in:
--------------------------------------------------------------------------------
1 | .TH bfpos 3 "%RELEASE_DATE%" "bitfield %VERSION%" "Bit array manipulation library"
2 | .SH NAME
3 | bfpos \- check whether a bit array contains a sub-array.
4 | .SH SYNOPSIS
5 | .nf
6 | .B "#include
7 | .sp
8 | .BI "unsigned int bfpos(const struct bitfield *"haystack ", const struct bitfield *"needle ");
9 | .fi
10 | .SH DESCRIPTION
11 | A bit array is represented by a "struct bitfield". It has two elements: an array of unsigned long integers \fIfield\fR and an unsigned integer \fIsize\fR.
12 | .sp
13 | The \fBbfpos()\fR function takes pointers to bitfields \fIhaystack\fR and \fIneedle\fR, and searches for the sub-array \fIneedle\fR in the \fIhaystack\fR. The function returns the starting position of the sub-array, -1 if the sub-array was not found, or -2 if the size of \fIneedle\fR is longer than that of \fIhaystack\fR.
14 | .sp
15 | .SH "SEE ALSO"
16 | For the full list of bitfield functions and their descriptions, see manual page for
17 | .BR bitfield (3).
18 | .SH AUTHOR
19 | Vitalie CIUBOTARU
20 |
21 |
--------------------------------------------------------------------------------
/man/bfprint.3.in:
--------------------------------------------------------------------------------
1 | .TH bfprint 3 "%RELEASE_DATE%" "bitfield %VERSION%" "Bit array manipulation library"
2 | .SH NAME
3 | bfprint_lsb, bfprint_msb \- write the contents of a bitfield to stdout as zeroes and ones.
4 | .SH SYNOPSIS
5 | .nf
6 | .B "#include
7 | .sp
8 | .BI "void bfprint_lsb(const struct bitfield *"instance ");
9 | .BI "void bfprint_msb(const struct bitfield *"instance ");
10 | .fi
11 | .SH DESCRIPTION
12 | A bit array is represented by a "struct bitfield". It has two elements: an array of unsigned long integers \fIfield\fR and an unsigned integer \fIsize\fR.
13 | .sp
14 | The \fBbfprint_lsb()\fR function takes a poiinter to bitfield \fIinstance\fR, and writes its bits to \fIstdout\fR as zeroes and ones, from left to right, least significant bit first.
15 | .sp
16 | The \fBbfprint_msb()\fR function takes a poiinter to bitfield \fIinstance\fR, and writes its bits to \fIstdout\fR as zeroes and ones, from left to right, most significant bit first.
17 | .sp
18 | .SH "SEE ALSO"
19 | For the full list of bitfield functions and their descriptions, see manual page for
20 | .BR bitfield (3).
21 | .SH AUTHOR
22 | Vitalie CIUBOTARU
23 |
24 |
--------------------------------------------------------------------------------
/man/bfresize.3.in:
--------------------------------------------------------------------------------
1 | .TH bfresize 3 "%RELEASE_DATE%" "bitfield %VERSION%" "Bit array manipulation library"
2 | .SH NAME
3 | bfresize \- resize an existing bitfield.
4 | .SH SYNOPSIS
5 | .nf
6 | .B "#include
7 | .sp
8 | .BI "void bfresize(struct bitfield *"instance ", const unsigned int "new_size ");
9 | .fi
10 | .SH DESCRIPTION
11 | A bit array is represented by a "struct bitfield". It has two elements: an array of unsigned long integers \fIfield\fR and an unsigned integer \fIsize\fR.
12 | .sp
13 | The \fBbfresize()\fR function takes a pointer to bitfield \fIinstance\fR and an integer number \fInew_size\fR, and changes the size of \fIinstance\fR to \fInew_size\fR. If the new size is larger, then the difference is filled with zeroes.
14 | .sp
15 | .SH "SEE ALSO"
16 | For the full list of bitfield functions and their descriptions, see manual page for
17 | .BR bitfield (3).
18 | .SH AUTHOR
19 | Vitalie CIUBOTARU
20 |
21 |
--------------------------------------------------------------------------------
/man/bfrev.3.in:
--------------------------------------------------------------------------------
1 | .TH bfrev 3 "%RELEASE_DATE%" "bitfield %VERSION%" "Bit array manipulation library"
2 | .SH NAME
3 | bfrev, bifrev_ip \- reverse the order of bits in a bit array.
4 | .SH SYNOPSIS
5 | .nf
6 | .B "#include
7 | .sp
8 | .BI "struct bitfield *bfrev(const struct bitfield *"instance ");
9 | .BI "void *bfrev_ip(struct bitfield *"input ");
10 | .fi
11 | .SH DESCRIPTION
12 | A bit array is represented by a "struct bitfield". It has two elements: an array of unsigned long integers \fIfield\fR and an unsigned integer \fIsize\fR.
13 | .sp
14 | The \fBbfrev()\fR function takes a pointer to bitfield \fIinput\fR and reverses the order of bits in it. The function returns a pointer to the new, reversed bitfield, or NULL on failure.
15 | .sp
16 | The \fBbfrev_ip()\fR function takes a pointer to bitfield \fIinstance\fR and reverses the order of bits in it. The changes are made "in place", in the original bitfield.
17 | .sp
18 | .SH "SEE ALSO"
19 | For the full list of bitfield functions and their descriptions, see manual page for
20 | .BR bitfield (3).
21 | .SH AUTHOR
22 | Vitalie CIUBOTARU
23 |
24 |
--------------------------------------------------------------------------------
/man/bfsetall.3.in:
--------------------------------------------------------------------------------
1 | .TH bfsetall 3 "%RELEASE_DATE%" "bitfield %VERSION%" "Bit array manipulation library"
2 | .SH NAME
3 | bfsetall, bfclearall \- sets/unsets all bits in a bit array.
4 | .SH SYNOPSIS
5 | .nf
6 | .B "#include
7 | .sp
8 | .BI "void bfsetall(struct bitfield *"instance ");
9 | .BI "void bfclearall(struct bitfield *"instance ");
10 | .fi
11 | .SH DESCRIPTION
12 | A bit array is represented by a "struct bitfield". It has two elements: an array of unsigned long integers \fIfield\fR and an unsigned integer \fIsize\fR.
13 | .sp
14 | The \fBbfsetall()\fR function takes a pointer to bitfield \fIinstance\fR, and sets all its bits (i.e. fills the bitfield with units).
15 | .sp
16 | The \fBbfclearall()\fR function takes a pointer to bitfield \fIinstance\fR, and clears all its bits (i.e. fills the bitfield with zeroes).
17 | .sp
18 | .SH "SEE ALSO"
19 | For the full list of bitfield functions and their descriptions, see manual page for
20 | .BR bitfield (3).
21 | .SH AUTHOR
22 | Vitalie CIUBOTARU
23 |
24 |
--------------------------------------------------------------------------------
/man/bfsetbit.3.in:
--------------------------------------------------------------------------------
1 | .TH bfsetbit 3 "%RELEASE_DATE%" "bitfield %VERSION%" "Bit array manipulation library"
2 | .SH NAME
3 | bfsetbit, bfclearbit, bfgetbit, bftogglebit \- manipulate one bit in a bit array.
4 | .SH SYNOPSIS
5 | .nf
6 | .B "#include
7 | .sp
8 | .BI "void bfsetbit(struct bitfield *"instance ", const unsigned int "bit ");
9 | .BI "void bfclearbit(struct bitfield *"instance ", const unsigned int "bit ");
10 | .BI "int bfgetbit(const struct bitfield *"instance ", const unsigned int "bit ");
11 | .BI "void bftogglebit(struct bitfield *"instance ", const unsigned int "bit ");
12 | .fi
13 | .SH DESCRIPTION
14 | A bit array is represented by a "struct bitfield". It has two elements: an array of unsigned long integers \fIfield\fR and an unsigned integer \fIsize\fR.
15 | .sp
16 | The \fBbfsetbit()\fR function takes a pointer to bitfield \fIinstance\fR and an integer \fIbit\fR, and sets bit number \fIbit\fR (i.e. fills it with a unit).
17 | .sp
18 | The \fBbfclearbit()\fR function takes a pointer to bitfield \fIinstance\fR and an integer \fIbit\fR, and clears bit number \fIbit\fR (i.e. fills it with a zero).
19 | .sp
20 | The \fBbfgetbit()\fR function takes a pointer to bitfield \fIinstance\fR and an integer \fIbit\fR, and returns the state if bit number \fIbit\fR (i.e. 1 if the bit is set and 0 otherwise).
21 | .sp
22 | The \fBbftogglebit()\fR function takes a pointer to bitfield \fIinstance\fR and an integer \fIbit\fR, and toggles the state if bit number \fIbit\fR (i.e. sets the bit if it was clear and clears it if it was set).
23 | .sp
24 | .SH "SEE ALSO"
25 | For the full list of bitfield functions and their descriptions, see manual page for
26 | .BR bitfield (3).
27 | .SH AUTHOR
28 | Vitalie CIUBOTARU
29 |
--------------------------------------------------------------------------------
/man/bfshift.3.in:
--------------------------------------------------------------------------------
1 | .TH bfshift 3 "%RELEASE_DATE%" "bitfield %VERSION%" "Bit array manipulation library"
2 | .SH NAME
3 | bfshift, bifshift_ip \- circular-shift the contents of a bit array.
4 | .SH SYNOPSIS
5 | .nf
6 | .B "#include
7 | .sp
8 | .BI "struct bitfield *bfshift(const struct bitfield *"input ", const unsigned int "offset ");
9 | .BI "void *bfshift_ip(struct bitfield *"input ", const unsigned int "offset ");
10 | .fi
11 | .SH DESCRIPTION
12 | A bit array is represented by a "struct bitfield". It has two elements: an array of unsigned long integers \fIfield\fR and an unsigned integer \fIsize\fR.
13 | .sp
14 | The \fBbfshift()\fR function takes a pointer to bitfield \fIinput\fR and an integer \fIoffset\fR, and circular-shifts the bits by \fIoffset\fR positions from the origin. In other words, it "cuts" the array after \fIoffset\fR bits and swaps the parts. It \fIoffset\fR is negative, it is counted from the end. The function returns a pointer to the new bitfield or NULL on failure.
15 | .sp
16 | The \fBbfshift_ip()\fR function does the same thing, but changes are made "in place", in the original bitfield.
17 | .sp
18 | .SH "SEE ALSO"
19 | For the full list of bitfield functions and their descriptions, see manual page for
20 | .BR bitfield (3).
21 | .SH AUTHOR
22 | Vitalie CIUBOTARU
23 |
24 |
--------------------------------------------------------------------------------
/man/bfsize.3.in:
--------------------------------------------------------------------------------
1 | .TH bfsize 3 "%RELEASE_DATE%" "bitfield %VERSION%" "Bit array manipulation library"
2 | .SH NAME
3 | bfsize \- obtain the number of bits of a bit array.
4 | .SH SYNOPSIS
5 | .nf
6 | .B "#include
7 | .sp
8 | .BI "unsigned int bfsize(const struct bitfield *"instance ");
9 | .fi
10 | .SH DESCRIPTION
11 | A bit array is represented by a "struct bitfield". It has two elements: an array of unsigned long integers \fIfield\fR and an unsigned integer \fIsize\fR.
12 | .sp
13 | The \fBbfsize()\fR function takes pointers to a bitfield \fIinstance\fR and returns its \fIsize\fR (the number of bits).
14 | .sp
15 | .SH "SEE ALSO"
16 | For the full list of bitfield functions and their descriptions, see manual page for
17 | .BR bitfield (3).
18 | .SH AUTHOR
19 | Vitalie CIUBOTARU
20 |
21 |
--------------------------------------------------------------------------------
/man/bfsub.3.in:
--------------------------------------------------------------------------------
1 | .TH bfsub 3 "%RELEASE_DATE%" "bitfield %VERSION%" "Bit array manipulation library"
2 | .SH NAME
3 | bfsub \- extract a slice of a bit array.
4 | .SH SYNOPSIS
5 | .nf
6 | .B "#include
7 | .sp
8 | .BI "struct bitfield *bfsub(const struct bitfield *"input ", const unsigned int "start ", const unsigned int "end ");
9 | .fi
10 | .SH DESCRIPTION
11 | A bit array is represented by a "struct bitfield". It has two elements: an array of unsigned long integers \fIfield\fR and an unsigned integer \fIsize\fR.
12 | .sp
13 | The \fBbfsub()\fR function takes a pointer to bitfield \fIinput\fR, the number of the \fIstart\fR bit and \fIend\fR bit, and creates a new bitfield that contains bits between \fIstart\fR (included) bit and \fIend\fR(not included) bit from the \fIinput\fR bitfield. The function returns a pointer to the new bitfield or NULL on failure.
14 | .sp
15 | .SH "SEE ALSO"
16 | For the full list of bitfield functions and their descriptions, see manual page for
17 | .BR bitfield (3).
18 | .SH AUTHOR
19 | Vitalie CIUBOTARU
20 |
21 |
--------------------------------------------------------------------------------
/man/bitfield.3.in:
--------------------------------------------------------------------------------
1 | .TH bitfield 3 "%RELEASE_DATE%" "bitfield %VERSION%" "Bit array manipulation library"
2 | .SH NAME
3 | bitfield \- API for manipulating bit arrays.
4 | .SH DESCRIPTION
5 | A library of functions for creating, modifying and destroying bit arrays, i.e.
6 | series of zeroes and ones spread across an array of storage units.
7 | .SH DATA TYPES
8 | .B struct bitfield
9 | is a data structure for storing bit arrays. It has two elements: an array of
10 | unsigned long integers \fIfield\fR for storing the values of bits and an
11 | unsigned integer \fIsize\fR for storing the number of bits in the array.
12 | .SH EXPORTS
13 | For details of each function, refer to its manual page.
14 | .LP
15 | .LP
16 | Creating and deleting bit arrays:
17 | .LP
18 | .B
19 | bfnew()
20 | .br
21 | .RS
22 | creates an empty bitfield structure, and returns a pointer to it
23 | .RE
24 | .LP
25 | .B
26 | bfnew_ones()
27 | .br
28 | .RS
29 | creates a bitfield structure, sets all its bits and returns a pointer to it
30 | .RE
31 | .LP
32 | .B
33 | bfnew_quick()
34 | .br
35 | .RS
36 | creates a bitfield structure and returns a pointer to it
37 | .RE
38 | .LP
39 | .B
40 | bfdel()
41 | .br
42 | .RS
43 | destroys a bitfield structure and frees memory
44 | .RE
45 | .LP
46 | Operations with bit arrays:
47 | .LP
48 | .B
49 | bfresize()
50 | .br
51 | .RS
52 | resizes an existing bitfield
53 | .RE
54 | .LP
55 | .B
56 | bfcat()
57 | .br
58 | .RS
59 | concatenates several bitfields into one
60 | .RE
61 | .LP
62 | .B
63 | bfclearall()
64 | .br
65 | .RS
66 | clears all bits in a bitfield (i.e. fills it with zeroes)
67 | .RE
68 | .LP
69 | .B
70 | bfclone()
71 | .br
72 | .RS
73 | creates a copy of an existing bitfield
74 | .RE
75 | .LP
76 | .B
77 | bfcpy()
78 | .br
79 | .RS
80 | copies the contents of a bitfield into another pre-existing bitfield
81 | .RE
82 | .LP
83 | .B
84 | bfhamming()
85 | .br
86 | .RS
87 | counts the Hamming distance between two bitfields
88 | .RE
89 | .LP
90 | .B
91 | bfisempty()
92 | .br
93 | .RS
94 | checks whether all bit of an array are unset
95 | .RE
96 | .LP
97 | .B
98 | bfnormalize()
99 | .br
100 | .RS
101 | represents a bitfield as a smallest value of a closed ring
102 | .RE
103 | .LP
104 | .B
105 | bfpopcount()
106 | .br
107 | .RS
108 | counts the set bits in a bitfield
109 | .RE
110 | .LP
111 | .B
112 | bfpos()
113 | .br
114 | .RS
115 | checks whether an array of bits contains a sub-array
116 | .RE
117 | .LP
118 | .B
119 | bfrev()
120 | .br
121 | .RS
122 | reverses the order of bits in a bitfield and returns result in new bitfield
123 | .RE
124 | .LP
125 | .B
126 | bfrev_ip()
127 | .br
128 | .RS
129 | reverses the order of bits in an existing bitfield
130 | .RE
131 | .LP
132 | .B
133 | bfsetall()
134 | .br
135 | .RS
136 | sets all bits in a bitfield (i.e. fills it with ones)
137 | .RE
138 | .LP
139 | .B
140 | bfshift()
141 | .br
142 | .RS
143 | circular-shifts the contents of a bitfield and returns the result in new
144 | bitfield
145 | .RE
146 | .LP
147 | .B
148 | bfshift_ip()
149 | .br
150 | .RS
151 | circular-shifts the contents of an existing bitfield
152 | .RE
153 | .LP
154 | .B
155 | bfsub()
156 | .br
157 | .RS
158 | extracts a sub-bitfield in a new bitfield
159 | .RE
160 | .LP
161 | Operations with individual bits:
162 | .LP
163 | .B
164 | bfgetbit()
165 | .br
166 | .RS
167 | checks the state of a bit in a bitfield
168 | .RE
169 | .LP
170 | .B
171 | bfsetbit()
172 | .br
173 | .RS
174 | sets one bit in a bitfield
175 | .RE
176 | .LP
177 | .B
178 | bfclearbit()
179 | .br
180 | .RS
181 | clears one bit in a bitfield
182 | .RE
183 | .LP
184 | .B
185 | bftogglebit()
186 | .br
187 | .RS
188 | toggles (i.e. reverses the state of) a bit in a bitfield
189 | .RE
190 | .LP
191 | Printing bit arrays:
192 | .LP
193 | .B
194 | bfprint_lsb()
195 | .br
196 | .RS
197 | prints a bitfield as a series of ones and zeroes, left to right, the least
198 | significant bit first
199 | .RE
200 | .LP
201 | .B
202 | bfprint_msb()
203 | .br
204 | .RS
205 | prints a bitfield as a series of ones and zeroes, left to right, the most
206 | significant bit first
207 | .RE
208 | .LP
209 | Logical operations with bit arrays:
210 | .LP
211 | .B
212 | bfand()
213 | .br
214 | .RS
215 | performs bitwise AND over a pair of bitfields
216 | .RE
217 | .LP
218 | .B
219 | bfnot()
220 | .br
221 | .RS
222 | reverses all bits in a bitfield and return the result in a new bitfield
223 | .RE
224 | .LP
225 | .B
226 | bfnot_ip()
227 | .br
228 | .RS
229 | reverses all bits in an existing bitfield
230 | .RE
231 | .LP
232 | .B
233 | bfor()
234 | .br
235 | .RS
236 | performs bitwise inclusive OR over a pair of bitfields
237 | .RE
238 | .LP
239 | .B
240 | bfxor()
241 | .br
242 | .RS
243 | performs bitwise exclusive OR over a pair of bitfields
244 | .RE
245 | .LP
246 | .B
247 | bfcmp()
248 | .br
249 | .RS
250 | compares two bitfields and returns 0 if same or non-zero and error
251 | message if different
252 | .RE
253 | .LP
254 | Bitfield-to-something converters:
255 | .LP
256 | .B
257 | bf2char()
258 | .br
259 | .RS
260 | converts a bitfield structure into an array of unsigned chars
261 | .RE
262 | .LP
263 | .B
264 | bf2str()
265 | .br
266 | .RS
267 | converts into a character string of '1's and '0's
268 | .RE
269 | .LP
270 | .B
271 | bf2short()
272 | .br
273 | .RS
274 | converts into an array of short integers
275 | .RE
276 | .LP
277 | .B
278 | bf2int()
279 | .br
280 | .RS
281 | converts into an array of integers
282 | .RE
283 | .LP
284 | .B
285 | bf2long()
286 | .br
287 | .RS
288 | converts into an array of long integers
289 | .RE
290 | .LP
291 | .B
292 | bf2ll()
293 | .br
294 | .RS
295 | converts into an array of long long integers
296 | .RE
297 | .LP
298 | .B
299 | bftouint8()
300 | .br
301 | .RS
302 | converts into an array of uint8_t
303 | .RE
304 | .LP
305 | .B
306 | bftouint16()
307 | .br
308 | .RS
309 | converts into an array of uint16_t
310 | .RE
311 | .LP
312 | .B
313 | bftouint32()
314 | .br
315 | .RS
316 | converts into an array of uint32_t
317 | .RE
318 | .LP
319 | .B
320 | bftouint64()
321 | .br
322 | .RS
323 | converts into an array of uin64_t
324 | .RE
325 | .LP
326 | "In-place" bitfield-to-something converters are same as above, except that
327 | instead of creating a new array, these functions fill an existing one:
328 | .LP
329 | .B
330 | bf2char_ip()
331 | .RE
332 | .LP
333 | .B
334 | bf2str_ip()
335 | .RE
336 | .LP
337 | .B
338 | bf2short_ip()
339 | .RE
340 | .LP
341 | .B
342 | bf2int_ip()
343 | .RE
344 | .LP
345 | .B
346 | bf2long_ip()
347 | .RE
348 | .LP
349 | .B
350 | bf2ll_ip()
351 | .RE
352 | .LP
353 | .B
354 | bftouint8_ip()
355 | .RE
356 | .LP
357 | .B
358 | bftouint16_ip()
359 | .RE
360 | .LP
361 | .B
362 | bftouint32_ip()
363 | .RE
364 | .LP
365 | .B
366 | bftouint64_ip()
367 | .RE
368 | .LP
369 | Something-to-bitfield converters:
370 | .LP
371 | .B
372 | char2bf()
373 | .br
374 | .RS
375 | converts an array of unsigned chars into a bitfield structure
376 | .RE
377 | .LP
378 | .B
379 | str2bf()
380 | .br
381 | .RS
382 | converts a character string of '1's and '0's
383 | .RE
384 | .LP
385 | .B
386 | short2bf()
387 | .br
388 | .RS
389 | converts an array of short integers
390 | .RE
391 | .LP
392 | .B
393 | int2bf()
394 | .br
395 | .RS
396 | converts an array of integers
397 | .RE
398 | .LP
399 | .B
400 | long2bf()
401 | .br
402 | .RS
403 | converts an array of long integers
404 | .RE
405 | .LP
406 | .B
407 | ll2bf()
408 | .br
409 | .RS
410 | converts an array of long long integers
411 | .RE
412 | .LP
413 | .B
414 | uint8tobf()
415 | .br
416 | .RS
417 | converts an array of uint8_t
418 | .RE
419 | .LP
420 | .B
421 | uint16tobf()
422 | .br
423 | .RS
424 | converts an array of uint16_t
425 | .RE
426 | .LP
427 | .B
428 | uint32tobf()
429 | .br
430 | .RS
431 | converts an array of uint32_t
432 | .RE
433 | .LP
434 | .B
435 | uint64tobf()
436 | .br
437 | .RS
438 | converts an array of uint64_t
439 | .RE
440 | .LP
441 | "In-place" something-to-bitfield converters are same as above, except that
442 | instead of creating a new bitfield, these functions fill an existing one:
443 | .LP
444 | .B
445 | char2bf_ip()
446 | .RE
447 | .LP
448 | .B
449 | str2bf_ip()
450 | .RE
451 | .LP
452 | .B
453 | short2bf_ip()
454 | .RE
455 | .LP
456 | .B
457 | int2bf_ip()
458 | .RE
459 | .LP
460 | .B
461 | long2bf_ip()
462 | .RE
463 | .LP
464 | .B
465 | ll2bf_ip()
466 | .RE
467 | .LP
468 | .B
469 | uint8tobf_ip()
470 | .RE
471 | .LP
472 | .B
473 | uint16tobf_ip()
474 | .RE
475 | .LP
476 | .B
477 | uint32tobf_ip()
478 | .RE
479 | .LP
480 | .B
481 | uint64tobf_ip()
482 | .RE
483 | .LP
484 | Miscellaneous:
485 | .LP
486 | .B
487 | bfsize()
488 | .br
489 | .RS
490 | .LP
491 | obtains the number of bits of a bitfield
492 | .RE
493 | .SH AUTHOR
494 | Vitalie CIUBOTARU
495 |
--------------------------------------------------------------------------------
/tests/Makefile.in:
--------------------------------------------------------------------------------
1 | TESTFILES=test1 test2 test3 test4 test5 test6 test7 test8 test9 test10 test11 test12 test13 test14 test15 test16 test17 test18 test19 test20 test21 test22 test23 test24 test25 test26 test27 test28 test29 test30 test31 test32 test33 test34 test35 test36 test37 test38 test39 test40 test41 test42 test43 test44
2 | LIBS=-L.. -I..
3 |
4 | all: build-tests run-tests
5 |
6 | build-tests: $(TESTFILES)
7 | $(TESTFILES): %: %.c
8 | $(CC) $(CFLAGS) -Wl,-rpath=$(CURDIR) -o $@ $< $(LIBS) -lbitfield
9 |
10 | run-tests: $(TESTFILES)
11 | for i in $(TESTFILES); do \
12 | env LD_LIBRARY_PATH=.. ./$$i; \
13 | done
14 |
15 | clean:
16 | rm -rvf $(TESTFILES)
17 |
18 | distclean:
19 | rm Makefile
20 |
21 | .PHONY: all build-tests run-tests clean distclean
22 |
--------------------------------------------------------------------------------
/tests/test1.c:
--------------------------------------------------------------------------------
1 | /**
2 | * File name: tests/test1.c
3 | * Project name: bitfield, a bit array manipulation library written in C
4 | * URL: https://github.com/ciubotaru/bitfield
5 | * Author: Vitalie Ciubotaru
6 | * License: General Public License, version 3 or later
7 | * Date: September 1, 2015
8 | **/
9 |
10 | #include
11 | #include
12 | #include
13 | #include
14 | #include "bitfield.h"
15 | #include "bitfield-internals.h"
16 |
17 | /* Testing bfsub(), bfcat(), bfshift() and bfshift_ip() */
18 |
19 | int main()
20 | {
21 | srand((unsigned)time(NULL));
22 | unsigned int i; //counter
23 | unsigned int len = 80;
24 | char *msg = "Testing bfsub(), bfcat(), bfshift() and bfshift_ip()";
25 | char *failed = "[FAIL]";
26 | char *passed = "[PASS]";
27 | unsigned int dots = len - strlen(msg) - 6; /* 6 is the length of pass/fail string */
28 | printf("%s", msg);
29 | for (i = 0; i < dots; i++)
30 | printf(".");
31 | struct bitfield *input = bfnew(len);
32 | for (i = 0; i < len; i++)
33 | if (rand() % 2)
34 | BITSET(input, i);
35 | unsigned int point, cmp;
36 | /* try all possible points of division */
37 | for (point = 1; point < (len - 1); point++) {
38 | /* divide a bitfield into two subfields */
39 | struct bitfield *chunk1 = bfsub(input, 0, point);
40 | struct bitfield *chunk2 = bfsub(input, point, input->size);
41 | /* concatenate them back into one and compare to the original */
42 | struct bitfield *output = bfcat(chunk1, chunk2);
43 | cmp = bfcmp(input, output, NULL);
44 | bfdel(output);
45 | if (cmp != 0) {
46 | printf("%s\n", failed);
47 | return 1;
48 | }
49 | /* shift a bitfield using bfshift() */
50 | struct bitfield *shifted = bfshift(input, point);
51 | /* shift a bitfield by swapping chunks */
52 | struct bitfield *swapped = bfcat(chunk2, chunk1);
53 | bfdel(chunk1);
54 | bfdel(chunk2);
55 | cmp = bfcmp(shifted, swapped, NULL);
56 | bfdel(swapped);
57 | if (cmp != 0) {
58 | printf("%s\n", failed);
59 | return 1;
60 | }
61 | /* shift it back and compare to the original bitfield */
62 | bfshift_ip(shifted, -point);
63 | cmp = bfcmp(input, shifted, NULL);
64 | bfdel(shifted);
65 | if (cmp != 0) {
66 | printf("%s\n", failed);
67 | bfdel(input);
68 | return 1;
69 | }
70 | }
71 | printf("%s\n", passed);
72 | bfdel(input);
73 | return 0;
74 | }
75 |
--------------------------------------------------------------------------------
/tests/test10.c:
--------------------------------------------------------------------------------
1 | /**
2 | * File name: tests/test10.c
3 | * Project name: bitfield, a bit array manipulation library written in C
4 | * URL: https://github.com/ciubotaru/bitfield
5 | * Author: Vitalie Ciubotaru
6 | * License: General Public License, version 3 or later
7 | * Date: October 20, 2015
8 | **/
9 |
10 | #include
11 | #include
12 | #include
13 | #include "bitfield.h"
14 | #include "bitfield-internals.h"
15 |
16 | /* Testing bfsize() */
17 |
18 | int main()
19 | {
20 | unsigned int i; //counter
21 | unsigned int len = 80;
22 | char *msg = "Testing bfsize()";
23 | char *failed = "[FAIL]";
24 | char *passed = "[PASS]";
25 | unsigned int dots = len - strlen(msg) - 6; /* 6 is the length of pass/fail string */
26 | printf("%s", msg);
27 | for (i = 0; i < dots; i++)
28 | printf(".");
29 |
30 | for (i = 1; i <= len; i++) {
31 | struct bitfield *input = bfnew_quick(i);
32 | if (bfsize(input) != i) {
33 | printf("%s\n", failed);
34 | bfdel(input);
35 | return 1;
36 | } else
37 | bfdel(input);
38 | }
39 |
40 | printf("%s\n", passed);
41 | return 0;
42 | }
43 |
--------------------------------------------------------------------------------
/tests/test11.c:
--------------------------------------------------------------------------------
1 | /**
2 | * File name: tests/test11.c
3 | * Project name: bitfield, a bit array manipulation library written in C
4 | * URL: https://github.com/ciubotaru/bitfield
5 | * Author: Vitalie Ciubotaru
6 | * License: General Public License, version 3 or later
7 | * Date: October 20, 2015
8 | **/
9 |
10 | #include
11 | #include
12 | #include
13 | #include
14 | #include "bitfield.h"
15 | #include "bitfield-internals.h"
16 |
17 | /* Testing bftogglebit() */
18 |
19 | int main()
20 | {
21 | srand((unsigned)time(NULL));
22 | int i; //counter
23 | int len = 80;
24 | char *msg = "Testing bftogglebit()";
25 | char *failed = "[FAIL]";
26 | char *passed = "[PASS]";
27 | int dots = len - strlen(msg) - 6; /* 6 is the length of pass/fail string */
28 | printf("%s", msg);
29 | for (i = 0; i < dots; i++)
30 | printf(".");
31 |
32 | struct bitfield *input = bfnew_quick(len);
33 | for (i = 0; i < len; i++) {
34 | if (rand() % 2 == 1)
35 | bfsetbit(input, i);
36 | else
37 | bfclearbit(input, i);
38 | }
39 |
40 | struct bitfield *output = bfclone(input);
41 | for (i = 0; i < len; i++)
42 | bftogglebit(output, i);
43 |
44 | struct bitfield *not = bfnot(output);
45 | bfdel(output);
46 |
47 | int cmp = bfcmp(input, not, NULL);
48 | bfdel(input);
49 | bfdel(not);
50 |
51 | if (cmp != 0) {
52 | printf("%s\n", failed);
53 | return 1;
54 | }
55 | printf("%s\n", passed);
56 | return 0;
57 | }
58 |
--------------------------------------------------------------------------------
/tests/test12.c:
--------------------------------------------------------------------------------
1 | /**
2 | * File name: tests/test12.c
3 | * Project name: bitfield, a bit array manipulation library written in C
4 | * URL: https://github.com/ciubotaru/bitfield
5 | * Author: Vitalie Ciubotaru
6 | * License: General Public License, version 3 or later
7 | * Date: October 20, 2015
8 | **/
9 |
10 | #include
11 | #include
12 | #include
13 | #include
14 | #include "bitfield.h"
15 | #include "bitfield-internals.h"
16 |
17 | /* Testing bfpopcount() */
18 |
19 | int main()
20 | {
21 | srand((unsigned)time(NULL));
22 | int i; //counter
23 | int len = 80;
24 | char *msg = "Testing bfpopcount()";
25 | char *failed = "[FAIL]";
26 | char *passed = "[PASS]";
27 | int dots = len - strlen(msg) - 6; /* 6 is the length of pass/fail string */
28 | printf("%s", msg);
29 | for (i = 0; i < dots; i++)
30 | printf(".");
31 |
32 | char *input_char = malloc((len + 1) * sizeof(char)); /* allocate space for 80+1 chars */
33 | for (i = 0; i < len; i++) {
34 | if (rand() % 2)
35 | input_char[i] = '1';
36 | else
37 | input_char[i] = '0';
38 | }
39 | input_char[len] = '\0';
40 |
41 | /* population count in char string */
42 | int count_s = 0;
43 | for (i = 0; i < len; i++)
44 | if (input_char[i] == '1')
45 | count_s++;
46 |
47 | struct bitfield *input = str2bf(input_char);
48 | free(input_char);
49 | /* population count in bitfield */
50 | int count_b = bfpopcount(input);
51 | bfdel(input);
52 |
53 | if (count_s != count_b) {
54 | printf("%s\n", failed);
55 | return 1;
56 | }
57 | printf("%s\n", passed);
58 | return 0;
59 | }
60 |
--------------------------------------------------------------------------------
/tests/test13.c:
--------------------------------------------------------------------------------
1 | /**
2 | * File name: tests/test13.c
3 | * Project name: bitfield, a bit array manipulation library written in C
4 | * URL: https://github.com/ciubotaru/bitfield
5 | * Author: Vitalie Ciubotaru
6 | * License: General Public License, version 3 or later
7 | * Date: October 20, 2015
8 | **/
9 |
10 | #include
11 | #include
12 | #include
13 | #include
14 | #include "bitfield.h"
15 | #include "bitfield-internals.h"
16 |
17 | /* Testing bfhamming() */
18 |
19 | int main()
20 | {
21 | srand((unsigned)time(NULL));
22 | int i; //counter
23 | int len = 80;
24 | char *msg = "Testing bfhamming()";
25 | char *failed = "[FAIL]";
26 | char *passed = "[PASS]";
27 | int dots = len - strlen(msg) - 6; /* 6 is the length of pass/fail string */
28 | printf("%s", msg);
29 | for (i = 0; i < dots; i++)
30 | printf(".");
31 |
32 | char *input_char1 = malloc((len + 1) * sizeof(char)); /* allocate space for 80+1 chars */
33 | for (i = 0; i < len; i++) {
34 | if (rand() % 2) {
35 | input_char1[i] = '1';
36 | } else
37 | input_char1[i] = '0';
38 | }
39 | input_char1[len] = '\0';
40 |
41 | char *input_char2 = malloc((len + 1) * sizeof(char)); /* allocate space for 80+1 chars */
42 | for (i = 0; i < len; i++) {
43 | if (rand() % 2) {
44 | input_char2[i] = '1';
45 | } else
46 | input_char2[i] = '0';
47 | }
48 | input_char2[len] = '\0';
49 |
50 | /* Hamming distance counter for char string */
51 | int hamming_s = 0;
52 | for (i = 0; i < len; i++) {
53 | if (input_char1[i] != input_char2[i])
54 | hamming_s++;
55 | }
56 |
57 | struct bitfield *input1 = str2bf(input_char1);
58 | free(input_char1);
59 | struct bitfield *input2 = str2bf(input_char2);
60 | free(input_char2);
61 |
62 | /* Hamming distance for bitfield */
63 | int hamming_b = bfhamming(input1, input2);
64 | bfdel(input1);
65 | bfdel(input2);
66 |
67 | if (hamming_s != hamming_b) {
68 | printf("%s\n", failed);
69 | return 1;
70 | }
71 | printf("%s\n", passed);
72 | return 0;
73 | }
74 |
--------------------------------------------------------------------------------
/tests/test14.c:
--------------------------------------------------------------------------------
1 | /**
2 | * File name: tests/test14.c
3 | * Project name: bitfield, a bit array manipulation library written in C
4 | * URL: https://github.com/ciubotaru/bitfield
5 | * Author: Vitalie Ciubotaru
6 | * License: General Public License, version 3 or later
7 | * Date: December 1, 2015
8 | **/
9 |
10 | #include
11 | #include
12 | #include
13 | #include
14 | #include "bitfield.h"
15 | #include "bitfield-internals.h"
16 |
17 | /* Testing bf2str() and str2bf() */
18 |
19 | int main()
20 | {
21 | srand((unsigned)time(NULL));
22 | int i, cmp; //counter
23 | int len = 80;
24 | char *msg = "Testing bf2str() and str2bf()";
25 | char *failed = "[FAIL]";
26 | char *passed = "[PASS]";
27 | int dots = len - strlen(msg) - 6; /* 6 is the length of pass/fail string */
28 | printf("%s", msg);
29 | for (i = 0; i < dots; i++)
30 | printf(".");
31 | struct bitfield *input = bfnew(len);
32 | for (i = 0; i < len; i++)
33 | if (rand() % 2)
34 | BITSET(input, i);
35 | char *input_char = bf2str(input);
36 | struct bitfield *output = str2bf(input_char);
37 | free(input_char);
38 | cmp = bfcmp(input, output, NULL);
39 | bfdel(input);
40 | bfdel(output);
41 | if (cmp != 0) {
42 | printf("%s\n", failed);
43 | return 1;
44 | }
45 | printf("%s\n", passed);
46 | return 0;
47 | }
48 |
--------------------------------------------------------------------------------
/tests/test15.c:
--------------------------------------------------------------------------------
1 | /**
2 | * File name: tests/test15.c
3 | * Project name: bitfield, a bit array manipulation library written in C
4 | * URL: https://github.com/ciubotaru/bitfield
5 | * Author: Vitalie Ciubotaru
6 | * License: General Public License, version 3 or later
7 | * Date: November 15, 2015
8 | **/
9 |
10 | #include
11 | #include
12 | #include
13 | #include
14 | #include "bitfield.h"
15 | #include "bitfield-internals.h"
16 |
17 | /* Testing bf2long() */
18 |
19 | int main()
20 | {
21 | srand((unsigned)time(NULL));
22 | int i, cmp; //counter
23 | int len = 80;
24 | char *msg = "Testing bf2long()";
25 | char *failed = "[FAIL]";
26 | char *passed = "[PASS]";
27 | int dots = len - strlen(msg) - 6; /* 6 is the length of pass/fail string */
28 | printf("%s", msg);
29 | for (i = 0; i < dots; i++)
30 | printf(".");
31 | struct bitfield *input = bfnew(len);
32 | for (i = 0; i < len; i++)
33 | if (rand() % 2)
34 | BITSET(input, i);
35 | unsigned long *input_long = bf2long(input);
36 | int bitnslots = BITNSLOTS(len);
37 | unsigned long *input_long2 = malloc(bitnslots * sizeof(unsigned long));
38 | for (i = 0; i < bitnslots; i++)
39 | input_long2[i] = input->field[i];
40 | cmp =
41 | memcmp(input_long, input_long2, bitnslots * sizeof(unsigned long));
42 | bfdel(input);
43 | free(input_long);
44 | free(input_long2);
45 | if (cmp) {
46 | printf("%s\n", failed);
47 | return 1;
48 | }
49 | printf("%s\n", passed);
50 | return 0;
51 | }
52 |
--------------------------------------------------------------------------------
/tests/test16.c:
--------------------------------------------------------------------------------
1 | /**
2 | * File name: tests/test16.c
3 | * Project name: bitfield, a bit array manipulation library written in C
4 | * URL: https://github.com/ciubotaru/bitfield
5 | * Author: Vitalie Ciubotaru
6 | * License: General Public License, version 3 or later
7 | * Date: November 15, 2015
8 | **/
9 |
10 | #include
11 | #include
12 | #include
13 | #include
14 | #include "bitfield.h"
15 | #include "bitfield-internals.h"
16 |
17 | /* Testing bfisempty() */
18 |
19 | int main()
20 | {
21 | srand((unsigned)time(NULL));
22 | int i, j; //counters
23 | int len = 80;
24 | int content;
25 | char *msg = "Testing bfisempty()";
26 | char *failed = "[FAIL]";
27 | char *passed = "[PASS]";
28 | int dots = len - strlen(msg) - 6; /* 6 is the length of pass/fail string */
29 | printf("%s", msg);
30 | for (i = 0; i < dots; i++)
31 | printf(".");
32 |
33 | /* 50 trials */
34 | for (i = 0; i < 50; i++) {
35 | /* create a bitfield */
36 | struct bitfield *input = bfnew(len);
37 |
38 | /* choose whether to leave it empty or fill with random ones */
39 | if (rand() % 2) {
40 | /* fill with ones */
41 | content = 1;
42 | for (j = 0; j < len; j++) {
43 | if (rand() % 2) {
44 | BITSET(input, j);
45 | }
46 | }
47 | /* make sure there's at least one unit */
48 | BITSET(input, rand() % len);
49 | }
50 | /* leave empty */
51 | else
52 | content = 0;
53 | /* check if result of bfisempty corresponds with the value of content */
54 | int result = bfisempty(input);
55 | if (result != content) {
56 | printf("%s\n", failed);
57 | bfdel(input);
58 | return 1;
59 | }
60 | bfdel(input);
61 | }
62 | printf("%s\n", passed);
63 | return 0;
64 | }
65 |
--------------------------------------------------------------------------------
/tests/test17.c:
--------------------------------------------------------------------------------
1 | /**
2 | * File name: tests/test17.c
3 | * Project name: bitfield, a bit array manipulation library written in C
4 | * URL: https://github.com/ciubotaru/bitfield
5 | * Author: Vitalie Ciubotaru
6 | * License: General Public License, version 3 or later
7 | * Date: February 15, 2016
8 | **/
9 |
10 | #include
11 | #include
12 | #include
13 | #include
14 | #include "bitfield.h"
15 | #include "bitfield-internals.h"
16 |
17 | /* Testing bfpos() */
18 |
19 | int main()
20 | {
21 | srand((unsigned)time(NULL));
22 | int i, j, k; //counters
23 | int r;
24 | int len = 80;
25 | int result;
26 | char *msg = "Testing bfpos()";
27 | char *failed = "[FAIL]";
28 | char *passed = "[PASS]";
29 | int dots = len - strlen(msg) - 6; /* 6 is the length of pass/fail string */
30 | printf("%s", msg);
31 | for (i = 0; i < dots; i++)
32 | printf(".");
33 |
34 | /**
35 | * set haystack size to 80
36 | * test different sizes of needle, from 1 to 80
37 | * test different positions of needle, from 0 to where it fits
38 | * all haystacks here contain exactly one instanse of needle,
39 | * so search should return non-negative-values
40 | **/
41 | for (i = 1; i < len; i++) { // needle size
42 | for (j = 0; j < len - i; j++) { // needle position in the haystack
43 | /* create the needle */
44 | struct bitfield *needle = bfnew(i);
45 |
46 | /* fill the needle with random values */
47 | for (k = 0; k < i; k++) {
48 | if (rand() % 2) {
49 | BITSET(needle, k);
50 | }
51 | }
52 |
53 | /* make sure the needle contains at least one set bit, selected randomly */
54 | r = rand() % i;
55 | BITSET(needle, r);
56 |
57 | /* create the haystack, make sure it contains the needle */
58 | struct bitfield *haystack = bfclone(needle);
59 |
60 | /* if there is space between the start of the haystack and the sought needle, fill it with zeroes */
61 | if (j > 0) {
62 | struct bitfield *start = bfnew(j);
63 | struct bitfield *tmp = bfcat(start, haystack);
64 | bfresize(haystack, bfsize(tmp));
65 | bfcpy(tmp, haystack);
66 | bfdel(start);
67 | bfdel(tmp);
68 | }
69 |
70 | /* if there is space between the sought needle and the end of haystack, fill it with zeroes */
71 | if (j + i < len) {
72 | struct bitfield *end = bfnew(len - j - i);
73 | struct bitfield *tmp2 = bfcat(haystack, end);
74 | bfresize(haystack, bfsize(tmp2));
75 | bfcpy(tmp2, haystack);
76 | bfdel(end);
77 | bfdel(tmp2);
78 | }
79 |
80 | /* now let's test */
81 | result = bfpos(haystack, needle);
82 | bfdel(haystack);
83 | bfdel(needle);
84 | /* the result should be equal to j */
85 | if (result != j) {
86 | printf("%s\n", failed);
87 | return 1;
88 | }
89 | }
90 | }
91 | printf("%s\n", passed);
92 | return 0;
93 | }
94 |
--------------------------------------------------------------------------------
/tests/test18.c:
--------------------------------------------------------------------------------
1 | /**
2 | * File name: tests/test18.c
3 | * Project name: bitfield, a bit array manipulation library written in C
4 | * URL: https://github.com/ciubotaru/bitfield
5 | * Author: Vitalie Ciubotaru
6 | * License: General Public License, version 3 or later
7 | * Date: March 20, 2016
8 | **/
9 |
10 | #include
11 | #include
12 | #include
13 | #include
14 | #include "bitfield.h"
15 | #include "bitfield-internals.h"
16 |
17 | /* Testing long2bf() */
18 |
19 | int main()
20 | {
21 | srand((unsigned)time(NULL));
22 | unsigned int i, j; //counters
23 | unsigned int len = 80;
24 | char *msg = "Testing long2bf()";
25 | char *failed = "[FAIL]";
26 | char *passed = "[PASS]";
27 | unsigned int dots = len - strlen(msg) - 6; /* 6 is the length of pass/fail string */
28 | printf("%s", msg);
29 | for (i = 0; i < dots; i++)
30 | printf(".");
31 | unsigned int bitnslots = BITNSLOTS(len);
32 | unsigned long *input = calloc(1, bitnslots * sizeof(unsigned long));
33 | for (i = 0; i < bitnslots - 1; i++) {
34 | for (j = 0; j < LONG_BIT; j++) {
35 | if (rand() % 2)
36 | input[i] |= (1UL << j);
37 | }
38 | }
39 | for (i = 0; i < len % LONG_BIT; i++)
40 | if (rand() % 2)
41 | input[bitnslots - 1] |= (1UL << i);
42 | struct bitfield *output = long2bf(input, len);
43 | for (i = 0; i < bitnslots; i++) {
44 | if (output->field[i] != input[i]) {
45 | printf("%s\n", failed);
46 | free(input);
47 | bfdel(output);
48 | return 1;
49 | }
50 | }
51 | printf("%s\n", passed);
52 | free(input);
53 | bfdel(output);
54 | return 0;
55 | }
56 |
--------------------------------------------------------------------------------
/tests/test19.c:
--------------------------------------------------------------------------------
1 | /**
2 | * File name: tests/test19.c
3 | * Project name: bitfield, a bit array manipulation library written in C
4 | * URL: https://github.com/ciubotaru/bitfield
5 | * Author: Vitalie Ciubotaru
6 | * License: General Public License, version 3 or later
7 | * Date: April 1, 2016
8 | **/
9 |
10 | #include
11 | #include
12 | #include
13 | #include
14 | #include "bitfield.h"
15 | #include "bitfield-internals.h"
16 |
17 | /* Testing int2bf() */
18 |
19 | int main()
20 | {
21 | srand((unsigned)time(NULL));
22 | unsigned int i, j; //counters
23 | unsigned int len = 80;
24 | char *msg = "Testing int2bf()";
25 | char *failed = "[FAIL]";
26 | char *passed = "[PASS]";
27 | unsigned int dots = len - strlen(msg) - 6; /* 6 is the length of pass/fail string */
28 | printf("%s", msg);
29 | for (i = 0; i < dots; i++)
30 | printf(".");
31 | unsigned int bitnslots = (len - 1) / INT_BIT + 1;
32 | unsigned int *input = calloc(1, bitnslots * sizeof(unsigned int));
33 | for (i = 0; i < bitnslots - 1; i++) {
34 | for (j = 0; j < INT_BIT; j++) {
35 | if (rand() % 2)
36 | input[i] |= (1U << j);
37 | }
38 | }
39 | for (i = 0; i < len % INT_BIT; i++)
40 | if (rand() % 2)
41 | input[bitnslots - 1] |= (1U << i);
42 | struct bitfield *output = int2bf(input, len);
43 | int min_memory_length =
44 | (bitnslots * sizeof(unsigned int) <
45 | BITNSLOTS(len) * sizeof(unsigned long)) ? (bitnslots *
46 | sizeof(unsigned int)) :
47 | BITNSLOTS(len) * sizeof(unsigned long);
48 | if (memcmp(input, output->field, min_memory_length) != 0) {
49 | printf("%s\n", failed);
50 | free(input);
51 | bfdel(output);
52 | return 1;
53 | }
54 | printf("%s\n", passed);
55 | free(input);
56 | bfdel(output);
57 | return 0;
58 | }
59 |
--------------------------------------------------------------------------------
/tests/test2.c:
--------------------------------------------------------------------------------
1 | /**
2 | * File name: tests/test2.c
3 | * Project name: bitfield, a bit array manipulation library written in C
4 | * URL: https://github.com/ciubotaru/bitfield
5 | * Author: Vitalie Ciubotaru
6 | * License: General Public License, version 3 or later
7 | * Date: September 1, 2015
8 | **/
9 |
10 | #include
11 | #include
12 | #include
13 | #include
14 | #include "bitfield.h"
15 | #include "bitfield-internals.h"
16 |
17 | /* Testing bf2str_ip() and str2bf_ip() */
18 |
19 | int main()
20 | {
21 | srand((unsigned)time(NULL));
22 | int i, cmp; //counter
23 | int len = 80;
24 | char *msg = "Testing bf2str_ip() and str2bf_ip()";
25 | char *failed = "[FAIL]";
26 | char *passed = "[PASS]";
27 | int dots = len - strlen(msg) - 6; /* 6 is the length of pass/fail string */
28 | printf("%s", msg);
29 | for (i = 0; i < dots; i++)
30 | printf(".");
31 | struct bitfield *input = bfnew(len);
32 | struct bitfield *output = bfnew(len);
33 | char *input_char = malloc((len + 1) * sizeof(char));
34 | for (i = 0; i < len; i++)
35 | if (rand() % 2)
36 | BITSET(input, i);
37 | bf2str_ip(input, input_char);
38 | str2bf_ip(input_char, output);
39 | free(input_char);
40 | cmp = bfcmp(input, output, NULL);
41 | bfdel(input);
42 | bfdel(output);
43 | if (cmp != 0) {
44 | printf("%s\n", failed);
45 | return 1;
46 | }
47 | printf("%s\n", passed);
48 | return 0;
49 | }
50 |
--------------------------------------------------------------------------------
/tests/test20.c:
--------------------------------------------------------------------------------
1 | /**
2 | * File name: tests/test20.c
3 | * Project name: bitfield, a bit array manipulation library written in C
4 | * URL: https://github.com/ciubotaru/bitfield
5 | * Author: Vitalie Ciubotaru
6 | * License: General Public License, version 3 or later
7 | * Date: April 1, 2016
8 | **/
9 |
10 | #include
11 | #include
12 | #include
13 | #include
14 | #include "bitfield.h"
15 | #include "bitfield-internals.h"
16 | #include
17 |
18 | /* Testing bf2int() */
19 |
20 | int main()
21 | {
22 | srand((unsigned)time(NULL));
23 | int i, cmp; //counter
24 | int len = 80;
25 | char *msg = "Testing bf2int()";
26 | char *failed = "[FAIL]";
27 | char *passed = "[PASS]";
28 | int dots = len - strlen(msg) - 6; /* 6 is the length of pass/fail string */
29 | printf("%s", msg);
30 | for (i = 0; i < dots; i++)
31 | printf(".");
32 | struct bitfield *input = bfnew(len);
33 | for (i = 0; i < len; i++)
34 | if (rand() % 2)
35 | BITSET(input, i);
36 | int bitnslots = BITNSLOTS(len);
37 | int ints = (len - 1) / INT_BIT + 1;
38 | unsigned int *output = bf2int(input);
39 | unsigned int *output2 = malloc(bitnslots * sizeof(unsigned long));
40 | #if __BYTE_ORDER == __BIG_ENDIAN
41 | for (i = 0; i < bitnslots; i++) {
42 | switch (sizeof(unsigned long)) {
43 | case 4:
44 | input->field[i] = htole32(input->field[i]);
45 | break;
46 | case 8:
47 | input->field[i] = htole64(input->field[i]);
48 | break;
49 | }
50 | }
51 | #endif
52 | memcpy(output2, input->field, bitnslots * sizeof(unsigned long));
53 | #if __BYTE_ORDER == __BIG_ENDIAN
54 | for (i = 0; i < ints; i++) {
55 | switch (sizeof(unsigned int)) {
56 | case 2:
57 | output2[i] = le16toh(output2[i]);
58 | break;
59 | case 4:
60 | output2[i] = le32toh(output2[i]);
61 | break;
62 | }
63 | }
64 | #endif
65 | if (ints * sizeof(unsigned int) != bitnslots * sizeof(unsigned long)) {
66 | output2 =
67 | (unsigned int *)realloc(output2,
68 | ints * sizeof(unsigned int));
69 | if (output2 == NULL)
70 | free(output2);
71 | }
72 | cmp = memcmp(output, output2, ints * sizeof(unsigned int));
73 | bfdel(input);
74 | free(output);
75 | free(output2);
76 | if (cmp != 0) {
77 | printf("%s\n", failed);
78 | return 1;
79 | }
80 | printf("%s\n", passed);
81 | return 0;
82 | }
83 |
--------------------------------------------------------------------------------
/tests/test21.c:
--------------------------------------------------------------------------------
1 | /**
2 | * File name: tests/test21.c
3 | * Project name: bitfield, a bit array manipulation library written in C
4 | * URL: https://github.com/ciubotaru/bitfield
5 | * Author: Vitalie Ciubotaru
6 | * License: General Public License, version 3 or later
7 | * Date: July 1, 2016
8 | **/
9 |
10 | #include
11 | #include
12 | #include
13 | #include
14 | #include
15 | #include "bitfield.h"
16 | #include "bitfield-internals.h"
17 |
18 | /* Testing bfnormalize() */
19 |
20 | int main()
21 | {
22 | srand((unsigned)time(NULL));
23 | int i, cmp; //counter
24 | int len = 80;
25 | char *msg = "Testing bfnormalize()";
26 | char *failed = "[FAIL]";
27 | char *passed = "[PASS]";
28 | int dots = len - strlen(msg) - 6; /* 6 is the length of pass/fail string */
29 | printf("%s", msg);
30 | for (i = 0; i < dots; i++)
31 | printf(".");
32 |
33 | /**
34 | * test contents:
35 | * take a string of ones, insert a substring of zeroes of random length
36 | * and see if bfnormalize will align zeroes at the end
37 | **/
38 |
39 | /* number of zeroes between 1 and len - 1 */
40 | int nr_zeroes, nr_ones_head, nr_ones_tail;
41 | struct bitfield *zeroes, *ones_head, *ones_tail, *input, *check,
42 | *output;
43 |
44 | for (i = 0; i < 50; i++) {
45 | nr_zeroes = rand() % (len - 2) + 1;
46 | zeroes = bfnew(nr_zeroes);
47 | nr_ones_head = rand() % (len - nr_zeroes - 1) + 1;
48 | ones_head = bfnew_ones(nr_ones_head);
49 | nr_ones_tail = len - nr_zeroes - nr_ones_head;
50 | ones_tail = bfnew_ones(nr_ones_tail);
51 |
52 | input = bfcat(ones_head, zeroes, ones_tail);
53 | check = bfcat(ones_head, ones_tail, zeroes);
54 | bfdel(zeroes);
55 | bfdel(ones_head);
56 | bfdel(ones_tail);
57 | output = bfnormalize(input);
58 | cmp = bfcmp(output, check, NULL);
59 | bfdel(input);
60 | bfdel(check);
61 | bfdel(output);
62 | if (cmp) {
63 | printf("%s\n", failed);
64 | return 1;
65 | }
66 | }
67 | printf("%s\n", passed);
68 | return 0;
69 | }
70 |
--------------------------------------------------------------------------------
/tests/test22.c:
--------------------------------------------------------------------------------
1 | /**
2 | * File name: tests/test22.c
3 | * Project name: bitfield, a bit array manipulation library written in C
4 | * URL: https://github.com/ciubotaru/bitfield
5 | * Author: Vitalie Ciubotaru
6 | * License: General Public License, version 3 or later
7 | * Date: April 1, 2016
8 | **/
9 |
10 | #include
11 | #include
12 | #include
13 | #include
14 | #include "bitfield.h"
15 | #include "bitfield-internals.h"
16 |
17 | /* Testing bf2long_ip() and long2bf_ip() */
18 |
19 | int main()
20 | {
21 | srand((unsigned)time(NULL));
22 | int i, cmp; //counter
23 | int len = 80;
24 | char *msg = "Testing bf2long_ip() and long2bf_ip()";
25 | char *failed = "[FAIL]";
26 | char *passed = "[PASS]";
27 | int dots = len - strlen(msg) - 6; /* 6 is the length of pass/fail string */
28 | printf("%s", msg);
29 | for (i = 0; i < dots; i++)
30 | printf(".");
31 | struct bitfield *input = bfnew(len);
32 | for (i = 0; i < len; i++)
33 | if (rand() % 2)
34 | BITSET(input, i);
35 | int bitnslots = BITNSLOTS(len);
36 | unsigned long *input_long = calloc(bitnslots, sizeof(unsigned long));
37 | bf2long_ip(input, input_long);
38 | /* check first function */
39 | for (i = 0; i < bitnslots; i++) {
40 | if (input_long[i] != input->field[i]) {
41 | printf("%s\n", failed);
42 | return 1;
43 | }
44 | }
45 | struct bitfield *output = bfnew(len);
46 | long2bf_ip(input_long, output);
47 | free(input_long);
48 | /* check second function */
49 | cmp = bfcmp(input, output, NULL);
50 | bfdel(input);
51 | bfdel(output);
52 | if (cmp != 0) {
53 | printf("%s\n", failed);
54 | return 1;
55 | }
56 | printf("%s\n", passed);
57 | return 0;
58 | }
59 |
--------------------------------------------------------------------------------
/tests/test23.c:
--------------------------------------------------------------------------------
1 | /**
2 | * File name: tests/test23.c
3 | * Project name: bitfield, a bit array manipulation library written in C
4 | * URL: https://github.com/ciubotaru/bitfield
5 | * Author: Vitalie Ciubotaru
6 | * License: General Public License, version 3 or later
7 | * Date: April 1, 2016
8 | **/
9 |
10 | #include
11 | #include
12 | #include
13 | #include
14 | #include "bitfield.h"
15 | #include "bitfield-internals.h"
16 |
17 | /* Testing bf2int_ip() and int2bf_ip() */
18 |
19 | int main()
20 | {
21 | srand((unsigned)time(NULL));
22 | int i, cmp; //counter
23 | int len = 80;
24 | char *msg = "Testing bf2int_ip() and int2bf_ip()";
25 | char *failed = "[FAIL]";
26 | char *passed = "[PASS]";
27 | int dots = len - strlen(msg) - 6; /* 6 is the length of pass/fail string */
28 | printf("%s", msg);
29 | for (i = 0; i < dots; i++)
30 | printf(".");
31 | struct bitfield *input = bfnew(len);
32 | for (i = 0; i < len; i++)
33 | if (rand() % 2)
34 | BITSET(input, i);
35 | int bitnslots = (len - 1) / INT_BIT + 1;
36 | unsigned int *input_int = calloc(bitnslots, sizeof(unsigned int));
37 | bf2int_ip(input, input_int);
38 | /* check first function */
39 | int min_memory_length =
40 | (bitnslots * sizeof(unsigned int) <
41 | BITNSLOTS(len) * sizeof(unsigned long)) ? (bitnslots *
42 | sizeof(unsigned int)) :
43 | BITNSLOTS(len) * sizeof(unsigned long);
44 | if (memcmp(input_int, input->field, min_memory_length) != 0) {
45 | printf("%s\n", failed);
46 | return 1;
47 | }
48 | struct bitfield *output = bfnew(len);
49 | int2bf_ip(input_int, output);
50 | free(input_int);
51 | /* check second function */
52 | cmp = bfcmp(input, output, NULL);
53 | bfdel(input);
54 | bfdel(output);
55 | if (cmp != 0) {
56 | printf("%s\n", failed);
57 | return 1;
58 | }
59 | printf("%s\n", passed);
60 | return 0;
61 | }
62 |
--------------------------------------------------------------------------------
/tests/test24.c:
--------------------------------------------------------------------------------
1 | /**
2 | * File name: tests/test24.c
3 | * Project name: bitfield, a bit array manipulation library written in C
4 | * URL: https://github.com/ciubotaru/bitfield
5 | * Author: Vitalie Ciubotaru
6 | * License: General Public License, version 3 or later
7 | * Date: July 10, 2016
8 | **/
9 |
10 | #include
11 | #include
12 | #include
13 | #include
14 | #include "bitfield.h"
15 | #include "bitfield-internals.h"
16 | #include
17 |
18 | /* Testing char2bf() */
19 |
20 | int main()
21 | {
22 | srand((unsigned)time(NULL));
23 | unsigned int i, j, cmp; //counters
24 | unsigned int len = 80;
25 | char *msg = "Testing char2bf()";
26 | char *failed = "[FAIL]";
27 | char *passed = "[PASS]";
28 | unsigned int dots = len - strlen(msg) - 6; /* 6 is the length of pass/fail string */
29 | printf("%s", msg);
30 | for (i = 0; i < dots; i++)
31 | printf(".");
32 | unsigned int chars = (len - 1) / CHAR_BIT + 1;
33 | unsigned char *input = calloc(1, chars);
34 | for (i = 0; i < chars - 1; i++) {
35 | for (j = 0; j < CHAR_BIT; j++) {
36 | if (rand() % 2)
37 | input[i] |= (1U << j);
38 | }
39 | }
40 | for (i = 0; i < (len - 1) % CHAR_BIT + 1; i++)
41 | if (rand() % 2)
42 | input[chars - 1] |= (1U << i);
43 | struct bitfield *output = char2bf(input, len);
44 | struct bitfield *output2 = bfnew(len);
45 | memcpy(output2->field, input, chars);
46 | for (i = 0; i < BITNSLOTS(len); i++) {
47 | switch (sizeof(unsigned long)) {
48 | case 4:
49 | output2->field[i] =
50 | le32toh((uint32_t) output2->field[i]);
51 | break;
52 | case 8:
53 | output2->field[i] =
54 | le64toh((uint64_t) output2->field[i]);
55 | break;
56 | }
57 | }
58 | cmp =
59 | memcmp(output->field, output2->field,
60 | BITNSLOTS(len) * sizeof(unsigned long));
61 | free(input);
62 | bfdel(output);
63 | bfdel(output2);
64 | if (cmp != 0) {
65 | printf("%s\n", failed);
66 | return 1;
67 | }
68 | printf("%s\n", passed);
69 | return 0;
70 | }
71 |
--------------------------------------------------------------------------------
/tests/test25.c:
--------------------------------------------------------------------------------
1 | /**
2 | * File name: tests/test25.c
3 | * Project name: bitfield, a bit array manipulation library written in C
4 | * URL: https://github.com/ciubotaru/bitfield
5 | * Author: Vitalie Ciubotaru
6 | * License: General Public License, version 3 or later
7 | * Date: April 1, 2016
8 | **/
9 |
10 | #include
11 | #include
12 | #include
13 | #include
14 | #include "bitfield.h"
15 | #include "bitfield-internals.h"
16 | #include
17 |
18 | /* Testing bf2char() */
19 |
20 | int main()
21 | {
22 | srand((unsigned)time(NULL));
23 | unsigned int i, cmp; //counter
24 | unsigned int len = 80;
25 | char *msg = "Testing bf2char()";
26 | char *failed = "[FAIL]";
27 | char *passed = "[PASS]";
28 | unsigned int dots = len - strlen(msg) - 6; /* 6 is the length of pass/fail string */
29 | printf("%s", msg);
30 | for (i = 0; i < dots; i++)
31 | printf(".");
32 | struct bitfield *input = bfnew(len);
33 | for (i = 0; i < len; i++)
34 | if (rand() % 2)
35 | BITSET(input, i);
36 | unsigned int bitnslots = (len - 1) / CHAR_BIT + 1;
37 | unsigned char *input_char = bf2char(input);
38 | unsigned int min_memory_length =
39 | (bitnslots * sizeof(unsigned char) <
40 | BITNSLOTS(len) * sizeof(unsigned long)) ? (bitnslots *
41 | sizeof(unsigned char)) :
42 | BITNSLOTS(len) * sizeof(unsigned long);
43 | for (i = 0; i < BITNSLOTS(len); i++) {
44 | switch (sizeof(unsigned long)) {
45 | case 4:
46 | input->field[i] =
47 | (unsigned long)htole32((uint32_t) input->field[i]);
48 | break;
49 | case 8:
50 | input->field[i] =
51 | (unsigned long)htole64((uint64_t) input->field[i]);
52 | break;
53 | }
54 | }
55 | cmp = memcmp(input_char, input->field, min_memory_length);
56 | bfdel(input);
57 | free(input_char);
58 | if (cmp != 0) {
59 | printf("%s\n", failed);
60 | return 1;
61 | }
62 | printf("%s\n", passed);
63 | return 0;
64 | }
65 |
--------------------------------------------------------------------------------
/tests/test26.c:
--------------------------------------------------------------------------------
1 | /**
2 | * File name: tests/test26.c
3 | * Project name: bitfield, a bit array manipulation library written in C
4 | * URL: https://github.com/ciubotaru/bitfield
5 | * Author: Vitalie Ciubotaru
6 | * License: General Public License, version 3 or later
7 | * Date: July 10, 2016
8 | **/
9 |
10 | #include
11 | #include
12 | #include
13 | #include
14 | #include "bitfield.h"
15 | #include "bitfield-internals.h"
16 | #include
17 |
18 | /* Testing bf2char_ip() and char2bf_ip() */
19 |
20 | int main()
21 | {
22 | srand((unsigned)time(NULL));
23 | unsigned int i, cmp; //counter
24 | unsigned int len = 80;
25 | char *msg = "Testing bf2char_ip() and char2bf_ip()";
26 | char *failed = "[FAIL]";
27 | char *passed = "[PASS]";
28 | unsigned int dots = len - strlen(msg) - 6; /* 6 is the length of pass/fail string */
29 | printf("%s", msg);
30 | for (i = 0; i < dots; i++)
31 | printf(".");
32 | struct bitfield *input = bfnew(len);
33 | for (i = 0; i < len; i++)
34 | if (rand() % 2)
35 | BITSET(input, i);
36 | unsigned int chars = (len - 1) / CHAR_BIT + 1;
37 | unsigned char *input_char = malloc(chars * sizeof(unsigned char));
38 | bf2char_ip(input, input_char);
39 | /* check first function */
40 | struct bitfield *check = bfclone(input);
41 | for (i = 0; i < BITNSLOTS(len); i++) {
42 | switch (sizeof(unsigned long)) {
43 | case 4:
44 | check->field[i] =
45 | (unsigned long)htole32((uint32_t) check->field[i]);
46 | break;
47 | case 8:
48 | check->field[i] =
49 | (unsigned long)htole64((uint64_t) check->field[i]);
50 | break;
51 | }
52 | }
53 | unsigned char *check_char = malloc(chars * sizeof(unsigned char));
54 | memcpy(check_char, check->field, chars);
55 | bfdel(check);
56 | cmp = memcmp(input_char, check_char, chars);
57 | free(check_char);
58 | if (cmp != 0) {
59 | printf("%s\n", failed);
60 | return 1;
61 | }
62 | struct bitfield *output = bfnew(len);
63 | char2bf_ip(input_char, output);
64 | free(input_char);
65 | /* check second function */
66 | cmp = bfcmp(input, output, NULL);
67 | bfdel(input);
68 | bfdel(output);
69 | if (cmp != 0) {
70 | printf("%s\n", failed);
71 | return 1;
72 | }
73 | printf("%s\n", passed);
74 | return 0;
75 | }
76 |
--------------------------------------------------------------------------------
/tests/test27.c:
--------------------------------------------------------------------------------
1 | /**
2 | * File name: tests/test27.c
3 | * Project name: bitfield, a bit array manipulation library written in C
4 | * URL: https://github.com/ciubotaru/bitfield
5 | * Author: Vitalie Ciubotaru
6 | * License: General Public License, version 3 or later
7 | * Date: September 1, 2016
8 | **/
9 |
10 | #include
11 | #include
12 | #include
13 | #include
14 | #include "bitfield.h"
15 | #include "bitfield-internals.h"
16 | #include
17 |
18 | /* Testing short2bf() */
19 |
20 | int main()
21 | {
22 | srand((unsigned)time(NULL));
23 | unsigned int i, j, cmp; //counters
24 | unsigned int len = 80;
25 | char *msg = "Testing short2bf()";
26 | char *failed = "[FAIL]";
27 | char *passed = "[PASS]";
28 | unsigned int dots = len - strlen(msg) - 6; /* 6 is the length of pass/fail string */
29 | printf("%s", msg);
30 | for (i = 0; i < dots; i++)
31 | printf(".");
32 | unsigned int shorts = (len - 1) / SHORT_BIT + 1;
33 | unsigned short *input = calloc(1, shorts * sizeof(unsigned short));
34 | for (i = 0; i < shorts - 1; i++) {
35 | for (j = 0; j < SHORT_BIT; j++) {
36 | if (rand() % 2)
37 | input[i] |= (1U << j);
38 | }
39 | }
40 | for (i = 0; i < (len - 1) % SHORT_BIT + 1; i++)
41 | if (rand() % 2)
42 | input[shorts - 1] |= (1U << i);
43 | struct bitfield *output = short2bf(input, len);
44 | unsigned short *input2 = calloc(1, shorts * sizeof(unsigned short));
45 | for (i = 0; i < shorts; i++) {
46 | switch (sizeof(unsigned short)) {
47 | case 2:
48 | input2[i] = htole16((uint16_t) input[i]);
49 | break;
50 | case 4:
51 | input2[i] = htole32((uint32_t) input[i]);
52 | break;
53 | }
54 | }
55 | struct bitfield *output2 = bfnew(len);
56 | memcpy(output2->field, input2, shorts * sizeof(unsigned short));
57 | for (i = 0; i < BITNSLOTS(len); i++) {
58 | switch (sizeof(unsigned long)) {
59 | case 4:
60 | output2->field[i] =
61 | le32toh((uint32_t) output2->field[i]);
62 | break;
63 | case 8:
64 | output2->field[i] =
65 | le64toh((uint64_t) output2->field[i]);
66 | break;
67 | }
68 | }
69 | cmp =
70 | memcmp(output->field, output2->field,
71 | BITNSLOTS(len) * sizeof(unsigned long));
72 | free(input);
73 | bfdel(output);
74 | free(input2);
75 | bfdel(output2);
76 | if (cmp != 0) {
77 | printf("%s\n", failed);
78 | return 1;
79 | }
80 | printf("%s\n", passed);
81 | return 0;
82 | }
83 |
--------------------------------------------------------------------------------
/tests/test28.c:
--------------------------------------------------------------------------------
1 | /**
2 | * File name: tests/test28.c
3 | * Project name: bitfield, a bit array manipulation library written in C
4 | * URL: https://github.com/ciubotaru/bitfield
5 | * Author: Vitalie Ciubotaru
6 | * License: General Public License, version 3 or later
7 | * Date: September 1, 2016
8 | **/
9 |
10 | #include
11 | #include
12 | #include
13 | #include
14 | #include "bitfield.h"
15 | #include "bitfield-internals.h"
16 | #include
17 |
18 | /* Testing bf2short() */
19 |
20 | int main()
21 | {
22 | srand((unsigned)time(NULL));
23 | unsigned int i, cmp; //counter
24 | unsigned int len = 80;
25 | char *msg = "Testing bf2short()";
26 | char *failed = "[FAIL]";
27 | char *passed = "[PASS]";
28 | unsigned int dots = len - strlen(msg) - 6; /* 6 is the length of pass/fail string */
29 | printf("%s", msg);
30 | for (i = 0; i < dots; i++)
31 | printf(".");
32 | unsigned int shorts = (len - 1) / SHORT_BIT + 1;
33 | struct bitfield *input = bfnew(len);
34 | for (i = 0; i < len; i++)
35 | if (rand() % 2)
36 | BITSET(input, i);
37 | unsigned short *input_short = bf2short(input);
38 | for (i = 0; i < BITNSLOTS(len); i++) {
39 | switch (sizeof(unsigned long)) {
40 | case 4:
41 | input->field[i] =
42 | (unsigned long)htole32((uint32_t) input->field[i]);
43 | break;
44 | case 8:
45 | input->field[i] =
46 | (unsigned long)htole64((uint64_t) input->field[i]);
47 | break;
48 | }
49 | }
50 | // long_htole_ip(input, BITNSLOTS(len));
51 | unsigned short *check = malloc(shorts * sizeof(unsigned short));
52 | memcpy(check, input->field, shorts * sizeof(unsigned short));
53 | bfdel(input);
54 | for (i = 0; i < shorts; i++) {
55 | switch (sizeof(unsigned short)) {
56 | case 2:
57 | check[i] = (unsigned short)le16toh((uint16_t) check[i]);
58 | break;
59 | case 4:
60 | check[i] = (unsigned short)le32toh((uint32_t) check[i]);
61 | break;
62 | }
63 | }
64 | cmp = memcmp(input_short, check, shorts * sizeof(unsigned short));
65 | free(input_short);
66 | free(check);
67 | if (cmp != 0) {
68 | printf("%s\n", failed);
69 | return 1;
70 | }
71 | printf("%s\n", passed);
72 | return 0;
73 | }
74 |
--------------------------------------------------------------------------------
/tests/test29.c:
--------------------------------------------------------------------------------
1 | /**
2 | * File name: tests/test29.c
3 | * Project name: bitfield, a bit array manipulation library written in C
4 | * URL: https://github.com/ciubotaru/bitfield
5 | * Author: Vitalie Ciubotaru
6 | * License: General Public License, version 3 or later
7 | * Date: September 1, 2016
8 | **/
9 |
10 | #include
11 | #include
12 | #include
13 | #include
14 | #include "bitfield.h"
15 | #include "bitfield-internals.h"
16 | #include
17 |
18 | /* Testing bf2short_ip() and short2bf_ip() */
19 |
20 | int main()
21 | {
22 | srand((unsigned)time(NULL));
23 | unsigned int i, cmp; //counter
24 | unsigned int len = 80;
25 | char *msg = "Testing bf2short_ip() and short2bf_ip()";
26 | char *failed = "[FAIL]";
27 | char *passed = "[PASS]";
28 | unsigned int dots = len - strlen(msg) - 6; /* 6 is the length of pass/fail string */
29 | printf("%s", msg);
30 | for (i = 0; i < dots; i++)
31 | printf(".");
32 | struct bitfield *input = bfnew(len);
33 | for (i = 0; i < len; i++)
34 | if (rand() % 2)
35 | BITSET(input, i);
36 | unsigned int shorts = (len - 1) / SHORT_BIT + 1;
37 | unsigned short *input_short = malloc(shorts * sizeof(unsigned short));
38 | bf2short_ip(input, input_short);
39 | /* check first function */
40 | struct bitfield *check = bfclone(input);
41 | for (i = 0; i < BITNSLOTS(len); i++) {
42 | switch (sizeof(unsigned long)) {
43 | case 4:
44 | check->field[i] =
45 | (unsigned long)htole32((uint32_t) check->field[i]);
46 | break;
47 | case 8:
48 | check->field[i] =
49 | (unsigned long)htole64((uint64_t) check->field[i]);
50 | break;
51 | }
52 | }
53 | unsigned short *check_short =
54 | calloc(1, shorts * sizeof(unsigned short));
55 | memcpy(check_short, check->field, shorts * sizeof(unsigned short));
56 | bfdel(check);
57 | for (i = 0; i < shorts; i++) {
58 | switch (sizeof(unsigned short)) {
59 | case 2:
60 | check_short[i] =
61 | (unsigned short)le16toh((uint16_t) check_short[i]);
62 | break;
63 | case 4:
64 | check_short[i] =
65 | (unsigned short)le32toh((uint32_t) check_short[i]);
66 | break;
67 | }
68 | }
69 | cmp = memcmp(input_short, check_short, shorts * sizeof(unsigned short));
70 | free(check_short);
71 | if (cmp != 0) {
72 | printf("%s\n", failed);
73 | free(input_short);
74 | bfdel(input);
75 | return 1;
76 | }
77 | struct bitfield *output = bfnew(len);
78 | short2bf_ip(input_short, output);
79 | free(input_short);
80 | /* check second function */
81 | cmp = bfcmp(input, output, NULL);
82 | bfdel(input);
83 | bfdel(output);
84 | if (cmp != 0) {
85 | printf("%s\n", failed);
86 | return 1;
87 | }
88 | printf("%s\n", passed);
89 | return 0;
90 | }
91 |
--------------------------------------------------------------------------------
/tests/test3.c:
--------------------------------------------------------------------------------
1 | /**
2 | * File name: tests/test3.c
3 | * Project name: bitfield, a bit array manipulation library written in C
4 | * URL: https://github.com/ciubotaru/bitfield
5 | * Author: Vitalie Ciubotaru
6 | * License: General Public License, version 3 or later
7 | * Date: September 1, 2015
8 | **/
9 |
10 | #include
11 | #include
12 | #include
13 | #include
14 | #include "bitfield.h"
15 | #include "bitfield-internals.h"
16 |
17 | /* Testing bfand(), bfnot(), bfor() and bfxor() */
18 |
19 | int main()
20 | {
21 | srand((unsigned)time(NULL));
22 | int i, cmp; //counter
23 | int len = 80;
24 | char *msg = "Testing bfand(), bfnot(), bfor() and bfxor()";
25 | char *failed = "[FAIL]";
26 | char *passed = "[PASS]";
27 | int dots = len - strlen(msg) - 6; /* 6 is the length of pass/fail string */
28 | printf("%s", msg);
29 | for (i = 0; i < dots; i++)
30 | printf(".");
31 | struct bitfield *input1 = bfnew(len);
32 | struct bitfield *input2 = bfnew(len);
33 | for (i = 0; i < len; i++) {
34 | if (rand() % 2)
35 | BITSET(input1, i);
36 | if (rand() % 2)
37 | BITSET(input2, i);
38 | }
39 |
40 | struct bitfield *output1 = bfxor(input1, input2);
41 | struct bitfield *and = bfand(input1, input2);
42 | struct bitfield *or = bfor(input1, input2);
43 | bfdel(input1);
44 | bfdel(input2);
45 | struct bitfield *not = bfnot(and);
46 | bfdel(and);
47 | struct bitfield *output2 = bfand(or, not);
48 | bfdel(or);
49 | bfdel(not);
50 | cmp = bfcmp(output1, output2, NULL);
51 | bfdel(output1);
52 | bfdel(output2);
53 | if (cmp != 0) {
54 | printf("%s\n", failed);
55 | return 1;
56 | }
57 | printf("%s\n", passed);
58 | return 0;
59 | }
60 |
--------------------------------------------------------------------------------
/tests/test30.c:
--------------------------------------------------------------------------------
1 | /**
2 | * File name: tests/test30.c
3 | * Project name: bitfield, a bit array manipulation library written in C
4 | * URL: https://github.com/ciubotaru/bitfield
5 | * Author: Vitalie Ciubotaru
6 | * License: General Public License, version 3 or later
7 | * Date: September 10, 2016
8 | **/
9 |
10 | #include
11 | #include
12 | #include
13 | #include
14 | #include "bitfield.h"
15 | #include "bitfield-internals.h"
16 | #include
17 |
18 | /* Testing uint8tobf() */
19 |
20 | int main()
21 | {
22 | srand((unsigned)time(NULL));
23 | unsigned int i, j, cmp; //counters
24 | unsigned int len = 80;
25 | char *msg = "Testing uint8tobf()";
26 | char *failed = "[FAIL]";
27 | char *passed = "[PASS]";
28 | unsigned int dots = len - strlen(msg) - 6; /* 6 is the length of pass/fail string */
29 | printf("%s", msg);
30 | for (i = 0; i < dots; i++)
31 | printf(".");
32 | unsigned int chars = (len - 1) / 8 + 1;
33 | uint8_t *input = calloc(1, chars);
34 | for (i = 0; i < chars - 1; i++) {
35 | for (j = 0; j < 8; j++) {
36 | if (rand() % 2)
37 | input[i] |= (1U << j);
38 | }
39 | }
40 | for (i = 0; i < len % 8; i++)
41 | if (rand() % 2)
42 | input[chars - 1] |= (1U << i);
43 | struct bitfield *output = uint8tobf(input, len);
44 | for (i = 0; i < BITNSLOTS(len); i++) {
45 | switch (sizeof(unsigned long)) {
46 | case 4:
47 | output->field[i] =
48 | (unsigned long)htole32((uint32_t) output->field[i]);
49 | break;
50 | case 8:
51 | output->field[i] =
52 | (unsigned long)htole64((uint64_t) output->field[i]);
53 | break;
54 | }
55 | }
56 | cmp = memcmp(input, output->field, chars);
57 | free(input);
58 | bfdel(output);
59 | if (cmp != 0) {
60 | printf("%s\n", failed);
61 | return 1;
62 | }
63 | printf("%s\n", passed);
64 | return 0;
65 | }
66 |
--------------------------------------------------------------------------------
/tests/test31.c:
--------------------------------------------------------------------------------
1 | /**
2 | * File name: tests/test31.c
3 | * Project name: bitfield, a bit array manipulation library written in C
4 | * URL: https://github.com/ciubotaru/bitfield
5 | * Author: Vitalie Ciubotaru
6 | * License: General Public License, version 3 or later
7 | * Date: September 10, 2016
8 | **/
9 |
10 | #include
11 | #include
12 | #include
13 | #include
14 | #include "bitfield.h"
15 | #include "bitfield-internals.h"
16 | #include
17 |
18 | /* Testing bftouint8() */
19 |
20 | int main()
21 | {
22 | srand((unsigned)time(NULL));
23 | unsigned int i, cmp; //counter
24 | unsigned int len = 80;
25 | char *msg = "Testing bftouint8()";
26 | char *failed = "[FAIL]";
27 | char *passed = "[PASS]";
28 | unsigned int dots = len - strlen(msg) - 6; /* 6 is the length of pass/fail string */
29 | printf("%s", msg);
30 | for (i = 0; i < dots; i++)
31 | printf(".");
32 | struct bitfield *input = bfnew(len);
33 | for (i = 0; i < len; i++)
34 | if (rand() % 2)
35 | BITSET(input, i);
36 | unsigned int chars = (len - 1) / 8 + 1;
37 | uint8_t *input_int = bftouint8(input);
38 | for (i = 0; i < BITNSLOTS(len); i++) {
39 | switch (sizeof(unsigned long)) {
40 | case 4:
41 | input->field[i] =
42 | (unsigned long)htole32((uint32_t) input->field[i]);
43 | break;
44 | case 8:
45 | input->field[i] =
46 | (unsigned long)htole64((uint64_t) input->field[i]);
47 | break;
48 | }
49 | }
50 | cmp = memcmp(input_int, input->field, chars);
51 | free(input_int);
52 | bfdel(input);
53 | if (cmp != 0) {
54 | printf("%s\n", failed);
55 | return 1;
56 | }
57 | printf("%s\n", passed);
58 | return 0;
59 | }
60 |
--------------------------------------------------------------------------------
/tests/test32.c:
--------------------------------------------------------------------------------
1 | /**
2 | * File name: tests/test32.c
3 | * Project name: bitfield, a bit array manipulation library written in C
4 | * URL: https://github.com/ciubotaru/bitfield
5 | * Author: Vitalie Ciubotaru
6 | * License: General Public License, version 3 or later
7 | * Date: September 10, 2016
8 | **/
9 |
10 | #include
11 | #include
12 | #include
13 | #include
14 | #include "bitfield.h"
15 | #include "bitfield-internals.h"
16 | #include
17 |
18 | /* Testing uint16tobf() */
19 |
20 | int main()
21 | {
22 | srand((unsigned)time(NULL));
23 | unsigned int i, j, cmp; //counters
24 | unsigned int len = 80;
25 | char *msg = "Testing uint16tobf()";
26 | char *failed = "[FAIL]";
27 | char *passed = "[PASS]";
28 | unsigned int dots = len - strlen(msg) - 6; /* 6 is the length of pass/fail string */
29 | printf("%s", msg);
30 | for (i = 0; i < dots; i++)
31 | printf(".");
32 | unsigned int shorts = (len - 1) / 16 + 1;
33 | uint16_t *input = calloc(1, shorts * sizeof(uint16_t));
34 | for (i = 0; i < shorts - 1; i++) {
35 | for (j = 0; j < 16; j++) {
36 | if (rand() % 2)
37 | input[i] |= (1U << j);
38 | }
39 | }
40 | for (i = 0; i < len % 16; i++)
41 | if (rand() % 2)
42 | input[shorts - 1] |= (1U << i);
43 | struct bitfield *output = uint16tobf(input, len);
44 | for (i = 0; i < shorts; i++) {
45 | switch (sizeof(unsigned short)) {
46 | case 2:
47 | input[i] = (unsigned short)htole16((uint16_t) input[i]);
48 | break;
49 | case 4:
50 | input[i] = (unsigned short)htole32((uint32_t) input[i]);
51 | break;
52 | }
53 | }
54 | for (i = 0; i < BITNSLOTS(len); i++) {
55 | switch (sizeof(unsigned long)) {
56 | case 4:
57 | output->field[i] =
58 | (unsigned long)htole32((uint32_t) output->field[i]);
59 | break;
60 | case 8:
61 | output->field[i] =
62 | (unsigned long)htole64((uint64_t) output->field[i]);
63 | break;
64 | }
65 | }
66 | cmp = memcmp(input, output->field, shorts * sizeof(unsigned short));
67 | free(input);
68 | bfdel(output);
69 | if (cmp != 0) {
70 | printf("%s\n", failed);
71 | return 1;
72 | }
73 | printf("%s\n", passed);
74 | return 0;
75 | }
76 |
--------------------------------------------------------------------------------
/tests/test33.c:
--------------------------------------------------------------------------------
1 | /**
2 | * File name: tests/test33.c
3 | * Project name: bitfield, a bit array manipulation library written in C
4 | * URL: https://github.com/ciubotaru/bitfield
5 | * Author: Vitalie Ciubotaru
6 | * License: General Public License, version 3 or later
7 | * Date: September 10, 2016
8 | **/
9 |
10 | #include
11 | #include
12 | #include
13 | #include
14 | #include "bitfield.h"
15 | #include "bitfield-internals.h"
16 | #include
17 |
18 | /* Testing bftouint16() */
19 |
20 | int main()
21 | {
22 | srand((unsigned)time(NULL));
23 | unsigned int i, cmp; //counter
24 | unsigned int len = 80;
25 | char *msg = "Testing bftouint16()";
26 | char *failed = "[FAIL]";
27 | char *passed = "[PASS]";
28 | unsigned int dots = len - strlen(msg) - 6; /* 6 is the length of pass/fail string */
29 | printf("%s", msg);
30 | for (i = 0; i < dots; i++)
31 | printf(".");
32 | struct bitfield *input = bfnew(len);
33 | for (i = 0; i < len; i++)
34 | if (rand() % 2)
35 | BITSET(input, i);
36 | unsigned int uint16s = (len - 1) / 16 + 1;
37 | uint16_t *output = bftouint16(input);
38 | for (i = 0; i < BITNSLOTS(len); i++) {
39 | switch (sizeof(unsigned long)) {
40 | case 4:
41 | input->field[i] =
42 | (unsigned long)htole32((uint32_t) input->field[i]);
43 | break;
44 | case 8:
45 | input->field[i] =
46 | (unsigned long)htole64((uint64_t) input->field[i]);
47 | break;
48 | }
49 | }
50 | for (i = 0; i < uint16s; i++)
51 | output[i] = htole16(output[i]);
52 | cmp = memcmp(output, input->field, uint16s * sizeof(uint16_t));
53 | bfdel(input);
54 | free(output);
55 | if (cmp != 0) {
56 | printf("%s\n", failed);
57 | return 1;
58 | }
59 | printf("%s\n", passed);
60 | return 0;
61 | }
62 |
--------------------------------------------------------------------------------
/tests/test34.c:
--------------------------------------------------------------------------------
1 | /**
2 | * File name: tests/test34.c
3 | * Project name: bitfield, a bit array manipulation library written in C
4 | * URL: https://github.com/ciubotaru/bitfield
5 | * Author: Vitalie Ciubotaru
6 | * License: General Public License, version 3 or later
7 | * Date: September 10, 2016
8 | **/
9 |
10 | #include
11 | #include
12 | #include
13 | #include
14 | #include "bitfield.h"
15 | #include "bitfield-internals.h"
16 | #include
17 |
18 | /* Testing uint32tobf() */
19 |
20 | int main()
21 | {
22 | uint32_t unit = 1;
23 | srand((unsigned)time(NULL));
24 | unsigned int i, j, cmp; //counters
25 | unsigned int len = 80;
26 | char *msg = "Testing uint32tobf()";
27 | char *failed = "[FAIL]";
28 | char *passed = "[PASS]";
29 | unsigned int dots = len - strlen(msg) - 6; /* 6 is the length of pass/fail string */
30 | printf("%s", msg);
31 | for (i = 0; i < dots; i++)
32 | printf(".");
33 | unsigned int int32s = (len - 1) / 32 + 1;
34 | uint32_t *input = calloc(1, int32s * sizeof(uint32_t));
35 | for (i = 0; i < int32s - 1; i++) {
36 | for (j = 0; j < 32; j++) {
37 | if (rand() % 2)
38 | input[i] |= (unit << j);
39 | }
40 | }
41 | for (i = 0; i < len % 32; i++)
42 | if (rand() % 2)
43 | input[int32s - 1] |= (unit << i);
44 | struct bitfield *output = uint32tobf(input, len);
45 | /*
46 | int min_memory_length =
47 | (bitnslots * sizeof(uint32_t) <
48 | BITNSLOTS(len) * sizeof(unsigned long)) ? (bitnslots *
49 | sizeof(uint32_t)) :
50 | BITNSLOTS(len) * sizeof(unsigned long);
51 | */
52 | // uint32_t *input2 = uint32_htole(input, bitnslots);
53 | for (i = 0; i < int32s; i++)
54 | input[i] = htole32(input[i]);
55 | // free(input);
56 | for (i = 0; i < BITNSLOTS(len); i++) {
57 | switch (sizeof(unsigned long)) {
58 | case 4:
59 | output->field[i] =
60 | (unsigned long)htole32((uint32_t) output->field[i]);
61 | break;
62 | case 8:
63 | output->field[i] =
64 | (unsigned long)htole64((uint64_t) output->field[i]);
65 | break;
66 | }
67 | }
68 | cmp = memcmp(input, output->field, int32s * sizeof(uint32_t));
69 | free(input);
70 | bfdel(output);
71 | if (cmp != 0) {
72 | printf("%s\n", failed);
73 | return 1;
74 | }
75 | printf("%s\n", passed);
76 | return 0;
77 | }
78 |
--------------------------------------------------------------------------------
/tests/test35.c:
--------------------------------------------------------------------------------
1 | /**
2 | * File name: tests/test35.c
3 | * Project name: bitfield, a bit array manipulation library written in C
4 | * URL: https://github.com/ciubotaru/bitfield
5 | * Author: Vitalie Ciubotaru
6 | * License: General Public License, version 3 or later
7 | * Date: September 10, 2016
8 | **/
9 |
10 | #include
11 | #include
12 | #include
13 | #include
14 | #include "bitfield.h"
15 | #include "bitfield-internals.h"
16 | #include
17 |
18 | /* Testing bftouint32() */
19 |
20 | int main()
21 | {
22 | srand((unsigned)time(NULL));
23 | unsigned int i, cmp; //counter
24 | unsigned int len = 80;
25 | char *msg = "Testing bftouint32()";
26 | char *failed = "[FAIL]";
27 | char *passed = "[PASS]";
28 | unsigned int dots = len - strlen(msg) - 6; /* 6 is the length of pass/fail string */
29 | printf("%s", msg);
30 | for (i = 0; i < dots; i++)
31 | printf(".");
32 | struct bitfield *input = bfnew(len);
33 | for (i = 0; i < len; i++)
34 | if (rand() % 2)
35 | BITSET(input, i);
36 | unsigned int int32s = (len - 1) / 32 + 1;
37 | uint32_t *input_int = bftouint32(input);
38 | /*
39 | int min_memory_length =
40 | (bitnslots * sizeof(uint32_t) <
41 | BITNSLOTS(len) * sizeof(unsigned long)) ? (bitnslots *
42 | sizeof(uint32_t)) :
43 | BITNSLOTS(len) * sizeof(unsigned long);
44 | */
45 | for (i = 0; i < BITNSLOTS(len); i++) {
46 | switch (sizeof(unsigned long)) {
47 | case 4:
48 | input->field[i] =
49 | (unsigned long)htole32((uint32_t) input->field[i]);
50 | break;
51 | case 8:
52 | input->field[i] =
53 | (unsigned long)htole64((uint64_t) input->field[i]);
54 | break;
55 | }
56 | }
57 | for (i = 0; i < int32s; i++)
58 | input_int[i] = htole32(input_int[i]);
59 | cmp = memcmp(input_int, input->field, (len - 1) / CHAR_BIT + 1);
60 | bfdel(input);
61 | free(input_int);
62 | if (cmp != 0) {
63 | printf("%s\n", failed);
64 | return 1;
65 | }
66 | printf("%s\n", passed);
67 | return 0;
68 | }
69 |
--------------------------------------------------------------------------------
/tests/test36.c:
--------------------------------------------------------------------------------
1 | /**
2 | * File name: tests/test36.c
3 | * Project name: bitfield, a bit array manipulation library written in C
4 | * URL: https://github.com/ciubotaru/bitfield
5 | * Author: Vitalie Ciubotaru
6 | * License: General Public License, version 3 or later
7 | * Date: September 10, 2016
8 | **/
9 |
10 | #include
11 | #include
12 | #include
13 | #include
14 | #include "bitfield.h"
15 | #include "bitfield-internals.h"
16 | #include
17 |
18 | /* Testing uint64tobf() */
19 |
20 | int main()
21 | {
22 | uint64_t unit = 1;
23 | srand((unsigned)time(NULL));
24 | unsigned int i, j, cmp; //counters
25 | unsigned int len = 80;
26 | char *msg = "Testing uint64tobf()";
27 | char *failed = "[FAIL]";
28 | char *passed = "[PASS]";
29 | unsigned int dots = len - strlen(msg) - 6; /* 6 is the length of pass/fail string */
30 | printf("%s", msg);
31 | for (i = 0; i < dots; i++)
32 | printf(".");
33 | unsigned int int64s = (len - 1) / 64 + 1;
34 | uint64_t *input = calloc(1, int64s * sizeof(uint64_t));
35 | for (i = 0; i < int64s - 1; i++) {
36 | for (j = 0; j < 64; j++) {
37 | if (rand() % 2)
38 | input[i] |= (unit << j);
39 | }
40 | }
41 | for (i = 0; i < len % 64; i++)
42 | if (rand() % 2)
43 | input[int64s - 1] |= (unit << i);
44 | struct bitfield *output = uint64tobf(input, len);
45 | for (i = 0; i < int64s; i++)
46 | input[i] = htole64(input[i]);
47 | for (i = 0; i < BITNSLOTS(len); i++) {
48 | switch (sizeof(unsigned long)) {
49 | case 8:
50 | output->field[i] =
51 | (unsigned long)htole64((uint64_t) output->field[i]);
52 | break;
53 | case 4:
54 | output->field[i] =
55 | (unsigned long)htole32((uint32_t) output->field[i]);
56 | break;
57 | }
58 | }
59 | cmp = memcmp(input, output->field, (len - 1) / CHAR_BIT + 1);
60 | bfdel(output);
61 | free(input);
62 | if (cmp != 0) {
63 | printf("%s\n", failed);
64 | return 1;
65 | }
66 | printf("%s\n", passed);
67 | return 0;
68 | }
69 |
--------------------------------------------------------------------------------
/tests/test37.c:
--------------------------------------------------------------------------------
1 | /**
2 | * File name: tests/test35.c
3 | * Project name: bitfield, a bit array manipulation library written in C
4 | * URL: https://github.com/ciubotaru/bitfield
5 | * Author: Vitalie Ciubotaru
6 | * License: General Public License, version 3 or later
7 | * Date: September 10, 2016
8 | **/
9 |
10 | #include